903R79100
U.S.  ENVIRONMENTAL  PROTECTION AGENCY
            Region III
    Central Regional Laboratory
        839 Bestgate Road
     Annapolis,  Maryland 21401
      SPECIAL REPORTS

           1979
        Volume 26

-------
                      Table of Contents


                          Volume 26
User's Manual for the Dynamic (Potomac) Estuary Model - January 1979
Stephen E. Roesch, Leo J. Clark and Molly M. Bray - EPA-903/9-79-001

Lehigh River Intensive - March 1979
Daniel K. Donnelly, Joseph L. Slayton and E. Ramona Trovato

Simplified N.O.D. Determination - May 1979
Joseph L. Slayton and E. Ramona Trovato - EPA-903/9-79-006

-------
                            PUBLICATIONS

                U.S. ENVIRONMENTAL PROTECTION AGENCY
                             REGION III
                       ANNAPOLIS FIELD OFFICE*


                              VOLUME 1
                          Technical  Reports

 5         A Technical Assessment of Current Water Quality
           Conditions and Factors Affecting Water Quality in
           the Upper Potomac Estuary

 6         Sanitary Bacteriology of  the Upper Potomac Estuary

 7         The Potomac Estuary Mathematical Model

 9         Nutrients in the Potomac  River Basin

11         Optimal  Release Sequences for Water Quality Control
           in Multiple Reservoir Systems

                              VOLUME 2
                          Technical  Reports


13         Mine Drainage in the North Branch Potomac River Basin

15         Nutrients in the Upper Potomac River Basin

17         Upper Potomac River Basin Water Quality Assessment

                              VOLUME  3
                          Technical  Reports

19         Potomac-Piscataway Dye Release and Wastewater .
           Assimilation Studies

21         LNEPLT

23         XYPLOT

25         PLOT3D

     * Formerly CB-SRBP, U.S.  Department of Health, Education,
       and Welfare;  CFS-FWPCA, and CTSL-FWQA,,  Middle Atlantic
       Region, U.S.  Department of the Interior

-------
                             VOLUME  3  (continued)

                         Technical Reports


27         Water Quality and Wastewater Loadings - Upper Potomac
           Estuary during 1969


                             VOLUME  -4
                         Technical Reports


29         Step Backward Regression

31         Relative Contributions of Nutrients to the Potomac
           River Basin from Various Sources

33         Mathematical Model Studies of Water Quality in the
           Potomac Estuary

35         Water Resource - Water Supply Study of the Potomac
           Estuary

                             VOLUME 5
                         Technical Reports


37         Nutrient Transport and Dissolved Oxygen Budget
           Studies in the Potomac Estuary

39         Preliminary Analyses of the Wastewater and Assimilation
           Capacities of the Anacostia Tidal River System

41         Current Water Quality Conditions and Investigations
           in the Upper Potomac River Tidal System

43         Physical Data of the Potomac River Tidal System
           Including Mathematical Model Segmentation

45         Nutrient Management in the Potomac Estuary


                             VOLUME 6

                         Technical Reports


47         Chesapeake Bay Nutrient Input Study

49         Heavy Metals Analyses of Bottom Sediment in the
           Potomac River Estuary

-------

-------
                                  VOLUME  6  (continued)
                              Technical  Reports

     51          A System of Mathematical Models for Water Quality
                Management

     52         Numerical Method for Groundwater Hydraulics

     53         Upper Potomac Estuary Eutrophication Control
                Requirements

     54         AUT0-QUAL Modelling System

Supplement      AUT0-QUAL Modelling System:  Modification for
   to 54        Non-Point Source Loadings

                                  VOLUME  7
                              Technical  Reports

     55         Water Quality Conditions in the Chesapeake Bay System

     56         Nutrient Enrichment and  Control  Requirements in the
                Upper Chesapeake Bay

     57         The Potomac River Estuary in the Washington
                Metropolitan Area - A History of its Water Quality
                Problems and their Solution

                                  VOLUME 8.."
                              Technical  Reports

     58         Application of AUT0-QUAL Modelling  System to the
                Patuxent River Basin

     59         Distribution of Metals in Baltimore Harbor Sediments

     60         Summary and Conclusions  - Nutrient  Transport and
                Accountability in the Lower  Susquehanna  River Basin

                                  VOLUME <9
                                 Data  Reports

                Water Quality Survey,  James  River  and  Selected
                Tributaries - October  1969

                Water Quality Survey in the  North  Branch Potomac  River
                between Cumberland  and Luke, Maryland  -  August  1967

-------
                             VOLUME 9,  (continued)

                            Data Reports


           Investigation of Water Quality in Chesapeake Bay and
           Tributaries at Aberdeen Proving Ground,  Department
           of the Army, Aberdeen, Maryland - October-December 1967

           Biological Survey of the Upper Potomac River and
           Selected Tributaries - 1966-1968

           Water Quality Survey of the Eastern Shore Chesapeake
           Bay, Wicomico River, Pocomoke River, Nanticoke River,
           Marshall Creek, Bunting Branch, and Chincoteague Bay  -
           Summer 1967

           Head of Bay Study - Water Quality Survey of Northeast
           River, Elk River, C & D Canal, Bohemia River,  Sassafras
           River and Upper Chesapeake Bay - Summer  1968 - Head ot
           Bay Tributaries

           Water Quality Survey of the Potomac Estuary -  1967

           Water Quality Survey of the Potomac Estuary -  1968

           Wastewater Treatment Plant Nutrient Survey - 1966-1967

           Cooperative Bacteriological  Study - Upper Chesapeake  Bay
           Dredging Spoil  Disposal - Cruise Report  No. 11

                             VOLUME 10
                            Data Reports

 9         Water Quality Survey of the Potomac Estuary -  1965-1966

10         Water Quality Survey of the  Annapolis Metro Area - 1967

11         Nutrient Data on Sediment Samples of the Potomac Estuary
           1966-1968

12         1969 Head of the Bay Tributaries

13         Water Quality Survey of the Chesapeake Bay in  the
           Vicinity of Sandy Point - 1968

14         Water Quality Survey of the  Chesapeake Bay in  the
           Vicinity of Sandy Point - 1969

-------

-------
                             VOLUME 10(continued)

                           Data Reports

15         Water Quality Survey of the Patuxent River -  1967

16         Water Quality Survey of the Patuxent River -  1968

17         Water Quality Survey of the Patuxent River -  1969

18         Water Quality of the Potomac Estuary Transects,
           Intensive and Southeast Water Laboratory Cooperative
           Study - 1969

19         Water Quality Survey of the Potomac Estuary Phosphate
           Tracer Study - 1969

                             VOLUME 11
                            Data Reports

20         Water Quality of the Potomac Estuary Transport  Study
           1969-1970

21         Water Quality Survey of the  Piscataway Creek Watershed
           1968-1970

22         Water Quality Survey of the  Chesapeake Bay in the
           Vicinity of Sandy Point -  1970

23         Water Quality Survey of the  Head  of the Chesapeake  Bay
           Maryland Tributaries - 1970-1971

24         Water Quality Survey of the  Upper Chesapeake Bay
           1969-1971

25         Water Quality of the Potomac Estuary Consolidated
           Survey - 1970

26         Water Quality of the Potomac Estuary Dissolved  Oxygen
           Budget Studies - 1970

27         Potomac Estuary Wastewater Treatment Plants  Survey
           1970

28         Water Quality Survey of the  Potomac Estuary  Embayments
           and Transects - 1970

29         Water Quality of the Upper Potomac Estuary Enforcement
           Survey - 1970

-------
   30


   31


   32
   33
   34
Appendix
  to 1
Appendix
  to 2
    3


    4
                  VOLUME 11  (continued)
                 Data Reports

Water Quality of the Potomac Estuary - Gilbert Swamp
and Allen's Fresh and Gunston Cove - 1970

Survey Results of the Chesapeake Bay Input Study -
1969-1970

Upper Chesapeake Bay Water Quality Studies - Bush River,
Spesutie Narrows and Swan Creek, C & D Canal, Chester
River, Severn River, Gunpowder, Middle and Bird Rivers -
1968-1971

Special Water Quality Surveys of the Potomac River Basin
Anacostia Estuary, Wicomico .River, St. Clement and
Breton Bays, Occoquan Bay - 1970-1971

Water Quality Survey of the Patuxent River - 1970

                  VOLUME 12
               Working Documents

Biological Survey of the Susquehanna River and its
Tributaries between Danville, Pennsylvania and
Conowingo, Maryland

Tabulation of Bottom Organisms Observed at Sampling
Stations during the Biological  Survey between Danville,
Pennsylvania and Conowingo,  Maryland - November 1966

Biological Survey of the Susquehanna River and its
Tributaries between Cooperstown, New York and
Northumberland, Pennsylvnaia  - January 1967

Tabulation of Bottom Organisms Observed at Sampling
Stations during the Biological  Survey between Cooperstown,
New York and Northumberland,  Pennsylvania - November 1966

                  VOLUME 13
               Working Documents

Water Quality and Pollution Control  Study, Mine Drainage
Chesapeake Bay-Delaware River Basins - July 1967

Biological Survey of Rock Creek (from Rockville, Maryland
to the Potomac River)  October 1966

-------
                             VOLUME 03  (continued)

                          Working Documents

 5         Summary of Water Quality and Waste Outfalls,  Rock Creek
           in Montgomery County, Maryland and the District of
           Columbia - December 1966

 6         Water Pollution Survey - Back River 1965 -  February 1967

 7         Efficiency Study of the District of Columbia  Water
           Pollution Control  Plant - February 1967

                             VOLUME  14

                          Working Documents

 8         Water Quality and  Pollution Control  Study  - Susquehanna
           River Basin from Northumberland to West Pittson
           (Including the Lackawanna River Basin)  March 1967

 9         Water Quality and  Pollution Control  Study,  Juniata
           River Basin - March 1967

10         Water Quality and  Pollution Control  Study,  Rappahannock
           River Basin - March 1967

11          Water Quality and  Pollution Control  Study,  Susquehanna
           River Basin from Lake Otsego,  New York, to  Lake Lackawanna
           River Confluence,  Pennsylvania - April 1967

                             VOLUME 15
                          Working Documents

12         Water Quality and  Pollution Control  Study,  York River
           Basin - April  1967

13         Water Quality.and  Pollution Control  Study,  West Branch,
           Susquehanna River  Basin - April  1967

14         Water Quality and  Pollution Control  Study,  James River
           Basin - June 1967  ,

15         Water Quality and  Pollution Control  Study,  Patuxent River
           Basin - May 1967

-------
                             VOLUME 16

                          Working Documents

16         Water Quality and Pollution Control  Study,  Susquehanna
           River Basin from Northumberland, Pennsylvania,  to
           Havre de Grace, Maryland - July 1967

17         Water Quality and Pollution Control  Study,  Potomac
           River Basin - June 1967

18         Immediate Water Pollution Control  Needs,  Central  Western
           Shore of Chesapeake Bay Area (Magothy,  Severn,  South,  and
           West River Drainage Areas)  July 1967

19         Immediate Water Pollution Control  Needs,  Northwest
           Chesapeake Bay Area (Patapsco to Susquehanna  Drainage
           Basins in Maryland) August 1967

20         Immediate Water Pollution Control  Needs - The Eastern
           Shore of Delaware, Maryland and Virginia  -  September 1967

                             VOLUME 17 /.
                           Working Documents

21         Biological  Surveys of the Upper James River Basin
           Covington,  Clifton Forge, Big Island, Lynchburg,  and
           Piney River Areas - January 1968

22         Biological  Survey of Antietam Creek and some of its
           Tributaries from Waynesboro, Pennsylvania  to Antietam,
           Maryland -  Potomac River Basin - February  1968

23         Biological  Survey of the Monocacy  River and Tributaries
           from Gettysburg, Pennsylvania, to  Maryland Rt. 28 Bridge
           Potomac River Basin - January 1968

24         Water Quality Survey of Chesapeake Bay in  the Vicinity  of
           Annapolis,  Maryland - Summer 1967

25         Mine Drainage Pollution of the North Branch of Potomac
           River - Interim Report - August 1968

26         Water Quality Survey in the Shenandoah River of the
           Potomac River Basin - June 1967

27         Water Quality Survey in the James  and Maury Rivers
           Glasgow, Virginia - September 1967

-------

-------
                             VOLUME  17   (continued)

                           Working Documents

28         Selected Biological  Surveys in the James River Basin,
           Gillie Creek in the  Richmond  Area, Appomattox River
           in the Petersburg Area, Bailey Creek from Fort Lee
           to Hopewell  - April  1968

                             VOLUME  18
                           Working Documents

29         Biological  Survey of the Upper and Middle Patuxent
           River and some of its Tributaries - from Maryland
           Route 97 Bridge near Roxbury Mills to the Maryland
           Route 4 Bridge near Wayson's Corner, Maryland  -
           Chesapeake Drainage Basin - June 1968

30         Rock Creek Watershed - A Water Quality Study Report
           March 1969

31         The Patuxent River - Water Quality Management  -
           Technical Evaluation - September 1969

                             VOLUME 19
                          Working Documents

           Tabulation, Community and Source  Facility Water Data
           Maryland Portion,  Chesapeake Drainage Area - October  1964

           Waste Disposal  Practices at Federal  Installations
           Patuxent River  Basin - October 1964

           Waste Disposal  Practices at Federal  Installations
           Potomac River Basin below Washington, D.C.- November  1964

           Waste Disposal  Practices at Federal  Installations
           Chesapeake Bay  Area of Maryland Excluding Potomac
           and Patuxent River Basins - January  1965

           The Potomac Estuary - Statistics  and Projections -
           February 1968

           Patuxent River  - Cross Sections and  Mass Travel
           Velocities - July  1968

-------
                             VOLUME  19 (continued)

                          Working Documents

           Wastewater Inventory - Potomac River Basin -
           December 1968

           Wastewater Inventory - Upper Potomac River Basin -
           October 1968

                             VOLUME 20
                          Technicalo

 1         A Digital  Technique for Calculating and Plotting
           Dissolved  Oxygen Deficits

 2         A River-Mile Indexing System for Computer Application
           in Storing and Retrieving Data      (unavailable)

 3         Oxygen Relationships in Streams, Methodology to be
           Applied when Determining  the Capacity of a Stream  to
           Assimilate Organic Wastes -  October 1964

 4         Estimating Diffusion Characteristics of Tidal  Waters  •
           May 1965

 5         Use of Rhodamine B Dye as a  Tracer  in Streams  of the
           Susquehanna River Basin - April  1965

 6         An In-Situ Benthic Respirometer  - December 1965

 7         A Study of Tidal Dispersion  in the  Potomac River
           February 1966

 8         A Mathematical  Model  for  the Potomac River - what  it
           has done and what it can  do  - December 1966

 9         A Discussion and Tabulation  of Diffusion Coefficients
           for Tidal  Waters Computed as a Function of Velocity
           February 1967

10         Evaluation of Coliform Contribution by Pleasure Boats
           July 1966

-------
                            VOLUME  21

                         Technical Papers

11        A Steady State Segmented Estuary Model

12        Simulation of Chloride Concentrations in the
          Potomac Estuary - March 1968

13        Optimal Release Sequences for Water Quality
          Control in Multiple-Reservoir Systems - 1968

                            VOLUME  22
                         Technical  Papers

          Summary Report - Pollution of Back River -  January 1964

          Summary of Water Quality - Potomac River Basin in
          Maryland - October 1965

          The Role of Mathematical  Models in the  Potomac:River
          Basin Water Quality Management.Program  - December 1967

          Use of Mathematical  Models as Aids to Decision Making
          in Water Quality Control  - February 1968

          Piscataway Creek Watershed -  A Water Quality Study
          Report - August 1968


                            VOLUME -23  "
                        Ocean  Dumping  Surveys

          Environmental  Survey of an  Interim Ocean  Dumpsite,
          Middle Atlantic  Bight - September 1973

          Environmental  .Survey of Two  Interim   Dumpsites,
          Middle Atlantic  Bight - January  1974

          Environmental  Survey of Two  Interim Dumpsites
          Middle Atlantic  Bight - Supplemental  Report  -
          October 1974

          Effects of  Ocean Disposal Activities  on Mid-
          continental Shelf Environment  off Delaware
          and  Maryland  - January 1975

-------

-------
                          VOLUME 24

                     Supplemental Reports


Current Nutrient Assessment - Upper Potomac Estuary - June 1975

Distribution of Metals in Elizabeth River Sediments - June 1976

Effects of Ocean Dumping Activity - Mid-Atlantic Bight - 1976
Interim Report

Statistical Analysis of Dissolved Oxygen Sampling Procedures by
the Annapolis Field Office

Herbicide Analysis of Chesapeake Bay Waters - June 1977

Carbonaceous and Nitrogenous Demand Studies of the Potomac Estuary
Summer 1977

Algal Nutrient Studies of the Potomac Estuary - Summer 1977


                          VOLUME 25

                       Special  Reports


A Water Quality Modelling Study of the Delaware Estuary - January 1978

Biochemical Studies of the Potomac Estuary - Summer 1978

Analysis of Sulfur in Fuel Oils by Energy-Dispersive X-Ray Fluorescence
January 1978

Assessment of 1977 Water Quality Conditions in the Upper Potomac Estuary
July 1978


                          VOLUME 26

                       Special  Reports


User's Manual  for the Dynamic (Potomac) Estuary Model  - January 1979

Lehigh River Intensive - March  1979

Simplified N.O.D.  Determination - May 1979

-------

-------
                          VOLUME 27

                       Special Reports
A User's Manual for the Dynamic Delaware Estuary Model - April 1980

Assessment of 1978 Water Quality Conditions in the Upper Potomac
Estuary - March 1980

-------
U.S. ENVIRONMENTAL PROTECTION AGENCY
MIDDLE ATLANTIC REGION- III  6th and Walnut Streets, Philadelphia, Pennsylvania 19106

-------

-------
EPA 903/9-79-001
                                            USER'S MANUAL




                                              FOR THE




                                   DYNAMIC (POTOMAC) ESTUARY MODEL




                                         TECHNICAL REPORT 63

-------
EPA 903/9-79-001
                         USER'S  MANUAL

                           FOR THE

                DYNAMIC  (POTOMAC)  ESTUARY  MODEL



                     TECHNICAL REPORT 63




                         January 1979
                      Stephen  E. Roesch
                        Leo J. Clark
                        Molly  M. Bray
                   Annapolis Field Office
                         Region III
            U.S. Environmental Protection Agency

-------
EPA 903/9-79-001
                                  ABSTRACT
            The  Annapolis  Field  Office  (AFO) of the Environmental
       Protection  Agency  has  been  actively engaged in the mathematical
       modeling  of the  Potomac Estuary  since the  1960's.  During the
       past  several years,  the Potomac  water quality model has undergone
       considerable revision  and expansion.  This report is the first in
       a  series  of reports  documenting  the Potomac modeling efforts at
       AFO.   While the  model  presented  in this report has been adapted
       to the Potomac  Estuary, it  is  by no means  unique to that body
       of water.
            This report discusses  the basic principles and theories
       underlying  the  Dynamic Potomac Estuary Model.  A description
       of the water quality interactions modeled  in the Potomac are
       also  presented.  Being a  User's  Manual, this report also
       contains  listings  of the  hydraulic and water quality models, a
       detailed  description of each program and its logical structure,
       variable  definitions,  data  deck  sequences, and sample input/output,

-------
                     TABLE OF CONTENTS

                                                               Page
ABSTRACT 	     i
TABLE OF CONTENTS 	    i i
LIST OF FIGURES 	     v
LIST OF TABLES 	    vi
CHAPTER 1   THEORY OF THE DYNAMIC ESTUARY MODEL 	     1
     1.1  Introduction 	     1
     1.2  The Model  Network 	     3
          1.2.1  Overview 	     3
          1.2.2  Channel  Parameters 	     5
          1.2.3  Junction Parameters 	     6
          1.2.4  Network Configuration and Size 	     8
     1.3  The Hydraulic Model  	     9
          1.3.1  Theory 	     9
          1.3.2  Solution Technique 	    14
     1.4  The Quality Model 	    15
          1.4.1  Theory 	    15
          1.4.2  Solution Technique 	    36
CHAPTER 2   IMPLEMENTATION OF THE HYDRAULIC MODEL 	    38
     2.1  Regression Analysis Program (REGAN) 	    38
          2.1.1  Program Description 	    38
          2.1.2  REGAN Data Deck Sequence 	    42
          2.1.3  REGAN Variable Definitions	    43
     2.2  The Hydraulic Program (DYNHYD) 	    45
          2.2.1  The MAIN Program 	    45
          2.2.2  Subroutine HYDEX	    48
          2.2.3  Subroutine RESTRT 	    55
          2.2.4  DYNHYD Sign Conventions 	    57
          2.2.5  Input Requirements 	    59
          2.2.6  Output Options 	    63
          2.2.7  Potential Implementation Difficulties 	    64

-------
                     TABLE OF CONTENTS
                        (continued)

                                                                Page
          2.2.8  DYNHYD Data Deck Sequence 	     67
          2.2.9  DYNHYD Variable Definitions 	     70
     2.3  Computer Requirements 	     78
          2.3.1  IBM Job Control Langauge (JCL) 	     78
          2.3.2  UNIVAC Executive Control Langauge (ECL) 	     79
          2.3.3  Execution Times 	     80
CHAPTER 3   IMPLEMENTATION OF THE WATER
            QUALITY MODEL - DYNQUAL 	     81
     3.1  The MAIN Program 	     81
     3.2  Subroutine MIXER	     89
     3.3  Subroutine SUMARY 	     92
     3.4  Subroutine SWTABL 	     94
     3.5  Subroutines SUMPLT and SWPLOT	     98
     3.6  Subroutine TPLOT	    100
     3.7  Plotting Subroutines CURVE, PPLOT, and SCALE 	    102
     3.8  Constituent Linkages 	    103
     3.9  Considerations For Modeling Other Systems 	    105
    3.10  Input Requirements 	    109
    3.11  Output Options 	    112
    3.12  DYNQUAL Data Deck Sequence 	    116
    3.13  DYNQUAL Variable Definitions 	    126
    3.14  Computer Requirements 	    148
          3.14.1  IBM Job Control Langauge (JCL) 	    148
          3.14.2  UNIVAC Executive Control Langauge (ECL) ...    149
          3.14.3  Execution Times	    150
CHAPTER 4   SAMPLE INPUTS AND OUTPUTS 	    151
     4.1  The Model Network 	    151
     4.2  Sample REGAN Input/Output	    158
     4.3  Sample DYNHYD Input/Output 	    163

-------
                          TABLE OF CONTENTS
                             (continued)

                                                               Page
     4.4  Sample DYNQUAL Input/Output 	   190
          4.4.1  3 Conservative Constituents 	   190
          4.4.2  2 Linked Constituents 	   209
          4.4.3  6 Constituent D.O. Budget ..	   229
APPENDIX 	   261
     A.I  REGAN Listing 	   262
     A.2  DYNHYD Listing 	   264
     A.3  DYNQUAL Listing 	   275
BIBLIOGRAPHY 	   316
                              IV

-------
                        LIST OF FIGURES
Figure                         Title                            Page
 1.1      Representation of the Model  Network 	     4
 1.2      Branching and Looping in a Network 	     7
 1.3      Mass Transfer by Advection 	    17
 1.4      Effect of Numerical  Mixing on Model  Accuracy 	    19
 1.5      Methods of Computing C* 	    20
 1.6      Lateral and Vertical Velocity Patterns  	    24
 2.1      Flowchart of REGAN 	    40
 2.2      Flowchart of the MAIN Program in DYNHYD 	    46
 2.3      Flowchart of Subroutine HYDEX	    50
 2.4      Creation of the Hydraulic Extract Tape  	    52
 2.5      HYDEX Averaging Technique	    54
 2.6      Flowchart of Subroutine RESTRT	    56
 2.7      DYNHYD Sign Conventions 	    58
 3.1      Program and Subroutine Linkages  of the  DEM 	    82
 3.2      Flowchart of the MAIN Program in DYNQUAL 	    83
 3.3      Flowchart of the Main Quality Loop 	    84
 3.4      Flowchart of Subroutine MIXER 	    90
 3.5      Flowchart of Subroutine SUMARY	    93
 3.6      Location of High and Low Water Slack 	    95
 3.7      Flowchart of Subroutine SWTABL 	    96
 3.8      Flowchart of Subroutines SUMPLT  and  SWPLOT 	    99
 3.9      Flowchart of Subroutine TPLOT	   101
 3.10      Constituent Linkages 	   104
 3.11      Alternative Linkage:  Example  1 	   106
 3.12      Alternative Linkage:  Example  2 	   107
 3.13      Alternative Linkage:  Example  3 	   108
 4.1      The  Potomac Estuary  	   152
 4.2      Potomac Estuary Model  Network: Segment  1 	   153
 4.3      Potomac Estuary Model  Network: Segment  2 	   154
 4.4      Potomac Estuary Model  Network: Segment  3 	   155
 4.5      Potomac Estuary Model  Network: Segment  4 	   156
 4.6      Potomac Estuary Model  Network: Segment  5 	   157

-------
                       LIST OF TABLES

Table                         Title                            Page
 1.1     Comparison of Methods for Computing C* 	     21
 2.1     DYNHYD Execution Times 	     80
 3.1     DYNQUAL Execution Times 	    150
                             VI

-------
                          CHAPTER 1
             THEORY OF THE DYNAMIC ESTUARY MODEL
                      1.1  INTRODUCTION

     The Dynamic Estuary Model (DEM) was originally developed
during the mid 1960's by Water Resources Engineers, a consultant
engineering firm located in Walnut Creek, California, under
contract to the Division of Water Supply and Pollution Control,
U. S. Public Health Service [ 1 ].  The principal individuals
associated with the development of this model were Drs. Gerald
Orlob and Robert Shubinski.  Estuarine modelling was still in its
infancy at that point in time, and the DEM was innovative in
considering a "real time" computerized tidal solution of the
hydrodynamic behavior of estuaries, including the effects of
tides.  Prior to the development of the DEM, the few estuary
models already in existence relied on a net flow or plug flow
analysis and attempted to reproduce tidal effects through the
inclusion of an artificial dispersion coefficient.  Since these
models were non-tidal in nature, the time step for computations
was normally equal to the tidal period (12.5 hrs.) or, for
convenience, one day, and consequently they could not handle short
term pertubations in water quality.
     The DEM was initially applied to the Sacramento-San Joaquin
Delta area in California [ 1  ].  Other early applications were to
the Suisun, San Pablo and San Francisco Bays [ 2 ], [ 3 ].  The
DEM was first brought to the attention of the Annapolis Field
Office (AFO) by Mr. Kenneth Feigner in 1969.  Mr. Feigner was the
USPHS project officer during the early developmental and
application studies in California and was the author of the basic
model documentation report [ 4 ].  Staff at AFO, with the
encouragement and assistance of Mr. Feigner, tested the model
rigorously and performed extensive modifications to the reaction
kinetics in the quality program during its multi-year application

-------
                           -  2  -
to the Potomac Estuary [5], [6], [ 7 ].  .The Potomac study
was primarily directed towards refining the  model's ability to
treat nutrient cycles (including uptake by phytoplankton) and
towards incorporating algal effects within the DO budget.  In
addition, the DEM was also applied to the upper Chesapeake Bay
during 1972-73 for the development of allowable nutrient loadings
from the Susquehanna Basin and the Baltimore Metropolitan
Area [ 8 ], and most recently to the Delaware Estuary [ 9 ].
     The DEM consists of two separate but interrelated components:
(1) a hydraulic program, dealing with water motion, and (2) a
quality program, dealing with mass transport and chemical and
biological reactions.  The hydraulic program predicts water
movement by solving the equations of momentum and continuity,
while the quality program predicts the movement, build-up, and
decay of water-borne material by solving the conservation  of
mass equations.  The numerical solution of the hydraulic and mass
equations is accomplished on the same network, which represents
the geometrical configuration of the estuary.  The following
sections will discuss in detail the network and the equations used
in the hydraulic and quality models.

-------
                            - 3 -
                   1.2  THE MODEL NETWORK
                       1.2.1  OVERVIEW

     The DEM represents the prototype by using a network
consisting of several interconnected "channels" and "junctions".
This channel-junction (often called "link-node") network is
extremely flexible in that it allows the prototype to be
segmented in a manner which considers the complex flow patterns
in the lateral plane as well as the effects of an irregular
shoreline.  A channel element (link) connects two junction
elements (nodes) and serves as the transport mechanism between
the junction at each end.  A junction is a volumetric unit which
acts as a receptacle for the fluid (and associated mass) trans-
ported through its connecting channels.  A channel can connect
only two junctions, but a junction can have several channels
entering it.  The concentration of the water quality parameters;
their addition, depletion, decay, and biological/chemical
transformations are defined within junctions.  Parameters
influencing the actual motion of water are assigned and treated
in the context of channels.
     The model network can be viewed as the overlapping of two
closely related subnetworks:  (1) the channel network, and (2) the
junction network.  Figures l.la and l.lb illustrate the configuration
of channels and junctions, respectively, for a hypothetical
estuary.  Since a channel must have a junction at each end, the
location, shape, and size of the junctions are dependent on the
channel configuration.  Figure l.lc illustrates how the channel
and junction networks overlap to form the final model network.
Figure l.ld illustrates a symbolic notation used to define the
model network.

-------
-  4  -
                                                                           o:
                                                                           o
                                                                            o
                                                                            z
                                                                            o
                                                                            UJ
                                                                            I/O
                                                                            O-
                                                                            LU
                                                                            CtL
                                                                            cc:
                                                                            cs

-------
                           -  5 -
                  1.2.2  CHANNEL PARAMETERS

     The parameters associated with channels are length, width,
cross-sectional area, frictional resistance coefficient
(Manning's "n"), velocity, and hydraulic radius or depth.
     Length:  The length of a channel equals the distance between
the two junctions it connects.  Channels must be rectangular
and should be oriented so as to minimize the variation of depth
over their length as well as reflect the location and position
of the actual protytype channels.  The channel length is
generally dependent on a computational stability criteria given
by
where:
                 1 .   =  length of channel i
                 y .   =  mean depth of channel  i
                 u.   =  tidal velocity in channel i
                 At  =  computational time step
                  g  =  acceleration of gravity
     Width:  There is no apparent limit on the width of a channel.
However, if a channel is too wide  in relation to its length, the
mean velocity predicted may mask important velocity patterns
occurring on a more local scale.  For well defined channels, the
network channel widths are equated to the average bank to bank
width.
     Cross-sectional  area:  The cross-sectional area of a channel
is equal to the product of the channel width and depth.  However,
depth is a channel parameter that must be defined with respect to
junction head or water surface elevation (since both vary similarly
with time).  Channels are assigned initial values of width and depth
based on the initial  junction heads and the initial cross-sectional

-------
                            -  6  -
areas are computed internally.  As the junction heads vary, the
channel cross-sectional areas are adjusted accordingly.
     Roughness:  Channels are assinged "typical" Manning Roughness
coefficients.  Since the actual  value of this coefficient is
virtually undefinable, it serves as a "knob" for the calibration
of the model.
     Velocity:  An initial estimate of the mean channel  velocity
is required for each hydraulic run.  Although any value  may be
assigned, the computational time required for convergence to a
steady state solution will depend upon its departure from the
true value.
     Hydraulic radius:  Previous applications of the DEM have
employed channels whose widths are greater than ten times the
channel depth.  Consequently, the hydraulic radius is usually
assumed to be equal to the mean channel depth.

                 1.2.3  JUNCTION PARAMETERS
     The parameters associated with junctions are surface area,
volume, head, and any accretion or depletion from the system.
     Surface area:  Except when branching or looping occurs
(i.e., when more than two channels enter a junction), the surface
area of a junction is equated to one-half of the sum of the
surface areas of the two channels entering the junction.  When
branching or looping does occur, the junction surface areas can
be determined by laying out a polygon network using the Thiessen
Polygon method, as in Figure 1.2.  Since the polygons are
normally irregular, a planimeter must be relied upon to obtain
surface areas.
     Volume:  Junction volumes are computed by multiplying the
surface area of the junction by the mean depth of the channels
(weighted by cross-sectional area) entering the junction.
     Head:   Junction heads represent the elevation of the water
surface above or below an arbitrary horizontal datum.  The datum
is usually taken to be or referenced to Mean Sea Level.

-------
                    -  7  -
                                            junction
                                          surface area
FIGURE 1.2  BRANCHING AND LOOPING IN A NETWORK

-------
                           - 8 -
     Accretion/Depletion:  Any accretion to or depletion from the
system is handled by the direct addition to or removal  from the
junction volume or mass.
            1.2.4  NETWORK CONFIGURATION AND SIZE
     There is a great deal of flexibility allowed in laying out
the network of interconnected channels and  junctions to  represent
a particular system.  The choice of the boundary locations should
include considerations of both hydraulic and quality factors.  To
minimize difficulties with boundary conditions, the network should,
ideally, extend to the ocean at the downstream boundary and to or
beyond the limits of tidal effects on inflowing streams, so that
the inflow can be considered steady.  Such a network eliminates
problems associated with dynamic boundary conditions, such as
changing salinity, or other quality conditions which could be
present if an inland point is chosen for the seaward boundary.
Other considerations which could influence the location of the
network boundaries and the scale of network elements include the
location of specific points where quality predictions are required,
the location of existing or planned sampling stations and the
availability of data for verification, the degree of network detail
desired, and the computer time desired for solution.
     For computational procedures, it is necessary that the
junctions of the network be numbered consecutively beginning with
one.  The assignment of numbers to the network can be based on any
arbitrary consideration.  However, junctipn number one must be
located at the seaward boundary.  A separate but similar numbering
system for channels is also necessary.  Each junction may have
from one to five channels entering it.  A channel must have a
junction at one end; thus, dead-end sloughs must end with a
junction.  Associated with each junction number are from one to
five channel numbers, and associated with each channel  number are
two junction numbers.

-------
                           - 9 -
                 1.3  THE HYDRAULIC MODEL
                       1.3.1   THEORY
     The primary task of the  hydraulic model  is to solve the
equations describing the propagation of a long wave through a
shallow water system, while conserving both momentum and volume.
This is accomplished by (1) applying the one-dimensional
equation of motion to the network channels to predict velocities
and flows and (2) applying the continuity equation to the network
junctions to predict fluctuations in the water surface elevation
(head) and the corresponding  changes in volume.  The assumptions
upon which this approach is based are:
       1) flow is predominantly one-dimensional
       2) acceleration normal to the x-axis is negligible
       3) coriolis and wind forces are negligible
       4) channels are rectangular with uniform cross-sectional
          area and a slope which can be considered negligible
       5) tidal conditions (amplitude and period) at the
          seaward boundary are known
       6) wave length is greater than or equal to twice the
          channel depth

The Equation of Motion - Conservation of Momentum
     The equation of motion is given by

          f  =  -u|J   -    k|u|u    -    gf         (l.la)

where:
          u = velocity along the x-axis
          t = time
          x = distance along the x-axis
          k = fractional resistance coefficient
          g = acceleration of gravity
          H = head  (height of the wave above an arbitrary datum)

-------
                           - 10 -
The terms in equation (l.la) represent the following:
     8u  _  the time rate of change of velocity; also defined
     8t     as the local inertia term
     3u.  _  Bernoulli acceleration (the rate of momentum change
     3x     by mass transfer); also defined as the convective
            inertia term as derived from Newton's 2nd Law
  kjuju  =  frictional resistance (the absolute value sign insures
            that resistance opposes the direction of flow)
   g TTT  =  gravitational acceleration
     dX
     The relationship between frictional resistance and the
energy gradient is given by
                     k|u|u  =  g ~                       (l.lb)
where

     -j—  =  energy gradient

     For a tidally influenced estuary, few, if any, of the
channels experience  steady flow.  However, over short time
intervals, the flow  can  be considered as steady uniform flow.
Consequently, the Manning equation, given by
                       u  -    .                            (l.lc)
                                 2   2
                                                          (l.ld)
                       s  _   -
                       s      2.208
where
         R  =   hydraulic  radius  of the  channel
         s  =   dH/dx =  energy gradient
         n  =   Manning's  n
can  be used to evaluate  the frictional  resistance coefficient in
equation (l.la).   Substitution  of equation  (l.ld) into equation
 (l.lb) defines "k" as

                       k  -   - ^—-               (l.le)
                             2.208

-------
                          -  11 -

The Equation of Continuity - Conservation of Mass
     The equation of continuity is given by:

               $•-£•£                       «-2'
where:
         H  = head
         b  =  mean channel width
         Q  =  flow
The terms in equation (1.2) represent the following:
         3H
         -rr  =  time rate of change of water surface
                elevation

     ~TT * IT  =  change  in storage along the channel  length
                per unit width
     As presented, equations  (l.la) and  (1.2) apply to  channels.
To minimize computational requirements, equation (1.2)  is applied
to junctions so that:

                 £  -  -  £                          (1.3)
where:
         A*  =  surface area of the junction

-------
                            -  12  -
For use in the model, both equations (l.la) and (1.3) must be
changed to their finite difference forms:

ui t ' ui t l    ii       AUi                          AH
 i ,t    i,t-i _ -u- tl / _ T\   I^IH      I..             H-
                   i>t-i \ y ; - N u. .  , u. .  ,  -g
                                      "      ~
                                                      _
     At                    i        >"    '~        ~x7
and
                HJ.t " Hj.t-l  _   - E Q                       (1.5)
                    At               A*.
                                       J
where:
          U. a.    =  velocity in channel i at time t
            I , L
          U.. t_-|  =  velocity in channel i at time t-1
          At      =  computational time step
          X.      =  length of channel i
          AU.J/X.  =  velocity gradient in channel i
          AH./X.  =  water surface gradient in channel i
          H. .     =  water surface elevation in junction j
           J'1       at time t
          H. t •,  =  water surface elevation in junction j
           J5t"'     at time t-1
          A*.     =  surface area of junction j
            J
          zQ      =  algebraic summation of flows into (accretions)
                     and out of (depletions) a junction
          K       =  frictional resistance coefficient (gn2/2.208Rlt/3)
          n       =  Manning's "n"
          R       =  hydraulic radius of a channel
          g       =  acceleration of gravity

      The velocity gradient term  (All./X..)  presents some computational
 problems because  the  computed  velocity  for a  channel  is  assumed to
 be constant throughout that channel,  hence there is  no  predicted
 velocity gradient within a given  channel.   If branching  does not
 occur,  a velocity gradient can be computed as the difference of

-------
                            -  13  -
the velocities in the channels connected to the junctions at
each end of channel i.  If branching does occur, this approach
cannot be used, since there would be several channels connected
to the upstream and downstream junctions.  Equation (1.6) can
be used to solve this problem.

           1H=_1   10.  =  _ 1  3(uA)                  d 6)
           9t    " b   9x       b   9x                      ' '
         ,  9JH  _     U9A    .   3U_
         D 9t        9X   "     9X
        •   9U        b    9H     U_  9A
           "ix"  ~  ~  A    9t  "  A  9x

In finite difference form, this becomes
      AU..        b.j    AH.J       ui    AA..
      -^7  =  -  AT    AT   -   AT    -^                ^'7">

     The expression AH./At is computed as the average of the
changes in water surface elevation of the junctions at each end
of channel i during the time step (At).  Similarly, the
expression AA./X. is obtained by computing the cross-sectional
area at each end of channel i based on the water surface
elevation of the junctions at each end.
     At this point, there is one equation for each channel and each
junction.  Given the network configuration and geometry, initial
values for channel velocities and junction heads, and specified
boundary conditions, (e.g. seaward tidal variations) equations
(1.4) and (1.7) can be solved using a modified Runge-Kutta
procedure.  The solution will converge for a given set of boundary
conditions to a dynamic equilibrium having velocities, flows,
and heads repeated at intervals equal to the specified tidal
period.

-------
                           - 14 -



                  1.3.2  SOLUTION TECHNIQUE

     The solution of the equations of motion and continuity as

described proceeds as follows:

          1)  The mean velocity for each channel is predicted
              for the middle of the next time interval
              (i.e., for time t + At/2) using the channel
              velocities and cross-sectional areas and the
              junction heads at the beginning of the time interval.

          2)  The flow in each  channel at the middle of the next
              time interval  is  computed using the velocity obtained
              in step (1) and the cross-sectional area at the
              beginning of the  interval.

          3)  The head at each  junction at the middle of the next
              time interval  is  computed using the flows derived
              in step (2).

          4)  The cross-sectional area of each channel  at the
              middle of the next time interval is computed using
              the heads computed in step (3).

          5)  The mean velocity for each channel is predicted for
              the full time step ( t + At ) using the velocities,
              cross-sectional areas, and junction heads computed
              for the middle of the time step ( t + At/2 ) in
              steps (1), (3), and (4).

          6)  The flow in each  channel after a full time step is
              computed using the velocity for the full time step
              (computed in step 5) and the cross-sectional area
              computed for the  middle of the time step in step (4).

          7)  The head at each  junction after a full time step is
              computed using the full step flow computed in step (6)

          8)  The cross-sectional area of each channel after a full
              time step is computed using the full step heads from
              step (7).

          9)  Repeat steps (1)  through  (8) for the specified
              number of time intervals.

-------
                           - 15 -


                   1.4  THE QUALITY MODEL
                        1.4.1   THEORY

     The task of the quality model  is to solve the equations
describing the movement, decay, and transformation(s) of a
material by performing a mass balance at each junction for each
time step.  The quality model  is referenced to the same network
used in the hydraulic model, and uses the hydraulic solution
(heads, flows, and velocities for each time step)  as input.
Since the time step for the quality program is usually much
larger than the time step for the hydraulic program, the
hydraulic parameters occurring within a quality time step are
averaged.  These averaged values cover a full tidal cycle and
are stored for use by the quality program. Consequently, the
quality time step must be a whole multiple of the  hydraulic time
step and evenly divisible into the tidal period.
     Six constituents, either conservative or non-conservative,
can be handled simultaneously by the version of the DEM presented
in this report.  The concentration of a constituent at any point
is affected by mass transfers (advection, dispersion, diffusion),
decay, biological/chemical transformations, and the import or
export of mass.
Advection
     Advection is a hydraulic mechanism which moves a constituent
in the direction of flow at the same velocity at which the water
moves.  The basic transport equation for advection is:
where
                        Ta=  u  •   c                      (1.8)
                         a
         T   =  advective transport of a given mass through a
                unit area in a unit time (mass/area/time)
          u  =  velocity
          c  =  concentration of the constituent in the water

-------
                           - 16 -

     If an infinitesimal  volume of  water  is considered, the
one-dimensional  equation  describing concentration  is:

                   i?-  =   u  —                          (1-9)
                   9t       u  ax
where
          3c/3x  =  concentration gradient along the x-axis
          3c/3t  =  time  rate of change of concentration
     If both sides of equation (1.9) are  multiplied by volume
(A'Ax), then the following mass balance equation is obtained:

                   f£  -   u  H  •  
-------
                  - 17 -
   AM,
   "AT
           =   X(u'A-c)
                             .n
                               out
^1  =   u  A
AtJ     ui rti
+  ui-l Ai-l c;
                                                cj
where
                      indicates the direction of flow
                   =  velocity in channels i-1,i,and i+1


                   =  cross-sectional area of channels
                     i-1 ,i,and i-
                     concentration in junctions j-2,
                     j-1, and j
      FIGURE 1.3  MASS TRANSFER BY  ADVECTION

-------
                           - 18 -


Numerical Mixing
     When solved by finite difference methods, the advection
equation is subject to a problem known as "numerical  mixing".
During every quality time step, mass is transferred between
adjacent junctions.  As shown in Figure  1.4 , a problem arises
because the model assumes that the mass transferred from
junction A to junction B is completely mixed within junction B
(i.e., that the mass from junction A is transferred to the center
of junction B).  In reality, however, water velocities are
highly variable and will, at times, advance only to the boundary
between junctions A and B while the model must always move mass
in unit steps whose distance is dictated by the channel lengths
and junction sizes.  The greatest difficulty will arise when there
is a high concentration gradient between two junctions.  If C.
(the concentration in junction A) is much greater than CR (the
concentration in junction B), then the error introduced by
advancing constituent mass from junction A to junction B ahead
of the actual water mass will be numerically large.  In order to
insure that the discrepancy between model and river concentrations
will not be large and will not accumulate because of numerical
mixing problems, certain adjustments must be made.
     The solution is to choose a concentration  (C*) in the
advected water which is between the "actual" values of C. and
CR.  Feigner [ 4 ] examined several techniques  for determining
C*.  His results are summarized in Figure 1.5 and Table 1.1.

Turbulent  (eddy) Diffusion
     In  a calm body of water, molecular diffusion will slowly
operate  to bring constituents from regions of high concentrations
to regions of low concentrations.  In turbulent bodies of water,
however, this relatively slow process can be neglected, and only
the effects of turbulent diffusion need to be considered.
Turbulent diffusion, the stirring or mixing of  the water by eddy
currents due to tidal action or some other energy field (such as density

-------
                    - 19 -
c
o
IO


4->



-------
                         -  20  -
                                                                         JD
                                                                       CJ
                                                                         (O
                                                                       CJ
                                                                          CM
      CM


      *~JC
      CJ

      +
                                                                       +


                                                                       CM
                                                            .O    J
                                                          o     o
               re     m
        re   cj    o      re
  re  o     CM    co    o
                                             o

                                              ii
                                              c
                                              O
03
S-
+J
c
V
o
C
o
 (C
 0)
                                                    C
                                                    co
                                                    O
                                                    c
                                                    O
                                                    o

                                                    +3
                                                    C
                                                    -i-
                                                    O
                                                    Q-

                                                    CM
                                             r—    CM
                                             •K
                                             O
       •K
       CJ
                                                                        c
                                                                        o
              c
              CO
 ecu
 o     o     c
••-     -i-     O
+J     -M    O
 re     re
 i-     i.    i—
4*     +>     tO
 o
o
                                                          CO
                                                           CO
*
O
       d)
       o
       o
              O
              a.
+J     -4->     O
 c     c     $-
•f-     -i-    Q-
£     S.     >,
             5
                                                                         I
                                                    r—    r—    i—     CM
                                                                        in
       *
       CJ
                                                                        o
                                                                                        *
                                                                                        CJ
                                           o
                                           o
                                                                                        l/J
                                                                                        o
re

-------
-  21  -

£?
tf—
r—
•r—
O
rO
-t-J
CO
O
fO
S-
3
O
o
ra
O CD
•I- C
S- •!—
0) X
E -r-
3 s:
z:






•K *• — •
O If)
»*- ,— '
0
O)
c s-
O 3
•r- cn
4_3 tr.
•i- U.
£Z
•r- O)
M- OJ
O) CO







•a
o
^:

OJ
21

a>
co S
a> o ro
i— a. +j
r— Q.
, OJ
OS- O
X 0) 0
ui >. «t

1- XI XI
o o o
00 O
CL. CD CD

ai

-C ro
cn 3: s_
•i- o a>
DC _l XJ
o






oj PO »*
^ "*>-•*>.
f^ f^ jQ
o o o
rO
CO + + +

II ra ra ro
C_3 CJ C_3
^C ^— ' «^-^ *~^"
CJ
II II II
* * *
0 0 CJ




4-> +J 4J
E c c c
ra •!— •«•— «r—
Q) O O O
S_ CL. Q_ Q_
1 *
10 OJ CO ^J-
CL --v. ^ ' 	 .



i-
o
o
Q-




"^3
o
o
CD



^
O
—I


^3
O
1
ra
o
4-> X
< OJ
>
+

OJ
^^
^~^
f^>
o

+

ra
CJ
—
II
*
0
ra
c
>» 0
ra -r-
-5* 40
i_
1 O
CL
OJ O
a.
                                               O
                                               CJ
                                               ct:
                                               o
                                               CO
                                               o
                                               o
                                               o
                                               oo
                                               
-------
                            - 22 -
gradients), is essentially a complex form of advection, which
must at present be treated as a separate process, since the
velocities and directions of the eddy currents are not yet
predictable.   The transport equation for turbulent diffusion is:
V
^d '  8x
                                                            (1.12)
where
          T.  =  transport by turbulent diffusion through a
                 unit area in a unit time
          K.  =  empirically determined coefficient describing
                 the rate of transfer (Iength2/time)
      Be/ax   =  concentration gradient over the space scale
Applying this equation to a control volume and shrinking it to
infinitesimal size will yield a partial differential equation
describing the time rate of change of a constituent's concentration
due to turbulent or eddy diffusion:
              30  -
              3t
    82C
                                     (1.13)
Multiplying this equation by a volumetric term (A-ax) yields a
differential equation which relates turbulent diffusion at
cross-section A on a mass flux basis:
              9M  -  v
              "at  "  Kd
     82c
           A-3X
(1.14)
Again, converting the mass transfer equation to finite difference
form and expressing distance in terms of a channel element's length
results in:

-------
                           - 23 -
       AM.               AC.  ,              AC.
                                             .
            '  KA             -  KA
       AT      di+l           -   di    AxT

where
          j  =  junction under consideration
     i, i+1  =  downstream and upstream channels, respectively
 ACi' ACi+l  =  concentration differenced along the downstream
                and upstream channels, respectively
This difference equation describes the net dispersion of mass
into or out of junction j during the interval  At.

     The DEM does not utilize K, directly but, rather, computes
this rate based upon a simplification of the energy dissipation
relationship and a spatial approximation of the eddy size  [4].
The actual equation employed by the model is as follows:
                  Kd  =  C4| u | R                        (1.16)
where
                  dimensionless  diffusion constant which can be
                 varied spatially
           u  =  mean channel  velocity
           R  =  hydraulic radius of the channel

Longitudinal Dispersion
     The velocity of a river varies both laterally and vertically,
as shown in Figure 1.6.  These variations result in longitudinal
dispersion, the mechanism by which mass in the center of the
river moves forward faster than the mass at the sides or bottom.
Since the velocity used in equation (1.11) is assumed to be the
mean velocity in the channel (i.e. the model  is one-dimensional
in form), this phenomenon cannot be directly accounted for by the
model.  However, the phenomenon of numerical  mixing accidentally

-------
                   - 24 -
            Lateral variation of velocity
            Vertical variation of velocity
FIGURE 1 .6  LATERAL AND VERTICAL VELOCITY PATTERNS

-------
                           - 25 -
produces a somewhat similar effect, although it is only partially
controllable.  In fact, there are two procedures which can help
encompass the effects of longitudinal dispersion.
     1)  further adjustment of C* (the concentration used in
         equation (1.11) for advection)
     2)  adjustment of the turbulent (eddy) diffusion
         coefficient (C.)
     The quality model is capable of describing the fate of both
conservative (e.g. salinity) and non-conservative (e.g. BOD or DO)
constituents.  For non-conservative constituents, the mechanism
of decay must be considered.

Zero-Order Decay
     For zero-order decay, the quantity of constituent decayed
is a function of the rate constant for the reaction being
considered.  Mathematically, a zero-order reaction is given by

                     %  -  -K                            (1.17)

where
          dc/dt  =  rate of change of c with respect to t
              c  =  concentration
              t  =  time
              K  =  rate constant (mass/volume/time)
The negative sign indicates that the process is one of decay
rather than growth.  Equation (1.17) is easily integrated to
yield:
                    Ct  -  C0-K  (t-t0)               (1.18)
where
          C.  =  concentration at time t
          C   =  concentration at time t

-------
                           - 26 -
This expression can be converted to a finite difference form
for a time step of At.
where
              C  - C.   =  AC-  =  K •  At                  (1.19)
               U    u       J
          AC,  =  change (decrease) in concentration in junction j
            J     during a time interval of At
The corresponding mass equation is obtained by multiplying both
sides of equation (1.19) by volume.
               V.-AC.  =  AM.  =  K-V.-At                 (1.20)
                vJ   J       «J        J
where
          V.  =  volume of junction j
           J
         AM.  =  change (decrease) in mass in junction j during
           J     a time interval of At

Example 1 - Algal Respiration and Photosynthesis
     If algal respiration is assumed to be a zero-order reaction,
i.e. if the rate at which oxygen is consumed by algae is
independent of their concentration, then the rate at which oxygen
is removed from the system is given by:

                     R  =  Kn-V-C.
                   At   -  ^R v "algae
where
          AMR  =  mass of dissolved oxygen consumed by algae
                  during a time interval of At
           KR  =  rate at which algae consume oxygen
                  (mass of 02/mass of algae/time)
       C ,     =  concentration of algae (mass/volume)
            V  =  volume
Algal photosynthesis is not a process of decay.  However, if it
is assumed to be a zero-order reaction, i.e. if the rate at which
algae produce oxygen is independent of  their concentration, then
the rate at which oxygen is added to the system is given by:

-------
                           - 27 -
              AM
              At   =  Kp ' V '  Calgae
where
          AM   =  mass of dissolved oxygen produced by algae
            P     during a time interval  At
           K   =  rate at which algae produce oxygen
            p     (mass of (Wmass of algae/time)
       C ,     =  concentration of algae
            V  =  volume
The mass of oxygen present in the system at time t is given by:
               Mt  =  M^  +  AMp-AMR
where
          M.   =  mass of oxygen present at time t
        M. ,   =  mass of oxygen present at time t-1

Example 2  -  Sediment Oxygen Demand
     If the rate at which oxygen is consumed by bottom sediments
is considered constant, i.e. independent of the amount of bottom
sediment present, then the change in dissolved oxygen mass due
to sediment oxygen demands is given by:

                   AMDO
                   ~     ""         "
                   At        SOD
where
          AMDO  =  mass of oxygen consumed by bottom sediments
                   during a time interval At
          KSOD  =  rate at w'"c'1 bottom sediments consume oxygen
                   (mass Op/area/time)
             A  =  surface area of bottom

-------
                           - 28 -


First-Order Decay
     For first-order decay, the quantity of constituent decayed
is a function of (1) the amount of the constituent present and
(2) the rate constant for the reaction being considered.
Mathematically, a first-order reaction is given by:

                    gf  =  -K • C                         (1.21)

where
          dc/dt  =  rate of change of c with respect to t
              K  =  rate constant (I/time)
              C  =  concentration
              t  =  time
Again, the negative sign indicates that the process is one of
decay rather than growth.  Equation (1.21) can be easily
integrated to yield:
                 Ct  =  CQ  e-K (t-t0)                    (1.22)

where
          C.  =  concentration at time t
          C   =  concentration at time t

This expression can be converted to a finite difference form
for a time interval of At
    P          P     —   AP   —  P       ("] o~   \    At   M
     J,t-l      J » ^       J      J » ^~ '
where
          AC.  =  change (decrease) in concentration in junction j
            ^     during a time interval of At
 C-  . -,; C.  .  =  concentration in junction j at time t-1 and
  J'      Js      t, respectively
           At  =  computational time step

-------
                           - 29 -
The corresponding mass equation is obtained by multiplying both
sides of equation (1.23) by volume

     V. • AC.  =  AM,  =  V. - C. t , (l-e'KAt) • At
      j     j       j      j    j j"-"'
where
          V.  =  volume of junction j
           J
         AM.  =  change in mass in junction j during a time
           J     interval of At

Example 1  -  Biochemical Oxygen Demand (BOD)
     The rate at which organic wastes are biochemically oxidized
or stabilized is directly proportional to the amount of
unstabilized material present.  The change in the amount of
unstabilized material present (BOD) is given by:

           AMBOD  _  »   r            n 0-KQAtx
           ~At	V ' CBOD, t-1 '  (1'e  e  )
where
          AMRnn  =  amount of BOD stabilized during a time
            BUU     interval of At
              V  =  volume
             At  =  time interval
       CDnn 4- i  =  concentration of BOD at time t-1
        DUU,U-I
             K.  =  rate at which organic material is stabilized
              P

The amount of BOD present at time t is given by:
            MBOD,t     MBOD, t-1  "  AMBOD
where
          M
'orm + T > MDnn .   =  mass of BOD present at time t-1
BOD,t-1    BOD.t     and t> respectively

-------
                             30 -
Example 2  -  Reaeration
     The oxygen in water is naturally replenished through the
process of reaeration (mass transfer at the surface).  This
process is defined by:
                  at  •  "Nd   u
where
          D  =  dissolved oxygen deficit, i.e. the saturation
                concentration minus the actual concentration
         K,  =  reaeration rate (I/time)

Reaeration is a process in which the dissolved oxygen deficit
is reduced (or, conversely, in which the dissolved oxygen
concentration is increased).  The change in mass of the DO deficit
due to reaeration is given by:

                  f  =  V • D.  ,  • (l-€
                  At          t-l
where
          AM   =  decrease in the mass of dissolved oxygen
                  deficit (or, the increase in DO mass during
                  a time interval of At)
            V  =  volume
            -   =  DO deficit at time t-1
Second-Order Decay
     For second-order decay, the quantity of constituent decayed
is a function of (1) the amount of constituent present and
(2) the rate constant of the reaction.  Mathematically, a second
order reaction is given by:

                   H!  =  -Kc2                            (1.24)
where
          dc/dt  =  rate of change of c with respect to t
              K  =  rate constant (volume/mass/time)
              c  =  concentration

-------
                           - 31 -
     Again, the negative sign  indicates  that  the  process  is one of
decay.   Equation (1.24)  can  be integrated  to  yield

                                                 \ j.  i      (1-25)
             t      "I'-V  + 1     "    co—  -o
                               0

     This can be converted to a finite difference form for a time
interval  of At:
     4CJ  =  c:,t-l  - c
                       j.t   =  cj,t-i  f1  -Tcr-Wr]"   <'-26>
                                      I      J >t        j
where
                AC.   =  change  (decrease)  in  concentration  in
                  J      junction j  during  the time  interval At
       C. .  -j, C. ,    =  concentration  in junction j  a times t-1
        J'      J'       and t,  respectively
                 At   =  computational  time step

     The corresponding mass equation is obtained  by  multiplying
equation (1.26) by the junction  volume:

                AM,  =  V.  • AC,                            (1.27)
                  J      J     J
where
          AM.  =  change in mass in  junction j during a  time
            ^     interval  of At
           V.  =  volume of junction j
            \J

Example 1  -  Sedimentation/Deposition
     Many substances are removed from the water system through the
process of sedimentation (i.e. settling).   Quite  often,  the  rate
at which material is removed by  this process can  be  described by
first or second order reactions.  If the process  is  a second order
one, then the  change in mass of a constituent is  given  by

-------
                           - 32 -
              AM
                   =  V
                          't-1
      1  -
          (Ct-l'ks'At)
where
            AM   =  amount of mass removed by settling during
                    the time interval At
             At  =  time step
              V  =  volume
           C.  ,  =  concentration at time t-1
             k   =  rate at which the material settles

     If sedimentation were the only process affecting the material,
then the mass present at time t would be given by
              Mt  =  Mt-l
-  AM
where
               Mt_-,, M,  =  mass of constituent present at times
                            t-1 and t, respectively
Biological / Chemical Transformations
     Materials in the aquatic ecosystem often undergo some type
of transformation(s).  In many cases, these consecutive reactions
can be described by the kinetics discussed earlier.
Example 1  -  Nitrification
     Nitrification is the process by which ammonia (NH3) is
converted to nitrite (N02) and nitrate (NC^), as shown in the
figure below.
NH3
K12

N02
K23

N03

-------
                           - 33 -


     Assuming first order kinetics, the change in mass of each
constituent during a time interval of At is given by
         AMNH3   _  .,  r           M    -k,,At x
         -TT   -  V *CNH3,t-l  ' (1 - e  12   )


         AMN02   _  AMNH3   _  v.c        . (, _  -k  At
           At         At       V LN02,t-l   U   e  ^


         AMN03      „ r          M    -k0~At x
         -TT   ~  V'CN02,t-l ' (1 - e  23   >
where
          A^NH3  =  ^'ie amount °f NH3 converted to NOp during At
          AMN02  =  tlie chan9e 1'n mass °f ^2 during At

                 =  the amount of N02 converted to N03 during At

                 =  the concentration of NH-, at time t-1
 t 1

 4. i
,t-l

       =  the concentration of N0  at time t-1
                 =  the concentration of N00 at time t-1
                                           c
           .  -,
                 =  the rate at which NH., is converted to N02

                 =  the rate at which NO^ is converted to N03
The mass of each constituent at time t is given by


         MNH3,t  =  MNH3,t-l  "  AMNH3

         MN02,t  =  MN02,t-l  +  AMNH3  '  AMN03

         MN03,t  =  MN03,t-l  +  AMN03

-------
                           - 34 -
Example 2  -  The Phosphorus  Cycle

     A simplified representation of the phosphorus  cycle  is  shown

in the figure below.
           Total
        Phosphorous
    settling
      c
Sediment
     Assume that   (1)  the uptake of phosphorous by algae,  the
                        death of algae,  and the regeneration of
                        phosphorous from detritus are all  first
                        order reactions

                   (2)  the settling of  phosphorous is a  second
                        order reaction


     The change in mass of phosphorous and  algae during At is
given by
          AM
                =  regeneration  -  uptake  -  settling


                =  Mpd-(l  -e-krAt)  -Cpjt_rv.(l  -  e'kuAt)
                               V'C
                                  p,t-l
          AM
          	c
          At
      =  growth  -  death
                                  -k
                =  Cp.t-TV'(1  -e'

-------
                           -  35 -
where      AM.  =  change in algae mass during At
           AM   =  change in phosphorous mass during At
           M  ,  =  mass of phosphorous present in the detritus
        C_ f i  =  concentration of phosphorous at time t-1
         P» t- I
             V  =  volume
        C. ._-,  =  concentration of algae at time t-1

     The mass of phosphorous and algae present at time t is  given by

          Yt  =  Yt-l  +  AMp  =  MP,t-l + AMr - AMu - AMs

          MA,t  =  MA,t-l  +  AMA  =  MA,t-l + AMu - AMd
where
          M  . _.j, M  .   =  mass of phosphorous  present at times
           P'      P'      t-1  and t,  respectively
          M. ._,, M.  .   =  mass of algae present at times t-1  and
            '       '      t,  respectively
                   AM   =  mass of phosphorous  regenerated from
                           the detritus during  At
                   AM   =  mass of phosphorous  taken up by algae
                     u     for growth  during  At
                   AM   =  mass of phosphorous  removed from the
                           system through settling during At
                   AM.  =  mass of algae decayed into detritus
                           during At

-------
                           - 36 -
Import / Export
     Another process which will affect the mass of a constituent
in a junction is the import (e.g. tributary inflow or waste
discharge) and/or export (e.g. water supply withdrawal or
industrial use) of water from the system.   The mass of constituent
added (or subtracted) at a junction during each time interval  At
is given by
where
          AM.
            J
          "in
          Cin
         'out
               AM.
                                  *  s(WCj
                                             (1.28)
=  the change in mass in junction j during At
=  flow into junction j
=  concentration of the constituent in the inflow
=  withdrawal from junction j
=  concentration of constituent in junction j
                   1.4.2  SOLUTION TECHNIQUE
     Conservation of mass is maintained within the network
junctions by combining the equations describing the following
processes:
                     - advection
                     - diffusion
                     - decay
                     - biological/chemical transformations
                     - import/export
The  solution of the quality program is a relatively straight-
forward  and sequential process involving an explicit finite
difference technique.  The algorithm is as follows.

-------
                              - 37 -
 1)  Initial junction volumes and concentrations are specified in
     order to determine the total mass of each constituent initially
     present in each junction.

 2)  Waste load data (e.g.imports and exports) is specified for
     each junction.

 3)  Hydraulic parameters are read.  Values for channel velocities
     and flows and junction heads for each time step are read from
     the "hydraulic extract tape" created by the hydraulic program.

 4)  Advection - mass is transferred between adjacent junctions in
     the direction of flow.  The amount of mass transferred is
     determined using a representative concentration (C*).

 5)  Diffusion - mass is transferred between adjacent junctions
     from the junction with the higher concentration to the junction
     with the lower concentration.  The amount of mass transferred
     is proportional to the concentration gradient.

 Steps 4 and 5 proceed from one channel to another, until every
 channel and junction has been examined.

 6)  Any non-conservative constituents are decayed.  If D.O.  is a
     constituent, reaeration occurs here.

 7)  The wastewater loads and/or withdrawals specified in Step 2
     are applied to the appropriate junctions.

 8)  Hydraulic parameters (flows, velocities, and heads) for the
     next time step are read from the "hydraulic extract tape".

 9)  A new concentration for each junction is obtained by dividing
     the total  mass of constituent by the new junction volume.

10)  Steps 4 through 10 are repeated for every time step.

-------
                           - 38 -
                         CHAPTER 2
           IMPLEMENTATION OF THE HYDRAULIC MODEL
         2.1  REGRESSION ANALYSIS PROGRAM (REGAN)
                2.1.1  PROGRAM DESCRIPTION
     When applying the hydraulic model, a tidal input
characteristic of the conditions under consideration must
be imposed at the seaward boundary of the model.  For
simulation of an historic condition, the tidal wave chosen
should be representative of the tidal conditions which
existed at that time.  Since it is expensive to simulate
a transient condition having significantly varying flows
or tidal characteristics, the tide and flow for any historic
simulations should be relatively steady.  The tidal wave at
the seaward boundary is described by
               Y  =  Aj + A2sin(ut) + A3sin(2ut) + A4sin(3u>t)
                                                                    (2.1)
                     + A5cos(ojt) + A6cos(2u)t) + A7cos(3wt)

where
               Y  =  head (elevation above or below a
                     horizontal datum)
               A. =  regression coefficients
               u>  =  tidal period  (hours)
     The coefficients A, through A, are obtained through
the regression analysis program (REGAN) which requires
tidal heights at equally spaced intervals throughout a tidal
period as input.  Normally, 30 minute intervals will suffice.
This input can be obtained from prototype tidal stage
recorders (if available) at the boundary.  In the absence  of

-------
                           - 39 -


such data, it may be necessary  to  use the predictions
presented in the Tide Tables  published by the U.S.  Coast
and Geodetic Survey.
     Figure 2.1 is a simplified flowchart depicting the
sequence of steps for REGAN.  A brief description of the
program logic is as follows:
STEP 1  -  READ AND PRINT CONTROL  AND INPUT DATA
     Alphanumeric data is read  which describes the run,
the number of observations (NDATA),  the number of coefficients
(NCOEFF), the maximum number  of iterations allowed in  the
computational loop (MAXIT), the maximum residual allowed
for termination of calculations (MAXRES) , the tidal period
(PERIOD), time shift parameter  (TSHIFT), phase angle
shift parameter (PSHIFT), the time of the i   observation
(T(D), and the value of the  ith observation (Y(D).
Tables displaying the inputs  are printed.
STEP 2  -  INITIALIZATION
     Variables and arrays used  in  the calculations of the
regression coefficients (Ad),  J = l,NCOEFF) are initialized.
STEP 3  - SET UP NORMAL EQUATIONS
     The coefficients of the  normal  equations (SXX(K,J)
and SXI(J), where J = 1,NCOEFF  and K = 1,NCOEFF) are
established.
STEP 4  - SOLVE NORMAL EQUATIONS
     The equations established  in  STEP 3 are used to determine
estimates of the regression coefficients.  If the maximum
number of iterations allowed  have  been completed, the
program precedes to STEP 5.  If the number of iterations is
less than the maximum number  allowed and the maximum
residual is greater than the  desired maximum residual  (MAXRES),

-------
                        - 40 -
r
  READ
CONTROL
  DATA
                                       C   STOP     J
                                            PRINT
                                          CURRENT
                                         SOLUTION
    SET UP
    NORMAL
   EQUATIONS
     PRINT
     NORMAL
 COEFFICIENTS
         ^
                                        SOLVE
                                       NORMAL
                                      EQUATIONS
                FIGURE 2.1   FLOWCHART OF REGAN

-------
                           - 41 -

then another iteration is performed to obtain better
estimates of the regression coefficients.  If the number of
iterations is less than the maximum number allowed and the
maximum residual is less than or equal to the specified
maximum residual, the program proceeds to STEP 5.
STEP  5 - PRINT OBSERVED AND PREDICTED DATA
     Tables are printed containing (1) the computed regression
coefficients, (2) the observed and predicted data values, and
(3) the residual values.

-------
2.1.2  REGAN DATA DECK SEQUENCE
CARD
1
2






3






VARIABLE
ALPHA(I)
NDATA
NCOEFF
MAXIT
MAXRES
PERIOD
TSHIFT
PSHIFT
T(D
• Y(l)
T(2)
Y(2)
•
T(NDATA)
Y (NDATA)
COLUMNS
1 - 80
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
1 - 8
9 - 16
17 - 24
25 - 82
*


FORMAT
20A4
110
110
110
F10.0
F10.0
F10.0
F10.0
F8.0
F8.0
F8.0
F8.0
•
F8.0
F8.0
COMMENTS
Read 2 cards







This card is repeated until
all NDATA values of T and Y
are read. Each card contains
8 values of T and Y.




-------
                           - 43 -
              2.1.3  REGAN VARIABLE DEFINITIONS
    The following section contains definitions for the major
variables in REGAN.  Variables are listed in alphabetical
order.  Variables in italics are read from the input
data deck.

-------
- 44 -
I-H
•tf^.
~^
LU
a.
I—
















o
HH
U_
LU
a





LU
z:
O
C£
CQ
ARIABLE
>



CtL

to
-o
•i—


OJ
x:

CD

"^
'£•
O
CO
CD
-a
x:
o
*^~
x:
S
program
CD
f-

-a
CD
E
5
•P
X)
0
CO
•p
E
CD
Coeffici















, — „
u_
u_
LU
0
O
Z:
l-H
II
•~3
CO
o
o
E
3
TJ
OJ
0
OJ
Q.
10
IO
•P
O.
•r-



C£















E
$.
CD
-P
QJ
^Q
'tl
o
CD
•a
o
.E
(O
+J
(0
-o
O
•r-
$-
rO
.E
a.
<



»-H











.
E
3
QJ
+J
E
•r*
desired
CO
E
O
•P
tO
i.
5
•r-
<4-
O
i.
OJ
XJ
E
Maximum



o:

-o
Q)
•o
OJ
QJ
X
QJ

CD


•P
O
E
r—
•i—
3S
•
i
O
3
•o
•r-
CO
OJ
O
QJ
3
r—
to
Maximum









CD
.E
01
i-
o
q_
QJ
JD

1—
l-H
X

CO
OJ
x:
o
to
OJ
CO
o
^3
(O
01
•i—
0
OJ
J=>
3
E
QJ
x:
CO
CO
OJ
E
3





*
-o
0)

3
>,
, 	
to
o

a.

4-)
.12
l-H
O
o
0
o
QJ
3
lo
>
10
to
LU
Qi
X
y
1 reaches 1
residua



l-H







E
0
•r—

<0
3
CT
OJ
O
•1—
i.
I ^
o
E
0
o>
•r—
-P
QJ
x:
+->
E
•r-
•P
E
OJ
of coeffic
&.
CD
3



»— 1












•
OJ
^
0
"(0
to
QJ
O
CO
•P
E
O
Q.
(O
3
Q.
•r—
«4-
O
s-
QJ
"E
CO
S_
x:
a:



















CD
•r-
OJ
x:
0
-o
o
•r—
S-
QJ
Q.
QJ
1—



-



(J
•r-
S-
•p
QJ
O
E
O
O)
•r-
S-
4^
OJ
x:
E
•r-
OJ
(O
CD
CO
Q.
QJ
x:
CO
'to
x:
o
•r-
x:
S
QJ
Variabl










o

QJ
N

0
4-*

3
cr
CD
CD
CO
3
CO
3
*
•o
CD
-P
<4-
•i—
x:
CO
o>
JD
O
•P
0.
x:
CO
E
relatio
.
s-

cc
o
•z.
I-H
n

1—4
"— •
OJ
•i—
•P

.i_>
3
O.
E
•i—
CD
x:
o
E
•r-
O
O.
to
•o
•a
OJ
£
•r-
O
QJ
O.
CO
x:
i— i
CD
O
•r-
1—



-




O)
X)
o
•P

CO
4J
3
Q.
E
•i—
OJ
x:
5-
O
<*-
OJ
(O
0
CO
OJ
•r-
QJ
x:
CO
1
1o
x:
o
x:
S
CD
Variabl





















o
QJ
IM
O
**
10
3
CT
QJ
CD
CO
(usually
shifted

4_>
M-
-


*
•1"*

-o
3
O.
E
•r—

0)
x:
•P
o
-p
E
•r-
O
O.
tO
(O
-o
-o
CD
£1
•r-
O
0)
O.
CO
5
0)
•P
t-
0
E
O
Elevati






















^
E
-P
to
•o
"flj
-o
0
•p
•o
CD
O
E
£
£
t

o



g

|

1





NCOEFF

s
1

O
0
l-H
on
LU
Q.

PSHIFT



EH

TSHIFT



H
V —




-------
                           - 45 -
            2.2  THE HYDRAULIC PROGRAM (DYNHYD)
                 2.2.1  THE "MAIN" PROGRAM
     Figure 2.2 is a simplified flowchart depicting the
sequence of steps for the Main program of DYNHYD.  A brief
description of the program logic is as follows:
STEP 1  -  READ CONTROL DATA
     Alphanumeric data is read which identifies the network
size  (NC and NJ), the length of the run (NCYC), and output
control parameters (see Section 2.2.6).
STEP 2  - READ JUNCTION DATA
     A separate card is read for each junction.  Each card
contains the junction number, initial head at that junction,
surface area of the junction, the inflow (or outflow) to the
junction, and the numbers of the channels entering the
junction.  After all junction cards are read, a table
summarizing the data is printed.
STEP 3  -  READ CHANNEL DATA
     A separate card is read for each channel.  Each card
contains the channel number, physical characteristics (length,
width, cross-sectional area, hydraulic radius, and Manning's n),
initial velocity, and the numbers of the two junctions at
the ends of the channel.  After all channel cards are read, a
table summarizing the data is printed.
STEP 4  -  INPUT TIDAL CONDITIONS AT SEAWARD BOUNDARY
     The period of the tide (hours) and the coefficients
obtained by REGAN (see Section 2.1) to define the tidal
wave at the seaward boundary are read and printed.  The version

-------
                      -  46  -
                                              YES
FIGURE 2.2  FLOWCHART OF THE MAIN PROGRAM  IN DYNHYD

-------
                           - 47 -
of the hydraulic model contained herein allows only one
seaward boundary.  However, the program can easily be altered
to accomodate several seaward boundary inputs.
STEP 5  -  CHECK COMPATIBILITY OF CHANNELS AND JUNCTIONS
     A check is made on the compatability of the junction
and channel numbering systems.  If a junction is listed as
being connected to a given channel, then that channel
should also be listed as being connected to the junction.
Execution will terminate if any discrepencies are found.
     The control parameters and the channel and junction data
are stored on Unit 10 (temporary magnetic tape or disk).
STEP 6  -  INITIALIZATION
     Initializes various computation parameters, converts
starting time and tidal period from hours to seconds, and
computes friction coefficient (AK(N)) for each channel.
Checks the junction numbers at each end of a channel and
insures that the junction number associated with NJUNC(N,1)
is smaller than the junction jumber associated with NJWC(N32).
This is necessary for the sign convention used to specify
the direction of flow in a channel (see Section 2.2.4).
STEP 7  -  MAIN COMPUTATIONAL LOOP
     If the run is a continuation of a previous run, it
is desirable to record the initial conditions (junction
heads and channel velocities and flows) on Unit 10.  This
will be done if variable IWRTE = 0.  Normally, however,
these parameters need not be stored.
     The program follows the algorithm described in section
Section 1.3.2.  Channel  velocities,flows, and cross-sectional
areas and junction heads are computed for one-half of a time
step.  These half-step values are then used to compute the
full-step values.

-------
                           - 48 -
     The channel  velocities  are then  checked  for reasonableness.
If a channel velocity exceeds 20 fps, computational
instability is indicated and execution is  terminated.
     The current cycle number (ICJC), junction heads  (Y(J))t
and channel velocities (V(N)) and flows (Q(N)) are stored
on Unit 10 if the current cycle is greater than or equal
to a specified value (ITAPE).
     A check is made to determine whether the predictions
for the current cycle are to be printed,  If so, then the
next print cycle is set and printout is obtained for the
specified junctions.  Printout will always be obtained
for the last cycle of the run.
     A check is made to determine whether or not Subroutine
RESTRT should be called (see Section 2.2.3 for a description
of RESTRT).  If the current cycle is a specified restart
cycle (PUNCYC),  then Subroutine RESTRT is called.
STEP 8  -  EXIT MAIN LOOP AND CHECK FOR HYDEX
     Following the completion of the specified number of
computation cycles, a check is made to determine whether or
not Subroutine HYDEX is to be called  (see Section 2.2.2 for
a description of HYDEX).  If HYDEXT =  1, Subroutine HYDEX
is called.
                  2.2.2  SUBROUTINE HYDEX

     As discussed earlier, the quality program  time step
is usually much longer  than  a hydraulic time  step.  The time
interval  used by the quality program  must be  a whole multiple
(NODYN) of  the hydraulic time step and evenly divisible
into the  tidal period.   For  example,  given a  tidal period of
12.5 hours,  a  hydraulic time step  of 1.5  minutes,  and a  quality
time step of 30 minutes, NODYN would be specified as  20.
HYDEX  is  a subroutine which  summarizes (averages)  the output
stored on Unit 10  for NODYN  hydraulic cycles  and permanently

-------
                            -  49  -
stores these values on Unit 4 (magnetic tape or disk)
for use as input to the quality model .
In addition to summarizing the inter - tidal values of channel
velocities and flows and junction heads, HYDEX also determines
(1) the minimum and maximum flows, velocities, and cross-sectional
areas of channels, (2) minimum and maximum heads of junctions,
and the cycles at which they occur, (3) net flow in a channel,
(4) average cross-sectional area of a channel, (5) average
head of a junction, and (6) range of heads for a junction
over an entire tidal cycle.
     Figure 2.3 is a simplified flow chart depicting the
sequence of steps for Subroutine HYDEX.  A brief description
of the program logic is as follows:
STEP 1  -  READ CONTROL DATA
     Reads alphanumeric data identifying the run (ALPHA(I)3l = 41,80^
and the number of hydraulic time steps per quality time step
(NODYN).
STEP 2  -  READ AND ALIGN INPUT TAPE
     The hydraulic summary provided by HYDEX is for a complete
tidal cycle.  Therefore, it is necessary to determine the
hydraulic cycles at which the last full tidal cycle
begins (NSTART) and ends (NSTOP).  This is necessary
because, in some cases, the data stored on Unit 10 may exceed
a full tidal cycle.  Because the hydraulic solution converges
to a dynamic steady state solution, the predictions for the
last full tidal cycle are used because they are the most
representative of the steady state condition.  Unit 10 is
rewound.  The system data stored by the MAIN program is
read.  Unit 10 is then aligned over cycle NSTART and the
summary procedure begins.

-------
                   -  50 -
  COMPLETE
  HYDRAULIC

EXTRACT TAPE
h                                        STORE
                                      :YCLEiHEAOS

                                      ON UNIT 4
1

COMPUTE
INTER-TIDAL
PARAMETERS
   HAVE
  NOOYN
VALUES BEEN
   READ
                                    /STORE  A
                                    [AVERAGE v&q [  I
                                    \  ON UNIT 4 I  I
 FIGURE  2.3  FLOWCHART OF  SUBROUTINE  HYDEX

-------
                            -  51  -
STEP 3  -  INITIALIZE SUMMARY VARIABLES
     HYDEX computes two types of summary  variables.  The
first group consists of parameters summarized over an entire
tidal cycle.  These parameters are:  net flow in a channel
(QNET(N)); minimum and maximum velocity (VMIN(N)3 VWX(N))
and flow (QMIN(N)3 QMAX(N)) in a channel; minimum, maximum,
and average cross-sectional areas of channels (AKMIN(N)3
AMAX(N), AMVG(N)), and minimum, maximum, and average junction
heads (YMIN(J), YMAX(J)> YAVG(J)).  The second group
consists of parameters summarized for discrete intervals
within the tidal cycle (i.e. inter-tidal cycle variables).
The parameters are the average flow (QEXT(N)) and velocity
(VEXT(N)) in a channel.  These are the values which are
obtained by averaging the flows and velocities for NODYN
hydraulic time steps and are then stored permanently on the
"hydraulic extract tape" (Unit 4) for use by the quality
program.
     The tidal cycle summary variables are initialized only
once.  However, the inter-tidal cycle variables must be
initialized before each inter-tidal summary  (i.e. after NQDYN
cycles of data are read and summarized, the values of the
inter-tidal summary variables must be re-set).  At the start
of every inter-tidal summary, the current hydraulic cycle
number and the junction heads are stored on Unit 4.
STEP 4  -  COMPUTE SUMMARY PARAMETERS
     Inter-tidal cycle parameters:  The junction heads,
channel flows, and channel velocities for NODYN hydraulic
cycles are read from the record on Unit 10, created by the
MAIN program.  The heads, flows, and velocities are accumulated,
averaged, and  stored on Unit 4 (the "hydraulic extract tape").
This process is depicted in Figure  2.4.

-------
-  52  -


II
Q
O
Z


/)
D
B
U
5

= to
3 OJ
-5 •!-
O T"
0 o
-03
I) r— C
D O) i-
= > «*•
3
QJ C
U C C
-EC
j ta a
>» -C -C
J U C






0
h-
t— i
z










1
e
3

J
3
;
^


M

*
	
	


	
^_ •» .^ ^
. 	
	 	
	


	
	
- — — — —
	

	


J


\






V








^/



I—
i— i

^.
P





^
P







	 •

:



















•





CO
o
M-
£
-p
•r-
U 0
O t
i — n
cu a
> .£
r- £
O) C
C -1-
IO t
-£Z £
o :

en o<
fO
S- i
«, j
T3 {
£
a
r-
^~ ^
C




^

                                                            a.
                                                            
-------
                           - 53 -
     To compute the average channel flows (QEXT(N)) and the
average channel velocities (VEXT(N)) for the inter-tidal
summary period (NODYN cycles), HYDEX does not simply
accumulate NODYN values and divide their sum by NODYN.
Instead, a more refined method of averaging is used.
Data from the last cycle of the previous summary period and
data from the next NODYN cycles are used, i.e. NODYN + 1
cycles of data are accumulated.  However, a weight of
one-half is assigned to the data from the last cycle of
the previous summary period and to the last cycle of the
current summary period.  The accumulated sum is then divided
by NODYN.  This technique is identical to using the
trapezoidal rule to determine the area under a curve over a
certain interval (NODYN) and then dividing the area by the
interval length (NODYN) to obtain the average height along
that interval.  This technique is shown in Figure 2.5.
     Tidal cycle parameters:  The net flow in a channel over
a tidal cycle is computed by averaging the accumulated
channel flows.  The averaging technique is similar to the
method used in STEP 4.  The channel cross-sectional area
for each cycle are computed and then accumulated over the
entire tidal cycle, and averaged.  Junction heads are
accumulated over the entire tidal cycle and averaged.
Checks are made to determine the minimum and maximum values
of the following parameters over the entire tidal cycle:
channel velocities, channel cross-sectional areas, and
junction heads.
STEP 5  -  COMPLETE WRITING HYDRAULIC EXTRACT TAPE
     After the inter-tidal cycle variables for an entire
tidal cycle have been computed  and stored on Unit 4, various
channel and junction parameters are stored at the end of the
hydraulic extract tape.

-------
                     -  54 -
last cycle of
 period i-1     T

   *  Y-,
                               last cycle of
                                 period i
                                                last cycle of
                                                 period i+1
                                        ;Y7
                                                   ?  Y,
                                               8    :  9
             period i
                             period i+1
                                                       time
                        NODYN  = 4
Average during
   period i
                              *  Y2  +  Y3 +  Y4  +
      Average  during
        period i+1
      Average during
         period  N
=  a(Y  '
                       a
V

                                         - NODYN
                     a =  NSTART + NODYN-(N-l)

                     3 =  a + NODYN

               NSTART  =  cycle  at which  summaries  begin
         FIGURE 2.5  HYDEX AVERAGING TECHNIQUE

-------
                            -  55  -
STEP 6  -  OUTPUT TIDAL CYCLE SUMMARY TABLES
     Tables containing both the tidal and inter-tidal
summary variables are printed for the model channels and
junctions.
STEP 7  -  CHECK HYDRAULIC EXTRACT TAPE
     Unit 4, the hydraulic extract tape, is rewound and
read completely.  The hydraulic cycles which were stored
on Unit 4 are printed along with the heads at several junctions
and the "extract" flows (i.e. the flows computed by HYDEX)
in several channels.  This provides a check on the data
actually stored on Unit 4.
STEP 8  -  RETURN TO THE MAIN PROGRAM
                  2.2.3  SUBROUTINE RESTRT
     Subroutine RESTRT has two functions.  First, it stores
pertinent restart parameters on Unit 4 for use as a restart
device in the event of premature termination of execution.
Second, it outputs a punched card deck (after the last
computational cycle is completed) containing the channel
and junction parameters in a format which can be used as
an input deck.  This type of output is desirable if the
run is to be extended.  Figure 2.6 is a simplified flowchart
describing the  sequence of steps for RESTRT.
     If the current hydraulic cycle is the last computational
cycle, the final channel and junction parameters are punched
onto a card deck.  A printed summary of this data is also
given.
     Prior to the final computational cycle,    the current
channel and junction parameters are stored on Unit 4.  The
next restart cycle is specified by incrementing the current
cycle by INTPUS (i.e. PUNCYC = PUNCYC + INTPUN). Unit 4
is rewound so that if computations proceed to the next
restart cycle, the data already stored will be updated.

-------
               -  56  -
         INCREMENT

        PUNCH CYCLE
        STORE DATA]
            ON
          UNIT 3
          PRINT
       RESTART DATA
RETURN
                    J
                              YES

                              PUNCH
                         RESTART DECK
FIGURE 2.6  FLOWCHART OF SUBROUTINE RESTRT

-------
                           - 57 -
     Note that Unit 4 serves a dual  purpose in the hydraulic
program.  If premature termination of execution occurred,
subroutine HYDEX (which also uses Unit 4) would not be called
and Unit 4 would contain the data needed to restart the run
from the last restart cycle.  If execution is not terminated
prematurely, then the hydraulic conditions existing at the end
of the run would be punched onto a card deck before HYDEX
was called.  The rewind command in HYDEX will ready Unit 4
for storing the hydraulic parameters used by the quality
program.
               2.2.4  DYNHYD SIGN CONVENTIONS
     There are two different sign conventions used in the
hydraulic model.  The convention used in reference to junctions
describes flow into or out of a junction.  Specifically,
negative values are assigned to any flow entering a junction,
whila positive values indicate flow leaving a junction (see
Figure 2.7).  This convention applies regardless of the
source of the flow.  Inflow from a waste discharge and from
and adjacent junction are treated in the same manner.
     For channels, signs indicate the direction of flow and
velocity.  When the flow is from the end of the channel
having the lower of the two junction numbers (NJUNC(NtD)
toward the end with the higher (NJUNC(Nj2)), it is assigned
a positive value.  Flow is considered negative when travelling
from the end of the channel with the higher of the two
junction numbers toward the end with the lower (see Figure 2.7).
     The channel flows are outputted using the junction sign
convention  so that the user can see if water flows into or
out of a particular junction.  The channel flow arid velocity
signs are converted to junction sign convention strictly
for convenience in interpreting the output.  To interpret

-------
        - 58 -
FIGURE 2.7  DYNHYD SIGN CONVENTIONS

-------
                            -  59  -
the direction of channel flow, it is necessary to know
the configuration of channels and junctions, i.e. which
junction is at each end of a channel.  This information can
be found in the Channel Data table at the beginning of the
DYNHYD output.
                  2.2.5  INPUT REQUIREMENTS
     The input requirements for the hydraulic program can
vary tremendously, depending on the uniqueness of the conditions
to be simulated.  In any case, the data requirements for the
initial application of the model  to a system are considerable.
PHYSICAL PARAMETERS OF THE PROTOTYPE
     As discussed earlier, the channels and junctions of the
model network must be described by certain physical parameters.
     Channel Parameters:  Length, width, depth, surface area,
                          roughness, cross-sectional area
     Junction Parameters:  head,  volume
     For all runs subsequent to the initial run, the input
data requirements are greatly reduced.  Many of the physical
parameters such as channel lengths and widths and the surface
area of each junction remain constant during execution
and, therefore, do not vary between runs.  Similarly the
network layout and numbering  systems generally remain constant.
Only if physical changes in the prototype (real or proposed)
are to be modeled is it necessary to change the model
network.
MANNING'S ROUGHNESS COEFFICIENT
     As mentioned earlier, the roughness coefficient
(Manning's n) acts as a "tuning knob" for the hydraulic
model.  Unfortunately, there is no exact method for defining
the value of n, and one must rely on literature values,
sound engineering judgement, and  personal experience to
estimate its value.

-------
                            - 60 -
     The value of n is highly variable and depends on the
following factors:  surface roughness, vegetation, channel
irregularities in cross-section or shape, obstructions, silting
and scouring, stage, and discharge [10].   Before attempting
to estimate n, Chow [10] recommends that one attempts to
(1) understand the factors which affect the value of n so as
to narrow the range of guesswork, (2) consult the literature
for representative values, and (3) examine and become
acquainted with channels whose roughness coefficients are known.
     There are some methods which have been suggested  for
the computation of n.  Cowan [11] has proposed an empirical
procedure which includes several of the factors that influence n.
Two other methods, based on the theoretical velocity distribution
in a rough channel, have also been proposed.  The first
method uses the observed vertical velocity distribution and is
described by Boyer [12] and Langbien [13].  The second uses a
"roughness function" to determine n and is described by Einstein
and Barbarossa [14].  Davidson, et.al. [15] outline a numerical
technique which determines the best - distributed values of n
based on observed tidal heights.
     When calibrating the hydraulic model, changing the
value of n in one channel will affect the upstream channels in
one way and the downstream channels in another.  Increasing n
causes more energy to be dissipated in that channel.  As a result,
the height of the tidal wave will decrease and the time of travel
through the channel will increase.  Lowering n decreases the
resistance to flow, i.e. less energy is dissipated.  This results
in a higher tidal wave and a shorter time of travel.   In
general, the value of n will increase as one moves up  the
estuary since channels become more constricted.

-------
                           - 61 -
INITIAL CONDITIONS
     The most demanding of these inputs are the channel
cross-sectional areas and the junction heads.  The specified
junction heads establish the water surface elevation throughout
the network and correspond to those areas.  The heads throughout
the system are referenced to a common, horizontal  datum, such
as mean sea level.  Channel depths can usually be  obtained
with sufficient accuracy from the soundings printed on
navigation charts published by the Coast and Geodetic
Survey.  Unfortunately, however, these soundings are normally
representative of a mean low water condition at the point of
the sounding and are not referenced to a common datum.  It
is therefore necessary to establish the relationship selected
for the model. Such relationships may be available for
certain points in the system, such as at tidal stage recorders
or at other points where tidal predictions are made.  River
bed profiles may also be available from which such relationships
could be determined.  Once the relationships between the junction
heads and channel cross-sectional areas have been  properly
established for a given (System, they should never  have to be
reestablished because the model program maintains  the proper
relationship at all times during execution.  It is usually
most expeditious to specify a constant value for each of the
junction heads (assumes a horizontal water surface) in preparing
the data for the first time and then adjust the channel depths
(and cross-sectional areas) accordingly.  While it might be
desirable, in order to save computation time, to sepcify the
initial heads at each (junction in such a manner that the water
surface profile is more representative of one which actually
occurs in the prototype, such an effort is probably not
warranted.  Unless extensive tide data is available to establish

-------
                            -  62  -
the water surface elevation at many points in the system
for a given instant in time, a great deal  of interpolation
between points will be required.  It is doubtful  whether the
execution time saved by such a procedure warrants the additional
effort involved.
     A similar argument holds for the specification of the
initial velocity in each channel.  Normally, data in sufficient
quantity will not be available to establish a detailed
velocity pattern for the entire system at a given instant
in time.  Therefore, a constant initial velocity (such as
zero) is assumed throughout the system.  Thus, for the initial
run on a new system, the total mass of water might initially
be assumed to be at rest with a horizontal water surface.
As the solution progresses it will converge to the appropriate
dynamic steady state condition wherein the head at each junction
and the velocity and flow in each channel  are repeated with a
frequency equal to the period of the specified tide.  Normally,
four complete tidal cycles will be sufficient to reach a
steady state condition.  If relatively accurate initial
conditions are specified, fewer tidal cycles are needed.
TIDAL CONDITIONS
     The tidal conditions at the seaward boundary are
described by a set of regression coefficients.  These
coefficients are derived for any tidal condition by program
REGAN (see Section 2.1).
ACCRETIONS / DEPLETIONS
     The accretions or depletions at each junction in the
system must by specified for each run.  Although not
programmed for the version of the hydraulic model contained in
this report, it would be relatively simple to input accretions/
depletions which vary with time.

-------
                           - 63 -
CONTROL DATA
     Control data is usually unique for each run and may
need to be respecified.
                    2.2.6  OUTPUT OPTIONS
     The hydraulic program can provide three types of output:
printed output, output stored on magnetic tape or disk, or
punched output in the form of a restart deck.
Printed output:  Printed output can occur in the MAIN
program, Subroutine HYDEX, and Subroutine RESTRT.
     In the MAIN program, printed output is controlled by
four parameters:  IPEINT3 INTRVL, NOPRT,  and JPRT(I),
where I * 1,NOPRT.  Printout begins at cycle IPRINT and
will occur every INTRVL cycles thereafter for NOPRT
specified junctions.  JPRT(I) identifies the numbers of the
junctions for which output is printed.  The output for a
junction consists of the head at that junction and the flow
and velocity for each channel entering that junction.
     In Subroutine HYDEX, tables summarizing the data used
to create the "hydraulic extract tape" (i.e. tables which
summarize the last full tidal cycle of data) are printed.
The parameters printed are the (1) net flow in each channel,
(2) minimum and maximum junction heads and the cycle of
their occurence,  (3) the average junction head,  (4) the range
of junction heads, (5) minimum, maximum, and average
channel velocities, (6) minimum, maximum, and average channel
flows, and  (7) minimum, maximum, and average channel cross-
sectional areas.
     The printout from HYDEX can be very useful when the model
is being applied to a new prototype.  The net flow in a channel
is helpful  in determining whether or not a steady-state
solution has been reached.  When the solution has converged  to
steady-state, the net flow in a channel should be equal to

-------
                           - 64 -
the algebraic sum of the flows specified above that channel.
The summaries of junction heads and channel  velocities are
useful when calibrating the hydraulic model  because they
can be compared to observed tidal elevations and velocities
in the prototype.
     In Subroutine RESTRT, tables indicating the restart
data are printed.  These tables contain the junction heads,
surface areas, inflows and the channel lengths, widths,
depths, cross-sectional areas, roughness coefficient, and
velocity existing at the restart cycle (PUNCYC).
Magnetic Tape/Disk Output:  Output on Tape or Disk can be
obtained in either Subroutine RESTRT or HYDEX.
     If execution should terminate prematurely, Subroutine
RESTRT will retain a record of the system conditions at the
last restart cycle (PUNCYC) on Unit 4.
     If Subroutine HYDEX is called, a permanent record is
made on Unit 4 of the hydraulic parameters needed as input
for the quality program  (heads, flows, and velocities).
Punched Output:  Punched output occurs in Subroutine RESTRT
     When Subroutine RESTRT is called, the channel and
junction parameters for  the final hydraulic cycle can be
punched onto a card deck.  The format of the deck is such
that it can be used as input for a different hydraulic run.
        2.2.7  POTENTIAL IMPLEMENTATION DIFFICULTIES
PREMATURE TERMINATION
     Before the main computation loop is entered, the hydraulic
program checks the compatability of the channel and junction
numbering systems.  If any discrepancies are found, the
program will  terminate.
UNSTABLE SOLUTION
      Execution of the  hydraulic  program is  terminated  if  the
velocity in any  channel  exceeds  20 fps, indicating an

-------
                           - 65 -
unstable (diverging) solution.  This problem generally arises
most frequently during the initial applications of the model
to a new system.  It can arise, however, even after many successful
previous applications, particularly if the hydraulic conditions
are significantly different from any previously considered.
     An unstable solution usually results from one or more
of the following conditions:  (1) one or more inputs have
been improperly specified (keypunching error, etc.),
(2) the stability criterion is violated for a certain channel
(indicating the channel length should be increased or the
time step decreased), (3) a junction surface area is not
properly represented (occurs frequently at dead end channels),
or (4) a junction volume is not properly represented (occurs
either at dead end channels or in areas such as tidal flats
where the depth at low tide may be zero).  Under such
conditions, unrealistic hydraulic gradients can be created
which result in excessive velocities.
     The instability can usually be eliminated at dead end
channels by increasing the surface area of the end junction
somewhat above that indicated on published maps or charts.
This tends to eliminate wave reflection caused by the abrupt
channel ending.  There may be little, if any, wave reflections
in the prototype since a real channel rarely ends as abruptly
as represented by the model network.
     Similarly, in areas such as tidal  flats, where the
depth at low tide may reach zero, the instability can
normally be corrected by increasing the depths of the peripheral
channels slightly.  As programmed, the model does not
adjust the water surface area of a junction as the water
rises and falls.  There is also no provision for allowing a
junction to "run dry" (reach zero depth).  However, the
model network parameters in these areas may by specified  to

-------
                            -  66  -
compensate for these shortcomings.   The channel  depths and
the surface area assigned to the junctions are representative
of the mean tide level such that the junction volumes
are slightly over-represented at low tide and under-represented
at high tide.
STORAGE
     For systems represented by a network with a large
number of junctions and channels, the length of the record
to be stored on Unit 10 may exceed the maximum limit for
a magnetic tape, i.e., the tape may be completely filled.
For such cases it may be necessary to reprogram the hydraulic
program and Subroutine HYDEX to accommodate two tapes rather
than one.  The reprogramming effort is largely tied to the
specification of the starting and stopping points on each
tape.'

-------
2.2.8.  DYNHYD DATA DECK SEQUENCE
CARD
1
2

3




4


5


6
7

8

VARIABLE
ALPHA(J)
HEADER

NJ
NC
NCYC
DELT
TZERO
IPRINT
INTRVL
NOPRT
JPRT(l)
JPRT(2)
•
ITAPE
HYDEXT
PUNCYC
INTPUN
HEADER

COLUMNS
1-80
1-80

1-5
6-10
11-15
16-20
21-25
1-5
6-10
11-15
1-5
6-10
•
•
•
1-5
6-10
1-5
6-10
1-80

FORMAT
20A4
20A4

15
15
15
F5.0
F5.0
15
15
15
15
15
•
•
15
15
15
15
20A4

COMMENTS
2 cards - Identifies the run.
Indicates that Control Data
follows.







«
Repeat until NOPRT values
are read (read NOPRT/16 of
these).



Indicates that Junction Date
follows.
            - 67 -

-------
- 68 -
CARD
9






10

n








12

13
VARIABLE
JJ
Y(J)
AREAS (J)
QIN(J)
NCHAN(J.l)
NCHAN(J,2)
*
NCHAN(J,5)
HEADER

NN
CLEN(N)
B(N)
AREA(N)
R(N)
(N(N)
V(N)
NJUNC(N,1)
NJUNC(N,2)
HEADER

NK
COLUMNS
1-5
6-15
16-25
26-35
36-40
41-45
•
•
56-60
1-80

1-5
6-13
14-21
22-30
31-37
38=45
46-53
54-58
59-63
1-80

1-5
FORMAT
15
F10.0
F10.0
F10.0
15
15
*
15
20A4

15
F8.0
F8.0
F9.0
F7.0
F8.0
,F8.0
15
15
20A4

15
COMMENTS
Read NJ of these cards.






Indicates that Channel Data
follows.









Indicates that Seaward Boundary
data follows.
























-------
- 69 -
CARD
14



15*

16*
17*




VARIABLE
PERIOD
Al(l)
Al(2)
•
•
Al(NK)
HEADER

ALPHA(I)
NODYN




COLUMNS
1-10
11-20
21-30
•
•
• • •
1-80

1-80
1-5




FORMAT
no
F10.0
F10.0
•
•
F10.0
20A4

20A4
15




COMMENTS




Indicates that HYDEX Data
follows.
2 cards - Identifies run.

* Cards 15, 16, and 17 are
read only if Subroutine
HYDEX is called (i.e.
HYDEXT =1).

-------
                           -  70  -
               2.2.9  DYNHYD VARIABLE DEFINITIONS
     The following pages contain definitions  for the major
variables in DYNHYD.  Variables are listed in alphabetical
order.  Variables in italics are read from the input data
deck.

-------
- 71 -

CO
i—
fr__j
n
LU
O.
1-
























_r
O
I
t t
z

Lu
LU





























LU
| —
rs
0£
C2
LU
	 1
£0

t — (
or






a:
-o
cu
E

ro
-P
.a
o

>^
^.
ro
-a
E
3
o


-a

ro
2
CO
CU
CO
.p
ro

s- -,
"O * — •-
CO ir_

v •
CO Z
•o 
-P 0
cu a.

<3 E
•r- O
4- S-
4- 4-
CU
O
0

i — i
S

-™x
H
T~H






C£


























,
•^r

P_
cu
E
E
CO
-E
O

S-
o
4-

•P
E
CU

O
•r—
4-
4-

E
•i—
S-
Q.

^_
CU

({_
•f^
4-)
c
0)
•o


CJ
T
QJ
£
3
^~
CO
^
O.
5
X
Z LU
i— i Q
S >•
s :r
3
TqH
to
^
^


CM

£
OL



•
CU
r—
a
>^
o

r—
fO
"TD
•^
4-)

P__
r—
3
*+-

t.
a>
>
o
2-

r~™
cu
E
E
CO
C"
O

4-
O

fO
0)
S-

CO ro

0 CO
E
t- 0
0-r-

cO O
CU E
i- 3
(O -r-j

f— [ *
CO CO
E
0-0
•r- CU
oiJI
OJ.r-
co o
CU
CO Q.
CO CO
2
o
x£
ZLUH-
i— i Q CO
rf >. UJ
S re D;
§

^£
fe



CM CM
^ * TJ^*
4- 4-
rV (V






»
O-
OJ
4_>
LO

OJ
E
•r—
•P

M-
r—
ft)
r.pr

CO

cn
E
•r-
s-
^3
•o

ZT

r™~
cu
c:
c
CO
•"3 J=
O
E
0 4-
•i- O
4_>
CJ CO
E QJ
3 $_
•r-5 CO

4- r-
O CO
C
CO O
CU T-
S- -P
CO O
a>
CU CO
o
cO CO
4- to
S- 0
3 S-
CO O
H-
x cc:
Z LU h- Z
ft Q CO i— i
g£Sg
^ s
to ' —
«. ^^
Cq LU
^


CM
-P
4-
a:
*
cu
I1 "•
CJ
>^
u

r— *
ro
•a
•1—
•p

1 —
1 —
3
4-

S-
0)
>•
o

IE^

"cu
E
E
CO
^*
O

4-
O

CO
CU
S-
(O

^— •
(O
E
O
•P-
4^
O
cu
CO

LO
CO
o
CJ

E
3
E
•r—
X
CO

X
LU
Q
DC
g
X
g^
cc
"*
V

CM
-P -P
4- 4-
« «

CU
^~
o
>Nj
u

^~
fO
•o
•l—
-p

p~~
r—
3
4-

S-
cu
>
o

f^_

'cu
E
E
CO
^.
CJ

4-
O

CO
(LI
s-
CO

r—
CO
E
O
•^" •
-P Z.
CJ
cu •—
CO CU
E
CO E
CO tO
O -C
J- 0
o
4-
E 0
3
E ^
•r- -P
E -a
•i— -r-
s: 3
X X D£
LU Z LU 1—
Q i— i Q CO
I ^^^
Z
Z
1— 1 —x
cy \_

-------
- 72 -

CO
h-

*£Z
=
LU
t—

























^^,
— v
~*
. ^_
^
^^
~~
\ 1
LU































LLl
i— i
1—
O
o:
CD
00
1 1 1
ARIABLI
>



4_>
<+—

cv fly





















•
^y*

^_
cu
E
E
rc
_E
O

s-
o


1 *
E
CU

u

If-.
lf-
cu
o
z o

i — CO
CU CO
E CU
E E
0 -E
-C O)
O 3
O
<4- S-
O
O>
.E E
4J ••-
O) E
E E
CU (O
-" ^
1— h-
Z LU H- Z LU r—
h— i CD CO H-I CD C/)
- LU e£ >- LU
s: 0:0: 2: 3:0:


$ -s
fe 5
ftq v_
1-3 fe;
G 5



CO
0
cu
CO
-


































•
E
O
•r—

3

O
I/)

E
•^-

-a
cu

^

i —
CO

i~
CU

E
•r-

CU

>r_
1—
X
Z LU
rf >-
S n:


1



CO
o
cu
l/l
o:








•
^-N.
;g^
>—
o
o


*

h-
_J
LU
Q

II

cr
\—

LU
Q


E
ro

0)
O
1-
CL

^^
1 *
•r—

ro
3
cr

cu
JC
4_)

S-
o
tt-

Q.
CU
-P
CO

cu

• ^
h-
X
LU
DC


o-
_J
LU
Q



CO
0
CU
CO
a:





























^— ^
CM

1—
_J
LU
Q

CO

ro
"^
cx
LU



•
Q.
CU

CO

01
E

I ^

if_
^_
ro


CU
E
O

g


CM
1—
_J
LU
Q







DC


















•
P-~
CU
E
E
ra
.c
0

(O

E


^—^,
X


>^
4_>
•r"
O
0

"ai


CO
CU
E

t^_
CU
Q
Z
g


X
Q
O




CO
(f—
O
a:

,
i '
3
O
•M
E
•p—
S-
Q.

O
•r—
^M
3
rO
i.
-D

C"

S-
o
tf-

^J
cu

3

E
O

_(_>
C
cu

c.
a
o

c

.,—
I/)

CO
^
O
l~™
f~~
o
Lu


•
CU
OJ
S.
ro

O
CO
•i—
O
z
2:


o
LU

CM '
O
0)

••s^
tf-
-




















,
x— ^
CM
O
CU

•s^^
_!_>
tj

cn
(VJ
r^"
r~~
CM"
CO


>>
i *
•r"
>
rO
S-
0.

0


cu
3
-o

E
O
•r-
^_J
ra
i-
cu

"al
o
o
"*•

g










a:

•
^x
O

3
Q.
E
•i —

CU

4O

4—
0

E
O
•i —
•4—)
0
cu
CO
o
3
CO

rd

s-
o
t^_

S-
cu
•r^
q_
*r~
4— >
d
OJ
-o
If—

o
•1 —
S-
OJ
E
3
E
ro
C"
a.
^—
"^
X
Z LU
$ >~


HEADER







i — i
CO

o

o 5^

4_)
-o cu
CU E
^—
i— a>
(O N
0 ••-
s-
t/l ro
•r- E
E
X 3
LU CO
Q
^_ *^
3= E
ra
cu
E CU
•i— O-
-!-> ro
3 •»->
O
S- 4->
JD O
3 ro
CO S-
-(->
« X
i— CU

II 0

1— r^
X 3
LU (O
Q S-
>- -a
T" >^
-C*
«t-
1-1 >>

ro
* E
E E
O 3
•i- CO
-»->
Q. ra
O
cu
r~~ +*)
O ro
S- CU
[ ^ t
E 0
O
O

i


HYDEXT

























•
^J
cu
^~
^~
(O
0

+->
o
E

CO
• r—

X
LU
Q
>-
"T"

CU
E
•^
-M
3
O
i_
Q
3
CO

A
c^

II

h-
X
LU
C^
>~
]T^

(l*~
1— t














1— 1

E
ro
i.
cr,
O
S-
Q-

>^
•{«>
•i —
t-~
rO
3
CT

O)
-E
4_>

i^—
O

E
O
•r—
4_>
3
O
a>
X
d)

0)
E
•r—
S-
3
"O

^ — ^
E
O
• r—
^— >
ro
S-
OJ
4— >
•r-
^»-*

S-
cu
-Q
E
3
E

a>
r—
O
>^
o
Z H-
t—t L/*l
* * V /
<: LU
s: a:


0
C_)


-------
- 73 -
z
:D
UJ
O-

























5*"
^_
o
,
; .

