-------
- 253 -
>• CL
(J
t_>
c~
ra
7t
O
>• 0.
u
O Ui
H-
• -*
O 2
u
o
>- 0.
u
u
O tf.
cc.oc.oc
• o c o c c c c roc-
c-ooocccrc-o
IT. ui if v I/* 1/1 in u^ IT, m
ocoo-o o o- o o oo-c cococc-oc'crc
. ccc-occcc-u-
"
L.
C
^ ru i^ tv ^.
IODOOOOOOOOOaOOOOOOOOOOOOOOOOO>M
«- l>
-------
- 254 -
U.
_J
u
LU
_J
(J
>•
LJ o
O o
LU
7
X *
X ft
X
X.
C o
It (.
a. a.
* v
U I/I (/l
«c
r oe o:
O LU U)
I- t- H-
o « «
a- :• a
x «
X *
* X
X XX
V X
a
•
(71 L
If C
' I '
c
' I '
c
c
•
(XI
-------
- 255 -
to to
>- a. o:
K 13 =>
-00
Z X X
3 IA 3
to » •
c* c
>- M
I
I
I C
_J •
I ift
I -7
O C5
"
o cr
« o
T C
u »-
ti
o
cc
Q.
£.
U O
X >-
<-> 4-
O
_J
L.
J > >
o a: a.
o f i:
Q s- r
X
X
X
•e
X X
-------
- 256 -
V) tn
*- K Cf
«•. O O
r: i a.
^i 3
• •
o o
= O D
r.
o c
i -M
o
a
O
O
z
cr —
(V-
U U LL
H- J _J
ZOO
LU >- >-
O O U>
>- 1— I—
tu • «.
O
_J
X
X
3
X
f > >•
o a a.
X
: T
I •».
X •
OOZW/t— — i— 3 ui 21—
-------
- 257 -
3" _J
I
3
to to
>- Ct Q:
££ o z>
«. o O
J- 1 I
o c
>- r\j
h-
I-H C'.' (/>
—I >- >~
« «c «.
r> s a
c o
i (\j
•z. «- o
« o
u >- >-
(-• C t.
=> vi
H- >— t/J
5 >• >
occ.ee.
o i- y
Q- r »
L
C"
C-
c
•
in
tt.
•
O
3
I « •
O O
Z I— Kl
-------
- 258 -
v> in
>• ae a.
tt D 3
«- O O
1-13
C 0
-I >- V
« » «
300
O C
I 'M
•« o
a- o
o
t •
o
c.
•
•o
cc
UJ U. U.
t- -J _J
i; u u
UJ >- >-
o (-• u
X
X
X
X
X
3
< •
cr
1^ •» a,
H- UJ
O VI
7 > >-
o ct ce
o r r
x
X 3:
O
' •
C"
X »
X
-C
X
o
•
o
o
•
>o
o
•
o
I "D
< NM •
O C
-------
- 259 -
—I O
V
_J
c-
V) VI
>- cc u-
ir n 3
-too
I i 2
ar
=> m O
to • •
I O
l .n
_j m
I
I
<- o
f\
5
-j o
i *•
_j
i
i
i
i
-I C
u
t;
c:
o
UJ b. b
I— (— 1/3
a c
3 >• >
o b. a.
o r l
a »• »-
l in
I r-
i
x
T
C
•
O
-------
- 260 -
-.00
E S. X
-
O C
— U. V
-J > V-
< « «.
= c. o
c, a
u
2:
z T- o
«t o
I D
CSL
LU U U
*- -1 -I
T! O (_)
UJ >- >-
(-> C. C
I— •- CO
« EC Cl
L 1. f
o 1 i:
CL J i
X
I
X
I
X
X
D_
C
a
o
c
•
cr
c
•
-o
c
»
r\j
-------
- 261 -
APPENDIX
-------
- 262 -
A.I REGAN LISTING
C*«*M»*«»*W*XX»**lf«*K***KMKK*»******KM«»«»*K *«**«»**»* ****KXM**»*»**X»K*N*****«*
C P°OGRAM R^AN
C ENVIRONMENTAL PROTECTION AGEN7Y
C IMNAPOLI* FIFLD OFFICE
C T'-iIS PROGP'M PERFOPMS f LEAST SQUARES rIT OF AN EQUATION OF TPr
c corM
C Y(T) = A1 + A2»SIN(VT)
C + A5*COS(UT)
C TO 0??ERVCD DATA BY SOLVING THE "OPM»L EQUATIONS.
C
C**»*»»K»X*»XX*»XXttfttt«KX*ttXKXXKXX*XXXKX*XX*KXKX«ttXXXKKXX*XK*KKXXX*Xl»KKft*ltXXKttxXX
C DIMFHSIONS
C'ME^SION ALPHA(^0)» 1C7)* SXX("'»7)>
PFAL "AXP^S
CXXXXXXXXXXKXXXKKXKXXXXXXMXXKKX 9E*D CONTROL DATA xxxx xx xxxxxxxxxxxx^x xxxxxxxxxx
PFA3 (S^SIO (ALPMA(!>» I=1j40>
PPM; (5*501) »DATA, NCOE^F, IAXIT, KAXRES* PE?IOO» TSHIFT* PSHIFT
Cxfxxxxxxxxxxxxxxxxxxxxxxxxx RFAO TIDAL INPUT OATA xx» xxxxxxxxxx»x*xxxxxxxxxxx
"FAD (5*S02) (Ttl>j Y(I)i I=1,NDATA>
W ='.» 3.1 4159 / PEf?IOO
CXKKXKMKXKXXXXXXKXXKXXXX1IXKXX8 PRINT INPUT OATA XXXXXXXXXXXXXXXXXXKXVXKKXXXXXX
WPUF (6i6iiO> CALPHA(I)* I = 1j40>j NDATAj WCOEFF* PERIODj V»
* MAXIT* "AXPFSj TSHTTT,
PC ifQ I=1»NHATA
UKITE C*»60i) I* T(I)i *
T(I) = T( I ) * TSHIFT
100 rortTVUE
CXOKIIXKKXXXXXXXXXXKKKXXXKXXKKKXXX INITIALISE *XXX«KX*XXXXXXX«KKKKXKXKXXXXXX»KX
"0 104 K=1*NCOECP
CO 1QZ J=1»NCOPrF
ACJ) = a.
GXY(J) = 0.
SXX(K»J) = 0.
102 CONTINUr
104 CO^TTVUH:
Cxxx»x»KxxxKxxxxKXX**x*xxK* SET UP NORMAL ^DUATTONS *x»*xxxxxxxxxx»x«» x»*»»»»**»
NC2 = NCOEFF/? + 1
DO 11? I=1jNOITA
DO 106 J=1 jMCO^^F
rJ1 = FLOATCJ-1)
rJ2 = FLO»T(J-HC')
Ic (J.LE.NC2) XC-'J) = SINff J1»V*T(I> + PSHIFT)
Ic CJ.E0.1) X(J) = 1.
IF (J.6T.NC2) X(J) = rOS(rJ2«W)«T(I) + PSHIFT)
S*Y(j) = ?XYCJ) + CX(J) * Y(U)
106 CO»-TINUC
00 110 J=1jNCOFFF
"0 10« K=1iNCOEFF
SXX)
108 rONT^NUE
110 CONTINUF
112 CONTINUE
Cx»xx»xxxxxxxxxx»xxxx»xxx» PRIMT NORMAL COrFFICIEMTS »«»»x»xxxxxxxxxxxx«xxxx*x
WRITE (6*606)
TO 11'> J = 1jNCQEFc
WRITE (6.608) J, SXY(J), (SXX(K.J)* K=1*NCOEFF)
114 CONTINUE
-------
- 263 -
C»»* **#*****»»*»** *x*x*»»»» SOLVE MORTAL '"CUATICNS **» an************ *»*****)(»*
IT = "•>
115 IT = TJ + i
CFSI" = 0.
?0 118 K=1,MCOct:F
PHI = 0.
DO 116 J=1,NCOFFF
IP (J.EQ.K) GO TO 11*
SUH •= SU" - (ACJ) « SXX(KjJ))
116 COf'TINIir
CUM = (SU« + SXYCK)) / SXX PRE" = PREt? + »(J) » S INCF J1 *W*T( I )+ PSHIFT)
IF (J.ST.NC2) PRE" = PREO + A
DIFF = P>?FO - Y(I)
T"ES = TpfS + ABSCDIT)
VRITE (6»6U) It TCI>> rcl)j PRED. OTFF
1?6 COWTINUC
WRITC (6.616) TRFS
C»»)»»*)u»««*»*tn«»)< *»»*»»*)(»**«» FORMAT STATEMENTS *****************************
500 FORM»T
501 FOR1«T C7I10
502 FORMAT («f6.P)
600 FORMAT <1H1 ////1X,ZQA4f 14X* ' F«VI*ONMCNTAL PROTECTION A6E"CY'./1X .
*2CA4* 16X* 'LEAST SQUARES CURVE FITTINC' >///// *10X,'NUMEE° OF DATA
»POINTS'»10Xj 'NUMBER OF COEFFICIENTS' ./1 7X, ' ( "(DAT *) ' *?4X* ' (NCOEFF ) '
*//.1"X*I'*a3X,I3»///// j10X»'TIDAL P«=sioO (HOURS )'< 1 1 X* '0»-EGA (2*P
»I/Pc'»IODXli/16X*1 (PERIOD) l*2"?»j'(V)'*//j17XjF5. 2 »23XjF7tA*///// »
*10X*'>'»XIMUM NUM9FR OF ' ,1 4X» ' M A XI"UH RESIDUAL '*/ 1 OX. ' I TEPATIO"S AL
UIOWE^' .I^Xj" »LLOHrD" til > 1 6X< U*26T,F6.4,//// / jlOXj'TIKE SHIFT'»?1
*X»'P4ASF AN6LF SHIFT «»/1 1 X* ' (TSH !FT) ' t 26X* '( PSHIFT)
*20X*'OBSFRVATION NO .' *1 2X* ' T !*£' . 13X* ' VALUE ' ,/ * 1 5 X , 60 ( 1 »-) / )
504 FO»fMT OH /2?X/73*18X*F6.2*10X*F7.3)
606 FOR«»T (1M1/// *75Xj13(1u-)j/6X.' I ----------- I • * SOX, ' S IGMA X
«r(K,J) ' ,/Mj ' I SIG«« XY(J) I • t50X»13(1H-)»/3Xi ' J i --------
* --- I I»/6X*1 I '»17X» ' I K = 1 »»UXj'2' j14»j'3'*14»j»4' j1*X*' 5"
#*Uy*'6',UX^'7'*/6X/' l'»17(1«->*M'j105OH->*/6X, 'I ij17X*»l ' )
608 FORMAT (1H ,1X*l2j2X*' I « ,4X*F10. )
610 FORMAT (////50X,?0(1H»),/*1X* 'SOLUTIONi ,/50X/30C1H»)*/// .43V*'NUM
»PER OF ITCR> TIONS'*10X*"'AXI««UM 'JESIOU AL ' »//»51 X* I3*24X*F7.6j/// /,
«35Xj'THE CURVE ii^ICH PEST FITS THF OBSERVFD DATA IS GIVEN BY '
*///»2nx,'»(T) = '*c10.f.' + '»F13.6«' SIN(UT) * «,r1J.6»' SI
»Pt^aT> + '»F10.5,« SIN(3UT> ' J//.41X* '+ •,c-10.6»« COS(VT) + •»
»F10.**' COS(?VT) + 'JF10.6*' CCS(3VT)i)
61? FOF-HAT (1H1// 1 1V *30(1 HK) * ' SUMMARY OF OUTPUT DATA >,?0(1H»)//
«»4X,'OBSE°VATTON»,TOX.'TI««E< .10X* 'OBSFRV FO ' . 1 OX, • PREnIC TET , 10X, • »
*FSIOUAL',/2X ,&6(1H-)// )
614 FORMAT (1H ,7x/I*,t4X,FS,?j1 1XjF6.3j11Xif7.4*13X»^ 7.4)
616 FORMAT <1H ,//5Xj'TOTAL "FSIOUAL = '.F10.5 )
?TOP
-------
- 264 -
A.2 DYNHYD LISTING
C PPOGR"" DvNhYD
C ENVIRONMENTAL PROTECTION AGE-IC"
C ANNAPOLIS "-IEL" GF^ICF
Cx**ttX*****KttX****«**X*M«KK**Ktt***«KXKX)M»***X**»K**MXIM*K***M**Xtt***«*«Ktt**ltK*K
C nv«|HYr, t;r»
« CN(139),
f VT(139)
COMMON /JUNC/ AREAS(133)* JPSTC13^)* NCHAN(133*5 ) » niN(l33>*
* Y(1?3>» YT(133)
ALPHA(80)» D£LT* ITYC* INTPUN*
NOP°T. NCYCC* PERIOC* PUNCYC
PUNCYC
COMMOV
NCYCj
INTEGER
4
n
>>TA
READ
PFAD
READ
PFAD
FFAD
(5»502)
(5*504)
(5*504)
(5*504)
(5*504)
C6*600)
C*KXXXXXKXXKXXKKXKK*XXX*XKXKXK*K CONT°OL
PEAD (5*500) (ALPHA(I), 1=1*40)
PFAD (5*500) HEADER
"J* NC* NCYC* DELT* TZfRO
IPRINT. INTRVL* NOP"T
(JPRT(I)> I=1*NOPRT'
ITAPE* HYOEXT
PUNCYC* INTPUN
(ALPHACI),1 = 1 *4T)* NJ*
x IPRINT* INTRVL* MOPRT*
IF (HVOEXT.ET.Q) WRITE (*»6L"?>
IF (HYOEXT.En.1 ) WRITE (*,6u1) ITAPE
CX*XXXXKKKXXXXXXXX*K»KXXK»X«XX*X JUNCTION DATA
PFAD (5*500) HEAOER
DO 100 J=1*NJ
PFAO (5*506) JJ* Y(J)* ARFAS(J)» OIN(J)*
YT(J) = Y(J)
IF (JJ.EO.J) 60 TO 100
W«»ITF (6*604) JJ* J
STOP
100 CONTINUE
WRITE (6*606)
1C 10? J=1*NJ
WRITE (6*60?) J, Y(J>* AREAS(J)* OIN(J)*
102 CONTINUE
NC* NCYC* OELT* TZE^O*
PUNCYC* TNTPUN
«<(*l«»C»>l«(*MKI(NNK*Kifl( *«»*»**»*»
(NCHAN(J*K)» K=1*5)
(NCHAN(J*K)* K=1,5)
-------
- 265 -
CX**«X***KK«*»*X****NXKM**KM**KK
RF»J fS/500) "EAOFR
"0 1^14 N = 1»NC
?E»i (5/53?) N'M/ CLFN(N)/
AR^ACN) =
IF (NN.cQ.N) GO TO
W'lTE (6/610) NS, N
104 CONTINUE
WRITE (6/612)
TO 10* N=1/NC
WRITE (*/6U) N, CLFN(N), B(N), AREA(N)/ CH(N>/
* V(N)/ RC*O» (N JU**f(N»K>/ K = 1/2)
106 CONTINUE
SEAWARD BOUNDARY TIP«L CONDITIONS x*xxx»xxxxxxxxxxxxxxxx
(5/510) HEADFP
PEAO (5/504) KK
RFAJ (5/510) PERIOD/ / NJ/ NC / CELT/
x CCN(N)/ R(N)/ °(N)/ CLEN(N)/ N=1/NC)
WPIT"7 (1T) (Y(J)/ AREAS(J)/ QIN/ K = 1/?)/ J=1/NJ)/
x (A"E«(N), V(N)» (MJUNC(N/T)/
-------
- 266 -
CK**K**X*K***K**MXX**ft*K»K*x**K**K*tt XX*** ft** *KX*tt**»**X*X*ft****X****tt«*X*X »*»*««
C Iinm_IZ»TION
Cx*X*X***X*»**X*»»XXXX*»»lXXi»l*XX<»***XX**i«*X**
ncLT1 = ^ELT / ->..
T7^f> = TZtRO * *6JQ.
PFRIOT = PEF TDD * 2600.
i< = P. » 3.1416 / PCDIOi
G = 32.1739
°0 ", ?0 N=1>Nr
AKCV) = 6 * CC"CN>*»',1).LT.*JUN'-(N,;>» 70 TO 1» J=1..NJ)j
T = TZERO
r.Tvcc = icrc
T2 = T + DELT2
T = T + OELT
C»*»*»*»»»»»* rol1>
R(N) = ARE«(N)
OVDX = (1./R(N)) * («Y(NH) - VTiNH) + »(,NL) - YT< t L) ) /""EL T >
+ (V(N) / CLCNCN)> * CYCV'H) - Y»
VTC")= V(N) + OFLT2 » C(V
= VT(N)
C»***»»*iHfxx*x*«*» CO"PUTF JUNCTION HFADS rOR 1/2 TIM"? STFP ******** »**x *xx«»*
VTC1 ) = »1 (1)
C x»x»***«x»m(»» SFAWA13" BOUNO*°Y »EAD? »** »»**x«*»x«
r"3 -(21 1 = 1, NS
FI = FLO*T< I)
YT(1) = YT(1> * AKT+1) » SIN(Fi»y*T2) +
* A1C"S+1+I) * COS(Fr*U»T?)
-------
- 267 -
C KK**«*X*X*XXKXXX« JU^'CTIO*' HF»L)S *»**»»»*«X*1«XXI(X»X
•^0 1*5 J = 2,M
SUMd = QIM(J)
"0 1 T? K=1,5
IF 60 TO 154
w = NCHAN(J,K)
IF (J.NE.NJUNC(N»1 )) ^0 TO 130
SU"f1 = SUM" + KM)
SO TO 132
130 Sl'10 = SUPQ - U(»O
1"»Z CONTINUE
134 YTCJ) = Y(J) - (COCLT / ARFASCJ)) * .5) » C'JHQ
136 CONTINUE
Cx*x»xx»xx»»*»x» COMPUTE CHANEL C.S. AREA FOR 1 /' Tl'^e STEP
ML = MJUNCCV.1)
NH = NJUNCCM,2)
ARC*T(H) = SREACN) + . c*8( N )x( »T ()<") -Y (NH) + YT(«
"(N) = >REAT(N) / •»(»)
»KT7 = AKIN) / fft- Y< VL) )/ "ELT ) +
* CVT(N) / CLEN(N)) « (»T(K°) - YT(MD))
V(«) = V(N) + TFLT » C(VT(N) * PVCX) -
» AKT2«VT(N)*A''S(VT(M))
» - (G / CLEN(N)) * (VT(NH) - YT(VL)))
^(N) = V(N) » AREAT(K')
138 rONT!NUE
Cxxx«x»x«xx»*x»»i»x COMPUTE JU"CTION Hr*OS rOR CULL Tlf^^ STFP •txxxtixx »*x» *xx *x»
YC1) = A 1(1)
"0 140 1=1,MS
KI = FLOAT(T)
YC1) = v<1> + A1(1+1) «
* + MCNS+I + 1) *
140 CONTINUE
"0 148 J=2,NJ
SU"0 = CIN(J)
"0 1*4 K=1,5
IF CNCH»N(J,K).FO.T) 60 TO 1*6
>' = NCHAN(J,K)
IF CJ.NE.NJUVC(N,1>) CO TO 142
SU*^n = SUNQ » Q(N)
GO TO 144
142 SUHQ = SUM0 - QC^)
14i CONTINUE
146 YCJ) = YCJ> - (CELT / ARE«S(J» * SUHQ
143 CONTINUE
C»**»x»x«*xx COMPUTE CHANNEL C.S. AHEA FOP FULL' TIf*E STEP »xxxxxxxxxx»»*xx»»»»
10 150 N=1,NC
NL = NJUNCC1,!>
NH * «4JUNC(N,2)
ARFMN) = AREAT(N) + < . **Bl «<)x ( v (NH) -YTCNri ) + Y( ND-YT (NL ) ) )
150 CONTINUE
-------
- 268 -
C* ** »«»»»»'»»»* *»»» *N**«»s»*K** CHcflC VEUOCTT1F.S *<»*»* **»« «* »»»» >H<*K »»»* *«*»»«
•>0 15? N=1,NC
IF SO TO 152
WRITC C6»620> ICYC, "'
WIT1" (6j622) (J» r(J)j vT(J)i ARFACJ)! TCJ>J J = 1>NJ)
L = NJ+1
WITF (6^624) (J» Y(J)j ri(J)t APF»(J)j Qf»C>
STOP
152 CONTI"U£
C**««»«*«»*«M**»*«**tt STO'F DATA FOR HYDRAULIC EXTRACTS »««««»»»«»«)• »»»«»»»»»«
Ic (IrYC.LT,TTAPF) SO TO 154
yRITE C1Q) ICYC, (V(J), J=1,NJ), (V(N), QCO* >J=r1,NO
154 rONTT»tUE
c«»»«»»*>t*)<*»»*»*»'(»*»**)«**»»» HYnR*uLic OUTPUT *»)on*»*»)«i*i»»<»»»»*)«»»»)«*)(»»»»*
Tr (ICYC.NE.TPRINT) qO TO 164
IPPINT =• JP9INT + r«»TRVL
TI^c = T / '600.
"0 1*? I=1jNOPRT
J = JPRTCI)
URITE (6*62") J^ Y(J)
r>0 1tn K = 1*5
IF (NCHAN( J>K) .EQ.JJ GO TO 160
« = NCHANfJjK)
IF (J.NE.NJU*C(N.1» ^0 TO 156
VEL = V(N)
FLOW = "(N)
GO TO 1C&
156 VL = -V(N)
FLOW = -9CK)
158 VPITE c N, VCLJ FLOW
1CQ CONTINUE
162 CONTINUE
164 CONTINUE
CM**K*V***N«V***«*»***K***«*N CHECK FO" RESTART »»***»)»**» *-»*»*)»»»* »*»«)<»•<»»»
lc »ESTRT
166 COKTT1UE
CMX*************** *«*««**** EXIT "YDMULIC PROGRAM »****»* *»*»»«*»)• « ***»«*»***
WPITC (5*632) NC^CC
IF (""DEyT.Eo.D TALL
-------
- 269 -
C FORMAT STAT^
£*«***************************»**************************»**********************
509 FORM*T (?OAi)
50? FORMAT (Jr5»'F5.T>
504 FQRM'T (1615)
506 FO°MAT < IS»3r10. 0,515)
50? FOC.M4T (15, 2F8.0,F9.n,F7.0>,Zc8. 0,215)
510 FO***T (T1Q.O)
600 EQSMAT (1^1j/// »2X»20A4,11 X, IE*"1RGNMCNTAL PROTECTION AGENCY1, />
*2Xj29A4,3T, ' DYNAMIC FLOW IN A 2-3 IMF^'S IONI L SYST CM ',//// ,1"X/'NU
"'•PER OF >'UM3F<* OF', /,10X»" JUNCTIONS CHANNELS '» /j1 ~*\i ' (NJ )'
»»1GX,' (XC> »J//*1'»X»I3,11X,I3»/// JUXJ'IUMB" OF HYDRAULIC
UX," HYDRAULIC CYCLES ST^P, IN SCC. FTASTING TIME'
».!,/// >10X»'PRINTOUT 8E5INS NO. OF CYCLES NO. 0
*TIONS' ,/>l3X >• AT CYCLE BPT«EFN RPINTOUT PPINTFS',/
f 10X»'FE'?TAPT DATA STORED NO. OF CYCLES BETW^FN ' • /, 1 5X
• j'AT fYCL?1 i 11X*'UPDATE OF RESTART DAT A ' i f> 1 5v> i (PUNCYC) ' 1 1 3X* ' ( I u
»TPUN) '*//»17XjU»2ZX»H»/// ,10X,'iS Sup"OUTINP HYOEX CAT
»A F03 HYOFX IS'*/il61f/'C*'.LEr' ?' ^ 1 0X >' STORED BEGTNNIN'; AT CYCLE1,
»/»1C" » '("OES HYOFXT = 1 •») ',15X, 'C1TAPE) ',/ )
601 FORHIT
63? FORMAT dSXj'NO')
604 FORMATC40MCJU^CTION DATA CART OUT OF SEQUPNCC. JJ= U,4n.»J= T A)
606 FOPMAT C1H1//2X»4?(1H»>, ' SUMM«?Y 0<^ JUNCTION TATA ',50C1"*>,/
K//13X, 'JUNCTION IlflTIAL 4FAO ?UP^ACE ARE« INPUT - OU TP
»UT CHANNELS ENTERINi; JUNCTION ',/, 1 OX, 1 1 5 ( 1 H-) ,/ )
60? FOSHAT (15X> nj9X,F10.4jS>r»Fl3.0,8X>F7.l»9X,5C4X» 13) )
610 FORMATC39MJCHANNFL DATA CARD OUT OF SEQUENCE. NM= U»4H,K'= I/.)
61? FOPMAT (1H1//?XfA^(1H»>* i SUMM'^Y O^ CMANHEL 0F8.5>3X,F5.1»16X
61* FORM»T (lH1////2nX>27(lH*>, ' TIOAL CONO'TIO^'S »T THF SFAVART BOU
*NOAPY '»27(1H*)*///,30X,"TlnAL PERIOD IS '>F5.2,' 4QURS ' , //,30 X*
»'«EA»» SEA LEVFL IS «*F8.6>' ^rET ' ,// »7QX* ' THE HEAT AT THF SEA«AR"
»BOUN"«RY IS GIVEV BY ' ,// ,3AX , • HEAO = ',F9.6,' + ',F9.6,' SIN(vT) +
» 'iF9,6,' SIW(2VT) + ',F9.6,' SI«( 3UT) ' , /, 5 1 X, ' + '»F9.6»' COS(WT)
» + ',F9.6,' ^OSCPVT) + ',cv.6,« roSC'viT) ' )
61? FCSH»T(5r>M!JCO«PATIBUITY CHECK. Ci-fANNEL I4j11Hj JUNCTION 14)
629 FORMATC34MQVELOCITY F.XCETDS 20 FP? I" CYCLE I'jIH", CHANMFL 13,
*2?H» EXECUTION TE"M INA TE^.)
62? FO°MAT (S2H NO. Y YT AREA 0 //
*
-------
- 270 -
C «U3<»OUTT'»E
CXXXXXKXXXXXXXH
'UPFOUTINE HVPFX
COMMON /r"AN/ AK(139>» 4?£A<1T9)» ARE»T(1^9)* 3(1?9)* CLCM( 1 '9) *
< CNC139)* NJUNC(139»2)t "(1'")* 9C1J?), V(1?°)*
* VT(139)
CCMMON /JIJNC/ ARr«S(133)» JPRTd"). "CriANd 3"**i >* QlNd")*
COMMON /"TSC/ ALPHA(SO)* DcLT» I^YC* IMPUN* NJ* NC* VCYC, H'TSVL»
* NOPPT* NCYCC* PERIOP* PUNCYC
DIMEN'IO" AKAVC(139)* Aff"AX f 1 39) t A"»"IN(1 39 ) » S-AX(1?9)*
Y"IN(133).
Cxx»*»t(««xXi(»»»»«x»)f»» REAn INDEPENDENT CONTROL DATA
Pc»0 (5*500) HEADER
PFAO (5*5PO) (ALPHA(I)* 1=4
PFAD (5*5H2) NOD^N
C**»«»»»*xi
NSTOP = NCYCr
KSTAPT = NCY^c -
IF (ICYCTF.NF.NSTAPT) SO TO 100
CN*««**«*MK*««MKXX>«** INITIALIZE TIDAL CYCLE VARIABLES »»»««»»»*)«»«*»»»»«»»««
DO 10? N=1*Nr
ONCT(N) = .5 * Q(«<)
VMAT(N) = V(N)
VMIN(N) = V(N)
OH*.¥(N) = C(N)
ARAVG(W) = P
AR»AX(N) = n
AR-IN(N) = 1000000.
102 CONTItUE
PO 1C« J=1»NJ
» YME«(J)
= YMEH(J)
MMINCJ) = ICYCTC
N»«t»(J) * TCYCTC
YAVCCJ) = .5 « "NEW(J)
104 CONT'NUE
ixxxxx**xvxxxK)(Kx« i«*iTiALizc INTER-TTDAL CYCLE V»RI»BLES »»«««»«»»»»*«»»«««»»
106 PO 10s N=1*Nr
CEXT(H) = .5 » OtM)
VE"T(N) * .5 » V(N)
108 CONTINUE
(4) ICYCTF* (YNEVCJ)* -
-------
- 271 -
C»K«»»««**x«)tK*x»tt»»»«« COMPUTE IVTER-TIOfL PJ°AMCTLRS « x« »»»*»**»*« »*««**»«**
"0 1?* IC»1t'»00''N
(10) ICYCTF* (VNEV(J), J=1»NJ)» (V(N), 2C">< N=1,NC)
11* N=i,NC
*»*»»»*»»*»»)(»»«» SUMMATIONS ****ft*»*x*ft*«*»***»*«
VEXTCN) = V^XKV) + V(»')
ONETCN ) = <3«fET(N> + G<">
C «»»»*»»»««»»«» CrOSS-SE?TIO"-Y(NH) * YM^W (NL >-Y CNL) )
PO TO 11?
110 ARCA(N) = 0(N) / V(*')
11Z ARAVC(")= ARAVGOO + APFAC1*)
C H»«K»)()t**»i»»» HIV ANO MAX VELOCITIES ««*»««*»««*«*
IF (V(f').ST.VIIIN(N)) 60 TO 113
V^INfN) =» V
GO TO 1U
113 IF (V(N).6T,VMAXCN» VMAXCN) = V(N)
114 rONTTWUE
C »»*»*»»**»«»* «IM AND 1AX C.S« AREIS »»»»*»»»««»
IF (ARF«N?V
*CJ> » VNEW(J)
124 CONTINUE
126 CONTINUE
C »*H«**»NK***M»*«»* INTER-TIDAL FLOU A"Q VELOCITY *****************
DO 13? N=»1,NC
OEXTtN) » OFXTCN) - .5 »
QEtT(N) " OEXT(»*)
VEXT
VE*T(N) » VEXT(N) / FLOAH «
GO TO 130
1?8 IF (QEXT(N).GT.OMAXCN)) OMAX(N> * OFXTCO
130 CONTINUE
172 fONTIMUF
WRIT? (4) (QFXTCO, VEXT(N), N
IF (ICYCTr.Nf.NSTOP) GO TO 106
-------
- 272 -
C«>««*«i<«*x**«*in«»»»*****»»» COMPUTE TI^JL SUM"MRY »»*»»»»»«»»»II«»»»»««*»»»M»»«
"0 I'i N
QNETCN)
SNFTCN) = QNET / Fl 9 M (N STCP-NST ART)
»RAVi(N> * ARAVPIN>
R(M) * JRAVG(N) / «(N>
T'i CONTINUE
r*VG(J) = "AV^CJ) - .r » YNEW(J)
YAVSCJ) = v*vC(J) / FLOAT(NSTOP-NSTAKT)
136 CONTINUE
»*»**»*»***»**»** COMPLETE UOTTIS6 HYnRAULIC FXT°«CT TAPE »««»««»)»)(**«*«»»»)•««
VRITP (4) (O^TCf), N = 1,VD
WRITE (4) (ALPHA
C»»»»«»««)t»*ii»»»«**»*«»**« PSINT TIDAL CYCLE SUMM"?Y ***»***»*»***** »»*»)(»»*»)(
WRITC (6»604> <»<» QNET(N>» Q^IN(N). QMAX(N)^ VMIN(rt). V.1AX(N)j
» ARHIN(N). AP1«XCN>t ARAVG(N)j N=1,N'-)
WPITC (6»606> (J* YMIN(J), NHN(J), YMAX(J)* MMAX(J), YAVP(J),
c»m< «»*»)•*)•*»*»»»»»»»»*» CHECK HY^^AULTC -XTR*CT TAPE *»»)»»»i»»»)n
no 1""* !=1*K
REAT (4) ICYCTF, (YMEHCJ), J=1»MJ)
READ (i) (OEXT(N), ¥EXT(N)j N=1jNC)
WRITE (6*610) ICYCTP* YWEVC1)* YNE«(50)» YNEW(?0)j YNEW(10)>
» r«»E«(1U). OcXT(65)j iEXT(50)j QcXT(:?0)j OEXTC1G).
« QEXTC1)
138
-------
- 273 -
500 FCP1AT
50? FORMtT (1515)
600 FOP«AT (1"1///
» 1H ?0*4.10V»37H FEDERAL WATPR DUALITY A^MI N 1ST ?A TIO*/
* 1ri 'OA4,10X,32U NET FLOWS *NO HYDRAULIC SU««ARV/
* 1H 20»*/1« 2CA4////)
60? FORMAUa*" »**««««« F?OM "yD"*ULICS PROGR'H »»*»»»*« HYDRAULIC
•« CYCLES PER TI>1E INTERVAL IM/
«87H START CYCLE STOP CVCLE TrHE INTCOV*L DUALITY CYCLE
» OUALTTY PROS"A1//
»1H I7»I14*F1 1.0>OH SFCO«*OS*10X,Ift>1?yjF0.2*7H HOURS/////)
601 FORMAT(119H * * » » » CLOU * » * » *
* * » VELOCIT" « * « » * CROSS-SFCTIONAL AREA » » » /
* 11«H THANNFL N^T FLOW HIN. "*X.
» HIN, MAX. MU. MAX. AVE,/
* 119H "UMBFP (CFS) (TFS) CfFS)
« (FPS) CFPS> (SO. FT) (SO. CT) (SQ.
606 TORM*T CIHI^/// »iXj50(iM»>, • SUMMARY or JUMCTTOM HFAO?
«H»)j//// /14X* ' JU"CTION fTNI-iUH HFAD CYCLF OF
)• HE«0 CYCLE OF AVERAGE H^ID TIDAL R A»»^E • > /*31 X J • (TT ) • >
'»9X/'(FT) '/9X* ' OCCORENrF ' j"x, i (FT) ' , U»j ' ( FT ) ' > / ,10
608 PORMAT cmi///iox»30(iH«),' CH^CK "YD»AULIC EXTRACT TAPE
*30(1H»),//3Xj 'CYCLE'»15X, >hcAOS AT JU*CT IONS ' ,36 X* ' FLO WS 1^
610 FORMAT (?XiI4»2X*5(3X*F5.?)j8X*5C?Xj»'10.?) )
RETURN
FND
-------
- 274 -
C*»*»*»»*»<**K»***»»»K*****»*»»«»»***»«»******»«»*»»**»***»***»****«»* *****»***«
C 7ESTRT
C**X**»*X»K*KttkKX*K***X<*«M*XXX*K*****«***X******«***«**K»N*X*X***tt*X*X*tt***lt
PtiFROUTI»lF RF«?TRT
COMMON /"-"AN/ AK<139)> A^FACl'9)* AREAT(139>» B(1*9)» CLEN(1?9).
* CS(139>j NJUNC(139»2>j Td^"). , V(1'<5),
t VTC139)
CCMM0* /J'JNC/ A2C'S( 1^)» JPSTC1'*'?>j ''CHAN ( 1 73 * 5 ) > QIN<13?J,
* Y(1^3)» YTC133)
COrthON /^ISC/ ALPHA<80>» DtLT» I"YCj INlPUNj HJ, HC* NCYC, INTPVL*
NCYCC» PERion* PUKCYC
00 TO 1n
r* *» a****** *»»*»*)( an********* VPITP RCSTA?T TAPE »*»**»»**»»»»*«»»)»« *»»*»»»»«»
PUNCYC = PUWCYC + INTPU"
Ur!TE (4) ICYC> (Y(J), »T(J>* J=1jMJ)» (V(N)j A°EA(*O/ N=1 ,NC)
REMIND 4
GO TO 'H
C**» »«*»»K*» *»)»**)» »»**» »»»»»» PUNrH RESTART DECK »»»»**»*»»« »*»»)nm*
10 VP1TE (8*60) (J» Y(J)* ARFASCJ)* ''INC J ) J< NCHAN< J »K ) *K = 1 , 5) » J = 1 *N J)
VPITC C8>61) (N, CLE«»(N), 9(N)»
?0 TZERO? = T / PERIOD
KT2E"0 = TZEP02
T7EFO' = (T/7630.) - ^LQA T( K TZERO ) * ( PER I OD /
VR1TC (6»62) ICYC> T7FR01
T0 CCNTPfllE
r »<*»»*»««»»»»*»«* »»»»**»»)!»»» PPIMT RrSTA°T D'TA »>i »»»»«»»* M* *»»*»)»«*»»**»»»»)(
C n**»m«t()«*»)i*»)n» JUNCTIONS »«»«»»»»)(«*«»*
WPITr (6»63)
tfRITr (6*64) CJ, YCJ)» A9CASCJ)» "INC J ) . (NCHAN( J ,K ) »K=1 *c ) > J=1 >N J>
C **«**«»*»»»*»*« CHANNELS *««»«»)H»**»»»»*
WPITC (6»65)
WPITP (6»66) (N» CLE"(N)f B(V)^ APtAf*>j CV(N)f VCN)*
» R(N). (NJUNC> K^1j?)* N=1»NC)
C* »»»*»«»»»« *»»»»*»«»»»»**»«»« FORMAT STATFMcVTS *)(«»»*«»*»»)»«»»<«*»«»»)»»»»»»»*
<"0 rOf**T (IS. r-io.i, F10.Q> F10.2* 515)
61 FORMAT (15* 2F3.0* F9.1j f?.7, p?.3* ^8.5. 2T5)
5i FORMAT (1 H1 ///5X» 'RESTART TAPP UAS LAST VRITTFN AT CYCLE '* 14* 5Xj '
» TZF"0 F0» RESTARTING = '»F10.7 )
"3 FOP!«»T (1H1///
» T2H JUNCTION DATA FOR RESTART QCCK///)
c-4 FOFIAT CS^-H JUHCTTOM INITIAL HC*D SUPCACF AREA I^puT-ouTPUT
* CHANNEL? ENTERING JUk'CT ION/ /(1 H » I6*F1 5 .4jF 1 7.0. F 1 1 . 2 , 1 1 2,
63 FORMAT C1U1///
» 'IH <-HA«MEL ^*T* F°7 RESTART OECK///)
66 FORMAT c "7H THANIEL LENGTH VTDT^ APEA «*VNING
»TY "YO RADIUS JUNCTIONS AT ENDS//
-------
- 275 -
A.3 DYNQUAL LISTING
c*******************************************************************************
C PROGRAM "YN1UAL
C ENVIRONMENTAL PROTECTION AGENCY
C INNAPOLIS FIFLD OFFICE
C DYNAMIC WAT^P QUALITY MODEL
C**»********************** *•*****»*»»»»»***»*****»***»*******»********»***»******
C ms nECK HAS 3ECN REVISED FOR APPLICATION TQ THF POTOMAC ESTUARY
C T"E *ODEL NETWORK COWSISTS OF UP TO 133 JUNCTION"? ANO 13' CHANNELS
C T«IS IS A GENERAL 6 CONSTITUENT D.O. BUDGET "ODFL
C THIS VERSION ALSO CONTAINS « GENERALIZE" PLOTTING PACKAGF
C*******»ix**>i****»****x*»**K»»»»LE CRACTIONS OF HITROGCN AN-D PHOSPHORUS ARF CONSIDERED IN
C THE "OTFL. REGENERATION OF PARTICULATE NITROGEN AND/OR PHOSPHORUS IN
C THE DECAYING AISAE TO SOLUBLE EQRMS MAY ALSO BE INCLUDED. ALGAL CBOO
C MAV AL50 BE REGENERATED SY EIRST-OROER KINETICS. ALL REACTION RATES
C MAV 9E VARIED SPATULL*. THTS VERSION »LSO INCLUDES THF EFFECTS OF
C THIS CHLOROPHYLL PRODUCTION* AS WELL AS OTHFR M«JOR COMPONENTS OF
C THE 0.0. BUDGET. A REAL TIME CLOCK IS INCLUDED FOR THE PHOTO-PERIOO.
C WASTTWATER INPUTS* NON-POINT SOURCES
-------
- 276 -
C DTMENSIO^ STATEMFMS + C01NO" 3LOCKS
C»*>I, AMUPP(l3^)j DEC* Y ( 1 3 3*6) ' OECA YK ( 1 0 j6 ) ,
* Q»MUPC13T>» QiECA Yd ?3*6>J OPHUPd33>> 0"PBOnd33>*
» ORFSENd ??>» ORECEPd73>» PHUPd?3)j PHUPPdO)*
» ofBOnnn?1)! pcGENd3?)> "fGE*w* RFGEPC133).
» S'-»CON<6). THET*(6)> "^ASSOd'S)
PIMENSIO"! »LPH»(80)» 3*rKC(^)j CIN(*.133)» CINT(6)> CUI»»ITC6>>
» COIFTKC10)» CNAHE(12)» NM"LC1^3>» NP»L(1T?)* NFCCtO)*
* NLC(10>, NFK10). NF3(10)» NF3C10)f «*LU13)t NL2(1G)»
DISSOLVED OXYGEN PARAMETERS
DO«V6C133)i 8EHTHC133>» BENTC10)» OFPTH(10>,
S)* DOGT5(1'3J»
S). PHOTO(133)» PHOTdn>,
PrSPC133>»
CONSTANT UASTF TNPUTS
'"WLO* Dd
VOLOIN(133)j XLOAO(20*6)
VA9IABLC MA«TE INPUTS
DIMENSION CON(6>20*20>* FLOC20j20)j
* KCYC(2J)» KI"CC20)* *iKCl?Q>t VWLOAOC6)
LOAD INPUTS
>» ICYC1C20>» IC»C2<20)». JRBL1(2O>,
SLINE(133)» T°FLO«f 20*1 33)* V9LOAO(6>
INPUT/OUTPUT P«RA«FTER«
DIMENSION IPRT1(?0)» IP9T2<2Q>* LPRTK20)* LPRT?<20)»
* TPLT1(2Q)» IPLT2(20)
c_-_ ____ ____ __-_ _________
COMMON /CHAN/ i"EAd39>* 3CJ39>* CLEN(1^9)* CN(139)f OIFFKd39)»
» NJUKC(139>2)» Qd'9)» QNETC139>» R(139), V
COMMON /JUNC/ PSUR(133>> AVOH1^3)* NCHANC 133^5) * VOL(133)j
» Yd3^>* Y"E«d33>
COMMON /OU«L/ C(133»6)» CM«SS<1'3*6)
COMMON /nlSC/ fTIME* OFLTQ» ICTC> NC* NJ* MPP, NUMCON*
COMMON /SCALPS/ XMAX» XMI«»* YMAX» YHAXC(6>* YMIN* YMINCC6)
COMMON /SLACK/ JPRTd50»c5)t KSLC2Q)* KPLOT(20)» NFPC(20>*
» NLPC(?0)» NOPRTdSO). NCONSU(S)* "SWP
COMMON /09SDIT/ OPDATA (3.6*20) » ""CJIT.A ( 20) * 1DATA* NO?CYCC1Q)
COMMON /GRID/ KPLOP
COMMON /TIHEPL/ JUNCTP(2n)j NCITP<20)» NCONTP(20*6)» NECTP(20)»
* NSCTP(20)> NTP
RPAL "CHLON. «CHLOP» NTTCHL
nOLTtj 004T05. DOGT5* HY"CYC* SEACON
-------
- 277 -
Cx*x»xxx»»xx»»xx»x)»«xxxxx***»x*x»»xx»xxxx*x*x*xxxi«»xx*x»x»<»xxxxx»xxxx««x«x»x»x»*
C TAD SYSTEM INFORMATION rRQH HYDRAULIC TAPE
C»xxx»x»x»x»xxxxxxxnxxx>»i(*x«*xxx»xxxxxt(xxx»x»xxxxxxxx»*»xxxxx*x»x»xxxxxxxxxx)ixxx»
ppnvr, 3
FFVIINO 4
RFAO (5,5^) (*LPHA(I>, 1=41 ,30)
READ (5.500) NJ, NC, NSTAPT, NSTOP, NODYV
K = fVSTOP - MSTAPT) / NO"YN
00 100 1=1 »K
READ (4) 1CYCTF, (YVEU(J>*
«?EAO (4) CQCN)j VCN).
4»ITF (3) ICYCTF> (YNF«
V°ITP (3) (QCN)» VCM)»
100 CO^TINUF
RFAD (4) (QNFT(N), N=1»MC)
READ (4) (ALPHA(I)j I=1»AO)> NJ» NCj PELT.
* (CK0 (5,500) "UM^ONj KDCOP, KREAC, MIX
PFAD (5,504) TEMP, STIME
C»«»»»»»»*»«»«»»it»*»t>»«**» TABULAR OUTPUT CONTROL »«K«*»*x**x««x*ff «K**X*«*»M
READ (5,508) HEADER
READ (5,500) «»SU»I1,NPLT1
IF (HSUMl.EO.a> GO TO 102
DO 102 N=1 ,NSU*1
RfAD (5»5f?t)> IPRT1CN), LPRTHN), IPl_T1(N>
102 CO"TINUF
RTAD (5,500) »SU*2, WPLT?
IF (NSUM?.EQ.P) GO TO 104
DO 104 N=1 ,NSUM2
RCAD (5,500) IPRT21M), LP«?T2(N>, IPLTZ(N)
104 COMTIMUF.
READ (5,500) MSWTAB
IF (»ISWTAB,EO.O) GO TO 1 n*
00 106 N=1 ,NSUTAB
C?AD (5,500) NFPC(N), KSL(N), KPLOT(»O
CK*KXXX«XX**»*«KXXXK«XKKX PLOTTING OUTPUT CONTROL
PFAD (5,50%) HEADFR
PF«0 (5,500) NTP, VSVPt KPLOP
RFAD (5,500) WDATA, HOBOAT
IF (»f030AT»6T.O) REAO (5,500> (NO"CYC(I), I = 1
IF (N?«P.RT.C) READ (5,500) (NCONSUCK), K=1,NUMCON)
IF (1TP.FO.O) 60 TO 110
DO 108 N=1 ,HTP
-------
- 278 -
JUNCTP(V), NSCTP(N). NECTP
P^AD (5.506) CYHAXC(K>> YMINC(K>» K=1»NUirQN)
nC 112 K=1,NUKrON
v!*.Ai":(K) = Y*IUC(K) - .1
112 CO»'TI""JF
ir (NUMPLT.EP.NTP) GO TO 114
(114) = 0,0
3) - 2.°
P» = 5.9
C H) =• 6.6
( 9) = 7.6
< 11) = 8.4
RMMODr (11) = 3.7
RH«»ODr ( 13) = 9.9
R«»NOCP d"?") = 10. 7
RMMOQ^ <1TO) = 10.*
RMNODr ( 14) = 11.?
