THERMAL POLLUTION STUDY
INTERIM REPORT
Upper Ohio River Basin
October 196? - December 1969
Work Document No.
This document has been prepared to record a
specific water pollution control activity
carried out to date in the Ohio River Basin.
The information contained herein will serve
as a ready reference to aid in the planning
and development program in the Basin.
Questions or comments relative to this
material should be directed to:
Laboratory Services Section
Upper Ohio Basin Office
Ohio Basin Region
Wheeling3 West Virginia
United States Department of the Interior
Federal Water Quality Administration
Ohio Basin Region
June 1970
-------
Regional Center foi FiiMjoim'cntdl fiitoruidlion
USFPAUcponlll
16504ichSt.
PJiiIddclpfiia, PA 19103
I
-------
TABLE OF CONTENTS
Page
I. BITRODUCTIOiT » o » 1
P"]1T*1T")(~) O£> f. f. m n f. r> ft ei o m n m n n » Ct it o n * o _L
Acknowledgments .O....«oo.oooooo»o.o»»oo.oooooooo.°«oo. ..<>.•• 1
FindinSTS • * o e o •• o *'o oo • m o 9 » o o am «*ooa»oo 2
Re commendations o.o...ooo»ooo...o.o,.o.oooooo.0.«.«...«.o.... 3
General Information..OO...OO.O.O.OO....ODO...OOO...O..C, 5
I¥c THER1-EIL POLLUTION STUDIES........................................ 8
Methodology*) ..0oo*oo.o..o.«...oo.o..6o..««>.o........<> 8
Allegheny River Basin.. Co.....o,ooooo..0oo.o0<,0....<..oo» 9
Monongahela River Basin00..0000000.00 .0.000.0... 9
MuskLngum River BasinOo..ooo.oo0oooo..o...oo.,oooooo.0.o ^
Table 1 - Thermal Pollution Studies..0...ooooo0000o0 o.o 6
Table 2 - Thermal Load Conditions....«o..0ooo.0oo...o.o..o...ooo..0o. 9
Appendix - Field Data and Theoretical Conditions
U S. EPA Region HI
Regional Center for Environmental
Information ,„_..__,
1650 Arch Street (3PM52)
Philadelphia, PA 19103 ^
-------
1
BJTRODUCTIOW
Purpose
The purpose of this document Is to present the results of an interim
study of thermal pollution in the Upper Ohio River Basin. The study was
designed to develop procedures for aiding in the determination of major
heat loads in the Basin.
Thermal pollution.represents one of the growing threats to maintenance
of good quality water. This xisually occurs below major industries such
as steel mills and stream-electric generating plants. Other industries
such as chemical, petroleum refining, etc., contribute thermal loads of
lesser magnitude in most cases. Problems are associated with the size and
flow of the stream, proximity to other industries, and intended use of the
stream.
The stream-electric power industry is by far the largest thermal
polluter in the Basin., Each kilowatt hour of electricity produces about
Uj87? BTU of heat to the cooling water * Many of the progressive electric
power corporations are providing necessary cooling facilities to control
their thermal loads. In most cases, these cooling units are operated as
a closed system providing benefits to both the owner and the public„
Acknowledgments
During this Interim study, little formal contact was made with any
of the power companies since most of the work pertained to actual field
conditions on a random basisD Most area electric power plants operate near
rated capacity,.
River discharge information was obtained from the U. So Army Corps of
Engineers and the U. S0 Geological Survey.
-------
-------
II. SUMMARY
Finding's
1. Excessive (>5 F average increase) thermal loads were found in the
following areas:
a. Beaver Basin
1) Mahoning River, Ohio Edison Company,, Miles Plant (2^0 I'M),
Miles, Ohio - largest observed average river temperature
increase of 12.8 F
2) Beaver River, Pennsylvania Power Company, New Castle Plant
(293 MW), New Castle, Pennsylvania - largest observed average
river temperature increase of 10.0 F.
^' Monongahela Basin
l) Monongahela River, M. P. 29-5, West Perm Power Company,
Mitchell Plant (i|I|.9 MW) - largest observed average river
temperature increase of 11.3 F.
2) Monongahela River, M. P. 2£.2, Duquesne Light Company,
Elrama Plant (lj.25 MW) - largest observed average river
temperature increase of 7-2 F.
c. Muskingum Basin
l) Muskingum River, M. P. 118, Columbus and Southern Ohio
Electric Power Company, Connesville Plant (I|33 MW) - largest
observed average river temperature increase of 8.3° F.
2) Muskingum River, M. P. 68.3, Ohio Power Company, Philo Plant
(500 MW) - largest observed average river temperature increase
of 5-1° F.
-------
3
3) Musklnguin River, M. P. 28.15, Ohio Power Company, Beverly
Plant, lower "unit (876 I'M) - largest observed average river
temperature increase of 6.8 F.
2. No single average river tempreature increases greater than 5 F were
found for any power generating plants along the Ohio River, however,
some difficulties are present at the following locations:
a. Ohio River, M. P. l5«2, Duquesne Light Company, Phillips Plant
(31!? MW) - single temperature measurement found greater than
89° F.
b. Ohio River, M. P. 53-9, Ohio Edison Company, Sammis Plant
(1,960 MW) - single temperature measurements found greater than
89° F, some hot spots as high as 96.k F. Future proposed
expansion will increase average temperatures over 7 F.
c. Ohio River, M. P. 76.5, Ohio Power Company, Cardinal and Tidd
Plants (l,ij.52 W) - single spot temperature increases greater
than 12° F.
Recommendations
1. Cooling facilities are recommended to be installed immediately at the
following locations:
a. Mahoning River, Ohio Edison Company, Niles Plant
b. Beaver River, Pennsylvania Power Company, New Castle Plant
c. Monongahela River, M. P. 29-5^ West Penn Power Company
Mitchell Plant
d. Monongahela River, M. P. 25-2, Duquesne Light Company, Elrama Plant
-------
-------
k
e. Muskingum River, Mo PC 118. Coluirims and Southern Ohio Electric
Power Company, Connesville Plant
f c Muskingum River,, M. P» 68.3, Ohio Power Company,, Philo Plant
g. Muskingum River, M. P. 280l5;> Ohio Power Company, Beverly Plant
2. No future expansion of any of the above power plants should be
permitted without the installation of cooling facilities.
3. Any future expansion of the power plants listed below over the capacity
indicated should not be permitted without the installation of cooling
towers.
a. Ohio River, M. P. 3$3 Duquesne Light Company, Beaver Valley
Power Plant . (100 Mtf)
bo Ohio River, M. P. 53.9.J Ohio Edison Company, Samrais Plant
(1,960 MO
c. Ohio River, M0 P. ?6.5* Ohio Power Company, Cardinal Plant
(1,230 MW)
do Ohio River, M0 P. 102.5, Ohio Edison Company, Burger Plant
eo Ohio River, M0 P» 111,1, Ohio Power Company, Kammer Plant
(675 Mtf)
f Q Ohio River, M. P. 161.5, M0nongahela Power Company, Willow
Island Plant (215 MOT)
g. Ohio River, M0 P<, 2iil06, Appalachian Power Company, Phillip
Sporn Plant (1,060 I'M)
h. Ohio River, M. Po 26001, Ohio Valley Electric Company, Kyger
Creek Plant. (1,086 ]\¥)
-------
:il. STUDY ARM
General Information
The electric power generation needs have been doubling in capacity
every ten years during the past., few, decades. Predictions indicate that
this trend will more than prevail for the next few decades.
Fossil fuel power stations are the most common source of electricity
in the United States. Hydroelectric power is generated in some parts of
the country with new hydro installations being built in many areas, but
this will only represent a small part of the total capacity. Nuclear
power stations will become more common along with their greater cooling
water needs.
The Upper Ohio River Basin has a large coal reserve making this type
of fuel very attractive for steam-electric generation. Many large power
stations are being built as mine mouth generating plants. A great future
exists for the electric power industry. At the present time there are
about 105 electric power stations in the Upper Ohio River Basin with a
total design capacity of about 20,200 megawatts. In one hour the combined
capacity of these plants can produce a heat load to the river of 330 billion
BTU's or enough energy to heat about four million residential homes. About
five major plants with a design capacity of 10,600 megawatts are under
construction at the present time in the Upper Ohio River Basin. Only one
of these future plants with a design capacity of 1000 megawatts does not
have provision for cooling facilities.
About 20% of the electric plants in the Upper Ohio Basin were selected
for field studies. Most of these study units produced more than 200 megawatts
}f power each. Field studies wero set up for several tributaries and the
-•~'.z ?iver to provide a good cross section of companies, ninor basins and
-------
-------
section of companies, minor basins and thermal conditions., This
report covers the study psriod of October 196? - December 1969 »
summary of these plants appears in Table 1.
Table 1
THERMAL POLLUTION STUDIES
Upper Ohio River Basin
Capacity
Nile Point Company (Megawatts )
I. Allegheny River Basin
West Perm Power Company, 1|16.1
Springdale Plant
16.0 Duquesne Light Company, 26205
Colfax Plant
II. Beaver River Basin
Niles, Ohio Ohio Edison Company 25>0.0
(Mahoning River)
New Castle, Pa0 Pennsylvania Power Company 293=0
(Shenango River)
in. Kanawha River Basin
78.5 Appalachian Power Company, i|2600
Kanawha River Plant
IV. Ilonongahela River Basin
29°5> ¥est Penn Power Company, Mj.S<>7
Mitchell Plant
25° 2 Duquesne Light Company, ii25»0
Elrama Plant
Vc Haslojigum River Basin
Conesville, Ohio Columbus & Southern Ohio lj.33.0
Electric Company, Conesville
Plant
Philo, Ohio Ohio Power Company, 500 00
Philo Plant
-------
-------
'•ale Point
Beverly, Ohio
71. Ohio River
2.1
15.2
35.0
53 °9
76,5
102.5
111.1
161.5
210..6
260ol
VII c Scioto River Basin
Columbus, Ohio
Ohio Power Company
Muskingiun Plant
(Additional 6l5 ntw has
cooling facilities)
Capacity
(riegavabts)
876.0
Duquesne Light Company, 180.0
Reed Plant
Duquesne Light Company, 3l5°0
Phillips Plant
Duquesne Light Company, 100.0
Beaver Valley Plant
Ohio Edison Company, 1960.0
Sammis Plant
Ohio Power Company, 222.0
Tidd Plant
Ohio Power Company, 123000
Cardinal Plant
(The Tidd and Cardinal plants
were combined for the study. )
Ohio Edison Company,
Burger Plant
Ohio Power Company, 675.0
Rammer Plant
Monongahela Power Company, 215.0
Willow Island Plant
Appalachian Power Company, 106000
Sporn Plant
Ohio Valley Electric, 1086.0
Kyger Creek
Columbus & Southern Ohio 23000
Electric Company, Picway Plant
-------
-------
8
TnSPJilL POLLUTION STUDIES
Kabhodology
Each study section was measured by a temperature sensing instrument
containing a calibrated thermistor on an electrical cable. All measurements
were made from an anchored boat, so that depth data could be obtained from
the same pointo Temperatures were measured across the river at several
places to provide good cross sectional data at several depths.
To adequately assess the thermal loads in each area, a reference
station was established upstream of the power plant. Conditions causing
"short circuiting" of heated water moving upstream from point of discharge
to point of intake were also observedo Short circuiting is somewhat dependent
upon the type of discharge structure used* Downstream stations were chosen
to show the effects of the thermal loads at various distances.
Although three dimensional conditions exist in the mixing zone
(longitude, latitude, and depth), this study considered each station as a
cross sectional volume of river representing a specified quantity of heat.
The mixing zone is merely defined as the reach of river where heated water
causes the river temperature to increase over ambient. Recovery is con-
sidered at the point where the temperature starts to decrease to ambient
temperature. The average temperature and ranges were reviewed for hot
spots, excessive variations and conditions which could affect aquatic life.
A comparison was also made with established procedures for calculation of
theoretical conditions based on rated capacities of the individual power
station per FWQA Manual, "Industrial Waste Guide on Thermal Pollution",
September 1968. No attempt was made during this interim study to relate
the rated capacity to the actual operating capacity during the actual study
J"^ -L1^ u, *
: 'vrr.al Loads
-------
•
•
c
s
c
,r
4
•r
^
S
C\j C
C
o
H T
rO '
cd C
EH H
r
c
i
J
1
,1
r
•
*
O
CO
CU
y H
fe
CM
O PM
O
.
CA
CO
CO
O h
0
•
GO
c—
MD
o
CM
r>-
0
O
Q ^3
U O CO
3 H CH
H P=) O
o
0
£• —
CO
j
H
3
3 co
3 MD
J CO
jj>
f ^
1
O
H
I
3
H
j r5^
H -H
J 0 S
3 rj g
H ft
O
• JH
PH 0
t>
• -H
r=^-< p~j
•LA
CM
MD
CM
0
rd
ta
O CD
• H
MD H
rH ^
CH
ttf
ft
S
o
o
^
f~f
C.
S
G
O
4^ a
X! O
W -H
•H -P
H~3 d
_4-3
Q} CO
CO "*
CJ oj
O'rH
3 O
0
g;
CM
^
•
O"\
CO
J
*
CO
^
o
H
O
H
O
O
r—
co
CO
NO
l
O
H
1
rj^—
H
•
vQ
i 1
1
r^H
W
IA 0
• rH
r- H
H «a<
fe>
£
OJ
ft
S
O
o
+D
0 ra
!3 H
O PH
PH
0
^ i — 1
C^ Cu
CD nCj
Pn bf,
^
+J -r~1
tO fn
CD _&
CO
CD
M
CM
0-
*
•LA
CO
CM
•
rH
r>-
co
CM
H
-cf
-d"
rH
MD
O-
p~^
CO
MD
|
rH
1
ON
O
•
O
•LA
CM
M
•H
a
o
f!
f~t
^.^
a
PL,
O
O
« O
O -H
CO ,-C^
•H O
Tr] »^
ro
O 'O
-P rH
P^ •-',
O
fe
rH
MD
ON
CO
H
•
— zf
r—
0
qj
a>
m
I-S
£ S-H
O Ctj
o >
J— j
M r*i
O W
Is G
P-i (D
p_,
cti
•H **
f^ 0
GJ i — i
J> -f-1
H co
n o
C
ct [5
i!) 'D
^
<-<
CM
_J
•
H
Cv~-
tA
•
CA
NO
CA
CM
C—
' CA
o
0
"LA
CM
CO
MD
1
o
H
o
H
0
•
\o
C\f
J
cti
AH
^
i_r\ c\j
* s5
CO 03
r-^
1
fi,
S
Q
O
M
0
o
PH
C
CTJ
•H
^H
u
H
fj
^n.
C4
CM
A
CM
CM
0
rH
tA
O
ON
ON
•LA
-=f
00
o
o
p}
CO
1
MD
H
o-
o
•
IA
°i
•LA
CM
%
e
o
•H
CD
O
ni
H
n3
M
C
2
^
1
i— i
OH
rj
CM
A
CO
H
ON
NO
O
CO
CM
r>-
•LA
(A
O
CM
NO
CM
CO
NO
1
H
H
ON
O
1A
rH
cd
to
CM O
K7^
g
§"
o
o
+3
•H 'C
*~ rH
0 P-t
cc erf
CM
A
MD
CO
ON
J
CA
OO
(A
H
H
co
^
0
o-
CM
rH
CO
MD
1
IA
H
i
0-
o
ON
^
ClJ
I — 1
nS
bD
C
^ §
ON o
CM S
t>5
§
o
o
^
PH H
P-.
'"•
a ,-i
'L' H
P-, t)
CNJ
A
IA
jjj
CO
CO
-j-
c^
CO
IA
0-
CA
O
CM
MD
CM
CO
MD
I
H
H
ON
O
ON
H
1
"^ §
ON O
CM g
r?
ft
O
O
JH
P-. H
**1
r-1
S H
0 H
•
CD
O CD
N G
O
c
*lj ~~
•d -H
e K
•H • 0
d S CD ^
•t 1 C O
CON
CD -H N
j9 „. .,n y
CD CD S -H
O pi X -H
a ra -3 S
•H KJ £
CO C •
cu S C -H h,
fn -H M
P CD "^0
-P GO T5 Q E>
nj ctj 0 £-j o
^H CU 'C-i ' O
CD !H 9 CO 0 ^ 0 -H °
Cl3 CiO CD rH X CO
H ^ M £ g
-q K (-1 W
-------
-------
10
to
CD
O
CO
a
P3 .—I
.-4
4^J
i — i
^
Pi fin
0
CM
CO
, vo
0 P=H
0
•
CM
NO
°^
pq P-H
0
•
CO
. ^
i r- i
•=q PH
O
CA
O
[5
O en
H CH
fi) O
CA
*\
cx
ON
NO
CD
-P
erf
R
1
XA
OJ
1
ON
H
CM
•
XA
D—
[-—
•
CO
NO
H
•
XA
o-
XA
o
o
ON
»\
r-i
ON
NO
1
fA
CM
ON
H
A
XA
*
ON
l>-
co
•
ON
NO
CO
•
NO
O
CD
H
O
O
ON
«\
H
ON
NO
CA
CM
ON
H
CO
•
C--
CO
-J-
»
CA
CO
H
•
CM
1A
O
O
CO
CO
*\
CO
CO
NO
H
CM
1
o-
CM
NO
•
ON
CO
CM
•
XA
CO
H
»
H
O-
o
o
CO
CO
•\
CO
CO
NO
D-
H
1
0-
CM
NO
•
ON
CO
-cf
•
CM
CO
CM
•
H
NO
0
O
o
0
*\
H
H
ON
NO
CO
H
1
0-
CM
\'
CO
•
o-
CO
I>-
.