*~
it
UJ































UJ
t— 1'
h-
O
cc
00
UJ
_J
CO


re i/i
-p cu
re i—
•D o
>,

re z.
•P ZD
to D_
CU 1 —
cc z.
I-H

• • JZ
«=r o> o
E re
-P •!- CU
•r- 4->
E S- -P
3 re re
•P
E (/> "O
O CU E
i- re
-a
cu s- •>
s- o o
o q- >-
•p o
(/) i — "Z.
re ZD
s- > n_
cu s-
-O CU CU
E -P r—
3 E O
E T- >>

CU .E
i— O -P
o E re
>> 3
C_> Q-
x a:
UJ -Z.\-
CO t-i CO
>- 
a:
t—

i— i

JZ
o
re
cu

T3
E
re

A
OJ

o
>*
{_)

CO
•r-
jC"
•P

•p
re

j/)
E
•i—
C7)
CU
JO

•P •
3 S-
CL CU
•P -P
3 «4-
o re
cu
-a s-
cu cu
-P -E
E -P
•1 —
s-
CL.

•z.
1— 1
1?

IPRINT

.
cu
o
0

t/>
•1—
-g

•4^
re

o>
E
•r—
c~
E

C71
CU
JO

O
r~"

•t^
c~
•^

E
O

•o
CU
s-
o

CO

cu
s-
re

to
s-
^
D=

t— i
^

1


^-^.
Q£
a.
o
2T
«>
i— H
II

f-H
•w—*1


•
"CJ
cu
i-
•r-
t/1
CU
-o

to
•r-
^j
3
O
4-5
E

si
a.

_,C^
u
•1—
cr
2

L.
O
4-

to
E
0

4->
O
E
ZJ
•I-"}

•a
cu

tf«
•r*
O
cu
a.
00

z.
>— i
§

JPRTd)




^_
o
*f—

cu
r-
re
^

cu
•1— >
n3
•^-
s-
o.
o
t-
CL
Q.
re

CU
JZ
•p

cu
-p
ZJ
d.
E
o
O O)
E
O 'I-
-)_> 4.)
i-
>s re
I— -p
•i— tO
s- cu
re $-
s_
O M-
Q. O
E
CU CU
•p If)
re
"O O
cu
m E
3 •!-

cu o
•— a:
-Q UJ
re M
•r- | —
i-
re

1—
1—
00
UJ
DC

O
UJ
h-




























•
v^
S-
o
5
4->
CU
E

^—
CU
T3



c
•^

CO
f—
cu
E
E
re
_E
O

q-
o

S-
cu
J3
E
3
Z.
x£
z: LU l—
i— i Q CO
< >- UJ
S :r D;

^


J
0
v»^ *

CO
a.
cu
-p
CO

cu
£
•r—
-p

«*-
o

i.
a>
o
E
3
E

I—-
re
-P
o
h-

I-H
£

^






















•
to
cu
r—
O
o

o
•t—
1 —
3
re
s-
•a
>^
^

H—
O

S-
OJ
^^


£1

a>

4->

S-
o
4—

^.
cu
-p
E
3
O
O
X
z: LU
I-H Q
$ >-

0
O

T5
CU
•P
re
^
•*£^
i/) ^
E «.'
.^•f-5
4J
O
E-r~
3 «
•^~ ^~
B
"o r^
c~ L^
re g
(u
(/) CJ
r— v^
cu
E
E
re
<"~ _.
°-p
C}_
O r—
re
>) =>
•p o-
•i- CU
^~
•1- i-
f^t Q
re
-P E
re re
Q-JZ
E -P
o
o s-
QJ
CU -P
E re
•r- CU
E S-
S- D)
d)
-P to
cu *^
-o
1—
O 1-1
-P X
UJ
s- z
cu
-pq-
E I—"
3
o
0

•z.
I-H
•i

h-
I-H
X
UJ
•z.


-------
- 74 -
1—
1— 1
ZD
LU
O.
1—























2;

t— i

t-H
z.

IL.
LU
Q






























LU
Z.
P
1
CO

CO
UJ
	 1
CQ
Qi



1— 1 1 — 1 1 — 1 I-H 1 — 1 1 — 1 1 — 1 t— * I— 1 I— 1






















•
sx
S-
o
s

cu
E

i_
- UJ
s: in a:




£






•
z.

1 —
cu
E
E
re
JZ
u

t^.
o

CO
T3
E
CU

CU
JZ
•p

•p
re

CO
i.
cu

E

E

E
O
•r-
•P
0
E
3
•r-j

O

4J

CU

4_>

M-
o

s-
cu

o
_J
h-
X C£.
ZliJ\—
tW Q CO
<£ >- LU
S n: o;

3

fe;
V-J
1
f-jj
fe:



.
^y

^—
cu
E
E
re
JZ
u

M-
O

l/>
•o
E
CU

cu
JZ
4-)

4_)
re

CO
s-
01
J3
E
3
E

E
O
•r—
4-)
U
E
3


O
^
-P

CU
JZ
4_>

<4_
O

s-
cu

CT)
•r—
•^
,_
Z LU (—
i— i Q CO
^ >- LU
S ^ o:

^5
fc
te;
1
^5
fe:


^
to
3
(/)
3

s^
21^
v^---

•
-p
3
D-
E
«^-

P^
re
XJ
•^
•p

^.
(4^.
•r-
a
cu
D-
CO

o
-p

•a
cu
CO
3

t/)
4^
E
CU
•r—
O
•p—
ljj»-
M-
0) •

o r~-

4- CO
O i—
re
S- 3
cu cr
o ^
O
•
O CO
•r- S-
i — 3
3 U
re o
S- 0
-a
^^
Z
X
LU
Q
>-
n;



» 	 s
X
^-
z


•-3
E
O
*^
4_3
O
E
3
»r^

•P
re

-a
re
cu
_C"

E
3
E
•r-
c
•^
E

O)
JZ
4J

JZ
u
•r-
JZ
S

•4-^
re

t.
cu
Q
E
3
E

CU
r—
O
^j
O
•
O CO
•r- S-
i — 3
3 O
re o
S- 0
•a
>«j
"^
X
LU
Q
>-
D^



, — «
Z.
i — i
z:
•z.










•
QL
CU

CO

CU
E

4-*

>^
-p
•r—
r—
fO
3
cr

t-
cu
Q.

CO
Q-
QJ
4_>
V)

CU
E
•r-*
40

O
•r-
i —
3
ro
s-
T3

JZ

<+-
O

S-
cu
JD
E
3
Z.
X
UJ
Q
>-
^;



fe:
1

















•
-o
cu
S-
•1—
t/)
cu
•a

CO
•i —

•p
3
D.
4_)
3
0

JZ
o
V|—
JZ
S

s_
o
tf-

(/>
^
o
"r—
JJ_>
0
E
3
*r~y

<4_
O

S-
cu
J3
E
3
"^

l— i
^^
S



Es
I


C7-
E
E
ijl
CU
-o

a.
•r—
JZ
CO
E
O

•p
re
r—
CU
S-

E
•r~

CO
E
s-
cu
JJ— >

X^^H
cu
E
•r-
CO
o
o

~u
E
re
*»•'

cu
E

CO

(4—
o .

S- 3
cu a.
J3 E
E •!—
3
2:1—
fO

• «i—
C\J +->
^x^
^1
z.

z.
»— 4
cC
S!




•z.










•
^ 	 v
^J-

-f^i
•|_
c

N_^-

•
CU
Q.
ro


i *
u
ro

•p
X
cu

o

f—
3
ro
S-
-a

JZ

O)
JZ


C;
o

cu

o
>^
o

en
E
•i —
4_>
c
ro

CO
X
LU
Q
>-
rc

i—
cy


^_J
o
re
S-
4->
X
CU

o
•r-
r—
3
re
i-
-a

JZ

cu
JZ
4J

E
O

CU
1 —
o
>>
o

C75
E

-a
E
LU
X
LU
O
>-
^;


Q-
0
1—
co



-------
- 75 -
to
H~
^y
=
Ul
Q_
1—


























o
,
1— «
H-4
u.
1 1 1
o






















LU
•z.
h-
o
a;
C2
ZD
Ul
i
| VARIABI




-







-M
3
.0

A
t/)
S-
3
O
_E

(/)
re

E •
•r- E
re
•o s-
re o>
cu o
s_ s_
Q.
t/)
•r- CU
o +->
o
I-H E
o: ••-
1 1 1 {-
D- -P
•n—

.
-P to
3 TD
o E
E O
•r- O
CU
i — in
re
T3 O
•I- -p
-p

cu cu
-P S-
4— <£
o to
c

0 S-
r
cu


X O^
z: LU h-
t— i Q CO
- ui
2: re at
Ci
1




I-H
t!
cu

4-

CU

CU
_E
-P

(/}
CU
1 —
o
^^
c_>

•y*
ZD
a.
i—

I-H

>.
s-
cu
cu

-D
E
re

0

•z.
ZD
Q-

CU
O

(j

-P
re
•a
cu
t
re
o
in
•r—
^_
| —
CO
Ul
a:
1 —
DC
2: 1—
I-H CO

•l_
CU -P
^ *r~
y)
•P O
to O.
3
E J2

t/>
S 4->
o to
i— 3
4- E
1 — I tO

• re
'-3 s-
-o
E -C
O -P

o
E CU
3 r—
•r-j-i-
•P S
re
«>
r— tO
s s-
re cu
s- ^a

JC 3
•P E
S CU
S- •!-
0 -P
re
2 o~>
o cu
i — E
4-
E
HH

X C£
"Z Ul 1—
i— i Q CO
rf >- Ul
S in a:

1

to
4-
O
ce:


















•
O)
I—
o
^fc
u

^~
*o
•o
•r-
I >
r—

3
If—
S-
cu
o

z.
J 	
cu
E
E
re
o

E
*|_
^
O
fj~
E
3
E
•i—
X
re
S

X
Ul
Q
zc
z.
X
CD-

I/I
(^
O
a:


















•
cu
r—
U
^^
U

f—
re
-a
-^ *
__
i —
3
4-
S-

4-
cc:








•
_E
+- >
Q.
CU
"O

r^
CU
E
E
re
JC
u

cu
JC
•P
to
re

E
CU

re
•P
„
•z.
r~-
0)
E
E
re
JC
0

4-
O
(/)
3
•i —
re
S-
0

3
re
-o
>)
31
I—
x a:
Z Ul 1—
i— i Q CO
rf >_ LU
z: 2: a:

|

m
^ >
"*-
a:





•
.«^~v
*^
^--*
rff^,
I-H
21
>-

i

*- — %
•^
'**--'
X
>
re -Q
-p
0
i—

z.
I-H

1—

-------
- 76 -
CO
1—
h— t
=3
UJ
c_
h-



























^
0

'
_
.
I L
UJ
O






























UJ
t— 4
(™
ZZD
c
5~
~3
CO
UJ
1
CO

t t
cc
,
03 _Q
•P
O


•z.
t— i
^^
5?





CM
1—






o:






cu
.0

o
•p

^J
c
•r—
0
Q-

CD
^
•r-
-P
S-

-p
CO

CO
o

p_
eg^


A
£

CD
CU
.0

co CU
£ r-
0 0
•I— >\
•P O
03
-P r—
3 03
Q--O
E T-
O -P
O
£
-£ o
o
•r- CU

2 CU

-P S
03 >>
£
CU 03
E
•r-
1—


I— (
^f
2?


QX
ftj
[Vi
tsl







cc cu
o
o:
UJ
M
I—

i.
o


cu

,— .
*T3
>•

cu

03

£1
Q.
O
i.
Q.
a.
03

cu
-£


CU

m
O_
£
O
o

o
-p
•z
>^ *
i— CD r-
•r- £ CU
S- -r- £
O3 -P £
S- S- 03
O 03 -£
Ci.-P O
E CO
CU CU £
-PS- -i-

-0 M- >>
CU O -P
CO •*-
3 CU O
CO O
CU 03 r—
r- O CU
J=> >
03 £

£1 *~ 03
O3 CU

fe x a:
1— Z LU J—
GO t— i Q GO
UJ eC >- LU


CM
O
a; -N
LU fe;

"

CO
Q.



ce.






•
CO
-p
3
a.
-p
3
O

U
• 1—
1—
3
03
S-
T3

^:

s-
o
ii-
-a
cu
CO
3

c~
O
•r-
-P
£
CU

£
O
o

£
CD
•r—
CO

(/)
U
Q
f—
r*A
O
Lu_


•
^.
4^
•r«
U
O
r—
CU


1 — 1
^f
s




_J
LU







a;













•
a.
cu
•p
CO

cu
E
•^
-p

>^
-M
•r~
r— •
03
3
CT

c~
O
03
CU

S-
cu
>
o

zr

^—
cu
£
£
03
-£
CJ

£
•r~

>^
-P
• r—
O
o

o
>

c
83
£

X
LU
Q
^»
;n

21
N»—-'
r-
X
LU







Oi



r-~
03
CO
$-
CU
> CU
CU >
S- -r-
•P
3» »r—
O CO
r— O
M- Q.

4- E
t— i 3
E
•r_
• X
CU 03
r- E
CJ
>> CU
0 -£
•P
03 CU
T3 -Q
•r—
+-> i—
^—
S- T-
CU S
>
O -~~"^

2T v<— •**
X
P— ^£
cu s:
£ >
£
03 «
C~ !^^
0
^—
£ 0)
•r- £
C
>, 03
-P .£
•i- O
O
O £ •
H~" *r™ >}
CU -P
> CO •!-
S- 0
E 3 0
3 O r—
E O CU
•i- O >
X
£

X
LU
Q
>-
3Z

•_~
•**-**
X
<^
s^"







D;
>>
•r-
CJ
r— O
03 r—
CO CU
S- >
CU
> cu
0) >
S- 'I-
•p
S 03
O CD
r- CU
<*- C

If— ^
|— I 3
E
•i—
• X
OJ 03
•— E
O
>>^

•P
03 CU
-o .a
•|—
•p •—
r—
S- T-
CU 3

o - — »

"5* ^^— '
^^
1 — 1 — 1
cu 2:
£ >
£
O3 •>
r" ;^*
O
| 	
£ CU
•r- £
£
>, 03
-p x:
•r- O
o
O £
r— *r—
cu
> CO
S-
E 3
3 CJ
E o
•i- O
£
•i—

X
LU
Q
>—
a:

_"
•**— ^
^
1— -1
y



vr
^


Qi Di
























•
Q.
CU
•P
CO
CU
E

•p

(4-.
r—
03


CD
£
•r-
S-
3
•a

^^

r—
a>
£
£
03

O

£
•t—
Q
>> o
-P I-H
•i- Di
U LU
0 Q-
^— ^*N^
CU t=
S« CM


Z Z
^C I^C
SI 21


*^^*
2^
**^^-
^*—
>• 2


^L % , .
•^^ J-.,>
••- 4-


DC rv



























•
CU
O
>^
0

^~
*o
-o
•1—
-p

S-
O)
>.
0

>~3

£
O
• •!—
*~D ^ ^
0
£ £
0 3
•r- "•""J
-P
U -P
£ 03
3
*^J T3
03
•P CU
03 JZ

-0 £
03 03
5 £

x a: x
Z LU I— LU
i— i Q GO Q
- LU >-
S Z Qi 3:

_^
*»^— ••
-N CD
*"«) ^*
^*— ^C
>-H >-

-------
- 77 -
p
1— (
z
rz>
UJ
Q_
>-

























^y
0
t—
^^
^^
^_
^J^
j_jj
o





























UJ
•z.
»— <
I—
__J
§
U£-
03
13
CO
1 I 1
	 1
CO
•f.
H-H
o:
«c
>
• . • *
•P -P -P •!->
if- if- t|_ M-


o:





















.
Ol

u
>>
o
p— .
re
TO

-P

S-
Ol
>
o

T}

c
o

•p
o
c
3
•>~J

•P
re

TO
re
O)
JZ

E

E
•i—
X
re
s:
x
UJ
Q
>-
rr


•z.
X
>-


cd





















•
Ol

"o
>>
u
^—
re
•D
•i—
-p

s-
O)
>
o

0

C
0

-p
o
c
3
'r->

-P
re

-o
re
Ol
jz

E
3
E

c
•i—
2!
X
UJ
Q
>-
n:


•z.
•z.
:?
>-


DC

TO
(O
O)
JZ

Ol
JZ
-p

E
o

<4-
•P
•r~

Ol
•p
re
•r~ •
-P D.
C Ol
O) -P
s- to
Ol
If- OJ
•r- 'I—
-o -P

o s-
-P Ol
JZ
rD -P
o
c c
o re
•r—
•P -P
o re
c
3 C
•1-3 O
•r"
•P -P
ro o
c
TO 3
re '*~>
Ol
JC O)
c
s- re
o to
4-
O)
O) JZ
E -P
ro
c: -P
ro
2
Ol
z.
X
UJ
Q
>-


•z.
3^
III
LJ_I
z.
•>-


&.





















*
o.
o>
-p
to
O)
E
•r~
-P

M-
r—
re
JZ

Ol
sr
o

o>
c
•r-
S-
3
•o

•-D

C
O
•r-
-P
O
C
3
•r->

ro

TO
ro
o<
re

•z.
t—t
g



•-3
h^
>-





*
E
ro
•p s-
^ o o>
o ro o
s_ s-
C -P Q-
O X
•i- 01 >>
-P -P
re o •!-
CT *r- l~~
•r- i— ro
E 3 3
s- re o~
01 S-
-p -o 01
>>JZ
Ol JZ -P

3 0) 0
-P JZ -P
re -P
E -M
Ol to 3
s- re Q.
Q- C
X> •!-
t|_  S to
Ol t
TO Q) O
JZ -P
-P -P
s- o -a
re oi
-P -P
to • re
m c 01
s- o s-
•i- U
to -P
ro 3 «
U Ol
to Ol Q.
oi x ro
> 0) -P
s-
Ol
co
xfe
LUH-
Q CO
>- LLJ
rr cc


*&
-p
c

































•
S — s
S-
O)
-o
re
O)
S-

TO
S-
ro
o
«- ^

•p
3
O-
c
•r—

-o
s-
re
o

s-
o
Sf-

-o
Ol
to
rs
x
Z UJ
I-H Q
rf >-


LO
4J
C
n>

































•
*l^— N,
s-
O)
•p
c
•r—
S-
Q.


•P
3
Q.
•P
3
O

-o
O)
•p
c
•r—
S-
0.

s-
0
- UJ
s: -E a:


vo
•P
c:






























•
^•"^
JZ
0
c
3
Q.
•o
S-
re
o
> — *

•p
3
0.
-P
3
O

TO
01
JZ
o
c
3
CL.

S-
o
f-

TD
CD
to
ZD
fe
CO
UJ
C£


00
•P
E
rz>



•p
C £
>
r- S-
3 Ol
re >
s- o>
•a
>> s-
JZ 0
»
>, 01 0)
S- -P JD
re oi
S- E Oi
o re r—
Q. S- O
E ro >>
o> a. u
•p
0 >>
re T- s-
•— Ol
CO 3 >
ro ro O)
s-
l/> TD S-
Ol >> 0
> JZ <4-
S-
Ol
co
X
•z. uj
H-i Q
eC >-
2: in

o
r—
4->
C
ZD

-------
                            - 78 -

                 2.3  COMPUTER REQUIREMENTS
            2.3.1 IBM JOB CONTROL LANGAUGE (JCL)
The JCL used to execute program REGAN is as follows

   //JOB CARD
   //EXEC FORTGCLG
   //FORT.SYSIN DD *
        program REGAN goes here
   //GO.FT06001 DD SYSOUT=A
   //GO. SYS IN DD *
        data deck goes here
   /*EOF

The JCL used to execute program DYNHYD is as follows

   //JOB CARD
   //STEP1 EXEC PGM=DYNHYD
   //STEPLIB DD DISP=SHR,VOL=(PRIVATE, RETAIN, SER=REGNA3),
   //  UNIT=3330-1 ,DSN=CNQSO_M.LJC.CLARKLIB
   //GO.FT04001 DD DCB=(RECFM=VS ,LRECL=50^,BLKS I ZE=50A0,      stores
   //  DISP=(NEW, KEEP, KEEP) ,VOL=SER=USER99,UNIT=3330-1,         on
   //  DSN=CN.EPAXYZ.ACCT. DATA. SET. NAME                        fcsk
                             or
   //GO.FT04001 DD DCB=(RECFM=VS ,LRECL=50A,BLKS I ZE=50^0) ,     stores
   II  DISP=(NEW, KEEP, KEEP) ,VOL=SER=TAPE##,UNIT=2400,           on
   //  DSN=LEOTAPE,LABEL=(##,SL,EXPDT=98000)
   //DD DSN=SYS2.FTG1LINK,DISP=SHR
   //GO.FT10F001 DD DSN=S&HYDTA,DCB=(RECFM=VS ,LRECL=501t,BLKS IZ
   //  DISP=(NEW, DELETE, DELETE), SPACE=(TRK, (40,40)) >UNIT=SYSDA
   //GO.FT08F001 DD DUMMY
   //GO.FT06F001 DD SYSOUT=A
   //GO.FT05F001 DD *
        data deck here
  /*EOF

-------
                            - 79 -


        2.3.2  UNIVAC EXECUTIVE CONTROL LANGAUGE (ECL)
The ECL used to execute program REGAN is as follows
     ©RUN CARD
     ©PASSWORD
     ©SYM
     ©FTN.IS
        program REGAN goes here
     ©MAP,I
     LIB FTN*RLIB
     ©XQT
        data deck goes here
     ©FIN

The ECL used to execute program DYNHYD is as follows
     ©RUN CARD
     ©PASSWORD
     ©SYM
     ©ASG.A  USERID*PGMFILE.
     @COPY,A  USERID*PGMFILE.DYNHYD
     ©FREE  USERID*PGMFILE.
     @ASG,T   USERID*TEMPFILE
     @USE  10.,USERID*TEMPFILE
     ©ASG.CP  USERID*1500CFS
     ©USE  i».,USERID*1500CFS
     ©XQT  DYNHYD
        data deck goes here
     ©FIN

-------
                             -  80  -
                    2.3.3  EXECUTION TIMES
     The time required to execute the hydraulic program is
dependent on the computer used, the network size, the computational
time step, and the length of the run.  Typical  execution times
for DYNHYD are given in Table 2.1 below.   DYNHYD requires
approximately 130K of storage for execution.
Junctions
112
112
112
129
133
247
830
133
Channels
170
170
170
131
139
306
1050
139
Time
Step
(sees)
50
50
50
90
90
75
100
90
Length
of run
(hrs)
37.5
50.0
25.0
50.0
25
12.5
25
50
Execution
Time
(mins)
5
8
8
1.3
.8
4
12
2.4
Computer
CDC 6600
CDC 6600
IBM 360/65
IBM 370/168
IBM 370/168
CDC 6600
CDC 6600
UNIVAC 1100
                       TABLE 2.1  DYNHYD EXECUTION TIMES

-------
                           - 81 -


                          CHAPTER 3
     IMPLEMENTATION OF THE WATER QUALITY MODEL - DYNQUAL
                   3.1  THE "MAIN" PROGRAM

     As mentioned previously, the water quality program (DYNQUAL)
uses data created by the hydraulic program as input.  Figure 3.1
shows the relationships between the hydraulic and the quality
programs and subroutines.
     Figures 3.2 and 3.3 are flowcharts depicting the sequence
of steps for the MAIN program of DYNQUAL.  A brief description
of the program logic is as follows:
STEP 1 - READ SYSTEM INFORMATION FROM HYDRAULIC TAPE
     Alphanumeric data is read which identifies: the purpose
of the run (ALPHA (D), the network size (NJ and NO, the
starting (NSTART) and ending (NSTOP) cycles on the hydraulic
extract tape (Unit 4) created by the hydraulic program, and
the number of hydraulic time steps per quality time step (NODYN).
The hydraulic extract tape (Unit 4) is then read and copied
onto a scratch disk (Unit 3) for use by the quality program.
STEP 2 - READ INDEPENDENT CONTROL DATA
     Alphanumeric data is read which defines:  (1) control
parameters such as the hydraulic cycle at which the quality
program is to begin reading the hydraulic data (HYDCYC), length
of quality run (NQCYC), the number of quality cycles per
tidal period (NSPEC), the number of constituents to be modeled
(NUMCON), the temperature (TEMP), and other control options,
(2) tabular output control parameters specifying the types
of tables and the cycles at which they occur, and (3) plotting
output control parameters specifying the types of plots to be
printed.  A table summarizing many of these control parameters

-------
             - 82 -
             REGAN
 (RESTRT
DYNHYD
HYDEx)
            DYNQUAL
             MIXERJ
            (SUMARY)
 (TPLOT}   (SUMPLT)  (SWPLOTJ
            •TcuRVEj-
            MPPLOTJ
            (SCALE)
FIGURE 3.1 PROGRAM AND SUBROUTINE LINKAGES OF THE DEM

-------
                       -  83 -
  (READ &

  STORE
 HYDRAULICS
   READ
 INDEPENDENT
CONTROL DATA
PRINT
CONTROL DATA
SUMMARY 	
^]
COMPUTE
DIFFUSION
COEFFICIENTS
I
1 PRINT
HYDRAULIC
DATA^^—

y
( READ
REACTION
[ RATES
1
*
PRINT
RATE
SUMMARY 	

1
RATE
TRANSFORMS
T
/ MAIN \
\ QUALITY /
\ LOOP /
f
INITIALIZE
VOLUMES &
MASSES
t
f SEAWARD
I RfiiiNnAPV
| CONDITIONS


f READ
INITIAL
1 CONDITIONS


f UPPER
BOUNDARY
1 CONDITIONS
f
( READ
1 INPUTS
                                    — see Figure 3.3
  FIGURE 3.2   FLOWCHART OF  THE MAIN PROGRAM IN  DYNQUAL

-------
                    - 84 -
                                   DOES "X.  YES r        -\
                                 ICYC=NQCYcJ>^H EXIT LOOP )
FIGURE  3.3  FLOWCHART OF THE MAIN QUALITY  LOOP

-------
                           - 85 -


will be printed in Step 6.  If any plots are to be outputted,
the maximum (YMAXC (K)) and minimum (YMINC (K)) values for
constituent K on the y-axis (ordinate) and the points along
the x-axis (abscissa) corresponding to the network junctions
(RMNODE (J)) are specified.
STEP 3 - INITIALIZE VARIABLES
     Initial values required for certain variables (e.g. counters)
are set.  At this point, the junction numbers at each end
of a channel are checked to insure that NJUNC (N31) refers to
the lower junction number for channel N and that NJUNC (N,2)
refers to the higher junction number (at the other end of
channel N).
     If slack water tables are desired, Subroutine SWTABL
(see Section 3.4) is called to initialize the parameters
internal to this subroutine.
STEP 4 - READ QUALITY COEFFICIENTS
     Alphanumeric data is read for each constituent which
describes the constituent name (CNAME), its minimum and
maximum  concentrations (BACKC and CLIMIT), and its temperature
correction coefficient (THETA).
STEP 5 - READ DISSOLVED OXYGEN (CONSTITUENT 6) PARAMETERS
     Alphanumeric data is read which defines the time of sunrise
(TSRISE), time of sunset (TSSET), photosynthesis rates (PHOT),
respiration rates (RES), photic depths (DEPTH), benthic
demand rates (BENT), and reaeration coefficients (A,  W3  x)
throughout the estuary.
STEP 6 - PRINT CONTROL DATA
     A table is printed listing several of the parameters inputted
in steps 1 through 5.

-------
                           -  86  -
STEP 7 - COMPUTE DIFFUSION COEFFICIENTS
     The constant (CDIFFK) used to compute the diffusion
coefficients (DIFFK)  throughout the estuary are read and the
diffusion coefficients for each channel are determined.   (See
Section 3.2).
STEP 8 - PRINT NETWORK AND HYDRAULIC PARAMETERS
     A table summarizing the hydraulic parameters stored on
the hydraulic extract tape is printed.  The diffusion constants
(CDIFFK) for each channel are also printed.
STEP 9 - READ REACTION RATES
     Alphanumeric data is read which defines the characteristics
and linkages of the quality constituents.  (A more detailed
discussion of constituent linkages is found in Section 3.8).
Tables summarizing these parameters are printed.
STEP 10 - RATE TRANSFORMATIONS
     The inputted rates are adjusted so that they (1) correspond
to a quality time step (2) correspond to the assumed temperature,
and (3) determine the amount of material decayed or regenerated
during a time step instead of the amount of material remaining
after a time step.
STEP 11 - WASTEWATER INPUTS
     Alphanumeric data is read which specifies  (1) the number
of constant waste inputs  (NWASTC), i.e. an input whose flow
rate and concentrations are constant,  (2) the number of
variable waste inputs (NWASTV), i.e. an input whose flow
rate and/or concentrations vary with time, and  a description
of how the flows and concentrations vary, and (3) the number
of variable bank load inputs  (NBANK),  i.e. a load from a
junction shoreline (e.g.  runoff), the  length of each junction's

-------
                            -  87  -
shoreline, the junctions receiving the variable bank loads,
and a description of how the flows and concentrations
vary over time.  Tables summarizing the above inputs are
printed.
STEP 12 - UPPER BOUNDARY CONDITIONS
     Data is read which describes how the flows and constituent
concentrations at the upper boundary  of the model network
vary with time.  A table summarizing this data is printed.
STEP 13 - INITIAL CONDITIONS
     The initial concentration for every constituent in every
junction is specified.  A table summarizing this data is
printed.
STEP 14 - SEAWARD BOUNDARY CONDITIONS
     Data is read which describes how the concentration of
every constituent varies over a tidal cycle at the seaward
boundary.  A table summarizing this data is printed.
STEP 15 - INITIALIZE VOLUMES AND MASSES
     The mean volume of each junction (corresponding to zero
head) is computed based on the average depth computed in the
hydraulic run.  Unit 3 is aligned at the hydraulic cycle
at which the quality run begins (HIDCYC) and the junction heads
are read.  The mean junction volumes are then adjusted to the
new heads in order to establish the junction volumes at the
start of the quality run.
     The initial mass of every constituent in every junction
is computed.  The diffusion constant of every channel and the
volume of all inflows/outflows at each junction over a quality
time step are computed.

-------
                           - 38 -
STEP 16 - MAIN QUALITY LOOP
     This loop is executed for every cycle of the quality
program.  First the "clock time" (CTIME)  is incremented by a
quality time step (DELTQl).  Next, the hydraulic parameters
(flows, velocities, and heads) for the current cycle are read
from Unit 3.  If the last hydraulic cycle read was the last
hydraulic cycle stored on Unit 3, then Unit 3 is rewound.
     Subroutine MIXER (Section 3.2) is called to determine
the mass of each constituent transferred between junctions by
advection and diffusion.
     The reaction rates defined in Step 9 are applied to their
respective constituents in every junction.
     Constant waste, variable waste, variable bank, and upper
boundary loads are added to the appropriate junctions.
     Junction volumes are adjusted to the start of the next
time step and new constituent concentrations are computed
by dividing the mass of each constituent in a junction by the
junction volume.  If the predicted concentration of constituent
K is less than the minimum allowable concentration (BACKC(K)),
the constituent concentration is set equal to BACKC(K) and
the corresponding mass is specified for the junction.  If
KDCOP=l, a statement that the adjustment was made will be
printed.  If the predicted concentration exceeds the maximum
allowable concentration (CLIMIT(K)), execution is terminated.
     A  special analysis is made of constituent 6 (dissolved
oxygen  for the version herein).  The minimum (DOMIN(J)) and
maximum (DOMAX(J)) concentrations, as well as the cycles of
their occurrence (MINCIC(J) and WXCXC(J)); the average
concentrations(ZKWGfJVJ;  and the number of cycles in which
the concentration is below 4.0 mg/1 (DOLT4LJ)), between
4.0 mg/1 and 5.0 mg/1 (D04T05(J)), and above 5.0 mg/1
(DOGT5(J))  are  computed for every junction.  This  analysis

-------
                           -  89 -
starts at cycle NDOCYC and continues until the end of the
quality run.
     A check is made to determine if observed data (OBDATAd, J3K)),
which will appear on certain plots, is to be read at the
present cycle.
     A check is made to determine if any time history plots
are to be printed.  If so, the constituent concentrations for
the appropriate junctions are stored on Unit 11.
     A check is made to determine if subroutine SUMARY
(Section 3.3) is to be called to compute a summary of the
predicted concentrations for a specified period.
     A check is made to determine if subroutine SWTABL
(Section 3.4) is to be called to output the current concentrations
in a slack water table.
STEP 17 - EXIT LOOP
     After  NQCYC cycles have been completed, the Main Quality
Loop is left.  A table summarizing the constituent 6 analysis
is printed.  If KREAC = 3 (i.e. if both constituent 1 and
constituent 3 are considered in determining the growth of
constituent 4), a table summarizing the number of cycles for
which each constituent limited growth is printed.
     A check is made to determine if subroutine TPLOT (Section 3.6)
is to be called to output time plots
                    3.2  SUBROUTINE MIXER
     This subroutine computes the amount of mass transferred
between junctions due to the processes of advection and diffusion.
For every channel in the system, the advected and diffused
masses are computed and are transferred from the junction at
one end of the channel to the junction at the opposite end of
the channel.  A simplified flowchart depicting the sequence of
steps in MIXER is shown in Figure 3.4.  The logic of the subroutine
is as follows:

-------
               - 90 -
' FIGURE 3.4  FLOWCHART OF SUBROUTINE MIXER

-------
                            - 91 -
STEP 1 - COMPUTE CHANNEL PARAMETERS
     The volume of fluid transported through a channel during
a time step (VOLFLW) is computed.  The channel diffusion
coefficient (DIFFC) is also calculated.
STEP 2 - COMPUTE CONSTITUENT PARAMETERS
     The variable CA is defined as the concentration in the
junction with the lower junction number (NJUNC(NfD).
Variable CB is defined as the concentration in the junction at
the opposite end of the channel (NJUNC(N,2).
STEP 3 - COMPUTE ADVECTED MASS
     The concentration of the constituent in the water being
advected (CONC) can be determined several ways.  The variable
MD: defines the method used to compute CQNC, where:
                  1  -  use upstream concentration
                  2  -  use 1/2 point method
         Mix  =   3  -  use 1/3 point method
                  4  -  use 1/4 point method
                  5  -  use 2-way proportional method
     The mass of constituent transferred by advection is found
by multiplying the volume of fluid advected (VOLFLW) by the
concentration in the advected fliud (CONC).
STEP 4 - COMPUTE DIFFUSED MASS
     The mass of constituent transferred by diffusion is
computed by multiplying the concentration gradient (CA - CB)
by the diffusion coefficient (DIFFK).
STEP 5 - TRANSFER ADVECTED AND DIFFUSED MASSES
     The direction of the transfer of mass by advection is
dependent on the direction of flow in the channel.  Flow in
a channel will usually be leaving one junction and entering
another.  The advected mass is subtracted from the junction

-------
                            -  92  -
in which the flow is leaving and is added to the junction in
which the flow is entering.
     The transfer of mass by diffusion is dependent on the
concentration gradient.  Mass will move from the junction
with the higher concentration to the junction with the lower
concentration.  In other words, the diffused mass is subtracted
from the junction with the higher concentration and added
to the junction with the lower concentration.
                  3.3  SUBROUTINE SUMARY
     This subroutine prints out the minimum, maximum and
average constituent concentrations predicted during specified
time intervals.  In order to allow summary periods which
overlap, SUMARY can compute a "Type 1" summary and a "Type 2"
summary.  Type 1 summaries can overlap Type 2 summaries
(and vice versa), otherwise, they are identical.  A flowchart
depicting the logic of SUMARY is shown in Figure 3.5.
A description of the program logic is as follows:
STEP 1 - DETERMINE TYPE OF SUMMARY
     A check  is made to determine which type of summary  (Type
1 or Type 2)  is desired.  If NUM = "1, a Type 1 summary is
desired.  If NUM = 2, a Type 2 summary is desired.
STEP 2 - INITIALIZE
     If the current cycle is the first cycle of the summary
period (IP),  the minimum, maximum, and average concentrations
for each junction are set equal to the current junction
concentrations.  If not, Step 3 is executed.
STEP 3 - DETERMINE MINIMUM, MAXIMUM, AND AVERAGE CONCENTRATIONS
     For every cycle within the summary  period, checks are
made to determine the minimum, maximum,  and  average concentrations
during the  period.

-------
                   -  93 -
           TYPE 1
  TYPE 2
        COMPUTE
      MIN MAX AVG
      CONCENTRATION
FILL X & Y
ARRAYS WITH
PLOTTING DATA
1

           SUMPLT
c
D
        RETURN
FILL X & Y
ARRAYS WITH
PLOTTING DATA
1

(CALL SUMPLTJ
                C
   RETURN
FIGURE 3.5   FLOWCHART OF SUBROUTINE  SUMARY

-------
                           - 94 -
STEP 4 - OUTPUT SUMMARY TABLE
     After the last cycle of the summary period (LP),  a table
containing the starting and ending cycle of the summary period
and the minimum, maximum, and average concentrations  for
each constituent in every junction is printed.
STEP 5 - CHECK FOR PLOT OF SUMMARY TABLE
     A check is made to determine whether or not a plot of
the current summary table is desired.  If a plot is desired
(PLT = I), arrays of the data (FGQXA(NPP) and FGQXO(NPP3LPP))
are set up for use by Subroutine SUMPLT (Section 3.5)  to
create the plots.  Control then returns to the MAIN program.
                  3.4  SUBROUTINE "SWTABL"
                                                           ^
     This subroutine sets up slack water output tables for
specified time periods and prints the corresponding
constituent concentrations.  Slack water at a particular
location is defined as the time at which the tidal velocity
equals zero (see Figure 3.6).  Slack water occurs twice
during a tidal cycle, once following the flood tide (high
water slack) and once following the ebb tide (low water slack).
Slack water output consists of the predicted concentrations
at a junction when it is at slack water.  Slack water
occurs at different times along an estuary, beginning at
the seaward boundary and moving upstream in a manner similar
to the tidal wave itself.  Consequently, slack water predictions
for the upper boundary occur many quality cycles after slack
water predictions for the lower boundary.  A flowchart
depicting the logic of SWTABL is shown in Figure 3.7.  A
description of the program logic is  as follows:

-------
                      - 95 -
                  High Water
    High-Water Slack
                 Head  (elevation above a datum)
                 Velocity
FIGURE 3.6  LOCATION OF HIGH & LOW WATER SLACKS

-------
                -  96 -
         I CYC
                                     FILL X &
                                    ARRAYS WITH
                                   PLOTTING DATA
FIGURE  3.7  FLOWCHART OF  SUBROUTINE  SWTABL

-------
                           - 97 -
STEP 1 - CHECK FOR SET-UP OR OUTPUT OF TABLES
     SWTABL is actually called at two points  in  the quality
program.  First, it is called during the initialization
portion of the MAIN program.  Here, it determines the type of
tables (high water slack (HWS), low water Black (LWS), or snapshot)
and their corresponding parameters (the junctions to be
printed and when).  To do this, the model  junctions are
divided into several groups, each of which is at slack
water at approximately the same time.  This grouping can
be accomplished by studying detailed hydraulic outputs and
determining when and where the velocities  in  the estuary are
zero.  If the junctions were divided into  ten groups, then
slack water would occur at the junctions in group 1 first,
say at cycle J.  Slack water would occur at the junctions
in group 2 one cycle later (i.e. at cycle  J + 1), at the
junctions in group 3 two cycles later (cycle  J + 2), etc.
The junctions within the groups vary, depending on whether
a HWS, LWS, or snapshot table is desired.   This  is due to
the differences between high and low water slack conditions.
The variables NSWCYC,  NOPRT(I), and JPRT(l,N) describe
a slack water table.  NSWCYC is the difference in time (in
cycles) between the occurence of slack water at the upper
and lower boundaries.   NOPRT(I) is the number of junctions
        •hh                                            t h
in the I™ group, and JPRT(I,N) is the number of the N
junction in group I.  A snapshot table is  not a slack water
table in the true sense of the term.  Rather, it divides
the junctions into only one group and outputs the concentrations
for all the junctions  in the group at one  specified cycle,
hence the term "snapshot".   SWTABL is called  again during the
main computational loop in the MAIN program.   Here, it
outputs the tables as  they were set up earlier.   The output
is obtained by sequentially printing the predicted
concentrations for the junctions within each  group.  Hence,

-------
                          - 98 -
if group I was at slack water during cycle J,  then  the
concentrations for the junctions within group  I  are printed
at cycle J, the concentrations for the junctions within
group I + 1 are printed at cycle J + 1, and so on.
STEP 2 - CHECK FOR PLOT
     A check is made to determine whether or not a  plot  of
the current slack water table is desired.  If  KPLOT(M) = 0,
a plot is not desired, and control returns to  the MAIN
program (See Section 3.10 for plotting options.).  If so,
the predicted concentrations are stored in arrays (FGSWA(NPP)
and FGSWO(NPFfLPP)) until the slack water table is  completed,
at which point subroutine SWPLOT is called to  produce the
plot.  Control then returns to the MAIN program.
             3.5  SUBROUTINES SUMPLT AND SWPLOT
     These subroutines link the tabular output subroutines
(SUMARY and SWTABL) to the generalized printer plot
routines (CURVE, PLOT, and SCALE).  A flowchart  depicting
the logic of SUMPLT and SWPLOT is shown in Figure 3.8.
Both subroutines follow the same sequence of steps:
STEP 1 - SET LABELS ON SIDE AND BOTTOM AXES
     The labels (e.g. "Miles Below Chain Bridge") on the
x-axis (BOTTOM(D) and the labels (e.g. "Constituent") on
the y-axis are set.
STEP 2 - THE X AND Y ARRAYS ARE CREATED
     These arrays are created using the arrays  (of predicted
concentrations) set up in SUMPLT  (or SWPLOT) and will be
used in the plotting routines to  generate the plots.
STEP 3 - SET SIDE LABELS FOR CONSTITUENT
     The constituent number for each plot is added to the
y-axis label  (e.g. "Constituent"  becomes "Constituent 1"

-------
                      -  99  -
                    SET  LABELS
                        ON
                    X-Y  AXES
                     FILL  UP
                    X & Y  ARRAY
                     WITH  DATA
                   SET LABEL FOR
                    CONSTITUENT
                      NUMBER
                       I_
                 j  CHECK FOR  |
                 I   OVERLAY   I
                     (SWPLOT) J
                       r
                     WRITE
                   TITLE ON
                    UNIT 22
                 (CALL CURVE
                          YES
                CRETURN   J
                                      NO
FIGURE 3.8  FLOWCHART OF SUBROUTINES  SUMPLT  &  SWPLOT

-------
                           - 100 -


or "Constituent 2", etc.)
STEP 4 - WRITE OUT TITLE
     A title indicating the type of plot and the cycle(s)
to which it applies is written  on Unit 22.
STEP 5 - CALL CURVE TO PRODUCE  THE PLOT
     Subroutine CURVE is called and the plot is produced
on Unit 22.  The printer plot will be outputted at the end
of the MAIN computational  loop.
                    3.6  SUBROUTINE TPLOT
     This subroutine, called by the MAIN program, is linked
to the generalized printef - plot subroutines (CURVE, PPLOT,
and SCALE).  It is called at the end of the MAIN program
to produce time history plots at specified junctions for
specified time periods.  A simplified flowchart depicting
the logic of TPLOT is shown in  Figure 3.9.   The sequence
of steps is as follows:
STEP 1 - SET LABELS FOR X AND Y AXES
     The labels (e.g. "cycles") for the x-axis (BOTTOM(I)) and
the labels (e.g. "Constituent") for the y-axis (SIDE(D)
are set.
STEP 2 - TIME PLOT LOOP
     This is a double loop which is executed for every constituent
for every time plot.  The following steps are executed
within the loop.
STEP 2A - SKIP TO STARTING CYCLE OF TIME PLOT
     Unit  11 is rewound and the data stored on it is read
until the starting cycle of the current time plot is reached.

-------
               - 101 -
    SET LABELS
        ON
     X-Y AXES
  PRESENT CYCLE
      SKIP
     TO END
    OF CYCLE
      SKIP
     TO NEXT
    READ CYCLE
                        YES
C  RETURN   J
                                            YES
: REWIND 11 f\
& SKIP TO 1
START CYCLEV J
Y
1
NO


READ DATA
FOR

NO
^
CURVE
            D
    WRITE
    TITLE
   COMPLETE
     SIDE
    LABELS
FIGURE 3.9  FLOWCHART OF SUBROUTINE TPLOT

-------
                            -  102  -
STEP 2B - READ PLOTTING DATA
     The data for the present cycle is read until the
predicted concentration for the desired junction is reached.
The concentration is used to set up the X (cycle number)
and Y  (concentrations) arrays to be plotted.  The remainder
of the data for the present cycle is then read.  Unit 11
is then read until the next plotting cycle is reached, at
which point, the data for the desired constituent and junction
is read again.  This continues until all of the required
concentrations for a particular constituent at a particular
junction for the specified time plot period and interval
have been read.
STEP 2C - SET UP SIDE LABELS
     The constituent number for each time plot is added to
the y-axis label (e.g. "Constituent" becomes "Constituent 2").
STEP 2D - WRITE OUT TITLE
     A title indicating the type of plot, the cycles over
which  it applies, and the interval between points is written
on Unit 22.
STEP 2E - CALL CURVE TO PRODUCE THE PLOT
     Subroutine CURVE is called and the plot is  produced
on Unit 22.  The printer - plot will be outputted at the
end of the quality program.
       3.7  PLOTTING  SUBROUTINES  -  CURVE.  PPLOT,  SCALE
     CURVE is  the  entry  to  a  generalized printer  -  plot
routine.   It  calls  PPLOT and  SCALE.   CURVE plots  the  ,
sequentially  paired values  in the X and Y arrays  created

-------
                            -  103  -
in SUMPLT, SWPLOT, and TPLOT.  The scaling values for
both arrays are stored in the last two array locations
(in the same manner as CALCOMP scaling).
     Subroutine PPLOT produces the plots of the model
predictions and observed data points.
     Subroutine SCALE sets up convenient scales for the axes.
                  3.8  CONSTITUENT LINKAGES
     The version of the DEM contained in this report has
been applied to the Potomac Estuary.  When this version was
programmed, there were six quality constituents which were
of particular interest:
         Constituent 1  -  Ammonia (NH^)
         Constituent 2  -  Nitrate (N03)
         Constituent 3  -  Total Phosphorous (TP04)
         Constituent 4  -  Chlorophyll a. (CHLOR)
         Constituent 5  -  Ultimate CBOD (CBOD)
         Constituent 6  -  Dissolved Oxygen (DO)
Consequently, many portions of the program and the constituent
linkages are specific to those constituents.  Figure 3.10
depicts the six constituents and the reaction rates which
relate them in the quality program.  The variables in capital
letters are the reaction rates linking the constituents.
The variables in italics are the masses transferred between
constituents.  The arrows indicate the direction of the
transfer.  At first glance, it might seem that this version
of the model is very restrictive regarding the constituents
that can be accomodated.  However, closer examination reveals
that there is a considerable degree of flexibility in
assigning constituents to the constituent numbers utilized by
the program.  By manipulating the various rates associated
with the constituent linkages, a fairly wide range of

-------
             - 104  -
             REGENN
             (PMASSN)
                                           D-
                                           Q_
                                           LU
                                           CS
                                           LLJ
                                           o:
3
CO
^.
>-
1
                           REBODD
                            (PMASSC)
FIGURE 3.10  CONSTITUENT LINKAGES

-------
                            - 105 -
parameters can be modeled.  (A linkage can be "shut off"
by setting the associated rate equal to zero).  Examples
of several alternative configurations are shown in Figures
3.11 to 3.13.
      3.9  CONSIDERATIONS FOR MODELING OTHER SYSTEMS
     There are several aspects of the model presented in
this report which are characteristic of the estuary to
which it was applied.  However, the application of the
DEM to other estuarine systems is a relatively straightforward
process.  The specific portions of the version contained
herein which must be altered are as follows:
1)  The Model Network - Obviously, the model network, i.e. the
configuration of channels and junctions used to represent
the prototype, will be different for every system.
2)  DIMENSION Statements - The Potomac Estuary network consists
of 133 junctions and 139 channels.  Junction and channel
parameters have been dimensioned to these values.   Any
expansion of the network size would necessitate a change
in these dimensions.  The Potomac model is programmed for
6 constituents.  Therefore, all constituent related variables
are dimensioned to that value.  If more than 6 constituents
are to be modeled, then those dimensions must be changed.
3)  Plotting Positions - The plotting subroutines plot the
predicted constituent concentrations for the model junctions.
Each model junction that is plotted is referenced to the upper
boundary of the network by variable RMNODE(J), which specifies
the number of miles between the upper boundary and junction
J.  Consequently, the values assigned  to RMNODE(J) will have
to be altered if a different network is used.

-------
                         - 106 -
        DECAYK(l) = 0
        DECAYK(2) = 0
        DECAYK(3) = 0
                              NUMCON = 3

                               KREAC = 3
                  Constituents 1, 2, and 3 are all
                  conservative, i.e. they do not decay
FIGURE 3.11  ALTERNATIVE LINKAGE EXAMPLE 1 - CONSERVATIVE CONSTITUENTS

-------
                             - 107 -
1
DECAYK(l) ^

2
                                DECAYK(3)
                                DECAYK(5)
                                       NUMCON = 5

                                        KREAC = 4
        DECAYK(l)  =  the rate (1st order) at which constituent 1
                      is converted to constituent 2

        DECAYK(3)  =  the rate (2nd order) at which constituent 3
                      is removed from the system

        DECAYK(5)  =  the rate (1st order) at which constituent 5
                      is removed from the system
FIGURE 3.12  ALTERNATIVE LINKAGE EXAMPLE 2 - NON-CONSERVATIVE CONSTITUENTS

-------
                        -  108  -
         NH
          LU
       NO2+NO3
Chlorophyll  a
                           NUMCON =  4
                            KREAC =  1
  DECAYK(l)  =  rate (1st order)  at which  NH3  (constituent 1)
               is converted to N02+N03  (constituent 2)

  DECAYK(2)  =  rate (1st order)  at which  N02+N03 is taken up
               by algae (constituent 4) for qrowth

  DECAYK(4)  =  rate (1st order)  at which  algae are settled
               out of the system into the detrital pool

      AMUPP  =  rate (1st order)  at which  NH3  is taken up
               by algae for growth

     REGENN  =  rate (1st order)  at which  MH3  is regenerated
               by the detritus
FIGURE 3.13  ALTERNATIVE LINKAGE EXAMPLE 3  -  THE  NITROGEN CYCLE

-------
                            -  109  -
4)  Subroutine SWTABL - As discussed in section 3.4,
this subroutine divides the network junctions into several
groups.  Each group is comprised of junctions which are at
slack water at approximately the same time.   These groups
are characteristic of the system being modelled and will
have to be changed for every different prototype.
                  3.10  INPUT REQUIREMENTS
     The input requirements for this version of the DEM can
be divided into five general categories: (1) input/output control
parameters, (2) water quality parameters, (3) waste load
inputs, (4) boundary conditions, and (5) initial conditions.
INPUT/OUTPUT CONTROL
     The input/output control parameters can be divided into
three groups:  independent control, tabular output control,
and graphical output control.
     Independent control data specifies the number of
quality constituents  (NUMCON), temperature (TEMP), length
of the run (NQCYC), quality time step (DELTQ), starting cycle
on the hudraulic extract tape (HYDCYC), and other  parameters.
 A complete listing of these input  parameters is given  in
Section 3.12.
     Tabular output control specifies the types of tables
to be outputted, the frequency of printout,  and whether or
not a plot of a table is desired.  A complete listing of these
parameters is found in Section 3.12.
     Graphical output control specifies the number and type
of plots,  the type of background grid to use, the minimum
(JMINC(K)) and mximttn((XMAXC(K)) values which can be plotted,
information concerning any observed data to be plotted,
and which  constituents to plot.  A complete listing of these
parameters is found in Section 3.12.

-------
                           - 110 -
QUALITY PARAMETERS
     Several reaction rates and coefficients must be specified
for the quality constituents.   These parameters determine the
various linkages among the quality constituents.  A complete
listing of the parameters required for the version of the
DEM in this report is found in Section 3.12.
WASTE LOAD PARAMETERS
     For inflows to the system (e.g. wastewater discharges),
both the flow and concentration of each constituent must
be specified.  For withdrawals from the system, only the flows
need to be specified, since the concentration of each constituent
removed is equal to the predicted concentration in that
junction.  If a bank load (runoff) input is used, the
length of the junction shorelines (SLINE(J)), the flow,
and the concentration of each constituent must be specified.
     Normally, the hydraulic condition specified by the
quality program should agree with the conditions in the
hydraulic run.  The reason for this is that the hydraulic
behavior of the system for each quality time step is fixed
in the hydraulic program and is not affected by the inflows
or waste discharges specified in the quality program.
Consequently, if a withdrawal existed in the hydraulic program,
but was not specified in the quality program, then the quality
program would have water removed from the junction, but
not any constituent mass.  Similarly, if a waste discharge
is specified for a junction in the hydraulic program,
then it is necessary to specify the constituent concentrations
and the same flow rate in the quality program in order to
add the appropriate mass of constituent during each time
step.  This feature makes it convenient to simulate the
release of dye or some other tracer,  Since a very small

-------
                            -  Ill  -
amount of tracer (with high concentration) is usually
released into a junction, any convenient input flow rate and
dye concentration can be specified (for the quality program
alone) so that the appropriate mass of dye is added during
each time step.
BOUNDARY CONDITIONS
     Boundary conditions must be specified for the upper and
lower junctions of the network.  Frequently, one of the most
troublesome inputs is the specification of the constituent
concentrations at the seaward boundary.  Ideally, the lower
boundary would be the ocean ( a source and sink with known
concentration).  The problem of specifying the boundary is
one of estimating the tidal cycle variation in concentration
of a constituent at a boundary for a given freshwater inflow
to the system.  For simulation of historic conditions,
sufficient data should be collected to establish the
boundary concentrations.  For predictive runs, one must
estimate the boundary conditions which would result for
the run, i.e. the final results must be known in order to
specify the boundary conditions.  This dilemma can sometimes
be circumvented by determining the sensitivity of upstream
predictions to the location of the lower boundary.  Since
the effect of the lower boundary conditions on the upstream
predictions decreases as the lower boundary is moved farther
downstream, the boundary should be located well downstream
from any areas of concern.   For constituents with little
or no concentration gradient, the boundary concentration can
be specified as constant throughout the tidal cycle.  For
constituents with a significant gradient (e.g. salinity),
the boundary condition is defined by specifying a concentration
for each quality time step  over a full tidal cycle.

-------
                           - 112 -
INITIAL CONDITIONS
     Initial concentrations must be specified for each
constituent in every junction.   For studies where steady state
conditions are desired, the initial concentrations are
relatively unimportant.  However, while the initial  conditions
do not affect the final steady state concentrations, the
execution time required to achieve a steady state condition
can be extremely sensitive to the initial  concentrations.   For
studies in which historical quality conditions are being
simulated, the initial  conditions are extremely inportant and
adequate historical  data should be available to define them.
                    3.11  OUTPUT OPTIONS
     Both tabular and graphical output options are available
in the version of the DEM presented in this report.
Tabular outputs include summary tables, slack water tables,
a dissolved oxygen summary, and a summary of nutrients
limiting algal growth in each junction.  Graphical outputs
include plots of summary tables, plots of slack water tables,
(with or without observed data), and time history plots
at specified junctions.
TABULAR OUTPUTS
1)  Summary Tables:
     Summary tables  are produced by subroutine SUMARY.
A summary table prints the minimum, maximum, and average
concentration for each constituent in every junction during
a specified interval.  In order to allow summaries which
overlap, there are two types of tables referred to in SUMARY:
a "Type 1" table and a "Type 2" table.  A Type 1 table can
overlap a Type 2 ta,ble (and vice versa).  For example, a
Type 1 table may summarize from cycle 100 to 150 and a Type 2
could summarize from cycle 100 to 250.  There are NSUM1 Type  1

-------
                            - 113 -
tables and NSUM2 Type 2 tables.  The Nth Type 1 table
begins its summary at cycle IPETl(N) and ends its summary
at cycle LPRTl(N). If IPLTKN) = 1, the Nth table will be
                          A.L.
plotted.  Similarly, the N   Type 2 table summarizes
from cycle IPRT2(N) to cycle EPRTMN) and will be plotted
if IPLT2(N) = I.
2)  Slack Water Table:
     Slack water tables are produced by subroutine SWTABL.
These tables yield predictions for a junction when it is at
slack water.  The number of slack water tables equals NSWTAB.
There are three types of slack water tables:  high water
slack (HWS), low water slack (LWS), and snapshot.  (A
snapshot table is not actually a slack water table as defined,
rather, it gives the concentrations throughout the estuary
at a specified cycle).  The N   slack water table begins
at cycle NFPC(N).  The type of table is defined by KSL(N),
where KSL(N) = 0,1,2 indicates a snapshot, HWS table, or
LWS table, respectively.
3)  Dissolved Oxygen Summary:
     A detailed summary of dissolved oxygen (constituent 6)
predictions is obtained from cycle NDOCYC to the end of the
quality run.  The summary includes the minimum and maximum
predicted D.O. concentrations for each junction (DOMIN(J),
DOMAX(J)) and the cycles at which they occur (MINCYC(J),
MAXCYC(J)); the average predicted D.O. concentration for
each junction (AVGDOCJ)); and the number of cycles for which
the predicted D.O. concentrations for each junctions were
below 4.0 m$/'\)(DOLT4(J)), between 4.0 mg/1 and 5.0 mg/1
(D04TOS(J)), and greater than 5.0 mg/1 (DOGTS(J)).
4)  Nutrient Limitation Summary:
     A summary of nutrient limitation is obtained from cycle
NUTCYC to the end of the quality run.  The summary identifies
the number of cycles in which nitrogen limited algal

-------
                           - 114 -
growth (NNRL(J))  and the number of cycles in which phosphorous
limited algal growth (fTPRL(J))  in each junction.
GRAPHICAL OUTPUTS
1)  Summary Plots:
     The number of Type 1 tables plotted equals NPLT1 and
the number of Type 2 tables plotted equals NPLT2.   If TPLTl(N) = 1,
then the Nth Type 1 table will  be plotted.  If IPLT2(N)  = 1,
then the Nth Type 2 table will  be plotted.
     The plotting symbols are defined as follows:   "H",  "L",
and "A" correspond to the maximum, minimum, and average
concentrations, respectively.  Summary plots do not contain
observed data points.
2)  Slack Water Plots:
     The variable KPLOT(N) defines the type of slack water
plot, if any, to be generated.   KPLOT(N) = 0,1,3,4 indicates
that the Nth slack water table will:  not be plotted,
be plotted, be prepared for an overlay of constituent 6
(i.e. prepare to plot constituent 6 from the next (N + 1  )
slack water table and N   slack water table together), or
perform the overlay of constituent 6.  If NCONSW(K)  - 0,
then constituent K will not be plotted in any slack water
table.
     Observed data, read in through the card reader with the
data deck, can also be plotted on a slack water plot
(along with the model predictions).  Observed data is read
NOBDAT times. It is read in at specified quality cycles
COBClcd), I = I,NOBDAT).  Each block of observed data contains
NDATA points.  The location of each point is defined by
MDATA(K)} where K = I,NDATA.  The plotting symbols are
defined as follows:  a "*" corresponds to a slackwater point;
an "X" corresponds to an overlayed slack water point;
and  "H",  "L", and "A" correspond to the three observed data
points (either high, low, average or day 1, day 2, or day 3).

-------
                           -  115 -
3)  Time History Plots:
     There are NTP time history plots.   The N   time history
plot is specified for junction JUNCTP(N).   It begins at
cycle NSCTP(N), ends at cycle NECTP(N),  and plots data at
intervals of NCITP(N) cycles.  If NCONTP(N3K) = 0, then
the N   time plot will not indued constituent K.

-------
3.12  DYNQUAL DATA DECK SEQUENCE
CAPO
1
2




3

4




5



6

7

VARIABLE
ALPHA(J)
NJ
NC
NSTART
NSTOP
NODYN
HEADER

HYDCYC
NQCYC
NUTCYC
NDOCYC
NSPEC
NUMCON
KDCOP
KREAC
MIX
TEMP
STIME
HEADER

COLUMNS
1-80
1-5
6-10
11-15
16-20
21-25
1-80

1-5
6-10
11-15
16-20
21-25
1-5
6-10
11-15
16-20
1-10
11-20
1-80

FORMAT
20A4
15
15
15
15
15
20A4

15
15
15
15
15
15
15
15
15
F10.0
F10.0
20A4

COMMENTS
2 cards. Identifies the run.





Indicates Control Data is to
be read.











Indicates Tabular Output
Control is to be read.
             - 116 -

-------
- 117 -
CARD
8

9


10

11


12
13


14


15


VARIABLE
NSUM1
NPLT1
IPRTl(N)
LPRTl(N)
IPLTl(N)
NSUM2
NPLT2
IPRT2(N)
LPRT2(N)
IPLT2(N)
NSWTAB
NFPC(N)
KSL(N)
KPLOT(N)
HEADER


NTP
NSWP
KPLOP
COLUMNS
1-5
6-10
1-5
6-10
11-15
1-5
6-10
1-5
6-10
11-15
1-5
1-5
6-10
11-15
1-80


1-5
6-10
11-15
FORMAT
15
15
15
15
15
15
15
15
15
15
15
15
15
15
20A4


15
15
15
COMMENTS


Read NSUM1 of these cards.




Read NSUM2 of these cards.



Read NSWTAB of these cards.


Indicates Plotting Output
Control is to be read.





-------
- 118 -
CARD
16

17*
18

19



VARIABLE
NDATA
NOBDAT
NOBCYC(l)
NOBCYC(2)
NCONSW(l)
NCONSW(2)
•
*
•
JUNCTP(N)
NSCTP(N)
NECTP(N)
NCITP(N)
NCONTP(N,1)
NCONTP(N,2)
COLUMNS
1-5
6-10
1-5
6-10
•
•
1-5
6-10
•
•
1-5
6-10
11-15
16-20
21-35
26-30
•
•
FORMAT
15
15
15
15
15
15
*
•
15
15
15
15
15
15
*
•
COMMENTS


* Read only if NOBDAT>0.
Read NOBDAT valves of
NOBCYC.
Read NUMCON values of NCONSW.

Read NTP of these cards.
Read NUMCON values of NCONTP
on each card.




-------
- 119 -
CARD
20



21
22



23



24

25

26
VARIABLE
YMAXC(l)
YMINC(l)
YMAXC(2)
YMINC(2)
•
•
•
HEADER
PERCD
CHLNIT
CHLPHO
CHLCAR
BACKC(K)
THETA(K)
CLIMIT(K)
CNAME(N)
HEADER

TSRISE
TSSET
NO
COLUMNS
1-5
6-10
11-15
16-20
•
1-80
1-10
11-20
21-30
21-40
1-10
11-20
21-30
31-39
1-80

1-10
11-20
1-5
FORMAT
F5.0
F5.0
F5.0
F5.0
•
•
•
20A4
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
2A4
20A4

F10.0
F10.0
15
COMMENTS
Read NUMCOM values of YMAXC
and YMINC.


Indicates Quality Coefficients
are to be read.




Read NUMCON of these cards.



Indicates D.O. Parameters are
to be read.























-------
- 120 -
CARD
27





28
*
29
30

31
32


33


34
VARIABLE
NF1(I)
NL1(I)
PHOT(I)
RES(I)
DEPTH(I)
BENT(I)
IREOXK
REOXK
HEADER

NK
NFC(I)
NLC(I)
CDIFFK(J)
HEADER


NR
COLUMNS
1-10
11-20
21-30
31-40
41-50
51-60
1-5
1-10
1-20

1-5
1-10
11-20
21-30
1-80


1-5
FORMAT
no
110
F10.0
F10.0
F10.0
F10.0
15
F10.0
20A4

15
no
no
F10.0
20A4


15
COMMENTS
Read NO of these cards.






*ftead only if IREOXK = 4
Indicates Diffusion Constants
are to be read.

Read NK of these cards.


Indicates Nutrient Uptake
and Regeneration rates are to
be read.


-------
- 121 -
CARD
35






36

37
38



39
40


41

VARIABLE
NF2(1)
NL2(I)
AMUPP(I)
PHUPP(I)
REGENN(I)
REGEPP(I)
REBODD(I)
HEADER

ND
NF3(I)
NL3(I)
DECAYK(I,1)
DECAYK(I,2)
HEADER
NWASTC
NWASTV
NBANK
HEADER

COLUMNS
1-10
11-20
21-30
31-40
41-50
51-60
61-70
1-80

1-5
1-10
11-20
21-30
31-40
•
•
1-80
1-5
6-10
11-15
1-80

FORMAT
no
no
F10.0
F10.0
F10.0
F10.1
F10.0
20A4

15
no
no
F10.0
F10.0
•
20A4
15
15
15
20A4

COMMENTS
Read NR of these cards.






Indicates Decay Rates are to
be read.

Read ND of these cards.
Read NUMCON values of
DECAYK on each card.

Indicates Wastewater Inputs
are to be read.



Indicates Constant Inputs are
to be read.

-------
- 122 -
CARD
42



43
44a


44b



45
46

VARIABLE
JRCW(I)
QCW(i)
CWC(I,1)
CWC(I,2)
•
•
•
HEADER
JRVW(I)
NINC(I)

INCDUR(I,N)
FLO(I,N)
CON(1,I,N)
CON(2,I,N)
•
HEADER
SLINE(l)
SLINE(2)
•
•
•
COLUMNS
1-10
11-20
21-30
31-40
•
1-80
1-10
11-20

1-10
11-20
21-30
31-40
•
1-80
1-5
6-10
•
»
FORMAT
no
F10.0
F10.0
F10.0
•
•
20A4
no
no

no
F10.0
F10.0
F10.0
•
•
•
20A4
F5.0
•
•
COMMENTS
Read NWASTC of these cards.



Indicates Variable Inputs
are to be read.
Read NWASTV of the 44a cards.
Every 44a card is followed by
NINC(I) of the 44b cards.




Indicates Variable Bank
Inputs are to be read.
Repeat card 46 until NJ valves
of SLINE have been read.

-------
- 123 -
CARD
47a
47b

48
49
50
51

i
VARIABLE
JRBLl(I)
JRBL2(I)
ICYCl(I)
ICYC2(I)
BFLOW
BCON(I.l)
BCON(I,2)
•
•
•
HEADER
NINC(I)
INCDUR(I,N)
FLO(I.N)
CON(l.I.N)
CON(2,I,N)
•
HEADER


COLUMNS
1-5
6-10
11-15
16-20
1-10
11-20
21-30
•
•
•
1-80
1-5
1-10
11-20
21-30
31-40
•
•
•
1-80


FORMAT
15
15
15
15
F10.0
F10.0
F10.0
•
•
•
20A4
15
110
F10.0
F10.0
F10.0
•
•
•
20A4


COMMENTS
Read NBANK of the 47a
cards. Every 47a card is
followed by one 47b card.


Indicates Upper Boundary
Conditions to be read.
I = NWASTV + 1.
Read NINC(I) of these cards,
where I = NWASTV + 1.
Indicates Initial Conditions
are to be read.


-------
- 124 -
CARD
52



53
54

55a
55b

56
VARIABLE
JINT1
JINT2
CINT(l)
CINT(2)
•
•
HEADER
SEACON(l)
SEACON(2)
•
CIN(K.l)
CIN(K.l)
CIN(K,2)
CIN(K,3)
•
•
•
HEADER
COLUMNS
1-10
11-20
21-30
31-40
1-80
1-5
6-10
•
•
•
1-5
1-5
6-10
11-15
1-80
FORMAT



•
20A4
15
15
•
F5.0
F5.0
F5.0
F5.0
•
•
•
20A4
COMMENTS
Read until JINT2 equals NJ.
Read NUMCON values for CINT
on each card.

Indicates Seaward Boundary
Conditions are to be read.
Read NUMCON values for SEACON.

Read this card if SEACON (K) = 1
Read this card if SEACON (K) = 2
Read NSPEC values of CIN on
each card.
Read if observed data is to be
read during the current cycle.

-------
- 125 -
CARD
57







VARIABLE
OBDATA(l.l.K)
OBDATA(2,1,K)
OBDATA(3,1,K)
OBDATA(1,2,K)
OBDATA(2,2,K)
•
•
OBDATA(2,6,K)
)BDATA(3,6,K)
DBDATA(K)
COLUMNS
1-4
5-8
9-12
13-16
17-20
•
65-68
69-72
73-80
FORMAT
F4.0
F4.0
F4.0
F4.0
F4.0
•
•
•
F4.0
F4.0
F8.0
COMMENTS
Read if observed data is to be
read during the current cycle.
Read NDATA of these cards






-------
                           -  126 -
              3.13  DYNQUAL VARIABLE DEFINITIONS
     The following pages contain definitions of the major
variables in DYNQUAL.   Variables are listed in alphabetical
order.  Variables in italics are read from the input data
deck.

-------
- 127 -
to
h-
t— 1
•z.
ID
LU
a.
I-


























J^
0

t—

T3^
t— 4
u_
LU
O






























LU
Z:
t—
ID
o
DD
00
LU
_J
cc
«c
t— (
CtL


C/)
O
^^



CO
E
O
•r—
-P
O
E

"r"7>

CU
.E
•p

E
CU
cu
^
-p
cu
JD

E
O

•P
0
cu

-o
re

>,^
JD.

•q^j
CU
s-
s-
CU •
4- i—
to CD
E E
re E
i- re
-P -E
o

E re
cu
3 4-
•P O

-P "O
CO E
E CU
o
O JE
o
4- re
o cu

CO -P
co re
re


cc.
LU
X
1 — 1
•Si

(/•J
C/)
Q




















.
•P
3
O..
+J
^3
O

J_
O


en
E

•o
re
cu


CO


CO
cu

^
cu
to

ft
s_
cu
•1—

>r_
-p
E
OJ
T3


O
•r—
C.
O)

3
re

Q,

<:

^
s:
H^

_i
1
^1 --






























,
•-D

£—
0

i *
o
E

"' — )

E


CU

CT.

re

^^
t~t

cu
-p
re
S-

cu

re
-p
0-
3

(O
•r—

O




Z:
i

r-^
^_^
Q_
ID
<:















•
t«i

D_
3
O
&_
O)

c
o
•r—
-P
o
E
3
•r- 5

c
O
4-

O)
re
CD
^_
re

>^
o

CU
•P
re
s-

cu

re

Q.
3

re
•r—
C

gS"

re •>
r~-
S- II
o

•r— ^ — •
E


•z.
i
i—*
*^^
D-
O-
§

CM
•P
tt


1
• r—
O
CU
D-
CO

to
-o
re
cu
-C

o
+J

-o
E
0
0-
to
CU
J-
S-
o
o

4J
to
3
s:


»
Hgy

r—
cu

E
re
.E •
0 •—
cu
4- E
O E
re
re -E
CU 0

re 4-
o

re to
E T3
O E
•r- CU
•P
U -P
cu re
CO
-o
co CU
CO •!-
0 4-
J-
0

2TLU
^ l-H

•yr
^_^
LU
o;


CM
-p
*l










































•
r-;)

E
O

•p
o
E
3
•o

(4—
o

re
cu
s_
re

cu
0
re

s-
3
CO

z.
£

r^
•+~s
to
 -P 4->
*j *| *[








































•
•o

E
E 0
O T-
•i- -P
-P O
O E
E 3
3 "'"' D •
•r^ Z.
4—
4— O r—
O CU
CU E
.E E E
-p 3 re
CL r— .E
CU O 0
T3 >
4-
CU CU O
O> CT>
re re .E
1- S- -P
CU CU "O
> > «r-
 > — -
^t ^^ ^^































•
^^

-P
E
CU
3
-P
•i—
-P
CO
E
O
0

4-
O

E
O
•i —
-P
re
s-
-p
E
CU
o
c
o
o

•o
E
3
t
CD

O
re
CQ

z.
£
-^
V_^
O
1
PQ.



























•
i — i

•o
re
o
r—

*^
E
re


E
•P—

v:

•p
C
cu
3
-P
• r—
-P
to
E
O
O

4-
O

E
O
•r-
•P
re
S-
E
CU
o
c~
O
CJ

z:
^
R
KJ
V. 	
1
oq













^-^,
0
iy
#«
^~

II

K— 1
*+^r


•
h— t

Q_
rs
o

CD

E
O
•r-
-P
0
E
3
*'"" ")

4-
O

CU
-p
re
SL

^3
E
re
E
cu
T3

U
•H-
C^
•P
C
CU
X)

g
o
4-
•^
E
ID

•z.
i

J«^j
^ —
1








































•
•o

E
O
•r-
-p
(_j
C
3
**""?

4-
O

CU

re
S-

~u
c~
re
E
cu
T3

O
c~
1 '
E
CU
CO

z.
i
•-3

JC
1—
z.
LU
CQ











a)
E
•r-
S-
3
-o

T3
c~
re
E
cu
-o

o
•r-
f~
-P
E
CU
JD

>.
<^

-o
CU
•p
cu

CL.
cu
TD

E
O
•^T*
-P
O
E
3 •
•r-) Ct.
CU
re -P
to
E
•r- CU
E
E •!-
CU -P
CD
>} >^
X -P
O T-
r—
4- re
0 3
cr
CO
co re
re
s:

z.
s:

S^
DC
1—
LU
GQ

to
4-
o



























































•
jg
O
£

**s
E
re
DQ

•z
i


3B
0
_l
U-
00

-------
- 128 -
tn
z
=>
UJ
Q.
>-



















Z
o
t— 1
H-
»— <
Z
>— i
U-
LU
O





























UJ
Z
K-H
H-
o
a:
Q3
;O
in
UJ
—J
CO
«t
t— t
a:
•a:
:>•


cr


CD
E
cr,
3.
C:




r_
Cn
£
^.^^
Cr.
E

CD
E



en
E
^•^
CTi
P-
%
en
3.
o-
E
Cn
3.






1
•p
M-
















.
"-3

E
O

•P
O
E
3
'*""}

E


:*:

.p
E
aj
3
-p
•r—
.p
CO
E
o
o


o
E
O
O

>- 	 1
o; a: CQ
z uj — i rD 2
2: s: t/o co


2"
•t
•-3
o






















•
^— ^.
^
vt
	 1
z.

o
z.
rD
•-3


E
O
•i —
-p
U
E
3
•1—3

E
E
O

-P
re
S-
•P
E
cu
0
E
O
c_>


ct:
UJ
X
i — i
2:



j

a.
o

o

x:
o

o
•P

E
O
JD
S_
re
o

4-
o

o
•r-
•P
re
o;


»
OL
et
c_>
_J
;c
o
•v.^
•
I—



z:
i— i
^^
21


_i
n:
o
DC

3
+J
•F™
+J
to
E
O
O

4-
o

E
O
•1—
•p
re
•p
E
QJ
0
E
0
O


CD
re
S-
O)
>
cC

>-
o;
^^
^r*
Z3
CO
2"
•-3
5
>
)
M

















re

s_
o
»*-

•-3

E
O
• f—
•P
O
E
3
•1-7

E
•r—

i^

-P
E
O)
3
-P
•r—
-P
to
E
0
O

<4-
o

E
O

-p
re •
s- >>
•P S?
E re
CD g
o S
E 3
O to
O
CM
a>
en Qj
re Q.
s- >>
0) I—
>
<

>-
a:
<
s:
rs
CO
i?
•-3
CM
C3
>
<
O






















•
X-^s
^:
A
3=
^^
V 	 ^
0
z.
•^>
•-3
Z.

E
O

•P
O
E
3
•"-3

E
•r—
E
O
•r-
-P
re
s-
•P
E
(V
CJ
E
O
c_>


a;
UJ
X
i — i
s:



ca
c_>



, —
O)
E
E
re
x:
o

CD
E
•P
3
a.
E
O
o

S-
o
M- •
i^-^*
-o ^
0) Z
t/) "
3 r—

" II
H-H
1 — 1
Q. 	
3
O
S- •
en to
-p
i- E
O CD
<+- •<-
0
•P -r-
E f-
re  0)
10 o
E O
0
O E
O
E T-
O to
•r- 3
W) <4-
34-
<4- T-
M- T3

Q



Z.
l— t
^^
21


I
a
CO



















,
Ol
re
en

re

E


«\
E
O
-Q
S-
re
o

o
-p

f—
f-^
>,

Q.
O
O

-E
U

>
_E
Q.
S
O

t~
CJ

4-
o

0

-p
re
a:



^^
>— <
^^
^


S
1
Co
















•
O)
re
01
r—
re

E
•r-

t/>
3
S-
o
_E
Q.
to
O
jr;
CL

O
-p

r— .
P-.
>j
x:
a.
o
o

!E
o

t-
o

o
•r—
•p
re
o:



z.
i— i
•=C
s:


o
S
g
G
1 — 1
Q.
O)
•P
to

(U
E

•P

S-
o
M-
i^

-P
E
0)
3
-P
•i—
-P •
tO' — -
E 0
O UJ
U 0-
oo
<4- -Z.
o «

E
O II
•1—
-p t-l
re- —
S-
-p
E •
<1J (!)
0 i—
E O
0 >>
O O

£-5
re -a
-a •!-
E -P
3
o re
JO
en
-o E
S- T-
re s~
3. 3
re tD
cu
oo



z.
1 — 1
^^
21

H
^
S
Co






**~~**
•z.
o
CJ
s:
ID
^
,_r

u

^
s^_^


•
•^

•p
E
O)
3
•P
•r~
-P
to
E
0
O

4-
0

E
0
•i —
-P
re
•p
E
CU
o
E
0
o

1 —
re
•i —
+->
>r—
C
1— 1



2:
1— 1
t~£
s:

_^
^
EH"
^
CO








































•
Z.

I—
(1)
E
E
re
_E
O

M-
0

J=
-P
C7)
E
0)
_l


o:
UJ
X
i — t
s:

^^
z.
z.
UJ
_i
o

-------
- 129 -
CO
1
1 — 1
"^
ZD
LU
O_

























^^
o

1 —
1— 4

»— 4
U.
UJ
o































LU
l — i
t—
o
Q;
CO
oo
UJ
_J
CO
1— t
a:
•a;
7*


£~
CD


to
JO


^™
CD
E

^~
CD
E

^
CD
E

C!^
CD
E









c^
CD
E

C^.
CD
E

C!^
CD
E








"O
CU

re
E
•t— to

i- CU
CU CU
4-> O
X
01 CU
•r—
\s
E
O 4->
•i— E
-4-> CU
3 3
O 4->
CU T-
X 4->
UJ to

O
• O

S-
4-> 0
E q-
O)
3 E
4-> O
•1— •!—

oo re
E S-
O 4->
O E
CU
S- 0
O E
q- o
u

•r- "O
E CU

r— O

E ~a
O CU
•I — S- ' — •*
4-> Q. XXJ
ra 	
S- CU 1—
-M *"" •— *
E 4-> 2:
CU 1—1
u q- — i
E T- CJ
o
CJ

z.
1 — 1
^
8
EH
•5*
^~H
10
^>






























.
•-3

E
O

1 *
O
E
3
•r— 5

E


XX*

[ *
E
CU
3

•t—
[ *
to
E
0
O

q-
o

00
to
to
21
BL
•Z UJ
l— l X
Us
•-3
oo
oo

^"
CJ








re

s-
o
q-

r—^

E
O
•r—
4J
U
E
3
•T>

E


NX

^_)
E
CU
3

•i—

OO
E
O
O

u^.
Q

E
O
•r—

CT3 •
S- >>
4-> C
E re
CU E

E 3
O to
O

pr
3 CU
E Q.
•r- >>
X I—
re
2:
Oi
^f
^
00
•~3

X

gjr
°








re

S-
0
q-

r-^

E
O

4_>
O
E
3


E
•i —

XX

4->
E
CU
3
4\J
•r—
4->

E
O
O

(4 —
O

E
O
•i—

(O •
S- >>

E re
O) g
o E
E 3
o to
o
CM
E
3 0)
E Q-

X I—
re
s:
o:
^^
2:
oo
^
c\r
X
^<
^?
0








re

s-
0


r-^

E
O
•r-

O
E
3
•1—3

E
•i —

NX

^_)
E
CU
3
•4_)
•r-
I *
00
E
O
O

Cf«
O

E
O
•i—
•P
tO '
S- >»
•(-> S-
E re

o II
E 3
O tO
o

E *~
3 CU
E Q.
•r- >>
E 1—
•r—
2:
^
^£
^
00
•-3
_
"^
1— 1
2:
0








re

S-
o
q-

r-^

E
O
•r—
4_)
0
c
13
•i— j

C
•^

sx

-u
E
CD
3
-M
•r-
•P
to
E
O
CJ

q_
O

E
O
•r—
+J
ft* •
S- >>

c fd
fl) E
0 E
E 3
o to
o
CM
E
3 CU
_E Q-

E 1—
•r—
2:
Cd
^^
S
oo
^
CM"
"^^
t—t
^~
0























*
^^

1— —
CU
E
E
re
JZ
o

q-
o

4-*
C
OJ
•r—
O
•r—
Cj^
q-
cu
o
o

OO
to
CU
E
.E
CD
3
O
S-

CD
E
•r-
E
E
re
^

•z.
\ — i
^

X—x
^^
V^^1
"^
0












•
CU
E
re
E

^_>
E
CU
3
^_>
•r—
•P
to
E
O
0

CU
_C"
4-*

u>
c
•r—
4_>
OJ
O
•r~
•a
c
•r—

CU
p—
^Q


u
•r-
S-
O)
E
3
E
(O
JZ
Q.
i—
 0
3 E
Q.T-
E
•r— QJ
£
CU ••-
4_> 4_>
tO
*O O>
S E
•r-
>
to s-
> re
ncj
E E
O 3
S- 0
M — -*"*

•• i.
S^. CU
Q.
-U Q.
E 3
CU
3 S-
4-> 0
•r-
4J %-
to cu
E CD
0 S-
u re
f~
q- o
o oo
•r—
C 13
O
•r- CU
4-> r—
(O JO
s- re
4—* *r~
E $-
CD re
CJ >
a ** — **
o
0

^^
t-H
^
H"

V 	 .
fe;
0



































•
S-
cu
4_J
re
^

•o
CU
+J
o
CD
^
•^3
re

E
•i—

E
O
•1 —
4-3
re
^
4-)
E
CU
O
E
O
CJ
C£
UJ
X
2:


o
z.
0
0
4J
re
to
E i—
o re
0 4J
O
r^ 4-J
r—
fO O)
_c
cr L ^
o
S- CD .
q- E s
•i- O
rs -o i —
•r- q-
E >
0 -r- 4->
•p~ "X3 ^3
4-> 0.
CJ >-, E
E JO -t-
3
•TO •—
CU fO
O) 4-* 4-}
E 3 O
•r- O-4->
S- E
CU O CU
4-) CJ f~
E 4->
CU
• ^^
NX 1-^ JO

4J E E
E O O
CU •<- -r-
3 4-> 4->
4-* O CJ
•r- E E
4-> 3 3
00 T-JT-5
E
O O CU
0 4-> -E
E 4->
q- -r-
O CD
00 E
E 4-> •<-
0 3 S-
••- Q- O)
4-> E 4->
to T- E
S- CU
4->  -0
cu oo to
o re o
E S r—
o
CJ

!y
1— 1
^
^
2^

z.
0
0
























•
E
O
•r-
4-)
re
S-
4-^
E
CU
O
E
O
O

E
O
•1 —
4-J
re
s-
3
4-)
re
00

E
CU
CD
>-J
X
o

"X3
CU
>
r—
o
00
00
•r—
Q

^**
l—l
^


I—
^^
OO
0

-------
- 130 -
»— t
rfZ
=
LU
Q.
1—

























•^
O
I-H
r—

^^
K-l
U_
LU
Q






























ROUTINE I
CO
to
UJ
	 1

^^
*— (
Qi

>







O
cu
D..
CO
cu
S-

JE

•p—


E
CU

ro
-P

" E
>> 
u
c
3
•1—5

C


*y*

4-5
E
CU
3
-P
•p-
-P
to
E
O
O

CJ 	
o
cu
•p
^
rO
O
CU
Q
Z.
s:
*J
H*

^H
*H

^_}
to
Cl
o
cu
CO




























m
E
(O
S-
CD
O
s-
O_

O
•i —
, —
~^
ro
S-
T3

c~

CU

-P

E


r_
ro
S-
cu

E


0)
E

£
z.
£





1—

UJ
Q
O
CU
CO









•
X— »
Z.

0
O
Z.

*

h-
_J
UJ
o

u

o
t—
UJ
Q
*». — **


•
E
rO
S-
cn
O
S-
D-

>^
-P
•r-
i —
ro
3
cr

CU
^.
-P

s-
0

a.
cu
-P
CO

cu
E
•r—
h-
ry m rv
LU cj; ea;
•-.3 =>
s: co co




Cr
1—
_J
LU
Q
CO
&_
•^





















*^ — *
•
o
o
VjO
CO
*««• 	
^
c
0
z.

*

1—
_J
LU
0

II

n^
cr
1—
1
LU
Q


Q.
cu
•p
co

cu
•l~
•p

>^
-M
•r—
^_
ro
3
o-
z.
i



f~~
Or
1—
1
LU
Q

-p
**"















x — ^
o
z.
•>
r—

II

1 — 1
^ — •


•
1 — 1
D.
3
O
^_
o>

E
O

-P
0
E
3
•1—3

4-
O

c~
•p
Q.
CU
-o

o
• 1—
•p
o

Q.

E
S-
o

•1—
E
^
Z.
i

. — ^
H

te!
EH
P^
ptq
Q

-p
**"








































•
i~3

c:
o
•r-
•P
O
E
3
•r~^

C)—
0

-p
Q.
CU
*^i

0
•r—
-p
o
_E
Q.
Z.
i
_
»~3
• — *
Q-
~r"
I—
O.
LU
Q








•
O.
cu
-p
CO

cu
E
•r—
-P

^>^
4->
•r—
r—
ro
3
cr

^
c**

"O
CU
i-
s^


S-
O
(4 —

r~"
0
o
Q.

P—
ro
•P
•i —
i-
•P
CU
•o

E
• P-

r^
ro
•r—
S-
cu
-p
ro
E

CU
1—
JD
ro
-o
to
S-
CO
CU
-o
O
•1—
-Q

M —
o

-p
E
3
O
E
^
Z.
\ \
IE
^
x» ^-
Q
00
C/)
^c
^•~
1 — 1
Q

-------
- 131 -
CO
5
=
UJ
a.
t—






















-^
21
O
^^
L_
^^
Z
u.
UJ
o















UJ
z
h— <
1 —
^3
O
CQ
ID
CO

^1
CQ

,_,
f^f
^f
^



ex.




p—
o
o
CL
1 —
03

t
1 \
cu
-O

to

P—
o

•p
(J
c~

•>~J

03
O
•P
E
TD 0-
CU CU

O3 to
(_>
CU CU
TO E
Q-'i—
O r—
S- 03
O 3
i — O"
C"
O O3
M— CD
O E
•P S-
3 "O

E
«=C



2;
i — i
g





X
co
co

i
r—
CD

a:
















^
^ 	
*%
^_
o

Q


CU
1 —
o
-o
o
s?
o

•-3
E
0
•P
O
3
•>~3
c


O
cu
CD
to
s_
cu

^



-zr
\ — 1
s:



^ 	 ^
••3

CD

^£
O
Q




E
•r-
g
-a
cu

o
•a
cu
s_
o

cu

-p

f—
(J

c—
^

c


„ — ,
o
o
CD
CU E
^^^
O E
-0 J=
O
cu to
.Q CU
to to
CU T-
O ""3

O* E
o
M- •!-
O -P
O
S- E
CU 3

c
^
Z



ZT
i— i
S



^_^
t~3
V 	 X
^-
1 —

O
Q
_
CD

-
E
- tn
O T3
Q E
CU r—
O CD

o^t-
( beyond
between
«/f to
01 T-
O *~3
^^
O E
O
q_ .,-
0 -P
O
t. E
Q} H3
_f^ *r^
c
3
•ZL



Z
i— *
2:



C— j
> —
LO
0
1 —

g
§ 	
CD
E
a:
c
•r—
O
Q
•a
cu
\ *
u
-o
cu
^_
Q-

CU
-E
-P

.E
U

e~
^

E


, — ,
CJ •
>- i —
O CD
Q E
IT)
CU
O O3
^*\ ^*
O -P
•a s-
E CU
0 -P
>,  	 CD
to (/>
CU -r-
O "~3

O C
o
0 '-P
o
s- c.
t~t «r~3
E

Z



Z
I-H
SI



^^^
>"3
^»^
un
I—
CD
o
Q
, 	
CD
E
-















•
^^
t 3
^_
C_)
O
Q


CU

"o
Q"
-o
E
O
$
.a
s»^ ^
,_,
E
O
-P
O
£
•o
0


g
E
3
•P—
X
03
2!



Z
i — i
2:



^^-^
«~3
V 	 *
X
^f
'^
0
Q
, 	
CD
E
oc:















t
,, 	 s
o

c_>
o
Q
Z

a>
i —
0
^>
E
O
_a
s^^ *•
•-3
unction
'^
Q
t^_

g
E
i
•p—
E
•p-
2!



Z
i — i
2:



X— ^.
•^
** 	 "
Z
1 — 1
s:
g
to
03
•a
a:
























. — ^
•
^i"
OJ
r-l
o-
_J
UJ
Q
{f)
"(0
CT
UJ
Q.
CU
-P

CU
E

.^
-P
i— -
03
3
cr



z
I-H
2:








Q
Q



-
O
•P
(f>
-P
E
O
Q.

CU
£

^~
O

to
cu
3
|. i
03
>

^ — v
to
• p—
X.
03
i
X
" —
03
to
to
•p-
0
to

cu
•p
cu
o
-p
to
o
-p
"O T3
CU CU
-P -P
03 -P
CU O
i- i—
o a.
>, cu
O3 -O
^_
i-
- 1—
a: _i
< D-
21 21
co co


a_
a.
z
^ — ^
^
X
or
CD
u_



o:
o
-p
to
•p
E
O
D-

CU
•P

4—
O EEC
O O O
tO •!- T- •!-
CU -P -P -P
3 O3 O3 O3
t— S- S- S-
fO 4_) 4_) +J
> EEC
CU CU CU
— ~ 0 O O
{/) C d C * — ' C\l CO ^" LO ^D
•r- O O O
X OOO-P-P-P-P-P-P
03 E C C E E E
1 ECUECUCUCUCUCUCU
>> 3CD3333333
> — E 03 E-P-P-P-P-P-P
CU XCUC-P-P-P-P-P-P
03 E03ECCCEEE
C O O O O O O
•r- cucucuuouooa
s_ ^-P+JOOOOOO
O -P -P -P -P -P -P
o o o
CU -P-P-PlOlOlOlOlOtO
_E T3 -O TD TD T3 T3
•P tOOIlOEECEEE
T3-OT3OOOOOO
CU EECQ.Q.Q.Q.Q.Q.
i- OOOlOtOl/>l/)t/)tO
o Q.o.o.cuaiaicucucu
-P tOtOtoS-S-S-S-S-S-
00 ajO)(Di-S-5-S-S-S-
S-t-S-OOOOOO
o s-s-j-ouaooo
-P O O O
. O O O

cu cu
-P -P r— CM CO II II II II II II
03 -P
CU O II II II O. Q. O. Q. Q. O.
S_P— Q-Q-Q-D-D-D-
O CLI— it— ii— i_l_l_J_J_J_l
>, cu
03 .a
S-
s-
- 1—
C£ _J
< a.
2. 21
CO CO


D_
•* ^
1-H Z
*^-^- A
O D-
X CL.
cr_J
CD
u_



o;

to
E
o
Q.

cu
_E
•p

^—
o

to
cu
3
f •
03


* — ^
to
• p—
X
03
1
X
* —
03
to
to
•r-
o
to
03

cu
s:
-p
cu
o
•p
to
^? "T3
•P O)
-p
-a -P
cu o
•p 1—
03 Q.
cu
s- cu
o .a
>> 0
03 -P
S-
s-
ec

_J h-
OQ O

-------
- 132 -
CO
t— I
rs
UJ
Q_
>-
H-


























^^
f— ^

(—
HH

1—4
u_
UJ
Q






























UJ
z:
HH
O
n-
CQ

OO

i i l
_J
CO



o:


o
i _i i ^
E
to cu
4-> 3
E *T" 4-J
•r- O -i-
O -i- 4J
cxx: co
S E
CU O
-E tO U
4-J CU
_! \ £_
4- re O
0 O 4-
•1—
to T3 CM
CU E II
3 T- D-
i— Q.
re D 	 i
> D_
_J "

CO
•i— • 4-J
X 4-> E
re E cu
1 v- 3
>, 0 4-J
v 	 Q..,-
CU 4J
4-> .E tO
re u E
E T- 0
•r- XT U
•a s
i. i.
O to O
CU 4-
CU 4J
x: to «-•
4-> U II
•r- D-
CU "O Q-
i- E _J
O T-
4-J •
co Q. cu
D- •
O Z T-

t\
"O • 4-J
CU T3 E
4-> CU CU
re 4-> 3
 4-> •
S- O -r- 0
O r— 4-> 4->
a. to cu
>> E
re cu o •*
s- .a o CM
s.
<
CQ O
< —1
1 — Q-
3 2
co co

•v^^
Q- a.
a. a.
Z —1
*^-^
o
3
co
cs
u,
to
4-
CJ
OL

CT)
•i—
i-
3
-D

^— s.
>^
£—
fD
c
Z5
O
,,JQ

s-
cu
Q.
Q.
3

S-
O

CU

^~i
re
•P—
i.
ro
>
v.^

(—1

cu
O)
s-
re
g~
a
to •
•i- i— i
^5
4-J
CU E
r— CU
-a E
re cu
••- s-
i- 0
re E


4- CU
O f~
•p—
S "4~^
O
i— C7>
<4- C
•r—
^
0
cu
•a
•o
s-
re
u

4->
3
Q.
E
•i —

CU
x:
4->

tf_
O

E
0
•r—
4->
O
CU
to
JD
3
CO

re

S-
o
4-

s-


O
4_)

+J
0
cu
Q.
to
CU
s-

_C"
4->
•r-
2

E
CU •
.^ ^ —
re uj
4-> s:

«P
>)CO
ro •• — '
-o

4- ro
O CT)
cu
cu -a
E
"r~ C
4-> 3
s-
O)
x: >,

•r—
• r—
cu re
. 3
•r- C7"

•> CU
cu x:
E -P
•r-
4-J f~
O
•*/ If—
o x:
o 2

o
CQ
-
^^
a
N>/

E
CU
CU
2

cu

•
CO CU
i. r—
3 -Q
o ro
x: 4J

4— ^N
0 S-

s- £
cu E
X> 3
E to

Z
Di
^

""^
CO





i— 1
CO
o


a:


ro

J5
3
to

CU
x:

4-
O

*^— s.
D_
„ |
^— ^

a;
r—
O
>^
u

-)_*
C/l
03


CD
_c~
•4-^

-o
E
ro

CM
oo
>—
^^
Q
"**/

E
CU
CU
2

cu
jQ
•
to cu
s- .—
3 t~^
o re
x: 4->

4- >5
0 t-

S- E
cu E
-Q 3
E to

z
a:
<=t

™^
oo





CM
CO
a:
o
n:


i — i









4->
S-
re
4-J
to

O
4-J

CO
•r-

E
3
S-

^^
^J
•1—
r—
03
3
o-

CU
_c
4*^

j^*
o

.C"
2

4.)
(O

s_
cu
.a
E
3
E

CU

O
>^
0

o
•r-
t—
3
re
s-
T3

^

Z.

^^
S





^3
^~i
1







•
E
ro
S-

S
a.

^.
4_)
•r—
P«
03
^
cr

cu
-C
40

t^_
o

E
0

4-J
3
U
CU
X
cu

01
E

il
3
•a

x-^-s
c
o
•r*
4J
O3
t.
CU

•r~
«^— -•

i.
01

"i
3
E

CU

U
^t
0
— J >-
CQ C£
Z ^
^J

CD
E
•r—
-o
E
UJ

Z.

^^
s



. — ^
H

CKI
1


1 — !




to


x:

•r—
•^

E
re
s-
CT)
O
S-
Q.

^ 	 ^
2
O

'[ •
^~— ^
4-> CU
E Q-
cu ro
•r- 4->
CO
E 4->
re o
s- re
4-J i-

X
0 CU

i— O
3 •!-
re i—
S- 3
-o re

JC T3

cu x:

4_>
«^J~
E
O 4->
S- •<-
4- E
3
S_
CU E
XI 0
E
3 -a
E CU
s-
O) O

O CO

c_>

z.
1 — 1
^f
s





u.
h-
0
HH






E
o

•p
u
E
3

re

CT)
E
•r-
S-
cu

E
CU

to

cu
E
E
re
x:
u

cu
x:


4-
O

x:
a
•i—

2

CT>
E

E
•r-
P^
c
CU

CU


E
•^

•Q
CU
CO
3

CT)
re

iZ

z

^^
S





UJ
C3
_J


I-H



•
1 — 1

CU
CT.
S-
re
o
CO
•r—
•o

CO
4J
to
re
S

cu
r—
c\
03
•r—
S-
03
>

S-.
0
tf—

4
r—
4-x:
4->
4-> Z
(/)
Of CU -
c~ -f- *~~~+.
CT> 4-> -^^
.r- I-H
(— t^ Xta_-,
O 0
cu z

4-> O Z
•1— t— 1
CO 4-> II
ro re z.
x: Sp. *—
3
Q

Z.

«^
s

fei
•\
H

ft;
S
1

-------
- 133 -
00
»— «
2r
UJ
O-
H^



























•z.
o
1— t
1—
1— (
z
•"-<
u.
LU
O





























UJ
z
H— 4
O
C£
CQ
^3)
OO
LU
•_J
CO
•a:
h^
<


1— 11— 1 1— 1 1— 1 1— 1 K- 1 ,_,,_,,_,_,>_,


































.
CU
f—
.Q
03
-P

>.,
S-
03
£
to

cu
_c
-p

C|—
o

cu
r-~
o
>«J
o

•p
(/)
s.
•r—
Lu

c*
^^
^y*
ID





Q_
1 — 1













•
•o
CU
•p
•p •
o -0
r— CU
Q.-P
•P
-P O
O r—
E Q-

CO CO
•r— *r—

CU CU
i— r—
-Cl -Q
03 03
h- H-

S- i-
. 03 03
r— g p^
O E E
S- 3 3
•P 00 00
E
O <— 1 <— 1
U
cu cu
en a. Q.
E >> >>
•r- 1— 1—
•P
•P .E .E
O -P -P
i — z Z
0.
O •-!
^*
S- II
fO
£ *" — *
E Z
3 ^— '
oo i— i
1—
f~1^ — 1
Q_
CU i — i
Q.
^^
1—


•z.
1 — 1
^^
s
— N
•5.
T^
E-i
s
H



































»
^—
o
i-
+J
c~
o
0
en
S3-
-p
.4^
o
1 —
Q.

>~
S-
03
E
£
3
OO

CM

CU
Q.
>^
1—


^^
I-H
^f
^
^
^
CXI
EH
a]
H









•
•a
cu
+J
•p •
O T3
n^ CD
Q.-P
•P CU
-P 0 •—
O i— J2
CO. 03
4^
CO tO
•r— *r- >s
S-
CU CU 03
p^ r-~ E
o f~^ £
03 03 3
-P -P OO

>, >, t— 1
S- S-
03 (X3 GU
E E Q-
33 I—
co to
f"
CM CM -P
^^
CU 01
CX Q. CU
>> >> -c
1— 1— -p
= -C S-
J -p o
Z Z <4-
cu cu cu
^: jz r—
•P -P U
>^
Or— O

II -P
E
*~~* 'r™
Z S-
•> — Q-
CM
I— r—
_j n3
Q- -r-
i— i +->
•i—
C
>—• \


2:
i— i
^f
s
^
$
fH
Es
£
H















•
QJ
r"
^t
fO
+_>

>-j
t.
03
£
£
Z3
00

CM

CD
Q-
h-

^~
^_)
Z

GJ
UC"
4->
s^
o
**•
cu
r~*
0
>v
O

-1— >
C"
,r_
S-
Q.

r^
fO
•r—
-|_>
•r-
d
H- 1


^^
H- 1
^f
^
^
$.
CXI
&H
£
H
cu
CU -P
-P 03
O3 i- •
S- • ^
E CU X
E O -P O
O T- 03 UJ
•r- -P s- a:
•P 03
03 E E O
E CU O -P
cu flJ en »i~-
en ^-^ ^>j *p r~~
>, 3 X 03 03
X O. O C 3
0 E CU CU CT
,
dJ X ID
en o -P o E
E 4-» 3 CU 03
•r- CL S-
E TD E -P
•c- CU O CU E
E f O -P 03
s- rs 3 -p
cu o a. co
•PC -PEE
cu o o o
TD -r— TD U U
-P • CU
t- O3 CU to O to
O 3 -P 3 -P T-
C7* O3
TD CU S- E TD CU
O O CU -P
-C CO E T- CO O3
•P C O -P 3 S-
CU M— T- O3
E -Q -P 3 E E
JD 03 CT O O
en o E cu T- •!-
E Q CU -P +->
• p_ | ^> (— (Q fQ
CO S- >,r— 3 C
O O X T- CT CU
o c o .c cu en
J= C CU 0 >,
o o i- s- oo x
O 3 O O
t- - -c oo cu
o o o => a:
t^.
i— i CM oo «d-
E
O
•r—
-P II
Q.
o ^.
X
<— o
O LU
S- CX.
•P I—"
E
0
0


z
1— 1

s


f^
0
fc]
H



cu


o
^_>

CO
•r-

CU

"03
-p

s-
OJ
•p
03
2

\s
O
03
r—
CO

O3

t(-


E
O
•r-
-P
s-
o
Q.

r"
O

S
cu
E

c
c~
CU
•p
cu
TD
•
o TD
•P CU
•P
S- E
CU T-
-P S-
E Q.
3
0
0

_l
CO
z f—
i— i ^c

S 00



CO
ef.
t— i



















.
a.
3
O

en

E
O
•r—
-I-J

-M
f
O
0
p_
03
•r—
-P
•r—
E


E
03

£

E
O
•r—
-P
CJ
E
3
•r~^

•P
CO
i.
•r—
if-

cu

i—


z
1 — 4

^


«~1
e-i
^
^




















,
O-
3
O
S-
en

E
o

i \
.^
TD
C
O
O

l
to
•r-
-P

C

C
03


^,
1 —
Q-
0































,
1 — I

TD
O3
o


\s
E
O3


en
c

>
cu
u
cu


c
o

-p
o
c
3


•P
to

(| 	
L"-


z
HH

^

H
v-1
^
§
^

-------
- 134 -
IT)
I-H
Z.
ID
LU
Q-
H-



























2T
O
»— t
r—
»— t
z.
*"^
u_
LU
o































LU
>— t
1—
ID
O
ce
oo
LU
CD
^L
cc:
^c


1 — 1 1 — 1 H-H 1 — 1 1 — 1 1— t 1 	 1 1 — 1 1 — 1
































•
1 — I

-o
re
o


\x
E
fO
.a

CD
E
•i—

• P—
CU
o

s-

E
O
•r—
-P
O

3
•o

-P
to
re



z.
i — i
§


vH
C^
a
1^
^




















*
-p
3
Q.
E
•p—

CU
-p
to
re
5

4_>
C"
re
4_)
to
E
O
O

-C
-p
1 — 1

CU
.E
•P

CD
E
•i—
>
>r_
CU
O
CU


c
o
•r—
-p
0
E
3
r^>


^y
i — i
S


^

^
to
^




















•
-p
Z3
Q.
E
•r-

CU
•p
to
re
S

cu

J3
to
•P-
S-
re
>

c~
•p
1 — 1

CU

-[-.*

cn
c
•r-
>
•i—
CU
o
CU
S-

E
0

•p
o
E
3
"~3


^^
\ — i
•1


^
S 	 .
^
Cfc
"*








CU
-ft

E
re
o

i/>
4_>
O
f—
Q-

Q)
E
•r—
i—


•
i *
o

'o.

cu
E
•r-
>4_>

g- •
•P C
Z O
•r—
CU 4->
.E O
•P E
3
s- •<->
O
4- >>

T3 re
CU
•r- S-
4- 0
•r- 4-
U
cu -o
Q. CU
to •!-

E •!-
0 0
•r- Ol
-p a.
u in
E
3
"~2


"^r
\ — 1
§

§
&J
EH
^
s
^>





CU
E
•r—
4^

OJ

CO
fC
5

QJ
r—
jQ
re
•r—
s-
re
^

re

4-
o

-a
E
CU

CU

4->

c.
CU
JC
^

CU
E •
•r- 13
E CU
S- -E
CU O
-p re
cu cu
-o i.

O to
•P ••-

T3 -P
CU E
00 CU
3 E

S- S-
a> o
-P E

3
O
O


z.
1 — 1
s


* '
*^-^
o
>-
CJ
i^


^— ^
LU
•Si
\ — 1
1—
oo


CD
E
•i—
E
E
•r—
CD
CU
.a

cu

•p

cu
o
E
•i—
C/)

•o
CU
(/)
a.

^~
cu

cu
>
re
-C

-E
O
•^
_E «
2 E
3
to S-
>.
re >>
TD -P
•P«
r— r~~
r— re
3 3
4- cr

4- CU
O -E
•p
S-
CU 4-
^3 O
E
3
^

CQ
^£
h-
2
00



oo
<
Q
^
ai
r^
0
>^
o

^»>
to
s-
•^
4-

CU
c~
-p

o
•p

E
3
S-

>^
-P
•P—
r—
re
3
CT

4-
O

CD
E
•r—
E

•r— •
CD CU
CU r—
O /"*>
re
§-P

s- >>
4- S-
re
to E
>> s
re 3
T3 to

r— CU
r— .E
3 4->
4-
4-
4- 0
O

$•- ^
CU i— i
.a — -
E
3
Z.

^
^^
s:
ZD
00


r-H
CO
^
U

4->
to
re
P—

cu
f"
4->

O
4J

E
3
i.

