THERMAL POLLUTION STUDY
              INTERIM REPORT
          Upper Ohio River Basin
       October 196? - December 1969
           Work Document No.
This document has been prepared to record a
specific water pollution control activity
carried out to date in the Ohio River Basin.
The information contained herein will serve
as a ready reference to aid in the planning
and development program in the Basin.

Questions or comments relative to this
material should be directed to:

         Laboratory Services Section
         Upper Ohio Basin Office
         Ohio Basin Region
         Wheeling3 West Virginia
 United States Department of the Interior
   Federal Water Quality Administration
             Ohio Basin Region

                 June 1970

-------
Regional Center foi FiiMjoim'cntdl fiitoruidlion
             USFPAUcponlll
                16504ichSt.
           PJiiIddclpfiia, PA 19103
                                                                     I

-------
                               TABLE  OF CONTENTS





                                                                        Page



 I.  BITRODUCTIOiT	»			o	»	   1



          P"]1T*1T")(~) O£>                    f. f. m     n  f.  r> ft ei o m n m n n » Ct  it o n * o   _L



          Acknowledgments .O....«oo.oooooo»o.o»»oo.oooooooo.°«oo. ..<>.••   1







          FindinSTS       •      * o e    o •• o   *'o  oo • m o 9 » o o am «*ooa»oo   2



          Re commendations o.o...ooo»ooo...o.o,.o.oooooo.0.«.«...«.o....   3







          General Information..OO...OO.O.O.OO....ODO...OOO...O..C,	   5



I¥c  THER1-EIL POLLUTION STUDIES........................................   8



          Methodology*) ..0oo*oo.o..o.«...oo.o..6o..««>.o........<>	   8







              Allegheny  River  Basin.. Co.....o,ooooo..0oo.o0<,0....<..oo»   9











              Monongahela River Basin00..0000000.00	.0.000.0...   9



              MuskLngum  River  BasinOo..ooo.oo0oooo..o...oo.,oooooo.0.o  ^









 Table 1 - Thermal Pollution Studies..0...ooooo0000o0	o.o	   6



 Table 2 - Thermal Load  Conditions....«o..0ooo.0oo...o.o..o...ooo..0o.   9



 Appendix - Field Data and Theoretical Conditions
                                                     U S. EPA Region HI
                                                     Regional Center for Environmental


                                                       Information   ,„_..__,
                                                     1650 Arch Street (3PM52)

                                                     Philadelphia, PA 19103        ^

-------
                                                                    1



BJTRODUCTIOW




Purpose



     The purpose of this document Is to present the results of an interim



study of thermal pollution in the Upper Ohio River Basin.  The study was




designed to develop procedures for aiding in the determination of major



heat loads in the Basin.




     Thermal pollution.represents one of the growing threats to maintenance



of good quality water.  This xisually occurs below major industries such




as steel mills and stream-electric generating plants.  Other industries



such as chemical, petroleum refining, etc., contribute thermal loads of



lesser magnitude in most cases.  Problems are associated with the size and



flow of the stream, proximity to other industries, and intended use of the




stream.



     The stream-electric power industry is by far the largest thermal




polluter in the Basin.,  Each kilowatt hour of electricity produces about




Uj87? BTU of heat to the cooling water *  Many of the progressive electric



power corporations are providing necessary cooling facilities to control



their thermal loads.  In most cases, these cooling units are operated as



a closed system providing benefits to both the owner and the public„



Acknowledgments



     During this Interim study, little formal contact was made with any



of the power companies since most of the work pertained to actual field




conditions on a random basisD  Most area electric power plants operate near




rated capacity,.



     River discharge information was obtained from the U. So Army Corps of




Engineers and the U. S0 Geological Survey.

-------

-------
II.   SUMMARY




     Finding's
     1.  Excessive  (>5  F average increase) thermal loads were found in  the




         following  areas:




         a.  Beaver Basin




             1)  Mahoning River, Ohio Edison Company,,  Miles  Plant  (2^0 I'M),




                 Miles, Ohio  -  largest observed average  river temperature




                 increase of  12.8   F




             2)  Beaver River,  Pennsylvania Power  Company, New Castle Plant




                 (293 MW), New  Castle, Pennsylvania -  largest observed average




                 river temperature  increase of 10.0  F.




         ^'  Monongahela Basin




             l)  Monongahela  River, M. P.  29-5, West Perm Power  Company,




                 Mitchell Plant (i|I|.9 MW)  - largest observed  average river




                 temperature  increase of  11.3  F.




             2)  Monongahela  River, M. P.  2£.2, Duquesne Light Company,




                 Elrama Plant (lj.25  MW) -  largest observed average  river




                 temperature  increase of  7-2  F.




         c.  Muskingum Basin




             l)  Muskingum River, M. P. 118, Columbus  and Southern Ohio




                 Electric Power Company,  Connesville Plant  (I|33  MW) - largest




                 observed average river temperature increase of  8.3° F.




             2)  Muskingum River, M. P. 68.3, Ohio Power Company,  Philo  Plant




                 (500 MW) - largest observed average river temperature increase




                 of 5-1° F.

-------
                                                                        3






    3)  Musklnguin River, M. P. 28.15, Ohio Power Company, Beverly




        Plant, lower "unit (876 I'M) - largest observed average river




        temperature increase of 6.8  F.




2.  No single average river tempreature increases greater than 5  F were




    found for any power generating plants along the Ohio River, however,




    some difficulties are present at the following locations:




    a.  Ohio River, M. P. l5«2, Duquesne Light Company, Phillips Plant




        (31!? MW) - single temperature measurement found greater than




        89° F.




    b.  Ohio River, M. P. 53-9, Ohio Edison Company, Sammis Plant




        (1,960 MW) - single temperature measurements found greater than




        89° F, some hot spots as high as 96.k  F.  Future proposed




        expansion will increase average temperatures over 7  F.




    c.  Ohio River, M. P. 76.5, Ohio Power Company, Cardinal and Tidd




        Plants (l,ij.52 W) - single spot temperature increases greater




        than 12° F.




Recommendations




1.  Cooling facilities are recommended to be installed immediately at the




    following locations:




    a.  Mahoning River, Ohio Edison Company, Niles Plant




    b.  Beaver River, Pennsylvania Power Company, New Castle Plant




    c.  Monongahela River, M. P. 29-5^ West Penn Power Company




        Mitchell Plant




    d.  Monongahela River, M. P. 25-2, Duquesne Light Company, Elrama Plant

-------

-------
                                                                   k
    e.  Muskingum River, Mo PC 118. Coluirims and Southern Ohio Electric
        Power Company, Connesville Plant
    f c  Muskingum River,, M. P» 68.3, Ohio Power Company,, Philo Plant
    g.  Muskingum River, M. P. 280l5;> Ohio Power Company, Beverly Plant
2.  No future expansion of any of the above power plants should be
    permitted without the installation of cooling facilities.
3.  Any future expansion of the power plants listed below over the capacity
    indicated should not be permitted without the installation of cooling
    towers.
    a.  Ohio River, M. P. 3$3 Duquesne Light Company, Beaver Valley
        Power Plant .  (100 Mtf)
    bo  Ohio River, M. P. 53.9.J Ohio Edison Company, Samrais Plant
        (1,960 MO
    c.  Ohio River, M0 P. ?6.5* Ohio Power Company, Cardinal Plant
        (1,230 MW)
    do  Ohio River, M0 P. 102.5, Ohio Edison Company, Burger Plant
    eo  Ohio River, M0 P» 111,1, Ohio Power Company, Kammer Plant
        (675 Mtf)
    f Q  Ohio River, M. P. 161.5, M0nongahela Power Company, Willow
        Island Plant (215 MOT)
    g.  Ohio River, M0 P<, 2iil06, Appalachian Power Company, Phillip
        Sporn Plant (1,060 I'M)
    h.  Ohio River, M. Po 26001, Ohio Valley Electric Company, Kyger
        Creek Plant.  (1,086 ]\¥)

-------
:il.  STUDY ARM




     General Information




         The electric power generation needs have been doubling in capacity




     every ten years during the past., few, decades.  Predictions indicate that




     this trend will more than prevail for the next few decades.




         Fossil fuel power stations are the most common source of electricity




     in the United States.  Hydroelectric power is generated in some parts of




     the country with new hydro installations being built in many areas, but




     this will only represent a small part of the total capacity.  Nuclear




     power stations will become more common along with their greater cooling




     water needs.




         The Upper Ohio River Basin has a large coal reserve making this type




     of fuel very attractive for steam-electric generation.  Many large power




     stations are being built as mine mouth generating plants.  A great future




     exists for the electric power industry.  At the present time there are




     about 105 electric power stations in the Upper Ohio River Basin with a




     total design capacity of about 20,200 megawatts.  In one hour the combined




     capacity of these plants can produce a heat load to the river of 330 billion




     BTU's or enough energy to heat about four million residential homes.  About




     five major plants with a design capacity of 10,600 megawatts are under




     construction at the present time in the Upper Ohio River Basin.  Only one




     of these future plants with a design capacity of 1000 megawatts does not




     have provision for cooling facilities.




         About 20% of the electric plants in the Upper Ohio Basin were selected



     for field studies.  Most of these study units produced more than 200 megawatts



     }f power each.  Field studies wero set up for several tributaries and the



     -•~'.z ?iver to provide a good cross section of companies, ninor basins and

-------

-------
      section of companies, minor basins and thermal conditions.,  This

      report covers the study psriod of October 196? - December 1969 »

      summary of these plants appears in Table 1.

                                  Table 1

                        THERMAL POLLUTION STUDIES

                         Upper Ohio River Basin
                                                             Capacity
        Nile Point                      Company             (Megawatts )
  I.  Allegheny River Basin
                                West Perm Power Company,       1|16.1
                                Springdale Plant
            16.0                Duquesne Light Company,        26205
                                Colfax Plant

 II.  Beaver River Basin

      Niles, Ohio               Ohio Edison Company            25>0.0
      (Mahoning River)

      New Castle, Pa0           Pennsylvania Power Company     293=0
      (Shenango River)

in.  Kanawha River Basin

            78.5                Appalachian Power Company,     i|2600
                                Kanawha River Plant

 IV.  Ilonongahela River Basin

            29°5>                ¥est Penn Power Company,       Mj.S<>7
                                Mitchell Plant

            25° 2                Duquesne Light Company,        ii25»0
                                Elrama Plant
  Vc  Haslojigum River Basin

      Conesville, Ohio          Columbus & Southern Ohio       lj.33.0
                                Electric Company, Conesville
                                Plant

      Philo, Ohio               Ohio Power Company,            500 00
                                Philo Plant

-------

-------
       '•ale Point
      Beverly, Ohio
 71.  Ohio River

            2.1


           15.2


           35.0


           53 °9
           76,5



          102.5


          111.1


          161.5


          210..6


          260ol


VII c  Scioto River Basin

      Columbus, Ohio
Ohio Power Company
Muskingiun Plant
(Additional 6l5 ntw has
 cooling facilities)
 Capacity
(riegavabts)

    876.0
Duquesne Light Company,        180.0
Reed Plant

Duquesne Light Company,        3l5°0
Phillips Plant

Duquesne Light Company,        100.0
Beaver Valley Plant

Ohio Edison Company,          1960.0
Sammis Plant

Ohio Power Company,            222.0
Tidd Plant

Ohio Power Company,           123000
Cardinal Plant
(The Tidd and Cardinal plants
 were combined for the study. )
Ohio Edison Company,
Burger Plant
Ohio Power Company,            675.0
Rammer Plant

Monongahela Power Company,     215.0
Willow Island Plant

Appalachian Power Company,    106000
Sporn Plant

Ohio Valley Electric,         1086.0
Kyger Creek
Columbus & Southern Ohio       23000
Electric Company, Picway Plant

-------

-------
                                                                     8
TnSPJilL POLLUTION STUDIES

Kabhodology
     Each study section was measured by a temperature sensing instrument

containing a calibrated thermistor on an electrical cable.  All measurements

were made from an anchored boat, so that depth data could be obtained from

the same pointo  Temperatures were measured across the river at several
places to provide good cross sectional data at several depths.

     To adequately assess the thermal loads in each area, a reference

station was established upstream of the power plant.  Conditions causing

"short circuiting" of heated water moving upstream from point of discharge

to point of intake were also observedo  Short circuiting is somewhat dependent

upon the type of discharge structure used*  Downstream stations were chosen
to show the effects of the thermal loads at various distances.

     Although three dimensional conditions exist in the mixing zone

(longitude, latitude, and depth), this study considered each station as a

cross sectional volume of river representing a specified quantity of heat.
The mixing zone is merely defined as the reach of river where heated water
causes the river temperature to increase over ambient.  Recovery is con-
sidered at the point where the temperature starts to decrease to ambient
temperature.  The average temperature and ranges were reviewed for hot
spots, excessive variations and conditions which could affect aquatic life.

A comparison was also made with established procedures for calculation of

theoretical conditions based on rated capacities of the individual power

station per FWQA  Manual, "Industrial Waste Guide on Thermal Pollution",

September 1968.  No attempt was made during this interim study to relate

the rated capacity to the actual operating capacity during the actual study
J"^ -L1^ u, *
: 'vrr.al  Loads

-------













•

•




c
s
c
,r
4
•r
^
S
C\j C
C
o
H T
rO '
cd C
EH H
r
c
i
J
1
,1
r

•




*























O

CO
CU
y H
fe


CM

O PM
O
.
CA
CO
CO
O h
0
•
GO
c—
MD
o
CM

r>-
0
O

Q ^3
U O CO
3 H CH
H P=) O
o
0
£• —
CO
j
H
3
3 co
3 MD
J CO
jj>
f ^
1
O
H
I

3
H
j r5^

H -H
J 0 S
3 rj g
H ft
O
• JH
PH 0
t>
• -H
r=^-< p~j

•LA

CM
MD
CM

0
rd
ta
O CD
• H
MD H
rH ^
CH
ttf
ft
S
o
o
^
f~f
C.
S
G
O
4^ a
X! O
W -H
•H -P
H~3 d
_4-3
Q} CO

CO "*
CJ oj

O'rH
3 O

0
g;


CM
^
•
O"\
CO
J
*
CO
^
o
H

O
H

O
O
r—
co



CO
NO
l
O
H
1
rj^—



H
•
vQ
i 1


1
r^H
W
IA 0
• rH
r- H
H «a<
fe>
£
OJ
ft
S
O
o
+D
0 ra
!3 H
O PH
PH
0
^ i — 1
C^ Cu
CD nCj
Pn bf,
^
+J -r~1
tO fn
CD _&
CO
CD
M


CM
0-
*
•LA
CO
CM
•
rH
r>-
co
CM
H
-cf
-d"
rH
MD
O-
p~^




CO
MD

	 |
rH
1
ON



O
•
O
•LA
CM

M
•H
a
o
f!

f~t




^.^
a

PL,
O
O

« O
O -H
CO ,-C^
•H O

Tr] »^
ro
O 'O
-P rH
P^ •-',

O
fe


rH
MD

ON
CO
H
•
— zf
r—
0

qj
a>
m
I-S
£ S-H
O Ctj
o >
J— j
M r*i
O W
Is G
P-i (D
p_,
cti
•H **
f^ 0
GJ i — i
J> -f-1
H co

n o
C
ct [5
i!) 'D

^
<-<


CM
_J
•
H
Cv~-
tA
•
CA
NO
CA
CM

C—
' CA

o
0
"LA
CM


CO
MD
1
o
H
o
H



0
•
\o
C\f
J

cti
AH
^
i_r\ c\j
* s5
CO 03
r-^
1
fi,
S
Q
O

M
0
o
PH

C
CTJ
•H
^H
u

H
fj
^n.
C4
CM
A
CM
CM
0
rH
tA
O
ON
ON
•LA

-=f
00
o
o
p}

CO
1
MD
H
o-



o
•
IA






°i
•LA
CM




%
e
o

•H

CD
O































ni
H
n3
M
C
2
^








1
i— i
OH
rj
CM
A
CO
H
ON

NO
O
CO
CM
r>-

•LA
(A
O
CM
NO
CM

CO
NO
1
H
H
ON



O
1A




rH
cd
to
CM O
K7^




g
§"
o
o
+3
•H 'C
*~ rH
0 P-t
cc erf
CM
A
MD
CO
ON

J
CA
OO
(A
H
H
co
^
0
o-
CM
rH

CO
MD
1
IA
H
i
0-



o
ON
^



ClJ
I — 1
nS
bD
C
^ §
ON o
CM S



t>5
§
o
o
^
PH H
P-.
'"•
a ,-i
'L' H
P-, t)
CNJ
A
IA
jjj
CO

CO
-j-
c^
CO
IA

0-
CA
O
CM
MD
CM

CO
MD
I
H
H
ON



O
ON




H
1
"^ §
ON O
CM g



r?
ft
O
O
JH
P-. H
**1
r-1
S H
0 H
















•
CD
O CD
N G
O
c
*lj ~~
•d -H
e K
•H • 0
d S CD ^
•t 1 C O
CON
CD -H N
j9 „. .,n y
CD CD S -H
O pi X -H
a ra -3 S
•H KJ £
CO C •
cu S C -H h,
fn -H M
P CD "^0
-P GO T5 Q E>
nj ctj 0 £-j o
^H CU 'C-i ' O
CD !H 9 CO  0 ^ 0 -H °
Cl3 CiO CD rH X CO
H ^ M £ g 
-q  K  (-1 W

-------

-------
                                                                                                                              10
                                to
                                CD
                                          O
CO
a
P3 .—I
.-4
4^J
i — i
^
Pi fin
0

CM
CO
, vo
0 P=H
0
•
CM
NO
°^
pq P-H
0
•
CO
. ^
i r- i
•=q PH
O
CA
O
[5
O en
H CH
fi) O
CA

*\
cx


ON
NO
CD
-P
erf
R
1
XA
OJ
1
ON
H
CM
•
XA
D—
[-—
•
CO
NO
H
•
XA
o-
XA
o
o
ON
»\
r-i


ON
NO
1
fA
CM

ON
H
A
XA
*
ON
l>-
co
•
ON
NO
CO
•
NO
O
CD
H
O
O
ON
«\
H


ON
NO

CA
CM

ON
H
CO
•
C--
CO
-J-
»
CA
CO
H
•
CM
1A
O
O
CO
CO
*\
CO


CO
NO

H
CM
1
o-
CM
NO
•
ON
CO
CM
•
XA
CO
H
»
H
O-
o
o
CO
CO
•\
CO


CO
NO

D-
H
1
0-
CM
NO
•
ON
CO
-cf
•
CM
CO
CM
•
H
NO
0
O
o
0
*\
H
H

ON
NO

CO
H
1
0-
CM
\'
CO
•
o-
CO
I>-
.
CA
0-
OO
•
CA
NO
CA
o
o
o
•\
CM
H

CO
NO
1
p
1
ON
OJ
'•J
CM
•
NO
— (•
CO
»
CA
CA
H
•
CM
O
H
O
O
XA
«\
-d-
-ct
CO
NO
1
O
CM
1
CM
H
CM
\<
-^T
•
NO
ON
-cf
*
CM
CO
NO
•
H
ON
CA
O
O
O
•>
iH
H


ON
NO
I
CM
J
[-—
CJ
A
O
•
NO
CO
CM
•
XA
C--
XA
•
m
CM
j
O
o
o
•^
NO


CO
NO
1
CA
o
H
CM
A
O
*
NO
CO
CA
•
CM
i^
NQ
•
l
CO
-3-
o
o
XA
•V
NO


ON
NO
1
O
CA
1
ON
CM
CO
•
CO
>-
CO
»
ON
NO
O
•
CM
GO
O
O
o
o
•N
XA
H

CO
NO

-^r
o
H
 PH
 oi
O
                      o
                      o
                      1A
                            NO
                            C--
                            CO
                   O
                   CO
                   H
                         XA
                         H
                         1A
                         H
O
NO
ON
H
O
NO
ON
H
O
NO
ON
H
CM

3
H
CM
1A
-d-
H
                                                                                            -
                                                                                            XA
c5i
          o sf
          ,R O
          -P O
             O
            •H
             r^
            o
                H
R"
a
s
o
o
^
CD
 o
•rl
X
O

