U.S. ENVIRONMENTAL PROTECTION AGENCY
Annapolis Field Office
Annapolis Science Center
Annapolis, Maryland 21401
TECHNICAL REPORTS
Vol time 6
-------
-------
Table of Contents
Volume 6
47 Chesapeake Bay Nutrient Input Study
49 Heavy Metals Analyses of Bottom Sediment in
the Potomac River Estuary
51 A System of Mathematical Models for Water
Quality Management
52 Numerical Method for Groundwater Hydraulics
53 Upper Potomac Estuary Eutrophication
Control Requirements
54 AUT0-QUAL Modelling System
Supplement I
to 54 AUT0-QUAL Modelling System: Modification for
Non-Point Source Loadings
-------
-------
PUBLICATIONS
U.S. ENVIRONMENTAL PROTECTION AGENCY
REGION III
ANNAPOLIS FIELD OFFICE*
VOLUME 1
Technical Reports
5 A Technical Assessment of Current Hater Quality
Conditions and Factors Affecting Water Quality in
the Upper Potomac Estuary
6 Sanitary Bacteriology of the Upper Potomac Estuary
7 The Potomac Estuary Mathematical Model
9 Nutrients in the Potomac River Basin
11 Optimal Release Sequences for Hater Quality Control
in Multiple Reservoir Systems
VOLUME 2
Technical Reports
13 Mine Drainage in the North Branch Potomac River Basin
15 Nutrients in the Upper Potomac River Basin
17 Upper Potomac River Basin Water Quality Assessment
VOLUME 3
Technical Reports
19 Potomac-Piscataway Dye Release and Wastewater
Assimilation Studies
21 LNEPLT
23 XYPLOT
25 PLOT3D
* Formerly CB-SR3P, U.S. Department of Health, Education,
and Welfare; CFS-FWPCA, and CTSL-FVIQA, Middle Atlantic
Region, U.S. Department of the Interior
-------
VOLUME 3 (continued)
Technical Reports
27 Water Quality and Wastewater Loadings - Upper Potomac
Estuary during 1969
VOLUME 4
Technical Reports
29 Step Backward Regression
31 Relative Contributions of Nutrients to the Potomac
River Basin from Various Sources
33 Mathematical Model Studies of Water Quality in the
Potomac Estuary
35 Water Resource - Water Supply Study of the Potomac
Estuary
VOLUME 5
Technical Reports
37 Nutrient Transport and Dissolved Oxygen Budget
Studies in the Potomac Estuary
39 Preliminary Analyses of the Wastewater and Assimilation
Capacities of the Anacostia Tidal River System
41 Current Water Quality Conditions and Investigations
in the Upper Potomac River Tidal System
43 Physical Data of the Potomac River Tidal System
Including Mathematical Model Segmentation
45 Nutrient Management in the Potomac Estuary
VOLUME 6
Technical Reports
47 Chesapeake Bay Nutrient Input Study
49 Heavy Metals Analyses of Bottom Sediment in the
Potomac River Estuary
-------
VOLUME 6 (continued)
Technical Reports
51 A System of Mathematical Models for Water Quality
Management
52 Numerical Method for Groundwater Hydraulics
53 Upper Potomac Estuary Eutrophication Control
Requirements
54 AUT0-QUAL Modelling System
Supplement AUT0-QUAL Modelling System: Modification for
to 54 Non-Point Source Loadings
VOLUME 7
Technical Reports
55 Water Quality Conditions in the Chesapeake Bay System
56 Nutrient Enrichment and Control Requirements in the
Upper Chesapeake Bay
57 The Potomac River Estuary in the Washington
Metropolitan Area - A History of its Water Quality
Problems and their Solution
VOLUME 8
Technical Reports
58 Application of AUT0-QUAL Modelling System to the
Patuxent River Basin
59 Distribution of Metals in Baltimore Harbor Sediments
60 Summary and Conclusions - Nutrient Transport and
Accountability in the Lower Susquehanna River Basin
VOLUME 9
Data Reports
Water Quality Survey, James River and Selected
Tributaries - October 1969
Water Quality Survey in the North Branch Potomac River
between Cumberland and Luke, Maryland - August 1967
-------
VOLUME 9 (continued)
Data Reports
Investigation of Water Quality in Chesapeake Bay and
Tributaries at Aberdeen Proving Ground, Department
of the Army, Aberdeen, Maryland - October-December 1967
Biological Survey of the Upper Potomac River and
Selected Tributaries - 1966-1968
Water Quality Survey of the Eastern Shore Chesapeake
Bay, Wicomico River, Pocomoke River, Nanticoke River,
Marshall Creek, Bunting Branch, and Chincoteague Bay -
Summer 1967
Head of Bay Study - Water Quality Survey of Northeast
River, Elk River, C & D Canal, Bohemia River, Sassafras
River and Upper Chesapeake Bay - Summer 1968 - Head ot
Bay Tributaries
Water Quality Survey of the Potomac Estuary - 1967
Water Quality Survey of the Potomac Estuary - 1968
Wastewater Treatment Plant Nutrient Survey - 1966-1967
Cooperative Bacteriological Study - Upper Chesapeake Bay
Dredging Spoil Disposal - Cruise Report No. 11
VOLUME 10
Data Reports
9 Water Quality Survey of the Potomac Estuary - 1965-1966
10 Water Quality Survey of the Annapolis Metro Area - 1967
11 Nutrient Data on Sediment Samples of the Potomac Estuary
1966-1968
12 1969 Head of the Bay Tributaries
13 Water Quality Survey of the Chesapeake Bay in the
Vicinity of Sandy Point - 1968
14 Water Quality Survey of the Chesapeake Bay in the
Vicinity of Sandy Point - 1969
-------
VOLUME 10(continued)
Data Reports
15 Water Quality Survey of the Patuxent River - 1967
16 Water Quality Survey of the Patuxent River - 1968
17 Water Quality Survey of the Patuxent River - 1969
18 Water Quality of the Potomac Estuary Transects,
Intensive and Southeast Water Laboratory Cooperative
Study - 1969
19 Water Quality Survey of the Potomac Estuary Phosphate
Tracer Study - 1969
VOLUME 11
Data Reports
20 Water Quality of the Potomac Estuary Transport Study
1969-1970
21 Water Quality Survey of the Piscataway Creek Watershed
1968-1970
22 Water Quality Survey of the Chesapeake Bay in the
Vicinity of Sandy Point - 1970
23 Water Quality Survey of the Head of the Chesapeake Bay
Maryland Tributaries - 1970-1971
24 Water Quality Survey of the Upper Chesapeake Bay
1969-1971
25 Water Quality of the Potomac Estuary Consolidated
Survey - 1970
26 Water Quality of the Potomac Estuary Dissolved Oxygen
Budget Studies - 1970
27 Potomac Estuary VJastewater Treatment Plants Survey
1970
28 Water Quality Survey of the Potomac Estuary Embayments
and Transects - 1970
29 Water Quality of the Upper Potomac Estuary Enforcement
Survey - 1970
-------
30
31
32
33
34
Appendix
to 1
Appendix
to 2
3
4
VOLUME 11 (continued)
inta Reports
Water Quality of the Potomac Estuary - Gilbert Swamp
and Allen's Fresh and Gunston Cove - 1970
Survey Results of the Chesapeake Bay Input Study -
1969-1970
Upper Chesapeake Bay Hater Quality Studies - Bush River,
Spesutie Narrows and Swan Creek, C & D Canal, Chester
River, Severn River, Gunpowder, Middle and Bird Rivers -
1968-1971
Special Water Quality Surveys of the Potomac River Basin
Anacostia Estuary, Wicomico,River, St. Clement and
Breton Bays, Occoquan Bay - 1970-1971
Water Quality Survey of the Patuxent River - 1970
VOLUME 12
Working Documents
Biological Survey of the Susquehanna River and its
Tributaries between Danville, Pennsylvania and
Conowingo, Maryland
Tabulation of Bottom Organisms Observed at Sampling
Stations during the Biological Survey between Danville,
Pennsylvania and Conowingo, Maryland - November 1966
Biological Survey of the Susquehanna River and its
Tributaries between Cooperstown, New York and
Northumberland, Pennsylvnaia - January 1967
Tabulation of Bottom Organisms Observed at Sampling
Stations during the Biological Survey between Cooperstown,
New York and Northumberland, Pennsylvania - November 1966
VOLUME 13
Working Documents
Water Quality and Pollution Control Study, Mine Drainage
Chesapeake Bay-Delaware River Basins - July 1967
Biological Survey of Rock Creek (from Rockville, Maryland
to the Potomac River) October 1966
-------
VOLUME 13 (continued)
Working Documents
5 Summary of Water Quality and Waste Outfalls, Rock Creek
in Montgomery County, Maryland and the District of
Columbia - December 1966
6 Water Pollution Survey - Back River 1965 - February 1967
7 Efficiency Study of the District of Columbia Water
Pollution Control Plant - February 1967
VOLUME 14
Working Documents
8 Water Quality and Pollution Control Study - Susquehanna
River Basin from Northumberland to West Pittson
(Including the Lackawanna River Basin) March 1967
9 Water Quality and Pollution Control Study, Juniata
River Basin - March 1967
10 Water Quality and Pollution Control Study, Rappahannock
River Basin - March 1967
11 Water Quality and Pollution Control Study, Susquehanna
River Basin from Lake Otsego, New York, to Lake Lackawanna
River Confluence, Pennsylvania - April 1967
VOLUME 15
Working Documents
12 Water Quality and Pollution Control Study, York River
Basin - April 1967
13 Water Quality and Pollution Control Study, West Branch,
Susquehanna River Basin - April 1967
14 Water Quality and Pollution Control Study, James River
Basin - June 1967 .
15 Water Quality and Pollution Control Study, Patuxent River
Basin - May 1967
-------
VOLUME 16
Working Documents
16 Water Quality and Pollution Control Study, Susquehanna
River Basin from Northumberland, Pennsylvania, to
Havre de Grace, Maryland - July 1967
17 Water Quality and Pollution Control Study, Potomac
River Basin - June 1967
18 Immediate Water Pollution Control Needs, Central Western
Shore of Chesapeake Bay Area (Magothy, Severn, South, and
West River Drainage Areas) July 1967
19 Immediate Water Pollution Control Needs, Northwest
Chesapeake Bay Area (Patapsco to Susquehanna Drainage
Basins in Maryland) August 1967
20 Immediate Water Pollution Control Needs - The Eastern
Shore of Delaware, Maryland and Virginia - September 1967
VOLUME 17
Working Documents
21 Biological Surveys of the Upper James River Basin
Covington, Clifton Forge, Big Island, Lynchburg, and
Piney River Areas - January 1968
22 Biological Survey of Antietam Creek and some of its
Tributaries from Waynesboro, Pennsylvania to Antietam,
Maryland - Potomac River Basin - February 1968
23 Biological Survey of the Monocacy River and Tributaries
from Gettysburg, Pennsylvania, to Maryland Rt. 28 Bridge
Potomac River Basin - January 1968
24 Water Quality Survey of Chesapeake Bay in the Vicinity of
Annapolis, Maryland - Summer 1967
25 Mine Drainage Pollution of the North Branch of Potomac
River - Interim Report - August 1968
26 Water Quality Survey in the Shenandoah River of the
Potomac River Basin - June 1967
27 Water Quality Survey in the James and Maury Rivers
Glasgow, Virginia - September 1967
-------
VOLUME 17 (continued)
Working Documents
28 Selected Biological Surveys in the James River Basin,
Gillie Creek in the Richmond Area, Appomattox River
in the Petersburg Area, Bailey Creek from Fort Lee
to Hopewell - April 1968
VOLUME 18
Working Documents
29 Biological Survey of the Upper and Middle Patuxent
River and some of its Tributaries - from Maryland
Route 97 Bridge near Roxbury Mills to the Maryland
Route 4 Bridge near Wayson's Corner, Maryland -
Chesapeake Drainage Basin - June 1968
30 Rock Creek Watershed - A Water Quality Study Report
March 1969
31 The Patuxent River - Water Quality Management -
Technical Evaluation - September 1969
VOLUME 19
Working Documents
Tabulation, Community and Source Facility Water Data
Maryland Portion, Chesapeake Drainage Area - October 1964
Waste Disposal Practices at Federal Installations
Patuxent River Basin - October 1964
Waste Disposal Practices at Federal Installations
Potomac River Basin below Washington, D.C.- November 1964
Waste Disposal Practices at Federal Installations
Chesapeake Bay Area of Maryland Excluding Potomac
and Patuxent River Basins - January 1965
The Potomac Estuary - Statistics and Projections -
February 1968
Patuxent River - Cross Sections and Mass Travel
Velocities - July 1968
-------
VOLUME 19 (continued)
Working Documents
Wastewater Inventory - Potomac River Basin -
December 1968
Wastewater Inventory - Upper Potomac River Basin -
October 1968
VOLUME 20
Technical Papers -
1 A Digital Technique for Calculating and Plotting
Dissolved Oxygen Deficits
2 A River-Mile Indexing System for Computer Application
in Storing and Retrieving Data (unavailable)
3 Oxygen Relationships in Streams, Methodology to be
Applied when Determining the Capacity of a Stream to
Assimilate Organic Wastes - October 1964
4 Estimating Diffusion Characteristics of Tidal Waters -
May 1965
5 Use of Rhodamine B Dye as a Tracer in Streams of the
Susquehanna River Basin - April 1965
6 An In-Situ Benthic Respirometer - December 1965
7 A Study of Tidal Dispersion in the Potomac River
February 1966
8 A Mathematical Model for the Potomac River - what it
has done and what it can do - December 1966
9 A Discussion and Tabulation of Diffusion Coefficients
for Tidal Waters Computed as a Function of Velocity
February 1967
10 Evaluation of Coliform Contribution by Pleasure Boats
July 1966
-------
VOLUME 21
Technical Papers
11 A Steady State Segmented Estuary Model
12 Simulation of Chloride Concentrations in the
Potomac Estuary - March 1968
13 Optimal Release Sequences for Water Quality
Control in Multiple-Reservoir Systems - 1968
VOLUME 22
Technical Papers
Summary Report - Pollution of Back River - January 1964
Summary of Water Quality - Potomac River Basin in
Maryland - October 1965
The Role of Mathematical Models in the Potomac River
Basin Water Quality Management Program - December 1967
Use of Mathematical Models as Aids to Decision Making
in Water Quality Control - February 1968
Piscataway Creek Watershed - A Water Quality Study
Report - August 1968
VOLUME 23
Ocean Dumping Surveys
Environmental Survey of an Interim Ocean Dumpsite,
Middle Atlantic Bight - September 1973
Environmental Survey of Two Interim Dumpsites,
Middle Atlantic Bight - January 1974
Environmental Survey of Two Interim Dumpsites
Middle Atlantic Bight - Supplemental Report -
October 1974
Effects of Ocean Disposal Activities on Mid-
continental Shelf Environment off Delaware
and Maryland - January 1975
-------
VOLUME 24
1976 Annual
Current Nutrient Assessment - Upper Potomac Estuary
Current Assessment Paper No. 1
Evaluation of Western Branch Wastewater Treatment
Plant Expansion - Phases I and II
Situation Report - Potomac River
Sediment Studies in Back River Estuary, Baltimore,
Maryland
Technical Distribution of Metals in Elizabeth River Sediments
Report 61
Technical A Water Quality Modelling Study of the Delaware
Report 62 Estuary
-------
CHESAPEAKE BAY
NUTRIENT INPUT STUDY
Technical Report 47
Environmental Protection Agency
Region III
Annapolis Field Office
September 1972
-------
Annapolis Field Office
Region III
Environmental Protection Agency
CHESAPEAKE BAY
NUTRIENT INPUT STUDY
Technical Report 47
September 1972
Victor Guide
Orterio Villa, Jr.
Supporting Staff
Johan A. Aalto, Director, AFO
Leo J. Clark, Chief, Engineering Section
James W. Marks, Chief, Laboratory Section
Conly DeBord, Draftsman
Tangie Brown, Typist
-------
PREFACE
The Chesapeake Bay, the largest tidal estuary on the Atlantic
Coast, is regarded as one of the most valuable estuaries in the world
and is utilized extensively for fishing, recreation, navigation, and
waste assimilation. This extensive utilization has resulted in an
ever increasing stress on the ability of the Bay to accomodate the
diverse and often conflicting demands made upon it.
To determine the magnitude, extent, and source of nutrient
loadings to the Chesapeake Bay data from a water quality survey of the
major tributary watersheds (the Susquehanna, the Patuxent, the Potomac,
the Rappahannock, the Mattaponi, the Pamunkey, the Chickahominy, and
the James) have been evaluated and are presented in this report.
-------
TABLE OF CONTENTS
Page
PREFACE ii
LIST OF TABLES vi
LIST OF FIGURES viii
Chapter
I. INTRODUCTION 1-1
A. Purpose and Scope 1-1
B. Description of the Sampling Network 1-2
C. Authority 1-4
D. Acknowledgements 1-4
II. SUMMARY AND CONCLUSIONS II-l
III. DESCRIPTION OF THE STUDY AREA III-l
A. Chesapeake Bay III-l
B. Tributary Watersheds III-3
1. Susquehanna River Basin III-3
2. Patuxent River Basin III-4
3. Potomac River Basin III-6
4. Rappahannock River Basin III-8
5. York River Basin 111-10
a. Mattaponi River III-ll
b. Pamunkey River III-ll
6. James River Basin 111-12
a. Chickahominy River Watershed 111-13
m.
-------
TABLE OF CONTENTS
Chapter Page
IV. WATER QUALITY CONDITIONS IV-1
A. Susquehanna River at Conowingo, Maryland IV-2
B. Patuxent River at Route 50 (John Hanson Highway) IV-5
C. Potomac River at Great Falls, Maryland IV-7
D. Rappahannock River at Fredericksburg, Virginia IV-10
E. York River IV-12
1. Mattaponi River at Beulahville, Virginia IV-12
2. Pamunkey River at Hanover, Virginia IV-15
F. James River at Richmond, Virginia IV-15
G. Chickahominy River at Providence Forge, Virginia IV-17
V. NUTRIENT LOADINGS AND RELATIVE CONTRIBUTIONS V-l
A. Delineation of Daily Nutrient Loadings (Observed) V-l
1. Susquehanna River at Conowingo, Maryland V-3
2. Patuxent River at Route 50 (John Hanson Highway) V-7
3. Potomac River at Great Falls, Maryland V-10
4. Rappahannock River at Fredericksburg, Virginia V-13
5. Mattaponi River at Beulahville, Virginia V-l6
6. Pamunkey River at Hanover, Virginia V-l9
7. James River at Richmond, Virginia V-22
8. Chickahominy River at Providence Forge, Virginia V-25
B. Regression Analysis V-28
1. Analytical Framework V-28
2. Regression Loadings (Calculated) V-29
IV
-------
TABLE OF CONTENTS
Chapter Page
V. NUTRIENT LOADINGS AND RELATIVE CONTRIBUTIONS (Cont.)
C. Delineation of Mean Monthly Nutrient Loadings V-55
(Regression)
D. Comparison of Observed Daily Loadings and Mean V-58
Monthly Loadings Based on Regression Extrapolation
REFERENCES
APPENDIX
-------
LIST OF TABLES
Number Page
I - 1 Chesapeake Bay Nutrient Sampling Network 1-4
II - 1 Nutrient Input to Chesapeake Bay 11-7
Mean Monthly Nutrient Contributions
II - 2 Nutrient Input to Chesapeake Bay 11-8
Susquehanna River at Conowingo, Maryland
II - 3 Nutrient Input to Chesapeake Bay II-9
Potomac River at Great Falls, Maryland
II - 4 Nutrient Input to Chesapeake Bay 11-10
James River at Richmond, Virginia
IV - 1 Mean Monthly Nutrient Concentrations IV-1
V - 1 Average Daily Nutrient Contributions V-l
V - 2 Seasonal Nutrient Loadings V-3
Susquehanna River at Conowingo, Maryland
V-3 Seasonal Nutrient Loadings V-7
Patuxent River at Route 50 (John Hanson Highway)
V - 4 Seasonal Nutrient Loadings V-10
Potomac River at Great Falls, Maryland
V - 5 Seasonal Nutrient Loadings V-l3
Rappahannock River at Fredericksburg, Virginia
V - 6 Seasonal Nutrient Loadings V-16
Mattaponi River at Beulahville, Virginia
V-7 Seasonal Nutrient Loadings V-19
Pamunkey River at Hanover, Virginia
V - 8 Seasonal Nutrient Loadings V-22
James River at Richmond, Virginia
V - 9 Seasonal Nutrient Loadings V-25
Chickahominy River at Providence Forge, Virginia
V-10 Regression Study Results V-37
Susquehanna River at Conowingo, Maryland
V - 11 Regression Study Results V-38
Patuxent River at Route 50 (John Hanson Highway)
VI
-------
LIST OF TABLES
Number Page
V - 12 Regression Study Results V-39
Potomac River at Great Falls, Maryland
V - 13 Regression Study Results V-40
Rappahannock River at Fredericksburg, Virginia
V - 14 Regression Study Results V-41
Mattaponi River at Beulanville, Virginia
V - 15 Regression Study Results V-42
Pamunkey River at Hanover, Virginia
V - 16 Regression Study Results V-43
James River at Richmond, Virginia
V - 17 Regression Study Results V-44
Chickahominy River at Providence Forge, Virginia
V - 18 Nutrient Input of Susquehanna River at Conowingo, V-46
Maryland
V - 19 Nutrient Input of Potomac River at Great Falls, V-47
Maryland
V - 20 Nutrient Input of Rappahannock River at V-48
Fredericksburg, Virginia
V - 21 Nutrient Input of Mattaponi River at Beulahville, V-49
Virginia
V - 22 Nutrient Input of Pamunkey River at Hanover, V-50
Virginia
V - 23 Nutrient Input of James River at Richmond, V-51
Virginia
V - 24 Nutrient Input of Chickahominy River at Providence V-52
Forge, Virginia
V - 25 Seasonal Nutrient Loadings (Regression Extrapolation) V-55
June 1969 through October 1969
V - 26 Seasonal Nutrient Loadings (Regression Extrapolation) V-56
November 1969 through May 1970
V - 27 Seasonal Nutrient Loadings (Regression Extrapolation) V-56
June 1970 through August 1970
V - 28 Tributary Contributions V-57
(Nutrient Loadings as %)
vii
-------
LIST OF FIGURES
Number Page
I - 1 Sampling Network 1-5
IV - 1 Nutrient Concentrations IV-3
Susquehanna River at Conowingo, Maryland
IV - 2 Nutrient Concentrations IV-6
Patuxent River at Route 50 (John Hanson Highway)
IV-3 Nutrient Concentrations IV-8
Potomac River at Great Falls, Maryland
IV - 4 Nutrient Concentrations IV-9
Potomac River at Great Falls, Maryland (Cont.)
IV - 5 Nutrient Concentrations IV-11
Rappahannock River at Fredericksburg, Virginia
IV-6 Nutrient Concentrations IV-13
Mattaponi River at Beulahville, Virginia
IV - 7 Nutrient Concentrations IV-14
Mattaponi River at Beulahville, Virginia (Cont.)
IV-8 Nutrient Concentrations IV-16
Pamunkey River at Hanover, Virginia
IV-9 Nutrient Concentrations IV-18
James River at Richmond, Virginia
IV - 10 Nutrient Concentrations IV-19
Chickahominy River at Providence Forge, Virginia
V - 1 Susquehanna River at Conowingo, Maryland V-4
Actual Daily Nutrient Loadings
V - 2 Susquehanna River at Conowingo, Maryland V-5
Actual Daily Nutrient Loadings (Cont.)
V - 3 Susquehanna River at Conowingo, Maryland V-6
Actual Daily Nutrient Loadings (Cont.)
V-4 Patuxent River at Route 50 (John Hanson Highway) V-8
Actual Daily Nutrient Loadings
V-5 Patuxent River at Route 50 (John Hanson Highway) V-9
Actual Daily Nutrient Loadings (Cont.)
V-6 Potomac River at Great Falls, Maryland V-ll
Actual Daily Nutrient Loadings
vm
-------
LIST OF FIGURES
Number Page
V - 7 Potomac River at Great Falls, Maryland V-12
Actual Daily Nutrient Loadings (Cont.)
V - 8 Rappahannock River at Fredericksburg, Virginia V-14
Actual Daily Nutrient Loadings
V - 9 Rappahannock River at Fredericksburg, Virginia V-15
Actual Daily Nutrient Loadings (Cont.)
V - 10 Mattaponi River at Beulahville, Virginia V-17
Actual Daily Nutrient Loadings
V - 11 Mattaponi River at Beulahville, Virginia V-18
Actual Daily Nutirent Loadings (Cont.)
V-12 Pamunkey River at Hanover, Virginia V-20
Actual Daily Nutrient Loadings
V - 13 Pamunkey River at Hanover, Virginia V-21
Actual Daily Nutrient Loadings (Cont.)
V-14 James River at Richmond, Virginia V-23
Actual Daily Nutrient Loadings
V-15 James River at Richmond, Virginia V-24
Actual Daily Nutrient Loadings (Cont.)
V - 16 Chickahominy River at Providence Forge, Virginia V-26
Actual Daily Nutrient Loadings
V-17 Chickahominy River at Providence Forge, Virginia v-27
Actual Daily Nutrient Loadings (Cont.)
V-18 Nutrient Load - Streamflow Relationship, v-31
Susquehanna River at Conowingo, Maryland
(T.P04 as P04 versus flow)
V - 19 Nutrient Load - Streamflow Relationship, y-32
Susquehanna River at Conowingo, Maryland
(Pi as PO. versus flow)
V-20 Nutrient Load - Streamflow Relationship, v-33
Susquehanna River at Conowingo, Maryland
(T.K.N. as N versus flow)
V-21 Nutrient Load - Streamflow Relationship, v-34
Susquehanna River at Conowingo, Maryland
(N02 + N03 as N versus flow)
IX
-------
LIST OF FIGURES
Number Page
V - 22 Nutrient Load - Stream-flow Relationship, v_35
Susquehanna River at Conowingo, Maryland
(NH3 as N versus flow)
V - 23 Nutrient Load - Streamflow Relationship, v_36
Susquehanna River at Conowingo, Maryland
(T.O.C. versus flow)
V - 24 Nitrogen Input to Chesapeake Bay \l-B3
V - 25 Phosphorus Input to Chesapeake Bay v_54
V - 26 River Discharges (Mean monthly versus observed) \l-f>Q
V - 27 River Discharges (Cont.) y_g1
V - 28 Susquehanna River at Conowingo, Maryland v_62
Mean Monthly Nutrient Loadings (Regression) versus
Actual Daily Nutrient Loadings (Observed)
V - 29 Susquehanna River at Conowingo, Maryland v_63
Mean Monthly Nutrient Loadings (Regression) versus
Actual Daily Nutrient Loadings (Observed) (Cont.)
V - 30 Susquehanna River at Conowingo, Maryland v_64
Mean Monthly Nutrient Loadings (Regression) versus
Actual Daily Nutrient Loadings (Observed) (Cont.)
-------
1-1
CHAPTER I
INTRODUCTION
A. PURPOSE AND SCOPE
A perplexing problem in water quality analysis is the determination
of the effects of waste discharges upon the assimilative capacity
of the receiving waters. Domestic, industrial, and agricultural
wastes, which contribute to progressive stream fertilization,
ultimately lead to excessive algal growth. The nutrients, especially
nitrogen and phosphorus, which normally contribute to dense algal
growth and resultant stream deterioration, have been related to
recently accelerated eutrophication observed in the Chesapeake Bay.
In order to assess the degree of eutrophication in the Bay and
delineate the nutrient sources responsible for this condition, it
was necessary to determine the nutrient contributions from the major
tributary watersheds. This factor led to the establishment of the
Chesapeake Bay Nutrient Input sampling network. Determination of
the sources of nutrient inputs and their effect on the resources
of the Bay is an important step in the development of a management
scheme for future use in nutrient control.
Consequently, an intensive water quality survey of the Chesapeake
Bay's major tributary watersheds was conducted to determine the primary
sources and relative contribution of nutrients affecting the Chesapeake
Bay from nontidal areas. The principal objectives of this study were
to:
1. Determine the extent of existing nutrient loadings to the
Chesapeake Bay from major tributary watersheds.
-------
1-2
2. Identify streams contributing significant nutrient loadings
to the Chesapeake Bay.
3. Determine seasonal trends in nutrient input to the Chesapeake
Bay.
4. Determine average nutrient loadings and concentrations for
each tributary watershed.
5. Establish relationships between nutrient load and stream
flow for every tributary (regression analysis).
6. Identify portions of the Chesapeake Bay high in nutrients.
7. Consider the impact of continued nutrient enrichment on the
Bay ecosystem.
8. Obtain sufficient data on which to base future management
decisions on nutrient control from pertinent watersheds.
B. DESCRIPTION OF THE SAMPLING NETWORK
In order to account for the seasonal variations in the nutrient
loadings from major watersheds (i.e., effect of seasonal river dis-
charges), the Annapolis Field Office, Region III, Environmental
Protection Agency, conducted this extensive nutrient survey during a
15-month period, June 1969 to August 1970. The survey was confined
to the following tributary watersheds: the Susquehanna, the Patuxent,
the Potomac, the Rappahannock, the Mattaponi, the Pamunkey, the
Chickahominy, and the James.
A sampling network was developed which consisted of eight stations
strategically located within the Chesapeake Bay's major tributary
watersheds. The following criteria were used in locating the sampling
-------
1-3
stations:
(1) One station at or near the fall line of each major tributary
watershed -
a. Susquehanna River
b. Patuxent River
c. Potomac River
d. Rappahannock River
e. Mattaponi River
f. Pamunkey River
g. Chickahominy River
h. James River
(2) Stations located at or near the United States Geological
Survey (USGS) gaging stations
A brief description of each sampling station is given in Table
I - 1 and the locations shown in Figure I - 1. Samples were normally
obtained weekly during the entire study period.
-------
1-4
Table I - 1
CHESAPEAKE BAY NUTRIENT SAMPLING NETWORK
USGS Gage
Station Code Station Name Reference
CW Susquehanna River at Conowingo, Md.
PJ Patuxent River at Route 50 (John Hanson Highway)
GF Potomac River at Great Falls, Md. 1-6465
RF Rappahannock River at Fredericksburg, Va. 1-6680
MB Mattaponi River at Beulahville, Va. 1-6745
PH Pamunkey River at Hanover, Va. 1-6730
CH Chickahominy River at Providence Forge, Va. 2-0425
JR James River at Richmond, Va. 2-375
A weekly sampling schedule accounted for 505 samples which were
analyzed for the following parameters: Total Phosphorus as P0»,
Inorganic Phosphorus as P0», Total Kjeldahl Nitrogen as N, Ammonia
Nitrogen as N, Nitrite-Nitrate as N and Total Organic Carbon.
C. AUTHORITY
This report was prepared under the provision of the Federal
Water Pollution Control Act, as amended (33 U.S.C. 466 et seq.),
which directed the Secretary of the Interior* to develop programs
for eliminating pollution of interstate waters and improving the
condition of surface and ground waters.
D. ACKNOWLEDGEMENTS
The cooperation of the following governmental agency and state
organizations has enabled the Annapolis Field Office (AFO) to complete
* now Administrator, EPA
-------
SAMPLING NETWORK
SU— SUSQUEHANNA RIVER AT
CONOWINGO. MARYLAND
JR—JAMES RIVER AT RICHMOND,
VIRGINIA
GF—POTOMAC RIVER AT GREAT
FALLS. MARYLAND
Pjl — PUTUXENT RIVER AT ROUTE 50
(JOHN HANSON HIGHWAY)
Mf — MATTAPONI RIVER AT
BEULAHVILLE. VIRGINIA
PH — PAMUNKEY RIVER AT
HANOVER, VIRGINIA
R£ — RAPPAHANNOCK RIVER AT
FREDERICKSBURG, VIRGINIA
£H — CHICAHOMINY RIVER AT
PROVIDENCE FORGE. VIRGINIA
I-l
-------
1-6
this study and their assistance is gratefully acknowledged:
1. U. S. Geological Survey, Water Resources Divisions at
College Park, Maryland; Richmond, Virginia; Harrisburg,
Pennsylvania;
2. Maryland Department of Water Resources, and
3. Virginia Water Control Board.
In addition, special thanks is extended to Dr. Norbert Jaworski
for the design and initiation of the study and guidance during
composition of the report.
-------
II-l
CHAPTER II
SUMMARY AND CONCLUSIONS
A detailed study of the nutrient contributions to the
Chesapeake Bay from major tributary watersheds was undertaken
during the period of June 1969 to August 1970. The study findings
are presented below:
1. The average measured concentration of nutrients for the
eight major watersheds varied as follows:
Tributary T. P04 TKN N0? + NO, NH~
Watershed as P0y| Pi as N ^as N as N TOC
mg/1
Susquehanna River at
Conowingo, Md. 0.18 0.12 0.67 0.91 0.23 3.64
Patuxent River at
Route 50 (John Hanson
Highway) 2.77 1.90 1.68 1.35 1.00 7.72
Potomac River at
Great Falls, Md. 0.50 0.22 0.87 1.05 0.17 6.42
Rappahannock River at
Fredericksburg, Va. 0.25 0.13 0.57 0.52 0.10 4.83
Mattaponi River at
Beulahville, Va. 0.16 0.13 0.58 0.11 0.07 8.08
Pamunkey River at
Hanover, Va. 0.18 0.13 0.53 0.19 0.12 6.15
Chickahominy River at
Providence Forge, Va. 0.57 0.39 0.73 0.25 0.07 10.53
James River at
Richmond, Va. 0.20 0.13 0.64 0.66 0.13 5.51
Although the average measured nutrient concentrations for the
Patuxent River were generally the highest among the eight major
tributaries, the corresponding nutrient loadings (Ibs/day) represent
minor contributions due to the relatively lower river discharge (as
compared to the Susquehanna, the Potomac, and the James).
-------
II-2
2. On an average daily basis for the entire study period
(observed data), the nutrient loadings entering the Chesapeake Bay
from the major tributary watersheds are as follows:
Nutrient Loadings (Ibs/day)
Tributary
Watershed
Susquehanna River
Potomac River
James River
Patuxent River
Rappahannock River
Pamunkey River
Mattaponi River
Chickahominy
T. PO
as POT
*T
59,000 34
45,000 19
7,000 5
5,000 3
3,000 2
1 ,000 1
1,000
600
The average daily nutrient
the Chesapeake Bay
using mean monthly
Tributary
Watershed*
Susquehanna River
Potomac River
James River
Rappahannock River
Pamunkey River
Mattaponi River
Chickahominy River
Pi
,000 1
,000
,000
,000
,000
,000
500
400
input of
for the entire study
flows) is as
T. P04
as POJ
t
33,000 20
23,000 9
7,100 4
1,600
1,500
500
500
f ol 1 ows :
Nutrient
Pi
,000
,900
,200
900
900
450
400
TKN
as N
30,000
69,000
19,000
4,000
6,000
3,000
1,000
900
N09 + NO-
^as N J
230,000
87,000
15,000
2,000
5,400
1,000
400
200
NH~
asJN
42,000
12,000
5,000
2,000
1,000
600
300
100
TOC
576,000
363,000
169,000
18,000
40,000
36,000
21 ,000
15,000
the major tributary watersheds to
period
Loadi
TKN
as N
93,000
35,000
18,000
3,900
3,000
1,500
900
(regression
ngs (Ibs/day)
N09 + NO-
^as N d
153,000
57,000
15,500
3,600
1,700
400
200
extrapolation
NH-
as^N
29,000
6,000
4,200
600
700
250
100
TOC
513,000
267,000
133,000
29,000
37,000
20,500
12,000
* Insufficient flow data for Patuxent extrapolation
-------
II-3
Comparison of the loadings (observed versus regression extrapolation)
show generally higher loadings when the observed daily data is averaged
for the study period. The average daily nutrient input based on
regression extrapolation using mean monthly flows is a more accurate
representation of the situation since use of mean monthly flows
eliminates the biased nature of extreme periods of flow during which
sampling may have occurred.
3. On the basis of mean monthly nutrient contributions (regression
extrapolation) over the entire 15-month study period, the primary
sources of nutrients entering the Chesapeake Bay emanate from three
major watersheds—the Susquehanna, the Potomac, and the James.
Actual percentages for all of the watersheds sampled are shown below:
Loadings (Ibs/day) as %
Tributary
Watershed
Susquehanna River
Potomac River
James River
Rappahannock River
Pamunkey River
Mattaponi River
Chickahominy River
T. PO
as PO,
*r
49
33
12
2
2
1
1
Pi
54
27
13
2
2
1
1
TKN
as N
60
23
10
3
2
1
1
NO, + NO.
^as N J
66
25
6
1
1
<1
<1
NH3
71
15
11
1
1
<1
<1
TOC
51
27
12
3
4
2
1
-------
II-4
4. Seasonal variations in the percentage of nutrient contribution
of the total nontidal nutrient input to the Chesapeake Bay from all
sources sampled are shown below:
Seasonal Nutrient Contribution as %
T. PO,TKNN0? + NCsNHL
Time Period as P0)j Pi as N as N J asJN TOC
June 1969
through
October 1969 14 14 19 14 20 19
November 1969
through
May 1970 67 73 59 68 57 60
June 1970
through
August 1970 19 13 22 18 23 21
5. During the significant period of November 1969 through May 1970
when the majority of nutrients were transported into the Chesapeake Bay
via nontidal discharges, the primary nutrient loadings again emanated
from three major watersheds—the Susquehanna, the Potomac, and the
James as indicated in the following table:
Tributary Contributions
(Nutrient Loadings as %)
Tributary
Watershed
Susquehanna River
Potomac River
James River
Rappahannock River
Pamunkey River
Mattaponi River
Chickahominy River
T. P04
as PO.
*T
54
34
7
3
1
<1
<1
Pi
60
26
8
3
1
1
1
TKN
as N
62
23
10
3
1
<1
<1
N02 + N03 NH3
as N as N
66 72
26 16
5 9
2 <2
<1 <1
<1 <1
<1 <1
TOC
55
25
12
3
2
2
<1
-------
II-5
As presented, the tributary contributions reflect two distinct
observations which can be made in regard to nutrient enrichment of the
Chesapeake Bay: (1) the predominant influence of three principal
watersheds on the nutrient balance of the Chesapeake Bay—the Susquehanna,
the Potomac and the James and (2) the seasonal nature of nutrient
enrichment of the Chesapeake Bay whereby the majority of nutrients
transported into the Chesapeake Bay via nontidal discharges occurred
during the period of November 1969 through May 1970.
Although the majority of nutrients are transported into the
Chesapeake Bay during the above period, more significance may be
attributed to periods of low flow (and high temperature) during which
high resident times result in significant algal blooms. Evaluation,
therefore, of nutrient transport in the Chesapeake Bay from nontidal
sources is not accomplished herein.
These three tributary watersheds are the major factors responsible
for the Chesapeake Bay's nutrient problems. Control of nutrients from
these major watersheds, especially the Susquehanna, should result in a
restored nutrient balance in the Bay.
6. The cumulative nutrient inputs from the major tributary water-
sheds to the Chesapeake Bay based on regression analyses using mean
monthly flow data for the entire study period are presented in Table
II - 1.
7. Mean monthly nutrient contributions (Ibs/day) from the three
major tributary watersheds are presented in Tables II - 2,.II - 3, and
II - 4.
8. Nutrient loadings (Ibs/day) are highly related to river dis-
charge. For example, on October 22, 1969, with a river discharge of
-------
II-6
4,300 cfs, approximately 3,200 Ibs/day of total phosphorus as PO. and
15,000 Ibs/day of NO^ + NO., nitrogen as N entered the Chesapeake Bay
from the Susquehanna River at Conowingo, Maryland, while on April 3,
1970, with a river discharge of 264,000 cfs, approximately 683,000
and 1,400,000 Ibs/day of total phosphorus as PO^ and N02 + N03 nitrogen
as N, respectively, entered the Bay at Conowingo, Maryland. Thus,
the relationship between river discharge and nutrient loadings,
especially NOp + N03 as N, is apparent. High N02 + NO, as N loadings
are indicative of land runoff as contrasted to TKN as N loadings which
are attributable mainly to treatment plant effluents entering the water-
ways. Conversely, total phosphorus as PO. is more difficult to
characterize since it tends to adsorb to particles and sediments in the
water. During low flow periods, phosphorus is retained in bottom
deposits in the stream channel. As a result, a substantial portion
of the PO. is unavailable due to sedimentation. During high flow periods
scouring may occur in the waterway, thus releasing the nutrients re-
tained in the sediment and transporting them downstream and ultimately
to the Chesapeake Bay.
-------
* to
re o
CQ •,-
CU 3
NX O
re 'f-^
cu s_
Q.-M
re c
i — tO O
CD <_>
1 -C
O -M
i— i C
i— i O CU
cu £
JD 3 3
re o-Z
I— C
1-H >>
p_
C •<->
0) C
•r- O
^ ^_
3 C
z re
cu
>*
re
~o
o ^
O to
h"~ jC^
1 "
—
re
to ~o
re ' —
to
coo
in .—
z
to •— ~
re >,
re
coo
o ^
z to
_a
+ r—
^^*
CM
O
~^r
^— *
z >,
re'
to ~o
re *^
to
z _a
^ r-_
1
_
"£_
re >
en re
s- -o
O "^^
c to
i— i JD
' — d-
Q.
0
D_ ^— -
>^
to re
re T3
•3-to"
O -Q
Q- r—
1 —
CO
o o
o o
0 O
O LO
O LO
CO i—
CM
0 O
CD O
0 0
LO r--
co co
LO
o o
0 0
0 0
CD r^-
O LD
0
Cl
o
__l ^
<
I — c^
o >
1—
3 re
C/} Q-
-------
-o
c
* r—
10 S-
CQ rd
0)
_\X •*
fCS O
CL» CD
Q. C.
CM re •!-
to 3!
1 Ol O
_E E
1-1 0 O
i— i O
o
i— (O
.a 4->
ro 3 S-
t— Q- CO
E >
1— 1 •I-'
a:
"E n3
a» E
•r- C
S- a)
i * f"
3 cu
•ZL 3
cr
3
CO
~
fO
C_J TJ
O 'X»
— to
* *^>
^
ro
to T3
fO *x.
to
CTQ
:r i—
^f ^_^
2:
*o
CTO
O *••»
zr to
JD
+ t—
CM
^v~n^
z: >,
(C
to "O
tO ~~-»
to
**S |_
— «u^
*•— s
^*>i
E ra
ro T3
CD*-v
S- to
O -Q
E i —
d-
a.
o
to ro
ro "O
^^
O -0
D_ i —
S
o
~™ x™v
J- tO
E O
ro %^-**
0)
si
O)
ro
O
O
0
1 —
CM
CO
o
o
o
^_
CM
O
O
O
CM
CO
O
0
O
CO
to
o
o
o
00
o
o
o
LO
o
o
CM
en
r_
en
to
to
o
0 0
0 0
0 0
00 00
LO O
CM CO
o o
o o
0 0
f^ O
i— CM
0 0
o o
0 0
r- to
to ^
o o
o o
o o
i— O
LO tO
0 0
o o
o o
10 00
o o
o o
0 0
1— ^J-
0 0
o o
en o
*± 00
1— 1—
en en
to to
r-» co
0 0
0 0
0 0
o o
LO CO
r— en
r—
0 0
0 0
0 0
en co
0 0
0 0
0 0
CO CO
CM r—
o o
0 0
0 0
If) I—
CM CM
o o
o o
o o
CM i—
0 O
0 0
o o
«3- CO
0 0
o o
ro o
tO LO
en en
to to
en o
o •—
0 0
o o
0 0
co «*•
CO i—
<3- LT>
O O
O O
0 0
to O
CM CO
O O
O O
0 0
«d- r—
1— cj~
f~ r—
o o
o o
o o
i— LO
co en
o o
o o
o o
CM tO
t— r—
o o
O 0
0 O
CM CO
CM CM
o o
o o
en i—
LO i —
CM CO
en en
to to
i— CM
0 O
o o
o o
en o
•— o
00 O
n
0 0
o o
0 0
i— CM
CM LO
O O
O O
o o
en LO
r^> co
CO
0 0
0 0
0 O
CM r—
to co
^—
o o
o o
o o
CO to
^-
0 0
0 O
o o
LO LO
r- r-.
o o
o o
I-- CM
co r-»
i— tO
O 0
r-^ r^-
i— CM
o o
0 0
o o
0 0
rx o
CO O
*
CM
0 0
0 0
0 0
CM VO
^f 00
0 0
o o
0 0
CM CO
«d- CM
CM t^-.
0 0
O O
0 0
r- en
^~ i —
r— CO
0 0
o o
0 0
i— en
CO i—
r—
0 0
0 0
o o
CM tO
•~
0 0
o o
co co
O CM
LO CO
l~~
O 0
1 1 *
co «d-
0 0
o
o
o
o
I*-.
to
o
o
o
1^
CO
o
o
0
CO
en
^—
o
o
o
o
CM
r—
O
o
o
,3-
CM
o
0
o
o
o
o
OJ
, —
^J*
o
r*^
LO
o
o o
o o
o o
to to
CO CO
o o
o o
0 0
CM CM
CM CM
0 0
O O
o o
1^. 1^
00 00
0 0
0 0
0 0
to to
to to
o o
0 0
0 0
en en
O 0
o o
0 0
r^ r^x,
o o
o o
o o
CM CM
O O
r*x r^x
to r-.
0 0
O
O
o
r--
oo
o
o
o
^j.
o
0
0
CM
O
O
O
CO
co
o
o
o
^
o
o
o
(^
o
o
to
o
r—
o
r — -
CO
o
o o
0 0
0 0
O CO
o •—
1^ ID
A
"
o o
o o
o o
r*^ en
CM CM
0 0
o o
o o
O CO
O LO
CO i—
ft
CM
o o
0 0
O 0
o co
o en
^j~
•\
i —
0 0
o o
0 0
co o
O CM
CO
o o
O 0
o o
to co
en co
o co
o co
0 r—
CM CM
00 CO
"*
o
_l
^ •
1 — O
o >
t- <:
to
o
C
O
c:
to
CD
E
to
o
CL
to
-I-)
X
01
to
to
a>
CD
-------
T3
* ^*"
ro ^">
CQ S-
ro
J* ^
CU w
Q."—
co in ra
cu u_
0 4->
i— i ftS
i— t O }
ro
OOD
O "^
jQ
+ i —
• — ^
CM
O
^-^
^. >,
ro
~O
rO "^^
I/)
^" t~\
i ^^_^
' •
C >,
ro ro
CO^O
&— "" —
O on
C -0
s -C3-
O_
O
^
(/) ro
re ~O
td-vT
CZT> r")
Q_ i —
1—
O
U_ l/>
ll
c o
f^j •«. x
cu
cu
ra
Q
O
0
o
CO
CTi
O
o
o
CM
O
O
O
(^
O
O
o
,
1 — "
o
o
o
CM
0
o
o
CO
LO
CO
CO
CM
CTl
CO
•••^
CO
o
o o
O 0
O 0
CM CO
0 «*
•— CM
0 O
0 0
0 O
CM CO
o o
o o
0 0
t^ r^
CO
0 O
0 0
0 0
CM CM
r— CO
0 O
0 0
0 O
CM CO
0 0
0 0
0 0
co en
r—
LO CO
en «*
CM CO
en en
CO CO
"•^ ""-^
r-~ co
0 0
o
o
o
LO
LO
o
o
o
CO
o
o
o
CO
i«
o
o
o
en
i —
o
o
o
^j-
o
o
o
o
CM
CO
s-f.
cn
CO
^^
en
o
0 0
O 0
0 0
CO CO
CO CM
0 0
o o
o o
CM CM
0 0
O 0
0 O
LO O
0 O
o o
o o
O LO
1 — 1 —
o o
0 0
O 0
CM CO
O 0
0 0
0 0
LO 00
CM CM
CO CD
CM OO
en en
CO CO
^^_ *-^
O i—
r— l"~
O
O
o
CO
CO
CM
o
o
o
LO
o
o
0
^,
oo
o
o
o
o
CO
o
o
0
(^
o
o
o
00
CM
LO
CTl
[^
en
••^
CM
•~
O O
0 0
o o
CD ^J-
CM CM
OO LO
O O
O O
O O
00 00
i—
O O
o o
o o
CO CM
CD LO
1 —
o o
o o
o o
CO CO
•=f I--
o o
o o
o o
CM ^~
i— CM
o o
0 O
0 0
OO CM
CM LO
OO 0
LO en
en oo
r— r—
i— CM
O O
r^ r*^
^^ "-^
r— CM
O O
O O
O O
O O
CD r^
r~— r*~
0 0
o o
0 0
O r—
r— CM
O O
o o
0 O
en LO
en r—
CO
o o
0 0
0 0
r*v oo
LO r—
•—
o O
0 O
0 O
r-~. co
i— «»•
,
O O
o o
0 O
OO CD
CO CO
*d- CO
o en
!— LO
CO *±
i— CO
o o
-^_ **^
co ^~
o o
o o
o o
o o
CO i —
co en
CM r—
0 O
o o
o o
CD •=!-
0 0
O 0
o o
CM OO
*d- CM
o o
0 0
0 0
^- ^J.
OO CM
O 0
O 0
0 O
en LO
O 0
O 0
0 0
r— •*
CM i —
co *±
i— O
CM CM
CTl CD
0 O
•*^ -s^
LO CO
0 0
0 0
0 0
o o
o oo
LO CM
CM i —
0 0
0 0
o o
CO CM
O O
0 O
0 0
00 O
CO r—
o o
o o
o o
CM LO
CO i—
o o
0 O
o o
OO CO
o o
O 0
0 0
O CO
CM
r-- co
CM O
co co
oo oo
0 0
""*-». <***^
1^ CO
o o
O 0
o o
0 0
t~~i r*^
O CD
O CM
n
0 0
o o
o o
CM CO
CTi
O 0
o o
O 0
oo r~-
LO LO
CO
o o
o o
o o
O LO
CM CO
LO
0 0
O 0
o en
en en
"*
"~
0 0
0 0
CD O
en co
CO CM
CO
LO <*
i — OO
LO CO
*i- en
1 —
o
i
•
\-
-------
•K .fO
•r-1
>> c
ro >i-
DQ CD
S-
ro
*a- o,-o
ro C
1 «/> O
0) E
i-i iC .C
•— ( (_} O
•r"
o o a:
!a -P
fO •!*•* (0
•" g.^
C O)
i— < >
>r_
•P o:
CD to
*f* Q)
y E
•P ro
13 --O
— .
ro
O T3
O — .
— (/)
/••i
r—
z >,
ro
to T3
,
coo
O "^
z to
+ I—
^— ^
CM
o
z >,
ro
to T3
rO •"•x.
to
Z -Q
1— ••--•
*•"— •»
u
• 1— ^~*
C >•]
ro ro
CDT3
O to
c .a
H— 1 1—
Q_
o
Q_ ^— N
>i
ro T3
«*v5"
O -Q
Q- i —
*— *
1—
O
U- (/)
M—
C O
ro ' — *•
(U
0)
-P
ro
Q
O
0
0
CO
oo
o
0
r—
o
o
o
r—
o
o
o
o
o
o
CTi
, —
o
o
r—
CO
LO
CM
CO
CTi
to
^o
o
0 0
o o
o o
to *t
i— CM
i— LD
0 0
0 0
o o
CO CM
CM
0 0
o o
o o
,-j- p^
r~~ ^i~
o o
0 0
o o
*1- 00
o o
o o
CTi O
•\ A
CM CTi
1
0 0
o o
*^^ ^^
P~> 00
0 0
o o
0 0
0 0
CM r-
to co
o o
0 0
O LO
,
0 0
0 0
0 0
CO ^O
o o
0 0
0 0
h-. LO
0 0
o o
co r^*
A
,—
o o
O 0
r— O
CM i—
CM CO
o ^o
<^- LO
CM r—
CTi CTi
to to
^^ ^*^
CTi O
O r—
o o
o o
o o
CM IO
^- r*"
•—
0 0
o o
LO O
CO
o o
o o
o o
to *3"
o o
o o
0 0
LO LO
1 —
0 0
0 0
CO CTi
•*
CM
0 O
0 O
CO l-~
I— «3-
CM r--
CM O
to to
1— **•
CTi CTi
to to
*"""'*^ *"""••<•
r— CM
o
0
0
IO
to
CM
o
o
o
00
o
o
o
r-
CM
o
o
o
^J-
co
o
o
co
•1
CO
o
o
o
«3-
1 —
o
CM
CO
o
r—
o
r*^
"••x^
f—
o
o o
0 0
0 0
r^ r—
to LO
CM •—
o o
0 0
0 0
oo *d-
0 0
0 O
0 0
p^» r***
CM r—
0 0
0 0
o o
LO CTi
CO r—
0 0
0 0
co o
^ *!
oo «d-
0 O
o o
o r***
•=1- to
1 —
o co
00 CM
CTi O
o to
o o
r^. r^
••x^ <^»,Si
CM CO
o o
o o
o o
o o
to co
«3- CM
CM •—
0 0
0 0
o o
r^ co
o o
o o
o o
IO LO
CM i —
o o
o o
o o
CM LO
CO i—
o o
o o
tO CM
*» «
r--. co
o o
0 0
O i—
CO LO
r—
O CM
I"** CTi
O 00
O *3-
1 —
o o
^^ r*"1*
^•v,,,^ ^x^
<3- LO
o o
0 0
0 0
0 0
, ,
CO CO
0 0
0 0
LO LO
0 0
o o
o o
LO LO
0 0
0 0
0 0
co co
0 0
o o
t-O ^O
0 0
O 0
0 0
1 — 1 —
1—
en
01
a:
-------
11-11
9. Nutrient concentrations (mg/1) and river discharges (cfs)
showed interesting relationships which were found to be dependent on
several factors, i.e. particular nutrient within a particular watershed,
time of the year, and weather conditions which affected normal river
discharge. Unique relationships were observed for each nutrient
within each tributary watershed and generalizations as to direct or
indirect dependence of nutrient concentrations on flow could not be
obtained from the survey data. The nutrient concentration - river
discharge relationship for each nutrient in the eight major tributary
watersheds is presented in Chapter IV. A brief summary of the nutrient
concentration - river discharge relationships for the Susquehanna
River, the Potomac River, and the James River is presented as follows:
a. Susquehanna River at Conowingo, Maryland (see Figure IV - 1)
Considerably higher river discharge during the period of
November 1969 to May 1970 resulted in higher total phosphorus (as PCO
and inorganic phosphorus concentrations. Periods of higher than normal
flow resulted in total and inorganic phosphorus surges from the
upper Susquehanna River Basin. A direct relationship between total and
inorganic phosphorus concentrations (as PCO and river discharge is
evident. Since these high concentrations occurred during periods of
higher than normal flow, it appears that the relatively short residence
time within the impoundment did not permit the occurrence of a sub-
stantial amount of deposition or biological uptake.
In addition, the organic phosphorus buildup (TPO. - Pi) appears
to be occurring during the summer months, which is indicative of algal
biomass enrichment normally associated with summer conditions.
Concentrations of NCL + NCu showed extreme dependence on river
-------
11-12
discharge. High NCL + NO- concentrations during the winter months are
primarily the direct result of land runoff associated with the high river
discharge. A secondary reason for these high levels may be the reduced
detention time by Conowingo Dam during high flow periods. A direct
relationship between N02 + N03 concentrations and river discharge is
evident.
TKN concentrations, however, decreased during the period of higher
flow. These reduced TKN concentrations are indicative of a flushing
type response in the river whereby the organic load is diluted by the
increased river discharge. An indirect relationship between TKN
concentrations and river discharge is evident.
The direct relationship between N(L + NO., concentrations and river
discharge coupled with the indirect relationship between TKN concen-
trations and river discharge in the Susquehanna River is interesting.
During the summer months (a period of low flow) low nitrite-nitrate
concentrations coupled with higher TKN concentrations suggest that algal
cells are readily utilizing the nitrate form of nitrogen and converting
it to TKN.
Concentrations of ammonia nitrogen remained relatively uniform when
compared to other nutrient concentrations. High NH, concentrations were
observed in the months of January and February 1970, and June and July
1970.
b. Potomac River at Great Falls, Maryland (see Figure IV - 2)
Total and inorganic phosphorus concentrations remained generally
uniform except for extreme variations in concentration during December
1969 and February, April, May and June 1970. These extreme surges
generally correspond to days of higher than normal flow.
-------
11-13
The organic phosphorus fraction (T.PO, - Pi) was higher during the
months of June through October 1969 (in the range of 0.2 to 0.5 mg/1),
and especially low during the months of December 1969 through February
1970 (<0.1 mg/1). The algal biomass may reflect this high organic
fraction during the summer months with the inorganic phosphorus utilized
to a greater extent than in the winter months.
Concentrations of NOp + N03 showed extreme dependence on river dis-
charge. High N02 + N03 concentrations during the winter months are
primarily the direct result of land runoff associated with the high
river discharge. A secondary reason for these high levels may be the
reduced detention time at Conowingo Dam during high flow periods.
During the summer months high peaks of N02 + NO, concentrations were
observed. A combination of excessive river flows and nitrification was
probably responsible for these surges. A direct relationship between
N0? + NO, concentrations and river discharge is evident.
Concentrations of TKN also showed extreme variations during the
study period. In general, TKN appeared to have an indirect relationship
to flow. Reduced TKN concentrations during high flow periods are
indicative of the dilution effect in the river whereby the organic load
is dispersed by the increased runoff.
The direct relationship between NO^ + NO, concentrations and river
flows coupled with the indirect relationship between TKN concentrations
and flows in the Potomac River correspond to the similar observations
in the Susquehanna River. During the low flow summer months low N02 + N03
concentrations coupled with higher TKN concentrations suggest that algal
cells are readily utilizing the nitrate form of nitrogen and converting
it to TKN.
-------
11-14
Ammonia nitrogen concentrations remained relatively uniform
throughout most of the study period. During the summer months most of the
NHL appeared to be oxidized to nitrite-nitrate nitrogen which was then
converted Into organic nitrogen in the algal cellular material, i.e.,
a greater organic fraction (TKN - NFL) during the summer than in the
winter months.
C. James River at Richmond, Virginia (see Figure IV - 9)
Both total and inorganic phosphorus concentrations in the James
River were relatively uniform throughout the study period. Slight
increases in concentrations occurred, however, during the winter and
spring months when river flows were substantially higher.
Concentrations of N(L + NO- nitrogen, however, appeared to decrease
c. 0
during the high flow periods of January through May 1970, although
considerable fluctuations were noted throughout the study period.
With regard to TKN concentrations, a drastic variation in TKN levels
between 0.2 mg/1 and 2.0 mg/1 was observed with seasonal patterns not
being evident.
Ammonia nitrogen concentrations were generally higher during the
winter and spring with maximum levels exceeding 0.3 mg/1. Btostimulation
may have been a significant factor from July to October 1969 since nitrate
levels were at a minimum while an abundance of organic nitrogen was
present during that period.
10. Most of the water quality problems in the Bay are similar to
those in other comparable areas of the United States but are compounded
because the area is largely tidal. The Bay receives its share of municipal
and industrial wastes, the primary effects of which are immediate water
quality impairment in several areas. However, the
-------
11-15
secondary effects create a more widespread insidious water quality
problem—that of eutrophication in a number of rivers discharging into
the Chesapeake Bay. This progressive eutrophication of the Bay's
tributaries, caused by the increase in nutrient quantities discharged
into waterways via waste discharge and land runoff, threatens the water
quality and biota of the Bay.
Flows from the eight major tributary watersheds increase the
naturally high nutrient levels and biological productivity of the
Chesapeake Bay. These flows include abundant amounts of plant nutrients
such as inorganic nitrogen, phosphorus and carbon which are incorporated
into organic matter by aquatic plants.
In early stages, nutrient enrichment may result in beneficial
conditions (i.e., increase in fish productivity, zooplankton, etc.).
However, the advanced stages lower dissolved oxygen levels, interfere
with recreational uses of water, affect drinking water taste and result
in blooms of undesirable blue-green algae. The more abundant the nutrient
supply, the greater potential there is for dense vegetation. Thus,
control of eutrophication in the Chesapeake Bay focused on control of
three nutrients—nitrogen, phosphorus, and carbon.
The primary sources of nutrients to the Chesapeake Bay are three
nontidal tributary watersheds—the Susquehanna, the Potomac, and the
James. Of primary concern is the control of nutrients from these up-
stream sources—especially the Susquehanna River, since it contributes
in excess of 50% of all nutrients entering the Chesapeake Bay. During
the significant period of November 1969 through May 1970, the Susquehanna
River Basin contributed 54% of the total phosphorus, 60% of the
inorganic phosphorus, 62% of the total Kjeldahl nitrogen, 66% of the
-------
11-16
nitrite-nitrate nitrogen, 72% of the ammonia nitrogen, and 55% of the
total organic carbon entering the Bay.
As these upstream sources are brought under control during critical
periods—especially the Susquehanna River—commensurate reduction in
nuisance conditions in the Chesapeake Bay will result.
11. Identification of the Susquehanna River as the major contributor
to the Chesapeake Bay's nutrient load resulted in the implementation
of an intensive nutrient survey within the Susquehanna Basin to locate
individual sources and their degree of controllability. The survey area
extends from the Susquehanna River at Sunbury, Pennsylvania to
Conowingo, Maryland. It was begun in June 1971 and was completed in
July 1972. A report of the findings will follow.
-------
III-l
CHAPTER III
DESCRIPTION OF THE STUDY AREA
A. CHESAPEAKE BAY
The geographic area that drains to the Chesapeake Bay encompasses
approximately 70,000 square miles including the District of Columbia,
nearly all of Maryland, 65 percent of Virginia, 50 percent of
Pennsylvania, 12 percent of New York and 12 percent of West Virginia,
as well as a portion of Delaware.
The tidewater portion of the Chesapeake Bay Basin covers an area
of approximately 8,400 square miles in the State of Maryland and the
Commonwealth of Virginia. The combined tidal shoreline is approximately
4,600 miles in length, of which 3,400 miles are in Maryland and 1,200
miles are in Virginia. The Bay is approximately 190 miles in length
and varies in width from 4 miles at Sandy Point in the vicinity of the
Chesapeake Bay Bridge to approximately 30 miles at its widest point
near Pocomoke Sound. The average depth of the Bay is approximately
28 feet and the deepest point is 174 feet, off the southern tip of
Kent Island.
The Chesapeake Bay receives freshwater inflows from 150 tributaries,
of which the following are major watersheds: the Susquehanna, the
Patapsco, the West, the Patuxent, the Potomac, the Rappahannock, the
York, the Chickahominy and the James on the western shore and the Chester,
the Choptank, the Nanticoke, the Wicomico and the Pocomoke on the
eastern shore.
-------
III-2
The major river in the drainage area is the Susquehanna, the
largest river basin on the Atlantic Coast. The Potomac and James
River Basins are the second and third largest, respectively, draining
into the Bay. Together, these three river systems account for 80 per-
cent of the drainage into the Chesapeake Bay. The dominant feature of
the Basin is, of course, the Chesapeake Bay, the largest tidal estuary
in the United States.
The population of the Chesapeake Bay Basin area was 2.6 million
in 1960 and is expected to reach 4.1 million by 1985 and 5.3 million
by the year 2000. It contains rich farmlands, vast woodlands and
intensively developed industrial areas which are steadily increasing
in importance.
The Chesapeake Bay, the biggest and probably the richest of the
500 odd estuaries in the United States, is regarded as one of the most
valuable estuaries in the world. Commercial fishing, which provides
a means of livelihood for approximately 20,000 people, and sport
fishing, enjoyed by many thousands, actually comprise only a small
part of the value of the Bay as a natural resource. Waterborne
commerce, totaling 150 million tons annually, contributes in large
measure to the economy of 11 tributary states.
This extensive use of the Bay—fishing, recreation, navigation,
waste assimilation—has resulted in an increasingly greater strain
on the ability of the Bay to accomodate the diverse and often con-
flicting demands which are made upon it.
-------
III-3
he Is
* f.ributary watersheds - the Susquehanna, the Patuxent,
.he . !.hu Rappahannock, the Mattaponi , the Pamunkey, the
Janes, i ! . r Chickahominy - are the subject of this report.
I, v,1 mehanna River Basin
Th -, , , iiehanna River Basin, which drains directly into the
Chesa. )(?•:;• •" -< , lies within four physiographic provinces: the
Applachir,' . e Ridge and Valley, the Piedmont, and the Blue Ridge.
The basin, LoO miles in length and 170 miles in width, embraces a draingage
drainage area of 27,510 square miles, It is the largest river basin on
the Atlantic -Seaboard and second largest east of the Mississippi.
It is bounded by the drainage basins of (1) Lake Ontario and the Mohawk
on the north (?.} the Potomac River on the south (3) the Delaware River
on the east and (4) the Genesee River and the Ohio River on the west.
The terrain of the study area, confined to the lower portion of
the Susquehanna River extending from Harrisburg to the Chesapeake Bay--
a distance of approximately 67 miles located within the Piedmont Region--
is characterized by low rolling hills. The uplands are formed by
crystalline and metamorphic rocks of Precambrian and early Paleozoic
Age. In the northern part of the Piedmont is a broad area underlain by
sandstone shale of Triassic Age.
The study area has a temperate climate with four sharply defined
seasons. The average annual precipitation amounts to
-------
III-4
approximately 42 inches, with about 10 percent occurring as snow.
The major river in the Basin is, of course, the Susquehanna River,
which is formed at Sunbury, Pennsylvania, by the confluence of its
North and West Branches. From Sunbury, it flows southeasterly 39 miles
to Duncannon where it is joined by the Juniata River, its principal
tributary; it then flows 84 miles to the Chesapeake Bay. The North
Branch rises in Lake Otsego in southcentral New York and flows south-
westerly 170 miles to Athens, Pennsylvania, where it is joined by the
Chemung River. From that point, it flows 100 miles generally southeasterly
to Pittston, Pennsylvania, and then 65 miles southwesterly to its
confluence with the West Branch at Sunbury. The West Branch rises on
the Allegheny Plateau in central Pennsylvania. It flows easterly and
southerly across the plateau and through the Allegheny Front for a
distance of 240 miles to join the North Branch at Sunbury.
The average flow of the Susquehanna River is approximately 25
billion gallons per day which represents more than 50% of the freshwater
inflow to the Chesapeake Bay. The biota of the upper Bay ts dependent
to a large extent on this freshwater inflow.
When compared to other areas around it, the Susquehanna River Basin
is relatively undeveloped. The resident population ts small and the
economy lagging.
2. Patuxent River Basin
The Patuxent River Basin, the largest river basin loacated entirely
within the State of Maryland, embraces a drainage area of approximately
-------
III-5
930 square miles. The basin extends for 110 miles in a southeasterly
and then southerly direction from its origin in Parris Ridge to its
mouth on the Chesapeake Bay. The basin lies in both the Piedmont
Plateau and the Coastal Plain physiographic provinces.
The basin lies between the metropolitan complexes of Washington,
D. C. and Baltimore, Maryland. Urbanization, occurring in the upper
drainage area near the headwaters in Howard and Montgomery Counties,
is transforming this area into cities and suburbs. The lower area,
however, is retaining its rural character. The population within the
Patuxent River Basin is expected to grow from a 1960 level of 135,000
to 684,000 by the year 2000.
The upper or headwaters region of the Patuxent, lying in Howard
and Montgomery Counties, is characterized by narrow, swift, clear
streams. The middle region, extending from the Fall Line at Laurel
to Wayson's Corner, occupies portions of Anne Arundel and Prince
George's Counties. It is characterized by wide, flat, swampy flood
plains and a sluggish stream. Most of the wastewater effluents origi-
nating in the basin are discharged into this reach of the river.
The lower region, below Hardesty, is a tidal estuary characterized
by unforested marsh lands, the result of the silting up of the original
estuary.
The major tributaries of the Patuxent River are the Little Patuxent
and the Western Branch, with drainage areas of 160 and 110 square miles,
respectively.
Land use in the Patuxent River Basin has been predominately
agricultural over the entire drainage area since the days of the early
settlers. Today the most important economic activity in the Patuxent
-------
III-6
River Basin continues to be farming. Approximately 245,000 acres of
the bastn are estimated to be utilized for this purpose.
3. Potomac River Basin
The Potomac River Basin, which includes the District of Columbia
-------
III-5
930 square miles. The basin extends for 110 miles in a southeasterly
and then southerly direction from its origin in Parris Ridge to its
mouth on the Chesapeake Bay. The basin lies in both the Pfedmont
Plateau and the Coastal Plain physiographic provinces.
The basin lies between the metropolitan complexes of Washington,
D. C. and Baltimore, Maryland. Urbanization, occurring in the upper
drainage area near the headwaters in Howard and Montgomery Counties,
is transforming this area into cities and suburbs. The lower area,
however, is retaining its rural character. The population within the
Patuxent River Basin is expected to grow from a 1960 level of 135,000
to 684,000 by the year 2000.
The upper or headwaters region of the Patuxent, lying in Howard
and Montgomery Counties, is characterized by narrow, swift, clear
streams. The middle region, extending from the Fall Line at Laurel
to Wayson's Corner, occupies portions of Anne Arundel and Prince
George's Counties. It is characterized by wide, flat, swampy flood
plains and a sluggish stream. Most of the wastewater effluents origi-
nating in the basin are discharged into this reach of the river.
The lower region, below Hardesty, is a tidal estuary characterized
by unforested marsh lands, the result of the silting up of the original
estuary.
The major tributaries of the Patuxent River are the Little Patuxent
and the Western Branch, with drainage areas of 160 and 110 square miles,
respectively.
Land use in the Patuxent River Basin has been predominately
agricultural over the entire drainage area since the days of the early
settlers. Today the most important economic activity in the Patuxent
-------
III-6
River Basin continues to be farming. Approximately 245,000 acres of
the basin are estimated to be utilized for this purpose.
3. Potomac River Basin
The Potomac River Basin, which includes the District of Columbia
^nd parts of Maryland, Pennsylvania, Virginia, and West Virginia,
;th a total drainage area of 14,670 square miles, lies in five
, tysiographic provinces: Coastal Plain, Piedmont Plateau, Blue Ridge,
\illey and Ridge, and Appalachian Plateau. The land is generally
"• ivince, rocks are folded sedimentary types, including limestone,
!omite, sandstone and shale, while to the east, rocks are mainly
/stalline and igneous types. Sedimentary rocks and alluvium pre-
minate from Washington to the mouth.
The Potomac River flows in a generally southeasterly direction
~om its headwaters on the eastern slopes of the Appalachian Mountains
o the Chesapeake Bay some 400 miles away. The main stem is formed
Approximately 15 miles southeast of Cumberland, Maryland, by the con-
fluence of the North and South Branches. The Potomac then flows
southeasterly to the Fall Line at Great Falls, Maryland. The head of
tidewater, which is also the head of actual navigation, is near the
boundary line between the District of Columbia and Maryland at Little
Falls, 117 miles above the Chesapeake Bay.
-------
III-7
The major sub-basins within the Potomac River Basin, including
their drainage areas, are as follows:
Sub-basin Drainage Area
(square miles)
North Branch 1,328
South Branch 1,493
Cacapon River 683
Conococheague Creek 563
Opequon Creek 345
Shenandoah River 3,054
Monocacy River 970
Antietam Creek 292
Land use in the entire Potomac Basin is estimated to be 5 percent
urban, 55 percent forest, and 40 percent agricultural, including
pasture lands. The basin has abundant natural resources including
coal, limestone, dolomite, glass sand, clay, hard and soft woods,
and granite.
The free-flowing Potomac River is approximately 280 miles long and
varies in width from several feet at the headwaters to over 1,000
feet in the reach above Washington. The Potomac River's tidal portion
is several hundred feet in width near its upper end at Chain Bridge
and broadens to almost 6 miles at its mouth. Except for a shipping
channel 24 feet deep, which extends upstream to Washington and a few
short reaches with depths up to 100 feet, the tidal portion is relatively
shallow with an average depth of about 18 feet. The mean tidal range
is about 2.9 feet in the upper portion near Washington and about 1.4
feet near the Chesapeake Bay.
-------
III-8
Of the 3.3 million people living in the entire basin, approximately
2.8 million reside in the Washington Metropolitan Area. The remaining
area of the tidal portion, approximately 3,216 square miles, is sparsely
populated. The upper basin is largely rural with a scattering of
small towns having populations of 10,000 to 20,000. Farming and re-
lated industries such as canning, fruit packing, tanning, and dairy
products processing are major sources of income in the region.
4. Rappahannock River Basin
The Rappahannock River Basin, comprising approximately 2,700 square
miles in northeastern Virginia and extending 160 miles in a southeasterly
direction from the eastern slopes of the Blue Ridge Mountains to the
Chesapeake Bay, includes all of four counties — Culpepper, Madison,
Rappahannock, and Richmond-- and portions of 11 counties—Caroline,
Essex, Fauquier, Greene, King George, Lancaster, Middlesex, Orange,
Spotsylvania, Stafford, and Westmoreland. The basin area is approxi-
mately one-seventh of the total state area of Virginia. The basin may
be subdivided into three areas with boundaries based on physiographic
and economic considerations.
a. Headwaters Area
The upper or headwaters area is in Rappahannock County, approximately
80 miles northwest of Fredericksburg in the Blue Ridge physiographic
province where the rugged topography rises in elevation from 500 to
over 3,500 feet above mean sea level. The geological formations in the
mountainous regions consist of quartzites and granites, and stream
channels are steep with few flood plains.
-------
III-9
The upper or headwaters area ts largely rural, wtth more than 84
percent of the population residing on farms or in rural residential
areas. The principal industry in the region is the logging and milling
of lumber. Smaller industries such as furniture and wood products,
wearing apparel, metal products, and electrical equipment manufacturing
are scattered throughout the area.
b. Central Area
The central area, containing the City of Fredericksburg, is the
economic and population center of the Rappahannock River Basin. This
area is in the Piedmont Province, a plateau lying between the eastern
foot of the Blue Ridge Mountains and the Fall Line. Topography is
well rounded: formations consist of mingled crystalline and metamorphic
rocks, and the stream flows in a sinuous entrenched channel with limited
flood plains.
Below the Fall Line at Fredericksburg, the stream meanders for about
40 miles through the flat Coastal Plain, where unconsolidated sediments
of sand, gravel, and fossil shells derived from the mountainous regions
to the west are laid down on a basement rock of granite. For the re-
maining 67 miles to the mouth, typically estuarine reaches range from
2 to 4 miles in width.
The principal industry in the Rappahannock Basin, a large
cellophane manufacturing plant, is located in the central area. The
major water pollution problems in the Rappahannock River are downstream
from this industry. All significant waste discharges which contribute
to pollution problems in the central reaches of the river originate
in and around the City of Fredericksburg.
-------
111-10
c. Lower Area
The lower basin is essentially undeveloped with approximately 95
percent of the population residing on farms or in rural residential
areas.
The six incorporated towns in the region are small, the largest
having a population of approximately 1,100. Industries in the lower
basin having waste discharges are seasonal operations, and industrial
pollution problems originating in the area are primarily local nuisances.
The river has a 12-foot minimum depth navigable channel over the
entire tidal portion from the mouth to Fredericksburg, a distance of
107 miles. Twelve federally improved small boat harbors on tributaries
of the lower reaches of the river are used extensively by commercial
seafood boats and recreational craft.
Highly productive oyster grounds are located in the lower
Rappahannock River; the reach from Towles Point upstream to Bowlers
Wharf is the principal oyster growing area in the state. The estuary
also serves as a spawning area for shad and striped bass.
5. York River Basin
The York River Basin, embracing approximately 2,660 square miles,
lies in east central Virginia and extends about 140 miles from the
divide on the Southwestern Mountains in Albemarle and Orange Counties
to the Chesapeake Bay east of Yorktown.
The York River is formed in the Coastal Plain by the confluence of
its two main tributaries, the Mattaponi and the Pamunkey Rivers, at
West Point. From the Fall Line (vicinity of U. S. Route 360) downstream
to West Point, the tributaries meander through marshes and swamps on
-------
in-n
wide flood plains. Below West Point, the mafn stream is relatively
straight with a narrow flood plain, and numerous short streams flow
directly into the reach.
The Mattaponi River, a remarkably clear stream, is formed in
Caroline County by four small streams, appropriately named the Mat,
the Ta, the Po and the Ni. The Pamunkey River, formed northwest of
Hanover by the confluence of the North and South Anna Rivers, is
frequently cloudy and heavily silted in the upper reaches by runoff
from the red clay headwaters areas.
a. Mattaponi River
The Mattaponi River watershed is rural and sparsely populated with
only one incorporated town (Bowling Green) in the upper watershed above
West Point. Vast marshes in the downstream flood plains, essentially
virgin wilderness since colonial days, have been regarded as one of
the best fishing and hunting sections in Virginia. The crystal clear
freshwater reaches of the Mattaponi River are abundant in bass, pike,
and numerous varieties of the sunfish family; and in the spring, great
numbers of shad are taken by net fishermen in the lower reaches.
The river is affected by tides and is open to navigation as far
west as Aylette; however, dredging of the channel above West Point has
been discontinued for several years.
b. Pamunkey River
The Pamunkey River watershed above West Point is similar to the
Mattaponi River watershed with respect to its essentially rural and
sparsely settled characteristics. Tides affect the lower reaches as
far west as U. S. Route 360 and great flights of waterfowl and marsh
birds migrate into the marsh area.
-------
111-12
The river is not as clear in the upper reaches as the Mattaponi
due to silt deposits from the red clay areas in the headwaters region;
however, some of the lower tributaries are exceptionally clear.
Four incorporated towns are in the Pamunkey River watershed above
West Point; the largest is Ashland with a 1960 population of 2,773.
6. James River Basin
The James River Basin, encompassing approximately 10,000 square
miles, is narrow and irregular with headwaters in the Allegheny Mountains
at the West Virginia State line. The James River, the most southerly
major tributary stream of the Chesapeake Bay system, is approximately
400 miles in length and extends in a southeasterly direction through four
physiographic provinces: Coastal Plain, Piedmont, Blue Ridge, and Ridge
and Valley. There is a total fall of 988 feet from the headwaters to the
Fall Line separating the Piedmont and Coastal Plain at Richmond, Virginia.
Below Richmond the James is a tidal estuary that joins the Chesapeake
Bay at Hampton Roads, a distance of approximately 95 miles. The mean fresh-
water discharge is approximately 7,500 cfs with recorded extremes of 329 and
325,000 cfs.
At Richmond, the James River flows across the Fall Line, which
delineates the eastern edge of the Piedmont physiographic province, and
enters the Coastal Plain. As a consequence, the James River falls
approximately 75 feet in 6 miles near Richmond, and below Richmond, becomes
a tidal estuary.
Above Richmond, at Bosher Dam, the KanawFia Canal diverts a portion
of the James River flow to the main channel and returns it to th_e river
at tidewater. The USGS maintains gaging stations on both, the canal and
the river.
-------
111-13
The area has a mild climate, without extremes in temperature, and
an adequate, well-distributed rainfall which encourages agricultutal
development of the rich soil. To this date, agriculture remains a prima>
activity of the area.
Industry also dates back to colonial times. The forest resources
provided lumber as well as charcoal for making iron from the native
ore, and eventually pulp for paper making, now one of the largest
industries in the State. The extensive chemical industry existing in
the basin today had its beginnnings in tanning and extraction of indigo,
tars, and turpentine.
a. Chickahominy River Watershed
The Chickahominy River, with headwaters in Henrico and Hanover
Counties draining a water shed of approximately 400 square miles, has
a mean flow near Providence Forge of 271 cfs. The river discharges
into the James approximately 7 miles above Jamestown. Nearly half of
Henrico County and the north side of the City of Richmond are drained
by tributaries of the Chickahominy River.
Secondary waste treatment plants owned by Henrico County, private
developments and Richmond's Byrd Airport provide the major waste dis-
charges to the Chickahominy River watershed.
-------
IV-1
CHAPTER IV
WATER QUALITY CONDITIONS
Detailed analyses of the major freshwater tributary inflows to
the Chesapeake Bay were conducted from June 1969 to August 1970. During
this period, the following were the average measured concentrations of
nutrients for the various stations:
Table IV - 1
Mean Monthly Nutrient Concentrations (mg/1)
Tributary T PO. TKN N0? + NO, NFL
Watershed as P04 P1_ as N as N 6 as N TOC
Susquehanna River at
Conowingo, Md. 0.18 0.12 0.67 0.91 0.23 3.64
Patuxent River at
Route 50 (John Hanson
Highway) 2.77 1.90 1.68 1.35 1.00 7.72
Potomac River at
Great Falls, Md. 0.50 0.22 0.87 1.05 0.17 6.42
Rappahannock River at
Fredericksburg, Va. 0.25 0.13 0.57 0.52 0.10 4.83
Mattaponi River at
Beulahville, Va. 0.16 0.13 0.58 0.11 0.07 8.08
Pamunkey River at
Hanover, Va. 0.18 0.13 0.53 0.19 0.12 6.15
Chickahominy River at
Providence Forge, Va. 0.57 0.39 0.73 0.25 0.07 10.53
James River at
Richmond, Va. 0.20 0.13 0.64 0.66 0.13 5.51
-------
IV-2
The observed data are completely tabulated in the Appendix and
illustrated in Figures IV - 1 to IV - 10. The following sections in-
clude an evaluation of this data for each tributary watershed with major
emphasis placed on seasonal variations in nutrient content.
A. SUSQUEHANNA RIVER AT CONOWINGO, MARYLAND
Conowingo Reservoir, built by the Philadelphia Power & Light
Company in 1928, is located nine miles above the confluence of the
Susquehanna River and the Chesapeake Bay (it is approximately four
miles above tidewaters).
Flow patterns within the reservoir vary from summer, normally a
period of low inflow with a completely controlled outflow by the power
plant, to winter with high flows and little or no flow regulation.
Generally, during the period of high flows (October through May)
rapid transport through the reservoir is common with the mean residence
time for water in the reservoir reported to be less than 24 hours [11].
During the period of low flow extending from June through September,
however, slower transport through the reservoir occurs with the mean
residence time reported to be from two to six days depending on the
degree of minimal flow[ll].
As shown in Figure IV - 1, the period of November 1969 to May 1970
was characterized by higher total phosphorus and inorganic phosphorus
concentrations in the Susquehanna River than during the remainder of
the study period. Extreme variations in total phosphorus concentrations
during the months of December 1969 and February, April, June and July
of 1970 indicate phosphorus surges from the upper Susquehanna Basin.
Since these daily surges occurred during periods of higher than normal
flow, it would appear that the relatively short residence time within
-------
o
z
Z g
5
3
Z
(!/••) NOUVM1N33NO3
§
(!/••> NOUVII1IO3NO3
IV-I
-------
IV-4
the impoundment did not permit a substantial amount of deposition or
biological uptake to take place. Inorganic phosphorus showed the same
general variation but on a smaller scale. Periods of higher than
normal flow resulted in inorganic phosphorus surges similar to those
of total phosphorus.
It is interesting to note the variation of the organic phosphorus
fraction (TPO.-Pi) during the study period. It appears from Figure
IV - 1 that organic phosphorus buildup is occurring during the summer
months with a drastic reduction observed during other periods of the
year. This buildup in the organic fraction could be indicative of
algal biomass enrichment normally associated with summer conditions.
Concentrations of N0? + NO, showed extreme dependence on river
discharge. High N(L + NO., concentrations during the winter months
were not the direct result of the conversion of ammonia nitrogen to
nitrates (nitrification) due to the low temperature conditions pre-
vailing (nitrification is not significant at temperatures below 10°C).
The abundance of N09 + NO.,, therefore, was primarily the result of land
£ O
runoff associated with the high river discharge. A secondary reason for
these high levels may be the result of the reduced detention time at
Conowingo Dam during high-flow periods.
Concentrations of TKN, however, generally decreased during the
period of higher flow. High organic loadings from treatment plant
effluents are reflected by high TKN as N concentrations and thus can
serve as an indicator of sewage pollution. Reduced TKN concentrations
during the higher flow period are indicative of a flushing type of
response in the river whereby the organic load is diluted by the high
river flows. Concentrations of ammonia nitrogen remained relatively
-------
IV-5
uniform, compared to these other parameters. The months of January
and February 1970 did, however, show high concentrations of NH-. In
addition, ammonia nitrogen concentrations increased sharply during
the months of June and July 1970.
B. PATUXENT RIVER AT ROUTE 50 (JOHN HANSON HIGHWAY)
During the study period, the Patuxent River's average measured
concentration of nutrients (except TOC) was the highest of all the major
tributary watersheds. However, due to its relatively minor river
discharge (when compared to the Susquehanna, the Potomac, and the
James) its importance as a major contributor of nutrient enrichment
to the Chesapeake Bay is diminished.
Phosphorus concentrations were extremely high in the Patuxent
River during the study period as indicated in Figure IV - 2. Moreover,
a considerable amount of fluctuation was noted in the phosphorus levels
during the entire study with maximum concentrations (>4.0 mg/1)
occurring in July, October, and November of 1969, and again in June
and August of 1970.
High TKN and low NO,, + NO- concentrations during the months of
September 1969 through April 1970 may be indicative of the utiltzation
by algal cells of the nitrate form of nitrogen and its conversion to
TKN. It is evident that in the months of October and November 1969 a
unique condition existed. From Figure IV - 2, it can be seen that the
organic phosphorus fraction (TPO.-Pi) and the organic nitrogen fraction
(TKN-NH3) were extremely high during the period; however, temperatures
ranged from only 4°C to 10°C. A late algal bloom may have occurred at
this time or perhaps a sudden release of organic material (treatment
plant discharges) may have been responsible for the high concentrations.
-------
I
o
£ i
z o ~
~
H 8 =
Z K
u I-
E <
t; «
3 ui
Z >
z 2
z o z
3 * 3
q q q q o
o » •> « -
(!/••) NOI1VM1N33NO3
(!/••) NOUVH1N33N03
IV-Z
-------
IV-7
However, due to the wide variations and unstable nature of nutrient
enrichment and the lack of adequate flow data during the study period,
it is difficult to establish any meaningful correlations or conclusions
regarding nutrient concentrations in the Patuxent River.
C. POTOMAC RIVER AT GREAT FALLS, MARYLAND
Although the river discharge was high for the period of December
1969 to March 1970, total and inorganic phosphorus concentrations, as
shown in Figure IV - 3, generally remained less than 0.4 mg/1 except
for wide daily variations in concentration during December 1969 and
February, April, May, and June 1970. These surges correspond to days
having higher than normal flow.
The organic phosphorus fraction (TPO,-Pi) was high (tn the range
of 0.2 to 0.5 mg/1) during the months of June through October 1969 and
July-August 1970, and especially low (<0.1 mg/1) during the months of
December 1969 through February 1970. The algal biomass may reflect
this high organic fraction during the summer when the inorganic
phosphorus is utilized to a greater extent than in the winter months.
Total phosphorus concentrations appeared generally to decrease during
the higher flow periods and increase during the lower flow periods except
during the periods of intense runoff when a direct relationship existed.
Concentrations of NO^ + NO, showed wide variations from July
through November 1969. Generally, the N02 + NO, concentrations showed
a direct relationship to river discharge. These high N02 + NO, con-
centrations during the winter months appeared to result from excessive
land runoff. During the summer months of July and August 1969, and
again in June, July and August 1970, high peaks of N0~ + NO, were
L. O
-------
Q
I
z
S
*
I
§
£
2£
o 9
& 5
I
I
I
I
z 2
IV-3
-------
-------
IV-10
observed. A combination of excessive river flows and nitrification
was probably responsible for these surges during the Summer months.
As shown in Figure IV - 4, concentrations of TKN also showed extreme
variation during the study period. In general, TKN appeared to vary
inversely with flow. A reduced TKN concentration during high flow
periods was indicative of high dilution in the waterway.
Ammonia nitrogen remained relatively uniform throughout the study
period except for wide daily fluctuations during some of the summer
and fall months. During the summer months most of the NHL appeared to
be oxidized to N02 + N03 nitrogen, which was then converted into
organic nitrogen as part of the cellular material. This latter conversion
can be evidenced by the higher organic fraction (TKN-NhL) measured
during the summer than during the winter months (Figure IV - 4).
D. RAPPAHANNOCK RIVER AT FREDERICKSBURG, VIRGINIA
Peak concentrations of total and inorganic phosphorus in the
Rappahannock River throughout the study period occurred when flows were
higher than normal. During normal flow periods, concentrations of
both remained relatively uniform as shown in Figure IV - 5. The organic
phosphorus fraction (TPO.-Pi) was higher during the summer months than
during the winter, a situation closely paralleling that observed in the
Susquehanna and Potomac Rivers.
Concentrations of NCL + NO., nitrogen also showed a direct
dependence on river discharge. During the months of high flow, December
1969 to May 1970, N02 + NO, concentrations were higher than during normal
flow periods. These high concentrations were the direct result of
land runoff associated with high river discharge and, to a lesser
extent, nitrification.
-------
(I/*-) NOUVHiNTJMOD
-------
IV-12
Concentrations of TKN showed extreme variation throughout the
study period. In general, periods of higher flow resulted in high
TKN concentrations.
Ammonia nitrogen remained relatively constant except for several
fluctuations during the months of January, February, and May 1970 when
high flows occurred.
During the summer months, most of the NhL was oxidized to NCL + NCU
nitrogen, as indicated by the low NH~ concentrations as shown i"n Figure
IV - 5. A high organic fraction (TKN-NH-J was evident throughout most
O
of the summer and fall, possibly resulting from extensive algal growth.
E. YORK RIVER
1. Mattaponi River at Beulahville, Virginia
The river discharge was higher for the months of August 1969 and
December to May 1970 than for the remainder of the study period. Except
for an increase during July 1969, however, concentrations of total and
inorganic phosphorus remained relatively constant throughout the study
period at 0.1 - 0.2 mg/1. As evident from Figure IV - 6, a higher
organic fraction (TPO.-Pi) existed during the summer months of 1969.
This situation was similar to that observed in the Susquehanna Rtver,
but to a lesser extent.
As can be seen in Figure IV - 7, TKN values were extremely, high as
compared to N02 + N03 and NH, values. The organic nitrogen fraction
(TKN-NH-) was, therefore, considerable throughout the study period,
particularly during the summer months. It is interesting to note that
fluctuations in nitrate and ammonia nitrogen were minimal regardless of
season, whereas TKN varied widely.
-------
<
z
0
z < -
85
OC
I
ll/»«] NOI1VIUN33NOD
IV-6
-------
(!/••) NOUVS1M33NOO
IV-7
-------
IV-15
The effects of hurricane Camille on the watersheds of the
Rappahannock, the Pamunkey, the Mattaponi, the James and the
Chickahominy are evident from Figures V - 26 and V - 27. The tropical
storm Camille caused extremely high flows for the month of August 1969;
however, Figures IV - 6 and IV - 7 show that nutrient concentrations
were not greatly affected.
2. Pamunkey River at Hanover, Virginia
The river discharge for the Pamunkey River was also high for the
months of August 1969 and December to May 1970. As illustrated in
Figure IV - 8, the organic phosphorus fraction was practically absent
during the months of November 1969 through March 1970. A larger organic
fraction was evident, however, during the months of June through
October 1969 and March through April 1970. A reliable correlation does
not appear to exist between streamflow and phosphorus concentration in
the Pamunkey.
The nitrogen data very nearly corresponds to that of the Mattaponi
River. TKN values were again very high when compared to NOp + NO, and
NHo levels. Of the various nitrogen fractions, NO^ + NO^ was the only
one that appeared to be directly related to streamflow.
F. JAMES RIVER AT RICHMOND, VIRGINIA
Both total and inorganic phosphorus concentrations in the James
River were relatively uniform and nearly always less than 0.4 mg/1
during the study period. As can be seen in Figure IV - 9, slight
increases in concentration occurred during the winter and spring months
when river flows were substantially higher. The organic fraction was
more pronounced during the spring and summer periods, presumably
-------
*.
§
(!/••) NOUVIUN33NOD
!!/••) NOI1VH1N33NO3
IV-8
-------
IV-17
because of the presence of algae.
Concentrations of NCL + NO., nitrogen, however, appeared to decrease
during the high flow periods of January to May 1970, although consider-
able fluctuation throughout the study period was noted. An examination
of Figure IV - 9 also reveals drastic variation in TKN levels, from
0.2 mg/1 to 2.0 mg/1, with seasonal patterns not evident.
Ammonia nitrogen concentrations were generally higher during the
winter and spring with maximum concentrations exceeding 0.3 mg/1. The
minimum summer levels (0.1 mg/1) shown in Figure IV - 9 were probably
caused by nitrification. Biostimulation may be a significant factor
in the July to October 1969 period since nitrate levels were at a
minimum while an abundance of organic nitrogen was present during that
period.
6. CHICKAHOMINY RIVER AT PROVIDENCE FORGE, VIRGINIA
According to Figure IV - 10, high concentrations of total and in-
organic phosphorus (>0.5 mg/1) occurred during the periods of July to
December 1969 and May to August 1970 when streamflows were relatively
low. During the high flow period of January to April 1970, concentrations
of total and inorganic phosphorus were somewhat negligible, but increased
appreciably during the summer months.
Figure IV - 10 illustrates the extremely high TKN values and re-
latively low NOp + NO, and NH~ levels, except for the May-August 1970
period. Consequently, the organic nitrogen fraction was quite evident
during the period of June 1969 through April 1970. Considerable
fluctuation characterized the TKN concentrations observed during this
study. The continued increase in NH3 during the latter part of the
study is particularly noteworthy.
-------
< >
K
g* -
ft rt a
o
Z oc
Ul H
£ §
I 5
< 1
i
(!/«•) HOUVMXN23NO3
(!/••) MOUVM1N13NO3
IV-9
-------
(!/••) NOI1VH1N3DN03
()/•<•) NOUVKIN73NO3
IV-IO
-------
V-l
CHAPTER V
Nutrient Loadings and Relative Contributions
A. Delineation of Daily Nutrient Loadings (Observed)*
The daily nutrient contributions (Ibs/day) from the eight major
tributary watersheds for the period of June 1969 through August 1970
are illustrated in Figures V - 1 through V - 17.
For the 15-month period, the average daily nutrient contributions
(Ibs/day) to the Chesapeake Bay from the major tributary watersheds
are as follows:
Table V - 1
Average Daily Nutrient Contributions (Ibs/day)
_____ __ N02 + N03 NH^
as P04 Pi as N as N as N TOC
Susquehanna River at
Conowingo, Maryland 59,000 34,000 130,000 230,000 42,000 576,000
Patuxent River at
Route 50 (John Hanson
Highway) 5,000 3,000 4,000 2,000 2,000 18,000
Potomac River at
Great Falls, Md. 45,000 19,000 69,000 87,000 12,000 363,000
Rappahannock River at
Fredericksburg, Va. 3,000 2,000 6,000 5,400 1,000 40,000
Mattaponi River at
Beulahville, Va. 1,000 500 1,000 400 300 21,000
Pamunkey River at
Hanover, Va. 1,000 1,000 3,000 1,000 600 36,000
Chickahominy River at
Providence Forge, Va. 600 400 900 200 100 15,000
James River at
Richmond, Va. 7,000 5,000 19,000 15,000 5,000 169,000
Calculated from observed data: nutrient load (Ibs/day) = nutrient concentration
(mg/1) x river discharge (cfs) x 5.38
-------
V-2
The seasonal nature of nutrient enrichment of the Chesapeake Bay
is apparent when Figures V - 1 through V - 17 are examined in relation
to the three distinct time periods of June 1969 through October 1969,
November 1969 through May 1970, and June 1970 through August 1970.
Estimated seasonal nutrient loadings for each tributary watershed
based on observed nutrient loadings taken from these figures are
presented as follows:
-------
V-3
Table V - 2
Seasonal Nutrient Loadings
Susquehanna River at Conowingo, Maryland
Nutrient
Loadings
(Ibs/day)
T.P04 as P04
Inorganic
Phosphorus
T.K.N. as N
N02 + N03 as N
NH3 as N
T.O.C.
June 1969 through
October 1969
11,000
3,000
48,000
50,000
21 ,000
250,000
November 1969
through May 1970
96 ,000
56,000
185,000
365,000
54,000
1 ,000,000
June 1970 through
August 1970
19,000
13,000
71 ,000
73,000
32,000
490,000
-------
SUSQUEHANNA RIVER AT CONOWINGO. MARYLAND
ACTUAL DAILY NUTRIENT LOADINGS
TPO, 01 PO4
1.000.000 -
100.000 :
10.000 -
1.000 -
JUN JUL AUG SEP OCT NOV DEC
JAN. FEB MAR APR. MAT JUN. JUL. AUG.
INORGANIC PHOSPHORUS o» PO.
100.000 ;
IDiOOO ;
JUN. JUL AUG. ' SCR OCT. NOV. OK. JAN. FE§ ^^ MAR. APR MAT JUN JUL. AUft
V-l
-------
SUSQUEHANNA RIVER AT CONOWINGO. MARYLAND
ACTUAL DAILY NUTRIENT LOADINGS (CONTINUED!
TKN 01 N
UMO.OOO -
10,000 -
MOO
JUN JUL AUG. SEP OCT. NOV. DEC JAN FEI. MAR APR MAY JUN JUL AUG.
1*69 •< 1 » 1970
NO, » NO, 01 N
J 100,000 :
5,000
JUN. JUL AUG SEP OCT MOV O£C
JAN FEi MAN APR MAY JUN. JUL. AUC
V-2
-------
SUSQUEHANNA RIVER AT CONOWINGO. MARYLAND
ACTUAL D/Miy NUTRIENT LOADINGS (CONTINUED)
NH, • N
1.000.000 ;
- 100.000
I
I.OOO -
1 1 '
JUN. JUL
1 1
AUG
SEP
1
OCT
-1 1—
NOV
nflfl
DEC
JAN FEB
MAR
APR MAV
'"•'— "-r J-- i —— |
JUN. JUL.
AUG.
TOO
10000.000 -
JUN JUL AUG SEP OCT NOV. DEC
JAN. FES MAR APR MAY JUN. JUL. AUG.
V-3
-------
PATUXENT RIVER AT ROUTE SO (JOHN HANSON HIGHWAY!
ACTUAL DAIUT NUTRIENT LOADINGS
TPO4 •> PO4
10400 ;
LOOO :
AIMS. IO> OCT NOV. OCC. JAN FCL
IM« •• 1 » WTO
INORGANIC PHOSPHORUS « PO.
JUL. AUO
JUN JUL AUG SEP OCT NOV DCC
JAN FT8 MAR
JUN JUL AUG
]
1,000 :
TKN o. N
JUN JUL AUG SEP OCT NOV DCC JAN ft* MAR APR MAY JUN JUL AUG
IMS •• 1 • mo
-------
PATUXENT RIVER AT ROUTE 50 (JOHN HANSON HIGHWAY!
ACTUAL DAILY NUTRIENT LOADINGS (CONTINUED)
loooo :
I
1.000 ;
NO, • NO, at N
JUN JUL AUO SEP OCT MOV DEC
JAN Fit MAR APR. MAY JUN JUL. AUG.
10.000 -
UX» -
JUN. JUL AUG. $€» OCT. NOV. DCC.
JAN fl» MAR. APM MAV JUN.
TO.C.
JUN. JUL. AUO. H.P OCT. NOVt DCC.
Fit. MAJt APR. MAT
JUL. AU«.
' H)1B
V-5
-------
V-7
Table V - 3
Seasonal Nutrient Loadings
Patuxent River at Route 50 (John Hanson Highway)
Nutrient
Loadings
(Ibs/day)
T.P04 as P04
Inorganic
Phosphorus
T.K.N. as N
N02 + N03 as N
NH3 as N
T.O.C.
June 1969 through
October 1969
2,000
2,000
2,000
2,000
1,000
12,000
November 1969
through May 1970
7,000
3,000
5,000
3,000
3,000
24,000
June 1970 through
August 1970
4,000
2,000
2,000
2,000
700
12,000
-------
POTOMAC RIVER AT GREAT FALLS. MARYLAND
ACTUAL DAILY NUTRIENT LOADINGS
700,000 -
I
iixooo :
TPO. ai P04
JUN JUL AUG SEP OCT NOV DEC JAN FEB
. l»70
APR MAY JUN JUL AUC SCR
200.000 -
loaooo :
10000 :
IXKX) ;
INORGANIC PHOSPHORUS 01 PQ,
JUN JUL AUO SEP OCT NOV DEC
JAN FEB MAR APR MAY JUN JUL AUS. SCR
£000.000 -
U3OOJXO -
.(100.000
J
laooo :
TKN ai N
AUO. Uf OCT NOV DEC. JAM FCt MM. AM) MAY JUN. JUL. AUC. tl»
!»»» i | I UTO
-------
POTOMAC RIVER AT GREAT FALLS. MARYLAND
ACTUAL DAlUf NUTRIENT LOADINGS (CONTINUED)
NO, • NO, o. N
JUN JUL. AUG HP OCT NOV OCC
JAN FEB MAR APR. MAY JUN JUL AUG. SCP
20OOOO -
IOOOOO •
NH, o> N
JUN JUL AUQ SEP OCT NOV. DEC
JAN rci
APR MAY JUN JUL AUG SCP
T.O.C.
JUL AUG. KP OCT MOV. KC
ni. MAM.
JUN JUL. MM SCP
-------
Table V - 4
Seasonal Nutrient Loadings
Potomac River at Great Falls, Maryland
V-10
Nutr.ient
Loadings
(Ibs/day)
T.P04 as P04
June 1969 through
October 1969
16,000
November 1969
through May 1970
66,000
June 1970 through
August 1970
15,000
Inorganic
Phosphorus
TKN as N
N02 + N03 as N
NH3 as N
T.O.C.