CA
0-
OO
•
CA
NO
CA
o
o
o
•\
CM
H
CO
NO
1
p
1
ON
OJ
'•J
CM
•
NO
— (•
CO
»
CA
CA
H
•
CM
O
H
O
O
XA
«\
-d-
-ct
CO
NO
1
O
CM
1
CM
H
CM
\<
-^T
•
NO
ON
-cf
*
CM
CO
NO
•
H
ON
CA
O
O
O
•>
iH
H
ON
NO
I
CM
J
[-—
CJ
A
O
•
NO
CO
CM
•
XA
C--
XA
•
m
CM
j
O
o
o
•^
NO
CO
NO
1
CA
o
H
CM
A
O
*
NO
CO
CA
•
CM
i^
NQ
•
l
CO
-3-
o
o
XA
•V
NO
ON
NO
1
O
CA
1
ON
CM
CO
•
CO
>-
CO
»
ON
NO
O
•
CM
GO
O
O
o
o
•N
XA
H
CO
NO
-^r
o
H
PH
oi
O
o
o
1A
NO
C--
CO
O
CO
H
XA
H
1A
H
O
NO
ON
H
O
NO
ON
H
O
NO
ON
H
CM
3
H
CM
1A
-d-
H
-
XA
c5i
o sf
,R O
-P O
O
•H
r^
o
H
R"
a
s
o
o
^
CD
o
•rl
X
O
^
O
H
•H
r'
PH
a
£'
o
o
0
§
P-.
o
•H
,R
O
O
•H
-R
O
*-\
5
o
rH -J
ft
s
o
0
-p
,R
M
•H
i^i P
»
R
erf
ft
s=!
0
CJ
-p p
,C R
hfl erf
•H H
t-i PH
CD CO
R P,
'ft -H
0 r-l
2 rH
CT'-H
££
CM O
xAid
H 0
s
ft
s
o
0
p P
-R R
hO S
-H H
H-q PU
CD CO
R ft
CO -H
1) H
PJ H
O"^ *r-i
^j ^
Pi PU
ON o
• -H
CA rR
XA o
h,
R
oj
ft
e
o
O
p
R R
O rr
CO iH
•H P-
T3
K m
•H
O S
•d ^
Jwj CT
O 00
ON
CA
XA
>j
R
nj
ft
^
0
o
R
O
CO
.^
'a
r-~l
CJ
•d
o
o
3
o
p
R
en
H
PH
CO
•H
^
;—
^Tj
ON
*
fA
XA
i>5
R
erf
g-
0
O
R
O
CO
•H
Tj
K
O
•H
O
O
•H
XJ
O
-p
R
rrf
Cui
u
• -j
'-,
C/J
XA
NO
i>-
t>5
R
a
s
0
o
in
0
£2
O
•->
O
•H
*-"•*
O
•H
.R
O
GO
P
R
3
H
PH
rH
erf
M
•H
-a
H
erf
O
,,H
rg
^
XA
NO
c--
!>s
R
3
ft
6
O
o
^
O)
j2
o
o
O
•r-i
r-Cl
O
O
•H
^'
0
m
-P
R
erf
H
PH
H
erf
R
•H
T5
f-f
rt
CJ
"3
tj
^3
•H
^H
XA
• o
CM -H
O JR
rH O
t>s
R
d
i1
o
o
-p
R R
O cS
CO r-)
•H OH
Tj
W ^
•J
o to
•r-i *H
O P3
-------
-------
CD
K rH
"l — 1
0 PH
O
0 Pm
0
m PH
0
<^ fe
0
0 OT
H <+-,
BH 0
CD
1
S>»
-P
•H
si
a
n3
O
• ?H
PH 0
i>
s; fS
t>t
£
?
g-
o
o
A.
^
o
CO
VO
rH
s
2
I
•*
VO
ON
vO
H
O
H
3f
•LA
XA
• o
CM -H
0 X!
rH 0
f>s
£|
d
ft
g
O
O
-P
G G
0 cd
CT i — 1
^ PH
r-^-1 ~J
' ~' -H
'. ^
H
CA
-^j
r* —
CO
ON
vO
H
H
XA
H
o
0
o
*\
o
rH
CO
vO
H
rH
0
rH
•LA
L* —
vQ
H
•
rH
H
H
£>>
Cu
ft
S
o
o
JH
CD
Jg
O
p_,
O
•H
C
O
•H
,£
O
-P
£
crj
H
PH
?H
CU
c±
^
i^
rH
V
O
vO
CO
00
CM
CO
CM
•
H
•LA
d
0
o
rH
•\
O
rH
ON
vO
-=r
0
rH
tt
CM
•LA
rH
VO
rH
h,
G
a
s
o
o
?H
CD
&
o
PH
Rj
H
CD
^3
Pj
ao
c
o
G
g
0
S
0
-p
G
cd
H
PH
T3
G
d
H
n
M
h^
O
rH
rH
|3
rH
V
ON
r>-
O-
rH
t>—
VO
XA
CM
0
CVI
o
O
CO
•-.
rf
CO
VO
o
rH
1
O
H
O
S
H
NO
H
-cf
CM
>5
S
ft
s
o
0
JH
CD
^
0
PH
G
crj
.,^i
r^
O
H
^j
—4
ft
O
•H
,G
o
-p
G
CTJ
H
PH
G
?H
O
ft
CO
ft
•H
H
rH
•d
CU
H
V
O
vQ
CO
CO
CO
r>-
CA
H
CO
o
o
0
XA
«\
rH
CA
ON
VO
VO
CM
1
vO
O
S
H
vO
rH
J"
CM
h,
G
crj
ft
S
0
O
?H
CD
£
0
PH
G
Oj
•H
,A_,
o
cd
rH
o
CD
H
H
>*^
CD (D
H CD
H ?H
^ 0
CH
O t)
A-t ~>^
-------
-------
APPENDIX
Field Data and Theoretical Conditions
-------
*/4 MW rated capacity
Maximum efficiency = 35!*
Heat loss within plant = 15%
Energy required for 1 KWH = 3>kl3 BTU
Adequate mixing of effluent
B. Heat load: 3,itl3 BTU = 9,750 BTU/KWH heat rate
w * .3 ~)
(0.85 x 9,7^0)-3,lil3 = U,877 BTU/KWH Heat to Cooling Water
3 5" ^
(li.88 x ICT BTTJ/KVffl)( 4J4, x 10* KW) = -2, 03 x 10 BTU/Hr Heat Load
antity: Q = (cfs)(62.1; Ibs/f t3) (3600 sec/Hr) - Ibs/Hr
Q = ( S.7 x 103)(6.2U x 10) (3. 6 x 103) =
D. Theoretical Stream
Temperature Rise:/\Tr = Total Heat Load to Cooling Water, BTU/Hr
Stream quantity, lbs/Hr)(l ETU/lb °F)
E. Actual Field
°
Temperature Rise:/\Tr = (Avg. Cross-Sect. T, °F)-(Background T, F)
* " _717°F — _7P7°F = 1,0 °F
r
-------
THEfcXAL POLLUTION STUDIES
Date ''-lO-oS Location Alle-herr/ River - "J. P. 17.5
• '
..LOW
^ '' jO
cfa Plant Na^ia Sorin^ria
Air T"3"oarature - Be^in ^8? • T^F Finish
RZjZRSNCS V&TER TSMPERA.TUSS ?8.6 °F
1 J» _ r,N ^» o 4-
— -^ * ! .-• O iJ
" '..W1 •« '"Oin
c f „ f F
M ^
tT. » > •
?enfi Pow
?r 'JoTTD-snv'
Work Done By Lorenfcs,
I7, 7
Left Apx. Distances Batvaen Samling Points
Bank Middle
225'
AB072
Sur.
8'
SO?
30'
BELCtf
Sur.
a'
8'
12'
15'
20'
21;'
23'
32 !
OUTFALL
79.2
78.8
7b.6
OUTFALL
83. a
62.8
Si .2
cO. 8
!'-r \,
(M. P.
Sur.
8«
20'
30'
(M. P.
Sur.
8'
12 »
16'
2!*'
28'
32'
ZONE OF MIXING (M, P.
Sar. 60. 6 Sur.
It'
8'
12'
16'
20 '
2'1 '
28'
32'
60.6
SO , 2
ECWN3TR2AM PT,
S-ir. 31.0
X'S!
"J2T
^._^ ^
80. 6
•- 0 . 2
7q.B
"' j , d
It'
8«
12'
16'
20'
28 »
32'
17 "7
i ( . f
17.5
82. U
81.5
81.5
80.2
79. h
17.0
81.0
79.5
79. U
79.0
. NO INCREASE (M.
Sur. 81.0
U' ^K
8' 231
16'
20'
80.8
BO, 6
7?.c?
79. 7
7C O
)
Sur.
8'
30'
}
Sur.
8'
12'
16'
20'
2U'
28'
32'
AJ
)
Sur.
8*
12'
16*
18' 231
2it«
28'
32'
•
P. 16.
Sur.
a- tx
8' 231
12' 331
16'
20'
78. 8
78. U
78. h
-, v - " •-'. ; i --•
79. U
78.8
78.6
78. li
78.!}
r«.\.-.f -,tn
81.0
.79.li
79.0
78.8
78.8
78.6
1 '• - r ? ~ f
5 )
81.2
81.0
80. J.
79.0
76.3
7,1 . 6
Sur.
8'
20»
30'
Sur.
12'
20'
2U«
28'
32'
Sur.
h'
8'
12'
16'
19' 231
28 »
32'
SttT.
h' IX
12' BX
16 '
Hos
775'
;> 7^.7 :?
78.8
78.8
78.8
78,6
. 78.6.
~J t>( ,'n J K
80.0
79.2
78.8
73.8
78.6
78. U
: '<.£. ;-
81. h
80.6 U'
80.6 8«
7QJ, 12'
73.8 16'
7c . ^ 20 f
er
High
Bank
Sur,
8'
20'
30'
Sur.
U'
8'
12'
16'
20'
23'
32.
Sur.
8*
12'
16'
20*
2li'
23'
32'
231
2SX
JOT33,
r
78.8
76." I
J9..7
79.2
79.0 '
'78.8
82.2
80.6
80.6
itt
82. h
81,5
8 3. ~2
79.0
79.0
->£> C
f ,' , . :
-------
-------
/O j 19 A P
A. Assume: -x 4 3 HVJ rated capacity
Maximum efficiency = 35%
Heat loss within plant = 15$
Energy required for 1 KWH = 3 ,kl3 BTU
Adequate mixing of effluent
B. Heat load: 3^13 BTU = 9 ?^0 BTU/»7H heat rate
o.3£
(0.85 x 9,750)-3,U13 = h,S77 BTU/K^/n Heat to Cooling Water
(ii.88 x 103 BTJ/KWH)( J.6S x 1C KW) = /. 3C| x 10 BTU/HT Heat Load
C, Stream Quantity: Q = (cfs)(62.l< Ibs/f t3) (3600 sec/Kr) = Ibs/Hr
=! o ?
Q = ( ^. 7 x 10" )(6.2lt x 10) (3. 6 x 1CK) = ! .clS x. 10 Ibs/Hr
D. Theoretical Stream
Temperature Rise:/^Tr = Total Heat Load to Cooling Water, BTU/Hr
Stream quantity, Ibs/Hr )(1 3TU/lb OF)
/„ 9^" x 10
E. Actual Field
Temperature Rise:/\Tr = (Avg. Cross-Sect. T, °F )- (Background 'T, F)
°F - ^.6 °F
-------
-------
TK2RHAL POLLUTION STUDIES
Location Allarh^nv Ju ?, 16.0
~;0'/
Loft
Bank
ABO 73
U1 3X
8' 2*3
12' J3X
16'
BELCH
Sur,
M
8'
12'
16' "
20'
2 '4 '
28' "
32'
5703
cfa ?!
i.TjuratrUrs — B6gi
SJ7CE WATER TEMPER
Ap:
200'
OUTFALL
81.5
81.5
80.8
60.6
80.0
OUTFALL
82.6
81 .9
80 . 8
^.0.6
79.0
lar.t Jiana
n 37.8°
&TU3E 80.
Col fax -
? Finish
.6 °F
Diiauesne
i Li-'ht Coi
-r-p n H'1"''
"^.o"^'? Work Dons By
vt P
i * a — •
15.8
x. Distances Between Sampling Points
Midcila
600'
L.O ^*3fi o2» f
S£
Jones.
,»
(M. P. 15.9 )
Sur.
h' SX
8' 2HK
12' 3GDC
16'
20'
(M. P.
Sur.
U'
8'
12'
20'
28»
32'
ZONE 0? MIUHJ (M. P.
Sur. 83.lt Sur.
U'
8' "
12'
16' "
£0'
2ii'
28'
32'
82. !a
DCWN3TR2AM PT,
Sur. 82.6
8' "
tj !
3-j '
82.2
U«
8«
12'
16«
20'
23'
32 •
, NO men
Sur,
8'
20'
30'
81.5
80.6
78.8
78.8
78.8
78.8
15.7
82. h
82. h
82. h
80.6
79.0
78.8 .
15.0
82.8
8L5
80.6
79.2
;i
SASS (M.
82.6
82.2
Sor.
U' SS
8' 23X
T 9 i ^TfTV
J_^_ Tli^ A
16'
,v^-,
Stir.
It'
81
12'
16' "
20'
21'
28'
32'
^^C-'^J:!
)
Sur.
U'
8'
12'
16'
20 1
2k*
28'
32'
' f :-,"- I "
P. lh.2
Sur. I
8« "
20'
30'
82.0
80.2
76. d
78.8
78.8
^r fi -. 77,'
82.2
81.5
80. 61
79 . h
?3.8
78.8
1 i fir'
82.0
8l,5
79.2
78.8
78. 8
78.8
7 ," - i
-------
OHIO ?r:)l
-------
THBP.MAL POIXOTIGIT STUDIES
9-11-69 Location Mahoning River @ Miles (?-!. P. 52-x-)
l''ir/j
;, _-• "Y>g-£
'' ^ ativ
I. i Sinai
*-<-.» 71
;-iid. 71
Bot. 71
376
peratura -
e HusnicLity
ng Be fares
.6
r)
.2
cfs Plant Name
Niles - Ohio Edi
Begin- 77 w? Tinish 8?
h£
Apx.
ce Water
• Depth 0 '
son. CompanY_
°F Work Dona 3y
Lf, Beginning Time i
Distances Between Sacpling
Middle
Temperature (M.P. £2.3
Sur.
Mid.
Bot,
Depth
A • •' -
.UCVE OUTFALL (M.P. 52.0
SUP. 73.1;
6' .31 71
"0s "~~
"*' -n--.--.-um
.6 6'
Sur. 73
81 71
20'
30' _
r/IDSNCE OF THERMAL SHORT
•h
.6
»-«MVMi
CIRCUIT?
P
E
it
~? ' , "l f-
) At Intake
Sur. 73. k
20'
30'
Yes
Points
)
Depth
Sur. 7U
6' &1r 22.
20'
30'
, o
200
Sur.
Mid.
Bot.
8'
.8
,'&
Lorentz & Mo
r.igat
Bank
71.2
71.2
71.2
Sur. 77.0
V ftfc ..75.?
6|i^waytr ^O ^C
'*SiX ../^.i,0
30'
B2SCHIETIOS 0? FIHDIHGS - jacffllTUDE AM) TYPE About 1 F total average rise at
intake. Plant on left bank, looking upstream. Discharge channel faces D.S.
from plant. Hot water crosses stream and flows upstream along right bank., then
crosses on surface to intake.
."AXB-aW OUTFALL TEMPERATU5E 8^.6 TBS
3IS3 0? MAXIMUM TEMPSBATURS ZO?IE: 50' D.S. of outfall, along right bank
::%IOW OUTFALL (M.P.
,/r. 81|.6 Sur.
t> ! Ob • ^ !*• '
,U 85. li"' 8' "
>:J * 12'
.:,' 16'
:' 20'
, ; 21* '
^; 23'
51.8
824
82 .k
81.0
)
Sur.
4'
8' ~
12'
16' "
20'
2U1
23' "
82.0
8l.lt
81.0
Sur,
U'
8' "
12'
16'
20'
2U'
28s
81.0
81.0
81.0
Sur.
V
8!
12'
16'
20'
2V
23'
81.7
.81. li
81. S
-------
s; ,-v f& i *- '/AN_) A 'r';^ ;-:i7 c
1?. 6 /if..
