Region I
l(>50 -^n-t" Sl
WATER QUALITY MODEL
AND
WASTE LOAD ALLOCATION
ANALYSIS
OF THE
RAPPAHANNOCK RIVER below
Fredericksburg, Va.
Charles W. App
Robert F. McGhee
April 1975
-------
I. INTRODUCTION
-------
Table of Contents
I. Introduction
II. Model Verification
A. Availability of Water Quality Data
B. River Mile Index
C. Hydrologic Data
D. Cross Section Data
E. Salinity Model Verification
F. Dissolved Oxygen Model
1. Tidal Velocities and Reaeration
2. Benthic Oxygen Demand
3. Net Oxygen Production of Algae
4. Nitrogenous BOD and Its' Decay Rate
5. Carbonaceous BOD and Its' Decay Rate
6. Wasteloads Used in Model Verification
III. Conclusions and Wasteload Allocations
IV. References
V. Appendices
* ,
-------
I. Introduction
The Rappahannock River Basin is located in northeastern Virginia and
is bounded by the Potomac-Shenandoah River Basin on the north and west, and
by the York River Basin to the south. The river flows in a southeasterly
direction from its headwaters in the eastern slopes of the Blue Ridge Mountains
to the Chesapeake Bay. Tidal effects extend a distance of about 110 miles
from the Chesapeake Bay to the "fall line", in the vicinity of Fredericksburg.
Serious water quality problems have been experienced in the Rappahannock
River just downstream of Fredericksburg, Virginia. At low fresh water flows,
organic wastesaccumulate in the estuary creating degraded conditions. Dissolved
oxygen concentrations have approached zero, fish kills have been reported, and
during these periods the River becomes generally undesirable for most uses.
The State of Virginia's dissolved oxygen stream standard of 5.0 mg/1 as a daily
average and a minimum of 4.0 mg/1 is frequently violated over a ten-mile stretch
of the Rappahannock River just below Fredericksburg.
In 1969-1970 the Federal Water Pollution Control Administration- (FWPCA)
participated with local, state, and other Federal agencies in a joint water
resources study of the Rappahannock River. At this time a need was found for
a mathematical model of the river to be used as a planning tool for predicting
the water quality responses of the river to various combinations of waste loads,
flows, etc. An intratidal single-stage biochemical oxygen demand (BOD) -
dissolved oxygen (DO) model was developed by the FWPCA to meet this need.
I/ The Federal Water Pollution Control Administration in April 1970 was
changed to the Federal Water Quality Administration and in December 1970
was changed to the Environmental Protection Agency
-------
Subsequently, in an effort to better represent the complex processes
which determine the DO of the river, the AUTOSS water quality model was
applied to the Rappahannock River. AUTOSS is a steady-state mathematical
model which can be used to predict average water quality conditions at mean
tide (variations within a tidal cycle cannot be obtained with this model).
In addition to carbonaceous and nitrogenous BOD, benthic demand and net oxygen
production by algae are considered. For complete documentation of AUTOSS,
see EPA Technical Report 54, AUTO-QUAL Modelling System, by R.L. Grim and
N.L. Lovelace(l). The major improvement in this modelling work over the
previous work was that additional significant parameters such as nitrogenous
BOD were modelled and a more extensive data base was used.
The passage of PL 92-500 in October 1972 required under Section 303(d)(l)(A)
that each state shall identify those waters in which the minimum treatment
requirements of Section 301(b)(l) (secondary treatment for municipalities and
best practicable treatment (BPT) for industries) are not stringent enough to
meet the water quality stardards. Such areas are termed "water quality limited
segments". The Rappahannock River in the Fredericksubrg, Virginia, area is
classified as a water quality limited segment due to the low DO concentrations
frequently observed. Therefore, according to Section 303(d)(l)(C) each state
has the responsibility to establish waste load allocations for the water quality
limited segments which will meet water quality standards. These waste load
allocations are subject to EPA approval. Since EPA had an existing water
quality model of the Rappahannock River which considers both carbonaceous and
and nitrogenous BOD, technical assistance was provided to the State in developing
the waste load allocations for this stream segment. The close working
-------
relationship between the State Water Control Board and the EPA staff facilitated
development of the waste load allocations which are presented in a latter
section of this report.
In addition,the Virginia Institute of Marine Science (VIMS) had developed
* mathematical models for the prediction of salinity and dissolved oxygen in
the Rappahannock River. These are described in the VIMS report, "Studies of
the Distribution of Salinity and Dissolved Oxygen in the Upper Tidal Rappahannock
River", dated June 1972(2). The DO model developed by VIMS explicitly
considers the tidal behavior of the estuary in the advection term of the mass
balance equations. This approach differs from the one taken with the EPA model
where only the net non-tidal velocity component is included, with tidal mixing
being simulated with the dispersion term. Both approaches are theoretically
sound and proven methods of simulating estuarine behavior.
As originally developed, the VIMS model considered only carbonaceous BOD
(calculated from measured 5 day BOD's using a conversion factor of 1.5). Based
on data collected by EPA, it was shown that a significant part of the DO problem
in the Rappahannock was due to nitrogenous BOD, which had not been considered
with the VIMS model. For this reason, the EPA model (which considers
nitrogenous BOD) was used in making the wasteload allocations for the Rappahnnock
*' River. Subsequently, as the result of discussions between VIMS and EPA, VIMS
modified their model to include nitrogenous BOD, as well as bethic demand and
i -
the net production of oxygen by photosynthesis. In making comparative runs
with the two models, it was found that the minimum average DO predicted with
both models agreed to within 0.01 mg/1.
-------
II. MODEL VERIFICATION
-------
II. Model Verification
A. Availability of Water Quality Data
Extensive field data had been collected during the summer of 1970
by both EPA and VIMS. The FMC Corporation also collected a limited number
of samples of the Rappahannock River. All three sources of data were used
in the calibration and verification process.
The EPA data is presented in its entirety in Appendix D. Sampling
station descriptions are given in Table 1. All samples were collected at low
water slack. It should be noted that the BOD,, values listed in Appendix D-l
are not necessarily the actual values measured by the lab, but are the values
taken from the first order, single-stage BOD curve which was fitted to the
actual long-term BOD data. The ultimate biochemical oxygen demand (BOD )
shown was determined from this curve and includes both carbonaceous and nitro-
genous BOD. The corresponding k.. rate that is shown is a single-stage bottle
rate only, and should be used as such. A complete listing of all the actual
long-term BOD determinations for each sample is shown in Appendix D-2. The
listing is the output from the computer program used to curve fit the BOD data
which used either a least squares fit or Lee's Graphical Analysis adapted
for the computer. The station number of each sample is listed in the upper
left-hand corner (disregard the last two digits of the number, which are lab
identification numbers only).
-------
TABLE 1
STATION DESCRIPTION
RAPPAHA:;XOCK RIVER SURVEY
Station Description River Mile
FL Fall Line 110.3
SIB Scotts Island Bridge 109.6
RTO Radio Tower 107.5
BB Bernard Bar Piles 107.1
120 Buoy 120 105.4
118 Buoy 118 103.9
116 Buoy 116 102.0
108 Buoy 108 99.3
105 Buoy 105 98.6
100 Buoy 100 95.8
95 Buoy 95 93.2
93 Buoy 93 92.9
90 Buoy 90 90.7
86 Buoy 86 88.1
84 Buoy 84 85.5
81 Buoy 81 81.8
PRB Port Royal Bridge 79.3
69 Buoy 69 76.9
67 Buoy 67 75.7
64 Buoy 64 74.9
i •
-------
B. River Mile Index
In order to avoid confusion, both statute river mila and its associated
landmark are listed in Table 1. Care must be exercised when comparing
different sources of data, since the river mile of a particular location
is likely to differ. This was found to be the case with the Rappahannock
River, therefore, the landmarks should be used when cross-referencing data
or results.
C. Hydrologic Data
The TTSGS maintains a streamflow gaging station (number 01668000) approxi-
mately 4 miles above the City of Fredericksburg. The drainage area at this
station is 1596 square miles. There is approximately 40 square miles of
unpaged drainage area between this gage and river mile 104.3, which is just
downstream of the recently constructed Massaponax Sewage Treatment Plant, the
most downstream point source discharge in the water quality limited segment.
Since all but 2% of the drainage area is gaged, the freshwater inflow to
the estuary is accurately determined from the USGS gage near Fredericksburg.
The daily hydrograph for this gage during the months of May through August 1970
is shown in Figure 1. Also noted are the days on which a complete set of
stream samples (includes nitrogen data) were collected by EPA for use in
calibrating and verifying the EPA water quality model. It can be seen from
the hydrograph that the samples collected on July 13, July 22, and August 5
are not of much value in calibrating a steady-state model due to wide fluctua-
tions in the flow regime.
-------
10
o
-------
11
D. Cross-Section Data
Cross-sectional data was developed from the nautical chart of the
Rappahannock River (605-SC, Edition 10, January 1974) published by the
U.S. Department of Commerce. From these cross-sections, average widths
and depths at mean tide were calculated for use in the model. See listing
of input data for the model in Appendix A-l.
E. Salinity Model Verification and Determination of Dispersion
Coefficient
The dispersion coefficients can be evaluated for a particular net advec-
tive flow from the observed salinity profiles. Data collection by VIMS was
used to verify the model for salinity from River Mile 0.0 (mouth) to River
Mile 110.3 (fall line). Plots of the verification profiles are shown in
Appendix B-l. As can be seen from the verification profiles, the river is
essentially fresh water above Mile 70. This obviously eliminates the use ut
salinity as a tracer to determine the dispersion coefficients in this area.
Therefore, the dispersion coefficients determined from the salinity profiles
at the most upstream point (Mile 60.0) was used through the fresh water
segment to the fall line.
The dispersion coefficients that were determined are shown in the
complete input data listing for the salinity verification (Appendix A-l).
In the continuing process of updating and further refining existing mathe-
matical models, consideration should be given to conducting dye studies of
this fresh water area of the Rappahannock River in order to more precisely
determine the dispersion coefficients. Also, the possible variation of the
-------
12
dispersion coefficient with fresh water inflow should be investigated
especially at extremely low flows. This variable relationship between
dispersion and flow was shown to exist by Clark and Feigner (3) in the
Potomac Estuary and by Paulson (4) in the Delaware Estuary.
F. Dissolved Oxygen Model
The T)0 model was verified from the fall line (River Mile 110.3) to
•River Mile R5.0 using four simulation periods during the summer of 1970.
VIMS, EPA, aid the FMC Corporation had independently sampled the Rappahannock
^iver during this time, which provided an excellent data base with which
to work. The verification profiles are shown in Appendix B-2. The specific
details of the verification runs are discussed in the following sections.
1. Tidal Velocities and Reaeration
Tidal velocity measurements were obtained by VIMS during July
and August 1970. From these current velocity measurements, the average
tidal velocity at various locations along the Rappahannock River was determined
from:
V = V X 0.637
avg max
where
V = average tidal velocity
avg
V = maximum tidal velocity
max
-------
13
TABLE 2
BENTHIC DATA
RAPPAHANNOCK RIVER SURVEY
June 22, 1970
Location Temp. Start Time End Time Benthic Demand
°C gm/ra2/day
South Bank
at RMile 107.5 27 1200 1310 1.7
Buoy 105
at RMile 98.6 27.5 1444 1530 3.0
-------
14
This relationship assumes a sine curve distribution of velocity through-
out a tidal cycle. (See listing of Input Data, Appendix A-2). The average
tidal velocities are used in determining the reaeration rate (k2) which is
calculated internally within the model by the O'Connor-Dobbins formulation:
k. (base e) = 12.9 V °'5
2 avg
D ""
where:
k~ = reaeration rate (I/day)
V = average tidal velocity (ft/sec)
avg
D = average river depth (ft)
2. Benthic Oxygen Demand
The benthic oxygen demand was determined in the field by EPA at
two locations, using the benthic respirometer technique (Table 2). Values
slightly less than the actual measured values were found to work best in
the calibration and verification runs (see Input Data List, Appendix A-2).
3. Net Oxygen Production by Algae
The net oxygen production by algae is equal to the difference between
the oxygen produced during photosynthesis and the oxygen utilized by respira-
tion. The method used to estimate the net oxygen production follows the
method presented by Dominic M. DiToro at Manhattan College's 17th Summer
Institute in Water Pollution Control (5). The technique basically follows
that outlined by Ryther (6) in 1956 and Ryther and Yentsch (7) (1957), with
the emphasis shifted from primary production to dissolved oxygen production.
-------
15
The light saturrted rate of oxygen production, P , has been correlated
s
with the concentration of chlorophyll''a' (a measure of the algae population
density):
P =0.25 Chi
s a
where
P = mg 09 produced/1/day
3 £•
chl = chlorophyll 'a' concentration in ug/1
Si
Using the average value of 40 ug/1 chlorophyll *a' that was observed during
the EPA sampling survey, the light saturated rate of 02 production is:
P - (0.25) (40) = 10.0 tng 0,,/1/day
s /
The ratio of the average rate of 0« production, Pav, to the maximum rate, P ,
is given by:
Pav f (2.718) f * ° (Vl } -(Ia/Is)
P * T H k S e S/-e
s el
where
H * average depth of the well mixed layer
T *= time period over which the 0_ production is being
averaged (i.e., 1 day)
f «= fraction of time period that is daylight
I « light intensity saturation value
I * mean daily light intensity
a.
k - light extinction coefficient
a
-------
16
For the Rappahannock River the following values were used:
H = 10.1 ft. (represents average depth from
river mile 90 to river mile 95)
T = 0.583 day (14 hrs)
I = 2000 ft-candles
a
I = 2000 ft-candles
s
K = .7/ft (this corresponds to a secchi disk depth
of approximately 2.7 ft)
therefore:
Pav „ ,,
since
P ~ 10.0 mg 09/l/day
S *-
Pav * (0.14)(10.0) = 1.4 mg 02/l/day
The respiration of algae must also be accounted for in order to determine
the net effect. The respiration rate, R, has also been correlated to the
chlorophyll 'a' concentration.
R - 0.025chl
a
where
R = mg 0_ utilized/1/day
Chi = chlorophyll 'a1 concentration ug/1
3,
therefore for the Rappahannock River,
R = (0.025)(40.0) = 1.0 mg 02/l/day
The net oxygen produced by algae is then the difference between production
and respiration.
Net 0? production = Pav - R
= 1.4 - 1.0
= 0.4 mg 0 /I/day
-------
17
2
For use in the model, this number must be converted to grams CL/m /day.
Using the average depth of 10.1 feet and the completely mixed assumption,
0.4 mg 02/1/ day x 3012 1/m2 x 1.0 Bm/1000 mg
= 1.2 gm 02/m2/day
It should be remembered that this method yields an approximate answer
to a very complex biochemical phenomenon, and is therefore subject to
some degree of uncertainty. It did, however, appear to work well in the
2
verification runs. A value of l.Ogm 0»/m /day was used at river mile 102.0,
2
increasing linearly to 1.3 gm 0 /m /day at river mile 90.0. Above river mile
103.0 the net oxygen produced is zero, due to the relatively low population
density of algae.
4. Determination of Nitrogenous BOD and It's Decay Rate
The oxygen demand of nitrogenous materials is referred to as the
nitrogenous BOD. More specifically this involves a series of consecutive
reactions in which organic nitrogen is converted to ammonia which is oxidized
through nitrite to nitrate. The hydrolysis of the organic nitrogen (urea,
amines, proteins) to ammonia does not utilize oxygen. The subsequent
oxidation of the ammonia is a two step process, involving two distinct auto-
trophic groups of organisms. The ammonia oxidation is accomplished by the
genus Nitrosomonas and the conversion of nitrite to nitrate is carried out
by the genus Nitrobacter.
The oxidation of ammonia by Nitrosomonas is given by the following
equation: (8)
NH + 3/2 02 >• HNO_ + H20
The oxidation of nitrite by Nitrobacter is shown by:
HN0 + 0 »•
-------
18
Considering the entire nitrification reaction, we have:
14 64 62
1 4.57
Thus, from the stoichiometric relationship of oxygen to ammonia, 1 mg/1
of ammonia is equivalent to 4.57 mg/1 of nitrogenous BOD. However, since
organic nitrogen is converted to ammonia, it also is included in the nitro-
genous BOT). Therefore, the nitrogenous BOD is determined by the total
kjeldahl nitrogen (TKN) , which includes both organic and ammonia nitrogen,
multiplied by 4.57.
Although nitrification actually involves a series of sequential reactions,
it can be represented in terms of nitrogenous BOD using a single overall
reaction. This approach was used in the EPA model of the Rappahannock River.
The decay rate for nitrogenous BOD was found to be 0.10 (base e) from river
mile 108.6 to river mile 98.0, then decreasing linearly to 0.05 at river
mile 90.0.
5. Determination of Ultimate Carbonaceous and It's Decay Rate
Two methods were used to determine the ultimate carbonaceous BOD at
each sampling station. The first method uses the "traditional" or "normal"
ratio of 1.5 to 1.0 between ultimate carbonaceous and 5 day BOD in converting
the measured BOD,, values to the ultimate carbonaceous BOD. The applicability
of this ratio to stream BOD samples is always somewhat questionable. However,
the results calculated by using the ratio of 1.5 to 1.0 agree rather well with
the results obtained using an alternate method of obtaining the ultimate
carbonaceous BOD.
-------
19
The second method of obtaining the ultimate carbonaceous BOD makes
use of the long-term BOD results (shown in Appendix D-2). The BOD's
were incubated for 20 to 30 days in most cases. The BOD that is measured
at any time actually represents the total BOD, which includes both the
nitrogenous and carbonaceous portions. Therefore, to determine the
carbonaceous BOD at any time, one must subtract the nitrogenous portion
from the total BOD. For each sample the ultimate carbonaceous BOD was
determined by subtracting the ultimate nitrogenous BOD from the total
BOD measured at maximum incubation time for that particular sample. The
ultimate nitrogenous BOD is obtained from the measured initial value of
total kjeldahl nitrogen (TKN), multiplied by 4.57.
Having obtained the ultimate carbonaceous BOD of each sample, the
river decay rate of carbonaceous BOD can be determined from the observed
concentrations as one proceeds downstream. A rate of 0.15 (base "e") was
determined at river mile 108.6, which decreases to 0.06 (base "e") at river
mile 90.0. The rate is a maximum in the vicinity of the waste discharges
from the City of Fredericksburg's sewage treatment plant and the FMC Corpora-
tion. The decrease in decay rate as one proceeds downstream from a waste
input that is observed on the Rappahannock River has been found to occur
on numerous other rivers and streams by this writer and has been reported
by O'Connor(5) and others. The possible explanation for this decline in
the rate of decay is that the more readily oxidizable carbonaceous substances
are utilized first by the heterotrophic bacteria, leaving progressively more
stable, biologically resistant materials as one proceeds in the downstream
direction.
-------
20
6. Waste Loads Used for Dissolved Oxygen Model Verification
During the simulation periods chosen for verification, there were
onlv two significant dischargers affecting the dissolved oxygen balance
of the upper Rappahannock estuary (river mile 110.3-85.0). They are (a)
the City of Fredericksburg and (b) the FMC Corporation.