 ^
 O
H
•H
 r'

PH
       a
                                 £'
                                 o
                                o
                                 0

                                 §
                                P-.
                                 o
                                •H
                                ,R
                                O
 O
 •H
 -R
O

 *-\

5

o
rH -J

ft
s
o
0
-p
,R
M
•H
i^i P
»
R
erf
ft
s=!
0
CJ
-p p
,C R
hfl erf
•H H
t-i PH

CD CO
R P,
'ft -H
0 r-l
2 rH
CT'-H
££

CM O
xAid
H 0
s

ft
s
o
0
p P
-R R
hO S
-H H
H-q PU

CD CO
R ft
CO -H
1) H
PJ H
O"^ *r-i
^j ^
Pi PU

ON o
• -H
CA rR
XA o


h,
R
oj
ft
e
o
O
p
R R
O rr
CO iH
•H P-
T3
K m
•H
O S
•d ^
Jwj CT
O 00

ON
CA
XA


>j
R
nj
ft
^
0
o

R
O
CO
.^
'a
r-~l

CJ
•d
o

o
3
o








p
R
en
H
PH

CO
•H
^
;—
^Tj

ON
*
fA
XA


i>5
R
erf
g-
0
O

R
O
CO
•H
Tj
K

O
•H
O

O
•H
XJ
O








-p
R
rrf

Cui

u
• -j

'-,
C/J

XA
NO
i>-



t>5
R
a
s
0
o

in
0
£2
O
•->

O
•H
*-"•*

O
•H
.R
O
GO
P
R
3
H
PH
rH
erf
M
•H
-a
H
erf
O

,,H

rg

^

XA
NO
c--



!>s
R
3
ft
6
O
o

^
O)
j2
o
o

O
•r-i
r-Cl
O

O
•H
^'
0
m
-P
R
erf
H
PH
H
erf
R
•H
T5
f-f
rt
CJ

"3

tj
^3
•H
^H
XA
• o
CM -H
O JR
rH O


t>s
R
d
i1
o
o
-p
R R
O cS
CO r-)
•H OH
Tj
W ^
•J
o to
•r-i *H
O P3

-------

-------
CD
K rH
"l — 1
0 PH
O
0 Pm
0
m PH
0
<^ fe
0
0 OT
H <+-,
BH 0
CD
1
S>»
-P
•H
si
a
n3
O
• ?H
PH 0
i>
s; fS









t>t
£
?
g-

o
o








A.
^
o
CO
VO
rH
s
2
I
•*
VO
ON
vO
H
O
H
3f
•LA
XA
• o
CM -H
0 X!
rH 0




f>s
£|
d
ft
g
O
O
-P
G G
0 cd
CT i — 1
^ PH

r-^-1 ~J


' ~' -H

'. ^
H
CA
-^j
r* —
CO
ON
vO
H
H
XA
H
o
0
o
*\
o
rH
CO
vO
H
rH
0
rH
•LA
L* —
vQ
H
•
rH
H
H





£>>

Cu
ft
S
o
o

JH
CD
Jg
O
p_,

O
•H

C


O
•H
,£
O











-P
£
crj
H
PH

?H
CU
c±
^

i^
rH
V
O
vO
CO
00
CM
CO
CM
•
H
•LA
d
0
o
rH
•\
O
rH
ON
vO
-=r
0
rH
tt
CM
•LA
rH
VO
rH
h,
G
a
s
o
o

?H
CD
&
o
PH

Rj
H
CD
^3
Pj
ao
c
o
G
g



0
S
0




-p
G
cd
H
PH

T3
G
d
H
n
M

h^
O
rH
rH

|3
rH
V
ON
r>-
O-
rH
t>—
VO
XA
CM
0
CVI
o
O
CO
•-.
rf
CO
VO
o
rH
1
O
H
O
S
H
NO
H
-cf
CM
>5
S
ft
s
o
0

JH
CD
^
0
PH

G
crj
.,^i
r^
O

H
^j
—4
ft



O
•H
,G
o




-p
G
CTJ
H
PH

G
?H
O
ft
CO

ft
•H
H
rH
•d

CU
H
V
O
vQ
CO
CO
CO
r>-
CA
H
CO
o
o
0
XA
«\
rH
CA
ON
VO
VO
CM
1
vO
O
S
H
vO
rH
J"
CM
h,
G
crj
ft
S
0
O

?H
CD
£
0
PH

G
Oj
•H
,A_,
o
cd
rH
  • o CD H H >*^ CD (D H CD H ?H ^ 0 CH O t) A-t ~>^

  • -------
    

    -------
                   APPENDIX
    
    
    
    
    Field Data and Theoretical Conditions
    

    -------
                   */4  MW rated capacity
                Maximum efficiency = 35!*
                Heat loss within plant  = 15%
                Energy required for 1 KWH  = 3>kl3 BTU
                Adequate mixing of effluent
    
    B.  Heat load:  3,itl3 BTU  =  9,750 BTU/KWH heat rate
                      w * .3 ~)
                    (0.85 x 9,7^0)-3,lil3  = U,877 BTU/KWH Heat  to  Cooling Water
                              3                      5"                  ^
                    (li.88 x ICT BTTJ/KVffl)( 4J4,   x 10*  KW)  =  -2, 03  x 10   BTU/Hr  Heat Load
    
                 antity:  Q = (cfs)(62.1;  Ibs/f t3) (3600 sec/Hr)  -  Ibs/Hr
                          Q =  (  S.7   x 103)(6.2U x 10) (3. 6 x 103)  =
    D.  Theoretical Stream
    
        Temperature Rise:/\Tr = Total Heat Load to Cooling Water, BTU/Hr
                                Stream quantity, lbs/Hr)(l ETU/lb °F)
    E.  Actual Field
    
                                                                        °
        Temperature Rise:/\Tr  =  (Avg. Cross-Sect. T, °F)-(Background T,  F)
    
    
                          * "     _717°F  —  _7P7°F  =    1,0  °F
                            r
    

    -------
                                     THEfcXAL POLLUTION STUDIES
         Date  ''-lO-oS     Location   Alle-herr/ River  - "J.  P.  17.5
    •   '
    ..LOW
    ^ '' jO
    cfa Plant Na^ia Sorin^ria
    Air T"3"oarature - Be^in ^8? • T^F Finish
    RZjZRSNCS V&TER TSMPERA.TUSS ?8.6 °F
    1 J» _ r,N ^» o 4-
    — -^ * ! .-• O iJ
    " '..W1 •« '"Oin
    c f „ f F
    M ^
    tT. » > •
    ?enfi Pow
    ?r 'JoTTD-snv'
    
    Work Done By Lorenfcs,
    I7, 7
    Left Apx. Distances Batvaen Samling Points
    Bank Middle
    225'
    AB072
    Sur.
    8'
    SO?
    30'
    
    BELCtf
    Sur.
    a'
    8'
    12'
    15'
    20'
    21;'
    23'
    32 !
    
    OUTFALL
    79.2
    78.8
    7b.6
    
    
    OUTFALL
    83. a
    62.8
    Si .2
    cO. 8
    !'-r \,
    
    
    
    
    
    (M. P.
    Sur.
    8«
    20'
    30'
    (M. P.
    Sur.
    8'
    12 »
    16'
    2!*'
    28'
    32'
    ZONE OF MIXING (M, P.
    Sar. 60. 6 Sur.
    It'
    8'
    12'
    16'
    20 '
    2'1 '
    28'
    32'
    
    60.6
    SO , 2
    
    
    
    
    
    
    
    ECWN3TR2AM PT,
    S-ir. 31.0
    X'S!
    "J2T
    ^._^ ^
    
    80. 6
    •- 0 . 2
    7q.B
    "' j , d
    It'
    8«
    12'
    16'
    20'
    28 »
    32'
    17 "7
    i ( . f
    
    
    
    
    
    17.5
    82. U
    81.5
    81.5
    80.2
    79. h
    
    
    
    
    
    17.0
    81.0
    79.5
    79. U
    79.0
    
    
    
    
    
    
    . NO INCREASE (M.
    Sur. 81.0
    U' ^K
    8' 231
    16'
    20'
    80.8
    BO, 6
    7?.c?
    79. 7
    7C O
    )
    Sur.
    8'
    30'
    }
    Sur.
    8'
    12'
    16'
    20'
    2U'
    28'
    32'
    AJ
    )
    Sur.
    8*
    12'
    16*
    18' 231
    2it«
    28'
    32'
    •
    P. 16.
    Sur.
    a- tx
    8' 231
    12' 331
    16'
    20'
    78. 8
    78. U
    78. h
    
    -, v - " •-'. ; i --•
    79. U
    78.8
    78.6
    78. li
    78.!}
    
    
    
    
    r«.\.-.f -,tn
    81.0
    .79.li
    79.0
    78.8
    78.8
    78.6
    
    
    
    1 '• - r ? ~ f
    5 )
    81.2
    81.0
    80. J.
    79.0
    76.3
    7,1 . 6
    Sur.
    8'
    20»
    30'
    Sur.
    12'
    20'
    2U«
    28'
    32'
    Sur.
    h'
    8'
    12'
    16'
    19' 231
    28 »
    32'
    SttT.
    h' IX
    12' BX
    16 '
    Hos
    775'
    
    
    
    
    ;> 7^.7 :?
    78.8
    78.8
    78.8
    78,6
    . 78.6.
    
    
    
    
    ~J t>( ,'n J K
    80.0
    79.2
    78.8
    73.8
    78.6
    78. U
    
    
    
    : '<.£. ;-
    81. h
    80.6 U'
    80.6 8«
    7QJ, 12'
    73.8 16'
    7c . ^ 20 f
    er
    High
    Bank
    Sur,
    8'
    20'
    30'
    Sur.
    U'
    8'
    12'
    16'
    20'
    23'
    32.
    Sur.
    8*
    12'
    16'
    20*
    2li'
    23'
    32'
    231
    2SX
    
    JOT33,
    r
    78.8
    76." I
    
    
    
    J9..7
    79.2
    79.0 '
    '78.8
    
    82.2
    80.6
    80.6
    itt
    
    
    
    
    
    82. h
    81,5
    8 3. ~2
    79.0
    79.0
    ->£> C
    f ,' , . :
    

    -------
    

    -------
                                           /O  j 19 A P
    A.  Assume:  -x 4 3  HVJ rated capacity
    
                Maximum efficiency = 35%
                Heat loss within plant = 15$
                Energy required for 1 KWH = 3 ,kl3 BTU
                Adequate mixing of effluent
    
    B.  Heat load:  3^13 BTU  =  9 ?^0 BTU/»7H heat rate
                      o.3£
    
                    (0.85 x 9,750)-3,U13 = h,S77 BTU/K^/n Heat to Cooling Water
    
                    (ii.88 x 103 BTJ/KWH)( J.6S  x 1C  KW) =  /. 3C|  x 10  BTU/HT Heat Load
    
    C,  Stream Quantity:  Q = (cfs)(62.l< Ibs/f t3) (3600 sec/Kr) = Ibs/Hr
                                           =!                     o                ?
                          Q = ( ^. 7   x 10" )(6.2lt x 10) (3. 6 x 1CK) =  ! .clS  x. 10  Ibs/Hr
    
    D.  Theoretical Stream
    
        Temperature Rise:/^Tr = Total Heat Load to Cooling Water, BTU/Hr
                                Stream quantity, Ibs/Hr )(1 3TU/lb OF)
                                  /„ 9^"  x 10
    E.  Actual Field
    
        Temperature Rise:/\Tr =  (Avg. Cross-Sect. T, °F )- (Background 'T,  F)
    
    
                                                        °F -   ^.6  °F
    

    -------
    

    -------
              TK2RHAL POLLUTION STUDIES
    
    
    
    Location  Allarh^nv Ju ?, 16.0
    ~;0'/
    Loft
    Bank
    ABO 73
    U1 3X
    8' 2*3
    12' J3X
    16'
    BELCH
    Sur,
    M
    8'
    12'
    16' "
    20'
    2 '4 '
    28' "
    32'
    
    5703
    cfa ?!
    i.TjuratrUrs — B6gi
    SJ7CE WATER TEMPER
    Ap:
    200'
    OUTFALL
    81.5
    81.5
    80.8
    60.6
    80.0
    OUTFALL
    82.6
    81 .9
    80 . 8
    ^.0.6
    79.0
    
    
    
    
    
    lar.t Jiana
    n 37.8°
    &TU3E 80.
    Col fax -
    ? Finish
    .6 °F
    Diiauesne
    i Li-'ht Coi
    -r-p n H'1"''
    "^.o"^'? Work Dons By
    vt P
    i * a — •
    15.8
    
    x. Distances Between Sampling Points
    Midcila
    600'
    
    L.O ^*3fi o2» f
    S£
    
    Jones.
    ,»
    (M. P. 15.9 )
    Sur.
    h' SX
    8' 2HK
    12' 3GDC
    16'
    20'
    (M. P.
    Sur.
    U'
    8'
    12'
    20'
    28»
    32'
    ZONE 0? MIUHJ (M. P.
    Sur. 83.lt Sur.
    U'
    8' "
    12'
    16' "
    £0'
    2ii'
    28'
    32'
    
    82. !a
    
    
    
    
    
    
    
    
    DCWN3TR2AM PT,
    Sur. 82.6
    8' "
    tj !
    3-j '
    
    82.2
    
    
    
    U«
    8«
    12'
    16«
    20'
    23'
    32 •
    , NO men
    Sur,
    8'
    20'
    30'
    81.5
    80.6
    78.8
    78.8
    78.8
    78.8
    15.7
    82. h
    82. h
    82. h
    80.6
    79.0
    78.8 .
    
    
    
    
    15.0
    82.8
    8L5
    80.6
    79.2
    
    
    
    
    
    ;i
    SASS (M.
    82.6
    82.2
    
    
    
    Sor.
    U' SS
    8' 23X
    T 9 i ^TfTV
    J_^_ Tli^ A
    16'
    ,v^-,
    Stir.
    It'
    81
    12'
    16' "
    20'
    21'
    28'
    32'
    ^^C-'^J:!
    )
    Sur.
    U'
    8'
    12'
    16'
    20 1
    2k*
    28'
    32'
    ' f :-,"- I "
    P. lh.2
    Sur. I
    8« "
    20'
    30'
    
    82.0
    80.2
    76. d
    78.8
    78.8
    ^r fi -. 77,'
    82.2
    81.5
    80. 61
    79 . h
    ?3.8
    78.8
    
    
    
    1 i fir'
    82.0
    8l,5
    79.2
    78.8
    78. 8
    78.8
    
    
    
    7 ," - i 
    -------
                     OHIO ?r:)l
    -------
                                THBP.MAL POIXOTIGIT STUDIES
    
            9-11-69   Location  Mahoning River @ Miles  (?-!.  P.  52-x-)
    l''ir/j
    ;, _-• "Y>g-£
    '' ^ ativ
    I. i Sinai
    *-<-.» 71
    
    ;-iid. 71
    Bot. 71
    376
    peratura -
    e HusnicLity
    ng Be fares
    .6
    r)
    
    .2
    cfs Plant Name
    Niles - Ohio Edi
    Begin- 77 w? Tinish 8?
    h£
    Apx.
    ce Water
    • Depth 0 '
    
    
    
    son. CompanY_
    °F Work Dona 3y
    Lf, Beginning Time i
    Distances Between Sacpling
    Middle
    Temperature (M.P. £2.3
    Sur.
    Mid.
    Bot,
    Depth
    A • •' -
    .UCVE OUTFALL (M.P. 52.0
    SUP. 73.1;
    6' .31 71
    "0s "~~
    "*' -n--.--.-um
    .6 6'
    
    Sur. 73
    81 71
    20' 	
    30' _
    r/IDSNCE OF THERMAL SHORT
    •h
    .6
    »-«MVMi
    CIRCUIT?
    P
    E
    it
    
    ~? ' , "l f-
    ) At Intake
    Sur. 73. k
    20' 	
    30' 	
    Yes
    Points
    )
    Depth
    
    Sur. 7U
    6' &1r 22.
    20'
    30'
    , o
    200
    Sur.
    Mid.
    Bot.
    8'
    
    .8
    ,'&
    
    
    Lorentz & Mo
    
    
    r.igat
    Bank
    71.2
    71.2
    71.2
    
    
    
    
    
    Sur. 77.0
    V ftfc ..75.?
    6|i^waytr ^O ^C
    '*SiX ../^.i,0
    30' 	
    
    
      B2SCHIETIOS 0? FIHDIHGS - jacffllTUDE AM) TYPE   About 1  F total average rise at
           intake.  Plant on left bank, looking upstream.  Discharge channel faces D.S.
           from plant.  Hot water crosses stream and flows upstream along right bank., then
           crosses on surface to intake.
    ."AXB-aW OUTFALL TEMPERATU5E         8^.6                      TBS
    3IS3 0? MAXIMUM TEMPSBATURS ZO?IE:   50' D.S. of outfall, along right bank
    ::%IOW OUTFALL (M.P.
    ,/r. 81|.6 Sur.
    t> ! Ob • ^ !*• '
    ,U 85. li"' 8' "
    >:J * 12'
    .:,' 16'
    :' 20'
    , ; 21* '
    ^; 23'
    51.8
    824
    82 .k
    81.0
    
    
    
    
    
    )
    Sur.
    4'
    8' ~
    12'
    16' "
    20'
    2U1
    23' "
    82.0
    8l.lt
    81.0
    
    
    
    
    
    Sur,
    U'
    8' "
    12'
    16'
    20'
    2U'
    28s
    81.0
    81.0
    81.0
    
    
    
    
    
    Sur.
    V
    8!
    12'
    16'
    20'
    2V
    23'
    81.7
    .81. li
    81. S
    
    
    
    
    
    

    -------
                   s; ,-v f& i *- '/AN_) A 'r';^ ;-:i7   c
                                                   1?. 6 /if..
     A.  Assume:   c^ *? 3 I'M rated capacit
    i
                 Maximum efficiency
                 Heat loss within plant  =
                 Energy required for 1 KWH =  3,U-3  BTU
                 Adequate mixing of effluent
    
     B.  Heat Load:  3tiil3 BTU  =  9}7^Q BTU/Kiffl heat  rat
                     (0.85 x 9,750)-3,iil3  =  M??  BTU/KWH Heat to Cooling Water
                               T.                       S"                   9
                     (U.88 x ICT BTUAWH)( J, 93   x  10 Klvr)  =  /. >f-t,  x 10  BTU/Hr Hsat Load
    
     G.  Stream Quantity:  Q = (cfs)(62.l|  lbs/ft3) (3600 sec/Hr) = Ibs/Hr
                                             t>                                      e
                           Q = ( S. 40  x  10 )(6.2lt  x  10) (3. 6 x 103) =  /.9S   x 10  Ibs/Hr
    
     D.  Theoretical Stream
    
         Temperature Rise:/^Tr = Total Heat  Load to  Cooling  Water, BTU/Hr
                                 Stream quantity,  Ibs/Hr) (1  BTU/lb °F)
      ,  Actual Field
    
         Temperature Ri3e:/\Tr  =  (Avg.  Cross-Sect.  T,  °F)- (Background T, °F)
    
    
                           A T   =  ^l_i_°F -   74.^   °F =  /{) 0  °F
                           i_i      - ! -        -     -
    

    -------
    

    -------
    1-5 ft
                                TEiKMAL POLLUTION 3TTJDI23
    
          9-10-69     Location Beaver River Below New  Castle  (M.  P.  20.1-x-)
    o6TT Cf3 PLar.t Name
    „.,-'• '-'•'• - 	 	 """ "* ~ * A '7 3~A
    ia.iiOi-r5.'t;!'ii"e - Begin- of *j
    t';ve 2'T"~tldity 75 cV,
    Apx. Distances
    Mew Castle Plant
    ? ?ini
    Between
    Middle
    sb 80
    Sampling
    - Penn Power Company
    Op Work
    13 Tims
    Points
    Bone £3
    1100
    
    r Lorentz &
    
    Hi git
    Bank
    Mose:
              Bef arenas Water Temperature  (M.P.,  20.55	)   Junction with Oxbow
    Sur. 7i>.2
    ;-iid. i^.^
    'got. /i?.^
    Depth 9
    