>^
4->
•p-
p—
re
3
CT

4-
O

CD
E
•p-
E
E
•p~ •
CD CU
CU r-

re
E 4->
O
s- >>
4- S-
re
to E
>^ E
re 3
-a to

r— CU
r— -E
3 4->
4-
4-
4- O
0

s- aT
CU _!
jQ -^ 	
E
3
^

o:
c^
SI
^3
CO


CM
OO
>-
Q
^




to
E
O
•p-
4->
U
CU
i-
s-
o
o

E
O
•r—
40
cu

Q.
CU
"TJJ

-P
O
E

S-
o

S-
cu

4->
cu
.E
2

to
cu
E
•r—
E

CU
-p
cu
Q


•
E
O
• r—
4->
Q-
O

P—
O
s-
4->
E
O
t-)


~y
t-H
§



P^
g
C-^
sg




















*
TD
CU
4->
E •
•r~* "O
S- CU
Q.4->

4-> -r-
0 S-
E O-

to to
E C
O 0
•r— •!—•
4-> 4J
O O
CU CU
S- S-
^- S-
0 O
o o

E E
O O

-P 4~J
CU CU

'o.'a.
cu cu
• "O "T3
•o
CU O t— 1
4->
r^
•r- II
s-
a. 0.
0
CU C_)
i- O
re ^


















CD
E

CU


to


4J
E
0)
E
CU

o
E
•P-

CU
4->
to
re
2

cu

^Q
fO
•f—
$-
fO


_c
o
•r—
i$^
^

CU
C
•r-
CZ
<^~
cu
4->
CU
-a

o
4->

-a
cu
to
3
•
S- TO
cu cu
4-> V)
E 3
3
O
0


z.
I—I
§


H- H
** 	 '
o
i— t
^

-------
- 135 -
oo
*— 1
•z
UJ
Q.
1—





















•z.
o
*•""*
H~
H-I
"Z.
t""1
••*•
UJ
L-.































UJ
h-
0
cr:
CO
— ^
00
LU
_J
co
t— «
o:
>

i— i 1—1 i — i i — i i — 1»— ii— ii — i









,
to

•1 —

cn

"O
E

O "D
S- •!-
CT • • S- -0
^. -o ~o cn-i-
o cu •>- s-
(O O S- ~O CO
JD 3 Cn E
-o 3 -a
cn o "O O E
E S- E S- 3
•i— a_ 3 cn o
•P O -^ S-
-P -D S- O cn
O -i- cn ro J*:
r— s- j*: jo o
a. cn o >-Q

E E -r- >>
•i- 3 >> 01 4->
E O -P E T-
•i- S- -r- CU to

S- -^ E CU
O) O CU E "O
•P rO ~O 3
CU -Q •!- JZ
"O S "cf Cn
O O CU -r-
E E r— E -E
O
•r- CD i— CM CO
-p
Q. II
o
a.
r— O
O — J
S- D-
•p i^
E
O
0


"Z.
h— 1

s:


o
$





,
CD

_Q
(T3
+->

s- -o
d) <*O (U
1 * £^
ro -P S-
S CO
CU 4—
.*: 3 s_
O -P CU
re -r- O.

to "O 01 ID
CU E
_E -p • O -P
•P E "O U E

TI -P S- 3
cu a. E o -P
.E .,_ 4- .,_
•P CU i- to
_a a. >, E
q_ ro O
O i— O) r— O
c— r"* &_
to ••- CU i-
-P 5 •— > O
O i— O 4-
i— tO ••-
Q.-P 2 CU >>
O E (O
S- i— to O i—
O Q--P Q- S-
4- O CU CU
0 r- S- >
s- E a. a. o
cu
•Pi — CM CO ^~
cu
E M
ro
C x — x
ro 2:
Q. - —
1—
i— O
0 —1
s- a.

E
O
o

CQ
i— i | —
ef_ 3
§ 00

g
§
^

^
cu
•1—
•^^ '

-a
CD
S-
cu
-o
•1—
to
E
O
O

to
•r~ ^""•^
-a
cu cu
ro -P
• CO ro
O1 r^ r~
CU ro 3
cn E
ro CU T-
JK; JQ 01
E
•i- CU -P
i— J* O
ro E
-p -p
E D- to
CU 3 v-
-P
3 E CO
•P CU
•i- cn-p
tO O E
E S- CU
O -P 3
0 T- -P
E -r-
S— *P
o >> to
4- •— E
E O
E O 0
0

-P
a.
0

p—.
0
^.
^_>
E
O
c-)


"Z.
»— 1

s:


1
1

cu
•r^

-a

$_
cu
-a
•i— •
to '— -
E T3
O CU
O -P
(0

•i- 3
E
0) -r-
>
-Q CU
s-
CU ro
vx
rO CM
•P
Q.-0
3 E
rO
to
3 i—
S-
O O1
J=. -p
a. E
to cu
O 3
_C -P
Q.T-
•p
>, 01
i— E
E O
0 0

CM

II

. j
er-.
LU
|-y*
^/














CU
ro

CU
ro
CD
r~
ro

>,
_Q

CU

ro
•P
a.
3

to
3
S_
0
_c
CL
to
O
JZ
a.

T3
E
ro

E
CU
cn .
O "^J
s- cu
•P S^
•r- CU
E T3
•r-
-E tO
•P E
O O
ja u

CO






























•
-a
cu
•p
ro

3
P^
•1—
to

-p
o
E

to
•r—

f — ,
^-

-P
E
CU
3
-P
>r_
•P
01
E
O
U


CU
ro
cn
r—
ro

^*
































•
CU
p—
O
(T3
4->
•
i. -a •
cu cu -o
•P S- CU
(O -i- S-
S * 01 *P"
~O CU 01
-iii CU "O CU
OS- X>
ro -i— Ol
r— tO i— CU
01 cu ja i —
•D ro JO
J= -P rO
•P to -P
*Z^ •!— **/
O ^£
CU CU ro O
JZT i— r— ro
-P JQ 01 •—
ro to
Cn-P S-
E CU S-
•r- -P 4-> CU
E O ro -P
•r- .E S (O
4-01 3:
CU Q-J=
•o ro cn 3:
E -i- O
E 01 JZ: r—
o
•r- O i— CO
•p II
a.
O '—
•z.
p— -* 	 X
0 _l
i- , 00
-P NX
E
O
<->

CO
S h-
^f ~yv
^. oo


|-5
§3






























•
cu
,—
o
fO
-p

>^
S-
ro
pn
^
3
01

CU
jz:
•p

4-
O

CU
^~
O
>J
o

•p
to
rO
— '

o:
^
ro
oo



CL












•
cu
r^
f~i
ro
-P

>^
^_
rO
^
E
3
oo

.— i

cu
O-
>.
1—

_(""
-p
•z.

cu
jz:
-p

s-
o
(+—

cu
r—
o
>^
0

-p
E

il
Q.

-P
01
ro
	 I


i — i

s:

g
S
%












•
0)
r—
j")
fO
4J

>.
s-
ro


3
oo

CM

cu
a.
>*j
I—

jz:
+J
y

cu
_cr
-p

s_
o
4-

OJ
r~
O
>^
o

-p
E
•r—
S-
Q.

4^
to
ro
— '


"Z.
i— i

^

g
ft;

cu
o
u
T3
E
O
>*j
CU
JD
^ —

Ol
i-
3
U
(J
O

•~3

E
O
•r-
•P
O
E
3
•1—3

S-
0
4-

O
Q

E
3
E
•r—
X
ra
E

cu
JZ
-p

JZ
o
*"" •

Scj

•P 0
ro O
Q
cu -z.
1—"
0
>K
0


"Z.
^f
s:

o
X
g

-------
- 136 -
oo
H-
HH
LU
a.
I—



























z
0
»— 1
1—
!•— *
21
H- 4
U_
LU
a































LU
z:
H-4
1—
O
cc
03
ID
OO
LU
_J
CO
^C
^
•s.


cu
•o
cu
o
3
•o
o
$_
O-

OJ


E
rO
u

-C
a
•^
j~
•>

.^-x
i—
r—
^>
^~
/j^
o
S-
o
r~"
r~
O

^"

•P
C
cu

•p
•r-
•P
to
C
o
o

<+-
o

.p
E
3

c
rd

E
3

•^
X

yr


z.

^f
^


Z.
O

o
s:





Q.
3

E
CU

to
•p

X— -s
l~">
C/)
00

y
>-

_f_

"~^
OO

^£
^^
X
N^^»

E
CU
0)
£
-p
•r— •
E CL
ai
0 -P
•i- tO
E
ro cu
co E
S_ -r-
O -P
E
'•- >>
-P
i— •!—
ro r—
•P ra
O 3
-P CT

01 ra
.E
•P cn
g^
£Z *|_
o i-

M- -a
















C£
-a
cu
o
3
T3
O CU
^_ £^
CL-r-
4_>
cu
-Q >>

E •!—
ro r—
O ro
3
-E CT
O
•r~ rO
^
5 C7i
E
x^**.«r-
r— S-
i— U
^•> "O
C"
Q-*""" **•
0 =3
S- 00
O 00

g~ ^r*
a M
• 	 •

i *
to to
E 3
0 i-
0 O
.E
4- Q.
O to
O
-P .E
E CL
3
O CU
E -E
rO -P
,
E E CL
3 O CU
E S- -P
•i- 4- to
X
ra
s:


z.
1— (

^


a.
0

vJU
O
s:
i — i

a>

(_J
^>
u

T3
E
O

CU

^^

to
s-
3
CJ
o
o

•-3

E
O
•r-

O
E
3
•i—^

S-


•
0

Q



E
•i —
E

'i

CU

,^j

f
U
•r- •
c~ s-~*>
S <-3
>-
+-> O


cu z

'o

0

^7*
HH
^f
^
•-3

<_)
^_
o
•^
•^-
I-H
S
-

E
O

4-*
IQ
s-
Jj_>
C
cu
u
E
O
u

cu

-p

cu

3 O
CL ••-
§Jj_>
T5
0 S-
[ '
O E
-p . . . O)
• E E E O
•a E o o o E
CU O •!-••- v- O
to •!- -P -P 4-> O
3 -P ro ra ra
ra S- S- S- r—
T3 1- -P -P 4-> ro
O -P E E E E
_E E CU CU O) O
•P CU O U O •!-
ai a E E E -P
E E O O O S-
o u o a o
CU O Q.
^: +j +j +j o
•P E E E E S-
ro «i— •!— -r- CL
10 • CU O O O
cu s- s- CL a. a. >>
E CU -P ro
•i- -P to CM OO «d" 3
M- ro CL^-^--^ 1
CU S 3 i— r— r— CVJ
-o
xi a> cu cu cu cu
JE CU tO 00 tO CO CO
O -P 3 3 3 3 3
•r- 0
-E CU i— CM OO «d" LO
S >
•a n
cu ra
i— X
_a E »— i
ra •!— S!
•r—
$-
ro

a:
Z LU
i— i X
^ 1— 1
s s:





g
^
1— 1






•
-o
cu
-p
E
•r-
J_
O.

CU
JD

0


/
C
to
j2

^_
o

%.
cu
-Q
E

Z

Z
i— i
«^
^



[^
fe;
§
fes
h— t





































•
V
s-
0
3:
-P
cu
E

E
•^

to
f—
(U
E
E
(0
.E
O

t^
o

S-
cu
^Q
E
3
Z

Z LU
l— i X
rf l — i
s: s:





cj
tej
1— l




•
x^->.
ID
•
^^

II

^
** — ^

*~D

e
o
•»—
jj_>
0
E
3
•r-J

CO
E
•p—
S-
ai
^»>
E
CU
! 	
cu
E
E
ro
.E
O

r"
4J
NX

CU
-E
4->

tf.
O

S-
cu

E
3
E

r—
CU
E
E
ra
^
o

z.
I— 1
^^
s
H

<^_
^
s
G
fe:
i— i
CVJ
^~^
Q-
1—
i — i
O LO
Z CVJ

t^_ ^^
•r— i-
ai
• >
CO OJ
•
a) -P
x.^ E
•i —
O
• CL
-P
O ro
r~~ -1— ^
CL ra
•a
cu
r™ fl3
•I—
-4-> -l->
O
f ^—
-P CL
Zff
^—
C1J r—
•P '5

E -P
0 0
r^
tO CL
-P-
E CU
•r" E
O •!-
CL-P

roO
-PC
ra cvi
•o
a>
E JC
CU -P
ai
S E
-P CU
CU -E
-Q -P

r-^ •*
ra LO
> CVI
S-
CU II
-p
c
1— 1

•z.
*— 1
^^
g

fe;

p^
£j
G
a*

























































•
x^«s
^
CU
r—
o
>>
o
















-------
- 137 -
CO
t—
H- 1
UJ
O-
^



























«•—
o
t— 1
t—
•*-*
^^
*••*
u_
UJ
o





























UJ
z:
l—
ID
O
ct:
CO
GO
UJ
/ARIABL


(—1 1— 1 1 	 II 	 11— ( 1—41 	 1 1 	 II— < t— II 	 1
to
-p
0

Q. to
-P
S- O
CU •—
•P CL
re
2 S-
cu
\/ t >
o re
re s

to _i^
{J
E re
O i—
to
-o
CU E
-P 0
•P
O T3
r- CU
• Q--P
to -P
-P -P O
O O i—
i— E CX
Q.
to to
S- T- T-
cu
j \ XX NX
re

E E
.V CU CU
033
re -P -P

'i/j -P -P
to to
S- E E
0 O 0
q- o o

S- O i-i
cu
•p
CU II
E
C NX
re * — •
Q- 3
CO
r- Z
o o

+-> -
O "O
•— cu
CL-P
•p
-P O
O i—
E CX

to i/>
•r- *r~

z z

•p -p
o o

Q. CX

cu cu
E E
•I— •!—
p -p

s- s-
o o

•
t/> N^ NW//
•p
0 -P -P
r- E E
O- CU CU
3 3
CU -P -P
E T- •!-

-P in to
E E
S- O O
000
q-
C5 *""*
s-
CU II
-p
cu *-*
c NX
re •>
s- z

Q. O-
1—

"o o
S- 0
•P Z

0
o

I—
z o
1— 1 — J

E
O

•P
O
E
3

•
q~ *> — x
O -- — x

to —
O.M
3 >-
o  cu
s- >
cu s-
10 CU
-Q to
O -Q
o
If— .
o to
•^
ex
3 CU
0 S-
i- CU
CD-E
•p
f~
O JZ
re o
CU 'I-
C"
c s
•r-
s-
"O O
cu q-
c
•r- tO
(O E
•P 0
E •!-
O -P
o re
o
tO O
-P r—
E
•r— q~-
o o
ex
s_
re cu
•P -Q
(t3 p~
T3 3
E
-a
cu cu
> JC
S- -P
cu
o CU
o •
• r^
q-
o •• •
re re
S- -P -P
cu re re
-Q T3 T3
E
3
Z


t— *



1
fei













•
LO
c
•^
m
cu
_f^

^- — »»
•
0
•
Q
V 	 S

ID

-P
E
CU
3
•P

-P
to
E
O
o

q-
o

>k
s-
re
E.
E
3
to

c~
0
•^
CT~
^

-P
re

cu

13
>^
0


z
1—4



8
s
fe:
































•
4-)
O

Q.

CU
£
•p-
+J

C"
4J
2S."

cu
JC
-P

Sb.
o
H—
CU
,—_
0
^>J
0

CD
E
•r-
"^3
C
LU


»-H



^
I
fe)




re

c"
•p
•r—
^

to
r—
CU
E
C
re
c~
O

if—
O

Q.
3
O
S- .
CJ1' — ^
XX
t~ ^y
-P
i— i t— l

CU II
.E
•P 1-1
^—^
q~
0 -P
E
i— re
CU -P
c to
E E
re o
-E O
0
E
•P 0
tO •!-
i- to
•r- 3
q- q-
M—
CU -i-
C" "^
-l->
£
<+— ^_
0 O
M—
S- -i-
CU E
-Q 3
E
3
Z






8
en
fe:



•
C~ x — s
-P O
•i- Z
^E *^
t— l
I/)
E II
0
•i— i — i
• * ^ ^
0
c to
3 -P
•r~j C"
CU
t+— »l^
O 0
•I—
cxq-
3 q-
o cu
S- O
C7> O

JT -a
-p cu
i— i -P
re
CU r—
-E CU
•p s-

q— *^^
O ^O

E -P
O E

-P 3
O -P
E •!-
3 -P
•r-3 tO
E
-P 0
to o
c ^— *
•r—
q- •
o
CO •
J= Q
-p
F
q^* &~
o o
tf_ ,
S- T-
CU E
JD 3
E
3
Z


Z
H-4

^

H
fe:




t^~
•p
•f—
^

to
E
O
•r-
-P
O
E
3
•o

if-
o

Q.
3
O
s-
cn

_C~
-P
i — i

cu

•p

q-
o

E
O
•j—
•P O)
o cu
E a:
3
>r~3"O
E
-p re
C/)
s- cu

ip"re
•P
CU CL
-p
fz
q~ ^-
o o

S- -t-
CU E
JD 3
E
3
Z


Z.

i — i
E
O II

i * . .
O *^-^
E
3 (ft
•r-, CU
-P
-p re
to cc
s-
*l~~ ^S
4- re
o
o cu
JE O
-p
E

o o

S- ••-
CU E
.a 3
E
3
Z


1— H

2

H
S
fe:


•
cu

JD
re
•p

s_
cu

re
S

\x
O
n3
P—
CO

_C"
-p
z

cu

•p

s-
o
q-

cij

o

o

•p
3
0
-P
E
•r—
S-
CL

•P
to
S-
tf—
q-

cu
•p

q-
o

«L
CU
J3
E
3
Z.

CQ
z: «t
. I 1
< 3
2: co

^
I
fel

-------
- 138 -
i—
i— i
2=
UJ
0-
(-



























S^
O
1—*
1—
1— 1
•z.
h— 1
Lu
UJ
O































UJ
•z.
r-
0
CO
ZD
I/O
_J
CO
^
a:


i— i O£ i— 11 — ii— ii— ii — II-HI — ii — II-H
CU
CD
i-
O ro
E J=
O 0
o to
• r—
t_ "eJ
O
\ cu

E JD
ra ra
•r—
01 i.
S ro
0 >
r— "*— '
t| —
_|_J
0) 3
E Q.
•r- E
^» «r-
s-
ro CU
> 4-5
to
CU ro
-E 2

0)
O> E
E T-
L^
•r- (O
S- >
O
to cu
0) E
-a •!-
4-)
to
i— ra
ro
^> ^_ ^-^^>.
S- 0 >>
cuq- t-
4-> ro
E to -a
•r- E C
O 3
CU T- O
E 4-5 JD
•t- ra
4-5 S- S-
4-5 CU
q- c Q-
o cu o.
O 3
S- E
CU O S-
-Q O O
E
3
^


^y
1 — 1
^"

H

I
te;














•
cu
ra
CTi
^~-
fl3

c:
•r—

^~
r—
>*j
.C
Q.
O
i-
o

c~
o
O


f~
CU
CD
O
i.
4_>
•P-
E

q-
o

o
•t—
4_>
ra
o;


•
1—
l-H
^^
_J
T"
O
^x^
*
T-H


2T
HH
^^


ZE
O
h-
t— 1
2=































•
\x
s-
o

CU
^

i—
cu
•a



E
•r-

to
E
O

+- *
u

3
*p-J

tf_
o

^,
cu



•z

>;
Z 

j *
ro

01
S-
a>

"i

c

E
O

4J
O
c~
"^
•r-j

0
S


0)

_|_>

q-
o

i-
cu
2
O
_J

o:
•Z. LU
l-H X
^C ' — '
S -SL

la
^
1
^








•
zz

r~~
0)
E
E
ro
J=
O

q —
O

to
-o
E
CU

CU

4_>

4J
(C

O1
S-
CL)
JD
E

E

E
O
•r—
4->
O
E

•r-5

0
2


CD

4_>

q-
o

S-
OJ

Cn
•i—
^

o;
Z LU
i— i X
cT I— I
S 2:

3
Cj

fe:





to
4->
E
fC
4~>
to
E
O
(J

E
O
•r-
01
3
q-

•r~
-a

£
i-
o

>r_
c
3

o^
c
•r—
fO


W
r—
cu
E
E
ro
J=
O

q-
O

(/)
Q_ •

O " — s-
f ^
CT^*1*— •*"
ixi
q- u_
o u.
h-H
S- Q
CL) O
o **— ^*
E
3
^


Z.
l — i
^-



^
te:





c-
4-^
•r-
2

01
E
O
•r—
4-*
O *
C 1/7
r3 -4 ^
•r-J E
CU

O U
• r-
o_q-
3 q-
o cu
S- O
cr> o

C" T3
4-> CU
i— < 4->

CU i—
JC CU
4-> S-
q— - — -
O 
E E
O CU
•r- 3

O T-
E 4->
3 01
•r-J c
O
4-> 0
to •• —
<0
1— ~ •
O
cu •
J= Q
4->

q- s-
o o
q-
S- •!-
0) E
JD 3
E
3
•z


Z.
i — i
s:


H
S
•fe:






C"
4_>
•r-.
^

CO
C
O
»l—
•p
o •
C" <—+*
3 a:
 to
CU

4-> (O
i— i S-

CU E
J= O
4-*
q- ro
0 l-
O)
E E
O CU
•r- CO
4-> O)
0 S-
E
3 -O
•1-3 c
rO
4-)
01 CU
ro -V
i— ra

a> o.
J= 3
4_>
E
q- s-
o o
q-
s- ••-
CU E
JD 3
E
3
Z.


Z.
i — i
^p


H

fe!






_.C"
•4-)
•r-
^

l/>
C
o
•p-
^ ^
(_)
E
3
•r-5

q-
O

a.
3
O
S-


f—
4_3
l — i

CU •
4-> O
•z
q_ ^
O T-I

E II
O
•i— i— i
i i ^^^
U
E tO
P CD

rO
4-5 ^
to
ra >>

o
cu cu
c~ -£J
4->
c
q- s_
0 O
q-
S- -r-
CU E
JD 3
E
3
•z.


Z.
1 — 1
3?"


H

te!






fl3

-C
4->
•r~*
2

to
i—
cu
E
E
ra
^.
0

q-
o

a.
3
o •

O^ N^1
2^
ac* **
4-> rH
1 — I
II
CU
JC i— i
4_> ^ 	 ^

q- 4J
o c
ro
r— 4-*
cu to
E E
E O
ro O
C"
O E
0
4-^ *r~
01 01
ro 3
i— q-
q-
CU -i-
c~ -Q
4-5
F"
q- s-
0 0
q-
S- -r-
CU E
fl
E
3
Z.


Z.
i — i
^^


B

te


•
(_j
>~
t_j
s
CO
•z.

-f>

^— X
y
V 	 ^
C_5
a.
LU
•z.

01

ro
3
CT
LU


•
CU

JD
ra
4J

i-
a>
4-5
ra
2

y
o
rO
!—
to

c~
-I—*
s:

cu
-E
4-5

q-
o

x
u

4-5
O1

-------
- 139 -
CO
•— t
•z.
LU
K




























Z.
o
I— H
^_
\^
j^
1 1
U_
LxJ
a





























LU
H- 1
h-
— s
o
a:
~§
CO
LU
i

•—1
ac
<








E
•r—

CU
re

r— .
re

t|
o

JZ
•P
2g
o
J-


0)
JZ
^>

to
-P
•r-
E

r~—

E
CU
cn
o
s_
-i *
•r—
E

JZ
O

JZ
5

E
•r—

to
CU

O "-3

0 E
O

0 -P
O
i- E
CU 3
JO T->
~«i
•z.



"Z.
<;
SI


•^
_l
z.
z.




E
CU
•^
o
•f—
q-
q-
cu
o
0

TO
CU

re

CU
i.

•
o

Q

p^
t.
O
4- •
•r— ** — •*
E h-
3 Z.
LU
cnco
E
•i— •>
> DC
re h-
JZ 0-
LU
to Q
E
o *
•r- CO
•P LU
0 CC
E
3 •>
•1—3 [— •
0
q- n:
O Cu
v« x
to
CL to
3 -P
O E
S- 0)

O
q- -r-
C>q-

S- CU
CU O
JO O
E

z.



z.
<;
SI



§




^_^
h-
^£
Q
cn
c
"ZL
ft
f— 1

II

H— 1
V 	 .*

"O
03
CU
t-

V)
•r-

fO
4_>
re
•o

-o
O)

S-
cu
to
JO
o
q-
O

0.
3
O
$-
co

f~
^_>
1— I

CU
-C
>!_>

_C"
U
•r—
C~
^

•4_)
re

QJ
Ti
>^
0



z.


CD
E
•r—
4— >

>*.
4_)
•r™
i—
fO
ZJ
CT

^.
CU
Q.
to
CL
CU
-p
to

(U
E

•P

O
•1—
r—
3
re
S-
"O
>^
C"

t|—
O

s-
O)
"i
3
Z.



Z.
ef_
5EI



1























•
Q.
3
O
s-
cn

S-

i — i

CU
JZ
-p

c~
•r-

to
E
O
•r—
4-)
O
c
3
•o

q-
o

$_
CU
"i
3
Z.



Z.
ef_
SI


v_
1 NOPRT































•
to
CU

,f)
fO
+-*

>s
S-
re
E
^
3
CO

1— 1

CU
Q.
^j
H-

q-
o

to
•p
o
^~
Q.

q-
o

s-
cu
"i
3
•z.



z.
^
S-
03
E
£
3
co

CM

CU
Q.
^j
1—

q_
O

to
.p
O
r—
Q.

q-
O

S-
0)
"i
3
Z.



Z.
rf
SI



CO
EH














































,
T3
CU

•P
O
r—
d.

C/)
4-*
£1
•r—
O
o.

M—
0

S-
cu
E

•z.

> — 1
DC CO
$ 2
3 3£
co co



CL.
Q.
z.









E
•i—

CU
re
O^
r—
re

M—
O

^:
^j
^
o
s-
cn

CU
JZ
.{_>

to
^_3
•r-
p^
• ^
r^

to
3
O
JZ
Q.
to
o
JZ
CL

CU
S-
cu
JZ
s

to
CU
I— •
O T>
^~
0 E
0

O -P
o
S- E
CU 3
JO *(~5
3
^



Z.
rf
2?


•"3
D-
Z.




























•
X)
CU
•p
3
O
CU
X
CU

CU
JO
o
-p

to
(O.
CU

to

CU
f«
• p—
•p

^1
4_J
•r~
r—
re
3
CT

q~<
o

S-
cu
JO
3
z.



z.
5
3?



1








-D

re •
^ — ^
CU O
^/ f~~)
re o
-P CQ
Q.LU
3 o:

•p »
C D_
CU D-
•i- LU
S- 0
-P LU
3 DC
E
**
E -^
C z.
O LU
q- CD
•r- LU
E DC
3
ft
CT-D.
E Q-
•r— ~~")
> o:
re o_
JZ
A
(/) D.
E D-
o •=>
•r- ^*
4-> <
U 	
E
3
"r"3 •
to
q— 

>~
^,
re

P
3
CO

t— I
CU
CL

|— _

JZ
o
•r—
JZ


CU
E
•r-
^
C
CU

O)
-a

o



3
Q.
4^
3
O

Cn

• |_
CU
JO

to
•r—

CU

JO
re
-P

^.
S-
re

^
3
CO

CM
CU
CL

}_—

JZ
o
•r—
JZ
•3.

CU

•1—
cs
^
CU
•p
CU
-o

o


s_
CU
-p
E
3
O




z.
t1 ' '<

-------
- 140 -
z:
UJ
Q.
1—


























z:
o
i
z:
i— <
u.
UJ
a

















UJ
»—i
=>
o
cc
03
co
UJ
_J
CO
»— H
a:


i — i





























^
o
r—
Q.

CU
£

[ *
•P
z.

cu
JC
i-
o
14-

cu
u
^*

en
•1—
•p
S-
re
-p
CO


•z.
^
"Si


fe
s
I M5CTP


I— I

























i
^j
o
^
cu

i 	
fO
"O

1 ^

s_
CD
a.
to
cu

CJ
.
re
3
cr

q_
O
S-
OJ
JO
•z.


•z.
Ij-
2




1


I-H













,
^. 	 s
^_

-(->

c

^_^

cu
o.
re

4->
o
re
. %
X
cu

o

J 	
^
re
S-
^
JZ

cu
JZ
c:
o

cu
"
'^3

en
s_
-p
CO


•z.
^
s



^



1 — 1















,
^— ^
^-

^_>
fr.
f—
—)
•- -*

cu
Q.
re

o
re

i \
X
cu

a
•r—
r—
re

XJ
^.^
cu
JC
f—
o
cu
o

u
en
c
"O
c:
UJ


z:
^j;
SI




1
8


I 	 1





















,
-o
cu
•p

•^
Q-

CU

O


to
cu

o
re
-P
>,
C

3
CO
r-H

CU
a.


tl^
o
i.
cu
JO
z.


•z.
^
^
re
CO
CM

cu
Q.


it-
CD
S-
cu
JO
E
•z.


z.
ej;
^




1


i— i





CU
_f
-p

r"
O
re
cu


o
•P

r_
cu
+j
re


•*s
o •
re >>
r- C
«/> re
-o
s- c
O 3
1- O

"O
cu s-
s- cu
•r" ^
3 O
O"i—
CU
t- CU
JZ
to -P
(U

if
•i- re
r— T3
re c:
3 3
cr o
JD

0 S-
i- Q-
a> o.
JD 3
E
•z.

_J
03

rf 3
S CO



o
o
CO
z:


i— <





































•
to
-p
o
r—
a.

s-
cu
•p
re
\s
O
re
to

*i
o
s-
cu
1
z.

—1
en
•z. <

CU UJ •
r- D- CU
O.CO >—
E z: o
0 >>
o -a o
c
cu re r—
JT re
-P O XJ
S- T-
•P CU -P
re N
s-
O E CU
S- CU Q.
CU CU
N S to
•P CU
O CU i—
4-> JO O
>s
-P to 0
cu cu
CU il -P
s~ re •!-
to re
•r- CJ3 3
, 3
c 17 c
3
O
0


•z.
,
1—
to
•i- re

>, 00
s- cu
re -P
E re
E u
3 -i-
to xi
E
CM -r-

CU CM
Q.
>, II
t—
^-
re rs
z:
S-
0
•
S-
cu re
CL E
^i E
1— 3
to
re
CM
^—
•r- CU
D.
00 >,
cu t—
E
•i- tO
to E to
•P CU CU
0 -P -P
i— cu re
Q. XJ O
•^
CU JZ XJ
E 0 E
•P JZ "~
5 *~~*
t^—
O CU II
cu re =D
"i '£
3 re
z. >

o;
z: <
i — i ^

S co




9-i S
tH _J
fe: z:
















































•
>^
^.
re
3
to










'

-------
- 141 -
t/>
I— 1
z
UJ
Q.
1—


























Z
c^
1— 1
t—
1— «
z
*—*
u.
UJ
o





























UJ
r-
o
CO
uo
LjJ
CO
- _l
C£ C£ CO
Z LU Nj
^.
fO
cr
Cz
•^
CO

OJ
*c
4_>

C"
o
•i —

"2

-M
ro

QJ

U


^
g


!H
1
fe:

l—H





























*
to
S-
QJ

S-
ro
g"
u
to
•r*
T3

QJ
4.3
CO
ro
2

4_)
C
ro
-M
to
c
o
o

lf_
o

s-
QJ

E
Z

z
g


g
1


H- 1





























,
to
S-
QJ
O)
S-
ro
JZ
0
to
• 1—
-a

QJ
•p
to
re


QJ
i —
o
ro

^
ro


M-
o

s-
QJ

E
Z

z
g


^
1
fe:

ce:
























































•
x-^
•-3

CL.

s:

l-H

Z
1?

^.^
CL.
|
O


C
o ro
•r- 4J
•<-> ro
ro -o
o c
o QJ re
t— QJ U
t-
JZ JZ CO

i^ C
QJ T-
QJ S- O
jc ro Q.
-P
QJ CO
4-> S-
re QJ QJ
JZ CO
-(-> 1— QJ

Qj"^!—
3
+-> •
•r— ^ — » •
4-> (*-> ^
CO •
C r— C
0 0
0 II •!-

jz I-H ro
•M U
•-3-00
C r—
QJ ro
JZ -P
•P *> r^
^^
S- t— 0
0<
4- Q -P
^y c~
•P •> QJ
C i— I 3
•r- -P
O II -r-
n. -P
^. in
re c:
•P ** O
re z o
T3 0
o s-
"O 2! O
QJ ZD 4-
> ^^
S- "CO
QJ .— 1 -P
to c
J3 II •!-
O O
•-3 Q.
JZ
+J
1 — 1

z
|j

HnH
S^
1
Q





n
CM

^.
fO
"O

A
1— 1

>>
ro
"O

s_
o

• r*
2
O
^—

-a
E
ro

QJ

ro
s-
QJ
>
ro

•*
JZ •
O)^~^*
••- >>
JZ i—
QJ
S- >
QJ •!-
JZ 4->
-P U
•r- QJ
QJ Q.
CO
O QJ
-P S-

~O "
E CO
O
Q. >,
co ro
QJ -o
S-
s- -o
o c
o ro











a:

^J
(/)
O
r—

t/)
•r—

_C
U

^:
^

sx

•1— >
c:
O)
^
4_>
•r~*
4-3
tO
^"
o
o

l}_
o

CO
CO
ro
E

OJ
E
•p-
E
^.
OJ
4_>
OJ
•o

o
4-3
•
tD O
QJ
CO E
3 O
*P—
-P -P
E O
QJ E
•r- 3
O •!-}
•r-
4- E
M- T-
OJ
O

Z.
1—1
^•
^"2
}~
c_>
UJ
o
o

C£ G£. C£























































• •
• *"~-N *•-— •» X~"».
*~^ 1-3 r-^ 1-3
r-^ s^^» s^^^x v^^*-
	 Q Z CL.
Q. O UJ UJ
•~> m c^ CD
31 UJ LU UJ
CL. a: cc a:
i i i i
t— t i— t r— t f— i

z z z z.

5? 2: s: 2?
^ — , r-^ s, 	 x 1-3
s, 	 ^ Q ^y Q_
CL. O UJ UJ
Z3 CQ CD CD
:n UJ uj uj
a. o: oi o;
o o o o

ce:






-o
QJ
>v
re
u
QJ
T3

OJ
re
01
r—
ro

QJ
JZ
^-5

4—
O

•P
E
QJ
U
i. •
QJ OJ
Q. i—
t~*
QJ ro
jz -a
•p ro
^
" O
CL QJ
QJ "O
•P O
CO •!-
JD
QJ
E */>
•r- *^
4->
^:
^> ^
+J -r-
•r- JZ
•— 2
ro

a-x
oo
JZ OO
o ^
ro 2;
QJ O
^^
s-
o
u_

z.

^

d
1
a,

-------
- 142 -
z
13
UJ
D.
^
























Z
o
1— t
1—
H-4
Z
1— <
u.
UJ
o

















UJ
t—
0
a:
CQ
**~i
CO
UJ
CO
^c
o;
>
I

o:








»
CD
cO
CD

CO

E
•i—

,_—
i
^
C"
Q.
o

O

.E
O

o
.p
CO
3

o

Q_
CO
O
a.
L|_
o
o
•i—
CO
cc.

o
D-
3:
o
.
t-H


2£

^£
^J


_,
3:
o
o
a.

a:












,
i — i

a.

o

CD

E
O

-p
o
E
3


E
•i—
CU
•p
CO


CO
•r-
CO
CU
-P
C
CO
O
a.

CO
CD
CO
g
£
C



—r
t-H

S^


P

S
S

a:






















r-^

E
O

+3

E

•r~)
E


O)
CO
CD

fO
O

CU
•P
CO
i-
•r—
CO
CU
_E

CO
o
o

D.


•^
»— I

*£•


l~3
{""")
O
a.

at



tf^^
cu

CD

CO


ry-

^ \
E
ai

^_) ,
•i- a.
•P CU
to -P
E CO
O
CJ CU
c:
^*» *r~
j~i 1 %

E CU
O E
•i- O
-P
U CD
E E
3 T-
•0 i-

CO TJ

O CO
-P •!-
CO
T3 CU
CU -E
-a -P
CO >>
CO
E 0
CU -P
CD 0
o
t- CD
O 3
O
-P i-
E J=
3 -P
O

<


^T
1 	 1

^r


2:
0
o
31
CL.

OL


















•
r-^

E
O
•i—
•P
0
E
3


E
• P—
CU
CO
CD
r—
CO

^.^
-°
CU
•p
CO
i.
CU
CO
a.
3
CO
3
O
a.
CO
o

D-


^r
1— 1
^f
^*


^
**«^
Q.
a.

*

•
^•^">>
a:

«t
i— i
u

i — i
v 	 ^


v
i — i

a_
3
O
^_
CD

E
O
•r—

O
E
3


E

CU
-P
CO
i.

CU
to
•p
a.
3
CO
3
L-
o
a.
CO
o
-E
a.
E
0
E
=


Z
i — i
^f
^r*


3,
D.
O.
ID
31
a.





(^ 	
i — t


•
•^31
cu
j_


>,
S-
ca
E "^
3 CU
01 E
•r"
 co
E ••-
£ o
CU i—
•P Q.
cu
"O 
•P O
CU -H,
1—
JO 1—
«r- D-
«
>

^
<£
J^
ZD
co




1—
£

ry fv






•
S—
cu
CD
s-
CO
c~
O
CO
•1—
"T3

CU
-p
CO
cC
^

4_>
E
CO
^_>
CO
E
O
u
J-
-p
1 — 1

cu
-E
^_>
s-
o

z 1
1 —
cu cu
E -P
E CO
CO CO
J= S
O
E E
•r- CO
•P
"5- co
O E
i— O
U_ <_)

^
Z bj Z
i— i X i— i
^C *~* ^^
s^ ^* ^?


_^
^H
z" &
Cf Q?

rv^ Qsl
•-D
CU
E JO
O
U •!- +J
•r- -P CO
i— CJ 3
3 E E
CO • 3
S- CU '""5 CO
T3 i— E
>,JO -P O
JC CO CO *i —
•P CO
CU E S-
JT >, 0 CU
•P i- *r~ >
CO CO -I—
>> i i- -a
jo E cu
3 > «
•-D CO -r- CU
T3 >
E O -r-
O T- S- 4->
•r- r— O CO
-P 3 CD
O CO CU CU
E S- CT. E
3T3 S-
•r-> >, CO CO
JZ J= CO
-P 0
(O "+- co "O
O T- CU
"O "O •!-
CU -P «<-
•i-3 CU T-
<+- a. -pu
•t- -P co CU
(J 3 
S- (O CU CO -r-
O S- -P J= -P
CD CO O •!-
SO s_ co co
OS- -^0
^-0- S Q Q-
lf_ o
E i—
I— i U_


z z z
1— 1 t— 1 1— 1
*c ^c ^c
^T" ^" S^

^ 	 ^^ 	 ^
-. 3-3-
K-I ^^ cy
z z z
1 — 1 H- 1 1 — 1
cr crcr

C£




















•
a;
r__
o
>*J
o

r~~
rO
T3
•1—
-I-'
,_
r_
13
4 —

S—
cu
o
z.

"cu
E
E
CO
.E
o
E
s
o
5
cu
z








z
*"— ^
1 —
UJ
z
cr

o:









•
r"
-p
CL
cu
-o

^~
cu
E
E
CO
.E
u

CO
CO

E
cu
££,
to
\ —

•
z

n~
cu
E
E
CO
0

o
CO
3
-o
CO
o
3
CO
-a
>>
31

BL
Z. UJ
t— ( X
^ t — 1
:>• ^>




z.
^

-------
- 143 -
to
•=>
UJ
0-
K






















•z.
O
t—
t— 1
t_4
U-
UJ
o




















UJ
z:
•— »
l—
r>
0
fV
u~
CO
00
UJ
_J
co
o:
>




£*










^
,_—

f
o

•p
u
c
3
•1-5
• p—

r—
o
o
D-
"re
s_
-p
s_
-o
o

c
o

•p
re
s-
cu
01
cu
o
o
CQ

ii
o

cu

re






•z.
<

_

o
CQ
LU
C£.




o:





„ 	 _
fyr
•z.
ft
I— 1

II

K— I


t— 1
D-
3
0
cr>

^-
o
•P
O
c:
3
•1—5

s-
o

O)
•p
re

c
o

•p
re
cu
cu
cu
O
o
CQ

cz
*
O

•i—
E
ZD





•z.
rf

H

|
1




OL





•
i__.

E
O

1 i
O

3

E
•r—
'o
o
p

[
re
-M
•r—
i.
4->
CU

g
14-
O
1 »
re
S-
cu
E
CU
cu
CT>
o
-p

E

q_
o

CU

re
a:





•z.
<

_

•z.
UJ
CO
LU
Di




Q:
0?

^
	 i

u

i — i



.
t— i

ex

o
s-
01
o
•r—

(J

3
•O
$-
O

O)
-P
re
s-
o
.p
re
s-
cu
E
CU
CT>
CU
E
CU
05
o
-p

E



O
<+-
•r—
E
=





•z.
<
^
3

fe5
til
83




DC


B
f—y

C
o
•r—
-P
U

13


^
•p"
^
o
o
Q.
re
-p

•p
cu
-D
o

4-
E
o
•p
re
cu
c
cu
01
cu
00
3
S-
o
Q.
O

Q.

M-
O

CU
•P
re
o:





•z.
<

^_^
••3
Q.
LU
CD
UJ




C£









,
i — i

Q.
3
O
s_
01
E
O
•r—
-P
O
E
3
"•""5
S-
o
4-
CU
•P
re
s-
E
O
•P
re
S-
cu
c
0)

cu
S-
to
3
S-
o
to o:
o -z.

Q->— l

E u

O >-i
t[ ^ 	 ^
•r—
E
^





•z.
<

H

^
1
§




^









C"
C75
3
O
s-

•p
E
O
•r-
-P
O
E
3
•1—3

re •
O-
o cu
+-> -P
oo
cu cu
•0 E
T3 -r-
re -P

•r-
-P r—
E re
CU 3
3 a-
-p
•i- re
-P
00 O1
E E
O v-
U S-
-o
E
CU E
O) O
>^»r~
^ +-^
o re
*-
<4- O
O «3
CU
00 •$-
to
re
z:





h-H




to
to
LU




ct:























t
•p
cu
•r-
O
M-
CU
O
o

f~
o
-p
re
E
CU
0)
o
cu
S-

•p
E
re
•P
00
c
0
0





•z.
<



1
S




^



.
^— ^
o
•z.

I— 1
II

» — 1
>«-*


*
1 — 1
Q-
3
O
O)

E
O
•r—
4->
U
E
3
••-3
S-
o
cu
•p
re
s-
E
0
•^
-p
re
Q.
00
CU
r—
re
O)
^~
re

E

O
(4—
• r—
E
~">





•z.
\^ \




2
^o
Co




OL






















D
E
O
•P
O
E
.^
E
CU
re
O^
1—
re
o
cu
•P
re
c~
O
•r-
-P
re
S-
•r—
0-
(/I
cu
a:





•z.
^^




•-3
LU
ct:




or

Q^
c
•r^
4-*

>hj
4_>
•r—
r~"
re
>> 3
jo cr

c re
O
•r- O^
4-* C
U •!-
E S-
3 3
•TO
re E
O
E •!-
*" re
CU T-
•P C-
cu to
r- CU
0. S-
 CU
^> -3
X 4-*
O -r-
•p .
4- V) Q.
O E CU
0 4->
00 O 00
00
re
z:





•z.
\ \




a.
to
LU
C£




a:

y ••
o
o
Q_

^—
re
4-^
•i—
S-
-P
CU
•o

cu
JE
•P
j^
a>
3
o
S- •
-c a.
-p cu
-p
•a oo
cu
•p cu
re E
i- •!-
CU -P
E
CU >^
D1-P
0) -r-
re
o" cr
o
CQ re
o
s"~-t O)
E
LO •!-
s_
-P 3
E -O
CU
3 E
-P O
•P -P
10 O
C E
O 3
o •<->

<+- re
o
E
OO •!-
00
re
s





•z.
<



o
to
*




C£.
l 	
re
-p
•r—
s-
-p
cu
•a

cu
JZ
-p

*E
CT!
3
O
•P Q.
CU
-o -P
cu to
-p
re cu
^ E
CU-r-
E -P
CU
0) >,
CU -P
S- T-
^^~^ re
E 3
CU cr
O)
o re
s-
•U CTv
•r- E
E •!-
^— ^ S
3
i— l "O

-P E
E O
CU •!-
3 -P
-P O
•r- E
-P 3
E
o re
o
E
*4— -r-
O
r-"
•P O
E O
3 a.
o
E






"Z.
t-H




•z.
^o
*


-------
- 145 -

-H
Z
ID
LU
Q_
>-
1—
























Z
o
H- 1
1
r^
l-H
•y
t—l
u.
LU
O











LU
Z
^— 1
1—
^3
o
cc:
CQ
13
00
LU
_!
CO
•f.
C£
«t
>•
i/> in
S- $-.
3 3
O O
j= .E

QC DC
























LU
"*r- i i t
*• y=
I1""* ^^
I . I
1— 1— 1
(_) I—
o
o
4-> 0
^_>
4->
U 4-*
CU O
CL a;
to Q.
cu in
i. CU
c-
+3 J=
._ i>
•r™ 'r''
ft
cu *
in -P
•r- CD
S- tO
E E
3 3
to in
14- q-
0 0
CI C
•r- *r~
i— H-


2; Z
l-H l-H
.
-p"
•r~
o
o

"cu
>

o:
Z LU
l-H X
^ l-H
*5" ^T"
^. 2_

^ 	 ^
z
>






cr:


















+J
s
D-
E
•i—
^/
E
re
.a
/it
VL*
fi
re
•i —
s-
re
>
re
o
4-
^
4J
E
CU
3
4->
-P
in
O
O
CT)
E
•r-
-o
re
o



z
i— i
^

2"
Q
§
	 I
CO
>



•CO
4->
<4-

oc































.
"-3
E
O
• ^*
4->
O
E
3
•o
<4-
o
3

*O
>•


z:
l-H




on
4->
«4-

D:


,
Q.
cu
4->
to

CL)
E

_^j

~>.
p"

|*~
re
^
cr
re

en
c
•r-
i.
3
-o
«»
r~
cu
E
E
re
_c
o
re
E
•r-
CT)
E

'§
lp
i.
OJ
4J
re
14-
o
3

O
>

D:
LU
X
1 — 1
^~
^^
3
_J
u_
_l
o
>



CO
4->
14-

QL

CT)
E
•r-
S-
3
•o

"-3

E
o
•i—
4->
O
E
3
•<-)
i.
O '

o-
cu (—
CT)_ 1
S. LU
re o
JE *
O. 	 v
in >^
"O Z
»-H
s- o-
cu
4-> II
re
^C 'x"~"s
•-D
CU 	 	
4-> Z
tO l-H
re cr
*£>«
s- >
o — •
E
O •
•r- CL
to cu
S- 4->
cu to
>
<4- P
O
-E
CU O
E re
3 CU

o
>


z
1 — 1
^

0
z
l-H
or
_J
0






DC:





CT)
E

4->
3
Q.
£
O
CJ

s_
o
14-
T3
CU
10
=3


A
in
E
O
• ^—
4->
O
E
3
•>~J
4->'-v
E P—
CU CD
0 E
re c
•r-j re
•o .c
re o
<+- re
o
n_
m o
3 4->
r- Q.
O  -a
cu cu
J= CT)
p re
i-
14- d)
0 >
re
E

CO


z
l-H
$

s:
13
co
_l
o






a:


E
O •
•r- 4->
4-> E
O CU
^— f~
3 CU
•0 S-
o
c- E
O •!-
re
cu cu
p
S- •!-
Z4"
.E
~O O
cu re
4-> CU
Q- S-
E o
0^4-
o
-o
E
• re
^.
4_>
4-> 3
E Q.
CU E
3 •!-
4J
•r- CU
4J 4->
to in
E re
0 3
o
cu
M- i —
O -Q
re
"O T-
re s-
o re
i — >
cu re
p
to CT)
re E
>
CU •!-
r— CU
-Q O
re cu
•r- i-
S-
re
>


z
l-H
^

^2
Q
<
O
	 1
3 i






or















«
i — i
4->
3
0.
C
•r~
cu
4->
to
re
+->
E
re
p
in
E
O
O
S-
£
^
4->
E
CU
3
4->
•r~
4J
in
E
O
O
q-
o
CT)
E
•r*
T3
re
O
—J


Z
l-H
S

^
A
1 	 1
cT
«c
o
— 1
X






cu
















.
1 — 1
4-»
3
CL.
E
•r-
CU
4J
l/>
re
4->
E
re
4->
10
E
O
O
s-
£
^
p
E
CU
3
4->
•r-
4->
in
E
O
O
14-
o
4->
E
3

£
"*


Z
h— 1
^

Z
co
CO
^^
X






DC
CU
re
CT)
^~
re

>>
^

Q.
3

E
CU
_*:
re
4->

CU
jn
E
re
u
.c
u
•r-
JC
CO
3:
z
T-H
•
4-> Q-
E CU
CU 4J
3 in
4->
•r^ QJ
i % ^^
tO •!-
E 4->
O
O >,
4?
14- -1-
o •—
re
4-> 3
E CT
o re
re CT)
E
II
•r- -O
X
re
2:


z
l-H
^

^3
co
CO
^^
X






Di

>>
4->
•r-
r—
re
3
CT" <4-
O CU
re E JD
CU T3
CT) CT) E 4->
E >, 3 to
•r- X O 3
i- 0 Q. E
3
T5 <4~ I-H VD
O
• — - S- 4->
XJ 4-> O C
CU E M- CU
N 3 3
•r- O «< P
"O E • ••-
•r- re CT)4-»
X • to
O (U CU E
•*~^JZ O
4-» •> O
-o s-
CU O 3 <4-
>,4-> O O
re o
o •— o -o
cu re E
T3 3 O 3
CT4-> O
*—• CU O.
0 E
O O O «— i
CQ 10 T-
O r— 4-» •>
* — re o >,
re re
LO to cu o
•r- S- CU
4-> -O
E Q 4->
cu o re o
3 CQ .E 4->
4-> S 4->
•r- X If)
4-> S-
10 O 4->
E • >4- CT^
O Q. CU •
O CU T3 3"O
4J CU 4->CU
H- to S- T-4->
O -r- 4->CU
CU 3 tO>—
P E CT EQ-
E -r- CU O CU
3 4-> i- OT3
O
J
•=c


z:
r- 1
^


Q
O
CQ
X

-------
- 146 -
1

CO
t—
1— 1
z.
r?
LU
D_
1—
























Z.
O
HH
I—
»— i
•z.
1—4
L^
LU
O


























LU
Z:
0
o;
CO
T")
CO
LU
CO
S
o^
^t
>




o:

cu
.£3

o
•p
1— 1

•p
E
CU
3
•P
•i—
-P
CO
E
O
o

c^_
O

CO
-a
E
3
O
Q.

^^
CO
co

^?*
X

s-
o


-o
cu
s-
•r—
3
CT
2?

E
CO
0)

^
o

<4-
0
-p
E
3
O

"*

;g*
t—t
i^
3?



CO


X














i-
o
M-

•^3
CU
S-

3
cr
cu
i.

E
CU
CD
£
O

»
cu
•
>r_
v_^

CVJ

-P
E
CO
3
-P
•r-
•P
CO
E
O
U
o •
-P E
O
~O *r-
m -|_>
E to
i- O
O •!-
f- M-
CO •!—
E S-
ta -P
s- T-
•P E

















^_,
**"
a: ct:






















«
E
O

O
E
3


to

E

.E

•r-
3:

CO
E
O
N

O
-P T5
O
.E E
D. 0
CU -P
.E O
-P E
3

O
cu to

i—  :r
_j
00

I-H I-H 1—

s: S co



^_J ^^*
O •D
> 	
X >-




o:



T3
cu
N
,IZ
•1—
-p
3

CU


E
to
u

_E
O
•1—
.E
S

^— ^
oo
O
•z. •
Q-
+ 0)
-P
CM CO
O
•z. co

•r-
CM -P

4_> ^^
E -P
Q) •!-
3 i—
-P (O
•r- 3
-p o-
co
E 10
O
O OT
E

o si
3
-P "O
E
3 CU
o to
tO CT
E "(0
3
E >>
•i— ^2
X
to


^>»
I-H
^^
*»"


-3
CO
^^
^T"
^




o:







•
•a
CO

4-)
o

D.

CU
JD

E
to
O

•p
(C
5

NX

^_>
E
CU
3
| *
• !—
-P
to
E
O
u

f-
o

E
O
•r—
tO
S-
E
CU
u
E
O
o
E
3
^E
X
to
s:

~pr
1— t
^C
y

— %
^
^
^•d
"S
N




a:







•
•a
cu
-p
4^
O

"a.

OJ
JD

E
OJ
o

-p
(O
-p

y

•p
E
CO
3
•P

•P
to
E
O
O

4-
O

C
o
•r-
•P
lO
s-
E
CO
0
C.
o
a
E
3
_E
E
•r—
s:

•z.
I-H
^^
^P


B
fe;
H
^





DC

























Q.
a>
•P
CO

cu
F
•H~
-p

-p
X
cu
E

CU
^
-p

s_
o
"*"
•-3

E
O
•p-
-p
o
E
3
•r->
re
-a
to
a>
31
DQ
?^" i^^
h—l \—
^^ '^
2! CO


^
3^
LU
•z.





C£.


to

01
E
S-
3
-o

E
O

•P
O
E
3
M— ^

IB

M-
O

-P
3
O

•o
CU
r—
•p
-p
^
tp -p
O -r-
-P "(O
E 3
3 cr
o

"*

•z.
I-H
^^
^^


Q
to
i^
J^
hvl
1

1
1
C£
1
1

1
^^
XI 1
Q. 1
3
1
E
CO 1
^/
to i
-p
1
CO
JD 1

E 1
(O
U 1

-E 1
O
•r- 1
JC

*^^ 1
<^-
O • 1
a. a.
1— CU 1
X_x ^J
to i
CO
CU 1
i \ e~
E -i- 1
CU -P
3 1
4-> >•)
•r- 4J 1
•P •!-
to i— i
E tO
0 3 1
o a-
i
<4- (0
O 1
0)
-P E 1
E T-
3 S- 1
eZ3
T3 1
 i
E r—
•r- (0 1
X
t5 1
51 i
,
•z. i
I-H
<=C I
:>
'
1
-, ,
co
co i
^£
S-^ |
M















































•
cu
CL
to
•p
•p
o
to
-p
X
cu s-
cu
O T3
•r- 10
i— a>
3 5-
tO
i- -a
T3 i-
>> to
a: o

z •z.
\ — i i— i
^C ^C
^ ^


•3" LO
-p -p
•r- »r—
E E
ID ro




























































s-
cu
•p
E
•r-
s-
Q.

•z.
I-H
^C
:>•


vo
•P
•r-
E
ZD

-------
- 147 -
co
i— i
LU
C-
1-
















0
1— 1
h-
»— *
"Z.
u_
LU
0

























LU
z:
I—H
1—
SUBROU
LU
_J
CO
I-H
Qi
«=C


C
O)

•p

C
o
"r—
•P

o

X
d)

t^
a
E
O)

0>


•1—
E 05
3 C
•i—
01 -P
-P C
O ••—
r— i-
CL Q.
OJ S-
E O
••- «*-
(O
^D (O
M- T3
«3 to
-P Q)

-a >•—
(O S-
E E
3 0)
to £:
•P
ft
10 •>
•P 00
O OJ
"o. to
E
S- -r-
-P E
S -P
\/ ^—
0 O
(O *r—
I— -P
to 3
0
00 <1J
0) X
S- 0)
o
•p
co

1— 1—
_1 O
a — i
s: a.
co oo
CM
CM
•P
E


















































_l _J
Q. D-
1— a-




-------
                          -  148  -

                 3.14  COMPUTER REQUIREMENTS

            3.14.1  IBM JOB CONTROL LANGAUGE  (JCL)
The JCL used to execute program DYNQUAL is as follows

     //JOB CARD
     //STEP1 EXEC PGM=DYNQUAL
     //STEPLIB DD DISP=SHR,VOL=(PRIVATE,RETAIN,SER=REGNA3),
     //  UN IT=3330-1,DSN=CNXXXX.XXX.LIBRARY
     //DD DSN=SYS2.FTG1LINK,DISP=SHR
     //GO.FT03F001 DD DCB=(RECFM=VBS,LRECL=504,BLKSIZE=5040),
     //  UNIT=SYSDA,SPACE=(TRK,(40,40)),DISP=(NEW,DELETE,DELETE),
     //  DSN=&&AB

     //GO.FT04F001 DD DCB=(RECFM=VS,LRECL=504,BLKS!ZE=50/»0),    reads
     II  DISP=(OLD,KEEP,KEEP),VOL=SER=USER99,UNIT=3330-1,       from
     II  DSN=CN.EPAXYZ.ACCT.DATA.SET.NAME                       fcgfr
                             or
     //GO.FT04F001 DD DCB=(RECFM=VS,LRECL=50i»,BLKSIZE=501»0) ,    reads
     II  DISP=(OLD,KEEP,KEEP),VOL=SER=TAPE##,UNIT=2400,         from
     II  DSN=LEOTAPE,LABEL=(##,SL,EXPDT=98000)                  tape

     //GO.FT11F001 DD DCB=(RECFM=VBS ,LRECL=501t,BLKS I ZE=5040) ,
     //  UNIT=3330-1,VOL=SER=WORK99,SPACE=(TRK,(10,5),RLSE),
     //  DISP=(NEW,DELETE,DELETE) ,DSN=CNQS(iM.LJC.TIMEP
     //GO.FT22F001 DD SYSOUT=A,DCB=RECFM=FBA
     //GO.FT06F001 DD SYSOUT=A
     //GO.FT05F001 DD *
        data deck goes here
     /*EOF

-------
                          - 149 -

        3.14.2  UNIVAC EXECUTIVE CONTROL LANGAUGE  (ECL)
     There are two steps  involved in the execution of DYNQUAL on
a UNIVAC system.  The ECL for  each of these steps  is as follows:
STEP 1 -  Compile and Map DYNQUAL
     @RUN CARD
     ^PASSWORD
     @SYM
     @ASG,A  USERID*PGMFILE.
     @ASG,A  USERID*ABS.
     @USE  ASM$PF.,FTN*RLIB
     @ASM,I  F2FRT,F2FRT
          F$FRT  30
          PR      6
          PU      1
          CR      5
          APR    22
          END
     @FTN,IS
     @ADD  USERID*PGMFILE.DYNQUAL
     @MAP,I  USER ID*ABS.DYNQUAL
     LIB_FjrN_*RL_l_B_	  DYNQUAL source deck
     @FIN                                  goes here

STEP 2 -  Execute DINQUAL
     @RUN CARD
     ©PASSWORD
     @SYM
     @ASG,A USERID*ABS.
     ©COPY,A  USER ID*ABS.DYNQUAL
     @FREE   USERID*ABS.
     @ASG,A  USERID*1500CFS
     @USE  ^.,USERID*1500CFS
     @ASG,T  USERID*TEMPFILE.11
     @XQT  DYNQUAL
        data deck goes  here
     @FIN

-------
                         - 150 -
                   3.14.3  EXECUTION TIMES
     The time required to execute DYNQUAL is dependent on the
computer used, the network size, the computational time step,
the length of the run, and the number of constituents modeled.
Typical execution times (CPU) for DYNQUAL on an IBM 370/168
are given below in Table 3.1.  All of the runs in Table 3.1
were on a network with 133 junctions and 139 channels and used
a computational time step of 1/2 hour. DYNQUAL requires
approximately 275K of storage for execution.
Number of
Constituents
2
2
2
3
3
6
6
6
6
Length
of Run
(days)
2
11
105
11
42
1
11
21
42
CPU
(sec)
6.0
17.5
166.8
24.5
78.0
8.1
42.0
93.2
180.0
              TABLE 3.1  DYNQUAL EXECUTION TIMES

-------
                            - 151 -


                          CHAPTER 4
                  SAMPLE INPUTS AND OUTPUTS
                    4.1 THE MODEL NETWORK
     The Potomac Estuary model  network is composed of 133 junctions
and 139 channels.   Figures 4.1  through 4.6 depict the Potomac
estuary and the configuration of channels and junctions used by
the Dynamic Potomac Estuary Model.

-------
                       - 152 -
                                 Maryland
Virginia
              FIGURE 4.1  THE POTOMAC ESTUARY

-------
-  153  -
                                                            CD
                                                            UJ
                                                            co
                                                            a
                                                            o
                                                            
-------
                       - 154 -
 Huitini Criek
FIGURE 4.3   POTOMAC ESTUARY MODEL NETWORK - SEGMENT 2

-------
                     - 155 -
       Gmitot Coit
FIGURE 4.4  POTOMAC  ESTUARY MODEL NETWORK - SEGMENT 3

-------
                       - 156 -
FIGURE 4.5  POTOMAC ESTUARY MODEL NETWORK - SEGMENT 4

-------
                       -  157  -
'FIGURE 4.6  POTOMAC  ESTUARY  MODEL  NETWORK  -  SEGMENT  5

-------
                        - 158 -
            4.2  SAMPLE REGAN  INPUT/OUTPUT
              	  data deck list-ing	
THIS RUN  FINOS THE COEFFICIENTS F0° A »CAN  TIDAL  CONDITION AT PINEV POI1T




                                                                  0.
25
.5
2.5
4.5
6.5
3.5
10.5
1Z.5

-.77
.*?
1.03
."?
.39
-.17
-.37
7
1.
3.
5.
7.
9.
11.

10
-.27
.57
1.03
.83
.27
-.27

OQ001
1.*
3.?
5.5
7.^
9.5
11.5

12.5
-.09
.75
LOT
.67
.09
-.29


2.
A.
*.
3.
10.
12.

0.
.P1?
."3
.9«;
.57
-.01
-.37


-------
                                             -  159  -
                                     —    output  listing   —
O LL.

t- U.
u »
UJ X
0. (/>
  U
_J Cl
JT O
U. (O
X
JT t-
O V
o- «
 O
 0.

 »            o u   h-          *»                ^
 £            oo              »-,h          «noo
 , ,              r_>              CI.IM         uJ uj  o
              ^.x              «/*o         ccao
  ,            o^              M a   if            oo
  1
 o-
 o
              CO
              i-                ^
              z                £
              1-1                0"
              o                =
              t                o
 o            «.i-iri         ooo         er«
 o            c«tv         o •-   !••          z.
                c..              — a:   •         y in   c
 (jj            11.2              a: LL,   r\j         j; s.   »-

 £            r              £t   "         §s

 ?            ?                ?               fE

-------
                                                                -  160   -
*
*
*
*
OCOOOOOOOOOOOOOOOOOO
(^ P- o> o- >o f^ m K> fo m fi in K> rr> c» rw o* N. > J-

               -
                                                                         OOCjO
                                                                    i   i   i  i  i
              oooooooooooooooooo
              inomoioinou-iOinoinoinoino
a.
z
u
o
T

=>
      O

      Z
      z
      O
      a
      U'
      I/;

      01
      O

-------
T*
f.
O
o
CJ
0
o
1
in
^-
c
J
o
o
o

-J
CM
o
3
o
o
3

0
T-
o
o
o
o
o
1
*/•
IT:
0
3
3
O
o
1
U"»

•*
CM
T-
IA
o
3
0
a
0
c
i
r^.
rf\
O
O
B
r>
i
^
0
3
O
O
Lt
CM

K
O
O
O
0
o
o
1
o
g
o
0
3
c
1
V
f^~
o-
a
c
-»
M
^*
r>-
f"
3
O
O
o
o
1
r-
T-
o
3
0
O
3
1
JO
g
0
o
o
o
1
•o
Kl
J
O
§
o
1
V
•a
3
O
o
O
O
1
o
0
o
3
a
o
a
i
10
8
0
o
o
o

a
in
O
o
en
o
o
1
o
^>
3
3
O
O
3
1
•J
C\i
O
o
o
o
0

in
«•
o
3
O
O

                                                                                                                     »-    in
                                                                                                                     CVi     *
                                                                            _i «
                                                                            o *
                                                                            V) *
                                                                               *
                                               O
                                               »•«

                                               CO
                                                                                         •a.

                                                                                         X
                                                                                               C\)
                                                                                               O
                                                                                                            CD


                                                                                                            V)
                                                                            2.        u
                                                                            o-
                                                                            •o
                                                                                                                     o    o
                                                                                                                      •     •

                                                                                                                     O    3
                                                                                        oc
                                                                                        UJ
                                                                                        CD
                                                                  tn
                                                                  m
                                                                  o
                                                                                                           
                                                                            o
                                                                            c
                                                                            c
                                                                            CM
                                         o-    «-
                                         "i    r»-
u

10
                                         cc
                                          I
      o
       I

-------
                                                                          -   162  -
                    '-V;»-u->Oin«-.»»-O.fVK>U'
                     -
       V)
       LU
       te.
 •  •••••••••••••••.....I...
oeoooofcocooooooooor. oooooo
       '      i   i      i  i      i      i   i      i      i       i         ii
                          «-l/. Cir.  T-<
                                                                                             co o-
       oe
       a.
                       11
O     LU
       >
u     cc
O     LL.
       to
>-     cr
D      O
                      oooooc  cc «t. i
r
=>
V)
                   OOOOOOOOOOOOOOOOOOOOOOOOO
                   4TiOU"Oi'"Ctr|C'irCuiC>u"
-------
                       -  163 -
          4.3   SAMPLE  DYNHYD  INPUT/OUTPUT
                  — data deck  l-isti-ng  —
POTOMAC ESTUARY
SIMULATION OF •
CONTROL CATA
  1*3  139 2000
 1500   40   10
  114    9   25
 1500    1
 2001 2031
JUNCTION O'TA
    1
    2
             HYOPAUUCS
             1EAN TIDAL
                    -  133  JUNCTION  NETWORK
                   CONDITION    FLOW  =  11*000
              90.
               34
                    ^8
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
13
19
20
21
72
?3
24
25
26
77
28
29
70
71
72
33
74
35
76
37
38
79
40
41
42
43
44
45
46
47
48
49
50
51
-u.7515336154880.
 2.0017  4332467.
 1.9992
 1.0982
 1.99A5
 1.990A
 1.0815
 1.°739
 1 .9616
                 45*5777.
                 4443556.
                 4665777.
                 8442756.
                 88P7111.
                12806311.
                13219578.
 1.0469  8664937.
 1.9419  7109689.
 1.9305  9442556.
 1.019"  8?f5791.
   1.9D  5940600.
   1 .87 10561100.
   1.85 11731200.
 1.^259 19773808.
 1.''958 22•*
'4
25
26
27
28
29
70
31
'2
•*3
34
75
3*
77
78
'9
40
41
42
43
44
45
46
47
4*
40
^0
0
2
3
4
5
6
7
o
9
10
11
1 2
13
134
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
76
37
3d
39
40
41
42
43
44
45
46
47
48
49
50
51
0
0
0
0
0
0
0
0
66
0
0
77
0
136
78
79
0
0
81
0
0
0
82
0
0
0
83
84
0
0
0
0
0
85
86
89
91
92
0
0
0
93
94
0
0
0
95
96
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
80
0
0
0
0
0
0
T
0
0
0
0
0
0
1
0
0
0
0
n
90
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
0
n
0
0
0
0
0
n
0
130
0
0
0
0
0
0
0
0
3
p
0
0
0
0
0

-------
- 164 -
C2
53
54
55
56
57
58
*9
60
61
62
63
*4
65
66
67
6f
69
70
71
72
73
74
75
75
77
78
79
80
31
P2
33
34
85
86
87
ng
39
03
91
°2
03
94
95
"6
97
"8
99
100
101
102
103
104
105
106
107
108
109
110
111
-U7323235286256.
-O.?60°218a45712.
-0.?9001932°46>6.
-0.T089291 719424.
-0.3285321309952.
-G.7423349P18880.
-0. '508371925504.
-0.7620268773963.
-J. 37373254«0432.
-0.3798246839504.
-0. '334225954800.
-0.3794241 396144.
-0.3754293052416.
-0. '684279410688.
1.9635 4°60000.
1.9662 3240000.
1.9687 2680003.
1.9711 3200000.
1.9736 2'*0000.
1.977* 2SnoOOO.
1."344 2440000.
1.0898 17*0000.
1.9966 1 '60000.
2.0012 1320000.
2.007? 1000000.
2.0104 1040000.
1.9323 6332000.
1.87 14961500.
1.8C 15071500.
1."491 212180PO.
1.7878 16219000.
1.6929 12920000.
1.5563 17884997.
1,5179 31200000.
1.2150 30550000.
1.?012 55666544.
1.2471 69430992.
1.1294 19218000.
1.1347 74540992.
1.0493 22772992.
0.9629 29326992.
0.7511101090997.
0.6814 76984992.
0.7576124074992.
0. 0962163856000.
-0.2348 717"*6000.
-0.^826 80540000.
-C.3702300<'°99')4.
0.0216201^00000.
-0.4214154080000.
-0.43151353060PO.
-0.2877126086000.
-0.3916 9k648000.
2.0126 eOOuOO.
2.0140 560000.
2.0156 1000000.
2.0166 540000.
1.9651 36HOOOO.
1.9659 3200000.
1.9662 1600000.
0.0
n.O
1.0
n.O
O.G
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
fl.O
D.O
O.u
0.0
O.U
0.0
0.0
3.0
0.0
0.0

0.0
0.0

0.0
0.0
0.0
0.0
0.0
O.G
0.0
0.0
0.0
0.0
9.0
n.o
0.0
3.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-20.
".0
0.0
0.0
C1
5?
53
*ft
S5
*6
5-»
58
«;o
60
61
62
63
64
66
67
53
6°
70
71
72
73
74
75
76
105
77
70
70
80
81
32
83
8A
35
86
88
so
90
01
92
9?
04
OS
96
07
98
90
100
131
1P2
103
104
106
107
10?
10°
110
111
112
52
53
54
55
56
57
56
59
60
61
62
63
64
45
67
66
69
70
71
72
73
74
75
76
105
106
0
138
1*9
0
0
116
0
120
87
87
0
0
0
0
0
0
0
0
0
0
0
10u
0
0
0
0
0
107
106
109
0
111
112
0
97
0
0
98
0
99
0
0
101
102
0
104
0
0
110
0
0
0
0
0
0
113
0
0
115
0
0
139

0
0
0
0
0
88
128
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
a
0
0
0
0
0
0
0
-\
1
0
r>
0
0
n
a
103
0
0
0
r>
n
0
n
0
0
0
T
T
0
0
0
0
n
3
n

n
0
0
0
T
0
0
0
- 0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
o
0
0
0
f)
0
0
•J
0
0
0
c
0
0
Q
0
0
3
0
0
0
0
0
0
0
0
o

0
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-------
- 165 -
11 2
113
114
11 5
116
1 1 7
118
119
170
1'1
122
173
124
1?5
126
127
12S
129
130
1*1
1*2
1*3
2,0062 2?OCJOO. 0.0
2.0211 2400000. O.L
2.10°0 ""0711. -11000.
1.6995 11CPOOOQ. 0.0
1.7026 6400030. P.O
1.7045 4666657. 0.0
1.7066 3777770. 0.0
1.5242 11 C60000. O.u
1.526° 7200000. 0.0
1.5309 6080000. O.u
1.5337 377QOOO. 0.0
1.5364 2160000, O.J
1.5291 8200000. 0.0
1.5316 3SP,0000. 0.0
1.5354 1'OOQOO.
1.2017 1 27*3080. 0.0
1.229" 10000000. 0.0
1
1
1
1
1
.
.
,
•
•
90 8030800.
90 4°40500.
117
114
1
116
117
11*
119
TO
121
1?2
123
124
125
126
127
123
129
0.0 1"»
0.0
90 2570300. -479,
90 66P0700.
90 3960400.
0.
0.
0
0
0
1*1
172
1*5
1*7
114
115
0
117
116
119
0
121
122
123
124
0
126
127
0
129
a
131
133
173
136
0
0 n
0 0
0 0
0 0
0 0
0 0
0 i
0 3
125 0
0 0
0 0
0 0
0 0
0 0
0 3
130 0
0 3
132 0
134 0
135 0
137 13«
0 0






0
T
T
0
n
0
0
0
0
0
0
0
0
0
0
0
0
n
0
0
0
0
CHANNEL DATA
1
2
3
4
5
6
7
3
9
10
11
12
13
14
15
16
17
18
19
?0
21
22
23
?4
25
26
27
28
29
*3
31
T2
*3
34
75
*e
37
761'
707?
2351
4J6S
3740
5507
3?oo
5439
4C65
16°0
36^6
3010
2270
36<>n
41*0
3851?
6177
2640
53*6
3274
52»P
3000
5227
5069
501*
4o05
8765
9081
6706
8342
5507
5d50
40*5
67^6
8026
10507
13464
.
•
•
.
.
.
.
.
.
«
«
.
.
«
,
.
.
.
•
•
,
•
.
.
.
.
.
.
,
.
.
.
•
•
.
,
,
2?«.
80n.
955.
11«*.
1521.
1945.
23C0.
2912.
2920.
2953.
3258.
3503.
2475.
2100.
2340.
3778.
4671.
5506.
4117.
3357.
3052.
3319.
4221 .
5967.
5355.
43*«.
5469.
6604.
6223.
73HR.
88-»3.
7562.
7908,
1027*.
13474.
10224,
7824.
4152.0
26131.9
33959.7
24567.9
26410.5
26106.3
26225.1
30441.9
35774.7
43274.0
44847. 0
44042.6
*9785.5
33180.
29952.
50759.5
60286.4
60959.9
62670.0
60623.7
£0130.6
76971.4
"1408.6
82151.9
30322.6
73405.8
88224.1
101276.8
112189.0
118032.9
126069.4
134497.4
13468R.9
140505.3
172403.4
190830.3
176749.1
18.54
32
35
20
17
13
11
10
12
14
13
12
16
1
1
13
12
11
15
18
19
23
19
13
15
16
16
15
18
16
.67
.56
.77
.36
.47
.16
.45
.25
.66
.77
.57
.08
5.8
2.8
.58
.91
.07
.22
.17
.72
.19
.29
.77
.00
.73
.13
.34
.03
.15
14.27
17,79
17.03
13
12
18
22
.68
.80
.67
.59
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.020-1.90449
,32u
.023
.020
.020
.020
.020
.020
.020
.017
.017
.017
.017
.017
.017
,017
.017
.017
.017
.017
.017
.017
.017
.017
.017
,017
.017
.01 7
.017
0.017
0.017
0.017
0.017
0.017
0.014
0.014
0.014
0.30452
0.23600
0.32848
0.30793
0.31513
0.32046
0.28387
0.28035
0.23616
0,231*4
0.24344
0.27437
0.3
0.3
0.26816
0.23327
0.23897
0.24435
0.25840
0.26528
0.21068
0.21452
0.22040
0.23472
0.26567
0.23674
0.24705
0.23976
0.24301
0.24266
0. 24380
0.257*1
0.26183
0.27905
0.32559
0.39007
2
2
3
4
5
6
7
a
9
13
11
12
13
14
15
16
17
13
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
114
3
4
c
6
7
8
9
10
11
1?
13
129
1*
16
17
18
1°
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
33

-------
- 166 -
78
?«
40
41
42
43
44
45
46
L7
48
49
50
51
52
53
54
55
"6
57
58
"59
60
61
62
f3
64
f 5
*6
67
4fi
6?
70
'1
'2
73
74
^5
76
77
78
79
8u
81
82
P3
14
85
86
?7
88
89
90
91
02
93
94
95
06
97
9715,
12 14/.
106^6,
11246.
124*0.
12330.
10o'4.
17529.
1J56H.
14256.
129*5.
12033.
9620.
6441 .
105*0.
9451 .
6o11 ,
1U665.
10177.
8712.
1220?.
10612.
11616.
6705.
8712.
8659.
8659,
1610*.
2600.
26AO.
2280.
2510.
2640.
3035.
3430.
3300.
3035.
3430.
3545.
4630.
2100.
3450.
3405.
5550.
3700.
4320.
105*0.
6250.
10000.
7350.
T26*S.
8190.
16200.
6450.
12130.
26700.
22410.
24810.
70900.
17080.
893*.
12130.
16807.
16701.
14316.
13802.
11116.
3074.
10217.
12745.
118~5.
105C9.
10325.
17716.
25490.
21717.
241 f.
30417.
31129.
3303*.
2701".
25500.
29075.
28258.
27676.
?5729.
243S5.
2251".
3200.
1500.
1250.
1250.
1150.
750.
750.
750.
5*0.
400.
350.
1311.
4500.
4200.
6231.
2922.
3412.
4140.
6214.
8000.
7250.
9930.
5401.
2347.
4601.
3531.
240P.
37e6.
3435.
5027.
5303.
4200.
181020.1
207392.6
236116.5
736963. 9
220656.1
221357.3
198484.4
168169.3
1S7353.8
205985.9
215773.0
236331.4
246180.1
377303.5
444505.3
339187.9
418799.1
536040.6
604968.0
635735.4
549942.2
506362.3
553632.9
582908.5
587217.7
607281.9
663242.9
717908.3
66282.1
33752.8
29150.1
29153.5
26599.1
15672.3
9806.8
9875.7
4023.1
5450.2
3434.4
18159.5
26100.
36960.
30167.4
16513.6
18271.7
17364.6
31580.0
47361.8
64932.3
S0807.3
30211.7
7945.5
43228. a
11486.8
9826.4
18352.9
12978.8
17449.5
33384.8
21240.5
20.26
17.10
14.05
14.19
15.42
16.04
17.86
20. S3
18.74
16.16
1&.17
22.30
23.85
19.04
17.44
17.92
17.32
17.63
19.44
19.25
20.36
19.86
19.n4
£0.63
21.22
23.60
27.20
31 .«9
20.71
22.50
23.32
23.32
23.13
20.90
13.08
13.17
7.32
13.63
9.81
13.85
5.8
s.s
4.34
5.65
5.36
4.20
5.08
5.92
8.96
8.14
5.60
3.39
V.40
3.26
4.08
4.85
3.78
3.47
6.70
5.06
              0.314 0.421?1
              0.014
85
86
87
87
88
89
90
91
92
93
94
95
96
97

-------
- 167 -
98
99
103
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
11 7
118
119
120
121
122
123
124
125
126
127
128
129
1*0
131
132
133
134
135
1*6
137
138
139
19950.
36830.
24650.
322<:0.
•«3000.
26310.
16140.
3300.
316*.
2770.
2640.
2700,
3400.
3400.
3500.
320P.
4200.
2700.
3350.
2850.
1850.
14*0.
4300.
2500.
3COO.
2200.
2000,
27*0.
3000.
2600.
5300.
9000.
12500.
24rO.
2610,
1600,
2490.
25«0.
2280.
2700.
3750.
4140.
40*7.
8160.
8160,
4778.
4100.
4792.
5740.
300.
300.
250.
250.
200.
950.
930 .
900.
°0.
50.
70.
3000.
3
-------
                                      -  168  -
   V
 >- >-

 w fcO
   o

 O in
 CJ X
 L> •-

 t- O

 O I
 LJJ a
 r o
 z -J
 z z
 lu •«.
                             —  output listing  —
  JJ
  u>
                                  r> »- oc  r
                                  ->x a.  r-
  co                     o> o          i— o
                         teOLO-y
  tj                     M. ik.    •         -
Zll

ia
                                                           .
                                                           Ul   «
                                                           o o uj
                                               uu,            r>
                                               o.-          OUJ


                                               •'            5

         Of.

 I O        _i ~                      „
  o      ue u. u  »
         U Si s  i**.

-------
                                                                     -   169   -
        z
        o
                 ooooooaaoooooooooooooaooooooaaaoaooooooooooaooaojao
         =>
         ->
        o
        r
        r c c  r  c- c
                                                      >n N. (<.      CO         00          00
                                                                                                               u-c-c-c-
                                                                                                               on flO CO > J>          > O          O* O>
         x
         <_>
o

y
o
o

>•
=>
a.
         =>
         &
         a:
         LU

         O.
         I:
         x
c~ r  i» •; u  «N-'*iAH.>h-SiOC.»-fVii'>«*m f KK  ««<•». «a  «*«»	-.«—..  i






Ln»-fvjKl^irivOI^Oh-OOO~O'r-~'^>9
o                           »-«-^»-»-^r-.->-»-fvf>.r>J»^A'(v. rvjrvjrjf\-r-.r"K-KK^^KiKir'v-«a»

















O3O'3O'3O3OO3O33OO3a3OOOaO"3OO J3O'3OOO3O  JOOOOCDrSO-;

cc.'crc-ccc-ccrcc-c-ccc-occc-ccoCiC.ooooc-ocOjrc-cc-ctrC'CC'^r. c.  cc_c»-c
















3r"ro1a^<^^K^>^^ooo*^<'^^~-o<''onO>oiO|>>'«>^lr?^^2S2J?lT^r!Z
oT.tjPiXKiX^'-r-K.  ot,iXt>oOOOC!in«aoDfviXT--t''>Ol^^<'*"PJK-K>'»'«-«l'l<«'rIO-«*ru«-N-'*«)>Of>.00-*'-MC O r-COOn«-OCf^M»-<.
-»f\jinMiAC>ir>-'OO--*^(MuiO»-»-ro^c>(\Joom»-ryi.c>>Ki«»oorv.rvoojirio-oo'>j-»r^

T-K«.s5«"£)m^oo'r>K. iriinOO^OC-O «»«-C i«S"«<*>~'r''O'O-K>Ki&'SOT-N.O.CO-O3rj^-03l>-ir>J-T

 T                                                                                                  '^









inr^rv  r. u-, ^»iAo.-oo-o>ircooc-CfvonijoM»vj^r'r\iK-'r-o<'i''^~f''v''-'•"• f^" ;?^^  J  S.^^^.^
»-^c*a^o»-K*-^'-ac*r>cou.t/-T-T-,_^.iViv,_ir,_,_»r.cii'-e  t-K-.c^«»o^o>cci^>o~»->fO«-rDf«.in(Mo
f. o o* o t> o^ C" c/'f^o^oy^j'Ooooooor^

or*^^^^^T!^^^»^^^'-'-'-^^'-T^^44^^444T^»^44^«^^'-c"c3c"rtrce-0"crr'oc5c"
 i"                                                                                                                                        ill
                                           «-T-r-i-«-^-r-»-t-f~r rrvrfs-ir  rvrvfr^P1
                                                                                                          ft-  f  K^  "
                                                                                                                                 o  •— (SJ,K. < ir <.' r~ a- j-  o r-
                                                                                                                                 «c  *c««'^*^*c*r*^*4*.Ti"i'

-------
                                                                                   -  170   -
                                                                         o e. o>o«rcr-c,oa.  crccoc-oorccrcrnr-ccrc-crrr-Lrc
                                                                                                     0000030
                                                         <.^^  r.  OCK. c-Oi\jMaorrs.in.o.a«\iAr*-i»  c. o-o
           jOfvrooeo-u  a  rr  <-JO«-KN  ri'ah-'^'^uOOO>3O'-r«'l^i
           . Kl l»i fOfOtOroinrOO. C>C*0-G-O->>>l^OCOO>.COCOCOr>-'OU-lin\JfTr»jrv,f»,
O C3  r-  c. C.-OOOCC;OOT-^»-«-^>-»-^^rf\:f^^^r.^^^^^^^^^^^oCrOCDc-OCC200
 I   I  I   I   I   I   I   I   I  I  I   I                                                                                                     I   I   I      I   I   I   I
                                                                                     *" r^  r*  «*•  ui >o K ^ a- o ^

-------
                                                                -   171  -
oooooooooooooooooaoo
   a. c  c  r- rvi M »c c  M. h ct  c«-r'Ki
-------
                                   -  172 -
10
c-
1/5
2.
O
c.
<
a:
o
>-
x
o
o
            !?3SM25iS<0SSl!X'30iOI>-r>-lrto:oof'rj:3'N"v--*'rt'0'-'
            ,3 2 ?~~ ~ $~rz"' ~* ^ ^^ ^ 'von * rw ^ •« r~ *ot-.o*- ^ •
            !?"£££ £?£r££g££Ei:!«£?:?°5£:Sf;£S:
c
*
I
to
to
Lu
o
a.
z
LU
                                                     ON-"
                                                    a c  i
                                                                         o i—

                                                                        ) *j 
-------
                                                                - 173  -
    x. « o- «. oo t MJ s» rv .- o  c r- « * •* i" «- C' «  " •>  «- -o c *• »- c    c ^ t^- o, o. «• u u,
                                                                                                                    a «- i
                                                                                                                    \r\ i/\ '
                                                                                                                   i ^ t^ i

                                                                                                                   'caoc-occof^odr
                                                               i  i   i  i   i  i     i     i  i   i  i   i  i  i  i  i  i   i  i   i  i   i  i   i  i   i  i   i  i  >   i  i







                                                             i O I
                                                             I r\i i
                                                             i 3 '

c< o o o or- ooesoc>cnooec'Oooooiioccoooc'Booocc-cooor'cc3c%cc-e>r







cnr«-, ooi/i«i!r>f--oN  ir*-o-oacou-'.".MC.oeTfofi&»-oof» opo^f»-«-N.^tn'MOOO!>>l'>Oh-'Of>lfrl'^i3OOOOCC
«-oo«ac'Cof--'oo'Oa  c'O>«»iv-''*''"i'"'&-f'-^"'<''v'>ri'r'l'1tr>*:>l"c'oc
or-T-&o«»in».'>j(M(\oo«v^«-^-^>riif«  r~aS'~r;t*i!;ir''>j
x>>o>n^iO'Oiofvji^-r>.ror>-«po&c^-O''iW'C''»viM«O'OO>o»
*r-«oOK)»nOiAayao3^>^'*Orri(^1">J~Jt~             »-r*jmw»T-»-
<, ^ o^-mufminu^^'O^







^  f>o-«tfa r^y. c^i^)O *ror^ckc^C"or^fOOCC^^-cio«— *N.toj
a«-rv.'><-T-OKLiS.r'iOT-(1~c-i""'>w-''^''1'n'' c IT »- o c if IM r-
               O»\jON.^^n'\JW~-'^rM^'^"
               O-Of^-l.J-'\IIO^'-«-»-
               ^' r\ rj  r« r\j Cs.





               oinrco i>-*coo3om
               F»C3^UiU^OO'1*00T~"1'f^
               r>i^r-  ox't-'f^f  «"' >r r-
               i-^roLU^^'^rur. r. f^J^ I
    . o i- t^
     in IT tX
                                                                                                               o  -i  • ro K. «* in   r>- or

-------
                                                                            -  174   -
                                                   cc. «. no  a  er
OOOCOOOC-OOCOC. COOOCCOOOCOC
 I   I   I   I   I   I   I   I  I   I   I   I   I      II         II      III
                      tA isi Lit u i IT. b i trt  if  iAh  Oor^'OOr^O
                     t TO r  Ki K1 ^* fsj  <\1 »- C\J fV) *\j (M
OOC:  CBCOPOC3COCOOP COC  CC. COOC
                                                                T- -o  s- a  ec

-------
                                                              -   175  -
                            r*- w
                            W (/J
                            X. O
                               O
                              - «»
                             • O
                            O
                             I
ct
*
O
O
m
Cj
u
V)

Lu
                   •^ (/)
                   Z O
                   >-. o
                   C/l
                      kA
                   ao ^A
                   -o <..
                   O  K
                   •O -»
                   O O
                   O  •
                    • O
                   O  I
O
O
         CO
         O
O
X
      t-     e
      LL     «
      u     a
      u.     z
               O
               O
               O
               O
               c

               (/>
            o
            CD
U-
V)
                            f> K
                            Ui or
                            O f-
                            O
                   +

                   O
                   C
                   O
                   O
                   ro
         O
         O
               «    a
               u     «.     »
               01    U.     L
                     I     I

-------
                                                                 -   176  -
2.
=
no c r-
»n oc o
                                            •« oo
                                             ••
                                            c~ c>
r>. o-
.no-
                                                        a J- -S
                                                         •••
                                                        m -a «o
                                                        u«p"<
                                                        M -o «-
                                            oo KI i»i
                                            r>- r» CM
o" s o-
« u- <\j
«- o 4
                                                                                                       in •»
                                                                                                       ru ^
                                                                                                                   o  o
                                                                                                                                IM
                                                                                                                                «e
                                                                                                                                ro
                                                                                                                                 I
                                                                                                                                             -
to
      <-• i
      2 =
 O

 T
                                                                                       ro oc i^>
                                                                                       IA«O»O
                                                                                       inooiA
               o
               roo
               »o*~
                    -
                                                                                                       **
                                                                                                                                >C^
                                                                                                                                K) to
                                                                                                                                             ru
                                                                                                                                             O-
                                                                        OO«-
                                                                         •  .•  •
                                                                        ^^.o
                                                                         |      I
                                                                                                       oo-
                                                                                                       (M «•
 O
 O
       .JO.
       UJ UJ
       3r o
           .
       « =>
 ai    x r
                                                                           a. (\
                                                                           t^, o
                                                                                        

-------
- 177 -
> • j o »o N.-NJ ^- *o x> o r\j oo ro^jr-w
O t/> K". ** *v f\i r^ir. o* u"i N- a. o* N- cv N- o
«j U C M N ro C: r- *• C r^' O O- h- fV »O fctf
U. U r- O *- u"* fM i\| *» -» O O -O r\j <- 00 m
^ v* h- ^ IT* ro NO N. T- *- m «* fNj «> ^c so
c/? «- *•• fv 1 ^c ^ Or- O N< 1 C  3 h- 
• co- TO p u < NCO- f^r.  o r~ o ooo oo oo O U^QKI o o -*
>• r\' coo cir oero c«-o o«-o
ill i iiii
n -IK
<• 9. ct ^- oct><: «iffin t*-^.i-rvioo •« •- in O
u U. u a c ir in or ry
«T^<«r»- C3 »• «- fv
• • • • • •
00 0 O O O O O
=> IIII
l__
<
I—
to t
o a.
ii. >- aj -» ••> «n -a no ru
>-cr»- rv,i«"i f <
t« a 3 T-
>- => r:
•^ ->
ro T-< CVJ«^K v-fao
it, CJ r— r*- oo 3 *ij fy sj in f^» h— in ^ oo o m
^^ T- oor»-h- r-^ Ororsj ^orvj minin
to ^ ^ fv 1 r*~ O tr, tf) O^ O 1 ^ ^ 1
fc 1 1 «- »- »- M fv fv
=> III
o
X
X
O H-^s »- t-n-O^ N-K1 (NJO-* ^O «- OU ^ o
r*) «J w 00 h- 00 «~ O T- OOO v-r-ro O f\j ro
> <\j ooo «- ^ ^-^-o T-T-O ^-*-tr
ill i i i I i
O —Id
00 LU UJ
is Z &. ^ OO C ^O *v i/* K "«tf IP f"»- or f\> T" fv< K*.
^> * T. < f\- fv K- K CL K. i*". C ** stf O
*t Z?
uj X z:
_j t
LI
u
u
iAjC.^*r''^~ ^- iJ0 3 *5
h-<»— fVJO O «~ <1 *-
U U. U. ^j C1 ^ Of *"• K
• 3-wCvr K r- ,- O
• • • • • •
10 O O CT> O O •D
p
Kl in J. •* Kl !A >
in KI «o «o ^ • (\i fc
N. KI «a o^ in in r-
00-^1 ^ s» o INI 00
«- O Kl 3 O « «»
m ^ *o •* 0s fu ^>
f\J f\) »- r- T- *ff
1 1 1

r>- (V o »- O> 0 •»
o •« T- rvj K I-M -a
«- « v. c: o M r.
•4 K, r- (• in •» *.
O -O ^ Kl r- fVJ in
er P> on o o c
l i i

o »» r^i «a oo o- u
IT u\ u" i/ in i/ . ^o


ro (Si ^ in
*» ^ *tf in
>" tf a 
• • • •
0 0 0 P
1 1



»- -» o> «-
u u> ir



o st in *O k> rw ru
 r\4 00 00 O fVJ (V-
J «- in >-
co t> co <> in r*. >ri
or r- fvi >O MM r
T- u . or> c~ f«- x. K-I
m o (^ r» KI ro a
«- o  o o r> o
I i i

Of K « CL t> ir
in ir. u . tr\ in it > <<




00 *tf V3 
-------
                                                                  -  178  -
O V)
_i U
=>
a
a

O    i—  *s
J^    — *  (fl
 •C'O-
fv>    C-  L
•£>
b
O
                            C< •& 1-
                            CM m *»
                            ro fM. O
                            ^» oo K>
                            ^.»-|
                             i
                            r* sr  u
                             «O
                           C" oc
                                      o «-
                                      <8 <4
                                      i
                                     OC' IT
                                     00 «-
                                     in -o
                               «- (M in
                                •••
                               ON.CC
                               «- CM in
                               o ** **•
                               o t> t-
                                o ^
                                             •••
                                            CO "M f\J
                                            i/"- in *i
                                            ro PO f\j
                                            o-^-i
                                            «O «O
                                             I
                                            O B  «-
                                            rv o- •<
                                                                                        in «- O
                                                                                        KI in f"
                                                                                        «-0
                                                                                                 CM  «9
                                                                                                 o*  
       O »
       « I—
       LI  u
o
 i
o
 t
                                   Q
                                   K
                                   •     3 Z
             
-------
                                                                  -  179   -
                    in       in i> *>        ^ o        f\j -rf KI        »* f^ r\i       ^«^*JN        KICO        t> JD        *o KI       r^-

       O IO        fVl       OCOC        COM        t- r\J »O        O C r-       K> O K        ine>        00 Kl        IT (V       Kl
       _) u        «-       r-- sj i\,        •» KI        «a »• r         >c o- c-       K. n- »-        m «»        o- in        «- oo       c-
       L- <_>        o       Kt^*~        m oo        o* t> oo        >OKI^       moo<4        in*o        KIO        inr^       i>
          w        i-       ^*«>t        oin        KIIMOD        Kioo^t       O**M        -^r^        r-o        cot>       KI
V)                         m
o                            I                   i         »- «-           (\.r«j          rvKi           rnKiKiKirvr-
=>                                                            i                I               I                I             i             I
O
X

O     t- r*        o-       OlMin        oo co        «-»i>        »-»-o       O-o*        N.IO        oory        o-»       o

  •     L  O.        ^       ^ -4 f\J        u i ^~        ^ 00 &1        ^ v* ^f       v* ^l ^        ^- O1        (/  V         «^ Of        fsj

•^«1«^        r-       in«tfO        fVKl        OOO^rg        KIKlin       «»Klt^        ^fO        h»N-        KIKI       O
       UJ           *        •••         ••         •••         •••        •••         ••         ••        ••        •
       >          "i       OCn        OO        C>OO        <-«-O       »-»-O        T- O        OO        OO       O
                              I      I            I             I               I               I                III
o     _j of
CO     UJ LJ
t^^r        t-        tt_C7-<               Nct>fv       r~rv.K        o*~       K*»?       ao        u.
T-^r                        <:        OJfV       KK-OU       KhC        *S*C&        ITl/,       i/lT       IT. U.        **.
u

tl
uja^sar^')             i/>           fi              s*              o             O          4/1           r-           w
                          |\J             «-           O              &              «-             00          O           >»           «~
                          LA.             f\i           ^—              u"i              i^             «c          <           u-»           ^»
                          Ot              «*           »-              K               O             T-          f           C-           V
                 %         m              ••               •               •              ••••
tfl              OO             O           O              O              O             «-  L|I
LUh-u^-Ch             IT,           ^              00              f\J             T-          4           O           f
>-t,t»-                        rv           f^.              K,              «c             in          l^           b.
                   ro       N.-^f^       *OfM       .J0t>t>        i>KiO




         s^        T-       Ki-orvi       i/im       -<3co        N,S>KI        -» ov C3        IMN-       "- •»        •- >        oo

0                            I               I                I                I            r-^-           K. Kl       K K.        •» SJ        Kl
3                                                                                           I                I            I             I
O
X

OH-*>        j       in^^       Oo       (^Of^        h-ON.        O^O        »—
^.jw*        o       mmO       fOKi       O3(\J        *<4*min        h-O*^        K)^       ODijO        t^h*        *4
      Uj            •         •••        ••        •••         •••         •••         ••        ••         ••         •
      >           Ki       OOC       OO       OOO        COO        OOO        r-O       OO        OO        O
                             III             II                I                I                I            I             I
^     2B
T-     2  jt
                         u,              *O           O              (NJ              ^             f\J
                         IT              K           f*-              O              <,             OC
                OC"
                 II
       3-
       o  a.
       ~  u.
       ^  CT:

-------
                                  - 180 -
   S£    g   5?s;   Eg    £2?    ~£j    £Eo    *?    »,    ;g

     *«*    O   i
£         *~     'V •"   °°    m «s I     o c      •- (Si      ,» m    »«    •» >o

=                       V    -T      ^7      ~7      -T           T-

i
   >
                                                                  T- OL

*,  c ?'    5   2?"*   *" ~    •**•*    ^jr,i,;    ITK^    ^ o-    p.-i;    [T g

s  p    ^   ^_a   s%    «.:.    =«    »K    5ft    s:    as

   >      r.   oc-o   T-y    "-r"-    «-^o    oca    oo    oo    oo
                1        i       i i       i        i        ill
UJ  X Z
_J  (.
o
^
o




?  ?E  ?    ?       s     S       i       S       ?     s     s
o
3
          •    •••.....                                       o
   oto                       ••»    ...    ...    ..     . .    ..

   ~"^    ^   "' ~"'    ^^    
in
JO
O
«—
•J» O t*.
\f\ M f
1 O 0
M »
»-
1
Qs «-
vO IA
0 0
M 00
or oo
1
o «- r-
< Ox-
o> -o 
«- or-
OO (M ^
r>- 00 M
oo o> ro
K <
ru ru
o to >o
r- O M
r- •» 00
«o t> *-
-» ~J O
or O «-
 oo
-a (si
O 10
«- o
ru f—

(SJ O
or «3
•O ro
in jo
^-
1^1
f\
O
Kt
K> r- O
rv K. c
^"1 L ^
3 «* «-
r> o o
i i
r- •»
00 IT
K »-
»- (SI
»~ ^
1
r- r- ro
O <• v/-
c r f
rsi «- O
t- r- O
t 1
i/> ro t>
•O cr •-
0 C «
f 1 IO Kl
«- «- o
1
o m >o
ot 0 or.
OU U *tf
r- ro in
•- «- O
1
PO ^
m o
*a r-
0 r-
»- O
1
*— in
oc rsi
C K-
m •«
o cr
i
Pf
r- *-
0 0
c o
-o
f^
L
(SI
a
i
O  -I
ru  uj
LU  X i.

-I  I.
C

LLJ   C. «  INJ
        "    •»       r      ^       r.       o,

        °    o       o     o'       o       o

-------
                                                                 -  181   -
       31  ^        •        •••
       O  (o       «       M M CO       «- «C        in «- O       «o M »-               ^ M        o a «-       to K-        o o-       K. «-       M
       u.  cj       o*       in ** (\j

»- M
T* M
in *Q
*-  O O-
ICl SI OP
or tr in
r- T- O
OOO
I 1
«0 M *-
t-- o- oe
S* Kl O
(M 90 1
»- 1


10 T- o
^ 'M •»
M V or
N- sr o-
O O o
OOO
1 1
-
M fO
K1 Kl
1
•* 1^-
N- O
^ T
oo <•
in        •»
                                                                                                                                              I
O
3
      >
O    *- *>        Ki       N- co in
ui    —to        f>-       oc ;>     o u        »-       -o o -a
•a    -I <^        O       rg o o
      LU           •        •  •  •
                            ooo        cno       ooo       POO        r-co       oo        ec.       oo       o
                             i                   i            il            i   l        i      i         i             i            i            i
O     J  OC
••?     UJ  LU


T-     £  JC                       <•        MM       K K.  CO       K r  O        •» •» O        U if,        In Ui       If.  u.


LU     X  2.


O
^
U

t.

yjQ^^K'fO              rO          **              O              h"             00           st          O           IA
^^h-r~t—              O              *tf              &              t3           in          O           ^


«TwMO              •*"'          M              C               K             O           *~          ^-           M


CO              MM              »-^              «-              O             OOOO
3                                                                                                   I            I            I             I



H-
CO     fc
       O  u.




co     z  r<     «-
>-     r>  z
10     -5
                                            SO       OKlO        iClnr-       aC«-       KiO        K1CO       inM        «-
      i^o       oo       r^Mro        *^       fOtnoo       «~oo        ^PO       mv-        o
          w       o        i»-i>        r-in                        «-          «-           ^^^-       oci        MM          »N        in
a                               I                i        «- »-           •- »-          t- r-                        I           rt> r\,        «r
•=                                                          ill                                     il
o
3-
      >
                                                                        in in -o       »>oi/i       «» K»        »(>       KI^        j.
                                                                        M*tfu^       ro»»^-       into        ^-o       r\jr-        h-
      (-o-       K>       u-Sf         MO^       KMW        uit^K»       ON        och       -aor        a
      ou.       «•        MM>»        cui       c^-r-        gcOO       ^-»O       OO        »• T-       ««in        ^)
      >           M       CC'O       OC'       OQO        COO       OOO        £TO        OO       OO        CT
                             II                >            I*            II            II                     I            I             I





O    — I  a:
O    UJ  LL.
c    7-c        «-       a-o-'f       •*"•        K«3u        SOC-M       ^Mr«.        n »-        "  «•       oco        IT
*-?"S                       <'       MM       Kh'ff*        KKrO*       ^^ffO'        U.IT        Ul/i       I/, if        «f
      «  3
LU    T  2.
^    L-
(J
>•
U

L
LuO^ecro             »—           «j-              IT,             ^              Q           M          h-           o
                         KI             wi           -J              h-             m              rxj           r^-.-ro           o
                         rv              *-           0               s-             (^              IT.           <•           t            f
^"r^NLr              ^            f              o             o               M           *"          O           O
                 •        •              ••               •              •               ••••
<^              «"•*-             ?-*"              »-             O              O^OO
=>                                                                                                                                        I
»—
<
h—
Ui    K
      o  a.
T    —  u
LJJ    *—  QJ    *^       o*1             *n           *?              nu             M              ^           ~*          ^*           ^~

-------
                                                                -  182  -
                                                      00
                                                                                     .-COP..
                                                                                     s»  ir, *•
                                                                                     Kl  O* !rt
                                                                                                    CO.-
                                                                                                    o 4A
                                                                                                    400.
                                                                                                                                        00     _J
                                                                                                                                        oo
3    I- ^
(f\    — t/1
                                                                                     000-0
                                                                                     0  C.
                                                                       >  N.
                           o o r>
                            i      i
c e
 i
O O C
 I
r
 i
                    1 o
C~ 3 O
 I      I
»- O
 I
O O
 I
                                                                                  o h.
                                                                                   •  •
                                                                                  o o
                                                                                                                                              g
                                                                                                                                        n     _
                                                                                                                                        4Tt    «.
                                                                                                                                         •    Of
                                                                                                                                        O    (i
                                                                                                                                         I     O
                                                                                                                                              a:
                                                                                                                                              0,
      _) o:
      uj 4jj

      *
L     U- U
*     X w
                                       CO
                                       I/
                                                                                                o
                                                                                                 I
                                                                                                                         o
                                                                                                                          I


-------
 2.
 O
                                              -  183 -
c
«£ O

X- _J
h- 2
*"• <
-J DC
«L C
=> >-
o x

It O
Li Z
t— 4t
«
a. v)
  a
_i o
< _j
c u.
LU
a i-
UJ LJ
U 2
                                 in
                                 I
                                 in
                                 in
                                 o
                                 K
                                 U
                                 * •-< •
                                   X: o
                                 »   v
               _l cr
               «• 11
               > o
               Q. ce
               U' O.
                     o
                     x
                     D
                     Ut
  LU  O.
  O
  a  LU
  -•  3
  Cr  _l
  cu  en

  2.  fB
  I V> U.
  U —I O
    U.
  I- Z C
  « Z f-
    « -»
  in I
  LJ c «
  U  LU
    O- U>
  O K D
^ C5  <->
~> z ->
  o   o
IJ « (_) O
— c «- _;
a. a. o i-
c « c o
>-«>-£-
or   ce z
« u. « o
=> o D «_'
I. _J Z

O O O i.
1- »  K «»

O -• O UJ
o. w Q. s;
               ae
               LU
               o.

               C/} UJ
               LU -I
               _l U
               LJ >-
               >- U
               (J     O
                 >•   fv
               <_) t-
               « =>
               oe ci
               o
               » _,  I/J
               » «t  C
               » >  :
               m ce  o
               » LU  o
               *i-  u
               x u    •
               « X   C
               Of *-»  O
               t» I-
               o
               a.
               o.

               f u.
               O -J
               •* CJ
               _i >-  a
               = u  c>
               «    c
               U. a.  rvl
               a o
               > i-
               o
               fc- L.
o
«
h—
CO
                                 * x in
                                   « e.
                                   J- Lu
                                o
                                _j
                                ai
                  2- ov
                  — a.
                »  •: U.
                                   « U
                                 « k. o
                                 K • ^
                                   p 10
                                 » — L
                                  i- c
                                  » r
                                                                             i- o- f ^f^»-
                       ?00000??????TTTTT77TTTT77TTTT7T7TT
                                                                                                   c in «-
                                                                                                  - 
-------
                                                                          -   184  -
                                                                           __.    _._..___          _       t-f^.'OChQO^o^«*f\Jcouimt-r>-u%*->















                                                                                                                             isoeo^»-r*-iA3Oooro»-'D^^ »- o







                                                                                                                          irOO*OP^Of*"100OlA'»*iON")^CCO''t-'
                                                                                                                          iFOooo»N-fs-fviAj)'MON")iAinsr»«rfi'>' IA r-











                                                                                            »inroQON-x>***or^r\j-*-*iAOth'-<\j^>r^-r'-*'}N-iA«tf-j^-'.* ^ ID
                                                                                                                                                   •  M r\j i> 0.1 o 
-------
                                                                 -  185   -
                              ou, SO
                              :o ;> o
                                              v"T-^T-f\ji-iA»-    010
I   I   I   I  I
                 I   I  I   I   I  I  I   I
                                                    I   I   I   I  I   I   I  I  I   I  I   I   I   I  I   I   I   I  I   I   I  I
                                                                                                          o o-
I   I   I  I   I
                                            I  N1 (M «-  I  l/"i •* «-  I   l»-l   l^

                                              III      III        I        I
                                                                                     I  fi  I   I  10  I  I
                                                                                        I        I
                                                                                                           I  I

-------
                                                                            -   186  -
             z
             «
             0-
             £T.
             <
             U'
o
«
L.
             O Z
                u
             u  ac.
             >-  L.
             o o
                                                      1A IT. U, U, UMf, L', In IT U, If  u,
                                                                                                                                     O-oaoucojoao-.
o

t—
u
u
o
>-
a
«
z
             a
             «
             L
             X
                ^N

             £ h-
             => L.
             I ^


             X
             U- UJ
             o o
                z
             u u
             >• o
                         rvrnrv^  K
-------
                              -  187  -
o-o-o ot-o o c  o-o-o^o o-ao-o- o o-o o  oo-frf  t>-b  ocor oo^.^^.^.^  NNf- N-C o- o> u- o <--
            «-f\ r>  «su
                                                              O-b-, o^-cx -OP ><  c 
-------
                                                          -  188  -
c noocoooooooooooooc'eo
     ir. IT, i/i in u-. L  inu u  u I..U', i
 OOOOOOOOaOOOOOOOOOQOO
 I   I  I   I  I   I  I  I   I  I   I  I  I   I  I   I  I  1  I  I   I

-------
u
«.
ct
=>
<
CC
X
c
      CO
      ?     c
      O    r-
      u
      z.
      t
      1     C.
      u.
      _J


      X-
                                                               -   189   -
                                                            o  a. o-  O O

T— ^r~^-^-^^i— i— »-T-*— T-^^^-^^^*— ^-r"^*"«—
 I   I   I   I   I   I   I   I   I   I   I   I   I   I   I   I   I   I   I   I   I   I   I  I   I













                           *"    **              I   I   I   I









                                    h-K1U  N-CSJU  O^U'MfM^f'



                                        I   I  «-»-<-»-«-  I   I
                                              I   I   t   I   I













                            I   I   I   I   I   I   I   I   I   I




  J ^ ^ O OC ^ ^- ^  ^

  t ^ O (\J *^J f^ M M f^—





 iii                                       i   i   i   i   i   i   i   i  i   i

















                            p   i   i   i   i   i   i   i







                      i   i   i   i   i   i   i   i   i   i
















 i   i   i   i   i   i   r     ~                                           ii







o o o o
 i   i   i   i

-------
                             - 190 -

               4.4  SAMPLE DYNQUAL INPUT/OUTPUT

              4.4.1  3  CONSERVATIVE CONSTITUENTS


                        —  data deck listing —
DYN"OAL - 'ArtPLE RUN 1   -   THIS  RUN  SI^ULAT^S  THE  "OVEMFNT OF  * CONSERVATIVE
                           PARAMETERS  (HYES) THPOUGHOUT THF POTOMAC ESTUARY
133 139 1500 2000 20
INPFPE^ENT CONTROL DATA
1*00 500 999 9°9 25
3 0 4 A
30. U 6.00
TA'ULA" OUTPUT CONTROL -
0 0
1 1
1?5 200 1
0
PLOTTIW5 OUTPUT CONTROL -
5 G 1
0 0
5 1 500 '5 1
15 1 500 ?5 0
1T0 1 500 25 0
I'D 450 500 1 0
130 120 175 1 0
2.5 0. .^ 0. .i

- RUN 1



RUN 1




RUN 1


0
1
1
1
0
0.