(a) City of Fredericksburg
Effluent data was collected and analyzed by State Water Control
Board personnel during the summer of 1970 (see Table 3). The average
BOD,, discharged during that period was 734 Ibs/day. Using a ratio of
1.5 between ultimate carbonaceous BOD and 5-day BOD, the average ultimate
carbonaceous BOD was calculated to be 1100 Ibs/day. A ratio of 1.5 is
representative of a "typical" municipal waste and was used since there was
no other data available for the Fredericksburg sewage treatment plant.
Since effluent data for oxidizable nitrogen was not available during
the summer of 1970, an estimated concentration of 20.0 mg/1 TKN was used.
TTrLs value was decided upon after reviewing effluent data collected in 1973
and 1974 by the state and EPA. (See Tables 4 & 5). Using the stoichio-
metric oxygen equivalent of TKN conversion to nitrate-nitrogen, the nitro-
genous oxygen demand was calculated to be 91.4 mg/1 or 1750 Ibs/day at an
average flow of 2.30 mgd.
The average waste load shown below was used for all four simulations
for the City of Fredericksburg:
net flow 2.30 mgd
ultimate carbonaceous BOD 1100 Ibs/day
nitrogenous BOD 1750 Ibs/day
-------
21
TABLE 3
FREDERICKSBURG SEWAGE TREATMENT PLANT - FINAL EFFLUENT
SAMPLED BY STATE WATER CONTROL BOARD - 1970
DATE
5/20/70
5/26/70
6/09/70
6/13/70
6/16/70
6/23/70
7/01/70
7/04/70
7/12/70
7/23/70
7/27/70
7/31/70
3/06/70
TIME
13:
12:
12:
10:
15:
14:
15:
23:
11:
10:
12:
11:
1?:
15
30
05
00
45
00
30
00
30
00
00
20
3^
FLOW
MGD
2
2
2
2
2
2
2
1
2
2
2
1
.41
.48
.49
-
.54
.36
.55
.19
.96
.16
.49
.23
v
.70
DISSOLVED OXYGEN
(mg/1)
3
6
6
3
3
5
7
3
8
8
6
.8
.0
.8
-
-
.4
.4
.4
.4
.2
.0
.0
.8
BOD5
(mg/D
48.0
65
64
26
40
37
34
29
26
30
33
19
22
.0
.0
.0
.0
.0
.0
.0
.0
0
.0
.0
.5
BOD5
(///Day)
965
1344
1329
-
847
728
723
530
425
540
685
353
336
TYPE
16 hr
13 hr
12 hr
24 hr
24 hr
23 hr
24 hr
14 hr
22 hr
24 hr
24 hr
24 hr
f2 hr
OF SAMPLE
. composite
n
n
.
.
.
n
it
11
n
•
n
n
n
n
-------
22
TABLE 4
FREDLRICKSEOG SF.WAGr, TREATMENT PLANT FINAL EFFLUENT
48 HR. SURVEY
SAMPLED 3Y STATE WATER CONTROL BOARD - 1973
DATE
6/25/73
6/26/73
6/26/73
6/26/73
6/26/73
6/26/73
6/27/73
6/27/73
6/27/73
6/27/73
TIME
2100
0300
0900
1500
1500
2100
0300
0900
1500
1500
DISSOLVED OXYGEN
6.6
7.0
7.2
6.6
-
7.0
7.7
8.2
7.1
_
BODS
(mg/1)
30.0
39.0
16.0
24.0
15.0
22.0
24.0
13.0
17.0
20.0
TKN
17.5
15.0
12.5
15.0
15.8
17.0
15.0
12.0
14.0
15.0
NH3-N
14.0
12.0
10.0
13.0
13.5
7.0
7.0
5.0
7.0
9.0
TYPE OF SAMPLE
6 hr . composite
n
"
n «
* »
24 hr . composite
6 hr. composite
n
n
n
24 hr. composite
Flow = 4.35 million gallons for 48 hr. period (plant totalizer)
4.96
(Stevens equipment)
-------
23
TABLE 5
Fredericksburg Sewage Treatment Plant Final Effluent
Sampled by EPA 1973 - 74
Date
9/26/73
1/10/74
4/16-17/74
5/13-14/74
5/23-24/74
5/28-29/74
BOD5
20
36
46
79
55
55
.9
.0
.0
.5
.0
.5
TKN
17
14
17
15
19
20
.6
.5
.4
.5
.3
.3
NH3-N
14
14
15
11
16
19
.9
.3
.9
.3
.6
.5
Type of Sample
24
24
24
23
24
24
hr.
hr.
hr.
hr.
hr.
hr.
composite
composite
composite
composite
composite
composite
-------
24
(b) FMC Corporation
Monthly Waste and River Reports are submitted by the FMC Corporation
to the State Water Control Board (Appendix C-l). Daily effluent flows,
suspended solids, and 5 day BOD concentrations are reported for the
industrial waste treatment plant. Nitrogen data is not reported.
Evaluation of this data indicates that FMC's discharge is highly variable,
with frequent high BOD and suspended solids concentrations. In subsequent
discussions with Mr. Ernest G. Ladd, Environmental Coordinator, FMC Corp.,
it was mentioned that the Fredericksburg plant did not have sludge disposal
facilities and, therefore, sludge is wasted to the Rappahannock River in
the treatment plant's effluent. Evidence of this is shown by the high
BOD and suspended solids concentration which periodically occur in the
effluent. In addition to the process effluent, the cooling water discharge
is also a source of carbonaceous BOD due to leakage through the barometric
condenser system. Nitrogenous BOD is essentially not present, as indicated
by their permit application and a limited number of EPA samples. Monitoring
of the cooling water intake and discharge for BODS is not routinely performed
and, therefore, the contribution from this source cannot be accurately deter-
mined. The permit application indicates a net load of 436 Ibs/day BODS while
the limited number of EPA samples range from 406 Ibs/day to 916 Ibs/day BODS.
The lack of comprehensive effluent data, plus the variability of FMC's
effluent quality, made it difficult to determine either the carbonaceous
or nitrogenous BOD being discharged. When the reported effluent BODS is
converted to ultimate carbonaceous BOD by a ratio of 1.75 to 1.0 (see
Appendix C-2 for discussion of ratio) and various simulations were run,
it became evident that this loading was too small to produce the observed
carbonaceous and BOD dissolved oxygen values found downstream of the FMC plant.
-------
23
TABLE 5
Fredericksburg Sewage Treatment Plant Final Effluent
Sampled by EPA 1973 - 74
Date
9/26/73
1/10/74
4/16-17/74
5/13-14/74
5/23-24/74
5/28-29/74
BOD5
20
36
46
79
55
55
.9
.0
.0
.5
.0
.5
TKN
17
14
17
15
19
20
.6
.5
.4
.5
.3
.3
NH3-N
14
14
15
11
16
19
.9
.3
.9
.3
.6
.5
Type of Sample
24
24
24
23
24
24
hr.
hr.
hr.
hr.
hr.
hr.
composite
composite
composite
composite
composite
composite
-------
24
(b) FMC Corporation
Monthly Waste and River Reports are submitted by the FMC Corporation
to the State Water Control Board (Appendix C-l). Daily effluent flows,
suspended solids, and 5 day BOD concentrations are reported for the
industrial waste treatment plant. Nitrogen data is not reported.
Evaluation of this data indicates that FMC's discharge is highly variable,
with frequent high BOD and suspended solids concentrations. In subsequent
discussions with Mr. Ernest G. Ladd, Environmental Coordinator, FMC Corp.,
it was mentioned that the Fredericksburg plant did not have sludge disposal
facilities and, therefore, sludge is wasted to the Rappahannock River in
the treatment plant's effluent. Evidence of this is shown by the high
BOD and suspended solids concentration which periodically occur in the
effluent. In addition to the process effluent, the cooling water discharge
is also a source of carbonaceous BOD due to leakage through the barometric
condenser system. Nitrogenous BOD is essentially not present, as indicated
by their permit application and a limited number of EPA samples. Monitoring
of the cooling water intake and discharge for BODS is not routinely performed
and, therefore, the contribution from this source cannot be accurately deter-
mined. The permit application indicates a net load of 436 Ibs/day BODS while
the limited number of EPA samples range from 406 Ibs/day to 916 Ibs/day BODS.
The lack of comprehensive effluent data, plus the variability of FMC's
effluent quality, made it difficult to determine either the carbonaceous
or nitrogenous BOD being discharged. When the reported effluent BODS is
converted to ultimate carbonaceous BOD by a ratio of 1.75 to 1.0 (see
Appendix C-2 for discussion of ratio) and various simulations were run,
it became evident that this loading was too small to produce the observed
carbonaceous and BOD dissolved oxygen values found downstream of the FMC plant.
-------
25
However, since the river samples collected by EPA indicate a consistent,
definite increase in both carbonaceous and nitrogenous BOD in the immediate
vicinity of the Fredericksburg sewage treatment plant and the FMC Corp.,
the FMC waste load could be determined from the observed river concentrations.
Since fairly good effluent data was available for the City of
Fredericksburg's sewage treatment plant, their discharge for the four
simulations was assumed to be the constant average value previously discussed.
The additional waste load needed to match the observed increase in river loads
was assumed to come from the FMC Corp. The following loads for the FMC Corp.
were used in calibrating and verifying the dissolved oxygen model. It
should be noted that FMC does not add any net flow to the Rappahannock River,
since it withdraws its process water from and returns it to the river.
June 22, 1970 Simulation
net ultimate carbonaceous BOD 14,900 Ibs/day
net nitrogenous BOD 14,250 Ibs/day
note: FMC discharge records indicate high BODS and suspended
solids concentrations June 16 through June 18, which are
reflected in the observed river concentration.
June 29. 1970 Simulation
net ultimate carbonaceous BOD 8,000 Ibs/day
net nitrogenous BOD 8,750 Ibs/day
-------
26
June 28-29, 1970 Simulation
net ultimate carbonaceous BOD 5,900 Ibs/day
net nitrogenous BOD 4,250 Ibs/day
August 27, 1970 Simulation
net ultimate carbonaceous BOD 4,600 Ibs/day
net nitrogenous BOD 4,750 Ibs/day
note: nitrogenous BOD estimated from observed river concentrations,
Carbonaceous BOD obtained from average of August 26 and 27
reported loading for the industrial waste treatment plant
plus 436 Ibs/day BODS for the cooling water discharge
(average value obtained from the permit application) .
-------
27
III Conclusions and Wasteload Allocations
-------
28
III. Conclusions and Wasteload Allocation
Using EPA's verified dissolved oxygen model of the upper tidal Rappahannock
River, various pollution abatement alternatives were evaluated. At the 7-day,
10-year low flow, the minimum treatment required by section 301(b)(l)(A) and (B) of
PL 92-500 (BPT and secondary treatment) proved to be inadequate. The predicted
minimum daily average dissolved oxygen concentration under minimum treatment
conditions is 2.3 mg/1, with eight consecutive miles of river violating the
daily average dissolved oxygen standard of 5.0 mg/1.
To achieve the dissolved oxygen standard for the Rappahannock River, treat-
ment more stringent than secondary and "best practicable treatment" must be pro-
vided by both the municipalities and the industry that discharge to the river.
The allowable wasteloads were determined and allocated between the dischargers
according to the following procedure.
The design conditions used in making the allocations are:
streamflow - 43 cfs at fall line (7-day, 10-year low flow of 42 cfs at
the Fredericksburg USGS gaging station.
temperature -29 C determined statistically from data taken at the
Fredericksburg USGS gaging station and represents the
maximum mean monthly temperature plus two standard deviations.
boundary conditions at fall line -
dissolved oxygen - 7.8 mg/1
NBOD - 1.25 mg/1
CBOD - 1.45 mg/1
benthic demand - for all allocations runs, the benthic demand was assumed
to be 1.0 gm oxygen/square meter/day throughout the upper
reaches of the Rappahannock (RM 99-110). It is felt that
the high benthic demand that had been measured in 1970 and
used in verifying the model was due primarily to the dis-
charge of waste sludge from the FMC waste treatment plant.
-------
29
The planned elimination of this practice by FMC should result in a decreased
benthic demand in this area of the river. Just how much the benthic demand
will decrease cannot precisely be predicted, although a reasonable conserva-
tive value to be expected would be 1.0 gm oxygen/square meter/day (normal
range of estuarine muds is 1.0 - 2.0 gm oxygen/square meter/day)(9).
All other model parameters are identical to those found from the
verification runs.
Im making the allocations, the following waste sources and their future
planned design capacities were considered.
Waste Source River Mile Design Capacity
Fredericksburg Sewage Treatment Plant 108.5 4.6
FMC Corporation 108.1 7.42
Proposed Massaponax Sewage Treatment Plant 105.1 6.0
It should be noted that the existing South Stafford Sewage Treatment
Plant was not included in the waste load allocations. This plant is an
interim facility scheduled to be phased out in 1978, with the sewage going
to the Massaponax treatment plant.
Through discussions with Va. State Water Control Board, Bureau of Applied
Technology personnel, it was decided that in making the waste load allocations,
the FMC Corporation would provide treatment equivalent to the best available
technology economically achievable" (BAT) as defined by EPA regulations
promulgated April 5, 1974. This level of treatment is needed because of the
severe D.O. problem in the Rappahannock River. The BAT treatment level for
the FMC Corp. limits the monthly average discharge of BODS to 1260 Ibs/day.
To attain this limitation, the source of BODS (barometric condensers) entering
the cooling water should be eliminated. This would leave the industrial
-------
30
waste treatment plant as the only source of nitrogenous and carbonaceous
BOD. Since this treatment plant is already achieving an average discharge
of 11.13 Ibs/day of BODS, the allocated BODS is based on this number.
Nitrogenous BOD was not limited in the regulations defining BAT. However,
since the nitrogenous BOD is an important factor in the dissolved oxygen
balance of the Rappahannock, a limitation of 185 Ibs/day TKN (3.0 mg/1 net
TKN) was imposed. This value is the reported existing discharge from the
FMC waste treatment plant.
With the above load for FMC and the municipal waste treatment plants
at secondary treatment (see criteria in Table 5), it was determined that
the dissolved oxygen standard of 5.0 mg/1 as a minimum daily average for
the Rappahannock River would still be violated. Equal percentage reductions of
both carbonaceous and nitrogenous BOD were applied to the municipal facilities
until the minimum dissolved oxygen stream standard was attained. Table 6
shows the allocated loads to meet a minimum daily average DO of 5.0 mg/1
at the 7-day, 10-year low flow.
-------
31
TA3LE 5
Secondary Treatment Criteria
For Municipal J'aste Treatment Facilities
30-day Average
BOD - 30.0 ng/1
Ultimate Carbonaceous BOD - 45.0 mg/1
TKN - 18.0 mg/1
-------
32
CO
o
•
CO
CO
H !N
to;
Cfll -3"
ul
oo
CM
*
O
oo
§
•o
-x.
co
vO
w
>J
PQ
P
O
CN
CN
CO
CM
O
vO
CO
Q)
3
0)
60
tfl
>-i
(U
tfl
I
C
60
M
S
a
to
CO
bfi
q
•H
x)
to
o
U
•H
V-i
(1)
•a
0)
M
fK
14-1
0
>>
4J
t-l
U
/— s
•o
Oj
o
iH
CO
co
o
t-i
60
x^
•
/" \
T3
CO
O
CX rH
)-l
O
u
u
5^
£
4J
a)
q
•**-/
X
to
q
o
D.
CO
CO
CO
3
*• -4
rfL.
4->
C
0}
6
4J
to
-------
33
IV. REFERENCES
-------
34
IV. References
(1) Grim, R. L. and N. L. Lovelace,"AUTO-QUAL Modelling System",EPA
Technical Report 54, Region III, March 1973
(2) Fung, CS, et al','Studies of the Distribution of Salinity and Dissolved
Oxygen in the Upper Tidal Rappahannock River ", Special Report No. 25,
Virginia Institute of Marine Science, June 1972
(3) Clark, L. J., and Feigner, K. D., "Mathematical Model Studies of Water
Quality in the Potomac Estuary",Tech. Report 33, EPA, Region III, March 1972
(4) Paulson, R. W., "Variation of the Longitudinal Dispersion Coefficient
in the Delaware River Estuary as a Function of Freshwater Inflow", Water
Resources Research, Vol 6, April 1970, Number 2.
(5) O'Connor, D. J., et al
Notes from Manhattan College Summer Institute in Water Pollution Control,
Manhattan College, Bronx, N.Y. 1972
(6) Ryther, J. H.."Photosynthesis in the Ocean as a Function of Light
Intensity", Limnol. Oceanogr., 1, 61-70, 1956
(7) Ryther, J. H and C. S. Yentsch,"The Estimation of Phytoplankton
Production in the Ocean from Chlorophyll and Light Data", Limol Oceanogr.
2:281-286 1957
(8) Velz, C. J., Applied Stream Sanitation, John Wiley & Sons, Inc.,
N.Y. 1970.
(9) Thomann, R. V.,Systems Analysis and Water Quality Management,
Environmental Science Services Division, N.Y. 0. 104, 1972.
(10) "Rappahannock River Basin",Division of Water Resources, Virginia Dept
of Conservation and Economic Development, Vol I, Vol III, 1970
-------
V. APPENDICES
-------
APPENDIX A-l
LISTING OF INPUT DATA FOR MODEL
SALINITY VERIFICATION
-------
2;
3,
DATA
A3
AUTOSS - fUPPAHANNOc* ESTUARY SALINTTV VtRjF
0.0 HO.O 110.0 55
13B
11,
18.
19;
20,
21.
22.
|3,
24.
!5--
26,
27,
26.
29.
30.
31,
32.
33,
3«.
35,'
***
37,
38,
39.
"3.
«4.
48,
49.
50,
51.
52.
53.
54.
55.
56,
57.
58.
59,
60.
1
?
3
4
5
6
7
B
9
10
11
12
13
16
17
1*
19
20
21
2?
23
24
25
26
27
28
29
30
31
3?
33
3a
35
36
37
3*
39
40
41
4?
43
44
45
46
47
4*
49
bO
51
52
53
54
55
56
M
1.0
1.6
2. '7
3. '7
5.8
6.9
7.5
6.7
10.0
11.8
11.9
14,7
16*2
17.5
19.0
20.5
21.9
22,7
23.5
25.6
27 .'5
29.3
30.1
32.0
33.1
33.3
33.5
34.4
3b.7
36.6 '
37.6
36.7
39.- 8
42.0
«3.5
«4.5
"b.O
45 ."6
46.4
"7.3
48. "3
49.2
50.4
51.9
53.0
53.6
54.1
5 4. "9
56.0
56.9
57.6
57.6
58 .'2
58.5
56.8
la.o
23.0
22.0
22.0
30.0
25.1
26.6
30.8
27.0
27.3
24. J
24. 4
27.2
22.6
19. 0«
19.7
22. Z
16.3
16.7
8.3
2.1
a. 6
9.1
0.1
1.0
8. a
8.6
10.0
9.5
13.0
9.0
10. a
8.1
10.0
8.3
5.2
5.6
11.2
10.0
11.8
6. a
15.5
8.1
14.0
!2.8
23.3
17.2
16.0
12.6
l«.l
12.5
12.0
14.6
17.8
16.3
18.0
-------
6i.