6,000
33,000
22,000
5,000
272,000
26,000
98,000
132,000
16,000
489,000
8,000
30,000
35,000
5,000
202,000
-------
V-13
Table V - 5
Seasonal Nutrient Loadings
Rappahannock River at Fredericksburg, Virginia
Nutrient June 1969 through November 1969 June 1970 through
Loadings October 1969* through May 1970 August 1970
(Ibs/day)
T.P04 as P04 1,000 5,000 500
Inorganic
Phosphorus
T.K.N. as N
N02 + N03 as N
NH3 as N
T.O.C.
500
3,000
2,000
500
32,000
3,000
9,000
9,000
2,000
57,000
500
2,000
1,000
200
23,000
* Extreme river discharge of July 31, 1969 is reflected in nutrient loadings
for this period
-------
IOMOO :
1,000 :
RAPPAHANNOCK RIVER AT FREDERICKSBURG. VIRGINIA
ACTUAL DAILY NUTRIENT LOADINGS
TP04 • PQ,
JUN.
JUL
AUG
SEP
OCT
NOVt
IO«Q
DEC.
JAN.
fit.
MAR
APR
MAY
JUN
JUL
AUG.
j 1.000
5
INORGANIC PHOSPHORUS at P0«
JUN. JUL. AUG SCR OCT NOV DEC.
JAN FEB MAR APR. MAY JUN JUL AUG
1.000 ;
JUN
1
JUL
1 1
AUG
SEP
-i r
OCT
1
NOV DCC
IOAQ .. —
1 1
JAN FEB.
MAR
APR
1 "
MAY
r •• i
JUN
JUL
1 1
AUG.
V-i
-------
RAPPAHANNQCK RIVER AT FREDERICKSBURG. VIRGINIA
ACTUAL DAILY NUTRIENT LOADINGS (CONTINUED)
MOOO -
IOOOO :
; 1.000 :
NO, » NO, w N
JUN.' JUL AUG. SIP OCT NOV DEC
JAN FES MAR APR MAY JUN JUL AUG
NH, 01 N
JUN JUL AUG SCP OCT NOV DEC
JAN Fit MAR APR MAV JUN. JUL AUG
JOttOOO -
noooo -
lOtOOO ;
uoo
TOC
JUN. JUL AUG SEP OCT NOV. DEC
JAN. FE>. MAR APR MAY JUN JUL AUG
-------
Table V - 6
Seasonal Nutrient Loadings
Mattaponi River at Beulahville, Virginia
V-16
Nutrient
Loading
Obs/day)
T.P04 as P04
Inorganic
Phosphorus
T.K.N. as N
N02 + N03 as N
June 1969 through
October 1969*
400
November 1969
through May 1970
600
200
1,500
700
2,500
200
600
June 1970 through
August 1970
200
100
700
100
NH3 as N
T.O.C.
500
23,000
400
25,000
100
8,000
* Extreme river discharges of August 7 and August 28, 1969 are reflected
in nutrient loadings for their period.
-------
MATTAPONI RIVER AT BEULAHVILLE. VIRGINIA
ACTUAL DAILY NUTRIENT LOADINGS
I
TPO4 01 PO«
JUN JUL AUG. SEP OCT NOV DEC
10.000 q
1.000 ;
100 ;
JAN FEB MAR APR HAY JUN JUL AUG.
INORGANIC PHOSPHORUS a> PQ,
1
1
1
1
I
1
1 1
I 1 1
1
'
O 1.000 ;
JUN JUL AUG SEP OCT NOV DEC JAN FE8 MAR APR MAY JUN. JUL. AUG.
!»«» » I > 1970
V-IO
-------
MATTAPONI RIVER AT BEULAHVILUE. VIRGINIA
ACTUAL DAILY NUTRIENT LOADINGS (CONTINUED)
NO, » NO, o. N
r— T —i 1 1 1
JON JUL AUG. SEP OCT NOV DCC
JAN FES. MAR APR MAV JUN JUL AUG
i
Q
3 100 :
1 1 1 1 ' 1 1 1
JAN. FEB. MAR APR MAV JUN JUL AUG.
JUN JUL AUG SEP OCT NOV DEC.
TOC
100.000 ;
1.000
JUN JUL AUG SCP OCT NOV. DCC JAN FU MAR APR MA* JUN. JUL. AUG
KM i i 1170
-------
V-19
Nutrient
Loadings
(Ibs/day)
T.P04 as
Inorganic
Phosphorus
T.K.N. as N
N02 + N03 as N
NH3 as N
T.O.C.
Table V - 7
Seasonal Nutrient Loadings
Pamunkey River at Hanover, Virginia
June 1969 through
October 1969*
1,000
500
3,000
900
500
65,000
November 1969
through May 1970
2,000
1,000
3,000
2,000
1,000
35,000
June 1970 through
August 1970
200
200
1,000
200
200
6,000
* Extreme river discharges of July 31, 1969, and August 7 and August 28, 1969
are reflected in nutrient loadings for this period.
-------
PAMUNKEY RIVER AT HANOVER. VIRGINIA
ACTUAL DAILY NUTRIENT UOADINGS
TPO, at PO4
1 1 1 1 1 1
JUN JUL AUG SEP OCT NOV DEC
1 1 1 1 1 1 1 T~
JAN FEB MAR APR MAY JUN JUL AUG
•8 1.000 ;
INORGANIC PHOSPHORUS a. PO.
JUN JUL AUG SEP OCT NOV DEC
JAN FEB MAR APR MAY JUN JUL A,UG
3 1.000
I
JUN JUL AUG SEP OCT NOV DEC
JAN FEB MAR APR MAY JUN JUL AUG
V-12
-------
F*MUNKEY RIVER AT HANOVER. VIRGINIA
ACTUAL DAILY NUTRIENT LOADINGS I CONTINUED)
MOO H
NO. • NO, - N
JUN JUL AUO. iff OCT NOV. OCC.
JAN. FEE MAR APR MAT JUN JUL AUG.
NH,
-------
V-22
Nutrient
Loadings
(Ibs/day)
T.P04 as P04
Inorganic
Phosphorus
T.K.N. as N
N02 + N03 as N
NH3 as N
T.O.C.
Table V - 8
Seasonal Nutrient Loadings
James River at Richmond, Virginia
June 1969 through
October 1969*
8,000
November 1969
through May 1970
8,000
June 1970 through
August 1970
700
4,000
22,000
12,000
2,000
218,000
7,000
23,000
20,000
7,000
203,000
600
5,000
9,000
400
41 ,000
* Extreme river discharges during the months of July and August 1969 are
reflected in nutrient loadings for this period.
-------
JAMES RIVER AT RICHMOND. VIRGINIA
ACTUAL DAILY NUTRIENT LOADINGS
TPO. 01 PO.
JON JUL AUG SEP OCT NOV DEC
JAN. FEB. MAR. APR MAV JUN. JUL AUG
IOO.OOO -
_ laooo -
I
uwo :
INORGANIC PHOSPHORUS a> PO.
JUN JUL AUG SEP OCT NOV DEC
JAN FEB MAR APR MAV JUN JUL. AUG.
100.000 :
JUN JUL AUG SEP OCT NOV DEC
JAN FEB MAR APR MAV JUN JUL AUG.
-------
JAMES RIVER AT RICHMOND. VIRGINIA
ACTUAL DAILY NUTRIENT LOADINGS (CONTINUED!
NO, » NO, o. N
JUM JUL AUG Sif OCT. NOV DCC
JAN FEB MAR APR MAY JUN JUL AUG.
NH, M N
JUN JUL. AUG. StP OCT NOV. DCC
JAN Fit MAR APR MAY JUN. JUL. AUG.
1
~ icaooo
5.000
JUH JUL AUG. S£P OCT NOV DCC. JAN. FCL MAR. APR. MAY JUN. JUL. AUG.
V-15
-------
V-25
Table V - 9
Seasonal Nutrient Loadings
Chickahominy River at Providence Forge, Virginia
Nutrient June 1969 through November 1969 June 1970 through
Loadings October 1969* through May 1970 August 1970
(Ibs/day)
T.P04 as P04 1,000 500 200
Inorganic
Phosphorus 700 400 100
T.K.N. as N 1,000 1,000 200
N02 + N03 as N 300 300 70
NH3 as N 100 100 20
T.O.C. 34,000 12,000 2,000
* Extreme river discharges of July 31, 1969 and August 7 and August 28, 1969
are reflected in nutrient loadings for this period.
-------
CHICKAHDMINY RIVER AT PRQVIDENCE FOSGE. VIRGINIA
ACTUAL DAILY NUTHIENT LOADINGS
TPO4 at P04
JJ
= 1.000
100 ;
50
JUN JUL
AUG SEP OCT NOV DEC
I960 "
INORGANIC PHOSPHORUS at PO,
MAY JUN JUL AUG
JUN JUL AUG SEP OCT NOV DEC
JAN FC8 MAR APR WAV JUN JUL AUG
_ 1.000
f
JUN JUL. AUG SEP OCT NOV DEC
JAN TEB MAR APR MAY JUN JUL AUG
-------
CHICKAHOMINY RIVER AT PROVIDENCE FORGE. VIRGINIA
ACTUAL DAILY NUTRIENT LOADINGS I CONTINUED!
1.000 3
NO, » NO, o> N
I
1 1 r T 1 1
JUN JUL AUG SEP OCT NOV DEC
1 1 1 1
JAN FEB MAR APf) MAY JUN JUL AUC
JUN JUL AUG SEP OCT NOV DEC
JAN FEB MAR APR MAY JUN JUL AUG
JUN JUL AUG SEP OCT NOV DEC
1889 «
JAN FEB. MAR APR MAY JUN JUL AUG
<• 1070
-------
V-28
As exhibited, nutrient contributions to the Chesapeake Bay from
major watersheds based on calculated loadings using observed data in-
dicate two distinct observations: (1) the predominate influence of three
principal watersheds on the nutrient balance in the Chesapeake Bay—
the Susquehanna, the Potomac, and the James River and (2) the seasonal
nature of nutrient input to the Chesapeake Bay.
In the following section the observed data is extrapolated using
linear regression relationships and mean monthly flow data. Nutrient
loadings calculated in this manner reduce the biased nature of a limited
sampling program and are a realistic presentation of the observed data.
B. REGRESSION ANALYSIS
1. Analytical Framework
In order to establish a statistically valid relationship between
nutrient loadings and stream flow, a series of regression analyses of
the mean river discharge and nutrient loadings were performed at each
station and for each parameter using both linear and log transforms.
The following expressions were utilized in the final regression
formulation:
L = a1 Qb V - 1
which may be transformed to
Log 1QL = a + b log1Q Q V - 2
where
L = nutrient loadings (Ibs/day)
Q = river discharge (cfs)
a = constant defining the y intercept on log-log plot (a-, = 10a)
b = exponent defing the slope of the curve in the form of
Equation V - 2.
-------
V-29
This equation represents an expotential function which is linear
when plotted on log-log paper. The "b" term, or slope, is of particular
importance since it signifies the rate at which nutrient loadings increase
for any given flow.
The equation used to calculate nutrient loadings is
L = N x Q x 5.38 x
\
where
L = nutrient load (Ibs/day)
N = nutrient concentration (mg/1)
Q = river discharge (cfs)
5.38 = conversion factor
It should be noted that the above form of the equation results in
a biased analysis of L (nutrient loadings) versus Q (river discharge).
The derived least squares regression equations (Equation V - 2) and
related statistics which describe nutrient load-streamflow relationships
for each tributary watershed are presented in this report.
Utilization of the derived regression equations and graphs enable
the calculation of nutrient loadings at each sampling station using either
the mean monthly flows which occurred during the study period or any other
desirable flow. The use of mean monthly flows in nutrient load calculations
reduces the biased nature of a limited sampling program which realized
only approximately 5 samples per month per station durtng the entire
study period.
2. Regression Loadings (calculated)
A regression analysis of nutrient loadings (Ibs/day) versus river
discharge (cfs) was performed for every station in the study network.
-------
V-30
These regression analyses were calculated using the United States
Geological Survey Statistical Package (STATPAC) - a computer program
which eliminates the cumbersome task of manual calculation of regression
data for each parameter at every tributary watershed.
Least squares regression lines in the form of Equation V - 2,
which describe the nutrient load - streamflow relationships for each.
parameter at the Susquehanna River station, are illustrated in Fi'gures
V - 18 through V - 23. Only the regression lines for the SusqueFianna
River station are presented because of the major importance of the
Susquehanna River and also for the sake of brevity. The least squares
regression lines (log-log plots) show the dependence of nutrient
loadings for any particular river discharge and also verify the
reliability of the regression extrapolation (to visualize the correla-
tions of the observed data to the regression lines).
The regression equations, correlation coefficients and related
statistics utilized to determine the extrapolated nutrient loadings at
each station in the sampling network are presented in Tables V - 10
through V - 17. The regression equation in the form of Equation V - 1
was used to compute the nutrient loadings.
-------
-to
O
O
V «•>
*0d •» VOeU 001
(VI
V-18
-------
Q.
M
-8
O
-1
"•
2 o u.
< i- :
£ <
-------
H«o
O
_l
u.
O
O
!-•*)
(M
NX1 9OT
V-20
-------
o
b.
O
O
-------
Q.
1
40
z
o
o:
Q
<
z
UJ
cr
\-
>
<
X
S
8
UJ
>
(T
to
- IO
r
o
o
o
I
Z
tr>
DOT
V-22
-------
- «o
-10
O
o
' (M
I
«o
V-23
-------
14-
0 *
*
CO £
CD O
O) T3
S- CD
CD CD
CD S-
Q LJ_
*
O)
3
CO
CO
0
r-~
T3J LD
>
~ 1
c: I —
,
s_
t3
s:
CO
1 \ r.
•— O
:3 CD
(.Id C 4->
o "- o c
O C£ 3 -r- CD
>-> C ro O
1 "O O i — •—
Z5 O QJ M-
> 4-> S_ C|_
OO 4-> S- CD
O) re O O
•— C O c_>
JD O S-
TS -r- CU
f""" • C/1 ^
CO -i-
O) o;
i-
CD ro
O) C
o; c
ra
cu c
3 O
cr T-
CO 4->
Z5 ro
(/O 13
cr
LU
c:
o
•r—
00
CO
CD
S_
CD
a>
o;
s_
CD
+->
CD
E
ro
i-
ro
Q_
CM
CO
cn
o
i —
CO
CM
.
""o-
f—
CO
0
o
II
1
"3-
o
D_
OO
ra
CO
CTl
o-
o
en
0
,
OO
II
]
CJ
^ I o
^. 1 1-
1
c
C/)
c
0
+J
CD ro
<_) >
Cf
>—
fl3 O)
U to
•i— -Q
M- O
., —
C M-
CD O
co 5-
CD
M -«
T— _LJ
0 E
3
-M C
co
CD II
4-)
*
* *
-------
q-
O *
*
co E
CU O
CU -O
i. CU
en cu
cu s-
O LJ_
•K
O)
>> r—
en h-
-T~
_L_
c
0
CO
CO C
-IJ <0
,__ -J—
=j
CO C C +J
CU -C O C
r- OL O -i- CU
.— 0 -4-> M-
>, — - to O
1 -0 •— -r-
3 O CU "4-
> -l-> LO S- 4-
OO S- O)
CD CU O O
i— C 4-> O O
.0 0 3
rtS -r- O
H- to oi
I/)
CL) +J
s- to
en
cu i-
c£ cu
>
o; c
o
4-> •!-
C 4->
cu UJ
re
CL. C
o
•r~
co
CO
t
en
cu
01
S-
CO
1 1
•f"*
cu
E
to
to
D_
r>.
LO
CM
*J-
r^.
O
r-
•
o
LO
CO
^o
•
CD-
0
o
OJ
•
^~
o
^~
II
1
^~
o
o.
CO
o
co
LO
II
_l
(J
•r-
c
to
en
o
E
1 — 1
^ ^
o.
LO
LO
CT>
CO
^d-
•—
0
CTi
•
o
o
CM
o
•
^—
cr
LO
V£>
^~
r-~
II
_l
-zz
CO
to
z
^
H-
00
LO
r»»
co
>—
00
oo
•
o
LO
^~
vo
•
CD-
0
CM
r—
•
O
vo
II
_J
z:
CO
fO
CO
o
^^
a<_
+
OJ
o
^
CO
LO
oo
LO
01
CM
r--
•
o
r^
0
CO
•
CD-
CD
r--
CO
•
CO
r—
II
_J
•z.
CO
eo
CO
n:
•Zi
CO
co
CO
•—
CD
co
CO
•
O
,
o
OJ
•
1—~
CD-
CD
CO
CO
•
i —
r~
II
_J
C_)
o
i—
r—
1
^— X
C
-*~~*
CO
C
o
+J
ea
>
S-
cu
CU CO
O _Q
c o
(O
Oil
*+""
••- 0
(I
H —
c cu
en ^3
00 3
C
f 1
0 II
[ \
CO
0)
4->
*
* *
-------
o *
*
co E
CD O
CO "O
t- CO
CD CU
CU S-
O U-
*
CO
^
rO
-o i—
C
(O
S-
ro
to 2:
13 CO
co i— c: •»->
CU r— O C
CM Q£ rC T- CU
•— U- •(->••-
>, ro 0
1 T3 4-> i— T-
3 re CO <4_
> +-> CU S- M-
to s- s- co
CU O O O
i— c: o c_>
-Q O +->
fO *^~ fl3
1— CO
co S-
O) CO
s- >
cnv-
co ct.
o
ro
E C
0 0
+J *i —
0 -M
D- (O
cr
LU
CI
o
CO
CO
CO
S-
cn
0)
S-
^ »
CU
E
("O
s-
ra
D_
r—
cn
O^
^Q
00
cn
CO
•
o
co
VD
o
CD-
CO
CM
CM
,_!
n
—i
o
Q_
CO
rO
^j-
O
D-
•
1—
CO
00
r--
co
LO
p^^
CO
•
o
CO
o
CM
•
CD-
^^
[ f)
•—
O
II
—1
O
• r—
C
ro
CD
0
C
1— 1
— ^
Cl_
co
cn
LO
o
CM
CO
r*^
•
0
00
o
cn
o-
i —
P^
LO
CO
n
—i
zz
co
4_>
*
* *
-------
q-
0 *
*
to E
cu O
CU "O
S- O)
en cu
cu s-
Q Li_
•K
cu
3
re r-
•i- re
c >
en |—
^>
en
07 i-
_i t -^
+^ — *
r— -Q
3 to
t/7 -i£ E -P
CL) O O E
CO C£ -i— -i- CU
1— S_ -P •!-
>> cu re o
1 -O -0 i— •!-
3 CU Ol M-
> -p S- S_ H-
OO U- i- CU
O) O O
i— C -P O O
.a o re
re -i-
l— to s-
to CU
cu >
S- ••-
en a:
O>
rv v
LjL. >J^
O
o
C E
C O
re -i-
f~ 1 1
j^ -i— •
re re
a. 3
a. cr
re LJJ
rv
E
o
to
to
cu
S-
cn
cu
a;
S-
cu
•^
QJ
re
re
Q-
10
LO
LT)
10
•
•
O
in
c— •
CO
^_
cr
r».
to
o
o
n
_i
o
•r—
E
re
en
t
0
c
1 — 1
Q-
LO
un
co
10
•
*3-
"~
CM
00
O
CO
r—
"~^
,__
o-
to
^i-
CM
1 —
II
_l
•z^
to
re
^
^:
i—
LO
cn
tr>
•
CM
1
1 —
OO
o
10
v—
to
,__
czr
00
CM
o
o
ii
_i
•ZL
to
re
CO
o
+
CM
o
z
tn
CM
•
• —
r—
un
OO
o
^i-
<£
CO
, —
o-
en
CM
o
o
n
— i
z:
to
re
CO
:r
"ZL
IT)
CO
LO
LD
00
cn
CM
O
o
r~~
oo
r-^
t/1
c
o
03
cu
cu to
o _a
E o
re
o t-
•i- O
S-
cu
.a
E
c
en
to
cu
II
o
o
-------
ct-
O *
*
co E
CU O
CU S-
o u_
*
a
re
re i
••- t-
a>
s_
>
CO
1 \ n
i— ai
~j |__
CO i— E 4->
0) -r- O E
*3- Qi > ••- CU
i— -E -M ••-
>> re re o
1 TJ t— i ,-
33 CU t-
> -4-> OJ S- M-
OO CQ S- CU
CU O O
r— E 4-> O O
.a o re
re •!-
1— co S-
CO CU
CU >
S- -r-
n\ i"v*
\J i LJ_
CU
ct: -r-
E
O
Q. E
re o
4-J ••-
i % i \
+- ' 4— '
ra ea
s: 3
cr
LU
E
O
CO
CO
£
ai
CU
Qi
S-
ai
4^
CU
re
i.
ro
CL.
«d-
LO
10
CM
CTl
«sf
CTl
O
LO
•*
CTl
Cr
«d-
V£)
II
1
.
^"
O
Q-
CO
re
•3-
o
Q.
i—
LO
LO
LO
l-»
CO
OO
CTl
O
LO
CM
O
CD-
CO
CO
LO
O
II
_l
0
E
re
0)
o
E
I — i
Q-
CM
LO
0
LO
O
OO
CO
o
r~^
10
CO
Cr
r-v
o
CO
LO
n
_i
z
CO
re
^.
h-
oo
LO
OO
r-»
^2
LO
CO
o
0
o-
LO
vo
CM
o
II
1
"Z.
CO
re
OO
o
^
+
CM
O
z
CM
LO
CTl
ID
LO
r—
CTl
O
CTl
LO
o-
CTl
O
II
1
^
CO
re
ro
:n
UD
oo
CO
LO
*
o
r^
CO
o
CM
CM
CO
Cr
O
O
CM
CTl
O
II
_l
CJ
o
t—
i
E
CO
E
O
•r—
•4-5
re
>
S-
ai
O) CO
U J2
E O
re
0 <4-
3= °
•r- S-
E CU
CD J3
CO 3
ij
O II
+J
CO
CU
-I-J
*
* *
-------
4-
O *
*
to E
cu o
CU T3
S- CU
cn cu
CU S-
Q U_
*
CU
3
r—
rO
1
i
t^
to
C
CD
S-
CO T-
•!-> >
3 »
CO S- C 4->
cu cu o c
LO ex: > -i- cu
•— 0 -P -i-
>> C n3 O
1 "O ro i— T-
3 :r cu 4-
> -4-> S- 4-
CO 4-> S- CU
cu ro o o
•— c o o
.0 0 i-
fC -I- CU
I — to >
CO •!—
/It p*s
Qj CC.
CD >,
O) CU
oc -^
E
3 C
E 0
frt «^—
"D n~
0- •!->
ITS
3
CT
UJ
E
O
to
CO
S!
01
cu
o:
S-
cu
-(->
cu
re
s_
ro
Q_
VO
LO
CT>
CM
•
^_
CM
•
CO
r—
00
00
o
CM
Lf)
r—
cr
o
CM
CM
ii
— i
o
•n-
c
ro
O)
S-
0
C
1 — 1
Q.
Lf)
Lf)
CO
«J-
•
«3-
"~
CTi
00
O
CM
r—
O
, —
cr
CTi
CO
CM
II
.—1
•z.
to
rC
Z.
^
1—
•sl-
LO
cn
•
10
r~
CTi
o
«3-
CTi
CO
, —
Cf
Lf)
UD
O
o
II
«j
•z.
CO
ro
CO
O
•z.
+
CM
O
•z.
CM
Lf)
^f
CO
•
r—
00
0
Lf)
l~~.
CM
, —
cr
Lf)
UD
O
o
II
1
1
•z.
CO
rO
CO
n:
z.
00
CO
r^.
CM
•
i*~
1
00
CO
o
10
r*~
0
i —
Cr
O
CM
«a-
r^
N
t
O
O
1—
,
^
C
CO
p-
o
•1 —
4J
ro
>
S-
D
u «+-
•r- 0
4-
•i- S-
c cu
cn .a
. cr
•l~ Cz
CO 3
C
4-
0 II
-P
to
0)
•4-J
*
•K *
-------
4-
0 *
*
to E
O) 0
cu -a
s- cu
cn a>
cu s-
Q U_
*
CD
3
03
>
1
(—
03
C
to CD
•M S-
'=> >
to
CU " C +•>
a: -o o c
to c -i- cu
i— >> O -4J -r-
-O E o cu 4-
> CO T- 1-4-
a: i- cu
a> c o o
i— O -!-> O O
.a •!- 03
O3 tO
1 — in £-
CD CD
s- >
CD-r-
OJ C£
a:
to
CD
E
03 C
•-3 0
-(->
03
3
O"
LU
C
o
•r—
to
to
CD
S-
CD
O)
rt**
LJ_
s_
CD
4->
CU
o;
o:
Q.
«d-
LO
cn
LO
,_!
CM
LO
en
•
o
to
r-~
CXI
•
"~cr
j—
O
.
o
II
_1
«^-
o
Q_
to
03
03
•z.
^L
\—
CM
LO
r^
00
,_!
r~-
to
00
o
0
00
r-~
cr
o
cn
LO
,
cn
r—
II
_]
Z.
to
03
CO
O
•z.
+
CXI
o
z.
CM
LO
r--.
,-1
r—
LO
CO
O
o
r~.
CO
•
""cr
LO
CM
O
•
0
II
— 1
z.
00
03
CO
n:
•z.
r~.
CO
o
1—
r-
1
^ — *
C
•X— ^
to
c
0
• r~
•(->
03
>
s_
CD
CU to
O -Q
C 0
03
0 4-
•<- O
1 i
•r- S-
C CD
CD .a
t —
•r- c:
10 3
C
q_
O II
•4->
to
CD
4->
*
* *
-------
H-
O *
*
CO £
CD O
CO -O
S- CO
O) CO
CO S-
0 U_
•X
0)
03 3
•n* i—
c to
"^ ^*
CD 1
i- I—
•r—
>•
CO
o^
co S-
+J 0
.. 1 ,
p— • U_
3
CO CO C 4->
_ d) o o c:
Is* 0£ C •!- CO
p— QJ +j .,_
>>-O 03 O
i -O ••- •— ••-
3 > CO M-
> 4J 0 i- <4-
OO S_ S- CO
CO CX. O O
r— C O O
J3 O 4->
O3 T"* ft5
H- co
LO S-
ai co
^ >
CT>-r-
CO Qi
oi
>,
c c
•i- O
E -r-
O 4->
XI rO
TCS 3
-ii: CT
O UJ
f C
0 0
CO
CO
fll
S
CD
CO
C£
s_
CO
-(_>
CO
03
s_
r^-
LO
00
o
l£>
O
00
•
o-
LO
r-»
r-^
•si-
ll
_]
o
c
ns
cn
O
c
1 — 1
^ S
Q_
UD
LO
00
r^
•*
cn
CO
o
10
oo
CTl
•
o-
LO
r^s
00
*3-
II
— 1
•z.
CO
fa
•z.
M
1—
r—
LO
LO
CTt
00
00
r~-
0
•5J-
cn
U3
•
o-
cn
00
CTl
^~
II
_l
•z
CO
03
OO
o
•z.
+
CM
O
Z
O
LO
CM
LO
OO
CTl
OO
O
CTl
r-.
o
•
cr
*i-
CM
CM
0
II
_l
•z.
co
03
oo
31
'Z.
IO
oo
o
LO
LO
oo
CTl
o
«3-
1--.
CTi
"
o-
0
0
oo
CTl
LO
II
— 1
c_>
o
1—
,
,_^.
c
CO
c:
o
•1 —
4J
03
>
£-
CO
•X
•X *
-------
V-45
The mean monthly nutrient input (Ibs/day) to the Chesapeake
Bay from the major tributary watersheds* based on regression
extrapolation using mean monthly flow data are presented in Tables
V - 18 through V - 24.
The nitrogen and phosphorus inputs to the Chesapeake Bay from
these major tributary watersheds are illustrated in Figures V - 24
and V - 25, respectively.
*Patuxent River excluded due to limited flow data
-------
T3
C
n3
03
O
CD
O
c
O
CO
i —
I
>>
CU
i—
J3
03
CD
>
•r-'
o:
03
O)
CT
l/l
co
<4-
o
CD
0 1
3 *x.
1— to
JQ
Z >)
03
to -o
03 \
to
CO _Q
to -—•
fO ^"}
13
CO TJ
O "--.
z: to
£1
+ <—
CM
O
z >,
03
CO T3
to
Z -O
|— *•-••<'
u
'c ^
03 03
CO T3
O IO
c .a
i — i i —
Q-
O
Q_ •
^"1
to 03
o3 ~O
O
O
o
o
CO
CTi
o
o
o
00
o
o
o
CO
r—
o
o
0
,
CM
O
O
o
, —
o
o
o
CO
o
o
o
LO
o*s
^•O
"•^
o
0
8
CO
CO
*=*"
0
0
0
LO
CM
o
o
o
cj-
1^
*~
o
0
o
,
CO
o
o
o
CM
r—
o
o
0
CM
CM
0
o
01
LO
CM
en
LO
**^
r—
o
o
o
^f
r—
LO
o
o
o
o
CO
o
o
o
, —
^~
•"•
o
0
o
LO
en
o
o
o
LO
1—
0
o
o
CO
CM
o
o
,
CO
en
LO
•^^
CM
0
0
o
en
r—
CO
o
o
o
r—
CM
o
o
o
CT)
r^
o
o
o
CM
LO
o
0
o
CO
0
o
o
LO
f—
o
o
CO
1 —
0
r^«.
^•^
f.
o
o
o
o
o
o
o
n
o
o
o
CM
LO
o
o
o
LO
CO
CO
o
0
o
,_
CO
o
o
o
LO
o
o
0
LO
^^
o
o
CM
1^
VO
o
^x
^-^
CVJ
o
0
o
o
1^,
0
oo
o
0
o
CVJ
0
o
o
CM
^j-
CM
o
o
o
,
"C^
o
o
o
, —
oo
0
o
o
CM
LO
o
0
CO
o
LO
o
1^
•^^
ro
o
o
o
o
o
o
o
CM
o
o
o
LO
oo
o
o
o
oo
CM
^
o
o
o
o>>
1 —
oo
o
o
o
cr>
1^
•~
o
0
o
LO
^^
r—
o
0
CO
CVJ
oo
r—
o
r^*»
**^sfc
^-
o
o
o
o
o
vo
o
o
o
1^
CO
o
o
o
CO
01
•—
o
o
o
0
CM
o
o
o
^f.
CM
o
0
o
o
f^-
o
o
CM
, —
«^-
o
p*-
"^x,.
LO
o
o
o
o
LO
CO
o
o
o
CM
CM
o
o
0
r^
CO
o
o
o
LO
LO
o
0
o
en
o
o
o
rv.
r—
o
o
o
CM
o
r*-«>
"*^x.
LO
o
o
o
o
LO
CO
o
o
o
CVJ
CM
o
o
o
1 —
00
o
o
o
LO
LO
o
o
o
(Ti
o
0
0
pv.
r—
o
o
o
CM
o
] *
"^-^.
r*-^
0
o
o
o
(^
CO
•—
o
o
o
,3.
o
o
o
CM
^-
o
o
o
00
CO
o
o
o
^t-
o
0
o
r--
o
0
LO
o
1 —
CD
1^
^^
CO
o
o
o
o
o
o
1 —
r-.
o
o
o
f-.
CM
o
0
o
o
o
co
CM
o
0
0
o
o
^
o
o
o
CO
o
CO
o
o
o
LO
01
^~
o
o
o
CM
CO
^"
1
•=£
to
O
-C
4->
C
O
c
03
CD
•n-
to
03
'o
Q.
03
4->
X
O)
CO
LO
CD
O)
Cr;
-------
*
-o
tO
tO
to
u_
to
cu
$-
CJJ
CD 4->
r- to
I i.
cu
cu a;
JQ O
to to
f- E
o
o
D_
cu
^1
to
O "O
o \
t— to
.a
*- —
^^^
^y >^
fO
t/l ~O
*,
to
CO ~D
o \
Z to
+ ;5
•*~ *•
CM
O
tf^—^
"^* ^^
03
i/) ~O
to
z: .a
I— ^<
u
•r— ^"~s
E >,
rt) ,
n3
fO -v.
to
•* -Q
0 i—
O- ~— -
1—
s
o
1 — *—^
£•
c -ii
O)
2:
+0
(^5
Q
O
O
O
to
CD
O
O
O
CM
0
O
o
^
0
o
o
,
r—
o
o
o
CM
O
O
O
to
LO
CO
to
CM
CT)
to
•*-.
to
o
o
o
o
CM
O
0
O
O
CM
O
O
O
1 —
O
o
o
CM
n—
O
o
0
CM
o
o
0
to
LO
CD
CM
CD
to
— ^
p^
O
o
o
o
to
CM
O
O
O
to
o
o
o
r-.
CO
o
o
o
CM
CO
o
o
o
CO
0
o
o
CD
r—
to
•3"
CO
CD
to
**•— .
CO
o
o
o
o
LO
LO
o
o
o
co
o
o
0
to
r™~
o
o
o
CD
r—
0
o
0
*3-
o
o
0
o
1 —
oo
r— -
CO
*3-
CD
to
•^^^
CD
o
o
0
o
to
00
o
o
o
CM
0
o
o
LO
o
o
o
o
r—
o
o
o
CM
o
o
o
LO
CM
CO
CM
CD
to
o
o
o
o
CO
CM
O
o
o
CM
O
O
O
O
^—
o
0
0
LO
^—
o
o
o
CO
o
0
o
CO
to
CM
to
CO
CD
to
"•^
r—
•~
o
o
o
co
co
CM
o
o
o
LO
o
o
o
^-
co
o
0
o
o
CO
o
o
o
^
o
CD
0
CO
r—
CM
LO
CD
r^
CD
to
^^
CM
l~
o
o
0
10
CM
CO
o
o
o
CO
o
o
o
CO
to
o
o
o
co
^-
o
o
o
CM
r—
o
o
o
co
CM
CO
LO
CD
, —
<—
o
r>-»
•>x^
r— .
o
o
o
o
,3.
CM
LO
o
o
o
co
1 —
0
o
o
CM
LO
•~
o
o
o
CO
rv.
o
o
o
,3-
CM
o
o
o
CM
LO
o
CT)
CO
,
CM
o
("X.
-^^
CM
o
o
o
o
to
r—
"
o
o
0
o
^—
o
o
o
CD
CD
o
o
o
r^
LO
o
0
0
1^
r—
0
o
o
CO
CO
o
1 —
to
1—
o
^^.
"-^^
CO
0
o
0
o
r--.
r>.
"
o
o
o
,
CM
o
o
o
LO
r—
CO
0
o
o
CO
r—
1 —
o
o
0
CO
^J-
o
o
0
to
CO
CO
CD
LO
•53-
OO
o
^•^
^J-
o
o
o
o
CO
to
CM
o
o
o
to
o
0
o
CM
^-
o
0
0
,3-
co
o
0
0
CD
o
0
o
, —
CM
to
1 —
CM
CD
o
rs^
•~^
LO
0
o
o
o
,
CD
o
o
o
^f.
0
o
0
co
CM
o
o
o
«3-
CM
0
o
o
LO
0
0
o
^J.
r-~
•=3-
o
CM
id
o
f^
*~v^
to
o
0
0
0
o
LO
CM
o
o
o
to
o
o
o
CO
CO
o
o
CD
CM
CO
o
o
o
OO
CD
o
0
0
CM
1 —
CM
<^>
CO
o
s*^
f^
0
o
o
0
CO
CM
o
o
o
CM
o
o
o
o
^—
o
o
0
LO
r—
o
0
o
CO
o
0
o
oo
to
o
to
CO
0
r^
^•^
CO
o
o
o
o
o
0
o
0
o
o
CM
CD
o
o
o
CO
LO
00
o
o
o
o
CM
LO
o
o
0
CD
T~
0
o
0
CD
CO
CO
LO
1 —
LO
^j-
«=!•
1
c
o
fO
01
en
O
CL
03
X
O)
c
o
to
to
cu
C7>
O)
a:
-------
*
to
cn
s-
>
ft
cn
S-
^
JD
O
>r-r
S-
-a
E
O)
i-
t^
-^
>^
co
3 ^
XI
z >,
to
tO "O
to
co _a
in i—
zz ^^
•z.
CO - — -
fO
oo ~o
o \
z to
jo
CZ-
CM
o
z
z: >,
to
tO "O
(0 \
to
S c.
o
'c ^
to to
cn -a
s- ^.
O tO
C J3
d C-
°-
^.
o — -
to
IO "O
to ^^
to
«=!• -Q
O i—
•
o •—*
— IO
u
IO
ai
s
ai
to
a
o
0
o
LO
1 —
o
o
CM
O
O
n
,
O
o
CO
,
o
0
0
o
CM
cn
vo
cn
vo
VO
O
o o
0 0
0 0
LO r--.
CM CM
0 0
O O
<*• LO
o o
O O
r— LO
Ci f\
CM CM
O O
O O
O LO
oo oo
o o
O 0
VO CO
0 0
0 0
CM ^fr
, ,
CM LO
CO «d"
i— CM
n n
f— p_
cn CD
VO vo
r-. oo
0 O
0 0
o o
0 O
CM i—
i — r—
o o
o o
CM CM
0 O
o o
t — . VO
o o
0 0
LO CO
r— ^~
o o
o o
OO CO
o o
o o
LO *d-
O i—
LO LO
cn cn
VO VO
~»^ ^^^
cn o
O i—
0 0
o o
o o
LO r—
r— "Cl1
O O
O O
CM 00
0 0
0 0
o o
ft n
i— LO
o o
O 0
O LO
CM LO
o o
0 0
^j~ CO
*»
r—
O 0
O 0
r^- oo
CM
«3- O
i— LO
r-^ co
«\
r—
cn cn
VO VO
^•^ - —
r— CM
•" ""
0 0
0 0
o o
vo CPi
LO VO
o o
o o
OO VO
i— r-^
0 O
o o
«d- o
*V A
CO CM
•—
o o
0 0
LO LO
^* cn
0 O
O 0
cn LO
r> r\
r— CM
0 0
0 0
LO LO
oo ^t-
uo co
CO LO
•=d- o
•V «*
CM CO
0 0
r^ i^
^ — ^».^
i— CM
0 0
O 0
o o
o o
vo vo
oo vo
o o
o o
r — . vo
,-T
o o
o o
0 0
f *
*d~ 1 —
"~
0 0
0 O
f1** O
•tf- cn
o o
0 O
r™ *^1"
#> *\
r- CM
O O
O O
O O
CM «tf-
r~- CM
0") CM
VXD cn
r* »,
i— CM
0 0
r^« ^^
""~"- *^^
oo
1 — •
0 0
0 0
O CD
CM i—
O O
0 0
«3" CM
O O
0 0
r-~ «d-
•=*• r—
r-. CM
r^ *d~
O O
r**^ r^*>
"""X. "^s*
r-- co
O o
o
o
o
,
^>
o
0
CD
cn
o
0
o
f\
*$•
LO
O
o
o
00
LO
o
o
o
**
«?!•
r~-
o
o
o
«^T
CM
^j-
co
CO
ft
O")
r—
_1
<^
t—
o
(—
o
o
o
cn
CM
o
o
vo
o
o
VO
rv
oo
o
o
cn
CO
o in
o s
cn o
r—
4— .
^
C
O
rej
0)
0 E
O
vo cn
** c
1 •! —
10
3
0
fO
o
a.
fO
LO -l->
CM X
oo a>
r\
!__ <—
O
•r-
to
01
O)
s-
O cn
s: ai
• cy
cu
< ^
-------
•k
to
C_> -0
O —
1— to
^
Z >,
fO
t/) T3
CO
OO _Q
1C r-
CO - — -
<0 >,
tT3
OO T3
O --^
z to
.a
•i^ •*
CM
O
Z *>>
to
CO "O
to --^
CO
•^y o
NX* ,__
1—
^^.
O
c >,
(O to
en -a
O to
C JD
t— i i—
CL.
^j-
o '—.
Q- >i.
I'D
CO T3
(O --^
CO
o •—
Q.
.
1—
J ^
U- CO
4-
C 0
fO
CU
^"
O)
^_>
/o
Q
O
o
p^
o
LO
0
o
o
o
LO
o
o
•~
o
o
CM
CM
to
^~-
CTl
to
""x^
to
o
o o
CO O
r-- LO
o o
LO O
o
,_T
0 O
o o
i— LO
*»
1 —
o o
o o
LO O
fl
LO
o o
0 0
r— I--
,
0 0
o o
CM OO
"
1 —
O CTi
oo o
r— «^-
r>
CM
CTi CTi
to to
^ — *^^
r^ oo
0 O
0 O
O 0
O LO
•— CO
,__
o o
O LO
r—
0 0
o o
CM r-
o o
o o
OO LO
0 O
o o
CM CM
O 0
0 0
00 CM
00 CM
CTi O
CM CM
CTt CTi
"x^ *v^
CTi O
0 •—
0 0
0 0
O 0
i— to
i — CM
o o
O O
r— 00
O 0
O 0
CM LO
O 0
O 0
r^ co
ft
f—
o o
o o
CM tO
O 0
0 O
CM tO
CM CTi
CO CO
CM r-~
CTi CTi
to to
^v^, ^^_
r— CM
"
0 0
o o
O 0
LO OO
oo oo
o o
o o
LO ^1-
0 0
o o
to to
O 0
O 0
LO LO
n *
CM CM
o o
o o
OO CO
0 0
O 0
CTl OO
^f O
o to
r- 0
1— 1—
o o
P-- r^
-^^ *->^
r— CM
o o
o o
o o
0 0
«3- OO
CM «tf-
0 0
o o
oo to
O 0
o o
^t- co
o o
O 0
r, *
i— 00
o o
O 0
LO O
,
O 0
O 0
«
1 —
CTi CO
r— r—
r*-". ^~
n
1 —
o o
^•^ — ^
oo *d~
o o
0 0
o o
O CO
CTi LO
f—
o o
O LO
CM
0 0
O LO
oo
o o
O 0
oo -3-
f,
( —
0 0
O 0
0 0
o o
«^J- r—
tO LO
CM CM
LO i—
o o
r**« r^>
^•^ —^
LO tO
0 0
o o
o o
O CM
CTi 00
o o
O LO
r—
O 0
CD LO
p~
O 0
o o
tO CM
O 0
O LO
CM
O 0
O LO
CM
LO CM
i— tO
CM
O 0
~v^ ••• —
r^ oo
O 0
o o
0 0
O LO
00 O
O CM
oo
o o
O LO
CTl CM
oo
o o
O 0
to «=i-
•\
LO
o o
o o
O LO
n n
CM i—
CM
O 0
O LO
o «3-
l-v.
o o
o o
r^ LO
f\
l^~-
to to
•3- oo
LO tO
0
en
o
d^ •
1— CD
o >
1— =C
CO
2
o
t
>,
5
c:
o
c
to
cu
en
c:
•r—
to
c
0
• r"
to
o
Q-
X
cu
c
o
•r—
co
to
O)
en
cu
*
-------
*
(O
•1—
CD
s_
•r"
•^
**
S-
O)
>
0
to
re
to
CM
CM S-
Ol
1 >
•T-*
> ct:
01 >>
r- O)
.a -^
to s=.
\— 3
ro
Q.
q-
o
-i_>
~^
CL
i — i
*->
dl
ll
-M
23
^y
>l
O -^
1— CO
-O
z >1
ro
c/) "O
rc ^«.
to
CO _Q
re i—
z: «-^
Zi
i
CO 73
O "--
•z. to
JD
+ r-
*-~^
CM
O
,*-*,
Z >,
ro
to "O
(0 —
(/)
z .a
N(X r—
)__. v.—'
^
•r— x — ».
c >,
CD ~O
S- -^
O CO
C. -O
I — 1 i—
CL.
^j-
O - —
CL. >,
ro
CO "O
CO
O r-
Q. '
,
h-
2
O *— «
i — tO
u
E — -
s
CD
Itt
Q
O
O
O
1-^
r—
O
o
CO
o
o
LO
o
0
CO
**
1 —
o
0
o
o
CM
o
vo
cn
^•O
VO
o
o o
O 0
O 0
CM cn
CM r—
CM
o o
o o
co r*^
**
^~
o o
o o
r*^- CD
oo
r—
o o
0 0
o o
1\ f>
oj r^
^—
o o
o o
LO CO
*t
LO
o o
o o
r**1* f")
,
r—
CO r—
I-~- CO
r^^ co
"
cn tn
(O IO
r^ co
o o
O 0
0 O
O CM
i— 1^
r—
O O
o o
o o
0 0
CO CM
O O
o o
r— t^-.
•*
1 —
o o
o o
CM r-
o o
o o
CO CM
o*^ ^~
c~*) r^""*
•* CM
cn cn
LO -
co o
**
tn tn
to «o
r— CM
0 O
0 0
o o
O CO
to ^~
0 0
0 0
o o
•V •*
i~" r~*
o o
0 0
O CO
CM .—
o o
o o
•=3- 0
r\ **
^" *^"
o o
0 0
i— cn
n
1 —
o o
0 0
o r-
CM r—
•=3- O
r**"* f~i
«
0 O
i r~-
r— CM
o o
o o
0 0
o o
co o
co 10
o o
0 0
LO O
•>
r—
o o
o o
CM LO
r- CM
o o
O 0
O r—
** «
CO LO
0 O
0 0
«t
1 —
o o
0 0
r— CO
r— CM
1 — 1 —
O LO
r— CTl
r< n
0 0
i~» r-.
co «^-
0 O
o o
0 §
CM LO
CM
o o
o o
CO i—
o o
0 0
r-. CM
o o
0 0
O CO
Cl
CM
O 0
0 0
LO 1—
0 O
0 0
r-. CM
CO CO
^- CM
r~- CM
o o
r-«» r-~
LO CO
0 0
0 O
o o
^^ ^^
10 co
o o
O LO
o o
o o
CM i—
0 0
0 0
to ^~
o o
O LO
r—
o o
0 0
CM t—
to oo
CM ^1-
CM i—
O 0
I***", r***«
r^ co
o o
o
0
o
,-J.
LO
LO
o
o
*
0
o
0
o
LO
CM
o
o
o
**
to
^j~
o
0
0
CO
t—
o
o
o
CM
CM
r*^
CM
^~
"
—
— J
1
1 —
o
I—
o
0
o
1^
co
o
o
o
0
,-T
o
o
o
t
CO
to
o s
0 0
cn r—
C{ —
>}
2^
+-)
o
cz
f—
to
C1J
E
o
O CD
LO C
i — to
3
c
o
to
o
CL
fO
&_
.{_>
i— X
CO CD
1 —
" o
•r—
to
to
01
i-
O cn
S tlJ
cc.
>
-------
*
(O
$-.
•>•
O
s:
o
co
CM '
ta
5-
01
(1) OC
ja in
to CD
r- E
ro
•-3
O
•^
Q_
C
Ol
^J
to
o *-*
o in
— .a
^—- -
z: >i
(O
fC ^
to
co .0
X i—
z: • —
z:
(0 >>
to
CO "O
0 ^.
Z (/>
•+- p^
CM
O
2= >)
i
ta (O
Ol ^3
s- -^
O }
in to
tO i*j
^3-
-------
*
to
•r-
C
s-
>
cu ce:
_Q >,
rtS C
1
^ i
o
-C
o
o
•I""*
C"*
O
o
-l_fr
^r
— J
Q.
C
K— 1
4_>
C
Ol
+J
~^
z
"i
o -o
O^^
^*x
1— to
JO
z >
(O
CO T3
CO
CO JD
T" |—
Z
CO — •
fO
CO T3
o -^
Z CO
JO
+ i—
*»_•
CM
0
Z
z >,
fO
CO "O
CO
Z jD
^ ^
—^
O
•r- .--^
C >,
fO fO
cn -a
s- -^
o co
£= .a
. —
D-
•=1-
O
a. -— -
>^
c/} rO
f8 "O
«=i- co
O -Q
Q- i—
^^
1—
2
O
U_ CO
c^
C 0
ro - —
cu
21
cu
(O
o
o
o
CO
o
o
"~
o
o
CM
o
o
LO
o
o
CO
o
o
CM
LO
r-~
^7^
VO
•~^
CO
O
O O
o o
0 0
r^ *a-
CM CO
0 0
o o
CM CO
o o
o o
0 0
o o
o o
CM CM
o o
0 0
oo cn
o o
o o
O CM
1-^ 1-^
CM CO
CO OD
LO ^
i— CM
o o
0 O
0 0
o o
LO i—
i— CM
0 0
o o
<— CM
0 0
o o
co co
O 0
o o
O LO
1 ,
o o
o o
LO VD
o o
0 O
r-- cn
OO r—
cn CM
CM «=J-
0 0
r**- r*""*
""^ *"••••.
CO ^J-
o o
0 O
0 0
o o
00 CM
0 0
O LO
f—
o o
o o
CM i—
o o
o o
d- CM
CO LO
to co
1—
o o
r-. r-.
^^ ""s^
LO vn
0 O
O 0
O 0
O 0
«d- T—
0 0
LO LO
0 0
O CD
0 0
0 0
ro r—
O CD
O LO
CM
0 0
O CD
OO i—
CO i —
OO CM
O CD
1 — 1 —
^^ "^^
r-. oo
0 0
o
o
0
!
00
o
o
c»
,
o
o
(£>
ro
o
0
o
co
1 —
o
o
o
r.
ID
o
0
CO
CO
r*x
oo
LO
•V
co
—1
^^
1—
o
f—
o
0
o
CM
o
CM
*—
o
o
CM
o
o
cn
CO
0 S
o o
•Kj" r—
^>
5
c
o
C"
fO
cu
£^
o
O CD
LO C
CO
~^
c
0
I—
o
Q.
to
s_
4.)
cn x
CO CU
CM
c~
o
• I—
CO
CO
O CD
2: cu
• cy
CD
«=c *
-------
NITROGEN INPUT TO CHESAPEAKE BAY
NITROGEN
INPUT
(Ibs/day)
V-24
-------
PHOSPHORUS INPUT TO CHESAPEAKE BAY
sus
PHOSPHORUS
INPUT
(Ibs/day)
V-25
-------
V-55
C. DELINEATION OF MEAN MONTHLY NUTRIENT LOADINGS (REGRESSION)*
The tabulation of seasonal nutrient loadings for the major
tributary watersheds based on regression extrapolation for the periods
of June 1969 through October 1969, November 1969 through May 1970,
and June 1970 through August 1970 are presented in Tables V - 25,
V - 26, and V - 27, respectively. The seasonal nature of nutrient
enrichment of the Chesapeake Bay is apparent when the 15-month study
period is subdivided into three distinct time periods:
Table V - 25
Seasonal Nutrient Loadings (Regression Extrapolation)
June 1969 through October 1969
(Ibs/day)
Tributary
Watershed
Susquehanna
Potomac
Rappahannock**
Mattaponi***
Pamunkey***
Chickahominy***
James***
T.
as
9
9
3
P04
PO!
LJ.
,000
,000
500
200
400
400
,000
Pi
5,000
4,000
300
200
300
200
2,000
TKN
as N
44
17
2
1
9
,000
,000
,000
600
,400
400
,000
N02 +
as
52,
14,
1,
10,
NO,
NJ
000
000
400
100
400
200
000
NH
as
15,
3,
1,
3N
000
000
300
100
200
100
500
TOC
220,
137,
18,
9,
14,
6,
75,
000
000
000
000
000
000
000
* Calculated from observed data using mean monthly flows and derived
regression equations
** Months of July 1969 and August 1969 excluded due to extreme river discharge
*** Month of August 1969 excluded due to extreme river discharge
-------
V-56
Table V - 26
Seasonal Nutrient Loadings (Regression Extrapolation)*
November 1969 through May 1970
(Ibs/day)
Tributary
Watershed
Susquehanna
Potomac
Rappahannock
Mattaponi
Pamunkey
Chickahominy
James
Seasonal
Tributary
Watershed
Susquehanna
Potomac
Rappahannock
Mattaponi
Pamunkey
Chickahominy
James
T. P04
as P04
*r
58,000
36,000
3,000
700
1,300
600
8,000
Nutrient
June
T. P04
as PO,
t
14,000
14,000
500
200
200
200
1,000
Pi
37,000
16,000
1,500
600
800
400
5,000
Table V
TKN
as N
143,000
52,000
6,000
1,900
3,000
1,000
22,000
- 27
N02 + N03
as N
261 ,000
102,000
6,000
500
1,400
300
19,000
Loadings (Regression Extrapolation)
1970 through August 1970
(Ibs/day)
Pi
7,000
3,000
300
200
100
200
600
TKN
as N
57,000
24,000
1,400
400
500
200
3,000
N02 + N03
as N
72,000
24,000
800
100
200
100
5,000
m •
3
as N
42,000
9,000
1,000
300
600
100
5,000
*
NH3
as N
19,000
4,000
200
100
100
50
500
TOC
820,000
380,000
45,000
27,000
37,000
14,000
173,000
TOC
293,000
188,000
12,000
6,000
5,000
2,000
32,000
* Calculated from observed data using mean monthly flows and derived
regression equations
-------
V-57
Based on these loadings, the majority of nontidal nutrient input
to the Chesapeake occurred during the months- of November 1969 through
May 1970 (a period of high river discharges) as shown in the table
below:
Seasonal Nutrient Contribution
Time
Period
June 1969 through
October 1969
November 1969
through May 1970
June 1970 through
August 1970
T. PO
as POT
t
14
67
19
Pi
14
73
13
TKN
19
59
22
N09 + NO,
^as N J
14
68
18
NH3
20
57
23
TOC
19
60
21
In addition, during the period November 1969 through May 1970,
when the majority of nutrients were transported into the Chesapeake
Bay via nontidal discharges, the primary sources of nutrients were the
three major watersheds; the Susquehanna, the Potomac, and the James River.
Table V - 28
Tributary Contributions
(Nutrient Loadings as %)
Tributary
Watershed
Susquehanna
Potomac
Rappahannock
Mattaponi
Pamunkey
Chickahominy
James
T. P04
as POJ
54
34
3
<1
1
<1
7
Pi
60
26
3
1
1
1
8
TKN N09 + NO,
as N ^as N
62 66
23 26
3 2
<1 <1
1 <1
<1 <1
10 5
NH,
as N
72
16
<2
<1
<1
<1
9
TOC
55
25
3
2
2
<1
12
-------
V-58
As exhibited in the previous tables, the tributary contributions
reflect two distinct observations which can be made with regard to
nutrient enrichment of the Chesapeake Bay: (1) the predominant influence
of three principal watersheds on the nutrient balance of the Chesapeake
Bay—the Susquehanna, the Potomac, and the James and (2) the seasonal
nature of nutrient enrichment of the Chesapeake Bay.
Based on observed data and substantiated by linear regression
extrapolation of observed data using mean monthly flows, the majority
of nutrients transported into the Chesapeake Bay via nontidal discharges
occurred during the period November 1969 through May 1970. In addition,
during this same time period, the primary sources of nutrients to the
Bay were the three principal watersheds: the Susquehanna, the Potomac,
and the James.* Of these three watersheds, the Susquehanna exerts the
greatest influence on the nutrient balance in the Bay. Nutrient control
in this major watershed should result in restored nutrient balance in
the Upper Chesapeake Bay.
D. COMPARISON OF OBSERVED DAILY LOADINGS AND MEAN MONTHLY LOADINGS
BASED ON REGRESSION EXTRAPOLATION
The mean monthly nutrient loadings calculated from observed data
using mean monthly flows and the aforementioned regression relationships
are a realistic extrapolation that eliminates the biased nature of the
limited sampling program.
A comparison between the observed daily nutrient loadings and
mean monthly nutrient loadings based on regression extrapolation show
significant differences. When sampling occurred on days of high flow,
* also for the periods of June 1969 through October 1969 and June
1970 through August 1970
-------
V-59
the monthly loadings estimate based on these daily readings will be much
higher than when irregular flows are absorbed over the entire monthly
period as is done in the regression analyses.
The relationship between mean monthly flow (used for nutrient loading
calculation) and observed daily flow on particular sampling days is
presented in Figures V - 26 and V - 27. Mean monthly nutrient loadings based
on extrapolated regression analyses and actual daily loadings at the
Susquehanna River station are presented in Figures V-28, V-29 and V-30.
As can be seen, the use of mean monthly flows eliminates the biased
nature of extreme periods of flow during which sampling may have occurred.
Also, the calculated mean loadings are realistic when compared to the
daily loading fluctuation for the Susquehanna River and for all other
tributary watersheds.
Of major concern is the control of nutrients from these upstream
sources, especially the Susquehanna since it contributes in excess of 50
percent of all nutrients to the Chesapeake Bay. During the significant
period of November 1969 through May 1970, which just precedes the Ideal
algal bloom season in the bay, the Susquehanna River Basin contributed
54 percent of total phosphorus, 60 percent of inorganic phosphorus, 62
percent of total kjeldahl nitrogen, 66 percent of nitrite-nitrate nitrogen,
72 percent of ammonia nitrogen and 55 percent of total organic carbon
entering the Bay from the major tributary watersheds. As these upstream
sources are brought under control on a seasonal or annual basis, especially
in the Susquehanna River Basin, corresponding reduction In nuisance
conditions in the Chesapeake Bay should result.
The importance of the vitality of the Susquehanna River to the
ecological health of the Chesapeake Bay cannot, therefore be overstated.
-------
RIVER DISCHARGES
(MEAN MONTHUf yi OBSERVED)
SUSQUEHANNA RIVER AT CONOWINGO. MARYLAND
MEAN MONTHLY RIVER DISCHARGE
DAILY RIVER DISCHARGE
JIM. JUL AUG SEP OCT
NOV. DEC
I9» ..
JAN FE>
- 1970
MAR APR MAY JUN JUL AUG
IOOOOO -
1.000
soo
POTOMAC RIVER AT GREAT FALLS. MARYLAND
LEGEND
MEAN MONTHLY RIVER DISCHARGE
DAILY RIVER DISCHARGE
JUN JUL AUG SEP OCT NOV DEC
JAN FEB
•• IS70
MAR APR MAY JUN JUL AUG
IOOOO -
Jj
5 1,000
RAPPAHANNOCK RIVER AT FREDERICKS8URG. VIRGINIA
LEGEND
MEAN MONTHLY RIVER DISCHARGE
DAILY RIVER DISCHARGE
JUN JUL. AUG SEP OCT NOV DEC.
JAN FEB MAR APR MAY JUN JUL AUG
V-26
-------
RIVER DISCHARGES (CONTINUED!
(MEAN MONTHLY «.. OBSERVED^
PAMUNKEY RIVER AT HANOVER. VIRGINIA
MEAN MONTHLY RIVER DISCHARGE
DAILY RIVER DISCHARGE
JUN JUL
JUN JUL AUO
MATTAPONI RIVER AT BEULAHVILLE. VIRGINIA
JV\7
A.
A A
LEGEND
•••— MEAN MONTHLY RIVER DISCHARGE
DAILf RIVER DISCHARGE
A
1 1 1 1— 1
FEB MAR. APR MAY JUN JUL
JUN JUL AUG SEP OCT
•: 10.000 :
NOV DEC
1898 •<
JAMES RIVER AT RICHMOND. VIRGINIA
LEGEND
MEAN MONTHLY RIVER DISCHARGE
DAILY RIVER DISCHARGE
JUN JUL AUG SEP OCT NOV DEC
JAN FEB MAR APR MAY JUN JUL AUG
CHICKAHOMINY RIVER AT PROVIDENCE FORGE, VIRGINIA
JUN JUL AUG SEP OCT NOV DEC JAN fE& MAR APR MAY JUN JUL AUG
V-27
-------
SUSQUEHANNA RIVER AT CONOWINGO. MARYLAND
MEAN MONTHLY NUTRIENT LOADINGS (REGRESSION) vs. ACTUAL DAILY NUTRIENT LOADINGS (OBSERVED)
RIVER DISCHARGE
IOOOOO ;
LEGEND
MEAN MONTHLY RIVER DISCHARGE
DAILY RIVER DISCHARGE
1 1 1 1 1 1
JAN FED MAR APR MAY JUN JUL.
JUN JUL AUG SEP OCT NOV DEC
\»t» *
TPO4 ai PO4
o
1 10*00
LtfitMfi
—— MEAN MONTHLY NUTRIENT LOADINGS (BASED ON REGRESSION EXTRAPOLATION]
ACTUAL DAILY NUTRIENT LOADINGS
JUN JUL
1 1
AUG SEP OCT
NOV DEC
1889 ••
JAN FEB
•• IS70
1 1 1
APR MAY JUN. JUL
V-28
-------
SUSQUEHANNA RIVER AT CONOWINGO. MARYLAND
NUTRIENT LOADINGS (CONTINUED!
NORGANIC PHOSPHORUS M PO»
LEGEND
—— MEAN MONTHLY NUTRIENT LOADINGS
ACTUAL DAILY NUTRIENT LOADINGS
JUN JUU AUG SEP OCT ' NOV DEC
JAN ' FEB MAR ' APR ' MAY JUN ' JUL AUG.
> 1970
TKN o. N
MEAN MONTHLY NUTRIENT LOADINGS
ACTUAL DAILY NUTRIENT LOADINGS
*
J IOOOOQ -
JUN JUL AUG SEP OCT NOV DEC
1969 t
JUN JUL AUG
NO, » NO, 01 N
I^OOvOOO ^ LEGEND
MEAN MONTHLY NUTRIENT LOADINGS
ACTUAL DAILY NUTRIENT LOADINGS
JUN JUL AUG SEP OCT NOV DEC
1969 •«
JAN FEB MAR APR MAY JUN JUL AUG
» 1970
V-29
-------
SUSQUEHANNA RIVER AT CONOWINGO. MARYLAND
NUTRIENT LOADINGS (CONTINUED)
NH, u N
1*00.000 :
iratND
—— MEAN MONTHLY NUTRIENT LOADINGS
JUN JUL AUG SEP OCT NOV DEC
T 1 1 1 r
MAR APR MAY JUN JUL AUG
TO.C
10.000.000 _
1.000,000 -
LEGEND
— MEAN MONTHLY NUTRIENT LOADINGS
ACTUAL DAILY NUTRIENT LOADINGS
JUN JUL AUG SEP OCT NOV DEC
1969 ••
JAN. FEB
>• 1970
MAR APR MAY JUN JUL AUG
V-30
-------
APPENDIX
-------
The following STATPAC codes are utilized for the data presented
in the Appendix to indicate parameter irregularities:
Code Description
N Not detected, looked for not found, or less than some
indefinite lower limit of analytical sensitivity.
H Interference in the analysis.
L Concentration is less than some stated lower limit of
analytical sensitivity.
G Concentration greater than some stated upper limit of
sensitivity.
B No data - blank.
T Trace, concentration is near the lower limit of sensitivity.
-------
REFERENCES
1. Clark, L. J., "Mine Drainage in the North Branch Potomac River Basin,"
Technical Report No. 13, CTSL, MAR, FWPCA, U.S. Department of the
Interior, August 1969.
2. Jaworski, N. A., "Nutrients in the Upper Potomac River Basin,"
Technical Report No. 15. CTSL, MAR, FWPCA, U. S. Department of the
Interior, August 1969.
3. Jaworski, N. A., L. J. Clark, and K. D. Feigner, "A Water Resource-
Water Supply Study of the Potomac Estuary," Technical Report No. 35,
CTSL, WQO, EPA, April 1971.
4. Chesapeake Bay-Susquehanna River Basin Project, "Water Quality and
Pollution Control Study-York River Basin," Working Document No. 12,
MAR, FWPCA, U. S. Department of the Interior, April 1967.
5. Chesapeake Bay-Susquehanna River Basin Project, "Water Quality and
Pollution Control Study-James River Basin," Working Document No. 14,
MAR, FWPCA, U. S. Department of the Interior, June 1967.
6. Chesapeake Bay-Susquehanna River Basin Project, "Water Quality and
Pollution Control Study-Patuxent River Basin," Working Document
No. 15, MAR, FWPCA, U. S. Department of the Interior, May 1967.
7. Chesapeake Bay-Susquehanna River Basin Project, "Water Quality and
Pollution Control Study-Potomac River Basin," Working Document
No. 17, MAR, FWPCA, U. S. Department of the Interior, June 1967.
8. Susquehanna River Basin Study Coordinating Committee, "Susquehanna
River Basin Study," June 1970.
9. Governor's Patuxent River Watershed Advisory Committee, "The
Patuxent River - Maryland's Responsibility," July 1968.
10. John Hopkins University, "Report on the Patuxent River Basin,
Maryland," June 1966.
11. Chesapeake Bay Institute, The Johns Hopkins University, Technical
Report )QL Data Report 32, "Physical and Chemical Limnology of
ConowingF Reservoir, Whaley, R. C., June 1960.
12. Philadelphia Electric Company, Interim Report,"Thermal Effects on
Conowingo Pond Resulting from the Operation of Two New Nuclear
Generating Units at Peach Bottom Atomic Power Station, York County,
Pennsylvania," January 1968.
13. Federal Water Pollution Control Administration, "Report on the
Committee on Water Quality Criteria," U. S. Department of the
Interior, April 1968.
-------
IX OCOD CDOOODCDlDCDX'CDi: I CD CC OG CD r CC CC
r>- r\j '•n j") ^ >£) rv -4- *c r-- 0 no o o tnoo^-t/io «— » c \o ^ ^- 0s 0s —«
'
O
T »~ CD
^^j-'T'.norMc o — < ,c x "r)rr)r\jr\j<'*'iLn'''')*-'z>^— •-- rn(VOfMrorn
I .............. • ....... • ......... ••••••••••••••»•••
7" coocc-ooooocccrocoooocroocoooocoooooocrooooooooooooccc
T CD
"n f\jtr-tr\jr^ci^cOLr)LniDao'^-n s
o ofxjLr^o-ti/i^ n^-tooj-./^vD^os
~
00
o
j-croC'Or;cocoooo^c-c-ooc'-7c: ^ocoooooooc
"L ~c "ooooooocooooooocooccroocoooooooc^ocroc: OOCPOOOCTOOOO
< •••*••• * •
•f ~z - o ooooo DOOOOCOOOCOOOOOOOOOOOOOOOOOOOO " soooooooooo
rij O cxn,OND:^^sOcclOOOOLnOCirOLOOOOOOCOLOCOOLnOOOCOLrc-
X ••*•••••*•*»•••••••••••••••••«*••**•••••••••••••<)
^j - r^^^^xC.Dr^sCi^Ln^i^rvjof\jcorno^LP o ^> o o —
oc-cooocooooooooooocroooooooooooooooc:ococ:oc5Oooooc zr
* »
ooo'pj^oL/iiJijninLOoo'nu^oirii/iLOLnooLr'riooi/ii^Lfioou^oj^ooLnLrici^ooij^ij^
h- OOOOOOOOOOCOOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOCOOOO
< ........... ........... ......... »*.••**••••••»*.«..
^»ou^x;r\Jo^n
.
1 UJ OUCJOOOOOUUOOOOUOOOUOOOOUUOOOOCJOOOOUOOtJOCJOUUUtJUUUUU
_j ^O'CT'CT'Crc^CT' 7s7^ocrocr'Oi-i>Jv^osar*c7"Oc^r7'^>T'7iOsooooooooocooooooooc: oooo
J1 i. ^«C ^«c N£ -"D >c ^ ^ -C' \o ^c ^£ •C '-O 'O sD '•O ^o *O ^ 'iD^c^o^ •£* \o •& -Cr*-- ("•- f** r**- r^ (*•» ^-.•^-r^-f*«-r^-^-r>^-rs- r*^ ^ r^ rs- r**- r^ r*- ^^- '•-
r- 5- ^- T-^jrvio'j'fv — scrr)omor^>j-^'X)f\J4'— ^cr^'^O'^cv^'j^r\Ja>\o.'Vj-j'^'vr-j'\j(7i£^o^-*r^£«~'r-c:r^xt
wC'^'^^oo-^f\.f\jO'^-^r\jooc^^r\^oo^^fvr^^
O'^'^'^'^^^f\)f\!(\j^-i^-i--tr-H'\fV(\ xi'vj'V'^rn'^'^i^j- j- j.t4"-t t -T
-------
cr xtrx' cc x oc cr x x T xccx
•—« o n •—» ^ oD^Horor^orvj o o o c o o
r- o »••••••••••••••••••••••••••••••••• • • •"I « ^ ^ .
\ *— f^ "^i •—* n G r\i LO *^C^Of\J^H^4OOO^^OOCD<3OOOr^^HOO^^O^^\J^H^OJ^r^
~? O O C; O O O O O O C O O O O O O O O O O O O O O O O O O O O O O C O O O O T~ O O O C C O C2 O C O r~4 C"
T ~7
O P"" LO LT1 LO ^" I/*' Lfl O O ^ O O ^ 3C O O O (VJ \0 L/l CO LA CO CO (\J O CO |~* ^~* ^ O »—< GO 3s C^ O *~H CO CO ""VJ r^- *™* O "^' r\J f*l (Tv en in <^
? • »••»• ••••••.•..••.»•,,.
^ oc: ocrooo—••—too-^oooooooooooo^-t—ioooo—**-*OOOOO^HOOOOOOOOOO^-«—i
•\J
o
',£) ™^ ^ o o r~* vo '—•* '/i in r** "^ f*! *"* *C *o r*- p** ^ ~J* o^ »^ ^ o f\j r*i f\j r\j •—•* f\j >—* *^- r\j ^- ^ r\j r\j oo o f) LO '"o T ""* T >~* rn o *~^ r*»
* • • '•
h— O O O O O O *"H *^ O O O O O O O O O O *•* O »~* *«^ ^** ^H F-H O O O «-H ^H O O O O O |"™t O ^^ O O O O »"^ O *"•* .""ICO r*4 C
CDXiT TTX 2?CE X
I— 1 •••«••••••*••*•*•••••••»•••••••••••••••••••••••••.
"^ OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
a
I—
^
UJ
»—« X X
:? CL c^ooooooooooooooooooooooooooooooooooooocooooooooocio
I—
>-
•3
I
JJ
^
•••«*••••••..*........
(f\ t OOOO^OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
f-t C-COOOOOOOOOOOO OOOCOCTOOO~OCC
--• *X COOOOCLALOlPOCOLriLOOOOOOOOOOOOOOCOOOOOOOOOOlPOOOOOCOCOOO
— 2 ••••••••••••• • • • ••*••••••••*..•
a
I—
n
t/! OOOOOOOOOOOOOO OOCOOOOCJOOO OCOOOOOOOOOOOOOO
D 'jJ OOOOOOOOOOOOCrOOOCOOOOOOOOOOC?OOOOOOOOCOOOOOOOOOOOOO
I i--« (\) (\J (\J -^ (VI -^ '/I fVJ ^^ (V LO f\J ^ 00 CO 00 CO CO TO 30 GO ffi CO O O O CO C O O f\J ^^ J" O O r** f** v*4 *~* r—i
•-* LL' OOOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCOOOOOOC;
_i K oooooooooooooooooooooooooooooooooooooooooooooooooo
lOjrunofxjOutvojfxjrvixj^fVi^ojrNjrvj^^fOrnrorof^ri
o
t— I
«J
cr
_
a ^
5- ^
-------
CD OD CTCDGDCQG020H-QDQOQDX h- CD CCODX
mm—' cr o> in oo vO t/> \o j- -* - o • •
X
(\J
oj i 2 cc ir in
~Z c ooooooooooooooooooooooooooocoooooocoooooooooooooo
X CD T Z 3D
o •"* c ^- s^ o r*" (vj vO "^H o o* -^ o o L/^ ^~* Lfi *^ ro ^^ »-^ ^ o cvj o o •—* o (\j o AJ o \o ~* •& o^ o co CD (\j oo *o CT^ ID 1/1 i/i sD ^o H *-H O O O C C O «•* O O O O O O O i—t O O O O O O O O O O O O O •—* C O O O ^-* O *—' O O L/>1rij^u^u^ip^^^^^-^^^^H-^f\ji^r\jruoj^^ojoj(M^r^r' ^-j
-------
CC -C. CD 00 CC OB CC CO CO I- OC CD CDcncCCOHTTiCCZlCOCODDCD
O OO -t^l/liriOOvOOOCI^MrVJ— ir~CO I/I (\J O -*
X
rvj
c .................. ..... . ......... . ...... .....
*- >t -ooooorvjoooooorvjroo.-'O*^-* — «orvit\jnoj.*<\jo*Of^oooooooGoooo>i-oLri>±(\j
T t-
nocf'vO^f'-rvji.rtcorO'O r^T'CDcoo^'-^fVj—'r-'OincovjDfvcj'r^irir^^cO'--'Oooooooor-^rvjcMoomo
m o—''-'O^^—«oo(\jf>oo'\jr\joj~H:\j'vj—^M^r^r^(^^~^^^f\j(rif^(\jLnr-1/io>O^D<=>ocoooccroooo71f\J-*Tr\jorvr-(\jr^
l^. t- •" I -.— i— i (M (VJ IV 'V: -\i •Xj
<
a
»—
—
•J-
r x T i x ,r .r
«/^ oooooooooocrooooooooooooooooo o~ono ooc-cooor~^i
C tl ooooocooooc-oooooooooooooooooocooooooocooc-occcco-co
r z ......... ... ..... ... ........ ..i... ...... . ........ .
oc:ooo
cc T T ,- 1 1»-
2
z
CD
CL IjJ
_J
C-OOOGCroOOCCOOOOOOOOOOOGOOOOOOOGOOOOOOOOOOcrCOOOOO^O
GOOOOOOOOOOOOOOGOOOOOOCOOOOOOGOOOOOCOOOOOOGOOGC3OOC:
i o c? c o o c c:
-------
IB OS OC CD CD COCUeCCOaJCDCOCOCOOO
nj r-f-n ino.o*tr>oin.*c o o
O (\jo(\jeoiOoo~<-H-H(
X
OJ
T • •
7" OOOOOOOOOOOOGOOOOOOOOOOOOOOOOOOOOOOOGOOOOOOOOOOOOO
CD CD 03
lonmuio^inooooo o-^fvi— "inuiinoojo ui-*Lnoo>o -t— t
*t oooooooooooooooooooooooooooooooooooocooooooooooooo
IX
o
0000—'OCeoOOO^OO-HOOOOOO—<—IOOOOCOOCOOOOOOOOOOOOOOOOOO
_
^> —• o —< ro —< ^ oooorvir-trvjAjroo—OO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOGOOOOOOOOOOOOGOOCT-G"
cooooocooooooooooooooooooooooooooooooooooooooooc-oci
c/> ^ 0000004- o
a o xi\joivCor\jrn
— T _i ooooooooooc;cr -r — o ~ ^ ^- ^
*— O. OOinol/>OO.T, OLnoOOCiOOOlpC:O-CDOLririOOOOOLno-OOOLriOOLriOOO(OC;OOOOLp^
ii 'O = >-«ff'fr/(*iip-ocoOOOC5OGOOOCTOOcr^^
C' >j_' OOCCOOOOOOOOOOOOOOOOOOOOOOOOO^OOCiOOOOCOC-OCOCCDOOOCG-r
f T .......... ........................... .............
oooooco rcoooooooooooooooooooooooooooooccr ooooooococ
oooooooooooooooooooooooooooooooooooooooooo~oooooco
o
_J
T
oooooooooooooooc
a
T
tf T) ./> LT, in i£ ,c OvC*r^-r^r^-r^ccx\c-o^vO'^rfc-ls*rs-r"rcr TOVTOOG--I'-H'—'\ rvjrvn,'^-.^-, — —*xjt\jf\j(VfX
-------
l£ CC QC. QD
T CD QDXXCCCDCCCDCOGDGDGD
i «« co -*• o o OOT ^o o o
CD T T
i/io>o»o *ooo^^'7ioi^scf/>cr r- (\i -j- rn o 1/1 rn i*~ ,x!
O*-*OOOOOOOO-HOOOOO — OOOO«-«OOOO
...... ............. ................... ..... .......
OOOOOOOOOOCOOOOOOOOOOO^OOOOOOOOOOOOOOOOOOOCOOOGGCO
OOOOCOOOC?OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCOOOO
OOOOOOOOOCC'OC— *OOOCOO^HGOOOOOOOOCOOOC:OOOOO^OOOO"1OC:OOO
-r r c»\- f
^ ccoooooooooooooooosooooooooooooocooooooocooococ
,^,_4 r\j — * rv nj .\j
j rv 'Xj (V *\j (Y rvi
/1. TlOOOlTt^— ,/>
»— C-COOO^OCTOCJCOOOOOOOOCOOOOOOOOOOOCJOO — "
£1 •«•»••«••»•••««•««••«•*•»•..«••««»««
o £rooK*^r-ji^>-^)->c=^-
r\j"',itri>c*'^TT>.TT-— i — • 'V <^ •" * j' r ^ f^ T r J~ o f^ 'D .r T o — < — i '\i t * >
r i> — < x \' -^ .t t
_
I
~
a
oc— <(X"-, 3^
*r•r'^•*-r"^t
-------
cr
- o r*i f\, oo
<£
cr sn cc
o r-
h- X1 T)
i_r;_ri"'j^-r-^rs-LOro>oonjc:^j-LD(\jrnsDf\ir- ocpu'viom— «^r^ci-4-CTi> •£axo^a3^xD^vori-Ln---'X-tccfint t 'V 'Xj \j CV 'X) (\J
, f\ X '- ' — '
OOOOO
•coco o c- o o —
o^ to— » --*
cr'\[^^:cr^ t —• r \i ir £
T>-H--''\ t-t* f "- r 7 —<
-
_J
i
-------
v
(M
o
O
eo o co ** r- >^
03
"O 03 tD £D CO CD
M >o o n
TOTd
^ ccocoooooooccoooooooooooooooooooooooooocoooooooooo
o
!i
-u
o
2
— .oocooooooooooooooooooooocooooooooo— <~H
^H—(OO—«O~*f\J—»O^Hr-«^H--Hr^r-^»^
t
O
rt— i c O => O C- ~
ooooooooooo^ooooooooooooooooooooocooooooooococorr
........ ...... ................... ...... .........
COOOO-.
xi^to'\]Oj:c:j^LriosDcrocO'-«or-.ccLOLp,
I t
OT^OOOOOOOOOOOOOOOOOOOOOOOCOOOOO^OOO
j. oc-ocrc-oo-rooocoooocooc-coococoo crooooc"c-ciocroocr'cr~^ooooc
I— OOOOOOOOOOOOOOOOOOOOC^OOOOOOOOOOOOO^OOOO-^OOOOO^OOOO
-------
T cc cc cncDcoancoincraoco CCOD CD D a: to oc< ct
r"j r*. K ac o •> —< o o ^ o o o *^ ift o rvj irionr^n^o T naoo-t 7*
u vOooroinr-wooin^oootToooooo^vOoo^f).* —(O-HOorvir-rnor-o—loooo-tcotvixo-n
o • •
—'^^-^oc\j_n-^-or^i/>'j'(DO-oof\jsOf\j—^
—i — — .~,\,c--\jc:^'r LT3-J--J*""-J-f>j'\j'V'vj'-i'^\j, "VI o
j— I.-XIAJ— i— /i —< -•? n cvj ^ rv ^r ^ T ^ a1 -
'OOCOC C-OOOOC'OOOOOCOOCJCOOOOOOOOOOOOOOOOOOOOOOOtTt O -
laQ-aa.Q.Q.a.xi.aaa-a.arLa-Q.aiT-io.xa'Xaa.a-a.
1'"
-------
fC-HXirxXtCTXi X 00 X OC CC OBX 3>
oj o o o* o o .-* 1/1 o co o o (\j ^ co *fr o ro co ^-« r^—*co*t'»O**0v-*^ x> >£ o \
-
o
rr i- T
\c/> cr .c m rv CD .3- '*iLO
ro ~ ~> o o o o o ^OOOOO^^(\J(\JO^H^HOOOOOO<—«r-*^HOOi-HooooC3^Hi—c
? ooocooccrcoooococooooooooooocooooooooooooooooo—c
X- t> I
n m-t ccjirvjofino ^•^Lno\c^)oonjo^iN-oojoo-tin
O n-oo-'OOrtorvj-HOfvirvjnn—i^rvjnj^iofvjnjM^-HO
COOOOOCOr-cOOOCOOCOOC—IOO(\JOOOC3OOCOOO — —IOOOOOOOO-<0(\JO.-<0—'
o • • •
0. "oooooooooooocooooooooooo^ooooooooO'-ooooo ~ic—t—•'Xjr^
COOOOOOOOOOOOOOOOOOCOOOOOOOOOC-OOOOC- 0030000— OCO-iOCTC
ocoooooooooooooooooooooooooooe^ooooooocrooocoocor-O';
00 .T
CfTCSOOOOC'C-C-OO COOOOOOOOOOOOOCCO OO
a; — . — < ~
J} COOOOOOOOOOOOOOOOOOCOCDOOOOOOOOOO^^OOOOOOOOOOC1
D UJ COOOCOOOCOOOOOOOOOOOOOC:OOC:OOOCOOO"^OCOOOOOOCOC
•f T .............. « .......................... •
COOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCOOOdOOOCOOOC^OC
CJ
_J
r
^ TXXxixTrrirxjxrxrrTrxxxxrrTXTiTTiTTtTTi. TXTIXT ; -
CL 'j.1 UOOOOOUUOUUOUUOO(JL>UCJOUO(JUOO(JO
-------
•C ^ f*l PO 00
o * >o ro - a
D "vi c\j "M "M n
"L
V i C
r t £ <
UJ o o o o o
a. => = o o o
o T n o M
or-- r> —• —i
a
5-
(\j v rvj t\j rvj
c o '.o = r
Tl o T "M (\)
T * -> 7 T
O O c c: O
r^ o o o o
; — i oc
x a>
tr. n
X
-r ) -i -> -3
a iij a a a a. a.
_i e o 3 o o
7- a h- ^ r^ (*- r-
r^ z x _r r^ ^ ^<
o < c —< aj c; r-t
- y (^ r- r^ r or
O c c o c o
-------
Annapolis Field Office
Region III
Environmental Protection Agency
HEAVY METALS ANALYSES OF BOTTOM SEDIMENT
IN THE POTOMAC RIVER ESTUARY
Technical Report 49
January 1972
Thomas H. Pheiffer
-------
HEAVY METALS ANALYSES OF BOTTOM SEDIMENT
IN THE POTOMAC RIVER ESTUARY
Recent detection of heavy metals in sediments of the Potomac
River Estuary has raised sufficient concern to include accumulation
of metals as a water quality problem requiring additional study and
analys is.
A cooperative program of the Annapolis Field Office with the
laboratory at the U.S. Naval Ordnance Station in Indian Head,
4£
Maryland, was initiated to determine the occurrence of heavy metals
in the Potomac Estuary and bottom sediment. Sediment analyses were
made during August and September 1970, and again in April 1971.
While small concentrations of zinc and manganese were detected in
the overlying waters of the estuary, considerable amounts of various
heavy metals were recorded by acid extraction determination from
the sediment.
From the sediment analyses presented on the following pages it
is evident that there are significant increases of lead, cobalt,
chromium, cadmium, copper, nickel, zinc, silver, barium, aluminum,
iron, and lithium in the upper estuary in an area above the Woodrow
Wilson Bridge in excess of concentrations measured above and below
*The analyses of all metals with the exception of mercury were performed
in the Research and Development Laboratory of the U.S. Naval Ordnance
Station, Indian Head, under supervision of Dr. M. I. Fauth, Director.
Several of the figures were prepared at the Naval Ordnance Station
and adapted for this report.
-------
this area. Of the metals measured in April 1971, all showed increases
in concentrations in this area, but the concentrations were lower than
those detected in August and December of 1970. This could possibly
be attributed to the high-flow conditions of February and March 1971
causing a more even distribution of metals below Woodrow Wilson
Bridge. The data seem to support this observation.
High concentrations of wastewater components such as phosphorus
and carbon are found near the Blue Plains Wastewater Treatment Plant
outfall. Since concentrations of heavy metals are greatest in this
same area, it can be concluded that some heavy metals originate in
the wastewater discharges in concentrations below detectable limits.
Some accumulations such as cadmium and lead are caused by corrosion
in water supply distribution systems. Schroeder reported that one
major source of human cadmium consumption has been traced to soft
water that flows through and picks up cadmium from water mains and
pipes in houses [1]. The Potomac River raw water supply is considered
medium hard, averaging yearly 100-110 ppm calcium carbonate. Other
metals might be attributed to small commercial enterprises involved
in printing or metal plating, for example. There are no industries
in the Washington area using metals on a scale comparable to those in
the Baltimore Harbor and James River areas.
On June 8, 1971, core borings were taken adjacent to the Blue
Plains Wastewater Treatment Plant outfall. Data on heavy metals
measured in the cores is shown in the da-ca section of this report.
Chromium was detected at depths of 5 and 10 feet only, in equal con-
centrations of 0.03 mg/gm or 30 ppm. Zinc and copper were detected
-------
at the 1-, 3-, 4-, 10-, and 18-foot levels. The highest concentration
of zinc was 180 ppm at the 3-foot level, while copper was distributed
uniformly at all measured levels at about 40 ppm. Lead was found
to increase with core depth, except that lead was below the detection
limit when measured at the 5-foot level. No attempt was made to
determine the time required for the bottom sediment to accumulate
to the measured depth of 18 feet.
The following comparisons are made between the data obtained
from the core borings and upper sediment data obtained in April 1971
in the vicinity of the Blue Plains plant. The concentration of
chromium in the upper 2 or 3 centimeters of sediment was 70 ppm com-
pared to 30 ppm at boring depths of 5 and 10 feet. Copper and lead
show similar behavior patterns in both the upper sediment and the
1-foot depth level, with both metals concentrated at 50 ppm and 30 ppm
in the sediment and core mud, respectively. Zinc shows a fluctuating
pattern of behavior in both the upper sediment and the core samples.
This fluctuating behavior as it pertains to the upper sediment is
discussed later in the report.
At Possum Point and Route 301 Bridge, 38.0 and 67.4 miles below
Chain Bridge, respectively, the incidence of metals in bottom sediment
increases significantly. While there were increases in quantities of
most metals at the two sampling stations, the following showed
increased concentrations when compared to the initial determinations
in August 1970: barium, lead, iron, strontium, lithium, cobalt,
magnesium, chromium, nickel, and potassium. At the Route 301 sampling
-------
station, copper showed a sharp increase (731 ppm) in April 1971, while
at Possum Point the April 1971 amounts were lower than those of August
and December 1970. In most of the samples the accumulation of metals
was greater in the vicinity of Route 301 Bridge.
It is concluded that some of the above increases in metal concen-
trations are related to the construction of steam electric generating
plants in the area.
On the Virginia shore of the estuary near Possum Point, the
437.6 megawatt, fossil-fueled plant is operated by the Virginia
Electric and Power Company (VEPCO). The Potomac Electric and Power
Company (PEPCO) operates a larger 1,148.0 megawatt, fossil-fueled
facility on the Maryland side of the estuary, directly downstream
from the Route 301 Bridge. The PEPCO plant, however, did not begin
continuous operation until May 1971. The plant started up briefly
in early summer 1970, but ceased operating in late November of that
year because of problems with the turbines. The cooling water systems
of the VEPCO and PEPCO plants have rated capacities to utilize 400 mgd
and 1,434 fflgd, respectively. The VEPCO plant at Possum Point discharges
to the estuary via Quantico Creek, while the PEPCO plant discharges its
cooling water directly to the Potomac Estuary. Heat exchanges associ-
ated with these cooling systems and the quality of the water passing
through the condenser tubing could have a corrosive effect on the
plants' cooling systems, with subsequent release of metals to the
discharged cooling waters. As a factor affecting water quality,
chlorine is often added to the cooling water to control algae and
-------
prevent fouling of the condenser system. The PEPCO plant employs a
mechanical means to cleanse the condensers rather than the algacides
used at older plants.
Field studies (1962-67) conducted by Mihursky [2] associated
mortality and greening of oysters with cooling water discharges in a
critical area of the Patuxent River Estuary when operations were
started at the Chalk Point Steam Electric System in 1964. Roosenburg
conducted a special study on copper greening in oysters as a part of
Mihursky's thermal studies [3]. Roosenburg reported that copper levels
and greening in oysters were highest at natural bars and tray stations
near the Chalk Point's cooling water outfall and diminished with
distance from the effluent canal. In 1968, Patrick [4] confirmed
that oysters at Chalk Point were green due to copper.
The work reported above at the Chalk Point plant can be related
to the high incidence of heavy metals found in the Potomac Estuary in
the vicinity of power plants. Since the PEPCO plant only began con-
tinuous operation in May 1971, some of the heavy metals detected near
the Route 301 Bridge may be associated with operation difficulties
encountered in 1970 and actual plant construction. Fallout from air
pollution sources such as traffic on the 301 Bridge or testing of
weapons over open waters by the Dahlgren Naval Weapons Laboratory are
other probable contributors of heavy metals in this area.
In addition to metal contributions from cooling water and waste-
water sources, heavy metals are apparently entering the estuary from
the air. Emissions from smokestacks and the burning of lead-containing
gasolines contribute lead to the surrounding environment. Lead from
-------
motor vehicle exhausts is entering the environment in amounts of two
pounds per capita per year [1]. Nationwide, the consumptive use of
coal per year contributes 830 tons of lead, 743 tons of arsenic,
255 tons of mercury, 150 tons of beryllium, and 100 tons of nickel[5 ].
An analysis of randomly selected crude oils and fuel oils revealed
contamination by metals which included mercury, selenium, cadmium,
arsenic, chromium, cobalt, and gallium [6]. Studies have been
initiated by the Environmental Protection Agency to determine amounts
of hazardous substances, such as heavy metals, in both sewage sludge
and the byproducts resulting from incineration of sewage sludge. The
major sources of air pollution in the Washington area during the
July 27-30, 1970, temperature inversion were associated with high
emissions of sulfur dioxide, nitrogen dioxide, and hydrocarbons along
the Alexandria-Arlington Potomac River waterfront. The prime sources
of the emissions were reported to be motor vehicles, the Potomac River
Power Plant, the Arlington incinerator, and aircraft at National
Airport [7 ]. Metal fallout was not determined in the Washington study.
The fallout of metals to the estuary from gaseous sources and the
amount and distribution of the various metals should be determined.
Not all the metals data presented in this report can be associated
with a critical estuarine area. Often a metal exhibited an erratic
distribution pattern during one sampling period and then showed a more
uniform pattern of distribution throughout the estuary during one of
the other sampling phases. Of particular interest is the behavior of
calcium, manganese, and zinc, indicated in the sediment analyses. At
river miles 70 and 80 (miles below Chain Bridge) the December 1970
-------
7
concentrations of calcium exceeded the August 1970 concentrations by
several thousand ppm. These high concentrations were found in the
saline portion of the estuary. With the natural seawater concen-
tration of elemental calcium being 400 ppm, calcium can be expected
to fluctuate in the lower and middle reaches of the estuary because
of the considerable alkalinity intrusion from the Chesapeake Bay.
Calcium will also be distributed throughout the estuary in carbonated
forms due to the upper basin runoff and naturally occurring atmospheric
transfer of carbon dioxide [8]. In addition, shell deposits from
molluscs which contain calcium are widely distributed in the estuary.
It should be noted that magnesium and strontium are also present in
seawater at 1,350 ppm and 8 ppm, respectively.
Between river miles 40 and 50 a concentration of about 5,000 ppm
of manganese was measured in bottom sediment during August 1970. A
lower but significant concentration, approximately 3,300 ppm, was
measured in December 1970 in the same area. Concentrations did not
approach this order of magnitude in any other segment of the estuary.
There is no apparent reason for this finding.
Concentrations of zinc measured in August 1970 and April 1971
show an even pattern of distribution throughout the estuary. The
December 1970 sampling run showed concentrations of zinc fluctuating
sharply from station to station. There is no explanation for the
December 1970 zinc fluctuations except that freshwater flows entering
the estuary increased from 4,000 mgd in the beginning of the month to
40,000 mgd towards the end of December. Zinc has also been detected
in other estuaries of the Chesapeake Bay. Huggett et al. have found
-------
8
significant concentrations of zinc in oysters (Crassostrea virginica)
in Virginia estuaries of the Bay. The initial findings of these
studies indicate that highly industrialized areas of the lower
James .River Estuary are contaminating the oysters in that area with
zinc [9l.
Although mercury is not included in the data set forth at the
end of this report, sediment samples were analyzed for mercury. The
concentration of mercury was found to be below the detection limit
in practically all samples analyzed. Exceptions were detections
noted at Piscataway Creek, Hallowing Point, Indian Head, Possum Point,
and Sandy Point during December 1970, at which time the concentrations
measured were 26.2, 5.0, 5.0, 5.6, and 4.7 ppb, respectively.
Arsenic, antimony, boron, bismuth, lanthanum, molybdenum,
selenium, tin, and zirconium were included in the list of metals to
be measured. However, the concentration of these metals was found to
be below the detection limit in all samples.
Heavy metals in the Potomac Estuary are chemically bound in
bottom sediment and required heat and a low pH induced by acid in the
laboratory procedure employed to extract them from the sediment samples,
These metals, and the possibility of their remineralization into the
overlying water, must be considered in the disposal of dredged spoil.
Dredging operations involving deepening and widening of the channels
near Washington, construction of piers and marinas, etc., disturb the
sediments and require disposal of the dredged spoil. Should dredged
material containing known high concentrations of potentially toxic
(
metals be deposited in open waters of the estuary during high flow
-------
conditions, colloidal suspension of the fine clay sediments with
adsorbed metals could be transported downstream to the economically
important shellfish growing areas. The metals could then be taken
up by filter-feeding organisms which pump water through their
digestive systems with probable accumulations of metals occurring
in the organisms.
It should be noted that the synergestic effect of heavy metal
accumulations on the ecology of the Potomac Estuary is indeterminate.
Since the lower estuary is a prime shellfish production area, studies
of the availability and effect of heavy metals on the biota should
be undertaken. Surveys and monitoring activities should be carried
out to determine the amount of heavy metals coming from the following
sources; wastewater and cooling water discharges, disposal of dredged
spoil, and heavy metal fallout from polluted air. Precipitation
studies should be carried out to measure heavy metal pickup from snow
and rainfall and the extent that these metals reach the estuary from
soil runoff in the basin.
The Virginia Institute of Marine Science and the Chesapeake
Biological Laboratory of the University of Maryland have initiated
investigations to gather information on the effects of heavy metals
on the estuarine ecology of the Chesapeake Bay system. The Chesapeake
Biological Laboratory will try to determine in the laboratory and
field the various environmental conditions affecting the uptake of
metals by oysters. The Virginia Institute of Marine Science has
conducted surveys in the Rappahannock, York, and James River Estuaries
-------
10
to determine heavy metal concentrations in oysters. In this work
involving bioassay techniques, steps are taken to utilize metal con-
centration relationships in the Eastern oyster (Crassotrea virginica)
to detect heavy metal pollution in Virginia's major rivers.
-------
r-2
u
*
ae
U
a:
8 .
r-
2
< u
5" 1
UJ
CO
Ul
Ul
_o
-O)
-
o> o
-co
- ao
cc
O
O
-
-------
UJ
_ N
f
I
I
L
- o :
h
h°> I
If
a
(.
- 00
- f»
- n
-•*
-c>
-(VJ
«o
§
§
(VJ
§
o
§
(1H9I3M AHQ w6/6u.)
-------
5000
4000
3000
2000
1000
CALCIUM
•• August '70
-O becember 70
9086 ppm
20
30
40 60 60
Miles Below Chain Bridge
70
80
90
100
1000
800
600
400
200
BARIUM
— ——• August 70
O December 70
10 20 30 40 50 60
Miles Below Chain Bridge
70
80
90
100
-------
100
80
731 ppm 4 COPPER
-._— • August '70
O December '70
A April'71
I —
60
i
40
20
I
10 20 30 40 50 60
Miles Below Chain Bridge
70
80
90
SILVER
• August '70
O December '70
10 20 30 40 50 60
Miles Below Chain Bridge
70
80 90 100
-------
10
B
8
7
6
1>
L 5
fi
4
3
2
1
0
IRON
- — — • August '70
O December '70
\
10 20 30 40 50 60
Miles Below Cham Bridge
70
80
90
100
200
180
160
140
120
CL
£100
80
60
40
20
0
LEAD
~ — — • August '70
——— O December '70
A April'71
r
V'
VJ
10 20 30 40 50 60
Miles Below Chain Bridge
70
80
90
100
-------
500
400
STRONTIUM
— — • August '70
—— O December '70
300
200
100
10 20 30 40 50 60
Miles Below Chain Bridge
70 80 90 100
50
40
LITHIUM
•• August'70
•O December '70
30
20
10
J_
I
10 20 30 40 50 60
Miles Below Chain Bridge
70 80 90 100
-------
301
20|
101
COBALT
Auguit '70
O December '70
I
10 20 30 40 50 60
•Milat beloi* Chain Bridge
70
80
90 100
lO.OOOf
8,000r
6,0001
4,000}
2.000r
MAGNESIUM
— —— • August'70
——— O December '70
10
20 30
40 50 60
Mitel below Chain Bridge
70
80
90 100
-------
5000
4000
MANGANESE
— — — • August 70
O December '70
c
3000
2000
1000
10
20
30
40 50
Miltt B-'i-fi Ch
60
70
80
90
100
ALUMINUM
• ——• August'70
~ O December '70
10
20
30
40
50
60
70
80
90
100
-------
4000
3000
§2000
a
1000
POTASSIUM
• ——•• August'70
—^— O December '70
10
20 30
40 50 60
Miles Below Chain Bridge
70
80 90 100
1000
800
600
N
400
200
ZINC
• August '70
——— O December '70
A April'71
_L
0 10 20
30 40 50 60
Miles Below Chain Bridge
70 80 90 100
-------
100
VANADIUM
— — — • Ann"*! 70
••O December '70
A April'71
10
20
30
40 50 60
Miles below Chain Bridge
70
80
90
CADMIUM
—— — • August '70
1 O December '70
A April '71
40 50 60
Miles Below Chain Bridge
70
80
90
100
-------
ioor
CMIIOMHIM
•• August '70
-O December '70
-A April '71
90
100
MJIet a»linm Chain Bridge
501
40
30
20
10
NICKEL
• August '70
O December '70
April '71
10 20 30 40 50 60
Miles Below Chain Bridge
70
80
90
100
-------
REFERENCES
1. Schroeder, H. A., Report submitted as testimony to U. S. Senator
Philip A. Hart's Subcommittee on Environmental Pollution,
Washington, D. C., August 1970.
2. Mihursky, J. A., "Patuxent Thermal Studies, Summary and
Recommendations , " Natural Resources Institute, Ref. No. 69-2,
University of Maryland, Jan. 1969.
3. Roosenburg, W. H., "Greening and Copper Accumulation in the
American Oyster, Crassostrea virginica . in the Vicinity of a
Steam Electric Generating Station," Chesapeake Science. Vol. 10,
Nos. 3 and 4, Sept. -Dec.,
4. Patrick, R., in "Minutes of the Second Meeting of the Maryland
Thermal Research Advisory Committee," Nov. 8, 1968, Annapolis, Md.
5. Private communication with S. David Shearer, Office of Air Programs,
EPA, Research Triangle Park, N. C., Dec. 1971.
6. Spangler, C. V., "Analysis of Crude Oils and Imported Fuel Oils
for Trace Metals," Memorandum to the files, Office of Air
Programs, EPA, Research Triangle Park, N. C., Nov. 1971.
7. Sullivan., M. and H. V. Wester, "1970 Episode of Air Pollution
Damage to Vegetation in Washington, D.C. Area," Office of the
Chief Scientist Annual Report, 1970, National park Service,
Washtni? con, D.C.
8. Jaworoici, N. A., L. J. Clark, and K. D. Feigner, "A Water Resource-
Water S-^ply Study of the Potomac Estuary," CTSL, Region III, EPA,
Technics! Report Wo. 35, April 1971.
9. Hugge;,L .R. J,, T,L E. Bender, end H. D. *Slone, "Utilizing Metal
Conct , 'J.on Relationships In tie Eastern Oyster (Ciigssjjstrea
yirgj .. to Detect Heavy Metal Pollution," VIMS Ccxutribution
No. 4. /.Lrglnia Institute of Marlrie Science, Oct. 1971.
-------
A SYSTEM OF MATHEMATICAL MODELS FOR
WATER QUALITY MANAGEMENT
January 1972
Technical Report 51
Annapolis Field Office
Region III
Environmental Protection Agency
-------
Annapolis Field Office
Environmental Protection Agency
Region III
A SYSTEM OF MATHEMATICAL MODELS
FOR
WATER QUALITY MANAGEMENT*
Technical Report 51
January 1972
Robert L. Crim
* Presented to the Nineteenth Southern Water Resources and Pollution
Control Conference, April 9-10, 1970, Durham, N. C.
-------
PREFACE
Requests for the following paper have been numerous enough to
warrant reissue as a technical report. In order to bring the paper
up to date and to inform the reader of additional developments, a short
addendum has been attached.
The author wishes to acknowledge the support and cooperation of the
personnel of EPA, Region III, in the continuing development of the model
system here described. At the present time, the model system, now called
the CMS (Comprehensive Model System) is being applied to the Chesapeake
Bay and its tributaries in a farsighted effort to aid in protecting the
Chesapeake from the everpresent threat of man's uncontrolled activities.
-------
INTRODUCTION
A mathematical model can be defined as the representation of a physical
process or set of processes by their governing natural laws as expressed
by the abstractions of mathematics. In particular, hydraulic and water
quality models deal with the representation of rivers and estuaries and
their behavior under varying conditions of flow and input quality. The
mathematics include the approximations and discretizations necessary for
solutions by digital computer.
In recent years there has been a proliferation of digital programs
in the water resources field. Most have been concerned with economics
and evaluation of alternatives using linear programming and operations
research. Some others dealt with the statistics of population growth and
projection. After the initial flurry of activity, things became routine.
