i
                            18107
OOOR78104
      ANALYSIS OF ORGANIC AIR POLLUTANTS
          IN THE KANAWHA VALLEY,  WV
         AND THE SHENANDOAH VALLEY, VA
                    by
      1 5    Mitchell D. Erickson
                    and
              Edo D. Pellizzari        1 b

                 June, 1978

-------
                                 DISCLAIMER

     This report has been reviewed by the Region III U.  S.  Environmental
Protection Agency, and approved for publication.  Approval does not
signify that the contents necessarily reflect the views  and policies of
the U. S. Environmental Protection Agency, nor does mention of trade
names of commercial products constitute endorsement or recommendation
for use.

-------
                                  ABSTRACT

     Recently developed techniques for sampling and analysis of ambient air
by GC/MS/COMP were applied to the Kanawha Valley, WV and Shenandoah Valley,
VA to assess the levels of organic pollutants.  Volatile and very volatile
compounds were concentrated on Tenax GC and carbon sorbent cartridges, re-
spectively, then thermally desorbed directly into the capillary column
GC/MS/COMP system for analysis.  Semivolatiles were collected on the
electrostatic precipitator plates of a Massive Air Sampler, extracted,
fractionated, and then analyzed by GC/MS/COMP.  The Kanawha Valley con-
tained a broad range of halogenated, ketone, aldehyde, ester, aromatic,
aliphatic and polynuclear aromatic compounds.  The Shenandoah Valley
contained a narrower range of organics, but generally higher observed
levels of the compounds quantitated.
                                     iii

-------
IV

-------
                                   CONTENTS
                                                                          Page
Abstract	    iii
Figures	    vi
Tables	    viii
Acknowledgements	    xii

     1.   Introduction 	      1
     2.   Summary and Conclusions  	      2
     3.   Recommendations  	      5
     4.   Objectives	      7
     5.   Sampling	      8
     6.   Sample Analysis	     33
     7.   Results	     38
     8.   Quality Control	     71
References	     76
Appendix
     A.   Sampling and Analysis for Volatile Organics in Ambient Air  .     78
     B.   Sampling and Analysis for Very Volatile Organics (e.g.,
          Methyl Chloride, Methyl Bromide, Vinyl Chloride and Vinyl
          Bromide) in Ambient Air	    106
     C.   Volatile and Very Volatile Organic Compounds Identified
          in Air in the Kanawha Valley, WV	    118
     D.   Semivolatile Compounds Identified in Air Particulate
          Collected in Kanawha Valley, WV  	    146
     E.   Volatile and Very Volatile Organic Compounds Identified in
          Ambient Air in Front Royal, VA	    156
     F.   Semivolatile Compounds Identified in Air Particulate
          Collected in Shenandoah Valley, VA 	    173

-------
                                    FIGURES
Number                                                                Page
  1   Collection system for concentrating high and medium
          volatility organic compounds from ambient air 	    9
  2   The Kanawha River Valley, West Virginia 	   14
  3   Map of area around Nitro, WV showing L4, L6, L7, and L9
          (See Table 1)	   20
  4   Map of area around St. Albans and Institute, WV showing L3 and
          L8 (See Table 1)	   21
  5   Map of area around Charleston and South Charleston, WV showing
          LI and L2 (See Table 1)	   22
  6   Map of area around W.  Belle, WV showing L5 (See Table 1). . . .   23
  7   Front Royal, VA	   25
  8   Map of Front Royal, VA showing locations described in
          Table 5	   30
  9   Fractionation scheme used for fractionating air particulate
          collected in Charleston, WV (Trip 3, PI/LI) 	   35
 10   Extraction scheme for particulate collected in Front Royal, VA.   37
 11   Field Sampling Protocol Data Sheet  	   72
A-l   Vapor collection and analytical systems for analysis of
          organic vapors in ambient air	   80
A-2   Sampling head for housing cartridge sampling train  	   88
A-3   Profile of ambient air pollutants for Wood River, IL using
          high resolution gas chromatography/mass spectrometry/-
          computer	   95
A-4   Background profile for Tenax GC cartridge blank 	   96
A-5   Schematic diagram of gc-ms computer system  	   97
A-6   Mass fragmentograms of characteristic ions representating
          carbon tetrachloride (m/e 117), tetrachloroethylene (m/e
          166)  and m-dichlorobenzene (m/e 146) in ambient air ....  101
                                      vi

-------
                               FIGURES (cont'd.)
Number                                                                     Page
A-7   Mass fragmentograms of characteristic ions representating
          methylene chloride (m/e 49) and chloroform (m/e 83) in
          ambient air	   102
B-l   Nutech Model 221-A AC-DC Sampler  	   108
D-l   Total ion current chromatogram of GC/MS/COMP analysis of polar
          neutral fraction of <1.7 y air particulate collected in
          Kanawha Valley, WV (Trip 3, PI/LI)	   152
D-2   Total ion current chromatogram of GC/MS/COMP analysis of PNA
          fraction of <1.7 p air particulate collected in Kanawha
          Valley, WV (Trip 3, PI/LI)	   153
D-3   Total ion current chromatogram of GC/MS/COMP analysis of paraffin
          fraction of <1.7 y air particulate collected in Kanawha
          Valley, WV (Trip 3, PI/LI)	   154
D-4   Total ion current chromatogram of GC/MS/COMP analysis of base
          fraction of < 1.7 y air particulate collected in Kanawha
          Valley, WV (Trip 3, PI/LI)	   155
F-l   Total ion current chromatogram of GC/MS/COMP analysis of
          methanol extract of <1.7y air particulate collected in
          Front Royal,  VA (Trip 3, P1/L4)	    174
F-2   Total ion current chromatogram of GC/MS/COMP analysis of toluene
          extract of <1.7y  air particulate collected in Front Royal,
          VA (Trip 3, P1/L4)	   176
                                      VII

-------
                                    TABLES
Number                                                                Page
  1   Sampling Locations in the Kanavha Valley,  WV 	     16
  2   Sampling Protocol for Organic Compounds in Ambient Air in
          Kanawha Valley, WV	Trip 1	     17
  3   Sampling Protocol for Organic Compounds in Ambient Air in
          Kanawha Valley, WV	Trip 2	     18
  4   Sampling Protocol for Organic Compouns in  Ambient Air in
          Kanawha Valley, WV	Trip 3	     19
  5   Sampling Locations in the Shenandoah Valley, VA  	     26
  6   Sampling Protocol for Organic Compounds in Ambient Air in
          Shenandoah Valley, VA	Trip 1	     27
  7   Sampling Protocol for Organic Compounds in Ambient Air in
          Shenandoah Valley, VA	Trip 2	     28
  8   Sampling Protocol for Organic Compounds in Ambient Air in
          Shenandoah Valley, VA	Trip 3	     29

  9   Summary of Particulate Sampling with MAS for Shenandoah  and
           Kanawha Valleys 	     32
 10   Recoveries of Selected Organic Vapors from Tenax Cartridges
          Subjected to Sample Transportation and Storage 	     39
 11   Volatile Organics Identified in Ambient Air in the Kanawha
          Valley, WV	     41
 12   Estimated Levels of Halogenated Organic Vapors in Ambient Air
          from the Kanawha Valley, WV	Trip 1	     51
 13   Estimated Levels of Halogenated Organic Vapors in Ambient Air
          from the Kanawha Valley, WV	Trip 2	     52
 14   Estimated Levels of Halogenated Organic Vapors in Ambient Air
          from the Kanawha Valley, WV	Trip 3	     53
 15   Estimated Levels of Volatile Organics in Ambient Air from the
          Kanawha Valley, WV	Trip 1	     54
                                    viii

-------
                               TABLES (cont'd.)
Number                                                                     Page
 16   Estimated Levels of Volatile Organics in Ambient Air from the
          Kanawha Valley, WV	Trip 2	       55
 17   Estimated Levels of Volatile Organics in Ambient Air from the
          Kanawha Valley, WV	Trip 3	       56
 18   Volatile Organics Identified in Ambient Air in the Shenandoah
          Valley, VA (Front Royal)  	       58
 19   Estimated Levels of Halogenated Organic Vapors in Ambient Air
          from Front Royal, VA	Trip 1	       63
 ?0   Estimated Levels of Halogenated Organic Vapors in Ambient Air
          from Front Royal, VA	Trip 2	       64
 21   Estimated Level of Halogenated Organic Vapors in Ambient Air
          from Front Royal, VA	Trip 3	       65
 22   Estimated Levels of Volatile Organics in Ambient Air from
          Front Royal, VA	Trip 1	       66
 23   Estimated Levels of Volatile Organics in Ambient Air from
          Front Royal, VAS	Trip 2	       67
 24   Estimated Levels of Volatile Organics in Ambient Air from
          Front Royal, VA3	Trip 3	       68
 25   Control Samples for each Field Sampling Trip	       74
A-l   Overall Theoretical Sensitivity of High Resolution Gas Chromato-
          graphy/Mass Spectrometry/Computer Analysis for Atmospheric
          Pollutants	       81
A-2   Breakthrough Volumes for Several Atmospheric Pollutants 	       89
A-3   Operating Parameters for GLC/MS/COMP System 	       94
B-l   Estimation of Breakthrough Volumes for Vinyl Chloride and Vinyl
          Bromide on SKC Carbon (104)	     109
B-2   Estimation of Breakthrough Volumes for Methyl Chloride and Methyl
          Bromide on SKC Carbon (104)	     109
B-3   Approximate Limit of Detection for Methyl Chloride, Methyl
                                                   o
          Bromide, Vinyl Chloride and Vinyl Bromide   	     Ill
                                     IX

-------
                               TABLES (cont'd.)
Number                                                                Page
B-4   Parameters for Removing Water and Transferring Vapors to Tenax
          GC	   115
B-5   Operating Parameters for GLC/MS/COMP System  	   116
C-l   Very Volatile Organic Compounds Identified in Air in the Kanawha
          Valley, WV (Trip 1, P2/L2)	   119
C-2   Volatile Organic Compounds Identified in Ambient Air in the
          Kanawha Valley, WV (Trip 1, P2/L2) 	   120
C-3   Very Volatile Organic Compounds Identified in the Kanawha Valley,
          WV (Trip 1, P2/L5)	   123
C-4   Volatile Organic Compounds Identified in Ambient Air in the
          Kanawha Valley, WV (Trip 1, P2/L5) 	   124
C-5   Very Volatile Organic Compounds Identified in Ambient Air in
          the Kanawha Valley, WV (Trip 1, P2/L6) 	   126
C-6   Volatile Organic Compounds Identified in Ambient Air in the
          Kanawha Valley, WV (Trip 1, P2/L6) 	   127
C-7   Volatile Organic Compounds Identified in Ambient Air in the
          Kanawha Valley, WV (Trip 2, P2/L3) 	   129
C-8   Volatile Organic Compounds Identified in Ambient Air in the
          Kanawha Valley, WV (Trip 2, P2/L4) 	   132
C-9   Volatile Organic Compounds Identified in Ambient Air in the
          Kanawha Valley, WV (Trip 2, P2/L5) 	   135
C-10  Very Volatile Organic Compounds Identified in Ambient Air in
          the Kanawha Valley, WV (Trip 3, P1/L8) 	   137
C-ll  Volatile Organic Compounds Identified in Ambient Air in the
          Kanawha Valley, WV (Trip 3, P1/L8)	   138
C-12  Volatile Organic Compounds Identified in Ambient Air in the
          Kanawha Valley, WV (Trip 3, P2/L1) 	   140
C-13  Volatile Organic Compounds Identified in Ambient Air in the
          Kanawha Valley, WV (Trip 3, P2/L2) 	   142
C-14  Very Volatile Organic Compounds Identified in Ambient Air in
          the Kanawha Valley, WV (Trip 3, P2/L9) 	   145
                                       x

-------
                               TABLES (cont'd.)
Number                                                                     Page
D-l   Compounds Identified in Polar Neutral Fraction of <1.7y Air
          Particulate Collected in Kanawha Valley, WV (Trip 3,
          LI/LI)	    147
D-2   Compounds Identified in PNA Fraction of <1.7 y Air Particulate
          Collected in Kanawha Valley, WV (Trip 3, PI/LI)  	    1*8
D-3   Compounds Identified in Paraffin Fraction of <1.7y Air
          Particulate Collected in Kanawha Valley, WV (Trip 3, PI/LI)  .    15°
D-4   Compounds Identified in Base Fraction of < 1.7 y Air Particulate
          Collected in Kanawha Valley, WV (Trip 3, PI/LI)  	    151
E-l   Very Volatile Organic Compounds Identified in Ambient Air in
          Front Royal, VA (Trip 1, P1/L4)	    157
E-2   Very Volatile Organic Compounds Identified in Ambient Air in
          Front Royal, VA (Trip 1, P2/L5)	    158
E-3   Volatile Organic Compounds Identified in Ambient Air in Front
          Royal, VA (Trip 1, P3/L2)  	    159
E-4   Very Volatile Organic Compounds Identified in Ambient Air in
          Front Royal, VA (Trip 1, P3/L6)	    161
E-5   Volatile Organic Compounds Identified in Ambient Air in Front
          Royal, VA (Trip 1, P3/L6)	    162
E-6   Volatile Organic Compounds Identified in Ambient Air in Front
          Royal, VA (Trip 2, P2/L3)  	    164
E-7   Volatile Organic Compounds Identified in Ambient Air in Front
          Royal, VA (Trip 2, P3/L5)  	    166
E-8   Very Volatile Organic Compounds Identified in Ambient Air in
          Front Royal, VA (Trip 3, P1/L9)	    !68
E-9   Volatile Organic Compounds Identified in Ambient Air in Front
          Royal, VA (Trip 3, P2/L8)	    169
E-10  Volatile Organic Compounds Identified in Ambient Air in Front
          Royal, VA (Trip 3, P2/L9)  	    171
F-l   Compounds Identified in Methanol Extract of <1.7y  Fraction of Air
          Particulate Collected in Front Royal, VA (Trip 3, P1/L4) . . .    175
F-2   Compounds Identified in Toluene Extract of  <1.7y  Fraction of Air
          Particulate Collected in Front Royal, VA (Trip 3, P1/L4) . . .    177
                                      XI

-------
                                ACKNOWLEDGEMENTS

     The valuable assistance in sample collection,  workup,  method develop-
ment, and data interpretation by Ms.  S.  P.  Parks is gratefully acknow-
ledged.  Also, field assistance by Mr. C.  A.  Billings,  advice from Dr.
C. M. Sparacino, and mass spectral support from Ms. D.  Smith, Dr. K.
Tomer, Dr. J. T. Bursey, and Ms. N. P. Castillo are greated appreciated.
     The sampling of ambient air in the Kanawha Valley was  assisted by
advice from Mr. Ronald Engle of the West Virginia State Air Pollution
Control Commission and the individuals who provided sampling locations.
     Sampling in the Shenandoah Valley was assisted by suggestions from
Mr. Nick Kappel of the Virginia State Air Pollution Board and the indivi-
duals who provided sampling locations.
     We wish to thank Messrs. Robert Burton,  William Bernard, and Randy
Baxter of Environmental Assessment Branch,  Health Effects Research
Laboratory, EPA, RTP, N. C. for the use of the Massive Air Sampler and
the plate scraping facilitites.
     Finally, the encouragement and advice from Messrs. Daniel FitzGerald
and Ted Erdman of Region III, EPA are deeply appreciated.
                                    xii

-------
                                  SECTION 1
                                INTRODUCTION

     This study is an outgrowth of a long-term research program to develop
and perfect a comprehensive and systematic approach to the measurement of
organic compounds in ambient air.   Previous research has demonstrated that
a wide range of atmospheric contaminants may be readily measured by this
technique.  Until this technique was developed, the ability to collect and
analyze a wide variety of chemical classes from the atmosphere containing
toxic and/or carcinogenic compounds was not possible.  Thus, the health
impact of these compounds had not been thoroughly studied.  The techniques
used in this study enable the characterization of a wide profile of organic
compounds in ambient air.  These profiles provided a panoramic view of the
pollution at specific sites and times.
     Organic compounds are present in the atmosphere at widely varying
levels and may be either site-specific or ubiquitous.  Sources of these
compounds include natural emissions, manufacturing, automobile exhaust,
dry cleaning, combustion sources and others.  To complicate the milieu,
atmospheric reactions degrade some compounds and form others.
     The data generated by this technique will allow researchers to identify
and quantitate a complex mixture of organic air pollutants in order to
begin studing the sources, health effects and environmental effects of
these compounds.

-------
                                  SECTION 2
                           SUMMARY AND CONCLUSIONS

     This study was designed to measure a wide range of organic pollutants
in two industrialized valleys:  the Kanawha Valley, WV and the Shenandoah
Valley, VA.  The Kanawha is heavily industrialized with a wide variety of
chemical industry stretching for roughly 40 km.  The valley is narrow with
high hills providing a well-defined emission reservoir.  The metropolitan
population is roughly 150,000.   Sampling locations were selected at various
sites throughout the valley to assess the general levels of organic compounds.
In contrast, the Shenandoah is heavily reliant on tourists and its only
major chemical industries are a viscose rayon plant and an allied sulfuric
acid plant.  The valley is broad and ill-defined near Front Royal (population
about 10,000) and would not be expected to trap pollution to any great
extent.  Sampling sites were selected both upwind and downwind of the
industrialized area, and in the center of town in order to assess pollution
levels in the area.
     Very volatile organic compounds in ambient air (e.g., vinyl chloride)
were concentrated on carbon cartridges.  Volatile organics (e.g., acetone
through naphthalene) were collected on Tenax GC sorbent cartridges.  Typical
sampling volumes for both carbon and Tenax GC samples were 200-600 £ of
air.  Semivolatiles (e.g., polynuclear aroraatics) were collected as particu-
late using a Massive Air Sampler which collected the <1.7 |J respirable
particulate fraction of interest on electrostatic precipitation plates.
                                                         3
Typical particulate sampling volumes were 20,000-90,000 m .
     The volatile and very volatile compounds collected on the sorbent car-
tridges were analyzed by thermal desorption in line with a gas chromatograph/
mass spectrometer/computer (GC/MS/COMP).  High resolution was achieved
using an SE-30 SCOT capillary column.  The semivolatile compounds were
extracted from the particulate, fractionated and then analyzed by capillary

-------
column GC/MS/COMP.  Data were interpreted by comparison with known mass
spectra from spectral libraries.  Selected compounds in the volatile
fraction were quantitated using the intensities of selected mass ions.
     The volatile compounds identified in the Kanawha Valley (with the
number of times observed out of ten samples interpreted) include: vinylidene
chloride and/or the dichloroethylene isomer (8), methylene chloride (10),
chloroform (10), 1,2-dichloroethane (2), 1,1,1-trichloroethane (8), 1-
chlorobutane (1), carbon tetrachloride (8), dichloropropene (1), trichloro-
ethylene (6), 1,2-dibromoethane (2), tetrachloroethylene (9), chlorobenzene
(1), dichlorobenzene (8), acetaldehyde (9), benzaldehyde (9), aliphatic
aldehydes (11), acetone  (10), acetophenone (7), benzophenone (4), 21 other
ketones, ethyl acetate (6), seven other esters, isopropanol (2), phenol
(7), six other alchols, diethyl ether (5), diphenyl ether (4) and eight
other ethers, benzene (9), alkyl benzene, indan (7), indene (1), naphthalene
(8), alkyl naphthalenes, biphenyl (7), CS  (6), other sulfur-containing
compounds, cyanobenzene  (1), C -alkyl pyridine (1), and many alkanes.
                                                     3
Quantitative results included high values of 334 ng/m  for methylene
                   3                                         3
chloride, 1536 ng/m  for tetrachloroethylene, and 71,778 ng/m  for benzene.
Compounds identified in the particulate fraction included long-chain
alkanes, polycyclic aromatic hydrocarbons (PAH) from naphthalene through
anthanthrene (or an isomer), alkyl-PAH derivatives, and nitrogen-
containing heterocycles.
     In the Shenandoah Valley, VA, the volatile compounds identified (with
the number of times observed out of nine samples interpreted) include:
vinylidene chloride and/or the dichloroethylene isomer (9), methylene
chloride (9), chloroform (9), 1,2-dichloroethane (1), 1,1,1-
trichloroethane (3), carbon tetrachloride (6), trichloroethylene (3),
tetrachloroethylene (6), dichlorobenzene (5), acetaldehyde (9), benzaldehyde
(6), nine aliphatic aldehydes, acetone (9), acetophenone (6), benzophenone
(2), three other ketones, ethyl acetate (4), phenol (5), five alkyl phenols,
diethyl ether (8), benzene (8), alkyl benzenes, indan (5), naphthalene
(6), alkyl naphthalenes, biphenyl (3), and alkanes.  Quantitative results
                                   3                                    3
include high values of 238,000 ng/m  for methylene chloride, 14,500 ng/m
                          3                                   3
for chloroform, 2,933 ng/m , 1,1,1-trichloroethane, 2,994 ng/m  for

-------
                                3                            3
tetrachloroethylene, 24,000 ng/m  for benzene, and 3,721 ng/ra  for aceto-
phenone.  Semivolatile compounds identified included polycyclic aromatic
hydrocarbons (PAH) from naphthalene through C-^H,?, alkyl-PAH derivatives,
oxygenated PNAs, (ketone and anhydrides), sulfur heterocyclic PNAs, and
aliphatic hydrocarbons.
     Many more compounds were identified with greater frequency in the
Kanawha Valley than in the Shenandoah Valley.  This is especially noticeable
in the pollutants potentially arising from industrial activity (halogenated
and oxygenated compounds).  Many compounds, including the aromatics,
result from combustion (£.£., automobile exhaust) or other sources which
could be considered ubiquitous.  This qualitative comparison is in keeping
with the greater industrial diversity and higher population density of the
Kanawha Valley.
     In contrast to the qualitative data, the quantitative data showed
much higher levels of most organic pollutants in the Shenandoah Valley
than in the Kanawha Valley.  This is espeically noteworthy, since the
Shenandoah Valley is broader and well-defined and is therefore not expected
be as good an emission reservoir as the Kanawha Valley.  The high levels
in the Shenandoah Valley were found on both Trips 1 and 2, implying that
the levels found are not fortuitous.

-------
                                  SECTION 3
                               RECOMMENDATIONS

     The results of this study indicate the widespread occurrence of organic
compounds in ambient air in these two valleys, sometimes at higher levels.
Further research may be directed along eight major fronts:
     (1)  More vigorous sampling protocols could hopefully identify point
source polluters for possible regulatory action.
     (2)  Long-term monitoring of these valleys may provide both mean
concentration data and show any trends in levels of compounds.  This data
could be useful in identifying industrial pollutants and in establishing a
data base for future epidemiological studies.
     (3)  Future studies could integrate this type of air monitoring with
sampling and analysis of other media including water, sediment, soil, vege-
tation, human tissue, mothers milk, etc.
     (4)  Future studies should more comprehensively study the correlation
of meteorology with pollutant levels (i.e-, Do concentrations of specific
pollutants rise during an inversion?).
     (5)  Epidemiological studies could begin to attempt to correlate
disease incidence (£.£., cancer) with levels of toxic and/or carcinogenic
compounds in air and other media to which humans are exposed.
     (6)  Expansion and perfection of the techniques reported herein could
present a more complete picture of the pollution in these valleys.
     (7)  More research along the lines of this study and the recommendations
given above is needed to fully characterize the air pollution associated
with industrialized valleys.  Future studies should include both industri-
alized, residential/commercial, and uninhabited valleys.  In addition, more
samples taken over longer time periods are needed to accurately assess
pollutant levels.

-------
     (8)  Since it appeared that the highest concentrations of some pollu-
tants may have occurred at night, it may be important in future studies to
integrate the samples for at least 24 hr and/or take consecutive samples
which cover entire 24 hr periods.

-------
                                  SECTION 4
                                 OBJECTIVES

     This study was designed to provide information on the general organic
air pollutant levels in two industrialized valleys.  In specific:
     (1)  Samples were to be collected at three monthly intervals to assess
          changes of pollutant levels with time.
     (2)  Samples were to be collected at locations selected to show general
          pollutant levels in the valley, especially the levels effecting
          the human population.
     (3)  Samples were to be analyzed by gas chromatography/mass spec-
          trometry/computer to provide accurate and positive identification
          of the compounds present.
     (4)  Qualitative and quantitative data were to be presented such that
          EPA, Region III personnel could determine the extent to which
          organic chemicals may affect the human population in the areas
          sampled.

-------
                                  SECTION 5
                                  SAMPLING
SAMPLING EQUIPMENT
     Due to the wide range of compounds sought, it was necessary to use
more than one collection method.   Highly volatile compounds were collected
on carbon cartridges.  Compounds  of medium volatility were collected on a
polymeric sorbent cartridge (Tenax GC).  Particulates were collected on
impactor and electrostatic precipitation plates using an ultra-high volume
Massive Air Sampler (MAS).
Collection of High- and Medium-Volatility Organics on Carbon and
Tenax GC
     High and medium volatility materials were concentrated from ambient
air on a sampling train consisting of (1) a glass fiber filter (GFF), (2) a
cartridge of Tenax GC, and (3) a  cartridge of carbon, sequentially.
Glass Fiber Filter (GFF)--
     As illustrated in Figure 1,  the glass fiber filter (GFF) was placed at
the front end of the sampling train, held in place by a 25 mm Delrin filter
holder.  Gelman Type A-E 25 mm diameter filters were used.  These filters
are rated at 99.7% efficiency for particles greater than 0.3 Mm by the
dioctyl phthalate permeation test, and at 98% efficiency for particles of
0.05 |Jm diameter or larger.  The filter was used primarily to exclude
particulate containing non-desorbable compounds which would contaminate the
Tenax GC.
     A series of experiments were conducted to determine whether the GFF
excluded chromatographable compounds from the Tenax GC cartridge.  Parallel
cartridges, with and without the GFF, were sampled near a highway intersec-
tion with a large number of diesel trucks starting and stopping (U. S. 70
and Old U. S. 70, Bethesda, NC).   Gas chromatographic analysis with flame
ionization detection (GC/FID) of these two cartridges yielded similar gas

-------
                        GLASS CARTRIDGE SAMPLER
                               TENAX
                               GC
                                              GLASS
                                              V/OOL
                        VAPOR COLLECTION SYSTEM

0
GAS
METER


/
t
F
y^r\/
-0-
^ NEE
VAL
LOW
1ETER



OLE
VE
-f 1 GLASS
CARTRIDGE II FIBER
	 FILTER
Ml
Figure 1.  Collection system for  concentrating high and medium
           volatility organic compounds  from ambient air.

-------
chromatograms,  indicating no desorbable compounds were being excluded from
the Tenax GC cartridge by the GFF.  Based on these results, the GFF was
retained in the sampling train, since its use allowed recycling of the
Tenax GC resin.
Tenax GC Sampling Cartridges--
     The sampling tubes were prepared by packing a 10 cm x 1.5 cm i.d.
glass tube containing 6.0 cm of 35/60 mesh Tenax GC (1.6 g) with glass wool
                               (1-3)
in the ends to provide support.       Virgin Tenax GC was extracted in a
Soxhlet extractor for a minimum of 18 hours with acetone prior to prepara-
                           (1 2)
tion of cartridge samplers.  '    In those cases where sampling cartridges
of Tenax GC were being recycled, the sorbent was extracted in a Soxhlet
apparatus with acetone, as described for the virgin material, and also
extracted with a non-polar solvent, hexane, in order to remove the relatively
non-polar and non-volatile materials which might have accumulated on the
sorbent bed during previous sampling periods.
     After purification, the Tenax GC was meshed to provide a 35/60 particle
size range.  Cartridges were then prepared and conditioned at 270°C with
helium flow at 30 ml/min for 20 minutes.  The conditioned cartridges were
                    (8)
transferred to Kimax  (2.5 cm x 150 cm) culture tubes, immediately sealed
using Teflon-lined caps, and cooled.  This procedure was performed in order
                                            (1 2)
to avoid recontamination of the sorbent bed.  '    One or more cartridges
selected at random from each batch were checked for background using GC/FID.
If the background was unacceptable, the cartridges were redesorbed and
checked again.
     For large sample volumes it is important to realize that elution of
certain organic compounds through the sampling tube will occur if their
breakthrough volume is exceeded.  The breakthrough volume is defined as
that point at which 50% of a discrete sample introduced into the cartridge
is lost.  The breakthrough volumes of some representative compounds are
shown in Appendix A.    '  ' '    These breakthrough volumes have been
                                               (1 4)
determined by a previously described technique.  '    Although the identity
of a compound during ambient air sampling is not known (therefore, also its
breakthrough volume) the compound can still be quantitated after identifi-
cation by GC/MS/COMP once the breakthrough volume has been established.
                                     10

-------
Thus, the last portion of the sampling period represents the volume of air
sampled prior to breakthrough.   For cases when the identity of the compound
is not known until after GC/MS/COMP analysis, the breakthrough volume is
determined after the fact and the quantitation accomplished as above.
     Previous experiments have shown that organic vapors collected on Tenax
GC sorbent are stable and can be quantitatively recovered from the cartridge
samplers up to four weeks after sampling when they are tightly closed in
cartridge holders, protected from light, and stored at 0°C.
Carbon Cartridges—
     High purity charcoal (SKC, Inc., Pittsburgh, PA) was packed into a
bed, 3 x 0.3 cm, in a glass tube.  Carbon from this source has been shown
to be pure for these applications and was used without solvent purification.
Carbon cartridges were thermally stripped of organic vapors by heating to
400°C under He flow for 30 min.
     These cartridges efficiently trap the organic compounds which pass
through the Tenax GC cartridge (vinyl chloride, vinyl bromide, methyl
chloride, and methyl bromide).   They have been successfully used to analyze
vinyl chloride and the other highly volatile halocarbons (b.p. <30°) which
are not retained on Tenax GC to any significant extent.     The breakthrough
volume for vinyl chloride, and thus the amount collectable, on the carbon
cartridges is about 20 times that of Tenax GC.
Sampling Apparatus—
     Continuous sampling of ambient air was accomplished using a Nutech
Model 221-A portable sampler (Nutech Corp., Durham, NC, see Figure 1).  The
flow was monitored through a calibrated rotameter, and the total flow
registered by a dry gas meter.   Concomitant with these parameters, the
temperature was also noted, since it was important for establishing the
breakthrough volume and therefore the total sampling volume which can be
used for quantitation.  This portable sampling unit operated on a 12-volt
storage battery and was operated from 4-12 hrs, depending on the sampling
conditions and flow rates used.  Duplicate cartridges were deployed on each
sampling unit.  A total of four portable sampling units were available for
sampling.
                                     11

-------
     At the same location as the MAS (vide infra),  a duPont Model P-200
personnel sampler was used to continuously sample air onto carbon and Tenax
GC cartridges over the entire period that the MAS was operated.   The duPont
personnel sampler, operated at about 200 cc/min,  was powered by a 6V lantern
battery and the entire sampler housed in a chrome-plated aluminum box.
Collection of Low-Volatility Organics Using a Massive Air Sampler
(MAS)
     A Massive Air Sampler (MAS) manufactured by Battelle Memorial Institute,
Columbus, OH  '   was used for collecting particulate fractions in the
3.5 - 20, 1.7 - 3.5 and <1.7 micron ranges.  Preliminary studies (personal
communication R. Burton, Environmental Assessment Branch, HERL,  USEPA, RTP,
NC) indicated that the larger particle range yielded greater than 1 g in a
                                   3
100 hr collection period at an 18 m /min sampling rate.  The middle sized
particle range was found to be approximately 0.8 g while the smallest
particles were well over 3 g for this collection period and rate.
     The sampler, about 140 cm tall and 60 cm square, is a large cascade
impactor with electrostatic precipitation for collection of the fine
particulate which is not impacted.  Air is sampled at a rate of 630 cfm (18
 o
m /min) by a blower using a 750j/sec motor (115 V,  12 amps).  The air enters
the sampler over a lip enclosed by the cover which serves as a scalping
stage with a cutoff of about 20 [j.  The air then enters the impactor assembly
stages consisting of four Teflon-coated plates (28 x 43 cm).  The first and
third plates have slots which serve as impactor jets.  The second and
fourth plates are the collection target plates located about 1 cm below the
jet plates.  Below the impactor sections is the electrostatic precipitator,
consisting of ionizing wires (-10 kV) and 55 Teflon-coated collection
plates (28 x 43 cm).  The plate potential is adjusted to the maximum achiev-
able without excessive arcing (generally 5-7 kV, depending on the humidity).
From the electrostatic precipitation section, the air is drawn to the
blower and then to exhaust.  The control panel consists of a magnahelic
vacuum gauge to register the flow, a run time meter  (in hours), a volt
meter to indicate the voltage applied across the precipitator plates, and a
red flashing light to indicate malfunctions.
                                       12

-------
     For the purpose of this study, the MAS was chained into a pickup truck
for transportation and left in situ during sampling.
     Upon return from the field, the impactor and electrostatic precipitator
plates were scraped into glass vials, kept in the dark, and stored under
nitrogen at -5° to retard chemical reactions.  The plates were scraped in a
specially designed glove box to prevent contamination of the sample and for
protection of personnel.
METEOROLOGY
     Continuous measurements of temperature, wind direction and wind run
were recorded on a MRI (Meteorological Research, Inc.  Altadena, California)
Mechanical Weather Station (MRI) at a central location through the sampling
period.  The strip chart record allowed subsequent reference to calm periods,
wind direction shifts, etc., which could affect sampling results.  Intermit-
tent measurements were made at each sampling location.  Humidity, tempera-
ture, wind speed, and wind direction were measured and noted along with
general conditions (rain, snow, cloud cover, odors, etc.).  Measurements at
each location provided a cross-check with the MRI record.
     Pertinent meteorological data for the sampling period were obtained
from the nearest National Weather Service office.  This data was used to
augment that obtained at the sampling location.
SAMPLING PROTOCOLS
     Samplers were set out at locations designated in a numercial sequence
(e.g. LI) for a sampling period (e.g. PI).  Thus, each sample is designated
by a unique Trip/Period/Location (e.g. Trip 1, P2/L6) code.  This code is
presented in the sampling protocol tables and then used to identify samples
in the analytical results.
SAMPLING LOCATIONS
     Kanawha Valley
     Many manufacturers of organic chemicals which, along with the by-
products, are potentially toxic, carcinogenic and/or teratogenic are located
in the Kanawha Valley, W.V. (Figure 2).  DuPont, near Belle, has a large
chemical complex for the synthesis of substances such as methyl-methacry-
late, methylamines, ammonia, hydrogen cyanide, herbicides, and insecticides.
In South Charleston are production and consumption plants (Union Carbide,

                                      13

-------
                                                           cd
                                                          •H
                                                           c
                                                          •H
                                                           00
                                                           1-1
                                                           cfl
                                                           0)

                                                          •H
                                                          Pi

                                                           CS
                                                           a)

                                                          H
                                                          CN


                                                           (1)
                                                           M


                                                           00
                                                          •H
14

-------
and FMC).   Plastics, PVC, antifreeze, chlorine,  halogenated organics,
carbon disulfide, peroxides, etc.  are the predominant chemicals produced
here.  The major facility in the town of Institute is Union Carbide which
also processes a broad spectrum of compounds, e.  £.,  viscose rayon, and
phthalate esters.  There is also a large scale olefin processing complex
and a rubber accelerator plant.  A major terminal loading facility in South
Charleston handles large quantities of a variety of organic compounds.
Monsanto,  FMC, Allied, and Fike have plants near Nitro for the production
of antioxidants, rubber accelerators, industrial chemicals, and other
materials.  Several other chemical manufacturers, consumers, and transporters
are located in the Kanawha Valley, some or all of which may contribute to
the presence of organic materials in the ambient air.
     Previous sampling and analysis efforts have found a wide variety of
organic compounds in ambient air.   '  '     These results were used in part
to select locations for sampling during this study.
     The rationale for selection of the locations in the Kanawha Valley was
to place samplers at several points along the valley floor throughout the
industrialized, metropolitan Charleston, WV area.  The location was selected
within a general area by sampling personnel on the basis of estimates on
where high concentrations of air pollutants might be detected, the potential
for human exposure, security of personnel and equipment, and also approval
of property owners where applicable.
     The MAS, duPont sampler, and MRI weather station were located at the
North Charleston Community Center (21st St. W. and 7th Ave., W.) based on
recommendations from personnel in the Environmental Assessment Branch,
HERL, EPA, RTP, NC who had sampled there previously with the MAS.  This
location provided not only power, but fenced-in areas for security.  Cen-
trally located in the valley, this location was judged to provide "average"
meteorology and air samples.
     The other four samplers were located up and down the valley at locations
in Belle,  South Charleston, St. Albans or Institute,  and Nitro.
     The sampling locations, times, volumes, and meteorology are summarized
in Tables 1-4.  The location numbers are shown on detailed maps (Figures 3-
6).
                                    15

-------
•s
H































CO


id
§
OS













CO
to
01


"O









01
4J
•H
CO





B
O
4-1
10
CJ
o
,J







IJ
01 i-H
4J 01
E 01
01 4J
O CO

E 01
o o
•H B
4J CO
10 E
01 HI
U 4J
O B
01 iH
*«
B

4J 10
co
01 *X3
rH 01
IH 4J
to a
.E U
CJ 0
rH

£3
o 2

3
,
4J
CO

4J
CO
rH
CM

•o
E
10


^


01



X
4J



B
O
4J
CO
01
rH

10

°



rH
,J






.
rH
O
4-1 O
E o.
o
PL, 00
3 B
•a IH


E 11
18 3
CO
rH
ft* *O
S B
3
•* O
01 H
U 18
E
18 T)
h 01
4J 4J
C CO

O
4-) rH
CO
01 CO
5 o>
rH
IH O.
01 a
B CO



















































UH
o
0
IH

4J rH
B 01
a >
S 01
4H rH
10 IH
a. oi
01 a
o a.
3
01
•H O

fe -a
B 01
O 4J
u a
10 U
01 O

jj
O 01
X rH
"1
CO W














(U



•C
4J


«^

CO
c
o
m
o

^j
10




CO




,J1









10
o
I-l V4
01 CO

O, E
€ 01

CO O

B
• iH
01
s x
0 B
S 10


•H 01
CO >
IH «rt
3 U
Z
01 O
•a
•H -a
CO 0}

ai 10
> ej
•H O
PC rH


3

en

i
m

•<

01


n
o
o
a

y

O
O
m



CO
B
CO
-0
rH


,
4-1
CO



CO
-1





14
01
i-H
a.
6 rH
10 rH
CO 10

UH
• O
4J •
E -a co
ffl C 01

Bl 3 4J
S.-TH
4J 3 rH
E -rl
B " °

4J U UH
01 01 4J

H "" 01
00 g
01 C 4-1
oo o a
O rH 01
3 18 rl
01 4->
CO TJ

O 4J 00
H OJ CO
4J cj ?
•H O 01



UH
o

E
0
•H
4J •
CJ -3-
0) M5
CO 1
M rH
O
4J *C3
B e
•H 10

UH in
O CM


3 >

z' 3







O

4J
iH
"




J





73
01
4J
CO
CJ
O
rH

IH
01
rH
a.
e •
CO 4J
CO O
rH

• 00
CO E
^ -rl
O ^
O IH
iJ 10
a

B 01
0 >
0
to a
a
rH
U rH

a B
S o





























01
rH
rH
01
CO


3



in
rJ




T3
V
JJ
ffl
O
O
fH


(U
rH
P*
e
OJ
CO


w
B

g

10
c.
01
o

01
•H -
[IH UH
O
o o
4J
i-l E
Z O












«
4-1
CO

X
4J
O
CM

O
O
O
CM







O
IH
4J
•rl
Z



ID




rH

CJ
01
14
iH
•o

•>
01
o
B
01
•o
•H
CO
01
IH

0)
4J
to
>
•H
IH
a

UH
o

•a
IH
a


4J
B
o
fe












•
01

^

4-1
CO
rH


O
rH








0

4J

Z




_3


00
E


3

U
18

3
B
10


rH
18

•H
01

O

|

UH

4J
01
01 •
IH CO
4-1 0)
CO iH
4J
a iH
CO rH
0 -rl
rl CJ
CJ 10
10 UH























































01
CJ
B
01
•o
•rl
CO
01


01
4J
IS
-rl
IH
a.

UH
O
•0

a


CJ
a
ta
.
CO

jj



E
01
01
3

o> cr
x »

• CO
IH iH
a u

B 3
o u

^4 T3
to e
PS CO



0)
4J
3
4J
-H
4J
CO
E
rH



00



01
u
1-1

^J
01
CO

B
o
•rl
4J
3

•H
^4

01


•o
0)
4J
•rt
C


UH
O •
4-1
OI O
•O rH
1-4
CO 00
B
X -rl
4-J 4^
3 ^
O 18
en ex


UH
o


0
•H
4J •
O -3-
01 VC
CO 1
rl M
01
4J -o
B B
i-l 10

UH m
O CM


3 >

z' 3







o
}H
4J
•H
"




,J


                                   16

-------
 a
 g
 U  rH
O
 cd
H
                                   o
                                   jj
                                   u
                                                              CM iH

                                                              O  H
O


U
                                                                                                                                                  X
                                                                                                                                                 •o
                                                                                                                                                  OS
                                                                                                                                                  
                                                                                                                                   TO  0)  >
                                                                                                                                at  t-i  jj  -H
                                                                                                                                
-------






















OJ
M


H

W
M
*5*
^4
^
4C
M •£
(D
CO §
Q «
a

o ^


o ~
iH
U CM o
1— | >
!Zj PU c
- r|
H W
05 ,J 5


0 5

i— i S
PH < c

%f ^3 -H
A »5 W

O
• TT
 5
)-i

QJ a!



cd
H









0)


tn
^

ul

tn
w


T)
>H
3



s-e
rH
ON

O
AJ


cn
D


i

O M
M Is
^ r-
O
AJ

o E
H U
j»
H






ffl
O
8
O
O
ON
"*






^
O CN
CN ' — .
00 0
O fi
I 1
o . -a
•H 00 C
AJ C -H
r- -H 3
CO rH
E


r- cn
00 00 ON
c
H -H O

X 3
Ctf TJ fr*
m
* c f^

o co ||
in h
o AJ 2 tn

"H Ho .""E
D T- **•!