T
0
0
0
1

3UALITY COEFFICIENT? - RUN  1
        0.         1.        1.
        0.       1.0"     100,
        0.       1.00     100.  f>YE2
        3.       1.00     10J.  "YE3
DIFFUSION CONSTANTS - PUN 1
    1
         1        1*9       25.
UPTAKE / REGENERATION PATES  - RUN  1
    1
         1        1 ?3        0.         0.        0.        0.        0.
DECAY FATFS - "UN 1
    1
         1        133        0.         0.        0.        0.        0.        0.
WAJTEVATER  TNPUTS - RUN 1
    i    1     n
CONSTANT INPUTS
       131      -45T.        0.         1.        0.
VARIABLE INPUTS
  131    *
       125        n.        0.         n.        0.
        25     -450.        0.         0.        2.
       35J        0.        0.         0.        0.
UPPFR BOUNDARY CONOTTIOWS - RUN 1
    1
       500    -1500.        2.         n,        0.
INITIAL CONr>ITlONS - RUN 1
         1        irs        .1         .1        .1
        BOUNDARY CONDITIONS -  PUN  1
    1    1     1
   0.
   0.
   0.

-------
                                                                          -   191   -


                                                              —   output  l-isttng  —
o o
•" X


L  CC
t— 4
O =5
CL. t-
CL co
   u,
_J
« LJ

z z:
LU X.
;  i
^ >-
o o
Z
Ut
                                                          CJ
                                                      to  o
                                                      O-  — <
                                                      u  e
                                                      I—  Lu ~
                                                      10  Q- LJ
                                                             U-
                                                      >-  -I O.
                                                      I—  «C CO
                                                      —  Q Z
                                                          u
                                                          a.
                                                          co
                                                          tt
                                                          I ~
                                                      >-  ••• «-
                                                      I—     O
                                                      •-  CL •-
                                                      _l  uj _l
                                                      <  I- LU
                                                      =>  to c
   CL > D-
   I- a: 10
   V, LJ Ld
      V
   cr f  LJ
   u o «
   X U X
   I-     O
   O K  t—
          O
   t- Ik CL.
   « o
          t
   O t- I
      2T  i-
    • t
    «  O 1
x  _i  r  e
or  Q,     2
o     LU o
*  LU  X C.
t-  =>  t- X
U-  _J     I—
Z  OJ  CO
       LU *-*
1  t-  I— CO
•- a  r> c
o u.  r  »»
z u —
       c; iu
    •     t
   U  (/> «.
   u,  « ae
   D  x <.
   i-  i- a.
   o-
   OJ
        I
«  X
O-  LJ  I
IT     Z>
>-  i-  c;
>- V.  _J
CL U.  a.
« o  r
t-  O 2.
O  _i >-
a-  u. cj
X        LU
X        CO
X     LJ ~  ~     O
X     —     1-     3
X     _! CL  _J      •
x     r> LU  u.     c
x     « >-  a     c
X     CC CO  w
X     Q
X     >  Li
X     X Z
X        •-»
X        t-
X
X
                          Ul
                          a.
I-    Z _l  LJ
f    "- LJ  >-     O
c     o >-  u     o
      « C,•  C     u.
_J    LU     >-     r-
O    -C t-  X
C        ^.  v->
                    O    U.
                    O    U,
                          C
r>
«k    X  Ul
LC    O  CL
C         «.
>-        I-
I    UJ     *
      _>00.    3
      LJ  ". O    C
      >-  J t-    C..
      LJ  3 CO    CO
          « Z
      t-  tv —
      CA  C"
      «.  >-
      _J  X
                          2 b
                          O CL.
                          LJ
                          5-
                          U .
                                 .
                          CO CC w
                          ce o


                          lL 3-
                             «     >• LJ
                             C.     CC >-

                             -I    Z    O
                             o    i  t- >•
                             n    r> •». LJ
                             i-    co    o
                             Z       V) O
                             O     • Z r
                             O    O *""• ^
                                    • u>
                             >-    O LU
                             >-       cr
                                                       Z  '
                                                       o  :
                                                       => Z
                                                       •3  f
                                      c^
                                      L-1

                                   U. LJ
                                   o »- ^
                                      LJ LJ
                                   Q.    >-     O
                                   LU >- LJ     O
                                   C  t— C     IA
                                   i. «- r
                                                         z
                                                         o
                                                         i—i
                                                         t-  cj
                                                         <     ^N
                                                         ce     t-

                                                         i-  3 LO
                                                         •»•(_.    O
                                                         co  C ^     •
                                                             •o       o

                                                         o  ^-
                                                          •  ^
                                                         o
                                                                                U. LU     C
                                                                             LL CO (0      •
                                                                             X ^ to     O
                                                                             « r> i-
                                                                             t- CO w
                                                                             LL, LU LU
                                                                             O f. CO
                                                                                >-. *
                                                                             LU ee. cc
                                                                             x z co
                                                                             — r> i-
                                                         x:  z
                                                         «-  =
                                                         I—  C- ^
                                                                u    o
                                                         u  co r    q
                                                         f  H-. b.     .
                                                         i-  T K     -t-
                                                         >-  f- LO
                                                         ae     w
                                                         «r  ct
                                                         f-  O
                                                         CO  LL
                                                                                 t- a.    o
                                                                                 •« r    o
                                                                                 O. L      •
                                                                                 LL 1-    CT
                                                                                 Q. w    fO
                                                                                                             a.
                                                                                                             o
                                                                                      ¥-  X. •<    300
                                                                                      «0t-    dCC
                                                                                      et  •— L'     O o O
                                                                                      LU  t- X     •   •   •
                                                                                      Q.  LJ I-    T- «- r-

                                                                                      L   Or
                                                                                      i-  ee
o cc >e     3 3 o
o. t- u      •  •  •
c ar -     C c n
M UJ co
CJ LJ w
« z
CD O
   LJ
                                                                                                                « LU


                                                                                                                _i C

                                                                                                                   O
                                                                                                                t~ «
                                                                                                                LI  L>


                                                                                                                « LU •*>
                                                                                                                O Q C-     O
                                                                                                                LL  I  U      •
                                                                                                                o o cr     O
                                                                                                                   -, LU

                                                                                                                L. CD CL
                                                                                                                O    ^
                                                                                                                   V)
                                                                                                                                   LJ  U
                                                                                                                                   ft.  —
                                                                                                                                   u  x
                                                                                                                                   0.  9
                             Z.
                             o
                             co
                             O-
                             «
                             LJ
                             X »\
                             _J tt.

                             >- U

                             Cu X
                             O O
                             O£ LJ
                             O

                             X
                             u
                                                                                                                                       O
                                                                                                                                       a.
                                                                                                                                       o
                                                                                                                                       x
                                                                                                                                       o.
                                                                                                                                       CO
                                                                                                                                       CJ
                                                                                                                                                          LJ
                                                                                                                                                          z
                                                                                                                                                          o
                                                                                                                                                          o
                                                                                                                                                          CL
                                                                                                                                       X.

                                                                                                                                       cr-
                                                                                                                                       a.
                                                                                                                                       r
                                                                                                                                       o
                                                                                                                                                          L
                                                                                                                                                          Ct
                                                                                       o LU :
                                                                                       t- x •
                                                                                       *-* « \
                                                                                       t- a  <
                                                                                       CO    '

                                                                                       o
                                                                                       L.
                                                                                                                       U  LJ  U
                                                                                                                       >  x >
                                                                                                                       O Q Q
                                                                                                                   cv  o
                                                                                                                   X  I
                                                                                                                   _)  CL
                                                                                                                   _l  _1
                                                                                                                   >   X
                                                                                                                   3:  u
                                                                                                                   CL  w
                                                                                                                   O
                                                                                                                   c
                                                                                                                   o
                                                                                                                                       U
                                                                                                                                       O
                                                                                                                                       a:
                                                                                                                             CT
                                                                                                                             C
                                                                                                                                                          co
                                                                                                                                                          •i.
                                                                                                                                                          o
                                                Cc
                                                H.
                                                z
                                                                                                                                                 c
                                                                                                                                                 o
                                                                             O  u.  i.
                                                                                 =3 O
                                                                             JJ1  r- LJ
                                                                             U-  •- S
                                                                             O   h- 3
                                                                             X  CO 2
                                                                                                          o
                                                                                                          L.
                                                                                                                    o
                                                                                                                    _l
                                                                                                                    3
                                                                                                                                       O
                                                                                                                                       L

-------
                                                                                       -  192   -
           u
           o
           O
           «
           LL
           X

           *
I/I        O
Q.
f
a.
o
o
S:
=>
           r
           2:
          Z
           <
          X
1
u
V)
          t_

          _j
          =>
          «
          a
          n
          >•


          o
         cr
         o
                     o     a.
                     •-     u
                     ->     o
                                   <- c- IT c  c
                                                                                                                                         c- r  c- r e c


                                    .  .  •;'°°oooaoooonrao o  c  ooo  oc
                                                       > 1C  h i IT.  o C. C(.  r- •
                                                       » ^\ O fs_  o ^, *<-,  f^. ;
                                                       • f>J U1 .»  r- Kl (».  ^ I
                                                        *")  rctr~
>- O  >j l»-
                                                                                                                            ^ u, 
-------
                                       - 193 -
        r c r- c e-i H re.
               O O  CJ
                                                *-  'VJJOOO
                                                    u^
                                                    a or OL a. o- o^ a- o ^oc o-oo occCLrrcrocni-'
                                                                                 O>^
                oocaoroococrooorooocc-coCTOofroGocoooaoD oc
                                                          Or-r\jf« *?u »rh a, c C; r* rv r*"> <: t* ^Tir-or

                  u ^ *tf K ^
                                                                            .p rv ry o% or or a
t^^^^^gs^S!C,^s;s^^^~?;^^'^^s^ss^^s^^ss;'i^?:$&^s?^^"^au<;^^"Ji'
7^?^s^?^?^r^f-^^^M^^^^s^^^^^^^?^\
fp\>hi***o*jiriocroc-cor^c>ccc
                                                        ^ ^ 73 U^ W) O — • *- -1) Ou 1. 1 r
-------
-   194   -
    *~*~     r~«~T-     ro'NJrj'Vj     (\j  \J    f\j    P"I pt p"i i
















r-coct-oac-c-aoceoooc. occoc-c



ci  o e  ooooooc'noooooociooooo


           o                                                          in
           u                                                           XT
           «-                                                           I
            I
























 o *••  r^ *•" r^- .v r








 O O  *•? w* -Xi 3 '


 f\J OJ  f-









 *"  I   I   I
                                                             ro     rv.  r- •«   I  «-  oc  I     K in
                                                                     I   r-        r-             |
                                                                                   I















 or   Cioor orr^oc nc nc-ccooococ'Occoc c
















 y  ^;>            f5  ^>l *"»J rvj  O O  tD su-  i/ > O  f\J •* L'I  ^  1^ JO  J* *O  O fO  r-> lA t^  ^
                   (  -j
  _>t LA r^ 'v S- "*1  JO  '"C ^  ""O t'l   "-J   '  O ^*-  _"' *i' Nl  ^  ^ < -J  ^  "H  ^ i*"\  f\j ^- f*—  r*
                                 «    o
                                 I—    <->
                                 2
                                 O
                                 u.     u

                                 a     z
                                        «
                                        1
                                        _J
                                        UJ
                                        2

-------
•si
y
o
              a i-
                 z
              c_> u..
              i— er
              X •-
              L—
              2
              LL.
              C!
              OL 'N  ^
              LJ X  I-
              Q I—  LU
                 X  U.
              O U.  U.
              ... o  *,
              t— w
              O
              3.
              Q.
              K
              >-«
              a.
e
LL
O
CO
o

u.
o
              z <-• X
              H- »— CD
              Z O s:
              >- X w
              ./> a.
              o >-<
              i—
              o
              X
              a.
                    c.
                 O .£
                 I- 3
                 X U
                 e 2
                                                                                         -   195   -
                                  -3
                                   •
                                  c-
                                  0
                                   •
                                  o
at


2
O
                                                         ce
                                                        LU
                                                        ^D
                                                        OJ
                                                        oe

                                                        o
                                                        a.
                                                        3
CE
>—
3
2

Lu
a

>-
CC
^
Z
r
                                                                         -a
                                                                      i— u
                                                                      co o
                                                                      z <-'
                                                                      o
                                                                      u  **
                                                                      a. a.
                                                                         a.
                                                                      rO -J
                                                                         ID
                                                                      t— LL
                                                                      CO «
                                                                      z ^
                                                                      o
                                                                      u
                                                                      O
                                                                      u
a. a.
3 a.

ro x

i— w
CO
X
o
cj
                                                                      a. a.
                                                                      3 a.
                                                                     o
                                                                     u
                                                                         c.
                                                                     o  z
                                                                     z  u
                                                                     o  z
                                                                                       a
                                                                                        •
                                                                                       o
                                                                                      o
                                                                                       •
                                                                                      a
                                                       u
                                                       LU
                                                       a
                                                                                      o
                                                                                       •
                                                                                      o
                                                                                                               o
                                                                                                               - 1
•o < i
>- x: c, l
CO >- |
X ^ Of \
0 CJ 01 1
o 01 a. i
C w. |
** 1
1
t
1
1
••»  |
1 1
t- 44 0 1
V) 3- |
2 « a- |
O U LL |
U LU O. 1
Cl ~ |
«" 1
1
1
1
1
«•« o |
-»»»>- |
« 1
1- S* C |
CO t- l
^ < tx l
O 0 LU 1
u LU a. i
c ^ i
^* i
i
l
i
* i
^ *^ t
M cr >- i
« I
t- 46 Q |
(A X 1
2 « CE 1
O U LU |
U LU a. 1
O ~ 1
•- 1
1
1
1
1
« >> 1
(M (M >- |
< I
t- 4e c. 1
V. >- I
z « ac I
O <_) UJ 1
o LU a. i
C v, 1
•* i
l
i
l
l
^ *\ i
«- *- > i
« i
t- i£ O 1
CO >• |
• « ce i
O U LU 1
(J LU 0. 1
0 « 1
*•• 1
1
1
1
1
O 1
o z i
>- = l
-> l
i
i
i
l
l
i
Z CJ 1
C Z 1
B 3 1
u. -> i
1
1
1
1
1



















































3
•
O











a
•
0










3
•
C








ro
ro
^







^






                                                                                                                                                                                     i-  o e-
                                                                                                                                                                                     2-  _j x
                                                                                                                                                                                     -LJ     en
                                                                                                                                                                                     v)  o _i  i
                                                                                                                                                                                     i  2  X  I
                                                                                                                                                                                     o  o c
                                                                                                                                                                                     u  LJ x:
                                                                                                                                                                                            ^




                                                                                                                                                                                            *^
                                                                                                                                                                                          !  >
                                                                                                                                                                                            *
                                                                                                                                                                                          I  LJ

                                                                                                                                                                                          I  X
                                                                                                                                                                                            cr
                                                                                                                                                                                            _j
                                                                                                                                                                                     CO O _J
                                                                                                                                                                                     X Z ^
                                                                                                                                                                                     a o 'J
                                                                                                                                                                                     coy
                                                                                                                            t— O Q
                                                                                                                            2 _J V
                                                                                                                            M    CO
                                                                                                               CO
                                                                                                               a
                                                                                                               CO O  J

                                                                                                               i. i  V

                                                                                                               O O  U>
                                                                                                               U <_l  3
                                                                                                                                                                      ai
                                                                                                                                                                      h-
                                                                                                                                                                      CO
                                                                                                                                                                      CO
                                                                                                                                                                      z
                                                                                                                                                                      o
                                                                                                                                                                      CJ
                                                                                                                                                                      x
                                                                                                                                                                      r

                                                                                                                                                                      CO
                                                                                                                                   CL:  I
                                                                                                                                   _l  I
                                                                                                                            CO (J _1  I
                                                                                                                            z r ^  \
                                                                                                                            O O (J)  I
INJ Q >-
< -t
1- O D
Z -I S.
LU -
«• «c
t— O O
Z -J V
LU O'
3 -J
r-
rsj
^»
r\j



3

^




•
C





                                                                                                                                                                                   o o u>
                                                                                                                                                                                   u o a.
                                                                                                                                                                                      o
                                                                                                                                                                                      _l
                                                                                                                                                                                      LL 's
                                                                                                                                                                                     U
                                                                                                                                                                                     2.
                                                                                                                                                                                     3

-------
V)
c
41
O
_J

tr
UJ
*—
«c
3
UJ
»—
tr.
•<
i

U
U
to
o
>•
                •c *  .
                I- O  C
                Z _j  X
                in O _j
                2  y x
                o o <->
                <-> O I
                 > D
                   •c
                   O
               C/5  U _J
               2  I  X
               o  o o
               u  u i:
               -» O  >-
                  «  «
               t- o  r
               z _i  x
               UJ     CD
               3     _l
               V) C> _1
               a- y x
               o o u
               O l_l 3
              fl C. >-
                  « «
              t- o c.
              Z _l X
              Ul    ffi
              3    _J
              a-  *•  x
              o  o  u
              O  O  I
              (M O >-
                 «* *
              I- C C
              Z -I V
              UJ     CQ
              a  a- x
              o a cs
              u o x:
                 c «
              t- «. Cl
              z o x
             a  «. v
             o  o u
             U  O I
                 31  ^
                 O  (ft
                 -J  U
                ts  _j
                I  .
             2-  •
             — O
                Z
                c
                01
                                                                            -   196  -
                                                          H-

                                                          t—  • ^s
                                                          1/3 1_> _j
                                                          «L 2 X
                                                          O O U
                                                          t  o r
                                                          IA a «:
                                                             ««. C
                                                          t- O X
                                                          Z _l ffi
                                                          UJ    •J
                                                          3    w
                                                          tn o _i
                                                         2   r  x
                                                         o o u
                                                         O O I
in     o
if.
a<
                                     033
                                      •      •     •
                                     O     (V    O
                                     o     o    o
                                     o    3    a
                                      •      •     *
                                     o    o    o
                                     o    o     o
                                            O
                                            O
                                                                                V)
                                                                                £
                                                                                O
a
2
o
                                                                <•>
                                                                >-
                                                         •3  C. «
                                                             «. o
                                                         t-  O X
                                                         2  _j a.
 co u _i
 Z 2 X
 O O ti
 OO3



       ^
       >-
ro O «
    ». o
»-  o x
 z —i m
UJ     _,
3    v
a
 •
o
                                                                                                                     to o
                                                                                                                     s c
                                                                                                                     O w
                                                                                                                                                         2  Z
                                                                                                                                                         O w
                                                               to
                                                               Y.
                                                               O
                                                                                                                                              O
                                                                                                                                              o
                                                                                                                    10 ti
                                                                                                                    i  3
                                                                                                                    O w
                                                                                                                    H- X
                                                                                                                    t^/ u.
                                                                                                                    z  r
                                                                                                                    o >*
a
«
0
z
3
O
m

a:
w
fc
3
U.
o
>-
a:
<
T
a:
S 2. X
O O U
u u z
w


<*s
>
 »
« 0
h- 0 X
a _j CD
UJ _l
3 ^*
^~
1-1
^- • ^"
(0 (J — 1
z z x
o o u
I- O 3
«^
o
•
o




•
c-






3
•
£•>

                                                                                                         O

                                                                                                         >-
                                                                                                         c
T- O •*
^ C1
1— O X
X -1 CU
-J _J
~J \^
H«
1^
t- • <•>
to (_> _i
z i x
o o u
our
s^

2 ^N
O «0
-J U.
U. LJ
\S


^\
3. V
H- 1- U
i. LO _J
LU s: *^
i UJ >-
i- -J <_.
a. *s
u
? •
(NJ
PT1
r-


-------
                 —i o
                 t- f.
                 o
                 z
                 o
GO
IT
o
r-
o
o
z
o
or
 o
Q£
4
3
 u.
 o
H"    (/) ^
U    Z
z    o
      CO
in
Z    I-
o    z



-------
   if,
   Cr
   >•
   ^
   a
   UJ
   _j

   >-
r
3
CO
a

a
* .-.
   10
   a
   3
   O
   X
   c

   IM
   Cr
   «.
   h—

   If
                   J X
                  n i
                  t- i
                  2

                  O 2-
                  CJ »«

                     C
U  X


t- x:

K-
00
Z
o t
                  -i •


                  K
                  Z
                  tn
                  z
                  o z
                  o •-
                     2
                  Z
                  LJ
2
O
                  1-11:
                  t—
                  tn

                  o r
                  o H.
                     2
                                                                          -   198  -
                                 a ro .
            OCCDOCC-COOOOOOOOC-OOOCOCCTOOOOOOO' 0000000  OCTCOOCC


               t-«a<  on o  c o c «- «s < N if «o«rO'OocO'Oooc *ic  o  •-•  r  o ~>  c:  o  i—  c-
                              occor-oocooocooooecooctroooooooocjoccoc c< o o c.  00000  c.
                                 3  ro -» IT.  r- go o-  a»-r^uiN-r-r--oiriro(MfsjT-T-raoO"3ooooo3Ooc; OOO-DOOOOTIOO
                              OO.aOa-aajT-,-,-.-,-,-,-,-,-,-,-,-,-,-^,-,-.-*-,-,-,-,-,-..-.-.-^.-.-,-.-.-,-,-,-,-,-

                              c.oooo^ccooocoooc.cccoo.ooooooococroceGGcrococrocc-'Crc
                             COOCCOCOCOOOCOCOOOOCOC-COOOOOOCOCCOCOOOCCDCOOOC
                              Cro«-r-»-occ.c  cocc-occcecoooococc-'crc.ococ.c  occ c  croc-oc-cr  cr


                                •»  N-rvin»-«et-«£. <-»
-------
                                                                             -   199   -
                                                                                                                                                                    .  on
,-*-«-«-»-»-.-«-«-T-3C)JOO'3'3*-«-«-«-

eccooocooccoooooc,ocaooaocooeocc?ooooec!occ*crecci
                                         -   J    ^ ^ ^~ *~ ^ ^~ <^ V~ ^ ^- 4— ^ T_ ^ ^ ^.. «_  ^_ ^ ^_ v^ v— ^— ^nv ^- ^ ^_ ^  ^—  ^ ^_ ^m ^~ yv ^ ^ _    M ^^  ._  -i

                                       .  occoroccocooooococccocoooccoooccocooocoooc-cc'r
ccccoooccccccrocrcc-c-c  occoocrcc-occ-ocroc/c-ccDc:. coe_c  c  octree c c, c
                                                                                                                                                        1  C  C C C C C
                                                   i^oonj.oooo_Tj.^iroci>»oo'r)aooc5CjDJDOooLi'aooC!-3^oc;a-_-f>-x,
                                                   ''•'•'•'•'•'•'i'iTI'^^ri^::J^1'i'^*i'^'iT^<^rir^'^*I'r^'iTI1T1'^TI'~'~~'  •3":i  -
                                                    oc'c-oc'C;CDCjCOC;DCCOC.OOCOC.CCOOC'OC.OOOOC,OC:ocCOCrC*


                                                    '^^  t  C.r-(\ p  9 V. <• t»  0  C  C»-r\,J.  ^u  w  r^

-------
-  200   -
o o  o a    ooooooocooaoo3rsj(Nj»-kn3
*~" *""  T~ *™ ^ *—• ^" T~  «••  ^™ ^ T"~ T~ *•• T~ ^ ^ »"•  ^* *•• ^ r\l v" *•

ocooccroocrccooc.oc.opcoc'co


r^oco    ocooo<~'C"crocT1Cooom«rc. -arv
*-«-*-«*-O""-e-«-«~*-«— T-^-«^«-^-*-«—  ^-T-«-%noo    oao-30oooooooooc>o-ooaooa
»-«-«-«-Or-^T-T-«-r-v-»-t-T-«-»-«-r-OOOO3

OOOCOCOOCOCOOOCOOOOOOOC'C.




ooocj    03ooaooo = aooacr^.t>-»->»r~
»-»-'-«-:3»-.-.-«-»-r-r-»-«-r-.^.,-«-«-»-»-iy|f\l»-
 •  •••••••••••«•••••••••••
c-cocc.crc'oc'cic'cocercoc-c'coc'co


rorr")    cooooc'co'-iocciooT-ocr'^r'
«~t—  «— •»o<^*^<^-*fc^-^'^-»^^~^'^-T-*~T-r\jfv*crvfNJ

3O.'3-3JCi-3r5S'3'3-30-»KOiri
T~ ^  ^* V« O <^ T* ^*  V^  ^* ^ ^~ ^ **^ T~ f^ V~ ^~  ^~ V* ^~ f\J N ^
 .  .......................
OOOOOC'OOCiOOOOOOOOOOOCOOO




ono^oooooa^ooooor-.oooo-oocno-
r->-<-^-O»-^^r-»-»-— -^<-^^«-»-»-T-33O^
 ........................
c;c.ce-<\,cccrceoccc.eoGcc:oce>oc


occrc^c-ecccc-oc  rooeoccM^coo-o-
«- ^  «- T- C «-  «-«-<-«-»-<-.-«-v-«-T-«-«-r-t-OOO

oooo-woooooooooooaooooooo
         o
         o
       II «

      -
      u i—
         (0
      x-«
      ^~«J

      -JbJ
      «i a.
      3 •
      CJt-
      O«-

      Ct  =1
      L  «

        -

-------
                                                                           -  201  -
   CO CO
>- IX CC
ee 3 =>
« o O
r x x

=> in o
to  •  •
3 Ci C  +
C
2 IA O
« r -  >-
 o  t-/  t_
 »— t—  CO
 CO flc  D
 L.  -t  2
 !*"  >•  >
 OKU
 o r- x.
 Q  3  I
                                                                                                                                                        X
                                                                                                                                                        3.
                                                                                                                                                                         or
                                                                                                                                                                         O.
                                                                                                                                                                    »    «
                                                                                                                                                                   ^1    X
                                                                                                                                                                   rj    o
      u
      c
o
 •    CO
o    u
ro    _j

-------
                                                                                 -  202   -
                                                                                                                                                                        "3
                                                                                                                                                                       i  •
                                                                                                                                                                        n
«. o o
ae x a.  +
s:
3 iA O
u:  •   •
   vr «s
   r  sf
                                                                                                                                                                        r    u
                                                                                                                                                                        KI    ts
LL
Z
o:
UJ Lu L
Z
UJ
t— »— to
- >  +
O oc a:
*— < *.
o r i
a. »  »•
   3) =3
   CO t/3
                                                                                                      X
                                                                                                   z
                                                                                                   X  +
                                                                                                                         I -I    •*.
                                                                                                                                      X
                                                                                                                                      T
                                                                                                                                      +  a     «  -j
                                                                                                                                                                         •    -t
                                                                                                                                                                        u->    T
        O
        _J
        L
        r
 O
i   •     y>
 O     U
 fV     —I
                                                                                                                                                                        •3
                                                                                                                                                                   i  _i  •
                                                                                                                                                                     o t_

-------
                                                                               -   203  -
   V. 
>- CC tt
a. 3 r>
« o o
r i x
r
=> 'ft O
C

 1
   in 3
   ^; c.
i- _. o
LLJ >- >-
LJ t  t.'

>- t- t-
Or « «
      X _l

      X _J

         _l
+•              +
         _l

      X _l


      Z _l


      a- -i
X _1

3. -J
1  >- >   +
o cc te
0X1
a. r i
                                                                                                                                  3. +  »

                                                                                                                                     I
                                                 o
                                                  •
                                                 o
                                                  If
                                                  O
                                                                                                                                                                             oe
                                                                                                                                                                             CJ
                                                        o
                                                        _j
                                                        u
                                                  to
                                                  L
                                                                                                                                                                        3
                                                                                                                                                                    _l  •
                                                                                                                                                                    O C
                                                                                                                                                                     •
                                                                                                                                                                    o

-------
                                                                        -  204  -
U
c +
o
cc
o
00
h-
O +
_1
CL

LU
                                                                                                                                                O
                                                                                                                                                C.
                                                                                                                                                iTV
      (/>
      LU
O    _J
 •    O
a    >-
in    t_j
                                                                                                                                              I  D

                                                                                                                                             5 C
                                                                                                                                              •
                                                                                                                                             -3

-------
                                                              -  205  -
V
u.
 L
 C
 3
 ce
 o
 o
 _j
 0.
  ul
  r.
     v>
     uJ
O   _l
 •   o
o   >-
                                                                                                                                     D
                                                            . O 2" 00 t-

-------
                                                                  -  206  -
                                                                                                                                         o
                                                                                                                                         o
                                                                                                                                         -3
                                                                                                                                         in
                                                                                                                                         «t
                                                                     *      *    +
 -3
i  •
 O
 r
 -4
L
H-

Z
u_
o +
o
IT
O
                                                                                                                                         c
                                                                                                                                         c
                                                                                                                                         rO
      V.

 e   _j
  •   u
 o   >-
 in   o
O +

t
                                                                                  +    *       *
 O
 C'
                                                                                                                                         o
                                                                                                                                         U1
                                                                                                                                         o
                                                                                                                                         c
                                                                                                                                         o

                                                                                                                                         o
                                                                                                                                      c  c.
                                                                                                                                       •
                                                                                                                                      3

-------
                                                                 -  207  -
«>. +
>
eg
                                                                          x
                                                                          x
                                                                          X

                                                                          X
                                                                          X
                                                                          X
o
f
u
c  +
o
cc
o
a.

LU
I
X
X  +
                                                                                          X


                                                                                          X
     IS,
     tl'
O   _l
 •   LJ
-O   >-
oo   u
                             ~a
                              •
                             a
                                             a
                                            ' *S
                                             ^

-------
                                                            -  208  -
L
C.
o
z
en
i—
o  +
                                                                               II
                                                                               *
]
* * + + * + 4 + H

1
11
1
1
j
t ^ ^ cv
3 "3 0 -5
t
+ + >
K
r
c
K
K
|r
K
^- C
o
i cr
-, •
TO
("0
^
-n
3 C.
• rsi
3 *-
     CO
     LU
O    _J
 •    O
o    >-
O    (_,

-------
                             -  209 -
              4.4.2  2  LINKED  CONSTITUENTS
                           — data deck  listing —
OYNPUAL - SAMPLE RUN 2  -  THIS RUN SIMULATES THE N ITRIFIC«T ION PROCESS
                           IN THE POTOMAC FSTUAPY
  1*3  139 1500 20PO   20
INncPENOENT CONTROL DATA - RUN ?
 150U  500  999  999   ?5
    2    0    1    F
       30.      6.00
TAFULA* OUTPUT CONTROL - RUN 2
    0
    0
    T
  100    0    1
  300    1    1
  4PO    2    1
PLOTTINp OUTPUT CONTROL  - RUN ?
    032
    5    1
  309
    1     1
   .5   0.  2.q   0.
QUALITY COFFFICIENTS - "UN 2
0.
0.
0.
DIFFUSION
2
1
66
1.
LISP
1.0?
CONSTANTS - PUN

65
1**
1.
mo.
100.
•>

25.
10.
UPTAKE / REGENERATION "»ATES - R
1
1

1*3

0.
1.
NH3
N02»**03




UN 2

1.
DECAY RATES - "UN ?
7
1
2
21
114
115
129
131
UASTEUATER
1 0

1
20
113
1 14
1 ?8
130
133
INPUTS - RUN 2
p

.03
.07
.03
.07
.03
.07
.03



0.3
0.0
0.0
0.0
0.0
0.0
0,0


CONSTANT INPUTS
       131      -450.        4.
UPPFR BOUNDARY CONDITIONS - RUN 2
    1
       500    -1500.        .2
INITIAL CO""ITIOMS - RUN 2
         1         1P        .1
        11         ?0        1.
        21        12"        .1
       129        1*3        1.
SEAVARO BOUNDARY CONDITIONS - PUN
    1    1
   .1
   .1
OBSFRVFD DATA S?T ft 1
 .06 .07 .05  .4  .*  .2
  .? .17 .14 1.4 1.3  1.
 .07 .05 .02  .5  .3  .1
 .06 .04 .03 .35 .25  .1 •
 .04 .03 .02 .35 .25  .1
                                      .1
                                      1.
                                      .1
                                      1.
                                                          0.
                                                                    0.
                                                                             35.
                                                                             45.

-------
                                                                         -  210   -
                                                              —  output   listing   —
a- c.
o o
<- x-
L-  C,
t— «
O =
e~ »-
0- CO
y 2
;  x-
3 o
ce
   o.  to
   I—  CO
   10  LU
       o
   cc  o
   uj  cc
   x  a.
   t—
   O  2
       O
   CO  *—
   z  cr
*: _J  2
ce a.
o     ui  x-
a- LLJ  I  ce
I— ID  »—  «
LU _J     Z5
2 m  to  t—
       LU  CO
:: t-  h-  u
o •<  «
M     _J  O
t- to  r>  •
c.  U.  r  x
2 U  •"  O
O     C/J  H-
-> c-     c
   U:  3  O.
    LU  CO t—
    13  1-1
    a
 co cu
 3 «< (V
 « X
 b. w 2.
 C     3
 >- H- u:
 X «
       L
 X- CO _J
 cc u_ CL
 «t U C
 n    i
 t- r? (/
 v? CD
 L.! ~t  I
 «  II  <.
 X     =>
 O  >  CJ
 c-  C.  i-
 O  _J *-
 a.  u.  a
                             u
                             LU
                             V,
                          _i a. _>
                          3 LU U
                          « t- C
                          K CO <•<
                          a
                          >  u
                          a r
                          UJ
                          a.
                   o     oe >- s
                   a        « >^
                          Z U
                          O 0.
                                       o
                                       o
LU    <•>
-100.     O
O «-i D     O
X  _J I—     C
cj => co     ro
   » 2
»- cc ^
co c
                                                         a
                                                      u) o
                                                      o. «-
                                                      U  Or
                                                      (- LU  •-.
                                                      CO Q.  -)
                                                             L
                                                      >- _i  a.
                                                      a  cc
                                                          Ui
                                                          a.
                                                         co
                                                         ct
                                                         x  «
                                                      3  co  c.
                                                      o     -^
«        LU
t-        _l
«     >-  O
c      a.  x
       «t  cj ^N
-J     X.     U
O     I  K X-
U.     3  «  u
>-     to     o
•z        to c
O     •  2: 2
—  O CO
                                                                            »   • O
                                                                            (O  C. ^
                                                                                -o
                                                                             •
                                                                            o  t-
                                                                             •  <
                                                                            a
                                                   LU CO (O
                                                   I 2: irt
                                                                                -J  O)
                                                                                •c  <
                                                                                   a
                                                                                o  •.
                                                                                u,  a
                                                                                >•  u
                                                                                <  LU *>>
                                                                                c.  o r
                                                                                U.   |  U
                                                                                O  O Cc
                                                                                   •-4 LU
                                                                                u.  co a.
                                                                                o     «~
                                                                                   co
                                                                                                                                ce —
                                                                                                                                L  3"
                                                                                                                                a. -
                                                                                                                  o
                                                                                                                    •
                                                                                                                  tr
         o
          •
         o
                                                                   O
                                                                   a-
                          (_) _J I-
                             — U,
                          I- «. 2.
                          CO CE «•>
                          Ol LJ
                                                                   o
                                                                   CD
                                                                             U.  LU LU
                                                                             O  Vi CO
                                                                                «- •-    o
                                                                             UJ  DC o-      •
                                                                             z  z- »-
                                                                             i-  in **
                                                   t- 1C r\
                                                         w     o
                                                   u> co r     o
                             Ct
                             V CC
                             t- o
LU
CL

t— O.     O
« Z     S
Cr. L.      •
U  H-     fi
Q. >-»     10
                                co
                                h—
                             LL ?  ^s
                             O U  2.
                                => O
                             U. 1— CJ
                             U. — IT
                             D- i— r/
                             a: co z
                                                                                   Cc
                                                                                   O
                                                                               LL  «.
                                                                               ac  u
                                                                               ce  «
                                                                               LU  t-
                                                                               CL  O t
                                                                               I  ti.
                                                                               L  CC
                                                                               I—  Cc
                                                                                                                      f  C
                                                                                                                      r- O
                                                   _1 «£     O

                                                   X -I      •
                                                   CL X     «-
                                                   O LJ
                                                   O" w
                                                   O
                                                                                o  cc ^    o o

                                                                                S^i    cc
                                                                                it  LU CD
                                                                                CJ  U ^
                                                                                «  Z
                                                                                CO  O
                                                                                   u
                                                                                                          2     »•>
                                                                                                          LL.     U-
                                                                                                         t-  Z «
                                                                                                         i-  « Z
                                                                                                         I-  2 C.
                                                                                                         CO     **
                                                                                                         Z
                                                                                                         o
                                                                                                         L,
                                                                                                          I— L
                                                                                                                      r  c-
                                                                                                                          •z.
                                                                                   o
                                                                                   T
                                                                                   a.
                                                                                   co
                                                                                   o
                                                                                   a  ^
                                                                                   a.  o
                                                                                   >  T
                                                                                   X CJ
                                                                                   a. «
                                                                                   o
                                                                                   a
                                                                                   o
                                                                                                         LU
                                                                                                         C
                                                                                                         O
                                                                                                         tr
                                                                                                                                   a.
                                                                                                                                   o
                                                                                                                                   a.
                                                                                                                                   o
                                                                                                                                             c
                                                                                                                                             c
                                                                                                                               Ct
                                                                                                                               o
                                                                                                                               Q.
                                                                                                                               o
                                                                                                                               cc
                                                                                                                               a.
                                                                                                                                                          i
                                                                                                                                                         rv
   X
   K

   O
   Z

   to


   r
<-. Lu
r- H-

 I, CL
   f


U
U. U
^ cc
^ «

   CL
O uj
*LI I—
c •«
Lu S
o
—• o
CO LL
*- I-
o u
LJ LU

CO C
                                                                                                                                                       -J CO
                                                                                                                                                       •«. 2.
                                                                                                                                                          O
                                                                                                                                O
                                                                                                                             Z- CJ
                                                                                                                             LL
                                                                                                                              I—

                                                                                                                             cr uj
                                                                                                                             t— —
                                                                                                                             >-« h—



                                                                                                                             >  C/"-

                                                                                                                             ^. o

-------
                                                                       -  211  -
                       2
                       O
                       «_
                       V
                       =>
                                                                                 00         CO
                                                                                                                                     «- rv c  c~  c i» •» tr r~ t
                       x
                       11
                       X
                             coDOTioc'Ccicocooooc-r-ooooor-occror-oCDooocc'ocooooooi
                       o
                       -J
                       u.
                       £
         05
         a
CO
e-
3
a
I


X

O
I-H

»—

U
               in
               O
               Z
         z
         <

         V)
         z
         2.
         I

         C'
         o

         en
         I


         O
         L
         Z
         z
              z
              «
              z
                                                                                                                                     t-ccoccorr-r-r
o

t—
c
OJ
w>
 I
         O
         tr
         o
                             r*rror-t-rui/"tOOrOor  mrvj^tfL^iriOOOtxj^tf^r^KO^oc^T-ro
                             oti^. f  ooor»-»-^)(\irgu~ooir,^s(V4r^co-f^l-a'O^
-------
                                                                               -   212  -
                                                                                                                                                     c cr c crcrccrcrcc
                                                                                  c>    ro N*>       »—     rsiooco
                                                                                                                                                     "
  m i^
                                  x. *i <> <  >o v> <> -o
                                                                                                          »a4A^c^
                                                                                                          o cror^ooor  o-o^o-o-a^c  o  c  o  o croc-c_r r-^c OCT. .
  ,^^'"^"^^^^^^^^^^*^^^^<^^^^^**^^^*^*<'MM^^mOTMMmrot'iK>mtoi*fowi«*ifrii.5^;5

  'ooc^cBBBBB^BB^o^BBc^B^BBBBBOoBCBOoo^eGooc^SBBB^ol^cooc^c^^'


   ^?^^^°^^17^^^l!ooraoooor^00^c"ooaoQ = 0°oa  =  0°°oo^oo = riooaoo3'-.ir-

  i o  a  o  =)  o o  o  ooao 30oooac*-r  ^•Jvsth-eoao^rvK^-irsOKcr.  o-  c, «- rv K  <  u  NCKeroc?r-rvr^-»  ^^^^''••O'-(M~-lNjl/\L'>1f>N.4JD>O»-'\JM.airi>OuO>O«-'7)^rvj»«  »r^  „   ,^
  . IT,  ir  in  i/Mnin  ir.  u < ^«  -iS^£oc,<»oo5f«?cowi°orSII?a&cer&^?oooc^^o^





                                                                                                 fOt^^-*lTt'O*O-O%O'>-flO'>OfOrs«aooU»/>f>-  >O«-^.mor^-u»»i
                                                                                                 r\jruoji>i>Ki^^OrofOMK)>*^ff-tf*tf*nJ>-nt>  o>o>i'iiriO-ownN.c.C;or^





                                                                                                                   -»mrs-rs-***%i/*-x3opjor*-tD'MO"33r'->  "oo~
                                                                                                                   ^-T-i/>t-r«  cx-*(  oc*o^v)«-SN-^-o*-oo  ^o^t

                                                                                                                   QOOOOOOOOOO«-O3OOOJ>OOO

c^ou-ooai>o-o-o-(>i>oo-oaiiiiiiiiiii     p^m                K-intr                                                   'TTT1^
«-t-»-i->-«-»-«-r-»-«-«-T-ii-«-r-                                      ||                  (I



oro--tiv»-<.f  M«  u-, u-v^^u1ln^o^  <\.c  •»< r  f^ac'^iccr^-o-c.  r  01-1 o  i/^oc,  r-  - f\ i^> LN  i—  r
u^i>^i^<)rvj^^«jivo^^f^^r^o>xui^a3j>rj^i>ojo^irtrwrj^ao^(^a)^^srr\j'-(^«»^oo(^lriO^>»r-U)ui-o^>»toi>it.

^<)^^-ow^uii.^o^i<><>r--r^»"*'ff"*''«»«fft. «o«r. f\ioorvifvjri(\., (vi(\ifvrv'«vr.ru(\i«\fv'(N.'fNjr\t>.'ftjfN'PO(v(V(x'picccrB(r
'*~T"'~»"^'*^*"'~t^T~r~f~t~'fcr*'~rvfv  rvr\'r  rvrvfMr»rvf\c^  rvrvjfNjrsifvtfMr'rufv  tvrurvr-rvrufvr  r  iNjfvrvr  rjfvrv.rvrM^  r\r\  r
-3O33_J^DOZ10^0OOOOOOJO0033oOaOOJ5-3'33a^3J-3-3a-3a3-)JOO3  3'33'3JJt3-)O-j  j
 •  •••••••••••••••••••••••..•.»............................  ^~
c  ^crcrcoooc ooncoocoococjoo(~>c  pr'c.oc'r'oooootoC'eooccc  ocrc oc.  oc o tr c> ^ T-  c  r


 ••••••••••••••••••••••••••••••••••••••••••••••••••••••«..,.
f\j»»rvjT-t—  N.inr^o^-ocsi/tror-aoxtr.ro^oooco^-oi/1. o-tfo^KiO-'C'Cooocm^—  ruccaou--o«»cou~fvJoooeciO'Ou-O'iru  ^a  «? rv a u-i o ry <\,  u-,  o
                                                             f-«a-oGt>i^i-ar-o^^rgC3'-'N.
                                                             -»<-onoOfO-jrj^}o.O'-(v;ro(Njjoo-'\im>o^o.wr-(vr<.«jV)Of-O'Ooi\J-»j»iw-ir«-l^-
                                                             *"*"<"'                r-r^fir^1*^r-^— rv^irr^fv.1     K        ^-^.t»i»^f\jr»— r*^^?^^*




u  x.  ci^Nrrtf^iu. OL-  JLVO  <  ooc  crc-ooc  cnc.oo^coi-'xr«o«."occ. t-h  <-4oo^,i^r^i«*oi  C-^n'orur^trc'-^-*
f\IT-u>«-LO«"iM'1^J>f>-u'> f^fMK>i-O"3iAm-ntAi."\LnioOm^oO-nNlr-st>-"3u^'On^o1OO3p'OroO-D.'OO-Of^.OJ>-J~C^^
•^j^^i>.^>jv-DOJip'^s3r-'wt--vJO'MO-~»iO^J^-\-*f^-aom-NIO'-'-i>-^.r.r^roo>j-J
^ir^u^T-^fO'-^'f  i/'Ccor^-L.Njpor«-T-*-*-T-                   t-«^uir-vO1'1r-^T-r-  3T-uijiC»O*JCC«-^'^.^O'r)r'l^1vh>Ql/>OLn_;fMr«-iu-i^i.->L'-iu-  JininTJi— <— '-J^.I.^-OLIUI^T— ^j—i,^.  ,^..
-O>tfi^vj  w>t;<-.N-^x.'-o^r—  O'O»->o<  O'jrn-ivaut  o«~-^-c-  f-r^Lr\^.to^>°0'~'^'^*~l>->^  O^-'~>O  Jt'f^J^•^vA-(^.^  »OK  f^, f*  r
-------
                                                                          -   213  -
                            c- .tfu"i>or>-co<>r»')»-.>o>ooi>o-ooaooo
            ^*»^jK •iin'Cr^oco  o»-(\'K •*ITo«-rJ>o  -»./>ON.
t-T-r-r-»-«-r-r-»-t-(Moj(\jf\!fvrof\jfvi






jt-3roruOfom«Of^moo»-roo-^  Arv-
-D«-r^*-i^-x>»-»-«-  o^f\jr>jMrjr\jrMoor
^-»»    T-       r-r-^-    r-^^-^-^-^-v~







3;D-*mxO>p'"iiM'Om>O'-«J!)OO'J

»-MOC>rviu'**»tfOj^r'*rr'  fvf>  sj^rv'^
M rg T-                                                     *•        »-





T-O^^"*"^ vO-^c^ Ncr^-co^*^^ -c»-Lnor^t^»o«— N- OK
OOK'»orroOClOrS;^-C?OCIODC'^'»-O r-T-foOeoo


OD3O=3OOOO3a9r3OOOON-a-
                                                 CCC.COOOOCC-CCDO
•-occco
          '

-------
o
o
a

o
D
T.
=>
o
m
a.
a.
o

>-

«.
T

=
tn
             I— O N.

             f _J CT
             U    _l
             o o u/
             o c  i
             \n o <
                -^ Ci
             I- O V
             V.  U
             22

             O  O
             «  e  «
                « o
             i-  a v
             7  _i e>
             000
             <.. o r-
                «. o
            I-  O N.
            i.  _J cn
             o  o to
             o  o i
            1—  O  V.
            f  -J  c
             CO U —I
             
                                                                                        ar  r
                                                                                        o  w
                                                                                        o
                                                                                        z z
                                                                                        o -<
                                                                                        u
                                                                               -

                                                                               O
                               (M
                                •

                               O
                                O
                                -3
                                                                                         O x
                                                                                         o
                                                                                         tn cs
                                                                                         7  X
                                                                                         o -*
                                                                                         u
                                                                                         en is
                                                                                         2  J-
                                                                                         O w
                                                                                         t/v a,
                                                                                         i. z
                                                                                         o ^
                                                                                         u
                                                                                         o z
                                                                                         >- 3
                                                                                            -)
                                                                                         o
                                                                                         a.
                                                                                         u
                                                                                                     a    o    o    o
                                                                                                     »-    3    ^    3
                                                                                                     O    O    O    O
                                                                                                     r-    3    ^    O
                                                                                                     c.     «-    c     «-
                                                                                                     o     o
                                                                                                     «-     IM
                                                                                                                  oo
                                                                                                                  ro

-------
                                                                    -   215   -
o
UJ
O
in
f
o
L
o
X
3
CO
              i- if r
              1.1 >
              2. « oe
              O O LU
              <-• u  a.
                 r  ^
              H- i£ O
              t/3 >-
              5  « &
              O O LL
              u uj a.
                 o ^
              •a -» >-
                    ^
              i- K c
              O U 01
              O Ui Q.
                 C w
K K  >•
       ^
i- ^  a
U5 >-
Z «  0-
o o  uj
u uj  a.
t- ir  C
t^ >-
2. •<  in
a u  -J
o u-'  a.
   c   «^
             K-  ii  C.
             W  >-
             2  «  D.
             C  l-J  U.
             u  uj  a.
                                                                                                                               U)
                                                                                                                               C
O
 •
a
             o
              •
             o
                                                                   en
                                                                   a;
                                                                   o
                                                             I-
                                                             z
o
K-

-3
 •

C
f~

O


C-
                                                                        o
                                                                        K
                                                                        O
                                       (M     ^-    ^
                                                           00
                                                           (V
o

IX
u.
o
K
c-

o
z
M

CO
                                                                                           IU
                                                                                           c-
                                                                                                                                            I-  O C
                                                                                                                                            Z  -J v.
                                                                                                                                            U5  U _J
                                                                                                                                            2:  2 V
                                                                                                                                            O  O C
                                                                                                                                            <->  <-> X.
                                                                                                                               u. C >-
                                                                                                                                  «. «L
                                                                                                                               f- O Q
                                                                                                                               Z J X
                                                                                                                               ui    cr-
                                                                                                                               =>    _J
                                                                                                                               H-    ^


                                                                                                                               t-  • r>
                                                                                                                               CO I- _J
                                                                                                                               z z x
                                                                                                                               O O o>
                                                                                                                               -» a v
                                                                                                                                  « <
                                                                                                                               •- o o
                                                                                                                               2  _J V.
                                                                                                                               UJ    QQ
                                                                                                                              U5  O
                                                                                                                              2  i
                                                                                                                              o  o
                                                                                                                              o  cj
                                                                                                                              K<  C  >.


                                                                                                                              I-  O  O
                                                                                                                                           O  O ^
                                                                                                                                           <-  o t
                                                                                                                                           •M  a >.

                                                                                                                                           t-  o a
                                                                                                                                           00 U —I
                                                                                                                                           z s- v
                                                                                                                                           c. o ci
                                                                                                                                           u u a.
                                                                                                                              •- c. »-
                                                                                                                                 « w
                                                                                                                              i- o a
                                                                                                                              z _i >s
                                                                                                                              u.    a-
                                                                                                                              n    _j
                                                                                                                              v-    «
                                                                                                                                           z r x
                                                                                                                                           o o u>
                                                                                                                                           <- <- x:
                                                                                                                                              s
                                                                                                                                              o
                                                                                                                                              U >s
                                                                                                                                                 IT
                                                                                                O
                                                                                                r
                                                                                                t--

-------
                                                                      -   216   -
              i
              L'  *
              O t~
                 £.
              <-> Li
              «- P
CO
w
\r>
z
o
o
to
to

o

LL.
o

>
K
•*
f
X
              a.  «-N *•>
              OJ  X t-
              O  >— UJ
                 0. U
              O  L  L.
              —  a **
              t—  w
              o
              3
              a.
o

t— to
«. ,-j
C. IT
•-" W f^
a.     o
c/>     j:
u.     o
cr.     -J
             Son
             v  x w
             10 a.
             o w
             >—
             o
             I
             a.
               O  I.
               t  =>
                                                                                             CD
                                                                                             UJ «
                                                                                             a  a
                                                                                                c
                                                                                             tn o
                                                                                                m
                                                                                             t- Lt,
                                                                                             v: o-
                                                                               tf>
                                                                               u
                    3
                     •
                    c.
                                                                  K
                                                                  UJ
                                                                  ar
                                                                  LU
                                                                  Or
                                                                               O
                                                                               2
                                                                               u  ^
                                                                               K  a-
                                                                                   a.
                                                                               "1  LU
                                                                                   IS
                                                                               »-  U
                                                                               10  ae
                                                                                             z
                                                                                             UJ
                                                                                             u
                                                                                             U- 4^
                                                                                             cc z
                                                                                                z
                                                                                             ^ LU
                                                                                                U)
                                                                                             I- LU
                                                                                            o
                                                                                            u
                                C
                                  •
                                o
                                                                                            0. Q.
                                                                                            => a.
                                                                                            10 I
                                                                                               a.
                                                                               o
                                                                               (J
                                                                                            to
                                                                                            J-
                                                                                            o
                                                                                            u
                                                                                               L
                                                                                            C Z
                                                                                            i- r>
                                                                                                             o
                                                                                                              •
                                                                                                             o
                                                                                               o
                                                                                                 •
                                                                                               c
                                                                                               •3
                                                                                                •
                                                                                               O
                                                                                                            o

                                                                                                            c

-------
                    z
                    LL>  *^
                    =>  -J
                    t—  X.
                    «  19
                    i-  r
                    V.  •»•
                    z
                    o
                    c
                   tA

                   1—
                   2
                   LJ  ••,
                   =>  -J
                   >-  X.

                   t-  r
                   w  «
                   z
                   o
 tn
 z
 o
O
ar
o
ce
<
(T
O
cn
a
a:
^
»
3.
O
LU
-J
U
                    =>
             »•     t- '
             o     -«
             —     1-
             i-     VI
             U     Z
             2.     O
             3     CJ
             2T    K-
             o    z
             a.     -« u>
             I-     I- X
             Z     eo <^
             u     y
             u     o
             z     u
             o
             a.    t- >»
             en    -< 
                   *- r:
                   t/j w
                   z
                   o
                   c
                   t- z:
                   CO w
                   7
                   O
                   (J
                                                                    -   217   -
                                rcoc
                                                cc-oc-coe-ococccrccercrcr-c
                                ocjooooooooooociooooooooaaa


                                CCDOODOOOOOOOCOC. ODOC.OC-OOOO

-------
       *

       ^—
       2
       •— C"
       t- J-
       cn ^
       2
       O
       I-
O
X
O     -4
O
or     *•
       LJ
       r>
       t- 3
       V) s<
       2
       O
       O
       2-
       O
LU     U
_J
a     —i u>
       I- 1C
0      Crt w
LU     Z
I-     O
u      <-
V)     i-
       UJ I

I     =
       o «

       L  u
O

(—
O
y

n
                                                                                -   218   -
                                        r-«-K. u
                                                                                r\ «- C  OC
                                                                                                                                                                  ' >O w' (X W"  xj
                                                                                                                                                                   I"   -4 •» -   »
                                                                                                                                                                 I   I   I   I   I   I   I
                                                                                                r\i  Cvi 
-------
t—
f.
01 «
^ -J
f- -s.
•- r
Vl ~
2
O
h.
Uj «
>- c
I- T
Z
O
UJ *%
n -i
"» C'
t- 3
CO w
O
U


Z ro
o
*-• K-
 3
— u>
i— jr
to ^
o

^
^
£
U. ^
r> _i
^ Ci
z
o
Q »*
U L
X w

i.
O
h-
















W
0
S
O
X

o
^

fv
»-

CO
»-
^
Q
•O



cr r1
0 C3

Q
O
Kl
UJ
i
O
u
C' O
»- 3
C. C

^- o



£ '* Z*
0030

«~
O
fO
UJ
o
0

3030
C 0 C- C


»C ^ ^ ^
• • * •
3 O O O
1 1 1 1


-0*)>0<.
















10
{>•
^k
o
X

c.
2

K
^>
*
VI
o
*



£ ££
O O 0

f\J
o
f<)
UJ
o
<_>

003
C C5 0


* • »
O O O
1 1 1


c o- a
















V)
0.
s
o
X

o
*A

ro


J2
«
a
<



£
0

ro
o
U4
O
U

0
o


<
o
1


^
















V)
tr

O
X

o
o

^
»-

VI
o

0
X

c


^
«-

(/,
o




j- rw K r- (v.
O O 3 O O

^
M
UJ
•J
o
u

0-3333
C, C. C- O C

*•? -O f— O ^
r rv r r> K,
03-330
1 1 1 1 1


f. rv «- C c.
















«
^r
^
0
X

O
o

u


(r
0
X






^
c;
UJ
•J
u
t^

^ o a 3 -3
c c c, c c

f~i J^ U 1 *sT **^
rv r rv r\ r
~< 3 3 3 T
1 1 1 1 1


-» ~J -tf ^» -*

-------
                               rs
                               o
                               X
                               V
                               >-
                               <
                               Q
                                     VO 
c
in
 •
vO
»•

 •t
tn
>-
4K
o
                                                                                        0
                                                                                        r>
                                                                                        o
                                                                                        X
                                                                                                                                                        I_J

                                                                                                                                                        •o
                                                                                                            0000^000-330^1
                                                                                               •  •  •
                                                                                              3 3  J
O-
o
to
X
u
                                                                       OCOCOOCCC.COOOOOOC.CCOCClC.O
                                                                                                                                                              o  o  c  c  c o
      ooaooooooooooooooooooooo
       I   I   I   I   I   I   I   I   I   I   I   I   I   I  I   I   I   I   I   I   I   I   I   I
                                                                       tt.h-.tii/  »i.
                                                                                                                                                               i   i   i   i   i   i

-------
- 221 -
X'
z
LU <~
=> _J
i- r
CO v
z
o
u. »-,
I- v.
t— I-
CO >"
c
t
f-
z
UJ /N
3 «J
t- X
"• C.'
CO w
o
0
CO
2. fO
o
•"- H-
•- z
*"° O «J
Ci t- x
uJ t-t O
Q: t— xi
0- co ^
« O
0 U
CO
o
Lu *t
=> _>
H- X
"i O
H- t
— r.
CO v/
Q
C.
O ^
^ t—
I. w

O
_1
^

















CO
or
o
X
c
3
^
q»

•1
J^
w
o
00

c fs- v r*. r^. r^ N
o rj o o 3 a o
o
«3

LU
i

U

«- 0 0 0 3 O 0
C C C O C C O




.,.,..0.
•tf < -.• St NT -J ^J
o a o o o o o
i i i i i i i

r- u , < f , fV «- C
•4 i) Si <> 
CL
r>
o
•x.
o
Ul
^_
VK

•1
CO
^
a
c

on oo
O C
0

o
s:
o
o
L


•i
^

a
OD

oc
o
o
^

LU
_j
O
CJ

"3
O




*.•
*»
O
1

t;


















co
fr-
=9
O
C
in
if


^
Mi
^
a
00

00 00 00
«- *- r-
0 0 O
*•>
o


Ul
o
(J

fV ^J f\J
003
O O C





^- V3 -J
o o o
1 1 1

^ ir\ \.»\


















CO
or
3
Q
X
O
o

^_

•V
f
^
0
"^

oo oc oc oc
0 O 0 O
XT
o


LU
0
t>

o o o o
coco




a* a. o jo
K KJ V f
O 0 O 0
1 1 1 1

E££?x
1
1
















CO
a
o
I
o


^.


to
^
o
o-

OT' OL1 OO
000
l/-
o


tU
o
LJ

r ^ i
00-3
0 C C.





K f (\
•DOT
1 1 1

CA oo r*~
-a -i -a


















-n
Ct
0
X
c
o




V.
^
a
tr

oo oc ou oc o-
0300-
^
—

LU
0
>-

0335^
recce




iA -J ro r- *.
r. p\. r r »-

i i "i i T

«C. iri •* r- r^



-------
V)
o
o
_c

o
       go oc  to o: »



       O T)  O O O
       r  r  rv  r\  r   (>
       O 3  O 3 3  O
       O
                    C  C
Z> ~3  -3
 I   I    I
                                 O
                                   •
                                 ou
                                 ^

                                  *

                                 >•
                                 <«
                                 a

                                  a. j.'  r~-
                                        o o o o  o o  o
                                          i   i   I   i   i   I   i
                                                                                       -   222   -
                              o
                              x
                              i/\
                               •
                              DO
                                     >•'• >C r.  P.  c (f  u
                                     0  O ^-  M K M N
                                                                                       O- C in
                                                                                       cv f\j *-
                                                                      o
                                                                      -a
                                                                      LU
                                                                      _J
                                                                      O
                                                                             OCdCOCCCOCOO
                                                                              I   I   I   I    I   I   I    I   I   I    I   I
                                                                                                                            =1
                                                                                                                            o
                                                                                                                            c
                                                                                                                            o
                                                                                   >-
                                                                                   «

                                                                                   3


                                                                                   «5
                                                                                   LU
                                                                                   _l
                                                                                   (J
                                                                                                                                                           orcrc
                                                                                                                                    i   I   i    i   i    i   i    i   i   i    i   i
                                                                                                                                                    r-.o  »-ci/  a.
                                                                                                                                          O


                                                                                                                                          O
                                                                                                                                                                >-
                                                                                                                                                                 <
                                                                                                                                                                o
< •<  r-  t-
^  f  f  r
                                                                                                                                                                       t   s-  r-   i
                                                                                                                                                                       03-3
                                                                                                                                                o T cr  T
                                                                                                                                                 i   i   i   i

-------
- 223 -























_J
u<
7
2
<
X
0
cc
uu
t-
i.
Ul
o
>-
oe
<
r>
h-
l/>
LU
O
4£
z
0
*—
o
CL




















4444
4
+
4
4
4

4

4

4
4

4
4
4

4
4

4
4
a 4
c
r- 4
4444
U- 4
_J
-1 4
>-
l_ 4
C- 4
0
U- 4
(_ +
O
_J 4
a.
4
U
_1 4
U. 4 4 4 4
O
0 4
a.
4
+
4
4
4

4
4
4
4 * 4 •

4
+
4
4
4
+
4
4
4

44444444444
4
4
4
4
4



4

4
4
44444444444

4
4

4
4

4
4
4
4
44444444444
4
4
4
4
4
4
4
4
4
44444444444
4
4
4 *
X
4
*
* 4
4
*
4 *

4 K
X 4
jg
f44444 444 44
jr
4
4
4
4
4
4
4
4
4

444444444444
4
4
4
4
4
4

+

4

4
444444444444
4

4
4
+

4
4

4
4
4
44444444444
4
4
+

4
4
4
4
4
4
44444444444
4
4 *
4
4
4
4
4

4
4 *
f44444444444

4
*
4
4
4
4
4
4
4
4
+ + + + 4444444444444444444 —
4 +
4 +
4 4 «
4 +
4 * '
4 *

4 4 «

4 +

4 *
+ + + + 4444444444444444444.
4 * *

4 *
4 +
4 +

4 + '
4 4 «

4 *
»
*
,. + + 444444444444444444444
I
4 +
+ 4 *

*
4 +
4 4 *
*
* »
4 ^ +
4*
4 +
4 *
4 +
4 *
4 *
4 *

4 *
4 +

a.
+ ^
*
* *
*
4 4 «
4 4 *
*
4 * *
4 *
*
4 +
O
•
cr
l/v


r>
•
r\
-»





O
•
o
sy




cr
•
IA
*O



3
•
P- L
l». ti
l_i
a;
GJ

C. ~
• «.
u-> X
•vj O
S
rs
_j
t
c
o
• c/>
O u.
r- _i
j:

C
•
in
r~



T
C




C
•



^

-------
                                                                -  224  -
Ul   -T)

E   C

Z   «-
c.

a;
x:    L.
o    o
o   a.
a.

4
4
4
*
4

4
+
4-
4-
4
4-
^

4

4
4-
4-
+

+

*
+
*
*
4
4.

4.

4

^

+
4
+

4

4

+
4
4


4
+

4
+
4.

^

4>
+

4

W
f\J

4-
4
*
4>
4

4
4
4
4-
4-
4
4-

4

+
+
+
4

4

+
4-
*
4-
4<
4

41

4

4-

+
4
4

4

4

4
4
4


4
4

4
4,
4

4-

4
4,

4

C
r-J

+
4-
4
4-
4

+
*
4.
+•
4-
4*
4-

4.

*
4
4"
4

4

+
4
*
+
*
4

4>

4-

4>

4
4-
4>

41

4-

4-
4-
4


4
4.

4-
4
4

4

4
4

4

U
,-

4-
4.
+
4-
4

4
4-
+
4-
*
4-
+

+

+•
4
4
4

4

4
+
*
*
+
4-

^

4

+

+
4- V
Mr
4-
Mr
Mr 4

+
Mr
Mr 4
Ml *
» » 4
MI
4'4 + + 4 + + + 4MI +
+
+

4
4


4-

4
4

4

C
4

+
*
4 Mr
+
* •

+
4* *
4-
4
4- *
+
4

4- «•

4- *
4
4
+
Me
4
X
4
+ «
4
W
4- H
4 XT
4
*
4-
*
4
X
4
*
X 4
4-
4

4 N

4

4
+
4
444
»
*
+
tt
4-
4 X
4 X ••

4 *
*
4 x
4
*
4

y • C
o
•* •
C-
IT



« *
iA
•^


0
tr
«d


c.
•
»n
K1



O
fO



o
~ •
ro





a
M




c.
• •
in
*—




O
c
+-




c.
t/"l






O
3 C
5
                                                                                                                                          a,

                                                                                                                                          z
                                                                                                                                          _
                                                                                                                                          LU

                                                                                                                                          C

-------
- 225 -



















_J
LL1
2.
Z
<
X
(_

o;
UJ
>—
UJ
(_>
>-
0£
<
?3
1-
1/5
u»
u
Z
o
*-
o
a.


























44-4444-
4
4-
4
+
4
4

4
4
+
3
T- 4- 4- + + + +
^
4-
UJ +
_J
U 4
>-
O +
O 4
^>
+
O
C! 4
m
4-
U +
-J
-
O +
t +
O
U- 4-
U.
4
^
O 4
_l
a. +
* +
o
« *
_J
Cfl 4
Ct 4- 4- 4 4- 4 4
U.
t- +
^
^ 4
I 4-
U
— 4
I
+
4-
4

+
444444

*


4

4
4

4
4

*

*
\f
•
3

+ + + + + + + + + + + + + ++ + 4" + + + + + + + + ^^
4 + 4
* + A
~ ~
+ + +
+ •«•*•
+ + *
4- + +
+ 4. ^
~ ~

* + +
4 * +
4 + +
+ + +

+ + *
* + +
+ * *
+ * *

4- •*• *
A + +
T ~ ~
4. * +
4444+44 + 4 +4'4'+ + 44'44'44 + 44'44 + '1
4 + +

4 + +
+ «• +
+ + +
4- + +
+ + +
4 + +
4 * *
+ + *
+ + + + + + + + ^ 4> + ^+^*^^ + + + +^^^''^^"
+ + +•
4- + +

4 + +
4- + +
W
4 4 XX
4 + +
X
+ X + +
4 4 X +
4- V 4 X 4-

44-44-+4-4444-4+4 + 4+i4 + 4' + + + + + + +
4 + +

+ + +

4 + +
4. 4 4

4- + *
+ + +

4 + +
444

4 + •!

,i f 44>44 + '-*
X
4-
+
4 X
41
4- T « _J H"
+
4 X

4
4
X
4 X
4-
4.

4 X
4- I «. _J •
4 X
4
X
4-
X
4
X
4.4.+ 4-4- + 44-44>4>44>4 + 4<4
X
4
X
+.
4 X
4
&
+ T « _
X 4
+
X
4
X
+
X
k.44-4-444-4>4'4'4'44-44-444<
X
4-
X
X 4

X 4
+
«. -J +
4-
+
4-
4
X
• 4i4i44X + 4'4'44 + 4l44' + + 4
X
4-
X X
+
X
4-
W
4 X

4 — X _J
4 X
X
X
4
*
4


0
O
•
0
LT.

C
•
r
-J



O
c~
-J



o
•
\f\
PI




o
•
ra L
en t->
Ci
ce
o.
z
C" »
• ^
ir X

-------
- 226




















-J
LU
Z
Z
4C
x
t_

QC.
UJ
H-
y
a*
0
>-
K
«t
— ^
t—
00
U.

LJ
<
^
O
1-
o
iX


































t3
!«•
LU
i
U
>.
O

o
f«

o
ro


Lu
_l
u
>
U

£
O
OL
U.
^.
O
_)
Q_
^
U
f
M
C^
^
LLi
*-
•<
i
It
^_j

X





















4
4
4
4

4
4
4
4
4

4
4
4
4

+•
4
4

4

4
4444

4

4

4

4
4

4
4

4

4
4444

4

4
4
4

4
4

4
4
4
4

4
4

4

4
4

4
4
H


4
4
4
4

4
4
4
4
4

4
4
4
4

4
4
4

4

4
4 4 4 H

4

4

4

4
4

4
4

4

4

4444444"
4

4
4
4

4
4

4
4
4
4 4 4 4 4 4 4 •
4

4
4

4

4
4

4
4
+


4
4
4
+

4
4
4
4
4

4
4-
4
4

4
4
4

4

4

K444444444
4

4

4

4
4

4
4

4

4

• 44*4444444
4

4
4
4

4
4

4
4
4
444444444
4

4
4

4

4
4

4
4
4


4
4
4
4

4
4
4
4
4

4
4
4
4

4
4
4

4

4-

444 + 4444444444'4444
4

4

4

4
4

4 X
4
V
4
X
4
*
X
4
X
X 4
» 4
4
*•
rr « K _j
4
X
4 X
4 X
4
44444444444444-4444
4

4
4

4

4
4

4
4
4

«
4
4
4 »
4,

4 T * X -J *
4
4 *
4
4
X
4 X
4
4
4 X

4 X ^ -* *
4 *
4

4
X
4
X
*
4
X
4

4 X

4
3tC
X *- — *

4
+

4

4.


4

+
4
4

4 *•
+

4
+
IK
X
+
*
+
•f
tt
+ X

+ X * *- — ' *•
+• *
»
+ »
•f
+

o
l/>



c
•
•jr



•3
r*

-------
  -  227  -

















_J
LU
r
<
i'
o
cc
LU
t—
2
UJ
<->
>-
(X
•C
r>
t—
CO
LU
O
<
IT
0
I—
0
o.

























444
4
4
4
4
4
4
4
4
4
*-
t" 4 * H
-a
4
LU 4
_J
U 4
>-
0 4
O 4
H-
4
C
C 4
-*
4
LU 4
MJ
044
>•
<~l 4
r 4
o
a. 4
u.
4
^
0 4
0. +
X 4
CJ
& 4
_J
Vi 4
06 4 4
Lu
*— 4
<
> 4
^

O 4
4
4
4
4
4
4 4

4
4
4


4

4
4
4

4
b
•
O

44444+4444
4
4
4
4
4
4
4
4
4
H444444444*
4
4
4
4
4
4
4
4
4
4444444444
4
4
4
4
4
4
4

4
4
4
4
4

4
4
4
4
4
4
4444444444


4
4
4

4

4
4
4

4
•a
•
o

4444444444444444444*
4 4
4 +
4 4
4 +
4 +
4 4
4 4
4 +
4 4
' + + + + + + + ++4* + + + + + + *^*"
4 +
4 +
4 4
4 4
4 4
4 4
4 +
4 4
4 +
+ + + + + + + + + 4- + + + + + + ++ *^
4 4
4 *
4 4
4 4
4 +
4 4
4 +

4 4
4 *
4 +
4 4
4 4

4 4
4 * X
4 +
K 4 4
4 « 4
* * *

4. 4

4 4
4 4
4 4

4 4

4 4
4 4
4 4

1 4
K rv
• •
o r»
+ ++ + + + + + + + + + + + + + +»*
v
4-
+
4- *
*
4- X * _ N.
4>
4- »
4-
4-
*
t + + + + + 4> + 4' + + 4> + +4> + + +~-
4- K
4-
4-
•f X
4- X * _J
4- *
+
*
+
V
4
at
+ 4. + 4>4>4 + 4>4>44' + 4-4 + 4>4'4-
*
4-
K
4-
+ K
4>
r
4- X «- U
+ *
4-
*

*
+
*
4> + 4-44-4>4-4>44'4- + + + 4+ + +
X
4-
X
*
ft 4-
*
4-
IK
•« J +
4-
4
4-
4
*
*
4
X X
+
V
4-
X
4 *

4 «t X -J
•f. x
»
X
4
X
4
•
O
^
•
c,
I/*


c
•
w >
^tf


—»
•
^^
««


o
•
t*"l
»o


o
•
o
p^


r
•
1A
IM



T
•
c~
rvj



c-
U t
r-


O
0
r»




C
•





0
•
-3



















U'
tr
O
o:
ci>
y
X
_)
3
O

U-
c
c/)
u
.J
r.
























(JOZC01— — t-30JZ>-

-------
                                                          -  228  -
t-
at
T
O
o
a.

4
4
4
4
4
4
4
4
4
*"•

4
Uj 4
•J
U 4
O 4

0 4
f~
4
c-
0 4
*Jt
4
U 4
_J
>.
C 4

X. 4
O
a 4
4
t—
C 4
a. 4
X 4
.J
«, 4-
-J
V) +


1- 4
«
» 4
4
O 4
i
4
4

4
4
4

4444
4
4

4

4

4

4

4
4

4

L
'V

+
4
*
4
+
4
4
4
4


4
4
4
4

4

4

4

4
4


4

4

4
4

+
4
4

4

4


4

4
4
4

4
4

4
4
4

44444444444
+
4

4

4

4

4

4
4

4

C
ro

4
4
4
+
4
4
4
4
4


4
4
4
4

4

4

4

4
4


4

4

4
4

4
4
4

4

4


4

4
4
4

4
4

4
4
4
444444

4
4

4

4-

4

4

4
4

4

IS
4

4
4
4
*>
+
4
4
4
4


4
4
4
+

4

4

4

4
4


4

4

4
4

4
4 X
4
X
4
X
4
X
X
4
X
X 4
X 4
4
X
I «. » ~J
4>
X
4 X
4 X
4

*
4
4

4

4

4

4

4
4

4

O
4
X
4
4
4 X
4
4 T « X _J •
4
4 X
4
4
*

4 X
4
4
4 X

4 X «i _J •

4 X

4
X
4
4
X
* * *•
4
X
4

4 X
4
X
3: «• -J ••
4
4

4

4


4

4
4
4

4> >•
4

4
4
» X
X
X
4
4
X
4
X
4 X

4 r * - _ «

4 X
X
4 »
4
*
4

l/' C
o
o
in



• 'i
5



o
•* *
o




c.
1 •
-n






O
c






c

(M





o
c
IM




cr

J2




•3
C"
r-





C.
< •
u •






•3
; o
3
U.
t.
                                                                                                                              ;z
                                                                                                                              V
                                                                                                                              X
                                                                                                                              c
                                                                                                                              
-------
                           -  229 -
                 4.4.3   6 CONSTITUENT D.O.  BUDGET
                     —  data deck listing  —

        - SAMPLE PUN 3   -  THIS  RUV SI^ULAT^S  THE  D.O.  BUDGFT  UNCLUDINfi
                           ALGAL  E^ECT?)  IN  THE POTOMC ESTUAR*
  133  139 1500 2000   20
INDEPENDENT CONTROL OATA  -  RUN  ?
 1500 1000  500  500   2^

       70.      6.01
TACULAF OUTPUT  COMT.OL  -  RUN  3
    1
  500 1000    0
    1    1
    1 100G    1
         1     3
  402    2     A
PLOTTING OUTPUT  CONTROL  ~  "UN
    J    2     0
0 0
a o n
4 . J . ? .

0
0.
UUALITV COFCFICIENTS
.25
.CQ1
.001
.001
1.00
.001 1
.001 1
DISSOLVFD OXYGEN
9P.
1.0P
1.0P
l.on
1.00
.047
.021

0 1
4. 0.
- PUN ?
500.
1P3.
100.
100.
500.
100.
100.


150. 0.

2".
«H3
'*02'«03
TP04
rHLO"0
TBO^
">0
COEFFICIENTS
6.0C 18. OC
9
1
2
5
18
as
114
115
129
131

1
4
17
77
113
114
128
1?0
1T3

.012
.012
.012
.012
.012
.012
.012
.012
.012

.0009
.000"
,000«
.000?
,000«
.0008
.000«
.000*
.0008
DIFFUSION CONSTANTS - 1UN  ?
    1
         1        1T:*      25.
UPTAKE / RCGENER*TTON RATES  -  RUN  3
    1
         1        1'3        0.
DECAY RATES - "UN *
                                              2.0
                                              3.5
                                              2.0
                                              2.0
                                              2.0
                                              3.5
                                              2.0
                                              2.0
                                              2.0
                                                   10.
                                                         1.0
                                                         1.0
                                                         2.0
                                                         1.5
                                                         1.0
                                                         1.0
                                                         1.0
                                                         2.0
                                                         1.0
                                                                   0.
1
2
9
114
115
1
8
11?
114
1 3"*
-.15
'.OS
.15
.05
.15
VASTFUATF* INPUTS - RUN 3
    1    0    1
CONSTANT INPUTS
       131     -450.
BAWK INPUT?
 16.1  t.3  1.8  1,7
                          20.
                                    .19

                                    !o9
                                    .09
                                     0.
                                               .03
                                               .03
                                               .03
                                               .03
                                               .03
                                                         .02
                                                         .02
                                                         .02
                                                         .02
                      1.3   1.6  3.2  1.6  1.6
25.        0.

 .8   .9  1.2
                    .17
                    .10
                    .17
                    .10
                    .17
    35.

.9    .6
                                                                        .5   0.0

-------
- 230 -
.6
1.9
?.fc
5. 2
2.S
3.5
?,0
.fc
10
-
UPPCR \
2


1.6
2.2
?.o
.9
2.o
1'.9
'.0
.5
20
100.
POUNri

703
FUG
.9 1.6 *.4
2.o 1,8 •'.g 3
.6 2.2 11.4 4
.6 .0 1.0 1
1.6 2. * ?.1 1
?5.3 12.6 21.5 19
1.6 .9 .6
.'• .4 1.2
100 106
10.
•RY CON^ITIOVS -

-1500.
-1500. .
.9 ,°
.5 4.4
.1 2.7
.1 1.3
.9 2.7
.9 21 .3
.6 1.1


3.
RUM 3

10
05
1.?
5.4
3.8
1.1
6.6
12.6
.5


15.


.30
.20
1.9 1.9
4.1 3.5
2.9 4.7
.9 1 .6
2.5 12.8
1.2 1.U
.9 .8


0.


.20
.10
1.5 2.3 4.4
3.5 5.7 5.1
5.7 4.9 1.1
2.3 .9 2.2
4.3 5.4 13.3
1.0 1.3 1.5
.3 .9 .9


30.


25.0
20.0
2.7
5.1
2.1
?-• 1
15.8
1.3
1.3


0.


4.0
3.0
2.4 2.2
4.4 4.4
2.5 i.1
.3 2.5
15.5 13.7
.9 1.6
1.9 1.6





6.0
7.1
INITIAL CO*"ITIOKS - RW 3

















1
2
6
1Li
16
21
26
31
36
41
46
6C
78
b3
£6
129
131
1 .
5 .
9 .
15 1.
20 1 .
'5 '.
3" .
?5 ••
40 .
45 .
65 .
77 V.
<" 1.
P5
1 ->a ,
130 1.
1 ?? 1 .
SEJVARO EOUNDA"* CONDITIONS
1
.05
.10
.20
10. 0
1.0
1





1 1 1





01
05
40
85
30
70
10
04
02
01
01
40
50
40
30
90
50
- PUN '
1





.m
.20
.2^
.50
1.60
1.50
1.0"
.30
.60
.30
.10
.45
1.00
1.40
,70
.3C
1.00







.10
.10
.70
2.50
1.60
1.20
.70
.40
.40
.60
.60
2.10
2.30
2.00
1.00
2.80
2.50







10.0
30.0
30.0
35.0
70.0
35.0
70.0
65.0
65.0
30. 0
10.0
30.0
65.0
75.0
30.0
50.0
65.0







1.0
1.5
1.7
5.0
7.0
6.5
5.0
3.0
1.5
1.0
1.0
2.5
5.0
6.0
1.5
4.5
5.0







3.0
6.P
6.8
1.0
2.5
3.5
5.5
6.8
6.2
8.0
8.0
2.8
1.0
5.0
6.0
.5
1.0








-------
                                                - 231  -



                                       — output  listing
r c
o o
LL c.
h- «
O 3
Ct I—
CL CO
  LU
.J
« O
z z
I X
S Q
cc
  0
tO O
a. »•
b. c.
t— OJ ^N
v> a. o
    u.
>- _J Q.















to
- o
0- Z
h— •-«
to O
O
tt _)
i_i U
X Z
I- "- >-
o ^ ce
^
^ *— ^
« b. (-
m f/i
O D LU
=>
•> CO t,>
(O «
z • sr
— 0 O
•t • t-
X -J C. O «
o: a. a. i-
O LU *
> LU X LU C
»- r> i— x
.Z CD 
-> C~ b.
ir t b :
K. V 3 UJ «
m tr' c
r- - _J C
b t/j « >
is — IB :
1 0 X _l
•— I- <
a
to m
LJ I
Z> «* r^
« X
o t, z
t- r>
>- H- a
~ ^
b
>- f j _i
a. b- a.
 1
±1 _
« II -I
E. 3
0 3 C,
1- C i.
0 _l *-
a. u. o
Mr
*
*
X










^%
•
c_>
LU
CO
O *^ <^ O
— 1-3 -.
_l 0. -J • 1-
z LU b r «
«c t- c o c
cc co ^
o
>- b. C
x r c
1— i
C
c

>
Ui H
C- "
«
h- «
t ti u_ ^< c
z — i (J
1 -i <_I >- 0
c. > L; o
•^ L-' C ITi
J • ' ' >• <••
3 ce i- I
« ^
z
> 1^
3 til
J b.
cr
j
H
j
?
e z LU
K 00.
«.
t—
C UJ «
-J o a. "^
O *" O O
> _j t- cr
o z> to -
_J X

i u.
cr a.
^
LU 1- <^
^ t—
<-• t,. tr (~
>- — •«. C!
o -I t- in
= cr. «-
*-«.£-
CO £K «
G. C-
•- >-
b 3


u.
0-



^\
to
Ct
x *•*
^ S^ T"
1- C O
»— 1 Q_ ^~ ^
_J U. _l •
« >- bJ O
I? to c
cr ^

LU
z:




C LU
_1
t >- 0
0, >-
« o **
J X. U
3 Z t- >- C
3 « 0 C
- W5 O l^
c to o
3 • Z 2.
j O •- •-<
• ti
0 LJ
ec
j
i
3
3 U.'
_l
2. 0
O >•
>— c_
^~
« H-
t- •.
ac to o
_1 i- 0 O
C t- IT
V— LU 3
Z m Z
u »-
t£ f£
•— <
X 7
£• 1
3
LO
f
b
_l
U. U
0 > <^
0 (_
fc >- -3
Lb >- CJ O
c. i- c r
sr >- ^ i-
x> «j *-*
z <

c










2
0

^" C_J
Of h-
r> o •« r>-
i— D to no
< • C. *ff
to c >- •
^ r^

o v-
• 4
o



b. «
OKI- C.
b- b. CT
UJ to 00 •
x: z co jo
-i 3 I- «-
1— tO w


^\
b. LU LU
o to co r>
•- •- cr
LU ce a •
r z to o
H- S (-
^— (/J ^rf


-U
z: z
•- =>
»— ct ^»
LU U
to to sr o
~ T K- -0
1- I- tO
ce w
4 Cc
1- 0
^O b.



UJ
a:
= »•>
H- a. o
* r o
a. b •
b 1- C
Q. ^-^ f)
X
b
h-



to
_

O L- ?
= 0
Q: *— u-'
b. •-< i • U)
o a c iv
L1 1 O •
a o a. ~3
•H LU
b. en a.
O w
to
£~ ~*
L. X
LJ CJ
£JJ *«^
b X
Q. >



J*
0
0_ CD
0 »
S 5
«* -^ o
= ^ _l « 0
h-z* ^o'Sor^T- >-c» j
^ o >~- 0^00**^. i*J •
o-u oooooo a.a r

T W ^ °
b ce -J
t- ct T
0 <->
u

CO
o
z «
c.2 §
-3«u> oooono to
ocex: OJOOJJ o
cz« crcrc-«-c-C' 0.0 c
sst ^^ °
^ ^- ^ ^ ^'
ct 5 x a f
. . 3. LJ
u »^ ^*
Q_ W
0
Or
o
£ ~ si
LU b K O CJ
O LU z: O CL
I— I •>, * •» O O
*-t^2* F1 rvG-JO
KI.t, XOO-ltbO
CO ^ ZZI-OLJCl Z
z t
5 o
u:
H*
r rs c
,_ -v t- ZD
£ _J — •
t C -i i C
Z: > -J &
P CTi T- fV K*i •** U-i HJ — X
M T- CL <-'
"i o-
^'Z o
z
5 51
w
L-



t—
Z
II O
rv h—
^ <
Cȣ
•• H-
z
Z I1J
0 0
•- z
>- o
« u
o t-
b k_

to n
7 Q-
co -J
c; ^.
o «-
LJ
! *x l_j
0-rONNOR
 —
CO b.
CD Z CC
U-, O «
f- O
=> c.
a. to uj
o «.
c u >
^
to c. s
»- — j b
^ K
• u
O >- UJ
• en >
0 C
LL, <
£ It
0 «i Z
b t— >-
a.
t- ra to
Z i
« to o
>-=>"•
to o *-
;>: a. •>
O O Q-
LJ X t-
0- Z
2 f U
O O C-
t- Q- O
•° CJ
I C
LU 2T t—
u> « r
>• b
^ 1C. ""'
0 bJ P
uu U> —
d o K-
b- t/J
bJ V- 2-
X — 0
t- 2 t-'





-------
                                                                             -  232  -
c-ccrtrc
                                                                                        I ro       «-    MOOCC

                                                               h-  N  r*-N-f*
                                                                                            OC Ct a  «  O
                                                                                                                                         O  O  O  C"  CCCCrC~OCTC~C'

000000000000000000000000000000000000000000000003-30000000000


                                                                                                                                            y ir K< KI C- o  ON.o^•fM^
                                                                                   (Min
                                                                                    ||
                                                                                                                             O  c  ^•«-
                                                                                  .                                .
   T-^-^r-»-r-»-^-r-»-t-«r-^-^-r-<\jfv  r'r^'fN  rvp^r'ri'rv^jfvr r  fvjfvfvrwfv'r^fvifvifV'r'fvjr*  M   rv (\ rv r- r\j r  rvr\  rs
   JO030O3O'3T)O->O'5'303"3OO'3O3O*303O333a3JOOJOJoJJJ3J3HJ3JajJ-3^333-33

   o c: cooocc  o c o c- c> c, o c.oc  o  o o o  o  r  c  occc-crocrcLOccc^trac.aoc c. occc-ccc-mocrrc  c
rv*arwT-t-rvi^N.o^-oeN.i/iroKocooc  u^rg-occcc  t-a  u-. o *o- oo m o *t «anoo^T-(Mcooo-*b^r*">'co-O'M*"^oo(iCf\jMM^^*-rv.*4^  •o^-oooo^->»ao^*4ccir\>oN.'"to^- oj^ i^^r^r-^otso OPO *a
^-rt-ooj-^*Omcooo*»wrU'Oi/\or*")»~^-rs-rv.>3p »tfoooor|o»ff(\i»oo^o^r\(POrWi*o^fVi*/^»oo^oorv.<^N'*rf»o o*^ o
iA*ai/c:r'i/^f\'L'iO(NjNCCr.  cr-N-i^cr^rvrvr^'t-                *-r-ro^r-t-*~rj
-------
                                          -   233   -
c- C- c- o C" e
               i~ r™    r\jf\J'\jf\l    rvoj













               c^ ^ c. cr c"* o o o c o


               o ^ o c* TI o o o o o

-loooooooaooooocsoooooooo
         O                                                  in
         IT                                                  «tf
         «-                                                   I
          I





















«-t-    T^       r- *- V-    »-T-t-«-^t-*-     »-    f-»^«-    »-    t-









(\l IM T-









                                                    PU    f\- t- «*tf  I  T- O..  I     t*-Ui
                                                           I  «-       «-           I
                                                                       I











DO  3O^3"3JO"Dr3'DO3OOJC)tDC>3J"3riJ*3O3'DO

oC^ccicc.cCjt~ccoccjC"COCc-tr%oc.'C'c^c'rooC'












ccc ccocecoo^ccoc-c-ccocccocccoo


               f^ K" ^- ^*  *S «^ OJ  ^    K  ^    **"    M ^"    ^ fv f f\J ^~ ^- A




'^c^i. Lc-Cc^d-Crc o  c  o o ~* T^ ^ r c* c^ r c* r* c~ L.  o c o
V.
t-
z
                                                                      O
                                                                      c
U.
>-
O
                                                                            to
                                                                            z
                                                                            o
                                                                            o
                                                                             b
                                                                             t
                                                                             Z

-------
                                                                 -   234   -
CO
LU
-O


;
r
o
z
LU
U
o

— J
2 O I-
X X w
O w
O
T
a.
L
0 Z
x; u
c. z
c =
Lu ~)


ooococ^ooo
c,aonooorao
OOO-AOOOO3

Oir>onomooo
r\. fo fv (v fv* hi rvj rvj f\j







ao oo -O :O * n QO .« »
aoo-aoj 300
CCOOC'CCCTO
oooooooocr
OdOOOOiJOO








ooooooooo
cocrcroODOo
r\. fv r M f> ^ fv. fv. r.
33353 3333
occoooccr


«-*jr^Nf -
a: z
   y
»- LU

I— LU
CO CC

o
                                                                                                                                                     o
                                                                                                                                                      •
                                                                                                                                                     o
                                                                                                                                                     o
                                                                                                                                                      •
                                                                                                                                                     a
                                                                                                                                      Q- (X
                                                                                                                                      = a
                                                                                                                                                      o

                                                                                                                                                      -D
                                                                                                                          o
                                                                                                                          >-
                                                                                                                          x
                                                                                                                          =>
                                                                                                                          00
                                                                                                                                      a. a.
                                                                                                                                      3 a.
                                                                                                                                       O
                                                                                                                                       o
                                                                                                                                       O
                                                                                                                                       o-

-------
                                                                             -   235   -
                                                                                                                                 •O  1-1 *-
                                                                                                                                     « •*.
                                                                                                                                 t-  O C
             -o  ~* >~

             t-  it C
             CO  >-
             z  « ix
             O  U LJ
             C.  Lu O.
                 r  w
             m u  >

             i- * c

             i •  a.
             O U LJ
             o ai a.
r-
o
u

LI
o
£
f
             CO >-
             z. «  et
             o u  uJ
             o LU  a.
                c'  ***
f. K,  V

t- Si  D
10 >-
a «  tt
O C.  LU
O UJ  O.
   D  s^
             O L_*  JJ

             1-. U  O-
                C  w
             CO >-
             2 «  a
             O c.  LU
             o uj  a.
                o  w
                 O 2.
                 I- 3
                    —)
                r:  u
                c  *.
                Cc  3
                u.  ->
                    O


                    O
O

Q
a

a
o

o
                                 a     o    o
                                 r-     t    s.
                                        c    o
                                        c    r^
                                                                                                                                 CO  U _J
                                                                                                                                 ?•  z v
                                                                                                                                 o  o c
                                                                                                                                 m o >-
                                                                                                                                     « «r
                                                                                                                                 t- O O
                                                                                                                                 Z -l ^
                                                                                                                                 u     an
                                                                                                                                 =>    -J
                                                                                                                                 O O t*
                                                                                                                                 cj u r
                                 o     o    a    o     -5
                                 ry     -
                                                                                                                    ac
                                                                                                                                 to  o _J
                                                                                                                                 a.  * v
                                                                                                                                 o  o u
                                                                                                                                 u  e_> 3
                                                                                                                                  >- o LJ
                                                                                                                                  2 -J -x
                                                                                                                                  U.    b.
                                                                                                                                  o o u
                                                                                                                                  O tj r
                                                                                                                                  >- o  c.
                                                                                                                                  * _•  v
                                                                                                                                  CO U _1
                                                                                                                                  *  S  V
                                                                                                                                  o o CP
                                                                                                                                  o LJ z
                                                                                                                                                  J
                                                                                                                                                   •
                                                                                                                                                  o
                                                                                                                                                  K
                                                                                                                                                  00
                                                                                                                                                  •o
                                                                                                                                                  o
                                 o     o    o     o
                                 ir     in    in     in
                                 »-     3    »-     -3
                                                                   t-<
                                                                   LL,
                                                                   Q



                                                                   U



                                                                   O
                                        •c    to
                                        t—    fO
                                                                                01
                                                                                UJ
                                                                                c
                                                                                f
                                                                                                                                  Z Z -x
                                                                                                                                  o o u>
                                                                                                                                  c. t r
                                                                                                                                     3

                                                                                                                                     O
                                                                                                                                     _l  U.
                                                                                                                                     «  U
                                                                                                                                     O
                                                                                                                                     2
                                                                                                                                                  HO
                                                                                                                                                  vj
                                                                                                                                                  O
                                                                                                                                                   •
                                                                                                                                                  3
                                                                                                                                                  C
                                                                                                                                                  t/i

-------
                                                                        -   236  -
             I-  O X
             2.  _l 2)
             cr, z  v
             i. O  *A
             O O  I.
               . r_ «
                i o
                o v
             I- <-•  _l
             CO 2  X
             ZOO
             o e  jr.
             C      v/
             *3 C\  •*.
                •*.  O
             H- O  V
             ;
             LU
             00 Z  X
             roe
             o t_-  3
U
o
Ct
*t
r
             I- O  _l
             10 S  v.
             r- o  to
             r\ c  <
                «t  C
             I- O  •-.
             «- r  ^
                «  o
             >- o  x.
             O C  I

             C      ^
             ;  o  c/o
             « -J  u
             C i U.  U)
                                                    o o>  «-•»«-
                                                  -    oo-\oo>
                                                       r^  oo in oo
                                                       o*m^*iA
                                                           r\' f- AJ
                                CDOCOOOOOOC3O

                                ooooooaoooo
                                                                                                                     o
                                                                                                                     o
                                                                                                                     r
                                                                                                                     o
                                                                                                                     CJ
                                                                                                                     ft
                                                                                                                      <
                                                                                                                     O
                                                                                                                      o
                                                                                                                      en
                                                                                                                      a.
                                                                                                                      a.
                                                                                                                     I
                                                                                                                     sr
                                c-oooocroooor1
                                c:  -
                                                                                                                                   u- — o

                                                                                                                                   o
                                                                                                                                   ^  •
                                                                                                                                   — c.
                                                                                                                                      2.
O    3
•5    •-
                                                                                                                                                      o
                                                                                                                                                      c:
                                                                                                                                                      'D
                                                                                                                                                      c.
                                                                                                                                                      O

                                                                                                                                                        •
                                                                                                                                                      o
      o
      M
C,     C

 •      •

3     O
                                                                                                                                                             r
                                                                                                                                                             o
                                                                                                                                                             •o

-------
                                                                  -  237   -
          i-  i
          O «•*
in

*—

(11
CO
z
a
OJ
(_)
*.
o
L-
o
>-
o
«.
I:
          2  Z

          O >^

          LJ
         V.  L"
         r  »
         o  ^
          ?  3

          O ^
         sr  u
         o  z
3    O
O    os
3
oo
 •

<0
a    o
ra    •"
 •     •
V-    f\.
                                            O
                                            in
                                             •
                                            f>
                                                                  o
                                                                  oo
                                                                         o
                                                                         OO
                                                         o
                                                         o
                                            o
                                            o
                                                                                           00     O
                                                                                            •      •

                                                                                           (V     »-
                                                         o
                                                         o
                                o
                                o
                                o
                                a
                      o
                             o
                             urt
                                         o
                                         o
                         o
                         o
                          o
                          o
                                o
                                o
      o
      o
       a
       a
                                                                                  o
                                                                                  o
                                                                                  o
                                                                                  IA
                                                                                  O

                                                                                  O

                             =•     O

                             3     -5
                                      O
                                      O
                          o
                          o
                         o
                         o
             o
             -3
       O
       o
                                                                                  o
                                                                                  o
                                                                            o
                                                                            3
                                                                            D    S
                                                                            O    O
                                   O
                                   fl
                                                      in
                                                      to
                                               o
                                               o
                   a
                   r-
                                                         o
                                                         1*1
                                                                               O
                                                                               •o
                                                                     c
                                                                     Kl
                                                                                  in
                                                                                  vO
                                            o
                                            r*
                                             •
                                            r\
                                                                                                        o

                                                                                                        fv
                                                                                        O

                                                                                        O
                                                                                                                           j-v
                                                                                                                            •

                                                                                                                           (M
3     3
^-    ro
            f\i
              •
            c-
3
J>
 •

C
                                               -5
                                               •O
             O    00

 •     •      •     •

»-    ^     T-    CJ
                                                                         -3
                                                                         •O
o
m
 •

c
                                      a    in
                                      «->    *tf
      o     -a
 •      •      •
O    r-     f
                                                                                        (M
                                                                                         •

                                                                                        o
                         in     O
                         KV     -D
                                                                                                              C     «-    r-
                                                                                                        in
                                                                                                        oo
                                         «-    i-     fv.
                                                            •O    r-    
-------
                   in
                   z
                   o
                   U",

                   t—

                   z
                   i—  c-
                   t-  I
                   in  ->
                   z
                   o
                   c
C:

7

O
c
z
o

?
o
                   z
                   o
                   o
             2-    H-
             O    2:
             —    jj ^

             I-    3 _/
             «.    t- V
             CE    ^-t L&

             i-    >- »:
             y    to ^
             z
             o
             c
                   o
                   u
            •->     z.
            o     u.
                   — ir
                   t- >
                   to ^
                   2:
                   o
                   o
                                                                   -   238   -
                                a ocecocoreroc ooa ocorcoKcc  orotoracroroco  eroroc
                                                                      -
                                   coooaooooooooooooooooooo
                                                                                      oc^cccccc.
                                                         cc-cc-ccccc-c-c-cc-c-c-co
                                                                                                •  f\. !•  < If

-------
- 239 -
h-
1_J r*
r> _J
*— r
o
L <-
r> -J
"— C'
>- T
to ^
Z
o
t—
UJ .-s
=3 _l
•-• t
t— ^
1/3 **
f.
O
^


CO
z ""i
o
»— ' 1 —
1- Z
U OJ r*
*~ IS -J
u. i— i u;
0. >- H
O. (^ w
*: O
o u
£
"— h-
X Z
U, *"*
^ U
t- 1
Vj **•
Z.
0


*-
-
x r^


3 -0
T- r





3 
tt
r>
o
X

Q
o
• O "^
•4s rv rv
3 3
•s
V
^
Q
r

«- c
0 O

r^
CO
-a
UJ
. t

V
o
D 0
O C

00 (Nl
rv rv
03

r- I/
s.1


O K  -tf o rsj
>i- IV p p >t
3333
•L
CO
^
&
2

O- 00 c- f^
o o o o
= 333

T-
00
"*
UJ
1
LJ
X
W
3333
C C 0 C

-O^3-O
K f. ^ fM
3 .3 3 -i

»i r* r. »—
<5 0 -0



o a. oc
^"•*""


i- 3 3
cr c c-





00 O* V"
• • 0
U i l/^ ^i
i~ t" r-



W
e-
3
0
X

c^l
o
• in N- j-

0 O O

05
^
a
-

coo
o d 3

^.
w
•*
UJ
o
>-
u
3 O 3
C C? C


-a < K
O 3 3

0 0- tt
^ ^ LA



0.
^

cr
3
r*





»-

00

UJ
^
o
V
0
5
o


u-
^

(^
^


K r- o
Of Ou ft
to (/•» in

r*^ r^- r^
333
r- c- r-




JO '"VI fM
3 sf ^
MJ -c r"
^ ^~ T~



to
tr
^
0
X

c
o
• O 3 J
OC If I/ I/ >
3 O 3
•|
W
^
a
^

•c. -c •
u
333
0 C O


N h- >r
o o a

X. U, «S
u^ tr, IA


«- rv u K cr
0 O O O «-
in IA in >o *f '


T> 3 3 3 3
r cr c ir- r




3 (\j C3 -0 (^
o -» PO o PO
tf C? t— *C »C
^ v" ro f\j P^i



 > 10
of u i/ ^ sr >a
-33333
•i


u .
00
*a
UJ
i

>-

33333
O O O C O

ru O Is- ^* *tf
c^ rv r r- -c
"i a o n o

f rv- r- o o
'./> in IA LA -j


IA K O W K
t- ^ C- T- rv
oo-oo-o

s- N a e- o
33-333
cr c- r r c





in — "i >O >
O rv sa u^ cr~
r\j ro N-I ro >j



irt
G
2
O
X

c
o
• ^ ^ O Ut *A
O v> < ^, >c v
3 3 J 3 —
•t
V
^
a
c

f\, -a U C^ fvj
3 -D C* 0 T

-<
•XJ
^
UJ
o
>.

3 O O O -D
O CT' 0 C' C


< IT xj f ^
o c^ o :D n

o. r-- s. if. ~c
-» J vf -» -J



-------
   A  CO  «- DC  *~ I*
   I-   *' c c cr  r-  ~a
oo-o-o-o-ooo
OOv^f   I*  *f' C



c  cccrrrcc
                                     L  OG r.  r c  o* f-
                                     p'  oo *t in  ro Kt
                                       O  C O O  O O O
                                        oj Ki TO  t- jo
                                        o »- —  N. pj
                                                      , o.  c~
                                                        r^ ao
                                 1/5
                                 a
                                 O
                                 X
                                 a
                                 o
                                              >o <,  N  r^ oc.


                                              O 3  O Q O
                                                                                  -   240   -
                                                                               K u  OCO^Or-NC
                                                                                -
                                                                                                                                               1  N  h- O
                                                                      in
                                                                      ct
                                                                      r>
                                                                      o
                                                                      X
                                                                                                                                                                        a- K  v  o- so  rv

                                                                                                                                                                         •   *  •  •  •   4

                                                                                                                                                                        •tf '^% in in -o  N
                                                                                                                                                                      O 30 C?1 ^- O  3


                                                                                                                                                                      r- ^ ^- r  r  p*
                                                                                                                                                                        •O «-  r- T>  A  -^

                                                                                                                                                                        N-   X)  ^
                                                                                                                                                                        C O  C
                                                                                                                                                                        PU Al  f\J
                                                                                                                                                               o
                                                                                                                                                               I
                                                                                                                                                                  o
                                                                                                                                                                  o
                                                                                                                                                                        O  CJ O O  O O
                                 a

                                 o
                                                                      a

                                                                      o
. cr  ** o^ -^  tr •
                                                                      u
roccoccc
                                        C; CD C  C C: C  O
                                                                                                                                                                            O 3

                                                                                                                                                                          ^  cr c
                                                                                                                                                                         I    I   I   I    I   t
                                                  rv ?— C-  t^
                                                1 K't *A i^1  P»<

-------
                                                                         -  241  -
          .
         o
         C-
         to
         i:
         o
         c.
         .»


         t—
         2
         I/)  x

         2

         O

         LJ
z
o
CJ

c.
-C
a.
Cr
=>
O
X


CJ
o
         3
         o
        t- z:
        CO w
        O
        c.
        t- I

r u u- a. *.. t^ f
o  r-- r- t) ~» fO t\J •-
«- c r o o r* c
^ o r\J ^ ro -j to
3 :/1 > > O t5 i"\
c~" o *- r- -dou.