A. Assume: c^ *? 3 I'M rated capacit
i
Maximum efficiency
Heat loss within plant =
Energy required for 1 KWH = 3,U-3 BTU
Adequate mixing of effluent
B. Heat Load: 3tiil3 BTU = 9}7^Q BTU/Kiffl heat rat
(0.85 x 9,750)-3,iil3 = M?? BTU/KWH Heat to Cooling Water
T. S" 9
(U.88 x ICT BTUAWH)( J, 93 x 10 Klvr) = /. >f-t, x 10 BTU/Hr Hsat Load
G. Stream Quantity: Q = (cfs)(62.l| lbs/ft3) (3600 sec/Hr) = Ibs/Hr
t> e
Q = ( S. 40 x 10 )(6.2lt x 10) (3. 6 x 103) = /.9S x 10 Ibs/Hr
D. Theoretical Stream
Temperature Rise:/^Tr = Total Heat Load to Cooling Water, BTU/Hr
Stream quantity, Ibs/Hr) (1 BTU/lb °F)
, Actual Field
Temperature Ri3e:/\Tr = (Avg. Cross-Sect. T, °F)- (Background T, °F)
A T = ^l_i_°F - 74.^ °F = /{) 0 °F
i_i - ! - - -
-------
-------
1-5 ft
TEiKMAL POLLUTION 3TTJDI23
9-10-69 Location Beaver River Below New Castle (M. P. 20.1-x-)
o6TT Cf3 PLar.t Name
„.,-'• '-'•'• - """ "* ~ * A '7 3~A
ia.iiOi-r5.'t;!'ii"e - Begin- of *j
t';ve 2'T"~tldity 75 cV,
Apx. Distances
Mew Castle Plant
? ?ini
Between
Middle
sb 80
Sampling
- Penn Power Company
Op Work
13 Tims
Points
Bone £3
1100
r Lorentz &
Hi git
Bank
Mose:
Bef arenas Water Temperature (M.P., 20.55 ) Junction with Oxbow
Sur. 7i>.2
;-iid. i^.^
'got. /i?.^
Depth 9
i
Sur.
Mid.
Bot.
Deptk
7U.8
Y5.2
Yi>.2
12'
Depth
Stir. 7iuU
Mid.
Bot. 7U.1
ii'
i v - "' "> ,'i • -
A207E CUTEALL
2T1T. Dam
8'
20' .
'0'
(M.P.
SUP. D
8'
20'
301 _
20.05
am
™**^m—m~*
) At
Sur. 75.2
20'
30'
small diversion dam
Sur. 75-2 Sur. 75-2
5 '^sx
20'
30'
,75.2 U'SaX 75o2
20' _
30'
L7XS3KCS 0? THSSML SHORT CIRCUIT? No
B2SCHIFTIOH OF FINDINGS - MQOTUDS AM) TYPS
STZ3 0? MAXEHUM THGSRATURE ZOHS:
86° F
1130
Width of outfall and out to about 30' from
outfall, shallow - 2' to 1^' "deep
P..1IOW OUTFALL (H.P. 20.00
r:,r. 75.2 Sur. 75.2
2'2E Y5.2 5' m1 75.5
o' 8'
!••> ! 12 '
16' 16'
,« 20'
-"'•-' 2U'
V "" "" 23'
32'
) At Power Line
Sur. 82. U
6' M 78.8
8'
12'
16'
20'
2V
33'
32'
Sar. 89.6
V 89.6
8'
12'
16'
20'
2k'
23'
32s
Sur.
2'jfe
8'
12'
16*
20'
2k '
23' ~~
32'
89.6
89j,6
-------
River, M. p. _7>L4_
Oc7o6£^ ./Q. ...j 19_fcS
rated capacit
Maximum efficiency = 35'^
Heat loss within plant = 15$
Energy required for 1 KWH = 3,1±13 BTU
Adequate mixing of effluent
B. Heat Toad: 3,1*13 BTU = 9j?^0 BTU/KWH heat rate
U. jy
(0.8$ x 9 ,7 50) -3, 103 = U,877 BTU/KWK Heat to Cooling Water
1 £ %
(it. 88 x ICT BTU/KWH) ( 4.14 x 10 B-J) = 2..Q% x 10 BTU/Hr Heat Load
G. Strean Quantity: Q = (cfs) (62.14 Ibs/ft^OoOO sec/Hr) = Ibs/Hr
Q = ( 2.S x 103)(6.2h x 10) (3. 6 x 103) = 6" 4 I x 10 Ibs/Hr
D. Theoretical Stream
Temperature Rise:/\Tr = Total Heat Load to Cooling Water, BTU/Hr
Stream quantity, Ibs/Hr )(1 BTU/'lb °F)
J2
* 10
E. Actual Field
Tenperature Rise:/^^ = (Avg. Cross-Sect. T, °F)-(Background 'I, F)
ft T • 66.3 °F — 43.9 °F = ^.3 °F
-------
TJE2MAL POLLUTION STUDIES
r.'..:e ".\ -ID-'r'S Location janawha Rjygr - Appalachian Power Glasgow Plant.. Jj:.?- .Iri. ~>
^—''l ^U2l2___ cfs ?^n« -^a Kans.wha River ^anr. , _J
Air isr-parature - Begin °?Finish °F Work Dona By Jo-^'.. Fo-qr
relative Humidity = 62>j
r>27z?.s::as WATER TJSKPERATUSE 6k. oH, ?, ?q.7
La ft
Bank
AFX) 72 OUTFALL
Sur, 6'i.0
3 ' o'li . 0
20'
30'
BELOW OUTFALL
-« f r\ Q
bur. o9 . 8
U ' 66 . 5>
8! 65.8
12' oh. 7
"^5'
20'
Apx. Distances
(M. ?. 78.6
Sur. 6h.O
8« 6h.O
18 KSX oh . 0
30'
,4 VER JA-
CK. P. 78. U
Sur. 71. U
k' 68.0
8' oh.k
12' 6h.U
16'
20«
Betvaen
Middle
} Above
Sur,
8» ""
20'
30'
5-t. T?-1-
Sanpling Points
in bake at ice breaker and
6U.O Sur, 63.8
63.8 8' 63.8
63 o T3'33B 6h-0
30'
•i?r^ATufc? '. iS. •'? "• F
Right
Bank
under hi?h w:re
Sur. 6u.U
8' 63.8
lU'SCH "~6'3.8
30'
) At coal unloader dock
Sur.
U' ""
8' ""
12'
16'
20'
68.5 Sur. 68.0
67.1 fr 66.7
67.1 8' 66.3-
6U.!i 12' 6U.9
6h.L 16' 6Luh
6U.h 20' 6U.U
Sur. 66.2
8' . 65.2
12 » rot
16'
20'
2li' 21»» 21}' 2U' 6UJ-i 2ii'
28'
32'
ZONE OP MIXING
Sur,
li'
8'
12 «
16'
20'
28'
32'
AuEJ?^:
(M. P. *
Sur.
U»
8'
12'
16«
20«
28«
32'
f-£. Tfr'
-)
Sur.
hj
3'
12'
16 1
20'
28'
32'
•iP^-R.iTuRT: '. 64, ! * F
Sur.
u«
8'
12'
16'
20'
28'
32'
Sur.
I*'
8'
12'
16'
20'
2Ii! 2li' 21^' 2U1 2li'
28'
32'
28'
32'
28'
32'
28'
32'
28»
32'
DOWNSTREAM PT.
Sur. 56. 2
"""* ? >-N. O
U OO • £_
20*
.;0 '
NO INCHSASS (M. P.
Sur. 66.2
8' 6o.2
20'
30'
78.2
Star.
8'
20'
30'
) At boat launch
65.2 Sur. 66.2
65 '> 8' ^) '?
20'
30 f
Sur. 65.2
8' o6.2
20'
30 »
^^ lo^ks runi"/ e^ines bo ^leg.n OH*; bv d:>c'<.
-------
Thermal Pollution Studie
OcToQER. /O ,
A, Assume : -. #W rated caacit
Maximum efficiency = 35%
Heat loss within plant - 15^
Energy required for 1 KWH = 3jUl3 BTU
Adequate rdbcing of effluent
B. Heat load: 3,1*13 BTU = 9>7$0 BTU/XWH heat rate
0.35
(0.85 x 9,750)-3,U13 = U,877 BTU/KWH Heat to Cooling Water
1 5" 9 I
(U.88 x ICT BTU/KWH )( 4.1 4 x 10 KW) = JLflff x 10 BTU/Kr Haat Load .;
C. Stream Quantity: Q = (cfs)(62.ii Ibs/f t3) (3600 sec/Hr) = Ibs/Ifr ,;
3 -3 3
Q = ( 2.J x 10 )(6.?it x 10)(3.6 x 1/y) - _6 x 10 Ibs/Hr
D. Theoretical Stream
Temperature Rise:ATr = Total Heat Load to Cooling VJaler., BTU/Hr
Stream quantity, lbs/Hr)(l BTJ/lb °F)
•2
xl° . -a 7 o
„ - O. / *
6'. t* I x 10
E', Actual Field
TeiTipsrature Rise:/\T = (A^/g. Cross-Sect. T, °F)-(Background T,
°F
-------
HERMAL POLLUTION 37UDT55
Honons;3hela Rivor, >'. P. 29.5
Mitchell Power Plant
(July 15, 1968)
A. AssuT.a: hl>9 M".v rated capacity
Maximum efficiency ~ 35%
Heat loss within plant = 15$
Energy required for 1 Kwh = 3,Ul3 BTU
Adequate mixing of effluent
B. Heat Load: 3,hl3 BTU „ 9 ?5o BTO/Kwh hea, rats
^__^
(0.85 xf,?50) - 3,hl3 - h,877 BTU/Kwh Heat to Cooling Water
(U.88 x 103 BTU/Kwh)(U.U9 x 10^ Ktf) » 2.19 x 109 BTU/Kr Heat Load
G. Stream Quantity: Q « (cfs)(62.U lbs/ft3)(36CX) sec/nr) = Ibs/Hr
Q - (1.27 x I03)(6.2h x 10)(3.6 x 103) = 2.85 x 1Q8 Ibs/Hr
Rise^1 A T1 =» Total Heat Load to Cooling Water, BTU/Kr
*r (Stream quantity, Ibs/Hr)(1 BTU/lb °F)
/IT - 2-19 x 109 » 7.8 °F
r 2.85 x 10°
Ac tual Field
Temperature Rise: A Tr = (Av#. Gross-Sect. T, °F) - (Background T, °F)
A T = 9?.3 °F - 8U.O °F = 11.3 °F
r
Pennsylvania Water Quality Standards for temperature are:
Summer maxinum 87 F
No rreater rise than 5 F
-------
THERMAL POLLUTION STUDIES
Location
Flow ',.270
*ir Tunparaturj
cfs Plant l-ana
r-T-: hr-^-jl1 - >'.->it Pen-
5 - Eagin 3?, 8 °? finish 8?. 8 UF
?£?23S?5CE WATER TSHPERATUHS 8'7
Le ft
Bark
250'
Povror ( ^--'-c, /•", •;
Work Cone By r.ri_
; •
.ffith.Jo:^.-:.
Moser
f.R° F H. ?. '''J,?
Hot Sur.licrht
Apx. Distances "Betwaen Sairpling Points
Middle
750'
Right-
Bank
AEGV3 OUTFAIL (M. P. 30.3 )
C.,--, OT 1
1.3 j-T . V _L . L1
S« <3U.2
Sur. 91, h
8' 8U.2
20' 16' 2ax 83.U
30'
BELCM OUTFALL
Sur. 95.9
U1 95-9
8' 95, Q
T>l
16'
20'
2'1 '
28'
32'
ZONS 0? MIXING
Sur. 96.8
U« 95.9
8' 95.0
12' 9U.2
16 «
20'
2y'
28'
32'
30»
A v : ^
(M. P. 29.5
Sur. 95.9
!»' 9^.9
8' 95.9
12' 95.9
16' 95.0
20«
2U'
28'
• 32'
V)T> Av' • .
(M. P. 29.0
Sur. 96.8
lt» 96.8
8« 9U-2
12' 93.2
16' 92. U
20'
21*'
28'
32'
Sur, .JJL^
8' 8U.2
lh'231 8^Ji ]
30'
Aic "I f Hijf ?AT i-a.r '. ^4.0
)
Sur. 97.7
li' 96.8
8' _95,9
12« 9^,2
16' 86.0
£0'
21i»
28»
32'
T r , •' :•'. '. <^'< 1 ° F
)
Sur. 97.7
u' 95.9
8« 95.0
12' 93.2
16' b9.6
20'
21}'
28'
32'
Sur. en .h
8« 83. U
Lh'221 81.) I
30'
°F
Sur. 97.7
hs 07,7
o' 0^9
12' 9);.?
16' 3 -..9
20'
2U«
28'
32'
Sur. 97.7
U1 96.8
8» 95.0"
12' 93.2
16'
20'
21i'
28'
32'
Sur, ^3 2
8' 8h'.2
20'
3o? i~ ,; T "
Sur. 98.6
Us .98,6
8' 95.9
12'
16'
20'
2la!
28*
32'
Sur. 97^7
8' 9u-2
12'
16'
20'
2U«
28'
32'
VVT, A-/.'., T" •'-•" ' '--V.; "'?
DOWNSTREAM PT.
8'
^'G*
30 !
MO INCREASE (M.
Sur.
8'
20'
30'
P. 27.8 ) 35°
Sur.
8'
20 5
30'
across stream @ Ii
Soy.
8?
20 »
30'
i« Depth
Sur,
8'
20'
30'
-------
/"I ; re iiil<-i- Power Plant
II
A, Aasuire: _j_J"^ rated capacity
Maximum efficiency =
Heat loss within plant = 13%
Energy required for 1 KWH = 3,U13 3TU
Adequate mixing of effluent
B. Heat load: 3fU3 BTU = 9^750 BTU/KWH heat rate
U.3;>
(0.85 x 9,750)-33hl3 = U,8?7 BTU/Kl-JH Heat to Cooling Water
(li.88 x 103 BTUAWH)( -4,-t? x 10 KW) = J.)
-------
IHEEMAL POLLUTION SIUDIS3
•-5 7-11. -68 Location '"onooyang^i ?i]re_r -_~i. _?.- S'^.rT
:rlo:r ?--?3 cfa Plant Wains Mitch 2? 1 - Werj4, P-i:
Air IV-erature - Begin
61 °F
Finish ^ "F
-n ?.r..vr ^'J^ ^
Work Dona By ,;
r:2yr?.2"C3 WATER TEHPERATUH2 7U.S° F H. P. 29.8
La ft
Bank
A20V2 OUTFALL
V.
S'jir,,
3'
20'
30'
Apx
250'
. Distancss
Estveen Sar^ling
Middle
Points
750'
\ -) "•> o p '?» '^'n c* ~r~
Right
Bank
/V p ?Q 8 ^
u« i-. ^v.c ; o, 00 „ N
Sur.
8'
20'
30'
Sur.
8'
20'
30'
Sur.
8'
20'
30'
/
Sur.
8'
20'
30'
A vro,-- if TcnPf.-.aTL'Rr .'. 74. ?V
BELCW OUTFALL
Sur* 79 . 2
ii» 76.8
8! 78.0
12' 75.1
16 *
20'
2s-'
4-_i
28 »
32'
(M. P.
Sur.
U' ""
8' ""
12'
16'
20'
2U« ~
28'
32'
29. la
79.5
79.2
77.0
75.2
7U.8
)
Sur. 79.7
k1 77.9
8» 77. h
12' 76.6
16' 76.2
20'
2Jj«
28'
32'
Sur. 79.2
U' 78.U
8' 77.ii
12' 75.5
16' 79.2
20 »
2h'
28'
32'
Sur. 81. ^
U' 6d76"
8' H572
12' ~76™6~"
16'
20'
2i*« ~"~
28'
32*
rW-cA^ Tr-'rr-'.,-?;*' '. 78.5'F
ZONE OF MIXING
Sur. 31 .0
it' 81 .0
8' 81.0
12 ' cl.O
16'
£0'
(M. P.
Sur.
h'
8'
12'
16' ~
20'
29.0
80.6
80.6
80.2
79.5
79.2
)
Sar. 80.6
It1 80. ft
8' 79.7
12' 78.8
16' 77 J.i
20! 77.0
Sur. 80.6
li» 80.6
8» 60.2
12» 78.8
16' 78.0
20'
Sur. 80.6
ti' 80.6
8'
12*
16'
20'
21i' 21*' 21»« 21i« 2Zi»
23'
32'
28' ~
32'
28 »
32'
28'
32'
28'
32'
••^ ."=. TF'ip.":r-.T^?e. '. 7^.9 °P
BCWN3TRSAM PT.
Sur, 80.6
O1 80.6
3D'
"jO '
NO INCREASE (M. P.