1C) = 12.0
1^) = 12.9
RMNOOC ( 17) = 13.6
P*"»ODr C 1") = 14.8
RMNOCC C 1<»> = 15."*
P^HOTF ( 20) = 16.3
R1NODF ( ?1) = 16. <>
9MNOCr C 72) = 17.9
t ?3) = 18.5
< 24) = 19.5
( 25) = 20.4
< '*) * 21 .4
RHNODF ( '7) » 22.'
RM10DF ( ") = 24.0
RMVQDP ( ?9J = 25.7
RMMOD<- C T0) = 27. n
RMNODF ( ^1) = 28. T
RMHOOF ( '?) = 29.6
Rf»NODr ( 17) = 30.7
C U) = 31.4
( 75) = 32.7
RMNODF ( ~">1 = 34,2
RMMODr ( '7) = 36.'
R«MOOf C '3) = 38.9
R1NODF ( T0) = 40.*
( 40) = 42.9
( 41; = 45. n
C 42) = 47.0
RlNOCF < 43) = 49.4
CCNTINUE
-------
- 279 -
INITIALITr VARIABLES
TCIfC = 1
!TA3 = D
NPA = 1
NS1 = 1
NSH = 1
PO =0
*'TAG =0
TSPISC = 1
TSSET = T
CSAT = 0
PFLT01 = »"ELT * FlOAT(NOnYN) /
PFLTO = "ELT »
NTEfP = NSTOP -
CO 116 N=1 »NC
If C1JUNC(Nj1 ).LE.NJU^C( V,2» GO TO 116
= NJUNc<«i,r>
MJUNC(N,-?> = KEEP
116 CCmiNUP
00 120 J-1 ."J
OI»tWQ(J) = ">.
'"•»SC''1( J) = 0.
"NRLCJ) = 0
"OLTKJ) = 0
"O^TO^CJ) = 0
DOGT5CJ) = 0
"OI'IVCJ) = 30.
"OHA*(J> = 0,
"TNCYCXJ) = n
«AXCYC( J) = 0
DOAVGf J) = 0.
00 118 K=1»NUMCON
CVLOAD(J»K) * 0,
roNcu(jiK) » a.
rcj*K) => o.
CONTINUE
120 CO^TINUP
C»»*M*»x«»*KMMMX««» SET PARAMfTEPS FO'' SLACK-WATER TABLES * ««««*«*«*«««•«««*
IF (NSWTAB.EO.O) 60 TO 1??
DO 12? M=1»NSWTAB
CALL SUTABLCnH')
IF(M.EQ.NSUTAB) GO TO 1*2
CONTINUE
123 CONTINUE
-------
- 280 -
PFAO (5*508) HEADER
PFAD (5*504) PERC"* CHLNIT* CHLPHQ, CHLCAR
CARCHL = 1./CHLCA9
PHOCHL = 1./CULPWO
NITCHL « 1./C«LNIT
PO 12* K=1,«JUMCON
V8 = 2»K
REAO (5/512) BACJ(C(K)»THETA(K)j CLJflT(K)* (CNAMP (N) *N=NA *N<> )
126 CO"TI«UE
IF (NUMCON.LT.6) GO TO 14?
C»»**»«»»»**»«*»»*)i*>« »»*»»*•*»****»»*** »»»»»»***»»»» »* ***«»»»»*«*«»*»*» »»»»»« »»*»
C REAO DO RELATED COEFFICIENTS
PFAD (5>508)
READ (5*504) TSRISE* TSSET
REAO (5»500) NO
DO 132 1=1 >NO
°?AO (5*514) NF1 (I)jNLK I)< PSOT TREOXK
CB»***M«*«***•***•»«********• O'CONNE'
134 A - 12.9
V = 0.5
X = -1.5
A » A » THFTJK6) «* (TE«(P - 20.>
SO TO 142
C»**»K»*«*»*M«*»*»*«*»»»*»**«»»* CHU'CHILL
136 A * 11.6
W = .97
X * -5/3
A a A * THFTAC6) »»
-------
- 281 -
C»»»»»*»»»»»«»*»««*»»*mt»*» COMPUTE *30 SATURATION »«»»*»»»•»»»»*»»»»««»»»»»»
1«2 CSAT
143
14.652 - (.4102-? » TEMP>+(.007991 * TEMP » TFNP)
-C.000077779 » TEMP a TCMP *
PRINT SUMMARY OF CONTROL DATA
WRITE (6*600) (ALPHA(I), 1-1*80)* NSTART* NSTOP, HYDCYC* DELT*
» MO^YC, NUT^YC* NDOCYC* "ELT01* NSPEC* TFMP»
NUMCON, TE»P ,STIME, TSRISF* TSSET* CSAT
WPITC (6*602)
00
144
"A =
K=1.NUHCON
2 * K - 1
2 » Y
(6>603> <>
CCNAME(M), M=NAiNB), B»CKC(K)* THETACK)
144
WRIT"7 (6,604)
IF
IF
ir
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
(I°EO*K
(IPEOXK
(IPEOXK
( I°EOXK
(KPEAC.
(KPEAC.
(KREAC.
("IX. ?0
(Mix. FP
("IX,E"
(MX.FQ
(MIX.FQ
(K"COP.
(KOCOP.
.EQ
.EO
.EQ
• Er
EQ.
EG.
EQ.
.1)
.2)
.3)
.4)
.5)
EQ .
EQ.
*
*
CHLNIT, CHLPHO* CHLCAR, PERCO
1
)
2)
.3)
•
4)
D
?
•\
1
)
)
)
2)
WRITF
VR LT F
WRITE
WRITF
WRITF
WRITF
WRITE
'•TRITE
WRITE
WRITE
WRITE
WRITE
WRITF
WRITE
(6,606)
(6,607)
(6,603)
(6*609)
(6,610)
(6*61 1 )
(6,61 2)
(6*614)
(6,61 5)
(6*616)
(*»61 7)
(*»613>
(6,620)
(6*621)
DIFFUSION CONSTANTS
145
146
READ (5*508) HtADFR
RFAD (5*500) VK
CO 146 I=>1»NK
PFAO (5*514) NFC(I)» NLC(I>* CDIFFK(I)
N1 = MFC(I)
N2 = NLC(T)
00 14S N=N1*»2
OIFFK(N) = CDIFFK(I) » O^UTQ / CLEN•«»«>«*
C PRINT NETWORK AMI HYDRAULIC PARAMETERS
C»««»*««»*»»«»«»*»*«««»«»»»»»»»»»«l »*««••«***tt*»«KN«»«M*K«•««»*•*»*»KM««*»»•«*«*K
N1 = NJ
N2 a NC
UPITF (6*630)
(N, CLFN(N)* 8(N)* ARE*(N)* CN(N)* OIFFK(N)*
QN?T(N)* R(N), (NJU<«C(N*K)* K = 1,2)» N* QIN(N),
Y(N), (NCHAN(N*I)«
-------
- 282 -
N1 = N1 + 1
WRITE (6*632) (N* CLEN(N), 3j, » K=1*2)* N=N1*N?)
VPIT* (6*622)
no 167 I=1*N*
WRITE (6*62^) WFCUJ* "LC(I)*
147 CONTINUE
"UTRIPNT UPT»KE * REGENE»ATION SATES
READ (5*508) HEADER
P^AD (5j5PO) ^'R
CO 149 T = 1*«»R
°?AD (5^514) HF2(I)j NL2(I>» AHUPPCDi PHUPP* (DEC*
H? = »»L3(I)
00 152 J=N1,H2
DO 150
OEC*YCJ*K> = DECAlfKtl.lO
150 CONTTVUE
152 COMTIHUF
154 CONTINUF
HH
PRINT JUNCTION RATES AND COEFFICIENTS
n
WRIT? (6*624)
^0 155 I»1jNO
WRITE (6*625) NF1
CONTINUE
WRIT? (6*626)
PO 1*4 I»1»NP
WRITE (6*627) MF2(I)» NL2(I)* AHUPP(I), PHUP(I),
» PEGEPP(I)* REBOOO(I)
156 CONTINUE
WRITE (6*628)
00 157
-------
- 283 -
WRITE C6»6?°> NF3(I), «L5(I)» ("EO YKC f*K) » K=1*NU1CON)
1C7 CONTINUE
WRIT? (6»637)
GO TO
RfAO c5*508) HEADER
DO 1T4 I=i1,NU»STC
RE*D (5.516) JRC«
-------
- 284 -
WRITE (6*640) j, QINWQ» ccoMrvcj»io» CWLOADUJK). K=I»NUHCOM>
178 CONTTNUE
C»*x »»*»***» »»>•»»* *><<»i>**><*»*» VA<>IA9LE INPUTS *535) "EAQFR
V°ITC (5*642)
"0 1*** I=1*NV»STV
REAO (5»500) J"VV(I)* STNCfl)
J = JRVV(I)
NH'M = NTNCCD
KCYC(I) = 0
KIVCCI) = 1
"0 1*1, N=1iN«IN
INCDUp(I» N> ^ FLO(I»N)> (CON(K*TN)» VWLOfDCK)/ K=ljNUHCON)
50 TO 1°4
1B2 yRITE (6*648) fir INCDURU*1*)* CLO(I*N)*
* (CONCK* I »N)» VWLOID(K)* K=1jNU«COM)
18t COHTI««UE
1«6 CONTINUF
183 CONTINUE
C»*»»»)«)(»»*tnt«*««»»«*»»**** VARIABLE ?ANK INPUTS »**»»»»»)(»»)«»»)»)»»)»»»»»»)»»)»»
IF (MTAJIK.EO.n) GO TO 196
READ (5*506) HEADER
READ (5*506) (SLINE(.J). J=1.NJ)
VPITF(6*650)
00 1°4 I=1*N°ANK
WRITE (6»6C3)
REAP (5*500) JRBLKI)* JRBL2
READ <5»so4) BFLOH* CBCONd,ic>. K=I*NUMCON)
J1 = JR5L1 (I)
J2 = JRCL2(I)
no 192 J=J1*J2
TBFLOUtl.J) = 8FLOV » SLIME(J)
10 1°0 K=1»NUNCOW
VBLOADCK) = -T?CLOV(I*J) » DCOW(I*K) « 5.3O4
100 CONTTHUE
CwmnnnnHmmmnni****1****** «"?ITE SANK IHPUT TABLE »»»»»»*»»«»»»»»***»»»***»*
«RITE (^)»652> J* SLIME(J>* TBFLOUU*J>. ICYCKD* TCYC2(I).
» (BCON(I*K)» V9LOAO(K>* K
1°2 CONTINUE
194 CONTINUE
196 CONTTNUE
-------
- 285 -
i »**«*«*»**
C UPPFR BOUNDARY CONDITIONS
PFAO (5,508) "EADFR
VFITF (6,654)
I = NVASTV + 1
JPVW(I) = 111
REAO (5,500) WINC(I)
NN a NINC(I)
KCYC(T) - 0
KINC(I) = 1
TO 200 N=1,N«
READ (5,516) INCOUP( I ,*), FLO(I,N)» (CON(KM,N), K=1,NUMCON)
"0 19* K»1,NUMCON
VWLOADCK) = -FLOCI»M> » CON(KjT,«) * 5.394
196 CONTINUE
C»»» »**»»«<«)»»»i»»«*»tt*»K*«*«l
SEAWARD BOUNDARY CONDITIONS
u
PCAC (5,508) HEADER
PF<0 (5,500) (SEACON(K), K-1,NUMCON)
CO 214 K=1,NU"CON
IF (SEACON(K).PQ.D READ C5,506)
IF CSEACON<|O.?Q.2) REAP (5,506) (CIN(K,I),
IF GO TO 214
"0 212 I-2,NSPEC
CIN(K,I) » CIM
-------
- 286 -
TO 216 1=1«N«PEC
WRITE (6*6*4) If (CIN(KjI)* K=1,NUM'*ON>
?16 CONTINUE
>»MK**N»»lt«
INITIALIZE VOLUMES AN9 MASSES
>*K**KKftK**lt)ttt*ttil*VIINKtti
c
C**»»»**«»x*«»KKNKKit CALCULATF MEAN JUNCTION VOLUMES »«*«»»»»««iui» »»«»«*«*»»
PO 222 J=1,NJ
AVOLCJ) = 0.
«ASU1 = f.
VOLSU* = 0.
°0 21* K=1*5
IF GO TO ?20
N = NCH»N(J*K>
S»BE» = CLENlN) » ECN)
SASUM = SASUM + SAPEA
VOLSUH = VOLSUM + SARE< * RfM)
?18 CONTINUE
220 AV?" = VOLSUW / SASU"
AVOL(J) * ASUR(J) » AVf^
??2 CONTINUE
C**«*»»»»«*»» COPRECT VOLUMES FOR INITIAL STARTING CONDITIONS
224 PfAC (3) ICYCTF. (YNEW(J)< J
IF OCYCTF.GE.HTPCYO GO TO 226
REID O) (0(N)» V(M-)* I«»1*NC)
60 TO 224
226 00 223 N«1,NC
NL = NJUNC(V,1)
NH = NJUNC(N>2)
RtNJ = RCN) + trNEW(NH) - Y{NH> + YN£«CNL> - YCND) » .3
238 CONTINUE
TO 2^0 4=1 >NJ
VOL(J) = AVOL(J) + ASUP(J) « (YKEUfJ) - Y(J»
Y(J) » Y^r«cJ)
250 CONTINUE
C**««»«»»»»*«*«ft*»»M«ttN**« CALCULATE INITIAL MASS »» »»»»»«»«»*«««* ««•»»«»»»«
00 234 K»1*NUMCON
CO ?32 J=1*NJ
C»ASS(J»K> » CCJjK) » VOLCJ>
2?2 CONTINUE
274 CONTTNUE
C»*«»KK««KI> COHPUTE INFLOW/OUTFLOW VOLUMES A»n UASTEVATER MASSES
00 240 J=1*NJ
VOLHIN(J) = CINHOCU) » "ELTO
?0 218 K=1*NUMCOW
CULOAOrjfK) = CWLOAO(JjK) * DELTQ / 5.394
?38 CONTINUE
240 CONTINUE
JJ - "WASTV + 1
TO 244 I*1jJJ
NNN = VTNC
-------
- 287 -
00 242
FLOU,»O a FLOCIjN) * OFLTQ
242 CONTINUE
244 CONTT»'UE
IF 0'?AN*.EO.rO GO TO 250
TO 2A * DELTO
?46 CONTINUE
246 CONTTYUE
2*0 CONTINUE
l»»K***»Mtt»Mt«»»t *»»»»*»** RfAO SYSTEM CONDITIONS »*»*»*»»*)«»»)i»)»«)» *»»»*)<«»)»»
READ O> (PtN)* Vt«J>» N=1,NC>
IF (ICYCTF.GE.NTENP) 60 TO 252
P^AO (3) ICYCTF* (YMPW(J)» J
RO TO 254
252 PT^IMD 3
REAri (^) ICYCTF» (YNEUCJ)» J«1
254 COWTINUF
C
CMK**«*Kft»*»K»«»»«»*»«»««*«» invECTIQN * "IFFUSIOM » »»*i«*»<()H«»««i*i»«* »«*»««((«**
C ***tt*»««*ttll*M*»K*NXtt*ftft»llft*
CALL HIXER CNI/)
C «»»**M»*»»»«»*K*«»«*«K*«*M»
C»»»»**it*»»*»«»)(»»)»«in»»«»»in» 0CCAY -I- MASS TRANSFER *»» »•*»»»»»»»»»»«»»»»»»»«»»
C »»»»»»»»»»»»»»»)»»)•*»)«*»*»»»
00 302 J*2*NJ
DO 300 K = 1*NUHCO»I
GO TO (26t,266»2^fij270j280/232>, K
C»»»»i»*i«in»»» »»*»«»»« »»*»»»»)««»* CONSTITUENT 1 »»)»»)n»»»»)»*i(»»«»»»i«i» »»»»»»)«««»
264 IF (KPEAC.EQ.2) 50 TO 300
XHA5SN » C(J*1) » WOL(J) * ODECAY(J,1)
XM««H3 « 4,57 « XK»?SN
XH*SSU - C(J*1> » VOL(J) « OAHUP(J)
CM»?S(J»D = CHASS(J«1) - XHASSN
60 TO ^00
C««««*««i«»**»)»**»»»»»»»i»»»»»»»» CONSTITUENT 2 »*»**»*«»»«»*»****«»»«««»»*»«»
266 IF (K"E*C.EQ.2) CO TO 300
Y1ASSU « CCJ>2> « VOL(J> » ODEC»Y(J,2)
> + XMASSN
-------
- 288 -
GO T0 '00
C»*K»* *t»i»*»*»nit**»»«)n«»mnt »»**»» CONSTITUFNT * »*»»» »»»«»)t»)(i«» »»»» »»»*»»mn»»
268 IF (KPEAC.E0.1) SO TO 30"
ZMASSO = tOECA*(Jj5> » CCJ*^) » CCJ/3) « VOL(J))/
» (CDEC»v) + 1 )
ZMASSU = CCJ»3) * VOL(J) * OPHUP(J)
CM»SSU»3) = CHASS - 7MASSO
GO TO
C»**»««**«*»»**«»M«iiH*ii*«tt«»it*» CONSTITUENT & »*»»»»«»»»»»»»»»»«»»)«»»»»» ***»
270 IF CK»EAC.EQ.4) GO TO 300
P**SSX = C(J»A) » VOL = OH»SSD(J) * DMASSX » PFPCD
RM*?SN » OMJSSDCJ) » NITCHL « ORECENCJ)
RM«SSP = DM«SSD(J> » PHOCHL « O^EGEOCJ)
ROSSC = OHISSO(J) » CABCHL » ORF30'«(a)
01A?SD(J) = DMSSDCJ) - RMISSN - R«»SSP - RMASSC
GO TO (772*274*276). K'rAC
C »»** »»»*»*«»»«»» NIT70CFN UPTAKE ONLY >»««*»«*)•«»*»»»«»»
272 HCHLON = (XMASSU + YHASSU) * CHLNIT
C"1ASS(Jj4> = CMASS(J*4> * HCHLON - OMASSX
CMAfiSCJ*!) = CM/>SSCJ»1) * "?HASSK - XMASSU
CMASS + MCHLOP - OMASSX
CM»SSCJ»3) - CMASS(J»3) + RHASSP - ZHASSU
GO TO '00
C »»*»*»»»»»»»» NITROGEN S PHOSPHORUS UPTAKE «*»«»«*»««•
276 1CWLON = CTHASSU + YMASSU) » CHLNIT
HChlOP = ZMASSU * CHLPHO
IF (MCHLOM.LE.MCHLOP) GO TO 27*
C «**«x««»»«»**-**«*«x PHOSPHQPUS LIMITS »»»*«»*«(•»<•»*»»«
CCASS + HCHLOP - DMASSX
RHASSP - ZMASSU
8MISSN
» - XMASSU » (MCHLOP/MCMLON)
C*ASS = CHASS(J*?> - YMASSU * CHCHLOP/HCHLON >
TP CICYC.LT.MUTCYC) ^0 TO 300
NPRL * 1
GO TO 300
C *«*ft**«»**««N»M*«»*« NITROGEN LIMITS *****************
778 r-«»sS(J*4) - CHASSCJ.A) * MCHLON - 01ASST
C«ASS(J»1) = C«ASStJ»1) * 8H»SSN - X1ASSU
C"A-SS(J*3} m CMASS(J»3> * RMASSP
» - 7WASSU » (MCHLOH/MCMLOP)
r«»*SSCJj?) - CMASS(J»2) - YMASSU
"• (ICYC.LT.NUTCYO 50 TO 300
NNRL(J> - NNRL(J) + 1
CO TO '(10
Cn**«Nii«*itN*«*itii**«*»M«»*)t*»**» CONSTTTUENT 5
380 XHBOO - C(Ji5) « VOL(J) » ODFCAY(JjS)
C1ASS(J»5) = CMASSCJ.5) - XMPOD + RMASSC
«0 TO 300
-------
- 289 -
C»«*****tt«x**»NX«K K»»*»*«K**KK« CONSTITUENT 6 »»»* *x* »*»*»*»**»*** *****»***»
r
C »»»*»»»*»* RcSPI<"TiOV * « * * * »*»* *
282 P^SPH = VOL(J) * RESP(J) * DFLTQ1 » C(J»4)
C »»»»**»* PHOTOSYNTHESIS ***«»«*««
IF (CTIME.GT.TSRISE.AND.CTIHE.LE.TSSFT) 90 TO 284
GO TO 298
2% tvOL = ASUR(J) * PEPTHP(J)
IF (XVOL.GT.VOLC J>) "50 TO 2P*
PHOTON = XVOL * PHOTOCJ) * CCJj>4> * DELT31
60 TO 29Q
?«6 PHOTO" = VOLC'J) » PHOTOCJ) » C(J»4) » OELTQ1
CO TO 290
288 PMOTO" = ^.
C »***«*** °ENTHIC DEMAND inm»»«»«»
2=0 ?ENT«* = ASU"(J> * BFNTHCJ) * 3.2«166677 « DTD
IF ( IPEOXK.EQ.4) GO TO Z^"
C «•*««>»**»
1L»P6E = NCHANC J^1 )
DO '9Z i*=2»5
Tr(NCHAN(JiM).EQtO> GO TO 294
rA « ACS(0»
ir(Q».LT.Q3)
792
294
2<36 CONTINUE
"FOXK = A » A5S(VCN))»«« » R(N)«»X
REOXK = 1.0 - EXPC-REOXK * DTD)
798 CONTINUE
RCHASS = VOL(J) * (CS»T - C(J*6» *
C«ASS(Jj6) = CMASS(J*6> + PHOTOM - SFNTHM - "ESP*
* ' + RCMASS - TMBOD - XMNH3
700 CONTINUE
302 CONTT"»UE
C»«»»«»*i««*i«*»*»-»« IHK*** * AD" CONSTANT HASTE LOADS »***>«ii**KitftitHit «<«*»«»*«*x
If (NVISTC.EO.O) CO TO 312
"0 312 J-2»NJ
IF (VOL"IH(J>X
304
306 CONTINUE
60 TO 312
308 "0 310 K«1,NUHCO«
Cf»?SCJ»lO * CHASSCJ»K> - rU,*) * VOLQIM(J)
?10 CONTINUE
31Z CONTINUE
C«KV»»«»K»*»*»» APD VARIABLE WASTE AND UPPER BOUNOART LOADS «**)!«»»»)()(«»»»»»
jj m MKASTV + 1
00 31" I»1»JJ
J - JPVVCI)
N = KINCCI)
KCYCCI) m KCYC(I) * 1
IF (KC^CfD.LE.INCCURd.H)) 60 TO 314
KCYC(I) » 1
-------
- 290 -
KINCCI) = KIMC(I) + 1
N » KINC(I)
IF (N.LF.NINC(I)) SO TO 314
KINTCI ) = 1
N = KI*T(I>
iQ 316 Ksl.^U^CO"
CM*SS(J*K) = C1*SSCJ»K> - FLO(IjN) * CON
716 CONTINUE
318 CONTINUE
C»*»*»*)nn»»»»»im««»»i»»»»» ADO VAPIABL5 BANK LOADS *«***inn«**»*»***in»«»»»»*ini
!F CNPANK.EQ.O) GO TO 326
00 3?4 I=1»N°»NK
IF CICYC.LT.ICYCUJ>.OR.ICVC.6T.ICVC2 NT'S = 0
P0 3?? K=1»NUMCOM
CC1»K)= CI"CK»»TAG*1)
3?8 CONTINUE
"0 3*2 J=?»NJ
VOL - Y(J»
00 330 K=1»NU«CON
C(J*K) = C»ASS(JfK> / VOL(J)
??0 CONTINUE
3?2 CONTINUE
HL = NJUNC(N»1)
MH » NJUNC(N»2>
R{V) > R(N> * (YNEWCNH) - Y(NH) + YNEUCNL) - Y(NL)> » .^
?1S4 CONTINUE
C»**»*»«»*»»»»»«»»tii«»t» PREVENT NEGATIVE CONCENTRATIONS «»»»»*«»»»«»»»»«»«»««
10 338 J«-1jNJ
YtJ) * YNEW(J)
"0 3?* K=1jNUNCON
IF CC(JjK).GE.P*CKC(K)) GO TO 336
IF (KDCOP.EO.D URITE C6.666) J* ICYC^K* C(J»K)
CCJiK) » BACKC(K)
CM*«S(J*K> a C(J»K) » VOL(J)
376 CONTTKUF
3'3 CONTINUE
C»»N**»*M**»* CH^CK CONCENTRATIONS AGAINST SPECIFIED LIMITS *«*«»»**»»*•***»
00 342 J=1,NJ
00 340 K-1tNl)NCON
-------
- 291 -
IF (C(J,K>.LE.CLIM1TCK» SO TO 340
WRITE (6»66(?> K» CLIHIKK). Jj ICYC
WRITE (6*670) <(C(L,MJ. -1 = 1 , NU^CON ) » L=1»MJ>
STOP
?40 CO«TINU'-
342 CONTINUE
C»****»«*«**»»*»»*»»* COMPUTE RANGES OF CONSTITUENT 6 »«*« »»»»»»»* ««*»»*»«»»
fr fICYC.LT.WDOCYC) C-0 TO 350
TC (MUHCO>'.LT.6) GO TO 350
00 748 J=1»NJ
Ic (C(J,6).LT.4> DOLT4(J) = OOLT4CJ) * 1
IF crcj,O.GT.5> DOGTS(J) = DOGT5U) + 1
Ic (rcJj^i.GE.t.ANDtCC J»6).LE.S) D04T05(J) = 004T05(J) + 1
IF C'(Jj6).GT.DO>'lN( J» GO TO 344
00"IN(J) = C(J»6)
HIMCYC(J) - ICYC
GO TO 346
?44 IF (C(J»«).LT.DOMIX( J) ) SO TO 346
OOH»X(J) = C(J»6>
NAXCYC(J) = ICYC
DOAVSCJ) * C(J>6)
348 CO^TINU^
150 CONTINUE
C*»»*)»*«»>n«)( »»»»* <•*»•»»»»*»« RPAO OBSFPVED DATA x*****»******»**>ia**t*itx»»»»*
IF CNOATA.EQ.O) GO TO 354
FF (»OA.GT.NOBDA.T) 60 TO 354
Tc CICYC.NE.NOBCYCCNOA)) GO TO 3*4
READ (5,508) HEADER
DO 352 K=1»NDATA
°EAO C5*5tO) CC09"ATA(I^J*K)j I=1»3)» J=1»6)» RHfATACK)
3C2 CONTINUr
N0> » ^^H + 1
354 rONTI«IUE
C»»««*»»**»» »»**«*!»» STQRF CONCENTRATIONS FOR TIME PLOTS tt**«m»»)n»»f»»«*»«»»»
IF (NTP,«-p.Q) GO TO 358
CO 356 '=1»NTP
J = JUMCTPtl)
»?ITF C11) ICYC» (C(J>K>» K=>1»hUHrON)
356 CQNTINUF
358 CONTINUE
CK***«KN»«IM «»»»»*»***»»«)• CHFCK FOR SUHRY1 OUTPUT
IF (NS1.GT.NSUN1) GO TO 360
IF (ICYC.LT.IPRTKNSD) 50 TO 360
IP1 - TPRT1CNS1)
LP1 = LPRTKNS1)
IPL1 = IPLT1CNS1)
CALL SU«APY1>
1^ CICYC.FQ.LPRTUNSD) NS1 = MS1 +1
360 CONTINUE
Cinn»*«»«»»*»»*»)i»»«»»»*** CHFCK FOfi SUHRY? OUTPUT
-------
- 292 -
TF (NS2.GT.N?UM2> GO TO '62
TC (ICYC,LT.IPRT?(NS2)) GO TO 362
IP? = IPRT^(NS2)
LP? = LPRT?(NS2>
IPL' = !PLT?(NS2>
ClLL SUM/»PY(IP2>LP2jIPL2»2)
Ir CICYC.FO,LPRT2.OR.TCtC.6T.»LPr(MT»3L)> GO TO 3
IT»9 = TT*B + 1
CM.L S«TABL(IT»B»MT»BL>
IF CICVC.ME.NLPCi>
IF C^THnL.^Q.NSUTAg) GO TO 364
HT»?L * HT*«L + 1
CONTINUE
CONTTNUE
C»»»»«»)»»»»«*i««»*«*in«**»»» E'tlT *» IM OUALITY LOOP
IF (VUMCO".LT.6) GO TO 3""J
C» »* »»»»**»» »»**<•***»)**)»)«*)« PRINT 0.0. SUMMARY KK«*KttK««««ftx«««»«* «*«««*«•««
(6.67?) ViQCYC
10 36P J*1>NJ
00»VG
WRITE (6f6T4) J* 00"IM(J)* MINCYC(J)* OOM*X(J)j MAXCYC(J)*
i» 50AVr-* ">04T05(J>* DORT5(J)
368 CONTINUE
370 CONTINUE
IF (KBEAC.NE.T) GO TO 374
C»«KX«*»N««»*»«»»»»N PRINT NUTRIENT LIMITATION SUMMARY »m«»)«««»«»««»«»»»««)ni
WPIT^ Cfr»676) NUTCYC
L="J/3
DO '72 J=T»L
JK=J*(2»»'J/3)
WPITC (6»678> J» NNRL(J)» NPPL(J). JJ»
* JK; NNRL(JK)j
372 CONTINUE
I=JK+1
DO ?73 J=I*»'J
Wi»IT? C6*679) Jj «»«IRLCJ)»
373 COWTINUF
374 CONTINUE
WPITP (6*660) ICYC* ICYCTF
IF (NTP.5T.O) CALL TPLOT
500 FORMAT <16IS>
-------
- 293 -
50?
504
506
509
510
512
514
51f
600
603
63?
6U4
606
607
609
610
611
61?
6U
615
616
617
61 S
620
621
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FOPM»T
(9110)
(8MO.O)
(16F5.0)
C20«4>
(1PF4.0jF%0>
C7c10.0»2Ai>
FORM»T C1H1/1X,2QA4,16XJ'?NVIPONMFNTAL PROTECTION A6E«IC Y ' j/ 1 X*2Q A4
»*21X*' DYNAMIC ESTUARY MO^FL ' » /1 X» ?OA'./1 X* 20A4 J.///3X ,24 < 1 H» >, ' HY
*DPAULIC CONT"OL *>ATA « > 24< 1 H* ) »//, 3X> ' FIRST CYCLE ON LAST CYC
»LE ON PE^IN READING T»PE HYn°AULIC ' i/tSXt 'HYDRA ULIC TAPE
» MrnR»ULIC TAPC *T CYClc TT««E STEP ( SEC. ) ' ,/>*>*>
*'(NST«RT)'»nvJ'(NSTOP)'»'3X»' (HYDCYC) ' j14Xj ' (TELT > • *//8X, U*14X 1 1
H*16Xjc6.?»///»3X»45C1M*>»» QUALITY CONTROL DATA >i45(1
^13», i »UH3C7X* ' 0.0. SUHMAR
»Y',10X,'0'J»I ?TY' j11Xj'OU*L 1TY STCPS ' >/ J 1 1 T » ' QUAL ITY C*CL?S
»APY ?FGItS AT CYCLE 3CCINS AT CYCLP TIME STEP
fNarYC)l*15X*l(NUTCYC)lf15Xfl(NDOCYC)
PER
»17X*'(
• X, 'STARTING TIME TIME OF TINE OF 0.0
»CONSTTTUCMTS TCMPFRATUPE FOP THIS RUN
* AT 'j^.a*1 C1 »/*5X» ' CNUM
»'(TS°TSE) (TSSFT)'»9X.' (CSAT)
»f X» "»UM°t:fi OF«»21
SA TURAT ION ' , /,3X • '
SUNRISE SUNSET
' »9X»' (STIME)',7X*
^11 XjF5.2i°Xj F5
COPMAT (1H , 3X. 'CONSTITUENT CONSTITUENT ^ACKCROUND
* TE"PERATURCI j/*'"X,'SUM0PR *AH? CONCENTRATION
»COPPFCTION FACTOP'»/»22Xj« CC«AME>'*6Xt '("ACKCV » 1 2X , « ( THETA J ' */ )
FORMAT (1H iBXjl2»10X*2A4/9X*F6.3»13X»F5.3 )
FOPJ-AT (1HO>^4X*'PERCFNT OF DECAYED ALGAE' >f >*f , 'CHLO"OPHrLL/vlT«0
»GM CHLOROPHYLL/PHOSPHOROUS CHLOPOPHrLL/CARBON WHICH IS 81
»O-DE<:RAOABLE'»/>%XJ «(CHLNIT) • Ji7x^' CCHLPHO) '»16X* 'CCHLCAR)' ^isxj »c
FORMAT
»USIM?
FORMAT
»USIN<;
FORMAT
FORMAT
"AND IS
FOPMAT
«EAC =
FORMAT
XKPEAC
FORMAT
(1H , 3X.'THF REOXY6ENATION CONSTANT FOR 0.0. IS COMPUTED
TH? 0-CONNOP-D09BINS EQUATION : K2 = 12.9 * V»».5 / H««1.5«>
(1H . SX^'THF REOTYGFNATION CONSTANT FOR 0,0. IS COMPUTED
TH? CHURCHILL EQUATION : K? « 11.6 » V»».97 / Hmt1 .67 ' )
(1H * 3X»'THE REQVYGENATTON CONSTANT FOR P.O. IS COMPUTED
THE USCS E3UATION « KZ = 7.57 » V / H»»1.33 ' )
(1H * 3X»'THF REO*YGEMATION CONSTANT CQR 0.0. IS CONSTANT
EQUAL TO '*F7.3 >
(1« i 3X»'ONLY NITRO'IPH UPTAKE BY ALCAE IS CONSIPEREO (KR
1) ' )
(1" * 3X»'ONLY PHOSPHOROUS UPTAKE BY ALGAE IS CONSIDERED (
= 2J ' >
OH , 3X»'NITROGEN AND PHOSPHOROUS UPTAKC BY ALGAE IS CONS
(1H t
» FOU'L TO THF
FORMAT (in ,
» COMPUTE" USIVG THE 1/2 POINT
FORMAT (1H , 3X»'CONSTITUENT
» rOMPUTED USING THE 1/3 POINT
FORMAT (14 > 3X»'CONSTITUENT
« COrPUTEO USI««6 THE 1/4 POI**T
FORMAT (1H > 3X»'CONSTITU£HT
»DVECTEO
)
AHVECTED
(«IX=2)« >
IN AOVECTE3
WATER APE
WATER A"?
WATPR A°=
SXi'CONSTlTUENT CQvrENTRAT IONS TN
UPSTHEA» CONCENTRATION f )
FORMAT (1H , 3X*'DEPLETION CORRECTIONS APE PPINTEO (KOCOP=1)' )
FORMAT (in , sxi'DEPLETION CORRECTIONS NOT PRINTED (Kocop*2)' )
IN AHVECTED WATEP AR?
fMI)f=4)' >
IN AOVECTEO WATER A°P
-------
- 294 -
622 CORMT OH » ////>43X*1 5( 1««) » ' DIFFUSION CONST*"TS 'i15(1H»)»/
»/ ,1*1*1, 'CMANf PL CH4NNF.L rONST*NT (CO ' , / j 4CX i 50( 1H- ) »
*/ )
62? FOFMT (14 , 45X,I4>7X,U,12*,F6.2>
621 FORM»T ("TH1 j///j1X*35(1H»)> ' SUMMARY OF "ISSOLVEQ OXYGEN (CONS
*TITUCMT *) °«TES ' *35(1 H»> j////'8X*' P"OTO£ YNTHES IS RESP
»IRATION PUOTIC DEPTH 3FNTHTC DELANO' ,/ »'2X» ' FRO* TO
* (PMOT) iflZXf^RES)1*?*! "c DEPTH) • *1 OX» • C3ENT ) i */22»* ' JU"C
» JUNC 'j ?**' ("G/HR/US CHLORO)' jKX*' (FEET)',/ *1 c* *90( 1H-) , / )
625 FORMAT < /23X • T 3,?X, 13 » 7X »F7. Sj 1 1 X»F6. In 1 2X *F 5,2> 1 OX jF6 .3)
626 FORMAT C1H1 j /// .1 X» 35C1H» )/ ' SUMMARY OF NUTRIFNT UPTAKE AND 1?
»GEN£P/iTION RATES ' » ic< 1 H« ) *////1(Jy » • CROH TO CONST 1
» UPTAKE CONST 1 UPTAKF CO"ST 1 RECFN CONST 3 SFGEN CO
»NST 5 R65EN' 1/J1QX*' JUHC JU»»C ( MUPO) « , 11 Xj • (PHUPP)
» (REGPNN)',9X* '(RF'iEPP) '*9y* '(REBODD) ' */ j 5X* 1 10C1 H-) ^ /)
627 FOF-AT (/1QX»l3,7x,l3»10X*F5.3*nT*F5.3*1Xj3(12X»«r5.''))
628 FORM'T (1H1,///j1X*40(1H«)f ' SUMMARY OF CONSTITUENT DECAY 8A TF
*S '»40(1H«),////26X, ' CON«T 1 CONST 2 <~ONST 2 »
» CONST 4 CONST f CONST 6' »/ J 10X* • «-f»o« TO
* (CECAYK 1> tOFCAYK 2> CDECAYK 71 COECAYK 4) CDECAYK 5
*) CDECAYK6)',/.10X»'JUMC' ,6Xj 'JUT (PER "/Y) (PEP OAY)
* (PEP DA") (PER 1AY) (PE7 DAT) (PPR 1AY)'*/
62C FORMAT C/luX jl3,"'X*l3*6(9y,F5.3»
630 FOPH»T (1M1,// ,5*.A5(1H»>j' SU«HAP» OF HY09AULIC INPUTS
«1H»)j///»15X j'CROSS-SECT TONAL ARCA AND HYDRAULIC "AOIUS OF
»? AM-» JUMCTIO^' HCAOS ARE AT 1PAN TIO^'i///
» TAT* '»*2( 1H»>,5X»15(1H»), • JUNCTION PITA
«N LENGTH WInTH CS-*«EA HANKING 01 FF NET FLOW HYD. »AD. JUN
»C. AT ENHS I JUNC INFLOW HEAD ChAMNELS INTO JUNCTION ' i/> 1 X»
jF7.1
»5IS) )
632 FORMAT ClX,I3,3X»e'6.o,2X.«:'6.0.2X*F7.0»2X*PS.3*2X*r5.2^2XjF3.2j3X t
«F5.1»6X»I3»4y,I3j4X» ' I ' )
636 FORMAT ( 4Xjn*4X*?<2r*F4 t2) t 1X*3( ?X*F5.2) /2X»6(-3X»F5 .3>*2X j2(2X* F6
637 FORMAT (10Xj /////*' » CONSTITUE"T 3 UNQfRGOES 2N" O'JOER DECAY" )
63? FOF*«T(1HT//10X,TO(1H»>j5X>'SUMMAc-Y OF COMST'MT WASTCWATFR LOADS'
«»5Xj70(iH«)////,22X*
»'JUNC. TOTAL FLOU CONCi LOAD CONC. LOAD CONC.
» L3Ar> CONC. LOAD CONC, LOAD CONC. LOAD'j/'12
• X/UC^S) (MG/L) (LB/DAY) (KG/L) (LB/DAY) (HC/L) (L3/OAY)
» (UC/L) (LB/DAY) (NG/L) (LB/DAY) (H6/L) (LB/OAY) ' j/»1 X* 130( 1H
»-»
640 FORMAT C/2X*I3*6X,F7<1*2X»6C3XfF5.1<1»jF9.0))
642 FOPMAT(1H1//10X,30<1H»>»5Xj'SUMH««»Y OF »»RIA3LE WASTEWATEP LOADS'*
»5X»20(1H»>//// 17Xj 'INCREMENT TONSTITUEHT 1 CONSTITUE
»NT 2 CONSTITUENT 3 CONSTITUENT 4 CONSTITUENT 5 CONSTITUENT
»6'J/»1X,' JUHC. DTSCH. NO. LENGTH FLOW CONC. LOAD CONC.
» LOAD COVC. LOAD CONC* LOAD CONC. LOAD CONC.
« L0«'?l»/*20»» '(CYCLES) (CFS) (MG/L> (LB/DAY) (16/L) (LB/DAY) ( N.6
»/L) (L3/"AY) (U6/L) fLB/PAY) (M6/L) CLB/OAY) (HG/L) (LB/DAY)')
644 FORMAT (/ix> i?OdH-)/>
6*6 FORMAT c/1X*T3»5XjI2»5X»I2j3X,I4»1X*FB.1*1X*6(2X»PS.1»1X»F6.0))
64
-------
- 295 -
»X.«JU*C. LINF FLOW STA°T STOP CO»C. LOAD CONC. LOAD
* CO«T. LOAT CONC. LOAD CONC. LOAD CONC. LOAD'
' ("I) (CFS)' j14X,» (NG/U) (LB/OAY) (MC/LJ (L8/"AY) (T-/L)
Y) CUG/L) (LB/nA.Y> ("G/L> (L3/CAY) (MG/L) (LB/OAY)')
r0RH»T (1Xt I3,2X,F4.1, 1 X »F&.0 , 2(2 X, 14 > ,6(3 X> F5. 1 , 1 Xj F8 .0 >>
FORMAT (1* j/1X,130(1H->,/>
654 FOPMAT C'tM//5X,30(1H»>,5X, 'SUMMARY Oc UPPEh BOUNDARY CO«"MTIONS
*'NO» LEVGT^ FLOW CONf. LO * 0
* CONr. LO'O CONC. LOAD COMC. LOAH CONC. LO
*AP CONC. LOAO»//>6Xj « (CYCLHS) (CCS) (HG/L) (LB/DAY) (M
*6/L) (L?/DA»> (MG/L) (LB/3AY) (UG/L) (UB/DAV) (MG/l) CLB/OA
*Y) C««G/L) fLB/OAY) '*//>
65 f FORH»TC/2Xjl3,3XjI4*3X*F6.Qj3(3X»F5.?»3X»F7.Q)*2X»F6.2j3XjF7.0j2<3
65° FORH»T (1H1 j///»10X»35<1H*)j ' SUMMARY OF INITIAL CONCENTRATION
»S ' »^S(1 V»),/// ,23X»'FROH TO rONST 1 CONST 2
* CC^ST ' CONST 4 CO"ST •? CONST 6'*/ *23X*'JUNC JU
(*»C/L) ("S/D (US/L) ("G/D
»15X*100<1H->>
660 FORMAT C/'3X t !3,6*jI3j6<7X»F5.Z»
66? FORMAT (1M1///1X»35(1H*)»' TIDAL CYCLE VARIATION OF SEAWARD BOUN
»r>AR^ CONDITIONS li 30(1 H»)////45T, • SPEC If IEO CONCENTPATIONS AT JU
»NCTION V//1 iVj "INTERVAL CONSTITUF^T 1 CONSTITUENT 2 CONS
*TITuFNT 3 roNSTITUENT 4 CONSTITUENT 5 CCCUSTTTUENT a'^/>»6
*1 1X*' (UC/L) <*11X»
664 FORMT ( 14X, I? j10XjF5.2*S(1 2X»F5.2) )
666 FORHAT(3"U DEPLETION CORRECTION 1»DE *T JUNCTION 13, 7H CYCLE 14.
« ?1H rOR CONSTITUENT NO. I1*1?H» CONC. HAS F10.2)
668 FORMAT(34MQCONCENTRATION OF CONSTITUENT "0. 11* 8H EXCFEDS*F7.1,
* 13H IN JUNCTTON I3*14H DURIN6 C*CLE I5j25H. EXECUTION TERMINATE
*0.)
670 FOPMATC1M d€14.8)
672 FORMAT ClH1///20X,20<1H*>»3Xj'SU''MARY OF DISSOLVED OXYGEN BEYOND C
»YCLE ' *I4,3X»'0(1M«)///10X/' JUNCTION MINIMU»" CONC. MA
«XI«UM CONC. AVERAGE CONC. NO. CYCLES NO. CYCLES 10
». CYCLES'»/»2?X, 'CMC/I.) C YCLE ' »6X> ' (HG/L) CYCLE ' »9X ,• (MG/L )'
*»12X» 'D0<4' >5' »/*1 OX j1 1 2( 1 H-) /)
674 FORMAT ( 12X, I?» 2C«X*F5.2»5X, I4>, 10X,F5.2»3X i 3<1 OX, U> )
676 FOPHAT (TH1///10Xj30(1H»),' SUMMARY OF NUTRIENT LIMITATION BEYON
«P CYCLE l»I4»3Xj'"0(1H»),////*23X/«NO. OF C YCLES' ,27X •' hO. OF CYCLE
»?
-------
- 296 -
SUEROUTIWF rtTXER (MIX)
HTTER
THIS SUBP^UTI^P DETERMINES TUP CONCENTRATION USED IN THE
AOVECTION ANP CTSPEBSIOl EQUATIONS AND THEN COMPUTES THF
"AS* OF FACH CONSTITUENT TR4NSPOPTEC 3ETWEE" JUNCTIONS. THE
USEC TO ?FTER»INC THC CONCENTRATIONS is OFFINED 3Y...
= 1 USP TM? UPSTRF»H CONCENTRATION
a USE TUP 1/? POINT CONCENTIATION
3 USE THF 1/3 POINT CONCENTRATION
4 USF THE 1/4 POINT CONCENTRATION
5 USE TME 2-«At PROPORTIONAL CONCENTRATION
COMMOV /wise/
t
COMMON /C»AN/
COMMON /QU.»L/
OFLTCJ ICYC* »Ct NJ* Npp,
"), STIve
AREAf139)» B(139)» CLEN(139)» CNf139)» DIFFKf139>f
«»JUNC(13<'*2) , Q(1^9)* QNFTC13")* RC139)* VC13°>
DO 700
VOLFLU = O(^) » DELTO
OIFrC = DIFFK(N) * R(N) « ABSC9(N»
ML = NJUNCCNjD
NH * NJUNC(V»2)
00 CO? K=1^'UHCON
CA = C?QO>30Q*&aQi500)> MIX
C»*»«K»K*««»»«»»«N»*»»*K*«» UPSTREAM CONCENTRATION
100 TF t"(N).PE.OJ CONC " CA
Tr tO(N) .1 T.O) CONC » CB
CO TO 600
C»««***ft«»***»»*«»**«**M*n 1/? POINT CONCENTRATION
?OC CONC » (CA * CB> / 2.
CO TO 60P
C»»»»»»»»»»»»»«>»»««»»*»*»» I/"* POINT CONCENTRATION
300 IF (0(N).eE.n> CONC = (2.«CA * C^) / ?.
IF {"(N).LT.OJ CONC = (CA + ?.*C3) / 3.
GO TO 600
C*««»»«««**N»»»IHH»«*«**»»*
4CO IF cO(N).GE.O) CONC
IP (Q(N).LT.O) CONC
CO TO 60f
C»*»»»)nn»»tn«»»i»««»»»)<« 2-WAY
500 CONC » (CA + CB)/2.
**********»***»***»*»***»»*
POINT CONCCNTRATION
(3.»CA + C9) / A.