    
    
    i
    Sur.
    Mid.
    Bot.
    Deptk
    7U.8
    Y5.2
    Yi>.2
    12'
    Depth
    Stir. 7iuU
    Mid.
    Bot. 7U.1
    ii'
    i v - "' "> ,'i • -
    A207E CUTEALL
    2T1T. Dam
    8'
    20' . 	
    '0'
    (M.P.
    SUP. D
    8'
    20'
    301 _
    20.05
    am
    
    
    ™**^m—m~*
    ) At
    Sur. 75.2
    20'
    30' 	
    small diversion dam
    Sur. 75-2 Sur. 75-2
    5 '^sx
    20'
    30'
    ,75.2 U'SaX 75o2
    20' _
    	 30' 	
    L7XS3KCS 0? THSSML SHORT CIRCUIT? No
      B2SCHIFTIOH OF FINDINGS - MQOTUDS AM) TYPS
    STZ3 0? MAXEHUM THGSRATURE ZOHS:
                                         86° F
                                                                             1130
                                        Width of outfall and out to about 30' from
                                        outfall, shallow - 2' to 1^' "deep
    P..1IOW OUTFALL (H.P. 20.00
    r:,r. 75.2 Sur. 75.2
    2'2E Y5.2 5' m1 75.5
    o' 8'
    !••> ! 12 '
    16' 16'
    ,« 20'
    -"'•-' 2U'
    V "" "" 23'
    32'
    ) At Power Line
    Sur. 82. U
    6' M 78.8
    8'
    12'
    16'
    20'
    2V
    33'
    32'
    Sar. 89.6
    V 89.6
    8'
    12'
    16'
    20'
    2k'
    23'
    32s
    Sur.
    2'jfe
    8'
    12'
    16*
    20'
    2k '
    23' ~~
    32'
    89.6
    89j,6
    
    
    
    
    
    
    

    -------
                                            River, M. p. _7>L4_
                                  Oc7o6£^ ./Q. ...j  19_fcS
                           rated capacit
                Maximum efficiency = 35'^
                Heat loss within plant = 15$
                Energy required for 1 KWH = 3,1±13  BTU
                Adequate mixing of effluent
    
    B.  Heat Toad:  3,1*13 BTU  =  9j?^0 BTU/KWH heat rate
                      U. jy
    
                    (0.8$ x 9 ,7 50) -3, 103 = U,877 BTU/KWK Heat to Cooling Water
                              1                     £                  %
                    (it. 88 x ICT BTU/KWH) ( 4.14 x 10  B-J)  =  2..Q%  x 10  BTU/Hr Heat Load
    
    G.  Strean Quantity:  Q = (cfs) (62.14 Ibs/ft^OoOO sec/Hr) = Ibs/Hr
    
                          Q = ( 2.S   x 103)(6.2h x 10) (3. 6 x 103) =  6" 4 I  x 10  Ibs/Hr
    
    D.  Theoretical Stream
    
        Temperature Rise:/\Tr = Total Heat Load to Cooling  Water, BTU/Hr
                                Stream quantity, Ibs/Hr )(1  BTU/'lb °F)
    
                                              J2
                                          * 10
    
    E.  Actual Field
        Tenperature Rise:/^^ = (Avg.  Cross-Sect.  T,  °F)-(Background 'I,  F)
    
                         ft T  •  66.3  °F —    43.9 °F  =   ^.3 °F
    

    -------
                                TJE2MAL POLLUTION STUDIES
    
    r.'..:e ".\ -ID-'r'S     Location janawha Rjygr  - Appalachian Power Glasgow  Plant.. Jj:.?-  .Iri. ~>
    ^—''l ^U2l2___ cfs  ?^n« -^a   Kans.wha River ^anr.	,	_J
    Air isr-parature - Begin 	°?Finish        °F   Work Dona By Jo-^'.. Fo-qr
           relative  Humidity = 62>j
    r>27z?.s::as WATER TJSKPERATUSE   6k. oH,  ?,   ?q.7
    La ft
    Bank
    AFX) 72 OUTFALL
    Sur, 6'i.0
    3 ' o'li . 0
    20'
    30'
    
    BELOW OUTFALL
    -« f r\ Q
    bur. o9 . 8
    U ' 66 . 5>
    8! 65.8
    12' oh. 7
    "^5'
    20'
    Apx. Distances
    (M. ?. 78.6
    Sur. 6h.O
    8« 6h.O
    18 KSX oh . 0
    30'
    ,4 VER JA-
    CK. P. 78. U
    Sur. 71. U
    k' 68.0
    8' oh.k
    12' 6h.U
    16'
    20«
    Betvaen
    Middle
    } Above
    Sur,
    8» ""
    20'
    30'
    5-t. T?-1-
    Sanpling Points
    in bake at ice breaker and
    6U.O Sur, 63.8
    63.8 8' 63.8
    63 o T3'33B 6h-0
    30'
    •i?r^ATufc? '. iS. •'? "• F
    Right
    Bank
    under hi?h w:re
    Sur. 6u.U
    8' 63.8
    lU'SCH "~6'3.8
    30'
    
    ) At coal unloader dock
    Sur.
    U' ""
    8' ""
    12'
    16'
    20'
    68.5 Sur. 68.0
    67.1 fr 66.7
    67.1 8' 66.3-
    6U.!i 12' 6U.9
    6h.L 16' 6Luh
    6U.h 20' 6U.U
    Sur. 66.2
    8' . 65.2
    12 » rot
    16'
    20'
    2li' 21»» 21}' 2U' 6UJ-i 2ii'
    28'
    32'
    
    ZONE OP MIXING
    Sur,
    li'
    8'
    12 «
    16'
    20'
    28'
    32'
    AuEJ?^:
    (M. P. *
    Sur.
    U»
    8'
    12'
    16«
    20«
    28«
    32'
    f-£. Tfr'
    -)
    Sur.
    hj
    3'
    12'
    16 1
    20'
    28'
    32'
    •iP^-R.iTuRT: '. 64, ! * F
    Sur.
    u«
    8'
    12'
    16'
    20'
    28'
    32'
    
    Sur.
    I*'
    8'
    12'
    16'
    20'
    2Ii! 2li' 21^' 2U1 2li'
    28'
    32'
    28'
    32'
    28'
    32'
    28'
    32'
    28»
    32'
    
    DOWNSTREAM PT.
    Sur. 56. 2
    """* ? >-N. O
    U OO • £_
    20*
    .;0 '
    NO INCHSASS (M. P.
    Sur. 66.2
    8' 6o.2
    20'
    30'
    78.2
    Star.
    8'
    20'
    30'
    ) At boat launch
    65.2 Sur. 66.2
    65 '> 8' ^) '?
    20'
    30 f
    Sur. 65.2
    8' o6.2
    20'
    30 »
                           ^^  lo^ks runi"/ e^ines  bo  ^leg.n  OH*; bv d:>c'<.
    

    -------
                               Thermal Pollution  Studie
                                   OcToQER. /O  ,
    A,  Assume :  -.    #W rated caacit
    
                Maximum efficiency  =  35%
                Heat loss within plant  -  15^
                Energy required for 1 KWH = 3jUl3  BTU
                Adequate rdbcing of  effluent
    
    B.  Heat load:  3,1*13 BTU  =  9>7$0 BTU/XWH heat rate
                      0.35
    
                    (0.85 x 9,750)-3,U13  = U,877 BTU/KWH Heat  to Cooling Water
                               1                      5"                   9                   I
                    (U.88 x ICT BTU/KWH )(  4.1 4 x 10   KW)  =   JLflff  x 10   BTU/Kr Haat Load  .;
    
    C.  Stream Quantity:  Q =  (cfs)(62.ii  Ibs/f t3) (3600  sec/Hr) = Ibs/Ifr                      ,;
                                           3                      -3                 3
                          Q =  ( 2.J    x  10 )(6.?it x 10)(3.6 x 1/y)  - _6    x 10  Ibs/Hr
    D.  Theoretical Stream
    
        Temperature Rise:ATr  =  Total Heat  Load  to  Cooling VJaler.,  BTU/Hr
                                 Stream quantity,  lbs/Hr)(l BTJ/lb  °F)
    
                                               •2
                                          xl°          .   -a 7  o
                                              „       -   O. /   *
                                  6'. t* I   x 10
    
    E',  Actual Field
    
        TeiTipsrature Rise:/\T   =  (A^/g. Cross-Sect. T,  °F)-(Background T,
                                                                      °F
    

    -------
                                HERMAL POLLUTION 37UDT55
    
                             Honons;3hela Rivor, >'. P. 29.5
    
                                  Mitchell Power Plant
    
                                    (July 15, 1968)
    
    
    A.  AssuT.a:  hl>9 M".v rated capacity
    
                 Maximum efficiency ~ 35%
    
                 Heat loss within plant = 15$
    
                 Energy required for 1 Kwh = 3,Ul3 BTU
    
                 Adequate mixing of effluent
    
    B.  Heat Load:  3,hl3 BTU   „ 9 ?5o BTO/Kwh hea, rats
                    ^__^
    
    
                    (0.85 xf,?50) - 3,hl3 - h,877 BTU/Kwh Heat  to  Cooling Water
    
                    (U.88 x 103 BTU/Kwh)(U.U9 x 10^ Ktf) » 2.19 x 109 BTU/Kr Heat Load
    
    G.  Stream Quantity:  Q « (cfs)(62.U lbs/ft3)(36CX) sec/nr) = Ibs/Hr
    
                          Q - (1.27 x I03)(6.2h x 10)(3.6 x 103) =  2.85 x 1Q8 Ibs/Hr
    
    
                    Rise^1  A  T1  =» Total Heat Load to Cooling Water, BTU/Kr
                                *r   (Stream quantity, Ibs/Hr)(1  BTU/lb °F)
    
                             /IT  - 2-19 x 109 » 7.8 °F
                                r   2.85 x 10°
    
        Ac tual Field
        Temperature Rise:   A  Tr = (Av#. Gross-Sect. T, °F)  - (Background T, °F)
    
                             A  T  = 9?.3 °F - 8U.O °F = 11.3  °F
                                r
    
        Pennsylvania Water Quality Standards for temperature  are:
    
             Summer maxinum 87  F
    
             No  rreater rise than 5  F
    

    -------
              THERMAL POLLUTION STUDIES
    Location
    Flow ',.270
    *ir Tunparaturj
    cfs Plant l-ana
    r-T-: hr-^-jl1 - >'.->it Pen-
    5 - Eagin 3?, 8 °? finish 8?. 8 UF
    ?£?23S?5CE WATER TSHPERATUHS 8'7
    Le ft
    Bark
    250'
    Povror ( ^--'-c, /•", •;
    Work Cone By r.ri_
    ; •
    .ffith.Jo:^.-:.
    Moser
    f.R° F H. ?. '''J,?
    Hot Sur.licrht
    Apx. Distances "Betwaen Sairpling Points
    Middle
    750'
    Right-
    Bank
    AEGV3 OUTFAIL (M. P. 30.3 )
    C.,--, OT 1
    1.3 j-T . V _L . L1
    S« <3U.2
    Sur. 91, h
    8' 8U.2
    20' 16' 2ax 83.U
    30'
    
    BELCM OUTFALL
    Sur. 95.9
    U1 95-9
    8' 95, Q
    T>l
    16'
    20'
    2'1 '
    28'
    32'
    
    ZONS 0? MIXING
    Sur. 96.8
    U« 95.9
    8' 95.0
    12' 9U.2
    16 «
    20'
    2y'
    28'
    32'
    30»
    A v : ^
    (M. P. 29.5
    Sur. 95.9
    !»' 9^.9
    8' 95.9
    12' 95.9
    16' 95.0
    20«
    2U'
    28'
    • 32'
    V)T> Av' • .
    (M. P. 29.0
    Sur. 96.8
    lt» 96.8
    8« 9U-2
    12' 93.2
    16' 92. U
    20'
    21*'
    28'
    32'
    Sur, .JJL^
    8' 8U.2
    lh'231 8^Ji ]
    30'
    Aic "I f Hijf ?AT i-a.r '. ^4.0
    )
    Sur. 97.7
    li' 96.8
    8' _95,9
    12« 9^,2
    16' 86.0
    £0'
    21i»
    28»
    32'
    T r , •' :•'. '. <^'< 1 ° F
    )
    Sur. 97.7
    u' 95.9
    8« 95.0
    12' 93.2
    16' b9.6
    20'
    21}'
    28'
    32'
    Sur. en .h
    8« 83. U
    Lh'221 81.) I
    30'
    °F
    Sur. 97.7
    hs 07,7
    o' 0^9
    12' 9);.?
    16' 3 -..9
    20'
    2U«
    28'
    32'
    
    Sur. 97.7
    U1 96.8
    8» 95.0"
    12' 93.2
    16'
    20'
    21i'
    28'
    32'
    Sur, ^3 2
    8' 8h'.2 	
    20'
    3o? i~ ,; T "
    Sur. 98.6
    Us .98,6
    8' 95.9
    12'
    16'
    20'
    2la!
    28*
    32'
    
    Sur. 97^7 	
    8' 9u-2
    12'
    16'
    20'
    2U«
    28'
    32'
    VVT, A-/.'., T" •'-•" ' '--V.; "'?
    DOWNSTREAM PT.
    8'
    ^'G*
    30 !
    MO INCREASE (M.
    Sur.
    8'
    20'
    30'
    P. 27.8 ) 35°
    Sur.
    8'
    20 5
    30'
    across stream @ Ii
    Soy.
    8?
    20 »
    30'
    i« Depth
    Sur,
    8'
    20'
    30'
    

    -------
                                       /"I ; re iiil<-i-  Power Plant
                                              II
    A,  Aasuire: _j_J"^ rated capacity
                Maximum  efficiency =
                Heat loss within  plant = 13%
                Energy required for 1 KWH = 3,U13  3TU
                Adequate mixing of effluent
    
    B.  Heat load:  3fU3 BTU   =   9^750 BTU/KWH heat rate
                      U.3;>
    
                    (0.85 x  9,750)-33hl3 = U,8?7 BTU/Kl-JH Heat to Cooling Water
    
                    (li.88 x  103 BTUAWH)( -4,-t?  x 10  KW) =  J.)
    -------
                             IHEEMAL POLLUTION SIUDIS3
    
    
    
    
    •-5  7-11. -68	   Location  '"onooyang^i ?i]re_r  -_~i. _?.- S'^.rT
    :rlo:r ?--?3 cfa Plant Wains Mitch 2? 1 - Werj4, P-i:
    Air IV-erature - Begin
    61 °F
    Finish ^ "F
    -n ?.r..vr ^'J^ ^
    Work Dona By ,;
    r:2yr?.2"C3 WATER TEHPERATUH2 7U.S° F H. P. 29.8
    La ft
    Bank
    A20V2 OUTFALL
    V.
    S'jir,,
    3'
    20'
    30'
    Apx
    250'
    . Distancss
    Estveen Sar^ling
    Middle
    Points
    750'
    
    \ -) "•> o p '?» '^'n c* ~r~
    Right
    Bank
    /V p ?Q 8 ^
    u« i-. ^v.c ; o, 00 „ N
    Sur.
    8'
    20'
    30'
    
    
    
    
    Sur.
    8'
    20'
    30'
    Sur.
    8'
    20'
    30'
    /
    Sur.
    8'
    20'
    30'
    A vro,-- if TcnPf.-.aTL'Rr .'. 74. ?V
    BELCW OUTFALL
    Sur* 79 . 2
    ii» 76.8
    8! 78.0
    12' 75.1
    16 *
    20'
    2s-'
    4-_i
    28 »
    32'
    (M. P.
    Sur.
    U' ""
    8' ""
    12'
    16'
    20'
    2U« ~
    28'
    32'
    29. la
    79.5
    79.2
    77.0
    75.2
    7U.8
    
    
    
    
    )
    Sur. 79.7
    k1 77.9
    8» 77. h
    12' 76.6
    16' 76.2
    20'
    2Jj«
    28'
    32'
    Sur. 79.2
    U' 78.U
    8' 77.ii
    12' 75.5
    16' 79.2
    20 »
    2h'
    28'
    32'
    Sur. 81. ^
    U' 6d76"
    8' H572
    12' ~76™6~"
    16'
    20'
    2i*« ~"~
    28'
    32*
    rW-cA^ Tr-'rr-'.,-?;*' '. 78.5'F
    ZONE OF MIXING
    Sur. 31 .0
    it' 81 .0
    8' 81.0
    12 ' cl.O
    16'
    £0'
    (M. P.
    Sur.
    h'
    8'
    12'
    16' ~
    20'
    29.0
    80.6
    80.6
    80.2
    79.5
    79.2
    
    )
    Sar. 80.6
    It1 80. ft
    8' 79.7
    12' 78.8
    16' 77 J.i
    20! 77.0
    Sur. 80.6
    li» 80.6
    8» 60.2
    12» 78.8
    16' 78.0
    20'
    Sur. 80.6
    ti' 80.6
    8'
    12*
    16'
    20'
    21i' 21*' 21»« 21i« 2Zi»
    23'
    32'
    28' ~
    32'
    
    
    28 »
    32'
    28'
    32'
    28'
    32'
    ••^ ."=. TF'ip.":r-.T^?e. '. 7^.9 °P
    BCWN3TRSAM PT.
    Sur, 80.6
    O1 80.6
    3D'
    "jO '
    NO INCREASE (M. P.
    Sur. 80.6
    8' "
    20'
    30'
    do . 6
    60. 6
    
    28.7 )
    Sur, 8C.6
    8'
    20' 80.6
    30'
    Soy. 80,6
    3'
    20 » 8n..6
    30'
    Sur. 60.6
    8» 30.6
    20'
    30'
    

    -------
                               THERMAL POLLUTION  STUDIES
    
    
    
    
                             Monon?ah3l3  River, ?•!.  P.  25.2
    
    
    
    
                                   Zlrar.a  Povrer Planr,
    
    
    
    
                                     (July 16,  1968}
    
    
    
    
    
    
    A.  As3'me:  625 MW rated  capacity
    
    
    
    
                 Maximum efficiency »  35^
    
    
    
    
                 Heat loss -within  plant = 15$
    
    
    
    
                 Energy required for 1 Kwh = 3,613  BTU
    
    
    
    
                 Adequate mixing of effluent
    
    
    
    
    B.  Heat Load:  3,613 BTU    Q „..,- w/y v, u   -L   <
                    • *• • \^s	  = 9,750 BTU Awn heat rate
    
    
    
    
                    (0.85 x  9,750) - 3,613 - 6,877  3TU/Kwh Heat to Cooling Water
    
    
    
    
                    (6. 83 x  1C3  BTU/Kwh)(li.2p  x 1C *KW) = 2.03 x 10 9 BTU/Kr Heat Load
    
    
    
    
    G.  Stream Quantity:  Q  «  (cfs)(62.U  Ibs/ft3)(3600 sec/hr) = lbs/Hr
    
    
    
    
                          Q  -  (1.1 x 103)(6.2h x 10)(3-6 x 103) = 2.67 x 10  lbs/Hr
    
    
    
    
    ID   T^i ^01*0^" i c A "I S t T*6 ST*I
    
               "ore Rise-    A T  = Total Heat Load to Cooling Water, BTU/Hr
    
                                 r    (Stream quantity,  lbs/Hr)(1 BTU/lb °F)
    
    
    
                                             l£ -  8.U °F
        Temperature Rise:    A  Ty. = (Av?i-  Gross-Sect.  T,  F) - (Backfcround T, °F)
                                ^   2.67 x
    
    
    
    S.  Actual Field
    
                    Rise:    A r.
                                r
    
    
    
                                  - 96.h "F -  90.5  "F -  5.9 °F
    
    
    
      insvivarria Water Quality Standards for temperature  are
    
    
    
    
         Survner maximum 87 °F
    
    
    
    
         -o greater rise than 5 °F
    

    -------
    

    -------
                        THSE1AL POLLUTION STUDIES
    
    
    
