-------
SECTION 7
REFERENCES
Anderson, D. 1973. "Emission Factors for Trace Substances." U.S. EPA,
December 1973.
Armburust, D.V. and J.D. Dickerson. 1971. "Temporary Wind Erosion
Control: Cost and Effectiveness of 34 Commercial Materials." J. Soil
Water Conserv. 26 (4): 154-157.
Baum, E.J. and R.L. Fitter. 1976. "The Impact of Emissions from Trans-
portation Sources on Air quality: Atmospheric Aerosol." Oregon Graduate
Center, March 1976.
Bonn, R.C.T., Jr. and C. Cowhred, Jr. 1978. "Fugitive Emissions from
Integrated Iron and Steel Plants."
Bradway, R.M., F.A. Record, and W.E. Belanger. Undated. "Monitoring and
Modeling of Resuspended Roadway Dust Near Urban Arterials."
Clark, W.E. and K.T. Whitby, 1967. "Concentration and Size Distribution
Measurements of Atmospheric Aerosols and a Test of the Theory of Self-
Preserving Size Distributions," Journal of the Atmospheric Sciences,
Vol. 24, November 1967.
Cowherd, C., Jr., K. Axetell, Jr., C.M. Guenther, and G.A. Jutze. 1974.
"Development of Emission Factors for Fugitive Dust Sources," MRI,
Kansas City, Mo.
Cowherd, C., Jr., C.M. Maxwell, and D.H. Nelson, 1977. "Quantification of
Dust Entrainment from Paved Roadways," MRI, July 1977.
Cowherd, C., Jr. 1977. "Fugitive Emissions from Integrated Iron and Steel
Plants Open Dust Sources," MRI, June 1977.
Cross, F.L., Jr. wnd G.D. Forehand. 1975. "Air Pollution Emissions from
Bulk Loading Facilities," Volume 6, Environmental Nomograph Series.
Technomic Publishing Co., Inc., Westport, Connecticut, pp. 3-4.
Davidson, B. and L. Herbach. 1964. "Two Dimensional Diffusion of a Poly-
dispersed Cloud," Journal of the Atmospheric Sciences, Volume 21, May 1964.
Dean, K.C. and R. Havens. 1972. "Reclamation of Mineral Milling Wastes."
Presented at the Annual AIME Meeting, San Francisco, Calif., February 1972.
Dean, K.C., R. Havens, and M.W. Glantz. 1974. "Methods and Costs for
Stabilizing Fine-Sized Mineral Wastes." Salt Lake City Metallurgy
Research Center, Salt Lake City, Utah.
-54-
-------
I
I
I
I
I
I
t
I
I
i
t
i
t
i
i
t
t
i
Dean, K.C. and M.B. Shirts. 1975. "Vegetation Techniques for Acidic and
Alkaline Tailings." January 6-10, 1975.
de Nevers, N., K.W. Lee, and N.H. Frank. 1977. "Extreme Values in TSP
Distribution Functions," Journal of the Air Pollution Control Association,
Vol. 27, October 1977.
Engineering Mining Journal. 1971. "Chemical Treatment of Waste Tailings
Puts an End to Dust Storms." pp. 104-105, April 1971.
Evans, R. J. 1975. "Methods and Costs of Dust Control in Stone Crushing
Operations." U.S. Bureau of Mines, Pittsburgh, Pa. Information
Circular 8669.
Fennelly, P.F. 1976. "The Origin and Influence of Airborne Particulates,"
American Scientist, Volume 64, January-February 1976.
Galkiewicz, R.C. and D.A. Lynn. 1976. "National Assessment of the Urban
Particulate Problem - Volume V - Baltimore." GCA/Technology Division,
June 1976.
ft GCA Corp. 1976. "National Assessment of the Urban Particulate Problem.
Volume I." Summary of National Assessment. July 1976.
Medley, W.H., et al. 1974. "Sources and Characterization of Fine Particulate
Test Data." Monsanto Research Corporation, November 1974.
Islitzer, N.F. and R.K. Dumbauld. 1963. "Atmospheric Diffusion - Deposition
Studies Over Flat Terrain," Int. J. Air Wat. Poll.. Vol. 7.
Jutze, G. and K. Axetell. 1974. "Investigation of Fugitive Dust, Volume I -
Sources, Emissions, and Control." PEDCo-Environmental Specialists, Inc.,
Cincinnati, Ohio. Prepared for U.S. Environmental Protection Agency.
Contract No. 68-02-0044, Task Order No. 9, June 1974.
Kelkar, D.N. and P.V. Joshi. 1977. "A Note on the Size Distribution of
Aerosols in Urban Atmospheres," Atmospheric Environment. Vol. 11.
Lee, R.E., Jr. and S. Goranson. 1976. "National Air Surveillance Cascade
Impactor Network. Ill Variations in Size of Airborne Particulate Matter
Over Three-year Period." EPA, October 1976.
Maryland Bureau of Air Quality and Noise Control. 1976. "Air Quality
Maintenance Analysis for the Baltimore, Maryland Intrastate Air Quality
Control Region for Total Suspended Particulate Matter and Sulfur Dioxide,"
Technical Memorandum, March 1976. Baltimore, Maryland.
Maryland Department of Health and Mental Hygiene. "1975 Emissions Inventory
Report." Division of Program Planning and Evaluation, Baltimore, Maryland.
-55-
-------
Midwest Research Institute. 1977. "Fugitive Emissions Control Technology for
Integrated Iron and Steel Plants." Draft. Prepared for the U.S. Environ-
mental Protection Agency, Industrial Environmental Research Laboratory
under Contract No. 68-02-2120. Research Triangle Park, North Carolina.
January 17, 1977.
Midwest Research Institute. 1977. "Quanitification of Dust Entrapment
from Paved Roadways." pp. 3, 5. July 1977.
National Environmental Research Center. 1974. "Environmental Protection
in Surface Mining of Coal." October 1974.
NTIS. "Air Pollution Emission Factors - A Bibliography with Abstracts,
Search Period covered 1964 - May 1977."
PEDCo. 1973. "Investigation of Fugitive Dust - Sources Emissions and
Control." May 1973.
PEDCo. 1977. "Technical Guidance for Control of Industrial Process
Fugitive Particulate Emissions." March 1977.
Pooler, F., Jr. 1971. "Atmospheric Transport and Dispersion of Pesticides,"
Division of Meteorology, EPA, September 12-17, 1971.
Research Corporation of New England. 1976. "Technical Manual for Measure-
ment of Fugitive Emissions Upwind/Downwind Sampling Method for Industrial
Emissions." April 1976.
Research Corporation of New England. 1976. "Symposium on Fugitive Emissions
Measurement and Control Held in Hartford, Connecticut on May 17-19, 1976."
Sartor, J.D., and 6.B. Boyd. 1972. "Water Pollution Aspects of Street
Surface Contaminants." Publication No. EPA-R2-72-081. U.S. Environmental
Protection Agency.
Sehmel, G.A. 1973. "Particle Resuspension from an Asphalt Road Caused by
Car and Truck Traffic." Atmospheric Environment, 7, March 1973.
Shirts, M.B. and J.H. Bilbrey, Jr. 1976. "Stabilization Methods for the
Reclamation of Tailings Ponds." March 29 - April 4, 1976.
Stern, A.C. (Editor). 1968. "Air Pollution - Volume II - Analysis,
Monitoring, and Surveying." p. 270.
TRW, Inc. 1977. "Guideline for Development of Control Strategies in Areas
with Fugitive Dust Problems." Guideline Series, OAQPS No 1.2-071.
October 1977.
-56-
-------
I
I
I
t
t
I
t
I
I
I
I
I
t
t
I
A
f
t
I
U.S. Department of Agriculture. 1973. "Soil Survey of Anne Arundel County,
Maryland." Soil Conservation Service. Issued Feruary 1973, pp. 71-75.
U.S. Department of Agriculture. 1976. "Soil Survey of Baltimore County,
Maryland." Soil Conservation Service. Issued March 1976. pp. 95-101.
U.S. Environmental Protection Agency. 1975. "Fugitive Emissions and
Fugitive Dust Emissions." July 1975.
U.S. Environmental Protection Agency. 1976. "Evaluation of Fugutive Dust
from Mining, Task 1 Report. PEDCo Environmental Specialists, Inc.,
Cincinnati, Ohio. Prepared for Industrial Environmental Research
Laboratory/REDHD, EPA, Cincinnati, Ohio. Contract No. 68-02-1321.
Task No. 36, June 1976.
U.S. Environmental Protection Agency. 1973. "Guide for Compiling a
Comprehensive Emission Inventory." Monitoring and Data Analysis Division.
March 1973.
U.S. Environmental Protection Agency. 1977. "Compilation of Air Pollutant
Emission Factors" (Including Supplements 1 through 7). Third Edition.
Research Triangle Park, North Carolina.
U.S. - U.S.S.R. Working Group on Stationary Source Air Pollution Control
Technology. 1974. "Proceedings of a Symposium on Control of Fine-
Particulate Emissions from Industrial Sources, held January 15-18, 1974,
San Francisco, California."
Vandergrift, A.E., et al. 1971. "Participate Pollutant System Study,"
Vol. Ill: Handbook of Emission Properties, Midwest Research Institute,
May 1, 1971, PB 203 522.
Wedding, J.B., A.R. McFarland and J.E. Cermak. 1977. "Large Particle Col-
lection Characteristics of Ambient Aerosol Samples," Environmental Science
and Technology, 11, 387-90.
-57-
-------
APPENDIX A
HI-VOL SAMPLING
HI-VOL FILTER HANDLING PROCEDURES
Changing of the hi-vol filter at the Fort McHenry site was observed.
The procedure is as follows. Before traveling to the hi-vol site, the new
glass fiber filters are removed from the mailing package and placed in a
plastic box. Before the old filter is removed, the sampler is turned on
for 2 to 3 minutes to let the flow stabilize; then, a flow meter reading
is taken. The old filter is removed, carefully lifting the edges of the
filter and placing it in a manila folder. The folder is clipped into a
waxed envelope which is put in the plastic box. A new filter is removed
from the plastic box and placed on the sampler. A final flow reading is
taken after about 2 minutes of stabilization, and the timer is reset. The
hi-vols are calibrated about every 6 months in the laboratory. The cali-
bration procedure is included in this appendix. Hi-vol samples were normally
taken every 6 days.
In the BAQNC laboratory, the filters are conditioned to a standard
humidity level for at least 24 hours before being weighed. The filters
are weighed before installation and after removal. Each filter received
from the state in this study, except the blanks, was cut in two, and half
of the filter was submitted to IITRI's laboratory for analysis of the par-
ticulate content. The other half of each filter was kept by GEOMET.
BAQNC PROCEDURE FOR CALIBRATING THE HI-VOL AIR SAMPLER
1. In order to obtain meaningful results from the hi-vol air sampler
it is necessary to accurately determine the volume of air sampled as well
as the weight of particulates. Since the rotameter is used only as an
indicator of air flow and since only a small portion of the total air
sampled passes through the rotameter during measurement, it must be cali-
brated against actual air flows.
2. Assemble the hi-vol sampler with a clean filter in place and run
for at least 5 minutes. If new brushes are being used allow the sampler
to run for one-half hour to insure proper seating. Attach the rotameter.
Adjust the orifice at the top of the rotameter with the top brass screw
so that the top of the ball reads 60. Lock the setting by tightening the
brass lock nut at the top of the rotameter. Put sealing wax over the
adjusting screw and lock nut to protect this setting. Check rotameter
again for a flow of 60. Turn off the sampler and remove the filter paper.
3. Place the number 24 resistance plate into the mouth of the
limiting orifice and then connect the orifice to the hi-vol air sampler.
Rubber gaskets should be used before and after the resistance plate to
-58-
-------
I
I
t
I
I
I
I
I
I
I
I
I
t
I
I
f
I
I
insure a leak proof seal. Connect the static pressure tap on the orifice
to the manometer with flexible tubing, leaving one side of the manometer
open to the atmosphere. Attach the sealed rotameter to the pressure tap
at the base of the sampler by means of flexible tubing and quick-disconnects.
4. Turn the sampler on and run for at least five minutes. Observe
and make note of the manometer readings. Repeat step 3 for plates #20,
18, 16, 14, 12 and 10. Tabulate the manometer and rotameter readings for
each particular plate on the Hi-Vol Air Sampler Record Sheet.
5. Convert the manometer readings (A P) to actual air flow in cubic
feet per minute (Q, cfm) by reference to the orifice calibration curve
supplied with the calibration kit and tabulate these values.
6. The tabulated data (Q, cfm versus rotameter readings) are treated
by the method of least squares to obtain the equation of the line that best
fits the data when plotted. The State of Maryland presently accomplishes
this by use of a computer program specifically written so that upon
incorporation of the raw calibration data (Q, cfm versus rotameter readings)
the equation of the line of best fit is obtained. This program is now
available to all local air pollution agencies who desire to use it. If
access to a computer is unavailable the data can be treated as in sections
8 and 9 of the aforementioned Federal Register or manually by the least
squares method as follows:
6.1 Sum (IX) the column of flow meter readings including only those
values for which manometer readings were on the orifice calibration curve
(A P >_ 2.8 inches).
6.2 Convert each air flow rate value (Q) in cubic feet per minute to
cubic meters per minute (Y) by multiplying by 0.0283 M3/ft.3. Sum (zY) the
column of air flow rate (Y) in cubic meters per minute.
i)
6.3 Sum (rX ) the squares of each of the air flow meter readings (X)
for which the corresponding A P >_ 2.8 inches.
6.4 Sum (sXY) the products of the corresponding flow meter readings (X)
and the air flow rate (Y).
6.5 Perform the following calculations:
EY = Na + bzX (1)
S(XY) = aiX + b£(X2) (2)
where N is the total number of readings (X) which are being used in the
calculations.
-59-
-------
6.6 Substitute in equations (1) and (2) the values for zY, N, IX,
E(XY) and x(X2). Multiply equation (1) by the factor zX/N to give the
following equation:
2
= a£X + b l2-- (3)
6.7 After substituting in the known numerical values, subtract
equation (1) from equation (2). This eliminates unknown coefficient a.
Coefficient b is then substituted into equation (1) and coefficient a is
determined. The equation for the calibration line then turns out to be
the following:
Y = bX + a (4)
where Y represents air flow rate in cubic meters per minute and X repre-
sents flow meter reading.
6.8 From equation (4) and the initial and final flow meter readings
for a 24-hour sample, the total air volume sampled is calculated. The
initial and final flow meter readings are averaged and the value (X) is
incorporated in the calibration equation. The air flow Y multiplied by the
total sampling time in minutes gives the total air volume sampled in cubic
meters.
-60-
-------
I
I
I
I
t
I
I
I
I
I
I
I
I
t
I
1
I
1
I
Source No.
Appendix B
FUGITIVE EMISSION SURVEY FORM
FUGITIVE DUST SOURCE - REGISTRATION
Map No. _____
Description of Area;
Paved Lot
Asphalt
Concrete
Stone & Tar
Trash 4 Debris
Unpaved Shoulders
Loose Gravel Surface
Stockpiles with Fine Material
Stockpiles with Course Material
Other
Unpaved Lot
Q Dirt
Q Grass
(__] Weeds
Crushed Stone
Gravel
|~"] Broken Pavement
Q Cinder
[J Trash & Debris
Stockpiles with Fine Material
Stockpiles with Course Material
Other
Map Coord.
Grid Coordinates
Terrain;
QFlat
£] Rolling
JTJ Steep Slopes
Open
Enclosed
Semi-enclosed
Approximate Size
Type of Activity;
Residential
Commercial
Industrial
Parking
Construction
Storage
Recreation
Unused
Railroad
Cinder, Gravel Crushed Stone, Oiled
Not Oiled
-61-
-------
Comm.
Qlnd.
Description of Emissions
Q Cars
Q Trucks
Q Stockpiles
£3 Storage
Q Natural Occurrence
Q Material Handlers
Mobile
Stationary
Q Other
Inspectors Comments:
Date Registered:
By:
-.2 -
Res.
[I Comm.
| I Cotnm.
P Ind.
Comm.
Mobile Activities Frequency
Q Commuter
Q Continuous
Occasional (Low Activity)
Occasional (High Activity - Bulk)
No. of Vehicles per Unit Time
Avg. Speed of Vehicle
$
1
I
I
t
I
I
1
I
I
Stockpiles moved 2U Hr. j_J Wkly.
Owner Information:
Mthly. 1~P
1
Name:
Tel. No. V
Address:
Leased:
1
Estimated Emissions:
Ibs/day
-62-
I
1
t
I
-------
I
I
« Appendix C
FUGITIVE SOURCE CHARACTERISTICS
1 This appendix contains the following data:
W Baltimore City fugitive source characteristics
* by grid square (1 square mile each)
« UTM and Maryland state coordinates for each
Baltimore City grid square
§ Baltimore and Anne Arundel fugitive source
characteristics by grid square (1000 ft on a side)
I
I
I
I
I
1
I
I
I
I
1
I
-63-
-------
I
u
a a «
U U X
1-1 u a.
I a. *
ij 10
1 »
f- 0 »
z *
> tr »
u *
* a. »
u oe
oc u
o
D -i
z a: »
fr. >. »
iii * >v *
U -3 111 »
< n I »
U. ffi tJ »
ac «t »
3 O >. »
UJ O Z
cc. o »
U fr«
ao m m
**> in j^
u
» « <
» o
t> U! I
U! 0.
x o> z
O o
C "1
coo
C ^ C
xC C <£
ir \r
U «J
> 2
t «
I O
* tt
* U .
u; *>
J c »
cj u. x »
u; a.
x a z »
5- C
S
C C
o c
o c
x (7* o
-64-
-------
I
f
I
1
f
I
1
I
I
I
1
I
I
I
I
I
I
1
I
to
o
«
o
(C
J
o
o <->
Z 1C
M O
x a:
ie
u
ac
W
S-
r}
2
U
a.
« fa)
u a:
a u
in in in in
in in m m in in m inmmininm in mm
o
o
«
OB
O
u M x
cj J u;
< ex
u. cc u
IX -V «
DON.