(CA + 3,»m / A«
• »»*•)(**«••«*«**• M**XK«»X«*
CONCENTRATION
((CA-C9)/2. » V
- CMA?S(NH,K>
A"HASS
602
700
RFTURN
FND
CMASS(NL»K>
CO"TINUF
CM»SSC«U*K) - »OM*SS -
DIHASS
OIMASS
-------
- 297 -
SU°ROUTINC SUGARY
SU3ROUTINF SU«*pY{IP,LP*PLT*MUH)
DIME'* CAVG2 (1 "<**6) » CIA X1 ( 1 33 *6 ) , CMA X? ( 1 32 *6 ) •
* C"IN1 <133»«)* rMiN2(1T3,6>
COMMON /1ISC/ rriHE* OcLTQj ICVC* 1C* MJ, NPPj NUHrON*
COMMON /SUMSU*1/ rCQX»(49)J F GOXO (3»6»45) » HOU9S1 » HOUPS2>
« KOAY$1> ICWS2
COMMON /OU»L/ C(133j6)* C1 />SS{ 1 T3 > *)
GO TO (110,1?!), NUM
c* »»»»»»«»*»*)»*»»*><»*»»*»* » INITIALIZF SU^MA^Y 1 »»«»»»»)»»*»»»»»»«<»«»»»»»»)»»
100 IF CI~YC.CT.IP) CO TO 10*
CO 1 'dU K=1 »NUM'~ON
po n? j=i»Nj
J.K) = CCJ»IO
( J»K> = C( J*
102
RETURN
106
COMPUTE MIN, ^AXj >V6
fO 110 K^ljNUrCOM
CO 108 J=1 >NJ
Ir (CCJ*K).LT.CHINUJ*K»
IF CCCJjIO.GT.CMAXH J»K»
CAVCKJjK) = CAV6UJ,K) * C(J*K)
108 CO»»TINUP
110 CONTINUE
IF (ICYC.NE.IP) UPTURN
DO Hi Ka»1»NUfCO«»
DO 112 J=1 »NJ
C»V61CJjK) = CAVGICJjK) / FLO*T(LP - IP * 1)
112 CO"TIMUF
114 COKTTNUE
C»«»**»«««*»» »»)»»»)»»«»)»»»»» WRIT? SUMMARY TABLE 1 *»)«»»)«(*»«»*)»*»«»»»»»«»«»)(
HOURS1 a "ELTO » FLOAT(JP) / 3600.
HOURS' = "ELTfT » FLOAT(LP) / 3600.
KOAYS1 - KOUP-S1 / 24.
KPdYP? * "OUPS2 / 24.
HOURS1 = HOU*S1 - FLOAT(24 » KDAV«M>
HOURS? = HOUPS2 - FLOATC?* » KDAYS2)
WRITP (6*600) IP. KO»YS1» HOURS1 * LP» KD*YS2» HOUPS2
UPITr (6*602)
00 11f J*1.NJ
WRITE (6*60/)J» (C»"IN1(J»K)» C^AXKJiK)* C*VGUJ.K)* K=1*NUMCO")
1 16 CPNTTNUE
C«*»*«*«Kft*»«»x*«*ft»*» CHFCK *"OR PLOTTING OF SUMMARY 1 »»*«»»«»*»»(•»»««»)«»«).
-------
- 298 -
IF (PLT.Fft.O) 60 TO 123
HPP = 0
CO 1?0 J=1»NJ
IF ( J.GT.43.AND.J. HF.1U. AND. J.WE. 1 29. AND. J.NE . 130) 60 TO 130
NPP = NPP + 1
!F CNPP.GT.09) URITF (
T 11? LPP=1»NUMCON
FS"XO(1»LPP*NPP5
FS1XO(?jLPP»NPP>
FGOXO(T,LPP»NP.P> = CMIN1
FQQ»A
1?2 CONTINUE
PFTUR"
C»*»*»«»»»»* »*»)«»» »«»*»*»*» I''ITIALIZF SUMMARY 2 »»»»»»»»»»»»»*«*» »*»* «»»«»»
124 IF (IrYC.GT.IP) PO TO 130
co 123 K=I .NUHCON
"0 1?* J=1jNJ
CMT»»2(J,K) = C(JjK)
C1»X2(J»K) = CCJjK)
CAVR2CJ.K) = CCJjK)
126 COMTIVUE
128 CO"TINUp
RETURN
170 CONTINUE
C»»« »»»*»«*)•«)«»»)<» *«*«**** COMPUTE Mitt 1AXj 4VG »H* *»»n*in«*xi»>t»nnn«i«»in»»tt««*
00
K=1/NI'NCO"
CO 132 J=1 K) *
COMTIMUF
CONTINUE
IF CKYC.N6.LP) RETURN
DO 13» K=1»NUKCO«*
CO 136 J=1 >HJ
C*VC?(J*K) = C*VC2(J»K)
CONTIHUF
/ FLO*T
HOUPS1 / 24.
HOU?S2 / 24.
HOUPS1 - FLO»T IP' KO*YS1» HOURS1* LP* KOAYS2* HOU9S2
WPITP (6»602)
00 140 J»1*HJ
WRITE (6,60*)J, (CMIN2(J»K)* C*<*X2(J*lO* C»V62(JjK)» K»1«NUNCOM)
143 CONTINUE
-------
- 299 -
C»IHHHM»*»*»»**»»»«»*» CHECK FOR PLOTTING OF SUMM»RY 2 »**«»*»«*«» «****»»««»
IF NPP) = CMAX2
FSOXOC?»LPP»NPP) = CAV;2
FSOXO(?»LPP»NPJ») = C«IN2
142
1*4 CONTINUE
CALL SUMPLTC IP.LP)
146 CONTINUE
c FORH»T STATEMENTS
C»»« »»«*»*»)» »«»»«»»»•*«»)( »»»*»)« »***»«»»«««(()i« ««»»»»»»»»»»)»)(»««*«»*»»)(»)»»»»«»<»»»»
600 FORMAT (im///ioy»45(iH»).' WATER QUALITY SUMMARY '.,45tiH»
*)/ <1>X/'STAfTS AT CYCLE «*14j' (•»!?*' "»YS '»F4.1,' HOURS)', 21 XJ
»'FNDS AT CYCLE 'jI4»' C»I3j' DAYS «»F4.1*' HOURS)'// )
602 FORMAT C1H //TXj'JUNC. CONSTITUENT 1 CONSTITUENT 2 C
*0*STTTUENT 3 CONSTITUENT 4 CONSTITUENT 5 CO
• fSTITUENT 6'»/*8X*«MIN MAX AVP MI" *AX AV«? (•!»' «
»AX AVC «IM MIX AVS MI" MAX AV6 MIV M
»AX AVC'j//f X/110(1H-)/ )
604 FOPM«T (1Xjn»1Xj5(1X*F5.?)»2X»3(1X,F5.2)f2X*3(1X»F5.2)*1Xj3C2XtF5
606 FORHfTCI NUH3E9 OF PLOTTER PTS CXCCEDS ARRAY DIMENSIONS')
RFTURV
END
-------
- 300 -
C»N»XX»X*KKXK«*XX*X»*KX-*«««XKKX»«»*****»XXXXX*»*X»X*X*X«*XX»K«X*»*XXK*»«
C SU*PLT
Cxxx*xKxxxx*«N*»xxxx»»**«*x*Kx»x*K*K*x»«Kx«KXNK*xx*xx*xxx««x»«xx*xvx*K*;t
SUBROUTINE SU1PLT(IP,LP)
N SOTK12), NPT(3). SIDCK51>* SIDE2(6), X(99,3), Y(<59,3)
COMMON /«USC/ fTIMF, OELTO, ICYC, *C, N.J, NPP, NUHCON.
x RMNODFd'3), STI1":-
COMMON /SUMSU"/ CGQXA(49)> FGOXO(3 16>49) > HOU"S1 * HOU<»S2*
» 1CUYS1J K1AYS2
COMHQM /SCALES/ XM»X» XttIN» YMAX» YM»KCC6)* YMIN» YMINC(6)
COMMON /AXES/ ?OTTO*C1?>* SIOEC51)
BOT1/6«4H
DATA SIDF1/21*1H
1 19«1H /
DATA SIOFV1 H1 ,1H2,1 H3,1 H4,1H5J1H5/
X*AX=49.9
Cxx*x»xxxxxxxx»x» SET LA"FLS ON SIDE AND BOTTOM AXES
CO ion 1=1,51
SI"C(I) = SIDEK!)
100 CONTINUE
PC 10? 1=1,12
BOTTOM(I) = BOT1CI)
102 CONTINUE
oo me ii=i»>'UHco*
CK***ft*«»*x»»**tt FILL UP X
CO 134 1=1»MPP
Y ARRAY* UITH DATA TO BF PLOTTED »«»»»»«*»«»»»»
CGOXO<3»II, I)
»»»)(«»»*»««*«tx*»»»i««
yci,?:
F60XA(I>
104 CO"TIHUF
NPT(1) » NPP
NPT(2) = NPP
NPT(3) = NPP
Cxx»xx»«»xxx»«»*xxx SET SIDE LABELS FOR CONSTITUENT NO.
SIDFO4) * SIOE2(II)
Cxxxx»»xxxx»x«»»)t»»x»»»»»xxx» WRITE OUT TITLF »xxxxx»x»x»xxxxx»xxx»x»»xxxxxx
WRITE (22,600)
WRITE (22,602) IP, KDAYS1, HOU"S1, LP* KDAYS2, HOURS2
YMIN - rMINC(II)
YMAX » YMJXrciI)
C»xxxxx»x»*»»»*»xx»xxx«x CALL CURVE TO PRODUCT THE PLOT xxx»x»xxx»»x»xxxxxxx
CALL CUPVE fX,Y,NPT,3,1,0»2.0»1)
106 CONTINUE
CORHAT STATEMFNTS
FORM»T(1H1»34y»«POTO*AC csTUA«Y CENTER CHANHEL - QUALITY SUMMARY')
*02 PQRMATdH ,3 ?X, «SUMH ARY STARTS AT CYCLE'*2I6.' DAYS', F5.1*1 HOURS'
*/T3X»" SU«1ARY ENDS AT CYCLE ' .2 16, ' DAYS', F5.1.' HOURS')
END
-------
- 301 -
SU3ROUTINF
COMMON /MISC/ CTIME, DELTO» ICYCj
NJj NPP, NUMCON*
COMMON /SLACK/ JPRT(150*55)» KSL<20)* KPLOT(?0>* NFPCC20)*
* NLPC(?0>» NOPRTC150). NCONSW(S)* MSWP
COMMON /SMTSVP/ rGSIfA{99>»F6SyO(9O*6)>,IMPOSE»INFPC*INLPC*KSLACK
COMHON /JUNC/ *SUR(133)> AVOL(133)» NCHAN(133*5)* VOL(133)»
x
COMMOV /OUAL/
IF CICYC.RT.O) 60 TO 152
IF (KSLCfO.EQ.O) 60 TO 1 SO
IF (K?L(M).E'1.1) GO TO 100
IF = 65
DO 1" IT=1 »»r:WCYC
1=1 + 1
GOTO C102/104*106*103J110»1 1Z
NOP1T = 6?
JPRTC 1*4) = 61
GO TO 1?2
NOPRT(I) = 3
JP*T(I*1> = 60
JPRT(I»?> = 59
JPRTd**) = 58
SO TO 1?2
NOPRTCIJ = 1
JPRT(I*1 ) = 57
60 TO 122
1 H»1 16*1 18 *120> * II
NOPRTcn = 3
JPRT(I*1)
JPRT(I*3)
60 TO 1*2
NOPRT(I) a 5
JPRT(I»1)
JPRTC !*?>
112
JPRT(I»4)
JPRTC I»5)
GO TO 1?2
NQPRTCI) * 5
JPRTd.1)
JPRTCI*?)
56
55
54
53
5?
51
50
4°
48
47
-------
- 302 -
JP»T(I ,4) = 45
JPRTC I »c) = 44
GO TO T>2
11 4 SOPRTC1) - 3
JPRT( 1,1) = 4"*
JPRTC1,?) = 42
JPRTCU*) = 41
JPRTCI >/> =40
JPRTCI t 5) = 39
JPRTCI ,6) = 33
JPRTCI»7) = 37
JPRTCI, >>) = 26
GO TO 1?2
116 NOPRTCI) = 7
JPRTC!, T) = 35
JPRTCI*') = 31
JPRTC I,') = 3?
JPRTC I ,4) = 32
JPRTCI,11) = 31
JPRTC I»") = 30
JPRTCI, 7) = 2"
GO TO 1*2
118 NOPHTCI) = 24
JPRTCI, 1) = 29
JPRTCI,?) = 27
JPRTCI,') = 26
JPRTCI, A) = 25
JPRTCI ,c) = 24
JPRTC I «*) = 23
JPRTCI, 7) = 22
JP*TCI>») = 21
JPRTC I*c) = 20
JPDTCI,10) = 1«
JP"TCI,T1 ) = 1P
JPRTCI, 12) = 17
JPRTCI, 13) = 16
JP"TCI,14) = 15
JPRTCI, 15) = 14
JP"TCI,16) s130
JPRTCI, 17) »129
JPPTC 1,18) = n
JPRTC 1,19) = 12
JPRTCI, ?0) = 11
JP"TCI»?1) = 10
JPRTCI, *2) * 9
JP9TCI,?3) » S
JPpTCI,*4) = 7
GO TO 172
120 NOPRTCI) = 6
JPRTCI.1) = 6
JPRTCI*?) = "
JPRTtl,') * 4
JPRTCI, 4) * 3
JPRTCI*5) * 2
JPRTCI,") =114
1?2 CONTINUE
1?4 CONTINUE
C»»«*»»(»«»»«*)t»»)»* »«»» S8T LOW SLACK TA8LC PARAHFTERS »»»»»»»»»«»)« *****»»**»
-------
- 303 -
wswcrc = 11
NLPCCM) = NFPCCM)
NOPRTCD = 7
JPRTCI, 1) =
JP"TCI,2) -
JPRTClJ*) =
JPRTCI, 4) =
JPRTCI.?) =
JPRTCI.') =
JPRTCI»7) =
+ 1SWCVC
1
65
64
63
6'
61
60
00 148 II»1 .NSUCYC
1 = 1 + 1
CO TO C1'6, 12°. 130.132. 134 . 1 ?6* 1 3P » 1 40. 1 42.1 44 , 146 >. II
126 NOPRT(I) = 2
128
130
1?2
174
136
140
JPRTCI, 1)
JPRTC 1,2)
GO TO 148
NOPRTCI) = 1
JPRTCI ,1 )
GO TO 148
MOPRTC1) = 3
JPRTC I ,1 )
JPRTC l>?y
JPRTCI, T)
GO TO US
NOPRTCI) = 4
JP»T(I,1>
JPRTd*?)
JPRTd. T)
JPPTCI.4)
GO TO 148
NOPRTCI) = 3
JPRTd, 1)
JPRTCI,?)
JPRTd.?)
GO TO 1*8
NOPRTCI) = 5
JPRTCI ,1)
JPRTC !.?>
JPRTC I ."")
JPRTCI .4)
JPRTd. f)
60 TO 148
NOPRTd) = 6
JPRTCI.1)
JPRTCI»2)
JPRTCI*^)
JPRTd.*)
JPRTd. S)
JPRTd .*)
GO TO 148
NOPRTCI) - 7
JPRTCI.1)
JPRTCI.')
JPPTCI.7)
JPRTC I.*)
JPRTCI»5)
JPPTCI.6)
JPRTd .7)
= 5°
= 5«
= 57
= 56
= 5?
= 54
= 5?
= 52
= 51
= 50
= 4"
= 48
= 47
= 46
= 45
= 44
= 43
= 42
= 41
* 40
= 30
= 38
- 37
- 36
- 35
= 34
= 33
= 3?
= 31
* 30
« 29
-------
- 304 -
142
144
146
148
GO TO 148
NOPRTCI) = 12
JPRTd ,1)
JPRTd,?)
JPRT( I »*)
JP°Td »n
JPRT( I ,5)
JPRTd, 6)
JPPTCI.7)
JPRTd »8)
JPRT( If9>
JP"Td,10)
JPPTd.11)
JPRTd, 12)
GO TO 148
= 28
= 27
= 26
= 25
= 24
* 2?
= 2?
= 21
= 20
= 19
= 18
= 17
NOPRTd) =• 12
JPRTd. 1)
JPRTC I.')
JPRTd,*)
JPRTd»5)
JPRT( I tf- )
JPRTd, 7)
JPRT( I.*)
JPRTd»9)
JPRTCI.10)
JP"Td,11)
JPPTCI.12)
SO TO 148
HOPRT(I) = 6
JPRTd. 1)
JPRTd.?)
JPRTC1*"«)
JPPTd*/-)
JPRT< I .5)
JPRTd. O
CONTTNUf
* 16
= 15
= 14
= 129
= 13
= 1?
= 11
= 10
3 O
= a
= 7
- 6
m 5
= 4
= 3
• ?
= 114
150 CONTINUE
C»«**)t*i«»»*"»»«»i*»»»»» SCT SNAPSHOT T*BLC PARAMETERS »»»»»»«»»»«»« »»»»*»»»»»
NLPC(N) * NFPr
JPRTC I »P)
JPRTd, 9)
JP°TCI,10)
JPPTd*11)
JPRTd, 12)
JP°TCI.13)
JPPT( I ,-14)
jpmci»i5)
JPRTd, 16)
= 114
- 2
= 3
» 4
3 S
- 6
3 7
- 8
31 O
- 10
* 11
- 12
» 13
=129
-130
= 14
-------
- 305 -
JPRTC
JP"TC
JP°T(
JPRTC
JP°TC
JP°TC
JPRTC
JP»TC
JP°T(
I
I
I
I
JPRTCI
jp-mi
JP*2>
I
I
I
I
I
I
,53)
,*4)
»^5)
,^6)
,'7)
,?8)
s
s
=
s
3
r-
=
s
X
s
=
s
3
s
s
ax
K
s
=
=
s
s
I*<0) =
I
I
I
I
I
I
T
I
,/1)
,42)
,/3)
,44)
**5)
<*6>
,47)
,AS)
s
=
=
=
a
•a
s
=
1/49) =
I
I
I
I
,53)
,S1)
»"?2>
*53)
=
s
s
a
15
16
17
1 %
19
20
21
22
23
24
25
26
2^
2*
29
30
31
32
33
34
35
36
40
42
44
46
4s
50
52
54
56
58
60
62
64
1
C)i»«>nn ICTC, KOAYS* HOU»S
GO TO 162
154 CONTINUE
BEGIN NEW SLACK VATEP TA°LE *»***«»•»*«»***»«**««*»•
NPP * Q
IF (KSL(M>.E0.2) GO TO 156
WRITE <6,6f4)
-------
- 306 -
GO T0 15S
CONTINUE
WPJTF (6.606)
WRlTr (6*608) ICYC* KDAYS, HOURS
PO TO 162
160 CONTINUE
C****««RK*««tttt*»tttt*»»»»»»»tt ?cg|u SNAPSHOT T«BLE »*tm«mm»»«»«»«»» »«»»»«»»•»
NPP = 3
V»lT- (6.610) ICYC* KDAYS* HOURS
1*2 CONTINUE
C* »» «••»»»»« •««**« »»««« PRINT DATA FHOM PRESENT CYCL1? »»«»»*»*»»*» »***»«»»«»
WOP = NOPRT( T)
DO 166 L = 1 jNOP
J = JPRT(T»L>
^0 16* LPP=1»NUHCON
= C(J»LPP>
C6SUA(NPP) * RMNOOF(J)
T^ UCYC.NE.NLPC
KSLACK = KSLCM)
INFPC =• NPPC(M)
INLPC * NLPC<*>
CALL SWPLOT
168 CONTINUE
600 FORMAT (ix*i30dH-) /)
602 FORMAT (1" j3?Xj' CYCLE' » !5 * 1 1E»' DAYS* ' *F6,2,' HOURS**/ )
604 FORMAT<1H1//4PXj23H HIGH SLACK P"cDirTIOHS/>
60t FOPMAT(1H1/ 4?X*?3H LOH SL*CK PRFOICTIOMS/)
608 FORMAT (1H / 3X> ' JUNCTION HEAD CONSTITUENT 1 CONSTITUENT
» 7 CONSTITUENT 3 CONSTITUENT 4 CONSTITUENT 5 fONSTITUE
»NT 6l»/*14X*l(FT)l*8r*'(*?/L) (M6/L) (MG/L)
» (UG/t) (MC/L) (N5/L)'./ 1 X*130(1H->* //
»?3X*» CYCLE»»!5*I1Z*' DAYS* ' *F6.2* ' HOURS'/ >
610 CORM^T (1"1/// 25y»«SYSTrM STATUS AFTER QUALITY CYCLE ' *I6» II 0* ' f?A
«YS* «»F6.2j« HOU"S»*//*3X»« JUNCTION HEAD CONSTITUENT 1 CO
»K'STITUENT 2 CO^STITUEXT 3 TONSTITUENT 4 CONSTITUENT 5
"CONSTITUENT " »/»14X*;l (FT) ' , 8X»» C1G/L)
»(>«C/L) CU6/L) (M5/L) (1C/L) ' */»1 X, 13
»OC1K-> )
61? FORMAT (5X*I*»4X»r6.2j3XjF6.2»5<1UjF'«).2»
614 FORMAT (1 H1 ///20Xj ' NUMBER OF PLOTTER POINTS PXCEEOS ARRAY
FNO
-------
- 307 -
SUBROUTINE SWPtOT
DIMENSION BOTKI?), NPTCS), SID^USD, siDE2<6>» x » KSLC20>» KPLOT(2Q>» NFPCUO),
» NLPC(20)» NOPRTOfO), NCONSWC6), NSWP
COMMOM /SWTS«P/ FGSW»(99)«FGSWO('1<'*6)» IMPOSE, INFPC* INUPCfKSLACK
COMMON /OBSOJT/ 0°DATA(3»6j20)i ">MD»TAC20)» NO»TA» NOBCYC(1U>
COMMOM /SC*LrS/ XMAX* XMIN, VMAX* YMAXC(6)* YMIN* YMINC(f)
COMMON /AXES/ POTTOMd?)* SIOE(51)
PITA 30Tl/6«<" »4HMILE»4HS BE*4HLO« j4HCHAI,4"N BR.4HIPGE /
DATA SIOE1/21»1H ,1HC*1HO* 1HH* 1HS»1HT» 1HI
1 15»TH /
PJTA SICS2/1 H1 ,1H2»1H3»1H4>1H5*1H^>/
C*******»******** SET LA"3FLS ON SIDE AND BOTTOM AYES ***********************
^0 100 1=1,51
SI^PCD = SIDEKI)
100 CONTINUE
ro 1"' 1=1,12
80TTO«ur> = BOTUI)
102 CONTINUE
DO 1?? IT=1,»'UMCON
IF (NCONS«(I1).1E.V) GO TO 132'
IF CIKPOSE.LT.A) 60 TO 104
IF UI.LT.6) GO TO 132
104 COMTINUF
If-PCHK = II * I1POSE
C»*«*)»»«*»»»»«)H( FILL UP X i Y ARRAYS UITH D»TA TO BF PLOTTED »«*»»»«•««*»*»
Ctt*»»»HiiiriiiiK»ii*Ki>ii««ii»i(*)i««K INITIALIZE COUNTERS * »»»»»** «»«*****» »«»» »»»*«*
IF CIMPOSE.EQ.4) 60 TO 106
1C = 0
106 CONTINU^
ICP * 0
^0 110 I«1 ,MPP
IF (IMPOSE. LT. 4.) GO TO 108
ICP = ICP + 1
X(ICP»?> » FGSWA(I)
YCICP,') = F6SWO{I,6>
60 TO 110
108 CO*TINUr
1C = If + 1
X(TC,1)
Y(IC,1)
110 COHTIWUE
KPTC1) » 1C
NPT(2) = ICP
-------
- 308 -
C**»NH«»»**K»«»*tt»* SFT SIDE LABELS FOR COMSTITU E«»T NO. «»»mn»««ini *«»«»*»*«»
C»**»*««*»**»«»)(»***»» CHECK FOR OVE°LAY FOR CONSTITUrNT 6 *»»****»»*»»*««»»
IF ( IHPCHK.LT.9) GO TO 114
IF (IMPOSE.EI.O GO TO 112
IS«VE = INFpc
ISAVE1 = INLPC
ISAVEt = KSLACK
KTTTLE = 0
RETURN
112 CONTINUE
114 CONTINUE
CK«*««»»*«*»*»«*K«*x****ftM*** WRITE OUT TTTLP *«»«»»»»»»»«»»»»»»«»»«»»***«««
WRITE
K = KSLACK + 1
116 GO TO (118*122*120>f K
11t WRITE (?2*£"2> INFPC
GO TO 1?4
TO WRITE (22*604) INFPC* INLPC
C-0 TO 1">4
122 WRITE (22**r!6) INFPC* I*LPC
1'4 CONTINUC
IF < IMPCHK.LT.10) GO TO 126
IF (KTITLt.EO.D GO TO 126
K = ISAVE2 + 1
INrPC = ISAVE
INLPC « ISAVE1
KTITLE = 1
GO TO 116
126 YMM = YMTNC(TI)
YMAX * Y«AXC(II)
IST'N = II
ISInE = 1
IF (NOATA.EO.O) ISTAN * 0
C»***<(»«in(*)»»«i»»*»*»*)f*» CALL CU°VE TO PRODUCE THE PLOT »«)»K»*»*«»»»*»»»»«»*
IF ( IMPOSE.IT.4) GO TO 128
CALL CURVE (X*Y*NPT*2*1*0*2,ISTAN*ISIOF)
GO TO 1*0
128 CONTINUE
CALL CUPVE (X*Y»NPT*1*1*0*2* IST»N*ISIOE>
1?0 CONTINUE
172 CONTINUE
PETURV
c»»»»K»»K»»*»»»»»i»»)»»»>»)«»»»» CORMAT STATEMENTS »x*«*»«tt«««**««««**K»*««H»**»«*
603 FORMAT(1H1/44XJ'POTOI«AC <=STUARY CENTER CHAMHFL')
602 FORMAT(1HO*4trr*'PROFILE PLOT FOR CYCLE'*I6)
604 FORMAT (1HO»36T,« LOW WATtR SLACK PLOT FROM CYCLE'jIS*' TO CYCLE'
606 FOR«AT(1HO*30X»'HI6H UATEP SLACK PLOT FROM CYCLE'»I5*« TO CYCLE'*
END
-------
- 309 -
T"LOT
SUBROUTINE TPLOT
CIME"SION C<6), «OT1(12>, NPT(3). SIOEKS1)* SIPE2C6),
Y(9<>»3)
/"ISC/ CTIM?, 0CLTQ, ICYCj »'C, NJ, Npp, NUHCON,
* RMNODF.d""), STIXF
COMMON XTIHEPl/ JU*CTP<20>> NCITP(20>» NCONTP(20,6> , «»ECTPc2Q)i
» NSCTP(20)» NTP
COMMON /SCALPS/ XM»X» XMTV, YMAX* YM»XC(6)> YMINj YMTNC(6)
COMMO" /«XES/ ?OTTOM(1?), S!OE<51>
DATA SIDF1/21»1H ^ 1HC* 1HO» 1HN* 1HS»1HT» 1H I » 1HTj1 HU» 1 HF»1 HN, 1 HT»
1 19»1H /
P«TA SIDE2/1H1>1H2*1H3»1H4»1H5f1H6/
DATA 80T1/v»4H »4HCYCL*4HES tlH /
C* **«»)(»***»»»»»*» «»»»»»*»*)•«)•>(»» SET LADELS »»t»»»*)»**«in»*« SET UP TT«£ PLOTS *»»»»»it»»»»*i(mm**)(» »)»)()»)»»»»»«
00 170 11=1, NTP
DO 118 JJ=1,NU^CON
"EWINO 11
IF (NCONTP(n,JJ).NEt1) CO TO 11*
VMIN = Y"INC(JJ)
VMAX = YMAXC(JJ)
SKIP TO STARTING CVCLF
»»»«»*«««)»««»»»*»)»«» **»*»«*** »
106
M > NSCTPtll)
L1 = (M-1) » NTP
IF (LI.EQtO) 60 TO 106
DO 104 L=1,L1
"»FAD (11) ICY
CO^TIMUF
CONTINUE
111 => II
»fK * 0
TTIM1 -- NSCTPMI)
ITIM2 a NECTP(II>
ITIM3 =•
(C(K>,Ka1,NUMCON)
C»»»»»»»»«»'»»»»»»«»»»» LOOP FOR SPECICIED PLOTTING CYCLES »»»«»»»«)m»»»»»»*)i
"0 116 I = ITI'*1,ITIM2,niM3
KK = KK + 1
SKIP TO THEN READ PLOTTING JUNCTION IN PRESENT CYCLE »»««»«»«
-------
- 310 -
(11) ICYC* (C(K),K=1,»MJ«COM)
E
= r(JJ)
X(KK>1 ) =• J
I 12 = NTP * (MCITP(II) - 1)
L2 = NTP - II
CX««K»*K««K»»»X»*»» SKIP TO FND OF PPESEVT CYCLE »»»«ii»«»«»»«ii»»«» »«»»»»»«»»
IF (L2.''0.1) 60 TO 112
"0 110 L*1»L2
RE»D (11)
110 CONTINUE
112
CM**«*»«»«Ntt«»»»M» SKIP TO ST«RT OF N^XT PLOTTING CYCLE »»»»»»»»»»»»»»»»»»»»
IF
-------
- 311 -
CURVE
»KN«*JM
C CURVE IS THE ENTRY TO A GENERALIZED PRINTER PLOT ROUTINE* THE
C ROUTINE PLOTS SEQUENTIALLY PAIRED VALUES TAKEN FROM THE X AND Y
C ARRAYS. THE SCALING VALUES FOR BOTH ARRAYS ARE STORED IN THE LAST
C TWO ARRAY LOCATIONS IN THE SAME HANKER AS CALCOMP SCALING. THE
C ARGUEMENTS IN THE SCALING SEQUENCE ARE DEFINED AS...
C X • THE ARRAY CONTAINING THE X-AXTS COORDINATES OF THE POINTS
C TO BF PLOTTED
C Y m THE ARRAY CONTAINING THE T-AXIS COORDINATES OF THE POINTS
C TO BF PLOTTED
C NPT » THE NUMBER OF POINTS TO »F PLOTTED
C NCV « THE NUMBP* OF CURVES TO «?E PLOTTED
C NPLOT * USED FOR PLOT IDENTIFICATION* THIS VALUE IS PRINTED ABOVE
C ?ACH PLOT FOR EACH CALL TO CURVE
C IJOIN - FLAG FOR JOINING OR NO JOINING OF POINTS
C ITEL • FLAG FOR GRID SITE
C ISTAN = CONSTITUENT NUMBER
C ISIDE - 1 FOR CENTER CHANNEL
CK**»tt**MK«»«•***« *»»*«*»««*««**«**• IfM»*«*K*«*»«»«***•»»**««««***«***««»*«•**«I
SUBROUTINE CURVE(X*Y»NPT»NCV*NPLOT*IJOIN»ITEL»ISTAN»ISIDE)
COMMON /OBSDAT/ OBDATA(3»6*20>* °MDATA(20), NDATAj NOBCYC(IQ)
COMMON /SCALES/ XMAX» XMIN* YMAX» YMAXC(6>* YMIN* YHINC(6)
COHMON /CURPLT/ JSTAN* XLAE(11)j XAXIS* YAXIS* YLAB(6>* YSTAN
DIMENSION NPT(3)» X(99*3), Y(99*3)
C«»»«I(*K«»«»*»»»«H»««IH« SET SPECIAL 6RID SIZE IF DESIRED »««»«»«««»*»«*««*«»
JSTAN-0 1063-
IF(ITEL-1) 1000*1010^1020 1089.
1010 XAXIS-60. 1090.
YAXIS-40. 1091.
GO TO 1000 1092.
10?0 X>XIS=100. 1093.
YAXIS»50. 109A.
100U NPTS=NPT(1) • 1095.
C********************* SET UP X AND Y SCALES *«*«ft*H«K*itii*»*ftit*»«»*«Mfttt**«i
IXAX=XAXrs/10. 1098.
IYAX-YAXIS/10. 1099.
IXAXIcIXAX+1 1100.
IYAX1=IYAX+1 1101.
C*»**i«(»»)HHt»»tn»»»*«»« FIND MAX AND "IN FOR X AND Y ARRAY »«««««•«**•«««•«»
2001 CONTINUE 1117=
C«»* «*itii»»B«K»«*ifit «*«•*«*«*«« SET UP SCALES «»«»«tn(»«in(i(»Kin«»»»*»ii» »«»»«i»i««)
AXLEN«IXAX 1121.
CALL SCALF(X»XMAX»XMIN,AXLEN»NPTS»1) 1122.
AXLPV=IYAX 1127.
CALL SCALE{Y»YMAX*YMIN»AXLEN»NRTS.1) 1124.
C**»»i()(tt*»*»**)(»*»i »*•(» FORM X LABELS AND FACTORS KKM*»*»*«K*«*it*«*K«*««**iH
XMIN=X(NPTS+1*1) 1128.
DFLTX=X(NPTS+?j1) 1129.
XLAB(1)«XHIN 11*0.
DO 260 I=1>IXAX 11?1.
?60 XLAB(I+1)=XLAB(I)+DELTX 1132.
XSCAL=XAXIS/(XLA°(IXAX1)-XMIN> 1133.
-------
- 312 -
CK«*«K«*«*«»»«*««*««*M FORM Y LABELS AMD FACTORS n«»«*it«*«««*»«*«it*K«**««K«»
YMIN=Y 1137.
DELTY=Y(NPTS+2j1> 1138.
YLABCIYAXD-YHIN 1139.
DO 270 I«1>IYAX 1140.
270 YLAB=YLABUYAX1 + 1-I»DELTY 1141.
YSCAL=YAXIS/(YLABC1)-YHIN> 1142.
C««*««»*»*«»«KK»«»««X« INITIALIZE PLOT OUTLINE ««•««»««««»«»««»»»« «»«u»«m»«ii
NCO«100 1146.
IF(JSTAN.EQ.O) 60 TO 2000 1147.
YSTAN»YSCAL»(6.0-YMIN-> 1148.
2000 CALL PPLOT(0»0*NCD»NPLOT> 1149.
K=1 1150.
IFCJJOIN.EC.O) 60 TO 500 1151.
C«»» THE OPTION TO PERMIT JOININ6 OF POINTS HAS BEEN DELETED
C*«**»«»*tt»*K«K«««MK*« PLOT WITHOUT JOININ6 POINTS »«»»««»«»»»««»»«»«»««««««
500 CONTINUE 1178.
DO 520 L = 1*NCV 1179.
JJ=L 1180.
NPOINT=NPT(JJ) 1181.
IF(NPOINT.EQ.O) 60 TO 515 1182.
DO 510 N = 1*NPOINT US'?.
XT=XSCAL«CXCN»L>-XMIN* 1194.
YT«YSCAL«(Y(N*L)-Y«IN^ 1185.
IXT=XT+0.5 1186=
IXY=YT+0.5 11R7.
IF(NCV.E0.3) 60 TO 517
CALL PPLOT(IXT»IXY»K»1> 118%.
GO TO 510
517 L1«L+9
CALL PPLOT(IXT»IXY»L1»1)
510 CONTINUE 1189.
515 K»K+1 1190.
520 CONTINUE 1191.
C»«ft«*K****«««*»M««*K*««»*»* PLOT OBSFRVED DATA »**«»K«»*«N«**K««*««XK»**N*«
550 IFCISTAN.LT.D 60 TO 565
DO 560 L=1*3
TO 570 N«1*NDATA
XT=XSCAL«
IXYsYT+0.5
CALL PPLOT(iyTjIXY*L1*1>
570 CONTINUE
560 CONTINUE
565 CONTINUE
C«N«**tt***N«*«fttt«« »*»« )•«««(» OUTPUT rINAL PLOT «»»»if»i(»«*«««»«»«»» »»»»«»««»»
555 NC=99
CALL PPLOT(0»0*NC»NPLOT) 1196.
PFTU^N 1197.
FND 1198.
-------
- 313 -
C* *••«**•*««•««*«« »»»«»» II II *«K*«« MM ««««*«» *«««*«»«««»•«« II «««««««««»«**«*«•»«««««)
C P.PLOT
SUBROUTINE PPLOTdX* IY»K*WCT>
DIMENSION A(51*10D* SYMdA)
COMMON /CURPLT/ JSTAN* XLABC11)* XAXIS. YAXIS* YLAB(6>* YSTAN
COMMON /AXES/ 80TTOM(12>* SIDEC5D
COMMON /CRID/ KPLOP
P»TA SYM/4H««««*4HXXXX*4HOOOO**HXXXX*4H++++*&H2222* 1
1 4H *4HIIIJ»4H - *4HHHHH*4HAAAA*4HLLU.*4HS*««*4H????/
IXAX1-XAXIS+1. 1270.
IYAX1-YAXIS+1. 1271.
JXAX1«XAXIS/10.*1. 1272.
JYAX1«YAXIS/10.+1. 1273.
IF(K-99) 200.220*230 1274.
200 CONTINUE
C«*««*K««*«»»«*«««**« CHECK FOR OFF-SCALE VALUES »«««»»»«««»«»»«»»»««»<(»»»in
IF(IY.6E.IYAX1) 60 TO 10
IF(IV.LT.O) GO TO 20
A(!YAX1-IY,IX*1>
RETURN
10 CONTINUE
PETURN
20 CONTINUE
A(1YAX1*IX+1) « SYMC1A5
PETURN
220 CONTINUE 1277.
1=0 1278.
00 225 II*1*JYAX1 1281.
1=1+1 1282.
VRITEC22.310) S IDEC I) »YLAP(I I)*(A(I*J>* J«1* IXAX1 ) 1283.
310 FORHATOH >A 1*F7.1* 101A 1 ) 1284.
IFdl.EQ.JYAXD 60 TO 228 1285.
DO 224 JJ«1>9 1286.
1=1+1 12S7.
IFCI.GT.50) CO TO 500 1288.
223 WRITE<22»320) SIDEC !>*< A< I* J)» J-1*IXAX1) 1289.
320 FORMATC1H »A 1 *7X»101 A1 ) 1290.
60 TO 224 1291.
500 WRITF(22*510> ( A< I* J)* J*1*IXAX1 J 1292.
510 FORMATdH *8X*101A1) 1293.
224 CONTINUE 1294.
225 CONTINUE 1295.
226 CONTINUE 1296.
VRITE<22»102> tXLAB( I) fl"1 * JXAX1 ) 1297.
WRITE(22»330) BOTTOM 1298.
T*0 FORMATC/1H *20X»12A4>
102 FORMATdH ,11F10.1> 1300.
RFTURN 1301.
?^C IYAX=YAXIS 1302.
PO 250 I=1*IYAX 1303.
DO 240 J=1*IXAX1 1304.
240 MI*J)=SYH(7) 1305.
CONTINUE 1307.
-------
- 314 -
DO 260 J«1,1XAX1
260 AtIY»X1>J)*SYM(9)
DO 270 I«1»IXAX1»10
270 A
IYJ=IYAX1-10
DO 290 I*11*IYJ*10
A«*SYM(9>
1000 CONTINUE
IF (KPLOP.EO.O) RETURN
C«»K*«««»«K»»*»*««K*««* FILL IN BACKGROUND GRID ON PLOTS
60 TO C1>2>3>» KPLOP
C«*«***»»*»****«* BACKGROUND OPTION 1 - LOU DENSITY
1 00 2700 I«11*IXAX1,1P
PO 2800 J«=1*IYAX,5
A(JjI) * SYM<5)
2800 CONTINUE
2700 CONTINUE
RETURN
C«M«»««*»M««««»»« BACKGROUND OPTION ? - MEDIUM DENSITY
VrRTICAL »«»*»»»»»«*»«
Ic21«IXAX1,20
J=1*IYAX
SYMC5)
2400 CONTINUE
2300 CONTINUE
C«**»«*»*««*«** HORIZONTAL *»»«»»«»««»««
IYJ = IYAX1 - 5
DO 2500 J*1»IYJ*10
PO 2600 I=3*IXAX1,2
* (J^I) = SYMC5)
2600 CONTINUE
2500 CONTINUE
RETURN
C*»*)i*«««*««««tO(«« BACKGROUND OPTION 3 - HIGH DENSITY
C»*V««**MMN**IIK VFRTICAL
3 DO 2000 1=11*IXAX1j10
DO 1900 J=1*IYAX
ACJ>I> * SYMC5)
1900 CONTINUE
2000 CONTINUE
C««*««»«*«II««K« HORIZONTAL
IYJ = IY*X1 - 5
DO 2200 J=1fIYJ>5
PO 2100 I=3»IXAX1»2
A(J>I) = SYMC5)
2100 CONTINUE
2200 CONTINUE
1308
1309
1310
1311
1312
1313
13U
1315
1317
1318
1319
1320
••«*Mft«H«M*
*«««*N»K*K*«*«»*
2 DO 2300
CO 2400
-------
- 315 -
SUBROUTINE SCALE(ARRAY»AMAX>AMIN»AXLEN»NPTSf INC) 1323.
DIMENSION ARRAY<103»4)* INT(5)
DATA INT/2j4*5»8*10/ 1326.
INCT«IABSUNC) 1327.
IF(AMAX-A*IN) 275,255t275 1328.
C«N«*««*»»**»«*«« RESET MAX AND HIN FOR ZERO RANGE ««««»**«Mftitft««*K*«««»««
??S IFCAMN) 265»400»260 1332.
?60 AMIN-0.0 1333.
AMAX-2.0»AMAX 1334.
60 TO 275 1335.
2*5 A"AX»0.0 1316.
AMIN=2.0*AMIN 1337.
275 CONTINUE 1338.
C»**»«»«»**«*»«»»*•*»»*«»*»» COMPUTE UNITS/INCH «««•«»•»*«»««•«*«»*»««*•*«
RATE=(AMAX-AMIN)/AXLEN 1342.
CK««»«K«««WN««I( SCALE INTERVAL TO LESS THAN 10 «tit*««*tt«M«ii*K»«*«ii**«it*««ii
A-ALOG10CRATE) 1347.
N»A 1348.
IFCA.LT.O) N=»-0.9999 1349.
RATE»RATE/C10.*«N) 1350.
L-RATE+1.00 1351.
C*tnm«*»»«»***«tt*»»«*i< FIND NEXT HIGHER INTERVAL «»«»»»«»»«»»»»«»«********
280 TO 300 1=1*5 1355.
IF*RANGP> GO TO 330 1392.
I«INCT*NPTS+1 1393.
APRAY(I,1)=K»RAN6E 1394.
I=I+INCT 1395.
ARR/YCI,1)«-PANGE 1396.
RETURN 1397.
400 WPITEC22*100) 1398,
100 FORMATC//1H *10X>'RANGE AND SCALE ARF ZERO ON PLOT ATTEMPT') 1399
END 1401.
-------
- 316 -
BIBLIOGRAPHY
1. Water Resources Engineers, Inc., "A Water Quality 'lodel of
the Sacramento - San Joaquin Delta," Report to the
U.S. Public Health Service, Region IX, June 1965.
2. Water Resources Engineers, Inc., "A Hydraulic Water Quality
Model of Suisun and San Pablo Bays," Report to the
FWPCA, Southeast Region, March 1966.
3. Federal Water Pollution Control Administration, "San Joaquin
Master Drain - Effects on Water Quality of San
Francisco Bay and Delta," January 1967.
4. Feigner, K. and H.S. Harris, "Documentation Report - FWQA
Dynamic Estuary Model ," U.S. Department of Interior,
FWQA, July 1970.
5. Clark, L.J. and K.D. Feigner, "Mathematical Model Studies
of Water Quality in the Potomac Fstuary," Technical
Report No. 33, Annapolis Field Office, EPA Region III,
March 1972.
6. Jaworski, N.A., L.J. Clark, and K.D. Feigner, "A Water
Resource - Water Supply Study of the Potomac Estuary,"
Technical Report No. 35, Annapolis Field Office,
EPA Region III, April 1971.
7. Clark, L.J. and N.A. Jaworski, "Nutrient Transport and
Dissolved Oxygen Budget Studies in the Potomac Estuary,"
Technical Report No. 37, Annapolis Field Office,
EPA Region III, October 1972.
8. Clark, L.J., D.K. Donnelly, and 0. Villa, Jr., "Summary
Conclusions from the forthcoming Technical Report
No. 56, Nutrient Enrichment and Control Requirements
in the Upper Chesapeake Bay," Annapolis Field Office,
EPA Region III, August 1973.
9. Clark, L.J., R.B. Ambrose, Jr., and R.C. Grain, "A Water
Quality Modeling Study of the Delaware Estuary,"
Technical Report No. 62, Annapolis Field Office,
EPA Region III, January 1978.
10. Chow, V.T., "Open Channel Hydraulics," John Wiley & Sons,
New York, New York.
-------
- 317 -
11. Cowan, W.L., "Estimating Hydraulic Roughness Coefficients,"
Agricultural Engineering3 v.37, n.7, July 1956.
12. Boyer, M.C., "Estimating the Manning Coefficient from an
Average Bed Roughness in Open Channels," Transactions,
AGU, v.35, n.6, December 1954.
13. Langbein, W.E., "Determination of Manning's n from Vertical-
Velocity Curves," Transactions., AGU, part II, July 1940.
14. Einstein, H.A. and H.L. Barbarossa, "River Channel Roughness,"
Transactions, ASCE, v.117, 1952.
15. Davidson, B. , R. Vichnevetsky, and H.T. Wang, "Numerical
Techniques for Estimating Best - Distributed banning
Roughness Coefficients for Open Estuarial River
Systems," Water Resour. Res., v.15, n.5, October 1978.
-------
EPA 903/9-79-004
Annapolis Field Office
Region III
Environmental Protection Agency
Lehigh River Intensive
March 1979
Daniel K. Donnelly
Joseph I. Slayton
E. Ramona Trovato
Annapolis Field Office Staff
John Austin
James Barron
Robert Ambrose
Robert Bubeck
Leo Clark
Gerry Crutch!ey
Ann Donaldson
Gerry Donovan
Bettina Fletcher
Norman Fritsche
Marilyn Gower
Victor Guide
George Houghton
Patricia Johnson
Ronald Jones
Rosemary Kayser
Donald Lear
Tangie Lindsey
James Marks
Margaret Mason
Ruth Ann McGuire
Evelyn McPherson
Margaret Munro
Thomas Munson
Maria O'Malley
Thomas Pheiffer
Janet Roberson
Susan Smith
Earl Staton
William Thomas
Robert Vallandingham
Orterio Villa
-------
Disclaimer
The mention of trade names or commercial products in this
report is for illustration purposes and does not constitute
endorsement or recommendation by the U.S. Environmental Protection
Agency.