Sur. 80.6
8' "
20'
30'
do . 6
60. 6
28.7 )
Sur, 8C.6
8'
20' 80.6
30'
Soy. 80,6
3'
20 » 8n..6
30'
Sur. 60.6
8» 30.6
20'
30'
-------
THERMAL POLLUTION STUDIES
Monon?ah3l3 River, ?•!. P. 25.2
Zlrar.a Povrer Planr,
(July 16, 1968}
A. As3'me: 625 MW rated capacity
Maximum efficiency » 35^
Heat loss -within plant = 15$
Energy required for 1 Kwh = 3,613 BTU
Adequate mixing of effluent
B. Heat Load: 3,613 BTU Q „..,- w/y v, u -L <
• *• • \^s = 9,750 BTU Awn heat rate
(0.85 x 9,750) - 3,613 - 6,877 3TU/Kwh Heat to Cooling Water
(6. 83 x 1C3 BTU/Kwh)(li.2p x 1C *KW) = 2.03 x 10 9 BTU/Kr Heat Load
G. Stream Quantity: Q « (cfs)(62.U Ibs/ft3)(3600 sec/hr) = lbs/Hr
Q - (1.1 x 103)(6.2h x 10)(3-6 x 103) = 2.67 x 10 lbs/Hr
ID T^i ^01*0^" i c A "I S t T*6 ST*I
"ore Rise- A T = Total Heat Load to Cooling Water, BTU/Hr
r (Stream quantity, lbs/Hr)(1 BTU/lb °F)
l£ - 8.U °F
Temperature Rise: A Ty. = (Av?i- Gross-Sect. T, F) - (Backfcround T, °F)
^ 2.67 x
S. Actual Field
Rise: A r.
r
- 96.h "F - 90.5 "F - 5.9 °F
insvivarria Water Quality Standards for temperature are
Survner maximum 87 °F
-o greater rise than 5 °F
-------
-------
THSE1AL POLLUTION STUDIES
7-16-66 Location "orwnt-ahjla "Ivcr 3 M. ?. 2?.2
;lcw IT",") cf-s Plant Hania Sj
Air Tr^oarature - Begin ?5.2 °?
F.I7ER3XCS KATER TEMPERATURE iv
Lsft Apx. Distances
Bank
200'
ABOVE OUTFAU, (M. P. 25.8
Sur. 90.5 Sur. 90.5
8' 90. 5 8» 90.5
20' 16 'IBM 90.5 11
30' 30«
BELOrf OUTFAU. (M. P. 25.0 )
Sur. 96.8 Sur. 95.0
U' 95.0 U' 95.9
8' 95.9 8' 95.9
12' 93.2 12 « 93.2
16' 1U'3SX 91. L
20' 20'
2U1 2U«
28' 28'
32' 32'
ZONE 0? MIXING (M. P. 2U.6
Sur, 96.8 Sur. 96.8
I' 97.7 U» 96.S
8» 96. '6 8' 96.6
12' 96.8 12'' 95.9
16' 95.9 16' 95.9
20' 20'
2ij ' 2it '
28' 28'
32' 32'
DOWNSTREAM PT. NO INCREASE (M. P.
Sur . Sur »
8< 8'
20* 20'
3J' 30'
?.;l~T. - ,C
finish
£|...
Between
Middle
)
Sur.
8'
'ISO!
30'
,ai- .-,\
Sur.
It'
8'
12'
16'
20'
2li«
28'
32'
V,1 1-" .' ,' : r
)
Sur.
U'
8'
12'
16 »
20 »
2ij(
28'
32'
' "~ s\ t
Sur.
8'
20s
30'
itn^sne i
?r;,8 ^F
M p
ri» * .
Sampling
90.5
90.5
90.5
,.: -T- (••' --;
95.9
95.0
95.0
91. U
90 . 5
"7"; !•'" £ >• .'•" i •;
Above J
95.9
96.6
96. d
96. d
95.9
95.0
• .'.-t -:-':i'^
)
i^hn c--
Work
2^.8
Points
Sur.
8'
20'
30'
Syr.
8'
12'
lU'-ISt
20'
2U1
28'
32'
-^ari"- /
Dona By
600'
90.5
90.5
: ?o..5" c
98.6
97.7
95.0
91. h
91.U
4. L 7 ° c
& L Steel
Sur. 96.8
8'
12'
16'
20'
2U«
28'
32'
So?.
20 '
30'
96.8
96.8
95.9
-/. "' rr
•f- ^' 'X X' '
P,-y»T f*'*'"*^ 4- "*••> ,f?--^OCj
Bank
Sur. 90.5
8'
20'
30'
F
Sur. 102.2
U ' 102 . 2
8'
12'
16'
20'
2k '
28*
32'
Sur. 95.9
it' 95. S~
8» 95TB"
12' 9 5^
16'
20'
2U«
28'
32 1
Sur.
8'
20*
30'
-------
-------
A~\
1 -s*
MVI rated caoacity
Maximum. efficiency = 35%
Heat loss within plant = ~L%%
Energy required for 1 KWH = 3,U13 3TU
Adequate mixing of effluent
B. Heat load: 3,U-3 BTU = 9j750 BTU/Kv-ffi heat rate
0.35
(0.85 x 9,7$0)-3,la3 = U,877 BTU/KWH Heat to Cooling Water
o o 2
(U.88 x 1CT BTU/KVffl) (_jka£_ x 10 Kvif) = J.Qg x 10 BTU/Hr Heat Load
C. Stream Quantity: Q = (cfs)(62.U lbs/ft3) (3600 sec/Hr) = Ibs/Hr
3 -i B
Q = ( J.4^ x 10 )(6.2li x 10) (3 .6 x 10J) = S.XS x 10 Ibs/Hr
D. Theoretical Stream
Temperature Rise:/\Tr = Total Heat Load to Cooling Water., BTU/Hr
Stream quantity, lbs/Hr)(l BTU/lb °F)
i - "2
ATr = J..-u*> .x 10 = 3 XT OF
_
S, S b x 10
. Actual Field
TePiperature Rise:./\Tr = (Avg. Cross-Sect. T, °F)- (Background =T, F)
= 87 8 °F ~ 80. fa °F = 7. Z °F
r
-------
POLLUTION STUDIES
°-ll-68 Location Monor- ( i ,
Work Ibna Bj .r-.-.
9< <
Points
500 '
Sur.
8« "
20*
30'
: So ',°F~
ssissippi
Sur.
U1
8' "
12«
16 '
20'
2li»
28'
32'
80,6
80.6
80.6
Glass Co.
87.L
36.7
83.9
81.0
?5 '•",•;)
Right
Bank
Sur. 80,6
8' 80.6
20'
30'
Sur. __2l.8_.
8' 88'!x'"
12'
16'
20'
2U'
28'
32'
.A •->-?.* /-.it ; 8k.?° F
ZONE OF MIXING
Sur.
Uf
8'
12'
16'
20*
2h!
28'
32'
(M. P. 2U.7
Sur.
It'
8'
12'
16'
20'
21t'
28'
32'
) Could not anchor in
Sar.
Uf
8' ~
12»
16'
20s
214'
28'
32'
Sur.
U'
8' "
12'
16' ~
20'
2lt'
28'
32'
this area.
Sur.
U'
8'
12'
16'
20'
21i'
28 »
32'
DOWNSTREAM PT.
C%» *, Q *"? Q
*j3 _C-i. •» • ' ' * W
d r "j 7 . 6
20«
^ -1
NO INCREASE (M. P.
Sur. 87.6
8' 87.8
20' 87.8
30 •
2U.5
Sur.
8' ~
20'
30'
)
87.8
87.fi
87 . H
Sur.
8' "
20'
30'
87.8
87.8
86.9
Sur. 88 2
8' 83,2
20'
30'
-------
River, ii, P. / i '-!
C ^ ,N f i u . *-i- £ ^r/-», Co*- -> V,.- ,-.-;< Ei-CcT ? in-; 3 r Plan t
A . Ass ur.e : -4-33 _MW rated c a p
Maximum efficiency = 3biS
Heat loss within plant =
Energy required for 1 KWH = 3jitl3 3TU
Adequate irdbcing of effluent
B. Heat load: 3 M3 BTU = 9,750 BTU/KWH heat rate
(J • J2
(0.65 x 9,750)-3,Ul3 = I|j877 BTU/KV/H Heat to Cooling Water
T g O
(li.88 x ICT BTU/KWH)( 4.33 x 10 KV/) = J. |J^ x 10 BTU/Er Heat Load
C, Stream Quantity: Q = (cfs)(62.U lbs/ft3) (3600 sec/Hr) = Ibs/H
Hr
3 ^ 8
= ( J.43 x 10 )(6.2-U x 10) (3. 6 x 103) = ^f. -f^Tx 10 Ibs/Hr
D. Theoretical Stream
Temperature Rise:/\Tr = Total Heat Load to Cooling Water., BTU/Kr
/\
Stream quantity, Ibs/Hr )(1 "3TU/lb °F)
10
a
10
E. Actual Field
Tenperature Rise:j\T = (Avg. Cross-Sect. T, °F) -(Background T, °F)
°
F = 8 .3
-------
'IK3RMAL PDLLOTIC:? S7UDI2S
9-29-69 Location Muskingum River © Conasville
•~'-V-^ cfa Plant Kane Oonesj/ille^STation - Columbus & Southern Electric
Air 'Tasparature - Begin-__68 ^F Fi ais'a ' "72^7' ^ Work J)o£g By Bailey _ & Moser
.^Ixtivs HurcLdity 1|6 % Beginning Time IQl1^
loft
Apx. Distances Between Sampling fbints
Middle
Eight
Bank
2 ginning Reference Water Temperature (M,?. 118.0
Siir. 62.6 Sur, 62.6
Sur. 62.6
Mid. 62.6
Bot . 62 . 6
Bsptla
AEOV3 OOTIALL
Sur. 62.6
1 SI 6"2.o'
20 • .... ...
30'
Mid.
Bot,
2 .0 Depth
(M.P. 117.9
Sur. 62.6
li' SX 6'2.6 1
20'
30'
IYIDSJC3 0? THSR>ftL SHORT CIRCUIT?
DESCRIPTION OF FINDINGS - MftXiNITl
62.6
62.6
2.0
A'>5-. ^3.1* r
)
Sur. 62.6
i' SX 62.6
20'
30'
No
JDS AM) TYPE
Depth
Sur.
20'
30'
Mid.
Bot.
2.0
62.6
62.6
62.6
62.6
Sur. 62.6
20'
30'
UM OUTSAIL TEMPERATURE 8U.6° F
SIZ3 0? !
TD.g
1030
T2MEERATURE ZOJ5S: Triangular shape £0' wide and extending out 50'
on do^mstream side.
luLOW OUTFALL (H.P. 117.8
-vr. 62.9 Sur. 63.3
3' XX£ 62.9" 3'H1 62.9
3' 8'
]J?' 12'
15' 16'
"'0 ' 20 '
',' 2k'
V 28 '
32'
)
Sur. 72.3
3']® 66.2
8'
12'
16'
20'
28'
32'
Sur. 80.6
V 79.2
7'B£ 71.6
12'
16'
20'
2V
26*
"12'
Sur.
12*
16'
20'
2*4 '
23' "
32'
82. h
82 i
824
-------
-!'3c;? 33, 19 {/?
A. Assume: jfO D MW rated capacity
Maximum efficiency = 35",«
Heat loss within plant =
Energy required for 1 KWTf = 3,1|13 BTU
Adequate mixing of effluent
B. Heat IxDad: 3,1-0-3 BTU = $^$0 BTU/KS-7H heat rate
0.35
(0.85 x 9,750)-3,iil3 = Uj.877 BTU/KWH Heat to Cooling Water
o J' 9
(U.88 x ICr BTUAWH)( /",Q x 10 KW) = ^.44 x 10 BTU/Hr Haat Load
C. Stream Quantity: Q = (cfs)(62.U Ibs/f t3) (3600 sec/Fir) = Ibs/Hr
QL "^
Q = ( /. cl x 10* )(6,2ii x 10) (3. 6 x 103) = 4.26 x 10° Ibs/Hr
D. Theoretical Stream
Temperature Rise:/\.Tr = Total Heat Load to Cooling Water, BTU/Hr
Stream quantity, Ibs/Hr ) (1 "BTU/lb °F)
4. 1 4 x 10~
t
E. Actual Field
Temperature Rise:/\Tr = (Avg. Cross-Sect. T^ °F) -(Background '^, F)
AT = 73.9 °F — 6P.g °F = ^".f °F
-------
THERMAL POLLUTIC7! 3TfJ012S
9-23-69 Location Muskinguzu River Q Philo
11 -;w 19C(J cfs Plant Kane Philo
.-Ur TsTt^rafcure - Begin-
".el"?, bi va ;ixsridity 66
Lr*b Apx.
Spinning Reference Water
.-or. 694
. -d. 69. U
?ot. 69. ii
Dspth
76 VP Finish 75
CT Work
Eoae By Bailey & Mos
$ Scgi-noirig Tisa li4i5
Distances Between Sampling
Middle
Temperature (M» Fa 68.8
Sur. 694
Mid. 694
Bot, 694
Deptb
Points
Depth
Right
Bank
Sur. 694
Mid. 62.L
Bot. 694
.VSOVE OUTFALL (M.P. 684
Sor. 69.0 Sur. 69
gf StQ S1 £9
20 • 20'
10s 30' _,
) Above Salt
.0 Sur. 69.0
.0 ii1 ax _69. Q
20'
__ 30'
Greek
Sur.
ii1 ax ^
20'
30'
68.7 Sur. 68.7
.68.7 8'
20'
30'
0? TEZRMA.L SHORT CIRCUIT? No - Intake is above dam, outfalls below
BSSCRIECIOff 0? FINDINGS - lACTlTUDE AHD TYFB
M\XEMUM OCTFALL TSHPERATl^RE 82.8° Uper - 78.8° Lower TBS
SIZE 0? :aX3MUM TEMPERATURE ZONE: Upper Outfall U' x 10' out x 2' Deep
Lower Outfall 10' x iiO' out x Ij.' deep
•iZIOtf OD37ALL (M.P. 68.2
our. 75-2 Sur. 734
U' ^4 V 73.0
3' " 7'B* 734
-r>< 12 '
16 ! 16'
'-0' 20'
' ' : 2V
r 28-
-• " -32 '
) 100' D.
Sur. 76.6
V 70.1
8'
12'
16'
20'
2V
28'
32 '
S. of upper Power Line
Sur. 694 Su?*
V 694
8'
12'
16'
20'
2V
23'
"? 2 J
8'
12'
16'
20'
23*
694
69, ii
-------
-------
Oj-HO P^w'^e jgEU^KjLdl Power Plant
-j _
•SgPTti'ulcg 33 , 19 6C/
A, Assume: |? 74 Mfr/ rated capacity
Maximum efficiency = 3^>%
Heat loss within plant =
Energy required for 1 KMH = 3,1+13
Adequate mixing of effluent
B. Heat Load: 3M3^TU = 9>7^0 BTU/EfH heat rate
(J. 3p
(0.85 x 9,750)-3,iil3 = U3877 BTU/KIVH Heat to Cooling Water
1 5 5
(U.88 x ICT BTU/KWH)( 8,74 x 10 K¥) = 4,28 x 10 BTU/Hp Heat Load
C, Stream Quantity: Q = (cfs)(62.1| lbs/ft3) (3600 sec/Hr) = Ibs/Hr
3 o 5
Q = ( /.? x 10 )(6.2i| x 10)(3.6 x 1CX) = 4. ,34 x 10 Ibs/Hr
D. Theoretical Stream
Temperature Rise:/\Tr = Total Heat Load to Cooling Water j BTU/Hr
Stream quantity, Ibs/Hr )(!' BTU/lb °F)
_
1-.M x 10
E, Actual Field
Temperature Rise:i\Tr = (Avg. Cross-Sect. T, °F) -(Background '1. F)
74.8 °F~ 7c).Q °F = 6.8 °F
r
-------
THERMAL PCLLUTIO;! 3TUDT2S
~~23~69 Location Muskingum. River at Beverley
cfs Plant lv'an<3 Lower Plant
:\rr :i'crir?enitura - Begin- 67 ____ ^? ?iuish _£1____J:)? Worl< £o.aa By Moser^_ JBailey
luBidity 88 % Beginning Use 10:30
Apx. Distances Between Sampling Points Ragat
Middle ' Bank
Reference Water Temperature (f-LP, 2JL2 ) See zone of mixing
Sur. J0.1 S-ar, 70.1
.•lid. Mid, 69.8 Mid. 69.8
•3ot."7Q.l Bot. 69.8 Sot. 69.8~~
Depth U' Deptb 12' Depth 8'
\ • - . . , , ~i -
ABO"/S OUrmLL (M.P, 28.15 ) Half way between Creek and Outfall
xjs1
20'
30'
71.6
fi.6
— — — —
Sur. 72.3
6'XS' Vi.6
20'
301
~ii- "
Sur.
8'
lUBDX
30'
/X v f,. . T ? M P *7
73
72
71
-. ~? •
.0
.6
.2
FTr.
Sur.
8'
30'
73. U
73. 0
71.2
"TTTT
S^r» 7lt.li
8' 73.7
20'
30'
___„_
.rI2aiCE 0? THSRML SHORT CIRCUIT? Yes
D1SCSIFTIOS OF FENDUJGS - MS.O3ITUDE AHD TYP3 About 1.0° F rise in intake
Themal Loop - from outfall on Left Bank, across to Right Bank,, upstream to aboV>e
intake, lj?0' or so, back across to intake
:-".\XBiUM OUTFALL TEMPERATURE 80.6° F TIMS 10^p
0? >-5\XIHUM TSMPSRATUR2 ZOJIE: 30' wide by 30' long on left bank and 10' or
so deep
4 Zi^nS 3ji i'iixing
-f/L&f'-&M^MM- (M.P.