O «— u^ o "^ Is- •—
fv- f\ fv r r' f •<
00030^0



c~ cr o c ou oo Is-
«- «- o o o o o
^ o -3 i r> o o


3 3 O 3 O 0 C3
c- c o c o c c~
k/l O f\J l/l C"- "^ Nt
u <• < < *^ r^ r^
C- .O O 0 3 0 IT
«- u *- r* o. *- c.
O s£j <; *L. << •*."
i

r- ^t
c oc
• •
IA in
V &
r- -D
• •
r c
fl >
X) O
• •
ITt sf
«
o.
^)
I
c
kn
• f X>
• •
r: c
o a.
U"i i/>

r*
or
U'l
Q^
O
r
in
IM
<
HOU'JS
c
0
• >
hO -i
3
v<
>•
«c
0
T~
«f'
o
o
•*
o
-a
CYCLE
i
C3
C
o
l/\
•
— )
r^-

<- C i-
o, o- c
J^ in ui
r*- r*- N
3 J 0
c cr n
Kl < (^
«- ru «rf
y • »*; «c
CO
K
3
O
X
o
l^
• J» O O
f"i •<( L LT
O O O
>-
Q
«—
>c • r- c N-
Cr O t> O
LI ^n m m
N- "f1 ^. 1^-
3 -3 3 3
c- c c 
•* u in IT «tf
O O 3 3
(/
>-
5
c^
o ^ N. r>-
0000
0300
»t.
o*
-3
1 1 .
_J
CJ
>-
CJ
n 5 o o
C C D C
in X' *- O
r\ (\ f K
• • • •
-3 n o a
f rv T- D
*"> ."> '^ i/l

«* oc r^-
tr t- r'
sO ^O O
fv fs. fs,»
3 J -3
c o cr
~r m tJ
-o r^ o
rv.'  a
•3- <* sa ^1
030
in
V
<
Q
C
OC. 0- C
O C1 »-
333
0>
-»
_J
CJ
>-
CJ
^ ^ ^
3 3 T
O C C
F^ o in
rv h v-
• • •
-? 3 0
O OC f~
-3- ^r vj

rv o N oc T-
r r f\- K L
•o -n -n vo ~
N. f11 S- o" a"
3 3 3 J3 r!
c cr cr c c
-^ CO O O -' '
fM »J O .» t-i
«- f r^ c.' r
W) Kl Wl BO sT
(O
Q
r>
o
X
fr>
cri
• N- «o m ^-\ <*
U"\ -0 *i -0 ^S v.
•l
(J
>•
a
-3
t* 
LJ
-3 -3 0 3 -
c c c- r c
*> >n ~3 (x r
h u X N r
O C! 3 — 1 r-
x_ IT- *a r*. r
-» •* vi j -_*

-------
                                                                                 -   242  -
u i is. r  -- c  «-
i/  <3 f  f\J o  «fl

O -O -O *Q si)  -O
      O  O ^~ *~ K ••?
      O •- «- r- ,- ^


      r- r c r" o r-
            -o in rv O"
            --*  M O 00
o
I
V.
>•
      >5 *T -*  *tf  L^  *O

      •i  _)  O  J  -2
                                              cr  c  O  O
                                               I  CO .
                                               I   •
                                               .  O  I
o
X
                                     -O > f\J O o w^ f\J
                                                                                                     ^o
                                                                                                   'r^  o
                                                                                            OC"r-OCO
                                                                O
                                                                      f»Ki<-i^'OO'>roj.ri>»-»
                                                                                                                                      u.c- *rr
                                                                                                                 0
                                                                                         3»>-Ol/--'tf'OOO*^^\t^-
                                                                                         ^-a(^rM^r;M^ocr'  r  c
                                                                                                                                         c:  ^
                                                                                                                                         o  r.
                                                                                                                                                O -X-
                                                                                                                                              >   •  *
                                                                                                                                                (.  C.
                                                                                                                                                                  X

                                                                                                                                                                         O  CD  ^.. _
                                                                o

                                                                c-

      CO O>  N-  C,  u  C.
      (V f  K  <  ^  U
                                     IA -
                                                                u
                                                                                                                 u
      T- T-  ••  rv  r  r
      O -3  3  => -D 3

      C C  C  O C C
      CD :D 7) n o o  r-

      c- c cr r o c  c.
                                                                       0000000000*-
                                                                                                                                                                     i -3
                                                                                                                                                                     i  •
                                                                                                                                                                     i C-
       h-  CC  C-  C  C *-
       »- C O  CE..

-------
                                                                              -   243   -
    a
    n
    o
>•
<
o

c
<\j



C
o
o
T
r>
V)
a.
u
   X

   o
   M
   >-

   c-
              C.  O  N f
    «*  I       •  •  •  •   i
 *-j     I       O >O ./"l i/t a
        I
 t-     I
 J-
 uj X
 D •«
 I- I

 »-
 VI
 2
 O i
 O -H
    z






    o
    >>

 is-

 f—
 2
 i-  >•   i      c">-«<''~»-i/'r'.or»-.jO-ruK.f^»-rr-r"N-o-K.crAc>^'«rv»-C'4-'«''.\j»-(_o-a-o-r-
              o ^t) T— c> 50  3^ff\iO'O<-r\jiA*fff-»-uo^(>tArO3& N-iA«*-^roK%'\jf\j \jroru»-T-'—T-T-T-^-^-^  ^  —i

              '-(\j(M»-^^T-»-O'-fM'r  »o K  K^f-(vrv«~«-«-<-r~oc:crrc~orccrr3Oc~cc  r>r~cooi-c



              C(v»-f^>£.*?r  rvLr^^C'N^^DOU"1^l'3"r^'DO-^"3'3OOO'5"3'3-5




              QOocr^r^-oir-f\.r^o*a*ff«oo  rv>cooooo  f—ft  Of, ir> OL  K  in<\jccN--ffO<\!N"ii'>fv  P~C^<*OTT-«TOCC~

              OO^^^Ov^trtAj  ocO'Njr^^orOOO'^J'^'Or^-flO^O  J^—  1>-£''^o>Of*"tOr->3«-TO»O-tf*—  'T3-uroC^  O
              *-•— r- — r-^-f\jAjpoK>m^ff^ot>o  o oior^.h»h-s->f)-oou"»iAmLn-^  t^^'O



              o^^^^^n^-  o**-o  Oro^r^f^-xo^'—oOLAiniA«^^>'O^30fV'—t-'Of^JOu^>o'^oo^"'f\j'^-^

              e~' C-  o  c~c*><— xroooK-^Of-D  N.o*t/\^jru^»tfi4*tf«*'CK,r.'Cif^A  orm*-N*nr-<:(vOrv.,ji^o*f-rM«-
 •^     I      r-r-*— "y^vjr\jrg»nh"i«*'^OO^O3jr5-3O>'J^"OTOCOr^r^N.'O^'Ou-ij^u-»^^^  4
 l-l                                                            T-^,-^,-^,.^.^^
 V>     I
 •x.     i
 o :
 o^^t       ••••••••••••••••••••••••••••»••••••••••••••••.
              CO  O  t  OCfO'-O-'O'-f'  N-LAC«-K. •-Vlf^&efN-'OK  »-  O> K S'«100rOr-»-CJX)uufVrVOcO>«-O>'>O^AJ<-I-t-'Or^^>^'O«»rO  vumfOO30^-A*tfn^*~~3y-cOh- o O^-j'-^*«^-t-^>j  -tf-^*^

              oocc~'C>crcoCC»-'-f>jKif>jfv(vrkjourv «-»-«-»-«-«-t-ocrcnC"Ooccjoc~'ocrir  r-c-crr


 ^>x   t      cr  r^ o  o *— ^  «—  ^-u^c^^-^«.oo•flO•c^>^^  r^rvrwra^fC^t— p^iri-r^rvu". p"h  OiA»-er*<^u  *«*coi  I/.WK
 i_^            -                               _                  .  .                          _____

 •" x
 i—
 V;
 r
 o z
 o »^
    a
             QOC.C  c cc-cccO-ou~>JU^'O'^ivjoi— oo»rO3Nr-i3*om-^rgr3o>>>^f^^rv-T~iiJ«-r*-'"g>.fciKi-
              «—r\i^'\j.\jr\jlg.\j^]»ocOf^-*Ai^-OTOOOO'^>aCjDiiJiri<**^)'NjT-o jor^r^ou"-. «-*^->o.o'N)  -a .- »-  f—  •-

             CCTCCC-OOC-CC:C-OOr-<-r-'-»-'M-V]»-r-»-»-<-»-«-^^»-r-a)(-t~C'Or-i— CCI~OCTCCC

        I
        I     n  C1  c~>  r-  T- ^  >r. i/   .-NO-'idrvu  u-< *rnj.vr-«-»^f^i/-f^a.eri/  KOO  ^Cl^^-Lr^3U  Osaj^-c*^'—  o^
        t      .—  rvr  rvrvrjfN rr-iA^i^-orop  oc^C^«— »-T-r-t— *^ootir>f^*o^JLAr^-oO-nr*-»ci<,inN>f\jr-»— Oc>oON-*OiAi/-i-.        m*/l^>^^*^int^«~iA"^f>*—  LAO«-^t—  Jof^L'i^fKl'v'.^l*— .(— ^T-.— r-O  —^~
«-  >•        •3.333-O3'5o.\i-JfK«->_-i^l>o(.r^^'vjQO.^-'Om>OKi'si»-«-»-.333'33  ^r^^DDT-O-^Sjr
    «          •••••••••.»•••••••••»•••••••••••••••••••••»••••
 t-           rcccCL.r-cOC-Cr-T-r-«-»-^'^-«->-CC~reCc:CC.OOOC'C'nC1C:CCOc.C.CC  t_Ct.C.
 7
t_l
rix        u•Lru^^^u-u.^•_inC*^cr^-^-^   L'^-^r^f•^-<:u.^f»^t— ^^H.u.1C^*Lrfvcn^^l/^**^o.\J.v«-.-T-»-^-»-.-
t—  «•        OOOCOrjOt-^fC  vrc~^^r-PM<-u<^. rV'CrChL' ^* r-sj K, r\J  ^-/J-^T-^  4   'wr%jC"'fN-A^;Kj'XJ"NJ^-T~t— T— *-"!^1?t;~'~.
              1  3  J  '3  3 3 O  3r-T-^x-<..ONOK-'l--l'X-^.   J-8", ">'<-  — — <~^3-3J_)3371D"3-333T3T_J

             cccotcGcccc-tcT»-«-«-»-«-oiLciooc.oc_c.oc.ccr.  ac.cc.occiC.c.cccc



             T-f-f   «AW   ^("  cxoC^^r-   ^r1-  v  r^t.  c   C. *— f^  ?*  *;  u.  *i_'  r   a.  C  O  .—  r   f'  •^u.^l^-c^^ot— fv.*  <:u
                                                                                                                                                                                 v

-------

-------
                                                                                     -   245   -
                                                                                                                       o-c*h  o^-o-r^K-K-c/  ir c
                                                                                                             ^mPOr-^T-r-i-T-*-O  -3"5^33'~3^-3'ri  3^-:'JJ3

                                                                                                             rccoc'r oecccncrccoroDotrr  ncr
                                                                t~^OOOOCOOQur»)potn^r.  r-


                                                                    c  oc-o


                                                                    r-i/toot  c
O-OOOO  OC^O^cC^^^-><)OOC>^ruO*f\IO^rt>^O^^JOOO>O^fO^O^-^*oOC>^-T~O»^                     ^
r<) *a  -^-jr-^  •"jror'trO.'^iKirOi\jf\j('>jr\ir>j-^*4O'^xj ^  ^  mu^>»>»^tj


O^OC5OCOOOCCCCOOODCOOOCODC:COCO^hOf^r*'^1-'OOC?OOC-OCCC)OC3CCOOOCr, C:  C1 O C O  (T
                          tAu^L-i^xor^ccaG^Ciro^aO'^rui^^^ino*/^
                          ^OO  J 3OOO3^^^^*nu^j^Lnu->sf*tf^TO'Or^-oOOJ'tnriO>O'O^)*nuJ\fcA-*rgtg»- "DJOdOO-^  O J .* 1 >J  T-

                          CCTC.CTCOCOC:  r- occ~c.c-cocof~rio^'-«-pu*-'-*-tn'~>^cCDroc-c-ccic-c~CL;L  rrcrczc


                          *d'Oh-r>-  ooooo  o ^oorv  o^o^rwoirLnir(^^ro^T3oOO^T7)^O

d C~C  OOC  OCOOC  CC;OC CCrOODCOOOCCOOOO^-r-r-T-T-r-^-OOCOCC'COCCCC-r-tPCrCC,  OC C OC
                                                                                                f-   ro»-*-trcc:Cc-irc.cc.


                                                                                               i O-  ^- o K-* N- c  T-
-------
                                                                      -   236   -
•O O -
^ »—


c  d
                                                   j f- ^- M I/ • f- CO
            O*-<-«-T-
c.  r <-  c  c  •
   -3 O C •
                      i r'. *-»-*-
                                    ^ N- w  CO
                                      ^3^3  -3
                                              ** r- a C C*-(

-------
                                                                          -   247   -
 C/5
 Or
 X

 o
>

o

c-
>-
*.
                to
                z
                O
                Z
                LLJ X
                Z
                o z
                o —i
                O Z
                U •"
                   X
                Vi

                o :
                o  r
                o  •—
                   2.
                                                        »-ooc>OOC;oooooor-»-«-«-r
                                                                                                                       -  •*•••«•<
                                                                      . »-on>O«'«»N.a.r-
                                                                                                                  IAOU  «-e-<  cv, i,  •» IM o-  •-  ro ir
                                                                                                                                                  '  O rO og r\J PO t— '-

                                                                                                                                                  1  o o c, r- r c r
                                              K  K IT vO or
                            ODOOOCOOOCDOtnODODO1
                            COOC.CCC  c  ccrcr

-------
                                                                                     -   248   -
                                                                                                                               ' iA*tfp'OuG<*ifr)f>.f^^-ouO<9'ri*  o  *•" *> <^ oo  «—  c
                                                                                                                               lo^c»a^inr-»-f^K-cou-\rf--'ar^tr«^u-r

                                                                                                                               --v-o'N-oooacoaofs-*'N-rN-*O'O's'*t'>OW'OWvu'i1.i




                                                                                                                               J^>f*iN«1_Oi1Q"'rt-«tf*OJ'''UChJ»~'x'C|t^f\J^J-tffs*-«~w>
                                                                                                                                l^)fo>t^«jr«nu-, uoo^'^^i^^k/>-O'-jON-^j-

           N-N.f^-^,r^rv_r^  f,  fs ^  fv  fs^ fs_ N.  -^  (*•  K f* ,  f» r^i/  a  o K  vfu-^r'f  r-*-f,f\,oo:  i/
           ^^^cr^CO^^On^O(OOorXlr-f-O^^Or'O^flO

          i IT. 1/1 I/N  in t,r in u-  u,m^  irit>*c»C^C*3-<.*c'






           ^gooOQOU?^O»^^t^r<^OJlJ'>N.»r^OW*— 00^'^^"O*^^^'\jr\J>OOOlACU>"f"'NJ^
           ^r~^"T-^-«*fvif^»\Jr^Ki^u>^^^^j^^^wi^'^^)w^f^fo>*r»ir-j^T»^Qo^srro^K»fnpo

                                                                                      ooo'-'tfK r\  <-^»*  ooooooooor'ooc'ccrooc-occ  •-



 aa-o^oo  o  r~c  c-c  o-c^o-c^o-o  oo-oo>aooo oo  o^o-<  N*o*tf^c^-*ccrw  •-it>r'>u  o  o  cra-o o  o-o  ao  c  a c   c  c
 '->o^oo;>a*,D:>o^.>oo.>o^cr>.4  j»--tf-«'^;**iA-^'^'*^i/'i^*-jji'»5-^*3isj  -^x-vjirt-j-  •

 C. ^-J  O <~ C, CJ  «^ r^ v~ c  r~ *^ O  C*  C"1 C C  o.  C1 '  f^J fvt  ^* r^> f\j ^  M  Aj  r\i A'  *tf t/  ^ ^  *j  ^ ^  ir> ^» T1— t~  ^ f~ ^- »— T~- f~ ^~ *~ ^ ^-  *~ T~ *~-  T~- *"• *^ ^~  ^ — *—



 C  crc»— ^— r-r-r-r  r-  •*«• ^. o  u-ma  rvr-   Ki-^ra  f*  o< *#  r-  r\f\j<—  *"h»-*tfir'»OK  ryr'-fv^-T-T-t-r-^-^-r-oc: ci^-^~«~rv'*''f^i^-»-*-c
 CPOOCOOaoOCCCDO^rvf  <OK)ror-aooOn^3rDoooooooTO-Do^r'-DO'-i'-''-





 a o^  f  r'orvjorm'OK,  ^-o *oo  r-T-o>&  rur^o^^ooo^h-Oi/i A-A n  r\^^^r^^'^^^^^'^^^^^<>^^^^^Vn^^^3^^^<3^^^r^r^Or~^^f^^^^^^'^r
 r\jf\jr-r-^-^.r-^.T-^-(f_,— T-,—  T_r.^(v-lr^j  \j <— t— ro  r"i ^




 r-oroi^j^»-rv.^JOfvjrv.^r3-^'O«orN.s.foon'Toa''^oor"ir'.  <>*— ^>«- TOpON-^^oty-tiT-o^-OT-^of^-N.^NtfO r\jr\jr«jrv'O'^»-"i^f-"j •>.

 r-O   >O-^*VT-O  Cor^N-^O-OtA^f^r-^-^ffOa-Of^'K **KlfV-*-V500t^Uri^fO»Ch*K>OOCON.*a''C'T-.(X.Or'C)<1«i<1 O O  O C d  O C  C *-tT^
 K^r\j>tO'O«OiCO»ot/»>4-^KJ'iO rw> «o  i-o t*i Oi-ifOfo^jc^ '
                                                                                                             r-  *-



 ^^COa-ZJOO-^^OJOOO^O^T-r-i— «-'-*-*-^«-'-^t-«OOO»-T-*OfMr*-3i'»OrON-**^i>O*rtJorvVN-joronj('»ooOt7' —

 c"c*oococc.o-cr  o  coc  ccrcJc.c'troc;ciocooDOxjf\.o-tl.om<-oo or of^N-r-rw^u^oL   *.
 T~"*-*-^"*~"»-*-r-    r-f-    ^-T-T-r-^^KlK  rOKirOKlPOfOKirOKlKiW  « O^-j^-gT-  ^
 -^  -jj^in  lu1*..^ ^*tf->^J*^*>3s'-'11^  O*- Jsj*"«*oc7**'\-A»£jinin ^>*'Ain*nu-» -nj^a^i/t*n^u^>ffrs.   >

                                                                                                      Kr\.fMf-T-


                                                                                                      *tfir,  ^N--ri
                                                                                                      ON-U-  o  t-a  oooccor^doc" r  or^r'cnor^o^  — -




                                                                                                                          OOOO<>tA*OfOO^fs'00&' T-T-Or-r^u^OO^trii^  —
                                                                                                             (»ryc^ao^^^^^

                                                                                                             ^T-oooc^ococciococsriC'c:ocf"ccof~, c




                                                                                                             r*".  JOf^.^Or-Ki^-0  ^ U'x r- !»"]>* ^ O^O^r-OO^C^-UJ^^-
                                                                                                             (*3^-$rJO'Otnu^

                                                                                                             «-^r-«*cc(-c crc^oocc-  c-(rccrc  c  r  ccr  ^


                                                                                                             c<>v'ocap**-'*^<(<'<.'f'^l'tf'NJ'>-lJ  \Jt-^OO^OO-D-3^)OOO^OOO  3  DO "D O  C? ~


                                                                                                             ^^(OOO--o'^QO-jOO<)oors» ^romi^sT*•-
                                                                                                             >>*fODOr^J^PO^^T""f^'-OO "^0003^)0 J)^-r-^

                                                                                                             C'C,r-coc>occc;oococoncrDCOCc^ccc




                                                     -                                                        C3CC'   r  c   CCOC^-|~CC^NO  r-'r-'N-CN-t   *-  c* f erf oronor-T-r-cocrcC  C  c. n c ^   c  r
O— -|OcO'~lOOO!~3CiOl~DC'COcriw"i»j'<  «c*3*^s3f^)*o«wf^r'ir^fl'^pr"'^'1^o^~^OK"Ul«c^
                                                                                                      cr, ~n  oc ro  o

-------
                                                                           -   249  -
                            t/** in r\ o  &  K  en  o f  o <  •£>•&&

                            -OOO*>t>OOO  O JO «- T- ^  «-
                                                                 oc  IT
                                                                        o-
             \J
            T- rv. rv  f-i ro r-  no r*  ro r*  ro K, K1 fv rn K^, ru rv  i*  i/.
c'~*c

c  OC-C^CTT-^*-^^ ^c  cc-cocr-oc *~  «-,-,-.
OCCOC'OC-OOOC
                                                         "
          
-------
                                                                      -  250  -
         o r-
            o
         O
         z
         O L/
         >- V
         o o
            o
          • V
         o -••
         •r.
                                trc-cc-c.'C'C'Of i^ o oc M co s  i

                                                         «- CO M ryj oj «-
                                                                                                                      oocrcrcr-rc-c C1
          • o
         o
         2-
         o
         o
         U_ 3.
         U  w
o
o
         O
         s-
         o
         o
o

>-
            UJ
            -j
            O
o ^
C  N
                                                                                                                                             r  <\r,i/\r\r
         o
         I.
         •z ^
         >H C,
         I  T

-------
u'i i/>  m in in i/i  IT, in in in i
                                                                        OU O O O
                                                                            -
                                                                                                        1/1 tn in u^ ft in in in in is,  i/, in u, in in in 1/1  y"i in in in  in in
                                                                                     OOO
                                                    h  1/iOjiT. OrrNJ^GKCOO'-K'f'-^OOvOrjOf  NCCOl/  —'  -  »".-«-»•«*- i~  w  r.i »* w  i*  i-w wi M.  i-  ««
                                                                                                iKi-^aoroooo-  «*«-r-r\)**«*rOr— T--CsOfMoo<\Jfvjinro>Or^^Of'




-------
                                                                     -  252  -
                                                          or

























                                               v IA  v u









































































































U~\ O O f  ^  O O1 Ofi f*~  O f*> f^ ^ C* f^- M K^ ^~  N- f  ^





-------
                                                                         -   253  -
            >• CL
            (J
t_>

c~
ra

7t
O
            >• 0.
            u
            O Ui
               H-
             • -*
            O 2
u
o
            >- 0.
            u
            u
            O tf.
                        cc.oc.oc
                                         • o c o c  c  c  c  roc-
                                          c-ooocccrc-o
                                          IT. ui if v I/* 1/1 in u^  IT, m
                        ocoo-o  o  o- o o  oo-c cococc-oc'crc
                                                        . ccc-occcc-u-
                                                                                   "
L.
C
                                                      ^ ru i^ tv ^.
                                                                 IODOOOOOOOOOaOOOOOOOOOOOOOOOOO>M
                                                                                                                                                       «- l>

-------
                                                                               -   254  -
            U.
            _J
            u
LU
_J
(J

>•

LJ    o


O    o
LU
7
                                                            X *


                                                         X              ft


                                                            X


                                                               X.
      C    o
      It    (.
      a.    a.

      *    v
U    I/I    (/l
«c
r    oe    o:
O    LU    U)
I-    t-    H-
o    «    «
a-    :•    a
                                                                              x        «



                                                                              X        *
                                                                                                                     *                 X


                                                                                                               X       XX


                                                                                                            V X
                                                                                                                                                                        a
                                                                                                                                                                          •
                                                                                                                                                                        (71     L
                                                                                                                                                                        If     C
                                                                          '  I  '
                                                                           c
                                                                                                  '  I  '
                                                                                                   c
                                                                                                                                       c
                                                                                                                                        •
                                                                                                                                       (XI

-------
                                                                             -   255  -
   to to
>- a. o:
K 13 =>
-00
Z X X

3 IA 3
to  »  •
   c* c
>-    M
                                                                                                                                                              I
                                                                                                                                                              I
                                                                                                                                                              I  C
                                                                                                                                                             _J  •
                                                                                                                                                              I  ift
                                                                                                                                                              I  -7
   O C5
 "
   o cr
«    o
T    C
u    »-
                                                                                                                                                                      ti
                                                                                                                                                                      o

                                                                                                                                                                      cc
                                                                                                                                                                      Q.

                                                                                                                                                                      £.
   U O
   X >-

   <-> 4-
O
_J
L.
J  >  >
o a: a.
o f i:
Q  s- r
                                                                 X
                                                                 X
                                                                 X
                                                                                              •e


                                                                                        X    X

-------
                                                                              -   256   -
   V) tn
*- K Cf
«•. O O
r: i a.
   ^i  3
    •  •
   o o
= O D
r.
   o c
 i     -M
o
a
      O
      O
                                                                                                                                                                          z
                                                                                                                                                                    cr    —
(V-

U  U LL
H- J _J
ZOO
LU >- >-

O O U>


>- 1— I—

tu • «.
O
_J
                                                                                  X


                                                                                  X
                                                                                  3
                                                                                  X
f  >  >•
o a a.
                                                                                        X

                                                                                        :  T
                                                                                                                                                  I •».
                                                                                                                                                     X •
                                                                         OOZW/t— — i— 3 ui 21—

-------
                                                                                       -   257   -
                                                                                                                                                             3"  _J
                                                                                                                                                             I


                                                                                                                                                             3
   to  to
>-  Ct  Q:
££ o  z>
«. o  O
J- 1  I
   o  c
>-     r\j
h-
I-H C'.'  (/>
—I >-  >~
« «c  «.
r> s  a

   c  o
 i      (\j
•z. «-  o
«     o
u  >-  >-
(-• C  t.
=> vi
H- >— t/J
5  >•  >
occ.ee.
o  i- y
Q-  r  »
                                                                                                                                                                                            L
                                                                                                                                                                                            C"
                                                                                                                                                                                            C-
                                                                                                                                                                                     c
                                                                                                                                                                                      •
                                                                                                                                                                                     in
                                                                                                                                                tt.
                                                                                                                                                 •
                                                                                                                                                O
                                                                                                                                                                                      3
                                                                                                                                                                                I  «  •
                                                                                                                                                                                  O O
                                                                                                               Z  I—    Kl

-------
                                                                                 -  258   -
   v>  in
>• ae  a.
tt D  3
«- O  O
1-13
   C  0
-I >-  V
« »  «
300
   O C
 I     'M
•«    o
a-    o
                                                                                                                                                                       o
                                                                                                                                                                      t  •
                                                                                                                                                                       o
                                                                                                                               c.
                                                                                                                                •

                                                                                                                               •o
cc
UJ U. U.
t- -J _J
i; u u
UJ >- >-
o (-• u
                                            X

                                            X

                                            X

                                            X
                                            X
                                                                                                                                                                       3
                                                                                                                                                                      <  •
                                                                                                                                                                       cr
1^ •» a,
   H- UJ
O VI
7  >  >-
o ct ce
o r r
                                                                                                x

                                                                                                X  3:
                                                                                                                                                                       O
                                                                                                                                                                      '  •
                                                                                                                                                                       C"
                                                                                                                                        X    »
                                                                                                                                           X
                                                                                                                                              -C
                                                                                                                                              X
         o
          •

         o
o
 •

>o
o
 •
o
                                                                                                                                                                     I  "D
                                                                                                                                                                   < NM  •

                                                                                                                                                                    O C

-------
                                                                              -   259   -
                                                                                                                                                                 —I O
                                                                                                                                                                   V



                                                                                                                                                                 _J


                                                                                                                                                                   c-
    V) VI
 >-  cc u-
 ir  n 3
 -too
 I  i 2
 ar
 =>  m O
 to   •  •
 I  O

 l  .n
_j m
 I
 I
   <- o
      f\
      5
-j o
 i  *•
_j
 i
 i

 i
 i
-I C
                                                                                                                                                                         u
                                                                                                                                                                         t;
                                                                                                                                                                         c:
o
UJ b. b
I— (— 1/3
 a c
3  >• >
o b. a.
o r l
a »• »-
l  in
I  r-
i
                                                                                    x

                                                                                    T
         C
         •

         O

-------
                                                                               -  260   -
-.00
E S.  X
  -
   O C
— U.  V
-J >   V-
< «  «.
= c.  o

   c,  a
u
2:
z T-  o
«t     o
I     D
CSL
LU U U

*- -1 -I
T! O (_)
UJ >- >-
(-> C. C
I— •-  CO

« EC  Cl
L  1.  f
o 1 i:
CL J  i
X


I
                                                           X


                                                           I
                                                           X


                                                           X
                                                                                                                              D_

                                                                                                                              C
                                                                                                                              a
                                                                                                                              o
                                        c
                                         •
                                        cr
                         c
                          •
                         -o
c
 »
r\j

-------
  - 261 -
APPENDIX

-------
                                  -  262 -
                          A.I   REGAN  LISTING
C*«*M»*«»*W*XX»**lf«*K***KMKK*»******KM«»«»*K *«**«»**»* ****KXM**»*»**X»K*N*****«*
C                                P°OGRAM R^AN
C                        ENVIRONMENTAL PROTECTION AGEN7Y
C                              IMNAPOLI* FIFLD OFFICE

C        T'-iIS PROGP'M PERFOPMS  f LEAST SQUARES rIT OF AN EQUATION OF  TPr
c     corM
C           Y(T) = A1 + A2»SIN(VT)
C                     + A5*COS(UT)
C     TO 0??ERVCD DATA BY SOLVING  THE  "OPM»L  EQUATIONS.
C
C**»*»»K»X*»XX*»XXttfttt«KX*ttXKXXKXX*XXXKX*XX*KXKX«ttXXXKKXX*XK*KKXXX*Xl»KKft*ltXXKttxXX
C                                   DIMFHSIONS

      C'ME^SION  ALPHA(^0)»  1C7)*  SXX("'»7)>
      PFAL "AXP^S
CXXXXXXXXXXKXXXKKXKXXXXXXMXXKKX 9E*D CONTROL  DATA xxxx xx xxxxxxxxxxxx^x xxxxxxxxxx
      PFA3 (S^SIO (ALPMA(!>»  I=1j40>
      PPM; (5*501) »DATA, NCOE^F,  IAXIT, KAXRES*  PE?IOO» TSHIFT* PSHIFT
Cxfxxxxxxxxxxxxxxxxxxxxxxxxx   RFAO  TIDAL INPUT OATA  xx» xxxxxxxxxx»x*xxxxxxxxxxx
      "FAD (5*S02) (Ttl>j Y(I)i I=1,NDATA>
      W ='.» 3.1 4159 / PEf?IOO
CXKKXKMKXKXXXXXXKXXKXXXX1IXKXX8  PRINT  INPUT  OATA   XXXXXXXXXXXXXXXXXXKXVXKKXXXXXX
      WPUF (6i6iiO>  CALPHA(I)*  I = 1j40>j NDATAj WCOEFF* PERIODj V»
     *               MAXIT* "AXPFSj  TSHTTT,
      PC  ifQ I=1»NHATA
        UKITE  C*»60i) I* T(I)i  *
        T(I) = T( I )  * TSHIFT
  100 rortTVUE
CXOKIIXKKXXXXXXXXXXKKKXXXKXXKKKXXX   INITIALISE  *XXX«KX*XXXXXXX«KKKKXKXKXXXXXX»KX
      "0  104 K=1*NCOECP
        CO 1QZ J=1»NCOPrF
          ACJ)     = a.
          GXY(J)   = 0.
          SXX(K»J) = 0.
  102   CONTINUr
  104 CO^TTVUH:
Cxxx»x»KxxxKxxxxKXX**x*xxK* SET UP  NORMAL ^DUATTONS *x»*xxxxxxxxxx»x«» x»*»»»»**»
      NC2 = NCOEFF/? +  1
      DO  11? I=1jNOITA
        DO 106 J=1 jMCO^^F
          rJ1  = FLOATCJ-1)
          rJ2  = FLO»T(J-HC')
          Ic (J.LE.NC2)  XC-'J)  =  SINff J1»V*T(I> + PSHIFT)
          Ic CJ.E0.1)    X(J)  =  1.
          IF (J.6T.NC2)  X(J)  =  rOS(rJ2«W)«T(I) + PSHIFT)
          S*Y(j) = ?XYCJ)  + CX(J)  *  Y(U)
  106   CO»-TINUC
            00 110 J=1jNCOFFF
               "0 10« K=1iNCOEFF
                SXX)
  108          rONT^NUE
  110       CONTINUF
  112 CONTINUE
Cx»xx»xxxxxxxxxx»xxxx»xxx»  PRIMT  NORMAL COrFFICIEMTS  »«»»x»xxxxxxxxxxxx«xxxx*x
      WRITE (6*606)
      TO  11'> J = 1jNCQEFc
        WRITE  (6.608) J, SXY(J), (SXX(K.J)* K=1*NCOEFF)
  114 CONTINUE

-------
                                    -  263 -
C»»* **#*****»»*»** *x*x*»»»»   SOLVE MORTAL '"CUATICNS  **» an************ *»*****)(»*
       IT = "•>
  115  IT = TJ +  i
       CFSI" = 0.
        ?0 118 K=1,MCOct:F
          PHI =  0.
            DO 116  J=1,NCOFFF
              IP (J.EQ.K)  GO  TO  11*
              SUH  •= SU"  -  (ACJ)  «  SXX(KjJ))
  116       COf'TINIir
          CUM =  (SU« + SXYCK))  / SXX PRE" = PREt? + »(J) » S INCF J1 *W*T( I )+  PSHIFT)
              IF  (J.ST.NC2) PRE" = PREO + A
          DIFF = P>?FO - Y(I)
          T"ES = TpfS + ABSCDIT)
          VRITE  (6»6U)  It  TCI>> rcl)j PRED. OTFF
  1?6   COWTINUC
       WRITC (6.616) TRFS
C»»)»»*)u»««*»*tn«»)< *»»*»»*)(»**«»   FORMAT STATEMENTS  *****************************
500   FORM»T
501   FOR1«T C7I10
502   FORMAT («f6.P)
600   FORMAT <1H1 ////1X,ZQA4f 14X* ' F«VI*ONMCNTAL PROTECTION A6E"CY'./1X  .
     *2CA4* 16X* 'LEAST SQUARES CURVE  FITTINC' >///// *10X,'NUMEE° OF  DATA
     »POINTS'»10Xj 'NUMBER OF  COEFFICIENTS' ./1 7X, ' ( "(DAT *) ' *?4X* ' (NCOEFF ) '
     *//.1"X*I'*a3X,I3»/////  j10X»'TIDAL P«=sioO (HOURS )'< 1 1 X* '0»-EGA  (2*P
     »I/Pc'»IODXli/16X*1 (PERIOD) l*2"?»j'(V)'*//j17XjF5. 2 »23XjF7tA*/////  »
     *10X*'>'»XIMUM NUM9FR OF ' ,1 4X» ' M A XI"UH  RESIDUAL '*/ 1 OX. ' I TEPATIO"S  AL
     UIOWE^' .I^Xj" »LLOHrD" til > 1 6X< U*26T,F6.4,//// / jlOXj'TIKE  SHIFT'»?1
     *X»'P4ASF AN6LF SHIFT «»/1 1 X* ' (TSH !FT) ' t 26X* '( PSHIFT) 
     *20X*'OBSFRVATION NO .' *1 2X* ' T !*£' . 13X* ' VALUE ' ,/ * 1 5 X , 60 ( 1 »-) /    )
504   FO»fMT OH /2?X/73*18X*F6.2*10X*F7.3)
606   FOR«»T (1M1///  *75Xj13(1u-)j/6X.' I    -----------   I • * SOX, ' S IGMA  X
     «r(K,J) ' ,/Mj ' I   SIG««  XY(J)    I • t50X»13(1H-)»/3Xi ' J   i    --------
     * ---   I I»/6X*1 I '»17X» ' I  K  =     1 »»UXj'2' j14»j'3'*14»j»4' j1*X*' 5"
     #*Uy*'6',UX^'7'*/6X/' l'»17(1«->*M'j105OH->*/6X, 'I ij17X*»l '  )
608   FORMAT (1H ,1X*l2j2X*' I « ,4X*F10. )
610   FORMAT (////50X,?0(1H»),/*1X* 'SOLUTIONi ,/50X/30C1H»)*/// .43V*'NUM
     »PER OF ITCR> TIONS'*10X*"'AXI««UM 'JESIOU AL ' »//»51 X* I3*24X*F7.6j/// /,
     «35Xj'THE CURVE  ii^ICH  PEST  FITS  THF  OBSERVFD DATA IS  GIVEN  BY     '
     *///»2nx,'»(T)   =   '*c10.f.'   +   '»F13.6«'  SIN(UT)  *   «,r1J.6»'  SI
     »Pt^aT>  +  '»F10.5,«  SIN(3UT> ' J//.41X* '+  •,c-10.6»«  COS(VT)   +   •»
     »F10.**' COS(?VT)   +   'JF10.6*'  CCS(3VT)i)
61?   FOF-HAT (1H1//  1 1V *30(1 HK) * '    SUMMARY OF OUTPUT DATA    >,?0(1H»)//
     «»4X,'OBSE°VATTON»,TOX.'TI««E< .10X* 'OBSFRV FO ' . 1 OX, • PREnIC TET , 10X, • »
     *FSIOUAL',/2X  ,&6(1H-)//  )
614   FORMAT (1H ,7x/I*,t4X,FS,?j1 1XjF6.3j11Xif7.4*13X»^ 7.4)
616   FORMAT <1H ,//5Xj'TOTAL  "FSIOUAL  =  '.F10.5 )
      ?TOP

-------
                                  - 264  -
                          A.2   DYNHYD LISTING
C                                 PPOGR"" DvNhYD
C                         ENVIRONMENTAL PROTECTION AGE-IC"
C                             ANNAPOLIS "-IEL" GF^ICF
Cx**ttX*****KttX****«**X*M«KK**Ktt***«KXKX)M»***X**»K**MXIM*K***M**Xtt***«*«Ktt**ltK*K
C         nv«|HYr, t;r»
      «               CN(139),
      f               VT(139)
      COMMON /JUNC/  AREAS(133)*  JPSTC13^)* NCHAN(133*5 ) »  niN(l33>*
      *               Y(1?3>»  YT(133)
                     ALPHA(80)»  D£LT* ITYC* INTPUN*
                     NOP°T. NCYCC*  PERIOC* PUNCYC
                       PUNCYC
      COMMOV
                                                             NCYCj
      INTEGER
             4
             n
                                           >>TA
READ
PFAD
READ
PFAD
FFAD
           (5»502)
           (5*504)
           (5*504)
           (5*504)
           (5*504)
            C6*600)
C*KXXXXXKXXKXXKKXKK*XXX*XKXKXK*K   CONT°OL
      PEAD (5*500)  (ALPHA(I),  1=1*40)
      PFAD (5*500)  HEADER
                    "J* NC*  NCYC*  DELT* TZfRO
                    IPRINT.  INTRVL*  NOP"T
                    (JPRT(I)>  I=1*NOPRT'
                    ITAPE* HYOEXT
                    PUNCYC*  INTPUN
                     (ALPHACI),1 = 1 *4T)* NJ*
     x               IPRINT*  INTRVL* MOPRT*
      IF (HVOEXT.ET.Q) WRITE  (*»6L"?>
      IF (HYOEXT.En.1 ) WRITE  (*,6u1) ITAPE
CX*XXXXKKKXXXXXXXX*K»KXXK»X«XX*X   JUNCTION DATA
      PFAD (5*500)  HEAOER
      DO 100 J=1*NJ
      PFAO (5*506)  JJ* Y(J)*  ARFAS(J)» OIN(J)*
        YT(J) = Y(J)
        IF (JJ.EO.J)  60  TO  100
          W«»ITF (6*604)  JJ*  J
          STOP
  100 CONTINUE
      WRITE (6*606)
      1C 10? J=1*NJ
        WRITE (6*60?) J, Y(J>*  AREAS(J)* OIN(J)*
  102 CONTINUE
                                            NC* NCYC* OELT*  TZE^O*
                                            PUNCYC*  TNTPUN
                                                  «<(*l«»C»>l«(*MKI(NNK*Kifl( *«»*»**»*»
                                                (NCHAN(J*K)»  K=1*5)
                                                  (NCHAN(J*K)*  K=1,5)

-------
                                 - 265  -
CX**«X***KK«*»*X****NXKM**KM**KK
      RF»J fS/500) "EAOFR
      "0 1^14 N = 1»NC
        ?E»i (5/53?) N'M/ CLFN(N)/
        AR^ACN) =
        IF (NN.cQ.N) GO TO
          W'lTE (6/610) NS, N

  104 CONTINUE
      WRITE (6/612)
      TO 10* N=1/NC
        WRITE (*/6U) N, CLFN(N),  B(N),  AREA(N)/ CH(N>/
     *                V(N)/ RC*O»  (N JU**f(N»K>/ K = 1/2)
  106 CONTINUE
                       SEAWARD BOUNDARY  TIP«L CONDITIONS  x*xxx»xxxxxxxxxxxxxxxx
           (5/510) HEADFP
      PEAO (5/504) KK
      RFAJ (5/510) PERIOD/ /  NJ/ NC / CELT/
     x           CCN(N)/ R(N)/ °(N)/  CLEN(N)/ N=1/NC)
      WPIT"7 (1T) (Y(J)/ AREAS(J)/  QIN/ K = 1/?)/ J=1/NJ)/
     x           (A"E«(N), V(N)» (MJUNC(N/T)/

-------
                                      -  266 -
CK**K**X*K***K**MXX**ft*K»K*x**K**K*tt XX*** ft** *KX*tt**»**X*X*ft****X****tt«*X*X »*»*««
C                                  Iinm_IZ»TION
Cx*X*X***X*»**X*»»XXXX*»»lXXi»l*XX<»***XX**i«*X**
      ncLT1   =  ^ELT / ->..
      T7^f>   =  TZtRO * *6JQ.
      PFRIOT  =  PEF TDD * 2600.
         i<     =  P. » 3.1416  /  PCDIOi
         G     =  32.1739
      °0 ", ?0  N=1>Nr
         AKCV) = 6 * CC"CN>*»',1).LT.*JUN'-(N,;>» 70 TO  1»  J=1..NJ)j
      T =  TZERO
        r.Tvcc  =  icrc
        T2     =  T  + DELT2
        T      =  T  + OELT
C»*»*»*»»»»»*  rol1>
             R(N)  = ARE«(N)
             OVDX = (1./R(N))  *  («Y(NH) - VTiNH)  +  »(,NL) - YT< t L) ) /""EL T >
                    + (V(N) /  CLCNCN)> * CYCV'H)  -  Y»
             VTC")= V(N) + OFLT2  »  C(V
                  = VT(N)
C»***»»*iHfxx*x*«*»  CO"PUTF  JUNCTION HFADS rOR  1/2 TIM"? STFP   ******** »**x *xx«»*
           VTC1 )  = »1 (1)
C              x»x»***«x»m(»»  SFAWA13" BOUNO*°Y »EAD? »** »»**x«*»x«
           r"3  -(21 1 = 1, NS
              FI    = FLO*T< I)
             YT(1) = YT(1>  *  AKT+1) » SIN(Fi»y*T2) +
     *                        A1C"S+1+I) * COS(Fr*U»T?)

-------
                               - 267  -
C             KK**«*X*X*XXKXXX« JU^'CTIO*' HF»L)S  *»**»»»*«X*1«XXI(X»X
          •^0  1*5  J = 2,M
            SUMd  =  QIM(J)
              "0  1 T?  K=1,5
                 IF   60 TO  154
                   w  = NCHAN(J,K)
                   IF  (J.NE.NJUNC(N»1 )) ^0 TO  130
                     SU"f1 = SUM" + KM)
                     SO TO  132
  130              Sl'10 = SUPQ - U(»O
  1"»Z         CONTINUE
  134       YTCJ)  =  Y(J) - (COCLT /  ARFASCJ)) * .5) » C'JHQ
  136     CONTINUE
Cx*x»xx»xx»»*»x»   COMPUTE  CHANEL C.S. AREA  FOR 1 /' Tl'^e STEP

            ML =  MJUNCCV.1)
            NH =  NJUNCCM,2)
            ARC*T(H)  = SREACN) + . c*8( N )x( »T ()<") -Y (NH) + YT(«
            "(N)      = >REAT(N) / •»(»)
            »KT7      = AKIN) / fft- Y< VL) )/ "ELT )  +
     *                CVT(N) / CLEN(N)) « (»T(K°)  - YT(MD))
            V(«)  =  V(N)  +  TFLT » C(VT(N) *  PVCX)  -
     »                     AKT2«VT(N)*A''S(VT(M))
     »                   -  (G / CLEN(N)) * (VT(NH)  - YT(VL)))
            ^(N)  =  V(N)  »  AREAT(K')
  138     rONT!NUE
Cxxx«x»x«xx»*x»»i»x   COMPUTE JU"CTION Hr*OS  rOR  CULL Tlf^^ STFP   •txxxtixx »*x» *xx *x»
          YC1) =  A 1(1)
          "0  140  1=1,MS
            KI =  FLOAT(T)
            YC1)  =  v<1>  +  A1(1+1) «
     *                   +  MCNS+I + 1) *
  140     CONTINUE
          "0  148  J=2,NJ
            SU"0  =  CIN(J)
              "0  1*4  K=1,5
                 IF  CNCH»N(J,K).FO.T) 60 TO  1*6
                   >'  = NCHAN(J,K)
                   IF  CJ.NE.NJUVC(N,1>) CO TO  142
                     SU*^n = SUNQ » Q(N)
                     GO TO  144
  142              SUHQ = SUM0 - QC^)
  14i         CONTINUE
  146       YCJ)  =  YCJ>  -  (CELT / ARE«S(J»  * SUHQ
  143     CONTINUE
C»**»x»x«*xx  COMPUTE CHANNEL C.S. AHEA FOP  FULL' TIf*E STEP  »xxxxxxxxxx»»*xx»»»»
          10  150  N=1,NC
            NL =  NJUNCC1,!>
            NH *  «4JUNC(N,2)
            ARFMN)  = AREAT(N) + < . **Bl «<)x ( v (NH) -YTCNri ) + Y( ND-YT (NL ) ) )
  150     CONTINUE

-------
                                   -  268 -
C* ** »«»»»»'»»»* *»»» *N**«»s»*K**  CHcflC VEUOCTT1F.S   *<»*»* **»« «* »»»» >H<*K »»»* *«*»»«
          •>0 15? N=1,NC
             IF   SO TO 152
              WRITC  C6»620>  ICYC, "'
              WIT1"  (6j622)  (J» r(J)j vT(J)i  ARFACJ)!  TCJ>J J = 1>NJ)
              L =  NJ+1
              WITF  (6^624)  (J» Y(J)j ri(J)t  APF»(J)j  Qf»C>
              STOP
  152     CONTI"U£
C**««»«*«»*«M**»*«**tt   STO'F DATA FOR HYDRAULIC  EXTRACTS  »««««»»»«»«)• »»»«»»»»»«
          Ic (IrYC.LT,TTAPF) SO TO 154
             yRITE  C1Q)  ICYC, (V(J), J=1,NJ),  (V(N),  QCO* >J=r1,NO
  154     rONTT»tUE
c«»»«»»*>t*)<*»»*»*»'(»*»**)«**»»»  HYnR*uLic OUTPUT   *»)on*»*»)«i*i»»<»»»»*)«»»»)«*)(»»»»*
          Tr (ICYC.NE.TPRINT) qO TO 164
             IPPINT =• JP9INT  + r«»TRVL
             TI^c = T /  '600.
               "0  1*?  I=1jNOPRT
                J  = JPRTCI)
                URITE (6*62") J^ Y(J)
                   r>0  1tn K = 1*5
                     IF (NCHAN( J>K) .EQ.JJ GO  TO  160
                       «  = NCHANfJjK)
                       IF (J.NE.NJU*C(N.1» ^0 TO  156
                         VEL  = V(N)
                         FLOW = "(N)
                         GO TO 1C&
  156                  VL  = -V(N)
                       FLOW = -9CK)
  158                VPITE c N, VCLJ FLOW
  1CQ              CONTINUE
  162          CONTINUE
  164     CONTINUE
CM**K*V***N«V***«*»***K***«*N  CHECK FO" RESTART   »»***»)»**» *-»*»*)»»»* »*»«)<»•<»»»
          lc  »ESTRT
  166 COKTT1UE
CMX*************** *«*««****  EXIT "YDMULIC  PROGRAM  »****»* *»*»»«*»)• « ***»«*»***
      WPITC  (5*632) NC^CC
      IF  (""DEyT.Eo.D TALL

-------
                                      - 269  -
 C                                FORMAT  STAT^
 £*«***************************»**************************»**********************
 509    FORM*T  (?OAi)
 50?    FORMAT  (Jr5»'F5.T>
 504    FQRM'T  (1615)
 506    FO°MAT  < IS»3r10. 0,515)
 50?    FOC.M4T  (15, 2F8.0,F9.n,F7.0>,Zc8. 0,215)
 510    FO***T  (T1Q.O)
 600    EQSMAT  (1^1j///  »2X»20A4,11 X, IE*"1RGNMCNTAL PROTECTION AGENCY1, />
      *2Xj29A4,3T, ' DYNAMIC FLOW IN A  2-3 IMF^'S IONI L  SYST CM ',////  ,1"X/'NU
      "'•PER  OF      >'UM3F<* OF', /,10X»" JUNCTIONS      CHANNELS '» /j1 ~*\i ' (NJ )'
      »»1GX,' (XC> »J//*1'»X»I3,11X,I3»///  JUXJ'IUMB"  OF        HYDRAULIC
              UX," HYDRAULIC CYCLES      ST^P,  IN SCC.      FTASTING TIME'
      ».!,///   >10X»'PRINTOUT 8E5INS      NO.  OF  CYCLES        NO. 0
      *TIONS' ,/>l3X >• AT CYCLE         BPT«EFN  RPINTOUT          PPINTFS',/
               f 10X»'FE'?TAPT DATA STORED     NO.  OF  CYCLES  BETW^FN ' • /, 1 5X
      • j'AT fYCL?1 i 11X*'UPDATE OF RESTART DAT A ' i f> 1 5v> i (PUNCYC) ' 1 1 3X* ' ( I u
      »TPUN) '*//»17XjU»2ZX»H»///  ,10X,'iS Sup"OUTINP  HYOEX         CAT
      »A F03 HYOFX  IS'*/il61f/'C*'.LEr' ?' ^ 1 0X >' STORED  BEGTNNIN'; AT  CYCLE1,
      »/»1C" » '("OES  HYOFXT  = 1 •») ',15X, 'C1TAPE) ',/   )
601    FORHIT  
63?    FORMAT  dSXj'NO')
604    FORMATC40MCJU^CTION  DATA CART OUT OF SEQUPNCC. JJ=  U,4n.»J= T A)
606    FOPMAT  C1H1//2X»4?(1H»>, '    SUMM«?Y 0<^ JUNCTION TATA    ',50C1"*>,/
      K//13X,  'JUNCTION      IlflTIAL 4FAO     ?UP^ACE  ARE«      INPUT - OU TP
      »UT            CHANNELS ENTERINi;  JUNCTION ',/, 1 OX, 1 1 5 ( 1 H-) ,/   )
60?    FOSHAT  (15X> nj9X,F10.4jS>r»Fl3.0,8X>F7.l»9X,5C4X» 13)  )
610    FORMATC39MJCHANNFL DATA CARD OUT OF SEQUENCE. NM=  U»4H,K'= I/.)
61?    FOPMAT  (1H1//?XfA^(1H»>* i    SUMM'^Y O^ CMANHEL 0F8.5>3X,F5.1»16X
61*   FORM»T  (lH1////2nX>27(lH*>, '    TIOAL CONO'TIO^'S  »T  THF  SFAVART BOU
      *NOAPY    '»27(1H*)*///,30X,"TlnAL PERIOD IS  '>F5.2,'  4QURS ' , //,30 X*
      »'«EA»» SEA  LEVFL  IS  «*F8.6>' ^rET ' ,// »7QX* ' THE HEAT  AT  THF  SEA«AR"
      »BOUN"«RY  IS  GIVEV  BY ' ,// ,3AX , • HEAO = ',F9.6,' +  ',F9.6,'  SIN(vT) +
      »  'iF9,6,'  SIW(2VT)  +  ',F9.6,' SI«( 3UT) ' , /, 5 1 X, '  +  '»F9.6»'  COS(WT)
      »  +  ',F9.6,'  ^OSCPVT)  + ',cv.6,« roSC'viT)  '    )
61?   FCSH»T(5r>M!JCO«PATIBUITY CHECK. Ci-fANNEL I4j11Hj  JUNCTION  14)
629   FORMATC34MQVELOCITY F.XCETDS 20  FP? I" CYCLE I'jIH",  CHANMFL  13,
      *2?H» EXECUTION  TE"M INA TE^.)
62?   FO°MAT   (S2H    NO.        Y           YT          AREA            0 //
      *      
-------
                                 -  270  -
C                               «U3<»OUTT'»E
CXXXXXKXXXXXXXH
      'UPFOUTINE  HVPFX
      COMMON /r"AN/  AK(139>»  4?£A<1T9)» ARE»T(1^9)*  3(1?9)*  CLCM( 1 '9) *
      <               CNC139)*  NJUNC(139»2)t "(1'")*  9C1J?),  V(1?°)*
      *               VT(139)
      CCMMON /JIJNC/  ARr«S(133)» JPRTd"). "CriANd 3"**i >*  QlNd")*

      COMMON /"TSC/  ALPHA(SO)*  DcLT» I^YC* IMPUN*  NJ*  NC*  VCYC, H'TSVL»
      *               NOPPT*  NCYCC* PERIOP* PUNCYC
      DIMEN'IO"   AKAVC(139)*  Aff"AX f 1 39) t A"»"IN(1 39 ) » S-AX(1?9)*
                      Y"IN(133).
Cxx»*»t(««xXi(»»»»«x»)f»»  REAn INDEPENDENT CONTROL  DATA
      Pc»0  (5*500)  HEADER
      PFAO  (5*5PO)  (ALPHA(I)*  1=4
      PFAD  (5*5H2)  NOD^N
C**»«»»»*xi
      NSTOP  = NCYCr
      KSTAPT = NCY^c  - 
      IF (ICYCTF.NF.NSTAPT)  SO  TO  100
CN*««**«*MK*««MKXX>«**  INITIALIZE  TIDAL CYCLE VARIABLES   »»»««»»»*)«»«*»»»»«»»««
      DO 10? N=1*Nr
        ONCT(N)  =  .5 *  Q(«<)
        VMAT(N)  =  V(N)
        VMIN(N)  =  V(N)
        OH*.¥(N)  =  C(N)
        ARAVG(W)  =  P
        AR»AX(N)  =  n
        AR-IN(N)  =  1000000.
  102 CONTItUE
      PO 1C« J=1»NJ
                 » YME«(J)
                 = YMEH(J)
        MMINCJ) = ICYCTC
        N»«t»(J) * TCYCTC
        YAVCCJ) = .5  «  "NEW(J)
  104 CONT'NUE
 ixxxxx**xvxxxK)(Kx«   i«*iTiALizc  INTER-TTDAL CYCLE V»RI»BLES   »»«««»«»»»»*«»»«««»»
  106 PO 10s N=1*Nr
        CEXT(H) = .5  »  OtM)
        VE"T(N) * .5  »  V(N)
  108 CONTINUE
            (4) ICYCTF* (YNEVCJ)*  -

-------
                                 -  271  -
 C»K«»»««**x«)tK*x»tt»»»««  COMPUTE  IVTER-TIOfL  PJ°AMCTLRS  « x« »»»*»**»*« »*««**»«**
       "0  1?*  IC»1t'»00''N
              (10)  ICYCTF* (VNEV(J),  J=1»NJ)»  (V(N),  2C">< N=1,NC)
              11* N=i,NC
                *»*»»»*»»*»»)(»»«»  SUMMATIONS  ****ft*»*x*ft*«*»***»*«
             VEXTCN) = V^XKV) + V(»')
             ONETCN ) = <3«fET(N> + G<">
C               «»»»*»»»««»»«» CrOSS-SE?TIO"-Y(NH)  * YM^W (NL >-Y CNL) )
               PO  TO 11?
   110        ARCA(N) = 0(N) / V(*')
   11Z        ARAVC(")= ARAVGOO + APFAC1*)
C               H»«K»)()t**»i»»» HIV ANO MAX  VELOCITIES ««*»««*»««*«*
             IF  (V(f').ST.VIIIN(N)) 60 TO 113
               V^INfN) =» V
               GO  TO 1U
   113        IF  (V(N).6T,VMAXCN» VMAXCN)  = V(N)
   114 rONTTWUE
C               »»*»*»»**»«»*  «IM AND 1AX C.S« AREIS  »»»»*»»»««»
             IF  (ARF«N?V
              *CJ>   » VNEW(J)
   124     CONTINUE
   126 CONTINUE
C     »*H«**»NK***M»*«»* INTER-TIDAL FLOU A"Q VELOCITY  *****************
      DO 13? N=»1,NC
        OEXTtN) »  OFXTCN)  - .5 »
        QEtT(N) "  OEXT(»*)
        VEXT
        VE*T(N) »  VEXT(N)  / FLOAH «
          GO TO 130
  1?8   IF (QEXT(N).GT.OMAXCN))  OMAX(N> * OFXTCO
  130   CONTINUE
  172 fONTIMUF
      WRIT?  (4) (QFXTCO,  VEXT(N), N
      IF (ICYCTr.Nf.NSTOP)  GO  TO  106

-------
                                     - 272  -
C«>««*«i<«*x**«*in«»»»*****»»»  COMPUTE TI^JL  SUM"MRY  »»*»»»»»«»»»II«»»»»««*»»»M»»«
      "0 I'i N
        QNETCN)
        SNFTCN)   =  QNET  / Fl 9 M (N STCP-NST ART)
        »RAVi(N>  *  ARAVPIN>
         R(M)     *  JRAVG(N) / «(N>
  T'i CONTINUE
        r*VG(J)   =  "AV^CJ)  - .r » YNEW(J)
        YAVSCJ)   =  v*vC(J)  / FLOAT(NSTOP-NSTAKT)
  136 CONTINUE
  »*»**»*»***»**»** COMPLETE UOTTIS6 HYnRAULIC  FXT°«CT TAPE »««»««»)»)(**«*«»»»)•««
      VRITP  (4)  (O^TCf),  N = 1,VD
      WRITE  (4)  (ALPHA
C»»»»«»««)t»*ii»»»«**»*«»**«  PSINT TIDAL CYCLE  SUMM"?Y  ***»***»*»***** »»*»)(»»*»)(
      WRITC  (6»604>  <»<»  QNET(N>» Q^IN(N).  QMAX(N)^  VMIN(rt). V.1AX(N)j
     »               ARHIN(N). AP1«XCN>t ARAVG(N)j  N=1,N'-)
      WPITC  (6»606>  (J*  YMIN(J), NHN(J),  YMAX(J)*  MMAX(J), YAVP(J),
c»m< «»*»)•*)•*»*»»»»»»»»*»   CHECK HY^^AULTC  -XTR*CT  TAPE  *»»)»»»i»»»)n
      no 1""* !=1*K
        REAT (4)  ICYCTF,  (YMEHCJ), J=1»MJ)
        READ (i)  (OEXT(N),  ¥EXT(N)j N=1jNC)
        WRITE (6*610)  ICYCTP*  YWEVC1)* YNE«(50)» YNEW(?0)j YNEW(10)>
     »                 r«»E«(1U).  OcXT(65)j iEXT(50)j  QcXT(:?0)j OEXTC1G).
     «                 QEXTC1)
  138

-------
                                  -  273 -
500   FCP1AT
50?   FORMtT (1515)
600   FOP«AT (1"1///
     »  1H ?0*4.10V»37H FEDERAL WATPR  DUALITY  A^MI N 1ST ?A TIO*/
     *  1ri 'OA4,10X,32U NET FLOWS  *NO  HYDRAULIC  SU««ARV/
     *       1H 20»*/1« 2CA4////)
60?   FORMAUa*" »**««««« F?OM "yD"*ULICS PROGR'H  »»*»»»*«     HYDRAULIC
     •« CYCLES PER     TI>1E INTERVAL  IM/
     «87H START CYCLE   STOP CVCLE     TrHE  INTCOV*L         DUALITY CYCLE
     »         OUALTTY PROS"A1//
     »1H I7»I14*F1 1.0>OH  SFCO«*OS*10X,Ift>1?yjF0.2*7H  HOURS/////)
601   FORMAT(119H                            *  *  »  »  »   CLOU  * » * » *
     *    * »   VELOCIT"   « *       «  »  *   CROSS-SFCTIONAL AREA  » » » /
     *       11«H THANNFL     N^T  FLOW         HIN.             "*X.
     »      HIN,         MAX.           MU.          MAX.          AVE,/
     *       119H "UMBFP       (CFS)           (TFS)            CfFS)
     «     (FPS)        CFPS>         (SO. FT)      (SO.  CT)    (SQ.
606   TORM*T CIHI^/// »iXj50(iM»>, •    SUMMARY  or  JUMCTTOM HFAO?
     «H»)j//// /14X* ' JU"CTION      fTNI-iUH HFAD     CYCLF   OF
     )• HE«0     CYCLE OF     AVERAGE  H^ID      TIDAL R A»»^E • > /*31 X J • (TT ) • >
                   '»9X/'(FT) '/9X* ' OCCORENrF ' j"x, i (FT) ' , U»j ' ( FT ) ' > / ,10
608   PORMAT cmi///iox»30(iH«),'    CH^CK  "YD»AULIC  EXTRACT  TAPE
     *30(1H»),//3Xj 'CYCLE'»15X, >hcAOS  AT  JU*CT IONS ' ,36 X* ' FLO WS 1^
610   FORMAT (?XiI4»2X*5(3X*F5.?)j8X*5C?Xj»'10.?)  )
      RETURN
      FND

-------
                                          -  274 -
C*»*»*»»*»<**K»***»»»K*****»*»»«»»***»«»******»«»*»»**»***»***»****«»* *****»***«
C                                    7ESTRT
C**X**»*X»K*KttkKX*K***X<*«M*XXX*K*****«***X******«***«**K»N*X*X***tt*X*X*tt***lt
       PtiFROUTI»lF RF«?TRT
       COMMON  /"-"AN/ AK<139)> A^FACl'9)*  AREAT(139>» B(1*9)»  CLEN(1?9).
      *              CS(139>j NJUNC(139»2>j  Td^"). ,  V(1'<5),
      t              VTC139)
       CCMM0*  /J'JNC/ A2C'S( 1^)» JPSTC1'*'?>j  ''CHAN ( 1 73 * 5 ) > QIN<13?J,
      *              Y(1^3)» YTC133)
       COrthON  /^ISC/ ALPHA<80>» DtLT»  I"YCj  INlPUNj HJ, HC*  NCYC,  INTPVL*
                            NCYCC» PERion*  PUKCYC
                         00 TO 1n
r* *» a****** *»»*»*)( an*********  VPITP  RCSTA?T  TAPE  »*»**»»**»»»»*«»»)»« *»»*»»»»«»
         PUNCYC  = PUWCYC + INTPU"
         Ur!TE (4)  ICYC> (Y(J), »T(J>*  J=1jMJ)» (V(N)j A°EA(*O/  N=1 ,NC)
         REMIND  4
         GO  TO 'H
C**» »«*»»K*» *»)»**)» »»**» »»»»»»  PUNrH  RESTART  DECK  »»»»**»*»»« »*»»)nm*
   10  VP1TE  (8*60)  (J» Y(J)* ARFASCJ)* ''INC J ) J< NCHAN< J »K ) *K = 1 , 5) » J = 1 *N J)
       VPITC  C8>61)  (N, CLE«»(N), 9(N)»
   ?0 TZERO?  =  T  /  PERIOD
      KT2E"0  =  TZEP02
      T7EFO'  =  (T/7630.)  - ^LQA T( K TZERO ) *  ( PER I OD /
      VR1TC (6»62)  ICYC>  T7FR01
   T0 CCNTPfllE
r »<*»»*»««»»»»*»«* »»»»**»»)!»»»  PPIMT RrSTA°T  D'TA   »>i »»»»«»»* M* *»»*»)»«*»»**»»»»)(
C                 n**»m«t()«*»)i*»)n»  JUNCTIONS   »«»«»»»»)(«*«»*
      WPITr (6»63)
      tfRITr (6*64)  CJ,  YCJ)»  A9CASCJ)» "INC J ) . (NCHAN( J ,K ) »K=1 *c ) > J=1 >N J>
C                 **«**«»*»»»*»*«  CHANNELS   *««»«»)H»**»»»»*
      WPITC (6»65)
      WPITP (6»66)  (N»  CLE"(N)f B(V)^ APtAf*>j  CV(N)f  VCN)*
     »              R(N).  (NJUNC> K^1j?)*  N=1»NC)
C* »»»*»«»»»« *»»»»*»«»»»»**»«»«  FORMAT STATFMcVTS   *)(«»»*«»*»»)»«»»<«*»«»»)»»»»»»»*
   <"0 rOf**T  (IS. r-io.i,  F10.Q> F10.2* 515)
   61 FORMAT  (15* 2F3.0*  F9.1j f?.7, p?.3*  ^8.5.  2T5)
   5i FORMAT  (1 H1 ///5X» 'RESTART TAPP UAS LAST  VRITTFN  AT CYCLE '* 14* 5Xj '
     » TZF"0  F0»  RESTARTING = '»F10.7 )
   "3 FOP!«»T  (1H1///
     »        T2H  JUNCTION DATA FOR RESTART  QCCK///)
   c-4 FOFIAT  CS^-H JUHCTTOM   INITIAL HC*D    SUPCACF AREA   I^puT-ouTPUT
     *     CHANNEL? ENTERING  JUk'CT ION/ /(1 H  » I6*F1 5 .4jF 1 7.0. F 1 1 . 2 , 1 1 2,
   63 FORMAT  C1U1///
     »         'IH   <-HA«MEL ^*T* F°7 RESTART  OECK///)
   66 FORMAT  c  "7H  THANIEL   LENGTH   VTDT^      APEA    «*VNING
     »TY    "YO  RADIUS           JUNCTIONS  AT  ENDS//

-------
                               -  275  -
                       A.3  DYNQUAL LISTING
c*******************************************************************************
C                           PROGRAM  "YN1UAL
C                  ENVIRONMENTAL  PROTECTION AGENCY
C                       INNAPOLIS FIFLD OFFICE
C                    DYNAMIC WAT^P  QUALITY MODEL
C**»********************** *•*****»*»»»»»***»*****»***»*******»********»***»******
C     ms nECK HAS  3ECN REVISED FOR  APPLICATION TQ THF POTOMAC ESTUARY
C     T"E *ODEL NETWORK COWSISTS OF UP TO 133 JUNCTION"? ANO 13' CHANNELS
C             T«IS  IS A GENERAL  6  CONSTITUENT D.O. BUDGET "ODFL
C          THIS VERSION ALSO  CONTAINS «  GENERALIZE" PLOTTING PACKAGF
C*******»ix**>i****»****x*»**K»»»»LE CRACTIONS OF HITROGCN  AN-D PHOSPHORUS ARF CONSIDERED  IN
C   THE "OTFL. REGENERATION OF PARTICULATE NITROGEN AND/OR PHOSPHORUS  IN
C   THE DECAYING AISAE TO SOLUBLE  EQRMS  MAY  ALSO BE INCLUDED. ALGAL CBOO
C   MAV AL50 BE REGENERATED SY EIRST-OROER KINETICS. ALL REACTION RATES
C   MAV 9E VARIED  SPATULL*.  THTS  VERSION »LSO INCLUDES THF EFFECTS OF
C   THIS CHLOROPHYLL PRODUCTION*  AS WELL AS  OTHFR M«JOR COMPONENTS  OF
C   THE 0.0. BUDGET. A REAL TIME CLOCK IS INCLUDED FOR THE PHOTO-PERIOO.
C      WASTTWATER  INPUTS* NON-POINT SOURCES  
-------
                              - 276  -
C                     DTMENSIO^ STATEMFMS  +  C01NO" 3LOCKS
C»*>I, AMUPP(l3^)j  DEC* Y ( 1 3 3*6) ' OECA YK ( 1 0 j6 ) ,
     *    Q»MUPC13T>» QiECA Yd ?3*6>J  OPHUPd33>>  0"PBOnd33>*
     »    ORFSENd ??>» ORECEPd73>» PHUPd?3)j  PHUPPdO)*
     »    ofBOnnn?1)! pcGENd3?)> "fGE*w*  RFGEPC133).
     »    S'-»CON<6). THET*(6)> "^ASSOd'S)
      PIMENSIO"!  »LPH»(80)» 3*rKC(^)j CIN(*.133)»  CINT(6)>  CUI»»ITC6>>
     »    COIFTKC10)» CNAHE(12)» NM"LC1^3>»  NP»L(1T?)*  NFCCtO)*
     *    NLC(10>, NFK10). NF3(10)»  NF3C10)f  «*LU13)t  NL2(1G)»
                        DISSOLVED OXYGEN PARAMETERS
                DO«V6C133)i 8EHTHC133>» BENTC10)»  OFPTH(10>,
                                             S)*  DOGT5(1'3J»
                                             S).  PHOTO(133)»  PHOTdn>,
          PrSPC133>»
                            CONSTANT  UASTF  TNPUTS
                                          '"WLO* Dd
                                         VOLOIN(133)j  XLOAO(20*6)
                            VA9IABLC MA«TE  INPUTS
      DIMENSION  CON(6>20*20>* FLOC20j20)j
     *    KCYC(2J)» KI"CC20)* *iKCl?Q>t VWLOAOC6)

                                     LOAD  INPUTS
                          >» ICYC1C20>»  IC»C2<20)».  JRBL1(2O>,
                     SLINE(133)» T°FLO«f 20*1 33)*  V9LOAO(6>
                            INPUT/OUTPUT P«RA«FTER«
      DIMENSION  IPRT1(?0)» IP9T2<2Q>*  LPRTK20)*  LPRT?<20)»
     *    TPLT1(2Q)» IPLT2(20)

c_-_	____	____	__-_	_________
      COMMON /CHAN/   i"EAd39>* 3CJ39>* CLEN(1^9)* CN(139)f  OIFFKd39)»
     »                NJUKC(139>2)» Qd'9)» QNETC139>»  R(139),  V
      COMMON /JUNC/   PSUR(133>> AVOH1^3)* NCHANC 133^5) *  VOL(133)j
     »                Yd3^>* Y"E«d33>
      COMMON /OU«L/   C(133»6)» CM«SS<1'3*6)
      COMMON /nlSC/   fTIME* OFLTQ» ICTC> NC* NJ*  MPP,  NUMCON*
      COMMON /SCALPS/ XMAX» XMI«»* YMAX» YHAXC(6>* YMIN*  YMINCC6)
      COMMON /SLACK/  JPRTd50»c5)t KSLC2Q)* KPLOT(20)»  NFPC(20>*
     »                NLPC(?0)» NOPRTdSO). NCONSU(S)* "SWP
      COMMON /09SDIT/ OPDATA (3.6*20) » ""CJIT.A ( 20) * 1DATA*  NO?CYCC1Q)
      COMMON /GRID/   KPLOP
      COMMON /TIHEPL/ JUNCTP(2n)j NCITP<20)» NCONTP(20*6)» NECTP(20)»
     *                NSCTP(20)> NTP
      RPAL    "CHLON. «CHLOP» NTTCHL
              nOLTtj 004T05. DOGT5* HY"CYC* SEACON

-------
                               - 277  -
Cx*x»xxx»»xx»»xx»x)»«xxxxx***»x*x»»xx»xxxx*x*x*xxxi«»xx*x»x»<»xxxxx»xxxx««x«x»x»x»*
C                  TAD SYSTEM INFORMATION  rRQH  HYDRAULIC TAPE
C»xxx»x»x»x»xxxxxxxnxxx>»i(*x«*xxx»xxxxxt(xxx»x»xxxxxxxx»*»xxxxx*x»x»xxxxxxxxxx)ixxx»

       ppnvr,  3
       FFVIINO  4
       RFAO  (5,5^)  (*LPHA(I>, 1=41 ,30)
       READ  (5.500)  NJ, NC, NSTAPT, NSTOP,  NODYV
       K  =  fVSTOP  -  MSTAPT) / NO"YN
         00  100  1=1 »K
          READ  (4)   1CYCTF, (YVEU(J>*
          «?EAO  (4)   CQCN)j VCN).
          4»ITF (3) ICYCTF> (YNF«
          V°ITP (3) (QCN)» VCM)»
   100    CO^TINUF
       RFAD  (4)  (QNFT(N), N=1»MC)
       READ  (4)  (ALPHA(I)j I=1»AO)> NJ» NCj  PELT.
      *         (CK0 (5,500)  "UM^ONj  KDCOP,  KREAC, MIX
      PFAD (5,504)  TEMP,  STIME

C»«»»»»»»*»«»«»»it»*»t>»«**»    TABULAR OUTPUT CONTROL   »«K«*»*x**x««x*ff «K**X*«*»M

      READ (5,508)  HEADER
      READ (5,500)  «»SU»I1,NPLT1
      IF (HSUMl.EO.a>  GO  TO 102
        DO 102  N=1 ,NSU*1
          RfAD  (5»5f?t)> IPRT1CN), LPRTHN), IPl_T1(N>
  102   CO"TINUF
      RTAD (5,500)  »SU*2, WPLT?
      IF (NSUM?.EQ.P)  GO  TO 104
        DO 104  N=1 ,NSUM2
          RCAD  (5,500) IPRT21M), LP«?T2(N>, IPLTZ(N)
  104   COMTIMUF.
      READ (5,500)  MSWTAB
      IF (»ISWTAB,EO.O) GO TO  1 n*
        00 106  N=1 ,NSUTAB
          C?AD  (5,500) NFPC(N),  KSL(N), KPLOT(»O
CK*KXXX«XX**»*«KXXXK«XKKX   PLOTTING OUTPUT CONTROL

      PFAD (5,50%) HEADFR
      PF«0 (5,500) NTP, VSVPt KPLOP
      RFAD (5,500) WDATA, HOBOAT
      IF (»f030AT»6T.O) REAO (5,500>  (NO"CYC(I), I = 1
      IF (N?«P.RT.C) READ (5,500)  (NCONSUCK), K=1,NUMCON)
      IF (1TP.FO.O) 60 TO 110
        DO 108 N=1 ,HTP

-------
                            -  278 -
                      JUNCTP(V),  NSCTP(N). NECTP
    P^AD (5.506) CYHAXC(K>>  YMINC(K>» K=1»NUirQN)
       nC 112 K=1,NUKrON
         v!*.Ai":(K)  = Y*IUC(K)  -  .1
112    CO»'TI""JF
    ir (NUMPLT.EP.NTP)  GO  TO  114
                   (114)  =   0,0
                     3)  -   2.°
           P»  =   5.9
                   C  H)  =•   6.6
                   (  9)  =   7.6
                   <  11)  =   8.4
           RMMODr  (11)  =   3.7
           RH«»ODr  (  13)  =   9.9
           R«»NOCP  d"?")  =  10. 7
           RMMOQ^  <1TO)  =  10.*
           RMNODr  (  14)  =  11.?
                     1C)  =  12.0
                     1^)  =  12.9
           RMNOOC  (  17)  =  13.6
           P*"»ODr  C  1")  =  14.8
           RMNOCC  C  1<»>  =  15."*
           P^HOTF  (  20)  =  16.3
           R1NODF  (  ?1)  =  16. <>
           9MNOCr  C  72)  =  17.9
                   t  ?3)  =  18.5
                   <  24)  =  19.5
                   (  25)  =  20.4
                   <  '*)  *  21 .4
           RHNODF  (  '7)  »  22.'
           RM10DF  (  ")  =  24.0
           RMVQDP  (  ?9J  =  25.7
           RMMOD<-  C  T0)  =  27. n
           RMNODF  (  ^1)  =  28. T
           RMHOOF  (  '?)  =  29.6
           Rf»NODr  (  17)  =  30.7
                   C  U)  =  31.4
                   (  75)  =  32.7
           RMNODF  (  ~">1  =  34,2
           RMMODr  (  '7)  =  36.'
           R«MOOf  C  '3)  =  38.9
           R1NODF  (  T0)  =  40.*
                   (  40)  =  42.9
                   (  41;  =  45. n
                   C  42)  =  47.0
           RlNOCF  <  43)  =  49.4
    CCNTINUE

-------
                             -  279 -
                               INITIALITr VARIABLES
      TCIfC   = 1
      !TA3   = D
      NPA    = 1
      NS1    = 1
      NSH    = 1
      PO     =0
      *'TAG   =0
      TSPISC = 1
      TSSET  = T
      CSAT   = 0
      PFLT01 = »"ELT  *  FlOAT(NOnYN) /
      PFLTO  = "ELT  »
      NTEfP  = NSTOP -
        CO 116 N=1 »NC
          If C1JUNC(Nj1 ).LE.NJU^C( V,2» GO TO 116
               = NJUNc<«i,r>
          MJUNC(N,-?>  = KEEP
  116   CCmiNUP
        00 120 J-1 ."J
          OI»tWQ(J)   = ">.
          '"•»SC''1( J)  = 0.
          "NRLCJ)    =  0
          "OLTKJ)   =  0
          "O^TO^CJ)  =  0
          DOGT5CJ)   =  0
          "OI'IVCJ)   =  30.
          "OHA*(J>   =  0,
          "TNCYCXJ)  =  n
          «AXCYC( J)  =  0
          DOAVGf J)   =  0.
            00 118 K=1»NUMCON
              CVLOAD(J»K)  *  0,
              roNcu(jiK)   »  a.
              rcj*K)       =>  o.
            CONTINUE
  120   CO^TINUP

C»»*M*»x«»*KMMMX««»    SET  PARAMfTEPS FO'' SLACK-WATER TABLES    * ««««*«*«*«««•«««*

      IF (NSWTAB.EO.O) 60  TO 1??
         DO 12? M=1»NSWTAB
           CALL SUTABLCnH')
           IF(M.EQ.NSUTAB) GO  TO  1*2
         CONTINUE
  123 CONTINUE

-------
                              - 280 -
      PFAO  (5*508)  HEADER
      PFAD  (5*504)  PERC"*  CHLNIT*  CHLPHQ, CHLCAR
      CARCHL =  1./CHLCA9
      PHOCHL =  1./CULPWO
      NITCHL «  1./C«LNIT
         PO 12* K=1,«JUMCON
           V8 = 2»K
           REAO (5/512)  BACJ(C(K)»THETA(K)j CLJflT(K)* (CNAMP (N) *N=NA *N<> )
  126    CO"TI«UE
      IF (NUMCON.LT.6) GO  TO  14?

C»»**»«»»»**»«*»»*)i*>« »»*»»*•*»****»»*** »»»»»»***»»»» »* ***«»»»»*«*«»*»*» »»»»»« »»*»
C                          REAO DO  RELATED COEFFICIENTS
      PFAD (5>508)
      READ (5*504)  TSRISE*  TSSET
       REAO (5»500)  NO
        DO 132  1=1 >NO
          °?AO  (5*514)  NF1 (I)jNLK I)<  PSOT  TREOXK
CB»***M«*«***•***•»«********•    O'CONNE'
  134   A - 12.9
        V =  0.5
        X = -1.5
        A » A » THFTJK6) «*  (TE«(P  -  20.>
        SO TO 142
C»**»K»*«*»*M«*»*»*«*»»»*»**«»»*   CHU'CHILL
  136   A * 11.6
        W =  .97
        X * -5/3
        A a A * THFTAC6) »»  
-------
                              -  281 -
C»»»»»*»»»»»«»*»««*»»*mt»*»   COMPUTE  *30  SATURATION   »«»»*»»»•»»»»*»»»»««»»»»»»
  1«2   CSAT
  143
          14.652 - (.4102-? » TEMP>+(.007991 *  TEMP  »  TFNP)
                   -C.000077779 » TEMP a TCMP  *
                        PRINT SUMMARY  OF  CONTROL  DATA
 WRITE  (6*600) (ALPHA(I), 1-1*80)* NSTART* NSTOP,  HYDCYC*  DELT*
»              MO^YC, NUT^YC* NDOCYC* "ELT01*  NSPEC*  TFMP»
               NUMCON, TE»P ,STIME, TSRISF*  TSSET*  CSAT
 WPITC  (6*602)
   00
           144
          "A =
          K=1.NUHCON
          2 * K - 1
          2 » Y
           (6>603> <>
                            CCNAME(M),  M=NAiNB),  B»CKC(K)* THETACK)
  144
WRIT"7 (6,604)
IF
IF
ir
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
(I°EO*K
(IPEOXK
(IPEOXK
( I°EOXK
(KPEAC.
(KPEAC.
(KREAC.
("IX. ?0
(Mix. FP
("IX,E"
(MX.FQ
(MIX.FQ
(K"COP.
(KOCOP.
.EQ
.EO
.EQ
• Er
EQ.
EG.
EQ.
.1)
.2)
.3)
.4)
.5)
EQ .
EQ.
*
*
CHLNIT, CHLPHO* CHLCAR, PERCO
1
)
2)
.3)
•
4)
D
?
•\





1
)
)





)








2)
WRITF
VR LT F
WRITE
WRITF
WRITF
WRITF
WRITE
'•TRITE
WRITE
WRITE
WRITE
WRITE
WRITF
WRITE
(6,606)
(6,607)
(6,603)
(6*609)
(6,610)
(6*61 1 )
(6,61 2)
(6*614)
(6,61 5)
(6*616)
(*»61 7)
(*»613>
(6,620)
(6*621)
                                  DIFFUSION  CONSTANTS
  145
  146
 READ (5*508)  HtADFR
 RFAD (5*500)  VK
   CO 146 I=>1»NK
     PFAO (5*514) NFC(I)» NLC(I>* CDIFFK(I)
     N1  = MFC(I)
     N2  = NLC(T)
     00  14S N=N1*»2
         OIFFK(N) = CDIFFK(I) » O^UTQ / CLEN•«»«>«*
C                     PRINT NETWORK AMI HYDRAULIC  PARAMETERS
C»««»*««»*»»«»«»*»*«««»«»»»»»»»»»«l »*««••«***tt*»«KN«»«M*K«•««»*•*»*»KM««*»»•«*«*K
      N1 = NJ
      N2 a NC
      UPITF (6*630)
               (N,  CLFN(N)* 8(N)* ARE*(N)* CN(N)* OIFFK(N)*
               QN?T(N)* R(N), (NJU<«C(N*K)* K = 1,2)» N* QIN(N),
               Y(N), (NCHAN(N*I)«

-------
                            -  282 -
    N1 = N1 + 1
    WRITE (6*632)  (N* CLEN(N),  3j,  »  K=1*2)* N=N1*N?)
    VPIT* (6*622)
    no 167 I=1*N*
      WRITE (6*62^) WFCUJ*  "LC(I)*
147 CONTINUE
                    "UTRIPNT UPT»KE  *  REGENE»ATION SATES
    READ (5*508) HEADER
    P^AD (5j5PO) ^'R
      CO 149 T = 1*«»R
        °?AD (5^514) HF2(I)j NL2(I>»  AHUPPCDi  PHUPP*  (DEC*
        H? = »»L3(I)
          00 152 J=N1,H2
            DO 150
              OEC*YCJ*K> = DECAlfKtl.lO
150         CONTTVUE
152       COMTIHUF
154   CONTINUF

               HH
                 PRINT JUNCTION RATES AND  COEFFICIENTS
                 n

    WRIT? (6*624)
    ^0 155 I»1jNO
      WRITE (6*625) NF1
    CONTINUE
    WRIT? (6*626)
    PO 1*4 I»1»NP
      WRITE (6*627) MF2(I)» NL2(I)*  AHUPP(I), PHUP(I),
   »                PEGEPP(I)* REBOOO(I)
156 CONTINUE
    WRITE (6*628)
    00 157

-------
                              -  283 -
        WRITE  C6»6?°>  NF3(I),  «L5(I)» ("EO YKC f*K) » K=1*NU1CON)
  1C7 CONTINUE
      WRIT?  (6»637)
                                 GO  TO
       RfAO c5*508)  HEADER
       DO 1T4  I=i1,NU»STC
        RE*D  (5.516)  JRC«
-------
                              - 284  -
        WRITE  (6*640)  j,  QINWQ» ccoMrvcj»io»  CWLOADUJK). K=I»NUHCOM>
   178  CONTTNUE

C»*x »»*»***» »»>•»»* *><<»i>**><*»*»   VA<>IA9LE INPUTS    *535)  "EAQFR
       V°ITC  (5*642)
       "0  1***  I=1*NV»STV
        REAO  (5»500)  J"VV(I)*  STNCfl)
        J =  JRVV(I)
        NH'M  = NTNCCD
        KCYC(I)  =  0
        KIVCCI)  =  1
          "0  1*1, N=1iN«IN
                          INCDUp(I» N> ^ FLO(I»N)>  (CON(K*TN)» VWLOfDCK)/ K=ljNUHCON)
             50  TO  1°4
  1B2        yRITE  (6*648)              fir INCDURU*1*)*  CLO(I*N)*
     *                     (CONCK* I »N)» VWLOID(K)* K=1jNU«COM)
  18t     COHTI««UE
  1«6 CONTINUF
  183 CONTINUE

C»*»»»)«)(»»*tnt«*««»»«*»»****   VARIABLE ?ANK INPUTS    »**»»»»»)(»»)«»»)»)»»)»»»»»»)»»)»»
      IF (MTAJIK.EO.n)  GO  TO 196
      READ  (5*506)  HEADER
      READ  (5*506)  (SLINE(.J).  J=1.NJ)
      VPITF(6*650)
      00 1°4 I=1*N°ANK
        WRITE  (6»6C3)
        REAP (5*500)  JRBLKI)* JRBL2
        READ <5»so4)  BFLOH* CBCONd,ic>. K=I*NUMCON)
        J1  = JR5L1 (I)
        J2  = JRCL2(I)
          no 192  J=J1*J2
             TBFLOUtl.J) =  8FLOV  » SLIME(J)
               10  1°0  K=1»NUNCOW
                 VBLOADCK)  = -T?CLOV(I*J) » DCOW(I*K)  «  5.3O4
  100          CONTTHUE

CwmnnnnHmmmnni****1******   «"?ITE  SANK IHPUT TABLE    »»»»»»*»»«»»»»»***»»»***»*

             «RITE  (^)»652>  J* SLIME(J>* TBFLOUU*J>. ICYCKD*  TCYC2(I).
     »                     (BCON(I*K)» V9LOAO(K>* K
  1°2     CONTINUE
  194 CONTINUE
  196 CONTTNUE

-------
                               - 285  -
                                                                       i »**«*«*»**
C                          UPPFR BOUNDARY  CONDITIONS


      PFAO (5,508) "EADFR
      VFITF (6,654)
      I = NVASTV + 1
      JPVW(I) = 111
      REAO (5,500) WINC(I)
      NN a NINC(I)
      KCYC(T) - 0
      KINC(I) = 1
      TO 200 N=1,N«
        READ (5,516)  INCOUP( I ,*),  FLO(I,N)»  (CON(KM,N), K=1,NUMCON)
          "0 19* K»1,NUMCON
            VWLOADCK) = -FLOCI»M>  »  CON(KjT,«)  *  5.394
  196     CONTINUE

C»»» »**»»«<«)»»»i»»«*»tt*»K*«*«l
                           SEAWARD  BOUNDARY CONDITIONS
                          u

      PCAC (5,508) HEADER
      PF<0 (5,500) (SEACON(K),  K-1,NUMCON)
      CO 214 K=1,NU"CON
        IF (SEACON(K).PQ.D READ C5,506)
        IF CSEACON<|O.?Q.2) REAP (5,506)  (CIN(K,I),
        IF  GO  TO 214
          "0 212 I-2,NSPEC
            CIN(K,I) » CIM
-------
                              - 286 -
      TO 216 1=1«N«PEC
        WRITE (6*6*4) If  (CIN(KjI)*  K=1,NUM'*ON>
  ?16 CONTINUE

               >»MK**N»»lt«
                          INITIALIZE  VOLUMES  AN9  MASSES
  >*K**KKftK**lt)ttt*ttil*VIINKtti
c
C**»»»**«»x*«»KKNKKit   CALCULATF MEAN  JUNCTION VOLUMES   »«*«»»»»««iui» »»«»«*«*»»

      PO 222 J=1,NJ
        AVOLCJ) = 0.
          «ASU1 = f.
         VOLSU* = 0.
          °0 21* K=1*5
            IF  GO  TO  ?20
            N = NCH»N(J*K>
            S»BE»  = CLENlN) » ECN)
            SASUM  = SASUM + SAPEA
            VOLSUH = VOLSUM + SARE<  *  RfM)
  ?18     CONTINUE
  220   AV?"    = VOLSUW  / SASU"
        AVOL(J) * ASUR(J) » AVf^
  ??2 CONTINUE

C**«*»»»»«*»»   COPRECT VOLUMES FOR  INITIAL  STARTING CONDITIONS
  224 PfAC (3) ICYCTF. (YNEW(J)< J
      IF OCYCTF.GE.HTPCYO GO TO 226
        REID O) (0(N)» V(M-)* I«»1*NC)
        60 TO 224
  226 00 223 N«1,NC
        NL = NJUNC(V,1)
        NH = NJUNC(N>2)
        RtNJ = RCN) + trNEW(NH) - Y{NH>  +  YN£«CNL>  - YCND)  » .3
  238 CONTINUE
      TO 2^0 4=1 >NJ
        VOL(J) = AVOL(J) + ASUP(J) «  (YKEUfJ)  -  Y(J»
        Y(J)   » Y^r«cJ)
  250 CONTINUE

C**««»«»»»»*«*«ft*»»M«ttN**«   CALCULATE  INITIAL MASS   »» »»»»»«»«»*«««* ««•»»«»»»«

      00 234 K»1*NUMCON
        CO ?32 J=1*NJ
          C»ASS(J»K> » CCJjK) » VOLCJ>
  2?2   CONTINUE
  274 CONTTNUE

C»*«»KK««KI>   COHPUTE INFLOW/OUTFLOW  VOLUMES A»n  UASTEVATER  MASSES

      00 240 J=1*NJ
        VOLHIN(J) = CINHOCU) » "ELTO
          ?0 218 K=1*NUMCOW
            CULOAOrjfK) = CWLOAO(JjK) *  DELTQ  /  5.394
  ?38     CONTINUE
  240 CONTINUE
      JJ - "WASTV + 1
      TO 244 I*1jJJ
        NNN = VTNC
-------
                              -  287 -
          00  242
            FLOU,»O  a FLOCIjN) * OFLTQ
  242     CONTINUE
  244 CONTT»'UE
      IF 0'?AN*.EO.rO GO  TO 250
      TO 2A * DELTO
  ?46     CONTINUE
  246 CONTTYUE
  2*0 CONTINUE

               l»»K***»Mtt»Mt«»»t *»»»»*»**  RfAO SYSTEM CONDITIONS   »*»*»*»»*)«»»)i»)»«)» *»»»*)<«»)»»
        READ  O>  (PtN)*  Vt«J>»  N=1,NC>
        IF (ICYCTF.GE.NTENP)  60 TO 252
          P^AO  (3)  ICYCTF*  (YMPW(J)» J
          RO  TO 254
  252   PT^IMD  3
        REAri  (^)  ICYCTF»  (YNEUCJ)» J«1
  254   COWTINUF
C
CMK**«*Kft»*»K»«»»«»*»«»««*«»   invECTIQN * "IFFUSIOM   » »»*i«*»<()H«»««i*i»«* »«*»««((«**
C                           ***tt*»««*ttll*M*»K*NXtt*ftft»llft*

        CALL HIXER  CNI/)

C                           «»»**M»*»»»«»*K*«»«*«K*«*M»
C»»»»**it*»»*»«»)(»»)»«in»»«»»in»   0CCAY -I- MASS TRANSFER   *»» »•*»»»»»»»»»»«»»»»»»»«»»
C                           »»»»»»»»»»»»»»»)»»)•*»)«*»*»»»

          00 302  J*2*NJ
            DO 300  K = 1*NUHCO»I
              GO  TO (26t,266»2^fij270j280/232>, K

C»»»»i»*i«in»»» »»*»«»»« »»*»»»»)««»*   CONSTITUENT 1    »»)»»)n»»»»)»*i(»»«»»»i«i» »»»»»»)«««»

  264         IF  (KPEAC.EQ.2) 50 TO 300
                XHA5SN »  C(J*1) » WOL(J) * ODECAY(J,1)
                XM««H3  «  4,57 « XK»?SN
                XH*SSU -  C(J*1> » VOL(J) « OAHUP(J)
                CM»?S(J»D  =  CHASS(J«1) - XHASSN
                60  TO ^00

C««««*««i«»**»)»**»»»»»»»i»»»»»»»»   CONSTITUENT 2    »*»**»*«»»«»*»****«»»«««»»*»«»

  266         IF  (K"E*C.EQ.2) CO TO 300
                Y1ASSU «  CCJ>2> « VOL(J> » ODEC»Y(J,2)
                                       > + XMASSN

-------
                              - 288  -
                GO  T0 '00

C»*K»* *t»i»*»*»nit**»»«)n«»mnt »»**»»    CONSTITUFNT *   »*»»» »»»«»)t»)(i«» »»»» »»»*»»mn»»

  268          IF  (KPEAC.E0.1)  SO  TO 30"
                ZMASSO  =  tOECA*(Jj5> » CCJ*^) » CCJ/3) « VOL(J))/
     »                    (CDEC»v) + 1 )
                ZMASSU  =  CCJ»3)  * VOL(J) * OPHUP(J)
                CM»SSU»3)  =  CHASS - 7MASSO
                GO  TO
C»**»««**«*»»**«»M«iiH*ii*«tt«»it*»    CONSTITUENT &   »*»»»»«»»»»»»»»»»«»»)«»»»»» ***»

  270          IF  CK»EAC.EQ.4)  GO  TO 300
                P**SSX     =  C(J»A)  » VOL  =  OH»SSD(J) * DMASSX » PFPCD
                RM*?SN     »  OMJSSDCJ) » NITCHL « ORECENCJ)
                RM«SSP     =  DM«SSD(J> » PHOCHL « O^EGEOCJ)
                ROSSC     =  OHISSO(J) » CABCHL » ORF30'«(a)
                01A?SD(J)  =  DMSSDCJ) - RMISSN - R«»SSP - RMASSC
                GO  TO (772*274*276). K'rAC
C              »»** »»»*»*«»»«»»  NIT70CFN UPTAKE ONLY  >»««*»«*)•«»*»»»«»»
  272           HCHLON =  (XMASSU  +  YHASSU) * CHLNIT
                C"1ASS(Jj4> = CMASS(J*4> * HCHLON - OMASSX
                CMAfiSCJ*!) = CM/>SSCJ»1) * "?HASSK - XMASSU
                CMASS + MCHLOP - OMASSX
                CM»SSCJ»3) - CMASS(J»3) + RHASSP - ZHASSU
                GO  TO '00
C              »»*»*»»»»»»»»  NITROGEN S PHOSPHORUS UPTAKE  «*»«»«*»««•
  276           1CWLON =  CTHASSU  +  YMASSU) » CHLNIT
                HChlOP =  ZMASSU * CHLPHO
                IF  (MCHLOM.LE.MCHLOP) GO TO 27*
C              «**«x««»»«»**-**«*«x   PHOSPHQPUS LIMITS  »»»*«»*«(•»<•»*»»«
                  CCASS + HCHLOP - DMASSX
                                             RHASSP - ZMASSU
                                             8MISSN
     »                       - XMASSU » (MCHLOP/MCMLON)
                  C*ASS = CHASS(J*?> - YMASSU * CHCHLOP/HCHLON >
                  TP CICYC.LT.MUTCYC) ^0 TO 300
                    NPRL * 1
                    GO TO  300
C              *«*ft**«»**««N»M*«»*«   NITROGEN LIMITS  *****************
  778             r-«»sS(J*4) - CHASSCJ.A) * MCHLON - 01ASST
                  C«ASS(J»1) = C«ASStJ»1) * 8H»SSN - X1ASSU
                  C"A-SS(J*3} m CMASS(J»3> * RMASSP
     »                       - 7WASSU » (MCHLOH/MCMLOP)
                  r«»*SSCJj?) - CMASS(J»2) - YMASSU
                  "• (ICYC.LT.NUTCYO 50 TO 300
                    NNRL(J>  - NNRL(J) + 1
                CO  TO '(10

Cn**«Nii«*itN*«*itii**«*»M«»*)t*»**»   CONSTTTUENT 5

  380          XHBOO - C(Ji5) « VOL(J) » ODFCAY(JjS)
               C1ASS(J»5) = CMASSCJ.5) - XMPOD + RMASSC
               «0 TO 300

-------
                               - 289  -
C»«*****tt«x**»NX«K K»»*»*«K**KK«    CONSTITUENT  6   »»»* *x* »*»*»*»**»*** *****»***»
r
C                    »»»*»»»*»*   RcSPI<"TiOV   * « * * * »*»* *
  282         P^SPH = VOL(J) * RESP(J)  *  DFLTQ1  » C(J»4)
C                    »»»»**»*  PHOTOSYNTHESIS   ***«»«*««
              IF (CTIME.GT.TSRISE.AND.CTIHE.LE.TSSFT)  90 TO 284
                GO TO 298
  2%         tvOL = ASUR(J) * PEPTHP(J)
              IF (XVOL.GT.VOLC J>)  "50  TO 2P*
                PHOTON = XVOL * PHOTOCJ)  *  CCJj>4> * DELT31
                60 TO 29Q
  ?«6         PHOTO" = VOLC'J) » PHOTOCJ)  »  C(J»4) » OELTQ1
              CO TO 290
  288         PMOTO" = ^.
C                    »***«***  °ENTHIC  DEMAND   inm»»«»«»
  2=0         ?ENT«* = ASU"(J> *  BFNTHCJ) *  3.2«166677 « DTD
              IF ( IPEOXK.EQ.4) GO  TO  Z^"
C                    «•*««>»**»
                1L»P6E = NCHANC J^1 )
                DO '9Z i*=2»5
                  Tr(NCHAN(JiM).EQtO> GO  TO  294
                  rA « ACS(0»
                  ir(Q».LT.Q3)
  792
  294
  2<36         CONTINUE
              "FOXK = A » A5S(VCN))»««  »  R(N)«»X
              REOXK = 1.0 - EXPC-REOXK  *  DTD)
  798         CONTINUE
              RCHASS = VOL(J) * (CS»T - C(J*6»  *
              C«ASS(Jj6) = CMASS(J*6> + PHOTOM  -  SFNTHM - "ESP*
     *                   ' + RCMASS - TMBOD -  XMNH3
  700       CONTINUE
  302     CONTT"»UE

C»«»»«»*i««*i«*»*»-»« IHK*** *   AD" CONSTANT  HASTE  LOADS   »***>«ii**KitftitHit «<«*»«»*«*x

          If (NVISTC.EO.O) CO TO 312
          "0 312 J-2»NJ
            IF (VOL"IH(J>X
  304
  306         CONTINUE
              60 TO 312
  308         "0 310 K«1,NUHCO«
                Cf»?SCJ»lO * CHASSCJ»K>  -  rU,*)  *  VOLQIM(J)
  ?10         CONTINUE
  31Z     CONTINUE

C«KV»»«»K»*»*»»   APD VARIABLE WASTE AND UPPER BOUNOART  LOADS   «**)!«»»»)()(«»»»»»

          jj m MKASTV + 1
          00 31" I»1»JJ
            J - JPVVCI)
            N = KINCCI)
            KCYCCI) m KCYC(I) * 1
            IF (KC^CfD.LE.INCCURd.H))  60  TO 314
            KCYC(I) » 1

-------
                              -  290 -
            KINCCI)  =  KIMC(I)  + 1
            N » KINC(I)
            IF (N.LF.NINC(I))  SO TO 314
            KINTCI )  =  1
            N = KI*T(I>
              iQ  316 Ksl.^U^CO"
                CM*SS(J*K)  = C1*SSCJ»K> - FLO(IjN) * CON 
  716         CONTINUE
  318     CONTINUE

C»*»*»*)nn»»»»»im««»»i»»»»»    ADO VAPIABL5 BANK LOADS   *«***inn«**»*»***in»«»»»»*ini

          !F CNPANK.EQ.O) GO TO 326
          00 3?4  I=1»N°»NK
            IF CICYC.LT.ICYCUJ>.OR.ICVC.6T.ICVC2 NT'S  =  0
          P0 3?? K=1»NUMCOM
            CC1»K)= CI"CK»»TAG*1)
  3?8     CONTINUE
          "0 3*2 J=?»NJ
            VOL - Y(J»
              00 330  K=1»NU«CON
                C(J*K) = C»ASS(JfK>  / VOL(J)
  ??0         CONTINUE
  3?2     CONTINUE
            HL = NJUNC(N»1)
            MH » NJUNC(N»2>
            R{V) >  R(N>  *  (YNEWCNH)  - Y(NH) + YNEUCNL) - Y(NL)> »  .^
  ?1S4     CONTINUE

C»**»*»«»*»»»»»«»»tii«»t»   PREVENT  NEGATIVE CONCENTRATIONS   «»»»»*«»»»«»»»»«»«»««

          10 338 J«-1jNJ
            YtJ) *  YNEW(J)
              "0 3?*  K=1jNUNCON
                IF  CC(JjK).GE.P*CKC(K))  GO TO 336
                IF  (KDCOP.EO.D URITE C6.666) J* ICYC^K* C(J»K)
                CCJiK) » BACKC(K)
                CM*«S(J*K> a C(J»K)  » VOL(J)
  376         CONTTKUF
  3'3     CONTINUE

C»»N**»*M**»*   CH^CK CONCENTRATIONS AGAINST  SPECIFIED LIMITS   *«*«»»**»»*•***»

          00 342 J=1,NJ
            00 340  K-1tNl)NCON

-------
                               -  291  -
               IF  (C(J,K>.LE.CLIM1TCK» SO TO 340
                 WRITE (6»66(?> K» CLIHIKK). Jj ICYC
                 WRITE (6*670) <(C(L,MJ. -1 = 1 , NU^CON ) » L=1»MJ>
                 STOP
  ?40        CO«TINU'-
  342     CONTINUE

C»****»«*«**»»*»»*»»*   COMPUTE  RANGES OF CONSTITUENT 6   »«*« »»»»»»»* ««*»»*»«»»

          fr fICYC.LT.WDOCYC) C-0 TO 350
          TC (MUHCO>'.LT.6)  GO TO 350
             00  748  J=1»NJ
               Ic  (C(J,6).LT.4>           DOLT4(J)  = OOLT4CJ)  *  1
               IF  crcj,O.GT.5>           DOGTS(J)  = DOGT5U)  +  1
               Ic  (rcJj^i.GE.t.ANDtCC J»6).LE.S) D04T05(J) = 004T05(J)  +  1
               IF  C'(Jj6).GT.DO>'lN( J» GO TO 344
                  00"IN(J)   =  C(J»6)
                  HIMCYC(J)  -  ICYC
                  GO TO   346
  ?44          IF  (C(J»«).LT.DOMIX( J) ) SO TO 346
                  OOH»X(J)   =  C(J»6>
                  NAXCYC(J)  =  ICYC
                         DOAVSCJ)  * C(J>6)
  348       CO^TINU^
  150     CONTINUE

C*»»*)»*«»>n«)( »»»»* <•*»•»»»»*»«    RPAO  OBSFPVED DATA   x*****»******»**>ia**t*itx»»»»*

          IF CNOATA.EQ.O)  GO  TO  354
          FF (»OA.GT.NOBDA.T)  60  TO  354
          Tc CICYC.NE.NOBCYCCNOA))  GO TO 3*4
            READ (5,508) HEADER
            DO 352  K=1»NDATA
              °EAO  C5*5tO)  CC09"ATA(I^J*K)j I=1»3)» J=1»6)» RHfATACK)
  3C2       CONTINUr
            N0> » ^^H + 1
  354     rONTI«IUE

C»»««*»»**»» »»**«*!»»   STQRF  CONCENTRATIONS FOR TIME PLOTS   tt**«m»»)n»»f»»«*»«»»»

          IF (NTP,«-p.Q) GO  TO 358
            CO 356  '=1»NTP
              J = JUMCTPtl)
              »?ITF C11) ICYC»  (C(J>K>» K=>1»hUHrON)
  356       CQNTINUF
  358     CONTINUE

CK***«KN»«IM «»»»»*»***»»«)•    CHFCK  FOR SUHRY1 OUTPUT

          IF (NS1.GT.NSUN1) GO  TO  360
          IF (ICYC.LT.IPRTKNSD)  50 TO 360
            IP1  -  TPRT1CNS1)
            LP1  =  LPRTKNS1)
            IPL1 =  IPLT1CNS1)
          CALL SU«APY1>
          1^ CICYC.FQ.LPRTUNSD)  NS1 = MS1 +1
  360     CONTINUE

Cinn»*«»«»»*»»*»)i»»«»»»***   CHFCK  FOfi SUHRY? OUTPUT

-------
                              - 292  -
          TF (NS2.GT.N?UM2>  GO  TO  '62
          TC (ICYC,LT.IPRT?(NS2))  GO TO 362
             IP?  =  IPRT^(NS2)
             LP?  =  LPRT?(NS2>
             IPL' =  !PLT?(NS2>
          ClLL SUM/»PY(IP2>LP2jIPL2»2)
          Ir CICYC.FO,LPRT2.OR.TCtC.6T.»LPr(MT»3L)>  GO  TO  3
             IT»9 =  TT*B +  1
             CM.L S«TABL(IT»B»MT»BL>
             IF CICVC.ME.NLPCi>
             IF C^THnL.^Q.NSUTAg)  GO TO 364
             HT»?L * HT*«L  +  1
          CONTINUE
      CONTTNUE
C»»»»«»)»»»»«*i««»*«*in«**»»»    E'tlT  *» IM OUALITY LOOP

      IF (VUMCO".LT.6) GO TO  3""J

C» »* »»»»**»» »»**<•***»)**)»)«*)«    PRINT  0.0. SUMMARY   KK«*KttK««««ftx«««»«* «*«««*«•««
              (6.67?) ViQCYC
          10 36P J*1>NJ
            00»VG
            WRITE  (6f6T4) J*  00"IM(J)*  MINCYC(J)* OOM*X(J)j MAXCYC(J)*
     i»                    50AVr-* ">04T05(J>* DORT5(J)
  368     CONTINUE
  370 CONTINUE
      IF (KBEAC.NE.T) GO  TO 374

C»«KX«*»N««»*»«»»»»N   PRINT  NUTRIENT LIMITATION SUMMARY    »m«»)«««»«»««»«»»»««)ni

      WPIT^ Cfr»676)  NUTCYC
        L="J/3
        DO '72 J=T»L
          JK=J*(2»»'J/3)
          WPITC  (6»678>  J»  NNRL(J)» NPPL(J). JJ»
     *                   JK;  NNRL(JK)j
  372   CONTINUE
        I=JK+1
        DO ?73 J=I*»'J
          Wi»IT? C6*679)  Jj  «»«IRLCJ)»
  373   COWTINUF
  374 CONTINUE
      WPITP (6*660)  ICYC*  ICYCTF
      IF (NTP.5T.O)  CALL TPLOT
500   FORMAT <16IS>

-------
                              - 293 -
50?
504
506
509
510
512
514
51f
600
603
63?
6U4
606

607
609

610

611

61?