-------
Table of Contents
page
I. Purpose and Scope 1
II. Study Description 2
A. Stream Sampling 3
3. Effluent Sampling 3
C. Long Term BOO Experiment 3
D. Diurnal Study 7
E. Flow Measurement 7
F. Time of Travel 9
G. Benthic Characterization 9
III. Field Procedures 9
A. Sample Collection 9
B. Sample Preservation 11
C. Field Analyses 11
D. Flow Measurement 12
E. Time of Travel 12
F. Sediment Oxygen Demand 13
IV. Laboratory Procedures 1^
A. Chlorophyll a_ 1 •!
B. Nitrogen Series 1 £
C. Phenol 15
D. Cyanide 15
E. Metals 15
F. Sediments 15
G. DO/BOD 17
H. Long Term SOD 19
-------
Fable of Contents (can't)
Y. Results 22
A. Stream Survey 22
B. Effluent Survey 31
C. Long Term BOD Experiment 37
D. Diurnal Study 32
E. Flow Measurement 85
F. Time of Travel 37
G. Benthic Characterization 89
VI. Conclusions 92
VII. Appendices 94
-------
Tables
Paqe
II-l Stream Stations <*
11-2 Zinc Sampling Stations 5
II-3 Effluent Sampling Stations 6
II-4 Diurnal Stations 8
V-A-1 Field Data From Stream Samples 22
V-A-2 Nutrient and BOD Data From Stream Samples 25
V-A-3 Chlorophyll a Data From Stream Samples 27
V-A-A Phenol Data From Stream Samples 28
V-A-5 Cyanide Data for Stream Samples 29
V-A-6 Zinc Data for Stream Samples 30
V-B-1 Effluent Grab Sample Data 31
V-B-2 Effluent Composite Sample Data 33
V-B-3 Phenol Data for Effluent Samples 35
V-3-4 Cyanide Data for Effluent Samples 36
V-C-1 Long Term BOD Data for Unaltered River Samples 37
V-C-2 Long Term BOD Data for Seeded Effluent Samples 48
V-C-3 Long Term BOD Data for Seeded and Diluted Effluent
Samples 54
V-C-4 Thomas Graphical Determination of BOD Constants for
Unaltered River Samples 55
V-C-5 Thomas Graphical Determination of BOD Constants for
Seeded Effluent Samples 70
V-C-6 Thomas Graphical Determination of BOD Constants for
Seeded and Diluted Effluent Samples 75
-------
Tables (con't)
Page
V-C-7 Compilation of CBOD River Sample Kinetics . 79
V-C-8 Compilation of NOD River Sample Kinetics 80
V-C-9 Compilation of CBOD and NOD Kinetics for Effluent
Samp! es 81
V-D-1 Diurnal Data 82
V-E-1 Major Discharge Flows 85
V-E-2 Stream Flows 86
V-F-1 Time of Travel 1977 87
V-F-2 Time of Travel 1976 88
V-G Benthic Characterization 91
-------
1-1 gures
Page
V-G-1 Sediment Oxygen Demand 90
C-l Benthic Respirometer 99
C-2 Typical Graph and Worksheet from Respirometer 100
-------
I. Purpose and Scope
During the week of October 3, 1977, the Annapolis Field Office and
the Pennsylvania Department of Environmental Resources Reading jointly
conducted a one week intensive survey on the lower reach of the Lehigh
River between Palmerton and the mouth. The study was designed to define
low-flow water quality, hydrologic and benthic characteristics necessary
for calibration and verification of a mathematical model being developed
by the EPA Region III Water Planning Branch. The water quality char-
acterization included analysis of stream and major discharge samples
for dissolved oxygen (DO), biochemical oxygen demand (BOD), nitrogen
series and other indicators of water quality conditions; a 24 consecutive
hour sampling program to define diurnal fluctuations in DO; and a long
term laboratory experiment designed to differentiate between carbonaceous
and nitrogenous components of the long term BOD. The hydro!ogical
aspects of the study included stream gaging; flow measurement at major
discharges; and a dye study to determine travel times in various segments
of the river. In situ sediment oxygen demand (SOD) measurements and
analysis of sediment samples for nutrients and selected metals were included
in the benthic characterization program.
The study was planned for what was expected to be a low stream flow
period so that water quality responses to pollutant loadings could be
evaluated under the most severe conditions. The optimal flow condition
for the study would have been about 600 CFS in the Lehigh River. Unfortunately,
-------
the study period was preceded by heavy rainfall which increased flows to
over 2000 CFS. The U.S. Army Corps., of Engineers participated in the
study effort by restricting releases from the upstream reservoirs on
the Lehigh. Through the release restrictions, the Corps was able to
decrease the river flow to about 1500 CFS by the end of the study period.
The study was initiated despite the high flows in hopes that the release
restrictions could drop the flow below 1000 CFS and because a good steady-
state low flow,, moderate temperature condition would not occur for another
year.
The U.S. Geological Survey also cooperated in the study by measuring
cross-sectional areas and flows at selected places in the river. The
results of their program are reported separately.
11. Study Description
The Annapolis Field Office and the Pennsylvania DER shared in both
the field and laboratory segments of the survey. AFO field teams conducted
stream sampling from Allentown to Easton, effluent sampling at Bethlehem
Steel, time of travel, and benthic characterizations. Pennsylvania DER
field personnel were responsible for effluent sampling at Allentown and
Bethlehem sewage treatment plants and the New Jersey Zinc Friedensville
Mine, stream sampling above Allentown, and stream flow measurement.
Teams from both DER and AFO participated in the diurnal study. The
cyanide analyses were performed by the DER laboratory in Harrisburg and
all of the the other laboratory analyses were done at AFO.
-------
A. Stream Sampling
On each of three consecutive days (10/4, 10/5, 10/6) stream
samples were collected at the stations shown in Table II-1. For the stations
on the Lehigh River, spatial composite samples (see III-A for explanation)
were collected and for tributary stations mid-channel grab samples were
collected. DO, pH and temperature were measured in the field and all samples
were anlayzed for BOD5, TKN, NH3, N02> NO-j, NBOD (nitrogenous BOD) and CBOD
(carbonaceous BOD). One sample from each station was analyzed for zinc,
cyanide, phenol and chlorophyll a_ sometime during the study. (Analyses for
these parameters were staggered to avoid overloading the AFO laboratory.)
At the suggestion of Pennsylvania DER, two sets of grab samples
were taken between Palmerton and Allentown for zinc analysis. This was done
to monitor the effect of the discharges from New Jersey Zinc's Palmerton
plant. Table II-2 lists the locations for the zinc monitoring stations.
B. Effluent Sampling
Starting on Monday October 3, 1977, three consecutive 24-hour
composite samples were taken at each of the discharge points listed in Table
II-3. All of the composite samples were analyzed for pH, BODC, TKN, NH , NO ,
5 3 2
NBOD and CBOD except those from New Jersey Zinc which were only analyzed for
zinc. Grab samples were collected once each day at each station for pH,
temperature and DO. With the exception of New Jersey Zinc, all of the
effluent samples collected during the first compositing period were analyzed
for cyanide and phenol.
C. Long Term BOD Experiment
A laboratory experiment was conducted to measure the carbonaceous
-------
Station No. Lehigh River Mile
Table II-l
Stream Stations
Tributary
River Mile
Station Description
A
B
C
D
L-1
L-3
L-4
L-5
L-9
L-10
L-ll
L-12
L-13
L-14
L-15
L-16
S-6
S-7
S-8
T-l
T-2
T-6
17.3
14.1
11.8
11.0
9.6
7.9
6.2
4.9
3.3
2.3
1.5
0.3
9.8
16.8
SI. 43
50.5
SO.l
SO.55
Lehigh at Catasaqua Bridge
Aquashicola Creek at Bridge near
Lehigh River Junction
Lehigh at Route 895 Bridge
Lehigh at Route 946 Bridge/Si atingto
Walnutport
Lehigh at Hamilton Stree* Bridge
Lehigh at Mile U.I
Lehigh at New Street Bridge
Lehigh at Minsi Trail Bridge
Lehigh at Freemansburg Bridge
Lehigh at Steel City
Lehigh at West End Bethlehem Boat Cl
Lehigh at West End Island Park
Lehigh upstream of Glendon Dam
Lehigh at 25th Street Bridge
Lehigh at 25th Street Bridge
Lehigh at 3rd Street Bridge
Saucon Creek at Five Lane Bridge
Saucon Creek above Bethlehem City ST
Outfall
Saucon Creek at Mouth
Little Lehigh at Mouth
Monocacy Creek at Mouth
Laubach Creek at Mouth
-------
Table 11-2
Zinc Sampling Stations Palmerton tc Allentown
Station Location
A Lehigh at Catasaqua Bridge
B Aquashicola Creek at Bridge Near Lehigh River
Junction
C Lehigh at Route 895 Bridge
D Lehigh at Route 946 Bridge/Siatington-Walnut port
-------
Table II-3
Effluent Sampling Stations
Source
Allentown SIP
Bethlehem STP
Bethlehem Steel
Bethlehem Steel
Bethlehem Steel
Bethlehem Steel
Bethlehem Steel
Bethlehem Steel
Bethlehem Steel
Bethel hem Steel
Bethlehem Steel
Outfall
No.
001
001
005
006
007
008
010
012
014
015
031
Station
No.
AL001
BE001
BS005
BS006
BS007
BS008
BS010
BS012
BS014
BS015
BS031
Lehigh River Mile
16.85
9.82
11.6
11.44
11.37
11.28
10.75
10.61
10.36
Tributary River Mile
SO.25*
SI.225
SO.25
* Flow is split between outfalls going to Saucon Creek and the Lehigh River.
-------
and nitrogenous components of long term (30 day) BOD. While no standard
exists for measuring these parameters, a number of techniques have been
employed successfully. AFO used two of these techniques during this
study. The first technique was the more rigorous of the two and required
periodic measurement of DO and nitrogen fractions over the duration of
the experiment. Total oxygen demand was measured using the change in no
while the nitrogenous component was derived using the changes in the states
of nitrogen. The second technique involves the use of a nitrification
inhibitor and the measurement of total and carbonaceous oxygen demands
exerted over a 30 day period. Detailed descriptions of both techniques are
included in Section IV.
D. Diurnal Study
Begining at 8:00 a.m. on October 5, 1977, a 24-hour survey
was conducted to measure the diurnal DO fluctuations at the stations listed
in Table II-4. Five (5) sets of samples were collected at each station
during the study. Spatial composite samples were made for chlorophyll a_
analysis and the component samples were analyzed individually for DO,
temperature and pH.
E. Flow Measurement
Stream flow measurements, with one exception, are from USGS
gaging stations located on the lehigh River and its tributaries. The
exception, Saucon Creek, was manually gaged using a velocity meter and the
appropriate geometric data. Stream flow measurements were made on October
4 and October 6.
-------
Table II-4
Diurnal Stations
Station No. Location
L-l Hamilton Street Bridge
L-4 New Street Bridge
L-9 Freemansburg Bridge
L-ll West End Bethlehem Boat Club
L-14 25th Street Bridge Easton
L-l6 3rd Street Bridge Easton
-------
Flows at the two sewage plants are continuously monitored and
were available from the flow totalizers. The New Jersey Zinc flow is an
estimate. Bethlehem Steel flows were measured by the company during the
week of the survey as a requirement under their NPDES discharge permit.
F. Time of Travel
Travel times and average stream velocities were measured for
an 11 mile reach of the Lehigh River using a fluorometric dye tracing
technique. Rhodamine B dye was released into the river at mile point 17.3
and the time of passage past 3 downstream points (river miles 12.55, 9.4,
6.0) was measured.
G. Benthic Characterization
The sediment oxygen demand (SOD) was measured using an in
situ respirometer at Station L-13 (see Table II-l). It had been planned
to measure SOD at Station L-16 also but due to the physical limitations of
the respirometer system it was not feasible. A bottom grab sample was taken
at Station L-16 and analyzed for TKN, TP, TOC, zinc, chromium, cadmium,
copper, lead and iron.
III. Field Procedures
A. Sample Collection
1. Stream Samples were all surface grab samples taken in clean
plastic buckets. At main river stations, separate samples were taken at
each of the three quarter points across the stream. (These samples are
-------
designated as right, center and left quarter points looking upstream.)
Temperature, DC and pH were measured for each of the quarter point
samples and composite samples for laboratory analysis were made using
equal portions from each of the quarter point samples. For the tributary
stations only one surface grab sample was collected at the point most
representative of the total stream flow. Temperature, DO and pH were
measured for the sample and a portion was preserved for laboratory
analysis.
2. Effluent.Samples were either grab samples or 24 hour
time proportioned composite samples taken as close as possible to the
point of discharge to the receiving stream. Grab samples, one each day
at each station, were taken in plastic buckets for temperature and DO
analysis. Temperature was measured in the bucket and samples for DO
analysis were poured into standard 300 ml DO bottles through a funnel
to avoid excessive aeration. Composite samples were collected using ISCO
(both models 1392 and 1580) automatic samplers. Composite sample aliquots
were collected at half hour intervals at all stations except New Jersey
Zinc which was sampled at 20 minute intervals. Sample temperatures were
maintained at about 6°C using ice in the samplers ,
3. Sediment Samples were grab samples collected using a
model 426/SM Mud Snapper made by GM Manufacturing and Instrument Corporation.
After collection, the samples were stored unpreserved in plastic cups.
4. Containers. Samples for nutrient/BOD analyses were stored
unpreserved in new gallon plastic cubitainers. Phenol samples were stored
10
-------
in acid washed glass containers. Zinc and chlorophyll a_ samples were each
stored in separate new quart cubitainers. Cyanide samples were stored in
clean glass bottles.
B. Sample Preservation
All samples except those for dissolved oxygen analysis were kept
at 4°C until they were analyzed.
1. Phenol samples were preserved by adjusting the sample pH to
less than 4 with phosphoric acid and adding copper sulfate.
2. Cyanide samples were preserved by adjusting the sample pH to *
more than 12 with sodium hydroxide.
3. Zinc samples were preserved by adjusting the sample pH to less
than 2 with nitric acid.
4. Dissolved Oxygen (DO) samples were preserved with 2 ml manganous
sulfate solution, 2 ml potassium hydroxide-potassium iodide solution and 2 ml
of concentrated sulfuric acid. The samples were stored in the dark until
the analyses were performed.
C. Field Analyses
1. Temperature was measured using a YSI dissolved oxygen meter
for samples on which DO analysis was done in the field. Other temperature
measurements were made with a calibrated thermometer.
11
-------
2. Dissolved Oxygen (mg/1 DO) in the stream samples was
determined with a YSI DO Probe 15739 and YSI Meter Model 57. The meters
and probes were air calibrated and measurements were made while manually
stirring.
Ref: EPA Methods for Chemical Analysis of Water and Wastes, 1974, p. 56.
3. p_H_ was measured using Leeds and Northrop Model 7417 pH meters
with Ingold number 2761 7-02 pH electrodes. Meters were calibrated using
buffer solutions with pH 4, 7 and 10. Measurements were recorded after the
meter reached equilibrium in the sample.
D. Flow Measurement
1. Stream Flows were read from USGS gage stations with the
exception of Saucon Creek which was manually gaged using a cup type velocity
meter.
2. Waste Discharge Flows for the Allentown and Bethlehem sewage
treatment plants were read from the totalizers on the continuous recording
flow meters at the plants. Flows from Bethlehem Steel were measured by the
company as required by their NPDE5 discharge permit. The company did only
one measurement at each outfall and the methods of measurement included use
of V-notch weirs and lithium dilution techniques. Flows for New Jersey
Zinc are company estimates.
E. Time O'f Travel
Travel time in the river was measured using a fluorometric dye
technique. One quart of Rhodamine B dye was released into the river at
12
-------
the Hamilton Street Bridge, Allentown (river mile 17.3) at 3:00 a.m. on
October 5, 1977. The time of passage for the dye mass was subsequently measured
at three downstream points. The dye cloud was tracked using a continuous flow
through fluorometer system consisting of a submersible pump, a Turner Model
111 Fluorometer with a flow through door and Corning orange (3-66) and
blue (4-97) filter, and a Rustrak strip chart recorder. The submersible
pump was placed in the river and sample was continuously pumped through
the fluorometer flow-through door. The recorder provided a continuous graph
of dye concentration in the river and the elapsed time between stations was
taken when the maximum dye concentration (peak) was recorded. Average
velocity for each reach of stream was calculated using the distance between two
stations and elapsed time for the dye peak to travel between the two stations.
F. Sediment Oxygen Demand
Sediment oxygen demand (SOD) was measured at Station L-13 using
a benthic respirometer. (See Appendix C for explanation and
description of respirometer.) The respirometer was lowered from a boat into
soft sediment where it could make a watertight seal. The DO of the water
trapped beneath the respirometer was measured initially and the changing DO
level was monitored over an 80 minute period. A DO bottle filled with
bottom water was attached to the respirometer and the initial and final
DO was measured to isolate the demand exerted by the water.
13
-------
IV. Laboratory Procedures
A. Chlorophyll a (uq/1 chl. a): The photosynthetic pigment, chlorophyll
was retained on a membrane filter and extracted into acetone with grinding.
The extracted solution was measured spectrophotometrically.
Ref: Strickland, O.D.H., and Parsons, T.R., "A Manual of Sea Water Analysis",
Bulletin 125, Fisheries Research Board of Canada, Ottowa, 1960, p.185-
^* Nitrogen Series
1. Total Kjeldahl Nitrogen (mg/1 TKN-N): The water samples were
automatically digested and analyzed by a Technicon Continuous Digester and
Auto Analyzer for ammonia and organic nitrogen. The method of analysis was
the colorimetric phenolate method.
Ref: EPA Methods for Chemical Analysis of Waters and Wastes, 1974, p. 1821.
2. Ammonia (mg/1 NH -N): was analyzed by a Technicon Auto
O
Analyzer employing the colorimetric phenolate method.
Ref: EPA Methods for Chemical Analysis of Water and Wastes, 1974, p. 163.
3. Organic Nitrogen (mg/1 ORG-N): was determined by difference,
(TKN-N) - (NH -N) .
«j
4. Nitrate plus Nitrite (mg/1 N02 - N + N03 - N): was analyzed
with a Technicon Auto Analyzer. This procedure utilized the cadmium reduction
of nitrate to nitrite and subsequent diazotization with the optical density
measured at 540 nm.
Ref: EPA Methods for Chemical Analysis of Water and Wastes, 1974, p. 207.
5. Nitrite (mg/1 NO -N): was determined as for NO + NO. with
L, £.3
a Technicon Auto Analyzer but the cadmium reduction step was by-passed.
Ref: EPA Methods for Chemical Analysis of Water and Wastes, 1974, p. 215.
5- Nitrate (mg/1 N0o-N):was determined by difference,
(NO -N + N03-N) - (N02-N)
14
-------
C. Phenol (rag/1 Phenol): was determined colorimetrically via the
4-amino-anti-pyrine method. The samples were distilled to remove potential
interferences.
Ref: EPA Methods for Chemical Analysis of Water and Wastes, 1974, p. 241.
D- Cyanide (mg/1 CN): was measured using a Technicon Auto Analyzer
colorimetric procedure with UV light and pyridine-barbituric acid as the color
reference.
Ref: Technicon Automated UV Digestion Method
E. Metal s (mg/1 Total): Total In; Mn; Fe; Pb; Cd ;• Cu; and Cr were
quantitatively determined by atomic absorption spectrophotometry using a
Varian AA-6 A.A. Spectrophotometer. Water samples were treated with nitric
acid and refluxed on a hot plate until digestion was complete.
Ref: EPA Method for Chemical Analysis of Water and Wastes, 1974, p. 78.
F. Sediments
1. Total Residue (% Dry Weight): The % dry weight was determined
by placing = 5 ml of sample in a crucible which had been previously heated
for 24 hours at 103 - 105 C for 24 hours and cooled in a dessicator before
weighing. The "wet" weight was then determined and the sample plus crucible
returned to the 103 - 105 °C oven for 24 hours. The final "dry" weight of
the sample after drying is then determined and the % dry weight calculated.
2. Total Organic Carbon (% Dry Weight - TOC): Predried samples
(at 35°C for 24 hours) were analyzed by the Oceanography International Total
Carbon System. The sample, potassium persulfate and phosphoric acid were
sealed in glass ampules and autoclaved at 230^C for four hours. Organic
materials contained in the sediment samples were converted to carbon dioxide
15
-------
by this wet chemical oxidation step.
Ref: EPA Methods for Chemical Analysis of Water and Wastes, 1Q74, p. ?36.
Instruction and Procedure Manual for Oceanography International
3- Total Kjeldahl Nitrogen (% Dry Weight - TKN-N): The procedure
for sediment samples was the same as that employed for water samples but
digestion of 0.05 gms of sediment (wet weight) was carried out using
potassium sulfate and sulfuric acid. The mixture was refluxed over a
flame until the organic nitrogen was converted to ammonium. The answer was
corrected to % dry weight using the dry weight determination described
previously.
Ref: EPA Methods for Chemical Analysis of Water and Wastes, 1974, p. 182.
4. Total Phosphorus (% dry weight - TP04): Total Phosphorus in
sediment samples was determined by manually digesting (in an autoclave for
30 minutes at 15 psi) the sample with ammonium persulfate and sulfuric
acid to convert the various forms of phosphorus to orthophosphate. The
orthophosphate was measured on a Technicon Auto Analyzer. In this colorimetric
method ammonium molybdate reacts with the orthophosphate in the acid medium
to form a heteropoly acid, molybdophosphoric acid. This acid is reduced
by ascorbic acid to form the intensely colored complex, molybdenum blue.
The amount of color produced is directly proportional to the amount of
phosphorus present.
Ref: EPA Methods of Chemical Analysis of Water and Wastes, 1974, p. 256.
16
-------
5. Metals (mg/kg dry weight): Sediments were anlayzed for Cr;
Cd; Cu; Pb; Pe; and Zn via atomic absorption spectrometry using a
Varian AA-6 Spectrophotometer. The sample preparation and digestion
were as follows:
1. Sample dried at 35°C (minimum of 24 hours).
2. Removed from incubator/oven and ground to "natural"
particle size (large rocks, shell, leaves, etc. removed).
3. Sample dried additional 24 hours.
4. Sample weighed; 3-5 grams for silts and clays, 15 grams
for sands (i.e., ocean sediments).
5. Transfer to glass-stoppered Erlenmeyer.
6. Add equal volumes deionized-distilled water and
concentrated HNOs (^ 20 - 25 ea. = RN).
7. Heat in shaking water bath at 58°C for 4-6 hours.
8. Filter with .45 micron membrane filter, dilute to 100 ml
9. Sample is now ready for analysis.
G. DO/BOD
1. Dissolved Oxygen fmg/1 D.0.):in the effluent samples was
determined by the azide modification of the basic Winkler Method, with the
titration done potentiometrically with a Fisher Automatic Titralyzer.
Ref: EPA Methods for Chemical Analysis of Water and Wastes, 1974, p. 51.
17
-------
2. Biochemical Oxygen Demand (mg/1 BOD,-} : The samples were
" I ™ ' •" ~ ' " " "-•—" • -" ,1111 IB-IP ^J
incubated at 20°C for five days in the dark. The reduction in dissolved
oxygen (as measured by YSI #5750 BOD probe) concentration during the
incubation period yielded a measure of the biochemical oxygen demand.
River water samples were analyzed for BOD unaltered,
incorporating indigenous biota and nutrients.
The following Bethlehem Steel samples were altered by the
addition of 1 ml of stale settled sewage (seed) per 300 ml of sample: outfall
005; 00$ 007; 008; 010; and 012. The seed was obtained from the Maryland
Department of Natural Resources.
The addition"of seed was to assure the presence of an
adequate bacterial population. This alteration necessitated that a blank
(distilled water plus 1 ml of "seed") be carried through this experiment
to compensate for potential BOD contamination.
The following STP and industrial effluent samples were
altered by the addition of "seed" (1 ml/bottle) and by dilution with APHA
dilution water: Allentown STP; Bethlehem Steel outfall 015 and 031; and Bethlehen
City Municipal STP. Allentown STP samples were found to have significant
residual chlorine content and ^ 1.0 mg/1 of sodium sulfite solution (0.025N
Na2SQ3) was added to eliminate this potential interference. These alterations
necessitated that a blank (300 ml APHA dilution water plus 1 ml of "seed")
be carried through this experiment to compensate for potential BOD contamination.
A dilution factor is also included in these calculations.
Ref.: EPA Msthcds for Chemical Analyses of Water and Wastes, 1974, p. 11.
-------
H. Long Term BOD
A set of laboratory experiments was conducted to characterize
long term oxygen demand and to differentiate between the nitrogenous and
carbonaceous components of long term BOD. The long term oxygen demand was
estimated by extending the standard BOD test incubation period from 5 days
to 30 days. The nitrogenous component of total BOD was estimated by
measuring the changes in the states of nitrogen during the course of the
BOD incubation and also independently by a method of differences in which
a nitrification inhibitor was used.
For determination of the BOD, , samples were set up as
described previously with the exception that 6 replicate sample bottles
were used as part of the nitrification experiment. The dissolved oxygen was
measured for each sample after 0; 6; 12; 20; and either 29 or 31 days of
incubation to determine the long term BOD.
One of the six replicates mentioned in the previous paragraph was
sacrificed after 0; 6; 12; and either 29 or 31 days of incubation to measure
Total Kjeldhal Nitrogen (TKN); ammonia (NH3); nitrite (N02); and nitrate (N03).
The changes in concentration in the states of nitrogen were used to calculate
the nitrogenous oxygen demand by the equation:
NOD (mg/1) = 3.43 (AN02-N + ANOs-N) + 1.14 (AN03-N)
where A = final concentration - initial concentration.
An inhibitor 2-chloro-6(trichloromethyl) pyridine (TCMP) was
also employed as part of the long term study. Two bottles of the six
replicates were spiked with TCMP and the dissolved oxygen measured. The
19
-------
inhibitor was added to stop nitrification while allowing all other heterotrophic
respiration to proceed. The inhibited bottles expressed only carbonaceous
demand whereas the uninhibited bottles expressed the total BOD demand (NOD +
CBOD). By difference the nitrogenous oxygen demand was calculated.
The first-order deoxygenation constants k]o(day ) of the NOD^
and CBOD as measured by the inhibitor were determined by a graphical method.
This method relies upon the observation that the relation (1-10 "k't) of the
classical BOD equation y = L0 (1-10 ) is very similar to the expression
2.3 k-jQt [l + (2.3/6)k]Qt] , where k]Q is the deoxygenation constant (day"')
and L0 is the initial remaining oxygen demand at time t = 0.
Together the two equations reduce to:
y = L0 2.3 kt [l+(2.3/6)kt] '3 or (t/y)1/3 = (1/2.3 L0k) + (2.3k)2/3t/(SL0)1/35
such that a plot of (t/y)'/3 vs t yields a linear relation with slope
m = (2.3k)2/3/(6L0)1/3 an(j intercept b = l/(2.3k L0)1/3. The BOD k10 and L0
values can therefore be determined as follows: k = 2.61 m/b and L0 - 1/(2.3 b^k).
The correlation coefficient for this linear approximation was taken as an
indication of the "goodness-of-fit" to the first order kinetics.
Limitations of Long Term Laboratory BOD Experiments
1,. It should be emphasized that this was not a standard
method and that the data reflects not only the imprecision of the
analytical methods (Appendix B) for determining the states of nitrogen
but also the variability associated with biological processes. The
interpretation oir the results should include a consideration of this
variability.
20
-------
2. Nitrification is an extremely fragile biological process
and is affected greatly by environmental conditions. The problems with
using laboratory experiments to study field conditions (in situ) are
therefore potentially significant.
3. Nitrification is a surface phenomenon with much of
nitrification in clear shallow rivers occuring on the surfaces of mud
(aerobic), plants, slime, etc. Laboratory experiments involving the
incubations of clear-shallow stream samples may not reflect the extent
of in situ nitrification. The Lehigh River remained quite turbid during
this study and significant nitrification activity was expected in the
water column.
21
-------
Station
L- 1
L- 3
L- 4
L- 5
L- 9
L-10
L-ll
L-12
L-13
L-14
L-15
L-16
Date
10/4
10/4
10/4
10/4
10/4
10/4
10/4
10/4
10/4
10/4
10/4
10/4
S- 6
S- 7
S- 8
T- 1
1- 2
10/4
10/4
10/4
10/4
10/4
1430
1340
1330
1750
1545
TABLE V
- A-l
LEHIGH RIVER STUDY
FIELD
Time
1650
1730
1604
1517
1308
1030
1115
1140
1200
1030
1047
1430
1340
1330
1750
1545
DATA FROM
Location
Right
Center
Left
Avg.
Left
Right
Center
Left
Avg.
Right
Center
Left
Avg.
Right
Center
Left
Avq.
Right
Center
Left
Avg .
Right
Center
Left
Avg .
Right
Center
Left
Avg .
Right
Center
Left
Avg.
Right
Center
Left
Avg.
Right
Right
Center
Left
Avg.
Surf.
Surf.
Surf.
Surf.
Surf
STREAM SAMPLES
PH
(SU)
_ «. «_
7.2
7.1
7.25
7.18
7.2
7.25
7.4
7.28
____
6.9
6.9
6.9
6.9
6.75
6.7
7.2
7.2
7.0
7.9
7.9
7.2
7.8
Tenp.
(°C)
14.5
14.5
15.0
14.5
14.5
15.0
15.0
15.0
15.0
13.0
14.0
14.5
13.8
13.5
13.5
13.5
13.5
13.8
13.8
14.0
13.86
14.0
14.0
13.9
13.9
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.3
14.0
14.0
14.0
14.0
15.0
15.0
15.5
14.5
14.0
D.O
(PPM)
10.8
i n o
1 U . O
ins
1 U . O
10.8
9.6
10.8
in o
1 J . O
in c;
1 U • 3
10.7
10.2
9.2
10.2
9.9
11.2
10.9
10.7
10.9
9.5
9.6
9.6
9.53
9.15
9.25
9.0
9.13
9.2
9.15
9.05
9.13
8.75
8.75
8.9
8.78
9.6
9.4
9.7
9.53
9.6
9.6
9.6
9.6
9.6
--- •,
9.8
9.4
10.0
11.8
-------
Station
L-l
L-3
L-4
L-5
L-9
L-10
L-ll
L-12
L-13
L-l 4
L-l 5
L-16
S-6
S-7
S-8
T-l
T-2
T-6
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
TABLE V - A-l (CONTINUED)
LEHIGH RIVER STUDY
FIELD DATA FROM STREAM SAMPLES
Time
1700
1510
1600
1500
1425
1115
1048
1029
1000
1215
1230
1255
1050
1200
1205
1540
1535
1145
Location
Right
Center
Left
Avg./Comp.
Surf.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Surf.
Right
Center
Left
Avg./Comp.
Surf.
Surf.
Surf.
Surf.
Surf.
Surf.
pH
(SU)
7.3
—
—
7.3
6.0
7.3
—
—
7.3
7.4
—
—
—
—
—
—
—
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
—
6.0
—
6.0
6.0
'6.0
6.0
6.0
6.0
8.1
8.0
7.6
6.0
8.0
7.8
Temp.
(°C)
14.0
14.0
14.0
14.0
15.0
14
14
14
14
15
15
15
15
16.0
16.0
16.0
16.0
15.0
14.0
14.0
14.5
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.5
14.16
16.0
16.0
15.0
15.7
16.0
15.5
15.5
15.0
15.3
13
15
16.5
15.5
«._.__
17
D.O.
(ppm)
9.5
10.0
10.0
10.0
10.0
9.6
10.2
9.9
9.9
9.4
9.4
10.0
9.6
9.4
9.7
9.3
9.36
23
8.4
8.0
9.6
8.66
9.4
9.8
9.9
9.7
9.4
9.2
9.8
9.4
9.5
10.0
8.73
Chlorophyll _a
(ppb)
3.0
1.5
3.0
4.5
3.0
3.0
3.0
10.5
7.5
6.0
4.5
3.0
0
3.0
0
4.5
1.5
-------
TABLE V - A-l (CONTINUED)
LEHI6H RIVER
STUDY
FIELD DATA FROM STREAM SAMPLES
Time
1005
1140
1230
1315
0945
1240
1300
1315
1340 '
1140
1020
1050
0950
1345
1325
1040
1210
1335
Location
Right
Center
Left
Av9.
Surf.
Right
Center
Left
Avg.
Right
Center
Left
Avg.
Right
Center
Left
Avg.
Right
Center
Left
Avg.
Right
Center
Left
Avg.
Right
Center
Left
Avg.
Right
Center
Left
Avg.
Right
Center
Left
Avg.
Surf.
Right
Center
Left
Avg.
Surf.
Surf.
Surf.
Surf.
Surf.
Surf.
PH
(SU)
7.0
—
_ —
__ _
7.1
7.1
—
—
7.1
7.3
—
-__
7.3
6.7
6.6
6.4
6.56
6.5
7.0
6.5
6.66
6.3
6.7
6.9
6.66
6.6
6.8
6.9
6,76
6.5
6.8
6.9
6.73
6.8
6.8
6.5
6.7
6.2
6.7
6.5
6.4
6.53
7.7
7.6
7.6
7.5
7.8
7.4
Temp,
(°C)
12.0
12.2
12.2
12.1
12.8
12.8
12.8
12.8
12.8
14.5
13.7
13.8
14.0
13.5
14.0
14.5
14.3
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
15.0
15.0
15.0
15.0
16.0
15.0
16.0
15.6
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
13.0
15
— — _
12.5
12.0
15.8
D.O.
Station Date' Time Location (SU) (°C) (ppm)
W6 1005 Right 7.0 12.0 10.8
10.7
10.7
10.7
L-3 10/6 1140 Surf. 7.1 12.8 9.15
10/6 1230 Right 7.1 12.8 10.48
10.35
9.7
, r . ---- 10.14
L-5 10/6 1315 Right 7.3 14.5 9.85
10.2
9.9
L-9 10/6 0945 Right 6.7 13.5 lo'.O
10.2
9.6
9 93
L-10 10/6 ---- ; ;;y ;;;:
9.2
9.0
Lm m "I •. j — "* — - •— w i ( • w- 27 * £ 0
-11 10/6 1300 Right 6.3 14.5 10.0
9.1
9.1
9 4
L-12 10/6 1315 Right 6.6 15.6 8.*4
8.6
8.4
L-IS 10/6 ----' ; ""/ ;:;: 8'46
8.3
8.4
8 38
10/6 1140 Right 6.8" li'.O 9." 6
9.6
9.4
L-15 10/6 1020 Surf. 6^2 14*0 9*8
10/6 1050 Right 6.7 14.0 9.8
9.6
10.4
o 03
S-6 10/6 "-- " "" •••"
S-7 10/6
S-8 10/6
T-l 10/6 1040 Surf. 7.5 12.5 9.4
T-2 10/6 1210 Surf. 7.8 12.0 10.3
T-6 10/6 1335 Surf. 7.4 15.8 8.58
-------
oo o o o o o oo oo o o oo
Q ji *• f- .
a, S. — "^
- -
O
•cro
. . tr
=:— — S
'Cc i -— co is? t c^co
o
rc
2
25
fo_ o
'^
to>
-------
ooooooooocooooooooocoooooocooco i
-'-'-1---
O -— tncnOrsjnoOOO — Atno^u^-
cnJa*WJ*-^o-»'~*Oro-£* — nooo— ^
j— • -- o uj 01 01 *>J
— aD**-JC3-fi*o en
-
» — on— o —
lo |tn
OC03O— ' — -
j*aiCQO*.o
I I I 1 1 I 1 t I I t
t 1 I 1 I I I
t t t t I I I I
25
-------
o
-— O
•a -s
-a o
a- -a
co
O —)
^ 3
***** O fO
•a -s
•a o
oo
(-••
O)
O
a
10)
ro o
o —' ^~
O en en
co —' —'
-v! O
o o -».
o o on
en
O
ro
CO
o
o
CJ1
I
CJ1
CJ1
O
I
OJ
CO —• —'
ro o
O en \
O en en
i
a\
o
o
o
o
01
o
§
-a
Ol
o
• en
en o
o o
CJl
I
en
01
a
m
re
o
rn
ca
en
01 oo
o 01
O
O
ISi
en
en
o
73
73
m
CO
I
CO
co —' —'
-< o H
o -e» — i
o en en a\
OJ —J —J
_i o
o —• ^
O en en
I
~~t
O
O — ' — '
O O
en ^
O en
CO
o
o
o
Ji
CO
O I
en —<
co —"
• ro
o o
o o
en
co
i
o
•
en
o
ro
o
en
i
ro
ro
en o
O en
en
co
i
CO
-«J O O
• o ^>.
en o en
i
co
27
-------
•3—10
•—.3- -"• »
T5 rt> = rf
T3 3 0) fD
= O
GO
rf
O
3
•o CD
T3 3
3O
a
O —' O
o -e» *•>.
01 o cr>
o -^
— ' O
(xi o
o r-
^s. I
en -J
o r\3
—i co
OJ O
i
tn
O tn
co —i
*> o
i
co
O O
—i en
co o
O
CM
I
en
o ro o
INS CO **K
o o cr>
i
.£>
O
CO
o
co
en
-ft.
O
ro
O
o
">•»
en
o
01
O en
ro O
O O
O
CO
ro
en
en
en
r~
i
cn
r-
l
VO
o
5
>
-n
O
73
CO
— !
73
3
co
r—
m
^c
HH
£7)
^^
•J.
^3
»-H
m
73
CO
c:
0
_J
•"T
3>
CO
1
m
<
i
>
i
_e»
-<
O
no
co
CO
en
I
CTi
o ro
o -e»
CT> O
•u
m
CO
VO O CO
cn ^-» i
O CT> cn
O
O
O
*»
Co
O
-*.
en
o
CO
en
en
co
i
O —' --
CO O
en
-------
.<<
O)
3
—••
C-
fD
O
&
rt
ftl
O
3
O
•o 01
c.
fD
CO
&
cf
A
O
—• O
•*» "-•»
O Cn
A
O
-•4 O r-
O •*». I
O en —i
A
O
ro
eo
o
en
en
A
O —J
• On
O —'
—' O
O
on
i
CO
A
O
O
On
o
cr>
A
o
ro
co
o
o
A
O
en
-P»
O
A
O
on
O
O
I
en
O
m
rn
D3
A
O —'
b —'
^
en
I
ro
A
o
4* o r-
ro -^ i
en en vo
o
73
3
73
m
m
73
CO
cr
i
en
o —' —•
CO O
-P> en en
i
en
A
O
ro
o
o
en
i
o
oo
3*
CO
A
O
O
vo
en
o
en
i
en
A
O
O
-e»
C»
O I
*»•• — '
en — '
o
•
en
ro
o
o
en
co
i
A
O
O —'
co
en
O
en
i
ro
O —• —•
ro
en
co
ro
en en
co
i
CO
A
O
o
o
o
o
en
1
CO
-------
NJ —
3
O
•a
T3
O
3>
fO
Go
O
3
M — I
-"•-••
3 2
O
O
»
!-!•
CD
co
r+
OJ
O
=3
O
-a
•3
CT
tD
rf
•^4
O
ro
o
on
-fta
l
r-o
IN3 O
cr> u>
o o
O
I
o
o —'
ro ir> o
01 oj ^^
O O JSi
i i
l i
I I
I I
I
cr>
ro —'
o un
Co o o
•>-J O "^
o oj -e»
CO
o
co
CTi
ro -j
ro -e.
O O
ro
—' O
CO —i
O en
o
-to
O
oo
—' ro
wo o
o o
u>
ro
O
s ^
en .fa
o
o
-n
o
CO
73
m
o
33
00
m
i
Ol
—' OJ
ro oj
o o
ro o
-S» CO
O O
i
-^>
ro 01
Co en
o o
CO
m
CO
ro
o
O
en
01
o
-J O I—
co — i
O -fa CO
ro —•
4=> O
o ro
o
cr>
ro
o
o
co
O
en
O
ro u>
o\ ca
o o
30
-------
I';O'^('BO.'5<'3<'Si"DfD'^f3f9t "3 ^fDOCCrD^DOOCO^i^r— r*r^-
Ifllli'iliilii'li'iflfil'liilliliii
ooocoooooooocooooooooocoo
u> — — —• — — — — — — — OOOOGOOGOGOO
"""1
ooocooooooooooooooooooooooooooo
* " ^ ~- * ^ - •- - ~ - -»- •*• "- "* "^ " ^" ** "^- " **-« ** '^- " "*-
wO— rsjOfviutOroc-j— r
O—r-ooooj — r>oenojJi—'
—- I I f\) I
—H3
tt
Ol re
CD
S3
•33
V>
—1
§
I I CT\ CJi O O O _.
i I O O O O O O S
op-
00 <
« M •*.
i O O O rsj —• —
I
i u> ui tn o CTi O
•O (I
3 ire
31
-------
-- 01 2 2
*< 01 ,T> -< ~ ~
Q p-*i cr :
o =' <
O O O
01 tn A
O C O O O
^- -^^ •s-- \ ^--
O*> en ^» CTi en
»
S;
,£» CS -C* U1 O —
O 45» UJ O C O
O tJi O O C O
CJ U) VI U) U) Ul I
• en CK
i-o
ro
3
ora
re
— >
O ro r\j i
•old
-CT I.
SO
73
tfl
O
CO CD 1C
O O O
rc <-j uj
«3 O rsj
O O O
•a
•5
32
-------
E.-
oooooooooooooooooggogoooc
'""~
ooooooooooooooooo ooocoooooooooo
•'-•••'-----'--- •••-•-•'->->'
la
oocoooooooooooooooooooooooocooo
01
O
— 'rou>rot\3iM— 'roro— -^r
— *o— r3l:z
2
73
OOOOO
co
CTt
O
— - Co co cncnno
'Cn—•—
3 CD CO
zroropooss^ozzoooooooooooooooo— «(ji--— •--
"**'*"l
o
^.
1 -*Jff*U>a50^LJ —-O'
. 25 ui-j ••-—••
i m u o
ro ui (
I^J-*4*«J**JCT*W**JCJllN3~'t-JCfcJCn[
i rsi i i uj
i i — i i ro
33
-------
i=
io
O
O
3 o
5 O
owe;
UJ O O
o
o>
05
—• (jj O
Ul O O
i
1 '
I— rn
332
oca
-aiz
•a O
•a co
•oo
30
•a o
•ca
IS:
34
-------
fD
O
-a
•o
3
T3 O OO
fD O <-r
2 2 e>
O O -••
Q. I/I O
-"• 3
rt
fD
fD
3
O
•0
T3
-O O
fD O
-5 2
-J.-O
O O
Q. l/>
CO
rt-
OJ
O
3
-o -o o
3" fD O
fD T =
3 -.-C
O O O
—' C_
•o
i
fD
•
o
on
on
•
O
ro
CO
on
•
(£>
^
00
ro
o
o
A
ro
oo
o
_j
o
*>
_j
oo
o
o
_J
o
"^•^
-fe
_J
on
on
O
__<
O
oo
«j
on
oo
O
«J
o
oo
on
O
_,
O
^**^
oo
CO
fD
rt
3-
—4
fD
ST
fD
3
CO
rt
(^
HL
o
-e»
CO
fD
j?
1"
oo
fD
fD
"™*
=tfc
0
on
CO
fD
rt
3"
fD
3"
fD
3
oo
fD
fD
=te
O
OO
— ->
__J
^1
on
O
*
o
-pa
— '
—
-C.
^
oo
o
*
o
oo
-p.
.J
o
^
o
on
•
O
— •
_J
o
***^
-&
-*J
*sj
r\3
o
—
oo
—1
o
_J
o
oo
o
o
«J
o
"^^
oo
CO
fD
rt
3"
_«J
fD
3-
fD
3
oo
rt
fD
fD
=«fc
O
O
C3
fD
rt
3-
fD
3"
oo
^>
fD
fD
••^
=tfc
O
Q
CO
ro
fD
rt
rr
fD
3-
fD
3
oo
fD
fD
=te
O
v-J
O
•
ro
o
o
•
—1
CT1
— J
0
•v.
O
o
o
•
o
MD
0
*
•»j
-P>
on
•
^
ro
_j
o
****»
-C»
•
ro
O
o
0
oo
0
o
o
0
oo
oo
o
1
o
-^»
oo
^
_^
_«*
fD
3
Q
jr
3
00
•H
CO
fD
rt
3-
fF1
fD
on
™\
-o
CO
fD
rt
-a
Fn
O
f— r~
m
a ic
— i S
-n 73
O HH
33 <
FT
m 50
•n
-n oo
i— —
m c
"Z. -<
i
•n
oo
T3
1 —
m
oo
3-
rt>
3"
3
00
rt
fD
fD
=tfc
0
O
on
— 1
CO
1—
m
^^
CO
1
oo
o
CTl
ro
—' —i CO
OO CTi fD
-C» —' rt
O on 3-
fD
(0
oo
rt
O
fD
o o
o
ro
—' —•> CO
on -^i fD
—
-------
4?
CU
3
-a
I
-c o
ro o
-5 3
_u-a
o o
O. t/i
rt-
CB
co
rt-
QJ
O
3
O
fl)
3
-a
-o o
ft O
-5 3
-*T3
O O
O- l/l
ro
oo
rt-
a>
rt-
.a.
O
(a
3
a.
re
-c
-o
~u o
ro o
-5 3
O O
Q.
rt-
ro
O 73
oo
o
3
A
O
oo tn
ro en
O O
CO
rt-
31
ro
3"
ro
oo
rt-
ro
A
O
tn rss
O O
CT
rtl
ro
no ro —i
oo —'
o o n>
_i _j oo
00 rt-
o
tn
o o
42. CO
oo
-a
o o
^•^.
-p» co
o
-p.
=*!:
O
O
-<
ro on
oo oo
O O
in
ro
C3
CD
rt-
3"
n>
3-
ro
oo
rt-
ro
ro
A
O
OO —I
o o
CO
ro
ro
3"
ro
oo
rt-
ro
ro
o
on
o o
o o
o o
oo
co
ro
ro
O
73
rn
73
oo
CO
I
o o
-^--^
-e> oo
o
on
o o
-K» OO
o
§
oo
oo tn
O Js»
O O
en
o
o o
-p» OO
CO
ro
ro
3"
ro
oo
rt-
ro
ro
o
oo
~'—' ^
ji ~-j ro
o o
tn o
A
O
o o
-e» co
ro
ro
CO
n-
ro
ro
O
O
O
ro
_! _1 CO
—> -s» ro
-c» oo rt-
tn o 3-
ro
oo
ro
ro
m
oo
O O
-t* CO
=»=
o
o
tn
oo eft
-C» — '
o tn,
A
O
w
ro
3-
ro
en -vi
—' co
o o
A
o
oo —j
ro
ro
o o
-C» OO
o o
-E» CO
00
ro
ro
ro
3
oo
rl-
ro
ro
=«=
o
o
en
36
-------
t-
I
z z
o o
o o
o
• O
•s» o
01 1
0
/ — \ C3
> o
z o
o
tO
o
01
t>
o
Ol
II II
1 3 -S
o ro
• (-fa
o
a. -s
n> ri-
ft- ro
' to
cr
O 0 O
***** "***• "****
roro^- ro ro i— • ro ro ^
vootooso OOroOso vccrooso
ro i tn -j ~-J J^itntnoi oii^tnto
voiovovo ro i ro tn -vj o i >— os o
H* O Ol Ol •£»• OstnOO 01 O ~-l Ol
Z Z • • Z ZZZ Z Z • •
i.i— i to . i . . . . i . o to
O I O to -C» OlODO O I O -J O
. tn vo • ... . . to *»
Z Z-Z Z ZZZ Z Z-Z
1 . tO . 1 . . . | . 1-1 .