1C O Z
X O
u; f-
ac 41- ~ 4*
h IB » « b? »
2if. 4» OC I) *
O » «t < 4»
U 10 41- 4»
u:
3 O *^
C) U X
^ U) Qb
x a x
u tn ^»
r« o o
tn
e- a
3
2 X
U! IT.
> i
« C
a x
cc
a.
tn >~
u:
j o «-
c; ij: x
>- u: a.
c m o
, CN
O C
o o
1 in in
in o
(v «*
o
o
m mm
o
a
a>
IN
CN
1C
o
o
3D
CC
C
c
s
c
o »
o r-
m
1C
o
o
c in c in
** CN rN
CN C O C
r» O O C
in o fN m
m
CN CN in in
If) CO O C
c o
c o
CN C
in ir IT
c c
c c-
ceo o o in o
o -i o o
O IT O O
m o c o o c e oesco
o o IT o o
o
o
o e
o o
e
o
o
o
o
o
o
c
o
o
o
c
o c c
C CO
c o c
c o c
X
CN m
fN CN CN
o o
in ff'
^ >c m ^
fN ,c m in
CN .£
O
t-
o
.n
COO CO
cr .n -^ «« IT
ocs o coco
in^'CN m p»p»o*c
^ *-t fN
<3 C CO
<" x r-
O O O C O 3
i c m i m
» fN X P* ^
a? tn
rn m
i CN «r ^
'^inminininininmininininmininxiA^'
X«f««-C>C«
-------
to
a
o
rs
* U *
J O -» »
u u x »
» u a. * in
I a x *
u
O 00
o o
inmirtino
c»
CD
1C
z
o
z «
x an
u
f ill *
UK *
cc u »
«t
U* b v^* -*r %^< ui i_ wiwJw^^uiwbiAi
a^«» '*»i/\vrtininminm'^'r>
3 O -N. «-
CC X
^ m
IT oo o O o ac
**> m in »n in ^
> vfi
O
ui
u
re
Ct 4
*4 O
C 91
U. *
J C -«
CJ U X
u a
=c a y
u in -»
o
C4
CD
CM
m coo
o
o
C
o
in
o
o o o
o o o
in r-
o
CN IT in
O
o
u u; x *
w U d * O
>- » O
*1 :-
||2:,-
Is;**
^
oo oooooc cro incocomo
CO OCCOCC 00 OCO^COC
cc CCNO c c- c cc o oo mccc
ff-^ ^ifNXO^^1 ^NO f** OT't
r*> (M CM ** r* »n
CO C OCOC-OOO OCCC CCOOCOCO3
-%* cC ^ » CN' «N* ^ r-' rJ ^ 3-' ^* r~' CN' ts* * .- ^' ^ - ^ r- ^'
-66-
-------
I
I
t
1
I
I
I
I
1
I
I
i
t
r
t
i
i
i
i
a
u
X b!
=3 X
in f-
IA
< h.
O
10
CO CO
X
f-> «
x a
u
>" ts
u: »
z
u
J >
u u
o
i *
U X
» -v
co
u J
u
« r-
a.
u r~
> «H
«t
t
Z Z
c
^* 2
f-
(N
v Q
U
I S.
3
to
a ic
in
03
in c
CO <
O
O X
«
o a
X U
_; >
<
« a.
x
it
c c
7
a z
l/> H.
O X
« 3
c a.
x
j H
u. ^
(i. X F.
a s-
CO Z
!/5 O CO
aJ » !u «
Z
O
J
I>]
X
U f-
c
s a.
J U
U X
z fr->
11 a
> «
t X
a. f-
x »
o i-
u. u
l-l
/- X
*- t-
s. ui
j u
U 2
> N-.
< Z
X Z
F- rt
I »2
u. a.
7 ^
01 A
U Z
J 3
r e
I Ez^
U. X
5J
» C.
X Q.
[u a.
» i
d
> x
a i-
c z
&c »-
u:
LTIMORE
FOR
08
ifi
« tc
»*
u
a x
a =>
s o
z
J
tf
i
X
a
X W
o u
u.
ti.'
a.
x
J
S *
* I
t- =
u ~
Ul 2
a.
w
u >
X >
in o"
u u
- 1
u.
x u
3 =
1C
CD
U a
X w
o 2
Q i
z £
*
FOR C3
c
x
c u
t- i Z
JJ 1-1
U'. ^
A f-
* X Z
U i
z «- u
3 X X
<*^ ^ X ^" O
a. a. a.
ft" fr- ^ EC
S If. ^ OL.
C =9 « « C
u. a cc :> z
a u z i 2
u: o
I i
3
Q. U] -Z
J X «
< U. U
O «
JJ S" CJ
X 3 O
t-i «t J
= ii. fc-
J3 a uj
/; _u -r
5- 5C j!
3 O r
O «l =
U O UJ
X X
J3 » X
« «
x X a
cj
I- «
hi
X
S 3
£ S
X
uJ
X f-
z *
X
3 U)
X X
-67-
-------
£>
3
2
F4
O
c *
2 *
«= »
* hJ *»
^- *
tr *
«r *
z *
*
*
#
Z *
?- *
C *
»
«
S~ *
*N *
X »
CC *
fcu *
ff **
s *
:? *
*
o »
cc *
cj *
s »
z *
< «
x *
CE »
« »
E »
«>
*
S *
f- »
7£ *
*
X *
s »
X »
S »
cr *
Z »
3 *
z *
4*
o *
cc it-
is »
c »
z *
A *
M *
> *
cc *
«* «
X. *
»
*
*
s *
t- »
~ *
*>
«
X »
s. *
X »
a »
U! *
CC »
E »
3
2 »
*
O »
t*4 *fr
cc »
13 »
in in
cc,
~- rr
vC
C r?
cr if
p- -*
o c
CC CN
cr i*
in in
rr
X X
in
in in
o c
CN CS
CN m
cr in
364667,
4356480,
x x
co
-.
rr r»
r* pn
rf r-
cc in
« in
353280.
435811 0.
x x
-
o in
x
in pn
»-t
v- ff
cr in
t cc
in cr
rr *-
pn
vc in
rr
X X
t.
**>
o in
r- c
r- CN
CN in
cr. in
366772,
4356477,
x x
er
V*
in o
vc r-
er in
x in
354964.
4358106.
x x
o-
c in
rr «-»
a, r*
£ --
^- rr
cr in
in T
L- 3-
C
pn pn
vo in
rr
X X
r-
p^.
O If
pn o
CN CN
pn in
cr in
367076,
4356473,
x x
o
CN
in o
CN 1-
m r»
cr in
cc. in
vC C
in
VC X
in in
rr
X X
r*\
in in
c -«
»^ pn
CM -"
rN rr
c- m
c
vc cr
VC ~
*s pn
vc in
rr
X X
X
pn
C C
T
rl vc
CC r~
c r-
C If,
cr in
350)73.
4358099.
x x
rr
C: m
r* .-
p^ pn
r*
CN -f
a in
in r^
>c cr
r-
vC pn
vC in
<
X X
er
pn
Ifl 0
vC
0 vC
cr rr
x in
354957.
4354856.
x x
CS
CN
in o
x r-
vo r-
O ifl
cr in
359010.
4350096.
x x
in
o in
pn »
vc pn
CN
m rr
a tr
x rr
VC X
x
r* rr
vc in
rr
X X
c
rr
Ifl O
CS -*
in vc
cr rr
co in
356561.
4354053.
x x
pn
CN
0 O
a r-
~- in
er in
361462.
435K09?.
x x
v£>
C C
rr CN
p- cr
rr in
X pn
co in
vC ~»
vo r-
CN in
pn ^-.
in ir
rr
X X
_
rr
o o
cr,
C vC
C rr
cr. in
358166,
4354050,
x x
rr
CN
o c
* r*
vo r~
in
cr in
363066.
4358088.
x x
p-
in c
vC CS
CN cr.
c in
cr rr
x in
c r*
in ve-
er- in
rr
in in
rr
x x
CS
rr
in o
CO ~*
VC VO
e rr
cr in
359010,
4354846.
x x
in
CN
in o
o r»
es p-
CN m
er in
364671.
4358084.
x x
X
in o
CS ON
in cr-
in m
er m
cc in
rr rr
in vc
in in
v£. «
in in
rr
x x
rn
rr
o c
X
-H vC
*- rr
cr in
361455.
4354R42.
x x
e
in
oc
IT If
rr
X X
rr
rr
C o
rr ~*
cc r-
vC &
cr in
363058.
4354839.
x x
p-
*N
0 O
pn p-
CN p*
pn in
cr- in
367079.
435R078.
x x
c
in o
a; CN
cr
vc in
o m
cr in
pn p-
o in
X If
Cr ^*
ifi in
rr
X >
in
rr
in o
o **
~* r~
cs vo
CN rr
cr in
364663.
4354835.
x x
X
CN
o in
rr O
rr cs
co in
x in
353277.
4356505.
x x
-
c c
CC CN
if cr
in
V f
a in.
x pn
rr in.
in m
vo *~
CN pn
cr T
x. in
354954.
4353217,
x x
cv
*n
in m
CO O
VC CN
e- in
cr in
« cr
CC T
a ,£
rr
x x
in
c o
PT CS
NC cr
cs in
cr in
in cr,
vc m
x in
vC If
pn pn
rr
X X
e
in
if> m
cs «*
in pn
in »-
er rr
cr in
356557.
4353200.
x x
m
pn
C in
ec o
~ CN
«- tn
cr m
361459.
4356486.
x x
vc
c m
-------
I
I
I
I
I
I
I
SI
I
0)
JS
t
t
I
I
I
I
I
I
« *
CL *
S. »
*
f- *
IT *
>* ********
'X Hji&wnw (
u »
<
£
z
(-
NUMRRR X/V
»**»*** *** t
a
z *
>- *
«r *
£ *
it
X »
a »
u; »
(T
z. »
a »
-i «
is »
C IT
£ *
C CM
r- in
o
o in
r- >c
r- in
C» C<-
a in
rr If
CS, CV
VC CC
vC rr
X >
er
in in
£ CN
C C
ec in
er- er
x >
CM
in
IT C
c cr
"?
tn rr
c in
vC CM
CM m
O IT.
X
or CM
r* cc
c
in in
C» CM
in o
CC IT
e er-
v er
x (-
in
o o
a. rr
o
e o
VC rr
vO
in c
CV CC
c cr
er
ov in
? *
x >
CM
C IT/
cr CM
0 C
o- in
IT vO
er
x >
IT)
C C
rr rr
c
££
in o
ir tr-
o-
m -
IT VC
vC vC
X S-
in in
ec CM
cS
cr. m
S CM
a- er
x x
in
in c
C rr
cr,",
vC rr
cc
o e
O cr.
c
a cc
vo
CC VC
x ^
o in
05 «V
o
» in
x >-
VC
IT
C C
CC CC
O
r~ r-
o
in c
vc cr
f. «
r- M5
X »
ir
o in
» r«
vc e
c a
x >
IT
O O
rr CO
c
="7
r-
o
o o
r~ c
rr vC
vc
X >
ve-
in IT.
C CS
CM O
VC O-
X >-
a-
in
in c
o cc
CS O
in o
vC rr
e
o c
*- r*
O VC
X X
c. in
r- CM
r- o
x >-
er
c o
r- ce
CM C
O sC
sc rr
er
c
in c
CM a
vC **>
vC vC
rr vC
X X
ce
o in
t*l CM
CM 0
X >-
o
vC
o in
er
P* CC
vD rr
0 C
r- cr
0
CS vC
X >-
er
ej in
rr m
x >-
in in
o ~
fs ^
CS IT,
«r c
vc rr
CD
0 0
cv cr.
rr VO
C VC
r- -c
x >
c
in in
c m
x >
VC
c m
r*
r- os
CM er
r- *-
* 0
<£ rr
0"
in m
in rr
er vo
IT C
tc in
x >
in in
CM vC
in m
X >4
c in
m ^^
vc cc
CM a
o cc
r~ o
VC rr
o
CM
o in
C rr
rr «>
o
cc in
X >
r*
o in
a* vc
c ir
C CS
x >-
r?
A'
in in
vC' rr
cr 0-
I*- O
0 IT
X >
in
v in
CO vC
so in
O CM
X >
IT
a
fo
u
a>
o
q
o
s
>fote: Coordina
i
C IT.
£;
rr *
vC
o in ir in
cc rr i- rr
vC rr es rr
r* CM c*- er.
C C vC C
"IT rr ir.
X V. X s.
r» ce
cm ir> in
rr vf O vO
* in CM in
(V O. CN
rr CM cr cc
rr e to
Of.
-------
Ul
01 *
CJ U I »
M u a »
i a. i »
u to <-> *
U K
K tJ
OCDOOO
o o (« in in
* » r«- r-
in M
CD »
otn o
cooooooooo o
««««r>vcv-i -v
O J Ui
t, (C U
a a.
= a ^
in o 2
a. o
ct * -~
i- a;
u; a
z o »
a: C
^ X
J O
U ^;
T Q.
u; u
' X
u;
o -
' i: x.
, u; 0.
a T
i w
O b.
» T O
» 3D ae an T
»
c
in r- o
CO CN
o coccoo ir>oooo
c o o o c c
c o in in in c
S 0000
c o IT. o in
o
If
ini/!.nin.o.c.c-c.o.£
o = c-
c. r» IT
» t) »
-70-
J O
-------
t
I
t
1
t
I
I
I
I
t
1
I
I
I
t
I
I
I
I
4
4
4
4
4
4
4
<
4
«n
f-
«J
t-*
X
!»l
D
Ct
«
X
U 4
U
c;
at
3
O
-^
>
H*
(H
'
A.
* uj
^ a
h 4
^ O
1- CC
* »3
1- M
a
t-
o
o »*
M O
x a.
V
a.
t» to
co u;
z f-
tj < S
o a
hj
=» o
2 C
u a
t/5
tij
*t ^
j* .2
Q^ G£
a >3
tj
U
j a
u u z
«- u a
x a. x
U 10 w.
4
< U
U (C
ct u
s-
to -»
^^
>. ex
H >
tj J U
U. (C O
or NH <
IT O Z
cc c
u f-
tf Ek
h? tt
a o
"* i
u
tJ U X
* !; a.
I 0. T
u to <
*
>
^
H O
Z
u.
S-
M >
to --
J O "^
U a! X
i^ UJ &
x a, y
u I/) '-'
>4
*
s
» a
j;
a. <
*
< A
m u.
5 u. «
^
cr> *^i^-« mo «*> ^^
o **oo ^w o «»»i*i
CM one o CM CM om
m ae«\o opm m ODCM
CM
w
in c o o o e
1 «^ W* "^
'
0 C COCO
o = e o o o
o in c o m
m tn CM CM CM
**>
t
*
k?=?»?»Sc»~?52$
h
inr-mocn ooo «-» m a>o
o o o o m in o o c in in m cse
«r m «r «» » m
CDCDCCODCM mcDinin^m r~ m -v
CM « « <-
CM «
0 C
C ^
»
in mm m
00 0
o o
ON 1^1 **< in
in t»
;?S5S?^S?**5S^??;;s?;?
'
»
ir mom a cm
r- «" t- IT
»
* ^ GD ^" t/J IT f*>
C
f*i C
fM
O C
fV V
C S
c c
*
o
LT ^*
c \r>
«q
O C
c- c-
c c^
,*^
S^i^S?' ??»
*
-71-
-------
03
ac
I
CJ
[J
rr
C3
O
to
z
O
a *
Z SO
i-i O
X X
u »
J O " »
U U X *
w u a. »
x o. i »
u 10 »
*
O O CO
m
Gv>tn in
o o r* o
ir> IAON c
»
J 3 ~ »
(-> hj X »
« bj CL » P» O
X 1. f «
G>) 03 - *
X * O C
a. » c o
.3 »
» m OD
ac * cv
'jJ *
a *
j c *
u j = »
f* u: o> »
z a. z *
i: a: »
t- o »
c c
c c
o o o o o
tnootnc
o
o
c o c o o c
o c o o o c
c
/
arODocf~»ir-a>r-iTt~-i
rfc^^n^^;vt/^trii/^ir»in»/>j>^i/'iJ"ir'«j>-sr -n ^> m * ^
-72-
-------
z
u:
o
4
tf.
a
5
» in
» 0
» «
» o
* X
ifr »J
* i-i
* <
* 01
»
o
z
to*
3t
£
10
z
c
w
a
»_t
o
j
£
X
^
j
z
Z
o
M
CO
0
cc
u:
w
u?
t-
M*
w
l£
o
4
a
a
IT
X
s
*
~
X
u
J
u
M
X
u
>
u
Ct
t->
J
CO
CO
u
^
u.
a
^
1/5
tf
U
e
^
u
^
z
u;
r-
X
f-
J
CO
Jj
u
X
Ji
*
X
9
Ct »
f. >. »
tort V »
j u; *
-. or » r~
cc u «
to* 4 »
O >. »
O Z »
C£ O »
U (- »
>~ * CN
U *
e »
CJ »
< *
^- *
£ *"» »
u x **
u ex *
CL 9 »
U3 »
>^ *
« »
C *
u. «
a »
^
*^ »
w »
»
Hi i »
uj a »
a, s- »
cc »
*
>* *
«
O 4^
x *
u: *
a. »
t - «>
ti
*
t*. + *c r~
00 00
^p *f ^ ^
r>< *-t o oa o oo** «^o m or«ior«irinrN
^^»^ *r^ »fi\o r*r* in
QC O vC ^ OC ^ ^ ^ O O ^ vO F^ ^- QC O ^ *^ O ^D >£ ^ ^ SC ^ OC f** O C
m 10 OP oo fH OD^CD tfttr xaD^r*f'i|n c** ao*^ * x ao v ^^X'*|v»-(N
ci
o o o
*_| V* V*
o o c
o o m
o o «»*
c o c
o iroooin o o coo oc cc
M fV * r* ** «4 *H *«**> «Hv« **
c ooooc o ccoc c co
c trcooc c c oinc o IT. c
C fSCClTJO C C CfNO in CMlT
^r 00(^*01 ^m*lrtX3-'x^r-inr^o-inoo***'3:^x-H
^^^^^^^^^^^^^^^^^^^^^^^ff.^^^^^^^in^^^^^^^^^,^^
p.i^^r^p.r^a>«BeBa«a,op«OD0«a:oBorx9*»»er979T?»C930S999933^^
y C t *" »-»»TiT.^3.»»»»»»»«»o.8.»m»o.o.a«!Ta<»»»«»»».ffm»»-r»-i>
-73-
-------
to *
o » u
«t » J O ^
a » u u x
cc * x u a o o o
-J * X 0. X « 9 T
x » U 03 *-
z »
c
o x
z tn
x a.