62.
t T
6A«
64.
65.
66.
67,
68.
69,
70,
7U
72!
73,
74.
75.
76.
77.
78,
7S
80.
81,
82.
83.
84,
85)
86,
87.
88.
89.
"'O.
*U
92.
93,
94',
95,
96.
97,
<
99,
100.
101,
102,
103.
104.
105,
106.
107,
108.
109.
110.
111.
112.
113.
11".'
115.
116.
117.
118.
119,
120.
121.
$7
58
59
j ^
60
61
6?
63
64
65
66
67
6*
60
70
71
7?
73
74
75
76
77
7«
7"
80
• 81
8?
83
84
85
86
87
a«
89
90
91
92
93
94
95
96
97
9fl
99
100
101
10?
103
104
105
106
107
10*
109
lift
111
11?
113
lia
115
116
117
59 ,'J
59.9
60,5
61.2
61.7
fc2.5
65.0
63.9
60. a
67.0
67.7
68.0
68.6
68. '9
69.4
70.1
70.7
71.2
71.5
71.8
72.3
72.7
73.0
73.1
73.6
74.0
75.0
7b.4
75.6
76.3
76.9
77.'7 '
78.4
79.0
79.5
81.7
82.4
82.6
83.1
8-3.7
84.5
84.7
85.2
86.4
8c>.7
87. 8
86.2
89.6
90. '5
91.0
"1.5
91.6
"2.7
93.1
90.7
95.1
95.4
"6.1
9b,9
"7. -J
96.1
22.6
7.6
22.0
22.3
19.0
7.8
15.6
15.2
9.3
18.3
21.0
13.3
8.0
10.2
8.0
0.8
22.0
17.0
6.8
6.7
6.4
5.3
5.7
5.6
4.4
6.6
14.2
8.1
12.6
6.0
7.7
10.2
6.3
9.5
9.5
10.4
18.2
22.4
18.2
13.1
13.7
16.2
7.2
15.5
7.4
18.5
9.7
16.8
a. 5
lb.4
15.8
9.0
13.6
7.2
12.8
9.4
14.4
9.3
10.4
8.2
10.5
-------
122,
123.
124,
125.
126.
127,
126.
129.
130,
131.
132.
133,
134
135.
136,
137.
136.
139.
1«0.
1*1.
142,
143,
144.
145,
i4b;
1<«7.
148,
149,
150,
15».
152, -
153.
154,
155.
156.
157,
156
159.
160.'
161,
1*2,
163,
164;
165.
166.
1*7.
166.
169,
170.
171.
172.'
173.
174.
175.
176.
177.
178.
179.'
1»0.
1»1,
182.
Ill1
U«
120
121
122
123
124
125
12*
1*7
12*
129
130
131
132
133
134
135
136
137
13*
WIDTH
i
2
3
4
5
6
7
8
9
10
11
12
13 '
14
15
16
17
1"
19
20
21
2?
23
24
25
26
27
28
29
30
31
32
3?
34
35
3*
37
38
39
99.1
99,6
100."9
101.0
101.7
102.2
102.8
103.0
103.2
104.0
104.9
105.2
106.3
106,'S
106.'8
107.6
106.1
109.0
109.3
109. '5
109.9
13«
0.0
1.0
1.6
2. '7
3.7
5.6
6.9
7.5
8.7
10.0
11. a
11.9
14.'7
16.2
17.5
19.0
20. '5
21.9
22.7
23.5
' 25.*
?7.5
29.3
30.1
32.0
33.1
33.3
33.5
34. U
35.7
36.6
37.6
39.7
39.8
42.0
"3.5
44.5
45.0
45.6
7.7
10.1
9.7
6.7
11.2
6.6
9.5
8.8
13.6
9.8
7.6
10.6
8.7
6.6
8.1
7.9
12.3
5.3
3.2
2.0
3.0
19536.0
21648,0
19006,0
1?480,0
1?672,0
19536,0
13833.6
10137.6
14784,0
12672.0
12406.0
11721.6
12355.2
12249.6
15523.2
12408.0
10560.0
15312.0
13569.6
11563.2
1^787.2
10084,8
17952.0
1?777.6
8342.4
10824,0
10190.0
8500.8
9504,0
58^8,0
8712.0
6660.0
9768.0
633&.0
5608,0
11246.4
8V23.2
4012.8
5913.0
SAPPAHANMOCK P]
-------
«l "7.3
42 «8.3 31*8.0
187 4« 50.4 2745.6
US*' 45 51.9 3168.0
89 46 53.0 1900.6
Uo* «T 53.6 1108.8
48 5o.l 2217.6
U9 54.9 3062.4
50 56.'0 2956.6
51 56.9 1478.4
Us' 52 * 57.6 4012.8
Jq;* 53 57;e 2904.0
,07 5U 56.2 26UO.O
98* 55 58.5 897.6
199 56 58.6 1^67.2
200 57 59.3 792.0
201 5* 59.9 «224.0
202 59 60.5 739.2
--< 60 61.2 1636.8
* 61 61.7 897.6
62 62.5 4116.4
206* 63 63.0 25*7.2
207 64 63.9 2112.0
206. 65 6tt.4 2692.8
209" 66 67.0 792.0
210 67 67.7 580.8
2li - 6* 68.0 1056.0
iJP 69 6b.6 2428.8
ill; 70 68J9 -2006.4
214 71 69.4 5491.2
US; 72 70.1 2323.2
216 73 70.7 633.6
in 74 71.2 1056.0
2 6* 7< 71.5 3537.6
219* 7ft 71.8 ?323.2
' 77 72.3 "646.4
7* 7£.7
79 73.0
80 73.1 3590.4
81 73.6 S649.6
6? 74.0 P692.8
83 75.0
227* 6U 75.0
228, 65 75.6 12U.4
229, 86 7b.3
i; ;?-.;
89 78.tt 2006.4
233 90 79.0 H52.0
i34 91 79.5 528.0
235' 92 fli.7 U66.0
236] 95 "2.-U 4".0
9a 82.8 617.0
95 83.1 400,0
239! 96 83.7 633.0
2U0 9T ««.5 «17.0
2m 98 80.7 367.0
99 85.2 1250.0
100 86.4 383.0
-------
244.'
245.
246,
247,
248.
249,
250,
251.
252,
253.
254,
255,
256.
257.
256.
259."
260,
261,
262.
263.
264,
265.
266.
267,
266,
269.
270.
271.
272.'
273, -
274.
275,
276.
277.
278.
279.
280.
281.
305.
306.
307.'
308.
309.
329.01
329.02
329.03
329.031
329. OU
329. OS
329.06
329.'07
329.0*
329. 0"
329.1
329.11
329.19
329 2
329.21
329.2?
329.23
329.24
101
102
103
104
10S
106
107
108
109
110
111
11?
m
114
115
116
117
lie
119
120
121
12?
123
124
125
126
127
12*
129
130
131
13?
133
134
135
136
137
13*
DISP
1
?
3
a
1N1TTDS
1
?
3
STOP
FLOW
STOP
TDS
FIXED
STOP
FLO*
STOP
TDS
FIXED
»6.7
87. '8
88.2
89.6
90.5
91.0
91.5
91 .'6
92.7
93.1
94 .'7
95.1
95.4
96.1
96.9
97.3
98.1
99.1
99.6
100.9
101.0
101.7
102.2
10^.8
103.*0
103.2
lOa.'o
10U.9
105.2
106.3
lOb.5
106.8
107.6
108.1
109.0
109.3
109.5
109.9
U
0.0
20.0
30.0
60.0
3
0.0
50.0
70.0
no.'o
108.5
0.0
110.0
106.5
o.'o
1000.0
400.0
667.0
267.0
783.0
333.0
417.0
800.0
367.0
950.0
367.0
550.0
250.0
650.0
333.0
700.0
333.0
567.0
350.0
441.0
583.0
291.Q
567.0
317.0
467.0' '
267.0
467.0
433.0
300.0
433.0
300.0
433.0
400.0
267.0
233.0
467.0
275.0
400.0
3000.0
500.0
400,0
250.0
16300.0
300,0
0,0
304,0
5,5«
654,0
3.54
•
»
'
August 18, 1970
16300.0 Calibration
•
December 10, 1970
19490.0 n_1Jt__.__
-------
329.25
329.2*
329.27
329."2«
329.29
329 3
329.51
329.3?
3uu.
STOP
STOP
TDS
FIXED
STOP
HALT
110.0 570,0
'
p.'o
July 31, 1971
Calibrat ion
-------
APPENDIX A-2
LISTING OF INPUT DATA FOR MODEL
D.O. VERIFICATION
-------
1.
a.
i ,
° .
s.
b.
7,
8.
Y.
10.
11.
U'.
13.
U.
13.
1 b.
I?.
i •-• .
"*.
3 ,
' «
?l ,
"1 J
f1 f
?.i ,
>",
j •
^3 ,
?b.
?/.
? >.
29.
u..
31,
3*.
t <,
j > ,
'*,
3b.
3s.
37,
3s.
35.
"0.
/i .
(J 1 .
«2.
"i.
uu.
ab
«o.
"7.
"b.
av.
iUTjS.j • r- A r' U A W u '. . if1'
» b . U 1 1 U . U 1 1 U . :',
ru T A
4j i L n
j 1 2 M
1 0 . U 1 A , 0
? 1.0 ? i . >'.'
•^ l.o ?'',.!
:: ^ . / ? c! , u
^ 4. / v) . -•
^ 5,0 ?"»,!.
7 0 . ^ '"" J . r
fl / . :» 3 .j . ^
a,/ ^/.i.
in 1 0 . r, ? / . «,
11 ll,c -:' ••• . s
i ? 11 . v r1 '4 . .4
n u.? ?/.p
1 a 1 1> . <> -' d . n
1 ' 1 / , 5 1'> , 0
1 ^ 1 s) , u \'-i, i
i 7 ? U . S P d . r
) 3 p 1 'J 1 *~( '
1 "* ^ 1 , T '".-<
1° ^,:,7 1ft, 7
e* " ? 3 , b 1 h , i
,4 ? ^ >s 1 --* t
r " f- ~ , *> '^tl
f? ? 7 , S 1 i» .,-.
^ ^V, S -V, <,
f 'J i U , i 10,1
-S ^.'i ll.f.
c. * H.I C . 'J
^7 3i. 5 d.ji
ef a 3 3 . b t 0 . ,1
JO X a fcj ^y L>
r,* .j**t^ '».'
j»n 3'3.7 li.o
i 1 3 o . o 9,0
i ? 37.0 1 0 . a
3 ^ 3 b . / a , i
i U ^ 9 . H 1 U . 1 1
^ Ud.Q '"• .i
S * y 5 , S b , ?
< "7 il ' ^ S *4
i/ ci-,;? 3 . '•
3» ^^.y - 1 1 ,<£
j><3 «b,b 10.0
an Ub.u 11.8
U\ a7 ,3 o.u
«^ «*.3 Is.S
a ^ ^ 9 . 5 b . i
au So .a IM.O
-v.1^ 51.9 lei,*
ISu
•52.
•53.
5i4.
5b.
Sb.
•57.
SB.
59.
feO.
a?
bl
b?
53. b
•5«.l
54.9
r>b.O
Sb. 9
'5? , b
S7.M
o.i
?3.3
U.I
U.5
U,0
U.f,
t 7,8
to. 5
1 J.O
-------
61.
62.
63.
64.
65.
66,
67.
68.
6V.
70,
71.
72.
73.
7«.
7b.
76.
77.
78.
79.
no.
"1.
"2.
as.
fl4.
*b.
Rft.
w t
«7.
*b.
Rv.
90.
fJ 1
i •
"*.
93.
9a.
^3
•' C
9b.
n *>
9? ,
93.
9V.
too.
101.
1°2.
103.
104.
10b.
10b.
107.
10e.
1<19,
110.
HI.
1U.
113.
l la
i * •» .
lib.
lib.
117.
lib.
119.
120.
121.
•_. 7
3«
b«>
hO
bl
0?
M
00
o*
0^
a7
(i*
69
70
n
/'
'/I
7H
'!*
7-
77
7"
7 «
00
rt1
M?
m
o'J
Q^
**>
M 7
C" /
on
bQ
90
u 1
' t
V? •
V *
V/4
4=1 -
9««
^7
91*
V9
1 UO
101
10?
105
10U
10r?
10*
107
10*
1 00
1 1 0
1 A *.
1 11
1 1?
11?
lia
115
11*
117
5 v . J ?-;..,
f3 '/ . V / «,
' ' • ?
60. b P^.o
61 . 5 . 9 10.,.
6^,4 y.o
7 '.' . 1 h . s
7 U . 7 ? «; . o
7l.«i 1 /.O
7 \ . S
7 1 . ' c . /
7^.3 ts.ui
7'',7 3.-s
1 •> . 0 b . ?
7 i . 1 i . ft
7 3 . n M , u
7 -i ii
' * , U <-- , f>
7-J.O !'..,»
^.^ o.l
7b,o t^.h
7'). 3 «;.,)
'b, V / . /
7 / . 7 K> , e*
7 d . y o , H
74.1-. v.--.
7 u u. i
' v , 5 v , ^
«1.7 1 0 , iJ
^^.^ !:.
^ rJ . e ^ cf . a
p3,J Id.?
fl -^ . 7 1 i , 1
w « . b 13,7
»«. 7 1 ,,r'
flb,^ /lf)
M».4 1 b.b
A6.7 7. -a
B/.rt IK.C,
8 0 . d
SV.fc, 10.^
90. S e.ij
91.0" lo.a
91.5 lb.fi
9l.o V.o
9^.7 U.»
Q / > -• -
H3. 1 7.,?
q
9d.l lO.i
-------
12<»,
l?i.
I2u.
125.
1?*,
127,
128.
12V.
no.
1M.
He!.
H3.
i<«.
Hb.
Kb.
iV/,
1 1 W
IT".
139.
i /i 1 1
1 W 'J ,
HI.
I**.
P3.
l«u.
l«5.
1«6.
!'W.
1«6.
1 '• 9 .
r->u.
iSi.
1C" J
•e!.
PO,
15«4.
lr'S,
1*56.
1*7.
1S&.
i t; Q
1 ^' •
1*0.
1M.
1*2,
1*3.
16«.
1*5.
1*6.
1*7.
l*b.
l*v.
170,
171.
172.
173.
17".
173.
176.
177.
178.
179.
1*0.
1*1.
i PP.
11" ° * . 1 7,7
no v , o t a . t
1 e> n 100,4 9.7
1 r 1 1') i , U 0.7
1 i ? 101.7 1 1 . p
1^3 P 1 0 . o
130 I 0 r> . i « . 7
131 l"^,'^ '" • 5<
1 ^ 1 0 t, , M -5,1
133 I <" / , n 7,9
1 i /i * 0 *-, i 1^1
1 J *J i 0 4 i * f- » -^
13^ 1 " 4 , ' o . ^
1 < ^ 1 ' ) ^ *« *• » 2
1 6 / 1 " ' , , e. , 0
1 1 J i ' • . r J . ',!
•, T n j lj t i !
1 i: . , l°b^ ->,'•>
? 'I . ;> «^1 s'lrt , 0
•* i . •> 1'i 0 0 e , o
a ..-.'' l a a » o . d
«, ,',..• 1 ~o7ii. u
^ 3 ., • i ' b ^ o , 0
7 -. • i <-.? SS.n
p / . 'o i - n / . *
^; I H 7 U [ .
.^ , 1 i'.^',l|
10 1 ;• . ' 1 ^ u 7 s! , )
11 M . * l ^a'j " , o
IP i . , • i 1 / ' 1 . s
M !'•«./ I '3 -:>.«>
1 a t P . >i \ ' •*.'•* 1 >t~
I «: 1 / . n 1 '^j '•= i . P
« t 1 v n 1 ^ U 0 M fi
i " i 7 B i j i^t'jii
17 ?(.,,'- 10 '3 60,0
IP ? i , i 1 ^ i ! c.' , 0
JO ? / , 7 ] ^ '3 ^ V , h
d 0 '1 j . ^ 11 '3 ^ 4 , ,i
r>.\ ?•>, -5 ir^ft/.^
2^ P/.i l^i^'4,H
«; x ' ^ , * i 7 •T ^ e. , o
^ 'J J u . 1 1 -1 / 7 / , h
t^ lt.'> '3'V.a
0 - . 0
cf 7 M , i 1 n . ^ 0 . '4
e!« <$.'-• -"t. ••)().«
^0 34,t 9 b 0 u , g
30 3S./ ^808,0
31 ^o.r, fl /| £;,o
3 7 _ < / , ^ * rt ^ u , o
J ^ " >o . ? r-> 1 is e , n
3/1 i ^ . * ^ 3 3 o , 0
3 S « ^ , 0 ^ « 0 b , 0
3fc ^i.^j P-^a^.u
37 ^*.b "-^3.?
3 « •'•> r . ) '— J 1 d . e
"i « '• . . c ^ '/ 1 i . o
-------
1*3.
184.
iBb.
l«b.
1*7.
1«8,
1«9.
190.
191.
192.
193.
194.
193.
lQt>.
197.
193.
199.
200.
201.
c<)2.
203.
e.' 0 '4 ,
205.
20b.
20/.
20B.
209.
210.
21 1 .
212.
213,
214,
215.
21b.
217.
210.
219.
2?0.
2?1.
2?2.
2?3.
224.
22b.
j p ,,
C <- O ,
227.
^?H
C ' w «
229.
230.
231.
232.
233.
>%u
e 3M ,
233.
236.
237.
23b.
23V.
2ao.
gai.
3/1 J
C^C .
2«3.
MO
41
a?
4^
UU
(1C,
4ft
47
4*
,UQ
SO
:>'
sp
bi
V-i
b^
Sft
b7
b*
j ">
oO
ol
e^
6^
b/J
frS
6ft
t.7
ei«
oO
/O
/1
1?.
r^
ru
/^
/ft
77
7«
7«
00
HI
b?
k. 7
C .7
M/J
u r
w ^
CJA
h7
hP
41
vo
O 1
" i
V?
v^
^'J
9=;
9ft
97
9*
Q n
" •»
1 On
•'o.J '\t>.i.
4 / . -i -'v 3 0 4 .
" « , i M h d .
^ 9 . 2 M 9 a ,
SO.'t ?/ab.
^ 1 . v 3 1 ft d .
^3,0 1 VOO.
^i.o 1 10 >,
Va . 1 ? 2 1 / .
s«,^ ^uft2.
S,,,,, ->WS0.
1?.! U7.- .
^ / . n 4Q1,;.
^7.^ 2^0u,
'-> <^ . 2 ? Q a o ,
'•> o , 7 o Q / ,
T^ . r 1 2 ft / ,
S9,i 79^.
Su.v 'l^^.j.
!- 0 , ') / 3 Si ,
^1.2 1 b if> .
M.7 d97,
^ 2 . b J 1 t B .
fcj.U ?a«7.
ft 3 , v ? 1 1 i .
^ u , u P o 9 e .
'' 7 . u 7 T «: .
ft / . / 1 « >J .
ft c . 0 1 0 S f, ,
ft ^ . o ? -i ^ d .
n n . ^ ? u 0 r> ,
ft 'y . o S 4 " 1 ,
'0,1 ?i?3.