O i O i-1 O C i O ~ O O I O tn C5
. js, . . ... . . CO .
O oro OlOOO O I O O *~i
1—1 I 1 tn
-U CO
KJ i_i H* i_i Ul OIOIO1 1— i I— i I— ' 1— i
OivoOsOs "**J I tn Os i— * -o. I ^4 tn tn
H-I ,£* H* rO Os CO *• Os VO -C* H-* O
Os " ro
i
01 010 Os ji.ji.i roitoo
vo too roooi vo i -c* i— i
.u ro
Os Os tn 01 tn tn .u ro .&. J^ 01 i— '
O .... i .... i
tn i— i yi H- i oo -C». tn tn i ~j .u cc oo i
oioioiro Jt» 01 01 O 01 to ro i— i
. . . . . . . . . . . . o
co^jrooi Osvorooi ooo^--~j
rororo i— • i— i i— • ro t— > i— i HJ o
. . . . o . . . . O .... 0
^J.e».oico rotnoiro -^i os *>. i— >
i— > i— ro i— ro _ (— i
• .. .. • . ..
ootn-o ~ovoro w^Os
ro ro ^
vo o to
tn i yn
0 i vo
vo O
Z Z
1 •
a i o
'
z
i i—1
O i O
10
1
b i b
tn i tn
*> tn
Ol 04
Ol i O
*. to
t— 1
H- 1 I—"
ro b
CO Ol
. »>. tn
i— ' 1—1
»-> O 00
ro -~J *>.
OS A.
. .
l-i tO
tn tn *»
...
i— i 01 ro
tn js.
• i •
-J 1 VO
1—4
O
*^^.
OS O
i— • i— •
O *•
00 OS
00 o
Ol ^-J
Ol -~J
00 (— '
tn o
OS tn
to **
tn i
O i
CO
to to
ro o
-J tn
CO Os
ro
ro
to
• O
t— 1
ro
• O
i— i
• O
tn
ro
i
CO |
ro to H-
vo o ro os
01 i *. tn
f I *» Os
tn vo -~J
Z Z •
1 • H*
O I O Ol
• ro
Z • Z
• 1 O •
o i co a
Ol •
O 1 O 0
1 CO
Ol
)— t l~l |_4
-fe i to ro
VO O O
Ol O O
Ol -U -ft*
^
^J ^J tn Ol
....
os i— i co os
tn tn j* 01
• • • *
Oi t— ! tn ro
ro ro i-" O
....
tn o Oi -u
1—1
. i . .
tn i tn ro
O
^•^
O
Os
-J
Os
O
VO
Os
Z
b
^
Os
I
1
O
3
a
~
rt
CD
i— 1
n
c
cr
P
r+
M"
O
y
•g
r3
^
-a
•g
-3
*^3
^
T3
3
»— i
"T3
^
_.
-5
3
^
^
5
a
w
w
O
1^1
H
Z
2
*"•
•-X
0
ro
>
O
to
§
Ol
>
O
Ol
03
O
°
,
r:
^
-3
n
s:
-a
o
ft-
i»u
o
.
-
.
o
c^
o
z
o
a
*
z
0
o
*
*
H.
^^
i—1
a>
I
o
i
tn
>
5
m
^J
73
l—.t
<
cv:
>
CO
37
-------
*
o
c
n
P
|_i
O
V— ^
11
w
•
J^
0*1
,— ^
'^>
z
o
NJ
y
o
c^
*••"'
^
J_,
*•
c- cn co
1 1 1
to oo — j
*
O i_> b-i _<
a o o o
~^ \ \
Q ^ ^ ^
n
jS
v~"'
n
53 NJ NJ >-•< NJ NJ i— ' NJ NJ H- '
O tO O NJ ON O tO O NJ ON O NJ NJ t— '
tDONJCNO tOONJONO
f-J 1 -fe *. ^ NJI^UIUI
H-1 j *. c^i cjn to t oo 0-4 0*1
CO UDWW i- -JWW
z z z • z z • z
1 • • O • 1 • i— ' •
un . • O •
00
rr
P
rt-
H'
0
o
02
rt
ro
3 0
O 02
C "^
cr w
P2
rt O
O
"§ ?S
^ tZ
"3 Z
3 (JT
fa'
cr
C5
=*
^j
.
n
i
o
a
3
2
53
O
z z; • z
b ] c w a
• • • z z
OO -O.U1HJ CO l NJ i—'(—i • I-
00 O • ^
z • z z
' ' O • • —< <•—>
C I 00 C3 O 3
00 W i
00
o c w
NJ N; i— ' ^-<
i ...
i. i j^ cn 01
i. 4» £» —
to tD O
O-i t/J C^J
CO ^J C^ t^J
1
o oo oo ex i
W W NJ H-»
NJ O ~J ON
. . . . o
OO OO 1— i -vl
-fe. A. >->
NJ NJ W
O tn o
ON ON NJ
NJ 00
NJ W H^ 1— '
1 ...
^~* 1 ^O ^ r^
ON CA^ CgH O"3
NJ
NJ
-0 NJ C
NJ tO I—*
OO OO OO
i» w " h-
KJ I—" -J >-"
. . |
**J ON -^3 '-^ l
i— • W i— ' i— '
^•^ H«* ^ ).«*
H- ' ON — It—1
»— *
1 1 1 O
O^ 1 1 l
W NJ
l—1 NJ
. . O
O --J
~J O -O O O l— O OO
tc w *— ' oo
--J I— '
1 ... 1 . 1 .
^INJNJW ONlCHOJW tOIOOtOOO
to OCOON >-^ NJONOO to --JNJO
O * W to
1— ' 1 1 1
CO h- ' O NJ 1— ' O ^ O*—1
O^ ON CO O"J ^^ ^^ tO ~O NJ
J^h tA] ^—1
H^^^ICO CjJOJNJ^^ NJ NJ NJ f— »
... 1 .... 1 .... 1
00 ON C*J ^^ 1 ON ON tO to 1 ON ON ^^ NJ 1
-JONO-itn NJNJNJh- H-" NS i— ' 1— '
-feCO-0 NJ^^Un 000-JNJ
W NJ 1— '
.S» .tk !-> W f-> t-- OOOO
.___... o . . . . o • • • •__ o
CO W W i— '
NJ WNJ O ONW to ON'Jl
T3
3
-3
3
^
1
2
1
•3
L-^-
O
NJ
O
o
_0
0
_3 f~^
=r S
31
o z
a o
i— ' ~
^~
s— l
rrs
?a
>
2
m
38
-------
§§
a n
n 11
b?
n
> o
o
•o
•+
!>
O
~* ~ r^ c~"
i 1 "i i
•P* W NJ H—
H- h— H- I-"
O O C O
""•x. ^S^. "*N^ ^v^.
-S> *> 4* -fe
NJ NJ H-i NJ NJ h— NJ NJ 1— i NJ NO H- '
tD O NJ ON O tO O NJ ON O t—i i— ' 4^ i 4a> H-I 4^ 42« i t/i o H- o^i-^OONj
W 1 ON ON 4^ NJ 1 NJ OO 00 O-4 1 W 4s. 45k ON 1 OO k- ' O4
ON NJ -J tO W WOO^J ON 00 NJ VO *• -J ON O
Z Z • • Z Z • • Z Z • • Z Z • •
i • ON oo . i • -vj oo • i • en ON • i-w^j
OidOC Oi3-6»o OiOVO-^J ~i3NJO
IOOO . . 4\i 4^» . . Ln OO . • *- O
Z Z-- Z •-. Z Z-- Z Z-Z
I • t— ' O • 1 W *-* O • l-t-"O • i • W •
aiaoooi oiH-~jji. aiooNji. 0,000
• *ONNJ • ^C^K-1 • *O>--» * *^*
II 1 II
C 1 O l— ' 1 O to l— O O i— ' O OW
C^iUlO^I 4^^O^ -^J^l^^ to
NJNJ-U H—WNJ >—'*— ' O -P^
NJ NJ H-> H- ' NJ l—.K-'l— l NJ NJH-JH- NJ fvj f_l (-.
ONitnONON *»i^un*» i—i i i— i en en WiNJuityi
ON NJ^Otn NJ NJNJ-J 00 ON-vlW ON OtO~-i
4^ 00 ON --J ^ O VO ON
t""1
OOOO -f^- -^> ^_i ^_t J^g ^^ ^) f\j
tsJNJON I—I--J.OO 4i.NJH- ON
^J-JONH-i -J ~-J ui i— ' ON ON VI >— i ONONOHNJ
• •••1 ••»•! ••••! ••••[
•t^NJNJOl trtH-iOOONI WH^t-^^l -vJONON-^ll
W NJ NJ i— • NJNJNJ NJ NJ NJ 1— • NJNJNJI-'
• ••• •••» **•• ,•*•
O 00 w *— • cntDOOO 00 ^\ »— ' w -^4^^-*^
^o,Wo
. . . . o ....o • . . . o -'--o
^.j^icoo cx^ooco -Ca-uioo counw
w
Js*. OJ ii W tsJNJO>l O^hOH-1
.« • • •• • »• •(*.
j^co o^ NJ o^ "^j ^ vi O^I^QVI
J-H
1
0
K— »
0
^^».
•^
NJ NJ »—
(£> O NJ ON O
W 1 -fc. —
. . . . o
NJ W ^1 NJ
• • •
O O ON
P
it
0
3
O
(t
ra
=3 C
n P
C X
cr M
P
(t O
o
3
"3 H
1 §
•a z
3 w
T3 Z
-3 0
3 NJ
T3 0
•a z
3 0
NJ
"3 Z
X3 0
3 c/j
"3 >
T3 Z
3 0
c^
"O CO
"3 O
3 0
^3 H O
*3 n cs
= s o
^2 -3 Z
*3 n o
3 S 0
*d *
"3 0 Z
"3 P O
3 i"-1 O
O *
*
p
cr
0)
^:
^.j
i
o
i
1—1
b
en
H
p3
C3
O
o
o
g
o
G
Z
rn
a
-3
1— 1
*^i
cn
73
cn
§
2
rri
C/3
39
-------
c~
I
r-
I
en
C- BS
I
en O
z z
o o
o o
O
P
O
n
2
-3
C
en
o
en
SJ
CJ"
1—•
TO
-<
n
11 11
w cr
• O
4^ 3
W 1
n
/— v C3
> O
z o
o
to
-f
0
o
GJ
o
to to i— '
to o to c
tO to I-* IO Ni I— '
N O to O tO ON O tO ^S to C
to to i—" to to *-
"NO tO O N) ON O tOOtOONO
Days of
ncubatio;
W 1
to i
*^
z
1
0 1
2
b I
o
(— »
w
2
.
O
to
o
N)
t— »
O
ON -4
o H-
H-* ON
,
tO N)
H- 1 CM
t-i OO
• 2
O •
OO O
00 -
o
00
00
e^j i
00 |
en
2
I
3 1
2
• i
a i
i
o
£>.
OO
&>+->£>
O ON OO
O 00 OO
Z • •
en en
O e*i oo
• o *>
en h- o
to Co Co
en P-»
t— W
N> 1
en i
ON
2
• i
a i
z
i
o
en en c
OO 00 -~J
Z • •
• O O
O ON en
• O*J {***>
z z z
b b b
o o
^~j i
w
z
1
a i
z
i
O I
1
o
en
ON
•U O O
i— en en
O J». *»
2 • •
en ^j
C ~-J O
. -^ *.
2 • •
W O
a o en
W ON
1
O to
On Ji.
O"v "**J
tO 1
--J
2
i
'
2
I
C I
I
O
en
•6» tO •&
to en 4^
e^ to ON
2 • •
• £^ *sj
a ON o
• to ^1
2 • •
• to o
O to en
i
o to
en w
4^ tO
ITS
1
T3
""C5
•a
"d
~3
3
H
z
2
Cjj"
O
to
Z
O
0
o
H
m
3;
..^
0
d?
>
>
o
^_
z
r"
rn
I—> H-> H-> I-1 W tOIONJ H-' I—' I—'l-i tO tOH-l—• tO tOt-
I ... I . . . 1 . . . I . I .
tOiONenen i—< i w NJ o e>4itototo 4^i4^.CNen 4^.ie/JONeri
O enwoo to e»JO->) en js>toKj ON to»"to o OO"
Oto oototsj -J4^ ~-JO^
•3 o
3 OJ
m
73
en
e*i o o
N) -o; 4i.
00
O tO
*>. ON
OO ON
O C to OO O
to (ji to to
ON ON e^J
OO ~-J O
ON ON ^J
-d z
3 O
to oo ON to
. . i
4^ W to 4^ I
to i—i
to to
--J -~4 CN tO
O ON 4s. en i
ON ON en i—>
en
to i
-3 CO
T3 O
3 O
to to i—i
-b o en to
to to H-
O H- ON
en 4^ w
o to o
en e»j o -sj
w efj to ^~
ho to
0 O
e^ o o o •£* js* 4^ H-I o-i -^
. . o • • • o o . . . . o ••
tOtO ~JONW ONCTNOO OOO
to O
en
O i-
O O
H-* SO
00
h= H n
w o ea
! B 2Z O
•3 H Z
n o
r> w O
31-10
o *
*
40
-------
*
* *
o a
o H
P n
^ s:
n *a
ii n
CrJ TO
• O
4^ a
CM t
n
r—s C3
> O
o
K)
>
O
co co
i i
1 — 1 ON
W4 H-1
0 O
en en
Is) ts) l—" NJ IS) 1— '
VO O NJ ON O VOOts)CNO
h— i 1— ' 1— '
c^ h-> en en
OO 1 4i CO CO • 1 • ts) Is)
ts) i ON --i ~J oicecioo
I—1 ON CM W • i I-J H-1
CM O I-1 Is)
• • • z -z.-z.-z.
ON i en VO VO • i ...
-o i a i o o o
. ...
en ts) *-"
... z Z • Z
-£^t oors)ON 3i O 4^ O
^5 • • *sj *
en ts) H- 1
en ON O O O O
CO N) ON *»
4^ l_ * 1-4 i«4 »_> H-* >-4 1— '
ooij^enw w i w ts) N)
ON 4^ O oo c*i ts) o en
o en
en 1
j». b i— o o o
OO ON ts) 00 ~-J 4>
en is) i— i
~~1 OO fs) ON H- (-4 O O
-~) oo ^ en i ts) o vo en i
en en 4^ ts)
.... ... '-™5
en o *— ' to oo ^j 4^
en ts)
ts) en 00 Ln
. . . . o . . . . o
.u co o -t- *. w en o-i
en vo 4>
. . . . o
O W Is) -fc* CM
H r-
i i
ts) en
»— ' H^
O O
en en
ts)tOf-4 ts) IS) H- ' IS) ts) 1— «
VOOts)ONO VOOtOCNO VOOts)ON
v>i i 4> en 4^ eniONONON 4^ienen
WlO^VO O 1 ^ i— ' vj HJI^JON
W OO1"1 OO W O-J -£>• O VV4ON
Z ZZZ Z Z-- Z ZZ
1 ... . i . H-* N) • 1 • •
OlOOO Oi3VOts) OiCJO
... . • en ->j • «
Z ZZZ Z --Z Z -Z
|... . IK-"O> • 1 O •
oiooo oi-~avoo oieno
1—1 tn • • en .
OOO Oi—O OOO
~J O en
>— en en
.£* 4^e»iw ^ i— ' i— 'i-4 w e^OJ
OlOVOOO VOl^dONON OOlCNON
VO JilsJOO ON en o i— ' ^J VOO
vo en en
i i
IS) h— 'O CM H-iO e*3 h-*O
^ON4^ en4s>o en*kO
vo en vo en
i— ' i— ' o O j^j^w^* enj^e^rs)
CM4^OOC>)I K) i— ' H- ' Crt 1 4^004^1— >
ts) ts) t-4 en w ts) i-*
oovoene^i 4i i— ' ON vo i— ' 4i en 4s>
OOOO i— ' Is) 1-4 H4 i— •
. . . . o .... o ....
enenwo ooocn4i. w4^vOON
• •• . •* • ••
O^Jts) ONCMCn 4^00ls)
H
i
f^t
k_t
O
en
0
-J
o
ts)
z
b
•
z
b
en
ON
i
1
0
CO
ft
P
t"^
'— '•
o
3
O
P
rf
re
3* 0
n P
C X
o* w
r+ O
H- Hi
o
3
T3 —3
"O ?*>
3 Z
2 z
3 or
-o z
"O O
3 is)
"3 >
3 0
*T3 Z
T3 O
3 o^
"d >
13 Z
3 O
T3 03
•XJ O
3 O
*t3 -9 O
*3 O CC
3 2 O
•^3 -3 Z
^ 5 §
•5 ^*
T3 n z
"C P O
3 >— ~
n *
p
0*
TO
^
^
1
n
^
o
z
o
H
?3
s
C3
O
o
3
H
6
. ,
z
§
n
73
m
^3
'— '
rn
73
CO
•3
CO
41
-------
CO
*
* *
§§
c a
O -3
P n
CM cs
• O
^^ c?
t/4 }
o
to
§
CM
C3
O
o
o
§
— — — _
"l "l LI 1
*""* I"-* H^ VO
isj >— O
( . } . ^ . t ,
0 O 0 C
^ ^T w w
tO tO *— tOtO*-1 NJNJM tO tO *—
^O **^ N^1 O"* ^^ ^0 ^5 NJ O1* CD ^O ^? fO O*1 ^D ^D f^ t\j (^\ ^>
yijQH-*t\J .fih | fc-* to U4 Ol 1 -^ ^9 W t/J i 4^ to .£*
•^JtC^^1^! "^J l *C* to U^ OOti— 'C^OO ^ i ^-* -^j H-*
•^j ^^j ^i -vj ^^ «^j y^ ^j ^i ^j ^2 to ro o^ to oo
Z ... z ••• Z Z-- Z 2 • •
I4^CO~~] • 1 OO CO CO . I'ONOO . I'VOVO
CiVOtOCo OlONViON O i O t— ' H- » C3i3>™tvi
coto-^i . ONVito . •w>-' • 'Ceoc
z ... z z>. z ... z --z
ItOOO > 1 > O O • 1 *- ' H-> O • 1 00 i— ' •
Ol^J^l^i. OlOJi»4i Clt— '4^4^ OlONWC
• tO 0*4 CO . * VO CO * O4 t~* Vr4 * V/4 00 .
1 III
OtOO OOO OOO OOOH-
4^ tO tO 4^» 4^ f^ f^ ^J VO ON t^J
O04^>VI 00 CO t— ' O4 00 V/40O
tsj n_i >— H- 1 |vj |^ )_j 1— ' tO tOH- '*— ' tO h- 1 H-" H- '
O^ 1 ^J Os O^ ON 1 CO C^ ON f^- | ^j *^J ^^ ^J | QO VI ON
fO 4^*-£*CO OO k-«ONON ^J CO4^VI 4^ *— • OO O
CO~JtO 1— 'to ^IVO^J ^tO
1 h- ^1
vooo i— > p— > o co--ao *->too
V/J ON CM ^D 4^ O i"*1 CM VO 4^ ^^ H^
COONVl OOOOH-' CM tO ^JCO
~J ON CM l— ' ~~J ~>J IO l— ' ^J^JONtO OO -O ON l— '
VlOOCMCM! — JO^CMI ONOOOl ON*^JOON|
tO tO 1— ' fO N3 1— ' h- ' CMtONJH-' tO tO 1— ' 1— i
Ooen^j~j 004^000 OONO*-' voviOOH-'
. . . . o ....o ....O ....0
^JCMONON VDONVOCrl ON4S-OVO -JtONJVI
4& 1— ' -t» CM CM VI £t
. o • O ... ...
i— i i— ' VOCn ONONCC to O 4^
C/2
1
CO
t— '
O
w
to to «—
VO O NJ ON O
w- H- 1-
ON l i— i ji. i\j
^-J 1 CM Cn ON
VD CM i— CM
l~ 1 k— 1— '
10 i en c 4^.
vo i
vo to
. ...
CM i CM Co i— '
ON 1 ON i— ' V!
KJ -^l
-J
*^J ^J ON
VO ^S Cn
en
i_> i— > i— >
ON 1 VO 1— ' i— '
4^ to en oo
OO CM
i i
4i. to O
en CN to
^1 W Cn
CM to VI VD
-U OO 4> OO 1
H^ !— '
ON 4i» l-J ^J
~ h- 0 *.
to i— i
^ CO 4^ to
CM ~J 4& 4^
Ki
CO l— i N)
. • .
oo en i— '
V
rt-
H*.
O
o
rt
Q
3 O
n tu
C X
O" t/1
rt O
O
3
i— < ^
~ ^
3 Z
"C Z
3 CM"
~d z
•3 0
3 NJ
3 O
to
-a z
"S ,^
"^
^ D>
^3 Z
3 O
T3 03
T3 O
3 a
"3 H O
"3 G CT
3 H z
3*~ ' ~^* n
_^. t*-'
-3 *
t3 0 Z
~2 w 2
3^0
o *
*
S
Q
^^
^
1
n
i
""*
o
en
H
tT!
2
53
0
a
o
,1
*TJ
O
G
~2L.
*-*
n
rr;
po
^
^S
^
>
Lo
42
-------
*
* *
C3
O
o
> o
z a
j
¥
_3
1
r>
H-1
O
in
ro ro KJ
•O o to O1- O
I— « 1— ' W
c-. i c co 'O
^^ | ^k O\ *O
CM O t— O
I—* W
> to :-> to
CJ I o: cc W
0
to to
2; ...
1 tO I-" N.1
O 1 t— • O to
CO
o. w to tr*
O 1 •*>• CO >
•xj *O. Co »
h- * i—1 t— *
C1* in h-» C7*
O in .u. vo i
in H- CT>
in -e. 10
^
^
1 1 I O
» i i :
T"1 IT" ^~" E""
III!
r— » r- ' *— ^- '
O O1 ^- VJ
O O O O
in tn to in
ro to >-> ro to i-» to to >-» to to i— •
OOiOC-O V5 Z> to O*. O to O to G* O tO O :O CN O
*» t in l/: to -£». I .&• O CN Ja. t O O in OTit/'f-'-^
CO 1 G^ ^-•* CO "vj 1 IO ^- ^J W 1 O *— ^ -^ H-» 1 ^ ^O '^
•^1 C5 CO >^^ ^^ Irt C^ CD 5*- C^ ^^ -^ O>4 ^*J ^O CP
• I f~* *^J *^i . | • ^.J *^J • | • *^J CO * I • CO 'vO
OlJj.tO'O "3ltDOin OiO-C'-Ci- OlO-OCi
» to CD *^0 • • I'J to • • C^ ^O • • "s4 "^
z ... z ... z ... z .-.
• 1^1— ' O - 1 "-1 i—1 O • 1 t~ ' NJ O • IH^-^O1
Oli— • i— ' O ^ I •< C- O Oil— > O in C3 i •-* ^ A
. ^. O K- • . i— • o •— ' * t— • JS> Co * o^COCC
lilt
• • • • » • * •• • **
O U> O O *-'!-' OO*-1 OO>—
O tn in cr* t"^ O in in -^ •£. CT^ w
H- • c~i co )— i co coiriCN Coin
•
tO tOl-**-1 IO tO*-''—' Kl to*-1*-1 t } IO — * h-1
O^ I H1 * C-1- 1>-4 G> I i^3 "^J "*«4 O^ t Cn O*» OT O\ i -S** O"J C^
to C^ C/i »-* O ^ t— ' O -£* roCO-fi* C»\ OfiCOH-
C^H-^ 10 ,-* ic ^SC^N; -^itoNJ
1 H-* ^^ 1
IO ^s» ^3 OO C^ ^^ ^3 ^O *** G> O^ ^5
^^ ^*J O^ ^O ^^ ^3 ^O O3 JN O»l ^*J ^^
(-.«jso i—. Ni co>o,^ com
-J^J^^- OVOVI^' OOOT^- ^OC^^
^Oto^>< oo -t^ i— ' *. i co ^ co o i in to i— ' in i
tO>O.OH- tOfOI— ' tr4tOIO1-' N)tO!-*
inO^O ^KJ^lT|I O*^OOO COtO-^JVO
Irltr) ii^OJO ^» -^ 1— • -CiJ^O
- O . . . . O • • • • •
1C M Ji-tO-«JtO CO^JINS O^NJjO
OJ CO OJ CD Ji. Ja. 4s. O
in -s. to *-> 04 (^ .... 0 • . . • 0
. . • • ^ . . CO ^O ^3 '^O ^^ ^* -^ w»
O ^C
TJ
O
C
z
r"
m
33
m
a
33
£2
tn
w
^
r-
ra
en
-------
*
* *
O'O
O 0
/"~N t \
n .•-;
O ~*O
H II
W eo
- O
{~i
f-*, S3
'^> Q
Z C3
O
N)
Z
o
O-4
+
&•— *
I—"
•to-
^>
z
o
r" —l
1 i
en i— •
O O
CN ON
C*i t-J 1— i . C-J N) i— '
^ O to ON O >— O to O O
W 1 O4 C C-l CJN -&• W -S* >— 'to
Z Z • • Z Z • Z
. 1 • *J tO • !•!—>•
Oid — CM OiOOO
. . H-i ^J • • J^ .
£i z z • z z • • z
• I . >•-> . • 1 O O •
O t Z3 5,1 C3r O 1 to -*» O
. . CO . . -to> H-* *
. •
O O>— o O i->
tT en
CO CO
to i— '*-'(— • C-J woar*
t . • . . 1 . . .
Ol COCOON Wl NJtO>»
^D r^ ^-* co ^»j ^^ ^^ •
»O ON to
1
. . £-.
OJ h-> O
IO ON ON ^>
^* — ^ C»i ^J ^2 *jp *o en
...*l ....t
CO^COU)! tOtOON.b.1
W OJ H'
• . *
)— '
tn -vj N>
to >— " >— ' o •— ' r"
. . . . c
o o co o-i co >
*
1
—
5
^
Ol tO )—
i— ' o to o" o
w i o-J en ^j
o i co CN tx
— 1— 1
• t • • •
CO ! CO en CN
^t C,-4 •£* tO
1— >
i
• . .
to to o
tO t-> ^4
-to- *- W tO
.... 1
ON tO ON O 1
U4 tO h- '
O ON CO
O 0 bJ
— • ^o i— o
CN CO ; J ' °
44
r*
i
OJ
0
^
r—
-^
•O
~.
w*J tO •-* C^ t^^ >-*
1— O tO ON O >-^OIOCNC
_.
iS 1 -to- -0 *-> tO
t« CC 04 >-> VO
Z Z • • Z
i . i— . yi
~ i o -to. to a
• » **J C5 *
Z Z • • Z
. 1 * W O *
? ' ? U1 0 ?
o
>
NJ tO N) <— '
1 • • 1
-J I ~-J to 1 W
ta to N; ^^
en
.
o
5/1
... 1
-sj -vj CO to 1 ^
to
o
! 1 ' •
: ! i ^
01 r" o
. o
t— > '-3
i b g |
1 ^1 c —
• ^ 2
to- •
1 4s- 0 C
O O
w
>x^ r"^ ^*
T
J
t
3
3
3
J
'
^
3 O
-, p
C X
3" t/l
•^ o
D
^
d H
l§
•d z
ioT
3 ^S
3 to
C3 ^^
i o
to
r! "5»
' • • "So
1 r-> tsi N>« tJl
Co O C'
en
; i
. -
P °
tO »-" H- '
... 1
0 0
o o c
CN ^» ^^
3 C>
i %
CM
3 so
3 0
•d H n
•3 n sa
-3 0
3 n ^
3 ~ "* ^3
S 0 *
t oo
5 a 2 o
* -Q *
'&
X*
O
^
1
n
»L
o
a
-3
rn
5
C3
O
o
a
S
^>
*-*
6
pa
c
z
S;
ri
S
o
ps
t-—i
n
™
cn
?*
3»
"^3
rn
w
-------
* *
2 !Z
o o
o o
rT — '
a n
n --a
— ' >— j
n 11
OJ CC
• O
^ "\^
OJ 1
— ^ S3
> O
Z 0
0
o
^
O
^^
•
^— '
•t*
c>
z
o
Ol
C-1
i
to
w*
o
ON
OJ NJ I-1
I— ' O NJ ON O
*->
NJ 1 OJ CO A.
NJ j -e» « ON
O -o. cn i->
)•— *
Z Z • •
1 . ON O
C i C ^J cn
. CN
C- Z • •
1 • OJ O
> i a so 4*.
• • 00 0*4
1
• *
1 0 OJ
1 *&h .£»•
OJ Cn
r" NJ (-• »->
i ...
5> I --J -vj -J
• CD ^™* *""*
N) -»1
I
« •
i to O
1 00 O
OJ cn
t-1 r" co oj
i
> > cn to i
• •
•b. to
NJ ^1
*>. 1—
! I.NJ
O I
> 1
co i/")
t i
CO ~J
t-1 I-"
0 0
ON ON
OJ NJ l-" OJ NJ 1— >
H-"ONJONO '-' O NJ ON O
t_l l_ 1 (_ 1 I—I l_ 1
ON o — -C» NJ CD NJ •£>
. *•• . •*.
NilCONJI— • CniNJNJ~«J
K-l OO~J NJ 1 O 1— ' CN
O O ON OO fe. O
^>4 ^M! ^vJ ^nJ
^^ CD 4s* _ph- h*^ O^ ^O ^^
* * - • * ••*
NJiOONJO toi/'-'CNOa
»-> i -i>. I -S» OJ
^a OJ cn cn NJ
« ... . «•»
4S.I CO CM I— • l-i| O — H->
OI-E^^-(^ tOIOOOCo
4^ tO CO
^O o^ Cn 4^ to
. • . . • .
NJ ON >-" o OO 10
tn to to O )-* to
i--" t— • cn NJ to
t— ' <—•!—• Cn NJ 1— ' h-i
• 1*.. «f.«*
J^l "JONJ ONI I— 'JiCn
ON cncnoo i— ' O i— ' ~»J
ON >-" NJ
1 I 1
. • • * •
I tf) O ^ cn NJ
1 CO O ^J OJ NJ
OJ cn to !— ' cn
•b OJ NJ OJ NJ NJ l->
>— H- oj to ooooo^
. . . . 1 .... 1
ONJ-JN1I ^4^OOOJI
H- H- >
ON OJ to OJ >— ' .£»
»x cn N) (-• ID ro
NJ 1— i fvj ^-
•C^ O J •-
i» v/1 tO O N) to Cn O
. . . . o ....
OtOOCN) O>--NJCC
45
Crt — j
1 I
CN fo
k— I ^__l
0 0
ON ^
OJ NJ 1— • OJ N! t— >
i— ' O NJ ON O ^- O NJ O-. O
Z
I ro Cn cn CN I 4^ ON cn
O i CO H- i— > ^JitO>J-^
• tO ^4 -^4 ^4 •**! NJ ON
"2? *S1 *^* »y* 2I* ^^ . y«
. " i . . I • O •
O 1 O O O D I O cn 0'
Z Z - Z Z • Z Z
I . O • • O •
C3 1 d? ON C3 C3 Co ^^ ^^
•
O CO
ON
O)
I-" »-* ^- ^-• OJ OJ Ol C- '
• !*•• •{•••
^•IOJNJOJ -^ : L-^ •» >~
~*l O^ cn NJ NJ C< OJ •
*^4 "^4
J> t 1
. « . • • .
O cn i-» r-> O o
Ol NJ CN Cn Xi. ON
CO CO NJ OJ
Ji OJ OJ NJ CO «-} CN ,£>.
«•««( I... )
OtONJOJl )-» 0\ O* oa I
N. Ol NJ
• o * •
• O
^j :J
N- >-' >- c — r-
.... 0 • -_ 0
m
J -
c;
J.
0
^
K
Q
3 O
O CJ
C X
Cf* C/i
r+ O
H1' H)
O
3
-3 H
1 §
*"O 2!
3oT
•d 0
3 NJ
_j _^
^ *^
3 O
NJ
"*"! "7*
30?
*d r>
73 Z
3 O
OJ
T3 33
"3 O
3 ^2
•3 -3 n
T3 O 53
3 2 O
•g a
— 1 O Z
^3 ^
s ^". r~^
3 0 *
*
' si
3 -o *
^_.
p'
^
o
JSB
<:
t
0
i
i—i
5
cn
-3
m
73
§
o
C7
>
6
C
Z
r-1
H
rn
73
m
a
73
|M|
rn
73
CO
^>
<:
•3
r"
rn
03
-------
* *
s-g
0 0
/~v /-^
O -H
ps O
£< 5
H Jl
t>) S3
• O
*» o
z c
o
to
o
+
1— »
-U
/— V
J>
o
t>4
r- C~
i t
i—* >— *
u-. )->
b o
CN O
O'. ro *— > W to >— •
>~cio:^c5 >— > o to ON o
i— i i— '
; £» to tn OJ i *^ vo tn
31 >— ON w toi to^o
• ON to tn O oo "*4 ON
Z Z • • Z Z • •
MO * 1 • •£* V3
3 CJ -^ W O I C VI CO
v
Z Z • S ...
• i • ON !X tn O *-J
tn tn 1/1 CO -C* tri
fO fO I-* 1— • IS) tO I-1 I—
^JlONlMCO ON tn^lOO
tO ON <-"! ^^ ON tO tO t*4
0 tn ON VO NJ
t
. .1 . * *
CO CO O OO ON h^
-O I— ' O N) VO O
tn tn (fi CQ j»> w
!C %O OO '>* CO CO ->4 W
. . . | .... |
f i tn i—* *» A to
•o to in ->4 ^ t-j
w w to t-i w —
C^ VI — f!~. tO iO
r" /' . r o . r . . o
•OOO^J -*:ootn
r-
i
to
>— 1
O
**NS^
ON
W NJ I— '
^* CD ^J ON ^5
1— i
to i s*. co £*.
tO 1 W OO .£».
VO VO tn ON
z s -t •
O I O O ON
z ...
i O tn o
O l vu W tn
jk. co oo
i
• • *
O O •>•
tn w CO
00 ON
to to i— ' i— i
•vj | ON **J OO
ON ON *^ ^
ON tO to
,
. . .
\a co i— '
I—" IO O
CO £t
VO OO -J trf
.... i
to ~j co oo i
tn tft to
to VO ON.
*. W *-
O O to
tn tn w i—
O O 0= 0
46
r- r-
i i
*— o
i— •—•
0 O
'*>s. **^*
O"* ^"^
OJ f^J h- * ON Ni *—
h— C^ t^J ^^ ^3 >~* o h^ CN ^?-
to i -s. o -a> * i A. vo — •
tfl VO tO H* • VO tO •-•
H-> »*
Z Z • • Z 3 - -
. : • ^J. o • t > tn o
O) O I— ' W Ol OtrtO
. . VO • • "^
z z • - z z - -
1 • W O • 1 « A. O
OiOO-;tn 3lC7Of
• *0o Ob • • O ON
1 I
O O tv>
tn tn co
Co oo
to ro h- >— NJ 10 —
ON 1 ON --4 -~J OO 1 CO ^J 1
ju ja. oo on oo co i--
to ro O
a B
CO 1 CO O
t,n i tn
oo co
voocrt^ voooccvi
. . . . i .... i
ON tJ H-» tO 1 ^ Sfl O *J
tn *«. to
VO *> NJ
trJ (X I— '
'-o -^ o
u, in w - tn :-
i»i ro NJ o to 5»
01
p
rt
O
a
P
r+
O
51 a
O P
C X
a* en
P
r* O
o
•3 H
3 Z
-3 Z
"3 MM
3 w
T3 Z
*T3 CO
3 K>
"3 >
•3 Z
3 0
to
13 "2
1— Q
3 t»
•3 D»
•3 Z
3 O
•3 S3
•3 O
3 0
*3 "^ O
3 2 O
•a a
-3
"3 Q» O
= —"53
O *
*
"3 O O
3 3 O
-a *•
^j
cr
h-t
t
^
1
n
|^(
b
z
H
JB
C
0
5
H
^*
rn
0
C
z
^*
5
5
en
CJ
H^
rn
***
en
f£
.3
ra
en
-------
*
* *
I H
/-i i
O
-, C3
> O
4
Z
H -
1 i
0
!_* ,_,
•^ °
•— > O CO CN O f— O N> ON O
~
• • r- . . r* ^
ON 1 CO ON • N> 1 .S» O -U
Nil ON IO ;> mi OO OO '.3
? . z b "*. z ^ • *
C1 1 O \O VQ O 1 O ON VI
'
z • -w • ^ z • •
1 O Vi W . i . tM O
31 woo o ! o -e» ON
• ~^ . NJ 1— •
1 W W | |
is ss § §g
Oo .ft* rO .U. f^. ;^ i_i P— *
•!••• •!•••
h— IOOJNJ OilOO-^JOO
ON GO r— * ^J Q ^ ^ -^
W OO !O
1 > 1
W I—1 ...
• • • o j tvj 00
K) ^o tvj i--
«j ON *— >-• ooo^^l^^J
••••I .•..{
ON ON VO ^1 1 ro M M O I
1— ' O ^k W tv3
I-1 ^ N) Iri U
>— ' t—f
• 1 . . .
VI 00 i 0 O ON
c.}
W Jk JU A. 0
• Q
47
t
vl
.J
o
O< KS "— •
>-> O N) CN O
t\J 1 V. O VI
O CN *-• (n
Z Z • •
b i c tvJ -=>•
tn tn ii.
VC O CO ^-
• > . . t
JSk ON V CC :
vt -^- o-i
os -0 -s».
Ul W ~
O"' 0s -S^
A. tn A. —
. . . . o
Vi O Vi oo
£
rt
o
o
rt
3
o
c
cr
M
n-
o
3
T3
1
tJ
*•••
^3
"d
i
•d
3
•d
d
3
i
d
a
d
taS
d
i
3
3
3
o
p
en
o
Hi
H
z
oT
o
N)
I
z
o
^>
o
D3
0
a
H n
n »
2 O
T5 0
o z
Qt O
0 *
*
—i :z
0 O
3 0
-D *
83*
o*
0
1
n
1—1
1
-3
en
2
C3
o
o
a
5
#
TJ
o
53
c
z
Jr"t
rn
JO
rrs
a
73
<— 4
E
^**
en
2
* w
ra
en
-------
* *
z 5*
0 0
o a
/""""S S~*,
O -H
P -O
o ^3
"i— ** ^-— ^
H 11
C/3 C3
• 0
•£* -C!
W I
C"}
*> o
z a
o
o
OJ
o
CA!
*^-/
' >
i
o
r- -
M
O
V
ro ro M
sC CD IX> ON O
M M M M M
Vl Vt Vi Vt VI
M M
. | ...
ro i vi o o
N^O O ON ON
VI VI Vl
M
z 2: o o
a i o ON M
. « M ^;
Vt
M
Z H M
*a t NO v-j b
• •£•*• \£) -t^
vi vt
\ M M
» . .
O CXi VjO
.N. o vt
Vt Vi
i _}
\ji 4s \-j ro
O I O O ^
O Vi M Vl
V Vt
,_,
v: (_'
• I * •
ON 1 ON OS
O \D ON
Vt Vi
vO ~-3 ON ro
o d-r- M i
1
u: ro M M
• » »
Vl V, Vt
V^.M
ro o "cc. o
vt O vt O
l'*" ^*,
ro cxi ^
v C^
1
ro ro M
o o ro ON o
O O O O O
l_j |_> |_i f\}
vu vo ro ro
• i • . *
M 1 M U> Vi
. M
•z. z < o
» 1 • • .
a 1 O ON o
« . d ro
ro M
z M ro
• \«o ro ^"•^
ro M
i M ro
V*> ^5 N^O
VjJ sO
ro
cs -t^ ro z
MI -c i~- o
— J ^ \ji
00 N^O S-0
*M d o
P
i
q
M
o
^>
rg ro M
\c o ro o- o
O O 0 O O
ro ro PQ ro
t i- o *-J
d \o
\^ ro ro ro
ro so -3 -o
^ \O -P^ vt
I ...
i -^ o ro
ON d ro
z z z
o i a c M
• • • ro
i i t
M MM
ro ro ro
z z z z
at a a CJ
o o o
M
ro co-r^ ro
O "^ M -^-
Cj ~j -v3 M [
1
M
ro oo-^ ro
o v^> M -r-
•vO -«3 < M
.
Vt
o o o o o
o o c
48
^*
i
o
V
,_
o
^
ro ro "-1
o o ro ON. o
O O O O 0
ro ro v*> vi
. i ...
<3 1 M M -P-
V^J ON ~0
v^o \*i d -3
o ro \-j ON
. I ...
ON d ro
Vt
Z Vi O
a i vi o >-
• v*j v^j vi
Vl
-P~- I O -£"-
vi d d
ON
o ro ro M
ON I ON M >-
-3 O M
Vl
vD M
. i . .
. j .
M 1 rO ON
\0 ON O
ro ro ro
ON M O Vi
*- O -N -^ I
1
M ro M M
Vt -i^- Vt ^5
•
Vl
ro M M
-£^ d d i^-
o c\o o
o o
ro M
O N^ '^O
0 -P- '-"
->J x3
>
1~H
i
\_>
0
M
O
^
ro ro M
o o ro ONO
o o o o o
M
Vi f1 -O M
•p- i > ro M
ON • sO
M
Z Z W M
• t • • .
a i o M M
• • Vt
M
Z v>j d
a i -J -P- ro.
• J^ -».•
M
i v«j d
'^ ' ^H
-v: -0 VjJ
ro
M -J -f- -N
o i ro d -5s-
C?N O ^^
M
ON ro
vi i d -E*-
ON ro vi
M M
ro ro o vt
O CD v-J -P' 1
1
vt ro o M
• -j ^ vo
vi co. ^ N^J
C
•^ \_r~ "*\J
i- I 0 >O
1 > •
an
a
rt
H*
3
O
0
3 a
o p
C X
cr w
P
rt O
H- i-h
O
3
•a H
3 Z
•a z
•a :=
3 W
T3 Z
-a o
3 NJ
•a >
•a z
3 O
N)
•a z
*^5 ^^
3 <-*"
'a o
•a z
3 0
CM
•a 55
•a o
3 a
>a H n
*a n cs
3 2 O
"3 D
"3 M Z
, j—* ^^
w n o
= 2: c;
*^> *
^3 {*} -^
T5 d O
31-3
n *
*
p"
0*
>— '
G
^^*
^~i
I
n
ts>
b
c^
_j
rA
1
o
a
C3
H
^
6'
53
CO
m
m
o
m
"T?
r*
c
m
—3
CO
g
•3
rn
en
-------
a
fe
0
*
* *
O O M
- o o
P ri
i—" 3;
— < < — '
n n
• O ro ro M
-£• O xC o ro ON o
O^ 1
n
-r 03
I> 0
o
w O "J -P- vo
1 — ' OJ -N CN O
>-> Z Z
-P* • « xO t— '
§ 2 ! 5^0
w * 1 ^ l— '
• • -P- CO
b .' . .
-r O O O
M U S 8S
3 -5
o ro
r^* "^3 L_J i_j L_J iw>
g-2. H ! cov,^
(W ™ -0 fV) G\ QN
m S CN^
rt> o.
n
ft* &>
o> (/>
5 '
ro 3 ro M b
02 xo Q ro
.^ CN \O V*J
-
c^. ON^ ro
.P- o ro
ON Vi O
t-*
*ro vi ro
D3 CD
CO W
0 0
O Q
Co ~vi
I-1 H1
0 0
roroi-' roroM roroM
vDoroONo \D o ro o^, o \ooroCN
VOj-F^ONCQ V^J|Vi->JCC VO|-t~--v3
V \»JCCVi O t— ' VI V O MV*)
ro ON O ON VJ V>) O ON ^o O "^
z z z z z z
o i o b H o i to i-1 ro p i o M
Z|Z>« Z|Z«« Z|Z«
• I • t-1 O • I • M O • 1 • M
o • -T^- CC • * P) CO • • ON
.' .' . .' . . X b M
ooo OOM CN\.oro
nj roi-'i-' ro roi-ji-' i-1 i-Ji-1
\^0 | VjO CO. ^ C) 1 CO ON-P*- ^O 1 CO Vi
O OONVjJ O 1— >&-)-> Vl CO-P^
ON ro o ro -N
i
vo ro o -T-- v>J o vi vj o
oc5ro oj (— ' >-> i— • ON ro
H* (— J \D H*1 O^- ^-o ^0 ~^ V>
...*l ....( ....
rOvC-P~-P-l M ON >oi K- > | \*JCNOON
Go K
I i
CN VI
0 S
ro ro M
o \o o ro ON o
i-1 ro
ro co vj so co
CB Co H ON vi
Z M h-1 I-1
"ro o i < b b
^J^ * c^ -f1** ^^
Z 1 . • •
O • I ^ O O
vi O sD ON -N
ON • ^« \O vi
1
O ON o
co ro -P-
i-1 ro M M M
vo vi i vi j^ ro
ro ro ro \*j CN
-P- \*J t-> VI
M 1
^ MO
-P- -P- co
\D CB CN\>J
| ....
1 -C CO xO VO
C/J
rt-
rt
O
O
P
r+
O
3* 0
0 P
e x
a" in
P
rt O
o ^
1i z
^2 =-
*a z
*a o
3 to
•3 >
3 O
NJ
— i.
"d z
^ o
5 >
3 O
— r
"a o
3 a
2 nn
= ? S
-5 rt o
3 2: a
-a *
-a o z
•3 P O
0* *
•H
p
cr
o
i
n
i
o
d
-3
cn
I
o
o
o
•—3
6
oo
ra
cn
o
S
G
m
z
cn
r-i
oH
49
-------
*
* *
2£ Z
O O
a o
/—> /— *»
O *-i
P n
H-» "2!