*M CM O
* O CM AJ
-3" 03 O B

O O CJ tJ

AJ rH
rH "Si U
O W H AJ

•<








T»
CM
rH
in








^
O CM
CO O
O rH
1 1
m -3-
CM CM

O O







rH
rH
CU












c
o
4J
cn
cy

CO

cj
tn
E o
a
in

0 >>
AJ N

•H Ji
•
*--. 
rH

CO



en
IA
o


rH 0)
rH CO


U3 3
CO rH



O  to
S C
R
H









0
cn









m
i

rH
rH







m
tH













to
C


rH


JJ
cn
m
O k-
AJ O

-H 0
rH 00
"-^ C
. o

cn cn



O N





en co

cn
II
to z:
TJ JXJ
C
•H -
3 O

£'

O -

CJ O
r-

n
H









fN
CM
cn









o
o
in
n
o

0) rH
rH 1-1
rH O
0) £
CQ CJ


3 tn
cn o

£ 00
C
-31 O
O AJ
AJ CO

E -
CQ Cfi
U crj
-•^ CJ

W 0)

en o

o •-

CO
• CO

n
tn K
T) OS
c
•H -
3 U .
-3" f»5
• fH CN
O r*.
o H
CO O

o - s^
cn tn
tj m
«*
< S

H









CN
cn










5
rH
rH
-3"

m
0







3
CM
CU












tfl
C

JD
rH
<


cn
O 4-*




.. o
tn "o
T) O

3 C
O
l-i

IM cn

CN «

0)
0 CO
AJ U •
VI *-!
M a) ON
m > T*-
m o
D
• X

"^ -
0)
U o
o O CO
r- AJ rH
E II
0 rH
U

-TWO
en o

H









S










CO
rH
rH
rH
I
lA
O
in
o







3
CM
Cu

















O

•H
Z
cn
O CO
AJ U

* o>

.. °
cn
TJ
C CJ
3 cn




fr-s H
rM
r-» *
in
O m
AJ m •
O *S

in 4J iA
lA <
o

X ffl e^s


°d"s
CO AJ K
"^ e
O .H •
y o
CJ -^TJ
cn u]
cn c

H









ON
lA









cn
CM
rH
1
O
0

o







lA
CM
a*















iH
rH
41
CQ


3*



































.
AJ
a>
•H
"i >


CO C
rC 0
05
Li 01
0) fH
CO «
•H JZ
rC CJ

JJ *
a AJ
S o
i £•
• 0 -H
fi, CD 
TJ 0> CJ
J3 S >
AJ CO 1-1
•H 0) 0)
S v- en
TJ M
en 01 tu 01
iJ U CO AJ
OJ 3 ffl
J= rH 01 0)
AJ fH tn 3
•H 0
S . U 0) fH
>-! *O CO
T) AJ 01 -H C
to -H rH cn o
AJ T) O. 0) -H
CJ -H E J3 AJ

rH tO 3 CO tU ^
*0 3 ^ B 3 E
y AJ CD ^i AJ o
CO > 01 tO r-
0) U *r4 AJ V* <4-(
rH Q) AJ | 0>
p. a. ra QO D. re
E E -H c E AJ
CO 01 0) O 0) CO
en H ai J H o
co j2 u TJ at *—





if
CM
rH td
U-j

oo at
3 JJ
O CO

*£ v
-* E
">- o
0 AJ
E

O CQ
*w ej
tn >,
C fH
O rH
•H (TJ
AJ 1-

TJ C
C 01
0 00
y
cn

cu c

"AJ 3

S



w >
0)  y
O CO
*
18

-------
























I — 1

^
H
Z
W
M





5
pi oa
^
j_<
Uj n
g g
a «

o



O ro ^
O |
"4 1
M Od >
*5 ^o
^5 ^
q i 3
oi i B-
0 1 |
P^ ^
O 15

** fll
nJ >H 1
§1 B,
f-Hl  •£

DH -^ *

0 S
a  -n
*"! C
* . . TH
•H CO
e n o .
J= n s^e
a . o
35 S CO
oo 2 - i
c tn e^
O /~v rH
^ oo .. r-i
J-t rH tfl
oo i T3 n
1-1 £
XrH TH X
r-f ^3 2
rH *
C f"4i4-j U
O rH &^ o

00 O rH

O 4J



M ^DfM
O |
s







a
§
o
o sr
0 •*
co rn
O





O QD
r- tN m rH
iH ^^ CM -^
0 so 0 vi>

2 ""*" rH "^
rH rH
*-S ^_-'




-J J



to
u
en
5 "* *" S *w '
O U 01 0) MM
C uoB^.-^ "-* ^
•u in in PH rH E E B E
s^onr-JrHiitjcoco coco
n nH«wootooo -^



m . tn co o *i . *w. 4-1^. *" .


5 r^'^o,H'ccOCn m LjW W o

OrHrHCQ 33O3a B
«H o 3 " * ea
o u o i-^ 3 .. .. o) ••

•u &^Cenc/jccOlcc rH

^ . . .u TJ x tn
3 i t/i O o> c • • *•* •

co . pj • IM meomr^ ot


••DC-'^cj^j Q *O O •£•
"c ^£^*urH2 Mas^ B-e 1*
3 (DtCO •3'rH^-^ >%
H 4J n 
cJ o'Oc'Ox-NCO ^ 60 *** rH
o oooococM *c» *• o

" "IX O^CJ'CU X
O OOOOlHpl^n n J-lfi S_l f> rH
U OrHU^IiMOJO O OOO «

rH rH-OrH-OCMog O 60

fQCOrHrHvO r^Q 4J
1 1 II B lOMMfl
HE-. < t3 4J • H
5 oi
* y
C
O CO

ta -H
CD ^
rH W
at
*c
U >H
o •
- o o

rH ,H rH W I-I
•H 3 C
0. ^ jj 0
E n
a js ey <-t
3 a «
00 Q E U
C C 0)
•H O H O
a.
/^ S * •• DC
O eg v O c
rH m O OCNO "
CO r^ f"- O^rHfl CM CM CM ^ *WrH01
ooinininoo1 ' ' ' C OC
«3/ fl fl ft iH O CM CM O W 4-tOOE
n n c^ i— ' *^». co t*» r*- oo ^»co3 tO
u a. »- v- c
m rv co «H CM in co CT> -HEcuoo
rJ rJ (J iJ fcj hJ rJ nJ JtOtOMH-H


2 CJ -H 4J -H O
CD M (0 4J
.C rH 3 « -H J
•HO c -H r^.
JO -o . rH o » r--
13 OJ C 4-J C JC O
QJiH O^HO 1-tncN
JJ O. tH *O -rt 0) -H |
UE 4J-H4-) £ U >£l
C aJTOOEW-UJ^rH
-J rHki3,C:OI>-,rH
C CO OE3««E3l-rH
W^-f>

rH 4J 01 i-4ca
• -H d j: . . c -H to_iHCMCc;Qu3Q
19

-------
                                    > _ __ _ -**"*»"« TCTIUet      . /
                                          """""™ /
Figure  3.  Map of area around Nitro, WV showing LA,  L6, L7,
          and L9 (See Table 1).

                        20

-------
                                                        •s
                                                        H

                                                         0)
                                                         CD
                                                        C/3
                                                        CO
                                                         CO
                                                        ro
                                                         00

                                                         C
                                                        4-1

                                                        •H
                                                         O
                                                         c
                                                         c
                                                         rt

                                                         a
                                                         c
                                                        C

                                                        O
                                                        t-i
                                                        rt

                                                        rt
                                                        a
                                                        M
                                                        cfl
                                                        a.
                                                        cfl
                                                        S
                                                        G
                                                        M


                                                        00

                                                       •H
21

-------
                                                                        T3

                                                                         CO
                                                                         60
                                                                         c
                                                                        .c
                                                                         05
                                                                         c
                                                                         o
                                                                        J-l
                                                                         CO
                                                                         0)
                                                                        t-f
                                                                         1-1
                                                                         CO
                                                                         3
                                                                         O
                                                                        c
                                                                        o
                                                                        (-1
                                                                        CO

                                                                        o

                                                                        13

                                                                        3
                                                                        O
                                                                        l-i
                                                                        CO  ^N
                                                                        M  tH
                                                                        CO  &
                                                                             n)
                                                                        M-l  H
                                                                        o
                                                                             0)
                                                                        (X  0)
                                                                        Cfl  CO
                                                                        a  ^
                                                                        m
                                                                        CkO
                                                                        •H
                                                                        Pk
22

-------
Figure  6.
                 CHE&PEA'G^jjF


                                 V

Map of area around W.  Belle, WV showing L5  (See
Table 1).
                         23

-------
     Shenandoah Valley
     The Shenandoah Valley, near Front Royal,  Virginia,  is less highly
industrialized than the Kanawha Valley.  However,  the potential for man-
made pollution above and beyond that of day-to-day human activity does
exist.  In Front Royal, Allied Chemical Corporation operates an organic
chemicals plant and Avtex, Inc. produces cellulosic man-made fibers.  The
                          (12)
other manufacturers listed     in Front Royal  and  the small towns in the
vicinity include fabric mills, clothing manufacturers, canneries, producers
of crushed rock, and printers.  Because of its size (2200 employees), the
Avtex plant may be assumed to be the primary industrial source of organic
compounds in ambient air.
     The rationale for selection of sampling locations in the Shenandoah
Valley, VA was completely different from that  in the Kanawha Valley, WV.
The only large industrial area of interest to  this study (by direction of
the project officer) was in Front Royal, where Avtex fibers and Allied
Chemical Co. are located on adjoining plant sites.  Since the sampling area
was relatively small (Figure 7) and organic pollutants of interest were
suspected of coming from a point source, sampling  locations were chosen in
a general array surrounding this point source.  During each sampling period,
locations were selected generally downwind (as determined by smell and the
direction of stack emission plumes) and upwind for control.  As with the
Kanawha Valley, personnel determined sampling  locations based on estimates
of where high concentrations of pollutants might be detected, potential for
human exposure, security of personnel and equipment, and other factors as
necessary.
     The MAS, duPont sampler, and MRI weather  stations were located in
downtown Front Royal at the fire department.   With personnel on duty full
time, this represented the safest location available in the area which also
fulfilled the power requirements of the MAS.  The  duPont sampler and the
MRI weather station were placed atop the fire  station (about 10 m elevation)
     The sampling locations, times, volumes, and meteorology are summarized
in Tables 5-8.  The location numbers in Tables 5-8 are shown on a detailed
map (Figure 8).
                                      24

-------
Figure 7.  Front Royal, VA.
                           25

-------





























<
w
rJ
^
^>

ffl
^3
o
Q
55
^4
W
33
C/2

H
33
H

IS
H

W
O
E-i
O
O
rJ
o
H
PH
2
^
W


in
(1)
rH
X
CO
H




























10
^
^_j
CO
E
QJ
PS















CO
CO
QJ

*o
T3








QJ

*fH
C^










d
o
•H
CO
(J
O
E
•H
""O
CO
4J
CO

^
o
to
o
S-i
u
60
d
•H
CQ

| t
cQ

X
o


[A

QJ

P-i

.
*"O
PS

^^
r*i
1C
O
S-l
o

d


.
,^_J
CO

.a

00






i-H
CO
O
PS
_u
d
o

fcM








i— 1
i_3



4->
CO

CO •
4-1 ^
s-i E
3 QJ
O TD
U CO
u
•H
d d
d o
OJ U
4-1 CO
y*|
«4-l
0 XI
a,

T3 O
•H *O
co d
CO
4-1 PS
CO
QJ


,
QJ
>
<

CO
T— 1
r— |
•H
>

d
CO

,
^_i
CO

•o
S-i
co






1— 1
CO
0
PS
4->
d
0
S-l
fa








CM
t— 5


QJ
U
g
OJ
rrj
.,-j
00
0)
S-l

0)
CO
>
•H
S-l
PJ,

M-l
O

'O
S-l
CO
^»

^
U
CO
CQ









•
01
>

"O
d
CO
j-j
O

I— I
o
LO






1— <
CO
O
PS
4-1
d
o
S-l
tM








CO
i_3

p— I
4J 60 co
add
0) -H O

S-l S-l •
QJ cC OJ *4H
^_j p>^ Q^ Q
*H O
ft) (~] 4_) ^|
4-1 d
J») ^_| Q pj
QJ 0 PL< 0
4-> -O "O
d d oj
3 0 T3 4-1
i—i d co
O T3 CO CJ
> QJ O

i— 1 co PS
co u S s-i
>^ O QJ
O r— 1 I— 1
PS • a

4-1 < O CO
d s i— i H
0
S-l
fe


d
QJ
QJ •
S 4->
4-1 CO
QJ

4->
• LO
01
J
QJ CO

(-]
0 4J







i— 1
CO
O
PS
4-J
d
o
Vj
fe








^
l_p







.
1— t
QJ
4-1
Q
S
d
d
r-l

^*
4-1
•H
i— 1
CO
3
O"

'"O
d
•H
t~]
QJ
«

d
XI
o
•->

T3

CO

• •
II


QJ rH
U i— 1
S-l CO
OJ X
§CQ
l-l
O CO
CJ SI






r— 1
CO
0
PS
4-1
d
0
S-l
PM








LO
i_3




.
to
4J
S-l
3
O
u

CO
d
d
0)
4->

14-1
o

CD
T3
•r-l
CO

f-j
4-1
3
0

4-J
r— 1
01
S

o
E
B
o
CJ

"O
d


.
•P
C/D

C* i
4J QJ
C*O ^
rH <






r— 1
CO
O
PS
JJ
d
o
S-l
[^








V£>
t— -1



.
TD
d
3
O
^
00
t^
CO

ft
•
QJ
>
<^

XJ
4J
r-l
CO
QJ

d
o
c
E
0
o
4-1
r— 1
CO
QJ
S
d
o


o
CJ

T3
d


.
+J
C/3

,-Cj •
4-1 QJ
oo >
rH <






I— 1
CO
o
PS
4-1
d
o
S-l
U-i








r^.
t-3


QJ
U
d
QJ
'O
>r^
CQ
QJ


QJ
CO
>
•H
S-l
pi |

M-l
O

•o
S-l
CO
^»

^
(j
CO
P?











4-1
C/3

XI
4->
O
1— 1

SO

•H
}-!
OH

>-H
Q

QJ
•H
CO

•
CO

00
d
o
1— 1
CO

(-J
QJ
TJ
^
CO
O








•
QJ
>
<
CO
E
CO
T)
<

O
-d-
o
i-H






i-H
CO
O
PS
4-1
d
o
S-l
fa








&
l_^





















.
QJ
U
d
QJ
*"O
•H
CO
QJ
^















































26

-------



























<1
H

W
t— t
M




z
M

CO
Q
Z
P
O rH
CM
S CM
0 M
o pi
H
o
M |


Pi <
0 >
Pi «
o ><
tn W
r-J

O <
W
o
W

Pi O
PM P
o 
CL-






4)



O
TJ
O
55

j^
m
4)

CJ



cn


fr*
rH
in

0



PS
O

CM
II
Cfl
H


O
-y

u
<;









-T
rH






m
in
vD

o
o







rJ






CO
o
a:
c
0





o
TJ

O
^



4>

CJ






6-8
0


M

os


rH
CM

11
H


in
rH

4J
•<









vO







m
r-
i
m
rH







CM






CO
O
os
c
0
B TJ
4) -H 3
rH CO • O
J2 01 01 U CO rH .
CO --. -^ *^ -^ O CO
0) 9 E • S >, -^
0 S > >* B
u • Cfl • 4> 4J r»
0 rH rH rH S H
O O O rH O O.
. 
i— 1 4-1 <0 CO CflrHrl *
UCOU Cl »* CJ O RJ O
--. ^, 0) \ 41 -^
t^-OI OJrH 0) XrH ttf


CO CO CO  aj -d->m to


K .H - » TJ » 0 * rH
a TJ TJ • C TJ 4J TJ
S'-H *HOS *H COOCfl «H
M 3 3 T) S S
• O O &-S CO 6-S
O t3 • • (N N CN
oO- *4)O -cOOOCOr-
CM CJ Ugo UTJ X U
CM4JO oOO> o3ll B o
Ccn cnc/lrH ^DO TJ O
BCOCM CN rHSCffi CM
CO O • O O 0£ OCCJ
OO.U U3o oMOOo U
-0- C 0 OO^O-^rHalCM-rHr- 0
rH O rH 4-1 01
TJB B a DCOB-HU 0
4-1 c O O U E
 41
rn-T"3FcnineMm\D






^w^^^^^w
oooooooo
CBioiftiKDiCEioic;
cccccccc
oooooooo
                                                 •5
                                      •a
                                   &.

                                   c
                                X  u  to oo
                                    eu -H  c
                                ^ «-t  C  -H
                                AJ rH  M  VJ
                                -H  O  0)  3
                                        1  <4-    **
                          B  -i Ecu  s
                          41  OJ CO  O  QJ  3
                          H  02 W _3 CU CU
                        RJ ^  O  TJ  41  <4-
21

-------


























M



H

W
i— t

S


ss
t"^

W


O csi
% P.
S Tt
0 >-i
H
O
M 1



O
OS <
0 >
erf «
0 >H
En W
J
3s!
0 >
o
H K
q  4-1

d tn
u ^
t-< E
01
> GO
o •
0

S--S 0)
in i— i

a
11 -H
£> )-i

« "c/
J2§

Ss2

B" Z^
H 2£
0 T3 "
iH C _
2 3«












r—





S
CM
CO
o
I-t





FH
^
PH









rH
«
o




o

b
U TO
rH O
N
N O
"C *""
"O 01

4-1 £

OO 00

rH 0


00 i-t
C A
•H CO

•H t-l
0» TO
y >

a o
O 4J




m z
CO •
z
u
a TJ
OS C
•H


O •
o
» 1
H
4-1
tn DO
O i-(












-a-





rH
CM
I
in
m






CM
tH
(X










to
O
a;


c
o
V-
u*
41
01 U 01 O
T3 j-j o £S -J
c 0 ^ ^
. -H CTi •"* CTs 6^S £
O O ° - O o M TO
T3 j_,4J«OI»A-t44 v.
O • un 6^ O 3 I'
Vig^cyiinOfN&^cg >,

--HTJCO OO^OjSO^ TO
TH • O II O u 0>
SE n 4-i-i-t4jn3- u
— , O H oo 4ji|4J*J4j ra
rH • 0 • 4J E " I' 1-
O rH rHE^S^B 4»
• •*-». »-CT> TO iH MS i— 1 rH ,_| t-t >
B^SOlf^OrH O TOrHcrJO gj
mrHO4J *-^.cjyiio co
ooxtr> u • -^.o*^ -^..
co E 3 . *J . H . m w
H-HHrHH .33:30* 0)
WTO CO , CT» . . . g 4j
Xrc-EU- . W'-*30JC03 <4-i
os>oi-^g tn1* *-H.*W a
tH 01 CO H 03 .£> CO
-O-3«J O^c TOtH CO
c_jucj*y wCotHootooi v
0 OUa^-^ O\4J4JO4-1CD -H
O*O>*0(01 • «H 4) 4->
CM3rHLOrH <-HOa)V40)4->0>H
J3 ^-l-tr-iOrHOrHTS -D
BZDOTO TO JS T3 ^i C J3 -H
. 4-1 -H -HS-STOOTO it*- Q
HZH M ^r-^H ^-(r--H4J 3
TO cocoi-iaorjoi-ico js
»•• -3 > > TOC TOT3 TO3
O*OO' lt?»Or»Or»ffl OJ
oemz — ^ — >
vo  r4
O TJ M 3
r-^cOinoo^ooin  M
3 -H 4J 01
a. 4J >
TO u o
00 C 4J O
C J-i co
•H oj n -a
rH U CU 3
/-^ a. c ts o
CO S M O •-*
CM TO S CJ
oo--.inoinOin to a
tNinO«HCMinCM^3- 0)3
rH COrHrl in m \D *JO rHrH"O
CM OICM O O O O TOrHCOrH
1 1 r-. i i | I l C 3 CM
oofsu^iinin\oo o o ^^. *o
cMin-^cMinrHCMro tn oc
r-( rHrHrH CM CM CM CM Ot-OCO
^-^ B. O O TJ *J
•H «H C CO
4-1 ^ u_i TO TO
§0) UH CJ
&. O r- JH
OH CNO>
3 00 
•a c y o o
j= rH > en
4J D. r4 I- O)
ro -3- in rH CM fi m -HEoto-H
^.-^-^-^-^-^'^ en m
pHrHrHCMCMCM, 4) ca y u
4J 0> C C
•H rH O O W >s
•H D. -H -H 01 -H
•0 E 4J 4-t JS rH
E cO cj TO *J TO
cu 3 to e 2 n u
rH rH rH r-J rH rH rH l-l J3 3 QJO)
tO TO TO TO CO TO TO 3El*-"E3C
>, >> >, >, >•> >% X JJOIl-rHO OJ
O O O O O O O TO>OITOJ-irHOO
OS OS OC OS OS OS OS M-H4JBW-ICO
OJ 4-1 | J_i (fl
4J 4-J 4-1 4_l 4J 4-» 4-1 CLTOOOO.COO''Q
C C C C C C C SrHCE4JCC
O C O O O O O OiQJO3f001-^
H U u u l-i 1-" J- H Oi -J 0- Q O 3
u< P- u- tti t>- u- u* cojao-oai-ic
28

-------
H

W
M
M
O <
OO

 (U
cn
CO
-o
c
11
CM
CO •
CO
O CO

Pi ^
o

O 5


CJ

CU CU


m *

o cn
4J
o

Q)
H
a
to '
•o
•H
i-i
T3
o
O
C
CO
3
O
t—i
CJ

CU
0)


u
CO





1



£
CO
4J

J
U
o
4J
I
tl
«
H
0)
to
^8
o

s
i-l
CO
U

•01

• CM
tn oo

w o

0


3
• H
cn.o
• ^


- O
<•*•» CM
CM
< W
cn
x cn tu
0) S~S
4J O O
> 4J VO
«£
B3S
O •
"-I •• II
C TJ X
CU C OS

™ s -
CL CU
a. a
re • e
M m
l-i O
O "O O
*O O 4J
o
O r*.
00 C
C It
o -
)« e co
CO Q)
' O

o *o cu
O C CO

4-1

cn
cn •
D
0 B-S
4-1 O
3 0
cn r-
m
CO tl
•a
C 3
O tn
13
O C
o



S H

CO
CJ •
CU
•o cn
c *-•*
5
fi

in o
fO 4-t
m
w
<
• 0
• i
cn 8-s
m
"0 H
c
•H :n
3 oi
01 -
• U
i-l 0
o m
-a
o o
o
C r-
in
S H
CM

4-t CU
•< CO



O
T) 0
O 4J

4J CM


-H -
to •


o tn
o

4J

o
m
S
0 C
— <
O
H
(

O
T3
O
0
c



CO
CO
o

V
o


o
o
o
4J

U
to
B
0
11

cn
cn
0






CO
-o
c



a>e
(N


 CO
Do1
0
o
0 *J
4J
o
K
H •
cn
• cn
o o
o

oo cn
c
O "
)-> CO

CO C



CO
CD
ua>

CU CM
o
o
• 4-J
JH fr?
O ^D
4J
<;
H 3
cn
*-. cn
0
•o o
O 4-t
o •
c cn
o" co
r- c
4-1
CU
0) CM
a.
a o

•O 8^
co \&
^. m
0
O 1
U


o
-CI
V-OJ
O U "
0 tj
•H -

0 0
CO 4J
o
4J













CD
•*.
S
*

o
4J



                       5

                      H
                                                                                                                                              4J T3 CU C
                                                                                                                                              -H CU —I O
                                                                                                                                              •O 4J D. -H
                                                                                                                                              •H U 6 4-1
                                                                                                                                             • S cy ns to
                                                                                                                                             ) 3 -H tO Z

                                                                                                                                             i'-S. -
                                                                                                                                             ) 0) CJ >-<
                                                                                                                                            QJ 4J r-H  |
                                                                                                                                            a co a oo ca
                                                                                                                                            E -H E C  4J
                                                                                                                                                             J5
                                                                                                                                                             U

                                                                                                                                                             "S
                                                                                                                                                             •o
                                                                                                                                                       §    g
0)  to    u
                                                                                                                                                    CU  l-i    rH
                                                                                29

-------
                                                         •s
                                                         H
                                                         13
                                                          a)
                                                         ,0
                                                         -H
                                                          K
                                                          u
                                                          ID
                                                          (U
                                                          (0

                                                          o
                                                         •H
                                                          •U
                                                          10
                                                          O
                                                          o
                                                          60
                                                          c
                                                          i-
                                                          cfl
                                                          CO

                                                          60
                                                          fi
                                                         4J
                                                          c
                                                          o
                                                          S-l
                                                          a
                                                          cfl
                                                         S
                                                         oo

                                                          01
                                                          n

                                                          00
                                                         •H
30

-------
PARTICULATE COLLECTED WITH MAS
     Table 9 summarizes the amounts of particulate scraped from the collec-
tion plates of the MAS.  During the first trip to both locations the ionizing
wires were broken and the collection of < 1.7 |J particulate was very poor.
The second trip to Charleston resulted in low collection due to high humidity
and occasional rain which forced operation of the sampler at a lower plate
voltage (and concomitant lower collection efficiency).  In addition, the
rain scrubbed most of the particulate of interest out of the air.  No
particulate was collected on the second trip to Front Royal due to a
steady rain throughout most of the sampling period.  The rain not only
scrubbed most of the particulate of interest from the air but also prevented
operation of the MAS with any voltage supplied to the electrostatic precipi-
tator plates due to excessive arcing.  During the third trip to both Front
Royal and Charleston, cool, dry weather permitted long collection periods
at high plate voltages.  These conditions allowed collection of more than
one gram of < 1.7 p particulate from both locations.  Only the samples from
Trip 3 were sufficient for GC/MS/COMP analysis.
                                      31

-------













5
S
Q
2

2:
Cd
as
CO
PS
O
Pn

CO
^
s
EC
H
h—J
!2
O
!s
M
,J

-l
CJ W
M »J
H rJ
— J ^-a
05 
P-i
PI- S
o S
-j S
p^j •^E
S
§ Q
J2j
c/3 ^3
•
ON

0)
rH
43
cd
H














/^
«
s_x
t>
CU
^J
0
CU
rH
rH
O
CJ
4J
a
3

0
<










3-

r^
•
rH
V




3.
r^
,
rH
1
m
•
CO





3-

in
•
co
A



^™N
o*

<4-l T3
O CU
11
rH CO
o
> H
iH
 O
* *. f\ M fl
o o o o o
o o o o o
m r^ oo ON co
f* *i r* fi •«
ON ON O CM vc
CM -a- ON CM -a-




rH CM CO rH CM CO







/— \ s~\ /~\
/-^ x-\ s~* -. ~-~- 	 rH rH rH
rH rH r-H PM PM pj
PL, PL, p^ v^ v_x —
^-x v_x *~s
r-H rH r-H
C C C cd cd cd
O O O J>~, >-, ^
4J 4J 4-> & O O
CO CO CO pi Oil P5
CU CU CU
rH rH rH 4J 4J 4J
H H SH C CJ C3
cd cd cd o o o
43 43 J3 M !H M
O O O (jy PK Fn





5
o
rH
ET
CU
>
CU
t.
r+
 -H
T3 Cd
CU J-i
00
Lj eg
t« 3
43 0
0 3
**v —4
t^» T^
rH 4-1
H G
CU O
a o
0
!-i O
a, 4J
4-1 CU
0 3
C -a
CU 13
M 0)
CU 4J
S a
CU
CO rH
CU rH
>-l O
•H CJ
•»
CU
00 rH
a &
•H 6
N Cd
•H CO
C
O O
1 — 1 ^
1 ' ^-<
cd 42
32

-------
                                  SECTION 6
                               SAMPLE ANALYSIS
ANALYSIS OF TENAX GC CARTRIDGES BY GC/MS/COMP
     Air samples collected on Tenax GC cartridges were analyzed by capillary
column GC/MS/COMP.  The whole sample was introduced to the analytical
system by thermal desorption into a cryogenic capillary trap and thence
rapidly swept onto the chromatographic column.  Each cartridge was loaded
with a known amount of perfluorobenzene and perfluorotoluene for use in
quantitation.  Qualitative data interpretation was done by visual inter-
pretation of the spectra and comparison with standard reference spectra.
Quantitation was achieved by integration of a characteristic mass for a
compound over the chromatographic peak.  The amount of compound in the
sample was then calculated using the relative molar response factor and the
integrated area for a standard.  The concentration in ambient air was then
calculated using the volume sampled or the breakthrough volume, whichever
was larger.  Complete details of the sample analysis are in Appendix A.
ANALYSIS OF CARBON CARTRIDGES BY GC/MS/COMP
     Carbon backup cartridges contained the very volatile compounds which
have very low breakthrough volumes on Tenax GC (and thus would have high
detection limits).   The cartridges were not amenable to direct thermal
desorption/analysis due to high background (notably water).  However, the
compounds of interest (methylene chloride, vinyl chloride, acetaldehyde,
etc.) were eluted from the carbon cartridge at 270° onto a Tenax GC cartridge
using helium.  These Tenax GC transfer cartridges were then analyzed in the
manner described for the Tenax GC cartridges collected in the field.  This
procedure was fully validated on previous contracts.  Complete details of
the sample analysis are in Appendix B.
                                     33

-------
ANALYSIS OF SEMIVOLATILE ORGANICS COLLECTED BY MAS SAMPLER
Extraction/Partition Scheme
     Two extraction/partition schemes were used for extraction of the
semivolatile organics from air particulate.  The first scheme, used on
the < 1.7 |J fraction collected in Charleston, WV during Trip 3, yielded
six fractions.  This extent of fractionation resulted in concentrations
which were too low for effective GC/MS/COMP analysis.  A second scheme,
employed for the < 1.7 |J fraction for Front Royal, VA during Trip 3,
resulted in two fractions and yielded much more concentrated samples.
The GC/MS/COMP data from this sample were easier to interpret.
     Analysis efforts were directed toward the < 1.7 H fraction, as this
size particle is the most easily lodged in the respiratory system and is
therefore most significant with respect to potential human health effects.
For reasons discussed in the Sampling Section, only the samples collected
on Trip 3 were of sufficient volume to warrant extraction and analysis.
     The <1.7 [J fraction, scraped from the electrostatic precipitator
plate of the MAS, was extracted by repeated sonication with cyclohexane
and then with methanol.  The methanol was effective in removing the more
polar compounds.  The extracts were then combined and fractionated
according to the scheme presented in Figure 9.  The individual fractions
were then concentrated for GC/MS/COMP analysis.  This extraction scheme
                                     (13)
was developed under another contract.
     The efficacy of the scheme was assessed by subjecting a mixture
containing known amounts of compounds to the partition procedure.  The
mixture consisted of benzoic acid, phenol, quinoline, hexadecane, phenan-
threne and ethylene glycol.  The compounds were chosen to represent the
five classes of materials produced by the partition scheme (all these
materials have been found in air particulate samples, except ethylene
glycol).  No information on the composition of the polar neutral fraction
was available, therefore ethylene glycol was included as a likely component
of this fraction based on its known chemical properties.  The experiment
was conducted using both large and small mass samples.  Recoveries were
determined gravimetrically.
     As a further check on the procedure, thin layer chromatography (TLC)
scans were conducted on each fraction to ascertain the extent, if any, of
                                      34

-------
                            PARTICULATE
              ACIDS
                      INSOLUBLES
            NON-POLAR
             NEUTRALS
             BASES
PNAs
POLAR
NEUTRALS
Figure 9.  Fractionation scheme used for fractionating air
           particulate collected in Charleston, WV (Trip 3,
           PI/LI).
                                  35

-------
compound spillover into other fraction(s).   No such spillover was
detected.
Scheme Used for Front Royal, VA Sample --
     The sample was weighed, 102 pg d^Q-pyrene (Merck & Co., Rahway, NY)
added as an internal standard, and allowed to equilibrate overnight.  The
sample was then extracted with toluene and methanol as shown in Figure 10.
The two fractions thus generated were analyzed by GC/MS/COMP.
GC/MS/COMP Analysis
     Samples were analyzed using a LKB 2091 gas chromatograph/mass spectrom-
eter with a dedicated PDP-11/34 data system.  The samples were chromato-
graphed on an OV-101 capillary column (25 m, WCOT, obtained from LKB).  The
column was held at 100°C for 2 minutes after injection, and then heated to
265°C at a rate of 8°/min.  Carrier gas flow rate was 2.0 ml/min with a
split ratio of 10:1.  Injector temperature was 240°C.  Mass spectral scans
were taken every 3 sec scanning from 5-492 amu.  The ion source temperature
was 200°; electron energy, 70 eV; trap current, 50 pA; accelerating voltage,
3500 V; and multiplier setting 425-450.  Total ion current and mass spectra
plots were generated for interpretation.
     Data were interpreted by comparison of the unknown spectra with standard
reference collections.  Where no reference spectrum was available, or where
spectral quality was not sufficient for positive identification, the com-
pounds were labeled "tentative."  All interpretations were made independently
by two chemists and then correlated.  Further validation of equivocal
identifications was made by consultation with other chemists and spectros-
copists experienced in similar research.  This mass spectral interpretation
protocol was established to extract the maximum information from the data
and to guard against misidentification.  Quantitation of the compounds
identified in the semivolatile fractions was not feasible due to a lack of
available standards to generate relative molar response factors.  Rough
quantitation may be made by comparison of peak heights on the total ion
current chromatograms.
                                    36

-------
                             PARTICULATE
   Sonicate 30 min. under
   4 ml toluene ^ 60° —
   Repeat 4 x
       Centrifuge
   Concentrate Supernatants
   under N? stream
   GC/MS Analysis:
   "Toluene Fraction"
Sonicate 30 min
under 3 ml methanol
— Repeat 4 x
   Centrifuge
Concentrate Supernatants
under N9 stream
Add 1 ml Water
                                                Extract with 1 ml
                                                methylene chloride
                                                — Repeat 3 x
                                                Dry over Na_SO
                                                Concentrate under
                                                N  stream
                                                GC/MS Analysis:
                                                "CH2C12 Fraction"
Figure 10.  Extraction scheme used for fractionating air particulate
            collected in Front Royal, VA.
                                   37

-------
                                  SECTION 7
                                   RESULTS

     All of the samples were analyzed for volatile and very volatile
compounds.  The GC/MS/COMP data were stored on magnetic tape for subsequent
processing as discussed below.
     Data from about one-quarter of the sampling locations were selected
for qualitative interpretation.  The selection of samples was based on
knowledge obtained during sampling (e.g. meteorology, odor, observation of
plumes, etc.) and inspection of the total ion current chromatogram from
the GC/MS/COMP analysis.  Only selected samples were interpreted because
the compounds found in the area are not likely to be unique to a particular
sample.  Thus, interpretation of all data would have been redundant.
     A number of compounds were selected for quantitation from the lists
of compounds identified.  Quantitation was performed on all samples.  All
halogenated compounds found were quantitated and only representative com-
pounds from other classes were quantitated.  The values presented in the
tables below were not corrected for recoveries.  The recoveries of standards
loaded onto cartridges are presented in Table 11.  Since recovery corrections
were not made, all concentrations must be regarded as minima.  Where trace
(not quantitated) levels were observed, the designation "T" is followed by
the detection limit in parentheses.  Where no compound was observed, the
detection limit is shown.  The detection limits varied widely and were
dependent upon the breakthrough volume (which is temperature-dependent),
volume sampled, and relative molar response, as discussed above.  As these
parameters were not constant among the samples, the detection limits
varied widely.  In some cases compounds were identififed in the qualitative
analysis scheme, but were reported below the detection limit in the quanti-
tation.  This is due to the threshold set during the quantitation to
prevent noise from being quantitated and reported.  Thus, trace quantities
which were observed in the qualitative data interpretation were not detected
during quantitation.  These samples may be regarded as trace.
                                      38

-------





0
H
Q
Ed
H
CJ
Ed
"-J
P3
] i
CO
CO
Ed
O
Q
H
PS"
H
Pd
CJ

X
< Ed
a o
H 52
0
S H
O CO
En O
CO <
O 3
PH O
 H

CJ H
rH Pi
a o
< Pw
O CO
o <5
O H
Ed
H Ed
CJ r-5
Ed PH
rJ 2
Ed 5
CO CO

En
O

CO
Ed
I— 1
Ed
£>
O
CJ
Ed
Pi


•
o
rH
0)
Cfl
H




0)
O
O
O)
OS
s^







•o
01
>
->
00
^^ C
4J ^—i ^
•H
4-1
C
cfl
3
cx






01
-a
•^ X™ V
GO
K*I C
_| 1 N^X
•H
4-1
C
cfl
3
Of
















rH
cfl
u
•H
£
0)

CJ





cx
•H •
S-J O
H 3

OLOONCO^ CMLOr^i — IO
COLO^OO^O h-LOLOi — ^f^^
rH rH















Ooo~d" .C
TJ 4-1 ^ 4->
•HO) -iH Ol
^ O J-i O
OP O S-<
rH O rH O
p* 1 (•• 1
r^M f~l ,•*"« ^H
O4S CJ 43
go e o
•H Ol rJ iH
C O rJ COP
01UH4JOIOI OIMHJ-IOIOI
rHOIfiC rHOICC
>,s-irHa)oi >~,j-irHa)o)
43O »N3 43O «N3
JJrHrHGrH 4-lrHrHfirH
0)43 "0)O 0)43 « 01 O
EOrH434J gCJrH434J






rH CM
39

-------
ORGANIC COMPOUNDS IN THE KANAWHA VALLEY, WV
Volatile Organics
     The volatile compounds identified on Tenax GC and/or carbon cartridges
at ten locations are presented in Table 11.   Alkanes and alkenes were
generally not listed in the summary tables due to their ubiquity and rela-
tively benign environmental effects.   Full lists of the compounds found in
each sample are contained in Appendix C.  The quantitative results for the
halogenated hydrocarbons and representative compounds in other chemical
classes are presented in Tables 12-14 and 15-17,  respectively.
Halogenated Hydrocarbons—
     The levels of halogenated hydrocarbons in the Kanawha Valley during
the first trip were generally low.  Significantly higher levels were observed
on the second trip, especially in South Charleston (P2/L2).  During the
third trip, significant levels of some compounds were observed at several
sites, including S. Charleston (P3/L2) Charleston (PI/LI), and Institute
(P2/L8).
     Trichloroethylene concentrations at L4 were consistently higher than
at other locations.  Similarly, higher concentrations of tetrachlorethylene
were observed occasionally in South Charleston (L2).  High levels of chloro-
form, methylene chloride, and carbon tetrachloride did not seem to be
correlated to any specific location and were often independent of each
other.
Volatile Organics - (Non-halogenated)—
     As with the halogenated compounds, the organic concentrations during
the first trip were generally low.  Very high concentrations were observed
during the second trip in St. Albans and, to a lesser extent in S. Charleston.
Moderately high levels of some compounds were observed in Institute during
both sampling periods of Trip 3.
     As expected, the levels of aromatics (benzene, toluene, and naphthalene)
show a loose general correlation.  The acetophenone level on Trip 3, P2/L2
was more than ten times higher than any other observed level.  Similarly,
the ethyl acetate level on Trip 2, P2/L3 was 30 times higher than in any
other sample.

                                      40

-------


g
*
w
J

-------





















^-N
•
•0

4-1
c
o
o
\^

•
i-H
i— 1
0)
r*H
rO
rt
H

































c
o
u
ra
u
o
nJ
•O
O
•H
H
V
PL.




















ro
D.
TH
^j
H














CM
a
•H
M
H






rH
a
Tj
^
H




u
(^
CM
CM
J2
CS
C
A.


£
iH
C^
CM
C-
ra
CO
hJ
^-^
f-H
CM
J3
m
j
•-^
CN
IX



A
-3-
hJ
P>J
IX
£
J
CSJ
P-
C8
vO
_J
CN
cu
ffl
m
^j
-->.
CM
CM

EC
CM
^^
CN
CM
C/3
c/1

U

-J
<
U
h-i
_M
tj

1 '' 1 1 1 1 1 1 1 1 | |

+ l + ' ' + 1 I + ++ 1 1




+ IIII|II+| + + |



+ IHIli|| + , + ||


+ l 1 ' I + I+ + + + + +







H+|III + I+I1II s-^
T~t
^
0)
3
•H
4-1
+ +ii + ii++iii, C
o
^**

+ 1 + 1 1 1 1 I + + +I 1



+ ' ' ' 1 H 1 I + + + + H





+ IEH+I 1 IH + HI 1 I


•-1 -H
2 _, «
C -H C
tO B to
0)0. C u 0)
"? P « c -o _j
^^ r-IJJ 0)^l>, o
^•55-^ 2 3-1 Q.c8JrtrtrH c
S4S-i 2S-°«Hcoto[oran
25&£n'^c^B'0cccu
^"^•^ ""^niiJrtoBraca
ZwCQjJ *JC-CX*JQ.«iJC!rl^-.
i S 1 •? •? ? ^ H t 3 S 1 1 1
<<^ iic^iSiSiiii
42

-------


























^N

T3

4-1
C
O
o
N^^
•
1
1
r™1
0)
T— 1
•s •
H














































c
o
T-t
4-J
OS
o
3

•o
o
^
M
01
PM
























CO
(X
•H
h
H















CM
O.
^_|
M
EH








pH
O.
TH
tl
H





CJ
CT*
1-3
CM
CM
.0
CM
,1
(M
CM


,0
%H
J
CM
CM
eg
00
_1
rH
Pu
J2
in
H]

CN
PU


.£>
^•
>4
CN
CM


-Q
cn
j
CM
d.

CO
\O
j
CM
Pu
0
in
J
CM
CM

tt]
CM
J
CM
Pu


en
en
5
0
_!
<
U
t-i
S
33
O



+ 1 1 1 1 1 1 1 1 II



+ 1 1 1 1 1 1 + 1 II






+ 1 1 1 1 1 1 1 1 II




+ 1 1 H 1 + H EH + 1 +


+ 1 1 1 1 1 1 1 1 II







+ 1 1 H 1 + 1 1 1 II

s-\
T3
* oj a) *J 4J
CX 4(i ^ C C
O 0) M 1H 0) »-l
O. >, >, 1 S S 1 E
O CXGJCNOOf*! O
01 i-iucia«i moi
-r4 >OJO«H-H*H'H -HC
tn o) c >> X o
w c-Hii'Hf-itti.coo.e oc
21 O>>C>,t>,e34J OCMUtU -TtO
O JJXOXJT OJ O rHrHCUC ^H4J
H CU4-i-i->4-)J~>CLtSXSXOXO'
U UCUOIOJO)! 1 \PMDII r^O)
u! 
-------























*
13
^
4-1
C
o
a
N^>


•
iH
tH
0)
1
H








































c
0
•H
O
Jj
•o
o
u
Q)
Pa























en
a
•H
H













CN
a.
^
E-i










r-i
a.
T-l

H



o
if
CN
a.
CN
—
^
CN
Pa

a
CN
Pa
18
CO
,J

Pa
in
-J

CN
Pa

•*^
if.
CN
Pa


en
J
"--
Pa

"so
J
CN
Pa
"3
CN
C-

fl
CM
2

C/J
c/l


o

, 1
CJ

CJ



iii iii ii ii i




IHI III II 1+ + +



l + l l + l II l| | +




+ + + Hl+ HI +1 1 +



1 + 1 III II II II




III III 1 + II 1 +

/— \
0)

c
•H
III III II II 1 | ^j
C
o
CJ
\_x
1 H- 1 III II II II

l + l III II II II





l + l III II II II
•0 1
01 CN |
311 u
C .-1 rH C
•H >% Ll >-, Ja fl) 1 Q)
4-* )a _f- QJ Q) . rr 0) C cfl p-i
COJQJJJC EAJ EO *^C3 0)01
ogcoio 001 o" oiij^; cc
OOOEC WE 0501 COljj OO
"— ' m c *H o) -H«H 1-1^ OH^: 4-ic
•HOIiaXOJ WO) — 1 1 Q. 010)
in JSHOICOHCOO ra-a-n jij:
WOQ.IJ=O 010 -» oti i- » c a
z ooomo j-j CNOOC CN f-.s: -« s xE oi »vjc >! N
HX aimap- o^oc 1s1 oo H CN ~, o j«i c
W OO -^1 ^-4*0 -H i-tM 1 - X 1 i— i 01
S^ O •< cnu CN U CNC O O*H c? >— t ™ T-H 
-------























^•^

T5
4J
C
o
a

T-H

PU





















m
a.
•H
*"









CN
O.