Each major computer manufacturer has on line programs easily utilized
by skilled or semi-skilled personnel. These packages will give economic
analyses and optimizations without the need for detailed mathematical knowledge
by the user. As a result, a highly sophisticated analysis can now be made
by small firms and individuals at a very nominal cost.
The state of the modeling art presently permits no such ease in its
application. Hydraulic and water quality models have historically been
single purpose with little or no generality. The journals abound with
reports of "newer" or "better" mathematical models of a specific river
or river system. These programs or "models" are generally cumbersome and
unintelligible to the non-specialist. Those models which have some general
application frequently are not comprehensive enough to be of any great
value.
The purpose of this paper is to review the basic equations involved
in modeling hydraulic and water systems. A general method of model construc-
tion will be presented. In this way, a prospective user will have access
to tools which may have previously been unapproachable.
-------
Model Construction Principles
A properly formulated mathematical model should be able to reproduce
past history. Given known input values of flow and quality, it should
be able to duplicate any measured values within limits. The accuracy with
which the model results compare with historical records is an indication
of the model's reliability in projecting the future. The model's verifi-
cation record is not, however, the only measure of its validity.
Most statistical and empirical methods are so formulated as to insure
normal verification. This is because the past record was used as the basis
for the equations and their coefficients. There is no assurance, however,
that even minor changes in the physical situation will not cause very large
errors in the predictions produced by such methods. The complexities of
hydraulic and quality networks do not often lend themselves to such simplis-
tic solutions.
In contrast to empirical methods, a really reliable model must be
based on fundamental principles. Any assumptions or simplifications made
must be consistent with the model's intended use. Particular attention
must be paid to fundamentals in cases where inadequate or incorrect input
data makes verification difficult. One method of checking models in locations
where no historic data is available is to check it for another location.
If the model is well constructed, one river is the same as another. Only
the dimensions and inputs are different.
Hydraulic Models
Investigations of water quality problems cannot be made without an
adequate knowledge of the flows and flow patterns in the body under question.
The adequacy of the flow solutions is a primary factor in the final results.
Hydraulic situations may vary from an estuarine network to a simple
fresh water stream. However, both systems obey the same natural laws.
-------
Those laws will be presented here along with the assumptions and simplifi-
cations appropriate to each case.
The first restriction is that of considering only one dimensional
flow in open channels. The governing equations are the equations of motion:
b u b u . . , . b h / n •>
— = -UT^-KU|U| -gyj (1)
and continuity:
bh 1 b (uA)
~b~t = " B bx
where:
u is the velocity in the channel
X is the distance along the channel
A is the cross -sectional area of the channel
B is the channel width
h is the water surface elevation or stage
t is time
g is the acceleration due to gravity
K is the frictional resistance computed by the Manning equation (la)
R is the hydraulic radius of the channel
n is Manning's "n"
Assumptions inherent in these equations are:
1. the wavelength is much longer than the channel depth.
2. wind stresses are negligible.
5. coriolis forces do not influence the flows.
Rewriting equation (l) in a form more convenient for digital methods
gives the following set of basic equations:
-------
* A t
and
t " B
These are the equations to be solved for the unsteady case in one-dimensional
open channel flow.
By zeroing all the terms variable with time and assuming the hydraulic
gradient — is small compared with depth, the set of equations reduces
CLK
to the Manning equation for velocity:
u- ^— (5)
n
and
1 b (uA) ,,.
I — bx = ' '
Discretization; '
Digital computers can only handle finite quantities. They are not
able to deal with the abstractions that accompany analytic solutions.
Consequently, we must break our equations down into finite elements of
time and space.
The equation (3), (*0 for the unsteady case becomes:
Ah
^i H A iculiil j. riO v\
"At = A Ft " Ku|u| + ("X - g) T
and
Ah
At= As
-------
where:
L is the length of the channel
A is the surface area of a "junction"
s
In the discretization process, the concept of channel "lengths" and
junction "surface areas" has been introduced. The method of breaking a
body of water into finite elements of geometry most often determines the
model's usefulness. A program which is tied internally to a certain lo-
cality will require major work in order to run another area. This accounts
for the bulk of the many "new" models now is existence. To avoid following
the same track, the method here presented uses the geometric data and con-
figuration as input values.
The segmenting process is best presented by means of the following
i
guidelines:
1. Junctions are defined as the intersection of one or more channels.
2. The variables head (h) and surface area (A ) are associated only
s
with junctions.
3. Channels are used to connect two junctions.
k. The variables of velocity, flow, cross-sectional area, hydraulic
radius, length, width, and frictional resistance are concerned
only with channels.
The following figures illustrate the method for some typical examples:
SINGLE CHANNEL
-------
OPEN BAY
These configurations can be compounded to cover all parts of the area.
Channel lengths should not vary widely from one area to another. For
reasons of computational stability, channel lengths in the network should
not have a range greater than 5 times. That is, the longest channel should
be less than 5 times the length of the shortest channel.
Applications of the equations to various physical cases;
Physical problems are composed of four types. The consist of steady
or .unsteady flow in single channels or interconnected networks.
Unsteady flow problems might result in estuaries or flood conditions
in inland river systems. Flood conditions are not normally of importance
in pollution problems, and no attempt will be made to describe them here.
Estuarine problems deserve particular attention because of their complex
nature.
Steady flow conditions are encountered most often in inland rivers
and streams. There, flow problems are generally easy to solve. Certain
cases of narrow channeled estuaries, where net flows are desired, can be
treated as steady flow problems.
-------
No distinction is made between single channel and interconnected channels
in the unsteady case. The method of solution is the same.
Unsteady (tidal) flow solution;
The following data is required:
1. Junctions
a. Junction number
b. Beginning head (usually mean tide elevation) (ft.)
c. Surface area (sq. ft.)
d. Area slope (sq. ft. per ft.)
e. Inflow to junction (cfs)
f. Outflow from junction (cfs)
g. Channel numbers entering junction
Note; e and f refer to discharges or extractions at a junction, not channel
flows. Junction surface area is defined as one-half the sum of
the surface areas of the channels entering the junction.
2. Channels
a. Channel number
b. Length (ft.)
c. Width (ft.)
d. Cross-sectional area (sq. ft.)
e. Hydraulic radius (ft.)
f. Manning's "n"
g. Starting velocity (fps)
h. Junction numbers at ends of channel
In addition, one junction is used as the driving point. At this point,
the head will be computed at any time from a seven term Fourier series
reduction of a known tidal cycle or cycles. This curve will be repeated
over as many periods as desired.
As the program is operating, the errors in the initial conditions
(starting heads and starting velocities) are damped out. After about one
-------
period, tne program is actually simulating tidal action throughout the
network.
Net flows are computed by averaging the flows over a complete period.
As a check on the stabilized condition of the program, the sum of all the
net flows and inputs or withdrawals at a Junction should "be zero.
Previously, the steady condition was derived as a special case of
the unsteady problem. Indeed, the same program can be run with the specified
head held constant over its period. There are, however, other methods
which have been shown to be more economical.
The alternate solutions are divided into two categories. A simple
flow balance is used in the case of a single channel, while a head-flow
balance is used for interconnecting channels. The head-flow balance is
sometimes called the "Hardy Cross" solution.
The flow balance is illustrated by the following diagram:
n
E = A+B+D-C
Q3 = A
Q2 = Qj + B
<^ = Q2 - C = D-E
A negative Q represents a flow opposite in sign to that assumed.
The Hardy Cross method relies on the principle that the head losses
around a loop composed of channels must sum to zero when the flows are
balanced.
Returning to the equations (5) and (6):
-------
11
and:
Ah £Au
At" A
2_ n2 a2!
rewriting to solve for A h = u L ( - J-TTT) = *_
I-*
(
2.208 R - A 2.208 R
where q = Au
Around a loop:
(
A 2.208 R
If Z/Ah is not zero, a correction to the flows in the channels comprising
that loop is computer as:
A . %Ah _ yv L / n2 > 2
v*Ah A2 2.208 R /5
4 (9)
2
n
A 2.208 R
Each loop is computed separately and the corrections are applied to the
channels. Channels which are common to two loops will receive two corrections,
The procedure continues until the corrections are less than some specified
value.
The data requirements for the Hardy Cross solution are essentially
the same as for the unsteady case with the addition'-of information concerning
the loops. The number of loops, the junction numbers comprising each loop
and assumed directions of flow in each channel are needed.
-------
As stated before, the steady type of solutions can be used in estuaries
if we are interested in the distribution of net flows. There are qualifications
to this statement which should be pointed out. The use of the flow balance
or the head loss balance in open bays, is not valid. There are two dimensional
circulation patterns in these bays which are important in distributing
pollutants. These patterns would not show up in a single channel representation.
If we divide the bay into a number of interconnected channels, the
pattern given by the Hardy Cross solution will, in general, be incorrect.
The net flows given by the unsteady flow solution are much more reliable
in these cases.
Uses of the hydraulic models;
The primary uses of the hydraulic models are as generators of flow
values for compatible quality solutions. The models are quite capable
of standing alone as tools for investigation of hydraulic improvements.
The unsteady flow model is particularly useful in showing the effects
of dredging, filling or restricting channels in estuaries. The velocities
computed during a tidal cycle are also of use in sedimentation studies
and the like.
In short, the potential of these programs is limited only by the imagi
nation and judgement of the user.
Quality Models
Once the flow patterns have been determined, the study of pollutant
distributions can be made. Studies of quality in a body of water are normally
concerned with either conservative (salinity, TDS) or non-conservative
(Dissolved oxygen, BOD) substances. Either a steady state or time variable
solution may be desired.
-------
13
The use of the basic equations will be based on the general properties
of the segmenting procedure used by the hydraulic models.
Again, assuming one dimensional distribution along a completely mixed
channel, the mass balance of the channel can be written for a conservative
substance as:
Sc be be . .
Tt=Ex 2'ubx (IO)
b x
where:
E is the eddy diffusion coefficient
C is the concentration in the channel at any point, X
Integrating along X and multiplying by A (the area of the channel) gives:
|a.«||.flc (ID
where:
C is the average concentration along the channel
"1 is the total mass in the channel.
Writing the equation in discrete form:
where L is the length of the channel. By summing the channels around a
junction, we can define junction masses. Thus, at a junction;
AM yv^ A c £ -
At" L
Adding terms for the addition of material through discharges and the ex-
traction of water yields the following equation:
At" L in in V out '
-------
The above equation can be used to compute junction qualities with either
the unsteady or steady flows computed by the hydraulic models.
It is appropriate here to ask how steady flows can be used to compute
nonsteady state qualities. We may answer by noting that a systems hydraulic
response to a change in input flows is much faster than the quality reaction.
For example, the time required to flush wastes out of a stream is much
larger than the time required to reach steady flow in the same stream.
The term "quasi-steady state" is used to describe the situation where
flow is changing in stairstep ffcshion:.
while quality is computed as a smooth curve. This situation is common
in estuaries subject to seasonal changes in fresh water inflow. The models
used by the Delaware study were based on this type of arrangement.
When using the results of the unsteady hydraulic model for short periods,
a simplification is made to equation (13)- The dispersion term is dropped
since the time intervals are very small (i.e., 6 minutes to 1 hour). The
assumption is that the advective term (Z/qc) is the predominant factor.
Hence:
-------
15
This may be called the unsteady flow-unsteady quality equation.
The simplest case to solve and probably the most difficult to attain
in nature is the steady state. Equation (lj) equated to zero and solved.
Obviously, steady flow model or the steady flow models are considered.
The equation is:
E^-S^SC^-SE^.O (15)
The solution to a set of these equations can be done iteratively or
by a matrix inversion. Iteration is used for this network scheme presented.
Inversion requires prior knowledge of such things as flow direction and
amount.
Values of the dispersion coefficient E have a wide range. Most fresh
water streams have a negligible value of dispersion, while in estuaries,
dispersion may be the most important parameter to be considered.
Dispersion is a combination of the effects of eddy diffusion and the
motion of the water under tidal action. The units of E are length squared
per time (sq. ft. /sec). Much work has been and is presently being done
on determining dispersion coefficients. A combination of judgement, experience
and adjustment are the best means of obtaining working values of E at the
present time.
Non-Conservative models:
Typical non-conservative materials are BOD and organic nitrogen.
They may be modeled using equation (13) with the added time dependent factor:
AM •C-'T™ AC ^ - v,_, . M
AT " EEA— -E(1C +ECinQin-Vout
-------
16
where K is a coefficient of decay.
Dissolved oxygen may be modeled in much the same way. However, the
BOD concentration must be computed simultaneously. Calling C_ the BOD
J3
conentration and C the dissolved oxygen deficit:
. EEA . Sq ^ + s . £ +
in
where: K is the BOD decay rate
K is the coefficient of reaeration
In some cases it may be worthwhile to consider other sources and sinks of
BOD and oxgyen such as:
l) Plankton photosynthesis and respiration
2) Removal of oxygen by bottom deposits
3) Removal of BOD by sedimentation
However, for most applications, these factors are not included.
Small modifications in the meaning or form of the K's can enable the
user to solve a wide variety of problems. Virtually any measurable quality
parameter can be distributed and traced by these models.
Model verification;
The verification procedure is one of the most important steps in any
modeling activity. It is here that errors in the input data or selection
of the model will show up.
Historical records of flow and quality in the system are selected
according to the following criteria:
l) Availability of record and corresponding input values.
2) Accuracy of data,
3) Length of record.
U) Variability of hydrologic conditions.
-------
17
Obviously, the acouracy of historical inputs to the program will have a
large effect on the ac uracy of the verifications. In many cases, water
quality is monitored to the extreme while waste water inflows are not well
known. Similarly, many estuarine systems have an inadequate knowledge
of the fresh water inflow. In these situations, the validity of the input
estimates a_s well as the model results are being tested.
The type of model used has a great deal to do with the selection of
historic record. For example, the unsteady flow-unsteady quality model
requires values of quality measured at very short intervals. Conversely,
the quasi-steady quality model should be checked over weekly or monthly
intervals in the record.
Verification of the steady-state model requires a more devious path.
Here, the quasi-steady model must be verified and run under constant conditions
for a long period of time. Then the steady-state model is run under the
same input conditions and compared to the quasi-steady model. The economy
with which the steady-state model operates often makes such a roundabout
process worthwhile.
In all models, well-defined trends in the historic record must be
reproduced^. Some differences in magnitude between the model results and
the record can be expected, but the general shape of the two curves should
always correspond.
A variety of hydrologic conditions should be run. Wet, dry, and average
conditions will show the ability of the model to correctly respond. Again,
special emphasis should be made on conditions which approximate the model's
intended uses.
Model reliability;
A system of models and modeling principles has been presented. We
now turn to the results of such a system and examine their worth.
-------
18
These models are meant to provide management with the means of evaluating
alternatives of action. They are not meant to give precise results from
specific inputs. The precision that can be estimated in prediction is
reflected in the verification process. Differences between one input condition
and another are of more use than an absolute value for either case.
For example, consider the question of what effect a paper mill's discharge
has had or will have on a particular stream. The models will not give
the resulting D. 0. profile as accurately as they will give the change
in the D. 0. profile. Similarly, the models applied to estuarine problems
have proven useful in determining the effects on salinity of reducing fresh
water inflow. In essence, the models act much like a scale. The absolute
weights registered are not as reliable or as important as the differences
recorded from one time to the next.
Models based on the methods presented here have reproduced history
with differences of the order of magnitude from +_ 5 percent to + 25 percent.
The hydraulic models were the most successful. Typical comparisons are
shown in the following figures:
-------
19
10
computed
measured
Time
(hrs)
15
10,000
(D
o
o
2000
Flow Measured
(cfs)
Unsteady Hydraulic Model
(Sacramento-San Joaquin Delta)
(196^-5 data)
-------
20
1000
a
§
a 1
O di
0
• computed
— measured
7
Month
12
o
2
o
u
I
«
20
o
• computed
A measured
7
Month
12
Quasi-steady Quality Model
(Sacramento-San Joaquin Dslta)
(1961 data)
-------
21
§ 18,000
s
i
• computed
—• measured
70
Miles from Golden Gate
§
I
&
§
o
18,000
• computed
•measured
0
Miles from Golden Gate
Unsteady Quality Model
(San Francisco-Bay Delta)
(1959 data)
70
-------
22
SUMMARY
Properly formulated mathematical models can serve as valuable tools
for the evaluation of man's actions on the hydraulic and water quality
environment. At a time when many stream and estuarine systems are in critical
condition, management needs methods which can show the effects of projects
beforehand. The models presented here should aid in avoiding costly and
time consuming mistakes in the evaluation of alternatives.
Virtually any hydraulic distribution problem in the water pollution
control field can be solved with these hydraulic models. The results of
the models have exhibited a high degree of accuracy.
The quality models are primarily designed to compute the effects of
changing flow and point loadings on the system. Much must be done to enable
these models to compute the effects of biological actions. Such parameters
as photosynthesis and respiration are not adequately defined as yet. Perhaps
the availability of these models will stimulate useful formulations of
the more important biological reactions.
Hopefully, the range of the programs and the simplicity of their operation
will result in more people using such methods.
-------
Data Requirements and Definitions
Tidal information:
Geometric data:
For junctions:
For channels:
Network data:
For junctions:
For channels:
Loop information:
Quality Input data:
For junctions;
For channels:
General constant:
Coeficients of a seven term sine and cosine series
of the form:
H = A sin (wt) + Bsin (2wt) + csin (3wt) + Dcos
(wt) + E cos (2wt) + F cos (3wt) and the period
(in hours) of w.
Starting head (ft)
Surface area (ft2)
Area slope (ft2/ft)
Discharge into junction (cfs)
Discharge from junction (cfs)
Length (ft)
Width (ft)
Area (ft2)
Hydraulic radius (ft)
Manning's "n"
Starting velocity (ft/sec)
junction number
channel numbers entering the junction
channel number
junction numbers at each end of the channel
A sequence of junctions for estimating flows.
Total number of loops in the network
Junction numbers defining each loop. The sequence
defines the "positive" direction of flow
Concentration of pollutant discharge (PPM)
Starting concentration (PPM)
Pollutant decay rate (PPM/day)
Photosynthesis and respiration rates (PPM/day)
Dispersion constant (ft2/sec)
water temperature (°F)
-------
Information Flow
Modeling Qyrtoa
Loop
Inf creation
(teems trie
Data
Network Data
unsteady
Flov
Modal
Quality Input
Data
Network
and
fydrauli
Data
Hetvoxk
and
Qydrauli
Data
Quasi-
Steady
Quality
Unsteady-
Quality
Steady
Quality
Junction
QualitiM
(hour
Junction
Qualities
(«t««4gL~
-------
25
ADDENDUM
Since the original paper was presented, several needed generali-
zations have been made to the model system. Also, geometrical
modifications have given rise to new programs in the system. Modifi-
cations to the existing system will be considered first.
Unsteady Flow Program:
Equation (1) has be rederived to reflect the effect of sloping
bottoms for the channels . The new equation is essentially the equation
of Barre St. Venant or
9u 3u .. I | 9h
_= _u^_ _Ku|u| - gs -
where s is the channel bottom slope in ft/ft. The term s is computed
as the difference in the depths at the junctions at each end of
the channel divided by the channel length.
Tests of the two methods have indicated rather significant differences in •
flow patterns in open bags with irregular bottoms . Virtually no changes
were observed in single channel type estuaries .
Unsteady Quality and Quasi Steady Quality Programs :
Experiences by the author and others indicated the need to rethink the
meaning of Equation (11). The term c (the average concentration) and the
term m (the mass in the channel) have been redefined to mean the concen-
tration of material crossing *he junction interface and the mass in the
junction.
This is a radical if subtle change in thinking . Essentially it
eliminates channels as a means of conveying material in the quality programs ,
-------
26
Experimentation has determined that careful attention to the geometry
setup and more strict adherence to the Courant condition eliminates the
instability which used to plague the models in certain cases. Accuracy
and response times are greatly improved.
Close comparisons between the Steady Quality Program and the unsteady
programs (run to steady state) are now possible.
Geometrical Restrictions and New Programs:
By restricting the network configuration to that of a single channel
system, a time savings of an order of magnitude were made. Two new pro-
grams AUTOS and AUTOU are now operational. Their functions are the same
as the Steady State and Quasi State Programs. The input is, however,
much simpler and more flexible. The network is variable from run to run
with very little setup work required. The two new programs maintain the
same high technical level as their "big brothers." Their simplicity of
operation and their reliability will make their use more common in planning
types of functions.
Expansions to the Channel-Junction Technique:
Much has been done and is being done to define biological rates of
growth and decay. A complex system of interactive differential equations
has been derived with the channel-junction approach in mind. Test runs on
an idealized system indicate that a high degree of success is possible. An
ecological model has been proposed, and more work is planned along these
lines.
-------
27
A multi-layered hydraulic model is also under investigation. This
program (called MULTIQ) would reflect the effects of variable densities,
variable wind stresses, and variable atmospheric pressures on the three-
dimensional circulation patterns in large estuaries and lakes. This
program when fully developed, will contribute much toward the solution
of the intricate flow patterns of stratified estuaries under the influence
of buoyant discharges.
The work is presently being carried out by the Engineering Development
Section, Annapolis Field Office, Environmental Protection Agency, Region III,
Annapolis, Maryland.
Interested parties are invited to write directly for more information.
-------
APPENDIX
Logic Diagrams of Comprehensive
Modeling System (CMS)
-------
DYH-1
Unsteady Flow Prograa
START
)
Read control
data
I
[Read driving
head
I constants
Read all
Junction
cards
I
Read all
channel
cords
i
Cheek network
for
consistent
setup
Print bad
channels &
Junctions
Print input
data
/Terminate Jom
-------
-------
DYB-2
Initialize
&
Compute
Constants
Compute
Channel
velocities fc
flows
Compute
New heads
from
New flows
1
Compute
New Channel
Areas.
Velocities &
Lows
Average
old & new
flows
Compute
final heads
fr
Update
Channel
depths It
areas
±
Update
Junction
surface
areas
-------
Write
flora and
beads
irae
o write
flow
Ta
Accumulate
Heads,
Velocities,
flows
collect
for net
fl
Print time,
Beads, flows,
Velocities
Extract
Ifet flows
Heads and
Print Netflows
-------
Unsteady Quality Program
C START )
ad control
Information
Read
Hydraulic
data
Calculate
run
constants
Extract
Hydraulic
Averages for
each tine step
Read run
parameter
rftead
parameter
y
Read D.O.
Input data
for junctions
Input data
'or Junctions
' Read B.O.D.
input data
for Junctions
Rrlnt input
Data
-------
DYNQ-2
[~ Read 7
[ Hydraulic /
I informationI
\for oneBtep\
NO
Compute rate of
change in con-
centration
^
r
Estimate new
concentrations
>
r
Compute new
rate and
average with old
^
r
Compute end of
step
concentration
YES
Compute
Rearatlon Coef.
for each
Junction
Compute BOD
rate of change
Estimate new
BOD's
I
Compute D.O.
rate of change
Estimate new
Compute new BOD
rate and average.
Compute end of
step
Compute new D.O.
rate and average.
Compute end of
step D.O.'s.
Print
Junction
concentrating
-------
-------
STDY-i
Steady Flow Program
C START )
i
Read Control
data
Read data
for loops
/ /
s~
Read all
junction
cards ,
Read all
channel
cards
Check
network for
consistent
setup
Print input
data
Print bad
channels and
junctions
Terminate
job
)
-------
STDY-2
JL
V
Compute Channel
friction
factors
Sort Channels
into loops
from loop data
Estimate flows
in each
channel
±
Shift flows to
loops with
correct sign
Compute
loop
corrections
Apply loop
corrections
to channels
-------
STDY-3
Transfer
loop flows
back to
network
rite
network
flows,
Areas
Vola.
Print network!
flows
Read
Junction
Inputs
re
conditions
to run
-------
SSWQ-1
Steady State Quality Program
C START J
Read
dispersion
coefficients
Read
Hydrauli
informa-
tion
Read parameter
to be
predicted
for each
Junction
'Read input
for other
parameter for
each junction
>
/
'Read D.O. in-
put for each
junction
X
1
r
-------
S3WQ-?
Y
Read number
of fixed
junction*
±
' Read
junction
numbers to be
fiTftta
±
/Read Gauss-
I Siedel Control
[ data
i
Print input
data
Compute
junction
concentratifcDB
Over-relax
Junction
concentration
-------
SSWQ-3
Store Decay
values and
concentrations
for use by P.O.
Compute
junction moss
balances for
check
Erint Moss
balances
-------
QSWQ-1
Quasi • Steady Quality P
C START J
Read
dispersion
coefficients
' Read
parameter to
be predicted
Read D.O.
input data
NO
' Read input
data for other
parameter
•^
/Read B
input i
1
i
[Read central
information
Print the
input data
-------
7s
I/
NO
TOO
QSWQ-2
t V M^ *
Compute rate
of change of
junction cone.
Compute BOD
rate of change
Estimate now
BOD cone, in
junctions
1 1
Estimate nev
junction cone.
based on rate
*
Compute nev
rate of change
and average
vith old.
i
Compute end of
step Junction
concentration
Compute D.O.
rate of change
Estimate nev
D.O. cone, in
Junctions
1
Compute nev
BOD
rate & average
Compute end of
step BOD cone.
+
Compute nev
D.O. rate and
average
Compute end of
step D.O. cone.
* 1
1ES
Print cone.
for Junctions
-------
More
flow con-
ditions
Read nev
D.O. data,
Bead nev
input data
i
( Bead
B.O.D.
I
r
-------
U.S. ENVIRONMENTAL PROTECTION AGENCY
MIDDLE ATLANTIC REGION- III 6th and Walnut Streets, Philadelphia, Pennsylvania 19106
-------
-------
NUMERICAL METHOD
FOR GROUNDWATER HYDRAULICS
Technical Report 52
Annapolis Field Office
Environmental Protection Agency
Region III
February 1972
-------
Annapolis Field Office
Environmental Protection Agency
Region III
NUMERICAL METHOD
FOR
GROUNDWATER HYDRAULICS
Technical Report 52
Robert L. Crim
February 1972
-------
INTRODUCTION
With the advent of large high-speed computers, many
problems in fluid mechanics and groundwater hydraulics can
be solved or "re-solved" using only basic principles. The need
for highly skilled people to do essentially simple problems has
been and is being eased more and more often.
Historically, the solutions to problems in groundwater
hydraulics have been with applications of complex variables and
conformal mapping. This has been in the attempt to obtain
closed solutions to some specific problems.
The program presented here is an application to many of the
same problems using only Darcy's Law and the continuity equation.
The program was verified against an analytical solution to a
single well field.
-------
The equations:
Darcy's Law: v = -K ^
where v is the apparent flow velocity
K is the permeability
-rr is the hydraulic gradient
-r
Continuity:
where Q is the flow into or out of a volume V during time dt.
Discrete forms:
H H
Darcy's Law becomes: v = K ILL- ^ — *-
where HI and H2 are the heads at each end of the "channel."
Continuity becomes:
H = (TQin - yCjout) At
AS
where As is the "surface area" of a "junction."
Then:
Ht = Ht_!+AHt
-------
Certain characteristics are defined as belonging to
junctions and others belonging to channels:
1. Junctions
Head
Surface Area
Porosity
2. Channels
Flow
Cross-sectional area
Permeability
Depth
Length
Width
Of all the variables above, only surface area, channel
length, and width are constant in time. The others vary in
the following algorithm:
-------
The Algorithm:
Start:
1. Compute half-step velocities and flows for all
channels.
2. Compute half-step values of heads for all junctions.
3. Compute half-step cross sections for all channels.
4. Compute full-step velocities and flows for each
channel.
5. Compute full-step heads at each junction.
6. Compute full-step cross sections and depths in each
channel.
7. Compute full-step surface areas at each junction.
Certain comments can be made for clarification:
a. Depth and surface area are computed only on the
full step.
b. A trap in the program sets the velocity and flow of
a channel to zero when its depth becomes less than
0.5 feet.
c. The run will abort if any velocity exceeds 20 feet
per second in any channel.
d. The full-step value of time is presently 2 hours.
Additional experience may call for more or less time
as the problem may require.
e. Certain heads may be held constant. Computation for
these is bypassed.
-------
SAMPLE PROBLEMS
The program was run on two problems to demonstrate its
validity. The remaining runs serve to show the flexibility of
the approach.
All the runs were made on an unconfined aquifer of medium
size sand. The channel and junction data are as follows:
Channel data:
1. Length = 1,000 feet
2. Depth = 100 feet
3. Width = 500 feet
4. Area = 50,000 square feet
5. Permeability = 1.0 cm/sec
Junction data:
1. Starting head = 100.0 feet
2. Surface area:
a. Interior = 1.0 x 106 square feet
b. Exterior = 7.5 x 105 square feet
c. Corner = 5.0 x 105 square feet
3. Porosity = 40 percent
-------
RUN DESCRIPTIONS
Run Number Description
A simple recharge well.
Q = 50 cfs in at junction
61. All rim heads fixed
at 100.0 feet.
A discharge well at #61.
Q = 50 cfs out. All rim
heads fixed at 100.0 feet.
Well interference test
50 cfs in at junction 42.
50 cfs out at junction 81.
All rim heads fixed at
100.0 feet.
One edge of aquifer fixed
at 100.0 feet. Ten cfs
withdrawn from each junction
on the opposite edge.
Same as #4 but with 50 cfs.
Discharge well at junction
61.
One edge fixed at 100.0 feet
opposite edge fixed at 0.0 feet.
This run demonstrates seepage
and free surface shape.
The results of the test runs are shown in the following
figures. Contour diagrams are included where their use is
needed to clearly show the results.
-------
MASTER NETWORK CHART
-CHANNEL
JUNCTION
H /
C\J 101 (2 J 112 f 3 J 124^4 J 135 CsJ 146 f 6J 157 ClJ 168 C&J 179 CdJ 190
21 ) 102
o
^—*
22
ro
Co
en
o>
CO
to
I 13 (23) !25 ( 24J 136 (25 ) 147 ( 26 ) 158 ( 27 J 169 (28 J 180 (29 J 19
ro
ro
ro
GJ
ro
in
ro
--4
ro
03
ro
30) 103
ro ro ro
^-*
114 (32) 126 (33) 137 (34) 148 (35) 159(36) 170 (37) 181 (38 ) 192
(O
ro
ro
ro
Co
OJ
O)
.*>.
OJ
en
OJ
o>
OJ
OJ
CO
OJ
to
Co
39 ) 104
115 (41 ) 127(42 J 138 (43) 149 (44) 160
0
171 (46) 182 (47 ) 193
48 ) 105
CO
^ — >
49
ro
O)
co
U>
CO
en
in Cn Cn en in
(•""••
117 (59 J 129 { 60 ) 140 ( 61 ) 151 ( 62 ) 162 ( 63 ) 173 ( 64) 184 (65 ) 195
(O
en
o>
ro
o>
OJ
0>
o>
Cn
O>
O>
O>
o>
CO
O)
(O
o>
66 ) 107
75 ) 108
0>
18 (68 ) 130 (69 ) 141 (70 ) 152 ( 71 ) 163 ( 72 ) 174 ( 73 ) 185 ( 74) 196
^_<
OJ 4^ en
ro
O)
co
(O
119 (77 ) 131 (78 ) 142 (79 ) 153 (80 ) 164 (B I ) 175 (82 ) 186 (83) 197
co
84 ) 109
ro
o>
OJ
co
Cn
co
O)
co
oo
00
00 OB OB 00
^~-»
120(86 ) 132(87 ) 142 (88 ) 154(89 ) 165 (90 ) 176 (91 ) 187 (92 ) 198
to
00
co
ro
ID
OJ
(O
Cn
to
o>
(O
-J
(O
00
(O
(O
(O
93 ) 110
95) 133 (96 ) 144 (97 ) 155(98 ) 166 (99 ) 177 (I 00) 188 (10 I) 199
o
00
o
(O
o
021 112
o o o o o
"-N S~\ X~"\ S~\ S~
123(1041 134(105) 145 (106) 156 (107) 167 (108) 178 (109) 189 (110)200
o
o
-------
RUN
o
000000©
102) (103) (104) (105) (106) (107) (108) (109) (110
-------
RUN* 2
O00000O00
0
39
©
©
1021 (103) (104) (105) (106) (lOV) (108) (109
-------
RUN* 3
10
12
13
8
19
20
-------
WATER SURFACE ELEVATIONS FOR RUNS 1,2,4,5
130-
120-
I 10-
25 34
43 52 61 70 79
JUNCTIONS ALONG LINE
88
i
97
106
-------
RUN* 5
o
0000000
ioa) 100 (101
-------
WATER SURFACE ELEVATION FOR RUN 6
FIXED-
cr
3
LJ
UJ
IT
100-
90-
80-
70-
60-
50-
40-
30-
20-
10-
I
25
•FIXED
I
34
43 52 61 70 79
JUNCTIONS ALONG LINE
88
I
97
106
-------
14
Flows in the aquifer are obtained from the computer
output. Since the aquifer has been segmented into right
angled channels, the flow through the channels should be
considered as vector components. A radical network is, of
course, possible; but the results would not vary from those
already obtained.
A note concerning the sign convention is in order.
Positive flow and velocity is defined as flow from a low
numbered junction to a higher numbered junction. Negative
flow is the opposite. Thus in the diagram, flow in both
channels is in the same direction, but the Q's are opposite
in sign.
Comparison of results:
Using the equations for a completely penetrating well:
Q = 27trKh ^
dr
Integrating:
Q =
ha - hw2
ln
where r0 is the "radius of influence"
rw is the drawdown at the well
h0 is the water table elevation at the "radius of influence"
-------
15
let rw = 1 foot
Q
2 U 2 _
Q
2 _ u 2
-
50 Inl
i^ = (100.O)2 -
hw = 83 feet
For a recharge well only the sign of Q is changed,
Q 1
h = 115 feet
These values compare with the computer results (84 feet and 114 feet)
within 1 percent.
-------
16
The two verification runs (Numbers 1 and 2) show the
model to be quite close to the analytical situation. For
want of a better number, the well radius, rw, was defined
as unity.
Program Flexibility:
By the use of the flexible nature of the input quanti-
ties, many types of problems can be solved.
Seepage from a stream could be simulated by fixing the
heads along the watercourse at the elevation of the stream.
Sloping aquifers are simulated by varying the channel depths
and/or starting heads. HI CONSTANT-
DEPTH
VARYS
Smaller or larger grid sizes can be accommodated by lowering
or raising the integration step.
Instability may occur if a large step is used on a small
network. Conversely, excessive time may be required to reach
a steady state when using a small step on a large network.
-------
APPENDIX - I
(Program Operation Instructions)
-------
Program Operation
Card deck:
Card Number 1
c.c.
1-80
Card Number 2
c.c.
G-10
11-20
21-30
36-40
41-45
Variable Name
NCYC
DELT
TZERO
NPRT
IPRT
Cards for junction data
1-5 J
6-15
16-25
26-35
36-40
H(J)
AS(J)
ASK(J)
QIN(J)
Title and/or job identifi-
cation. Any characters.
Meaning
Total number of compute
cycles program is to make.
Integration step in seconds.
Reference time in seconds
(usually 0.0).
Number of cycles between
output printings.
First cycle to be printed.
Junction number (if larger
than 251, it terminates the
junction data); if negative,
the head at this junction is
to be fixed at the starting
value.
Starting head in feet.
Surface area in square feet
(E type format).
Change in porosity per feet.
Inflow to junction in cfs.
-------
c.c.
41-45
46-70
Variable Name
QOU(J)
NCHAN(J,K)
71-75 VOID(J)
Cards for channel data
1-5 N
6-15
16-25
26-35
36-45
46-55
56-65
66-70
71-75
LEN(N)
B(N)
A(N)
AK(N)
V(N)
R(N)
Meaning
Outflow from junction in cfs,
Channel numbers entering
junction 515 format.
Porosity in decimal form.
Channel number (N greater
than 350 means end of deck).
Channel length.
Channel width.
Channel area.
Permeability.
Starting velocity.
Channel depth.
Junctions at channel ends.
Junctions at channel ends.
-------
APPENDIX - II
(Program Listing)
-------
SEN!'' DF OUTPUT
// FXFf, FGLWKGO_,PAR!1.FORT='NOSOORC_E,'Mqf-IAP
//FPRT.SYSlN DT5"* " "~ " " " "
IMENSION ALPHA! 20) , MCHAM ( 25 0 , 5 ) , LbT ( 250) » VOID (250) ,NTEhP( 5) ,H( 250
1 ) ,HT( 250 ) ,HN (250 ) ,AS(250) , ASK(250) ,(JIN ( 250) ,"(OUUT250") , LEN (3130 )",
7R( 350) ,A(350) , AT (3 50) ,V (350) , VT (350) ,0(350) ,AK( 350) ,NJUNC( 350,2) ,
3R ( 350)
[HTFGFR ALPHA _ __ _ _
RFAL LF-N ~- -' ' " - -
CONTROL DAT/-'
RFAD(1,100) (ALPHA! I ), 1=1 ,20)
1(V) Fi Ri-Al (20A4)
l-'F.Ali( 1,105) MC YC, OELT,TZFRU,KCYC,NPR "I , IPMl", PERIOD
10i l-Mi'-AK 5X,J5,2_F10. 0,315, FlO.O) _ __ __ __ ___ ___ __ _
"
^( T)=0.0
LST( I )=0
Hi ) 900^ J=l ,5
900:5 l 'ChAi" ( I , J ) = 0
i if i tj (K)/;r 1 = 1 ,"^50 _ _ __
v(i) = n."o"~ " "" ......
o( l)=o.n
'nl 90n/, J= 1 , ?
900'-; HJIMf. ( I ,J )=0
i"J=0
DM 1?] I=_l_»?^0
P ^ A h ( l , 1 2 Ol "J , H f A D , S 1 1 R F , S L D P F , C5'F ITtfF"?," riMTEMFTTT) rK= T," b~l r\7Ii YTT
1?0 FOkhATf I 5 , F 10 . 0 , E 1 0 . 0 , F 10 . 0 , 2 F5 . 0 , 5 I 5 , r b .0 )
jp ( J.<;T .250) on TO 1122
JF(J.GT.O) G(l TH 1?2
J = -J
L S T ( J ) = 1
] ?? IF( J.RT.WJ) MJ=J ' " "
I i ( J ) = H F A D
AS( vl ) = SURF
ASK( J)=SLf)PF
f)I'\! ( J )=OF1~
oiUJ( J)=t]F2_ _ __ ____ __ __ _____
VOID! J )=VOYD " " ~ ...... "
HI] 2101 M=l,5
( J,M) = MTEMP(M)
121 CfiNTlr'HF
1122 cnHTTN!IF.__ _ __ __ ____ ____
C "" CHANNEL DATA
I"C = 0
Df) 131 1 = 1,3 bO
«F AIM 1,1 30)N,ALFN,WIDE,AREA,PERh,VbL,DEEP, (NTEHP( K! ,K=1,2
130 FHRi-iATf 15, 6F10. 0,215)
I F ( iM . GT . 3_50 ) _GQ TO 1 1 32
IF( iJ.GT.NC)" NC=M " " " ..... ~
LFH( i^)=AL6N
IUM ) = HIOE
A ( M ) = A R F A_
P (|vi ) = PFFP~ " " ~
,AK (M ) = PFRM
-------
•-'jure ('••',! )=MINO(NTEHP(1 ) ,NTEMP< 2)J
i"J»!|vC(rl,2~) = MAXO(NTEMP( 1 ) ,NTEMP( 2)} ......... "" " " "" '
131 r.ONT IUUF _ _ _
1.13? CONTINUE
C ___ CHECK NETWORK ________ ___ _ ______ _ _________ __
• i p X 1 T = ff
i'f) 150 M=1,MC
nn 1501-1,2
IF(MJUNC!N, I ).LF.O) GG TO 150
J=NJUNC (N, I )
00 140 K=.l»5 _ __ _______ ______ __
TF( N.FO.NCHAN( J ,'l< ) ) GO TO 150
140 Cill^lT I Ml IE _ __
,,I!-X IT=MEXIT+1 "" " " '" "" ......... ""
>-'3 ITF(3,145) N,J
145 FORNA'I ( 1HO,28H COMPATIBILITY CHECK CHANNEL ,14, 9H JUNCTION ,14)
ISO CONTINUE __ __ __ ____ _
00 1?0" J^TtNj" " "" ----- — .....
OH 165 K=l»5
JF( NCHANI J,K ) .LF.O) GO TO 170
M= MC HAM (J ,K )
DO iftn 1 = 1,2
IF ( J.rO.NJJINC ('M,I ) ) GO TO 165 ____ _ _ _____
IfO CONTINUE " " ~ "~ " ..... ~
nFXI"l = NEXIT+l
i' KITH (3,145) N, J
165 CONTINUE
170 COM "I IMOE
IF(^FXIT.NF.O) CALL FXIT _ _ __
C HRITF "OUTPUT INFORMATION " " " ......
>'|R IT F( 3, 101 ) (ALPHA! I ) ,1=1,20)
101 FOPf.A'I ( 1H1 ,?OA4)
'•'R IT F( 3,1104) MCYC
1104 FORM.'i ( 1HO,?9H ^JU^lBEP OF INTbGRAlIUN CYCLES ,15)
|'IRITF(3,1106) UFLT
1106 FiiRMATJ rTTO",2TH UETJGTH OT I NT FG CATION" 3'TFP"TF970, TnTT¥UlTRTTS~ 1 -------
'•Mi IT F( 3,1 108 ) T ZERO
1108 hORi-iAT( 1HO,13H INITIAL Tli-lE , F6 . 2 , 6H" HOUR b" J
HKITF( 3,1110) MPRT, IPRT
1110 FOkHA'f ( 1HO,?1H OUTPUT PRINTED E VERY "VI 4 ,T9H ~CYCL b'S "HtG 'INN ING "U I TH""
1CYCLF ,15)
URITF r?,T73) -MJ ....... - ' ---------------- ~ ------ ...... ~— --------------
1?3 FORiiATf 1H1 ,24H MAXIMUM JUHCTIUN NUMbER ,15)
»IR I TF (3,1024) " - - - -- - -
10?4 FORMAT) 1H , 8H JUMCT I DM , 7X ,7H I N I T I A L, 5 X ,7H SUkF ACE , 4X , 8 HP OR US I T Y , 11X,
16H INF LOW, 4X,7HOUTFLOW,7X,26HCH ANNE LS E txlTERl M G" "JUNCTION" ,"3 X,
A 8HPOROSITY,5X,4HCUDE,
2 / , 1 8 X , 4"RRFA~IJ,"fl X ,"4'HA"R"Tf A ,7TX~, 5 HS L O'PTf , 13X 75HTUF yr,~5T75nTCFS) , 49 X , — ' —
3 7H1=FIXED,/,18X,4H(FT) ,7X,6H(SQFT) ,87X ,6HO=FRfcE)
00 125 J=1,MJ " " ' """" ......
IF (NCHAN( J, 1 ) .LF.O ) GO TO 12.5
I'RITF (3,124) J,H( J ), AS ( J), ASK( J ) , Ql N ( J ) ,QOU T J") , ("NCHAi\f( J", K '.) ,i<=l,5) , ~
1 VO I n ( J J_t.LST ( J ) __ ________________ _ __
124 F OR MAT (I H , I T, FIT. 2 72 ('3X, 1PF 1 2'. 5 T7"2'X ,I)P 2F ITTTT, 4X , 5 I 6 , F 10 . 5, 5X", 15)
125 COMT IriUE _ _
WRITE (3,r33) NC
133 FORMA'I ( 1H1,23H MAXIMUM CHANNEL NUMBER »_ I 5 ) _
i-iRITE (3,l6"34) " ..... ~"
1034 FORnAT( 1H ,7HCHANNEL ,3X , 6HLENGTH , 3X , 5HVJ I DTH , _5X , 4H AR-EA , 3X , 5H P ERM . ,
1 7 X","7 H iT-iTTTA L ,' 6"X , " ..... ~ ..... ~ " ~"
1 7H Ihi IT I A L ,_9X , 1 7H JUNC T ION S AT END S , / ,49X , 8H VELUC I T Y , 6X , 5JHOE PTH , / ,
21 IX ,4H( F"T ) ,SX~,4H(FT ) , 4 X, AH (SOFT ) , 3X , HH ( Cf-i/ bEC ) ,>X»8H( FT/ SEC)"
_
00 135 l\l = r,MC ""
TF (OJI INC ( N, 1 ) .LF.O) GO TO 135
-------
'•••' J 1 I- (3,134 )N,LI-N(N) ,H (II ) , A(M) , AK(N) ,V ( N) ,k( fv ) , ( ivJUNUN, K, ) ,K=i,
134 i'r.kHAl ( 1H , 15, F 11.0, Ffi. 0,F 10.0, IP El 0.2,OPF 10.2, F 13.1, 1 OX, 216)
1^5 C'iNTiiMiiE "" -- - - - -• -, -
INITIALIZE
2 = DEL"T/2.U
NCYPhP= (PFRinn/DELT ) +0 . 5
iibTCYC = MCYC-NCYPFR
T=T7FRn
KPRT=TpRf "
LTIMH=0
AS( J )=/*S( J )*Vi)ID(J )
HT( J)=H(J) " ' ..... "
Hr! ( J )=H( J )
] «6 r.niO'Ii-'UF
r,HAhiGF=l.O/(2.5A*12.n) ______
11(1 iqn N=1,NC " " """ ..... ~~" .....
AX (h )=AK(H )*CHANGE
A T ( N ) - A ( M ) '
190 CiiMTU'i'F
rlAIN LOOP
Oil 7 RS ICYC=1,MCYC
T2=T+PFLT2 "" ..... ~"
T=1+LH;LT
VFLOCITIFS AND FLOWb AT T+UEL1/2
IF< iMjiiMc (N , i ) .LF .0) r;n in 204
CHECK FOR DRY CHANNtL
IF( R(W) .UTVf)';5T "Gn TO 503
VT (••! )=n.o
n(M)=n.n
r.'J Tn ?04
HL = MJHMC (N , i )
VT(H)=-AK(M*((H(NH)-H(NL)j
n( N) =\/T (M)*A(N )
204 CO1"!" 11'I IE
C HEADS AT T+OFLT/2
Dd 2?5 J=1,NJ
IF (iN'CHAM J ,1 ) .LF..O) GO TO 225
IF( LST( jyTF'ff.O) GG Tn 225
Slli"0 = nriU( J )-OTN(J )
n() 220 K=l,5
IF(NCHAN(J,K).LF.O) GO TO 224
N=NCKAN(J,K)
IF(J.NF.NJUNC(N,l))GD TO 215
Gfl T(l ?20
215 SUfK.i^SUi'iO-OIN)
220 CONTlrlNE
224 H'l ( J)=H(J)-DELT2*SUMO/AS( J)
225 CONTI^'IIF
DO 230 N=1,MC
IE(NJUMC"(N,1 ) .LE.O) GO Tn 230
MH-NJONC (N,2 )
i)ELH=(HT(NH)-H{NH)+HT(NL)-H(NL) ) /2.0
\T(M )=A(N) + B(N )*l)ELH
" CHECK FOR DRY CHANNELS
TF (RNT.GT.0.5) GU TO 501 _
V{N)=0.0"
n ( M ) = 0 . n
-------
SO I fi: • 1 i.viOh
\/( , i)=_/,K(N)*( (HT(NH)-HT(iML) ) /LFN(I
f \( r .1 ) = ( , i ( [M ) + \/ ( |M ) * A "I ( N ) ) / 2 . 0
230 r.lNTIHllF
HFADS AT 1+DEl.T
DO 255 J=!UNJ
IF( OCHANIT,] ).LF.O) GO TO 2~55" '
I RISK J ) .MF.O) GO TO 255
A S A J= A S ( J ) + A SK ( J ) * ( HT ( J ) -H ( J ) )
SI!l''0 = Ol)U( J )-(.iI!M ( J )
DM 250 K=l,5
JFd-.'CHAM J,K) .LF.O) GO TO 254-
M = .MCMAM ( J,K) " " ""
IF( J.h.F.I\IJOMC(M,l ) ) GO TO
Sill- ii=SdMO+0(N)
Ml TO 250
24 5 SI li'JiO= SUi-iO-0 ( iM )
250 CON"! 1,'HIF
MII( J)=H( J )-DFL'l *SUI'iQ/ASAJ
DFPTH ANO ARFAS AT 1 + UtfLl
n=l,MC
C (N,] ) .I.F .0) GO TO 257
l.hl_H-0.5*(HM (NH)-H(NH)+HI^ (ML ) -HdML) )
p ( '.. ) = R ( i\j 1+OFLH
A( '••<) =A(M ) + B (M )*OFLH
?S7 nil '"I I! 'HF
C COM PUT F i\IFH SURFACt" AREAS
C " SHIFT HFADS TO H" ARRAY" FUR NEfl'TYCL'E"
I'O ?1"^ J=1,MJ
Ii:( I.S'I ( J ) .MF.C) GO TO 258
A S ( J ) = A S ( J ) + A S K ( J ) ••• ( HN ( J ) -H ( J ) )
H ( J ) = UN (J )
25P r 1 1. 1 "i IM /F
C " ' "CDMPUTF AVERAGE "H",u,V ~"~ — ----- ---
C CHFCK VFLOCITIES FOR FXCtbS
nil ?7 ^ N=1,NC
IF (i^JOlvC(N , 1 ) .LF.O ) GO TO 275
IF( APS( V(M ) ) .Lc.20.0) GO TU 275
HRITFn,270) ICYC,M,0(ixl ) ,R(N) , V N )
_ _ _ __
27 70 ) "
323 FMRMAT(5( I4,1H(,OPF9.4,1H), 1H ( , 1PE9 . 2 , 1H ) ) )
f, END MAIM LOOP " "" " " ""
2R5 COMTIMiF
-------
c
31 ?
/*
CF
"I ERH IN A'
CALL EXIT
F.rll)
YSI''1 OD *
773 PROJECT RUN ?6
501 7200
- 1
- 2
- _\
- 4
- b
- 6
- 7
- 8
- 9
-10
-11
-12
-13
-1 T47)
0 .4 0
0.40
0.40
0.40
0.40
~T).~4T)
0 .40
0.40
0 .40
0.40
0.40
0.40
0.40
0.40
0.4-0
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
cr.^fo
0.40
-------
45
46
47
49
50
^1
52
53
54
55
58
56
50
60
6]
62
63
64
65
57
6,°.
t, Q
70
71
17
73
74
76
77
7H
74
RI I
R I
""'.?
R3
«5
R6
Q7
« ,",
,°, <-i
•vo
9]
">?
4/1
45
96
9 7
98
99
100
101
2 5 1
1
2
->
4
5
6
7
8
9
10
1 1
1?
U
1 '-'
100.0
1 DO .0
10(1. 0
100 .0
1 00. 0
100.0
100.0
100.0
1 0 0 . 0
loo.o
100.0
100.0
100.0
1 00 . 0
100.0
1 00.0
1 0 0 . 0
100 .0
10(1.0
100.0
100.0
100.0
100.0
] 00 .0
100.0
100 .0
1 0 O.o
100 .0
100. 0
1 00 . 0
] 00 . 0
100 . i.
lOO.o
1 00 .0
100.0
loo . o
100.0
IPll .0
1 0 0 . 0
100 .0
100.0
1 o.n.o
1OO. 0
1 00 .0
100.0
100 .0
1 0 0 . { 1
100 .0
100.0
100.0
100. 0
1.0F03
1 .OF03
1 . 0 F 0 3~
1 .OF03
1.0F03
1.0E03
1.0E03
1 .OF03
1 . OFO"3"
1 . OFQ3
1.0F03
1.0F03
1.0F.03
1 .OE03
] .OE06
1 .OE06
1 . 0 F 0 6
1.0E06
1 . OF06
1.0E06
1 .OE06
] . 0 F 0 6
1.0E06
1.0E06
1 . 0 E 0 6
1.0F06
1 . 0 E 0 6
1.0E06
1.0 E06
1 .OE06
1 . 0 F 0 6
1 . 0 E 0 6
1 . OE06
1.0F06
1 . 0 E 0 6
1.0F06
1.0 F06
] .OE06
1 . 0 F 0 6
1 .OE06
1 . 0 E 0 6
1 . 0 F 0 6
] . 0 E 0 6
1.0F06
1 . 0 E 0 6
1 . 0 F 0 6
1 .OF06
1 . 0 E 0 b
1.0F.06
1.0F06
1 . 0 F 0 6
1.0F06
1.0E06
1 .OF06
1 . 0 E 0 6
1 .OF06
1 . 0 F 0 6
1 .OF06
1 . OE06
1 . 0 E 0 6
1 . 0 E 0 6
1 . OF06
I.OE06
1 .OE06
1.0F06
5 . 0 E 0 2
5.0F02
5.0E02"
5.0E02
5.0EC2
5.0E02
5.0E02
5.0E02
5.0E02
5.0E02
5.0E02
5.0F02
5.0E02
5.0E02
0 . 0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0 "
0.0
0. 0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0 . 0
0.0
0.0
0.0
0. 0
0 . 0
0.0
0.0
o . o
0.0
0.0
0.0
0. 0
0 . U
0.0
0.0
0 . 0
O.U
0 . 0
0.0
0.0
0 . 0
0.0
0.0
0 . 0
5 . OE 04
5.0E04
5.0E04
5.0E04
5 . OE 04
5.0E04
5.0E04
5. OF 04
5 . OE 04
5.0E04
5 . OE 04
5.0E04
5.0E04
5. OE04
0. U
0.0
0. 0
0.0
0.0
O.U
O.U
0.0
0.0
0.0
o.o
O.U
o ."o
0.0
0.0
0.0
0. 0
0.0
0.0"
0.0
0. 0
0.0
O.U
O.U
"0.0"
0.0
0. U
O.U
0.0
0.0
o.o"
(i.O
0. U
0.0
O.U
O.U
0. U
O.U
0.0
O.U
0. U
0.0
0.0"
0 . 0
0. 0
0.0
0. U
O.U
0/0"
0.0
0.0
1
1
" 1
1
1
1
1
1
. ._T
1
1
1
1
1
0.0
0.0
O.U
0.0
o. o
0.0
o . o
0.0
O.U
0.0
0. 0
0.0
b". o""
0.0
O.U
0.0
0.0
0.0
" U. 0"~
0.0
0.0
O.U
0. 0
0.0
0/0 """
0.0
0.0
0.0
0. 0
0.0
o.o"
O.U
O.o
O.U
0.0
0.0
T> . 0
O.U
0. 0
O.U
0. 0
0.0
O-.-D
0.0
b . u
0.0
o.u
0.0
"~o;"o
0.0
0. 0
.OEOU
.OEOU
".uhbu " ~
.OF 00
.OEOO
.OEOO
.OF GO
. OfcOU
". OE"0(T
.OF 00
.OEOU
.OEOO
.OEOO
. OF 00
63
73
b3
13
24
34
44
54
64
74
14
84
'25
35
45
55
65
75
h 5"
1 b
26
36
46
56
~6~6"~
76
86
16
tL'l
Jl
47
57
t>7
77
87
17
28"
38
48
58
68
78
8F"
18
29
39
49
59
6T
79
89
0.
0.
0.
0.
"0.
0.
(f.
0.
171
182
193
116
128
139
" 150
161
172
183
117
194
129"
140
151
162
173
184
195" "
118
13U
141
152
163
174
1*5
196
119
131
142
153
1 64
J75
186
197
120
" 13"2 '
143
154
165
176
187
"~IW
121
133
144
155
166
.-IT7 -
188
199
OFUO
OEOO
TTtTuo
OEOO
o'eoo
OEOO
OEOO
OEOO
"TJ7TJEOU"
0.
"o.
0.
0.
0.
OFOO
OEOO
OF 00
DE'OO
OFOO
64
74
84
3.4
25
35
" 4 5~
55
65
75
15
85
26"
3o
46
56
66
76
86"
16
27
37
47
57
6T
77
87
17
2b
38
48"
58
68
78
59
69
79
8r,--
t()
30
40
50
60
"TO"
80
9U
1.
1.
1.
1.
1.
1.
1.
1.
"17
1.
1.
1.
1.
1.
160
171
182
1U5
116
128
""139
150
161
172
106
183
i n " "
129
"140
151
162
173
1ft 4'
107
1 1 8
130
141
152
" 1'ffB
174
185
] 08
119
131
142""
153
164
175
186
109
120 "
132
14: -5
154
165
176
--1BT-
110
121
133
144
155
' T6?T~
177
188
UFU2
OE02
"UE02
UEU2
UE02
UEU2
UE02
UE02
~GPo2"~"
OE 02
uEU2
UEU2
GE02
OE02
'
1
21
~30
39
48
57
66
75
•"fi4"
2
22
31
40
4Q
0.40
0.40
6". 40"
0.40
0/40
0.40
O.~40
0.40
0.40
0.40
0 . 40
0.40
"0.40
0 .40
0.40
0 .40
0.40
0.40
rr;z:iT
0.40
0.40
0.40
0 . 4 0
0.40
n~4(T
0 .40
0. 40
0.40
0.40
0.4()
()'. 4""0
0 .40
0. 4()
O .4 0
0.40
0 .40
0 . 4TT
0 ,4()
0. 40
(i .40
0.40
0 .40
rr. 4TT
0 .40
0.40
0 .40
0.40
0.40
'TS/W
0 .40
o."4b
21
30
- -jo •
4R
57
66
75
84
9-3-
22
"31
40
$*)'
5fl
-------
] r>
16
17
18
19
70
71
72
73
74
75
76
77
78
79
*•> f]
3]
32
33
?'4
35
36
37
3H
", Q
^ 0
^ 1
42
^-3
i/H
45
^ 6
f'l
4H
/, C)
L>0
5 1
c 2
c>3
54
c-5
^•6
^ 7
58
CQ
60
6]
62
63
64
65
66
67
68
69
7 f)
71
72
73
74
75
76
77
78
79
PO
1.0^03
1 . HR)3
1 . OF03
1 .OF03
1.0 :03
1. OF03
] . OF03
1 .OF03
1. OF03
1.0E03
1.0F03
1 .OF03
l.o F03
] .OF03
] . 0^03
1 . HF03
1.HF03
1 . 0 F 0 3
1 . OF03"
1 .PF03
i . n r- o 3
1 .OF03
1 .OF03
i .OR;) 3
i . oco3~ "
1. ft i-O 3
1 . 0 F 0 3
1 .01-03
1 . n F o 3
1.0F03
1 . OF03" "
1 .01-03
1.01-03
1 .01-03
1 . 0 F 0 3
1.0 '"-03
1.0F03"
1 .OE03
1.0F03
1 .OF03
] . OF03
1 .OE03
l.nF03~
1 .OFQ3
1 . 0 F 0 3
1 .OF03
1.0 F03
] .OF()3
1.0 F03
1 .OF03
1.0F03
1.0F03
1 . 0 F 0 3
1 .nF03
1.0FO"T~'
1 .OF03
1.0F03
1 .OE03
1.0^03" "
] .OF03
l.OFO'3
1.0F03
] . OFQ3
1 .OF03
1 . 0 F 0 3
1 ,or-03
5. ftp 02
5.0 EC) 2
5.0E02
5.0F02
5.0F02
5.0E02
5.0E02
5.0E02
5 . 0 F 0 2
5.0E02
5.0E02
5.0F02
5 . 0 F 0 2
5.0E02
5.0E02
5.0F02
5. OF02
5.01" 0 2
5 . 0 E 0 2
5.0F02
5 . 0 E 0 2
5.0F02
5 . 0 F 0 2
5.0F02
5.0F02
5 . 0 F 0 2
^. OF02
5 . OF02
5 . 0 E 0 2
5 . 0 F 0 2
5.0F02
b" .01-02
5 . 0 F 0 2
'> . 0 F 0 2
5.0F02
5 .OF02
5. OF 02
5.0E02
5.0F02
5 . 0 F 0 2
5. OF02
5 .OF02
5 . OF.02
5.0F02
5 . f) F 0 2
5.0F02
5.0F02
5.0E02
5.0T02
5.0E02
5.0F02
5.0E02
5.0F02
5. OF.02
5.0F02
5.0F02
5.0E02
5.0F02
5.0E02
5.0F02
'"5.0E02
5.0F02
5 . 0 F 0 2
5.0E02
5.0E02
5 . 0 F 0 2
5. Ot 04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5. OF 04
5.0E04
5.0E04
5 . OE 04
5.0E04
"5. OF 04
5.0E04
5. (iF 04
5. OF 04
5.0E04
5 .OE04
b.OE04
5. OF. 04
5. OE04
5. Oh 04
5.0E04
b.OEO'i
5.0E04
5.0E04
5.0E04
5.0E04
5 . OE04
5.0E04
5.0E04
5.0F04
5. OF 04
5 .OE04
5 . OE04
5.0E04
5 . OE 04
5.0E04
5. OE04
5.0E04
5 . OF. 04
5 . OF 04
5. OF 04
5.0F04
5 . OE04
b.OE04
5.0E04
5.0E04
5.0E04"
5.0E04
5.0E04
5.0F04
5 . OE 04
5.0E04
" 5 . OE 04"
5.0E04
5.0E04
5.0E04
5 . OE 04
5.0F04
5 . OE 04""
5.0E04
5.0E04
5.0E04
5.0E04
5.0F04
1 .OEOO
l.OFOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
""l.OFOO"
1. OEOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
l.OFOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
l.OFOC
l.OEOO
1 . 0 E 0 0
l.OFOO
l.OEOG'"""
1. OEOO
1 .OFOO
1. Oh 00
1 .01:0 (
l.OEOO
l.OEOO
1. OtOO
1 .OFOO
1. OF (JO
1 . 0 E 0 0
1. OhOO
I'.OFOO
1. OEOO
l.OEOO
1. OEOO
l.OFOO
l.OEOO
1 . OFOO
l.OFOO
l.OEOO
l.OEOO
1 . OEOO '
l.OEOO
"~ KTJETKT"
l.OEOO
l.OEOO
1. OEOO
l.OEOO
l.OEOO
" T70FOO"
l.OEOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
1 .OEOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
l.OFOO
O.OEOO
O.OEOO
O.OEOO
O.OFOO
O.OEOO
O.OEOO
O.'OboO"
O.OEOO
0.0 EOO
O.OEOO
cT. OFOO
O.OEOO
O.OEOO
O.OEOO
O.OEOO
O.OEOO
O.OEOO
O.OEOO
O.OEOO
O.OEOO
0, OEOO
0. O'-OO
O.OEOO
O.OFOO
" O.OET50"
O.OFOO
O.OFOO
O.OEOO
O.OEOO
O.OEOO
"0". 0 F0~0~
O.OFOO
0. OEOO
O.OEOU
0. OEOO
O.OEOO
'()'. ObOb
O.OEOO
0". OFOO
O.OEOO
O.OEOO
O.OFOO
0. OEOO"
O.OFOO
O.OEOO
O.OEOO
0. OEOO"
O.OEOO
TJiXTEtRJ
O.OEOO
O.OEOO
O.OEOO
O.OEOO
O.OFOO
' '"07 (TEW
O.OEOO
"O.OFOO
O.OEOO
"O.OEOO
O.OEOO
0. OFOO
O.OEOO
O.'OEOO
O.OFOO
"OYGFOO
O.OFOO
1 . OE02
1 . 0 E 0 2
1.0E02/
1.0E02
i. OE02
1.0E02
1 .OE02
1 . 0 E 0 2
1.0 E02
1.0E02
1.0E02"
1 . 0 E 0 2
1. OF.02
1.0E02
l.O.fo"/"
1.0E02
1.0E02
1 . 0 E 0 2
l"."OE02"
1.0E02
1 .OE02
1.0E02
i . OE02
1.0E02
" ' 170 "FT)?:
1 .OE02
1.0E02
1.0E02
1 .OE02
1.0E02
1 . ObO^
1 . OE02
1 . OE02
1 . u E 0 2
1 . OE02
1 .OE02
T.OE02~
1 .OE02
1.0 F02
1 . o E 0 2
1.0E02
1 .UE02
1.0 tO 2
1 . OE02
1.0E02
1 . OE02
1.0E02
1.UE02
TTTJED7 ~
1.0E02
1.0E02
1.0E02
1.0E02
1 . 0 E 0 2
~" TTOT07"
1.0E02
1.0E02
1.0E02
1.0E02
. 1.0E02
1.0E02
1.0E02
1.UE02
1.0E02
'1.0E02
] .OF02
5".
67
76
85
93
94
~3
23
32
41
50"
59
68
77
86
95
L,
24
"33
42
51
6>J
69
78
~TT7
96
T
25
3',
^3
52
61
70
79
88
97
"6""
26
35
44
53
62
71
80
89
98
7
27
— 36"
45
54
63
72
81
W"
99
H
28
37
46
_ _._
64
73
82
91
100
6 I
76
85
94
102
103
23
32
41
50
59
68
77
86
95
104
24
33
4 2""
51
60
69
78
87
" "9"7T~
105
25
34
43
52
6" I
70
7Q
88
97
106
"26
35
44
53
"67
71
80
89
98
107
27
36
7^~
54
63
77
81
90
"" '9~9~
108
28
37
46
55
64"
73
82
91
Too"
109
-------
M
ft 2
R3
84
8f>
86
87
88
80
90
9 1
92
93
94
95
<)(,
»~/
99
100
101
102
103
104
1 o 5
106
107
1 0 M
109
1 10
1 ) 1
1 1 2
1 1?
H4
115
1 ) 6
1 17
118
1 1 9
120
1 ?1
123
1?4
1 ?5
1?^
1?7
1?8
12°
130
131
132
133
134
135
136
137
138
139
140
1M
1^?
143
1 44
145
146
147
l."F03
I .OR) 3
1 . OF03
1 . 0 F 0 3
1.0F03
1.0F03
1.0F03
1.01-03
1.0F03
1.0F03
1.0F03
] .OF03
1.0*03
1.0E03
1.0 F03
1 .OF03
1 . 0 F 0 3
1 .OF03
i . OF03"
1 .OF03
1.0F03
l.Oi-03
1. . OF03
1.0F03
1 . o F 0 3"
1 .OF03
1..0F03
1 .OF03
1 . 0 F 0 3
} .OK) 3
1.0F03
1 .OF03
1 . 0 F 0 3
1 .OFQ3
1.0F03
1 .OF03
1.0F03" '
1 . nt-03
l.OEO 3
1 .OR) 3
1.0 F03
1.0F03
l.MFO'S "
] .OF03
1 . 0 F 0 3
1 .OF03
1.0F03
l.OEO 3
1.0F03"
1 .OF03
1.0E03'
1 .OF03
1.0F03
1.0F03
l.OFO-3""
l.OEO 3
] .OF03
1.0F03
] . OFO"3~
1 .OF03
1.0F03~
1.0F03
] .OF03
1.0F03
1.0F03
1 .OF03
u. .OE02
5.0E02
5.0F02
5.0E02
5.0F02
5.0E02
5.0"E02
5.0 EC) 2
5.0E02
5.0E02
5.0E02
5.0E02
5.0 EC 2
5.0E02
5.0E02
5.0F02
5.0E02
5.0 EC) 2
5 . 0 E 0 2
5.0F02
5.0E02
5.0E02
5.0E02
5.0E02
5.0F02
5.0E02
5 . 0 E 0 2
5.0E02
5 . 01-02
5.0F02
5.0F02
5 . 0 F 0 2
5 . 0 F 0 2
5.0F02
5.0F02
5.0E02
' 5.0E02
5.0E02
5 . 0 F 0 2
5.0F02
5.0E02
5.0F02
5.0F02
5.0F02
5. OF. 02
5.0E02
5 . 0 E 0 2
5.0E02
5. OF. 02
5.0E02
5.0E02
5.0E02
5.0E02
5.0E02
5.aE02
5.0F02
5.0F02
5.0F02
5.0E02
5.0E02
' 5.0E02-"
5.0E02
5.0E02
5.0E02
5.0E02
5.0F02
5 . OE 04
5.0E04
5.0E04
5.0E04
5 . OE 04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5 . OF04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5. OF 04
5 . OE 04
5.0E04
5 . OE 04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5. OE04
5.0E04
5 . OE 04
5.0E04
5.0E04
5.0E04
5 . OE 04
5. OF 04
5. OF 04 -
5.0E04
5 . OE 04
5.0E04
5 . OE 04
5.0E04
5 . OE 04
5.0E04
5 . OE 04
5.0E04
5 . OE 04
5.0E04
5.0E"04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5 . OE 04
5.0E04
5.0E04
5.0F04
1 .01-00
l.OEOO
1 .OEOO
l.OFOO
l.OEOO
l.OEOO
"1.1511)0"
l.OEOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
" l.OFOO
l.OEOO
l.OFOO"
l.OEOO
l.OFOO
l.OEOO
"f.OFOO"
l.OEOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
"l.OEOO
l.OFOO
l.OFOO
l.OFOO
1 .Ob' 00
l.OEOO
l.OECO
1. OEOO
l.OEOO
l.OEOO
l.OEOO
1. OEOO
r.oFtrcr
l.OEOO
l.OFOO
l.OEOO
l.OFOO
1. OF 00
" "I'.OHOo
l.OFOO
i . OF: o o
l.OEOO
l.OEOO
l.OEOO
"TTOFmr
l.OEOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
••TVOBCO-
l.OEOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
"TYOFOO"
l.OEOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
0. OEOO
O.OEOO
O.OEOO
O.OEOO
O.OEOO
O.OEOO
oTcrE'oir ~~
O.OEOO
O.OEOO
O.OEOO
O.OEOO
O.OFOO
iJToTOO ~-
O.OEOO
""O.OEUO
O.OEOO
O.OEOO
O.OEOO
GYO 600""
O.OEOO
0. OEOO
O.OEOO
O.OEOO
O.OEOO
0. OEOO
0. OEOO
O.OEOO
O.OFOO
O.OEOO
O.OEOO
O.'G'EOO
O.OFOO
O.OEOO
0. OEOO
O.OEOO
O.OEOO
o~. OEtro""
O.OEOO
O.OEOO
O.OEOO
O.OEOO
O.OEOO
"0". OET)0
O.OFOO
O.OEOO
O.OEOO
O.OEOO
O.OEOO
~o~. OEOO
O.OEOO
O.OEOO
O.OEOO
O.OEOO" "
O.OEOO
0".-0BOTi
O.OEOO
0~. OEOD
O.OEOO
"O.OEOO
O.OEOO .
" ' " DTCJRJO
O.OEOO
O.OEOO
O.OEOO
O.LEOO
O.OEOO
1 . OE02
1.0E02
1/OE02
1 . 0 E 0 2
l.OEO/
1.0E02
I ."01(52""
1.0E02
1.0E02
1.0E02
1.0E02
1.0E02
rrop.or-
1.0E02
1.0E02
1.0E02
l.OEO 2
l.OEO 2
r.'o'Einr
1.0E02
1.0F.02
l.OEO 2
1.0E02
l.OEO 2
l.OEO 2
1.0E02
l.OEO 2
1.0E02
l.OEO?
1.0E02
I.OF02
1. OE02
1.UE02
l.OEO 2
l.OEO?
1.0E02
I7ITFOZ
1.0F02
l.OEO 2
1 .OE02
1.UE02
1.0F02
"H 0 EO 2
1.0E02
1. OE02
l.OEO 2
1.0E02
1.0E02
TTDTDT"
1.0E02
1 . 0 E 02
1.0E02
l.oEO?
1.0E02
TnJEUZ
1.0E02
r. OE02
1.0E02
1.0 E02
1.0E02
TTDEUZ"
l.OEO 2
l.o E02
1.0E02
l.T)E02
l.OEO 2
9
29
38
47
56
65
-~77T
83
92
101
10
11
•"TZ"
13
14
15
16
17
"" if;'
19
i
21
30
39
48
57
66
75
84
c:>3
102
2
22
31
40
49
-5K
67
76
H5
94
103
"3
23
32
41
50
59
68
77
86
95
104
4
~?4
33
42
51
60
69
'" TP
87
96
105
5
?•->
29
38
"""47""
56
""""65"
74
"83""
92
101
110
"11"
12
_ j.^ —
14
15
16
"17
18
~jq—
20
2
22
31
40
4Q
58
67
76
85
94
' - T07 "
3
23
32
41
50
~5T~
68
77
86
95
104
4
24
33
42
51
60
" -69-
78
87
96
10S
5
- z^
3A
41
52
61
70
fTJ—
HR
97
106
S"
26
-------
1 U ,
1 /. '
1 50
iLl
1^?
153
154
155
156
157
] 58
15Q
1 6 '
16 !
16?
16 '3
164
1 6'-.
1^6
16 /
1 6
16')
170
171
17?
17-*
174
175
1 76
177
170
1 7'
i;:r
1 f. 1
l»?
183
1 °4
IP 5
1^6
If 7
1 88
189
1^0
191
19?
19 3
1P4
1Q5
196
197
198
1QQ
200
351
l.ot-03
1 .OF03
1.0F03
} .Op03
1.0^03
1.0F03
1.0^03
1.0F03
1 .OF03
1.0F03
1 .OF03
t .OF03
] .OFOT "
1 .01-03
1.0^03
1 .OFOb
l.Of-03
1.0F03
l.OFOJ '"
1.0-03
1 .OF03
1 .0^03
i . OF03
i .of-03
1.0P03
1 .OF03
1 .i"-03
] . OFD3
1 . o F 0 3
1 . 'F03
i ,r,^o3
i . ! • . i v-j
l.r Ln3
1 .0^03
1.01-03
1.' -o"
1 .orn?
1 . '"• - 0 3
1.0F03
1 .OF03
1 .OF03
1.0 FOB
] .OF03
I.OF03
1.0F03
1.0PQ3
1.0F03
1.0F03
1.0FQ3
1.0F03
1.0F03
1 ."F03
1.0F03
5 . 0 F 0 2
5.0F02
5.0E02
5.0F02
5.0E02
5.0E02
5.0EO"2
5.0F02
5.0602
5.0E02
5.0E02
5.0E02
B.0^02
5.0E02
5.0F02
5.0F02
5.0F02
5.0E02
5.0E02
5.0F02
5.0F02
5.0F02
5 . 0 F 0 2
5.0F02
5.DF02
5.0F02
5.0F02
5.0F02
5.0F02
5.0F02
5 . 0 F 0 2
5.0F02
5.0F02
5.0E02
5.0F02
5.0F02
5.fTFo2
5.0E02
5.0F.02
5.0F02
5.0E02
5.0F02
5.0ED2
5.0E02
5.0E02
5.0E02
5.0E02
5.0E02
5.0E02
5.0E02
5.0E02
5.0E02
5.0E02
5 . OE 04
5.0E04
5.0E04
5.0E04
5 . OE 04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.WG4
5.0E04
5.0E04
5.0E04
5.0EOA
5.0E04
5. OF 04
5. OF 04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5.0E04
5 . OE 04
5. OF 04-
5 . OF 04
5. OF 04
5. OF 04
5.0E04
5 . OE 04
5.0C04
5. OF 04
5.0E04
5.0E04
5.0E04
b . OE 04
5.0E04
5.0E04
5.0E04
" "5.0E04
5.0E04
5.0E04
5.0E04
5 . OE 04
1 .OfcOO
l._OEOO
l.OEOO
l.OEOO
l.OEOlj
l.OEOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
" "l.DFOTT
l.OEOO
l.'OEOb"
l.OEOO
l.OEOO
l.OEOO
r.'OETJG"
l.OFOO
l.OEOG
l.OFOO
l.OEOO
l.OEOO
l.OFOO
l.OFOO
1 .oeoo
l.OEOO
l.OFOO
l.OEOO
l.OEOO
l.OFOU
l.OFOG
l.OHOO
l.OFOO
l.OFOO
i.oror
l.OFOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
" l.OFOO"
l.OEOO
l.OEOO
l.OFOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO
l.OEOO"
0.0 FOO
0. OfcOO
O.OEOO
O.OEOO
" O.OEOO
O.OEOO
O.OEOO
O.OEOO
O.OEOO
O.OEOO
~CT. 0~EOO
O.OEOO
"TT70FOO
O.OEOO
^O.OFOO
O.OFOO
O.OEOO
O.OEOO
OVDHTO ~
O.OFOO
0. OEOO
O.Ob 00
o.o too
0. OFOO
o. oeoo
O.OFOO
0. OEOO
O.OEOO
0. UFOO
O.OFOO
O.OEOO
O.OFOO
O.OEOO
o.oroo
O.OFOO
O.OFOO
(TTCTEOn" ~
O.OFOO
O.OEOO
O.OEOO
O.OEOO
O.OEOO
U7TTEW "
O.OEOO
O.OEOO
O.OEOO
"0."0"EOO
O.OEOO
O.OEOO
O.OEOO
0".OEOO
O.OEOO
O.OEOO
i.uEOk
i.OE02
1.0E02
1.0E02
1.0E02
1.0E02
1.0E02
1.0F02
1.0E02
1.0E02
1.0E02
1.0F02
1.0k 02
1.0E02
1.0 F02
1.0E02
1.UE02
1.0F02
" TTT7FD2
1.0F02
1.0F02
1 . 0 b 0 2
1.0E02
1.0F02
l.OfcO?
1.0EU2
l.OfcO?
1 . 0 F 0 2
i. 01-02
1 .UFU2
1.0E02
1 . o F 0 />
i • uE02
1 . 0 F u 2
1.0 F02
1 . 0 F 0 2
'TTUFCT?
1.0F02
l.OFO?
1.0Fu2
1.0E02
1 . 0 E 0 2
"TTDTOT
1.0E02
1.0E02
1.0E02
1.0E02
1.0E02
1.UE02
1.0E02
1.0E02
1.0E02
1.0F02
34
43
"'52
61
70
79
88
97
"106
6
~26
35
44
53
62
71
80
89
• -.53-
107
7
27
36
45
54
63
72
81
90
99
108
8
28
37
46
5 5
•" 6~4
73
82
91
100
110
"""9"
29
38
47
56
6b
74
83
92
101
110
35
44
53
62
71
RO
89
98
107
7
"27
36
45
54
" 63
72
"ftl
90
9~9~ "
108
"~""R
28
37
46
55
64
~73
82
91
100
109
9
2c->
3R
47
56
_ - -_-5_
74
81
92
101
109
J7J--
11
12
13
"14"
15
16
17
18
19
20
-------
Prepared for presentation at the 44th Annual Conference of the Water
Pollution Control Federation which was held October 3-8, 1971,
San Francisco, California.
UPPER POTOMAC ESTUARY
EUTROPHICATION CONTROL REQUIREMENTS
By
i
Norbert A. Jaworski
2
Leo J. Clark
3
Kenneth D. Feigner
Technical Report 53
April 1972
i
Jaworski, Dr. Norbert A., Chief, Grosse lie Field Site, EPA, Office
of Research and Monitoring, 9311 Groh Road, Grosse He, Michigan 48138
2
Clark, Leo J., Chief, Engineering Section, Annapolis Field Office, EPA,
Annapolis Science Center, Annapolis, Maryland 21401
Feigner, Kenneth D., Sanitary Engineer, EPA, Office of Water Programs,
Systems Analysis and Economics Branch, Washington, D. C. 20242
-------
-------
TABLE OF CONTENTS
Title Page
Introduction 1
Brief Description of the Study Area 2
Water Quality Problems 4
Nutrient Concentrations and Sources 9
Eutrophication Control Requirements 14
Nutrient Criteria 16
Wastewater Management Zones 18
Water Quality Simulation Models 19
Maximum Constituent Loadings Per Zone 22
Seasonal Waste Treatment Requirements 23
1. Ultimate Oxygen Demand 23
2. Phosphorus and Nitrogen 25
Selection of Unit Processes to Achieve Water
Quality Objectives 28
Estimated Costs 31
Management Planning 32
Summary 34
References 41
-------
-------
LIST OF TABLES
Number Title Page
1 Water Quality Problems, Upper Potomac Estuary . . 6
2 'Average Range of Concentration, Summer Conditions,
Upper Potomac Estuary 10
3 Summary of Major Nutrient Sources, Upper and
Middle Reaches of the Potomac Estuary 11
4 Subjective Analysis of Algal Control Requirements . 15
5 Maximum UOD, Phosphorus, and Nitrogen Wastewater
Loadings for Low-flow Summer Conditions .... 24
IV
-------
LIST OF FIGURES
Number
A map of the Potomac Estuary showing wastewater
discharges and loading zones 1
A map of the Upper Potomac Estuary indicating
major water quality problems 2
A chronological history of nutrients entering
the Upper Potomac Estuary from wastewater
discharges and resulting biological
communities 3
Observed and simulated NH3, N0£ + N03, and
chlorophyll profiles for the Upper Potomac
Estuary 4
Observed and simulated annual phosphorus profiles
for the Potomac Estuary at Indian Head 5
Simulated annual nitrogen profiles for the Potomac
Estuary at Indian Head 6
-------
-------
INTRODUCTION
Based on studies by the U. S. Public Health Service beginning in
1965, the conferees of the Potomac River-Washington Metropolitan Area
Enforcement Conference agreed on May 8, 1969, to limit the amount of
biochemical oxygen demand, phosphorus, and nitrogen which could be
discharged into the Upper Potomac Estuary from wastewater treatment
facilities. The conferees recognized a need, not only for high degrees
of wastewater treatment for t'-r- reduction of carbonaceous and nitrogenous
oxygen demanding material, but ,;iso a need, for the control of eutro-
phication.
Additional detailed studies by the Chesapeake Technical Support
Laboratory (CTSL)* of the Federal Water Quality Administration** to
further define the interrelationships among wastewater inflow, freshwater
inflow, and water quality in the Potomac Estuary were undertaken in
November 1969. These studies had two purposes: (1) to refine the
allowable oxygen demanding and nutrient loadings previously established
and (2) to determine the feasibility of using the estuary as a municipal
water supply source.
Presented herein is a summary of numerous reports published by CTSL
with major emphasis on the eutrophication control aspects developed in
the recent studies.
* Now the Annapolis Field Office
** Now the Environmental Protection Agency
-------
BRIEF DESCRIPTION OF THE STUDY AREA
The Potomac River Basin, with a drainage area of approximately
38,000 square kilometers (km?), is the second largest watershed in the
Middle Atlantic States. From its headwaters on the eastern slope of
the Appalachian Mountains, the Potomac flows first northeasterly and
then generally southeasterly some 644 km, flowing past the Nation's
capital. The Potomac is tidal from Washington, D. C., to its confluence
with the Chesapeake Bay, a distance of 183 km (Figure 1).
The study area includes the tidal portion, which is about 60 meters
(m) in width at its uppermost reach near Washington and broadens to
nearly 10 km at its mouth. Except for a 7.5 m shipping channel and a
few reaches where depths up to 30 m can be found, the tidal portion is
relatively shallow with an average depth of approximately 5.5 m.
Of the 3.3 million people living in the entire basin, approximately
2.8 million reside in the upper portion of the Potomac Estuary within
the 7,300 km? which comprises the Washington Metropolitan Area. The
lower area of the tidal portion, which drains 8,300 km?, is sparsely
populated.
The upper reach above Indian Head, although tidal, is essentially
fresh water. The middle reach is normally the transition zone from
fresh to brackish water. The lower reach is mesohaline with chloride
concentrations near the Chesapeake Bay ranging from approximately 7,000
to 11 ,000 mg/1.
-------
The average freshwater flow of the Potomac River near Washington,
before diversions for municipal water supply, is 305 cubic meters per
second (cms) with a median flow of 185 cms. The flow of the Potomac is
virtually unregulated and is thus characterized by extremely high and
flashy flows often approaching 2,500 cms during flood conditions and
30 cms during droughts.
-------
WATER QUALITY PROBLEMS
Early historical observations of the water quality conditions
include reports that in the late 1790's President Adams swam in the
Potomac Estuary near Washington, D. C. By the 1860's when Abraham Lincoln
was president, the canals leading into the Potomac Estuary, as well as the
Potomac Estuary itself, often emitted objectionable sewage odors forcing
Mr. Lincoln to leave the White House at night. From the year 1870, when
the first sewers and culverts were constructed, to the year 1938, when the
first primary treatment plant was built, almost all of the sewage from the
Washington Metropolitan Area was discharged untreated into the Potomac
Estuary.
The burgeoning population growth in the Washington Metropolitan Area
has compounded the water quality management problem. The accelerated
population growth has completely outstripped attempts to provide adequate
facilities for wastewater treatment. In addition, much of the growth has
been uncontrolled in nature and location, and it is now difficult to pro-
vide adequate wastewater collection and treatment within the limited
space available for such facilities in the area. Changes in composition
of the wastewater, mainly in the phosphorus content, have also had a pro-
nounced effect on water quality.
Since the first sanitary survey was made by the U. S. Public Health
Service in 1913 [1], the water quality with respect to bacterial den-
sities and dissolved oxygen levels in the Washington Metropolitan Area has
been degraded as a result of the discharge of either untreated or
inadequately treated municipal sewage.
-------
The upper estuary has been divided into four reaches according to
type and source of pollution as itemized in Table 1 and shown in Figure
2. There are about 90 kilometers of the upper estuary degraded with
the effects of eutrophication being pronounced in approximately 50
kilometers. In addition, the Upper Potomac Estuary, including the
Anacostia Tidal River, is subjected to periods of high concentrations of
sediment.
-------
Table 1
WATER QUALITY PROBLEMS
Upper Potomac Estuary
Reach
Kilometers
of River
Affected
Major Type
of
Pollution
Major Source
of
Pollution
Chain Bridge to
Mains Point
Mains Point to
Piscataway Creek
Piscataway Creek
to Maryland Point
Anacostia Tidal
River
Frequently high
11 bacterial counts
Low-dissolved
16 oxygen concen-
trations
Nuisance algal
50 growths
Frequently high
13 bacterial counts
and low-dissolved
oxygen concen-
trations
Overloaded sanitary
sewers and combined
sewer overflows
Effluents from
wastewater treatment
facilities
Nutrients in waste-
water discharges
Combined and sanitary
sewer overflows
-------
During initial studies of the estuary, major emphasis was placed on
the high bacterial and low-dissolved oxygen problems [2] [3]. More
recently, the nuisance algal problem has also been included.
The time frame of algal problem development has been developed from
several studies as summarized by Jaworski et al. [4]. As shown in Figure
3, there have been historical invasions of nuisance growths in the Upper
Potomac Estuary.
From a review of data in Figure 3, it would appear that nuisance
conditions did not develop linearly with an increase in nutrients.
Instead, the increase in nutrients appeared to favor the growth and
eventually th'e domination by a given species. As nutrients increased
further, the species in turn was rapidly replaced by another dominant form.
For example, water chestnut was replaced by water milfoil which in turn
was replaced by blue-green algae, mainly Anacystis.
The massive blue-green algal blooms, which have occurred every summer
since 1960, appear to be associated with large increases in phosphorus and
nitrogen loadings in the upper reaches of the Potomac River tidal system
(Figure 3). The blooms have persisted since the early 1960's although
during this period the amount of organic carbon from wastewater was
reduced by almost 50 percent when compared to that discharged prior to
1960.
Under warm temperature and low-flow conditions, large standing crops
of this alga develop forming green mats of cells. Chlorophyll ^concen-
trations range from approximately 50 to over 200 yg/1 in these areas of
-------
dense growth which at times extends over approximately 80 km of the upper
and middle reaches of the estuary. These high chlorophyll levels are
5 to 10 times those reportedly observed in other eutrophic waters by
Brezanik et al. [5] and by Welch [6]. During a dense bloom, the dry
weight of cells ranges from 10 to 25 mg/1 which is almost twice those
reported for the lakes in Madison, Wisconsin.
In the mesohaline portion of the lower reach of the Potomac Estuary,
the algal populations are not as dense as in the freshwater portion.
Nevertheless, at times large populations of marine phytoplankton
(primarily the dinoglagellates Gymnodinium sp. and Amphidinium sp.)
occur producing what are known as "red tides."
-------
NUTRIENT CONCENTRATIONS AND SOURCES
The concentration of nutrients along the estuary varies as a function
of wastewater loading, temperature, freshwater inflow from the upper
basin, biological activity, and salinity. The annual distribution of the
various nutrient concentrations has been reported by Jaworski et al. [4],
and the summer levels are summarized in Table 2 for five key stations
along the estuary.
In the vicinity of the Woodrow Wilson Bridge, there is an increase in
alkalinity, total phosphorus, N02 + NOs nitrogen, and ammonia nitrogen
with a corresponding decrease in pH, all of which can be attributed to the
1230 million liters per day of wastewater discharged in the Washington
Metropolitan Area. The rapid disappearance of the ammonia nitrogen bet-
ween Woodrow Wilson Bridge and Indian Head is caused by the oxidation of
NH3 to N02 + N03 by the nitrifying bacteria. The sharp drop in N0£ + N03
nitrogen between Indian Head and Maryland Point is attributable to the large
uptake by the pronounced algal growths in this area.
A complete analysis of the nutrient sources in the Upper Potomac
Estuary has been made by Jaworski et al. [4]. A summary of the major
sources is presented in Table 3 for low, median, and high Potomac River
flows.
-------
Table 2
AVERAGE RANGE OF CONCENTRATION
SUMMER CONDITIONS
Upper Potomac Estuary
Station and
Kilometers from
Chain Bridge
Total N02 + N03 NH3
pH Alkalinity Phosphorus Nitrogen Nitrogen
(units) (mg/1) (mg/1) (rng/1) (mg/1)
Chain Bridge
(0.0)
W. Wilson Bridge
(19.5)
Indian Head
(49.3)
Maryland Point
(84.3)
301 Bridge
(104.7)
7.5 - 8.0 80 - 100 0.08 - 0.20 0.3 - 1.0 0.10 - 0.50
7.0 - 7.5 90 - 110 0.30 - 1.20 0.8 - 1.2 1.00 - 3.00
7.2 - 8.0 70 - 90 0.20 - 0.40 0.5 - 1.5 0.10 - 0.50
7.5 - 8.2 60 - 85 0.10 - 0.25 0.1 - 0.3 0.05 - 0.30
7.5 - 8.0 65 - 85 0.05 - 0.20 0.1 - 0.2 0.05 - 0.20
-------
Table 3
SUMMARY OF MAJOR NUTRIENT SOURCES
Upper and Middle Reaches of the Potomac Estuary
Low-flow Conditions
(Potomac
Carbon
Nitrogen
Phosphorus
(Potomac
Carbon
Nitrogen
Phosphorus
River Discharge
Upper
Basin
Runoff*
(kg/day)
77,100
3,000
450
River Discharge
159,000
18,100
2,400
(95 % of time
at Washington,
Percent
of
Total
52
10
4
Median-flow
(50 % of time
at Washington,
68
40
18
exceeded)
D. C. = 40
Estuarine
Wastewater
Discharges
(kg/day)
72,600
27,200
10,900
Conditions
exceeded)
D. C. = 185
72,600
27,200
10,900
cubic meters/sec)
Percent
of
Total Total
(kg/day)
48 148,700
90 30,200
96 11,350
cubic meters/sec)
32 231 ,600
60 45,300
82 13,300
High-flow Conditions
(5 % of time exceeded)
(Potomac River Discharge at Washington, D. C. = 1150 cubic meters/sec)
Carbon 680,000 90 72,600 10 752,600
Nitrogen 185,000 87 27,200 13 212,200
Phosphorus 10,000 47 10,900 53 20,900
* Upper basin runoff includes both land runoff and wastewater discharges in upper
basin.
-------
12
When considering only upper basin runoff and wastewater discharges
to the estuary as summarized in Table 3, it can be concluded that the
order of percentage of nutrients controllable by wastewater treatment is
(1) phosphorus, (2) nitrogen, and (3) carbon.
While the controllable phosphorus and nitrogen percentages decrease
at higher flows, these conditions usually occur during the months of
February, March, and April, when temperatures and algal crops are lowest.
Since nuisance algal conditions occur primarily in the upper or the fresh-
water portion of the estuary, the higher flow effects are reduced consider-
ably by the time the blooms are most prolific during the months of July,
August, and September.
Under low- and median-flow conditions, both nitrogen and phosphorus
are largely controllable. If allowances are made for atmospheric contri-
butions of nitrogen, only an approximate 2200 kg/day of nitrogen could be
added to the upper estuary, which is less than 10 percent of the nitrogen
in the wastewater discharges. Thus, during summer months, algal control
by management of nitrogen instead of phosphorus appears to be a feasible
alternative.
Using only 0.1 percent of the transfer rate, the amount of carbon (COp)
potentially available from the atmosphere was estimated to be approximately
431,000 kg/day [4]. Moreover, with the upper reach of the estuary well
mixed due to tidal action, recruitment of carbon from benthic decomposition
appears to be a significant source of inorganic carbon as well. When all
-------
13
potential sources are considered, it appears that management of carbon
for algal control is not a feasible alternative at the present time.
-------
14
EUTROPHICATION CONTROL REQUIREMENTS
For water quality management purposes, the Upper Potomac Estuary
may be considered hypereutrophic when nuisance plant organisms become
predominant as is now occurring with the blue-green algae. Four major
water use interferences have been offered by Jaworski et al. [4]
including the desired reduction in the algal standing crop for each of
the conditions as shown in Table 4.
The first two are related to the oxygen budget. Studies have demon-
strated that during the summer months more ultimate oxygen demand is
added to the upper estuary as a result of these algal growths than from
the present wastewater discharges, though this demand may not be fully
exerted.
The aesthetic and recreational potential of the upper estuary are
impaired by the extensive mats of algae which cause objectionable odors,
clog marinas, and cover beaches and shorelines. The potential use of the
estuary as a water supply source could also be impaired because of possible
toxin problems associated with the blue-green algae.
Of the four interferences, the highest reduction percentages are for
control of algal growths to prevent nuisance conditions. From the data in
Table 4, a 75 to 90 percent reduction in chlorophyll a^ concentrations will
be required to limit chlorophyll levels to approximately 25 yg/1, the
concentration selected as the desired upper limit for eutrophication control
in the Upper Potomac Estuary.
-------
oo
I—
"^*"
uu
3^~
UJ
cc
t—i
ZD
cr
1 i 1
ULJ
C£.
O
a;
i—
o
CJ>
"vt- i
e^
cu crs
, — i
-Q et
ro
(— U.
0
OO
i — i
00
1
Lul
i — i
H-
O
LU
r-^
CQ
1
OO
o
13 a.
-o o
cu s-
CU CD
CD C
4J ^
c c;
CU ro
O +->
s- oo
cu
a. 4->
-o cu
0) t-
s- s-
•r~ ^3
3 O
CT
CU 4-
a; o
•4->
•i —
•i —
i
~T3
CU
£_
•i —
00
CU
Q
LO
co
i
LO
in
r^
">
CD
E
LO
•
0
*
CU
o
c
cu
s_
cu
4 —
S-
4- O)
O -4-J
C
CU ' — '
•^3
3 +->
•M C
•r- CU
c s_
CD S-
ro :3
1 —
1 — ^
en
E
O
•
OO
o
+j
LT5
*
i —
3
O
i^
0
cu
to o
c: c:
o cu
•r- S-
4~> CU
ro 4-
CJ S-
•r- CU
T3 •*->
c e
1 1 1— 1
i —
OJ
CQ
0 C
Q O
•i —
4- -(->
O ra
s_
r— 13
4-J
CD rO
E 00
>^
cu
o
c
cu
c
cu
S- o^
O £-
cu
>>•*->
•M c:
•r- >— <
^_
ro Ol
3 CO
s_ s-
OJ (U
ra rO
3 3:
_a
TD
cu
13 C
ro O
C_J> T—
-( '
C ro
0 i-
•1 — -| —
to Q-
00 00
CU CU
s- cu
CL
CU i—
Q ro
CD
O i—
o
CO
1
LO
*-O
! — -
CD
E
o
•
LO
1 —
•^^
CD
E
0
00
o
4^>
LO
1 —
cu
oo Q
rO O
a> CQ
s»_
o a>
c: +->
i — i ro
f^
4- -r-
O •<->
i —
r— ID
^>^
CD C
E T-
c
cu
CD
>^
X
o
I—
ra
4->
O "O
t— ro
O
4 — i
O
cn
cu c:
oo •«-
ro T3
CU C
S- ro
0 E
C CU
1-1 Q
0
cn
i
LO
p —
*
-X
1 —
*^
CD
~1
LO
CM
i —
^^
CD
3-
O
Ln
CM
A
0
-M
o
o
r^
ro|c
O
r— •!—
r— +J
>, ro
.£= S-
CL+J
O C
S- CU
O 0
r— C
-C O
0 0
o
., —
•M
CU
r~
+-> 00
oo c:
CU O
0
ra C
CU rd
S- oo
O •!-
CU 3
C
•>
o
c:
v
c~
^)
c:
12
0
c
v^
£Z
>
C
3T
o
c
^
c
)
•o
cu
cz
•1 —
C( —
O)
"O
c
13
oo
c
•r-
X
0
1—
en
o
LO
CM
A
O
O
o
S-
4-
CU
CD
c
rC
00
C
O
C
O)
o
>*>
O-
o
00
a
•i—
-t->
c:
o
o
£
O
O
I—
-O
I
OJ
o
c
ro
I/)
•r—
=3
C
S-
o;
-o
cz
E
O
o
S-
OJ
QJ
S-
c:
o;
01
CD
to
OJ
-------
16
NUTRIENT CRITERIA
The desired nutrient criteria were developed using data from:
(1) algal composition analysis, (2) annual nutrient cycles and longi-
tudinal profiles, (3) bioassay studies, (4) review of historical data,
(5) comparison with a noneutrophic estuary, and (6) algal modeling.
Each method was used independently in the development of a nutrient
phytoplankton relationship in the Potomac Estuary.
When investigating the role of nitrogen and phosphorus in eutrophication
of the Potomac Estuary, a detailed study of the movement of these nutri-
ents was made using both a real-time dynamic water quality estuary model
[8] and an average tidal mathematical model [9]. The dynamic model was
expanded to predict the concentration of chlorophyll Abased on the
utilization of inorganic nitrogen. In Figure 4, predicted NC>2 + NOs,
NH3, and chlorophyll a_ profiles are presented. The predicted maximum
concentrations conform closely to observed data in both distribution and
magnitude.
From field data, bioassay studies, and mathematical model runs, it
was concluded that the standing crop of blue-green algae can be pre-
dicted using the nitrogen cycle. This further supports the premise that
the nitrogen availability appears to control the standing crop. Similar
methods also indicated that if total phosphorus were in the range of 0.03
to 0.1 mg/1, the desired 25 yg/1 level of chlorophyll could be realized.
-------
17
Based upon the six independent methods of analysis and the 25 yg/1
level of chlorophyll a_, the following nutrient criteria were developed
for reversing the eutrophication process occurring in the freshwater
portion of the Potomac Estuary:
Parameter Concentration Range
Inorganic Nitrogen 0.30 - 0.5 mg/1
Total Phosphorus 0.03 - 0.1 mg/1
Since there are over 5.0 mg/1 of inorganic carbon in the estuary, even
under maximum bloom conditions, no criterion for carbon could be established
at the present time.
The lower values in these ranges are to be applied to the freshwater
portion of the middle reach and to the embayment portions of the estuary
in which the environmental conditions are more favorable toward algal
growth. The higher values are more applicable to the upper reach of the
Potomac Estuary which has a light-limited euphotic zone of usually less
than 0.60 meters.
Since the growth of massive blue-green algal mats are apparently
restricted to the freshwater portions and dinoflagellates are often
encountered in the mesohaline environment, no specific nutrient criteria
have been established for the mesohaline portion of the Potomac Estuary.
It appears that if the aforementioned nutrient criteria are achieved in the
upper estuary, adequate control of the eutrophication process in the lower
reach of the estuary should also be realized.
-------
18
WASTEWATER MANAGEMENT ZONES
To facilitate the determination of wastewater management require-
ments, the upper and middle reaches of the estuary were initially
divided into three 15-mile (24 km) zones with similar physical character-
istics, beginning at Chain Bridge (see Figure 1). This zoning concept,
patterned after the Delaware Estuary, allows for greater flexibility in
developing control needs and was adopted by the Conferees at the Potomac
Enforcement Progress Meeting on May 8, 1969.
More recent studies in 1970 have suggested that Zone I be divided
into three subzones described as follows:
Subzone Description
I-a Potomac Estuary from Chain Bridge to Mains Point, a
distance of 12.1 kilometers.
I-b Anacostia tidal river from Bladensburg, Maryland, to the
confluence with the Potomac, a distance of 14.4 kilometers.
I-c Potomac Estuary from Mains Point to Broad Creek, a distance
of 12 kilometers.
Discharges into tidal embayments were investigated on an individual basis,
Using the zonal concept, total maximum loadings for each pollutant
were developed for each zone. Allocation of pound loadings for each dis-
charge can be obtained by prorating the zonal poundage using various
bases such as population, drainage areas, geographical subdivisions, and
others.
-------
19
WATER QUALITY SIMULATION MODELS
Water quality simulations and wastewater treatment investigations
were made using the FWQA Dynamic Estuary Model (DEM) and the DECS III,
a general purpose estuarine model. The DEM [8] is a real-time system
utilizing a two-dimensional network of interconnecting junctions and
channels which permits direct inclusion of tidal embayments in the flow
representation. The model is comprised of a hydraulic component that
describes tidal movement and a quality component. The DEM includes the
basic transport mechanisms of advection and dispersion as well as the
pertinent sources and sinks for each constituent. This model was used to
simulate water quality conditions on an hourly basis and to determine
zonal loadings under low-flow conditions.
DECS III is based on a time-dependent tidal average solution of the
basic mass balance equations [9]. This model was used to investigate
seasonal variations in the nitrogen and phosphorus distributions in the
Upper Potomac Estuary.
The interrelationship between ultimate oxygen demand* (UOD) loadings
and dissolved oxygen (DO) in the Potomac Estuary was determined assuming
the following conditions:
Parameter Value
Water Temperature 29.0°C
Freshwater inflow from upper
Potomac River Basin 10.0 CMS
DO standard (average) 5.0 mg/1
DO saturation at 29°C 7.7 mg/1
Background DO deficit 0.7 mg/1
Allowable DO Deficit 2.0 mg/1
* The ultimate oxygen demand represents the sum of unoxidized carbon and
nitrogen
-------
20
In the DO model, the oxidation of carbonaceous and nitrogenous
fractions, including the reaction kinetics, were formulated separately.