0 -0
S— ' ^-^
n n
C*J v^
• O
Ja. O
C^i 1
n
y — v C3
•> o
z o
o
NJ
1
o
+
>— 1
t— '
-p^
t — \
>
z
o
Vw/
03 03 03 03
L 1 1 1
§^N 1 — 1
Vi .N
!— ' H 1— ' 1— '
VI Vi VI -t1-
ro ro M ro ro M ro ro M ro ro M
o o ru ON o vDorocrc so o ro ON o vO o ro ON o
VOIVVn^j VO I Vrt Vn 03 VO I M rO ON VO I Vfl ON M
-c voO^vo -< -is o ^ vD vo 03 NJI ON ON ro vo
ro Vo ON 03 ro -J o M < vo o vo -f^ ^vo-o
ziz«- ziz.. zi.^i"1 ziz--
• i • >-" ro . • i • ro vo « ivnroro • i • o ro
a GSOO o ooro o 0303O3 o o-^
• «\QON» «\jico« •**• • •ONON
Z|.-. Z 1 . . . Z 1 « . • Z 1 • • •
• 1 Q I-1 O •IMMQ • 1 -^ O O • 1 M H> O
o -vi-c-i^ a O03ON o i— > 03-r-- D roo-f-
• viO3vn • oroH • oroca • vn vo i— '
1 1 1 1
... »«« % •• ..•
OOI-1 QOM O ONO OMQ
J^-VOVO ONVoro -N ONVO -f^O"^
vn vo i— ' vD i— ' coro-t^ H ' ro ro
ro ro M H* ro roi-|i-> vo MH'H-1 M MMh-1
roiO"^"1^ H-iiocN>o\ oi c^.'vJi^jt "*J i v» -^ r\3
^*j Q\ Q\ J^ \^Q ^s. ,£v. -O ^- s^Q S^^J -*J O\ OC ''•O "***
vji ro ^C o cc vo o 03 ON ^ "^ ^
1 M 1
J^-VOO vnvoo -t- MO ro 1— ' O
03!-'!-' h- ' ON ro ONMVO OS-C^H-1
J-J Q*\ N^J -*J -^J \Ji ^«^ ^^ Q^ *N^ .£^ J^
vi vi ^ ro vn vt ^- ro xC \D 03 ro ^o ONVO
»»••! ....) . . . . | ...|
• ro i— ' vororo vovnro v>vo
^ro\£)^j ON vno vo ro-f^- ONVO
ro M i-1 ro ro H vivn-r^
• » • • *••« * * * *
c ro
M MM
03 I ^^ -P** •
-3 ro co o
M (X »
vo o o
vi a\ i— '
ON ro -Is-
-o ONJ^- ro
.... 1
vo ro -c M i
J^ vo i— '
vn ro ON
. . .
0s VO VO
P
rt-
h"
O
3
a
P
G>
>-H
s a
O P
C X
P
rt O
H" H,
O
3 Z
"5 Z
3 (JT
s o
3 NO
•d >
3 0
N)
"3 Z
•g o
S3 t/4
-3 >
-3 Z
3 0
T3 W
•a o
3 0
"3 H C~5
•3 Q C3
" "3 ^
•3 -3 Z
"B O O
3 2 C
-a *
^c o 2:
-r P o
^ ^^ 4.
_3
u
cr
i— "
o
_^_
<;
i
n
i
ro
O
^
x3
-^
C3
O
J-J
>
>
T]
g
^3
cn
CTl
m
n
o
5
^
z
-J
>
2
C~^
C/3
50
-------
* *
z z
o o
O H
53 O
OJ t
n
•-N S3
> o
z a
o
O
>
z
o
1 1 1
000
}— 1 i— 1 ^— *
-IN ro o
^j t^j ii
o o o
VT! V>1 VTi
ro ro M ro ro M ro ro M
\o o ro CN o vD o ro ON o \c o ro c> o
co ro ro -^- 03 ~o vo o vn oc^^>
VJi CO CO C\ Vft VO^Ovn \D -3 C~\ O
ZlS-ft Z 1 Z • • ZIZ..
• i • M ro • i • ro ro • i • M ro
o o ro o o o < vo a a vo M
* • vh CC • • O V*3 • • M CTN
Z 1 • • • Z 1 • • Z Z 1 • • •
• IMMO • i ro o • • IOMO
G "^ ^— ** ^* G ^^ Co G G vft -Z*^ vxi
• VoVjJH ' • -t--ro« • ^^O
I I
«!•• ]•• »!••
OIMQ irgo OIOQ
-t^-O"^ vDCO VnQ~S
Mroro o-t^-ro o-3^o
|__1 ^_1 ^J ^—it ^_l ^^ ^_J ^vl |_^ ^J ^_^ ^«1
CC VX)Q\0 -tv J^\C(X CO ^G\OJ
•^-•--.V*) CTNOi-f^ V.O h- ' -N
1
POMO ^-^OO roH*o
QQ Js H* \JT ^, H1 \O O PO
*vi ^s- ^*^ c^ ro -^ o^ ^5 v*j
\Ji •^s- \>J h^ O^\ ^-H V^J H"* \Ji •f*1* V.>0 H^
* • * » | * * * * [ *•»•[
\D"*J\jJvOl MHO^- CN>1 vJi'CO^Qli
J^ rOH1 -^ POM .NWM
-j voc^ v, vovo vo MC
MM roroH-1 rot-'i-'o
• ••ft «••• ••«•
ro vo cr\-^ o ccrov^vno VO\C-P*^CO
Ml-' MM M
~c ovo CT\VOVO ro v-iro
i
CO
M
C
VJl"
ro ro M
o o ro o o
vo 1 J^ J^ vn
CC CO CO O
vn o o ro
Z 1 Z • •
. | . H-1 M
G o o cr-
. . CD ^
Z 1 Z • •
« I • M O
O G VO -fv
• • ro u»
.' .'
P 0 0
^* -2^ CO.
\ji vn ~s.
ro ro ro ro
vo i ro o o
_£s. ^v U^1; ^O
00- ^O
• * •
vo no o
o o ro
M MO
vn .ft*- vo ro
. . . . i
-N 0 CO M 1
^ VO M
*ro b <
} — * f— * t-j
• • • •
:- x^ vo vo c
!_,
» • •
ru co-t-
fr
w.
o
3
O
r*
O
3 C
O P
C X
w
rf O
H* H*t;
O
3
3 Z
w ^^
3 w"
•d z
"3 °
3 i^J
~3 [>
•d z
3 O
to
T3 Z
"^ O
3 W
"3 O
•^ z
3 O
2 =
3 r~™
•3 H n
"3 n ~
= 20
-ago
"3 *
•3 o •z.
" n *
*
i—2
P
cr
^*—
=fc
-=;
i
i
t->
o
H
rn
Z?
3
53
o
O
C!
•S
6
73
CO
ra
rn
rn
CJ
~
r-^
z
SAMPLHS
-------
\
£
>r
<-< o
*
* *
gg
C! 0
^^ ^^^
0 -H
P O
»" .2:
0 ~
^— ' W->
H Jl
LH ^3
• o
•&• -a
C^l i
J"""S. T™"
^™N U»i
£> O
Z O
o
N)
•f
>
0
W
>— '
•*•
h-*
»•-
4*
/•'H.
E>
Z
O
t»
•— -
\*j ro
M O
z t
• i
a
•
Z 1
• i
o
•
Z 1
• 1
o
*
1
b
Vi
ca
M
• i
58'
•
M
ca
ca
-O V
b 'M:
ON
NjJ
ro H
• »
O 0
--C
i_j
o
\
cr^
ro CNO
...
Vjj V> -2
i-1 ON ON
ro vi ca
z: • •
• o ro
C> -N -N
• Vt -0
Z: • •
. ro o
O 0 vi
« UN ca
i
c M
v .N
O
• *
< ro
pwl
^
"\
CN
v-o ro H1
M o ro ON o
Z 1 • • •
• | W J^ ~0
O vi vi v-o
• ca OB ca
z i s: • •
• i • o ro
O o ca ro
• • -o o
Z 1 Z • .
• 1 • H O
(3 O vi vi
« • V-J -P-
1 t
* * *
0 00
vt vi \D
J^ JS O
ro ro ro ro
• | • * •
Ml MOO
\o o CNro
-O ON
M *M O
ON ON-N
i>. -N. M
-0 ON VI V)
V> UJ V*> Vi 1
ON -t"- V*i
• • .
^D <3 O
ro M o o
• • * *
O O C\J^- O
• • •
O C- v
M M »— '
o o p
\-. \. \
O 0s. C-
UJfOM UOrOM VyJfOM
Morooo MoroONO MoroCNO
M M
^^ (..ft •)••« .)•••
• iVjjj^ro roiVjJONca \*ii-»3ON\D
C3 sovica ON ca-Nca N-J TOMM
. ujcaro v-j rOMO, M cacavD
[T, i ^^
ZlZZ« Z 1 Z • • ZlZ-ft
• |«.fO .|.MW • t • fO V*J
o ooca o OMON o oroo
• «.-J« • \D M • «NjJ
ZlZ*> Zl»«« Zl«««
• i • ro o • loroo • I-OMO
O oro-N o -NcaCA G o>-
ro WMM ro JOMM ro POMM
*M 1 *M *-C -O M I M < *-J \D 1 M Ov ON
O rOvDvi ON MM-J -N -\jO MOCBV*5
.•«ftf •«••( «•••!
CNcaoONi *^^caroi rororooNi
vi'ojro *-voro vi\*JVx)
« •• . •« . ••
ro v\ca \DV>-C vi-^s-j.
(\jroMM roMMM ON -NM
* * « • »••• • ••
•Nro\*jv
rt
O
t"H
y o
O P
a" i/>
P
r+ O
•->• i-h
O
V -3
•a rs
S Z
•a z
?X
*a z
•g o
3 N)
"0 0
•o z
3 0
tsJ
•3 Z
"3 °
3 M
"^ ^*
^^ *r^
•a z
3 O
W
"O SS
13 O
3 a
•a H
T3 O
3 "S.
"O
"w H
•3 n
3 2
•^3
"3 O
•3 P
3 i"1
n
n
C3
O
o
8
*
z
o
o
*
*
"-1
i-
p*-
c
3R
<
)
n
t
NJ
i
Ci
,.3
ra
**w
O3
O
c
a
>
>
^^
6
73
C/j
m
ra
a
a
rn
•i:
c:
••"•^
t?r
H
Crt
>
2:
•a
r~
ra
en
52
-------
•3 ^
H II
"S
> o
Z
>
o
8
i
o
I— J
M
\^
0*
N*J ro *-*
M o ro o\ o
2 1 ...
. 1 N*J -O ON
O O •£*• ^3
• H 03 ND
212..
. i « Q ro
u c? ^^ •£"*•
. « h-1 Njt
2I2-.
» 1 « M O
O O
H< ro M h->
. ( . »~ .
NO i O ON -J
oa O -J O
oa v*>
t
PQ *ro o
^CN^V>3
O H "(-•*>- 1
U. v^W
NO O \->
I— * t— ' HJ O
ON N/! NJ1 \J- O
^ H-
M ro \-j
C
i
o
i—
h-1
^
o->
\>o ro i-1
i-1 O ro CN o
2 1 • « «
. | VO \Jl -J
. NJO ^ oa
2 1 2 « .
• I • M \>J
O C M J^
. • ro o
2 1 Z • Z
• 1 « fO •
O O M O
• . -Nj .
ro
o o -J
ro t— * i— • i— '
. i ...
O 1 O ON ON
O -J oa ON
-r- M ro
01 ONVJI Vjj
O *oa -i- M i
cr. *- ro
^^ f^ \^J
ro ro M o
• • * *
CC CNJ^ CS O
- ^
ON ^- CD
rt-
w
rt
O
a
rt
Q
5* a
O 63
C X
o" w
p
rt O
H- Hi
O
3 H
"^ ?^
3 Z
^ M
3 <•*
T3 O
3 to
"=! 0
T) Z
3 O
KJ
-c z
'B O
3 IA>
T) C>
1|
13 C3
T3 O
3 0
•a H n
'53 O 03
320
•o a
•3 -? Z
•a n o
3 2 O
•O *
"3 0 Z
-3 P O
3 H- 0
n *
cr
o
-<
i
K3
tr
i
a
H
cn
S3
2
C3
O
o
o
^
•n
o
73
cn
ra
ro
o
6
m
•n
r-
m
•—3
en
§
r-
cn
en
53
-------
o
o
C
cc
ra
|
8
o
^x^
Ul
ro ro i-1
\c o ro CN o
1— ' >-> 1— ' f-1 M
Ml Ml Mi Ul Ul
ro ui
ui cc ro co
» i » • •
M 1 Ml VO ->3
O v£> CN-N
Ml Ul Ml
h-1 M
Z Z < CO
• 1 • * .
O 1 O ON \D
• * ro -f^
Ul Ui
M
Z <2 M
• 1 » * *
O 1 < ui O
• f— * ^«-
Ml Ml
-•2 H
t * *
. CN-t-
O Ml ~0
>• Ml
ro
o ro
Q^ | -s^ \jj \jj
V.TI \D V*^ ^jJ
o a
ro
o ro
Ml -J>- O
ro ON
1— ' h- ' M
ro ro o ^
\D ON Ui ON
•
O
*- v»j ro, H"
CO CO -0 ON
• *
ro MI
CO CQ -C M
M -~ CO O
• • •
O ca ui o
(-' 1— ' H-*
Ml Ml Ml Ml Ul
l
<: so
vo <
1 1 • 1 •
1 1 ^C 1 0s.
Ul Ml
-sj QN Q^ Q^
-O CO Mi O^x
• \ * • •
^ ' 0^^^
Ml Ui
M ro
^^^
£J
r^
o
^^
r. x
— ai
•^ o
v f~**
O i—
«w 1
•—•* rr^
— C^
^ ""
— I —
1 cjr
-N ON M ^ i_, ^
co ! i- M M rS c5
VA> ro o » E^
Ml Ml Ul
1
M ro 1
-P- ON hi O
. I . . "-3 "Z.
^ 1 tV) sD
J^ O ""^J
Ul
(_l
o ro
. i ...
ON i H Co ca
ON vD ro ro
Ul Ml M-
i— >
ro i-
k k°
MI
,_,
O ^ ON
\^o -t^ J^- -t^
MI Ul Ul Ml
H- '
=2 O
-3 2:
rt 0
3 OJ
"3 £>
-a ^:
2 O
-o o
3 0
2 H 0
3^0
O O O MI j ^ O
S ^ ^MJ "-a rf ^5
U! Ul Ml O O
t->
O O
CO CN MO
. . •
sQ (-1 ro
~3 o ;z
-3 y> o
3 i-* ~
n *
*
i
^3"
--*"
U-l
O
.^
1
n
i
o
^cZ
^-3
i— i
—
v
C^J
o
a
a
>
o
y^--
*/-
• ^
^-*'
•»>
^*
*S.
O
^/
•-(
—
—9
m
3
-ri
"-H
cn
H
j^
i
CO
54
-------
able S V-C-4
THOMAS GRAPHICAL DETERMINATION OF BOD CONSTANTS
UNALTERED RIVER SAMPLES
Days of
ate Station Incubation
NOD
(t/y) l/
NOD
mg/1
0/4 L-l 6
12
20
29
All Points
.213
.205
3.64
2.45
2.10
2.15
2.26
r
m
b
klO
LO
0.4
1.3
2.0
2.5
Last 3 Pts
.9840
.009
1.977
.01188
4.73
L-3 6
12
20
29
.6847
.010
1.417
1.59
1.42
1.56
1.78
r
m
b
klO
Ln
1.5
4.2
5.3
5.1
.9956
.021
1.155
.0474
5.95
L-4 6
12
20
29
-.515
-.043
3.427
3.91
2.05
2.32
2.57
r
m
b
klO
Lo
0.1
1.4
1.6
1.7
.9984
.031
1.092
.0478
1.88
BOD
mg/1
3.6
5.8
7.1
7.8
4.1
8.4
10.7
11.2
1.8
3.8
4.4
4.7
CBOD
(t/y) 1/J
CBOD
mg/1
1.23
1.40
1.58
1.76
All Points
.997
.023
1.11
.0541
8.04
3.2
4.5
5.1
5.3
1.32
1.42
1.55
1.68
.9994
.0157
1.230
.0333
7.02
2.6
4.2
5.4
6.1
1.52
1.71
1.92
2.13
.998
.026
1.379
.0492
3.37
1.7
2.4
2.8
3.0
55
-------
Table ri V-C-4 (con't)
UNALTERED RIVER SAMPLES
Days of
Date Station Incubation
NOD
(t/y) :
NOD
^ mg/1
con
mg/l
1
10/4 T-l 6
12
20
29
All Points
.9728
.060
1.181
1.40
2.10
2.37
2.88
r
m
b
Mo
Lo
2.2
1.3
1.5
1 .2
Last 3 Pts.
.9900
.046
1.513
.0985
1.27
L-5 6
12
20
29
.7373
.014
1.739
1.956
1.733
2.02
2.20
m
b
kio
Lo
.8
2.3
2.4
2.7
.9863
.027
1.429
.0493
3.02
T-2 6
12
20
29
.7531
.1212
.376
0
3.107
3.21
3.31
r
m
b
kio
Lo
0
.4
.6
0.8
.9991
.012
2.966
.0105
1.59
2.5
4.5
5.4
5.8
3.1
5.5
6.1
6.5
1.2
2.1
2.6
2.6
CBOD
(t/y) 17->
CBOD
Eg /I
2.71
1.55
1.72
1.85
Ml Points
- . 535
-.028
2.420
-.0302
1.02
0.3
5.2
5.9
4.6
1.376
1.55
1.75
1.96
.999
.025
1.256
.053
4.35
2.3
3.2
3 .7
3.8
1.71
1.92
2.15
2.52
.997
.035
1.494
.0611
2.13
1.2
1.7
2.0
1.8
56
-------
ible £ V-C-4 (con't)
UNALTERED RIVER SAMPLES
Days of
ate Station Incubation
NOD
(t/y) 1/3
NOD
mg/1
0/4 S-6 6
12
20
29
All Points
.942
.012
2.344
2.46
2.46
2.55
2.74
r
m
b
kio
Lo
0.4
0.8
1.2
1.4
Last 3 Pts
.9857
.017
2.246
.0198
1.94
S-7 6
12
20
29
-.8378
-.013
1.254
1.26
1.02
.931
.94
r
m
b
kio
Lo
3.0
11.2
, 24.8
34.4
-.796
-.004
1.057
-.0099
37.19
L-9 6
12
20
29
0.879
0.015
1.349
1.52
1.43
1.61
1.82
T
m
b
kio
Lo
1.7
4.1
4.8
4.8
0.99994
0.025
1.153
0.0521
' 5.44
BOD
mg/1
1.9
2.9
3.6
3.6
8.0
17.3
31.6
41.6
3.3
6.8
7.8
8.0
CBOD
(t/y) 1As
CBOD
mg/1
1.59
1.79
2.05
2.56
All Points
.999
.035
1.387
.0621
2.62
1.5
2.1
2.<4
2 .2
1.06
1.25
1.43
1.58
.990
.022
.956
.0601
8.28
5.0
6.1
6.8
7.4
1.55
1.64
1.88
2.08
0.995
0.024
1.387
0.0452
3.60
1.6
2.7
3.0
3.2
57
-------
Table * V-C-4 (con't)
UNALTERED RIVER SAMPLES
Days of
Date Station Incubation
NOD
(t/y) l/
NOD
3 mg/1
10/4 L-10 6
12
20
29
All Points
0.725
0.008
1.588
1.71
1.64
1.67
1.90
r
m
b
kio
Ln
1.2
2.7
4.5
4.2
Last 5 Pts,
0.927
0.016
1.421
0.0294
5.15
L-ll 6
12
20
29
0.804
0.014
1.468
1.66
1.51
1.71
1.93
r
m
b
kio
Lo
1.5
3.5
4.0
4.0
0.99998
0.025
1.214
0.0537
4.52
L-12 6
12
20
29
-0.402
-0.020
2.362
2.71
1.59
1.79
2.04
r
m
b
kio
L0
0.03
3.0
3.5
3.4
0.9995
0.026
1.268
0.0535
3.99
BOD
Bg/1
2.8
6.3
7.2
7.4
2.7
5.6
6.6
6.7
1.4
5.1
6.1
6.3
CBOD
(t/y) 1/3
CBOD
mg/1
1.55
1.49
1.90
2. OS
All Points
0.937
0.026
1.311
0.0518
3.72
1.6
3.6
2.9
3.2
1.62
1.79
1.97
2.20
0.99993
0.025
1.478
0.0441
3.05
1.4
2.1
2.6
2.7
1.76
1.79
1.97
2.15
0.985
0.018
1.619
0.0290
3.53
1.1
2.1
2.6
2.9
58
-------
fr V-C-4 (don't)
UNALTERED RIVER SAMPLES
Days of
te Station Incubation
KOD
(t/y) l/
KOD
•^ mg/1
/4 L-13 6
12
20
29
All Points
-0.072
-0.002
1.746
1.96
1.47
1.63
1.82
r
m
b
kio
LO
0.8
3.8
4.6
4.8
Last 3 Pts,
0.9999
0.021
1.221
0.449
5.32
L-14 6
12
20
29
.051
.001
1.716
1.96
1.45
1.66
1.87
r
m
b
kio
Lo
0.8
3.9
4.4
4.4
0.9994
0.025
1.158
0.0563
4.97
L-15 6
12
20
29
.340
.004
1.752
1.88
1.73
1.71
1.97
r
m
b
kio
Lo
0.9
2.3
4.0
3.8
0.848
0.014
1.510
0.0242
' 5.22
BOD
mg/1
1.6
5.8
7.1
7.3
1.9
6.2
7.2
7.4
1.9
5.3
6.3
6.5
CBOD
(t/Y) 1/3
CBOD
rag/1
1.96
1 .82
*) O,
2.26
All Points
0.813
0.015
1.76
0.0222
3.59
0.8
2.0
2 . 5
2.5
1.76
1.73
1.92
2.13
0.946
0.017
1.59
0.0279
3.88
1.1
2.3
2.8
3.0
1.82
1.59
2.05
2.20
0.812
0.022
1.55
0.0370
3.16
1.0
3.0
2.3
2.7
59
-------
Table H V-C-4 (con't)
UNALTERED RIVER SAMPLES
Days of
Date Station Incubation
NOD
(t/y) l!
NOD
3 mg/1
10/4 L-16 6
12
20
29
All Points
.296
.006
1.589
1.81
1.44
1 . 63
1.83
r
m
b
kio
Lo
1.0
4.0
4.6
4.6
Last 3 Pts
0.99997
0.024
1.149
0.0545
5.26
10/5 L-l 6
12
20
29
.182
.003
3.30
0
3.42
3.21
3.46
r
m
b
klO
Lo
0
0.3
0.6
0.7
.7249
.122
.472
.0024
5.04
L-3 6
12
20
29
.1832
.003
1.702
1.88
1.55
1.70
1.87
r
m
b
kio
Lo
.9
3.2
4.1
4.4
.9999
.019
1.324
.0574
5.01
BOD
mg/1
2.5
6.4
7.6
7.9
0.7
1.3
1.9
2 .2
2.4
6.2
8.3
9.4
CBOD
(t/y) 1/3
CBOD
rag/1
1.59
1.71
I. SB
2.06
All Points
0.99992
0.021
1.466
0.0374
3.69
1.5
2.4
3.0
5 .3
2.05
2.29
2.48
2.68
.991
.0366
1.66
0.7
1.0
1.3
1.5
1.59
1.59
1.68
1.80
.962
.010
1.504
.0174
7.34
1.5
3.0
4.2
5.0
60
-------
V-C-4 (con't)
UNALTERED RIVER SAMPLES
Days of
itc Station Incubation
NOD
(t/y) 1/3
NOD
mg/1
D/5 L-4 6
12
20
29
All Points
-.9073
-.059
2.973
2.71
1.96
2 I7
1.15
r
m
b
*10
Lo
.3
1.6
2.1
2.0
Last 3 Pt<
-.8016
-.050
2.76
-.0473
9.19
T-l 6
12
20
29
.9630
.026
1.99
2.15
2.37
2.42
2.81
r
m
b
kio
Lo
0.6
0.9
1.4
1.3
.9265
.026
2.00
.0339
1.60
L-5 6
12
20
29
.2571
.006
2.175
2.46
2.00
2.15
2.52
r
m
b
kio
LO
0.4
1.5
2.0
1.8
.9789
.031
1.597
.0507
2.11
BOD
mg/1
1.2
3.1
4.1
4.4
2.1
3.4
4.8
5.4
1.3
3.1
4.1
4.2
CBOD
(t/y) 1/3
CBOD
mg/1
1.8S
2.00
2.15
2 .29
All Points
.998
.018
1.781
.0264
2.92
0.9
1.5
2.0
*. • T
1.59
1.69
1.80
1.92
.9988
.014
1.512
.0242
5.20
1.5
2.5
3.4
4.1
1.88
1.96
2.12
2.29
.998
.018
1.758
.0267
3.00
0.9
1.6
2.1
2.4
-------
Table £ V-C-4 (con't)
UNALTERED RIVER SAMPLES
Days of
Date Station Incubation
NOD
(t/y) 1
NOD
/3 mg/1
10/b T-2 6
12
20
29
All Points
.7956
.142
.307
0
3.42
3.42
5 .87
r
ra
b
kio
Lo
0
.3
.5
.5
Last 3 Pts
.8825
.27
3.022
.0233
0.68
S-6 6
12
20
29
.8721
.059
2.382
2.71
2.88
4.05
3.87
r
m
b
Mo
Lo
0.3
0.5
0.3
0.5
.7643
.057
2.449
.0607
.49
S-7 6
12
20
29
-.9042
-.012
1.265
1.21
1.14
.94
.96
T
m
b
Mo
Lo
3.4
8.0
23.8
32.4
-.7970
-.010
1.223
-.0213
• 11.16
BOD
mg/1
0.3
0.8
1.4
1 . 3
.0
.9
1.0
1.2
6.3
12.1
28.8
37.7
CBOD
(t/y) 1/3
CBOD
mg/1
2.71
2.88
2.81
3.51
All Points
.863
.023
2.54
.0236
1.12
0.3
0.3
0.9
0.8
3.10
3.05
3.46
.824
.022
2.76
.0208
.99
.4
.7
.7
1.27
1.43
1.59
1.76
.997
.021
1.160
.0473
5.89
2.9
4.1
5.0
5.3
62
-------
-:; V-C-4 (con't)
UNALTERED RIVER SAMPLES
Days of
te Station Incubation
NOD
(t/y) l
NOD
/^ mg/1
0/5 S-8 6
12
20
29
All Points
-0.8747
-0.0183
1.5061
L-9 6
12
20
29
-0.4559
-0.0174
2.0416
1.36
1.40
1.02
1 . 02
r
m
b
klO
Lo
2.29
1.42
1.57
1.72
r
m
b
kio
Lo
2.4
4.4
18.7
27.3
Last 3 Pts ,
0.8486
0.0219
1.5918
0.0359
3.00
0.5
4.2
5.2
5.7
0.9994
0.0176
1.2116
0.0379
6.45
L-10 6
12
20
29
0.1656
0.0034
1.6510
1.88
1.44
1.66
1.85
r
m
b
Mo
Lo
0.9
4.0
4.4
4.6
.9971
.0241
1.1609
.054
5.16
BOD
ng/1
9.8
15.4
32.8
43.4
1.6
6.0
7.7
8.6
2.0
6.0
7.0
7.6
CBOD
(t/y) 1/0
CBOD
mg/1
0.933
1.03
1.12
1.22
All Points
0.996
0.012
0.870
0.036
18.34
1.76
1.88
2.0
2.15
0.999
0.017
1.67
0.0266
3.51
7.4
11.0
14.1
16.1
1.1
1.8
2.5
2.9
1.76
1.82
1.97
2.13
0.995
0.017
1.64
0.0271
2.64
1.1
2.0
2.6
3.0
63
-------
fable r V-C-4
Days of
Date Station Incubation
NOD
(t/y) l/
NOD
5 ing/ 1
10/5 L-ll 6
12
20
29
All Points
-0.8652
-0.0452
2.8545
2.71
2.37
1.63
1.81
r
m
b
kio
Lo
0.5
0.9
4.6
4.9
Last 3 Pts.
-0.7018
-O.C51S
2.5841
-0.0321
5.38
L-12 6
12
20
29
-0.752
-0.015
2.159
2.15
1.96
1.67
1.83
r
m
b
kio
Lo
0.6
1.6
4.3
4.7
-0.416
-0.007
1.965
-0.0093
6.16
L-13 6
12
20
29
-0.2072
-0.007
1.868
2.15
1.40
1.66
1.S5
T
m
b
KIO
Lo
0.6
4.4
4.4
4.7
0.988
0.025
1.118
0.0584
.5.33
BOD
ir.g/1
1.3
2.7
7.0
7 .7
1.3
3.3
6.8
7.5
1.5
6.1
6.9
7.5
CBOD
Ct/y) 1/0
CBOD
mg/1
1.82
1.88
2.03
2. IS
All Points
0.995
0.016
1.71
0.0244
5.56
1.0
1.8
2 .4
2.8
2.04
1.92
2.0
2.18
0.662
0.007
1.91
0.0242
3.48
0.7
1.7
2.5
2.8
1.88
1.92
2.0
2.18
0.973
0.013
1.78
0.0191
4.04
0.9
1.7
2.5
2.8
64
-------
ible # V-C-4 (con't)
UNALTERED RIVER SAMPLES
Days of
ate Station Incubation
NOD
(t/y) l/
NOD
3 mg/1
0/5 L-14 6
12
20
29
All Points
0.38S
0.0066
1.680
1.88
1.59
1.72
1.97
r
m
b
Mo
Lo
0.9
3.0
3.9
3.8
Last 3 Pts ,
0.989
0.022
1.303
0.0441
4.46
L-15 6
12
20
29
0.203
0.00393
1.659
L-16 6
12
20
29
.4267
.0039
1.6168
1.88
1.47
1.68
1.87
r
m
b
kio
Lo
1.71
1.62
1.60
1.80
r
m
b
kio
Lo
0.9
3 . 7
4.2
4.4
0.998
0.023
1.20
0.0500
5.03
1.2
2.8
4.9
5.0
.8362
.0108
1.4531
.0194
7.3043
BOD
mg/1
1.9
5.8
6.6
6.8
1.4
5.1
6.4 •
6.8
1.6
4.2
7.0
7.4
CBOD
(t/y) 1/3
CBOD
mg/1
1.82
1.62
1 .95
2.13
All Points
0.805
0.017
1.59
0.0414
3.44
1.0
2.8
2.7
5.0
2.29
2.05
2.09
2.29
0.128
0.002
2.15
0.0024
18.23
2.46
2.05
2.12
2.29
-.386
.006
2.317
-.0068
5.14
0.5
1.4
2.2
2.4
0.4
1.4
2.1
2.4
65
-------
Table r V-C-4 Ccon't)
UNALTERED RIVER SAMPLES
Days of
Date Station Incubation
NOD
Ct/y) l
NOD
75 mg/1.
10/6 L-l 6
12
20
51
All Points
--
--
3.10
5.21
5.25
r
m
b
klO
Lo
0
.4
.6
.9
Last 3 Pts.
.9380
.0076
3.026
.066
2.38
L-4 6
12
20
31
.5060
.0152
1.9848
2.29
2.10
1.92
2.68
r
m
b
kio
Lo
.5
1.3
2.8
1.6
.7892
.0328
1.5433
.0555
2.13
L-5 6
12
20
31
.5608
.0132
1.9849
2.29
1.88
2.19
2.49
r
m
b
kio
Lo
.5
1.8
1.9
2.0
.9950
.0318
1.5186
.0547
2.27
BOD
mg/1
1.0
1.7
2.0
2.4
3.2
5.8
6.7
7.7
1.9
3.8
4.4
4.8
CBOD
(t/y) 1/5
CBOD
mg/1
1.82
2.10
2 .42
2.74
All Points
.994
.036
1.64
.0573
1.72
1.0
1.3
1.4
1.5
1.30
1.39
1.72
1.72
.906
.018
1.215
.0387
6.26
2.7
4.5
3.9
6.1
1.62
1.82
2.00
2.23
.995
.024
1.505
.0416
5.01
1.4
2.0
2.5
2.8
66
-------
ible r V-C-4 (con't)
UNALTERED RIVER SAMPLES
Days of
ate Station Incubation
NOD
(t/y) l>
NOD
/3 ng/1
0/6 S-6 6
12
20
31
All Points
.987
.026
1.98
S-7 6
12
20
31
' .706
.0018
.929
2.15
2.29
2.^2
2.80
r
n
b
kio
Lo
.959
.924
.967
.989
r
m
b
klO
Lo
.6
1.0
1.4
1.4
Last 3 Pts
.983
.027
1.93
.0365
1.66
6.8
15.2
22.1
32.0
.962
.003
.890
.0088
70.08
S-8 6
12
20
31
-.687
-.064
2.69
5.10
1.07
1.08
1.09
r
m
b
Mo
Lo
0.2
9.8
15.9
24.0
.996
.001
1.058
.025
24.7
BOD
mg/1
2.3
3.2
3.9
4.0
11.3
20.8
28.4
38.7
9.2
23.7
31.2
41.1
CBOD
(t/y) 1/J
CBOD
nig/1
1.52
1.76
2.00
2.28
All Points
.995
.030
1.375
.0570
2.95
1.10
1.29
1.47
1.46
.880
.014
1.086
.0336
10.10
1.7
2.2
2.5
2.6
4.5
5.6
6.3
6.7
"
.874
.952
1.09
1.07
.871
.008
.855
.0244
28.51
9.0
13.9
15.3
17.1
67
-------
rable f V-C-4 (con'tj
UNALTERED RIVER SAMPLES
Days of
Date Station Incubation
NOD
(t/y) l
NOD
/5 mg/1
10/6 L-ll 6
12
20
51
All Points
.124
.0017
1.658
1.82
1.55
1.57
1.81
r
m
b
MO
Lo
1.0
3.2
5.2
5.2
Last 3 Pts
.933
.014
1.346
.0271
6.58
L-12 6
12
20
31
.8722
.0129
1.3903
1.55
1.47
1.59
1.84
r
m
b
Mo
Lo
1.6
3.8
5.0
5.0
.9940
.0196
1.2202
.0419
5.71
L-13 6
12
20
31
.7549
.0147
1.3436
1.59
1.34
1.59
1.87
r
m
b
Mo
Lo
1.5
5.0
5.0
4.7
.9985
.0277
1.0173
.0711
' 5.81
BOD
mg/1
3.7
8.0
8.9
9.4
3.8
7.8
8.7
9.2
3.4
7.6
8.5
8.3
CBOD
(t/y) 1/3
CBOD
mg/1
1.30
1.36
1.73
1.71
All Points
.869
.019
1.207
.0411
6.02
2.7
4.8
3 . 7
4.2
1.40
1.44
1.75
1.98
.982
.025
1.213
.0538
4.53
2.2
4.0
3.7
4.2
1.47
1.66
1.79
2.05
.995
.022
1.356
.0423
4.12
1.9
2.6
3.5
3.6
68
-------
ble r y-C-4 (con't)
UNALTERED RIVER SAMPLES
Days of
ite Station Incubation
NOD
(t/y) 1/3
NOD
mg/1
D/6 L-14 6
12
20
31
All Points
.5671
.0102
1.4392
1.66
1.44
1.4S
1.87
r
m
b
klO
Lo
1.3
4.0
6.0
4.7
Last 3 Pts
.9473
.0234
1.1096
.0550
5.79
L-15 6
12
20
31
.9165
.0202
1.2470
1.47
1.39
1.59
1.93
r
m
b
klO
Lo
1.9
4.5
5.0
4.3
.9983
.0286
1.0367
.0720
5.42
L-16 6
12
20
31
-.0666
-.0020
1.809
2.15
1.400
1.631
1.916
r
m
b
Jqo
Lo
.6
4.4
4.6
4.4
.9995
.0270
1.080
.065
• 5.31
BOD
mg/1
3.6
8.7
9.8
9.7
4.8
8.5
9.6
9.5
2.9
7.3
8.1
8.2
CBOD
(t/y) 1/5
CDOD
mg/1
1.38
1.37
1.74
1.84
All Points
.934
.021
1.220
.0449
5.33
2.3
4.7
3.S
5.0
1.27
1.44
1 .65
1.81
.992
.021
1.168
.0469
5.82
2.9
4.0
4.6
5.2
1.38
1.60
1.79
2.01
.991
.025
1.270
.0514
4.13
2.3
2.9
3.5
3.8
69
-------
Table # V-C-5
THOMAS GRAPHICAL DETERMINATION OF BOD
SEEOFn EFFLUENT SAMPLLS
Industrial Effluents
lONST.ANTS
Days of
Date Station Incubation
NOD
(t/y) l
NOD
/-^ mg/1
10/5 BS-005 6
12
20
29
All Points
-.1915
-.0054
1.8097
2.04
1.36
1.76
1.72
r
m
b
klO
Lo
.7
4.8
5.5
5 . 7
Last 5 Pts.
.7970
.0206
1.1935
.0450
5.68
BS-006 6
12
20
29
.9250
.0150
1.8870
2.04
2.00
2.15
2.56
r
m
b
kio
Lo
.7
1.6
2.0
2.2
.9981
.0212
1.7385
.0518
2.60
BS-007 6
12
20
29
.9459
.0195
1.8602
2.04
2.00
2.27
2.44
r
171
b
kio
Lo
0.7
1.6
1.7
2.0
.9865
.0257
1.7133
.0392
. 2.21
BOD
rag/I
2.4
8.0
9.3
9.S
2.3
4.3
5.3
5.8
2.2
4.4
5.2
5.7
CBCD CROD
(t/y) !/3 mg/1
1.52 1.7
1.55 3.2
1.74 3.8
1.92 4.1
All Points
.9835
.0183
1 . 3757
.0347
4.81
1.55 1.6
1.64 2.7
1.S2 3.3
2?00 5.6
.9509
.0518
1.1368
.0730
I 4.05
1.59 1.5
1.62 2.8
1.79 5.5
1.99 5.7
.9812
.0181
1.4443
.0413
3.50
70
-------
ole ;- V-C-5 (con't)
i EFFLUENT SAMPLES
Industrial Effluents
Days of
tc Station Incubation
NOD
(t/y) ]/
1
NOD
3 mg/1
75 BS-008 6
12
20
29
All Points
-.0695
-.0018
2.4550
2.71
2.10
2.3T
2.52
r
m
b
kiO
Lo
.3
1.3
1.5
1.8
Last 3 Pts.
.9806
.0245
1.8310
BOD
rcg/1
2.1
3.8
4.7
5.4
;
|
.0549 j
2 . 03 [
BS-010 6
12
20
29
All Points
.993
.019
1.7S7
1.88
2.04
2.19
2 . 33
r
m
b
kio
Lo
.9
1.4
1.9
2.3
Last 3 Pts .
.999
.017
1.841
.0241
2.89
BS-012 6
12
20
29
-.167
-.002
2.175
2.29
2.00
2.09
2.18
r
m
b
kio
Lo
.5
1.5
2.2
2.8
.9994
.0106
1.875
.0148
4.46
1.8
3.6
4.7
5.5
1.6
3.6
5.1
6.1
CKOD
(t/y) 1/0
CI50D
mg/1
1.49
1.69
1 .84
2.00
All Points
.9890
.0215
1.3942
.0402
3.99
1.8
2.5
3 2
3.6
1.S8
1.76
1.92
2.08
All Points
.7961
.0105
1.7333
.0158
5.20
.9
2.2
2.8
3.2
1.76
1.79
1.90
2.06
; .9812
.0133
1.6539
.0210
4.58
1.1
2.1
2.9
3.3
71
-------
Table i: V-C-3 (con't)
EFFLUENT SAMPLES
Industrial Effluents
Days of
Date Station Incubation
NOD
(t/y) l/
NOD
0 mg/1
10/5 BS-014 6
12
2 > j
29
All Points
.0660
.0008
2.54
2.46
2.71
2.4S
2.57
-P
m
b
Mo
Lo
.4
.6
1.5
1.7
Last 5 Pts.
-.577
-.008
2.746
.0076
2.76
10/6 BS-005 6
12
20
31
.041
.00076
1.597
1.82
1.36
1.54
1.72
r
m
b
Mo
Lo
1.0
4.8
5.5
6.1
.996
.019
1.145
.0433
6.69
BS-006 6
12
20
31
.96673
.02184
1.7533
1.82
2.10
2.19
2.41
r
m
b
Mo
Lo
1.0
1.3
1.9
2.2
.98927
.01654
1.88602
.060
1.08
BOD
?-g/l
1.9
3.3
-t . /
5.9
3.6
S.2
10.2
11.2
3.2
4.8
5.4
6.4
i
CHOD
f *. /^,\ 1/3
U/) )
CDOD
mg/1
1.59
1.64
1.80
1.90
All Points
.9900
.0142
1.495
.0243
5.25
1.5
2.7
5.4
4.2
1.52
1.52
1.62
1.82
.9848
.0190
1.2430
.0399
5.67
2.6
3.4
4.7
5.1
1 .40
1.51
1.79
1.94
.9821
.0226
1.2705
.0464
4.57
2.2
3.5
3.5
4.2
72
-------
able - V-C-5 (con't)
SEEDED EFFLUENT SAMPLES
Industrial Effluents
Days of
ate Station Incubation
NOD
(t/y) 1
NOD
/3 mg/1
0/6 BS-007 6
12
20
31
All Points
.87996
.02561
1.58573
1.59
2.10
2. OS
2.34
r
m
b
kio
Lo
1.5
1.3
2.2
2.4
Last 3 Pts
.87669
.01330
1.89410
.0183
3.50
BS-OOS 6
12
20
31
-.24552
-0.00366
2.5582
2.46
2.71
2.32
2.49
r
m
b
kio
Lo
.4
.6
1.6
2.0
-.48518
-.00994
2.71551
.0096
2.26
BS-010 6
12
20
31
.6899
.01798
1.95492
1.88
2.46
2.23
2.49
T
m
b
klO
Lo
.9
.8
1.8
2.0
.19530
.00291
2.33218
.0032
' 10.71
BOD
ng/1
3.6
5.0
5.S
6.6
3.5
5.3
6.3
7.5
3.4
4.9
5.9
7.0
CBOD
Ct/v) 1/3
CBOD
mg/1
1.42
1.48
•t -* ~"
1.94
All Points
.9306
.0222
1.2690
.0457
4.66
2.1
3.7
5.6
4.2
1.24
1.37
1.62
1.78
.9875
.0222
1.120
.0517
5.99
5.1
4.7
4.7
5.5
1.34
1.43
1.70
1.84
.9805
.0211
1.2159
.0454
5.35
2.5
4.1
4.1
5.0
73
-------
Fable F- V-C-5 (con't)
LEnnn F.FFLUF.XT SAMPLES
Industrial Effluents
Date
10/6
Davs of
Station Incubation
NOD
Ct/y) l
NOD
/-"> rog/1
BS-012 6
12
20
31
All Points
.81769
.00946
1.88672
1.96
2.04
1.97
2.25
r
m
b
kio
Lo
.8
1.4
2.6
2.S
Last 3 Pts
.76750
.01082
1.85269
.0152
4.50
BS-014 6
12
20
31
.7834
.0203
1.98557
2.29
2.00
2.57
2.68
r
m
b
kio
Lo
.5
1.5
1.5
1.6
.98996
. 03533
1.60803
.0573
1.82
BOD
rg/1
3.1
5.4
6.S
S.G
3.4
5.1
6.1
7.0
CHOD
(t/v) 1/J>
CBOD
r.g/1
1.3S
1.44
1.6S
1.81
All Points
.9799
.0183
1.2616
.0379
5.73
2.3
4.0
4 .2
5 . 2
1.27
1.49
1.63
1.79
.9764
.0199
1.2015
.0432
5.80
2.9
3.6
4.6
5.4
74
-------
le -'• V-C-6
THOMAS GRAPHICAL DETERMINATION OF BOD CONSTANTS
SEEDED S DTLl'TtD EFFLUENT SAMPLES
STP Effluents § Industrial Effluents
Days of
Station Incubation
KOI)
(t/v) !/3
NOD
rn^/1
Allentown STP 6
12
20
29
All Points
0.97275
0.00716
0.51002
0.57
0.58
0.64
0.75
r
m
b
klO
Lo
oo
63
78
75
Last 3 Pt =
0.99672
0.00885
0.47009
0.0491
85.2
BS-015 6
12
20
29
0.20998
0.00096
0.45138
0.50
0.40
0.48
0.49
r
m
b
fcio
LO
46.5
189
186
249
0.89782
0.00521
0.35078
0.03S8
259.08
BS-031 6
12
20
29
0
0
0
0 1
r
in
b
kio
Lo
BOD
rr.g/1
54
95
120
120
57
204
210
264
241.5
417.0
837
203.0
CROO
Ct/y) 1/0
CBOi)
fiig/1
0.66
0.74
0.7S
0.840
All Points
0.9800
0.0074
0.6308
0.0306
56.61
21
50
42
45
0.83
0.93
0.94
1.24
0.9251
0.0164
0.7100
0.0603
20.14
10.5
15
24
15
.29
.31
.288
.29
-0.5173
-0.0003
.3003
-0.0026
-6174.94
241.5
417.0
837.0
1203.0
Linear
(r=.996)
75
-------
Table -' V-C-6 (con't)
SEEDED f; DILUTED EFFLUENT SAMPLES
STP Effluents 5 Industrial Effluents
Days of
Date Station Incubation
KOD
(t/y) !/3
NOD
TCP/ }
10/4 Bethlehem STP 6
12
20
29
All Points
0.96920
0.00795
0.39184
1
0.46
0.46
0.55
0.63
r
m
b
kio
•
Lo
60
102
125
115
Last 5 Pts
0.99770
0.00998
0.54380
0.0758
141.15
LO/5 Al lent own STP 6
12
20
29
0.19308
0.00179
0.72500
0.85
0.63
0.74
0.82
r
m
b
kio
Lo
10.5
48
49.5
52
0.99222
0.01113
0.50371
0.058
BS-015 6
12
20
29
-0.64501
-0.02122
1.12546
1.26
0.57
0.60
0.65
r
m
b
kio
Lo
5.0
64.5
94.5
BOD
rag/1
99
120
189
1S9
21
64.5
78
90
4.5
64.5
94.5
103.5 103.5
0.99402
0.00472
0.51062
0.0241
135.51
cr.oo
(t/y) ^
CBOO
ng/1
0.54
.874
0.672
0.73
All Points
-0.1559
-0.0075
1.0081
39
18
65
74
Linear
(r=.80)
0.85
0.90
0.80
0.91
0.3431
0.0018
0.8292
10.5
16.5
38.5
38
Linear
(r=.920
1.59
0
0
0
-0.8325
-0.0972
1.8073
1.5
0
0
0
ONo gr
76
-------
»lc ' V-C-6 (con't)
SEEDED f, DILUTED EFFLUENT SAMPLES
STP Effluents & Industrial Effluents
Days of
-c Station Incubation
NOD
(t/y) 1/3
NOD
ng/1
•'5 BS-031 6
12
20
29
All Points
r
m
b
Lo
0
0
0
0
Last 5 Pts
Bethlehem STP 6
12
20
29
0.35409
0.00260
0.58987
0.68
0.54
0.61
0.71
r
m
b
kio
Lo
19.5
78
87.8
81. B
0.99772
0.01002
0.41620
0.0628
96.03
'6 Allentown STP 6
12
20
31
.99230
.00943
.49984
.57
.60
.68
.80
r
m
b
klO
Lo
32.0
55.5
64.5
60.0 ]
.99971
.01055
.47179
.0584
'70.89
ROD
r.g/1
123
244.5
^51.3
576
36
105
126
129
47.0
79.5
102
.05.5
cno;)
(t/y) 1/J
CBOD
0.56
0.57
0.35
0.57
All Points
0.1483
0.0001
0.3601
123.0
244.5
451.5
576.0
Linear
(r=.992)
0.36
0.76
0.81
0.85
0.8212
0.0186
0.3S50
0.127
60.94
16.5
27
38.2
47.2
.74
.79
.53
.87
.2011
.0027
.6859
.0103
130.81
15.0
24.0
37.5
46.5
Linear
O.987)
77
-------
)lc • V-C-6 (con't)
SEEDED & DILUTED EFFLUENT SAMPLES
STP Effluents § Industrial Effluents
Days of
te Station Incubation
NOD
Ct/y) l/
NO!)