H









a.
•H
H




U
,-J

CM
-3
CM
PL,


rH
CN
Cu
co
rH
1j

PM


•°-, cjj »—^ o w, co o
CC CLCX^rH COnJ O.Cf-1
C^rHrH OOCX>% OOCOOrH
U^^^CXC.S^ rHO&.CJOC
t-t iJ iJ J^ 0 OP_iP33"^ O™ O CJ
US-SUMM c CU°
-------



























x-x
-o
4-1
fl
O
u
S^'

•
P"*5
iH
0)
iH
,0
CO
H



































e
o
•H
4J
U
O
tJ
•a
O
T-f
^|
01
0.





















CO
o.
T-t
H











CM
d<
•H
n
g_4










-"
o.
•H
EH




CJ
Cj
CM
CN
C^
CM
d.


iH
^
CM
O,
a
CO
z
tn
ij
CM
Hi


.£
"j
^^.
CM
Cu


CO
CM
P-

ffi
ii
CM
B<

a
CM
CM
CO
CM
^i
CM



C/5
U5
5
u

J
M
§
CJ



1 1 1 1 1 + 1 1 1 1 1 1


1 1 1 1 1 H H 1 1 1 1 1





ll + l 1 + 1 1 1 1 1 1



III! +II + I++ I

+ + + + +11 + 111 1






ll + l Ill + lll +



T3
C
ii + i HIH + HII I-H
4J
C
O
a
N«X
IIHI ++IIIII 1




II++ ++IIIII 1



ll + l 1 1 H 1 1 1 1 1

14 1
r* a o
•a a u
01 O •O
3 CO 1* >,
c -H a j:
•H iH iH J3 iH
U rH O O M <-> TS
c o c c o n oi i
o c o) o) x o) £
CJ Q)£J3 4JJ3 fH^4WCM
s^ XCLO. CU-U XCUCUI
a. o» a £ x >>
o^x^1^1 "^'^ccl^Mlc'cs
§ ccjcd tdcuwcaw^^cucgcn
I | XBOlM'HJiJ'S^T-l
< o a u" cT1 WOO£Q<<
-------
4J
C
o
a
•8
H







e
0
•H
4J
to
O
3

TJ
O
•H
U
<0
fr-










CO
a
•H
H





CN
a.
•H
ju




rH

a.
•H
H



ON
CN
CM
P-i

fH
to
00
m
&<


•^

•^»,
CVI
ft-


^
n
CM
to
tn
^
t-
CO
CNJ
CN
C/3
CO
*j
*1
^
M
g
X


























•o

C
-H
C
0
u
«
1
                              +   +
                                   01
                                  .n
                                                                             +II    1
                                       H

                                       o
                                                                             u
                                                                              i
•a
 cu

 c
                                                                                                 o
                                                                                                 o
                                                47

-------



















/•^l
•
T3

4J
C
o
o
v-^

•
H
i— 1
t\\
NW
rH
£>
cfl
H









































C
0
•H
CO
CJ


T!
o
1-1
01
a.























a
•H
H











CM

a
H









rH
a.
•H
Ui
H




U
ON
1 	 .
CM
J3
CM
CM

^
CM
ft,
C8
00
•^
ft.
in
•1^
CM
ft.

jj
-3-

CM
ft.

•°m
j
•^
CM
ft.
CO

hJ
CM
re
^
CM
ft.
CO
CM
CM
OH



to

^

CJ

_J

U
(-H




1 1 1 1 1 1 1 1 1 1 |ll 1



+ + +III + + + + ++I +


+ 11 + 111 + 11 ++I |



+ II + +II + I+ ++H |


+ 1 1 I 1 1 1 1 1 1 |ll 1






+ II + I + I + + + ++I 1 ^
T3
OJ
•H
4-1
+ + + +II+ + + + ++i + (3
0
0
V.^

+ 1 1 + 1 + I + I 1 !+» 1



+ 1 1 + 1 1 I + 1 1 ++| |



+ 114-1(1 + !+ l + l +

•u
O | ^ U.
3 0) O G* W
C C ^ E E
•H «n co
ceaia; a) CG^-H I-H
OOJCN CQJd>iaJCaJc>,C(u
en ^ w t-t Qj^11aj:HQJNa)z:atN
UrH^l>i jao,_ liJlffCft-HrHC
M>»rHiJ I-t*j>.aj-fl't3a>rtt3n3CJ
H^SND ai^r-i^e »j=joj:f(jr^o
S •— 1 fl3<^AJ -W >SiJ
X (3 3 1 «0)DD.a3l- *X r^£Jj= O\
O | P3 UT3T3CQ O 1 AjtNCXffi O.JJO.S
sc ^3-1 occi j-i mi* »n -j-fliuc m

-------

















/^s
*
13
4J
C
o
o
N»/


rH
a)
r— i

cfl












































C
o
>H
d/Locat
o
•H
SJ
PH





































CO
cx
r<
H








CM
cx
iH

H









rH

a
-H

H





en
on

CJ

_l
o
X

£
o

CJ
OS
^
CM
0-
j:
CM
CM
C.


•^
i^
CM
CO
00
•^
C-
-in
CM
tx
-,
CM
e-

cn
-^.
CM
CU
to
vO
^
CM
CO
in

^^.
CM
Cu
CO
CM
CM
a.













i i i i i i i ii +11




+ + +III+ +i ill




I++IIH-+ ii ill



I++II + I +1 IIH

1 + 1 1 1 1 1 HI III

^~N
T3
0)
+ + + H+I+ ++ ++I C
.^
4J
C
o
a
^^
+ + +II + + ++ +11




I + +II+I II +11




I + +IIHJ +1 +tl




+ + +III+ +1 +11

CU 01 0) QJ QJ (U
sec cc c a»a>
C OJClJ QJQ) QJU T3C
•H ^HrH ^.H T-12 ^-(QJ

CS"S5 cxx A 2 i-ia.

^^ CD-^QJcO-D- diE~* ^-( ^
OJtocoNojconj (02 *o4-j
C/)XaCCCXiCC CO O
^-j>»>^^i^>,>,>, X >* t^C
Hjsjs— j^^;^^d-^D^ .noj
^rH4-»AJ <— (i— (iH4JCUDrH.D 4J£O

2 ' rt ? ? x ' i eoai,-: (NEro
W *£>! 1 ^r^CN-HCD-rt m^3u^^-( »
49

-------






















y— N
•
TJ
J-l
C
o
a
N-'

rH
, — |


OJ
t-l
^Q
CO
H































































c
o
4J
to
o
3

•o
o
•rt
Ll
OJ







































m
a
LI
H













CN
CL.
-i-l
Li

















,H

a
•H

E-i











u
a>
d
CN
.e
cs
ii
CN
a.


ja
-j
—
c-
re
00
•^
PI
.a
m
ci
CN
DM


-3-
^
tM
Pi


£.
^
tN
Pi



to

J^
(N




to

^


t.




to

i-l

tsi
Pu






en

5
CJ

,J

o
M
"y.

3;
U




II II



II II






II II


+ f-i II



II II






II 1 +



II II







II +1








II +1









II II






O
z oi
M HI C
Z C W
M -rt X
< -o a)

Z CJ Li 3 o
O C >* O rt
U QJ G. td O
N Z >,
Z C rt < u
H U >, J rt
O .0 J! J 01 >•,
O 0 rt W C C
c& c n o 01 -H
H to 1 t/a u >
rt >, r-t HI 3 i
Z CJ U S 03 -3-
































•o
01

o
a
L.
01
4-1 f— *
c -a
TJ O
•o
on 3
rt CJ
a. c
e -rt

en o> 4J
4J 13 O
0) 0> 01 C
00 Ll 4-1
•O C. 01 CO
rt Ll 1^ 4J
LI u a u
4J 4J Ll to
Li C OJ C «-l
re *H 4J o rt
0 C rt 4J
0) rt 4-» Li
C rt to B
O CL O U
J3 E rt rt -O
B » i' rt t8
U to 4J
01 10 -0 C
•a oo ai oi m
c -a oi rt T) »
CO -rt M >4-i -H C
U *n T3 rt QJ
CJ 4J rt 01 4J 01 ^
U Ll Li rt C > rt
tO 4J 14-1 01 rt CO
x u ** rt -a 4J
to to 4-i rt a
C CJ U C  re to
O to EH CJ + | H •— .
Z to ^3 U "O
50

-------
PS
M
H
W
M
H
PS
0
1
u •
M i — 1

^ PM
O M
PS Pi
0 H

Q 1
W 1
H 1
3 >
W Ei
a
P -
3 >H
<: w
SB nJ
,J
fe <
0 >
WD <:
J sj
w 5
> ,
v*
-*
<-i
rg^rj^-HrorjiNn^^rtrM
\C- CM rs) r^- CO CO f^- I-H —H \£
CMCMCMONO'CMi— i— i fH f-1 O*i -^ CM
\c in
CM O O CM CO •,
                                                                    J3

                                                                    •a
                                                                    cu
                                                                    T3
                                                                    cu
                                                                    cu
                                                                    o
                                                                    cu
                                                                    S-l
                                                                    a.

                                                                    T)
                                                                    cu
                                                                    4J
                                                                    CO
                                                                    CQ
                                                                   •H

                                                                    4-1
                                                                   •H
                                                                    a
 c
 o
•H
4-1
 o
 cu
4-1
 cu
T3
 o
 cu

 cu
T3

 ca
 cfl
 &
                                                             03    T3
po
                                                                    U
                                                              CU
                                                              o     o
                                                              Co     f2
                                                              !-i
                                                             4-1     CU

                                                              II      CU
                     O|£!CH
51

-------


Pi
M
H
W
(H
«
M
t/)
O
1
O •
H CM
^ pLj
O H
Pi Pi
0 H
Q 1
W 1
H 1
n HALOGENA
LLLEY, WV
0 >
w ES
STIMATED
ROM THE K
W ft,
CO
iH
0)
•8
H










eriod/Locatio
Cu










in
rsi
3
C-
m
a.
rsi
P-
m
^.
^


0,

-
•^
E
O
"O
in
f*"- m CNl r— *
o
X r? ^r O
*— o
m o
m m c
mm O
*~^ O
in o
m o O
in i— i ~> o
i- -H m v
O

O
m

sD
V
ft
H


r-i
rsi
H
0)
c
0
>.
o
1-1
J=
—
t

oo co in
m
CO ON CO
rsi ^ rM
m co
CO 0> r-
rsi ,-1 rsi
m co
CO O""! r^>
rsj i-( rsi
V H H
CO ON CO
rsi 1-1 r-
CO CO r">
V V H
CO «J
co m r~"
rsi rsi ro
oo CO rn
CO -
1
*

moo O
in ft
r*- sC rsj CN ^D r*- r^ \o rsi CNJ vO
s— ' CN rsi rsi o^ ON CN ^-i. ^- ,-1 i— ( ON »— i rsi
co rsirsicsirsifi rsi(Mtnrsim\o
-jfsjrstrstrs]infMrsj^-j-a-cNi^\o

O O vC ^ *T
HHVVV VE-VHVVVVV
O en ri i— i ft ro O rsi CN «^~ \c in vo f)
0 ONrsjcsjOO'NO>>»— lOOrstOrsifsj
V<-HVVV vHvnvvvvH
0) U
c c
j: j: a 01 a
J-» w C C C
u CJ a* a; at
l; C O N N N 0)
C 1- I- C C C -3
OOOOSJ HGJCUOCJo-rt
c----i— «ccj cccxi^ij:u
ox.z:jiEtc oiiaoooo
>,*jrjp;ijj^aicc:cooc^:
4-JO*->uo OOXIJDJ: — .c j:
ot-Gja<)-icNoc;otJuoa;
U f-t | (— 'OOOOOl-V-t-O
— u --o^:o^:^:^:i i t-^
Ui- fc.^j^c,^^^, ».K>S
^^-^-H c^^*u olEliLj'-'—'^ >






0)
JJ
-H
•H
rH
C
O
•H
4J
U
0)
4J
0)
•a
0)
n)
rentheses
cfl
p.
C
•H
co
0)
m s
4 -3
00 >
c
c aT
•H 0
C3
0) *J

> H





V
01
T3
(1)
01
O
0)
i-l
T3
ai
4->
ffi
•H
rH
ca
•H
4J
•H
•H
rH
§
•H
4-1
O

etected,
"O
to
cS
13
C
o
0
r)
O
G
0)
M


52

-------


PJ
M
N AMBIENT
3
M M

D ORGANIC
ALLEY, WV
iLOGENATE
CANAWHA V
2 ~
w
0 H
3 §
W PS
> fn
W
O
W
H
•f
H
CO
W
rH
OJ
rQ
cd
H











/Local Ion
o
A









ON
CO
rt
Cu
CM

en
CO
r-

e-
-H




?,

'-• <•-• O
O -H ON O
O f** >n in
SJD r7 0 §
^ .^ o
CM -H OS O
C
CO C
— j rsi o m

rl P — u~i in
-. H H v
O
-J 0
C f-i vr r^

H H E- v
u-l ^ C^ O
H H «•* v
-j r*- m in
H H H v
C
00 O
hlorlclo 2S
l>2
nchloriJc 52
ide <1
S u C
S C *J -—



rH O
CM ^
m c
rM f—

m
rH 0
CM \O
H V
-H O
CM NO
H v
/-N
rH C
v-' rH
5
H v
CM
FH O
f- V
r-, O
CM \£>
H v
CM
-H O
H V
OJ
c
CJ CJ
CJ ii
c o
c c
jz ^:
T3 -S
1 i
rsi •—

2 rs S
in r*-
•^ -j •— i
rH r^
in i— ^ f""»
-H CM xC
r-« CM VC
H H v
in -H r-
•— i CM ^C
H H v
m rH r-
rH e*M O
—i r-.
u~i -H r*
H H V
en r-.
\C i—t
H t- v
in csi vc
tH V
rH P-.
in r-* r*-
oerluno Tl
1 oroe t hane T 1
loroe tliane < J
O U U
j_: i- u.
— ' i i
-3 — CM
rsi — i r-.

3
m
m
m
in
rj
m
H
in
m
in
^_^
H
m
H
H
%
X
o
l-i
j:
•H
i-i

ON CO
ON 00
•w-- O O ^-'
ON CO
CT\ CO
r- V v H
S 2
ON 00
i— I rH
ON CO
H V V H
ON CO
H V v H
.— i p^.
s
0)
c
01 H O
60 > B
C 0
** O
•H CJ O
CO SH
CU 4J 0)
 H 5
53

-------









w
35
H
g
O
Pi

i i

H
3
w •
M rH
PQ
S PH

PS
2 H
H
1
c»o I
U 1
1 	 1
2 ^
o
PS -
O ^
w
W i-J
rJ rJ
M <
H !>
1 ^
o E2

•^
r_ ^
O ^d
KX
C/D
T
w

w
"
Q
W
H

rH
H
C/}
W


•
m
	 I
1~1

rJ

CM
PH
m
l ~]
~^
CM
Cu


CO
J_J
•^^
CM
P,
CM

*^^.
CM
P-I
C
O
— i
4-1 m
Cd rJ
O x~.
O rH

'X-.
O
, 1 •*
*!~1 "^
rl rJ
QJ x^
PH rH
PU



2
«^^
rH




CM
rJ

rH
P-l


rH

•^^
.H
P-i




m







rH
CJ
•H
g
QJ
.C
CJ

O O CM  OO rH ^x
H



O
CM






\D
rH




/_s
00
m

H


m
rH
v 1








rH
O
a
QJ
£1
a,

^3-
CM
V

^_^
oo
rH
**^>
H



^^
rH
V


oo
rH
V





00
rH
V



CD
CM
^^
H



oo"
rH

H




1^.
rH
V




ON
CO
V



o
rH
V




QJ
4J
OJ
rH
C
QJ

CX
•H
T3
^^
CO
-3"
\v^-
H

p")
^>
V



^^
iH
ff)
\^s
H
/—s

O^
"*^S
H




CO
*^j-
V



CO
^j-
V




CO

V




^^
CO
^^.
s_/
rH



CO
^3-
V



IX.
V





QJ
4J
cd
4-1
01
O

rH
^>
42
4-1
0)

CM
rH
V


ON
V





f^.
V



o
CM






ON
V




o
rH
'^s
H



vD







O
] — 1




^^
m
rH
^..s
H


m
V





QJ
C
0)
N
C
OJ
fN
o

cd

o

^.
i — .
V


rx
rx
V .




IX.
r^.
V


CO
VD
rH





r~-
r^
V



OO
vd





^
c^
V





r^»
f+^
V




rx
f-^.
V



oo
V



QJ
"O
^H
>4H
rH
3
«
•H
rH
>,

^J
QJ
g
-H
-a
































.
09
4^
•H
6
•H
rH
C
O
•H
4-1
O
QJ
4J
QJ
TJ

QJ
r-l
cd
CO
QJ
co
QJ
?*•
4J
C
QJ
M
cd
CX

C
•H
CO
0)
co 3
6 rH
x*. cd
00 >
C
^
pj  H














•
V
>N
TJ
QJ
* vj
Q)
QJ
O
QJ

CX

*o
QJ
4-1
CO
•r4
rH
co
•H

4J
•H
3
•H
rH •
QJ
fi ^^
o -a
•H -H
4-1 I-*
O 4-1
0) J-l
4J Cd
QJ O
prt "^Nfc
QO
QJ C
5 c
-H
A
TJ 
cd
•
^3 ^"
c o
3 M
0 4-J
CX C
B o
O CJ
o
0 C
C cd
I—I
0) rQ
)H
QJ II
J2
JS PQ
54

-------
m
en v

m
i-J en
	 ON
CM m
P-I
rJ
W ---ON
SC CM CM
H PH
S
O
Pi
Pn en co
t-J r~-
pi * — - r*-
M CM rH
 T3 m
<3 3 O i-J ON
O -H --. 00
pd •> 1-1 I-H en
O >H QJ P-i
W P-i
W J
M <
H >
i-J <; i-J m
OK --.oo
J> S rH rH
<3 Pi
fn 2
O  -- o
Ed rH CM
hJ P-,
O
H
^\
M ^ 0>
£— t ^-^ i_pj
C/J i— 1 CM
W p |



«_J
^^ ^D
i_3
'-I "^r tH
rQ ^"* V.O
rt PH rH








01
C
CU
N
c
cu
^
m
V


CM
ON
en


o
ON




m
vO
CO
CM





f-^
ON
CM
rH




CM
ON
rH





rH
CM




-a-
rH



en
ON







rH
-a-
>a*
rH








CU
CU
3
rH
0
4J
m
V


en
CM


rH
CM
en




*^-
ON
vO

H




CU
4J
rt
4J
CU
CJ
rt
rH
>N
4J
CU
in
V


00
V


CM
rH
V




in
en
V






r*—
rH
V





rH
rH






O
rH
V




CM
rH
V



CM
rH
V






CM







C
cu
N
C
CU
o
c
rt
CJ
00
V


ON
CO
N
4-1
01
•H





















y

>N
-13
.
n!
~
m
0)
rti
rJ
cx
,
fll
A_J
CO

r-t
• m
UJ
CO -H
4J
•H 4-1
•5 fi
rH -H
C 0)
0 C 00
•H o -a
U 4J H
CU CJ 4J
4J 0) rt

C rt
•H JS
CJ T3 rH
o co
m - 3 3 M
6 rH O 4J
--. rt cx C
M > e o
c o u
•> CJ
c u ^
•H 0 0 C
rt c rt
O l-i i-H
O 4-1 Q) 43
rH II Q) II
rt _c
> H S M
55

-------











»



EC
H
O
Pn
<
&H
^^
Li2 l
M fO

§ PL,
< M i
Ptf
p^ P-I)
M
I
W
U 1
M

O
PJ *
O (H
W
W iJ
rJ »J
M <
H >

t— 1 ^
O Ej2
> 2

EK 3

j^
C/2
w
>

rJ

Q
W
H

^
M
H

W


,
N-
1-1
Q)
rH
n
Cfl
H









































C
o
•H
4_j
cfl
O
! 1
~-s^
-a
0
•H
J-i
CU
Cu























ON
,-J
-^
CO
PH
00
t •]
^•^
CO
P-I
m
! 1
^^
CO
PH


J
CO
PH


rH
i_4
***^
CO
O-i


oo
i-J
^•^
CN
P-i



r**.
i— •]
•"^
CM
PH




LO
rJ

CM
PH



CN
! 1
•^_
CM
ft,




rH
t 1
^^
rH
PH











rH
tfl
o
•H
e
01
rf
O

O in ON CO
in ON i — 1 ^D
CN CM


1 — CM O CM
oo m oo co
CN rH CM rH
CM

p^ CM 00 CM
^o in CM vO
v£> "^"



in CM co r^
rH O t^ rH
co m co



P^* *3° P** tn
ye in oo ON
vD v£> rH




in ^3" CO ON
00 rH 00 rH
rH P^- CO
CM




00 CO 00 rH
r-~ O O P~-
P-~ rH rH rH
V





in rH rH rH
O rH rH P-
CO i — I





U~) ON rH CO
in ^3" rH *d"
in »^
H

O
rH



x^-
rH
\^s
H


vO



y^*\
<}•
<•
^^ /
H



CM
^>






OO
CO







rH
rH






00








o
CM















rH
O
a
cu
rC
CX
^^
o
rH
^^
H

CO
rH
\^
H

ON
V




rH
V



ON
CM
V



/— s
CM
rH
^s
H




rH
CM
V






oo
V






ON
V







ON
CM
V







p
CU
4-J
cu

rH
^>
c
OJ

CX
•H
T3
^
CO
v^-
v^^
H

ON
^
^f~j
4J
Q)
-, /-s
oo r>-
s-^1 p^
EH -^
H

CN r~~
iH P^
V


O P^
rH r^»
V



rH p^
' — ! P^
V



•* r-~
CM P^
V




in r«-
v3" p^.
V





in P^
CO P^-
V






m P~
rH P~-
V





O P~-
CM P^-
V





^^^
,
f> JZ
O 4J
e cu
cfl e

CJ 13



































•
CO
4->
*H
s
•H
rH

ti
o
•H
4J
CJ
cu
4-J
0)
TJ
Q)
)-l
cfl

co
cu
co
cu
JC
4-1
c
Ci
M
cO
CX

c
•H
co
cu
fO 3
a <-i
*«v Cfl
toO t^
c
Vt
C cu
•H 0
cfl
CO rJ
CU 4-1
3
rH II
ctj
> H


















V
13

cu
TJ

CO
cfl
s
TJ
c
3
o
&
0
o

o
0

cu
^t
cu
f"{
5
56

-------
Correlation between Levels of Halogenated and Non-halogenated Organics —
     There are no general correlation between the levels of halogenated and
non-halogenated organics in the Kanawha Valley.  Two samples (Trip 2,
P2/L2 and P2/L3) contained high levels of both halogenated and non-halo-
genated compounds.
Semivolatiles
     The compounds  identified in the polar neutral, PNA, paraffin and base
fractions of the <1.7 p air particulate are shown in Appendix D.  The few
compounds identified in the acid fraction were contained in other fractions
also.  It should be noted that the computer scales the TIC plot to the
largest peaks.  Therefore quantitative comparisons between fractions are
not possible.
ORGANIC COMPOUNDS IN THE SHENANDOAH VALLEY, VA
Volatile Organics
     A summary of the volatile compounds identified on Tenax GC and/or
carbon cartridges at nine locations are presented in Table 18.  Alkanes and
alkenes were generally not summarized because of their ubiquity and rela-
tively benign environmental effects.  Full lists of the compounds found in
each sample are contained in Appendix E.  The quantitation results for the
halogenated hydrocarbons and representative compounds in other chemical
classes are presented in Tables 19-21 and 22-24, respectively.
     The highest concentrations of volatile organics found on Trip 1 was at
P2/L3 and P2/L5 which were night samples.  P2/L3 was downwind of the Avtex
plant at least part of the sampling period.  The other samples obtained on
this trip contained moderate amounts of volatile organics.  The samples
collected during Trip 2 contained high amounts of volatile compounds.  The
highest concentrations were again in the overnight samples (P1/L4, P2/L3,
and P2/L5).  L4 and L5 were in the downtown Front Royal area, which was in
the floor of the valley.  Thus, settling of pollutants in the lower areas
during a night-time atmospheric inversion may have contributed to these
high values.  The other location (L3), however, was on top of a hill, so
atmospheric inversion conditions would not explain high values at this
point.  The values  obtained for P1/L3 were also relatively high.  This
sample was collected during the late afternoon-evening, so some of the
                                      57

-------







3
<3
O
O
s
w
*T*
»-M
CO
W
X
H
2
hH
PJ
M


H
W
J>M
H


W
. i f,
f"H
M >H
H W
j*« 1
J J
H^ H™1
0 »fc^
^



•
OQ
T-H
0)
H
J3
cd
H























•H
U
CO
O
o
iJ
•o
O
T*
M
0)
PM























CO
O.
-t-(
H
H








CM
O.
-H
M
H












r-H
a
•H
H
H









J2
Ov
rJ
CM
CM

^
00
^J
CM
PU


(0
3
1-4
rH
CM
^1
m
J
CO
a.


js
CO
j
CM
^

CJ
VO
J
CO
CM

£>
J
CO
CM

a
tn
iJ
CM
CM
a
-^
>J
"^*
p.








W
t/)
<
t_3
u
J
<
u
1— I

3;
CJ





+ ++I+ + + + + +11




+ ++I+H + + + +||




+ ++IIIIII +11



+ ++II + I + I +1 +





+ + + H + + + + + +11
/-N
»O
a>
c
._j
+ ++I+HI + + +|+ J]
G
o
O
^^
+ ++II + I + H +1 +



+ ++II1III + + +



TJ
+ ++IIIIII +11




U
O
•o n
e a;
* 6 o
o cm
Q) CD CO T3 CD
•O -H 0) 0) J± -H C
T-l 13 C 4J )-i 0) 0)
UCUi-l « CU O C r^
r-ieuo uSx-H^c
•C rH l~1 ftt O CJ ^ 4J Q)
O>^X OrHcflXON CD
J5UHXMUOB -0
a)j-i souuaiMai ^
C-i-Ha)ooj3 j: r-i
OCUOCO^M-UMT-IO (UiHCQ
U-OMCUU-IUH oj=u -one
H-^OrtO-HICr-lOO W^CtO
<;^-iT-(5K.^QfHoj:co^-i UCOC84J
z >,jz £01 -uaoMj: QUO.3
wdyj-j'-tcM^jH^jJu >*cuoca
CJ-r^-HCU^ - *C(JVJCU*H KOt) 1
O>'OSUt-H^H(Jf-iE-ie bJ-Sa, c
iJ O
s ^
58

-------
 G
 O
 O
ft
 cfl
H





§
•H
4J
a
o
o
Period/I









o.
•H
H


CM
P.
•H
H




i-H
O.
U



-^
rg
&
00
PL.
«
i-H
m
CO
cu

ro
f^
°S
PU
CM
J
CO
BH

18
in
CM
Pu
CO
T— 1
o.
1
*4
CJ
£
w
a
















•o
c
-H
4J
C
o
»
ALDEHYI
                                                                                                         1      1      1      1
                                                                 T)
                                                                  CU


                                                                  G
                                                                                                                                           C
                                                                                                                                           O
                                                                                                                                           O
                                                              01
                                                             •o
                                                              >,
                                                              C
                                                              4)
                                                             «
Z
 i
 c
O
 i
 c
U4
§

i
 D
 u
<
                               &
                               o
                               o.
                               o
                               01
ci
s
                         >,
                         s
o
s
                   >,
                  £
 ai
s
C
ai
«
                                                                               59

-------



















x~s
T3
j-i
O
a
N«X

B
oo
rH
0)
•2
Cfl
H

































c
o
u
0
o
0
,J
•o
0
V
ft.
















m
D-
l-i






CM

a
-H
H













i-H
•31
H






-3

.a
OS
•C^
CN
P*
a

a.
JO
m
CO
a,



•°e-l

rj
Cu

U
vO
CM



CS
ro
CM

a
12
CM
CM
<0
3
TH
CU


to
CO
o


^

M


5E
o


1 Illlll + + + + + +

H ++I++I + + + + + +




1 Illlll H 1 1 1 1 1

+ +++ + +I H + + + + +





+ +++ + + + H + + + + +





1 +++ + + + 1 + + + + +
^-s

0)
3
C
4-1
O
O

1 Illlll + ++III



1 Illlll + ++III

M
1'
o
01
T(
iH >H iH
iH O O O
ai o e c c h
1 [ C QJ QJ 3J 0) Q)
eg 41 s jz si s: c
±j jz a. B, o, u ai
01 G. 01 N
O i-H T-I iH i-l C
ffl >% X >> >, H 01 01 01 01
rH i— 1 £ ^ ^ k* ^, c/3 C C ^ C3 *V

«^0 S Se? 1 ? en o! £ C-HXX^
H U SO
en iJ H «
Id < Id <
60

-------





















•^
13
II
C
O
CJ
w


•
00
1 — 1

01
«
H































e
0
4J
cj
o

*»^.
•o
o
•H
0
p-





































m
o.
•H

H


CM
0.
•H
H














.H
a
•H
U
H












en
CO
CJ

J
«^
CJ
M
1




•°3
CM
.£1
00
•ci
CM
CM

a
iH
in
a,


.0
j

CM
Cu


0
J
a,

^3
CM
J
rT
pM


O
in

Pu

to
3
r-1
Pu

















+ + + + + + + + + I+H + +



+ + + +I++I+ I + I+ +



1 1 1 1 1 1 1 1 1 1 1 1 1 1
I + +I + +III IHI+ +




+ + + +!++ 1+ ++I + +






+ + +II++I+ ++I + +




+ + + +I++I+ l + l + l






1 1 1 1 1 1 1 1 1 1 1 1 1 1



1 1 1 1 1 1 1 1 1 1 1 1 1 1

u
0
a) ai
C -H 01 0)
ai u c c
N 0) 0> Ot 0)
C C H iH i-l
oi oi o>oi ai 01 o oiato
-Q c cc N c m c j: j:
>\ NCNN OIN NJj:
O.OICOICC XI C 01 CO.O.
OCOI30IO rH oi BOIOItOQ
ijoijai-ixija >%^i oicjacc
CX D t-( O £ N Ot
cSf'^^^ I^Ix^j^'

o^iSiJtortco^j oj r^ ,c to D QJ
.C-HWI ITJiJ 13! O.ISS
I 4-* )-* i f*» ~^ c tu IA 
-------

























/-s
T3
^
4J
C
o
o
X— '



•
oo
rH

(U
r-l
Cfl
H










































C
0
4J
B)
O
o


•0
o
•H
U
01
d.
























o.
"£
H




CM
O.
•H
H















i— )
Cu

U











en
CM
JD
CO
J
CM
Cu
03
3
r-t
in
Cu


_£,

jj
*«^.
CM
CU



U
VD
Cu

,0
CM
en
Cu




in
J^
CM
CU


CO
Cu











w

^
-J
o

J
-s!
u
M
y


CJ









1 1



1 +

1 1





1 +







1 +



1 1







1 +




1 +
















o
z
t-t
2
M
H
Z
O
u
03 CM CM
3 O c/3
ts< en o
£5
t/3






























•a
Q) ^n
OJ *O
U 0)

a. 3
H iH
01 U
*J C
C -H
•H
(0 O
CO
•O CO
. -H 4-1
. T3 U O
0) .u M C >"
U 01 (9 O *H
0) iJ O -H 4J
a u c a Q
V4 01 O V
a) -u .a -H T3
u e M >" c
C iH M -H «
01 •« C •
n an -a 
01 -O C iH -O 01
CO -H CO uu *H C
•o u -a -H 01
•H 4J U 01 4J 01 ^
H H U -H C > «H
u co u-i oi -H n
V4 U X -H *O 4J

u u c c u in
u oi o u e oi
C H 13 O 01 C
OX t-l C 4J CO
,a re _= j;
h c u u i n •-*
CO 0) O CO
o H pa + i H <— •


01 CO ^1 (J "O
0
•z.
62

-------






oi
H
<
H
a
w.
H
3
HH

CO
ffj
O
P-,
<
>
CJ
H
r*i
§
O

Q -H

H PL,

3 pi
W c_(
U
0 1
ij j
3
&-, !>
O
*\
CO nJ
i-J ^
[£] ^H
> 0
[V) p^
hJ

Q 3
W O
H OS
•^ fx4
jsj
h-i ^
H O
CO pi
W p1" i
.
CTN
f-ifl

CU
r-H
CO
[H








.















C
o
.U
ctj
U
5
"C
o
iH
U
o>



































re


-J
m



CN
rn




CN





CN
0.




-31
iJ

P*



2
Cu




CN

^
0-




-3
Cu








"r
—
c
O
in o
•X> m cvj •— i i— i CO



O CN tn o -J m




x- ^ O
in o
O cc --I m o-i r-

O
*— * O
-ij -3" O f"> CO

tM -. H V V V



CO
CN O m i^-. co
^D o o •— i m in
r». CO CT\ i-( m CN





O /-.
O O

•31 cc in CN in co
i— 1 O CT* *— 1 ^-^ CN




O
/-* o
r-- in in o -j" in
in  CM fi co
rH H V V V




*~^ O
-H in o ~3" m
i^ CN m tN en co
H v v v v




in o -^
o CN o o in
O ~^ m CN m co






CJ 0)
T3 C
(L) -H 01 0)
-a ;- -ic
"u -S S1 H
jr a VH o o
£•"000
c c « ^= j= j
~ c c •-* -•
>, V- C .— -c -o
^ ^ *£ c" fN -^




CD
CN



CO

H


in
0





O
o
m






CO
m
CN




CO
m






CO
m





CO
in






01
C
C3
JC
0
o
-c
"3
rj
L.-I O O O



fl O O »H ^H -3"
C£S.-cn°££5^CcN222S



CN --^ -— ^


y_N


CN i— 1 r- CNfN CNMr-(\CO OVO




f*. s-*.
CO f*l O
i— I CO Cy> CN O O CNtH CN O
coo\^— 'ror-ic'ir^r-r--) — - ^Hcor^com





^? c" ^ o
fn o o *c o





fl O O CO «*
fimo^ooo cNco^Hin en





CD ^
O -3- O r^  oi o> ai a;
tora uco NNNCU
JZ JZ Ct-M CCCT3
4-* JJ OJ Cw O O 0) CU OJ 01 O OJ QJ -^
ftlOCi-i*^ i-HCflJ CCC^XiXiU
OOOJ>i£— CCC QJcjOJOOOO
oo>,jjaf:''-1— aicccooo^
'H^^JIOi^^' 11 u C OJ OJ ft> I-H »— I i— ( tj
(jcjtyi-OIOfc'ONOOO^UUOi
>-l-k.-.| |^OQJOOG^i-uS
1 IrHU ~-
S. ?
•H
iH •!-[

0 C 00
•H O "O
JJ -H -H
0 JJ »-l
Q) O J->
4J 0) *-<
CU 4J CO
T3 Q) O

0) 00
!-c CU C
co j;
4J C!
CO -H
0) ••
CO TD 01
o at M
J3 4J cfl
4-> a
C oi co
01 4-) 01
S-i 0) 3
cfl 'O i-H
P< cfl
CO >
C CO
•H 1?
•
CO 13 iH
• 0) C O
•o S 3 n
0 iH 0 J-1
•^ co a e
oo > e o
C 0 0
*i CJ
C CU ^
•H CJ O C
CO C CO
CO i-t H
0) 4-1 0) rO
iH || 0) II
                 c;  E!  04  —<  "  ^H   >
                                  -  •? !   co
63

-------
w
H

PP
O

CM
•8
H




nation
Period/Lo









m
fi
CM
-4
(X
_I
a,
in
_J
i— i
.

> to
01 0>

1 I

^
CO
CM
V
CM
CM
CM

CM
00
m
CM
H
CO
m
CM
H
CM
fM
H
a>
C
(3
O
J=
1

H

0
o
o>
CM

CT\
cn
H
0
CO
CM
H
S
ra
u
OJ
o
H


=0
O
C
f^-
m
CM
O
CM
0
in
0
CM
V
0)
c
2
4_l
O CM
\C VC CM
\C CM
-^ CM m -3-

O s-» *~* v-.
O CM fH i— 1 -^
o ^ ^ ^
\D CO CM
0) 0)
c c
c e
w AJ e e c
0) 01 CJ 01 01
0) O O N N N Ol
C l-i M C C C "O

E.syY'SoSo oc^^^o







CO
J-J
•H
.s
ection 1:
4-J
CD
0)
CO
CO
arenthese
p-
-H
CO
• 0)
ro o
C
C CD
-H G
CO M
0) 4-1
iH II
> H



V
f>
0)
(U
o
0)
ex
13
0)
4->
m
•H
iH
m
•H
4J

tH
C
O
•H
4J
O
01
4J
(U

-------
i

Pi
M
<
H .
2
Ed
M
JT;
M
c/o
Pi
O
g
i>
u
H
O
O
Q
W PH
H H

o •>
H
W O
H Pi
H Q
W pi
•
CN
CU
rt
H










iod/Locacion
w
p*










3
Cu
00
P.
r*.
-J
PL,
CU
Cu
00
Cu
Cu
-J
CU
CM
Cu



^
U
c
g
O m ^H r^ L-I -^ ^x
-~\
O r-* m x^ x-v

-3-x-sOm f-^U-lx-s x-v
x— v o n ^^ r»* m «— •, x-v
in O y~i O C C
0) 01
C C
0) < 1 1 1 . . u h > - u <9 0 -H -H -< . - • X



V
CU
13
CU
CU
a
CU
eu
CU
CO
•H
rt
• CO
CO -H
•H 4-1
6 -H
•H 6
rt -H
rt •
C CU
O C 00
•H O •O
4J -H -H
U 4J )-l
cu a 4-1
4-1 CU 1-1
CU 4J CO
•a cu o
13 --
CU 00
l-i CU C
cfl J3
•u C
CO -H
cu -
co -a cu
CU CU >-i
.C 4J Cfl
4-1 O
C CU CO
CO 4-1 CU
!-i 0) 3
CO T3 rt
p. cfl
CO >
C cfl
•H JS
.
CO *T3 i — !
• CU C O
m 3 3 n
B rt O 4-1
-». cfl ft C
oo > B o
c o o
- 0
ecu 4-<

> H S CQ
65

-------













g
o
c*S

p3
H^
^

H
a
M
M
•^^

a

cn
o
H
^
1
O 1

coed
^ <
w >
>
W f
I-J hJ

w o
H BS
•^
Jgj £—)
H O
CO PS
fa3 [x<


•
tM
CN

0>
iH
,0
cd
H





































c
o
4J
10
U
J
•U

•H
t-<
V

































^
^
n


m

•^
en
CM
3
n
Su




J

CSI
i.



3
CM
a-



"3"
ii
r\
PH



m
j

cu



CM
H-J






J
Cu






CO









rH
CC
O
•H
E
01

U

cMOrHcnr*-eMr*-rHinmm
vroor^oocninr^cnsOrHcM
rH CM CM "- ' V V V
H


cMinoNinr^rHcnrHON vcn
invOrHsO VrHs_/tM CN
cn ONCMCn
rHOCMcn^-' rHVVVV
-H rH EM



CC ON ON in sD rH cn rH ON V rH
'*3'o*3'incMfn
mONrHCMcn*3-sOCMpH
VrHVV VVVrH
V



-~v /-N ^*S \O
CM m in *d"
fHrHCn-^-CMi-HinrHrHCOOO

r-t r-f H H H H CN
V


fl_^
rH
rHm\osor*-OOOcNinm
cnsocMin-a-'»3-cocn<»-'rHcn
CM CM CM H V CM
V




I —
CM rH co -«j ON CM in -^ o\ o cn
CMr*-rHrH-J'Cn, ra a) X
CC-CO-COC-fHC .0,fi
(D fl>'MOi*-'OOQJ *~l O *J
N 3£J-»UN C — >-, C 0)
CrHaQiOCO)D-J=roe
OJOroUt OJX-H*->>^iH
X14JCCOC|Xia.t3OlOT3










V

^
0

t3
rrj
0)
CD
o
0)
M
ex

CD
4J
CO
•H
rH
CO
CO -H

-H 4-»
& -H

rH *H
rH •
C CD
O C W)
•H O ^
4-J "H *H
O 4J 5-1
Q) O 4-1
4J QJ 5-1

0 cd
•H |£

03 T3 rH
• Q) G O

B rH 0 4J

M > e o
C O 0
- 0
CO) jsi
-H O O C
cd c cd
03 5-1 rH
OJ 4-1 Q) ,Q
3 K
rH II Q) II
Cd jfl

(*•* tn ^> H-l
66

-------




CO
>

„
j •]
<
O
PH

H
Z
o
2
S
o
ci


pi
H

W
J
Q CN
W
H Pk
^ '"""'
Is P**
rH H
H 1
CO
W I


.
CO
CM
0)
rH
CO
H


























c
O
-H
4J
rri
lu
O
o

^^
-a
o
•H
J_J
0)













































rJ

CM
PH

CO
rJ

CM
PH


CM
rJ

CM
PH


rH
rJ

CM
PH


iJ
*- —
rH
PH



 3" CM
\0 CO


CO CO CO O
V V V rH
V







0)
0) C
c o
0) C
rH 0)
0) 0) cfl j-
c c jn a,
0) 0) 4-1 O
N 3 JT 4J
c -H a ai
0) o cfl O
Ji 4-1 C CO
r-~
o
rH


1^,
m
rH




s-^
CM
CM
s-x
H



O
m




CM
CM
•^*s
H




ON




CM
vO
^j-





^3-
co






oo
CM
rH



in
rH
V











rH
O
c
0)
rO
o-
m
CO



^3-
rH
V





m
rH
V




vD
CM
y



CM
CM
s^ x
H



*H^-
^*D
rH
V



CO
VD
V





S3-
CM






m
CM
\~*r
H


O
rH
V






1,
cu
4J
0)

rH
C
CU

a.
•rH
•a
o
0
m


rH
*»o
CO




^-x
r^
ON
s_x
H


^-«^
r^*.
(^
V— -'
H


r».
ON
V




CO
oo
m




P^.
vO





^-^
r>^
ON
s^x
H




oo
rH
rH



r-.
V








0)
cfl
4-1
01
O
cfl
rH
£K^
f
4-1
01
0
CO
V


o
CO
V





o
rH
V




CO
rH
V



rH
rH
V




CM
00
V




o
rH






CM
rH






VO
CO
V



m
V








0)
01
N
C
01
o
c

o
ON
00
-^"
V

ON
oo
-3-
V




CO
V.O
rH
V

,^-s
CO
vC
rH
s_x
H


CO
vjO
rH
V



0
ON
*3*

V


O
ON

V




CO
\,0
rH
V



s~*
00

s— •*
H


00
V




01

•H
(4-1
3
[0
•rH
*rj
rH
>>
4-1
0)
e





















•
V

r*N
t^1
TJ
0)
TJ
0)
01
o
01
i™*
p.