Simulation of phosphorus discharges into the Potomac Estuary was
made using second-order reaction kinetics with a deposition rate of
0.05 mg/day at a temperature of 29°C. The allowable phosphorus
loadings were determined based on maintaining an average of 0.1 mg/1 of
phosphorus (P) within Zone I, 0.067 mg/1 (P) within Zone II, and 0.03
mg/1 (P) within Zone III.
For investigating the role of nitrogen in water quality management,
a feedback system of the nitrogen cycle was incorporated into the
dynamic estuary mathematical model similar to that proposed by Thomann
et al. [10]. The model consists of six possible reactions: (1) chemical
and biological decomposition of organic nitrogen to ammonia, (2) bacterial
nitrification of ammonia to nitrite and nitrate, (3) phytoplankton utili-
zation of ammonia, (4) phytoplankton utilization of nitrite and nitrate,
(5) deposition of organic nitrogen, and (6) decay of phytoplankton. With
the area near Woodrow Wilson Bridge being light limiting with respect to
algal growth, the utilization of ammonia by phytoplankton appears to be
insignificant and thus the model was simplified as given below:
Organic Nitrogen
expressed as
Wastewater NH3 Kni N02 + NOs Kn2 Chlorophyll a_
Kn4
Kn3
To the sediments
-------
21
For summer temperatures of 26°C to 29°C, first-order kinetic
reaction rates have been established for the various processes as
given below:
Nitrification by bacteria (Kr^) 0.30 to 0.40
Nitrogen utilization by phytoplankton (Kn2) 0.07 to 0.09
Deposition of algal cells (1(113) 0.005 to 0.05
Remineralization (Kn^.) (less than 0.05)
The reaction rates of the first two processes (nitrification and
nitrogen utilization) have been well established as demonstrated in the
profile shown in Figure 3. The latter two, Kn3 and Kn4, although not
as well defined, do not appear to be as significant. The nitrogen
criteria used for Zones I, II, and III were 0.5, 0.4, and 0.3 mg/1»
respectively.
-------
22
MAXIMUM CONSTITUENT LOADINGS PER ZONE
Using the models and coefficients as described in the previous
sections, zonal loadings were determined for UOD, nitrogen, and phos-
phorus (see Table 5). The loadings presented are maximum allowable
loadings for each zone, assuming that adjacent zones are loaded to
their maximums.
The increase in loadings for the lower zones mainly reflect the
increase in the estuary's volume and tidal transport. Since nitrogen
and phosphorus criteria for the lower zones are more stringent, the
increase in nutrient loadings in this area is not as pronounced as for
UOD.
For the projected 1980 wastewater loading conditions, the antici-
pated percent removal rates for Zone I-c would be approximately 93 per-
cent UOD, 96 percent phosphorus and 93 percent nitrogen. Since Zones II
and III do not currently receive as much wastewater, the removal percent-
ages will not be as high.
-------
23
SEASONAL WASTE TREATMENT REQUIREMENTS
1. Ultimate Oxygen Demand
The maximum allowable UOD loadings, as presented in Table 5 for the
three upper zones of the Potomac Estuary, were developed for low-flow
and summer temperature conditions. During high temperature periods, the
effects of nitrogenous oxygen demanding substances on the dissolved
oxygen budget were determined to be quite significant.
Studies have shown that during very warm periods, when nitrification
rates are high, the nitrogenous component of UOD exerts 250,000 Ibs/day
of oxygen demand as compared to approximately 200,000 Ibs/day from the
carbonaceous demand. During low temperature periods, when the ambient
water temperature is less than 15°C, the effects of nitrification on the
dissolved oxygen budget have been shown to be negligible.
Based on these findings, it was recommended that (1) UOD loadings
presented in Table 5 be applied only under summer conditions, (2) the
removal or oxidation of ammonia in wastewater discharges be provided
whenever the water temperature is above 15°C, and (3) a high degree of
removal of suspended solids (a maximum of 15 mg/1 in the effluent) and
carbonaceous oxygen demanding material (a minimum of 90 percent) be pro-
vided on a year-round basis to prevent the accumulation of sludge deposits
in the vicinity of sewage treatment plant outfalls during cooler weather
and to maintain high DO levels under ice cover.
-------
Table 5
MAXIMUM UOD, PHOSPHORUS, AND NITROGEN
WASTEWATER LOADINGS
FOR LOW-FLOW SUMMER CONDITIONS
(kg/day)
Zone
I-a
I-b
I-c
II
III
Allowable UOD
1,800
1,400
33,800
85,500
171,000
Phosphorus
90
40
400
680
900
Nitrogen
450
140
1,580
2,600
4,100
-------
25
2. Phosphorus and NHrogen
The loadings, as presented in Table 5, were established for low-
flow conditions. During these periods, the nutrient contribution
from the upper basin is insignificant when compa>ed to that contained
in the wastewater discharges.
To determine whether the nitrogen and phosphorus criteria could be
met under varying Potomac River inflows and varying nutrient contri-
butions from the upper basin, an annual simulation was made of conditions
from February 1969 to September 1970. This period was critical because
a drought condition occurred during June and July of 1969, and August
flows were over four times above the average discharge. Thus, both low
and high summer flows were simulated.
Mathematical model analysis of the annual distribution of phosphorus
in the critical algal growing area showed close agreement between the
observed and predicted phosphorus profiles (see Figure 5). Also shown in
Figure 5 are the predicted annual phosphorus profiles resulting from year-
round wastewater phosphorus removal in the upper estuary, assuming:
(1) no control and (2) 50 percent control of the phosphorus loading
originating in the Upper Potomac River Basin. From the data presented in
Figure 5, it was concluded that both (1) the adherence to maximum
allowable phosphorus loadings from wastewater effluents being discharged
directly into the estuary (see Table 5) and (2) a 50 percent reduction of
the total incoming phosphorus load from the upper basin, will be required
-------
26
if the recommended maximum phosphorus criteria are to be realized.
In order to achieve a 50 percent reduction in the present phosphorus
load from the Upper Potomac River Basin, the current overall waste-
water contribution of 2700 kgs/day must be reduced to less than 320
kgs/day.
Because of the more stringent criteria, particularly in the lower
zones including longer transport time, the possibility of recycling
previously deposited phosphorus from bottom muds and the unpredictability
of phosphorus in various forms being transported from the upper basin,
year-round phosphorus removal at all wastewater treatment facilities in
the Potomac River Basin was recommended.
As presented earlier, the necessity for unoxidized nitrogen control
in wastewater discharges to maintain a high dissolved oxygen content in
the Potomac Estuary was restricted to that time of year when water tempera-
tures exceed 15°C. When evaluating the need for annual nitrogen control
to prevent excessive algal blooms, controllability, duration of nuisance
blooms, and temperature become significant factors.
While spring blooms of diatom algal cells have been observed, the
major nuisance blue-green algal blooms of algae usually occur during the
months of July, August, and September. During these months, the controlla-
bility of nitrogen by wastewater treatment is usually greatest and the
water temperature highest.
Mathematical model predictions of inorganic nitrogen concentrations in
critical algal growing areas based on (1) no estuary wastewater nitrogen
-------
27
removal, (2) nitrogen removal during periods with temperatures above
15°C (Apri1-November), and (3) year-round nitrogen removal are presented
in Figure 6. For the nitrogen loading as given in Table 5, the inorganic
nitrogen concentration of less than 0.3 mg/1 can be achieved for drought
conditions such as in June and July. The abnormally high August Potomac
River flow condition and resulting high upper basin loading caused the
nitrogen level to increase to approximately 0.5 mg/1.
While it may be desirable to maintain nitrogen concentrations at or
below the selected criteria at all times, the high flows from the upper
basin during the winter and spring months contribute high nitrogen
loadings which increase the nitrogen concentrations above acceptable
levels regardless of wastewater treatment practices. In considering (1)
that nuisance algal growths occur mainly during the months of July, August,
and September, (2) that seasonal nitrogen removal is generally adequate
for maintaining the desired nitrogen concentration during this time, and
(3) that unoxidized nitrogen control is required only for warm temperature
periods, it was recommended that nitrogen removal for algal control, as in
the case of nitrogenous demand for oxygen enhancement, be limited to
periods when water temperatures in the estuary exceed 15°C.
In developing the seasonal requirements, emphasis was placed on main-
taining a balanced ecological community structure in the upper or freshwater
portion of the estuary. More research efforts in both transport mechanisms
and nutrient algal relationships are needed to determine management require-
ments for the lower or saline portion of the estuary.
-------
28
SELECTION OF UNIT PROCESSES TO ACHIEVE WATER QUALITY OBJECTIVES
The decision, as developed throughout this report as to which
nutrient or nutrients in a natural system should be controlled by
removal from point sources, may depend upon many factors, including
the four listed below:
1. Desired level of nuisance algal reduction,
2. Minimum algal nutrient requirements,
3. Controllability and mobility of a given nutrient, and
4. The overall water quality management needs.
In establishing an overall wastewater management program for the
Potomac Estuary, a need for a high degree of removal of wastewater
carbonaceous and nitrogenous ultimate oxygen demand was established for
maintaining the desired oxygen standards along with a need for a 75-90
percent reduction in algal standing crop. To provide for algal control,
maximum concentration limits for both nitrogen and phosphorus were
adopted. Concentration limits for both were incorporated for the
following reasons:
1. Since the flow of the Potomac River is unregulated and subject
to periods of high runoff, neither phosphorus nor nitrogen can be con-
trolled by wastewater removal alone at all times. The advantage of
controlling phosphorus or nitrogen depends on the flow conditions.
To reduce eutrophication in the entire estuary for years with average
or above average flow conditions, phosphorus control appears to be more
feasible. In the middle and upper estuary, nitrogen control is four times
-------
29
as effective during low-flow years in that the nitrogen criterion for
restriction of algal growth is 10 times that for phosphorus (0.30
versus 0.03 mg/1) while the nitrogen loading from wastewater treat-
ment facilities is 2.4 times that of phosphorus (27,200 versus 10,900
kg/day). Since phosphorus control is more advantageous during high flows
and nitrogen control more advantageous at low flows, removal of both
would be needed to control the nuisance growths effectively.
2. Various investigators have reported that increases in nitrogen
and/or phosphorus can increase heterotrophic activity which in turn
stimulates algal growth, and
3. There is a compatibility between the wastewater treatment methods
to increase dissolved oxygen levels and the methods used to control
eutrophication.
Compatibility in treatment requirements is probably one of the most
important considerations influencing the selection of wastewater treat-
ment unit processes. For example, in order to achieve and maintain the
dissolved oxygen standard in the upper estuary under summer conditions,
a high degree of carbonaceous and nitrogenous oxygen demand removal is
required, whereas the control of algal standing crops is predicated on
phosphorus and nitrogen removal. To obtain a high degree of carbonaceous
oxygen demand removal, an additional unit process is usually required
beyond secondary treatment. If the proper unit process is selected, it
will also remove a high percentage of phosphorus.
-------
30
The removal of the nitrogenous oxygen demand can be satisfied by
one of two methods: (1) by converting the unoxidized nitrogen to
nitrates (commonly called nitrification) or (2) by complete removal of
nitrogen. If a unit process such as ion exchange or biological
nitrification-denitrification is employed, both DO and algal require-
ments for nitrogen can be met.
Recent chemical analyses of the sediments of the Potomac Estuary
indicate high concentrations of heavy metals near the wastewater dis-
charges. Since there are no major industrial waste discharges in the
Washington area, the buildup of heavy metals from the municipal discharges
could become a future control need in that the lower portion of the
estuary is a prime shellfish producing area.
With proper selection of wastewater treatment unit processes, it is
feasible to enhance the DO by removing the carbonaceous and nitrogenous
UOD. In addition, it is feasible also to reduce nuisance algal growth
by removing these nutrients and to reduce the potential hazard of
heavy metals.
-------
31
ESTIMATED COSTS
The present worth cost of providing for additional wastewater
flows and treatment requirements from the year 1970 to 2020,
including operation, maintenance, and amortization cost, has been
estimated to be $1.34 billion, with a total average annual cost of
$64.8 million. The unit treatment processes assumed include activated
sludge, biological nitrification-denitrification, lime clarification,
filtration, effluent aeration, and chlorination.
The tabulation below is a reduction of the initial capital and
operation and maintenance costs to a per capita basis:
1970-1980 1980-2000 2000-2020
Average Population 3,350,000 5,350,000 8,000,000
Initial Capital
Cost/Time Period $570,000,000 $528,000,000 $1,173,000,000
Capital Cost/Person/Year $17.0 $4.9 $7.3
0 & M Cost/Year $25,100,000 $46,200,000 $72,400,000
0 & M Cost/Person/Year $7.5 $8.6 $9.1
Total Cost/Person/Year $24.5 $13.5 $16.4
The above summary, which does include replacement cost, indicates that
the cost of wastewater treatment in the Upper Potomac Estuary is about
$13 to $24/per person/per year. This expenditure, which includes the
cost of the activated carbon process, will renovate the water to the
chemical and bacteriological levels to meet drinking water quality
standards.
-------
32
MANAGEMENT PLANNING
The current program to control water pollution in the National
Capital Region, developed by the 1969 Enforcement Conference, includes
a schedule for completion of the needed treatment facility construction.
For the major waste discharge in the area, the District of Columbia
treatment facility at Blue Plains, progress has been slow.
In the fall of 1970, the parties involved in the Blue Plains problem
developed a "Memorandum of Understanding on the Washington Metropolitan
Regional Water Pollution Control Plan." This memorandum of understanding
was the first formally adopted planning approach to wastewater management
in the Washington Metropolitan Area. It recognized that the maximum
capacity of the waste treatment facility at Blue Plains should be limited
in size and established the basis for financing and cost sharing in the
proposed expansion and upgrading of the facility. It also recognized the
need for the development of a second regional wastewater treatment facility
and a schedule for the development of plans for this facility.
The primary problem to be overcome in achieving the wastewater treat-
ment requirements, as stipulated by the Potomac Enforcement Conference,
is financial. The total capital cost of these improvements, if storm and
combined sewer control and intercept costs are included, is estimated to
be approximately $857,000,000 for the program through 1980.
The capital cost of nutrient control has been estimated to be about
$250,000,000 or about 28 percent of total wastewater collection and treat-
ment cost. Considering wastewater treatment cost only, the capital cost is
-------
33
approximately 44 percent with approximately 85 percent of the operating
cost for nutrient control.
To aid in managing the water supply and waste treatment problems of
the National Capital Region, EPA has proposed the creation of a regional
authority [11]. Public hearings are currently being held to give the
public, state, and local officials an opportunity to offer their views
on the management plan.
-------
34
SUMMARY
In summary, the needs, costs, and mechanisms for controlling eutro-
phication in the Potomac Estuary have been identified and a start has
been made in implementing the program. With a capital cost for nutrient
removal of over $250,000,000, a need exists for continuous efforts to
improve eutrophication control, treatment methods, cost estimates, and
institutional arrangements. A need also exists to maintain a free-flowing
continuous exchange of information among the various agencies conducting
the removal requirement, studies, designing the facilities, and planning
the overall management needs. These interactions are the keystones to
successful management planning.
-------
CHAIN BRIDGE
\ KILOMETERS BELOW CHAIN BRIDGE-Q
>*>
ZONE
WOODROW WILSON BRIDGE
KILOMETERS BELOW CHAIN BRIDGE~24.I
PISCATAWAY
ZONE 11
INDIAN HEAD
KILOMETERS BELOW CHAIN BRIDGE-48.3
J ZONE III
SANDY POIN/V
J \ KILOMETERS BELOW CHAIN BRIDGE-72.4
301 BRIDGE
MARYLAND POINT
PINEY POINT
LEGEND
MAJOR WASTE TREATMENT PLANTS
CHESAPE.
BAY
KILOMETERS
Figure 1
-------
Periodically
High Bacterial
Densit
Maryland Point
Periodically High
Bacterial Densities
and Low Dissolved
Oxygen Levels
Periodically Moderate
Bacterial Densities,
Low Dissolved
Oxygen Levels and
Beginning of
Algal Blooms
Pronounce
Nuisance Algal
Growths
Brackish
Waters
Figure 2
-------
o
O
Q
o
o
so Noayvo
o
o
o
o
o
o
o
§
1
o
to
1
0 O
1 1
1
o
o
o
m"
(VJ
i
8
0
0
rvj
i
o
o
o
in
-^
I
o
o
o
o
^™
1
o
o
o
iT)
N
(Xop/6)|)
N39OdllN 1V101
o>
o
(O
O)
o
m
O)
o
"t
o>
o
CO
en
o
c\j
O)
o
o>
1
o
0
o
0*
1
o
o
o
00
1
8
o
(O
1
o
o
o
-
-------
_o
•s
•s
LJ
O
9
CE
CD
I
L>
O
UJ
OQ
O tO
n a.
LJ
2
O
SE
.o
CM
.0
CM
o
o
O
IT)
OJ
(VI
00
O
(O
6
I
"fr
rvj
O
q
6
-------
U
=J
u.
O
S
(O
*
o
o
I
Q_
|
Z
<
Q
Z
to
ui
P
CD
*" I
I
O
a
cr
cq
o
r>
S g
O
CT
O
U
W
cr
O
a.
CO
O O
a:
^ t
2 I
cn (O
to
cr
O
O
a
O
cr
<
cr
<
u
zi
8g
I I I
co CM — q
d d d d
SfiaOHdSOHd
i
n
d
i i
CM —
d d
m
u
u.
U
ui
Q
o
u
o
a
UJ
13
(O
en
LU
Z
q
o
Figure
-------
LJ
_J
U_
O Q
01 <
CL w
O
cr
<
c '<
z >
< *
a 2
LJ P
cc
UJ
m
< aL
5 u.
i -1
2 <
UJ 5
a: O
O 2
O
cc
UJ
CK
UJ
O
o
cc
ro rvj oJ (\i — — o
N39OdllN OINVOdONI
CD
UJ
U
UJ
U
o
Q.
UJ
UJ
cc
CD
UI
Figi
(O
O)
-------
41
REFERENCES
1. U. S. Public Health Service, "Investigation of the Pollution and
Sanitary Conditions of the Potomac Watershed," Hygienic Laboratory
Bulletin No. 104, Treasury Department, February 1915.
2. U. S. Army Corps of Engineers, "Potomac River Basin Report,"
Vol. 1 - Vol. VIII, North Atlantic Division, Baltimore District,
February 1963.
3. Davis, Robert K., "The Range of Choice in Water Management, A Study
of Dissolved Oxygen in the Potomac Estuary," Johns Hopkins Press,
Baltimore, Maryland, 1968.
4. Jaworski, N. A., Donald W. Lear, Jr., Orterio Villa, Jr., "Nutrient
Management in the Potomac Estuary," Presented at the American Society
of Limnology Symposium on Nutrients and Eutrophication, Michigan
State University, East Lansing, Michigan, February 1971.
5. Brezanik, W. H., W. H. Morgan, E. E. Shannon, and H. D. Putnam,
"Eutrophication Factors in North Central Florida Lakes," Florida
Engineering and Industrial Experiment Station, Bulletin Series
No. 134, Gainesville, Florida, August 1969.
6. Welch, E. B., "Phytoplankton and Related Water Quality Conditions in
an Enriched Estuary," Journal Water Pollution Control Federation,
Vol. 40, pp 1711-1727, October 1968.
7. Lawton, G. W., "The Madison Lakes Before and After Diversion,"
Trans. 1960 Seminar on Algae and Metropolitan Wastes, pp 108-117,
Robert A. Taft Sanitary Engineering Center, Technical Report W61-3,
1961.
8. Feigner, Kenneth and Howard S. Harris,"Documentation Report, FWQA
Dynamic Estuary Model,"FWQA, U. S. Department of the Interior,
July 1970.
9. Thomann, Robert V., "Mathematical Model for Dissolved Oxygen,"
Journal of the Sanitary Engineering Division, ASCE, Vol. 89,
No. SA5, October 1963.
10. Thomann, R. V., Donald J. O'Connor, and Dominic M. DiTorro,
"Modeling of the Nitrogen and Algal Cycles in Estuaries," presented
at the Fifth International Water Pollution Research Conference,
San Francisco, California, July 1970.
11. Environmental Protection Agency, "National Capital Region Water and
Waste Management Report," Washington, D. C., April 1971.
-------
-------
AUT0-QUAL MODELLING SYSTEM
Technical Report 54
Environmental Protection Agency
Region III
Annapolis Field Office
March 1973
-------
Errata
p. 67 4 statements below statement no. 20
read;
READ(NRD,30) I,X(J),Y(J)
p. 82 statement no. 50
read;
50 ALPHA(J,2)=Z(J)*A(J)/XLEN
p. 154 4 statements below statement no. 20
read;
READ(NRD,30) I,X(0),Y(J)
p. 166 2 statements below statement no. 150
read;
IF (DT.GE.24.0) DT=24.Q
-------
Annapolis Field Office
Environmental Protection Agency
Region III
AUT0-QUAL M0DELLING SYSTEM
Technical Report 54
Robert L. Crim
Norman L. Lovelace
March 1973
-------
-------
TABLE OF CONTENTS
Page
I. INTRODUCTION i
II. MODEL DEVELOPMENT 1
A. Channel Representation 2
B. Hydraulic Developemnt 10
C. Quality Development
1. Conservative Substances 16
2. Non-Conservative Substances 19
a. Carbonaceous Oxygen Demand 20
b. Nitrogenous Oxygen Demand 22
c. Dissolved Oxygen 23
D. AUT0SS Solution Technique 27
E. AUT0QD Solution Technique 31
III. APPENDIX A (AUTOSS-PROGRAM DESCRIPTION/OPERATING
INSTRUCTIONS) 35
A. Program Logic 35
B. Data Description 40
C. Entering DAta 47
D. Output Description 50
E. Data Codes 53
F. Running Tips 54
G. Control Card Example 55
H. Variable Glossary 56
-------
I. Subroutine Descriptions 58
J. Program Listing 60
K. Example Problem 95
1. Problem Statement 95
2. Data Deck 98
3. Program Output 103
IV. APPENDIX B (AUT0QD-PROGRAM DESCRIPTION/OPERATING
INSTRUCTIONS) 133
A. Program Logic 133
B. Data Description 134
C. Entering Data 135
D. Output Description 139
E. Data Codes 140
F. Running Tips 140
G. Control Card Example 141
H. Variable Glossary 142
I. Subroutine Descriptions 145
J. Program Listing 148
K. Example Problem 190
1. Problem Statement 190
2. Data Deck 191
3. Program Output 198
-------
V. APPENDIX C (APPLICATION, VERIFICATION & SENSITIVITY) 266
A. Application Principles 266
B. Calibration Principles 267
C. Sensitivity Analyses 268
D. Verification Principles 299
VI. REFERENCES 300
-------
-------
INTRODUCTION
The planning requirements contained in sections 303(e) and 208
of the recently passed Public Law 92-500 (Amendments to the Federal
Water Pollution Control Act), have underscored the need for easily
operated and accurate water quality planning tools. This report
describes two mathematical models that have been designed to meet
the specific needs of Federal, State or local planning agencies.
These two models are subsets of a large and complex system of
models known as the "Comprehensive Modelling System" (CMS)[1], It
was recognized early that the CMS programs were essentially experi-
mental tools for scientific investigation. As such, they did not lend
themselves to easy operation by the general engineering community.
At the same time it was recognized that the field of water
quality simulation was becoming self sufficient and that models were
being developed for which no one had any real use. Large amounts of
resources were being spent attempting to modify old programs to
handle different conditions in different geographical areas.
It seemed the proper course to develop, from anew, a set of
planning tools that incorporated the lessons learned from the CMS
programs, yet were designed with planning needs in mind. The result
of this effort is the AUT0-QUAL set reported on here.
The AUT0-QUAL set is designed specifically for water bodies where
widths are small relative to their length. Most freshwater streams
and tidal tributaries to estuarine bays fit that description. These
-------
are waters whose net hydraulic circulation patterns are essentially
unidirectional.
Compatibility with the ST0RET [2] system, the GPSF [3] system
and the AUT0MAP [4] project has been designed in by the use of a
river mile index (RMI) for positioning inputs and diversions as well
as geometric data and physical features. This should facilitate the
storage and retrieval of the data required by the models and more
closely tie the modelling activities to the planning process.
The notion of a fixed point in a freshwater system or a free
flowing system may seem foreign initially. Specifically, it may be
difficult to reconcile the transfer from the Lagrangian framework,
best exemplified by the venerable Streeter-Phelps [5] equations to
the Eulerian system used in the AUT0-QUAL set.
The reader should recognize that the classic biochemical oxygen
demand (BOD) equation:
-K,t
L = LQe 1
where, L = BOD at any time
L0 = BOD at t=0
t = time
ki = deoxygenation rate
e = naperian log base
is the integrated (with time) form of the standard first order decay
equation ;
dL - v i
Ht " "klL
-------
m
which is a gross simplification of the mass transfer equation:
2
u - E
where; x = distance
u = velocity of flow
E = dispersion coefficient
and the sink term is -kiL.
Essentially the Streeter-Phelps equation as commonly used assumes
that all physical features are constant along a stream bed, that the
water particles do not intermingle, and that only time and decay rate
(ki) determine the resulting BOD concentration.
There is no good reason to cling to those assumptions. A section
of this report compares the results of the AUTO-QUAL set and the
Streeter-Phelps equation under identical conditions. Those compari-
sons demonstrate the validity of the Eulerian framework in free flowing
streams.
-------
-------
MODEL DEVELOPMENT
The development of AUT0SS and AUT0QD has been broken into sections.
Because the two models have many of the same properties, a general
development is given first. The last two sections will deal with each
model separately and discuss the particular solution techniques used.
-------
CHANNEL REPRESENTATION:
The first problem to be resolved in a model development is how
to represent the stream or estuary being modelled in terms that can
be mathematically described and represented on a digital computer.
The method of representation used in these models is called the
"channel-junction" method. Essentially this method consists of
dividing the natural channel into a finite number of sections (See
. igure 1). Each of these sections contains a finite volume of water.
These sections (discrete volumes of water) are assumed to be uniform
at a given instant in time in all their properties. This assumption
is generally referred to as the "fully mixed assumption". Thus, any
property of this volume of water, for instance, a constituent concen-
tration, represents the average value for that volume. This average
value has a point value at the center of the volume. These discrete
volumes of water are referred to as junctions.
Generally the system being modelled is not static. There will be
flow and movement of water in the system. Thus, the problem of repre-
senting flow and the consequential transfer of properties from one
junction to another has to be dealt with. For this reason the concept
of channels is introduced. Physically a channel may be thought of as
the interface between two junctions. Computationally the channel Is
treated as a uniform, rectangular channel between junction midpoints.
Water properties are not associated with channels. Channels are used
(computationally) for the transfer of properties from junction to
junction.
-------
3
Various properties are associated with either a channel or a
junction; the properties of a channel are:
1. Flow (ft3/sec)
2. Velocity (ft/sec)
3. Dispersion coefficient (ft2/sec)
4. Cross-sectional area (ft2)
5. Depth (ft)
6. Width (ft)
7. Length (ft or miles)
The properties of a junction are:
1. Volume (ft3)
2. Surface area (ft2)
3. Constituent concentrations (ppm)
4. Temperature (°C)
5. Evaporation - rainfall (in/month)
6. Inflows (ft3/sec)
7. Diversions (ft3/sec)
8. Reaeration rate (I/day)
9. Photosynthesis - respiration rate (gr 02/m2/day)
10. Sediment uptake rate (gr 02/m2/day)
11. CB0D decay rate (I/day)
12. NB0D decay rate (I/day)
3
13. Constituent masses (ppm-ft )
14. Inflow concentrations (ppm).
-------
Some of the junction properties are computed from channel values.
For instance, junction volumes are computed by using the channel
depths and widths on either side of the junction.
The system of channels and junctions used in a model is commonly
called the "network". This network can be visualized as a system of
pots (junctions) connected by hoses (channels). The network is
established automatically in AUT0SS and AUT0QD. However, some basic
information is required:
1. Starting river mile
2. Ending river mile
3. Number of sections.
Thus far in the network representation the following assumptions
have been made:
1. The natural channel can be accurately represented by
a system of discrete volumes
2. Within each junction all water properties are uniform
(fully mixed assumption)
3. Junction values have point values at the center of a
junction.
These assumptions should be kept in mind when applying the models.
Experience has shown that in most applications these assumptions are
valid. However, some caution must be exercised in such cases as heavily
stratified estuaries or impoundments.
The following example demonstrates how the network is established:
-------
FIGURE 1
Milt 4.0
Mile 0.0
Mile -0.5 Mil* 0.5
Mil* 2.5 Mil* 3.5
-------
Given the basic data:
starting mile =0.0
ending mile =4.0
number of sections = 4
The network shown in Figure 1 would result from the above information.
The starting and ending miles are the midpoints of the first and
last junctions, respectively. The distance from junction interface to
junction interface is equal to the length of the segment (ending mile
minus starting mile) divided by the number of sections. This distance
is referred to as the channel length. In AUT0SS and AUT0QD the channel
lengths are constant throughout the network. The first and last junction
will actually extend one-half of a channel length outside the defined
segment. The stream and/or estuary being modelled is referred to as the
segment, and the term "channel" is used as it pertains to the network.
At this point all that has been done is to define the network, the
junction boundaries, and the channel lengths. The physical properties
(width, depth, etc.) have not yet been determined. Most of these physi-
cal characteristics are read as input to the program. Those values that
are not read are computed internally on the basis of data that has been
read. The input data for these models is referenced to river miles. Once
read the input data is either interpolated to define values over the entire
segment, or in the case of point value data (such as inflows) it is assign-
ed to the closest junction.
For example, if in the network shown in Figure 2, widths were read
in as follows:
-------
FIGURE 2
I
I-
Q
700-
500
400
300
200
100
0.0
DATA POINT
DATA POINT
.0
2.0
RIVER
3.0
4.0
MILE
MILE 0.5- CHANNEL I; width = 600.0ft.
MILE 1.5- CHANNEL 2; width = 483.3ft.
MILE 2.5- CHANNEL3; width = 366.7ft.
MILE 3.5- CHANNEL4; width = 250.0ft.
-------
(3 mile 0.5 width = 600.0 ft.
@ mile 3.5 width = 250.0 ft.
The program would assign the values of width as shown in Figure 2.
The interpolating procedure, shown in Figure 2, is used for all
physical data (see operating instructions for definition of physical
data) whether it be a channel or junction parameter.
As a general example of how some of the internal computations
on physical data are done, consider the following general network:
O__l/7\_2_ 3-1
—(D
let d. = mean depth of channel j (ft)
J
As. = surface area of junction j (ft2)
J
W. = width of channel j (ft)
J
V. = volume of junction j (ft3)
J
L = channel length (constant)(ft)
W. is an input to the program, d. is computed on the basis of flow
J J
and L is defined in the network construction. The remaining are
computed as follows:
As. = (W. + W. ,) L (ft2)
-------
The first and last junction's values are given by:
Last junction (nj):
Asnj = VlL
First junction (1):
As1 = W1 L (ft2)
V1 - W]d1 L (ft3).
In general, when values are assigned to channels and they are needed
to compute a junction parameter, the channel values on either side of
the junction are averaged and that average value is used in the
computations.
-------
10
HYDRAULIC DEVELOPMENT:
The hydraulic solution used in AUTOSS and AUTOQD consists of
two parts:
1. Determine the flows in each channel.
2. Determine the depths in each channel.
The solution represents a net, steady state situation. No attempt
is made in these models to solve the equations governing tidal
flow, storm surges, or any unsteady flow condition. That is why
AUTOQD is called a quasi-dynamic model. The quality equations are
integrated with time using net, steady state flows. The implicit
assumption in this approach is that the hydraulic response to
changes in flow is instantaneous, while the quality response lags
in time. This assumption is acceptable in most instances.
The first part of the solution is a simple application of the
principle of continuity. Consider the following situation:
-------
o
where Q. = flow rate in channel j (ft /sec)
J
Isolating junction j;
11
qin.
qout.
J
evap. .(+)
J
(1)
let;
o
qin. = inflow to junction j (ft /sec)
j
3
qout. = diversion from junction j (ft /sec)
J
evap. = net evaporation minus rainfall at junction j
J (inches/month)
CF = conversion factor, to convert in/mo* to ft/sec
2
As. = surface area of junction j (ft )
J
Q. , will be given by;
J '
Q._, = -Q, -qin. +qout. +evap.As.CF (ft3/sec)
J """ I J J J J J
The signs appear to be wrong in the above equation, this is because
the sign convention used is: a flow from upstream to downstream is
defined as negative. The above procedure is followed for all channels
in the network, starting at the upstream end and working downstream.
-------
However, the first and last junction are computed differently
because each has only one channel connected to it. Taking the last
junction (nj);
12
qin
nj
Qni_l wil1 be given by;
Vl
j +evaPnjAsnjCF
(note sign convention)
Taking the first junction (1);
evap
qin
QOUT
qout,
-------
13
QOUT1 (-QIN.J) will be given by;
QOUT1 = -Q, +qin, -qout, -evap,As,CF (ft3/sec)
' ' ' ' '
A positive QOUT-| indicates a flow out of the segment at the downstream
end. A negative QOUT, represents an inflow and its absolute value
is referred to as QIN, .
After the above procedure has been completed, flows will have
been established in all the channels. The second part of the solution,
determining depths may proceed;
let d. = mean depth of channel i (ft).
Depth can be given by an equation of the form;
(4) «, = Yi0/2'1 + A3,i
where A, ., A9 ., and A_ . are emperical constants.
1)1 C. $\ v)l
The coefficients of equation (4) (A, ., A9 ., A~ .) are entered as
1)1 ^ > 1 'J 5 I
point inputs and interpolated over the segment. These coefficients
may be determined from stage/discharge curves when avai liable. In
some special cases they may be computed. For example, assume the
Manning Equation is applicable (a special case). The coefficients
could then be determined as follows:
U = Li§6_ R2/3$l/2 (ft/sec) Manning's Formula [6]
where;
U = velocity (ft/sec)
n = Manning's coefficient
R = hydraulic radius (ft)
-------
14
S = water surface slope (ft/ft)
Assume the channel is wide compared to its depth, then R = d.
For uniform steady flow S ~ slope of channel bottom (S ). Letting
B = channel witdh (ft) and Q = flow rate (ft /sec), the Manning
Formula may be written as;
1.486 .2-1/2
Bd~ = ~h~ d So
solving for d,
1.486BSQ
0.6 0.6
I Q
which corresponds to;
A
d = A^ ^ + A3
with,
0.6
A -r n i
1 L 17? J
1 1.486BS0'
A2 = 0.6
A3 = 0.0
In an estuary the depth of flow may be essentially invariant
with the flow magnitude. In that case A-| equals 0.0 and A- represents
the estuary depth at mean tide level.
There has been no distinction made between estuaries and free
flowing streams in the hydraulic development. Since the models use daily
average or net flows, the hydraulic differences between estuaries
5no streams may be represented in the coefficients of the depth
-------
15
equation. It is possible to link together the stream and estuary
in these models.
-------
16
QUALITY DEVELOPMENT
The quality solutions used in AUT0SS and AUT0QD are based on
the mass balance equations. A general development is given first
and then the equations and solution techniques for AUT0SS and AUT0QD
are given separately.
GENERAL QUALITY EQUATIONS:
CONSERVATIVE SUBSTANCES:
Isolating junctions j-1, j, j+1, and channels j+1, j, j-1, j-2
Taking junction j
evapj (+)
qinj
qoutj
-------
17
Let C. = constituent concentration (ppm) at junction j
J
C.-l = " " " " j-1
J
cj+1 = " " " " j+i
Cin. = inflow concentration (ppm) at junction j
^ (associated with qin.)
J
V. = volume of junction j (ft3)
J
Writing a mass balance for junction j
Mass in (during At) = [Q,-Ci+1 + qin. Cin.] At(ppm ft3/sec)
J J ' J J
Mass out (during At) = [Q^C. + qout^] At(ppm ft3/sec)
(Note sign convention on flows)
AM. = Mass in - Mass out
At
qinjcinj + Qj-icj - qoutjcj
M, = V.C. and
J J J
AM. = V. AC,
^ J J
At At
(5) AC, = (-Q.C. , + qin.Cin. + Q, ,C. - qout.C.) / V.(ppm/sec)
J_ Jj^i
-------
18
and/or turbulent dispersion (in estuaries and free flowing streams).
These exchanges are not included in equations 5 and 6. To express
these changes, an analogy is made with Fourier's law of heat
conduction [7]
6q = -kfl SA
where
6q = the heat flow across 6A (BTU/hr)
6A = elemental cross sectional area (ft2)
k = thermal conductivity (BTU/°K-ft)
T = absolute temperature (°K)
8J = derivative of temperature in the direction of
9n the outward normal n (averaged over 6A).
Integrating over A and considering the x direction
q • -kA |I
The equation says that the heat transfer per unit time is proportional
to the temperature gradient. The analogy is drawn that the mass
transfer per unit time is proportional to the concentration gradient.
(7) 3M aC_
at ~tH 3x
The constant of proportionality (E) is called the dispersion coefficient.
It is considered a channel property and is an input parameter. The
dispersion coefficient is important in both models, particularly in
tlcal bodies. This feature is now added to the mass balance
ecjation (5):
-------
19
(8) A =[-Q.C. + Q-^C. - qout.C. + qin-Cin^]/ Vj
At
Vppm/sec)
where
A. = cross-sectional area of channel j (ft2)
J
E. = dispersion coefficient in channel j (ft2/sec)
J
L = channel length (ft)
If qin and qout are zero and a uniform channel is assumed, the above
equation reduces to the familiar form [8]:
^ £ B E 4 _ u |jL (u = velocity)
8t ax x
when the limit of L->0 is taken.
L/0
Equation 8 is the basis for the solution of conservative constituents.
NON-CONSERVATIVE SUBSTANCES
The formulation for conservative substances also apply to non-
conservative substances, however, the reactions of the substance with
the environment and/or other substances must be added.
Three non-conservative substances are considered in these models:
1. CB0D - first stage (carbonaceous) Biochemical Oxygen
Demand (B0D)
2. NB0D - second stage (nitrogenous) Biochemical Oxygen
Demand (B0D)
3. D0 - Dissolved Oxygen
-------
20
The oxidation of organic waste will be broken into three stages:
1. Oxidation of oxidizable carbon compounds
2. Oxidation of ammonia (to nitrite)
3. Oxidation of nitrite (to nitrate)
The oxidation of the carbon and nitrogen constituents will be considered
separately.
FIRST STAGE OXYGEN DEMAND (CB0D)
Theoretically this term represents the ultimate oxygen demand of
the organic carbon compounds, (carbonaceous B0D). It has been reported
that this term has a theoretical value of 2.67C [9], where C is the
organic carbon content. Realistically, this term represents the oxygen
demand of inorganic compounds (chemical oxygen demand) as well as the
oxidation of organic waste. To determine its value, various factors
have been developed to be applied to 5-day B0D values to obtain the
ultimate first stage oxygen demand. These factors may vary from 1.10
to 2.40, with 1.45 being the most common. CB0D may be obtained from
B0D values as follows:
Determine the deoxygenation rate K (I/day) with no
nitrification taking place. Then using BOD5, again
assuming no nitrification. CB0D will be given as:
(10) B0D5
CB0D = - —
(1.0 -e c)
Note that if K = 0.23 (a common literature value) then
CB0D = 1.45 B0D5.
-------
21
If B0D is known CB0D would be given as
B0Dn
(11) CB0D = n
(1.0 - e
The behavior of CB0D in the natural waterway is described by
the first order reaction [10]
d L C
where Kc is the deoxygenation rate in the waterway. The complete
equation for CB0D may now be written
let C. = CB0D concentration in junction j (ppm)
J
Cin. = CB0D inflow concentration at junction j (ppm)
VJ
(13) AC.
+ VlCJ - qoutJCj + "injcinj]/ vj
E.A. (C.-C. ,) E. .A. , (C.-C .)
-f J J J J+l 4. J"1 J~' J J-.l... T/y
L L L J/vj
-KCJCJ
The deoxygenation rate Kc . is the rate in the stream. K is entered
J c
as input to the program. The value entered is assumed to be the value
at 20°C. Stream temperatures are also entered and K is then corrected
according to the equation [11]
(14) K (aT0C = (K @20°C) (1 .047)(T"20)
\f \f
The oxidation of the organic carbon compounds (CB0D) is assumed
to be independent of the dissolved oxygen concentration. This assumption,
naturally, limits the application of these models to aerobic systems.
-------
22
SECOND STAGE OXYGEN DEMAND (NB0D)
This constituent represents the ultimate oxygen demand of all
the oxidizable nitrogen fractions. The oxidations of ammonia, nitrite
and organic nitrogen are lumped together in this term. Organic nitrogen
is included because it is generally assumed that organic nitrogen first
hydrolyses to ammonia nitrogen and the oxidation occurs. The ultimate
NB0D may be given by [12]
(15) NB0D = 4.57 TKN + 1.14 (NOa -N)
where TKN Is the Total Kjeldahl Nitrogen (Organic N + Ammonia -N) and
NOz is nitrite nitrogen. The above relationship assumes that all the
TKN and H0~2 -N is oxidizable. If this is not the case an appropriate
reduction factor, as determined by laboratory studies, will have to
be applied.
It is assumed that the oxidation of the various nitrogen fractions
(referred to as nitrification) can be characterized by one gross rate
K (I/day). This rate is primarily a function of the nitrifying bacteria
populations and temperature. Specifically, Nitrosomonas for the oxida-
tion of ammonia to nitrate and Nitrobacter for the oxidation of nitrite
to nitrate. Despite the laboratory B0D test results, it is reasonable,
in most cases, to assume that the populations of Nitrosomojias and
Nitrobacter are sufficient, in the stream, to bring about significant
oxidation of the nitrogen fractions immediately upon their introduction
to the natural stream. The nitrification rate K is entered as input
to the model. A commonly used literature value is 0.103 (I/day). [13]
NB0L/ ;s handled in the same v»-y as CB0D.
(16) 3NB0D - -< NB0D
3t
-------
23
The complete equation for NB0D is identical to the one for CB0D
except that K replaces K . As with K , K is temperature corrected
ii c» c n
according to the equation [14]
(17) Kn?T°C = (Kn@200C)(1.017)T~20
Nitrification is assumed to proceed independently of dissolved
oxygen in AUT0SS. In AUT0QD, when D0 drops below 5% of the air
saturation value the nitrification rate is set to zero.
DISSOLVED OXYGEN
Dissolved oxygen is the most complex constituent considered. Many
factors enter into the DO budget, some of which are well understood,
others of which very little is known. Below are the factors in the
D0 budget considered here:
Oxygen Gain Oxygen Loss
1. Atmospheric Reaeration 1. CB0D
2. Photosynthetic Production 2. NB0D
3. Sediment uptake
4. Biological respiration
5. Evaporation
Some of the factors are considered as constant sources or sinks for a
particular junction, while others are computed, such as CB0D and NB0D.
The DO budget for junction j is written in equation form as:
-------
24
(18) AD0.
-Kr CB0D. - Kw NB0D. + K2 (D0sat.-D0.)
J J Nj J j J J
As
+(P.-R.-Sedmt.) -rf- . CV-evap. D0.CF/V,
JJ J",- JJJ
where
1. D0j = dissolved oxygen concentration at junction j (ppm)
2. D0in. = dissolved oxygen input concentration at junction j (ppm)
J
3. KC CB0D. = the rate of oxygen usage by CB0D
U
4. KN_NB0a = the rate of oxygen usage by NB0D
J
5. K2 (D0sat.-D0.) = the rate of the addition of oxygen due
j J J
to atmospheric reaeration. K2 (I/day) is the reaeration
j
coefficient for junction j. D0sat. is the oxygen saturation
\J
concentration in junction j. Both K2 and/or D0sat. may be
j J
entered as input or they may be computed within the program.
If the computing option is chosen, the following methods
are used:
D0sat is computed by the equation [15]
D0sat, = 14.62 - 0.367T. + 0.0045T2 .(ppm)
J J J
where T. is the water temperature (°C) at junction j.
J
Note: This equation assumes a salinity of 0.0 parts
per thousand. Equation 19 is a simplication
of the following equation:
-------
25
D0sat = 14.6244 - 0.367134T + 0.044972T2
- 0.0966S + 0.00205ST
+ 0.0002739S2
where S is the salinity concentration in parts per thousand
(°/oo)- K2 is computed by the Dobbin's O'Connor equation [16]
(20) 12.9u /2
K2 <920°C = H—
j H. /2
J
where H. = hydraulic radius (ft)
0
and u- = velocity (ft/sec)
J
H. is assumed to be equal to the depth.
J
K2 is computed in the channels and then averaged
to obtain junction values.
l<2 is also adjusted for temperature: [17]
(21) K2(3T°C = (K2 (3200C)(1.024)T~20'°(l/day)
With relatively minor program changes, other equations for
computing the reaeration rate may be incorporated into the
model to replace the above equation. The reader is referred
to "Tracer Measurement of Stream Reaeration" [18] and
"Characterization of Stream Reaeration Capacity" [19]
for information on other methods for determining or computing
the reaeration rate.
6. P. - R. (Photosynthesis - Respiration Rate) = the net
J J
difference between the production of oxygen and the usage
of oxygen by biological activity other than CB0D, NB0D and
sediment uptake. It is a daily and volume averaged value
-------
26
and has the units gr. 02/m2/day. In reality, these terms
are difficult to evaluate. The reader is referred to avail-
able literature for further information.
7. Sedmt. = the net oxygen uptake of the sediments. It is
J 2
entered as input and has the units gr. 02/m /day. As with
P-R this term is difficult to accurately evaluate. Various
literature values have been presented. One method for
obtaining field measurements is presented in "An In-Situ
Benthic Respirometer." [20]
8. CV and CF are units conversion factors. The other terms in
equation 18 have been previously defined.
The dissolved oxygen solution presented here should be viewed as
an approximation. For most applications most of the important sources
and sinks of oxygen have been accounted for in some form. In many
applications the user may find many of the terms may be neglected.
-------
27
AUT0SS SOLUTION:
For the steady state condition the time derivatives of equations
(8), (13) and (18) are set to zero. The quality equations are written
as:
1. Conservative Constituents.
(24,
(25)
0 = [-QjCj+1 + Qj^C., - qout^. + qinjCinj] / Vj
C -C C -C
2. Carbonaceous Oxygen Demand (CBOD)
0 = [-Q.CBOD, , +Q. ,CBOD. -qout.CBOD. +qin .CBODin,] / V,
J J ' J *" ' J J J J J J
CBOD.-CBOD.,, CBOD.-CBOD. ,
(23) ~L^rr~
-1C, CBOD,
3. Nitrogenous Oxygen Demand (NBOD)
0 = [-Q.NBOD. , +Q. ,NBOD, -qout-NBOD, +qin .NBODin.] / V
J J ' J ~ ' J J J J J
NBOD. -NBOD. ., NBOD. -NBOD. ,
-K NBOD
J J
4. Dissolved Oxygen (DO)
0 = [-QjDOj+1 ^^DOj -qoutjDOj ^InjDOIn..] / Vj
DO.-DO.,, DO.-DO, ,
-fF A ( J J } +F A ( J J~hl / V
lt( ' bl ;J ' v
-Kp CBOD. -KM NBOD. +K9 (DOsat.-DO.) -evap.CF-DO./V.
^J J1^^ J^^ JJ J JJ
J J J
+(P.-R,-Sedmt,)As.CV/V,
J J J J w
-------
28
These equations are based on the same flow condition from which
equations (8), (13) and (18) were derived. As before, all the
remaining derivations are made on the basis of this flow condition.
Derivations for the other flow possibilties are left to the reader.
The models were designed to handle any flow possibility.
The set of equations for a constituent now appear as a set of
linear equations with the junction concentrations as the only
unknowns. Taking the conservative equation for junction j and
solving for C. gives;
J
a. o a. , a. 9
(26) c = - J ' - J ' r - * 'c r
( ' J 3, 8, J-l 3, LJ+1
J J J
where;
Bj - [Qj., - qoutj -EjAj/L -Ej.^
' EMAM/L
a. ~ = qin.Cin.
j »° j j
The coefficients for the first and last junction are:
Last junction (nj) ;
j -Enj-lAnj-l/L +Vl
First junction (1 ) ;
B-| = -qout1 -E
-------
ot-i o = qin,Cin, *-"
1,0 I I
The equations for the first and last junction are written as;
a, ~ a-, ?
l9i\ c - ' '><:: r
\f-l I ^T ~ o o ^O
(28) V - - Vi
The coefficients for the other constituents are determined in the same
manner as for the conservative constituents.
The basic solution technique used in AUT0SS is called the "Gauss-
Seidel Iterative Method"[21]. A relaxation factor has been added to the
method to increase or decrease the rate of change. The algorithm for
this method is decribed as follows:
Given the system of equations;
al 3 al 2
>0 ' ȣ p
" ~
r —
Cl ' '
"2 ,3 a2.1 r a2,2 p
B " 3 1" 3 3
a- ,. a-
J Q "
a . - a - ,
J * J L> *
1. Assign initial values to the junction concentrations, these
-------
30
values are approximations.
2. Starting at the first junction, compute a new concentration.
Compute the difference between the old and new concentration;
&r- = C • — C • i j
C j,new j,old
Compute and store the new concentrations as;
Cj = Cj,old + W6C
where w is a relaxation factor.
Repeat this procedure for junctions 2, 3, 4 , nj.
3. If all the 6p's computed in step 2 are within a specified
limit (convergence criteria) then the solution is
complete, if not, return to step 2 and repeat. Every time
step 2 is repeated it is referred to as an iteration. The
maximum number of iterations has been set at 1000 (see
MAXCYC in Subroutine S0LVEX), this value may be changed by
the user, if desired. The convergence criteria and to have
been set at 0.001 and 1.00 respectively (see DELMAX and
RELAX in S0LVEX), these may also be changed.
-------
31
AUT0QD SOLUTION:
The AUT0QD solution is naturally more complex than the steady
state solution. The equations to be solved are essentially the same
as those derived in the basic development, except they are left in
terms of mass changes:
1. Conservative Constituents
AM.
At^-Vj+l +qinJCl'nJ +QMCJ -qoutJCJ
(29) C.-C.+1 C.-C. ,
_r A ( J J ' } -F A ( J J }
W L ] Ej-lAj-l( L }
2. Carbonaceous Oxygen Demand (CBOD)
AM.
= -Q.CBOD. , +qin.CBODin. +Q._,CBOD. -qout.CBOD.
J J' J \JJ' J J \J
CBOD. -CBOD. ., CBOD. -CBOD. ,
_p n / J _ JtM _c n / J _ J"1
(30) EjAj( L J Ej-l J-1( L
-Kr CBOD.V,
L J J
3. Nitrogenous Oxygen Demand (NBOD)
AM.
-rr1 = -Q.NBOD. , +qin.NBODin. +Q. -.NBOD. -qout-NBOD.
'it J J'"' J J J~i J J J
NBOD. -NBOD.., NBOD. -NBOD. ,
31 ) -E .A. ( .
-K NBOOjVj
J
4. Dissolved Oxygen (DO)
AM.
(32) -L , -Q.D0.+1 +Q._lD0. -qout.DOj H-qin.DOinj
-------
DO.-DO. , DO-DO
_r A /_J 111) _r A (_J ill)
jjl L ' Lj-n-r L '
-Kr CBOD.V. -KM NBOD.V. +K9 (DOsat .-DO . )V .
^,- JJ N- J J *-,• J JJ
+(P.-R. -Sedmt.)As.CV -evap.DO.CF
J \J J J V J
The method of integrating these equations may be called a
modified Euler Predictor-Corrector Method [22]. A simplified example
of the method is:
Given;
let
A = Vl
then,
Vl/2 =yn+
and,
Vl * yn +IC f(Vl/2'Vl/2) + f(xn'yn) ]
To demonstrate how this procedure is done in the program,
consider the CBOD, NBOD and DO equations. In AUT0QD, CBOD and NBOD
must be solved for concurrently with DO to yield a solution.
Given initial conditions CBOD0., NBOD0., and DO0, and an
J J J
integration step At;
1. Compute initial constituent masses at each junction;
cms0. = CBOD^V.
J J J
NMAS° = NBOD°-V.
w \J J
OMAS° = DOV
«J J tj
2. Compute and store mass slopes at time t;
-------
33
ACMAS,
•ft ^ = [equation (30)] = SC1
ANNAS.
-ft ^= [equation (31)] = SN]
AONAS.
^—J- = [equation (32)] = S01
3. Compute new junction concentrations at time t + At/2;
CBOD!1/2 = [SC,(At/2) + CMAS?] / V.
J ' J J
NBODt1/2 = [SN,(At/2) + NMAS?] / V.
J I J J
D0+1/2 = [SO,(At/2) + OMAS°] / V.
J I J J
4. Using concentrations computed in step 3, compute new mass
slopes;
SC2, SN2, and S02
5. Average mass slopes at times t and t + At/2;
SC = [SC] + SC2] / 2
SN = [SN1 + SN2] / 2
SO = [S01 + S02] / 2
6. Compute new masses and concentrations at time t + At;
CMAS1. = CMAS° + SCAt
J J
NMAS1. = NMAS? + SNAt
J J
OMAs! = DMAS? + SOAt
J J
CBOD1. = CMAS1. / V.
J J J
-------
NBOD! = NMAs1. / v. 34
J J J
DO] = DMAS1. / V.
J J J
7. Return to step 2, and repeat until run is complete.
The integration method is the same as the above for all the
constituents.
As with many integration schemes the problem of instability
can arise. The time step (At) is the most sensitive parameter in the
solution. A time step that is too small will increase the operation
cost and also increase numerical mixing. One that is too large will
result in instabilities in the solution. The most stable time step to
use is;
(33) At * [ L/u ]m1n1imjra
where; At = time step (sees)
L = channel length (ft)
u = channel velocity (tidal in estuaries and net in
free flowing streams) (ft/sec)
The time step as determined above will not necessarily be the same for
all channels.
The program will compute its own time step based on the above equation
The user may bypass this option and specify the time interval if desired.
In some cases, the user may have to experiment to find the best time
step.
-------
-------
35
APPENDIX A
AUT0SS - PROGRAM DESCRIPTION/OPERATING INSTRUCTIONS
GENERAL:
Program AUT0SS is written in ANSI FORTRAN and has been success-
fully run on the IBM 370 operating system (NIH - Bethesda, Maryland).
The program requires no input/output devices other than a card reader
and line printer. The read and write unit numbers are presently set
at 1 and 6 respectively. These are variable and may be easily changed
(see program listing—Main program, variables NRD & NWR). Machine
storage requirement is 105K. A typical running time is 1.1 sees.
(compute time) per steady state solution with 150 sections. These
times and their respective costs will vary with the computer used and
the network used.
The program is written in a modular framework. This type of
program construction is easy to understand and facilitates changes.
The user has a wide degree of flexibility in the use of the program because
of its construction and the input setup. It is possible to make multi-
problem solutions within the same computer run.
PROGRAM LOGIC:
The program is controlled by the use of "program control cards".
These cards are read as input and consist of a word code, starting in
column 1, punched on the card. Each control card causes the program
to execute some function. Usually data cards follow each program
-------
36
control card. The program control cards and their respective functions
are as follows:
Program Control Card
(Columns 1 thru 4)
DATA
FL0W
CB0D
NB0D
D0
HALT
Any four letter
word except one
of the above
Function
Directs the program to read in or replace
existing physical data. Data cards follow.
Directs the program to read in flow data,
and compute flow related physical constants.
Data cards follow.
Directs the program to read inflow CBJ9D and
then to compute the steady state CB0D con-
centrations. Data cards follow.
Directs the program to read inflow NB0D and
then compute the steady state concentrations.
Data cards follow.
Directs the program to read inflow Dj9 and
then compute the steady state concentrations
based on the previously run CB0D and NB0D
concentrations (if any). Data cards follow.
Tells the program the run is complete.
Program terminates. No data cards follow.
The program assumes this is the name of a
conservative constituent. The program
reads the inflow concentrations and then
computes the steady state concentrations.
Data cards follow.
These cards are the basis for the program operation. Through their
proper use it is possible to run any number of problems under any number
of different conditions within one computer run. Following is a flow
chart showing how these cards are handled in the program:
-------
AUT0SS - GENERAL FLOW CHART
37
Read Program
Control
Card
Yes
(Program"\
Terminates/
Yes
No
Read Data
Code Card
*
No
Read in
Data
-------
AUT0SS - GENERAL FLOW CHART (Continued)
38
No
Mo
No
Read in
Flow Data
Read
Inflow
CB0D
Compute
Solution
Read
Inflow
NB0D
Compute
Solution
Print out\_/7\
Flows \ V-X
Print out
Solution
-------
AUT0SS - GENERAL FLOW CHART (Continued)
39
Read
Inflow
D0
Compute
Solution
Print out
Solution"* ^"
Read inflow
Conservative
Constituent
Concentrations
Compute
Solution
Print out
Solution
-------
-------
40
DATA DESCRIPTION
The data for AUT0SS are all referenced to river miles (statute).
The channel section being modelled is described by a beginning down-
stream and ending upstream mile. The input data for the program is
divided into physical data and computational data. For physical data
the values are read in (at river mile X, the parameter has a value Y)
and are interpolated to assign values over the entire river section.
If a parameter is constant over the river section only one value at
any river mile need be read in. Computational data input values are
also referenced to river miles. However, they are not interpolated
since they are considered point values. The program may move them
slightly or in some cases combine them to conform to the channel-
junction concept used in the model. It is important to keep in mind
that input data will be interpolated linearly between points, and
sufficient physical data points should be entered to adequately define
the channel geometry.
The physical data associated with the stream and/or estuary being
modelled can be assembled without regard to the starting mile and
ending mile that define the section. A data deck describing an entire
river length may be prepared and used in AUT0SS even if only very
small portions are to be studied in any particular run.
Physical Data:
The following is a list of the parameters that may be entered.
These values are entered under the program control card "DATA":
1. Al, A2 and A3: The coefficients for the depth of flow
equation (d=aiQ32 + a3). They may take on different
-------
41
meanings depending on the nature of the channel being
modelled. (See model development.)
2. Width (ft): The channel width. Width is assumed to
be independent of depth. Average widths for the flow
condition to be run should be entered. For instance,
in the case of estuaries one would usually enter the
width at mean tide level.
3. Tidal Velocities (ft/sec): The average tidal velocity
(regardless of direction). These values are usually
only entered in the case of estuaries. If a fall line
is specified, the program sets the tidal velocities to
zero above that point, regardless of what is entered.
Velocities are used only to compute the reaeration rates
(if that option is selected). If no tidal velocities
are specified, or they are zero, the net velocity is
computed in the flow computations.
4. Water Temperatures (C°): The average water temperatures
for the condition being run. If no values are entered,
the temperature is assigned a constant value of 20°C.
Water temperatures are used to adjust the various rates
and to compute the saturation dissolved oxygen concen-
trations (if that option is selected).
5. Evaporation - Rainfall (in/month): The net (evaporation
rainfall) for the period being modelled. A rainfall is
negative, while an evaporation is positive.
-------
42
6. (Photosynthesis - Respiration Rate) (gr.02/m2/day):
This represents the net production or usage of dissolved
oxygen by biological activity, (excluding CB0D, NB0D,
and sediment demand). Many meanings can be attached to
this value. For instance, it may represent algal decay
downstream from a bloom. This value represents a 24-hr.
average and is not temperature corrected.
7. Oxygen Uptake of Sediments (gr.02/m2/day): The net usage rate
of oxygen by the sediments. It may also be used to repre-
sent a non-point source oxygen demand. This value is not
temperature corrected.
8. Dispersion Coefficients (ft2/sec): One of the most
important parameters in estuaries. Tidal mixing is
represented with this term since net flows are used. In
tidal bodies it may have values as high as 6000 (ft2/sec).
In free flowing systems it is generally much lower,
100 (ft2/sec). These values are determined by the user.
9. CB0D Decay Rates (I/day): The first stage (carbonaceous)
BOD decay rate or deoxygenation rate. The program assumes
the value entered is for 20°C, and the rate is corrected
to the specified temperatures according to the equation:
K@T=(K @2p°C)(1.047)(T'2°). Note that if no value is
\* \+
entered for temperature the entered K rates will remain
\+
unchanged because temperature defaults to 20°C. If it
is desired to change the temperature during a run and
-------
43
correspondingly change the rates, it is necessary to
enter both temperature and the rate again.
10. NB0D Decay Rate (I/day): The second stage (nitrogenous)
BOD decay rate or deoxygenation rate. It is handled the
same way as the CB0D rate except its temperature correc-
tion equation is given as:
(Kn(aT°C)=(Kn(3200C)(1.017)(T"20)
11. Reaeration Rate (I/day): This term represents the atmos-
pheric reaeration rate. It is handled the same way as
the CB0D and NB0D decay rates except its temperature
correction equation is given as:
(K2G>T0C) = (Kz®20cC)(l .024) (T"20).
The user may choose to have this rate computed by the
Dobbin's-0'Connor formula. If this rate is to be computed
in the program and it is desired to change the temperature
and correspondingly the computed rate, it is necessary to
enter the flow condition again as well as the temperature.
12. Oxygen Saturation Concentration (ppm): The saturation
concentration of oxygen for the conditions being run. An
option is available to have this computed by the equation:
DO =14.62-0.367T+0.0045T2
sa u
where T is the temperature (°C)
13. Initial Dissolved Oxygen (ppm): The initial estimate of
the DO concentrations. It is not necessary to have values
here to obtain a solution, but reasonable initial estimates
-------
44
will allow the solution to converge more rapidly.
14. Initial CB0D Concentrations (ppm).
15. Initial NB0D Concentrations (ppm).
16. Initial Conservative Constituent Concentrations (ppm).
The program will only handle one set of initial concen-
trations for a conservative parameter at one time. If
more than one conservative constituent is to be run it
will be necessary to enter initial concentrations for
each constituent successively. If this is not done the
initial concentrations will remain the same (a possible
alternative in some cases).
Some parameters are computed on the basis of the above inputs.
Junction surface areas are computed using the width input and section
lengths. When the flows are entered the depths and velocities (for
non-tidal areas) are computed as well as cross-sectional areas, junction
volumes and reaeration coefficient (when the compute option is used).
Compu ta t i o na1 Da ta:
Under this category the following data are read in:
1. Inflows and flow diversions (cfs).
2. Inflow concentrations (input concentrations)
of the particular constituent to be run (ppm).
3. Boundary conditions (constituent concentrations
at fixed points)(ppm).
-------
45
Network Data:
The data required to establish the computational network
(channels and junctions) is as follows:
1. Starting river mile.
2. Ending river mile.
3. River mile of fall line.
4. Number of sections.
The fall line is the point above which there is little or no tidal
action. When an estuary is being modelled the fall line will be at or
above the ending river mile, otherwise the tidal velocities which are
entered will be zeroed above it. When a combination of an estuarine
and a free flowing system is being modelled the fall line will lie
somewhere in between the starting and ending mile. When a free flowing
system is being modelled the fall line will be at the starting mile or
below it (See Figure Al). The fall line is important since entered
tidal velocities will take precedence over the computed net velocities
downstream of the fall line. Since velocities are only used in the
reaeration rate computation, if the reaeration rate is entered rather
than computed it is unimportant where the fall line is placed.
The starting and ending river miles of the section being modelled
are self explanatory. The number of sections determines the number of
channels and junctions in the network. The maximum number of sections
as programmed is 249. The length of the segment is divided by the
number of sections. The points along the channel separated by this
length represent the midpoints of the junctions. Thus if 10 sections
are specified there will be 11 junctions and 10 channels in the network.
-------
FIGURE Al
46
ESTUARY ONLY
Startinq Mile
COMBINED STREAM/ESTUARY
Ending Mile
Fall Line
Starting Mile
STREAM ONLY
Ending Mile
Starting
Mile
Fall Line
-------
-------
47
ENTERING DATA
All data is entered under the direction of a program control card
except the run title and network data. Before any variables are
entered or computed they are set to default values. It should also
be noted that once a variable is entered or computed it will retain
that value until it is re-entered or recomputed, except CB0D and NB0D
which are zeroed after each DO run.
I. Run Title Card
1. The first card of the data deck. On this card is
punched a title or description of the run being made.
(Cols. 1-80)
II. Network Card
1. The second card of the data deck. Its format is:
Starting River Mile - cols. 1-10, include a
decimal point
Ending River Mile - cols. 11-20, include a
decimal point
Mile of Fall Line - cols. 21-30, include a
decimal point
No. of Sections - cols. 31-40 (Right hand
justify), no decimal point
III. Entering Physical Data
1. The program control card DATA precedes the data cards.
2. The next card will contain the type of data (see data
codes) being entered and the number of cards to be
entered with this data. The format for this card is:
-------
48
Data code - starting in col. 1 (Left hand justify)
No. of data points - cols 12-15 (Right hand justify,
no decimal point)
3. Next are the actual data cards; there has to be exactly
the number of cards as specified on the data code card.
The format for these cards is:
Card no. - cols. 1- 5 (Right hand
justify, no decimal point)
River mile of - cols. 11-20 (include a
data point decimal point)
Parameter value - cols. 21-30 (include a
decimal point)
4. If other physical data are to be entered repeat steps
2 and 3. There is no required order for entering physical
data. If no other physical data is to be entered, a card
with the word STJ0P punched in the first 4 columns, is
placed in the deck.
IV. Entering Computational Data
A. Flows
1. The program control card FL0W precedes the data cards.
2. Next are the data cards in the following format:
River mile of data point - cols. 11-20 (include a
decimal point)
Inflow (cfs) - cols. 21-30 (include a
decimal point)
Diversion (cfs) - cols. 31-40 (include a
decimal point
3. After the data cards, a card with STJ3P punched in the
first 4 columns is placed in the deck.
-------
49
B. Carbonaceous Oxygen Demand (CB(3D)
1. The program control card CB0D precedes the data cards.
2. Next are the data cards in the following format:
Note: If it is desired to fix (establish a boundary
condition) the concentration of a point, the
word FIXED is punched in the first 5 columns
of that data card, otherwise these columns
are left blank.
River mile of data point - cols. 11-20 (include a
decimal point)
Inflow at data point - cols. 21-30 (include a
decimal point)
Inflow concentration - cols. 31-40 (include a
decimal point)
Fixed concentration - cols. 41-50 (include a
at data point (if decimal point)
desired)
3. After all data cards are entered a card with ST0P punched
in the first 4 columns is placed in the deck.
Note: If the river concentration at a point other than
an inflow point is to be fixed the corresponding
inflow simply has a value of zero at that point.
C. Nitrogenous Oxygen Demand (NB00)
1. The program control card NB0D precedes the data cards.
2. Next are the data cards, the format and procedure are
the same as for CB0D.
-------
50
D. Dissolved Oxygen (D0)
1. The program control card D0 precedes the data cards.
2. Next are the data cards, the format and procedure is
the same as for CB0D.
E. Conservative constituents
1. The program control card with the constituent name
precedes the data card.
2. Next are the data cards, the format and procedure
is the same as for CB0D.
After all the data has been entered the HALT program control card is
placed in the deck.
OUTPUT DESCRIPTION
The output for AUT0SS is controlled by the program control cards.
The output is referenced to river miles as well as channel or junction
numbers, depending on the variables.
The first output in a run is the title and a listing of the
general network data. Included is the run title, mile of upstream
end, mile of downstream end, mile of fall line, and the number of
sections.
Each time physical data is entered the data is printed out
under the heading "Estuary/Stream Data",
When a flow condition is entered two groups of information are
printed. Under the heading "Depth or Velocity Dependent Variables"
are printed:
-------
51
1. Cross-sectional areas
2. Channel depths
3. Channel velocities (tidal or net)
4. Junction volumes
5. Computed reaeration rates (if this option was chosen)
Under the heading "Steady State Flow Conditions" the inflows,
diversions, and channel flows are printed. Channel flows may have
a negative sign due to the sign convention used. Again, a flow
from upstream to downstream is defined as negative.
When a constituent control card is encountered, two other groups
are printed. Under the heading of "Steady State (Constituent Name)
Input Values" the inflow concentrations are printed. Under the
heading of the program title card and the constituent name, the steady
state concentrations are printed and a graph of the concentrations versus
river mile is plotted.
In addition to the regular output just discussed, there are a
number of error statements the program may issue. These are printed
only if mistakes were made in entering data. They are:
1. DATA CODE ( ) DOES NOT EXIST - PROGRAM TERMINATES
This can occur when inputing physical data. An undefined
data code has been entered, the program terminates.
User action: Correct mispunched card or misordered deck.
2. AN INFLOW WAS READ IN AT JUNCTION ( —) (RIVER MILE XX.XX)
IN THE QUALITY INPUT, BUT NOT IN THE HYDRAULIC INPUT,
PROGRAM TERMINATES.
-------
52
This message is self explanatory.
User action: Check inflows and quality inputs for
correspondence and correct errors.
3. ZERO DIVIDE AT JUNCTION ( —)
A divisor formed in the steady state equations is
zero. This occurs when insufficient data has been
entered or the flow solution has determined that a
junction has no flow entering or leaving and
dispersion in the surrounding channels is zero and
the decay rate or volume is zero.
User action: Check run data for completeness.
4. ZERO DIVISOR IN (Constituent Name) SOLUTION MATRIX -
PROGRAM TERMINATES
This follows message 3 and tells you which constituent
has the zero.
User action: see #3.
5. ZERO AREA IN CHANNEL ( )
DEPTH OR NIDTH IS ZERO PROGRAM TERMINATES
This error occurs when the channel cross-sectional area,
as computed using width and depth of flow is zero
Channel widths have been entered incorrectly or a
channel flow was zero and the A3 flow equation coefficient
was also zero.
User action: Check channel flows and flow equation
coefficients. Check that widths have been properly entered.
-------
53
DATA CODE FOR PHYSICAL DATA
CODE (starting in col. 1)
Al
A2
A3 J
WIDTH
VEL0
EVAP
PH0T0
SEDI
DISP
CDECAY
NDECAY
REAER
SATD0
INITCB0D
INITNB0D
INITD0
INIT (4 letter word of
conservative parameter)
C-SATD0
C-REAER
DATA TYPE
The coefficients for
the flow equation
Channel widths (ft)
Tidal velocities (ft/sec)
Net evaporation - rainfall (in/mo)
Net photosynthesis - respiration
rate (gr.02/m2/day)
Oxygen uptake rate of sediments
(gr.02/nr/day)
Dispersion coefficients (ft2/sec)
CBOD decay rate (I/day)
NBOD decay rate (I/day)
Reaeration rates (I/day)
Oxygen saturation concentration (ppm)
Initial CBOD concentrations (ppm)
Initial NBOD concentrations (ppm)
Initial DO concentrations (ppm)
Initial conservative concentrations (ppm)
Instructs the program to compute
saturation D0 concentrations,
no data cards follow
Instructs the program to compute
the reaeration rates, no data
cards follow
-------
54
RUNNING TIPS
The purpose of this section is to bring together and clarify the
operating procedure for AUT0SS. The example presented at the end of
this appendix should also serve to clarify any remaining questions.
As already stated, the program control cards direct the program
to do some function. Generally these cards act independently of each
other; however, some general rules should be followed:
1. DATA should be the first control card in the deck. This is
because the other control cards (except HALT) use physical
data of some kind in their respective functions. DATA may
be called again later in the deck to either add or replace
physical data.
2. FLOW should be the second control card. This is because the
quality control cards use flows and values computed using
flow in their functions.
3. CB0D and/or NB0D should be run before D0 if it is desired
to consider their effects on the D(3 budget. If only CB0D or
NB0D are to be considered only that constituent would be run
before D0.
4. Subject to the above general rules the control cards may be
arranged in any desired order to yield the desired solution(s)
A general example of the control and setup is given below to demonstrate
these principles (see the end of this appendix for a specific example
problem).
-------
55
Problem Statement:
Run_TDS, CB0D and D0 under flow condition 1, then run CB0D, NB0D
and D0 under flow condition 2, then change the water temperatures (and,
correspondingly, the decay rates) and run CB0D, NB0D and D0 under flow
condition 3.
The arrangement of the control cards would be:
Enter basic data - DATA - enter original physical data
/^FLOW - enter flow condition 1
Solution 1
Solution 2
Change basic
data
Solution 3
TDS - enter inflow TDS and boundary conditions -
compute solution
CB0D - enter inflow CB0D and boundary conditions -
compute solution
D0 - enter inflow D0 and boundary conditions -
compute solution
'FLOW - enter flow condition 2
CB0D - enter inflow CB0D (these may be different than
the first time)
NB0D - enter inflow NB0D
- enter inflow D0
-DATA - enter new temperature and also enter decay rates
and all other temperature dependent variables
FLOW - enter flow condition 3
CB00 - enter inflow CB0D
NB0D - enter inflow NB0D
D0 - enter inflow D0
HALT
-------
AUT0SS VARIABLE GLOSSARY
56
Variable
A(N)
A2(N)
A3(N)J
ALPHA (J,K)
AS(J)
C(J)
CB0D(J)
CB0DI(J)
CIN(J)
CS(J)
DECAY(L)
DELMAX
DEPTH(N)
DK1(J)
DK2(J)
D0S(J)
DVD(J)
EVAP(J)
IPLT(I)
Definition
cross-sectional area of channel N
flow equation coefficients at
channel N
K=l,3 elements of solution matrix
for junction J
surface area of junction J
concentration at junction J, not
associated with a particular parameter
CB0D concentration at junction J
initial CB0D concentration at
junction J
input concentration at junction J, not
associated with a particular parameter
initial conservative concentration at
junction J
temporary storage variable used in
computations
closure criteria for solution matrix
depth of channel N
CB0D decay rate at junction J
NB0D decay rate at junction J
oxygen saturation at junction J
divisor in solution matrix for
junction J
net evaporation - rainfall at
junction J
temporary storage variable used in
computations and output routines
-------
57
RMFR
RMO(J)
RMUP
RN(!)
SEDMT(J)
TEMP(J)
V(N)
V0L(J)
WIDTH(N)
X(D
XLEN
XMIL
XN0D(J)
XN0DI(J)
Y(D
Z(N)
river mile of fall line
river mile of junction J
river mile of upstream end of
segment
temporary storage variable used
in computations and output routines
sediment oxygen uptake rate at
junction J
temperature at junction J
velocity at channel N
volume of junction J
width of channel N
temporary storage variable used in
computations and output routines
channel length in feet
channel length in miles
MB0D concentration at junction J
initial NB0D concentration at
junction J
temporary storage variables used in
computations and output routines
dispersion coefficient for channel N
-------
58
SUBROUTINE DESCRIPTIONS
Following is a brief description of each subroutine in AUT0SS.
MAIN BRANCH: The main program. Its primary function is to direct
program functions and print out the heading. The basic network data
is read in here.
SETUP: Two things are done in this subroutine. The network of channels
and junctions is established, and arrays are set to their respective
default values.
NETDAT: This is one of the most important routines in the program.
All data (except flow and quality data) is read in here. The data is
read and interpolated over the entire network, and values are assigned
to the channels or junctions.
FL0WS: The flow inputs are read. Once read, the flow inputs (or outflows)
are distributed through the network.
FL0CMP: Called from FL0WS. The depths of flow and channel velocities are
computed. Tidal velocities, if specified, take precedence over velocities
computed. Once depths of flows are computed, the various physical para-
meters, depending on depth, are computed. (Cross-sectional areas, junction
volumes, depths, velocities). In addition reaeration rates are computed
if this option is specified.
QUALIN: The quality inputs are read in. Once read in the inputs are
assigned the proper junction. If more than one input is read in for a
junction, they are balanced according to their respective flows and
concentrations. According to the equations: qin=zq and cin=-^—, it is
Eq
also possible to fix mile points at a specified concentration.
-------
59
QALCMP: The elements of the quality matrix are determined. CB0D,
NB0D and conservative parameters are done.
D0CMP: The elements of the quality matrix for dissolved oxygen are
determined here.
S0LVEX: The quality matrix is solved by the Gauss-Side! iteration
method with a relaxation factor. The maximum number of iterations
is assigned as 1000 with a closing criteria of 0.001 ppm and a relax-
ation coefficient of 1.00 (These may be changed if desired).
INTER: Called from NETDAT. The routine arranges an array of input
data in order according to river mile and assigns data values for
each junction or channel.
TABU: Called from INTER. TABU performs a linear interpolation to
obtain a data value at a specified point.
0UTG0: An output routine. It prints out data in tabular form.
DIVCK: Checks for zero divisors in the quality matrix. If a zero
divisor is found, the error message is printed out and the program
terminates.
JKFND: Determines the junction number for a corresponding river mile.
QAL0UT: An output routine for quality data. A heading is printed
followed by the data listing.
GRAPH: Constructs and prints a graph of the quality solution. It is
called from QAL0UT.
-------
60
PROGRAM LISTING:
Following is a listing of program AUT0SS:
-------
MAIN PROGRAM
61
#««*****«****#*««« »
ft***************** -*
#$«**«#«***#**#*<>* * O »
*«#«***«««**«**#*« ^. IT) _J
****«#«****#*#*## OJ O ~ *C
****#***** ***#**#* *~OO -~» »
**#****#*******###^-)2ljn»Oin X
* * # * **o2:xc — o<
* * * * •* * * -- OQ (\J O _l X
** _i«* • ##-^>^oj»^.-^x»-
«« < «« 2 Q **OOL*:— .oox _i
** z> ** uj o T **in» <
** o ** o HH **nj>»Lnoo(\itn T
#* ** < O •• **>-'UJ*~OJ«-~CJ _J
** cr ** _j U _j,fr **»OOJOO22
« * < «« o » org ^^^Ln^tD***
** x ** -j v Q.I **ocyj^o-»^cr o
#* ** o <-* **in^^»oou. Q
* * UJ * * • 2 2 Z <3 #*(MQ.O<-in(DZ X
«« t~ «« _j u O20J **-'Z:»o(VJOjac *
«« < * * • o »-« < i «*^uj-.ir>~''-'» N,
#« I- * * 2 < t_ (VJ **»o**»-«-in^o>»Q u>
** ** Q 2 UJOCOJ «*— -.(M"-<>OO _i\ O
«* >. # # 2 O t/)UI **00"Q»»Z »< UJ
** o ** < >—uj i-o: **mir>NJO-~ — oc x»- — in
*4 «t «« K-UK2O **(VJ(M»ODOfO» Q< O 2
** uj ** z o»-<2uj #«— <-»^oir>»a. oo M ••
* * H- ** »-H UlU-UJOaO **O>O»>fVlOO GDI » 0£
** tn ** a: 1-u.x n «*»»tn^^inz 2-* -• u.
#* ** o OOQ.UIO **^-.OJO<(MOC ix n 2:
** i ** ae ooin **oo— in»~« •*< y: a
** ** • a. Q _j 2 i **LniDH-r\j^»-'xo «*^^-otnina.r> tuo ^: o
** o ** a. <«-iUJO(v **>-inuiofvj-»o 2_j •*• z
«« t- * * *-u_ot/>i **o<«/>a-'<2 -j* ** >• 2 -^ «*o*»»tO»»l-»X X »~
«# < «« OD UI(/)_JtOO **O-~^-»O^2>XX Q. 20
** ** z»-<2X^- ~> -* — •
#« O ** »-< >2O2O **~'l-»-i-«~'Q.2»4'X 0-frOO
** CT ** Q: 22LJ2X 442QO<>-_»»'QXi -«- < cc < cr
*4***««**i>4*«*4***O O < CT3>UJOUJO
4t«4i«#«4i««*#*
-------
MAIN PROGRAM (Con't.)
62
X » »H » O » »
»xxx
1X4-
n ru *-«
sD .-» (*) I -« O
x ~ «* -«
f) CO >* •
x <-« • in
ro ** x »
* O H- — »
-*II*
CO -^ ro X
I<-'»i""i
-nrox —
<~ ~* ro o
m*^ro
r-t x •• <-"
»<\j--.»
X«- iM £ ^ co co x ro in r*- o X f^ f*)
rOXH-I<'-'OCT>XCO »- X X X
*-i o x n < ro o »r*-10 in o* •-« f*-
x o in
X -' X
o ~.
-. <*) H-
O —• I
f) •> •—« I
» •—I «•»
CK i in
LU <
i- 3t
•-« tr
o: o
3t U_
O
n
x<
-* X X •
—.X » » O
,20
-I
LU
O
O
co r
-
CO >-
Z f«
•• _l
a: <
u. o
z o
o:
*cc
a. LU
o »-
r <
ct 2
Z LU
at h-
o<
T t-
OC. CO
»
« >•
O O
(VJ <
» LU
-H >-
u co
*: x
•-(VI
-. m
k: »
*- x
< in
x »
a. ~
j*
< x
~ o
o (VI
in »
•• o
a x
at -*
z «-
LU <
ft (X
Ct O
m
X "
•• in
x »
~ *
* X
X ••-
** o
O (VI
(VI »
* X
X -«
X "-
X *
< <
o O
(VI
•« ^
• cr
• o
• 3E
• H-
• LU
LUZ
H- O
t—« t—i
K CO
<
Z 00
3 I
o: oo
x ~«
^ •-
^ X
* in
x »
in —
» *
-^ x
* ~«
X —
•-4 O
*» (VI
o »
(VI
• X
r u. •
a u. •
LU o •
> •
(-. LU CO
a j z
x ~o
!-• I »-•
n »-
»Q: o
X LU LU
in > en
« H-l
-> Ct U.
* X O
X -«
"* ro cc
« LU
O x 00
»o x
(vi (v in
• » »
o »
-» X *
U. -» X
« X ~
• » o
• (Vi (VI
o • »
Z O
LU -« X
u_ -«
z: * »
< • X
LU • »
Ct • (VI
I- • •
CO • O
Z O "«
3t Z U.
O LU
o
3L
K <
< LU
a
x »_j to
~« X^lQ.
UJ
a.
vO
o
o
o
4
O
O
a*
o
CD
o
CD
O
o
•-i DL
•-> O
o
in
LU
X ~ Z
* * ac H- H4
-. x LU < -j
* »•* >
X — i-iLU _J
-* oa: _J «i
— (VI X 1-1 <
-< (vin >r in
vO
LU H- LU LU Z ~
z < o z a » HH
3 *•<• «QO •>- ~* Q
H-O-Z >-ll O
^
-------
MAIN PROGRAM (Con't.)
63
o o
MO ir>
-I sfr ~«
I—4
O O
H- O t-
o o
o o o
o ~
— :*
a -» o
CD O _J
Z O U.
_J -> ~ ~> -J ~> ~> _J
->~ «z-> z~ »z z •
ZQ.XZ~) UJ UJ » *- ZCLX»~5 UJLJ*-* Z X»OO UJ
>--i3LUJ'-'>i* OZQ.'—'"^ 1-iQ.UJ1™*** OZLO
_JO>-^U O • >- II O JO>IIO «•>-««- _IZ>IIOO 0«3T
UJ<«»_JII IIUJOUJt-~)OUJ<_)_l")IIUJOUJ>-"5>-UJ<ll II LU O UJ O
O O ~ O ^Q. -I ZOO-IIOOZOO«lt/>~>"7Z >U.
HI O~-i-«O»-tnoMt-i ^4»-i-iOH-(/)<*)Hi-< (*>^~.|_tOH-
t-_J_J_JQOOf-K_JZ^^.t-_J_l_J-t-J_J_J-^OOl-h-_»_J
Z_i_<_l OZ —O ->Z_J_J.J OZ —O ~>Z_»_J_I OOZ "• -J
O<<«OOCOOU.UO*-O«I«OZOOU.OO*-'O<-iO
O O O O OOO ID O
p«- oocro -*t
-------
MAIN PROGRAM (Con't.)
64
o
o
o
(V
o
o
X
-J ->
• 2
O UJ •> Z 0. X
OUJQ.^— HHXUJO
o • >- n ~> jo>o
OUJ»--l«'UJ<_J_JO
^Q-_J tO 3 ^ < O ^
VlloOZOOt/)
O >- CO >O II >-i O
K_J^»-< — K_J_I_IH-Q.
-"O ->Z_J-J_J OQ
o o o
in >c o
— 4 »•« O
CVJ
-------
SUBROUTINE SETUP
65
o
in
n
o
in
(M
«M*
OJ
o
in
OJ
» o
o ru
OJO <-*
• "•* o o
-> z in
x x CM
oc * ~
-»o Q
o m o
'J1 *M Z
ru *- x
— oj »
0. *: -«
»in
UJ ^ OJ
» o «-•
-»in o
o oj o
in -* OD
OJ -H (J
CLO ~
X •> O
uj -» in
O OJ
< >-
o
m
ru
o
in
O ~ Q
in rsi o
ru •• :n
> o »
•• in -~
~* (M o
o -^ :n
in H- oj
•* o in
in uj o
a.
z>
t-
uj
o o o
in in m
OJ OJ OJ
r o ct
oo <
>->T UJ
20. cr
» o to
—• m z
o oj o
in «- o
oj o j
o o x
in in »
«\i i\j y)
— >- o
z in u
•-« u_ in
o z z
» » «
~ ^ cc
o o u.
in in r
OJ OJ Ct
-J O Z
o > »
> O Q
o n »
in •> a.
oj o o
~» < x
o x u.
in a. ~>
OJ _l O
~* < z
(/>»»(—
o^ z >
» O UJ Z
— OJ _J ••
o — x cc
in < » :*
oj x -5 z
~ a. z »
> _j • Q
x < a cc
o _iz z
o
z
o
_l
u.
\
Z O
2 •
am
^ 00
CC fVJ
i in
a. *
rvj
_i x
HH _J
21 **
x 5:
* x
a:
x
Z
O
3:
X
O
O
-H cvj n
X
o
o
in —i
o o
U UJ
to to
z z
II II
o ->
z z
o: r
— x
ti u
X X
3E Z
O *
X oj
a u
u "7
** o
-> s
X QC
CC UJ
II ^D M
~ Z —
f-« O ") t-t XM
I
U Z
z «-
» O
OJ X
M CC
Z
» o
«H •
UJ M O
00
• •
O O
II IIO
o
•
OOO
r o
or o
") Z O
X O X
(X U %
o z
OJ «-
u
O X
Q CC
o
• o
o o •
• M O O
O — II •
ll -> — o
— ^ -> ll
~> o "-» -*.
~ »-« — >- Q. ~>
") < _JO < —
~ uj o i > tn
u a > a. LJ <
o
•
o
M
O .-.
• ->
o —
o
OJ
-------
SUBROUTINE SETUP (Con't.)
66
o o o o o
• • • • o • o
oo o oooo»o«o
ii • nooof\j»»noiio«o
o
roil
~* O O ~.
• II O O ~ II -~ II O • O II
T ^^ t^ *^ *^^ "^
Q tn -> o «- «- ~-
QOOO—
o oo o >-
H- o
UJ Z
-------
SUBROUTINE NETDAT
67
X » * -H
• -I < I ~
—« » » i-< o
•• O » X Xt-— OJ
-. m _i v » o »
o fu u_ uj <•» ^ ro x
in «•• * oj » Q » * i-t in
(VQ-.it: XOX X Q •• »
» ** O O .-. « Q. X >- •• -« Z
-» ~} z in » o m < 4- HI x ~" x o
o X x oj -* in z » > x z « •* -* »-•
in ff * *•» O fVI O X UJ «"* »-H IO CO H« » H-
•* CXJ *«^ X ** ** *^ X *^ X ^"** X •* X
—* ^^ (\i •» ^ii* ^*» 31 ^ ^ QL Z ^ '•^ Z *^ 3&
o Q. ^ *»^ o o x x i (/) >™* m ~i u. in xujx^ roz o
»OfVJOOZZ t-Q.< X »X U.
cvjo-Q^inins: xo._ix-*ir> »» u
•-< uj —. tn «^ —' » xujxovo »* o
< t— O (V _J Q Z OJH-i-iOxcO —H-X i-«
—•» *••* fvj *^ > o o x j ^ uj •• * • i. in ^"* u
o o *^* o •* *• 31 z * x in x * f*) *^ ^ uj
inmrsio — -~CK<«XOXUJXX «- x n -.o
^^ ^"^ ^^ cj LO ** QL ^^ it,i ^^ i^i i^ *^ ro ?•" ^^ C3 !ic
Q( ^> ^3 •• (\J C5 "^ ^^ ^^ ^> I*- Qt QQ L^ ^^ ^H (jn ^5 QC '"^
~~. (v^xuix-sf •• T. <. ~* z \oi— t\j
t\j (\j f ** o x u. ^t ^** uj j ^ o t** o * o x fr— H* in ™^ o z *
^^ *"^ o in in o» "^ > ^r > * i^i CD o in x •** t/) --~ >- in
^* OJ ^^« —* —•» (•) **^ 2T ^* CJ o k1"* ^5 ^^ ^^ UJ fVJ •* ^* •» i ««^ n "^ c^ •> )Q[
^t •* C5 ^d C5 *^ ^5 f«f 2T Z C) **** i f_> /™\ /y ^5 ^^ **^ i» i i^j m ^3 CD ^^ ^* "^ U r
c^ —* in in in *••• cv i •• *^ ^^ ^H CL uj c^ i GO ^5 *•* i *r QQ HH ^-» t,^ >^ it ^»< 21 ^^^
uj ift *~* "*^ ^* in ^r ** 3> ^p* ^c T* ^^ 2t cj !C *^ cvi <•*» ro -^ ^ i >^ i ^^ ^—• *^ •« i *«4 ^^ cs
>^ H^ j™- M"< *^ f\ 2^ ** ^^ ^v ^^ t*^> -^ >^ (j >< f^ * x •» ^^ * cj • ~^ ^^ m 111 •*•* m ••
t i t ^y (^ f^i ^i ^» i •> f~°i ^H ^ H* H^ ^v *X 'X ^t * •"** *O ^** ^J ^ i ti ^3 •» r^ ^ ^ fy •> ^3
*^* OJ ^t ft fy ^5 i 2J ^^ -^ rH ^«* *r* c^ fVI i • || ^*\ >«< i»j i ^» TJ ^H
H- >m3tQ.QOO^>-t Z"**'-' OC^-'UJlrt'ScK'^'OUJZZ'1"'
oo o ZHUJ<'^-*— <t in
o
-------
SUBROUTINE NETDAT (Con't.)
68
i—4
^
«
U
r
a:
*
u
z
•k
OJ
ct
^
^
_ J
— •
o
cD
H.
3
O
d
u
u
z:
cr
»
o w
CO H-
CL
0 2
H- »
>.
O ••
o x
*.
-^ o
(M 2
^ *•
_JOJ
UJ —
or cr
O • UJ
0 _J »-
•-• UJ 2
QD »-i
O <
l~- -J
ot a
o
\c
2 COEFFICIENT FOR FLOW EQUATION»5X»20 ( 1H
4
X
OJ
n
«k
x
ID
•>
«~
<•
X
i— «
•«^
^ O
O OJ
r^ •
•> o
cr x
"•i ••*
2 —
— 1—
UJ <
«i
»°
o
r-
OJ
^
••
u
3t
or
»
o
2
».
OJ
cr
^
>
-j
•>-»
O 0
o o
»- o
o *^*
o
o
~"IJK
«r (j o
G
z:
o •>
0 (/)
f— t 1—
a
0 2
H* *
>-
O »
O x
»
•**• o
•*) 2
^ •>
_ 1 •*) •— •
• < O
UJ *" O*
z cr -
• uj a:
_ j ^— 3:
UJ Z Z
33 »-« "^
< UJ
d iJJi;
»-i U 36
O
CO
3 COEFFICIENT FOR FLOW EQUATION - RERESE
D/OR A2 ARE »5X,20 ( 1H») »/, 1H ,20(1H»),5X
ZERO) »57X»20(1H«) )
)
«t Z '"I
X < UJ <
cr> cr *
Is- r— t «J (_>
•• ^ z
X Of fV
ID U. O •
»>-« — <_)
^ 2
4 36 O •*
X O UJ OJ
>•« 1 H»« (V
^* U» U. ^
O >— « >
OJ U_ CJ _1
*O UJ —
0 Q. O
X I (/> O
r— « V— K-
'^ Q. H" O
>- UJO O
< 02
cr if> t*- _i
U. 2 » O
o
o
0
T5»RMC)
oj a.
-> 2
O ^
1— ••
><
O •»
o o
— z
^ *•
0 X
36 O
_j i— «
• -»
UJ —
o 2 cr
o • uj
O _J t-
»"• UJ Z
CD i— i
O <
*~ ~ -1
O »-i O
o
o
HANNEL WIDTHS (FT) ,5X,20 ( 1H«) )
OTH)
O •"•*
X 36
3T
x cr z
ID *• UJ
• O 2 — J
~ 2 UJ X
$ ** «J >fll
X OJ X ~
<^^ >^ ^ ^^ 2
O O >•—«•-•
~«OJ _J — X
-4 « — X t—
•• 0 O t- Q
£T X O Q •-«
36 •-* \— i— i 31
2*^036 II
— K O II ~
UJ < -^ ->
tier IJ--
36 U. U < <
O
1— 1
«l*
«•*
i—4
1
-)
X
H-
O
3s
•*>
^»
—}
~»
~y
^_
Q
1-4
j£
•**
41
ID
O •
2 0
* #
OJ 2
II UJ
-> _J UJ
X D
OJ II 2
""* C ^
~- 2
Q<0
OJ
1-1
UNCTION SURFACE AREAS (SOFT) t5X»20 ( 1H«) )
)
~> en
X ••
(VI ~>
* 2C
x cr
in »
» — 5
-> z
$ •-
X —
~*t o >
~« OJ _J
f— ( •• —•
* 0 O
cr x &
3t — < >-
Z — 3
- »-O
UJ <
£tr i!
3E U- O
^.
i—t
O
ID
i— <
O
I—
O
A.
_J
UJ
>
1
•
UJ
o z
o •
O _J
^•4 jjj
Hj
o <
*""-
o >-«
o
OJ
O
XI
cr
4K
CD
f—
a
2
»
>-
*
X
«
U
2
3»
»-•
cr
UJ
t—
2
i— i
I*
H- II
Z 0
-------
SUBROUTINE NETDAT (Con't.)
69
o
o
it
Z
cc
u.
X
u •
Z (-
** o
•— 1 •
M —
Z Z
^.
O D
f*> s:
— cc
•~»
ou.
O«-i
0
s^
r^
*
CC
UJ f
o z
z «~
•-4 UJ
t- h-
z •-•
0 CC
O f.
0
^0
•—4
(1H») ,5X,41HAVERAGE CHANNEL TIDAL VELOCITIES (FT/SEC)
o — .
(VI
« -— .
0 *
X X
•-4 •—>
-~ -^
t— 0
< (VJ
5! »
CC X
o in
u. »
o
,3-
•— <
AR2»NC,RMC,V)
>
_J
»•*•
o o
-j o
H- O
O •••*
0
0
J
< o
(J O
cc
0 »
r- u)
CL
o z
1— »
o ••
O X
CL Z
UJ CL
»- •£.
-JUJ
UJ <-
z cc
• UJ
_Jt-
UJ Z
00 •— i
<
_J _J
— -J
u. <
M (_>
o
in
^*
)
<1H«) ,5X,35H JUNCTION WATER TEMPERATURES (DEG-C) »5X»20
O 0
vO (VJ
—1 *
» o
CC X
z —
*~ t-
UJ <
^— 2"
>— i CC
cc o
2 U.
o
sD
•— <
CL
2:
UJ
2!
•z.
>
-1
•*^
O
0
H-
•~» to
o
—«
* 1
X -J
^ u
CL
UJ
2T
CC
o to
0 1-
(\J CL
Z
0 •-
1- >-
O X
o ••
^ z
Q. »
< CL
-J >
• UJ
UJ ~
o z X
O • UJ
0 _| H-
^ UJ Z
00 *-i
o «t
t- _l _J
o u. <
o »-• o
o
t>~
r— 1
)
(1H«) »5X»34HNET EVAPORATION - RAINFALL ( IN/MO) »5X»20 (
o o
CO (VI
F—t fr
«K O
cc x
z ^
UJ <
t_ 2!
HH QC
CC O
» u.
o
00
r— (
AR1»NJ»RMJ»EVAP)
>
_l
^-»
o
0
\-
3
— 0
•^ 1
« _1
X <
— < o
J)/VAPFAC
PHOTO) GO TO 230
OTO»NJ»X,Y»NPTSfRMJ)
)
(1H*)»SX,61HAVERAGE DAILY PHOTOSYNTHESIS-RESPIRATION
QM/OAY) »5X»20(1H«) )
AR1,NJ»RMJ» PHOTO)
0"- _Jiootn>"^»—
ZQ. •Q.'-'fVJX-JZP
• < uj~rvi»!\j'-'»x
•—•> OZCC»OOO'-*CL
M UJ O.UJCCX O « II
-) II UJO_lh-jB'-«2:i-->.-.
^r>^ujzz^O3 ~>
o~jz cot-i^h- — oo-r
cfs — • •-( o -l-_J_Jh-3CUJ_JfVI»-
oou_
-------
SUBROUTINE NETDAT (Con't.)
70
^.
or
o •
vO to
fVJh-
0.
oz
»— »
o •>
O X
»
•**• ~)
t- Z
2: »
UJ 2
too —
-J LU 0
• tO >4"
LU ~ rvj
zo: •
• ijj Q£
«J t** 3«
UJZ Z
03 M ~
< LU
— 1 _J H-
^^ J *»H
u. < or
HI (J 3
O
n
M
YGEN UPTAKE OF SEDIMENTS (GM 02/SQM/DAY
MT)
X Q
O LU
X LO
(V »
•• ^
x or
in *
*• •}
-» z
* •-
X -«
-i or
••• *•• «t
o >
(VI <•• — J
•• 4 *-
0 X O
X -• 0
^ >•» h*
~o D
1- (VI O
< «
5" X _1
or tn _j
o * <
u. ~ o
o
,^-
rvj
o
o
o
>j-
^
CO
X
u
^
u.
>
o
$
«•»*
~^
^*-
1—
-> s:
z o
» UJ
-< to
II M
~> ^ UJ
0 -* Z
in h- I-H
-
>» »
O. x
to »
HH (_)
Q Z
_J •>
• M
UI *~
o z or
0 • UI
O _| 1—
-85
o <
^"* f
o u. <
o «-* o
0
sD
rvj
SPERSION COEFFICIENTS (SQFT/SEC) »5X»20 (
H4
O
X
CO
*.
X
in
*
~—
*
x
f*4
•^ «^
0 0
f^ OJ
rvj »
» o
or x
~% »4
Z --
>* I- —
UI <
K £-v
HH cc *
or o x
X U. -i
o
r^-
rvi
^.
M
O
*E
or
»
o
z
•v
<\J
or
<4
>
_J
— •
O
0
1—
o
_J
_J
<
o
-)
2:
a:
«
o to
~* 1—
n o_
z
o »
f- >-
«
O X
o •
^*^. ™ ^
-• z
y «k
Q "<
_j ^:
• Q
UJ *-
o z or
O • UI
o _i >-
•~* UJ Z
CD *™^
0 -
oc x <
UJ 3R ^^ Q
D Z«-X
t— i UJ •< "-"
H- f— TL
z *n^ or i
o or o
in o
00 O^
rvj M
i— t
^
0
»>
->
3E
or
»
••}
z
»
r— 1
ry
4
> ~)
| 2
— »
O -<
O II
^— "O
±)
o
I ro
i
< O
->
2!
or
»
o to
"* ir
n ^
o •>
o t- >-
* «
0 OX
o o •>
4- -^ -)
vO (VI Z
co ^: »
x o rvj
•~> ,j y
"^ • O
'«-' uJ *"^
i— t O Z CK
^: o • uJ
CD ^nf J CD mf ^"»
|| **^ r-^ (ij 2|
""^ H-4 O ^
•*^> fc^ U~ 1 I
f-4 2J «M» 1
* o o u. <
o o
o —<
f) f)
0
o
(VJ
1
**
Q.
y
UJ
H-
•~*
#
in
>— i
o
•
••4
1{|
"O ••»
Z "")
•• — »
-« M
II *
~> O UJ
" ^
r-4 ~) >— 1
rt "•* H-
,
-------
SUBROUTINE NETDAT (Con't.)
71
D DECAY RATES CORRECTED TO STREAM TEMP
o
CD
Z
X
rvi
in
x
in
»
^
*
x
^_ —
o o
(VI (VI
n »
» o
CC X
a -i
z —
— ' (—
uj ^
H- 3T
HH (Y
a: o
a: u.
o
CM
f>
*^
CVJ
y*
Q
<•» O
~ Z
* CE
x »
-i ->
— z
o •>
(VI -H
* CE
X <
in > "o
• -J Z
£ 0 -«
< O II
O K ->
X 3
•— • O O
~ n
i ro
1 )
< D
CO O Q
O
•
o
o
^
\Q
CD
\
_,
->
•>_>
(VI
^
O UJ
II D
— Z
-> -<
>* H-
(VI Z
*: o
Q 0
o
n
f)
-)
Z
CE
»
0 CO
r» t-
n a.