7 0 . / o 3 i .
71,2 lOSo.
^ 1 . S ^ S / ,
71. a ?3?A.
7 ^ . i a o 4 o ,
7 £ , 7 « i « a ,
73,0 4 i * J .
7.s,l ^b"Q.
7j,b ^o4^,
"4.0 Po°2.
7L l\ U T iJ
D . U J ^ O •
75.4 IVSi.
7 s K 1 V 1 vi
' J 4 " 1 C. 1 *4 «
7o,3 ^o'JQ,
7 *i , y '" 1 ft 4 .
77,7 \3?0,
78..^ ? 0 0 6 ,
79-.Q 14^.2.
7 u ^ s^ D M
'^,3 srO,
fll .7 1 Ifte.
B^.4 4^3.
•^2.o o 1 7 .
* 4 . 1 4 0 (J ,
H 3 . 7 o 3 3 .
ft4.^ an,
"4.7 4ft/.
A C. -j 1 j C | ,
"jfc Ic^U,
So, J 3Pj.
0
0
0
'j
b
(J
6
n
6
^
H
4
A
C
'!
.1
2
0
it
S
M
*^
'4
2
Ci
>j.
0
>A
0
H
a
f
r>_
ty
i)
^
2
a
0
u
u
ft
;J
0
ft
u
0
H
0
4
0
0
0
0
o
,•)
0
0
0
0
-------
01
2«b.
2«6.'
*«7.
d«B.
d^.
dSO.
d*l.
2Sd.
dSi.
c^U.
,ro.
d^b.
^7.
. v>.
CV>.
d'TU ,
dM .
d^d.
t "• > .
<_' n U .
<;<>:>.
d*t>.
.•M.
c"b.
c^.
d/U.
« M .
d7d.
«7J.
27u.
«.7'j.
ei 7ft.
r77.
<^7b.
< • N ,
d«0.
d*l.
30b.
306.
307.
30b.
30V,
310.
311.
31d.
313.
3U.
31b.
31o.
317.
318.
319.
3?0,
321.
321.1
3*1.2
321.3
322.
3?3.
32a.
10?
10*
1 (JU
los
lOh
1 07
10*
too
1 10
1 11
1 1?
11*
I"
Is*
Ifc
17
1B
1 1°
Id"
1 cf1
1 d?
It:*
Ida
1d^
Id*-
Id7
l*;^
U°
Lift
131
13?
1 S*
13'J
1 3^
1 3h
1 .57
1 3«
DISH
1
•?
^
d
VcLU
1
?
n
a
c,
8
7
fl
P
10
11
1?
1*
u
pMOtn
1
?
h/.
fth.
"•>.
".
lr-'v.
1'N.
104.
loy.
a
(j.
?o.
*-j.
bv .
1'J
•3,
lo.
Id.
1'3.
*l,
r /.
*'>.
'^.
<'-, .
ae .
•»/.
100,
Ko.
10'J.
^
lOi.
lOc.
d
?
0
*?
0
b
b
/
1
/
1
a
1
•j
\
1
1
u
V
II
/
,^
^
•J
d
("I
o
f
3
1J
Cl
^
1
)
3
I",
y
>)
0
0
,1
b
u
0
o
h
d
0
Ij
7
u
_v
1
0
3
0
•J
•4 ft '0 , 0
o M f . ft
«: ^ V . 0
7^3.0
3*1.0
417.0
a o o . u
3*/ . i)
•^ u . o
J ;' / , 0
'i'»J . 0
d'i" ,U
ft ri 0 . ;
S ^ 3 . o
/ ft o . o
-i ^ 3 . d
'3 * / , 0
5'lU, ,1
•4'U , ,1
•J'^.L'
d'1!.:,
"I M . 1
-•> 1 / . i.l
•4 ^ / , 0
J^1 / , (I
< '-/,(,
•4^4.')
iftO.d
u ^ 4 . n
3 ft U , 0
••» "^ i . 0
'•i ft 'J , . i
C !*>/,('
d * 3 . >1
•4IS7 , 0
d7-j.ii
"4 0 0 , 0
3000.-)
b 0 o . o
a ft o , o
dSO.O
0.3
o.<>
0. 5
O..s
0. 5
o . -;
O..J
0.5
o.s
0.70
0,70
ft.Ji
0. )d
ft,?/
0.0
1.0
-------
325. 1
326. SED1
327. 1
526. ?
329. X
329.01 TEMP
3?9.o?
329.01 CDFCAy
329,04 1
J29,C'S ?
3 -^ 9 . 0 * *
329.07 'l
329 , up M Jfl A y
329.00 1
329.1 ?
529,11 *
329.1? n
329. n C-cfA^R
529,l'i r-SAT,>n
329, iri T\T I r ,'ii.j
329. |f 1
.'29.17 2
i29 , 1 fl X
S 2 9 . 1 9 ii
3 2 -y , 2 ; s
329.^^ *.
J . " * C 1 J 1 1 1
329.5 1
529.31 2
329.3? *
329,31 "
329, *o 5
329, 3S STOP
529. 3* FLO*
329. 57
329.3*
5?9, 39
329.4 Strip
329. ul NnHu
3?9 , a? Fi Xtn
329.41
3 -1 9 . U U
32 9 . 4S s tnp
329. u^« C^no
329.47 FIYtD
329.4*
329.40
329. b ST9P
329. bl OJ
329, b? FJXtn
329.51 STOP
329. b" r>.«T4
329.55 TC.MP
329, 5fc 1
3
1
1
a
1
1
0
1
1
K
i
1
1
1
1
^
1
1
1
1
1
'x
1
1
1
1
1
1
1
1
1
1
1
1
1
1
5
4
*
"0.0 1.5
p 0 . U d - 0
^e.o <>.•
0 / . 3 1 , ~
1.0 2 7 . 'j
10,0 0 , 0 «j
IH.-S n.1b
9»,o n.in
'0.0 >i » 1 f»
1 o . j n . 0 b
""." 0.10
4 , o
Ob,'; b . 4
» 0 , o .s . ••)
«S_ o d.S June 22, 1970
1 i) . 0 ^,:'ii Calibration
090 n US
7 , V ^ • « ~>
11 " . l' ^ . '••
3 t ' O « ( 1
0 'j , j *? , ,j
y 3,0 « , i>
)>-.... t* , 9
04. a e.o
0 ft , 0 b , 0
O U . 0 5.0
g 'S . 0 n . 0
t ii , o a 1 b . ,i
n " . '3 5,^4
0 b . 1 3,0
1 u . 0 4 1 b , 0 ^ . 0 U 1 , 0 ()
<> . j 3 . S a f ' 1 . 'j 'J
'V.I 1,0 B'b.j'I
„
1 u . o a 1 b , o 1.50 1,50
OB.-J 3,^a b7,b>4
0 i-j . 1 "S , 1 9 1 0 f 7 tj
10,0 «*tb,0 ri»9« fl,^4
ou.o ?s.o
-------
7 . 1
329. b 1
329.61 ?
329.6? *
329. 6"* U
4P 9 fail M Dc f A v
J C- ~ j D M * I/ '- v " T
329.6s? 1
329. b* 2
329. 07 *
329.0" a
329.50 C - V t A t »
.P9.7 r.^ATo11
i29. / t T xJT ir.jnu
42^,72 1
329.7* ?
J29.7U ^
329.7^ 4
3 3 V , 7 <• *
329.77 ^
329. 7° !NIU).,'\J
i2v. /•? 1
329. H 2
329,81 •*
32V.H2 «
3?9. »^ c
< P a u /! L.
W C 7 . O ' ™
329.jj«i iMUHfj
329, H^ 1
32v.h7 ?
i J 9 . .•» « *
329.80 U
329,9 «!
32^ , «:
73-3 oi. QT/"1t>
jc« Fixtn
^29. ^=5
3*0.
3*0.01 MHP
330.0? Cr^HQ
330.0* f- 1 v t. n
3*0. QU
330.0^
3^0. Of Sinp
3S0.07 OJ
^3o.0« Fl^tn
3*0.00 STHP
3*0 ,1 n^T4
j s wi . i ; ' i \j
330.1? 1
3*0.1* 2
A^O.lfl 3
330. IS CJECAy
330,1* 1
3*0.17 ?
no
lOb
"e
!H)
/I
(j
110
1 OM
o,<
QM
fr
no
i o^
1 On
1 0:5
i 0 o
-,
*.
1 i u
1 0 -,
1 '' 0
10-,
1 0 0
Q »,
^ >
s
1 1 0
1 0V
lOf,
) llj
9:3
no
lO
.0 i . 0
.0 »j . 0
.'J ^.'3
.0 '',S
f,j , • , , June 29, 1970
^ j i , ,^ , Calibration
,u i..,
, o c , b
, 0 i, *
,0 1,0
, 1 1 1 I
• ' - » >
.0 / . M
. 0 t> . S
. I' i , '•>
t),,.
, •:< •- , V
.0 373.0
. b * , S /i
.1 ?.n
.0 S 7 i . o 0.7 n , ,'
, -3 * , ^ J V ! , S U
. 1 2 , n o H i o . 2
, 0 ^ M . 0 1 . 'J b 1 , 'i J
, 3 * , ^ 4 J 7 . «S '4
,1 ? , 0 0 7 '4 0 . 7
.0 " i7i,o «,7u ^,70
, M ?M , ^ July 28-29, 1970
• '•' •' 7 • ° Calibration
. 0 2 v . .,
. 0 •) . n s,
. R ' • , 1 '-.
-------
3 3 0 . 1 « 3
330,1" 'i
330.2 N D ? i, A Y
330.21 1
330,2? ?
330.23 3
330. 2'J a
330 , 5 C -Rfc. i;- P
330, ti^ C-SATon
330.^7 TN1 1 CVPD
33u ,2« 1
330. <>a ?
330.3 3
330.31 'l
3*0.3? 5
330. ^T r,
33u . 4
330.61
330.b? STOP
330, h^ 01)
330,fc.i» FlXfeO
330.6* STOP
330. b* OftU
330. to7 T£MR
330. 6* 1
33f,be> 2
330.7 3
330,71 COECAY
330.7? 1
330.73 ?
330. 7« 3
330.75 a
330.7* NDEC*Y
330.77 1
Jit). 7* ?
^b.O
^0.0
u
1 lu.O
1^6,6
Vo. 0
9u , 0
S
1 1 0 . 0
1 ° 9 , U
1 0 H , 0
1 Ob.O
1 o o . o
(?b.O
^
Hu.o
1 0 4 o
1 '"> h . o
1 n s . j
1 '' 0 . y
QT,0
s
no, o
109.0
1 Or, , ()
1 0 o . o
b , 0
nu.o
1 0 ri b
1 0 o .* 1
110. 0
1 0 !5 . b
1 Od . 1
110,0
lOtf.b
JOe.i
1 10. 0
3
0.0
7a,9
79.3
a
iio.o
1 OB, 6
95, o
^0.0
u
no.o
} ftb ,b
".10
o.o*,
O.Ob
0 . 1 0
0,10
O.Ob
1 , US
3,0
b.Q
^.b
0,5
0.1
1 ,?5
i.O
•~ . S
i.H July 28-29, 1970
I . (>
0 , } Calibration
7. a
b.S
3.0
'i. 0
0,9
4Sti,o
* f ^ (4
P. 00
M5b,0 3,^ 3,2
3,Sa VI, ba
?,00 393, SI
<45b,o 1.3 1.3
3,^u b7,S^
. 0 o ^^^.SO
aSb.o . «* , 0 d.O
-
?b,0
?6.0
27,0
ft, Ob
0.1S August 27, 1970
o.io
°.0b Calibration
0,1)5
0.10
-------
330.79 3 ^3.0 0,10
330.6 u 9Q.O 0,05
330.81 r-SfcAFP
330,8? r-SATijn
i3o.a? iNTTCnOD 6
330. bU \ HO.O 1.30
330.85 ? 109.0 l.b
330,*fe 3 iOa.O 3.b
330.67 U 1^,0 i.fe
330, h « S 1 0 o . 0 l.h
->30.<}9 iS 9b.O ,9
-------
-------
APPENDIX B-l
SALINITY VERIFICATION PROFILES
-------
-------
-------
-------
APPENDIX B-2
DISSOLVED OXYGEN VERIFICATION PROFILES
-------
,Q
O^
5,-C-l!
.—~j__
O
ui
o
ri
q
fj
*:J
N
in
• o
C i
ui u.
,
o
r
HTN1 */i 01 01 X 01 J>*/1
-------
O
-------
-------
T*
^
^N
*-Ci.^..
-a-y-.
\
\
h
a
. 7
a
T
^
;?
ti
:j
"T'o
, I*
O
o
-------
o
OKO1 ir »ONI */i
3-H
-------
-------
fa
cC
-1
i o^
.1
o
•ir
^
LJ
0<
V
-51-
HI
In '
«0
•* r. *"
^•J/Cu^^ V»b'-«Q f.^^ots.Q
-------
-------
-------
-------
o o
-------
r, O
-------
APPENDIX C-l
FMC CORPORATION WASTE DISCHARGE DATA
-------
-------
V-
Ul UJ
i > z _i «J
~ p ? L' —
ra .- T. i ,~-:
i co a. r-
o
o
O
01
3
ca
00
*jt
y
S
H S
K: —*
o x/
3 Q
> u-
_i o
< ..
! 1
1 '
i;
i
1
!
!
L_
[
1
i
j
j
•h-iiri-H
! II
ii'i
UlU-i-LJ
i ' i ! -i- 1 J-J-4
1 . i i j j..j i T
I i.-: i
i _i l i i : • ' ,
! < y e ! ; ! i i • i
^o
Si 5?s
TTiiitr
' I i i I !
! i j_ll
T'
+^
' J i I t
i-n-j-f—!
II !i
"*n "i r
r
i
•TrprnT |"pp:^rr
=!"3i i |^K ! 1^^}!"'^^.
H ! -. o
H , :cr,c
O
O
• ; ! ivojc.i
"H-nl
: i ! lolo!
I i j
i-H
r—
J -L.i
-------
2
UJ UJ
U O,
o
I > H Z
03 a z I ,
CO i/> EX H- ^
o
(J
< U c
5 u-
w"
"h
o|
I Q I
r
o £
v
- c
iis'!li!i!|!
T';1si,
t-
I- -
. >v:' M
_ -^1
I : • i t
i^ii yT,3w rr"y^
^IKr. ,:,;; ;vr;|r;';S?; ^U 8
J J. ' 1 1 L I : 1 .1 . i l_ i II
!' 7
?
O
-------
-------
-------
APPENDIX C-2
RATIO BETWEEN ULTIMATE CARBONACEOUS
AND
5-DAY BOD FOR THE FMC CORPORATION
-------
-------
RATIO BETWEEN ULTIMATE CARBONACEOUS AND 5-DAY BOD
FOR THE PIC CO_RP.
Data supplied by the FMC Corporation shows that the BOD,, is 60%
of the BOD_n. (See following letter dated January 21, 1974).
Since the normal waste consists mainly of carbonaceous material,
it is appropriate to use the first order BOD-tii^e equation to detcrraine
the ultimate carbonaceous BOD.
where
L = BOD exerted in tine "t"
L = ultimate BOD
K = BOD reaction rate
then
'
.
therefore
T ' -5k
L,_ = 1-e
since
, -20k
L20 1-e
I, = .60
then
.60 = l-e~5k
, -20k
1-e
solving by a trial and error technique
k = .17
substituting back into the BOD-time equation,
and
L
_! = 1-75
L5
-------
FMC Corporation
Chemical Group Headquarters
1617 John F Kennedy Boulevard
Philadelphia Pennsylvania 19103
(215)5641600
January 21,
CERTIFIED MAIL
RETURN RECEIPT REQUESTED
U. S. Environmental Protection Agency
Region III
6th and Walnut Streets
Philadelphia, Pa. 19106
Attention: Walter F. Lee: x
Gentlemen:
This is in response to your January 16 telephone call requesting
information as to the relationship between BOD^ and BODu at our
•^ .Fredericksburg, Virginia plant.
The plant has provided me with the following data:
PPM BOD5 %
DATES NO. BOD5 BOD2Q OF BOD20
Late 1972, Jan. 1971* 19 8l 138 59
Feb. - July, 1973 17 85 lUl 60
The above data confirms my recollection that the plant's untreated
wastewaters are nearly as degradable as the standard BOD curve de-
veloped for municipal wastes. There are no data for longer than
20 days at present.
Please let me know if you require additional information.
Sincerely,
Ernest C. Ladd
Environmental Coordinator
•mb
cc: C. H. Dickinson-FD
-------
APPENDIX D-l
EPA WATER QUALITY DATA
-------
-------
PHYSICAL AUD BIOCHEMICAL DATA
RAPPAHANNOCK RIVEK SURVEY
Station
FL
BB
lib
108
100
FL
BB
lib
108
100
FL
BB
lib
106
loo
FL
Be
llo
108
luO
yo
Time
lo:05
15:50
15:30
15:15
1>:00
11:18
11: Ql*
10:H5
10:32
10:20
lo:25
16: 08
15:^8
15: 3o
15:15
><:35
y:20
y : Oo
b:U7
8:32
8.12
Temp.
13.9
111 ,.8
Hi ,.8
lli.O
1JI,,0
18, .5
18 ,,7
18 ,,o
17 ..0
17. .0
17. u
17.o
18. D
18.5
19.2
21.3
21.5
21.5
21.3
i. O * p
l, . 7
D.O.
(mg/1)
U/23/70
y . 76 6
O.yU o
8.73 o
8.73 o
8 . 22 6
U/30/7U
9.19 7
3.73 7
8.63 u
8.52 0
8.27 o
5/05/70
y.oo o
10.10 o
8.20 6
8.00 0
6.00 0
5/12/70
8.17
o .y 8 u
6.o2 c
6.62 0
o . 37 o
7 . J..y L,
pH
.yo
.73
.72
.b3
.70
.05
.05
.95
.yo
. 8K
.63
.08
.70
.55
.V,
.80
.80
-7o
.'('•>
.uO
ou
BOD
1.0
2.0
1.8
1.1
1.9
0.8
l.l*
1.3
l.U
2.1
1.3
1.3
1.1
1.0
1.0
0 . 1 3
u.y
u . 8
1.3
1.1
0 .^
BOD
(mg/i1)
2.3
U.8
3.U
3.U
3.9
3.0
3.5
u.u
it. 6
5.9
3.3
2.y
3.3
2.8
3.7
2 . )
U.9
8.1
3.1
U.I
1.3
Kn(eJ
/ 1 ~"J_ \
0.12
0.11
0.15
0.08
O.lU
0.07
0.10
0.07
0.07
0.09
0.10
0.12
0.08
0 .0'^
U.Oo
0 . u u
u.oU
0.02
u . 10
O.'Ju
0.25
-------
PHYSICAL AiiD BIOCHi-.IlCAL DATA
RAPPAI1A1WOCK RIVER SURVEY
Station
Fu
B3
llu
1JO
•J3
'u
FI,
;
-------
PHYSICAL AND BIOCHEMICAL DATA
RAPPAHANNOCK RIVER SURVEY
Station
^L
nB
llo
100
93
90
86
8U
81
PRB
69
6h
FL
BB
116
100
93
90
Time
18:35
18:0,"-
17:'i?
