Region I
               l(>50 -^n-t" Sl
  WATER QUALITY MODEL
         AND
 WASTE LOAD ALLOCATION
        ANALYSIS
         OF THE
RAPPAHANNOCK RIVER below
   Fredericksburg,  Va.
      Charles W. App
      Robert F. McGhee
        April   1975

-------
I.   INTRODUCTION

-------
                          Table of Contents
 I.  Introduction




II.  Model Verification




     A.  Availability of Water Quality Data




     B.  River Mile Index




     C.  Hydrologic Data




     D.  Cross Section Data




     E.  Salinity Model Verification




     F.  Dissolved Oxygen Model




         1.   Tidal Velocities and Reaeration




         2.   Benthic Oxygen Demand




         3.   Net Oxygen Production of Algae




         4.   Nitrogenous BOD and Its' Decay Rate




         5.   Carbonaceous BOD and Its' Decay Rate




         6.   Wasteloads Used in Model Verification




 III.   Conclusions and Wasteload Allocations




  IV.   References




   V.   Appendices
                                                                                * ,

-------
I.  Introduction

    The Rappahannock River Basin is located in northeastern Virginia and

is bounded by the Potomac-Shenandoah River Basin on the north and west, and

by the York River Basin to the south.  The river flows in a southeasterly

direction from its headwaters in the eastern slopes of the Blue Ridge Mountains

to the Chesapeake Bay.  Tidal effects extend a distance of about 110 miles

from the Chesapeake Bay to the "fall line", in the vicinity of Fredericksburg.

    Serious water quality problems have been experienced in the Rappahannock

River just downstream of Fredericksburg, Virginia.  At low fresh water flows,

organic wastesaccumulate in the estuary creating degraded conditions.  Dissolved

oxygen concentrations have approached zero, fish kills have been reported, and

during these periods the River becomes generally undesirable for most uses.

The State of Virginia's dissolved oxygen stream standard of 5.0 mg/1 as a daily

average and a minimum of 4.0 mg/1 is frequently violated over a ten-mile stretch

of the Rappahannock River just below Fredericksburg.

    In 1969-1970 the Federal Water Pollution Control Administration-  (FWPCA)

participated with local, state, and other Federal agencies in a joint water

resources study of the Rappahannock River.  At this time a need was found for

a mathematical model of the river to be used as a planning tool for predicting

the water quality responses of the river to various combinations of waste loads,

flows, etc.   An intratidal single-stage biochemical oxygen demand (BOD) -

dissolved oxygen (DO) model was developed by the FWPCA to meet this need.
I/ The Federal Water Pollution Control Administration in April 1970 was
   changed to the Federal Water Quality Administration and in December 1970
   was changed to the Environmental Protection Agency

-------
Subsequently, in an effort to better represent the complex processes




which determine the DO of the river, the AUTOSS water quality model was




applied to the Rappahannock River.  AUTOSS is a steady-state mathematical




model which can be used to predict average water quality conditions at mean




tide (variations within a tidal cycle cannot be obtained with this model).




In addition to carbonaceous and nitrogenous BOD, benthic demand and net oxygen




production by algae are considered.  For complete documentation of AUTOSS,




see EPA Technical Report 54, AUTO-QUAL Modelling System, by R.L. Grim and




N.L. Lovelace(l).   The major improvement in this modelling work over the




previous work was that additional significant parameters such as nitrogenous




BOD were modelled and a more extensive data base  was used.




     The passage of PL 92-500 in October 1972 required under Section 303(d)(l)(A)




that each state shall identify those waters in which the minimum treatment




requirements of Section 301(b)(l) (secondary treatment for municipalities and




best practicable treatment (BPT) for industries) are not stringent enough to




meet the water quality stardards.  Such areas are termed "water quality limited




segments".  The Rappahannock River in the Fredericksubrg, Virginia, area is




classified as a water quality limited segment due to the low DO concentrations




frequently observed.   Therefore, according to Section 303(d)(l)(C) each state




has the responsibility to establish waste load allocations for the water quality




limited segments which will meet water quality standards.  These waste load




allocations are subject to EPA approval.  Since EPA had an existing water




quality model of the Rappahannock River which considers both carbonaceous and




and nitrogenous BOD,  technical assistance was provided to the State in developing




the waste load allocations for this stream segment.   The close working

-------
          relationship between the State Water Control Board and the EPA staff facilitated

          development of the waste load allocations which are presented in a latter

          section of this report.

               In addition,the Virginia Institute of Marine Science (VIMS) had developed

*         mathematical models for the prediction of salinity and dissolved oxygen in

          the Rappahannock River.  These are described in the VIMS report, "Studies of

          the Distribution of Salinity and Dissolved Oxygen in the Upper Tidal Rappahannock

          River", dated June 1972(2).   The DO model developed by VIMS explicitly

          considers the tidal behavior of the estuary in the advection term of the mass

          balance equations.  This approach differs from the one taken with the EPA model

          where only the net non-tidal velocity component is included, with tidal mixing

          being simulated with the dispersion term.  Both approaches are theoretically

          sound and proven methods of simulating estuarine behavior.

               As originally developed, the VIMS model considered only carbonaceous BOD

          (calculated from measured 5 day BOD's using a conversion factor of 1.5).  Based

          on data collected by EPA, it was shown that a significant part of the DO problem

          in the Rappahannock was due to nitrogenous BOD, which had not been considered

          with the VIMS model.   For this reason, the EPA model (which considers

          nitrogenous BOD) was used in making the wasteload allocations for the Rappahnnock

 *'        River.   Subsequently, as the result of discussions between VIMS and EPA, VIMS

          modified their model to include nitrogenous BOD, as well as bethic demand and
 i -
          the net production of oxygen by photosynthesis.  In making comparative runs

          with the two models,  it was found that the minimum average DO predicted with

          both models agreed to within 0.01 mg/1.

-------
II.  MODEL VERIFICATION

-------
 II.   Model  Verification




    A.  Availability  of Water  Quality  Data




    Extensive  field data  had been collected  during  the  summer  of  1970




 by both EPA and VIMS.   The  FMC Corporation also  collected  a  limited  number




 of samples  of  the  Rappahannock River.   All three sources of  data  were used




 in the calibration and  verification process.




    The EPA data is presented  in  its entirety  in Appendix  D.   Sampling




 station descriptions  are  given in Table 1.  All  samples were collected at low




 water slack.   It should be  noted  that  the BOD,, values listed in Appendix D-l




 are not necessarily the actual values  measured by the lab, but are the values




 taken from  the first  order, single-stage BOD curve which was fitted  to the




 actual long-term BOD  data.  The ultimate biochemical oxygen demand (BOD )




 shown was determined  from this  curve and includes both carbonaceous  and nitro-




 genous BOD.  The corresponding k.. rate  that is shown is a  single-stage bottle




 rate  only,  and should be used  as  such.  A complete listing of all the actual




 long-term BOD determinations for  each  sample is  shown in Appendix D-2.  The




 listing is  the output from  the computer program used to curve fit the BOD data




which used  either a least squares fit or Lee's Graphical Analysis adapted




 for   the computer.   The station number of each sample is listed in the upper




left-hand corner (disregard the last two digits of the number,  which are lab




identification numbers only).

-------
                                   TABLE  1
                            STATION DESCRIPTION

                         RAPPAHA:;XOCK RIVER SURVEY

Station                 Description                     River Mile
  FL                    Fall Line                         110.3
  SIB                   Scotts Island Bridge              109.6
  RTO                   Radio Tower                       107.5
  BB                    Bernard Bar Piles                 107.1
  120                   Buoy 120                          105.4
  118                   Buoy 118                          103.9
  116                   Buoy 116                          102.0
  108                   Buoy 108                           99.3
  105                   Buoy 105                           98.6
  100                   Buoy 100                           95.8
   95                   Buoy 95                            93.2
   93                   Buoy 93                            92.9
   90                   Buoy 90                            90.7
   86                   Buoy 86                            88.1
   84                   Buoy 84                            85.5
   81                   Buoy 81                            81.8
  PRB                   Port Royal Bridge                  79.3
   69                   Buoy 69                            76.9
   67                   Buoy 67                            75.7
   64                   Buoy 64                            74.9
                                                                                  i 

-------
    B.  River Mile Index




    In order to avoid confusion, both statute river mila and its associated




landmark are listed in Table 1.  Care must be exercised when comparing




different sources of data, since the river mile of a particular location




is likely to differ.  This was found to be the case with the Rappahannock




River, therefore, the landmarks should be used when cross-referencing data




or results.




    C.  Hydrologic Data




    The TTSGS maintains a streamflow gaging station (number 01668000) approxi-




mately 4 miles above the City of Fredericksburg.  The drainage area at this




station is 1596 square miles.  There is approximately 40 square miles of




unpaged drainage area between this gage and river mile 104.3, which is just




downstream of the recently constructed Massaponax Sewage Treatment Plant, the




most downstream point source discharge in the water quality limited segment.




Since all but 2% of the drainage area is gaged,  the freshwater inflow to




the estuary is accurately determined from the USGS gage near Fredericksburg.




The daily hydrograph for this gage during the months of May through August 1970




is shown in Figure 1.   Also noted are the days on which a complete set of




stream samples (includes nitrogen data)  were collected by EPA for use in




calibrating and verifying the EPA water  quality  model.  It can be seen from




the hydrograph that the samples collected on July 13,  July 22,  and August 5




are not of much value in calibrating a steady-state model due to wide fluctua-




tions in the flow regime.

-------
                                         10
o

-------
                                11
    D.  Cross-Section Data

    Cross-sectional data was developed from the nautical chart of the

Rappahannock River (605-SC, Edition 10, January 1974) published by the

U.S. Department of Commerce.  From these cross-sections, average widths

and depths at mean tide were calculated for use in the model.  See listing

of input data for the model in Appendix A-l.

    E.  Salinity Model Verification and Determination of Dispersion
        Coefficient

    The dispersion coefficients can be evaluated for a particular net advec-

tive flow from the observed salinity profiles.  Data collection by VIMS was

used to verify the model for salinity from River Mile 0.0 (mouth) to River

Mile 110.3 (fall line).  Plots of the verification profiles are shown in

Appendix B-l.  As can be seen from the verification profiles, the river is

essentially fresh water above Mile 70.  This obviously eliminates the use ut

salinity as a tracer to determine the dispersion coefficients in this area.

Therefore, the dispersion coefficients determined from the salinity profiles

at the most upstream point (Mile 60.0) was used through the fresh water

segment to the fall line.

    The dispersion coefficients that were determined are shown in the

complete input data listing for the salinity verification (Appendix A-l).

In the continuing process of updating and further refining existing mathe-

matical models, consideration should be given to conducting dye studies of

this fresh water area of the Rappahannock River in order to more precisely

determine the dispersion coefficients.  Also,  the possible variation of the

-------
                             12
dispersion coefficient with fresh water inflow should be investigated



especially at extremely low flows.  This variable relationship between



dispersion and flow was shown to exist by Clark and Feigner (3) in the



Potomac Estuary and by Paulson (4) in the Delaware Estuary.



    F.  Dissolved Oxygen Model



    The T)0 model was verified from the fall line (River Mile 110.3) to



River Mile R5.0 using four simulation periods during the summer of 1970.



VIMS, EPA, aid the FMC Corporation had independently sampled the Rappahannock



^iver during this time, which provided an excellent data base with which



to work.  The verification profiles are shown in Appendix B-2.  The specific



details of the verification runs are discussed in the following sections.



        1.  Tidal Velocities and Reaeration



        Tidal velocity measurements were obtained by VIMS during July



and August 1970.  From these current velocity measurements, the average



tidal velocity at various locations along the Rappahannock River was determined



from:


                    V    = V          X 0.637
                     avg    max
    where
                    V   = average tidal velocity
                     avg
                    V    = maximum tidal velocity
                     max

-------
                                        13



                                     TABLE 2

                                 BENTHIC DATA


                           RAPPAHANNOCK RIVER SURVEY


                                 June 22, 1970
Location           Temp.       Start Time      End Time      Benthic Demand
                    C                                         gm/ra2/day
South Bank
 at RMile 107.5     27            1200           1310              1.7
Buoy 105
 at RMile 98.6      27.5          1444           1530              3.0

-------
                                  14
This relationship assumes a sine curve distribution of velocity through-



out a tidal cycle.  (See listing of Input Data, Appendix A-2).  The average



tidal velocities are used in determining the reaeration rate (k2) which is



calculated internally within the model by the O'Connor-Dobbins formulation:



                      k. (base e) = 12.9  V     '5
                       2                   avg
                                             D  ""



        where:



                      k~ = reaeration rate (I/day)


                    V    = average tidal velocity (ft/sec)
                     avg


                       D = average river depth (ft)



    2.  Benthic Oxygen Demand



    The benthic oxygen demand was determined in the field by EPA at



two locations, using the benthic respirometer technique (Table 2).  Values



slightly less than the actual measured values were found to work best in



the calibration and verification runs (see Input Data List, Appendix A-2).



    3.  Net Oxygen Production by Algae



    The net oxygen production by algae is equal to the difference between



the oxygen produced during photosynthesis and the oxygen utilized by respira-



tion.  The method used to estimate the net oxygen production follows the



method presented by Dominic M. DiToro at Manhattan College's 17th Summer



Institute in Water  Pollution Control (5).  The technique basically follows



that outlined by Ryther (6) in 1956 and Ryther and Yentsch (7) (1957), with



the emphasis shifted from primary production to dissolved oxygen production.

-------
                                15
    The light saturrted rate of oxygen production, P , has been correlated
                                                    s


with the concentration of chlorophyll''a' (a measure of the algae population



density):



                       P   =0.25 Chi
                        s             a



     where



                       P   =  mg 09 produced/1/day
                        3         


                     chl   =  chlorophyll 'a' concentration in ug/1
                        Si


Using the average value of 40 ug/1 chlorophyll *a' that was observed during



the EPA sampling survey, the light saturated rate of 02 production is:



                       P  -  (0.25) (40) = 10.0 tng 0,,/1/day
                        s                          /


The ratio of the average rate of 0 production, Pav, to the maximum rate, P ,



is given by:



                       Pav     f (2.718)     f  *  (Vl }     -(Ia/Is)

                       P    *  T H k         S e           S/-e
                        s           el



    where



             H * average depth of the well mixed layer



             T *= time period over which the 0_ production is being

                 averaged (i.e., 1 day)



             f = fraction of time period that is daylight



            I   light intensity saturation value



            I  * mean daily light intensity
             a.


            k  - light extinction coefficient




             a

-------
                                 16
For  the Rappahannock River the following values were used:

                  H   =   10.1 ft.  (represents average depth from
                                    river mile 90 to river mile 95)

                  T   =   0.583 day (14 hrs)

                  I   =   2000 ft-candles
                   a
                  I   =   2000 ft-candles
                   s
                  K   =   .7/ft (this corresponds to a secchi disk depth
                                of approximately 2.7 ft)

     therefore:

                        Pav       ,,
    since
                        P  ~ 10.0 mg 09/l/day
                         S            *-
                       Pav * (0.14)(10.0) = 1.4 mg 02/l/day

    The respiration of algae must also be accounted for in order to determine

the net effect.  The respiration rate, R, has also been correlated to the

chlorophyll 'a' concentration.

                        R   -   0.025chl
                                         a

    where

                        R   =   mg 0_ utilized/1/day

                     Chi    =   chlorophyll 'a1 concentration ug/1
                        3,

    therefore for the Rappahannock River,

                        R   =   (0.025)(40.0)  = 1.0 mg 02/l/day

The net oxygen produced by algae is then the difference between production

and respiration.

                      Net 0? production =  Pav - R
                                        =  1.4 - 1.0
                                        =  0.4 mg 0 /I/day

-------
                                  17
                                                                 2
For use in the model, this number must be converted to grams CL/m /day.


Using the average depth of 10.1 feet and the completely mixed assumption,


                     0.4 mg 02/1/ day x 3012 1/m2 x 1.0 Bm/1000 mg



                   = 1.2 gm 02/m2/day


    It should be remembered that this method yields an approximate answer


to a very complex biochemical phenomenon, and is therefore subject to


some degree of uncertainty.  It did, however, appear to work well in the

                                          2
verification runs.  A value of l.Ogm  0/m /day was used at river mile 102.0,

                                  2
increasing linearly to 1.3 gm 0 /m /day at river mile 90.0.  Above river mile


103.0 the net oxygen produced is zero, due to the relatively low population


density of algae.


    4.  Determination of Nitrogenous BOD and It's Decay Rate


    The oxygen demand of nitrogenous materials is referred to as the


nitrogenous BOD.  More specifically this involves a series of consecutive


reactions in which organic nitrogen is converted to ammonia which is oxidized


through nitrite to nitrate.  The hydrolysis of the organic nitrogen (urea,


amines, proteins) to ammonia does not utilize oxygen.   The subsequent


oxidation of the ammonia is a two step process,  involving two distinct auto-


trophic groups of organisms.   The ammonia oxidation is accomplished by the


genus Nitrosomonas and the conversion of nitrite to nitrate is  carried out


by the genus Nitrobacter.


    The oxidation of ammonia by Nitrosomonas is  given by the following


equation:  (8)


                    NH  + 3/2 02 	>     HNO_ + H20


    The oxidation of nitrite by Nitrobacter is shown by:

                    HN0  +    0  	

-------
                                  18
    Considering the entire nitrification reaction, we have:
             14       64                  62




              1       4.57




Thus, from the stoichiometric relationship of oxygen to ammonia, 1 mg/1




of ammonia is equivalent to 4.57 mg/1 of nitrogenous BOD.  However, since




organic nitrogen is converted to ammonia, it also is included in the nitro-




genous BOT).  Therefore, the nitrogenous BOD is determined by the total




kjeldahl nitrogen (TKN) , which includes both organic and ammonia nitrogen,




multiplied by 4.57.




    Although nitrification actually involves a series of sequential reactions,




it can be represented in terms of nitrogenous BOD using a single overall




reaction.  This approach was used in the EPA model of the Rappahannock River.




The decay rate for nitrogenous BOD was found to be 0.10 (base e) from river




mile 108.6 to river mile 98.0, then decreasing linearly to 0.05 at river




mile 90.0.




    5.  Determination of Ultimate Carbonaceous and It's Decay Rate




    Two methods were used to determine the ultimate carbonaceous BOD at




each sampling station.  The first method uses the "traditional" or "normal"




ratio of 1.5 to 1.0 between ultimate carbonaceous and 5 day BOD in converting




the measured BOD,, values to the ultimate carbonaceous BOD.  The applicability




of this ratio to stream BOD samples is always somewhat questionable.  However,




the results calculated by using the ratio of 1.5 to 1.0 agree rather well with




the results obtained using an alternate method of obtaining the ultimate




carbonaceous BOD.

-------
                                  19
    The second method of obtaining the ultimate carbonaceous BOD makes




use of the long-term BOD results  (shown in Appendix D-2).  The BOD's




were  incubated for 20 to 30 days  in most cases.  The BOD that is measured




at any time actually represents the total BOD, which includes both the




nitrogenous and carbonaceous portions.  Therefore, to determine the




carbonaceous BOD at any time, one must subtract the nitrogenous portion




from  the total BOD.  For each sample the ultimate carbonaceous BOD was




determined by subtracting the ultimate nitrogenous BOD from the total




BOD measured at maximum incubation time for that particular sample.  The




ultimate nitrogenous BOD is obtained from the measured initial value of




total kjeldahl nitrogen (TKN), multiplied by 4.57.