Z
o *
f- >-
»
O X
0 »
->
— z
< CE
ar ^
_J LU O
• CE Z
o z a -»
O • UJ II
^5 ^j ^^ "™^
PH i| i 2T
QD *^ 1^0
o < -*
t— 1 1 f*l
"~* J
o u. < o
O HI O O
o
sj-
f)
o
•
o
(VI
1
-)
CL
•£
UJ
1-
•^
4
^
(VJ
O
•
,— 1
«
^»
•")
>^
Q;
H-l
<
ill
a
it
*^. UJ
-> D
>-* ^
o; »— «
i— i ^_
4 Z
UJ O
CE O
m
,^-
n
UT REAERATION RATES CORRECTED TO STREA
)
R)
Q, •—• *— '
Z * <
>-« X UJ
X -^ CE
00 — »
in o -5
* (VI Z
X •• EE
in x *
* in ->
^ » z
X > -*
-^ < CE
^-^ ^^ /*^ ^j
c^ ^^ ^^ ^^
:ft (VI .— t 1
CO ••-—»—
» 0 0
CE X 1 O
~3C >-4 H-
Z "* CO O
-^ t— CL O
UJ ^t ^
^» ^^ Uj ^j
1— 1 fV 1— 1
CE O <
0 ^
LT.
ro
o
•
o
o
^«
>o
00
X
s
CE
Z ^
•• UJ
-H CE
II H
T ••—•
~)
O »-•
>43 CE
(*) H- 1
<
O LU
Q CE
CE
o »
O CO
CL
O Z
1- »
>•
0 »
O X
—» ^
CO Z
o »
Q CO
_J O
• O
UJ «•'
O Z CE
O • UJ
UJ O _ 1 1—
^3 •-• UJ Z
Z 3D •-«
H-.Q <
f- 1- -J -J
Z -* -J
O O U. <
O O »- • (J
O 0
\o ^~
n <*i
UTED OXYGEN SATURATION CONCENTRATIONS
CL ~
Z CO
1-1 o
X Q
-t "5
» Z
X CE
in »
» "^
— z
* — »
x — -^
•^ * CE
-* — X <
O O " * >
00 (VI — _J
n » o —
•> O (VI O
CE I »O
^ -« X H-
z — in o
" H- * O
UJ " rn^
» •*
^< ^Tl
^ in
"^ *k
z -.
•• 4<
^H X,.
^"^ ',^^
O ^*
CD O
O (VI
-^ »
CE 0
UJ X '
t— r—l
Z ^
<
0 >
0 _J
» O
CE O
f 1-
z o
*•* o
UJ
H- _J
>™i — J
a <
IB U
-------
SUBROUTINE NETDAT (Con't.)
72
-* -* o to »
— rvj z
O to •• O LU
" o o
a. uj z i
~ o to o o
z z o -«
to o o »
z u *H z x
o H- o in
1-1 Z < f-H *
H- id cr ~ H- -»
< O H- O < (W
cr >• z • cr x
»- x iu rvj o -^
z o o * H- >*
LU z # < o
o o o -^ to ru
z uj a -> •>
o > — z
O -J X CX UJ X
O ~« TO -«
O tO CM UJ >- »
O tO » K X X
CO •-• «* •" O »
Z O in o cv
-> -J -J 4- UJ X
X«t -v< J OH- ^
CC t-i — ~> >-• -^< OO —
*K»--i »CX. O
{/)i-tQCC»-«-^St- O3E-» <*)
»-ZO »Z>-CCt-'-> + OtO -*
(Xr-tZOtOHnX'-ZtOO^ OOO »
ozxxtnj— xotot-too~> XQ"*
f*i»n » ^f CL in » t— x ••in*— f** »in x
OXXQCH->xcr «-XCCH-UJ xcci— x
t— » LO » »m»>-in« f- m» »
~> •> ~) OX •~)»*->O* »~)O _J-.
OZ — Z O» -^ Z Xl-^. Z O h" Z O UIC*«
O*# * ~5<> * »i/)» r-«.-»cr Z-J'-* cr t/> • *-«xcc ^ _j~
3D O —» "^ 4 X>-'-> — *^ * *^ »*• ^ (j o *».«.».-«^ o x«.o
zzoo > oxoox> tooo > _j~^i oo-"> _j on
ouiac»o ooujcr»oooo£r*o ooz-^» *o»-ooz o»--<
OZUJCTX oozujcrxnjooujcrx oo»n>t crxxoo* ocrx
(/>^«-t- o to»-i-'H-tno HH'-'J-^O cno->z~-h-^o ao«-< —K-
OO UJ< OO UJ<» O UJ<— O<00-)i-iUJ4--*i-»-s:a._ii--_i_iH»-s:
"» _i H-t cr ~ _i — «j •-« cr s: _j _i i-t cr x _j — (ft z •-• cr o. _i — u. 1-1 cr
o u. ^ cr o ^ ^ o u* ^tococx-^o^cro *™^ ^ o u. o o o oc. o **^ ^ o u» fvj o cr o
Ot-iOXU.XOO'-'OXU.ClOOOXU.^'CJOHHOQOaU, OOi-i^OXU.
O O OO OO OOO OOO
»—• M n^1 in^o r^ooo* oi-^cv
•^ ^ *^ *>^ ^h ^ "^ ^ *^ in in in
-------
SUBROUTINE NETDAT (Con't.)
73
i
•—I
*•
x
x
»
01
UJ
i—
DC
UJ
rx.
o
o
0.
I
I—
LO
1-H
UJ
CO
UJ
o —
XX Z
\o »-« or
n — a. rs
» O O H- O
>t n K uj 2
< ^4 to a: LU
-< M
o
o
o
in
-------
SUBROUTINE FL0WS
74
» o ••
~in _i
o nj u.
in —• * (M
(VJ Q -~ X.
» •** o o .-» »
-* -> 2 in * o co
o x x <\i ~ m 2
in CE • -» o M o
CM » ^ HI m ^ o
"•- -^ O Q fVJ CJ _J ~
n oin o — z: » QL
< tn r\i z cj a: _i o
• AJ — x •• « i-i z
—. •— cv * ~ -> z: —
o a. *: -. o o x 01
in < o o m in • <
(\j>*tnnjrvjto «
»^UJ'~f>J^»~'O -«.
(M*0^-Zt/)UJ Q.
<-*mo>-|/)"^QQ*»» •>-•
orvj^o^'.a: —. Q.
i/i^^.oou. ->
^•ar»O(\JfvJ(X " UJ
^uj-.tri'-^'*' **• to *
3 3R * Q.
^^{\|i-i>OOX Q -^ U
oo — o»*a:2 3: -> 2
LniONO^-.ct< >- a 2 —
(\j(\j»aDom»i o » — i—
— — — O ^ » Q. O < QL (X O
o>o«i\jor>x o o < o
**tn-^ — in3L>t * o z H- > o
^^!\JO~
Lnm»-'>j^ (/) «-iO^2 2 -~
f-(/)ujOMjo_i >-i.~.oa + o»- — ">
0 U Q. _JOQ.i-i2-> O O "> O
(/)»OOO»OUJ22O LU-^OZO— C5 I —O
3~lTlf>lf)^<\l_J»^l— ODU-J-X-X— * -. 2C3
ooojfvjrvjo — xo:">i/) < ro en »— ^ ~* O. M*
_,l^^^^L/)<^3XX _J»_J~>2O ~) O OK
U_t\JXOQifVJX~>2-4-4-~) -~X»2»--_J«-a-«Q.»'0« (*)»UJOI«~ 2»2 + O •£ O»i-«T
2>-
•~"C3»Q.a:O_J22
H. >Ul")H«»D£r'-'UJ^ZZ)OJIZ2XZD-JOH->W)M
O2 2 -1-1 —->022t-OD-5D~) M It O < Z U. II »- II t-
OO O O-)— MM — < — O~022X«-< 230215
crs 5: <<^ —»- — KQSr_jo>->-i-oin o o < < o •-« o — o LU o u. 3 MO o — o o o -" o < o o o 3 o
LOO CJ Q Q Q O O OU OC U. 1-1 -) O O O O Q 2 2 O O CJ (ft If) Q LO (J)
-* oj n ~* in •-!
o o o o o
-H M n 4- in
-------
SUBROUTINE FL0WS (Con't.)
75
» X * *
>- -H X X
Q X *" ^ M
< -«in ~ ~
uj * at in in
h- X » (VI (VI
X — X X ~
GO * -H X O *
(M X » M (\| -. X
X — •> V CO * —
~ •> X * * "•- •
* X M X X X O X
i o >~ M • ti -> o to
» 00 U. (/) tO »- "3T
\ *u u. z u. o
» O O O CO J
-H * -• ^ X I- O
— x » » -*• o to 1-1 _i
K-^X-«»Z 3E tO UJ
OO^O«-> _J LJ— Z
O~) ODO Zl— »-i»U.<* MM QO O-^
vO-' ~ ± MO — H * UJ X XO XO XO
\/) *"} o o y o x in ii 3^ *^ n * >o * o^ •*
O4 ""• H1!/) OZl~'f\ltO h—*^ »~* ~J »^T •—i O
t—# to i {/)O**rxt/)too »sr »3c * z
~ zo OM«»2;c/io —z
• > Q. X* OO»-X M »O Z»MZX-aMH-
a.nr^yiDo — OHZ^ *t-ooz»-z»z-'OZ^'O
"»- SXXXm^'l-O'"*!— O^K-OZ
>oozMU'-'OMUj
^-x xz'-o z»-«£iru.-^»'»> »-*Q:-J'-«QC_J'-«Q:-JI—o
oo ooo o o 3
-------
SUBROUTINE FL0CMP
76
LU X
X > ~4
» xfr ~
-« 4- ce o
» o » » on
— in _j ro 1-4
O OJ U_ HH X *
in *-• » oj » *-
ru o — *: o. x
»**oo— »» _j LU 1-4
— -> 2 in » o to uj o»
o z: x oj — in 2 2 xx
in a •> ~ o oj o 2 oo»-
CM » —. H-« m — o < f> —.
~ -» O O OJ O _> X » *
ro o in o "* 2: » o xx
«-ir)oj(\ito ui -H »
~»uj-^oj^-^'O a: —
nj»o^2(/>uj •- -^ QC< v.
o(VJ^*O-^^a 2 O UJ 2 X »
in^"V£»'Oou. ID*"^^ Nit-t ^-t— .
(VQ.O — inirz tvj xz »*
"X»-oMMtt: o h- -» "
• *in^'O>» o-^o -^ *in
^->(\j»-i>QOX O-^O 0«X XM
00 — 0»»Z2 ^2-^ X< -«*
LninMO-* — a< o^-ct -itr -*x
{\J(\l»-DDOn»X • O U. ** O — » OOO
— -- OLn»ao~- o~z oo ~ nn
o>o»njor3xo »ioa: (\»ct ~~) -^»
« » Ln <-• •— 'inz-J'Ln OQQ • »o_ •— • »(/i
^-~Mo-otOLnQ.~>>» ^^-22 xa: i XM
>-(/)Luo(v_JO_i'~ o^^.^-o *iu ~> »tr
3-22 P« ~* < *>
O~— — O — 2>OtV 0—00:0^ XC/> O ~ X
»-OOO»-OLU22*-' •2»-'«O< -H>-I ^^2 * -HI—
— minm — (vj_i*3x o-'»o->x — -«— in *»2
OOf>J(\J(\JO^XOC"5h- — • X * 2 O — OX ~-< • OLU
^ -- ^^*> O-— •— - * o — no
2 -I* O-H2
LU 22
_iin^ -- ^^Ln<*>»xo. ZOH-— <•— 2nf-
U.OJXOaOJI-)2-tUJO~'«Q.2»02 — -« Q
-'l-l-i-i'-Q.2»-XQ2noUJ^-'-*«** O»»-«
J2QO— — CLLU •tnox-*a: LUXII iixLuat^o
>*-H2222lU« — 03^2^0 OH— »-»">HOZ~-
2 _}(/1 -^ — -^ Q h- 2 < -^ H- 2 — ~>l -*2~K->-
O 20X-«XH>>-HOUJ--iouju.uj~'u.u.-'0ttoujh-ooo--joooa:oo —
in ao o o o o
-* oj n
-------
SUBROUTINE FL0CMP (Con't.)
77
u.
o
(/>
_J
UJ
z
<
X
(_)
u.
0
in
«t
UJ
cr
4
J
4
Z
o
^~
o
UJ
(/>
0
cr
<_>
X
«*.
*-s
*
X
!T
0
ry
«
x
,^
)_
u.
~»
CO
X
H-
o.
0
1
UJ
zx
< H-
X DL
— O UJ
<. X Q
*
X
r-4
O
OJ
»
X
IP
»
G
UJ
(/)
X
t—
u.
in
UJ
i—i
\—
»— i
(_j
o
J
(^1
•>
_J
UJ
z
*
X
f-l
^
o
(V
X
in
*>
—.
^*»
u.
u
•**
(ft
UJ
X
3
J
o
>
z
o
I-H
o
z —
3 1
-> o
x >
-»
IP
•
r—t
jf
*
—»
z
<^
X
h-
LJ
o
•>*
•^.
~~.
o
(M
*
X
in
uj
2
o
a:
uj
o:
Q
Ul
o»in»is)*t/>» * * u. i/) » «o
» o »o *o * ~> o * — x • ~> co
— Z ~ Z — Z ~ Z I- — "5 * -> Z X
~* — * • *^
z -> x ~« ->
o— ^(x^
» ct — — < or
zo *-> oo >-)*-4
•• (M H- < (VJOJ _JZ<
O(\J-~_JOCV).JOM_|O(\J_J— «
"t-~-O'-t— O-'t-O^'K-OU.
—
-------
SUBROUTINE QUALIN
78
o
in
o z
in or
oj »
n o
< 1/1
• ro
o a.
in <
OJ >
<~ UJ
OJ •
* o
~ in
o oj
in ~
oj a
~ s:
-•'-«
OJ »
o o
•• in
--» (VJ
0 —
in o
OJ O
•"* • OD
-H O
i^ »
o -»
* o
-~ in
0 OJ
in —
~. ~ ^
o o x
in '.n *
OJ OJ Ul
•^ «•»
> Q
x
o
z:
or
O O ~ Q
in in M o
oj oj * OD
«- — ~ o ui •• a.
a> > o •• oj o
^ ^» oj o < oj
m in t— UJ O OJ J
2:
ac
x
u.
X X
UJ Z
X <
HH X
U. U
X X
X X
UJ OJ
x a
o •• » •
z o ~ ~ ~
HH * O, O O
_i -^ in in in
< o oj oj oj
Din "
o oj x o a:
— H- v- •-»
UJ Z Q O <
z »-»•-< x uj
t~t (3 3 Q. QC
DZ
00
a 2:
OD X
DO
Ul O
Ul »
o --
* o
~ OJ
o —
in <
rvj X
— a.
x _j
x <
o _j
o -i _i
z » »
•• H-X X
Z > OL U
UJ ZO Z
_l » h- D
» 3 X X
~) Z 4 >t
z »xx
• o a. —
o cr o or
Z Z^
ui
z
o
z
o
Ul
z
3R
O
or
* o
o, o
D O
02: ^
m or /->
* o o
o K z i-
i- ui D
HI -> o
O O *"^ O
_i o a. >-i o uj
00 U. K X Z HH O
< «» ui » o u. z
O O
O O
O 0
OO
o o
o o
• •
UJ O
ZUJ
• •
~> ->
z z
I—I >-H
o o
• •
zzS
o o x
o
in
oj
z
o
5-
2:
o
o
oj n 4- in •-*
Q Q
o n
it *:
x
u. in
o o
z o
«-4 • »>t • Z ~ «-5XOO^«-v^
OUJ II OUJO<_JU.O-IOU. II O II ->->
— Z —2Zl-11ODaillOO 3TZ
U O O UJ
n in n D
Ul Z Z Z
u_ o o >-« o
z u o o a
in
o o o
»-H O OJ
o
O t-4 »-( ~) O ""> •-«
— ^ z z z
O U- U. >~i O •"• O
Q I-* H-l O O O O
o o o
n
-------
SUBROUTINE QUALIN (Con't.)
79
3 1- <
>-*
(*« *-« O
x cr »-•
O OJ <
n -i cr
~* » Q
.. T"
x •>
» 2 X
v O H-
""} •• »-*
^ 2
X X 2 "*
cr "* o »-
• — ~) O
-) O 2 ~
~ ro i-
O —I < H- I/)
h- « O LU
» —« 2T U I—
cr i "-• <
O »-4 « ^
00 2 ~ G» t- »-H
"*f- O S
O LU < LU O. Q£
H- H- 3: a: 2 LU
i-i o: *•« H-
o cr o '-o
o •» u. < >- z
^ oj n
o o
sO r^
X \
x ^ »
X ~ I
»Z r-,
-^ Q. —
* a o
x -* n
in 2
t\J O X
». 1— 1 — <
X t— »
o < x
oo cc *
• I -- .
- 2 *
* Ixl X
X O -i
r-. Z ~-
>- O 0
in o n
x a x
X X
» X »
-* r^ ^
* (U *
X » X
o » LO
n cvj
-4 LU »
•• t- x
< o
X h- 00
X V *
» o X
-. < -4
in * LU —
2 x »- in
O •-•(/) OJ
O — X *
I c^i ^^
~ n ^ x
o -< •• ^
o » x •-
cr x •> »
2 ^ «" **
— H- i x ~
LU < —i ^
a H- rr ^ ^- o
o »-i cr in in x
»- cr o » »
•-i oj n
o o
X- CT*
a
» O
•"> o
T O
cr oj
»
T O
2 t-
o
X
to
2
O
O
2
Q
LU
X
1-4
U.
I
in
x
in
x x
— ->
-«o
cr o
< —
> o o in o
_j • o oj 2
— o -• » »
O LU •> O r-«
o • cr x it
3 U. Z —
O ~> — H- O
o LU < n
_J 2 »- X ~*
_i — i-icr
< u. cr o o
-4 ^ U- O
o
o
4H,
F7.2
E
RIVER
3H
3
ON
— 3 r
* -7 a.
o^i
-^ •> X
*: x vo
•* in »
-) • >*
Q£ • •-<
• I -<
^ ^ LU
•~ ~ a.,
o in -<
oj oj »
a: x
-------
SUBROUTINE QALCMP
80
* o
-^ in
O (M
in -'
U.
z in » o • m CM M in
~ uj — oj — — o
rvj •• o ^- z in uj
< "« in Q •-< u. tn
•> o t\i o u z z
*^ in •-" CD » * *•
O (V) »^ O -* — !X
in ^ ^ » o o u.
rvj a. o ~ in tn r
^ z * o M (M a
-
#
— OT
in in a_
O
CD
—" *-« V <
z f\J (M (VI O ~ X CC CD < O
Q
OD
Z
— o
O
o
Z •-• — *•* O -^ U.
< t-i
OO
UJ*
2
1-1
o
it
u
i
OO
0:5:
CD z:
—• (\j
in
.
Z _J tn O — Z O — Z — Z — — -« "> O -5 (ft Z ~ ^
O Z O O >- i-t O O O X *-t O O >-•-•<< ^ Z O O O U. fi ") <
5" >OU.OU.O>_J
O OQ»-«OOOOi-«QQOOOQO<-iOQ<
OO
OO
-------
SUBROUTINE QALCMP (Con't.)
81
••H
|
— 5
M
_<
X
M1)»Z(JM1)/XLEN
)/XLEN
O — 5 •"*
rr* *"* X
1— 4 •> Q
x -> n
^* ^ ~)
&x ~
~ a. o
Lu -I >
1-H < Q
2
LU
_J
X
•-4
X
«
X
2 "5
UJ ~
_l <
X 1
X -.
—N -^
"-4 >-4
X X
-J -)
^^ >^
< rs
* —
— to
^ OD
X <
-> 1
IN S
II ^*
— Q
O -^ >
O » Q
-« ~5 II
»» -^
O < ~)
*-x*~
a. Q
C _l >
O < Q
o
o-
2
UJ
-J
X
X
«•»*
M UU
* _l
O — X
•™« —5 x
— 4 '— <-»
< -)
o * ~
h— >—^ f^J
-. #
O ~) —
CD *•* "^
O —
— — <
0 V) 1
• CD —
o < -5
• II ~
H- ~ Q
O CVJ >
• » O
— -> II
—5 "^ — •
— • ^ "5
>-4< O
o
o
r- 4
2
UJ
X
X
-5
fM
*
-> ,
^*>
2 <
UJ 1
— J «••
X --
x ->
^^ >—*
~) O
^» <-»
< CO
* CO
••5 1
«-• —.
M "1
II *-
-. O
OOJ >
rvi » o UJ
-H ~> II P
"•* •— z
O < -> >-4
1- X —1-
0. OZ
O _l> O
o < o <_>
0 0
r-« C\J
1— 1 •— •
2
UJ
X
X
o
2 2
~ UJ
NJ -I
* X
— X
o —
0 Z 0
n *- z
+ fM
o — *
H- ~* —
o o
022
<3 <
— — 1
o to --.
• CO ~>
o < 2
• II «-
>- — Q
_J~« >
• •• Q
UJ— -> II
O CJ 2 *-
22 >
N^ ^l ^^
2 — Q. Q
OU. _l >
(_>»-« < O
O
o
o
—t
2
UJ
X
X
o
M
*
G
2
2 <
UJ 1
i —»
X -*
X O
— z
y *^
Z 0
«— * <••••
M Z
II —
— o
*•* >
O » Q
-t "> II
-12 —
— ->
O < 2
»- X *-
0. 0
O _J >
o -• X
•— 1 •—• **:
*£ •— <
O + »*
1- -. Nl
~* *
O -• —
O •••' •-«
o ^^
— *- <
o to i
• CO «•»
O < '~4
• II V
1- - Q
O *™* >
• * Q
•^ •"* II
t-* ~~ ~*
*~ < -«
CB X ^
"O. Q
U. «J >
« < Q
o
^>
1-4
2
UJ
X
X
1— <
•—
2 <
UJ 1
i »-.
X. —
X •"•
,•* ^^
1-4 (3
^« •**
< to
4t CD
-. <
C '
M •—•
II *"
*^ O
O •— 4 ^>
>O » Q
r— t r-4 ||
— <^
O < •-«
1- I —
a. o
O -I >
O ^ Q
o
to
1— 1
o
o
o
flj
o
1—
^*
ae o
a: o
LU *—
2 O
"-» •
y; QI
O UJ
:> •
^* or
Q o:
UJ
i •"»
< u.
O >-i
o
•J3
1—4
O
CO
1-4
>
t-4
O
O
K
N
X.
•"«
»
X
in
x
M4
o
»
?
•>
x
»
Xi
o
n
i-4
f.
X
r*
•t
X
•>
CO —
2 (»•
O X
o •**
_J >^
— o
o n
(*• "•«
r— 1 »
•> r-4
fy ^
~X -~4
Z "^
" f-
UJ <
^— X
*— 1 o;
oc o
It U_
o
f^
1— *
IX - PROGRAM TERMINATES )
Oj
l>—
<
X
2
O
^~
o
t
o
to
x
r^
n
»
^
4f
•> 2
CC
2 a. r>
*™* O t~ Q
H UJ Z
^^ ^0 0^ t^J
^H
o
o
o
fVJ
-------
SUBROUTINE D0CMP
82
» o
«in
O t\J
in— »
M o ~
•> <- o <=>
~->z m
o i, x <\J
in or * —
M »«»-»
— ~ O O
n oin o
• o tn
-~inz
o (vj o
[/>>'O
oa o _i
^r*
o z
O •— -«
z cvj ->
x * z
*Q—
— + _»
-" — o
" ~> >
— a
o a. ^ —
(M > »tn
— uj — t\j
cvj » o •—
»-'O
in LU
OZ
-^QD*'
-« o 10
(D -^ Z —
o -< ^ ~>
» o rvj o o z z
«t t- O !\J _l Q Z
in in N o ~ -» o:
rvj (v * GO o rn •*
**^ ^^ -•* o in •* n
O > O » OJ O O
Q
*
~
~>
—
a
U O
# >
— * en
in Q o
< — o
* i *
<— > K- --« GL <
_i*o~- + «
o — x a — ~
2° "-
o x m
o o — in
in in K- oj
rvj oj 2: »•»
— — Q !/l
in
O < «/) Q
O * • *
o ~
2: —• in in in
o o tvj oj rvj
o in >- >- —
Q 04 x o cc
uj Z Ci O -« a ~* a. o:
i-
o z
o o
a: T
CD 2:
O O
in o
a. -)
< z
o * * *
o ~ -. -^
O i-i ") "> ~)
(\J ^- ^ ^
o a: z t-
< cc o — -^ tn H- ojozuj
M
— *
O -4 -.
O 2 -«
"> 2:
O O »*
o en i
• 00 —
OHO _J II —
z 2:
O_JZZI H
— x 11
UJ I » *- -^
z
o
2:
o
U
>_io_izou,ou.o>jZ5:
QO<> I
tsl ~>
II —
-. Q
o
II
N Z
* UJ
-> x
o — x
in < -.
o ~ —
•") * ~>
o — — ~
O O ~) <
— ~. *
UJ
X
o m i
o it ->
H- -. Q
O (\J >
• •- (Q O
NJ
II
(VJ
o
>o
00
< ~5
I —
(X C)
o
n
**) 'N^ ^-» **-*
— < -> o <
0« X «" h- X
— Q. o a
U. _J > O -I
i-« < O O <
o o
•* in
-------
SUBROUTINE D0CMP (Con1.)
83
z
UJ
_J
X
X
ISI
*
1
in
cc
1
~>
•—•
o
>
c
h-
z
o
o
0
sC
o
K.
c
o
o
o
1—
_J
t— r*
2 —
O U.
U »-•
o
0
0
1— •
z
UJ
X
X
u
z z
— UJ
fsj _J
* X
~ X Z
O —» UJ
Z O _J
— Z X
<• — • x
-. * G
~. ~ z
{_; tJ *•»
z z <:
tn — z
OD ~5 «-
< Z Ni
II — II
~ Q ^
• O ^
-i n o ->
Z — X Z
< r o <
r — H- x
Q. O 0.
_) > O _J
< Q O <
O
f*.
Z
UJ
-J
X
X
o
z
M
O
Z
1
*•*
o
z
"- 0
c/> O
CD 1-
1 O
— O
->
z —
— ' O
o •
> o
Q •
1—
II O
z —
— • C*
o —
> u.
Q •-•
o
cc
z
UJ
-i
X
X
— z
M UJ
* -1
~ X
«-« X
» •+*
— *
U) 1
DO —
II —
— 0
^ >
* Q
-4 II
T <-*
O. O
_J >
< 0
z
UJ
X
X
ft
M
II
O — '
c »
o <
f- X
OL
O _J
0 <
o
o
1 ) *OVD ( 1 ) -IBS ( 4 ( 1) ) -A ( 1 ) *Z ( 1 ) /XLEN
DIVCK (NERR)
ERR. EQ. 0)00 TO 2000
E(NWR»110)LCONS
AT(1HI,130(1H?) »/»lH ,130(1H?) »/» 1H0.20 C1H?) »5X»16HZERO DIVISO
»A^f»37H SOLUTION MATRIX - PROGRAM TERMINATES )
RN
~_J Z ^
O_J — *
•> <. u. c
OO HH j
o
o
_4
•• 3T Z fl. O
•4 Qi »-4 O ^~
CO H- UJ
K U. Q£ (/) Q:
O O
•-H 0
-< O
'VJ
Q
Z
UJ
-------
SUBROUTINE S0LVEX
84
» o •>
— in _i
o oj u.
ID «- » OJ
OJO. — *
« — o o —. *
-« 1 z in » o &
o 2; x O Q CM O _J
<*> o in o -* 2: »
< ;n oj z o tr _i
* -AJ — X • * >-t
^ w. (\J » ^ ~> •£
O Q. ^ — O O X
in < o o in in *
M > •- m CM oj in
— UJ — OJ »- ** CJ
oj * o «•» z tn iu
< — in o «^ u. to
* o oj o o z z
•—. m "^ QD • • *
o oj -* o — — cr
l/> ** ^ •• O O U_
oj o. Q — ir> in z
— z: • o oj oj cc
•-• uj — • in ^ >' »
3r ")~>
-» —. OJ t-« > Q Q >^>»
OO»^Q»»Z OO •—
tninisjo-' — cc >> ~>
ojoj»>aDoro». OO o z
«^ — -. o in » a. w n *-
o>o»(^Jo^ -^^^ o
^•tn^^-Lnx ^-4->o >
— — oj o «t cvj ct i+-* H- oo
oo^m»~-» o ~>"^Q \ox
if)ink-oj^ o o —
oj oj z: — o x u. M ooo o inoo
-- ai/>inoL-> o **\ »-z
H-IOUJO H- 'iCVjrOJO H-OO
(^•^••^••••H- O O »»»UJ>-< :O*
xo^ — — u — z> x oo "}->-} am o —
UJ»OOO*OUJZ < O >—•-'•-'*• O-^»M
>^tnmm — oj_j»- 3: x— <<
oin— »* «- in < •• at "< o~)i«r Q.O.CL~>_J«O o -> — z
U1MXOCCMX-)Z ^ M -J»Q OONH • ul » Ij. IIII*_1Q (U » Z X
z>-»'-«xujxa:oo» oj • *H 2 33»*»'~-iLi — o •-<• a.
~
. .
OZ Z IIOXO* -> UJZOOOUCJOtn-
-------
SUBROUTINE S0LVEX (Con't.)
85
->
2
O
>
Q
X
,».
n
•>
-)
2
4 — »
X ™)
CL 2
< O
1 1
i •*
UJ UJ
2 2
OO
II II
3t(J
UJ_I
2UJ
00
o
xO
o
f-
o
o o
-1
UJ ~
o o
* —«
X CO
ao a 2
< u u
II O O
O 2 «-<
•-« X CO
CO O 2
O
-. O
I—I*-* 1—t
^» rH
O — O
> O 1—
0 Q >
O CJ1 X O O
00 ~ \ O
O OJ ^
o t- <~ ro o ^
H- O •> JO
O * -^ UJ HI
O O -> ~- O CO
o -< < * •
X-~ »X— 'Xh-*^
^ U. -~ <-lOL^i<_IO
o-)^ ^j-'-j^-j
• O~" <
Q -»2
II II HH
O O H-
2 HH 2
X CO O
O 2 O
O
cr>
o
CM
—4
O
h-
O
O
^.
X
*
O U,
0>-t
o
o
l-H
1— I
CO
2
••
O
•z.
T
O
V
o
>-
o
X
<4
5;
,-,
o
l>-4
— »
«
or
UJ 3
D 2
2 —
HH UJ
t- »-
2 >~i
o or
O 3t
o
o
o
UJ
o
2
X
o
z
l-H
X
s:
*
UJ
o
o
X
CVJ
»
2
UJ
O
2
UJ
0
or
UJ
T>
2
O
O
Q
2
X
ao
f«H
»
X
_l
•^^
h-
^
3:
ct
o
u.
o
r-4
<— 1
PROGRAM CONTINUING )
X
fj\
r-4
*
•
O
2
O
2
t)
~)
»-
«t
X 0
fl -^
1-1 •— i
«
n o
* t—
Lf>
-« O
UJ O
H-
t— i
»-»
O
r*>
1—4
»
or
2
^^
UJ
^_
•— 4
or
at
0
CVJ
r— 1
»I4,7H CYCLES )
2
H-4
UJ
0
2
UJ
O
or
UJ
5*
2
O
O
X
ID
r-4
* t—
^
xo
w 4
i- a
<
z: _j
or -J
o <
u. o
0 0
n ^
r-4 1-4
2
or
3
1- O
UJ 2
or UJ
-------
FUNCTION FKFND
86
O -^
•• o
Q. +
cr i-«
» x
t- x
CO X
» X It 2
-JO H- II
•-• 31 UJ t-
Z (X CO LJ
X I Z 10
•>»- Z
-> LO -.
Z-tZ~
— Q 3 Q.
Q "- O O
Z " X 3E
u. ^ a o:
y: x • •
-) 1-1 H- H- »-
Lu _JO LU
2 H-. • • (/)
O * t-H- Z
l-t i-H (/) t/) U Z
H- ii "-« •-• a a
01- o o z r>
z uj ^* "* u. H- a
O LO U. U. ^ LD Z
u. z »-« >-• "> a uj
-------
SUBROUTINE INTER
87
* o
~ in
O (VI
in «•* »
(M Q —
• —• O O
— -> r in
O Z X (VI
in oc. * —
(VI • -. HH
o o
•• o t/>
~ in 2
O (V) O
in ^ o
(VJ O _J
o
in
M
(VI
in o
in ry z o «x
rvj — x » *
— rvj »
a. * -
< a o
> * in
uj —. rvi
o —
O O X
in in »
(VI (VI I/)
•3. O
cr in
a. <
z »
•> *•.
> o
• in
X (VI
— in o
o oj o
in — co
M -H U
rt Q ^"*.
r • o
ui -^ in
i— o rvi
-. (V) H-t
o —' o
in M o
(VJ * CD
»- ~ o
> o •
Z Ul UJ
i-« U- I/)
u z z
o o u.
in in z
M oj a:
»-•>—•»
_JO Z
o > s
> Q Q
j; — -. (VI O
z o o — in
» in m t- M
_J(VJ (VI T ^
< — *- Q tn
> *- in uj o
uj :D < in Q
a o • * •
*-* o --*. --** *^.
(X » O O O
uj ~ in in in
I— O (VI (VI OJ
•z in — — -*
»-*nj x o a
— (~ i— >-i
UJ Z Q O <
z >-« »-• x uj
I-H o i a. tx
=> z
o o
a 2:
m z:
DO
•-i (VI f)
on*
Ln » a.
(VI O ^
^* in x
< (VI (X
•• *•* »
•*^ ^ x
O X U.
in a. ~5
(VI _l O
>- < z
o ^ z
» O UJ
-» OJ _l
o —• x
in < »
rvj x ~5
— a. z
> _J •
X < U
O _J Z
z
o
2:
2:
o
s:
ac
in
H-
0.
in —<
a.
z
X
> z
z --
•• _l
cr < in
X > H-
Z LU 0.
»a: z
Q *
(X Z -"
Z O II
Z ^
UJ (VI
x
*•* O
O Q
(VJ
(VI
UJ
a
x
— a. a.
ex s: s
<
X.
a.
Q.
X
»
>
»
X I—
^ a.
^-« u
X »-•
II II
h- Q.
(As:
LJ
(VJ *~
(VI X
x -5
u n
*- in
o u.
Q t-il
z x
HH u
(VI
(VI
x
it
Q. a.
z
O
sr i
o cr
-• H _J
*"-'--'— 'OOO.<
(VI
• i z
-J •-« a:
> z H- a
UJOUJZ
-------
SUBROUTINE TABU
o
O
o
o
»-
a.
z ~
•• LO
H- h-
O. 0 Q_
X-* Z
>-o >-
» t— »
X — .
— O (/)
O O f"~
CD 0.
O
(VI
0 O
— « (—
o o
*- o
o *»
o —
to
<«^ h*
~ Z 3
X
•
LU
_J
•
*—
a.
X
•
0
z
<
•
—»
^N
~> in
** *
x -*
i -~
** i
— i ^»
•»• >-
"> i
^* *~.
X VN^
X ~5
• X — • X X Z X ^
uja (•••-• -)
ZUJZl/)UJUJ-«'aJ ^
OQ.Z ii a.a.oa_t-ia.>-o>-o>a:
Qrzuj-*xxnx(-x n »-iih-iir)
co^-xx^**- -^ 2 «- H- »— i— i— Q
OU.t-4Q.LtU.OU-O II Q.OQ.OCLUJZ
o o o o o
n -3- rvi ^ in
-------
SUBROUTINE 0UTG0
89
00 N-* X
-« z m
•> •> 1 •• «
— !T UJ •> 1^- -tO
-v in _i > x * hH •
O(\J U. *•« iO UJ *- O
m »- •> rvi z in * o in » x x M -«
o z x (\i — ir» z xoj-* * »
ir> a • •" o CM o •• HHO»
fvj>*mojfvjtn o:xx — • »x
^uj-~t\j»-'»'U ujinoo x x>*
(\j » o ^ 2 (A UJ >»•> ».4-»
<~I/IQ»-«U.I/) HHXUJ ro »M
• OMOU2Z cc r- O >-« ro •
«» (/) o' QQ » « •> X •> — 1 » I— » \O
OfM-«O'--~CK LOUJ< -» »U.
in%-^»oou. ••_)> OJXQ.
-f)x n
<>-o(\j_jaz -* >t x • • -* •
»»m^o>» < •> t*- ^ o » o
— . — . oj >-< > o o oc»x* (\j >-« o •-<
o o -— o » • z: in M o -» — a: >ao»'_j ^a.* a.
-»(Vl(\J*ODOfO» «l-~~.~(_>Ln»aL »»zz »»4- »
*<3>0»{\JO^> CKCCXX CVIX» X
x»»ir>-."i/i2: >»» »»• »
CLOO^-LO*— » _i»-ixx — . 04 o -»H •>-< HH •
•>rvj(\jz~-oxu. o orx** *- voui o »-vO
ct~^QtnificL^in u.o.vo >u_
<»— l/> UJ O (VI _J O M >»X2 » *—• » *
>O- »«4-«-(VJ i-l^^^X »— HH-*
^a-.-s~» uja»-x» ~>-4>»--» Q — »
o»ooo»oujz-> z<-t«>x < x>--(>.»• -^X «-<^H».
^i/)^^^ip<»3t{\J »-«-^x>UJ i-«UJ — > XsO OUJ »«->X
oc\ixoa:(\jx~)z-^ *on»--«— toon
«"i— t— >-*^Q.z»x-*-4'"H«tQ:_J i-i»uJUJ<\J »ct o**uj«*»
UJ^QO --«a:x
Hia)»Q.CCO_JZZOZZ*'-<»X ll>-i_|j^ ^XUJ<"-HI-<||*'-«UJ
l_ >_ 2 ^ x Ifi ~ 1-1 _l >-i »-« Z — ' -* O I- -J -I *-• Z — O
rsz z to n H *• »- <*• * *«»»»-• *-»* h- r» n »-«t-n-iK x •-« t- HH o o ir> K s H o
CDZ x xi-tx«-iQ:<*_i MHMi-» a:»z*-Zuj MQCZH-Q
uo o t-i_iujQco»ujcj»-iH-ii-is u_>to>-
-------
SUBROUTINE DIVCK
90
•- o
o
OJ
»
o
in
OJ
OJ
o
in
CVI
<
o
in
o
•>
*-^
o
in
cr »-
UJ 3
20
> 0
•-< in
Q CVJ
•**
'JJ5"
2 *"•
i— t <3
1—
3 2
O O
cr s:
CD Z
o o
in o
o oj
in >-
oj O
*~ O
3: X
cr *
-. O
o m
in cvj
a. x
» O
— m
o rvj
in —
(VJ -4
Q. O
UJ -~
1— O
»in
m N
(VJ •>
^-* ^«
> o
» ir>
o —
m H-
cn uJ
< in
•• ••
o o
in in
(VI OJ
^» **
X O
1- l~
o o
t—t x
* CL
^ (VJ
»
o ^
in •• o
oj -^ m
<- 0 OJ
•-« in ~
Q OJ CJ
o >- r
2 0 QC
X •> »
-.00
o in m
in oj cvi
OJ — «-
~ -Z.M
O HI u.
0 U 2
OD • »
•• O O
-. in m
O OJ OJ
in ** —
OJ _J O
— o >
«-» > Q
Q » «
o
QD O ro
•• OJ 0
O • _j
UJ X <
fy ^5 ^ j
n ^- in
u.
OJ
U1
2
O
_»
p— «
X
(/)
UJ
2
cr
u.
cr
2
O
ex.
•k
X
u.
o
»
2
UJ
X
*
~)
2
••
(j
2
2
O
jf
s:
0
u
>
2
#•
cr
*
2
»
Q
5
2
o
II
cr
cr
UJ
2
r- 1
->
2
»
— t
II
->
o
fM4
o
O
^-<
^— i
0
H-
o
o
X
-. u.
o -5
• o
O 2
UJ »
• 1-4
X II
u. ^
->
O o
2(VJ
U. 0
n O
o
t-H
O
K
o
^N
^
^»
to
u.
2
•
O
UJ
•
^
•«»
u.
1— 1
o
rH
O
t-
o
0
o
•
o
•
UJ
2
•
*-.
UJ~}
2Q
kv4 ^w
h-O
ou.
(J •-"
O •-!
OJ ->
tn
>-<
»
2
O
HH
1—
O
2
1—
<
UJ
O
>—)
HH
O
o
rr
UJ
<*>
(VJ
X
in
•«
o-
X
•—1
~* o
O (VJ
o •>
•-
cr x
* ^
2 "•*
**. i—
UJ <
t— 3t
>— i cr
cr o
3 U.
0
f)
— 1
•f
cr
cr uj
UJ O
2 2
II HH
cr H-
cr 2
UJ O
2 O
O
,— 1
2
cr
^
H- O
UJ2
cr uj
-------
SUBROUTINE QAL0UT
91
* QC.
x \- » *
» i-* Z —
- — UJ * X
* o » o O X •-«
-* in _j oj z -« •>
o CM u. * o -' x
in — » i\i x o o »
(V) O -* ^ Ifl OJ *•» O
• —»o o A * » x * * r*>
*•« ~> z in * o in * *•« x
o 3: x c\j ~ m z -. O Q rvj O _J •• •« X (VI O
m o in o — z •> x * » * o
< ;n (vi z o ac _j sn -. x -^
»rvi**x»*'-« »>uj<"^ o
^*»c\j»-.-.z *~»-x-* o
00.^ — OOX *<^4* _J
ml/>» XH-^1/) •
nj>»Lnc\ifsjtn ^-*inou. o
«^UJ^ Ul — o > • •
< -. ir> o »-i it en x t-rvioxx to
• O M O O Z Z 3 » < O ~t Z
—. If) >-" OQ » • » OUJC7** -* O
O M ~* O -^ -> Ot O OXh-»~« O
tn'-vr^ooii. o ».-«in~>» -^ _)
ojQuQ^ifimx x io»x*o x •
*-Z»OMC\JQ: •* zxmx-* o. o:
^ uj ^ in ^— «* » x o*-«-«u. o. o
<>-O(\J_jQZ O O «-»*—•• " •
»»in^o>* Q -I*XOH o
^-,OJt-t>OO _IX»X UVCM to CD
OO«-O»»X •-z^.^»»Q Z Z
t/iiDNJO-. — a: x
3>o».<\jor>coi'-<'-«»-**2: -«»*t-— UJ o -^o o x
fvjrviar^oxu. o<^» xto* o • xo i- o
-"^ Q -J) lf> 0. "J DD-> — XX~«ZI Z O CC_J h- H-
I— t/) UJ O tVJ _l O Z_J<»-'^*'3S^« O II »• O h-
U<^Q" OD -*.
H-O-«-*~O~Z>XU«IX*» m o —• »• x ^.-.f-
O»000»OUJZOZ<'^-.XH--« (M O -^Q O OXO
o^inif)in-^fvj_i»oo«j'-«f»-<» » ~ IXOD H- »OQD
_joai(V(vio^xa:aD"}^ox-* x *: ^^^in<»'«ux-^n-4»-3X**o o >_j in o • i- **
o rvj x o a: nj x -> z x >* o ^ o -• o t/> -^ x _i • M -> CD h- o H-
»»»-H->-i>'Q.Z»-*X^*OS_J»f\J*OZ» — O U)Z« -IGD'tf
ujzoo<:>-_i»iQX'-<»f-i(»i)a.u-x*o^»H- oiu o o*»- »^o
Z'-*»-ixujx-»(rxi--«O>'»Q.(XO_IZZCD<»'-« ^^O-^i-^UJII »UJ»-l/)OOO^II »LJO»-«U-
t- U>-Z— O*Z~-0-)-~Z)OZ4-H>OU"1>^Ot-U.II
oz z _i -j — i- x in x x -*i- • ->zoo 3t r ->ZH-^X
OO O UJ<~-< OOOOOO~i-«QIIO
0:5: s: <«i»-5:»o(v^»-sii(vio»~_j_JH-K»-h-inoh-cbi->-
DDX x h-»->-ia:x>-i*OHHCt^: >^z_j^ >- H — z»»o t-
oo o < -* X U. X O «-i O O 1-1 O CO O CD Q I-H U CH >-• CD
—i rvj n >t in -H »-»(\in>*
o o m o o o
«-i <\j rvj n •* in
-------
SUBROUTINE QAL0UT (Con't.)
92
Q.
IX
in
2
O
z
LU
U
z
O -«
U OC
< CO
» Z
•»
II h-
>- Z
X UJ
n u
» »
X O
IT) *
00 ->
» X
uj tr
^,
0
II
a.
o
f—
^^
Q.
O
-> t-
Z •
M. ^_
** ^™
-i O
II • u
ct
UJ
>
-» C/> >-»
o z o:
• O II
-* — o x
+ Q. -I X
a o — <\j
O (- o -»
»— H^ 00 »
X *- CC X
J HI < » -I
CL
o
K
•>
z
0
V-
t-
o
CO
a.
0 <
oo^-t-«)iu.uJ
-------
SUBROUTINE GRAPH
93
•• o
t- X
z -* ~-
UJ »
O I >
» X X
>- —1 ,-t
X * X
» —. X —» Lf) t—
Q. O rH ~« » Z
z o •• • -* o -«
•> •—4 00 • J •
0. — I UJX II X O
O^1"1 »•—t Ar*4 O O
•-Q.XO o-^^ z r+ otno o
Z»-i*3: H-(7>o UJ <(/)O in O ITl
>-^-«» 5T^*O>- Z O X II I— H-
OZt-iQ. llt-00 irtO~*X H- H- * ZOIIOI—O H-I
CD^XCK XI—UJ »OZUJ _J •OQ.h-O •-<
— >--._! -. UJ O Q- X-^OQ O 0. X I-Z O O'* O -I
x_joc —•«*)•(*> *i—H-«^*cr UJH-»\O» ^:»»H-UJ»I»—zou —
UJ •_l!X(/)f-» » OZIIrH_J e>O^» U-t-f-O_J»-^-JH-J t-
zzt-^i-iaa-jQcXiricnuj^iiB ••IIQCX ~)O_i»»_io»_iu z
•-•OZCD*:< •*'-<»-< I OU.>-->UJQ.I-")*'^U1— • • H- h- • Q. I- _J — U) UJ
H-^-»O(XtO"-«XZ^'Z—Q.-^")_J>-OHHZa3Z"3VI-H-ZZH-Z>-« _JOO
—\ f r\ i i *^r ii i. i ^~ i_ «^ i— /-s ii i *9 \~s 1.1 i ««« L_ -y «_^i /^ j^s 1*1 iii /"% it •«• f\ \ "^r •**
-------
SUBROUTINE GRAPH (Con't.)
94
00
UJ
•
X
O
o
V •
•• r
0. >C -»
HH I— ( >^
•- » •
»— ~ — < X
z ^ • -«
UJ U. 00 *~
U ~>UJ -*
2 H- cc ~- a. o
•> 2 < X — • —«
I— O h- »
HH _J (/) ^ -. X
x h- a: o o o
- •• <*> •
t- II _J H- ^ •- ••
OO-JH 2 1-iXX £XX
ina.— i*»uuJujO"*-^uj»-H
inz _i r> o o a. 2 ** D 2 >-
M -4_iZ2z:2-t-3: — h-2
OH-o^t-f-^HH— LU<»-»UJ
-------
EXAMPLE PROBLEM
Given the following river/estuary
95
,500 cfs
5000 cfs
mile 100.0 mile 75.0
mile 50.0
mile 0.0
and the following information:
1. Number of sections = 49
2. Fall line at mile 50.0
3. Width at mile 0.0 = 10,000.0 ft
Width at mile 40.0 = 5,000.0 ft
4. Dispersion coeff. at mile 0.0 = 5,000.0 ft2/sec
Dispersion coeff. at mile 50.0 = 100.0 ft2/sec
Dispersion coeff. at mile 100.0 = 50.0 ft2/sec
5. Tidal velocities =1.5 ft/sec
6. Temperature = 25.0 °C
7. Evaporation - rainfall = 0,0 in/mo
8. Photosynthesis - respiration rate @ mile 0.0 = 1.5 gr 02/m2/day
Photosynthesis - respiration rate @ mile 50.0 = 0.5 gr 02/m2/day
Photosynthesis - respiration rate @ mile 100.0 = 0.0 gr 02/m2/day
9. CB0D decay rate = 0.23 at 20 °C
10. NB0D decay rate = 0.12 at 20 °C
-------
96
11. Sediment oxygen uptake rate at mile 0.0 = 1.0 gr 02/m2/day
Sediment oxygen uptake rate at mile 50.0 = 0.5 gr 02/m2/day
Sediment oxygen uptake rate at mile 75.0 = 1.0 gr 02/m2/day
Sediment oxygen uptake rate at mile 80.0 = 0.0 gr 02/m2/day
12. Al at mile 100.0 = 0.02
Al at mile 51.0 = 0.05
Al at mile 50.0 = 0.0
13. A2 at mile 100.0 = 0.6
A2 at mile 51.0 = 0.6
A2 at mile 50.0 = 0.0
14. A3 at mile 100.0 = 0.0
A3 at mile 51.0 = 0.0
A3 at mile 50.0 = 15.0
PROBLEM STATEMENT
Run TDS (conservative) with mile 0.0 fixed at 20,000.0 ppm and the
above conditions. Then, using computed reaeration rates and the
following inputs:
Mile 100.0 (5000 cfs) CB0D = 6.0 ppm
NB0D = 6.0 ppm
D0 = 6.0 ppm
Mile 75.0 ( 500 cfs) CB0D = 20.0 ppm
NB)BD = 20.0 ppm
D0 = 2.0 ppm
run CB0D, NB0D and D0.
-------
97
Next, run IDS with the flow at mile 100.0 changed to 1000.0 cfs
and the same downstream boundary condition. Initial concentrations
are assigned as follows:
CB0D and NB0D = 3.0 ppm
D0 = 7.0 ppm
IDS at mile 0.0 = 20,000.0 ppm
50.0 = 100.0 ppm
The data deck for this problem follows:
-------
-------
-------
-------
-4-
- 1-
99
o
in
en
1.
rO
ro
oITO
_-i i^=-i ^ i
H!" ^_ -r~^pt
-^tcrahr
IA
B
-,OJ
4- -I -
10
o
o
-------
-------
-------
KV
-J-
101
__4
f--- i-
-\-
f-
~t-
O O
i
t
_ i—* - _
4- 1
4 -
-------
102
Several things should be noted:
1. CDECAY and NDECAY are entered after temperature. Had they
been entered before the temperature, they would not be corrected since
the temperature would have had its default value (20°C) at that time.
2. The order of entering physical data makes no difference except
temperature dependent values should be entered after the temperature.
3. When a value is constant over the entire section, only one
value need be entered - at any river mile.
4. CB0D and NC0D were run before D0, because the D0 solution
uses the CB0D and NB0D solutions.
This problem was run on the IBM 370 system at the National Institutes
of Health facilities at Bethesda, Maryland. The total time was 4.39
seconds (excluding compile time) at a cost of $6.62 (excluding compile
cost).
The output for this problem follows:
-------
103
SSSSSSSSSSSSS SSSSSSSSSSSSS 00000000000 i
SSSSSSSSSSSSSS SSSSSSSSSSSSSS 0000000000000 i
SSSSSSSSSSSSSSS SSSSSSSSSSSSSSS 000000000000000 i
SSS SSS 000 000 IJ
SSS SSS 000 000 1
SSSSSSSSSSSSS SSSSSSSSSSSS 000 000 1
SSSSSSSSSSSSS SSSSSSSSSSSSS 000 000 1
SS SS 000000000000000 i Hi ill
SSSSSSSSSSSSSS SSSSSSSSSSSSSS 0000000000000 lliiiil
SSSSSSSSSSSSS SSSSSSSSSSSSS 00000000000 liliiii
^~
>—
h~
*—
»—
t—
r3ZJD=50033
3Z)r)3DOI333
rj^^o^nisoDO
r> 3 =>
3 Z> 3
3 t5 13
!3 3 3
^ 3 r>
AAA UUU
AAAAA UUU
AAAAAAA UUU
AAA AAA UUU
AA AAA UUU
A AAA UUU
AAAAAAAAAAAA UUU
AAAAAAAAAAAA UIJUUUUl
AAA UUUUUI
AAA UUUUL
** < < «X *
< < < *
X
UJ
_l
m
o o oo>
a 0004-
o. • • •
o o o
>- o in
in ^
Ul
>—
_i l
UJ • •
o tn • •
z o o •
t- z •
>- 0 UJ Q
t- •* Z
—i I UJ
_) < UJ
•» UJ I Z
o cr <«
cr i- UJ _i
Ul C£
cr < z *- -J
UJ l-» irt _1 Z
>- - u.o
uj • a < < o ui
t— • o in
< • 3» UJ UJ UJ
tn _j vj . — ;>
>• •— ?:
« *- o TT i or JL.
-2 — • UJ LU uj Z
UJ Z t/l :> > > z
>- 3 < -• — •-> 3
i/> a cncr
-------
104
oooooooooooo
UJUJUJUJUJLiJUJUJUJUJUJUJUJ
3OOOOOOOOOOOO
_JOOOOOOOOOOOO
_J»r
z
< c
u"
oooooooooooo
UJ UJ UJ LJ UJ UJ UJ UJ UJ UJ UJ W W
3JOOOOOOOOOOOO
JOOOOOOOOOOOO
•40^00000^000^00
>....•••*•••»
inuiint/iuiini/iinmuiinin
a: ^•oop
uiujoo
oooooooooooo
UJ UJ UJ Ul '.i.1 'i>M*J 'A)
oooooooooooo
UJUiUJLJUlUJUJUJUJUJUJUJUJ
UJ
a
OOOOOOOOOOOO
UJUJLJUJUJLUUJUJUJUJUJUJliJ
"'
oooooooooooo
UJUJLJUJUJUJUJUJUJUJUJUJUJ
-
o oooo
UJUJUJUJUJUJ
^)OOOOO
_jooooo
ooooooo
UJUJUJUJUJUJLJ
OOO^OC5O
ooooooo
a
V)
U)
»^
o
u_ u
cc z o i/> -o r* oo c
3 n Z — -"-«-••
(fl ->
ooooooooooooo o
UJ bJ UJ UJ UJ UJUJUIUJUJUIUJUJUJ
13 en -j o^orueoo(>in-«r*.r>O*
'
LJLJUJUJUJUJ
Z>ooooo
_JOOOOO
UJUJUJUJUJLUljJ
ooooooo
OOOOOOO
2T
I ;
U
z
X il
-------
105
OOOOOOOOOOOO
^OOOOOOOOOOOO
>••••••••••••
oooooooooooo
OOOOOOOOOOOO
I I I I I t I I I I I I
JbJUJLJUJLJUJUJbJUJUJUJUJ
r\j PJ --.-.«,-«.-« — «e
oooooooooooo
o
a:
UJ
3
_J
oooooooooooo
1 1 1 1 I 1 1 1 1 1 1 I
1.1 1.1 \±1 li\ itl tfj LiJ ^*J UJ
cooooooooooo o
oooooooooooo
UJUJOo-*»-*(M(\jr\jr"ir*t.4'-y **
>_)•••..*•*«*• •
M •— ry •$• •& to «
a: z m in in in <
•e O >
X Z
o
X
I
o
a: >j
> _i
tr «c___._ __ _
UJLJO-*—«^r\j<\jnf*>ri-j'»firt
> _) *
<
ce
cr
UJ
u
z
»•
I
t
u
c
c
i
c
h
L
L
L
I
0 C
uj ;
o •
o
in
r\i
in
in
- oooooooooooo
u OOOOOOOOOOOO
UJLUuJUJUJUJUJUJlkJ ij-,1 UJ UJ UJ
n 3000000000000 L
J _JOOOOOOOOOOOO U
-« k
- u
t-
j
J C
2 Z U
^ <£O'JiniOf^flOOxo^nj<^^' in >•
CO 3
J
O C
D
t OOOOOOOOOC3O,.c;
•» LJUJUJUJUJUJUJUJuJUJlUUJv^^ I
t 7DOOOOOOOOOOOOO
_IOOOOOOOOOOOOO
o^cO(\»^-— •Ln'*>'^r-— «
r
o
oooooooooooo c
UJLUUJLUUJUJuJUJUjUJUJbJUJ £
3 OOCSOOOOOO^OOO 4
J _JOOOOOOOOOOOO U
3 •-
J (J
c u
3 3
J C
3
C
C
J U >
t "1 *
c
5 t
- t
J OOOOOOOOOOOOOO C
D UJ UJ '-M Ul UJ UJ 'V tlj *ij ItJ tlj *L} 's1 ''^ '''
•> OCJOOOOOOOOOOO.DO
< IT1 J~ " ~ " ." " - P " ' :" .' _,"
f\, AJ ^ "'^ X "^ "v "v- *•»' "^ tx r\j fvj fvj
1
*«oru.»-,ot»orvjj->ocoojr-r->oo*oinm-* •-
•4
1 U
J 1-
c ;
E a; P-— •i/ia»r>tt>{\j^ooj-i:'\i ;
3 ^^coonaj^ocoory^^o-. i
3
C t
L C
O L
I-j"*'"'""^""' t-
^ C
Lj
D
C OOOOOOOOOOOOOO t
«dooj^^cooM4-^coor\j^^
T
J
>
E
f>
•^ uj
u
3
J U
: z
i_
D
2
3
<
3
or
U)
-
o
z
"*
-------
106
—• M
o o
I I
LJ LJ UJ
13 c* rxj
_) IT- f"-
< CO —« O O OOOOOOOO
> . •••••••*••*
•»• CO O O OOOOOOOO
oooooooooooo
I I I I I I I I I I I I
UJUJUJUUJUJUJUJUJUJUJUJUJ
OOOOOOOOOOOO
I I I I I I I I I I I I
LJUJUJUJUJUJUJLiJUJUJUJUJUJ
*\t oj rvj
o o o
I I I
a:
ui
>_]......*..*.
»-t»-tr*.<7'^r»)inr-a>'~tr)inr'-
a xr-r-coa)cocoa)<7'CT*E7*aH
ujuj in m O -*NO
_j<-> -to)
< _(
0.
z
UJ
oooooooooooo
i i i i i i I I I i i t
UJUJ LJ'-UUJUJUJUJUJUJUJUJUJ
-i
oooooooooooo
i i i i i i i i i t i i
UJUJUJUJUJUJUjUJLJUJLiJUJUJ
' "
«
o
V
I
in
u
i
cc •* eo w
UJUJ O O -«
> j • * *
*-•>-» t\j ^
oooooooooooo
I t I I I I I I t 1 1 I
J UJ [*J lyl UJ I^J 'v1 ifJ 'jJ UJ UJ UJ tfl
_J
o or in o. <•>
_| UJUJ LT) IA ^
o: cr:
o
nj(\irvj(\ir\j(\)fy
u
UJ
o
ooooooooooo^oo o
'I'ltlllllllll O
.^ ^^1'^JUJUJUJUJUJUJUJUJUJ fH
jooo—•^
oooooooooooooo
i i i i i t t t i i t t i t
UJUJLd-JUJUJljJULJLLJUJLJUJUJLU
- ----
U
UJ
o
a
o
03
Z
u
u.
UJ
o
u
-^rrcroo^:3oc
' - ' I I I I I
_'-. ~*U-JUJlx!UJUJ UJ UJ "^
a:
(J
3 i
_
< o o c?
>• • • •
o o o
cr (u *o o
uj uj o o »i
-------
107
OOOOOOOOO
I 1 I I I I I I I
LJUIUuJLiJUJUJUJliJ
OOOOOOOOOOOO
I 1 1 t I 1 1 1 1 1 1 1
LJUJUJLJUJliJUJUJUJUJbJljJbJ
3OOOOOOOOOOCDC3
_JOOOOOOOOOOOO
••»*•••»*»••
OOOOOOOOOOOO
LJ LJ tU UJ Id UJ 1U U UJ UJ
_j in in LT i in in in in in '.n
>.........
-J-'T-T-T-*-*-}'-*--*
OOOOOOOOO
I I I I I I I I I
'-JLJLJbJLJUJLiJUJUJ
-»-»-*• ^ -t r> t
xzr>mj--*j--fr-r-*zn^^^4-'t'Toooooooooooo
_JOOOOOOOOOO-OO
o
x
Q
Z
•*•*•*•••»•*
OOOOOOOOOOOO
CL
UJ
a
Ul
u
cc
O O O O O O O
o o o o o o o
o o
o o
-J
cr -.
UJ UJ «
> _)
OOOOOOOOOOOO
LdUJUJUJLUUJUJUJLiJUJUJUJUJ
OOOOOOOOOOOOO
JC»OOC3OOOOOOOO
z
a.
a. o
~3-
LJ
LJLUIUUJUJUJUJUJ UJ UJ
^)C003COaicOcOtDcOco
......»..
U.CC •>_!
cc Qriojfxjnnnnm^^^^rin
otr
cc
33
• nj nj pj CM t\i t\j
u_
u.
UJ
o
f\l
ooooooooooooo o_
4.4.««>««4.*'»*-*-* I
UJUJUJUJLUUJUJUJLiJLUUJLiJlULJ O
^oocsoooooooooo o
O O O O O O O
o o ^ a o o o
o o o
000
••••••••••••*
ooooooooooooo
'^' ItJ W 1-iJ K? 'v) 'M 1U ItJ ;tJ
I>co>ncocoa)cocoraco
OOCDCQCOcOCOCQcOCO
oo— *^^— ^r
1 O O •— « -*^^'
^,^4^,^_ojruru
, _ ^, ^4 rvj nj t\j
z
-l
i
U
-------
108
rj nj ru
• * •
CD CO CO
LJLJUJLJUJUJLJLiJljJUJliJUJUJ
3OOOOOOOOOOOO
_JOOOOOOOOOOOO
_!
m >o r*- co o« o
UJ LJ LJ
3D CO 03
in ji in
r\j oj nj
UJ UJ LU UJ UJ UJ LJ LJ LJ LJ UJ UJ UJ
3OOOOOOOOOOOO
_JOOOOOOOOOOOO
_j.. ..
>~»t-«oi/if*-cr'
cr x tn in i/i in ^
Q.
a
**J I*J UJ Ul uJ UJ UJ UJ UJ UJ UJ 'O It-1
3OOOO OOOOOOOO
JOOOOOOOOOOOO
I/)
2S
o
«^» L.I LtJ I^J ^ Ijj t^i Lj LlJ LlJ U^l !iAj tjj 1*J
3T 30OOOOOOOOOOO
CL _JOOC3OOOOOOOOO
— >
f
I/)
z
o
UJUJuJuJLj-iJuJuJUJ'-JUJuJUJ
3000000000000
_JOOOOOOOOOOOO
...«.....».*
z
o
2:
UJ
u
a r
> -J
o
LJ
3Z*^-^-*^^»f\JfM(\j(\Jf\lf>J(M
;^,^-^_<«iryajr\jryfyr\joj
« at ru ry nj na nj nj
X 00 CO CO CO
0:^000000000000 t—
• •-•-» + »•*•»** + **» »^<
LJix.LjU.ixlUJUJUJUJUJUJUJUJUJUJ 2T
3OOOOOOOOOOOOOO »-•
_JOOOOOC3OOOOOOOO
.....*.....*..
onnrinnnnnnnnnn
LJ LJ UJ LJ UJ UJ LJ Ijj .„ -_ ._, t_ * « ._)
..*...•*••.*..
UJUJUJUJUJUJUJuJLU'_i.'UJUJUJuJ
30000000000000
_JOOOOOC- =5 "POOOOO
ujujooo— »^-*r
3 o f\j j- n
• rxj fy oa *\j
«_„ ., _ -^ v iM (\j
o — %; n j-
U
n ^
^ o —• CM r> ^ in -or»cooo-»rwm
-------
109
tfl 1^1 Kl {if I.] lij lil 111 liJ 1.1 til ti|l Uj
ZJOOOOOOOOOOOO
_)OOOOOOOO O O O O
U-IUJuJUJUJUJLiJUJ '•' LU txt UJ tO
^OOOOOOOOOOOO
_joooooooooooo
...«......**
I
a. _ir
a. < >
~ ~>
oooooooooooo
UJ UJ LiJ LU UJ UJ LU LJ uJ UJ UJ UJ UJ
OOOOOOOOOOOOOO
-------
no
OOOOOOOOOOOO
UJLJUjUJl-JUJUJUJUJUJLiJUJliJ
^ .
OOOOOOOOOOOO
UJUjUJUJUiLJUJUJUJliJiiJUJIx)
'
UJUJUJUJUJUJUJUJUJUJUJUiUJ
-
OOOOOOOOOOOO
I I I I I I I I I I I I
i UJ UJ Lkl W Ivl UJ U-l ''I LU U W (U
LU
Z
2!
OOOOOOOOOOOO
UJUJUJUJuJUJUJUJuJljJlJJUJUJ
OOOOOOOOOOOO
UJULiJLdUJLUliJLJUJLJUJUJUJ
^OOOOOOOOOOOO
O O) O f\) J-
Z
< C
X i
u
\/> *-tt-t f
< vri T*~
z
-------
Ill
bJUJLJtUUJUJUJUJUJtlJUJUJUJ
OOOOOOOOOOOO
till) lilt***
UJLiJlvJUJItJUJLiJUJUJUJUJLlJUJ
o
:D ;
-3
LiJLUi-iJUJtjJUJLiJUJUJ 't1 UJ LU UJ
-
OOOOOOOOOOOO
' I I I I I I I I I I I
UJUJUJUJLJUJUJUJUJLdUIUJLU
OOOOOOOOOOOO
J LtJ UJ U LL! ixl 'jj tjj UJ Lkl Jj LU LtJ
OOOOOOOOOOOO
I I I I I I I I I I I I
UJUJLUUJUJUJLJUJLJLiJUJUJUJ
>_!••*• •*
*-««-icDor\]^%oa3
a: I ru n n r> nn
a
Q
UJ
OOOOOOOOOOOOOO
I 1 t I t I I t t I I I I I
UJUILLJuJLULuUJUjUJ'aJUJUJUJLJUJ
_
-------
112
_
«XOOOOOOOOOOOO
>••••»»•••»••
QOOOOOOOOOOlfl
_
.•»•*•*••••*•
oooooooooooo
ooooooooo
LUUJUJUJUJUJbJUJUJUJ
13000000000
_JOOOOOOOOO
«* ooooooooo
>..*......
I i I I i I » I I
a: L
LjuJL
>_j
in
z
*-•
o
z
0
o
b
{^
LJ
-
Q
UJ
f—
t/1
U.
u
o
o
o
in
in
u.
02
to o
U_ 0 H-I
u •»-
0 (J
0 2
o ->
O
in z
m <
UJ
u o:
w!n
o x
l/> ^^ O
* in o
o o:
_! UJ t-
U, X
•-• O ar
O
_i _l _J
< < u.
f- ^ >—
O O ID
l- h- O
u
3Z •4--T-*-*-* •*
C\J
O
*
UJ UJ
3 O
criininuiLn^^-o-o-or^h-f*'
o
•>
^
o ^^0000^0*0*0
«-<*-Or-GOO'O^^fVJO'4'U*>*O
(_> -J
o
-t
L.
Z UJ
....*.......
oooooooooooo
ooooooooo
WUJUtUJUJIUUIUJUJUJ
^ooooooooo
jooooooooo
i i i i i i i i i
cr N
ujuj
>_j
ooooooooo
UJ LkJ UJ LJ UJ UJ UJ UJ UJ UJ
OOOOQOOOOO
i i i i i i i I i
u
2
Z
>-. UJUI
O 30
ooo<^co ~ =^
o o o o o <
C O O O O <
_
*•»*••••»••••»
LDOOOOOOOOOOOOO
ooooooooo
o o- ^-. o a o o o o
^~ ., u~ j^ j"> m tn vn in
i i i i i i i I i
cr ru ^o o ^ d) ry r*> ^m
ujujoo--* — -«(\ifynn
-------
113
o -y O)
c- o o
WLU Ul
O O O
o o o
/•>/•» ro
o o o
» *• *
UIUJ UJ
o o o
o o o
in in i/»
» • *
t/>irt in
UiUJ UJ UJ
oo o o
O O O O
inin 1/1 in
iiii
-------
114
«toooooooooooo
a tn
-------
115
1
X
-LJ
5?
0
a
CL.
IA
UJ
i
^
».
z^-
**
v>
l^.
t_>
X 0
O- *
a o
u>
in in
~z.
o
^
< It
cc
>- o
z z
LJ UJ
u
Z X
O UJ
cc
h-
i/i tn
>— -»:
O
UJ O
< h-
*- <
U)
3t
v o
O _J
•^ b.
»- D
t/1 O
^OOOOOOOOOOOO
t OOOOOOOOOOOO
k
.
(J
^zn^j-^-^--*-*^^ *m
1 1 1 1 f 1 i 1
bJUlLJUJlxlUJUJUJUJ
Oo^aD^noaDr*
I
1/>
z
0
^. OC50OOOOOOOOO
tr LjujuJUJijJUJiiJuj'jJUJUJiiJUJ
2 ._j .j *o oji>yi'\ii'*Ti*»rtf>««i«'^
'aj 'inamj'j-o^n-Tfyo-jin
Z nPJ-^--»^'O^r\j^^-^— 1^«
O
u
ujujin-o>oor*.r^a3coa'Choto
^.dcoooj-j-sucooojj-^oaa-*
0
ZOirt^iDr^coo* o — • CM o ^ j^ sC
~>
jf •$ -^^j^-^^^nnrofrtf^
OOOOOOOOOOOOOO
UJLJLJLJUJULUUJUJUJ UJ LJ UJ UJ UJ
W^^^^^.^^.(>r^^in^.4.
-------
116
a
a
UJUJUJUJUJUJUJLUUJbJLULJUJUJliJUJUiUJUJUJUJUJUJUJUJUJUJUJlUUJUJUIliJtiJ
I O O O O O
UJ
_J
T
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
-------
117
*•*«*«»«« «««««•
«<>«**«*.» STEADY STATE C80D INPUT CONCENTRATIONS (PPM) »
•&***«»*• *att«»»
_
.•••••••••»•
ooooooooooo^
o: in a- n P- — isi o .? ._!............
•-ii-tr^CT-—ninr--ej» — n:/»r* o
_
4OOOOOOOOOOOO
>............
ooooooooooonj
•••*•*••*••»••(
OOOOOOOOOOOOOO]
o
z
UJ
o
» -«r\i n -» n:
o
u
-------
118
;
I
1
UJ
-1
33
O
'• :r
' n.
tn
,n
o
=>
Q
•«
l/>
(/I
U
O
»
o
0
in
in
u
0
z
UJ
31
<
til
(X
H-
(S>
Z
3K
O
O
>—
<
•>
_J
u.
\—
6
UJUJl^JUJUJUJUJUJUJUJUIUJUJ
QC
iu
>_i
0000000*3000
1111111 + ** +
J 'tJ Ul UJ UJ UJ Ui
z
Q.
a.
tn
o
^»
<
a
H-
z
o
u
OOOOOOOOOOOO
I I I I I I I I I I I I
UJUJUJUJUJUJLtJUJUJUJUJ UJ UJ
oooooooooooooo
i i i t t i i l i i t t i I
f IkJ W UJ '*J '*' 'v1 '^ UJ **_' ''Miif UJ 111 *L>
jooo—•—<
-------
119
OQOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOOOOO
-II lilt II I II I III It I I I I I I I III II I lll+»»*+ + **»» + *»****
j LJ LU LU UJ UJUJUJbJiiJLULkJUJUJLJUJUJUJUJUJUJIjJUJUJLiJUJUJ UJ UJ UJ UJ LJ UJ UJ l*J UJ UJ UJ '• ' LU UJ UJ UJ U^ UJ UJ UJ UJ txj
i'jf*
coo
-IM •
a
o
03
* *
OOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
uJt>JUJLJ£jJWW-iJiiJuJLL/UJLJaJLJUJU_
'
-------
120
•400OOOOOOOOOO
>.....,....».
OOOOOOOOOOO>O
-
•4OOOOOOOOOOOO
>••••••••••••
oooooooooooni
NPU
u)
•3
_
•4OOOOOOOOOOOO
>••••••••••••
oooooooooooo
zotf>«r-coo>o — rvj i-i -I-i/>o
_J UJ
•1OOOOOOOOOOOOOO.J
uiujooo-*—•r\j(\jrvjmn
>_).
•-••-«o
tr I
o
z
>
Z
O
u
-------
121
X
•jj
_)
03
O
o:
0.
H-
tn
UJ
t—
i/)
in
c
I
Q_
o.
10
z
o
<
a:
H-
Z
UJ
o
Z
o
(J
a
o
33
Z.
<_
I/)
^
0
4
UJ
u»
v>
u.
( 1
o
•
o
o
IP
10
n
a
z
UJ
z
<
UJ
a;
f-
m
z
^
<
3
o
_J
u.
^-
O
0
.
l
I
f\
a
MI
z
o
fr—
4
a:
h-
Z
UJ
o
z
o
u
OOOOOC3OOOOOO
I |****«*«*»4.
J UJ UJ UJ UJ UJ UJ UJ LU UJ UJ UJ UJ
> _j
•«tt«i
0:1
oooooooooooooo
t i i t i i i i i i i i i >
J UJ UJ LU UJ uJ !_J UJ UJ i»- L, L_, *U * tJ
%o — _•> j-i ^ — ^ •" c -T _"* -c o r?
- --
-------
122
X
a.
a.
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
-tltlltlllll1lllllllltlllllll**** + ** + **+ + * + *» + *****
UJ UJ W LUUJUJUjUJlJJUJUJUJLiJUJUJUJUJ UJ UJ UJ UJ IU UJ UJ LUUJUJUJUJUJLiJLUUJUJI^JLJUJUJ UJ LUUJUJUJUJUJUJUJ 1*1 UJ 'if
r-a«—*i/ior-r*o—•oo<7* vj-ocoooof*'C7ior~r\jO'coof^-f*)o*-«f*i sj-r^.^*-4^r-o^Frsj^r-jD(7'r\jLncorvjLn(7»(V'O
^- o
c- r>OOOOOOOOOOOOOOOOOOOOOOOOO
-------
123
A t
a
*ff «*604«
*• STEADY STATE 00 INPUT CONCENTRATIONS (PPM) «coo««
** «««ea«
>*««*«
: • ? : :
•»•<•*••••••••
ooooooooooo^)
o
•
U LJ
D O
-I O
•••****•»•»•
OOOOOOOOOOOAJ
DC i
LJUJ
>._!
o o oooooooooo
.»••*••»•«••
o o o ooooooooo
_
•-• •—• 03 o (\j -
_
-------
124
-
T
jj
_J
3D
O
OC
Q.
t—
if)
UJ
1
I/)
l/>
O
»—
O
O Z
O 7
o
UJ O
H-
< t-
t- <
I/)
>- o
O _J
< L.
LJ t—
>- O
V) O
t
x
a.
a.
*••"
V)
Z
0
••^
h-
<
tr
^->
2
UJ
O
Z
o
u
UJUIUJUJUJliJUJUJUJUJUJUJUj
^coNO^T'-^'Conj'COoa)—•
_jvOo »o in -y -* o o rvj —t .-4
UJ UJ LL) UJ l*J UJ ttJ UJ UJ UJ LU UJ UJ
-
cr
LJU
>_!
UJ UJ UJ UJ UJ
J UJ UJ 'll UJ UJ
CO tO ffl CO CO (
a:
uj
>_!
UJUJUIUJUJuJUJUJLiJUJUJUJUJUJUJ
-------
125
OOOOQOOOOOOOOQOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOQQOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
LkJUJUJUJliJUJUJUJUJ UJUJLUlxJUJUjUJUJUJljJlUUJliJLiJljJUJtiJlkJUJUJUJ UJLUUJLkJbJUJUJUJLUtxILJUJUJUJUJUJUJUJIjJ UJ
-
a
>—
UJ
u
O
oocoootDcooococDco co CD co as oo co
O
O
* *
* #
• OOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOO ,
•-• ~- ooooooooooo
-------
126
oooooooooooo
UJLJUJUJUJUJUJUJUJUJUJUJUJ
oooooooooooo
O OOOOOOOOOOO
UJ UJ UJUJUJUJUJUJUJUJ; UJ UJ UJ
QOOOOOOOOOOO
I I I I I I I I 1 I I I
UJ UJ UJ UJ UJ UJ UJ UJ Ui UJ LtJ UJ UJ
or
uiuj
>_)
oooooooooooo
oooooooooooo
I I I I I I I I I t I I
UJUJUJUJUJUJUJUJUJUJUJUJUJ
f^ f*. f1^ CO 00 <
oooooooooooo
UJUJUJUJUJUJUJUJUJUJUJUJUJ
oooooooooooo
UJUJUJUJUJUJUJUJUJUJUJUJUJ
OOOOOOOOOOOOO
_|OOOOOOOOOOOO
—— f\jr\jr\jmr),fr-a-,j-
LU UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ
^oooooooooooo
o
o
_j
UJ
u.
o
in
<
UJ
a:
X
a
<
z
o
o
cr
u
XZ
u
o z
o «
_
UJ
z
z
UJUJUJUJuJUJUJUJUJtjJliJ.jJjJ'-j
z
o
ooooooooooooo
UJ UJ UJ —' — _' -
LJ LJ UJ UJ UJ LjJ 'AJ UJ IU IjJ LU UJ ^J UJ
DOOOOOOOOC5OOOO
_|OOOOOOOOOOOOO
i
o o ^ *-* —
X Z
u
x z
u
-------
127
UJUJUJUJUJliJUJl
-------
128
ooooooooo
_
....*.....*.
oooooooooooo
4OOOOOOOOOOOO
>•••••••»•*••
oooooooooooo
I3OOOOOOOOO
_JOOOOOOOOO
_]
o z
l/l O
u. o •-
o •>-
o !J
o 2
*-i O
in
O
o
u o:
o in in
oooooooo
o o o o
O O O Ul
ooooooooo
UJ LU W UJ UJ LJ UJ UJ UJ V^l
r>ooooooooo
_JOO>OOOOOOO
oo oooo^ooooo
o:
UJUJ
>_!
•..*...*....
_
^oooooooooooo
>*••».*••••*«
oooooooooooo
a: r-^i
uitutnsO
>_j. •
ooooooooo
DOOOOOOOOO
_|OOOOOOOOO
i i I I i I I I I
ui
u.
u
o
-J
U)
u.
(J
in
o
[OOOOOOOOOOOOOO
oooooooooooooo
ooooooooo
DOOOOOOOOO
^o oooooooo
»•••••••••
TIII 7TTTT
-------
129
IjJ UJ UJ
o o o
o o o
J"> J-l J1
in -c r>-
n n r»
UJUJ UJ
e> o o
o o o
in in m
c. o =: O
^> O O O
in j^ in m
-------
130
« o a « *
4jao&aoo*outtijOfloott*da*otto*«o#tffiffaflao*c»#i>aootiaooattuo**#*«***flflttOtf»#»«»»o«»Btt*«fli*&ao*ttti.
• « O«« tt
* STEADY STATE TDS INPUT CONCENTRATIONS (PPM) ****«
* ««tttt*
tt 4 ft 9 O
» *
> *
_
*.*.•*»*••••
o ooooooooooo
tr
bJ
>_>••
»-««-••••••*•••
oooooooooo
Q
U
X
UI
_l
1^
X
11
z
o
Q H-
Ul U
X 2
..............
oooooooooooooo
in
u
•o
z
z
o
-------
131
2E
'jJ
_J
31
O
:r
Q.
H-
o
K-
D
•<
~
a
ifl
z
o
i—
4
CE
^~
Z
UJ
o
z
o
CJ
^>
o
^»
U)
^~
-*
f—
t/1
V
o
-------
T
Q.
o
o
132
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOO-
1 O O C '
C. OOOOOOOOOOOOOOOOOO
r J UJ LU UJ U' UJ UJ LJ UJ UJ UJ UJ liJ L.J IU . '
-------
133
APPENDIX B
AUT0QD - PROGRAM DESCRIPTION/OPERATING INSTRUCTIONS
GENERAL
AUT0QD and AUT0SS are very similar in their construction and
their method of use. Only the main differences in operating procedure
will be discussed. The reader should read the AUT0SS operating instruc-
tions first. The main differences in the operation of the models lie
in the entering of computational data.
AUT0QD is written in the same language as AUT0SS and requires
the same input/output devices. Machine storage requirement is 115K.
Typical running time is 0.15 second (compute time) per day of simu-
lation for a 150 section network. These times will vary depending on
the computer used, the network used, the constituents being modelled,
and the integration step.
PROGRAM LOGIC:
AUT0QD is also controlled by "program control cards". Their format
is the same as in AUT0SS. The program control cards and their respective
functions are:
Program Control Card Function
(Cols. 1 thru 4)
DATA Same as AUT0SS
FL0W Same as AUT0SS
CB0D Directs the program to read in
the input CB0D values and then
compute CB0D for the specified
period. Data cards follow
-------
134
Program Control Card Function
(Cols. 1 thru 4)
NB0D Directs the program to read the
input NB0D values and compute
NBjOD for the specified period.
Data cards follow.
D0 Directs the program to read input
CB0D, NB0D and D0 values and then
compute CB0D, NB0D and D0 for the
specified period. This is differ-
ent from AUT0SS, because CB0D and
NB0D are done simultaneously with
D0. Data cards follow.
HALT Same as AUT0SS
Any 4-letter word The program assumes this is the
except the above name of a conservative parameter.
Input values are read, and the
concentrations are computed for
the specified period.
DATA DESCRIPTION
The data for AUT0QD have the same characteristics as the data for
AUT0SS. The physical and network data is identical for both programs.
The computational data is the same except additional information is
needed for time keeping:
1. Beginning and Ending data of period (day-month-year), e.g.
(1-10-1971).
2. Print period (days): This number specifies the number of days
between quality print outs. If a period consists of 50 days
and the solution is to be printed every 5 days, the print
period would be 5. If the print period is omitted the program
will assign a value of 1 day.
-------
135
3. Integration time step (hours): This is the integration step
used in the program. It must be less than or equal to 24
and an even divisor of 24. If no value is entered the program
will compute its own time step. (See model development, AUT0QD
solution.)
The meaning of initial concentrations changes slightly in AUT0QD
In AUTpQD they are considered as starting concentrations. Since
continuous simulation can be done with AUT0QD the starting concentra-
tions are updated every integration step (time step). Concentrations
at the end of one period become the starting concentrations for next
period.
ENTERING DATA
Data is entered under the direction of a program control card,
except the run title and network data. As in AUTJ9SS variables are
zeroed or set to default values before data is entered or computed.
I. Run title card
Same as AUT0SS
II. Network card
Same as AUT0SS
III. Entering physical data
Same as AUT0SS
IV. Entering computational data
A. Flows
1. The program control card FL0W precedes the data
cards.
-------
136
2. Immediately after the program control card is the timing
card which specifies the dates of the flow period to be
entered:
Beginning month number: cols. 1- 2 (right hand justify,
(1-12) no decimal point)
Beginning day number : cols. 4-5 (right hand justify,
no decimal point)
Beginning year : cols. 7-10
Ending month number : cols. 16-17 (right hand justify,
no decimal point)
Ending day number : cols. 19-20 (right hand justify,
no decimal point
Ending year : cols. 22-25
3. Next are the data cards in the following format:
River mile of data point: cols. 11-20 (include a decimal
point)
Inflow (cfs) : cols. 21-30 (include a decimal
point)
Diversion (cfs) : cols. 31-40 (include a decimal
point)
4. After the data cards a card with ST0P punched in the first
4 columns is placed in the deck.
B. CB0D
1. The program control card CB0D precedes the data cards.
2. Immediately after the program control card is a card
which specifies the dates of the period, the pm'nt
interval, and the integration step (optional):
-------
137
Beginning month number
Beginning day number
Beginning year
Ending month number
Ending day number
Ending year
Print interval
(optional)
Integration step
(optional)
cols. 1-2 (right hand justify,
no decimal point)
cols. 4- 5 (right hand justify,
no decimal point)
cols. 7-10 (right hand justify,
no decimal point)
cols. 16-17 (right hand justify,
no decimal point)
cols. 19-20 (right hand justify,
no decimal point)
cols. 22-25
cols. 31-35 (right hand justify,
no decimal point)
»
cols. 41-50 (include a decimal
point)
3. Next are the data cards in the following format:
(Note: If it is desired to fix (establish a boundary
condition) the concentration of a point, the word
FIXED is punched in the first 5 columns of that data
card; otherwise, these columns are left blank.)
River mile of data point: cols. 11-20 (include a decimal
point)
Inflow at data point
cols. 21-30 (include a decimal
point)
Inflow concentration at : cols. 31-40 (include a decimal
data point point)
Fixed concentration at
data point (if FIXED
option is chosen)
cols. 41-50 (include a decimal
point)
After all data cards are entered, a card with ST0P punched
in the first 4 columns is placed in the deck.
-------
138
NB0D
1. The program control card NB0D precedes the data cards.
2. The rest of the cards have the same format as CB0D.
Conservative constituents
1. The program control card with the constituent name on it
precedes the data cards.
2. The rest of the cards have the same format as for CB0D.
D0
1. The program control card D0 precedes the data cards.
2. The next card is the same as CB0D.
3. Next are the data cards in the following format:
River mile of data point
Inflow at data point
CB0D inflow concentration
NB0D inflow concentration
D0 inflow concentration
CB0D fixed concentration
(if desired)
NB0D fixed concentration
(if desired)
D0 fixed concentration
(if desired)
cols. 11-20 (include a decimal
point)
cols. 21-30 (include a decimal
point)
cols. 31-37 (include a decimal
point)
cols. 38-44 (include a decimal
point)
cols. 45-51 (include a decimal
point)
cols. 52-58 (include a decimal
point)
cols. 59-65 (include a decimal
point)
cols. 66-72 (include a decimal
point)
After all data cards are entered a card with ST0P punched in the
first 4 columns is placed in the deck.
-------
139
After all the data has been entered the HALT program control card is
placed in the deck.
OUTPUT DESCRIPTION
The output for AUT0QD is also controlled by the program control
cards and is referenced to river miles as well as to channels or junctions.
The first items printed are a title and listing of the general net-
work data. Included here is the run title, mile of upstream and downstream
end, mile of fall line, and the number of sections.
Each time physical data is entered, it is printed out under the
heading "Estuary/Stream Data".
When a flow condition is entered two groups of information are
printed. Under the heading "Depth or Velocity Dependent Variables for the
Flow Period Month, Day, Year thru Month, Day, Year", the following are
printed:
1. Cross-sectional Areas
2. Channel Depths
3. Channel Velocities
4. Junction Volumes
5. Computed Reaeration Rates (if the compute option is used)
Under the heading "Flow Conditions for the Period Month, Day, Year,
thru Month, Day, Year" the inflows, diversions and channel flows are
printed. The same sign convention is used as in AUT0SS.
When a constituent control card is encountered, two other groups are
printed. Under the heading (Constituent Name) "Input Concentrations for
Month, Day, Year thru Month, Day, Year: the input concentrations for the
-------
140
period are printed. The solutions are printed under the heading of
the run title and (Constituent Name) "Concentrations for the Period
(Month, Day, Year) thru (Month, Day, Year)" at interval specified.
In addition to the regular output, error messages may be printed.
These are the same as AUT0SS except there are no zero divisor messages.
DATA CODES FOR PHYSICAL DATA
Same as AUT0SS
RUNNING TIPS
The same general rules apply to AUT0QD as in AUT0SS; however,
there are some differences due to the different types of solutions.
1. DATA should be the first control card for the same reasons
as for AUT0SS
2. FL0W is the second control card. The dates entered under
the FL0W card have no computational significance; they are
for the user's reference. A flow condition will continue
to be used in the program until it is replaced.
3. CB0D and/or NB0D are run simultaneously with D0. They can
be run separately if desired, however, they will have no
effect on the D(3 budget if they are.
4. The starting (initial) concentrations for a constituent
are updated every integration step.
A general example of control card setup is given below (see the end
of this appendix for a specific example problem)
-------
141
PROBLEM STATEMENT
Given flow condition 1, which represents flow from 1/01/72 to
2/01/72, and flow condition 2, which represents flow from 2/02/72 to
3/01/72. Run TDS with 4 downstream boundary conditions (1/01/72-
1/15/72, 1/16/72-2/01/72, 2-02/72-2/15/72, 2-16/72-3/01/72) print out
values every 2 days. Run CB0D, NB0D and D0 with 4 different input
conditions (same dates as TDS) print solutions every day, and let the
program compute the time step.
The arrangement of the control cards would be:
DATA - enter physical data
/^FL0W - (1/01/72 - 2/01/72)
=«=
c
o
O
o
3
o
TDS - (1/01/72 - 1/15/72) Print interval = 2
D0 - (1/01/72 - 1/15/72) Print interval = 1
TDS - (1/16/72 - 2/01/72) Print interval = 2
__ D0 - (1/16/72 - 2/01/72) Print interval = 1
00 /^FL0W - (2/02/72 - 3/01/72)
§ \ TDS - (2/02/72 - 2/15/72) Print interval = 2
| < D0 (2/02/72 - 2/15/72) Print interval = 1
° I TDS - (2/01/72 - 3/01/72) Print interval = 2
II VD0 - (3/16/72 - 3/01/72) Print interval = 1
HALT
-------
142
AUT0QD VARIABLE GLOSSARY
Variable
A (N)
Definition
CBDIN(J)
CB0D(J)
CIN(J)
CS(J)
DELT
DELT2
DELTD
DK1(J)
DK2(J)
D0S(J)
EVAP(J)
IDAYB
IDAYE
IM0B
IYRB
cross-sectional area of channel
flow equation coefficients at
channel N
surface area of junction J
concentration at junction J,
can be any parameter
CB0D input concentration at
junction J
CB0D concentration at junction J
input concentration at junction J
can be any parameter
conservative constituent concen-
tration
timestep (sec.)
half timestep (sec.)
timestep (hrs.)
CB0D decay rate at junction J
NB0D decay rate at junction J
oxygen saturation concentration
at junction J
net evaporation minus rainfall
at junction J
beginning day
ending day
beginning month
beginning year
-------
143
IYRB
IYRE
K2FL
LALPHA(K)
MFS(K.I)
NBEG
NC
NDAYS
NEND
NFS(K)
NO
N0JFX
NPRT
NQCYC
NRD
NSES
NWR
0XIN(J)
0XY(J)
PH0T0(J)
Q(N)
QIN(J)
Q0UT(J)
beginning year
ending year
flag to tell if reaeration rates
are to be computed
run title
Ith fixed parameter at Kth fixed
junction
period beginning day number
number of channels
number of days in a period
period ending day number
K fixed junction number
number of junctions
number of fixed junctions
print interval
number of timesteps per day
card reader unit number
number of sections
line printer unit number
D0 input concentrations at
junction J
D0 concentration at junction J
photosynthesis minus respiration
rate at junction J
flow in channel N
inflow at junction J
diversion at junction J
-------
144
REAIR(J)
RMC(N)
RMDWN
RMFR
RMJ(J)
RMUP
SEDMT(J)
TEMP(J)
V(N)
VJOL(J)
WIDTH(N)
XCMAS(J)
XLEN
XMASS(J)
XMIL
XNDIN(J)
XNMAS(J)
XN0D(J)
X0MAS(J)
Z(N)
reaeration coefficient at
junction J
river mile of channel N
downstream river mile
river mile of fall line
river mile of junction J
upstream river mile
sediment uptake rate at
junction J
water temperature at junction J
velocity in channel N
volume of junction J
width of channel N
CB0D mass in junction J
channel length in feet
constituent mass in junction J
channel length in miles
NB0D input concentration at
junction J
NB0D mass in junction J
NB0D concentration at junction J
D0 mass in junction J
dispersion coefficient in channel N
-------
145
SUBROUTINE DESCRIPTIONS
Following is a brief description of each subroutine of AUT0QD
MAIN BRANCH
Same as AUT0SS
SETUP
Same as AUT0SS
NETDAT
Same as AUT0SS
FL0WS
Same as AUT0SS, except the dates of the period are also read in
FL0CMP
Same as AUT0SS
VAULIN
The dates of the quality period, the print interval and time step
(optional) are read. In addition, the quality inputs are read
and assigned to the proper junction. D0 is not considered here.
If more than one input is read in for a junction, they are combined
according to their respective inflows and concentrations. Junctions
may also be fixed. Conservative constituents, CB0D and NB0D, may
be entered here.
VALCMP
The quality equations are integrated over the period specified in
VAULIN. The concentrations are printed at the specified intervals
(print interval).
-------
146
CDERIV
The quality derivatives are evaluated. This routine is called
from VALCMP.
VD0IN
The period dates, print interval and time step are read, as in
VALCMP. The input CB0D, NB0D and D0 concentrations are read.
The D0 title for this quality output is printed.
VD0CP
The CB0D, NB0D and D0 equations are integrated over the period
specified in VD0IN, and the solutions are printed at the specified
interval.
0DERIV
The CB0D, NB0D and D0 derivatives are evaluated.
JKFND
Same as AUT0SS
SERIAL
Converts a date (month, day, year) into a corresponding day
number.
TABU
Same as AUT0SS
INTER
Same as AUT0SS
CALEN
Converts a day number into a corresponding (month, day, year).
9UTGQ
Same as AUT0SS
-------
147
PROGRAM LISTING
Following is a listing of program AUT0QD:
-------
MAIN PROGRAM 148
4 444444444444444
44444444444444444
444444*4444444444 *
4444444*444444444 ~ »
444444444444*4444 O ~ » » *
44*************** If) O » ~» -. H- » «
***************** fM ID — O (*> CXUJOJ
44*************** »~ OJ O in » DL >- OC
444*4044444444444 •- _J >- LO f\J O Z « <
*****************~tO>(VI<-'ir> »O>
4****************O>»«~(/)(VI O HH _J
T -T- ' -»- T- » ^« -™- -^» dfe« 4k. W * ^^ ^W »"• W
* * o 44o"otna»u. uj o CK »x
>• *xx -^ xx<>zLn(\)*'"X Q x Q.O
>-i #xx »-i fvi «*o*-(/)otr)--. fv»»-j o_i
< ** • #*x>-«O(\is~m _j a: a. mx
O ** Z Q ***<*-'(/)(\J UJ>O Xsfr
O X» * UJ O X <*$—.UJ—>Q.O**' O i—t H- -3" X
«XX O >-" **O(XOX*trt «•»(/! XO
QC <** < o * **m»>ifiuj—-< H-ai-j o_i
UJ * XX _J UJ (/) O 4>XX(\J'*>(Vlh*OX -J V » H*U.
XX H* XXXX UJ CC *-<»-• XX -J'* Xx<»h«Jlft>—-»(MX Q Q Q J»
XX 2 XX # O •• O CM *X*»<\IXO>-'» •• •—I _J »X
* ** —I >- Q. I XX*-*'—QU>>-—. £X»» XUJ
* (J *# O <-« «*OOUJfVXO U.03O X
-'OI/> XOOD »-<
x *# j ui OZM #*rvj-*»fo*f\j axz ou,
< * * • O *-•-<_J QX
z xx* z < >- fy xx* x^
** Q ** Q Z UJCXCVJ **'**'Oao(VlX^'OZCD XXX
** i ** z o uj **oz'-in*'O-i ** < >-iuj *-tx **in»--'O»a.«*» »»<
*4 < 44 X Oi-iZUI 44^»»MZ — -JQ.OUJ XXX
44 O 44 >-« UJ U. UJ O 00 44O*^-—- O^-Jt1
44 44 O OOQ.UJO 44-^min~-*(VJ*crZt- CDXX
44 I 44 (X OOin 440C\JOJOO-'-*»»_JH-ZOh-
44 44 • Q.O-JZI 44in — ^inifl(/)OX_|«'>XX-J
44 Q 44 j _) uj uj co *4Ojza.r\joji->t<
44 O 44 • _JUJ>»-i»O 44"-i-i<*-«-aE:fVJ~)XU,»XXX
44 O 4* (X <»-iUJOrvJ 4 4 »- X > ~« O Z ** O X M CX O X -J
44 I— 44 t-U-Q(/)l 44OOIU 44 > Z —« 44O»»»-OD»X»'tn»>Z«J_JX
44 4 44 CD UJt/)_j(/)O 44O'^'*>-~>O«-~IXZO(/)*»«<
44 44 X«-i<>-irO 44»OOO*O»LUUJ>-OXXf-
44 x 44 z z _i o _i 44-»if)tf>un«-»in->_j(/)»Z»cnOX
44 O 44 •-» >ZOZO 4 4 — MH-h-^ (/)^ Z > UJ X X X X
44 Oi 44 OC ZZUJZX 44ZOOD(\J
-------
149
MAIN PROGRAM (Con't.)
o
1- D
-J-J
II II
0. -4
oar
t- 4
1/5 >
_j _j
^»
O
(VI
»
^•4
II
^£
*
0*
^
V
^
X
Q.
-1
4
_J
^
*•*
O
1— 1
IX *
ou. o
_j_j o:
II II Z
(VI UJ — N£> O •—
or x u H no
4 H* O Or 1- 4
> U. or 3t > ui
_j_j z z z o:
i/>
o
UJ
z
•>
a:
u.
X
or
•>
a
3
^
or
z
2
o
z
or
*^ ^h
•4- o
4 (VI
O •
(via
— a:
I-Z
4 *•»
X O
or 4
O UJ
u. or
o
r— 1
X *
co 4
»4
X 4
— 1 ^ »
» o ~*.
O — O >~
• O 1-4 X
O CO • —
(-4 » — *•
u. or x in
f) 2 *•* ••*
•** Z — *
K — H- X
4 UJ 4 in
X H- X *
or »-«ar D
o aco D
u. a»u_ D
i— <
0 O
(VI CO
•-4 in x
» « *H
X — —
*o •
— XI-
O -4 K
X — H-
— in x
— — co
^ •> »
— XX
»in ~f
x » ^
>£)—»»
• O O
-*X 3
C3-" D
X — X
-*in ro
•~» ^4 »
ro » x
•-« X CT>
» m »
X »3
r-- 3
»K 3
-XX
o-« m
x — »
-*0 D X
*3O
-»O »
h-X X
x n n
!—(»••
— X 4
mo* 4
~4 » 4
*3X
x z> n
mo »
»x x
3 » 1-4
OX*
X O*
f) * X
» «-» 1— 4
X 4 *
0s X X
» 1— 1 *
3 •«• >->
3 f"* O
O » X
xx —
fOr^ ^
•> *•* in
x • <^
o •>
•^ X X
(vm -t
4
4
4
X
CO
»
X
in
•>
4
4
4
X
CO
«
X
a*
»
x
^H
»
X
»
o
o
o
I
CO
»
X
cr
»
0
o
o
X
CO
»
X
in
»
0
0
o
X
CO
»
x
cr>
» »
§o
o
o
X X
<*) CO
» •>
X X
^ in
*
o
x
CO
»
in vo
»x
o co
o »-*
ox
i -*a
CO -«O
« »o
X 3 X
c* DCO
»o »
O X X
o<*» o>
o •> »
X X O
coa o
« »o
x ox
in o co
• 3 »
OX X
o co in
o » *
x x o
CO »O O
•• » o
X 4
O» 4 O
»4O
O X <3
ocox
O »r*-
XX*
co r* x
» * m
X 4 »
~* 4 O
~« 4 O
»x o
h-CO X
*- »CO
t- X ••
X 00 X
co » in
* »
X X O
•— t ^-« O
M4 »Q
• XX
o o »
O O X
X O O1
CO X *
•• CO O
X * O
0* X O
* O* X
O * CO
o o •
O O X
x a-«
CO X •-«
•> CO ••
X *»-
r> X>-
• in H-
^*" ^p ^^
o *•<
X —
co in
« f-«
X »
O> X
»in
o »
o^
O 4
X X
PO-*
» —
x in
•— i >•*
—4 »
* X
>- [•-
1- *
h-
XI
co —
•> »
X X
»4 «
-»o
»o
DO
31
DCO
X •
n x
*o»
X •>
(Jv O
*o
DO
DX
DCO
X •
ro x
» in
x *
in a
»o
— a
4O
XO
— 0
— X
in *>
p^ •>
• X
— • X *O
o r^ *
•* »o
•> o
or x o
x >~ • i
z ^* co
«-» ^ •>
UJ 4 X
H~ x in
»-4 or ••
or o o
"» IJL O
1-4
O
•^
» *
XXX
a* ^in
» » »
4 X -*
4 »0
4— X
X O •— *
CO X —
*~«co
X — ~*
N- «* »
* ^< X
» a»
XX*
» »o
x — x
• o —
-* I —
o ••* »^
X — -H
-H^- »
— «-4 X
in » co
•H X <-4
*r- »
x * t-
in ~ K-
»O 1-
-.11
o •-* co
x «- »
<-« CO X
— ^ CO
in » -4
^ x »
» (VI —
X*-4D
in » x
•• »- -4
-K H- —
O H- •-<
X X -4
1-4 CO »
— * X
in xr-
1-4 (VI »
»-« 4
X »4
,-4~ 4
1—4 D X
* I CO
H- •"• *
h— *•** X
t- ro av
x ^^ *
CO * 4
* X 4
X *C 4
i-H •> X
-«4 CO
•* 4 *
— 4 X
DX r-
(VI CO «fr
(VI
*
X
i-4
«
X
•k
_J
UJ
o
o
X
(/)
o >
UJH-
(/) HN
Z -1
• 4
or D
u. o
X
or or
»u
Q. t-
D <
X 3t
— or
*u
— Z«-4
# X X
104
-*x z
— or >-
o » o
CO — 1
-4 O 1-4
• (VI (/>
» 4
X-4 D
— HO
• *r x
X * CO
* — CO
— X »
# — X
X4in
— x »
— a. —
0 _J *
CO 4 X
»-4 _J «-4
•><«»««»
*-* O
XO (VI
— in *
» « O
x or i
* 3S «-4
••* Z **"
O — K
I UJ 4
•"* h- 2T
— i-i or
co or o
— leu.
in
o
in
i
r-4
»
X
»
^^
*
I
>-4
^
O
(VI
•>
X
1— 1
•k
X
»
«*
4
0
(VI
UJ
_l
K
i— i
h-
z
D
or
x
» HI UJ
— or _J
* x •-«
X -« X
— CO
~ » or
0 X UJ
(vi in >
» « 1-4
— or
X * X
1-4 I —
* f-^ n
x — *
» 0 X
4 (vi in
H- * *
4 —
OX*
— X
* » -4
or x —
O » o
X (VI (VI
H- • »
UJ 0
Z — I
u. —
o * *
•-» • X
I/) • *
4 • (VI
CD O •
X Z o
00 UJ —
— u.