,/5 BS-031 6
12
20
29
All Points
r
b
Lo
0
0
G
0
noo
123
244.5
-31.5
576
Last 5 Ptsi
Bethlehem STP 6
12
20
29
0.35409
0.00260
0.58987
0.68
0.34
0.61
0.71
r
m
b
kio
Lo
19.5
78
87.8
81.8
0.99772
0.01002
0.41620
0.0628
96.03
'6 Allentown STP 6
12
20
31
.99230
.00943
.49984
.57
.60
.68
.80
r
m
b
kio
LO
32.0
55.5
64.5
60.0 ]
.99971
.01055
.47179
.0584
70.89
36
105
126
129
47.0
79.5
102
.05.5
Ct/y) 1/5
CBO'J
nig/1
0.56
0.37
0.35
0.57
All Points
0.14S5
0.0001
0.5601
123.0
244.5
451.5
576. 0
Linear
(r=.992)
0.56
0.76
0.81
0.85
0.8212
0.0186
0.3S50
0.127
60.94
16.5
27
38.2
47.2
.74
.79
.53
.87
.2011
.0027
.6859
.0105
130.81
15.0
24.0
37.5
46.5
Linear
(r=.987)
77
-------
sic ' V-C-6 (con't)
SEEDED f, DILUTED EFFLUENT SAMPLES
§ Industrial Effluents
Days of
ce Station Incubation
NOD
(t/>0 l/
NOD
3 mg/1
/5 BS-031 6
12
20
29
All Points
r
m
b
Lo
0
0
0
0
ROD
125
244.5
^31.5
576
Last 5 Ptsi
Bethlehem STP 6
12
20
29
0.35409
0.00260
0.58987
0.68
0.54
0.61
0.71
r
m
b
kio
Lo
19.5
78
87.8
81.8
0.99772
0.01002
0.41620
0.0628
96.03
/6 Allentown STP 6
12
20
31
.99230
.00943
.49984
.57
.60
.68
.80
r
m
b
klO
Lo
32.0
55.5
64.5
60.0 3
.99971
.01055
.47179
.0584
70.89
36
105
126
129
47.0
79.5
102
.05.5
cno:.i
(t/y) l/:>
CBOI)
H'f./l
0.36
0.37
0 . 35
0.57
All Points
0.1485
0.0001
0.5601
125.0
244.5
451.5
576.0
Linear
(r=.992)
0.56
0.76
0.81
0.85
0.8212
0.0186
0.3S50
0.127
60.94
16.5
27
38.2
47.2
.74
.79
.53
.87
.2011
.0027
.6859
.0103
150.81
15.0
24.0
37.5
46.5
Linear
O.987)
77
-------
.-•Ic < V-C-6 (con't)
SEEDED f, DILUTED EFFLUENT SAMPLES
STP Effluents § Industrial Effluents
Days of
te Station Incubation
NOD
(t/y) l/
NOD
3 mg/1
/3 BS-031 6
12
20
29
All Points
T
m
b
Lo
0
0
0
0
Last 3 Pts
Bethlehem STP 6
12
20
29
0.35409
0.00260
0.58987
0.68
0.54
0.61
0.71
r
m
b
Mo
Lo
19.5
78
87.8
81.8
0.99772
0.01002
0.41620
0.0628
96.03
/6 Al lent own STP 6
12
20
31
.99230
.00943
.49984
.57
.60
.68
.80
r
m
b
klO
Lo
32.0
55.5
64.5
60.0 ]
.99971
.01055
.47179
.0584
70.89
ROD
125
244.3
451.5
576
36
105
126
129
47.0
79.5
102
.05.5
cnon
Ct/y) l/"
CBOD
*g/l
0.56
0.37
0.35
0.57
All Points
0.14S3
0.0001
0.5601
123.0
244.5
451.5
576.0
Linear
(r=.992)
0.56
0.76
0.81
0.85
0.8212
0.0186
0.3S30
0.127
60.94
16.5
27
38.2
47.2
.74
.79
.53
.87
.2011
.0027
.6859
.0103
130.81
15.0
24.0
37.5
46.5
Linear
[r=.987]
77
-------
>ic r V-C-6 (con't)
SEEDED f, DILUTED EFFLUENT SAMPLES
STP Effluents $ Industrial Effluents
Days of
•o Station Incubation
NOD
(t/y) 1/3
NOD
rep/ 1
'5 BS-031 6
12
20
29
All Points
T*
m
b
Lo
0
0
Q
0
Last 3 Pts
Bethlehem STP 6
12
20
29
0.35409
0.00260
0.58987
0.68
0.54
0.61
0.71
r
m
b
Mo
Lo
19.5
78
87.8
81.8
0.99772
0.01002
0.41620
0.0628
96.03
'6 Al lent own STP 6
12
20
31
.99230
.00943
.49984
.57
.60
.68
.80
r
m
b
klO
Lo
32.0
55.5
64.5
60.0 ]
.99971
.01055
.47179
.0584
70.89
HOD
r.g/1
125
244.5
-51.5
576
36
105
126
129
47.0
79.5
102
.05.5
cno;)
(t/y) 1/J
CBOD
nig /I
0.36
0.37
0.53
0.57
All Points
0.1483
0.0001
0.3601
123.0
244.5
451.5
576.0
Linear
(r=.992)
0.56
0.76
0.81
0.85
0.8212
0.0186
0.3830
0.127
60.9'4
16.5
27
38.2
47.2
.74
.79
.55
.87
.2011
.0027
.6859
.0103
130.81
15.0
24.0
37.5
46.5
Linear
(r=.987)
77
-------
SEEDED 5 DILUTED EFFL'JEXT SAMPLES
ST? Effluent? £- Industrial Effluents
Da;.-? of
Date Station Incubatior.
NOD,
(t/y) */
XOD
•^ ms/1
10/6 BS-015 6
12
— 'J
o i
All Points
.46^95
.00215
.5657^
.62
. 55
.62
.64
T
m
b
klO
Lo
25. S
81.8
81,3
115,3
Last 3 ?ts
.90347
.00355
.48013
.0502
130.0"
BS-051 6
12
20
31
0
0
0
0
r
in
b
kio
Lo
DOO
-,r/1
25. S
SS.5
3S.3
.21 .5
0 121.5
0 236.5
0
0
0
0
0
0
Bethelem STP 6
12
20
31
.958S2
.00619
.48328
.54
.53
.61
.68
n
b
klO
Lo
59.0
366
510
64.5
Sl.O 117.0
90 .0 144 . 0
99.0
.99164
.00780
.44280
.0460
103.85
159.0
CP-O:) CBQD
(t/v) 1( ^ ir,^/l
0 0
1.13 7.3
1.47 6.3
1 .75 6.0
Ail Points
.8732
.0617
.0310
5.19
2812.05
.05 121.5
.05 256.5
.38 366
.39 310
.8896
.0139
-.0570 ^952)
-.728
.62 25.5
.69 56.0
.72 54.0
.80 60.0
.9851
.0068
.5905
.0301
70.22
10
correlation coefficient
slope
y-intercept
deoxygenation constant, day" , base 10
initial remaining demand, rag/1
73
-------
COMPILATION OF CBOD RIVER SAMPLE KINETICS
Table # V-C-7
kio (day-1)
:ation
L-l
L-3
L-4
T-l
L-5
T-2
S-6
S-7
s-s
L-9
L-10
L-ll
L-12
L-13
L-14
L-15
L-16
n
10 (day" )
S10'
10/4
.054
.033
.049
-.030*
.053
.061
.062
.060
—
.045
.052
.044
.029
.022
.028
.037
.037
15
.044
.013
10/5
.037
.017
.026
.024
.027
.024
.021
.047
.036
.027
.027
.024
.024*
.019
.041
.002*
-.007*
14
.028
.009
10/6
.057
--
.059
--
.042
--
.057
.054
.024
--
—
.041
.054
.045
.045
.047
.051
12
.045
.010
L
10/4
8.0
7.0
3.4
1.02
4.4
2. 1
2.6
8.3
--
3.6
3.7
3.1
3.5
3.6
3.9
3.2
3.7
o (mg/1) r (coefficient of correlation)
10/5
1.2
7 . 5
2.9
5.2
3.0
1.1
1.0
5.9
18.3
3.5
2.6
3.6
5.5
4.0
3.4
18.2
5.1
10/6
1 ,7
--
6.3
—
3.0
--
3.0
10.1
28. 5
—
--
6.0
4.5
4.1
5.3
5.8
4.1
10/4
.997
.999
.998
(-.553)
.999
.997
.999
.990
—
.995
.937
1.000
.983
.813
.946
.812
1.000
10/5
. 991
.962
.998
.999
.998
.868
.824
.997
.996
.999
.995
.995
.662
.973
.803
.128
(-.386)
10/6
.994
--
.906
--
.995
--
.995
.880
.871
--
--
.869
.982
.995
.934
.992
.991
:e (day'1)
.101
.030
.064
.021
.104
.023
Overall
n = 41
kl0 = .039, ke =
= .011, se =
.090
.025
Excluded from calculation of average k.
79
-------
COMPILATION OF NOD RIVER SAMPLE KINETICS
Table # V-C-S
station
L-l
L — 5
L-4
T-l
L-5
T-2
S-6
S-7
S-S
L-9
L-10
L-ll
L-12
L-13
L-14
L-15
L-16
kio
10/4
.012
.047
.043
.099
.049
.011
.020
.010*
--
.052
.054
.054
.045
.056
.024
.024
.055
(day'1)
10/5
.002
.057
-.047*
.C54
.C51
.025
.061
-.023*
.036
.038
.054
-.052*
-.010*
.058
.044
.050
.019
10/6
.00"
--
.056
--
.055
—
.037
.009
.025
—
--
.027
.042
.071
.055
,072
.065
r**(coefficient of correlation)
10/4
A 1
T . '
6.0
1.9
1.3
3.0
1.6
1.9
37.4
--
5.4
5.2
4.5
4.0
5.3
5.0
5.2
5.3
10/5
5.0
5.0
9.2
1.6
2.1
0.7
0.5
11.2
5.0
6.5
5.2
5.4
6.2
5.3
4.5
5.0
7.3
10/6
2.4
--
2.1
--
2.5
--
1.7
70.1
24.7
—
--
6.6
5.7
5.8
5.8
5.4
5.3
10/4
10/5
10/6
.954
.996
.998
.990
.986
.999
.986
-.796
—
1.000
.927
1.000
1.000
1.000
.999
.848
1.000
.725
1.000
-.802
.927
.979
.885
.764
-.797
.849
.999
.997
-.702
-.416
.988
.989
.998
.836
.958
--
.789
--
.995
—
.983
.962
.996
—
—
.935
.994
.998
.947
.998
1.000
n
k10 (day"1)
S10
15
.043
.020
L3
.039
.017
10
.043
.021
ke (day"1)
sa
.041
.019
Overall
n = 38
ke = .094
* Excluded from calculation of average k.
** Values excluding day 6 data due to lag phase (see Table V-C-4 for r values
based en all data) .
80
-------
COMPILATION OF CBOD and NOD
SEEDED EFFLUENT SAWLF KINETICS
Table # V-C-9
Station
3S-Q05
BS-006
BS-007
BS-OOS
BS-010
BS-012
BS-014
CBOD k10 (day'1)
10/5 10/6
.035 .043
.073 .046
.041 .046
.040 .052
.016 .045
.021 .038
.025 .043
CBOD L0 (rag/1]
CBOD
(coefficient of correlation)
10/5
4.S
4.1
3 . 5
4.0
5.2
4.6
5.3
10/6
5.7
4.6
4.7
6.0
5.4
5.7
5.8
10/5
.93?
.951
.981
.989
.796
.931
.990
10/6
.985
.982
.981
.988
.981
.980
.976
BS-005
BS-006
BS-007
BS-008
BS-010
BS-012
BS-014
NOD
.045
.032
.039
.035
.024
.015
.045
(day'1)
.043
.060
.018
.010
.003
.015
.057
NOD L0
5.7
2.6
2.2
2.
0
2.9
4.5
6.7
1.1
1.1
3.5
2.3
10.7
4.5
1.8
NOD
(coefficient of correlation)
.797
.993
.987
.981
.999
.999
.996
.996
.989
.877
-.485
.195
.768
.990
81
-------
TABLE V - D-l
Station
L-l
L-l
L-l
L-l
L-l
L-4
L-4
L-4
L-4
L-4
10/5
10/5
1310
2000
10/5 2300
10/6
0300
10/5 0910
10/5
1355
10/5 1820
10/5 2030
10/6
0345
LEHIGH RIVER STUDY
DIURNAL DATA
Location
Right
Center
Left
Avg./Como.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
PH
(SU)
6.85
7.1
7.2
7.05
7.5
7.45
7.45
7.43
7.55
7.55
7.5
7.53
7.3
7.2
6.5
7.0
7.6
7.65
7.65
7.63
7.2
7.2
7.2
7.2
7.3
7.4
7.3
7.33
7.25
7.1
6.6
7.0
7.5
7.5
7.4
7.5
7.6
7.5
7.5
7.53
Temp.
D.O.
(ppm)
12
12
12
12
13.5
13.0
13
13.16
14.1
14.0
13.8
14.0
14.0
14.0
14.0
14.0
14.0
13.6
13.3
14.6
12.2
12
12.2
12.13
14
14
14
14
13.5
13.5
14.5
13.8
14
14
14
14
13.8
14.0
14.0
13.9
10.6
10.6
10.6
10.6
10.8
10.7
10.5
10.6
10.5
10.6
10.4
10.5
10.6
10.4
10.3
10.4
11.1
10.9
10.5
10.8
10.6
10.2
9.8
10.2
10.4
10.2
10.1
10.23
10.5
10.5
10.4
10.4
10.0
10.0
10.8
10.3
10.2
9.8
9.5
9.8
Chlorophyll
(pob)
4.5
3.0
4.5
4.5
4.5
3.0
82
-------
Station
L-9
L-9
L-9
L-9
L-9
L-9
L-11
L-ll
L-ll
L-l
L-n
Date Time
10/5 0935
10/5 1420
10/5 1900
10/5 2110
10/6 0005
10/6 0410
10/5 1150
10/5 1450
10/5 1900
10/5 2140
10/6 0050
TABLE V -
0-1
LEHIGH RIVER STUDY
DIURNAL
Location
Right
Center
Left
Avg./Comp
R1 ght
Center
Left
Avg./Comp
Right
Center
Left
Avg./Comp
Right
Center
Left
Avg./Comp
Right
Center
Left
Avg./Comp
Right
Center
Left
Avg./Comp
Right
Center
Left
Avg./Comp
Right
Center
Left
Avg./Comp
Right
Center
Left
Avg./Comp
Right
Center
Left
Avg./Comp
Right
Center
Left
Avg./Comp
DATA
PH
(SU)
7.2
7.15
7.3
. 7.21
7.4
7.5
7.5
. 7.46
7.5
7.5
7.5
. 7.5
7.5
7.5
7.55
. 7.53
7.45
7.5
7.35
. 7.40
7.3
7.55
7.5
. 7.45
7.25
7.3
7.3
7.28
7.3
7.35
7.4
. 7.35
7.3
7.3
7.3
. 7.3
6.8
6.6
6.7
. 6.7
7.35
7.4
7.45
. 7.40
Temp.
Chlorophyll a_
13.5
13
14
12.73
15
14.5
15.5
15.0
14.5
15
15.5
15.
14.5
14.9
15.5
15.0
14.5
15.0
15.5
15.0
13.8
14.2
14.5
14.1
15.0
14.0
14.0
14.3
14.5
14.5
14.5
14.5
16.0
16.0
16.0
16.0
15.0
15.0
15.0
15.0
14.5
14.5
14.5
14.5
9.8
9.8
9.4
9.66
10.0
10.0
9.8
9.93
10.4
10.2
9.8
10.1
9.8
9.5
10.1
9.8
9.7
9.3
9.0
9.33
9.7
9.3
9.0
9.33
9.5
9.3
9.0
9.26
9.3
9.3
9.0
9.2
9.8
9.8
9.4
9.7
9.8
9.7
9.6
9.7
9.4
9.5
9.4
9.0
1.50
1.50
3.0
6.0
7.5
3.8
1.50
1.50
4.5
7.5
3.0
83
-------
TABLE V - D-1
LEHIGH RIVER STUDY
DIURNAL DATA
pH Temp. D.O. Chlorophyll
Station Date Time Location (SU) (°C) (pprn) (pob)
L-ll 10/6 0440
3.0
L-13 10/5 1010
L-13 10/5 1520 ---.•----- •" ' - 6-°
L-13 10/5 1950 -.-.•-- — •-" 4-5
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
7.35
7.35
7.35
7.35
7.35
7.3
7,3
7.3
7.15
6.85
7.25
7.08
6.5
6.6
6.7
6.6
6.5
6.6
6.7
6.6
7.55
7.55
7.6
7.56
7.5
7.5
7.5
7.5
14.5
14.5
14.5
14.5
13.8
14
14
13.9
14.5
14.5
14.5
14.5
15.5
15.0
15.0
15.2
15.0
15.0
15.0
15.0
14.2
14.7
14.5
14.3
14.5
14.6
14.7
14.6
9.0
8.9
8.8
8.9
8.8
8.6
8.65
8.68
8.4
8.6
8.9
8.6
9.2
9.2
9.4
9.33
9.2
9.2
9.4
9.33
9.6
9.6
9.5
9.56
8.9
8.7
8.7
8.76
L-13 10/5 2100 -•-••" ' ••- ' 3'°
L-13 10/6 0125 ---.•-'- ---- •"- —- 3.0
L-13 10/6 0515 -••' '•" w 6'°
3.0
84
-------
TABLE V - E-l
LEHIGH RIVER STUDY
MAJOR DISCHARGE FLOWS
Fl
10/3 - 10/4 1
(MGD)
30.0
10.0
*005 43.7
?006 12.6
1*007 2.0
?008 15.8
?010 6.1
?012 25.0
?014 5.5
?015 6.0
?031 0.06
-eek 38
ows
0/4 to 10/5
(MGD)
34.2
8.7
43.7
12.6
2.0
15.8
6.1
25.0
5.5
6.0
0.06
38
10/5 to 10/6
(MGD)
29.2
7.8
43.7
12.6
2.0
15.8
6.1
25.0
5.5
6.0
0.06
38
Discharge Name
Allentown STP
Bethlehem STP
Bethlehem Steel Outfall #005
Bethlehem Steel Outfall 1006
Bethlehem Steel Outfall #007
Bethlehem Steel Outfall #008
Bethlehem Steel Outfall #010
Bethlehem Steel Outfall #012
Bethlehem Steel Outfall #014
Bethlehem Steel Outfall #015
Bethlehem Steel Outfall #031
New Jersey Zinc (Sauccn Creek
below discharge)
Saucon Creek above discharges .56 ,5 .5
85
-------
TABLE V E-2
LEHIGH RIVER STUDY
STREAM FLOWS
Station Flows
10/4 10/6
(cfsj TCFS~)
Jordan Creek 142 104
Little Lehigh 60 57
Monocacy Creek 47 39
Saucon Creek ~60 ~60
Lehigh River (hill to hill) 1905 1538
Lehigh River (Glendon) 2098 1648
86
-------
TABLE V F-l
Location
Date
LEHIGH RIVER STUDY
TIME OF TRAVEL
Peak
Time
Elapsed
Time
River
Mile
Average Speed
Between Stations
(hours)
Comments
(MPH)
Hamilton Street 10/5/77
Bridge, Allentown,
PA
0.15 miles down-
stream from Hill
to Hill Bridge
10/5/77
Upstream from 10/5/77
Saucon Creek
0.2 miles from
Freemansburg Bridge
Downstream from
Pipeline near
Redington
10/5/77
0300
0805
1025
1609
5.08
7.42
13.15
17.3
12.55
9.4
6.0
0.94
1.35
1 at.
Rhodamine I
dumped at
0300
0.59
STREAM FLOWS
Location
Lehigh at Bethlehem
(Hill to Hill Bridge)
Lehigh at Glendon
Approximate Flow*
1720 CFS
1875 CFS
* Flows were measured on 10/4 and 10/6.
these flows shown in Table V - E-2.
Done By: Gerard R. Donovan, Jr.
Ronald Jones
The approximate flow is the average of
87
-------
TABLE V - F-2
LEHIGH RIVER STUDY
TIME OF TRAVEL (1976)
Location
Date
Peak Elaosed River Average Speed
Time Time Mile Between Stations Comments
(hours)
(MPH)
Hamilton Street 10/6/76 0440
Bridge, Allentown
PA
15 miles down- 10/6/76 0823
stream from Hill
to Hill Bridae
Just upstream from 10/6/76 1005
mouth of Saucon
Creek.
17.3
3.72
5.42
12.55
9.4
1 .23
1.85
Dye Dump ~
2000 ml
Rhodamine B
at 0440-
FLOW MEASUREMENTS
Location
Gauge Ht.
(feet)
Flow
TCFS)
Time
Comments
Hamilton Street
Bridge, Allentown,
PA
Lehigh at Bethlehem
(01453000)
Lehigh at Glendon
(01454700)
2.70
8.5
2860
2730'
0800
1115
Gauge key would no
work in lock.
Done By: George H. Houghton
William M, Thomas, Jr.
Robert L. Vallandingham
Ronald Jones
88
-------
G. Benthic Characterization-Sediment Oxygen Demand
At station L-13 the bottom was hard and sandy In the middle
and on the right side (looking upstream). Near the shore on the right
side the bottom was a black, granular material, possibly coal dust, and
the respirometer was able to seat properly. The D.O. inside the respirometer
dropped 2.0 mg/1 in 80 minutes during the test. There was no change in
the accompanying dark bottle D.O., therefore it is assumed that all of the
D.O. change is related to benthic demand. Following are the calculations
for SOD at L-13.
S' = 2.0 mg/1 •=• 80 minutes = .025 mg/l/min
S" = 0
S = .025 mg/l/min
SOD = 107 x S
SOD = 107 x .025 mg/l/min = 2.675 g/m2/day
14.5°C
(20 - T)
SOD = SOD x 6
20°C 14.5
(20 - 14.5)
= 2.675 x 1.06 = 2.675 x 1 .414 = 3.78 g/mz/day
39
-------
o
o
•
<£>
o
CO
CO
CO
•
-~sl
CO
CTI
CO
-p»
CO
•
CO
CO
ro
CO
t— «
CO
o-
^1
co
— !
•
•^J
-^1
•
CTi
^4
•
en
-~j
.£»
-~j
CO
*--j
ro
~j
»— >
•
O
m
r—
>
-o
oo
m
O
— i
K- «
31
m
"
o
ro
en
O
i— i
en
ro
O
ro
en
CO
o
eo
en
-^
o
-e»
en
en
O
en
en
01
o
G~i
en
•^j
O
•^J
C3
0
—1
HH
2
m
"
en
o
t— *
en
o
ro
t— i
en
o
en
\— »
en
f J
o
i—*
en
1 — I
en
»—*
en
ro
o
!"• *
en
ro
en
i— '
en
eo
O
i— >
en
eo
en
t— •
en
42.
0
»— *
en
.£>
en
i — >
en
en
O
H- •
en
en
en
i— *
CTl
O
O
1 — >
CTl
0
en
i — i
CTl
i — i
CO
t— »
CTl
en
t — '
CTi
ro
O
3 P
VD
X 0
' * CO
0 n rt w
o~
ro
o"
H . ,
_ U>
2 °~
PI:
z
E *
2 0~
c:
-i
m
//i
W
8-
o>_
o
~1_
o
(B_
0 <
(O
i . m
O r-
o _ r^
o ^ m
-^ ~r
m -1-
0 -n Z 0
• i ___
r^ ^ 31
o °
^ /^
30 ° 33
o m X -
u •< <
0 N o rn
i ^ ' -p,
m ^D
PI "^
o O _
a 0 o- -i ^ CO
° §r o H
c. -c m r5
0 0 o _ W
z S 2 <
m 2 *>*^
0 w 0 ^
$ -z.
o 2 O
P»
o
o
O CD < en o
0 0 0 > H > H
2 H -t > -i >
2 H m H m 13
0 m 0 33 o ** °
* 2 a 2 _ 2
_ 1 ^ \J ^ _ __ • •
1 S 2 ? H ; o - o
OHO1W-4 ^in.'
I^x .S^-nHtrt-^ i
i!5°3%'g£ 2:^
°°> 0° ^^
35~" H » p. m -i
^^>S= >r°
*£!£" 2"2
O "~4 ' ' n •• w TT • •
^w w* -^—
5 -^ ^
m X
33
90
-------
TABLE V - G
LEHIGH RIVER STUDY
BENTHIC CHARACTERIZATION
L-13
Lehigh Upstream
of Glencom Dam
L-16
Lehigh at 3rd
Street Bridge
% dry weight
mg/kg
TKN
TP TOC
Zn
Cd
Cu
.421 .1258 1.68 697 10.i
Pb
Fe
,838 .1881 1.73 807 17.1 10.9 55.2 95.6 6780
6.4 48.0 71.8 8525
91
-------
VI. Conclusions
A. A review of the long-term BOD data revealed a general trend
of decreasing TKN-N concentration correlated with increasing (N02+N03)-N
concentration, associated with the processes of nitrification. The
one exception to this pattern was Bethlehem Steel outfall 031. This
outfall had ei high average BOD 29/31 of 763 ppm and a high average
initial TKN-N of 359 ppm. However, little or no (N02+NOs)-N was formed
after 30 days of incubation. The sample was analyzed for phenol &
cyanide and found to contain 35.9 ppm total phenol and 50 ppm cyanide.
This suggested that the outfall was toxic to nitrifying bacteria but
not to the hsterotrophic species present.
B. Nitrite was formed with incubation, but except for 771006-15
and 16 it decreased to "not detectable" (NO) after 30 days of incubation.
C. A paired t-test of the results of the calculated NOD and
TCMP NOD over the combined 218 paired data sets established at the
95% confidence level (t = 0.75) that there was no significant difference
in the results of the two NOD methods.
D. The; average river CBOD and NOD rate constants ke were
respectively 0.090 (n = 41) and 0.094 (n = 38).
E. The carbonaceous demand followed first order kinetics in
the river samples. The river NOD involved at least a six day lag
phase, in which the nitrifying bacteria present may have become
acclimated to the experimental conditions and/or increased in number
enough to make a significant contribution. The river NOD rate
92
-------
calculations are included in Table V-C-4. The deoxygenation constants
and ultimate NOD were calculated using "all points" and recalculated
excluding the early lag phase. This lag phase was assumed to be a
laboratory artifact and the deoxygenation constants compiled (Table
V-C-8) were based on the last three data sets.
F. The effluent samples which were both seeded and diluted often
depleted oxygen (CBOD) in a linear pattern with time, which resulted
in poor correlation coefficients to first-order kinetics. The NOD
for these samples displayed a lag time similar to the river samples
(Table V-C-5 and V-C-6) and the ke values reported were similarly
based on the last three data sets.
93
-------
APPENDIX A
A problem with the TKN analysis was encountered with several samples.
These results were considered questionable and appear as L.A. (laboratory
accident) in the data summary table. The results for these samples were
as follows:
Days of
Date Station Incubation TKN-N
(PPm)
10/5 Bethlehem 015 6 55.5
10/5 Bethlehem 015 29 65.8
10/5 Bethlehem 031 29 59.6
10/6 T-6 Original Sample 3.4
10/6 Allentown STP 0 4.7
10/6 Bethlehem 015 6 81.3
10/6 Bethlehem 001 6 7.56
It is unclear whether the problem was due to interferences present
in the sample or due to the imprecision in the TKN-N test amplified by
the dilutions involved.
94
-------
APPENDIX B
EPA PRECISION AND ACCURACY
Parameter
Cone. Ranae
Accuracy
(avg. % bias)
Preci si on-Standard
Cone. Range Deviation of the Differen
Dissolved
Oxygen
Electrode
Winkler
Chlorophyll a_
Total Kjeldahl
Nitrogen
Ammonia
Nitrite plus
Nitrate
Phenolics
BOD
5
METALS
Zn
0-20 ppm
1.89 ppm
2.18 ppm
5.09 ppm
5.81 ppm
.16 ppm
1.44 ppm
0.29 ppm
0.35 ppm
2.31 ppm
2.48 ppm
281 ppb
310 ppb
56 ppb
70 ppb
7 ppb
11 ppb
-24.6%
-28.3%
-23.8%
21.9%
+7%
-1%
+5.75%
+18.10%
+4.47%
-2.69%
1.2%
-.7%
11.3%
6.6»
206%
56.6%
0-20 ppm
7.5 ppm
1.89 ppm
2.18 ppm
5.09 ppm
5.81 ppm
0.43 ppm
1.41 ppm
0.29 ppm
0.35 ppm
2.31 ppm
2.48 ppm
9.6
48.
93.
4.7
48.2
ppb
PPb
ppb
ppb
ppb
97.0 ppb
2.1 ppm
175 ppm
281 ppb
310 ppb
56 ppb
80 ppb
0.1
ppm
ppm
7
11
PPb
PPb
0.54 ppm
0.61 ppm
1.25 ppm
1.85 ppm
±.005 ppm
±.005 ppm
0.012 ppm
0.092 ppm
0.318 ppm
0.176 ppm
±0.99 ppb
±3.1 ppb
±4.2 ppb
±0.18 ppb
±0.48 ppb
±1.58 ppb
+.7 ppm
±26 ppm
97 ppb
114 ppb
28 ppb
28 ppb
28 ppb
18 ppb
95
-------
APPENDIX B
EPA PRECISION AND ACCURACY
Parameter
Mn
Cone.. Range
Fe
Pb
367 ppb
334 ppb
101 ppb
84 ppb
37 ppb
25 ppb
Accuracy
(avg. % bias)
426 ppb
469 ppb
84 ppb
106 ppb
11 ppb
17 ppb
840 ppb
700 ppb
350 ppb
438 ppb
24 ppb
10 ppb
1.5%
1 .2%
2.1%
-2.1%
93%
22%
1 . O/o
-2.8%
-0.5%
-0.7%
141%
382%
2.9%
1.8%
-0.2/o
1%
6%
Precision Standard
Cone. Range Deviation of the Dlffe;
25.7%
426 ppb
469 ppb
84 ppb
106 ppb
11 ppb
17 ppb
840 ppb
700 ppb
350 ppb
438 ppb
24 ppb
10 ppb
367 ppb
334 ppb
101 ppb
84 ppb
37 ppb
25 ppb
70 ppb
97 ppb
26 ppb
31 ppb
27 ppb
20 ppb
173 ppb
178 ppb
131 ppb
183 ppb
69 ppb
69 ppb
128 ppb
111 ppb
46 ppb
40 ppb
25 ppb
22 ppb
96
-------
APPENDIX B (con't)
Parameter
Cd
Total Phosphorus
(T-P04)
Total Organic
Carbon
(TOO
Cone.
Range
71 ppb
78 ppb
14 ppb
18 ppb
1 .4 ppfa
2.8 ppb
302 ppb
332 ppb
60 ppb
75 ppb
7.5 ppb
12.0 ppb
370 ppb
407 ppb
74 ppb
93 ppb
7.4 ppb
15 ppb
0.76ppm
4.9 ppm
107 ppm
Accuracy
(ave. % bias)
- 2
- 5
19
T
13
4
0
- 2
7
1
29
15
- 4
- 6
- 3
-10
37
6
- 1
0
+15
+ 1
.2
.7
.8
.9
.5
.7
t Q
.4
.0
.3
.7
.5
.5
.5
.1
.?
'.7
.8
_n
.32
.01
0'
fO
o/
0'
,'0
of
M3
a
'0
Gf
of
,"}
&
/3
O/
,3
O/
n
Of
ft
O/
/O
Of
I?
O/
/I
%
%
of
'0
Hi
,'o
o!
,'£>
of
1C
01
K>
01
10
Cone.
Range
71
78
14
18
1.4
ppb
ppb
ppb
ppb
ppb
2.8 ppb
320
332
60
75
7,
ppb
ppb
ppb
ppb
ppb
12.0 ppb
370 ppb
407 ppb
74 ppb
93 ppb
7.4 ppb
15 ppb
.04ppm
.19ppm
.35ppm
.84ppm
4.9 ppm
107 ppm
Precision
std. deviation
of the diff.
21
18
11
10.3
5.0
2.8
56
56
23
22
6.1
9.7
105
128
29
35
7.8
9.0
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
.005 ppm
.000 ppm
.003 ppm
.000 ppm
3.93
8.32
ppm
ppm
97
-------
APPENDIX C
Benthic Respirometer
The AFO benthic respirometer is shaped like a pyramid with vertical
and horizontal stabilizing flanges. A DO probe is fixed in one side wall
of the pyramid and a small pump is attached on the wall with the pump
discharge opposite the DO probe membrane. Circulation from the pump
discharge provides the mixing required when using the probe method of
DO measurement. The inside volume was measured to be 27.62 1 and it
o
covers a surface area of 4 ft . (See Figure III-l). Plotting the DO
concentration inside the respirometer against time typically results in
a constant negative slope for the first 30 to 60 minutes; after this
initial period, the slope gradually approaches zero (see Figure III-2).
The initial slope, S1 (mg/l/min), is taken as the net respiration in the sediments
and trapped water. If a dark bottle filled with bottom water is placed next
to the respirometer during operation, the DO concentration will decline
due to aerobic respiration in the trapped water. Subtracting the average
respiration rate in the water column, S" (mg/l/min), from the initial slope
measured by the respirometer will give the respiration in the sediments:
S Ung/1/min) = 5' - S11 (1)
This measure of benthic respiration must be converted to standard units
as follows:
2
SOD (g DO/m /day) = S (mg/l/min) x 1440 (min/day) x 0.001 (g/mg)
I 10.764 (ft2/m2) x V (1) x A"1 (ft2) «= 0.258 x S x V/A (2)
98
-------
r
iaure
BENTH C RESPIROMETER
DO METER
I2v D.C.
V = 27.6
A= 4 ft'
no
-------
Figure 0-2 •
TYPICAL GRAPH AND WORKSHEET FROM RESPIROMETER
7-
6-
5-
4
31
2
30
TEMP = 24* C
INITIAL SLOPE = S'= 0.0333 mg/l /mi,
(2 mg/l / hr)
60
time , min
90
DARK BOTTLE DROPS 0.2 mg/l IN 60 MINUTES
S" = 0.0033 mg/l / min
S = S'-S" = 0.030 mg/l / min
SOD = 107 x S = 3.21 g/m2/day
S°D20 = S°DT
= 2-50
TOO
-------
Given the volume and bottom surface area of our particular benthic
respirometer, equation (2) becomes:
SODT (g D0/m2/day) = 107 x S (mg/l/min) (3)
Aerobic bacterial respiration is generally considered to be an exponential
function of temperature such as:
R2Q = RT x eT"2° (4)
where R2g = rate at 20°C;
R_ = rate at T°C;
9 = temperature correction factor (1.05 - 1.10, generally)
Our SOD data, measured at T , is finally reported as corrected to 20 :with
G set at the standard value of 1.065:
SOD2Q = SODT x 1.065(2°"T) (5)
101
-------
REFERENCES
1. EPA Methods for Chemical Analysis of Water and Wastes, 1974.
2. Finstein, M.S., et al, "Distribution of Autotrophic Nitrifying Bacteria in
a Polluted Stream", N.J. Water Resource Research Institute W7406834, February
1974.
3. Wezernak, C.T. and Gannon, J.J., "Evaluation of Nitrification in Streams",
J. Sanitary Engineering Division; Program of American Society of Civil
Engineers, p.. 883 - 895 (Oct. 1968).
4. Thomas, H.A., "Graphical Determination of B.O.D. Curve Constants", Water and
Sewage Works, p. 123 - 124, March 1950.
102
-------
TECHNICAL REPORT DATA
(flense read Instructions on t'r.e rc\ crse before completing)
1. REPORT NO.
EPA 903/9-79-004
4. TITLE ANDSUBTITLE
3. RECIPIENT'S ACCESSION NO.
REPORT DATE
March 1979
Lehigh River Intensive
7. AUTHOH(S)
Daniel K. Donnelly
Joseph L. Slayton
3. PERFORMING ORGANIZATION REPORT NO
9. PERFORMING ORGANIZATION NAME AND ADDRESS
U.S. Environmental Protection Agency
Annapolis Field Office, Region III
Annapolis Science Center
Annapolis, Maryland 21401
. PERFORMING ORGANIZATION CODE
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
12. SPONSORING AGENCY NAM!: AND ADDRESS
Same
13. TYPE OF REPORT AND PERIOD COVERED
14. SPONSORING AGENCY CODE
EPA/903/00
15. SUPPLEMENTARY NOTES
16. ABSTRACT
An intensive survey of the lower reach of the Lehigh River between Palmerton
and the mouth was conducted during October 1977. The study included the water
quality, hydrologic and benthic characterizations necessary for calibration
and verification of a mathematical model being developed by the EPA
Region III Water Planning Branch.
17. KEY WORDS AND DOCUMENT ANALYSIS
a. DESCRIPTORS
dissolved oxygen
Biochemical Oxygen demand
Mi trogenous Oxygen demand
Sediment Oxygen demand
metals concentration
nutrient concentration
18. DISTRIBUTION STATEMENT
Release to public
b.lDENTIFIERS/OPEN ENDED TERMS
diurnal fluctuations
stream gaging
time of travel
sediment analysis
water analysis
19. SECURITY CLASS (This Report)
unclassified
20. SECURITY CLASS (This page)
unclassified
C. COSATI Field/Group '
21. NO. Or PAGES
102
22. PRICE
EPA Form 2220-1 (9-73)
-------
U.S. ENVIRONMENTAL PROTECTION AGENCY
MIDDLE ATLANTIC REGION-III 6th and Walnut Streets, Philadelphia. Pennsylvania 19106
-------
-------
EPA 903/9-79-006
SIMPLIFIED N.O.D. DETERMINATION*
*Presented at the 34th Annual Purdue Industrial Waste Conference at
Purdue University, West Lafayette, Indiana on May 9, 1979
-------
SIMPLIFIED N.O.D. DETERMINATION
May 1979
Joseph Lee Slayton
E. Ramona Trovato
Annapolis Field Office
Region III
U.S. Environmental Protection Agency
-------
SIMPLIFIED f-!.O.D. DETERMINATION
Joseph L. Slayton and E. Ramona Trovato
U.S. Environmental Protection Agency
Region III, Annapolis Field Office
Biochemical oxygen demand (BOD) is A bioassay procedure concerned
with the utilization of oxygen in the biochemical oxidation (respiration)
of organic material. This test is one of the most widely used measures
of organic pollution and is applied both to surface and waste waters.
The standard method of BOD measurements adopted by APHA1 is a five
day test in which a water sample is maintained at 20°C in the dark
and oxygen depletion is monitored. The five day incubation period
was selected to maximize the oxygen demand associated with the
oxidation of carbon compounds while minimizing the oxygen demand of
autotrophic organisms. That portion of the BOD due to the respiration
of organic matter by heterotrophic organisms is termed the carbonaceous
oxygen demand and that portion involved with nitrification is termed
nitrogenous oxygen demand. The desire to separate the NOD and CBOD
results not only from the fact that the organisms responsible for these
components have different nutrient requirements, but also because
they differ in reaction rates, A02/Atime; temperature coefficients;
and tolerance to toxic materials. Nitrifying bacteria are in general
slower growing2; more drastically affected by temperature3; and are more
The mention of trade names or commercial products in this report is
for illustration purposes and does not constitute endorsement or
recommendation by the U.S. Environmental Protection Agency.
-------
sensitive to materials as**: phenols; cresol ; halogenated solvents;
heavy metals; and cyanide. The organisms involved in the CBOD and
NOD processes would therefore be expected to react differently to the
same aquatic environment. The determination of the BOD components
would better define the BOD test results and aid in extrapolating these
results to the prediction of dissolved oxygen profiles in a body of water.
The purpose of this paper is to demonstrate that a simple
procedure involving an inhibitor to nitrification, N-serve, could
provide an accurate and precise measurement of nitrification occurring
in the BOD test while not affecting the carbonaceous oxygen demand.
Nitrification
Nitrification is the conversion of ammonia to nitrate by
biological respiration. This type of respiration is employed by
seven genera of autotrophic nitrifyers.5
It should be noted that heterotrophic nitrification can also
produce NO;? and N0§ by reactions that do not involve oxidation.6
However, only Nitrosomonas spp and Nitrobacter spp are regularly
reported by in situ nitrification studies.2 Therefore, the treatment
of nitrifying river samples with inhibitors specific to Nitrosomonas
and Mitrobacter can be expected to stop all appreciable nitrification.7
The reactions involved in nitrification are as follows:
NH4+ + -%02 Nitrosomonas 2H+ + ^-^ Equation T
N02- + h 02 rh'trobacter-y N03- Equation 2
The stoichiometries of the nitrification reactions dictate that the
conversion of T gram of nitrogen from ammonium to nitrite utilizes
-------
3.43 grams of oxygen and the conversion of 1 gram of nitrite-nitrogen
to nitrate-nitrogen involves the utilization of 1.14 grams of oxygen.
However, nitrifying bacteria are autotroph-'c and as such utilize
a portion of the energy derived from nitrogen oxidation to reduce C02»
their primary source of carbon. The net result is a reduction in
the amount of oxygen actually consumed. Short term, zero to five
day, laboratory experiments8'1''10 employing cultures of Nitrosomonas
and Mitrobacter have related the depletion of oxygen to the production
of nitrite and nitrate with the corresponding oxygen to nitrogen ratios
of 3.22 and 1.11. However, in long term experiments, the decay of
these organisms would be expected to exert an oxygen demand approximately
equivalent to the oxygen originally generated, resulting in an
overall relation not significantly different from 4.57.11
The equation used to calculate the NOD from the changes in
nitrogen states upon incubation was:
NOD = 3.43 (AN02-N + AN03-N) + 1.14 (ANOs-N) Equation 3
where A = final - initial .
The potential NOD was calculated as:
potential NOD = 4.57 (TKN) Equation 4
where TKN = (NH3-N + Norg-N)and N02-N was insignificant.
The NOD was also measured by the difference in oxygen depletion
in an unaltered sample and in a sample altered by the addition of
the nitrification inhibitor, nitraoyrin.
Nitrification Inhibitor
The inhibitor used was formula 2533 Nitrification Inhibitor,
a product of the Hach Chemical Company. The product consists of
-------
2-chloro-6-(trichloromethyl) pyridine known as TCMP or nltrapyrin.
This compound is plated onto a simple inorganic salt which serves as
a carrier and is soluble in water. The DOW Chemical Company, Midland,
Michigan, markets this chemical under the name N-Serve as a fertilizer
additive.
Studies12'13'11*'15 using nitrapyrin suggest that it acts as a
"biostat" at moderate concentrations to delay nitrification and
aids in the retention of ammonia or urea fertilizers on crops by
retarding conversion to the more highly leachable N03~. TCMP is
slowly biodegraded to 6-chloropicolinic acid which leaves the fields
in their original state, with no further inhibition to nitrification.
The advantage of this is that 20 to 30 day NOD assays may be performed
without significant inhibitor contribution to the carbonaceous
demand.11'16
Because of concern for the potential environmental impact
resulting from extensive farm use, studies were performed on the
toxicity of this material. These studies have revealed the inhibitor
to be very selective and effective at stopping nitrification when
used at a concentration of 10 mg TCMP/1 ^M6,17
-------
Experimental
A. NOD Synthetic Ammonia Experiment
1. 300 ml BOD bottles were weighed before and after the addition
of water and found to be reliable to within 1%. They were
used as volumetric flasks for all experiments.
2. Two ml of a solution of O.lSOg glucose/1 plus Q.150g glutamic
acid/1 were spiked into BOD bottles using a repipet.
3. Stale settled sewage was filtered through Kimwipes18 and
diluted. One ml was dispensed into each BOD bottle.
4. NH3-N spikes were made using a 44.5 mg NH^l-N/l stock solution,
5. The BOD bottles were then filled with APHA standard dilution
water.1
6. Ammonia was assayed using a Technicon automated colorimetric
phenate method.19 Nitrate was determined using a Technicon
automated cadmium reduction method and nitrite was assayed
using a Technicon automated NEDA-diazotizing method.19
7. Dissolved oxygen (DO) was monitored using a YSI Model #57
meter and #5720 probe. DO measurements were made before
and after incubation which was carried out in the dark at 20°C.
8. The nitrification inhibitor (Hach Chemical Co. #2533) was
dispensed, using a powder dispenser, directly into the BOD
bottles. This allowed quick and uniform additions of the
inhibitor. Two sets of bottles were filled with each sample;
one received the inhibitor and represented CBOD and the
uninhibited bottle expressed total BOD. The NOD was determined
by difference.
-------
B. NQD Syntletic Nitrite Experiment
This experiment was identical to the synthetic ammonia
experiment except spikes of NaN02 were substituted for NH4C1 .
C. Synthetic Glucose Samples-Respiration Experiment
1. BOD bottles were spiked with approximately 3.0 ml of a 3.0g/l
stock glucose solution using a repipet. Raw sewage influent
was filtered through Kimwipes and diluted with distilled
water. One ml of this seed was spiked into each bottle. TCMP
was added to one-half of the bottles using the Hach powder
dispenser and all bottles were filled with standard BOD
dilution water.1
2. Oxygen was bubbled through the bottles using a Fisher gas
dispersion tube and purified oxygen. The samples were then
incubated in the dark at 20°C.