    Having obtained the ultimate  carbonaceous BOD of each sample, the




river decay rate of carbonaceous  BOD can be determined from the observed




concentrations as one proceeds downstream.  A rate of 0.15 (base "e") was




determined at river mile 108.6, which decreases to 0.06 (base "e") at river




mile 90.0.  The rate is a maximum in the vicinity of the waste discharges




from the City of Fredericksburg's sewage treatment plant and the FMC Corpora-




tion.  The decrease in decay rate as one proceeds downstream from a waste




input that is observed on the Rappahannock River has been found to occur




on numerous other rivers and streams by this writer and has been reported




by O'Connor(5) and others.   The possible explanation for this decline in




the rate of decay is that the more readily oxidizable carbonaceous substances




are utilized first by the heterotrophic bacteria,  leaving progressively more




stable,  biologically resistant materials as one proceeds in the downstream




direction.

-------
                                   20
    6.  Waste Loads Used for Dissolved Oxygen Model Verification




    During the simulation periods chosen for verification, there were




onlv two significant dischargers affecting the dissolved oxygen balance




of the upper Rappahannock estuary (river mile 110.3-85.0).  They are (a)




the City of Fredericksburg and  (b) the FMC Corporation.




        (a)  City of Fredericksburg




        Effluent data was collected and analyzed by State Water Control




Board personnel during the summer of 1970 (see Table 3).  The average




BOD,, discharged during that period was 734 Ibs/day.  Using a ratio of




1.5 between ultimate carbonaceous BOD and 5-day BOD, the average ultimate




carbonaceous BOD was calculated to be 1100 Ibs/day.  A ratio of 1.5 is




representative of a "typical" municipal waste and was used since there was




no other data available for the Fredericksburg sewage treatment plant.




    Since effluent data for oxidizable nitrogen was not available during




the summer of 1970, an estimated concentration of 20.0 mg/1 TKN was used.




TTrLs value was decided upon after reviewing effluent data collected in 1973




and 1974 by the state and EPA.  (See Tables 4 & 5).  Using the stoichio-




metric oxygen equivalent of TKN conversion to nitrate-nitrogen, the nitro-




genous oxygen demand was calculated to be 91.4 mg/1 or 1750 Ibs/day at an




average flow of 2.30 mgd.




    The average waste load shown below was used for all four simulations




for the City of Fredericksburg:




                        net flow                      2.30 mgd




                        ultimate carbonaceous BOD     1100 Ibs/day




                        nitrogenous BOD               1750 Ibs/day

-------
                          21



                        TABLE 3





FREDERICKSBURG SEWAGE TREATMENT PLANT - FINAL EFFLUENT




     SAMPLED BY STATE WATER CONTROL BOARD - 1970
DATE
5/20/70
5/26/70
6/09/70
6/13/70
6/16/70
6/23/70
7/01/70
7/04/70
7/12/70
7/23/70
7/27/70
7/31/70
3/06/70
TIME
13:
12:
12:
10:
15:
14:
15:
23:
11:
10:
12:
11:
1?:
15
30
05
00
45
00
30
00
30
00
00
20
3^
FLOW
MGD
2
2
2

2
2
2
2
1
2
2
2
1
.41
.48
.49
-
.54
.36
.55
.19
.96
.16
.49
.23
v
.70
DISSOLVED OXYGEN
(mg/1)
3
6
6


3
3
5
7
3
8
8
6
.8
.0
.8
-
-
.4
.4
.4
.4
.2
.0
.0
.8
BOD5
(mg/D
48.0
65
64
26
40
37
34
29
26
30
33
19
22
.0
.0
.0
.0
.0
.0
.0
.0
0
.0
.0
.5
BOD5
(///Day)
965
1344
1329
-
847
728
723
530
425
540
685
353
336
TYPE
16 hr
13 hr
12 hr
24 hr
24 hr
23 hr
24 hr
14 hr
22 hr
24 hr
24 hr
24 hr
f2 hr
OF SAMPLE
. composite
n
n
.
.
.
n
it
11
n

n
n
n
n

-------
                                22
                            TABLE 4

     FREDLRICKSEOG SF.WAGr, TREATMENT  PLANT  FINAL EFFLUENT

                         48 HR.  SURVEY

          SAMPLED 3Y STATE WATER CONTROL BOARD  -  1973
DATE
6/25/73
6/26/73
6/26/73
6/26/73
6/26/73
6/26/73
6/27/73
6/27/73
6/27/73
6/27/73
TIME
2100
0300
0900
1500
1500
2100
0300
0900
1500
1500
DISSOLVED OXYGEN
6.6
7.0
7.2
6.6
-
7.0
7.7
8.2
7.1
_
BODS
(mg/1)
30.0
39.0
16.0
24.0
15.0
22.0
24.0
13.0
17.0
20.0
TKN
17.5
15.0
12.5
15.0
15.8
17.0
15.0
12.0
14.0
15.0
NH3-N
14.0
12.0
10.0
13.0
13.5
7.0
7.0
5.0
7.0
9.0
TYPE OF SAMPLE
6 hr . composite
n
"
n 
* 
24 hr . composite
6 hr. composite
n
n
n
24 hr. composite
Flow = 4.35 million gallons for 48  hr.  period  (plant  totalizer)
       4.96
(Stevens equipment)

-------
                        23
                      TABLE 5




Fredericksburg Sewage Treatment Plant Final Effluent




              Sampled by EPA  1973 - 74
Date
9/26/73
1/10/74
4/16-17/74
5/13-14/74
5/23-24/74
5/28-29/74
BOD5
20
36
46
79
55
55
.9
.0
.0
.5
.0
.5
TKN
17
14
17
15
19
20
.6
.5
.4
.5
.3
.3
NH3-N
14
14
15
11
16
19
.9
.3
.9
.3
.6
.5
Type of Sample
24
24
24
23
24
24
hr.
hr.
hr.
hr.
hr.
hr.
composite
composite
composite
composite
composite
composite

-------
                                 24
        (b)  FMC Corporation




        Monthly Waste and River Reports are submitted by the FMC Corporation




to the State Water Control Board (Appendix C-l).   Daily effluent flows,




suspended solids, and 5 day BOD concentrations are reported for the




industrial waste treatment plant.  Nitrogen data is not reported.




Evaluation of this data indicates that FMC's discharge is highly variable,




with frequent high BOD and suspended solids concentrations.  In subsequent




discussions with Mr. Ernest G. Ladd, Environmental Coordinator, FMC Corp.,




it was mentioned that the Fredericksburg plant did not have sludge disposal




facilities and, therefore, sludge is wasted to the Rappahannock River in




the treatment plant's effluent.  Evidence of this is shown by the high




BOD and suspended solids concentration which periodically occur in the




effluent.   In addition to the process effluent, the cooling water discharge




is also a source of carbonaceous BOD due to leakage through the barometric




condenser system.  Nitrogenous BOD is essentially not present, as indicated




by their permit application and a limited number  of EPA samples.  Monitoring




of the cooling water intake and discharge for BODS is not routinely performed




and, therefore, the contribution from this source cannot be accurately deter-




mined.  The permit application indicates a net load of 436 Ibs/day BODS while




the limited number of EPA samples range from 406  Ibs/day to 916 Ibs/day BODS.




    The lack of comprehensive effluent data, plus the variability of FMC's




effluent quality, made it difficult to determine  either the carbonaceous




or nitrogenous BOD being discharged.  When the reported effluent BODS is




converted to ultimate carbonaceous BOD by a ratio of 1.75 to 1.0 (see




Appendix C-2 for discussion of ratio) and various simulations were run,




it became evident that this loading was too small to produce the observed




carbonaceous and BOD dissolved oxygen values found downstream of the FMC plant.

-------
                        23
                      TABLE 5




Fredericksburg Sewage Treatment Plant Final Effluent




              Sampled by EPA  1973 - 74
Date
9/26/73
1/10/74
4/16-17/74
5/13-14/74
5/23-24/74
5/28-29/74
BOD5
20
36
46
79
55
55
.9
.0
.0
.5
.0
.5
TKN
17
14
17
15
19
20
.6
.5
.4
.5
.3
.3
NH3-N
14
14
15
11
16
19
.9
.3
.9
.3
.6
.5
Type of Sample
24
24
24
23
24
24
hr.
hr.
hr.
hr.
hr.
hr.
composite
composite
composite
composite
composite
composite

-------
                                 24
        (b)  FMC Corporation




        Monthly Waste and River Reports are submitted by the FMC Corporation




to the State Water Control Board (Appendix C-l).  Daily effluent flows,




suspended solids, and 5 day BOD concentrations are reported for the




industrial waste treatment plant.  Nitrogen data is not reported.




Evaluation of this data indicates that FMC's discharge is highly variable,




with frequent high BOD and suspended solids concentrations.  In subsequent




discussions with Mr. Ernest G. Ladd, Environmental Coordinator, FMC Corp.,




it was mentioned that the Fredericksburg plant did not have sludge disposal




facilities and, therefore, sludge is wasted to the Rappahannock River in




the treatment plant's effluent.  Evidence of this is shown by the high




BOD and suspended solids concentration which periodically occur in the




effluent.  In addition to the process effluent, the cooling water discharge




is also a source of carbonaceous BOD due to leakage through the barometric




condenser system.  Nitrogenous BOD is essentially not present, as indicated




by their permit application and a limited number of EPA samples.  Monitoring




of the cooling water intake and discharge for BODS is not routinely performed




and, therefore, the contribution from this source cannot be accurately deter-




mined.  The permit application indicates a net load of 436 Ibs/day BODS while




the limited number of EPA samples range from 406 Ibs/day to 916 Ibs/day BODS.




    The lack of comprehensive effluent data, plus the variability of FMC's




effluent quality, made it difficult to determine either the carbonaceous




or nitrogenous BOD being discharged.  When the reported effluent BODS is




converted to ultimate carbonaceous BOD by a ratio of 1.75 to 1.0 (see




Appendix C-2 for discussion of ratio) and various simulations were run,




it became evident that this loading was too small to produce the observed




carbonaceous and BOD dissolved oxygen values found downstream of the FMC plant.

-------
                                 25
However, since the river samples collected by EPA indicate a consistent,




definite increase in both carbonaceous and nitrogenous BOD in the immediate




vicinity of the Fredericksburg sewage treatment plant and the FMC Corp.,




the FMC waste load could be determined from the observed river concentrations.




    Since fairly good effluent data was available for the City of




Fredericksburg's sewage treatment plant, their discharge for the four




simulations was assumed to be the constant average value previously discussed.




The additional waste load needed to match the observed increase in river loads




was assumed to come from the FMC Corp.  The following loads for the FMC Corp.




were used in calibrating and verifying the dissolved oxygen model.  It




should be noted that FMC does not add any net flow to the Rappahannock River,




since it withdraws its process water from and returns it to the river.




    June 22, 1970 Simulation




    net ultimate carbonaceous BOD           14,900 Ibs/day




    net nitrogenous BOD                     14,250 Ibs/day




         note:  FMC discharge records indicate high BODS and suspended




                solids concentrations June 16 through June 18, which are




                reflected in the observed river concentration.




    June 29. 1970 Simulation




    net ultimate carbonaceous BOD            8,000 Ibs/day




    net nitrogenous BOD                      8,750 Ibs/day

-------
                            26
June 28-29, 1970 Simulation




net ultimate carbonaceous BOD            5,900 Ibs/day




net nitrogenous BOD                      4,250 Ibs/day




August 27, 1970 Simulation




net ultimate carbonaceous BOD            4,600 Ibs/day




net nitrogenous BOD                      4,750 Ibs/day




     note:  nitrogenous BOD estimated from observed river concentrations,




            Carbonaceous BOD obtained from average of August 26 and 27




            reported loading for the industrial waste treatment plant




            plus 436 Ibs/day BODS for the cooling water discharge




            (average value obtained from the permit application) .

-------
                   27
III  Conclusions and Wasteload Allocations

-------
                                       28

III.  Conclusions and Wasteload Allocation
    Using EPA's verified dissolved oxygen model of the upper tidal Rappahannock
River, various pollution abatement alternatives were evaluated.  At the 7-day,
10-year low flow, the minimum treatment required by section 301(b)(l)(A) and (B)  of
PL 92-500 (BPT and secondary treatment) proved to be inadequate.  The predicted
minimum daily average dissolved oxygen concentration under minimum treatment
conditions is 2.3 mg/1, with eight consecutive miles of river violating the
daily average dissolved oxygen standard of 5.0 mg/1.
    To achieve the dissolved oxygen standard for the Rappahannock River, treat-
ment more stringent than secondary and "best practicable treatment" must be pro-
vided by both the municipalities and the industry that discharge to the river.
The allowable wasteloads were determined and allocated between the dischargers
according to the following procedure.
    The design conditions used in making the allocations are:
        streamflow - 43 cfs at fall line (7-day, 10-year low flow of 42 cfs at
                     the Fredericksburg USGS gaging station.
        temperature -29 C determined statistically from data taken at the
                     Fredericksburg USGS gaging station and represents the
                     maximum mean monthly temperature plus two standard deviations.
        boundary conditions at fall line -
                     dissolved oxygen - 7.8 mg/1
                     NBOD             - 1.25 mg/1
                     CBOD             - 1.45 mg/1
        benthic demand - for all allocations runs, the benthic demand was assumed
                         to be 1.0 gm oxygen/square meter/day throughout the upper
                         reaches of the Rappahannock (RM 99-110).   It is felt that
                         the high benthic demand that had been measured in 1970 and
                         used in verifying the model was due primarily to the dis-
                         charge of waste sludge from the FMC waste treatment plant.

-------
                                 29
The planned elimination of this practice by FMC should result in a decreased




benthic demand in this area of the river.  Just how much the benthic demand




will decrease cannot precisely be predicted, although a reasonable conserva-




tive value to be expected would be 1.0 gm oxygen/square meter/day (normal




range of estuarine muds is 1.0 - 2.0 gm oxygen/square meter/day)(9).




    All other model parameters are identical to those found from the




verification runs.




    Im making the allocations, the following waste sources and their future




planned design capacities were considered.




    Waste Source                               River Mile    Design Capacity




Fredericksburg Sewage Treatment Plant            108.5             4.6




FMC Corporation                                  108.1             7.42




Proposed Massaponax Sewage Treatment Plant       105.1             6.0




    It should be noted that the existing South Stafford Sewage Treatment




Plant was not included in the waste load allocations.  This plant is an




interim facility scheduled to be phased out in 1978, with the sewage going




to the Massaponax treatment plant.




    Through discussions with Va. State Water Control Board, Bureau of Applied




Technology personnel, it was decided that in making the waste load allocations,




the FMC Corporation would provide treatment equivalent to the best available




technology economically achievable" (BAT) as defined by EPA regulations




promulgated April 5, 1974.  This level of treatment is needed because of the




severe D.O. problem in the Rappahannock River.   The BAT treatment level for




the FMC Corp.  limits the monthly average discharge of BODS to 1260 Ibs/day.




To attain this limitation, the source of BODS (barometric condensers) entering




the cooling water should be eliminated.  This would leave the industrial

-------
                                       30
waste treatment plant as the only source of nitrogenous and carbonaceous




BOD.  Since this treatment plant is already achieving an average discharge




of 11.13 Ibs/day of BODS, the allocated BODS is based on this number.




Nitrogenous BOD was not limited in the regulations defining BAT.  However,




since the nitrogenous BOD is an important factor in the dissolved oxygen




balance of the Rappahannock, a limitation of 185 Ibs/day TKN (3.0 mg/1 net




TKN) was imposed.  This value is the reported existing discharge from the




FMC waste treatment plant.




     With the above load for FMC and the municipal waste treatment plants




at secondary treatment (see criteria in Table 5), it was determined that




the dissolved oxygen standard of 5.0 mg/1 as a minimum daily average for




the Rappahannock River would still be violated.   Equal percentage reductions of




both carbonaceous and nitrogenous BOD were applied to the municipal facilities




until the minimum dissolved oxygen stream standard was attained.  Table 6




shows the allocated loads to meet a minimum daily average DO of 5.0 mg/1




at the 7-day, 10-year low flow.

-------
                               31
                             TA3LE 5




                   Secondary Treatment Criteria




             For Municipal J'aste Treatment Facilities




                             30-day Average





        BOD               -     30.0 ng/1




Ultimate Carbonaceous BOD -     45.0 mg/1




        TKN               -     18.0 mg/1

-------
                                                           32
                              CO
                                       o
                                         
                                       CO
                                                  CO
                  H  !N
                      to;
                      Cfll      -3"
                                       ul
                                       oo
                     CM
                     *
                                       O
                                       oo
                  
                     o
                     -x.
                      co
vO

w
>J
PQ
                  P
                  O
                             CN
                                                  CN
                                                  CO
          CM
                     O

                     vO
                                                                        CO
                                                                        Q)
                                                                        3
                                                                        0)
                                                                        60
                                                                        tfl
                                                                        >-i
                                                                        (U

                                                                        tfl
                                                                        I
                                                                       C
60
M
S
                                                      a
                                                      to
                                                                        CO
                                                                        bfi
                                                                        q
                                                                       H
                                                                       x)
                                                                        to
                                                                        o
U
H
V-i
(1)
a
0)
M
fK

14-1
0

>>
4J
t-l
U


/ s
o
Oj
o
iH

CO
co
o
t-i
60
x^














/" \
T3
CO
O
CX rH
)-l
O
u

u
5^


4J
a)
q
**-/








X
to
q
o
D.
CO
CO
CO
3
* -4
rfL.
4->
C
0}
6
4J
to

-------
      33
IV.  REFERENCES

-------
                                  34

IV.   References

     (1)   Grim, R.  L.  and N.  L.  Lovelace,"AUTO-QUAL Modelling System",EPA
     Technical Report  54, Region III,  March 1973

     (2)   Fung, CS, et al','Studies of the Distribution of Salinity and Dissolved
     Oxygen in the Upper Tidal Rappahannock River ", Special Report No.  25,
     Virginia Institute of Marine Science,  June 1972

     (3)   Clark, L. J., and Feigner, K.  D., "Mathematical Model Studies  of Water
     Quality in the Potomac Estuary",Tech.  Report 33, EPA, Region III, March 1972

     (4)   Paulson,  R.  W., "Variation of  the Longitudinal Dispersion Coefficient
     in the Delaware River Estuary as a  Function of Freshwater Inflow",  Water
     Resources Research,  Vol 6,  April 1970, Number 2.

     (5)   O'Connor, D. J., et al
     Notes from Manhattan College Summer Institute in Water Pollution Control,
     Manhattan College, Bronx, N.Y.  1972

     (6)   Ryther, J. H.."Photosynthesis  in  the Ocean as a Function of Light
     Intensity", Limnol.  Oceanogr.,  1, 61-70,  1956

     (7)   Ryther, J. H and C.  S. Yentsch,"The  Estimation of Phytoplankton
     Production in the Ocean from Chlorophyll  and Light Data",  Limol  Oceanogr.
     2:281-286 1957

     (8)   Velz, C.  J., Applied Stream Sanitation, John Wiley & Sons,  Inc.,
     N.Y.  1970.

     (9)   Thomann,  R.  V.,Systems Analysis and  Water Quality Management,
     Environmental Science Services  Division,  N.Y. 0. 104, 1972.

     (10)   "Rappahannock River Basin",Division of Water Resources, Virginia  Dept
     of Conservation and Economic Development, Vol I, Vol III, 1970

-------
V.  APPENDICES

-------
         APPENDIX A-l





LISTING OF INPUT DATA FOR MODEL





    SALINITY VERIFICATION

-------
2;
3,
DATA
A3
                  AUTOSS - fUPPAHANNOc*  ESTUARY  SALINTTV VtRjF
               0.0     HO.O      110.0         55

                    13B
11,
18.
19;
20,
21.
22.
|3,
24.