1T:?0
17:08
16:59
16: U6
16:36
16:22
16:13
16:02
15:55
12:30
12:05
11:30
10:55
10:1*1
10:27
Tenro.
(°c)
2L. 5
23.5
26 . 5
26.5
26.0
26.0
25.5
25.5
25.5
25.5
27.0
27.0
23.0
2U.5
25.0
2U.5
2l».5
25.0
D.O.
(mg/1)
6/08/70
8.69
7.r>8
5.96
6.77
T.Vf
8.03
7.58
6.82
5.35
5.U5
7.78
9.75
6/15/70
8.69
7.17
3.1+9
6.31
6.57
6.82
pK
6.75
6.70
6 . 70
6.65
6.65
-
-
-
-
-
-
-
6.60
6.55
6.30
6.1*0
6.30
6.35
BODr
(mg/i)
0.°
1.8
1.9
2.6
-
-
-
-
-
-
-
-
0.9
3.5
2.2
3.6
3.3
2.7
BOD
(mg/11)
3.7
3.8
6.5
1U.7
-
-
-
-
-
-
-
-
U.5
16.3
-
9.7
10.6
10.5
Me)
(W )
0.05
0.13
0.07
O.Oli
-
-
-
-
-
-
-
-
0.05
0.05
-
0.09
0.08
0.06
-------
PHYSICAL AND BIOCHEMICAL DATA
RAPPAHANNOCK RIVER SURVEY
Station
FL
BB
116
100
93
90
FL
BB
116
100
93
90
FL
BB
116
100
93
90
Time
17:1*0
17:30
17:05
16:30
16:20
16:10
12:50
12:30
11:53
11:13
10:58
10:1*5
17:35
17:10
16:30
15:50
15:35
15:20
Temp.
27.5
27.5
27.5
27.0
27.5
27.5
23.5
25.0
26.0
25.0
25.0
25.5
28.0
28.0
27.5
27.5
27.5
27.5
D.O.
(mg/1)
6/22/70
8.9U
7.U7
2.75
U.29
U.90
U.95
6/29/70
8.79
6.57
U.75
5.25
5.10
5.76
7/06/70
8.09
5.09
3.66
7.38
9.21
8.UO
pH
6.85
6.80
6.75
6.73
6.68
6.70
6.85
6.55
6.58
6.53
6.50
6.UO
6.Uo
6.Uo
6.50
6.52
6.60
6.70
BOD
Ug/i)
0.9
2.3
5.0
2.5
2.7
2.1*
1.0
2.2
2.2
2.U
U.O
1.9
1.0
2.U
U.3
U.O
2.6
2.2
BOD
(mg/i1)
2.8
6.8
26.5
U.7
lU.8
10.1
2.5
8.1
17.8
-
12.6
15.9
2.0
6.0
7.9
8.2
17.3
5.9
<^>
0.08
0.08
O.OU
0.16
o.oU
0.05
0.11
0.06
0.03
-
0.08
0.03
0.15
0.10
0.16
O.lU
0.03
0.09
-------
PHYSICAL AND BIOCHEMICAL DATA
RAPPAHANNOCK RIVER SURVEY
Station Time Temp.
FT, 10:r>0 2S.O
BB 10:30 25.0
116- A* 0;r>0 2^.0
llf-B* o:)|5 2U.O
"00 «:10 2U. 0
03 8:r,0 2*i.O
90 8: 35 2U. 0
FT n:'io
BB 12:35 27 . '
11' 12:11 26 . 0
1 (''0 11:'' r' 26 .0
''3 i1 : Jr 2( .0
oO-A* 11:20 2b.Q
•>C-B* U:-,
!•!, :7:-- 27 . r
BP :«'.:'-o 2:'.o
-, , . -, ^. c;r ?•; _,;
-rQ -:.,. n7>;-
D.O. pH BODc
7/13/70
7.oti- 6.65 ] .U
6.'fL n.70 1.7
5.bO ''...70 1.5
5.f5 6.65 1.5
'tJi-3 6. '',5 2.1
^1.28 6.5'"> 2.2
ii . 5'' 6 . SC -1 . 7
7/lo/70
7 . o'j- ' . 80 1 . 1
h r-i8 6 r)S 2 ?
* .v j \y . y c_ . _j
?.^2 6.< 3 1>7
3.5o 6.58 l.!.i
"•1-.^h 6.bO "2.0
3.1'.. b.HS 2.0
3.26 '-..--0 2.1
7/20/70
S.tr^ 7. '..;', 2.2
• .62 -.80 l|.r
7.18 (',.75 ^.8
7.02 « .t'-r- %6
BOD ^(e)
(mg/l) (Day-1)
5.6 0 . 0( •
8.0 o.OU
ll.i; 0.03
11.2 0.03
19.° 0.02
15.1 0.03
6.0 0.0-
Q. . 9 0 . 06
13.6 0.0*4
5 .7 O . O'7
11.0 o.ou
10.8 O.OU
8.U 0.05
L7-3 0.03
3.7 0.17
11.2 C. '-
i3.'s o.o;)
'0." 0.(:-,
-------
PHYSICAL AND BIOCHEMICAL DATA
RAPPAHANNOCK RIVER SURVEY
Station
FL
BB-A*
BB-B*
116
100
93
90
FL-A*
FL-B*
BB
116
100
93
90
81
PRB
69
6k
Time
18:20
17:35
17:30
17:00
16:35
16:25
16:10
13:50
13:55
13:05
12:20
11:30
11:10
10:50
10:10
9:50
9:35
9 : 20
Temp.
(°c)
2H.5
25.5
25.5
26.0
25.5
25.5
25-5
29.0
29.0
20. 5
26.5
27.0
27.0
27.0
28.5
23.0
2P.5
28.5
D.O.
(mg/1)
7/22/70
8.1U
6.18
6.13
5.56
6.18
6.5)4
6.08
7/29/70
8.02
8.07
5.91
k.83
5.0k
5.2U
5. HO
7.71
7.50
7.81
8.12
pH
7.10
6.85
6.85
6.80
6.90
6.85
6.75
6.65
6.65
6.50
6.25
6.35
6.20
6.30
-
-
-
-
BOD
(mg/J)
1.2
2.6
2.6
3.U
2.9
3.2
2.3
0.9
0.8
1.7
1.7
2.2
2.1t
2.8
-
-
-
-
BOD
(mg/S)
3.H
8.5
lU.O
9.6
12.1
8.9
9.6
U.2
3.3
5.1
7.8
9.5
9.3
8.3
-
-
-
-
K (e)
(Day X)
0.09
0.07
o.ok
0.09
0.06
0.09
0.06
0.05
0.05
0.08
0.05
0.05
0.06
0.08
-
-
-
-
*Duplicate Samples
-------
PHYSICAL AND BIOCHEMICAL DATA
RAPPAHANNOCK RIVER SURVEY
Station Tine Temp. D.O. pH BOD5
(°C) (Wl) (mg/l)
8/05/70
FL 17:30 26.0 7.U7 6.70 1.6
BB 17:00 26.5 5.08 -.-..90 2.5
116 16:3- 23. r !|.?3 7.20 1.7
100 16:0^ 2Q. 0 ( .83 7.Uo 3.3
Q3-A* 15:5C- 2Q. 5 0.87 8.10 3.2
O?_B* ]r. :r'0 2o.'" Q.22 '''.00 2.o
QO lr':35 20.5 0.07 7.UO 2.6
6/27 '70
FL :'<:-}<• 2r>.5 3J'r •' . H5 0.7
ilf i-^r :*.. ^.o^ .:.30 U.O
o" n:;:'i-0 P7.o 7.S;? o.50 3.0
86 2:20 Of'. _ r- 7.60 ' - . ^O ^.0
^ 12:00 27.0 7.';.'; t;.l;0 1.8
Prt.'l 11:2U 27.0 i-.8n i;Ji-0 2.0
t-H "0:'"'r^ ?;'.0 O.C'. '":.6C U.O
BOD
10. H
9.U
6.5
0.3
10.7
i:.7
10 . 6
U.l
]0.3
i '> b
-j- : • "
IC.'i
U.o
7.3
1".?
K
(D
0
0
0
0
0
0
0
o
c
0
^
0
0
0
l(el
.03
.Oo
.06
.03
.07
.Ot.
. oc
.ou
.(>-
.OS
.ou
.12
.Of;
.0-
-------
II
o
i*5'
if
l~
In*
B!
g?
s.
In"
OO
CM
O CO
£
^
iz;
1|
tjtt
as
H
QL, — ^
H ?
OO
ON
CO
CO
CO
LA
1
O
\rt
^5
CM
O
t-
co
c-
rH
£
CM
*
O
c^
vO
d
LA
f^.
CM
O
H
"H
H
CO CO IA
CO LA O
-* CO -^-
|| f
1 1
O\ OO LA
vO co t**
-d- CO LA
O O Q
LA t~ O
IA -* -3"
O 0 O
O ON rH
CO t- CM
CM CM CO
O O O
Q -3- C-
CM H S
H H H
CO 0 ^
H O O
• * •
O O 0
C— VD CM
CM CM CM
odd
O LA LfN
t- e- c-
CM CM CM
o o o
CO CM H
H H H
Son O
ON ON
H
LA
rf
ON
H
CM
IA
LA
O
V^J
^v|
d
co
81
d
o
"ON IA
CM LA
\ H
d
cS
H
O
LA
CO
CM
O
LA
21
j
0
ON
ON
CM
ON
O
CM
d
H
•s
d
so
IA
d
S
H
O
§
(O
o
o
LA
CM
CO
21
1
IA
¥
ON
IA
CO
ON
CM
VD
CO
CM
d
\Q
^T\
d
SO
8
H
OO
b-
i-H
O
CO
CM
CO
O
O
vO
CM
CO
IA
H
H
H
H
O
^
p
r-l
P
H
CO
IA
CO
d
ON
00
CM
d
so
61
H
IA
CM
CM
O
-4-
CM
O
0
IA
CM
CO
r-l
H
8
r-l
O
£
El
CM
co
H
£
d
,£.
CO
d
H
co
d
&
H
O
§N
CM
O
O
LA
CM
CO
LA
O
•-I
ON
O
J?
3
CO
2
CO
ft
CM
d
CO
CM
d
Q
wN
vO
d
sA
rH
O
3
CM
O
IA
LA
CM
J>
O
r-l
&
-------
3
Si
§
1^
"H"
tS u)
*T
i|
1 **
t/j OD
i
P5 Cvj
W O co
§ ~
i to
1 ^i
1 p.1
iR
H)
3£
5?
^|f
H0°
0,
rj
C
o
•H
CO
O CO
O H
1 1
1 l
H m
CVJ Jt
O H
O O
-* CM
CO vjD
O O
O 0
v£> CVJ lf\
o cr* C1**
^ CO CO
^00
CO C"—
IA VO
O rH
O O
ON rH
VO CM
O CO
0 O
O O
co co
CVJ CVJ
IA O
CO i-l
t- r>-
A &
CO
vO
I
1
O
rH
O
H
O
CO
o
$
rH
0
s
CVJ
o
IA
£>.
CVJ
&
vQ
\Q
CO O CO
CO VO CO
1 1 1
1 1 1
VO -* ON
slS
o o o
O C- CU
r-l H CVJ
O O O
<"
IA oS P
O O 0
CO 0 CM
H O O
000
CO CM f-
O H H
CM CM CM
O O O
IA IA IA
t>- C— l>-
CVJ CM CVJ
O IA O
IA CO CM
IA IA IA
_j _j _j
r^ i^ f~ i
8 CO O
O\ ON
i— 1
CO
IA
1
R
vO
a
o
VO
0
tf% O
t4 IA
O
CO
CO
CM
O
1
o
IA
CVJ
O
IA
O
r~l
A
co
CO
1
»
^
-------
s
£ hQ
L'
Ox-s
i~
H
O 60
oJ
gj
mtp
O S
OJ
gg°
""
**
P M
31
f. -4.
M — -T
0 O
i!
l|f
a
HcP
1
3
o
•H
•P
OJ
ra
00 CO O O
* • * •
.4- H co ir\
H ir\ o t-
8^ 9 S ^
NO cA ,-j ^
H O H C-
CvJ -* UN -d-
H O H OJ
H CVJ O -*
OOO O
0*00*0"
MD O H ^
O*O*O*o"
p
OJ H l>- CO OJ
O H O* O
VD LT\ O CO
3 H ^ "H
00*0*0*
S $ 1 3
000*0*
ITS IA UN lf\
-* UN t^ UN
OJ OJ OJ OJ
O O UN UN
OJ m o m
"3 ^ "LJ" ^
l 1 vO Q
^ § 3 S
omcocoooomuNco
"""d"™s!S&
m (3 rH i/\ ON co ^^ -^"J* -^""i"
ON ON o ^5 ON ^5 €M LTN co
H H H •-! rH H
^ol^^lQ^o-^o-
J-J-J- UNUNUNVOUNMD
SSSSSSSli
0000*00*000"
^^ C** ^^ CO ^>O C) l^A QO ^*~
VO VD n^ ••••T' sJ CO P*J OO ON
CO CO MJ" -r^j* "UTN —^" C*j CO CO
o'o'oo'o'oOo'o
|.
CVJ oo vi") \o CD ON tD t**" OJ co
OOHOOOOHH
S3«,^K"8°>
r-lrHOJOJrHH'-liHr-4
O*O*O*OO*O*OOO"
HPmOJOJHHOJOJ
ooooooooo
to
CVJCUOJCUCXJCNJCMOJCM S
OQlTNOOOOOO 0>
s
< « *
1 1 IVOOCOOrHCQ
-------
p
1^1
*r7
P
f" ^ 1
SJ r-"i
EHJ,
J;
j.
g4
08
i
CM
O CO
&
<£
Cj ^
EH M
"r7
1 ^
So
r< -3-
PM<
5
(Scf
&
B^
ti O
EHO
-------
f*\ "^
i
jjl
H
S $#
H3
*T
, |
cO*^
~
4
08
CM
O CO
1*5 O
<-•'
^^
S3
t>2 i— • \
H ""*"-*
I
*r7
P
rH -^~
W)
rH H
•
CM
ITN
CM
_-j-
rH
0
CO
in
O
rH
1
H
-3"
CM
VO
lf\
O
O
ir\
CM
o
ON
00
UN
o
CO
o
CO
vO
_£.
o
ON
CM
ir\
J-
rH
g
ftj
CO
ir\
i
CO
CO
IA
CM
CO
CO
o
o
CM
0
CM
CO
•
o
CM
O
in
-=f
O
ir\
oo
CM
8
_-J.
rH
O
CM
rH
CO
CM
•
ON
CO
vO
r-t
ON
.J^
rH
O
c?
CO
0
1
^
o
ON
ir\
CO
O*
O
OO*
OJ
ITN
ITN
CO
rH
CO
H
rH
ITN
H
CO
•
•8
ON
H
ITN
co
H
O
CM
O
in
£^_
V^Q
•
O
3
o
CM
in
CO
0*
in
«
s
CO
H
H
rH
0
S3
•
in
CM
rH
H
H
O^N
O
o
CO
H
O
^
^S
M3
•
o
1
o
H
CO
CM
O
in
oi
o
CO
CO
rH
<§
H
O
in
.*
i
ON
,_!
J^»
O
O
H
O
°P
•^T
CM
O
§
o
CO
CO
o
^
«
in
CM
in
ON
CO
rH
CM
1
CO
in
O
in
CO
O
o
H
I>-
H
O
t^
ON
•"-I"
•
o
1
o
rH
t-
H
O
in
\Q
CM
CM
CM
CO
CO
Q
.
o
CO
,_J
H
CO
o
o
£
o
\o
^*»
rH
•
0
£
o
0
CO
ON
rH
0*
in
&
fc
rH
H
rH
CO
O
in
-*
i
in
ON
H
C-
co
o
o
3
o
-4-
v*o
^\
•
o
3
0
in
NO
CM
o
in
*
in
O
,_j
^
b-
-------
APPENDIX D-2
COMPUTER OUTPUT SHOWING LONG-TERM BOD DATA
-------
-------
*00u 5/1P/70 3
TIMF BUD
(DAYS) (MG /L>
0.0 0.0
2.0U17 0.5100
5.732fe 0.9700
***************************************************
******L£AST 5 U I A B fc. S PIT Tj L=LA(l-F**(Kl*r))*****
DATA CHNFIGAPATION DOES NUT ALLOW ANALYSTS
A***************************.***********************
*****LFE.S GRAPHICAL AiNALVSlS*********************
ULTIMATE «UD = 1.270 Kl(HAS£(t))= fl.?:>17
BQDl= O.iSi
***************************************************
***************************************************
9005 5/19/70 11
TIME
(DAYS)
0.0
2.0000
5.8750
8.7*«7
10.9^79
1 4.5R68
16,7153
?0.7*>39
?3.569U
30.7?22
33.7"b5
***********
BUD
(MG/l)
0.0
0.9700
1 .6100
2.1900
3.1900
3,bUOO
a , 3 .* 0 0
a. 1300
a, 2700
3.7200
y.9«00
****************************************
******LEAST SuUARLS FIT TU L = L A ( 1 -F * * ( K 1 * T ) ) * ** **
DATA CONFIGARATIDN OOcS MUT ALLO^ ANALYSIS
***************************************************
*****LFE.S GRAPHICAL ANALYSIS*********************
ULTIMATE HUD = 4. 892 K 1 ( BASt ( t ) ) =
5 «U05= 1.733 Hu010= ^
a. 537 ^uD50= a, MO
***************************************************
-------
***************************************************
9006 b/?*/70 11
(DAYS)
0.0 0.0
1.0500
7.6^35 2.to«00
1.8*19 a.b^OO
ub*75 u.VfcOO
b,0600
?0,0?08 5.UOO
?1,B«03 b.b?00
'
?7 8715 b" • b?UO
*****;;* *****************************;***::*;:;;;
******LEAbT SUUARtS FIT TU L=L* ( 1 -F **(K 1 *T ))*****
TRlALb = bOO CUDt. 3 0 STANOAHO ntV = 0.29*5
MATE bn0 = ^.53^5
0 b?^ H[,n^ l.OOi
2
ULTIMATE bn0 = ^.535 . =
6.000
************************************************
*************************************************
900? ' b/ U/70 «
TTMF BUO
(DAYS) (M(i/L)
0.0 0.0
5t7a 1.3700
,
1 1 .7917 b. 1000
?, t.^90 Q.U
**************************************************
*****M.tAST SulJAPtS FIT TJ L = L A (t -E** IK i* T)) *****
MU TQIAI^ = bno cunt = 0 STANUAKO otv = 0.217B
'
****
,, .