6U

615

616

617

61 S

620
621
 FORMAT
 FORMAT
 FORMAT
 FORMAT
 FORMAT
 FOPM»T
        (9110)
        (8MO.O)
        (16F5.0)
        C20«4>
        (1PF4.0jF%0>
        C7c10.0»2Ai>
 FORM»T C1H1/1X,2QA4,16XJ'?NVIPONMFNTAL  PROTECTION A6E«IC Y ' j/ 1 X*2Q A4
»*21X*' DYNAMIC ESTUARY MO^FL ' » /1 X» ?OA'./1 X* 20A4 J.///3X ,24 < 1 H» >, '   HY
*DPAULIC CONT"OL *>ATA   « > 24< 1 H* ) »//, 3X> ' FIRST CYCLE ON    LAST CYC
»LE  ON    PE^IN READING T»PE       HYn°AULIC ' i/tSXt 'HYDRA ULIC TAPE
»   MrnR»ULIC TAPC         *T CYClc         TT««E STEP ( SEC. ) ' ,/>*>*>
*'(NST«RT)'»nvJ'(NSTOP)'»'3X»' (HYDCYC) ' j14Xj ' (TELT > • *//8X, U*14X 1 1
       H*16Xjc6.?»///»3X»45C1M*>»»   QUALITY  CONTROL DATA   >i45(1
       ^13», i »UH3C7X* ' 0.0. SUHMAR
»Y',10X,'0'J»I ?TY' j11Xj'OU*L 1TY  STCPS ' >/ J 1 1 T » ' QUAL ITY C*CL?S
»APY ?FGItS AT CYCLE    3CCINS  AT  CYCLP     TIME STEP 
                       fNarYC)l*15X*l(NUTCYC)lf15Xfl(NDOCYC)
                                                                     PER
                                                                   »17X*'(
• X, 'STARTING TIME    TIME OF      TINE  OF     0.0
»CONSTTTUCMTS    TCMPFRATUPE     FOP  THIS  RUN
*      AT 'j^.a*1  C1 »/*5X» ' CNUM
»'(TS°TSE)    (TSSFT)'»9X.' (CSAT)
                                                       »f X» "»UM°t:fi OF«»21
                                                       SA TURAT ION ' , /,3X • '
                                                       SUNRISE     SUNSET
                                                       ' »9X»' (STIME)',7X*
                                                          ^11 XjF5.2i°Xj F5
 COPMAT (1H ,  3X. 'CONSTITUENT     CONSTITUENT     ^ACKCROUND
*  TE"PERATURCI j/*'"X,'SUM0PR           *AH?        CONCENTRATION
»COPPFCTION FACTOP'»/»22Xj« CC«AME>'*6Xt '("ACKCV » 1 2X , « ( THETA J ' */   )
 FORMAT (1H iBXjl2»10X*2A4/9X*F6.3»13X»F5.3  )
 FOPJ-AT (1HO>^4X*'PERCFNT OF DECAYED  ALGAE' >f >*f , 'CHLO"OPHrLL/vlT«0
»GM    CHLOROPHYLL/PHOSPHOROUS    CHLOPOPHrLL/CARBON    WHICH IS 81
»O-DE<:RAOABLE'»/>%XJ «(CHLNIT) • Ji7x^' CCHLPHO) '»16X* 'CCHLCAR)' ^isxj »c
 FORMAT
»USIM?
 FORMAT
»USIN<;
 FORMAT
 FORMAT
"AND IS
 FOPMAT
«EAC =
 FORMAT
XKPEAC
 FORMAT
        (1H ,  3X.'THF REOXY6ENATION CONSTANT  FOR  0.0.  IS COMPUTED
       TH? 0-CONNOP-D09BINS EQUATION :  K2  =  12.9  * V»».5 / H««1.5«>
        (1H .  SX^'THF REOTYGFNATION CONSTANT  FOR  0,0.  IS COMPUTED
       TH? CHURCHILL EQUATION  :  K?  « 11.6  »  V»».97 / Hmt1 .67 '  )
        (1H *  3X»'THE REQVYGENATTON CONSTANT  FOR  P.O.  IS COMPUTED
       THE USCS E3UATION « KZ  =  7.57 »  V / H»»1.33 ' )
        (1H *  3X»'THF REO*YGEMATION CONSTANT  CQR  0.0.  IS CONSTANT
        EQUAL TO '*F7.3 >
        (1« i  3X»'ONLY NITRO'IPH UPTAKE  BY ALCAE  IS CONSIPEREO  (KR
       1)  '  )
        (1" *  3X»'ONLY PHOSPHOROUS UPTAKE BY  ALGAE IS  CONSIDERED (
       = 2J ' >
        OH ,  3X»'NITROGEN AND  PHOSPHOROUS  UPTAKC BY ALGAE IS CONS
        (1H t
» FOU'L TO THF
 FORMAT (in ,
» COMPUTE" USIVG THE 1/2 POINT
 FORMAT (1H ,  3X»'CONSTITUENT
» rOMPUTED USING THE 1/3 POINT
 FORMAT (14 >  3X»'CONSTITUENT
« COrPUTEO USI««6 THE 1/4 POI**T
 FORMAT (1H >  3X»'CONSTITU£HT
   »DVECTEO
   )
   AHVECTED
(«IX=2)«  >
IN  AOVECTE3
                                                           WATER APE
                                                           WATER A"?
                                                           WATPR A°=
               SXi'CONSTlTUENT CQvrENTRAT IONS  TN
               UPSTHEA» CONCENTRATION   f  )
 FORMAT (1H ,  3X*'DEPLETION CORRECTIONS  APE PPINTEO  (KOCOP=1)' )
 FORMAT (in ,  sxi'DEPLETION CORRECTIONS NOT PRINTED  (Kocop*2)' )
                                               IN AHVECTED WATEP AR?
                                               fMI)f=4)'  >
                                               IN AOVECTEO WATER A°P

-------
                              - 294 -
622   CORMT  OH  » ////>43X*1 5( 1««) » '    DIFFUSION CONST*"TS    'i15(1H»)»/
     »/ ,1*1*1, 'CMANf PL     CH4NNF.L           rONST*NT (CO ' , / j 4CX i 50( 1H- ) »
     */   )
62?   FOFMT  (14  ,   45X,I4>7X,U,12*,F6.2>
621   FORM»T  ("TH1 j///j1X*35(1H»)> '      SUMMARY OF "ISSOLVEQ OXYGEN  (CONS
     *TITUCMT  *)   °«TES      ' *35(1 H»> j////'8X*'   P"OTO£ YNTHES IS     RESP
     »IRATION     PUOTIC  DEPTH     3FNTHTC DELANO' ,/ »'2X» ' FRO*        TO
     *        (PMOT) iflZXf^RES)1*?*! "c DEPTH) • *1 OX» • C3ENT ) i */22»* ' JU"C
     »    JUNC    'j ?**' ("G/HR/US  CHLORO)' jKX*' (FEET)',/ *1 c* *90( 1H-) , / )
625   FORMAT  < /23X • T 3,?X, 13 » 7X »F7. Sj 1 1 X»F6. In 1 2X *F 5,2> 1 OX jF6 .3)
626   FORMAT  C1H1 j /// .1 X» 35C1H» )/ '      SUMMARY OF NUTRIFNT UPTAKE AND  1?
     »GEN£P/iTION  RATES      ' » ic< 1 H« ) *////1(Jy » • CROH       TO      CONST  1
     » UPTAKE     CONST 1  UPTAKF      CO"ST 1 RECFN    CONST 3  SFGEN     CO
     »NST 5 R65EN' 1/J1QX*' JUHC       JU»»C         ( MUPO) « , 11 Xj • (PHUPP)
     »         (REGPNN)',9X* '(RF'iEPP) '*9y* '(REBODD) ' */ j 5X* 1 10C1 H-) ^ /)
627   FOF-AT  (/1QX»l3,7x,l3»10X*F5.3*nT*F5.3*1Xj3(12X»«r5.''))
628   FORM'T  (1H1,///j1X*40(1H«)f '      SUMMARY OF CONSTITUENT  DECAY  8A TF
     *S     '»40(1H«),////26X, '     CON«T 1       CONST 2        <~ONST  2  »
     »     CONST  4        CONST  f        CONST 6' »/ J 10X* • «-f»o«       TO
     * (CECAYK  1>     tOFCAYK  2>     CDECAYK 71     COECAYK 4)     CDECAYK  5
     *)    CDECAYK6)',/.10X»'JUMC' ,6Xj 'JUT     (PER "/Y)      (PEP  OAY)
     *     (PEP DA")      (PER  1AY)      (PE7 DAT)     (PPR 1AY)'*/
62C   FORMAT  C/luX jl3,"'X*l3*6(9y,F5.3»
630   FOPH»T  (1M1,//  ,5*.A5(1H»>j'    SU«HAP» OF HY09AULIC INPUTS
     «1H»)j///»15X j'CROSS-SECT TONAL  ARCA  AND HYDRAULIC "AOIUS OF
     »? AM-» JUMCTIO^'  HCAOS ARE AT  1PAN  TIO^'i///
     » TAT*   '»*2( 1H»>,5X»15(1H»), •   JUNCTION PITA
     «N  LENGTH  WInTH  CS-*«EA  HANKING   01 FF  NET FLOW  HYD. »AD.  JUN
     »C. AT ENHS   I   JUNC  INFLOW  HEAD    ChAMNELS INTO JUNCTION ' i/> 1 X»
                                                       jF7.1
     »5IS)   )
632   FORMAT ClX,I3,3X»e'6.o,2X.«:'6.0.2X*F7.0»2X*PS.3*2X*r5.2^2XjF3.2j3X t
     «F5.1»6X»I3»4y,I3j4X» ' I '  )
636   FORMAT ( 4Xjn*4X*?<2r*F4 t2) t 1X*3( ?X*F5.2) /2X»6(-3X»F5 .3>*2X j2(2X* F6
637   FORMAT (10Xj /////*'  »   CONSTITUE"T 3 UNQfRGOES 2N" O'JOER DECAY"  )
63?   FOF*«T(1HT//10X,TO(1H»>j5X>'SUMMAc-Y OF COMST'MT WASTCWATFR   LOADS'
     «»5Xj70(iH«)////,22X*
     »'JUNC.    TOTAL  FLOU     CONCi     LOAD     CONC.    LOAD     CONC.
     »  L3Ar>     CONC.     LOAD      CONC,    LOAD     CONC.    LOAD'j/'12
     • X/UC^S)       (MG/L)  (LB/DAY)    (KG/L) (LB/DAY)   (HC/L) (L3/OAY)
     »  (UC/L)  (LB/DAY)    (NG/L)  (LB/DAY)   (H6/L) (LB/OAY) ' j/»1 X* 130( 1H
     »-»
640   FORMAT C/2X*I3*6X,F7<1*2X»6C3XfF5.1<1»jF9.0))
642   FOPMAT(1H1//10X,30<1H»>»5Xj'SUMH««»Y OF »»RIA3LE WASTEWATEP LOADS'*
     »5X»20(1H»>////  17Xj  'INCREMENT            TONSTITUEHT 1   CONSTITUE
     »NT 2   CONSTITUENT 3    CONSTITUENT 4   CONSTITUENT 5   CONSTITUENT
     »6'J/»1X,' JUHC.  DTSCH.  NO.   LENGTH   FLOW   CONC.   LOAD    CONC.
     »    LOAD   COVC.    LOAD    CONC*     LOAD   CONC.     LOAD   CONC.
     «  L0«'?l»/*20»» '(CYCLES) (CFS)   (MG/L>  (LB/DAY) (16/L) (LB/DAY) ( N.6
     »/L) (L3/"AY)  (U6/L)  fLB/PAY)  (M6/L) CLB/OAY) (HG/L) (LB/DAY)')
644   FORMAT (/ix> i?OdH-)/>
6*6   FORMAT c/1X*T3»5XjI2»5X»I2j3X,I4»1X*FB.1*1X*6(2X»PS.1»1X»F6.0))
64
-------
                               - 295 -
     »X.«JU*C. LINF  FLOW  STA°T STOP    CO»C.    LOAD     CONC.   LOAD
     *  CO«T.   LOAT     CONC.   LOAD      CONC.    LOAD     CONC.   LOAD'
            ' ("I)  (CFS)' j14X,» (NG/U)  (LB/OAY)   (MC/LJ (L8/"AY)  (T-/L)
            Y)  CUG/L) (LB/nA.Y>  ("G/L>  (L3/CAY)   (MG/L)  (LB/OAY)')
      r0RH»T (1Xt I3,2X,F4.1, 1 X »F&.0 , 2(2 X, 14 > ,6(3 X> F5. 1 , 1 Xj F8 .0 >>
      FORMAT (1* j/1X,130(1H->,/>
654   FOPMAT C'tM//5X,30(1H»>,5X, 'SUMMARY  Oc UPPEh  BOUNDARY CO«"MTIONS
     *'NO»   LEVGT^     FLOW    CONf.    LO * 0
     * CONr.    LO'O     CONC.    LOAD     COMC.     LOAH      CONC.    LO
     *AP     CONC.    LOAO»//>6Xj « (CYCLHS)   (CCS)    (HG/L)   (LB/DAY)  (M
     *6/L)  (L?/DA»>  (MG/L)   (LB/3AY)   (UG/L)   (UB/DAV)   (MG/l)  CLB/OA
     *Y)  C««G/L)  fLB/OAY) '*//>
65 f   FORH»TC/2Xjl3,3XjI4*3X*F6.Qj3(3X»F5.?»3X»F7.Q)*2X»F6.2j3XjF7.0j2<3
65°   FORH»T (1H1 j///»10X»35<1H*)j '      SUMMARY  OF INITIAL CONCENTRATION
     »S     ' »^S(1 V»),/// ,23X»'FROH       TO       rONST 1     CONST 2
     *  CC^ST '     CONST 4     CO"ST  •?     CONST  6'*/  *23X*'JUNC     JU
                          (*»C/L)       ("S/D       (US/L)       ("G/D
                  »15X*100<1H->>
660   FORMAT C/'3X t !3,6*jI3j6<7X»F5.Z»
66?   FORMAT (1M1///1X»35(1H*)»'    TIDAL CYCLE VARIATION  OF SEAWARD BOUN
     »r>AR^ CONDITIONS    li 30(1 H»)////45T, • SPEC If IEO CONCENTPATIONS AT JU
     »NCTION V//1 iVj "INTERVAL     CONSTITUF^T  1     CONSTITUENT 2    CONS
     *TITuFNT 3    roNSTITUENT  4    CONSTITUENT  5     CCCUSTTTUENT a'^/>»6
                                           *1 1X*' (UC/L) <*11X»
664   FORMT ( 14X, I? j10XjF5.2*S(1 2X»F5.2) )
666   FORHAT(3"U DEPLETION CORRECTION  1»DE  *T  JUNCTION  13, 7H CYCLE 14.
     « ?1H rOR CONSTITUENT NO.  I1*1?H» CONC. HAS  F10.2)
668   FORMAT(34MQCONCENTRATION  OF CONSTITUENT  "0. 11* 8H  EXCFEDS*F7.1,
     * 13H IN JUNCTTON I3*14H DURIN6 C*CLE  I5j25H.    EXECUTION TERMINATE
     *0.)
670   FOPMATC1M d€14.8)
672   FORMAT ClH1///20X,20<1H*>»3Xj'SU''MARY  OF DISSOLVED OXYGEN BEYOND C
     »YCLE ' *I4,3X»'0(1M«)///10X/' JUNCTION       MINIMU»"  CONC.         MA
     «XI«UM CONC.       AVERAGE CONC.     NO.  CYCLES    NO. CYCLES    10
     ». CYCLES'»/»2?X, 'CMC/I.)    C YCLE ' »6X> ' (HG/L)     CYCLE ' »9X ,• (MG/L )'
     *»12X» 'D0<4' >5' »/*1 OX j1 1 2( 1 H-) /)
674   FORMAT ( 12X, I?» 2C«X*F5.2»5X, I4>, 10X,F5.2»3X i 3<1 OX, U>  )
676   FOPHAT (TH1///10Xj30(1H»),'   SUMMARY  OF NUTRIENT  LIMITATION BEYON
     «P CYCLE l»I4»3Xj'"0(1H»),////*23X/«NO.  OF C YCLES' ,27X •' hO. OF CYCLE
     »?
-------
                              -  296 -
      SUEROUTIWF rtTXER (MIX)
                                     HTTER
         THIS  SUBP^UTI^P DETERMINES TUP CONCENTRATION USED  IN  THE
       AOVECTION ANP CTSPEBSIOl EQUATIONS AND THEN  COMPUTES  THF
       "AS*  OF FACH CONSTITUENT TR4NSPOPTEC 3ETWEE" JUNCTIONS.  THE
              USEC TO ?FTER»INC THC CONCENTRATIONS  is OFFINED  3Y...
                  = 1    USP TM? UPSTRF»H CONCENTRATION
                    a    USE TUP 1/? POINT CONCENTIATION
                    3    USE THF 1/3 POINT CONCENTRATION
                    4    USF THE 1/4 POINT CONCENTRATION
                    5    USE TME 2-«At PROPORTIONAL CONCENTRATION
      COMMOV  /wise/
     t
      COMMON  /C»AN/
      COMMON /QU.»L/
                 OFLTCJ ICYC* »Ct NJ* Npp,
                  "), STIve
          AREAf139)» B(139)» CLEN(139)» CNf139)»  DIFFKf139>f
          «»JUNC(13<'*2) , Q(1^9)* QNFTC13")* RC139)*  VC13°>
      DO 700
        VOLFLU = O(^) » DELTO
        OIFrC  = DIFFK(N) * R(N) «  ABSC9(N»
        ML = NJUNCCNjD
        NH * NJUNC(V»2)
      00 CO? K=1^'UHCON
        CA = C?QO>30Q*&aQi500)> MIX
C»*»«K»K*««»»«»»«N»*»»*K*«»  UPSTREAM CONCENTRATION
  100     TF t"(N).PE.OJ CONC " CA
          Tr tO(N) .1 T.O) CONC » CB
          CO TO 600
C»««***ft«»***»»*«»**«**M*n  1/? POINT CONCENTRATION
  ?OC     CONC » (CA * CB> / 2.
          CO TO 60P
C»»»»»»»»»»»»»«>»»««»»*»*»»  I/"* POINT CONCENTRATION
  300     IF (0(N).eE.n> CONC = (2.«CA  * C^)  /  ?.
          IF {"(N).LT.OJ CONC = (CA  + ?.*C3)  /  3.
          GO TO 600
C*««»»«««**N»»»IHH»«*«**»»*
  4CO     IF cO(N).GE.O) CONC
          IP (Q(N).LT.O) CONC
          CO TO 60f
C»*»»»)nn»»tn«»»i»««»»»)<«  2-WAY
  500     CONC » (CA + CB)/2.
                                                     **********»***»***»*»***»»*
                                POINT CONCCNTRATION
                                (3.»CA + C9) / A.
                                (CA + 3,»m / A«
                                                     • »»*•)(**«••«*«**• M**XK«»X«*
                               CONCENTRATION
                    ((CA-C9)/2. » V
              - CMA?S(NH,K>
                                          A"HASS
  602
  700
      RFTURN
      FND
  CMASS(NL»K>
CO"TINUF
                            CM»SSC«U*K) -  »OM*SS  -
                                                    DIHASS
                                                    OIMASS

-------
                              -  297 -
                              SU°ROUTINC SUGARY
       SU3ROUTINF  SU«*pY{IP,LP*PLT*MUH)

       DIME'* CAVG2 (1 "<**6) »  CIA X1 ( 1 33 *6 ) ,  CMA X? ( 1 32 *6 ) •
      *            C"IN1 <133»«)* rMiN2(1T3,6>
       COMMON  /1ISC/    rriHE* OcLTQj ICVC* 1C* MJ,  NPPj  NUHrON*
       COMMON  /SUMSU*1/ rCQX»(49)J F GOXO (3»6»45) » HOU9S1 »  HOUPS2>
      «                 KOAY$1>  ICWS2
       COMMON  /OU»L/    C(133j6)* C1 />SS{ 1 T3 > *)

       GO  TO  (110,1?!), NUM

c* »»»»»»«»*»*)»*»»*><»*»»*»* »    INITIALIZF SU^MA^Y 1   »»«»»»»)»»*»»»»»»«<»«»»»»»»)»»

  100  IF  CI~YC.CT.IP) CO  TO  10*
        CO 1 'dU K=1 »NUM'~ON
          po  n?  j=i»Nj
                   J.K) =  CCJ»IO
                  ( J»K>  =  C( J*
  102
        RETURN
  106
                              COMPUTE MIN, ^AXj >V6

      fO 110 K^ljNUrCOM
        CO 108 J=1 >NJ
          Ir (CCJ*K).LT.CHINUJ*K»
          IF CCCJjIO.GT.CMAXH J»K»
          CAVCKJjK)  = CAV6UJ,K)  * C(J*K)
  108   CO»»TINUP
  110 CONTINUE
      IF (ICYC.NE.IP)  UPTURN
      DO Hi Ka»1»NUfCO«»
        DO 112 J=1 »NJ
          C»V61CJjK)  = CAVGICJjK)  / FLO*T(LP - IP * 1)
  112   CO"TIMUF
  114 COKTTNUE

C»«»**»«««*»» »»)»»»)»»«»)»»»»»    WRIT? SUMMARY TABLE 1   *»)«»»)«(*»«»*)»*»«»»»»»«»«»)(

      HOURS1 a "ELTO » FLOAT(JP) /  3600.
      HOURS' = "ELTfT » FLOAT(LP) /  3600.
      KOAYS1 - KOUP-S1  / 24.
      KPdYP? * "OUPS2  / 24.
      HOURS1 = HOU*S1  - FLOAT(24 »  KDAV«M>
      HOURS? = HOUPS2  - FLOATC?* »  KDAYS2)
      WRITP (6*600) IP. KO»YS1» HOURS1 *  LP» KD*YS2» HOUPS2
      UPITr (6*602)
      00 11f J*1.NJ
        WRITE (6*60/)J» (C»"IN1(J»K)»  C^AXKJiK)*  C*VGUJ.K)* K=1*NUMCO")
  1 16 CPNTTNUE
C«*»*«*«Kft*»«»x*«*ft»*»   CHFCK *"OR  PLOTTING  OF SUMMARY 1   »»*«»»«»*»»(•»»««»)«»«).

-------
                              - 298  -
      IF (PLT.Fft.O) 60 TO 123
      HPP = 0
      CO 1?0 J=1»NJ
        IF ( J.GT.43.AND.J. HF.1U. AND. J.WE. 1 29. AND. J.NE . 130) 60  TO  130
        NPP = NPP + 1
        !F CNPP.GT.09) URITF (
          T 11? LPP=1»NUMCON
            FS"XO(1»LPP*NPP5
            FS1XO(?jLPP»NPP>
            FGOXO(T,LPP»NP.P> = CMIN1 
FQQ»A
  1?2 CONTINUE
      PFTUR"

C»*»*»«»»»»* »*»)«»» »«»*»*»*»    I''ITIALIZF SUMMARY 2   »»»»»»»»»»»»»*«*» »*»* «»»«»»

  124 IF (IrYC.GT.IP) PO  TO  130
        co 123 K=I .NUHCON
          "0 1?* J=1jNJ
            CMT»»2(J,K) =  C(JjK)
            C1»X2(J»K) =  CCJjK)
            CAVR2CJ.K) =  CCJjK)
  126     COMTIVUE
  128   CO"TINUp
        RETURN
  170 CONTINUE

C»»« »»»*»«*)•«)«»»)<» *«*«****    COMPUTE Mitt 1AXj 4VG   »H* *»»n*in«*xi»>t»nnn«i«»in»»tt««*

      00
             K=1/NI'NCO"
        CO 132 J=1 K)  *
        COMTIMUF
      CONTINUE
      IF CKYC.N6.LP) RETURN
      DO 13» K=1»NUKCO«*
        CO 136 J=1 >HJ
          C*VC?(J*K)  =  C*VC2(J»K)
        CONTIHUF
                                   / FLO*T
                HOUPS1 / 24.
                HOU?S2 / 24.
                HOUPS1 - FLO»T  IP' KO*YS1»  HOURS1* LP* KOAYS2* HOU9S2
      WPITP (6»602)
      00 140 J»1*HJ
        WRITE (6,60*)J, (CMIN2(J»K)* C*<*X2(J*lO* C»V62(JjK)»  K»1«NUNCOM)
  143 CONTINUE

-------
                               - 299 -
C»IHHHM»*»*»»**»»»«»*»   CHECK  FOR PLOTTING OF SUMM»RY 2    »**«»*»«*«» «****»»««»

       IF  NPP)  =  CMAX2
             FSOXOC?»LPP»NPP)  =  CAV;2
             FSOXO(?»LPP»NPJ»)  =  C«IN2
  142
  1*4 CONTINUE
      CALL SUMPLTC IP.LP)

  146 CONTINUE

c                              FORH»T  STATEMENTS
C»»« »»«*»*»)» »«»»«»»»•*«»)( »»»*»)« »***»«»»«««(()i« ««»»»»»»»»»»)»)(»««*«»*»»)(»)»»»»«»<»»»»

600   FORMAT (im///ioy»45(iH»).'      WATER QUALITY SUMMARY      '.,45tiH»
     *)/ <1>X/'STAfTS AT CYCLE «*14j'  (•»!?*' "»YS '»F4.1,' HOURS)', 21 XJ
     »'FNDS AT CYCLE  'jI4»'  C»I3j'  DAYS «»F4.1*'  HOURS)'// )
602   FORMAT C1H //TXj'JUNC.   CONSTITUENT  1        CONSTITUENT 2        C
     *0*STTTUENT 3       CONSTITUENT  4         CONSTITUENT 5           CO
     • fSTITUENT 6'»/*8X*«MIN   MAX    AVP     MI"   *AX   AV«?     (•!»'    «
     »AX    AVC    «IM    MIX   AVS       MI"     MAX    AV6      MIV     M
     »AX    AVC'j//f X/110(1H-)/ )
604   FOPM«T (1Xjn»1Xj5(1X*F5.?)»2X»3(1X,F5.2)f2X*3(1X»F5.2)*1Xj3C2XtF5
606   FORHfTCI  NUH3E9 OF PLOTTER PTS  CXCCEDS  ARRAY DIMENSIONS')
      RFTURV
      END

-------
                               - 300  -
C»N»XX»X*KKXK«*XX*X»*KX-*«««XKKX»«»*****»XXXXX*»*X»X*X*X«*XX»K«X*»*XXK*»«
C                           SU*PLT
Cxxx*xKxxxx*«N*»xxxx»»**«*x*Kx»x*K*K*x»«Kx«KXNK*xx*xx*xxx««x»«xx*xvx*K*;t

      SUBROUTINE SU1PLT(IP,LP)
              N  SOTK12), NPT(3). SIDCK51>*  SIDE2(6),  X(99,3), Y(<59,3)
      COMMON /«USC/   fTIMF, OELTO,  ICYC, *C,  N.J,  NPP, NUHCON.
     x                RMNODFd'3), STI1":-
      COMMON /SUMSU"/ CGQXA(49)> FGOXO(3 16>49) >  HOU"S1 *  HOU<»S2*
     »                1CUYS1J K1AYS2
      COMHQM /SCALES/ XM»X» XttIN» YMAX» YM»KCC6)*  YMIN»  YMINC(6)
      COMMON /AXES/   ?OTTO*C1?>* SIOEC51)
           BOT1/6«4H
      DATA SIDF1/21*1H
     1  19«1H /
      DATA SIOFV1 H1 ,1H2,1 H3,1 H4,1H5J1H5/
      X*AX=49.9
Cxx*x»xxxxxxxx»x»   SET LA"FLS ON SIDE  AND  BOTTOM  AXES
      CO ion 1=1,51
        SI"C(I) = SIDEK!)
  100 CONTINUE
      PC 10? 1=1,12
        BOTTOM(I) = BOT1CI)
  102 CONTINUE
      oo me ii=i»>'UHco*
CK***ft*«»*x»»**tt   FILL UP X
        CO 134 1=1»MPP
                               Y ARRAY* UITH  DATA  TO  BF  PLOTTED   »«»»»»«*»«»»»»
                   CGOXO<3»II, I)
                                                             »»»)(«»»*»««*«tx*»»»i««
          yci,?:
                   F60XA(I>
  104   CO"TIHUF
        NPT(1) » NPP
        NPT(2) = NPP
        NPT(3) = NPP
Cxx»xx»«»xxx»«»*xxx   SET SIDE LABELS  FOR  CONSTITUENT  NO.
        SIDFO4) * SIOE2(II)
Cxxxx»»xxxx»x«»»)t»»x»»»»»xxx»   WRITE  OUT  TITLF    »xxxxx»x»x»xxxxx»xxx»x»»xxxxxx
        WRITE (22,600)
        WRITE (22,602)  IP, KDAYS1,  HOU"S1,  LP* KDAYS2,  HOURS2
        YMIN - rMINC(II)
        YMAX » YMJXrciI)
C»xxxxx»x»*»»»*»xx»xxx«x   CALL CURVE  TO PRODUCT  THE PLOT   xxx»x»xxx»»x»xxxxxxx
        CALL CUPVE fX,Y,NPT,3,1,0»2.0»1)
  106 CONTINUE
                              CORHAT  STATEMFNTS

      FORM»T(1H1»34y»«POTO*AC csTUA«Y CENTER  CHANHEL - QUALITY SUMMARY')
  *02 PQRMATdH ,3 ?X, «SUMH ARY STARTS  AT CYCLE'*2I6.' DAYS', F5.1*1 HOURS'
     */T3X»" SU«1ARY   ENDS  AT CYCLE ' .2 16, '  DAYS', F5.1.'  HOURS')
      END

-------
                             - 301  -
    SU3ROUTINF
    COMMON /MISC/   CTIME, DELTO»  ICYCj
                                              NJj NPP, NUMCON*

      COMMON  /SLACK/  JPRT(150*55)» KSL<20)* KPLOT(?0>*  NFPCC20)*
     *                NLPC(?0>» NOPRTC150). NCONSW(S)* MSWP
      COMMON  /SMTSVP/ rGSIfA{99>»F6SyO(9O*6)>,IMPOSE»INFPC*INLPC*KSLACK
      COMHON  /JUNC/   *SUR(133)> AVOL(133)» NCHAN(133*5)*  VOL(133)»
     x
      COMMOV  /OUAL/

      IF CICYC.RT.O) 60 TO 152
      IF (KSLCfO.EQ.O) 60 TO 1 SO
      IF (K?L(M).E'1.1) GO TO 100
      IF  = 65
DO 1" IT=1 »»r:WCYC
  1=1 + 1
  GOTO C102/104*106*103J110»1 1Z
    NOP1T  = 6?
      JPRTC 1*4)  = 61
      GO TO 1?2
    NOPRT(I) = 3
      JP*T(I*1>  = 60
      JPRT(I»?>  = 59
      JPRTd**)  = 58
      SO TO 1?2
    NOPRTCIJ = 1
      JPRT(I*1 )  = 57
      60 TO 122
                                      1 H»1 16*1 18 *120> *  II
    NOPRTcn = 3
      JPRT(I*1)
      JPRT(I*3)
      60 TO 1*2
    NOPRT(I) a 5
      JPRT(I»1)
      JPRTC !*?>
112
      JPRT(I»4)
      JPRTC I»5)
      GO TO  1?2
    NQPRTCI)  * 5
      JPRTd.1)
      JPRTCI*?)
                       56
                       55
                       54
                       53
                       5?
                       51
                       50
                       4°
                       48
                       47

-------
                              - 302  -
            JP»T(I ,4)  = 45
            JPRTC I »c)  = 44
            GO TO T>2
  11 4     SOPRTC1) - 3
            JPRT( 1,1)  = 4"*
            JPRTC1,?)  = 42
            JPRTCU*)  = 41
            JPRTCI >/>  =40
            JPRTCI t 5)  = 39
            JPRTCI ,6)  = 33
            JPRTCI»7)  = 37
            JPRTCI, >>)  = 26
            GO TO 1?2
  116     NOPRTCI) = 7
            JPRTC!, T)  = 35
            JPRTCI*')  = 31
            JPRTC I,')  = 3?
            JPRTC I ,4)  = 32
            JPRTCI,11)  = 31
            JPRTC I»")  = 30
            JPRTCI, 7)  = 2"
            GO TO 1*2
  118     NOPHTCI) = 24
            JPRTCI, 1)  = 29
            JPRTCI,?)  = 27
            JPRTCI,')  = 26
            JPRTCI, A)  = 25
            JPRTCI ,c)  = 24
            JPRTC I «*)  = 23
            JPRTCI, 7)  = 22
            JP*TCI>»)  = 21
            JPRTC I*c)  = 20
            JPDTCI,10) = 1«
            JP"TCI,T1 ) = 1P
            JPRTCI, 12) = 17
            JPRTCI, 13) = 16
            JP"TCI,14) = 15
            JPRTCI, 15) = 14
            JP"TCI,16) s130
            JPRTCI, 17) »129
            JPPTC 1,18) = n
            JPRTC 1,19) = 12
            JPRTCI, ?0) = 11
            JP"TCI»?1) = 10
            JPRTCI, *2) *  9
            JP9TCI,?3) »  S
            JPpTCI,*4) =  7
            GO TO 172
  120     NOPRTCI) = 6
            JPRTCI.1)  =  6
            JPRTCI*?)  =  "
            JPRTtl,')  *  4
            JPRTCI, 4)  *  3
            JPRTCI*5)  *  2
            JPRTCI,")  =114
  1?2 CONTINUE
  1?4 CONTINUE

C»»«*»»(»«»»«*)t»»)»* »«»»   S8T LOW SLACK TA8LC PARAHFTERS    »»»»»»»»»«»)« *****»»**»

-------
                            -  303 -
wswcrc = 11
NLPCCM) = NFPCCM)
NOPRTCD = 7
JPRTCI, 1) =
JP"TCI,2) -
JPRTClJ*) =
JPRTCI, 4) =
JPRTCI.?) =
JPRTCI.') =
JPRTCI»7) =

+ 1SWCVC

1
65
64
63
6'
61
60
     00 148 II»1 .NSUCYC
        1 = 1 + 1
        CO TO C1'6, 12°. 130.132. 134 . 1 ?6* 1 3P » 1 40. 1 42.1 44 , 146 >.  II
126     NOPRT(I) = 2
128


130





1?2






174





136
140
JPRTCI, 1)
JPRTC 1,2)
GO TO 148
NOPRTCI) = 1
JPRTCI ,1 )
GO TO 148
MOPRTC1) = 3
JPRTC I ,1 )
JPRTC l>?y
JPRTCI, T)
GO TO US
NOPRTCI) = 4
JP»T(I,1>
JPRTd*?)
JPRTd. T)
JPPTCI.4)
GO TO 148
NOPRTCI) = 3
JPRTd, 1)
JPRTCI,?)
JPRTd.?)
GO TO 1*8
NOPRTCI) = 5
JPRTCI ,1)
JPRTC !.?>
JPRTC I ."")
JPRTCI .4)
JPRTd. f)
60 TO 148
NOPRTd) = 6
JPRTCI.1)
JPRTCI»2)
JPRTCI*^)
JPRTd.*)
JPRTd. S)
JPRTd .*)
GO TO 148
NOPRTCI) - 7
JPRTCI.1)
JPRTCI.')
JPPTCI.7)
JPRTC I.*)
JPRTCI»5)
JPPTCI.6)
JPRTd .7)
= 5°
= 5«


= 57


= 56
= 5?
= 54


= 5?
= 52
= 51
= 50


= 4"
= 48
= 47


= 46
= 45
= 44
= 43
= 42


= 41
* 40
= 30
= 38
- 37
- 36


- 35
= 34
= 33
= 3?
= 31
* 30
« 29

-------
                               - 304  -

142













144












146






148
GO TO 148

NOPRTCI) = 12
JPRTd ,1)
JPRTd,?)
JPRT( I »*)
JP°Td »n
JPRT( I ,5)
JPRTd, 6)
JPPTCI.7)
JPRTd »8)
JPRT( If9>
JP"Td,10)
JPPTd.11)
JPRTd, 12)
GO TO 148
= 28
= 27
= 26
= 25
= 24
* 2?
= 2?
= 21
= 20
= 19
= 18
= 17

NOPRTd) =• 12
JPRTd. 1)
JPRTC I.')
JPRTd,*)
JPRTd»5)
JPRT( I tf- )
JPRTd, 7)
JPRT( I.*)
JPRTd»9)
JPRTCI.10)
JP"Td,11)
JPPTCI.12)
SO TO 148
HOPRT(I) = 6
JPRTd. 1)
JPRTd.?)
JPRTC1*"«)
JPPTd*/-)
JPRT< I .5)
JPRTd. O
CONTTNUf
* 16
= 15
= 14
= 129
= 13
= 1?
= 11
= 10
3 O
= a
= 7


- 6
m 5
= 4
= 3
• ?
= 114

  150 CONTINUE

C»«**)t*i«»»*"»»«»i*»»»»»    SCT SNAPSHOT T*BLC PARAMETERS    »»»»»»«»»»«»« »»»»*»»»»»

      NLPC(N) * NFPr
JPRTC I »P)
JPRTd, 9)
JP°TCI,10)
JPPTd*11)
JPRTd, 12)
JP°TCI.13)
JPPT( I ,-14)
jpmci»i5)
JPRTd, 16)
= 114
- 2
= 3
» 4
3 S
- 6
3 7
- 8
31 O
- 10
* 11
- 12
» 13
=129
-130
= 14

-------
                              -  305 -
JPRTC
JP"TC
JP°T(
JPRTC
JP°TC
JP°TC
JPRTC
JP»TC
JP°T(





I
I
I
I
JPRTCI
jp-mi
JP*2>
I
I
I
I
I
I
,53)
,*4)
»^5)
,^6)
,'7)
,?8)
s
s
=
s
3
r-
=
s
X
s
=
s
3
s
s
ax
K
s
=
=
s
s
I*<0) =
I
I
I
I
I
I
T
I
,/1)
,42)
,/3)
,44)
**5)
<*6>
,47)
,AS)
s
=
=
=
a
•a
s
=
1/49) =
I
I
I
I


,53)
,S1)
»"?2>
*53)


=
s
s
a


15
16
17
1 %
19
20
21
22
23
24
25
26
2^
2*
29
30
31
32
33
34
35
36
40
42
44
46
4s
50
52
54
56
58
60
62
64
1


C)i»«>nn ICTC, KOAYS* HOU»S
        GO TO 162
  154 CONTINUE
                          BEGIN NEW SLACK VATEP TA°LE   *»***«»•»*«»***»«**««*»•
      NPP * Q
      IF (KSL(M>.E0.2) GO TO 156
        WRITE <6,6f4)

-------
                              - 306 -
        GO T0  15S
       CONTINUE
       WPJTF  (6.606)
       WRlTr  (6*608)  ICYC*  KDAYS,  HOURS
       PO  TO  162
  160  CONTINUE

C****««RK*««tttt*»tttt*»»»»»»»tt    ?cg|u SNAPSHOT T«BLE   »*tm«mm»»«»«»«»» »«»»»«»»•»

       NPP =  3
       V»lT-  (6.610)  ICYC*  KDAYS*  HOURS
  1*2  CONTINUE

C* »» «••»»»»« •««**« »»«««    PRINT  DATA  FHOM PRESENT CYCL1?   »»«»»*»*»»*» »***»«»»«»

       WOP =  NOPRT( T)
        DO 166 L = 1 jNOP
          J  = JPRT(T»L>
                                  
              ^0 16* LPP=1»NUHCON
                               =  C(J»LPP>
            C6SUA(NPP) * RMNOOF(J)
          T^ UCYC.NE.NLPC
             KSLACK  =  KSLCM)
             INFPC   =•  NPPC(M)
             INLPC   *  NLPC<*>
             CALL SWPLOT
  168   CONTINUE
600   FORMAT  (ix*i30dH-)  /)
602   FORMAT  (1"  j3?Xj' CYCLE' » !5 * 1 1E»'  DAYS* ' *F6,2,'  HOURS**/ )
604   FORMAT<1H1//4PXj23H  HIGH  SLACK  P"cDirTIOHS/>
60t   FOPMAT(1H1/  4?X*?3H   LOH  SL*CK  PRFOICTIOMS/)
608   FORMAT  (1H   /  3X> ' JUNCTION    HEAD      CONSTITUENT 1    CONSTITUENT
     » 7    CONSTITUENT 3    CONSTITUENT 4     CONSTITUENT 5    fONSTITUE
     »NT 6l»/*14X*l(FT)l*8r*'(*?/L)            (M6/L)            (MG/L)
     »        (UG/t)            (MC/L)            (N5/L)'./ 1 X*130(1H->* //
     »?3X*» CYCLE»»!5*I1Z*' DAYS* ' *F6.2* ' HOURS'/  >
610   CORM^T  (1"1/// 25y»«SYSTrM STATUS  AFTER  QUALITY  CYCLE ' *I6» II 0* ' f?A
     «YS* «»F6.2j« HOU"S»*//*3X»« JUNCTION    HEAD    CONSTITUENT 1    CO
     »K'STITUENT 2    CO^STITUEXT  3     TONSTITUENT  4     CONSTITUENT 5
     "CONSTITUENT  " »/»14X*;l (FT) ' , 8X»» C1G/L)            
     »(>«C/L)            CU6/L)            (M5/L)            (1C/L) ' */»1 X, 13
     »OC1K-> )
61?   FORMAT  (5X*I*»4X»r6.2j3XjF6.2»5<1UjF'«).2»
614   FORMAT  (1 H1 ///20Xj ' NUMBER OF PLOTTER POINTS  PXCEEOS ARRAY
      FNO

-------
                               - 307  -
       SUBROUTINE  SWPtOT

       DIMENSION   BOTKI?),  NPTCS),  SID^USD, siDE2<6>» x »  KSLC20>» KPLOT(2Q>» NFPCUO),
      »                 NLPC(20)»  NOPRTOfO),  NCONSWC6), NSWP
      COMMOM  /SWTS«P/  FGSW»(99)«FGSWO('1<'*6)» IMPOSE, INFPC* INUPCfKSLACK
      COMMON  /OBSOJT/  0°DATA(3»6j20)i  ">MD»TAC20)» NO»TA» NOBCYC(1U>
      COMMOM  /SC*LrS/  XMAX*  XMIN,  VMAX* YMAXC(6)* YMIN* YMINC(f)
      COMMON  /AXES/    POTTOMd?)*  SIOE(51)

      PITA 30Tl/6«<"    »4HMILE»4HS  BE*4HLO« j4HCHAI,4"N BR.4HIPGE /
      DATA SIOE1/21»1H ,1HC*1HO* 1HH* 1HS»1HT» 1HI
      1  15»TH /
      PJTA SICS2/1 H1 ,1H2»1H3»1H4>1H5*1H^>/
C*******»********   SET LA"3FLS ON  SIDE  AND  BOTTOM  AYES   ***********************

      ^0 100 1=1,51
        SI^PCD = SIDEKI)
  100 CONTINUE
      ro 1"' 1=1,12
        80TTO«ur> = BOTUI)
  102 CONTINUE
      DO 1?? IT=1,»'UMCON
        IF (NCONS«(I1).1E.V) GO TO 132'
        IF CIKPOSE.LT.A) 60 TO 104
        IF UI.LT.6) GO TO 132
  104   COMTINUF
        If-PCHK = II * I1POSE

C»*«*)»»«*»»»»«)H(   FILL UP X i Y ARRAYS UITH  D»TA  TO BF PLOTTED   »«*»»»«•««*»*»
Ctt*»»»HiiiriiiiK»ii*Ki>ii««ii»i(*)i««K   INITIALIZE COUNTERS   * »»»»»** «»«*****» »«»» »»»*«*

        IF CIMPOSE.EQ.4) 60 TO 106
        1C = 0
  106   CONTINU^
        ICP * 0
          ^0 110 I«1 ,MPP
            IF (IMPOSE. LT. 4.) GO TO 108
            ICP = ICP + 1
            X(ICP»?> » FGSWA(I)
            YCICP,')  = F6SWO{I,6>
            60 TO 110
  108       CO*TINUr
            1C = If + 1
            X(TC,1)
            Y(IC,1)
  110     COHTIWUE
        KPTC1)  » 1C
        NPT(2)  = ICP

-------
                               -  308 -
C**»NH«»»**K»«»*tt»*   SFT SIDE LABELS  FOR  COMSTITU E«»T NO.   «»»mn»««ini *«»«»*»*«»
C»**»*««*»**»«»)(»***»»   CHECK FOR  OVE°LAY  FOR CONSTITUrNT 6   *»»****»»*»»*««»»

        IF ( IHPCHK.LT.9) GO TO 114
        IF (IMPOSE.EI.O GO TO 112
        IS«VE  = INFpc
        ISAVE1 = INLPC
        ISAVEt = KSLACK
        KTTTLE = 0
        RETURN
  112   CONTINUE
  114   CONTINUE

CK«*««»»*«*»*»«*K«*x****ftM***   WRITE  OUT  TTTLP   *«»«»»»»»»»«»»»»»»«»»«»»***«««
        WRITE
        K = KSLACK + 1
  116   GO TO (118*122*120>f K
  11t   WRITE (?2*£"2>  INFPC
        GO TO 1?4
  TO   WRITE (22*604)  INFPC*  INLPC
        C-0 TO 1">4
  122   WRITE (22**r!6)  INFPC*  I*LPC
  1'4   CONTINUC
        IF < IMPCHK.LT.10) GO TO 126
        IF (KTITLt.EO.D GO TO 126
        K = ISAVE2 + 1
        INrPC  = ISAVE
        INLPC  « ISAVE1
        KTITLE  =  1
        GO TO 116
  126   YMM  = YMTNC(TI)
        YMAX   * Y«AXC(II)
        IST'N = II
        ISInE = 1
        IF (NOATA.EO.O)  ISTAN  * 0

C»***<(»«in(*)»»«i»»*»*»*)f*»   CALL CU°VE  TO  PRODUCE THE PLOT   »«)»K»*»*«»»»*»»»»«»*

        IF ( IMPOSE.IT.4) GO TO 128
        CALL CURVE (X*Y*NPT*2*1*0*2,ISTAN*ISIOF)
        GO TO 1*0
  128   CONTINUE
        CALL CUPVE (X*Y»NPT*1*1*0*2* IST»N*ISIOE>
  1?0   CONTINUE
  172 CONTINUE
      PETURV

c»»»»K»»K»»*»»»»»i»»)»»»>»)«»»»»   CORMAT  STATEMENTS  »x*«*»«tt«««**««««**K»*««H»**»«*

  603 FORMAT(1H1/44XJ'POTOI«AC  <=STUARY  CENTER CHAMHFL')
  602 FORMAT(1HO*4trr*'PROFILE  PLOT FOR CYCLE'*I6)
  604 FORMAT (1HO»36T,«    LOW  WATtR SLACK  PLOT FROM CYCLE'jIS*' TO CYCLE'

  606 FOR«AT(1HO*30X»'HI6H UATEP SLACK PLOT FROM CYCLE'»I5*« TO CYCLE'*

      END

-------
                               -  309 -
                                      T"LOT
      SUBROUTINE  TPLOT

      CIME"SION   C<6), «OT1(12>, NPT(3). SIOEKS1)*  SIPE2C6),
                    Y(9<>»3)
             /"ISC/    CTIM?,  0CLTQ, ICYCj »'C, NJ,  Npp,  NUHCON,
     *                 RMNODF.d""), STIXF
      COMMON XTIHEPl/  JU*CTP<20>> NCITP(20>» NCONTP(20,6> ,  «»ECTPc2Q)i
     »                 NSCTP(20)» NTP
      COMMON /SCALPS/  XM»X»  XMTV, YMAX* YM»XC(6)>  YMINj  YMTNC(6)
      COMMO" /«XES/    ?OTTOM(1?), S!OE<51>
      DATA SIDF1/21»1H  ^ 1HC* 1HO» 1HN* 1HS»1HT» 1H I » 1HTj1 HU» 1 HF»1 HN, 1 HT»
     1  19»1H /
      P«TA SIDE2/1H1>1H2*1H3»1H4»1H5f1H6/
      DATA 80T1/v»4H     »4HCYCL*4HES  tlH    /

C* **«»)(»***»»»»»*» «»»»»»*»*)•«)•>(»»   SET LADELS   »»t»»»*)»**«in»*«    SET UP TT«£ PLOTS    *»»»»»it»»»»*i(mm**)(» »)»)()»)»»»»»«

      00 170  11=1, NTP
        DO 118 JJ=1,NU^CON
          "EWINO  11
          IF  (NCONTP(n,JJ).NEt1) CO TO 11*
          VMIN =  Y"INC(JJ)
          VMAX =  YMAXC(JJ)
                          SKIP  TO  STARTING CVCLF
                                                    »»»«»*«««)»««»»»*»)»«» **»*»«*** »
  106
M  > NSCTPtll)
L1 = (M-1) » NTP
IF (LI.EQtO) 60 TO  106
  DO 104 L=1,L1
    "»FAD (11) ICY
  CO^TIMUF
CONTINUE
111 => II
»fK * 0
TTIM1 --  NSCTPMI)
ITIM2 a NECTP(II>
ITIM3 =•
                               (C(K>,Ka1,NUMCON)
C»»»»»»»»«»'»»»»»»«»»»»   LOOP  FOR  SPECICIED PLOTTING CYCLES    »»»«»»»«)m»»»»»»*)i

          "0 116 I = ITI'*1,ITIM2,niM3
            KK = KK + 1

                 SKIP TO THEN  READ PLOTTING JUNCTION IN  PRESENT CYCLE   »»««»«»«

-------
                              -  310 -
                      (11)  ICYC*  (C(K),K=1,»MJ«COM)
                      E
                     = r(JJ)
            X(KK>1 )  =• J
            I 12 =  NTP *  (MCITP(II)  - 1)
            L2  =  NTP -  II

CX««K»*K««K»»»X»*»»   SKIP TO  FND OF PPESEVT CYCLE   »»»«ii»«»«»»«ii»»«» »«»»»»»«»»

            IF (L2.''0.1) 60  TO  112
              "0 110  L*1»L2
                RE»D  (11)
  110         CONTINUE
  112
CM**«*»«»«Ntt«»»»M»    SKIP  TO  ST«RT OF N^XT PLOTTING CYCLE    »»»»»»»»»»»»»»»»»»»»

             IF  
-------
                                          -  311 -
                               CURVE
                              »KN«*JM
C      CURVE  IS  THE  ENTRY  TO  A GENERALIZED PRINTER PLOT ROUTINE*  THE
C   ROUTINE PLOTS  SEQUENTIALLY PAIRED VALUES TAKEN FROM THE  X AND Y
C   ARRAYS. THE  SCALING  VALUES FOR  BOTH ARRAYS ARE STORED  IN THE  LAST
C   TWO ARRAY  LOCATIONS  IN THE SAME HANKER AS CALCOMP SCALING. THE
C   ARGUEMENTS  IN  THE  SCALING SEQUENCE ARE DEFINED AS...
C          X •  THE  ARRAY  CONTAINING  THE X-AXTS COORDINATES  OF THE  POINTS
C              TO BF  PLOTTED
C          Y m  THE  ARRAY  CONTAINING  THE T-AXIS COORDINATES  OF THE  POINTS
C              TO BF  PLOTTED
C       NPT »  THE  NUMBER OF POINTS  TO »F PLOTTED
C       NCV «  THE  NUMBP* OF CURVES  TO «?E PLOTTED
C     NPLOT *  USED FOR PLOT IDENTIFICATION* THIS VALUE IS  PRINTED ABOVE
C              ?ACH PLOT  FOR EACH CALL TO CURVE
C     IJOIN -  FLAG FOR JOINING OR NO  JOINING OF POINTS
C      ITEL •  FLAG FOR GRID SITE
C     ISTAN =  CONSTITUENT  NUMBER
C     ISIDE -  1  FOR  CENTER CHANNEL
CK**»tt**MK«»«•***« *»»*«*»««*««**«**• IfM»*«*K*«*»«»«***•»»**««««***«***««»*«•**«I
      SUBROUTINE CURVE(X*Y»NPT»NCV*NPLOT*IJOIN»ITEL»ISTAN»ISIDE)
      COMMON  /OBSDAT/  OBDATA(3»6*20>* °MDATA(20), NDATAj NOBCYC(IQ)
      COMMON /SCALES/  XMAX» XMIN* YMAX» YMAXC(6>* YMIN* YHINC(6)
      COHMON /CURPLT/ JSTAN*  XLAE(11)j XAXIS* YAXIS* YLAB(6>* YSTAN
      DIMENSION  NPT(3)» X(99*3), Y(99*3)
C«»»«I(*K«»«»*»»»«H»««IH«   SET  SPECIAL  6RID SIZE IF DESIRED   »««»«»«««»*»«*««*«»
      JSTAN-0                                                             1063-
      IF(ITEL-1) 1000*1010^1020                                           1089.
 1010 XAXIS-60.                                                           1090.
      YAXIS-40.                                                           1091.
      GO TO 1000                                                         1092.
 10?0 X>XIS=100.                                                         1093.
      YAXIS»50.                                                           109A.
 100U NPTS=NPT(1)                                              •           1095.
C*********************   SET  UP  X AND Y SCALES   *«*«ft*H«K*itii*»*ftit*»«»*«Mfttt**«i
      IXAX=XAXrs/10.                                                      1098.
      IYAX-YAXIS/10.                                                      1099.
      IXAXIcIXAX+1                                                        1100.
      IYAX1=IYAX+1                                                        1101.
C*»**i«(»»)HHt»»tn»»»*«»«   FIND MAX AND "IN FOR X AND Y ARRAY   »«««««•«**•«««•«»
 2001  CONTINUE                                                            1117=
C«»* «*itii»»B«K»«*ifit «*«•*«*«*««   SET UP SCALES   «»«»«tn(»«in(i(»Kin«»»»*»ii» »«»»«i»i««)
      AXLEN«IXAX                                                          1121.
      CALL SCALF(X»XMAX»XMIN,AXLEN»NPTS»1)                                1122.
      AXLPV=IYAX                                                          1127.
      CALL SCALE{Y»YMAX*YMIN»AXLEN»NRTS.1)                                1124.
C**»»i()(tt*»*»**)(»*»i »*•(»   FORM  X  LABELS AND  FACTORS   KKM*»*»*«K*«*it*«*K«*««**iH
      XMIN=X(NPTS+1*1)                                                    1128.
      DFLTX=X(NPTS+?j1)                                                   1129.
      XLAB(1)«XHIN                                                        11*0.
      DO 260 I=1>IXAX                                                     11?1.
  ?60 XLAB(I+1)=XLAB(I)+DELTX                                             1132.
      XSCAL=XAXIS/(XLA°(IXAX1)-XMIN>                                      1133.

-------
                                       - 312  -
CK«*«K«*«*«»»«*««*««*M   FORM Y LABELS AMD FACTORS   n«»«*it«*«««*»«*«it*K«**««K«»
      YMIN=Y                                                   1137.
      DELTY=Y(NPTS+2j1>                                                  1138.
      YLABCIYAXD-YHIN                                                   1139.
      DO 270 I«1>IYAX                                                    1140.
  270 YLAB=YLABUYAX1 + 1-I»DELTY                                1141.
      YSCAL=YAXIS/(YLABC1)-YHIN>                                         1142.
C««*««»*»*«»«KK»«»««X«   INITIALIZE PLOT OUTLINE   ««•««»««««»«»««»»»« «»«u»«m»«ii
       NCO«100                                                           1146.
      IF(JSTAN.EQ.O) 60 TO 2000                                          1147.
      YSTAN»YSCAL»(6.0-YMIN->                                             1148.
 2000 CALL PPLOT(0»0*NCD»NPLOT>                                          1149.
       K=1                                                               1150.
      IFCJJOIN.EC.O) 60 TO 500                                           1151.
C«»»  THE OPTION TO PERMIT JOININ6 OF POINTS HAS BEEN DELETED
C*«**»«»*tt»*K«K«««MK*«   PLOT WITHOUT JOININ6 POINTS   »«»»««»«»»»««»»«»«»««««««
  500 CONTINUE                                                           1178.
      DO 520 L = 1*NCV                                                     1179.
      JJ=L                                                               1180.
      NPOINT=NPT(JJ)                                                     1181.
      IF(NPOINT.EQ.O) 60 TO 515                                          1182.
      DO 510 N = 1*NPOINT                                                  US'?.
      XT=XSCAL«CXCN»L>-XMIN*                                             1194.
      YT«YSCAL«(Y(N*L)-Y«IN^                                             1185.
      IXT=XT+0.5                                                         1186=
      IXY=YT+0.5                                                         11R7.
      IF(NCV.E0.3) 60 TO 517
      CALL PPLOT(IXT»IXY»K»1>                                            118%.
      GO TO 510
  517 L1«L+9
      CALL PPLOT(IXT»IXY»L1»1)
  510 CONTINUE                                                           1189.
  515 K»K+1                                                              1190.
  520 CONTINUE                                                           1191.
C»«ft«*K****«««*»M««*K*««»*»*   PLOT OBSFRVED DATA   »**«»K«»*«N«**K««*««XK»**N*«
550   IFCISTAN.LT.D 60 TO 565
      DO 560 L=1*3
      TO 570 N«1*NDATA
      XT=XSCAL«
      IXYsYT+0.5
      CALL PPLOT(iyTjIXY*L1*1>
  570 CONTINUE
  560 CONTINUE
565   CONTINUE
C«N«**tt***N«*«fttt«« »*»« )•«««(»    OUTPUT rINAL PLOT   «»»»if»i(»«*«««»«»«»» »»»»«»««»»
  555 NC=99
      CALL PPLOT(0»0*NC»NPLOT)                                           1196.
      PFTU^N                                                             1197.
      FND                                                                1198.

-------
                                       - 313  -
C* *••«**•*««•««*«« »»»«»» II II *«K*«« MM ««««*«» *«««*«»«««»•«« II «««««««««»«**«*«•»«««««)
C                                    P.PLOT

      SUBROUTINE PPLOTdX* IY»K*WCT>
      DIMENSION  A(51*10D* SYMdA)
      COMMON /CURPLT/ JSTAN* XLABC11)* XAXIS. YAXIS* YLAB(6>* YSTAN
      COMMON /AXES/   80TTOM(12>* SIDEC5D
      COMMON /CRID/   KPLOP
      P»TA SYM/4H««««*4HXXXX*4HOOOO**HXXXX*4H++++*&H2222*               1
     1 4H    *4HIIIJ»4H - *4HHHHH*4HAAAA*4HLLU.*4HS*««*4H????/
      IXAX1-XAXIS+1.                                                    1270.
      IYAX1-YAXIS+1.                                                    1271.
      JXAX1«XAXIS/10.*1.                                                1272.
      JYAX1«YAXIS/10.+1.                                                1273.
      IF(K-99) 200.220*230                                              1274.
  200 CONTINUE
C«*««*K««*«»»«*«««**«   CHECK FOR OFF-SCALE VALUES   »«««»»»«««»«»»«»»»««»<(»»»in
      IF(IY.6E.IYAX1) 60 TO 10
      IF(IV.LT.O) GO TO 20
      A(!YAX1-IY,IX*1>
      RETURN
   10 CONTINUE
      PETURN
   20 CONTINUE
      A(1YAX1*IX+1) « SYMC1A5
      PETURN
  220 CONTINUE                                                          1277.
      1=0                                                               1278.
      00 225 II*1*JYAX1                                                  1281.
      1=1+1                                                              1282.
      VRITEC22.310) S IDEC I) »YLAP(I I)*(A(I*J>* J«1* IXAX1 )                 1283.
  310 FORHATOH >A 1*F7.1* 101A 1 )                                          1284.
      IFdl.EQ.JYAXD 60  TO  228                                          1285.
      DO 224 JJ«1>9                                                     1286.
      1=1+1                                                              12S7.
      IFCI.GT.50)  CO TO  500                                              1288.
  223 WRITE<22»320) SIDEC !>*< A< I* J)» J-1*IXAX1)                          1289.
  320 FORMATC1H »A 1 *7X»101 A1 )                                           1290.
      60 TO  224                                                         1291.
  500 WRITF(22*510> ( A< I* J)* J*1*IXAX1 J                                  1292.
  510 FORMATdH *8X*101A1)                                               1293.
  224 CONTINUE                                                          1294.
  225 CONTINUE                                                          1295.
  226 CONTINUE                                                          1296.
      VRITE<22»102> tXLAB( I) fl"1 * JXAX1 )                                 1297.
      WRITE(22»330) BOTTOM                                               1298.
  T*0 FORMATC/1H *20X»12A4>
  102 FORMATdH ,11F10.1>                                                1300.
      RFTURN                                                            1301.
  ?^C IYAX=YAXIS                                                        1302.
      PO 250 I=1*IYAX                                                   1303.
      DO 240 J=1*IXAX1                                                   1304.
  240 MI*J)=SYH(7)                                                     1305.
      CONTINUE                                                          1307.

-------
                                   - 314 -
      DO 260 J«1,1XAX1
  260 AtIY»X1>J)*SYM(9)
      DO 270 I«1»IXAX1»10
  270 A
      IYJ=IYAX1-10
      DO 290 I*11*IYJ*10
      A«*SYM(9>
 1000 CONTINUE
      IF (KPLOP.EO.O) RETURN
C«»K*«««»«K»»*»*««K*««*   FILL IN BACKGROUND  GRID  ON  PLOTS
      60 TO C1>2>3>» KPLOP
C«*«***»»*»****«*   BACKGROUND OPTION  1  - LOU DENSITY
    1 00 2700  I«11*IXAX1,1P
      PO 2800  J«=1*IYAX,5
      A(JjI) * SYM<5)
 2800 CONTINUE
 2700 CONTINUE
      RETURN
C«M«»««*»M««««»»«   BACKGROUND OPTION  ?  - MEDIUM DENSITY
                  VrRTICAL     »«»*»»»»»«*»«
               Ic21«IXAX1,20
               J=1*IYAX
               SYMC5)
 2400 CONTINUE
 2300 CONTINUE
C«**»«*»*««*«**   HORIZONTAL   *»»«»»«»««»««
      IYJ = IYAX1 - 5
      DO 2500  J*1»IYJ*10
      PO 2600  I=3*IXAX1,2
      * (J^I) = SYMC5)
 2600 CONTINUE
 2500 CONTINUE
      RETURN
C*»*)i*«««*««««tO(««   BACKGROUND OPTION 3 - HIGH DENSITY
C»*V««**MMN**IIK   VFRTICAL
    3 DO 2000  1=11*IXAX1j10
      DO 1900  J=1*IYAX
      ACJ>I> * SYMC5)
 1900 CONTINUE
 2000 CONTINUE
C««*««»«*«II««K«   HORIZONTAL
      IYJ = IY*X1 - 5
      DO 2200  J=1fIYJ>5
      PO 2100  I=3»IXAX1»2
      A(J>I) = SYMC5)
 2100 CONTINUE
 2200 CONTINUE
                                                                     1308
                                                                     1309
                                                                     1310
                                                                     1311
                                                                     1312
                                                                     1313
                                                                     13U
                                                                     1315

                                                                     1317
                                                                     1318
                                                                     1319
                                                                     1320
                                                          ••«*Mft«H«M*
                                                     *«««*N»K*K*«*«»*
2 DO 2300
  CO 2400

-------
                                       - 315  -
      SUBROUTINE SCALE(ARRAY»AMAX>AMIN»AXLEN»NPTSf INC)                   1323.
      DIMENSION  ARRAY<103»4)* INT(5)
      DATA INT/2j4*5»8*10/                                               1326.
      INCT«IABSUNC)                                                     1327.
      IF(AMAX-A*IN) 275,255t275                                          1328.
C«N«*««*»»**»«*««   RESET MAX AND  HIN  FOR  ZERO  RANGE    ««««»**«Mftitft««*K*«««»««
  ??S IFCAMN) 265»400»260                                               1332.
  ?60 AMIN-0.0                                                           1333.
      AMAX-2.0»AMAX                                                      1334.
      60 TO 275                                                          1335.
  2*5 A"AX»0.0                                                           1316.
      AMIN=2.0*AMIN                                                      1337.
  275 CONTINUE                                                           1338.
C»**»«»«»**«*»«»»*•*»»*«»*»»   COMPUTE UNITS/INCH   «««•«»•»*«»««•«*«»*»««*•*«
      RATE=(AMAX-AMIN)/AXLEN                                             1342.
CK««»«K«««WN««I(   SCALE INTERVAL TO LESS THAN 10    «tit*««*tt«M«ii*K»«*«ii**«it*««ii
      A-ALOG10CRATE)                                                     1347.
      N»A                                                                1348.
      IFCA.LT.O) N=»-0.9999                                              1349.
      RATE»RATE/C10.*«N)                                                 1350.
      L-RATE+1.00                                                        1351.
C*tnm«*»»«»***«tt*»»«*i<   FIND NEXT HIGHER  INTERVAL   «»«»»»«»»«»»»»«»«********
  280 TO 300 1=1*5                                                       1355.
      IF*RANGP>  GO TO 330                              1392.
      I«INCT*NPTS+1                                                      1393.
      APRAY(I,1)=K»RAN6E                                                 1394.
      I=I+INCT                                                           1395.
      ARR/YCI,1)«-PANGE                                                  1396.
      RETURN                                                             1397.
  400 WPITEC22*100)                                                      1398,
  100 FORMATC//1H *10X>'RANGE AND  SCALE ARF ZERO ON PLOT ATTEMPT')       1399
      END                                                                1401.

-------
                            -  316  -
                         BIBLIOGRAPHY
 1.   Water Resources  Engineers,  Inc.,  "A Water Quality  'lodel  of
          the  Sacramento  -  San  Joaquin  Delta," Report to  the
          U.S.  Public Health  Service,  Region  IX,  June 1965.

 2.   Water Resources  Engineers,  Inc.,  "A Hydraulic  Water  Quality
          Model  of Suisun and San  Pablo Bays," Report to  the
          FWPCA, Southeast  Region,  March 1966.

 3.   Federal  Water Pollution  Control Administration,  "San Joaquin
          Master Drain -  Effects on Water Quality of  San
          Francisco Bay and Delta," January  1967.

 4.   Feigner,  K. and  H.S. Harris,  "Documentation  Report - FWQA
          Dynamic Estuary Model ,"  U.S.  Department of  Interior,
          FWQA,  July  1970.

 5.   Clark, L.J. and  K.D. Feigner,  "Mathematical  Model  Studies
          of Water Quality in the  Potomac Fstuary," Technical
          Report No.  33,  Annapolis  Field Office,  EPA  Region  III,
          March  1972.

 6.   Jaworski,  N.A.,  L.J. Clark, and K.D. Feigner,  "A Water
          Resource -  Water Supply  Study of the Potomac  Estuary,"
          Technical Report No.  35,  Annapolis  Field  Office,
          EPA Region  III, April  1971.

 7.   Clark, L.J. and  N.A. Jaworski, "Nutrient Transport and
          Dissolved Oxygen Budget  Studies in  the  Potomac  Estuary,"
          Technical Report No.  37,  Annapolis  Field  Office,
          EPA Region  III, October  1972.

 8.   Clark, L.J., D.K. Donnelly, and 0. Villa, Jr., "Summary
          Conclusions from the  forthcoming Technical  Report
          No.  56, Nutrient Enrichment  and Control Requirements
          in the Upper Chesapeake  Bay," Annapolis Field Office,
          EPA Region  III, August 1973.

 9.   Clark, L.J., R.B. Ambrose,  Jr., and R.C. Grain,  "A Water
          Quality Modeling Study of the Delaware  Estuary,"
          Technical Report No.  62,  Annapolis  Field  Office,
          EPA Region  III, January  1978.

10.   Chow, V.T., "Open Channel  Hydraulics,"  John  Wiley  &  Sons,
          New York, New York.

-------
                            -  317 -
11.   Cowan, W.L., "Estimating Hydraulic Roughness  Coefficients,"
          Agricultural Engineering3  v.37,  n.7,  July 1956.

12.   Boyer, M.C., "Estimating the  Manning  Coefficient  from  an
          Average Bed Roughness  in Open Channels,"  Transactions,
          AGU,  v.35, n.6, December 1954.

13.   Langbein,  W.E., "Determination  of Manning's n  from  Vertical-
          Velocity Curves,"  Transactions.,  AGU,  part II,  July  1940.

14.   Einstein,  H.A.  and H.L.  Barbarossa,  "River Channel  Roughness,"
          Transactions, ASCE,  v.117, 1952.

15.   Davidson,  B. , R. Vichnevetsky,  and H.T.  Wang,  "Numerical
          Techniques for Estimating  Best -  Distributed banning
          Roughness  Coefficients  for Open  Estuarial  River
          Systems,"  Water Resour.  Res.,  v.15, n.5,  October  1978.

-------
EPA 903/9-79-004
                              Annapolis  Field Office
                                    Region  III
                          Environmental  Protection Agency
                              Lehigh River  Intensive
                                     March 1979
                                Daniel K. Donnelly
                                Joseph I. Slayton
                                E. Ramona Trovato
                           Annapolis Field Office Staff
     John Austin
     James Barron
     Robert Ambrose
     Robert Bubeck
     Leo Clark
     Gerry Crutch!ey
     Ann Donaldson
     Gerry Donovan
     Bettina Fletcher
     Norman Fritsche
     Marilyn Gower
     Victor Guide
     George Houghton
     Patricia Johnson
     Ronald Jones
     Rosemary Kayser
Donald Lear
Tangie Lindsey
James Marks
Margaret Mason
Ruth Ann McGuire
Evelyn McPherson
Margaret Munro
Thomas Munson
Maria O'Malley
Thomas Pheiffer
Janet Roberson
Susan Smith
Earl Staton
William Thomas
Robert Vallandingham
Orterio Villa

-------
                              Disclaimer

     The mention of trade names or commercial  products in this
report is for illustration purposes and does not constitute
endorsement or recommendation by the U.S. Environmental  Protection
Agency.

-------
                             Table  of Contents
                                                                      page

  I.   Purpose  and  Scope	         1

 II.   Study  Description   	         2

      A.   Stream Sampling  	         3

      3.   Effluent Sampling	         3

      C.   Long Term BOO  Experiment	         3

      D.   Diurnal  Study   	         7

      E.   Flow Measurement	         7

      F.   Time of  Travel	         9

      G.   Benthic  Characterization  	         9

III.   Field  Procedures 	         9

      A.   Sample Collection  	         9

      B.   Sample Preservation  	        11

      C.   Field Analyses	        11

      D.   Flow Measurement	        12

      E.   Time of  Travel	        12

      F.   Sediment Oxygen Demand 	        13

 IV.   Laboratory Procedures  	        1^

      A.   Chlorophyll  a_	        1 •!

      B.   Nitrogen Series	        1 £

      C.   Phenol	        15

      D.   Cyanide	        15

      E.   Metals	        15

      F.   Sediments	        15

      G.   DO/BOD	        17

      H.   Long Term SOD	        19

-------
                             Fable of Contents (can't)
  Y.   Results	       22
      A.   Stream Survey	       22
      B.   Effluent Survey	       31
      C.   Long Term BOD Experiment	       37
      D.   Diurnal  Study	       32
      E.   Flow Measurement	       85
      F.   Time of Travel	       37
      G.   Benthic Characterization 	       89
 VI.   Conclusions	       92
VII.   Appendices	       94

-------
                                      Tables
                                                                        Paqe
 II-l  Stream Stations 	         <*



 11-2  Zinc Sampling Stations  	         5



 II-3  Effluent Sampling Stations  	         6



 II-4  Diurnal  Stations  	         8



V-A-1  Field Data From Stream Samples	        22



V-A-2  Nutrient and BOD Data From Stream Samples	        25



V-A-3  Chlorophyll  a Data From Stream Samples   	        27



V-A-A  Phenol Data From Stream Samples	        28



V-A-5  Cyanide Data for Stream Samples	        29



V-A-6  Zinc Data for Stream Samples   	        30



V-B-1  Effluent Grab Sample Data	        31



V-B-2  Effluent Composite Sample Data  	        33



V-B-3  Phenol Data for Effluent Samples  	        35



V-3-4  Cyanide Data for Effluent Samples	        36



V-C-1  Long Term BOD Data for Unaltered River Samples	        37



V-C-2  Long Term BOD Data for Seeded Effluent Samples   	        48



V-C-3  Long Term BOD Data for Seeded and Diluted Effluent



        Samples	        54



V-C-4  Thomas Graphical Determination of BOD Constants  for



        Unaltered River Samples  	        55



V-C-5  Thomas Graphical Determination of BOD Constants  for



        Seeded Effluent Samples  	        70



V-C-6  Thomas Graphical Determination of BOD Constants  for



        Seeded and Diluted Effluent Samples  	        75

-------
                               Tables (con't)



                                                                    Page



V-C-7  Compilation of CBOD River Sample Kinetics .  	       79



V-C-8  Compilation of NOD River Sample Kinetics  	       80



V-C-9  Compilation of CBOD and NOD Kinetics for Effluent



        Samp! es  	       81



V-D-1  Diurnal  Data  	       82



V-E-1  Major Discharge Flows 	       85



V-E-2  Stream Flows  	       86



V-F-1  Time of Travel 1977	       87



V-F-2  Time of Travel 1976	       88



V-G    Benthic Characterization  	       91

-------
                                   1-1 gures



                                                                     Page



V-G-1   Sediment Oxygen Demand  	       90



C-l     Benthic Respirometer  	       99



C-2     Typical Graph and Worksheet from Respirometer   	      100

-------
I.  Purpose and Scope

     During the week of October 3, 1977, the Annapolis Field Office and
the Pennsylvania Department of Environmental Resources Reading jointly
conducted a one week intensive survey on the lower reach of the Lehigh
River between Palmerton and the mouth.  The study was  designed to define
low-flow water quality, hydrologic and benthic characteristics necessary
for calibration and verification of a mathematical model being developed
by the EPA Region III Water Planning Branch.  The water quality char-
acterization included analysis of stream and major discharge samples
for dissolved oxygen (DO), biochemical oxygen demand (BOD), nitrogen
series and other indicators of water quality conditions; a 24 consecutive
hour sampling program to define diurnal  fluctuations in DO; and a long
term laboratory experiment designed to differentiate between carbonaceous
and nitrogenous components of the long term BOD.   The  hydro!ogical
aspects of the study included stream gaging; flow measurement at major
discharges; and a dye study to determine travel  times  in various segments
of the river.  In situ sediment oxygen demand (SOD) measurements and
analysis of sediment samples for nutrients and selected metals were included
in the benthic characterization program.
    The study was planned for what was expected to be  a low stream flow
period so that water quality responses to pollutant loadings could be
evaluated under the most severe conditions.  The  optimal flow condition
for the study would have been about 600 CFS in the Lehigh River. Unfortunately,

-------
the study period was preceded by heavy rainfall  which increased flows to
over 2000 CFS.  The U.S. Army Corps.,  of Engineers participated in the
study effort by restricting releases  from the upstream reservoirs on
the Lehigh.  Through the release restrictions, the Corps was able to
decrease the river flow to about 1500 CFS by the end of the study period.
The study was initiated despite the high flows in hopes that the release
restrictions could drop the flow below 1000 CFS and because a good steady-
state low flow,, moderate temperature  condition would not occur for another
year.
     The U.S. Geological Survey also  cooperated in the study by measuring
cross-sectional areas and flows at selected places in the river.  The
results of their program are reported separately.

11.  Study Description

     The Annapolis Field Office and the Pennsylvania DER shared in both
the field and laboratory segments of the survey.  AFO field teams conducted
stream sampling from Allentown to Easton, effluent sampling at Bethlehem
Steel, time of travel, and benthic characterizations.  Pennsylvania DER
field personnel were responsible for effluent sampling at Allentown and
Bethlehem sewage treatment plants and the New Jersey Zinc Friedensville
Mine, stream sampling above Allentown, and stream flow measurement.
Teams from both DER and AFO participated in the diurnal study.  The
cyanide analyses were performed by the DER laboratory in Harrisburg and
all of the the other laboratory analyses were done at AFO.

-------
          A.  Stream Sampling
               On each of three consecutive days (10/4, 10/5, 10/6) stream
samples were collected at the stations shown in Table II-1.   For the stations
on the Lehigh River, spatial  composite samples (see III-A for explanation)
were collected and for tributary stations mid-channel  grab samples were
collected.  DO, pH and temperature were measured in the field and all  samples
were anlayzed for BOD5, TKN,  NH3, N02> NO-j, NBOD (nitrogenous BOD) and CBOD
(carbonaceous BOD).  One sample from each station was  analyzed for zinc,
cyanide, phenol and chlorophyll a_ sometime during the study.   (Analyses for
these parameters were staggered to avoid overloading the AFO  laboratory.)
               At the suggestion of Pennsylvania DER,  two sets of grab samples
were taken between Palmerton  and Allentown for zinc analysis.  This was done
to monitor the effect of the  discharges from New Jersey Zinc's Palmerton
plant.  Table II-2 lists the  locations for the zinc monitoring stations.

          B.  Effluent Sampling
               Starting on Monday October 3, 1977, three consecutive 24-hour
composite samples were taken  at each of the discharge points  listed in Table
II-3.  All of the composite samples were analyzed for pH, BODC,  TKN, NH , NO ,
                                                             5         3    2
NBOD and CBOD except those from New Jersey Zinc which  were only  analyzed for
zinc.  Grab samples were collected once each day at each station for pH,
temperature and DO.  With the exception of New Jersey Zinc,  all  of the
effluent samples collected during the first compositing period were analyzed
for cyanide and phenol.

          C.  Long Term BOD Experiment
               A laboratory experiment was conducted to measure  the carbonaceous

-------
Station No.     Lehigh River Mile
               Table II-l
             Stream Stations

                 Tributary
                River Mile
   Station Description
    A
    B

    C
    D

    L-1
    L-3
    L-4
    L-5
    L-9
    L-10
    L-ll
    L-12
    L-13
    L-14
    L-15
    L-16
    S-6
    S-7

    S-8
    T-l
    T-2
    T-6
17.3
14.1
11.8
11.0
 9.6
 7.9
 6.2
 4.9
 3.3
 2.3
 1.5
 0.3
 9.8
16.8
                SI. 43
                50.5

                SO.l
                SO.55
Lehigh at Catasaqua Bridge
Aquashicola Creek at Bridge near
   Lehigh River Junction
Lehigh at Route 895 Bridge
Lehigh at Route 946 Bridge/Si atingto
   Walnutport
Lehigh at Hamilton Stree* Bridge
Lehigh at Mile U.I
Lehigh at New Street Bridge
Lehigh at Minsi Trail Bridge
Lehigh at Freemansburg Bridge
Lehigh at Steel City
Lehigh at West End Bethlehem Boat Cl
Lehigh at West End Island Park
Lehigh upstream of Glendon Dam
Lehigh at 25th Street Bridge
Lehigh at 25th Street Bridge
Lehigh at 3rd Street Bridge
Saucon Creek at Five Lane Bridge
Saucon Creek above Bethlehem City ST
   Outfall
Saucon Creek at Mouth
Little Lehigh at Mouth
Monocacy Creek at Mouth
Laubach Creek at Mouth

-------
                                Table 11-2
                 Zinc Sampling Stations  Palmerton tc Allentown


Station                           Location


   A                              Lehigh  at Catasaqua Bridge
   B                              Aquashicola Creek at Bridge Near Lehigh River
                                     Junction
   C                              Lehigh  at Route 895 Bridge
   D                              Lehigh  at Route 946 Bridge/Siatington-Walnut port

-------
                                       Table II-3
                               Effluent Sampling Stations
  Source

Allentown SIP
Bethlehem STP
Bethlehem Steel
Bethlehem Steel
Bethlehem Steel
Bethlehem Steel
Bethlehem Steel
Bethlehem Steel
Bethlehem Steel
Bethel hem Steel
Bethlehem Steel
Outfall
No.
001
001
005
006
007
008
010
012
014
015
031
Station
No.
AL001
BE001
BS005
BS006
BS007
BS008
BS010
BS012
BS014
BS015
BS031
Lehigh River Mile
16.85
9.82
11.6
11.44
11.37
11.28
10.75
10.61
10.36


Tributary River Mile
      SO.25*
      SI.225
      SO.25
* Flow is split between outfalls going to Saucon Creek and the  Lehigh  River.

-------
and nitrogenous components of long term (30 day) BOD.  While no standard
exists for measuring these parameters, a number of techniques have been
employed successfully.  AFO used two of these techniques during this
study.  The first technique was the more rigorous of the two and required
periodic measurement of DO and nitrogen fractions over the duration of
the experiment.  Total oxygen demand was measured using the change in no
while the nitrogenous component was derived using the changes in the states
of nitrogen.  The second technique involves the use of a nitrification
inhibitor and the measurement of total and carbonaceous oxygen demands
exerted over a 30 day period.  Detailed descriptions of both techniques are
included in Section IV.
          D.  Diurnal Study
               Begining at 8:00 a.m. on October 5, 1977, a 24-hour survey
was conducted to measure the diurnal DO fluctuations at the stations listed
in Table II-4.  Five (5) sets of samples were collected at each station
during the study.  Spatial composite samples were made for chlorophyll a_
analysis and the component samples were analyzed individually for DO,
temperature and pH.
          E.  Flow Measurement
               Stream flow measurements, with one exception, are from USGS
gaging stations located on the lehigh River and its tributaries.  The
exception, Saucon Creek, was manually gaged using a velocity meter and the
appropriate geometric data.  Stream flow measurements were made on October
4 and October 6.

-------
                              Table II-4
                             Diurnal  Stations
Station No.                     Location
   L-l                           Hamilton Street Bridge
   L-4                           New Street Bridge
   L-9                           Freemansburg Bridge
   L-ll                         West End Bethlehem Boat Club
   L-14                         25th Street Bridge Easton
   L-l6                         3rd Street Bridge Easton

-------
               Flows at the two sewage plants are continuously monitored and
were available from the flow totalizers.   The New Jersey Zinc flow is an
estimate.  Bethlehem Steel  flows were measured by the company during the
week of the survey as a requirement under their NPDES discharge permit.

          F.  Time of Travel
               Travel times and average stream velocities were measured for
an 11 mile reach of the Lehigh River using a fluorometric dye tracing
technique.  Rhodamine B dye was released into the river at mile point 17.3
and the time of passage past 3 downstream points (river miles 12.55, 9.4,
6.0) was measured.

          G.  Benthic Characterization
               The sediment oxygen demand (SOD) was measured using an in
situ respirometer at Station L-13 (see Table II-l).  It had been planned
to measure SOD at Station L-16 also but due to the physical limitations of
the respirometer system it was not feasible.  A bottom grab sample was taken
at Station L-16 and analyzed for TKN, TP, TOC, zinc, chromium, cadmium,
copper, lead and iron.
III.  Field Procedures
     A.  Sample Collection
          1.  Stream Samples were all  surface grab samples taken in clean
plastic buckets.  At main river stations, separate samples were taken at
each of the three quarter points across the stream.  (These samples are

-------
designated as right, center and left quarter points looking upstream.)
Temperature, DC and pH were measured for each of the quarter point
samples and composite samples for laboratory analysis were made using
equal portions from each of the quarter point samples.  For the tributary
stations only one surface grab sample was collected at the point most
representative of the total stream flow.  Temperature, DO and pH were
measured for the sample and a portion was preserved for laboratory
analysis.
               2.  Effluent.Samples were either grab samples or 24 hour
time proportioned composite samples taken as close as possible to the
point of discharge to the receiving stream.  Grab samples, one each day
at each station, were taken in plastic buckets for temperature and DO
analysis.  Temperature was measured in the bucket and samples for DO
analysis were poured into standard 300 ml DO bottles through a funnel
to avoid excessive aeration.  Composite samples were collected using  ISCO
(both models 1392 and 1580) automatic samplers.  Composite sample aliquots
were collected at half hour intervals at all stations except New Jersey
Zinc which was sampled at 20 minute intervals.  Sample temperatures were
maintained at about 6°C using ice in the samplers ,
               3.  Sediment Samples were grab samples collected using a
model 426/SM Mud Snapper made by GM Manufacturing and Instrument Corporation.
After collection, the samples were stored unpreserved in  plastic cups.
               4.  Containers.  Samples for  nutrient/BOD  analyses were stored
unpreserved  in new gallon plastic cubitainers.  Phenol samples were stored
                                       10

-------
in acid washed glass containers.  Zinc and chlorophyll  a_ samples were each
stored in separate new quart cubitainers.  Cyanide samples were stored in
clean glass bottles.

     B.  Sample Preservation
          All samples except those for dissolved oxygen analysis were kept
at 4°C until they were analyzed.

          1.  Phenol samples were preserved by adjusting the sample pH to
less than 4 with phosphoric acid and adding copper sulfate.
          2.  Cyanide samples were preserved by adjusting the sample pH to   *
more than 12 with sodium hydroxide.

          3.  Zinc samples were preserved by adjusting the sample pH to less
than 2 with nitric acid.

          4.  Dissolved Oxygen (DO) samples were preserved with 2 ml manganous
sulfate solution, 2 ml potassium hydroxide-potassium iodide solution and 2 ml
of concentrated sulfuric acid.  The samples were stored in the dark until
the analyses were performed.
     C.  Field Analyses

          1.  Temperature was measured using a  YSI dissolved oxygen meter
for samples on which DO analysis was done in the field.  Other temperature
measurements were made with a calibrated thermometer.
                                        11

-------
          2.  Dissolved Oxygen (mg/1 DO) in the stream samples was
determined with a YSI DO Probe 15739 and YSI Meter Model 57.  The meters
and probes were air calibrated and measurements were made while manually
stirring.
Ref:  EPA Methods for Chemical Analysis of Water and Wastes, 1974, p. 56.

          3.  p_H_ was measured using Leeds and Northrop Model 7417 pH meters
with Ingold number 2761 7-02 pH electrodes.  Meters were calibrated using
buffer solutions with pH 4, 7 and 10.  Measurements were recorded after the
meter reached equilibrium in the sample.

     D.  Flow Measurement

          1.  Stream Flows were read from USGS gage stations with the
exception of Saucon Creek which was manually gaged using a cup type velocity
meter.
          2.  Waste Discharge Flows for the Allentown and Bethlehem sewage
treatment plants were read from the totalizers on the continuous  recording
flow meters at the plants.  Flows from Bethlehem Steel were measured by the
company as  required by their NPDE5  discharge permit.  The company did only
one measurement at each outfall and the methods of measurement included use
of V-notch  weirs and lithium dilution techniques.  Flows for New  Jersey
Zinc are company estimates.

     E.  Time O'f Travel

          Travel time in the  river  was measured using a fluorometric dye
technique.  One quart of Rhodamine  B dye was released into  the river at
                                        12

-------
the Hamilton Street Bridge, Allentown (river mile 17.3) at 3:00 a.m.  on
October 5, 1977.  The time of passage for the dye mass was subsequently measured
at three downstream points.  The dye cloud was tracked using a continuous flow
through fluorometer system consisting of a submersible pump, a Turner Model
111 Fluorometer with a flow through door and Corning orange (3-66) and
blue (4-97) filter, and a Rustrak strip chart recorder.  The submersible
pump was placed in the river and sample was continuously pumped through
the fluorometer flow-through door.   The recorder provided a continuous graph
of dye concentration in the river and the elapsed time between stations was
taken when the maximum dye concentration (peak) was recorded.   Average
velocity for each reach of stream was calculated using the distance between  two
stations and elapsed time for the dye peak to travel between the two  stations.
     F.  Sediment Oxygen Demand

          Sediment oxygen demand (SOD) was measured at Station L-13 using
a benthic respirometer.  (See Appendix C for explanation and
description of respirometer.)  The respirometer was lowered from a boat into
soft sediment where it could make a watertight seal.  The DO of the water
trapped beneath the respirometer was measured initially and the changing DO
level was monitored over an 80 minute period.  A DO bottle filled with
bottom water was attached to the respirometer and the initial  and final
DO was measured to isolate the demand exerted by the water.
                                        13

-------
IV.  Laboratory Procedures




     A.  Chlorophyll a (uq/1 chl. a):  The photosynthetic pigment, chlorophyll


was retained on a membrane filter and extracted into acetone with grinding.


The extracted solution was measured spectrophotometrically.


Ref:  Strickland, O.D.H., and Parsons, T.R., "A Manual of Sea Water Analysis",


Bulletin 125, Fisheries Research Board of Canada, Ottowa, 1960, p.185-



      ^*  Nitrogen Series


           1.  Total Kjeldahl  Nitrogen (mg/1  TKN-N):  The water samples were


 automatically digested and analyzed by a Technicon Continuous Digester and


 Auto Analyzer for ammonia and organic nitrogen.   The method of analysis was


 the colorimetric phenolate method.


 Ref:  EPA Methods for Chemical  Analysis of Waters and Wastes, 1974,  p. 1821.


            2.  Ammonia (mg/1  NH -N):   was analyzed by a  Technicon Auto
                                O

 Analyzer employing the colorimetric phenolate method.


 Ref:  EPA Methods for Chemical  Analysis of Water and Wastes, 1974,  p. 163.


            3.  Organic Nitrogen (mg/1 ORG-N):  was determined by difference,


  (TKN-N) - (NH -N) .
               «j

            4.  Nitrate plus Nitrite (mg/1 N02 -  N + N03  - N):  was  analyzed


 with a Technicon Auto Analyzer.  This procedure  utilized the cadmium reduction


 of nitrate to nitrite and subsequent diazotization with  the optical  density


 measured at 540 nm.



 Ref:  EPA Methods for Chemical  Analysis of Water and Wastes, 1974,  p. 207.


            5.  Nitrite (mg/1  NO -N):   was determined as  for NO  + NO. with
                                L,                              £.3

 a Technicon Auto Analyzer but the cadmium reduction step was by-passed.


 Ref:  EPA Methods for Chemical  Analysis of Water and Wastes, 1974,  p. 215.


            5-  Nitrate (mg/1  N0o-N):was determined by difference,


  (NO -N  + N03-N) - (N02-N)




                                       14

-------
     C.  Phenol (rag/1  Phenol):  was determined colorimetrically via the



4-amino-anti-pyrine method.  The samples were distilled to remove potential



interferences.



Ref:  EPA Methods for Chemical Analysis of Water and Wastes, 1974, p.  241.





     D-  Cyanide (mg/1  CN):  was measured using a Technicon Auto Analyzer



colorimetric procedure  with UV light and pyridine-barbituric acid as the color



reference.



Ref:  Technicon Automated UV Digestion Method





     E.  Metal s (mg/1  Total):  Total In; Mn; Fe; Pb; Cd ;• Cu; and Cr were



quantitatively determined by atomic absorption spectrophotometry using a



Varian AA-6 A.A. Spectrophotometer.  Water samples were treated with nitric



acid and refluxed on a  hot plate until digestion was complete.



Ref:  EPA Method for Chemical Analysis of Water and Wastes, 1974, p. 78.





     F.  Sediments



           1.  Total Residue (% Dry Weight):  The % dry weight  was determined



by placing = 5  ml of sample in a crucible which had been previously heated



for 24 hours at 103 - 105  C for 24 hours and cooled in a dessicator before



weighing.  The "wet" weight was then determined and the sample  plus crucible



returned to the 103 - 105 °C oven for 24 hours.  The final "dry" weight of



the sample after drying is then determined and the % dry weight calculated.



           2.  Total Organic Carbon (% Dry Weight - TOC):  Predried samples



(at 35°C for 24 hours)  were analyzed by the Oceanography International Total



Carbon System.   The sample, potassium persulfate and phosphoric acid were



sealed in glass ampules and autoclaved at 230^C for four hours.  Organic



materials contained in  the sediment samples were converted to carbon dioxide
                                   15

-------
by this wet chemical oxidation step.
Ref:  EPA Methods for Chemical Analysis of Water and Wastes, 1Q74, p. ?36.
      Instruction and Procedure Manual for Oceanography International
           3-  Total Kjeldahl  Nitrogen (% Dry Weight - TKN-N):   The procedure
for sediment samples was the same as  that employed for water samples but
digestion of 0.05 gms of sediment (wet weight) was carried out using
potassium sulfate and sulfuric acid.   The mixture was refluxed over a
flame until the organic nitrogen was  converted to ammonium.  The answer was
corrected to % dry weight using the dry weight determination described
previously.
Ref:  EPA Methods for Chemical Analysis of Water and Wastes, 1974, p. 182.
           4.  Total Phosphorus (% dry weight - TP04):  Total Phosphorus in
sediment samples was determined by manually digesting  (in an autoclave for
30 minutes at 15 psi)   the sample with ammonium persulfate and sulfuric
acid to convert the various forms of phosphorus to orthophosphate.   The
orthophosphate  was measured on a Technicon Auto Analyzer. In this colorimetric
method ammonium molybdate reacts with the orthophosphate in the acid medium
to form a heteropoly acid, molybdophosphoric acid.  This acid is reduced
by ascorbic acid to form the intensely colored complex, molybdenum blue.
The amount of color produced is directly proportional  to the amount of
phosphorus present.
Ref:  EPA Methods of Chemical Analysis of Water and Wastes, 1974, p. 256.
                                       16

-------
           5.  Metals (mg/kg dry weight):  Sediments were anlayzed for Cr;
Cd; Cu; Pb; Pe; and Zn via atomic absorption spectrometry using a
Varian AA-6 Spectrophotometer.  The sample preparation and digestion
were as follows:
               1.  Sample dried at 35°C (minimum of 24 hours).
               2.  Removed from incubator/oven and ground to "natural"
particle size  (large rocks, shell, leaves, etc. removed).
               3.  Sample dried additional 24 hours.
               4.  Sample weighed; 3-5 grams for silts and clays, 15 grams
for sands (i.e., ocean sediments).
               5.  Transfer to glass-stoppered Erlenmeyer.
               6.  Add equal volumes deionized-distilled water and
concentrated HNOs (^ 20 - 25 ea. = RN).
               7.  Heat in shaking water bath at 58°C for 4-6 hours.
               8.  Filter with .45 micron membrane filter, dilute to 100 ml
               9.  Sample is now ready for analysis.
          G.   DO/BOD
               1.  Dissolved Oxygen fmg/1  D.0.):in the effluent samples was
determined by the azide modification of the basic Winkler Method, with the
titration done potentiometrically with a Fisher Automatic Titralyzer.
Ref:  EPA Methods for Chemical Analysis of Water and Wastes,  1974, p.  51.
                                       17

-------
               2.  Biochemical Oxygen Demand  (mg/1 BOD,-} : The samples were
                   " I ™  ' •"	 ~ '  "   " "-•—" • -"  ,1111 IB-IP          ^J
incubated at 20°C for five days in the dark.  The reduction in dissolved
oxygen  (as measured by YSI #5750 BOD probe) concentration during the
incubation period yielded a measure of the biochemical oxygen demand.
                    River water samples were  analyzed for BOD unaltered,
incorporating indigenous biota and nutrients.
                    The following Bethlehem Steel samples were altered by the
addition of 1 ml  of stale settled sewage (seed) per 300 ml  of sample:  outfall
005;  00$ 007;  008;  010; and 012.   The seed was obtained from the Maryland
Department of Natural Resources.
                    The addition"of seed was to assure the presence of an
adequate bacterial population.   This alteration necessitated that a blank
(distilled water plus 1 ml of "seed") be carried through this experiment
to compensate for potential BOD contamination.
                    The following STP and industrial effluent samples were
altered by the addition of "seed" (1 ml/bottle) and by dilution with APHA
dilution water:  Allentown STP; Bethlehem Steel outfall 015 and 031; and Bethlehen
City Municipal STP.  Allentown STP samples were found to have significant
residual chlorine content and ^ 1.0 mg/1 of sodium sulfite solution  (0.025N
 Na2SQ3) was added to eliminate this potential interference.  These alterations
necessitated that a blank (300 ml APHA dilution water  plus 1 ml of  "seed")
be carried through this experiment to compensate for potential BOD contamination.
A dilution factor is also included in these calculations.
Ref.:   EPA Msthcds for Chemical Analyses of Water and Wastes, 1974, p. 11.

-------
          H.  Long Term BOD
               A set of laboratory experiments was conducted to characterize
long term oxygen demand and to differentiate between the nitrogenous and
carbonaceous components of long term BOD. The long term oxygen demand was
estimated by extending the standard BOD test incubation period from 5 days
to 30 days.  The nitrogenous component of total BOD was estimated by
measuring the changes in the states of nitrogen during the course of the
BOD incubation and also independently by a method of differences in which
a nitrification inhibitor was used.
               For determination of the BOD, , samples were set up as
described previously with the exception that 6 replicate sample bottles
were used as part of the nitrification experiment.  The dissolved oxygen was
measured for each sample after 0; 6; 12; 20; and either 29 or 31 days of
incubation to determine the long term BOD.
               One of the six replicates mentioned in the previous paragraph was
sacrificed after 0; 6; 12; and either 29 or 31 days of incubation to measure
Total Kjeldhal Nitrogen (TKN); ammonia (NH3); nitrite (N02); and nitrate (N03).
The changes in concentration in the states of nitrogen were used to calculate
the nitrogenous oxygen demand by the equation:
               NOD (mg/1) = 3.43  (AN02-N + ANOs-N) + 1.14  (AN03-N)
               where A = final concentration - initial concentration.
               An inhibitor  2-chloro-6(trichloromethyl) pyridine (TCMP) was
also employed as part of the long term study.  Two bottles of the six
replicates were spiked with TCMP and the dissolved oxygen measured.  The
                                        19

-------
inhibitor was added to stop nitrification while allowing all  other heterotrophic
respiration to proceed.  The inhibited bottles expressed only carbonaceous
demand whereas the uninhibited bottles expressed the total  BOD demand (NOD  +
CBOD).  By difference the nitrogenous  oxygen demand was calculated.
               The first-order deoxygenation constants k]o(day  )  of the NOD^
and CBOD as measured by the inhibitor  were determined by a  graphical  method.
This method relies upon the observation that the relation (1-10 "k't)  of the
classical BOD equation y = L0 (1-10    )  is very similar to the expression
2.3 k-jQt  [l + (2.3/6)k]Qt]   , where k]Q is the deoxygenation constant (day"')
and L0 is the initial remaining oxygen demand at time t = 0.
               Together the two equations reduce to:
y = L0 2.3 kt [l+(2.3/6)kt] '3  or  (t/y)1/3 = (1/2.3 L0k)  +  (2.3k)2/3t/(SL0)1/35
such that a plot of (t/y)'/3 vs t yields  a linear relation  with slope
m = (2.3k)2/3/(6L0)1/3 an(j intercept b =  l/(2.3k L0)1/3.  The BOD k10 and L0
values can therefore be determined as  follows:  k = 2.61 m/b and L0 - 1/(2.3 b^k).
The correlation coefficient for this linear approximation was taken as an
indication of the "goodness-of-fit" to the first order kinetics.
               Limitations of Long Term Laboratory BOD Experiments
               1,.  It should be emphasized that this was not a standard
method and that the data reflects not only the imprecision  of the
analytical methods (Appendix B) for determining the states  of nitrogen
but also the variability associated with biological processes.  The
interpretation oir the results should include a consideration of this
variability.
                                         20

-------
               2.  Nitrification is an extremely fragile biological  process
and is affected greatly by environmental  conditions.   The problems  with
using laboratory experiments to study field conditions (in situ)  are
therefore potentially significant.
               3.  Nitrification is a surface phenomenon with  much  of
nitrification in clear shallow rivers occuring on the surfaces of mud
(aerobic), plants, slime, etc.   Laboratory experiments  involving the
incubations of clear-shallow stream samples may not reflect the extent
of in situ nitrification.  The Lehigh River remained  quite turbid during
this study and significant nitrification  activity was expected in the
water column.
                                         21

-------
Station
  L- 1
  L- 3
  L- 4
  L- 5
  L- 9
  L-10
  L-ll
  L-12
  L-13
  L-14
  L-15
  L-16
Date

10/4
10/4
10/4
10/4
10/4
10/4
10/4
10/4
10/4
10/4
10/4
10/4
S- 6
S- 7
S- 8
T- 1
1- 2
10/4
10/4
10/4
10/4
10/4
1430
1340
1330
1750
1545

TABLE V
- A-l
LEHIGH RIVER STUDY
FIELD

Time
1650



1730
1604



1517



1308



1030



1115



1140



1200



1030



1047




1430
1340
1330
1750
1545
DATA FROM

Location
Right
Center
Left
Avg.
Left
Right
Center
Left
Avg.
Right
Center
Left
Avg.
Right
Center
Left
Avq.
Right
Center
Left
Avg .
Right
Center
Left
Avg .
Right
Center
Left
Avg .
Right
Center
Left
Avg.
Right
Center
Left
Avg.
Right
Right
Center
Left
Avg.
Surf.
Surf.
Surf.
Surf.
Surf
STREAM SAMPLES
PH
(SU)
_ «. «_
	
	
	
	
	
	
	
	
7.2
7.1
7.25
7.18
7.2
7.25
7.4
7.28
	
	
____
	
	
	
	
	
	
	
	
	
	
	
	
	
6.9
6.9
6.9
6.9
6.75
6.7
7.2
7.2
7.0
7.9
7.9
7.2
	
7.8
Tenp.
(°C)
14.5




14.5
15.0
14.5



14.5
15.0
15.0
15.0
15.0
13.0
14.0
14.5
13.8
13.5
13.5
13.5
13.5
13.8
13.8
14.0
13.86
14.0
14.0
13.9
13.9
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.3
14.0
14.0
14.0
14.0
15.0
15.0
15.5
14.5
14.0
D.O
(PPM)
10.8
i n o
1 U . O
ins
1 U . O
10.8
9.6
10.8
in o
1 J . O
in c;
1 U • 3
10.7
10.2
9.2
10.2
9.9
11.2
10.9
10.7
10.9
9.5
9.6
9.6
9.53
9.15
9.25
9.0
9.13
9.2
9.15
9.05
9.13
8.75
8.75
8.9
8.78
9.6
9.4
9.7
9.53
9.6
9.6
9.6
9.6
9.6
--- •,
9.8
9.4
10.0
11.8

-------
 Station
 L-l
 L-3
 L-4
L-5
L-9
L-10
L-ll
L-12
L-13
L-l 4
L-l 5
L-16
S-6
S-7
S-8
T-l
T-2
T-6
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
10/5
TABLE V - A-l (CONTINUED)
LEHIGH RIVER STUDY
FIELD DATA FROM STREAM SAMPLES

Time
1700



1510
1600



1500



1425



1115



1048



1029



1000



1215



1230
1255



1050
1200
1205
1540
1535
1145

Location
Right
Center
Left
Avg./Comp.
Surf.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Surf.
Right
Center
Left
Avg./Comp.
Surf.
Surf.
Surf.
Surf.
Surf.
Surf.
pH
(SU)
7.3
—
—
7.3
6.0
7.3
—
—
7.3
7.4
—
—
—
—
—
—
—
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
—
6.0
—
6.0
6.0
'6.0
6.0
6.0
6.0
8.1
8.0
7.6
6.0
8.0
7.8
Temp.
(°C)
14.0
14.0
14.0
14.0
15.0
14
14
14
14
15
15
15
15
16.0
16.0
16.0
16.0
15.0
14.0
14.0
14.5
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.5
14.16
16.0
16.0
15.0
15.7
16.0
15.5
15.5
15.0
15.3
13
15
16.5
15.5
«._.__
17
                                                      D.O.
                                                     (ppm)
 9.5
10.0
10.0
10.0
10.0
 9.6
10.2
 9.9
 9.9
 9.4
 9.4
10.0
 9.6
 9.4
 9.7
 9.3
 9.36
                                            23
 8.4
 8.0
 9.6
 8.66
 9.4
 9.8
 9.9
 9.7
 9.4
 9.2
 9.8
 9.4
 9.5
10.0

 8.73
           Chlorophyll  _a
              (ppb)
3.0
1.5
                                                                                 3.0
                                                                                4.5
                                                                                 3.0
                                                                                 3.0
                                                                                3.0
                                                                               10.5
                                                                                7.5
6.0
4.5
3.0
0
3.0
0
4.5
1.5

-------
TABLE V - A-l (CONTINUED)

LEHI6H RIVER
STUDY

FIELD DATA FROM STREAM SAMPLES

Time
1005



1140
1230



1315



0945



1240



1300



1315



1340 '



1140



1020
1050



0950
1345
1325
1040
1210
1335

Location
Right
Center
Left
Av9.
Surf.
Right
Center
Left
Avg.
Right
Center
Left
Avg.
Right
Center
Left
Avg.
Right
Center
Left
Avg.
Right
Center
Left
Avg.
Right
Center
Left
Avg.
Right
Center
Left
Avg.
Right
Center
Left
Avg.
Surf.
Right
Center
Left
Avg.
Surf.
Surf.
Surf.
Surf.
Surf.
Surf.
PH
(SU)
7.0
—
_ —
__ _
7.1
7.1
—
—
7.1
7.3
—
-__
7.3
6.7
6.6
6.4
6.56
6.5
7.0
6.5
6.66
6.3
6.7
6.9
6.66
6.6
6.8
6.9
6,76
6.5
6.8
6.9
6.73
6.8
6.8
6.5
6.7
6.2
6.7
6.5
6.4
6.53
7.7
7.6
7.6
7.5
7.8
7.4
Temp,
(°C)
12.0
12.2
12.2
12.1
12.8
12.8
12.8
12.8
12.8
14.5
13.7
13.8
14.0
13.5
14.0
14.5
14.3
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
15.0
15.0
15.0
15.0
16.0
15.0
16.0
15.6
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
13.0
15
— — _
12.5
12.0
15.8
                                                                   D.O.
Station      Date'      Time       Location      (SU)       (°C)       (ppm)

             W6       1005       Right        7.0       12.0       10.8
                                                                   10.7
                                                                   10.7
                                                                   10.7
  L-3        10/6       1140       Surf.        7.1       12.8        9.15
             10/6       1230       Right        7.1       12.8       10.48
                                                                   10.35
                                                                    9.7
  ,  r                              .                    ----        10.14
  L-5        10/6       1315       Right        7.3       14.5         9.85
                                                                   10.2
                                                                    9.9

  L-9        10/6       0945       Right        6.7       13.5        lo'.O
                                                                   10.2
                                                                    9.6
                                                                    9 93
  L-10        10/6       ----         ;          ;;y       ;;;:
                                                                    9.2
                                                                    9.0
    Lm m        "I •. j —                   "*          — - •— w       i ( • w-         27 * £ 0
   -11        10/6       1300       Right        6.3       14.5        10.0
                                                                    9.1
                                                                    9.1
                                                                    9 4
  L-12        10/6       1315       Right        6.6       15.6         8.*4
                                                                    8.6
                                                                    8.4

  L-IS        10/6      ----'        ;          ""/       ;:;:         8'46
                                                                    8.3
                                                                    8.4
                                                                    8 38
             10/6      1140       Right        6.8"       li'.O         9." 6
                                                                    9.6
                                                                    9.4

  L-15        10/6      1020       Surf.         6^2       14*0         9*8
             10/6      1050       Right        6.7       14.0         9.8
                                                                    9.6
                                                                  10.4
                                                                   o 03
 S-6         10/6      "--         "           ""       •••"
 S-7        10/6
 S-8        10/6
 T-l        10/6      1040       Surf.         7.5        12.5        9.4
 T-2        10/6      1210       Surf.         7.8        12.0       10.3
 T-6        10/6      1335       Surf.         7.4        15.8        8.58

-------
           oo o   o o    o    o oo oo o    o oo
Q ji    *• f- .

a, S.    — "^
-       -
                                                                   O
                                                                •cro
                                                      .  .       tr
                                                   =:— —      S
                                   'Cc i  -— co is?  t c^co

                                                                   o
                                                                rc
                                                                 2

                      25
                                                                fo_ o


                                                                  '^



                                                                   to>

-------

ooooooooocooooooooocoooooocooco    i
-'-'-1---
O -— tncnOrsjnoOOO — Atno^u^-
cnJa*WJ*-^o-»'~*Oro-£* — nooo— ^
                                                                         j— • -- o uj 01 01 *>J
                              — aD**-JC3-fi*o       en
                     -
              » — on— o —
                                                                                                              lo   |tn
OC03O— ' — -
                                                               j*aiCQO*.o
                                                    I   I   I   1   1   I   1   t   I   I   t
                                                                               t   1   I   1   I  I   I
                                                                            t   t   t   t   I   I  I   I
                                                       25

-------
    o
-— O
•a  -s
-a  o
 a- -a
                      co
                                     O    —)

                                     ^    3
                                  ***** O     fO
                                  •a -s
                                  •a o
                                                            oo
                                                            (-••
                                                            O)
                                                        O
                                                        a
                                        10)
          ro    o
   o    —'    ^~
   O    en    en
                                     co    —'    —'
                                            -v!    O
                                     o    o    -».
                                     o    o    on
   en

   O
      ro
      CO
      o
o

CJ1
                   I


                   CJ1
CJ1


O
 I
OJ
CO    —•    —'
      ro    o
O    en    \
O    en    en
                       i

                      a\
                                     o
                                     o
                               o
                               o
                                                      01
                                                                     o
                                                                     §
                                                                     -a
    Ol
    o
                         •      en
                         en    o
                         o    o
                                                      CJl
                                                         I
                                                        en
                                                                        01

                                                                        a
                                                                           m
                                                                           re

                                                                           o
                                                                           rn
                                                                                     ca
          en
    01    oo
    o    01
                                     O
                                     O
                               ISi
                               en
                                                  en
                                                                        o
                                                                        73
                                                                        73
                                                                        m
                                                                        CO
                                                                                      I
                                                                                     CO
    co    —'    —'
          -<    o    H
    o    -e»    —     i
    o    en    en    a\
                         OJ    —J    —J
                               _i    o
                         o    —•    ^
                         O    en    en
                                                         I
                                                        ~~t

                                                        O
O    — '     — '
      O     O
      en    ^
      O     en
                      CO
                                         o
                                         o
                               o
                               Ji
                               CO
                                                  O     I

                                                  en    —<
    co    —"
    •      ro
    o    o
    o    o
                en
                   co
                   i
                         o
                         •
                         en
                                            o
                                            ro
      o

      en
 i

ro
          ro
    en    o
    O    en
                en
                   co
                   i
                   CO
                         -«J    O    O
                         •      o    ^>.
                         en    o    en
                                                         i

                                                        co
                             27

-------
    •3—10
•—.3-    -"•    »
T5  rt>     =    rf
T3  3     0)    fD
 =  O
                   GO
                   rf
                   O
                   3
                            •o  CD
                            T3  3
                             3O
                                                   
                                                          a
O    —'     O
o    -e»     *•>.
01    o     cr>
                                          o    -^
                                          — '    O
                                          (xi    o
                                             o    r-
                                             ^s.     I
                                             en    -J
o     r\3
—i     co
OJ     O
             i

             tn
                                          O    tn
                                          co    —i
                                          *>    o
                                                    i
                                                   co
O     O
—i     en
co     o
      O

      CM
                        I

                       en
                                o    ro    o
                                INS    CO   **K
                                o    o    cr>
                    i
                   .£>
O

CO
o

co
          en
          -ft.
          O
ro

O
      o
      ">•»
      en
                 o

                 01
                                O    en
                                ro    O
                                O    O
O

CO
                                      ro
                                      en
                                                    en
                                                   en

r~
i
cn





r-
l
VO


o
5
>
-n
O
73
CO
— !
73

3
co
r—
m
^c
HH
£7)
^^
•J.
^3
»-H
m
73

CO
c:
0
_J
•"T
3>
CO
1
m

<
i

>
i
_e»

-<
O
no
co
CO
en
                    I
                    CTi
                                          o     ro
                                          o     -e»
                                          CT>     O
                                                                    •u

                                                                    m
                                                                    CO
VO    O    CO
cn    ^-»     i
O    CT>    cn
                                       O
                                       O
                                                 O
                                                 *»
                                                 Co
                                             O
                                             -*.
                                             en
o
CO
en
       en
             co
              i
                                          O    —'    --
                                                 CO    O

                                                 en    
-------
.<<
 O)
 3
 —••
 C-
 fD
             O
             &
             rt
             ftl
                    O
                    3
                                    O
            •o  01
                c.
                fD
                                                       CO
                                   &
                                   cf
 A

 O
       —•    O
       •*»    "-•»
       O    Cn
                                    A

                                    O
                                          -•4    O     r-
                                          O    •*».     I
                                          O    en     —i
 A

 O
        ro
        eo
        o
              en
                    en
A

O    —J
•      On

O    —'
—'    O
                                                O

                                                on
                                    i
                                   CO
 A

 O
       O
       On
       o
                    cr>
                                    A
                                    o
                                          ro
                                          co
                                          o
                                                                       o
 A

 O
       en
       -P»
       O
                                    A

                                    O
                                          on
                                          O
                                          O
                                    I
                                   en
                                                                        O
                                                                        m
                                                                             rn
                                                                                    D3
 A
 O    —'

 b    —'
             ^
             en
                     I
                    ro
                                    A
                                    o
                      4*     o    r-
                      ro    -^     i
                      en     en    vo
                                   o
                                   73


                                   3
                                   73
                                   m
                             m
                             73

                             CO

                             cr
                              i
                             en
o    —'    —•
      CO    O

-P>    en    en
                     i
                    en
                                     A
                                    O
                      ro

                      o
             o

             en
       i

      o
                                                                        oo
                                                                        3*
                                                                        CO
 A

 O
       O
       vo
       en
       o
              en
                    i
                    en
                                    A
                                    O
      O
      -e»
      C»
                             O     I
                            *»••    — '
                             en    — '
 o
 •


 en
       ro
       o
       o
              en
co
 i
                                     A

                                    O
                O    —'
       co

       en
O

en
 i

ro
 O    —•     —•
 ro
 en
       co
       ro
       en    en
co
 i
CO
                                     A

                                    O
       o
       o
       o
o

en
 1

CO

-------
 NJ    —
 3
 O
•a
T3
             O
             3>
             fO
                    Go
                    O
                    3
M    — I
-"•-••
3    2
O    
             O
             »
             !-!•
             CD
                                co
                                r+
                                OJ
                                O
                                =3
                                                                 O
                                            -a
                                            •3
                                             CT
                                                                       tD
                                                                                    rf
                                                                                    •^4

                                                                                    O
ro
o
       on
       -fta
 l
r-o
IN3    O
cr>    u>
o    o
                                             O
 I

o
                                      o    —'
                                ro    ir>    o
                                01    oj    ^^
                                O    O    JSi
 i       i
 l       i
 I       I
 I       I
 I
cr>
ro    —'

o    un
                                Co    o    o
                                •>-J    O    "^
                                o    oj    -e»
       CO
       o
co

CTi
ro    -j
ro    -e.
O    O
                                                    ro
                                —'     O
                                CO     —i
                                O     en
                                                                                    o
       -to
       O
                    oo
             —'    ro
             wo    o
             o    o
                                                    u>
                                ro
                                O
                                      s    ^
                                      en    .fa
                                                                                              o

                                                                                              o
                                                                                              -n
                                                                                              o
                                                                                              CO
                                                                                              73
                                                                                              m
                                                                                                    o
                                                                                                    33

                                                                                                    00
                                                                                                           m
                                                                                        i
                                                                                       Ol
 —'    OJ
 ro    oj
 o    o
             ro    o
             -S»    CO
             O    O
                    i

                   -^>
                                ro    01
                                Co    en
                                o    o
                                                                                              CO
                                                                                              m
                                                                                              CO
                                 ro
                                 o
                                 O
                                                    en
                                             01
                                             o
                                       -J    O     I—
                                       co    —     i
                                       O    -fa     CO
                                 ro    —•
                                 4=>    O
                                 o    ro
                                              o
                                                    cr>
                                             ro
                                             o
                                             o
             co
             O
                                       en
                                       O
                                 ro    u>
                                 o\    ca
                                 o    o
                                                30

-------
I';O'^('BO.'5<'3<'Si"DfD'^f3f9t "3 ^fDOCCrD^DOOCO^i^r— r*r^-

Ifllli'iliilii'li'iflfil'liilliliii
ooocoooooooocooooooooocoo
u> — — —• — —	— — — — — OOOOGOOGOGOO
                        """1
ooocooooooooooooooooooooooooooo
*  " ^ ~- * ^ -   •- -  ~ - -»- •*• "- "* "^ "  ^" ** "^- "  **-« ** '^- " "*-
wO— rsjOfviutOroc-j— r
O—r-ooooj — r>oenojJi—'
                        —- I I  f\) I
                                                —H3
                                                tt
                                                Ol re
                                                      CD
                                                      S3
                                                         •33

                                                         V>
                                                         —1


                                                         §
                                   I I  CT\ CJi O O O   _.
                                   i I  O O O O O O  S
                                                op-
                                                00 <
                                                « M •*.
                                    i  O O O rsj —• —
                                    I	
                                    i  u> ui tn o CTi O
•O (I
3 ire
                            31

-------
--  01  2  2

      *< 01     ,T> -<  ~  ~
   Q  p-*i    cr :

   o  ='    <
O O O

01 tn A
            O  C O O O
            ^- -^^ •s-- \ ^--
            O*>  en ^» CTi en
                                  »
S;
      ,£»    CS -C* U1 O —
      O    45» UJ O C O
      O    tJi O O C O
CJ U) VI    U)  U) Ul I
  • en CK

   i-o
                                  ro
                                  3
                               ora
                                  re
                                                  —    >
            O ro r\j i
                              •old
                              -CT I.
                               SO
                                                  73

                                                  tfl
                                                  O
CO CD 1C
O O O
             rc <-j uj
             «3 O rsj
             O O O
                               •a
                               •5
             32

-------

              E.-
 oooooooooooooooooggogoooc


                                                  '""~
 ooooooooooooooooo  ooocoooooooooo
 •'-•••'-----'---     •••-•-•'->->'
                                                                                                 la
 oocoooooooooooooooooooooooocooo
 01
 O
               — 'rou>rot\3iM— 'roro— -^r
                                                                                  — *o—   r3l:z
                                                                                                               2


                                                                                                               73
OOOOO

co
CTt
O
                                                                      — - Co co    cncnno
                                                                           'Cn—•—
                                                                           3 CD CO
zroropooss^ozzoooooooooooooooo— «(ji--— •--
"**'*"l
                                               o
                                               ^.
  1 

-*Jff*U>a50^LJ —-O' . 25 ui-j ••-—•• i m u o ro ui ( I^J-*4*«J**JCT*W**JCJllN3~'t-JCfcJCn[ i rsi i i uj i i — i i ro 33


-------
                    i=
                    io
O

O
                     3 o
                     5 O
       owe;
       UJ O O
       o
       o>
       05
       —• (jj O
       Ul O O
                     i
                            1  '
                                I—   rn
       332

       oca
                   -aiz
                   •a O
                   •a co
                   •oo
                   30
                   •a o
                   •ca
                     IS:
       34

-------
 fD

 O
-a
•o
 3
T3 O    OO
fD O     <-r
2 2     e>

O O     -••
Q. I/I     O
   -"•    3
   rt
   fD
 fD
 3
 O
•0
T3
 -O O
 fD  O
 -5  2
 -J.-O
 O  O
 Q. l/>
                                                CO
                                                rt-
                                                OJ
                                                O
                                                3
-o     -o o
3"     fD O
fD     T =
3     -.-C
O     O O
—'     C_ 
                    •o

                     i
                                                                    fD





•
o
on
on









•
O
ro










CO
on
•
(£>







^
00
ro
o









o
A

ro
oo
o




_j
o

*>

_j
oo
o
o







_J
o
"^•^
-fe
_J
on
on
O









__<
O
oo

«j
on
oo
O




«J
o

oo

on
O







_,
O
^**^
oo
CO
fD
rt
3-
—4
fD
ST
fD
3
CO
rt
(^
HL
o
-e»

CO
fD
j?
1"
oo
fD
fD
"™*
=tfc
0

on

CO
fD
rt
3"
fD
3"
fD
3
oo
fD
fD
=te
O
OO
— ->
__J
^1
on
O

*
o
-pa
— '




—
-C.