!5--
26,
27,
26.
29.
30.
31,
32.
33,
3.
35,'
***
37,
38,
39.
"3.
4.
48,
49.
50,
51.
52.
53.
54.
55.
56,
57.
58.
59,
60.
           1
           ?
           3
           4
           5
           6
           7
           B
           9
          10
          11
          12
          13
          16
          17
          1*
          19
          20
          21
          2?
          23
          24
          25
          26
          27
          28
          29
          30
          31
          3?
          33
          3a
          35
          36
          37
          3*
          39
          40
          41
          4?
          43
          44
          45
          46
          47
          4*
          49
          bO
          51
          52
          53
          54
          55
          56
M
1.0
1.6
2. '7
3. '7
5.8
6.9
7.5
6.7
10.0
11.8
11.9
14,7
16*2
17.5
19.0
20.5
21.9
22,7
23.5
25.6
27 .'5
29.3
30.1
32.0
33.1
33.3
33.5
34.4
3b.7
36.6 '
37.6
36.7
39.- 8
42.0
3.5
4.5
"b.O
45 ."6
46.4
"7.3
48. "3
49.2
50.4
51.9
53.0
53.6
54.1
5 4. "9
56.0
56.9
57.6
57.6
58 .'2
58.5
56.8
la.o
23.0
22.0
22.0
30.0
25.1
26.6
30.8
27.0
27.3
24. J
24. 4
27.2
22.6
19. 0
19.7
22. Z
16.3
16.7
8.3
2.1
a. 6
9.1
0.1
1.0
8. a
8.6
10.0
9.5
13.0
9.0
10. a
8.1
10.0
8.3
5.2
5.6
11.2
10.0
11.8
6. a
15.5
8.1
14.0
!2.8
23.3
17.2
16.0
12.6
l.l
12.5
12.0
14.6
17.8
16.3
18.0

-------
6i.
62.
t T
6A
64.
65.
66.
67,
68.
69,
70,
7U
72!
73,
74.
75.
76.
77.
78,
7S
80.
81,
82.
83.
84,
85)
86,
87.
88.
89.
"'O.
*U
92.
93,
94',
95,
96.
97,
<
99,
100.
101,
102,
103.
104.
105,
106.
107,
108.
109.
110.
111.
112.
113.
11".'
115.
116.
117.
118.
119,
120.
121.
$7
58
59
j ^
60
61
6?
63
64
65
66
67
6*
60
70
71
7?
73
74
75
76
77
7
7"
80
 81
8?
83
84
85
86
87
a
89
90
91
92
93
94
95
96
97
9fl
99
100
101
10?
103
104
105
106
107
10*
109
lift
111
11?
113
lia
115
116
117
59 ,'J
59.9
60,5
61.2
61.7
fc2.5
65.0
63.9
60. a
67.0
67.7
68.0
68.6
68. '9
69.4
70.1
70.7
71.2
71.5
71.8
72.3
72.7
73.0
73.1
73.6
74.0
75.0
7b.4
75.6
76.3
76.9
77.'7 '
78.4
79.0
79.5
81.7
82.4
82.6
83.1
8-3.7
84.5
84.7
85.2
86.4
8c>.7
87. 8
86.2
89.6
90. '5
91.0
"1.5
91.6
"2.7
93.1
90.7
95.1
95.4
"6.1
9b,9
"7. -J
96.1
22.6
7.6
22.0
22.3
19.0
7.8
15.6
15.2
9.3
18.3
21.0
13.3
8.0
10.2
8.0
0.8
22.0
17.0
6.8
6.7
6.4
5.3
5.7
5.6
4.4
6.6
14.2
8.1
12.6
6.0
7.7
10.2
6.3
9.5
9.5
10.4
18.2
22.4
18.2
13.1
13.7
16.2
7.2
15.5
7.4
18.5
9.7
16.8
a. 5
lb.4
15.8
9.0
13.6
7.2
12.8
9.4
14.4
9.3
10.4
8.2
10.5

-------
122,
123.
124,
125.
126.
127,
126.
129.
130,
131.
132.
133,
134
135.
136,
137.
136.
139.
10.
1*1.
142,
143,
144.
145,
i4b;
1<7.
148,
149,
150,
15.
152, -
153.
154,
155.
156.
157,
156
159.
160.'
161,
1*2,
163,
164;
165.
166.
1*7.
166.
169,
170.
171.
172.'
173.
174.
175.
176.
177.
178.
179.'
10.
11,
182.
Ill1
U
120
121
122
123
124
125
12*
1*7
12*
129
130
131
132
133
134
135
136
137
13*
WIDTH
i
2
3
4
5
6
7
8
9
10
11
12
13 '
14
15
16
17
1"
19
20
21
2?
23
24
25
26
27
28
29
30
31
32
3?
34
35
3*
37
38
39
99.1
99,6
100."9
101.0
101.7
102.2
102.8
103.0
103.2
104.0
104.9
105.2
106.3
106,'S
106.'8
107.6
106.1
109.0
109.3
109. '5
109.9
13
0.0
1.0
1.6
2. '7
3.7
5.6
6.9
7.5
8.7
10.0
11. a
11.9
14.'7
16.2
17.5
19.0
20. '5
21.9
22.7
23.5
' 25.*
?7.5
29.3
30.1
32.0
33.1
33.3
33.5
34. U
35.7
36.6
37.6
39.7
39.8
42.0
"3.5
44.5
45.0
45.6
7.7
10.1
9.7
6.7
11.2
6.6
9.5
8.8
13.6
9.8
7.6
10.6
8.7
6.6
8.1
7.9
12.3
5.3
3.2
2.0
3.0

19536.0
21648,0
19006,0
1?480,0
1?672,0
19536,0
13833.6
10137.6
14784,0
12672.0
12406.0
11721.6
12355.2
12249.6
15523.2
12408.0
10560.0
15312.0
13569.6
11563.2
1^787.2
10084,8
17952.0
1?777.6
8342.4
10824,0
10190.0
8500.8
9504,0
58^8,0
8712.0
6660.0
9768.0
633&.0
5608,0
11246.4
8V23.2
4012.8
5913.0
SAPPAHANMOCK  P]

-------
            l            "7.3
            42            8.3     31*8.0
187         4           50.4    2745.6
US*'        45           51.9    3168.0
 89         46           53.0    1900.6
Uo*        T           53.6    1108.8
            48           5o.l    2217.6
            U9           54.9    3062.4
            50           56.'0    2956.6
            51           56.9    1478.4
Us'        52      *    57.6    4012.8
Jq;*        53           57;e    2904.0
,07         5U           56.2    26UO.O
 98*        55           58.5     897.6
199         56           58.6    1^67.2
200         57           59.3     792.0
201         5*           59.9    224.0
202         59           60.5     739.2
 --<        60           61.2    1636.8
    *        61           61.7     897.6
            62           62.5    4116.4
206*        63           63.0    25*7.2
207         64           63.9    2112.0
206.        65           6tt.4    2692.8
209"        66           67.0     792.0
210         67           67.7     580.8
2li   -      6*           68.0    1056.0
iJP        69           6b.6    2428.8
ill;        70           68J9    -2006.4
214        71           69.4    5491.2
US;        72           70.1    2323.2
216        73           70.7      633.6
in        74           71.2     1056.0
 2  6*        7<           71.5    3537.6
 219*        7ft           71.8     ?323.2
    '        77           72.3     "646.4
             7*            7.7
             79            73.0
             80            73.1     3590.4
             81            73.6     S649.6
             6?            74.0     P692.8
             83            75.0
 227*        6U            75.0
 228,        65            75.6    12U.4
 229,        86           7b.3

             i;           ;?-.;
             89           78.tt    2006.4
 233         90           79.0    H52.0
 i34         91            79.5      528.0
 235'        92           fli.7    U66.0
 236]         95           "2.-U      4".0
              9a           82.8      617.0
              95           83.1      400,0
 239!         96           83.7      633.0
 2U0          9T           .5      17.0
 2m          98           80.7      367.0
              99           85.2     1250.0
            100           86.4      383.0

-------
244.'
245.
246,
247,
248.
249,
250,
251.
252,
253.
254,
255,
256.
257.
256.
259."
260,
261,
262.
263.
264,
265.
266.
267,
266,
269.
270.
271.
272.'
273, -
274.
275,
276.
277.
278.
279.
280.
281.
305.
306.
307.'
308.
309.
329.01
329.02
329.03
329.031
329. OU
329. OS
329.06
329.'07
329.0*
329. 0"
329.1
329.11
329.19
329 2
329.21
329.2?
329.23
329.24
101
102
103
104
10S
106
107
108
109
110
111
11?
m
114
115
116
117
lie
119
120
121
12?
123
124
125
126
127
12*
129
130
131
13?
133
134
135
136
137
13*
DISP
1
?
3
a
1N1TTDS
1
?
3
STOP
FLOW


STOP
TDS
FIXED
STOP
FLO*


STOP
TDS
FIXED
6.7
87. '8
88.2
89.6
90.5
91.0
91.5
91 .'6
92.7
93.1
94 .'7
95.1
95.4
96.1
96.9
97.3
98.1
99.1
99.6
100.9
101.0
101.7
102.2
10^.8
103.*0
103.2
lOa.'o
10U.9
105.2
106.3
lOb.5
106.8
107.6
108.1
109.0
109.3
109.5
109.9
U
0.0
20.0
30.0
60.0
3
0.0
50.0
70.0


no.'o
108.5

0.0


110.0
106.5

o.'o
1000.0
400.0
667.0
267.0
783.0
333.0
417.0
800.0
367.0
950.0
367.0
550.0
250.0
650.0
333.0
700.0
333.0
567.0
350.0
441.0
583.0
291.Q
567.0
317.0
467.0' '
267.0
467.0
433.0
300.0
433.0
300.0
433.0
400.0
267.0
233.0
467.0
275.0
400.0

3000.0
500.0
400,0
250.0

16300.0
300,0
0,0


304,0
5,5




654,0
3.54














































'





August 18, 1970

16300.0 Calibration




December 10, 1970
19490.0 n_1Jt__.__

-------
329.25
329.2*
329.27
329."2
329.29
329 3
329.51
329.3?
3uu.
STOP
STOP
TDS
FIXED
STOP
HALT
               110.0    570,0
                   '
p.'o
                                  July 31, 1971

                                    Calibrat ion

-------
           APPENDIX A-2




LISTING OF INPUT DATA FOR MODEL




        D.O. VERIFICATION

-------
1.
a.
i ,
 .
s.
b.
7,
8.
Y.
10.
11.
U'.
13.
U.
13.
1 b.
I?.
i - .
"*.
3 ,
' 
?l ,
"1 J
f1 f
?.i ,
>",
j 
^3 ,
?b.
?/.
? >.
29.
u..
31,
3*.
t <,
j > ,
'*,
3b.
3s.
37,
3s.
35.
"0.
/i .
(J 1 .
2.
"i.
uu.
ab
o.
"7.
"b.
av.
iUTjS.j  r- A r' U A W u '. . if1'
 b . U 1 1 U . U 1 1 U . :',
ru T A
4j i L n
j 1 2 M
1 0 . U 1 A , 0
? 1.0 ? i . >'.'
^ l.o ?'',.!
:: ^ . / ? c! , u
^ 4. / v) . -
^ 5,0 ?",!.
7 0 . ^ '"" J . r
fl / . : 3 .j . ^
a,/ ^/.i.
in 1 0 . r, ? / . ,
11 ll,c -:'  . s
i ? 11 . v r1 '4 . .4
n u.? ?/.p
1 a 1 1> . <> -' d . n
1 ' 1 / , 5 1'> , 0
1 ^ 1 s) , u \'-i, i
i 7 ? U . S P d . r
) 3 p 1 'J 1 *~( '
1 "* ^ 1 , T '".-<
1 ^,:,7 1ft, 7
e* " ? 3 , b 1 h , i
,4 ? ^ >s 1 --* t
r " f- ~ , *> '^tl
f? ? 7 , S 1 i .,-.
^ ^V, S -V, <,
f 'J i U , i 10,1
-S ^.'i ll.f.
c. * H.I C . 'J
^7 3i. 5 d.ji
ef a 3 3 . b t 0 . ,1
JO X a fcj ^y L>
r,* .j**t^ '.'
jn 3'3.7 li.o
i 1 3 o . o 9,0
i ? 37.0 1 0 . a
3 ^ 3 b . / a , i
i U ^ 9 . H 1 U . 1 1
^ Ud.Q '" .i
S * y 5 , S b , ?
< "7 il ' ^ S *4
i/ ci-,;? 3 . '
3 ^^.y - 1 1 ,<
j><3 b,b 10.0
an Ub.u 11.8
U\ a7 ,3 o.u
^ *.3 Is.S
a ^ ^ 9 . 5 b . i
au So .a IM.O
-v.1^ 51.9 lei,*
                                    ISu
52.
53.
5i4.
5b.
Sb.
57.
SB.
59.
feO.
a?
bl
b?
53. b
5.l
54.9
r>b.O
Sb. 9
'5? , b
S7.M
               o.i
                        ?3.3
U.I
U.5
U,0
U.f,
t 7,8
to. 5
1 J.O

-------
61.
62.
63.
64.
65.
66,
67.
68.
6V.
70,
71.
72.
73.
7.
7b.
76.
77.
78.
79.
no.
"1.
"2.
as.
fl4.
*b.
Rft.
w t
7.
*b.
Rv.
90.
fJ 1
i 
"*.
93.
9a.
^3
' C
9b.
n *>
9? ,
93.
9V.
too.
101.
12.
103.
104.
10b.
10b.
107.
10e.
1<19,
110.
HI.
1U.
113.
l la
i *  .
lib.
lib.
117.
lib.
119.
120.
121.
_. 7
3
b>
hO
bl
0?
M
00
o*
0^
a7
(i*
69
70
n
/'
'/I
7H
'!*
7-
77
7"
7 
00
rt1
M?
m
o'J
Q^
**>
M 7
C" /
on
bQ
90
u 1
' t
V? 
V *
V/4
4=1 -
9
^7
91*
V9
1 UO
101
10?
105
10U
10r?
10*
107
10*
1 00
1 1 0
1 A *.
1 11
1 1?
11?
lia
115
11*
117
5 v . J ?-;..,
f3 '/ . V / ,
' '  ?
60. b P^.o
61 . 5 . 9 10.,.
6^,4 y.o
7 '.' . 1 h . s
7 U . 7 ? ; . o
7l.i 1 /.O
7 \ . S
7 1 . ' c . /
7^.3 ts.ui
7'',7 3.-s
1 > . 0 b . ?
7 i . 1 i . ft
7 3 . n M , u
7 -i ii
' * , U <-- , f>
7-J.O !'..,
^.^ o.l
7b,o t^.h
7'). 3 ;.,)
'b, V / . /
7 / . 7 K> , e*
7 d . y o , H
74.1-. v.--.
7 u u. i
' v , 5 v , ^
1.7 1 0 , iJ
^^.^ !:. - -
H3. 1 7.,?
q
9d.l lO.i

-------
12<,
l?i.
I2u.
125.
1?*,
127,
128.
12V.
no.
1M.
He!.
H3.
i<.
Hb.
Kb.
iV/,
1 1 W
IT".
139.
i /i 1 1
1 W 'J ,
HI.
I**.
P3.
lu.
l5.
16.
!'W.
16.
1 ' 9 .
r->u.
iSi.
1C" J
e!.
PO,
154.
lr'S,
1*56.
1*7.
1S&.
i t; Q
1 ^' 
1*0.
1M.
1*2,
1*3.
16.
1*5.
1*6.
1*7.
l*b.
l*v.
170,
171.
172.
173.
17".
173.
176.
177.
178.
179.
1*0.
1*1.
i PP.
11"  * . 1 7,7
no  n 100,4 9.7
1 r 1 1') i , U 0.7
1 i ? 101.7 1 1 . p
1^3 P 1 0 . o
130 I 0 r> . i  . 7
131 l"^,'^ '"  5<
1 ^ 1 0 t, , M -5,1
133 I <" / , n 7,9
1 i /i * 0 *-, i 1^1
1 J *J i 0 4 i * f-  -^
13^ 1 " 4 , ' o . ^
1 < ^ 1 ' ) ^ * *  2
1 6 / 1 " ' , , e. , 0
1 1 J i '  . r J . ',!
, T n j lj t i !
1 i: . , lb^ ->,'>
? 'I . ;> ^1 s'lrt , 0
* i . > 1'i 0 0 e , o
a ..-.'' l a a  o . d
, ,',.. 1 ~o7ii. u
^ 3 .,  i ' b ^ o , 0
7 -.  i <-.? SS.n
p / . 'o i - n / . *
^; I H 7 U [ .
.^ , 1 i'.^',l|
10 1 ; . ' 1 ^ u 7 s! , )
11 M . * l ^a'j " , o
IP i . ,  i 1 / ' 1 . s
M !'./ I '3 -:>.>
1 a t P . >i \ ' *.'* 1 >t~
I : 1 / . n 1 '^j '= i . P
 t 1 v n 1 ^ U 0 M fi
i " i 7 B i j i^t'jii
17 ?(.,,'- 10 '3 60,0
IP ? i , i 1 ^ i ! c.' , 0
JO ? / , 7 ] ^ '3 ^ V , h
d 0 '1 j . ^ 11 '3 ^ 4 , ,i
r>.\ ?>, -5 ir^ft/.^
2^ P/.i l^i^'4,H
; x ' ^ , * i 7 T ^ e. , o
^ 'J J u . 1 1 -1 / 7 / , h
t^ lt.'> '3'V.a
0 - . 0
cf 7 M , i 1 n . ^ 0 . '4
e! <$.'- -"t. )().
^0 34,t 9 b 0 u , g
30 3S./ ^808,0
31 ^o.r, fl /| ;,o
3 7 _ < / , ^ * rt ^ u , o
J ^ " >o . ? r-> 1 is e , n
3/1 i ^ . * ^ 3 3 o , 0
3 S  ^ , 0 ^  0 b , 0
3fc ^i.^j P-^a^.u
37 ^*.b "-^3.?
3  '> r . ) ' J 1 d . e
"i  ' . . c ^ '/ 1 i . o