    
    7-16-66   Location   "orwnt-ahjla "Ivcr 3 M.  ?.  2?.2
    ;lcw IT",") cf-s Plant Hania Sj
    Air Tr^oarature - Begin ?5.2 °?
    F.I7ER3XCS KATER TEMPERATURE iv
    Lsft Apx. Distances
    Bank
    200'
    ABOVE OUTFAU, (M. P. 25.8
    Sur. 90.5 Sur. 90.5
    8' 90. 5 8» 90.5
    20' 16 'IBM 90.5 11
    30' 30«
    
    BELOrf OUTFAU. (M. P. 25.0 )
    Sur. 96.8 Sur. 95.0
    U' 95.0 U' 95.9
    8' 95.9 8' 95.9
    12' 93.2 12 « 93.2
    16' 1U'3SX 91. L
    20' 20'
    2U1 2U«
    28' 28'
    32' 32'
    
    ZONE 0? MIXING (M. P. 2U.6
    Sur, 96.8 Sur. 96.8
    I' 97.7 U» 96.S
    8» 96. '6 8' 96.6
    12' 96.8 12'' 95.9
    16' 95.9 16' 95.9
    20' 20'
    2ij ' 2it '
    28' 28'
    32' 32'
    
    DOWNSTREAM PT. NO INCREASE (M. P.
    Sur . Sur »
    8< 8'
    20* 20'
    3J' 30'
    ?.;l~T. - ,C
    finish
    £|...
    Between
    Middle
    )
    Sur.
    8'
    'ISO!
    30'
    ,ai- .-,\
    Sur.
    It'
    8'
    12'
    16'
    20'
    2li«
    28'
    32'
    V,1 1-" .' ,' : r
    )
    Sur.
    U'
    8'
    12'
    16 »
    20 »
    2ij(
    28'
    32'
    ' "~ s\ t
    
    Sur.
    8'
    20s
    30'
    itn^sne i
    ?r;,8 ^F
    M p
    ri» * .
    Sampling
    90.5
    90.5
    90.5
    
    ,.: -T- (••' --;
    95.9
    95.0
    95.0
    91. U
    90 . 5
    
    
    
    
    "7"; !•'" £ >• .'•" i •;
    Above J
    95.9
    96.6
    96. d
    96. d
    95.9
    95.0
    
    
    
    • .'.-t -:-':i'^
    )
    
    
    
    
    i^hn c--
    Work
    2^.8
    Points
    Sur.
    8'
    20'
    30'
    Syr.
    8'
    12'
    lU'-ISt
    20'
    2U1
    28'
    32'
    -^ari"- /
    Dona By
    600'
    90.5
    90.5
    
    
    : ?o..5" c
    98.6
    97.7
    95.0
    91. h
    91.U
    
    
    
    
    4. L 7 ° c
    & L Steel
    Sur. 96.8
    8'
    12'
    16'
    20'
    2U«
    28'
    32'
    So?.
    20 '
    30'
    96.8
    96.8
    95.9
    
    
    
    
    
    -/. "' rr
    
    
    
    
    •f- ^' 'X X' '
    P,-y»T f*'*'"*^ 4- "*••> ,f?--^OCj
    Bank
    Sur. 90.5
    8'
    20'
    30'
    F
    Sur. 102.2
    U ' 102 . 2
    8'
    12'
    16'
    20'
    2k '
    28*
    32'
    
    Sur. 95.9
    it' 95. S~
    8» 95TB"
    12' 9 5^
    16'
    20'
    2U«
    28'
    32 1
    
    Sur.
    8'
    20*
    30'
    

    -------
    

    -------
    A~\
     1 -s*
                        MVI rated caoacity
                Maximum. efficiency = 35%
                Heat loss within plant = ~L%%
                Energy required for 1 KWH = 3,U13 3TU
                Adequate mixing of effluent
    
    B.  Heat load:  3,U-3 BTU  =  9j750 BTU/Kv-ffi heat rate
                      0.35
    
                    (0.85 x 9,7$0)-3,la3 = U,877 BTU/KWH Heat to Cooling Water
                              o                      o                   2
                    (U.88 x 1CT BTU/KVffl) (_jka£_ x 10  Kvif) =  J.Qg  x 10  BTU/Hr Heat Load
    
    C.  Stream Quantity:  Q = (cfs)(62.U lbs/ft3) (3600 sec/Hr) = Ibs/Hr
                                           3                     -i                B
                          Q = ( J.4^  x 10 )(6.2li x 10) (3 .6 x 10J) =  S.XS  x 10  Ibs/Hr
    
    D.  Theoretical Stream
    
        Temperature Rise:/\Tr = Total Heat Load to Cooling Water., BTU/Hr
                                Stream quantity, lbs/Hr)(l BTU/lb °F)
    
                                   i    -       "2
                         ATr =   J..-u*> .x 10         =  3 XT  OF
                                              _
                                  S, S b   x 10
    
    
     .  Actual Field
        TePiperature Rise:./\Tr = (Avg. Cross-Sect. T, °F)- (Background =T,  F)
    
    
                              =  87 8  °F ~   80. fa °F =   7. Z °F
                            r
    

    -------
                                POLLUTION STUDIES
    
    
    
    
    °-ll-68   Location    Monor- ( i ,
    Work Ibna Bj .r-.-.
    9< <
    Points
    500 '
    Sur.
    8« "
    20*
    30'
    : So ',°F~
    ssissippi
    Sur.
    U1
    8' "
    12«
    16 '
    20'
    2li»
    28'
    32'
    
    
    80,6
    80.6
    80.6
    
    
    Glass Co.
    87.L
    36.7
    83.9
    81.0
    
    
    
    
    
    ?5 '•",•;)
    
    Right
    Bank
    Sur. 80,6
    8' 80.6
    20'
    30'
    
    Sur. __2l.8_.
    8' 88'!x'"
    12'
    16'
    20'
    2U'
    28'
    32'
    .A •->-?.* /-.it ; 8k.?° F
    ZONE OF MIXING
    Sur.
    Uf
    8'
    12'
    16'
    20*
    2h!
    28'
    32'
    (M. P. 2U.7
    Sur.
    It'
    8'
    12'
    16'
    20'
    21t'
    28'
    32'
    ) Could not anchor in
    Sar.
    Uf
    8' ~
    12»
    16'
    20s
    214'
    28'
    32'
    
    
    
    
    
    
    
    
    
    Sur.
    U'
    8' "
    12'
    16' ~
    20'
    2lt'
    28'
    32'
    this area.
    
    
    
    
    
    
    
    
    Sur.
    U'
    8'
    12'
    16'
    20'
    21i'
    28 »
    32'
    
    DOWNSTREAM PT.
    C%» *, Q *"? Q
    *j3 _C-i. •» • ' ' * W
    d r "j 7 . 6
    20«
    ^ -1
    NO INCREASE (M. P.
    Sur. 87.6
    8' 87.8
    20' 87.8
    30 •
    2U.5
    Sur.
    8' ~
    20'
    30'
    )
    87.8
    87.fi
    87 . H
    
    Sur.
    8' "
    20'
    30'
    87.8
    87.8
    86.9
    
    Sur. 88 2
    8' 83,2
    20'
    30'
    

    -------
                                             River, ii, P.   / i '-!
              C ^ ,N f i u . *-i- £  ^r/-»,  Co*- ->  V,.- ,-.-;< Ei-CcT ? in-; 3 r Plan t
    A .  Ass ur.e :   -4-33 _MW rated c a p
                Maximum  efficiency = 3biS
                Heat loss  within plant =
                Energy required for 1 KWH = 3jitl3 3TU
                Adequate irdbcing of effluent
    
    B.  Heat load:  3 M3  BTU  =  9,750 BTU/KWH heat rate
                      (J • J2
    
                    (0.65  x  9,750)-3,Ul3 = I|j877 BTU/KV/H Heat to  Cooling Water
                               T                      g                   O
                    (li.88  x  ICT BTU/KWH)( 4.33   x 10  KV/)  =  J.  |J^ x  10  BTU/Er Heat Load
    
    C,  Stream Quantity:   Q  = (cfs)(62.U lbs/ft3) (3600 sec/Hr)  =  Ibs/H
                                                                       Hr
                                            3                      ^                 8
                             = ( J.43   x 10 )(6.2-U x 10) (3. 6 x  103)  =  ^f. -f^Tx 10  Ibs/Hr
    D.  Theoretical  Stream
    
        Temperature  Rise:/\Tr = Total Heat Load to Cooling Water.,  BTU/Kr
                          /\
                                 Stream quantity, Ibs/Hr )(1 "3TU/lb  °F)
                                             10
                                                a
                                             10
    E.  Actual Field
    
        Tenperature  Rise:j\T  = (Avg. Cross-Sect. T, °F) -(Background T,  °F)
                                                         °
                                                          F  =    8 .3
    

    -------
                                'IK3RMAL PDLLOTIC:?  S7UDI2S
    
            9-29-69   Location  Muskingum River © Conasville
            •~'-V-^      cfa   Plant Kane  Oonesj/ille^STation - Columbus & Southern Electric
    Air 'Tasparature - Begin-__68	^F   Fi ais'a ' "72^7' ^  Work J)o£g By Bailey _ & Moser
    .^Ixtivs HurcLdity   1|6     	%          Beginning  Time    IQl1^	
    loft
                         Apx.  Distances Between Sampling fbints
                                         Middle
               Eight
               Bank
    2 ginning Reference Water Temperature   (M,?.   118.0
    
    Siir. 62.6                     Sur,  62.6
     Sur.   62.6
    Mid. 62.6
    Bot . 62 . 6
    Bsptla
    
    AEOV3 OOTIALL
    Sur. 62.6
    1 SI 6"2.o'
    20 • .... ...
    30' 	
    Mid.
    Bot,
    2 .0 Depth
    
    (M.P. 117.9
    Sur. 62.6
    li' SX 6'2.6 1
    20'
    30' 	
    IYIDSJC3 0? THSR>ftL SHORT CIRCUIT?
    DESCRIPTION OF FINDINGS - MftXiNITl
    62.6
    62.6
    2.0
    A'>5-. ^3.1* r
    )
    Sur. 62.6
    i' SX 62.6
    20'
    30' 	
    No
    JDS AM) TYPE
    Depth
    
    Sur.
    20'
    30'
    
    Mid.
    Bot.
    2.0
    
    62.6
    62.6
    
    	
    
    62.6
    62.6
    
    
    Sur. 62.6
    20'
    30' 	
    
         UM OUTSAIL TEMPERATURE  8U.6° F
    
    SIZ3 0? !
    TD.g
                                                                           1030
                     T2MEERATURE ZOJ5S:    Triangular  shape  £0' wide and extending out 50'
                                         on  do^mstream  side.
    luLOW OUTFALL (H.P. 117.8
    -vr. 62.9 Sur. 63.3
    3' XX£ 62.9" 3'H1 62.9
    3' 8'
    ]J?' 12'
    15' 16'
    "'0 ' 20 '
    ',' 2k'
    V 28 '
    32'
    )
    Sur. 72.3
    3']® 66.2
    8'
    12'
    16'
    20'
    28'
    32'
    Sur. 80.6
    V 79.2
    7'B£ 71.6
    12'
    16'
    20'
    2V
    26*
    "12'
    Sur.
    12*
    16'
    20'
    2*4 '
    23' "
    32'
    82. h
    82 i
    824
    
    
    
    
    

    -------
                                          -!'3c;? 33, 19 {/?
     A.   Assume:   jfO D  MW rated capacity
    
                 Maximum efficiency = 35",«
                 Heat loss within plant  =
                 Energy required for 1 KWTf  = 3,1|13 BTU
                 Adequate mixing of effluent
     B.  Heat IxDad:  3,1-0-3 BTU  =  $^$0 BTU/KS-7H heat  rate
                       0.35
    
                     (0.85 x 9,750)-3,iil3  = Uj.877 BTU/KWH Heat  to  Cooling Water
                               o                       J'                   9
                     (U.88 x ICr BTUAWH)(  /",Q   x 10 KW)  =   ^.44  x 10  BTU/Hr Haat Load
    
     C.  Stream Quantity:  Q = (cfs)(62.U  Ibs/f t3) (3600 sec/Fir) =  Ibs/Hr
                                            QL                                       "^
                           Q = ( /. cl   x  10* )(6,2ii x  10) (3. 6 x 103)  =  4.26  x 10° Ibs/Hr
    
     D.  Theoretical Stream
    
         Temperature Rise:/\.Tr = Total Heat Load to Cooling  Water,  BTU/Hr
                                 Stream quantity, Ibs/Hr ) (1 "BTU/lb  °F)
                                    4. 1 4   x 10~
    t
    
     E.  Actual Field
    
         Temperature Rise:/\Tr =  (Avg. Cross-Sect. T^  °F) -(Background '^,   F)
    
    
    
                          AT  =   73.9 °F —    6P.g  °F  =    ^".f °F
    

    -------
                                THERMAL POLLUTIC7! 3TfJ012S
    
            9-23-69   Location  Muskinguzu River Q Philo
    11 -;w 19C(J cfs Plant Kane Philo
    .-Ur TsTt^rafcure - Begin-
    ".el"?, bi va ;ixsridity 66
    Lr*b Apx.
    Spinning Reference Water
    .-or. 694
    . -d. 69. U
    ?ot. 69. ii
    Dspth
    76 VP Finish 75
    CT Work
    Eoae By Bailey & Mos
    $ Scgi-noirig Tisa li4i5
    Distances Between Sampling
    Middle
    Temperature (M» Fa 68.8
    Sur. 694
    Mid. 694
    Bot, 694
    Deptb
    Points
    Depth
    Right
    Bank
    Sur. 694
    Mid. 62.L
    Bot. 694
    
    
    .VSOVE OUTFALL (M.P. 684
    Sor. 69.0 Sur. 69
    gf StQ S1 £9
    20 • 	 20' 	
    10s 	 30' _,
    ) Above Salt
    .0 Sur. 69.0
    .0 ii1 ax _69. Q
    	 20' 	
    __ 30'
    Greek
    Sur.
    ii1 ax ^
    20'
    30'
    68.7 Sur. 68.7
    .68.7 8'
    	 20' 	
    30'
             0? TEZRMA.L SHORT CIRCUIT?   No - Intake is above dam, outfalls below
      BSSCRIECIOff 0? FINDINGS - lACTlTUDE AHD TYFB
    M\XEMUM OCTFALL TSHPERATl^RE   82.8° Uper - 78.8° Lower       TBS
    SIZE 0? :aX3MUM TEMPERATURE ZONE:  Upper Outfall U' x 10' out x 2' Deep
    
    
                                       Lower Outfall 10' x iiO' out x Ij.' deep
    •iZIOtf OD37ALL (M.P. 68.2
    our. 75-2 Sur. 734
    U' ^4 V 73.0
    3' " 7'B* 734
    -r>< 12 '
    16 ! 	 16'
    '-0' 20'
    ' ' : 2V
    r 28-
    -• " -32 '
    ) 100' D.
    Sur. 76.6
    V 70.1
    8'
    12'
    16'
    20'
    2V
    28'
    32 '
    S. of upper Power Line
    Sur. 694 Su?*
    V 694
    8'
    12'
    16'
    20'
    2V
    23'
    "? 2 J
    8'
    12'
    16'
    20'
    23*
    694
    69, ii
    
    
    
    
    
    
    
    

    -------
    

    -------
                     Oj-HO  P^w'^e   jgEU^KjLdl   Power Plant
                                  -j               _
    
                                  •SgPTti'ulcg 33 , 19 6C/
    A,  Assume:   |? 74  Mfr/ rated capacity
    
                Maximum efficiency  = 3^>%
                Heat loss within plant  =
                Energy required for 1 KMH  = 3,1+13
                Adequate mixing of  effluent
    B.  Heat Load:  3M3^TU   =   9>7^0 BTU/EfH heat rate
                      (J. 3p
    
                    (0.85 x 9,750)-3,iil3  = U3877 BTU/KIVH Heat  to  Cooling Water
                               1                      5                  5
                    (U.88 x ICT BTU/KWH)( 8,74   x 10  K¥)  =  4,28  x 10  BTU/Hp  Heat Load
    
    C,  Stream Quantity:  Q =  (cfs)(62.1|  lbs/ft3) (3600 sec/Hr)  =  Ibs/Hr
                                           3                      o                 5
                          Q =  ( /.?    x  10  )(6.2i| x 10)(3.6 x  1CX)  =  4. ,34 x  10  Ibs/Hr
    
    D.  Theoretical Stream
    
        Temperature Rise:/\Tr  = Total Heat Load to Cooling  Water j  BTU/Hr
                                Stream quantity, Ibs/Hr )(!' BTU/lb  °F)
                                              _
                                   1-.M   x 10
    
    
    E,  Actual Field
        Temperature Rise:i\Tr  =  (Avg.  Cross-Sect. T,  °F) -(Background '1.   F)
    
    
                                  74.8  °F~   7c).Q   °F  =   6.8  °F
                            r
    

    -------
                                 THERMAL PCLLUTIO;! 3TUDT2S
    
           ~~23~69     Location   Muskingum. River at Beverley
         	  cfs    Plant  lv'an<3 Lower Plant	
    :\rr :i'crir?enitura - Begin-   67   ____ ^?   ?iuish _£1____J:)?  Worl< £o.aa By Moser^_ JBailey
              luBidity      88	%          Beginning Use   10:30	
    
                         Apx. Distances Between Sampling Points              Ragat
                                          Middle        '                      Bank
    
              Reference Water Temperature  (f-LP,	2JL2	) See  zone  of mixing
    
                                   Sur.  J0.1                       S-ar,  70.1
    .•lid.                           Mid,   69.8                       Mid.   69.8
    •3ot."7Q.l                      Bot.   69.8                       Sot.   69.8~~
        Depth      U'            Deptb    12'               Depth     8'
                                              \  •  - .  . , ,   ~i -
    
    ABO"/S OUrmLL  (M.P,    28.15	) Half way between  Creek and Outfall
    xjs1
    20'
    30'
    71.6
    fi.6
    — — — —
    Sur. 72.3
    6'XS' Vi.6
    20'
    301 	 	
    ~ii- "
    Sur.
    8'
    lUBDX
    30'
    /X v f,. . T ? M P *7
    73
    72
    71
    -. ~? •
    .0
    .6
    .2
    FTr.
    Sur.
    8'
    30'
    73. U
    73. 0
    71.2
    "TTTT
    S^r» 7lt.li
    8' 73.7
    20'
    30'
    ___„_
      .rI2aiCE 0? THSRML SHORT CIRCUIT?  Yes
      D1SCSIFTIOS OF FENDUJGS - MS.O3ITUDE AHD TYP3  About 1.0° F rise in  intake
      Themal Loop  - from outfall on Left Bank, across to Right Bank,, upstream to aboV>e
      intake, lj?0'  or  so,  back across to intake
    :-".\XBiUM OUTFALL TEMPERATURE	80.6° F	  TIMS     10^p
          0? >-5\XIHUM TSMPSRATUR2 ZOJIE:   30' wide by 30' long on left bank and 10'  or
                                         so deep
    4 Zi^nS 3ji i'iixing
    -f/L&f'-&M^MM- (M.P.
    P-.xr. 75-9 Sur.
    1;' 75.^~ 4.1
    .?' •'"•-'5;^ 8' "
    L->! ^5.5 12'
    IS' 16'
    "- ; ' 20 '
    2V
    -•-r 28'
    00 *
    
    28.0
    76.6
    76.2
    76.2
    76.2
    75.9
    
    
    
    
    
    )
    Stir.
    V "
    8' ~
    12'
    16' ~
    20'
    2^4- '
    28'
    32'
    
    
    76.6
    76.6
    76.6
    76.2
    75.9
    7U.8
    
    
    
    
    
    Sur. 77.0
    V 76.6
    8'
    12'
    16'
    20'
    2V
    23''
    ""5 O *
    
    
    Sur. 7^.6 .
    If1
    8'
    12'
    16'
    SO1
    2V
    23'
    'i 3 "'
    

    -------
    

    -------
                             OHIO
        Assumes    / pQ   KW rated capacity
                Maximum efficiency -
                Heat loss within plant  =  15%
                Energy required for 1 KWH = 3>Ul3 BTU
                Adequate mixing of effluent
    