^
oo
o
*
o
oo
-p.



.J
o

^

o
on


•
O
— •


_J
o
***^
-&
-*J
*sj
r\3
o









—
oo

—1
o




_J
o

oo

o
o







«J
o
"^^
oo
CO
fD
rt
3"
_«J
fD
3-
fD
3
oo
rt
fD
fD
=«fc
O
O

C3
fD
rt
3-
fD
3"
oo
^>
fD
fD
••^
=tfc
O
Q
CO

ro
fD
rt
rr
fD
3-
fD
3
oo
fD
fD
=te
O
v-J
O
•
ro
o
o

•
—1
CT1
— J
0
•v.





O
o
o
•
o
MD
0
*






•»j
-P>
on


•
^
ro


_j
o
****»
-C»
•
ro
O
o





0

oo




0
o
o

0
oo






oo
o







	 1
o
-^»
oo
^
_^
_«*
fD
3

Q
jr
3
00
•H





CO
fD
rt
3-
fF1
fD
on
™\
-o






CO
fD
rt
-a
Fn
O
f— r~
m
a ic
— i S
-n 73
O HH
33 <
FT
m 50
•n
-n oo
i— —
m c
"Z. -<
i
•n

oo
T3
1 —
m
oo
3-
rt>
3"

3
00
rt
fD
fD
=tfc
0
O
on
















— 1
CO
1—
m
^^
CO
1
oo



















                               o
                               CTl
                               ro
—' —i    CO
OO CTi    fD
-C» —'    rt
O on    3-

          fD

          (0


          oo
          rt
          O
          fD
                                     o o
                           o
                           ro
                                                                —' —•>     CO
                                                                on -^i     fD
                                                                —
-------
4?
CU
3
-a

I
-c o
ro o
-5 3
_u-a
o o
O. t/i

   rt-
   CB
co
rt-
QJ
                 O
                 3
                           O
          fl)
          3
                   -a
                -o o
                ft  O
                -5  3
                -*T3
                O  O
                O- l/l
                                    ro
                          oo
                          rt-
                          a>
                          rt-
                          .a.
                          O
(a
3

a.
re
                                             -c
                                             -o
~u o
ro o
-5 3

O O
Q. 

   rt-
   ro
                                                           O 73
                                                                     oo
                                                    o
                                                    3
 A
 O
       oo tn
       ro en
       O O
CO

rt-
31

ro
3"
ro


oo
rt-

ro
                    A

                   O
                          tn rss
                          O O
                                           CT
                                           rtl
                                    ro
                                          no ro    —i
                                          oo    —'
                                          o o    n>
                _i _j    oo
                00    rt-
                                                     o
                                                     tn
                                                           o o

                                                           42. CO
                                                              oo

                                                              -a
       o  o
       ^•^.
       -p»  co
o

-p.
                                    =*!:
                                    O
                                    O
                                                                               -<
       ro  on
       oo  oo
       O  O
 in
 ro
          C3
          CD
          rt-
          3"

          n>
          3-
          ro


          oo
          rt-
          ro
          ro
                           A
                           O
                OO —I
                o o
                                           CO
                                           ro
                          ro
                          3"
                          ro


                          oo
                          rt-
                          ro
                          ro
                                    o
                                    on
                                           o o
                                           o o
                                           o o
                                                               oo
                                                    co
                                                    ro
                                                                     ro
                                                                               O
                                                                               73
                                                                               rn
                                                                     73

                                                                     oo
                                                                                            CO
                                                                                             I
       o o
       -^--^
       -e> oo
o

on
                          o o

                          -K» OO
                          o

                          §
                                                               oo
       oo tn
       O Js»
       O O
 en
 o
       o o

       -p» OO
                 CO
                 ro
          ro
          3"
          ro


          oo
          rt-
          ro
          ro
          o
          oo
                ~'—'    ^
                ji ~-j    ro
                          o o
                          tn o
                           A
                           O
                 o o

                 -e» co
                          ro

                          ro


                          CO
                          n-
                          ro
                          ro
                          O

                          O
                                                     O
                                                     ro
                                           _! _1     CO
                                           —> -s»     ro
                                           -c» oo     rt-
                                           tn o     3-

                                                     ro
                                                                      oo
                                                                     ro
                                                                     ro
                                                                        m
                                                                        oo
                                                            O O

                                                            -t* CO
                                                     =»=
                                                     o
                                                     o
                                                     tn
                                  oo eft
                                  -C» — '
                                  o tn,
                           A

                           O
                                           w
                                    ro
                                    3-
                                    ro
                                                     en -vi
                                                     —' co
                                                     o o
                                     A
                                     o
                                            oo       —j
                                            ro
                                            ro
                                  o o

                                  -C» OO
                                                     o o

                                                     -E» CO
                                                               00
                                                               ro
                                                     ro

                                                     ro
                                                     3

                                                     oo
                                                     rl-
                                                     ro
                                                     ro
                                                     =«=
                                                     o
                                                     o
                                                     en
                                     36

-------
                                                                                 t-
                                                                                  I
 z z
 o o
 o o
 o
 •   O
 •s»  o
 01   1
     0
 / — \  C3
 >  o
 z  o
 o
 tO
 o
 01
  t>

  o
 Ol
  II  II

1 3 -S
 o ro
• (-fa
    o
 a. -s
 n> ri-
 ft- ro
'  to
 cr



O 0 O
***** "***• "****



roro^- ro ro i— • ro ro ^
vootooso OOroOso vccrooso





ro i tn -j ~-J J^itntnoi oii^tnto
voiovovo ro i ro tn -vj o i >— os o
H* O Ol Ol •£»• OstnOO 01 O ~-l Ol
Z Z • • Z ZZZ Z Z • •
i.i— i to . i . . . . i . o to
O I O to -C» OlODO O I O -J O
. tn vo • ... . . to *»
Z Z-Z Z ZZZ Z Z-Z
1 . tO . 1 . . . | . 1-1 .
O i O i-1 O C i O ~ O O I O tn C5
. js, . . ... . . CO .

O oro OlOOO O I O O *~i
1—1 I 1 tn
-U CO

KJ i_i H* i_i Ul OIOIO1 1— i I— i I— ' 1— i
OivoOsOs "**J I tn Os i— * -o. I ^4 tn tn
H-I ,£* H* rO Os CO *• Os VO -C* H-* O
Os " ro
i
01 010 Os ji.ji.i roitoo
vo too roooi vo i -c* i— i
.u ro
Os Os tn 01 tn tn .u ro .&. J^ 01 i— '
O .... i .... i
tn i— i yi H- i oo -C». tn tn i ~j .u cc oo i
oioioiro Jt» 01 01 O 01 to ro i— i
. . . . . . . . . . . . o
co^jrooi Osvorooi ooo^--~j
rororo i— • i— i i— • ro t— > i— i HJ o
. . . . o . . . . O .... 0
^J.e».oico rotnoiro -^i os *>. i— >

i— > i— ro i— ro _ (— i
• .. .. • . ..
ootn-o ~ovoro w^Os










ro ro ^
vo o to





tn i yn
0 i vo
vo O
Z Z
1 •
a i o
'
z
i i—1
O i O
10
1
b i b
tn i tn
*> tn

Ol 04
Ol i O
*. to
t— 1
H- 1 I—"
ro b
CO Ol
. »>. tn
i— ' 1—1
»-> O 00

ro -~J *>.
OS A.
. .
l-i tO
tn tn *»
...
i— i 01 ro

tn js.
• i •
-J 1 VO




1—4
O
*^^.




OS O




i— • i— •
O *•
00 OS
00 o

Ol ^-J
Ol -~J
00 (— '

tn o
OS tn
to **

tn i
O i
CO

to to
ro o
-J tn
CO Os

ro
ro
to

• O
t— 1
ro
• O

i— i
• O
tn

ro
i
CO |










ro to H-
vo o ro os





01 i *. tn
f I *» Os
tn vo -~J
Z Z •
1 • H*
O I O Ol
• ro
Z • Z
• 1 O •
o i co a
Ol •

O 1 O 0
1 CO
Ol

)— t l~l |_4
-fe i to ro
VO O O


Ol O O
Ol -U -ft*
^
^J ^J tn Ol
....
os i— i co os
tn tn j* 01
• • • *
Oi t— ! tn ro
ro ro i-" O
....
tn o Oi -u

1—1
. i . .
tn i tn ro





O
^•^




O





Os
-J
Os

O
VO
Os
Z
b



^
Os





I
1












O
3
a
~
rt
CD
i— 1
n
c
cr
P
r+
M"
O
y
•g
r3

^



-a

•g


-3


*^3

^
T3
3
»— i
"T3
^
_.
-5
3

^
^
5








a
w

w

O
1^1


H
Z
2

*"•

•-X
0
ro

>
O
to

§
Ol
>
O
Ol
03
O
°
,
r:
^
-3
n
s:
-a
o
ft-
i»u
o




















.







-


.



o
c^
o
z
o
a
*
z
0
o
*
*
H.
^^
i—1
a>
                                                                                                                                                I
                                                                                                                                               o
                                                                                                                                                i
                                                                                                                                               tn
>

5
                                                                                                                                               m
^J


73
l—.t

<
cv:
>
CO
                                                                             37

-------






*

o
c

n
P
|_i
O
V— ^
11

w
•
J^
0*1

,— ^
'^>
z
o
NJ
y
o
c^
*••"'
^
J_,
*•


c- cn co
1 1 1
to oo — j

*

O i_> b-i _<
a o o o
~^ \ \
Q ^ ^ ^
n
jS

v~"'
n

53 NJ NJ >-•< NJ NJ i— ' NJ NJ H- '
O tO O NJ ON O tO O NJ ON O  NJ NJ t— '
tDONJCNO tOONJONO









f-J 1 -fe *. ^ NJI^UIUI
H-1 j *. c^i cjn to t oo 0-4 0*1
CO UDWW i- -JWW

z z z • z z • z
1 • • O • 1 • i— ' •
un . • O •
00
rr
P
rt-
H'
0


o
02
rt
ro




3 0
O 02
C "^
cr w
P2
rt O

O





"§ ?S
^ tZ


"3 Z
3 (JT






fa'
cr
C5

=*
^j

.
n
i













o

a
3
2
53
O
z     z; •  z

b  ]   c w a
	•   •  •      z     z
OO     -O.U1HJ     CO  l   NJ i—'(—i     •    I-

             00                  O     •       ^
z     •   z z
'    '   O •   •  —<  <•—>
C  I   00 C3 O  3
                    00     W  i
                                        00
o c w
NJ N; i— ' ^-<
i ...
i. i j^ cn 01
i. 4» £» —
to tD O
O-i t/J C^J
CO ^J C^ t^J
1
o oo oo ex i
W W NJ H-»
NJ O ~J ON
. . . . o
OO OO 1— i -vl
-fe. A. >->
NJ NJ W
O tn o
ON ON NJ
NJ 00
NJ W H^ 1— '
1 ...
^~* 1 ^O ^ r^
ON CA^ CgH O"3
NJ
NJ
-0 NJ C
NJ tO I—*
OO OO OO
i» w " h-
KJ I—" -J >-"
. . |
**J ON -^3 '-^ l
i— • W i— ' i— '
^•^ H«* ^ ).«*
H- ' ON — It—1
»— *
1 1 1 O
O^ 1 1 l
W NJ
l—1 NJ
. . O
O --J
~J O -O O O l— O OO
tc w *— ' oo
--J I— '
1 ... 1 . 1 .
^INJNJW ONlCHOJW tOIOOtOOO
to OCOON >-^ NJONOO to --JNJO
O * W to
1— ' 1 1 1
CO h- ' O NJ 1— ' O ^ O*—1
O^ ON CO O"J ^^ ^^ tO ~O NJ
J^h tA] ^—1
H^^^ICO CjJOJNJ^^ NJ NJ NJ f— »
... 1 .... 1 .... 1
00 ON C*J ^^ 1 ON ON tO to 1 ON ON ^^ NJ 1
-JONO-itn NJNJNJh- H-" NS i— ' 1— '
-feCO-0 NJ^^Un 000-JNJ
W NJ 1— '
.S» .tk !-> W f-> t-- OOOO
.___... o . . . . o • • • •__ o
CO W W i— '
NJ WNJ O ONW to ON'Jl
T3
3
-3
3
^
1
2

1
•3
L-^-
O
NJ
O
o
_0
0
_3 f~^
=r S
31
o z
a o
i— ' ~
^~
s— l
rrs
?a
>
2
m





                                                 38

-------
§§
a n
n  11
b?
 n

> o

o
•o
•+
!>



O
~* ~ r^ c~"
i 1 "i i
•P* W NJ H—



H- h— H- I-"
O O C O
""•x. ^S^. "*N^ ^v^.
-S> *> 4* -fe





NJ NJ H-i NJ NJ h— NJ NJ 1— i NJ NO H- '
tD O NJ ON O tO O NJ ON O  t—i i— ' 4^ i 4a> H-I 4^ 42« i t/i o H- o^i-^OONj
W 1 ON ON 4^ NJ 1 NJ OO 00 O-4 1 W 4s. 45k ON 1 OO k- ' O4
ON NJ -J tO W WOO^J ON 00 NJ VO *• -J ON O


Z Z • • Z Z • • Z Z • • Z Z • •
i • ON oo . i • -vj oo • i • en ON • i-w^j
OidOC Oi3-6»o OiOVO-^J ~i3NJO
IOOO . . 4\i 4^» . . Ln OO . • *- O


Z Z-- Z •-. Z Z-- Z Z-Z
I • t— ' O • 1 W *-* O • l-t-"O • i • W •
aiaoooi oiH-~jji. aiooNji. 0,000
• *ONNJ • ^C^K-1 • *O>--» * *^*

II 1 II
C 1 O l— ' 1 O to l— O O i— ' O OW
C^iUlO^I 4^^O^ -^J^l^^ to
NJNJ-U H—WNJ >—'*— ' O -P^


NJ NJ H-> H- ' NJ l—.K-'l— l NJ NJH-JH- NJ fvj f_l (-.
ONitnONON *»i^un*» i—i i i— i en en WiNJuityi
ON NJ^Otn NJ NJNJ-J 00 ON-vlW ON OtO~-i
4^ 00 ON --J ^ O VO ON


t""1
OOOO  -f^- -^> ^_i ^_t J^g ^^ ^) f\j
tsJNJON I—I--J.OO 4i.NJH- ON

^J-JONH-i -J ~-J ui i— ' ON ON VI >— i ONONOHNJ
• •••1 ••»•! ••••! ••••[
•t^NJNJOl trtH-iOOONI WH^t-^^l -vJONON-^ll
W NJ NJ i— • NJNJNJ NJ NJ NJ 1— • NJNJNJI-'
• ••• •••» **•• ,•*•
O 00 w *— • cntDOOO 00 ^\ »— ' w -^4^^-*^
^o,Wo
. . . . o ....o • . . . o -'--o
^.j^icoo cx^ooco -Ca-uioo counw
w
Js*. OJ ii W tsJNJO>l O^hOH-1
.« • • •• • »• •(*.
j^co o^ NJ o^ "^j ^ vi O^I^QVI


J-H
1
0



K— »
0
^^».
•^





NJ NJ »—
(£> O NJ ON O




W 1 -fc. —
. . . . o
NJ W ^1 NJ


• • •
O O ON


P
it
0
3


O

(t
ra



=3 C
n P
C X
cr M
P
(t O
o
3
"3 H
1 §


•a z
3 w


T3 Z
-3 0
3 NJ


T3 0
•a z
3 0
NJ


"3 Z
X3 0
3 c/j



"3 >
T3 Z
3 0
c^

"O CO
"3 O
3 0
^3 H O
*3 n cs
= s o
^2 -3 Z
*3 n o
3 S 0
*d *
"3 0 Z
"3 P O
3 i"-1 O
O *
*




p
cr
0)

^:
^.j
i
o
i
1—1







b
en
H
p3

C3
O
o
o
g
o
G
Z
rn
a
-3
1— 1
*^i
cn
73
cn
§
2
rri
C/3















                             39

-------
                                           c~
                                            I
                                    r-
                                     I
                                                      en

                                                   C- BS
                                                   I

                                                   en O
 z  z
 o  o
 o  o
 O
 P
 O
     n
     2
     -3
                                           C

                                           en
                                    o

                                    en
                                                                         SJ
                                                                         CJ"
                                                                         1—•
                                                                         TO



                                                                         -<


                                                                         n
 11   11

 w  cr
 •    O
 4^  3
 W  1
     n
/— v  C3
 >  O
 z  o
 o
to
-f
 0

 o
GJ
 o
to to i— '
to o to c
tO to I-* IO Ni I— '
N O to O tO ON O tO ^S to C
to to i—" to to *-
"NO tO O N) ON O tOOtOONO
Days of
ncubatio;
W 1
to i
*^


z
1
0 1

2
b I


o

(— »
w


2
.
O

to
o


N)
t— »
O

ON -4
o H-
H-* ON


,
tO N)
H- 1 CM
t-i OO
• 2
O •
OO O
00 -


o
00
00

e^j i
00 |
en


2
I
3 1

2
• i
a i

i
o
£>.
OO

&>+->£>
O ON OO
O 00 OO


Z • •
en en
O e*i oo
• o *>
en h- o
to Co Co


en P-»
t— W

N> 1
en i
ON


2
• i
a i

z
i


o

en en c
OO 00 -~J


Z • •
• O O
O ON en
• O*J {***>
z z z
b b b


o o

^~j i
w


z
1
a i

z
i
O I

1
o
en
ON

•U O O
i— en en
O J». *»


2 • •
en ^j
C ~-J O
. -^ *.
2 • •
W O
a o en
W ON

1
O to
On Ji.
O"v "**J

tO 1
--J


2
i

'
2
I
C I

I
O
en

•6» tO •&
to en 4^
e^ to ON


2 • •
• £^ *sj
a ON o
• to ^1
2 • •
• to o
O to en

i
o to
en w
4^ tO

ITS
1



T3
""C5


•a


"d
~3
3

H
z



2

Cjj"

O
to


Z
O

0
o
H
m
3;

..^
0
d?
>
>
o
^_
z
r"
rn
I—>     H->  H-> I-1     W     tOIONJ      H-'      I—'  I—'l-i      tO     tOH-l—•     tO     tOt-
    I   ...           I   .   .           .    1   .   .   .           I   .                   I   .
tOiONenen     i—<  i   w  NJ o      e>4itototo      4^i4^.CNen     4^.ie/JONeri
O     enwoo     to     e»JO->)      en      js>toKj      ON     to»"to     o     OO"
       Oto                oototsj                                       -J4^                ~-JO^
                                                                                                                                      •3  o
                                                                                                                                      3 OJ
                                                                                                                                                         m
                                                                                                                                                         73
                                                                                                                                                         en
                             e*i     o  o
                             N)     -o;  4i.
                                        00
                      O     tO
                      *>.     ON
                      OO     ON
O  C        to     OO  O
to            (ji     to  to
              ON     ON  e^J
OO     ~-J  O
ON     ON  ^J
-d  z
 3  O
                                                   to oo  ON to
                                                          .   .    i
                                                   4^ W  to 4^  I
                                            to i—i

                                            to to
               --J -~4  CN  tO

               O ON  4s.  en  i
                                                                                                                    ON  ON en i—>
                                                                                                                    en
                                                                                                                               to  i
                 -3   CO
                 T3   O
                  3   O
                             to to     i—i

                             -b o en  to
                             to to H-

                             O H- ON
                      en 4^ w

                      o to o
                                                                        en e»j  o  -sj
                                                                                              w efj  to ^~
                                                                                                                    ho to
                                                                                                                            0 O
                             e^             o o o             •£* js* 4^  H-I         o-i -^
                             .   .    o     •   •   •   o  o     .   .   .    .   o      ••
                             tOtO         ~JONW             ONCTNOO         OOO
                                                                                                                            to O
                             en
                                    O  i-
                                                          O  O
                                                                                               H-*     SO
                                                                                                                    00
                                                     h=  H  n
                                                     w  o  ea
                                                     ! B  2Z  O
                                                      •3  H  Z
                                                          n  o
                                                                                                         r>  w  O
                                                                                                         31-10
                                                                                                             o   *
                                                                                                                  *
                                                                                  40

-------
  *
  *  *
 o  a
o  H
P  n
^  s:
n  *a
 ii   n

 CrJ  TO
 •   O
 4^  a
 CM   t
    n
r—s  C3
 >  O

 o
K)
>

O

co co
i i
1 — 1 ON




W4 H-1
0 O

en en




Is) ts) l—" NJ IS) 1— '
VO O NJ ON O VOOts)CNO




h— i 1— ' 1— '
c^ h-> en en
OO 1 4i CO CO • 1 • ts) Is)
ts) i ON --i ~J oicecioo
I—1 ON CM W • i I-J H-1

CM O I-1 Is)
• • • z -z.-z.-z.
ON i en VO VO • i ...
-o i a i o o o
. ...

en ts) *-"
... z Z • Z
-£^t oors)ON 3i O 4^ O
^5 • • *sj *

en ts) H- 1
en ON O O O O
CO N) ON *»



4^ l_ * 1-4 i«4 »_> H-* >-4 1— '
ooij^enw w i w ts) N)
ON 4^ O oo c*i ts) o en
o en
en 1
j». b i— o o o
OO ON ts) 00 ~-J 4>

en is) i— i
~~1 OO fs) ON H- (-4 O O

-~) oo ^ en i ts) o vo en i

en en 4^ ts)
.... ... '-™5
en o *— ' to oo ^j 4^
en ts)
ts) en 00 Ln
. . . . o . . . . o
.u co o -t- *. w en o-i

en vo 4>
. . . . o
O W Is) -fc* CM


H r-
i i
ts) en




»— ' H^
O O

en en




ts)tOf-4 ts) IS) H- ' IS) ts) 1— «
VOOts)ONO VOOtOCNO VOOts)ON





v>i i 4> en 4^ eniONONON 4^ienen
WlO^VO O 1 ^ i— ' vj HJI^JON
W OO1"1 OO W O-J -£>• O VV4ON


Z ZZZ Z Z-- Z ZZ
1 ... . i . H-* N) • 1 • •
OlOOO Oi3VOts) OiCJO
... . • en ->j • «


Z ZZZ Z --Z Z -Z
|... . IK-"O> • 1 O •
oiooo oi-~avoo oieno
1—1 tn • • en .


OOO Oi—O OOO
~J O en
>— en en



.£* 4^e»iw ^ i— ' i— 'i-4 w e^OJ
OlOVOOO VOl^dONON OOlCNON
VO JilsJOO ON en o i— ' ^J VOO
vo en en
i i
IS) h— 'O CM H-iO e*3 h-*O
^ON4^ en4s>o en*kO
vo en vo en


i— ' i— ' o O j^j^w^* enj^e^rs)

CM4^OOC>)I K) i— ' H- ' Crt 1 4^004^1— >

ts) ts) t-4 en w ts) i-*

oovoene^i 4i i— ' ON vo i— ' 4i en 4s>

OOOO i— ' Is) 1-4 H4 i— •
. . . . o .... o ....
enenwo ooocn4i. w4^vOON


• •• . •* • ••
O^Jts) ONCMCn 4^00ls)


H
i
f^t




k_t
O

en





0





-J
o
ts)


z
b
•


z
b








en
ON






i
1





0





CO
ft
P
t"^
'— '•
o
3


O
P
rf
re


3* 0
n P
C X
o* w
r+ O
H- Hi
o
3

T3 —3
"O ?*>
3 Z



2 z
3 or



-o z
"O O
3 is)


"3 >
3 0



*T3 Z
T3 O
3 o^


"d >
13 Z
3 O



T3 03
•XJ O
3 O

*t3 -9 O
*3 O CC
3 2 O

•^3 -3 Z
^ 5 §
•5 ^*
T3 n z
"C P O
3 >— ~
n *






p
0*
TO

^
^
1
n
^








o
z
o
H
?3
s
C3
O
o
3
H
6
. 	 ,
z
§
n
73
m
^3
'— '
rn
73
CO
•3
CO















                                                                      41

-------
                                                                       CO
 *
 * *


§§
c a
O -3
P n
CM cs

•  O
^^ c?
t/4 }
o
to
§

CM
  C3

  O
  o
o
§
— — — _
"l "l LI 1
*""* I"-* H^ VO
isj >— O

( . } . ^ . t ,
0 O 0 C
^ ^T w w





tO tO *— tOtO*-1 NJNJM tO tO *—
^O **^ N^1 O"* ^^ ^0 ^5 NJ O1* CD ^O ^? fO O*1 ^D ^D f^ t\j (^\ ^>



yijQH-*t\J .fih | fc-* to U4 Ol 1 -^ ^9 W t/J i 4^ to .£*
•^JtC^^1^! "^J l *C* to U^ OOti— 'C^OO ^ i ^-* -^j H-*
•^j ^^j ^i -vj ^^ «^j y^ ^j ^i ^j ^2 to ro o^ to oo

Z ... z ••• Z Z-- Z 2 • •
I4^CO~~] • 1 OO CO CO . I'ONOO . I'VOVO
CiVOtOCo OlONViON O i O t— ' H- » C3i3>™tvi
coto-^i . ONVito . •w>-' • 'Ceoc


z ... z z>. z ... z --z
ItOOO > 1 > O O • 1 *- ' H-> O • 1 00 i— ' •
Ol^J^l^i. OlOJi»4i Clt— '4^4^ OlONWC
• tO 0*4 CO . * VO CO * O4 t~* Vr4 * V/4 00 .

1 III
OtOO OOO OOO OOOH-
4^ tO tO 4^» 4^ f^ f^ ^J VO ON t^J
O04^>VI 00 CO t— ' O4 00 V/40O

tsj n_i >— H- 1 |vj |^ )_j 1— ' tO tOH- '*— ' tO h- 1 H-" H- '
O^ 1 ^J Os O^ ON 1 CO C^ ON f^- | ^j *^J ^^ ^J | QO VI ON
fO 4^*-£*CO OO k-«ONON ^J CO4^VI 4^ *— • OO O
CO~JtO 1— 'to ^IVO^J ^tO
1 h- ^1
vooo i— > p— > o co--ao *->too
V/J ON CM ^D 4^ O i"*1 CM VO 4^ ^^ H^
COONVl OOOOH-' CM tO ^JCO
~J ON CM l— ' ~~J ~>J IO l— ' ^J^JONtO OO -O ON l— '
VlOOCMCM! — JO^CMI ONOOOl ON*^JOON|
tO tO 1— ' fO N3 1— ' h- ' CMtONJH-' tO tO 1— ' 1— i
Ooen^j~j 004^000 OONO*-' voviOOH-'

. . . . o ....o ....O ....0
^JCMONON VDONVOCrl ON4S-OVO -JtONJVI



4& 1— ' -t» CM CM VI £t
. o • O ... ...
i— i i— ' VOCn ONONCC to O 4^


C/2
1
CO


t— '
O
w





to to «—
VO O NJ ON O


w- H- 1-
ON l i— i ji. i\j
^-J 1 CM Cn ON
VD CM i— CM
l~ 1 k— 1— '

10 i en c 4^.
vo i

vo to
. ...
CM i CM Co i— '
ON 1 ON i— ' V!
KJ -^l

-J
*^J ^J ON
VO ^S Cn
en

i_> i— > i— >
ON 1 VO 1— ' i— '
4^ to en oo
OO CM
i i
4i. to O
en CN to
^1 W Cn
CM to VI VD
-U OO 4> OO 1
H^ !— '
ON 4i» l-J ^J
~ h- 0 *.
to i— i
^ CO 4^ to
CM ~J 4& 4^


Ki
CO l— i N)
. • .
oo en i— '


V
rt-
H*.
O

o
rt
Q



3 O
n tu
C X
O" t/1
rt O
O
3
i— < ^
~ ^
3 Z

"C Z

3 CM"


~d z
•3 0
3 NJ


3 O
to

-a z
"S ,^
"^


^ D>
^3 Z
3 O
T3 03
T3 O
3 a
"3 H O
"3 G CT

3 H z
3*~ ' ~^* n
_^. t*-'
-3 *

t3 0 Z
~2 w 2
3^0
o *
*




S
Q
^^
^
1
n
i
""*






o
en
H
tT!
2

53
0
a
o
,1
*TJ
O
G
~2L.
*-*
n
rr;
po
^
^S
^
>
Lo















                                           42

-------
 *
 *  *
   C3

   O
   o

>  o
z  a

j
¥
_3
1
r>

H-1
O
in




ro ro KJ
•O o to O1- O



I— « 1— ' W
c-. i c co 'O
^^ | ^k O\ *O
CM O t— O

I—* W
> to :-> to
CJ I o: cc W
0


to to
2; ...
1 tO I-" N.1
O 1 t— • O to
CO









o. w to tr*
O 1 •*>• CO >
•xj *O. Co »




h- * i—1 t— *
C1* in h-» C7*
O in .u. vo i
in H- CT>
in -e. 10

^
^
1 1 I O
» i i :

T"1 IT" ^~" E""
III!
r— » r- ' *— ^- '
O O1 ^- VJ

O O O O
in tn to in




ro to >-> ro to i-» to to >-» to to i— •
OOiOC-O V5 Z> to O*. O to O to G* O tO O :O CN O




*» t in l/: to -£». I .&• O CN Ja. t O O in OTit/'f-'-^
CO 1 G^ ^-•* CO "vj 1 IO ^- ^J W 1 O *— ^ -^ H-» 1 ^ ^O '^
•^1 C5 CO >^^ ^^ Irt C^ CD 5*- C^ ^^ -^ O>4 ^*J ^O CP

• I f~* *^J *^i . | • ^.J *^J • | • *^J CO * I • CO 'vO
OlJj.tO'O "3ltDOin OiO-C'-Ci- OlO-OCi
» to CD *^0 • • I'J to • • C^ ^O • • "s4 "^



z ... z ... z ... z .-.
• 1^1— ' O - 1 "-1 i—1 O • 1 t~ ' NJ O • IH^-^O1
Oli— • i— ' O ^ I •< C- O Oil— > O in C3 i •-* ^ A
. ^. O K- • . i— • o •— ' * t— • JS> Co * o^COCC


lilt
• • • • » • * •• • **
O U> O O *-'!-' OO*-1 OO>—
O tn in cr* t"^ O in in -^ •£. CT^ w
H- • c~i co )— i co coiriCN Coin

•


tO tOl-**-1 IO tO*-''—' Kl to*-1*-1 t } IO — * h-1
O^ I H1 * C-1- 1>-4 G> I i^3 "^J "*«4 O^ t Cn O*» OT O\ i -S** O"J C^
to C^ C/i »-* O ^ t— ' O -£* roCO-fi* C»\ OfiCOH-
C^H-^ 10 ,-* ic ^SC^N; -^itoNJ
1 H-* ^^ 1
IO ^s» ^3 OO C^ ^^ ^3 ^O *** G> O^ ^5
^^ ^*J O^ ^O ^^ ^3 ^O O3 JN O»l ^*J ^^
(-.«jso i—. Ni co>o,^ com
-J^J^^- OVOVI^' OOOT^- ^OC^^
^Oto^>< oo -t^ i— ' *. i co ^ co o i in to i— ' in i
tO>O.OH- tOfOI— ' tr4tOIO1-' N)tO!-*
inO^O ^KJ^lT|I O*^OOO COtO-^JVO

Irltr) ii^OJO ^» -^ 1— • -CiJ^O
- O . . . . O • • • • •
1C M Ji-tO-«JtO CO^JINS O^NJjO
OJ CO OJ CD Ji. Ja. 4s. O
in -s. to *-> 04 (^ .... 0 • . . • 0
. . • • ^ . . CO ^O ^3 '^O ^^ ^* -^ w»
O ^C 
TJ
O
C
z
r"
m
33
m
a
33
£2
tn
w
^
r-
ra
en










-------





*
* *
O'O
O 0
/"~N t 	 \
n .•-;
O ~*O

H II

W eo
- O
{~i
f-*, S3
'^> Q
Z C3
O
N)
Z
o
O-4
+
&•— *
I—"
•to-
^>
z
o

r" —l
1 i
en i— •




O O
CN ON




C*i t-J 1— i . C-J N) i— '
^ O to ON O >— O to O O






W 1 O4 C C-l CJN -&• W -S* >— 'to


Z Z • • Z Z • Z
. 1 • *J tO • !•!—>•
Oid — CM OiOOO
. . H-i ^J • • J^ .



£i z z • z z • • z






























• I . >•-> . • 1 O O •
O t Z3 5,1 C3r O 1 to -*» O
. . CO . . -to> H-* *



. •
O O>— o O i->
tT en
CO CO

to i— '*-'(— • C-J woar*
t . • . . 1 . . .
Ol COCOON Wl NJtO>»
^D r^ ^-* co ^»j ^^ ^^ •
»O ON to


1
. . £-.
OJ h-> O
IO ON ON ^>
^* — ^ C»i ^J ^2 *jp *o en
...*l ....t
CO^COU)! tOtOON.b.1
W OJ H'
• . *

)— '
tn -vj N>


to >— " >— ' o •— ' r"
. . . . c
o o co o-i co >
*



1
—




5
^




Ol tO )—
i— ' o to o" o






w i o-J en ^j
o i co CN tx
— 1— 1
• t • • •
CO ! CO en CN
^t C,-4 •£* tO
1— >


i
• . .
to to o
tO t-> ^4
-to- *- W tO
.... 1
ON tO ON O 1
U4 tO h- '
O ON CO

O 0 bJ


— • ^o i— o
CN CO ; J ' °

44

r*
i
OJ




0
^





r—

-^




•O
~.




w*J tO •-* C^ t^^ >-*
1— O tO ON O >-^OIOCNC





_.
iS 1 -to- -0 *-> tO
t« CC 04 >-> VO


Z Z • • Z
i . i— . yi
~ i o -to. to a
• » **J C5 *



Z Z • • Z
. 1 * W O *
? ' ? U1 0 ?




o
>


NJ tO N) <— '
1 • • 1
-J I ~-J to 1 W
ta to N; ^^
en



.
o
5/1

... 1
-sj -vj CO to 1 ^

to
o

! 1 ' •
: ! i ^

01 r" o
. o
t— > '-3







i b g |


1 ^1 c —



• ^ 2
to- •
1 4s- 0 C




O O
w


>x^ r"^ ^*
T
J
t

3
3



3
J
'


^
3 O
-, p
C X
3" t/l
•^ o

D
^


d H
l§


•d z
ioT




3 ^S
3 to




C3 ^^
i o
to


r! "5»
' • • "So
1 r-> tsi N>« tJl
Co O C'
en


; i
. -
P °

tO »-" H- '
... 1



0 0


o o c
CN ^» ^^






3 C>
i %
CM

3 so
3 0

•d H n
•3 n sa
-3 0
3 n ^
3 ~ "* ^3
S 0 *
t oo
5 a 2 o
* -Q *







'&
X*
O
^
1
n
»L








o
a
-3
rn
5
C3
O
o

a
S
^>
*-*
6
pa
c
z
S;
ri
S
o
ps
t-—i
n
™

cn
?*
3»
"^3
rn
w












-------




* *
2 !Z
o o
o o

rT — '
a n
n --a
— ' >— j
n 11
OJ CC
• O
^ "\^
OJ 1
— ^ S3
> O
Z 0
0
o
^
O

^^
•
^— '
•t*
c>
z
o
Ol







































C-1
i
to




w*
o
ON





OJ NJ I-1
I— ' O NJ ON O






*->
NJ 1 OJ CO A.
NJ j -e» « ON
O -o. cn i->


)•— *
Z Z • •
1 . ON O
C i C ^J cn
. CN



C- Z • •
1 • OJ O
> i a so 4*.
• • 00 0*4


1
• *
1 0 OJ
1 *&h .£»•
OJ Cn




r" NJ (-• »->
i ...
5> I --J -vj -J
• CD ^™* *""*
N) -»1


I
« •
i to O
1 00 O
OJ cn

t-1 r" co oj
i
> > cn to i
• •

•b. to
NJ ^1



*>. 1—
! I.NJ



O I
> 1

co i/")
t i
CO ~J




t-1 I-"
0 0
ON ON





OJ NJ l-" OJ NJ 1— >
H-"ONJONO '-' O NJ ON O






t_l l_ 1 (_ 1 I—I l_ 1
ON o — -C» NJ CD NJ •£>
. *•• . •*.
NilCONJI— • CniNJNJ~«J
K-l OO~J NJ 1 O 1— ' CN
O O ON OO fe. O

^>4 ^M! ^vJ ^nJ
^^ CD 4s* _ph- h*^ O^ ^O ^^
* * - • * ••*
NJiOONJO toi/'-'CNOa
»-> i -i>. I -S» OJ


^a OJ cn cn NJ
« ... . «•»
4S.I CO CM I— • l-i| O — H->
OI-E^^-(^ tOIOOOCo
4^ tO CO


^O o^ Cn 4^ to
. • . . • .
NJ ON >-" o OO 10
tn to to O )-* to
i--" t— • cn NJ to




t— ' <—•!—• Cn NJ 1— ' h-i
• 1*.. «f.«*
J^l "JONJ ONI I— 'JiCn
ON cncnoo i— ' O i— ' ~»J
ON >-" NJ


1 I 1
. • • * •
I tf) O ^ cn NJ
1 CO O ^J OJ NJ
OJ cn to !— ' cn
•b OJ NJ OJ NJ NJ l->
>— H- oj to ooooo^
. . . . 1 .... 1
ONJ-JN1I ^4^OOOJI

H- H- >
ON OJ to OJ >— ' .£»
»x cn N) (-• ID ro


NJ 1— i fvj ^-
•C^ O J •-
i» v/1 tO O N) to Cn O
. . . . o ....
OtOOCN) O>--NJCC
45
Crt — j
1 I
CN fo




k— I ^__l
0 0
ON ^





OJ NJ 1— • OJ N! t— >
i— ' O NJ ON O ^- O NJ O-. O







Z 	
I ro Cn cn CN I 4^ ON cn
O i CO H- i— > ^JitO>J-^
• tO ^4 -^4 ^4 •**! NJ ON



"2? *S1 *^* »y* 2I* ^^ . y«
. " i . . I • O •
O 1 O O O D I O cn 0'



Z Z - Z Z • Z Z
I . O • • O •
C3 1 d? ON C3 C3 Co ^^ ^^


•
O CO
ON
O)



I-" »-* ^- ^-• OJ OJ Ol C- '
• !*•• •{•••
^•IOJNJOJ -^ : L-^ •» >~
~*l O^ cn NJ NJ C< OJ •
*^4 "^4


J> t 1
. « . • • .
O cn i-» r-> O o
Ol NJ CN Cn Xi. ON
CO CO NJ OJ
Ji OJ OJ NJ CO «-} CN ,£>.
«•««( I... )
OtONJOJl )-» 0\ O* oa I

N. Ol NJ
• o * •




• O
^j :J


N- >-' >- c — r-
.... 0 • -_ 0

m

J -
c;

J.
0



^
K
Q




3 O
O CJ
C X
Cf* C/i
r+ O
H1' H)
O
3


-3 H
1 §




*"O 2!
3oT



•d 0
3 NJ



_j _^
^ *^
3 O
NJ




"*"! "7*
30?





*d r>
73 Z
3 O
OJ


T3 33
"3 O
3 ^2

•3 -3 n
T3 O 53
3 2 O
•g a

— 1 O Z
^3 ^
s ^". r~^
3 0 *
*
' si

3 -o *





^_.
p'
^
o

JSB
<:
t
0
i
i—i










5
cn
-3
m
73


§
o

C7

>
6
C
Z

r-1
H
rn
73
m
a
73
|M|
rn
73

CO
^>
<:
•3
r"
rn
03



















-------




* *
s-g
0 0
/~v /-^
O -H
ps O
£< 5

H Jl
t>) S3
• O
*»  o
z c
o
to
o

+
1— »
-U
/— V
J>
o
t>4






























r- C~
i t
i—* >— *


u-. )->
b o

CN O





O'. ro *— > W to >— •
>~cio:^c5 >— > o to ON o






i— i i— '
; £» to tn OJ i *^ vo tn
31 >— ON w toi to^o
• ON to tn O oo "*4 ON

Z Z • • Z Z • •
MO * 1 • •£* V3
3 CJ -^ W O I C VI CO

v
Z Z • S ...
• i •  ON !X tn O *-J
tn tn 1/1 CO -C* tri


fO fO I-* 1— • IS) tO I-1 I—
^JlONlMCO ON tn^lOO
tO ON <-"! ^^ ON tO tO t*4
0 tn ON VO NJ
t
. .1 . * *
CO CO O OO ON h^
-O I— ' O N) VO O
tn tn (fi CQ j»> w
!C %O OO '>* CO CO ->4 W
. . . | .... |
f i tn i—* *» A to
•o to in ->4 ^ t-j

w w to t-i w —
C^ VI — f!~. tO iO


r" /' . r o . r . . o
•OOO^J -*:ootn


r-
i
to


>— 1
O
**NS^
ON





W NJ I— '
^* CD ^J ON ^5






1— i
to i s*. co £*.
tO 1 W OO .£».
VO VO tn ON

z s -t •
O I O O ON


z ...
i O tn o
O l vu W tn
jk. co oo

i
• • *
O O •>•
tn w CO
00 ON


to to i— ' i— i
•vj | ON **J OO
ON ON *^ ^
ON tO to
,
. . .
\a co i— '
I—" IO O
CO £t
VO OO -J trf
.... i
to ~j co oo i
tn tft to
to VO ON.

*. W *-
O O to


tn tn w i—
O O 0= 0
46

r- r-
i i
*— o


i— •—•
0 O
'*>s. **^*
O"* ^"^





OJ f^J h- * ON Ni *—
h— C^ t^J ^^ ^3 >~* o h^ CN ^?-







to i -s. o -a> * i A. vo — •
tfl VO tO H* • VO tO •-•

H-> »*
Z Z • • Z 3 - -
. : • ^J. o • t > tn o
O) O I— ' W Ol OtrtO
. . VO • • "^


z z • - z z - -
1 • W O • 1 « A. O
OiOO-;tn 3lC7Of
• *0o Ob • • O ON

1 I

O O tv>
tn tn co
Co oo


to ro h- >— NJ 10 —
ON 1 ON --4 -~J OO 1 CO ^J 1
ju ja. oo on oo co i--
to ro O

a B
CO 1 CO O
t,n i tn
oo co
voocrt^ voooccvi
. . . . i .... i
ON tJ H-» tO 1 ^ Sfl O *J
tn *«. to
VO *> NJ

trJ (X I— '
'-o -^ o


u, in w - tn :-
i»i ro NJ o to 5»

01
p
rt
O


a
P
r+
O



51 a
O P
C X
a* en
P
r* O

o



•3 H
3 Z

-3 Z
"3 MM
3 w


T3 Z
*T3 CO
3 K>


"3 >
•3 Z
3 0
to


13 "2
1— Q
3 t»



•3 D»
•3 Z
3 O
•3 S3
•3 O
3 0
*3 "^ O
3 2 O
•a a
-3
"3 Q» O
= —"53
O *
*
"3 O O
3 3 O
-a *•





^j
cr
h-t

t
^
1
n
|^(










b
z
H
JB
C
0

5
H
^*
rn
0
C
z
^*
5
5
en
CJ
H^
rn
***
en
f£
.3
ra
en













-------
 *
 *    *
 I    H
/-i   i
    O
-,  C3
>  O
4
Z
H -
1 i
0


!_* ,_,
•^ °



•— > O CO CN O f— O N> ON O
~



• • r- . . r* ^
ON 1 CO ON • N> 1 .S» O -U
Nil ON IO ;> mi OO OO '.3


? . z b "*. z ^ • *
C1 1 O \O VQ O 1 O ON VI
'


z • -w • ^ z • •
1 O Vi W . i . tM O
31 woo o ! o -e» ON
• ~^ . NJ 1— •


1 W W | |
is ss § §g



Oo .ft* rO .U. f^. ;^ i_i P— *
•!••• •!•••
h— IOOJNJ OilOO-^JOO
ON GO r— * ^J Q ^ ^ -^
W OO !O
1 > 1
W I—1 ...
• • • o j tvj 00
K) ^o tvj i--
«j ON *— >-• ooo^^l^^J
••••I .•..{
ON ON VO ^1 1 ro M M O I
1— ' O ^k W tv3
I-1 ^ N) Iri U

>— ' t—f
• 1 . . .
VI 00 i 0 O ON

c.}
W Jk JU A. 0
• Q

47

t
vl


.J
o



O< KS "— •
>-> O N) CN O




t\J 1 V. O VI
O CN *-• (n


Z Z • •
b i c  tvJ -=>•
tn tn ii.

VC O CO ^-
• > . . t
JSk ON V CC :
vt -^- o-i
os -0 -s».

Ul W ~
O"' 0s -S^

A. tn A. —
. . . . o
Vi O Vi oo

£
rt
o


o
rt


3
o
c
cr
M
n-
o
3
T3
1


tJ
*•••
^3


"d
i



•d
3



•d
d



3
i

d
a
d
taS

d
i

3
3
3











o
p
en

o
Hi

H


z
oT


o
N)



I



z
o



^>
o

D3
0
a
H n
n »
2 O
T5 0
o z
Qt O
0 *
*
—i :z
0 O
3 0
-D *




83*
o*
0

1
n
1—1





1
-3
en
2
C3
o
o
a
5
#
TJ
o
53
c
z
Jr"t
rn
JO
rrs
a
73
<— 4
E
^**
en
2
* w
ra
en













-------






* *
z 5*
0 0
o a
/""""S S~*,
O -H
P -O
o ^3
"i— ** ^-— ^
H 11

C/3 C3
• 0
•£* -C!
W I
C"}
*> o
z a
o
o
OJ

o
CA!
*^-/


































' >
i

o
r- -

M
O
V




ro ro M
sC CD IX> ON O






M M M M M
Vl Vt Vi Vt VI

M M
. | ...
ro i vi o o
N^O O ON ON
VI VI Vl


M
z 2: o o
a i o ON M
. « M ^;
Vt

M
Z H M
*a t NO v-j b
• •£•*• \£) -t^
vi vt


\ M M
» . .
O CXi VjO
.N. o vt
Vt Vi

i _}
\ji 4s \-j ro
O I O O ^
O Vi M Vl
V Vt

,_,
v: (_'
• I * •
ON 1 ON OS
O \D ON
Vt Vi

vO ~-3 ON ro
o d-r- M i
1


u: ro M M
• » »
Vl V, Vt
V^.M
ro o "cc. o
vt O vt O

l'*" ^*,
ro cxi ^
v C^

1





ro ro M
o o ro ON o






O O O O O

l_j |_> |_i f\}
vu vo ro ro
• i • . *
M 1 M U> Vi



. M
•z. z < o
» 1 • • .
a 1 O ON o
« . d ro


ro M
z M ro
• \«o ro ^"•^



ro M
i M ro
V*> ^5 N^O
VjJ sO


ro
cs -t^ ro z
MI -c i~- o
— J ^ \ji
00 N^O S-0
*M d o


P
i
q



M
o
^>




rg ro M
\c o ro o- o






O O 0 O O

ro ro PQ ro
t i- o *-J
d \o



\^ ro ro ro
ro so -3 -o
^ \O -P^ vt
I ...
i -^ o ro
ON d ro



z z z
o i a c M
• • • ro



i i t
M MM
ro ro ro



z z z z
at a a CJ




o o o

M
ro co-r^ ro
O "^ M -^-
Cj ~j -v3 M [
1

M
ro oo-^ ro
o v^> M -r-
•vO -«3 < M
.
Vt


o o o o o



o o c

48
^*
i
o

V

,_
o
^




ro ro "-1
o o ro ON. o






O O O O 0

ro ro v*> vi
. i ...
<3 1 M M -P-
V^J ON ~0



v^o \*i d -3
o ro \-j ON
. I ...
ON d ro


Vt
Z Vi O
a i vi o >-
• v*j v^j vi



Vl
-P~- I O -£"-
vi d d


ON
o ro ro M
ON I ON M >-
-3 O M


Vl
vD M
. i . .
. j .
M 1 rO ON
\0 ON O


ro ro ro
ON M O Vi
*- O -N -^ I
1


M ro M M
Vt -i^- Vt ^5
•
Vl
ro M M
-£^ d d i^-
o c\o o
o o
ro M
O N^ '^O
0 -P- '-"
->J x3


>
1~H
i
\_>
0


M
O
^




ro ro M
o o ro ONO






o o o o o

M
Vi f1 -O M
•p- i > ro M
ON • sO



M
Z Z W M
• t • • .
a i o M M
• • Vt


M
Z v>j d
a i -J -P- ro.
• J^ -».•



M
i v«j d
'^ ' ^H
-v: -0 VjJ


ro
M -J -f- -N
o i ro d -5s-
C?N O ^^


M
ON ro
vi i d -E*-
ON ro vi


M M
ro ro o vt
O CD v-J -P' 1
1


vt ro o M


• -j ^ vo
vi co. ^ N^J
C

•^ \_r~ "*\J
i- I 0 >O
1 > •



an
a
rt
H*

3



O
0



3 a
o p
C X
cr w
P
rt O
H- i-h
O
3

•a H
3 Z



•a z
•a :=
3 W



T3 Z
-a o
3 NJ



•a >
•a z
3 O
N)



•a z
*^5 ^^
3 <-*"



'a o
•a z
3 0
CM


•a 55
•a o
3 a

>a H n
*a n cs
3 2 O
"3 D

"3 M Z
, j—* ^^
w n o
= 2: c;
*^> *

^3 {*} -^
T5 d O
31-3
n *
*







p"
0*
>— '
G

^^*
^~i
I
n
ts>









b
c^

_j
rA
1
o
a
C3

H
^
6'
53
CO
m
m
o

m
"T?
r*
c
m
—3
CO
g
•3
rn
en



















-------
a
fe
0
*
* *
O O M
- o o
P ri
i—" 3;
— < < — '
n n
• O ro ro M
-£• O xC o ro ON o
O^ 1
n
-r 03
I> 0
o

w O "J -P- vo
1 — ' OJ -N CN O
>-> Z Z
-P* • « xO t— '
§ 2 ! 5^0
w * 1 ^ l— '
• • -P- CO

b .' . .
-r O O O
M U S 8S
3 -5
o ro
r^* "^3 L_J i_j L_J iw>
g-2. H ! cov,^
(W ™ -0 fV) G\ QN
m S CN^
rt> o.
n
ft* &>
o> (/>
5 '
ro 3 ro M b
02 xo Q ro
.^ CN \O V*J
-
c^. ON^ ro
.P- o ro
ON Vi O

t-*
*ro vi ro
D3 CD
CO W
0 0
O Q
Co ~vi

I-1 H1
0 0

roroi-' roroM roroM
vDoroONo \D o ro o^, o \ooroCN


VOj-F^ONCQ V^J|Vi->JCC VO|-t~--v3
V \»JCCVi O t— ' VI V O MV*)
ro ON O ON VJ V>) O ON ^o O "^
z z z z z z
o i o b H o i to i-1 ro p i o M
Z|Z>« Z|Z«« Z|Z«
• I • t-1 O • I • M O • 1 • M
o • -T^- CC • * P) CO • • ON

.' .' . .' . . X b M
ooo OOM CN\.oro
nj roi-'i-' ro roi-ji-' i-1 i-Ji-1
\^0 | VjO CO. ^ C) 1 CO ON-P*- ^O 1 CO Vi
O OONVjJ O 1— >&-)-> Vl CO-P^
ON ro o ro -N
i
vo ro o -T-- v>J o vi vj o
oc5ro oj (— ' >-> i— • ON ro
H* (— J \D H*1 O^- ^-o ^0 ~^ V>

...*l ....( ....
rOvC-P~-P-l M ON >oi K- > | \*JCNOON




Go K
I i
CN VI

0 S

ro ro M
o \o o ro ON o

i-1 ro
ro co vj so co
CB Co H ON vi
Z M h-1 I-1
"ro o i < b b
^J^ * c^ -f1** ^^
Z 1 . • •
O • I ^ O O
vi O sD ON -N
ON • ^« \O vi

1
O ON o
co ro -P-
i-1 ro M M M
vo vi i vi j^ ro
ro ro ro \*j CN
-P- \*J t-> VI
M 1
^ MO
-P- -P- co

\D CB CN\>J
| ....
1 -C CO xO VO




C/J
rt-
rt
O

O
P
r+
O

3* 0
0 P
e x
a" in
P
rt O
o ^


1i z

^2 =-
*a z
*a o
3 to

•3 >
3 O
NJ
— i.

"d z
^ o
5 >
3 O
— r

"a o
3 a
2 nn
= ? S
-5 rt o
3 2: a
-a *
-a o z
•3 P O
0* *

•H
p
cr
o
i
n
i



o
d
-3
cn
I
o
o
o
•—3
6
oo
ra
cn
o
S
G
m
z
cn
r-i
oH





49

-------





*
* *

2£ Z
O O
a o
/—> /— *»
O *-i
P n
H-» "2!
0 -0
S— ' ^-^

n n

C*J v^
• O
Ja. O
C^i 1
n
y — v C3
•> o
z o
o
NJ
1
o
+
>— 1
t— '
-p^
t — \
>
z
o
Vw/
























03 03 03 03
L 1 1 1

§^N 1 — 1
Vi .N




!— ' H 1— ' 1— '

VI Vi VI -t1-









ro ro M ro ro M ro ro M ro ro M
o o ru ON o vDorocrc so o ro ON o vO o ro ON o








VOIVVn^j VO I Vrt Vn 03 VO I M rO ON VO I Vfl ON M
-c voO^vo -< -is o ^ vD vo 03 NJI ON ON ro vo
ro Vo ON 03 ro -J o M < vo o vo -f^ ^vo-o

ziz«- ziz.. zi.^i"1 ziz--
• i • >-" ro . • i • ro vo « ivnroro • i • o ro
a GSOO o ooro o 0303O3 o o-^
• «\QON» «\jico« •**• • •ONON


Z|.-. Z 1 . . . Z 1 « . • Z 1 • • •
• 1 Q I-1 O •IMMQ • 1 -^ O O • 1 M H> O
o -vi-c-i^ a O03ON o i— > 03-r-- D roo-f-
• viO3vn • oroH • oroca • vn vo i— '



1 1 1 1
... »«« % •• ..•
OOI-1 QOM O ONO OMQ
J^-VOVO ONVoro -N ONVO -f^O"^
vn vo i— ' vD i— ' coro-t^ H ' ro ro

ro ro M H* ro roi-|i-> vo MH'H-1 M MMh-1
roiO"^"1^ H-iiocN>o\ oi c^.'vJi^jt "*J i v» -^ r\3
^*j Q\ Q\ J^ \^Q ^s. ,£v. -O ^- s^Q S^^J -*J O\ OC ''•O "***
vji ro ^C o cc vo o 03 ON ^ "^ ^

1 M 1
J^-VOO vnvoo -t- MO ro 1— ' O
03!-'!-' h- ' ON ro ONMVO OS-C^H-1
J-J Q*\ N^J -*J -^J \Ji ^«^ ^^ Q^ *N^ .£^ J^

vi vi ^ ro vn vt ^- ro xC \D 03 ro ^o ONVO
»»••! ....) . . . . | ...|
• ro i— ' vororo vovnro v>vo
^ro\£)^j ON vno vo ro-f^- ONVO
ro M i-1 ro ro H vivn-r^
• » • • *••« * * * *
c ro

M MM
03 I ^^ -P** •
-3 ro co o
M (X »


vo o o
vi a\ i— '
ON ro -Is-

-o ONJ^- ro
.... 1
vo ro -c M i
J^ vo i— '
vn ro ON



. . .
0s VO VO
P
rt-
h"
O
3




a
P
G>





>-H
s a
O P
C X
P
rt O
H" H,
O





3 Z

"5 Z
3 (JT



s o
3 NO



•d >

3 0
N)


"3 Z
•g o
S3 t/4


-3 >
-3 Z
3 0


T3 W
•a o
3 0
"3 H C~5
•3 Q C3
" "3 ^
•3 -3 Z
"B O O
3 2 C
-a *
^c o 2:
-r P o
^ ^^ 4.





_3
u
cr
i— "
o
_^_

<;

i
n
i
ro












O
^
x3
-^
C3
O

J-J
>
>
T]
g
^3
cn
CTl
m
n
o
5
^

z
-J
>
2
C~^
C/3








50

-------
 *  *

z z
o o
O  H
53  O
OJ   t
    n
•-N  S3
>  o
z  a
o
O
 >
 z
 o
1 1 1
000
}— 1 i— 1 ^— *
-IN ro o


^j t^j ii
o o o
VT! V>1 VTi






ro ro M ro ro M ro ro M
\o o ro CN o vD o ro ON o \c o ro c> o



co ro ro -^- 03 ~o vo o vn oc^^>
VJi CO CO C\ Vft VO^Ovn \D -3 C~\ O
ZlS-ft Z 1 Z • • ZIZ..
• i • M ro • i • ro ro • i • M ro
o o ro o o o < vo a a vo M
* • vh CC • • O V*3 • • M CTN


Z 1 • • • Z 1 • • Z Z 1 • • •
• IMMO • i ro o • • IOMO
G "^ ^— ** ^* G ^^ Co G G vft -Z*^ vxi
• VoVjJH ' • -t--ro« • ^^O


I I
«!•• ]•• »!••
OIMQ irgo OIOQ
-t^-O"^ vDCO VnQ~S
Mroro o-t^-ro o-3^o

|__1 ^_1 ^J ^—it ^_l ^^ ^_J ^vl |_^ ^J ^_^ ^«1
CC VX)Q\0 -tv J^\C(X CO ^G\OJ
•^-•--.V*) CTNOi-f^ V.O h- ' -N

1
POMO ^-^OO roH*o
QQ Js H* \JT ^, H1 \O O PO
*vi ^s- ^*^ c^ ro -^ o^ ^5 v*j
\Ji •^s- \>J h^ O^\ ^-H V^J H"* \Ji •f*1* V.>0 H^
* • * » | * * * * [ *•»•[
\D"*J\jJvOl MHO^- CN>1 vJi'CO^Qli
J^ rOH1 -^ POM .NWM
-j voc^ v, vovo vo MC
MM roroH-1 rot-'i-'o
• ••ft «••• ••«•
ro vo cr\-^ o ccrov^vno VO\C-P*^CO
Ml-' MM M
~c ovo CT\VOVO ro v-iro

i


CO


M
C
VJl"






ro ro M
o o ro o o



vo 1 J^ J^ vn
CC CO CO O
vn o o ro
Z 1 Z • •
. | . H-1 M
G o o cr-
. . CD ^


Z 1 Z • •
« I • M O
O G VO -fv
• • ro u»


.' .'
P 0 0
^* -2^ CO.
\ji vn ~s.

ro ro ro ro
vo i ro o o
_£s. ^v U^1; ^O
00- ^O

• * •
vo no o
o o ro
M MO
vn .ft*- vo ro
. . . . i
-N 0 CO M 1
^ VO M
*ro b <
} — * f— * t-j
• • • •
:- x^ vo vo c
!_,
» • •
ru co-t-

fr
w.
o
3


O
r*
O



3 C
O P
C X
w
rf O
H* H*t;
O
3
3 Z
w ^^

3 w"



•d z
"3 °
3 i^J


~3 [>
•d z
3 O
to


T3 Z
"^ O
3 W

"3 O
•^ z
3 O
2 =
3 r~™

•3 H n
"3 n ~
= 20
-ago
"3 *
•3 o •z.
" n *
*




i—2
P
cr
^*—
=fc

-=;
i
i







t->
o
H
rn
Z?
3
53
o
O
C!
•S
6
73
CO
ra
rn
rn
CJ
~
r-^
z
SAMPLHS











-------
                    \

                    £
                    >r
<-<  o
*
* *
gg
C! 0

^^ ^^^
0 -H
P O
»" .2:
0 ~
^— ' W->

H Jl

LH ^3
• o
•&• -a
C^l i
J"""S. T™"
^™N U»i
£> O
Z O
o
N)
•f
>
0
W
>— '
•*•
h-*
»•-
4*
/•'H.
E>
Z
O
t»
•— -











































\*j ro
M O







z t
• i
a
•


Z 1
• i
o
•


Z 1
• 1
o
*



1

b
Vi
ca


M
• i
58'




•
M
ca
ca
-O V

b 'M:
ON
NjJ

ro H
• »
O 0



--C





i_j
o
\
cr^







ro CNO







...
Vjj V> -2
i-1 ON ON
ro vi ca


z: • •
• o ro
C> -N -N
• Vt -0


Z: • •
. ro o
O 0 vi
« UN ca



i

c M
v .N
 O


• *
< ro





pwl
^
"\
CN







v-o ro H1
M o ro ON o







Z 1 • • •
• | W J^ ~0
O vi vi v-o
• ca OB ca


z i s: • •
• i • o ro
O o ca ro
• • -o o


Z 1 Z • .
• 1 • H O
(3 O vi vi
« • V-J -P-



1 t
* * *
0 00
vt vi \D
J^ JS O


ro ro ro ro
• | • * •
Ml MOO
\o o CNro
-O ON



M *M O
ON ON-N
i>. -N. M
-0 ON VI V)

V> UJ V*> Vi 1
ON -t"- V*i
• • .
^D <3 O

ro M o o
• • * *
O O C\J^- O


• • •
O C- v





M M »— '
o o p
\-. \. \
O 0s. C-







UJfOM UOrOM VyJfOM
Morooo MoroONO MoroCNO






M M
^^ (..ft •)••« .)•••
• iVjjj^ro roiVjJONca \*ii-»3ON\D
C3 sovica ON ca-Nca N-J TOMM
. ujcaro v-j rOMO, M cacavD

[T, i ^^
ZlZZ« Z 1 Z • • ZlZ-ft
• |«.fO .|.MW • t • fO V*J
o ooca o OMON o oroo
• «.-J« • \D M • «NjJ


ZlZ*> Zl»«« Zl«««
• i • ro o • loroo • I-OMO
O oro-N o -NcaCA G o>- 


ro WMM ro JOMM ro POMM
*M 1 *M *-C -O M I M < *-J \D 1 M Ov ON
O rOvDvi ON MM-J -N -\jO MOCBV*5
.•«ftf •«••( «•••!
CNcaoONi *^^caroi rororooNi
vi'ojro *-voro vi\*JVx)
« •• . •« . ••
ro v\ca \DV>-C vi-^s-j.

(\jroMM roMMM ON -NM
* * « • »••• • ••
•Nro\*jv
rt
O





t"H
y o
O P
a" i/>
P
r+ O
•->• i-h
O




V -3
•a rs
S Z


•a z
?X


*a z
•g o
3 N)




"0 0
•o z
3 0
tsJ


•3 Z
"3 °
3 M


"^ ^*
^^ *r^
•a z
3 O
W
"O SS
13 O
3 a
•a H
T3 O
3 "S.
"O

"w H
•3 n
3 2
•^3

"3 O
•3 P
3 i"1
n















































n
C3
O
o

8
*

z
o
o
*
*
"-1
i-
p*-
c
3R

<

)
n
t
NJ










i
Ci
,.3
ra
**w
O3
O
c

a
>
>
^^
6
73
C/j

m
ra
a
a
rn
•i:
c:
••"•^
t?r
H
Crt
>
2:
•a
r~
ra
en















52

-------
•3 ^
H  II

"S
> o
Z
>
o
8
i
o
I— J


M
\^
0*





N*J ro *-*
M o ro o\ o


2 1 ...
. 1 N*J -O ON
O O •£*• ^3
• H 03 ND



212..
. i « Q ro
u c? ^^ •£"*•
. « h-1 Njt


2I2-.
» 1 « M O
O O 

H< ro M h->
. ( . »~ .
NO i O ON -J
oa O -J O
oa v*>

t
PQ *ro o

^CN^V>3
O H "(-•*>- 1
U. v^W
NO O \->
I— * t— ' HJ O
ON N/! NJ1 \J- O


^ H-
M ro \-j

C
i
o
i—


h-1
^
o->





\>o ro i-1
i-1 O ro CN o


2 1 • « «
. | VO \Jl -J
. NJO ^ oa



2 1 2 « .
• I • M \>J
O C M J^
. • ro o


2 1 Z • Z
• 1 « fO •
O O M O
• . -Nj .



ro
o o -J

ro t— * i— • i— '
. i ...
O 1 O ON ON
O -J oa ON


-r- M ro

01 ONVJI Vjj
O *oa -i- M i
cr. *- ro
^^ f^ \^J
ro ro M o
• • * *
CC CNJ^ CS O


- ^
ON ^- CD

rt-
w
rt
O


a
rt
Q


5* a
O 63
C X
o" w
p
rt O
H- Hi
O
3 H
"^ ?^
3 Z




^ M
3 <•*



T3 O
3 to



"=! 0
T) Z
3 O
KJ


-c z
'B O
3 IA>

T) C>
1|

13 C3
T3 O
3 0
•a H n
'53 O 03
320
•o a
•3 -? Z
•a n o
3 2 O
•O *
"3 0 Z
-3 P O
3 H- 0
n *



cr
o


-<
i
K3






tr
i
a
H
cn
S3
2
C3
O
o
o
^
•n
o
73
cn
ra
ro
o
6
m
•n
r-
m
•—3
en
§
r-
cn
en











                                                         53

-------
  o
o
C
cc
ra
|
8

o
^x^
Ul




ro ro i-1
\c o ro CN o

1— ' >-> 1— ' f-1 M
Ml Ml Mi Ul Ul

ro ui
ui cc ro co
» i » • •
M 1 Ml VO ->3
O v£> CN-N
Ml Ul Ml

h-1 M
Z Z < CO
• 1 • * .
O 1 O ON \D
• * ro -f^
Ul Ui
M
Z <2 M
• 1 » * *
O 1 < ui O
• f— * ^«-
Ml Ml

-•2 H
t * *
. CN-t-
O Ml ~0
>• Ml

ro
o ro
Q^ | -s^ \jj \jj
V.TI \D V*^ ^jJ
o a
ro
o ro
Ml -J>- O
ro ON

1— ' h- ' M
ro ro o ^
\D ON Ui ON
•
O
*- v»j ro, H"
CO CO -0 ON
• *
ro MI
CO CQ -C M
M -~ CO O
• • •
O ca ui o
 (-' 1— ' H-*
Ml Ml Ml Ml Ul
l
<: so
vo <
1 1 • 1 •
1 1 ^C 1 0s.

Ul Ml

-sj QN Q^ Q^
-O CO Mi O^x
• \ * • •
^ ' 0^^^
Ml Ui
M ro
^^^
£J
r^
o


^^
r. x
— ai
•^ o
v f~**
O i—



«w 1
•—•* rr^
— C^
^ ""


— I —
1 cjr


-N ON M ^ i_, ^
co ! i- M M rS c5
VA> ro o » E^
Ml Ml Ul
1
M ro 1
-P- ON hi O
. I . . "-3 "Z.
^ 1 tV) sD
J^ O ""^J
Ul

(_l
o ro
. i ...
ON i H Co ca
ON vD ro ro
Ul Ml M-
i— >
ro i-
k k°
MI
,_,
O ^ ON
\^o -t^ J^- -t^
MI Ul Ul Ml
H- '
=2 O



-3 2:
rt 0
3 OJ


"3 £>
-a ^:
2 O


-o o
3 0
2 H 0
3^0
O O O MI j ^ O
S ^ ^MJ "-a rf ^5

U! Ul Ml O O
t->
O O
CO CN MO
. . •
sQ (-1 ro


~3 o ;z
-3 y> o
3 i-* ~
n *
*



i
^3"
--*"
U-l
O

.^
1
n
i



o
^cZ

^-3
i— i
—
v

C^J
o
a
a
>

o
y^--
*/-
• ^
^-*'
•»>
^*
*S.
O
^/
•-(
—
—9
m
3
-ri
"-H

cn
H
j^
i
CO










                                             54

-------
able S V-C-4
THOMAS GRAPHICAL DETERMINATION OF  BOD  CONSTANTS
            UNALTERED RIVER SAMPLES
Days of
ate Station Incubation
NOD
(t/y) l/
NOD
mg/1

0/4 L-l 6
12
20
29
All Points
.213
.205
3.64


2.45
2.10
2.15
2.26
r
m
b
klO
LO
0.4
1.3
2.0
2.5
Last 3 Pts
.9840
.009
1.977
.01188
4.73

L-3 6
12
20
29
.6847
.010
1.417


1.59
1.42
1.56
1.78
r
m
b
klO
Ln
1.5
4.2
5.3
5.1
.9956
.021
1.155
.0474
5.95

L-4 6
12
20
29
-.515
-.043
3.427


3.91
2.05
2.32
2.57
r
m
b
klO
Lo
0.1
1.4
1.6
1.7
.9984
.031
1.092
.0478
1.88
BOD
mg/1

3.6
5.8
7.1
7.8






4.1
8.4
10.7
11.2





1.8
3.8
4.4
4.7




CBOD
(t/y) 1/J
CBOD
mg/1

1.23
1.40
1.58
1.76
All Points
.997
.023
1.11
.0541
8.04
3.2
4.5
5.1
5.3






1.32
1.42
1.55
1.68
.9994
.0157
1.230
.0333
7.02
2.6
4.2
5.4
6.1





1.52
1.71
1.92
2.13
.998
.026
1.379
.0492
3.37
1.7
2.4
2.8
3.0




                                            55

-------
Table ri V-C-4  (con't)
UNALTERED RIVER SAMPLES
Days of
Date Station Incubation
NOD
(t/y) :
NOD
^ mg/1
con
mg/l
1
10/4 T-l 6
12
20
29
All Points
.9728
.060
1.181


1.40
2.10
2.37
2.88
r
m
b
Mo
Lo
2.2
1.3
1.5
1 .2
Last 3 Pts.
.9900
.046
1.513
.0985
1.27

L-5 6
12
20
29
.7373
.014
1.739


1.956
1.733
2.02
2.20
m
b
kio
Lo
.8
2.3
2.4
2.7
.9863
.027
1.429
.0493
3.02

T-2 6
12
20
29
.7531
.1212
.376


0
3.107
3.21
3.31
r
m
b
kio
Lo
0
.4
.6
0.8
.9991
.012
2.966
.0105
1.59
2.5
4.5
5.4
5.8






3.1
5.5
6.1
6.5





1.2
2.1
2.6
2.6




CBOD
(t/y) 17->
CBOD
Eg /I

2.71
1.55
1.72
1.85
Ml Points
- . 535
-.028
2.420
-.0302
1.02
0.3
5.2
5.9
4.6






1.376
1.55
1.75
1.96
.999
.025
1.256
.053
4.35
2.3
3.2
3 .7
3.8





1.71
1.92
2.15
2.52
.997
.035
1.494
.0611
2.13
1.2
1.7
2.0
1.8




                                             56

-------
ible £ V-C-4  (con't)
UNALTERED RIVER SAMPLES
Days of
ate Station Incubation
NOD
(t/y) 1/3
NOD
mg/1

0/4 S-6 6
12
20
29
All Points
.942
.012
2.344


2.46
2.46
2.55
2.74
r
m
b
kio
Lo
0.4
0.8
1.2
1.4
Last 3 Pts
.9857
.017
2.246
.0198
1.94

S-7 6
12
20
29
-.8378
-.013
1.254


1.26
1.02
.931
.94
r
m
b
kio
Lo
3.0
11.2
, 24.8
34.4
-.796
-.004
1.057
-.0099
37.19

L-9 6
12
20
29
0.879
0.015
1.349


1.52
1.43
1.61
1.82
T
m
b
kio
Lo
1.7
4.1
4.8
4.8
0.99994
0.025
1.153
0.0521
' 5.44
BOD
mg/1

1.9
2.9
3.6
3.6






8.0
17.3
31.6
41.6





3.3
6.8
7.8
8.0




CBOD
(t/y) 1As
CBOD
mg/1

1.59
1.79
2.05
2.56
All Points
.999
.035
1.387
.0621
2.62
1.5
2.1
2.<4
2 .2






1.06
1.25
1.43
1.58
.990
.022
.956
.0601
8.28
5.0
6.1
6.8
7.4





1.55
1.64
1.88
2.08
0.995
0.024
1.387
0.0452
3.60
1.6
2.7
3.0
3.2




                                            57

-------
Table  * V-C-4  (con't)
UNALTERED RIVER SAMPLES
Days of
Date Station Incubation
NOD
(t/y) l/
NOD
3 mg/1

10/4 L-10 6
12
20
29
All Points
0.725
0.008
1.588


1.71
1.64
1.67
1.90
r
m
b
kio
Ln
1.2
2.7
4.5
4.2
Last 5 Pts,
0.927
0.016
1.421
0.0294
5.15

L-ll 6
12
20
29
0.804
0.014
1.468


1.66
1.51
1.71
1.93
r
m
b
kio
Lo
1.5
3.5
4.0
4.0
0.99998
0.025
1.214
0.0537
4.52

L-12 6
12
20
29
-0.402
-0.020
2.362


2.71
1.59
1.79
2.04
r
m
b
kio
L0
0.03
3.0
3.5
3.4
0.9995
0.026
1.268
0.0535
3.99
BOD
Bg/1

2.8
6.3
7.2
7.4






2.7
5.6
6.6
6.7





1.4
5.1
6.1
6.3




CBOD
(t/y) 1/3
CBOD
mg/1

1.55
1.49
1.90
2. OS
All Points
0.937
0.026
1.311
0.0518
3.72
1.6
3.6
2.9
3.2






1.62
1.79
1.97
2.20
0.99993
0.025
1.478
0.0441
3.05
1.4
2.1
2.6
2.7





1.76
1.79
1.97
2.15
0.985
0.018
1.619
0.0290
3.53
1.1
2.1
2.6
2.9




                                              58

-------
fr V-C-4 (don't)
UNALTERED RIVER SAMPLES
Days of
te Station Incubation
KOD
(t/y) l/
KOD
•^ mg/1

/4 L-13 6
12
20
29
All Points
-0.072
-0.002
1.746


1.96
1.47
1.63
1.82
r
m
b
kio
LO
0.8
3.8
4.6
4.8
Last 3 Pts,
0.9999
0.021
1.221
0.449
5.32

L-14 6
12
20
29
.051
.001
1.716


1.96
1.45
1.66
1.87
r
m
b
kio
Lo
0.8
3.9
4.4
4.4
0.9994
0.025
1.158
0.0563
4.97

L-15 6
12
20
29
.340
.004
1.752


1.88
1.73
1.71
1.97
r
m
b
kio
Lo
0.9
2.3
4.0
3.8
0.848
0.014
1.510
0.0242
' 5.22
BOD
mg/1

1.6
5.8
7.1
7.3






1.9
6.2
7.2
7.4





1.9
5.3
6.3
6.5




CBOD
(t/Y) 1/3
CBOD
rag/1

1.96
1 .82
*) O,
2.26
All Points
0.813
0.015
1.76
0.0222
3.59
0.8
2.0
2 . 5
2.5






1.76
1.73
1.92
2.13
0.946
0.017
1.59
0.0279
3.88
1.1
2.3
2.8
3.0





1.82
1.59
2.05
2.20
0.812
0.022
1.55
0.0370
3.16
1.0
3.0
2.3
2.7




                                       59

-------
Table H V-C-4 (con't)
UNALTERED RIVER SAMPLES
Days of
Date Station Incubation
NOD
(t/y) l!
NOD
3 mg/1

10/4 L-16 6
12
20
29
All Points
.296
.006
1.589


1.81
1.44
1 . 63
1.83
r
m
b
kio
Lo
1.0
4.0
4.6
4.6
Last 3 Pts
0.99997
0.024
1.149
0.0545
5.26

10/5 L-l 6
12
20
29
.182
.003
3.30


0
3.42
3.21
3.46
r
m
b
klO
Lo
0
0.3
0.6
0.7
.7249
.122
.472
.0024
5.04

L-3 6
12
20
29
.1832
.003
1.702


1.88
1.55
1.70
1.87
r
m
b
kio
Lo
.9
3.2
4.1
4.4
.9999
.019
1.324
.0574
5.01
BOD
mg/1

2.5
6.4
7.6
7.9






0.7
1.3
1.9
2 .2





2.4
6.2
8.3
9.4




CBOD
(t/y) 1/3
CBOD
rag/1

1.59
1.71
I. SB
2.06
All Points
0.99992
0.021
1.466
0.0374
3.69
1.5
2.4
3.0
5 .3






2.05
2.29
2.48
2.68
.991

.0366
1.66
0.7
1.0
1.3
1.5





1.59
1.59
1.68
1.80
.962
.010
1.504
.0174
7.34
1.5
3.0
4.2
5.0




                                             60

-------
V-C-4 (con't)
UNALTERED RIVER SAMPLES
Days of
itc Station Incubation
NOD
(t/y) 1/3
NOD
mg/1

D/5 L-4 6
12
20
29
All Points
-.9073
-.059
2.973


2.71
1.96
2 I7
1.15

r
m
b
*10
Lo
.3
1.6
2.1
2.0
Last 3 Pt<
-.8016
-.050
2.76
-.0473
9.19

T-l 6
12
20
29
.9630
.026
1.99


2.15
2.37
2.42
2.81
r
m
b
kio
Lo
0.6
0.9
1.4
1.3
.9265
.026
2.00
.0339
1.60

L-5 6
12
20
29
.2571
.006
2.175


2.46
2.00
2.15
2.52
r
m
b
kio
LO
0.4
1.5
2.0
1.8
.9789
.031
1.597
.0507
2.11
BOD
mg/1

1.2
3.1
4.1
4.4







2.1
3.4
4.8
5.4






1.3
3.1
4.1
4.2





CBOD
(t/y) 1/3
CBOD
mg/1

1.8S
2.00
2.15
2 .29
All Points
.998
.018
1.781
.0264
2.92
0.9
1.5
2.0
*. • T






1.59
1.69
1.80
1.92
.9988
.014
1.512
.0242
5.20
1.5
2.5
3.4
4.1





1.88
1.96
2.12
2.29
.998
.018
1.758
.0267
3.00
0.9
1.6
2.1
2.4





-------
Table £ V-C-4  (con't)
UNALTERED RIVER SAMPLES
Days of
Date Station Incubation
NOD
(t/y) 1
NOD
/3 mg/1

10/b T-2 6
12
20
29
All Points
.7956
.142
.307


0
3.42
3.42
5 .87
r
ra
b
kio
Lo
0
.3
.5
.5
Last 3 Pts
.8825
.27
3.022
.0233
0.68

S-6 6
12
20
29
.8721
.059
2.382


2.71
2.88
4.05
3.87
r
m
b
Mo
Lo
0.3
0.5
0.3
0.5
.7643
.057
2.449
.0607
.49

S-7 6
12
20
29
-.9042
-.012
1.265


1.21
1.14
.94
.96
T
m
b
Mo
Lo
3.4
8.0
23.8
32.4
-.7970
-.010
1.223
-.0213
• 11.16
BOD
mg/1

0.3
0.8
1.4
1 . 3






.0
.9
1.0
1.2





6.3
12.1
28.8
37.7




CBOD
(t/y) 1/3
CBOD
mg/1

2.71
2.88
2.81
3.51
All Points
.863
.023
2.54
.0236
1.12
0.3
0.3
0.9
0.8







3.10
3.05
3.46
.824
.022
2.76
.0208
.99

.4
.7
.7





1.27
1.43
1.59
1.76
.997
.021
1.160
.0473
5.89
2.9
4.1
5.0
5.3




                                              62

-------
-:; V-C-4  (con't)
UNALTERED RIVER SAMPLES
Days of
te Station Incubation
NOD
(t/y) l
NOD
/^ mg/1

0/5 S-8 6
12
20
29
All Points
-0.8747
-0.0183
1.5061


L-9 6
12
20
29
-0.4559
-0.0174
2.0416


1.36
1.40
1.02
1 . 02
r
m
b
klO
Lo
2.29
1.42
1.57
1.72
r
m
b
kio
Lo
2.4
4.4
18.7
27.3
Last 3 Pts ,
0.8486
0.0219
1.5918
0.0359
3.00
0.5
4.2
5.2
5.7
0.9994
0.0176
1.2116
0.0379
6.45

L-10 6
12
20
29
0.1656
0.0034
1.6510


1.88
1.44
1.66
1.85
r
m
b
Mo
Lo
0.9
4.0
4.4
4.6
.9971
.0241
1.1609
.054
5.16
BOD
ng/1

9.8
15.4
32.8
43.4





1.6
6.0
7.7
8.6





2.0
6.0
7.0
7.6




CBOD
(t/y) 1/0
CBOD
mg/1

0.933
1.03
1.12
1.22
All Points
0.996
0.012
0.870
0.036
18.34
1.76
1.88
2.0
2.15
0.999
0.017
1.67
0.0266
3.51
7.4
11.0
14.1
16.1





1.1
1.8
2.5
2.9





1.76
1.82
1.97
2.13
0.995
0.017
1.64
0.0271
2.64
1.1
2.0
2.6
3.0




                                         63

-------
fable r V-C-4
Days of
Date Station Incubation
NOD
(t/y) l/
NOD
5 ing/ 1

10/5 L-ll 6
12
20
29
All Points
-0.8652
-0.0452
2.8545


2.71
2.37
1.63
1.81

r
m
b
kio
Lo
0.5
0.9
4.6
4.9
Last 3 Pts.
-0.7018
-O.C51S
2.5841
-0.0321
5.38

L-12 6
12
20
29
-0.752
-0.015
2.159


2.15
1.96
1.67
1.83
r
m
b
kio
Lo
0.6
1.6
4.3
4.7
-0.416
-0.007
1.965
-0.0093
6.16

L-13 6
12
20
29
-0.2072
-0.007
1.868


2.15
1.40
1.66
1.S5
T
m
b
KIO
Lo
0.6
4.4
4.4
4.7
0.988
0.025
1.118
0.0584
.5.33
BOD
ir.g/1

1.3
2.7
7.0
7 .7







1.3
3.3
6.8
7.5






1.5
6.1
6.9
7.5





CBOD
Ct/y) 1/0
CBOD
mg/1

1.82
1.88
2.03
2. IS
All Points
0.995
0.016
1.71
0.0244
5.56
1.0
1.8
2 .4
2.8






2.04
1.92
2.0
2.18
0.662
0.007
1.91
0.0242
3.48
0.7
1.7
2.5
2.8





1.88
1.92
2.0
2.18
0.973
0.013
1.78
0.0191
4.04
0.9
1.7
2.5
2.8




                                                64

-------
ible # V-C-4  (con't)
UNALTERED RIVER SAMPLES
Days of
ate Station Incubation
NOD
(t/y) l/
NOD
3 mg/1

0/5 L-14 6
12
20
29
All Points
0.38S
0.0066
1.680


1.88
1.59
1.72
1.97
r
m
b
Mo
Lo
0.9
3.0
3.9
3.8
Last 3 Pts ,
0.989
0.022
1.303
0.0441
4.46

L-15 6
12
20
29
0.203
0.00393
1.659


L-16 6
12
20
29
.4267
.0039
1.6168


1.88
1.47
1.68
1.87
r
m
b
kio
Lo
1.71
1.62
1.60
1.80
r
m
b
kio
Lo
0.9
3 . 7
4.2
4.4
0.998
0.023
1.20
0.0500
5.03
1.2
2.8
4.9
5.0
.8362
.0108
1.4531
.0194
7.3043
BOD
mg/1

1.9
5.8
6.6
6.8






1.4
5.1
6.4 •
6.8




1.6
4.2
7.0
7.4




CBOD
(t/y) 1/3
CBOD
mg/1

1.82
1.62
1 .95
2.13
All Points
0.805
0.017
1.59
0.0414
3.44
1.0
2.8
2.7
5.0






2.29
2.05
2.09
2.29
0.128
0.002
2.15
0.0024
18.23
2.46
2.05
2.12
2.29
-.386
.006
2.317
-.0068
5.14
0.5
1.4
2.2
2.4




0.4
1.4
2.1
2.4




                                            65

-------
Table r V-C-4 Ccon't)
UNALTERED RIVER SAMPLES
Days of
Date Station Incubation
NOD
Ct/y) l
NOD
75 mg/1.

10/6 L-l 6
12
20
51
All Points
--



--
3.10
5.21
5.25
r
m
b
klO
Lo
0
.4
.6
.9
Last 3 Pts.
.9380
.0076
3.026
.066
2.38

L-4 6
12
20
31
.5060
.0152
1.9848


2.29
2.10
1.92
2.68
r
m
b
kio
Lo
.5
1.3
2.8
1.6
.7892
.0328
1.5433
.0555
2.13

L-5 6
12
20
31
.5608
.0132
1.9849


2.29
1.88
2.19
2.49
r
m
b
kio
Lo
.5
1.8
1.9
2.0
.9950
.0318
1.5186
.0547
2.27
BOD
mg/1

1.0
1.7
2.0
2.4






3.2
5.8
6.7
7.7





1.9
3.8
4.4
4.8




CBOD
(t/y) 1/5
CBOD
mg/1

1.82
2.10
2 .42
2.74
All Points
.994
.036
1.64
.0573
1.72
1.0
1.3
1.4
1.5






1.30
1.39
1.72
1.72
.906
.018
1.215
.0387
6.26
2.7
4.5
3.9
6.1





1.62
1.82
2.00
2.23
.995
.024
1.505
.0416
5.01
1.4
2.0
2.5
2.8




                                               66

-------
ible r  V-C-4 (con't)
UNALTERED RIVER SAMPLES
Days of
ate Station Incubation
NOD
(t/y) l>
NOD
/3 ng/1

0/6 S-6 6
12
20
31
All Points
.987
.026
1.98


S-7 6
12
20
31
' .706
.0018
.929


2.15
2.29
2.^2
2.80
r
n
b
kio
Lo
.959
.924
.967
.989
r
m
b
klO
Lo
.6
1.0
1.4
1.4
Last 3 Pts
.983
.027
1.93
.0365
1.66
6.8
15.2
22.1
32.0
.962
.003
.890
.0088
70.08

S-8 6
12
20
31
-.687
-.064
2.69


5.10
1.07
1.08
1.09
r
m
b
Mo
Lo
0.2
9.8
15.9
24.0
.996
.001
1.058
.025
24.7
BOD
mg/1

2.3
3.2
3.9
4.0





11.3
20.8
28.4
38.7





9.2
23.7
31.2
41.1




CBOD
(t/y) 1/J
CBOD
nig/1

1.52
1.76
2.00
2.28
All Points
.995
.030
1.375
.0570
2.95
1.10
1.29
1.47
1.46
.880
.014
1.086
.0336
10.10
1.7
2.2
2.5
2.6





4.5
5.6
6.3
6.7




"
.874
.952
1.09
1.07
.871
.008
.855
.0244
28.51
9.0
13.9
15.3
17.1




                                               67

-------
rable  f V-C-4  (con'tj
UNALTERED RIVER SAMPLES
Days of
Date Station Incubation
NOD
(t/y) l
NOD
/5 mg/1

10/6 L-ll 6
12
20
51
All Points
.124
.0017
1.658


1.82
1.55
1.57
1.81
r
m
b
MO
Lo
1.0
3.2
5.2
5.2
Last 3 Pts
.933
.014
1.346
.0271
6.58

L-12 6
12
20
31
.8722
.0129
1.3903


1.55
1.47
1.59
1.84
r
m
b
Mo
Lo
1.6
3.8
5.0
5.0
.9940
.0196
1.2202
.0419
5.71

L-13 6
12
20
31
.7549
.0147
1.3436


1.59
1.34
1.59
1.87
r
m
b
Mo
Lo
1.5
5.0
5.0
4.7
.9985
.0277
1.0173
.0711
' 5.81
BOD
mg/1

3.7
8.0
8.9
9.4






3.8
7.8
8.7
9.2





3.4
7.6
8.5
8.3




CBOD
(t/y) 1/3
CBOD
mg/1

1.30
1.36
1.73
1.71
All Points
.869
.019
1.207
.0411
6.02
2.7
4.8
3 . 7
4.2






1.40
1.44
1.75
1.98
.982
.025
1.213
.0538
4.53
2.2
4.0
3.7
4.2





1.47
1.66
1.79
2.05
.995
.022
1.356
.0423
4.12
1.9
2.6
3.5
3.6




                                              68

-------
ble r y-C-4 (con't)
                                 UNALTERED RIVER SAMPLES
Days of
ite Station Incubation
NOD
(t/y) 1/3
NOD
mg/1

D/6 L-14 6
12
20
31
All Points
.5671
.0102
1.4392


1.66
1.44
1.4S
1.87

r
m
b
klO
Lo
1.3
4.0
6.0
4.7
Last 3 Pts
.9473
.0234
1.1096
.0550
5.79

L-15 6
12
20
31
.9165
.0202
1.2470


1.47
1.39
1.59
1.93
r
m
b
klO
Lo
1.9
4.5
5.0
4.3
.9983
.0286
1.0367
.0720
5.42

L-16 6
12
20
31
-.0666
-.0020
1.809


2.15
1.400
1.631
1.916
r
m
b
Jqo
Lo
.6
4.4
4.6
4.4
.9995
.0270
1.080
.065
• 5.31
BOD
mg/1

3.6
8.7
9.8
9.7







4.8
8.5
9.6
9.5






2.9
7.3
8.1
8.2





CBOD
(t/y) 1/5
CDOD
mg/1

1.38
1.37
1.74
1.84
All Points
.934
.021
1.220
.0449
5.33
2.3
4.7
3.S
5.0






1.27
1.44
1 .65
1.81
.992
.021
1.168
.0469
5.82
2.9
4.0
4.6
5.2





1.38
1.60
1.79
2.01
.991
.025
1.270
.0514
4.13
2.3
2.9
3.5
3.8




                                            69

-------
Table # V-C-5
THOMAS GRAPHICAL DETERMINATION  OF  BOD
           SEEOFn EFFLUENT SAMPLLS
            Industrial  Effluents
                                                               lONST.ANTS
Days of
Date Station Incubation
NOD
(t/y) l
NOD
/-^ mg/1

10/5 BS-005 6
12
20
29
All Points
-.1915
-.0054
1.8097


2.04
1.36
1.76
1.72

r
m
b
klO
Lo
.7
4.8
5.5
5 . 7
Last 5 Pts.
.7970
.0206
1.1935
.0450
5.68

BS-006 6
12
20
29
.9250
.0150
1.8870


2.04
2.00
2.15
2.56
r
m
b
kio
Lo
.7
1.6
2.0
2.2
.9981
.0212
1.7385
.0518
2.60

BS-007 6
12
20
29
.9459
.0195
1.8602


2.04
2.00
2.27
2.44
r
171
b
kio
Lo
0.7
1.6
1.7
2.0
.9865
.0257
1.7133
.0392
. 2.21
BOD
rag/I

2.4
8.0
9.3
9.S







2.3
4.3
5.3
5.8






2.2
4.4
5.2
5.7





CBCD CROD
(t/y) !/3 mg/1

1.52 1.7
1.55 3.2
1.74 3.8
1.92 4.1
All Points
.9835
.0183
1 . 3757
.0347
4.81

1.55 1.6
1.64 2.7
1.S2 3.3
2?00 5.6
.9509
.0518
1.1368
.0730
I 4.05

1.59 1.5
1.62 2.8
1.79 5.5
1.99 5.7
.9812
.0181
1.4443
.0413
3.50
                                                70

-------
ole ;- V-C-5 (con't)
     i EFFLUENT SAMPLES
Industrial Effluents

Days of
tc Station Incubation

NOD
(t/y) ]/
1
NOD
3 mg/1

75 BS-008 6
12
20
29
All Points
-.0695
-.0018
2.4550


2.71
2.10
2.3T
2.52

r
m
b
kiO
Lo
.3
1.3
1.5
1.8
Last 3 Pts.
.9806
.0245
1.8310
BOD
rcg/1

2.1
3.8
4.7
5.4



;
|
.0549 j
2 . 03 [

BS-010 6
12
20
29
All Points
.993
.019
1.7S7


1.88
2.04
2.19
2 . 33

r
m
b
kio
Lo
.9
1.4
1.9
2.3
Last 3 Pts .
.999
.017
1.841
.0241
2.89

BS-012 6
12
20
29
-.167
-.002
2.175


2.29
2.00
2.09
2.18
r
m
b
kio
Lo
.5
1.5
2.2
2.8
.9994
.0106
1.875
.0148
4.46

1.8
3.6
4.7
5.5







1.6
3.6
5.1
6.1






CKOD
(t/y) 1/0

CI50D
mg/1

1.49
1.69
1 .84
2.00
All Points
.9890
.0215
1.3942
.0402
3.99
1.8
2.5
3 2
3.6






1.S8
1.76
1.92
2.08
All Points
.7961
.0105
1.7333
.0158
5.20
.9
2.2
2.8
3.2






1.76
1.79
1.90
2.06
; .9812
.0133
1.6539
.0210
4.58
1.1
2.1
2.9
3.3




                                            71

-------
Table i: V-C-3 (con't)
      EFFLUENT SAMPLES
Industrial Effluents
Days of
Date Station Incubation
NOD
(t/y) l/
NOD
0 mg/1

10/5 BS-014 6
12
2 > j
29
All Points
.0660
.0008
2.54


2.46
2.71
2.4S
2.57
-P
m
b
Mo
Lo
.4
.6
1.5
1.7
Last 5 Pts.
-.577
-.008
2.746
.0076
2.76

10/6 BS-005 6
12
20
31
.041
.00076
1.597


1.82
1.36
1.54
1.72
r
m
b
Mo
Lo
1.0
4.8
5.5
6.1
.996
.019
1.145
.0433
6.69

BS-006 6
12
20
31
.96673
.02184
1.7533


1.82
2.10
2.19
2.41
r
m
b
Mo
Lo
1.0
1.3
1.9
2.2
.98927
.01654
1.88602
.060
1.08
BOD
?-g/l

1.9
3.3
-t . /
5.9






3.6
S.2
10.2
11.2





3.2
4.8
5.4
6.4



i
CHOD
f *. /^,\ 1/3
U/) )
CDOD
mg/1

1.59
1.64
1.80
1.90
All Points
.9900
.0142
1.495
.0243
5.25
1.5
2.7
5.4
4.2






1.52
1.52
1.62
1.82
.9848
.0190
1.2430
.0399
5.67
2.6
3.4
4.7
5.1





1 .40
1.51
1.79
1.94
.9821
.0226
1.2705
.0464
4.57
2.2
3.5
3.5
4.2




                                             72

-------
able - V-C-5  (con't)
SEEDED EFFLUENT SAMPLES
 Industrial Effluents
Days of
ate Station Incubation
NOD
(t/y) 1
NOD
/3 mg/1

0/6 BS-007 6
12
20
31
All Points
.87996
.02561
1.58573


1.59
2.10
2. OS
2.34

r
m
b
kio
Lo
1.5
1.3
2.2
2.4
Last 3 Pts
.87669
.01330
1.89410
.0183
3.50

BS-OOS 6
12
20
31
-.24552
-0.00366
2.5582


2.46
2.71
2.32
2.49
r
m
b
kio
Lo
.4
.6
1.6
2.0
-.48518
-.00994
2.71551
.0096
2.26

BS-010 6
12
20
31
.6899
.01798
1.95492


1.88
2.46
2.23
2.49
T
m
b
klO
Lo
.9
.8
1.8
2.0
.19530
.00291
2.33218
.0032
' 10.71
BOD
ng/1

3.6
5.0
5.S
6.6







3.5
5.3
6.3
7.5






3.4
4.9
5.9
7.0





CBOD
Ct/v) 1/3
CBOD
mg/1

1.42
1.48
•t -* ~"
1.94
All Points
.9306
.0222
1.2690
.0457
4.66
2.1
3.7
5.6
4.2






1.24
1.37
1.62
1.78
.9875
.0222
1.120
.0517
5.99
5.1
4.7
4.7
5.5





1.34
1.43
1.70
1.84
.9805
.0211
1.2159
.0454
5.35
2.5
4.1
4.1
5.0




                                             73

-------
Fable F- V-C-5 (con't)
LEnnn F.FFLUF.XT SAMPLES
Industrial Effluents
Date
 10/6
Davs of
Station Incubation
NOD
Ct/y) l
NOD
/-"> rog/1

BS-012 6
12
20
31
All Points
.81769
.00946
1.88672


1.96
2.04
1.97
2.25
r
m
b
kio
Lo
.8
1.4
2.6
2.S
Last 3 Pts
.76750
.01082
1.85269
.0152
4.50

BS-014 6
12
20
31
.7834
.0203
1.98557


2.29
2.00
2.57
2.68
r
m
b
kio
Lo
.5
1.5
1.5
1.6
.98996
. 03533
1.60803
.0573
1.82
BOD
rg/1

3.1
5.4
6.S
S.G






3.4
5.1
6.1
7.0




CHOD
(t/v) 1/J>
CBOD
r.g/1

1.3S
1.44
1.6S
1.81
All Points
.9799
.0183
1.2616
.0379
5.73
2.3
4.0
4 .2
5 . 2






1.27
1.49
1.63
1.79
.9764
.0199
1.2015
.0432
5.80
2.9
3.6
4.6
5.4




                                               74

-------
le -'• V-C-6
THOMAS GRAPHICAL DETERMINATION OF BOD CONSTANTS
       SEEDED  S  DTLl'TtD  EFFLUENT SAMPLES
      STP Effluents § Industrial Effluents
Days of
Station Incubation
KOI)
(t/v) !/3
NOD
rn^/1

Allentown STP 6
12
20
29
All Points
0.97275
0.00716
0.51002
0.57
0.58
0.64
0.75
r
m
b
klO
Lo
oo
63
78
75
Last 3 Pt =
0.99672
0.00885
0.47009
0.0491
85.2

BS-015 6
12
20
29
0.20998
0.00096
0.45138
0.50
0.40
0.48
0.49
r
m
b
fcio
LO
46.5
189
186
249
0.89782
0.00521
0.35078
0.03S8
259.08

BS-031 6
12
20
29

0
0
0
0 1
r
in
b
kio
Lo
BOD
rr.g/1

54
95
120
120


57
204
210
264


241.5
417.0
837
203.0

CROO
Ct/y) 1/0
CBOi)
fiig/1

0.66
0.74
0.7S
0.840
All Points
0.9800
0.0074
0.6308
0.0306
56.61
21
50
42
45

0.83
0.93
0.94
1.24
0.9251
0.0164
0.7100
0.0603
20.14
10.5
15
24
15

.29
.31
.288
.29
-0.5173
-0.0003
.3003
-0.0026
-6174.94
241.5
417.0
837.0
1203.0
Linear
(r=.996)
                                             75

-------
Table -' V-C-6 (con't)
 SEEDED f; DILUTED EFFLUENT  SAMPLES
STP Effluents 5 Industrial Effluents
Days of
Date Station Incubation
KOD
(t/y) !/3
NOD
TCP/ }

10/4 Bethlehem STP 6
12
20
29
All Points
0.96920
0.00795
0.39184


1

0.46
0.46
0.55
0.63

r
m
b
kio
•

Lo
60
102
125
115
Last 5 Pts
0.99770
0.00998
0.54380
0.0758


141.15

LO/5 Al lent own STP 6
12
20
29
0.19308
0.00179
0.72500


0.85
0.63
0.74
0.82
r
m
b
kio
Lo
10.5
48
49.5
52
0.99222
0.01113
0.50371
0.058


BS-015 6
12
20
29
-0.64501
-0.02122
1.12546


1.26
0.57
0.60
0.65
r
m
b
kio
Lo
5.0
64.5
94.5
BOD
rag/1

99
120
189
1S9








21
64.5
78
90





4.5
64.5
94.5
103.5 103.5
0.99402
0.00472
0.51062
0.0241
135.51




cr.oo
(t/y) ^
CBOO
ng/1

0.54
.874
0.672
0.73
All Points
-0.1559
-0.0075
1.0081




39
18
65
74

Linear
(r=.80)





0.85
0.90
0.80
0.91
0.3431
0.0018
0.8292


10.5
16.5
38.5
38
Linear
(r=.920



1.59
0
0
0
-0.8325
-0.0972
1.8073


1.5
0
0
0
ONo gr


                                                76

-------
»lc  ' V-C-6 (con't)
 SEEDED f, DILUTED EFFLUENT  SAMPLES
STP Effluents & Industrial Effluents
Days of
-c Station Incubation
NOD
(t/y) 1/3
NOD
ng/1

•'5 BS-031 6
12
20
29
All Points








r
m
b
Lo
0
0
0
0
Last 5 Pts




Bethlehem STP 6
12
20
29
0.35409
0.00260
0.58987


0.68
0.54
0.61
0.71
r
m
b
kio
Lo
19.5
78
87.8
81. B
0.99772
0.01002
0.41620
0.0628
96.03

'6 Allentown STP 6
12
20
31
.99230
.00943
.49984


.57
.60
.68
.80
r
m
b
klO
Lo
32.0
55.5
64.5
60.0 ]
.99971
.01055
.47179
.0584
'70.89
ROD
r.g/1

123
244.5
^51.3
576





36
105
126
129






47.0
79.5
102
.05.5




cno;)
(t/y) 1/J
CBOD

0.56
0.57
0.35
0.57
All Points
0.1483
0.0001
0.3601

123.0
244.5
451.5
576.0

Linear
(r=.992)


0.36
0.76
0.81
0.85
0.8212
0.0186
0.3S50
0.127
60.94
16.5
27
38.2
47.2





.74
.79
.53
.87
.2011
.0027
.6859
.0103
130.81
15.0
24.0
37.5
46.5
Linear
O.987)


                                             77

-------
)lc  • V-C-6 (con't)
 SEEDED & DILUTED EFFLUENT  SAMPLES
STP Effluents § Industrial Effluents
Days of
te Station Incubation
NOD
Ct/y) l/
NO!)