-------
1*3.
184.
iBb.
lb.
1*7.
18,
19.
190.
191.
192.
193.
194.
193.
lQt>.
197.
193.
199.
200.
201.
c<)2.
203.
e.' 0 '4 ,
205.
20b.
20/.
20B.
209.
210.
21 1 .
212.
213,
214,
215.
21b.
217.
210.
219.
2?0.
2?1.
2?2.
2?3.
224.
22b.
j p ,,
C <- O ,
227.
^?H
C ' w 
229.
230.
231.
232.
233.
>%u
e 3M ,
233.
236.
237.
23b.
23V.
2ao.
gai.
3/1 J
C^C .
23.
MO
41
a?
4^
UU
(1C,
4ft
47
4*
,UQ
SO
:>'
sp
bi
V-i
b^
Sft
b7
b*
j ">
oO
ol
e^
6^
b/J
frS
6ft
t.7
ei
oO
/O
/1
1?.
r^
ru
/^
/ft
77
7
7
00
HI
b?
k. 7
C .7
M/J
u r
w ^
CJA
h7
hP
41
vo
O 1
" i
V?
v^
^'J
9=;
9ft
97
9*
Q n
" 
1 On
'o.J '\t>.i.
4 / . -i -'v 3 0 4 .
"  , i M h d .
^ 9 . 2 M 9 a ,
SO.'t ?/ab.
^ 1 . v 3 1 ft d .
^3,0 1 VOO.
^i.o 1 10 >,
Va . 1 ? 2 1 / .
s,^ ^uft2.
S,,,,, ->WS0.
1?.! U7.- .
^ / . n 4Q1,;.
^7.^ 2^0u,
'-> <^ . 2 ? Q a o ,
'> o , 7 o Q / ,
T^ . r 1 2 ft / ,
S9,i 79^.
Su.v 'l^^.j.
!- 0 , ') / 3 Si ,
^1.2 1 b if> .
M.7 d97,
^ 2 . b J 1 t B .
fcj.U ?a7.
ft 3 , v ? 1 1 i .
^ u , u P o 9 e .
'' 7 . u 7 T : .
ft / . / 1  >J .
ft c . 0 1 0 S f, ,
ft ^ . o ? -i ^ d .
n n . ^ ? u 0 r> ,
ft 'y . o S 4 " 1 ,
'0,1 ?i?3.
7 0 . / o 3 i .
71,2 lOSo.
^ 1 . S ^ S / ,
71. a ?3?A.
7 ^ . i a o 4 o ,
7  , 7  i  a ,
73,0 4 i * J .
7.s,l ^b"Q.
7j,b ^o4^,
"4.0 Po2.
7L l\ U T iJ
D . U J ^ O 
75.4 IVSi.
7 s K 1 V 1 vi
' J 4 " 1 C. 1 *4 
7o,3 ^o'JQ,
7 *i , y '" 1 ft 4 .
77,7 \3?0,
78..^ ? 0 0 6 ,
79-.Q 14^.2.
7 u ^ s^ D M
'^,3 srO,
fll .7 1 Ifte.
B^.4 4^3.
^2.o o 1 7 .
* 4 . 1 4 0 (J ,
H 3 . 7 o 3 3 .
ft4.^ an,
"4.7 4ft/.
A C. -j 1 j C | ,
"jfc Ic^U,
So, J 3Pj.
0
0
0
'j
b
(J
6
n
6
^
H
4
A
C
'!
.1
2
0
it
S
M
*^
'4
2
Ci
>j.
0
>A
0
H
a
f
r>_
ty
i)
^
2
a
0
u
u
ft
;J
0
ft
u
0
H
0
4
0
0
0
0
o
,)
0
0
0
0

-------
01
2b.
26.'
*7.
dB.
d^.
dSO.
d*l.
2Sd.
dSi.
c^U.
,ro.
d^b.
^7.
. v>.
CV>.
d'TU ,
dM .
d^d.
t " > .
<_' n U .
<;<>:>.
d*t>.
.M.
c"b.
c^.
d/U.
 M .
d7d.
7J.
27u.
.7'j.
ei 7ft.
r77.
<^7b.
<  N ,
d0.
d*l.
30b.
306.
307.
30b.
30V,
310.
311.
31d.
313.
3U.
31b.
31o.
317.
318.
319.
3?0,
321.
321.1
3*1.2
321.3
322.
3?3.
32a.
10?
10*
1 (JU
los
lOh
1 07
10*
too
1 10
1 11
1 1?
11*
I"
Is*
Ifc
17
1B
1 1
Id"
1 cf1
1 d?
It:*
Ida
1d^
Id*-
Id7
l*;^
U
Lift
131
13?
1 S*
13'J
1 3^
1 3h
1 .57
1 3
DISH
1
?
^
d
VcLU
1
?
n
a
c,
8
7
fl
P
10
11
1?
1*
u
pMOtn
1
?
h/.
fth.
">.
".
lr-'v.
1'N.
104.
loy.
a
(j.
?o.
*-j.
bv .
1'J
3,
lo.
Id.
1'3.
*l,
r /.
*'>.
'^.
<'-, .
ae .
/.
100,
Ko.
10'J.
^
lOi.
lOc.
d
?
0
*?
0
b
b
/
1
/
1
a
1
j
\
1
1
u
V
II
/
,^
^
J
d
("I
o
f
3
1J
Cl
^
1
)
3
I",
y

>)
0
0
,1

b
u
0
o
h
d
0
Ij
7
u
_v
1
0
3

0
J
4 ft '0 , 0
o M f . ft
: ^ V . 0
7^3.0
3*1.0
417.0
a o o . u
3*/ . i)
^ u . o
J ;' / , 0
'i'J . 0
d'i" ,U
ft ri 0 . ;
S ^ 3 . o
/ ft o . o
-i ^ 3 . d
'3 * / , 0
5'lU, ,1
4'U , ,1
J'^.L'
d'1!.:,
"I M . 1
-> 1 / . i.l
4 ^ / , 0
J^1 / , (I
< '-/,(,
4^4.')
iftO.d
u ^ 4 . n
3 ft U , 0
 "^ i . 0
'i ft 'J , . i
C !*>/,('
d * 3 . >1
4IS7 , 0
d7-j.ii
"4 0 0 , 0

3000.-)
b 0 o . o
a ft o , o
dSO.O

0.3
o.<>
0. 5
O..s
0. 5
o . -;
O..J
0.5
o.s
0.70
0,70
ft.Ji
0. )d
ft,?/

0.0
1.0

-------
325. 1
326. SED1
327. 1
526. ?
329. X
329.01 TEMP
3?9.o?
329.01 CDFCAy
329,04 1
J29,C'S ?
3 -^ 9 . 0 * *
329.07 'l
329 , up M Jfl A y
329.00 1
329.1 ?
529,11 *
329.1? n
329. n C-cfA^R
529,l'i r-SAT,>n
329, iri T\T I r ,'ii.j
329. |f 1
.'29.17 2
i29 , 1 fl X
S 2 9 . 1 9  ii
3 2 -y , 2 ; s
329.^^ *.
J . " * C 1 J 1 1 1
329.5 1
529.31 2
329.3? *
329,31 "
329, *o 5
329, 3S STOP
529. 3* FLO*
329. 57
329.3*
5?9, 39
329.4 Strip
329. ul NnHu
3?9 , a? Fi Xtn
329.41
3 -1 9 . U U
32 9 . 4S s tnp
329. u^ C^no
329.47 FIYtD
329.4*
329.40
329. b ST9P
329. bl OJ
329, b? FJXtn
329.51 STOP
329. b" r>.T4
329.55 TC.MP
329, 5fc 1

3


1
1

a
1
1


0
1
1




K
i
1
1
1
1

^
1
1
1
1
1

'x
1
1
1
1



1
1
1


1
1
1


1
1
1


1


5
4
*
"0.0 1.5

p 0 . U d - 0
^e.o <>.
0 / . 3 1 , ~

1.0 2 7 . 'j

10,0 0 , 0 j
IH.-S n.1b
9,o n.in
'0.0 >i  1 f

1 o . j n . 0 b
""." 0.10
4  , o
Ob,'; b . 4
 0 , o .s . )
S_ o d.S June 22, 1970

1 i) . 0 ^,:'ii Calibration
090 n US
7 , V ^   ~>
11 " . l' ^ . '
3 t ' O  ( 1
0 'j , j *? , ,j
y 3,0  , i>

)>-.... t* , 9
04. a e.o
0 ft , 0 b , 0
O U . 0 5.0
g 'S . 0 n . 0


t ii , o a 1 b . ,i
n " . '3 5,^4
0 b . 1 3,0


1 u . 0 4 1 b , 0 ^ . 0 U 1 , 0 ()
<> . j 3 . S a f ' 1 . 'j 'J
'V.I 1,0 B'b.j'I


1 u . o a 1 b , o 1.50 1,50
OB.-J 3,^a b7,b>4
0 i-j . 1 "S , 1 9 1 0 f 7 tj


10,0 *tb,0 ri9 fl,^4



ou.o ?s.o

-------
7 . 1
329. b 1
329.61 ?
329.6? *
329. 6"* U
4P 9 fail M Dc f A v
J C- ~ j D M * I/ '- v " T
329.6s? 1
329. b* 2
329. 07 *
329.0" a
329.50 C - V t A t 
.P9.7 r.^ATo11
i29. / t T xJT ir.jnu
42^,72 1
329.7* ?
J29.7U ^
329.7^ 4
3 3 V , 7 < *
329.77 ^
329. 7 !NIU).,'\J
i2v. /? 1
329. H 2
329,81 *
32V.H2 
3?9. ^ c
< P a u /! L.
W C 7 . O ' 
329.jji iMUHfj
329, H^ 1
32v.h7 ?
i J 9 . .  *
329.80 U
329,9 !
32^ , :
73-3 oi. QT/"1t>
jc Fixtn
^29. ^=5
3*0.
3*0.01 MHP
330.0? Cr^HQ
330.0* f- 1 v t. n
3*0. QU
330.0^
3^0. Of Sinp
3S0.07 OJ
^3o.0 Fl^tn
3*0.00 STHP
3*0 ,1 n^T4
j s wi . i ; ' i \j
330.1? 1
3*0.1* 2
A^O.lfl 3
330. IS CJECAy
330,1* 1
3*0.17 ?
no
lOb
"e
!H)
/I
(j
110
1 OM
o,<
QM


fr
no
i o^
1 On
1 0:5
i 0 o

s
1 1 0
1 0V
lOf,
) llj
9:3

no
lO
.0 i . 0
.0 j . 0
.'J ^.'3
.0 '',S
f,j ,  , , June 29, 1970

^ j i , ,^ , Calibration
,u i..,
, o c , b
, 0 i, *
,0 1,0
, 1 1 1 I
 ' -  >
.0 / . M
. 0 t> . S
. I' i , '>
t),,.
, :< - , V

.0 373.0
. b * , S /i
.1 ?.n
.0 S 7 i . o 0.7 n , ,'
, -3 * , ^ J V ! , S U
. 1 2 , n o H i o . 2


, 0 ^ M . 0 1 . 'J b 1 , 'i J
, 3 * , ^ 4 J 7 . S '4
,1 ? , 0 0 7 '4 0 . 7


.0 " i7i,o ,7u ^,70



, M ?M , ^ July 28-29, 1970
 '' ' 7   Calibration
. 0 2 v . .,

. 0 ) . n s,
. R '  , 1 '-.

-------

3 3 0 . 1  3
330,1" 'i
330.2 N D ? i, A Y
330.21 1
330,2? ?
330.23 3
330. 2'J a
330 , a ?
330.3 3
330.31 'l
3*0.3? 5
330. ^T r,
33u . 4
330.61
330.b? STOP
330, h^ 01)
330,fc.i FlXfeO
330.6* STOP
330. b* OftU
330. to7 TMR
330. 6* 1
33f,be> 2
330.7 3
330,71 COECAY
330.7? 1
330.73 ?
330. 7 3
330.75 a
330.7* NDEC*Y
330.77 1
Jit). 7* ?
^b.O
^0.0
u
1 lu.O
1^6,6
Vo. 0
9u , 0


S
1 1 0 . 0
1  9 , U
1 0 H , 0
1 Ob.O
1 o o . o
(?b.O
^
Hu.o
1 0 4 o
1 '"> h . o
1 n s . j
1 '' 0 . y
QT,0
s
no, o
109.0
1 Or, , ()
1 0 o . o
b , 0


nu.o
1 0 ri b
1 0 o .* 1


110. 0
1 0 !5 . b
1 Od . 1


110,0
lOtf.b
JOe.i


1 10. 0


3
0.0
7a,9
79.3
a
iio.o
1 OB, 6
95, o
^0.0
u
no.o
} ftb ,b
".10
o.o*,

O.Ob
0 . 1 0
0,10
O.Ob



1 , US
3,0
b.Q
^.b
0,5
0.1

1 ,?5
i.O
~ . S
i.H July 28-29, 1970
I . (>
0 , } Calibration

7. a
b.S
3.0
'i. 0
0,9


4Sti,o
* f ^ (4
P. 00


M5b,0 3,^ 3,2
3,Sa VI, ba
?,00 393, SI


<45b,o 1.3 1.3
3,^u b7,S^

-------
330.79       3            ^3.0       0,10
330.6        u            9Q.O       0,05
330.81   r-SfcAFP
330,8?   r-SATijn
i3o.a?   iNTTCnOD       6
330. bU       \           HO.O       1.30
330.85       ?           109.0        l.b
330,*fe       3           iOa.O        3.b
330.67       U           1^,0        i.fe
330, h        S           1 0 o . 0        l.h
->30.<}9       iS            9b.O        ,9
-------

-------
          APPENDIX B-l





SALINITY VERIFICATION PROFILES

-------

-------

-------

-------
             APPENDIX B-2





DISSOLVED OXYGEN VERIFICATION PROFILES

-------
                     ,Q

                     O^
      5,-C-l!
      .~j__
     O

     ui
          o
          ri
q
fj
     *:J
               N
                                                                                                     in
                                                                                                     o
      C i
      ui u.

                                         ,
    o
    r
      HTN1 */i 01 01 X 01 J>*/1

-------
O

-------

-------

                T*
                                ^
                                    ^N
                                                                                    *-Ci.^..
                                                                                      -a-y-.
                                             \
                                               \
h
 a
. 7

a
                                                                                        T
                                                                                        ^
                ;?
ti
:j
"T'o

,   I*
               O
                      o

-------
o
            OKO1 ir  ONI */i
3-H

-------

-------
   fa
  cC
  -1
i o^
      .1
                                        o
                                        ir
                               ^

                   LJ
                   0<
                                                               V	
                                                             -51-
                                                             	HI	
                                                              In  '
                                                              0
                             *  r.  *"
                         ^J/Cu^^ Vb'-Q f.^^ots.Q

-------

-------

-------

-------
o   o

-------
r,    O

-------
             APPENDIX C-l




FMC CORPORATION WASTE DISCHARGE DATA

-------

-------
   V-


 Ul UJ
i > z _i J

~ p ? L' 

ra .- T. i ,~-:
i co a. r-
o
o
   O
   01
   3
   ca
   00
   *jt
   y

   S

 H S
 K: *
 o x/
 3  Q

 >  u-
         _i o
         < ..
! 1


1 '
i;

i



































1



!
!
L_
[















1


i
j

j










































h-iiri-H
                           !   II
            ii'i
             UlU-i-LJ
i ' i  ! -i- 1 J-J-4
1 . i  i  j j..j i T
      I i.-: i
        i _i  l  i i :  '  ,
        ! < y e !  ; ! i i   i
         ^o

       Si 5?s
         TTiiitr
           '  I i i I  !
           !   i j_ll
T'
+^
       ' J  i I t
       i-n-j-f!
                           II  !i
                             "*n "i r
                    r
               i
              TrprnT  |"pp:^rr
       =!"3i i |^K !  1^^}!"'^^.
                                           H !  -. o
                                           H , :cr,c
   O
   O
                                            ; ! ivojc.i


                                           "H-nl
                                           : i ! lolo!
                                              I i  j


                                              i-H
      r
                                              J -L.i

-------
  2
 UJ UJ
 U O,
 o
I > H Z
03 a z I ,
CO i/> EX H- ^
o
(J
       < U c
       5 u-
       w"
     "h
 o|
I Q I
              r
       o 
v
- c
      iis'!li!i!|!
            T';1si,
                     t-
                              I- -
                . >v:' M
               _ -^1
              I :  i t
     i^ii yT,3w rr"y^
                           ^IKr. ,:,;; ;vr;|r;';S?; ^U 8
                           J J. ' 1 1 L I : 1 .1 . i  l_ i  II
                                        !' 7
                                        ?
                                        O

-------

-------

-------
            APPENDIX C-2




RATIO BETWEEN ULTIMATE CARBONACEOUS




                AND




 5-DAY BOD FOR THE FMC CORPORATION

-------

-------
         RATIO BETWEEN ULTIMATE CARBONACEOUS AND 5-DAY BOD




                        FOR THE PIC CO_RP.




    Data supplied by the FMC Corporation shows that the BOD,, is 60%




of the BOD_n.  (See following letter dated January 21, 1974).




    Since the normal waste consists mainly of carbonaceous material,




it is appropriate to use the first order BOD-tii^e equation to detcrraine




the ultimate carbonaceous BOD.
    where



                                        L  = BOD exerted in tine "t"



                                        L  = ultimate BOD



                                        K  = BOD reaction rate



    then



                   '




                           .



    therefore


                                        T   '     -5k
                                        L,_ = 1-e
    since
                                             ,   -20k

                                        L20  1-e
                                        I,  = .60
    then



                                             .60 = l-e~5k
                                                   ,   -20k
                                                   1-e
    solving  by  a trial  and error technique




                                        k =  .17




    substituting back into the BOD-time equation,
                                          and



                                       L

                                       _!  = 1-75



                                       L5

-------
   FMC Corporation

   Chemical Group Headquarters
   1617 John F Kennedy Boulevard
   Philadelphia Pennsylvania 19103
   (215)5641600
   January 21,
                                          CERTIFIED MAIL
                                          RETURN RECEIPT REQUESTED
   U.  S.  Environmental Protection Agency
   Region III
   6th and Walnut Streets
   Philadelphia, Pa.  19106

   Attention:  Walter F. Lee:                          x

   Gentlemen:

   This is in response to your January 16 telephone call requesting
   information as to the relationship between BOD^ and BODu at our
^ .Fredericksburg, Virginia plant.

   The plant has provided me with the following data:

                                 PPM                     BOD5 %
   DATES                     NO.    BOD5       BOD2Q     OF BOD20

   Late 1972, Jan. 1971*      19      8l         138        59
   Feb. - July, 1973         17      85         lUl        60

   The above data confirms my recollection that the plant's untreated
   wastewaters are nearly as degradable as the standard BOD curve de-
   veloped for municipal wastes.  There are no data for longer than
   20 days at present.

   Please let me know if you require additional information.

   Sincerely,
  Ernest C.  Ladd
  Environmental Coordinator
   mb
   cc:   C.  H.  Dickinson-FD

-------
     APPENDIX D-l




EPA WATER QUALITY DATA

-------

-------
PHYSICAL AUD BIOCHEMICAL DATA




  RAPPAHANNOCK RIVEK SURVEY
Station

FL
BB
lib
108
100

FL
BB
lib
108
100

FL
BB
lib
106
loo

FL
Be
llo
108
luO
yo
Time

lo:05
15:50
15:30
15:15
1>:00

11:18
11: Ql*
10:H5
10:32
10:20

lo:25
16: 08
15:^8
15: 3o
15:15

><:35
y:20
y : Oo
b:U7
8:32
8.12
Temp.