• co
CO -H
4J
•H 4J
5 e
rH -H
rH .
C Q)
O C 60
•H O 13
4-1 iH -H
CJ 4-1 M
a) a 4J
4-1 01 M
0) 4J Cfl
Tj QJ cJ
13 -^
0) 00
M 01 C
cfl ,C
4-J Ca
CO iH
CO T3 0)
0) 01 JH
J3 4-1 Cfl
4-1 U
C Q) CO
0)4-10)
rJ 01 3
cfl 13 rH
£X cfl
CO >
C cfl
•H ^
•
CO 13 rH
• a) C o
CO 33!-i
8 i-H O 4J
*"**. efl pit fj
60 > B 0
C O 0
• o
fi 01 ^
•H a o c
cfl C efl
CO >4 rH
01 4J o) .a
3 rJ
rH II 0) II
cfl J3
> H 5 M
67

-------

1
1
1
03
^^
>
•s
r-4
^
JH
O
OS
H

O

CM
a
O
OS
Cn

OS
M
^

H
2;
U
M

S
g
M
CO
U
M
a
OS
o
w

H
T
O

0
CO
J
W
W


Q
Ik
HHM
fyf
C/J *"^
W H

^
CM
01
rH
•3
H


2
•*«^.
CM
PH

00
; ~\
•^^
CM
PH


r-^
i ~\
-^^
CM
PH


CM
rJ

CM
PH
C
O
•H
4-1 ON
CO i-J
O — .
O rH
rJ PH
T3
O
-H 00
S-l hJ
0) -^
PH rH
PH

rH
PH


j
rH


CM
hJ
rH
PH


m






rH
CO
U
•H
1
a
rH
00
^3-



rH
V.Q
OO




oo
i— i
in




rH
OO
CM





CM
ON
in


ON
O
LO


cc



CO
00
m



o
00



00
v|






01
e
01
N
e
0)
42

'O
LT"!



rH
CN
"~s
H



X-N
vO 00
*^" rH
rH ^—s
H

/— N
rH 00

^— *"
H

CM rH
H


VO rH
r^ CM
H


S-*l
ON 00
t-H
H


O O
rH rH
V V





0)
o
C rH
Q) CO
x e
ft CO
O 4-1
4J O
0) O
U 1
co el
00 CM
V rH

H"


oo r^
rH rH
V




ON r^-
V





00 rH
rH rH






ON \D
rH CM



vD OO
rH CM
V v— '
H

O O
rH CM
V



rH CO
CM i-H
V


s~*\
CM CM
rH rH
H


o m
rH rH
V V





01
o
C
0)
,fl
a rH
o o
N e
C 01
0) 43
43 ft
oo
V




oo
rH
V




ON
V





ON
rH






<•
rH
V


rH
rH
V


o
rH
V



rH
CM
V



rH
V



o
rH
V





H
01
4-1
01
rH
e
0)
ft
•H
CO
*^j-
\^
H

^^
CO
«^-
\_^
H


^
oo
*3"
NtfX
H


^—.^
CO

OO
H


V





0)
4J
cfl
4-1
0)
u
CO
rH
£•
4-J
0)
oo
V




ON
V





CM
CM




/— ^
ON
s»x
H





oo
CM



OO
rH



OO



O
rH
H



CM
CM



v|





0)
e
obenze
CO
a
j^
r^.
\_x
H


r-^
r^.
V




r*^
r^
V




r^
r^«
V





r«*.
r--.
V


^
r^
V


r-
V



r~-
V



V



oo
V


0)
T3
•H
MH
rH
3
co
•H
T3
rH
>>
4-1
0)
•H























f^
*^
»T-|
ni
*T"1
rtl
«>
w
O
J-)
cx
• CO
CO »H
j. j

1 ^
rH •
e a)
o e oo
•H O 13
O+JH
a) u 4-1
4J 0) 5-1
0) 4-1 Cfl
•a m o
0) 00
n J
43 4J t8
com
CU 4-* Q)
rJ Q) 3
CO T3 r-l
P. co
0) >
e ca
•H &
•
W 13 rH
• o e o
oo 3 3 M
B H 0 4J
•^^ nj o, c
oo ^ € o
e o u
* o
CO J*
•H O O C
co e co
CO 1-1 rH
0) 4J 0) 42
J3 M
rH II 0) II
> H E§ ffi
68

-------
night-time effects discussed above may have been applicable to this sample.
The volatile organic levels during Trip 3 were generally low.
     The most striking feature of the halogenated organic quantitation is
the high levels of the C, halocarbons (methylene chloride, chloroform and
carbon tetrachloride).   Levels of 1,2-dichlorethylene were significant in
two samples (Trip 2, P2/L3 and P2/L5) which were collected overnight.
Levels of vinylidene chloride were significant in two samples collected
during Trip 1 (P2/L3 and P3/L2).
Semivolatiles
     The compounds identified in the toluene and methanol extracts of the
<1.7 (J fraction of air particulate from Front Royal are presented in Appendix
F.  The corresponding peaks are shown in the total ion current (TIC) chromato-
grams in Appendix F.  The computer scales the TIC chromatograms to the most
intense peak, so quantitative comparison of the two fractions is not
possible.
DISCUSSION
     Many more compounds were identified with greater frequency in the
Kanawha Valley than in the Shenandoah Valley.  This is especially noticeable
in the pollutants potentially arising from industrial activity (halogenated
and oxygenated compounds).  Many compounds, including the aromatics, result
from combustion (e.g. automobile exhaust) or other sources which could be
considered ubiquitous.   This qualitative comparison is in keeping with the
greater industrial diversity and higher population density of the Kanawha
Valley.
     In contrast to the qualitative data, the quantitative data showed much
higher levels of most organic pollutants in the Shenandoah Valley than in
the Kanawha Valley.  This is especially noteworthy, since the Shenandoah
Valley is broader and less well-defined and is therefore not expected to be
as good an emission reservoir as the Kanawha Valley.  The high levels in
the Shenandoah Valley were found on both Trips 1 and 2, implying that the
levels found are not fortuitous.
     The origins of the high levels of pollutants in the Shenandoah and
Kanawha Valleys are not discernible from these data, since wind directions
were inconsistent during most of the sampling.
                                     69

-------
     It appears from the results presented here that the highest concen-
trations of pollutants in the Shenandoah Valley occur at night.  Therefore,
future sampling efforts should make more direct comparisons between day and
night levels at the same locations.
                                        70

-------
                                  SECTION 8
                               QUALITY CONTROL

     Quality control was recognized as an integral and primary component of
this program.  As such, a rigorous quality assurance program was estab-
lished to prevent contamination or loss of sample, mislabeling, and to
provide estimates on the accuracy of the data.  The essential features of
the quality control program are discussed below.
SAMPLING
     The quality control program used for the sampling of ambient air
included sample and data logging, reagent and glassware control, and control
samples as discussed below.
Sample Collection
     During sample collection, a sample data sheet (Figure 11) was maintained
for each sample.  The sampling locations for each sampling period were
recorded on a detailed area map.  The coded form contained information such
as date and time of sampling, locations, sampling parameters and meteoro-
logical information.  The alpha-numeric sample code was also fixed directly
to the sample container at that time.
     Following each day's sample collection, the protocol sheets and sample
labels were independently reviewed by two field personnel to assure that
all information was logged in, that the codes were self-consistent and that
there was no duplication.  Upon returning to the laboratory, the samples
were again checked for proper labeling.  Upon submission for analysis, the
samples were logged in by the GC/MS/COMP operator and a running account of
sample analysis and data output maintained.  When the sample analysis and
data output were completed, the data were returned to the Project Director
and logged in.
     Each sample was collected on duplicate cartridges in parallel.  Thus,
additional quality assurance was provided not only in case of sample damage,
but also for confirmatory analysis if necessary.

                                        71

-------
                     FIELD SAMPLING PROTOCOL
Date:
Project No.

Municipal!ty_

Location
Site
Sample Code
                 Operator
                   _
                   Seq.
State
No.
Dimensions
   (en)
                            Sorbent
                                     M)
                                     M)
                                     M)
                                     M)
                                           Date/Analytical Procedure
DC Amps_
         Sampling  Rate  (LPM)
Rationale:   Qual.  Anal  (F)	

Quant. Anal. (E)	 Calibration (C)

Experimental:   Lab (L)	 Field (X)	

Remarks           	    	
                                                   Vacuum  ("Hg)_
End : Tine
Start: Time
Total: (min) .
ft3
ft3
ft3
                                 Volume Air/Cartridge:

                             0-0283 
-------
Reagent and Glassware Control
     Reagent and glassware control was required in order to minimize
                                                                             ®
contamination.  Sample containers, glassware, etc. were cleaned with Isoclean ,
rinsed with deionized-distilled water and heat treated at 450-500°C to
insure the removal of all traces of organic compounds.  Solvents were
redistilled in glass in our laboratories prior to their use.
Quality Control Samples
     Blank sampling cartridges and control cartridges loaded with known
amounts of standards were prepared for each sampling trip.  Half of the
samples were designated "lab blanks/controls" and remained in the laboratory,
the other half were designated "field blanks/controls", and were carried to
the field in the same containers as the sampling cartridges.  The quality
control scheme is outlined in Table 25 .   This procedure not only provided a
check of possible contamination during transportation and storage, but also
allowed calculation of overall recoveries during the storage and analysis
phases.
SAMPLE WORKUP AND ANALYSIS
Volatiles Collected on Tenax GC Cartridges
     The quality assurance program consisted of analysis of controls and
blanks, cross-checking data interpretation, and validation of methodology.
     The results of the blank analyses are included with the quantitation
results (Tables 15, 16, 19, 21-24).  The recoveries of selected organic
compounds from Tenax GC cartridges are listed in Table 10.  The results
from Trip 3 are not included because the standards were improperly loaded
onto the cartridges.  The recoveries shown are very good, considering that
each cartridge was stored at ambient temperature for up to one week during
sampling.  These results indicate that sample loss from the cartridges
during storage is minimal.
     The qualitative data presented in Appendices C-F were independently
checked after interpretation.
     The entire method has been previously validated.    '  '
Highly Volatile Compounds Collected on Carbon Cartridges
     The quality control program for these samples was essentially the same
as for the samples collected on Tenax GC.  The recoveries of compounds on

                                    73

-------





















t
PH
HH
e<
H
O
g
i_3
H^
PM
^
en
P
.3
t— 1
w
h-i
cu
re
r i
^
^s
w
e)
o
rv.
H~i
02
W
(—3
Q ,
t-M
^P
CO
h-3
§
H
r<£j.
O
o



"
in
CM

CU
i — 1
X>
cd
H











rH
cfl
4-1
O
H



43
CO /-^
rH T3
O rH
H CU
4-> -H
C fu
0 ^
O






CO
CO
rH ^-N
0 42
J-i cd
4-> rJ
C ^
O
O




/-N
43 TJ
41
H

CU
rH
CX
a
cfl
CO


oo oo








O 13
CM CM












0 T3
CM CM







CM CM






CM CM












CO
CO CU
CU 60
00 13
"O -H
, J t,
•Tn H
H 4-1
4J S-J
H Cfl
Cfl O
0
C
X 0
cfl 43
C M
CU cfl
H U





























,
g
3
4-1
CU
M

C
o
co
cu
rH
!
CO

43
4J
•H
S
TJ
CU
rJ
O
4-J
CO

*.
>>
M
0
4-1
CO
M
0
•s
rH
c
•H

S3
•H
cfl
g
CU
&
cfl


































C
1 1
H
4-1
CU
M
TJ
(3
cfl

•a
rH
CU
•H
M-l
cu
43
•4-J

o
4J

co
cu
rH
&

CO
43
4-1
•H
s

rH
cu
>
to
i-4
H
n
/^\
60
(3

O
rH
1—1
v_ J
cu .
c /->
CU 60
3 (3
rH
o >
•a 43
•H 4-1
M CU
O
rH rH
43 >,
0 43
4-1
CU CU
C B
cu
rH T3
>> c
43 tfl
4-1
CU /~N
g 60
C
*i
^^ O
00 O
C CM
s*^
lO
u j
o 6
st O
CM 14-1
•*~s O
!-i
CU O
C rH
CU 43
N O
C
CU "
43 /-s
60
43 C
4J
•H m
*> rr\
3 n

TJ
CU CU
T) C
CO tfl
0 43
rH 4J
CU
CU O
M J-l
CU O
S rH
CO O
CU -H
60 H
13 4J
•H 1
!-l rH
4J "
M rH
cfl *
U rH
O








.
/^N
60
C3

O
o
rH
*~s

CU
TJ
^H

O
(-1
43
rH
r^
43
4-1
CU
e
•o
cS
.^N
60
c
O
rH
m
<^x
cu
rr— t
"
•H
J-l
O
rH
43
O

rH
t>~.
43
4J
CU
e
4J
•H
3

TJ
CU
13
Cfl
O
rH

CU
rJ
CU
&
co
CO
60
13
•H
M
4->
M
cfl
O
TJ
74

-------
the controls were not quantitated since no compounds of interest were found
in the field samples.  The method has been thoroughly validated on previous
       «.  (7,11,12)
contracts.
Particulate Collected on MAS
     Since there was no suitable method of preparation of control and blank
samples and quantitation was not attempted, no quality control samples were
used.
     As discussed above, the extraction method was validated for a broad
range of organic compounds.
     The data interpretation is described above.  It was necessary to
employ two independent interpreters to assure that identifications were
correct.  This procedure was especially critical for the semi-volatiles
(vis a vis the compounds collected on Tenax GC) due to the large number of
possible compounds present, and the relative state of the art.
Summary
     In summary, measures were taken to assure that both the qualitative
and quantitative data generated under this study are accurate and complete.
                                      75

-------
                                 REFERENCES
 1.   Pellizzari,  E.  D. ,  Development  of  Analytical  Techniques  for  Measuring
     Ambient Atmospheric Carcinogenic Vapors.   Publication No.  EPA-600/2-
     75-076, Contract No.  68-02-1228, 185  pp.,  November,  1975.
 2.   Pellizzari,  E.  D.,  The Measurement of Carcinogenic Vapors  in Ambient
     Atmospheres, Publication No.  EPA-600/7-77-055,  Contract  No.  68-02-1228,
     288 pp.,  June,  1977.
 3.   Bursey, J.  T.,  D.  Smith,  J.  E.  Bunch, R. N. Williams, R. E.  Berkley,
     and E.  D.  Pellizzari,  Amer.  Lab.,  December, 1977, 35-41.
 4.   Pellizzari,  E.  D.,  J.  E.  Bunch, R.  E. Berkley and J. McRae,  Anal.
     Lett.,  9,  45 (1976).
 5.   Pellizzari,  E.  D.,  Analysis  of  Organic  Air Pollutants by Gas Chroma-
     tography and Mass Spectroscopy, Publication No.  EPA-600/2-77-100,
     Contract No. 68-02-2262,  104 pp.,  June,  1977.
 6.   Zweidinger,  R.  A.,  Analysis  of  Organic  Emissions of  Automobile  Interiors
     and Quantitation of Vinyl Chloride Monomer, Interim  Report,  EPA
     Contract No. 68-02-1325,  Task 63,  in  preparation.
 7.   Pellizzari,  E.  D.,  Development  of  Method for  Carcinogenic  Vapor
     Analysis in Ambient Atmospheres.   Publication No. EPA-650/2-74-121,
     Contract No. 68-02-1228,  148 pp.,  July,  1974.
 8.   Mitchell,  R. I., W. M. Henry, N. C. Henderson,  R. J. Thompson and  R. M.
     Burton, N.  C. Henderson,  "Massive  Volume Sampler for Gram  Quantities
     of Respirable Aerosols (Mark II)".  Presented at Meeting of  the Air
     Pollution Control Association,  June 22-24, 1977, Toronto,  Ont.
 9.   Henry,  W.  M. and R. I. Mitchell, "Collection  and Analysis  of Airborne
     Suspended Particulate Matter Respirable to Humans for Sulfonates
     and Polycyclic Organics", Final Report,  EPA Contract No. 68-02-0752,
     May, 1975.
10.   Pellizzari,  E.  D.,  The Measurement of Carcinogenic Vapors  in Ambient
     Atmospheres, EPA-600/7-77-055,  June,  1977.
                                        76

-------
11.  Pellizzari,  E.  D.,  Analysis of Organic Air Pollutants  by Gas Chroma-
     tography and Mass Spectroscopy, EPA-600/2-77-100,  June,  1977.
12.  Virginia State Chamber of Commerce, Industrial Directory of Virginia,
     10th ed., Richmond, 1969-70.
13.  L.  W.  Little,  "Application of  Salmonella typhimurium Histidine-
     Deficient Strains to the Screening of Selected Air Pollutants for
     Potential Carcinogenicity," EPA Contract No.  68-02-2724,  Quarterly
     Technical Progress  Report No.  2,  January,  1978.
                                       77

-------
                        APPENDIX A




SAMPLING AND ANALYSIS FOR VOLATILE ORGANICS IN AMBIENT AIR
                           78

-------
                                 APPENDIX A
         SAMPLING AND ANALYSIS FOR VOLATILE ORGANICS IN AMBIENT AIR

1.0  Principle of Method
     Volatile organic compounds are concentrated from ambient air on Tenax
GC in a short glass tube (1-3).  Recovery of the volatile organics is accomp-
lished by thermal desorption and purging with helium into a liquid nitrogen
cooled nickel capillary trap (1,2,4) and the vapors then introduced onto a
high resolution glass gas chromatographic column where the constituents are
separated from each other (2,5).  Characterization and quantitation of the
constituents in the sample are accomplished by mass spectrometry, either by
measuring the intensity of the total ion current signal or mass fragmen-
tography (2,6).  The collection and analysis systems are shown in Figure
A-l.
2.0  Range and Sensitivity
     The linear range for the analysis of volatile organic compounds depends
upon two principal features.  The first is a function of the breakthrough
volume of each specific compound trapped on the Tenax GC sampling cartridge,
and the second is related to the inherent sensitivity of the mass spectrom-
eter for each organic compound (2,7).  Thus, the range and sensitivity is a
direct function of each compound which is present in the original ambient
air.  The linear range for quantitation on the gas chromatograph/mass spectrom-
eter/computer (GC/MS/COMP) is generally three orders of magnitude.  Table A-
1 lists the overall theoretical sensitivity for some examples of volatile
organics which is based on these two principles (7).
     The sensitivity of this technique for the very volatile compounds (C,
to C,.) is inadequate for the purpose of this study.  Alternate methods for
their collection and analysis are suggested.
                                      79

-------

o
Vu^
GAS
METER


[
/»
f

"LOW
vIETER
carbon _ /B
.' 	 	 GLASS
-0— PUMP 	 «j 	 CARTRIDGE FIBER
4 '— J 	 	 	 k II FILTER
NEEDLE
VALVE
                      VAPOR COLLECTION  SYSTEM
                                                        PURGE
                                                        GAS
                                            TWO
                                          POSITION
                                            VALVE
                           ANALYTICAL   SYSTEM
                                                              THERMAL
                                                              DESORPTICK'
                                                              CHAMBER
                                                                HEATED
                                                                5..0CKS
                                                              EXHAUS1
Figure  A-l.  Vapor  collection and analytical systems  for analysis
              of organic vapors in ambient air.
                                 80

-------









2
O
M
H
13 CO
pJ H
O CO
W ^
rvi -r^
M* ^,
^^ ^^
0
H pi
EC W
H
O FM CO
>< O 5
H 0 <
M -^ H
M Pi iJ
H H rJ
M W O
CO £ P*
2 O
W PS U
CO H M
0 PS
nJ W W
< PL, EC
CJ> CO PM
M CO
H CO O
W CO £
qi < p
o £ <
W --^
33 >-i PS
H EC O
P-l P-f
f-J ^
h- 3 OH
•«i O
fV; C^
W H
£* ^
O £
0
. PS
rH PS
1 ^^
<^
0) <
r-H 0
"«
H










JJ
c e.
o
•H
o
0)
I 1
0>CO
p JJ
•H
•o E
0) i-l
JJ hJ
re
e
•H f">
JJ g
m "^
WW
Dt-
c











































^J
^^
CO
A CM moroooo
lAOCMOOOOOOOOOin O O rOOrOOCNO
OOOOr-lT-IOOOOOCN O O rH
V V ?











OOOt-^ OOOOOOO O O OOOOOO
m- 1 >








s~\
0) X-N
0) CU CO)
C C cfl C
CO CO CX tO
o. ex o ex
QJ O O I-l O
0) C >-, t-i (X M
c to ex a. >-, a.
oiojca aoo «>^ 01

COCOJJ )-iOOOJ(XO 0) T-l
JSJSO) CXr-irHCLIC 0) CX T3 I-l
jjjjo OJOJTCCO i a) -HO
0)0)1-1 E-HUcOCXCrO 1 0) ^i rH
E E O QJ O *U 1 -C O *H ^ C PO 0) *O 0) O JS
0) OO'H T3t-lT)TH O
*X3 r-J l-i J— *O CO J2 rO 1 0) CX *"O 1 ^* C^ OJ *H I-l *H JS CO
•H OOO-HCXI -OOO^OTaiC EOl-iO I-l
E t— 1 r- IISOflCMEEEJSIw^Ofl) OrHO EAJ
oEJSj=csioi-ii i OOOOOJSEN i-ijSiHOJi-ia)
l-i|-iOUII-,CXOOPl-il-if-ir-IOOC J2OJSCOJJ
^Q O *^ O O Q O r-J ^ ; ^ O J^ Q CJ E W^ ^ O GJ ^^
W-I13EE EOO-H-H-HrHOOCQj3 iHiH THOC
rHOOOOrHOrHrHOPQjS 1 i-i 1 O ^XrH^VjO

COOJ3PQTHBQCJCJrHeMrO-H<-''H £ u CJ





T) C
0) 0
j | f*.
** ^U
CO l-i
C cfl
0) O
6C O
O )-i
TH -O






























^•*N
13

-------
TJ
 0)

 C
•H
4J

 O
 o
4-J
c a
o
•H
4-1
0
o>
4-1
01 Cfl
C^ AJ
TJ E
01 i-l
co
E
•H CO
jj g
CD ^*-
W 00
c











TJ
c
3
0
a.
o














rH
CO
O CO
•H CO
E TO
0) rH
X U
U

m
rH
00











CM
CO













01
C
CO
X
J 1
0)
o
Jj
o
rH

U
•r-4
O
1
CM
rH

TJ
OJ
4J
Cfl
C
0)
00
o
rH
CO

in
CM
rH










<*O
vO










0)
p*
cfl

4-J
(U
O
O
rH
f-
U
•H
jj
H
1
rH
•s
rH
rH

C
0
pO
I-l
Cfl
O
o
I-l
TJ

si
00 CM
CO ON
O rH











m o
• rH
CM












Ol
C
Q) Q)
rH C
^ 0)

0) XI
O -U
P 0>
O O
rH I-l
Si O
U rH
CO Si
l-i U
4J -H
H H



^^
TJ

4J
c
o
o


m m oo oo CM m
rH rH 00 OO CO •
c c
0) Ol
a Q.
o o
I-l >-l
a a
rH rH 0) Ol 0)
>-, >, c c c
.c s: o> 01 oj
0) Q) 3 TJ 3 3
E 6 S* -H ,0 JD
II I M 1 1
CM CM rH O rH CM
II 1 rH 1 1
o o o x o o
)_i M p U I-l 1-4
o o o o o
rH rH rH rH rH rH
X XI Si >, Si Si
U U U rH O O
II 1 rH 1 1
rH CO CO •< >» rH












f- VD rH rH
o- o o o
o o o c










o o m m
rH O r^ \O
CM rH O O














0) Ol
C C
Ol Q)
K N 01
Q) C C TJ
C Ol 0» -H
OJ ^ XI l-i
N O O O
C H P rH
a> o o x:
X3 rH rH U
O X XI rH
l-i U U t*,
O -H -H to
rH D Q C
XI 1 1 01












l^ O
ON rH
O rH










m
rH O
 x:
rH 01
>> E
XI O
4-1 I-l
QJ O
O rH
l-i X
O U

X 1
CJ CO
1 iH
CM CO

TJ
0)
4J
cfl
c
a) ca
00 M
O 01
rH Si
Cfl 4J
S3 OJ
vo r^
rH O











o o
m co









0)
c o)
•H C
6 i-l
cfl E
rH CO

X S*
OJ 4J
E OJ
T-l -H
*o *c
o o
ca co
o o
I-l I-l
4J 4J
•H -H
z z
1 1
z z
CO
0)
c
1-1
E
cfl
co
o
^t
4-1
*H
z
m m
VO C7N
m rH










O ON
i!^l l^
rH )

















TJ

(-*
QJ
TJ
C rH
i-l CO
QJ TJ
rH -H
O U
1- t^
U rH


TJ
0)
4J
CO
c
o>
00

^
o
m
in
CM










o
)
















QJ
•H
X
o

0)
c
01
rH

a
o
p*












r>«
\o











o
CM
)












OJ
TJ
•H

o
0)
•H
TJ

QJ
c
OJ
•H
TJ
cfl
4J
m




























TJ
QJ
3
c
4J
c
o
CJ
**~*































                                                               82

-------
•o
 0)
 3
 C
•H
 4J
 C
 o
 o
r-l


4-1
a
c &•
o
•H
4J
CJ
0)
4-1
QJCO
D 4J
•H
13 E
CD -H
4J nJ
CO
E
•H co
4j e
CO -^
W 6D
C



















•a
c
3
O
a
£
o
u


























T-l
CO
O CO
•H 03
§CO
r-l
j; O
U

in in
rH rH
m -j" -» CN
CN O O T-l
I J














O CN CN PI
rH ? (
?





















at
•o
•H QJ
?s C
00) 0
TJ 0) 4-1
Q) i-l CO
C X O cfl
QJ O C rH
X QJ O
0) 0) JS T-l
j= c a a
O 0) O O
i— 1 i-l 4J V-4
O r^ QJ PH
>^ 4J CJ |
U W < ca












CO
e /-v
•O O TD
QJ .a QJ
4-1 I-l 3
cfl to C
C 0 -H
QJ O 4J
bC M C
^\ ^3 O
A £ °
O X ^^


co

CM O
^














00 O O O
m •
m ? m

















a>
4J
cfl
14-1
rH
3
 ^
4J iH CD f
•H C -H 4-1
s < o a













tn
3
O CO CO
C *^3 *O
QJ C C
60 3 P 3
O O 3O
Vj a. 14-1 ex
4-1 E rH E
•HO 30
2 0 CO 0
co
wJ
1™H
•H
a. co
CO CO
O CO
E
C_J QJ
O X
4J
^
CO C
C -H
QJ
H -0
C
U^ 3
o o
a
60 E
o
CN O
•
CN 4J
CB
O 4J
O
0) 4J
E
3 Ui
rH 01
O 4-1
> 0)
E
J= 0
3 4J
O O
iJ 0)
X CX
4-1 CO
co co
o> co
M Cfl
-Q E

QJ OJ •
X JC C
4-1 4J O
•H
>4-l U-l
O O QJ
CO
CO >-, C
•H 4J QJ
CO -H 4J
CO > C
.fi T-l -H
4-1
0) iH 4J
X co co
4-1 C O
QJ E
C co
O >4-4
•o o
•a c
Q) CO QJ
4J T3
Cfl 0) O
rH 0 E
3 C
O Cfl >%
rH E X
Cfl p CX
O O tfl
<4-t M
cy rJ oo
}-i QJ O
Cfl D. 4J
c
co c OJ
*-> E E
•H 3 60
E rH CO
•H 0 VJ
(J O 14-1
CO

-------
3.0  Interferences
     The potential difficulties with this technique are primarily associated
with those cases where isomeric forms of a particular substance cannot be
resolved by the high resolution chromatographic column and the mass cracking
pattern of each of the isomers is identical.   An example of such a problem
is seen with the C^-alkyl aromatics of which there are 53 isomers.  As the
number of carbon atoms increase in the hydrocarbons and aromatics, the
number of potential isomers become increasingly large and difficult to
completely resolve by gas chromatography and/or by their corresponding mass
cracking patterns.  However, differentiation between the hydrocarbons, that
is alkanes, alkenes, aromatics, oxygenated, etc. can be made.  Known back-
ground compounds include phthalate esters; silanes, phosphines and thio-
phosphines (from the SCOT column); 2,2,4-trimethylpenta-l,3-diol-diisobuty-
rate ("SNOOP"); fluorocarbon refrigerants; and acetic acid (Tenax GC decompo-
sition product).
     Interferences in quantitation can usually be avoided by properly
setting the computer S/N threshold.
4.0  Reproducibility
     The reproducibility of this method has been determined to range from
±10 to ±30 percent of the relative standard deviation for different sub-
stances when replicate sampling cartridges are examined (5).  The inherent
analytical errors are a function of several factors:  (1) the ability to
accurately determine the breakthrough volume for each of the identified
organic compounds, (2) the accurate measurement of the ambient air volume
sampled, (3) the percent recovery of the organic from the sampling cartridge
after a period of storage, (4) the reproducibility of thermal desorption
for a compound from the cartridge and its introduction into the analytical
system, (5) the accuracy of determining the relative molar response ratios
between the identified substance and the external standard used for cali-
brating the analytical system, (6) the reproducibility of transmitting the
sample through the high resolution gas chromatographic column, and (7) the
day-to-day reliability of the ms-comp system (1-8).
     The accuracy of the analysis is generally ±30%, however, the accuracy
is dependent on the chemical and physical nature of the compound  (2,8).
                                         84

-------
5.0  Advantages and Disadvantages of the Method
     The gas chromatograph/mass spectrometer, interfaced with a glass jet
separator is extremely sensitive and specific for the analysis of many
organic compounds in ambient air.  High resolution gas chromatographic
separation provides adequate resolution of the substances found in ambient
air for their subsequent quantification.  The combination of high resolution
gas chromatographic column and the selection of specific or unique ions re-
presenting the various compounds identified in air samples yields a relatively
specific assay method for these compounds (1-8).
     Collected samples can be stored up to one month with less than 10%
losses for most of the chemical classes (2,8).  Because some of the compounds
of interest may be hazardous to man, it is extremely important to exercise
safety precautions in the preparation and disposal of liquid and gas standards,
cleaning of used glassware, etc. and the analysis of air samples.
     Since the mass spectrometer cannot be conveniently mobilized, sampling
must be carried out away from the instrument.
     The efficiency of air sampling increases as the temperature of ambient
air decreases (i.e., sensitivity increases)  (8).
     The retention of water by Tenax is low, its thermal stability is high
and its background is negligible allowing sensitive analysis (1,2,5,8).
6.0  Apparatus
6.1  Sampling Cartridges
     The sampling tubes are prepared by packing a 10 cm long x 1.5 cm i.d.
glass tube with 6.0 cm of 35/60 mesh Tenax GC ,  placing glass wool in the  ends
to provide support (2,5).  Virgin Tenax (or material to be recycled) is
extracted in a Soxhlet extractor for a minimum of 48 hours with methanol and
pentane prior to preparation of cartridge samplers (2,5).  After purification
of the Tenax GC sorbent and drying in a vacuum oven at 100°C for 16 hr at a
vacuum of 28 inches of water, all the sorbent material is meshed to provide
a 35/60 particle size range.  Cartridge samplers are then prepared and
conditioned at 270°C with helium flow at 30 ml/min for 30 minutes.  The
conditioned cartridges are transferred to Kimax  (2.5 cm x 150 cm) culture
tubes, immediately sealed using Teflon lined caps, and cooled.  This procedure
is  performed in order to avoid recontamination of the sorbent bed (2,5).
                                          85

-------
     Cartridge samplers with longer beds of sorbent may be prepared using a
proportional increase in the amount of Tenax GC in order to achieve a larger
breakthrough volume for each compound and thus increasing the overall sensitiv-
ity of the technique (8).
6.2  Gas Chromatographic Column
     A 0.35 mm i.d. x 100 m glass SCOT capillary column coated with SE-30
stationary phase and 0.1% benzyltriphenylphosphonium chloride is used for
effecting the resolution of the volatile organic compounds (5).  The capillary
column is conditioned for 48 hr at 245°C at a 2.25 ml/min helium flow.
     A glass jet separator on a Varian-MAT CH-7 GC/MS/COMP system is employed
to interface the glass capillary column to the mass spectrometer.  The glass
jet separator is maintained at 240°C (2.5).
6.3  Inlet Manifold
     An inlet manifold for thermally recovering vapors trapped on Tenax
sampling cartridges is employed and is shown in Figure A-l (1,2,4,5).
6.4  Gas Chromatograph
     A Varian 1700 gas chromatograph is used to house the glass capillary
column and is interfaced to the inlet manifold (Fig A-l).
6.5  Mass Spectrometry/Computer
     A Varian-MAT CH-7 mass spectrometer with a resolution of 2,000 equipped
with a single ion monitoring capability is used in tandem with the gas
chromatograph (Fig. A-l).  The mass spectrometer is interfaced to a Varian
620/L computer (Fig. A-l).
7.0  Reagents and Materials
     All reagents used are analytical reagent grade.
8.0  Procedure
8.1  Cleaning of Glassware
     All glassware, sampling tubes, cartridge holders, etc. are washed in
        ®
Isoclean /water, rinsed with deionized distilled water, acetone and air
dried.  Glassware is heated to 450-500°C for 2 hours to insure that all
organic material has been removed prior to its use.
                                         86

-------
8.2  Collection of Halogenated Hydrocarbons in Ambient Air
     Continuous sampling of ambient air is accomplished using a Nutech
Model 221-A portable sampler (Nutech Corp., Durham, NC, see Fig. A-l, ref.
2).  Flow rates are maintained at 1-10 £/min are available with the system.
Flow rates are generally maintained at 1 £/min using critical orifices, and
the total flow is monitored through a calibrated flow meter.  The total
flow is also registered by a dry gas meter.  Concomitant with these param-
eters the temperature is continuously recorded with a Meteorology Research
Incorp. Weather Station since the breakthrough volume is important in order
to obtain quantitative data on the volatile organics.  This portable sampling
unit operates on a 12 volt storage battery and is capable of continuous
operation up to a period of 24 hours.  However, in most cases, the sampling
period will consist of 1 to 3 hours at the rates which will be employed in
the field.  This portable sampling unit will be utilized for obtaining
"high volume" samples.  Duplicate cartridges are deployed on each sampling
unit utilizing a sampling head as shown in Figure A-2.
     In addition to the Nutech samplers five duPont personnel samplers are
used to sample "low volumes" of ambient air as well as long term integrated
samples (12-36 hr).  Identical Tenax GC sampling cartridge are employed in
this case, and sampling is conducted in duplicate.  The flow rate is balanced
between duplicate cartridges using critical orifices to maintain a rate of
25 or 100 ml/min/cartridge.
     For large sample volumes it is important to realize that a large
volume of air may cause elution of compounds through the sampling tube if
their breakthrough volume is exceeded.  The breakthrough volumes of some
volatile organics are shown in Table A-2 (2,4,7,8).  These breakthrough
volumes have been determined by a previously described technique (2).  The
breakthrough volume is defined as that point at which 50% of a discreet
sample introduced into the cartridge is lost.  Although the identity of a
compound during ambient air sampling is not known (therefore also its
breakthrough volume) the compound can still be quantified, after identi-
fication by GC/MS/COMP, once the breakthrough volume been been established.
Thus the last portion of the sampling period corresponding to the break-
through volume is selected for calculating their concentration.
                                       87

-------
Figure A-2.  Sampling head for housing cartridge
             sampling train.
                         88

-------







i-H
CO
H

^
H
rJ
0
P-I

c^}
M
PS
EC
P-i
CO
o
1
d
PH
U
M
CO
PS
0


CO
w
3
o
^

33
O
£3
o
PS
EC
H

^
W
PS
PQ


•
CM
1


0)
rH
02
CO
H

















X— ^
C
v^

o>
t-l
3
^J
re
o>
CX
E
0)
H
























































O
O
i— I

O
°"


0
oo




o






o
vO


o
in



• x—v
CX U
• o
«"N \«^















•a
B
3
O
CX


0








rH
CO
O CD
•H CO
E co
O> rH
03 U
m
CM ON vO
• • •
0 O O
CO rH 00

o o

-* rH 0

O rH



in CM in
CM
0
rH



vo CM in
• *
O rH

oo en CM
•
o


•3- m co
CM • rH
1 CO














01
*O OI OI
•H TD T3
P iH -H
0 E H
rH O O
03 M rH
O 02 03
O
rH rH
^i ^"N rH
03 .B >-,
0) 01 -H
E 6 >


B
•o o
0) 02
CO CO
B U
O> O
00 M
O T3
rH ^
CO 03

en o o
rH rH

•"3" m eo
rH T-H


m oo o
rH rH




P^ <1" rH
CM CM





ON rH p**-
CO CM


rH CM -3-
rH *3" CO



rH rH p>-
->>-( O
03 O 02
oi 03 re
E u u













-3" r~- OO rH
rH f-~ CM

00 O"v ^D 00
rH O CM
rH

CO CM -sT 00
CM rH -J- CO
rH



rH U1 \£> O
CO iH CTi in
rH




rH co r^ r-
•^ rH vO vO
CM

eo CO rH O
in CM \o ON
eo


co in rH r-.
00 1^ CM 00
rH








0)
B
re a)
0) O3 B
B AJ 0) Q)
re 01 rH B
03 O ^ Q)
AJ M JS rH
01 0 AJ ^
O rH 0) J3
H 03 O AJ
O U M 0)
T-H -H O O
X M rH M
0 AJ 03 O
•H 1 0 rH
T3 r-H Cfl JS
1 - rl O
» > 01 h
rH rH AJ AJ













r- oo


ON O
rH


CM CO
rH rH




VD r-»
rH H





O CM
CM CM


vO CT»
CM CM



00 CM
^O t^-






0) 01
B B
0) 0)
CX CX
o o
rl rl
CX CX
rH rH
^ ^
03 r*
AJ AJ
0) OI
E E
1 1
CM CM
1 1
O O
M J-l
o o
rH rH
03 03
1 1
rH CO













rH 0


oo r>-
m CJN


rH -3"
00 eo
rH



in «3-
iH 00
rH rH




CM CO
vo m
rH CM

ON 00
CM <3-
CM CO


in rH
CT\ CM
rH



1
o

o
rH
03
U
(U a> 1
B B rH
tO tti ****
ex ex
O O B
r-l f-l T-l
a a w
O O 13
l-i l-i >-,
O O O3
rH rH O
03 03 m
u a o
•H -rl rH
TJ T3 03
1 1 U
fv) f^\ *^
r>* r*i *rt
« « ex
H iH 0)













O"\ ^D LO C>1 O*^
m iH cs

^
m I-H -3-


*3° C7N ON CO vO
r^ CM m




-
O rH r-i CM r^
rH




^3- in vo so vo
>3- rH rH CO O
rH rH

0 ON rH f^ VO
O rH CM -d' -3"
CM rH


vo -«• m m -a-
rH vO *3" r^ OO
rH










^•^
01
BO) 0)0)
re B B B
a a) 01 01
O AJ OI AJ AJ
Vj 3 TD 3 3
CX 02 -H O2 02
^It-Ill
X rH O rH CM
O 1 rH 1 1
a o os o o
0) VJ O M M
1 O O O
Cn rH rH rH rH
• 03 Ps 03 03
CM O rH CJ CJ
1 rH | |
CO CO «3" iH













rH CM
00 f^
rH en

x3~ O\
CM 1
ON rH CM
*
rH

rH O<-
Q^ CN O^
CN m CM
•1 »l
rH rH


00 rH VO
m vo oo
r-^ co en
rH CM
en CM r^.
ON ON CO
en r*- m
CM CM

en ON ON
r^fc f^s. ^3-
rH rH rH












0)
B
OI OI
N TJ
B -H
0) P
02 0
O rH
H 03 6
o a t-i
rH O
03 rH UH
CJ ^*i O
•H N E
1 O> P
6|02 03













"^d" *s3"
t*^* oo
CO
rHCM
O *^"
iH m

00 *C"
C*^ VO
^H r^*



00 ON
CO f***
rH 0
*>
i-H


10 iH
m CN
CN in
*L
rH
oo >*
-31 ^3°
en rH
CM

rH in
en in
rH rH











01

•H
E
O
w
O2 0)
•H B
"O 0)
N
01 B
B CO
OI 02
rH O
>• E
AJ M
01 03












89

-------
 c
 O
 a
CM
 OJ

rH
ON CM

O
0
rH

0
ON

£
o
S^ f
o
01 00
3
I 1
CO
0)
a o
E f^
0)
H

O
vO


O



• /~*s
O.CJ
• o











•O
C
3
O
D.
E
O
CJ








rH
CO
U CO
•H 03
E CO
5 rH
4= U
O
00 -3-
rH


•a- ON
CM O
rH CM




CO 0)
42
r-» oo
O O
rH in


oo O
*>T ^^
i~H r^»



en vO
^D ^Q
rH O^


r~ oooo OrH-a-rHvo ~a--a- rno- CMVOCMOO m\o oo«a-
r~ inr>.coinoNOOrHrHrHoo rH VOONVO
comminoNrH rH co rH r~
rH rH rH CM rH