EI!
*
in
u
j . *in CM o o o o c o ° o in o CM o o CMO
to
. »
M C£ *
U t-t X »
cj J u *
e«>c o o «r-ox>oc ooo
X x « »
3 Q V »
to a z »
IX O *
lil S» »
w
-. » *
« U! *
U Z * ^*
a o *
»
» u »
* e <- »
* 0 UI =. »
» r- u; a. » ooo
4fr f Q. Z 4^ « ^* v^
* (b I/I »-» »
» * *
«
U5 »
fr-C»X» OOOO
OZ*S~» CMOO O
» ;» a » o in o
j
UJ It
> e
a 3
c z
to
^
£ «
4 2^
J «
> C
X CC
a. «
J » OOO
o" » « « in
^ Q »
U Jl X »
^ C«I QJ * tO O C lH C C O O O IT) 3
u; to w *
> »
>» c»oo coooooo
<» ecoo OCOGOOO
E * CCCC Orn«OCOiT
>x* r^w-ox oc**^»*^»3cc\
a, * -^
^
a; » mr»a>=m» v «^
CM o o o o in o o oo CM m o
**vfi>coin r- r-
9vccoo r-« c co « r- p-
z* coo o moiro
o ooo o ooco
o i^mo o incsi/;
c F»CMO c rxcircN
e ^ CM in
in^tina3r--aoo-»>»sq'ji a inmw
irininin?>iri^>inin*ininir>irinirinyiinin
* CJ *
-74-
-------
» to
» o
» o
» z
U!
CJ
X
CJ
Ui
tj
ct
Z
C
O
Z 10
« o
x a
z
f- 1C
in b:
z t-
o
CJ «
«M IN
« ,C
O O
CN
iTi o in o
vC CM
5 m o
x r- in
j a ~ »
cj «? s *
~-h?o»» o oc cj~c:cccinocc> in IT. in ooooooo ir/cmirir.
co cm^i-rooooco
COO CSCOCC.O
c c c c s
z
i
en * IT
c o
X
o
c
2 UJ
< A."
»inT-rf>intnininirmirir)i
-75-
J V*
-------
* o » u
» «t » .3 O .
» O * U U X
as » 1-1 u a.
» J » x a. £
» i-l » U (O v~
« u
U OL
a. o
o
O "
z to
« o
x at
k.
ic * a.
» s- tn
cc » ic u:
u
o >-
CJ
tf
a.
4
I
Ui
CJ
IT
3
1C
> X
E- i~
a J w
« « E
u. a: o
o a >v
w o z
£ o
u a.
x o
0*00
o o »*
m n m n n
CM OD
o in in CM
oo r- cc
0< CC GO m
r-i
x a.
u en <
H C *
£ *
» tr »
j: *
a »
ij i X »
~< u: a. »
f- o *
oo co oo oooco oin c o
S OCOOOOOOOO OO OO CO OOOOO
O O '-
m CM
OCM CU* IfiOCMCCM
» o
r«
> «* r^ m o ac
3 O S C
o m in c
*- CM r^ ui
t O O O O -* -*
' O
i av
-76-
-------
I
I
I
I
I
I
AND BALTIMORE COUNTIES, AND ARE TAKEN
R OF I,OTS WITH THE SAME CO-ORDINATES DO
u
_J (C
UJ Z
C 3
3
a u
« x
F-
u
T?
z. c
rf yL1
1C
Z 3
*"
U O
z x
C F-
< LB.
I I
> z
ic o
o"
b 4
> 2
» 3C
i £ .
X 2 C J
^ CJ Z
a
u. u, <
-^ ^
T5 S-
U. ff
*
< £,
x tii u:
£ [&:
tc ^ >
~ o x
^ u. o
-^ X X
ta2 V
< t f-
~ P- f»
C C »2
^
=» u.
X O
2 CJ
^ < a:
i i ti ft
£
U. 2T
A £
a.
J^ 'A.1 ^
x *i
* ?, r
WD O O
It *
5- ^1
«£ T A
;z H x
o
en « fc-
C 2
1 "*^ IM?
0 J 9!
t) X U)
U 2C
U] 3 Q,
z o c«i
AR ARE ASSUMED TO BE MET IN BALTIMORE.
u
X
u;
F-
U.
o
0!
X
tf
o
_
^
tr.
c
u
X
0
3
J
H*
c£
a
c
^
u:
^
<
3
^
ij
>
<
SL
C5
X
Q
IA.
c
It'
*:
^
J5
J5
^5
^
~
J
r-
2
3
CJ
i_
.J
u:
*
P4
»
t
in
O
in
1-4
U
a
o
z
"
J
2
^
^
u-
^*
i.
a
x
j.
C
Z.
;g
~
p*
H
4
3;
C
a
<
:»
hi]
i
2;
^
.^
a
_
x
«-i
t_j
jJ
-x
-j;
j^
^i
^
£
X
t-
2
Z
a
x
a
o
jr
"-"
j
^
(C
a.
o
h.
y
«
cv
in
i^
a.
«
Q
x
ct
1
in
U)
^;
M.
X
^
1C
C
il.
u.
X
.'I
^5
jj
U3
a.
(T
3
Z
^<
jt
U4
CJ
c
3
to
CJ
z
a
a
x
>
tc
a
Ul
X
in
«
IX
^
b.
U
IX
U
X
4
*
J
rr
c
o
a:
U.'
ii
z
f-
^
^
tc
^
^^
c
u:
jj
o
«
u.
3t
3
^0
f-
a.
{&.'
ii
>4
"""
s
c
_
y
a:
D
a.
::
tM
^3
a.
z.
^
j
j
f-
[£
U
a;
10
*
(L
F.
3
O
[jt.
t*
bM
Z
C
in
L,
O
z
u
x
F-
2
^
^
3.
C
a.
r^;
IX
J
tf
Z
M
^.
ti
X
F-
bj
M
2
~
^
i-
J
3^
O
U.
IZ
cr
u
.^
b
~£
=>
-77-
-------
Appendix D
FUGITIVE EMISSION PROGRAMS
The appendix contains listings of FORTRAN computer programs
to compute emissions of fugitive sources and to compute coordinate
conversions. The following are included:
t Program to compute fugitive emissions for Baltimore
City
t Program to compute fugitive emissions for Anne
Arundel and Baltimore Counties
Program to compute UTM coordinates from Maryland
state coordinates.
-78-
-------
I
I
I
I
I
I
I
I
I
I
I
Ci
a
a.
c
I
a "
O a. .
u. a s-
tr. z 2
a v 3
« IT. tn
a. Tf f
x o o
Q, _
tf) t/5 eft
C S 1L
X
& f- «
« 7-
z c
&-
r i
c c
« < sr
i cj «
C IT K
f- (£ S.
tj C
i. C.
g-
b.
C
e
u:
u.
O
a:
-
£»
b_
e.
c:
~
~
y
v
c
u;
US
M
»
M b2
l/^
u;
£ U.
u.
'Jl
tf
a-
C
^,
U.
*:
a.
<
^
w:
^
J
*-
^
C
j;
d.~
^3
*^
C
5^
It
fc O
2 rtt
U.
O5 *y
5
* u?
1*
U'
3.
y;
^
^
^
H4
2
U
i
14.
C
S
^
<
-
u;
>
^
tr
E-
«:
j;
J
^
5
U-
u
y
U.
^
,.
e
CN'
*
1
^
u; w
a
> a
fc- u;
*
_P y
^-
z
Qi
J« ~
^ »
« a
X u
i".
c
u;
^
a
u.
>
z
o
£j
IT;
u:
i
<
C
Z
tr
a.
'^i
^
u:
^
X
«t
t.
u.
r
> a:
« [>:
c x
>. ^
ec =
_: z
-
§-
[>.
^
tn
i i
*
*
x
«r
{%
2
H-
C
^
»
<
C
X
»
<;
»"
tr
a.
or
c
3
tfi
^
x
o
«
u:
0
t~-
\c
*
c
f-
^
>
w
z
c.
to
c
fc
t/J
>
tf
^,
*
**
^c
-
c:
«
*_
L.
tr
^
»
«c
c
3
ecooeecc «cc
ecoceeec M n iiccccc
c c
COCOC=CII H II II II II II II T! CCSS
C » Z J. II II _T
i j i; a. u u u u u u u u «» oi " T J" -c «? ~ <
&.<> x" t-zyyy«~ss wo.
sit f-cjtjcj 'v"^"irvor-C'=' = rr =3 = ra.c: ITO-
c
C II
II
ocs
ooo
ooooocc'C
oooocoooooooooooooc ^
-79-
-------
Ot
a
QL
p-
1
>
fv
CN
f\
£
»,
J"
X
1
X,
X
0
,* J
o =
i i"
c "
> X.
SP r1 , Ff PFsHlLO1 , RE A 00 Ml, Y )
y.
r
-
II
u-
E
c c c s
II C II II
~* II
II "* <-
; T rr M !»!«. 3
f 'rCJTZll.i.1
ir«r>«c;-ca.
c u: tr. cr cj cj t»: r.
r>
u.
cr
O
II
o.
X
>
Z
ll
"-
z
u;
a
c
ION SOURCES INPUT:')
u:
tc
z
U.'
u.
f
X.
m
cr
E
S
C L
f-
u: r
a a;
«- i
R SUIIRCF.S EXCEED LIMIT OF 7'
u
£
2
.
a
=
in
«*
ui r-
» cr
E- W3
a z
CJ
a *-
C
X
V,
a
u.
a
f-
X
1C
a
tn
f-
yj
N»
. M «r
or a: i»> j.
T T a:
f-
05
4
U.
1C
1C.
*
f-
, ^
en
f-
ii
e
1C
L,
IT
"
ec
o«
cr
ll
C
ix
o
c
e »
a
*" 5
c a
L." a
u.
u;
CJ
u.
CJ
" SC.
>»(' Z
V.
1- f- >
c
o
^-cccccr
- c
-.cjcjciucr'xTOtr
^"". ~^~~J2^
MIUT
C Z£3OO3OO't*3
_ _ . ^ [^ a u, cv u 2
cr «-uucJcJJoiJ
JSS2222S22
>- CE
t->(K.* M ^<
t-
>
»
C
o
*
in
M.
^
o.
«
c
N.
«
»
IiT
>
<
«^
»
r
rW-
-_t
t
u;
X
o
*
tfl C
O C
a:
J ii
a tv
a [.i
(N
a
a:
i
- =
c v
t- IT
5» tr
r* \i. X. a
~* ~ cc *-
>
JL
r"
^
tr
s. v
Z Z- f-
» *~ *
IV II II
<
c *~ *~
. - M
r- r*
a n o
*" - » ? "~
c; x T^
ii a: x. v. cr
c
c
s
«
V
IT
C
>v
r*
O
-v
~
Zv
m^
IT
^
IT
t/5 «
C
3- ||
C 5C
> !2
< T
a ^"
3.
a.
*
E. -J
s *
« II
a
x-
^ ta»
"*'""-
It It f~ ^~
« or > c
a v: u
5,
IT
sT
X
1
cr
*
C.
'
_r
i
X
v:
c c
5 J!
s: <£
^ "
> M
2: u.
tr u:
r
^
"
u
*
*
N- -X
n i
^ <
i V
o o
o
t t t» r > r >
c j r) r j t)
z u.
«J »
1 !T
*
c r
ooocooooococ ooooooo
oocooooeo
ooocooooo
oocooocoo
oooooocoo
« O O O
O 3 O O
o c
c =
-80-
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
OL
C
c
I
rv
VS
T a c n
a
? «!
II I- t- -f.
t-
tr.
ii
' ~
,. ^
*
* >_>
*
"Z,
, jr
tr
s> f-
«. 3"
u u
r~ n>
nT ^T
"" I*
» ~~
< to-
IT
^
I*
*
e
C
f-
.J
(r
IT
9-
C
rv
c
vC
^
ff
""
* °
« U
Z tj
C «r
f- T
«J
oc
t-
3
3 fa.
I
^
C
C
+
_
to
z
< *
= » ? n K s
4.4*?!>ni>./365. t CS
f ^.
V *
"I ul
» a:
IT <
u: 9
tj
« u; ~
r»H»
01 "^
u. c
*"
^ II
ill Cft
ir
o
05
e
u:
c
a.
C
c
<£
^
y
f C
i^ rji
>r d.
?
c
« >r
U: fr-
:J "^
a H
H f-
<
i
tt T-
U
- "" C
c c .
"5 C f
i^ (T *C
Z ar T
» «r ^ i. II II
> -r- 6-
C C C r- ^ «
C L
ci tr C ? f «
xc r^inj-c?-
u, * o- i; u: s c c
^ z "* 2 z ^: ^*
c u. c u: u: u
a, u «-aaa
^, f_ t_ r?b.c_t-.
C^.i-«C' 'U
^. >
C*Ektl»^^£ft«4fcCx-£b£
IT
v
o u; ji
f~ f\ ^
» tr.
r u *
- ir,
- ^ \f V
1 * » «
L o a (- s o
V.
V
f-
l j 11 c ] r j
c > 11 r J r J
i tr
IT 5-
o: -.
or o
u. u c
c c
o c-
O* ** «» T\
op w tr
-------
Vj
0
c
a.
o
hi.
>
tr.
a
C
cc.
sL
:>
4
a
tr.
tr
C
i-
3.
tr
tt
f-
LT,
a.
t-
PARfttfF.TF
C 3
O.
1C
1C
o
IB "? cr.
ta v±: u: N-
3: II
C If *
5 < >c o
* v x *- v:
-C t- * C
ii i U; _: x $-
s tr. o
u;
5-
?.
or
1/3
a
s
3
i 1
<-< c,
a. tr u x
> c i; 3c sx
u.
!»; u; -
+ <** s+* u;
vn 3
» » .c r~ c >-. i/, a <*>
I^fy o.a.H- (
= = = = c to o
to « u; w ii ii E- a:
n " M r
n n n n n
r » s J *
s r « 5 f-
tM . T ~ .
O
X
^£
II vC O ^- -D -
CST «or = i-s ^- = ? -
n vC tu < ii ii to i: < ii x Eu « ii cr. LU «r n -^ it a n ^ LI; a n tr ^ < n
vc f-y «-i ~h-T ~ :*; r-^ r- T r
s 1*3 i-io-s a: « cr * i«- a
= r5r:a.oao3 e- c>3u.a.ocjcj[«.i~tjt«.irritjii-ac't)i«.i:^cju.'r'rtji».a:riji
wwirirocrt-s-
N. O «. 1-U.»"
f- (T
\r c
r u.
3 en
c s-
U. V
oooo
^ fw Ow ^^1 ^j ^| fV f*w
I V f-4 f* f* «*4 v'
i c o o o c e o
CCOOC3OOOOOOOOOOOOCOCOOOOOOOCOOOC
-82-
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
IT
It
E
c
IT
C
a
u.
tn
c
£ f-
n.
f
~ I
*".
_
x*
tl
»
x
C
*
!-
4 II
a T
u. u
o
t-
:*
,.
c
>_£_
*
u.
I*
*r
NO
<£ u:
o
c c
a
O 3.
^. «
c a
* ~.
b~ V
\r
*»
z c
0
u a
a c
« -4
b. U.
o* <^
>c «
c o
(- F-
n c
C U
«
o c
u. ^
e
Z X
t
c c
5 5
tr r-
^" (7
u: u:
x a
a a
U. !>.
O
la:
X
c
<
SC
p^
e
c
u;
C
c.
e
z
T
\C
*
3
0
?
-
U
c
O
U1
»
£
C
Sf
«
r-
o-
O
Uj
e
OL
a
.
o:
gp
h.
«
3
C
2
O
tl.
^»
Ci
£ X
^ M,
« .
a ti
«£ X
K V
O
IP «
irt » x
KH
" X. f
t? 3 [*. xj
X X
c >
cr
or u.
r } »
«f >C
tr «
c
sC >
" - 3
f-
IL « II
«- z »
*> ^, p>
£
>C
M .
3. tx.
C.' -
a x
w ^
o
- -
**~
f. u <
~* oc t^
^ T U*
IT
0
»
o
ir
c
*
o
u.
*
zz
ti ca
t J b.
M tart
«
**
*-
y
>
if.
*
«
£
U.
(-
X
^
(S.
b
X
^
-
L
<
(£
~
b
vC
C
E-
0
C
c
V
c
U'
y
t_- tn
cr
II ^
F
t> b.
f*t Iw
S
b
!*
cr
>
<
s.*1
"
%
\c
u;
J;
ac
"^
»
X
iC
<*
-
- X
- o
« II
tc -:
O C J
b,
vC
O
C1
u
~
^»
»
2 O
f-
2
~ U.
KJ "-4
al
a;
f-
5"
<
a
<
a.
6-
d.
(_
X
ff
>.
«
X
>
C
a
X
O
.c:
C J
tf
&..
C
5-
^ Q:
O
c a
.
*~ >
x »
* x
U i/l
* O-
a: -*1
a
«
Ll. T
T
U.
*<
ac
%
fN-
*
(T
U.
n
X1
rv
r-
*
x:
-
»
"i.
*- U
kt.
2
"C C>
U.
IT
u.'
a
>
^
e
n
x
«
<
CL.
>
t-
^
(T
f*l -»
r* « *-*
Ltl &-
f" ~ T
cj or
S 5T "!3
t" U- ti-
lt
U"
a.
J
^ ~*
u: u_
M II
Ptf
or a
V X
C e~
c» r«.
x cr
, .
c c
7! ~
*i *r
c o
. .
r a
v
ilk tl.
_ ...
T
O X
O* !T **!