* X *
X 4 •
in uj •
» a •
— • H- •
* (/) •
X Z O
— 3B Z
— O UJ
0 O
CV4 X
*l- 4
4 UJ
x or
•-4 UJ H-
». _f Ifl
^>-t<^.
*X D
^ or i-
X UJ 4
•-+ >
— t-4 UJ
o or _i
(VI X H-.
*— z
(VI CO >»
-------
MAIN PROGRAM (Con't.)
15°
z
o
U
u.
o
a:
UJ
00
X
X
in
#
x
o
(VI
^ 022Q.O2tOO
-------
MAIN PROGRAM (Con't.) 151
-> 2
^ ZQ. *
-•- ^^
(/) O < < "<
oozȣȣr.
r»ni-« n^^P«
—^-t.!! »^ ^ H- »— 0-
nr jlJ ^z oo
0^0<^ OlflOOh-Z
ooooo ooooiou
® ° s s
(Vj (n n 2
- - ~ s
-------
SUBROUTINE SETUP
152
o <-. • •
in o • — -.
M in — o m
^ (vi o in •
* _i«- in M o
-. o > (vi — in
o > * -^ to M
UJ
en
UJ
2
0
Of
00
D
I/)
rvj -» o
«- o tn
2 in (vi
i-« (VI —
O — CO
2 or o
X ** O
^ UJ —
O or O
in * in
(VI -^ (VI
— O —'
M in H-
• (VI X
O CJ UJ
in • in
(VI —. •
— o —.
< 'Jt O
• win
— •-'(VI
o 2 "-
in t-i in
(VIO <
o ~. —
• o o
— in in
o M CM
in *~ *~
(VI 2Q.
>- x >
O O UJ
o • •
o — —
• o o
-. in in
O (VI M
in — —
(VI 20
•>•» ** i—
200
*-i OD X
<3 CJ CL
2
O
X
X
o
* 2tn
o »u.
• —X
-. o •
o in ~
in (vi o
— tn (vi
0,0 —
h- O X
• ino
— (VIX
o — •
in >- —
(VI XO
« oin
QC UJ (VI
QL >- £T
2 «
» o >
_J UJ ^
bJO Ct
or <
\- CD •
-ICC Q.
UJ >- O
O >-i H-
t- OD _J
-I >- •
UJ < O
OO O
• *4 _|
CC • •
u. m o
X O 03
OC X 2
* O
— in
O (VI
l/> "
(via
•»* o
(VI2
< X
o o
in in
(VI OJ
< O
» 00
~ u
o »
in —
(vi o
>-ir>
i rvi
i- —
o rvi
** x.
3T O
u) o
< (VJ
o ^
X X
•CL
~ _l 0.
3E O O
O 2 CO
XUI CJ
CC 2 J
O <
in _j
(VJ •
co o
< in
X (VI
z~
X CJ
• X
-* CC
o •
(VI O
— in
tn (vi
co —
< ">
X X
X CC
—i rvj n
in
X 00
CK 2
X _J
U. i-i
O X
2 •
• cn
2 CJ
UJ UJ
_J tn
X 2
r •
a o
2 >-
• CJ
->o
2 2
2
O
X
X
o
CJ
UJ
a.
• >
_J 2
U. •
(vi or
*: »
• 2
^* ^^
< or
O 2
• UJ
IU X
or *••
> u.
*
cn
o
2
u.
x
20
3 •
oin
xao
or (vi
i in
o.*
(VI
_i x
>-« _J
X X
+ X
X
X
-* M n
xi-* or
o o or x u
UJUJ "'X —
cn m it it r+
22 _I2 -*
II II •-• UJ ->
cj-) x_ix
2 2 xx or
I 2 I
->-) 3B02 ->
2— OZ ~ 2 O
• T X»CJ •o.
(vix orrux -H«O
u cc u u or uj M o it o
-) II D II Z II 3 -> II — •
— Z~ —2 —-)o
0~»-i-«OZi-to->-' it
~)2O CJ2 23^
oorcjoroorcjooao
o o
r-< (VI
O O
••
O O
II II
oo
• • o
OO»
MHO
~ — II
O
*
O O
M •
-. O
"5 It
2 Z —
~--^>—i»-<2^~
O -) O O»-«z ~7
%i-''~*ZQOX«— i'-'
-------
SUBROUTINE SETUP (Con't.) 153
oo o o o oooo
• • O • • • O O ••••(*)
o o o • oo o o o o • • o o o o o » o
II • || O O II • II O O O (Vt • • O O • O II II II II -I II
^O-*ll • -. O O ~. • • • II O O II II O •0 — .-..-.— II~UJ
-} II -} -. O ~> M •"5000—11 ll-»— HOM~)T)"Oi£^O
--- • -> II «- ~ o *•* ii II ii -»-. — -)-)— ll --- -- »ZZ
a-)o^~>-~) M x-» — ~~'">">^'-'->^")«/)(/)t/){no-)»Ma
>•« — h-Q-~>T^^t-'^"5~5Q.-'"QQ*'">"«/)«Q^ *~~ T ^ CVIO O > — tfl <± X Z (/» Z H- Q
(/» Z
u.o
o
n
-------
SUBROUTINE NETDAT
154
»
o -» » » »
in o »-><-. (—•>•>
oj in — o n ctuioj
^•ojoin* cu>-ct
* _j *~ in oj o z < <
-»o>oj^*in »Q>
O > • -- tO OJ O H4 _J
in •• — . -4 u. —• H- * *
OJ ~ 0 * Z (O _J UJ rH
»•» om a »u, UJ o a
z inoj » ~ x a x «
rH OJ "••.-. O * * H4 >
o >•* '.o o in — oj » j
z ^ o in oj o r- ao •
X rHQ OJ ~ in _ia CL
» < * -' tO OJ UJ V O
~ ui — a. o ~ a rHH-
O a O X •• tO » » 1/1
in • in uj — < r-CDj
OJ ^» OJ I- 0 X -J >- ••
*~ o »- » in o uj »H _J
-» -» a in > -> or » *
0 O UJ OJ X 0 U. CO O
in * t/> "-• o in xoco
oj ~. » m •> oj or x z
>•» O — .<-»»•».-. * -H _J
« in o » o ui o z » »
»ojin<~in •• •>
*" •• •OJZ-^_JCCCOUJ
o~»-^-
— in in ~ ~ oj • ae z H-
OOJOJOO — *«. * *_J
in-''— inmmox_j •
ojzcLojoj»14QZ— 'OXOJ
OOUJ-t
O X
f*O
*l-
X O
-• X
3 Q.
-J<
» >
XLU
X
•J
n x
X-J
n *
t
H- < X
> xa.
Z *fr X
* X UJ
Ct OJ t—
TK «f 1
Z —I *
* * X
Q X O
a _J
Z UJ
•>/—«;>
UJ 4 X
X X ^
1-4 -^ X
U. X _J
, 1 rH LlJ
< >
1 _J
<
»-
<
O
n ^
•
x *
ox
UJ
Q
zo
li
X-fr
OJX
^ >
ax
JO
» _i
X •
ox
UJH-
CJ r-l
oz
Xrl
^f X
X-*
-«x
^:v-
Qr-«
_J Z
• r-l
X_l
a. •
Q
Qt-
X. <
>f 1/1
XX
a. >t
IOX
-H t/1
QO
_j Q
« _)
X •
r-t X
O iij
UJ 4
10 Ul
x a
^ X
X »*
t— x
}£ rH
O fr
OJ
y
O
j
»
X
^
to
1
(J
x
•^
x
•^
to
o
J
•^
X
0
o
UJ
in
r*-
o
00
OJ
•
n
x
o
<
u.
>
o
•
X —
1^ 0
^5 in
UJ OJ
^ ^*
OJ ^*
OJ *•
*o —*
co o
• in
rH (\J
X "• *
O X
^
u. z
QL O
4 r-l
> to
z
< UJ
H- X
-4
X
•
A
41
X
^
^
^
X
1-4
>o
»
^«.
*
X
r-(
•— »
in
n
«
X
rH
»
X
»
A
$
X
1^
o
(*)
r-l
*.
X
r-<
X
»
*-.
*
X
r-4
»^
o
•-» f*l
O rH
r-4 »
« rH
a x
Jt r-<
Z —
0 -» K-
II UJ <
-J H~ X
u. 1-4 cc
oja o
* xu.
o
rH
* *
< X
1— •—
0
< ro
O •
X
rH
K »
X
«^
a. «
x
Z -H
•^
rH O
ro
rH
«L
^
X
*
Ul X
»,
or ^
H- X
rH
to *-"
^4^-
X f*1
«.
> X
a vo
»
— *• »
in
*
UJ
X X
O^ rH
-J *•
»^
X •
\o ^.
* *
~ I
* r-<
X ^
rH ^
^ n
in »
ro x
rH OJ
in
t-
a.
z
*
»-
to
o
j
»
_J
UJ
CO
-J
o
OJ
*
Q
a
z
o
^
UJ
-* or
n
0
o
o
0
0
o
in
o
r- in
>t
o
'JO
— a.
in o o
HH(- O
•-tn
X -J -»
OJ • O
»o .
>t UJO
< • UJ
OJ_J •
*~ UJ 1/1
r- CO H-
« OL
X-JZ
Ot ~ ^*
o u. u.
U. rH rH
0
OJ
^
%-.
>_
*
M
— )
•s*-
X
r— "">
Q.—
Z o
»(*1
rH •
u a
~>a
z
o —
^ Q
<£
O UJ
o a
A
o
•
o
rH
U_
ol
X
in
in.
rH UJ
«^ 5
r— 9
4 l-H
X 1-
a z
o o
U. 0
0 O
ro ^
^
u
X
a
»
0 t^
CL
O Z
1— *
>.
o *
O X
— o
»-* z
_J -<
UJ ^
z a
• UJ
_l H-
Ul Z
CO rH
^
J -J
— _J
U. <
rH O
in
^
-------
SUBROUTINE NETDAT (Con't.)
155
o
(VI
»
x
in
•>
z
o
<
D
a
3:
o
_j
u.
(X
o
u.
p-
z
UJ
I—I
o
I—I
u.
u.
UJ
o
o
<
X
(VI
n
X
in
*
i
•"• (X
(X
»
o
z
»
(VI
a
z
a
»
o m
CO K-
O.
O Z
o
(VJ
»
X
in
«
z
o
<
o
o
UJ
3
O
_J
u.
IX
o
u.
K
z
UJ
t"H
u
t-l
u.
u.
UJ
o
o
(VI
<
X
OJ
o
»
X
in
>
o * *
ox -.
•• 4
-» O X
(VIZ -H
(VI
<
»
o
z
cx
o
(VI
(X
*-s
o
z
.
O »
O X
UJ X
t/i in
UJ »
CK -.
UJ 0
(X X
1^4
1 ~
0
Z CVJ
o *
H-t
r- X
< -«
o »
a x
UJ •
-* *
O X
J -*
u. -* ~
o
a: oj -.
o * *
U. X X
in ^
r- » —
Z 0
UJ UJ OJ
i-« cr ••
a < x
HI h-
u. (vi tn
u. < *
UJ ^
o or o
0 O CK
\ UJ
m a M ~
< z n
X
X
o »
oo
** z
H»
5X,20
WIDTHS
UJ
z —
zx
< H-
XQ
0«-»
X 3t
X
Q
H*
5X,20
SO
SURFACE AREAS
U
z
o —
-jui
i?
(VI -)
•> s;
x :x
o
in
o
o
o
— o > _j (\i ~ o
O (VI _J • < O (VJ
»o ooza: »o
(XX OO«UJCXX
3f-< l-0_|r-3t-H
Z'- 3-4UJZZ —
•^ f- o ao>-f~'i-
UJ < O < UJ <
O O
3 -«
o
-^a xouj(vj ox
• < o oo u_ u _J • 31
c»o Q.OOZO:
» #
X M X — -«
-" < -^ z in
(VI _) « X Z O
o o i- a (vj z
UJZZ-'Q.KD^UJZZ'-'DJItll
— _ji
UJ < Q
_l -~ -H-tlX
< IX O —
£X O -» < O U. <
3t U. * UOn-iO3EU.«
l-t f-H
O O O
^n ^) ^"
o
00
F-4 (VI
O<
K _J
o
o
UJ < -^ ~> -^ -»
K r _J -* Z ^ -)
tX X O o •
^ z-pSuj
Z-~l- 5 CD
H«UJ < O <
I- K- Z «l h- _J
(VI
o
-------
SUBROUTINE NETDAT (Con't.)
156
u
2:
cr
to
o
u
OL Z
Z *~
X
z
cr
UJ
cr
o •
Z t-
/SEC
ES
o
o
_l
UJ
>
_l
<
o
I—I
t-
_J
UJ
z
z
<
I
o
UJ
o
<
UJ
«• s:
x cr
in •>
» o
-» z
* ••
X (VI
*H cr
o
(VJ
•>
X
in
o
i
o
UJ
o
to
UJ
cr
3
h-
<
cr
UJ
a.
X
UJ
I—
cr
UJ
K-
<
2
Z
— O
-> HH
r (-
cr o
o » 2
r^ in o
a.
o z
o »
o x
(X Z
uj a.
X
in
x
in
*
x
a.
at
UJ
T
cr
,5X, 20
N/
_j
_i
<
u.
z
I—(
<
cr
i
o
•—«
—. h-
O. <
< cr
> o
uj a.
» <
~> >
X UJ
a
O LO UJ
Oh- Z
(VJ Q. X
O »
I- •>•
O X
n
X
in
UJ
"5
cr
o
(VI
o
cr
ON
HESIS-RESPIRA
>
V)
o
t-
o
a
>-
_j
•-«
<
o
UJ
o -*
< «
cr x
UJ
a.
o
x
a.
z
cr
u ^«
Z2
2 --
t-i o O
n T
z o
ou_
O •-"
> o -^ > _i ui o o
' (VI _l • t— \O (VI
. « * -^ «*• Lei'-""**
»o* oozcr »o
crixoo »ujcrx
UJ'»-<'--«-'>-
»-«UJ-«OSU.
o o o o
o ^ in vO
o
o
— 2 *
OL » X
< a. r-<
_j > o o
• UJ CO (VI
UJ-"^ »
o z cr » o
o • u cr x
o _i H- 3 -«
^ UJ Z Z *•*
CD HH *» K
O < UJ <
Z
cr
o
<
u.
a.
<
-^ X
0 »
o
a.
o
o
UJ
M
o z
o •
O J
*> X
»in
x *
•> in <-*
~y * >-
z — <
« * Q
O XX
O -* "- O
X O O (/)
Q. «-« (VI X
*~ (VI » (VI
cr * o o
uj cr x
t- -•-* r
z
cr
o
o
00
X
o
<
u.
o
o u, < cr o
O 1-1 O 31 U_
o o
r- ao
-^ o
iii
~* u
— •-« o <
Q. Hr t- -I
<2 **
> O O U.
UJ O O HH
o o
C^ C5
-i (VI
UJ<
_J H- ± UJ
_i •-< a »-
< cro <
u 3BU. cr
o
1—4
(VI
-« -5
< O
_J 2 O
0-^0,
O (I II
O O -"
(VI O
-J O
-------
SUBROUTINE NETDAT (Con't.)
157
->
X
or
o «
vo tn
OJ 1-
o.
0 Z
K »
>-
O »
O X
»
~ -)
»- z
X •>
0»-
UJ X
in o
_J UI
• in
UJ ~
o z or
o • ui
UI 0 _J K
3 --iO <
K 1- _l _l
Z — _J
O O U, <
OO >-4 O
o o
OJ CO
OJ OJ
EN UPTAKE OF SEDIMENTS (GM 02/SQM/DAY
o
>-
X
o
X
OJ
sj
»
X
in
•>
A
*
X
i-H
A ^»
O O
«* OJ
OJ »
* o
or x
» •-<
z —
^ i-
Ul <
>- X
1-1 or
or o
•* u.
o
>t
OJ
>-
X
O
UJ
in
»
•>
x
or
»
">
z
»
^H
or
-. <
>
~ _i
* -'
X O
-4 0
»•» K
0 D
OJ O
«
X _l
in _i
» <
<~ o
o
•
o
o
o
*
^^
->
*•»••
>-
->x
zo
» UJ
-4 (/I
II II
-) —
-)
o —
ini-
CVJX
o
O UJ
oin
^.
o O
oo x
oj or
*
O I/)
t- h-
0.
O Z
o »
>-
-^ »
Q. X
in »
t-i O
o z
_J »
• NI
UI *-
o z or
o • uj
UJ 0 _J H-
D^UJ Z
Z QD •-«
«-«O<
h- »-_J _J
Z «* _J
o o u. <
O O»-4 O
0 0
in «o
OJ OJ
ERSION COEFFICIENTS (SQFT/SEC) »5X, 20 (
a.
in
i— i
o
X
-4-
n
»
x
in
•>
^.
*
x
<-«
^ —
o o
r»- oj
OJ »
« o
oc x
•» -*
Z -»
^ H-
Ul <
K X
»-ior
or o
x u.
o
r-
OJ
,
**
NI
»
o
X
or
»
o
z
»
OJ
or
<
>
_j
O o
O O
V- O
3 -•
-. o
O
*•> _l t-
* -J
X < O
"H O O
t^4
-)
X
or
•>
0 I/)
»-4 t_
ro a.
2
o »
t- >-
•>
O X
o •>
-N ~>
"4 Z
*: »
O-«
.j *: ->
• oz
UJ ~ »
z a: ~«
• UJ II
-I »- ~5
UI Z
CD t-t in
< oo
_l _IOJ
— _j
u, i-t UI
— (_ h-
••* Z "~*
y: o or
O O 3
in
00
OJ
DECAY RATES CORRECTED TO STREAM TEMP
o
o **
CD <—t
O *
X O
OJ »
in ~->
»-» X
x * or
in x »
• -.->
-> — z
* o •>
X M -*
~i » or
*•* x <
o tn > ->
OJ »_J Z
» <-» ** «
o > O -«
X < O II
-4 O h- ~>
^* xo
1- r^ O 0
< — 0
X _i ro
or i -j
o < o
u. mo o
^M
o
o
OJ
o
.
o
0
.»
•o
oo
X
-)
i~4
^
O UI
II D
— Z
~> t-*
**l-
"
x
or
*
O O)
-fr 1-
n o.
z
o »
H- >
»
O X
o *
~* ~>
OJ Z
*: »
O OJ
_j *: ~>
• o z
UJ — •>
o z or -«
0 • UI II
0 _l h- ">
-i UI Z
no •-« in
o < --4
»- _J _i r>
«" _i
o u. < o
o >-• o o
o
1-4
ro
-------
SUBROUTINE NETDAT (Con't.)
158
o
•
0
1
T
Q.
Z
UJ
t-
£
Q
in
f-i
o
•
i—«
4 •*•>
-* O
~) OJ
«~ n
nj »
*: cr
QUJ 3:
II r> Z
~ z <-
-) i-* UJ
»- 1- h-
OJ Z >-•
*: o cr
Q (J X
in
n
BOD DECAY RATES CORRECTED TO STREAM TEMP
2)
•Z. 'j£
X O
OJ •>
in ~ ->
_ «p
x * cr
in x »
• -i -)
~ ~ z
* o *
I OJ-«
^ » cr
~- x <
o in >
OJ » _J
» ^» — •
0 > O
I < O
-« O K
^"^ ^^ «^
»- ~< O
< -'
cr i -i
o <
^^ ^0 ^^
^J
o
OJ
n
o
•
o
o
^
*o
00
x
•^ ^^
z ->
•> N^
-H (\J
II ^C
•^ o
II
o -.
f) "^
n »•*
0^
5o
z
cr
0 CO
!•* H-
n a.
z
o »
H- >•
»
O X
o •
"^ Z
H< *
< cr
UJ "-i
QC <
-J UJ
• QC
UJ ~
o z cr
o • uj
UJ O _J •—
~*> «-< iii f
T CO •"<
>-• o <
•z. — _i
o o u. <
O 10 »-« O
0 0
fO ^
f) f)
o
0
OJ
1
a.
z
UJ
0*
*
*
OJ
o
•
_<
*
^.
-)
••*
cr
"O **4
Z <
* ll 1
-«cr
u n
o ••»
™ 5
in-*
•4* cr
n M
OUJ
acr
NPUT REAERATION RATES CORRECTED TO STREA
>-4
X
CO
in
•>
X
in
*
^
*
x
^H
^«. »*
0 0
in oj
<*> •>
« o
cr x
UJ3fH
o z ^
Z *^ h~
t-t UJ
in -> oo
»Z V
> -* ~)
< cr —
o < cr
x > -y*
-^_IZ <
*- ~ » UJ
o *** cr
1 O II II
H- ") ->
V) O ~)
QL O o «-
Z vOQC
UJ_lfO«
I--J <
< O LU
z u o cr
*M
o
CT»
<*)
O
»-
O
_K
If)
o
Q
i
•
UJ
oz
o •
UJ O _l
O^UJ
Z CO
t— 14- 1
§ut
OO»H
0 0
vo r-
n P>
»RMJ)
NPUTED OXYGEN SATURATION CONCENTRATIONS
i/) •— i
H- X
QL ^O
Z ^f
>- X
* in
x »
» — .
1 *
Z X
» !-•
Ul — «-
O 0 0
QOO OJ
"^ (*) *
cr » o
UJ cr x
h- * r-«
z z^-
»-l •*• I—
UJ 4
_JK Z
-J •-« cr
3at5
0 *U-
0
00
ro
i
i
O
o
«K
-)
z
a
~j
z
»« »
— --i
# QC
X <
•* •>
~ -J
O ^
OJ O 0
•> O o
X H- O
in D *
»o
^ o
Z _IH
0, -J
a. < o
•~ o o
fMd
Z
•• ae
0 •= •
r- . (A
^ • H-
o a.
o ~*-z.
\- *t +
o d> •
o >- x
*
-* o ~>
H» O Z
»-«<-.*
zoo
»-« CD O
-JO OQ
UJ • «-
ZUJ&
• ZUJ
| • H*
UJ K Z
CO (/) t— »
^c o >
1 J ' 1
u. u. <
0
0^
f*>
NITIAL C80D CONCENTRATIONS (PPM) »5X»20 < 1
t—t
X
ro
CO
«,
X
in
•«
-^
«
x
i— i
^^ ^M*
o o
O OJ
"^ ••
» 0
cr x
•« -4
z •**
•~ >-
UJ <
*-< cr
cr o
3 U.
o
o
^-
-------
SUBROUTINE NETDAT (Con't.)
159
-------
SUBROUTINE NETDAT (Con't.)
160
o x
o ~«
•»
< X
O-
I
O -4
•-* •»•»
« o
X O
in **
(>• X
T. -t
o »
tVJ 0
X <
r
a:
O QC
n o
^ o
•• ac.
a
x
X I-
_
IU t* X
CD X LJ
_
-» O O
on 2
(VI -«
in »w
« ^ u
a ± o -»
-t- X X Z
uj < vo •* a
t-3t (*)— Q. 5
HH a » o o t- o
cr o -t n K uj z
XU. < -^
-------
SUBROUTINE FL0WS
161
-------
SUBROUTINE FL0WS (Con't.)
162
t—
2
o.
<
Ul
+
_
-)
2
K-
O
0
*
^
-)
2 O
— 2
r-4 (VI
O II
1 2
II
-. 0
o in
2
OO
o
.4-
r-4
2 +
1 2
••} ^
2 X
II 0
2 2
I Q.
Z 2
Q.
O
2
to
*
QL
O
2
0.
>
UJ
+
a
0
2
r-
O
O
a
CL
o
2
2
1—4
O
1
a
o
2
G)
II
^
2
<
X
5
N—
0
a.
o o
UJ O •
3-10
ZU. II
*" ' 2
r— ' 1 r^
2 _JX
O OtO
0
tn
jMl
~7
•**•
2
r-l
O
•^ 4
22
• •"< X
OHO
II ~> tO
f- II
O O 2
O ^ '^
X X
tO Q tO
^
^
^
O
O
o
*
t—
3
o
13
to
II
K
3
Q
T
3
to
o
o
r—
O
,^
O
•
O
•
r—
1
•
«^
"")
*~*
a.
<
>
UJ
^
\!
r-4
to
<
*
—
^
a.
<
>
UJ
*
r—
^5
O
^
^3
to
II
r—
3
^
jj;
^j
to
>«»
to
"^
~>
a.
«t
>
UJ
i
2
r-4
X
o D
N- tO
II
0 2
^"» 1— 1
X
0 0
o to
o
vO
0 80
UMOUT
MIN
,IDAYB,IYRB,LMN"*'~«*'-i»'>-«mxo
i-4tO X2XX»~«»«Ct X UJ»*»-i
LU O II O CS 3 r-II2 "Or-« 4.(VIO
2X-" •— — r— u, » to o • 2t
t-l3*-O'-«UJ < Xr-»-4O5
H- tOt-H- "h- XtO »XU.—»~>
2 — 3 2i-( £X2^t-»U.
ou.oot-*ce o d * 4h s:
Or-4OOO3t U.r-4X2ll <
jf —i oj n ^j- ID vO
o ooo
1^* 00 O^ O
X
o
(VI
X
in
to
u.
o
to
o
u.
2
HH
X
n
r— 1
•H
X
tr\
U 1
+**
4r
X
l-H
>-» >*
O O
r-4 CVI
r-4 »
* O
a x
i r-^
;. 2 —
-" I—
Ul <
— 1- X
-------
SUBROUTINE FL0WS (Con't.) 163
*
~ x
*-. <—>
* —
X o
-I OJ
*•* •»
O X
oj in
» «
X -.
in (ft
• u.
~ o
in «-
u.
O (/)
" 3!
O
10 _l
Z U-
o
*-• _J
(/) UJ
(X Z
UJ~ Z
— >H- <
Z ~3 X
HI QO U —
O IO X O
o: x a: x x
» i/> * in »
-> »-o *(_>
Z ~Z — Z
• * » * •>
>-* x-« xcg
(X «^ 0£ •-« Ct
< *^ — < -^ — O O > O O >
_J (VI (VJ _J n (V» _J
^K* f«l » *«^ »«4 •< ««^
o •> o o » o o
o a x o CE x o
I- Z -H H- X -H H-
O Z —3 Z *• O
O'-t-O-'l-OZ
uJ < UJ < CC
-------
SUBROUTINE FL0CMP
» XX *t
*~- »• • • ^
O A » » » CtO »
in o * —. -» K » •• OLD -a: xx »
•> _l — l/> (VJ O 2 < < «t xfr
-» o > fu — in »o > xx _j
O>»«-'MO>-«.J —. -. uj
lf)».^.-«U.«-»H-*«' >tOD 2
fvi -^ o X 2 (/) _lUJ-« •— *- 2
•~oino»u.ujoa: 22 <
zinoj» — xox< xz* x
i-«rVJ--/-«O*ri-«> _J _J X O
Q — (/) o in —. rvj •> _j •.»•
zaroinrvjoh-oc*. xx> 2
XI-IQCVJ —in .JOCQ. «>o 1-1
*<»^i/)(\j ujvo 0:^2
^ UJ — Q. O *- O HH |- <3X <*»
o(roz»in«*(n z~)^- u
ir*inuJ-»< >- 03 _i xxx a:
nj«(MKOZ_j>-» -*4--* <(fl
^o^»inouj-•_] nr^»^ —. oc-*a»» ^- — 2 20 UJ2
OUUJMXO u, a: a 2 2 ac in ^ ^ MM
in»t/)~oins:oco zr_j tv xx
(vj^»ro»rua:xz -j_j* o < o ^a
>^O^«C-.**— •'i-i.J »»x H-« H- MUJ
njin —.in < oj •»a o »LU>- o~* o -»
^ — <\l O OJ X •" O 2 CD OD 2 O O ~» O (* X
O 2 ** in ""O < X UJ O UJ3O -»2 — X<
in >-• to cu o x x a 2-J u.~5i o -• o: ~* cz
rvjo<—• o »a. » » » xx-* «o> u. •—o
^-»»r\J2-»«JQ.OUJ -*>tX -* 0«- X OO
o^-.«txo<^LijQ. xx^ o •(/) CE <\ja:
»oo»>»-in_jxcD>- —.«~ o in oca • *CL
— inin^—-fvj»azH- ojvo-« tvi uj< uj
OftJ(VlOO^-»»»_J»- ~.^«- *» • $ _j xi
in~>*inin 222 2 -».-. • -^
«\j 2 a ojoj < in u,»-t -J 2 xxx a 2 2 — ~» CD »o
— •-< < — •"' X «VJ ~> X U. • _)_)_! » ^"-22 X CT
H-X>«-«O2-'OX04tt » * » x -* OF^'-—'O »UI
z> ouj < o x o 2 » y: a xxx »o «h-^ -* sj
o*»»£D»x»(/)»2 • »uin tr*h-x 2 (^ ~*
a.o~—'»u-.cE2Ot/)»-.2>a.ujru O-»OOTQ^- xtn o
X»OGG«O»UJUJ>-Q(\J< x«n x x o^3eo~v >- ~~
O O ftJfVJ (VI O (\J O X 2 O Z"- X X X -± I- -^ «I*20-^ OX -~ <
_jin — ^^ in — in»»2»2-4--*«»xQ. 20H--^<«— 20*- <«
U,t\J2OX(MlO(\(OO *UXXXX — UJO— «Q.2 «O2 -»^Q *2
— »•«»-»-*•'»/)'—2>-UIX_J—.~^OJO2t*)aiUJ— •-« •— O* •••-• 2UJ
uj2oooM<~>»ocr«-i ^»mcjV'-< » ^ 31 u»_j
2»-tOPIi-U,2 — »* • 2~«ll •IIKOUJ— CXX _JX
t-K3oa.3taxa:2Z>-'_iO222ZO»i~~.~a.iLj •tnoat^cr ujx«
t- >--i2222UJ»-»OD^2 — O OII-.'-*
DZ Z CO_J_»_l_ltO — — — O K Z < —H- Z-*"5I
OO O 2 2OX^XII>"-IIOUJ
OCX T UJ «r U^ H «r h- ** 2 < ~ K K X h- Q. »- — — 2
ccx x XH- x Q. — a z — -«2 >-«aea.oz_j_jii
3O O i-i«l ^OUJU.UJ'-'U.U. — OCCOUJKOOO_J
tOO O QO OOQi-iQ<>-it-f>O3eU.OC/)O>>2
'-«Mn-*invO'-H
-------
SUBROUTINE FL0CMP (Con't.) 165
or uj — -~
o tn •• H- *
* ^ -4- 2 •-" *«. *
HHX*< < ^ O X
»in x » x o uj in
> -~ — 3 » X ~
<*inor u. x >- h-
oxtvix o in u. u.
i^ •-• » h- •> —• 3
»— m -^ o
-~inxx-~< i- in ~
UJ (\J •-« O —. UJ U. UJ
o • » •> # or
Z X
-------
SUBROUTINE FL0CMP (Con't.)
166
o
CVJ
»
x
in
Q
X
CO
UJ
H- in
< r*-
a: >o
uj in o
< (VI •
LU O O in ••« O
(^ • in in CM • ii
(VI O N- • • O H-
a *-4«ooooino»ooita
u H co ••••••on H i- —
i- K-n^^ooj-t^iii-h-air
3 -» O t- II H II II II II H- Q Q -* (VI
Q. CK — .QH-t— h-»-t-h-O-*-.Ln'-«
Z "-< 0~ Q O O Q Q Q — in O (V) •
o < «o— .— • — •— .-»-.oh-m»o
ouj ^••oooootn«»»o«
x. CL o c>$'n{vi^»»«^ _jr*-
0-10 (-•••••••KH->-«l»«O
» X O _l K K «- *- t- t- »- _l _J _l • »- O
x a: >* o • _j _j j _i _i _j _j • • • H- o •
IT) * <0 •»-•••• •••K»-»-O»0
* -) 00 >*Q(-»-t-H-Kh-KQOO»Clll
-^ z x -» > K- 2O Q O OOQ Q 2 Z 2 O ^ J 3COUJ OO O O O (5 O O O CD O O O _J Q
^H- oo^Z>tO(/) *ZX« ••••••••••• •••!! 2
uj < ro o: >-i so in OD -j 1-1 »- H- »- H- K K t- H- K K H- K H- i- i- »- Q a:
l-3:^_J'->-«KCC'-«<>»->QQOOOQC>OOQOOODCit-3
I-HQ:«-._I <2M ||*»2u-^<-^^^«^ — — »*-'«-«^^'w^'_jt— Q
Ct O * o>»-«oQ»-ii-(H-i>-4i-i»-ii-ii--i»-ii-«h-i»-ii-ioct:uj
*— t
o o o o
(vi n -t in
-------
SUBROUTINE VAULIN
167
*•» » • •
o ~ » * • ce o
in o •• — — »- •> » a. o
oj in -~ o o ct ui (vi <<
— <\j o in » a. >- oc xi
» _i ~ tn fM o 2 t
.~ o > (vj — in •• a > xx
o > » -' in (\i a »-• _j *+ ~+
m*.*»^U.*^H-»» 4" 00 *••
(\J~0*:2(/> _JUJ^ O
~oina*u.ujoa: 22 •
21/> »»-«> _j_ix •-«
a-~inOin~.fVJ»>_J »»• I-U.
z a: o in <\j o t— OD *• xx> * »
x «-i o iv *-• in _j a a. • >-o H- x
»<*-'corg ujvo ct _i 2 a: i/»
-» UJ -» QL O ** Q •-« h- < Z> I O. •>
ocroz»m »»t/> x"^-* 2 in
tn»inuj — J»-O2:jV» >*-*^ LU »
«"O"^»lf)O U in
*(MTO>^» ».t-(_l Ol^—' •-« *
^ —om>-»ac»» s,>^z »^-
OOUJOJXO U-ODO 22Z UJ HH
in»c/)^oinzotc zz_j >• »
(\j^»fn*njocs2 _j_«» »—.••i-i^I »»\ Q •-<
x 3tx 2UJ
(\JO<^O*Q.»»» XX>* M» ^ UJCD
^••OJ2-._IOLOUJ -fr>frX »» 22
O-^-^- ^.-^o a«-i • UJCD
—-inin — — M»ac2i— ojvo>-< >- »4- >• >•
o(vnjoo**—»'»_ji-- —- •«— —• >-« x tvi 1-1 >H
in*-^ininmox_j»>222 »tn 11 *»
oj2o.fvjoj-'_j2 T 3: x oo •> oin UJCD
^»_,< — — zoj-)2:u.» _i_j_j >- -» •-• oo
H-X>-^O2 — OXOJCt • • » X < t~> -JO XX
OOUJ *»
2O*~~-*O^OeZUU)*^2>-Q.UJ »|-^O-^QO UJ CD «
i-i»000»O»UJUJXO(M<>- +
_i -* in in in ~ in — _j 10 < a «-i ~> ac in x o a. M _» »_jo < o » LU o o o a uj
ac\jo«o »OO»-H-ICD
>rvj z o x rvj t/> rvj o a * uj z x x x ~ -> -^ o x -» • x o rvj o o -«*- z
— »it->-'-i/i»~z>-ujx_j-~-.^fvj z <=> •-^OK-o*xa»ff'j«ji
uj2QootM<")»<_>o:i-i -^incr^i » o r\jo»»o»at--!*-«<<3>u,z — ^ • »-UJtt-_ji i«»-«z
HHOOCL3rOXCrZZ>-«-JO2222 HOOUJQ • +-> »O(M_JUJCDUJ(rCCUJ
i- t-«Txrzo-)Hii3Q:i—-uji-^ujoactuJUJZ
^2 Z in_J_l_J_lll ^-^22CC>-2_J IIO II >>-(/)(/) II
oo o 2 xo->->>-4 — o-<»UJOiirvji-i>-» in
CCZ T UJ< U--<«*-'KCi23:»-Q>-H-»-MH_J_JX
QD T s: r h- -o ui z z < — a: — ^o _» _ico uj >j_j <
DO O fi< OOU-«-"OUJU.OU.U.CUJUJ>->-<-I (J U Z
»-<(\jn>tif)vo "<(\jn *MC\jro
o o
^ OJ
-------
SUBROUTINE VAULIN (Con't.)
168
3t I- < I- *
»•« QC X
3t -J O ~* I X
o < o • \o •-«
_l O QC X » »
U- O O. UJ » <* X
z x oc -. <-< »
i-i UJ 00 >- in oj~
r> K-I » < rvj »> in
n -» Q »oj oj
» -^ (*• i—< x •—• »
XXX » O » X
in •* —• —. oo x o
»in — ui » ^ ao
-» •• O O «•*•«»
0- (VI -« Z * -4" -*
X • » •-< X < #
»-i ^ o —' -* •> x
-'U. X Z — «-«
oo o*-< xinac*'
r^in ^» _j(\joif> -~
»u x » •• u. (\J
oo o_j*ao * tn
t- •— x>-«h- oextn z
•^ZD V--*ZI O
OO »Q. t-i»O'^ HH
OO XttZ »\i-4» (_
>^ «^-« •• UJ HH CD •- f— x U
Z 00 -^> >^<» 2
* •• ck-»-«o<*ac*» 3
h» Q 00 X (T »-i OX*-* -5
(s> r • • -«^ _i i-i ^ z x
o a: wo — x r> •• — uj -• o
»•• zuj orvj<—.00— UJ
z a. o • • n -* a: 02 n z in -^ x
O DO —«~> r-i»O O—^OMZ •"••
••oxo "^~> ••^•>- 3: »(_>••>-« u,
Z-*Q:Z-* •^— »-«x *-< xo x
o »-o zz x» —xi-r»->»oin
• OH-*O »-i M ^OI-«
H-^mzH- oo »zx s»a.»*zo •
to «-O •
»«^_jo-« —<<'-' ->cwu»-i a.*x OZK -^
_|OQ-«ZUJ _I»«Z XXZ >-X\0*0». *
UJ •-• O Z D X O O O t-i (X-4 O K f- -< (V) X -« -^ O XX
QQU.^-X~>i-i O > • • O » — ~5O J«^»(VI»£EO -^U.
<o z-^ -.o,** <^.-^^-->
_i»j~5Z_j^3 —.«•--. ~n»- onooino
— x • z •-" • * "^ "JTOO'O o -< < >— c/) o^»i-ii-t_j»i-irvjz
OvOO'-'OUJXIII- Z^UJUI— 00* OLJ ^»x»»^O^»»
n»ujcsiizu.-^c/)o»o«»z o »-HZCD»- »«mxxouj»o^H
••^•z^»"')xoo^H-»'-.*-i • GCXHH < trx»^»o»a:xii
Q<_JU.O_JOU-IIOII—-)~>(JOOUJOSr^ »2 XrH^.»^.(_Xjt^->
ir**UJ^ZUJZ~>-.'^">~)*'— II OD II OO>Z^Q»-t-< Z'-* •** 3U.Z-'
Z»-QD~)r)QDIIOO ^ZZ-> ^Z ~»--i-)o"1)»-
Q3t_jo-'_iiju*'3»-vOu>oo^H-~*i-i-i-zarzuja.H-s:^ —JZH-X-H
< ct -* z z — ~5 to "> < ^-^ z zz i-i or >-i H- o I-* o: in :D o _j«-»*-i a:
ujou.^H-iu.ou.^ooxu.u.i-HO'-'OOctot/) »-cro(\ja:m«u.tt:oo
CTLi.>-<"^(_>>-iZZOOOXi-ii-iOOOOO3!U.<>-ZU1)3:U. »-Xr-iOt-"XU.O
<-i rvj n f-i (Vi ro
oo o o o o o oo o
on j- invor^ao oo •-!
O r-( **
-------
SUBROUTINE VAULIN (Con't.)
169
t-4 o X "•* o
co » •-* in co
* * •— oj »
x -. a m * -.
,t ^ » « o N *
^ -» uj x >•* •• x x
» 41 Q£ i— t Q£ f-l r+
OJ X> *- UJ I » ~
• ,-* h-i in Q. •-« \ U")
r^ ^ » oj » » <\j
u. ir> uj •• ui \ -» »
» rvj > I * * *-
»< XI -- ^XX*^
uj ^o —< *»^^<*
2: CVI~ » U. ^ fM * "
• UJ "->• Lf) •• — » O
o: -^o *tntvix*n
UJ *X XZ'-OX'-*
> x»-i ^oxn^*»
l-l r-t -^ -~ t-4 CO + -~
tr ~ z OH- 4-inx
i/>x ro<*»-«nj-^
* (\I_J •• < OC * ~
» ^-<> ^O'-O**
n »HI zxonx
— > (\J U U. O
z *< x »-• Q. » n
o *+• x o »^ » •— •
«-i O f^ •-( f)XlOH»
h— »-. (\J •»-••• ». r-» 1— <
H — - in>ou.H-n
a • «^ < f\j»oi/i«-<
»X«^ _J'-«H-O •••*• »
^ ^ uj • -- _j z »-* QC cu
-^-'Q. -^O—. X«UJ£X
oin>-« inno — * o3i-i»-«
(VI(VJ» P0-*>t • •• X h- »
co uj < x 1-1 ui <. uj < ^ x x • — cr
LuH-Xt-iH-KZH- Xin-»in~lT»3
z>-ia:u.z»-
-------
SUBROUTINE VALCMP
170
» xx
— . •• • •
O — » » •• » tt O
in o •• — . -. H- * * a. o
(\j in -. o n a: ui (Vi <«i
-T«join» a. >- cr IT
» _i ^ in ry o z < < -4- «t
— o > oj — in » cs > xx
o > »-'(/) rvj o»-"«j — > *•»
in «.-»-< u. — • t- •» • •$• oo
(\J -~ O i£ Z (/> .J Ul ~< *•" *-
«•* oin a »u_ uiocc z z
z in M •> -* x or< z x »
•-« (M •»- —. O •> » HI > J_JX
Q — 1/1 o in -» (\j»_j »»•
zioinrvio (-u» xx>
X»-iO(VI>*in JCEOL «>-O
»<»^(/>(VJ UJ >- O CK _l 2
in •- un uj ^ -OZ _J>» >t4-->
••»o*-*inouJ-
-. ^- (M O (M X <- OZ CD ODZO <
O Z ~ l/> "- U < Z UJ O UJ3O U
»oo»»in_jToDv *•».-. o o o
~inin->~fy»aezf- njvo^ in cv o
Of\J(\JOO^^*»_J»— ^N**- (\j ^•
m^'-Lnincnox_i*>zzZ'-'O
(VJZQ-fUf\J-«_JZ ZZZ M t- O
^.-.^^^XOJ-JXU.* «J_I-J U1 t-
»-X>-«QZ»-OX(VJQ: »»»XQ O
:DOU«OXOZ»*:*XXX»»O o o
O»»»OD»Z»IO*Z • ««J^ O (/)>
Q.o-~-^-»u — azoiyi»^z>-Q.ujo *» -. >-o
z»eoo»o«ujuj>-o i (\j CD *» CD -» oz
_JO t\J(M f\J O (VJ O X Z C5 Z*~ I I I •* ** O ~» Z -> Z»
-in»'»'Z»z-*-*'4-X'-« j «- _j *» »»-«
>rvjzoiojcnojoo»uJTXxx-^i/)<»"5"< »-^nj ->o -^11
«-i-ih-i- — in — Z>-UXJ^—-KMO>-UJZ^ uiz*: z» no
ujzooooj<")»ua:»-i ->-
z»-"criii-«i:xz~>a>-u.z — *-«-«-*ZO»'-«M «^n ^11 ODO
»--<_jozzzzo ILJII—UOUJII^UJOH-.IJJ j_j
H- •-• X Z Z Z HH a Q. ~> ") O >O O. "> "> D O T) 3
OZ 2 CO _| _j _| _j a) Id >• — Z >- *» Z '-'Z-HOO
OO O Z ZOI-OVt-HOh-OV-fHOOVf-tMirtn
or x x uj < u iu _i •-* < H t- «i m < ^ »- in < »- K »-« -<
CD X X X h- XH-«- OZ — OZ O Z Q:
oo o I-* <• 1-1 z u. o uj o o u. o uj o o o uj o a. o o
(/) O O QO Q H« i-« Q Q O O >-i Q O O O Q O O * Q Q
— «rvj(n4-m>£> —ttvin «-4(vjn
o o o o o o
•-i rvj n •$• \r> \c
-------
SUBROUTINE VALCMP (Con't.)
171
X
OJ
fG
I-H
»
X
z:
a.
a.
in
o
•—•
t—
h-
~ 2
_) UJ
O O
> z
X < O
-» >- o
*** »
ru ox
H- t- •• NO
_j _j ~ (\j ~ o
uj UJ z •> o r*-
o OOQ o «. ,4- „ ^
0*0 o (\j • * o tn z
.—.OCT*—»•—»*•< "-•< rvjuj • <-< X •• Z O
-*O3 ~)Ot\J^« XQ.O —. _l X CC »—
en o>-Mm o -«_j ^ H o <»in»
OOI-^-.QOh--.l/>-)^ t- >-UJ»->O
»H- in">»»- •>»«-•> »a.~zo
>- O Q— >• O ~ -. «J — O Z > * * ->
< O O ~O < OXO OJ^OO O •> t-X ^ Q
o ox** *-* o ou.-^ tn — > -» *• Q _j-^ ^o uj ~* ->-> ocnxo H- »-» —— < o
o o~>» -~i • o~>oo» *!/)—• a —»ac o oo > _i"^
~-^»oo —o «-z»zo ^<->o a. i Q. "5 *'-< _j »z~
>zuzuj to* >»uj*uj •nx'-'* *~>z<- ^» ^ uj»->
1-1 • _i • • tn»- (-H^J-H« ~XCOH- »QQ + ZO*O o z —• —
ct'-»'^-» <_i a: u • H "> -^uio_j uj-Jh-ujotrx o »no
ujiixM^ujz «ujuJ">xy:^:uj(n->< •ujujz + ct-jcrs:'^ HUJUJ~)HUJ
o">u.^:^z>x^oQ u. —oa~>s: — D:3«oa.<-«Z'-' 030. -^o
u -> tn z «~ -5 zo o -> o tn z *- -* x ~> z z"> u ^ o * *~ i—> o z > o -> z
OOOU.i-'H**HH OJOOU.Mllinil'-MHHCDDDII K2:>-«_i»-_j-- ^z->*-z_i — —za.<-> — zz**no:_jMt-«Qi»_jz^ oz
o
-------
SUBROUTINE VALCMP (Con't.)
172
o
o
Q
CD
• 2 -» 2
UJ » ~) •
02 *+ ~ O -i -^
O • II O O II ->
OUJ~) II UJO~>**UI
(\JQ- ~ O (M O 3
>0->Z OII2Z
^ 02 *- 2 I- Q
OU.O2OOO(/>OljJ2
O O O O
oo o* o o
r-4 f-4 (VI O
-------
SUBROUTINE CDERIV
173
Q
X
Q
CJ
UJ
Q
Ct
UJ
O
UJ
z
o —
in o
win
— o >
o > •>
in » —
(VJ — O
^ o in
z in cvj
»—i (V *•'
Q -• (/)
z a o
X "->Q
— LJ —
o a o
m »in
cvj — cvj
— O ^
r*g tn H-
• cvj x
— — a
o o uj
in »in
tv) — »
— o —
< l/» O
•• cvj in
— — CVJ
o z >»
in 1-4 c/)
. CVJ O <
a
» o o
— in in
o cvj
o ouj
a — —
» o o
— in in
o cvj cvi
in ~ ~
cvi z o
^» H-1 H-
ZOO
~ ODX
O OQ.
— on
o in ••
in cv o
cvi ^ m
— tn cvj
a » u.
-. o »
o in —
in {vj 3
(\j ~ m
— tn rvj
a. a ~
x • to
H- O
•• in
— cvj
O •""
in >
CVJ X
^ o
CO *
< —
» o
— in
o (v
in ~
CV) O
** o
cvj Z
< X
o o
in in
(VJ (VJ
^H Q
< o
» ao
— o
o »
in —
cvj o
~ in
x ^1
o cv
5 Q
O
X
o
in
CVJ
(X Ul CVJ
a. >- oc
z <
Q ^ _i
i— » »
_»UI »-•
uj o a
Q X <
* t-i >
(VJ • _|
l"~ TO »
_j a: a.
u v o
Q HI I—
» * tn
ui
Q
O
Q
ac » *
U. CO Q
X O CD
CX X Z
tn o z * »
< cvj s Q o
x — a z 03
o < x uj u
x x ex z _J
»a. » • "
— _l OL
o < u
in _i x
UJ
uj a.
CD v
z
o
in
CVJ
tn o
< in
x cvj
z ~
X O
••X
— cc
o »
in —
CVJ O
•~ tn
tn cvj
tn —
< ~>
x x
x tx
oz
o o
& X
CD X
3 O
-4 cvj n
in
x _i »
u. 1-4 _j
~> X U.
O X CVI
Z » vi
» tn *
z o tn
UJUJ >-
_J in <
X Z Q
* * Z
o o *
Z >- UJ
» o a:
I O >
Z Z 1-1
z
o
X
o
o
^ CVJ
h- <
> o
zui
•• Q
cx *
ZO
o
#
a
*
o
o
*
o
I
u
*
o
*
OCVJ ~>
Ct — —
UJ X TO O
XQZUJ Z
»—I » Q •>
U.Z -i I -H
_l O II II UJ It
H-.~i — O Z
tn ->z
Z O — t-t O
UJ-< ^t- -* Z
X OZ «l
»-* O XO O -I
O Q QO Q Z
m
o
o
(VJ
o
h-
O
•*•*
O
o
UJ
_J
-4 Z
z a
M ^
X U.
Z HH
z
UJ
_i
X
X
o a
u. u.
u. u.
•— I I-H
a o
* i
a a
"S 3B
oo
X J_J
'5°
o
II O
CDO
X
z —
«- Z
O —
I O
— *
_ICC
Z <
— OD
+ I
~ ~
X _l
z z
Z *- •"
OQ
X X
O Q
II It
II O
O_J
o
o — «-
»-«XX
*-i (X
O UJ
o
-------
SUBROUTINE VD0IN
174
O —. » » * QC O
tn o » <~ «-. h-»» 0.3
(\j tn -> o ro CK u <\J <<
~<\j oin * o_>-oe xx
* _j *- in N o 2<< •* oi — in »o> xx
O >•«-(/) -oina»-u,uJOCc z z •
2in(\i*~xox« x x » o
«- _j_JX —I
O>- » »
x «-i o .jcra. • >-o K x
»<»^co(viuj>-o a _i 2 crir»
^u^ao^ o«-<»- <» zin
in»ipui^» ^'t^ iu»
*-o-" *ino iu. i/>
*(\ixo^*»H-ij nr^'" HH •.
-^•— o in > -» a: » » ^.-'2 »«*
OUUJMXO U. QD O 22Z UJ M
in»in—oir»iODD xz_j >-»
tvj^»(*)»f\io:x2 j_i» xx^- HH-H
«-»»(MZ^_JQ-OUJ -t^X » »
O~^- *-. ** O CE>-i •
— inin-K ~.ry»trzi- nj>o^ v »-«•
ofynjoo-^— »»_j>— — •— —» H4X(\J
m —•inin«nox_j»>zzz »in n
M 2 £L <\J (VJ < l/> U. •-< _J 2 IXX OD * O IT
^^^t^^aroj-jxu.* _J_J_J >- >t »-•
h-X>^OZ*'OXOUJQ-U »h-^«Q-»ao
2»OOO»0»UJUJVO(VJ< — in in in ~. in -» _i en < cr ^ ~5 z i/) x o a. oj _j »_jo
OOOJOJfVJOfSJOXZOZ— XIX>t XZt-iUJ-tUJOO
oin^—-'Ui"ir»'»z»z^'*'*x »-i— »OOJQVO«
>OJ2O x oo -.ox-^ «xn(\j
~ HH h- h- — (/)*'2>-llJX_J-~-s—.CVJ 2 »«O O»-HO(-O*X
LJZooooj<~5»-oa:«-H f-»ioO"^ »r>o oo» (VJO»»*O»QH-
2t-"CDi»-ty:x2:~)Ovii.Z'^»-*'^ -**n 11110 »uf\jo«^K_i
t-iOOQ.»OXQ:22>->_JO2222 II^-.U-*— IIOUJO »i-t »O(VJ_JUJ
H- «XZ2Xo-)II^D->-)-» IIDtKI-^UJI UJO
32 2 O5_J_J_J«)II *:*Z-~~ n — 22ai-Z_JIIOII
OO O 2 XO ")»-«22'-'~>»-"-'Q.<»UJOII-i K-I 2 •" »-O 2 3: H- O X K h-
OD s: r x H- -> «/>z O.OMW 2«r-*a:*-•"O _j _i
DO O *-• < O O O U. O Z CO X U. O UJ U. O U. U. O UJ UJ
tOO O OO Z O O X O X U O Z O QC *-< U_ 1-1 I-M Z a O
-*(\in^in»o -Htvin i-«(\jn
in o o
-------
SUBROUTINE VD0IN (Con't.)
175
o
00
o
o
o
o
u
z
(A >-
Z Z
O •-"
* x
(/) O
z •
X (X
* o
z o
o •
« ~. o
z z •
OX UJ
• •> Q Z
O O Z Z •
Z UJ X QC <-.
UJ CO * * *•» <—• ""}
ZZZQ.UOO •"
>->-ze>voa:->->z~« if> o
»-»•-« O»»%**"3 o \O —> —. Z
UJ CD H- U. h- «/»-< 1-1 " I- O O O T S -» O *>" — ~ •
oo ui *o «o o z •* in -« -^ ^ ->»- z z ~) a
aEXt-<»ooa3z«-"O j j «^ *H »-«— o
»-i>-i OOO»(JXXO O O O O O J O O O Z •
• » »•—._|**O-~ H- H- h- >>OOXX«-i O
UJCD>-4_loa.i->ZZ4>UJ * * > -» -^ -^ Gl •
>->*UJ- o z z ~> uj
OO»-<>-iQD_J»_J'^CJOZ-J'-'OOZMOZIIOl/1ll Q Q — • i-« 1-1 — 2
oo«-"-z — x «zii no •+-> •u— »x^ »z-* ~>oo>-aQQz •
ff><7*_J_JIO\OO>-'->^MUJXllOII^OII(VJOOI*> ZCDZXUJ03Z"-" *->
-^'H<«IQn »U!OOCJ— ZU.— »-^ * • —• •• • H »O »-OXO »* *ZZZU «~)XOOXOUXO-^XO^H II 11-^11 MO —
CQUJQ:Qt:UJO<_JU,r>3Z_IOU.UJZU.UJZU.UJOU.O II -^^.^-J-.^ H OZ
£xtiijjujzti:^*uj^~> — — ' ' — — — — — — — ~ — — — —
-------
SUBROUTINE VD0IN (Con't.)
176
-JO XX
Z -» • X (VI .-«
K Ul -« » -'
< K «/)>•» CM tfi
3UJj
Z CO H- O » • •
»-« < »~i ««. X X
• Z •• * ~« o
o •- •-« ** x » co
- z z xo~ Q.
3»Ht •-< O
(J
z
^ z — **
— U. X
o •> — i
^H »
• UJX
>J
••
O
O
o
CD
z
v-
Z Z — X
XO OO
-^ x
OLJ# »
— 00*
z z »- -.
D»O* *
'-
•> ^^ >-• x
o
UJ O
rs *-« _ _
Z — »- O
•—i O UJ «t >-•
no>o>ooir»o ujoin»CM • \fl CM < • CO
••XIf*)»"<»**»-<<~'»^^»O'~'** *^ i—4 •> O *^ •"* •> »-»»-<
p-»Lnj_-H»-oo»o»ouj*oi—« •—i » ujcM*1 Q rn
O UJ «I •-• UJ <-4^»UJ< UJ LJ OUJ-
-------
SUBROUTINE VD0IN (Con't.)
177
o x »*-
O •• \ (ft
O UJ * I » » 04
> ~ »- X ~ »-*
I -» < * » *
vO -. O X (X -» X X~
i— « #1-1 i— i O # <-< •— ' *
» X » ~ U. X ~ » X
(vi •-«,-. in -H in x**
• ~. UJ OJ O «* M »^
r» in o * z in » -. o
u, f\) z o CM x * m
<2 * x
oz x-H
^ CD * -* • XX
Of. *(T X< IIGO»
UJ X>- ^« • » 4-^
> ^« *H — • IO»*
»-« >- » OOOJOOX
oc UIOD nz»>-<«^
og>- —<(vjoc » i— i uj u. o
x o x » Qt »n
n x M x in x -i
_| t— I » »— I » I-M (/) || »
« » ** -4" •• »— t
n xaa <x
»-« »O »-- -* •• O _J H- -* t- >- »-« X
uz -»n»«j < < ^
ZQ. II-^OUJ »IOQ.~-
3d. i£*QQ XvO UO
~>— » _j» irj*!!.^-**)
X -.X»tO *^Ol/>«-«
ox ^:^o>- « HH »
»\c ~- » CD »* ~XZh-»
— -^ _i * Q UJ inojoxx
• "» » *
^ -« — o -~ x •• ro x x
m» -a-coo »-« x » ui »H
M o •— • o » •— i x » -—
** UJ O Z ~ Z ~* X X— O
K x z -* i -- H--«Q^inco
-
O IT- O IX O C£ O»UJ»XXUJZ
u. •-< o 3t u. as u. x Q. -<»-*Q:UJ
^ * •-< M n 4-in
o o in -» o o
flC O (T1 O O O
*•« •— i i— t I-M (M O
tVJ
-------
SUBROUTINE VD0CP
178
0
IP
2
HH
O
2
X
0
IP
(VJ
(VJ
0
IP
(VJ
0
IP
(VJ
o
o
ip
(VJ
-^
^
3
o
Q, *
O —
0 0
O IP
> (VJ
-^
UJ 2
•v !••*
»-« o
D 2
0 0
Ct X
00 X
D 0
CO O
250),CIN(250),C(250) ,REAIR (250) ,VOL (250) ,
250) ,AS(250) ,SEOMT(250) ,DOS(250) ,V(250) ,
0) »A2(250) ,A3(250) ,TEMP(250) ,DK1(250) ,
0) ,XNOO(250) ,OXY(250) ,CS(250) ,NFS(250) ,
(250) »XCMAS(250) ,XOMAS(250) ,MFS(250,3) ,
),LALPHA(20)
,RMUP»RMDWN,RMFR,DELT»DELT2,DELTD,NPRT,
,NBE6,NEND, IMOB, IOAYB, IYRB, IMDE, IOAYE*
LTYPE,LCBD,LNBO,LDO,LSTOP,LVAR1,LVAR2,
T
(2)/4HFEB./,LMN(3)/4HMAR./,LMN(4)/4HAPR./
(6)/4HJUNE/,LMN(7)/4HJULY/»LMN(8)/4HAUG./
<10)/4HOCT./»LMN(11)/4HNOV./,
~->-tPtP(/>OX_J »> 222
2 CL (VI (VJ < IP U. •-• _J 2 XXX
HI< — ~ X (VJ "J X U. •> _l _J _J
x>-*o2-'OX(vjor »•»
OUJ2 • •
O O O »O *UJUJVO(VJ<->io«— •y'v-iliw i — . — . ^«.
ooo(vi^"o •>OCKI~* ••< "ji 0*
ODlH
0
IP
(VI
(VJ
o
o
*
^^
o
IP
(VJ
•^
(VJ
o
o
»
o
IP
(VJ
I—I
2
o
»
^i^
o
IP
(VJ
•^
f— 1
o
X 0
• »
o —*
O IP
I (VJ
>fr "^
\^ t^
~+ 0
(VJ O
—I
^» 2
2 O
J 00
2
UJ
X
t-l
o
tp
X»,
O
2
•>
< •*
>• II
» ™)
O 20
-J
LU — < O
O II IP
UJ t— <-•
H- QC
2 Q, O
M * O
U
V
O
2
»•
fH
||
(J
>-
0
-1
IP
(VI
1— 1
o
o
<-^
2
O
*
— t
o
^H
0
0
>
1— «
oc
UJ
o
i
1
4
0
o
IP
o
h-
0
X
-» u.
o -)
~) • O
202
»UJ •>
P-4 • r-t
II X II
"5 U. _l
O O 0
\£ 2 -^
»^
ou. o
o*-< o
o
<*
0
t-
o
o
f*.
y
•"» ")
-J •
^-^ I. |
^•^ UJ
u. •
it —
*: u.
o
0
o
o
^4
•
0
UJ
«•«
1— 1
*
-1
(p
u.
X
>^
u_
J)*DELT2))/VOL(J)
—
i~t
u
O
4.
-j
-»
^
X
o
X
II
-)
—
o
o
CO
u
20
J)»DELT2))/VOL(J)
— -
o -«
o
o *-
o *
— « ~>
• ^"^
C3 (P
UJ <;
• X
« 2
(VI X
.J M
CO ")
u. —
xo
lZ Z
J5x
0
F-l
30
)»OELT2))/VOL(J)
->
H- »-l
O
o o
o~
• —5
O ""
111 (/)
• 4
-* X
n o
» X
_l~ IP
t/1 •"••«'
U. ") O
X -- K
••• >.
U. X O
*-«o o
0 O
(VJ 0
-------
SUBROUTINE VD0CP (Con't.)
179
O O -I
> >o
X X >
-* ~ X
(VJ W —
>- H- (VJ
_J _J H- O
UJ UJ _l •
O OUJ O
* * O II
^H •-»«-• O
o z •-« o
O O O CD
— — o o
* * «•" —
—• «•» ") O
in in <- •
<
x. x. <.
o -Z.-S.
X. X O —
o o
if •
— o
-> II
^* J^
O ->
O -»
Z V
X X
^ o
O o.
• o
o •
• o
_J -I I-
f\J
z
rvj
o
o
fr
(VJ
o
O ~)
— z
o
CO
o
o
o
I- O
OOJ
ox
00
O X
ID U.
O
t-
o
^"» i*^ ^^ *\ **^ rf^
UJ
II II ^ —
• — —MO
Z ~> -) — O
I-H —• ••* ™) CD
t- O O ^- O
ZO O >- ^
O CD Z X U.
O O X O I-H
~5 — CC II
>- ~5 UJ UJ ->
0 — 00
O V Z O O
Z X •-* (M
X O I- -J-*
~ *- Z _J
U. U. O < O
>-* i-t O O O
O O
• z o
o » —
UJ "-* SC
• II — ->
X _l _l •
U. ^ UJ
-> omz
o o u. •
z ~«z-}
^^ II ^"^
u. o * u.
i — en
LUOJ
• o
o
•x
II
^ o
LO UJ
< •
X —
UOJ
X »
II _l
en *•*
U.U
sro
u. u
•* "0 in -H «-•
_J — -J
UJ~) O UJ —
O — h- O O -5
* -I • * —
10 o o <\/ cn _i
+ > o x + o
^ X — — — >
->-»-•-. -5 x
in •" o — to n
< CO UJ (V) < —
z < »o z tn
z z — oo <
x z ro * x z
n x » — n o in
— n _J ~) — x ^ UJ
' ^ -> M
oz
o «•*
00 U.
in «•*
z
o »-i
UJ "J UJ ")
O O -« p O •" O
• * _J .• * _J •
(vj in o x * •> x
«^ in —• — co — —
(VI < CO CU, < CO (VI
O X < Z*Z < O
Q O S O Z Z O
+ X O * X Z +
— II X — II X —
-) ^. II -> — II ">
— -j ^ — -) .-. —
> en
3 < —
ro-'^-x> z —
ZZU.IIOXOOII
XXHHIOXOOOCO
• • ^
o en--
Q
-------
SUBROUTINE VD0CP (Con't.)
180
o
2
UJ
o
o
3:
a.
a.
<
>-
O
2
X
in
•
o o o
II II •
~ ~* o
h- -> -5 II
_J ^ ~- ^
UJ —> O Q ~>
O -5 O O *-
* ^002 >•
CO _J O X X
* o — —• o
-^ > o o —.
"3 N. • • O
— *-. O O •
co -> • • o
< «" h- t- •
X CO _J _J f-
O < • • -I
x s: -^ - •
II O ") "5 ^
S ii a o >*
— -~ o o >
to ~) CO 2 X
< ^ O X O
5T ^. ^^ ^^ ^^
O XU. U. U.
X O HI HH l-l
2
-J
••
o
o
I
t\J
o
in
o
(—
o
o
33
2
to
2
O
a:
UJ
O
2
O
O
X 5 Q -»
-* •• » •>
* X
in »
ac a
or
a.
•
UJ
2
•
UJ UJ
2 2
1-4 t-H 00
a
a.
-^2
CD *
_l H-
* a
OQ.
X.
»
o
> *
o
">
*•*»
UJ
<
o
O
CD
O
2 2
oo
00
o in
II Ct
Q a.
o
CO
•—»
o »
OQC
^2
Q — 2 Q 2 2
4<^Q3 • »cD » O *
X«-*OX-H2^Q^
•"• » -J >H g J. Of _J Of
o »oo>o>o>
*(\J>^ » »» i—4 »-' I—I >^
o * *oo » O »O
xfuaxoaooro
•-i -> J«:o
X »* (— O*-'O*-IO22
—' UJ < UJ UJ i-» CC
-------
181
SUBROUTINE 0DERIV
o —
in o
oj in
~OJ
* _i —
^ o >
o > *
in » ~
o in
in oj
oj >•»
Q
Z
X
o
in
(VJ
o
in
oj
O0
z in
O OJ
Q£ o
.-4O
< »
UJ —
ct o
»in
— oj
o —
in H-
oj x
^- Q
O LU
•-CO
— »
O -«
tn o
oj sn
^ oj
2 -"
•^ CO
«•» o n
o in »
in oj o
oj — tn
— to oj
-« u. *•*
*: z co
^^ ** L^
•• ~ x
—. o »
in oj o
oj — m
*•• CO OJ
QL U ~
X »CO
LU -- <
I— O
»!/>
~* OJ
O *- »
in > —
OJ X O
«- o in
1*1 •> tvj
O
X
t— o -~ —
Q » O O
tn in
oj oj
•- o to o
-»in < oj
o oj 3: —
in ~o <
oj o x x
— o » Q.
oj z 1
< x o <
CC LU OJ
CL >• !X
2 < <
•> O >•
Q »-« -I
_J LU -•
uJ O OH
O X <
- O
O I-H H"
•> •• CO
t- CO _l
_J > »
LU < O
OOO
ct » »
U. CO O
XO CO
a: x z
at o o
oz CD
X LU O
Q O
•- tn
KOJ
Q -"
O K-
O Z>
~ O
> O
HS »
ct —.
LU O
Q in
o oj
20.
HI <
X >
O UJ
-. -. oj » or
o o
in in
OJ OJ
o LJ
LJ Q.
CD V
o
in
OJ
o
a
o
in
OJ
to o x
-i o
< o
CO
in
T oj
z ~
x o
-5 X U.
O X OJ
2 » *
—. -«. .-. CJ —• OC
o o
in in
oj oj
zo
o
tn <-.
oj o
— in
x oj
o
m -.
OJ O
•" in
co oj
to —
LU 2 Q O O OJ
2>-»COX>-i^XX
i-K3OQ.*OXCC
2 O
LULU
-ICO
X 2
U O
2 >•
152
00
or 3-
QO 3:
r> o
co o
~5 O
22-i
2
O
X
o
u
>o
z o
» Q
or •>
z o
»in
o oj
(T —
21-
••o
LJO "7
XO 2
-JO II
CO
Z O
LU •-"
1-4 O
o o
*~ x
>-0
X *
o ~
I -5
i -> to >
— — O LU
220 I
l-« H^ — ' +*
O O * ">
CDZ^N ->
O X ~) H-
* * — T
-^ ^» -J O
~> ~>0 uJ
— *- > CO
22* I
I— I I— I xv -~
o a •> "5
+ +>-*'
-s ~* Qt O
~) ~> HH »-
— — < o
h-t-LJ X
o±>o: Q.
o o + *-
o o ^ +
* * "> ".
ooo o
ooo >
CD Z # #
O X -N -.
o
II
o
O
O O
• CD
O {_>
II »
Q X. ">
^ O —
o ~ _i
• o o
o ~ o >
• -> • *
UJ -^ LU O
_l CO J *
^S • X-. O • O
-5^. -J O~ I
— ") — * -) ||
-4—1 oj in — —
*>• ^ o >• -)
OX O • X —
II O H O O >-
* — o
zzo
Q X X S
I O * —
II II Z to LU
-7 n o * z
oo^->z
ZO — *"O
O O "^ V1 O
-< OJ
o
O
Z
»
^
II
Z
O
-*
O
o
(M
O
H-
o
o
• J
ZZ
— X
XZ
«VOOO>O
+
2Z
HH
.JX
O
O
,
Q
aeaea:H-tto;
»-<<< <<
U.COCDCOOCDCa
zo
-^ II
ox
II II
oo
II II
o
OJ
-------
SUBROUTINE 0DERIV (Con't.)
182
Z Z
LUUJ
2_J_J OOZOO2
LU X X OOOOOO
_l V X U.U.U.U.U.U.
X — ~ QQQQOO
V. . -- . + + •»• I I I
— XX OCJZOOZ
— Z Z OOOOOO
X "*•* -J _J _I _l -I -J
ZOO X X X U. U. U. U. U. U.
^OO QQQ*+*III
>- CD Z OOZ-^— — *^->^
XOX QQQ X X X_J _J_J
Oil *#*ZZZZZZ
X-IZZ
QO* * * * * * QQQQQO
o o a a a ~ — — n n 11 n 11 n
X' --- OOXNJNIMZZZZZZZZ
n n n n n n H n ti n — — >- — >- ^ *M a
CDOOZ_JI_J_JU.b.U.OOZOOZOUJZ
xoaau-u-u-aaaaaaaaaoaiuj
o o
n *
-------
FUNCTION JKFND
183
zin
a •
» o
OL +
a: »-•
»z:
H- x
I/) X
>— I >^
Q Z -«-)
« JB II Z
_)OH- II
t-i X UJH-
Z QC tO UJ
X I 2 CO
»l- Z
-> in ~
Z-iZ —
•" a a a.
a — QO
Z — X X
if a: a
^ x • •
~> •-« H- >- H-
U. _J O UJ
z •-• • • to
O + I- I- Z
HH ~* tO I/) II Z
h- II •-« HH Q a
o»- oo z r>
2 UJ -» ** U. t- O
o to u. u. y: uj z
u. z MM -> a u
-------
SUBROUTINE SERIAL 184
-» o
*: *
•• , in
N
V -.
•• M
z: < »
»x z
Q » O *
*- < ^ ro
_j >- in
< » o •-*
>-< z t- —
a •• +
LU ^: o -*
to * o v
x ~
UJ » -~ <
z Q <\j x
HH • O *
i- a i- ^ rvj -«
o cu o i »o z
oo • o
-------
SUBROUTINE TABU
o
O
K
O
h-
0.
- in
H- t-
Q. Q. 0
X Z -H
•• *«^
>- >- O
» •• 1—
X -»
•" en o
:DI- o
o
OJ
0 O
•-* 1—
0 0
H*» O
O <^%
0 ~
{/)
^> t-
X
•
_J
•
h-
Q.
X
•
a
z
4
•
—•
-) in
— *
x -«
i —
•••* "^
»— » '^
* >-
•™) i
•— • x^
X -«
CDQ.
• • » • -5 >* en
r>!/)»-zi-H- H- z i -- •" '-'Z
OZQ. II O.(XOQ.i-iQ.>-O>-O>-CK
cruJZ'-«xxnxKx M KNI- Hr>
CD s «* s: -- ^ z — i~ t- I-»-Q
±)»-»U.Q.U.U.OLuO II Q.OQ.OQ.UJZ
o o o o o
rt •$• (VI •-< IT)
-------
SUBROUTINE INTER
186
<
x
z
CO ~
h- co
O.t-
20.
s: a. Q.
2 Z M >
» — (M »
jx to
< •- O K
> -^ h- QL
UJ I- Z
a < o »
— TO I-
z a.
a *~ ~. x
UJ _l h- H- »
h- < CO CO CO < >•
2 > h- t- Ul S »
CHUJQ. Q.H- -^^.Q.0. Z XH-
cr z 2 • a. a. x x » ^-o.
UJ» »-LLl TTt— h- —« >
>-i O M « H • ~J LJt-«(-i-)-)HHUJ~)"1>(Sl^UJ
j_i_i>_(-' -) — ^ 3>*^^»-^^3 — <*>O
r>co x •-« -5 x -5 z x >- x >- a, a. z z t- >- z ±
o z ~* H H M ^ H H »-< H H H H 2: x •-« o a: «i »-< a
aujcMh-a.Mxv-a.H-a.a.'-^H-v-v--^ M _j z t-j>zi-o
OJ -H
OJ (VJ
-------
SUBROUTINE CALEN
187
X
»
o
o
(\J
Z < < H-
UJ>- "•« >
_) » O * ro T O
< 3: 4- -« in * o
O •• — < vO •-•(*)
O X >fr X Ifl ~
IjJ » — . .-H *» >— I O
2 *: -* i -
z> z < H ii n n it u. n < o 7 ui
o o
run
-------
SUBROUTINE 0UTG0
188
o
in
fVJ
Q
X
O
in
(VI
M
o
in
(VI
o
in
V -•
•• O
X -
o, o
z in
» (VJ
a —
o -. » »
in o » —. —
(vj m <* o fi
«- (vi o in »
j *- in fvi o
o > M *- in
> • ^ in ru
^. o ^ 2 or
2 < <
»O >
a*-« -i
UJ
o
»
M
UJ
Q
-. OJ
0 —
in K
(VJT
" O
U UJ
O -»
in o
ru in
«- (VI
2 —
>-icn
u <
o o
in in
OJ (M
^nm* ^**
2 a.
X >
O UJ
— a
o »
H-O
oin
o rvj
o o
in in
(VJ (VJ
2 o
}- o Z
»in o
-. tv x
o — »
in >- —
rvj x o
>- o in
ro • rvj
< -^ ^
* o in
— in <
OfVJ Z
in — o
(VJQ X
-* o »
(VI 2~
< x o
* »in
^ -. (VJ
o o —
in in in
(VJ (VJ <
^_ ^^ .^
~*QZ
< O X
•> CD **
~ a ^
o » o
in — in
(vi o (vj
— in —
x (vj in
_i
UJ
Q
*
ac
u.
cr
^» »
O 2
(VJ X
— Q
< Z
i or
o, »
-JO.
< o
-J Z
•• or
uj —<
o or
z -i >
* -j
no «
or a.
> o
»•« t-
» m
CO J
v »
< o
Q Q
•-• -I
•> •>
CD O
O CO
Z 2
HH _J
» ••
O O
2 CD
UJ (J
2 _l
« ••
O UJ
UJ CL-
OD >
2 f-
UJ2 OO O M <
-Z. >-> CD I HH * Z
HH a o o. f a x
O 2
oo
a z
CD z
30
in o
o
in
cvi ->
— o
o 2
z •
or 2
» u
— -j
O X
in »
OJ (J
— 2
X
L
»
fi _J
z u,
X (VJ
» ^
in •
o in
UJ >
in <
2 O
• 2
O *
>- UJ
(j r£
20
»in
or oj
-» <-»
2 >
or o
2 in
» (VJ
UJ *•
X X
or 2 2 •-• _j
U.2
o
^H (vi ro
2 in
O 2
Z UJ
Z Z
O >H
O Q
in »o •"•! cvi ro
UJ
2
HH
_l
1— 1
4(
•^ — 1
»LVAR»LVAR»LVAR
4X,5HRIVER»18X,A4,4X»5HRIVER»18X»A4,4X»5HRIVER»18
»IH ,4X,2HN0.5X,4HMILE»7X»5HVALUE,8X,2HNO»5X»4HMI
2HNO,5X»4HMILE»7X»5HVALUE»8X,2HNO,5X,4HMILE»7Xt5H
I)»Y(I» ,I2»X(I2) ,Y(I2) »I3,XU3) » Y < 13) » I4,X < 14) ,
V
or * x •• — • <
< -t + x <. x f
>
-* X > UJ 1-1 UJ — .
o ro >—• o «J *""•' c>
•-» * or .j *•"* * 'it if i ~« 2 »-i i-i or
3!-t»I »l 1-1 _l _J 3B
2"~'Xin^»»— '_|i"HHH2T
^"^ H* t^* * H^ + + *••"
KZ.**Dn,t£}£h:!
i-< or < •> _i u H M •-(
oro * tu O ^"* *"•* >"^ 3c
«-* (VJ CO <•
o
I-H
O
<— 1
UJ
Q.
%^ ^^^
4- rt
CVI 0
^0 UJ
U. Q.
Q_ •—!
o •>
» X
x U.
X 0-
-* 0
* »
n x
• >*
o •>
^H ro
UJ »-i
a. •>
-« x
» * r>
« •
(VI O
• >*H
\O UJ O
U. CL "JD
•• rH
X * O
•» -t X l-
f » -t O
H (*) •• O < 2
* I-H (VJ OH- UJ
- » • ^ X M
X vO O UJ •>
f) U. • »-H f« O
•• Q. O + * UJ
O UJ UJ UJ OD
X •• »2 2 >-*
•-• X UJ < *-• *-i II
^ 4" O t- _J -1 H4
H- » 2 X «r« t-i
< ro I-H UJ li HO
5: HH K ^ Q O in
or »-2 — 2 uj
O X OU.UJ 00 O
U. >t O >-l HH I-H O
0 0
(VJ fO
U C_>
-------
SUBROUTINE 0UTG0 (Con't.)
189
ro
•
o
I—I
LJ
0.
X
4-
V U,
-• X
o ro
CC X
S -i UJ
z <- o
^ K Z Z
UJ «-i £T
K T 1-3
>-i a Z K O
a o ouj z
j* U_ U (X UJ
o a o
4- \n •£>
-------
190
AUT0QD EXAMPLE PROBLEM
The stream/estuary system used in the AUT0SS example is used for this
example. The input data is the same except for the flow at mile 100.0
(River Flow) and the TDS (Total Dissolved Solids) boundary condition
at mile 0.0.
PROBLEM STATEMENT
Using the steady state values obtained in the AUT0SS example problem
(5000 cfs at mile 100.0), as initial values, run the same constituents
(TDS, CB0D, NB0D, D0) for a continuous 20 day period (January 1-20, 1973)
using the following inflows and downstream TDS boundary conditions:
Jan. 1- 5 Flow @ mile 100.0 = 6000 cfs
TDS @ mile 0.0 = 18000 ppm
Jan. 6-10 Flow @ mile 100.0 = 8000 cfs
TDS @ mile 0.0 = 15000 ppm
Jan. 11-15 Flow @ mile 100.0 = 6000 cfs
TDS I? mile 0.0 = 18000 ppm
Jan. 16-20 Flow @ mile 100.0 = 5000 cfs
TDS @ mile 0.0 = 20000 ppm
CBjftD, NB0D and D0 inflow concentrations will remain the same for the
entire period. Have the program compute its own time step and print
out qualities every day.
The data deck for this example is as follows:
-------
-------
-------
-------
-------
-------
196
-------
-------
198
The output for this example is as follows:
-------
199
O O O O OO
OOOOOOQO
OOOOOOOOQO
ooo ooo
OOO 000
ooo o o a
Q 0 O O Q Q
ooo a a a
ooo o Q a
OOO O O Q
OOO O (O O
000 OOO
oooooooooo
DOOOOOOOOO
oooooooooo
oooooooo
OOOOOOOOO
oooooooooo
ooo o o a o
ooo ooooo
ooo ooooo
ooo o ooo
ooo ooo
o o a o o a
ooo ooo
ooo ooo
ooo ooo
aooooaaooo
oooaoooo
o o o o o o
o o o o o o
oooooooo
oooooooooo
ooo ooo
ooo ooo
ooo ooo
ooo ooo
ooo ooo
ooo ooo
ooo ooo
ooo ooo
ooo ooo
oooooooo
O O O O OO
*— h- f-
t— »— t—
h- f- »—
t-r *— t—
Aft' UUU UUU TTTTTTTl
AAAAA UUU UUU TTTTTTT
4AAAAAA UUU UUU TTTTTTT
*A AAA UUU UUU T
\ AAA UUU UUU T
AAA UUU UUU T
4AAAAAAAAAA UUU UUU T
&AAAAAAAAAA UUUUUUUUUUUUUUU Tl
AAA UUUUUUUUUUUUU T'
AAA UUUUUUUUUUU Tl
<«*<<<
X
UJ
-J
CD
o ooo
CC 000*
Q, * • •
— o o
t- OUl
Ul -«
UJ
*-
UJ 1
X 0 • •
O Q •
>- H- Z •
*- r> uj o
•-• < z
_) -X UJ
< < Ul
0 UJX Z
o cr < -•
K- U J
*- »- s w -iz
< < OQ. «-• uj uj uj rD
O 13 < MM M O
o a ma: a a: z
-------
200
OOOOOOOOOOOO
3000000000000
_JOOOOOOOOOOOO
ooooooooooo
Dnnnnnnrnmnnm
nomnoo
OOOOOOOOOOOO
t-*i-i _J
t-«»-«r-o*-*r')in^(7'«-"«ninr"-o
tr x i^r*. <
r>oooooooooooo
OOOOOOOOOOOO
UJ UJ UJ UJ UJ '•' \\t '^ UJ \tf t*J 'if hi
-j£>O(>CT'^Ol»O»O»O»O*O^
OOOOOOOOOOOO
UJLJUJUtUjuJUJUJMJtUuJUIUJ
'
Q.
z
xz*\J*xirxjr\*nr»nnnnnn
u
OOOOOOOOOOOO
J UJ UJ UJ UJ UJ UJ UJ t[J UJ Lsl Itl 'if
«-»*-^ninr->^-^r>inf*-^'*riiA
:fut\i(Mnr)rrrnnnnr>n
(1,1 UJ UJ UJ *\J *A> ^1 tiJ 'lJ '
u.
a
in
UJ UJ UJ UJ uJ thl ijj itJ '-j ij
DOOOOOOOOCtOOO
.JOOOOOOOOOOOO
—»ooooo
>••»••*•»••••
*- a: moor-— it
CE »•*»-.£
U. U
tx " _
3 => Z -
• (\j{\jf\jwr\jpjr\j
a o « « o * o
i">f")Pinf-)f*lfOr*)f*l'"lOO*''l
OOC3OOOOOOOOOO
UJULUUJUJUJUJUJUJUJUJtUUJU
oco-roorvjaono^in-^r-roo
_jc*o^o>coa>r-r-^)*ooLnin>*'
>O^'{\)QCOtO-4I
>
OOOOOOOOOOOO
UJUJuJUJuJaJLjJLjJUJUJUJUJljJ
ZlOOOOOOOOOOOO
_| O O O~^ OOOOOOOO
-
-------
201
-IOOOOOOOOOOOO
>•••*»•••»*••
oooooooooooo
oooooooooooo
I^J IfJ lij t,J IjJ I^J tij LtJ l]l t^J l^J ly) ^1
ZJOOOOOOOOOOOO
_JOOOOOOOOOOOO
OOOOOOOOOOOO
I I I I I I I I I I I I
UJUJUJUJUJUJUJUJUJUJUJUJUJ
"
UJUJUJUJUlLiJUJIjJlLlltJLiJUJ
Z)ooooc3ooaooo
_JOOOOOOOOOOO
cr incrnr*- — i
cc
UJ
>
»M
a
u
2:
OOOOOOOOOOOO
I I I t I I I I I I I I
I
o
tf)
X Z
nj uj i
o >.
OL
Z
O
a:
UJ
u
? ">
oooooooooooo
«***•«*****«
j UJ 't7 UJ itJ LJ UJ UJ UJ ''1 UJ aJ UJ
OOOOOOOOOOOC3
u
o
in
UJ
ooooooooooo
I t t I I I I I I I I
J UJ UJ UJ UJ UJ iif UJ UJ UJ UJ l*J
r
o
<
cr
Q. »-»t-ia)of\j~Tvaa)o(M'*.ocx)-4
z ccxrvrjnooo-r^-tf-^-^i/i
ui
a: r
uJUJ
>_!
o
X
a
o >
ui •-»
trt CC
^*-*-^-^-^ — J(Mf\»f\irvj
LtJ lt) I.J L.J L.J dl \xJ t.,/ t^l t^j t^j ^ j^f ^^J
Z3OOOOOO^OC»C>OOO
^JOOOCSOOOOOO^OOO
oooooooooooooo
h) 1.1 til I.J l^t III t^J I.I t.,1 l^J ^J tij LlJ \^J lf;
Doooooooooooooo
.JOOOOOOOOOOOOOO
J UJ UJ UJ UJ It) UJ UJ *<} i\J W i.U UJ l
— . -- o o o «
Z
i :
O
2: o .
cc
UJ
-------
202
-«f\J
o o
I I
UJ UJ UJ
oooooooooooo
I I I I I I I I I 1 I I
j U* UJ t»J 'jj UJ JM UJ l»J 'vf *'J '.hi UJ
OOOOOOOOOOOO
I I I I I I I I I I I I
J 1^,1 U) yij ill iii U.I l\j UJ UJ 1O UJ lij
_
••*•••»•••*
^ coooooooooo
_
rvj nj rvj
o o o
I I I
UJ UJ UJ UJ
O r- rj r-
_j n -i CD
o f- *-• LO o ^ ao rvi *o o
tr i
UJuji
>_)
t-i >-• sO CO O
cc 3c r- r- co
OOOOOOOOOOOO
i i i i
oooooooooooo
I I I I I I I I I I I I
UJUJUJLLiUJUJUJUJUJUJ UJ UJ UJ
-'-
oooooooooooo
I I I I I I I 1 I I I I
Ul UJ UJ UJ UJ UJ UJ *vl UJ UJ UJ UJ UJ
<-
>
• * •
< O OO
o er in o r»
_j uj u in in *o
Ul
*-
<
a
2 2
uj < o -f in
oooooooooooooo
•» t t 1 t I I I I I 1 t I t
\f ttt III \±i 111 L(j iyl U* I^J "J 'iJ *^ '*> Vlf \fJ
oooooooooooooo
I I I I I I I 1 I I I I I I
JULJUJUJUJUJUJUJUJUJUJUJUJUJ
_
u,
u.
ss
o
d oooooooooooooo
O I 1 I I I I I I I 1 I I 1 1
CO UJUJUJUJUJUJUJUJUJUJUJUJUJUJUJ •^ U
*-.—tooj>jsoeiior\j,fr so co o (\j -* «o
ax « —• —• ^ ^ ry oj rv w
-=[ o
t z.
u
-------
203
f\jojf\jr,'r\jrur\jMf\j
OOOOOOOOO
f > I 1 i I I I t
UJ bJ LjJ LJ UJ Ul UJ UJ UJ
f\j T*~ t\j r*- r\jp—(\jr**<"O
oooooooooooo
I I I I I I I I I I I I
y*j ij,i iij '.jj UJ t'J *'J ul UJ >*f \tJ 'jj Ixl
13000000000000
_JOOOOOOOOOOOO
t
-• UJ
u. o nj 4) ~» in o>
0:3
oo
00
oo
0000
oooo
I >->-iC
a
u
a
z
tu
cr
UJ
o:
z
o
oooooooooooo
UJ UJ UJ UJ UJUJUJuJUJtUUJUJUJ
ooooooooooooo
JOOOOOOOOOOOO
oooooooooooo
ui
z
a.
a.
z
o
o
z
o
z
o
UJUJUJUJUJUJUJU'UJU
O
-JLJ
a:
o
u.
OOOOOOC3OOO
ujuJi/iin^-^r^rtococococrtcPo
aa:
u. o
Z ZQ
^o-jtr)«offco3o»o»^(\jc*)^irt uiui
T 2 ~* —• — ^ -^ —• ry ftj rsj ru ry rw i— >-t
o uu
U- U
U.UJ
UJ CL
O V}
(J
^-
UJ no
_
a>
>_i. ........
in
z
UJ
o
X
o
a
ooooooooooooo a.
»«..«•«...•««»« j;
UJUJuJLJuJUJuJUJ UJ UJ UJ 't.1 UJ UJ O
I2OOOOOOOOOOOOO U
_JO OOOOOOOOOOOO
<: Lfi L/I
o: z t« o nnnr
ZouiiOr-cooo — rvin
oz-^^-^«—••^«f\ifvj(\jru
ooooooooo
UJUJUJUJUJUJUJU1UUJ
cocoaococococococo
»^ M ^, r> m r- o^-^ninr-^^niin
o: x -•-* ^-^-.ry (\j oa
-------
204
oooooooooooo
OOOOOOOOOOOQ
LUUJUJUJUJUJUJUJLUUJUJ UJ UJ
ry nt nj
• » •
•000 CO
-
••••••••••«•
oooooooooooo
a:
uj
>
o o o
o o o
* * *
UJ UI UJ
CD CO CO
in in in
rvi rvj nj
I
UJUJ
DO*
oooooooooooo
1111111* + + * +
UJ UJ LU UJ UJ Lxl 111 t*J t>* !if W tfil LiJ
LUUJUJUJUJUJUJUJaJUJLiJUJ UJ
or
ujuJ
>_j
X
a.
a.
ooooe^ooooooo
+» + •»***** + #*
UJLJUJUJUJUJUUJaJUlUJUJUJ
-
oooooooooooo
I I I I I I I I I I 4 I
LU UJ UJ UJ LU UJ LU uU UJ UJ LU UJ UJ
-
oooooooooooo
I I I I I I t I I I I I
UJ UJ uJ UJ UJ UJ UJ UJ UJ UJ UJ uJ UI
-
O
CJ
LJ cr
u
2
O
0 o
o
o
o
Q
O
OOOOOOOOOOOOOO
LUUJUJUJLUUJUJUJUIIUUJUJUJUJUJ
1
z>
-J
ooooooooooooo >—
I I I I I t I I I I I I I •-*
UJoJUJlUuJUJUJlUuJUJlxJUJUJ Z
oooooooooooo
I I I I I I I t I I 1 t
UI LJLOLUUJUJUlUJbJUJuJUJUJ
or
LU LU
•-• r\j n -r
-------
205
J 'ill 'J UJ UJ l*J *iJ
oooooooooooo
UJUJUJUJUJuJUJUJUJUJUJ *M UJ
2:
o
l UJ UJ UJUJLUUJLJljJUJUJ *'' l
CJ
2
O
o
o
o
UJ
>
a: r
ujuj
>_;
z o IP *o r* CD ON o ^
UJ LU UJ LiJ uJ UJ UJ LU LtJ LJ
I300OOOOOOO
_JOOOOOOOOO
o
r o ^ rg c
-------
206
OOOOOOOOQOOO
UJ UJ UJ UJ It) VJ W *'J 't-1 \O 111 UJ
OOOOOOOOOOOO
i i I i i t i i i i t t
LJUJUJUJUJljJUJUJUJUJUJUJ UJ
or- — ina»r>r*-ry\oo-»co
f^
in
z
<
->
D
er
LES,
1. 1973 TH
•« z
0
^ a:
'.U UJ
JZ
UJ UJ
a. x
UJ »-
Q
a:
>-o
OH VELOC
ON FLOWS
r a
>- UJ
a
UJ <
2 Z ^
xznn-*^*^^^^-**^ xznn^^-^-^
OOOOOOOOOOOO OOOOOC
££3££S£2££££# 3£££££J:
Z o^-. ti
<
X
u
UJ U.
a: -'
<
tf)
< So^in^or-cooo — rjfn^-tf) 5 or-a><
o o u o
t-4 O
*~
u -J
UJ UJ
(/) OOOOOOOOOOOOO Z OOOOO«
tr til ill U iiJ tiJ ItJ t-iJ LiJ ^iJ LiJ LiJ til tiJUJ 'f. UJUJUJUJuJUJI
J O O O O O C3 OOOOOOOOO^OC>O
JUJUJUJUJUJLU LUUJhkJUJUJ UJ UJ UJ UJ UJ UJ UJ UJ
u
UJ
to
X
UJ
^- •"*
U 2
UJ O
>.
-J
UJ
DOOOOOOO ^ ooooooooooaoo
LJUJLhJUJUJUJUJUJ X UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ '.'J UJ
3OOOOOOO U OOOOOOOOOOOOOO
oSSSSSSS ^«SSSSSSSS3S5SS
u UJ o o —•*-»^*
^ •-« —• *-* —• CM ru ru
• -* —• *-* —»c\i (
z
< c
o'
-------
207
UJ UJ LJ txl UJ UJ UJ UJ (
oooooooooooo
I I I I I I I I I I # *
UJLJUJUJUJUJUJUJUJUJUJUJUI
Z> fM n *r o -^ ^o eo r-i o >£i -T ^f
_io-*r--a>-7^'O*Of--«r»c^
< O.TC-—«^o—4f
a; t
ujLiJi
>_j
UJ UJ UJ UJ UJ 1x1 ViJ LU '*' UJ UJ UJ
oooooooooooo
I I I I I I I I I I I I
UlUjLUUiUJUIUJUJUJUJUJbJUJ
_
< 03 c
>
o
z<
3:
0s (T1 ^ C7* O* CO GO 00 GO CO CO CO
oooooooooooo
UJ liJ <^f -'jj lii t*J
oooooooooooo
I I I I I I I I I I I I
UJUJuJUJuJUJUJ UJ UJ UJ Ui UJ UJ
r —« 33 in t\i
J J- U1 (M O
• ooctcofloaatO
a
v
—• «-i co o rvj
oc
> _l
o or z
--^ in a-<*> eo
UJ
X
3
2
O
o
UJ
ooooooo
o
p'
-------
208
oooooooo
UJ UJ LJ UJ UJ UJ UJ UJ UJ
ooooooooooo^o
oooooooooooo
I I I I I I
o:
uiUJi
>_!
*—• o i/i r- o
f*- m
O U. H
- "^r
- ou. o
a: o o o
• U) O Z
z a. « o
i o ->
~) I/) O
-i in i
o « T
li_ Z >-
•-• tn ty>
-/» n ~. "r
Z ui O *
O >- t/) •— O
H- o o a:
o u. u. ><
z o z ••>
o •-• o >
o cc o
03 < - >— I—
Z >- H- O
............
I.I JjJ I. I I.I fl.l t^ I |jj l^[ QJ
JOOOOOOOO
in
i i I I I I
o: >
> _i
cr
ujuj
>_!
z o r* oo o» o -^
••••••••••••
oooooooooooo
2
f t
x;
u
UJ UJ UJ UJ UJ UJ UJ UJ U
_JOOOOOOOO
»*.*••••
*OO^D^>vO4)>O4>
I I I I I I I I
uujisi^^>or»^-cDaoo'0'O*o
ac t^--4i
«f\j(yrvjrgoj(\jcvj
in
*
o
in
o
5 3
a '
ui
».*•••*••*••**
o
*
UIUJ
^1/10000000000000
>........,>..*«»
•Oooooooooooooo
oooooooo
•Doooooooo
_|OOOOOOOO
^ininmi/>inint/im
>
I I I I I
I I
z
< c
x ;
o
-------
209
LJ LJ UJ UJ
o o o o
o o o o
o o o o
vO O J- CO
to o» c?-^
O -O
I I
on mo
oo o o
* * » *
UJ UJ LU LJ
O O O O
o o o o
O o m o r»
o o o o o
+ * + * *
UJ tU UJ UI UI
o o o o o
o o o o o
IA in u*» LT> in
in o
nn -
-------
210
* * * * *
oooooooooooo
UJ
D
z
a
a.
< o o o o o o o oo o oo o
>«••••••••••• +
oooooooooooo Ul
• o
z
< o
o>
•
X >_j....j». ••••••
n
o
0> Ul
X
u «-•
•"> in
to*
2
™> O
•
O
O Ul
u.
............
ir ' nc
Ul
O > _i ............ ins:
O crxojrir')r}r>o*ji-»'*-»'»m O*
K
U
ay o z
o>-
ui u
K Z
Q •-'ID
U.T
Ul
» 3
* » _l
*o ........«.....
«« oooooooooooooo
« • a:
• • o
-------
211
i\i f\i ("l t^i fi o -
i i i t i l
UJUjUJUJWUJUJ
i I i I
JUJUJUj ***
i t i i
UJ LJ UJ UJ UJ t-
l i
MiJ UJ
o M >r ^o a> o
rv fy PJ t\i ry n
i i i i i l
UJ Ui UI UJ Ui UJ UJ
r> /- o O" o
— .rico— •r
a
uj
>_j
oc tn o> n t* *H in
uj uj in in ^ -ii r- r-
>_!*•*••*
cr K
UJ
0.0
o
u >-. o
X X o
*- uJ in
X n
tn k-
z i/>
o z a
>-• o
< 1/1 x
or >
>- « z
z O —
UJ
uu. a.
2 o ui
o i-
->
t- 2 »-
l i i l l l l I l l i l
UJ UJUJUJLiJUJUJUJUJuJ LL! UJ UJ
r> r-- ,0—t^^ojcocor-^r)-*
-^ no* «o
l i t
UJ UJ UJ
^ nj rt tn « «
o o o o o o
I I I I I I
LJ UJ UJ UJ UJ U W
D o i/> o o n N«
UJUJ 0^-«-«-.oj(V
oooooooooooo
UJLUUJlJJUJUJUJUlUJUJLUUJLJ
r>
^-
o>
UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ" UJ UJ
n
f-
&•
z
<
~
UJ UJ UJ UJ UI UJ UJ
-ff- ruoo
o» o o r
-.»-. CO o ru -
2
Q.
in
o
»^
<
cr
»~
2
UJ
o
UI
a
a.
o,
UIUIUJUJUJ'j-lUJUJUJUJUJliJLjJUJ'jJ
JLiJUJUJLJjJUJUJ UJ
UJ UJ UJ UJ UJ '
z
o
u
zo •^
-------
212
m/> r»» o ry ^
r> m n ~f •* -*
* i I i I I
LJ UJ UJ U UJ UJ
r> ~« o o co -T
-J O ~- 30 CD CO
o .* rv cr o •*
co -T rvj o» •* -*
itii i i i i i i I i
UfUJLJUJUJUJUJUJ UJ UJ UJ, UJ UJ
^ r«- 0* co -»• (j* .* o n n n CD co
_j o -y -y •-•o^n^^flDO
i i i i i i i i i i i t
UJ UJ Ui UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ
o -a- _!
tf> 4 F*> QD O O
u
2O O> o —f
t t i i t i i i i i i i
UiUIUJUJUJUJUJUJUJlUUiUUJ
t i i i i i i i i n I
UJUJUJLJUIUJUJUJUJUJUJLJUJ
o -T - ^f •» in
• —n in
u
zc
3:
tv nj f\j -*«-« o
a o o O O O
UJ IU UJ lU UJ UJ
(j. n r- ,* *^ nj
ao ru -» -i > 51
— -» nj -* r*- 3*
4-CM —m~(M
n
r-
o-
UJUJUJUJUJUlUlUJuJUJliJUJUl
oooooooooooo
JUJUJUJUJUJUIuJUJUJtjJUJUJ
r> ru — •-^c
r-.-«ina»nr>j
2 •-
O
OL U
o. z o in «r--^oco -i
z
UI
o
oooooooooooooo
UJ LJ UJ UJ UJ UJ 'Jj UJ UJ -±J UJ uJ UJ UJ UJ
^o^cor^tom^D
I/I
o
>- (E
> _l
a i
o
3Z*
-------
213
4OOOOOOOOOOOO
>............
ooooooooooo^
OOOOOOOOOOOvD
• •••••«••••
ooooooooooo
cr in o» r> r- -4 in o * eo fvi 4>
z
<
-5
ooooooooooo
-^ tn o» <^ ^ *^
o * a) fu 43 *^ in » n r- »-i
ct vj \a-^ in » n r~
— <\jn.»in«or-co
o
z
o
in
z
o
_
.«..........
o oooooooooooo
X
0.
a. ui
z >
o <
cr
»—
z
UJ
o
o
u
<
ac
z cr
ui
z —~ <
o cr x (
a
o
o
o
to
u
3
a. o
z zc
o
m
z
o
o
uiuiooo—»—«r
u
r c
D ;
o
^ z
-------
/
214
000
* • •
o o o
-------
215
UJUJUJUJUJUJUJUJ UJ UJ UJ UJ L
{\ir\i<\if\jf*>nr*-f ^ ^ in in
a
Lu
>_j
!
UJ
-J
0
cc
a.
!/>
UJ
1—
1
o
o
I—
<
n
r-
in
*
z
->
oc
f»)
r-
*-*
*
z
o
o
a in
a.
u
z •
o
or o
o >-o
u. 2: i>
•-U in
oa. •
z —
o in
i »
^~
O Z QC
a — u
o
O 01 X
z >-
o •-•
a
o u. a.