00 *^ ^H ^D ^H *^ O^ P*^ T™H Ov ^5 ^O ^T CO CO CO l^^ *Cf 00 ^H ^O
rH rHO rHONVOCMvD rHCM rHrH CM O COOO iH
rH mooor^rocM m ON rHrHin
CM rH rH iH CO CM

ooo r-^-a- COOCMOOVD mm rHa->3-m ONCO mr>-
rHvo I-HH mr--r>.r>.vD cMr-« CNVD co r~ OOON rH
rH r~rHooor>-co o m r^rHr^
**** * * * *
rHCMrHrH CM CM i X "H *T3 0) 4-1 0) *4H C C C 0) «^^ 0) X
43 O -O 0) -H COC rHcfl-H-HCrH 4=O
O) CX Ocflcfl 342EE-H>-. 4->
TJ 0) 0) 0) O CrH4= tn 4J CO Cfl E 4-> CUOI
CrHCCX 01O4J OlrHrHCflSQ) C
iHCO 0)01 CUCO 43-H 0)O>rHE >N >> rH 42 C 0) rH CU
0>T3 rHiH 4:CrHOHO. EC >. 434J^,l.iHC P*. rH
rH -H ^13 OOIOOO OiH 4=rH 4J34JCT3-H 4=>%
OO P-Cfl rHMC4JM >-lrH 4JX <1> J3 3 -^ -H r-l 4JCX
(j f^ O 4J O >^ 0) 0) &. 4J iH 0)42 E O 43 1 MiH 0) O
OrH U3 >>,4J4=UI -HC -H4J iHCOI-H f^fi iHW
CO DC P- 42 UCOCXCOCQ C ffl T3 0) TJ -H 4J|"O &, CO T3 &
CO
C CO
O CO C
•O 43 3 O
0)1-1 O 43 CO
4J CO C l-i T)
eg o at co c
Co &o o P D en co
OJI-i OO3OO) l-i
dOTJ VJ *J M-i O. C 01
X^J^ AH ">, "3 o "e w
O C 42 03 O Cfl 0)
                                                         90

-------
 o
 o
<


 QJ
iH
43






/_s
o
>^*

QJ
U
3
1 j
CO
0)
a
E
01
H










































O
0
rH

O
ON



O
CO




O




O
VD


O
in


& G
• o
r* <^s







TJ
C
§
a

Q
CJ








rH
re
u en
•H en
§43
42 U

CM en O
CM CM ON

CM -3- r»
m en en
rH


00 O Os
•a* m o
CM



CM m oo
r-* r-» H
en


00 t-H ->
4J M
o> re o
4-1 rH re
re ^42
AJ J-l 4J
0) U 0)
o re e
re

^H ^i £>*i
>>43 43
42 4J 4J
4-1 0) OJ
ai E e






en

QJ
4-1
en
0)
sr en



rH



oo r*»
CM




CM ON
rH en



r- c-
rH in


m CM
CM CO


vD CM
in i
o
00

CJ

0
4J
0>


rH
^
4J
0>
OJ
C rH
O >•*
4J H
OJ 4J
U 0)
cd g





en
QJ
C
0
4-1
01
4*!
"^ r**
rH en
O
rH
ONO,
rH m
-3-
rH

oo o
CM O
O
IK
Csl

^5 r**
s3- vO
f-^
•*
CM
oo m
m m
00
en
 QJ

rH O,
>* o
42 4-1
4J Ol
0) U
E co











p^ rH
• O
O -H
r-T
ON CM
• CM
CO vD
rH

rH CM
00
en
^
CM

CM l^>
O
m
•i
en
CM CM
m
rH
m
en vo
oo
in
•^
^5 O*v
rH









0) 0)
•O T3

OJ QJ
TJ -O
rH rH
re re
4J N
OJ C
U OJ
CO 43



en
QJ
•a

*£?
0)
•o
rH
re
en m vo
•
0
<• r^- oo
•
0


vD O rH
• rH rH
O



CO *3" vO
• rH rH
O


rH O en
CM CM


rH r- CM
CM m


r-3- m en in
m -^ O~N CM
CM vD m
•*
rH
r^ oo ^" en
r*^ *a* co ^-P
en ON rH
CM
00 ^^ CO ^D
^^ G^ C^ r^»
rH -C- en O
r-T en
rH VO CM «3-
O O vO CM
oo rH en m
rH rH rH







0)
C
0)
N
£2
QJ 0) QJ
C C 43 0)
0) 0) rH C
N 3 !>> Q)
C rH 42 6
QJ O 4J 3
43 4J Q) U



CO
U
•H
4J
rt
o
M
re
vO ON
CM

ON ON
en



CM in
rH in




r^ m
rH P"*



en ^3"
CM O
rH

CM en
en *
*^-

CO -3"
vO



rH en
rH ON




m m
rH en
rH


o VD
CM ON
rH

00 VO
CM 00
CM

m vo
en en
vO ON










01
QJ C
C 01
QJ 4-1
X O
0) QJ
42 43
1 1
tH rH











T-H oo en
• CM
0
CM O\ <•
• »^
O


CM «3" vD
• 00
0



en vO 00
• *3~
0 rH


 C a)
C rt C
rt t-> 01
4J C 4J
3 QJ C
42 D- Q)
rH rH O^
>"> >> 1
43 43 rH
4J 4J |
0) QJ rH
e e >>
•H ^H 43
TJ T3 W
1 1 0)
CM 
rt
X
0)
42
O
T-H
CJ

0











OJ


C
                                                                                                             c
                                                                                                             o
                                                                                                             o
                                                      91

-------






























•o
JJ
c
o
a

CM
|


OJ
^
cd
H






































o
s»^

cu
Jj
3
4J
co
co
a.
E
cu
H













o
o
rH

O



o
oo





o
t^





o
v0





o


a. cj
• o
.0 s-'












"U
C
3
O
a
E
0
CJ









rH
cd
u co
•H CO
E cd
CU rH
f, U
0
O O O rH O
o
•
o
O O O CM iH
o o
o o

O O O CM p->
O O
• *
0 O



O O O ro 
-------
     Previous experiments have shown that organic vapors collected on Tenax
GC sorbent are stable and can be quantitatively recovered from the cartridge
samplers up to four weeks after sampling when they are tightly closed in
cartridge holders and placed in a second container that can be sealed,
protected from light, and stored at 0°C (1,2).
8.3  Analysis of Sample
     The instrumental conditions for the analysis of volatile organics on
the sorbent Tenax GC sampling cartridge are shown in Table A-3.  The thermal
desorption chamber and the six-port valco valve are maintained at 270° and
240°C, respectively.  The glass jet separator is maintained at 240°.  The
mass spectrometer is set to scan the mass range from 25-350.  The helium
purged gas through the desorption chamber is adjusted to 15-20 ml/min.  The
nickel capillary trap at the inlet manifold is cooled with liquid nitrogen.
In a typical thermal desorption cycle a sampling cartridge is placed in the
preheated desorption chamber and helium gas is channeled through the cartridge
to purge the vapors into the liquid nitrogen cooled nickel capillary trap
[the inertness activity of the trap has been shown in previous studies
(5)].  After the desorption has been completed, the six-port valve is
rotated and the temperature on the capillary loop is rapidly raised (greater
than 10°/min); the carrier gas then introduces the vapors onto the high
resolution glc column.  The glass capillary column is temperature programmed
from ambient to 240°C at 4°C/min and held at the upper limit for a minimum
of 10 rain.  After all of the components have been eluted from the capillary
column, the analytical column is then cooled to ambient temperature and the
next sample is processed (2).
     An example of the analysis of volatile organics in ambient air is
shown in Figure A-3 and the background from a blank cartridge in Figure A-
4.  The high resolution glass capillary column was coated with SE-30 sta-
tionary which is capable of resolving a multitude of compounds for subsequent
identification by ms-comp techniques; in this case over 120 compounds were
identified in this chromatogram.
     8.3.1  Operation of the MS-COMP System (Fig. A-5)
     Typically, the mass spectrometer is initially set to operate in the
repetitive scanning mode.  In this mode the magnet is automatically scanned
                                      93

-------
       Table A-3..  OPERATING PARAMETERS  FOR GLC-MS-COMP SYSTEM
    Parameter                                       Setting


Inlet-manifold
     desorption chamber                              270°C
     valve                                           220°C
     capillary trap - minimum                       -195°C
                      maximum                       +180°C
     thermal desorption time                         4 min

GLC 100 m glass SCOT-OV101
     50 m glass SCOT-Carbowax 20M                    20-240°C, 4/C" min
                                                     80-240°C
     carrier (He) flow                              ~3 ml/min
     transfer line to ms                             240°C
MS
     scan range                                      m/e_ 20 -»• 300
     scan rate, automatic-cyclic                     1 sec/decade
     filament current                                300 yA
     multiplier                                      6.0
     ion source vacuum                              ~4 x 10   torr
                                   94

-------

o
a>
                                 sf
                                               S3
                                     s*
                                                          oo
                                                          o
                                                          XJ

                                                          I
                                                          o
                                                          M
                                                          03
                                                          OJ
                                                          00

                                                          e
                                                          o
                                                          •H
                                                          O
                                                          CO
                                                          0)
                                                          00
                                                          •H
                                                          00
                                                          B
                                                          (-1
                                                          0)
                                                          •o
                                                          o
                                                          o
                                                          M
                                                          O
                                                          CD
                                                          4J
                                                          e
                                                          cfl
                                                          o  a)
                                                          CL 4J

                                                          Wl  O.
                                                          •H  e
                                                          CO  O
                                                             u
                                                          4J --^
                                                          c  >>
                                                          01  U
                                                          T-l  4J
                                                          J3  0)
                                                          E  c
                                                          Q  O
                                                             0)
                                                          CD Q.
                                                          iH M
                                                          •H
                                                          >4-l 03
                                                          O CO
                                                          U (0
                                                          04 E
o    o    o    o    o    o    o    'o
f-        m    ^    !••>    N    —
                                                           60
                          3A:ivi3y
                  95

-------
                                                     (3
                                                     ffl
                                                     0)
                                                     00
                                                     •O
                                                     fl)
                                                     O

                                                     u
                                                     O
                                                     cfl
                                                     c
                                                     (U
                                                     H
                                                     O
                                                    14-1
                                                    TJ
                                                     c

                                                     O
                                                     >-l
                                                     00
                                                    ^
                                                     O
                                                     CO
                                                     3
                                                     00
                                                    •rl
     8


(1,'J30H3.J )
                 O
 NOI  TV10J.
96

-------
            o

           "oL
            01
           rH
            0)
           H
                                      w
                                      a
                                         a>
                                     a>
                                     C
    Si
 w   to  o
 QJ      r-l
—   OJ  ^~
 a.  e  D-,
 >» -rl  Q
O  -U  P-i
                                                                     §
                                                                     4J
                                                                     CO
                                                                     >%
                                                                     co

                                                                     M
                                                                     CU
                                                                    j_l


                                                                     I
                                                                     O
                                                                     o

                                                                     ca
                                                                     B

                                                                    o
                                                                    00

                                                                   M-l
                                                                    O
                                                                    00
                                                                    tfl


                                                                   I
                                                                    u
                                                                   4:
                                                                   14)0
97

-------
exponentially upward from a preset low mass to a high mass value.  Although
the scan range may be varied depending on the particular sample, the range
is typically set from m/e 25 to m/e 300.   The scan is completed in approxi-
mately 1.8 seconds.  At this time the instrument automatically resets
itself to the low mass position in preparation for the next scan, and the
information is accumulated by an on-line 620/L computer and written onto
magnetic tapes or the dual disk system.  The reset period requires approxi-
mately 20 seconds.  Thus, a continuous scan cycle of 3.8 seconds/scan is
maintained and repetitively executed throughout the chromatographic run.
The results is the accumulation of a continuous series of mass spectra
throughout the chromatographic run in sequential fashion.
     Prior to running unknown samples the system is calibrated by intro-
ducing a standard substance, perfluorokerosene, into the instrument and
determining the time of appearance of the known standard peaks in relation
to the scanning magnetic field.  The calibration curve which is thus gene-
rated will be stored in the 620/L computer memory.  This calibration serves
only to calibrate the mass ion over the mass scanning range.
     While the magnet is continuously scanning the sample is injected and
automatic data acquisition is initiated.   As each spectrum is acquired by
the computer, peaks which exceed a preset threshold are recognized and
reduced to centroid time and peak intensity.  This information is stored in
the computer core while the scan is in progress.  In addition, approximately
30 total ion current values and an equal number of Hall probe signals are
stored in the core of the computer as they are acquired.  During the two-
second period between scans this spectral information, along with the
spectrum number, is written sequentially on disks, and the computer is
reset for the acquisition of the next spectrum.
     This procedure continues until the entire gc run is completed.  By
this time there are from 800-1,400 spectra on the disk which are then
subsequently processed.  Depending on the information required, the data
may then either be processed immediately or additional samples may be run,
stored on magnetic tape and the results examined at a later time.
     The mass spectral data are processed in the following manner.  First,
the original spectra are scanned and the total ion current (TIC) information
                                      98

-------
is extracted.  Then the TIC intensities are plotted against the spectrum
number on the Statos 31 recorder.  The information will generally indicate
whether the run is suitable for further processing, since it will give some
idea of the number of unknowns in the sample and the resolution obtained
using the particular glc column conditions.
     The next stage of the processing involves the mass conversion of the
spectral peak times to peak masses which is done directly via the dual disk
system.  The mass conversion is accomplished by use of the calibration
table obtained previously using perfluorokerosene.  Normally one set of the
calibration data is sufficient for an entire day's data processing since
the characteristics of the Hall probe are such that the variation in cali-
bration is less than 0.2 atomic mass units/day.  A typical time required
for this conversion process for 1,000 spectra is approximately 30 min.
     After the spectra are obtained in mass converted form, processing
proceeds either manually or by computer.  In the manual mode the full set
of spectral from the gc run are recorded on the Statos 31 plotter.  The TIC
information available at this time is most useful for deciding which spectra
are to be analyzed.  At the beginning of the runs where peaks are very
sharp nearly every spectrum must be inspected individually to determine the
identity of the component.  Later in the chromatographic run when the peaks
are broader, only selected scans need to be analyzed.
     Identification of resolved components is achieved by comparing the
mass cracking patterns of the unknown mass spectra to an eight major peak
index of mass spectra (9).  Individual difficult unknowns are searched
through the use of the Cornell University STIRS and PBM systems.  Unknowns
are also submitted to the EPA MSSS system for identification.  When feasible,
the identifications are confirmed by comparing the cracking pattern and
elution temperatures for two different chromatographic columns (SE-30 and
Carbowax SCOT capillaries) for the unknown and authentic compounds.  The
relationship between the boiling point of the identified halogenated hydro-
carbon and the elution temperature on a non-polar column (the order of
elution of constituents is predictable in homologous series since the SE-30
SCOT capillary separates primarily on the basis of boiling point) is care-
fully considered in making structure assignments.
                                      99

-------
     Mass spectra search programs are operational at the Triangle Univer-
sities Computation Center (TUCC).  RTI maintains twice daily service to
TUCC, which is one-quarter mile distance from the RTI campus.   Additional
information about each magnetic tape containing the mass spectra of halo-
genated hydrocarbons is entered directly into the TUCC job stream using a
remote job entry processing.  This is normally done using one of the five
terminals located within the Analytical Sciences Laboratory.  The control
program contains instructions for processing selected spectra or entire gc
runs.  The computer program compares simultaneously either the entire
library of 25,000 compounds or some subset of this library.  The complete
report showing the best fits for each of the unknowns is produced at TUCC
and printed out at the high speed terminals located on the RTI campus.
     8.3.2  Quantitative Analysis
     In many cases the estimation of the level of pollutants by capillary
gas chromatography in combination with mass spectrometry is not feasible
utilizing only the total ion current monitor (see Fig. A-3 for example).
Since baseline resolution between peaks is not always achieved, we employ
techniques (previously developed under contract) whereby full spectra are
obtained during the chromatographic separation step, and then selected ions
are presented as mass fragmentograms using computer software programs which
allow the possibility of deconvoluting constituents not resolved in the
total ion current chromatogram (6).  Examples are depicted in Figures A-6
and A-7 which represent an ambient air sample with a TIC profile as in Fig.
A-3.
     In our GC/MS/COMP system we request (from the Varian 620/L) dedicated
computer mass fragmentograms for any combination of m/e ions when full mass
spectra are obtained during chromatography; thus selectivity is obtained by
selecting the unique ion for that particular organic substance, and this is
represented versus time with subsequent use of that ion intensity for
quantitation.  Also, quantitation with external standards is easily achieved
using the intensity of the total ion current monitor or the use of a unique
mass cracking ion in the mass spectrum of that external standard.  Thus, we
use mass fragmentography for the quantitation of organics in ambient air
when the total ion current is inadequate due to lack of complete resolution
between components.

                                       100

-------
I
^
                                                             0.
                                                             Cf)
                                                             CO
                                                        8
                                                     i

                                                     i
                                                        a
                                                                             01   J-i
                                                                            T3  -H
                                                                            •H   Cfl
                                                                             !-i
                                                                             O   4-1
                                                                            rH   C
                                                                            J3   0)
                                                                             O  iH
                                                                             tO  -O
                                                                             H   B
                                                                            4-1   CO
                                                                             (1)
                                                                            •u   C
                                                                                •H
                                                                             fi
                                                                             O  ^
 CO  rH
 O
     CD

 c  "B
•H  ^
4-J
 C   0)
 Q)   C
 cn   a)
 0)   N
 rJ   C
 PL.  0)
 CD  ,d
 M   O

 cn   o
 C!  rH
 O  J=
•H   O
    -H
 O  TJ
 cn
•H  T3

 O)   cd
4-1
 O  s~*
 ccj  vO
 V)  ^O
 Cfl  rH

 O   0)
 cn   a)
 B   C
 Cfl   Q)
 1-1  rH
 00  >,
 O  J3
 4-1   4-1
 C   0)
 01   o

 60  O
 Cfl  rH

U-i   O
     cd
 cn   t-i
 cn   4J
 CO   CU
S   4J
                                                                             0)
                                                                             1-1

                                                                             60
                           101

-------
                                          0)
                                          T3

                             en
                             en
8
                                          O

                                          0)
                                          c
                                          0)
                                          .H
                                          60
                                          C
                                          C
                                          a)
                                          en
                                          0)
                                          0)  tfl
                                          to  C
                                          C  0)
                                          O  -H
                                          1C  -H
                                          •H
                                          1-1 /-v
                                          0)  ro
                                          4J  OO
                                          O
                                          cd  (U
                                          O
                                              e
                                         M-l  VJ
                                          O  O
                                             (4-1
                                          to  o
                                          e  »-i
                                          CO  O
                                          H r-H
                                          60 ^2
                                          O  O
                                         4-1
                                          C 13
                                          QJ  c
                                          S  tfl
                                          00
                                          OS -^"x
                                          to  a)
                                          to ^
                                          «  e
                                         4:
                                          a
                                          60
102

-------
     As described previously, the quantitation of constituents in ambient
air samples is accomplished either by utilizing the total ion current
monitor or, when necessary, mass f ragmentograms.  In order to eliminate the
need to obtain complete calibration curves for each compound to be quantitated,
we use the method of relative molar response  (RMR) factors (10) .  Successful
use of this method requires information on the exact amount of standard
added and the relationship of RMR (unknown) to the RMR  (standards) .  The
method of calculation is as follows:
     /n , _..„.                   A    /Moles  ,
     (1) RMR  ,      ,    ,   , =  unk/     unk
            unknown/ standard   - - r:-^. -
                               A  , /Moles  ,
                                std/     std
          A = peak area, determined by integration or triangulation.
     The value of RMR is determined from at least three independent analysis.

                       A   /g   /GMW  .
                        unk  unk    unk
          A = peak area, as above
          g = number of grams present
        GMW = gram molecular weight
Thus, in the sample analyzed:
                 A  .  GMW  .  g   ,
      ,-,.       _  unk'   unk*°std _
      ( }  Sunk   A    GMW  . . RMR  .  .   ,
                  std*   std'   unk/std

The standard can be added  as an  internal  standard  during sampling;
however, since the volume  of air taken  to produce  a given sample  is  accu-
rately known, it is also possible and more practical to  use an  external
standard whereby the standard is introduced into the cartridge  just  prior
to its analysis.  Two standards, hexaf luorobenzene and perf luorotoluene are
used  for the purpose of calculating RMR's.  From previous research,  it has
been  determined that the retention times for these two compounds  are such
that  they elute from the glass capillary column (SE-30)  at a temperature
and retention time which does not interfere with the analysis of  unknown
compounds in ambient air samples.
      Since the volume of air taken to produce a given sample is accurately
known and an external (or  internal) standard is added to  the sample, then
the weight can be determined per cartridge (hence  the concentration  of the
unknown) .  This approach for quantitating ambient  air pollutants  requires
                                        103

-------
that the RMR be determined for each constituent of interest.   Thus,  when an
ambient air sample is taken,  the external standard is  added during the
analysis at a known concentration.   It is not imperative at this point to
know what the RMR of each of  the constituents in the sample happens  to be;
however, after the unknowns are identified,  the RMR can be subsequently
determined and the unknown concentration calculated in the original  sample.
In this manner it is possible to obtain qualitative and quantitative informa-
tion on the same sample with  a minimum of effort.
9.0  References
1.   Pellizzari, E. D., Development of Method for Carcinogenic Vapor Analysis
     in Ambient Atmospheres.   Publication No. EPA-650/2-74-121, Contract
     No. 68-02-1228, 148 pp., July, 1974.
2.   Pellizzari, E. D. , Development of Analytical Techniques for Measuring
     Ambient Atmospheric Carcinogenic Vapors.  Publication No. EPA-600/2-
     76-076, Contract No. 68-02-1228, 185 pp., November, 1975.
 3.  Pellizzari, E. D., J. E. Bunch, B. H. Carpenter and E. Sawicki, Environ.
     Sci. Tech., 9, 552 (1975).
 4.  Pellizzari, E. D., B. H. Carpenter, J.  E. Bunch and E. Sawicki, Environ.
     Sci. Tech., 9, 556 (1975).
 5.  Pellizzari, E. D., The Measurement of Carcinogenic Vapors in Ambient
     Atmospheres.  Publication No.  EPA-600/7-77-055, Contract No. 68-02-
     1228, 288 pp., June, 1977.
 6.  Pellizzari, E. D., J. E. Bunch, R. E. Berkeley and J. McRae, Anal.
     Chem., 48, 803 (1976).
 7.  Pellizzari, E. D., Quarterly Report No. 1, EPA Contract No. 68-02-
     2262, February, 1976.
 8.  Pellizzari, E. D., J. E. Bunch, R. E. Berkeley and J. McRae, Anal.
     Lett., 9, 45 (1976).
 9.  "Eight Peak Index of Mass Spectra", Vol. 1, (Tables 1 and 2) and II
     (Table 3), Mass Spectrometry Data Centre, AWRE, Aldermaston, Reading,
     RF74PR, UF, 1970.
                                       104

-------
10.  Pellizzari, E. D., Quarterly Report No.  3, EPA Contract No.  68-02-
     2262, in preparation.
Analytical protocol revised 5/31/78.
                                      105

-------
                              APPENDIX B

SAMPLING AND ANALYSIS FOR VERY VOLATILE ORGANICS (e.g., METHYL CHLORIDE
   METHYL BROMIDE, VINYL CHLORIDE AND VINYL BROMIDE)  IN AMBIENT AIR
                                106

-------
                                 APPENDIX B
  SAMPLING AND ANALYSIS FOR VERY VOLATILE ORGANICS (E.G., METHYL CHLORIDE,
      METHYL BROMIDE, VINYL CHLORIDE AND VINYL BROMIDE) IN AMBIENT AIR

1.0  Principle of Method
     Very volatile compounds (e.g., methyl chloride, methyl bromide, vinyl
chloride and vinyl bromide) are concentrated from ambient air on SKC carbon
in a short, glass tube (1).  Recovery of these volatile halogenated hydro-
carbons is accomplished by thermal desorption and purging with helium to
transfer the trapped vapors from the carbon cartridge to a Tenax GC cartridge
through a calcium sulfate drying tube to remove excessive amounts of water.
The vapors are then transferred from Tenax into a liquid nitrogen-
cooled nickel capillary trap by thermal desorption and purging with helium
(2), and the vapors are introduced onto a high resolution glass, gas chromato-
graphic column where the constituents are separated from each other (2).
Identification and quantification of very volatile compounds in the sample
are accomplished by mass spectrometry, either by measuring the intensity of
the total ion current signal or mass fragmentography (3).  The collection
and analysis systems are shown in Figure B-l.
2.0  Range and Sensitivity
     The linear range of the mass spectrometric signals for organic compounds
depends upon two principle features.  The first is a function of the break-
through volume of each specific compound trapped on the SKC carbon sampling
cartridge and the second is related to the inherent sensitivity of the mass
spectrometer (3,4).  Thus, the range and sensitivity is direct function of
each compound.  The linear range for quantification on the gas chromato-
graph/mass spectrometry/computer (GC/MS/COMP) is generally over three
orders of magnitude.  Tables B-l and B-2 lists the breakthrough volumes for
methyl chloride, methyl bromide, vinyl chloride and vinyl bromide on SKC
carbon.
                                      107

-------
      POWER SWITCH
             VALVE
             VAC.
                                           PUMP
                          SAMPLE
                                                        GAS VOLUME
                                                                 REMOVABLE  FROI
                                                                 AND REAR PANEL
                                      BATT. TERMINAL
AIR IN-
          110
         I/A OC
                 AC SWITCH
                         VALVE
                   DRYING
                    TUBE
             t2 VDC (AUXILLIARY)
                                   DC
                                  POWER
                                   SUPPLY
                                       PUMP SWITCH
PUMP
   BAFFLE
[HjCHAMB-
    £R
                                                    J
                       FLOW
                       METER
                                  GAS
                                 METER
              Figure B-l.  Nutech Model  221-A AC-DC Sampler
                                      108

-------
           Table  B-l.   ESTIMATION OF BREAKTHROUGH VOLUMES FOR
                       VINYL CHLORIDE AND VINYL BROMIDE ON SKC
                       CARBON (104)
 Temperature
   °C (°F)
   10 (50)
 15.5 (60)
 21.1 (70)
 26.7 (80)
 32.2 (90)
 37.8 (]00)
Vinyl
UK
104
81
63
49
38
30
Chloride
^72.52 [;a
262
204
159
123
96
76
Vinyl
*/g
388
306
241
190
150
118
Bromide
JJ./2.52 ga
978
771
608
479
378
298
o
 A 1.5 cm i.d.  x 4.0 cm bed of carbon weighs 2.52 g.
         Table B-2.  ESTIMATION OF BREAKTHROUGH VOLUMES FOR
                     METHYL CHLORIDE AND METHYL BROMIDE ON
                     SKI CARBON (104)

1-Jetby] Chloride
Ilothyl Bror.D'de
TtiiYiperaLure
°C
10
15.5
21.1
26.7
32.2
37.8
TF)
(50)
(60)
(70)
(80)
(90)
(100)
if
14
11
8
7
5
4
,-\
O
.3
.1
.7
c;
• -••
.6
.4
9. /2.52 g
36
28
22
19
14
11
-7g
98
75
57
43
32
25
£72.52 g
248
188
143
108
82
62
                                   109

-------
     Table B-3 lists the approximate limits of detection for methyl chloride,
methyl bromide, vinyl chloride and vinyl bromide based upon these break-
through volumes.  As it might be expected, the highest sensitivity is
observed for vinyl bromide, and the lowest for methyl chloride.  Never-
theless, the limits of detection are in the parts per trillion range.
3.0  Interferences
     Because of the unique isotopic clusters for chlorine and bromine in
these compounds, the background that is generally observed at their retention
times on a glass capillary column will not interfer with their qualitative
and quantitative analyses.
4.0  Reproducibility
     The reproducibility of this method has been determined to be approxi-
mately +20% of the relative standard deviation for the four compounds when
replicate samples are examined (3).  The reproducibility is a function of
several factors.  (1)  The ability to acurately determine the breakthrough
volume for each compound; (2)  The accurate measurement of the ambient air
volume sampled; (3) The percent recovery of the compound from the carbon
sampling cartridge after a period of storage; (4)  The reproducibility of
thermally recovering each compound from the carbon cartridge and of sample
introduction into the analytical system; (5)  The accuracy and determination
of the relative molar response ratios between the compounds of interest and
the external standards used for calibrating the analytical system; (6) The
relative efficiency and reproducibility of transferring the trapped vapors
from the carbon sampling cartridge to the Tenax GC cartridge prior to
analysis in order to remove the excessive amounts of water using calcium
chloride; (7) The reproducibility of transmitting the sample through the
high resolution gas chromatographic column, and (8) The day-to-day reli-
ability of the ms/comp system (2-4).
     The accuracy of analysis is generally +15% of the amount determined as
shown by repeated analysis of the halogenated hydrocarbons.  The accuracy
of the analysis is dependent upon the storage period.
                                       110

-------
Table B-3.  APPROXIMATE LIMIT OF DETECTION FOR METHYL CHLORIDE,  METHYL
            BROMIDE,  VINYL CHLORIDE AND VINYL BROMIDE3


Methyl chlorideb
Methyl bromide
Vinyl chloride
£
Vinyl bromide
Ambient Air Temperature °C (°F)
10 (50)
138 (69)
8 (2.1)
48 (20)
5 (1.2)
15.5 (60)
178 (89)
11 (2.8)
62 (26)
6.5 (1.5)
21.1 (70)
227 (114)
14 (3.6)
79 (33)
8.2 (1.9)
26.7 (132)
253 (132)
18 (4.8)
102 (42)
10.5 (2.5)
32.2 (90)
357 (178)
24 (6.3)
131 (55)
28 (6.7)
  rvalues are in ng/m  (ppt)
   Estimation of L.O.D.  based on 2.52 g carbon
  cEstimation of L.O.D.  based on 1.0 g carbon
                                      111

-------
5.0  Apparatus
5.1  Sampling Cartridges
     The sampling tubes are prepared by packing a 10 cm long x 1.5 cm id
glass tube with 2-4 cm of SKC carbon Lot No. 104, with glass wool in the
ends to provide support (3,4).  The carbon cartridges are conditioned at
400°C with a helium flow of approximately 30 ml/min for 30 min.  The condi-
tioned cartridges are transferred to Kimax  culture tubes, immediately
sealed using Teflon lined caps, and cooled.  This procedure is performed in
order to avoid recontamination of the sorbent bed (3,4).
     Cartridge samplers with longer beds of sorbents may be prepared using
a proportionally increased amount of carbon in order to achieve a larger
breakthrough volume for each compound, thus increasing the overall sensitiv-
ity of the technique.  However, it must be noted that the percent recovery
of the organic compounds significantly decreases when the amount of carbon
is increased and/or when an excessive length of storage period is employed
(more than a week).
5.2  Gas Chromatographic Column
     A 0.35 mm i.d.  x 100 m glass SCOT capillary column coated with OV-101
stationary phase and 0.1% benzyltriphenylphosphonium chloride is used for
effecting resolution.  The capillary column is conditioned for 48 hrs at
230°C at 1.5 - 2.0 ml/min of helium flow.
     A Finnigan type glass type jet separator on a Varian MAT CH-7 GC/MS/
COMP system is employed to interface the glass capillary column to the mass
spectrometer.  The glass jet separator is maintained at 240°C.
5.3  Inlet-Manifold
     An inlet-manifold for thermally recovering compounds of interest
trapped on SKC carbon sampling cartridges is employed and is shown in
Figure
5.4  Gas Chromatograph
     A Varian 1700 gas chromatograph is used to house the glass capillary
column and is interfaced to the inlet-manifold (Figure B-l).
                                    112

-------
5.5  Mass Spectrometry/Computer
     A Varian MAT CH-7 mass spectrometer with a resolution of 2000 equipped
with single ion monitoring and mass fragmentography capabilities is used in
tandem with the gas chromatograph (Figure B-l).  The mass spectrometer is
interfaced to Varian 620/L computer (Figure B-l).
6.0  Reagents and Materials
     SKC carbon Lot No. 104 is from SKC Carbon Company, Boston, MA.  All
reagents used are analytical reagent grade and distilled in glass prior to
use.
7.0  Procedure
7.1  Cleaning of Glassware
     All glassware, sampling tubes, cartridge holders, etc. are washed in
        ®
Isoclean /water, rinsed with deionized distilled water, acetone and air
dried.  Glassware is heated to 450-500°C for two hours to insure that all
organic material has been removed prior to its use.
7.2  Preparation of Carbon
     Virgin carbon is packed into glass sampling tubes without further
purification.  Used carbon cartridges are not recycled.
7.3  Collection of Very Volatile Compounds in Ambient Air
     Continuous sampling of ambient air is accomplished using a Nutech
Model 221-A portable sampler (Nutech Corp., Durham, NC, see Figure 1).
Flow rates are maintained at 1 £/min using critical orifices and the total
flow is monitored through a calibrated rotameter.   The total flow is also
registered by a dry gas meter.  Concomitant with these parameters the
temperature is continuously recorded with a Meteorology Research Incorpora-
ted weather station since the breakthrough volume is important in order to
obtain quantitative data on these compounds.   This portable sampling unit
operates on a 12-volt storage battery and it is capable of continuous
operation up to a period of 24 hours.  However, in most cases the sampling
period consisted of one to two hours at the rates which were employed in
the field.  This portable sampling unit is utilized for obtaining "high
volume" samples.  Duplicate cartridges are deployed on each sampling unit
and are in tandem with Tenax GC cartridges.  The carbon cartridges serve as
a backup to the Tenax GC cartridge for collecting the more highly volatile

                                     113

-------
constituents which have a low breakthrough volume on Tenax GC.   A total of
four portable sampling units are available for sampling ambient air surround-
ing the bromine industry.
     In addition to the Nutech samplers,  five duPont personal samplers are
used to sample "low volumes" of ambient air as well as long term integrated
samples (12-36 hrs).   An identical SKC carbon sampling cartridge is employed
in this case and sampling is conducted in duplicate.  The flow rate is
balanced between duplicate cartridges using critical orifices to maintain a
rate of 25 or 100 ml/min per cartridge.
7.4  Analysis of Sample
     The conditions for transferring very volatile organic compounds from
SKC carbon sampling cartridges to Tenax GC sampling cartridges prior to
instrumental analysis is shown in Table B-4.  A 1.5 x 2 cm bed of calcium
sulfate is used to remove the water vapor prior to retrapping of the compo-
nent vapors on the Tenax GC sampling cartridge.
     The instrumental conditions for the analysis of the volatile components
on the sorbent carbon sampling cartridge is shown in Table B-5.
     7.4.1  Operation of the MS/Comp System (Figure B-l)
     The operation of the ms/comp system is identical to as that described
for the Analytical Protocol under Appendix A entitled, "Sampling and Analysis
for Volatile Organic Compounds in Ambient Air."
     7.4.2  Quantitative Analysis
     The procedure for the estimation of the level of very volatile compounds
by capillary gas chromatography in combination with mass spectrometry is
identical to that described for the analytical protocol entitled, "Sampling
and Analysis for Volatile Organics in Ambient Air".
8.0  References
1.   Pellizzari, E. D.  Development of Method for Carcinogenic Vapor
     Analysis in Ambient Atmospheres.  EPA Contract No. 68-02-1228,
     EPA-650/2-74-121, July 1974, 148 pp.
2.   Pellizzari, E. D.  Development of Analytical Techniques for
     Measuring Ambient Atmospheric Carcinogenic Vapors.  EPA Contract
     No. 68-02-1228, EPA-600/2-75-076, November 1975, 187 pp.
                                      114

-------
Table B-4.  PARAMETERS FOR REMOVING WATER AND TRANSFERRING
            VAPORS TO TENAX GC
          Parameters                             Condition

Inlet-manifold
   desorption chamber                               295°C
   valve                                            200°C
   CaSO, drying tube (1.5 x 2.0 cm)          ambient temperature
   transfer line                             ambient temperature
   Tenax GC cartridge (1.5 x 6.0 cm)         ambient temperature
Desorption time                                  10 minutes
He purge rate                                    10 ml/min
                                 115

-------
     Table B-5.   OPERATING PARAMETERS  FOR  GLC-MS-COMP  SYSTEM
    Parameter
Setting
In! et-TO5nifold
     desorption chamber
     valve
     capillary trap - minimum
                      maximum
     thermal desorption time
GLC
     100 m glass SCOT-OV-101

     carrier (He) flow
     transfer line to ms
 270CC
 220°C
-195°C
+180°C
 4 min
 20-240°C, 4/C° min

 -3 ml/min
 240°C
MS
     scan range
     scan rate, automatic-cyclic
     filairent current
     multiplier
     ion source vacuum
 m/e 20 -»• 300
 1 sec-'decade
 300 uA
 6.0
~4 x 10~6 torr
                              116

-------
3.   Pellizzari, E. D.  Development of Analytical Techniques for Measuring
     Ambient Atmospheric Carcinogenic Vapors.   EPA Contract No.  68-02-1228,
     1976, in preparation.
4.   Pellizzari, E. D.  Identification of Atmospheric Pollutants by the
     Combined Techniques of Gas Chromatography/Mass Spectrometry.   EPA
     Contract No. 68-02-2262, 1976, in preparation.
Analytical protocol revised 1/31/77.
                                        117

-------
                        APPENDIX C
VOLATILE AND VERY VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN
               AIR IN THE KANAWHA VALLEY, WV
                               118

-------
Table C-l.  VERY VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN
            AIR IN THE KANAWHA VALLEY, WV (TRIP 1, P2/L2).
Chromato-
grapnic
Peak No.
1
2A
2B
3
3A
4
4A
4B
5
6A
7
7A
8
8A
9
EluCion
Temp.
(°C)
49
55
55
57
60
61
62
64
65
67
69
71
72
74
75
Compound
co2
C.H.. isomer
J 0
ti-butane
acetaldehyde
isopentane
acetone
furan (tent.)
vinylidene chloride (tent.)
methylene chloride
cs2
C.H.O isomer
4 8
methyl vinyl ketone (tent.)
2-methylpentane
C.H00 isomer
4 8
3-methylpentane
Chromato-
graphic
Peak No.
10
11
11A
12
12A
13
13A
13B
14
15
16
17
17A
18

Elation
Temp .
(°C)
76
77
78
82
83
88
89
94
97
109
148
151
151
165

Compound
hexaf luorobenzene (el)
n-hexane
chloroform
perfluorotoluene (el)
methylcyclopentane
benzene
cyclohexane
jj-pentanal
ri-heptane + acetic acid
toluene
benzaldehyde
phenol
C11H24 isomer
acetophenone

                            119

-------
Table C-2.  VOLATILE  ORGANIC COMPOUNDS IDENTIFIED  IN
            AMBIENT AIR IN THE KANAWHA VALLEY, WV  (TRIP 1, P2/L2)
Chromato-
graphic
Peak No.
1
2A
3

3A
3B
4
4A

4B
4D
5B
6
6A
6B
7
8
8A
9
10
10A
10B
11
11A
12
12A
12B
13
13A
14
14A
15
16
16A
17
17A
18
ISA
19
20
21
22
22A
23
23A
24
24A
Elution
Temp.
48
54
55

55
59
61
61

62
64
70
71
72
73
74
75
76
77
81
82
83
84
86
87
88
89
90
91
92
93
94
95
96
97
98
101
102
103
108
109
110
111
112
113
114
115
Compound
co2
C,H. isomer
4 8
acetaldehyde + n-butane
(tent.)
C,H0 isomer
4 8
isopentane
acetone
C H1n isomer
5 10
n-pentane
methylene chloride
C.H,0 isomer
2-methylpentane
methyl isopropyl ketone
but anal (tent.)
3-methylpentane
hexafluorobenzene (eS)
n-hexane
chloroform
perfluorotoluene (eS)
methylcyclopentane
1,2-dichloroethane (tent.)
1 , 1 , 1-trichloroethane
C,H0 isomer
o o
benzene
carbon tetrachloride
cyclohexane
2-methylhexane
acetic acid
3-methylhexane
C-,H, , isomer
7 14
C7H14 + C5H10° isomers
trichloroethylene
C,H.. , isomer
ii-heptane
C_H, , isomer
7 14
methylcyclohexane
4-methyl-2-pentanone
CgHlg isomer
C.H,, isomer (tent.)
8 16
toluene
C H „ isomer
C8H18 is°mer
C H „ isomer
o 1O
C_H,, isomer
0 ID
C,H,. isomer
6 12
C0H, , isomer
8 16
Chromato-
graphic
Peak No.
24B
25
26
26A
27
28
29
29A

30
30A
30B
31
32
32A
32B
33
34
35
35A
36
36A
37
37A
38
39

39A
40
40A
40B
41
41A
4 IB
42
42A
43
44
44A
44B
45
45A
46
47
48
48A

Elution
Temp.
116
117
118
120
121
122
123
124

125
125
126
128
130
130
131
132
133
134
134
' 135
136
137
138
140
141

142
142
143
144
144
145
146
146
146
147
148
148
149
150
150
151
152
153
153

Compound
C H isomer
o 10
ri-octane
tetrachloroethylene
CgH2Q isomer (tent.)
C-,H, ,0 isomer
7 14
C.H isomer
o J.O
C9H2 isomer
C.H-, isomer
9 20
ethyl cyclohexane
CgH. isomer
CqH. „ isomer
ethylbenzene
xylene isomer
C-H- isomer
CqH. 8 isomer
C9H20 isomer
C9H20 isomer
styrene
n-heptanal (tent.)
^-xylene
CgH^ ... isomer
n-nonane
CgR.. _ isomer
CgH isomer
isopropylbenzene +
C10H22 isomers
Cj_H__ isomer
CqH.. fi isomer
C.-H22 isomer
C,-alkyl cyclohexane isomer
C10H22 isomer
C10H20 isonler
<"10H22 isomer
benzaldehyde
C10H20 isomer
ri-propylbenzene
ethyltoluene isomer
C1QH22 isomer
C,.H22 isomer + phenol
1,3, 5-trimethylbenzene
C10H2Q isomer
C10H22 is°mer
^-ethyltoluene
C10H2Q isomer
C10H18 is°mer

                        (continued)
                           120

-------
Table  C-2.   (cont'd.)
Chromaco-
graphlc
Peak No.
49


50
50A
51
52
52A
52B
52C
53

54
55

56
56A

56B
56C
57
57A
57B
58
59
59A
59B
60
61
62
62A
62B

63
63A
64
65
65A
65B
66
66A
67
67A
67B
68
69
69A
70
71

Elution
Temp.
154


154
155
156
157
157
148
148
149

160
160

161
162

162
162
163
163
164
164
165
165
166
166
167
167
168
168

169
170
170
171
171
172
173
173
176
174
175
176
177
178
179
180

Compound
C,nH 	 isomer + n-octanal
10 20 -
(tent.)
1,2,4-trimethylbenzene
C10H20 iSOm"
n-decane
dichlorobenzene isomer
C1£)H20 isomer
C,-alkyl benzene isomer
C. , H__ isomer
C, -alkyl benzene +
4
C11H24 isomers
1,2, 3-trimethylbenzene
C,,H~, isomer
11 24
C11H22 isonler
C...H,, isomer
10 16
indan
C,,H. , isomer
11 24
C.-alkyl cyclohexane isomer
C...H,2 isomer
C,-alkyl benzene isomer
C,-alkyl benzene isomer
acetophenone
C.-alkyl benzene isomer
C11H22 lsomer
C,,H_, isomer
11 24
C,,H,. isomer
11 24
C -alkyl benzene isomer
C10H18 iSOTer
C.,H-. isomer
11 24
C.-alkyl benzene isomer
C H- isomer
C -alkyl benzene isomer
C,H7~benzene + C.,H22 isomers
C.-alkyl benzene isomer
C11H22 isomer
^i-undecane
C^-alkyl benzene isomer
C.-alkyl benzene isomer
C,..-alkyl benzene isomer
C H isomer
tetramethylbenzene isomer
C -alkyl benzene isomer
C -alkyl phenol isomer
Ce-alkyl benzene isomer
C -alkyl benzene +
C.H_-benzene isomers
4 /
Chromato-
graphic
Peak No.
71A