X «
a. tr.
a:
x i
C1 T
U. !>}
ooeoooocoooeeooeososceoooooooooooceooo
«- CM
\r IT
ooc-ococcc
ooeoooooo<^oooo=>
-83-
-------
-c
til
ii. C
f
o rw
s- - o
*- CN
a£ Ct.
« tf
*°* la. 9*
(V
CT
* X X
- IT
^ C C
ir - a
C
7
V
tr
*
^
X-
a:
b.
^
?
ll.
Ji
in
l£
CJ
a:
a
a:
3.
C
a.
X
*^
O
o
^
^
^^
UJ
K
X
j:
^
- « f-
rs » x
.X fjj
ac cv z
U.
- = X
r«j * [&.
i ^^ i;
?- r- * ir » tj u ii it c « II
CU-PV ^ u: 3TO CJC
f- » » .. . . . Z ^ II /-
>xr- cf- u; c «'-'- "5
*~i^"" '''J ic ii - *-'1''~~^"..
a x'fc-ffu."" J -*ai:a^^»»»*«- »
*"£r>j f ^ « t. x-^rf^-tr«a.u;a;f-3i^-p-H
or u. u. - w - .- - c»M-ee* r j r j
^ ^z^^ s^^^c^^^^Sm^^s^
Li.
^.
IT
£ Li."
cr a.
tfc
? ^:
JL U.
C -+
^** ^ y
a: tj *
t: ^ IP * IT
* » w > .
O C -v ^ " U
** e « ^. ^ ^« >
coco occoooco =~ *-
11 M C ~- aer II ^
uco-ea *-,--, , « » u = ^ - -
_
ff
i^5^S^5^51jj^5J5^j^j
. v- >-
* t- rv s- r^ .r
S. ^ fv £»**
>. ^_ » . » rr
h- &, OP . ** -j,
^ ^ tr >e - -
rv r*- «* » *
^-. *H " A. '" vC ~ **
u-« c* o » «-
-NSC iTX O-P"*1^
T l/t ^" «T- (/- ^. *
.(- .X - x -
»w jr* ~i*- »
r- i. ^ s- - ^.
j. « c u; * -^ c :j *.
-5
«
>T
pfc
*»
*
e^
tf:
2.
~
«
-84-
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
r-
at
r"*~
=.
CN
CN
>c
IT
tr
f
V.
0 *
1
N 2
C t-
*-> ** * x - t<
* - » r* x c * >* CN
x » - > *» » in x » « » »
» . - » » ^ *.. *_ a CD x « - * ce v. w *
>< - » « a. x » *ir tj > t* «j x * - x cv »
? £ ;." ~ *" f ^ 1: *sc?slisls ?L
t # IT *- ci < ** *--« efl-«-i^*X»*" » L x '»'-
r*- o-* - x a - »»r» *--x«xrt--^>.>««-»
^ i/* « tj sT * c x * t"X-xuc*u2xr*i.ff;«>»
a. * T <( » ^X'-> tf;(N»CSl5>cCfV»J^XX
w*-=yiai*'«-"- ~-ccc----xx-^
^fv *XX » ^ <* w - X ^-(Tf>» * *CV>*f1"*>*-'
";r*"«isr.5.«:!; jxrsil^s-.s^'il^
^iirjy^r-i!?-; eHs.;isr2srii=sr
2 r i i: * . i - 5 " : H-i.iS^J-isrr* 5rr«B
O. * x > ^^-x^^^'xtJ^QCO'J^S'T C*-x»«»xxx^^xcj
t-
c
p*
JD
tc
ir
£
3
f
e
^ * m
u.
C O O 1
CN
00
CN
O
u.
X
u, c
X U.
CN CV
o: -
u. C*
x c
S^.
c
u. c
a.
c x or
X V
'lulttJltfw .fl
SS'lld .JUW8I
z o
TITRT All
"X, '?!
C ".
a:
c. r-
f- E
- U.
e- C
O x
f». *
C
IT
-
1 SANO'/9X
tf
o.
CN
*-
O
^
X.
-
a.
x u;
- or
u c
a.
C
o
U. ""
s a:
ex
*. ^
t~
U'
X X
- c-
(y t-
- 0
Z
C £
IT C
CN
- ~i
C* X
X.
(j_ sC
fll C
5?
- »
x x
X
3-
X
1
}
a
a
u
r*
x
x
5-
ir
I SANflRl.AS
X
£ -.".
Z C
5 i
2 X
tL o^
«- C
CC tj
o-
X X
* »<
THROUGH' .
-
c
cc.
J
3.
tr.
V.
c
a:
0 «
(r e
<* >-
f-
a C
z-
f-
LL
or
z
Ci.
p-
»-
a
§
a
-
c tr -
* c
IT CN a
- T a
C f-
1 »- C
« e
« o-
c t*
« - c
at o
I X
OL
C «?
» 1
z t. -
C a- ^
** c -
- s
I' aT-
C t
r . « u
- f-
- ^
O X C
1
a r~ u.
E - i-
X >C CJ
e
2
s
(^
a.
c
-
a
a."
?
C*.
a.
*
C
T
t .
O
a
C '
f-
u
u
u;
Li
J
Z
c;
I
t'.
a. «r
c
IT JC
e j.
<
IA C
or
« u:
u~
o- *-
a: f-
y
± t_
z c
& _i
(T
T
o
o
Oi'srNCNCvcM fxrv
«ooooo oo
c
o
fN (V
o o
-85-
-------
I
I
I
I
I
I
I
a
u.
a
2
*v
ifi
i: C
7 J
(~ 2. U.
< f- X C
t- *« n c
c> - c. 2
W ^ Z CJ
- u- i z
so a x
u; e- - c
c - z
r5 at J
u i. u.
u = » o:
2 O. *r «J
i- a
f- in
x «-
" t£ f- U.
X C O z
3! c f-
C. 3. f.
- i
>. If. 0.
- J c
« C c-
t- cj
z a. u u.
:> U. z
w f- _:
a: z O
j < z o
b: «
» 2 £2
* z a z
Ct 4 4
I X 1 J
b. » Z «r
C < C u
I 3T - 2
u: u. u J
i. u u:
-j X 3 3
b. *- 5
X
§_
u.
C
r.
z s-
o «r
Xi
C C
M
CC «
b: s:
EC
CL fr-
ee
c
O IT
u
f- U.
in o
x -
f- u:
3 -;
cr EC >
«
tt a
c « - o
b. c «
C H
a e a <-
= EL
c »- n
b; » tn fr-
1C
Cv
EC
- !T
» f- o e
a. ce u
z a x
10
st
> ^<
c
u. c
1 O C
C Z U b.
b. U. «
c ce - «~
3 >. ^
1 O - «r
f- i f- a.
o o - =
= -; u.
EC u b: z
Z T- O
>i - «X »-
*«-'<
-or
bi - < a
a -
IT f-
- Z
x o
- s-
. uu tO
. a u
J c
U -3
- W
-x - a z
--CO
s z b. a.
C c c;
p- M U' >-
t? tn or
z « «
«- >- c
o b; z. v
'> a
b: ~ ct
t- > t- b.
i M ffl t-
O t- X bl
a, >- c s
b: f- X b. U5 3
f- y c- ir c
_ r» . j a cj
^ ^c 4 cr s
IT
at
u.
cr
- z
z c
< ^>
i
x o
s-
a
T C
b.
(T,
U. -
J V
u ^
f-
x to
«1 Z
a c
IX
CE U
c >-
b. ;r
O C G
tt. -^ t- (-
H Z > J - C
in C -iv
t- c. ti b;
U. C OL ^- *-
o ct ^- b;
J. c > a
~ (t b> b, b b!
j. j. C.
. X ««'"- S- W.
It. 3 H- t>
a a
b; - c ce e- in
i e z u - c
IT y c - J
b! = I- Z » U t)
< in "- > >- x
b.
Q. f- Z
= i>. t-e-caj.-<=. o (f b.
c;«c Etc a;a:ia: i>
ot b.2 *u:x-
£F- 4fZ SIO 34
>-*fo» C*E- ^»~
2XCO- U!bJ«>"«X- -
« tt^^irr-U! XOZ «
CCi U. C. H. C^tf^bl
«-=ct r z a v in Sz
icu.ujja.«=<: t^xx
r/ x
v/i r»
- rv «
O < X
: a x f-
c
a c
iv ^t
< t-
= « x e a. u.
u. >- t- u ti
3 i. X. = S
= a. c b, c.
su. »»< (v c => ^ u. s
occz cj
r> ic tv
o
e |
a
R A Y V I P. <
LLE CON
z t- b; :
O CC C ) (
r4!/: VCfr-1 bifr-^UJ
» X Ul b. « CJ iJ
a c . «
tc > b: o a
cj » in
X Z
IT C
CD &N
r* r* <
o- =
J1 C
* «z
cr x ce * i
v o *c x
1 X C
IX
in
u *-
J a;
u i
O
£
X J.
a X
a t-
cxaiczx-
XaJO-^ccjincc-a, c1'^
(-^«r!T jj ^ TC~t-
*- db;tr» C - ^ «-*<«;
- - b' X c- Z ^ P- «i O I* U." f- P- X
»%r ar*cr"rb'-i -2
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
c
z
i
C X
o
tl O
* 2
IT
. a:
v. c
- a
» u;
-U,
- I
C IK
u
o> >~
z
I O <~
o
to s-
s.
Jk >
a c
u. <
a C
=> a
tn o
F- <
a a
b.
1 X
& Ul
a.
a <-
u. =<
z a
< s-
a: 5
- 1
S-
j u:
<. f-
ct *
CJ
n c-
b, Z
» Z »
3 M>
^ I-
t; a: y
63 C O
a. u. o
u; z
x
c t- -
UJ
HZ*
c o <
u. a:
in -
- j? u
v (- -j.
- C IK
' = G
> a
u. u tr
> I
.e f- a.
_3
cc
ic :: .:
i a
L. Z C
b. 2
Z J C
J at
cr « u
£ II
tj « F-
:* -.
O - =
c
u
z
IX
c
3
a
O C
~ 1C
v. m a.
« - z
e =
o c c - a.
- z z *<£
X Z « X
oc c i i" o
x» ns-zu «z
zff^**rt'cz« »x
= M o a c « z >r L.
z o * u. r-
«. E * «.-ulb.Z3rM3- Z
x fv = z: »a
u. e » z b: >- c
rcf- - - - e
u; J o «- -a
f- fv e x u:
3~.J-CCO'fr-«-
s * z z «
res-~ w s c a
t «r i a. a r1
nxb.ui-f-b.b.tr
*- c
&Z
arj
o
c
o-
3-
a
p- a-
i- cr
o o o o o
ccooooc cc
ococcco coo
oooocoe ooo
-87-
-------
a «-
C a «
u, a. f-
!*
1C Z Z
a: b) s
b. x
t- f- >
u m
z >
M 1C 1C
a z z
< c c
a, »- >-
to tc
ic IA o:
C > 5-
>- b) b:
cc
« b. J
K > t- «:
EC « f-
i- S £ O
3 C J a
C « < Z
CJ b. CJ «
C
L; c «: «
c s- it z
z c, c
= a. a. "
a s ~ v.
*. c cr.
(- cr. i-
u' u F.
2 Z
C b: b.
Z 7 b. Z
«£ < b. »
or «
bT CT O t*
o. c s
c cc r~ a.
z a z
s- c »
i- IT F-
^ « f-
«r = a =
« r- = O
VC
C
u
a
03
b:
a,
CJ f
a. o
c f-
« e
o
Z b.
C
M III
cr a
1C <£
^
b:
a:
e-
s-
b.
O
1C U *
CJ «
I DC
C = >0 vO
CL a - -
b. w o o
a CL
i b] U 1C tO
i (- a b: >
w CJ v
c « »
a. «; ~
a »\o
' Z
c
«
u.
c
VC O
«- u
J a
M b.
w cc
i" b! C £
O ^<
a: bi
CJ f SL f- w W
- ^C""
u, 05 > y >- CE C, O CJ ? >- i- CJ tl CJ (V
c o
c c-
C II II
II
c- o c
c o c
II II II
(X
c e
c e
ii n
IT sC
O O
O II O C
ii o e
r- «r II ll
e c- co
II II C II II
~ M *r>
b:
a
coo
o c c
M ii n
CO -
II II 1C
c c -; st >-
II ll r~ vc j
K-
i >-&:»-
a. ^ tr. f- a f-
> IT. >:rcj2
b: z c
= c = c
2 i, ~g|
f- zH
? b. xB
CJ CJ CJ CJ tJ LJ CJ CJ (J CJ CJ U tJ CJ CJ CJ CJ CJ tJ CJ
CJ CJ
-88-
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
» O
O O
«- o
a - « in
H» > CO **> f> kfi
f f- » X X I" t-
z >-< e ir x Z
z ii r- >-
o>«C « <- r
u - to e- cot »-. w \t>
u: en i e . I m
u > - C til o crx >
M « f- U U!w O C »
U: HI J »- O » O I"
K u.' M H> e u x « cc » >- (;< o in x
a. »-i H P* o. ox r- i*» * to f.
s b. M M ac ce x x mo > c-
Qt-C-« 3S» 10 xi» «t
K^COtNb: O U. » > t-X t- 4
>-*,? to> ~ «r zio
a to - c «c <- *> *.«»
i^ * cj c »w cae * *' f-tr*xir
c-ir-«> ^ t. f- -i
zh*cOA>*iretnflciriz» x » ^ ^u.i*-
zc »- « »« « cs i^j H ce
cn^>»accaeeoo ~o . ~ x » e>-cr:c
- trm Cf-f-i-f-f-f-a. f- " ~ in ^- CB tn t- a cvbre-
CTN-B C»^x ^>vr> *j > »^ irtroscac
c. o a-ccccocce- - «cc ^ " >- - ** tr. v u-f^crt-r^
c > - xt- to >f- ac tc>«- » s-»fv«»
f- tr ccx » -» H-«E c >- it p. «
x »- zz -a '-'-'»<- HI »- >- z> « »> » c -> . totcii-
CO*- M^**«e»e«« « *!) in »ll K« MM ff O II II O Z CJ C «
^ ^ CCCC C *bh^OOCCOOU O ^ P* tC T *» CC O O ^ ^ ^" *" C^ C ^ O ^ *
^ir^cy oc-«Zb:£i:h:b:uuz » *^« o« in** «» ^.** tc» ^-^^^^ * !->« *-tr
»H-»«PJ>- c**T>-"»»«»«*" trc -t-cr* rfc *m«^ Cc +-(NPJ IT cc 4-n-f^r^ o t-v c«»u:
»-*w~-t-i«»-*- r"ao:a.flca.cxa: *-* c.
=-cc *» >^«§-xxtctctQccccco cc ^o^- H-O *^o MPJPI a N»w*»-m -o a:*- >«u;«i
aziiii:cci.'«>-wMH.«.«to-H.a: octc >cu.' >- c «. §- >- c^- K «:
j' f- fr< c z t- c a. r >- -^ <-w« w ». ^: n u u ic s- ti? n n u ?- f- > u u u; f- us- f- tr. it ^ x F- n f- m " it: u x n
u>-«x<>ac - > >~ z < =»x a ^-a»s: z -. -
ou.-eccvaru'-cii.u.u.ia.h.u.b.h. «!«- r» a r> oft«. rs*'* etc ** T ^u3«r-> ao o u.
« «xcCH>trcE>*i>.i-i»k.H>>-'>«i-iM aiu- ^irsit; Q.U- i-io.j
c CM (v r*j **^ fn
pi
CJ O CJ U CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ I
-89-
J
-------
e
c
2*100
[a> X
tl t.
a
S m
in **
u c
E-
« II
CK. tC
a: cc
" »-"
c? y
«r u
*
*
*»
O
in
b!
a
~
in
C»J
x
*
cv
in
E-
*~
to
x
C t- Ii
C K *
C^ II *-* »*1
» Z w X
>f C » K
+ 1-1 K C K
- ecu
i- w u; m »
i O
II II i s. C II
» Z
IT a f- c >- b.
4^
^%
in
1C
tc i» : i c.
CV !6 E- U
1C "" E-
0 rSZTZZSO-E- E-
»- = = = = = == c >-
tb S
E- II II II U II II II II
3 E-
-T ZTS.ESTS.EHt- «5
K
C
A
C
CC
0
hi
^
a.
in
in
o o
IX E-
> i" -
IT 0. I- C Z
in ** u **
x * cv
cam ^- w .
t- I e E- r-
X m « E b.
c a. i- c > «
X t (N
DC- Z CX -
z e - + o -
- b! - - C
ii «c ^ u: < ii n in EL ^
vC ^ E- S E- r
3 i -
^
a
in
c
E-
^^
C Z
u
o*
** ^
e K
>
C «t
+ o
2 >- -
tJ If. \C
M i- u;
t-
"Z ^*
tj ti- a
in
c
<
c
cr
(-
a.
a
OD
r- ir-
in
C
cr f-
s- ^
- c z
ex « .
u » *^ **1
tv ex ^h w>
r- -~ . c E- <-
rw c E- . j (^
- r u. c >- -
» c ^ * t»~ ut *
w r» >> «
E - . . IT -
- 4- »e- *^-c*
- 3w .- 2f- .-
« II u; u. a II « c«; <
5 5- £ ^, F- «
z z - -ix>1h.
1
1
1
1
1
1
1
1
1
1
^H
^^1
^H
^w
1
tr o_
IT v<^B
£^ w
C Z C £
( * U *
f"
. r»
***-"*3|
t, 1C *C «^ o E-^^
< E- >
ii st U- «r n if. j;
E- s >JB
3 - a 2
( ; b. d C C J U^H
-90-
J C
1
I
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
to
b:
Z Z
O C
f- in 09
u c c '*'*
^ CL « "-
tt. [»' O
U. C
a. -
C Kb.
r c U' w
U~ tJ b. W,
10 x b: * x
S sC
< cr - X a
* « ~ + * * £ +
ozvfwjulf<^
^ ^ UJ t->
u K ^- « M * u. «i
f- S ^ f- y
e -> x I >- 3.
o[».arcrjb.a:c~
ir
r*i ^
0
f-
C
O I U
»c **
<- w c
JO. c
a - i- b.