P-.xr. 75-9 Sur.
1;' 75.^~ 4.1
.?' •'"•-'5;^ 8' "
L->! ^5.5 12'
IS' 16'
"- ; ' 20 '
2V
-•-r 28'
00 *
28.0
76.6
76.2
76.2
76.2
75.9
)
Stir.
V "
8' ~
12'
16' ~
20'
2^4- '
28'
32'
76.6
76.6
76.6
76.2
75.9
7U.8
Sur. 77.0
V 76.6
8'
12'
16'
20'
2V
23''
""5 O *
Sur. 7^.6 .
If1
8'
12'
16'
SO1
2V
23'
'i 3 "'
-------
-------
OHIO
Assumes / pQ KW rated capacity
Maximum efficiency -
Heat loss within plant = 15%
Energy required for 1 KWH = 3>Ul3 BTU
Adequate mixing of effluent
B. Heat Load: 3,Ul3 BTU = 9)J^0 BTU/KWH heat rate
(0.85 x 9,750)-3,iil3 = k,B77 BTU/KVH Heat to Cooling Water
S" &
(U.88 x 1CT BTU/KWH)( /. % x 1C KW) = g. 7? x 1G BTU/Hr Heat Load
C. Stream Quantity: Q = (cfs)(62.U Ibs/ft3) (3600 sec/Hr) = Ibs/Hr
3 -t y
Q = (_LM_X 10 )(6.2li x 10) (3.6 x 1CJ) = 2.0 x 10 Ibs/Hr
D. Theoretical Stream
Temperature Rise:/\Tr = Total Heat Load to Cooling Water, BTU/Hr
Stream quantity, lbs/Hr)(l BTU/lb °F)
AT = ? • 7S x 10 0
A !„ _ = 0, O F
1 , 0 x 10~~
E. Actual Field
Tenpsrature Rise:AT = (Avg. Cross-Sect. T, °F) -(Background -T, °F)
r
°F
-------
-------
TH2PMAL POLLU2IO:J STUDIES
7-17-66 Location Ohio River, >-l. P. 2.1
JJ.G-.-J :-ec:0
cfa Plant Nans te
Air '?3:?oarntur3 - Begin 82. h °?
_v_?c~. TlvBir
Left
ABOVE OUTFALL
SJIT. 36.0
' ^2X 85 .0
20'
30'
R TEfPERiTOE 85-9°
Apx* Distancas
200'
(M. ?. 1.9 - Tip of
isiind
Sur. 86.0
8» 85.2
lU'Wt 8u.2
30'
ed - DM-
Finish
Between
Middle
Sur.
8' ~
20'
30'
2 us 3 /is Lifb-". -;Jo~n .?."".>"
52.\ WF Work £ona 3y
M. ?. 1.9
Sampling Points
600'
86.0 Sur. 86.0
811 .2 8* 8U ,. 2
8.3. U 16'2DK o3.U
30'
• Griffitn, Jon?3,
Moser
Right,
Bank
Sur. 86.0
8' 83. h
16 'EOX fc'3 • u
30'
V'1 .-'••'. "•-'.- A"1' '.>'•" c -i", ."•• F-
BSLCtf OUTFALL
Sur. 86 . 9
h' 86.9
8' 86.9
12' 86.9
16'
20'
2U'
28»
32'
(M. P. 2.2 - At )
Power Lines
Sur. 86.9
ii« 86.9
8' 86.9
12' 86.9
16» 86.0
20'
21i'
28'
32'
Sur.
li'
8' ~
12'
16' "
20'
2lt'
28»
32'
87.8 .Sur. 86.0
86.9 k* 86.0
86.9 8' 86,0
86.0 12' 86.0
86.0 16' 85,2
20'
2li'
28»
32'
Sur. 86.0
li' ~8T.O"~'
8' ?6.0
12' 86.0
16'
20'
2U'
28'
32-
, - ' * *" ' * - L ' ' i "~^ ( > /
ZONE 0? MIUNG
Sur, 8?. 5
U« 86,5
8' 86.5
12'
16'
20 '
Sii1
28'
32'
(M. P. 2.U
Sur.
!»'
8«
12'
16'
20'
2b'
28'
32'
J
Max.
Sar.
k*
8'
12'
16' ~
20 »
2U'
28?
32'
Variance of .h - L to R
Sur.
k1
8'
12'
16'
20'
2U1
23'
32'
Sur. 86, o
li» 86.9
8' 8-6.9 ~
12'
16'
20'
2ft1
28'
32'
.\ •-..-.• • • . . : 2 -o , / ^ p
DOWNSTREAM PT.
-VT. 5^.0
C5' ^6.0
20'
50 ?
NO INCREASE (M. P.
Sur.
8'
20 ?
30 '
2,7
Sur.
8'
20'
30 '
)
Max. Variance of
S« ""
20'
30'
.h - L to R
Sur, 86.ii
8' ~36.h'
20'
30'
-------
-------
River, l[. P. jo. 1.
P.-^i?o>rer Plant
u^ /g , l?_k£
MW rated capacity
Maximum efficiency =
Heat loss within plant = 1%%
Energy required for 1 KWH = 3,1*13 BTU
Adequate mixing of effluent
B. Heat load: 3,U3 BTU = Q^Q BTU/KWH heat rate
0. jp
(0.85 x 9,750)-3,U13 = M?7 BTUAWH Heat to Cooling Water
o ^>" 9
(li.88 x 1CT BTUAWH )( 3. /A x 10 KW) = /.3g x 10 BTU/Hr Heat Load
C. Strean Quantity: Q = (cfs)(62.U lbs/ft3) (3600 sec/Hr) = Ibs/Hr
3 5*
Q = ( OS x 10 )(6.2U x 10) (3 .6 x 103) = 3.O x 10 Ibs/Hr
D. Theoretical Stream
Temperature Rise:^Tr = Total Heat Load to Cooling Water., BTU/Hr
Stream quantity, Ibs/Hr) (1 BTU/lb OF)
3.
0
= p. 7 °F
/. 3 A x 10 0
°
10"""
. Actual Field
Tenperature Rise:/\Tr = (Avg. Cross-Sect. T, °F )- (Background T, °F)
T = g4.4 °F— 8^-.J °F - /.| °F
-------
-------
THERMAL POLLUTION STUDIES
Location
HD f V;;;Vi cfs Plant L'ama OM--I ;_,, . n,,.,,^.,^ v^t,
~4 ' "^"*
T'.;-r^>aratura - Eagin
01 ,|, ?
Firdsh
;125ERI:S3S WATER TEHPERATOH2 86.0° F
La ft
Bank
AE07
T' "
30'
Apx
300'
E OUTFALL
86.0
86.0
85.2
BELOW OUTFALL
Sur. 86.0
U»
8'
12'
16 «
20'
2U«
28'
32'
ZONE
Sar.
8'
12'
16*
20'
28'
32'
86.0
85.2
85.2
85.2
0? MIXBSG
37,8
86.9
86.0
85,0
DOWNSTREAM PT.
8'
20'
66 , 9
(M. P. '
Sur.
8« ~
12' ~g§t
30*
(M. P.
Sur.
34' ~
8' ~
12'
16' ~
20'
2it« ""
28«
32'
(M. P.
Sur,
U' ~
8' ~
12 «
16' "
19'2SX
2U'
28 »
32'
. Distances
150- T>,^
86.0
85.2
85,2 18
A 'j '^ f
15.5 )
86.0
86.0
85.2
/Wt!
16.0
87.8
87.8
86.9 •
86.0
86.0
85.2
A v f
NO INCREASE (M. P.
Sur. 86.9
8« "
20'
30'
86.0
Between
Middle
}
Sur.
8' ~
' -S5I
30'
''..\,-fr "i
Sur.
U' ""
8' ~
12'
16s
20'
2it'
28' ~
32'
'.-.••:E T!
J
Sar.
ii!
8'
12'
16'
20 «
2U«
28'
32'
p.A '• :. "f i
16.7
Sur.
8'
20 1
30'
31 J, "F
M. P,
Sampling
86,0
85,2
85.2
S .-'•->; r<-AT.
86.0
85.2
85.2
85.2
85.2
-. MPc'&MTy:"
87.8
86.9
86.0
36,0
86.0
36.0
;•:,.:.' •'•'•' " J."
)
86.9
86.0
Work
Points
Sur.
8«
13!oser
Bank
Sur' JS6JJCL_
30' ~**~~
Sur. _8_9.6
S' "85/2
12' 85.2
16'
20'
2U'
28»
32'
Sur. 89.6
li1 87.8
8' 86.0'"
12' 86.0
16'
20'
21*'
28'
32'
Sur, 86.0
8« 86,0
20'
30'
-------
-------
6 H i o
A, Assign-?: •; i j 5 1-M rated capacity
Maximum efficiency = 35>/°
Heat loss id. thin plant =
Energy required for 1 KMH = 3,Ul3 B'TU
Adequate mixing of effluent
B. Heat IxDad: 3,ijl3 BTU = 9^0 BTU/MH heat rate
0.35
(0.85 x 9,75o)-3,lil3 •= k,Q77 B7U/KWH Heat to Cooling Water
3 4" 9
(ii.88 x ICr BTU/KWH)( 3. /5" x 10 Kir/) = /.35 x 10 BTU/Hr Haat Load
C. Stream Quantity: Q = (cfs)(62.ii Ibs/f t3)(3600 sec/Hr) = Ibs/Hr
4" S
Q = ( >. I x 10 )(6.2/, x 10) (3. 6 x 10*) = J?.47 x 10 Ibs/Hr
D. Theoretical Stream
Temperature Rise:/^Tr = Total Heat Load to Cooling Water, BTU/Hr
Stream quantity, Ibs/Hr )(l BTU/lb OF)
J.47
S. Actual Field
Tenperature Rise:/\T = (Avg. Cross-Sect. T, °F)-(Background -T, °F)
°F — gq.t °F - /. 1 °F
-------
-------
Date
Tt'WMAL POLLUTION STUDIES
7-18-69 Location Ohio Rivsr 3 South Heights, H. ?. lg.2
Flow
11,000
cfs P]
Air Temperature - Begir
Relati~3 Humidity - 6)4;
REFEHSNCE WATER TE3-5PERJJ
Left Ap3
Bank
ABOVE
Sur.
8'
20'
30'
BELOW
Sur.
U'
8'
12'
16'
20'
2U'
28'
32'
OUTFALL {M. P.
82.3
b2.a
-
OUTFALL
83.5
82.8
82.3
82.8
ZONE OF MIXING
Sur. 85.7
U'
8'
12'
1 16'
20'
2U«
' 28'
32'
DOWNS
Sur,
8'
20'
30'
85.7
3s?, 0
; *
TREAM PT.
86.0
•31.2
32.3
Sur.
8' "
U2T
30'
(M. P.
Sur.
U' "
8« "
12'
16'
20 '
2k*
28'
32 «
(M. P.
Sur.
U'
8' "
12 «
16' '
20'
2U'
28'
32'
.ant Name
i 85 °J
Philliios
11 Finish
iTURE 32.?4°
- I\n;is3ne Light Ccapaiiy
WF Work Don a By Richarcia - Mos^r
M. P. Hi. 2
:. Distances Between Sampling Points
Middle
15.2
82.8
82. h
82. U
15. U
82.8
82.8
82.h
::-
15.8 or
85.U
81i.6
8!i.2
83, 9
82.8
• - •> . ;
NO INCREASE (M.
Sur. 89.6
8'
20'
30'
83.9
82.3
) 3etr*
Sur.
8'
20'
30'
aen Outfall
82.8
ti2.li
82.1*
-•'-< ^>. : --5J
and Intc
Sur.
8'
20'
30'
ika
82.8
82.!;
82 .U
Right
Bank
Sur.
8'
11*209
30'
82.8
82.ii
82. U
) At Power Line
Sur.
U'
8'
12'
16'
20 »
28'
32'
A.;;- -
9 )
Sur.
U'
8'
12'
16'
182SK
2U'
28'
32'
/. j •
P. 16,6
Sur.
8'
162CK
30'
83.5
82.8
82.8
82. U
-
-.- - • .- •• -; t
83.9
83.5
83.5
82.8
82.8
82.ii
• rf> • • '
- - f-< ? . - *-, *"
)
85.14
83.2
82.3
Sur.
U'
8'
12'
16'
20'
28'
32'
Sur.
8'
12'
16 1
20'
2U«
28'
32'
Sur.
8'
162SX
30'
86.0
8U.2
62. 8
82.8
86.0
8^.2
83.9
82, a
32. a
82.8
: . '-
8U.2
82. a
32.8
Sur.
U'
8'
12'
16'
20'
28'
32'
Sur.
U'
8'
12'
16'
20'
2U'
28'
32'
Sur.
8'
20'
85.0
83.5
t-; •-
8$.li
83.9
as. a
<52.8
82.8
8U.2
8U.2
82. U
82.ii
stacks
-------
-------
Ohio P.lvf?^, M. ?, ^j.°
3a?-dG ?o;,er Plant
Low Flow Therral load
A. As5ana: present raced capacity - 1,6)40 hW
Future capacity (1971) - 2,2hO MW
Maximum efficiency a U0$
Heat loss within plant - \$%
Energy required for 1 Xwh - 3,U13 BTU
Adequate mixing of effluent
E. Heat Load: 3,hl3 BTU . 8 $QQ BTU/Kwh hsat rate
O.kO
(0.85 x 8,500) - 3,1113 - 3,837 BTU/Kwh Heat to Cooliru? water
Present: (3-Sh x 103 BTU/Kwh)(1.6U x 10° KW) = 6.3 x 1Q9 BTU/Hr
Heat Load
3 69
Future: (3.8b x 10 3TU/Xwh)(2.2L x 10 KW) - 8.6 x 10 BTU/Hr
Heat Load
C. Strean Quantity: Q = (cfs)(62.U Ibs/ft3)(3o00 sec/hr) - Ibs/Hr
Tx>w Flow: (5.0 x 103)(6.2h x 10)(3.6 x 103) - 1.12 x 10 Iba/Hr
D. Theoretical Stream _ Total Heat Load to Cooling War.er, BTlVHr
r (Stream quantity, lbs/Ilr)(l BTU/lb WF)
Present: A T =« v'^:- 1C?^o = 5-6 °F
" r J..12 x 10^
Future: j\ Tr = 8.6 x 10^ , 7 7 °p-
1.12 x 1C9
-------
-------
OHIO
, 19 £8.
Maximum efficiency = 35%
Heat loss within plant =
Energy required for 1 KVffl = 3,U3 BTU
Adequate mixing of effluent
B. Heat Load: 3,1*13 BTU = 0 ?5o BTU/KWH heat rate
0.35
(0.85 x 9,750)-3,U13 = U,877 BTU/KWH Heat to Cooling Water
(ii.88 x 103 BTU/KWH)( / 9&Q x 10 KW) = 9.55" x 10^ BTU/Hr Heat Load
C. Stream Quantity: Q = (cfs)(62.ii Ib s /ft3) (3600 sec/Hr) = Ibs/Hr
** O
Q = ( /.3L x lCf)(6.2li x 10) (3.6 x 103) = £.7 . x 10 Ibs/Hr
D. Theoretical Stream
TeTiperature Rise:/\Tr = Total Heat Load to Cooling Water, BTU/Hr
Stream quantity, Ibs/Hr)(1 BTU/lb °F)
!. Actual Field
Tanperature Rise:/\Tr = (Avg. Cross-Sect. H, °F)-(BackgroundiT, °F)
AT. = 77.2 °F ~ 73. -j °F = 3;f °F
-------
-------
THERMAL POLLUTION STUDIES
£ai3 '"-13-68 Location Ohio Riv- - :";2- Point ^j,°
'.'^ox ~,?,rH)
Air 7i,.n>eratur
cfs Plant Mama 3
a - Begin 69 u?
31—1- -• .
Finish
LIF£?.E:-:C£ "/LITER TSHPEPATUIS 73.0'-1 ?
Left
ISank
ABO 72 OUTFALL
i-jr. 71.3
o ' 7u . 3
20 !
30'
32LCW OUTFALL
Sur. 37.8
ii1 C-2.U
8' 77.0
12' To. 6
.16 ! 76.6
20' 76.1
2ii' 75.1
28' 76.1
32'
ZONE OF MIXBIG
Sur.
Apx. Distances
600'
(M. P. 53.?
Sur. 73-7
8« 73.7
20'
30*
Au
(M. P. 5h.3 )
(U251 above dam)
Sur. 81.0
U' bo.6
8» 78. b
12 • 77,9
16' Jc.t-.
20 » 76.1.
2U*
28'
32'
,Au-:^A-,f
(H. P. At Dan
Sur.
Betwaan
Middla
)
Sur.