13.9
111 ,.8
Hi ,.8
lli.O
1JI,,0

18, .5
18 ,,7
18 ,,o
17 ..0
17. .0

17. u
17.o
18. D
18.5
19.2

21.3
21.5
21.5
21.3
i. O * p
l, . 7
D.O.
(mg/1)
U/23/70
y . 76 6
O.yU o
8.73 o
8.73 o
8 . 22 6
U/30/7U
9.19 7
3.73 7
8.63 u
8.52 0
8.27 o
5/05/70
y.oo o
10.10 o
8.20 6
8.00 0
6.00 0
5/12/70
8.17
o .y 8 u
6.o2 c
6.62 0
o . 37 o
7 . J..y L,
pH

.yo
.73
.72
.b3
.70

.05
.05
.95
.yo
. 8K

.63
.08
.70
.55
.V,

.80
.80
-7o
.'('>
.uO
ou
BOD

1.0
2.0
1.8
1.1
1.9

0.8
l.l*
1.3
l.U
2.1

1.3
1.3
1.1
1.0
1.0

0 . 1 3
u.y
u . 8
1.3
1.1
0 .^
BOD
(mg/i1)

2.3
U.8
3.U
3.U
3.9

3.0
3.5
u.u
it. 6
5.9

3.3
2.y
3.3
2.8
3.7

2 . )
U.9
8.1
3.1
U.I
1.3
Kn(eJ
/ 1 ~"J_ \

0.12
0.11
0.15
0.08
O.lU

0.07
0.10
0.07
0.07
0.09

0.10
0.12
0.08
0 .0'^
U.Oo

0 . u u
u.oU
0.02
u . 10
O.'Ju
0.25

-------
PHYSICAL  AiiD BIOCHi-.IlCAL  DATA




  RAPPAI1A1WOCK RIVER SURVEY
Station

Fu
B3
llu
1JO
J3
'u

FI,
;
-------
PHYSICAL AND BIOCHEMICAL DATA




  RAPPAHANNOCK RIVER SURVEY
Station

^L
nB
llo
100
93
90
86
8U
81
PRB
69
6h

FL
BB
116
100
93
90
Time

18:35
18:0,"-
17:'i?
1T:?0
17:08
16:59
16: U6
16:36
16:22
16:13
16:02
15:55

12:30
12:05
11:30
10:55
10:1*1
10:27
Tenro.
(c)

2L. 5
23.5
26 . 5
26.5
26.0
26.0
25.5
25.5
25.5
25.5
27.0
27.0

23.0
2U.5
25.0
2U.5
2l.5
25.0
D.O.
(mg/1)
6/08/70
8.69
7.r>8
5.96
6.77
T.Vf
8.03
7.58
6.82
5.35
5.U5
7.78
9.75
6/15/70
8.69
7.17
3.1+9
6.31
6.57
6.82
pK

6.75
6.70
6 . 70
6.65
6.65
-
-
-
-
-
-
-

6.60
6.55
6.30
6.1*0
6.30
6.35
BODr
(mg/i)

0.
1.8
1.9
2.6
-
-
-
-
-
-
-
-

0.9
3.5
2.2
3.6
3.3
2.7
BOD
(mg/11)

3.7
3.8
6.5
1U.7
-
-
-
-
-
-
-
-

U.5
16.3
-
9.7
10.6
10.5
Me)
(W )

0.05
0.13
0.07
O.Oli
-
-
-
-
-
-
-
-

0.05
0.05
-
0.09
0.08
0.06

-------
PHYSICAL AND BIOCHEMICAL DATA




  RAPPAHANNOCK RIVER SURVEY
Station

FL
BB
116
100
93
90

FL
BB
116
100
93
90

FL
BB
116
100
93
90
Time

17:1*0
17:30
17:05
16:30
16:20
16:10

12:50
12:30
11:53
11:13
10:58
10:1*5

17:35
17:10
16:30
15:50
15:35
15:20
Temp.

27.5
27.5
27.5
27.0
27.5
27.5

23.5
25.0
26.0
25.0
25.0
25.5

28.0
28.0
27.5
27.5
27.5
27.5
D.O.
(mg/1)
6/22/70
8.9U
7.U7
2.75
U.29
U.90
U.95
6/29/70
8.79
6.57
U.75
5.25
5.10
5.76
7/06/70
8.09
5.09
3.66
7.38
9.21
8.UO
pH

6.85
6.80
6.75
6.73
6.68
6.70

6.85
6.55
6.58
6.53
6.50
6.UO

6.Uo
6.Uo
6.50
6.52
6.60
6.70
BOD
Ug/i)

0.9
2.3
5.0
2.5
2.7
2.1*

1.0
2.2
2.2
2.U
U.O
1.9

1.0
2.U
U.3
U.O
2.6
2.2
BOD
(mg/i1)

2.8
6.8
26.5
U.7
lU.8
10.1

2.5
8.1
17.8
-
12.6
15.9

2.0
6.0
7.9
8.2
17.3
5.9
<^>

0.08
0.08
O.OU
0.16
o.oU
0.05

0.11
0.06
0.03
-
0.08
0.03

0.15
0.10
0.16
O.lU
0.03
0.09

-------
PHYSICAL AND BIOCHEMICAL DATA




  RAPPAHANNOCK RIVER SURVEY
Station Time Temp.

FT, 10:r>0 2S.O
BB 10:30 25.0
116- A* 0;r>0 2^.0
llf-B* o:)|5 2U.O
"00 :10 2U. 0
03 8:r,0 2*i.O
90 8: 35 2U. 0

FT n:'io
BB 12:35 27 . '
11' 12:11 26 . 0
1 (''0 11:'' r' 26 .0
''3 i1 : Jr 2( .0
oO-A* 11:20 2b.Q
>C-B* U:-,

!!, :7:-- 27 . r
BP :'.:'-o 2:'.o
-, , . -, ^. c;r ?; _,;
-rQ -:.,. n7>;-
D.O. pH BODc
7/13/70
7.oti- 6.65 ] .U
6.'fL n.70 1.7
5.bO ''...70 1.5
5.f5 6.65 1.5
'tJi-3 6. '',5 2.1
^1.28 6.5'"> 2.2
ii . 5'' 6 . SC -1 . 7
7/lo/70
7 . o'j- ' . 80 1 . 1
h r-i8 6 r)S 2 ?
* .v j \y . y c_ . _j
?.^2 6.< 3 1>7
3.5o 6.58 l.!.i
"1-.^h 6.bO "2.0
3.1'.. b.HS 2.0
3.26 '-..--0 2.1
7/20/70
S.tr^ 7. '..;', 2.2
 .62 -.80 l|.r
7.18 (',.75 ^.8
7.02  .t'-r- %6
BOD ^(e)
(mg/l) (Day-1)

5.6 0 . 0( 
8.0 o.OU
ll.i; 0.03
11.2 0.03
19. 0.02
15.1 0.03
6.0 0.0-

Q. . 9 0 . 06
13.6 0.0*4
5 .7 O . O'7
11.0 o.ou
10.8 O.OU
8.U 0.05
L7-3 0.03

3.7 0.17
11.2 C. '-
i3.'s o.o;)
'0." 0.(:-,

-------
                     PHYSICAL AND BIOCHEMICAL DATA




                       RAPPAHANNOCK RIVER SURVEY
Station

FL
BB-A*
BB-B*
116
100
93
90

FL-A*
FL-B*
BB
116
100
93
90
81
PRB
69
6k
Time

18:20
17:35
17:30
17:00
16:35
16:25
16:10

13:50
13:55
13:05
12:20
11:30
11:10
10:50
10:10
9:50
9:35
9 : 20
Temp.
(c)

2H.5
25.5
25.5
26.0
25.5
25.5
25-5

29.0
29.0
20. 5
26.5
27.0
27.0
27.0
28.5
23.0
2P.5
28.5
D.O.
(mg/1)
7/22/70
8.1U
6.18
6.13
5.56
6.18
6.5)4
6.08
7/29/70
8.02
8.07
5.91
k.83
5.0k
5.2U
5. HO
7.71
7.50
7.81
8.12
pH

7.10
6.85
6.85
6.80
6.90
6.85
6.75

6.65
6.65
6.50
6.25
6.35
6.20
6.30
-
-
-
-
BOD
(mg/J)

1.2
2.6
2.6
3.U
2.9
3.2
2.3

0.9
0.8
1.7
1.7
2.2
2.1t
2.8
-
-
-
-
BOD
(mg/S)

3.H
8.5
lU.O
9.6
12.1
8.9
9.6

U.2
3.3
5.1
7.8
9.5
9.3
8.3
-
-
-
-
K (e)
(Day X)

0.09
0.07
o.ok
0.09
0.06
0.09
0.06

0.05
0.05
0.08
0.05
0.05
0.06
0.08
-
-
-
-
*Duplicate Samples

-------
PHYSICAL AND BIOCHEMICAL DATA




  RAPPAHANNOCK RIVER SURVEY
Station Tine Temp. D.O. pH BOD5
(C) (Wl) (mg/l)
8/05/70
FL 17:30 26.0 7.U7 6.70 1.6
BB 17:00 26.5 5.08 -.-..90 2.5
116 16:3- 23. r !|.?3 7.20 1.7
100 16:0^ 2Q. 0 ( .83 7.Uo 3.3
Q3-A* 15:5C- 2Q. 5 0.87 8.10 3.2
O?_B* ]r. :r'0 2o.'" Q.22 '''.00 2.o
QO lr':35 20.5 0.07 7.UO 2.6
6/27 '70
FL :'<:-}< 2r>.5 3J'r ' . H5 0.7
ilf i-^r :*.. ^.o^ .:.30 U.O
o" n:;:'i-0 P7.o 7.S;? o.50 3.0
86 2:20 Of'. _ r- 7.60 ' - . ^O ^.0
^ 12:00 27.0 7.';.'; t;.l;0 1.8
Prt.'l 11:2U 27.0 i-.8n i;Ji-0 2.0
t-H "0:'"'r^ ?;'.0 O.C'. '":.6C U.O
BOD

10. H
9.U
6.5
0.3
10.7
i:.7
10 . 6

U.l
]0.3
i '> b
-j- :  "
IC.'i
U.o
7.3
1".?
K
(D

0
0
0
0
0
0
0

o
c
0
^
0
0
0
l(el

.03
.Oo
.06
.03
.07
.Ot.
. oc

.ou
.(>-
.OS
.ou
.12
.Of;
.0-

-------
II
o
i*5'
if
l~
In*
B!
g?
s.
In"

OO
CM
O CO

^
iz;
1|
tjtt


as
H
QL,  ^
H ?

OO
ON
CO



CO
CO
LA
1
O

\rt
^5
CM
O



t-
co
c-
rH

CM
*
O

c^
vO
d
LA
f^.
CM
O
H


"H
H
CO CO IA
CO LA O
-* CO -^-

|| f
1 1
O\ OO LA
vO co t**
-d- CO LA
O O Q
LA t~ O
IA -* -3"
O 0 O

O ON rH
CO t- CM
CM CM CO
O O O



Q -3- C-
CM H S
H H H
CO 0 ^
H O O
 * 
O O 0

C VD CM
CM CM CM
odd
O LA LfN
t- e- c-
CM CM CM
o o o
CO CM H
H H H


Son O
ON ON
H
LA
rf

ON
H
CM
IA
LA
O
V^J
^v|
d

co
81
d


o
"ON IA
CM LA
\ H
d
cS
H

O




LA
CO
CM
O
LA
21


j

0
ON

ON
CM
ON
O
CM
d

H
s
d



so
IA
d
S
H

O


(O
o
o
LA
CM
CO
21


1

IA


ON
IA
CO
ON
CM
VD
CO
CM
d

\Q
^T\
d



SO
8
H
OO
b-
i-H

O

CO
CM
CO
O
O
vO
CM
CO
IA
H
H


H
H
O
^

p
r-l
P
H
CO
IA
CO
d

ON
00
CM
d



so
61
H
IA
CM
CM

O

-4-
CM
O
0
IA
CM
CO
r-l
H


8
r-l
O


El
CM
co
H

d

,.
CO
d



H
co
d
&
H

O

N
CM
O
O
LA
CM
CO
LA
O
-I


ON

O
J?

3
CO
2
CO
ft
CM
d

CO
CM
d



Q
wN
vO
d
sA
rH

O

3
CM
O
IA
LA
CM
J>
O
r-l


&


-------
3
Si

1^
"H"
tS u)

*T
i|
1 **
t/j OD
i
P5 Cvj
W O co
 ~
i to
1 ^i
1 p.1
iR
H)
3
5?
^|f



H0

0,
rj

C
o
H
CO
O CO
O H

1 1
1 l

H m
CVJ Jt
O H
O O
-* CM
CO vjD
O O
O 0


v> CVJ lf\
o cr* C1**
^ CO CO
^00

CO C"
IA VO
O rH
O O
ON rH
VO CM
O CO
0 O


O O
co co
CVJ CVJ
IA O
CO i-l
t- r>-


A &

CO
vO

I


1
O
rH
O
H
O



CO
o

$
rH
0
s
CVJ
o


IA
>.
CVJ
&
vQ


\Q

CO O CO
CO VO CO

1 1 1
1 1 1

VO -* ON
slS
o o o
O C- CU
r-l H CVJ
O O O


<"
IA oS P
O O 0

CO 0 CM
H O O
000
CO CM f-
O H H
CM CM CM
O O O


IA IA IA
t>- C l>-
CVJ CM CVJ
O IA O
IA CO CM
IA IA IA
_j _j _j
r^ i^ f~ i

8 CO O
O\ ON
i 1

CO
IA

1
R
vO
a
o
VO
0


tf% O
t4 IA
O

CO
CO
CM
O

1


o
IA
CVJ
O
IA
O
r~l

A

co
CO

1

^

-------
s
 hQ
L'
Ox-s

i~
H
O 60
oJ
gj
mtp
O S
OJ
gg
""
**
P M
31
f. -4.
M  -T
0 O
i!
l|f

a
HcP
1
3
o
H
P
OJ
ra


























00 CO O O
*  * 
.4- H co ir\
H ir\ o t-

8^ 9 S ^
NO cA ,-j ^
H O H C-
CvJ -* UN -d-
H O H OJ
H CVJ O -*
OOO O
0*00*0"
MD O H ^
O*O*O*o"
p
OJ H l>- CO OJ
O H O* O
VD LT\ O CO
3 H ^ "H
00*0*0*
S $ 1 3
000*0*

ITS IA UN lf\
-* UN t^ UN
OJ OJ OJ OJ
O O UN UN
OJ m o m
"3 ^ "LJ" ^
l 1 vO Q
^  3 S

omcocoooomuNco
"""d"s!S&

m (3 rH i/\ ON co ^^ -^"J* -^""i"
ON ON o ^5 ON ^5 M LTN co
H H H -! rH H
^ol^^lQ^o-^o-
J-J-J- UNUNUNVOUNMD
SSSSSSSli
0000*00*000"
^^ C** ^^ CO ^>O C) l^A QO ^*~
VO VD n^ T' sJ CO P*J OO ON
CO CO MJ" -r^j* "UTN ^" C*j CO CO
o'o'oo'o'oOo'o
|.
CVJ oo vi") \o CD ON tD t**" OJ co
OOHOOOOHH
S3,^K"8>
r-lrHOJOJrHH'-liHr-4
O*O*O*OO*O*OOO"
HPmOJOJHHOJOJ
ooooooooo
to

CVJCUOJCUCXJCNJCMOJCM S
OQlTNOOOOOO 0>
s
<  *
1 1 IVOOCOOrHCQ


-------
p
1^1
*r7
P

f" ^ 1
SJ r-"i
EHJ,
J;

j.
g4
08
i
CM
O CO
&


<

Cj ^
EH M
"r7
1 ^
So
r< -3-

PM<
5
(Scf

&
B^
ti O
EHO

-------
f*\ "^
i

jjl
H
S $#
H3
*T
, 	 |
cO*^
~
4
08
CM
O CO
1*5 O
<-'
^^
S3

t>2 i  \
H ""*"-*
I
*r7
P
rH -^~
W)
rH H

CM
ITN
CM
_-j-
rH


0
CO


in
O
rH
1
H
-3"
CM
VO
lf\
O
O
ir\
CM
o




ON
00
UN

o


CO
o

CO
vO
_.

o
ON
CM
ir\
J-
rH


g
ftj


CO
ir\

i
CO
CO
IA
CM
CO
CO
o
o
CM
0




CM

CO

o


CM
O

in
-=f
O

ir\
oo
CM
8
_-J.
rH


O
CM
rH


CO
CM


ON
CO
vO
r-t
ON
.J^
rH
O
c?
CO
0







1



^
o
ON
ir\
CO
O*

O
OO*
OJ
ITN
ITN
CO
rH


CO
H
rH


ITN
H
CO

8
ON
H
ITN
co
H
O
CM
O




in
^_
V^Q

O


3
o
CM
in
CO
0*

in

s
CO
H


H
rH


0
S3


in
CM
rH
H
H
O^N
O
o
CO
H
O




^
^S
M3

o


1
o
H
CO
CM
O

in
oi
o
CO
CO
rH


<
H


O
in
.*
i
ON
,_!


J^
O
O
H
O




P
^T
CM

O



o

CO
CO
o

^

in
CM



in
ON



CO
rH
CM
1
CO
in
O

in
CO
O
o
H
I>-
H
O




t^
ON
"-I"

o


1
o
rH
t-
H
O

in
\Q
CM
CM
CM



CO



CO
Q

.
o
CO
,_J

H
CO
o
o

o




\o
^*
rH

0



o
0
CO
ON
rH
0*

in
&
fc
rH
H


rH
CO



O
in
-*
i
in
ON
H
C-
co
o
o
3
o




-4-
v*o
^\

o


3
0
in
NO
CM
o

in
*
in
O
,_j
^


b-




-------
               APPENDIX D-2




COMPUTER OUTPUT SHOWING LONG-TERM BOD DATA

-------

-------
  *00u       5/1P/70    3
     TIMF         BUD
    (DAYS)       (MG /L>
     0.0         0.0
     2.0U17      0.5100
     5.732fe      0.9700
***************************************************
******LAST 5 U I A B fc. S PIT Tj L=LA(l-F**(Kl*r))*****

DATA CHNFIGAPATION DOES NUT  ALLOW  ANALYSTS
A***************************.***********************
*****LFE.S GRAPHICAL AiNALVSlS*********************
         ULTIMATE UD =     1.270      Kl(HAS(t))=   fl.?:>17
BQDl=  O.iSi
***************************************************

***************************************************
  9005       5/19/70    11
TIME
(DAYS)
0.0
2.0000
5.8750
8.7*7
10.9^79
1 4.5R68
16,7153
?0.7*>39
?3.569U
30.7?22
33.7"b5
***********
BUD
(MG/l)
0.0
0.9700
1 .6100
2.1900
3.1900
3,bUOO
a , 3 .* 0 0
a. 1300
a, 2700
3.7200
y.900
****************************************
******LEAST SuUARLS FIT  TU  L = L A ( 1 -F * * ( K 1 * T ) ) * ** **
DATA CONFIGARATIDN OOcS  MUT  ALLO^  ANALYSIS
***************************************************
*****LFE.S GRAPHICAL  ANALYSIS*********************
         ULTIMATE  HUD  =     4. 892      K 1 ( BASt ( t ) )  =
                          5   U05=   1.733   Hu010=   ^
                            a. 537   ^uD50=   a, MO
***************************************************

-------
***************************************************
  9006       b/?*/70   11
    (DAYS)
     0.0         0.0
                 1.0500
     7.6^35       2.to00
     1.8*19       a.b^OO
     ub*75       u.VfcOO
                  b,0600
    ?0,0?08       5.UOO
    ?1,B03       b.b?00
                '
     ?7  8715       b"  b?UO
 *****;;* *****************************;***::*;:;;;
 ******LEAbT  SUUARtS  FIT  TU L=L* ( 1 -F **(K 1 *T ))*****
 TRlALb = bOO  CUDt. 3  0  STANOAHO ntV = 0.29*5
 MATE bn0 =  ^.53^5

0 b?^  H[,n^  l.OOi
    2
     ULTIMATE bn0 =  ^.535              .   =
                            6.000
 ************************************************
 *************************************************
   900?      ' b/ U/70    
      TTMF         BUO
     (DAYS)       (M(i/L)
      0.0         0.0
        5t7a      1.3700
        ,
      1 1 .7917      b. 1000
      ?,  t.^90       Q.U
  **************************************************
  *****M.tAST  SulJAPtS  FIT  TJ  L = L A (t -E** IK i* T)) *****

      MU   TQIAI^  =  bno   cunt  =   0   STANUAKO otv = 0.217B
              '
  ****
       ,,                                             .
     **>*********.******************************