^ x ^
- 0= I
. e « iC
* - P + * r.
S^wii|
tC H
-------
X
c
in
v
V
c
h:
t
a-
c
x
U.
ac
3
CC » Q - «C *[«.
x J O x x ir. -
u, x « »> . ~ t- c - .» »
f c E - ~ v s - <-
h: QD r~ - - - o* x ir, - i
f-
c
s -
e
S. ii
UC X
« J X
= £>
aucj
£?£!
« u
0. J. if
C CT TT«
f- a: i
tn
o
z CJ :
^- a »a
c
o
c
c
e e u
S f = IT
w
0.
cri*--«-~-- »i»;>-*u>*-«» a- »
^c^* xvco* u?* M» tf* *^
»-XEZ «-ZX- U.>-XEr-
c^'-^-cc »-vvxxir»»
c -*-x- ^xx*- »*^»
u- - c o - -
« « X
- o- c 11 -in- -JJ-
^.^w »- «X"^* X- - '-^ *
O -0"X -QCGC- m^ » »oxr
C- «f*ix- «2*- X X ^
^ c c
c c =
II II II
j a Ei
c c c c c c c
II II II II II II II
CMC.
II II ^ 3-
c t-
C C C ! it
ii r r t- cr «-
X ?-
ir ff u: x
- U. c (- o-
CC C* X b.
- . ^ C I
5i- «.-£-'
3 «r <~ as- x1^
u: f- > «* cr
C oc e- r v cr
t- u. i
o - e .
>c - x e - = (v|
vc -v o r- _|
« c
s- n
II ifc «I t-
e- s F-
rj ar cr r-
c u- « » c
(- f- r - » «
»- CL <- - x c
o or c1 x ^ x
,>-(- -»c« «>- IN^
F-f-s-or- »»»-XCC- «^ ta. ^-Ct »>-.jjw.xtjO'rC£rDxar ex xl
IT I"
CM cr
c
c
o c
a >c
-92-
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
a.
u
a.
L
_, ^,
- n
** ***
f X
E'/SX.MS FFRROMANGANFRF ORF,1/
SF ORF'/qx.«40 SANDBLASTING GRIT'/
a fa'
c z
a
U IT
f £
C T
c. r
x >
U X
c fa;
a *-
x e-
u: <
fa. a
r- o
/^ F»<
X X
c
r
a
x
» fa.
e x
e (-
or c
. *.
**> **
»,
f-
fa: «
H1 y
^~ x
c
c
oc
c
z
c
z
a
<
z
z
z
in
b
«
X
C
1
O
b'
in
fa;
x
f-
u;
>
A
x
f-
«
X
f-
i/:
t«
2
fa.
X
t-
9
>-
fa;
0
£
1-
fa-
c
X
c
C
u
fa.
a
^
r
*
t-
*
V,
B
f-
f-
b.
C
X
u:
z
fa;
X
t-
o
fa.
s
c
cc
fa.
X
a
1C
fa.-
s-
«
z
^
c
X
c
1
"
w
U
z
«
a.
c
fa.
i-
c
X
fa:
>
a
c
fa.
^
o
^
o
«
^
fa.-
X
e-
fa.
^
fa;
1C
*
<
C
,
CL
F ?nilNTTFS »MP BF.CAURF THF PAVF.O ROAD'.
F.PA[,(.y HFGr.TGIRI.e. THF,y ARF. NOT'.
a 2
c u:
z c
f- fa.
.3 X
tf 4
e
»
c v
z -
« <£
Z
C
tf -
c w:
z in
*
x k
^.
0
c
u
e
~
J
tj
^
U
fa.
o
x
Z
c
o
fa;
tr
z
c
*
(C
c
<
c
a
^
*«
A
X
fa;
ir x
c t-
a o
r*> *
~
t-
fa. C
^~ ~
Se
IP
0
Qt
... - S -
C - - fa, f- b.
« b> > C U C
O (f C 1 -
X. A bj X C£ H Cfl
ir x v = u fa; fa. z >
U: C fa. M - . X - « « E X to «
c fa. > = u - - f- - fa: i t- >- c
= > « o cs to « b) s z
j « tn «i t- >» x oc fa. z e- c r>
z x too a z o «c « o J f- a * x
c f- - u. i- o oc e fa; cj s- j«z.a.m«j-
f- fr» fa: H- o c f- (- f- z o -3 cj fa: x * fa; fa.
« «c f- a fa; x « -3 c a « o ic cxtca.
en- - x cj « z in a x in x a. E « x x c z
b: to - c - o fa; fa. = >- H c - « <
cxz <-rxK««z -K-K - zz b! x H. ct
il « fa. c a c oc 5 z ex fa. c fa. o UCKZC
>>- z a i- x - o c-xx zcj-s-««fa.
uua: M«<c-a.>naczz<« « »i-4H*>»cfa.
u;«^ irz-a M>«ir< -cza-Jr- ic« foucjib: f-
n z UI-KIX >f«>-b. (- a < c z c « fa; <_ u: fa: c
cc ;» z z «t J a xxtACCTr- - «t t- x >»b:
c. * >~ cfa.u:>a.z» u zn
OfflO 1- fa O X « C ZtiKflttZ C > O. fa- 1 K CU5
x^*~ cj.^>«i£XM)«*»»wa.^ H-OC i£ J C C X i- fa. tj C. C fa. fa. f- C
tr a. t- c E- c « fa: fa.- u. u; - ^ = uzKrCb.ui
a fa; j a f 2trxCfa.jfa.-f->-'-' fa.'>-« = f- a
OHC^«vc«uf-zacja.sff cxt; « o«
«z«rc«a e «K^icc.'-'Xvcf-5> «cjifa-b;
:» "-we zcf-cyst x zcb;-cx - = b: a: » 3«
««a^>-Cf-o>-< j x^->C'-u:« ?ai/:iii
inrc^- b, b; o c cau t.-ttfC1'- s- u.«>-
««x e- s-« f-u; «HX«U; f-t;z»!C«
>-oc.fa;«rfa;« fa; tr w. cxcxxcxfa.«x = f-5-5- c>:
^faJ^^3rx*-"fa.x^ ^E fa;fa.fa.^-z^ ^-fffa;crc cxwix
U C * £ o"1 C = "" ~ tt " * * ° * fc a c S ° ~ J = " F"
c c
o »*
O* ff1
1
s.
I-A
H
l_.
fa;
K
a.
V
>
El.
f-
*«<
a
»
x
H-
z
a
c
Z
*~
OC
e
fa;
C
t-
j
*
C
fa;
1C
z
fa.
tr
I-
z
fa.
t-
z
c
u
>
H
^«
J
^
a.
H»
C
c
01
^
' FOR OTHER INFORMATION SFE THE FTNAL',
S ON THE OUTPUT SHF.F.T.')
x, u.
v i^
- O
z
>
b fa.
> X
a f-
x
05 C
Z
CJ «r
z
e «
« f-
or a.
0
fa: a
X faj
f- a.
fa.
H
fa.
1C
O
a
»
>~t
c
w
II
s-
bH
Z
w
fa;
tc Q-
2 £
b*
C
C
CJ
Z
b!
e
z
»H
X
o
x
o
a:
x
ur
»
CL
£ i
c
e
o
-93-
J
-------
uu
I
o
a
-
z x
u,
X
U
a.
O
I
Q
O
X »
c o »
20
<
J
X
u
z.
o
a
=
«
U !-
tc ?-
j r
~ o
z
o
IT
a
u;
r*
» ^
t O\ X ^ £
o- a e x x o
!T * » « - fr-
n o « >. = x o
u
tn
o
a
tc
o » -«
CN
l<^ tT« «4 m^v^ CJ«mx^
5--= r-.. S-«U
jj<- «cct»--«i * c u:
: *r s- n a s f-siit-u;s.
: z v -aziiiia ~oo
,a;nxtjj3C ac.otj£*.o ^ "3
l"^Fx,« >*^O^txjX^ "Vtk»~'**t9timGaj
C O
O
3-
IT
-94-
J O
-------
I
I
I
I APPENDIX E
I IIT RESEARCH INSTITUTE'S REPORT
ON ANALYSIS OF HI-VOL FILTERS
I
I
I
I
by
8 Katherine Severin
and
Ronald G. Draftz
approved by
John Stockham
I
I
I
I
I
|
I
-------
TABLE OF CONTENTS
1. INTRODUCTION
2. PURPOSE AND OVERVIEW OF THE STUDY
Summary of Analytical Methods
3. SAMPLE ANALYSIS AND RESULTS
Sample Preparation
Low Temperature Ashing Procedure
Results of Low Temperature Ashing
Sulfate Analysis
Elemental Analysis
Discussion of the Elemental Analysis
4. MICROSCOPICAL ANALYSIS
Particle Identification
Sample Preparation
Microscopy Results
Description of Quantitative Microscopy Procedure
Calculating Component Concentrations
Inorganic Components
Organic Components
Data Sheets
-96-
-------
I
I
1 . INTRODUCTION
This is a final report presenting the results of high volume
filter analysis to identify the types and sources of aerosols contributing
to non-attainment of the Federal Total Suspended Particulates Standard
at three sites in Baltimore, Maryland. IITRI's study was conducted under
I two subcontracts to GEOMET, Inc., who served as contractor to the Federal
Environmental Protection Agency, Region III, and the State of Maryland
B for this study.
The results of both subcontracts have been merged and incor-
porated in this single report to provide continuity in assessing the data.
* 2. PURPOSE AND OVERVIEW OF THE STUDY
I Several total suspended particulate (TSP) monitoring sites in
Baltimore, Maryland currently exceed the primary Federal 24-hour particu-
| late standard and are projected to continue causing violations of this
M standard through 1985. As part of a continuing effort to eliminate
these violations the State of Maryland and the U.S. Environmental Protection
Agency, Region III, enlisted the help of GEOMET, Inc. to perform a study
of the sources contributing to TSP violations. GEOMET, Inc. subcontracted
I a part of their study to I IT Research Institute to perform microscopical
and chemical analyses of selected high volume (hi-vol) filters.
The three sites selected for study are at or near Baltimore
Harbor and are identified as:
Fire Department #22
Fort McHenry
Fire Department #10
-97-
1
-------
These sites are thought to be representative of Baltimore's TSP non-
attainment problem and also produced some of the highest TSP concentrations
in the Baltimore area in 1976. A total of twenty one hi-vol filters were
sent to IITRI, including three unidentified duplicate samples.
Polarized light microscopy was used as the primary analytical
method to identify particile types and concentrations. Ancillary analytical
techniques were used to corroborate the microscopical identifications
on concentration measurements, as needed. These ancillary techniques
included:
t chemical analysis for water soluble sulfates
plasma emission spectroscopy for elemental analysis
of lead and vanadium as tracers for vehicle exhausts
and oil soot, respectively
t low temperature (plasma) ashing to determine the total
organic content
scanning electron, x-ray microanalysis to corroborate
the identity of selected particles.
Plasma emission spectroscopy was also used for a quantitative broad
survey of acid soluble elements in nine samples.
The results of these analyses were used by IITRI to independently
identify generic sources and their contributions to TSP concentrations.
The generic source assignment was conducted by IITRI without knowledge
of the specific sources proximate to the sampling sites. These data
can be coupled with meteorological and emissions inventory data to
pinpoint specific stationary and fugitive dust sources.
-98-
-------
I
I
Summary of Analytical Methods
The analytical methods used to Identify the aerosols collected
1 on high volume filters include polarized light microscopy, low temperature
plasma ashing, plasma emission spectroscopy, scanning electron microscopy,
and sulfate analysis. Details of the methods are given in subsequent
sections.
Polarized light microscopy was used as the principal means of
identifying aerosols. The concentration of each identified aerosol type
(or group, such as minerals) was determined by performing particle size
distributions and particle counts by aerosol type to compute the mass con-
centration per unit filter area. The mass concentration of each individual
component was then summed with all other components and normalized to
I provide a weight percentage by component for each sample.
Low temperature plasma ashing was used to determine the total
combustible components concentration of aerosols such as starch, pollens
and carbonaceous vehicle exhausts. The residue after low temperature ashing
then corresponded to the inorganic component concentrations such as pavement
M and soil minerals, fly ash, and slag. Thus, low temperature ashing served
as a simple, independent method for measuring the concentrations of
H organic and inorganic aerosols, which generally originate from different
sources.
Ammonium sulfate which originates from the reaction of atmospheric
ammonia with sulfur oxides from fuel combustion, was determined by a
separate analytical procedure. This separate analytical procedure was
necessary because ammonium sulfate is often found buried in the filter
i
i
-------
matrix or at the filter bottom. Therefore, for heavily loaded filters,
i.e., those with high TSP concentrations, the sulfate crystals are
partially obscurred by other particles nesting on the filter surface.
(In spite of this obscuration, polarized light microscopy can still
reveal whether the sulfate concentrations are major, minor or trace
by simply mounting a sample upside down.)
Lead and vanadium concentrations were analyzed by plasma emission
spectroscopy (PES) to determine the contributions from auto exhuast
and oil soot, respectively, from source coefficient factors. In addition,
PES was used to determine boron, calcium, magnesium, zinc, silicon, copper,
nickel, manganese, molybdenum, cobalt, aluminum, titanium, barium,
chromium and iron concentrations in nine samples selected by the State of
Maryland. These analyses were used to corroborate the microscopy
results.
The same nine samples selected for PES analysis were also examined
by scanning electron microscopy (SEM) with x-ray microanalysis of individual
particles. These analyses also served as a corroborating technique for
the particle identifications by polarized light microscopy.
3. SAMPLE ANALYSES AND RESULTS
Sample Preparation
Halves (8"x5") of eighteen standard hi-vol filters
and three unknown filters were submitted for analysis. The sampling
sites, dates, TSP concentrations and average wind speeds for these samples
are shown in Table E-l. The TSP concentrations listed in parentheses
-100-
-------
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
Table E-l. Hi-Vol Filter Data
Sampling
Date
6/9/77
6/21/77
7/15/77
8/2/77
9/19/77
9/25/77
10/25/77
11/24/77
12/12/77
Day of
Week
Thursday
Tuesday
Friday
Tuesday
Monday
Sunday
Tuesday
Thursday
Monday
TSP Concentration, Wg/m3
Fire Dept. #10
63
(145)
221
(142)
(165)
51
306
42
169
Fire Dept. #22
(NA)
60
149
(93)
108
38
(NA)
52
129
Fort McHenry
59
(136)
(114)
154
(69)
39
118
41
85
Average Wind
Speed, mph
9.6
10.5
5.6
6.2
5.8
11.1
3.9
4.3
(NA)
NA - Not Available.
-101-
-------
are for samples that were not submitted for analysis, but they are included
for comparison.
Each hi-vol filter was opened in a class 100 cleanbench and
visually examined for artifact contaminants such as paper fiber bundles or
sample loss due to filter tears, raindrops or fingerprints. No contaminants
or particle losses were seen on any filter. Each sample was also examined
by stero-microscopy for uniformity of particle deposition. As usual,
the folded filter showed an obvious increase in the concentration of large
particles that had fallen into the crease during shipment. Some of the
large particles had also fallen off the hi-vol filter into the envelope
used to protect the filter during shipment. We did not determine the
extent of large particle bias in the crease, but it appeared insignificant.
Each filter was cut with a stainless steel scalpel into a
number of sections for analysis. The exact sizes for each analytical test
will be described with each test. We presumed that areas of the various
sections had mass loadings proportional to the total filter. This
approach was favored over weighing the cut sections because it eliminated
the need to recondition the filter for weighing and avoided the possible
problem caused by filter fiber losses. These filter fiber losses might
make a weighed section seem smaller than its true size.
Low Temperature Ashing Procedure
Precisely measured 6.35 cm x 3.81 cm sections were cut for low
temperature ashing. The sections were dessicated for 24 hours, weighed,
and then ashed for two hours in an LFE Model 310 asher. The sections
were then redessicated and weighed to determine the loss due to oxidation
of organics.
-102-
-------
I
fi
Each ashed filter strip was examined microscopically to confirm
that ashing was complete. If it appeared that additional ashing was needed
ft the sample was ashed for two more hours. Several filters were re-ashed but
no additional weight loss occurred which confirmed that ashing was complete
v in two hours.
Low temperature plasma ashing (LTA) is usually accomplished at
W temperatures below 200°C and at a pressure of approximately 1 min of mercury.
At these ashing conditions ammonium sulfate sublimes and contributes to
the weight loss. Therefore, the ammonium sulfate content must be subtracted
H from the LTA weight loss to determine the organic content.
^ A slight weight increase can occur during LTA if samples contain
metals or reduced metal oxides such as FeO or Fe.^. These compounds will
ft oxidize contributing a negligible to slight weight gain. In practice the
weight gain is undetectable because only the surface oxidizes. The oxidized
surface is non-volatile and acts as a barrier to complete oxidation.
^ In addition, the reduced metal oxide content of most hi-vol samples is
P usually below five percent and often below one half percent. Therefore,
ft the weight gain would be trivial even if the oxidation were complete.
Since FeO, Fe3CL and most alloys of iron are magnetic, it is fairly
W simple to estimate (or quantitate) whether a weight gain during LTA would
be detectable.
t
f
I
I
Results of Low Temperature Ashing
Table E-2 shows the low temperature ash losses corrected for
sulfate loss, for each sample.
I
The organic components contributing to the loss include:
-103-
-------
Table E-2. Low Temperature Ash Losses
Date
6/9/77
6/9/77
6/21/77
7/15/77
7/15/77
8/2/77
9/19/77
9/25/77
9/25/77
9/25/77
10/25/77
10/25/77
11/24/77
11/24/77
11/24/77
12/12/77
12/12/77
12/12/77
Site
Fire Dept. #10
Fort McHenry
Fire Dept. #22
Fire Dept. #10
Fire Dept. #22
Fort McHenry
Fire Dept. #22
Fire Dept. #10
Fire Dept. #22
Fort McHenry
Fire Dept. #10
Fort McHenry
Fire Dept #10
Fire Dept. #22
Fort McHenry
Fire Dept. #10
Fire Dept #22
Fort McHenry
Total Organic Content
Wt. Pet.