8'
20'
30'
£ A ? ." '- '„ 1
OV: i ciiroi (i -r^Q J"'^
A3 "'F Work Ibne By ,T
H. P. -Si,*
Sampling Points
1200 '
73.7 Sur. 73.7
73.7 8' 73.7
20'
30'
•!l',Pu-7.'.-r'-T'r '. 73.4 ° f
Outfall submerged on northeast
lockwall.
Sur. 80.6 Sur. 80.6
U»
8'
12s
16'
20'
2li'
28'
32'
Tcrlpi.-'.V
)
Sar.
77.0 U1 79.7
76.6 8' .77.0
76.6 12' 76.6
76.1 16 • 76.6
20' 76.1
2li' 76 i
28' 74 "cj
32' 75. s
-•.re '. 77,^'f 1,6' 7$.^
Sur.
>/,-,« «r "- ".-;. V^s
_ '^ J East
Bank
Sur. _J73_/L«
6' 7J..7
20'
30'
side of
Sur. 79.7
U' 80.2
8' 79.7
12' 77.0
16' ?6,6
20' 76 6
2U ' 76 . i_
32' ~ ~^~"'
Sur.
Ii' ii' k* li1 V
Q ! "
u '
12 '
16'
20'
2h!
23'
3?'
8'
12 «
16'
20'
2U'
28'
32*
8'
12'
16'
20'
2lis
28'
32 »
8'
12'
16'
20'
2U«
28'
32'
8'
12'
16'
20'
2h'
28 1
32'
DCWNSTREAM PT.
3-
20'
30'
NO INCREASE (M. P.
Sur. 77-0
8'
20»
30'
Sur.
8'
20*
30'
) End of south lockwa
77.0 Say. 77.0
3'
20'
30*
11
Sur. 77,0
8'
20'
30'
-------
-------
OHIO iro^rK
Maximum efficiency = 33$
Heat loss within plant = 15$>
Energy required for 1 KWH = 3,113 BTU
Adequate mixing of effluent
B. Heat I/Dad: 3,U3 BTU = 9j?^0 BTU/Kiffl heat rate
(0.85 x 9,?50)-3,U13 = U,877 BTU/&/H Heat to Cooling Water
-\ & 3
(lj.88 x ICr B7U/K',vrH)( /,94 x 10 KW) = 9, SS x 10 BTU/Hr Heat Load
C. Stream Quantity: Q = (cfs)(62.ii lbs/f t3) (3oOO sec/?ir) -- Ibs/Hr
•4 o/5
Q = ( 4 ^jf x 10 )(6.2lx x 10) (3. 6 K 1CK) = / Q x 10 Ibs/Hr
D. Theoretical Stream
Temperature Rise:/\Tr = Total Heat Load to Cooling Water, BTU/Hr
Stream quantity, Ibs/Hr )(1 "BTU/lb °F)
/ Q x 10
E. Actual Field
•»
Temperature Rise:/\T^, = (Avg. Cross-Sect. T, °F )- (Background -I, °F)
-------
-------
TUSBHAL POLLUTION STUDIES
12-20-68 Location Ohio Ri^ar - Mil* Point $3.9
50 ' out
Tamo.
33.3° F-
50' outr
•frr val
Flow hiioOO cfs Plant Kan
.* i r Tfir^/sratura - Begdn 32
JG721ZXC3 VIAT2R TStPERATUHS
Left {j^-f^eaj, Ap^« Bista
Bank :"°"'~
6oo'
AE07S OUTFALL (M. ?. 53.5
Sur. 33.8 Sur. 33.8
8' 33.8 8' 31.3
20' 20' 3U.6
30' 29' 20K 3U.5
--•*• 3^,3
BELOW OUTFALL (M. P. 51.3
Outside wall of dam
Sur. L6.2 Sur. hi. 9
U1 Ii2.8 h1 Ul.l
-8' U2.8 8' Uo.6
12' 36,? 12' 38.3
16* 35-6 16' J8. 8
L2Q' 36.1 20' 37.it.
2V 21»2SX 38.3
28' 28'
32' 32'
4 ?•-; ^.'f
3 SiTi^iis - Ohio Siv-3
°? Fircish 32 w?
33.8 H. ?.
ness Between Sarx>ling
Middle
900'
}
Sur. 33.8
8» 3ii.$
20« 3!i.6
28 '^SX 3U.6
/--.", M •* '' r
r (1,660 Hw)
v/or;c Dona
53-?
Points
1200*
Sur. 33.
8' u".
20' 31^.
30' 3h.
•vi
3j P.3:?ar Griffith
and Bob Eoriaghy
Right^ ^^
8 Sur. 33,8
1 8' lj'i.1
6 20' %.6
6 30'
"- ?.:.;
) Ii25' above dam
Sur. 33.8
h1 3h.l
8« 3ti.3
12' 3h ."$
bottcml6* 3^.6
20'
2l4«
28«
32'
""> -,?j
Sur. 33.
It1 1I|,
8' ty.
12* 3l».
16» .Jl^
20' 3h.
2U' 3!4f
28' -^)4.
32' 31; ,
-- bet torn
8. Sur. . 33,8
6 k* 33.9
6 12' 3J..?
6 16* % .6
6 20'
fi 2U«
6 28'
6 32'
T?.C. ^.-i. 1
Left bank upstream below outfall A^ 31.^"-
ZONE 0? HIXIKG (M. P. )
Inside wall of dam
Sur. 33.8 Sur,
U' 3b.l h'
8' 3L.3 8'
Sur.
U'
8'
9'22X 3U.1 12' 12»
*
16' 16'
201 20»
2h ' 2ii '
28' 28'
32' 32'
DOWNSTREAM PT. NO INCPJEASB (H
S-ir, Sur.
6' 8»
20* 20'
30' 30 »
''ontirnous monitor irto
rvi breast $00' 600'
16 »
20 •
2ii'
28 »
32 •
.P. )
Sur.
8'
20'
30'
disc, slonf? pier wall
, '" qO ^",0 ^ O
U «i . ''j ti 2 . O ,i 5-5
Sur.
U'
8'
12 »
16'
20*
2Ij!
28 «
32'
Soy.
3'
20 !
30'
(100s oat)
900 *0 950s
Sur.
I*1
8'
12'
16'
20'
21i'
28»
32'
Sur,
8*
20'
30'
o
!' o1 '-"'.. si'!-? ed"3 :f
rc- waU)
-------
J ^x-j-J .2. ? "' ' k.l'
Maximum, efficiency = 3?A
Heat loss within plant =
Energy required for 1 KWH = 3,U13 BTU
Adequate mi>;ing of effluent
Heat Lcad: 3,1*13 BTU = 9 ?^0 BTU/KivH heat rat-
0.3^ " '
(0.85 x 9,750)-3,lil3 = h,877 BTU/Klffl Heat to Cooling Water
1 69
(U.88 x 1CT BTU/KV-JH)( / . 96 x 10 Ktf) = _ ^, S^~ x 10 BTU/Hr Heat Load
Q = ( /. / x 10*)(6.2U x 10) (3.0 x 103) = 3.^7 x
0. Theoretical Stream
Temperature Rise:/\Tr = Total Heat Load to Cooling Water, BTU/Hr
Stream quantity, lbs/Hr)(l BTU/'lb °F)
x
,2.47 x i(
E. Actual Field
Temperature Riser/^T^ = (Avg. Cross-Sect. T, °F) -(Backgro
n ,
°F = °F
-------
-------
Data 7-2-69
Location Ohio River 3 Jlsw C'ln'irarland Lock and
Flow
Air T<
R ol?. *
REFER
Left
Bank
ABOVE
Sur.
8'
20'
11,000
cfs Plant
eiroeratu/.'H - Begin
llama >>
93 °y
ire-vis - Or>io Ediion (1. 660 F.1/)
Finish
ii73 Humidity - 55$
ENCE WATS- TEMPERATURE
Apx. Distances
600'
OUTFALL
85.2
83.9
82. h
82.a
BELOW OUTFALL
Sur. 96. a
8'
12'
16'
20'
28''
32'
ZONE
Sur.
8'
12'
16'
20'
23'
32'
90. a
a?, a
3U.2
83.2
82.8
82.8
' '. 7
OF MIXING
85. a
•35. a
.55. a
? '.' . -
DOWNSTREAM PT.
Sur.
8'
20'
(M. P. 53,3
Sur.
8' ~
20'
253SX*
(M. P.
Sur.
a>
8'
12'
16' .
20'
2U»
28' "
32'
(M. P.
Sur.
U'
8«
12'
16'
20'
2a*
28 •
32'
86
ea
82
82
«i
SU.:
91
0-9
86
83
82
82
82
82
85
85!
85
b5
85
b*5
- ..
NO INCREASE
Sur.
8'
20'
30'
.0
,6
.a
.a
. *
2
.0
.6
.0
.9
.8
.8
.8
.a
* t ,
5a.7
.0
.0
.0
.0
.0
.0
(M. P.
Between
Middle
) By in
Sur.
8'
20'
30 »
) About
Sur.
a-
8'
12'
16'
20'
2a*
28'
32'
M. ?,
UF Work Dona By l-icr-rav - }fo35r
52,5
Sampling Points
take -and across
86. a Sur.
8U.2
82. a
82. a
c J -
three
88.2
88.2
86.7
ea.2
82.8
82. a
82. a
$ A, «J
) Below Lock
Sur.
a>
8«
12'
16'
20'
21,'
28'
32'
AV>S"
Sur.
8'
20 «
30'
85.0
85.0
«5.o
65.0
55.0
',-; :.
*t * j's
8'
20'
30'
light poles
Sur.
a«
8'
12'
16'
20'
2U'
28'
32'
and Dasi
Sur.
8'
12'
16'
20'
28'
32'
Si", l
Sur.
8'
20'
30'
12CO '
87.
8U.
83.
82.
82.
from
88.
86.
.tiB.
88.
a.
82.
82.
82.
82.
<' f
81; .
8ii.
-------
-------
TH5^AL_POLJ.UTION STUDIES
Ohio HIvsr, "I. p. 76.5
Cardinal Power Plant.
(October 3, -1968)
A. Assume: 123Q MW (Cardir.al) * 222 MW (Tidd) - lb$2 MW Output
Maximum efficiency » Ko3
Haat loss within plant =» 15;%
Energy required for 1 Kwh = 3,hlJ BTU
Adequate mixing of effluent
B. Heat load: 3?U13QBTU , Q^QQ BTU/Kyh heat ratQ
(0.8$ x 8,500) - 3,hl3 * 3,837 BTU/Kwh
Heat to coolinft water
(3.8U x 103 BTU/Kwh)(1.15 -x 106 KW) - 5.65 x 109
BTU/Hr heat load
C. Stream Quantity: Q - (cfs)(62.U lbs/ft^)(3600 secAr) =- Ibs/Hr
Q - (6.0 x I03)(6.2h x 10)(3.6 x 103) - 1.35 x 109 Ibs/Hr
D. Theoretical Stream Total Haat load to Cooling Water, BTU/Hr
Temperature Rise: /\ Tr - (stream quantity, Ibs/Hr)(1 3TU/lb °F)
- h.2 °F
3. Actual Field
Ts.Tnorature Rise: /\ T^ =• (AT*, Cross Sect, T, °F) - (Background Sect. T, °F)
78.7 °F - 75.2 u? - 3-5 °F
-------
-------
7JSP-MAL POLLUTION STUDIES
10-3-58 Location Ohio Rivsr ??. ?_,_ To. 5
Fix?
• 6,000
cfs Plant Nana Cardinal
Air lorroarature - Begin 68 u? Finish
Relative Humidity 8*6^
— CT v'-"*^ '£•*''••"' "w* T-~* ^TTD TtTVTJlTO A rrtrD'C* "7 r" "*
: i,J,^ai;»\j£. i!,\i— rt ijUlriixAiUiiii. , --• . -
T -> '>4-
JL/C? 4. U
Bank
71
H.
Apx. Distances Betwaen SHTID
Middle
AEO 72 OUTFALL (M. P. 76.5 >
£-or. 80.6
3'
20'
30'
80.6
76.1
75.2
BELCH OUTFALL
Sur. 86.0
U1
8'
16'
20 ?
28'
32'
8U.6
81.5
77.0
75.2
75.2
•
ZONE OF HIXD5G
Sur. 81.5
U'
8'
12'
16*
20'
28'
32'
JJCWN
......
81.0
79.it
73.L
77.U
77.0
76.6
76.8
76. U
75.2
3TR2AM PT.
"7.9
77.5
n '' ,0
""7.0
r ~i - c* 1~!'
Sur.
8' ~
20'
30»
(M. P.
Sar.
U' "
8' ~
12'
16' "
20»
2U'
28'
32'
(M. P.
Sur.
h'
8' ~
12'
16' ""
20s
2U' ~
28'
32'
81.2
80.2
75.2
75. .2 27'
76.7 )
8h.2
82, U
79.7
77.9
76.1
75.3
75.2
75.0
75.0
77. U
81.7
81.0
80.6 •
78.8
78. It
77.0
75.5
75.5
NO INCREASE (M. P.
Sur.
8' ~
20'
30'
,.=,,-., '-.I.-
77.9
77.5...
77,0
c v"? ~}r.f !"( 5? .
> Bat
Sur.
8»
20'
s, •; : "• A
Power
Sur.
U'
8'
12'
16'
20'
2b«
28'
32'
)
Sur.
It*
8'
12'
16'
205
28'
32'
78.3
Sur.
8'
20s
30 3
T Work Done Bj
P. 7. i~. i"
'ling Points
:J'o33r, Bsilev
Sight
Bank
5-i33n Tidd and Cardinal (Cardinal Intake)
81.5 Sur. 81.7 Sur. 82. U
79.2
75.?
75.2
-*, \
Lina
85.7
82. h
80.6
78.8
rJ7-A
75-7
75.3
75.2
'A'-f T
(At
82. U
82.1
80.6
78.8
77.0
76,1
75.7
75.5
75.5
•:•: 7 C
ttock
82.0
82.ii
81.0.
78 li
77.0
76,2
76.1
7^.7
r~
) ( At Red Marker R
77,9
77, ii
77.0
Sur.
8*
20'
30'
» i "
77.9
77,5
77J1
8' 80.6
20* 7^.5
25'MJ[ 75.2
Sur. 82. h
U1 85>Ji
8' 8? d "
12' 80.6
16' 7^6,6
20' _2£.^
2U' 75 2
28' 76.1
32'
- Bon Swart)
Sur. 82.0
M 81.7
8» _82jLl
12' 80,6
16' 80.2
"20' 77. L,
2ii»
28'
32'
uoy ) (Can)
Sar, 77_,o
8' 77,2
20' 7,^
30' 75, -'
r " '
r' • ^rcaot sky
- lowar
-------
OHIO r;•-.«.". M. P. 76 <~
CAP. p.- •„.-& i..;-a:v.^r P'/.n
££r^2ii££^, 1/47
Assume: / -f *n3__KW "2-t°d
,-!axirTiim efficiency = ~^%
Heat loss within plant = 1.y%
Energy required for 1 KW" = 3 .Li3 BT7!
Adequate mixing of effluent
E, Heat Load: 3?lil3 BTU = 9 7sQ BTU/Kk'H heat ?
0.35
(0.85 x 9,750)-3,iil3 = U.877 BTU//KWH Heat to Cooling Water
•3 & .7
(ii.85 x ICT BTU/KWH)( /.^jT x 10 Kl-f) = 7.6'8 x 10 3TU/Hr Heat Load
C. Stream Quantity: Q = (cfs)(62.U Ibs/f i/) (3600 sec/Hr) = Ibs/Iir
J3 £J
Q = ( £•£" x 10 )(6.2i; x 10) (3.6 x lo-3) = /. 44; x 10 lbs/Hr
D. Theoretical Stream
Temperature Rise:/iTr = Total Heat Load tc Cooling Water, BTU/Hr
Stream quantity, lbs/Hr)(1 BTU/lb °F)
/. 44 x 10
Temperature Rise:/\Tr = (Avg. Cross-Sect. T, °F)-(3ackground T, °F)
A T = 77. j °F — 7 J . 0" °F = 4.4 °F
r
-------
-------
THERMAL POLLUTION 3TUDI£S
9-30-69 Location Brilliant, Ohio
•1c-j op 00 cfa Plant IT.ima Cardinal
Air Temperature - Begin- 75 w?
Eelativa Hunidlty 62 ^
^ais
loft Apx, Distances Between
"iviimirs Reference Water Temperature (M.P.
-vr, 72.5 Sur. 72.5
i.id. 72.5 Mid,
2ct, 72.5 Eot.
Depth Depth
72.5
72.5
and Tidd Plants
b 77 °F Work Dona B^
B2s-inrJ.ng Tina 1200
Sampling Points
7U.7 )
Sur.
Md.
Eot.
Depth
f Lo^entz & Mo;
saght
Bank
72.5
72.5
72.5
>% J '. 1 ; -- -'• "<"„; ', " ,-
AI.OVS CliTFALL (M.P. 76.1
r-jr. 77.0 Sur. 77.0
3' 73.0 8' 7^J,|
20' . 20' 73 . Q
50 5 23!g2K _^2_._^ 2i|
>.; .- ?'!,,T
)
Sur. 78
8' lit
20' 22
At Upper Power Line
•U Sur. 78.8
.!_ 8' ,7^.?