,/5 BS-031 6
12
20
29
All Points








r
b
Lo
0
0
G
0
noo

123
244.5
-31.5
576
Last 5 Ptsi




Bethlehem STP 6
12
20
29
0.35409
0.00260
0.58987


0.68
0.34
0.61
0.71
r
m
b
kio
Lo
19.5
78
87.8
81.8
0.99772
0.01002
0.41620
0.0628
96.03

'6 Allentown STP 6
12
20
31
.99230
.00943
.49984


.57
.60
.68
.80
r
m
b
kio
LO
32.0
55.5
64.5
60.0 ]
.99971
.01055
.47179
.0584
70.89




36
105
126
129






47.0
79.5
102
.05.5




Ct/y) 1/5
CBO'J
nig/1

0.56
0.37
0.35
0.57
All Points
0.14S5
0.0001
0.5601

123.0
244.5
451.5
576. 0

Linear
(r=.992)


0.56
0.76
0.81
0.85
0.8212
0.0186
0.3S50
0.127
60.94
16.5
27
38.2
47.2





.74
.79
.53
.87
.2011
.0027
.6859
.0105
130.81
15.0
24.0
37.5
46.5
Linear
(r=.987)


                 77

-------
sic  ' V-C-6 (con't)
SEEDED f, DILUTED  EFFLUENT  SAMPLES
             § Industrial Effluents
Days of
ce Station Incubation
NOD
(t/>0 l/
NOD
3 mg/1

/5 BS-031 6
12
20
29
All Points








r
m
b
Lo
0
0
0
0
ROD

125
244.5
^31.5
576
Last 5 Ptsi




Bethlehem STP 6
12
20
29
0.35409
0.00260
0.58987


0.68
0.54
0.61
0.71
r
m
b
kio
Lo
19.5
78
87.8
81.8
0.99772
0.01002
0.41620
0.0628
96.03

/6 Allentown STP 6
12
20
31
.99230
.00943
.49984


.57
.60
.68
.80
r
m
b
klO
Lo
32.0
55.5
64.5
60.0 3
.99971
.01055
.47179
.0584
70.89




36
105
126
129






47.0
79.5
102
.05.5




cno:.i
(t/y) l/:>
CBOI)
H'f./l

0.36
0.37
0 . 35
0.57
All Points
0.1485
0.0001
0.5601

125.0
244.5
451.5
576.0

Linear
(r=.992)


0.56
0.76
0.81
0.85
0.8212
0.0186
0.3S50
0.127
60.94
16.5
27
38.2
47.2





.74
.79
.53
.87
.2011
.0027
.6859
.0103
150.81
15.0
24.0
37.5
46.5
Linear
O.987)


                                             77

-------
.-•Ic < V-C-6  (con't)
 SEEDED f, DILUTED  EFFLUENT  SAMPLES
STP Effluents § Industrial Effluents
Days of
te Station Incubation
NOD
(t/y) l/
NOD
3 mg/1

/3 BS-031 6
12
20
29
All Points








T
m
b
Lo
0
0
0
0
Last 3 Pts




Bethlehem STP 6
12
20
29
0.35409
0.00260
0.58987


0.68
0.54
0.61
0.71
r
m
b
Mo
Lo
19.5
78
87.8
81.8
0.99772
0.01002
0.41620
0.0628
96.03

/6 Al lent own STP 6
12
20
31
.99230
.00943
.49984


.57
.60
.68
.80
r
m
b
klO
Lo
32.0
55.5
64.5
60.0 ]
.99971
.01055
.47179
.0584
70.89
ROD

125
244.3
451.5
576





36
105
126
129






47.0
79.5
102
.05.5




cnon
Ct/y) l/"
CBOD
*g/l

0.56
0.37
0.35
0.57
All Points
0.14S3
0.0001
0.5601

123.0
244.5
451.5
576.0

Linear
(r=.992)


0.56
0.76
0.81
0.85
0.8212
0.0186
0.3S30
0.127
60.94
16.5
27
38.2
47.2





.74
.79
.53
.87
.2011
.0027
.6859
.0103
130.81
15.0
24.0
37.5
46.5
Linear
[r=.987]


                                             77

-------
>ic r V-C-6 (con't)
 SEEDED f, DILUTED EFFLUENT  SAMPLES
STP Effluents $ Industrial Effluents
Days of
•o Station Incubation
NOD
(t/y) 1/3
NOD
rep/ 1

'5 BS-031 6
12
20
29
All Points








T*
m
b
Lo
0
0
Q
0
Last 3 Pts




Bethlehem STP 6
12
20
29
0.35409
0.00260
0.58987


0.68
0.54
0.61
0.71
r
m
b
Mo
Lo
19.5
78
87.8
81.8
0.99772
0.01002
0.41620
0.0628
96.03

'6 Al lent own STP 6
12
20
31
.99230
.00943
.49984


.57
.60
.68
.80
r
m
b
klO
Lo
32.0
55.5
64.5
60.0 ]
.99971
.01055
.47179
.0584
70.89
HOD
r.g/1

125
244.5
-51.5
576





36
105
126
129






47.0
79.5
102
.05.5




cno;)
(t/y) 1/J
CBOD
nig /I

0.36
0.37
0.53
0.57
All Points
0.1483
0.0001
0.3601

123.0
244.5
451.5
576.0

Linear
(r=.992)


0.56
0.76
0.81
0.85
0.8212
0.0186
0.3830
0.127
60.9'4
16.5
27
38.2
47.2





.74
.79
.55
.87
.2011
.0027
.6859
.0103
130.81
15.0
24.0
37.5
46.5
Linear
(r=.987)


                                             77

-------
  SEEDED 5 DILUTED  EFFL'JEXT SAMPLES
 ST? Effluent? £- Industrial Effluents
Da;.-? of
Date Station Incubatior.
NOD,
(t/y) */
XOD
•^ ms/1

10/6 BS-015 6
12
— 'J
o i
All Points
.46^95
.00215
.5657^


.62
. 55
.62
.64
T
m
b
klO
Lo
25. S
81.8
81,3
115,3
Last 3 ?ts
.90347
.00355
.48013
.0502
130.0"

BS-051 6
12
20
31




0
0
0
0
r
in
b
kio
Lo
DOO
-,r/1

25. S
SS.5
3S.3
.21 .5






0 121.5
0 236.5
0
0
0
0
0
0

Bethelem STP 6
12
20
31
.958S2
.00619
.48328


.54
.53
.61
.68
n
b
klO
Lo
59.0
366
510





64.5
Sl.O 117.0
90 .0 144 . 0
99.0
.99164
.00780
.44280
.0460
103.85
159.0




CP-O:) CBQD
(t/v) 1( ^ ir,^/l

0 0
1.13 7.3
1.47 6.3
1 .75 6.0
Ail Points
.8732
.0617
.0310
5.19
2812.05

.05 121.5
.05 256.5
.38 366
.39 310
.8896
.0139
-.0570 ^952)
-.728


.62 25.5
.69 56.0
.72 54.0
.80 60.0
.9851
.0068
.5905
.0301
70.22
10
correlation coefficient
slope
y-intercept
deoxygenation constant, day" ,  base 10
initial remaining demand, rag/1
                 73

-------
                          COMPILATION OF CBOD RIVER SAMPLE KINETICS
       Table # V-C-7
kio (day-1)
:ation
L-l
L-3
L-4
T-l
L-5
T-2
S-6
S-7
s-s
L-9
L-10
L-ll
L-12
L-13
L-14
L-15
L-16
n
10 (day" )
S10'
10/4
.054
.033
.049
-.030*
.053
.061
.062
.060
—
.045
.052
.044
.029
.022
.028
.037
.037
15
.044
.013
10/5
.037
.017
.026
.024
.027
.024
.021
.047
.036
.027
.027
.024
.024*
.019
.041
.002*
-.007*
14
.028
.009
10/6
.057
--
.059
--
.042
--
.057
.054
.024
--
—
.041
.054
.045
.045
.047
.051
12
.045
.010
L
10/4
8.0
7.0
3.4
1.02
4.4
2. 1
2.6
8.3
--
3.6
3.7
3.1
3.5
3.6
3.9
3.2
3.7



o (mg/1) r (coefficient of correlation)
10/5
1.2
7 . 5
2.9
5.2
3.0
1.1
1.0
5.9
18.3
3.5
2.6
3.6
5.5
4.0
3.4
18.2
5.1



10/6
1 ,7
--
6.3
—
3.0
--
3.0
10.1
28. 5
—
--
6.0
4.5
4.1
5.3
5.8
4.1



10/4
.997
.999
.998
(-.553)
.999
.997
.999
.990
—
.995
.937
1.000
.983
.813
.946
.812
1.000



10/5
. 991
.962
.998
.999
.998
.868
.824
.997
.996
.999
.995
.995
.662
.973
.803
.128
(-.386)



10/6
.994
--
.906
--
.995
--
.995
.880
.871
--
--
.869
.982
.995
.934
.992
.991



:e  (day'1)
.101
.030
.064
.021
.104
.023
                   Overall
                     n =  41
                     kl0  =  .039, ke =
                         =  .011,  se =
                          .090
                          .025
                     Excluded  from calculation of average  k.
                                             79

-------
                           COMPILATION OF NOD RIVER SAMPLE KINETICS
         Table # V-C-S
station
  L-l
  L — 5
  L-4
  T-l
  L-5
  T-2
  S-6
  S-7
  S-S
  L-9
  L-10
  L-ll
  L-12
  L-13
  L-14
  L-15
  L-16
kio
10/4
.012
.047
.043
.099
.049
.011
.020
.010*
--
.052
.054
.054
.045
.056
.024
.024
.055
(day'1)
10/5
.002
.057
-.047*
.C54
.C51
.025
.061
-.023*
.036
.038
.054
-.052*
-.010*
.058
.044
.050
.019

10/6
.00"
--
.056
--
.055
—
.037
.009
.025
—
--
.027
.042
.071
.055
,072
.065
                                                           r**(coefficient of correlation)
10/4
A 1
T . '
6.0
1.9
1.3
3.0
1.6
1.9
37.4
--
5.4
5.2
4.5
4.0
5.3
5.0
5.2
5.3
10/5
5.0
5.0
9.2
1.6
2.1
0.7
0.5
11.2
5.0
6.5
5.2
5.4
6.2
5.3
4.5
5.0
7.3
10/6
2.4
--
2.1
--
2.5
--
1.7
70.1
24.7
—
--
6.6
5.7
5.8
5.8
5.4
5.3
                                                               10/4
10/5
10/6
.954
.996
.998
.990
.986
.999
.986
-.796
—
1.000
.927
1.000
1.000
1.000
.999
.848
1.000
.725
1.000
-.802
.927
.979
.885
.764
-.797
.849
.999
.997
-.702
-.416
.988
.989
.998
.836
.958
--
.789
--
.995
—
.983
.962
.996
—
—
.935
.994
.998
.947
.998
1.000
n
k10 (day"1)
S10
15
.043
.020
L3
.039
.017
10
.043
.021
ke (day"1)
       sa
             .041
             .019
                     Overall
                      n = 38
                      ke = .094
             * Excluded from calculation of average  k.

            ** Values excluding day 6 data due to lag phase (see Table V-C-4 for r values
               based en all data) .
                                              80

-------
                             COMPILATION OF CBOD and NOD
                           SEEDED EFFLUENT SAWLF KINETICS
   Table # V-C-9
Station
3S-Q05
BS-006
BS-007
BS-OOS
BS-010
BS-012
BS-014
CBOD k10 (day'1)
10/5       10/6
.035       .043
.073       .046
.041       .046
.040       .052
.016       .045
.021       .038
.025       .043
                                         CBOD L0 (rag/1]
                                                     CBOD
                                          (coefficient  of correlation)
10/5
4.S
4.1
3 . 5
4.0
5.2
4.6
5.3
10/6
5.7
4.6
4.7
6.0
5.4
5.7
5.8
10/5
.93?
.951
.981
.989
.796
.931
.990
10/6
.985
.982
.981
.988
.981
.980
.976
BS-005
BS-006
BS-007
BS-008
BS-010
BS-012
BS-014
NOD
.045
.032
.039
.035
.024
.015
.045
         (day'1)
            .043
            .060
            .018
            .010
            .003
            .015
            .057
NOD L0
5.7
2.6
2.2
2.
  0
2.9
4.5
6.7
 1.1
 1.1
 3.5
 2.3
10.7
 4.5
 1.8
                                                                      NOD
                                                           (coefficient  of  correlation)
.797
.993
.987
.981
.999
.999
.996
 .996
 .989
 .877
-.485
 .195
 .768
 .990
                                           81

-------
                                TABLE  V  -  D-l
Station

L-l
L-l
L-l
L-l
L-l
L-4
L-4
 L-4
 L-4
 L-4
10/5
10/5
1310
2000
10/5    2300
10/6
0300
10/5    0910
10/5
1355
10/5    1820
10/5    2030
10/6
0345
                              LEHIGH  RIVER STUDY

                                 DIURNAL DATA

Location
Right
Center
Left
Avg./Como.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
PH
(SU)
6.85
7.1
7.2
7.05
7.5
7.45
7.45
7.43
7.55
7.55
7.5
7.53
7.3
7.2
6.5
7.0
7.6
7.65
7.65
7.63
7.2
7.2
7.2
7.2
7.3
7.4
7.3
7.33
7.25
7.1
6.6
7.0
7.5
7.5
7.4
7.5
7.6
7.5
7.5
7.53
                                                      Temp.
                                                    D.O.
                                                   (ppm)
12
12
12
12
13.5
13.0
13
13.16
14.1
14.0
13.8
14.0
14.0
14.0
14.0
14.0
14.0
13.6
13.3
14.6
12.2
12
12.2
12.13
14
14
14
14
13.5
13.5
14.5
13.8
14
14
14
14
13.8
14.0
14.0
13.9
10.6
10.6
10.6
10.6
10.8
10.7
10.5
10.6
10.5
10.6
10.4
10.5
10.6
10.4
10.3
10.4
11.1
10.9
10.5
10.8
10.6
10.2
9.8
10.2
10.4
10.2
10.1
10.23
10.5
10.5
10.4
10.4
10.0
10.0
10.8
10.3
10.2
9.8
9.5
9.8
                                                      Chlorophyll
                                                         (pob)
                                                                                4.5
                                                                                3.0
                                                                                4.5
                                                                                4.5
                                                                                4.5
                                                                                3.0
                                            82

-------
 Station
 L-9
L-9
L-9
L-9
L-9
L-9
L-11
L-ll
L-ll
L-l
L-n
 Date     Time
 10/5    0935
10/5    1420
10/5    1900
10/5    2110
10/6    0005
10/6    0410
10/5    1150
10/5    1450
10/5    1900
10/5    2140
10/6    0050
TABLE V -
0-1
LEHIGH RIVER STUDY
DIURNAL

Location
Right
Center
Left
Avg./Comp
R1 ght
Center
Left
Avg./Comp
Right
Center
Left
Avg./Comp
Right
Center
Left
Avg./Comp
Right
Center
Left
Avg./Comp
Right
Center
Left
Avg./Comp
Right
Center
Left
Avg./Comp
Right
Center
Left
Avg./Comp
Right
Center
Left
Avg./Comp
Right
Center
Left
Avg./Comp
Right
Center
Left
Avg./Comp
DATA
PH
(SU)
7.2
7.15
7.3
. 7.21
7.4
7.5
7.5
. 7.46
7.5
7.5
7.5
. 7.5
7.5
7.5
7.55
. 7.53
7.45
7.5
7.35
. 7.40
7.3
7.55
7.5
. 7.45
7.25
7.3
7.3
7.28
7.3
7.35
7.4
. 7.35
7.3
7.3
7.3
. 7.3
6.8
6.6
6.7
. 6.7
7.35
7.4
7.45
. 7.40
                                                      Temp.
                                                               Chlorophyll a_
13.5
13
14
12.73
15
14.5
15.5
15.0
14.5
15
15.5
15.
14.5
14.9
15.5
15.0
14.5
15.0
15.5
15.0
13.8
14.2
14.5
14.1
15.0
14.0
14.0
14.3
14.5
14.5
14.5
14.5
16.0
16.0
16.0
16.0
15.0
15.0
15.0
15.0
14.5
14.5
14.5
14.5
9.8
9.8
9.4
9.66
10.0
10.0
9.8
9.93
10.4
10.2
9.8
10.1
9.8
9.5
10.1
9.8
9.7
9.3
9.0
9.33
9.7
9.3
9.0
9.33
9.5
9.3
9.0
9.26
9.3
9.3
9.0
9.2
9.8
9.8
9.4
9.7
9.8
9.7
9.6
9.7
9.4
9.5
9.4
9.0
                                                                                1.50
                                                                                1.50
                                                                                3.0
                                                                                6.0
                                                                                7.5
                                                                                3.8
                                                                                1.50
                                                                                1.50
                                                                                4.5
                                                                                7.5
                                                                                3.0
                                           83

-------
                                TABLE V - D-1


                              LEHIGH RIVER STUDY


                                 DIURNAL DATA


                                             pH       Temp.       D.O.       Chlorophyll

Station      Date    Time      Location     (SU)      (°C)      (pprn)          (pob)



 L-ll         10/6    0440
                                                                              3.0
 L-13         10/5     1010
 L-13        10/5     1520       ---.•-----   •"       '	-         6-°
 L-13        10/5     1950       -.-.•-- —   •-"      	          4-5
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
Right
Center
Left
Avg./Comp.
7.35
7.35
7.35
7.35
7.35
7.3
7,3
7.3
7.15
6.85
7.25
7.08
6.5
6.6
6.7
6.6
6.5
6.6
6.7
6.6
7.55
7.55
7.6
7.56
7.5
7.5
7.5
7.5
14.5
14.5
14.5
14.5
13.8
14
14
13.9
14.5
14.5
14.5
14.5
15.5
15.0
15.0
15.2
15.0
15.0
15.0
15.0
14.2
14.7
14.5
14.3
14.5
14.6
14.7
14.6
9.0
8.9
8.8
8.9
8.8
8.6
8.65
8.68
8.4
8.6
8.9
8.6
9.2
9.2
9.4
9.33
9.2
9.2
9.4
9.33
9.6
9.6
9.5
9.56
8.9
8.7
8.7
8.76
 L-13        10/5     2100       -•-••" '     ••-       '	         3'°
 L-13         10/6    0125       ---.•-'-   ----       •"-       —-         3.0
 L-13         10/6    0515       -••'	   '•"      	w          6'°
                                                                              3.0
                                             84

-------
                            TABLE V - E-l
LEHIGH RIVER STUDY
MAJOR DISCHARGE FLOWS
Fl
10/3 - 10/4 1
(MGD)
30.0
10.0
*005 43.7
?006 12.6
1*007 2.0
?008 15.8
?010 6.1
?012 25.0
?014 5.5
?015 6.0
?031 0.06
-eek 38
ows
0/4 to 10/5
(MGD)
34.2
8.7
43.7
12.6
2.0
15.8
6.1
25.0
5.5
6.0
0.06
38

10/5 to 10/6
(MGD)
29.2
7.8
43.7
12.6
2.0
15.8
6.1
25.0
5.5
6.0
0.06
38
Discharge Name

Allentown STP
Bethlehem STP
Bethlehem Steel Outfall #005
Bethlehem Steel Outfall 1006
Bethlehem Steel Outfall #007
Bethlehem Steel Outfall #008
Bethlehem Steel Outfall #010
Bethlehem Steel Outfall #012
Bethlehem Steel Outfall #014
Bethlehem Steel Outfall #015
Bethlehem Steel Outfall #031
New Jersey Zinc (Sauccn Creek
below discharge)
Saucon Creek above discharges     .56                ,5                   .5
                                       85

-------
                             TABLE V E-2
                          LEHIGH RIVER STUDY
                              STREAM FLOWS
Station                                        Flows
                                         10/4           10/6
                                        (cfsj           TCFS~)
Jordan Creek                              142            104
Little Lehigh                              60             57
Monocacy Creek                             47             39
Saucon Creek                              ~60            ~60
Lehigh River (hill to hill)              1905           1538
Lehigh River (Glendon)                   2098           1648
                                        86

-------
                                  TABLE V F-l
Location
 Date
                               LEHIGH RIVER STUDY

                                 TIME OF TRAVEL
Peak
Time
Elapsed
Time
River
Mile
Average Speed
Between Stations
                                       (hours)
                                                   Comments
                                                (MPH)
Hamilton Street  10/5/77
Bridge, Allentown,
PA
0.15 miles down-
stream from Hill
to Hill Bridge
10/5/77
Upstream from     10/5/77
Saucon Creek
0.2 miles from
Freemansburg Bridge
Downstream from
Pipeline near
Redington
10/5/77
            0300
0805
            1025
1609
5.08
          7.42
13.15
                       17.3
12.55
              9.4
 6.0
                                                                  0.94
                                                1.35
                                        1 at.
                                        Rhodamine I
                                        dumped at
                                        0300
                                                                  0.59
                                  STREAM FLOWS
Location

Lehigh at Bethlehem
(Hill to Hill Bridge)

Lehigh at Glendon
                       Approximate Flow*

                            1720 CFS


                            1875 CFS
*  Flows were measured on 10/4 and 10/6.
   these flows shown in Table V - E-2.

Done By:  Gerard R. Donovan, Jr.
          Ronald Jones
                        The approximate flow is the average of
                                            87

-------
                                 TABLE V - F-2
                               LEHIGH RIVER STUDY

                              TIME OF TRAVEL (1976)
Location
Date
Peak     Elaosed    River    Average Speed
Time       Time     Mile     Between Stations     Comments
                                   (hours)
                                             (MPH)
Hamilton Street 10/6/76   0440
Bridge, Allentown
PA
15 miles down-  10/6/76   0823
stream from Hill
to Hill Bridae
Just upstream from 10/6/76 1005
mouth of Saucon
Creek.
                               17.3
                     3.72
                     5.42
                     12.55
                      9.4
                                                              1 .23
                                                              1.85
                                                  Dye Dump ~
                                                  2000 ml
                                                  Rhodamine B
                                                  at 0440-
                                 FLOW MEASUREMENTS
Location
          Gauge Ht.
           (feet)
                Flow
                TCFS)
Time
Comments
Hamilton Street
Bridge, Allentown,
PA

Lehigh at Bethlehem
(01453000)

Lehigh at Glendon
(01454700)
2.70
8.5
2860
2730'
0800
1115
                                                     Gauge key would no
                                                     work in lock.
Done By:  George H. Houghton
          William M, Thomas, Jr.
          Robert L. Vallandingham
          Ronald Jones
                                             88

-------
          G.  Benthic Characterization-Sediment Oxygen Demand

               At station L-13 the bottom was  hard and sandy In  the middle

and on the right side (looking upstream).  Near the shore on the right

side the bottom was a black, granular material, possibly coal  dust, and

the respirometer was able to seat properly.  The D.O.  inside the respirometer

dropped 2.0 mg/1 in 80 minutes during the test.  There was no  change in

the accompanying dark bottle D.O., therefore it is assumed that  all  of the

D.O. change is related to benthic demand.  Following are the calculations

for SOD at L-13.

           S'  = 2.0 mg/1  •=• 80 minutes = .025 mg/l/min

           S"  = 0

           S = .025 mg/l/min

           SOD = 107 x S

           SOD       = 107 x .025 mg/l/min = 2.675 g/m2/day
              14.5°C
                                 (20 - T)
           SOD     = SOD      x 6
              20°C      14.5
                                  (20 - 14.5)
                   = 2.675 x 1.06             = 2.675  x 1 .414 =  3.78 g/mz/day
                                        39

-------





o
o
•



<£>
o

CO
CO
CO
•
-~sl

CO
CTI
CO
-p»

CO
•
CO
CO
ro
CO
t— «
CO
o-
^1
co
— !
•
•^J
-^1
•
CTi
^4
•
en
-~j
.£»

-~j
CO


*--j
ro

~j
»— >

•
O
m
r—
>
-o
oo
m
O
— i
K- «
31
m
"



o

ro


en


O

i— i
en


ro
O
ro
en
CO
o

eo
en

-^
o

-e»
en

en
O
en
en
01
o

G~i
en


•^j
O

•^J


C3
0





—1
HH
2
m
"


en
o
t— *
en
o
ro
t— i
en
o
en
\— »
en
f J
o
i—*
en
1 — I
en
»—*
en
ro
o
!"• *
en
ro
en
i— '
en
eo
O
i— >
en
eo
en
t— •
en
42.
0
»— *
en
.£>
en
i — >
en
en
O
H- •
en
en
en
i— *
CTl
O
O
1 — >
CTl
0
en

i — i
CTl
i — i
CO
t— »
CTl
en
t — '
CTi
ro
O




3 P
VD
X 0

' * CO
0 n rt w





o~




ro
o"



H . ,
_ U>
2 °~
PI:
z
E *
2 0~
c:
-i
m
//i
W
8-




o>_
o


~1_
o




(B_
0 <


(O
i . m
O r-
o _ r^
o ^ m
-^ ~r
m -1-
0 -n Z 0
	 • i ___
r^ ^ 31
o °
^ /^
30 ° 33
o m X -
u •< <
0 N o rn
i ^ ' -p,
m ^D
PI "^
o O _
a 0 o- -i ^ CO
° §r o H
c. -c m r5
0 0 o _ W
z S 2 <
m 2 *>*^
0 w 0 ^
$ -z.
o 2 O
P»

o


o
O CD < en o 
0 0 0 > H > H
2 H -t > -i >
2 H m H m 13
0 m 0 33 o ** °
* 2 a 2 _ 2
_ 	 1 ^ \J ^ _ __ • •
1 S 2 ? H ; o - o
OHO1W-4 ^in.'
I^x .S^-nHtrt-^ i
i!5°3%'g£ 2:^
°°> 0° ^^
35~" H » p. m -i
^^>S= >r°
*£!£" 2"2
O "~4 ' ' n •• w TT • •
^w w* -^—
5 -^ ^
m X
33
90

-------
                                        TABLE V - G
                                    LEHIGH RIVER STUDY

                                 BENTHIC CHARACTERIZATION
     L-13
Lehigh Upstream
of Glencom Dam

     L-16
Lehigh at 3rd
Street Bridge
                       % dry weight
                                            mg/kg
                    TKN
          TP      TOC
Zn
Cd
Cu
.421     .1258     1.68     697     10.i
Pb
Fe
,838     .1881     1.73     807     17.1     10.9     55.2     95.6     6780
                6.4    48.0    71.8    8525
                                             91

-------
VI.   Conclusions

     A.  A review of the long-term BOD data revealed a general  trend
of decreasing TKN-N concentration correlated with increasing (N02+N03)-N
concentration, associated with the processes of nitrification.   The
one  exception to this pattern was Bethlehem Steel outfall  031.   This
outfall had ei high average BOD 29/31  of 763 ppm and a high average
initial TKN-N of 359 ppm.  However, little or no (N02+NOs)-N was formed
after 30 days of incubation.  The sample was analyzed for  phenol &
cyanide and found to contain 35.9 ppm total phenol  and 50  ppm cyanide.
This suggested that the outfall  was toxic to nitrifying bacteria but
not  to the hsterotrophic species present.

     B.  Nitrite was formed with incubation, but except for 771006-15
and  16 it decreased to "not detectable" (NO) after 30 days of incubation.

     C.  A paired t-test of the results of the calculated  NOD and
TCMP NOD over the combined 218 paired data sets established at the
95% confidence level (t = 0.75) that there was no significant difference
in the results of the two NOD methods.
     D.  The; average river CBOD and NOD rate constants ke  were
respectively 0.090  (n = 41) and 0.094 (n = 38).

     E.  The carbonaceous demand followed first order kinetics  in
the river samples.  The river NOD involved at least a six  day lag
phase, in which the nitrifying bacteria present may have become
acclimated to the experimental conditions and/or increased in number
enough to make a significant contribution.  The river NOD rate
                                     92

-------
calculations are included in Table V-C-4.   The  deoxygenation  constants
and ultimate NOD were calculated  using "all  points"  and  recalculated
excluding the early lag phase.   This  lag  phase  was  assumed  to be  a
laboratory artifact and the deoxygenation  constants  compiled  (Table
V-C-8) were based on the last three data  sets.

     F.  The effluent samples which were  both seeded and  diluted  often
depleted oxygen (CBOD) in a linear pattern with time, which resulted
in poor correlation coefficients  to first-order kinetics.   The  NOD
for these samples displayed a lag time similar  to  the river samples
(Table V-C-5 and V-C-6) and the ke values  reported  were  similarly
based on the last three data sets.
                                    93

-------
                              APPENDIX A

     A problem with the TKN analysis was encountered with several samples.
These results were considered questionable and appear as L.A. (laboratory
accident) in the data summary table.  The results for these samples were
as follows:
                                    Days of
Date          Station            Incubation                  TKN-N
                                                              (PPm)
10/5      Bethlehem 015              6                        55.5
10/5      Bethlehem 015             29                        65.8
10/5      Bethlehem 031             29                        59.6
10/6      T-6                  Original Sample                 3.4
10/6      Allentown STP              0                         4.7
10/6      Bethlehem 015              6                        81.3
10/6      Bethlehem 001              6                         7.56
     It  is unclear whether the problem was due to interferences present
in the sample or due to the imprecision in the TKN-N test amplified by
the dilutions involved.
                                       94

-------
                                   APPENDIX B
                           EPA PRECISION AND ACCURACY
Parameter
Cone. Ranae
 Accuracy
(avg.  % bias)
              Preci si on-Standard
Cone. Range Deviation of the Differen
Dissolved
Oxygen
Electrode
Winkler

Chlorophyll a_

Total Kjeldahl
Nitrogen
Ammonia
Nitrite  plus
Nitrate
Phenolics
BOD
   5

METALS

   Zn
 0-20 ppm
      1.89 ppm
      2.18 ppm
      5.09 ppm
      5.81 ppm

       .16 ppm
      1.44 ppm

      0.29 ppm
      0.35 ppm
      2.31 ppm
      2.48 ppm
    281 ppb
    310 ppb
     56 ppb
     70 ppb
      7 ppb
     11 ppb
-24.6%
-28.3%
-23.8%
 21.9%

 +7%
 -1%

 +5.75%
+18.10%
 +4.47%
 -2.69%
    1.2%
    -.7%
   11.3%
    6.6»
  206%
   56.6%
                       0-20 ppm
                           7.5 ppm
                         1.89 ppm
                         2.18 ppm
                         5.09 ppm
                         5.81 ppm

                         0.43 ppm
                         1.41 ppm

                         0.29 ppm
                         0.35 ppm
                         2.31 ppm
                         2.48 ppm
                                        9.6
                                                      48.
                                                      93.
                                                       4.7
                                                      48.2
                             ppb
                             PPb
                             ppb
                             ppb
                             ppb
                                       97.0 ppb

                                        2.1 ppm
                                      175 ppm
 281 ppb
 310 ppb
  56 ppb
  80 ppb
                                       0.1
                       ppm
                       ppm
                                                       7
                                                      11
      PPb
      PPb
                  0.54 ppm
                  0.61 ppm
                  1.25 ppm
                  1.85 ppm

                  ±.005 ppm
                  ±.005 ppm

                  0.012 ppm
                  0.092 ppm
                  0.318 ppm
                  0.176 ppm

                 ±0.99 ppb
                 ±3.1 ppb
                 ±4.2 ppb
                 ±0.18 ppb
                 ±0.48 ppb
                 ±1.58 ppb

                  +.7 ppm
                ±26 ppm
                                     97 ppb
                                    114 ppb
                                     28 ppb
                                     28 ppb
                                     28 ppb
                                     18 ppb
                                            95

-------
                                   APPENDIX  B
                           EPA PRECISION AND  ACCURACY
Parameter
   Mn
Cone.. Range
    Fe
    Pb
    367 ppb
    334 ppb
    101 ppb
     84 ppb
     37 ppb
     25 ppb
 Accuracy
(avg.  % bias)
426 ppb
469 ppb
84 ppb
106 ppb
11 ppb
17 ppb
840 ppb
700 ppb
350 ppb
438 ppb
24 ppb
10 ppb
1.5%
1 .2%
2.1%
-2.1%
93%
22%
1 . O/o
-2.8%
-0.5%
-0.7%
141%
382%
    2.9%
    1.8%
   -0.2/o
                                     1%
                                     6%
              Precision Standard
Cone. Range Deviation of the Dlffe;
                                  25.7%
426 ppb
469 ppb
84 ppb
106 ppb
11 ppb
17 ppb
840 ppb
700 ppb
350 ppb
438 ppb
24 ppb
10 ppb
367 ppb
334 ppb
101 ppb
84 ppb
37 ppb
25 ppb
70 ppb
97 ppb
26 ppb
31 ppb
27 ppb
20 ppb
173 ppb
178 ppb
131 ppb
183 ppb
69 ppb
69 ppb
128 ppb
111 ppb
46 ppb
40 ppb
25 ppb
22 ppb
                                            96

-------
                                   APPENDIX B  (con't)
     Parameter

        Cd
Total  Phosphorus
   (T-P04)
 Total Organic
    Carbon
    (TOO
  Cone.
  Range

 71    ppb
 78    ppb
 14    ppb
 18    ppb
  1 .4 ppfa
  2.8 ppb

302    ppb
332    ppb
 60    ppb
 75    ppb
  7.5 ppb
 12.0 ppb

370    ppb
407    ppb
 74    ppb
 93    ppb
  7.4 ppb
 15    ppb
  0.76ppm
  4.9 ppm
107   ppm
  Accuracy
(ave.  % bias)
- 2
- 5
19
T
13
4
0
- 2
7
1
29
15
- 4
- 6
- 3
-10
37
6
- 1
0
+15
+ 1
.2
.7
.8
.9
.5
.7
t Q
.4
.0
.3
.7
.5
.5
.5
.1
.?
'.7
.8
_n

.32
.01
0'
fO
o/
0'
,'0
of
M3
a
'0
Gf
of
,"}
&
/3
O/
,3
O/
n
Of
ft
O/
/O
Of
I?
O/
/I
%
%
of
'0
Hi
,'o
o!
,'£>
of
1C
01
K>
01
10
Cone.
Range
                    71
                    78
                    14
                    18
                     1.4
    ppb
    ppb
    ppb
    ppb
    ppb
                                                        2.8  ppb
                                                      320
                                                      332
                                                       60
                                                       75
                                                        7,
                         ppb
                         ppb
                         ppb
                         ppb
                         ppb
                    12.0 ppb

                   370   ppb
                   407   ppb
                    74   ppb
                    93   ppb
                     7.4 ppb
                    15   ppb

                      .04ppm
                      .19ppm
                      .35ppm
                      .84ppm

                     4.9 ppm
                   107   ppm
                                                                      Precision
                                                                    std. deviation
                                                                     of the diff.
21
18
11
10.3
5.0
2.8
56
56
23
22
6.1
9.7
105
128
29
35
7.8
9.0
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppb
                   .005 ppm
                   .000 ppm
                   .003 ppm
                   .000 ppm
                 3.93
                 8.32
ppm
ppm
                                              97

-------
                             APPENDIX C
                        Benthic Respirometer

     The AFO benthic respirometer is shaped like a pyramid with vertical
and horizontal  stabilizing flanges.   A DO probe is fixed in one side wall
of the pyramid and a small pump is attached on the wall with the pump
discharge opposite the DO probe membrane.  Circulation from the pump
discharge provides the mixing required when using the probe method of
DO measurement.  The inside volume was measured to be 27.62 1 and it
                             o
covers a surface area of 4 ft .  (See  Figure III-l).  Plotting the DO
concentration inside the respirometer against time typically results in
a constant negative slope for the first 30 to 60 minutes; after this
initial period, the slope gradually approaches zero (see  Figure III-2).
The initial slope, S1 (mg/l/min), is taken as the net respiration in the sediments
and trapped water.  If a dark bottle filled with bottom water is placed next
to the respirometer during operation, the DO concentration will decline
due to aerobic respiration in the trapped water.  Subtracting the average
respiration rate in the water column, S" (mg/l/min), from the initial slope
measured by the respirometer will give the respiration in the sediments:

          S Ung/1/min) = 5' - S11                                             (1)

     This measure of benthic respiration must be converted to standard  units
as follows:
                      2
          SOD   (g DO/m /day) = S  (mg/l/min) x  1440  (min/day)  x 0.001  (g/mg)
            I 10.764  (ft2/m2) x V  (1) x A"1 (ft2)   «=  0.258 x S  x  V/A        (2)
                                        98

-------
r
iaure
       BENTH C   RESPIROMETER
                                DO METER
                                I2v D.C.
   V = 27.6
A= 4 ft'
                  no

-------
      Figure 0-2 •
TYPICAL  GRAPH  AND WORKSHEET FROM  RESPIROMETER
          7-

          6-

          5-

          4

          31

          2
                   30
                    TEMP =  24* C
                    INITIAL  SLOPE = S'= 0.0333 mg/l /mi,
                                    (2 mg/l / hr)
                   60
                time , min
90
          DARK  BOTTLE  DROPS  0.2 mg/l  IN  60  MINUTES
          S"  =  0.0033 mg/l / min
          S = S'-S" = 0.030 mg/l / min
          SOD  = 107 x S =  3.21  g/m2/day
S°D20 = S°DT
                                  = 2-50
                                TOO

-------
Given the volume and bottom surface area of our particular benthic
respirometer, equation (2) becomes:

          SODT (g D0/m2/day) = 107 x S (mg/l/min)                         (3)

Aerobic bacterial respiration is generally considered to be an exponential
function of temperature such as:

          R2Q = RT x eT"2°                                                (4)

 where    R2g = rate at 20°C;
          R_ = rate at T°C;
          9  = temperature correction factor (1.05 - 1.10, generally)

Our SOD data, measured at T , is finally reported as corrected to 20 :with
G set at the standard value of 1.065:
          SOD2Q = SODT x 1.065(2°"T)                                      (5)
                                       101

-------
                                 REFERENCES


1.  EPA Methods  for  Chemical  Analysis of Water and Wastes, 1974.

2.  Finstein,  M.S.,  et  al,  "Distribution of Autotrophic Nitrifying Bacteria in
    a  Polluted Stream",  N.J.  Water Resource Research  Institute W7406834, February
    1974.

3.  Wezernak,  C.T. and  Gannon,  J.J.,  "Evaluation of Nitrification in Streams",
    J.  Sanitary  Engineering Division; Program of American Society of Civil
    Engineers, p.. 883 -  895  (Oct. 1968).

4.  Thomas,  H.A., "Graphical  Determination  of B.O.D.  Curve  Constants",  Water  and
    Sewage Works, p. 123 -  124, March 1950.
                                          102

-------
                                    TECHNICAL REPORT DATA
                             (flense read Instructions on t'r.e rc\ crse before completing)
1. REPORT NO.
EPA 903/9-79-004
4. TITLE ANDSUBTITLE
3. RECIPIENT'S ACCESSION NO.


  REPORT DATE
  March 1979
         Lehigh  River Intensive
7. AUTHOH(S)
             Daniel  K.  Donnelly
             Joseph  L.  Slayton
                                                             3. PERFORMING ORGANIZATION REPORT NO
9. PERFORMING ORGANIZATION NAME AND ADDRESS
  U.S. Environmental  Protection Agency
  Annapolis Field  Office, Region  III
  Annapolis Science Center
  Annapolis, Maryland  21401
                                                              . PERFORMING ORGANIZATION CODE
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
 12. SPONSORING AGENCY NAM!: AND ADDRESS
          Same
                                                              13. TYPE OF REPORT AND PERIOD COVERED
14. SPONSORING AGENCY CODE


    EPA/903/00
 15. SUPPLEMENTARY NOTES
 16. ABSTRACT
  An intensive  survey of the lower  reach of the Lehigh  River between Palmerton
  and the mouth was conducted during  October 1977.   The study included  the  water
  quality, hydrologic and benthic characterizations  necessary for calibration
  and verification of a mathematical  model  being developed by the EPA
  Region III  Water Planning Branch.
17. KEY WORDS AND DOCUMENT ANALYSIS
a. DESCRIPTORS
dissolved oxygen
Biochemical Oxygen demand
Mi trogenous Oxygen demand
Sediment Oxygen demand
metals concentration
nutrient concentration
18. DISTRIBUTION STATEMENT
Release to public
b.lDENTIFIERS/OPEN ENDED TERMS
diurnal fluctuations
stream gaging
time of travel
sediment analysis
water analysis
19. SECURITY CLASS (This Report)
unclassified
20. SECURITY CLASS (This page)
unclassified
C. COSATI Field/Group '

21. NO. Or PAGES
102
22. PRICE
 EPA Form 2220-1 (9-73)

-------
U.S. ENVIRONMENTAL PROTECTION  AGENCY
MIDDLE ATLANTIC REGION-III  6th and Walnut Streets, Philadelphia. Pennsylvania 19106

-------

-------
      EPA 903/9-79-006
                                  SIMPLIFIED N.O.D.  DETERMINATION*
*Presented at the 34th Annual  Purdue Industrial  Waste Conference  at
 Purdue University, West Lafayette,  Indiana  on  May 9, 1979

-------
   SIMPLIFIED N.O.D. DETERMINATION
              May 1979
         Joseph Lee Slayton
         E. Ramona Trovato
       Annapolis Field Office
             Region III
U.S. Environmental  Protection Agency

-------
                     SIMPLIFIED f-!.O.D. DETERMINATION

                 Joseph L. Slayton and E. Ramona Trovato
                  U.S. Environmental Protection Agency
                   Region III, Annapolis Field Office
     Biochemical  oxygen demand (BOD) is A bioassay procedure concerned

with the utilization of oxygen in the biochemical  oxidation (respiration)

of organic material.  This test is one of the most widely used measures

of organic pollution and is applied both to surface and waste waters.

The standard method  of BOD measurements adopted by APHA1 is a five

day test in which a  water sample is maintained at  20°C in the dark

and oxygen depletion is monitored.  The five day incubation period

was selected to maximize the oxygen demand associated with the

oxidation of carbon  compounds while minimizing the oxygen demand of

autotrophic organisms.  That portion of the BOD due to the respiration

of organic matter by heterotrophic organisms is termed the carbonaceous

oxygen demand and that portion involved with nitrification is termed

nitrogenous oxygen demand.  The desire to separate the NOD and CBOD

results not only from the fact that the organisms  responsible for these

components have different nutrient requirements, but also because

they differ in reaction rates, A02/Atime; temperature coefficients;

and tolerance to toxic materials.  Nitrifying bacteria are in general

slower growing2;  more drastically affected by temperature3; and are more
The mention of trade names or commercial  products in this report is
for illustration purposes and does not constitute endorsement or
recommendation by the U.S. Environmental  Protection Agency.

-------
sensitive to materials as**:  phenols; cresol ;  halogenated solvents;
heavy metals; and cyanide.  The organisms involved in the CBOD and
NOD processes would therefore be expected to  react differently to the
same aquatic environment.  The determination  of the BOD components
would better define the BOD test results and  aid in extrapolating these
results to the prediction of dissolved oxygen profiles in a body of water.
     The purpose of this paper is to demonstrate that a simple
procedure involving an inhibitor to nitrification, N-serve, could
provide an accurate and precise measurement of nitrification occurring
in the  BOD   test while not affecting the carbonaceous oxygen demand.
                              Nitrification
    Nitrification is the conversion of ammonia to nitrate by
biological respiration.  This type of respiration is employed by
seven genera of autotrophic nitrifyers.5
    It should be noted that heterotrophic nitrification can also
produce NO;? and N0§ by reactions that do not involve oxidation.6
However, only Nitrosomonas spp and Nitrobacter spp are regularly
reported by in situ nitrification studies.2  Therefore, the treatment
of nitrifying river samples with inhibitors specific to Nitrosomonas
and Mitrobacter can be expected to stop all appreciable nitrification.7
    The reactions involved in nitrification are as follows:
    NH4+  +  -%02  Nitrosomonas  2H+  +  ^-^  Equation T
    N02-  +   h 02  rh'trobacter-y  N03-              Equation 2
The stoichiometries of the nitrification reactions dictate that the
conversion of T gram of nitrogen from ammonium to nitrite utilizes

-------
3.43 grams of oxygen and the conversion of 1  gram of nitrite-nitrogen
to nitrate-nitrogen involves the utilization  of 1.14 grams of oxygen.
However, nitrifying bacteria are autotroph-'c  and as such utilize
a portion of the energy derived from nitrogen oxidation to reduce C02»
their primary source of carbon.  The net result is a reduction in
the amount of oxygen actually consumed.  Short term, zero to five
day, laboratory experiments8'1''10 employing cultures of Nitrosomonas
and Mitrobacter have related the depletion of oxygen to the production
of nitrite and nitrate with the corresponding oxygen to nitrogen ratios
of 3.22 and 1.11.  However, in long term experiments, the decay of
these organisms would be expected to exert an oxygen demand approximately
equivalent to the oxygen originally generated, resulting in an
overall relation not significantly different  from 4.57.11
     The equation used to calculate the NOD from the changes in
nitrogen states upon incubation was:
        NOD = 3.43 (AN02-N + AN03-N) + 1.14 (ANOs-N)     Equation 3
        where A = final - initial .
The potential NOD was calculated as:
        potential NOD = 4.57 (TKN)                       Equation 4
        where TKN = (NH3-N + Norg-N)and N02-N was insignificant.
     The NOD was also measured by the difference in oxygen depletion
in an unaltered sample and in a sample altered by the addition of
the nitrification inhibitor, nitraoyrin.
                         Nitrification Inhibitor
     The inhibitor used was formula 2533 Nitrification Inhibitor,
a product of the Hach Chemical Company.  The  product consists of

-------
2-chloro-6-(trichloromethyl)  pyridine known as TCMP or nltrapyrin.



This compound is plated onto  a simple inorganic salt which serves as



a carrier and is soluble in water.   The DOW Chemical Company, Midland,



Michigan, markets this chemical  under the name N-Serve as a fertilizer



additive.



     Studies12'13'11*'15 using nitrapyrin suggest that it acts as a



"biostat" at moderate concentrations to delay nitrification and



aids in the retention of ammonia or urea fertilizers on crops by



retarding conversion to the more highly leachable N03~.  TCMP is



slowly biodegraded to 6-chloropicolinic acid which leaves the fields



in their original state, with no further inhibition to nitrification.



The advantage of this is that 20 to 30 day NOD assays may be performed



without significant inhibitor contribution to the carbonaceous



demand.11'16



     Because of concern for  the potential environmental impact



resulting from extensive farm use, studies were performed on the



toxicity of this material.  These studies have revealed the inhibitor



to be very selective and effective at stopping nitrification when



used at a concentration of 10 mg TCMP/1 ^M6,17

-------
                             Experimental





A.  NOD Synthetic Ammonia Experiment



    1.   300 ml  BOD bottles were weighed before and after the addition



        of water and found to be reliable  to within 1%.   They were



        used as volumetric flasks for all  experiments.



    2.   Two ml  of a solution of O.lSOg glucose/1  plus  Q.150g glutamic



        acid/1  were spiked into BOD  bottles  using a repipet.



    3.   Stale settled sewage was filtered  through Kimwipes18 and



        diluted.  One ml  was dispensed into  each  BOD bottle.



    4.   NH3-N spikes were made using a 44.5  mg NH^l-N/l  stock solution,



    5.   The BOD bottles were then filled with APHA standard  dilution



        water.1



    6.   Ammonia was assayed using a  Technicon automated  colorimetric



        phenate method.19  Nitrate was determined using  a Technicon



        automated cadmium reduction  method and nitrite was assayed



        using a Technicon automated  NEDA-diazotizing method.19



    7.   Dissolved oxygen (DO) was monitored  using a YSI  Model  #57



        meter and #5720 probe.  DO measurements were made before



        and after incubation which was carried out in  the dark at  20°C.



    8.   The nitrification inhibitor  (Hach  Chemical  Co. #2533)  was



        dispensed, using a powder dispenser, directly  into the BOD



        bottles.  This allowed quick and uniform  additions of the



        inhibitor.  Two sets of bottles were filled with each sample;



        one received the inhibitor and represented CBOD  and  the



        uninhibited bottle expressed total BOD.  The NOD was determined



        by difference.

-------
B.  NQD Syntletic Nitrite Experiment



        This experiment was identical  to the synthetic  ammonia



        experiment except spikes  of NaN02 were  substituted for  NH4C1 .



C.  Synthetic Glucose Samples-Respiration Experiment



    1.  BOD bottles were spiked with approximately 3.0  ml  of a  3.0g/l



        stock glucose solution using a repipet.   Raw sewage influent



        was filtered through Kimwipes and diluted with  distilled



        water.  One ml  of this seed was spiked  into each bottle.  TCMP



        was added to one-half of the bottles using the  Hach powder



        dispenser and all bottles were filled with standard BOD



        dilution water.1



    2.  Oxygen was bubbled through the bottles  using a  Fisher gas



        dispersion tube and purified oxygen.  The samples  were  then



        incubated in the dark at 20°C.



    3.  Initially and after different periods of incubation, samples



        were placed in a refrigerator at 4°C to stop bacterial  activity.



        At the conclusion of the experiment bottles were assayed for



        glucose.20  The samples were first filtered through a 0.45y



        Millipore filter to remove bacteria.  Four ml of each filtrate



        were placed into 125 ml Erlenmyer flasks; which had been



        chromic acid washed and muffle furnaced for 24 hrs. at 550°C.



        Repipets were then used to dispense 4 ml of phenol solution



        (25.0 gms/500 ml deionized water) and 20 ml of acid reagent



        (2.5 g hydrazine sulfate/500 ml cone. f^SO^.  The acid



        reagent was added with swirling and the flasks were placed in



        a refrigerator at 4°C for 2 hours to cool.  The absorbance

-------
        was read on a Varian  635  spectroohotometer  using  5  cm  quartz



        cells at 490 my.   A 500 mg/1  glucose  stock  solution  was



        prepared and appropriate  volumes  were diluted with  deionized



        water to generate standard  curve  solutions.  The  resultant



        standards were filtered and assayed as samples.



                        Calibration Curve Data



               Glucose (mg/1)               Absorbance



                      0                          0



                    2.5                       0.125



                    5.0                       0.252



                   10.0                       0.485



                   15.0                       0.660



                   20.0                       0.832



                   25.0                       1.068



                   30.0                       1.230



                   35.0                       1.469



                                 slope = 0.0402



                                 intercept = 0.0484



                                 correlation coefficient =  0.999



    4.   Dissolved oxygen  was measured directly in the BOD bottles



        using the YSI 5720 probe  and  the  pH was determined using a



        Corning 110 research meter  and electrode.



D.   TCMP and the Measurement of Dissolved Oxygen



    1.   Electrode and Winkler  Methods



        a.   A 20 liter carboy  of  deionized water  was stirred with



            a magnetic stirring bar as water  was  slowly siphoned into



            16 sets of four 300 ml  BOD bottles and capped.   This

-------
        procedure was repeated to generate 32 sets of 4 bottles.



    b.  TCMP was added to two bottles from each set using the



        Hach powder dispenser.



    c.  Two bottles (one with TCMP) were analyzed for DO via



        the Winkler azide modified method1 using a Fisher Model  41



        jDotentiometric titralyzer.  An incubation period of 2 to 3



        hours after the addition of the inhibitor and Winkler



        reagents was allowed prior to titration to enable potential



        reactions, which may have resulted in interferences, to  occur.



    d.  "he remaining two bottles of each set (one with TCMP) were



        analyzed by a YSI 5720 DO probe and #57 meter.  This



        meter had been previously calibrated against the Winkler



        method as outlined in Standard Methods.1



2.  Starch End Point - Azide Modified Winkler DO



    a.  Fourteen potassium biiodate standards, each with 3 ml



        of Fisher SO-P-340 stock biiodate solution (0.0250 N),



        were prepared as outlined in APHA Standard Methods1



        for Winkler Dissolved Oxygen measurements.



    b.  To seven of these TCMP and starch (Fisher T-138 thyodene)



        were added.



    c.  The samples were titrated with sodium thiosulfate solution



        using a Fisher Model 41 titralyzer in the manual mode



        and titrating to the disappearance of the blue color.



Potomac River Study



1.  The BOD test employed was that outlined in Standard Methods



    APHA 14th edition.1  The river water samples were stored at

-------
        4°C until  analysis.   Three-hundred  ml  of each  sample  was



        placed in  each of two BOD bottles.   The  bottles  were  purged



        for 15 seconds using  purified  oxygen and a  Fisher  gas  dispersion



        tube to obtain an initial  DO of 10  to  15 rng/1.   One bottle of



        each pair  was dosed with  the Hach Co.  #2533 Nitrification



        Inhibitor.



    2.   Dissolved  oxygen  was  measured  immediately using  a  YSI  5720 DO



        probe and  again after 20  days  of incubation in the dark at 20°C.



    3.   TKN was analyzed  on the unaltered river  samples  using  a



        Technicon  automated phenate method.19



F.   Lehigh  River Study



    1.   Samples were  prepared in  six replicate BOD  bottles and two



        bottles of each set were  spiked with TCMP using  the Hach



        powder dispenser.



    2.   Dissolved  oxygen  was  analyzed  immediately and  after several



        periods of incubation in  the dark at 20°C using  a  YSI  5720



        DO  probe.



    3.   One bottle was sacrificed  after each DO  reading  and assayed



        for NO£-N  and NO§-N by the automated methods previously described.



    4.   Three classes of  sample preparation  were employed  to allow



        for differences in sample  character:



        a.   River  samples were unaltered.



        b.   Industrial  effluents  with  low level  NH3-N were seeded with



            1  ml of stale settled  sewage per 300 ml  BOD  bottle and



            correction blanks were carried  through  the experiment.

-------
        c.   Sewage  treatment  plant  effluent  samples  and  industrial
            effluents  with  high  levels  of ammonia  were diluted.
            Samples of October  4 were diluted  by  a factor  of  30  and
            those of October  5  and  6 were diluted  by a factor of 15
            with seeded APHA  diluted water.   Correction  blanks
            were carried through the experiment.
                         Results and Discussion
NOD Synthetic Ammonia  Experiments
     Initial experiments were performed on synthetic samples  to
establish the accuracy of the  NOn   determinations  made using TCMP.
The experiment consisted of spiking samples  of APHA dilution  water1
with a glucose-glutamic acid  solution, bacteria,  and ammonia.  The
concentrations of ammonia,  nitrate, and nitrite were then determined
before and after incubation.   The changes (A)  in  the states of nitrogen
were determined and used to calculate the actual  NOD wich had occurred
(Equation #3).
     The dissolved oxygen initially and finally present  was determined
in all bottles.  The oxygen utilized in the inhibited bottles was
taken as CBOD where as the depletion in the uninhibited  bottles was
taken as NOD plus  CBOD.  This NOD, signified as NOD-TCMP, was
determined  by the  average difference observed between these sets.
     The results of these experiments are presented in Table  1.  A
paired student's t-test of the nitrogenous oxygen demand established
(t=1.41, n=32)  at  a=.05 that there was no significant difference between
these two methods  of  NOD determination.   The average difference
between  the two methods was  0.3  mg/1 NOD.

-------
         Table 1.   NOD of synthetic  ammonia  samples as determined by analysis
                   of nitrogen  conversions and  by  measurement with  TCMP


NH3-Ni N02-N-J N02~Nf
mg/1 mg/1 mg/1
.361 .053 .052
.0
.052
.0
.637 .052 .00
.052
.049
.052
.938 .049 .00
.061
.029
.00
1.460 .050 .00
.968
.00
.061
.462 0 0
0
.276
.619 0 0
0
.921 0 .700
0
0
0
1.705 0 0
0
0
0
.240* 0 .187
.800 0 0
1.630 0 .949


AN02-N
mg/1
-.001
-.053
-.001
-.053
-.052
.00
-.003
.00
-.049
.012
-.020
-.049
-.050
.918
-.050
.011
0
0
.276
0
0
.700
0
0
0
0
0
0
0
.187
0
.949


N03-N-J N03-Nf
mg/1 mg/1
.023 .060
.079
.385
.079
.023 .676
.614
.638
.027
.018 .079
.855
.876
.046
.016 1.331
.360
1.328
.018
0 .419
.419
.060
0 .550
.552
0 .008
.720
0
.823
0 1.467
1.450
1.489
1 .489
0 0
0 .800
0 ,382


AN03-N
mg/1
.037
.056
.362
.056
.653
.591
.615
.004
.061
.837
.858
.028
1.3T5-
.344
1.312
.002
.419
.419
.060
.550
.552
.008
.720
0
.823
1.467
1.450
1.489
1 .489
0
.800
.382
3.43
(AN02-N
+AN03-N)
mg/1
.12
.01
1.24
.01
2.06
2.03
2.10
.01
.04
2.91
2.87
- .02
4.34
4.33
4.33
.04
1 .44
1.44
1.15
1 .89
1.89
2.43
2.47
0
2.82
5.03
4.97
5.10
5.11
.64
2.74
4.57

1.14
(AN03-N)
mg/1
.04
.06
.41
.06
.74
.67
.70
.00
.07
.95
.98
.03
1.50
.39
1.50
0
.48
.48
.07
.63
.63
.01
.82
0
.94
1.67
1.65
1.70
1 .70
0
.91
.44

NOD
calc.
mg/1
.2
.1
1.7
0.1
2.8
2.7
2.8
0.0
0.1
3.9
3.9
0.0
5.8
4.7
5.8
0
1.9
1 .9
1.2
2.5
2.5
2.4
3.3
0
3.8
6.7
6.6
6.8
6.8
.6
3.7
5.0

NOD
TCMP
mg/1
.2
.5
1.6
0.1
3.1
3.0
3.2
0.0
0.4
3.0
3.0
0.0
5.8
5.4
6.0
0
1 .8
1.8
1.2
2.2
2.5
2.9
4.0
0
4.1
6.8
6.7
6.7
6.6
.6
4.0
6.7
i = initial  reading;  initial  nitrogen  values  are  the average of three measurements
f = final  reading;  after 29  days  of incubation
A = final-initial
* = ammonia  ^ one-half that of APHA dilution water

-------
     The oxygen depletion was  monitored over time for several  of the
samples and the DO data is presented in Figure  1.  This  work
illustrates the potential use  of the inhibitor  in establishing
deoxygenation constants for NOD separate from CBOD.
     The seed source for these experiments was  stale sewage.   The
sporadic growth of the nitrifyers observed during these  experiments
was largely corrected in later work by filtration and the use  of
more seed material.
NOD Synthetic Nitrite Experiment
     The effect of TCMP upon the growth of nitrifying bacteria
was tested using spikes of sodium nitrite into  seeded APHA dilution  water
containing glucose/glutamic acid (Table 2).   The  calculated nitrogenous
oxygen demand based on the measured changes in  the states of  nitrogen
was significantly higher than  that predicted by the use  of TCMP
when compared by a paired t test (t=7.3 at a=d.05 & n=15). The changes  in
nitrite and nitrate were also  measured in the TCMP spiked bottles,
which allowed the calculation  of the NOD occurring despite the presence
of TCMP.  This calculated error matched favorably (correlation
coefficient = .92) with the average error actually observed between  the
calculated NOD in the samples  and that measured using TCMP.  The
inhibitor  had little  inhibitory  effect upon Mitrobacter spp.
since all of the NO^-N in the spike was converted to NO§-N after
30 days of incubation.
     Although the mechanism of its action is unclear, the inhibitory
effect of nitrapyrin is apparently restricted to Nitrosomonas.  This
selectivity is advantageous in that it stops the process of nitrification
at ammonia with little or no effect on urea hydrolysis21, thus assuring
an adequate nitrogen source for the heterotrophic bacteria contributing

-------
T3

"u
 O
                                                                                      OJ
 E
 3

'c
 O
 E
 E
 o
T3
 e>
  .
 
-o

 c
 0>
 cr»
 >»
 X
O
  •o
  TJ
   O
•o  -o
•o  -o
 o   o
              Z   2
               I    I
             + •*
  Z  Z  Z



  XXX

   E   E   E
~° ^J*  O  **5
 *C\J  00  
-------
  Table 2.   NOD of synthetic  nitrite  samples  as  determined  by  analysis
            of nitrogen conversions  and  by measurement with TCMP
                             Uninhibited Samples
NH3-Ni* N02-Ni
mg/1 mg/1
.436







1
1
1
1
1
1
1
1



.436







1
1
1
1
1
1
1
.456
.456
.456
.456
.934
.934
.934
.934
.408
.408
.408
.408
.769
.769
.769
.769



.459.
.459
.459
.459
.942
.942
.942
.942
.419
.419
.419
.419
.787
.787
.787
N02-Nf
mq/1
0
0
0
0
0
0
0
0
0
0
1.50
0
0
0
0
0



Q
Q
0
0
0
0
0
0
0
0
0
0
0
0
0
AN02-N
mq/1
-.456
-.456
-.456
-.456
-.934
-.934
-.934
-.934
-1.408
-1.408
.092
-1.408
-1.769
-1 .769
-1.769
-1.769



- .45a
- .459
- .459
- .459
- .942
- .942
- .942
- .942
-1 .419
-1 .419
-1.419
-1.419
-1.787
-1.787
-1.787
mq/1
0
0
0
0
0
0
0
0
.045
.045
.045
.045
.061
.061
.061
.061
TCMP


Q
Q
0
Q
0
0
0
0
.045
.045
.045
.045
.056
.056
.056
NOs-Nf
mg/1
.870
.880
.864
.880
1.363
.984
1.370
1 .401
1 .828
1 .880
0
1 .807
2.068
2.101
2.117
1.835
Inhibi


.463
.468
.468
.468
.984
.974
.974
.984
1.424
1.467
1.455
1.614
1.835
1.835
1.829
3.43
(AN02-N
AN03-N +AN03-N)
mg/1 mg/1




1

1
1
1
1
-
1
2
2
2
1
ted










1
1
1
1
1
1
1
.870 1
.880 1
.864 1
.880 1
.363 1
.984
.370 1
.401 1
.783 1
.835 1
.045
.762 1
.007
.040
.056
.774
Samples


.468
.468
.468
.468
.984
.974
.974
.984
.379
.422
.410
.569
.779
.779
.773
.42
.45
.40
.45
.47
.17
.50
.60
.29
.46
.16
.21
.82
.93
.98
.04



.03
.03
.03
.03
.14
.11
.11
.14
.14
.01
.03
.51
.03
.03
.04
1.14
(AN03-N)
mg/1
.99
1.00
.98
1 .00
1.55
1.12
1 .56
1 .60
2.03
2.09
- .05
2.01
2.29
2.33
2.34
2.02



.53
.53
.53
.53
1.12
1.11
1.11
1.12
1.57
1.62
1.61
1.79
2.03
2.03
2.02
NOD
calc
mg/1
2.4
2.5
2.4
2.5
3.0
1.3
3.1
3.2
3.3
3.6
0.1
3.2
3.1
3.3
3.3
2.0
NOD
(calc
err.
.6
.6
.6
.6
1.3
1.2
1.2
1.3
1.4
1 .6
1 .6
2.3
2.0
2.0
2.0
NOD Ave
TCMP ofc
mg/1 QY ,
1.9
2.0
1.9
2.0 .b,
1.5
0
1.5
1.8 1 .
1.9
2.1
**(0) 1.
1 .9
0
2.1 1.
2.1
0.9
Ave.
. calc.
) err.



.6



1.3



1.7


2.0
* initial  NH3-N value is an average of 24 values  with  s.d.  =  0.02
** omitted from calculation
i = initial  reading; initial  nitrogen values  are  the average  of three  measurements
f = final  reading; after 30 days  of incubation
A = final-initial

-------
to the CBOD.  The disadvantage of this selectivity is that Nitrobacter



are not inhibited and N02 will be oxidized to N0§.  This limitation



generally represents a small  error since the concentration of nitrite-



nitrogen is generally much smaller than Total Kjeldahl  Nitrogen in



river water.  Further, the demand associated with the N02-N initially



present is 1.14/4.57 or one-quarter that associated with the TKN-N



initially in the sample.



Synthetic Glucose Samples-Respiration Experiment



     To directly determine the effect of TCMP on the rate of heterotrophic



respiration, synthetic samples of APHA dilution water were spiked  with



glucose and seed bacteria.  Several  bottles were immediately assayed



for glucose, dissolved oxygen, and pH, while others were incubated



and later analyzed for these  parameters.  The results,  compiled in



Table 3, indicate that TCMP did not appreciably decrease the rate  at



which glucose was utilized.  The potential  problem with this



interpretation is that these  results may have been at steady state



and therefore may not actually represent the rate at which steady



state was achieved.



     This experiment was again performed with the emphasis placed  on



determining when steady state occurred in bottles in which growth



was observed.  Glucose concentration, pH, and dissolved oxygen level



were measured initially and periodically during incubation.  The



final levels determined were  similar to those in the previous



experiments.  The results, compiled in Table 4 and Figure 2, indicate



that:  the glucose respiration rate was not significantly affected



by TCMP; steady state was not established after 4 days  of incubation;



and suggested that the interpretation of the first experiment was  valid.

-------
Table 3.  Effect of TCMP on the utilization  of glucose  in
          synthetic samples
Day 0
TCMP
Inhibited
Sample





Uninhibited
Sample



Day 0
TCMP
Inhibited
Sample







Uninhibited
Sample









A Ave.
Glucose Glucose Ave. D.O.
mg/1 ave. mg/1 pH mg/1
27.3 0 6.8 15.5
27.7
28.0
29.8

29.6 0 6.7 15.5
28.9
29.6
28.6
29.1

28.0 0 6.5 13.2
26.2
26.9
27.6
26.7
26.9
26.0
27.1
26.6
26.9
28.0 0 6.3 13.2
27.2
26.7
27.6
27.5
27.9
27.9
27.7
27.0
27.1



































Day 2
A Ave.
Glucose Glucose Ave. 0.0.
mg/1 ave. mg/1 pH mg/1
7.3 20.8 5.9 6.9
6.9
7.1
8.7
6.8
8.5 21.9 5.7 6.9
6.7
6.7
5.3
9.4
Day 2
9.9 16.5 6.0 5.4
10.9
10.2
12.2
9.5
10.5
10.1
10.2
9.8
10.2
11.0 16.5 5.8 6.4
12.0
13.4
10.4
9.9
9.4
11 .0
10.9



-------
Table 4.  Rate of glucose respiration during inhibition of nitrification
Day 0
TCMP
Inhibited
Samp! e
L
Uninhibited
Sample
Day 2
TCMP
Inhibited
Sampl e
Uninhibited
Sample
Day 4
TCMP
Inhibited
Sample
Uninhibited
Sample
A Ave.
Glucose Glucose Ave. D.O.
mg/1 ave. mg/1 pH mg/1
23.6 0 6.7 15.7
26.2
26.7
27.1 0 6.8 15.6
27.6
25.6
9.0 16.5 6.1 7.3
9.0
10.4 16.2 6.0 7.3
10.8
10.5
3.0 22.3 5.9 5.7
3.3
4.3 22.4 5.9 6.0
4.6
4.4
Day 1
A Ave.
Glucose Glucose Ave. D.O.
mg/1 ave. mg/1 pH mg/1
12.8 12.3 6.2 9.2
13.6
15.0 12.6 6.1 9.0
14.3
13.2
Day 3
5.4 20.2 6.1 6.8
5.2
6.8 19.4 5.9 6.8
7.7
7.6



-------
 Figure  2.   Effect  of  the inhibitor on the rate of glucose  respiration
 C7»

 £
 o
 u
O
                                                Control  •

                                                TCMP   O
         0
                           Days of  Incubation

-------
     Assays on TCMP treated samples consistently gave lower glucose



values than the control samples.  Bottles which were assayed



immediately after preparation demonstrated this same pattern  and this



suggested that a chemical  rather than a biological  mechanism was involved,



     It has been suggested that glucose is toxic to the growth of



nitrifying bacteria.22  It has also been suggested  that the lack of



nitrate and nitrite formation when glucose was added to actively



nitrifying samples indicated a preference for glucose respiration by



nitrifying bacteria.23  The contribution of nitrifying bacteria to the



overall glucose utilization measured in this study  was probably



insignificant since the nitrifyer population present in stale settled



sewage collected during freezing weather is relatively sparce and



an incubation time of 4 days or less is not sufficient for significant



nitrifyer growth from this seed.  Further, the acidic pH conditions



which occurred during this experiment were not ideal for nitrifyer growth,



TCMP and The Measurement of Dissolved Oxygen



     The effect of TCMP on dissolved oxygen measurements made using



the azide modified Winkler potentiometric method and the polarographic



electrode method was determined using inhibited and uninhibited



deionized water samples.  A paired t-test for the Winkler assayed



bottles (t=1.24, n=31) revealed no significant affect on the Winkler DO



method at a 95% confidence level.  The average difference between TCMP



treated and untreated bottles was 0.1 mg/1 D.O.  Similar results were



obtained for the electrode method with a paired-t test result of 1.48



with n=32 and a=.05.

-------
     Fourteen identical  biiodate standards  were  also  analyzed  using



the starch end point in  the Winkler determination.  The  average



difference in the titrant required  for  inhibited and  uninhibited  bottles



was 0.03 ml ,  which indicated that TCMP  did  not affect the  starch  end



point determination.



Potomac River Study



     With the completion of the preliminary experimentation  using



synthetic samples, the use of TCMP  in the determination  of nitrogenous



oxygen demand was tested using environmental  samples. Potomac River



samples were  assayed for NOD during the summer of 1977.  Nitrogen analyses



were limited  to TKN.  The river historically3 had a pattern  of rapid



biological activity and  long term incubation was expected  to yield



essentially complete nitrification.  The potential  NOD was calculated



from the TKN  originally in the sample as:  (TKN) x  4,57  =  potential NOD.



This compared favorably with the NOD measured using the  nitrification



inhibitor with an average difference of 0.9 mg/1 .  The results are



compiled in Table 5.  It should be  emphasized that  the potential  MOD



estimate from the TKN may not occur. However, the  coefficient of



linear correlation (r=0.88) suggested that  after 20 days of  incubation



nitrification was generally complete and that the method utilizing



TCMP gave reasonable NOD results.



Lehigh River  Study



     The inhibitor TCMP was also employed in an  intensive  nitrification



study undertaken on the Lehigh River during fall 1977.  The  study



included the  determination of nitrogen  states and dissolved  oxygen



depletion of unaltered and inhibited samples at  several  times  during



a long term incubation interval.  The data  are  presented in  Figure 3



and Tables 5 and 7 and reflect the  different sample types  and





preparations  involved:

-------
Table 5.  Comparison of the potential NOD and  the  actual  MOD
          measured  using  "''CMP (mg/1)

                          Potomac River Samples
NOD2Q
(TCMP)
2.2
2.3
4.4
6.2
n.o
11.1
4.0
3.6
3.0
2.6
1.4
1.5
2.6
5.3
5.6
6.8
5.5
3.8
2.4
3.6
LA
1.4
7.3
4.8
Potential
NOD
(4.57)(TKN)
3.4
3.2
3.8
9.4
11.4
10.1
6.2
4.9
3.9
2.8
2.1
1.7
2.7
4.5
5.5
5.9
4.1
3.3
2.8
2.3
2.00
1.6
6.7
5.8
NOD20
(TCMP)
3.3
4.4
4.0
3.8
1.8
3.0
2.7
4.0
4.4
3.4
4.1
3.5
6.6
6.8
4.2
1.6
1.2
7.1
4.7
5.1
4.9
4.3
5.2
4.9
Potential
NOD
(4.57)(TKN)
4.9
4.0
3.4
3.1
2.5
2.2
2.2
4.1
6.3
5.3
5.0
5.1
5.8
6.1
3.7
2.2
1.8
8.0
6.4
5.8
5.0
4.4
5.6
5.5
NOD2Q
(TCMP)
2.0
2.2
4.5
8.9
n.o
—
3.6
3.0
2.5
3.0


Potential
NOD
(4.57)(TKNJ
2.1
1.9
4.8
6.5
8.4

3.3
2.1
1.3
1 .8


1 inear correlation
coefficient = 0.88
with n = 58




















  5.0
5.9
5.6
3.7

-------
          1.   unaltered samples - river stations
          2.   seeded samples - industrial  effluents
          3.   seeded and diluted samples - sewage treatment plants
              and industrial effluents
     The average difference between the two NOD methods for river samples,
with an oxygen demand of less than 10 mg/1, was 0.4 mg/1  (n=12S and
s.d.=0.349).   The seeded effluent samples  had an average  ^!OD difference
of 0.5 mg/1  (n=42 and s.d.=0.463).  The increased error and variability
of the results reflects the added measurements of the seeded blank
made for both nitrogen conversions and oxygen depletion determinations.
The average NOD difference for seeded and  diluted effluent samples was
5.7 mg/1 (n=36 and s.d.= 7.83), which represented an average error
of 10% for the NOD.  The NOD error for diluted samples was amplified
by the dilution factors of 15 and 30 necessary for the BOO analysis.
A paired t-test of the nitrogenous oxygen  demand over the combined
206 paired data sets established at the 95% confidence level (t=.75)
that there was no significant difference  in the results of the two
NOD methods.
     Station 031, an industrial effluent  sample from a steel plant
slag leachate was unique in that the outfall had an average BOD2Q_3i|
of 763 mg/1 and an average initial TKN of 359 mg/1 on the three days
it was sampled.  However, nitrate and nitrite were not formed after 31
days of incubation.  The sample was analyzed for phenol and cyanide
and was found to contain 35.9 mg/1 total  phenol and 50 mg/1 cyanide.
This suggested that the outfall was toxic to nitrifying bacteria,
but not to the heterotrophic species present.

-------
     Figure 3.   NOD  of  Lehigh  River samples  calculated
                 from  nitrogen  analyses  and  measured  using
                 the  inhibitor ,  TCMP
40


30


20-


 10-


 9


 Bi


 7
 5


 4-


 3-


 2-


 I-


 0
'^THEORETICAL
  RELATION
    two samples with
       identical results
                                             8
        10   20   30  40
                      Observed  NOD (inhibitor)  mg/l

-------
 QJ
 CT>
 O
M-
 O
 "3
T3
 O>
 C

 £

 O)
 CJ
4->  O-
 c  s:
 CU -i-
 S_  01
4J  £
 V)  OJ
 3  S_
T3  3
 C  Ul
•i—  ro
     OJ
x: -Q
 QJ
T3  03
 V
T5  
 O)  C
 o
*
•F—
Z r— 00
1 ""*-•* ^"
CM cno
Or—
^ •
4-
Z. .— CM

CM EDO
0 E •
•z.
c.
0
V(— M—
o +->

CO J2
>i 3
n3 O
O C
l»4
in
o
o
•
ra
4-J
w)
i in
CJ O
4-> ^
03 O
O r—

co P-
•q-Ln

co in
CM VO
VO LO
ai en
cn co
CM LO
i — vo
,__

oo oo
VO CO
i— LO
vo in
LO CO
CM 

(T3
C
i-
3
t-

4-^
CO
ra
f—
ca


r-- vo CM
f— CM

CO CO CM
i— CM
co co
in co co
co co en
CM r— CC
o «j- in

i
co co co
CM in o
en CM «3-
CM en vo
co co in
, 	 , 	

CO CO CO
CM •* in
Ln p*^ r*^
CM VO i —
O co in
i
CO CO CO
i — f». rv.
vo vo vo

CO O
^~ ^}" en
LO O i —
r~ CM CM
i — CTl r—
CM CO VO
,— 0 O
1
,-r-r-
LO VO VO
ooo

CM O
CO O
r- r— O



LO CM O1
i— C\J


VU

VO ra
O c en
o i- e.
3 -r-
<*- r—
O
4-> O
CO U
ro
f—
ca


r^- LO o
i — CM

in in o
i — CM
CM «3" ^}-
CC CM CO
<«- o cc
r— VO e-
i— 0 C
1
in ID m
^- ^- «^f
ooo

co m
r-s i^.
•— o o



LO CM cn
i 	 CM


O)
u
p**. r(3
CD C C77
o i. c
3 —

O
4-^ O
CO  r- r—
CM 0 C
O CM 00

cn cn cn
CO CO CO
ooo
CM CM CM
cc oc

O CM ro
CM Ovj CM
p- in in
CO *=1~ ^3"
OOO
1 1
in in in
•a- «s- "sr
ooo

CM
CO
i— O O



vo CM cn
i — CM


vU
^J
CC re
O c cn
o s- c
3 -t-
H- i —
0
4J O
co o
ra
r«~
LQ


cn ^j- ro
i — CM

CM Ln CM
•-
CM LO •*
CM CM «*

CM CM co
O , — CO

1
co co co
LO cc r-.
O r-~ co
VO O1 *£f"
CM co co


co LO ir>
1 — CO LO
c^ cn vo
CM o cn
0 .— CM
i

CO 00 OO
LO LO VO

i — OO O
vo cr, co
vo r^ cn

ai r-. o
o o in
OOO
i
ooo
in tn in
ooo

en r-
^r LO
i— O 0



LO CM cn
i — CM

4-S
c:
ai
0 =
i — 4J CD
O ra C
QJ «^
S- !—
+-> o
0
4-> O

^J
T:


in tn co
i — CM

CO CO VO
— r-
LO CO 
•^
Q.

ai

ra
CJ



«r


CO

LO
cn
in
r—
O


cc
cn
^j-
cn
CM


cn
•-
«!)-
f—
O

CO
en
un


0
VO

CM
1--.
o

_
«jf
o

CO
r^




LO





^1-
r—
0










LO r~-
•-

O CM
'-'-
VO CC
r— ^~
^j- P*^
VO CM
i — CO


00 CC
r**** r^^
CO CO
^" ^"
co cc


CO O>
co in
*3- p>-
«* cc
r— CM

CO CO
en en
in in

r-. O
CO CO
i-- cc

CM i —
O «sj-
•— 0
1
r— i —
^~ *vj~
0 O

CO
^-
<— o



CM cn
r— CM





CT*
0) C
CO -r-
3 r*™
O O
-C O

2
(13
00


O
r—

OJ




in
0

1



p>^
CM


VO
CO
CO
^}-
o>
1
VO
in
vo

CO
r—
VO

CO
CXI
1 —

^
uo
0

f*x.
r-.




^o





t_f)
0
o




vo
0
•^^,
o
^~

CO r—
«3" VO

co r*.
«* in



en vo
in «3-
,_




CM CM
CM CM
•3- <*•

CM CM
00 r—
O CC
CM CM


VO VO
in in
LO VO

vo O
p"-- ^i*
r- cn
CM CM
0 -vf
i — in
P- 0
i
.* -a-
in in
0 0

^^
VO
r-. o



CM i —
i — CO


CJ
u
ro
c
i.
3


4->
CO
rO
, f—
ca


-------





M—
O
01
• r—
C/1
ro
C
ro
>,
-Q

-^2
CU
•£
SI
CU
cu
"O
Q_
01 S
cu <_;
i"j=
ro •*->
01 *r—

CU C
-3 S^
r— cz
4- CU
4- i.
CU 3
i— ro
ro CU
s_ ~
to Jo
^
-a -a
•r— ro

CD C
•i- O
r~ .^
CU 01
—I i-
0*J
T3 >
CU C
-c o
CU O
cu
01 £ZZ
cu
4- cr>
o o
O +J
O •<-
2: c


X— *s
•4_d
-
c~
o


o

^
o
CD
2:

>=}-

•




2:
ro i
<*• CM
• 0
CO 2T

r--




(~*s
co
i —





^j-
*^j-
o





^J-
CM
CM
.




ro «3-
i — CM

LO rf
r- ,-


r- C3>
^r ro






O ro
,— 0
,- r-


o to
UiO *-O


^^ ^d~
**o *^^
ro ro



to to
LO LO
r-- i —



o c
CM O
1 — 1—
CM CM



^J- ^J-
^" ^J"
0 0

1 1



^- ^3"
^J- *^t"
o o







o o





«3- tO
o

LO tO



LO O^
C i—






00 0
•y- «*•



LO ro
(X LO


__ ^J.
«^f- IJ2
o .—



to to
CM CM
O O
C\J CNJ


r^ 0
to a-i
O i—
CM CM



O> *s^
cr> LO
0 0

i



^j- ^j-
LT1) LO
O O





OO
LTJ
i— O
•




O
CM

to



cr>
i —






o
«a-



LO
r^.


^
tc
i —



to
CM
O
CNJ


c
c^
1 —
CM



^J-
LO
0

1



«j-
LO
O







o





C1 CC
o

CM f~*^



r->. o
O CM
i





0 C
ro LO




•r—
•^^ CT
ro'i-
O
zr i
<
+ 'rO
cz
CM'f-
O 4—
2: II
<2 
 CU                    rOU3CMi—     USCMi—     tOCMi—     VOCMi—     U3CM*—     tOCMf—
i—                 01  J3     i—  ro        r— ro         i— ro         .—  ro        i— oo         r—  oo
J^                 X 3
 n3                 t3  U                                                 •*-»
t—                Q  C     CU             CU             CU            C
                      i—i     <_)               O
                      O04->O        -t->O         -MO             O         O)
                       |l£lCOU         !/) O          i/)O         4J(J        i	
                      CUOro             ro             ro            ro             ra
                      4->~~-i—            i—            i—            CU             U
                      roOca            c2            ca            3:            <^
                      Q i—

-------




y>
00
>>
r—
re
c
re

>•>
jD
•o
o>
c
•r—
E
OJ
4J
O1
•o
01
Q.
E
re
00
C 0-
O> 21
=5 0
C
1— _E
O> •»->
•— '5
re
•r- -i->
s_ c
oo E
= O!
T3 S-
C 3
•r- OO
re
T3 O)
re
>•>
0- JO
1
f—
oo -o
c
•0 
c >
re c:
O
CD
•o c
CU O)
01 cn
OO" O
s_
M- -I-J
O f-

0
O 4-
•z. o

•

01
r— •
_O
re^
1—











Q_ i —
o s -•-.
CD t .^ cn CO CO LO
2^ I — E CO to 1 — .
* O i —
Cl r- ---. CM i— CO
Z. o E °^ ^ ^t"
CM 10 r~-

f 	 N
z. co •*
^j- i ,_ co ^- co

. O cn "-f CM co
"~ < co co
»^^* p—


^_^
2£ zz ^" ^ ^ — '
CO 1 1 i — ^ ^" "="*"
«r+- rvj CO"^~ ^ f~* ^
• oo OT •* co co
00 < < E cn in LO
v 	 , ^_ CM in LO

C ^
ro c ^T CO O
*= LO cn, CM
r—

\ i —
cP'o) Ln ^ <£>
Z. E "^ °° ^
"^ CM tO
r—

•r-
^— *
' /^ *CJ" ^" ^"
O E . . ,




^~
^ ' CM tO
^"^ CC CM O
0 E «^. p^ ^_
Z CM


"Z.
' r~~ (V) ^*, f*^
O cn ""I ^1 °H
zz & co c^
 r*v ^^
CM cn JNJ c\j (sj
•z.



M-
: — r— ^~
i ^^. ^~ r^
CM en • . o
o E co co
^^ r~


C
O
t^_ .y.
O 4->
(O tO CM CM
00 -Q i — CM
>-> =3
re o
Q C
1—1
C
3
0
re 4-> D-
4-> c: H-
OO O) OO
1 ^t~ ^^
O) O i —
4_> "^ ^^
ro 0
tn
tjO O^ OT
^}* CO ^"
i— CM
r^« r*^ c!T>
LO •=}• CM
CO CM tO
i — CM

to ^f to
(jo ijo (jo
CC CO [^
f**^ ^J" ^J"
i— r-~
to



i — CM CM
CO tO CO
CO «d- l~-
CO CM «"
«W CO i —
CO CM O
i — CM

t^- ^J- ^f
LO O to
CM CM


CM tO CM
tO CM i —
i— CM
UO



r*~ r~ ^~
•=r —

O CM Lf
i — ( ' —
cn co r—
CO CO CO
LO CM , —
1 —

to co
CO 1-^ «-
CO CO LO
co *d* r^-
CM UO CM
CM



^3" i — i —
CC •— f—
CO CM CM
O CO CO
r- CC CO
uo co co


cn o CM
CM CM CC
r— r-~


CM t^
«3" l~- .—
CM «d- tO
CM





O O O




CM f-
«3" h«. i —
CM <<5t' tO
CM



CM CO
CO O CO
CM i —
i — CM 1




CO CO CO
CO CO CO





CM CO
r-. co
• • o
CM . —
i — CM





tO CM CM
•— CM




g=
Ol
JC
CU O-
r- (—
J= 00
4J)
CU
CQ

in
O CO CM
i — "^- LO
tO LO
(^ OO CM
^j- '. p


•Cf CO CM
CM CM CO
LO CO «3-
1 — CM LO
, — LO
^~



co i^ r~-
«d- co co
CM ,— ^~
co to to
to to to
^J- «^-

LO
r— "3" O
CM to CM


in LO
tO CM CO
to to to
i— CO
-j- ,_


LO in uo
in in in
CO CO CO
CM CM CM



in
, — in CM
O O CM
CO «3" LO
p_


in in
LO CM <^-
CO CO O
r— .
i — 1



LO LO LO
^J" ^f" ^}"
O O O




LO
cn *r
ca- co
to o
P—

LO
to •=}-
CO CO
CD • •
, — CM
r—


LO LO UO
CM CM CM
co co co




LO LO
CM CM tO
CO r— tO
CM CO
,_


in
CO O *tf"
CM CM to
to «a-
CM i —



in in in
cn CM CM
r— I— r—




LO LO
CM CO
r- *3- CO

i— to «a-
CM i —





tO CM CM
i — CM



UO OO
r— ^
O S-
o
3

cu
N^
O
f 1

o o o

o o o







t_J [Q} f*~i








CO CO CO


LO
CO •«*" tO
CM ^J- P-~
i — CM in











CO CO CD






CO CO CO






o o o






000







0 O O







to CM cn
r- CM



,_
CO
o o>
•4_>
re
r"
cn u
re re
r— =r to
^3- CM «^-
O CM CM
in co o
to r^


to tn CM
CO O CM
f— r~-


tO CM
•=r in
CO • •
CM O
CM


o o o
CO CO CO
CO CO CO




o
co CM Ln
co r*^ co
CM O
CM


tn
r~- uo «3-
•=r to o
i— r>»
i — i



in in uo
^~ ^3" ^3"
O O O




in
r—
Ln r^
• • 0

r_





to CM cn
r— CM




E
01
f""
01 a.
r- 1—
J= 00
+->
O!
CO


-------




•


>,
_a
•o
, 
c S
r- CU
it ££
*+— o3
CD S~
i — on
l ro >T3
•(~— CU
00 >,
3 -C
c -o
•i— sr
H3
•o
CT (/)

O
a. •,-
t— VI
oo s_
CJ
-a :>
CU rj~*
4-> 0
^ U_>
•r- C
~O QJ
CT!
~C3 O
, = s~
(^ -4— J
-o c
cu
1 cu o
' cu
.p—
*f- on
O**^
— *1
• C^ ro
O C
•Z 03


,^~«
+J
_
C
o
0
.
r^



-K 0

o ro
sr u


-— >
*± ^
f^r CO
• 0
"~" <3



-— .
ro i i
^f CM ro
• O 0
00 § <
v_^ 4-

c-.
o
ca

•z.
ro
1=3

•T—
^p
rn
O
21


U—

2T
CO
O
2:


^c.
1
C\J
2!
<3


z"
I
O



*4—
ST
I
CM
O
21



4—
O

(/l
n3











*-^
C_I i
E


^--
Oo
E



r_
^^^
cn
E




cn
e


^_
cn


cn
E



£~
rn
g





1
i~ci
E




^**
f^^.
E




^.
cn
g




r—
^•^
CD
E



C
o
•r—
4_3
ro
-°
U
K— (


•
ro
40
CO
QJ

ro
Q
O
CM
ro

to
o
ro



t—
o
r— -




LO
on
CM

C
^


LO
CC




CM
LO
CM



LO
C
**•
ro




«^-
i^
^^




ro
O




^,
^^
.
P«^






to









o
••^^
C3
i—
LO
LO
LO

f^
LO
LO



ro
O
r--
r—



to
to
^j.
t^J-

LO
cr


LO
p^
to
C-,



CSJ
LO
CM



LO
CTi
i—
CM
i —


LO
^J-
ro
ro




ro
O



LO
[^
ro

ro






CM
•—


C
2
O

C
OJ
in
e^


O
O
to

L.O
a-i
LO



CO
CO
•5T
,_



to
to
^j.
^j-

'-0
to
1 —

LO
o
I—



CM
LO
CM




(^
Ln
Ln
i —



ro
O


i


ro
O






r*"i







P-.
ro





a_
t—
u~>




LO
LO
CM

LO
to
CM




^r





cr
O
to
CM

iT)
LO
CM


LO
r-
ro



c
,^
CO




LO
co
|—
, —




ro
CM
f^




CO
CM



LO
^_
LD

^^






to


LO
r—
O








cc
l 	
co

•=f
o
CTi



«^-
• —
CM




CM
CC
CC

LO
CC
cc


Ln
C-.
CO
r-


o
r—
cc




tn
cc
to
CM




LO
co
CO
CM



cc
CM



LO
ro
p..
.
^j-
CM





f>J
<—


•^
i.
O
2

0)
o
0


LO
LO
i—

O
,_,
CM
t — (


CO

o
ro



co
0
cr

LO
CM
1 —

LO
CM


O
(— •
CO




LO
cc
CM
r^
CSJ


Ln
cc
CM


1


co
CM






O







,__
ro












c
O O O cn
ro

CO
o o o c;
CSJ



CD
ID
Of— V f— >
L- J '!_«' *




Ln
CM
cc
CM

Ln Ln c LO
CM LO ! — tC
: — CM LO

co
*"*"' •*" "1 r~"^ .
^ — ' ^ — ' \ — • •


Ln
ro
" —
'





r~-
LO
'






co
!--!





CD O O C





co
o o o







tO CM i — tC
i— ro


ro s
o aj cu
4-> -C
rO CU
^: i —
CD >
s:  \t       s_
< <      o

     CU      ro
ro  i-      i.
^t  cu      o
  . _c      J3
ro  2      rO

 II
            li
O
o         <

-------
                               Conclusions
     The results  of this  study  on  synthetic,  river,  sewage  treatment
plant and industrial  effluent samples  suggested  that:
     1)  TCMP was an effective  inhibitor  to  nitrification.
         The; inhibitor stopped  the nitrification of  ammonia  by
         inhibiting the formation  of nitrite.
     2)  TCMP did not inhibit the  conversion  of  nitrite  to  nitrate.
     3)  TCMP did not inhibit the  respiration  of glucose.
     4)  TCMP did not significantly contribute to the  CBOD  even
         after 31 days of incubation at 20°C.
     5)  The determination of NOD  using the  difference in oxygen
         depletion in inhibited and uninhibited  BOD  bottles  was quick
         and easy.  This  method did not involve  the  expensive equipment,
         no1'* time associated with  the chemical analysis  of  nitrogen
         states to determine the MOD.
     6)  The inhibitor did not interfere  with the determination of
         oxygen by the azide modified Winkler or electrode  methods.
     7)  The inhibitor method yielded reliably accurate  NOD determinations
                               References
1.  Standard Methods for the Examination  of Hater and  Hastewater,
    14th ed., APHA, 1975.
2.  Srinath, E.G., Raymond, L.C.,  Loehr,  M.  and  Prakasam, T.B.S.,
    "Nitrifying Organism Concentration and  Activity."  J. of Env.
    Engineering, p. 449-463, 1976.
3.  Clark, L.J.  and Jaworski,  N.A., "Nutrient Transport  and Dissolved
    Oxygen Budget  Studies in the Potomac  Estuary," Technical Report 37,
    AFO  Region III, Environmental  Protection Agency, 1972.

-------
4.  Stensel ,  H.D., McDowell,  C.S.  and  Ritter,  E.D.,  "An  Automated



    Biological  Nitrification  Toxicity  Test,"  J.W.P.C.F.,  48,  10,



    p. 2348-2350, (October 1975).



5.  Breed, R.S., Murry E.G.O.,  and Hitcnens,  A.P.,  Sergey's Manual  of



    Determinative Bacteriology,  6th ed.,  The  Williams and  WIT kens.



6.  Painter,  H.A., "Microbial  Transformations  of  Inorganic Nitrogen,"



    Prog. Wat.  Tech.  vol.  8,  Nos.4/5,  pp.  3-29 Pergamon  Press,  1977.



7.  Mattern,  E.K., Jr., "Growth  Kinetics  of Nitrifying Microorganisms,"



    CE 756A6  prepared for  the Office of Water  Research and Technology.



8.  Wezernak, C.T. and Gannon,  J.J., "Evaluation  of  Nitrification  in



    Streams," J_._ Sanitary  Engineering  Hiv., Proc. of_ American Soc.



    of Civil  Engineers, p. 883-895, (Oct.  1968).



9.  Wezernak, C.T. and Gannon,  J.J., "Oxygen-Nitrogen Relationships in



    Autotrophic Nitrification,"  Applied Microbiology, 15,  p.  1211-1215,



    (Sept. 1967).



10. Montomgery, H.A.C. and Borne,  B.J.,  "The  Inhibition  of Nitrification



    in the BOD  test," J.  Proc.  Inst. Sew.  Purif., p.  357-368, 1966.



11. Young, J.C., "Chemical Methods for Nitrification  Control,"



    24th Industrial  Waste  Conference,  Part  j_I_ Purdue University,



    p. 1090-1102, 1967.



12. Van Kessel, J.F., "Factors Affecting  the  Denitrification  Rate



    in Two Water-Sediment  Systems," Water  Research,  11 ,  p. 259-267,



    (July 1976).



13. Goring,  C.A., "Control of Nitrification by 2-Ch1oro-6  (Trichloromethyl)



    Pyridine,"  Soil  Science.  93, p. 211-218,  (Jan.  1962).

-------
14.  MuTlison,  W.R.  and  Norn's,  M.G.,  "A  Reviev/ of Toxicological, Residual



    and Environmental  Effects cf  Nitrapyrin and  its Metabol ite, 5-Chlorc-




    Picolintc  Acid,"  Dow  to Earth,  32,  p. 22-27,  (Summer 1976).



15.  Redemann,  C.T., Meikle,  R.W.  and  Viidofsky, J.G., "The Loss of



    2-Chloro-6-(Trichloromethyl)  Pyridine  from Soil," J. Agriculture



    and Food Chemistry, 12,  p.  207-209,  (May-June 1964).



16.  Young,  J.C.,  "Chemical  Methods  for Nitrification Control," J.W.P.C.F. ,



    45, 4,  p.  637-646,  (April 1973).



17.  Laskowski, D.A., O'Melia, E.G.,  Griffith, J.D.  et al, "Effect or



    2-Chloro-6-(Trichloromethyl)  Pyridine  and its Hydrolysis Product



    6-Chloro-Picolinic  Acid  on  Soil  Microorganisms," J.  of Env. Qua!ity,  4,



    p. 412-417, (July-Sept.  1975).



18.  Chemistry  Laboratory Manual-Bottom Sediments, compiled by  Great



    Lakes Region  Committee  on Analytical  Methods, E.P.A. Dec.  1969.



19.  Methods For Chemical  Analysis of Water and Hastes.  E.P.A., 1974.



20.  Strickland, J.D.H., and  Parsons,  T.R., A  Practical  Handbook o_f



    Seawater Analysis,  Queen's  Printer,  Ottawa,  1968, p. 173-174.



21.  Bundy,  L.G.,  "Control  of Nitrogen Transformations,"  Ph.D.



    Dissertation, Iowa  State University,  1973.



22.  Quastel , J.H.,  and  Scholefield,  "Biochemistry cf Nitrification  in



    Soil,"  Bact.  Rev. .  15,  1951,  p.  1-53,  1951.



23.  Tandon, S.P., "Effect of Organic Substances  on  Nitrite Formation



    by Nitrosomonas,"  Symp.  Blol . Hung..  11,  p.  283-288, 1972.

-------

-------
                                   TECHNICAL REPORT DATA
                            (Please read Instructions on t!;e reverse before completing)
1. REPORT NO.
                             2.
                                                           3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
   SIMPLIFIED N.O.D. DETERMINATION
5. REPORT DATE
   March 1978
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
   J. L. Slayton
   and E. R. Trovato
                                                           8. PERFORMING ORGANIZATION REPORT NOt
9. PERFORMING ORGANIZATION NAME AND ADDRESS
   Annapolis Field Office,  Region  III
   U.S. Environmental  Protection Agency
   Annapolis Science Center
   Annapolis, Maryland  21401
                                                            1O. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
 12. SPONSORING AGENCY NAME AND ADDRESS
                                                            13. TYPE OF REPORT AND PERIOD COVERED
   Same
                                                              In House;  Final
14. SPONSORING AGENCY CODE
 15. SUPPLEMENTARY NOTES
 16. ABSTRACT

   The nitrification  inhibitor,  N.-Serve was applied to long term BOD  tests  to
   determine the nitrogenous  oxygen demand.  This was compared to the NOD
   calculated from the N-series  conversions observed over the course  of  the
   incubation.  Preliminary inhibitor studies, involving measurement  of  N-series
   and variation of glucose concentration with time, were conducted on synthetic
   samples of glucose and/or  glutamic acid spiked with ammonia and/or.nitrite  to
   .assess  its affect  on  heterotrophic respiration and evaluate its accuracy and
   limitations.  Extensive  testing was then performed-on sewage treatment  plant
   effluents and on the  receiving waters of the Potomac and Lehigh Rivers.   It
   was found that this method of determining NOD:  was accurate; did  not affect-
   heterotrophic respiration; did not interfere with, dissolved oxygen measurements
   via the dissolved  oxygen probe or Vlinkler method; and was not applicable when
   nitrite was present in a significant amount.                      '
17. KEY WORDS AND DOCUMENT ANALYSIS *
a. DESCRIPTORS
Nitrification
M-Serve
Biochemical Oxygen Demand
Dissolved Oxygen
18. DISTRIBUTION STATEMENT
RELEASE TO PUBLIC
b.lDENTIFIERS/OPEN ENDED TERMS
Glucose Respiration
Nitrite/Nitrate-
19. SECURITY CLASS (This Report)
UNCLASSIFIED
2O. SECURITY CLASS (This pave)
UNCLASSIFIED
c. COSATI Field/Group ^
*
*
¥
f
21. NO. OF PAGES
22. PRICE 1
  EPA Form 222O-1 (9-73)

-------
-------
- 144 -

i/}
r~~
•— *
•z
^
LU
Q-
t—
























•z.
o
I-H
1— t
•z.
I— t
u_
LU
a
















•z
I—
0
ex:
CO

LU
	 1
| VARIAB













CO
.E
•P •
Q.
.E co
0)-P
3 to
o
S- CU
(— ^
13 ,
1 »
•^
CU >>
-P -P
IO '1—

CU fO
E 3
CO CT
01
CO to
$_
en
•* S C:
to *r-

S- 3
O "O

Q. E
to O
O T-
^" 1 \
o. o
3
CO 'O

•P IO

CO E

1 \
•!"• .
-P 0
tO O
E n
o
U r—
IO
4- -P
O •<-
•P -P
E CU
Z3 ~^5
o
^

"Z.
1— 1

^

RMASSP
I/)
CU

• !__
E

o:



















.
^.
s_

•t>
LU
O
O
a;
to
a>
i— .
>r_
^

C£.











•
>^
S-
to

E
3
O


4L_
cu
O-
Q.
3

CU

^
O

4-

|
o
Q.
(O

fO


g—
-i_<
XX

flj
1 ^
4-
o
CU
o
E
to
-P
to
•r-
Q

^^
t— 4
^£
^
B
| RMDATA


CM
^ •>
4-

Cd


































•
O

-P
0

3


ta

0
to
a>
to
CO
o
to
s-
3
oo

^^
1 — t
i^T


«c
LU
C£

IO to
s-
CU CU
-P 10
4- CU
O -E
E
3
OO

^^
1— 1
^^
s:

2:
a
oo






i — i



O T3 -0
4- S- S-
(TJ fO
to 3E • 3: •
E fO CU IO CU
O CO r- O> i—
•i- (/> O to O
•P ^> ^">
•i- CO O CU O
-0 -E J=
C -P r— -P i—
O IO IO
O -P -O -P T3
fO *r~ fl3 *i~
^^ -P -P
L. NX NX
IO CO CU
TD -P Jd -P JE
E E -P E -P
3 CO CO
O 3 S- 3 S-
•!->•!->
T3 -P O -P O
i- (/> to
IO E -P E CO
S 0 C 0 •—
to o to o .a
Q) 4-> IO
 4- to 4- -i-
O E O S-
CO O IO
-E E O E >
-POO
•r— tO T- tO
O) -P -1- -P •!-
E IO IO
•r- J_ >, S- >,
.a -P s_ -P s-
•i- E fO E to
S_ CO T3 CO T3
o a c u E
V) E 3 E 3
CU • O O O O
"O -P O -Q O -Q
E
S- CU i— I CM
CO 3
. | * | t
CO 'I- II
to to ^-*
S- C ^
fO O "*~* *
a. u •z.
o
•— .E <-3
O 0  oo
E
O
o

•z
1 — 1
^^
E
3
1
1

to
CO
1—
•1—
E
a:

























•
•^

E
O
-|_>
U
E
3
S-
O
4-
CU
E
•t—
r—

CU
s-
o
c—
1/5
CU
^:
o
en
E
CU


•z
t — 1
^^
s
-N
I






^



























•
to
s-
O)
o
s-
Q.
>»
•i —


s-
0
CO
E
O!
E
-P
(O
-p
oo
_,
,*^; ^C
i— i |—
^C j^
s: oo

1



to

o
C£











•
•o
(O
o
r—

^
C
IO
JD

-CZ
-4->
t-H
CD
_C
•p
o
S-
4 —

»~3
0
•^
-P
O
c
3
•o

o
-p
c
•r-

J
E
lO
to
0
1—

"Z.
H— 4
^^
""
H^
I




o
o
C£














































iperature.
CU
i—

'Z.
H— 4
—
«a:
o
UJ
Q
^ —

CU
•p
to
S.

^>
to
o
CU
T3

i-
O
4^
S-
o
-P
o
to
4—

E
O
•i™
-P
O
CO •
^- N^
S-
0 -P
O E
CO
CU 3
S- -P
3 •!-
•p -p
IO tO
S- E
CU O
§- °
CO
h-

1Z
1—4
^C

B
1