20
21
20
16
24
50
20
3
10
1
10
30
10
15
15
28
23
26
JJg/iu
13
12
12
35
36
77
22
2
4
0.4
31
35
4
8
6
47
30
22
(1)
Total Organic Content = (LTA Loss) - (HO soluble SO [as (NH^SO 1).
-104-
-------
I
I
carbonaceous tailpipe exhaust
m rubber tire fragments
_ t coal fragments
W oil soot
M t cornstarch
pollens , spores, conidia
W plant parts
insect parts
Sulfate Analysis
* The two principal forms of sulfates in the atmosphere are
* ammonium sulfate and sulfuric acid. If the sulfates are collected as
sulfuric acid they will generally react with limestone particles from
m pavement aggregate to form calcium sulfate, or will react with ambient
ammonia to form ammonium sulfate. The most abundant sulfate form found
p on hi-vol filters is ammonium sulfate.
A Ammonium sulfate is hygroscopic and dissolves on hi-vol filters,
* and the droplets penetrate to the bottom of the filter where they evaporate
m leaving crystals of ammonium sulfate. Because these droplets containing
sulfate may contact other particles on the filter, the sulfates may
9 crystallize over the surface of the water insoluble particles. These
A transparent, colorless sulfate crystals coating opaque carbonaceous particles
cannot be readily seen by optical microscopy. Therefore, sulfate is
W determined by a separate chemical procedure from a water or acid extract of
a filter segment.
I
9
I
-105-
-------
2
An exactly measured filter section, approximately 50 cm , is
placed in a 150 ml acid washed beaker. To the beaker, 2 ml of 1:1 MN03
and 20 ml of deionized water is added. The beaker is covered with a
watch glass and the sample heated to near dryness on a hot plate, (approxi-
mately 6 hours). An additional 4 ml of 1:1 MN03 and 40 ml of deionized
water are added. The heating is repeated until a final v-lume of approxi-
mately 2 ml is achieved.
The resulting solution is diluted with a few milliliters of
deionized water and filtered through Whatman 41 paper. The sample filter
is agitated during the filtering and washing with a stirring rod. The
filtered solutions are brought up to a final volume of 25 mis.
Sulfate concentrations are determined turbidimetrically
2
The detection limit is approximately 0.1 yg/cm , while the sensitivity
2
is 2 yg/cm .
The results of the sulfate analyses are shown in Table E-3
in weight percentage and in micrograms per cubic meter. The weight per-
centage values show the impact of sulfates on total TSP, while the concen-
trations in yg/m indicate whether all the sampling sites have a similar
or dissimilar exposure level due to remote or local sources, respectively.
-106-
-------
I
I
I
I
I
I
I
t
a
i
I
f
I
f
I
I
I
Table E-3. Sulfate Concentrations
Sampling Date
6/9/77
6/21/77
7/15/77
8/2/77
9/19/77
9/25/77
10/25/77
11/24/77
12/12/77
Weight Percentage
FD 10
21
-
13
-
-
36
13
35
13
FD 22
-
24
16
-
22
40
-
32
17
FT MH
30
-
-
15
-
50
18
45
25
Micrograms Per Cubic Meter
FD 10
13
-
29
-
-
18
40
15
22
FD 22
-
14
24
23
24
15
-
17
22
FT MH
18
-
-
-
-
20
21
18
21
-107-
-------
ELEMENTAL ANALYSIS
Elemental analyses were performed for several reasons:
To corroborate the microscopical data
To provide lead and vanadium concentrations so the total
concentrations of carbonaceous auto exhaust and oil soot
can be calculated
t To provide a broad elemental scan for the presence of
unusual components.
Lead, vanadium, calcium, and iron were analyzed in each of the
18 known samples, as well as, the three, duplicate unknown samples. Lead
and vanadium are somewhat unique elements that have been used as atmo-
spheric tracers for auto exhaust and oil soot, respectively. These tracers
are used with source coefficient factors to compute the concentration
contribution from generic sources.
There are a few problems that affect the accuracy of the cal-
culated source contributions when using source factors. The calculated
source impact from autos presumes a fixed ratio of lead emissions to total
particulate exhausts. However, the ratio of lead to carbonaceous exhaust
particles depends on vehicle speed, idling time at intersections and
leaded to unleaded fuel use ratios. These parameters can change the source
coefficient factor by perhaps as much as 600 percent. However, in this
study we can reasonably presume that a constant source coefficient factor
for lead is adequate. We know from our microscopical analysis that there
were no other significant sources of lead found in the samples.
The need for these lead and vanadium analyses is caused by the
fact that submicrometer, opaque, particles such as those from auto and
-108-
-------
I
I
I
I
I
t
I
I
t
diesel exhaust and crushed oil soot are difficult to distinguish by optical
microscopy. (It's important to emphasize that supermicrometer particles of
oil soot are easily recognized by optical microscopy.) Scanning electron
microscopy (SEM) could be (and has been) used to distinguish fine,
carbonaceous particles, but a quantitative SEM procedure would be extremely
time consuming. Therefore, elemental analysis is the simplest, adequate
procedure to determine contributions from auto exhaust and oil burning.
The carbonaceous auto exhaust content is 1.5 times the lead concentration.
Oil soot is 39 times the vanadium content.
Calcium and iron concentrations were determined to corroborate
the microscopical analysis for limestone and iron oxides. Unfortunately,
the variation in blank values for calcium, and to a lessor extent iron,
made these analyses of doubtful benefit for corroboration. If anything,
it appears that elemental analysis for determining major source contribu-
tions on hi-vol filters may be futile due to the variable background
values on the surface of unexposed filters, as revealed by analysis of
"blank" filters.
Nine of the hi-vol filters were analyzed for 13 other elements
to serve as a scanning method for other components. The same sample
dissolution procedure that was used for the sulfate analysis, described
above, was also used for elemental analyses. The metals were analyzed
by plasma emission spectroscopy using a lithium buffer and a germanium
internal standard.
Results for the elemental analysis are shown in Tables E-4
and E-5.
-109-
-------
o o o
'O QC3
- « a d o
WrO
i/irx
o o
rt
U
^ ~+ CM
SQOCM3»3» o o o o
inv«m«inoo«^-'{»i-«fCM-*«rxojO«
OO o' o' o' o' o' o' o' o' o' o' o' o' o' o' o' o' o' o'
Mcyw
o' o' o
V V V
6* o* o" a o* o" o' o" o" o* o o* *
* o o o o o o
t
O O* -^ O* O* O O*
^. 00
in O
-H GO yi
8 2
2 2
a Q
u. u.
£
"f* T ~" T
OtM^O^OOJ^OCMSS
-t(M^-«-i-tM^--*C4-i
QQHQHaQf-aaH
P». N. -*. -v>
iO'O«i*-r*«ooa\3\tri3\o
j: jc Je
tMryoj a, Q, 5. = - -
^«^fvjpjcjQQQ33aa
-no-
-------
I
t
I
*
t
I
t
I
t
I
I
I
t
I
t
t
f
1
n
a
g
n)
X
u
iz
e
c
a
s
n
=
3*
S
s
~
a
a
-
w
T
S
s'
3
9*
§
9
3
9
9*
«
*
.
N
.
'
«
9
9*
aa
9'
3
9'
CM
O
[/)
9*
H
3
*
«
3
9
0
;
a
m
p*
JV
i
|
-
f*
3
5
5
3
u".
u^
3'
X
3
i
o
3'
0
8
X
CM
3'
,
-
*
9
,.
m
*
9
3
3
a*
m
ffi
m
S
9
2
3*
3
-.
S
CM
fM
;
S
,.
III/2S/
s
,
3
I
S
~
s
-
U. UU3
s
a
§
3*
3*
(M
3*
^"
S
9
9
m
S
3
3*
00
(M
3"
3
3
-
*
*
m
a"
3-
9*
d
9-
2
3
CM
1
2
r^
j
3
,
=
§
i
X
-
~
E
3
S
a
V
S
o*
9
9*
»
9
w
'
w
,
*
3
a
m
o*
00
a"
3
a'
-
A
3
a
s
V
3"
a
3
5
a'
rM
ri
N
£
(M
C
=
r.
='
5
X
3*
2
-
I
a
o
8
e1
5
9
S
fr.
m
3
N
m
*
3
3
3
9'
d
S
9
3
e
S
d
-
a
a
Ml
9*
2
2
5
~
%
s
^
-
s
9
a
3
a*
V
3
9
V
N
a*
v
s
V
a
3'
V
0
o"
C
a*
!
3"
3 3
_^
2
-
i 1
-m-
-------
DISCUSSION OF THE ELEMENTAL DATA
Aluminum, silicon, calcium, magnesium and boron are the matrix
elements of the glass fiber hi-vol filters. We presumed that some of these
elements would be leached from the fibers during acid dissolution of the
sample. We also presumed that the amount of these elements leached from
the filters would be about the same so a blank could be subtracted. How-
ever, three different blanks run for calcium gave values of 2.4, 20 and
2 2
30 nvicrograms per cm . The 30 micrograms per cm blank value exceeded
the values for five samples.
In comparing these results with those run by another lab we
learned that the glass fiber matrix elements can vary by a factor of 40.
This variation in blank values makes it impossible to use the sample calcium
values to verify the calcite content. The trace elements that are not
glass matrix elements show reasonably consistent blanks that are appreci-
ably lower than sample values. However, these are less important elements
in determining the cause of high TSP concentrations.
4. MICROSCOPICAL ANALYSIS
Particle Identification
Particle properties readily observed by microscopic techniques
are listed in Table E-6. Determination of most of these properties is
usually accomplished by simple examination with a polarized light micro-
scope. Since particles possess unique sets of physical and optical prop-
erties, determination of these properties usually results in the identifica-
tion of the particle types. Succinct differences in individual particle
-112-
-------
I
f
1
I
I
t
I
t
t
I
I
1
t
properties at various levels allows distinction between particles of
identical chemical composition but of different types of sources. Sili-
con dioxide is a good example of a compound which occurs in several dis-
tinct particle types. Cristobalite and quartz are forms of Si02 which
are readily distinguished by optical microscopy due to their differences
in refractive index and birefringence. While x-ray diffraction (xRD)
would distinguish these particle types, the applicability of xRD to hi-vol
filter analysis is extremely limited because a large sample size is needed.
X-ray diffraction could not, however, distinguish between three other common
silica forms -- beach sand, doundry sand and soil derived quartz. Morph-
ological properties alone must be used to distinguish these silicas.
Table E-6. Microscopical Properties of Particles
Optical Physical
Transparency Size
Color Shape
Refractive Index Surface Texture
Birefringence Magnetism
Reflectance Solubility
Pleochroism Melting Point
Fluorescence Density
I
Particle types composed primarily of carbon are practically impos-
P sible to identify by any technique other than optical microscopy. Oil soot
fand coal fragments are primarily carbon but do have associated trace elements
which can be used to help distinguish one from the other. However, the two
types of particles are readily distinguished microscopically. Oil soot is
-113-
-------
hollow, opaque, black and spherical with a surface texture that ranges from
dull and grainy to a lacy network of filaments. Coal particles, on the
other hand, are black, angular fragments with smooth to dull, glistening
surfaces. Biological particles pollens, spores, trichomes, insect parts,
starch, etc. - are also composed primarily of carbon and would be included
in a total organic carbon analysis of a hi-vol filter. Although these bio-
logical particles rarely exceed one percent of the total collected mass on
an urban filter sample, the ability to distinguish this carbon particle type
from others is especially important in the analysis of rural samples or
when a source influence such as a granary is expected.
Just as the spectroscopist relies on libraries of reference
spectra for the identification of unknown samples analyzed, the microscopist
also relies on reference collections of particle data for identification
of particle types. These reference collections include the microscopist's
own previous experience, handbooks of optical properties (e.g., refractive
indices, Michel-Levy birefringence charts, etc.), atlases of photomicro-
graphs, and actual (particulate) source samples.
The specific bases for assigning particles to sources in this
study will be described in later sections.
Sample Preparation
After surveying the hi-vol filter provided for analysis of
uniformity of particle deposition, a triangular section measuring approxi-
mately 2 cm on each side was cut from the filter and immersed in a pool
of immersion liquid on a glass slide. After the oil had soaked through
to the front surface of the filter section, a cover slip was placed on
-114-
-------
I
I
H top to complete the mount. The immersion liquid employed had a refractive
index of 1.515. This liquid matched the refractive index of the glass
^
fiber filter substrate, thereby rendering the filter transparent.
- A second slide was prepared from each filter with AROCLOR 5442
as the mountant. A drop of heated AROCLOR 5442 was allowed to cool at
A the end of a glass rod until the drop became tacky. The adhesive drop
was then lightly pressed against several areas of a dry hi-volume filter
section until the top surface was loaded with particles. The AROCLOR
^ and particles were then transferred to a clean glass slide by heating
* the glass rod until the AROCLOR liquified and dropped off onto the slide.
A cover glass was added to complete the mount. AROCLOR has refractive
index of 1.66 and thus allows viewing of particles which may be invisible
f
m in the 1.515 mounting medium. A third slide of the low temperature ash
residue was also prepared for microscopy. The elimination of opaque,
* carbonaceous particles aided in performing size distribution measurements
4 for small mineral particles.
Samples of roadbed materials which were submitted for analysis
along with h1-vol filters were ground'in a diamonite mortar and pestle
before dispersing in 1.515 refractive index liquid on glass slides. Source
^« and soil samples which also supplemented the hi-vol filters were not ground
«| but gently disaggregated before mounting in 1.515 refractive index
liquid on glass slides.
The mounted filter sections, AROCLOR slides, and source
~ samples were analyzed by polarized transmitted light and oblique
" reflected light microscopy. Magnifications ranging from 62.5X through
625X were employed to view the particle types present.
i
i
-------
Mineral Particles
Quantitative analysis by polarized light microscopy is a
two step procedure. Particles are first identified as specific com-
pounds such as quartz, calcite and hematite, or as generic types such
as coal flyash, cornstarch, and rubber tire fragments. Then the individ-
ual particles are counted and sized to determine their areal mass con-
centration. The areal mass concentrations of all the components are
summed and normalized to produce a weight percentage for each component.
Before presenting the results of the quantitative microscopical
analysis, it is necessary to describe the individual components which
comprise the samples. The components were essentially the same at all three
sampling sites so that the particle descriptions are common for all
samples.
The sample report format (see tables at end of Appendix E)
identifies components of particle types by generic source with the exception
of the minerals components. Minerals includes the components silicates,
calcite, mica, clays and humus. The silicates include quartz (SiCL) and
feldspars (such as orthoclase, KAlSigOg) which are principal constitu-
ents of rocks and soils. While the individual species in this component
group can be distinguished microscopically, their optical and morphological
characteristics are similar, especially for the feldspar minerals. These
similarities, along with their likely common source, soil, led to the
decision to combine them under one component category. Trace concentra-
tions of other silicates such as augite and abvine are also grouped in
the silicates component. Calcite (CaCCL) is another common though minor
-116-
-------
constituent of soils but its main occurrence is as asphalt or concrete
pavement aggregate. Calcite is the principal mineral of quarried limestone
but aragonite (CaC03) and dolomite [CaMg(C03)2] may also be present in
small concentrations. The crushed crystals of these minerals are not
easily distinguished by polarized light microscopy, so traces of dolomite
and perhaps aragonite may be present in the calcite component.
H The three principal mica species are biotite, muscovite and
£ phlogapite which are potassium aluminosilicates. These silicates
were grouped separately because the micas are so easily identified,
even though their primary source is also soil.
Clays and humus are the final soil components listed under
Minerals. The submicron clay particles are generally found as agglomerates
fand range in size from 1 ym to 10 ym. Discrete clay particles also coat
the larger mineral grains in soil, but these clay particles contribute
M so little to the mass that they can be ignored. Humus is the organic
matter in soil. Humus is predominantly decomposing plant fragments
that appear as translucent, dark brown isotropic fragments, often
coated with clay particles.
With the exception of calcite, all of the Mineral components
are present in Baltimore's soil. Calcite was also found in the soil
but appears to be present as a contaminant from the roadway pavement.
This will be discussed in the later section on TSP source assignments.
Description of Quantitative Microscopy Procedure
The method for determining the weight percentages for specific
particles in each hi-vol sample is based on a simple particle counting
-117-
-------
and sizing procedure. The mass of a specific particle type in a known
area of filter (the microscopical field of view) is calculated from the
particle size distribution and number concentration. The procedure is
repeated for each type of particle in the sample so that the mass per
unit filter area is determined for each particle. The weight percentage
for a component is simply the mass per unit area for that component
divided by the sum of the mass per unit area of all components.
The mass concentration for a component could be calculated
directly as micrograms per cubic meter by merely scaling individual
mass per unit area values to the total filter area and dividing by the
total air volume sampled. This approach will work well when the particles
concentrations are uniformly deposited over the filter. However, we know
there is some loss of large particles that fall into the crease of the
folded filter which could cause low values for certain components and
a lack of mass balance with the total filter loading. Non-equivalent particle
shapes could also cause under or over estimates of particle size for
components becuase of their preferred orientation on the filter. There-
fore, we elected to normalize data rather than calculate mass concentra-
tions directly.
This approach of normalizing the sum of the component mass
ratios to unity (or one hundred percent) is valid simply becuase all of
the major and minor particles are seen microscopically. That is, the
microscopist would deliberately have to ignore a major component to
create a serious error. This approach offers substantial reliability
over elemental techniques which cannot survey all elements collected
-118-
-------
I
i
on the h1-vol filter, and therefore must presume certain combining elements
W such as oxygen to calculate a mass balance.
A The microscopical approach also makes use of the low temperature
ashing procedure to fix the concentrations of organic and inorganic
components. In this way, possible cumulative shape errors for particles
^ such as inorganic mica flakes have no effect on rubber tire fragments,
" which are organic.
m A stratified sampling procedure was used to determine particle
size distributions and number concentrations. This statistical method
provides a means for obtaining similar precisions for the concentrations
of the abundant, submicrometer size particles and the sparse, large
w particles greater than 50 ym in diameter. For example, a single
4| microscopical field of view with a 10X objective may contain only one or
two particles greater than 50 ym diameter while there may be several
thousand particles below 1 ym diameter. Since the 50 ym particle has a
mass equivalent to 125,000 one-micrometer particles it is essential
" to count the large particles precisely. This is accomplished by using
£ low magnifications (100X) to count and size the large particles in
several fields of view. The small particles are counted and sized at high
magnifications (625) in just a few fields of view. By knowing the
area of the field of view at each magnification, the count data can
be merged to produce a complete size distribution. Table E-7 shows raw
j| count data determined by stratified sampling for silicates on a hi-vol
filter.