**>*********.******»«************************
-------
a 5/1P/70
TIMF RUO
0.0 0.0
2.0U17 0.5100
5,732h 0.9700
***************************************************
******Lfc.AST SUIUSfcS FIT TJ L = LA ( 1-F **(K 1 *r ))*****
DATA cn\FlGA»ATiriN DOES MjT ALLOW ANALYSTS
***************************************************
*****LFES G-
-------
******************
9006 b/?R/70 11
TIME
(DAYS)
*********************************
0
2
5
7
It
1
1 u
1 7
?0
?1
?4
?7
******
,0
,0 .}<*<>* MCf^stCfcU = o.ooS9
«J f 2 1 h Pu010= «.W
***************************************************
-------
****************************************************
9009 b/jS/70 9
TTMF BUD
(DAYS) (MG/L)
0.0 0.0
«?.0?U3 l,c!700
5, 1?50 2, 1800
B.bfciZ U..7HS fa,9?00
P0.9097 7. a 300
Pa.bS« 7 .V«00
/,**************************************************
******LE:AST SuUA^tS F1T-TU L = L A ( 1 -f ** ( * \ * H) ** * **
TOTALS = 500 CUDt = 0 b
= io,a?^3 Kl(wASt(t)J = 0,0&05
K U n i «5 c ^.PaO h 0 u 3 o =
+ ***»********* + . *************************************
**************+***************+********************
9 u 1 0 fa / ^ ? / 7 0 «
TTMF ' BOO
(•DAYS) I MG/L)
0.0 0,0
.QOOO 1,1100
b,07b4 ,£,3^00
rt.OlOU i . i 5 0 0
M , 9 3 4 0 5.1000
1 a , 0 U b fe b.b^OO
16.B333 fo.0^00
P 0.7^8? ^,7500
****************»**********************************
****->*l.f..A5T SullA^tS FIT TJ L=LA ( 1-E**(K i *1) )*****
^AXlMiM THIAL. b = 500
i.uua
-------
***************************************************
9011 b
TIMF
(DAYS)
0.0
2.7779
b.9?71
b.b?33
10,tt?b«
1 u.798b
1 7 ,bU03
?Q .81 bO
**************
/?9/70 «
BOO
(^G/D
0.0
1 .7600
a, 6700
3,0900
3,b500
a.bftOO
b,3300
b.bSOO
*************************************
******UAST SHUft&tS FIT Tu L = L A ( 1 -F.** (K 1 * T1 ;*****
MAXIMUM TRIALb = bOO CUDt =05
ULTIMATE bHQ = 10,6^79 XlCBASt(£)J = O.OaU
***************************************************
***************************************************
901c? 7/ ft/70 ft
TlMF PUD
(DAYS) (M(i/L)
0,0 0.0
r?.a-?75 i.b300
b.7?9? 2ta900
e.aflfai £j,s»ooo
10 . b 9 2 « 3.blOO
lu.asa^ a,b300
***************************************************
******LE*ST 5MUARE.S FIT TU L = L A ( 1 "F ** (K i * T ))*****
TRIALS = bOO CUOt- a 0 oTANQAwO DtV =
UOD = 5.90S1 KlCRAStCh)) = 0
= 0.518 Ho02s 0,990
Pijni«;= a,'11% BHD-JO= b.b?H RuD50= 5.flab
-------
***************************************************
9013 7/1V/70 9
TIME BOD
(DAYS) (MG/L)
0,0 0,0
1.9*c!fe 0,b700
S.9-500 «! . 2 « 0 0
«.8<>b8 2./9QO
13,9331 3,d00
a.iaoo
***************************************************
******Lt,AiiT S G* I J A R b S PIT TO L = LA(l-E*+C****.******* ^ *******************
-------
***************************************************
90U 7/16/70 9 B
TIMF ROD
(DAYS) (Ml>/L)
0.0 0,0
2.7361 1.7300
6.097? 2.8UOO .
8,b«93 3.1900
11.5625 a.0*00
lU.blBO 5.5700
17.5*33 b.5600
?0.b"59 7.1900
?a,0B33 8.0600
**************************************************
******LE.*ST SulUPtS FIT TJ L = LA( l-t**(Kl*T) )*****
*
TRIALS = 500 CODE = 0 STANDARD nf..V = 0,2/fll
ULTIMATE: BOO = i7,3i?i Ki(BASd(t)j = o
8001s C,«45 Brjn^s 0,879 PU05=
-------
****+******************************x***************
9017 7/VQ/70 8
TTMF HUD
(DAYS) (MG/L)
0.0 0.0
d, B195 1 .91 UO
5.6"*5U 3.3100
8. 6 u 24 a.OfeOO
1 1 ,£>0«2 a.HBOO
U.5972 b.bKOO
17.7'Jil b . 3 "5 0 0
? 1 . 6 ? 2 9 7.0500
T**-*******************.******tA*************-V****
^ 0 1 « b/^/70 ^
FTMF BUD
fDAY?) (Mb/L)
0.0 0,0
i> . o M 9 i.bnoo
b , a 0 9 7 cJ , 1 0 0 0
1 0 . b « 3 3 u,b300
l b , a 1 b 7 o . l fl u 0
^1,6^89 rt , 7 3 0 0
*<"****•*«***•******•* ******-*(***-^*-***. A + t + ***** *********
******Lt.AST S w 1 1 ^ P t *5 FIT fU L:;l.A(t"'-''-|'(Ki*nj*****
•-XI'^tiM TRIALS s 5^0 Cost's 0 oTAMyAftn DhV s 0.0b
ULTIMATE un,, u io,5v->c! •< lU1 A.';t (t) ) = o,ob58
0.573 n.|H,)~ l.lt^ "uo^s d.b^>i MiiDins /t , 5 j ;>
-- o.b7'5 roHbOs "'.TiJ?
A** ******* •>********%<****<(*
-------
***************************************************
9.505, 5/19/70 R
TIMF
(DAYS)
0.0 0.0
2.0000 0.9200
5.B715 1.1«00
8.7*13 1.5300
\ o.9uuu 2, 1300
1 u . 5 a 3 3 3.1900
16.711R 3.^700
?C.7^0U 3,5700
***************************************************
*****. LEAST SUUA9ES FIT TJ L = LMl-P-**C' 1 «
0.0
1.0100
2.1100
2.9SOO
U.bbUO
b.3700
5.b200
b.ci^OO
6.5^00
2/.8^B1 7.3300
***************************************************
******LtAbT SuUaBtS FIT TU L = L. *( 1 -E ** C K 1 * T ))*****
= 500 CJHE = 0 STANDAnn OtV = 0,lo<5b
= 9.79«B Ki(BAStCO) = O.ObOi
ns '-).005
>************»*************************************
-------
***************************************************
9307
7
0,0
2.5170
b,7h?a
7 .bfrfJS
PUO
( M l> / L )
0.0
l.bSOO
3.0500
1 « , 7 1 b 3 b , l> 7 0 0
IB, 55 21 7.^00
?1.|3S90 <} , u 0 0 0
****************-**********************************
******Lt*ST Si-U;,R[-:i FIT TJ LsL * C 1 -r ** (K 1 *T) J *****
HAXI^U^ TOTALS ~ LJOU cunt = o STA^QARn nt.v = o,i
ULTIMATE: bOo - l«,a'^70 Kl
3UD1= O.'-^a i-u'^---- l.lti «UH5=
nL.inir)= fr.0/:' ;'0t;7,0= Il.b03
****************^'-«**************A*'****************
*************** -.:* •- ;- A *******************************
9309 6 / l ri / / 0 9
| I MP !HJO
tn^vs) (''U/LI
0 , 0 '-.' , 0
?,0?4"^ 1 , * ? 0 0
b . 1 ? b 0 c? . v 3 0 0
H.f5*>3? i:?/SuO
10,^0? u , ?• ? 0 0
1^.bR06 7,/-'lOO
1 h , / 11 ft T . u " 0 0
? n , 9 0 V 7 0,^50^1
?a,oSc^ ')/•'? 00
********* ****** . *•-••• " - **** ^ A *************************
******! t -bT SC.il) •.--•> FIT TJ L = LMl-f-**lKl*n)*****
DATA c^-.r j HAPAT • r • i,nts 'iijT ALLO^' ^'^LYSIS
******** -VJ"*****J ' ** "****-**********-"****•************
* A * * * L p c. ;: G •< A P LJ 1 r -I- 4 N i L v :j I 5 ****** ;' **************
K1 (RASt(t-) J =
*****.', A ... ^ * * >
** ***************
-------
***************************************************
9310 to/22/70 «
[IMF Run
(DAYS) (MG/D
0.0 0,0
2,0000 1.3600
5,07ba 2,3300
8.010" 3.7«00
\ \ ,93UO S.ttfeOO
U.03«7 b.8000
1 b . B 3 3 3 7.3100
?0,7«8? b.1200
***************************************************
******LEAST SutU&tS PIT TJ L=LAC1-E**(Ki*T))*****
TRIALS = 500 CURE = 0 STANDARD OEV = O.P/71
.
***************************************************
***************************************************
931 1 fa/29/70 «
(DAYS)
0,0 0.0
2.777* 1.6200
b.9?71 3.0^00
8.6333 6.9MJO
1 0 . 8 ? b « 7.7^00
8. MOO
9.3000
?0.8lbO 9. 65 on
***************************************************
******L£AST SQUARES FIT TU L=L A ( 1 -E **( K i *[))*****
TRIMS = bOO TUHt = 0 STANOMH 0£V = 0,58?3
ULTIMATE bno = i?,Sb«l KH«ASt(t)) = O.o/fett
1 .790
-,,, ^.. .. . ,-, , ^.)U3u= 11.313 - -
***************************************************
-------
,*************************************************
9312 7/ (S/70 k
TIMF Pun
(DAYS) (H(»/L)
0.0 0.0
.U375 l.ttSOO
b.7292 i.1000
b.U«61 3.9700
io,B9aa a. 7300
U.U5U9 b.7700
***************************************************
******Lf.AST SiJl'APtS FIT TJ LcLA( t-E**(Ki* I ^ J *****
M TOTALS s 500 CUnt a 0 STANDikD Ot.V -
TIMATt t»rif) = I7
"GDIs O.bSi Rrin^e 1,0«9
**** + *****************************''*********** *****
***************************************************
0313 7/1^/70 9
TTMF PUD
fDfcYS) (M(i/L)
0.0 0.0
\.W2* 1.0100
3.7000
1 0 . 9SU9 4.^00
13.9931 5,3^00
17,b9aa 6.^700
?0 .2^00 7 , 3000
?u.70u9 e.oaoo
*********************** * *****************************
******LEAi>T SnUaPES PIT TU L = LA(l-f:"**(i f A L 3 = bOO Cunt = 0 sTANuApn ThV = 0 . 1 0 1
9 .
-------
************************************************
931U 7/1*1/70 9 •
TIMF BOD
(DAYS) (Mfi/L)
0.0 0.0
2.73bl l.«200
b.0<>72 2.2100
2.7700
U.0800
Itt.blbO 5.2100
!7.5«33 5.7"00
? a () a 33 fa.bOOO
..**?i;. .".*.**« **********************************
******Lt4ST SUllAPtS FIT TQ LcLACl-E**(Kl*n)*****
MuM TRIALS = 500 CJDt = 0 STANUApH 0£V . 0.2800
ULTIMATE .00 = 10.76B8 KlCBASt(fc)) » O.OaOb
:: ::: :.....»
;;*;;;*.*******************************************
931b 7/2P/70 ^
TTnF BUD
(DAYS) CMG/U
0.0 0.0
2.aiJ79 2.0600
S.3Pb« 3.5100
«.«37S u.^000
uaoa 5.U500
o.lBOO
7.0^00
TO
M TOTALS = 500 CJnt = 0 STANDARD DtV »
t)) = 0.
3.215
r,,n *.«,„ .
»******;******************************************
-------
• 7 ^ F
v fl Y 3)
0,0
i'. ft 195
s.6?b"
e .b"^"
< 1 , v^ ?
1 u . 3 f; 7 ?
••',;•- 3 1
•' ! . - - ^
,.* + .»*****<
, «»•«**,(**<-*'«»*•«,#*****''*****
/ "" i"'. B
«UD
( M U ' L. )
0.0
1 .aPQO
2.7^00
3,7100
a . 3 * u 0
5 , 3 * v •">
2 > •**• ^ "
ts , " ' ') ^
,,«^..^.^,i.i^^^AA^A^*-^*^irifA^A*
^ jr**-tri**"******;"***'****1"*ir**
= L
o '•
C •< 1 * T ) ) * * * * *
LjA^n ntv = o.lo?b
* * *
# * •'
i^.*******************
• .I*******************
("U/,,5
**************************************
,/..i;r_^ U;T TJ L = LA ( 1-E** CKl*F ))*****
0 -->TANUACO Qt:V s 0,?175
Kl(MASt(tH= 0,0702
.
*,>*,.,+*****•*********->******************
-------
***************************************************
9318 »/ 5/70 *> ' p
(DAYS) C
0.0 0.0
2.6319 i
5.a097 3,6600
10.5*33 u.8300
15.U167 b,b00
si.b^ao 9,fe
-------
***************************************************
looni u/^3/70 7
TIME
(DAYS)
0.0 0.0
1,8993 1.2300
b,37S5
Id. 7 >»1 3
lu.b799 3.1BOO
17.b035 3.7000
?G,uuiO i.bSOO
***************************************************
******LtAST SvJHA»tS FIT TJ L = LM l-F**CM*n )*****
MAXIMUM TRTAlb = bOO CJOt = 0
ULTIMATE: bHo & 3,9V«1 K
= o.b03 Pnn28 o,9ad RUH^
»ijni«?a T./ioft bnD30= 3.B37
***************************************************
***************************************************
1 n o <"• ^ M/^o/70 fl
TIMF ROD
(DAYS) (M[i/L5
0.0 0.0
£>.it^b3 0.9200
h.onOO ^.6700
7.H125 a.9«00
11.00b9 3.3900
Ui . 0 ? 0 B U.1100
1 1 ,1\£^ a,b700
?1 . 1 1 «fe 5. I300
»*y^vi************»**************Jr****************
******! tAST suiiAHts FIT TU L=LMI ^"**^i*m*****
boo CunE =
s 5.***********************»**************
-------
***********************
10003 5/ V70
TIMF pUO
(D»Y9) (Mli/L)
0.0 0.0
0.6700
fl.OSbfe 1.3300
11.7*7" l.oflOO
15,1093 2,1500
19.0100 2.3ROO
n;r.::..».«:»»».*»»»»»«-
..AST SUIUPtS FIT TJ L«LM1-E"(M
***
********************************************
1000U b/l?/70 11
TIMF
0.0 0.0
2,0(100 O.bl 00
s.b^?6; 1.1300
9,0^5 l
16.0035 3.1^00
?i. 7708 3.0700
?7 .7^00 3.2100
FIT TO 1 = 1 A ( 1 -E * * C •< I * T *
TRIALS s bOO CUDL = 0 SJ^jJAKO DEV = ,,lb?H
'^Tt bOD s a,0b02 KlCBA3t.(&n - O.
o asi
^= Z.O .
****** *******************************************
-------
a**.**************'*******************************
; ? o o 5 b /; Q'" v-' i ?
Tl^F r-^~
(DAYS) CM''/-1
0.0 0.0
2.0001 -u . - '. 0 C
b . B h 1 1 C , " ' C 3
6 .' ? 0 * ; . « - "
i o . ~
1 U . b 7 2 0 .-; . • " "
1 6.7M a /,--•"
? D . 7 ^ J *> -- . ' " "
?7.7°-? t.-~ "
TO . 7 <- ^ ^ -; *
^ i , , 1 i *> ^ - - - ' - "
T5tt,^7T _ , "-
,***************4-**^******************************
******LtA^T *,.'A=- -I" TJ L = LMl-p**f_ i ' - -
10= l.
71
****************-**^******************************
^***********-**^-J*i* ***************************
;'V.T --'£'"" * "
T T * -.
f C A V5 ]
: .0
^.r^ ~ .•-•'"
5 . ec •• ° -. , fc *
7 . t - ', " ' . - ' •> ">
11 , f> "' - "> •'•'''
t v. , «- •" .. 6 - ^
^ -^ i*
! 7 , - - -' - -• -
' C , 0 ' - 1 >.-•••
? 1 . B ^ i ^ , - ' ~
? u . 8 c 7 K 7 . 7 - j 0
jp 7 ^ ^ „ fc. ^ >' . ',; 0
*,****'**->• ****•- * .A****************************
*,**** L i '^ «; - i - a . S - i T T j L r L A ( 1 - - * * C - 1 * : ) ) * * * * *
5*TA C" '.p • "^PM- ;" --..^ MJ" ALLLK ANAL.-sib
*.********* **-«**-• "*'****************'**************
******************
*************
********************
-------
*4 A*****************.*******************************
! OQP7 b/ «/7Q 9
CD AYS) (MU/U
0.0 0,0
2.bn70 1 .b200
5.7^70 2,6*00
U.7»i3 U.bOOO
1 *C*l*T))*****
ujjyjM " -JfALS - b^lo CUOt = 0 oTANDAQH DtV = 0,?907
'JLTI"A-- c°0 = i!,Q005 KlCRASt(M) = 0,048b
^'(Pl= o ^U «'.np= 1,10(? RUDb= .B.b'fcb RQ010= y,^?1
***************************************************
***************************************************
10008 b/fl/70 0
T I M p BUD
f u i v " 3 C ^ I"7 D
0.0 0,0
2.^00 1 . tt 7 0 0
*> . \ - •; a 0 o n
11, ^^n a,9SGQ
| a , ^ 0 7 ? o f 4 7 0 0
'7.0^13 7 . i * 0 0
?o . ^^u^ ^ , o°oo
? d . w 1 / " ^,7000
»* + ***********•*************************************
******! (-AST ?^-:ii-'-_S rIT TJ LrLA( i -F**(Ki*H )*****
IATA L'''.r I r- AC A' jfN Uni" 'OT
•*****+*******+************************************
***«,._rts r, -^ * H w i C A L Aix&LY3lb*********************
^ATA C i\ ~ I'A^.'. * ;'T, DHLS MJT iLLU1^ ANALYSIS
****** 4*******^ ***********************************
-------
***************************************************
li 009 6/15/70 10
TTMF BUO
(DAYS) (MG/L)
0.0 0.0
2.0?«3 1.9200
b.l?50 3.5^00
8.6M? 4.B500
iOibS«? i.7
-------
***************************************************
IOU11 b/29/70 B
TIME BUD
(DAYS) (MG/L)
0,0 0,0
2.777ft 1,7600
b.9?71 3,0300
8.8333 3.7500
a,2600
b.VOOO
17.8^03 7.7600
?0 .81bO 8.3700
***************************************************
******l£4ST SUUARtS FIT TO LcLA(l-e**(K|*]))*****
TRIALS 3 500 COnt 5 0 STANUARP) r)£V
3 27,19?b Kl (HASttfl ) =
.u^l PQD2B 0.973
S= 6,505 bOU30a ll.a^q WUDbfls 16. ^
***************************************************
***************************************************
10012 // 6/70 6
TIHF
0,0 0,0
^.at75 . 2.7500
b , 7 ?'•*-< a . u 2 0 0
io,«q2^ b.onoo
m,asa 7,37oo
***************************************************
FIT TU L = LA(l"F.**(Ki*Tn*****
TRIALS B bOO CUDt = 0 STAND**n n£V a 0.2753
iLTI^ATt BHD s fl.lb^b Kl(RASfc,(£)) = 0.1371
ajnjSs 7.116 B0030= 8.0?fa RJD50= "3, t b 1
****************************************************
-------
***************************************************
10013 7/13/70 9
TIME PUD
0.0 0.0
1.9653 1.0100
5.9167 2.8000
8.8765 3,bOOO
10.9375 a. 0000
13.9757 b.2100
17.6771 6,7700
P0.2326 7,6500
?U.6*75 8.2«00
***************************************************
******LLAST SQUARES FIT'TQ L=LACI-E**(KI*T) j***** *
MAXIMUM TRIALS 3 500 CUHE s 0 STANDARD 0£V = 0,2356
= i9,895a KICBASE(E)) = 0,0225
0.880
5.726 bOD3Qs , .