-------
     a       5/1P/70
     TIMF         RUO
     0.0         0.0
     2.0U17      0.5100
     5,732h      0.9700
***************************************************
******Lfc.AST SUIUSfcS FIT TJ L = LA ( 1-F **(K 1 *r ))*****
DATA cn\FlGAATiriN DOES MjT  ALLOW  ANALYSTS
***************************************************
*****LFES G-
-------
******************
  9006       b/?R/70   11
     TIME
    (DAYS)
                  *********************************
0
2
5
7
It
1
1 u
1 7
?0
?1
?4
?7
******
,0
,0 .}<*<>*      MCf^stCfcU  =  o.ooS9

                                     J f 2 1 h  Pu010=  .W
  ***************************************************

-------
****************************************************
  9009       b/jS/70     9
     TTMF          BUD
    (DAYS)        (MG/L)
     0.0          0.0
     ?.0?U3       l,c!700
     5, 1?50       2, 1800
     B.bfciZ       U..7HS       fa,9?00
    P0.9097       7. a 300
    Pa.bS*l.f..A5T  SullA^tS FIT  TJ L=LA ( 1-E**(K i *1) )*****

^AXlMiM THIAL. b =  500
                      i.uua

-------
***************************************************
9011 b
TIMF
(DAYS)
0.0
2.7779
b.9?71
b.b?33
10,tt?b
1 u.798b
1 7 ,bU03
?Q .81 bO
**************
/?9/70 
BOO
(^G/D
0.0
1 .7600
a, 6700
3,0900
3,b500
a.bftOO
b,3300
b.bSOO
*************************************
******UAST  SHUft&tS  FIT  Tu  L = L A ( 1 -F.** (K 1 * T1 ;*****
MAXIMUM TRIALb  =  bOO   CUDt  =05
    ULTIMATE  bHQ  =  10,6^79      XlCBASt()J =  O.OaU
***************************************************
***************************************************
  901c?        7/  ft/70     ft
      TlMF          PUD
     (DAYS)        (M(i/L)
      0,0          0.0
      r?.a-?75       i.b300
      b.7?9?       2ta900
      e.aflfai       j,sooo
     10 . b 9 2        3.blOO
     lu.asa^       a,b300
***************************************************
******LE*ST  5MUARE.S FIT  TU L = L A ( 1 "F ** (K i * T ))*****
         TRIALS = bOO  CUOt- a  0  oTANQAwO  DtV  =
              UOD =  5.90S1     KlCRAStCh))  =   0
     =   0.518  Ho02s  0,990
     Pijni;=  a,'11%  BHD-JO=  b.b?H  RuD50=   5.flab

-------
 ***************************************************
   9013        7/1V/70    9
      TIME          BOD
     (DAYS)        (MG/L)
      0,0          0,0
      1.9*c!fe       0,b700
      S.9-500       ! . 2  0 0
      .8<>b8       2./9QO
     13,9331       3,d***.******* ^ *******************

-------
***************************************************
  90U       7/16/70    9     B
     TIMF         ROD
    (DAYS)       (Ml>/L)
     0.0         0,0
     2.7361      1.7300
     6.097?      2.8UOO  .
     8,b93      3.1900
    11.5625      a.0*00
    lU.blBO      5.5700
    17.5*33      b.5600
    ?0.b"59      7.1900
    ?a,0B33      8.0600
**************************************************
******LE.*ST SulUPtS FIT TJ L = LA( l-t**(Kl*T) )*****
                                                   *
        TRIALS = 500  CODE =  0  STANDARD  nf..V  =  0,2/fll
    ULTIMATE: BOO = i7,3i?i     Ki(BASd(t)j  =   o
8001s  C,45  Brjn^s  0,879  PU05=  
-------
****+******************************x***************
  9017        7/VQ/70     8
     TTMF          HUD
     (DAYS)         (MG/L)
     0.0           0.0
     d, B195       1 .91 UO
     5.6"*5U       3.3100
     8. 6 u 24       a.OfeOO
     1 1 ,>02       a.HBOO
     U.5972       b.bKOO
     17.7'Jil       b . 3 "5 0 0
     ? 1 . 6 ? 2 9       7.0500
T**-*******************.******tA*************-V****
  ^ 0 1         b/^/70     ^
     FTMF          BUD
    fDAY?)         (Mb/L)
     0.0           0,0
     i> . o M 9        i.bnoo
     b , a 0 9 7        cJ , 1 0 0 0
    1 0 . b  3 3        u,b300
    l b , a 1 b 7        o . l fl u 0
    ^1,6^89        rt , 7 3 0 0
*<"*************** ******-*(***-^*-***. A + t + ***** *********
******Lt.AST  S w 1 1 ^ P t *5  FIT  fU L:;l.A(t"'-''-|'(Ki*nj*****

-XI'^tiM  TRIALS s  5^0   Cost's   0   oTAMyAftn DhV  s 0.0b
    ULTIMATE un,,  u  io,5v->c!      < lU1 A.';t (t) ) =   o,ob58
       0.573   n.|H,)~   l.lt^  "uo^s   d.b^>i  MiiDins  /t , 5 j ;>
                          --  o.b7'5   roHbOs  "'.TiJ?
                          A** ******* >********%<****<(*

-------
***************************************************
  9.505,       5/19/70    R
     TIMF
    (DAYS)
     0.0         0.0
     2.0000      0.9200
     5.B715      1.100
     8.7*13      1.5300
    \ o.9uuu      2, 1300
    1 u . 5 a 3 3      3.1900
    16.711R      3.^700
    ?C.7^0U      3,5700
***************************************************
*****. LEAST SUUA9ES  FIT TJ  L = LMl-P-**C' 1 
                  0.0
                  1.0100
                  2.1100
                  2.9SOO
                  U.bbUO
                  b.3700
                  5.b200
                  b.ci^OO
                  6.5^00
     2/.8^B1       7.3300
 ***************************************************
 ******LtAbT  SuUaBtS FIT TU L = L. *( 1 -E ** C K 1 * T ))*****
                = 500  CJHE =  0  STANDAnn  OtV  =  0,lo<5b
                  =  9.79B     Ki(BAStCO)  =   O.ObOi
                                        ns   '-).005
 >*************************************************

-------
***************************************************
9307
   7
   0,0
   2.5170
   b,7h?a
   7 .bfrfJS
                   PUO
                  ( M l> / L )
                  0.0
                  l.bSOO
                  3.0500
     1  , 7 1 b 3      b , l> 7 0 0
     IB, 55 21      7.^00
     ?1.|3S90      <} , u 0 0 0
****************-**********************************
******Lt*ST Si-U;,R[-:i  FIT  TJ LsL * C 1 -r ** (K 1 *T) J *****

HAXI^U^  TOTALS ~ LJOU   cunt =   o   STA^QARn  nt.v  =  o,i
     ULTIMATE: bOo -  l,a'^70      Kl

3UD1=   O.'-^a  i-u'^----   l.lti  UH5=
     nL.inir)=   fr.0/:'   ;'0t;7,0= Il.b03
****************^'-**************A*'****************
*************** -.:* - ;- A *******************************
   9309       6 / l ri / / 0     9
      | I MP          !HJO
     tn^vs)         (''U/LI
      0 , 0          '-.' , 0
      ?,0?4"^       1 , * ? 0 0
      b . 1 ? b 0       c? . v 3 0 0
      H.f5*>3?       i:?/SuO
     10,^0?       u , ? ? 0 0
     1^.bR06       7,/-'lOO
     1 h , / 11  ft       T . u " 0 0
     ? n , 9 0 V 7       0,^50^1
     ?a,oSc^       ')/'? 00
********* ****** . *- " - **** ^ A *************************
******! t -bT SC.il) .--> FIT  TJ L = LMl-f-**lKl*n)*****

DATA c^-.r j  HAPAT  r   i,nts  'iijT  ALLO^' ^'^LYSIS
******** -VJ"*****J ' ** "****-**********-"****************
* A * * * L p c. ;:  G < A P LJ 1 r -I- 4 N i L v :j I 5 ****** ;' **************
                                         K1 (RASt(t-) J  =
 *****.', A ... ^ * * >
                                      ** ***************

-------
***************************************************
  9310       to/22/70    
     [IMF         Run
    (DAYS)       (MG/D
     0.0         0,0
     2,0000      1.3600
     5,07ba      2,3300
     8.010"      3.700
    \ \ ,93UO      S.ttfeOO
    U.037      b.8000
    1 b . B 3 3 3      7.3100
    ?0,78?      b.1200
***************************************************
******LEAST SutU&tS PIT TJ L=LAC1-E**(Ki*T))*****
        TRIALS = 500  CURE  =   0   STANDARD  OEV  =  O.P/71
              .
***************************************************
***************************************************
  931 1        fa/29/70     
     (DAYS)
      0,0          0.0
      2.777*       1.6200
      b.9?71       3.0^00
      8.6333       6.9MJO
     1 0 . 8 ? b        7.7^00
                  8. MOO
                  9.3000
     ?0.8lbO       9. 65 on
 ***************************************************
 ******LAST  SQUARES  FIT TU L=L A ( 1 -E **( K i *[))*****
         TRIMS = bOO   TUHt =  0  STANOMH 0V = 0,58?3
     ULTIMATE bno = i?,Sbl     KHASt(t)) =  O.o/fett
                      1 .790
     -,,, ^..  .. . ,-, ,   ^.)U3u= 11.313         -  -
 ***************************************************

-------
 ,*************************************************
  9312       7/ (S/70    k
     TIMF         Pun
    (DAYS)       (H(/L)
     0.0         0.0
     T SnUaPES  PIT  TU L = LA(l-f:"**(i f A L 3  =  bOO   Cunt  =  0  sTANuApn ThV =  0 . 1 0 1
                            9 .

-------
************************************************
  931U       7/1*1/70    9  
     TIMF         BOD
    (DAYS)       (Mfi/L)
     0.0         0.0
     2.73bl      l.200
     b.0<>72      2.2100
                 2.7700
                 U.0800
    Itt.blbO      5.2100
    !7.533      5.7"00
    ? a () a 33      fa.bOOO
 ..**?i;. .".*.** **********************************
 ******Lt4ST  SUllAPtS  FIT  TQ  LcLACl-E**(Kl*n)*****
     MuM  TRIALS  =  500   CJDt  =   0   STANUApH  0V  .  0.2800
     ULTIMATE  .00  =  10.76B8      KlCBASt(fc))     O.OaOb
         ::   :::  :.....
 ;;*;;;*.*******************************************
   931b       7/2P/70    ^
      TTnF          BUD
     (DAYS)        CMG/U
      0.0         0.0
      2.aiJ79      2.0600
      S.3Pb      3.5100
      .37S      u.^000
        uaoa      5.U500
                  o.lBOO
                  7.0^00
                          TO


       M  TOTALS  =  500   CJnt  =   0   STANDARD  DtV  
                                         t))  =   0.
                                     3.215
      r,,n      *.,             .
  ******;******************************************

-------
 7 ^ F
v fl Y 3)
0,0
i'. ft 195
s.6?b"
e .b"^"
< 1 , v^ ?
1 u . 3 f; 7 ?
',;- 3 1
' ! . - - ^
,.* + .*****<
, **,(**<-*'*,#*****''*****
/ "" i"'. B
UD
( M U ' L. )
0.0
1 .aPQO
2.7^00
3,7100
a . 3 * u 0
5 , 3 * v ">
2 > ** ^ "
ts , " ' ') ^
,,^..^.^,i.i^^^AA^A^*-^*^irifA^A*
^ jr**-tri**"******;"***'****1"*ir**
= L
                   o '
                                        C < 1 * T ) ) * * * * *


                                        LjA^n ntv =  o.lo?b
* * *

# * '
   i^.*******************

    .I*******************
                   ("U/,,5
               **************************************
               ,/..i;r_^  U;T TJ L = LA ( 1-E** CKl*F ))*****
                                 0   -->TANUACO  Qt:V s 0,?175

                                  Kl(MASt(tH=  0,0702
               .
           *,>*,.,+**************->******************

-------
***************************************************
  9318       / 5/70    *>   '  p
    (DAYS)       C
     0.0         0.0
     2.6319      i
     5.a097      3,6600
    10.5*33      u.8300
    15.U167      b,b
-------
***************************************************
 looni       u/^3/70    7
     TIME
    (DAYS)
     0.0         0.0
     1,8993      1.2300
     b,37S5
    Id. 7 >1 3
    lu.b799      3.1BOO
    17.b035      3.7000
    ?G,uuiO      i.bSOO
***************************************************
******LtAST SvJHAtS  FIT TJ  L = LM l-F**CM*n )*****

MAXIMUM TRTAlb  = bOO   CJOt  =   0
    ULTIMATE: bHo &   3,9V1      K

    =  o.b03  Pnn28   o,9ad   RUH^
    ijni?a  T./ioft   bnD30=   3.B37
***************************************************
***************************************************
 1 n o <" ^       M/^o/70    fl
      TIMF          ROD
    (DAYS)        (M[i/L5
      0.0          0.0
      >.it^b3       0.9200
      h.onOO       ^.6700
      7.H125       a.900
    11.00b9       3.3900
    Ui . 0 ? 0 B       U.1100
    1 1 ,1\^       a,b700
    ?1 . 1 1 fe       5. I300
*y^vi**************************Jr****************
******! tAST  suiiAHts FIT  TU L=LMI ^"**^i*m*****
boo  CunE =
s  5.*************************************

-------
***********************
 10003       5/ V70
     TIMF         pUO
    (DY9)       (Mli/L)
     0.0         0.0
                0.6700
     fl.OSbfe      1.3300
    11.7*7"      l.oflOO
    15,1093      2,1500
    19.0100      2.3ROO

    n;r.::...:.*-
    ..AST  SUIUPtS FIT  TJ LLM1-E"(M
  ***
 ********************************************
  1000U       b/l?/70   11
     TIMF
      0.0         0.0
      2,0(100      O.bl 00
      s.b^?6;      1.1300
      9,0^5      l
     16.0035      3.1^00
     ?i. 7708      3.0700
     ?7 .7^00      3.2100
                    FIT  TO 1 = 1 A ( 1 -E * * C < I * T  *


         TRIALS s bOO  CUDL =  0  SJ^jJAKO DEV =  ,,lb?H
         '^Tt bOD s  a,0b02     KlCBA3t.(&n -  O.
        o asi
         ^=   Z.O            .
  ****** *******************************************

-------
 a**.**************'*******************************
 ; ? o o 5       b /; Q'" v-'   i ?
     Tl^F          r-^~
    (DAYS)        CM''/-1
     0.0          0.0
     2.0001       -u . - '. 0 C
     b . B h 1 1       C , " ' C 3
     6 .' ? 0 *       ; .   - "
    i o .  ~
    1 U . b 7 2 0       .-; .   " "
    1 6.7M a       /,--"
    ? D . 7 ^ J *>       -- . ' "  "
    ?7.7-?       t.-~  "
    TO . 7 <- ^       ^ -;   *
    ^ i ,  , 1 i *>       ^ - - - ' - "
    T5tt,^7T       _ ,   "-
,***************4-**^******************************
******LtA^T  *,.'A=-   -I"  TJ L = LMl-p**f_  i  '  -               -
                                                 10=  l.
                                                 71
 ****************-**^******************************
 ^***********-**^-J*i* ***************************
 ;'V.T         --''""     * "
      T T * -.
     f C A V5 ]
      : .0
      ^.r^ ~        .-'"
      5 . ec         -. ,  fc  *
      7 . t - ', "        ' . - ' > ">
     11 , f> "' - ">        ''''
     t v. , - " .. 6            - ^
         ^ -^             i*
     ! 7 , - - -'         - - -
     ' C , 0  ' - 1        >.-
     ? 1 . B ^ i ^        , - ' ~
     ? u . 8 c 7 K       7 . 7 - j 0
     jp 7  ^ ^  fc.        ^ >' . ',; 0
 *,****'**-> ****-   *   .A****************************
 *,****  L i '^ ; - i - a . S - i T T j  L r L A ( 1 - - * * C - 1 * : ) ) * * * * *

 5*TA  C" '.p  "^PM- ;"    --..^ MJ"  ALLLK ANAL.-sib
 *.********* **-**- "*'****************'**************

 ******************
                    *************
                                  ********************

-------
*4 A*****************.*******************************
 ! OQP7        b/  /7Q    9
    CD AYS)        (MU/U
     0.0          0,0
     2.bn70       1 .b200
     5.7^70       2,6*00
    U.7i3       U.bOOO
    1 *C*l*T))*****
ujjyjM  "  -JfALS - b^lo  CUOt  =   0   oTANDAQH DtV  =  0,?907
    'JLTI"A--  c0 = i!,Q005      KlCRASt(M)  =   0,048b

^'(Pl=   o  ^U   '.np=   1,10(?   RUDb=  .B.b'fcb  RQ010=  y,^?1
***************************************************
***************************************************
  10008        b/fl/70     0
      T I M p          BUD
     f u i v " 3         C ^ I"7 D
      0.0           0,0
      2.^00       1 . tt 7 0 0
      *> . \ - ; a        0 o n
     11, ^^n       a,9SGQ
     | a , ^ 0 7 ?       o f 4 7 0 0
     '7.0^13       7 . i * 0 0
     ?o . ^^u^       ^ , ooo
     ? d . w 1 / "       ^,7000
* + ************************************************
******! (-AST ?^-:ii-'-_S rIT  TJ LrLA( i -F**(Ki*H )*****
 IATA  L'''.r I r- AC A' jfN  Uni"  'OT
 *****+*******+************************************
 ***,._rts r, -^ * H w i C A L  Aix&LY3lb*********************
 ^ATA C i\ ~ I'A^.'. * ;'T,  DHLS MJT iLLU1^  ANALYSIS
 ****** 4*******^ ***********************************

-------
***************************************************
 li 009       6/15/70   10
     TTMF         BUO
    (DAYS)       (MG/L)
     0.0         0.0
     2.0?3      1.9200
     b.l?50      3.5^00
     8.6M?      4.B500
    iOibS?      i.7
-------
***************************************************
 IOU11       b/29/70    B
     TIME         BUD
    (DAYS)       (MG/L)
     0,0         0,0
     2.777ft      1,7600
     b.9?71      3,0300
     8.8333      3.7500
                 a,2600
                 b.VOOO
    17.8^03      7.7600
    ?0 .81bO      8.3700
***************************************************
******l4ST SUUARtS FIT TO LcLA(l-e**(K|*]))*****
        TRIALS 3 500  COnt 5  0  STANUARP)  r)V
                 3 27,19?b     Kl (HASttfl )  =
        .u^l  PQD2B  0.973
        S=  6,505  bOU30a ll.a^q  WUDbfls  16. ^
***************************************************
***************************************************
 10012       // 6/70    6
     TIHF
     0,0         0,0
     ^.at75  .    2.7500
     b , 7 ?'*-<      a . u 2 0 0
    io,q2^      b.onoo
    m,asa
-------
***************************************************
 10013       7/13/70    9
     TIME         PUD
     0.0         0.0
     1.9653      1.0100
     5.9167      2.8000
     8.8765      3,bOOO
    10.9375      a. 0000
    13.9757      b.2100
    17.6771      6,7700
    P0.2326      7,6500
    ?U.6*75      8.200
***************************************************
******LLAST SQUARES FIT'TQ L=LACI-E**(KI*T) j***** *