I
I
-119-
I
-------
Table E-7. Raw Count Data for a Size Distribution
by Stratified Sampling
Size Range, pm
<1
1-2
2-3
3-4.5
4. 5-6. 4
6. 4-9. 6
9.6-12.8
12.8-16
16-24
24-32
32-40
>40
40 x Objective
Number of
Particles
129
95
37
Fields of
View
3
3
3
25 x Objective
Number of
Particles
71
52
41
17
15
Fields of
View
4
4
4
4
4
10 x Objective
Number of
Particles
29
14
2
0
Fields of
View
3
3
3
3
Total Particle in
Equal Field
of View Area
2122
1562
608
257
188
148
61
54
29
14
2
0
10 x Objective Field of View Area = 1. 49 x 106 Pm2
25 x Objective Field of View Area = 3. 09 x 10S Pm2
40 x Objective Field of View Area = 9. 06 x 104 pm2
-120-
-------
1
1
I
,
I
range,
To calculate the equivalent number of particles in each size
the number of particles is multiplied by the ratio of areas for
each objective magnification. For example, the 3 to 4.5 ym size range
in Table E-7 was measured with a 25X objective. The field of view area
5 2
was 3.09 x 10 ym and a total of 71 particles were counted in 4 fields
of view.
s
1
1
I
I
'?
1
I
I
I
1
counts
The calculations are continued until all of the particle
in each size range are adjusted to the same sample area. The
mass per unit area for a component can now be calculated from this size
distribution data.
Calculating Component Concentrations
The mass per unit area for a single component was calculated
from the size distribution data. The arithmetic mean diameter for each
size interval was converted to the volume of an equivalent sphere and
multipl
where n
is the
of the
in Tabl
per uni
density
ied by the number of particles in that interval:
size interval volume = n. 4 ir / d j
. is the number of particles in the size interval, i and d.
arithmetic mean diameter of the interval. The total volume
component is simply the sum of all the interval volumes as shown
e E-8.
This volume per unit filter area was then converted to mass
t filter area by multiplying the total volume by the component
as shown at the bottom of Table E-8. The densities used for
-121-
-------
Table E-8. Mass Per Unit Filter Area Calculations
Size Range, ym
<1
1-2
2-3
3-4.5
4. 5-6. 4
6.4-9.6
9.6-12.8
12.8-16
16-24
24-32
32-40
>40
Mean
Diameter
ym
0.5
1.5
2.5
3.8
5.5
8.0
11.2
14.4
20.0
28.0
36.0
-
Mean
Equivalent
Spherical
Volume, ym
0.07
1.77
8.18
28.7
87.1
268
723
1563
4189
11494
24429
-
Number of
Particles Per
1.49x 106ym2
2122
1562
608
257
188
148
61
54
29
14
2
0
Number of
Particles Per
cm2
142,416
104,832
40, 805
17, 248
12,617
9,933
4,094
3,604
1,946
940
134
0
Sum
Volume, ym3
o
Per cm of
Filter
9. 97 x 103
186 x 103
334 x 103
495 x 103
1. 10 x 106
2. 66 x 106
3. 01 x 106
5. 66 x 106
8. 15 x 106
10. 8 x 106
3. 27 x 106
35. 7 x 106
(Component volume per unit area) x (Component density) = mass per unit area
35. 7 x 10« ym3 . _ _
f) A f., 1 A iU
cm''
6 3 2
v]rg/ym = 96. 4 yg/cm
-122-
-------
I
I
calculating mass concentrations for each component are shown in
9 Table E-9.
tSize distributions were used to calculate mass concentrations
for the following components in each sample:
I
I
silicates
calcite
hematite
rubber tire fragments
flyash
coal
cornstarch.
The remaining components, such as ammonium sulfate and auto exhuast,
were determined by non-microscopical procedures or were visually
m estimated as trace components, such as pollens and magnetic fragments.
< In some of the first samples analyzed, silicates and calcite
were sized together. To determine mass concentrations for silicates
and calcite separately, calcite was re-sized and its mass concentration
was subtracted from the combined mass concentrations of silicates and
calcite.
Some filter samples were so heavily loaded that it was impossi-
ble to perform particle size and concentration measurements. Therefore,
the concentrations of certain components for these four samples were
estimated (Fire Department #10: 7/15/77, 10/25/77, 12/12/77 and duplicate
w sample C).
> In some samples the opaque, carbonaceous particles obscured
the view of minerals. Therefore, a number of components, silicates,
W calcite, hematite and flyash, were sized on the low temperature ash
residue.
-123-
I
-------
Table E-9. Approximate Densities of Particle Components
MINERALS
quartz and feldspars
calcite
others
clays
humus
cement
hematite
2.7
2.7
2.7
2.7
1.9
1.4
2.0
5.2
Components
Density, pg/cm
-3
MOBILE SOURCES
glassy flyash
coal fragments
oil soot
partially combusted coal
incinerator flyash
partially combusted fragments
NON-SPECIFIC (COMBUSTION) SOURCES
fine carbonaceous
ammonium sulfate
BIOLOGICALS
pollens, spores, conidia
plant parts
starch
insect parts
MISCELLANEOUS
stack iron oxides
magnetic fragments
metal fragments
salt
sludge
1.1
1.5
1.1
1. 1
1.9
1.0
1.7
1.8
1.1
1.2
1.5
1.5
5.2
7.0
6.5
2.2
1.5
-124-
-------
I
t
All of the sized components were measured by Feret's diameter.
£ With this statistical diameter particles can be calculated as equivalent
f spherical volumes even with aspect ratios of 6:1. The highest aspect
ratio components were rubber tire particles (aspect ratio 4:1) and mica
I
flakes (aspect ratio 10:1). Because the mica flakes were a trace
component, their high aspect ratio is insignificant.
I
Inorganic Components
The total inorganic content was set equal to the low temperature
m ash residue. The ash residue components include:
*silicates
|*calcite
mica
clays
|*coal flyash
*hematite
magnetic fragments
I slag
**ammonium sulfate
H Components marked with an asterisk, *, were generally major or minor
components that were counted and sized microscopically. The other
I inorganic components were usually present at trace levels estimated to
_ be significantly below 0.5%. In fact, the collective weight percentage
of all the trace concentration, inorganic components were estimated to be
less than 0.5%. Therefore, the sum of the major and minor inorganic
components were set equal to the LTA residue. Then the component mass
£ ratios from the size and count data were used to calculate percentages for
fthe inorganic components. An example calculation is shown in Table E-10.
Ammonium sulfate, marked with a double asterisk, was determined by a
V direct chemical procedure as described earlier.
-125-
I
-------
Table E-10. Calculation of Inorganic Components Concentrations
Components
Silicates
Calcite
Glassy Flyash
Hematite
Clays, Humus
Magnetic Fragments
Slag
Mica
Totals
LTA Residue = 59%
(% LTA Residue) less (%
Mass Ratios
Normalized
yg/m"2 to 100%
295 73. 2
93.5 23.2
-
14.5 3.6
-
-
-
-
403lOyg/m-2 100.0%
visually estimated components) = (c
(59%) - (3%)
Visually
Estimated
Weight Percent
-
-
-
<0.5
3
<0. 5
-
<0. 5
3%
& major and minor
(56%)
Component
Weight Percent
41
13
<0. 5
2.0
3
<0. 5
-
<0. 5
59%
inorganic components)
-126-
-------
I
I
Organic Components
I
I
I
I
The calculation of organic component concentrations follows a
similar approach to that used for the inorganic components. The organic
^ components include:
humus
**carbonaceous tailpipe exhaust
*rubber tire fragments
*coal fragments
**oil soot
fine carbonaceous particles
*cornstarch
pollens, spores and conidia
plant parts
insect parts.
The components marked with an asterisk were sized, counted and normalized
to the adjusted LTA LOSS. The LTA LOSS includes ammonium sulfate and
m ammonium nitrate which sublime during ashing. Therefore, the concen-
^ tration for ammonium sulfate was subtracted from the LTA LOSS to obtain
an adjusted LTA LOSS which is equal to the organic content.
Those organic components not marked with an asterisk were trace
components whose combined concentrations were usually less than 0.5%.
Components marked with a double asterisk were determined by measuring
elemental tracers and calculating the total concentrations from source
w coefficient factors. Lead was used for carbonaceous auto exhaust and
vanadium was used for oil soot. The reasons for this elemental approach
for auto exhuast and oil soot were explained in the Elemental Analysis
I section.
_ Table E-ll shows a sample calculation for organic components.
This method of calculating the organic and inorganic component concentrations
-127-
I
-------
Table E-ll. Calculations of Organic Components
Concentrations
Components
Carbonaceous tailpipe exhaust
Rubber tire fragments
Coal fragments
Oil soot
Fine carbonaceous particles
Cornstaich
Pollens, spares, conidia
Plant parts
Insect parts
Totals
IJg/cm"
48.4
4.0
52.4
Mass Ratios
Normalize to 100%
92.3
7.7
100
Visually EST.
Wt. Pet.
1*
2*
2
0.5
2
0.5
47
Components
Wt. Pet.
1
12
1
2
2
0.5
0.5
2
0.5
20%
LTA Loss = 41%
(NH4)2 SO4 content = 21%
Organic content = 20%
* Determined through elemental analyses.
-128-
-------
I
I
was used for all samples except three samples from Fire Department #10
which were too heavily loaded to perform particle counting. The results
for these samples were estimated visually.
Microscopical Data Sheets
I
I
I
I
I
I
I
I
I
I
I
I
I
I
The analytical results for the eighteen hi-vol samples are
reported on data forms with samples grouped by day.
-129-
-------
REPORT ON PARTICLE IDENTIFICATION
Project C6409 - Baltimore TS? Study
Date: 6/9/77
SITE:
TSP (yg/m3):
% ASKABLE:
COMPONENTS
MINERALS
silicates
calcite
mica
clays, humus
MOBILE SOURCES
carbonaceous tailpipe exhaust
rubber tire fragments
COMBUSTION SOURCES
glassy flyash
coal fragments
oil soot
NON-SPECIFIC COMBUSTION SOURCES
fine carbonaceous particles
recrystallized sulfates
INDUSTRIAL EMISSIONS
cornstarch
hematite
magnetic fragments
slag
BIOLOGICALS
pollens, spores, conidia
plant parts
insect parts
FD #10
63
41%
NORMALIZED
CONCENTRATION
Weight %
,,
41
13
<0.5
3
1
12
<0.5
1
2
r\
21
<0.5
2
-------
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
REPORT ON PARTICLE IDENTIFICATION
Project C6409 - Baltimore TSP Study
Date: 6/21/77
SITE:
TSP (Mg/m3):
% ASKABLE:
COMPONENTS
t
MINERALS
silicates
calcite
mica
clays, humus
MOBILE SOURCES
carbonaceous tailpipe exhaust
rubber tire, fragments
COMBUSTION SOURCES
glassy flyash
coal fragments
oil soot
NON-SPECIFIC COMBUSTION SOURCES
fine carbonaceous particles
recrystallized sulfates
INDUSTRIAL EMISSION'S
cornstarch
hematite
magnetic fragments
slag
BIOLOGICALS
pollens, spores, conidia
plant parts
insect parts
FD #22
60
44%
NORMALIZED
CONCENTRATION
Weight %
52
2
<0.5
<0.5
1
14
<0.5
2
1
<0.5
24
<0.5
1
<0.5
<0.5
NORMALIZED NORMALIZED
CONCENTRATION CONLl^TRAi'IOM
Weight % Weight %
f
i
-131-
-------
REPORT ON PARTICLE IDENTIFICATION
Project C6409 - Baltimore TSP Study
Date: 7/15/77
SITE: FD #10
TSP (yg/ra3): 221
% ASHABLE: 29%
NORMALIZED
COMPONENTS CONCENTRATION
Weight %
MINERALS
silicates 40
calcite 30
mica
-------
1
1
1
1
1
1
1
1
1
t
1
1
1
1
I
1
t
REPORT ON PARTICLE IDENTIFICATION
Project C6409 - Baltimore TS? Study
Date: 8/2/77
SITE:
TSP (yg/m3):
% ASHABLE:
COMPONENTS
MINERALS
silicates
calcite
mica
clays, humus
MOBILE SOURCES
carbonaceous tailpipe exhaust
rubber tire fragments
COMBUSTION SOURCES
glassy flyash
coal fragments
oil soot
NON-SPECIFIC COMBUSTION SOURCES
fine carbonaceous particles
recrystallized sulfates
INDUSTRIAL EMISSIONS
corns tarch
hematite
magnetic fragments
slag
BIOLOCICALS
pollens, spores, conidia
plant parts
insect parts
Fort McHenry
154
65%
NORMALIZED NORMALIZED NORMALIZED
CONCENTRATION CONCENTRATION CONCENTRATl ON
Weight % Weight % Weight %
t
1
23 i
5
<0.5 i
7 i
0.5
r :
1
<" ^ '
u . J 1
1
1
15
41
2
<0.5
<0.5
<0.5
1
'
1
-133-
-------
REPORT ON PARTICLE IDENTIFICATION
Project C6409 - Baltimore TSP Study
Date: 9/19/77
SITE:
TSP (yg/m3):
% ASKABLE:
COMPONENTS
MINERALS
silicates
calcite
mica
clays, humus
MOBILE SOURCES
carbonaceous tailpipe exhaust
rubber tire fragments
COMBUSTION SOURCES
glassy flyash
coal fragments
oil soot
NON-SPECIFIC COMBUSTION SOURCES
fine carbonaceous particles
recrystallized sulfates
INDUSTRIAL EMISSIONS
cornstarch
FD #22
108
42%
NORMALIZED
CONCENTRATION
Weight %
45
7
<0.5
4
1
11
1
3
2
2
22
1
i
1
NORMALIZED NORMALIZED
CONCENTRATION CONCENTRATION
Weight % Weight 7,
\
\
\
\
\
\
\
hematite
magnetic fragments
slag
BIOLOGICALS
pollens, .snores, conidia
plant parts
insect parts
1
<0.5
<0.5
-134-
-------
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
REPORT ON PARTICLE IDENTIFICATION
Project C6409 - Baltimore TSP Study
Date: 9/25/77
SITE:
TSP (Ug/m3):
% ASKABLE:
COMPONENTS
MINERALS
silicates
calcite
mica
clays, humus
MOBILE SOURCES
carbonaceous tailpipe exhaust
rubber tire fragments
COMBUSTION SOURCES
glassy f]yash
coal fragments
oil soot
NON-SPECIFIC COMBUSTION SOURCES
fine carbonaceous particles
recrystallize.d sulfates
INDUSTRIAL EMISSIONS
corns tarch
hematite
magnetic fragments
slag
BIOLOGICALS
pollens, spores, conidia
plant parts
insect parts
FD #10 FD #22 Fort McHenry
51 38 39
39% 50% 51%
:
NORMALIZED NORMALIZED NORMALIZED
CONCENTRATION CONCENTRATION j CUNCENTI'AT !0;>;
Weight % Weight % Wei.;ht «'
35 37 24
10 1 4
<0.5 <0.5 <0.5
1 1 1
1 1 1
11 12 6
<0.5 1 <0.5
2 2 1
329
<0.5 <0.5 <0.5
36 40 50
<0.5 1 <0.5
<0.5 1 2
<0.5 <0.5 <0.5
<0.5 1 1
<0.5 <0.5 <0.5
<0.5 1 <0.5
-135-
-------
REPORT ON PARTICLE IDENTIFICATION
Project C6A09 - Baltimore TSP Study
Date: 10/25/77
SITE:
TSP (yg/m3):
% ASKABLE:
COMPONENTS
MINERALS
silicates
calcite
mica
clays, humus
MOBlLi: SOURCES
carbonaceous tailpipe exhaust
rubber tire fragments
COMBUSTION SOURCES
glassy flyash
coal fragments
oil soot
NON-SPECIFIC COMBUSTION SOURCES
fine carbonaceous particles
recrystallized sulfates
INDUSTRIAL EMISSIONS
cornstarch
hematite
magnetic fragments
slag
BIOLOGICALS
pollens, spores, conidia
plant parts
insect parts
FD #10
306
23%
NORMALIZED
CONCENTRATION
Weight %
17
25
<0.5
2
,
3
<0.5
3
1
3
13
<0.5
<0.5
<0.5
31
<0.5
<0.5
<0.5
Fort McHenrv
118
48%
NORMALIZED NORMALIZED
CONCENTRATION CONCENTR/ VTON
Weight % | Weight %
44
2
<0.5
*
i
1
i
7 i
i
<0.5
8
i ;
i
i
5
13 ;
8 i
1
<0.5 ' !
<0.5
! i
! !
-------
REPORT ON PARTICLE IDENTIFICATION
Project C6409 - Baltimore TSP Study
Date: 11/24/77
SITE:
FD #10
FD #22
Fort McHenry
TSP (Mg/m3):
% ASKABLE:
COMPONENTS
MINERALS
silicates
calcite
mica
clays, humus
MOBILE SOURCES
carbonaceous tailpipe exhaust
rubber tire fragments
COMBUSTION SOURCES
glassy flyash
coal fragments
oil soot
NON-SPECIFIC COMBUSTION SOURCES
fine carbonaceous particles
recrystallized sulfates
42
45%
NORMALIZED
CONCENTRATION
Weight %
32
4
<0.5
4
2
11
1
5
2
2
35
52 41
47% 60%
NORMALIZED NORMALIZED
CONCENTRATION COXCENTRA'P TON
Weight % Weight r/
t
1
35 32
4 2
<0.5 <0.5
1 ! 1
2 i 2
24 14
!