.6 20' 71.0
.3 30' 72.5 .
8' ...?)! .3
20" .Z2...6
30'
~"/2jD3fCE OP THERMAL SHORT CIRCUIT? las
ESSCHIETIOH OF FINDINGS - MS.C2OTUD2 AM) TYPS Large (1 mile) loop in whole area.,
direct short circuit from outfall to intake of large (lower) plant. Extending
U. S. to M. P. 75.1
MAXIMUM OUTFALL TEMPERATURE 8?.k Upper
'.6 Lower
TIMS
12UO
SIZE OF JaXIMUM TEMPERATURE ZOJJE: 20' wide and 50! out and 81 deep
60' wide and at end of barricade and 10' deep
B:^LOW OOT?ALL
Sijir. 86.0
i^1 (32.1.
3' 76.2
12' 73. U
15' V3.0
^r,', — — : —
-. 3 "
(M.P.
Sur.
V "
8' "
12'
16' '
20'
2k'
28' "
76.7
8U.2
78.8
76.2
75.2
73.0
73.0
73.0
«
Stir.
U' "
8'
12'
16'
20 !
28'
) Lower
79.9
79.2
78.ii
75.9
75.2
73.0
.,»-...•. •.., ,..»«•«
~2.6
72.6
Power Lire s
Sur. 80.2
U'
8' "
I2l
16'
20'
S-'V
23'
80.2
80.2
80.2
75.2
73.0
72.6
72.6
Sur.
V
8' "
12'
16' "
20'
2V
03«
•C'vV
8l.o
81.0
80.6
80.2
32 J
-------
-------
OHIO
ChiC ^Gl^jji. _
3
* 8 ax 4 , i • & 8
A. Asjvme: _jPH_J!W "^t&d capacity
Maximum efficiency - 35/2
Heat loss within plant = ~\3%
Energy required for 1 K>IH = 3,113 3TU
Adequate mixing of effluent
3.- Keat load: 3,Iil3 BTU = 9 ?^0 BTU/KWH heat rate
0.35
(0.65 x 9,750)-3,iil3 = U,8?'7 BTU/KWH Keat to Cooling Water
(li.88 x 103 BTU/K>fH)( 5".44 x 10 Kv) = ^.^^ x 10 BTU/Hr Heat Load
C. Stream Quantity: Q = (cfs)(62.Ii Ibs/f t3) (3600 s^o/Kr) = Ibs/nr
Q = ( I $ x 10*) (6.2.14 x 10) (3.6 x 103) = 3.3(g x 1CT Ibs/Hr
D. Theoretical Stream
Temperature Rise:^Tr = Total Heat Load to Cooling Water, 3TU/Hr
Stream" quantity, lbs7Hr)(I ?TU/lb °F)
o
i -^ "^
A rp _ J. l»A X 10 », ,x r,
^
3,34 x 10
E. Actual Field
Temperature Rise:AT = (Avg. Cross-Sect. T, °F)- (Background T, F)
A Tr
-------
-------
7I!2liMAL POLLUTION 3FJDI2S
10-.'--68 Location Ohio ftr/sr >L ?, 102.? - Moundsrille
71o-f 15,000
cfs P3
i.ant Maine Burner Plane
Ai:* r<-r.:r}3ratura - Eagin 50 °? Finish S5 ^f
Relat:
p 7 7 •"•? £• vr; v */Z.vrEF
T _, -?.f-
Bank
ive Humidity 56$
1 T2MPE3L\TUR2 73. U
M. ?3
Apx. Dist-anc3s Betvsen Samoling
Middle
AE07S OUTFALL (M. P. 102. U )
£
75.2
73.7
73. U
73.0
?•;•"-•• ;'/-T-.>r---
75.2
75.0
73.7
73.0
73.0
73.0
72.8
-- -< '- ' '. !7-."/f
)
?3.h
73-0
8' 72.8
20'
30*
?• 1 -. 7 2 , 4 ° r
Sur. 72.5
hl 72.5
8' 72.5
12' 72,5
16'
20'
2lif
28'
32'
•• ". 7 •?, -i ° r-
Sur. 76.1
it' 75.2
8» 7U.3
12' 73.7
16' 73.7
20'
21i*
28'
32'
} 74. -i 3 r
(Tow Preceding)
Sor.
3'
20 3
30'
Right
Bank
Sur. 69-8
8« 71.6
20 »
30'
Sur. 71.6
li1 71. 6"
8'
12'
16'
20'
2lt<
28 »
32'
Sur. 75.2
It' 75.2
8» 73-7
12' 73.7
16'
20'
2lj'
28'
32'
Sur, 73. U
8' 73-7
20'
30'
-------
O B i o
, I/ 7
A, Assume: O~-44 .
Maximum efficiency ~ 35/S
Heat loss '.Tithin plant = IP/?
Energy required for 1 KWH = 3,Ul? 3TU
Adequate mixing of effluent
B. Heat Ix5ad: 3,U3 BTU = 9 7^Q BIU/KWH heat rate
(0.85 x 9,750)-33i|13 = Uy377 BTU/KWH Heat to Cooling Water
T . ji~ c/
(ii.85 x 1CT BTU/K'.VH") (_5>ff_ x 10 KW) - 2.(*$ x 10-/ BrJ/Hr Heat Load
C, Stream Q^^antity: Q = (cfs)(62.i| Ibs 'f t3) (3600 sec/fir) = Ibs/Hr
3 -j <*
Q = (6.9 x 10 )(6.2h x 10) (3. 6 x 10J) = /,5T x 10"" Ibs/Hr
D. Theoretical Stream
Temperature Rise:/\Tr = Total Heat Load to Cooling Water, BTU/Kr
Stream quantity, Ibs/Hr )(1 BTU/To °F)
/, 55" x 10
E. Actual Field
Temperature Rise:/^ = (Avg. Crocs-Sect. T, °F)-(3ackground T, °F)
A? - >^8 °F
-------
THERMAL POLLOTIOIT 3X3012=3
Location Ohio River 3 Koundsville
,.\U- I'er^eraturs - Begin-
" jl-YtiY3 Humidity
cfs Plant 2.ams Burger - Ohio Edison _CoF.pan
60
_ _
? Finish 73 u? WgrX Cong By ^ Lor entg Jk Moser
Beginning Tine 1000 _
px, Distances Between Sampling Points
Middle
2 Haference Water Teonserature (M,P. 102.0
Bank
) At Ferry Ramp - Moundsville
^.r. 72.3
:.ld. 72.3
L3t. 72.3
Depth 12
7? :.
:3QVE OOTEALL (M.P.
-:r, 71.9 Sur.
a1 /i.y" s1
50' 30'
Sur.
Mid,
Bot.
Depth
102.6
72.3
Y1.9
71.? 12
73 O
72.6
72.6
72.6
16
"•; '-
)
Sur. 71.9
8' .71'. 9_'
30' '
Stir.
Mid,
Bot.
Dspth 8
Sur. 71.9
8' ,71.9
30'
71.9
71.9
71.9
-_. .
Sur.
/I A^fl A
20'
30'
71.6
US
r/. '.
J.7I2SICE OP THERMAL SHORT CIRCUIT? No
INSCRIPTION OF FINDINGS - >a(3JITUDE AHD TYFS
M OUTSAIL T5MIERATITRE
'.6
TBS
1100
STS3 07 >TAXIMUM TEMPERATURE ZOHS: 10' wide - depth indeterminate - about 2£' out
from discharge
T^JL^'nT 017TFALL {M.P
"'-.?, 80.6 Sur.
'-' du.2 U.
;;' "" ~ 8
?.?. ' 12
IS" " 16
20
" -' 2!4
V " * 28
i
>
i
t
i
'
102.9
78.8
77. k
7k •&
73.7
Sur.
U'
8s
12'
20'
28'
73
73
73
73
73
.k
.k
.7
.k
.0
Sur,
8'
12'
15'XE&
20'
Pit1
28'
71
72
72
72
72
.9
.3
• 3
.3
.3
Sur.
8s
12'
16 '
20'
S3' '
71
71
71
.9 _
.9.
.9
-------
rhernal Pollution Strait
Ri^er, M. ?. \[\ , \
A. Assume: ? .S.JMf rated capacity
Maximum efficiency =
Keat loss within plant = 1%%
Energy required for 1 KWH = 3,1*13 BTU
Adequate mixing of effluent
B. Heat I^ad: 3,1*13 BTU = Q^0 BTU/KMH heat rate
(0.85 x 9,750)-3,iil3 = U,877-BTU/KWH Heat to Cooling Water
-i S~ 9
(1|.88 x ICT BTUAWH)(-- g.7:T x 10 KW) = 3. 3 x 10 BTU/Hr Heat Load
C, Stream Quantity: Q = (cfs)(52 .U -Ibs/f t3) (3600 sec/Hr) = Ibs/Hr
4 - f
Q = ( /.O x 10?)(6.2U x 10) (3. 6 x IGF) = _«3_JH_x 10 Ibs/Hr
D. Theoretical Stream
Temperature Rise:/\Tr = Total Heat Load to Cooling Water, BTU/Hr
Stream quantity, Ibs/Hr) (1 3TU/lb OF)
, - 1
= -3' 3 xio
E. Actual Field
Temperature Rise:./\Tr = (Avg. Gross-Sect. T, °F )- (Background" T, F)
A Tr = 71,0 °F — _41jL> = >*. / °F
-------
TH2FMAL POLLUTION 3TUDI2S
v") -11-66 Location
..—
J'l—-f "!/'. "'00
cfa ?:
,\\i- ;:;,-p-3r.atur3 - Bagi:
Relat:
:>:?s?^rcs WATER TEMPER.
La ft Ap:
p „*-!.,.
A->iJi- i.^.
ABOVE OU7JALL
Sur. 69,8
8« 69.8
20' o9. b
30'
BELCW OUTFALL
Sur. 70 . 1
U» 70.1
8' 70,1
12' 70,1
16 »
20'
2ii'
28 »
32'
ZONE 0? MIXING
Sor. 70.3
ii! 70.1
8 ' 70 , i
12' 7-0 ,1
16 ! 70.1
20'
2u»
2ti'
32'
DOWNSTREAM PT.
<3* 7I..6
20s
;0 '
{M. P.
Sur.
8'
20'
30'
(M. P.
Sar.
8'
12 »
20«
28»
32'
(M. P.
Sur.
h»
8' '
12'
16' '
20'
28 *
32'
Larst Mania
n qi °
i K--'— :-ir
'? Finish
Lve Hurnidiby 80^
iT'UitS 7C) . 7
?li-t
i-, >^ J*
M. ?. I
:<. Distances Between Sanpling
Middle
110,7
69.8
69.8
69.8
AV
111.2
. 70.1
70.1
70,1
70,1
70.1
70.1
70.1
A!
lll.ll
7.1 . 2
. 71,2
71.2
70. 1.
70,1
70.1
69 , 6
A
NO INCREASE (H.
Sur, T ,6
3'
20'
30'
71 ,6
-1 ; :^
) (2 3
Sur.
8'
20'
30'
£ < A-t ;" T"
) Bsle
Sur.
k*
8'
12'
16'
20 ?
2Ji'
23'
32 r
y r (?. A ('- : T r.
P. 111.8
Sur.
8' ~
20'
30'
tacks
70.1
70.1
*• ..>"''" »"" ^ "T" '
r i **" r i", ^*-^ t '-,-'
Hark
70,1
70.1
70,1
70 „ 1
70.1
70 , 1
70.1
70.1
n '-t'',ATu(
Upper
wrtHi Wire
72 . 6
7T.9
71.2
7r>.^
70 , 1
70 , 1
70,1
;-;s:: r-'VTH1
) E
71 _ h
71 .-",
7~ A
Work Dona 3y Jonfts, i'oTer
oo -;
Points
Sur.
8'
20'
30'
»e : /^
Sur,
8'
12'
16'
20'
2U«
28'
32'
2 -"~ * "7 A
111. I M.
Stir.
8'
12*
16'
20'
28 »
32'
1 : 70.
iy Creek
Sor.
20'
30'
69,8
69.8
70.1
', ? 3 r
71.7
7^ J,
71,6
71.2
70.7
70.1
9 " C
P.
71.9
70 , 8
70,1
70.1
70,1
70.1
7 n F
in Power
70.7
70 . 1
70 , 1
Right
Bank
Sur. 69.8
8' 70.1
20'
30'
Sur- JZluJL.
U' 7[- 1
8' 71^1
12'
16'
20'
2U'
28'
32'
Sur. 73 f).
U' T^ 6
8' 7Q.1 .
16' 69,8
20'
21|»
28'
32'
Sur. 67.8
8« _6_o_.8
20'
30'
-------
-------
C) h I 0 _ River, M. ?. I Ll 'S
Mo/ i . l\" u. jrg - V\' JAM ~ / S.L . Po;rer Plant
CCT ~f 19 ,',9
A, Assume: .'2 i -5" MW rated capacity
Maximum efficiency = 35$
Heat loss vrithin plant =
Energy required for 1 ME = 3,Ul3 BTU
Adequate mixing of effluent
B. Heat Ix^ad: 3;U13 BTO = 9 ?5o BTIJ/KT,JH heat rate
0.35
(0.8^ x 9,750)-3,U13 = U,8?7 BTU/K1^ Heat to Cooling Water
(li.88 x 103 BTU/Klffl)( JJJT x 10 -W) = /. Q.^ x 10^ BTU/Hr Haat Load
C. Stream Quantity: Q = (cfs)(62.U Ibs/ft3)(3600 sec/Hr) = Ibs/Hr
Q = ( /Q.i x 102)(6.2U x 10) (3.6 x 103) = ^.17 x 10^ Ibs/Hr
D. Theoretical Stream
Temperature Rise:/\Tr = Total Heat'Load to Cooling Water, BTU/Hr
Stream quantity, Ibs/Hr)(1~3TU/lb °F)
Actual Field
Temperature Rise:J\Tr = (Avg. Gross-Sect. T, ^-(Background1 T, F)
AT = 84,0 °F — S5.& °F = 1.2 °F
-------
-------
THERMAL POLLUTION' STUDIES
late '"•-',- -69 Location Ohio Rivsr 3 V/ilLo:? Island
Flow
L.".,l";o cfs Plant
Air Temparatm ° - Begin
Name
°F Finish
REFERENCE WAT'-TJ. TEMPERATURE 82 .8° ?
Kaiai,iva hinid
Left Apx. Distances Batwee
Bank Middl
* ABOVE
1
Sur.
8'
. 20'
30'
BELOW
Sur.
V
8'
12'
16'
20'
28'
32'
ZONE
Sur.
V
8'
12'
'16'
20'
2h>
'28'
32'
DOWNS
Sur.
8'
30'
OUTFALI,
82.8
82.8
OUTFALL
82.8
'6^.6
82 ,6
82.8
OF MIXING
8U.6
83. y
83.5
83.5
TREAM PT.
85.9
6 i.5
'^3 . 5
(M. P.
Sur.
8'
13'ZOK
30'
(M. P.
Sur.
V
8'
12'
16 «
20'
2V
28'
32'
(M. P.
Sur.
V
8'
12'
16'
20'
2V
28'
32'
160
82.
82.
82.
•6 }
a
8
8 13
160.7 )
82.
82.
82.
82.
82.
85.
oj.
83.
83.
83.
NO INCREASE
Sur. 83.
8'
16'2GDC
30'
83.
82.
8
a
a
8
d
A-l
161.0
1,
9
5
5
5
A ;
(M. P.
2
2
8 12
M
ifcy
n Sa
.e
UF Work Done By B--
. P.
158.1
.npling Points
1 At intake str
Sur. 82.8
8'
30'
28.5
Sur.
V
8'
12'
16'
20'
2V
28'
32'
)
Sur.
V
8'
12'
16'
20'
2V
28 «
32'
161.
Sur.
8»
30'
82.
82.
r ~
from
86.
dU.
tiu.
83.
b3.
-•'-
86.
bj.
83.
83.
6
83.
82.
82.
8
8
»- 5
tow
0
6
o
9
9
", i,
0
y
9
0
~ , ,: "
)
2
8
a
lict'ire
Sur. 82.8
8' 82.^
15 ' 2E3X 52.8
30'
r-
except 16' = 28.2
Sur. 86.0
V tiii.2
8' «ii. 2
12' 83. p
16' d3.a
20'
2U'
28>
32'
'I
Sur. 8U.6
U« ok.^
8' 83.9
12'
16'
20'
2V
28'
32'
T**
Sur. 82,8
8' 52. d
20'
30'
5iley i Miser
Right
Bank
Sur.
8'
20'
30'
Sur.
8'
12'
16'
20'
2V
28'
32'
Sur.
8'
12'
16'
20'
2V
28'
32'
Sur.