7 IB
7 1C
7 ID
7 IE
72
73
74
74A

75
75A
75B

76
76A

76B
77
78
79
80

80A
81
81A
81B
82
82A
83
85

86
86A
86B
87
88
89
90
90A
90B
90C

91
91A
92
93
93A
94
Elution
Temp.
180

181
181
181
182
182
183
184
184

185
186
186

187
188

189
189
191
192
193

194
195
195
197
198
198
199
203

204
205
206
207
211
213
214
215
216
217

218
220
223
226
227
230
Compound
C,-H,.. isomer
12 24
CUH2Q isomer
C -alkyl benzene isomer
C -alkyl phenol isomer
C.H --benzene isomer
4 7
C -alkyl benzene isomer
C,-alkyl benzene isomer
1,2,3, 4-tetrahydronaphthalene
C(.-alkyl benzene +
C.,H_g isomers
C -alkyl benzene isomer
C10H16 + C13H26 iSOmerS
C,0H0. isomer
12 24
naphthalene
C..HT, isomer
12 24
C^-alkyl benzene isomer
n-dodecane
Cr-alkyl benzene isomer
C13H28 lsomer
C, -alkyl benzene isomer
b
(tent.)
C13H26 isomer
C13H28 isomer
C -alkyl benzene isomer
CI3H2g isomer
C.H_-benzene isoraer
C -alkyl benzene isomer
C.. ,,H~, isctaer (tent.)
C, _H_, isomer
13 26
n-tridecane
S-methy Inaphthalene
C13H26 isolner
a-me thy Inaphthalene
sat. hydrocarbon (tent.)
C14H30 lsomer
alkyl butyrate
biphenyl
C14H28 isoffier
diphenyl ether or
C12H10° isc"Ile:r
£-tecradecane
dimethylnaphthalene isomer
dimethylnaphthalene isomer
C-5H,2 isomer (tent.)
C15H30 isomer
n-pentadecane
        (continued)
          121

-------
Table C-2.  (cont'd.)
Chromaco- Elution
graphic Temp. Compound
Peak No. (°C)
95 233 unknown
96 239 diethyl phthalate
99 240 unsat. hydrocarbon
Chromato- Elution
graphic Temp. Compound
Peak No. (°C)
100 240 £-heptadecane
101 240 unsat. hydrocarbon
102 240 sat. hydrocarbon
            122

-------
Table C-3.  VERY VOLATILE ORGANIC COMPOUNDS IDENTIFIED
            IN THE KANAWHA VALLEY, WV (TRIP 1, P2/L5).
Chroma to-
graphic
Peak No.
1
4
4A
5
5A
6
7
8
9
9A
10
10A
12
13
13A
Elution
Temp .
(°C)
48
52
53
53
54
55
57
58
59
60
61
61
63
66
68
Compound
co2
n-propane (tent.)
bucene isomer
n-butane
butane (tent.)
acetaldehyde
isopentane
acetone
ri-pentane
diethyl ether
vinyl idene chloride
methylene chloride
cs2
2-methylpentane
n-butanal
Chromato-
graphic
Peak No.
14
15
16
16A
17
18
ISA
18B
18C
18D
19
19A
20
20A

Elution
Temp.
<°C)
68
70
71
72
75
76
77
78
79
80
103
107
145
146

Compound
3-zne thylpen tane
hexaf luorobenzene (ef)
jj-hexane
chloroform
perfluorotoluene (eS)
methylcyclopentane
C^H,^ isomer
0 1U
benzene
carbon tetrachloride
cyclohexane
toluene
acetic acid (tent.)
phenol
C11H24 ls°mer

                             123

-------
Table C-4.  VOLATILE  ORGANIC COMPOUNDS IDENTIFIED  IN AMBIENT
            AIR  IN  THE  KANAWHA VALLEY, WV  (TRIP  1,  P2/L5).
Chroma to-
graphic
Peak No.
1
2A
2B
2C
2D
2E
3
3A
4
6
6A
6B
7
8
8A
SB
8C
9
9A
9B
9C
10
10A
10B
11
12
13
13A
14
15
16
17
18
19
20
20A
20B
20C
21
22
22A
22B
23
24
25
25A
Elution
Temp .
49
54
55
55
60
60
61
65
66
74
75
76
78
79
80
81
82
83
84
86
88
89
90
91
91
93
95
96
96
98
102
104
109
110
112
113
114
115
117
118
122
123
125
128
130
130
Compound
co2
propane
butane
acetaldehyde
dimethyl ether
isopentane
acetone
vinylidene chloride
dichloromethane
2-methylpentane
C.H, . isomer
o lz
3-methylpentane
hexafluorobenzene (eS)
ii-hexane
chloroform
C,H00 isomer
4 8
ethyl acetate
perfluorotoluene (ef)
methylcyclopentane
1,1,1-trichloroethane
C,H 0 isomer
benzene
carbon tetrachloride
acetic acid (tent.)
C,H. , isomer
/ ID
C,H,, isomer
/ 10
C,H, , isomer
7 14
trichloroethylene (tent.)
CgHlg isomer
ri-heptane
me thy Icy c lohexane
C8H18 + C7H14° isoner
toluene
C.H „ isomer
0 J.O
C-H: - isomer
o lo
C-H,, isomer
_B ID
hexanal (tent.)
C.H, , isomer
O ID
ji-octane
tetrachloroethylene
C.H , isomer
8 16
C9H20 isomer
C H. isomer (tent.)
echylbenzene
xylene isomer
C9H20 isomer
Chromato-
graphic
Peak No.
26
26A
26B
27
27A
28
28A
29
30
31
31A
31B
32
33

34
34A
35

36
36A
37
37A
38
39
39A
40
41
41A
41B

42
43
43A
44
44A
44B
45
46
47
47A
48
49

50
50A
Elution
Temp.
132
133
133
134
135
137
140
140
142
143
144
145
145
146

147
148
149

150
151
151
152
153
153
154
155
156
157
158

159
159
160
160
161
162
162
163
164
165
165
166

168
169
Compound
C9H20 isomer
C-H.,0 isomer (tent.)
styrene
£-xylene
C.H _ isomer
n-nonane
C9H18 isomer
isopropylbenzene
C10H22 lsomer
C.J.H.. isomer
C,-alkyl cyclohexane isomer
C10H22 ls°mer
benzaldehyde
ii-propylbenzene + C..,.H_-
isomer
ethyltoluene isomer
^10^22 •'•sonler + phenol
1,3,5-trimethylbenzene +
C11H24 isomer
C H__ isomer
£-ethyl toluene
C10H22 ls°mer
C10H20 is°mer
ji-octanal
1,2,4-trimethylbenzene
C10H20 1SOmer
ri-decane
dichlorobenzene isomer
C,-alkyl benzene isomer
C H2_ + C,-alkyl benzene
isomers
1,2,3- trime thy Ibenzene
C11H24 isomer
C.H, ,0 isomer
0 ID
C11H24 isomer
indan
C11H22 isomer
C,-alkyl cyclohexane isomer
C,-alkyl benzene isomer
acetophenone
C,-alkyl benzene isomer
C12H24 isome!r
C,-alkyl benzene +
C,,H.. isomers
11 24
C -alkyl benzene isomer
C11H22 isomer
                              (continued)
                                 124

-------
Table C-4.  (cont'd.)
Chromato-
graphic
Peak No.
51
52
52A
53
53A
53B
54
55
55A
55B
55C
55D
56
56A
56B
56C
56D

56E
57
57A
57E
57C
58
Elut ion
Temp.
(°C)
169
170
171
172
173
174
175
177
178
178
179
179
180
181
181
183
184

185
186
187
187
188
188
Compound
C -alkyl benzene isomer
n-nonanal
C^H^o isomer
n-undecane
C -alkyl benzene isomer
^11H22 isomer
C,-alkyl benzene isomer
C.-alkyl phenol isomer
C, -alkyl benzene isomer
C12H24 isomer
C^H.-benzene isomer
C.-alkyl cyclohexane isomer
C.-alkyl phenol isomer
C.H^-benzene isomer
C.-alkyl benzene isomer
C.-alkyl benzene isomer
C12H26 + C^"*11^1 benzene
isomers
C -alkyl phenol isomer
naphthalene
ri-decanal
C12H24 lsonier
C.-alkyl benzene isomer
n-dodecane
Chromato-
graphic
Peak No.
58A
58B
58C
58D
59A
59B
59C
59D
60
60A
61
62
63
64
64A
65

65A
66
66A
67
68
71
72
Elucion
Temp .
(°C)
189
190
190
191
195
199
201
201
202
203
205
211
212
213
215
216

220
225
228
229
231
240
240
Compound
C.-alkyl benzene isomer
C13H26 isomer
C_-alkyl phenol isomer
C, ~H00 isomer
1 J £0
unsaturated hydrocarbon
saturated hydrocarbon
C11H22° isomer
ii-undecanal (tent.)
ri-tridecane
B-methylnaphthalene
a-methylnaphthalene
alkyl butyrate (tent.)
alkyl butyrate (tent.)
biphenyl
C^.H. isomer (tent.)
n-tetradecane + diphenyl ether
(tent.)
C2-alkyl naphthalene (tent.)
saturated hydrocarbon
C .H, isomer (tent.)
ri-pentadecane
unknown
C,,H,, isomer
I/ ->D
ri-heptadecane
     125

-------
Table C-5.  VERY VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT AIR
            IN THE KANAWHA VALLEY, WV (TRIP 1, P2/L6).
Chromaco-
graphic
Peak No.
1
3
3A
4
4A
4B
5
7
8
8A
8E
9
11
Elucion
Temp.
(°C)
49
53
53
54
55
55
57
58
59
59
60
61
63
Compound
co2
propane
C.H. isomer
4 8
ri-butane
butene isomer
acetaldehyde
Isopentane
acetone
ri-pentane
C H isomer
vinylidene chloride
methylene chloride
cs2
Chromato-
graphic
Peak No.
11A
12
13
14
15
ISA
16
17
17A
17B
17C
17E
18
Elucion
Temp .
(°C)
66
67
70
71
72
73
76
77
79
82
84
96
104
Compound
CcH-« isomer (tent.)
2-methylpentane
3-methylpentane
hexaf luorobenzene (el)
ti-hexane
chloroform
perfluorobenEene (el)
methylcyclopentane
1,1,1-trichloroethane (tent.)
benzene
cyclohexane
methylcyclohexane
toluene
                                126

-------
Table C-6.  VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT AIR
            IN  THE KANAWHA VALLEY, WV  (TRIP  1,  P2/L6).
Chromato-
graphic
Peak No.
1
2A
2B
2C
2D
2E
3
3B
4
5
6A
7
8
8A
SB
9
10
10A
10B
11
11A
12
13
14
15
ISA
16
16A
17
18
19

19A
20
20A
21
22
23
24
25
26
26A
27
28
28A
28B
Elucion
Temp.
49
53
54
54
56
59
60
63
64
65
70
71
74
74
75
75
76
77
78
79
80
81
82
83
86
88
89
90
91
93
94

95
96
97
101
103
105
107
108
109
110
111
113
114
114
Compound
CO,
propane
C,H- isomer
ii-butane
acetaldehyde
dimethyl ether
acetone
diethyl ether
vinylidene chloride
dichloromethane
C,H,0 isomer (tent.)
2-methylpentane
3-methylpentane
n-butanal
C,H - isomer
o 12
hexafluorobenzene (eS)
ii-hexane
chloroform
methyl ethyl ketone
ethyl acetate
C6H12 iSOraer
perfluorotoluene (eS)
methyl cyclopentane
1, 1, 1-trichloroethane
benzene
cyclohexane
2-methylhexane
2, 3-dimethylpentane
3-methylhexane
C,H, , isomer
7 14
trichloroethylene (tent.) +
C-H „ isomer
o 10
acetic acid
n- heptane
C-H, . isomer
7 14
methylcyclohexane
C-H „ isomer
o 10
C-H , isomer
o 10
C H isomer
o lo
toluene
C H isomer
CeH,. isomer
O 10
C0H.- isomer
o lo
C_H, , isomer
o lo
CaH isomer
O lo
C,H,-0 isomer
6 12
Chromato-
graphic
Peak No.
28C
29
30
30A
31
32
33
34
34A
35
35A
36
36A
37
37A
38
38A
39
40
40A
41
41A
42
43

44
44A
45
45A
45B
46
47
48
48A
49
49A
50
51
52
52A
53

54
54A
55
55A
Elution
Temp.
115
115
116
117
118
120
121
123
123
124
125
128
128
129
130
131
132
133
134
135
136
138
139
140

141
142
143
144
145
145
146
147
148
149
150
150
151
152
153
153

154
153
155
156
Compound
C H , isomer
o lo
C0H,, isomer
o lo
ii-octane
CRH isomer
tetrachloroethylene
C9H20 isomer
CqH20 isomer
CgH2Q isomer
CgH 8 isomer
C^H- isomer
C9Hlg isomer
ethylbenzene
C9Hlg isomer
xylene isomer
CQH-_ isomer
C9H20 isomer
C7H..,0 isomer (tent.)
styrene
£-xylene
CgH.g isomer
n-nonane
C10H20 is0mer
Cg.H, „ isomer
isopropylbenzene +
C10H22 isameT
C-H , isomer
9 16
C7H.,0 isoaer (tent.)
C10H22 iSOmer
C,-alkyl cyclohexane isomer
C10H20 iS°mer
benzaldehyde
n-propylbenzene
ethyltoluene isomer
C10H22 is°mer
1,3, 5- trimethylbenzene
C10H20 iS°mer
C10H22 1SOmer
£-ethyl toluene
C10H20 1SOmer
C.-H_. isomer
^-octanal + methylstyrene
isomer (tent.)
1,2 ,4- trimethylbenzene
C10H20 ls°mer
^i-decane
C10H20 is°mer
                               (continued)
                                  127

-------
Table C-6.  (cont'd.)
Chromato-
graphic
Peak No.
56
57
57A
58
59
60

60A
61
61A
62
62A
63
.
63A
64
65
66
66A
66B
67
67A
67B
68
69
70
71
71A
72
73

74
74A

74B

Elution
Temp.
156
158
158
159
160
161

161
162
163
163
163
164

164
165
165
166
166
167
167
168
168
169
170
171
172
173
174
176

177
178

179

Compound
C,-alkyl benzene isomer
C11H24 ls°TOr
C, -alkyl benzene isomer
1,2, 3-trimet hylbenzene
C. . H- , isomer
C11H24 + dichlorobenzene
isomers (tent.)
indan + C. H_- isomer
C, -alkyl cyclohexane isomer
C,-alkyl benzene isomer
C,-alkyl benzene isomer
C11H24 isomer
C,-alkyl benzene isomer +
acetophenone
^-butylbenzene
C11H22 isoner
C11H24 isomer
C,-alkyl benzene isomer
P U 4 nAmm-
C11H22 ls°mer
C10H18 is°mer
C11H24 isomer
C,-alkyl benzene isomer
<'11H22 *somer
C,-alkyl benzene isomer
C. ,H2_ isomer
n-nonanal
n-undecane
C,-alkyl benzene isomer
C11H22 isomer
C,-alkyl benzene +
C12H26 isomers
C12H24 isomer
C,-alkyl benzene + C, -alkyl
phenol isomers (tent.)
C, -benzene + C5-alkyl
benzene isomers
Chromato-
graphic
Peak No.
75
75A
75B
76
76A
76B
77
77A
77B
78
78A
79
79A
79B
80
80A
81
81A
81B
82
82A
83

84
85
86
86A
86B
86C
88
89
89A
90
91A


Elution
Temp.
179
180
180
181
181
182
183
184
184
186
187
188
189
195
199
202
203
204
204
206
208
211

212
213
217
219
221
225
229
232
237
238
240


Compound
C, -alkyl cyclohexane isomer
C12H24 isomer
C. -alkyl benzene isomer
C.H^-benzene isomer
C, -alkyl benzene isomer
C,-alkyl benzene isomer
Cj-H., isomer
C12H26 isomer
Ce-alkyl benzene lsomer
naphathalene
C12H24 lsomer
3-dodecane
Cr-alkyl benzene isomer
C12H24 lsomer
sat . hydrocarbon
C13H26 isomer
ri-tridecane
8-methylnaphthalene
C13H26 isomer
a-methylnaphthalene
C13H26 isoner
C.-alkyl cyclohexane or
C, ,H_, isomer
13 26
alkyl butyrate
alkyl butyrate
ii-tetradecane
C2~alkyl naphthalene isomer
C2-alkyl naphthalene isomer
C15H30 isomer
n-pentadecane
unknown
C16H32 isomer
diethyl phthalate
n-hexadecane


       128

-------
Table C-7.  VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT AIR
            IN THE KANAWHA VALLEY, WV (TRIP 2, P2/L3).
Chromato-
graphic
Peak No.
1
3A
4
4A
4B
5
5A
6
6A
6B
7
8
8A
8B
8C
9
9B
10
IDA
10B
11
11A

12
13
13A
14
15
ISA
15B
15C
16
16A
16B
17
18
18A
18B
19
19A
20
20A
21
22

23

Elution
Temp.
49
53
54
54
55
58
58
59
59
60
60
61
62
62
62
63
64
66
67
68
68
69

70
71
71
72
73
73
74
74
75
75
76
77
78
79
79
80
82
82
83
83
84

85

Compound
co2
C.HQ isomer
4 o
acetaldehyde
n-butane
methyl formate (tent.)
isopentane
dimethyl ether (tent.)
acetone
f uran (tent . )
C5H1Q isomer
n-pentane
C.H... isomer
isopropanol (tent.)
C.H . isomer
methylene chloride
methyl acetate
carbon disulfide
2-methylpropanal
C,H, _ isomer
o LL
C.H^O isomer
4 6
2-methylpentane
methyl isopropyl ketone
(tent.)
3-methylpentane
methyl ethyl ketone
C.H, . isomer
O l£
hexafluorobenzene (eS)
n-hexane
isopropyl ether
chloroform
C,H. , isomer
b Iz
ethyl acetate
C.H, . isomer
o L£
C,H, - isomer
D l£
perf luorotoluene (ef)
methylcyclopentane
1,2-dichloroethane (tent.)
1,1, 1-trichloroethane
unknown
C,H,_ isomer
0 1U
isopropyl acetate
benzene
carbon tetrachloride
isopropenyl acetate +
hexane
2-me thylhexane
Cnromato-
graphic
Peak No.
24
24A
25
26
26A
27
27A
28
28A
28B
29
30
30A
31
32
33
33A
34
34A
35
36
36A
37
37A
38
38A
38B
39
40
40A
41
41A
42
43
44
44A
44B
45
45A
45B
46
46A
47
47A
48
49
(continued)
Elution
Temp .
86
86
87
88
89
90
91
92
92
93
94
97
98
98
99
101
102
103
104
104
106
107
107
109
109
110
111
112
113
113
114
115
117
118
119
120
120
121
122
123
124
124
126
126
128
129

Compound
2 , 3-dimethylpentane
alkyl ether (tent.)
3-me thylhexane
3-pentanone
C_H, isomer
7 14
1,1, 1-trichloroethylene
C-H, . isomer
7 14
ii-hep tane
ri-propyl acetate
C-H , isomer
C,H, , isomer
7 14
methylcyclohexane
4-methyl-2-pentanone
C8H._ isomer
C0H, „ isomer
0 J.O
C.H.J, isomer
2-ethylbutanal
CgHlg isomer
C0H- , isomer
o ID
toluene
C H isomer
o IB
alkyl ether (tent.)
C.H „ isomer
0 J.O
dimethylcyclohexane isomer
C.H isomer (tent.)
8 18
1,2-dibromoethane (tent.)
alcohol isomer (tent.)
C-H , isomer
n-octane
ti-butyl acetate
tetrachloroethylene
C-H isomer
o ID
C9H20 isomer
CgH2 isomer
C H isomer
C.H,, isomer
8 16
CgH isomer
C-H-. isomer
CgH isomer
CgH - isomer
ethylbenzene
C.H . isomer
xylene isomer
CgH isomer
C_H isomer
C-H 0 isomer (tent.)
7 14

                                 129

-------
Table  C-7.   (cont'd.)
Chromato-
graphic
Peak No.
50
50A
51
52
53


54
54A
55
55A
56
56A
56B
57
57A
58

58A
59
59A
60
60A
61
61A
62
62A
62B
63
63A
64
65
65A
66
66A
67
67A
68
68A
69
69A
70

70A
7 OB
71

Elution
Temp. Compound
130
130
131
132
133


133
134
136
137
137
137
138
139
140
140

141
141
142
142
142
142
143
144
145
145
146
146
147
148
148
149
149
150
150
151
152
152
153
153

154
155
155

styrene
heptanal
o-xylene
CgHlg isomer
cyclohexyl acetate or
C,H acetate isomer

n-nonane
C10H20 isomer
C H „ isomer
C10H22 isomer
isopropylbenzene
C10H22 isomer
C10H20 lsomer
C9H16 + C10H22 isomer
C10H20 isomer
C.-alkyl cyclohexane +
C10H22 isomers
C10H22 isomer
C10H16 + C8H16° is°mers
^10^22 *SOIner
benzaldehyde
C10H20 isomer
n-propylbenzene
C10H20 isomer
ethyl toluene isomer
C10H22 is°mer
phenol (tent.)
1,3,5- trimethylbenzene
C10H20 is°mer
C10H22 isOTler
j>-e thy 1 toluene
C10H18 + C11H24 isolners
C10H20 isolner
C10H18 is°mer
C10H22 isOTier
C.H,-benzene isomer
1,2,4-trimethylbenzene
C10H20 is°mer
ii-decane
dichlorobenzene isomer
C H2Q isomer +
isobutylbenzene
sec-butylbenzene
C11H22 isomer
C H-. + C.-alkyl
11 24 4 J
benzene isomers
Chromato-
graphic
Peak No.
72
73
74

74A
74B

75
75A
76
77
78
78A
79
80
80A
81
81A
81B
82
83
83A
84
85
85A
85B
85C
86

87
87A
88

89
89A
90

91
91A
91B
92

93
93A
94
95

Elution
Temp.
(°C)
156
156
157

158
158

159
159
160
161
162
162
163
163
164
164
165
166
167
167
168
169
170
170
171
171
172

173
174
174

175
175
176

176
177
177
177

178
178
179
180

Compound
1 , 2 , 3- 1 rime thy Ibenzene
C11H24 isomer
dichlorobenzene +
C. H_. isomers
11 24
indan + C -H-Q isomer
C...H., isomer
11 24
C.-alkyl cyclohexane isomer
C^-alkyl benzene isomer
propyltoluene isomer
C.-alkyl benzene isomer
C11H24 isomer
C^.H,,. isomer
C11H24 isOTier
C.-alkyl benzene isomer
C.«H-R isomer
C..H-. isomer
11 24
C.-alkyl benzene isomer
C.H^— benzene + C^.H-- isomers
C.-alkyl benzene isomer
C^H^-benzene + ^11^22 *somers
^11**22 ^somer
ii-undecane
C,-alkyl benzene isomer
C .H._ isomer
C.-alkyl benzene isomer
C12H26 lsomer
tetramethylbenzene •+•
C H isomers
C.-alkyl benzene isomer
C11H20 iSOtner
C -H + C -alkyl
LJ. ZO /
phenol isomers
Cp-alkyl benzene isomer
^12^24 isotner
Cp^alkyl benzene -f
C ,H --benzene isomers
C^-alkyl cyclohexane isomer
C11H20 + C12H24 isomers
C^-alkyl phenol isomer
C4H7-benzene + C.-alkyl
benzene isomers
C -alkyl benzene isomer
C12H26 is°mer
C, -alkyl benzene isomer
1,2,3,4-tetrahydronaphthalene +
C -alkyl benzene isomer
      (continued)
        130

-------
Table C-7.  (cont'd.)
Chromato-
graphic
Peak No.
95A
96
96A

96B
96C
97
97A
97B

98
99

100
101
101A
101B

102
102A

103
103A
104
104A
105
106
107
107A

108
108A
108B
109
109A
109B
110
Elution
Temp.
180
181
182

182
183
183
184
184

185
186

187
188
189
190

190
191

192
193
193
193
194
195
196
198

200
200
202
203
204
206
207
Compound
C.-H,. isomer
12 24
C.-alkyl benzene isotner
C,_H,, isomer
12 24
C.-alkyl benzene isomer
0
C.H_-benzene + ci2H24 isomers
naphthalene
C.-alkyl benzene isomer
C.-alkyl benzene +
C12H24 isomers
n-dodecane
C.-alkyl benzene +
C12H24 isomers
C13H28 1S°mer
C, -alkyl benzene isomer
o
C13H28 isomer
C, ,H0, isomer
13 26
C.-alkyl benzene isomer
0
C,,H_, isomer
13 26
C, -alkyl cyclohexane isomer
o
C.-alkyl benzene isomer
C.Jl-o isomer
C.Hq-benzene isomer
C,.-alkyl benzene isomer
C, ,H,0 isomer
1 J /O
C14H30 lscmer
C, -H_, isomer
13 26
n-tridecane
B-methylnaphthalene
C.-alkyl benzene isomer
ct-methylnaphthalene
C14H28 isomer
C14H28 isomer
C14H30 iSOmer
Chroma to-
graphic
Peak No.
110A
HOB
111

112
113
113A
113B
114
114A
115
115A
116
116A
116B
117
118

119
120

121
122
122A

122B
123
123A
12 3B

125
127
128
128A
129
130
131
Elution
Temp.
207
208
209

210
211
211
212
213
214
216
217
218
219
219
220
222

224
225

226
228
233

234
235
237
238

240
240
240
240
240
240
240
Compound
C -alkyl benzene isomer
C, ,H- , isomer
13 26
C, .H,., isomer
14 30
alkyl butyrate
C.. .H,. isomer
biphenyl
C14H28 isoiner
n-te trade cane
C.-alkyl naphthalene isot
C^-alkyl naphthalene isot
C15H30 iscmer










ner
ner

dimethylnaphthalene isomer
C15H30 ls°mer
C15H32 isom"


C.-alkyl naphthalene isomer
C,,H-. isomer
16 34
C13H26° isomer (tent-)
C, _H_n isoaier
15 30
n-pentadecane
unknown
C H-, + C.-alkyl
10 J"i -t
naphthalene isomers
unsat . hydrocarbon
diethyl phthalate (BKG)
C14H28° isomer
C, ,,H.. isomer
16 32
unknown
sat. hydrocarbon
C..H,..0 isomer
C17H34 isomer
ii-heptadecane
sat. hydrocarbon
n-octadecane





















          131

-------
Table C-8.  VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT AIR
            IN THE KANAWHA VALLEY, WV (TRIP 2, P2/L4).
Chromato-
graphic
Peak No.
1
2A
2B
2C
2D
2E
3
4
4A
5
5A
5B
5C
6
6A
6B
6C
6D
7
8
8A

9
10
10A
11
12
12A
12B
13
14
14A
15
16
16A
17
17A
17B
17C
18
18A
19
19A
19B
19C
20

Elution
Temp.
48
53
53
54
54
56
58
59
59
60
60
61
62
63
64
64
66
67
68
70
71

72
73
73
74
75
75
76
76
77
78
80
81
82
82
83
83
84
84
85
86
87
88
88
88

Compound
co2
C.H- isomer
4 8
ii-butane
acetaldehyde (tent.)
C.H- isomer
C.H.,, isomer
isopentane
acetone
C.H..- isomer
n-pentane
C.H.- isomer
isopropanol
dichloromethane + C.H „ isomer
methyl acetate
C.H, isomer
J O
cs2
2-methylpropanal
C.H- isomer
2-methylpentane
3-methylpentane
C,H._ isomer + methyl ethyl
D l£
ketone (tent.)
hexafluorobenzene (eS)
n-hexane
isopropyl ether
chloroform + C,H, - isomer
D 1*1
C,H,- isomer
D J.Z
ethyl acetate (tent.)
C6H12 isomer
perf luorotoluene (eS)
C,H, - isomer
6 12
1,1,1-trichloroethane
1-chlorobut ane
unknown
C,H - isomer
6 10
benzene
isopropyl acetate (tent.)
carbon tetrachloride
cyclohexane
2-methylhexane
2, 3-dimethylpentane
3-methylhexane
C,H isomer
C.H.-O isomer
C,H. , isomer
714
dichloropropene
Chroma to-
graphic
Peak No.
20A
21
21A
22
22A
22B
23
23A
24
24A
24B
24C
25
26
27
28
29
30
31
32
32A
32B
33
34
34A
35
35A
36

37
37A
38
39
39A
39B
40

41
41A
41B
41C
42
43
43A
44
44A
(continued)
Elution
Temp.
89
89
90
91
92
93
94
94
96
97
98
98
98
100
102
104
105
107
108
109
110
110
111
112
113
114
114
116

117
118
118
119
119
120
120

121
128
123
123
124
124
125
125
126

Compound
C7H16 isomer
trichloroe thy lene
C,H, . isomer
7 14
ri-heptane
C,Hj, isomer
ii-propyl acetate
C,H, . isomer
7 14
C_H-2 isomer
methylcyclohexane
4-me thy 1- 2-pent anone
CoH,. isomer
u J-O
dimethyl disulfide
CgHlg isomer
C0H, , isomer
o J.D
C8H18 + C7H12 isomers ("nt.)
toluene
CgH.g isomer
CgH.g isomer
CgH16 isomer
C8Hlg isomer
CoH., isomer
o i.b
1,2-dibrorooethane (tent.)
CgH , isomer
j-octane
CgH16 isomer
tetrachloroethylene
CgH., isomer
dimethylpentanal or
C^H. ,0 isomer
C9H2- isomer
CgH isomer (tent.)
CgH2 isomer
4-vinylcyclohexene
C0H. , isomer
o Xo
C0H. „ isomer
7 J.O
C9H2- isomer +
ethylcyclohexane
trimethylcyclohexane isomer
C9H18 isomer
C9H16 lsomer
C9H „ isomer
ethylbenzene
CgH.g isomer
C9H20 ^somer
xylene isomer
C9H- isomer

                               132

-------
Table C-8.  (cont'd.)
Chromato-
graphic
Peak No.
45
46
46A
47
47A

48
48A
49
50
50A
SOB
50C
51
51A
52


52A
53
53A
53B
54
54A
55
55A
56
57
57A
58
58A
59


59A
60
61
62
63
63A

64
64A
65
65A
66
66A
66B

Elution
Temp .
127
128
129
129
129

130
130
131
133
134
135
135
136
136
137


138
138
139
140
140
141
141
142
142
143
143
144
145
145


146
147
148
148
149
150

150
151
152
153
153
154
154

Compound
CgH20 isomer
C-H- ,0 + CqH.Q isomers
CqHig isomer
styrene
tetrahydroindene or
CqH,, isomer
<>-xylene
C9H18 isomer
methy let hyl cyclohexane isomer
n-nonane
anisole
C10H20 isomer
C.QH22 isomer
C,-alkyl cyclohexane isomer
CqH12 isomer
isopropylbenzene +
C..,H_. isomer
10 22
C10H20 is°mer
C_H, , isomer
y -Lo
C10H22 isomer
C10H20 1SOIner
propyl cyclohexane
C10H22 lsomer
C10H16 ls°mer
C.-H-- isomer
10 22
C._H2 isomer + benzaldehyde
n-propylbenzene
C10H20 isomer
ethyltoluene isomer
C10H22 isomer
1,3,5-trimethylbenzene +
C..H__ isomer
10 22
C10H20 is°mer
C10H22 is°mer
jj-ethyltoluene
C10H18 is0mer
C10H20 isOTler
C,H_-benzene isomer
3 5
1,2, 4-trimethylbenzene
C10H20 ^somer
ii-decane
dichlorobenzene isomer (tent.)
C...H2 isomer
C.-alkyl benzene isomer
C H isomer (tent.)
Chromato-
graphic
Peak No.
67

68
69
70

70A
71
71A

72
73

74
75
75A
76

76A
76B
77

78
78A
78B
79
79A
80
81
81A
82
82A
83

83A
83B
83C
84
84A
85

85A
86
86A
86B

87
87A
(continued)
Elution
Temp.
155

156
156
157

158
159
160

160
161

162
162
163
163

163
164
164

165
165
165
166
166
167
168
168
169
170
170

171
171
171
172
173
174

174
175
175
176

177
177

Compound
C..H-. + C.-alkyl benzene
11 24 4
isomers
1, 2, 3-trimethylbenzene
C11H24 is0nler
C11H24 lsomer +
o— dichlorobenzene
indan
C.-alkyl cyclohexane isomer
^11H22 + CA~alkyl benzene
isomers
C.-alkyl benzene isomer
C.-alkyl benzene isomer +
n-butylbenzene
C11H24 lsomer
C11H22 lsomer
C,-alkyl benzene isomer
C..H,, isomer
11 22
C,-alkyl benzene isomer
C10H18 isomer
C,-alkyl benzene +
C11H24 isomers
C,-alkyl benzene isomer
C.,H2-. isomer
C11H22 isomer
C,-alkyl benzene isomer
C12H22 isomer
C11H22 isomer
C11H22 isomer
C12H24 lsomer
n-undecane
C.-alkyl benzene isomer
C,,H-_ isomer
11 22
C,-,H_. isomer
12 24
C.^H., isomer
C.-alkyl benzene isomer
^12H26 isomer
CUH20 isomer
C, -H-, isomer
12 26
C_-alkyl phenol isomer
C.-alkyl benzene isomer
C -H-, isomer
Cj-alkyl benzene -H C^-
benzene isomers
C.-alkyl cyclohexane isomer
C.-H-, isomer

           133

-------
Table C-8.  (cont'd.)
Chromato-
graphic
Peak No.
87B

87C

88

89
90

90A
91

91A
92
92A

92B
93
94
95

96
96A
97

98
98A
99

100
100A
101
101A
102

103
103A
104

105
Elut ion
Temp.
177

178

178

179
180

180
181

182
183
184

184
185
186
187

188
190
191

192
192
193

194
195
196
197
198

199
200
201

202
Compound
C.-alkyl benzene + C^-alkyl
phenol isomer
C.H.-benzene + C,^H_. isomers
47 12 24
C H26 + tetramethylbenzene
isomers
C.-alkyl benzene isomer
1, 2, 3, 4-tetrahydronaphthalene +
C.-alkyl benzene isomer
C,-alkyl benzene isomer
o
C.-alkyl benzene +
C _H,C isomers
J-^ iu
^12^24 *somer
naphthalene
C, -H.. isomer
12 24
C.-alkyl benzene isomer
n-dodecane
C.-alkyl benzene isomer
C. ,H,0 isomer
13 28
C,-alkyl benzene isomer
C,-alkyl benzene isomer
o
C, ,H_, isomer
13 26
C,-alkyl cyclohexane isomer
D
C -H26 isomer
C ,H,a isomer
13 28
C,-alkyl benzene isomer
o
C -H-g isomer
C14H30 lsomer
C11H22° isomer
C, ,H_, isomer
13 26
n-tridecane
6-methylnaphthalene
C.-alkyl benzene +
C,,H_, isomers
1 J 4.Q
a-methylnaphthalene
Chronuco-
grdphic
Peak No.
10 5A
105B
105C

106

106A
107
107A
108
108A
109
110
111
111A

112
113
113A
11 3B

114
115
115A

115B
116
117

117A
11 8A
119
11 9A
120

120A
121
122
123
124
Elut ion
Temp.
203
205
206

207

208
209
210
211
211
213
215
217
218

220
222
224
225

226
228
231

232
235
237

237
239
240
240
240

240
240
240
240
240
Compound
C.H, .-benzene isomer (tent.)
0 J-i
C--alkyl benzene isomer
C, ,H._ isomer
14 28
C--alkyl cyclohexane or
C13H26 is°mer
C15H32 isonier
C QH .0 ketone isomer
C.,H,0 Isomer
biphenyl
C14H28 is0mer
ii-tetradecane + diphenyl ether
dimethylnaphthalene isomer
dimethylnaphthalene isomer
C, rH-_ isomer
15 30
C.-H,- isomer
C16H3A isomer
C15H30 is°mer
C. .H,n isomer
15 30
n-pentadecane
unknown
C, .H-n isomer
15 30
C,-alkyl naphthalene isomer
diethyl phthalate
C,.H-Q0 isomer
14 28
C.,H,_ isomer
n-hexadecane
unknown
benzophenone
C,_H-. isomer
17 34
C, -H_, isomer
1 / Jo
sat . hydrocarbon
C15H30° 1SOmer
n- h ep t ad e cane
C19H40 isomer
         134

-------
Table C-9.  VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT AIR
            IN  THE  KANAWHA VALLEY, WV  (TRIP  2,  P2/L5).
Chromato-
graphic
Peak No.
1
4
4A
5
6
7
7A
8
8A
9
10A
10B
11
12
13
14
14A
15
ISA
16
16A
17
17A
17B
17C
18
18A
19
20
20A
20B
20C
20D
20E
21
21A
21B
22
23
23A
23B
24
24A

24B
24C
25
Elution
Temp.
49
52
53
53
55
58
58
59
61
62
65
68
68
70
72
73
73
74
75
77
78
83
84
94
95
87
89
90
92
93
97
99
102
102
104
105
107
110
113
115
124
126
129

130
131
131
Compound
co2
ii-propane (tent.)
butene
n-butane
acetaldehyde
isopentane
dimethyl ether
acetone
dichloroethylene isomer
dichloromethane
C.H.O isomer
4 8
C,Hn . isomer (tent.)
b I/
2-methylpentane
3-methylpentane
hexaf luorobenzene (el)
n-hexane
diisopropyl ether
chloroform
ethyl acetate (tent.)
per fluoro toluene (eS)
methylcyclopentane
benzene
carbon tetrachloride
cyclohexane
2-methylhexane
C-H., isomer
7 16
C,Hj, isomer (tent.)
acetic acid
n-heptane
C?H ^ + C.H 0 isomers (tent.)
methylcyclohexane
C^H - isomer (tent.)
CRH , isomer
o ID
C_H isomer
O lo
toluene
C.H.. isomer
O • J.o
C.H _ isomer
o 10
n-hexanal
ii-octane
tetrachloroethylene (tent.)
ethylbenzene
xylene isomer
C0H_,. isomer
9 20
styrene
n-heptanal
^-xylene 4- C.H isomer
Cnromato-
graphic
Peak No.
26
27
27A
27B
27C
28
28A
28B
29
29A
29B
30
31
31A
31B
32
32A

33
33A
34
34A
35
35A
35B

35C
35D
35E
36
36A
37
37A
37B
38
38A
38B
39
39A

39B
40
40A

41
41A
41B
Elution
Temp .
133
137
140
141
142
143
143
144
146
147
148
149
150
150
151
152
155

157
159
160
161
162
163
164

165
166
166
167
168
169
172
174
175
176
177
178
180

182
184
185

186
187
188
Compound
n-nonane
C10H22 is°mer
C10H22 is°mer
C10H16 lsomer
C.H. ,0 isomer
o ID
benzaldehyde
ri-propylbenzene
ethyltoluene isomer
C11H24 1SOmer
phenol
C,-alkyl benzene isomer
C11H24 isomer
n-octanal
C10H20 ls°mer
1, 2 , 4-trimethylbenzene
n-decane
1,2,3-trimethylbenzene +
C..H_, isomer
C,,H_, isomer
11 24
unsat. hydrocarbon
sat. hydrocarbon
C.-alkyl benzene isomer
acetophenone
cresol isomer
C.-alkyl benzene -f
C11H24 lsomers
C.-alkyl benzene isomer
C11H22 isomer
C.-alkyl benzene isomer
ti-nonanal
°11H22 lsomer
n-undecane
C.-alkyl benzene isomer
C12H24 isomer
dime thy Iphenol isomer
C12H24 isomer
C..H., isomer
C.-alkyl phenol isomer
C,-alkyl benzene + C.^HOA
isomers
C.-alkyl phenol isomer
n-decanal + naphthalene
C..H-. isomer
12 24
n-dodecane
C.-alkyl phenol isomer
C12H24 isomer
                               (continued)
                                  135

-------
Table C-9.  (cont'd.)
Chromato-
graphic
Peak No.
41C
41D
41E
42
43
43A
43E
Elution
Temp.
193
197
198
199
200
201
205
Compound
C12H24 isomer
C..H_-0 isomer (tent.)
C.,H_, isomer
13 26
n-undecanal
n-tridecane
6-methylnaphthalene
C14H30 iscmer
Chromato-
graphic
Peak No.
44
44A
44B
45
47
47A

Elution
Temp.
207
208
209
210
222
223

Compound
alkyl butyrate
biphenyl (tent.)
C14H28 isomer
n- 1 e tradecane
sat . hydrocarbon
^15^30 *-somer

           136

-------
Table C-10.
VERY VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT AIR
IN THE KANAWHA VALLEY, WV (TRIP 3, P1/L8).
Chromato-
graphic
Peak No.
1
3
3A
4
4A
4B
5
5A
6
6A
Elution
Temp .
48
51
52
53
54
55
56
56
57
59
Compound
co2
acetaldehyde
C,H0 isomer
A o
isobutane
C4H8
C4H8
n-butane
C5H10
isopentane
acetone
Chroma to-
graphic
Peak No.
7
7A
7B
7C
9
10
11
12
13
14
Elut-Lon
Temp.
60
60
61
61
67
69
70
71
75
76
Compound
n-pentane
dichloroethylene isomer
methylene chloride
C5H1Q isomer
2-nethylpentane
3-methylpentane
hexafluorobenzene (el)
n-hexane
perf luorotoluene (eS)
methylcyclopentane
                                  137

-------
Table Oil.
VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT AIR
IN THE KANAWHA VALLEY, WV (TRIP 3, P1/L8).
Chromato-
graphic
Peak No.
1
3
3A
3B
3C
4
5
5A
5B
6
6A
7
7A
7B
10
10A
11
11A
11B
12
12A
13
13A
13B
14
14A
15
16
16A
16B
17
17A
18
19
19A
20
20A
20B
21
22
22A
23
24
25
26
27