<0.5 <0.5
1 2
2 2
1 ! 2
32 ' 45
INDUSTRIAL EMISSIONS
corns tarch
hematite
0.5
i 2
magnetic fragments
slag
BIOLOGICALS
pollens, snores,
plant parts
insect parts
conidia
<0.5
<0.5
<0.5 ; <0.5
<0.5
<0.5
<0.5 <0.5
<0.5
<0.5
1
<0.5
<0.5
<0.5
<0.5
<0.5
-137-
-------
REPORT ON PARTICLE IDENTIFICATION
Project C6409 - Baltimore TSP Study
Date: 12/12/77
SITE:
TSP (Ug/ra3):
% ASKABLE:
COMPONENTS
MINERALS
silicates
calcite
mica
clays, humus
MOBILE SOURCES
carbonaceous tailpipe exhaust
rubber tire fragments
COMBUSTION SOURCES
glassy flyash
coal fragments
oil soot
NON-SPECIFIC COMBUSTION SOURCES
fine carbonaceous particles
recrystallizcd suifates
INDUSTRIAL EMISSIONS
cornstarch
hematite
magnetic fragments
slag
BIOLOGICALS
pollens, spores, conidia
plant parts
insect parts
FD #10
169
31%
NORMALIZED
CONCENTRATION
Weight %
30
40
<0.5
<0.5
1
8
<0.5
1
1
6
13
<0.5
0.5
<0.5
<0.5
<0.5
<0.5
FD #22
129
40%
NORMALIZED
CONCENTRATION
Weight %
37
14
<0.5
5
1
10
1
1
2
5
17
1
2
<0.5
<0.5
<0.5
<0.5
Fort McHenry
85
51%
NORMALIZED
CONCENTRATION
Weight %
33
14
<0.5
1
1
12
1
2
4
3
25
5
<0.5
<0.5
<0.5
<0.5
<0.5
-138-
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
APPENDIX F
ORIENTATION OF POINT SOURCES TO HI-VOL SAMPLERS
The first three tables in this appendix identify the point sources
which are upwind of each of three Baltimore hi-vol sites (namely,
Fire Dept #22, Fire Dept #10, and Fort McHenry) for each of 16 sectors.
The percentage of the time and the average wind speed with which the wind
was from each sector is also listed for each of the 9 days for which
particulate samples are analyzed in this report. A fourth table identifies
the names of the point sources.
-139-
-------
TABLE F-l
Site: Fire Department #22 Monitor
Percent Occurrence WD / Average WS for WO **
i
Date; 6/9/77 6/21 7/15 8/2 9/19 9/25 10/25 11/24
2/12
n
Daily Average Wind Speed (mph); g. 2
6.3
2.0
_2.8
3.3
6.5
3.2
4.3
Wind
Direction
Major Sources Upwind*
(See Table F-4)
% Calm
0
Calm
0
% Calm
13
Calm
4
Calm
0
Calm
0
Calm
8
Calm
13
Cain
N
77, 101
0.1
17
10.8
/ 5^C
7
NNE
80, 72, 92
1.0
7.0
NE
83, 72, 107, 94, 20, 44, 45, 39, 41,
42, 40
42
5.7
ENE
86, 103, 107, 18, 31, 10, 17, 44, 41,
43
50
1.0
5.5
93, 69
3.0
4.0
ESE
56, 30, 115, 130
17
2.3
4.5
SE
57, 70, 109, 74, 16, 114, 128, 118, 126
132, 113, 119, 129, 127, 116, 112, 123,
121, 124, 24, 111, 120, 122, 1,25, 131, 117
17
3.5
1.0
SSE
78, 76, 2, 1, 9
13
1.5
3.7
65, 88, 58, 66, 60, 59, 98, 82, 100,
96, 8, 68, 13, 62, 6, 3
13
2.0
2.5
ssw
79, 63, 12, 4
6.0
13
4.0
sw
108, 61, 52, 99, 71, 110, 21, 12, 11,
5, 7
21
3.6
5.0
wsw
108, 73, 87, 84, 61, 99, 51, 21, 29,
32, 22, 14, 46, 47
13
2.
3. O
w
106, 85, 49, 89, 54, 91, 90, 75, 105,
102, 32, 14, 48
2.5
13
'2.3
33
i. 4
WNW
95, 53, 97, 67, 104, 15, 23, 33, 34
17
'6.5
3.0
NW
50, 53, 64, 27, 15, 26, 25, 35, 36, 37,
38
13
8.3
4.0
7.0
NNW
101, 19, 28
13
'11.
* The monitor to source distance generally increases from left to right.
** WD is direction from which the wind is blowing. WS is the wind speed in miles per hour (mph).
Note: Sun and Chesapeake WS and WD are used with the data gaps filled in by Baltimore -Washington International Airport
(BWI) data. Often BWI WS are higher than Sun and Chesapeake WS by about a factor of 2. There is generally
good agreement between BWI and Sun and Chesapeake WD. Sun and Chesapeake WS and WD are hourly
averages. BWI WS and WD are instantaneous values.
-140-
«|
M
-------
TABLE F-2
Site: Fire Department #10 Monitor
Percent Occurrence WD / Average WS for WD **
Date:
6/9/77 6/21 7/15 8/2 9/19 9/25 10/25 11/24
12/12
Daily Average Wind Speed (mph): 6, 2
-2*0-
JLi.
JL6.
Wind
Direction
Major Sources Upwind*
(See Table F-4)
% Calm
0
Calm
0
Calm
13
Calm
4
Calm
0
Calm
0
* Calm
8
a Calm
13
Call
17
N
65, 78, 56, 86, 83, 77, 80, 72, 92,
101
0.1
17
5.0
10.8
NNE
76, 109, 70, 57, 93, 103, 69, 107,
94
NE
74, 18, 31, 10, 20, 44, 39, 41, 45
42, 43, 40
42.
'5.7
ENE
30, 17, 41, 43, 40
1.5
1.0
50
6.5
16, 30, 115, 130
ESE
16, 24, 111, 112, 123, 113, 119, 129,
114, 116, 117, 118, 126, 132, 120, 12;
125, 121, 124, 127, 128, 131
17
'2.3
21
3.6
SE
17
Zip
3.5
SSE
98, 82, 62, 68, 2, 1, 9
13
'4.7
1.5
82, 62, 68, 6, 3, 98
17
13
6.8
2.0
SSW
88, 58, 59, 100, 96, 8, 13, 4
21
6.8
6.0
SW
88, 58, 60, 66, 4, 12, 11, 5, 7
wsw
63, 22, 5, 47
6.0
W
79, 71, 110, 21, 29, 32, 14, 46, 48
WNW
79, 52, 99, 51, 84, 89, 54, 75, 102,
105, 14, 23, 33
3.0
NW
37, 38, 61, 73, 52, 84, 87, 89, 49, 91,
97, 90, 104, 67, 15, 25, 26, 35, 34,
36
'7.0
NNW
73, 108, 106, 85, 95, 50, 53, 64, 27,
19, 28
13
11.
* The monitor to source distance generally increases from left to right.
** WD is direction from which the wind is blowing. WS is the wind speed in miles per hour (mph).
Note: Sun and Chesapeake WS and WD are used with the data gaps filled in by Baltimore -Washington International Airport
(BWI) data. Often BWI WS are higher than Sun and Chesapeake WS by about a factor of 2. There is generfllv
good agreement between BWI and Sun and Chesapeake WD. Sun and Chesapeake WS and WD are hourly
averages. BWI WS and WD are instantaneous values.
-141-
-------
TABLE F-3
Site: Fort McHenry Monitor
Percent Occurrence WD / Average WS for WD **
Date: 6/9/77 6/21 7/15 8/2 9/19 9/25 10/25 11/24 12/1
*
Daily Average W4nd Speed (mph): 5. 2
6.3
2.0
2.8
3.5
6.5
3.2
4.3
Wind
Direction
Major Sources Upwind*
(See Table F-4)
Calm
0
Calm
0
Calm
13
Calm
4
Calm
0
Calm
0
Calm
8
Calm
13
'/a Calm
N
108, 77, 101
17
5.0
10.8
NNE
86, 83, 77, 80, 72, 92
NE
56, 86, 103, 93, 107, 94, 20, 44, 39,
41, 42, 40, 45
42
5.7
ENE
69, 18, 31, 10, 17, 44, 41, 43
1.5
50
6.5
109, 57, 70, 74
29
4.0
2.9
ESE
78, 76, 74, 30, 16, 115, 130, 128, 118,
126, 132, 113, 119, 129, 112, 123, 111,
114
5.0
3.6
SE
/A
SSE
65, 98, 82, 68, 2, 1, 9
13
4.7
...
13
'6.0
88, 66, 58, 60, 59, 100, 96r 8, 13, 62,
6, 3
17
'6.8
13
1.4
38
ssw
79, 63, 4, 12
21
'6.8
13
sw
71, 12, 5, 7, 11
5.0
5.0
wsw
52, 99, 110, 21, 29, 22, 47
'6.0
'3.0
5.0
w
61, 73, 84, 51, 89, 54, 75, 102, 32, 14,
46, 48
17
1.1
25
33
'5.0
5.4
WNW
73, 87, 49, 89, 91, 90, 67, 104, 105,
23, 33, 34
8.0
NW
106, 85, 95, 53, 97, 64, 15, 25, 26, 35
36, 37, 38
'&. 5
13
3.7
7.0
NNW
108, 50, 27, 19, 28
13
[1.7
* The monitor to source distance generally increases from left to right.
** WD is direction from which the wind is blowing. WS is the wind speed in miles per hour (mph).
Note: Sun and Chesapeake WS and WD are used with the data gaps filled in by Baltimore-Washington International Airport
(BWI) data. Often BWI WS are higher than Sun and Chesapeake WS by about a factor of 2. There is generally
good agreement between BWI and Sun and Chesapeake WD. Sun and Chesapeake WS and WD are hourly
averages. BWI WS and WD are instantaneous values.
-142-
I
I
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TABLE F-4
SOURCE
r
BG&E (Wagner)
Kennecott
Crownsville
Exxon Chemical
Md. House of Correction
Diamond Shamrock
D. C. Children's Center
Amerada Hess
U.S. Naval Academy
U.S. Coast Guard
National Security Agency
Fort Meade
U.S. Agri-Chem
Spring Grove
Mt. Wilson St. Hospital
BG&E (Riverside)
BG&E (Crane)
Eastern Stainless Steel
Harry T. Campbell - Texas
Harry T. Campbell - White Marsh
Carl ing Brewing Co,
Joseph Seagram
Harry T. Campbell - Harriot
Arundel Corp. - Canal Road
Rosewood St. Hospital
Sweetheart Cup .
Federal Paperboard
Baltimore Bio Lab
Majestic Distillers
Stemmers Run JHS
Back River STP
Concorde Yachts
Springfield St. Hospital
Lehigh Portland Cement
Congo leum Industries
Southern States - BA
Southern States - YO
Taneytown Grain
Bata Shoe Inc.
J.M. Huber
BG&E (Ferryman)
York Bldg. Products
Aberdeen Proving Ground
Edgewood Arsenal
avis Quarry Inc.
Simkins Industries
General Electric
Glenelg Manor Association
_]43_
SOURCE NUMBER
' ~ "
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
2'*
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
(Continued)
-------
TABUE F-4 (Continued)
SOURCE
BG&E (Terminal)
BG&E (Spring Garden)
BG&E (Westport)
BG&E (Gould)
Md. Penitentiary
Montgomery Ward & Co.
Exxon Company
National Brewing Co.
GAP Corporation
Chevron Asphalt Co.
FMC Corp. - Org. Chem,
Olin Matheson
Allied Chemical
Davison Chemical
General Refractories
Johns Hopkins University
Agrico Chemical Company
Continental Oil
Abex Corporation
Glidden-Durkee (Hawkins Point)
Glidden-Durkee (Eastern)
Lever Brothers
Arundel Corporation
Torake Aluminum
Proctor & Gamble
Federal Yeast Corporation
Maryland Glass Corporation
Southern Industries
Monarch Rubber Co.
National Gypsum Co.
Md. Shipbuilding & Drydock
BG&E (Philadelphia Road)
Bethle-hem Steel - Key Highway
American Oil Company
Schlude rberg-Kurdle
Carr-Lowery Glass
Lock (GE) Insulator
F&M Schaefer Brewing
American Sugar
M&T Chemical
Eastern Products
Koppers (Bush Street)
Koppers (Scott Street)
Arraco Steel
GMAD
Pulaski Highway Incinerator
City Jail
American Oil
Dept. of General Services
Shell Oil
Inter Briquetting Corp.
Hess Oil
-144-
SOURCS NUMBER
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
83
89
90
91
92
93
94
95
96
97
98
99
100
(Continued)
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TABLE F-4 (Concluded)
SOURCE SOURCE NUMBER
Morgan University 101
MTA 102
Baltimore City Hospital 103
Luthsm Hospital 104
A & P 105
Philadelphia Quartz 106
Fort Holabird 107
J. S. Young Co. 108
American Standard 109
Reedbird Ave. Incinerator 110
Beth Steel - Penwood 111
Beth Steel - B Street 112
Beth Steet - 7th Street 113
Beth Steel - Tin Mill im
Beth Steel - Hot Strip Mill 115
Beth Steel - 02 Boiler House 116
Beth Steel - #1 Boiler House 117
3eth Steel - Misc. Fuel Burning 118
Beth Steel - BOF 119
Beth Steel - Coke Handling 120
Beth Steel - Coke Handling 121
Beth Steel - Ore Handling 122
Beth Steel - Blast Furnace 123
Beth Steel - Coke Battery 12U
Beth Steel - Sintering Plant 125
Beth Steel - Open Hearth 126
Beth Steel - Plate Mill 127
Beth Steel - Soaking Pits V123
Beth Steel - Sheet Mill 129
Beth Steel - Hot Strip Mill 130
Beth Steel - Glaus Sulfur Recovery 131
Beth Steel - Misc. Processes - 132
-145-
-------
APPENDIX G
WIND DIRECTIONS ON HI-VOL SAMPLING DAYS
The 24-hour resultant wind direction, determined as the vector mean
of 24 hourly values, and the hourly deviation ot the wind from the
resultant wind are listed for 9 days on which hi-vol filter samples
were analyzed in this report. A wind rose showing the frequency of
occurrence of 16 wind direction sectors on each sampling day is also
presented following the listings.
-146-
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TABLE G-l. HOURLY WIND DEVIATIONS
lU-. -,,;'^-7i
oo
o\
02
.02
Of
o?
ol
0?
01
10 ..
II .
12 .
13 .
iff
17
I*
I?
10
22
. WP
:£T.r
- 23. r
-147-
02
02
ol
o?
I/
12
13
it
17
12
to
11
22
. WP
C
6
m
(continued)
-------
TABLE G-l. HOURLY WIND DEVIATIONS (continued)
fW
i> i r "
4va.W0: 270'
00
CM
02
03
Of
Of
Ol
0?
0?
10
11
12
IS
IV-
/£
17
1?
to
11
22
11
Dourly De/ietTto*
-£rt7« >W. WP
?2.JT
22.^
12. C
22.^
-zz.r
22. r
.-«2.r
-«.r
"32. r
-22.^
- -22. r
- 22. /
- 22. j"
** ^f C"
(L ^"*
'-"'*"
-/L
0
^^.£
tiS
i*.f
^
^ \
"*"" ^7,',!'-
00
01
02
oS
ot
^
07
0?
o?
10
II
12
IS
IV-
Iff
17
n
20
w
22
11
/W! fa^'«
Jrt7w /jve. WP
-,/
-2-
-^
- '-i". r
-z^
-«?
-^
-6?
- KS
" ,^
-vsr
--zJ
- y-.-
?!,-
7
11.
%s
S7
?7.i~
«7
<^
(continued)
-148-
-------
TABLE G-l. HOURLY WIND DEVIATIONS (continued)
1- 1
!.3^g: "e.-'ft rrr.
1 ' ' « ,
00
0\
m 02
0$
1
of
1 "
0?
1
10
12 .
1 '*
If
£
1
J*
1
2
1
| 22
1
H~rl W"
*** A*e. WP
v-
r
v-
i (^ /^
^ (5 , s
li /
y
/*? i^**
o^**
TV
- o" >
1A 3"
^
. n..~
ri t~
- rl
^^
n ' - -' " ' ~
01
01
OS
°*s
ol
01
01
10
12
If
If
17
i?
n
22
>w; fe«u
*^7A«.w»
'/0.^
'**
12
i:
12
12
11
12
-!*.£
12.
-10, r
1 «^ . j
(continued)
1
1
-149-
1
-------
TABLE G-l. HOURLY WIND DEVIATIONS (continued)
01
02
03
of
o7
o?
II
12
it
(7
I*
P
10
Z./
22
. WP
- /r/
/r/
6
C
Z7
00
02
ot
0?
J/
12
13
17
P
to
tl
22
C/
2/
2/
/.S"
C
C
(continued)
-150-
-------
TABLE G-l. HOURLY WIND DEVIATIONS (concluded)
JJ
TI 0 M »
~ ,
|!-p"n2* P"c '-' ?"^7
<' wn -r
'"'V&.r'Ul i i '
_ 00
1
02 _
°^
0*t
^r
1 "
0?
1
{0 ...
1
12
1
It
| 16
17
I J?
n ...
1 20
122
^7 ^
fU^ toirfej
-irt?« ^v«rwp
-v?.-"
.
-------
CM
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I....,,,.......,.,,,,..,.,,... I.... I. .If.... I.... I......... I.... I. .. I
a
Q
3
||
4) ^
I "
u oT
"T3 ^
g 3
3 ^j
H
*
*
i
o
bC
«
Q
l|
a)
u CT\
CJ "^
1 ^
§ S
wi
ro
I
U
-153-
-------
a
Q
3 7
9*
rt
Q
S
1 1
01
°
Is.
«) CTl
8 |
SI
n <"
a -w
A
in
i
U
tw
I
.If,...,...,, ,....,....,...,,,
-154-
-------
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
rt e
*
Q
Q 3
CQ
uu
0 J
a
*
Q
I a"
u s
o Jo
O
4>
-155-
-------
Figure G-9. Sun and Chesapeake, and BWI Airport Data,
December 12, 1977 (17% calm)
-156-
-------