CO O U]
Z h-
cr in
O CD UI
Oil
O3 3 •-•
O Z t-
UJ LxJ UJ UJ UJ
j -T CT* f) in
•c ui tn ui *
> • • • •
« i/i *o o
> j » » • •
^t f* f* t> —• O
cc x r-r*- cx> O ~f CO
UJ UJ O -^ —* **
>_).».*
»«* *-4 n m f^ a^
cc xtntn inu>
u
2 o r- co o* o
oooooooooooo
I I I I I I I I I I I I
LJliJiiJUJLiJUJUJUJ '• f 'V thl UJ UJ
oooooooooooo
I I I I I I I I I I t I
J W UJ UJ UJ UJ U UJ UJ UJ Ixl t*J UJ
z
o
*-* IA 9«/*) 00 fVI N
o
a
a
o
CD
Z
OOOOOOOC7OOOO
I I I I I I I I I I
UJ UJ til UJ UJ UJ
o o
o o
CD CD
O O
tn
z
o
u
z
o
u
o
o
CD
z
o
oooooooooooooo
I I I I I I I I I I I t f I
txl UJ '*' UJ UJ UJ UJ UJ UJ UJ UJ t»J Lij liJ UJ
• — r> o
z
o
o
UJ UJ Ut UJ UJ
in a> r-
- o j-r-
cc ^- ^* tn »
ujujtn ^ ^>>x>
v-, _-, 03 O ry J-
cc x ry r> n n
O
z oin -a r»a3
UJ UJ UJ UJ UJ
3 n o in a*
j r*. r- o vn
•* r> n n n
UJ Ul O O O —•
>-!••**
»-* *•* o rv «t <>
tr x
u
^ o-
-------
216
UJUJUJU-JUJLJUJUJUj UJ UJ UJ UJ
D^oinp^xo-^.-*^ 4-^-T-*
joo)Ojoruft)r*oit»i)'OOf*-
«* — i\j in co -* * to rsj t-> m o> f>
UJ UJ UJ UJ UJ UJ ttf
O -o -T o in P- r\i
_i CD r» so "-D r- o
r*-r- co a> o> 0* 9« o
a in ^ nr»» -*\
oooooooo
UJUIUJUJUJUJUJIJJ
~*^-*~«*-«.-i_4OO9OQ
OOOOOOOOOOOO
1111111+ + * + +
UJUJUJUJUJUJUJUJUJUJUJUJUJ
oooooooooooo
I I * + »»» + «.+ **
UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ
o o o o o o
o o o o o o
UJ UJ UJ UJ UJ UJ UJ
_i or* OT "• o .»
< n o eo f*» in -4-
>•**•**
^ *o in in in in
ee «.
> -j
o jr co oo \o •-« IA a* m r- -<
QC *Q O -4* CO N *4J
UJUJO-*-*-4(M(M
:>-J
O t* ao cr- o •** nj
Z OJ (Miunr>(*i
oooooooo
oooooooo
UJUJUJUJUJUJUJUJ
ryojruoj(\)Mrgfyruru^4-*
oooooooooooo
I I I I I I I I I I I I
UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ
-jrnsoo^aj^-drsoao-^fnso
§
d
I
RA
oooooooooooo
I I I I I I I I I I I I
UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ
<-*m-*or-cs~«o<»-«e»*»
>
UJ UJ UJ UJ W UJ UJ
3J ~* o^* ^ OO
_J t\J CO r*» r* -4 r>
< f\J '-t —• O o ^
>*»•••»
00 CO CO CO CO Is"
or i
> _j
• —< i/> o n oo
5 -
-^.xfvfynjryryCM
OOOOOOOOQO
UJLtiUJUJuJUJUJUJUJUJ
)l~ Q
.'. ........ m
Q)C9GOCOCDCOCOOCOCD Z
o
0
I
CL
a
c/>
z
o
OU> * !- » 0 0 ~. N r>4 Vf> *
oooooooooooc^oo
UJUJUJuJUJUJUJUJUJUJUJUJbJ^'-J
z
0.
o.
SNOIIV
H-
UJ
O
z
o
u
o
o
X
o a
in
Z
o
oooooo oooooooo •<
UJlUUJUJUJUJUJUJbJUJUJUJ UJ UJ UJ ^
o
o
oooooo
oooooo
UJ UJ UJ UJ UJ UJ UJ
3 a- in o o o o*
_| -* ^* O O O« t^
rO iD 00 00 CO A
_-._~*~4_«rvj(\j(\jnj
^ _i . . .
^t •-! O (\J •* 1
a X
ujujooo^^-tojraPUDn^.
-._,...........
0:3: ^^--f — —•^aicvjrjrg
o
0°'
-» a) fvj « e>
.-.-. o t\i -r •*> a> o
CE r -•
u
D Z
-------
217
—• O O
•o -o so
UJ UJ UJ hJ V '•' UJ lLM*4 UJ llj 4jvJ UJ
_jruoi/ir*i-» cr* • o p-
UJ UJ UJUJUJUJUJUJUJUJUJ UJ UJ
UJUJUJUJLJUJUJUJUJ
Cc
ujuj
> _j
a uto*np» — ino-»eooj*oo
>_!..... .......
— »-*r~o>—.r)i/»r-o» — ot/*r-o
o o o o o o
IjJ UJ UJ UJ UJ UJ
>O — CO *f O» »O
j- o « o so ry
r>m m ^ m eo
in in *ji in in in
oooooooooooo
Illtlll*****
UJ *'_f UJ UJ UJ UJ UJ UJ '*' UJ UJ UJ UJ
UJ UJ UJ UJ UJ UJ Ixl UJ UJ UJ UJ UJ L»J
i 1.1 UJ UJ UJ UJ UJ UJ UJ
o * eo AI MO -*
f^ co
r> n
o o o o o o
o o o o o o
UJ UJ UJ UJ UJ UJ
r\j O sO -* r-- OJ
T\J o o
CO 3) ^
f\j ^ >^) co •-*
>r ^r ^ jr in
oooooooooooo
I I I I I I I I f I I I
i u^ UJ "' UJ UJ UJ tiJ UJ UJ UJ UJ UJ
oooooooooooo
I I I I I I I I I I I I
UJ UJ UJ UJ UJ UJ LJ UJ UJ UJ UJ UJ UJ
z
o
in
z
o
ooocsoooo
UJ UJ UJ UJ UJ UJ UJ UJ UJ
raor-nnr-iM'tfin
_j —. f- n co r\j ococo
3>f>-
>
cc r
uiuJi
:>_j
r--^ in o n co r\* 10
—• ru n ^ u> s
r\i TV rv ry CM
u z
z a.
o a.
o —
o o
o >i
— IMrl-»l/*>o
njr\j(\i(\ic«i>jiM
to co co ^ CD co co CD
o
o
CO
o
§
z
UJ
u
z
o
o
o
-------
218
J UJ Ui UJ V*l LJ LA) UJ UJ, UJ UJ UJ
UJ UJ UJ LU UJ UJ LU UJ UJ UJ \iJ UJ UJ
o o o o
• * • •
o <> <-o ^>
UIUIUJUJLJUJUJUIUJUJUJ
Ur--«cor>r)3?r-c^or^
.JCDflLnh-O^yOf-sO'*
«*n>rnnar\a.-* — o o o
oooooooooooo
III I III*****
LJUIUJUJUJUJUJUJLUUJUJUJUJ
UJbJUJUJUJUJUIUJUIUJuJUJUJ
UJUJUJLJUJUJUJUJUJUJ
g
• M
-------
219
UJ UJ
-* nj
n o
o o
LUUJUJUJUjUJLJUtLJUJLJUJUJ
Z)OCT'r*lO'"CT'LPCP —«f\j-*'OLn
.j ut AJ r*- -j-i/ioa;—*f»-^orv
UJUlUjliJUJUJUJ UJ UJ UJ Lj UJ
jcro^3-tn<-r-tf .o o- o ec n
OOOOOOOOOOOQ
oooooooooQoo
UJ LU UJ UJ UJ" UJ UJ UJ UJ UJ UJ UJ UJ
r?^>ijicr'Oinj? ;T- .* o r— ^ J m o
r- o
0*0
cr i
uJUJL
>_!
'—»r>u^^•o
ooooooooeooo
iiilili*****
UJ UJ '*J t'-j UJ ltl ^i1 W UJ tfcf UJ ifJ 'A<
UJbJUJUIUJUJbJUJUJUJUJUJUJ
j o — —«^
a:
ujuj
>_!
t-tt-t
a I
—• nj o ^t in o r- OD
00
<» *
UJUJ
z
o
oooooooooooo
i i i i I i i i I i i I
UJ UJ UJ UJ UJ LU UJ UJ UJ UJ UJ UJ lil
OOOOOOOOOOOO
Illllllllllt
UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ -'.'
oooooooooooo
oooooooooooo
UfUJUJUJUJLJUJUJUJUJUIUJUJ
_
»-. ^H OD O ftj J- s£) CD O IV -»• in •*
J UJ UJ
ru r*
33 LA
rvj nj
o
o
CO
o
. . . . . z
*_«»*.* ,^ O
O
O
(\ir\jrvjAirvj (vfuruojnj^'-^ — -^
oooooooooooooo
i i i i i t i i i i i i i t
UJUJU/UJLJUJUJUJUJUJtUUJUJUJUJ
to
i
4
o:
*-
z
UJ
u
z
o
o
oooooooooooo
oooooooooooo
UJUJUJUJUJUJUJ'^ILJJUJUJUJUJ
GOCQcOGOCDCOCOcQaOiDcDcO
j ooo—•-^(
o
D-;
-------
220
-«f\l
O -D
•M ^J
-------
221
UJUJUJUJUJ'jJUJUJUJUJLLJUJUJ
tDiOOJ^-j^crruLnfloonsO
_jr*r>o^>njcom—« f» *r o »o
oooooooooooo
I i i i i i i i i i i i
J MJ \ji t' i >'J \jf UJ MJ 'jJ ItJ '"J '"J 'V
* »
* *
* *
0 *
* *
*
F—
*-rf
O
»
Z
<
-O
cr
I.iBLESt
JAN* 6. 1973 T
-J
o
z 3:
jj jj
ITY DEPE.N
FOR THE
OR VELOC
ON FLOWS
x a
1— UJ
Q. (/)
UJ <
O CD
^ * w
* » 9
* » *
V * *
-* * »
»
#
9
*
0
^
C
(j
i
I
C
L
C
C
*
(
L
t
:
t
»
»
»
A
*
cr or-^mo^r-rvjoo^to
Z
U
OOOOOOOOOOOO
_jr\icono»iA«-«r— ru**)^ o in
Z
U
3 OOOOOOOOOOOO
:
c
c
.>
uJ L
X
<
(
J Z
? O I
•*
^
ij t
/) OOOOOOOOOOOOO
C **' lii UJ UJ ]iJ UJ 'ij UJ ttf 'i^J t^J UJ liJ UJ
ujujoo-^-*^^r\jojn nn^ -rui
^j-*oinr-o^nair-.o^-jr>iO
Z
o--f\jn
x z — • — • — • -*
u
ct f>r-~inor>^r\j,oo
z
u
OOOOOOOOOOOO
UJUJUJLJUJUJUJUJ UJ UJ UJ UJ UJ
<— •OOOOODUlfUCT'^O'?— »
Z
u
OOOOOOOOOOOO
OOC3OOOOOOOOOO
_IOOOOOOOOOOOO
t
L
]
a: tna»nf«».^*mo^fco(Mvoo i-
iuuju*>ino>OF»r»cQa)coooo L
k. i
" »
" fr
/> »
: z '
J 0 I
n ;
j
iJ L
Z OOOOOOOOOOOOO ]
E UJUJUJUJUJUJLUUJUJUJUJUJUJUJ :
J ^OOOOOOOOOOOOO C
_JOOOOOOOOOOC>00
wujao--.-.wMnnnj-^in
z
X -C --» -^ •— • •— •
a n»-^irto-nr^rtj*o*«
2
U
OOOOOOOOOOOO
UJ UJ UJ UJ UJUJUJUJUJUJUJU UJ
o: »cDtvioo^o>nr--iflO>
2
u
OOOOOOOOOOOO
UJ UJ UJ UJ UJ UJ UJ 'L> UJ '-il '*J '^ \*il
^OOOOOOOOOOOO
_J OOOOOOOOOOOO
3
u
n
Sfc
J
-«
•^
J Z
? ^O^tA>£^CD^O -^ N n -f Ifi
u u
>
J
u
? OOOOOOOOOOOOO
C UJUJUJUJLLtUJUJUJuJUJUJUJlUUJ
J 73OOOOOOOOOOOOO
Sujoo — i2Sj^nnr»5?in
z
I Z. ~,~>~. _
u
-------
222
OOOOOOOOOOOO
UlUJUJUJUJLUUJUJUJUJUJLLlLU
OOOOOOOOOOOO
I I I I I 1 I I I I I I
UJUJUIUJUJUIUJUJLUUJUIUJU1
DC
UJ
>_!
J UJ UJ Ixl UJ VU 111 UJ W UJ Id 'uJ UJ
^'mpjcoi/i«^tx)-*»^f*"r*>in
cor?oo o in nj
i i i i i i i i i I i I
UJLtJUJUJUJUJUJLkJlUUILJUJUJ
a: ^ o * at ru »f> —i
LJUJO — -^ —•fu
zor-cooo—• rvj r> -* 1/1 -o r* eo
OOOOOOOOOOOO
J bj uJ 'if Iv1 t/J UJ It-l VI l^ U^ t*i UJ
oooooooooooo
I I I I I I I I I I I I
UJUJLUUJUJUJLUUJU4LJUJ W W
UJ
K-
<
a
o •-* —• e
oooooooooooooo
15
Q.
•£
O
u
oooooooooooooo
1 t I I I I I t 1 I I I I I
UJUIUlUJuJUJtjJUJLUUJliJUJUJ UJ UI
_
o
* o —• ru n -t
-)
-------
•223
«••***
•tfoooooooooooo
>*•••••*••••*
ooooooooooo•••*••»..*»•
oooooooooooo
OOOOOOOO
UJ LJ LU UJ UJ UJ UJ UJ UJ
poooooooo
_jooaooooo
> *••
CO CO ® CO CO CO CO CO
I * <( I I I I
r>
0
•
Z
<
->
n
r»
o
x.
u.
j )Kiitftf0b<)littititUtr»i»ttutt0
»•»*• TLUW cuNOino/j
1 D •>
* *
O *
IN THIS PERIOD - 5
« 8500,00 CFS
^S = 0,0 CFS
VSTKEAM JUNCTION * 8500.00 CFS
f) O J
>- tn •-• o
< i in o
Q o a:
_IUJ K-
u, u, > <
o z -•
a: o
UJ _! _J _J
3) < < U,
r> o o :D
Z t* i- O
» * * *
* * * *
° -t °
O
*
UJ UJ UJ
3 O O
J 0 _J
0
T
UJ
a
'OPfcco0*o*"rur>^ift*l0
i
<
*
0
3
*i o ooooooooooo
OCXftJf»'*)nr)n^^-^^i^i/>
t
<
/>
J U 1
J "> t/l ~5
2 I
O
E in i
:> *
? UJ r-f - UJUJ
-« O O 3 o
J _|0
ce
>-i
CC X
z
< o
xz
o
UJ
D
>
ce
uJLJ
>_i
« ff x
&.
_>
/> Z
« < o
o xr
J U
«_
_j
jj
=
z
«
E UJ
-> Z)
_J
>
z
X Z
u
o o o o o
r» m*n
o o o
UJ UJ LJ UJ UJ W U til
oooooooo
oooooooo
CD eo co a> a>
l i i l i
r\j o- so co o
Oi1 It! ''f Uf It1
O O O O O
l/l If) l/l U"» tft
co a? as
III
M Nrt
ft! •* O
« ,o^>
r»n r>
r> nr»
UJ UJ UJ
o oo
u> tn in
COCO9C04DCOCOCO
1 1 1 1 1 1 1 1
ino<*»h»-*ipo*
nj (V n n ri
o o o o o
uJ U UJ UJ UJ
o o o o o
O O O O O
U"l IO t/1 U"> U"!
1 1 1 1 1
M O -*
"H f\lf\l
o o o
Ul UJ UJ
o o o
o o o
1 1 1
r\j r^ ••*
-------
224
UJ UJ UJ UJ
O O O O
o o o o
O O O O
or- eoo*
•*-* -*• *
O O O O
O) CO O> CO
III!
on nn
O O O O
* * * »
UJUI Ul Ul
O O O O
O O O O
tfun LT> IP
• • * •
O3 O CO 9
I I I I
— jj jj jj UJ
O O O O O
O O O O O
CO tO CD GO C
I I I I
* " • » •
r- ch ^-« n in
-4-* rv nj txj
a- o — r\i 1-1
-------
225
4 * * * 0 *
oooooooooooo
« * a * « »
1
j
I
*
>
* » *
o
r-
<*
«•<
o
•
Z
<
->
!3
tr
h-
n
t^
0*
-o
*
<
->
y
_J
a: rp-—«u'ior>»cofvj'Oo-^coM
uJUJtf»'O'O«cri*r»a)(»>o»Oo
«^(Eonj4-^cDO(\j^vOeo —
u
zou>iO^o
-7
UI
J
-------
226
UJ UJ UJ UJ UJ
I I I I I I I
J UJ UJ UJ UJ UJ UJ UJ
*
t I i i i i i I I I I i
IU UJ UJ LU UJ Ixl UJ UJ UJ UJ UJ UJ UJ
GO o» *•• r\j .9- ^>
•-» —• AJ PJ IM ru
i I i t I I
UJ UJ UJ UJ UJ UJ UJ
i> -r m 03 o »o r»
_j o* o r- ^ n *»
< o o r\j o o ^
>•••••»
o* oj m ** txj n
o:
ujbJLJ
>._)
U
ZOO o-»f_ . _
z
<
T
rvjr»-j-in'Or*O'oojotn»o
OOOOOOO-«-4"4-*-*
i l I 1 i l l l I I I I
UJ '- * UJ UJ uj UJ UJ UJ UJ UJ UJ UJ UJ
^tirtr~^tr\iru4-~>t-coa>!D<£t
wr>^in^or^o^ow«*)m>o
ooooooo — — — «*-*
I I l l l l I l t I I t
UJUJUJUJUJUJUJUJUJUJUJUJUJ
2>-£Cfcooj.Tf*-rvj-*»0*-trBit-«
t\i n -f if} o CD
o o o o o o
I I I I I I
ll I Kt li t I. I 1.1 l]l 1.^
o o ••••••
* nni -• -tr-
o -• — • -*n
UJ UJ O-.-.-. (\J M
>_!•.....
N^^trjinp^o^^o
K z in uiinm >o«
zo i^eoo o -.ru
3 z i\i oj nj r» n n
CC N
U!
O. Q
O
UJ *— O
x a: o
I- UJ Jl
a. .
cr -^
o to
OOOOOOOOOCJOO
UJLJLJUJUJUJUJUJUJUJUJLJUJ
r)i/i^eoa»-too»oi/>voo •*
ItJ 111 111 III tit I.I III
_i ^o m n o -^ :/»
«« « otn — m co
OUU
.
t/i f—
Z V)
o z a
< IT) X
a >-
h- *t 2
20 —
i-*i-«cooru^r«otcor\j-4>
> .J
z •-.•-.<
o a: z r
Z
a
01 z: x
O Z3 *-•
t- 2 »-
z
o
oooooooooooooo <
..»»».,.».»».. a;
UJuJUJUJuJUJljJUJtiJUJtjJLiJUJUJUJ H-
z?OLn^«r\jr^concoa»-t^pcr'co z
oooooooooooooo
ill l.t 1.1 i_._i i.i t.t i.i i,_i t^ I ;tl t.i I.I ill 1.1 I.I
U
Z
o
o
>OOOO-*C\J.f
• (7- co r- >o in -» r»
Z
LJ
U
Z
o
o
1.1 i.i i.i Hi i^i i.i t.i
Z3 O -• If) CO (7* CO
_j o r-« ru r> -» LT»
< in ^ n oj -* o
u>
o
tn
a
H- o:
o
z O — iv n .
D Z
_
— —OCVI J- « COO
(EX —
O
7 O i
3 Z
-------
227
eo o rg o m co
r\J O n to rn r-t
I I I I I I
tiJ UJ UJ UJ UJ UJ
c\j n —« o o (?*
UJ UJ UJ UJUJUJWUJbJUJUJ UJ iU
CO CD CO O O O
' o ru n in -o
i i i i l i
UJ UJ UJ UJ bJ UJ
o* ^ o r» ^ r7
o so cr- in >*• nj
co co 17* o o ru
n -. r-- n ^ n
i i i t i i i i i i i i
UJtjJUJLiJUJUJUJUJLiJUJ UJ UJ UJ
I I I I I I I I I I I I
UJ UJ UJ UJ UJ UJ UJ UJ bj UJ uJ LU UJ
|\J t\J — -4 O ^
O O O O O O
JJ LJ UJ UJ UJ UJ
O 2? O <^ N- «O
S — 30 -• O X
35 J^ O •£> J1 >»
oooooooooooo
• «^«<*««»*«*l
UJ UJ UJ t^J UJ UJ IAJ I|J IjJ tiJ f»|t lif |^J
--
UJ itJ UJ UJ UJ W UJ UJ UJ UJ UJ UJ UV
r ~~<
O CE I f
>_l
Z MI-
o
X
a.
> -* in o a.
j (\i oj na v
t/)
Z
O
) o o **> rt n ^»
> o o o o o -rf
.****» Q£
5
• "n u
oooooooooo
UJLiJUJUJLUUJUJUJUJ UJ
I
a.
a
2
UJ
O
2
o
l_l
oooooooooooooo
UJUJUJUJUJUJUJUJUJUJUJtjJtiJUIlJ
i
_
-------
228
-
*•••» • ••*.*•
ooooooooooo^o
•••••*•••»•»
_
4XOOOOOOOOOO
>•*••»*••••
tr t
UJUJ L
> _j
i-.»-tr»-o — ninr- a^ -^ run r»
n
r-
o
o
~4
•
z
<
->
o
a:
I
^
o
i-
a-
-o
«
z
4
->
a:
u.
t_>
z
o
u
*-
3.
Z
O
#•#
ONV OOON «oo(o «•«
«»»
• «#•*•
j t -i j > ^
a:zr-r-a>cocoa>ooo»o>o>a>o
»••
u
zooo — Mrl-»i/io^-eoo'0
3Zrl****-**-»***m
->
o
U U
3 0
_l 0
OOOOO O O O O O O INI
a: oo.3>cor\j-~«
ujujo^^^t\ir\i'*inn'*^u>
«-»»-«niA^f»o>-^r»[/>
a:zi/>iAini/>«0'OsO'Oor-f-F~
u
zor~co»o-^<\jr».»ui«i-.co
z> z fj ry nj n o n r» n n r> r» n
T
Z Z
a. a.
a. u a.
— o —
_i
Ifl ~
< «
tr a:
i- t-
UJ 'jJUJ'Jl*O^O«O^f^cOCOCT*o*OO UI
Z *-*>-icDOfM-?vOCOO<\l-*>O{O>-4 Z
o a: I ru m o ri n n .» ^ -» ^ ^ m o
U 0
»— h-
3 O
a. u OL
z zo in «f-to o- owru n-*in-o z
^ O z -« —«—«-< -^ nj fu (\j cu fy f\i ry >-»
->
0 0
0 0
31 m
u z
UJ
3
*
* UJiuooo-«-»fM(\jrYr>nNf«*'»m
tt i-^^orM-^^OCDON^t^OCDOnj^O-
» u
• •)
o: I
u
zo
32
->
UI
O
_1
<
>
cr
Ul U
IE Z
0
zo
3Z
->
UI
3
_l
<
Ul UI
Ul
3
_i
*t
>
a
UJ Ul
a: z
o
Z3 Z
~i
f^ T** CD CO CD flO CO O* ^ ^ O^ O
o>o— •fMr*).tf-u'»>o'**coo»o
0
^
UJI
O'
o
ooooooooooonj
NOo^-cof\i>t/i««<r-i>-
r*-cooo-^rvjr»^i/>sor^co
c\ifuftjrjr»nr>r>r)nmr>
1
a
oooooooooooo in
oooooooooooo o
H-
<
ce
»-
i/>sD'«%0f'*r-coooa*OE7>o u
cooojj-'OtDoru^'Oeo^^ z
njoomnri-T^^-^-Tin o
U
H-
O
a
in*op*.cflOo— •run-*mnr**-«mo*r»
ooo-*r-«Wfy(vinr^>^^- ^-^n
O<\l.*-<1£>COO(M-S-*0CDO<\lwf »O
^-••-t^*— «^-«Ojr\;"VJf\J
a z
u
zo
^z
Ul
D
_l
<
>
o;
U1UI
a z
u
zo
3Z
T
Ul
3
-1
<
UIUI
IT I
U
z o
=>-z
-)
Ul
o
_l
<
>
a
UJUI
C£ I
O
3 2
T
r**i*-cococococoo*O'9O
oo~*r\jn-?isi>a^coc>
D-^^^<^>^^^^^^
O^OOOOOO^OO
vDo^dn\j>o—in»rif^
Or^-^r^rumnnri.*.^
ntf\r*a--^riu%r»o-«r1i
t/)inini/i«>Oio^Ar*>^
r^coo^o^njn^moi^
wrunirinnnnnnr)
i/>o>oocoonj^ >oco
wonnnn^-r-^'f^
ui\or^cot>o-^r\inonj^vCxo
^4 ^* _« ^f ^ (\|
-------
229
e
o
e> o o
• • •
000
-------
230
LULUUJUJUJUJU1UJUJUJUJIUUJ
a* coo^
0000
o o o o
* * * *
LU UJ UJ LU tU
13 ,0 — -«-•
_J O (\| ^ in
< ru c\j -« o
tt ift o* tn r-
LU UJ in in *C «D
*•«*-• f* O" -^ «
a xr»r»eo«
->
cr
oooooooooooo
lltttll*****
UJ UJ UJ UJ LJ UJ UJ UJ UJ UJ Ixl UJ LU
UJUJUUJUIUJUJUIUJUJLUUJUI
LJ UJ UJ UJ UJ
^ in ^ o 1/1
jf- eo fur*.
fu r> n 4- tn r
" M CM (M OJ t
I
•-•>-» n t/) r* o
a:
cr in
LJ
a
U
zc
3s
u
Z 01s* eo o o
15 Z *M fV W f*>
O
ao
o a. •
z «-
O t/1
o •-*
oooooooooooo
t i t i i 1 t i i i t i
Ui UJ UJ UJ UI UJ UJ LJ Ui
z
o
oooooooooooo
I I I I I I I I I I I I
UJUJUJUJUJUJUJUiUJUiUJUJUJ
jo o •*>-<
ui
o z a
o to x
z >-
< < z
z
o
cr r-»-tu>Oi|ri(
>O CO C> «\J ^ sO CD •-«
o u. a.
CD O UJ
—
o <
O UI
o o
m z
z o
u
o o
o o
CD CO
z
o
i
o e
I
UJ L
in u
CC C
r*i r
<
32cSS22S2o2oo 5
111111111*111 or
OLUUJUJUJljJLUUJ UJ UJ UJ LU UJ h-
nif!^*'" *OCT*cD(\jonooro uj
r-^^(O(\jr^nor»^ojoo o
o>j-c--Jinir>-or-.r-cocr>-'-» §
U
o
CO
oooooooooooooo
1 1 1 1 t 1 1 1 1 1 1 1 1 1
LUUJUJUJUJUJI^JUJUJUJUJUJLUUJUJ
^joi^ffl Ooi^^o^conjO"-* r^ *o
•«j— «ru^rr«-r\j.oc\jcoLnf*i— too —
cr j-oDnjso^-Jonr- — incT'tn
t-
<
cr
h-
z
UJ
U
o
o
o
o
o o o o
o o o o
* * * *
LU UJ UJ W UJ
O CO -T *O l/l
<•$••*-*•»
CO CO CD CO
cr -t co cu
>_!
»«t*-i
ccx
tu ujo oo-«
o
ZO — f
3 Z
-------
231
UJ UJ UJ LJ LJ UJ
oo-inr- crr-
-nococo—ir^
UJUJUJIJUJUJUJUJUJUJUJUJUJ
UJ UJ U) UJ UJ LL) UJ
3 -sr co o m ("i ~4
»o 1/1 IT* in in
in ^ **i ^- •-• i
OOOOOOOOOOOO
1111111** + * +
UJUJLiJUJUJUJUJUJUjUJUJUJ bJ
UJUJUJUJUJUJUJljJUJUJUJUJUJ
o o o o o o
o o o o o o
IfJ UJ ItJ *'i 'if '*! ^
o m co o ry r- «o
_j r* to nj o tn w
•**«•*
in in i/t in in in
CC N
> _J
cr •£) o .» 00 01 j>
>_*•••*•<»
«-•»-«n in tN- o» •-• f
r>f*ir*j(*>r)nr*>ri
Dzwrypjnnnmmmnfnn
ozfyfywonnmnnnrio
zor-cooo — ftj
Dzryryfynno
-3
LJUJLUUJUJUJLUUJ
"J
z
o
r)(\jpjftjf\iru(\iojfMrv)*-«^
OOOOOOOOOOOO
i 1 i i i i i i I i I i
UJLUUJLULUUJUJUJijJ LU LU UJ UJ
OOOOOOOOOOOO
I I 1 I I I I 1 I I I I
LUUJLUi-UUJUJLUUJUJUJUJUJUJ
jnnsD(\i-3--*LnnMsor-rvj
>**•«•*•**•»»
^^^^^^rvjf\jnr}4i'Di*-
LJ UJ UJ UJ UJ LU U) *
< rv nj •- *^ o o
z
o
cr i*- •
uj uj in .
> -J •
-^ru(\injf\jf\j(\ir\j
ONCCN
O
CD
z
T
CL o
— 5z—-^^-«^ UJ LJ LU UJ bJ
^-£S3S
0 O
LU UJ
SIS
•* -»
0000
LU UJUJUJ
SSS3
inin ^ %o
0 O O
UJ UJ UJ
sss
r- i^. tc
v~
<
*-
LU
o
o
LU LU
r*
O O 0 0
LU LU LU LU
S^3£
st •* ^f <»
o
LU
S
in
0 0 O 0 O
lil til Li) UJ tiJ
sstss
in >o vo r- to
0 O C5
Ul UJ UJ
sss
03 0- — •
1—
•<
£
LU
O
O 0 0 0 0 O
C3 O O O O O
UJ LU UJ UJ Ul UJ UJ
_J O O O CO %O LA
<*: m in -3- -j •* -r
00 CO _>
a I '
> _j
a i
^^r-t^^cvjTvjfxjnj
o
a
cr
> J
cr T
o
3 2
-------
232
UJ UJ IU UJ UJ UJ
in in m 1/1 in in
oooooooooooo
OOOOOOOOOOOO
UJbJUjUJUJUJUJUJUJUJUJUJUl
3 in n *i> -* >o — • m r- o .3- co r-
_j r- co -^ -»«njOi-«inoj — n
UJUJUJUJUJUJUJUJlUViJljJUiUJ
^ja*f-»* -T-^—• ri c> aj —**ory
_j,jr--,jf\j*-'-'—«^<\j -j- in r-
<^-^ocT'r\Juico—* -4- r* o n \o
UJVOUJUJUJUJUJ.U1UJ
a
uuj
> _j
ID sO F— CO O O
UJ (jJ UJ UJ UJ UJ
O —* UT O" m r-
O 3 'M rv D 00
o o —• rvj -*i in
in in in i/i in in
ooooooooooo
11111(1* + **
LJ UJ UJ LiJ LJUJUJUJUJUJUJIU
**'
UJ LiJ Ixl LU UJ UJ LJ UJ
r\j r» m >r in
j UJ U4 UJ
4 ^ O
a: r- •
uj ui 10 »
> _i •
_!
— » nj o -*• in o
nj oj rj fy ry t\i
O O O O O O O
0 0 C 0 0 0 O
_^_ _J UJ UJ UJ UJ
• — —• 3* r- in o o
•3" --T f" O r*> f*l f*l
CD OD CO 00 CO CO CO
j- CT* n »*- —« m o*
ru ru r> n ^t ^ ^
f\J -*• \C CO O f\J -J1
f- co t
u
2
O
U
0
o
o
^
o
0
2
O
o
CO
0
X
O.
Q_
tn
2
C
•"•
41
j_
2
UJ
0
o
o
o
0
u
X
o a.
3Z'-«~~'-"-fMfyruftJajruw —
t/i
2
O
onnnmnrtonrinnmri H-
o^ooo^ooooooo^ •<
Illlllllllllll CC
UJUJU1UJUJUJUJUJUJUJUJUJU1UJUJ f-
— j o in sO'^f\j*oinos
o
o
CO
Cc ^oor\j%oo-jioi^fc---^*'r''n 2
UJUJOOo-«-^rvjf\jf\]m'-i-j ^ -jm
o
u
02*^-^— *— •^'*-i/iCT^oLPm'**o*ocoo^
so — ino^)(\jcoLnm
'-inn^^-j-inini>c«x>ri*r^co(71'
oc -*co(M*oc3-3-c'ii'inr— *-*ino»o
ujujooo<~«-^t\j(yr\jir*ir*i^ ^coa'o^tM
ozr-*-^-*—*-r-ND.*(\j
o ^
O COCQCOCOCOCQCOCO
' 'TCO^WDO^'O^
jujooo^*—«fxj ry rg
H-i>-4OCU^%OCOO(\t^
-------
233
O O O Q
O O O O
• * * *
UJUJ UJ UJ
l/> r~ •-• r>
co n o r-
UJUJLiJUJUJUJLULUUJUJUJUJUJ
Onj—iruruor-nor^-j-ajr-
_j -« <\j co r- CT-'"'i--r\iLnt\j.-*n>
J UJ UJ LU UJ LU LiJ V-J U1 *AJ ^>' Iv) UJ
UJUJLUUJUJUJUJUJUJUJUJ
ac in a* n f» -^ in o >»• co w o o
o: in o- n r- ~« i
>_,.....
r- co 0» o
-a-^ -» in
3zn*»vr*-»-»»*-T-tin
o—- ui
oooooooooooo
UIUJUfUJLULiJUJUJUJUJUJUJUJ
UJUJUJUJUJUJLUUJLUUJUJUJUJ
UJUJUJUJUJUJUJUJUJUJUJ
•-««-• n in r* a* — ~*r)in
a: z in in in in *
nmryf\jf\jAJftjr\ic\j-«-«-*
oooooooooooo
I i i i i i I i i I I i
UJUJUJUJUJUJU/UJUJUJUJUJUJ
oooooooooooo
I I I I I I I I I I I I
t U UJ UJ UJ '' ' UJ '• ' t-' I' I li r li.l ul
, J3 _
> • •
->
z
o
UJUJUJUJWUiUJUJLJUJUJ
>_J
arXfyDnrinf^-^^-T^tn
ujuju>vOsO^>r^r«-a)cx}^oa>o
>_!.......'.....
orxAJonnnrisr^r-r^r^c/i
i tij ijj 1.1 gj
> r\j aj f\j n
i vO r-i ^« co
Z
UJ —
O 3T
z a
o a.
o —
in
•z.
o o
o «
>-
o <
z a
z
O UJ
o o
IE Z
O o o O <
I I I I
J Ul UJ UJ U] I
a.
<
a
a:
> _j
aracrurinnnm-*--*-'*-*
f\jnj(\jrj(\jojrvj'\J'\j'\jojf\jr\jf\j
ooooooooc-ocrooo
I I I I I I I I I I ! 1 I J
UJ uj u; ul tiJ I*' j- .u >•- — •. .. <• i ijj yi
O c> nj ^ A ~~ c. .• _"- "* «c ^- r« iO o*
i "^ •—""—-'' j" ,^ 4.1 ^* r\i f~ o* o fO
I
£L
a.
UJ UJ UJ UJ UJ UJ UJ UJ UJ (Aj UJ
u-^'-'Oostoomr-i-^o
Q
o
m
O
o
O
o
> _j .. .
•-• «-i o r\j.
CE r
a:
> _j
a: x
oz
T
O
Z C
z>;
-------
234
UJ LJ UJ UJ UJ LU UJ ' •' ''' ''' t'.M'J 'i *
rDcorncaj-r*—^m—'co-jajr*-
_j n -j o co CT4 -? —• f\J in ru •-« o
UJUJUJUJUJUJUJUJUJ UJ LJ UJ UJ
Z)sTLnpjcru)or)
_j<\ij-o%o>tnAj
< in r-- oojino)—»
UJ UJ UJ UJ UJ UJ UJ1 UJ UJ UJ UJ UJ UJ
Z3r>a-innor-r\Jinno.-tn
_j ** %o •-* *o n -* ru .3- CD n o N.
oooooooooooo
II I II I !***»*
UJ UJ UJ UJ UJ UJ UJ UJ UJ '*--T<*i^r»i/1>-«ar>o*ryinco
_j -T
UJ UJ UJ UJ LJUJUJUJUJUJUJUJUJ
uj uj o -^ -^ — f
-
OOOOOOOOOOOO
i t i i i i i i i ) i i
UIUIUJUIUJUJUJUJUJUJUJUJU!
oooooooooooo
1 I I 1 I I 1 I I I I I
UJUJUJUJUJUJUJUJUJUJU *\1 LU
cr r*. ~-me
uj uj in %o •& -.
>_!•••
cr r- --« L
ONCEN
X
Q.
CL
in
z
o o o o
0 0 O 0
+ * * +
1 1 1 1 . 1 1 1 1 {_ij
•^ O- H CD
J |\1
O O O O O
1 1 1 1 1
jj UJ UJ UJ UJ
^ '^ O CO £O
-103 J" OJ 0
in in >o h- »
cr
> _i
cr z
jujooo-^—4(\j(\j{\jnr
-^"•-•^•"furarufv
** •-• o ru ^ *o co <
tr i
) CO O M -* A
* ** ru r\j cva (fu
u
z
o
u
o
c
UJUJUJUJUJUJUJUJUJUJ UJ UJ UJ
,jfVj—•^to(Dr-unt-)^*or*^
>............
o
:D z
-------
235
on
-T in
-------
236
oooooooooooo
I t I I I I I I I I I I
UJUllUUJUJUJUJUJljUUJUJUlUJ
:3U'C3r~oocauif"')r*ir>-f—r-
_J CD o <~> nj —. o —•« <"*> O o »O <$•
000*0
f>
m
in
HU JAN.
r>
o
ITY OEPENOtNT VARIABLES
FOR THE PERIOD JAI* . 11
» DEPTH OR VELOC
« BASED ON FLOWS
u o
r-r^r-*-*-*-* xzmn^-^^,^^-^^-^^^
u
OOOOOOOOOOOO OOOOOOOOOOOO OOOOOOOOOOOO
UJUJUJUJUJUJUJUJUJUJUJUJUJ UJUJUJUJLJUJUJUJUJUJUJUJ UJ- UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ l*t
or OOCDOOOOO OOOOOC
^ UJLJUJUJUJUJUJLiJUJUJUJUJUJ UJ UJ UJ UJ UJ UJ Id
2
<
X
t_>
UJ U.
CC *•"
<
< Io4-in«f-cotj.o-.^r>-a-in B 5ooo
-ixjn-^ino^- 130000000000000
O _jCOLOnjt7>^Or*>Or*l-^or*'-J''-« IC>c>OOOOOOOOOOO _JOOOO O OOOOOOOO
-------
237
OQOOOOOOOOOO
I 1 t I I I i I I i * *
UJ LU UJ UJ U) ItJ *tJ '>J t»J l\l tjj to' MJ
a t
bjuJl
>_!
u
z o 0- o ->t
UJ UJ UJ UJ UJ UJ LJ UJ Lkl UJ LU UJ UJ
i~
OC7OOOOOOOOOO
I 1 I I I I I I I t I I
UJ UJ UJ LJ UJ UJ IjJ UJ LU UJ UJ UJ UJ
cr i
UlUJ
>_J
oooooooooooo
I I I I 1 I I I I I I I
UJUJLUUJUJUJUJUJUJUJUJUJU1
IT
O
Q f\J •* -O CD —»
O
w
O
OOOOOOOOOO^OOO
I I I I I I I I I I I I 1 I
LL/ UJ LU UJ UJ UJ UJ LU CiJ til UJ UJ ''J UJ *t/
O rt rt o n
-------
238
-
••••*»••••*•
ooooooooooo-o
••*••••*••••
oooooooooooo
oooooooo
UJUJUJLUUJLUUJLU UJ,
raoooooooo
_JOOOOOOOO
«r oooooooo
>...*
I I I I I I
a;
ujbJ
>-*
te n r^ <-• in o m r-ru
— • ri in r* o
UJ LJ UJ Ixl UJ UJ UJ UJ *W
OOOOOOOOO
••••••••••••
oooooooooooin
_
..*....*...
ooooooooooo<
I I I I I I I
l/)
U.
a:
ujuj
>_!
in 2
u. O
O O «-t
UJ O ~Z
CL •
O
o
.-. in
x -o
*-« (/) t/i
3
ooooooooooo
oooooooooooo
_
.....*..*.».
oooooooo
UJ UJ UJ UJ UJ UJ UJ UJ UJ
^OOOOOOOO
_JOOOOOOOO
*
I I I I I I I I
in o» n f* —• i
en
u.
u
v.
*—•-«-«r\Jf\J(\jr\J;\j -^
o o o
oooo
oooo
ooo
ooo
>-> UJUJ
O DO
_l o
ooo ••*•••••••••••
•oooooooooooooo
r UJ ui
o 30
-1 O
UJUJ
oo
CJO
UJUIUJUJUJ
ooooo
OOOOO
ooo
-^ —• i-* —»«-* ru f
ro^-«(>jn^iAsOr*co
-------
239
LJ IU Uj W
CJ O O O
0000
o o o o
n m n r>
o o o o
o o o o
in tn in in
liJ UJ UJ tfcj
o o o o
0000
in i/» in in
o
o o o o o
*****
UJ LU UJ UJ UJ
o o o o o
O o O O O
i/^ in m in in
c* o -«rvn
-------
240
OOOOOOOOOOOO
£
a.
.....*•..
e>oooooooo<
ui
o
o
CO
o
u
X
DZrgrvjojnnonnnnrjr)
a
u
vi ce
o •
«oj(MOjnjryf\iO4
[O O O O O O OOOOOOOO
O OOOOO OOOOOOOO
* * o
o * ^* O •
-------
241
UJ UJLJUJU-iUJUJUJUJUJUJ UJ UJ
"
_
—« ry -» ir»
—• —• ru nj f\j r\j
I I • I f I
J UJ Uj UJ UJ UJ UJ
CD
I
LLJ
-J
03
O
CC.
a
(/)
UJ
»—
I
a
o
o
*—
*~
n
i*.
z
-j
a:
i
n
(7>
z
o
cc u
UJ
a. o
o
UJ i~* o
r 2 o
»- uj in
CL •
tr -^
o in
u. «
X II
in H-
z in
o z o:
iv- O
< 1/1 I
c: >-
t- < Z
z o *-»
UJ
u u. a
Z 0 LrJ
o *-
u o: u^
Q O >-»
K- Z t-
oc
ujuj
>_}
in o n r- -* i
i i i I I I
i i i i i i i i i I i i
QJ ^t UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ
20 t> o^.rj r» *
^
«\j n ^r * f- a>
o o o o o o
i i i i i i
UJ UJ i]f '*' lif lj) itf
O CD M ^ *- (\J N
_i -» vn rvj n -« r>
< t> r- OCT* * o
>••••»•
fv — — in m^
u
z <
^:
u
ZOI
a) o o -• ry
OOOOOOOOOOOO
4.«*«*««««»« |
IU LLJ UJ 'jJ UJ UJ UJ UJ UJ UJ UJ UJ
OOOOOOOOOOOO
n n
o o o o o o
U/ UJ UJ UJ UJ bJ UJ
r> m ,0 o —-« o
_i n CT* (*> **> >o •*
< n r- r> in >»• —
> _J
o arxrvnrir»r
x
a
a
z
o
h- UJ UJUJUJUJUJUJlxJUJUJ UJ UJ UJ UJ I
Z ^o-^ero-^t\iif»inf*»toej>O'*'
t^ujujujujujujujuj h-
• -oin * ntvi
in
a
tn
o
bjujooo — —
>_j»»*
»-»—torxjj'sDCD
tr X
UJ UJ UJ UJ UJ UJ UJ
r> o o a>,» -. m
_j o n
-------
242
r- o o ry -t -a
oj r\i m n n n
11 i i i i
t i i i i i i I t I I i
Ul UJ UJ UJ UJ UJ UJ IO UJ UJ UJ UJ V
i I i i i t i i i I I I
UJ UJ UJ UJ W UJ IkJ UJ UJ Hi Vxl UJ UJ
'
r- .0— *r-or\ji/imcor\j
ino»nr--»ino^teD(\i»oo
o* —• n in r*- <
CD a*
a
ujuj
>_j
o* -* r\i n ir> *o
o -^ -— —< ^ —•
t i t t i i
UJ UJ UJ UJ UJ UJ
* n r- f} -• a»
c — o —» o r*
=•0 co r» fw oj
— in AJ -^ in CNJ
i i i t i i t i i i
UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ
o o o o o o -^ »^ *^ -^ ^i —»
iiitiiitlill
UJ UJ Uj UJ UJ UJ UJ UJ UJ LU *tf UJ VO
»oi/>(*»
r-i*- eo
UJ Ul UJ UJ UJ U
O CO *0 CD -* (O
-• O -t r- o o
^ rv* r- o — eo
lit UJ UJ Lii liJ 1*1 UJ UJ UJ liJ 111 Ul UJ
f) UJUJUJUJUJUJUJUJUJUJUJUJUJ
to GO o» a* a* o
cr r--«in cr-m co fu sp o .* cp _i
— ^ ry f*i -^ in o
tvi rvj nj c\j tM oa
> — 1 — 1 »1 •*! **» CO
oooooooo
Ijj ^ l.f 111 I[J I^J Itf ^.t
*O^jnScoi^fy3
— «ooo— «n»oo»
ocor^-oin^ow
•\-^ So75?S
(\1 ^ •£) CO O (\I ^T J)
X
a o
** O2<-*-*'^'-*^-^'yfycMfvifvr\i
tn
z
o
j_ ^•^•^•^•^••^rnr)r)r*)r*)rtrnm
< oooocsooooooooo
K- UJ UJ U,' UJ UJ LJ UJ UJ UJ UJ UJ UJ U) UJ UJ
15 ^o'^^'^xj-n^riinS'iritD-^
O iPO*
U """
I/)
o
uiujooo — — ruojwnn^-tvrwi
— «<=ro-T^>aiorjj-o^4^-.-^^.J'^t>cor-oin-^nfv
., „ o o o - - ft; % \j^* j-4-^-in
^« >-« o c\j .j so aj >-: ~- ' ." -o o r\j jf sO
U
2: <
o;
->
-------
243
o>
in
z
cc
I
h-
n
o
z
<
-)
tr
o
•
o
z
o
u
0.
Z
0
o
a
2
a
0
CO
o
CO
o
71 a a o
* • » »
A a * * o *
0 0 « « * 0
• .* e. v 0 e
* OOOOOOOOOOO*)
(J
->
o
U UJ
3 o
_l 0
ooooooooooorvj
u
X
(L
a. cj
tr
u
»-
a. u
o
o
CD
U
UJ
J
: SujoSSii^^sss???!
« al *
z
a.
a. uf
- 3
tn -
z cc P*— tno»na)(\j^o^teofu
u
i-
a u
o
o
CO
z
UJ
3 4OOOOOOOOOOOOOO
3 OOOOOOOOOOOOOO
3 5u,oSS22SSS:SS;?;3
s al «.««™*~*~s+«
o
-> ?z ^_^««
< 00 0
o o o
u
^000
o
D Z (M(UC\J
i
a. hi
— 3
o o o o
^
o:
1-
z o: r^- >O ^O
o a iivnn
u
i-
Q. U
z z o in >or-
o
o
Ul
u
_J
4 O O O
O O O
a i Ofu<*
o
32*"*
OOOOOOOO
OOOOOOOO
aooo«jGootff*O*^
^ in ^ n r-
Ln-o«^o«^r^r»
nnnr»r»mno
OOOOOOOO
COOO<-*<^tfl
OOOOOOOO
OOOOOOOO
^25SSSS5
.^^..o-
-------
244
en
«n
( I
) > ^
-------
245'
iLJUJUJUJUJUJUJUJ UJ UJ UJ UJ UJ
UJUJUJUJUJUJUJUJUJUJUJUJLJ
UJ UJ UJ UJ UJ
D r\j >o o r-
_jr- -r rvco
< O) <7- O • • * •
in in in in
ae tft o or*
X
UJ
_J
ro
0
oc
!V
*—
l/l
UJ
»-
t
o
o
o
5
*_i
z
0
o
a in
U)
O.
Ut
X U
o
ac o
o «-« o
u. cr o
ui i/>
Z ^
o
(J-t
x "
CO
o zcr
o •-• ^
o
O LO X
Z X
« z
a •-«
o
o u. a.
CD O UJ
^ *—
a: t/i
* f'
I §^
O Z H-
cr ac h-r- in in
cr o o *»
UJ Ul O -*-*•-*
> -J • • * *
i-» •-. run r* <^
a xin i/» tnm
o
z or-co ^ o
oooooooooooo
t i I i I I i i I i i I
UJ UJ UJ LU UJ UJ liJ UJ W UJ UJ tjj UJ
oooooooooooo
I I I I I I I I I I I I
UJUJUJUJUJUJUJUJ UJ UJ UJ UJ LU
z
o
UI
z
o
_
•-» i-t ao o rvi -a
< oj r\» *-• o
> . • • •
00 CO tD CO
a r-^ino*
UJ UJ IP -O <4> >O
> -j • • • •
»-•*-. a) o oj ^
oc xnjnrjr*
o
z
o
o
03
O
t/1
2
O
i
oooooooooooooo ^
iiiiiiiitiiiii a: .....
jycvjfMynjruMfwojojcvt
oooooooooooo
u
o
o
CO
o o o —• —•
X
a
a
i— o o o o
< o o o o
cr » » » »
^~ UJ UJ UJ fij UJ
^ OCO 4- O tfJ
UJ _J fU f\I -^ ^
• • • •
O (O CO O CO
u
o
o or
ui ui
* *
* *
o
D Z
-------
246
o o o o o o
a o o o o o
UJ UJ UJ UI UJ Ul UJ UJ
ru<\ifvjf\jfyfvic\j<\».-» —
oooooooooooo
t i i I I I i i I I
^4^«-^_l^««4-^«4-4«4
oooooooooooo
I I I I I I I I I I I I
UJ ilJ LU UJ UJ UJ UJ UJ UJ UJ LJ UJ UJ
— '
I
in
z
o
<
ex
o o o o o o
UJ UJ UJ UJ UJ UJ UJ
3 -* tr- t/i r* w n
_
< ry (v -« o o a»
»••••«.
co eo a> ao to r»
a: t^ — tn<7> n aj
0 I
z a.
o a.
o —
in
Z
o o
o
z
,
xocoi/>f\jo
CO COOOCCCOCOCOCOCO
o
o
CD
o o
o o
CD CD
U
otn-Of^coa^o^ryn-a-in^
oonnonmnonnronn
oooooooooooooo
Illllflfllltll
UJUJUJUJUJUJUJUJUJUJUJUJUJUJUI
_JgJO'J'OJCO--*COQglU^LOfVI-J-
•^ffljronj.^^tn
X
CL
a.
t/i
z
o
f-
<
H.
z
UJ
o
z
o
u
o
a
u
zom«or»a>o*o
-> ^
o o o o o o
o o o o o o
UJ UJ UJ UJ UJ UJ UJ
D oa a? o o a: n
< in 1/1 1/> in j- -»
co ec co «o co co
a: -f ani'O o
-------
247
UJ UJ Uf UJ UJ UJ
ui o n -^ o -•
r> ^ * ^ r> o
o o o o o o
f '•' '•< lij '•' 'xl '
in >£> r» a> o* o
in
o o o o o o
o o o o o o
UJ LiJ tij UJ UJ UJ
to tn in ^ f* o
r- »-. co o -* in
o o c^ o -«* r>
in i/» •* in in in
oooooooooooo
Illllll^****
lil UJ UJ UJ UJ UJ 'if UJ UJ UJ UJ UJ UJ
UJ UJ LUlxlUJLUUJUJUJUJUJUJ UJ
LJUJliJlUUJUJUJUJ U
'
^« in o n r*- ^
nn n •? ^ in
in r- CT* —* o in
4> ^ -o N- r» r^
a
ujuj
*-i«-t
ct z
-* in ^o r- co
orm n n
o
z c
-»"
UJ UJ UJ UJ UJ UJ
in f- r*- 3) M *
J3 3) in in _j
cr r*--^ in o>
^ in ^
j ru nj f\j
UJ —
O I
z a.
o a
o —
v>
> o o o o o
> o o o o o o
.»»»•» 2
; UJ u* u; w u «r
CD
2
> GO (T flC X
O
O O
o o
CD a>
i r* -^ in o n o o
i n .» .» j m
OOOOOOOOOOOOOO
I I t I t I I I I I 1 I I t
UJ UJ ijj UJ UJ UJ UJ (xl l'.1 tW *V <\f ^vl ttJ UJ
_f\jf\jfUf\J
>c>OOO
1111
-" — r\ir\iojnn^
in
2
O
o
u
UJUJUJUJUJUJUJUJ UJ
COcCcQcoaDCOCOQO
o
o
CO
a:
LJUJ
— — Mf\Jf\l
U
.T O —
-------
248 .
o- o o o
•» * * #
UJLJ UJ UJ
LJ uj uJ LiJ uJ uj uj uj
-3"rn^o^^rinri«
o> —• r- r~ --• o* —• r- r
oooooooooo
oooooooooo
UJ UJ UJ UJ UJ UJ UJ '** LJ UJ UJ
3 — «n-»vo^r>.-»f- of*.
' •-« n in f- o
cr
uJ
>_!
UJUJ UJ Ul
O (T f- O)
raru r- *
UJUJUJUJUJUJUJUJ UJ UJ UJ \tJ UJ
UJLULJUJUJLJUJIxJUJ '*' UJ UJ UJ
oooooooooo
oooooooooo
UJ UJ UJ UJ U UJ UJ UJ UJ LU UJ
_j
a *o o ^ co ru o —
ujujo^^ —
:>_j»». •
oooooooooooo
tltltttttttl
UJUJUJUJUJUJUJUJUJUJUJUJUJ
oooooooooooo
I I i I i I I I i I I I
lUUJUJUJUJUJUJUJUJUJtJUJUI
UJUJLJUJUJUJUJUJLUUJUJ
z
UJ ~
Z1 5
O Q.
o o
O 11
o
z
(r
IT) ^ (M «C CO >O Z
...... CD Z
(O CO 0 CO 4) CO Z O
u
a
o
CO
g
•>r- —• in o n
•><"> *-»-»«!
in
z
o
oooooooooooooo <
I I I I I I I I I I I I I I
UlUJUJUJUJlUUJUJUlUJUJUJuJ^—I *—
J f*) f^ l/> o IT* AJ ITi —^ —•."•«"" ^ — ^1 UJ
^o*^^3*LT*'T^ "o^Tx-^infy^^ o
o
o
CO
UJ Ul O O O •-• —*
>_!•••••
CT ^OOOOOOOO
I I I I I t I I I I
UJuJLiJUJUJUJUJUJUJ UJ t^l
oooooooooo
UJ UJ UJ UJ UJ lij UJ UJ UJ UJ UJ
z
o
u
o
o ac
J o o o-4^*
T cr> -4 f\j
-------
249
UJ UJ Lkl UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ
UJ UJ UJ UJ t*t UJ UJ if i (jj UJ UJ
oooooooooooo
OOOOOOOOOOOO
J t»J IfJ tli ll' t4j \Ji) \
cr- •-••-' o «o o .
oooooooooooo
II II I II*****
UJ UJ W UJUJUJLJUJUJUJUJ UJ UJ
UJLJUJUJUJUJUJUJiJUJUJUJUJ
oooooooooooo
oooooooooooo
^,1 UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ
a: •
ujuj
>_i
a:
ujuj
>_!
•-••-•
a: !
oooooooooooo
i I i i i i I I i i I I
UJUJUiUJUJUJUJUJUJUJUJUJUJ
i i i i i i i i i i i i
UJ UJ UJ UJ UJ UJ IU UJ UJ UJ UJ UJ UJ
oooooooooooo
oooooooooooo
UJUJIUUJUJUJUJUJLJUJUJUJ UJ
Z
O
VI
Z
o
a.
CL
CL O
O.
o o o o
t n n
i • •
I tO CO
0
o
oooooooooooooo
I I I I I I I I I I t I f I
UJ i f UJ UJ UJ UJ Ul UJ UJ UJ UJ UJ UJ UJ UJ
oooooooooo c-o o o
f t i i f t r i i : t i i t
UJUJUJlkJUJUJUJUJUJU. ^J UJ UJ UJ UJ
Z
o
o
o
^>
<
u
Z
o
oooooooooooo
oooooooooooo
(OCQCOOCQtDACOCOCOCD CO
o
a
o
p'
o
3 Z
-------
250
on
• •
*rt tr
4 -o
tv;t\i
-------
251
U> UJ \tJ UJ liJ lij UJ '-J liJ t»J UJ UJ '-^
_j «* •* -rnfiorurMfVj-^^o
J UJ 'iJ '*' '** ItJ UJ Ui* '.*-*
OOOOOOOOOOOO
I I I I I I I I I I I I
U> UJ LL) UJ UJ U itj i>i iQ i\j uj UJ UJ
_!
•-• < i
a: •
oooooooooooo
UJ UJ UJ UJ UJ lij UJ U4 UJ UJ UJ UJ UJ
UJ
Z
Z
oooooooooooo
UJ UJUJUJUJUJUJUJUJUJUJUJ UJ
3000000000000
_jOOOOOOOOOOOO
>o 05 o ry •*
LUUJUJUJUJUJUJUJUJUJUJUJUJ
I3OOOOOOOOOOOO
_|OOOOOOOOOOOO
UJ
er
oc
ujuJi
>_j
a.
UJ
o
o — ou r> ^-1/1
ooooooooooooo
o r- ^ — •
Z ooooooooooooo
< ««.****»»«.*»*»
X IfJ UJ tt1 ^*J Ul '\J '^ '*' U* *
-------
252
UJ UJ LULJUJUJUJUJUJUJUJUJ UJ
oooooooooooo
111111111+ + *
UJUJUJUJUJUJUJLiJljJUJUJUJUJ
_
> UJ ViJ UJ Uf tfcl
oooooooooooo
tilt Ill
UJbJUJbJUJUJUJUJliJUJUJUJUJ
c: ^
tijuJ
>._}
» ••* in o« *n i*- •"*
O* ^!> ^ O* ^CDCOCO
O OOOOOOOOOOO
LJ UJ UJ UJ UJ LU UJ LL! UJ UJ 1*4 1*1 W
'
oooooooooooo
I I I I I I I I I I I I
UJ UJ UJ UJ UJ UJ U UJ UJ IxJ U UJ Itt
r».~-mor>
ujujo oo-*—»r\jf\jnjnr>,*,a- 4- if>
^-•orv-J-ocDoru-i-vOaDory^tvO
o
o z -^ -«-^ — —
nnnnnnonnnnnno
cr CT«nr*-^int>r»
ujujooo-^^rvjnjojmn^j-^^in
i-i -1 O M -t -OCOOfUJ-^OcOOfU^^)
o
->
-------
253
oooooooo
UJUJUJUJliJLJUjUJUJ
-toooooooooooo
>•••••»»•••*»
oooooooooooin
•••••»•»»••*
oooooooooooo
in o* n r*- -~i u
•$• co ru *o o
I I I I I I i I
o i---t i/> o n r-rj
L. n
U
2
O
Q u,
O U
a: oo tj
UJ o Z
CE < < U.
ID O O 3
U
zo » o — r
UJ
Z3
_J
•»••*•»*••••
U UJ UJ UJ LU
3JOOOOOOOO
I i i i i I i i
< o ooooooooooo
u
D
_J
oooooooooooo
z
«
x;
u
oooooooo
UJ UJ UJ UJ UJ UJ UJ UJ UJ
DOOOOOOOO
_IOOOOOOOO
in r« o* ^*
". O
i/> 2
U. 15
-
in
31
O
a
uJ
:>_j
w 2
:« cr*.G5a'o —
O X2T—' — —'—•"''-•OJW
•-4 UJ UJ
O 30
iOOOOOOOOOOOO
i i i i i i i i
-------
2-54
UJ LJ UJ UJ
d o o o
o o o o
o o o o
• * • *
m in in in
11*1
ft o o n
o o o o
* * * *
UJ UJ UJ UJ
f- -• ino*
o ^ ^- ^
* * • •
to o rv ^
o o o o
o o o o
m in m in
• • • •
in in in in
i i i i
o o o o o
* + + » +
UJ UJ UJ UJ UJ
o o o o o
O O O O O
in m vnm w
* • • * •
in in in in in
* i i i i
in o
on
-------
255 .
» • • • Ul
* a • * _j
a » • • _J •
»« .-• *-» r^ o« _ r
cr T r*- i~ eo c
o
ZO oooo o
>»«•••••»»•«• *
-5
•
UJ
X
O X
\n
o
.
o
U_ 3
_J
'oooooooooooo
Z >..... UJ
z
cr
UJ
•> ^ ............ (/ice
»-4 ~4
I-
o
^o^^^a,0.o-ftjr,joj<\iru 3 * « « OOOOOOOOOOOOOO
* * # * * #« LJUJOOO— — fMfxjAjjnro^-^^iA
oo»«»o* i-ii-toc\j,j>ocaGr\._-,k;r»oru-*'£
* o e> * o •» * orx _^^^. . x- (V (V cv
- - , -7 » * •
• •* * » •
- . ^ o * • * o
» o o « * * * zo—*njr>-*ufi\or-co(>O'-*f\jn
-------
256
I I I I I I I I I I I I
(.I UJUJUJUJUJUJUJUJUJUJUJ UJ
i i i i i
UJUJUJUJUJbJ
ii i i i i i
LJUJUJUJUJUJ
CD o* -T r- o o na
_J co O -J" *-• r*l •••**»
*r ** « nj *> ~4
a »n <> r> r*. »-»i/(
> _j
o
QL M
U
Q. 0
O
LJ — 0
r cr o
t— uj in
a. •
Cr *-i
o 1/1
h- O
< VI X
a x
h- < Z
Z a *-
UJ
o u. a.
Z O UJ
O H-
o or LO
zo o o —oj n ^
i i i i i i t i i t i i
UJ V'J Ui UJ UJ UJ UJ UJ UJ I*) UJ UJ IxJ
UJUJUJUJUJUJUJbJUIUJWUJUJ
• eo
o o o o o o
I I I I I I
UJ UJ UJ UJ UJ UJ UJ
^ «O O 71 (V OJ (\J
n r
35
cr
> -J
cr
cr >o o *oo i
>_j * • • •
^»-« r> in r*- o» •
oooooooooooo
«.»#** + + *„»* t
J UJ UJUJUJUJUJUJLiJUJUJUJ UJ
jo'"-'\jocOiOr*'(\jo»ontn
O O O O OOOCJOOOO
*********** i
UJUJUJUJUJUJUJUJUJUJUJUJUJ
>„'•••***
o trxojnr)non r* o (\» r\j t\j
n uj uj uj ui uj uj uj
^ oo*^f-(\jr»o
o* _i-»«—ina)'v
—« < n CD n r- r*- n
>*•••••
co "^"^
ON
PPM
ONS
ccxfyrinrjnn
u
z
o
UJ UJ UJUJLUUJLJLiJ>wLL.l-~'^-.kJ^JUJ *—
>......*..».... -
rvj — -^--.^-*o*a)r-NDin-r'nrx o
in
0
-t-3L-3--j-4-fNi4-^OCDOrxj-J>OcOOfM-^sO
iT ^-—«r-i^-i^«rgrvjnjoj
ujujooo'—«~«<\ii\jf\)r}n*ji •* ^ in
>_)*••* •*.»•••*•••
•-•*-ocoo(\j>r>ocoooj^>x>
ax i-«^-«-«—»-H(\jfui\jf\i
(A
a
>- cr
UJUJ <
> _j
-------
r- a" o *v •* in
Mru m n r» n
i t i t i I
UJ UJ Ul UJ UJ UJ
-TO* <& & t\t &
o — ,r o m ^
257 .
i I I I i I
^m — •$• o m co ~*
coo- a- a> a* o
- a> o* o
^ ^* in
o— nj ^ in *o
i • i i i i
uJLJ Ul UJU W
•c fM nj nj ^r n
— O -« J- CO Ifl
O*0 CO ^- —• OJ
co j- ^^ h. rn -«
UJ UJ UJ bj UJ <
i i i i i i t
* tiJ 'V 1^ *^J '*' Uf t*if
I I I I I I I t I 1 I I
LULiJLJLtJUJUJUJLklUJUJ UJ Ul LU
*> r*- o *•* n in
m o r- eo
n n n n
UJUJ UJ LJ UJ UJ
o — ;/> »c -J c»
— ru D *n r\i to
OOOOOOOOO'
O UJ UJ UJ UJ
mnmr)cu(\jo4f\jj.-4.-*Q»M
oooooooooooo
»*» + »4.**»*«.|
UJ UJ UJ UJ UJ UJ UJ txj UJ UJ UJ UJ UJ
—-t\j m -r in >o
ry ru ru ca nj cy
oooooooo
X
a
a.
tn
2
O
or
z
O
u
X
a.
a.
tn
.c
o
_jc3^-n>oouio^f\jf\jcv(
u
Z
o
•*-*^-*-*^-^nr)r>nr>mt^
oooooooooooooo
LUUJUJUJUJUJUJUJUJUJUJUJ UJ UJ UJ
tn
o
in
o
•£> CO O (M ^T ^O CO O (M >
-------
258
••*•••••••••
ooooooooooo-o
-
•voooooooooooo
>.*.•.••»*••*
OOOOOOOOOOOtO
•*»••*•••
ooooooaoo*
o
&•
o *^
nj o
• Ul u
z 3 o
< _J 0
a
r
r>
2 0 ^ o — nun F-
->
cc
u.
o z
z a
O Q. UJ
J
a o oooooooooooo
Z "-i
cc
t—
§ S Sujin^o vo .0 r- i- CD oo o- o- » o
< 8 * "
O 1-
0 3
CC Q. O
0 0
o o
(J U
UJ
0*.» <00000000 00 C 000
-••<•#
u
o
UJ UJ
3 0
_J 0
OOOOOOOOOOOIM
o
i :
Q. C
a. ui (
i/) o «
o
o
CO I
UJ
-------
259
e> o o
o o o
-------
260
UJ UJ UJ UJUJUJIUUJUJUJUJUJ UJ
LJLULJUJUJUJUJUJUJUJliJUJUJ
UJ UJ UJ UJ UJ
3 ru o n in
_J co (D *y _|*
— • in o -r m ry -o o
or inorir- — i
UJUii
>_]
cr in o* n r-
ui uiinui o «
oooooooooooo
1111(11**** +
UJUJUJUJLUUJUJUJUJUJUJ UJ UJ
zD—t^OsOojo^sooin-^o'in
jnr\j^){t)o(*)rv-*'^'4FCi'**)
UJ LU UJ UJ UJ UJ 'tf UJ 'n I* 'tJ UJ UJ *M>
;z>r-n-^CT>-oiM-j'inin—»oo
_j nj o m *•* o ~i n r*- m r> eo r--
ia> -«i/> o
o a> o IA
• * • •
in in in in
_i
a: *o o ^ ao
UJUJO — ^M —
a: x 01 in in m
o
z or* co ^o
D 2 AJ ftj r\jr>
x H
o
a: o
o •«• o
u. a: o
uj in
uo.*
mnmpjrvtojojojfyoj.-*^
oooooooooooo
I I I I I I I I I I I I
UJUJUJUJUJUJUJUJUJUJUJUJUJ
_
«AJOJ-^.-t-t»"«-«-*-*.^.~i^
oooooooooooo
I I I I I I I I I I I I
UJUJUJUJUJUJUJUjUJUJ UJ UJ UJ
o o o o
+ + » *
UJ UJ UJ UJ UJ
_i co n to CM
< nj r\» — « -*
cc r-.-.in(j.r)C3pjoo-rcD(\j
>_l . * * . . .
i-» •-• CO O (V -f
cc I r\j n r> n
UTO
a. u
a. 2 o in r* co
o ca uj
0^3:
CC D >-•
z
o o
o
o
cc
7-
O
0
CD
O
O
a
OOOOOOOOOOOO^O
iitiiiitiiiiii
UJUJUJLJUJUJUJUJUJUJbJUJUJUJUJ
zjr-r^-cocoinrycocna'^oojnj-
o
t—
» * * *
O CO 0} COO)
u
o
a
«t ao rvj
j o o o -*
^O'~«fVO*Tin<»rii*cccT' T» -^ ty n *r
^Z '-.-4
o
Z O-* ^
-------
.261
UJUJUJUJUJUJUIUJ
opjnjr\jr\jnj.-«o
OsOOOsO^'OO
LiJUJt«IUJLUUJLiJLiJLlJliJLiJLiJliJ
UJ UJ LJ UJ UJ Ul UJ
>_j. ...........
ttxr-r-cococacotDOOff'O*o
a in
ujujint
>_!•
c-^-*-*^*-»in
ozn^^-^^sr-S'-a-^-j'^in
^zn^-^^-t^^-^^r^j-ir*
zo o* o~«run ^
l*J UJ UJ UJ UJ Ul UJ UJ
O .? t*- n LA oj ^ f\j
oooooooooooo
tiliiil*****
UJ UJ UJ '«' UJ U1 'iMiJ UMiJ U) 't1 UJ
r3r>on—««cf»r-i/>r-£/7or"-
_joomn-«r\joor-r--r)m
UJ U) UJ UJUIUIUJUJUJUJUJUJ UJ
Dn(vto^r^r*-r*--j->f—«of-
—•nj-oo^^^'Tr*-*^'
>...........»
coof-«-i~*-4~*r\jr\j<\jnr)
o o o o o o
UJ 'vl UJ ^ UJ 'tl 'tJ
^ r» ^ oj n oj r*
_j
>*••••»
o to in in LA IT
ojojnnn^^rtn
> _J
a x i
LUUJO *>**+ ~* ty M
rinnnnnnrn
UUJUJUJUJUIUJUJ
r^ — o '^. r\j in -* n
-*^^r-p-oj->r
2
->
§
nnr»(Mnjryrynar\jf\i.^*<
oooooooooooo
i i i t t i i i i I I I
UJUJUJUJUJUJUJUJUJ UJ UJ UJ UJ
_jlrii>^Lnnj"i'jir*-LnfM'OO
oooooooooooo
I I I I I t I I 1 I 1 I
UIUJ UJ '^J 'tJ Lil 'jj liJ i)J 'tl UJ It1 'U
_j2)r--^oa3f\jLnai-q3^-*f*»
UJ UJ UJ UJ UJ UJ UJ
3 r- in o -c ••••*.
co co 0 CD a> r*
nnj-^j-^j-in
> _' •
£rxojf>nnnn _i
CC T f
i ^r -*•*•*••* in
CONC
o
z
o
o
§
o
2
O
I/)
z
O
^-» ^•^•nnnn
oooooooooooooo
1 1 1 1 1 1 1 1 1 1 1 1 1 1
UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ LJ UJ UJ UJ UJ
4CENTRAT
Q
^^^.^^^f\jnjfwnn >» -*tn
UJ UJ UJ UJ UJ UJ Ul
co co cx> co
D
0
O
0
CO
> _J
a r
~4"«-«'-»'- _, ........ ^ ..... >_j
al -. — — -.^..yivrxi^j OCI
»•: o •
~oi
~>
-------
262
UJ LJ UJ UJ UJ UJ
03 co -o so r- ~*
in PJ cr* in O* o
UJ UJ LU UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ
_j o O co -» •*r-ino~tf-n
>...
J UJ UJ UJ lij UJ UJ UJ UJ UJ UJ UJ
'r •* o ,y co n
in NO > f\j N0 O
CO CO CO &• 0* O
a: tn o» n r--«t/i o ^
-^ryfo .*• in "O r» «o o> o
UJ UJ UJ UJ UJ UJ
in —• o -o o 03
in in ui ut in in
oooooooooooo
iiiitti***>>
UlUtUJUJUlUJUJUJUJUJUJUJUJ
o o o o o o o o o o o o
oooooooo
UJ UJ 'iJ Ul U.MJ' *'f UJ 'jj
so in in in in in intn
o-t as r\i o -• m
in r- o — in o o
oooooooooooo
i i i i I i i i t I I I
UJUJUJLJUJUJUJUJUJUJUJUJUJ
OOOOOOOOOOOO
I I I I I I I I I I I *
UJUJUJUJUJUJUIUJUJUIUJUJLJ
3co«or»coo
ooo^ooooooooooo
i I i i t i i t i i t i i t
UJ UJ UJUJUJUJUJUJUJUJUJUJUJUJUJ
OOOO
OOOOO
I I 1 I I
OOOOO
I I I I I
tt> tlj 'l^ W tW
in
z
o
f
a
ooooooo
ooooooo
UJ UJ UJ Lj 'A. .-'.»-' i_^. ->j
. . . . . m
) to CO CO CO Z
o o
o o
co m
o u
o
o
m
r- ^H in o n
cncocococoocoao
J- OD ru-o o ^ >
o
ZO ~*
-------
263
UJ UJ UJ UJ
*o o m —«
O -O C7- O
LJUJUJUJUJUJUJUJUJUJUJUJUJ
Z3i/icnm^nnf-.,oc3coor\j
^(nfiNonjnjo^f-mtOOf)
•nofXi-a-r-orif- —• ^J -• r-. n
in O* f*> h- ~• in O -
n in r*. o
0*0-00
a
uj
>_)
) O* o
^ in
o
z<
o;
-j
oooooooooooo
iiti lit*****
UJ UJ UJ UJ UJ LiJ UJ UJ UJ UJ 1*1 UJ UJ
**-*OOOOOOC>OOO
oooooooooooo
I !•»•», »*«*.
UJ UJ UJ UJ UJ UJ '*' UJ UJ UJ UI UJ UJ
oooooooooo
OOOOOOOOOO
UJUJUJUJUJUJUJUJ UJ UJ UJ
rurvj ^ r-
• • • •
in in in in
• ru oj t\j n o
UJ Id UJ UJ
_n rj o- •*
• • • •
r- r- <£> >O
OOOOOOOOOOO
i i i i i i i i i i i
J i*U (^ UJ [lt 'f1 UJ UJ UJ '*' ljj 'jj '
oooooooooooo
i i i i i I I i i i i I
UJ UJ UJ UJ bJ UJ UJ UJ UJ LJ UJ UJ UJ
oooooooooo
oooooooooo
z
<
o: r^ — mo* n coru * o
J UJ UJ UJ UJ \
x x a> CD eo a>
UJ —
O I
z a
o a.
tn
o i
a —
h-
o <
z tr
< f-
z
O UJ
o o
o
o
tvj M ru M cy oj i\j
in
z
o
in
z
o
u
z c
r>:
->
OOOOOOOOOOOOOO
I I f I I t I I I I I I I I
J UJ LJ UJ UJ UJ W UJ UJ
OOOOOOOOOOOOO3
I I i i i i i i ( r » i ' «
UJ UJ '
o-cvr-oinownco-T
O3o>-ino-.o>oto-ro
Mwr-nn^m-oa,-
— -» in o z
O h- t\J 0s u
- - ~ ~ ~=
13 o n -* i.'1 c~ ^
< -x -. - : ^- .
- .- - — *, u j <-, j
.-xcr)-o~.oc->~
Z
o
o
u
3 —
<0
r-ooajuio-njui
iniJiSi^S™**?
•no co a>oo mas co a.
O
O
CO
z
O
o
o -* cj r> •* tn •
-------
264
UJUJLUUJUJUJUJUJUJUJ UJ UJ UJ
OOOOOOOOOOOO
oooooooooooo
UJUJUJUJUJUJLiJUJUJUJ lxl *'f UJ
,»« ,_• _• ~* ru ru
~• m in r» a* —• f
a
hJ
>_!
0s O
•# irt
IA vo f* coo o
LJUl
(T- -9
cr o*
oooooo o o o o o o
II I III 1**** +
liJ UJ UJ UJ UJ |y* UJ UJ UJ \Xl U 'A! UJ
oooooooooooo
LJUJUJUJUJbJUIUJUJUJUJUJUJ
cr o
ujujo
>_!•••••*••••*•
>-t«-«r)inr^o»'^ninr-^^fom
ct x in miMn^«« >o -or- r-r-
cr
ui
>
UJ aJ
(V rvi
a* o
i I i i i t i i i i i i
UJ LkJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ
"
oooooooooooo
I I 1 I I t I I I I I I
UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ
UJUJUJUJUJUJUJUJUJUJUJUJUI
-
_
•-•« 03 o r
ui>o
r\j 'M
o ra
o o
* *
UJ UJ
— x
• •
CD 33
O 3
0 O
* *
UJ UJ
t\j ri
O rt
ri PO
• *
CO CD
Z
o
o
o
0
o
z
<
0
o
m
z
a
o
a.
a.
***
?
»-»
<
a
>-
z
LJ
O
2
O
0
O
o
Q.
a.
o oooo oooooooo
i i i t i l I I i i i t t
J UJ UJ U1 UJ UJ UJUJUJUJUJkiJUJUJ
z
o
z
o
o
o
o
CD
oooooooooooooo <
ttitiitiititti a
UJ UJ UJ UJ UJ LJUJUJUJlLJUJUJUJLJUJ. *~
OOOOOO C3 OC-OOO
ooooooo o o o o o
UJUJUJUJUJUJUJ
r- ^ ui r* f*- 1/» ru
Z
O
o
r o —r
3 Z
->
-------
265
on
on
-------
266
APPENDIX C
APPLICATION, CALIBRATION, VERIFICATION. AND SENSITIVITY
In the past much effort was spent in the planning effort
evaluating alternative water qaulity management schemes. It was
this type of analysis that stimulated the use and growth of mathe-
matical techniques. Little or no effort was spent determining the
reliability of the individual models in predicting absolutes.
It was then considered that the ability of a model to reproduce
nature was secondary to its ability to predict differences between
alternatives consistently. Considering the defined problems of that
time, it was certainly proper to take that viewpoint.
Since that time, water quality standards have been introduced.
These standards are absolutes in terms of defined quantities of
that may be present in the receiving waters. Plans and proposals must
now be weighed not only against each other but ultimately against the
"standards". Plans which will not allow the receiving water quality
to be at or above standards must be rejected as infeasible on the
basis of standards.
The introduction of water quality standards, and the civil and
criminal penalties for their violation, adds a new dimension to
mathematical modelling for water quality planning. The model user
must now be concerned with the accuracy of a technique as well as
its consistency.
-------
267
MODEL CALIBRATION:
There are constants and coefficients of functions inherent
in the AUT0-QUAL set that can not be directly determined or
measured. For example, there are no methods for making direct
field measurements of dispersion coefficients (E). The reader may
recognize these quantites as being:
1. Dispersion coefficients (E)
2. CBOD decay rate (Kc)
3. NBOD decay rate (KN)
4. Reaeration rate (k^).
While techniques exist for the determination of KC and KN, the
wide range of values obtained in the tests of the replicate
samples preclude considering K^ and K^ as "knowns". Similarly,
field measurements for the determination of the reaeration rate
(l<2) show a wide range of values. The Dobbin's - O'Connor formula
is currently the most common function used, and as such it is
considered to be the standard form.
Dispersion is probably the most obvious calibration coefficient
in the above group. The elimination of tidal effects in the flow
computations demands that some mechanism be incorporated in the
model to represent the smearing of the quality profiles by the
tides (See Model Development).
Those inputs to the model that can be directly measured
or determined with good reliability are considered as knowns.
Since the calibration process consists of matching a predicted
profile (or profiles) to an observed profile by means of adjusting
-------
268
the calibration constants. Any errors in the knowns will be
incorporated into the calibration constants.
The primary knowns and their sources are:
1. Flow - from streamflow gages operated by State or
Federal agencies or direct field measurements.
2. A], A£, A- - from stage/discharge records maintained
by State or Federal agencies or direct field
measurements.
3. A., (in estuaries) - nautical charts or field measurements.
4. Widths - charts, maps or direct measurements.
5. Q . (amount and location) - diversion records.
6. Q. (amount and location) - waste water records or direct
measurement (direct measurement is preferable)
7. Water temperature - direct field measurements or existing
records.
8. Tidal velocities - current tables or direct measurements.
9. Sediment uptake of oxygen rate - direct measurements or
existing records.
10. Photosynthesis-Respiration rate - direct field measurements
or existing records.
Where field measurements are indicated, they must be made at the
same times as the observed profiles. To do otherwise is to assume
that those inputs are in fact constant. The above list may, of course,
be tailored to the particuliar constituents under consideration.
SENSITIVITY:
The following figures illustrate the sensitivity of the AUT0-QUAL
set to normal variations in the magnitudes of the important varibles.
The reader should s+udy the f'.gu^es ^nd experiment with his own systems
to get a Det'er feeling for the effects of the different factors.
-------
269
AUT0SS was generally used to compute the sensitivity
profiles. The effects are identical in AUT0QD. Figure C16 shows
the convergence of the AUT0QD solution, over time, to the AUT0SS
solution. Since natural streamflow and waste sources are rarely
constant for the period of time required for a body of water
to reach a steady state condition in water quality, AUT0QD should
be used in the calibration process. The calibration coefficients can
then be transferred to AUT0SS for the planning runs.
-------
FIGURE Cl
SCHEMATIC DIAGRAM OF ESTUARY/STREAM
USED IN SENSITIVITY ANALYSES
270
Ul
_ O
UJ
QC
Ul
Ul
UJ
ui
-2
-------
271
The following data values were assigned to the example
stream/estuary system:
Mile of upstream end 150.0
Mile of downstream end 0.0
Mile of fall line 50.0
Number of sections 150
PHYSICAL DATA;
Miles 0.0 thru 48.0
@ mile 50.0
9 mile 150.0
A,=0.0
Aj=0.040
AJ=0.025
Miles 0.0 thru 48.0
@ mile 50.0
Miles 50.0 thru 150.0
A=0.0
A3;
@ mile 0.0
@ mile 50.0
Miles 50.1 thru 150.0
Widths;
@ mile 0.0
@ mile 50.0
Miles 50.0 thru 150.0
Tidal Velocities;
@ mile 0.0
@ mile 25.0
@ mile 50.0
Miles 50.1 thru 150.0
Dispersion Coefficients;
@ mile 0.0
@ mile 10.0
@ mile 20.0
@ mile 30.0
A,=20.0
A,=10.0
A^O.O
Width=21200.0 ft.
Width=l000.0 ft.
Width=l000.0 ft.
V.=1.2 fps
Vj=0.8 fps
V^=0.6 fps
Vj=0.0 fps
E=5000.0 ftp/sec
E=4300.0 ftp/sec
E=3500.0 ftp/sec
E=2200.0 ft /sec
-------
272
9 mile 40.0 E=l200.0 ft*/sec
e mile 50.0 E=400.0 ft«/sec
0 mile 55.0 E=100.0 ft«/sec
Miles 55.0 thru 150.0 E=100.0 ftr/sec
When point values are specified, the program will interpolate
linearly between the points for intermediate values.
These values will remain the same for all the runs on the
example stream/estuary, except where changes are specified. The
other inputs are specified for each run.
-------
2
Q.
a
g
5
z
UJ
O
O
u
FIGURE C2
EXAMPLE RUN WITH ONLY CBOD INPUTS
(AUT0SS)
273
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
DISSOLVED OXYGEN
FIRST STAGE BOD (CBOD)
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
RIVER MILE
INPUT DATA:
TEMPERATURES:
@ mile 0.0 T=28.0°C
@ mile 25.0 T=25.0°C
@ mile 75.0 T=20.0°C
Miles 75.0 thru 150.0 T=20.0°C
CBOD DECAY RATE = 0.23(1/day)
NBOD DECAY RATE = 0.103(1/day)
SEDIMENT UPTAKE;
COMPUTED REAERATION RATES
COMPUTED OXYGEN SATURATION
CONCENTRATIONS
INFLOW DATA:
@ mile 150.0
2000.0 cfs @4.0ppm CBOD &
9.0ppm DO
@ mile 145.0
MilesTo"thrulo.O Sedmt=1.0(gr.09/m?/day) 150-° cfs WOO.Oppm CBOD &
o _i i _ /i c n r_j_j—r> r>/_« r\^-l~.^-u \ O.Oppm DO
mile 45.0
mile 66.0
Sedmt=2.0(gr.o/nC/day)
Sedmt=0.0(gr.0«/m /day) ...
Miles 66.0 thru 150.0 Sedmt=0.0(gr?02/m2/day)^
PHOTOSYNTHESIS-RESPIRATION RATES ?
Miles 0.0 thru 30.0 P-R =-0.2(gr.09/m,/day)
@ mile 35'°
0 mile 50.0 P-R = 0.0(gr.0/n./day)
Miles 50.0 thru 150.0 P-R = O.Ofgr.Og/m /day)
O.Oppm DO
nn
uu
-------
-------
FIGURE C3
EXAMPLE RUN WITH CBOD AND NBOD INPUTS
(AUT0SS)
274
a
a.
cr
z
u
u
z
o
u
10.0
9.0
8.0
7.0
6.0
5.0-
4.0-
3.0
2.0
1.0-I
0
DISSOLVED OXYGEN
FIRST STAGE BOD (C BOD)
SECOND STAGE BOD (NBOD)
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
RIVER MILE
SAME INPUT DATA AS FIGURE C2 WITH THE FOLLOWING INFLOWS:
@ mile 150.0
2000.0 cfs @4.0ppm CBOD & 2.0ppm NBOD & 9.0ppm DO
@ mile 145.0
150.0 cfs @100.Oppm CBOD & 50.0ppm NBOD & O.Oppm DO
@ mile 65.0
50.0 cfs (P120.0ppm CBOD & 60.0ppm NBOD & O.Oppm DO
@ mile 45.0
200.0 cfs @50.0ppm CBOD & SO.Oppm NBOD & O.Oppm DO
-------
FIGURE C4
BASE CONDITION FOR SENSITIVITY RUNS
(AUT0SS)
275
Z
UJ
U
O
U
10.0-
9.0
— 8.0
a
a. 7.0-
6.0"
5.0
4.01
3.0
2.0-
1.0-
DISSOLVED OXYGEN
FIRST STAGE BOD (C BOD)
SECOND STAGE BOD (N BOD)
A, .A
/ • . X — ^ ' i
':• -' \ ^
/ • •. .' L-"'
x / —
—i r*-i 1 1 r
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
RIVER MILE
INPUT DATA:
TEMPERATURE = 20.0°C
CBOD DECAY RATE = 0.30(l/day)
NBOD DECAY RATE = 0.10(1/day)
SEDIMENT UPTAKE =0.0 (gr.02/m2/day)
(P-R) = 0.0 (gr.02/m2/day)
REAERATION RATE = 0.30(1/day)
COMPUTED OXYGEN SATURATION CONCENTRATIONS
OTHER INPUT DATA IS THE SAME AS FIGURE C2
INFLOW DATA:
SAME AS FIGURE C3
-------
FIGURE C5
276
10.0-
EFFECT OF CBOD DECAY RATE (K )
(AUT0SS)
a.
o.
o
a
9.0-
8.0-
7.0-
6.0-
5.0-
4.0-
3.0-
2.0-
1.0-
Kc = O.IO( '/day)
Kc = 030('/day)
Kc = O.SOt'/day)
• i i i i i
10 20 30 40 50 60 70
80
RIVER MILE
-i 1 1 1 1 1 1—
90 100 110 120 130 140 ISO
INPUT AND INFLOW DATA IS THE SAME AS FOR FIGURE C4,
EXCEPT THE CB0D DECAY RATE HAS BEEN VARIED
-------
FIGURE C6
EFFECT OF NB0D DECAY RATE (K )
(AUT0SS)
277
a
a.
O
o
10.0-
9.0-
6JO-
7.0-
6.0-
5.0-
4.0-
3.0-
2.0-
1.0-
Kn = 0.10 ('/day)
O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 ISO
RIVER MILE
INPUT AND INFLOW DATA IS THE SAME AS FOR FIGURE C4,
EXCEPT THE NB0D DECAY RATE HAS BEEN VARIED
-------
-------
FIGURE C7
EFFECT OF REAERATION RATE (K2)
(AUT0SS)
278
O
o
10.0-
9.0-
8.0-
7.0-
6.0-
5.0-
4.0-
3.0-
2.0-
1.0-
K2= 0.3 (Vday)
K2=0.4('/day)
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 ISO
RIVER MILE
INPUT AND INFL0W DATA IS THE SAME AS FOR FIGURE C4,
EXCEPT THE REAERATION RATE HAS BEEN VARIED
-------
-------
FIGURE C8
EFFECT OF SEDIMENT UPTAKE
(AUT0SS)
279
m ^
I
10.0-
9.0-
8.0-
7.0-
6.0-
5.0-
4.0-
3.0-
2.0-
1.0-
S«dim«nt = 0.0 (gr 02/m2/doy)
S«dim«nt = 1.0 (gr O2/m2/day)
S«dim«nt= 2.0(gr O2/m2/day)
10
-T 1 1 1 1 1 1 1 1 I i 1 1 i
20 30 40 50 60 70 80 90 100 110 120 130 140 ISO
RIVER MILE
INPUT AND INFL0W DATA IS THE SAME AS FOR FIGURE C5,
EXCEPT THE SEDIMENT UPTAKE HAS BEEN VARIED
-------
FIGURE C9
EFFECT OF PHOTOSYNTHESIS - RESPIRATION RATE
(AUT0SS)
280
a
a
O
a
10.0-
9.0
8.0-
7.0-
6.0-
5.0-
4.0-
3.0-
2.0-
1.0-
0
-(P-R) = - 1.0 (gr 02/n»2/day)
•(P-R) = 0.0(gr02/m2/day)
-(P-R) = + l.0(gr O2/m2/day)
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
RIVER MILE
INPUT AND INFL0W DATA IS THE SAME AS FOR FIGURE C4,
EXCEPT THE PHOTOSYNTHESIS-RESPIRATION RATE HAS BEEN VARIED
-------
FIGURE CIO
EFFECT OF TEMPERATURE
(AUT0SS)
281
2
a
a
O
a
5.0-
4.0-
3.0-
2.0-
1.0-
T=IO.O*C
T=20.0*C
•—T = 30.0*C
\'
/
~l 1 1 1 1 1 1 1 1 1 1 1 1 1 r—
(0 20 30 40 50 60 70 60 90 100 110 120 130 140 150
RIVER MILE
INPUT AND INFLOW DATA IS THE SAME AS FOR FIGURE C4,
EXCEPT THE STREAM TEMPERATURE HAS BEEN VARIED
Note:
D.0. Saturation Concentrations @ 10°C = 11.4 ppm
@ 20°C = 9.08 ppm
@ 30°C = 7.52 ppm
-------
FIGURE Cll
EFFECT OF DISPERSION COEFFICIENT
(AUT0SS)
282
a
a
O
o
10 H
9
8 -
7 -
6 -
5 -
4 -
3 -
2 -
I -
0
E='/2Eo
E = Eo
E = 2Eo
i i i i i i i i i i i i i i i
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
RIVER MILE
INPUT AND INFLOW DATA IS THE SAME AS FOR FIGURE C4,
EXCEPT THE DISPERSION COEFFICIENTS (E) HAVE BEEN
VARIED. E0 ARE THE DISPERSION COEFFICIENTS SPECIFIED
IN FIGURE C4.
-------
-------
FIGURE C12
EFFECT OF DISPERSION COEFFICIENT
(AUT0SS)
283
P
a
a.
10
30
RIVER MILE
INPUT AND INFLOW DATA IS THE SAME AS FOR FIGURE C4,
EXCEPT SALINITY IS BEING RUN WITH THE DOWNSTREAM END
FIXED AT 15000 ppm. THE DISPERSION COEFFICIENTS ARE
VARIED AS SHOWN WHERE E_ ARE THE DISPERSION COEFFICIENTS
SPECIFIED IN FIGURE C4. ONLY THE ESTUARY PORTION IS
SHOWN BECAUSE THE SALINITY CONCENTRATIONS WERE NEGLIGIBLE
IN THE FREE FLOWING SECTION.
-------
284
To demonstrate the use of AUT0QD a run was made on the same
hypothetical stream/estuary that was used for the AUT0SS examples.
A hypothetical hydrograph and downstream boundry condition (salinity
concentration) were chosen for this example (see Figure CIS). Notice
that the hydrograph and the downstream concentration are represented
in a stairstep fashion.
The same general input data used in A0I0SS has been used for
AUT0QD. A steady state solution (AUT0SS) for the 2000.0 cfs flow
condition was used for starting concentrations. A time step of 1
hour was specified for the run. Figures C14 & C15 show the results
of the model run, only the estuary portion was shown because the :•
salinity concentrations were negligible in the free flowing portion.
-------
FIGURE C13
28b
9000-
q
6
UJ
i
_J
u.
a.
a
o
•
o
UJ
z
_i
<
16000-
14000-
12000-
10000-
8000-
6000-
4000-
2000-
0
I I
JANUARY 1-31
FEBRUARY 1-28
-------
-------
P
a
a
t
z
FIGURE C14
AUT0QD RUN RESULTS - SELECTED POINTS
286
MILE 0.0 - FIXED BOUNDRY CONDITION
'! '
t
i
i
10
JANUARY
20
1-31
30 1 10
1
1
1
i i |
1 FEBRUARY
> i • < I i i i i
20
1-28
i 1 1 1 1 1
28
j
J
DAY
-------
-------
FIGURE C15
AUT0QD RUN RESULTS - SELECTED DATES
287
P
a
a
_J
<
15
14
13
12 -i
I I -
10
8 -
7 ->
6 -
e __
4
3
2 -1
JAN. I
JAN. 10
JAN. 15
JAN. 20
JAN. 25
JAN. 30
40
50
RIVER MILE
-------
288
Figure C16 shows a comparison of the AUT0SS steady state
solution and the AUT0QD solution as it approaches steady state.
A condition with a total fresh water inflow of 2300.0 cfs
(2000.0 cfs river flow and 300.0 cfs total for inputs 1, 2 & 3),
and the downstream concentration fixed at 15000.0 ppm, was chosen
for this example. The starting concentrations for AUT0QD were
purposely chosen not to coim'cide with the AUT0SS steady state to
better see the two solutions converge. The inputs for these runs
are the same as for Figure C4.
-------
FIGURE C16
COMPARISON OF AUT0SS AND AUT0QD
WHEN RUN UNTIL STEADY STATE
289
1
«3d sibvd) AIINHVS
-------
290
For the next set of runs a uniform, free flowing stream
was selected. The charateristies of this stream are defined as
follows:
mile 100.0
mile 0.0
Mile of downstream end 0.0
Mile of upstream end 100.0
Mile of fall line 0.0
Number of sections 100
PHYSICAL DATA;
A^ 0.04
A£= 0.60
Width = 1000.0 ft.
CBOD decay rate = 0.6@20.0°C (I/day)
DO Saturation = 10.0 ppm
Reaeration rate = 0.4@20.0°C (l/day)
All other physical data assumes their respective default
values.
INFLOWS;
@ mile 100.0 1000.0 cfs at 10.0 ppm CBOD &
10.0 ppm DO
All runs have these values as inputs, except for the stated
variations.
-------
291
By using a uniform stream it is possible to make comparisons
between the model solution and an analytical solution. For these
comparisons the integrated forms of the Streeter-Phelps DO sag
equation are used [23];
KfL -(KDX/U) -(K.X/U)
D= 4-[ e D - e A ]
-(KDXC/U)
uc=
XC=
where;
D = dissolved oxygen deficit (ppm) (saturation concentration
minus stream concentration)
L = in stream BOD (ppm) at X=0, for this application L =10.0
ppm at river mile 100.0 (X=0) °
Kp= deoxygenation rate (I/day), corresponds to CBOD decay rate
K.= reaeration rate (I/day)
Xp= distance to location of maximum deficit (miles)
U = stream velocity (miles/day)
DC= maximun DO deficit (ppm)
These equations are resticted to the case where the initial deficit
(@ X=0) is zero, which is the condition specified in the runs.
(DO saturation = 10.0)
-------
FIGURE C17
EFFECT OF A!
(AUT0SS)
292
a
a
O
a
8 -
7 -
6 -
5 -
4 -
3 -
2 -
A, = 0.02
A, =0.04
A, = 0.06
O Streeter—Phelps Equation -Computed Sag
Point.
I
10
20
I
30
I
40
50
I
60
T
70
eo
I I
90 100
RIVER MILE
-------
FIGURE CIS
EFFECT OF A2
(AUT0SS)
293
Q.
0.
8 -
7 -
6 -
5 -
•o
4 -
3 -
2 -
A2 = 0.4
— A2=0.6
- A2 = 0.8
Sfreefer — Phelps Equation — Computed Sag
Point.
i r i i T I I I I I
10 20 30 40 50 60 70 80 90 100
RIVER MILE
-------
FIGURE C19
EFFECT OF AI WITH COMPUTED REAERATION RATES
(AUT0SS)
294
5
Q.
Q.
O
O
9-
8-
7-
6-
5-
4_
3-
2-
1-
o-
"^^srHI
\ ^v^^//
\ *&/ 1
\
sd
A rt AO
A— A AA
A,= 0.06
O Str«eter — Phelps Equation — Computed Sag
Point.
10 20 30 40 50 60 70 80 90 100
RIVER MILE
Ai HAS BEEN VARIED AND REAERATION RATES
HAVE BEEN COMPUTED RATHER THAN SPECIFIED
AT 0.4 (Vday).
-------
-------
FIGURE C20
EFFECT OF A2 WITH COMPUTED REAERATION RATES
(AUT0SS)
295
a
Q.
O
a
10-
9-
8-
7-
6-
5-
4_
3-
2-
1-
n-
^^r\. f\
A- n A \ '
2 U'^- \ |
A -OR X '
^2— U.D ^,/
A2=0.8 O
O Strttter - Ph«tp« Equation — Computed Sag
Point.
10 20 30 40 50 60 70 80 90 100
RIVER MILE
A2 HAS BEEN VARIED AND REAERATION RATES
HAVE BEEN COMPUTED RATHER THAN SPECIFIED
AT 0.4 (Vday)
-------
-------
FIGURE C21
EFFECT OF INCOMING LOAD
(AUT0SS)
296
7.0 -
-g 6O -i
a.
a.
~50 -J
O
Ci
4.0 -
30 -
20 -
1.0 -
LEGEND
L0 = I2.5ppm
1 •
'0
LQ - 10.0 ppm
L0= 7.5 ppm (-
STREETER-PHELPS EQUATION-COMPUTED SAG POINT
l l I I I I I I I I
10 2O 30 40 50 60 70 80 90 100
RIVER MILES
THE INCOMING CB0D CONCENTRATIONS
AT MILE 109.0 (LQ) HAVE BEEN VARIED.
-------
FIGURE C22
EFFECT OF FLOW RATE
297
O
d
5X> -
30 -
20 -
10 -
0 -
LEGEND
= 1250 ef« (+25«7i>)
QIOO = 1000 cf»
QIOO = 750 cf» (-25*%)
STREETER-PHELPS EQUATION -COMPUTED SAG POINT
I
10
20
l
30
i
40
I
50
I
60
70
I
80
I
90
I
100
RIVER MILES
THE INFLOW AT MILE 100.0 (Q100) HAS BEEN VARIED.
-------
FIGURE C23
EFFECT OF NETWORK SIZE
298
a
a
O
a
O "™
5 -
4 -
3 -
2 -
10 SECTIONS (L = 10 MILES)
50 SECTIONS (L= 2 MILES)
100 SECTIONS (L = l MILE)
i
200 SECTIONS (L= !/2 MILE)
Stretttr - Phelp* Analytical Solution
10
20 30 40
i
50
i
60
70
I
80
I
90
I
100
RIVER MILE
THE SAME INPUT DATA HAS BEEN USED
AND THE NETWORK SIZE HAS BEEN VARIED.
-------
-------
299
MODEL VERIFICATION:
As stated under Model Calibration, errors in the known quantities
will be absorbed by the calibration coefficients. The model verification
process should indicate the amount of such errors and give a measure
of their effect on the model's prediction of other conditions.
The verification procedure requires that the same amount of
information that is required by the calibration step be collected
and used as input to the model (AUT0QD). The computed or predicted
quality profiles are then compared to the observed profiles.
The two sets of profiles should be in close agreement. If they
do not agree within the normal range of laboratory errors, some
investigation should be made into the nature of the problems. All of
the major inputs to the model should, ,>be checked for errors under
botlvthe calibration conditions and the verification conditions.
In most cases the source of the errors will be found in the
input data. The user's knowledge of the prototype system and the model's
sesitivities will be the most valuable guides.
In some cases it may be desirable to recalibrate the coefficients
using both observed data sets. The user -must be cautioned, however,
that in such cases he will not have a verified model, and another
verification period must be monitored, predicted and compared.
Common sense indicates that extreme conditions, such as periods
of heavy algal blooms, drought conditions, or winter temperatures should
not be used for either the calibration or verification steps. The
various rates and functional forms incorporated in the AUT0-QUAL
set are not generally adequate to describe extreme conditions.
-------
300
REFERENCES
1. Crim, Robert L., "A System of Mathematical Models for Water
Quality Management," Technical Report 51, U. S. Environmental
Protection Agency, Region III, Annapolis Field Office,
January 1972.
2, 3, 4. ST0RET, CPSF and AUT0MAP are components of the Water Quality
Information System operated by the Monitoring and Data Support
Division of the Office of Air and Water Programs, U. S.
Environmental Protection Agency, Washington, D. C.
5. Streeter, H. W. and E. B. Phelps, "A Study of the Pollution and
Natural Purification of the Ohio River, Part III, Factors
Concerned in the Phenomena of Oxidation and Reaeration," U. S.
Public Health Service, Public Health Bulletin 146, 1925.
6. Henderson, F. M., "Open Channel Flow," Macmillan Company,
New York, p. 69, 1966.
7. Hansen, A. G., "Fluid Mechanics," John Wiley and Sons, New York,
p. 121, 1967.
8. Thomann, Rovert V., "Systems Analysis and Water Quality
Management," Environmental Research and Applications, Inc.,
New York, p. 129, 1971.
9. "Effects of Polluting Discharges on the Thames Estuary," Water
Pollution Research, Technical Paper No. 11, Dept. of Scientific
and Industrial Research, Her Majesty's Stationery Office,
London, p. 216, 1964.