Elution
Temp.
48
53
55
56
56
58
59
60
60
62
63
63
69
69
70
71
73
73
73
75
75
76
76
78
80
81
83
86
87
87
88
89
90
92
93
95
97
100
101
104
106
108
110
113
115
117

Compound
co2
propane
C4H10 is°mer
acetaldehyde
butane
isopentane
methyl acetate (tent)
dimethyl ether
acetone
ii-pentane
C.H. .0 isomer (tent)
4 10
methylene chloride
C,H. - isomer
O -Li
C.H..J. isomer
2-methylpentane
C,H. , isomer
O Li
3-methylpentane
butanal (tent)
C-.H.2 isomer
hexafluorobenzene (el)
n-hexane
isopropyl ether
chloroform
methyl ethyl ketone (tent)
perfluorotoluene (eS)
C,H. . isomer (tent)
u Li
1,1, 1-trichloroethane
benzene
carbon tetrachloride
cyclohexane
2-methylhexane
2, 3-dimethylpentane
3-methylhexane
C-H1 , isomer
C.H...O isomer
ri-heptane
C,H. .0 isomer (tent)
O Li
methylcyclohexane
4-roethyl-2-pentanone
C,Hlr,0 ketone isomers (tent)
b XU
2-hexanol
toluene
CgHig isomer
4-methyl-3-penten-2-one
n-octane
te trachloroethylene
Chroma to-
graphic
'eak No.
27A
28
28A
29
29A

29B
30
31
31A
32
32A
33
34
34A
35
36
37

37A
38

38A
39
40
40A
41
41A
4 IB

42
42A
42B
42C
A3
43A
43B
44
45
46
46A
46B
46C
-
46D
47
(continued)
Elution
Temp.
(°C)
118
119
122
123
124

125
127
129
129
130
130
132
133
134
135
138
139

140
142

143
143
144
145
146
147
147

147
148
148
149
149
150
151
152
153
154
155
155
156
-
157
157

Compound
CgH., isomer
2-methoxy-2h-dihydro-py ran
C9H2Q isomer
C0H_ .. isomer
o ID
chlorobenzene + ethylcyclo-
hexane
C-H _ isomer
ethylbenzene
xylene isomer
CgH isomer
CgH2Q isomer
heptanone isomer
styrene
o-xylene
CgHjo isomer
n-nonane
C-H.g isomer
isopropylbenzene + ^10^22
isomer
C.j.H~_ isomer
10 22 3
isomers
C10H16 is0mer
benzadehyde
n-propylbenzene
ethyltoluene isomer
C<-H gO ketone isomer
phenol
cyanobenzene + 1,3,5-trimethyl-
benzene
C10H22 lsolner
C10H20 isomer
C10H22 lsomer
o-e thy Ito luene
CnH. 00 ketone isomer
y its
C10H22 Is0mer
benzofuran + ClnHj- isomer
1,2, 4-trimethylbenzene
ii-decane
dichlorobenzene isomer
C10H20 isomer
C,-alkyl benzene isomer
C,,H_. + C.-alkyl benzene
11 24 4
isomers
C ..H isomer
1,2, 3-trimethylbenzene

                                  138

-------
Table C-ll.  (cont'd.)
Chroraato-
graphic
Peak No.
47A

48
48A

48B
48C
48D
48E
48F
49
49A
50

51
51A
5 IB
52
52A
53
53A
53B
54
54A
55

55A
55B
55C
55D

55E
Elution
Temp .
(°C)
157

159
159

160
161
161
161
162
162
163
165

166
166
167
168
168
169
169
170
171
172
173

174
175
175
175

176
Compound
C, ,H_, + C,-alkyl benzene
11 24 4
isoraers
c>-dichlorobenzene
C,-alkyl cyclohexane isomer +
indan
C11H24 isomers
indene + cnH22 isomers
C,-alkyl pyridine isomer (tent)
C,-alkyl benzene isomer
C,-alkyl benzene isomer
acetophenone
C,-alkyl benzene isomer
C11H24 + C4~alky1 benzene
isomers
CnH24 isomer
C,-alkyl benzene isomer
C,H_-benzene Isomer
4 7
C,-alkyl benzene isomer
CUH22 isomer
n-nonanal
C,H.-benzene isomer
CUH22 isomer
n-undecane
C,-alkyl benzene isomer
3,5, 5-trimethyl-2-cyclohexen-
one
C.alkyl benzene isomer
2-pyrone (tent)
CUH20 isomer
C, ,H0-. isomer
11 22
C_-alkyl benzene isomer
ChromaLo-
graphic
Peak No.
55F
55G
56
56A
57
57A
58
58A
59
60
60A

6 OB
60C
60D
61
61A
61B
61C
62
63
64
64A
64B
64C
64D
65
65A
68
68A


Elution
Temp .
(°C)
178
178
180
180
181
183
185
186
187
188
192

196
198
200
202
203
205
209
213
214
216
217
218
220
228
229
231
240
240


Compound
C^H.,-benzene isomer
unsat. hydrocarbon
C12H26 isomer
C.-alkyl benzene isomer
1,2, 3,4-tetrahydronaphthalene
Cp-alkyl benzene isomer
naphthalene
2,3-benzothiophene (tent)
n-dodecane
2,6, 8-trimethy lnonanone-4
methyldihydronaphthalene
isomer (tent.)
C,.H_,0 isomer (tent)
C13H28 is0mer
unsat. hydrocarbon
n-tridecane
6--tnethylnaphthalene
a-methylnaphthalene
C15H32 isomer (tent)
a-tetralone
biphenyl
diphenyl ether— H r^-tetradecane
C14H28 isomer
C,-alkyl naphthalene isomer
Cj-alkyl naphthalene isomer
C15H30 is0mer
n-pentadecane
C14H12 isolner
benzophenone
C,_H_, isomer
17 36

         139

-------
Table C-12.
VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT AIR
IN THE KANAWHA VALLEY, WV (TRIP 3, P2/L1).
Chromato-
graphic
Peak No.
1
3
4
5
6
7
9
9A
10
IDA
11
13
14A
15
16
16A
17
18
19
20
20A
21
22
23
24
24A
24B
25
26
26A
27
27A
28
29
30
30A
31
31A
32
33
34
34A
35
35A
36
36A

Elution
Temp.
48
51
52
53
56
58
60
61
61
61
62
65
68
69
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
86
87
87
88
90
91
91
92
93
94
99
100
101
102
103
104

Compound
co2
propane (tent)
C,Hlf. isomer (tent)
acetaldehyde
n-butane
isopentane
acetone
diethyl ether
n-pentane
Background peak
methylene chloride
C,H , isomer (tent)
C5R,- isomer
2-methylpentane
3-methylpentane
C,H , isomer
0 LL
hexafluorobenzene (eS)
n-hexane
chloroform
ethyl acetate
C6H12 isolller
perfluorocoluene (eS)
methylcyclopentane
unsat. hydrocarbon (tent)
1,1, 1-trichloroe thane
C7H14 isomer
C6H10 *somer
benzene
carbon tetrachloride
cyclohexane
2-methylhexane
2 , 3-dimethylpentane
acetic acid
3-methylhexane
C,H, . isomer
7 14
C,H, . isomer
7 14
CgH18 isomer
C,H14 isomer
ri-heptane
C,H, . isomer
7 14
methylcyclohexane
C_H, .. isomer
o lb
CgH18 isomer
C,H 0 isomer
0 LL
C0H.. - isomer
o lo
C,,H., isomer
o 10
Chroma to-
graphic
Peak No.
37
38
39
40
40A
41
41A
42
43
43A
43B
43C
4 3D
43E
44

44A
44B
45
45A
46
46A
47
47A
48
49
49A
49B
50
50A
51

51A
52
53
53A
54
55
56
57
57A
57B
57C
58
58A
58B
continued
Elution
Temp.
105
106
108
109
111
112
113
115
116
117
119
120
121
122
123

124
125
127
127
128
129
130
132
132
133
134
134
136
138
139

140
141
143
143
144
144
145
146
147
148
148
148
150
150

Compound
C0H10 isomer
o io
toluene
CaH „ isomer
o lo
C0H. „ isomer
o lo
C.H., isomer
o lb
CqH.Q isomer
C0H, , isomer
a 10
n-octane
tetrachloroethylene
CgHj, isomer
C9H20 lsomer
C9H20 isoroer
C9H2Q isomer
C-H.., isomer
o 10
ethylcyclohexane + ^g^20
isomers
C9H18 isomer
C9H18 isomer
ethylbenzene
C9H18 isomer
xylene isomer
C9H20 is°mer
C9H2Q isoroer
CnH.Q isomer
styrene
o-xylene
CinH-- isomer
C-H. „ isomer
n-nonane »
C9Hlg isomer
C10H22 lsomer + isopropyl-
benzene
C10H20 ls°mer
C10H22 Is0msr
C.-H22 isomer
^10^20 *-somer
C.QH,, isomer
benzaldehyde
n-propylbenzene
ethyltoluene isomer
C.-f.H-^ isomer
phenol
1,3, 5-trimethylbenzene
C11H24 is0mer
C^-H. isomer
o-ethyltoluene

                                140

-------
Table C-12.  (cont'd.)
Chromato-
graphic
Peak No.
58C
58D
58E
59
59A
60
61
61A

6 IB
6 1C

62
62A

63
63A
63B
63C
63D
64

63
65A
65B

65C
66

66A
66B
66C
66D
67
67A
68
68A

69
69A
69B
69C
70
70A
70B
70C
Elution
Temp .
151
152
152
153
154
155
156
156

157
158

158
159

160
161
162
162
163
163

164
164
165

165
166

168
168
169
169
169
170
170
171

172
173
173
174
176
177
178
178
Compound
C10H22 ls°mer
C10H16 is°mer
C-H. -benzene + cinH20 ^somers
1,2, 4- trimethylbenzene
C10H20 ls°mer
n-decane
dichlorobenzene isomer
C,,.H,- isomer
10 20
C.-alkyl benzene isomer
C, ,H-. + C.-alkyl benzene
11 24 4
isomers
1,2, 3-trimethylbenzene
CnlH_. isomer
11 24
Cn,H_, isomer
I/ -io
indan
C.-alkyl cyclohexane isomer
C11H22 isomer
C.-alkyl benzene isomer
C.-alkyl benzene + C,.,H.,
isomers
acetophenone
C.-alkyl benzene isomer
C....H,,. isomer
11 24
C11H22 isomer
C, , H-. + C.-alkyl benzene
11 24 4 J
isomers
C11H24 isomer
C.-alkyl benzene isomer
C12H24 lsomer
C.H, -benzene isomer
4 7
C.-alkyl benzene isomer
C12H26 1Somer
n-nonanal
C,,H__ isomer
11 22
n-undecane
C.-alkyl benzene isomer
C.-alkyl benzene isomer
C..,tt.. isomer
C.-alkyl benzene isomer
C12H26 lsomer
C_-alkyl phenol isomer
C.-alkyl benzene isomer
Chromato-
graphic
Peak No.
70D
70E
70F

70G
71

71A

71B
71C
71D
71E
71F

71G
72
72A
72B
73
73A
73B
73C
7 3D
73E

74
74A
74B
74C
75
75A
76
76A
76B
76C
76D

77
78
79A
80A
SOB



Elution
Temp .
179
180
180

181
182

182

183
183
184
184
185

186
187
187
188
189
190
190
196
200
202

204
204
205
206
211
216
218
220
222
224
230

231
235
240
240
240



Compound
C -alkyl benzene isomer
C -alkyl cyclohexane isomer
C12H24 "*" C5~alkvl benzene
isomers
C. H..-benzene isomer
4 7
C, ~H.^ + C.-alkyl benzene
12 26 5
isomers
C. -H-. isomer
12 24
C.-alkyl benzene isomer
C.-alkyl benzene isomer
C H isomer
C.-alkyl benzene isomer
C1nH-nO isomer
10 20
naphthalene
n-decanal
C12H24 isomer
C,-alkyl benzene isomer
n-dodecane
C.-alkyl benzene isomer
C12H24 isomer
C13H28 isoner
C13H28 isomer
C, -H-. isomer
12 24
n-tridecane
B-methylnaphthalene
^13^26 *somer
a-methylnaphthalene
C.-alkyl cyclohexane isomer
C14H28 lsomer
n-tetradecane
dimethylnaphthalene isomer
dimethylnaphthalene isomer
C H,- isomer
C. ,H,_. isomer
15 30
n-pentadecane
unknown
C ,H,2 isomer
£-hexadecane
benzophenone



          141

-------
Table C-13.
VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT AIR
IN THE KANAWHA VALLEY, WV (TRIP 3, P2/L2).
Chromato-
graphic
Peak No.
1
3A
3B
4
4A
4B
4C
4D
5
5A
5B

6
7A
8
8A
9
9A
9B
10
11
12
12A

13
14
14A
14B
15
ISA
15B
16
16A
17
18
ISA
18B
19
19A
20
21
21A
21B
21C
22

23
24


Elution
Temp.
48
52
52
53
54
59
61
61
62
63
64

64
71
71
73
74
74
75
76
77
77
80

81
82
84
86
87
88
88
89
90
91
93
94
94
96
98
101
103
103
105
106
107

108
109


Compound
co2
propane (tent)
C.H- isomer
4 8
C.H,- isomer
4 10
acetaldehyde
isopentane
C5H10 isomer
furan (tent)
acetone 4- n-pentane
diethyl ether (tent)
dichloroethylene isomer
(traces)
methylene chloride
C5H1Q isomer
2-me thy Ipe ntane
C.Hj-0 isomer
3-methylpentane
butanal
C,H, . isomer
o LZ.
hexafluorobenzene (eS)
n-hexane
chloroform
C,H,_ isomer
6 12
perfluorotoluene (eS)
methylcyclopentane
1,1, 1-trichloroethane
C,H, „ isomer (tent)
o lu
benzene
carbon tetrachloride (traces)
cyclohexane
2-methylhexane
2,3-dimethylpentane (tent)
3-methylhexane + acetic acid
C7H14 lsomer
trichloroethylene
C-H1B isomer
o lo
n-heptane
C.H. , isomer
methylcyclohexane
C-H . isomer
o 10
C,H, -0 ketone isomer
0 1Z
C0H, .. isomer
o ID
C-H isomer
o 10
C0H, 0 isomer
8 18
toluene
C-H, Q isomer
Chromato-
graphic
Peak No.
25
25A
25B
26
26A
27
28
28A
28B
29
29A
29B
30
30A
31

31A
31B
32
32A
33
33A
34

34A
35
35A
35B
36
36A
37
38
39

39A
40
40A
40B
41
41A
42
42A
43
44
44A

45
45A
8 18
(continued)
Elution
Temp.
Ill
112
112
113
114
116
117
118
119
119
121
121
122
123
124

125
126
127
128
129
129
130

131
132
132
133
133
134
136
138
139

140
141
141
142
142
143
144
145
145
146
147

148
148


Compound
C-H „ isomer
o 1 o
C,H .0 isomer
C8H16 is°mer
n-hexanal + C_H__ isomer
C-H, , isomer
o lo
ti-octane
tetrachloroethylene
C.H, .. isomer
o lo
CgH2Q isomer (tent)
CgH2Q isomer
CgH2Q isomer
CgR. , isomer
CgH20 isomer
C9H18 ls°mer
CgH2Q isomer + ethylcyclo-
hexane
C9H18 is0mer
C,H, .0 isomer (tent)
7 14
ethylbenzene isomer
CgH18 isomer
xylene isomer
CgH2Q isomer
C0H,n isomer
9 20
C,H ^0 isomer
C10H22 isomer
styrene
C-H isomer
o- xylene
C9H18 lsomer
n-nonane
CgH - isomer
^10^22 *scmier "*" isopropyl-
benzene
^*10H20 *somer
C. -H.. isomer
C-H,, isomer (tent)
y 10
ClnH_. isomer
Clf.H2- isomer
C,-alkyl cyclohexane isomer
benzaldehyde
C1nH-- isomer
n-propylbenzene
ethyltoluene isomer
C ,.H,- isomer
10 22
1,3,5-trimethylbenzene
C,,H_, isomer
11 24

                                142

-------
Table C-13.  (cont'd.)
Chromato-
graphic
Peak No.
45B
46
47
47A
47B

48
49
49A
50
51
51A
5 IB
52

53
53A
54
55
55A
55B
55C
55D
56
57

57A
57B
58
58A

59
59A
60
60A

61
61A

62

63
63A
63B
63C
6 3D
64
65
65A

Elution
Temp.
149
149
150
151
151

152
153
153
154
155
155
156
157

158
158
159
160
161
161
161
162
162
163

164
164
166
167

167
168
169
169

170
170

171

172
173
173
173
174
174
175
176

Compound
phenol (tent) + C10H20 isomer
CinH.? isomer
o-e thy 1 toluene
C-j-H,^ isomer
C,,H_, isomer
11 24
ii-octanal
1,2 , 4-triraethylbenzene
C1(,H_0 isomer
n-decane
dichlorobenzene isomer
isobutylbenzene
sec-butylbenzene
C.-alkyl benzene + C,,H_.
4 11 24
isomers
1,2, 3- trime thylbenzene
C...H-, isomer
C....H-, isomer
C.H.-benzene isomer
C11H24 isomsr
C,-alkyl cyclohexane isomer
CUH22 isomer
C.-alkyl benzene isomer
p-propyl toluene
C.-alkyl benzene isomer +
acetophenone (tent.)
C.-alkyl benzene isomer
C...H2, isomer
o-propyltoluene
C,..H,.. isomer
11 24
C.-alkyl benzene isomer
C11H24 isonier
C.-alkyl benzene isomer
ii-nonanal + C,H,-benzene
isomer
C.-alkyl benzene isomer
C, ,H-_ isonier
11 22
n-undecane 4- C^-alkyl benzene
. isomer
C.-alkyl benzene isomer
C11H22 isomer
C.-alkyl benzene isomer
C12H24 lsomer
C12H26 *somer
tetramethylbenzene isomer
C.-alkyl benzene isonier
C12H26 isomer
Chromato-
grapnic
Peak No.
66
66A
67
67A
67B

68
69
70
70A
70B
71
71A
72
72A
72B
72C

73
73A
73B
74

74A
75
75A
76
76A
76B
77

77A
77B
77C
77D
77E
77F
77G

77H
78
78A
78B
78C
79
79A
80
80A
81
(continued)
Elution
Temp .
177
178
178
178
179

179
180
181
181
182
182
182
183
184
185
185

186
186
1R6
187

188
189
190
191
192
193
194

195
195
195
196
196
196
197

197
199
200
200
201
202
203
204
205
205

Compound
C.-alkyl benzene isomer
C . H..-benzene isomer
4 7
C.-alkyl benzene isomer
C,H.,-benzene isomer
4 7
C.-H,.. isomer
12 24
C.-alkyl benzene isomer
C .H.,-benzene isomer
4 7
C.-alkyl benzene isomer
C.-alkvl benzene isomer
C.-alkyl benzene isomer
1,2, 3,4-tetrahydronaphthalene
C.-alkyl benzene isomer
C.-alkyl benzene isomer
C.-alkyl benzene isomer
C,-alkyl benzene isomer
O
C.Hg-benzene + C,-alkyl
benzene isomers
naphthalene
C.Hg-benzene isomer
C,-alkyl benzene isomer
C,-alkyl benzene isomer +
n-dodecane
C,-alkyl benzene isomer
0
C.-alkyl benzene isomer
C-ioH-o isomer
C,-alkyl benzene isomer
o
C.-alkyl benzene isomer
C,-alkyl benzene isomer
C, ,H-. isonier
13 26
C,-alkyl benzene isoner
0
C,-alkyl benzene isomer
C13H28 Is0mer
C.H_-benzene isomer
C,-alkyl benzene isomer
D
C.-alkyl benzene isomer
C, ,H-,, isomer
13 28
C_-alkyl benzene isomer
C14H30 ls°mer
C. ,H_, isomer
Lj ZD
C.-alkyl benzene isomer
C.-H,, isomer
ii-tridecane
B-methylnaphthalene
C.-alkyl benzene isomer
C,-alkyl benzene isomer
o
a-methylnaphthalene

            143

-------
Table C-13.  (cont'd.)
Chroma to-
graphic
Peak No.
81A

82
83

83A
83B
83C
84
84A
84B
84C
Elution
Temp.
209

210
213

214
214
215
216
218
219
220
Compound
C.H.-benzene + C6-alkyl
benzene isomers
C,-alkyl benzene isomer
0
1,2,3, 4-tetrahydronaphthalen-
1-one
biphenyl
C14H30 ls°'"er
C14H28 is0mer
n-tetradecane
CIOHIO° isomer (tentr)
dimethylnaphthalene isomer
dimethylnaphthalene isomer
Chromato-
graphic
Peak No.
84D
84E
84 F
84G
85
86
88A
88B
88C
88D
88E

Elution
Temp.
223
225
227
228
229
233
240
240
240
240
240

Compound
C15H30 1S°mer
C15H32 lsomers
C, ,H.,0 isomer
L j io
Cj^H, isomer
n-pentadecane
unknown
ti-hexadecane
benzophenone
C _H isomer
1 / JD
alkyl ketone
n-hep tade cane

            144

-------
Table C-14.
VERY VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT AIR
IN THE KANAWHA VALLEY, WV (TRIP 3, P2/L9).
Chromato-
graphic
Peak No.
1
3
4
4A

5
6
7
8
8A
SB
9
Elution
Temp.
(°C)
47
51
53
54

56
58
59
60
61
62
62
Compound
co2
propane
isobutane
C.H isomer
4 2
n-butane
isopentane
acetone
n-pentane
diethyl ether
vinylidine chloride
methylene chloride
Chror.ato-
graphic
Peak No.
11
12
13
13A

14
15
ISA
16
17
18

Elution
Temp .
(°C)
64
69
71
72

73
74
75
76
78
79

Compound
cs2
2-methylpentane
3-methylpentane
CCH,. isomer
5 12
hexafluorobenzene (et)
ji-hexane
chlorofonc
C,H, , isomer (tent.)
/ 16
perfluorotoluene (el)
oethylcyclopentane

                              145

-------
                          APPENDIX D

SEMIVOLATILE COMPOUNDS IDENTIFIED IN AIR PARTICULATE COLLECTED
                    IN KANAWHA VALLEY,  WV
                              146

-------
Table D-l.   COMPOUNDS IDENTIFID IN  POLAR  NEUTRAL FRACTION OF  <1.7  y
             AIR  PARTICULATE COLLECTED IN KANAWHA VALLEY,  WV
                                (Trip 3,  PI/LI)
Chromato-
graphic
Peak No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

i. c13
2. C13
3' C16
4" C18
5' C18
6. C,.
Elution
Temp . Compound
(°C)
124 naphthalene
135 benzothiazole (tent.)
161 Si compound (bkg.)
167 C alkyl benzene
168 naphthol + unknown
182 unknown
196 p-nonyl phenol
202 C14H10 isooer
212 a phthalate (bkg.)
213 C,,H0K isomer1 (tent.)
1
216 C.-H.O isooer (tent.)
U o
217 C, alkyl fluorene (tent.)
221 methyl hexadecanoate
222 a phthalate (bkg.)
234 C,,Hlr. isomer3
ID J.U ,.
239 C,,Hnn isomer
ID 1U
243 methyl octadecanoate +
unknown ( s )
Chromato-
graphic
Peak No.
18
19
20
21
22
23
24
25
26

27

28
29
30
31
32
33
H.H isomers include benzoquinoline isomers and acridine.
HgO isomers include fluorenones and perinaphthindenones and
H . isomers include pyrene and f luoranthene.
Elution
Temp . Compound
(°C)
259 a phthalate
263 a phthalate
265 C1t.H isomer (tent.)
-LO J.U c
265 C18HU isomer
265 ClgH10 isomer4 (tent.)
265 clgH12 isomer6
265 benzanthrone
265 a phthalate (bkg.)
265 methylbenzanthracene isomer or
methylbenzophenanthrene isomer
triphenylphospine sulfide
(bkg.)
265 unknown
265 C20H12 isomerj
265 C20H12 isomer (tent.)
265 C2[)H12 isomer8
265 binaphthyl isomer 4- unknown
265 unknown

benzoindenones .

H - isomers include 1,10-benzf luoranthene, 3,4-cyclopentapyrene and 1,10-benzoaceanthrylene.
H , isomers include terphenyl isomers.
EL ,, isomers include benzanthracene isomers (naphthacene et

al.) and benzophenanthrene isomers (triphenylene,
     chrysene et al.)
 7.  This compound is not a methylchrysene or a methyltriphenylene.
 8.  C2nHi2 isomers include perylene, benzpyrene isomers, and benzfluoranthene isomers.
                                    147

-------
Table D-2.   COMPOUNDS IDENTIFIED IN PNA FRACTION OF <1.7  y
      AIR PARTICULATE COLLECTED IN KANAWHA VALLEY, WV
                     (Trip 3, PI/LI)
Chromato-
graphic
Peak No.
1

2
3
It
5
6
7
8
9
10
11
12

13
14
15
16
17
18

19
20
21

22
23
24
25
26
27
28

29
30
31
32
33
34
35
36

37
38
39
40
Elution
Temp.
CO
111

116
122
123
124
125
132
143
144
151
155
156

159
160
162
168
169.5
173

175
177
181

184
191
193
195
201
208
211

212
216
217
219
211
222
229
230

231
233
236
239
Compound
unknown + dichloromethane
(solvent)
Si compound (bkg.)
unknown
naphthalene
Si compound (bkg.)
unknown
unknown
unknown
methylnaphthalene isomer (tent.)
C12H10 isomsT
unknown
dimethylnaphthalene isomer +
unknown
biphenylene (tent.)
unknown
di-t-butylbenzoquinone (bkg.?)
dibenzofuran (tent.)
unknown
trimethylnaphthalene isomer
(tent.) + a phthalate (bkg.)
C, alkyl naphthalene (tent.)
f luorene
2,2, 4-trimethylpenta-l , 3-diol
di-isobutyrate (bkg.)
hydroxyf luorene (tent . )
C, alkyl naphthalene (tent.)
methylf luorene isomer (tent.)
unknown
2
C14H10 iSODler
dimethylf luorene •*• unknown
methyldibenzothiophene isomer
(tent.)
a phthalate (bkg.)
2
methyl CIABIQ isomer
4 , 5-methylenephenanthrene
methyl C^.H,. isomer
unknown (s)
a phthalate (bkg.)
dimethylphenanthrene isomer
diphenyloxazole isomer(s)
(tent.)
dimethylphenanthrene isomer
C16E10 is°me%
C16H10 isomer
C16H10 is°mer
Chroma to-
graphic
Peak No.
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
60
81
82
83
84
85
Elution
Temp.
CO
243
244
246
247
249
251
252
255
261
264
265
265
265
265
265
265
265
265
265
265
265
265
265
265

265
265
265
265
265
265
265
265
265
265
265
265
265
265
265
265
265
265
265
265
265
Compound
trimethylphenanthrene isomer
trimethylphenanthrene isomer
trimethylphenanthrene isomer
benzof luorene isomer
4
C17H12 •i-somer
methylpyrene isomer (tent.)
methylpyrene isomer (tent.)
methylpyrene isomer
C^ alkyl C1,R.- isomer (tent.)
a phthalate
terphenyl isomer (tent.)
terphenyl isomer (tent.)
C18H10 1SOmer
terphenyl isomer
C,gH10 isomer
^18^12 isomer
a phthalate (bkg.)
unknown
unknown
CjnIL, isomer (tent.)
phthalate(s) (bkg.)
phthalate(s) (bkg.)
C19H14 isomer (tent.)
methyl C10H, - isomer (tent.)
AO J.U
+ Cj alkyl terphenyl (tent.)
C, alkyl C,CH,, isomer6
f\
C2 alkyl C...,Hj_ isomer
C2 alkyl ClgH12 isomer
C22H12 lsomer8 (tent.)
C--H-, isomer
C22H12 i*°»«®o
-------
                                Table  D-2.     (cont'd)
Chromato-
graphic
Peak No.
86
87
88
89
90
91
Elution
Temp.
(°C)
265
265
265
265
265
265
Compound
C21H14 isomer
-------
Table D-3.   COMPOUNDS  IDENTIFIED  IN PARAFFIN FRACTION OF <1.7 y
       AIR  PARTICULATE  COLLECTED IN KANAWHA VALLEY,  WV
                         (TRIP  3,  PI/LI)
Chromato- Elution
graphic Temp .
Peak No. (°C)
1
2
3
4
5
6
7
8


9
10
11
12
13
14
15
115
118
123
124
125
129
131
165


176
V15-250
265
265
265
265
265
Compound
undecane (tent.)
dimethylundecane (tent.)
an alkane
an alkane
an alkane
n-dodecane
an alkane
di-t-butyl-o-beuzoquinone
isomer + di-t-butyl-p-benzoqui-
none isomer
an alkane
alkanes + alkenes
a phthalate (bkg.)
C26H54 alkane
C27H48 alkene
C2?H56 alkane
C28H50 alkene
Chromato-
graphic
Peak No.
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Elution
Temp.
(°C)
265
265
265
265
265
265
265
265
265
265
265
265
265
265
265
265

Compound
unknown
C29H52 arene
C30H34 arene
mixture of alkanes and alkenes
C29H52 arene
C29H52 arene
C30H54 arene
a phthalate (bkg.)
C29H60 alkane or C30H48 alkene
C30H54 arene
C2,H,, alkene (tent.)
a phthalate (tent.)
unknown
C30H62 alkane
C30H30 arene 
-------
     Table D-4.   COMPOUNDS  IDENTIFIED IN BASE FRACTION  OF <1.7  y
          AIR PARTICULATE COLLECTED  IN KANAWHA VALLEY,  WV
                            (TRIP 3, PI/LI)
Chromatc-
graphic
Peak No .
1
2
3
4
5
6

7
8
9
Elution
Temp.
(°C)
125
1A3
156
164
170
183

191
195
196
Compound
naphthalene (tent.)
quinoline (tent.)
nicotine (tent.)
C alkyl quinoline (tent.)
di-t-butylphenol
2,2, 4-trimethylpenta-l ,3-diol
di-isobutyrate (bkg.)
C? alkyl phenol (tent.)
unknown
Cg alkyl phenol
Chromato-
graphic
Peak No.
10
11
12
13
14
15
16
17
18
19*
Elution
Temp .
(°C)
198
201
203
206
210
211
213
225
233
265
Compound
p-nonylphenol
Cg alkyl phenol
C alkyl phenol
C ,HqN isomer
C13H9K isomer
caffeine (tent.)
& phthalate (bkg.)
a phthalate ester (bkg. )
2, 5— diphenyl oxazole
dioctyladipate (bkg?)
Unlabelled peaks beyond file position 400 are phthalates  (bkg.)
                                 151

-------












o
o

a?
:
: c6
M
4J
_006 3 p>
I CU S
a
• »i
Cfl Q)
". 0 fH
D-i Cfl
-008 >
I O CO
- CO S
•H Cfl
CO C
>•, CO
S-iLno,-1 cfl
7 3|_ C C
< J-"t < -H
j ML PL, T3
/ 0)j- SO)

£H
0)
4J
/ d
6
1 3
rH
O
O




t
ift
U>
CM
vrf
CM

O J-1
0 0
~-^ QJ
Loos " ^
--. o
: u a
C W
O 0)
r -H 14-1 4J
4J O CO
L -H fH
-'=* § § 3
L (X, )j -H
60 4J
0) O M
rH 4J Cfl
•H Cfl &,
O K
u „„;. I-1 -H
UDOt jC Cfl
y
"° (-2 r^^
\ t a> • -—
if J-i -H fH

i>
1
1 c>
*> °-
- <• OJ
S-1 V r-3
^ 3 ~^
L00£ CJ M-( rH
O PH
C
0 C «
"'1
m s
                                                   Loos
                                                   LOOT
•U  ft,
G  T-l
CO  M
r-i  H
                   rH

                   0

                   a)
                   M

                   60
                   •H
E9
                       152

-------
                                                               C
                                                               o
                                                  Loos
                                               u
                                                0)
                                                o-
                                                 LocS
                                                 _oos   g
                                                        •H
                                                         CO
                                                         o
                                                        PH

                                                l-Loo*   %
                                                 _00£
                                                 _002
                                                 -001
09
                Of
 O f">
 CO
 h  a.
U-l -H

< EH

CM

14-1 5
 O

 to  >i
•H  (1)
 CO rH

rH  CO
 CO >
 C
 CO  CO
                                                              gs
C_3
O

U-l
o


CO
M
50
O
                                                                 T3
                                                                  (!)
                                                               O
                                                               )-i

                                                               O

                                                               4J
                                                               C
                                                               0)
O
u

OJ
4J
CO


o
                                                                  M
                                                                 -H
                                                                  Cfl
 3
 O

 C
 O
•H
                                                               cfl V
                                                               O
                                                              H
                                                              £N
                                                              0)

                                                              3
                                                              -00
                                                              •H
   u-i
   O
                          153

-------
                                                  V
                                                  U-l
                                                   o

                                                   c
                                                   o
                                                   cfl  .
                                                   a i
                                                   o
                                                   en
-/  3
 ••  w
 /  cfl
 i   ^
 •>   CD

{   I
~   It
                           -re
                                            c
                                            o
                                            cn
                                            o
                                           Pu
                                   -C3C
                                                   03
o
u
                                                  °-i
                                                  *W  Cfl
                                                   O  C
                                                      cfl
                                                   e  &
                                                   «
                                                   U  C
                                                   bo-H
                                                   O
                                                   E  ••->
                                                   O  O
                                                   )-i  a)
    o
4J  CJ

QJ  Q)
!-J  4-J
)-l  Cfl
3  rH
U  3
    a
C  -H
O  *->
•H  l-i
    Cfl
.H  a
cfl
4-1  VJ
O  -H
                                                   Q
                                                   3
                                                   60
154

-------
;
^

___^"
~" — ---i-!-__
.~f u
	 ^ 0
<-.^
-^=""' v
' — " — - V-i
• — ~~~^^* 3
~~ — -, 4J
-^ ttt
—-•_ J_,
•=-— ~ OJ
' "— ^ Q.
	 	 . 	 — " 1)


~~S?r 3
"" ~ rH
'=• 	 . O
__T^ 0
_^=>
~ 	 13
' — *
— — — ^ "y
^^^^ _ ^^^ 	 .^ 	 . 	 	 	 " in
- -^ U3
--^L--J (M1

— ^t-ZL "I. T;^" -^z^-r-.
~^^=~rz — ^~~^-~!H-~., o
*"""""" -^ 10,
r CM
•— «
^,
'i

s
°^J
„ P o
2--ci °'
•""A CM
"j
"•<
*)

to
ir>

-H
O
O
01

«
a
•H
4-1
Q
D.

^J
•H
nj

a

^^
•
__!

^M
O

C
•H
U
m
j^
4-;








































x-^
rH
f-*3
^v.
rH
0.
^
fO

(X
H

^k
^









155

-------
                 APPENDIX E
VOLATILE AND VERY VOLATILE ORGANIC COMPOUNDS
IDENTIFIED IN AMBIENT AIR IN FRONT ROYAL, VA
                     156

-------
Table E-l.  VERY VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT AIR
            IN FRONT ROYAL, VA (TRIP 1, P1/L4).
Chromato-
graphic
Peak No.
1
2A


3

4

5
6
7
7A
8
9
10A
10B
IOC
11
Elution
Temp.
(°C)
49
52
52
52
53
54
54
56
57
58
59
60
61
61
63
65
67
68
Compound
co2
propane (tent.)
isobutane (tent.)
butene isomer
n-butane
butene isomer
acetaldehyde
C-H.- isomer (tent.)
isopentane
acetone
ii-pentane
diethyl ether
vinylidene chloride
methylene chloride
cs2
C,H00 isomer
A 8
C5H10 isomer
2-methylpentane
Chromato-
graphic
Peak No.
12
13
14
15
16
16A
16B
16C
16D
16E
17
18
19
19A
20
21
22

Elution
Temp.
(°C)
70
71
72
73
76
78
82
84
85
86
89
94
103
107
109
111
113

Compound
3-methylpentane
hexaf luorobenzene
n-hexane
chloroform

(ef)


perfluorotoluene (ef)
me thy 1 cy c lopent ane
benzene
cyclohexane
C,H,, isomer
/ J.O
C,H,, isomer
/ ID
C.H . isomer
o lo
acetic acid
toluene
C8H18 is°mer
C.H,, isomer
o lt>
CgH16 isomer
C8H16 lsomer














                               157

-------
Table E-2.  VERY VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT AIR
            IN FRONT ROYAL, VA (TRIP 1, P2/L5).
Chromato-
graphic
Peak No.
1
2A
3
3A
3B
4
4B
4C
4D
4E
4F
5
6A
6B
7
7A
8
9
Elution
Temp .
49
52
53
54
55
58
59
59
60
60
61
62
64
67
68
70
71
72
Compound
co2
C,Hg isomer + propane (tent.)
n-butane
C.H0 isomer
4 8
acetaldehyde
isopentane
propanal
acetone
n-pentane
diethyl ether
vinylidene chloride
methylene chloride
cs2
C.H,0 isomer
4 6
2-methylpentane
ri-butanal
3-methylpentane
hexafluorobenzene (eS)
Chromato-
graphic
Peak No.
10
10A
10B
11
12
13
14
15
16A
16B
17
17A
17B
18
ISA
19
20

Elution
Temp .
73
74
75
77
79
83
85
88
92
95
105
106
109
110
111
113
117

Compound
n-hexane
chloroform
C-H.-O isomer



perfluorotoluene (eS)
methylcyclopentane
benzene
cyclohexane
ii-pentanal
ii-heptane
C-.H- , isomer
7 14
toluene
C8H18 lsomer
C,H ,0 isomer
o 1^
^-hexanal
C-H,, isomer
o 10
n-octane
C..H,, isomer
o ID







(tent.)




(tent.)