    B.  Heat Load:  3,Ul3 BTU  =  9)J^0 BTU/KWH heat rate
                    (0.85 x 9,750)-3,iil3  = k,B77 BTU/KVH Heat to Cooling Water
                                                    S"                  &
                    (U.88 x 1CT  BTU/KWH)( /. %    x 1C  KW) =   g. 7? x 1G  BTU/Hr Heat Load
    
    C.  Stream Quantity:   Q = (cfs)(62.U Ibs/ft3) (3600 sec/Hr) = Ibs/Hr
                                          3                     -t                y
                          Q = (_LM_X 10  )(6.2li x 10) (3.6 x 1CJ) =  2.0   x 10  Ibs/Hr
    
    D.  Theoretical Stream
    
        Temperature Rise:/\Tr =  Total  Heat Load to Cooling Water, BTU/Hr
                                Stream quantity, lbs/Hr)(l BTU/lb °F)
    
    
                         AT  =    ? • 7S  x 10                  0
                         A !„    	          _   =  0, O   F
                                  1 , 0    x  10~~
    E.  Actual Field
    
        Tenpsrature Rise:AT  = (Avg.  Cross-Sect. T, °F) -(Background -T, °F)
                            r
                                                                    °F
    

    -------
    

    -------
                         TH2PMAL POLLU2IO:J STUDIES
    
    
    
    7-17-66    Location   Ohio  River, >-l.  P.  2.1
    JJ.G-.-J :-ec:0
    cfa Plant Nans te
    Air '?3:?oarntur3 - Begin 82. h °?
    _v_?c~. TlvBir
    Left
    ABOVE OUTFALL
    SJIT. 36.0
    ' ^2X 85 .0
    20'
    30'
    R TEfPERiTOE 85-9°
    Apx* Distancas
    200'
    (M. ?. 1.9 - Tip of
    isiind
    Sur. 86.0
    8» 85.2
    lU'Wt 8u.2
    30'
    ed - DM-
    Finish
    Between
    Middle
    Sur.
    8' ~
    20'
    30'
    2 us 3 /is Lifb-". -;Jo~n .?."".>"
    52.\ WF Work £ona 3y
    M. ?. 1.9
    Sampling Points
    600'
    86.0 Sur. 86.0
    811 .2 8* 8U ,. 2
    8.3. U 16'2DK o3.U
    30'
    
    • Griffitn, Jon?3,
    Moser
    Right,
    Bank
    Sur. 86.0
    8' 83. h
    16 'EOX fc'3 • u
    30'
    V'1 .-'••'. "•-'.- A"1' '.>'•" c -i", ."•• F-
    BSLCtf OUTFALL
    Sur. 86 . 9
    h' 86.9
    8' 86.9
    12' 86.9
    16'
    20'
    2U'
    28»
    32'
    (M. P. 2.2 - At )
    Power Lines
    Sur. 86.9
    ii« 86.9
    8' 86.9
    12' 86.9
    16» 86.0
    20'
    21i'
    28'
    32'
    Sur.
    li'
    8' ~
    12'
    16' "
    20'
    2lt'
    28»
    32'
    87.8 .Sur. 86.0
    86.9 k* 86.0
    86.9 8' 86,0
    86.0 12' 86.0
    86.0 16' 85,2
    20'
    2li'
    28»
    32'
    Sur. 86.0
    li' ~8T.O"~'
    8' ?6.0
    12' 86.0
    16'
    20'
    2U'
    28'
    32-
    , - ' * *" ' * - L ' ' i "~^ ( > /
    ZONE 0? MIUNG
    Sur, 8?. 5
    U« 86,5
    8' 86.5
    12'
    16'
    20 '
    Sii1
    28'
    32'
    (M. P. 2.U
    Sur.
    !»'
    8«
    12'
    16'
    20'
    2b'
    28'
    32'
    J
    Max.
    Sar.
    k*
    8'
    12'
    16' ~
    20 »
    2U'
    28?
    32'
    Variance of .h - L to R
    Sur.
    k1
    8'
    12'
    16'
    20'
    2U1
    23'
    32'
    Sur. 86, o
    li» 86.9
    8' 8-6.9 ~
    12'
    16'
    20'
    2ft1
    28'
    32'
    .\ •-..-.• • • . . : 2 -o , / ^ p
    DOWNSTREAM PT.
    -VT. 5^.0
    C5' ^6.0
    20'
    50 ?
    NO INCREASE (M. P.
    Sur.
    8'
    20 ?
    30 '
    2,7
    Sur.
    8'
    20'
    30 '
    )
    	 Max. Variance of
    S« ""
    20'
    30'
    .h - L to R
    Sur, 86.ii
    8' ~36.h'
    20'
    30'
    

    -------
    

    -------
                                            River, l[. P.  jo. 1.
    
                                            P.-^i?o>rer Plant
                                      u^ /g  , l?_k£
                        MW rated capacity
                Maximum efficiency =
                Heat loss within plant = 1%%
                Energy required for 1 KWH = 3,1*13 BTU
                Adequate mixing of effluent
    
    
    B.  Heat load:  3,U3 BTU  =  Q^Q BTU/KWH heat rate
                      0. jp
    
    
                    (0.85 x 9,750)-3,U13 = M?7 BTUAWH Heat to Cooling Water
                              o                      ^>"                  9
                    (li.88 x 1CT BTUAWH )( 3. /A   x 10  KW) =  /.3g  x 10  BTU/Hr Heat Load
    
    
    C.  Strean Quantity:  Q = (cfs)(62.U lbs/ft3) (3600 sec/Hr) = Ibs/Hr
    
                                           3                                      5*
                          Q = ( OS   x 10 )(6.2U x 10) (3 .6 x 103) =  3.O   x 10  Ibs/Hr
    
    D.  Theoretical Stream
    
    
        Temperature Rise:^Tr = Total Heat Load to Cooling Water., BTU/Hr
    Stream quantity, Ibs/Hr) (1 BTU/lb OF)
    
                  3.
                                    0
                           =  p. 7  °F
                                   /. 3 A   x 10                  0
                                                                °
                                            10"""
     .  Actual Field
    
        Tenperature Rise:/\Tr = (Avg. Cross-Sect. T, °F )- (Background T, °F)
    
    
                           T  =   g4.4  °F—   8^-.J °F -   /.|   °F
    

    -------
    

    -------
              THERMAL POLLUTION STUDIES
    Location
    HD f V;;;Vi cfs Plant L'ama OM--I ;_,, . n,,.,,^.,^ v^t,
    ~4 ' "^"*
    T'.;-r^>aratura - Eagin
    01 ,|, ?
    Firdsh
    ;125ERI:S3S WATER TEHPERATOH2 86.0° F
    La ft
    Bank
    AE07
    T' "
    30'
    Apx
    300'
    E OUTFALL
    86.0
    86.0
    85.2
    
    
    BELOW OUTFALL
    Sur. 86.0
    U»
    8'
    12'
    16 «
    20'
    2U«
    28'
    32'
    ZONE
    Sar.
    8'
    12'
    16*
    20'
    28'
    32'
    86.0
    85.2
    85.2
    85.2
    
    
    
    
    
    0? MIXBSG
    37,8
    86.9
    86.0
    85,0
    
    
    
    
    
    
    DOWNSTREAM PT.
    8'
    20'
    66 , 9
    
    
    (M. P. '
    Sur.
    8« ~
    12' ~g§t
    30*
    
    (M. P.
    Sur.
    34' ~
    8' ~
    12'
    16' ~
    20'
    2it« ""
    28«
    32'
    
    (M. P.
    Sur,
    U' ~
    8' ~
    12 «
    16' "
    19'2SX
    2U'
    28 »
    32'
    
    . Distances
    150- T>,^
    86.0
    85.2
    85,2 18
    
    A 'j '^ f
    15.5 )
    86.0
    86.0
    85.2
    
    
    
    
    
    
    /Wt!
    16.0
    87.8
    87.8
    86.9 •
    86.0
    86.0
    85.2
    
    
    
    A v f
    NO INCREASE (M. P.
    Sur. 86.9
    8« "
    20'
    30'
    86.0
    
    
    Between
    Middle
    }
    Sur.
    8' ~
    ' -S5I
    30'
    ''..\,-fr "i
    Sur.
    U' ""
    8' ~
    12'
    16s
    20'
    2it'
    28' ~
    32'
    '.-.••:E T!
    J
    Sar.
    ii!
    8'
    12'
    16'
    20 «
    2U«
    28'
    32'
    p.A '• :. "f i
    16.7
    Sur.
    8'
    20 1
    30'
    31 J, "F
    M. P,
    Sampling
    86,0
    85,2
    85.2
    
    S .-'•->; r<-AT.
    86.0
    85.2
    85.2
    85.2
    85.2
    
    
    
    
    -. MPc'&MTy:"
    87.8
    86.9
    86.0
    36,0
    86.0
    36.0
    
    
    
    ;•:,.:.' •'•'•' " J."
    )
    86.9
    86.0
    
    
    Work
    Points
    Sur.
    8«
    13!oser
    Bank
    Sur' JS6JJCL_
    30' ~**~~
    
    Sur. _8_9.6
    S' "85/2
    12' 85.2
    16'
    20'
    2U'
    28»
    32'
    
    Sur. 89.6
    li1 87.8
    8' 86.0'"
    12' 86.0
    16'
    20'
    21*'
    28'
    32'
    
    Sur, 86.0
    8« 86,0
    20'
    30'
    

    -------
    

    -------
                              6 H i o
    A,  Assign-?:    •; i j 5  1-M rated  capacity
    
                Maximum efficiency  = 35>/°
                Heat loss id. thin  plant  =
                Energy required for 1 KMH  =  3,Ul3  B'TU
                Adequate mixing of  effluent
    
    B.  Heat IxDad:  3,ijl3 BTU  =  9^0 BTU/MH heat rate
                      0.35
    
                    (0.85 x 9,75o)-3,lil3 •= k,Q77 B7U/KWH Heat  to Cooling Water
                               3                      4"                   9
                    (ii.88 x ICr BTU/KWH)(  3. /5" x 10  Kir/)  =   /.35  x  10  BTU/Hr Haat Load
    
    C.  Stream Quantity:  Q =  (cfs)(62.ii Ibs/f t3)(3600 sec/Hr)  = Ibs/Hr
                                           4"                                      S
                          Q =  ( >. I      x 10  )(6.2/, x 10) (3. 6 x  10*)  =   J?.47  x 10  Ibs/Hr
    
    D.  Theoretical Stream
    
        Temperature Rise:/^Tr  = Total Heat Load to Cooling  Water,  BTU/Hr
                                Stream  quantity, Ibs/Hr )(l  BTU/lb OF)
                                   J.47
    
    S.  Actual Field
        Tenperature Rise:/\T   =  (Avg.  Cross-Sect.  T,  °F)-(Background -T,  °F)
                                         °F —    gq.t  °F -   /. 1   °F
    

    -------
    

    -------
    Date
                        Tt'WMAL POLLUTION STUDIES
    
    
    
    
    7-18-69   Location  Ohio Rivsr 3 South Heights,  H.  ?.  lg.2
    Flow
    11,000
    cfs P]
    Air Temperature - Begir
    Relati~3 Humidity - 6)4;
    REFEHSNCE WATER TE3-5PERJJ
    Left Ap3
    Bank
    ABOVE
    Sur.
    8'
    20'
    30'
    BELOW
    Sur.
    U'
    8'
    12'
    16'
    20'
    2U'
    28'
    32'
    OUTFALL {M. P.
    82.3
    b2.a
    
    
    -
    OUTFALL
    83.5
    82.8
    82.3
    82.8
    
    
    
    
    
    
    ZONE OF MIXING
    Sur. 85.7
    U'
    8'
    12'
    1 16'
    20'
    2U«
    ' 28'
    32'
    DOWNS
    Sur,
    8'
    20'
    30'
    85.7
    3s?, 0
    
    
    
    
    
    ; *
    
    TREAM PT.
    86.0
    •31.2
    32.3
    
    Sur.
    8' "
    U2T
    30'
    
    (M. P.
    Sur.
    U' "
    8« "
    12'
    16'
    20 '
    2k*
    28'
    32 «
    
    (M. P.
    Sur.
    U'
    8' "
    12 «
    16' '
    20'
    2U'
    28'
    32'
    
    .ant Name
    i 85 °J
    Philliios
    11 Finish
    iTURE 32.?4°
    - I\n;is3ne Light Ccapaiiy
    WF Work Don a By Richarcia - Mos^r
    M. P. Hi. 2
    :. Distances Between Sampling Points
    Middle
    15.2
    82.8
    82. h
    82. U
    
    
    15. U
    82.8
    82.8
    82.h
    
    
    
    
    
    
    ::-
    15.8 or
    85.U
    81i.6
    8!i.2
    83, 9
    82.8
    
    
    
    • - •> . ;
    
    NO INCREASE (M.
    Sur. 89.6
    8'
    20'
    30'
    83.9
    82.3
    
    ) 3etr*
    Sur.
    8'
    20'
    30'
    aen Outfall
    82.8
    ti2.li
    82.1*
    
    -•'-< ^>. : --5J
    and Intc
    Sur.
    8'
    20'
    30'
    ika
    82.8
    82.!;
    82 .U
    
    
    Right
    Bank
    Sur.
    8'
    11*209
    30'
    
    82.8
    82.ii
    82. U
    
    
    ) At Power Line
    Sur.
    U'
    8'
    12'
    16'
    20 »
    28'
    32'
    A.;;- -
    9 )
    Sur.
    U'
    8'
    12'
    16'
    182SK
    2U'
    28'
    32'
    /. j •
    P. 16,6
    Sur.
    8'
    162CK
    30'
    83.5
    82.8
    82.8
    82. U
    
    
    
    
    -
    -.- - • .- •• -; t
    83.9
    83.5
    83.5
    82.8
    82.8
    82.ii
    
    
    • rf> • • '
    - - f-< ? . - *-, *"
    )
    85.14
    83.2
    82.3
    
    Sur.
    U'
    8'
    12'
    16'
    20'
    28'
    32'
    Sur.
    8'
    12'
    16 1
    20'
    2U«
    28'
    32'
    Sur.
    8'
    162SX
    30'
    86.0
    8U.2
    62. 8
    82.8
    
    
    
    
    
    
    86.0
    8^.2
    83.9
    82, a
    32. a
    82.8
    
    
    : . '-
    
    8U.2
    82. a
    32.8
    
    Sur.
    U'
    8'
    12'
    16'
    20'
    28'
    32'
    Sur.
    U'
    8'
    12'
    16'
    20'
    2U'
    28'
    32'
    Sur.
    8'
    20'
    85.0
    83.5
    
    
    
    
    
    
    
    t-; •-
    8$.li
    83.9
    as. a
    <52.8
    82.8
    
    
    
    
    
    8U.2
    8U.2
    82. U
    82.ii
                    stacks
    

    -------
    

    -------
                                Ohio P.lvf?^, M.  ?,  ^j.°
    
                                   3a?-dG ?o;,er  Plant
    
                                 Low Flow Therral  load
    
    A.  As5ana:  present raced  capacity  - 1,6)40 hW
    
                 Future capacity (1971)  - 2,2hO MW
    
                 Maximum efficiency a U0$
    
                 Heat loss within  plant  - \$%
    
                 Energy required for 1 Xwh  - 3,U13 BTU
    
                 Adequate mixing of effluent
    
    E.  Heat Load:   3,hl3 BTU  .  8 $QQ  BTU/Kwh hsat  rate
                       O.kO
    
                     (0.85 x  8,500) - 3,1113 - 3,837 BTU/Kwh Heat to  Cooliru? water
    
                     Present:   (3-Sh x 103  BTU/Kwh)(1.6U  x 10° KW)  = 6.3 x 1Q9 BTU/Hr
                                                                      Heat Load
                                         3                    69
                     Future:  (3.8b x 10 3TU/Xwh)(2.2L x 10  KW)  - 8.6 x 10  BTU/Hr
                                                                     Heat Load
    
    C.  Strean Quantity:  Q = (cfs)(62.U Ibs/ft3)(3o00 sec/hr) - Ibs/Hr
    
                          Tx>w Flow:  (5.0 x 103)(6.2h x 10)(3.6 x 103)  - 1.12 x 10  Iba/Hr
    
    D.  Theoretical Stream         _ Total Heat  Load to Cooling War.er,  BTlVHr
                                r   (Stream quantity, lbs/Ilr)(l BTU/lb WF)
    
                                Present:  A  T  =« v'^:- 1C?^o = 5-6 °F
                                         "  r    J..12 x 10^
    
                                Future:   j\  Tr = 8.6  x 10^  , 7 7 °p-
                                                 1.12 x 1C9
    

    -------
    

    -------
                            OHIO
                                               ,  19 £8.
                Maximum efficiency = 35%
                Heat loss within plant =
                Energy required for 1 KVffl = 3,U3 BTU
                Adequate mixing of effluent
    
    B.  Heat Load:  3,1*13 BTU  =  0 ?5o BTU/KWH heat rate
                      0.35
    
                    (0.85 x 9,750)-3,U13 = U,877 BTU/KWH Heat to Cooling Water
    
                    (ii.88 x 103 BTU/KWH)( / 9&Q  x 10  KW) =  9.55" x 10^ BTU/Hr Heat Load
    
    C.  Stream Quantity:  Q = (cfs)(62.ii Ib s /ft3) (3600 sec/Hr) = Ibs/Hr
                                           **                                      O
                          Q = ( /.3L    x lCf)(6.2li x 10) (3.6 x 103)  =  £.7 .  x 10  Ibs/Hr
    
    D.  Theoretical Stream
    
        TeTiperature Rise:/\Tr = Total Heat Load to Cooling Water, BTU/Hr
                                Stream quantity, Ibs/Hr)(1 BTU/lb °F)
     !.  Actual Field
    
        Tanperature Rise:/\Tr = (Avg. Cross-Sect. H, °F)-(BackgroundiT,  °F)
    
    
                         AT. =   77.2  °F ~   73. -j  °F =   3;f  °F
    

    -------
    

    -------
                               THERMAL POLLUTION STUDIES
    
    
    
    
    £ai3   '"-13-68   Location    Ohio Riv- -  :";2-  Point ^j,°
    '.'^ox ~,?,rH)
    Air 7i,.n>eratur
    cfs Plant Mama 3
    a - Begin 69 u?
    31—1- -• .
    Finish
    LIF£?.E:-:C£ "/LITER TSHPEPATUIS 73.0'-1 ?
    Left
    ISank
    ABO 72 OUTFALL
    i-jr. 71.3
    o ' 7u . 3
    20 !
    30'
    
    32LCW OUTFALL
    Sur. 37.8
    ii1 C-2.U
    8' 77.0
    12' To. 6
    .16 ! 76.6
    20' 76.1
    2ii' 75.1
    28' 76.1
    32'
    
    ZONE OF MIXBIG
    Sur.
    Apx. Distances
    600'
    (M. P. 53.?
    Sur. 73-7
    8« 73.7
    20'
    30*
    Au
    (M. P. 5h.3 )
    (U251 above dam)
    Sur. 81.0
    U' bo.6
    8» 78. b
    12 • 77,9
    16' Jc.t-.
    20 » 76.1.
    2U*
    28'
    32'
    ,Au-:^A-,f
    (H. P. At Dan
    Sur.
    Betwaan
    Middla
    )
    Sur.
    8'
    20'
    30'
    £ A ? ." '- '„ 1
    OV: i ciiroi (i -r^Q J"'^
    A3 "'F Work Ibne By ,T
    H. P. -Si,*
    Sampling Points
    1200 '
    73.7 Sur. 73.7
    73.7 8' 73.7
    20'
    30'
    •!l',Pu-7.'.-r'-T'r '. 73.4 ° f
    Outfall submerged on northeast
    lockwall.
    Sur. 80.6 Sur. 80.6
    U»
    8'
    12s
    16'
    20'
    2li'
    28'
    32'
    Tcrlpi.-'.V
    )
    Sar.
    77.0 U1 79.7
    76.6 8' .77.0
    76.6 12' 76.6
    76.1 16 • 76.6
    20' 76.1
    2li' 76 i
    28' 74 "cj
    32' 75. s
    -•.re '. 77,^'f 1,6' 7$.^
    Sur.
    