***************************************************
***************************************************
100U 7/16/70 9
TIMF PUD
fDAYv^) (M(j/L)
0.0 0,0
2.7^61 1.3700
5.80b5 1.9600
8,6^93 2,b700
11.5625 3.7700
la, 6180 4.49QO
17.5833 5,1«00
P0.6458 6,0600
?U,0833 6,3^00
***************************************************
<*****LEAST SUUAPES FIT TU L*L*(I-E**CKI*TJ)*****
CATA CONFIGARAT^ON Dots NUT ALI Q^ ANALYSIS
<**************************•************************
**.***LF£S GRAPHICAL ANALYSIS*********************
ULTIMAJF PUD = l
0.395 PQD2= 0.777
5= y,6Q8 t>nu30s 7.203 PUObO= 8,993
************->r**************************************
-------
***************************************************
J0015 7/20/70 «
TIMF PUD
(DAYS) (MG/L)
0.0 0.0
2.UMS 2.3100
5.5^56 3.7UOO
8.6563 5.0000
b . 4 « 0 0
.
17.U51U 8,1100
?0.u^83 8.^300
**************************************************
*.****LEAST SJlUPfcS FIT TO L = LA(1-F**(K1 *T))*****
[*UM TRIALS r 500 CODE = 0 STANCH
ULTIMATE bHQ = 10.2436 KltBASE(E))
1.617 RUObs 3.576 «UD10= 5.913
«uni^s /.»i" bOu30= ^.500 HOD50= 10,150
**************************************************
***************************************************
10016 //2?/70 9
TIME BUD
(DAYS) (MU/L)
0.0 0.0
2.aa79 . 2.0^00
8.U375 a.d300
n.uaaa 5.ciioo
17.»92« 8.1500
?0.b07fe 8,1^00
?a.510« S.blOO
**************************************************
******L£AST SQUARES FIT TLJ L = L A ( 1-E** ( K 1 * T ))*****
-U« TRIALS = 500.^ CUDE = 0 STAND * ,0 DEV . 0.3j?i
. HOU30= 9.733 *Uf)50= 11.?
***************************************************
-------
• •************.*************************************
10017 7/29/70 ft .
TIME BUD
(DAYS) (MG/L)
0.0 0.0
2.8195 1.9600
5.635« 2.5200
8.6U2U 3.0600
11.63b« a.u300
U.5«7? 5.1*00
17.7«il 5.9800
?1.8?29 6.5400
***************************************************
******L£AST SQUARES FIT TO Id A (1-F**(Ki*T))*****
TRIALS s 500 CUnt = 0 STANDARD rtfcV = 0.2811
Kl(BAStfE)) 3 O.OS39
BQDlc 0 U09 nrjR28 0.970
PUH1S= 5.260 dOD30= 7.603
***************************************************
***************************************************
10018 8' 5/70 <»
flMF PUD
(DAYS) (MG/D
0.0 0.0
2.6319 • 1.8500
b.u097 3.2600
10.5*43 5.6000
15.4167 7.3500
31.6389 8.9500
**************************************************
*,****UAST SQDARLS FIT TO L»L A (\ -E** CK 1 *T ))*****
TKIALS s 500 CUDE s 0 STANDAkO H£V s 0.1766
= 9,«259 KKBASfc(E^) 5 0.0812
«CDlr 0.766
PUHl^s 6.^1* OOU303 8.96b BUDbOs
*<*************************************************
-------
************************
Oani 4/23/70
(DAYS) CMC,/!.)
0,0 0.0
1.8750 0.8200
5.3*42 1.2400
12.7S69 2.0600
iu.5*56 2.0600
t7.«792 2,3600
?Q.ulb7 3.0300
***************************************************
*„****! MST SQUARIS FIT TO L = L A ( 1 -E ** I K i *T ))*****
lM.ju TRIALS a 500 CUOt = 0 STANDARD DtV a 0,2l»b
ULTIMATA dnD » 3.«25b KURASt(t)) = 0.0766
0 253 Rrjnzs . 1.0<»0 BUD10= 1
BfjPl^s 2.^jq 60030= 3.0P1 RUD50= 3.351
.,»*************************************************
***************************************************
lOan^ u/50/70 fl
TTMF PUD
(DAYS) • (M(i/U
0.0 0.0
o.O^OC 1.7^00
7. 612*5 2.0500
11.006*' 2.M600
1 « , 0 ? U ^ 3.1BOO
?1.11«* .
**************************************************
tS FIT TQ L = L.Ml-F-**CKl*Tn*****
MyM TrUiLS s 500 CUDt = 0 S
ULTIMATA bnu s a.5b70 • Kl(BASt(£)) = 0.0/50
r 0 330 *';n2= O.b3b
p(Jn?^ %.o,u rtOU3u= -
***************************************************
-------
**************************************************
108(13 bX 5X70 «
TIME «UD
(DAYS) (MQXL)
0.0 0.0
5.0«17 1.2800
8.0F21 l.iSOO
11.7*39 l.baoO
15.1U58 2.0000
1Q.OO&9 2.6POO
PU.701" 2.««00
***************************************************
RtS F1T.TJ
DATA C<"»NFIGARATION Dots NOT ALLOW ANALYSIS
****************************************************
S GyAHHCAL AN ALVS I S****** ***************
ULTIMATF BUD a i.Otl Kl(BASt(t)J c
----- ..,„«,_ ltU?9 PLiDiO =
****************************************************
************#*********************•*****************
10BOU b / ) ? / 70 «
TTMF ROD
(DAYS) (MG/L)
0.0 0,0
2.0000 O.b200
5.b*>67 O.V700
9,0 "17 2.0500
12.P097 1.7POO
1u.feOa2 2.1800
17,Q82fe 2.7900
?0.60<42 2,d«0^
******************************************************
******LtAST SUH4«LS FIT TJ L=LA(t-£**(Ki*T ))*****
CATA cn.NFiGAHATinN uots MOT ALLOW ANALYSTS
**+•*****************************•****
*****|_Ft? G^A^^JTAL AiNALYSlii****-****
rs 1 ( f A s •, (;. i j c o ,. ". VI9
******************************************* *fr-<( ''**?:*•
-------
***************************************************
1 1 bft 1 «/?3/70 7
TTMF R00
(DAYS) (Mti/L)
0.0 0.0
i.VOOO
12.7*96 2,6700
1U.538? 2.6700
17.UMR 3.3400
?0.3993 3.5500
***************************************************
<*****UAST SuUARtS FIT TJ L*L*Cl"f**(l
-------
b/ 5/70
TIMF PUD
0,0 0.0
1.8507 0.6200
b.O J = o,o^o
5= 2.MP «OD^O= 3,b73 «JD-jO= 5,13*
***************************************************
-------
***************************************************
11605 b / 1 <5 / 7 0 8
TJMF PUD
fOAYS) (*
0.0 0.0
2.0000 0.6000
5.8M1 1.0«00
b.770« 1,3600
10.
-------
******
*************************************
(DAYS) <
0.0 0.0
2.5070 1.2100
5.7S70 1.B700
7.5*521 2.0700
11.7*13 2.3*00
U.70«9 2.b300
? 1 . 5 « 8 6 U.bOOO
?b 50 17 a ,9000
***************************************************
******UAST SUHAPES FIT TO L = L A ( 1 -E **C K 1 * T ))*****
MUM TOTALS = bOO CLjnt = 0 5TAND*Hn D£V = J.30M
ULTlMATb bPn = «,ti09 KKBASE(fc)) = 0.0353
8001= 0.2B1 Pnn2« 0,5«53 R= . 2
ttOU^O= 5.2^^ PUObOc A, 723
..
***************************************************
*******************************-*******************
11608 f/ ^
TIMF
(DAYS)
0.0 0.0
«?2SOO l.ttTOO
2.5300
3,2900
3.5QOO
a.iaoo
5,0000
? 2 . u l 7 a b.atoo
************************************************
MAXIM,,- TRIALS = *ro CJnt = 0 STANOAHO nLV a o.aili
ULTIMATE BPl) = fe.ab^ KtCRASt(E)) = 0.0*76
BCJ01- ^.U?2 w.^2= O.rtlb
Rjri^r 'S,1'' bTJ"^U= b'.bOh .s .
***************************************************
-------
****»*.*********************************************
1 1 b >">« b / l 5 / 7 0 10
TIMF RUO
fDAYSi (MG/L)
0.0 0.0
2.0000 1.6200
5.10U? 2.3200
rt.buZli 3.0^00
lu.fc?5*? b
t fc . (- 1 .) fa/2?/70 ft
u, J 0.0
^.onoo ,o
b . 0 3 0 « 3.ft
1 3,^73? 1 1 .7ROO
!h.777« 13.b?00
? t ; . 7 * 2 J> 15.3^00
**** ». + + *** *****************************************
****** LLAST SQUARES FIT TO LrLA(l-E**(Ki*T))*****
DAT& C^^rl -APAT IHN UOtS NJT ALLjw ANALYSIS
***» + **» + * A****************************************
***A>I_P;.'; r, -M^^JCAL ANALYSIS*********************
W ANALYSTS
-------
****************************************************
11611 fc /£>'•>/ V j p
0.0 0.0
2.777* I.b700
5. 4? VI ^.6»00
6.6^31 i.bSOO
0,b?bU 3,
1 7 . & U 0 3 6.7600
2 0 . 8 1 b n 7.4700
***************************************************
******|_MbT SUlUPtS FIT TJ L = L A ( 1 -E * * ( K 1 * T ) ) ** ***
TRIALS = 5HO CUOL = 0 STANOAUD Dt^ = 0,2302
ULTIMATE bno = I7.ft^lb M(HASt(t)) = fl,OeJ#>l
0.90b
5,7/? ti0030= 9.&70
***************************************************
***************************************************
1161 d 7/ ^/70 4>
DAYS) (MG/L)
0.0 0.0
B.uay? b . 9 0 0 0
10.8^4? b.3?00
Ia.alb7 7. l?00
***************************************************
******! ^A5T SUUA«t^ FIT TL) L = L A ( t -E **( K 1 * T ))*****
TRIALS = b^O CUnfc. = 0 S
MATE dOn = 7.8607 KKRASEtfc)) = n,lb7l
^,
-------
***************************************************
11613 7/H/70 • A
TTMF RCJO
(DAYS) (MG/l)
0.0 0.0
1.9^53 0.9100
5.9tb7 1.8*00
6.67«5 £.3700
10.^375 2.7?00
13,9757 3.) ** ***
MAX1-UH TRIALS = 500 COOL = 0 STA^sn OfcV = 0,2^10
ULTIMATE BOO = U.fe227 KlCPASt(£)) = O
0= 2,715
POi= . . . 550
***************************************************
***************************************************
11613 7/13/70 9 fl
0.0 ' 0.0
1.9*03 0.^100
tt . H 7 B 5 ^.5700
10.9375 3,6300
13.9757 3.U900
17.6771 y.BOOO
?0.2^2^ 5.1^00
?y,bn/5 5,olOO
**************************************************
******LMST SUUARtS FIT TJ L = LA(1-H**(K1*T)J*****
MAXI«U" TRIALS = 500 CU^t = 0 bTAN[)AWD HfcV = 0.19*«J
ULTIMA!? bM.j = il.!8«a Kl(BAS£(tn =
r o.5?3 "on,?* O.sJfa
PUni^= 3. "7^ bOD30= 6.
****
**********************
*****************
-------
a***********************************
1 1 6 1 U 7 / 1 * / 7 0 9
TIMP
(DAYS)
0.0 0.0
2,7561 1.2200
5.B055 1.9000
B.M93 2,1600
11.5625 2.5*00
1 U.61 &0 3.5000
17.5*33 U.tt?00
?0.6U5« 5,1700
2 a ,ofi33 a, 3000
*************************************************.**
******LfcAST SQUARES PIT TU L = L A I 1 "F* *( K j * T ))*****
DATA cnNPir,ARATlPN OOt-S MQT ALLOW 4N4LVSIS
***************************************************
*****LF£S GRAPHICAL ANiL^blS*****^ ***************
ULTIMATF RUO a b.708 Kl(RASE(£)) = 0,0716
RQDls 0.39^ Pnnga 0.761 PUDb= 1.717 RUDlOs 2.Q1B
Ronjss 3.7^7 b0030= b.Oa;
-------
***************************************************
llblb 7/??/70 "
TIME ROD
(DAYS) (MG/L)
0.0 0.0
2.UU79 2.U200
5.3P5U 3.9500
H.u%75 «.U900
1 1 .uuuu b.7000
iu.u*b3 7.0200
17.8Q2" 7.6BOO
?o.bfl7fe a,i«oo
?u.b1o« 8,a?oo „.******
***********************************************
******LLAST SUUAHES FIT-TQ L«LACI-P**CKI*T) )*****
TRIALS = bOO CUDt = 0 STANDARD OtV 3 0.3l2b
ULTIMATE bHD = 9,^088 KlCBASfc(E)) = O
0.800 «on2» I.b33 "OD5B 3
15B 6.9^" bn030= 8.900 BUD50=
***************************************************
***********************************************
11617 7/^9/70 «
TIME ' RUO
(DAYS) (MG/L)
0.0 0.0
2.8195 1.3300
2.7000
M.bOU? 3.2POO
iy.b97? 3,bPuO
17.7«31 a.b500
PI 8?ti9 5.3100
***************************************************
******LtAbT SUUARES FIT TJ L=LA(l-E**CKi*T))*****
MAXIMUM TRIALS = bOO CUOE = "0 bTANQAKD OtV = 0.20«2
ULTIMATE bOO = 7.7bni K1(BASL(&)) » 0-0497
= 0.377 «nn2« o.7Tb «onsn 1.712
R'jni?= a.na1? bnu30= b.o?9 RQ0505 7.132
***************************************************
-------
^-r^,***************************************"*******
•, : c ' 6 a / 5 / 7 o 6
TTMF PUO
(DAYS) (Mfc/L)
0.0 0". 0
.J.6319 1.3500
b.aft97 2.0500
« 0 . b « 3 3 3.0500
'b.ul67 3.6700
M.63B9 b,7000
**************************************************
,«****tEAST SulJARES FIT TU L = L A ( 1 -E ** (K \ * T )}*****
|"UM TOTALS = 500 CODE = 0 b
= 6.50ai K1(BASE(fc)) s 0.0615
P002S 0.753 »uns= 1.7?1 *Lir>10= ?,P87
*.*.»**********************************************
„**,*********************************************
-, ' t 1 9 b/27/70 fe
II ME PUO
(DAYS) (WG/L5
0.0 0.0
P.Bl^U 3. 1700
9.1076 ' 5
la.7^39 7.7700
^0.8 « 9 1 10.3"00
*************************************************
-***LE*5T SQUARES FIT TO L = L6(\-E**(K1 *T))*****
L.
M TOTALS = bOO CODE = 0 STA^Awn Of
s 10.7518 MIB A S t(11 ) =
1,816
r.uis . BODiSOs l.
***,*********************************************
-------
***************************************************
B8-01 a/23/70 7
TJMF ROD
(DAYS) (MC/U)
0.0 0.0
1.8578 1.2300
5.3368 2.3500
12.739% 3.1300
1u.b382 3,bUOO
17. «M* a. 0500
P0.3993 0.6700
***************************************************
******UAST SUUARtS PIT TO L=L A ( 1 -E* *( K l * T ))*****
MAXIMUM TRIALS = 500 CODE s 0 STANCH DEV s 0.299*
ULTIMATE uno = a,7b!2 K
8UD1= O.aoi POH2= 0.932 RQD5= 2.00i
RU^iS= 3. f*u\ bHQ30= a.b^b BUDSOs- ".760
***************************************************
***************************************************
BR-02 u/iO/70 8
(DAYS)
0.0 0.0
2.1t«b 0.6100
b.OOOO 1,6500
7.7708 1.8500
11.0000 2.1500
la.OOOO 2.6200
17.6^10 2.9POO
?1.072«9 3.0BOO
**************************************************
******l.£AST SUUARtS FIT TL) L = L A ( 1 -E** (K l *1) )*****
HAXI^U" TRIAL5 B 500 CUng = 0 STANDARD DEV s 0,1214
ULTIMATE boo = 3,a6ab KiCBASECt^) = o,i02tt
BQD1= 0.33B
Rums= ?.7?3
***************************************************
-------
***************************************************
BB-03 5/ 5/70 8 -
TIME RUD
(QMS) (MC,/U
0.0 0.0
l.b«3B 0,b>>00
5.0M7 1,3300
8.0U17 i.bUOO
11.7535 1.8000
19.0000 Z.bOOO
?0.t><>10 3.8 M(«ASE(£)) = O.M67
0.319 Pongs 0.603 PUHb= \.'H*l RUD10= 1
Ss 2.395 bOD30= 2.810 BUDbOs 2.869
***************************************************
******************************** *******************
oB-nu 'b/12/70 U
TIME B^R
(DAYS) (MG/L)
0,0 0.0
^.0^00 0,5100
5,b^b7 1,1300
9.0/J17 1.B500
12.9097 l.ttSOO
3,0700
3,0700
^O.bOy? 3,9700 _iit*
.** **********************************************
*. *LLAST SUUAOfc" FIT TJ L = LA(l"F**(Ki*T) )*****
TRIALS z SOO CUHt = 0 STANDARD DtV =
= 0.202 Pun^s 0.30b ^OHb= 0.930
PlJfM^s ?i?9^ bHD30= i.b?l RuJHbOs 0 , 1 1 h
**,,^* *******************************************
-------
************************************** ..... ********
BB-05 b/19/70
(DAYS) (MG/L)
0.0 0.0
2.0000 i.oftoo
b.b"72 i.yoo
8.7569 2,2900
10.9201 2.7UOO
ia.5590 5.7700
lfl75 a.l«00
-'^r^r^r 5:^r R^^ :?:u-
****!**i*;*****i*****************************:::!:i
:****;*********************************************
TIMF
fQAYS) (MG/L)
0.0 0.0
^.0^86 1,2100
5.6^75 1.6100
7.8160 1.9000
Mb 3.1000
5.2700
5.B200
6.4300
...... Lt'ST SUUAltS FIT TO
-------
**************************************************
B B - o 7 fa / U / 7 0 11
0.0 0.0
2.0Q65 1.7700
5.7978 KlCBASE(E)) = 0.0085
0.634 BQDS= 1.5<»6 «UD10= 3.067
nrjni^s a.?ofe 00030= 8.a73 «UObO= 13.035 '
***************************************************
**** + •»*********************************************
6s- * a b/fl/70 9
MF •
0.0 0.0
^.1^2« 2.1200
e.1010 2.3700
• i . 4090 2.8?00
ta,B«7? 3,1300
***************************************************
»***>*LEAST SWUAPtS FIT TLJ L = L A ( 1 "F **( K i * T ))*****
;" TOTALS s 500 CUDt = 0 3TANQAWO DEV = 0.1907
!TJMATE BOO = 3.B291 KlCBASt(t)) = 0,1312
s O.a7i PijD2= 0.8^a PUOS= J.bU2 BU010= 2
•^1)^1^= 3.PQU bHO^Qs 3.7SU HUObn= 3,R2^
***************************************************
-------
***************************************************
bB-09 fa/lS/70 10
TTHF R00
(DAYS) (MG/L3
0.0 0.0
2.0?«3 1,9700
b.l?bO 3,b"00
B.b^3? 5..MOO
10. S'm?- b.7000
16.711* 9,4100
P0.9097 10.7700
Pu.bSZ* U.4100
?8.6?50 12.1200
***************************************************
******UAST SQUAPtS FIT TU L=LACl-E**(Ki*T))*****
T3UIS s 5PO CODE = 0 STANDARD OfcV =
= 1^,3008 Kl(8ASt(E)} = 0
RQ010= 6
1 « . 911
***************************************************
********************************.*******************
B3-10 b/22/70 fl
TIMF HOD
(DAYS) (MI./L)
0.0 0.0
2.0000 1.0100
5.07b'i £ . 7 3 0 0
B,07bU 3.3^00
ll.Q^aO 3.7^00
1U.OH07 a. 3(^00
16.0333 S.1700
P0.7P62 b . 7 « 0 0
***************************************************
PIT TG L = LA(l-E**(Ki*rn*****
MIJM T-ilALS = bOO CUOE = 0 STANDARD OLV s 0
iJLTIMATt BOp = 6,7939 KllBASt(fc» = O.OttlO
1.016 «uns= d.^4 PUOiO= 3,77?