MAXIMUM TRIALS 3 500  CUHE s  0  STANDARD 0V = 0,2356
                 = i9,895a     KICBASE(E)) =  0,0225
                     0.880
            5.726  bOD3Qs   ,               .
***************************************************
***************************************************
 100U       7/16/70    9
     TIMF         PUD
    fDAYv^)       (M(j/L)
     0.0         0,0
     2.7^61      1.3700
     5.80b5      1.9600
     8,6^93      2,b700
    11.5625      3.7700
    la, 6180      4.49QO
    17.5833      5,100
    P0.6458      6,0600
    ?U,0833      6,3^00
***************************************************
<*****LEAST SUUAPES FIT TU L*L*(I-E**CKI*TJ)*****

CATA CONFIGARAT^ON Dots NUT ALI Q^ ANALYSIS
<**************************************************
**.***LFS GRAPHICAL ANALYSIS*********************
         ULTIMAJF PUD =   l
       0.395  PQD2=  0.777
        5=  y,6Q8  t>nu30s  7.203  PUObO=  8,993
************->r**************************************

-------
***************************************************
 J0015       7/20/70    
     TIMF         PUD
    (DAYS)       (MG/L)
     0.0         0.0
     2.UMS      2.3100
     5.5^56      3.7UOO
     8.6563      5.0000
                 b . 4  0 0
      .
    17.U51U      8,1100
    ?0.u^83      8.^300
**************************************************
*.****LEAST SJlUPfcS FIT TO L = LA(1-F**(K1 *T))*****
    [*UM TRIALS r 500  CODE =   0  STANCH
    ULTIMATE bHQ =  10.2436     KltBASE(E))
                      1.617   RUObs   3.576   UD10=   5.913
     uni^s   /.i"   bOu30=   ^.500   HOD50=  10,150
 **************************************************
 ***************************************************
  10016        //2?/70     9
      TIME          BUD
     (DAYS)        (MU/L)
      0.0          0.0
      2.aa79   .    2.0^00
      8.U375      a.d300
     n.uaaa      5.ciioo
     17.92      8.1500
     ?0.b07fe      8,1^00
     ?a.510      S.blOO
 **************************************************
 ******LAST SQUARES FIT TLJ L = L A ( 1-E** ( K 1 * T ))*****
     -U TRIALS = 500.^ CUDE =  0  STAND * ,0 DEV . 0.3j?i
              .     HOU30=  9.733  *Uf)50= 11.?
 ***************************************************

-------
 ************.*************************************
 10017       7/29/70    ft  .
     TIME         BUD
    (DAYS)       (MG/L)
     0.0         0.0
     2.8195      1.9600
     5.635      2.5200
     8.6U2U      3.0600
    11.63b      a.u300
    U.57?      5.1*00
    17.7il      5.9800
    ?1.8?29      6.5400
 ***************************************************
 ******LAST SQUARES  FIT  TO Id A (1-F**(Ki*T))*****
        TRIALS  s 500  CUnt  =   0   STANDARD  rtfcV  =  0.2811
                               Kl(BAStfE))  3   O.OS39
BQDlc   0  U09   nrjR28   0.970
     PUH1S=  5.260  dOD30=   7.603
***************************************************
***************************************************
  10018        8'  5/70     <
      flMF          PUD
     (DAYS)        (MG/D
      0.0          0.0
      2.6319       1.8500
      b.u097       3.2600
     10.5*43       5.6000
     15.4167       7.3500
     31.6389       8.9500
 **************************************************
 *,****UAST  SQDARLS  FIT  TO LL A (\ -E** CK 1 *T ))*****
         TKIALS s 500  CUDE s  0  STANDAkO HV s 0.1766
                  =  9,259     KKBASfc(E^) 5  0.0812
 CDlr  0.766
     PUHl^s  6.^1*  OOU303  8.96b  BUDbOs
 *<*************************************************

-------
************************
  Oani        4/23/70
    (DAYS)       CMC,/!.)
     0,0         0.0
     1.8750      0.8200
     5.3*42      1.2400
    12.7S69      2.0600
    iu.5*56      2.0600
    t7.792      2,3600
    ?Q.ulb7      3.0300
***************************************************
*****!  MST SQUARIS FIT  TO  L = L A ( 1 -E ** I K i *T ))*****
   lM.ju TRIALS  a  500   CUOt  =   0   STANDARD DtV a 0,2lb
    ULTIMATA  dnD     3.25b      KURASt(t))  =  0.0766
        0 253   Rrjnzs    .             1.0<0  BUD10=  1
    BfjPl^s  2.^jq   60030=   3.0P1   RUD50=  3.351
 .,*************************************************
 ***************************************************
  lOan^        u/50/70     fl
      TTMF          PUD
     (DAYS)        (M(i/U
      0.0          0.0
      o.O^OC       1.7^00
      7. 612*5       2.0500
     11.006*'       2.M600
     1  , 0 ? U ^       3.1BOO
     ?1.11*       .
 **************************************************
                  tS  FIT TQ L = L.Ml-F-**CKl*Tn*****
     MyM TrUiLS s 500  CUDt =  0  S
     ULTIMATA bnu s  a.5b70     Kl(BASt())  =   0.0/50
     r  0 330  *';n2=  O.b3b
     p(Jn?^ %.o,u  rtOU3u=  -
 ***************************************************

-------
 **************************************************
 108(13       bX 5X70    
     TIME         UD
    (DAYS)       (MQXL)
     0.0         0.0
     5.017      1.2800
     8.0F21      l.iSOO
    11.7*39      l.baoO
    15.1U58      2.0000
    1Q.OO&9      2.6POO
    PU.701"      2.00
***************************************************
                RtS F1T.TJ
DATA C<"NFIGARATION Dots  NOT  ALLOW  ANALYSIS
****************************************************
        S GyAHHCAL AN ALVS I S****** ***************
         ULTIMATF BUD  a     i.Otl      Kl(BASt(t)J  c
         	  -----  	   ..,,_   ltU?9  PLiDiO =
****************************************************

************#**************************************
 10BOU       b / ) ? / 70     
     TTMF         ROD
    (DAYS)       (MG/L)
     0.0         0,0
     2.0000      O.b200
     5.b*>67      O.V700
     9,0 "17      2.0500
    12.P097      1.7POO
    1u.feOa2      2.1800
    17,Q82fe      2.7900
    ?0.60<42      2,d0^
******************************************************
******LtAST SUH4LS FIT  TJ  L=LA(t-**(Ki*T ))*****
CATA cn.NFiGAHATinN uots  MOT  ALLOW  ANALYSTS
**+*********************************
*****|_Ft? G^A^^JTAL  AiNALYSlii****-****
                                      rs 1 ( f A s , (;. i j  c  o ,. ". VI9
******************************************* *fr-<( ''**?:*

-------
***************************************************
 1 1 bft 1        /?3/70    7
     TTMF         R00
    (DAYS)       (Mti/L)
     0.0         0.0
                 i.VOOO
    12.7*96      2,6700
    1U.538?      2.6700
    17.UMR      3.3400
    ?0.3993      3.5500
***************************************************
<*****UAST SuUARtS FIT TJ L*L*Cl"f**(l
-------
             b/ 5/70
     TIMF         PUD
     0,0         0.0
     1.8507      0.6200
     b.O J  =   o,o^o
-------
***************************************************
 11605       b / 1 <5 / 7 0    8
     TJMF         PUD
    fOAYS)       (*
     0.0         0.0
     2.0000      0.6000
     5.8M1      1.000
     b.770      1,3600
    10.
-------
******
              *************************************
    (DAYS)       <
     0.0         0.0
     2.5070      1.2100
     5.7S70      1.B700
     7.5*521      2.0700
    11.7*13      2.3*00
    U.709      2.b300
    ? 1 . 5  8 6       U.bOOO
    ?b 50 17       a ,9000
***************************************************
******UAST  SUHAPES  FIT  TO L = L A ( 1 -E **C K 1 * T ))*****
     MUM  TOTALS  =  bOO   CLjnt =  0  5TAND*Hn DV = J.30M
     ULTlMATb  bPn  =   ,ti09     KKBASE(fc)) =  0.0353
 8001=   0.2B1   Pnn2  0,553  R=   .              2
                    ttOU^O=  5.2^^  PUObOc  A, 723
              ..
 ***************************************************
 *******************************-*******************
  11608        f/ ^
      TIMF
     (DAYS)
      0.0         0.0
      ?2SOO      l.ttTOO
                  2.5300
                  3,2900
                  3.5QOO
                  a.iaoo
                  5,0000
     ? 2 . u l 7 a      b.atoo
 ************************************************
 MAXIM,,- TRIALS = *ro  CJnt  =   0   STANOAHO  nLV  a  o.aili
     ULTIMATE BPl) =  fe.ab^      KtCRASt(E))  =   0.0*76
 BCJ01-  ^.U?2  w.^2=   O.rtlb
     Rjri^r   'S,1''  bTJ"^U=   b'.bOh    .s    .
 ***************************************************

-------
*****.*********************************************
 1 1 b >">       b / l 5 / 7 0    10
     TIMF          RUO
    fDAYSi       (MG/L)
     0.0         0.0
     2.0000      1.6200
     5.10U?      2.3200
     rt.buZli      3.0^00
    lu.fc?5*?       b
    t fc . (-  1 .)       fa/2?/70     ft
     u, J          0.0
     ^.onoo             15.3^00
**** . + + *** *****************************************
****** LLAST  SQUARES  FIT  TO LrLA(l-E**(Ki*T))*****

DAT& C^^rl -APAT IHN  UOtS  NJT ALLjw ANALYSIS
*** + ** + * A****************************************
***A>I_P;.';  r, -M^^JCAL  ANALYSIS*********************
                                 W ANALYSTS

-------
****************************************************
 11611       fc />'>/ V j    p
     0.0         0.0
     2.777*      I.b700
     5. 4? VI      ^.600
     6.6^31      i.bSOO
     0,b?bU      3,
    1 7 . & U 0 3      6.7600
    2 0 . 8 1 b n      7.4700
***************************************************
******|_MbT SUlUPtS  FIT  TJ  L = L A ( 1 -E * * ( K 1 * T ) ) ** ***
        TRIALS = 5HO   CUOL  =   0   STANOAUD Dt^ = 0,2302
    ULTIMATE bno =  I7.ft^lb      M(HASt(t))  =  fl,OeJ#>l
                      0.90b
            5,7/?   ti0030=   9.&70
***************************************************
***************************************************
 1161 d        7/  ^/70     4>
     DAYS)        (MG/L)
     0.0          0.0
     B.uay?       b . 9 0 0 0
     10.8^4?       b.3?00
     Ia.alb7       7. l?00
***************************************************
******! ^A5T  SUUAt^  FIT  TL) L = L A ( t -E **( K 1 * T ))*****
         TRIALS  =  b^O   CUnfc. =  0  S
         MATE  dOn  =   7.8607     KKRASEtfc)) =  n,lb7l
                                    ^,
-------
***************************************************
 11613       7/H/70    ) ** ***
MAX1-UH TRIALS  =  500   COOL  =   0   STA^sn  OfcV  = 0,2^10
    ULTIMATE  BOO  =  U.fe227      KlCPASt())  =   O
                                               0=  2,715
    POi=    .               .               . 550
 ***************************************************
 ***************************************************
  11613        7/13/70     9     fl
      0.0     '     0.0
      1.9*03       0.^100
      tt . H 7 B 5       ^.5700
     10.9375       3,6300
     13.9757       3.U900
     17.6771       y.BOOO
     ?0.2^2^       5.1^00
     ?y,bn/5       5,olOO
 **************************************************
 ******LMST  SUUARtS FIT TJ L = LA(1-H**(K1*T)J*****
 MAXIU" TRIALS = 500  CU^t =  0  bTAN[)AWD HfcV =  0.19*J
     ULTIMA!? bM.j = il.!8a     Kl(BAS(tn =

     r  o.5?3  "on,?*  O.sJfa
     PUni^=  3. "7^  bOD30=  6.
 ****
     **********************
                                    *****************

-------
a***********************************
 1 1 6 1 U       7 / 1 * / 7 0    9
     TIMP
    (DAYS)
     0.0         0.0
     2,7561      1.2200
     5.B055      1.9000
     B.M93      2,1600
    11.5625      2.5*00
    1 U.61 &0      3.5000
    17.5*33      U.tt?00
    ?0.6U5      5,1700
    2 a ,ofi33      a, 3000
*************************************************.**
******LfcAST SQUARES PIT TU L = L A I 1 "F* *( K j * T ))*****
DATA cnNPir,ARATlPN OOt-S MQT  ALLOW  4N4LVSIS
***************************************************
*****LFS GRAPHICAL ANiL^blS*****^ ***************


         ULTIMATF RUO a    b.708      Kl(RASE())  =   0,0716
RQDls  0.39^  Pnnga  0.761   PUDb=   1.717   RUDlOs   2.Q1B
    Ronjss  3.7^7  b0030=  b.Oa;   
-------
***************************************************
 llblb       7/??/70    "
     TIME         ROD
    (DAYS)       (MG/L)
     0.0         0.0
     2.UU79      2.U200
     5.3P5U      3.9500
     H.u%75      .U900
    1 1 .uuuu      b.7000
    iu.u*b3      7.0200
    17.8Q2"      7.6BOO
    ?o.bfl7fe      a,ioo
    ?u.b1o      8,a?oo                      .******
***********************************************
******LLAST SUUAHES  FIT-TQ LLACI-P**CKI*T) )*****
        TRIALS  = bOO   CUDt  =   0   STANDARD  OtV  3  0.3l2b
    ULTIMATE  bHD =  9,^088     KlCBASfc(E))  =   O
        0.800   on2   I.b33   "OD5B   3
        15B   6.9^"   bn030=   8.900   BUD50=
 ***************************************************
 ***********************************************
  11617        7/^9/70     
      TIME        '  RUO
     (DAYS)        (MG/L)
      0.0          0.0
      2.8195      1.3300
                  2.7000
     M.bOU?      3.2POO
     iy.b97?      3,bPuO
     17.731      a.b500
     PI  8?ti9      5.3100
 ***************************************************
 ******LtAbT SUUARES FIT TJ L=LA(l-E**CKi*T))*****

 MAXIMUM TRIALS = bOO  CUOE = "0  bTANQAKD OtV = 0.202
     ULTIMATE bOO =  7.7bni     K1(BASL(&))   0-0497
     =  0.377  nn2  o.7Tb  onsn  1.712
     R'jni?=  a.na1?  bnu30=  b.o?9  RQ0505  7.132
 ***************************************************

-------
 ^-r^,***************************************"*******
 , : c ' 6        a /  5 / 7 o    6
     TTMF          PUO
    (DAYS)        (Mfc/L)
     0.0          0". 0
     .J.6319      1.3500
     b.aft97      2.0500
     0 . b  3 3      3.0500
    'b.ul67      3.6700
    M.63B9      b,7000
**************************************************
,****tEAST SulJARES FIT  TU L = L A ( 1 -E ** (K \ * T )}*****
    |"UM TOTALS = 500  CODE =  0  b
                 =  6.50ai     K1(BASE(fc))  s   0.0615
              P002S  0.753  uns=   1.7?1   *Lir>10=   ?,P87
*.*.**********************************************
  **,*********************************************
 -, ' t 1 9       b/27/70    fe
     II ME         PUO
    (DAYS)        (WG/L5
     0.0          0.0
     P.Bl^U       3. 1700
     9.1076  '     5
     la.7^39       7.7700
     ^0.8  9 1      10.3"00
  *************************************************
   -***LE*5T  SQUARES  FIT  TO  L = L6(\-E**(K1 *T))*****
      L.
M TOTALS = bOO  CODE =  0  STA^Awn  Of
           s 10.7518     MIB A S t(11 )  =
                      1,816
     r.uis    .      BODiSOs l.
   ***,*********************************************

-------
***************************************************
 B8-01        a/23/70    7
     TJMF         ROD
    (DAYS)       (MC/U)
     0.0         0.0
     1.8578      1.2300
     5.3368      2.3500
    12.739%      3.1300
    1u.b382      3,bUOO
    17. M*      a. 0500
    P0.3993      0.6700
***************************************************
******UAST SUUARtS PIT TO L=L A ( 1 -E* *( K l * T ))*****

MAXIMUM TRIALS = 500  CODE s  0  STANCH DEV s 0.299*
    ULTIMATE uno =  a,7b!2     K
8UD1=  O.aoi  POH2=  0.932  RQD5=  2.00i
    RU^iS=  3. f*u\  bHQ30=  a.b^b  BUDSOs-  ".760
***************************************************
***************************************************
 BR-02        u/iO/70     8
     (DAYS)
     0.0          0.0
     2.1tb       0.6100
     b.OOOO       1,6500
     7.7708       1.8500
     11.0000       2.1500
     la.OOOO       2.6200
     17.6^10       2.9POO
     ?1.0729       3.0BOO
 **************************************************
 ******l.AST  SUUARtS  FIT  TL)  L = L A ( 1 -E** (K l *1) )*****

 HAXI^U"  TRIAL5  B  500   CUng  =   0   STANDARD DEV  s 0,1214
     ULTIMATE boo  =   3,a6ab      KiCBASECt^)  =   o,i02tt
 BQD1=   0.33B
     Rums=   ?.7?3
 ***************************************************

-------
***************************************************
 BB-03       5/ 5/70    8   -
     TIME         RUD
    (QMS)       (MC,/U
     0.0         0.0
     l.b3B      0,b>>00
     5.0M7      1,3300
     8.0U17      i.bUOO
    11.7535      1.8000
    19.0000      Z.bOOO
    ?0.t><>10      3.8      M(ASE())  =  O.M67
        0.319   Pongs   0.603   PUHb=   \.'H*l   RUD10=   1
         Ss  2.395   bOD30=   2.810   BUDbOs   2.869
 ***************************************************

 ******************************** *******************
  oB-nu       'b/12/70    U
      TIME         B^R
     (DAYS)        (MG/L)
      0,0         0.0
      ^.0^00       0,5100
      5,b^b7       1,1300
      9.0/J17       1.B500
     12.9097       l.ttSOO
                  3,0700
                  3,0700
     ^O.bOy?      3,9700                       _iit*
   .** **********************************************
   *. *LLAST SUUAOfc" FIT TJ L = LA(l"F**(Ki*T) )*****
         TRIALS z SOO  CUHt =  0  STANDARD  DtV  =
     =  0.202  Pun^s  0.30b  ^OHb=   0.930
     PlJfM^s  ?i?9^  bHD30=   i.b?l   RuJHbOs   0 , 1 1 h
   **,,^* *******************************************

-------
************************************** ..... ********
 BB-05      b/19/70
    (DAYS)       (MG/L)
    0.0        0.0
    2.0000      i.oftoo
    b.b"72      i.yoo
    8.7569      2,2900
    10.9201      2.7UOO
    ia.5590      5.7700
    lfl75      a.l00
 -'^r^r^r 5:^r R^^  :?:u-
 ****!**i*;*****i*****************************:::!:i
 :****;*********************************************
     TIMF
    fQAYS)       (MG/L)
     0.0         0.0
     ^.0^86      1,2100
     5.6^75      1.6100
     7.8160      1.9000
        Mb      3.1000
                5.2700
                5.B200
                6.4300
 ...... Lt'ST  SUUAltS  FIT TO


-------
 **************************************************
 B B - o 7        fa /  U / 7 0    11
     0.0          0.0
     2.0Q65       1.7700
     5.7978     KlCBASE(E)) =  0.0085
                     0.634  BQDS=  1.5<6  UD10=   3.067
    nrjni^s  a.?ofe  00030=  8.a73  UObO=  13.035 '
***************************************************
**** + *********************************************
 6s- * a       b/fl/70    9
       MF    
     0.0         0.0
     ^.1^2      2.1200
     e.1010      2.3700
     i . 4090      2.8?00
    ta,B7?      3,1300
***************************************************
***>*LEAST  SWUAPtS  FIT  TLJ  L = L A ( 1 "F **( K i * T ))*****
      ;"  TOTALS  s  500   CUDt  =   0   3TANQAWO DEV = 0.1907
      !TJMATE BOO  =   3.B291      KlCBASt(t))  =   0,1312
    s   O.a7i   PijD2=   0.8^a   PUOS=   J.bU2  BU010=  2
    ^1)^1^=   3.PQU  bHO^Qs   3.7SU   HUObn=  3,R2^
***************************************************