    >/,-,« «r "- ".-;. V^s
    _ '^ J East
    Bank
    Sur. _J73_/L«
    6' 7J..7
    20'
    30'
    
    side of
    Sur. 79.7
    U' 80.2
    8' 79.7
    12' 77.0
    16' ?6,6
    20' 76 6
    2U ' 76 . i_
    32' ~ ~^~"'
    
    Sur.
    Ii' ii' k* li1 V
    Q ! "
    u '
    12 '
    16'
    20'
    2h!
    23'
    3?'
    8'
    12 «
    16'
    20'
    2U'
    28'
    32*
    8'
    12'
    16'
    20'
    2lis
    28'
    32 »
    8'
    12'
    16'
    20'
    2U«
    28'
    32'
    8'
    12'
    16'
    20'
    2h'
    28 1
    32'
    
    DCWNSTREAM PT.
    3-
    20'
    30'
    NO INCREASE (M. P.
    Sur. 77-0
    8'
    20»
    30'
    
    Sur.
    8'
    20*
    30'
    ) End of south lockwa
    77.0 Say. 77.0
    3'
    20'
    30*
    11
    Sur. 77,0
    8'
    20'
    30'
    

    -------
    

    -------
                      OHIO  iro^rK
                 Maximum efficiency =  33$
                 Heat  loss  within  plant  =  15$>
                 Energy required for 1 KWH = 3,113  BTU
                 Adequate mixing of effluent
    
     B.   Heat  I/Dad:  3,U3  BTU  =   9j?^0 BTU/Kiffl  heat rate
                     (0.85  x  9,?50)-3,U13  = U,877 BTU/&/H Heat  to  Cooling Water
                               -\                      &                  3
                     (lj.88  x  ICr  B7U/K',vrH)(  /,94 x  10  KW)  =  9, SS x 10  BTU/Hr Heat Load
    
     C.   Stream  Quantity:   Q  =  (cfs)(62.ii  lbs/f t3) (3oOO sec/?ir)  --  Ibs/Hr
                                            •4                     o/5
                           Q  =  ( 4 ^jf  x  10 )(6.2lx  x 10) (3. 6 K  1CK)  =   / Q   x 10  Ibs/Hr
    
     D.   Theoretical  Stream
    
         Temperature  Rise:/\Tr  =  Total  Heat Load to  Cooling  Water, BTU/Hr
                                 Stream quantity, Ibs/Hr )(1  "BTU/lb °F)
                                   / Q     x  10
    
    
     E.   Actual  Field
    •»
         Temperature Rise:/\T^, = (Avg.  Cross-Sect.  T,  °F )- (Background -I, °F)
    

    -------
    

    -------
                         TUSBHAL POLLUTION STUDIES
    
    
    
    12-20-68   Location  Ohio Ri^ar - Mil* Point  $3.9
    50 ' out
    Tamo.
    33.3° F-
    50' outr
    •frr val
    Flow hiioOO cfs Plant Kan
    .* i r Tfir^/sratura - Begdn 32
    JG721ZXC3 VIAT2R TStPERATUHS
    Left {j^-f^eaj, Ap^« Bista
    Bank :"°"'~
    6oo'
    AE07S OUTFALL (M. ?. 53.5
    Sur. 33.8 Sur. 33.8
    8' 33.8 8' 31.3
    20' 20' 3U.6
    30' 29' 20K 3U.5
    --•*• 3^,3
    BELOW OUTFALL (M. P. 51.3
    Outside wall of dam
    Sur. L6.2 Sur. hi. 9
    U1 Ii2.8 h1 Ul.l
    -8' U2.8 8' Uo.6
    12' 36,? 12' 38.3
    16* 35-6 16' J8. 8
    L2Q' 36.1 20' 37.it.
    2V 21»2SX 38.3
    28' 28'
    32' 32'
    4 ?•-; ^.'f
    3 SiTi^iis - Ohio Siv-3
    °? Fircish 32 w?
    33.8 H. ?.
    ness Between Sarx>ling
    Middle
    900'
    }
    Sur. 33.8
    8» 3ii.$
    20« 3!i.6
    28 '^SX 3U.6
    /--.", M •* '' r
    r (1,660 Hw)
    v/or;c Dona
    53-?
    Points
    1200*
    Sur. 33.
    8' u".
    20' 31^.
    30' 3h.
    •vi
    
    3j P.3:?ar Griffith
    and Bob Eoriaghy
    Right^ ^^
    8 Sur. 33,8
    1 8' lj'i.1
    6 20' %.6
    6 30'
    "- ?.:.;
    ) Ii25' above dam
    Sur. 33.8
    h1 3h.l
    8« 3ti.3
    12' 3h ."$
    bottcml6* 3^.6
    20'
    2l4«
    28«
    32'
    ""> -,?j
    Sur. 33.
    It1 1I|,
    8' ty.
    12* 3l».
    16» .Jl^
    20' 3h.
    2U' 3!4f
    28' -^)4.
    32' 31; ,
    -- bet torn
    8. Sur. . 33,8
    6 k* 33.9
    
    6 12' 3J..?
    6 16* % .6
    6 20'
    fi 2U«
    6 28'
    6 32'
    T?.C. ^.-i. 1
    Left bank upstream below outfall A^ 31.^"-
    ZONE 0? HIXIKG (M. P. )
    
    Inside wall of dam
    Sur. 33.8 Sur,
    U' 3b.l h'
    8' 3L.3 8'
    Sur.
    U'
    8'
    9'22X 3U.1 12' 12»
    *
    16' 16'
    201 20»
    2h ' 2ii '
    28' 28'
    32' 32'
    
    DOWNSTREAM PT. NO INCPJEASB (H
    S-ir, Sur.
    6' 8»
    20* 20'
    30' 30 »
    ''ontirnous monitor irto
    rvi breast $00' 600'
    16 »
    20 •
    2ii'
    28 »
    32 •
    
    .P. )
    Sur.
    8'
    20'
    30'
    disc, slonf? pier wall
    , '" qO ^",0 ^ O
    U «i . ''j ti 2 . O ,i 5-5
    Sur.
    U'
    8'
    12 »
    16'
    20*
    2Ij!
    28 «
    32'
    
    Soy.
    3'
    20 !
    30'
    (100s oat)
    900 *0 950s
    Sur.
    I*1
    8'
    12'
    16'
    20'
    21i'
    28»
    32'
    
    Sur,
    8*
    20'
    30'
    o
    !' o1 '-"'.. si'!-? ed"3 :f
                                                                     rc- waU)
    

    -------
                                  J ^x-j-J  .2.	?  "' '  k.l'
                Maximum, efficiency  = 3?A
                Heat loss within  plant  =
                Energy required for 1 KWH =  3,U13  BTU
                Adequate mi>;ing of  effluent
    
        Heat Lcad:  3,1*13 BTU  =  9 ?^0 BTU/KivH heat rat-
                      0.3^                             "   '
    
                    (0.85 x  9,750)-3,lil3  = h,877 BTU/Klffl Heat  to  Cooling  Water
                               1                      69
                    (U.88 x  1CT BTU/KV-JH)( / . 96  x 10  Ktf)  = _ ^, S^~  x  10  BTU/Hr Heat Load
                          Q =  (  /. /   x 10*)(6.2U x 10) (3.0  x  103)  =  3.^7  x
    
    0.  Theoretical Stream
    
        Temperature Rise:/\Tr  =  Total Heat Load to Cooling Water,  BTU/Hr
                                 Stream quantity, lbs/Hr)(l BTU/'lb  °F)
                                          x
                                   ,2.47  x i(
    
    E.  Actual Field
    Temperature Riser/^T^ = (Avg. Cross-Sect. T, °F) -(Backgro
                                                                  n    ,
                                                        °F  =          °F
    

    -------
    

    -------
    Data   7-2-69
    Location Ohio River 3 Jlsw C'ln'irarland Lock and
    Flow
    Air T<
    R ol?. *
    REFER
    Left
    Bank
    ABOVE
    Sur.
    8'
    20'
    11,000
    cfs Plant
    eiroeratu/.'H - Begin
    llama >>
    93 °y
    ire-vis - Or>io Ediion (1. 660 F.1/)
    Finish
    ii73 Humidity - 55$
    ENCE WATS- TEMPERATURE
    Apx. Distances
    600'
    OUTFALL
    85.2
    83.9
    82. h
    82.a
    
    BELOW OUTFALL
    Sur. 96. a
    8'
    12'
    16'
    20'
    28''
    32'
    ZONE
    Sur.
    8'
    12'
    16'
    20'
    23'
    32'
    90. a
    a?, a
    3U.2
    83.2
    82.8
    82.8
    
    
    ' '. 7
    OF MIXING
    85. a
    •35. a
    .55. a
    
    
    
    
    
    
    ? '.' . -
    DOWNSTREAM PT.
    Sur.
    8'
    20'
    
    
    
    (M. P. 53,3
    Sur.
    8' ~
    20'
    253SX*
    
    (M. P.
    Sur.
    a>
    8'
    12'
    16' .
    20'
    2U»
    28' "
    32'
    
    (M. P.
    Sur.
    U'
    8«
    12'
    16'
    20'
    2a*
    28 •
    32'
    
    86
    ea
    82
    82
    «i
    SU.:
    91
    0-9
    86
    83
    82
    82
    82
    82
    
    
    
    85
    85!
    85
    b5
    85
    b*5
    
    
    
    - ..
    NO INCREASE
    Sur.
    8'
    20'
    30'
    
    
    
    .0
    ,6
    .a
    .a
    . *
    2
    .0
    .6
    .0
    .9
    .8
    .8
    .8
    .a
    
    * t ,
    5a.7
    .0
    .0
    .0
    .0
    .0
    .0
    
    
    
    
    (M. P.
    
    
    
    Between
    Middle
    ) By in
    Sur.
    8'
    20'
    30 »
    
    ) About
    Sur.
    a-
    8'
    12'
    16'
    20'
    2a*
    28'
    32'
    
    
    M. ?,
    UF Work Dona By l-icr-rav - }fo35r
    52,5
    Sampling Points
    take -and across
    86. a Sur.
    8U.2
    82. a
    82. a
    c J -
    three
    88.2
    88.2
    86.7
    ea.2
    82.8
    82. a
    82. a
    
    
    $ A, «J
    ) Below Lock
    Sur.
    a>
    8«
    12'
    16'
    20'
    21,'
    28'
    32'
    
    AV>S"
    Sur.
    8'
    20 «
    30'
    85.0
    85.0
    «5.o
    65.0
    55.0
    
    
    
    
    ',-; :.
    *t * j's
    
    
    
    
    8'
    20'
    30'
    light poles
    Sur.
    a«
    8'
    12'
    16'
    20'
    2U'
    28'
    32'
    and Dasi
    Sur.
    8'
    12'
    16'
    20'
    28'
    32'
    Si", l
    Sur.
    8'
    20'
    30'
    
    
    12CO '
    87.
    8U.
    83.
    82.
    82.
    from
    88.
    86.
    .tiB.
    88.
    a.
    82.
    82.
    82.
    82.
    <' f
    81; .
    8ii.
    
    -------
    

    -------
                               TH5^AL_POLJ.UTION STUDIES
    
                                Ohio HIvsr, "I. p. 76.5
    
                                 Cardinal Power Plant.
    
                                   (October 3, -1968)
    
    
    A.  Assume:  123Q MW (Cardir.al) * 222 MW (Tidd) - lb$2 MW Output
    
                 Maximum efficiency » Ko3
    
                 Haat loss within plant =» 15;%
    
                 Energy required for 1 Kwh = 3,hlJ BTU
    
                 Adequate mixing of effluent
    
    B.  Heat load:  3?U13QBTU   , Q^QQ BTU/Kyh heat ratQ
    
    
                    (0.8$ x 8,500) - 3,hl3 * 3,837 BTU/Kwh
                                             Heat to coolinft water
    
                    (3.8U x 103 BTU/Kwh)(1.15 -x 106 KW) - 5.65 x 109
                                                          BTU/Hr heat load
    
    C.  Stream Quantity:  Q - (cfs)(62.U lbs/ft^)(3600 secAr) =- Ibs/Hr
    
                          Q - (6.0 x I03)(6.2h x 10)(3.6 x 103) - 1.35 x 109 Ibs/Hr
    
    D.  Theoretical Stream          Total Haat load to Cooling Water, BTU/Hr
        Temperature Rise:    /\ Tr - (stream quantity, Ibs/Hr)(1 3TU/lb °F)
    
    
                                                  - h.2 °F
    3.  Actual Field
        Ts.Tnorature Rise:    /\ T^ =• (AT*, Cross Sect, T, °F)  - (Background  Sect.  T,  °F)
                                     78.7 °F  -  75.2 u? - 3-5 °F
    

    -------
    

    -------
                         7JSP-MAL POLLUTION STUDIES
    
    
    
    
     10-3-58   Location   Ohio Rivsr ??. ?_,_ To. 5
    Fix?
    • 6,000
    cfs Plant Nana Cardinal
    Air lorroarature - Begin 68 u? Finish
    Relative Humidity 8*6^
    — CT v'-"*^ '£•*''••"' "w* T-~* ^TTD TtTVTJlTO A rrtrD'C* "7 r" "*
    : i,J,^ai;»\j£. i!,\i— rt ijUlriixAiUiiii. , --• . -
    T -> '>4-
    JL/C? 4. U
    Bank
    71
    H.
    Apx. Distances Betwaen SHTID
    Middle
    AEO 72 OUTFALL (M. P. 76.5 >
    £-or. 80.6
    3'
    20'
    30'
    80.6
    76.1
    75.2
    
    BELCH OUTFALL
    Sur. 86.0
    U1
    8'
    16'
    20 ?
    28'
    32'
    8U.6
    81.5
    77.0
    75.2
    75.2
    
    
    •
    
    ZONE OF HIXD5G
    Sur. 81.5
    U'
    8'
    12'
    16*
    20'
    28'
    32'
    JJCWN
    ......
    81.0
    79.it
    73.L
    77.U
    77.0
    76.6
    76.8
    76. U
    75.2
    3TR2AM PT.
    "7.9
    77.5
    n '' ,0
    ""7.0
    r ~i - c* 1~!'
    Sur.
    8' ~
    20'
    30»
    
    (M. P.
    Sar.
    U' "
    8' ~
    12'
    16' "
    20»
    2U'
    28'
    32'
    
    (M. P.
    Sur.
    h'
    8' ~
    12'
    16' ""
    20s
    2U' ~
    28'
    32'
    
    81.2
    80.2
    75.2
    75. .2 27'
    
    76.7 )
    8h.2
    82, U
    79.7
    77.9
    76.1
    75.3
    75.2
    75.0
    75.0
    
    77. U
    81.7
    81.0
    80.6 •
    78.8
    78. It
    77.0
    75.5
    75.5
    
    
    NO INCREASE (M. P.
    Sur.
    8' ~
    20'
    30'
    ,.=,,-., '-.I.-
    77.9
    77.5...
    77,0
    
    c v"? ~}r.f !"( 5? .
    > Bat
    Sur.
    8»
    20'
    s, •; : "• A
    Power
    Sur.
    U'
    8'
    12'
    16'
    20'
    2b«
    28'
    32'
    )
    Sur.
    It*
    8'
    12'
    16'
    205
    28'
    32'
    78.3
    Sur.
    8'
    20s
    30 3
    T Work Done Bj
    P. 7. i~. i"
    'ling Points
    
    
    :J'o33r, Bsilev
    Sight
    Bank
    5-i33n Tidd and Cardinal (Cardinal Intake)
    81.5 Sur. 81.7 Sur. 82. U
    79.2
    75.?
    75.2
    -*, \
    Lina
    85.7
    82. h
    80.6
    78.8
    rJ7-A
    75-7
    75.3
    75.2
    
    'A'-f T
    (At
    82. U
    82.1
    80.6
    78.8
    77.0
    76,1
    75.7
    75.5
    75.5
    •:•: 7 C
    ttock
    82.0
    82.ii
    81.0.
    78 li
    77.0
    76,2
    76.1
    7^.7
    
    r~
    ) ( At Red Marker R
    77,9
    77, ii
    77.0
    
    
    Sur.
    8*
    20'
    30'
    » i "
    77.9
    77,5
    77J1
    
    
    8' 80.6
    20* 7^.5
    25'MJ[ 75.2
    
    Sur. 82. h
    U1 85>Ji
    8' 8? d "
    12' 80.6
    16' 7^6,6
    20' _2£.^
    2U' 75 2
    28' 76.1
    32'
    
    - Bon Swart)
    Sur. 82.0
    M 81.7
    8» _82jLl
    12' 80,6
    16' 80.2
    "20' 77. L,
    2ii»
    28'
    32'
    
    uoy ) (Can)
    Sar, 77_,o
    8' 77,2
    20' 7,^
    30' 75, -'
    r " '
    r' • ^rcaot sky
                                             -  lowar
    

    -------
                             OHIO          r;•-.«.". M. P.  76  <~
                                      CAP. p.- •„.-& i..;-a:v.^r P'/.n
                                    ££r^2ii££^, 1/47
        Assume:  / -f *n3__KW  "2-t°d
                ,-!axirTiim efficiency = ~^%
                Heat loss within plant = 1.y%
                Energy required for 1 KW" = 3 .Li3 BT7!
                Adequate mixing of effluent
    
    E,  Heat Load:  3?lil3 BTU  =  9 7sQ BTU/Kk'H heat ?
                      0.35
                     (0.85 x  9,750)-3,iil3 = U.877 BTU//KWH Heat to Cooling Water
                               •3                       &                 .7
                     (ii.85 x  ICT  BTU/KWH)( /.^jT  x 10  Kl-f) =  7.6'8  x 10   3TU/Hr Heat Load
    C.  Stream Quantity:  Q  =  (cfs)(62.U Ibs/f i/) (3600 sec/Hr)  = Ibs/Iir
                                            J3                                       £J
                          Q  =  ( £•£"    x 10 )(6.2i; x 10) (3.6 x  lo-3)  =  /. 44;  x 10  lbs/Hr
    
    D.  Theoretical Stream
    
        Temperature Rise:/iTr  = Total Heat Load tc Cooling Water, BTU/Hr
                                Stream quantity, lbs/Hr)(1 BTU/lb °F)
                                   /. 44   x 10
        Temperature Rise:/\Tr  = (Avg.  Cross-Sect. T, °F)-(3ackground  T, °F)
    
    
                          A T  =  77. j  °F —    7 J . 0" °F =   4.4  °F
                             r
    

    -------
    

    -------
                                THERMAL POLLUTION 3TUDI£S
    
            9-30-69   Location   Brilliant, Ohio
    •1c-j op 00 cfa Plant IT.ima Cardinal
    Air Temperature - Begin- 75 w?
    Eelativa Hunidlty 62 ^
    ^ais
    loft Apx, Distances Between
    "iviimirs Reference Water Temperature (M.P.
    -vr, 72.5 Sur. 72.5
    i.id. 72.5 Mid,
    2ct, 72.5 Eot.
    Depth Depth
    72.5
    72.5
    
    and Tidd Plants
    b 77 °F Work Dona B^
    B2s-inrJ.ng Tina 1200
    Sampling Points
    7U.7 )
    Sur.
    Md.
    Eot.
    Depth
    
    f Lo^entz & Mo;
    
    saght
    Bank
    72.5
    72.5
    72.5
    
    >% J '. 1 ; -- -'• "<"„; ', " ,-
    AI.OVS CliTFALL (M.P. 76.1
    r-jr. 77.0 Sur. 77.0
    3' 73.0 8' 7^J,|
    20' . 	 20' 73 . Q
    50 5 	 23!g2K _^2_._^ 2i|
    >.; .- ?'!,,T
    )
    Sur. 78
    8' lit
    20' 22
    At Upper Power Line
    •U Sur. 78.8
    .!_ 8' ,7^.?
    .6 20' 71.0
    .3 30' 72.5 .
    8' ...?)! .3
    20" .Z2...6
    30' 	
    ~"/2jD3fCE OP THERMAL SHORT CIRCUIT?   las
      ESSCHIETIOH OF FINDINGS - MS.C2OTUD2 AM) TYPS   Large (1 mile) loop in whole area.,
            direct short circuit from outfall to intake of large (lower) plant.  Extending
            U.  S.  to M.  P.  75.1
    MAXIMUM OUTFALL TEMPERATURE   8?.k Upper
    '.6 Lower
    TIMS
    12UO
    SIZE OF JaXIMUM TEMPERATURE ZOJJE:   20' wide  and 50!  out and 81  deep
    