tjnu30= 6.19t> PUDb>0= f».A>76
***************************************************
-------
***************************************************
BB-11 6/20/70 8
TIME RUO
(DAYS) (MG/L)
0.0 0.0
2.777* 1,8600
5.9?71 2,8700
3.8500
a,a600
17.8403 5.6300
?0,8160 6.3000
***************************************************
******UAST SQUARES FIT TJ L=LA(l-E**(Ki*T))*****
TRIALS = 500 CUDE = 0 STANU&wn ntV = 0,3172
ULTIMATE. BOQ = 8,08^7 KiCRASfc(fe)) = 0.06^7
BQDlc 0.507
nL'H 15= 5.0?3 bOU30= 6,9?5 RuDbOs 7.767
***************************************************
***************************************************
BB-12 7/ M70 6
TIME HUD
(DAYS) (M(i/U)
0.0 0,0
i?,a^75 1.7800
s.y^^a 2.7000
8,a«bl 3.3100
1 a . « s a 9 a , 9^00
***************************************************
******|,tAST SUIJARtS FJT TU L = L A ( 1 -E** (K i *T ))*****
TWIALS = bno CQDE = 0 STANDARD ptV - 0
ULTIMATE ooo = 6,0120 Ki(RASECfc)) s o,lo«i
FiODl= O.b^b Ron£= 1.130
ROnjKs a. 751 BOD308 5,7«8 BUDbOs S.979
***************************************************
-------
* * * t~ > :, - - ******************************************
Bfc-< k 7/1J/70 0
-, IMF RUD
(DAYS) C^G/L)
0.0 0,0
19«26 1.1?00
1.0000
2.6*00
1 0 ,9^UO 3. 0300
13.9031 3.7^00
1 7 .b^uu u .bSOO
PO.^SOO 5.2"00
?a .70UQ b.b^OO
***************************************************
******LtAST SUUAȣ^ PIT'TJ L = L A ( 1 -E* * ( K 1 * T 5) * ** **
THIALS = bOO CODE = 0 STANDARD r)tV = O.R
PP KPAStC)) = OfO^
0.710
O= 6.330 BUD^r):: 7.767
***************************************************
***************************************************
BB-ia 7/1^/70 0
T T M F
0.0 0.0
^,7361 d,l«00
S.wnS^ 3.1qOO
y.6«9^ 3. '^00
1l.bfr25 a. 3^00
1 a . h 1 a " ii.^SOO
17.5a3"^ ^,3^UO
?0.fe"b« 7.7^00
?j.o«3^ a . 2 » o o
**************************************************
******L;AST sjiiAwtS TIT TU L=LM I-E**(K I*T) )*****
= o STANUAKH Rtv = 0.4772
KlCBAStft)) = 0.0373
.uos B -,-i^= 0.976 PU05= 2. 5 la
s= ^s.o^7 uno30= 9,iSb Buncos n.ubft
************************************* '**************
-------
***************************************************
BR-15 7/20/70 B
TIMF POO
(DAYS) (MG/U
0.0 0.0
2.ttM« 3.2«00
5.5556 5.0BOO
ft.b5fa3 fe.1900
B.0100
17,aSia 9.5500
s
0 STANUAHO 0£V = 0,«6HO
ULTIMATE
K
ICBASE(E)) = 0.1026
TIMF .
(DAYS) (MG/L)
0.0 0.0
^.ua?'' 1.9700
«j.3B5« 2.9500
B.U375 3.7200
5,7300
T.IALS . 500 CUDE = 'o .^ANpA.n OfeV . 0.2501
-------
***************************************************
BR-16 7/2?/70 8 • B
TIHF RUO
(DAYS) (MG/L)
0.0 0,0
2.uu79 1.9000
5.3*5« 3.1500
6.U51U 3.7200
1 1 .UUUU U. 7500
lu.ufebl b.uhOO
17.b«»2tt 7.«100
P0.6076 7.9600
***************************************************
******L£AST SUIURES FIT TJ L = L *( 1 "E **( K j * T ))*****
MAXIMUM TRIALS = 500 CJHh s 0 STANQAkn OtV = 0.33S9
ULTlMATt bDO = 13.9dfl9 Kl(HAStft)) = 0.0409
1.0C'9 RODb= d.b«9" BUD10= a.
bHD50= 9,891 BUDbOs l?.lbl
A**************************************************
***************************************
-------
***************************************************
BB-18 b/ 5/70 6
TTME BUD
(DAYS) (MG/L)
0.0 0.0
2. 6319 £.0500
b'.a097 2.6600
10.5*33 a.iflOO
15.U167 5.2100
31,6389 B.1SOO
**************************************************
******LE*ST SUUA"ES FIT TU LsL A ( 1 "E** C* l * T5) *****
TRIALS = 500 COOL = 0 STANDARD REV = Q
ULTIMATE BDD'= 9.3537 Kl(RASE(fc)) » 0.0b09
1.072
00010= 7.8U7 HUD50=
***************************************************
***************************************************
FL-01 a/2^/70 7
TIMI- PUD
(DAYS) (MG/L)
0.0 0.0
1.BS76 O.blOO
5.i3fafl 1,0800
12.739ft • 1.6900
1U.538? 1.9000
i,7.a^lfi 2,0000
?0.3<>93 2.2000
**************************************************
******LtAST SUHARtS FIT TO L = L A ( 1 -E** (K 1 * T ))*****
MAXIMUM TRIALS = 500 CUDE = 0 STANDARD DEV = 0.0602
ULTIMATE BOD = 2.31«8 Kt(BASE(E)) = O.U87
0.259
1S= l.92« BOQ30= 2.2«9 BUD50= 2,309
***************************************************
-------
***************************************************
FL-02 u/3ft/70 1?
TIMF PUD
(DAYS) (M(i/l)
0.0 0.0
6.0000 l.OBOO
7.791? 1,3300
11.0000 l.UflOO
m.oooo 2.2600
17.7118 2.1000
?i.0«33 2.1500
2.3600
2,a300
2.69QO
-2.7900
2, 9700
•$b.7 ,
**************************************************
******UA*T SUUARfcS FIT TJ L = L A ( 1 -E* * (K 1 *T 5) ** ***
DATA CONFISCATION DOES NOT ALLOW ANALYSIS
**************************************************
*****LF.tS GRAPHICAL ANALYSIS*********************
ULTIMATF BUD = 2.9«2 Kl(BA8E(fcn * 0.0750
^001= 0.213 «GR2= O.U10 *U05= C I 920 BuD10= l.
*UfMS= 1-.9B7 BOU30= 2.b?2 BOObOs 2.873
**************************************************
***************************************************
FL-03 5X 5/70 fl
TIME ,RO»
fDAYS) (MG/L)
0.0 0.0
1.8fl03 0,6200
5.0«i7 1.3«00
8.0«17 1,9000
11.7500 2.1600
1b.l?50 3,1^00
1 g.OOOO 2. 7^00
?0.bP75 2.^00
************************************************
******UAST SUUARtS FIT TJ L = L A ( 1 -E* *( K 1 * T ))*****
DATA CHNPI^ARATinN OHtS MQT ALLOW ANALYSTS
**************************************************
*****LFES r^ARMjCAL ANALYSIS*********************
ULTTMATF PUD = 3,357 K!(RASb(fc)) =
, 0.3UO
0= 3.221
******** ..^^J.*J.*A**
***************************************
-------
*************************************************
l-OU 5/l?/70 10 .
TIMF BOD
(DAYS) (MG/L)
0.0 0.0
2.0000 0.5100
b.6«75 0,^300
9.0&25 1.2300
12.930fe 1.U100
iu.b?50 1.7*00
18.0035 1,9*00
P0.6P50 2,0700
?7.7500 2.2100
T0.fe?50 2,b?00
******************************************
,***L£AST SQUA*fcS PIT TU L=L A ( 1 -E** C * \ * T 5 ) **** *
<1MU" TRIALS E 500 CODE = 0 STANQMH OtV = 0.11?5
ULTIMATE BHO a 2.9029 KlCBASt(fe)) = 0,0bl3
a 0 173 RUH2S 0.335 «Un5= 0.767
BUD50= ?.7b8
.
*************************************************
*************************************************
L-05 5/l<»/70 13
(DAYS)
0,0
2.0^00
bu /I 7 3
» 0^ / C
8.7569
10.9?01
la. 5^90
16.6*75
P0.7361
P7.7708
30.69au
^3.7188
3t..b«aft
U1.5313
***********
(H&/L)
0.0
0,6700
t 1 UOO
A t * ™ v *'
1 ,5200
1 .6300
2.2800
2,5600
2.6100
2.9700
3.1700
3.2?00
i,6700
3.5700
**************************************
*****LtAST SUUAPES FIT TJ L = L A ( 1 -E** (* I * T 1) *****
)ATA CONPlRARATinN DOtS NOT ALLOW ANALYSTS
***************************************************
*****LFtS GRAPHICAL ANALYSIS*********************
o.2?a Por>2= O.a35 Rjnb= 0,997
^s 2,?91 bHD30= 3.^32 Hg050=
***************************************************
-------
************** •* ***••< 'A**********************
FL-Ob 5/2a/~0 il
lMP ROD
0.0 0.0
2.0U51 1.0000
5.6AUO 2.1100
7.8125 2.5*00
11. SMI 3.0000
14.t>6b7 3.7500
17.9UUU a. 0500
20.0000 a. 2600
?l.Bl9fl a.blOO
?u*/J3fl ,a.7bOO
**************************************************
******LtAST SUUARLS FIT TD L=L A C 1 'E** (K 1 *T ))*****
mXlMUP T^ULS r 500 CQHE = 0 STANDARD DtV = 0.09«2
ULTIMATE BHD = 5.?bt5 KK
- o
. 900 PUDbO= 5,?01
.
**************************************************
***************************************************
FL-07 .b/ a/70 9
JIMF PUD
(DAYS) (HG/U
0.0 0.0
2.U065 0.7100
b.7
-------
**********************************
FL-08
TIMF
(0*YS)
0.0
2.2500
6.1S2S
8.1910
11.3090
14.8472
17.0?OB
?0.8bUb
P2.017U
P7.09J*
34.6090
r***********
6/ ft/70 11
BUD
(MG/D
0.0
0,7100
1.1100
1.3200
1 .4200
1.7700
2.0700
1 ,9200
2.4ROO
3.2300
'3,1400
***************************************
******LtAST SQUARES FIT TO L=L * ( 1 -E** ( K i * M) *****
DATA CONPIR&RATlON DOtS NJQT ALLOW - AN &LVSI S
***************************************************
*****LEfcS GRAPHICAL ANALYSIS*********************
ULTIMATF BUD = 3
BOD1= 0.178 Pun^= 0,3a8 OQ05= 0.613
ponies i.OfeA bOo^o=
-------
FL-10 6/2?/70 «
TIME BUD
fDAYS) (MG/l)
0.0 0,0
2.0000 0.5600
5.07b« 0.^^00
b.07bU 1.3600
1 1 .9340 1 .5700
1 u.03«7 1 .ttUOO
16.6333 1,6600
?0.7«b? 2,«200
***************************************************
******lfcAST SUUARtS FIT TU L = LA( 1-F**(< i*T) )*****•
MU" TRIALS = 5"0 CODt = 0 b
ULTIMATE BOu = ?t&*UJ KlCRASt(E)) = 0,0/60
a 0.207 ftQr>«>5 0.398 RQOSs 0,B«3 60010= l
PUDJ5= 1.021 bOD^O= 2.536 RUObOs" 2.761
***************************************************
***************************************************
FL-11 6/2^/70 fl
TIMF PUO
(DAYS) (MQ/L)
0.0 0,0
2.777«? 0.7600
5,9?7i 1,3700
6.8^33 l.afeOO
10.H?ba 1.5700
1U.7966 1.7700
17.8^03 2,0700
?O.B160 2,«300
***************************************************
******L&AST SQUARES FIT TU L=L A ( 1 -E** ( K i *T ))*****
MU^ TRIALS = 500 cunt = o sTANoAwD otv s
ULTIMATE
c 0.253 P002s O.««l 00^5= 1.032 RUPlOs 1,633
POOi^s l,od? bOi)30= 2.372 POO^Os 2,^b6
***************************************************
-------
***************************************************
FL-12 It *>/?0 b
TIME BOD
(DAYS) (MG/L)
0.0 0.0
2.U375 0.6200
b.7?92 1.0200
e.Uflbl 1.3300
10.8920 1.6300
lU.uSUP 1,7900
**************************************************
******UAST SUUARES FIT TU l = L A Cl -E ** I K 1 *T >) *** **
MAXIMUM TRIALS . bOO CODE = 0 STANDS 0£V = 0.10«b
ULTIMATA tiHD = 1.^78 M(B*SE(E)) = 0.1531
0.278 P0n2= O.blb «00b= I.OJ7 JOOlfl. 1.5S«
i5= 1.761 BnoiO= 1.^38 RUDbO= 1.9b7
***********************************-****************
*********************************************
FL-13 7/13/70 ^
TIMF PUD
(DAYS) (HG/U)
0.0 0.0
1.9826 O.blOO
5. 9340 i.5700
8.895« 2,1100
10.9549 2.5200
13.9<»51 2.9300
17.69UU 3.«600
P0.2500 3.9600
*****u*;r**L******;i20*0***************************-
******LEAST SQUARES PIT TO L=L A ( 1 -E** C* 1 *T ))*****
MUM TRIALS . 500 CODE = 0 STANO*«n OEV • 0.1090
ULTIMATE BOD a S.S906 MCRASECt.)) = 0.0^53
. 0.301 *UD2=: 0,586
BOD1S= 3.1S3 bOU30s
************************************************
-------
***************************************************
FL-JU 7/16/70 9
TIMF ROD
(DAYS) (MG/D
0.0 0.0
2.7361 0.7600
5.8f>55 1.3400
8.6493 1.7000
11.5625 1.7700
14.61BO 2.2800
17.5»33 2.7200
?0.6458 2.9700
P4.0833 3.0400
***************************************************
******LEAST SUIJARES FIT TO L = L * C1 -E** ( K i * T ))*****
MAXIMUM TRIALS = 500 CORE S 0 STANDARD REV s 0.1234
ULTIMATE BOD = 3.9285 KKBASE(E)) = o,0632
BUD1= 0.2«1 RQ02= 0.466 RUOSs l.Ofcu
RUDjSs ?.006 bnD"?0= 3.338 BODbO= 3.762
***************************************************
***************************************************
FL-15 7/20/70 8
TIMF RUO
(DAYS) (MG/L)
0.0 0.0
2.4618 1 ,3000
5.5556 2.3200
8.6S63 2,^500
ll.b«93 3,1000
14.4«26 3,«^00
17.4514 3.3300
?0.4583 3,bOOO
***************************************************
******I_E.AST suuApfcS PIT TU L=LACI-E**(KI*T) )*****
MAXIMUM TRIALS a 500 CODE = 0 STANDARD DEV = 0.1133
ULTIMATE oOD = 3.7190 MCBASbtE')) = 0,1729
1.0«7 "QHSs 2.152 HjDIOs 3,059
'RUD153 3.4al bOU30s S.b^d BUDbOs 3.71B
***************************************************
-------
FL-16 7/2?/70
TIMF RUD
0.0 0.0
2.«
-------
***************************************************
FL-17 7/29/70 8 fl
TIMP BUD
(DAYS)
0,0 0.0
5.635" O.BflOO
B.b«2U 1.2100
11.6350 J.U600
ia.5972 1.6100
17.7«31 2.0UOO
?l.b?29 2.2^00
***************************************************
******L;-.AST SQUARES FIT TU L=LACI-E*MK i*m*****
MAXIMUM TRIALS = 500 CQOE = 0 STANo&wO r>£V = 0.02B7
ULTIMATE bOQ = 3.2718 Kl(8AS£(E)J = 0.0b3b
0.171 POH2= 0.333 "005= 0.77Q ROD10= 1,
^= 1,^09 BODlOo 2.&19 PUD^O^ 3.050
***************************************************
***************************************************
FL*18 8/ 5/70 fc
TIME ROD
(DAYS) (MG/L)
0.0 . 0,0
2.6319 1.1000
5.a"97 1.6000
10.5*33 3.0000
I5.a1b7 a. 0^00
1(1,6^89 b. 7700
***************************************************
******L£AST SQUARES PIT TO L=L A ( 1 -E** (K 1 *T 5) *** **
MAXIMUM TRIALS = 500 CODE = 0 STANDARD DEV = O.H(S7
ULTIMATE BOD = 10.3810 Kt(SASE(E)) = 0.0330
0.337 ROP2= 0.b(Sa *unss 1.5PJ BUD10= 2.921
iSs a, Ob? bHD30s 6.5^6 PUD'30= B.3^1
***************************************************
-------
0.0 0.0
2.819° O.oSOO
S.bUa* 1.0000
Qtl<57fc 1.2^00
lu.7^3'' 1,3700
*0.8<»91 2.8900
******LEAST SUITES PIT TJ LSI
MA*I*uw TSTALb s 5^0 COOt a
ULTIMATt b^D s u.1239
.4 ( 1-E** (*l *T5 )*****
0 STAMjA-J" DfcV s 0.20M
mcB*st(£n = o,o3feb
njDl^s 1.751 bDD30= 2.7^0 BuDiOs 5,tt70
***************************************************
------- |