                               158

-------
Table E-3.  VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT AIR
            IN FRONT ROYAL, VA (TRIP 1, P3/L2).
Chromato-
graphic
Peak No.
1
2A
2B
2C
2D
3
4
5
6
8
9
9A
10
11
12
13
14
14A
15
ISA
15B
15C
16
17
18
18A
19
19A

19B
19C
20
20A
21
22
22 A
22B
23
23A
24
24A
24B
25
25A
25B
26
27

Elucion
Temp.
49
54
56
57
60
61
63
64
65
71
74
75
76
77
78
79
81
82
87
87
88
90
91
93
96
101
109
110

111
113
114
115
117
119
123
126
129
130
131
134
134
135
136
137
138
141

Compound
co2
C,H_ isomer
4 8
ii-butane
acetaldehyde
isopentane (tent.)
acetone
diethyl ether
vinylidene chloride
dichloromethane
2-methylpentane
3-methylpentane + n-butanal
C,H , isomer
hexafluorobenzene (eS)
ti-hexane
chloroform
ethyl acetate
perfluorotoluene (eS)
methylcyclopentane
benzene
carbon tetrachloride
cyclohexane
C_H . isomer (tent.)
acetic acid
pentanal (tent.)
ii-heptane
C^H , isomer
toluene
C0H isomer
8 18
C.H „ isomer
o 10
C8H16 isomer
jn-hexanal
C0Hn, isomer
0 ID
n-octane
tetrachloroethylene
C H isomer
o ID
unsat. hydrocarbon
ethy Ibenzene
C H „ isomer
xylene + CqH7n isomel's
C9H20 isomer
styrene
£- xylene + n-heptanal
CpH-- isomer
C_Hlg isomer
ri-nonane
C10H22 is°mer
Chromaco-
graphic
Peak No.
28
28A
29
29A
30
30A
30B
31
31A
31B
32
33
34
34A
35
35A
35B
35C
36
36A
37

38
38A
38B
38C
38D
38E

38F
39
40
40A
41
42
43
43A
43B
44
44A
45
45A
46
46A
46B
46C
47
(continued)
Elution
Temp.
145
148
146
147
148
149
149
150
151
151
152
153
154
155
156
157
159
160
160
162
164

165
166
166
168
169
170

170
171
173
174
178
181
183
185
185
186
187
188
189
189
190
191
193
194

Compound
C,gH22 isomer
C10H16 isonler
benzaldehyde
n-p ropy Ibenzene
ethyl toluene isomer
C0H-,0 isomer
8 ID
phenol
C11H24 is°mer
C10H20 1S°mer
C.H,,0 isomer
o ID
C11H24 iSOIner
ri-octanal
1,2, 4- trimethy Ibenzene
C10H20 isomer
ri-decane
dichlorobenzene isomer (tent. )
C11H24 isomer
1, 2, 3-trimethy Ibenzene
C11H24 isomer
indan
C, -alkyl benzene +
C12H26 isomers
acetophenone
cresol isomer
CnH.gO isomer
sat. hydrocarbon
C -alkyl benzene isomer
C,,H-. isomer
11 22
C, -alkyl benzene isomer
n-nonanal
n-undecane
C11H20 isomer (tent.)
dimethylphenol isomer
C,-alkyl phenol isomer
C_-alkyl phenol isomer
C -alkyl benzene isomer
C10H20° lsomer
C, -alkyl phenol isomer
naphthalene
ii-decanal
C12H24 isonler
n-dodecane
C--alkyl phenol isomer
C,-alkyl phenol isomer
C, -alkyl phenol isomer
unknown

                               159

-------
Table E-3.  (cont'd.)
Chromato-
graphic
Peak No.
48
48A
49
49A
50
50A
51
52
Elution
Temp.
195
201
203
204
204
205
206
211
Compound
unknown
C11H22° isomer
n-unde canal
C, ,H0, isomer
13 26
n-tridecane
B-methylnaphthalene
unknown
C, ,H,n isomer (tent.)
14 30
Chromato-
graphic
Peak No.
53
54
54A
55
55A
56
57
58
Elution
Temp.
213
214
216
217
228
229
230
232
Compound
alkyl butyrate (BKG)
alkyl isobutyrate (BKG)
C -alkyl phenol
o
ii-tetradecane
C H-.O isomer (tent.)
12 24
C15H30 ls°mer
n-pentadecane
unknown
            160

-------
Table E-4.  VERY VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT
            AIR IN FRONT ROYAL, VA (TRIP 1, P3/L6).
Chromato-
graphic
Peak No.
1
2A
3
4
5
6A
7
8
9
11
12
12A
Elution
Temp.
48
52
53
54
57
58
59
61
61
63
67
69
Compound
co2
C.HD isomer
4 8
n-butane
C,Hn isoraer
isopentane
acetone
n-pentane
vinylidene chloride
methylene chloride
cs2
2-methylpentane
n-butanal
Chromato-
graphic
Peak No.
12B
13
13A
14
15
15A
16
17
17A
18
19
19A
Elution
Temp.
69
70
70
71
72
73
76
77
81
82
84
86
Compound
methyl vinyl ketone
3-methylpentane
methyl ethyl ketone
hexafluorobenzene (eS)
n-hexane
chloroform
perf luorotoluene (eS)
methylcyclopentane
C.H ..0 isomer (tent.)
benzene
cyclohexane
ii-heptane (tent.)
                            161

-------
Table E-5.  VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT AIR
            IN FRONT ROYAL, VA (TRIP 1, P3/L6).
Chroma to-
graphic
Peak No.
1
5
5A
5B
6
6A
7
7A
8
9A
10
11
11A

12
13
14
15
15A
15B
15C
16
16A
16B
17
18
18A
19
19A
20
20A

20B
20C
20D

21
22

23
23A
24
24A
25
26
26A

26B
26C
26D
27

Elution
Temp.
49
53
54
54
56
59
61
65
65
71
72
75
76

76
77
78
82
83
85
87
88
88
89
90
92
94
95
96
97
100

103
104
105

110
111

113
114
115
116
118
119
124

126
128
128
129

Compound
co2
propane
butene isomer
n-butane
acetaldehyde
isopentane
acetone
dichloroethylene isomer (tent.)
dichlorome thane
C,H,0 isomer
4 6
2-methylpentane
3-methylpentane
C.H isomer
6 12
hexafluorobenzene (eS)
n-hexane
chloroform
perf luorotoluene (eS)
me thy Icy clop ent ane
1,1,1-trichloroethane
CgH isomer
benzene
carbon tetrachloride (tent.)
cyclohexane
acetic acid + CTH. , isomer
/ lo
3-methylhexane
ja-pentanal
CnH. „ isomer
a j~o
C,H, . isomer
7 14
n-heptane
CnH.- isomer
8 18
methylcyclohexane
CRH „ isomer
C,H, .0 isomer
6 12
toluene
C0H isomer
8 18
CgH" „ isomer
C8H16 is°mer
t»-hexanal
C H isomer
o XO
£i-octane
tetrachloroethylene
CQH,n isomer
9 20
C8H16 + C9H20 isomers
C H-8 isomer
C^H 0 aldehyde isomer
ethylbenzene
Chroma to-
jraphic
Peak No.
28
29
29A
29B
29C
30
30A
31
31A
32

33


33A
34
34A
35
35A
36

36A
36B
36C
37
38
38A
39
39A
39B
39C

39D
40
40A

40B
40C

40D
40E
41
41A
41B
41C
41D

41E
4 IF
41C
41H
(continued)
Elution
Temp.
131
133
134
134
135
136
137
138
140
142

145


146
147
148
149
150
150

151
152
152
154
155
156
157
158
158
159

160
161
161

163
164

165
165
166
166
167
167
168

168
170
170
171

Compound
xylene isomer
C H,- isomer
C H 0 isomer
ii-heptaldehyde (tent.)
styrene
o-xylene
CgH.g isomer
ii-nonane
CgHlg isomer (tent.)
isopropylbenzene +
C10H22 ls°mer
C,-alkyl cyclohexane +
C.nH_- isomers
10 22
C10H16 1S°mer
benzaldehyde
ii-propylbenzene
ethyltoluene isomer
C10H22 ls°mer
1,3,5-trimethylbenzene +
phenol
C11H24 isomer
C10H22 ls°mer
£-ethyltoluene
ti-octanal
1, 2, 4-trimethylbenzene
C10H20 1SCmer
n-decane
dichlorobenzene isomer
C,-alkyl benzene isomer
C,~m_ isomer
10 20
C,-alkyl benzene isomer
1 , 2 , 3-trimethy Ibenzene
C,,H_, isomer
11 24
indati
C,-H. isomei
10 20
C4-alkyl benzene isomer
C4~alkyl benzene isomer
acetophenone
C,-alkyl benzene isomer
cresol isomer
C.,H,. isomer
11 24
C..H-- isomer
11 22
C, ,H., isomer
11 24
C^-alkyl benzene isomer
CQH,-0 isomer
y J-o
C.-alkyl benzene isomer

                                162

-------
Table E-5.  (cont'd.)
Chroma to-
graphic
Peak No.
42
42A
43
43A
43B
43C
4 3D
43E
44
44A

44B
45
45A
46
46A
47
47A
47B
48
48A
49
Elutlon
Temp.
172
171
174
175
176
177
177
178
179
181

181
182
183
184
185
186
186
187
188
189
.190
Compound
ri-nonanal
C11H22 isomer
n-undecane
C,-alkvl benzene isomer
4
C11H22 isomer
C,-alkyl benzene isomer
tetraaethylbenzene isomer
C12H26 is0ner
dimethylphenol isotner
C,H -benzene + C,-alkyl
benzene isomers
C11H22 isomer
ethylphenol isomer
C,-alkyl benzene isomer
dimethylphenol isomer
C,-alkyl benzene isomer
C,-alkyl phenol isomer
C12H24 isomer
naphthalene
ii-decanal
Ce-alkyl benzene isomer
n-dodecane
Chromato-
graphic
Peak No.
49A
49B
49C
50
51
51A
51B
51C
52
53
53A
53B
54
54A

54B
55
56
57
57A
58A
58B
Elution
Temp.
191
193
198
204
205
205
206
208
213
215
216
217
218
221

230
231
233
240
240
240
240
Compound

C_-alkyl phenol isomer
C -alkyl phenol isomer
C13H28 isomer
n-undecanal
ii-tridecane
B-methylnaphthalene
unsat. hydrocarbon
ct-methylnaphthalene
alkyl butyrate
alkyl butyrate
biphenyl
C, -alkyl phenol isom
D
ii-tetradecane
C -alkyl naphthalene
(tent.)
C _H,0 isomer
^-pentadecane
unknown
diethyl phthalate
C H-- isomer
ii-hexadecane
benzophenone









er

isomer








          163

-------
Table E-6.  VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT
            AIR IN FRONT ROYAL, VA (TRIP 2, P2/L3).
Chromato-
graphic
Peak No.
1
2A
2B
3
3A
3B
4
6
6A

7
7A
7B
7C
7D
7E
8
9
10
IDA
10B

11
12
12A
13
14
14A
14B
15
ISA
16
16A
16B

17
17A
18
18A
18B
19
20
20A
20B
21
22
23
23A
23B


Elution
Temp.
49
55
57
59
61
62
63
65
69

70
71
71
72
72
73
73
74
75
76
77

78
79
80
81
83
84
85
85
86
87
88
89

90
90
92
93
96
97
97
98
101
103
105
106
107
108


Compound
co2
acetaldehyde
n-butane
acetone
diethyl ether (tent.)
dichloroethylene isomer
dichlorome thane
cs2
C.H,- isomer
5 10
2-methylpentane
C,H00 isomer
J o
C^HgO isomer
3-methylpentane
C6H12 isomer
methyl ethyl ketone
hexafluorobenzene (eS)
n-hexane
chloroform
ethyl acetate
C,H , isomer
6 12
perfluorotoluene (eS) •
methylcyclopentane
1,2-dichloroethane (tent.)
1,1, 1-trichloroethane
benzene
carbon tetrachloride
cyclohexane
2-methylhexane
2, 3-dimethylpentane
3- me t hy Ih exane
pentanal
C,H, . isomer
7 14
trichloroethylene
C0H isomer (tent.)
o lo
t>-heptane
C.,H ' isomer
7 14
C8Hlg isomer
methylcyclohexane
acetic acid
C^H 0 isomer (tent.)
C.H.., isomer
o It)
toluene
C.H . isomer
O IO
CHH isomer
o lo
C0H,, isomer
o ID
C0H,, isomer
Chromato-
graphic
'eak No.
24
24A
25
25A
26
26A
27
28


28A
28B
28C
29
29A
29B
30
30A
31
31A
32

32A
32B
33
33A
34
34A
35
36

37
37A
38


39
40
40A
40B
41
41A
42
42A
42B
43
44
45
45A
o 16
(continued)
Elution
Temp .
109
111
112
113
113
117
118
119


120
120
122
123
124
124
125
125
127
127
128

129
129
130
131
132
134
135
136

137
138
139


140
141
141
142
143
144
144
145
145
146
147
147
148


Compound
CgH isomer
C.H,, isomer
o lo
^i-octane
CgH isomer
tetrachloroethylene
CgH2Q isomer
CgH2 isomer
ethylcyclohexane or
C0H, . isomer
8 16
C H isomer
CgH isomer
CgH^g isomer
ethylbenzene
CgHlg isomer
CgH2Q isomer
xylene isomer
CgH2- isomer
CgH20 isomer
C^H ,0 isomer (tent.)
C0Hor. isomer
9 20
styrene
C9H18 isomer
£-xylene
CgHlg isomer
jn-nonane
CgHlg isom.r
C10H22 isomer
C H22 isoroer +
isopropylbenzene
C10H22 isomer
C10H20 lsonier
C_nH0_ + C_-alkyl
XU 2.2. 3
cyclohexane Isomer s
C10H16 isomer
benzaldehyde
ii-propylbenzene
C10H20 isomer
ethyltoluene isoraer
1,3,5-trimethylbenzene
C H2, isomer
phenol
C10H22 isomer
o-e thy 1 toluene
sat. hydrocarbon
C10H16 isomer
C..Hori isomer .
10 20

                               164

-------
Table E-6.  (cont'd.)
Chromato-
graphic
Peak No.
46
46A
47
47A
48
48A
48B
48C
49

50
50A
50B
51
51A
52
52A
53
53A
53B

54
54A-
54B
54C
55
55A
56
56A
57
57A
57B
58
59
59A
59B
60
Elution
Temp.
148
149
150
151
151
152
153
153
154

155
156
156
157
157
158
158
159
160
160

161
161
163
163
164
165
165
166
167
167
168
170
172
173
173
174
Compound
1 , 2 , 4- tr ime thy Ibenz ene
C nH~n isomer
n-decane
dichlorobenzene isomer
C,,H-. isomer (tent.)
11 24
C, -alkyl benzene isomer
C -alkyl benzene isomer
1, 2, 3-trimethylbenzene
C -alkyl benzene +
C,,H_, isomers
11 24
C11H24 isomer
C10H16 isomer
indan
C,,H_. isomer
11 24
C10H20 is°mer
C11H24 isomer
C,-alkyl benzene isomer
acetophenone
cresol isomer
C11H24 +
C.-alkyl benzene isomers
C,,H.. isomer
11 24
C H isomer
C.-alkyl benzene isomer
C11H22 isomer
C,-alkyl benzene isomer
C.H,-benzene isomer
4 7
n-nonanal
C11H22 isomer
n-undecane
C.-alkyl benzene isomer
C H isomer
C.-alkyl benzene isomer
dimethylphenol isomer
C,-alkyl benzene isomer
C,H--benzene isomer
4 /
C.-alkyl phenol isomer
graphic
3eak So.
60A
60B
60C
61
61A
6 IB
62
63
64
64A
65
66
66A
66B
67
67A
67B
67C
67D
68
69
69A
69B
69C
70
71
71A
73
73A
73B
74
75
76
76A
77A
77B
78
Elution
Temp .
175
176
176
176
177
179
179
181
183
183
184
187
189
195
196
197
198
199
204
205
207
208
208
209
209
210
212
219
221
222
223
225
232
234
236
240
240
Compound
C.H, -benzene isomer (tent.)
4 7
C.-alkyl benzene isomer
C.-alkyl benzene isomer
C,-alkyl phenol isomer
C, -alkyl benzene isomer
C--alkyl phenol isomer
C,-alkyl phenol isomer
naphthalene + ^i2H24 *somer
n-dodecane
C, ,H0, isomer
1 J /D
C,-alkyl phenol isomer
unknown
C, ,H-, isomer
u /o
C, ,H_, isomer
J.J Zo
ri-tridecane
8-methylnaphthalene
C,,H0, isomer
1J £O
d-me thy Inapht halene
C13H2 isomer
alkyl butyrate
alkyl butyrate
C12H24° isomer
biphenyl (tent.)
Cg-alkyl phenol isomer
C .H.,, isomer
sat . hydrocarbon
C--alkyl naphthalene isomer
unsat. hydrocarbon
C, ,H,,0 isomer (tent.)
lj 20
C15H30 is°mer
ri-pentadecane
unknown
diethyl phthalate
C14H280 isomer
C, ,-H- _ isomer
lo ji
C 5H. 0 isomer (tent.)
n-hep tadecane
         165

-------
Table E-7.  VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT
            AIR IN FRONT ROYAL, VA (TRIP 2, P3/L5).
Chroma to-
graphic
Peak No.
1
4
4A
5
6
6A
7
7A
8
9
10A
11
11A
11B
12
12A
13
14
14A
15
16
17
18
ISA
19
19A
19B
20
20A
21
22
22A
22B
23
23A
24
24A
24B
25

26
27
27 A
28
28A
28B

Elution
Temp.
48
51
51
52
53
55
58
60
61
62
66
68
68
69
70
71
72
73
74
75
77
78
83
84
84
85
86
87
88
90
91
93
96
97
99
104
105
107
109

112
113
123
125
126
128

Compound
co2
n-propane (tent.)
butene isomer
n-butane
acetaldehyde
isopentane
acetone
diethyl ether (tent.)
vinylidene chloride
dichloromethane
C.H.O isomer
cyclopentane
2-methylpentane
methyl isopropyl ketone (tent.)
ii-butanal
3-methylpentane
hexaf luorobenzene (el)
ii-hexane
chloroform
ethyl acetate
perfluorotoluene (eS)
methylcyclopentane
benzene
carbon tetrachloride
cyclohexane
2-methylhexane
2, 3-dimethylpentane
3-methylhexane 4- C-H. , isomer
acetic acid (tent.)
C0H isomer
O lo
ii-heptane
C-H isomer (tent.)
C-H isomer
O Lo
methylcyclohexane
C_H „ isomer
0 1O
toluene
CfiH isomer
O 10
C0Hno isomer
O 10
^i-hexanal (tent.) +
C0H, , isomer
O 1O
ri-octane
tetrachloroethylene
ethylbenzene
xylene isomer
CgH-. isomer (tent.)
C H 0 isomer (tent.)
Chromato-
graphic
Peak No.
28C
29
29A
30
31
32
33
34
34A
34B
34C

35
35A
36
36A
37
37A
38
38A
38B
38C
39
40
41
41A
41B
41C
4 ID
42
42A
43
44
45
45A
45B
46
46A
47
48
48A
48B
48C
48D
48E
49
(continued)
Elution
Temp.
CO
129
130
131
132
136
139
140
141
143
144
144

145
146
147
148
149
149
150
151
152
154
156
159
160
161
162
164
165
166
167
168
173
176
178
179
180
181
182
183
185
186
187
191
195
197

Compound
styrene
o_-xylene 4 CgH20 isomer
C.H „ isomer (tent.)
ri-nonane
C -H22 isomer
C10H22 lsomer
C10H16 lsomer
benzaldehyde
ethyltoluene isomer
C,H, ,0 isomer
O ID
phenol + C,-alkyl
benzene isomer
C, -H,, Isomer
11 24
C,-alkyl benzene isomer
C10H22 isomer
C11H24 lsomer
n-octanal
trimethylbenzene isomer
ri-decane
C11H24 isomer
C10H20 isomer (tent.)
C11H24 isomer
sat. hydrocarbon
C11H24 isomer
acetophenone
cresol isomer
C12H26 isome1' (tent.)
C,-alkyl benzene isomer
CgHlgO isomer
n-nonanal
C11H22 isomer
n-undecane
dimethylphenol isomer
C,-alkyl phenol isomer
C.-alkyl phenol isomer
unsat. hydrocarbon
C,-alkyl phenol isomer
naphthalene (tent.)
n-decanal
n-dodecane
C,-alkyl phenol isomer
C12H24 isolner
C--alkyl phenol isomer
unsat. hydrocarbon
C11H22° isomer
n-undecanal

                             . 166

-------
Table E-7.   (cont'tf..)
Chromato-
graphic
Peak No.
50
50A
SOB
50C
SOD
51
51A
51B
52
53
53A
Elucion
Temp.
(°C)
198
198
201
204
205
208
209
211
212
217
221
Compound
n-tridecane
g-methylnaphthalene
a-methylnaphthalene
unsat. hydrocarbon
unsat. hydrocarbon
alkyl butyrate
C12H24° lsomer
unsat. hydrocarbon
ri-tetradecane
unknown
unsat , hydrocarbon
Chromato-
graphic
Peak No.
53B
54
55
56
57
57A
58A
58B
58C
58D
58E
Elution
Temp.
(°C)
222
223
224
226
233
235
236
240
240
240
240
Compound
C, ,H_,0 isomer
U £O
C H,_ isomer
n-pentadecane
unknown
diethyl phthalate
C16H32 isomer
ti-hexadecane (tent.)
benzophenone
C15H30° isomer
C17H34 isomer
n-hep tadecane
          167

-------
Table E-8.  VERY VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT
            AIR IN FRONT ROYAL, VA (TRIP 3, P1/L9).
Chromato-
graphic
Peak No.
1
3A
3B
4
4A
5
5A '
6
7
Elution
Temp.
48
53
53
54
55
56
57
58
60
Compound
co2
propane
propylene
isobutane
C.H. isomer
4 8
acetaldehyde
C.H,, isomer
4 8
n-butane
isopentane
Chromato-
graphic
Peak No.
8
8A
9
10A
12
13
14
15
ISA
Elution
Temp.
(°C)
61
64
65
67
72
75
76
77
78
Compound
acetone
diethyl ether (tent.)
methylene chloride
cs2
2-methylpentane
3-methylpentane
hexafluorobenzene (eZ)
n-hexane
chloroform
                                168

-------
Table E-9.  VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT AIR
            IN FRONT ROYAL, VA (TRIP 3, P2/L8).
Chromato-
graphic
Peak No.
1
3A
5
6
7
8
9
10
11
12
13
16
16A

17
18
19
20
20A
21
21A
22
23
24
24A
24B
25
25A
26
27
27A
27B
28
29
29A
30

31
32
33
34
35
36
37
38
39
39A

Elution
Temp .
48
51
53
55
56
58
59
60
61
62
63
67
69

70
72
74
75
76
77
78
79
80
81
83
84
85
86
87
87
88
SB
89
91
91
92

94
95
97
99
101
105
106
108
109
111

Compound
co2
propane (tent)
C4H10 isomer
acetaldehyde
n-butane
isopentane
acetone
ii-pentane
diethyl ether
Background peak
methylene chloride
C H , isomer (tent)
CCH, - isomer
5 10
2-methylpentane
3-methylpentane
hexafluorobenzene (e
n-hexane
chloroform
methyl ethyl ketone
ethyl acetate (tent)
















S)


(tent)

perfluosotoluene (el)
methylcyclopentane

1,1, 1-trichloroethane
C?H14 is0mer
C,H.. n isomer
benzene
carbon tetrachloride
cyclohexane
2-me thylhexane
2, 3-dimethylpentane
acetic acid
3-me thylhexane
n-pentanal
C-H, , isomer
7 14



(tent)







C-H, - isomer + trichloro-
O 10
ethylene
n-hep tane
C^H isomer
unsat. hydrocarbon
methylcyclohexane





C-H,0 + C.H^.O isomers
o 18 o 1*:
CgH18 isomer
toluene
CQH isomer
0 io
CSH18 ls°mer
C0H,, isomer
o ID






Chromato-
graphic
Peak No.
39B
40
40A
41
41A
42
43
43A
43B
43C
44

44A

45
45A
45B
46
46A
47
47A
48
48A
49
49A
50
50A
SOB
51

52
53
54
55
56
57
57A
57B
58
59
59A
59B
60
60A
61
61A
62
(continued)
Elution
Temp.
Ill
112
113
114
115
116
118
119
121
121
122

123

126
126
127
127
128
129
130
131
131
132
133
134
135
137
138

139
141
142
143
144
145
146
146
147
148
149
149
150
151
151
152
153

Compound
C,H, ,0 isomer
O li
hexanal
C-H, isomer
o AO
n-octane
C-H, , isomer
15 ID
tetrachloroethylene
CRH_, Isomer
CgH2Q isomer
CnH2 isomer
C-.H,, isomer
C9H2Q isomer +
ethylcyclohexane
CnH, „ isomer
9 18
ethylbenzene
C-H_8 isomer
C9H20 l90Iner
xylene isomer
C9H20 isomer
C9H20 isomer
C-H, ,0 isomer
7 14
styrene
ii-heptanal
o_-xylene
CgHjg isoner
n-nonane
C10H22 isomer
CQ^ o isomer




























C10H22 isomer + isopropyl-
benzene
C-H,,0 isomer
C10H22 isomer
C10H16 iSOmer
benzaldehyde
n-propylbenzene
ethyltoluene isomer
phenol








1 , 3, 5-trimethylbenzene
Cj-H2 isomer
o-ethyltoluene
C10H22 Is0mer
C11H24 lsomer
ri-octanal isomer (t
C10H20 isomer




ent)

1,2, 4-trimethylbenzene
C10H20 Is0mer
ii-decane




                                169

-------
Table E-9.  (cont'd.)
Chromato-
graphic
Peak No.
62A
62B
62C
62D
63
63A
63B
63C
64
64A
65

65A
65B
66
66A
66B
67
67A
68
69
69A
70
70A
70B
70C
71
72
72A
72B

Elution
Temp.
(°C)
154
154
155
156
156
157
159
160
161
161
162

163
163
164
164
165
166
167
168
169
170
171
172
172
174
175
176
177
178

Compound
dichlorobenzene isomer
C,-alkyl benzene isomer
C11H24 isomer
C,-alkyl benzene isomer
1,2, 3-trimethylbenzene
C,,H, . isomer
11 24
indan
C,-alkyl cyclohexane isomer
C,-alkyl benzene isomer
C,-alkyl benzene isomer
acetophenone + C,-alkyl
benzene isomer
cresol isomer
C11H22 isoraer
C,,H_, isomer
11 24
C,-alkyl benzene isomer
C10H18 1SOOel:
C11H24 is0mer
C,-alkyl benzene isomer
C.-alkyl benzene isomer
4
n-nonanal
C11H22 •'•somer
n-undecane
C,-alkyl benzene isomer
C.^R-, isomer
C,-alkyl benzene isoraer
C12H24 isomer
C,-alkyl phenol isomer
Cj.-alkyl benzene isomer
C -alkyl benzene + C,H_
benzene isomers
Chromaco-
graphic
Peak No.
72D
72E
73

73A
73B

73C
7 3D
74
74A
75
75A
75B
76
76A
76B
77
78
78A
79
79A
80
80A
SOB
80C
81
81A
8 IB
81C
82A
Elution
Temp.
(°C)
179
179
180

181
183

183
184
185
186
187
189
190
192
197
199
200
201
202
204
204
215
228
229
230
232
237
238
239
240
Compound
C,-alkyl benzene isomer
C -alkyl phenol isomer
C4-alkyl benzene +• C12H26
isomers
C1''H26 ^somer
C5-alkyl benzene + ci2H24
isomers
C_-alkyl phenol isomer
C,-alkyl phenol isomer
naphthalene + £-de canal
C12!*24 isoweT
n-dodecane
C13H28 lsomer
C,-alkyl phenol isomer
unknown
C14E30 isomer
unsat. hydrocarbon
j-undecanal
n-tridecane
3-methylnaphthalene
unknown
Ci-methylnaphthalene
n-te trade cane
unsat. hydrocarbon
n-pentade cane
C15H3Q isomer
unknown
unsat. hydrocarbon
diethyl phthalate
C.,H_, isomer
C16H34 isomer
           170

-------
Table E-10.  VOLATILE ORGANIC COMPOUNDS IDENTIFIED IN AMBIENT
             AIR IN FRONT ROYAL, VA (TRIP 3, P2/L9).
Chromaco-
graphic
Peak No.
1
3
3A
3B
3C
4
4A
4B
4C
5
6A
6B

7
8
8A
9
10
IDA
10B
11
12
12A
13
13A
13B
14
14A
15
15A
16
16A
17

18
ISA
18B
18C
19
19A
19B
20
20A
21
22-
23
24


Elution
Temp.
47
52
53
55
57
59
60
61
61
62
64
68

69
71
72
73
74
74
77
78
79
81
84
85
85
86
87
88
89
90
90
91

93
94
96
97
98
99
100
100
101
104
105
106
108


Compound
co2
C.H, . isomer (tent)
4 10
acetaldehyde
so2
isopentane
acetone
n-pentane
diethyl ether
Background peak ;
methylene chloride
cs2
C,H,- isomer
5 10
2-methylpentane
3-methylpentane
C,H, . isomer
O 1Z
hexafluorobenzene (eS)
n-hexane
chloroform
C,H, . isomer
o 1Z
perfluorotoluene (el)
methylcyclopentane
1,1,1-trichloroethane
benzene
carbon tetrachloride
cyclohexane
2-methylhexane
2,3-dimethylpentane
3-me thylhexane
acetic acid
C7H14 lsomer
C-,H. , isomer
7 14
trichloroethvlene + C.H, „
o lo
isoroer
n-heptane
C7H14 isomer
C,H , isomer
C0H „ isomer
o lo
methyleyclohexane
C H , isoroer
O lo
C,H,,0 isomer
6 12
C-H - isomer
C..H, , isoroer
o ID
C-H1a isomer
o 10
toluene
C H „ isomer
CgH18 isoraer
Chroma to-
graphic
Peak No.
24A
25"
25A
25B
26
26A
27
27A
27B
28
28A
29

29A
30
30A
31
31A
32
32A
33
33A
34
34A
35
35A
35B
36

37
37A
37B
38

38A
39
40
41
41A
42
42A
42B
43
43A
43B
43C
4 3D
continued
171
Elution
Temp.
110
110
111
113
113
114
115
115
117
119
120
121

122
124
125
126
126
127
128
129
129
130
131
132
134
135
136

137
138
138
139

140
141
142
143
144
144
145
145
146
147
148
148
149


Compound
C.H., isomer
n lo
CgR18 isomer
CpH.. , isomer
C H, isomer
0 ID
ii-octane
CBH,, isomer
O 10
tetrachloroethylene
C_H, , isomer
o lo
C9H20 isomer
CgH2Q isomer
C0H, , isomer
t) 10
C0H_. isomer
9 20
C-Hlg isomer
ethylbeozene
CgH.g isomer
xylene
C9H20 lsomer
CqH,., isomer
C,H. ,0 isomer (tent)
7 14
styrene
CgH.g isomer
o- xylene
CgHlg isomer
^-nonane
C10H20 lsomer
C9H,8 isomer
isopropylbenzene -t- C -H-2
isomer
C1(,H-_ isomer
CgH16 isomer (tent)
C, H., isomer
C10H2- + C -alkyl cyclohexane
isomer
C10H16 isoraer
benzaldehyde
n_-propylbenzene
ethvltoluene isomer
C1QH22 Isomer
1,3, 5- trimethylbenzene
C10H22 lsomer
C10H20 iSOmer
o-ethyltoluene
C11H24 isomer
C..H.- isomer
n-octanal
C-H, -benzene isomer



-------
Table E-10.  (cont'd.)
Chromato-
graphic
Peak No.
44
44A
45
45A
45B
45C
45D
46
46A
46B
46C
46D
46E

47
48

48A

48B
49
49A

50
50A
SOB
51
52
52A

52B

53
53A
53B

53C
53D
54
54A
Elution
Temp.
149
150
151
152
152
153
154
154
155
156
157
158
158

159
160

161

162
162
163

164
164
165
165
166
166

167

168
168
169

169
170
171
172
Compound
1,2, 4-trime thylbenzene
C10H20 1SOIner
n-decane
dichlorobenzene isomer
C.-alkvl benzene isomer
4
C1ftH._ isomer
C -alkyl benzene isomer
1,2, 3-trimethylbenzene
C11H24 isomer
C11H24 isomer
indan
C, -alkyl cyclohexane isomer
('11H22 + C4~a-'-'cyl benzene
isomers
C,-alkyl benzene isomer
acetophenone 4- C,-alkyl
benzene isomer
C, , H, . isomer
11 24
C, , H. - isomer
11 22
C,-alkyl benzene isomer
C, , H_ , isomer
11 24
C,-alkyl benzene isomer
C,,H__ isomer
11 22
C.H,-benzene isomer (tent)
4 /
C,-alkyl benzene isomer
n-nonanal
C. -alkyl benzene isomer
H
C, ,H_- isomer
11 22
ii-undecane
C, -alkyl benzene isomer
C,,H_- isomer
11 22
C5-alkyl benzene isomer
C, -alkyl benzene isoraer
tetramethylbenzene isomer
C12H'6 isoiner
Chromato-
graphic
Peak No.
54B
54C
54D
54E
54F
54G
55

55A
55B
55C
55D
56
56A
56B
56C
57
57A
57B

57C
57B
57E
58
58A
5 SB
58C
59
59A

59B

59C
59D
59E

60


Elution
Temp .
172
173
174
175
175
176
177

177
178
179
180
182
182
183
183
184
185
186

187
190
192
198
199
201
206
208
210

216

217
220
221

239


Compound
C11H20 isomer
Cj-alkyl benzene isomer
C, -alkyl benzene isomer
C.H^-benzene isomer
C, -alkyl cyclohexane isomer
C,-alkyl benzene isomer
C12H26 * C4~alk5rl benzene
isomers
C, -alkyl benzene isomer
C^alkvl benzene + ci2H26
C_-alkyl benzene isoiner
C._H-, + alkyl benzene isomers
naphthalene
n-decanal
C12H24 lsomer
C,-alkyl benzene isomer
n-dodecane
Ct-alkyl benzene isomer
C. «H- o isomer

C,-alkvl benzene isomer (tent)
0
C13H26 isoner
C H isoroer
n-tridecane
6-me thy Inaph thalene
a-methylnaphthalene
biphenyl (tent)
n-tetradecane
C. iH_Q isorneir

C, ,H_, isomer
16 34
unsat . hydrocarbon
n-pentadecane
C H isoiner

C16H34 isomer


           172

-------
                    APPENDIX F
SEMIVOLATILE COMPOUNDS IDENTIFIED IN AIR PARTICULATE
        COLLECTED IN SHENANDOAH VALLEY, VA
                        173

-------
                                                          o
                                                          co
                                                          Q)
                                                          o
                                                          c
                                                          to
                                                          0)  M
                                                          a H
                                                          O •<

                                                          CO
                                                         •H   »
                                                          CD r-l
                                                          t>%  co

                                                          to  o
                                                          C P*i
                                                          tfl
                                                             4J
                                                          o
                                                          o
                                                          CJ T3
                                                          00  CU
                                                          e -H
                                                          to  o
                                                          !-l  U
                                                          00
                                                          O  0)
                                                          O  3
                                                          )-i  O
                                                          J3 -H
                                                          O W

                                                          iJ  tfl
                                                          C  ft
                                                          3  tO
                                                          O
                                                          C
                                                          o r-
                                                          to v
                                                          j->
                                                          O MH
                                                          OO
174

-------
              Table F-l.    COMPOUNDS  IDENTIFIED  IN  METHANOL  EXTRACT  OF <1.7y

                               FRACTION OF  AIR  PARTICULATE  COLLECTED  IN  FRONT ROYAL,

                               VA (TRIP 3.  P1/L41.
Chroraato-
graphic
Peak No.
1
2
3
4
5
6
7
8
9
10

11

12
13
14
15

16
17
18

19
20
21
22
23
24
25
26
27

Elution
Temp.
100-107
104-106
108
108.5
113
120.5
129
134.5
140-142
145

170.5

171
175
177
181

185
189
195

202
204
207
211
212
216
224
225
231

Compound
dichloromethane (solvent)
toluene (solvent)
benz aldehyde
phenol
methylacetophenone isomer (tent.)
unknown
naphthalene (tent.)
benzothiazole (tent.)
unknown
methylnaphthalene (tent.) +
phthalic anhydride
(C.H ) benzoquinone isomer
(tent.) + Si cmpd. (bkg.)
dibenzofuran (tent.)
unknown
di-butylcresol isomer (bkg.)
C. alkyl biphenyl isomer +
Si cmpd. (bkg.)
a phthalate (bkg.)
unknown
4-hydroxy-3, 5-dimethoxybenz-
aldehyde
unknown
methylxanthene isomer (tent.)
methylxanthene isomer (tent.)
C, .H,.. isomer(s)
14 10
phenothiazine (tent.)
C? alkyl Xanthene
9-fluorenone (tent.)
C15H12 isomer (tent.)
unknown

Chromato-
graphic
Peak No.
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
Elution
Temp.
232
238
239
241
244
249
252
254
255
265
265
265
265

265
265
265
265
265
265
265
265
265
265
265

265
265
265
265
265
265
Compound
a phthalate (bkg.)
naphthalic anhydride
C2 alkyl ClgH12 isomer3 (tent.)
methylphenylindole isomer (tent.)
C15H1Q isomer4
pyrene + pyrene-d - (ext. std.)
Si cmpd. (bkg.)
Si cmpd. (bkg.)
Si capd. (bkg.)
Si cmpds. (bkg.) + phthalates (bkg.)
C gH isomer
ClgH14 isomer'
C18H12 iS°mer + C18H10 Is0ner
(tent.)
benzan throne
a phthalate (bkg.)
C,nH, , isomer7
19 14 „
°19H12 isomer (tent.)
bkg.
unknown
C. alkyl C,.H,, isomer3 (tent.)
c lo 1Z
C alkyl Cn_H - isomer (tent.)
2 18 JO
C nH10 isomer
C20H12 isomerg
C20H12 1SOmer + C2 alkyl C18H10
isomer
C, alkyl C, 0H,, isomer3 (tent.)
3 IS li
C20H12 isomer (tent.)
C -H , isomer (tent.)
bkg.
1 0
C _H ~ isoraer
TO
C22H12 isomer
 Notes:

  C,,H . isomers  include anthracene, phenanthrene,  and diphenyl  acetylene.
 - 14 10

  C.,H   isomers  include methylphenanthrene and methylanthracene.

  C 0H   isomers  include chrysene, benzophenanthrene  isomers,  triphenylene,  naphthalene, and benzanthracene isomers.
 A *-° 12
  C,,H,. isomers  include pyrene, fluoranthene, and  diphenyldiacetylene.
 _ ID 10

  C.0H.- isomers  include 1,10-benzfluoranthene and  3,4-cyclopentapyrene.
 ,. lo 10
  C,RH , isomers  include terphenyl isomers, styrylnaphthalene  isomers, and  dihydrobenzanthracene


    isomers.


  C.qH   isomers  include methyltriphenylene isomers,  methylbenzanthracene isomers, aethylchrysene isomers,


    methylbenzophenanthrene isoraers, and 9-phenylfluorene.

   19H12 isomers  include methyl-l,10-benzfluoranthene isomers.
  C  H   isomers  include perylene , benzpyrene isomers,  and benzf luoranthene isomers.
10,,

        isomers  include 1,12-benzperylene, anthanthrene , and 2,3-o-phenylenepyrene.
                                                     175

-------
                            V

-"• 1_
•loooi

r
O „-! 	 ~^' '_
*° *T. U
"
Loo6
•/-' F
> r
«OiT
"j- F
V L
* S~_ L
•., L
:• Loos
'r
r* ^"
i *-*r
. CJ -
** ° «r
_J^~ -^ m r
ffi -==—_.. 2;
? O'lOOi
J Sr
J- I1-
» =cr"> *

""^ l[ I
. s-=> S^-9 5
-> f ^
. — / E 2
10 ~ %. C
*fj5 t
^ «_. ^ —
r- f^"' -
j-tpjfll^. v
. ^5- F
""""^TI inT
S*r St30^

. "^ it

^c i
a, -i. fN — 00£
"T? ^f

% r
T
s-12^ g:
S. rt'-OOZ
"^ F
* -H or
*1 -0-
I"L
?r
m^ r
"Jjf-ooi
4-1
O
-1_>
M
4J
X
QJ
C
0)
3 •
r-t ,-N
O *^"
4-J |J
«W r-T
O CM

M -
•H cn
to
5^ a
i-l -H
efl M
C H
CD ^^
i"^
O
o ••
»>^ rH
CO CO
~— o
0 03
bQ
4-1
>w C
O O
0 ptf
cfl
P a
bO *H
o
4J *O
at a)
e -w
0 0
M 01
O t — !
O
4-J U
C
V-l 4J
!-i cd

a 3
o
C -H
O 4-1
•rl t-t
Cfl
•s ^
4J V-l
0 -H
H W

•
csl
                 =>;-
176

-------
              Table F-2.    COMPOUNDS IDENTIFIED  IN TOLUENE  EXTRACT OF  <1.7y
                               FRACTION  OF  AIR  PARTICIPATE COLLECTED  IN  FRONT ROYAL,
                               VA  (TRIP  3,  P1/L4).
Chroraato-
graphic
Peak No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
Elution
Temp.
100-112
109
110.5
112
113
116
120
122
127
128
136-139
141
142
167
172
173
177
187
191

198.5
201
206
207
208
212.5
220.5
222
234.5
241
244
247
248.5
251
Compound
toluene (solvent)
trimethylbenzene isomer
trioethylbenzene isomer
C-H- benzene isomer
C H- benzene isomer
C,H_ and C.H, benzene isomers
49 47
C.Hp benzene iaomer (tent.)
C.H, benzene isomer
4 7
naphthalene (tent.)
C-Hp benzene isomer
mixture of alkanes
phthalic anhydride
methylnaphthalene isomer
dibutylcresol isomer (bkg.)
unknown
dibutylcresol isomer (bkg.)
C2 alkyl biphenyl (tent.)
Si cmpd. (bkg.)
4-hydroxy- 3 , 5-dimethoxy-
benzaldehyde
C. alkyl fluorene isomer (tent.)
C15H16 isomer1
unknown
C14H10 iSOae*2
phenothiazine (tent.)
xanthene ( tent . )
naphthindenone isomer (tent.)
methyl C, ,H Q isomer
Si cmpd. (bkg.)
C16H10 isomer3 (not Pyrene)
C. ,H „ isomer (not pyrene)
J.D 1U
pyrene -t- pyrene-d (ext. std.)
C18H10 isomer4
unknown
Chromato-
graphic
Peak No.
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60






Elution
Temp .
CO
258
260
263
264
265
265

265
265
265
265
265
265
265
265
265
265
265
265
265
265
265
265
265
265
265
265
265






Compound
methylpyrene isomer
C ?H.. isomer (tent
unknown
methylpyrene isomer
unknown


.)



terphenyl isomer (tent.) + tri
phenyl phosphate
(bkg.)
terphenyl isomer (tent.)
A
ClgH10 isomer
C18H14 ia°™\
C _H _ isomer
C j,H isomer
C H isomer''
C18H12 isonler
benzan throne







di-2-ethylhexylphthalate (bkg.)
C H isomer (tent
long-chain saturated
C...H, „ isomer
20 12 .
C,_H . isomer
C H i r10
C20H12 isomer
long-chain saturated
long-chain saturated
C--H , isomer11
C22H12 isomer11
C22H12 isomer"
C22H12 isomer






•)
hydrocarbon




hydrocarbon
hydrocarbon










 Notes:
  CjjH   isomers  include diphenylpropane isomers, ditolymethane isomers, and C, alkyl biphenyl isomers.
  C14H10 *son!ers  include anthracene, phenanthrene, and biphenylacetylene.
  C ,H   isomers  include pyrene,  fluoranthene,  and diphenyldiacetylene.
  C ,.H   isomers  include 1,10-benzfluoranthene  and 3,4-cyclopentapyrene.
  C ,H   isomers  include methylpyrene isomers and benzofluorene isomers.
  C..0H.., isomers  include terphenyl  isomers,  styrylnaphthalene isomers,  diphenylbenzene isomers, and dihydro-
    benzathracene  isomers.
  C18H12 isolners  include chrysene,  benzophenanthrene isomers, triphenylene, naphthacene, and benzanthracene isomers.
  C-H   isomers  include methyltriphenylene  isomers, methylbenzanthracene  isomers, methylchrysene isomers,
    and phenylfluorene.
 9
  C H  - isomers  include perylenebenzpyrene  isomers, and benzfluoranthene  isomers.
10
  C20H14 lsomers  include binaphthyl isomers, anthracene benzyne adduces, 6,7-acechrysene, and triptycene.
  C H   isomers  include 1,12-benzperylene,  anthranthrene,  and 2,3-o-phenylenepyrene.

                                                    177

-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO. 2.
EPA-903/9-78-007
4. TITLE AND SUBTITLE
ANALYSIS OF ORGANIC AIR POLLUTANTS IN THE KANAWHA
VALLEY, WV AND THE SHENANDOAH VALLEY, VA
7. AUTHOR(S)
Edo D. Pellizzari
Mitchell D. Erickson
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Research Triangle Institute
P. 0. Box 12194
Research Triangle Park, NC 27709
12. SPONSORING AGENCY NAME AND ADDRESS
U. S. Environmental Protection Agency
Region III
6th and Walnut Streets
Philadelphia, PA 19106
3. RECIPIENT'S ACCESSION NO.

5. REPORT DATE
June 1978
6. PERFORMING ORGANIZATION
8. PERFORMING ORGANIZATION
RTI/1401/00-01F
CODE
REPORT NO.
10. PROGRAM ELEMENT NO. j
I
11. CONTRACT/GRANT NO.
BOA 68-02-2543, Order
!
No. 1
13. TYPE OF REPORT AND PERIOD COVERED
FINAL, Aug. 10 '77-Dec. 9 '77
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
Project Officer is Daniel FitzGerald
16. ABSTRACT
      Recently developed techniques for sampling and analysis of ambient air
 by  GC/MS/COMP were applied to the Kanawha Valley, WV and Shenandoah Valley,
 VA  to assess the levels of organic pollutants.  Volatile and very volatile
 compounds  were concentrated on Tenax GC and carbon sorbent cartridges, re-
 spectively,  then thermally desorbed directly into the capillary column
 GC/MS/COMP system for analysis.  Semivolatiles were collected on the
 electrostatic precipitator plates of a Massive Air Sampler, extracted,
 fractionated, and then analyzed by GC/MS/COMP.  The Kanawha Valley con-
 tained a broad range of halogenated, ketone, aldehyde, ester, aromatic,
 aliphatic  and polynuclear aromatic compounds.  The Shenandoah Valley
 contained  a narrower range of organics, but generally higher observed
 levels of  the compounds quantitated.
17.
KEY WORDS AND DOCUMENT ANALYSIS
a. DESCRIPTORS
GC/MS/COMP
Air Pollution
Air Pollution Sampling
Kanawha Valley, WV
Shenandoah Valley, VA
Charleston, WV
Front Royal, VA
Air Sampling
Gas Chromato-
graphy
Mass Spectro-
metry
Organic Com-
pounds
18. DISTRIBUTION STATEMENT
UNLIMITED
b. IDENTIFIERS/OPEN ENDED TERMS

19. SECURITY CLASS (This Report)
UNCLASSIFIED
20. SECURITY CLASS (This page)
UNCLASSIFIED
c. COS AT I Field/Group

21. NO. OF PAGES
178
22. PRICE
EPA Form 2220-1 (Rev. 4-77)
                      PREVIOUS EDITION IS OBSOLETE
                                                178

-------