                                        60' wide  and at  end of barricade and 10'  deep
    B:^LOW OOT?ALL
    Sijir. 86.0
    i^1 (32.1.
    3' 76.2
    12' 73. U
    15' V3.0
    ^r,', — — : —
    -. 3 "
    (M.P.
    Sur.
    V "
    8' "
    12'
    16' '
    20'
    2k'
    28' "
    76.7
    8U.2
    78.8
    76.2
    75.2
    73.0
    73.0
    73.0
    «
    Stir.
    U' "
    8'
    12'
    16'
    20 !
    28'
    ) Lower
    79.9
    79.2
    78.ii
    75.9
    75.2
    73.0
    .,»-...•. •.., ,..»«•«
    ~2.6
    72.6
    Power Lire s
    Sur. 80.2
    U'
    8' "
    I2l
    16'
    20'
    S-'V
    23'
    80.2
    80.2
    80.2
    75.2
    73.0
    72.6
    72.6
    Sur.
    V
    8' "
    12'
    16' "
    20'
    2V
    03«
    •C'vV
    8l.o
    81.0
    80.6
    80.2
    
    
    
    
                    32 J
    

    -------
    

    -------
                             OHIO
                       ChiC ^Gl^jji. _
                                    3
                                      * 8 ax  4  , i • & 8
    A.  Asjvme: _jPH_J!W "^t&d capacity
    
                Maximum efficiency  - 35/2
                Heat loss within plant  = ~\3%
                Energy required for 1 K>IH  = 3,113 3TU
                Adequate mixing of effluent
    
    3.-  Keat load:  3,Iil3 BTU  =  9 ?^0 BTU/KWH heat rate
                      0.35
    
                    (0.65 x 9,750)-3,iil3 = U,8?'7 BTU/KWH Keat to Cooling Water
    
                    (li.88 x 103 BTU/K>fH)( 5".44  x 10  Kv)  =  ^.^^  x 10  BTU/Hr Heat Load
    
    C.  Stream Quantity:  Q =  (cfs)(62.Ii Ibs/f t3) (3600 s^o/Kr)  = Ibs/nr
    
                          Q =  (  I $    x 10*) (6.2.14 x 10) (3.6 x  103)  =  3.3(g  x 1CT Ibs/Hr
    
    D.  Theoretical Stream
    
        Temperature Rise:^Tr  = Total Heat Load to Cooling  Water, 3TU/Hr
                                Stream" quantity, lbs7Hr)(I  ?TU/lb °F)
    
                                               o
                                   i   -^      "^
                          A rp   _    J. l»A  X 10             »,  ,x  r,
                                                ^
    
                                   3,34   x 10
    E.  Actual Field
    
        Temperature Rise:AT   =  (Avg. Cross-Sect. T, °F)- (Background T,  F)
                          A Tr
    

    -------
    

    -------
                         7I!2liMAL POLLUTION 3FJDI2S
    
    
    
    10-.'--68    Location   Ohio ftr/sr >L ?, 102.? - Moundsrille
    71o-f 15,000
    cfs P3
    i.ant Maine Burner Plane
    Ai:* r<-r.:r}3ratura - Eagin 50 °? Finish S5 ^f
    Relat:
    p 7 7 •"•? £• vr; v */Z.vrEF
    T _, -?.f-
    Bank
    ive Humidity 56$
    1 T2MPE3L\TUR2 73. U
    M. ?3
    Apx. Dist-anc3s Betvsen Samoling
    Middle
    AE07S OUTFALL (M. P. 102. U )
    £
    75.2
    73.7
    73. U
    73.0
    
    
    
    
    
    ?•;•"-•• ;'/-T-.>r---
    75.2
    75.0
    73.7
    73.0
    73.0
    73.0
    72.8
    
    
    -- -< '- ' '. !7-."/f
    	 )
    ?3.h
    73-0
    
    
    8' 72.8
    20'
    30*
    ?• 1 -. 7 2 , 4 ° r
    Sur. 72.5
    hl 72.5
    8' 72.5
    12' 72,5
    16'
    20'
    2lif
    28'
    32'
    •• ". 7 •?, -i ° r-
    Sur. 76.1
    it' 75.2
    8» 7U.3
    12' 73.7
    16' 73.7
    20'
    21i*
    28'
    32'
    } 74. -i 3 r
    (Tow Preceding)
    Sor.
    3'
    20 3
    30'
    Right
    Bank
    Sur. 69-8
    8« 71.6
    20 »
    30'
    
    Sur. 71.6
    li1 71. 6"
    8'
    12'
    16'
    20'
    2lt<
    28 »
    32'
    
    Sur. 75.2
    It' 75.2
    8» 73-7
    12' 73.7
    16'
    20'
    2lj'
    28'
    32'
    
    Sur, 73. U
    8' 73-7
    20'
    30'
    

    -------
                            O B i o
                                                ,  I/  7ff_  x  10  KW)  -  2.(*$  x 10-/ BrJ/Hr Heat Load
    
    C,  Stream Q^^antity:  Q  =  (cfs)(62.i|  Ibs 'f t3) (3600  sec/fir)  = Ibs/Hr
                                            3                      -j                 <*
                          Q  =  (6.9    x  10 )(6.2h  x  10) (3. 6 x  10J) =   /,5T  x 10"" Ibs/Hr
    
    D.  Theoretical  Stream
    
        Temperature  Rise:/\Tr  = Total  Heat  Load to  Cooling  Water, BTU/Kr
                                Stream quantity,  Ibs/Hr )(1  BTU/To °F)
                                   /, 55"   x  10
    
    E.  Actual Field
    
        Temperature Rise:/^  =  (Avg.  Crocs-Sect.  T,  °F)-(3ackground T,  °F)
                          A?   -   >^8  °F
    

    -------
                                THERMAL POLLOTIOIT 3X3012=3
    
                      Location  Ohio River 3 Koundsville
    ,.\U- I'er^eraturs  - Begin-
    " jl-YtiY3 Humidity
    cfs   Plant 2.ams  Burger  -  Ohio  Edison _CoF.pan
              60
                                                              _       _
                                        ?    Finish   73   u?  WgrX Cong By ^ Lor entg Jk Moser
                                                  Beginning Tine   1000    _
                          px, Distances Between  Sampling Points
                                         Middle
            2 Haference Water Teonserature   (M,P.  102.0
                                                           Bank
    
                                            )  At Ferry Ramp - Moundsville
    ^.r. 72.3
    :.ld. 72.3
    L3t. 72.3
    Depth 12
    7? :.
    :3QVE OOTEALL (M.P.
    -:r, 71.9 Sur.
    a1 /i.y" s1
    50' 	 30'
    Sur.
    Mid,
    Bot.
    Depth
    
    102.6
    72.3
    Y1.9
    71.? 12
    73 O
    72.6
    72.6
    72.6
    16
    "•; '-
    )
    Sur. 71.9
    8' .71'. 9_'
    30' '
    Stir.
    Mid,
    Bot.
    Dspth 8
    
    Sur. 71.9
    8' ,71.9
    30' 	
    71.9
    71.9
    71.9
    
    -_. .
    Sur.
    /I A^fl A
    20'
    30'
    
    
    
    
    71.6
    US
    r/. '.
    J.7I2SICE OP THERMAL SHORT CIRCUIT?    No
      INSCRIPTION OF FINDINGS - >a(3JITUDE AHD TYFS
          M OUTSAIL T5MIERATITRE
                    '.6
                                                                   TBS
    1100
    STS3 07 >TAXIMUM TEMPERATURE ZOHS:   10' wide  -  depth indeterminate - about 2£'  out
                                        from  discharge
    T^JL^'nT 017TFALL {M.P
    
    "'-.?, 80.6 Sur.
    '-' du.2 U.
    ;;' "" 	 ~ 8
    ?.?. ' 12
    IS" " 16
    20
    " -' 2!4
    V " * 28
    i
    >
    i
    t
    i
    
    '
    102.9
    78.8
    77. k
    7k •&
    73.7
    
    
    
    
    
    Sur.
    U'
    8s
    12'
    20'
    28'
    73
    73
    73
    73
    73
    
    
    
    .k
    .k
    .7
    .k
    .0
    
    
    
    Sur,
    8'
    12'
    15'XE&
    20'
    Pit1
    28'
    71
    72
    72
    72
    72
    
    
    
    .9
    .3
    • 3
    .3
    .3
    
    
    
    Sur.
    8s
    12'
    16 '
    20'
    S3' '
    71
    71
    71
    
    
    
    
    
    .9 _
    .9.
    .9
    
    
    
    
    
    

    -------
                                rhernal Pollution Strait
                                            Ri^er, M. ?.   \[\ ,  \
    A.  Assume:   ?  .S.JMf rated capacity
                Maximum efficiency =
                Keat loss within plant  = 1%%
                Energy required for 1 KWH  = 3,1*13 BTU
                Adequate mixing of effluent
    
    B.  Heat I^ad:  3,1*13 BTU  =  Q^0 BTU/KMH heat rate
                    (0.85 x 9,750)-3,iil3 = U,877-BTU/KWH Heat to Cooling Water
                               -i                      S~                 9
                    (1|.88 x ICT BTUAWH)(--  g.7:T x 10  KW)  =   3. 3  x 10  BTU/Hr  Heat Load
    
    C,  Stream Quantity:  Q =  (cfs)(52 .U -Ibs/f t3) (3600 sec/Hr) = Ibs/Hr
                                           4                  -                     f
                          Q =  (  /.O   x 10?)(6.2U x 10) (3. 6 x IGF) = _«3_JH_x 10  Ibs/Hr
    
    D.  Theoretical Stream
    
        Temperature Rise:/\Tr  = Total Heat Load to Cooling Water,  BTU/Hr
                                Stream quantity, Ibs/Hr) (1 3TU/lb  OF)
    
                                      ,   -    1
                               =    -3' 3   xio
    E.  Actual Field
    
        Temperature Rise:./\Tr  =  (Avg. Gross-Sect. T, °F )- (Background" T,  F)
    
    
                         A Tr  =   71,0 °F —  _41jL>  =    >*. /  °F
    

    -------
                        TH2FMAL POLLUTION 3TUDI2S
    v") -11-66   Location
     ..—
    J'l—-f "!/'. "'00
    cfa ?:
    ,\\i- ;:;,-p-3r.atur3 - Bagi:
    Relat:
    :>:?s?^rcs WATER TEMPER.
    La ft Ap:
    p „*-!.,.
    A->iJi- i.^.
    ABOVE OU7JALL
    Sur. 69,8
    8« 69.8
    20' o9. b
    30'
    
    BELCW OUTFALL
    Sur. 70 . 1
    U» 70.1
    8' 70,1
    12' 70,1
    16 »
    20'
    2ii'
    28 »
    32'
    
    ZONE 0? MIXING
    Sor. 70.3
    ii! 70.1
    8 ' 70 , i
    12' 7-0 ,1
    16 ! 70.1
    20'
    2u»
    2ti'
    32'
    
    DOWNSTREAM PT.
    <3* 7I..6
    20s
    ;0 '
    {M. P.
    Sur.
    8'
    20'
    30'
    (M. P.
    Sar.
    8'
    12 »
    20«
    28»
    32'
    (M. P.
    Sur.
    h»
    8' '
    12'
    16' '
    20'
    28 *
    32'
    
    Larst Mania
    n qi °
    i K--'— :-ir
    '? Finish
    Lve Hurnidiby 80^
    iT'UitS 7C) . 7
    ?li-t
    i-, >^ J*
    M. ?. I
    :<. Distances Between Sanpling
    Middle
    110,7
    69.8
    69.8
    69.8
    
    AV
    111.2
    . 70.1
    70.1
    70,1
    70,1
    70.1
    70.1
    70.1
    
    
    A!
    lll.ll
    7.1 . 2
    . 71,2
    71.2
    70. 1.
    70,1
    70.1
    69 , 6
    
    
    A
    NO INCREASE (H.
    Sur, T ,6
    3'
    20'
    30'
    71 ,6
    -1 ; :^
    
    ) (2 3
    Sur.
    8'
    20'
    30'
    £ < A-t ;" T"
    ) Bsle
    Sur.
    k*
    8'
    12'
    16'
    20 ?
    2Ji'
    23'
    32 r
    y r (?. A ('- : T r.
    P. 111.8
    Sur.
    8' ~
    20'
    30'
    tacks
    70.1
    70.1
    
    *• ..>"''" »"" ^ "T" '
    r i **" r i", ^*-^ t '-,-'
    Hark
    70,1
    70.1
    70,1
    70 „ 1
    70.1
    70 , 1
    70.1
    70.1
    
    n '-t'',ATu(
    Upper
    wrtHi Wire
    72 . 6
    7T.9
    71.2
    7r>.^
    70 , 1
    70 , 1
    70,1
    
    
    ;-;s:: r-'VTH1
    ) E
    71 _ h
    71 .-",
    7~ A
    
    
    
    
    Work Dona 3y Jonfts, i'oTer
    oo -;
    Points
    Sur.
    8'
    20'
    30'
    »e : /^
    Sur,
    8'
    12'
    16'
    20'
    2U«
    28'
    32'
    2 -"~ * "7 A
    111. I M.
    Stir.
    8'
    12*
    16'
    20'
    28 »
    32'
    1 : 70.
    iy Creek
    Sor.
    20'
    30'
    
    
    69,8
    69.8
    70.1
    
    ', ? 3 r
    71.7
    7^ J,
    71,6
    71.2
    70.7
    70.1
    
    
    
    9 " C
    P.
    71.9
    70 , 8
    70,1
    70.1
    70,1
    70.1
    
    
    7 n F
    in Power
    70.7
    70 . 1
    70 , 1
    
    Right
    Bank
    Sur. 69.8
    8' 70.1
    20'
    30'
    
    Sur- JZluJL.
    U' 7[- 1
    8' 71^1
    12'
    16'
    20'
    2U'
    28'
    32'
    
    Sur. 73 f).
    U' T^ 6
    8' 7Q.1 .
    
    16' 69,8
    20'
    21|»
    28'
    32'
    
    Sur. 67.8
    8« _6_o_.8
    20'
    30'
    

    -------
    

    -------
                              C) h I 0 _ River,  M.  ?.   I Ll 'S
    
                       Mo/ i . l\" u. jrg - V\' JAM ~  / S.L .  Po;rer Plant
                                    CCT  ~f       19 ,',9
    A,  Assume:   .'2 i -5" MW rated capacity
    
                Maximum efficiency =  35$
                Heat loss vrithin plant =
                Energy required for 1 ME = 3,Ul3 BTU
                Adequate mixing of effluent
    
    B.  Heat Ix^ad:  3;U13 BTO   =  9 ?5o BTIJ/KT,JH heat rate
                       0.35
    
                    (0.8^ x  9,750)-3,U13 = U,8?7 BTU/K1^ Heat to Cooling Water
    
                    (li.88 x  103 BTU/Klffl)( JJJT  x 10  -W) =  /. Q.^  x 10^ BTU/Hr Haat Load
    
    C.  Stream Quantity:  Q  =  (cfs)(62.U Ibs/ft3)(3600 sec/Hr) = Ibs/Hr
    
                          Q  =  ( /Q.i    x 102)(6.2U x 10) (3.6 x 103) =  ^.17  x 10^ Ibs/Hr
    
    D.  Theoretical Stream
    
        Temperature Rise:/\Tr  = Total Heat'Load to Cooling Water, BTU/Hr
                                 Stream quantity, Ibs/Hr)(1~3TU/lb °F)
        Actual Field
    
        Temperature Rise:J\Tr  = (Avg.  Gross-Sect.  T,  ^-(Background1 T,  F)
    
    
                          AT  =  84,0  °F —   S5.&  °F =    1.2  °F
    

    -------
    

    -------
                                 THERMAL POLLUTION' STUDIES
    
    
    
    
    late   '"•-',- -69     Location   Ohio Rivsr  3 V/ilLo:? Island
    Flow
    L.".,l";o cfs Plant
    Air Temparatm ° - Begin
    Name
    
    
    °F Finish
    REFERENCE WAT'-TJ. TEMPERATURE 82 .8° ?
    Kaiai,iva hinid
    Left Apx. Distances Batwee
    Bank Middl
    * ABOVE
    1
    Sur.
    8'
    . 20'
    30'
    BELOW
    Sur.
    V
    8'
    12'
    16'
    20'
    28'
    32'
    ZONE
    Sur.
    V
    8'
    12'
    '16'
    20'
    2h>
    '28'
    32'
    DOWNS
    Sur.
    8'
    30'
    OUTFALI,
    82.8
    82.8
    
    
    
    OUTFALL
    82.8
    '6^.6
    82 ,6
    82.8
    
    
    
    
    
    
    OF MIXING
    8U.6
    83. y
    83.5
    83.5
    
    
    
    
    
    
    TREAM PT.
    85.9
    6 i.5
    '^3 . 5
    
    (M. P.
    Sur.
    8'
    13'ZOK
    30'
    
    (M. P.
    Sur.
    V
    8'
    12'
    16 «
    20'
    2V
    28'
    32'
    
    (M. P.
    Sur.
    V
    8'
    12'
    16'
    20'
    2V
    28'
    32'
    160
    82.
    82.
    82.
    
    
    •6 }
    a
    8
    8 13
    
    
    160.7 )
    82.
    82.
    82.
    82.
    82.
    
    
    
    
    
    
    85.
    oj.
    83.
    83.
    83.
    
    
    
    
    
    NO INCREASE
    Sur. 83.
    8'
    16'2GDC
    30'
    83.
    82.
    
    8
    a
    a
    8
    d
    
    
    
    
    A-l
    161.0
    1,
    9
    5
    5
    5
    
    
    
    
    A ;
    (M. P.
    2
    2
    8 12
    
    M
    ifcy
    n Sa
    .e
    
    
    UF Work Done By B--
    . P.
    158.1
    .npling Points
    1 At intake str
    Sur. 82.8
    8'
    30'
    28.5
    Sur.
    V
    8'
    12'
    16'
    20'
    2V
    28'
    32'
    )
    Sur.
    V
    8'
    12'
    16'
    20'
    2V
    28 «
    32'
    161.
    Sur.
    8»
    30'
    82.
    82.
    
    r ~
    from
    86.
    dU.
    tiu.
    83.
    b3.
    
    
    
    
    -•'-
    86.
    bj.
    83.
    83.
    
    
    
    
    
    
    6
    83.
    82.
    82.
    