-------
***************************************************
 bB-09       fa/lS/70   10
     TTHF         R00
    (DAYS)       (MG/L3
     0.0         0.0
     2.0?3      1,9700
     b.l?bO      3,b"00
     B.b^3?      5..MOO
    10. S'm?-      b.7000
    16.711*      9,4100
    P0.9097     10.7700
    Pu.bSZ*     U.4100
    ?8.6?50     12.1200
***************************************************
******UAST SQUAPtS FIT  TU L=LACl-E**(Ki*T))*****
        T3UIS s 5PO  CODE  =   0   STANDARD  OfcV  =
                 =  1^,3008     Kl(8ASt(E)}  =   0
                                           RQ010=   6
                                          1  . 911
***************************************************
********************************.*******************
 B3-10       b/22/70     fl
     TIMF          HOD
     (DAYS)        (MI./L)
     0.0          0.0
     2.0000       1.0100
     5.07b'i        . 7 3 0 0
     B,07bU       3.3^00
     ll.Q^aO       3.7^00
     1U.OH07       a. 3(^00
     16.0333       S.1700
     P0.7P62       b . 7  0 0
***************************************************
                     PIT  TG L = LA(l-E**(Ki*rn*****
     MIJM  T-ilALS  =  bOO   CUOE  =   0   STANDARD OLV s 0
     iJLTIMATt  BOp  =   6,7939      KllBASt(fc =  O.OttlO
                      1.016  uns=  d.^4  PUOiO=  3,77?
                    tjnu30=  6.19t>  PUDb>0=  f.A>76
 ***************************************************

-------
***************************************************
 BB-11       6/20/70    8
     TIME         RUO
    (DAYS)       (MG/L)
     0.0         0.0
     2.777*      1,8600
     5.9?71      2,8700
                 3.8500
                 a,a600
    17.8403      5.6300
    ?0,8160      6.3000
***************************************************
******UAST SQUARES FIT TJ L=LA(l-E**(Ki*T))*****
        TRIALS = 500  CUDE =  0  STANU&wn ntV = 0,3172
    ULTIMATE. BOQ =  8,08^7     KiCRASfc(fe)) =  0.06^7
BQDlc  0.507
    nL'H 15=  5.0?3  bOU30=  6,9?5  RuDbOs  7.767
***************************************************
***************************************************
 BB-12       7/ M70    6
     TIME         HUD
    (DAYS)        (M(i/U)
     0.0          0,0
     i?,a^75       1.7800
     s.y^^a       2.7000
     8,abl       3.3100
    1 a .  s a 9      a , 9^00
***************************************************
******|,tAST SUIJARtS FJT TU L = L A ( 1 -E** (K i *T ))*****
        TWIALS = bno  CQDE  =   0   STANDARD  ptV  -  0
    ULTIMATE ooo =  6,0120     Ki(RASECfc))  s   o,loi
FiODl=  O.b^b  Ron=   1.130
    ROnjKs  a. 751  BOD308  5,78   BUDbOs   S.979
***************************************************

-------
* * * t~ > :, - - ******************************************
 Bfc-< k        7/1J/70    0
     -, IMF          RUD
    (DAYS)       C^G/L)
     0.0         0,0
     1926      1.1?00
                 1.0000
                 2.6*00
    1 0 ,9^UO      3. 0300
    13.9031      3.7^00
    1 7 .b^uu      u .bSOO
    PO.^SOO      5.2"00
    ?a .70UQ      b.b^OO
 ***************************************************
 ******LtAST SUUA^ PIT'TJ L = L A ( 1 -E* * ( K 1 * T 5) * ** **

        THIALS = bOO   CODE =  0  STANDARD  r)tV  =  O.R
                    PP         KPAStC))  =   OfO^
                      0.710
                        O=   6.330   BUD^r)::   7.767
***************************************************
***************************************************
 BB-ia        7/1^/70     0
      T T M F
      0.0          0.0
      ^,7361       d,l00
      S.wnS^       3.1qOO
      y.69^       3. '^00
     1l.bfr25       a. 3^00
     1 a . h 1 a "       ii.^SOO
     17.5a3"^       ^,3^UO
     ?0.fe"b       7.7^00
     ?j.o3^       a . 2  o o
 **************************************************
 ******L;AST  sjiiAwtS  TIT  TU L=LM I-E**(K I*T) )*****

                            =  o  STANUAKH Rtv = 0.4772
                                KlCBAStft)) =  0.0373
         .uos   B -,-i^=  0.976  PU05=  2. 5 la
         s= ^s.o^7  uno30=  9,iSb  Buncos n.ubft
 ************************************* '**************

-------
***************************************************
 BR-15       7/20/70    B
     TIMF         POO
    (DAYS)       (MG/U
     0.0         0.0
     2.ttM      3.200
     5.5556      5.0BOO
     ft.b5fa3      fe.1900
                 B.0100
     17,aSia       9.5500
                s
                               0  STANUAHO 0V = 0,6HO
     ULTIMATE
K
                                 ICBASE(E)) =  0.1026
      TIMF       .
     (DAYS)       (MG/L)
      0.0         0.0
      ^.ua?''      1.9700
      j.3B5      2.9500
      B.U375      3.7200
                  5,7300
          T.IALS  .  500   CUDE  =  'o  .^ANpA.n OfeV . 0.2501

-------
***************************************************
 BR-16        7/2?/70     8      B
     TIHF          RUO
    (DAYS)        (MG/L)
     0.0          0,0
     2.uu79       1.9000
     5.3*5       3.1500
     6.U51U       3.7200
    1 1 .UUUU       U. 7500
    lu.ufebl       b.uhOO
    17.b2tt       7.100
    P0.6076       7.9600
***************************************************
******LAST SUIURES FIT  TJ  L = L *( 1 "E **( K j * T ))*****
MAXIMUM TRIALS = 500   CJHh  s   0   STANQAkn  OtV  = 0.33S9
    ULTlMATt bDO =  13.9dfl9      Kl(HAStft))  =   0.0409
                      1.0C'9   RODb=   d.b9"  BUD10=  a.
                   bHD50=   9,891   BUDbOs  l?.lbl
A**************************************************
***************************************
-------
***************************************************
 BB-18       b/ 5/70    6
     TTME         BUD
    (DAYS)       (MG/L)
     0.0         0.0
     2. 6319      .0500
     b'.a097      2.6600
    10.5*33      a.iflOO
    15.U167      5.2100
    31,6389      B.1SOO
**************************************************
******LE*ST SUUA"ES FIT TU LsL A ( 1 "E** C* l * T5) *****
        TRIALS = 500  COOL =  0  STANDARD REV = Q
    ULTIMATE BDD'=  9.3537     Kl(RASE(fc))   0.0b09
                     1.072
                   00010=  7.8U7  HUD50=
***************************************************
***************************************************
 FL-01        a/2^/70     7
      TIMI-          PUD
     (DAYS)        (MG/L)
      0.0          0.0
      1.BS76       O.blOO
      5.i3fafl       1,0800
     12.739ft       1.6900
     1U.538?       1.9000
     i,7.a^lfi       2,0000
     ?0.3<>93       2.2000
 **************************************************
 ******LtAST  SUHARtS  FIT  TO  L = L A ( 1 -E** (K 1 * T ))*****
 MAXIMUM  TRIALS =  500   CUDE =  0   STANDARD DEV  = 0.0602
     ULTIMATE BOD  =  2.318     Kt(BASE(E))  =  O.U87
        0.259
        1S=  l.92  BOQ30=  2.29  BUD50=  2,309
 ***************************************************

-------
***************************************************
 FL-02       u/3ft/70   1?
     TIMF         PUD
    (DAYS)       (M(i/l)
     0.0         0.0
     6.0000      l.OBOO
     7.791?      1,3300
    11.0000      l.UflOO
    m.oooo      2.2600
    17.7118      2.1000
    ?i.033      2.1500
                 2.3600
                 2,a300
                 2.69QO
                 -2.7900
                 2, 9700
    $b.7          ,
**************************************************
******UA*T SUUARfcS  FIT TJ L = L A ( 1 -E* * (K 1 *T 5) ** ***

DATA CONFISCATION DOES NOT ALLOW ANALYSIS
**************************************************
*****LF.tS GRAPHICAL  ANALYSIS*********************


         ULTIMATF BUD =    2.92     Kl(BA8E(fcn *  0.0750
^001=  0.213  GR2=  O.U10  *U05=   C I 920  BuD10=  l.
    *UfMS=  1-.9B7  BOU30=  2.b?2  BOObOs  2.873
**************************************************

***************************************************
 FL-03       5X 5/70    fl
     TIME         ,RO
     fDAYS)        (MG/L)
     0.0          0.0
     1.8fl03       0,6200
     5.0i7       1.300
     8.017       1,9000
     11.7500       2.1600
     1b.l?50       3,1^00
     1 g.OOOO       2. 7^00
     ?0.bP75       2.^00
 ************************************************
 ******UAST  SUUARtS  FIT  TJ L = L A ( 1 -E* *( K 1 * T ))*****
 DATA  CHNPI^ARATinN  OHtS MQT  ALLOW  ANALYSTS
 **************************************************
 *****LFES  r^ARMjCAL ANALYSIS*********************


          ULTTMATF PUD =    3,357     K!(RASb(fc)) =
     ,  0.3UO
                         0=   3.221
  ********  	..^^J.*J.*A**
           ***************************************

-------
 *************************************************
 l-OU        5/l?/70    10   .
    TIMF          BOD
   (DAYS)        (MG/L)
    0.0          0.0
    2.0000       0.5100
    b.675       0,^300
    9.0&25       1.2300
   12.930fe       1.U100
   iu.b?50       1.7*00
   18.0035       1,9*00
   P0.6P50       2,0700
   ?7.7500       2.2100
   T0.fe?50       2,b?00
  ******************************************
 ,***LAST  SQUA*fcS PIT  TU L=L A ( 1 -E** C * \ * T 5 ) **** *

 <1MU" TRIALS E 500  CODE =  0  STANQMH OtV = 0.11?5
   ULTIMATE BHO a  2.9029     KlCBASt(fe)) =  0,0bl3
   a  0 173  RUH2S  0.335  Un5=  0.767
                                 BUD50=  ?.7b8
            .
 *************************************************
 *************************************************
 L-05       5/l2=  O.a35  Rjnb=  0,997
        ^s  2,?91  bHD30=  3.^32  Hg050=
***************************************************

-------
************** * ***< 'A**********************
 FL-Ob       5/2a/~0    il
      lMP         ROD
     0.0         0.0
     2.0U51      1.0000
     5.6AUO      2.1100
     7.8125      2.5*00
    11. SMI      3.0000
    14.t>6b7      3.7500
    17.9UUU      a. 0500
    20.0000      a. 2600
    ?l.Bl9fl      a.blOO
    ?u*/J3fl      ,a.7bOO
**************************************************
******LtAST  SUUARLS  FIT  TD  L=L A C 1 'E** (K 1 *T ))*****

mXlMUP  T^ULS  r  500   CQHE  =   0   STANDARD  DtV  =  0.092
     ULTIMATE  BHD  =   5.?bt5      KK
     -   o
                             . 900   PUDbO=  5,?01
              .
 **************************************************
 ***************************************************
  FL-07        .b/  a/70     9
      JIMF          PUD
     (DAYS)        (HG/U
      0.0          0.0
      2.U065       0.7100
      b.7
-------
**********************************
FL-08
TIMF
(0*YS)
0.0
2.2500
6.1S2S
8.1910
11.3090
14.8472
17.0?OB
?0.8bUb
P2.017U
P7.09J*
34.6090
r***********
6/ ft/70 11
BUD
(MG/D
0.0
0,7100
1.1100
1.3200
1 .4200
1.7700
2.0700
1 ,9200
2.4ROO
3.2300
'3,1400
***************************************
******LtAST SQUARES FIT TO L=L * ( 1 -E** ( K i * M) *****

DATA CONPIR&RATlON DOtS NJQT  ALLOW - AN &LVSI S
***************************************************
*****LEfcS GRAPHICAL ANALYSIS*********************
         ULTIMATF  BUD  =     3
 BOD1=   0.178   Pun^=  0,3a8   OQ05=   0.613
     ponies   i.OfeA  bOo^o=   
-------
 FL-10       6/2?/70    
     TIME         BUD
    fDAYS)       (MG/l)
     0.0         0,0
     2.0000      0.5600
     5.07b      0.^^00
     b.07bU      1.3600
    1 1 .9340      1 .5700
    1 u.037      1 .ttUOO
    16.6333      1,6600
    ?0.7b?      2,200
***************************************************
******lfcAST SUUARtS FIT TU L = LA( 1-F**(< i*T) )*****
    MU" TRIALS = 5"0  CODt =  0  b
    ULTIMATE BOu =  ?t&*UJ     KlCRASt(E)) =  0,0/60

    a  0.207  ftQr>>5  0.398  RQOSs  0,B3  60010=  l
    PUDJ5=  1.021   bOD^O=  2.536  RUObOs" 2.761
***************************************************
***************************************************
 FL-11       6/2^/70    fl
     TIMF         PUO
    (DAYS)       (MQ/L)
     0.0         0,0
     2.777?      0.7600
     5,9?7i      1,3700
     6.8^33      l.afeOO
    10.H?ba      1.5700
    1U.7966      1.7700
    17.8^03      2,0700
    ?O.B160      2,300
***************************************************
******L&AST SQUARES FIT TU L=L A ( 1 -E** ( K i *T ))*****
    MU^ TRIALS = 500  cunt =  o  sTANoAwD otv s
    ULTIMATE
    c  0.253  P002s  O.l  00^5=  1.032  RUPlOs  1,633
    POOi^s  l,od?  bOi)30=  2.372  POO^Os  2,^b6
***************************************************

-------
***************************************************
 FL-12       It *>/?0    b
     TIME         BOD
    (DAYS)       (MG/L)
     0.0         0.0
     2.U375      0.6200
     b.7?92      1.0200
     e.Uflbl      1.3300
    10.8920      1.6300
    lU.uSUP      1,7900
**************************************************
******UAST SUUARES FIT TU l = L A Cl -E ** I K 1 *T >) *** **
MAXIMUM TRIALS  . bOO  CODE  =   0  STANDS 0V =  0.10b
    ULTIMATA tiHD =   1.^78     M(B*SE(E)) =  0.1531
        0.278   P0n2=   O.blb   00b=   I.OJ7   JOOlfl.   1.5S
        i5=   1.761   BnoiO=   1.^38   RUDbO=   1.9b7
 ***********************************-****************
 *********************************************
  FL-13        7/13/70     ^
      TIMF          PUD
     (DAYS)        (HG/U)
      0.0          0.0
      1.9826       O.blOO
      5. 9340       i.5700
      8.895       2,1100
     10.9549       2.5200
     13.9<51       2.9300
     17.69UU       3.600
     P0.2500       3.9600

 *****u*;r**L******;i20*0***************************-
 ******LEAST  SQUARES PIT  TO L=L A ( 1 -E** C* 1 *T ))*****

     MUM TRIALS . 500  CODE =  0  STANO*n OEV  0.1090
     ULTIMATE BOD a  S.S906     MCRASECt.)) =  0.0^53

     .  0.301  *UD2=:  0,586
     BOD1S=  3.1S3  bOU30s
 ************************************************

-------
***************************************************
 FL-JU       7/16/70    9
     TIMF         ROD
    (DAYS)       (MG/D
     0.0         0.0
     2.7361       0.7600
     5.8f>55       1.3400
     8.6493       1.7000
    11.5625       1.7700
    14.61BO       2.2800
    17.533       2.7200
    ?0.6458       2.9700
    P4.0833       3.0400
***************************************************
******LEAST  SUIJARES FIT TO L = L * C1 -E** ( K i * T ))*****

MAXIMUM TRIALS = 500  CORE S  0  STANDARD REV s 0.1234
    ULTIMATE BOD =  3.9285     KKBASE(E)) =  o,0632
BUD1=  0.21  RQ02=  0.466  RUOSs  l.Ofcu
    RUDjSs  ?.006  bnD"?0=  3.338  BODbO=  3.762
***************************************************
***************************************************
 FL-15       7/20/70    8
     TIMF         RUO
    (DAYS)       (MG/L)
     0.0         0.0
     2.4618      1 ,3000
     5.5556      2.3200
     8.6S63      2,^500
    ll.b93      3,1000
    14.426      3,^00
    17.4514      3.3300
    ?0.4583      3,bOOO
***************************************************
******I_E.AST suuApfcS PIT TU L=LACI-E**(KI*T) )*****
MAXIMUM TRIALS a 500  CODE =  0  STANDARD DEV = 0.1133
    ULTIMATE oOD =  3.7190     MCBASbtE')) =  0,1729
                     1.07  "QHSs  2.152  HjDIOs  3,059
   'RUD153  3.4al   bOU30s  S.b^d  BUDbOs  3.71B
***************************************************

-------
 FL-16       7/2?/70
     TIMF         RUD
     0.0         0.0
     2.
-------
***************************************************
 FL-17       7/29/70    8     fl
     TIMP         BUD
    (DAYS)
     0,0         0.0
     5.635"      O.BflOO
     B.b2U      1.2100
    11.6350      J.U600
    ia.5972      1.6100
    17.731      2.0UOO
    ?l.b?29      2.2^00
***************************************************
******L;-.AST SQUARES FIT TU L=LACI-E*MK i*m*****
MAXIMUM TRIALS = 500  CQOE =  0  STANo&wO r>V = 0.02B7
    ULTIMATE bOQ =  3.2718     Kl(8AS(E)J =  0.0b3b
       0.171  POH2=  0.333  "005=  0.77Q  ROD10=  1,
        ^=  1,^09  BODlOo  2.&19  PUD^O^  3.050
***************************************************
***************************************************
 FL*18       8/ 5/70    fc
     TIME         ROD
     (DAYS)        (MG/L)
     0.0     .     0,0
     2.6319       1.1000
     5.a"97       1.6000
     10.5*33       3.0000
     I5.a1b7       a. 0^00
     1(1,6^89       b. 7700
***************************************************
******LAST SQUARES  PIT TO L=L A ( 1 -E** (K 1 *T 5) *** **
 MAXIMUM  TRIALS  =  500   CODE  =   0   STANDARD  DEV  =  O.H(S7
     ULTIMATE  BOD  =  10.3810     Kt(SASE(E))  =   0.0330
        0.337   ROP2=   0.b(Sa   *unss   1.5PJ   BUD10=   2.921
        iSs   a, Ob?  bHD30s   6.5^6   PUD'30=   B.3^1
 ***************************************************

-------
0.0 0.0
2.819 O.oSOO
S.bUa* 1.0000
Qtl<57fc 1.2^00
lu.7^3'' 1,3700
*0.8<91 2.8900
******LEAST SUITES PIT TJ LSI
MA*I*uw TSTALb s 5^0 COOt a
ULTIMATt b^D s u.1239






.4 ( 1-E** (*l *T5 )*****
0 STAMjA-J" DfcV s 0.20M
mcB*st(n = o,o3feb
    njDl^s  1.751   bDD30=  2.7^0  BuDiOs  5,tt70
***************************************************

-------