10. See Reference # 5.
11. See p. 96 of Reference # 8.
12. See p. 221 of Reference # 9.
13. See pp. 218-219 of Reference # 9.
14. See p. 219 of Reference # 9.
15. Hyer, P. V., C. S. Fang, E. P. Ruzecki, and W. J. Hargis, Jr.,
"Hydrography and Hydrodynamics of Virginia Estuaries, Part II,
Studies of the Distribution of Salinity and Dissolved Oxygen
in the Upper York System," Special Report in Applied Marine
Science and Ocean Engineering Number 13, Virginia Institute
of Marine Science, Gloucester Point, Virginia, p. 41, August 1971
-------
301
16. O'Connor, D. J. and W. E. Dobbins, "Mechanism of Reaeration
in Natural Streams," Transcript American Society of Civil
Engineers, Vol. 123, 1958.
17. See p. 8 of Reference # 8.
18. Tsivoglou, E. C., "Tracer Measurement of Stream Reaeration,"
Federal Water Pollution Control Administration, U. S. Department
of the Interior, Washington, D. C., June 1967.
19. Tsivoglou, E. C. and J. R. Wallace, "Characterization of Stream
Reaeration Capacity," Project No. 16050 EOT, Office of Research
and Monitoring, U. S. Environmental Protection Agency,
Washington, D. C., October 1972.
20. O'Connell and Weeks, "An In-Situ Benthic Respirometer," CB-SRBP
Technical Paper No. 6, Federal Water Pollution Control Admin.,
Middle Atlantic Region, U. S. Department of the Interior,
Washington, D. C.
21. McCalla, T. R., "Introduction to Numerical.Methods and.F0RTRAN'
Programming," John Wiley and Sons, New York, pp. 180-185, 1967.
22. See pp. 310-313 of Reference # 21.
23. "Simplified Mathematical Modeling of Water Quality," Hydroscience,
Inc., Environmental Protection Agency, p. 72, March 1971.
-------
-------
EPA-440/9-73-004
AUTO-QUAL MODELLING SYSTEM
Supplement I
MODIFICATION FOR NON-POINT SOURCE LOADINGS
September 1973
Norman Lovelace
-------
-------
AUTO-QUAL MODELLING SYSTEM
Supplement !
MODIFICATION FOR NON-POINT SOURCE LOADINGS
by
NORMAN LOVELACE
-------
-------
TABLE OF CONTENTS
I. INTRODUCTION 1
II. DESCRIPTION OF METHODS 2
A. Non-Point Source Flows 2
B. Non-Point Source Quality Parameters 3
III. OPERATION AND RUNNING INSTRUCTIONS 4
A. Entering Data 4
B. Running Instructions 5
1. AUT0SS Example 5
2. AUT0QD Example 6
IV. OUTPUT DESCRIPTIONS AND LISTINGS 7
A. AUT0SS 7
1. AUTJ9SS Listing 9
B. AUT0QD 47
1, AUT0QD Listing 48
V. EXAMPLE RUNS AND SENSITIVITY 92
A. Example Data Deck 96
B. Description of Sensitivity Figures 99
-------
-------
1
I. INTRODUCTION
The purpose of this supplement Is to document some changes and
additions made to the "AUT0-QUAL MODELLING SYSTEM" [1]. Only the additions
and changes to the original AUT0-QUAL models will be discussed here,
therefore, it is essential that the reader first read technical Report
No. 54 £l] before reading this report.
The major additions to the original models are the inclusion of
non-point sources and loads into the solution. These additions represent
a new capability of the system, but do not change the original operating
procedures in any way. Thus if one made the changes to the original
source decks that are presented here, one could continue to use the
models in exactly the same manner as before, even if the new options were
not used.
No attempt is made here to present methods for catagorizing and
quantifying non-point source flows and loads. Instead the method of
inclusion of these data into the existing models is presented. The user may
find that these changes to the models will make them a viable tool for use in
the determination of non-point source loads.
The descriptions, operating instructions and sensitivity runs
presented here should be viewed as supplemental to those presented in
T.R. 54 and not definitive. Complete program listings are given here to give
the reader a quick reference to the existing programs.
[1] R. L. Crim, N. L. Lovelace, "AUT0-QUAL Model!inq System"
Technical Report No. 54, Environmental Protection Agency,
Region III, Annapolis Field Office, March 1973.
-------
2
II. DESCRIPTION OF METHODS
The inclusion of non-point source flows and loads into the AUT0-QUAL
models primarily represents an input-output modification. There was no need
to change either the structure of the programs or the computational
methods used in them. Both models required the same changes, therefore,
they will not be discussed separately at this point.
General:
The non-point source flows and loads are referenced to river miles and
entered as a rate per mile of stream. These data are linearly interpolated
to define values over the entire segment being modelled. This
interpolation procedure is identical to the one described in T.R. 54.
The non-point source data are considered as junction parameters and have
a default value of zero.
Once values are established for each junction, they are multiplied
by the channel length to obtain an equivalent point source flow or load.
After the non-point source parameters have been reduced to effective point
source data they are combined with the existing point sources and the
solution proceeds exactly has presented in T.R. 54.
Non-Point Source Flows:
This parameter represents the net non-point source inflow
(excluding rainfall) or non-point loss (excluding evaporation). It has the
units of (ft /sec)/mile and may assume either a positive or negative value.
A positive value represents an inflow while a negative one is a loss. The
variable defaults to zero.
-------
The non-point source inflows and/or non-point losses are distinguished
from the point source inflows and diversions during input and output
operations. However, they are combined for internal computations.
Non-Point Source Quality
This parameter(s) represents the non-point source contribution of
whatever parameter(s) is being modelled. Both models have the capability to
have non-point source inputs for all the quality parameters that they are
designed to model (CBOD, NBQD, DO and conservatives). The non-point source
values have the units of (lbs/day)/mile and default to zero if nothing is
entered.
Once values have been established for each junction (linear
interpolation), a mass loading rate (Ibs/day) is computed for each junction
by multiplying the non-point source value by the channel length. This
mass loading rate is then combined with the non-point and point source
inflows to give a inflow concentration. It is also combined with any
point source inflow concentrations. If there are no inflows (point
or non-point) at a junction then a fictitious one of 0.001 cfs is assigned
for the purpose of assigning an inflow concentration to the non-point
source loading. This fictitious inflow will not influence the resulting
quality predictions, it did, however, greatly simplify the program modifications.
Also this method enables the model to handle non-point flow losses while
having non-point source mas^ loadings.
-------
HI. OPERATION AND RUNNING INSTRUCTION
Both models may be used In precisely the same manner as before,
however, the user now has the option of entering non-point source
flows and loads. Again, only the additions and modifications to the
original operating Instructions (T.R. 54) will be discussed here.
Entering Data:
The non-point parameters are entered as physical data in both
models. Since entering physical data (SUBROUTINE NETDAT) 1s the same
In both models, there is no need for distinction. Physical data Is
entered under the program control card "DATA". The following new data
codes have been added for the non-point parameters:
Data Code
N0NPR0W
N0NPCB00
N0NPNB0D
N0NPD0
Definition
•non-point source Inflows (excluding
rainfall) and/or non-point flow losses
(excluding evaporation), (cfs/nrfle)
-non-point source ultimate carbonaceous
oxygen demand, (Ibs CBOD/day)/nrHe
-non-point source ultimate (Ibs NBOD/day)/m1l«
-non-point source oxygen, (excluding
reaeration and photosynthesis). This Og
contribution Is usually associated with
runoff or rainfall. (Ibs 02/day)/mi1e
-non-point source contributions of
whatever conservative constituent
1s being modelled. (lbs/day)/mile
The card formats and method of entry for these new variables is the
N0NP (4 letter name of
conservative parameter)
CLA \
-------
Running Instructions!
The basic running instructions for both models remain unchanged.
However, computational data entered under the control cards FL0W,
CB0D, NB0D, D0 and the 4 letter conservative card are now strictly
point source data. The non-point source parameters are entered under
the "DATA" control card. Following are two general examples to demonstrate
the use of the program control cards with the new options:
Example 1 (AUT0SS)
PROBLEM; Run TDS, CB0D and D0 under flow condition No. 1 with
one set of non-point parameters. Then run CB0D, NB0D and D0
under flow condition No. 2 with a different set of non-point
parameters. The control card set up for this problem would be;
DATA - enter physical data and first set of non-point parameters.
FL0W - enter point source inflows and diversions for flow
condition 1.
TDS - enter point source TDS inflow concentrations and boundary
conditions » compute solution.
CB0D - enter point source CB0D concentrations and boundary
conditions - compute solution.
D0 - enter point source 00 concentrations and boundary
conditions - compute solution. .
DATA - enter new-non-point parameters (there is no need to re-enter
other physical data unless it is to be changed).
FL0W - enter point source inflows and diversions for flow
condition.no. 2.
-------
CB0D - enter Inflow CB0D - compute solution.
NB0D - enter inflow NB0D - compute solution.
D0 - enter inflow 00 - compute solution.
HALT.
Example 2 (AUT0QD)
PROBLEM: Run CB0D, NB0D and D0 for the period of 01/01/1972 through
02/01/1972. Assume there are three flow regimes during this
period (01/01 - 01/10, 01/11 - 01/20S 01/21 - 02/01) and that the
non-point parameters are constant for the period of 01/01 - 01/20 and
change for the period 01/21 - 02/01. The control card set up for this
problem would be;
DATA - enter physical data and non-point parameters for the
period 01/01 - 01/20.
FL0W - enter point source inflows and diversions for
01/01/1972 - 01/10/1972.
00 - enter point source CB00, N800 and 00 inflow concentrations
and boundary conditions for 01/01/1972 through 01/10/1972.
FL0W - enter point source inflows and diversion for 01/11/1972-
01/20/1972.
D0 - enter point source inflow concentrations for 01/11/1972-
01/20/1972.
DATA - enter new'non-point parameters for 01/21/1972 - 02/01/72.
FL0W - enter point source inflows and diversions for 01/21/1972-
02/01/1972.
D0 - enter point source inflow concentrations for 01/21/1972-
02/01/1972.
-------
IV. OUTPUT DESCRIPTIONS AND LISTINGS
AUT0SS
As already discussed, the input operations for AUT0SS and AUT0QD
have not been significantly changed* except for the additional parameters.
The program output has the-same basic structures however, some new
data are printed:
Under the heading "Estuary/Stream Data" the non-point source
input data and other physical data is printed.
Under the heading "Steady State Flow Conditions" the point
source inflows and/or diversions, the non-point source inflows
and/or non-point losses, and the channel flows are printed. The
non-point losses, and the channel flows are printed. The non-point
inflows or non-point losses printed here are the equivalent
junction inflows or diversions (the non-point source value
multiplied by the channel length).
Under the heading "Steady State (Constituent Name) Input Conditions"
the point source inflow concentrations and equivalent non-point source
loadings are printed. The non-point source loading fs the total
for the junction (non-point source value multiplied by the channel
length).
The following new. variables have been added to the program:
Variable
CBDNP (J) CB0D non-point source loading for junction J
(Ibs. CB0D/day)/mile
C0NNP (J) Conservative constituent non-point source loading
\ for function J (Ibs/dayJ/mile
-------
8
0XYNP(0) 02 non-point source contribution (Ibs 02/day)/mile
QINP(J) Non-point source inflow to junction J (cfs)
QIP(J) Point source inflow to junction J (cfs)
QNP(J) Non-point source inflow or non-point source loss
at junction J (cfs/mile)
Q0WP(J) Non-point flow loss at junction J (cfs)
XNBNP(J) NBjJQ non°point source loading for junction J
(Ibs NB0D/day)/mile
Program Listing.:
Following is a complete listing of program AUT0SS. New or changed
cards are marked by an arrow.
-------
Main Program
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
*
4
4
4
4
4
4
4
4
4
a
4
$
4
4
^
*
i)
4
4
4
$
4
4
&
4
4
$
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
$
$
O
44*4
*•»»•»»**•»*»»*••&•» tHHH
1
WATER QUALITY *
<
4 >
4 UJ i
4 H- i
4 < >
4 ^ '
4 CO >
4 4
4 >• *
O 1
< X
UJ X
*~ X
in x
x
I X
X
in
4 in
4 0
4 t-
4 O
4 *t
$
4 2
4 <
4 cc
4 O
4 O
4 CC
4 a.
4
4
4 X
4 X
4 4 4 4 X
4 4 4 4 <
4 4 4 4 is
4 4 4 4 *
4 4 4 4 <
A * A A i
9 V V V «
4 4 4 4 <
4 4 4 4 <
4 4 4 4 <
O U O O C
« 4 4 4
» 4
« 4
» 4
> 4
* 4
X 4
X 4
X 4
X 4
> 4 UJ
0 4 (J
» 4 <
X 4 _J
» 4 UJ
X 4 >
> 4 O
» 4 J
» 4
X 4 •
X 4 _l
X 4 •
> 4 Z
* 4
x 4 a
X 4 Z
X 4 <
X 4
X 4 £
H 4 •—
X 4 {£
* 4 U
* 4
X 4 *
4 _J
4 •
4 a:
4
4 >•
4 03
4
4 Z
4 UJ
4 H-
4 h-
)Qt ^^
4 a
4 X
4
4
|r 4
I 4
K 4 4 4
1444
(444
(444
» 4 4 4
»A l*f A
™ 7 7
(444
> 4 4 4
(444
J O O O
4
4
4
4
4
4
4
4
4
U
•— i
O
*•»
O
UJ
CE
U
Z
UJ
o
Z
UJ
4
4
4
4
4
4
4
4
U
UJ
U
H-t
u,
u.
o
o
-J
UJ
u,
in
»— *
_j
o
a
z
z
«t
4
*
4
4
4
4
4
4
4
O
z
o
t— «
H*
o
UJ
CO
K-
z
UJ
x
OL
O
UJ
>
UJ
o
_J
<
_j
o
a
z
z
• o ^
X _J X
O » X
— in
o
Q
X
— ac
— .-»*cr
-~ « (M O
(\J — •
in in .i— ru — < z x
— oinina.z~>
*-lOUJO<\t.JXO
O «• » •»/)»••» •>—
• ooo »omujz
o
c
-4 X
* <
Q <
O Q
CO X
X X
X t"
O <
X O
Z -4
* X
o o
X It,
u
UJ
z
o
£
O
u
u u.
o
T
O
o
<
o
-* o
11 II
GO:
-* u.
ti s:
*: at
* *
-* a
^•7 ^*"
< 3T
X -
CL Z
< O
-J S
*- ac
o ^ o
—«< rv
» o *
O fUQ
or *•* cc
Z N- Z
o *~ < —
II O >• O
H- < or «*
> UJ O UJ
z a u, or
-------
Main Program (Cont'd)
10
x »«•« » o » » • o >- -»
n < » x o 3 *•» -»x x *
»- in-«o x
X<*"^f)3'^Oh— X *•*•>"••
•*•• r> x —
»«/j tn x r> x x x
r> tvi -=* x H= < -• • -«
in » -«
in • x x
•-« sO «*. «•*) X *~* O 3 O >— «•* X
»-*X»O»<*»»X3 X X *•* •>
<»m~«,-«xr»».»r'i <-> • x *
c ro 10 ^* o nn ^ ^*)
-^ — X fO »
~ — * X < X
X 3 X »< X —
• x—» m<-^x
1X3
» X —
X <*> «*>
«/) O
>t in
« » -^ x
«x x »
— x
xxr~^tt:ox »i—
sO f* ac o* •—" CM n
o »»^xu,
v* X •• "•* UJ
* * ** QC J
x-» * x —
* * x-*z
-ix-*n
UJ— *» • a:
o — oxuj
o o (vt in >
«/) £ » X * X
t/> I— X —« X '^
ONS.
» J »
H-
00
n»
y: » x
^ xin
< in *
x •> —
a. — *
_j * x
•< x "*
— «. o
^ O (VI
O (VI »
in ••
*o x
a: i -4
x^ •
»0 X
< ruin
ox*
^"* IL
^^ •» »*4
cr x «-
o »o
3 (VI (VI
K- • *
UJ O
O *
1-1 «X
(/)••»
< • -
o
o
o
CD
u
» T
— X —
UJ
UJ < -»
>- z *
»-» QC X
a o —
a u. —
o
If!
y. I-
X UJ <
o a _j
ro i •-.
(VI f*> -*•
in
O UJ>-
Q. ^O ** Z 4 O
3 » -* • O O
H- O - z
— - o
JOS _j _J >-
-j < a — _i
< uj o u, < o
u 2: u. «-i o o
O O (VI
O sC C
o
UJ UJ Z
z a. »
• v -«
UJ t- If
QL _J ~>
>- II
>- ift o
_l Z r^-
— O
U, O O
>-s _J Q
m
-------
11
Main Program (Cont'd)
o o
CV O tfl
•-« ^ —•
Q *"* o
»- O H>
o *"" o
o o o
o ~
-» 3
Q ~ O
00 O _l
2 C u.
-. _J^-» ~>.J~} ~> _J
-5 ~> — • 2 "J 2 -» • 2 2 •
— 20LX2~) UJUJt*— ZO-X*"^ UJ UJ » —» 2 X*OO LU
O -JO>-^O O • > II O _JO>IIO O • >• II —• _JS>IIOO O*»
O UJ < _J _J II IIUJOUJH'"^OUJ>-UI ~>2 >IIOX2OOt/>0-)2 >IIOO7'OQt/)in~)~>2 >-
iit-i o~**-«oi— (/> o u *-4 »-»«-»--« n —•«-••-• o H-
— (— _J_l_JCDO>-H->J^'^^-»>-_l_J_l<-'QH>h-_J2'-<'~t— _J_I_J^^OQH-*— _|
->2T.J-J_I 02 "0-. -?2_J_J_J 02 ~0 -)2_i_l_l OO2 —
in
-------
12
Main Program (Cont'd)
o
o
©
o
H-
O
3 ->
• z
o uj * z Q. x:
cr » ui o. -^ — —"Two
3 O • > II -) _IU>0
OOUJ»-->»'UJ<_J_IO
_J ^ O, -I t/l O O < O •-<
U. >IIGOZOOV)
O »- «/> vO tl H« O,
*
___
_J — O ~>Z_I_J_J OQ
-------
13
Subroutine SETUP
* o
«~ in
o ru
in —
ru o
*~o
- "> 2
o z x
m oc »
-u « ~>
— ~ o
n o in
•
— uj -*
ru » o
< -~ in
• o ru
o ru -•«
in — ^
ru a. o
— z *
~i UJ ~
< H- O
» • in
o o •*•
in in IM
CVI OJ •>
o > o
* •> in
—. —. ru
00"
in in K-
ru ru z
—• *•• o
H> U) Ul
13 < in
o » *
o .
a. * o o
o — min
H- o ru ru
uj in — —
en ru x o
tu
z o o
H-l H-< X
o f o.
o
in * o
ru — in
— o ru
O ruo
O *- Z
201:
X * *
-.00
o in in
in ru ru
«- 2 (/)
O »-" u.
O O 2
GD • •
O -* -.
• O O
— in in
o ru ru
in — —
ru _i o
*• o >
»-«> o
o — -*
oc o ro
o in •>
• ru o
-% ^ in
O •* (VI
m » —
ru —. <
"01
in in o.
oru_j
o —• <
* in •
— o ~*
o » o
ir> ~. ru
ru o "
— in <
a ru i
>-." Q.
O (VI
my:
-» ru «.
o. 2
20
>• o
X _l
o •
ox
in x
ru *
— in
a o
2 w
oin
»2
«» *>
oa
in u.
ru r
— cr
a. *
22
2 3s
O O
or
o a
in r>
ru x
«- a
a. «
2 X
ffj U-
2 -3
XO
* 2
,— , » H~
o 2 >•
in uj 2
ru _j •>
— x or
a •> •»
2 ~>2
02 »
O
X
^*.
2 o
o in
z co
ru
ru
-J X «J
M _J *~«
3: »-• s
x a: x
* x »
I
JD
O .Z
00
0- 3T
x z:
3 O
co a
_ 2 . .
i in 3 2«-
— a * a *->
occ +o_izruz
22ininz»-«Q: ncruj
o o cr z u -> it D
•Z. UUJ — X~ — 2
o miniiii-«o->«-i
T 22-J2 — -« — K
Z II'Ml »*• UJ -) -52
O 0-JZ-JZOZO
o 22xx£roaro
2
3 O
02
Z ••
a ru
n
II 2
•-• o
O
oa o
2
O
a: i
H D
— H-
O 2
o
ru
~> O
2 •
•• O
—i II
II —
o o
• •
o o o
ii ii •
** ~ o
->•> II
o
• o
o »o
ii o •
-. u o
-J ~ II
o
u o o
••
00
o
*
o o
• II
o -^
II ->
-------
14
Subroutine SETUP (Cont'd)
o o o o © © o o
• • o • • • « o • o f> ii
o © o • oo o oooo»o»o •> _>
it • MOO n • woo©ru» •!»©»»©•© *+'*.
O".O«>II • ~* O O -= • • • It O O ~ II —- H O • O II «
• "> H ~> — O T II »noOO^H M -)-»">-» M O H it: ~)
O-^-.'-OII^-^O^'ll II « ~> -- «•-)«- -J « II -« »-
no:-)O — -^>-~> n x-.-.--^ — ->->»-i'-t-i — ->^-)O<
^.^^H-0.~>3:»-^H- •>,-> T>CL"->-QOOO<-"^^riX
-5<_jo< — oco-5Q— -- 'r"*ojoooo> — in o.
o
n
-------
15
Subroutine NETDAT
O (VI ~U,
in «- » o tv
(vi Q -. in *:
» — o o ~> <\> ~
-. ~> zin *o — * in (VJ OJ <- in
*"UI—.OJ'-'-'a.O
oj *o-~-z-«u.Qin
* o MO o z » z
0(V-«U — -nOQC
fviQ-Q^inintviz
— z » o oj oj <•' a:
—«oj —. in — »»• a. •
oj o in u
«^« xz <
X UJ *•««-• t/>
•XV.T. \
- _» o
oj *~»-«a x u, co
x
u
x
<
o
~* •> H»a CD z u,
X * 0-* X •* U
a z_juj(v»
x x o ^* -*• ox
inxa.aou<>-«
_j_j_j-j_j-j>ino
z u
< < u _i
'^- « H- Z U.
< < n
* «•«
x o *
• X
X 3 »
•o a. «"
•• r
*" z C
x •-« o
in
~«tux
*. ••
x cr —
* *
-.i~ x
* -«
x in ^
*•• x <*)
o »
m >• K.
* ae
e-
X^^
^*» ^**
-* in
a.
z
o
o
o
in
• »- «• o
~ in _i
* in fi
x ••
^ uj
— i x
C> ^^ *••*
O ~* * X
f-4 » X •>
CC X » «"
Z — 4 ~«
-ur .^ ^» ^^
UJ < •-« Sf
f- T — n
I-* a in »
a o n x
^ oj n
o
-j ~ a.
uj in o o
3D *- I- O
< » in m
_j x _j — h>
—. rvj • o Q.
o » c • z
OJ -J UJ C5 »
* < • UJ •-*
O (VI _J • I!
CC — UJ l/> -7
Z I- OC >-
•~ < < a o
o y _j -z •$
< a >- —
UJ O U. U. O
aj ij_ i_ >-) Q
o o
O OJ
o
u
z
o in
•c »-
QL
O Z
» o O »
-» • OX
-> o »
— .-« — o
x u. -• z
» OJ «£ »
*- * _J.-,
"^ X • ^
o m uj —
«*> » z a:
» m • uj
a •-• uj _j H-
GC — OUJ Z
Z t- Z CC «
—
-------
16
Subroutine NETDAT (Cont'd)
_tr I ^- I ,_, ct _j •— _J fi ut u/ I- _l — _l »— M. _l — -~ -— ^- >—' li —I
tvo^
-------
17
Subroutine NETDAT (Cont'd)
U fVI o 2
Ul •> CM O
l/> X * •-«
V (ft X H-
»- * in <
u. ^ » or
— o —. •-
i o a.
v> o x ui
ia iu v ui
*-« a z a:
H- —' •-* I
«-e *•» ;/)
O (/> •-»
O U» -J (A
J I J UJ
UJ 3 4 r
> H- U. >~
< z z
j -
< UJ < (/)
o a ex o
_• x »-
H- UJ I O
K X
-J 20.
u.' -
2 H — H- _l
< < a. < •-*
r as < on <
u > o a
z ui a -» —
UJ *+ O • < "> UJ
o "> «-• "^ > i o «^ o
< x »- TUJ o:<*^.»
— r>» w> 3 z o u* uj < fu»~ > *~ o 'if
cc • « — -< ^ "> uj OH- z > tx o
•> o x > a. x »~ rwa. x uj oz X«V»CL ao
t/)ii ^»*oztn«1' z>*» h-*^»»»x
»-« ^•o»~*r)">o«'f?>~> >-ox">u
a.z *x >-*x»->-*xo o=-*ui3:«T
z ** xao*xoc •xa«i oxx»acu.
«> in »oxm * o x in * u. »• m — » >
X *O r*-JO*»">Q. -~~>»V-JU
*^ ^» 2 — -> — Z -7> — Z < O Z — « Z *
X2C * »O-Z* »*»Z* »> K-»#O»->
»u. xnjar*x-«Q.»x^\ ooxx^->
os — a uj a. ^« a < a -* jx -» x t- —• z a: ~
z a -.'- < i-x-*— < ><-.'" < ~? a o — — o «t o
» o • o o -. > _juioo > j>oo >-5 — j x o o m > -> >-
•> z H- -t CM _j «H.>cf\j _j «ujoo(\j jza •Q.-»OJXJZO
**»O i-^ » « «- UJ~"«^» ** UJ — —« » •*•»< UJ — CV!»{\1— »X
--<» »o*oozo:»o ooza*o o-«> ozi:»3OO'-«Q.
ii — axioo»ujccx o o • uj a r onut o . uj cc x OHII
- ~
-------
18
Subroutine NETDAT (Cont'd)
X ~ 0.
< o X
Q (VJ UJ
x * *—
x - x.
o in r
^O ^ ^C
^v ^* ^J
f\i o ;r
o uj >-
u>
X X
O I- O
«•» U. (— '
o
t/> V) O
H- «- UJ
z *•
UJ (A O
X H- UJ
>H Z CC
O UJ
O U. LU
UJ t~
UJ O «t
v: u cr
H- Z — >
a. o © -i • a
-> a? © uj
xzo a -*OJQ —
a uj ~ • uj *•> i ~>
0»OH»© -«,Q. X—Q X
«o tn >- x © ©o vt cc ~> o -» *>:
(\)>« x o a.-o^ ©en
oz x oo * i M -SH» x x o «* K
t» »• M • x owi^'f^a-uj tu*- roa.
>- ^ -> u »- ^- no z *- u> -* ~> z
o»*x< a»xo*"^ »«x o«
oxxcru. ozxcr*->-* x*o:© »- v
»in»> o«in» »* inx»*> »
«-> * -> o x » o ox N. »-•-} © ox
>-z-*z* ^*^.zo*^- ~~-z© o»
X** • -. Q. X * »-*->© * O » -J- —"^
QKX^T tn»XtV)-»Z • XO MZ
uj2«-»^ »^»QCCO ^*
CO Q-«.*-—.< H- O Z «•» -— < Q »H * -^ — X < X OM
juioo > -> x «j*©o > j * -> -* ©om>")— _j *, ~>
• U) O«(M»_IZ~^ »OZ
UJ'-(VI»*~'«»UJ UJ«OJ» — UJ '-•"-' fU» *<-=> UJ — •
©z- o -«-« ©za:-«
©•UJtrx^oiiti o*ujQ£X o o » uj » ^ a: x < o n ^ o • uj »
UJOJ^X'^'-^T-^UJO.JK^^ H-0_JH-")OUJ»'^O>-~5OUJ©-Jt-~>
^^lUZZ — OO ->3-«UJZZ~ O-«UJZ IISZ-'XO II 3 -* UJ Z
•Z ac»-t — ^_ruoo«Z CD»-<'-H--^O CQ"-»lT»—-Z — N-—«O©-*Z J)»-»in
lPH-»-tO< Ul< O< OD~5t-«UJ<'- O"1»-«O<1 *•«
rv»(\jf\j
-------
19
Subroutine NETDAT (Cont'd)
Q. <
x tu
uj UJ
O < I <
• U — -> UJ
ouj -> ^ *
(VIO x -" ..
i 0:0,1— — *^^ or»-«
^,O •> X 3 — CX Z 3 * I—
-> o« ot/)uj a,^,t-s cra,«.otn»-«
«• a>=»>- 2*< o»2t/»r-H-2
a, 2^: <*)a.** »-ixuj CT»io«-?o-«
x T o z * r-^o: o n*- x o 021
uj (v * o»# CD*** • a. -o •>o^*»'*i
H- in«"> K>--» mo->o O2.*o>~>*>n
<— «^«x » x «• • o* • iAx*>o o»io »OH-»IT»
l/> » PI -> o •=>«-! * IO •> CO OX •» ~> "t »
»-« «~zo —z* «*zv »-»z^oz-«
O « O •• -4* *•*• «• * —„ •• »«. «->"*> #«•»« f— O •• *
« x fu •-« ^ < tx ~> x > •-« ~> in 2 x —. •=*> ** —. i-i x
•-« r=«»QC CO UJ*-s »- «*4-»*-'X< >-ICDO~-
^ ooir)>~>-» -JUJ™>^« oov>->« jooo —> j o OD o
-> (V(\j*-jz") »a:z< mM^_J2< • o ao ai — _i »_juc\j
«»• (*")•..— ••«-•••— UJ *-* •• UJ f) • «^ *^ * UJ UJ'**O»O'** UJ»'~'»
nj »O>-O-«M ozac^ar »o O'-*'* ©2ar*or Q UJ O J H- ~) -^ UJ f -» »~ ~> -* UJ O _J H- 3t —• X >- O _l • H- «
II 3 2 — X 3 M3-«UJZ -)3Z — IO3 "^3-^UJ22-^in3'-*UJH-Z'-
^.2'-H'-«OO-*2 (D>-«U>'^2*'>-aLOO'-2 00 >-« — H- * O ODin»-iH-
-> »-i uj < — n -> ^ o < >» a >-* uj < x voac»-«o< uj < — o>-iKt-2*uj-jni-iH-h-_j_j>-y. T_JI— -j-jjs'^
oj 2 »-• cr i —i -«Q:f-_j <2 — _i >-• a: a. _j ~-^_IQ:-^
i£ o a: o < o x. o ou. « o u oa: o < o uj o o u. < x o a. < c u. u. < o *
OO*U-inUQQOO>--»OiU.-'(JO*-»t-'UU,X
f-^ —» —* —«
l/> O OO LO O O O O O O
in
z
o
H-
<
2
UJ
o
o
(J
z
t-a
H>
<
a
3
H-
tfl
2
UJ
O
V-
x
O
Q
UJ
<-•
o
(VI
X
in
T
a
a.
in
2
<
or
t»
2
UJ
0
o
o
o
o
00
u
^ J
X <
-------
20
Subroutine NETDAT (Cont'd)
o
CM
•>
X
in
a.
a.
2
O
UJ
o
2
O
u
O
O
00
2
«/)"-*
ox x
»- * ui
oo ^
OJ o -^ «-
2200
.JIXfVKVl
» O O UJ QC • O
ct o o 2 UJ tr x
3 I- O »K«».-9
23»-»t-Z2—
— O «/)•-• — •-
UJ O O UJ<
O
O
OD
tr
*
"5
c/t
Z
o
or
»-
2
2
o
O
2
ui
o
>•
x
o
o
UJI
>
-I
©
to
CO
**s
'O
_J
(r»-e
K- >» x
* in
—z X — «•«
> • f-i^a
xX~>-*<
oxoox>
_l O -* OJ •-* _|
o
(VI
»
X
in
en
2
o
t/>
2
©
a:
H-
2
ui
o
2
o
O
r
-«
nj
XH-
QC •-«
z
o
a
<
a
in
2
LU
o
x-
X
O
o
UJ
Q.
3C—
Ot/>
«^ a
*
*
a
s
ui
*
in
^-
0
O
+
uj
<.n x * — rvj
in • — x a *
O O -- • — ! «t U
o
»^
o
2
o
OJ
OOUJCE*OOOOQ£»O
oo2UJQCXJVjoouj(rx
,
_) »2(VI
— » UJ » *O
O O 2? —s •
UJ
2
O OJ O _J •
•«f»<\J*' UJ
»O»OO2 O«
o«n^ or x x o o • o _i
h- O _J "> -< UJ X -• IT* ¥~ O «J O UJ
-0"ZZ'-XD'-«22«' D~«UJ 1132— »D-«UJ -«OD
(/>»-««*- lf» O .-• — >--* O 03 O -. 2 — H- -» C O3 -• <
OO UJ < •> O UJ < — O
-------
21
Subroutine NETDAT (Cont'd)
X
cr
in
>-
a.
oz
CD
U
in
CD
_J
3
CO
O
u
Ul
u
cr
o
in
o-*
a.
z —
Z X
o o z
CD (M O
O »CD
X X O
X
cr
»
«n
h»
a
o z
CD
in
CO
a
03
O
U
UJ
u
cr
o
in
o
QL *•*
Z -
Z X
a —a
oo z
oo w co
z » z
XXX
X
cr
h"
a.
ox x x cr ox x x cr ox
oz ~ cr z oz — cr z oz
~»o. x in ••"* *•» OL xin^* ~> (x.
oz •"• cr oz -» a. >-z
(VI
o
in
CD
in
o
no
z
o
o
Ul
o
cr
3
O
Q. <*•>
Z
z **a
x z
M ~« >
X 00
O (V) *
x in a:
- X Z
# < »
X UI-«
~»cr or
x
<
Ul
cr
N-
in
o
ut
u,
u
o
u
Ul
u
CT
O
in
-» o
x a
ac z
» o
in z
0>~ I
IAZ
«
O>«
a
z
o
»
x
X
cr
UQQOOO> zzooo> oxooin>
_J O CVI (VI _l _J X ^ (VI _l _l O vO (VI _l
'jj cr ** o * o o ui cr * o .7 o o ui cr *
zuicrx»-ioozuicrx>-'Oozuicr
(/)>-• — (— v o in »-H — K >• o m
u ui<< oo LU < < o o
UJ
o o o o
X O O
«-« Ul I- O
f- »-< O
< X O
X *
o * ~
-* Z X
O **--••"•»
U. Z 00 O
J O l/> (VI -.
uicr CE o «*
«H» z^-^
in •-! K o
O Ul OC (VI
m
CD
z
o
CD
1-4
a:
»—
z
o
u
u
cr
o
in
z
o *"
X O «-
cr z o —
«• fUO.
in r »z
a. n in o
z » »u
» in * < x
« u xuicr
* _jinac »
u
u>
CO
z _j~«o ac
o o o uj >
U O (VI _IJ
oocr ••• o x o o
»-OI~-»-*>.H-O
o «"»-o
o ui < \
o u*
o oo oo oo oo c
(V <*1^ Lfl>O ^OC OO —
in tn u
U
k^
lL>
^
^
U
U
^
^
U
) t
U
U
'•t
\.t
T
U
k 4
L
k'l
fl
:A
u
u
u
L^l
^
U
tj
U
U
>
H
I*
k>
. l
^
T
LA
\
U
1
k.<
^
u
'i
-------
22 (
Subroutine NETDAT (Cont'd)
Q
O X
< V
xx
o -i
»-» «-•
» o
xn
— X
o «
(V»U>
»UJ
I—
T. <
x -x.
*QC
^UJ
(*« H
-• ac
— •«<
ocr
n o
(X
-« i
(*• X
XLJ
oo
X O -^
>- X X 2
< v£) -« CC
STO «^O. D
a: •• o o H- Q
o «*• ro H- UJ z
U. < -^
-------
o
in
n
f, O
O (M
in -=» +
(VJ Q ~+
«o o
Z X(V»
a: •-'
-too
o in o
» ru -» x
O CVI
in v:
~ (M *
~ in o-Z
o CM zo
in «- >- o
(VIO X «l
-»xo »
a a: » -i
o
in
(VJ
(VI
< o o
> * in
* o —
^ m o
o om x
in in M •
(VI (VJ — t/J
— *-o, o
Z Z UJ
K-4 U. O V)
23
Subroutine FLOWS
o
in
(VI
o
in
o
in
(VI -:O ~ ~
0,0-*
z *o
uj <~ in
H» O (VI
~* Mt-e
o~o
in MO
(V *
«• -»o
> o *
»in -»
^ (VI O
o ~-in
mh-fvi
(/% UJ O
< tno
«. » •
o o in u.
in in (viz
(vi (v« «* a:
•*» *» ^. r
_JO ZZ
O > Z 3B
> ooo
* » o z
G (*^ —^ ^
in •> o a,
(VI _J XO
o
in
M
x
o
X
o
o
ae
CO » O O O »
-» o z
o in iu
fr^1 {&
> in
z M
X V
O 0,
z o
m
o
o -j
O fr-"
•^ z
o x
<
o
z
o
z
3:
o
z
(X
*
a,
• z
or
in
<
*
3 UJ
O ~
* -5
Z
X
*
•-«-. o O » O —
oo &•<**, z a
» •— _l O 3 Z
UJ -« O Z 3
CO U. H- X ~>
_jin ^—*in < a,
»* >_ H» •-« *-a. o
MOiCLaco-i •
oo
or z
CD Z
Z>0
too
Z»OVVZ O -JO.O ZO
»O >-»^» *O*Z* 3»
i o QC Z Q» O "^ O • ^^. O O I O
• Z Z O < H- M O M O "1 It II O II II UJ
i-i>U>~) »^||— -. ^ -H -* -> o
z to j _i o-)-»a,-)-> ->-)z
O Z 0!f~->Z • O — ~ »-•
OvOO-'OH
o
I
z o
~ z
» z *
z z
O H«
-> 3Z — Z Z
• «•» O •"• U. *-• O
*-* • Z — O HS M I Z
O<_IU.OZOO II -)<
a-*uay:zo(vi i zzx
Z»-a3~JO~J II HO
*- < •< II "> «- O — o Z Z
oy_io — >->-oin
-------
Subroutine FLOWS (Cont'd)
24
*
—*
Q.
UJ
O.
O
a.
2
o
a
a
u
2
I-
3
a
2
a
o
i
*•"*,
a
o
a
i
«•' Q.
O TO
II OO •
— uo »o
Z ~» 3 -J O II
< 0. 2 U. II I-
X Oi-. 23
O Zt--l»-0
2 *- 2 J X X
— mo O 3
< — * X
H- in — » »
U) (VI * -=> *»
» X 4 *
O X ~- •**-«
< •-« in
H- X »(VltVI
x ~ x &x
oo * ~« x o*
CVI X • -*(VI
x — * x in
in .n ••«• «° it
• AJ * -» o
-. * x *
* X -• X X
xo — -*-*
•-« oo in » •
— * (vi m •=«
in ~* * (vi •
(V) * X » O
• x ^o x «=«
^ in in «• u
»fvi u. m
x • o u, 2
» o o
-«xx «
* « «* x f-
^^ ^^ ^"^ ^ <£>
— > Q. O
o
o
in
o«e
• >
O UJ
in
<
*
, 00 O
O 3
02
xoxin
"H*
uj x
Ct -e
»2t/>G
a. x » 33^2
< 3 — in t/i — o
*
z
• o
— J/)
> 3
I
2
X !
O 3 UJ
t— ^-i © »>* «-«
O 2 ^^ 2
3 •-« a x o
_J >
H-O
o
x <
in H=
x
< »
x »
o-
U. X
(VI
X
in
o
**f
in
3!
_J
U.
2
UJ
U
a
2
O 2
x a
NO »
x a
in *
* •
x —
-«r
o o >
*-»OJ _J
•> o o
a x o
o
2
U
X
UJ
(/)
o
o
u.
UJ
o
a
o
Q. —
2 a.
O 2
2 »-*
X O
o »
in ->
» * ~j
« X 2
* —i •
X — —
~ oor
-^ ^
fVJ CM X J
-s »tn —
• o » o
a x — o
II 2 X »-« -.-'f-i
O2»-«3<-'O — UJ
»o o
a: x o
2^3
*- H- O
UJ <
X 2 —
o o
vOr-
2 *•* OC U. -*
o o o
GO 0^ ^S
-^ oj n
in
•-• a i-» _j »-* o:
o
OJ
-------
25
Subroutine FLOWS (Cont'd)
X
UJ
u,
o
Id
(/)
tfl
o
CC
o
o
M
e>
X
in
o
t**
in
a
UJ
u.
o
O
U.
o
a
o
z
X
in
*
x
o »
(VI ">
xac
in »
~ z
z «
o •-*
ft cr
Ul
<
X
o
X
X
in
»
-»
*
X
i U ~
Z •">
cr —» ""
» -5 a.
o — z
z a. o
• z o
Q£. C5 *w**
o o
o
X
UJ
I-
•-
ct
cr _i
o —
a. o
< o
> H-
UJ O
o
o
z _i
•-i _/
o <
DO
o o
in (vi
!—» •>
*. o
cr x
3t -*
Z —
UJ <
"•* cr
cr o
O -Z O
O II ft O
H. -) O II U)
o o-^ ^z z
>c i —' t-i cr
-J Z 3>Z H^ 0
< O *->O O UJ Z
u o o o o cr ui
o
in
r
«.
-------
26
Subroutine FLOCMP
X
-»
-»
^
rv
ut x
at o
^* r^
0
in
(VI
^^_ «^
o x
m x
(VI *
f) O
»(VJ
00.
in <.
(V >
« UJ
(M ••
» O
-. in
O (VI
in —
U)
O 0
tn in
M (VJ
^B» *MM>
O >
(VI
o —
oo
zin
X (VJ
oo
mo
«M Z
*•» X
rvj *
Oo
• in
— (VJ
0 *"
in o
(VJ O
-* 03
-« CJ
« O
«* in
O (VI
(VI »-»
"Q
M O
• CD
— O
VOL(250)«CIN(250)*C(250)«
DVO(250).NFS(250)»rtMC<250)
ONNP(250)»QNP<250)«OXYNP<250)
DWN9RMFR»NSECS«XMiLtLCONS*K2FI
• •ox
o r> -
* a
- *
in • o a.
o • (vi o in 3
e »in -. «- m fy x
•"* ««.
O 0
in in
(VI (VJ
K- tn
o »
CLO ^»
x » o
o — > in
o o • z
« •
-*-. u -^.o z
o o
in in
(VJ (VI
o a
o <
X Ul
a. CE
(vi n
• oinui
-* (VI (VI _J
O ~" »
in < a
(VI X i.
" X
»
X
z
4
X
U
X
•*
X
M
a
4
>
_J
•
t- X
>0
zz
• 3
3t X
Z ^
in
o
H-
o
0
«Mb
O
.
~* o
o •
in o
(VI UJ
•~^ •
z *•*•
(X Z
»- •—"
— o
o •
in cr
(VI O
»• •
X ©
H* »« •
OL Z O
UJ O ••• •
^•^
Z
rvi
4
*
*
Z
«-•
o
**p
in
ffl
4
*
«««
Z «
«- Z
<-l «-»
4 X
*• t=~
« O
z»=«
— ' *
X $
H— xu.
CL Z
O
r*t
O
H-
o
o
a
u.
X
ex
•
UJ
J
•
A 00
z
*"O
O H- «.
a o —
• 04
^*% <*fe N^,
Z O <«•
4 • —
.0 Z
?>.21HZERO AREA IN CHANNEL »I
M TERMINATES I
x <
-»(X.
— o
oo
(vj oe
• Qu
X 1
•-«
•O
x ac
«UJ
«• M
«*
X U)
<— 1 t"«
«-•
0 X
2 ro i—
*«. r- « O
>- -j a
x < v.
O -J
-» in ^
t
3 •
^ O
» 2
Z
o
X
X
o
13
L
O ~*
(X CX
z ^
>
_J
<
^
4
o
"*'«
* 4 Ul
O II •"••<••*
•~iZ Z Z
I/) •* •"•
Z o X ^"*
Ul •"* H° 4
X i\ «-*
>-« O Ul U.
O Q Q •"*
,
0 X
"•» Qu
Z UJ
*» O
X II
»•= «
d. Z
UJ —
O 4
IT.
• o o
O Ul •"•*
Ui • ID
• « CD
>•• Z 4
> — • II
Z 4 -.
** «=• 2
U. U. —
HH H< >
+ r*t f
ac x
Q ~* »"•< (V
••* Z "••** O
•** ^>
O UJ< I
>->- X 1- CL
*•« a a. o
oa: ouj H-
o :x u, a in
i— <
GO ^^
•^
O
-> z
••4 «•*
*-• >
o
— H
-«,
*"J
•*•»•
4
*
^^
••*
1
"^
%^
4
»»
*
in
.
o
_J *
z z
»UI
(VJ -I
II X UJ
*=5 ""5 M 3
1 ~> Z
-> o -> •-
Z (VJ "•• f—
II _IZ
-1000
Z 0 > 0
o
(M
M-
a x
0 *
X X
00 •
• ?
x x
-. o
* n
x —
**» •
in x
x
X •
• «"
X X
* in
X OJ
••« *
— x
O no
f) O
«< »
* in
uJ
X J
f*4 QP
» <(
X «-«
» QC
'•^
X
*»• H»
— Z
O Ul
*» f) O
O «^ Z
<*> » Ul
• •"• Q>
ac xui
3( «^ O
Z —
••* ^~ ^
UJ < H-
h- X >-
HI CE O
or oo
3B U. _l
••^
o
-------
27
Subroutine FLOCMP (Cont'd)
-------
28
Subroutine QUALIN
•> o *
— in _j
o oj -* u.
in *~ » o 04
(MO — in *:
•> -* O O — CM *
«•»••> z in »o-«io
ru •-»ft in ^* >» o
•~-«oa04OX-J
<»> oino — x o •
• <\J<- X * •>-***
« «(v « A -. OX
in < o o in in oj •
(vt> »> in oj w -* in
oj »o <- z in z w
< «-in a »*« u. o in
• oruooz *z
in — sc * o o in u.
o
o
o
(\J
o
in
i- o oj,
+ \n *~
o«- o'
Uft ^^ C5 '
CVJ 4* (X? (
> o *
—. (M O
in I- fo
~*O V)
o
' >
2
(\i o in s
< CM ~cr
~ < 2
in i
eg
z
I X
X
o
I-* e> O O O * <
xoac (v>
u
z
QO <
> >-*X U
*a.-
x
o
o
00
o
o
»*UX Ui Z *
o
X
N.
X
u
V
a
o
ce
V
o
z
o
or
a
-J.JO
o
z a o
U O o
—. » O T -<
-» z wet —
-> o * o o
— » O t- Z »-
Z »» h- tn Z D
»-• in «•« o -> o
o M^OQ+^O
» Q O O •> — Z
«*•« •>«—._](_> »-5 «%
o -«c a •-• z o uj
o UJ —OX3*X
O ^ ^ l/> * *•' O Uu
u
z
X •-«
o
or
CD
in
o
X
o
CM r>
o
•2
Z
O
o
o
in >o •-«•»
a
o
H-
w
<
o
o z
CD O
^f fc"fl
< Uj
< !"1
O O
o
in
OJ
o u
X
Z X O >0 O — O O Ul X
—• »x • • ^ • z — -o • ">
O UJ H 0
-------
29
Subroutine QUALIN (Cont'd)
o o
oo
oo
oo
o o
• *
o o
UJO
ZUJ
zz
o o
• •
aa —
z 2 3
• • a.
O O 1-6
• • o
o o x
o cs ^
UJ UJ «"
• «Z O
S^ UO OUJ
Z QL ~ ~ Z
O O — I- «- h-
^ — Z Z Z
U. U. i-* O *^ O
» JO
o < o
u. o a.
z x
«-«UJ CO
< x
x z in
n ~*
»-.<».
XXX
in ~*
x • »
•-« h- O
— U, X
o *. *-«
t<=« »
• UJX
o _j *
XH«*-
* ft.
xaz
* LU H«
-. >
Xtt >-e
^^ •«•» IWK
0(VJ<
n »^ ac
f-i » O
• Z X
XOH
sxz
*-»zm >-
*C *2
^- H- O Z
X X
» « «
X X
* o
1* to
in
X •
02^
00 O »
* « X
xo-«
-«z —
-' O O
in on
X O. X •-•
OL
a.
to
z
o
<
a
H-
Ul
*
X
o
X
in
•>*•*•>
X X
»x •
* fW «
x »x
>-4 St •-<
o »
(V
< o
x »°- CD
>- *
O X
n-« x
.-«in x
ut
o
tr
o
(A
z
»=»
o
tn
o
UJ
o
a:
o
tn
o
a.
**""• *n.
z o
U X
» x *
X !X X
in « in
^^ Z. ^*
* » *
X — X
,+ QC **
~> O ^. > O O
in oj _j o -< a
o o
x *-«
<— a • ~5 —
£L < LU *•*• Q,
Z >-> _JQL Z
O _IZ • ZO
CD —• * ••• O CD
O O -• "> X U
M O « »- O II O
— ui--)a."--»tvi
"> 3 u z u -> fu
— z o o a •
a «-» ru co "5 a. o
ZH-_J(VJO«-'ZH-
oz _i — z o
in u x u.
A A °
(VI
-------
30
Subroutine QUALIN (Cont'd)
•3
X
o
X
CL
K
O
o
*
z
»-«
u
Z
*-«
U
o
X
b
*
o
>£»
(M
O
O
O
00
z
CD
Z
X
«-• or
x n
* Z
in —
•4- Z
OJ K4
O
o *
o
o
1-4 O
OIU
II D
•Z
UJ
z
nz
o
oo
«-«o ou.
— H-
zz
«-«o
oo
in
.-•OJ
OJ OJ
OJ
—' Ct
a. <
z > ~>
CO _J Z
ix O •-•
II O H
i -» UJ H-->
<- zo o
a. •-> in
z H-.JOJ
co z _i
z o < o
x o o o
,4o4^
OJ
-j a
*«9 "V
• x —
—. IA X ~>
O -* N. -'
• x — a,
o-» -5 ••«
• -> ~ o
w — a. .*
-ICL z —
• zco •>
-> coz —
"> Z X Z
«* X II O •*>
z "n S ru H
CO -* — ~.
Z ">CLO">
X — Z *- *»
«-zco z
u. ^ z o»-«
»-« O X O O
in
4-
OJ
a. —
z tn z
>• ^ »•* «K>
X OJ O -J
o o * —
c^ * o ^ z
oj "> »- n M
-IX O J O
o *H> or o n ** v
»- x * o • T —
x -^ -* in x ~>
o * z o — x —•
o ~* » • x«~ CL
«« "^ »^ O «•» ^ I-*
o — or • -> — o
o o. < iu *~ a *
-1-5Z >->-JCLZ — ~>
• Z> JZ»Z>- -> Z
UJ » X — *-*>-x —• *
2-.0 O^TXO Z -*
o • u u o u *- o n o **> on
uioj(/)->-«uji-~>CL'-' — ceoujoj-j
Dnz ">oo znnojiiD**)
Z O O — 2 O O >--» — — Z O
>=« O O f« Q. «-« «D X ~> CL O ~5 «-« O O
H-»--JOJZ»--IOJO*-ZI Kh-m
Z — >Z-I <-Z> ZZ
OOU.OXO-*XO»-«OOO
oo*-«ooooo>-iopooooo
sO
OJ
oj
a.
z tn
z o
O <">
o
» o
X "> ~.
# Z o
•<» » •
-» -« o
— at •
CL < UJ
Z JZ •.
o o -«n
H O « *-
-» UJh- ~> Q.
~) D D Z
«- Z O O Z
O. *** •—' O
ZK _JfT O
Z Z _J <-
o o < o u.
o o o o *•«
f-> X ^ O I
oj <\f ^ n
-------
31
Subroutine QUALIN (Cont'd)
x
•a-
Z
»-«
O
u.
»
UJ
I—»
r
or
a
M«
o
*
x
»4
•>
V
o
a:
«•
X
O
*
o
*
vO
(*>
<*
r>
u
z
o
ut
X
t~4
u.
X
in
O
v
2
O
z —
-*DX
iC "SO.
'-x a
<»> * X
5C X <0
««» m •>
-> ••*
\ —i a. « (K • •"•
— ~» ••« O XX *X-«
->-~ O O -«U. >C-«U»
»-a. * ~ -^ « "i — — a.
a. z — o o in o o in -*
zz •> •oojz (M ""^ •> •> »^»
OO Z UJ*O--« * >»
oiio« »axn ax<
~ ~> >^OUJ X 3 -« ") — »-« Ul
ll-^roiiou.z-' ")Z"-O3
— — — z ~> —•»- o KUJZZ
'OQ.O~>>~'OUJ<«t<*)COliJ^X^D*QC
zz z z — >-»££ ^zt^aciu zi- o
t-oo»--*3!U.o^xu.i/>ua:uj
AA^«)/) o o o o o o
O «-< OJ O (VJ CO O
f> (Tl O <"« •** ~* O
fit
-------
32
Subroutine QALCMP
o
in
(VI
• «•
— -»
ox
in or
n ©
< a>
• oj
00,
in <
M 3»
»•» UJ
(VJ *
*tf <«s.
» o
— in
O CVi
in —•
(via.
-* UJ
< H-
O O
in in
o o
in in
(\S fw
XNOD(250
250) t
oo
ino
MZ
— X
eg •>
*-»
oo
»!/>
A(VJ
O «-»
ino
(vi o
-co
**o
* •
o —
e> O.
-•in
o M
in «-
(VI K4
— o
NO
«co
«o
o »
in-~
(VIO
«- in
Q
C(250)t
KMC(250
)»OXVNP(250)
lULCONS,K2F
)
)
O
M
CIN(250
NFS(250
fX
VOL(250
DVD(250
A(250
2503
QNP«2S
SECS
»CONNP*250
RMOWNtRMFR
»
0
P
^ <
O X
in a
«* u) o "•"
in
(V X
«-O£
a *
1?
xo
••z
a.
UJ
•z.
o *•»«/>* <-
•• o o o » o m uj
-».ininin-«.(M(v_i
OfV(VI(VIO"--«»X
^v*^*.—rlfl ^ (\i — -*
z o — o o
» O >> CD «• CD
a co < o -> z
z i uj •-*<-« •
* «J Q UJ Z >£ UJ
O V Z *O Z
ac a z • *•« M •
zmotnw^ujoin
O>-»Z"5"5O*OZ
j tno — z o
z u o x •-• o o
-« U, O UJ O
op ^ o o o
— o
J >
o *
*•) * ^
5 «5
^ z»- >-
Z O o i
~ Z I ~
^ •—. -)
— Z "• Z
o
0
o
>
«
o
co
o
o
U
UJ
a
I
X — -~
o
o
011:30 •• «oo
it -»ooeviozuj
O U.
o»-«
o
«
zg zo ^noouuj*.
^11 -«ll n»||~)a»«A O
« —. UJ o it *+. uj •• ~> n x n >j uj i
~ z *• z — «- ~ -^ o -> in z ^
OZ OZaCLOQ*^- —ZO
OUJOOOUJO«J_I>>OU.OU.O>
O O O O O O O *X *4 O O O *^ O ^^ O O
o o o o o o
n ^ in >c ^ oo
-------
33
Subroutine QALCMP (Cont'd)
>
*°-l
o
o
ct
UJ
UJ ^ —
MW
O « UJ I
H« O —« — >
-^-^ * QD O ** -»
— ** o — -«
-» < a o _j ^- o
ll— It — • M <- II—
— a — a
OOJ • O Ul UJ ~ ~> II «* "> II
« —• » Q O » O
»O>O »O> •3«-«-41
-------
34
Subroutine DOCMP
o
in
(VI
o
in
(VI
o
incc
o o
2 in
0(VI
in*
— (VI *
— in
(*) O
«UJ
M »
»o
— in
0(VI
in —
(via
— x
•X UJ
x (vi —in a. z
OQOJO x_i
sn o *- r o »
*"** J% ^ ** ^* *IM*
M » —— ox
«—oomx
• in M (vi — in
— (VI — —Q. U
in o •-« u. o tn
(VIOOZ *Z
o — in in (\ix
S r
o — —
Z (VI->
X * 2
* a —
— + -j
^ —o
(VJ Z *
"> * 02
Z — B —
— »-i o in
— * o •» *
en z * — -»z
-«>-«* i <
— Ul * — — Ul
• in — o > 2 31 uj z — o o->
o o
in in
(VI (VI
ISJO — — *iX
** CD O ^*) **•» *
•^O O — X
o o
in in
(V)(VI
in — — in rg x
oj o < (vi — a:
o —
> -J
* z
a: —
»-j ->
CK — — <2
min — (vj(vi_j » — z — — z
(vi(vio — -'xa:'-* — z-^*^
— — in^ — cs
>-£ — aoz^3OMX —
OO-JCD * O O O — OCO
r uj x < o o a
§
o
o
->
(VI
o
*
o ~>
o —
B _j
OO
* •>
in o o
-5 n •?
OL (/) OT
UJ — UJ
no —
> Q. <
* * *
Ct Zh-
k<< ^4 X
">2 -)
If
§0
O
o
o
3 O
O *»
O I
II —
^"^ ^c
**» *»*
o o
> >
o o
o » • o a H=O_J
XVJOZuJ 3 HO
« II UJ » • O — >
—-j •«4M. on*
U)
X
X
X
— z
NUJ
* -J
— X
«x
X —
©-> ^*
n —x
o * —
— * ,
2 x
OO —
o in i
• co —
-J u —
• — o
z
UJ
_J
X
X
X
X
z ->
Ul —
J <«
X I
2^m
X X
32°
< o
* —Q
— i o
MZ
* Ut
— j
"> X
— X
IA
«
ce
I
Z
M —
* *J
» — zo-} < — ~>
X — XO^Z-^ZH- — XO II
CL-JCLO — —ZOCLO-9
_JO_I2OU.OU.O>_J2X
^>!o
*Q •
•> II —
— —->
X I "5
II ^ M
— H
«=» O/ <~
(VI > (VI
• o o •
arx — >-
«CL o
u,«i >o
»-i< oo
X —O
CL O —
O
n
< -> o <
X — t»X
a. a CL
j> o j
< o o <
in
u
•^
•a
c
I
•a
in
•r»
-------
35
Subroutine DOCMP (Cont'd)
o
CO
>—t
>
•-*
a
o
x:
~> U "« UJ — r>i lu •-« ' r-i»-<
— zu_jo*j — e-rt
< o ~ Z x Z' «x Z ~
I l^<^ x^O.-«X UJt X -* M — — (V •• O
3 O Z # -« O to ^ »-«
— ^«^~- * I O —< -~. •— «^ OJ20-K-
(/) o» -^-Ot/>l ^>»UJO-^OC/)
*~ o z -~ o n
"> • M — ll>0-0^<-^X
^ f— <«Q « O • » ~- II— •^••.f-
o j —• > — < H> — • o -«cj^:c3»-zz--~> — ~> -» -- — ^ o ac — t- • z
->(-4t-(«-'<2o-'Cr»-iOl-
> o o u. _J > o _j > u. _j > o _j > < u. o: o t- u
ao',j*'«ce
»«M
o o oo o o o o
\OO f»-CO OO-^O
O •-! — < O
-« OJ
-------
36
Subroutine SOLVEX
* o •
-.in _j
o rvj — u,
in — * o <\j
ru o —. in it
•> — O O —. (VI •
oxxcvi-*moLZ
mo: • — o rvi z o
** —» O O (VI O X .J
r> o uno — x o •
~ in
^ <
p ••
i » o
— in
o oj
IT —
(\J X
Z Q
— O ->
v: » o
o -»tn
»of\)
— in -*
O
•*" Q *
M o —
» as o
— O 4D
o • ru
in —. •—•
CVJ O <
«- UP ••
V (V -*
S — o
a v> in
uj O (Vi
a '—
~* 03;
o in it
in (\j x
(V) — OC
— a. »
Q Z Z
> Z 3T
O O Q
• OX
n ~» •
• O CL
o in 3
in rvi 3"
«\j — cr
-*• a. •
Z X
cc u,
z
X
Q.
j xo
z
-., -* O —» O Z >
o o • o m uj z
in in -»cv> (\j _j •
CM ry o — — x a
— — in < a, • •»
oo: c
O
X
O It
O O N>
O O t-t
o o <
• -« o
-4 II ItOO
It U X O •
X >- < O O
< C? 7 — I!
J X»_J ' O
UJ « UJ O >-«
a: a: Q a CD
o
(XI
o
o
x
^- u,
o->
o • o
zoz
• UJ •
(\J • —•
II X II
->u. ^:
o o o
o u. o
o *** o
OQ
> >
a a
•-« •-« ~> o
I * ^ t-
— — > o
u o o o
* * X
o
o
»-« ry
I
a.
T T
a. a.
u.
z
t i i
II
• UJ O UJ UJ UJ
J3 O »Z Z Z
UJZ O O U O
• 1-t II II 'I II
-> ^ 3 i 3: 3*
Z UJ UJ UJ UJ
ozzzz_ _ _
iouoooao«->cc(j
o o
^« (V)
-JO
UJ *-«
Q 23
* •
X h-
— < _J~
~5 _J • U
— UJ *-. _J
O CC O UJ
-j a
UJ — U
o en _j
— 33 UJ
in Z
uj x u a ui
~5 Z ~5 • Z
II "1 O O ~) I—
CD V- Z ^ Z I—
>-< Z — — Z
X O U, O U. O
Z O *^ O •—' (J
o o
rs
-------
37
Subroutine SOLVEX (Cont'd)
UJ
o
2
UJ 3>
_J 2
O Z Ul
O J
X W O
(V) T O
* (X X
* O »
CC -41
-~ 2 Q. •-
-> —. e o >-4 »
2 ~> o -,o *<» x
^•* 2 ^O **** •*** •"** O OD UJ ^ 2
>QO Q —' O ~«*Z»
XO O O > O 2 O »™i C_>
— X O OJ^XO O J-TOre' 2
o — .00 so —v o ouji ui
••• » iu ** o>— "••• o o ^» o o 2 o a
U~>OO t- U*-J(5 VO2 UJ
* 2 * ••*< O*^UJ"-i UU >
^>~-XCC O 'J? — ^ Q CD —. X O 2
_ "T* *"\ I Lib v^ _,», A ^* ^^" L^ ^f ^j» -™^ ^% -m- f »
< i » —• G _j o2«/> xiiaoo o -i»< -••.»-.
^. *_^ fj • ij^i ^f 2J* 2T **i ^^ rft —j ij ^ t^f ^^ i^ '^ /••< ^^ ^ TJ ««4 ^j
I ll^12O2~^ UJ 2 II II II O «fl Q--*22O2~H"» — H-O2
it H ii -~ 03 < H si O o • 1-1 ii OD M M it •-« «-i •-• >-• uj < r> o ui < a:
Te^o~^< i! oir>2r~-^ »—^ ^o^**1 c5i9»-i-cc>-Kr' »H-»-y_jr)
U!U-'«J2~O2«-i*- — 2UJUI_l'^~'O2i-i22'-'2«--*aDU2>-«o«oooooi--i>-su.ua:uj
f-4
o o o o ooooooo
LT \oh-oo osoO'-*f\iro^-
i-»4 O 'v4 "^ 'e^ •K*t
-------
38
Subroutine INTER
c
ir
a
C
IT
(X
3T
•x
IT'
O;
o.
o
s
<\
o
IT
(V
-~
C
o
2-
X
•
^
C
IT
cv
—
(V
*r
C
*•» U-
C (V
ir !t
~ (V •
• C >- IT
~ in a. z-
o cv 2* o
u — >
• e:
— LT
o (V
(\ —I
•S
t—
a
C —
» O
~ If
c r\
> o c
ir
rv.
c
c
or
h- c y
IT
f\
c
'J
o.
u r
c ?:
o c ir x-
ir ir *k »
-^ — c- a
C C IT U.
IT IT f\ 5
(V• (V «- Ct
a .
_' C T-" 2T
c > r ~
> c c cr
• •en
— .- • rt
c- r^ — •
ir • c- a
r r
•a a ~ a
y ~ c- T a L.
C
u
u-
a
u
u ^ c ^
~ *• •—' T
^- c --• a.
H-
n ^
T 5
— /•"*
J C
— t\
-
a
i-
a
2-
U
o — c r > z
• e IT u. Z —
«- «X «X _j » _j
ir < a ••»>*-
fV I ~ "^ 2 It, Q.
*- Q c r • a- 2-
v _• a « r •
x«.cj<_nr^ —i —
C _' • ~ ~ C II »-
fV.
c
c
c
./
>-
a
(f
t-
a
u
c
~ -. a
oar
7 5 t-
U i— t- • -*• — n
l/1
7
U
- x
_, ^
- C C
> C C
— - rr
c i-
-------
c
C
c
c-
39
Subroutine TABU
a
t~ CX
a -\ « <-.
"• tr c, c 1 -> if
C e~ O K- x ~
x -• 2- c c ri i —
• «-- h~ IT x -~ ~>
»•--• C— C •»•>
x «- C — 2 -51
«* C tr tr < — ^
~CK ^»»— e Xr-
c a -~ n .—, - +
<5 — 2 «-< ? 3 ~ V"5
t— r- ~- —• «^ ^ V ^-^
U.C !•••• —•— iT
ZU.21TUU-—U. — + »-
— • o >~ ^ c n IT u> x — c- a ~ r >- »
rr >' U. — > x r x t- x n H n i- n r
cr — 75"^— —^—t- >- I-KC
rut-QU-U-CuC M O. C Q. C C U 2'
(/—c^^t-ct-oaxc' >-c>au
C- C r? C. C-
r
-------
40
Subroutine OUTGO
8
» o
-.in
o M
in — •
CM o ~
»«- o o
— -> z in »
o s x oj —
;n a: * — o
<\| * ^ t_l 'Jl
~ -. O O(VI
«*> o in o —•
« j*> -\j z o
».vi — x •
00.
tn <
-* UJ
* o
-v in
o rvj
in «-
o (\j
-. tn —
o fvi _j
in — o
(V i~» >
— o »
NJO-.
«-03 O
-> uin
O •> (VI
a
z
o
o
-> *» rvj
Q o —•
in in »—
AJ rvj 2:
~*-~. a
I- CO UJ
t) • u
o x _i
a: o •
a: * _J
««%>-«
-» O 3t
o in x
in rvj •
«v ~ 1/5
>-a. o
to z uj
u. o en
z * z
•> <*+>
-. O f£
o in u.
inrvj x
<\j — ee
~ a. »
o z z
> Z 3T
o o o
»o z
-=. * ac
ro -. »
» o o.
& in
in ru
ry — cr
•<- a. *
x aa u.
QL Z -)
-J x O
< * Z
MU
o
in
(VJ
i Z O O < X
>-• «~i r uj x
' o as a, a o
o z
o o
cr 3T
cn r
— o z >
Olfi UJ Z
<\j rvj _j »
«» — x a
< a. • x
x z -> z
a. o z
_i or * o
< oo 3:
_l - Z Z
z
o
3T
O t-
in ^
M t«
— *
8X»A4»4Xf5HRIVER
rr
U!
>
>-*
a
x
in
•>
x
^~
<
a: »
< x
> 00
<-* ~«
* *
cr cr
< UJ
> >
•> oc
«i X
* •J'
! O:' •*
< <»•
» X
z a.
o z
Z UJ
o n
r*X »
•• O
a x
— x
•si in
x »
_j
o«-«
zz
r x
rvj .*
• •
X X
ao in
•• »
UJ O
DZ
-JX
< M
> »
x x
m oo
* »•
XUJ
r- o
* J
UJ <
-j >
«-«x
s in
•K »
^ K
*> h-
X »
muj
»_j
o-«
zs
X X
(VI 4-
» *
x x
o- in
o
xz
-"X
•• (VI
v. »
• X
a ao
UJ -
>UJ
n
x •-*
» UJ
4- OL
~* x -.
— (VI O
vP UJ
u. a
a. -«
o »
• X
x -U.
UJ K
z x
«=
*+ rv
in
o
o
(3£ J H>4 *
X < •• UJ
in> -• z
»r u ~«
x in «. « _j
LU < * X UJ O *
•-< cr < » .4 u
cr o »uj < o ru
3T U. X _J > Q >-H
^ rvj m
o
UJ
z
o
ru
>- »
x
O UJ
•• — X
O UJ UJ UJ T *
x» •zz-'crx
-«XUJ«-«'-«ll M —« UJ
** — H- *• Z X »-<»-« •* f— Z Z
rvj n uj < n 1-1 'jj u n o uj < •-• cr
u u ~< cr » z — z uj •-•crzi-Q
n>tor oxou-ujaDoaooujz
o
ry
o o o
-------
41
Subroutine DIVCK
or
t£
o
in
AJ
O
in
oj
*w»
OJ
zm
x x oj
QC » —
• «•>»»••«
~ oo
o in o
•Jl 'M Z
.M «- x
Q. X —•
< a o
> *in
UJ-» OJ
» o «•»
— in o
o oj o
in — 03
oj ~* u
— *r »
a. a —
x » o
uj-» in
i- o oj
* in —•
—. cvj >—i
o~ a
in rsjo
oj » oo
N~ ^ O
> O •
• in —
— oj o
o — in
;n »~ oj
OJ X «~
-»o to
l/> UJ O
< W1 O
-J
— u.
O OJ
ir, x
~ oj •
• O — (/)
^>ina. z
o oj z o
in«- >-o
OJO X J
^x o •
'O "X • _J
» •> «^ V-(
« —. o x
o o in x
in in oj *
OJOJ — (ft
-* — a. u
Z U) Z U!
»-i u, o to
oz • z
o o
in in
OJ OJ
<•* *MH
JO
o >
> Q
O f)
in •
OJ O
•— in
< oj
• ^»*
—. <
O X
in a.
OJ J
o a
in u.
oj x
"• CX
(X •
z z
Z 3t
O O
ox
• a:
*~. •
o a
in 3
OJ X
— a:
Q. »
Z X
cr u.
z ->
X O
•> z
—« •-< o
^x^-»O-.OZ>
isT *OOO *O-/1UJZ
o-^ininm-^ojoj_j •
>oojojojo-' — xa:
«-»in— ~^in<:a. •»
Qojxoa:ojxz">z
^H-KH^'-OLOZ •
UJ2TOO<>-JCD »O
z>-««-«a:ujx o
(/) O
in
X
o
u
II O
a —<
ct
UJ O
z o
o -> *:
• o —
o z «n
Ul •• U.
• -• z
X II • UJ
-? UJ Z
O O • >-i
^ OJ,-) >-
u. ou. o
»-• o »-• o
O X
o ~y *~
• ~* o
UJ O OJ
Z f*^ • *™*
-^ a x a
*~ Z — UJ O
Q — *- Z Z Z
> uj < u >-« a:
o H- 7 or K r«
«- >-< a a z i- o
u. cr o uj o u.' z
•-* a u, z u a uj
oj —«
o
r»
-------
42
Function JKFNO
x •
* o
a *
H- X
to x
t-4 <~
OZ — -5
» ^ It Z
JO h- II
*-« T txJ»-
Z £T (/) tU
x i 2 in
• >- z
z- rx
u. — a: a
i£ X • •
-> >-• I- H- >-
u. _j o w
z «••«/>
o * »->- z
>-!•-< t/) tfl II Z
H- it 1-1 « o or
o>- o o 7 o
ZUJ -- U. H- Q
^> -"-<-> ct UJ
-------
43
Subroutine QALOUT
O
in
(VI
O X
(VJ »
<*) O
• M
O Q.
in <
(VI >
— uj
(VJ •
» o
~ in
O (VJ
in —
(vi a
— x
o
in
(VI
•** *
a —
o o
z in •>
x rvi -*
o o
tr> in
(VI (VI
o •>
o o
in in
(VJ (VI
i— in i
o •
t~ o ~»
D * o
o -^ in
_' O (VJ
O (VI X
-• >—
uj 2 a
2^- k-rf
^^ ^^
o o fu
in o —
*: ~» o
o oin
• m M
«. (VI *»
o -* 2
vn o •**
(VI O U
«~ GO •
-«o~.
*: * o
o —in
* O (VI
— in *»
o
— o »
MO -»
*flD O
-» w in
O • (V|
(VI O <
H>-<\i JT
«»• O
tn m
O (v
u> o •—
-. -Ta
o o »
in in -->
(VI (VI O
— ** un
o a (vi
H- >-< —
o < >
X UJ X
a a o
-»lx
O (VI
in *:
A (VJ *
o *«• in
in a. z
(VI ZO
~ >u
O X _J
X O «
z • -J
»*»»-«
-* o x
oin x
in (vj »
(vi <— tn
-- a. u
CO 2 UJ
u. o in
z »z
».,-.•
« o a:
oin u,
in (vi x
(vi — a:
— a •
022
> 2 3t
O O Q
»U X
« »OC
m— *
• o a
oin 3
in
_J XO
»LCONS»QOUT(
« 130 «- X X -« 2 X
*XQ.* X(VIOO
PPM
0NS
Z
UJ
o
o
o
T
o
o
II
O
o
.^B*
o
o
CJ
UJ
o
U1
2
O
o
a
o
c
o
00
2
O t/)
»2
">O
X O
i z. ~> z x -* o -^ *- -» o -« o m ->
CLOZ » 4" X ^ »OX_J »(VI *02
O 2
o o
CK s:
TO s:
o o
~t (M
in
2
O
O
u
-J J "
»-xcr»xx«-H- •
<-*2l»-~«UJ<~«
< < tx o • «-
O O 3KU. — <
-<(VI
o
in —i a u. x o
o
(VI
u
u
•
h-
• UJ
^z
••• >-«
— z
•-«o
(VI
z o
-e O
or co
< u
— o
O UJ
H- '/> O
a z >*•
o o
o o
< u. o
o •-« o
<-» o
o •
It O
X II
O X
»- o
t— •-
O I-
co o
^^ 35
x —. -^
O OX
I- • O
H- 01-
m o • H-
rvi ~> CD >- o
UJ Z • _J 33
3 O » t— • —•
• • — _J Xx
O O -t II • UJ O <-«
II «O II -> — Z) H- U.
T s: -> 2 H- •-«
O O O O ^ 1-1 O II
i—t—>-ir»o>-(r>~
H- t- — 2 •— O
OOOOU.OU.35
oaocDo-«o«-«'-»
o o o
rs ^ in
-------
44
Subroutine QALOUT (Cont'd)
r
Q.
O,
2
O
UJ
O
z
o
o
T
>* 2
X IU
CO O
• »
X O
ITi »
03 "i
• X
UJ IT
-I *
. «»• . at .a
U UJ O
II 7> K»
—• o, »- in •-< *
t- o o 2 ar 2:
o K> e o M o
x ~* >-< *. u x »-
•-» a. + o. _ji >~
-» o a. o ^ M o
t- "j >- OK-O-* oa
< Z* H-«-«*•»•• 4 X
_j -»o xf-crx a
U. II e UJ t-i < 3T — J O <
iio->.-*ou.o2'-' »oa:
3: • ->£T»-i_J-~K--,OHC3
»— o. ^2OQ.»-«Q:-«2 ^:»_j »- a
o o o u. c i- o a: o » uj w < u 2
o
or
-------
45
Subroutine GRAPH
•a:
3*
Z
»
CL
(fl
"Z
2-
UJ
>•
»>
X
o
X
I
X
~ X
a o
Z o
X
in
— X
«• a x
o t x
h- —. —«
»- a. »
o z -«
OP — X
X
o
or
e
co
UJ
•>,
a x
o -«
a. -» in
< a. o
a z _j
O "'^ ^
X _J
UJ »
Z 2 t-
•-H O 2
I- >-i (j
r> c/i _j
o z
X X V-
:D «- <
Q O
a.
or
*»J *"*•
• a.
a i-
< •£
in z
CD * <
QC
Q Z _J
O •
j— 00
*- UJ
o a.
T3 ^«
o eo
X
in
»
X
X
x
si-
U7
© >
o —
-iO
X O
020
I- I
*
a x
z ~-
"• h-
UJ <
t-t Ct
a o
3 u.
o o
CD UJ
I O
a. ^
— i- o »
UJ < !- t-
f.
2
X
(£
o
U.
II OJ
100
V Z
U
ro o
z
o —
X K- >-
U! _J
O O C.
» UJ _J
a. o ~ —. z a.
2O O O 1-1 >-«
» -« 03 • • J —
«•* * Ct UJ H» • *O
II •-« _j O O •—* •
^ u u • « ii a:
U,>--^UJQ.>-">3:
-)-J>0-«2332
J 2 ^ UJ _J —
O O ~» •—« I/) O UJ
I -y ^ ^ ^^
ooaou.u.ocr
OO*~•Ol~**~'Q^
o
o
x
O
c
O
o
tr> o
o
(fl
(fl
< <-<
O O
u. u>
- K-
— O
ii a
»- z
o —
a u.
z •-•
•— o O
II O >- vO
K- e>
o o -^
a ~ o H.
Zo Z
o **• uj
-. « r> o
—» • • Z •-«
• t- uj • t
k~ O _j K~ »—
_» • • -J O
• t— >- » a.
»- Z Z i- Z
O UJ 'jj O It
3. o o a H-
Z 7 Z 7* ^«
o
Z (/I
-•UJ
• O
H- z
-J
Q.
x o
>-. o
_J -*
U_ U. U. U, i-* U_ O
II
*«*
t->
II Z
^ UJ UJ
-J O O
-J Z Z
-J Z _»
Q- o a
i-. O —i
o
o
-------
46
Subroutine GRAPH (Cont'd)
OS
* o
U. O
»x
M- — •
_J •
a. x ~*
>-*•-» «,
» • *
»-> — •-« x
z *: • ^
uj u. oo «•*
o . -> u) *-«
z H. a — a. o
» 2 «t >£ —i ->
H- O »— *
«-» _J CO — .-> X
2 >- a: o o o
~«t-«a- it _ic\j ui-<
+ _joe -. nn* r>»
»— u _j t— — . » •
OO_JM ~z t-ccx ax
o — « orvjvfoo o
o o IT <\i in in
LT in in fi n
-------
47
AUT0QD:
The program output has the same basic format with the following
additions:
Under the heading "Estuary/Stream Data" the non-point source
input data-and other physical data is printed.
Under the heading "Flow Conditions for the Period (Month-Day-Year)
through (Month-Day-Year)" the point source inflows and/or diversions,
the non-point source inflows and/or non-point losses and
the channel flows are printed. The non-point values printed
here are the equivalent junction inflows and/or diversions
(non-point source value multiplied by channel length)"
Under the heading"Input Conditions for (Month-Day-Year) through
(Month-Day-Year)" the point source inflow concentrations and
the equivalent non-point source loadings are printed.
The non-point source loading is the total mass loading due to
non-point sources for the junctions (non-point source
value multiplied by channel length).
The same new variables have been added to program AUT0QD that
were added to AUT0SS.
Program Listing, '» *
Following is a complete listing of Program AUT0QD. New or changed
cards era marked by arrows.
-------
48
Main PROGRAM
444444
4444444
4444444
4444444
4444444
4 *
4 4
4 *
4 *
4 *
4 4
4 «
4 4
4 4
* *
4 4
4 4
4 4
* 4
4 *
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
* *
4 4
4 4
4 *
4 4
4 4
4 4
4 4
4 4
4 4
4 *
4 4
4 4
4 4
4 4
4 4
4 4
* 4
4 4
4 *
4 4
4 4
4 4
4 4
4 *
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4.
4 *
.* 4
O O
4
4
4
4
4
4
4
4
4
O
*
>=>
_J
O
oc
1-
36
o
1-4
X
z
0
t
(/)
«f
3
O
t
o
o
t3
-
CD
Z
UJ
H-
H-
»"4
a
3E
4
4
4
4
4
4
4
4
4
0
4
4
4
4
4
4
4
4
4
O
O
t-6 »*
>-e f\J
Z 0
0 X
1-4
O »
UJ 1/1 O
•• orvj
>- a. i
O < -«
Z ZZX3
UJ OZ (V
O »-« < •
«tf H» (Vj
0*0
Z UJ CX (V
O Irt UJ
*~* UJ ^* QC
K- 0 )- Z 0
O >-e ZUJ
UJ U, UJ O 00
i- u, 3E n
O Q O.UJ 0
a oo m
a a jz i
J UJ UJ CO
_J UJ > —• >£>
«r »~i uj o CM
H- U- Q I/) 1
Z — •
iu in _j in o
*E K < ^ n
Z -JO _J
o o •-* o ••
a: OL z Q. uj
*-« < x < z
> z ozo
z z uj z x
UJ < t- < Q,
4 4 4.4 4
4 *'• 44 4
44444
44444
44444
44444
44444
44444
44444
O O O O O
4 4
4
*
4
*
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
1 4
; 4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
«
4
4
4
4
4
4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
OO
i
4
4
4
«
4
4
4
4
4
4
4
4
4
4
4
4
4
4
*
4
4
4
4
4
4
*
4
4
4
4
4
4
«
4
4
4
4
4
4
4
4
*
4
4
4
4
4
4
4
4
O
O —> » « »
in o » —. -*> i—,.,.
— CM o in » oxvcr
in •> ~ ~» u_ — (xi— »»
rvj«»»o¥:Z(/) zjuj-*
— o in o * u. aujooi
a — /> o •/» -. o ry » _j
Z3co>n'vio in1"^ •
x *"" o tvi ""* m fvi i " O
—•• o ••* * i
M LfH t- — i
O O UJ < O
x »o aa
»x
a. o
x o
o _j
H- u.
-« *— o in >- —• oa: » »
ooujrvixro in u. a> o
a: z »—
O«\)OJOO— —Q. •• *_J
If) ^ ^ U-i Ifl «/J O Z X _I *
x uj
x
o ut
oi
r •*
-* x
xxx
O U, H-
-J-J -J
XXX
OZ X
D X X
t- z o *-
^> X X -J
3OUJ
• ooo »o »mujuiv
fUZOXM(/)OJZOO
z
o
Z _J _JX
O X X t-
x x r x
o
H-
cn
O
O
2:
o
o
CD ~> O CD Z
_J _J J -I _1 O l»
»i u j a.
- OD CC O H-
< O Z Q IT.
O _J _1 j _J
-------
Main Program (Cont'd)
49
X » -«
n < •
•> •< x
X 4 •
< -.
» 4 Q
3X X
Dm —
3 » ~
x x 4-
nnj —
» «* »
x »x
i—• \o
— x »
•> — **
4 » -3
-* x
— co f-
n
•> x
in »
o
x
a.
O 4-
3 X X
"5 UU,
II II II
— rxj uj ••*
or or x »
< < i-t O
> > u. cr
_) -J _J Z
o
cr
z
vO O —
II II O
(X t- <
3 > UJ
z z cr
(r>
o
u
z
cr
u,
X
o:
a.
z
Z o
O —
a o —»
— • o
o o ro
rvi — *
• u. cr
O ro 3t
CT — Z
Z H- —
— < UJ
O X fr-
4 a "-i
u o cr
cr u. ^
o
(VI
X X O
— r*. x
•>*••—•
x — «-
• o ro
— X —
$ «"H »
X "** X
— — vO
O •> -<.
ro x»-
*•"* 0^ X
X
ro
X
CO
*
4
X X
*
X
— X 4
3 X
x o in
r-« X -•
x *-• x
« — in
* • 3
X X 3
r"^ ^*- ^^
^^ •» T
o -* ro
ro >~ »
+ "*& T ^
t~4 **^ 9- r* »
x in 3
X
X
o
«.
X
4 »X
4 O «*0
< O »
X O X
ro x -<
* ro —*
X •> »
in x 3
»0 3
< » 3
ro X X
•• ro !>
X « »
O* X 3
.,n3
xox
— on
• o »
XXX
* n vo
O 9* *
O X 4
a
* * x
X 3 »•
C?* 3 O
» •• 3 Q
O O XO
o o n r
o o » n
xxx*
o —* • »
— n in
o
o
Q
X
ro
o
0
0
X
x
in
•>
0
o
3
O
r*
x
x
in
o
o
o
n
in
o
o
o
T,
n
x
X »
CT- X
• in
o »
o ~
o <
Z X
x in
»4 1-1
1— « «
» X
XX
-« U*»
* •>
X ~
» o
-. x
O -«
x —
»•« ro
•*»• ••«
4- •
_e X
(V!
»
X
«-«
*>
X
»
-I
tu
Q
O
— — x x •
u
UJ
x x
n —
O •"*
X —
XX-"
x *
(VI -%
-a 3
* x
X ~«
<"» »
• X
x x
0s in
*
o
— X
O f*-
4- ••
t- X X
4 in n
•^ *• *
C?3 x
O 3 o
U. 3 —
— (VJ
X X
O X O
o n x
C5 *• r^
X X *
n f- x
* »-in
W^ ^3 ^^ CD
x a
-«x
*• n
4 X
y in
cr *
o o
u. o
r
ro
•• <
«*.
a: 3
u. o
cr cr
« uj
QL h-
T 3!
~ cr
» u
** 3E X
X O4
-*3- Z
— a >-
0*0
*•*• *f?t k>M4
» .-vi tr«
— II O
• Vi X
» ~ ro
* ~- x
x 4 in
— x *
—• Q. —
O _| «
n 4 x
-> o
x o ru
— in -
» » o
x cr x
» x 4 • -» —
-5^ ^^
o ~ >-
X Ul 4
. r
< n
< *
< x
x r-
— (vi n
n cr o
— ^ u.
o
m
ro *
x ••* u. •
-« X UJO •
»in > •
x » "-» uj tn
• — -x -i z
•^ * X »•« O
* X -«T «
X —ro t-
— — »a O
•»• O X UJ U4
o rvi in > u>
(VI » » *M
* -. Jt u,
X * XO
X — X —
—< » -^ ro 3j
X » O X CO
* 4 »
UJ O —
wz -»x *
-J U>-< X
>— o » * -*
|-^ !-« • ^ %••
t— tft • * O
4 »(VI (VI
Z CO O * *
3 X Z O
a: ao uj -« x
x -* u, -•
4- » T » »
«-• X 4 « X
* in uj * *
X * OC • (VI
!/> — >-••
• * in • o
— x z a —
* -• 3SZU,
X — O UJ
— O O
— .M Z
O •> I—
X — >-4 UJ _J
— o cr _i _»
— (VI X •-« 4
o •• -« 3: u.
-------
50
Main PROGRAM (Cont'd)
o
o
o o o o
M v0 G O CM
_ TO . i—i r-» r=4
O O " """ -»--" -
I- I- O O O
>- K- O >-
O O I-
oo o o o
O O O O
UJ t- «f »> <•- O —
Q. -J »- O O ~ O
>- <. - X O O Z Q. U,
.J -J-J _J -J -I-J-J
—, • • »~5^. T —. »T^. '"J*^ • • 2
OOUJV- UJ2"5 '20,2"^ UJ2"5 2O.2"> UJ UJ «•
a^UJZ--QUJUJ>-OUJMOUJD_JII II UJ O UJ II O UJ 2 -I II IIUJOUJOOOUJOO-)
uja:ixa.uj'-«a->aD.D<<~5-^o^a.~>z:D<<-> — o — O.OO-«Q.«J^
C02XVZ >- O2T>> ~>Z > X^>> ~5Z >•>> VU. O
^,>_i_ o>-oi!>-i tn^^OH'Oii*-! ir»~»-'OH- ot— on
_JO_1_J_J»-_I^ — *--J'*J(s»CiH-l-_ICT< — l-_l_J^C5H->-_l_UH=_l>J)--i
J < >- — J — -) 2 J _J OZ — "5 Z _> -J O2 ~ _J-J — _J
-«OUWOCJQXOO«-«UOO>-
-------
51
Main PROGRAM (Cont'd)
. _
_. ^ X ^« — O
-J _J U M "> °
-uo-l^-wo
cno « ^
in o
n o
~* o
ru
-------
Subroutine SETUP
o
in
o
in
OJ
^*»
M
O
in
OJ
o
in
OJ
o
in
OJ
o ~* *
in o • -»
oj in -N o
— oj o in
_j~-tn oj
o > 04 <~
>* — (/)
» ~» -«u.
— o *: z
o in Q •
in rv + ~*
oj — —. o
rr o in »vj
•-«aM«-
«t • *• 10
UJ ~ a O
o uj tvi x
•
Z -JUJ -t
o 'jj o 2:
• o z <
o **»
•J") O
oj in
— oj
•z -*
MIT
u <
o o
in in
OJ OJ
^•- *.sr«
2 Q.
» o
^ in
o oj
in «
(VI Q
*• o
MZ
< X
» «
O O
in in
(VI OJ
x •> -* o
o iti< o
o
in
(VI .
01 o
< oj
z —
o * -^
tn o
< m
z tvi
X O
30J
X> H»
(VI _J
CL O
z »
X h-
X _J
O UJ
» a
occ
in u.
(VI Z
•^a
a »
z 5
o o
o a
in o
(VI Z
"(T
a. »
•z x
cr u.
z ~>
X O
• 2
» _J
00 *
era
ft t-
« V)
CD J
X »
< o
OQ
•> •
CD O
O 00
¥ 2
»^ _J
•> *
Q O
•z co
UJ t>
O UJ
UJ QL
03 X
Z H-
• _J»"
-J » >
•-5-J Z
z u. *
X (VI a
• >T 3t
o
2
fr-
o
o_ *> o o o * o •» in uj uJ x o
.r>-~ininin«->in<— (VI«JIOQXOJ ^ZZ*"3^!
t—
2
O
Z
o o
u o
o
OJ
z -*
X Z
* X
z
X
3
o
cr
X
(/)
vj •_ ,
in \o r- «*-! oj n
•*•
(Si CO
(J O
to to
2 Z
II II
O "i
2 2
cr
i
a
r
GC
«
in
ao
(VIZ
in s
# a
«-»a
z M
*=> ~> 3* o 2 *^os os
z~ oz«- z«» «• o
»~) Z*CJ »OOOOOO •
(vi z ce (vi z •=« n M • H « • o
IICKUJ iiarujii-^ — o^s-.oiioo
"3 II r> II Z II O ~5 n "> II "5 ~> II -. • •
—. Z — -=-Z *-• — -^ — *-^.-)oo
n «-'-n 11
_j^^,^s«^_«.O.i-^H-nZZ — 22 — >-'- —
>=eUJ~> OZO OZ QCDQ.ZX23"^")
Z.JXOSOXOZOOCDZZOXi-'O'-**11'
xxcco!roxoaoQuxouoooc5<
O O A A A A A
r- OJ ^^^^^
-------
53
Subroutine SETUP (Cont'd)
O O OOOO O OOO3
• o O • • O • • • OO ••••(**)
OO*O O O O • OO O O O O • • O » O d O • O
It II O • II • II O O II • II O O O OJ • • O O • O II II II II —• II
o-~-~iioo~.o-~ii • — o o — • • • ii o o ii no • o -. — <^~.it~.
• -)->-*» • -> II "5 — O •» II •->000-.llll-.-.||OH-»-)->->jCie:
o •->-,o~-»~'->H*».-.o— II II l|-> — -.->->-» II —~- • »
II ^Z**~> II (±">O~ — H-~5 II T—•— <-.«-> -5 ^ «— -)-»-)(/)t/)(/)t/)O"^
^t-41-i^-^^i-i—'KO-~>Ty'-H-"15~>'~)Q. — ^-CO"— ~3~ir«i«T«rr> —
->OQ»-Z"><_IO< *-1o in->o~'-'>-T'-«rvjoo>-~ui><2:z:3: w
~Z05X»-« — UJOI>U1LUO — *-»^(M(T)ujy:^QDZXinijuT2rOOOlt
-------
54
Subroutine NEDAT
o
in
OJ
z
"D
X
o
in
OJ
M
o —.
in o *
ojin -~
— oj o
o xvi
> •« —
~* O Vi
o in o
in oj •
rv ~ ~.
— if) a
t D in
*-• Q oj
uj — a.
or o x
«in ui
~ Oj t-
o — *
in H- .-.
oj 2 o
n -»
o
in
o
in
OJ
co
u_
X
»
o
OJ
to
4
O O UJ OJ
in »to —
oj -* •• r>
— o —. 4
4 in o •>
* oj in -»
•— OJ O
z — in
f* CO OJ
04 —
— • » OJ
C -« -» 4
» O O »
~ in in «.
OJ M O
in
z a «J
x > —>
O UJ 4
in
OJ
x
o
o
in
OJ
a uj oj
a. x ec
Z 4 4
• Q >
— a*-»_i
z
o
o
in
uj -*
o -x.
a: 4
CL
Z
X
X
O UJ
• a
cc a.
x o
•-<»-
•• CO
CD _l
X •
4 O
O O
o
in
OD O
o cc
o
m
M
O
in
OJ
o z z •
O
X
•CL
X X
O X
* »-
r o
-* x
xa.
o »
•- X
3EO.
X UJ
x
n x
4 CL
X 4
O I
in
OJ
r —
x x
• a.
*•» _i
O 4
in _i
OJ » —
— ~ OL
CO O Z
4 in cc
X OJ Z
Z — x
X O •
» z: —
o o
Z CD
UJO
x «j
n
4 X
j a.
x •
ox
UJ
a x
zoo.
x oz
-t r o
X -* Z
OJX X
3 X X
-10 Z
X • Z
OX _J
UJ I- *
oz *
X *-«O X
4 I. -10
x o- u. o
-• X T UJ
v: H- ^ in
-J zo o
* •-• _J cc
* a. * _j
o uj
UJ Q,
•r x
Z H-
4
»-
UJ
UJ
tD
D
cr
CO
tr
r O O O
«in in in
O OJ OJ OJ
in — — — i
OJ Z O T
z a o c
»-. 3D X >-<
a o a •»
o
3-
2:
o
o
o »
Lf> -^
OJ O
— in
4 "5
2: 2:
x or
in
a.
z
n
o
in
->
z
z
o
s:
2:
o
o
** _J Z
r u. •
x oj cc
in » r
o to »
UJ ^ O
{/) ^ QC
Z Q Z
• z »
O « LU
X UJ X
o m >-•
O X U.
Z •-> -J
XUJ
X
(V •*
4 X
i a
x uj
« X
•
ro
•- O X X
Oh- UJO
I 4QC 4
^f tO I U.
X X O >
a. ^ x o
UJ
«-« >
4 X
T •*
X _J
r-l UJ
4 >
OOOJ
_JO V
• -J O
X •> J
M X ••
Q LU X
UJ 4 4
CO UJ CO
I ar i
>* xo
x >t x
H- x
o
< oj
^.
rw 3
om
UJ O.I
OJ >•
Oj »
oo o
• in
- LO O
Z II
4 UJ _1
t- T U.
o *
r> x x
X 4 «
t ox
X ^«
« tn
£| (^ ^rt
X *
-* UJ
— I X
O 0s *••<
*«*. rn ^ *
o^ »x
^J • X »
» —• vC• —
X X » *
— t- x —
UJ 4 "-» -^
ix cc in *
or o *n x
-«oj i
to
K-
Q,
Z
o
o
o
in
4-
LO
O O
—1 O O
e ^- H=r
-J — CL
uj in o o
OD •— H- O
_J X _J -^
~ OJ • o
O • O •
oj a — D uj
Z »- Z T
O — 4 >-« 4
-t C 7 h- _J
4 Ct Z —
o uj o o u.
o cc u. o •-<
» o in
i
<*
f
I
T
(
4
-------
55
Subroutine NEDAT (Cont'd)
X X UJ X ~»
-« ~* i/> in —
o o ct — x
M (V , UJ * —•
X X -« O
in 10 i ** H- * —' (/> 4
Z Z Z o X U,
UJ UJ UJU4 CVI h> Qt
••« »~* t-^ac* Q «^ z>
u u u-« -^m
»«* i—« »•< f>~ 3R ••*
U, U, U, <\l IO -» I Z
U, U, U-<*OJ -5 O
UJ UJ UJ^ZUJ — *-«
«-»O -%O **OOCO CK Z <~ X »—
O U O U O OOT * ZX h» O
x x XN.OJ tn<»- oz
a:'-*-* att/iin
(A X « O U) X < O t/l X«SUJ« -• Z XX * X4 -5
^ (VI ^- 30 ^ (VS *•• *** f*** O* OC ^ * ^ ** **^ 0^ *
arou a,«*>u a,f%«'»«--«o ~> M->O
Z »2COZ rXOZ »»in » >» in <> >>inu.O'»o»in»'ijjK- in • o
» •> o o* »• t> o» ««=>««*o ocj »oz_i o *"^ o
X ~ Z OX ^ Z OX ~- Z ^Z — Z UJ x « ~Z
»# r ** * **'itO*>~«>*»_J* ^ *»<^
U X (VS ^U X
—i —. o > jtvi^o > _jn.-.o •-<> _jwoo>-«~-o* •d>o> _j
» -^ gj«-'|»=.» «^ UJ-««O»»OUJW UJ—"-^* — X»— •* «* * .-. it)
_ o ooz'Z*® ooziK^o aoozo:*ooH-o(viz »OOOT
uj a: x oo • iu Qi x oo »uj3cxx(/)Oo •UJQ:XOQI-- H-O_|K-'«-«»-»-«X->JliJi'-«^-O_
ZZ— S^IUZZ" I3-«UJZZ — Q.H-O»'UJZZ»*3XII XOZ-'O-'UJ
O CD^^H- O CD»-i»->-UjOO OD«-i — h-Otl-»tVI»Z — H-O 3D
O< UJ< O< UJ4OZ O< U_< ^-)^—.«uj< O<
?• ~ _l >- _J _J H- 3T X _J t- _l _J H- 3T _J — Z ~« ~) I- f- ?•
_ — _jt-»cr _j •» *-»-j«-«a co r*- _i — _i •-• a _»<- — —zi-a: —
-tvi
-------
57
Subroutine NETDAT (Cont'd)
>• *- a.
< O Z
O (V UJ
X * r~
Z . "*
o in x
in •» •«*
x -> ui
CM o a;
o UJ >-
in wi
x x
O t- O
>- U. r-
o
(/> m o
W — -Jj
z »-
UJ IA O
x r- uj
»-• z cr
o ui a:
IU •"• O
10 U O
1-4
u. u. in
o u, uJ
UJ H-
UI O <
x: u
Q. O O «
-. D »-4 • O
-5 trt O UJ
s z o oc ~. «vj o -»
Of UJ -* • U» ~5 I "7
0*OKO -»CL 2T—-O X
>om»-3:o ootn a:~> o-« x
AJK- X O ^ 00 Z ** • «- E -* *
a, o uj vo (v cr o -» o in a o ^ o^v
OZX(/)CO » X M ^ t- 3f XC -tt-
!•• « (\I * X Ot/J^*f>Q.UJ rvj*. (*>3.
>-.*->o r»h-<*>o z»~ tn->~> z
O»*X^ flu «" 3E O » "•* ^^w.Z' O«*
OXXiXU, OZXQCN->-# X*CLO t->»
o in •• > o *> in *• »4 inx^c »
-»~5 • "^ o > *ooxr*- »«-)o Ox
I-Z — Z* '-»-^ZO»>3- ^~ZO O«-
x»* «.~, ax* »^TO *o»4 —•*)
Q h- X -< 2 "* * I ^ ^ z * X «M ~« vfi (V Z
tno^"->< K oz->*- «t O"-« * ^»«x< x OM
_»uj o o >~>T ,j*oo > j^ro-» o o »n > ~) —. _j^~>
• in-tryj-^_jzo •isjr^.fu _j »QZT — »'-» OUJO_J»—"5
O'-iujzz^'OO "jo-^uizz-^ r>-^uiz u r> z — x D IID-«UJZ
z sD>™t^*p~'vioo*~z BI—•*•»>—-^o QD"~|in'«~2rv*F—>- 11 ^f ^y ^^ •> ^l ^^ i «j ^^ f^ l^ ^t ^ C5 T* ^T ^5 U> ^T O> v* ^) Or ^J ^ ^5 ^ <^ ^5 U. *^ C5
CJ tO ^"* Cw) ^E U* **^ C^ ^*^ (/) C^ 15 *"** U X ^» ^^ C^ (J? *"*^ ^^ ^\ <**\ ^^ ^B ij^ y^ (J ^j f*^ ^j ^i »«4 ^j ,*^
ooo ooo o ino oo
^u f^ *^ ijO \c ^" or oo ^T cs ^^
-------
58
Subroutine NETDAT (Cont'd)
a. < ' -*
z uj ui ~
UJ JC Z O
H- H- O «M
Z " H» X
< o < m
UJ t- If •
a H- —
H- o z z
en uj UJ a
»- u a.
o o z —
a: u (/>
o a z
UJ O Z O
»-> o r> ~*
o « N-
UJ V) K- <
a uj < ct
cr i- a H-
o < ^ z
o ct K» uj
< u
(/> Z - o
— > (VI UJ X CD
O < I ->TC -O ~-J
(VIO Z"- — UJ - -> <
i at a. K- -> -j H- - — T •-•
~5 O«-^ O CO UJ Q.«>>-« • OC QL •"• O • •-«
z x o z ^ x*=«a: o m»- x o o a. x
Lp.fr oj ** cu *"- ^ *X) *^*~* *** * QI. ^^ *^ o **^ —' ro
^» ^^ ^"• x a: o o »• x
^- H«» -. *-.» -, -»*7 *—» H- o z *
x ic < oc — — a -4 x o —. —
^— -JUJ"1)^ OOX>"^>-« _JOOO^^ _IOOOOO
^ XXO-»UJZZ~J11O'^UJI-ZZ —
—s "7 ^* H- **^ O O -«* Z 00 *•* l^ *^ ~Z *^ H° Q^ O ^ *"^ ?^ 3D *"^ *••' H15 •* O OD CH ^•^ ^^ **•
""*^ ••••* ii i ^ «^* ro ~^ ^'^ o ^ *^ *x *~* uj ^ z *o ar ^** o ^ uj ^ ^^» o ^ o uj ^
— H-I-?: _jn*'H-H-_j_irv»-»-H-zujjr''>-«H-H-_i«iH-5'T_jK-_j_j_jv-z
f>JZ»-«a;i_i njz *--IS«»ZI- |