    8
    8
    
    »- 5
    tow
    0
    6
    o
    9
    9
    
    
    
    
    ", i,
    0
    y
    9
    0
    
    
    
    
    
    ~ , ,: "
    )
    2
    8
    a
    
    lict'ire
    Sur. 82.8
    8' 82.^
    15 ' 2E3X 52.8
    30'
    r-
    except 16' = 28.2
    Sur. 86.0
    V tiii.2
    8' «ii. 2
    12' 83. p
    16' d3.a
    20'
    2U'
    28>
    32'
    'I
    Sur. 8U.6
    U« ok.^
    8' 83.9
    12'
    16'
    20'
    2V
    28'
    32'
    T**
    Sur. 82,8
    8' 52. d
    20'
    30'
    
    
    
    5iley i Miser
    Right
    Bank
    Sur.
    8'
    20'
    30'
    Sur.
    8'
    12'
    16'
    20'
    2V
    28'
    32'
    Sur.
    8'
    12'
    16'
    20'
    2V
    28'
    32'
    Sur.
    8«
    20'
    30'
    
    82
    82
    
    
    
    8U
    tili
    83
    83
    
    
    
    
    
    
    83
    83
    
    
    
    
    
    
    
    
    83
    8J
    
    
    
    .8
    .8
    
    
    
    .6
    .2
    .9
    .U
    
    
    
    
    
    
    .9
    » x
    
    
    
    
    
    
    
    
    .9
    .9~
    
    
                                 ro'•.  -Jir-r-iLrn--. n^  ^"dJin^-1  oi
    

    -------
                             ? Hi Q
                           . P H 3 A. A. j. P .  . _-5 pp..;-^ frL _ Power Plan
    A..  Assur.e:  I C (sO  M# rated  capacity
    
                Maximum efficiency  =  35%
                Heat loss within  plant  =  ~\S%
                Energy required for 1 KWH = 3,10.3  BTU
                Adequate mixing of  effluent
    
    3.  Heat load:  3?1|13 BTU  =  9,750 BTU/KWH heat rate .
                      U.3,3
    
                    (0.85 x  9,750)-3J10.3  = 14,877 BTU/KWH Heat to Cooling Water
                               o                       &                   9
                    (14.88 x  1CT BTUAWH)( /.PC-  x 10  KW)  =  5", /tA  x 10  BTTJ/Hr Hsat Load
    
    C,  Stream Quantity:  Q  =  (cfs)(62.1j.  lbs/ft3) (3600 sec/Hr) = Ibs/Hr
                                            -*                                      9
                          Q  =  (/. /8    x  10r)(6.2li x 10) (3 .6 x-lCK) = J. 4J~  x 10  Ibs/Hr
    
    D.  Theoretical Stream
    
        Tenperatiore Rise:/\Tr  = Total Heat Load to Cooling  Water j BTU/Hr
                                Stream  quantity, Ibs/Hr )(1  BTU/lb °F)
                          A
                          ti
                                             10
                                  J , i $•    x 10 f
    E.  Actual Field
    
        Temperature Rise:i\Tr  =  (Avg.  Cross-Sect.  T,  °F)-(Background T,  F)
    

    -------
    

    -------
                  -a,., -,—,,, ~  ~^ ?*, * -T . ,-<•]*•'*•>*  -^ .~. T-., — .-I--.
                  '.;_:.   , tL f*V  !	,-U -...I;''  ,,:V  j... ,-b
    
    
    
    >eaid.cn    Orio  :>  Ivst-   ; •. \-;ir:    '.  ':.   ?h 1., G
    /"l^/ LI. COO
    La ft
    ABOVE OUTFAIL
    Sur, t'7.1
    3' 67,6
    20"
    30'
    
    BELCH OUTFALL
    Sur. 72 . 5
    Li' ?2.fi
    8' 72 .i.
    12'
    16' '
    20'
    2h»
    23'
    32'
    
    ZONE OF KEZDC
    Sur. 71.2
    k1 70.7
    8' ""
    12'
    16' ~~^ "
    20'
    2li'
    28*
    32'
    
    DOWNSTRSiM PT.
    Sur, 71.6
    3' ^ 0
    20' /,5,0
    30'
    efa ?1^
    a - B^gin
    Relat
    R TS-iPSU!
    Ap;;.
    (M, P.
    Sur.
    8'
    20*
    309
    
    {M. P.
    Sor.
    I*1
    8'
    12»
    16'
    20'
    2U«
    28«
    32'
    
    (M, P.
    Sor.
    h'
    8«
    12'
    16«
    20s
    2U»
    28'
    32»
    
    .nb v"x-,* Fh
    6 1 ° ?
    THIS .-7.1,
    Di:jt,,\rs,>3
    2'il . ^
    O7.1
    6*7.1
    67,6
    
    Xi't
    2h2.1 )
    73.0
    71.6
    69.8
    68.^
    68.0
    68.0. •
    
    
    
    AVFi
    2U2.3
    ^.1
    ?9.8'r~
    69.2
    6^.2
    68 . 9
    
    
    
    
    ^>. U £- kX
    NO INCREASE (M. P.
    Sor.
    8' ~"
    20?
    30'
    68,0
    >>S o
    
    ill-"-. . -•. 	
    •1-r-iJ;-- .__^:~_
    ^SS" 3'3ra
    ) T)p Liu
    Sur. 67.1
    8» 7,7 ,
    w > • f , u
    20s -"M
    30'
    fc/Ve I.-'--
    Hi W^ re C
    Sur. 71.6
    U1 c8.o
    8« 68.0
    12» 6r'.o
    16' 68.0
    20'
    2U'
    28'
    32'
    ?/„'* ] fr-;;.
    J Coal
    Sur. 77.J
    h' 68 o
    8' "C !£ li ?*?.'.)
    2':2.^
    Sur. 71.7
    8« _^2.
    20' -v' --
    30'
    
    -"""" "^ £OTjBy
    lin.J Points
    '- e
    8' '7J:
    20' ^,"7.6
    30 •
    ,- r <• 47 L j-: ; 67. ^
    ross inr
    Sur, ?0.1
    5;1 68,0
    8* 58.0
    12« 68. n
    16'
    20'
    2V
    23'
    32'
    ' V^T.-IT : ^ 9. if
    Sur, 73J.:
    h' 68.0
    5' 68,0"
    12' 63,0
    16' 6«.o
    20' 65.0
    2ii'
    23'
    32'
    un j i^'. ? !' r
    }
    5' "6P*o'
    20 « •-;- o
    30'
    
    rn :----;,:. .'-iy.i^r
    Right
    Sank
    Sur. 6?,l
    8= 67,1
    20' 67_.l
    30'
    
    
    ii1 68.0
    8' 68.6
    12 «
    16'
    20'
    2li'
    28'
    32«
    
    Sur. 73,7
    U1 68.3
    8' 68,0
    12' 63,0
    16 ?
    20'
    21i' -
    28'
    32'
    
    Sar. 70 . ?
    8' 68.0
    20' 69.0
    30'
    

    -------
    

    -------
                             Oh ;Q
    A,  Assume:  / Q 60  MW rated capacity
                Maximum efficiency = 35%
                Heat loss within plant = 1$%
                Energy required for 1 KWH = 3,k13 BTU
                Adequate mixing of effluent
    
    B.  Heat load:  3?lil3 BTU  =  9 750 8TU/KWH heat rate
                      0.35
    
                    (0.85 x 9,750)-3,10.3 = U.877 BTU/KWH Heat to Cooling Water
                              o                      6                   «?
                    (U.88 x ICT BTU/g/7H)( /.Q4   x 10  KW) =  S./B   x 10r BTU/Hr Heat Load
    
    C. "Stream Q-jantity:  Q = (cfs)(62.1; Ibs/f t3) (3600 sec/Hr) = Ibs/Hr
    
                          Q = ( 3./5   x 10*)(6.2li x 10) (3. 6 x 103)  =  7. (3?  x 10^ Ibs/Hr
    
    D.  Theoretical Stream
    
        Temperature Rise:/\Tr = Total Heat Load to Cooling Water ^ BTU/Hr
                                Stream quantity, Ibs/Hr )(1 BTU/lb OF)
    
                                              --
    E,  Actual Field
    
        Tenperature Rise:i\Tr = (Avg. Cross-Sect. T, °F )- (Background T,  °F)
    
    
                           T  =  3P.4T °F —    ??. a °F =         °F
    

    -------
    

    -------
                                Ttu'.RMAL POLLUTION STUDIES
    
    
    
    
    Data   6~2o-69    Location  Phillip  Sporn P-"V3r Plant, Ohio Iti-rar
    Flow
    31,500
    Air Tan-perati'1 -
    Relative Huraii
    REFERENCE WAT^1
    Left
    Bank
    ABOVE
    Sur.
    8'
    30'
    BELOW
    Sur.
    U'
    8'
    12'
    16'
    20'
    2U'
    28'
    32'
    ZONE
    Sur.
    8'
    922!
    * 16'
    20'
    2U'
    ' 28'
    32'
    of 3 Plant Name
    • - Begin 50 °F
    Finish
    LtV - 60% n
    ; TEMPERATURE 79 .k F
    Apx. Distances
    Correct all deoths
    OUTFALT, (M, P. 21*1.5"
    80.6
    79.5
    79.5
    
    
    OUTF/..M.
    80.6
    80.6
    80.2
    
    
    
    
    
    
    
    OF MIXING
    BO. 2
    79.9
    79.9
    
    
    
    
    
    
    
    DOWNSTREAM PT.
    Sur. 81.7
    8' 50.6
    20'
    30'
    30.6
    
    Sur.
    8'
    20'
    30'
    
    (M. P.
    Sur.
    U'
    8' "
    12'
    16' "
    20'
    2U« "
    28'
    32 »
    
    (M. P.
    Sur.
    U'
    8'
    12'
    16' "
    20'
    2U'
    28'
    32 1
    
    79.5
    79.5
    79-5
    79.2 S
    
    2ii2 )
    80.2
    79.9
    79.5
    79,^
    79.5
    79.5
    79.5
    
    
    
    
    9< UF
    M. ?.
    
    
    Work Done By '•.'
    
    
    Between Sampling Points
    Middle 12CO' wide
    fcy 0.9 (strong current)
    )
    Sur.
    8'
    20'
    i
    Sur.
    it-
    s'
    12'
    16'
    20'
    28'
    32'
    A- v -
    79.2
    79.2
    73.8 .
    78.8
    > • ' 7 ;" X
    80.2
    79.9
    79.5
    79.5
    79.2
    79.2
    79.2
    79.2
    
    • v -. • i •'• ^
    Sur.
    8'
    20'
    2833'
    Sur.
    U'
    8'
    12'
    16'
    20'
    2U'
    28'
    32'
    79.2
    78.8
    78.8
    78.8
    
    86.0
    82.8
    81.0
    80,2
    79.2
    75.5
    79.2
    
    
    
    
    bsar - 8*
    Right
    Bank
    Sur.
    8'
    20'
    30'
    Sur.
    U'
    8'
    12'
    16'
    20'
    2U'
    28'
    32'
    
    Bdhi'av
    
    79.2
    78.8
    78.8
    
    
    86,0
    Q •> p*
    Q "5 » ^
    80.2
    79,9
    
    
    
    
    
    
    2h2.1 ) Power Line
    79.9
    79.5
    79.2
    79.2
    79.2
    
    
    
    
    
    NO INCREASE (M, P.
    Sur. 81.7
    8'
    20'
    30'
    80.2
    "00.?
    
    Sur.
    8'
    12'
    16'
    20'
    2U'
    28'
    32'
    2)43
    Sur.
    8'
    20 »
    30'
    ...85. U
    80.6
    79,9
    79.5
    79.2
    79,2
    79.2
    
    
    '' -'-,'•
    .0 )
    81.7
    83.2
    80.2
    
    Sur.
    U'
    8'
    12'
    16'
    20'
    2U'
    28'
    32'
    Sur.
    8'
    20'
    30*
    8U.2
    81,0
    79.5
    79.5
    79.2
    
    
    
    
    
    81. U
    79.9
    79,9
    
    Sur.
    8'
    16'
    20'
    2U'
    28'
    32'
    Sur.
    8'
    30'
    31.0
    80.6
    79.2
    79,2
    
    
    
    
    
    
    81,7
    79.9
    79.5
    
    

    -------
                                  n
                                              ..6
      A *  ruS 3 "UJTIS 2  / f> L. £J  rlW r'SLuSu C3.Tj3.Ci. L.V
    
    <
                   Maximum efficiency =
                   Heat loss within plant =
                   Energy required for 1 KWH = 3 ,hI3 BTU
                   Adequate mixing of effluent
    
      B.   Heat  Load:   3,1*13 BTU  =  9 7^0 BTU/KWH heat rate
                         0.35
    
                       (0.85 x 9,750)-3,lil3 = U,877 BTU/KWH Heat  to Cooling Water
                                 q                      ^                   *>
                       (U.88 x 1CT BTUAWH)( /. C4  x 10  KW)  =   £JB   x 10  BTU/Hr Heat Load
    
      G,   otrean Quantity:  Q = (cfs)(62.U lbs/ft3)(3600 sec/Hr) = Ibs/Hr
                                               ,                                       o
                             Q = ( 3.3>    x 10T")(6.2i; x 10)(3.6 x 103)  =  -f .7-f  x 1CT lbs/Hr
    
      D.   Theoretical Stream
    
           Temperature Rise:/\Tr = Total Heat Load to Cooling  Water,  BTU/Hr
                                   Stream quantity, lbs/HrKl'BTU/lb °F)
                                    _±L
    
      E,  Actual Field
           Temperature Rise:AT^ = (Avg. Cross-Sect. T,  °F)-(Backgrounc? T^   F)
                                                                         °F
    

    -------
    

    -------
              THERXAL POLLUTION STUDIES
    Dat   c-3-6
    Location  Ohio Rivor at Nv.-r
    Flow ?-~ - -O'J
    Air Ten-feature
    pji?ERs:;c?; VATS
    Left
    Bank
    cfs P]
    3 - Bagir
    1 TEMPERS
    Apj
    ABOVE OUTFALL (M. P.
    t,
    Sur. ^0.6
    8« 60.5
    < 20'
    30 «
    
    BELOW OUTFALL
    Sur. 80.6
    U' 80.6
    8'
    12'
    16'
    20'
    2U«
    28'
    32'
    
    ZONE OF MIXING
    'ill
    Sur. 33.9
    U' 02.U
    8'
    12'
    4 16'
    20'
    2U'
    '28'
    32'
    
    DOWNSTREAM PT.
    Sur. 8?.U
    8' ci.7
    20' 1
    30'
    Sur.
    8'
    22 'SDK
    30'
    
    (M. P.
    Sur.
    U' "
    8« "
    12'
    16 « "
    20'
    2ii'
    28'
    32 1
    
    (M. P.
    Sur.
    h'
    8'
    12'
    16'
    20'
    2U»
    28'
    32'
    
    uant Nama
    i 71; °1
    " Phil iio
    o c? Djrn
    
    
    r Finish WF Work Dons By
    kTURE 30.6°"lT
    iv-? Hurdiity 8
    M, P. 2
    iii.o
    
    c. Distances Between Sampling Points
    Middle
    21*1,6
    80.6
    00.6
    80.6
    
    
    2U1.7
    80.6
    80.6
    80.6
    80.6
    80.6
    80.6
    80.6
    
    
    
    2)42,5
    85.7
    '6h . 6
    82.8
    01.0
    di.O
    
    
    
    
    
    NO INCREASE (M.
    Sur. 32.U
    8'
    9':222S
    30'
    02.U
    81.7
    
    )
    Sur.
    8'
    20 »
    2U' J3S.
    A • )
    ) By
    Sur.
    h'
    8'
    12'
    16'
    20'
    28'
    32'
    AV -> .
    )
    Sur.
    U'
    8'
    12'
    16'
    20'
    2U'
    28'
    32'
    P. 2U3.
    Sur.
    8«
    20'
    30'
    30.6
    80.6
    do. 6
    80.6 2h'
    '•- 1 ': *', \~. - •?.
    upper loading
    85.7
    83.9
    82. h
    80.6
    do. 6 18
    80.6
    
    
    
    T--'--vr. 
    -------
                              HlO
                                            c/   ,
                Maximum, efficiency  - 35p
                Heat loss within plant  = 15$
                Energy required f;;r 1 KV.JH  = 33i:l'; B7U
                Adequate mixing of  effluent
    
    B.  Hea^ Load:  3,I[13 BTU  =  9,750 BTU-'KJrtH he-1 rate .
                      U * J)^
    
                    (0.85 x 9,750)-3,L13 = U,S77 BTU/KWH Heat  to  Cooling Water
    
                    (U.88 x 103 BTU/KvH)( / flftk  x IO'KW)  =   3". 3  x  10   BlTJ/Hr Heat Load
    C.  Stream Quantity:  Q =  (cf3)(62.u Ibs 'f t') (_;6^C  sej/Hr)  =  lb?/::r
                                           •3-                      o                 5^
                          Q =  ( /-34  x 10 )(6.2L x 10)(3.6 x  10J)  =  J,7^  x  10  Ibs/Hr
    
    D.  Theoretical Stream
    
        Ten.perature Rise:/\Tr  = Total Heat Load  to Cooling Ivater, BTU/Kr
                                Stream quantity,  lhs/Hr)(l ?TU/lb °F)
                                   7.78  x  10^
    

    -------
    

    -------
              'iKEHTUL POLLUTION STUDIES
    Location  f.-r-^r  "rsek Pl^rr. - Ohio ^iver  -  •'.  P.  ?-;^
    71o>,- -2ji 00
    .'.i r r oro araturs
    Rsla
    La ft
    Bank
    AEOV3 OUTFAIL (
    Sor. 68.9
    8' 68.5
    20' 68.0
    30' 68.0
    
    BELOW OUTFALL
    Sur. 73. h
    h1 73.0
    8' flJb
    12' 6Q.5
    16'
    20 f
    21;'
    28»
    32'
    
    ZONE OP MIXING
    Sur. 73, I
    h' 73,0
    8' 72.5
    12'
    16'
    20'
    2U1
    23' '
    32'
    
    ECWN3TR2AM PT.
    -""•-!^« '~ } "7
    6? * - '} O
    • ' . U
    ?0' 6'>.8
    >G '
    cfa Plant Meoia K
    - Bsgin 6a °?
    bive Kunradity 62;i
    , T3-CPEBATU3E 68.7
    Apx. Distances
    M. P. 2.59.7
    Sur. 68.9
    8« 68.5
    20« 68.0
    30* 68.0
    .. A '
    (M. P. 260.5 )
    Sur. 75.2
    It' 71.6
    8' 70.7
    12' 70.1
    16' 69,8
    20' 69.ii
    2U« 68.9
    28'
    32'
    Avr
    (H. P. 261.0
    Sur. 73.1;
    li1 72.5
    8' 71.9
    12' 71.2
    16' 70.7
    20» 70.1
    2ll ' 69 . 9
    28 »
    32'
    A ~-J K •/
    NO INCREAS3 (M. P.
    Sur. 73.5
    8' 79. rj
    20' 69.?)
    30'
    r\ i T3"7 J-
    finish 6? "F
    * 1 » A *
    Batvsan Sanr>ling
    Middls
    ) Top Unlaadar
    Sur. 69 Ji
    8' 63.9
    20' 68.0
    30» 6S.O
    •j'-. '^-:.--, T?"--!3-:.'?-^!
    Power Lines - tc
    Sur, 73. U
    it' 71.6
    8» 70.?'
    12' 70.1
    16 » o^J,
    20' 68.9
    21i' 68.9
    28»
    32'
    Rf-:;r. TEiS?-r:?ATt
    )
    Sur. 73. h
    k' 71.9
    8' 71.6
    12* 71 ,.2
    16' 70.7
    20! 70.3
    2l4« 70.1
    28' 69,8
    32'
    ~<-c- -,•• r r .'_, t ,
    261 . 5 )
    Sur, 73. i,
    6' 7?X
    20' 6';,R
    30 <
    
    Work £
    2^.9,0
    Points
    
    Sur.
    8'
    20'
    30'
    -*1'"1 '^ , {,-> *,
    )D Of Old
    Sur.
    h'
    8'
    12'
    16'
    20 »
    2ii'
    28'
    32«
    j(?r : 7.v
    
    Sur.
    ij'
    8'
    12 «
    16'
    20'
    2ii»
    28'
    32'
    ; •-- --- t 7 } ,
    
    Sua*.
    3?
    20 3
    30'
    
    on a By
    
    
    
    69.8
    6«.n
    68.3
    68.0
    •"? ,5
    '-, D °,
    
    
    
    
    Right
    Bank
    
    Sur. 69,8
    8' _6P^.8
    20» 69.8
    30'
    
    D3.ru
    Sur. 7J_^
    ^i1 JL1.6
    8' _Zi,6
    12' JD-6
    16' JZI.6 .
    20' 71 ?
    2U1 _6^.8
    28'
    32» 	
    
    
    Sur. 71,7
    h1 7?,i
    8' .71.6
    12' 71.6
    16' 69.8
    20'
    21;'
    28'
    32 f
    
    
    Sur. 7T.n
    8' 72. <
    20' 71 6
    30'
    

    -------
    

    -------