3. Initially and after different periods of incubation, samples
were placed in a refrigerator at 4°C to stop bacterial activity.
At the conclusion of the experiment bottles were assayed for
glucose.20 The samples were first filtered through a 0.45y
Millipore filter to remove bacteria. Four ml of each filtrate
were placed into 125 ml Erlenmyer flasks; which had been
chromic acid washed and muffle furnaced for 24 hrs. at 550°C.
Repipets were then used to dispense 4 ml of phenol solution
(25.0 gms/500 ml deionized water) and 20 ml of acid reagent
(2.5 g hydrazine sulfate/500 ml cone. f^SO^. The acid
reagent was added with swirling and the flasks were placed in
a refrigerator at 4°C for 2 hours to cool. The absorbance
-------
was read on a Varian 635 spectroohotometer using 5 cm quartz
cells at 490 my. A 500 mg/1 glucose stock solution was
prepared and appropriate volumes were diluted with deionized
water to generate standard curve solutions. The resultant
standards were filtered and assayed as samples.
Calibration Curve Data
Glucose (mg/1) Absorbance
0 0
2.5 0.125
5.0 0.252
10.0 0.485
15.0 0.660
20.0 0.832
25.0 1.068
30.0 1.230
35.0 1.469
slope = 0.0402
intercept = 0.0484
correlation coefficient = 0.999
4. Dissolved oxygen was measured directly in the BOD bottles
using the YSI 5720 probe and the pH was determined using a
Corning 110 research meter and electrode.
D. TCMP and the Measurement of Dissolved Oxygen
1. Electrode and Winkler Methods
a. A 20 liter carboy of deionized water was stirred with
a magnetic stirring bar as water was slowly siphoned into
16 sets of four 300 ml BOD bottles and capped. This
-------
procedure was repeated to generate 32 sets of 4 bottles.
b. TCMP was added to two bottles from each set using the
Hach powder dispenser.
c. Two bottles (one with TCMP) were analyzed for DO via
the Winkler azide modified method1 using a Fisher Model 41
jDotentiometric titralyzer. An incubation period of 2 to 3
hours after the addition of the inhibitor and Winkler
reagents was allowed prior to titration to enable potential
reactions, which may have resulted in interferences, to occur.
d. "he remaining two bottles of each set (one with TCMP) were
analyzed by a YSI 5720 DO probe and #57 meter. This
meter had been previously calibrated against the Winkler
method as outlined in Standard Methods.1
2. Starch End Point - Azide Modified Winkler DO
a. Fourteen potassium biiodate standards, each with 3 ml
of Fisher SO-P-340 stock biiodate solution (0.0250 N),
were prepared as outlined in APHA Standard Methods1
for Winkler Dissolved Oxygen measurements.
b. To seven of these TCMP and starch (Fisher T-138 thyodene)
were added.
c. The samples were titrated with sodium thiosulfate solution
using a Fisher Model 41 titralyzer in the manual mode
and titrating to the disappearance of the blue color.
Potomac River Study
1. The BOD test employed was that outlined in Standard Methods
APHA 14th edition.1 The river water samples were stored at
-------
4°C until analysis. Three-hundred ml of each sample was
placed in each of two BOD bottles. The bottles were purged
for 15 seconds using purified oxygen and a Fisher gas dispersion
tube to obtain an initial DO of 10 to 15 rng/1. One bottle of
each pair was dosed with the Hach Co. #2533 Nitrification
Inhibitor.
2. Dissolved oxygen was measured immediately using a YSI 5720 DO
probe and again after 20 days of incubation in the dark at 20°C.
3. TKN was analyzed on the unaltered river samples using a
Technicon automated phenate method.19
F. Lehigh River Study
1. Samples were prepared in six replicate BOD bottles and two
bottles of each set were spiked with TCMP using the Hach
powder dispenser.
2. Dissolved oxygen was analyzed immediately and after several
periods of incubation in the dark at 20°C using a YSI 5720
DO probe.
3. One bottle was sacrificed after each DO reading and assayed
for NO£-N and NO§-N by the automated methods previously described.
4. Three classes of sample preparation were employed to allow
for differences in sample character:
a. River samples were unaltered.
b. Industrial effluents with low level NH3-N were seeded with
1 ml of stale settled sewage per 300 ml BOD bottle and
correction blanks were carried through the experiment.
-------
c. Sewage treatment plant effluent samples and industrial
effluents with high levels of ammonia were diluted.
Samples of October 4 were diluted by a factor of 30 and
those of October 5 and 6 were diluted by a factor of 15
with seeded APHA diluted water. Correction blanks
were carried through the experiment.
Results and Discussion
NOD Synthetic Ammonia Experiments
Initial experiments were performed on synthetic samples to
establish the accuracy of the NOn determinations made using TCMP.
The experiment consisted of spiking samples of APHA dilution water1
with a glucose-glutamic acid solution, bacteria, and ammonia. The
concentrations of ammonia, nitrate, and nitrite were then determined
before and after incubation. The changes (A) in the states of nitrogen
were determined and used to calculate the actual NOD wich had occurred
(Equation #3).
The dissolved oxygen initially and finally present was determined
in all bottles. The oxygen utilized in the inhibited bottles was
taken as CBOD where as the depletion in the uninhibited bottles was
taken as NOD plus CBOD. This NOD, signified as NOD-TCMP, was
determined by the average difference observed between these sets.
The results of these experiments are presented in Table 1. A
paired student's t-test of the nitrogenous oxygen demand established
(t=1.41, n=32) at a=.05 that there was no significant difference between
these two methods of NOD determination. The average difference
between the two methods was 0.3 mg/1 NOD.
-------
Table 1. NOD of synthetic ammonia samples as determined by analysis
of nitrogen conversions and by measurement with TCMP
NH3-Ni N02-N-J N02~Nf
mg/1 mg/1 mg/1
.361 .053 .052
.0
.052
.0
.637 .052 .00
.052
.049
.052
.938 .049 .00
.061
.029
.00
1.460 .050 .00
.968
.00
.061
.462 0 0
0
.276
.619 0 0
0
.921 0 .700
0
0
0
1.705 0 0
0
0
0
.240* 0 .187
.800 0 0
1.630 0 .949
AN02-N
mg/1
-.001
-.053
-.001
-.053
-.052
.00
-.003
.00
-.049
.012
-.020
-.049
-.050
.918
-.050
.011
0
0
.276
0
0
.700
0
0
0
0
0
0
0
.187
0
.949
N03-N-J N03-Nf
mg/1 mg/1
.023 .060
.079
.385
.079
.023 .676
.614
.638
.027
.018 .079
.855
.876
.046
.016 1.331
.360
1.328
.018
0 .419
.419
.060
0 .550
.552
0 .008
.720
0
.823
0 1.467
1.450
1.489
1 .489
0 0
0 .800
0 ,382
AN03-N
mg/1
.037
.056
.362
.056
.653
.591
.615
.004
.061
.837
.858
.028
1.3T5-
.344
1.312
.002
.419
.419
.060
.550
.552
.008
.720
0
.823
1.467
1.450
1.489
1 .489
0
.800
.382
3.43
(AN02-N
+AN03-N)
mg/1
.12
.01
1.24
.01
2.06
2.03
2.10
.01
.04
2.91
2.87
- .02
4.34
4.33
4.33
.04
1 .44
1.44
1.15
1 .89
1.89
2.43
2.47
0
2.82
5.03
4.97
5.10
5.11
.64
2.74
4.57
1.14
(AN03-N)
mg/1
.04
.06
.41
.06
.74
.67
.70
.00
.07
.95
.98
.03
1.50
.39
1.50
0
.48
.48
.07
.63
.63
.01
.82
0
.94
1.67
1.65
1.70
1 .70
0
.91
.44
NOD
calc.
mg/1
.2
.1
1.7
0.1
2.8
2.7
2.8
0.0
0.1
3.9
3.9
0.0
5.8
4.7
5.8
0
1.9
1 .9
1.2
2.5
2.5
2.4
3.3
0
3.8
6.7
6.6
6.8
6.8
.6
3.7
5.0
NOD
TCMP
mg/1
.2
.5
1.6
0.1
3.1
3.0
3.2
0.0
0.4
3.0
3.0
0.0
5.8
5.4
6.0
0
1 .8
1.8
1.2
2.2
2.5
2.9
4.0
0
4.1
6.8
6.7
6.7
6.6
.6
4.0
6.7
i = initial reading; initial nitrogen values are the average of three measurements
f = final reading; after 29 days of incubation
A = final-initial
* = ammonia ^ one-half that of APHA dilution water
-------
The oxygen depletion was monitored over time for several of the
samples and the DO data is presented in Figure 1. This work
illustrates the potential use of the inhibitor in establishing
deoxygenation constants for NOD separate from CBOD.
The seed source for these experiments was stale sewage. The
sporadic growth of the nitrifyers observed during these experiments
was largely corrected in later work by filtration and the use of
more seed material.
NOD Synthetic Nitrite Experiment
The effect of TCMP upon the growth of nitrifying bacteria
was tested using spikes of sodium nitrite into seeded APHA dilution water
containing glucose/glutamic acid (Table 2). The calculated nitrogenous
oxygen demand based on the measured changes in the states of nitrogen
was significantly higher than that predicted by the use of TCMP
when compared by a paired t test (t=7.3 at a=d.05 & n=15). The changes in
nitrite and nitrate were also measured in the TCMP spiked bottles,
which allowed the calculation of the NOD occurring despite the presence
of TCMP. This calculated error matched favorably (correlation
coefficient = .92) with the average error actually observed between the
calculated NOD in the samples and that measured using TCMP. The
inhibitor had little inhibitory effect upon Mitrobacter spp.
since all of the NO^-N in the spike was converted to NO§-N after
30 days of incubation.
Although the mechanism of its action is unclear, the inhibitory
effect of nitrapyrin is apparently restricted to Nitrosomonas. This
selectivity is advantageous in that it stops the process of nitrification
at ammonia with little or no effect on urea hydrolysis21, thus assuring
an adequate nitrogen source for the heterotrophic bacteria contributing
-------
T3
"u
O
OJ
E
3
'c
O
E
E
o
T3
e>
.
-o
c
0>
cr»
>»
X
O
•o
TJ
O
•o -o
•o -o
o o
Z 2
I I
+ •*
Z Z Z
XXX
E E E
~° ^J* O **5
*C\J 00
-------
Table 2. NOD of synthetic nitrite samples as determined by analysis
of nitrogen conversions and by measurement with TCMP
Uninhibited Samples
NH3-Ni* N02-Ni
mg/1 mg/1
.436
1
1
1
1
1
1
1
1
.436
1
1
1
1
1
1
1
.456
.456
.456
.456
.934
.934
.934
.934
.408
.408
.408
.408
.769
.769
.769
.769
.459.
.459
.459
.459
.942
.942
.942
.942
.419
.419
.419
.419
.787
.787
.787
N02-Nf
mq/1
0
0
0
0
0
0
0
0
0
0
1.50
0
0
0
0
0
Q
Q
0
0
0
0
0
0
0
0
0
0
0
0
0
AN02-N
mq/1
-.456
-.456
-.456
-.456
-.934
-.934
-.934
-.934
-1.408
-1.408
.092
-1.408
-1.769
-1 .769
-1.769
-1.769
- .45a
- .459
- .459
- .459
- .942
- .942
- .942
- .942
-1 .419
-1 .419
-1.419
-1.419
-1.787
-1.787
-1.787
mq/1
0
0
0
0
0
0
0
0
.045
.045
.045
.045
.061
.061
.061
.061
TCMP
Q
Q
0
Q
0
0
0
0
.045
.045
.045
.045
.056
.056
.056
NOs-Nf
mg/1
.870
.880
.864
.880
1.363
.984
1.370
1 .401
1 .828
1 .880
0
1 .807
2.068
2.101
2.117
1.835
Inhibi
.463
.468
.468
.468
.984
.974
.974
.984
1.424
1.467
1.455
1.614
1.835
1.835
1.829
3.43
(AN02-N
AN03-N +AN03-N)
mg/1 mg/1
1
1
1
1
1
-
1
2
2
2
1
ted
1
1
1
1
1
1
1
.870 1
.880 1
.864 1
.880 1
.363 1
.984
.370 1
.401 1
.783 1
.835 1
.045
.762 1
.007
.040
.056
.774
Samples
.468
.468
.468
.468
.984
.974
.974
.984
.379
.422
.410
.569
.779
.779
.773
.42
.45
.40
.45
.47
.17
.50
.60
.29
.46
.16
.21
.82
.93
.98
.04
.03
.03
.03
.03
.14
.11
.11
.14
.14
.01
.03
.51
.03
.03
.04
1.14
(AN03-N)
mg/1
.99
1.00
.98
1 .00
1.55
1.12
1 .56
1 .60
2.03
2.09
- .05
2.01
2.29
2.33
2.34
2.02
.53
.53
.53
.53
1.12
1.11
1.11
1.12
1.57
1.62
1.61
1.79
2.03
2.03
2.02
NOD
calc
mg/1
2.4
2.5
2.4
2.5
3.0
1.3
3.1
3.2
3.3
3.6
0.1
3.2
3.1
3.3
3.3
2.0
NOD
(calc
err.
.6
.6
.6
.6
1.3
1.2
1.2
1.3
1.4
1 .6
1 .6
2.3
2.0
2.0
2.0
NOD Ave
TCMP ofc
mg/1 QY ,
1.9
2.0
1.9
2.0 .b,
1.5
0
1.5
1.8 1 .
1.9
2.1
**(0) 1.
1 .9
0
2.1 1.
2.1
0.9
Ave.
. calc.
) err.
.6
1.3
1.7
2.0
* initial NH3-N value is an average of 24 values with s.d. = 0.02
** omitted from calculation
i = initial reading; initial nitrogen values are the average of three measurements
f = final reading; after 30 days of incubation
A = final-initial
-------
to the CBOD. The disadvantage of this selectivity is that Nitrobacter
are not inhibited and N02 will be oxidized to N0§. This limitation
generally represents a small error since the concentration of nitrite-
nitrogen is generally much smaller than Total Kjeldahl Nitrogen in
river water. Further, the demand associated with the N02-N initially
present is 1.14/4.57 or one-quarter that associated with the TKN-N
initially in the sample.
Synthetic Glucose Samples-Respiration Experiment
To directly determine the effect of TCMP on the rate of heterotrophic
respiration, synthetic samples of APHA dilution water were spiked with
glucose and seed bacteria. Several bottles were immediately assayed
for glucose, dissolved oxygen, and pH, while others were incubated
and later analyzed for these parameters. The results, compiled in
Table 3, indicate that TCMP did not appreciably decrease the rate at
which glucose was utilized. The potential problem with this
interpretation is that these results may have been at steady state
and therefore may not actually represent the rate at which steady
state was achieved.
This experiment was again performed with the emphasis placed on
determining when steady state occurred in bottles in which growth
was observed. Glucose concentration, pH, and dissolved oxygen level
were measured initially and periodically during incubation. The
final levels determined were similar to those in the previous
experiments. The results, compiled in Table 4 and Figure 2, indicate
that: the glucose respiration rate was not significantly affected
by TCMP; steady state was not established after 4 days of incubation;
and suggested that the interpretation of the first experiment was valid.
-------
Table 3. Effect of TCMP on the utilization of glucose in
synthetic samples
Day 0
TCMP
Inhibited
Sample
Uninhibited
Sample
Day 0
TCMP
Inhibited
Sample
Uninhibited
Sample
A Ave.
Glucose Glucose Ave. D.O.
mg/1 ave. mg/1 pH mg/1
27.3 0 6.8 15.5
27.7
28.0
29.8
29.6 0 6.7 15.5
28.9
29.6
28.6
29.1
28.0 0 6.5 13.2
26.2
26.9
27.6
26.7
26.9
26.0
27.1
26.6
26.9
28.0 0 6.3 13.2
27.2
26.7
27.6
27.5
27.9
27.9
27.7
27.0
27.1
Day 2
A Ave.
Glucose Glucose Ave. 0.0.
mg/1 ave. mg/1 pH mg/1
7.3 20.8 5.9 6.9
6.9
7.1
8.7
6.8
8.5 21.9 5.7 6.9
6.7
6.7
5.3
9.4
Day 2
9.9 16.5 6.0 5.4
10.9
10.2
12.2
9.5
10.5
10.1
10.2
9.8
10.2
11.0 16.5 5.8 6.4
12.0
13.4
10.4
9.9
9.4
11 .0
10.9
-------
Table 4. Rate of glucose respiration during inhibition of nitrification
Day 0
TCMP
Inhibited
Samp! e
L
Uninhibited
Sample
Day 2
TCMP
Inhibited
Sampl e
Uninhibited
Sample
Day 4
TCMP
Inhibited
Sample
Uninhibited
Sample
A Ave.
Glucose Glucose Ave. D.O.
mg/1 ave. mg/1 pH mg/1
23.6 0 6.7 15.7
26.2
26.7
27.1 0 6.8 15.6
27.6
25.6
9.0 16.5 6.1 7.3
9.0
10.4 16.2 6.0 7.3
10.8
10.5
3.0 22.3 5.9 5.7
3.3
4.3 22.4 5.9 6.0
4.6
4.4
Day 1
A Ave.
Glucose Glucose Ave. D.O.
mg/1 ave. mg/1 pH mg/1
12.8 12.3 6.2 9.2
13.6
15.0 12.6 6.1 9.0
14.3
13.2
Day 3
5.4 20.2 6.1 6.8
5.2
6.8 19.4 5.9 6.8
7.7
7.6
-------
Figure 2. Effect of the inhibitor on the rate of glucose respiration
C7»
£
o
u
O
Control •
TCMP O
0
Days of Incubation
-------
Assays on TCMP treated samples consistently gave lower glucose
values than the control samples. Bottles which were assayed
immediately after preparation demonstrated this same pattern and this
suggested that a chemical rather than a biological mechanism was involved,
It has been suggested that glucose is toxic to the growth of
nitrifying bacteria.22 It has also been suggested that the lack of
nitrate and nitrite formation when glucose was added to actively
nitrifying samples indicated a preference for glucose respiration by
nitrifying bacteria.23 The contribution of nitrifying bacteria to the
overall glucose utilization measured in this study was probably
insignificant since the nitrifyer population present in stale settled
sewage collected during freezing weather is relatively sparce and
an incubation time of 4 days or less is not sufficient for significant
nitrifyer growth from this seed. Further, the acidic pH conditions
which occurred during this experiment were not ideal for nitrifyer growth,
TCMP and The Measurement of Dissolved Oxygen
The effect of TCMP on dissolved oxygen measurements made using
the azide modified Winkler potentiometric method and the polarographic
electrode method was determined using inhibited and uninhibited
deionized water samples. A paired t-test for the Winkler assayed
bottles (t=1.24, n=31) revealed no significant affect on the Winkler DO
method at a 95% confidence level. The average difference between TCMP
treated and untreated bottles was 0.1 mg/1 D.O. Similar results were
obtained for the electrode method with a paired-t test result of 1.48
with n=32 and a=.05.
-------
Fourteen identical biiodate standards were also analyzed using
the starch end point in the Winkler determination. The average
difference in the titrant required for inhibited and uninhibited bottles
was 0.03 ml , which indicated that TCMP did not affect the starch end
point determination.
Potomac River Study
With the completion of the preliminary experimentation using
synthetic samples, the use of TCMP in the determination of nitrogenous
oxygen demand was tested using environmental samples. Potomac River
samples were assayed for NOD during the summer of 1977. Nitrogen analyses
were limited to TKN. The river historically3 had a pattern of rapid
biological activity and long term incubation was expected to yield
essentially complete nitrification. The potential NOD was calculated
from the TKN originally in the sample as: (TKN) x 4,57 = potential NOD.
This compared favorably with the NOD measured using the nitrification
inhibitor with an average difference of 0.9 mg/1 . The results are
compiled in Table 5. It should be emphasized that the potential MOD
estimate from the TKN may not occur. However, the coefficient of
linear correlation (r=0.88) suggested that after 20 days of incubation
nitrification was generally complete and that the method utilizing
TCMP gave reasonable NOD results.
Lehigh River Study
The inhibitor TCMP was also employed in an intensive nitrification
study undertaken on the Lehigh River during fall 1977. The study
included the determination of nitrogen states and dissolved oxygen
depletion of unaltered and inhibited samples at several times during
a long term incubation interval. The data are presented in Figure 3
and Tables 5 and 7 and reflect the different sample types and
preparations involved:
-------
Table 5. Comparison of the potential NOD and the actual MOD
measured using "''CMP (mg/1)
Potomac River Samples
NOD2Q
(TCMP)
2.2
2.3
4.4
6.2
n.o
11.1
4.0
3.6
3.0
2.6
1.4
1.5
2.6
5.3
5.6
6.8
5.5
3.8
2.4
3.6
LA
1.4
7.3
4.8
Potential
NOD
(4.57)(TKN)
3.4
3.2
3.8
9.4
11.4
10.1
6.2
4.9
3.9
2.8
2.1
1.7
2.7
4.5
5.5
5.9
4.1
3.3
2.8
2.3
2.00
1.6
6.7
5.8
NOD20
(TCMP)
3.3
4.4
4.0
3.8
1.8
3.0
2.7
4.0
4.4
3.4
4.1
3.5
6.6
6.8
4.2
1.6
1.2
7.1
4.7
5.1
4.9
4.3
5.2
4.9
Potential
NOD
(4.57)(TKN)
4.9
4.0
3.4
3.1
2.5
2.2
2.2
4.1
6.3
5.3
5.0
5.1
5.8
6.1
3.7
2.2
1.8
8.0
6.4
5.8
5.0
4.4
5.6
5.5
NOD2Q
(TCMP)
2.0
2.2
4.5
8.9
n.o
—
3.6
3.0
2.5
3.0
Potential
NOD
(4.57)(TKNJ
2.1
1.9
4.8
6.5
8.4
3.3
2.1
1.3
1 .8
1 inear correlation
coefficient = 0.88
with n = 58
5.0
5.9
5.6
3.7
-------
1. unaltered samples - river stations
2. seeded samples - industrial effluents
3. seeded and diluted samples - sewage treatment plants
and industrial effluents
The average difference between the two NOD methods for river samples,
with an oxygen demand of less than 10 mg/1, was 0.4 mg/1 (n=12S and
s.d.=0.349). The seeded effluent samples had an average ^!OD difference
of 0.5 mg/1 (n=42 and s.d.=0.463). The increased error and variability
of the results reflects the added measurements of the seeded blank
made for both nitrogen conversions and oxygen depletion determinations.
The average NOD difference for seeded and diluted effluent samples was
5.7 mg/1 (n=36 and s.d.= 7.83), which represented an average error
of 10% for the NOD. The NOD error for diluted samples was amplified
by the dilution factors of 15 and 30 necessary for the BOO analysis.
A paired t-test of the nitrogenous oxygen demand over the combined
206 paired data sets established at the 95% confidence level (t=.75)
that there was no significant difference in the results of the two
NOD methods.
Station 031, an industrial effluent sample from a steel plant
slag leachate was unique in that the outfall had an average BOD2Q_3i|
of 763 mg/1 and an average initial TKN of 359 mg/1 on the three days
it was sampled. However, nitrate and nitrite were not formed after 31
days of incubation. The sample was analyzed for phenol and cyanide
and was found to contain 35.9 mg/1 total phenol and 50 mg/1 cyanide.
This suggested that the outfall was toxic to nitrifying bacteria,
but not to the heterotrophic species present.
-------
Figure 3. NOD of Lehigh River samples calculated
from nitrogen analyses and measured using
the inhibitor , TCMP
40
30
20-
10-
9
Bi
7
5
4-
3-
2-
I-
0
'^THEORETICAL
RELATION
two samples with
identical results
8
10 20 30 40
Observed NOD (inhibitor) mg/l
-------
QJ
CT>
O
M-
O
"3
T3
O>
C
£
O)
CJ
4-> O-
c s:
CU -i-
S_ 01
4J £
V) OJ
3 S_
T3 3
C Ul
•i— ro
OJ
x: -Q
QJ
T3 03
V
T5
O) C
o
*
•F—
Z r— 00
1 ""*-•* ^"
CM cno
Or—
^ •
4-
Z. .— CM
CM EDO
0 E •
•z.
c.
0
V(— M—
o +->
CO J2
>i 3
n3 O
O C
l»4
in
o
o
•
ra
4-J
w)
i in
CJ O
4-> ^
03 O
O r—
co P-
•q-Ln
co in
CM VO
VO LO
ai en
cn co
CM LO
i — vo
,__
oo oo
VO CO
i— LO
vo in
LO CO
CM
(T3
C
i-
3
t-
4-^
CO
ra
f—
ca
r-- vo CM
f— CM
CO CO CM
i— CM
co co
in co co
co co en
CM r— CC
o «j- in
i
co co co
CM in o
en CM «3-
CM en vo
co co in
, ,
CO CO CO
CM •* in
Ln p*^ r*^
CM VO i —
O co in
i
CO CO CO
i — f». rv.
vo vo vo
CO O
^~ ^}" en
LO O i —
r~ CM CM
i — CTl r—
CM CO VO
,— 0 O
1
,-r-r-
LO VO VO
ooo
CM O
CO O
r- r— O
LO CM O1
i— C\J
VU
VO ra
O c en
o i- e.
3 -r-
<*- r—
O
4-> O
CO U
ro
f—
ca
r^- LO o
i — CM
in in o
i — CM
CM «3" ^}-
CC CM CO
<«- o cc
r— VO e-
i— 0 C
1
in ID m
^- ^- «^f
ooo
co m
r-s i^.
•— o o
LO CM cn
i CM
O)
u
p**. r(3
CD C C77
o i. c
3 —
O
4-^ O
CO r- r—
CM 0 C
O CM 00
cn cn cn
CO CO CO
ooo
CM CM CM
cc oc
O CM ro
CM Ovj CM
p- in in
CO *=1~ ^3"
OOO
1 1
in in in
•a- «s- "sr
ooo
CM
CO
i— O O
vo CM cn
i — CM
vU
^J
CC re
O c cn
o s- c
3 -t-
H- i —
0
4J O
co o
ra
r«~
LQ
cn ^j- ro
i — CM
CM Ln CM
•-
CM LO •*
CM CM «*
CM CM co
O , — CO
1
co co co
LO cc r-.
O r-~ co
VO O1 *£f"
CM co co
co LO ir>
1 — CO LO
c^ cn vo
CM o cn
0 .— CM
i
CO 00 OO
LO LO VO
i — OO O
vo cr, co
vo r^ cn
ai r-. o
o o in
OOO
i
ooo
in tn in
ooo
en r-
^r LO
i— O 0
LO CM cn
i — CM
4-S
c:
ai
0 =
i — 4J CD
O ra C
QJ «^
S- !—
+-> o
0
4-> O
^J
T:
in tn co
i — CM
CO CO VO
— r-
LO CO
•^
Q.
ai
ra
CJ
«r
CO
LO
cn
in
r—
O
cc
cn
^j-
cn
CM
cn
•-
«!)-
f—
O
CO
en
un
0
VO
CM
1--.
o
_
«jf
o
CO
r^
LO
^1-
r—
0
LO r~-
•-
O CM
'-'-
VO CC
r— ^~
^j- P*^
VO CM
i — CO
00 CC
r**** r^^
CO CO
^" ^"
co cc
CO O>
co in
*3- p>-
«* cc
r— CM
CO CO
en en
in in
r-. O
CO CO
i-- cc
CM i —
O «sj-
•— 0
1
r— i —
^~ *vj~
0 O
CO
^-
<— o
CM cn
r— CM
CT*
0) C
CO -r-
3 r*™
O O
-C O
2
(13
00
O
r—
OJ
in
0
1
p>^
CM
VO
CO
CO
^}-
o>
1
VO
in
vo
CO
r—
VO
CO
CXI
1 —
^
uo
0
f*x.
r-.
^o
t_f)
0
o
vo
0
•^^,
o
^~
CO r—
«3" VO
co r*.
«* in
en vo
in «3-
,_
CM CM
CM CM
•3- <*•
CM CM
00 r—
O CC
CM CM
VO VO
in in
LO VO
vo O
p"-- ^i*
r- cn
CM CM
0 -vf
i — in
P- 0
i
.* -a-
in in
0 0
^^
VO
r-. o
CM i —
i — CO
CJ
u
ro
c
i.
3
4->
CO
rO
, f—
ca
-------
M—
O
01
• r—
C/1
ro
C
ro
>,
-Q
-^2
CU
•£
SI
CU
cu
"O
Q_
01 S
cu <_;
i"j=
ro •*->
01 *r—
CU C
-3 S^
r— cz
4- CU
4- i.
CU 3
i— ro
ro CU
s_ ~
to Jo
^
-a -a
•r— ro
CD C
•i- O
r~ .^
CU 01
—I i-
0*J
T3 >
CU C
-c o
CU O
cu
01 £ZZ
cu
4- cr>
o o
O +J
O •<-
2: c
X— *s
•4_d
-
c~
o
o
^
o
CD
2:
>=}-
•
2:
ro i
<*• CM
• 0
CO 2T
r--
(~*s
co
i —
^j-
*^j-
o
^J-
CM
CM
.
ro «3-
i — CM
LO rf
r- ,-
r- C3>
^r ro
O ro
,— 0
,- r-
o to
UiO *-O
^^ ^d~
**o *^^
ro ro
to to
LO LO
r-- i —
o c
CM O
1 — 1—
CM CM
^J- ^J-
^" ^J"
0 0
1 1
^- ^3"
^J- *^t"
o o
o o
«3- tO
o
LO tO
LO O^
C i—
00 0
•y- «*•
LO ro
(X LO
__ ^J.
«^f- IJ2
o .—
to to
CM CM
O O
C\J CNJ
r^ 0
to a-i
O i—
CM CM
O> *s^
cr> LO
0 0
i
^j- ^j-
LT1) LO
O O
OO
LTJ
i— O
•
O
CM
to
cr>
i —
o
«a-
LO
r^.
^
tc
i —
to
CM
O
CNJ
c
c^
1 —
CM
^J-
LO
0
1
«j-
LO
O
o
C1 CC
o
CM f~*^
r->. o
O CM
i
0 C
ro LO
•r—
•^^ CT
ro'i-
O
zr i
<
+ 'rO
cz
CM'f-
O 4—
2: II
<2
CU rOU3CMi— USCMi— tOCMi— VOCMi— U3CM*— tOCMf—
i— 01 J3 i— ro r— ro i— ro .— ro i— oo r— oo
J^ X 3
n3 t3 U •*-»
t— Q C CU CU CU C
i—i <_) O
O04->O -t->O -MO O O)
|l£lCOU !/) O i/)O 4J(J i
CUOro ro ro ro ra
4->~~-i— i— i— CU U
roOca c2 ca 3: <^
Q i—
-------
y>
00
>>
r—
re
c
re
>•>
jD
•o
o>
c
•r—
E
OJ
4J
O1
•o
01
Q.
E
re
00
C 0-
O> 21
=5 0
C
1— _E
O> •»->
•— '5
re
•r- -i->
s_ c
oo E
= O!
T3 S-
C 3
•r- OO
re
T3 O)
re
>•>
0- JO
1
f—
oo -o
c
•0
c >
re c:
O
CD
•o c
CU O)
01 cn
OO" O
s_
M- -I-J
O f-
0
O 4-
•z. o
•
01
r— •
_O
re^
1—
Q_ i —
o s -•-.
CD t .^ cn CO CO LO
2^ I — E CO to 1 — .
* O i —
Cl r- ---. CM i— CO
Z. o E °^ ^ ^t"
CM 10 r~-
f N
z. co •*
^j- i ,_ co ^- co
. O cn "-f CM co
"~ < co co
»^^* p—
^_^
2£ zz ^" ^ ^ — '
CO 1 1 i — ^ ^" "="*"
«r+- rvj CO"^~ ^ f~* ^
• oo OT •* co co
00 < < E cn in LO
v , ^_ CM in LO
C ^
ro c ^T CO O
*= LO cn, CM
r—
\ i —
cP'o) Ln ^ <£>
Z. E "^ °° ^
"^ CM tO
r—
•r-
^— *
' /^ *CJ" ^" ^"
O E . . ,
^~
^ ' CM tO
^"^ CC CM O
0 E «^. p^ ^_
Z CM
"Z.
' r~~ (V) ^*, f*^
O cn ""I ^1 °H
zz & co c^
r*v ^^
CM cn JNJ c\j (sj
•z.
M-
: — r— ^~
i ^^. ^~ r^
CM en • . o
o E co co
^^ r~
C
O
t^_ .y.
O 4->
(O tO CM CM
00 -Q i — CM
>-> =3
re o
Q C
1—1
C
3
0
re 4-> D-
4-> c: H-
OO O) OO
1 ^t~ ^^
O) O i —
4_> "^ ^^
ro 0
tn
tjO O^ OT
^}* CO ^"
i— CM
r^« r*^ c!T>
LO •=}• CM
CO CM tO
i — CM
to ^f to
(jo ijo (jo
CC CO [^
f**^ ^J" ^J"
i— r-~
to
i — CM CM
CO tO CO
CO «d- l~-
CO CM «"
«W CO i —
CO CM O
i — CM
t^- ^J- ^f
LO O to
CM CM
CM tO CM
tO CM i —
i— CM
UO
r*~ r~ ^~
•=r —
O CM Lf
i — ( ' —
cn co r—
CO CO CO
LO CM , —
1 —
to co
CO 1-^ «-
CO CO LO
co *d* r^-
CM UO CM
CM
^3" i — i —
CC •— f—
CO CM CM
O CO CO
r- CC CO
uo co co
cn o CM
CM CM CC
r— r-~
CM t^
«3" l~- .—
CM «d- tO
CM
O O O
CM f-
«3" h«. i —
CM <<5t' tO
CM
CM CO
CO O CO
CM i —
i — CM 1
CO CO CO
CO CO CO
CM CO
r-. co
• • o
CM . —
i — CM
tO CM CM
•— CM
g=
Ol
JC
CU O-
r- (—
J= 00
4J)
CU
CQ
in
O CO CM
i — "^- LO
tO LO
(^ OO CM
^j- '. p
•Cf CO CM
CM CM CO
LO CO «3-
1 — CM LO
, — LO
^~
co i^ r~-
«d- co co
CM ,— ^~
co to to
to to to
^J- «^-
LO
r— "3" O
CM to CM
in LO
tO CM CO
to to to
i— CO
-j- ,_
LO in uo
in in in
CO CO CO
CM CM CM
in
, — in CM
O O CM
CO «3" LO
p_
in in
LO CM <^-
CO CO O
r— .
i — 1
LO LO LO
^J" ^f" ^}"
O O O
LO
cn *r
ca- co
to o
P—
LO
to •=}-
CO CO
CD • •
, — CM
r—
LO LO UO
CM CM CM
co co co
LO LO
CM CM tO
CO r— tO
CM CO
,_
in
CO O *tf"
CM CM to
to «a-
CM i —
in in in
cn CM CM
r— I— r—
LO LO
CM CO
r- *3- CO
i— to «a-
CM i —
tO CM CM
i — CM
UO OO
r— ^
O S-
o
3
cu
N^
O
f 1
o o o
o o o
t_J [Q} f*~i
CO CO CO
LO
CO •«*" tO
CM ^J- P-~
i — CM in
CO CO CD
CO CO CO
o o o
000
0 O O
to CM cn
r- CM
,_
CO
o o>
•4_>
re
r"
cn u
re re
r— =r to
^3- CM «^-
O CM CM
in co o
to r^
to tn CM
CO O CM
f— r~-
tO CM
•=r in
CO • •
CM O
CM
o o o
CO CO CO
CO CO CO
o
co CM Ln
co r*^ co
CM O
CM
tn
r~- uo «3-
•=r to o
i— r>»
i — i
in in uo
^~ ^3" ^3"
O O O
in
r—
Ln r^
• • 0
r_
to CM cn
r— CM
E
01
f""
01 a.
r- 1—
J= 00
+->
O!
CO
-------
•
>,
_a
•o
,
c S
r- CU
it ££
*+— o3
CD S~
i — on
l ro >T3
•(~— CU
00 >,
3 -C
c -o
•i— sr
H3
•o
CT (/)
O
a. •,-
t— VI
oo s_
CJ
-a :>
CU rj~*
4-> 0
^ U_>
•r- C
~O QJ
CT!
~C3 O
, = s~
(^ -4— J
-o c
cu
1 cu o
' cu
.p—
*f- on
O**^
— *1
• C^ ro
O C
•Z 03
,^~«
+J
_
C
o
0
.
r^
-K 0
o ro
sr u
-— >
*± ^
f^r CO
• 0
"~" <3
-— .
ro i i
^f CM ro
• O 0
00 § <
v_^ 4-
c-.
o
ca
•z.
ro
1=3
•T—
^p
rn
O
21
U—
2T
CO
O
2:
^c.
1
C\J
2!
<3
z"
I
O
*4—
ST
I
CM
O
21
4—
O
(/l
n3
*-^
C_I i
E
^--
Oo
E
r_
^^^
cn
E
cn
e
^_
cn
cn
E
£~
rn
g
1
i~ci
E
^**
f^^.
E
^.
cn
g
r—
^•^
CD
E
C
o
•r—
4_3
ro
-°
U
K— (
•
ro
40
CO
QJ
ro
Q
O
CM
ro
to
o
ro
t—
o
r— -
LO
on
CM
C
^
LO
CC
CM
LO
CM
LO
C
**•
ro
«^-
i^
^^
ro
O
^,
^^
.
P«^
to
o
••^^
C3
i—
LO
LO
LO
f^
LO
LO
ro
O
r--
r—
to
to
^j.
t^J-
LO
cr
LO
p^
to
C-,
CSJ
LO
CM
LO
CTi
i—
CM
i —
LO
^J-
ro
ro
ro
O
LO
[^
ro
ro
CM
•—
C
2
O
C
OJ
in
e^
O
O
to
L.O
a-i
LO
CO
CO
•5T
,_
to
to
^j.
^j-
'-0
to
1 —
LO
o
I—
CM
LO
CM
(^
Ln
Ln
i —
ro
O
i
ro
O
r*"i
P-.
ro
a_
t—
u~>
LO
LO
CM
LO
to
CM
^r
cr
O
to
CM
iT)
LO
CM
LO
r-
ro
c
,^
CO
LO
co
|—
, —
ro
CM
f^
CO
CM
LO
^_
LD
^^
to
LO
r—
O
cc
l
co
•=f
o
CTi
«^-
• —
CM
CM
CC
CC
LO
CC
cc
Ln
C-.
CO
r-
o
r—
cc
tn
cc
to
CM
LO
co
CO
CM
cc
CM
LO
ro
p..
.
^j-
CM
f>J
<—
•^
i.
O
2
0)
o
0
LO
LO
i—
O
,_,
CM
t — (
CO
o
ro
co
0
cr
LO
CM
1 —
LO
CM
O
(— •
CO
LO
cc
CM
r^
CSJ
Ln
cc
CM
1
co
CM
O
,__
ro
c
O O O cn
ro
CO
o o o c;
CSJ
CD
ID
Of— V f— >
L- J '!_«' *
Ln
CM
cc
CM
Ln Ln c LO
CM LO ! — tC
: — CM LO
co
*"*"' •*" "1 r~"^ .
^ — ' ^ — ' \ — • •
Ln
ro
" —
'
r~-
LO
'
co
!--!
CD O O C
co
o o o
tO CM i — tC
i— ro
ro s
o aj cu
4-> -C
rO CU
^: i —
CD >
s: \t s_
< < o
CU ro
ro i- i.
^t cu o
. _c J3
ro 2 rO
II
li
O
o <
-------
Conclusions
The results of this study on synthetic, river, sewage treatment
plant and industrial effluent samples suggested that:
1) TCMP was an effective inhibitor to nitrification.
The; inhibitor stopped the nitrification of ammonia by
inhibiting the formation of nitrite.
2) TCMP did not inhibit the conversion of nitrite to nitrate.
3) TCMP did not inhibit the respiration of glucose.
4) TCMP did not significantly contribute to the CBOD even
after 31 days of incubation at 20°C.
5) The determination of NOD using the difference in oxygen
depletion in inhibited and uninhibited BOD bottles was quick
and easy. This method did not involve the expensive equipment,
no1'* time associated with the chemical analysis of nitrogen
states to determine the MOD.
6) The inhibitor did not interfere with the determination of
oxygen by the azide modified Winkler or electrode methods.
7) The inhibitor method yielded reliably accurate NOD determinations
References
1. Standard Methods for the Examination of Hater and Hastewater,
14th ed., APHA, 1975.
2. Srinath, E.G., Raymond, L.C., Loehr, M. and Prakasam, T.B.S.,
"Nitrifying Organism Concentration and Activity." J. of Env.
Engineering, p. 449-463, 1976.
3. Clark, L.J. and Jaworski, N.A., "Nutrient Transport and Dissolved
Oxygen Budget Studies in the Potomac Estuary," Technical Report 37,
AFO Region III, Environmental Protection Agency, 1972.
-------
4. Stensel , H.D., McDowell, C.S. and Ritter, E.D., "An Automated
Biological Nitrification Toxicity Test," J.W.P.C.F., 48, 10,
p. 2348-2350, (October 1975).
5. Breed, R.S., Murry E.G.O., and Hitcnens, A.P., Sergey's Manual of
Determinative Bacteriology, 6th ed., The Williams and WIT kens.
6. Painter, H.A., "Microbial Transformations of Inorganic Nitrogen,"
Prog. Wat. Tech. vol. 8, Nos.4/5, pp. 3-29 Pergamon Press, 1977.
7. Mattern, E.K., Jr., "Growth Kinetics of Nitrifying Microorganisms,"
CE 756A6 prepared for the Office of Water Research and Technology.
8. Wezernak, C.T. and Gannon, J.J., "Evaluation of Nitrification in
Streams," J_._ Sanitary Engineering Hiv., Proc. of_ American Soc.
of Civil Engineers, p. 883-895, (Oct. 1968).
9. Wezernak, C.T. and Gannon, J.J., "Oxygen-Nitrogen Relationships in
Autotrophic Nitrification," Applied Microbiology, 15, p. 1211-1215,
(Sept. 1967).
10. Montomgery, H.A.C. and Borne, B.J., "The Inhibition of Nitrification
in the BOD test," J. Proc. Inst. Sew. Purif., p. 357-368, 1966.
11. Young, J.C., "Chemical Methods for Nitrification Control,"
24th Industrial Waste Conference, Part j_I_ Purdue University,
p. 1090-1102, 1967.
12. Van Kessel, J.F., "Factors Affecting the Denitrification Rate
in Two Water-Sediment Systems," Water Research, 11 , p. 259-267,
(July 1976).
13. Goring, C.A., "Control of Nitrification by 2-Ch1oro-6 (Trichloromethyl)
Pyridine," Soil Science. 93, p. 211-218, (Jan. 1962).
-------
14. MuTlison, W.R. and Norn's, M.G., "A Reviev/ of Toxicological, Residual
and Environmental Effects cf Nitrapyrin and its Metabol ite, 5-Chlorc-
Picolintc Acid," Dow to Earth, 32, p. 22-27, (Summer 1976).
15. Redemann, C.T., Meikle, R.W. and Viidofsky, J.G., "The Loss of
2-Chloro-6-(Trichloromethyl) Pyridine from Soil," J. Agriculture
and Food Chemistry, 12, p. 207-209, (May-June 1964).
16. Young, J.C., "Chemical Methods for Nitrification Control," J.W.P.C.F. ,
45, 4, p. 637-646, (April 1973).
17. Laskowski, D.A., O'Melia, E.G., Griffith, J.D. et al, "Effect or
2-Chloro-6-(Trichloromethyl) Pyridine and its Hydrolysis Product
6-Chloro-Picolinic Acid on Soil Microorganisms," J. of Env. Qua!ity, 4,
p. 412-417, (July-Sept. 1975).
18. Chemistry Laboratory Manual-Bottom Sediments, compiled by Great
Lakes Region Committee on Analytical Methods, E.P.A. Dec. 1969.
19. Methods For Chemical Analysis of Water and Hastes. E.P.A., 1974.
20. Strickland, J.D.H., and Parsons, T.R., A Practical Handbook o_f
Seawater Analysis, Queen's Printer, Ottawa, 1968, p. 173-174.
21. Bundy, L.G., "Control of Nitrogen Transformations," Ph.D.
Dissertation, Iowa State University, 1973.
22. Quastel , J.H., and Scholefield, "Biochemistry cf Nitrification in
Soil," Bact. Rev. . 15, 1951, p. 1-53, 1951.
23. Tandon, S.P., "Effect of Organic Substances on Nitrite Formation
by Nitrosomonas," Symp. Blol . Hung.. 11, p. 283-288, 1972.
-------
-------
TECHNICAL REPORT DATA
(Please read Instructions on t!;e reverse before completing)
1. REPORT NO.
2.
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
SIMPLIFIED N.O.D. DETERMINATION
5. REPORT DATE
March 1978
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
J. L. Slayton
and E. R. Trovato
8. PERFORMING ORGANIZATION REPORT NOt
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Annapolis Field Office, Region III
U.S. Environmental Protection Agency
Annapolis Science Center
Annapolis, Maryland 21401
1O. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
12. SPONSORING AGENCY NAME AND ADDRESS
13. TYPE OF REPORT AND PERIOD COVERED
Same
In House; Final
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
The nitrification inhibitor, N.-Serve was applied to long term BOD tests to
determine the nitrogenous oxygen demand. This was compared to the NOD
calculated from the N-series conversions observed over the course of the
incubation. Preliminary inhibitor studies, involving measurement of N-series
and variation of glucose concentration with time, were conducted on synthetic
samples of glucose and/or glutamic acid spiked with ammonia and/or.nitrite to
.assess its affect on heterotrophic respiration and evaluate its accuracy and
limitations. Extensive testing was then performed-on sewage treatment plant
effluents and on the receiving waters of the Potomac and Lehigh Rivers. It
was found that this method of determining NOD: was accurate; did not affect-
heterotrophic respiration; did not interfere with, dissolved oxygen measurements
via the dissolved oxygen probe or Vlinkler method; and was not applicable when
nitrite was present in a significant amount. '
17. KEY WORDS AND DOCUMENT ANALYSIS *
a. DESCRIPTORS
Nitrification
M-Serve
Biochemical Oxygen Demand
Dissolved Oxygen
18. DISTRIBUTION STATEMENT
RELEASE TO PUBLIC
b.lDENTIFIERS/OPEN ENDED TERMS
Glucose Respiration
Nitrite/Nitrate-
19. SECURITY CLASS (This Report)
UNCLASSIFIED
2O. SECURITY CLASS (This pave)
UNCLASSIFIED
c. COSATI Field/Group ^
*
*
¥
f
21. NO. OF PAGES
22. PRICE 1
EPA Form 222O-1 (9-73)
-------