8«
20'
30'
82
82
8U
tili
83
83
83
83
83
8J
.8
.8
.6
.2
.9
.U
.9
» x
.9
.9~
ro'•. -Jir-r-iLrn--. n^ ^"dJin^-1 oi
-------
? Hi Q
. P H 3 A. A. j. P . . _-5 pp..;-^ frL _ Power Plan
A.. Assur.e: I C (sO M# rated capacity
Maximum efficiency = 35%
Heat loss within plant = ~\S%
Energy required for 1 KWH = 3,10.3 BTU
Adequate mixing of effluent
3. Heat load: 3?1|13 BTU = 9,750 BTU/KWH heat rate .
U.3,3
(0.85 x 9,750)-3J10.3 = 14,877 BTU/KWH Heat to Cooling Water
o & 9
(14.88 x 1CT BTUAWH)( /.PC- x 10 KW) = 5", /tA x 10 BTTJ/Hr Hsat Load
C, Stream Quantity: Q = (cfs)(62.1j. lbs/ft3) (3600 sec/Hr) = Ibs/Hr
-* 9
Q = (/. /8 x 10r)(6.2li x 10) (3 .6 x-lCK) = J. 4J~ x 10 Ibs/Hr
D. Theoretical Stream
Tenperatiore Rise:/\Tr = Total Heat Load to Cooling Water j BTU/Hr
Stream quantity, Ibs/Hr )(1 BTU/lb °F)
A
ti
10
J , i $• x 10 f
E. Actual Field
Temperature Rise:i\Tr = (Avg. Cross-Sect. T, °F)-(Background T, F)
-------
-------
-a,., -,—,,, ~ ~^ ?*, * -T . ,-<•]*•'*•>* -^ .~. T-., — .-I--.
'.;_:. , tL f*V ! ,-U -...I;'' ,,:V j... ,-b
>eaid.cn Orio :> Ivst- ; •. \-;ir: '. ':. ?h 1., G
/"l^/ LI. COO
La ft
ABOVE OUTFAIL
Sur, t'7.1
3' 67,6
20"
30'
BELCH OUTFALL
Sur. 72 . 5
Li' ?2.fi
8' 72 .i.
12'
16' '
20'
2h»
23'
32'
ZONE OF KEZDC
Sur. 71.2
k1 70.7
8' ""
12'
16' ~~^ "
20'
2li'
28*
32'
DOWNSTRSiM PT.
Sur, 71.6
3' ^ 0
20' /,5,0
30'
efa ?1^
a - B^gin
Relat
R TS-iPSU!
Ap;;.
(M, P.
Sur.
8'
20*
309
{M. P.
Sor.
I*1
8'
12»
16'
20'
2U«
28«
32'
(M, P.
Sor.
h'
8«
12'
16«
20s
2U»
28'
32»
.nb v"x-,* Fh
6 1 ° ?
THIS .-7.1,
Di:jt,,\rs,>3
2'il . ^
O7.1
6*7.1
67,6
Xi't
2h2.1 )
73.0
71.6
69.8
68.^
68.0
68.0. •
AVFi
2U2.3
^.1
?9.8'r~
69.2
6^.2
68 . 9
^>. U £- kX
NO INCREASE (M. P.
Sor.
8' ~"
20?
30'
68,0
>>S o
ill-"-. . -•.
•1-r-iJ;-- .__^:~_
^SS" 3'3ra
) T)p Liu
Sur. 67.1
8» 7,7 ,
w > • f , u
20s -"M
30'
fc/Ve I.-'--
Hi W^ re C
Sur. 71.6
U1 c8.o
8« 68.0
12» 6r'.o
16' 68.0
20'
2U'
28'
32'
?/„'* ] fr-;;.
J Coal
Sur. 77.J
h' 68 o
8' "C !£ li ?*?.'.)
2':2.^
Sur. 71.7
8« _^2.
20' -v' --
30'
-"""" "^ £OTjBy
lin.J Points
'- e
8' '7J:
20' ^,"7.6
30 •
,- r <• 47 L j-: ; 67. ^
ross inr
Sur, ?0.1
5;1 68,0
8* 58.0
12« 68. n
16'
20'
2V
23'
32'
' V^T.-IT : ^ 9. if
Sur, 73J.:
h' 68.0
5' 68,0"
12' 63,0
16' 6«.o
20' 65.0
2ii'
23'
32'
un j i^'. ? !' r
}
5' "6P*o'
20 « •-;- o
30'
rn :----;,:. .'-iy.i^r
Right
Sank
Sur. 6?,l
8= 67,1
20' 67_.l
30'
ii1 68.0
8' 68.6
12 «
16'
20'
2li'
28'
32«
Sur. 73,7
U1 68.3
8' 68,0
12' 63,0
16 ?
20'
21i' -
28'
32'
Sar. 70 . ?
8' 68.0
20' 69.0
30'
-------
-------
Oh ;Q
A, Assume: / Q 60 MW rated capacity
Maximum efficiency = 35%
Heat loss within plant = 1$%
Energy required for 1 KWH = 3,k13 BTU
Adequate mixing of effluent
B. Heat load: 3?lil3 BTU = 9 750 8TU/KWH heat rate
0.35
(0.85 x 9,750)-3,10.3 = U.877 BTU/KWH Heat to Cooling Water
o 6 «?
(U.88 x ICT BTU/g/7H)( /.Q4 x 10 KW) = S./B x 10r BTU/Hr Heat Load
C. "Stream Q-jantity: Q = (cfs)(62.1; Ibs/f t3) (3600 sec/Hr) = Ibs/Hr
Q = ( 3./5 x 10*)(6.2li x 10) (3. 6 x 103) = 7. (3? x 10^ Ibs/Hr
D. Theoretical Stream
Temperature Rise:/\Tr = Total Heat Load to Cooling Water ^ BTU/Hr
Stream quantity, Ibs/Hr )(1 BTU/lb OF)
--
E, Actual Field
Tenperature Rise:i\Tr = (Avg. Cross-Sect. T, °F )- (Background T, °F)
T = 3P.4T °F — ??. a °F = °F
-------
-------
Ttu'.RMAL POLLUTION STUDIES
Data 6~2o-69 Location Phillip Sporn P-"V3r Plant, Ohio Iti-rar
Flow
31,500
Air Tan-perati'1 -
Relative Huraii
REFERENCE WAT^1
Left
Bank
ABOVE
Sur.
8'
30'
BELOW
Sur.
U'
8'
12'
16'
20'
2U'
28'
32'
ZONE
Sur.
8'
922!
* 16'
20'
2U'
' 28'
32'
of 3 Plant Name
• - Begin 50 °F
Finish
LtV - 60% n
; TEMPERATURE 79 .k F
Apx. Distances
Correct all deoths
OUTFALT, (M, P. 21*1.5"
80.6
79.5
79.5
OUTF/..M.
80.6
80.6
80.2
OF MIXING
BO. 2
79.9
79.9
DOWNSTREAM PT.
Sur. 81.7
8' 50.6
20'
30'
30.6
Sur.
8'
20'
30'
(M. P.
Sur.
U'
8' "
12'
16' "
20'
2U« "
28'
32 »
(M. P.
Sur.
U'
8'
12'
16' "
20'
2U'
28'
32 1
79.5
79.5
79-5
79.2 S
2ii2 )
80.2
79.9
79.5
79,^
79.5
79.5
79.5
9< UF
M. ?.
Work Done By '•.'
Between Sampling Points
Middle 12CO' wide
fcy 0.9 (strong current)
)
Sur.
8'
20'
i
Sur.
it-
s'
12'
16'
20'
28'
32'
A- v -
79.2
79.2
73.8 .
78.8
> • ' 7 ;" X
80.2
79.9
79.5
79.5
79.2
79.2
79.2
79.2
• v -. • i •'• ^
Sur.
8'
20'
2833'
Sur.
U'
8'
12'
16'
20'
2U'
28'
32'
79.2
78.8
78.8
78.8
86.0
82.8
81.0
80,2
79.2
75.5
79.2
bsar - 8*
Right
Bank
Sur.
8'
20'
30'
Sur.
U'
8'
12'
16'
20'
2U'
28'
32'
Bdhi'av
79.2
78.8
78.8
86,0
Q •> p*
Q "5 » ^
80.2
79,9
2h2.1 ) Power Line
79.9
79.5
79.2
79.2
79.2
NO INCREASE (M, P.
Sur. 81.7
8'
20'
30'
80.2
"00.?
Sur.
8'
12'
16'
20'
2U'
28'
32'
2)43
Sur.
8'
20 »
30'
...85. U
80.6
79,9
79.5
79.2
79,2
79.2
'' -'-,'•
.0 )
81.7
83.2
80.2
Sur.
U'
8'
12'
16'
20'
2U'
28'
32'
Sur.
8'
20'
30*
8U.2
81,0
79.5
79.5
79.2
81. U
79.9
79,9
Sur.
8'
16'
20'
2U'
28'
32'
Sur.
8'
30'
31.0
80.6
79.2
79,2
81,7
79.9
79.5
-------
n
..6
A * ruS 3 "UJTIS 2 / f> L. £J rlW r'SLuSu C3.Tj3.Ci. L.V
<
Maximum efficiency =
Heat loss within plant =
Energy required for 1 KWH = 3 ,hI3 BTU
Adequate mixing of effluent
B. Heat Load: 3,1*13 BTU = 9 7^0 BTU/KWH heat rate
0.35
(0.85 x 9,750)-3,lil3 = U,877 BTU/KWH Heat to Cooling Water
q ^ *>
(U.88 x 1CT BTUAWH)( /. C4 x 10 KW) = £JB x 10 BTU/Hr Heat Load
G, otrean Quantity: Q = (cfs)(62.U lbs/ft3)(3600 sec/Hr) = Ibs/Hr
, o
Q = ( 3.3> x 10T")(6.2i; x 10)(3.6 x 103) = -f .7-f x 1CT lbs/Hr
D. Theoretical Stream
Temperature Rise:/\Tr = Total Heat Load to Cooling Water, BTU/Hr
Stream quantity, lbs/HrKl'BTU/lb °F)
_±L
E, Actual Field
Temperature Rise:AT^ = (Avg. Cross-Sect. T, °F)-(Backgrounc? T^ F)
°F
-------
-------
THERXAL POLLUTION STUDIES
Dat c-3-6
Location Ohio Rivor at Nv.-r
Flow ?-~ - -O'J
Air Ten-feature
pji?ERs:;c?; VATS
Left
Bank
cfs P]
3 - Bagir
1 TEMPERS
Apj
ABOVE OUTFALL (M. P.
t,
Sur. ^0.6
8« 60.5
< 20'
30 «
BELOW OUTFALL
Sur. 80.6
U' 80.6
8'
12'
16'
20'
2U«
28'
32'
ZONE OF MIXING
'ill
Sur. 33.9
U' 02.U
8'
12'
4 16'
20'
2U'
'28'
32'
DOWNSTREAM PT.
Sur. 8?.U
8' ci.7
20' 1
30'
Sur.
8'
22 'SDK
30'
(M. P.
Sur.
U' "
8« "
12'
16 « "
20'
2ii'
28'
32 1
(M. P.
Sur.
h'
8'
12'
16'
20'
2U»
28'
32'
uant Nama
i 71; °1
" Phil iio
o c? Djrn
r Finish WF Work Dons By
kTURE 30.6°"lT
iv-? Hurdiity 8
M, P. 2
iii.o
c. Distances Between Sampling Points
Middle
21*1,6
80.6
00.6
80.6
2U1.7
80.6
80.6
80.6
80.6
80.6
80.6
80.6
2)42,5
85.7
'6h . 6
82.8
01.0
di.O
NO INCREASE (M.
Sur. 32.U
8'
9':222S
30'
02.U
81.7
)
Sur.
8'
20 »
2U' J3S.
A • )
) By
Sur.
h'
8'
12'
16'
20'
28'
32'
AV -> .
)
Sur.
U'
8'
12'
16'
20'
2U'
28'
32'
P. 2U3.
Sur.
8«
20'
30'
30.6
80.6
do. 6
80.6 2h'
'•- 1 ': *', \~. - •?.
upper loading
85.7
83.9
82. h
80.6
do. 6 18
80.6
T--'--vr. ;.
85.h
HU.6
82. U
CSi.O
bO,6
50.6
Tf - : ^ '? i . 'f
3 )
83,9
o^.li
ai.?
Sur.
8'
20'
': f~
dock
Sur.
U'
8'
12'
20'
28'
32'
0 r;
Sur.
U'
8'
12'
16'
20'
28'
32'
Sur.
8'
20'
30'
80.6
ou.6
80.6
80.6
37. h
83-5
81. I*
80.6
80,6
85.0
Oii.6
Hl.ii
bi.o
dO.5
83.9
0 1' . U
81.7
? a or on 9, Mosec*
Right
Bank
Sur.
8'
16'25X
30'
Sur.
U'
8'
12'
16'
20'
2U'
28'
32'
Sur.
U'
8'
12'
16 « "
20'
2h'
28'
32'
Sur.
8'
12' 2ffil
30'
80.6
3u.6
80.6
87.8
86.0
52. k
ttl.U
81.0
8U.2
82. h
62. h
82. h
<3i;.'j
82.0
-------
HlO
c/ ,
Maximum, efficiency - 35p
Heat loss within plant = 15$
Energy required f;;r 1 KV.JH = 33i:l'; B7U
Adequate mixing of effluent
B. Hea^ Load: 3,I[13 BTU = 9,750 BTU-'KJrtH he-1 rate .
U * J)^
(0.85 x 9,750)-3,L13 = U,S77 BTU/KWH Heat to Cooling Water
(U.88 x 103 BTU/KvH)( / flftk x IO'KW) = 3". 3 x 10 BlTJ/Hr Heat Load
C. Stream Quantity: Q = (cf3)(62.u Ibs 'f t') (_;6^C sej/Hr) = lb?/::r
•3- o 5^
Q = ( /-34 x 10 )(6.2L x 10)(3.6 x 10J) = J,7^ x 10 Ibs/Hr
D. Theoretical Stream
Ten.perature Rise:/\Tr = Total Heat Load to Cooling Ivater, BTU/Kr
Stream quantity, lhs/Hr)(l ?TU/lb °F)
7.78 x 10^
-------
-------
'iKEHTUL POLLUTION STUDIES
Location f.-r-^r "rsek Pl^rr. - Ohio ^iver - •'. P. ?-;^
71o>,- -2ji 00
.'.i r r oro araturs
Rsla
La ft
Bank
AEOV3 OUTFAIL (
Sor. 68.9
8' 68.5
20' 68.0
30' 68.0
BELOW OUTFALL
Sur. 73. h
h1 73.0
8' flJb
12' 6Q.5
16'
20 f
21;'
28»
32'
ZONE OP MIXING
Sur. 73, I
h' 73,0
8' 72.5
12'
16'
20'
2U1
23' '
32'
ECWN3TR2AM PT.
-""•-!^« '~ } "7
6? * - '} O
• ' . U
?0' 6'>.8
>G '
cfa Plant Meoia K
- Bsgin 6a °?
bive Kunradity 62;i
, T3-CPEBATU3E 68.7
Apx. Distances
M. P. 2.59.7
Sur. 68.9
8« 68.5
20« 68.0
30* 68.0
.. A '
(M. P. 260.5 )
Sur. 75.2
It' 71.6
8' 70.7
12' 70.1
16' 69,8
20' 69.ii
2U« 68.9
28'
32'
Avr
(H. P. 261.0
Sur. 73.1;
li1 72.5
8' 71.9
12' 71.2
16' 70.7
20» 70.1
2ll ' 69 . 9
28 »
32'
A ~-J K •/
NO INCREAS3 (M. P.
Sur. 73.5
8' 79. rj
20' 69.?)
30'
r\ i T3"7 J-
finish 6? "F
* 1 » A *
Batvsan Sanr>ling
Middls
) Top Unlaadar
Sur. 69 Ji
8' 63.9
20' 68.0
30» 6S.O
•j'-. '^-:.--, T?"--!3-:.'?-^!
Power Lines - tc
Sur, 73. U
it' 71.6
8» 70.?'
12' 70.1
16 » o^J,
20' 68.9
21i' 68.9
28»
32'
Rf-:;r. TEiS?-r:?ATt
)
Sur. 73. h
k' 71.9
8' 71.6
12* 71 ,.2
16' 70.7
20! 70.3
2l4« 70.1
28' 69,8
32'
~<-c- -,•• r r .'_, t ,
261 . 5 )
Sur, 73. i,
6' 7?X
20' 6';,R
30 <
Work £
2^.9,0
Points
Sur.
8'
20'
30'
-*1'"1 '^ , {,-> *,
)D Of Old
Sur.
h'
8'
12'
16'
20 »
2ii'
28'
32«
j(?r : 7.v
Sur.
ij'
8'
12 «
16'
20'
2ii»
28'
32'
; •-- --- t 7 } ,
Sua*.
3?
20 3
30'
on a By
69.8
6«.n
68.3
68.0
•"? ,5
'-, D °,
Right
Bank
Sur. 69,8
8' _6P^.8
20» 69.8
30'
D3.ru
Sur. 7J_^
^i1 JL1.6
8' _Zi,6
12' JD-6
16' JZI.6 .
20' 71 ?
2U1 _6^.8
28'
32»
Sur. 71,7
h1 7?,i
8' .71.6
12' 71.6
16' 69.8
20'
21;'
28'
32 f
Sur. 7T.n
8' 72. <
20' 71 6
30'
-------
------- |