-------
REFERENCES:
Alkezweeny, A. S. and D. C. Powell, 1977: Estimation of transformation rate
of S0~ and SO, from atmospheric concentration data. Atmos. Environ. 11,
179-182.
Bolin, B. and C. Persson, 1975: Regional dispersion and deposition of
atmospheric pollutants with particular application to sulfur pollution
over western Europe. Tellus 24, 281-310.
Briggs, G. A., 1971: Some recent analyses of plume rise observations. Proc.
2nd International Clean Air Congress (Edited by H. M. England and W. T.
Baery). Academic Press, New York.
Durst, C. S., A. F. Crossley and N. E. Davies, 1959: Horizontal diffusion in
the atmosphere as determined by geostrophic trajectories. J. Fluid Mech.
_6, 401-422
Ferguson, H. L. and L. Machta, 1982: Atmospheric Sciences and Analysis Work
Group 2 Final Report. Submitted to Coordinating Committee of the
Memorandum of Intent on Transboundary Air Pollution between Canada and the
United States.
Environmental Research & Technology, 1982: The Sulfate Regional Experiment:
Data Base Inventory and Summary of Major Index File Programs. Electric
Power Research Institute Report EA-1904.
Fox, D. G., 1981: Judging air quality model performance. Bull. Amer. Meteor.
Soc. 62, 599-609.
Fox, D. G., 1984: Uncertainty in air quality modeling. Bull. Amer. Meteor.
Soc. 65, 27-36.
Gillani, N. V., S. Kohli and W. E. Wilson, 1981: Gas-to-particle conversion
of sulfur in power plant plumes - I. Parameterization of the conversion
rate for dry, moderately polluted ambient conditions. Atmos. Environ. 15,
2293-2313.
Hegg, D. A., L. F. Radke and P. V. Hobbs, 1984: Measurements of
transformations in the physical and chemical properties of clouds
associated with onshore flow in Washington State. J. Climate Appl.
Meteor. 23, 979-984.
Hicks, B. B., G. D. Hess, M. L. Wesely, T. Yamada, P. Frenzen, R. L. Hart, D.
L. Sisterson, P. E. Hess, F. C. Kulhanek, R. C. Lipschutz and G. A. Zerbe,
1981: The Sangamon Field Experiments: Observations of the Diurnal
Evolution of the Planetary Boundary Layer Over Land. Report ANL/RER/81-1,
Argonne National Laboratory.
Hicks, B. B. and J. D. Shannon, 1979: A method for modeling the deposition of
sulfur by precipitation over regional scales. J. Appl. Meteor. 18,
1415-1420.
-45-
-------
Johnson, W. B., 1983: Interregional exchanges of air pollution: model types
and applications. J. Air Poll. Assoc. 33, 563-574.
Meagher, J. F. and E. M. Bailey, 1983: The seasonal variation of the
atmospheric SC^ to S0^2~ conversion rate. J. Geophys. Res. 88, 1525-1527.
Mood, A. M. and F. A. Graybill, 1963: Introduction to the Theory of
Statistics (2nd ed.). McGraw-Hill, p. 198.
Niemann, B. L., 1982: The 1980 data set for further evaluation of regional
air quality/acid deposition simulation models. Informal report to Acid
Rain Staff, U.S. Environmental Protection Agency.
Schiermeier, F. A. and P. K. Misra, 1982: Regional Modeling Subgroup Report
2F-M. Submitted to Work Group 2: Atmospheric Sciences and Analysis.
Shannon, J. D., 1979: A Gaussian moment-conservation diffusion model. J.
Appl. Meteor. 18, 1406-1414.
Shannon, J. D., 1981: A model of regional long-term average sulfur
atmospheric pollution, surface removal, and net horizontal flux. Atmos.
Environ. 15, 689-701.
Shannon, J. D., L. Kleinman, C. Benkovitz, and C. Berkowitz, 1982:
Intercomparison of MAP3S models of long-range transport and deposition.
Preprints, 3rd Joint Conf. on Applications of Air Pollution Meteorology,
American Meteorological Society, Boston, pp. 29-32.
Sheih, C. M., 1977: Application of a statistical trajectory model to the
simulation of sulfur pollution over northeastern United States. Atmos.
Environ. 11, 173-178.
Streets, D. G., D. A. Knudson and J. D. Shannon, 1983: Selected strategies to
reduce acidic deposition in the U.S. Environ. Sci. Technol. 17, 474A-485A.
Taylor, G. I., 1921: Diffusion by continuous movements. Proc. Math. SL20,
196-212.
Voldner, E. C. and J. D. Shannon, 1983: Evaluation of predicted wet
deposition fields of sulfur in eastern Canada. Transactions, Air
Pollution Control Association Specialty Conference on The Meteorology of
Acid Deposition, 387-399.
Wesely, M. L. and B. B. Hicks, 1977: Some factors that affect the deposition
rates of sulfur dioxide and similar gases on vegetation. J. Air Poll.
Control Assoc. 27, 1110-1116.
Wesely, M. L. and J. D. Shannon, 1984: Improved estimates of sulfate dry
deposition in eastern North America. Environ. Progress _3_, 78-81.
Wesely, M. L., D. R. Cook, R. L. Hart and R. E. Spear, 1984: Measurements and
parameterization of particulate sulfur dry deposition over grass. J.
Geophys. Res. 90, 2131-2143.
-46-
-------
Yaraada, T., 1977: Analyses of the Sangamon data. Argonne National Laboratory
Radiological and Environmental Research Division Annual Report ANL-77-65,
Part IV, 49-52.
-47-
-------
Appendix A: Program HORZ Listing
48
-------
1. //HORZ 003
2. //*MAIN ORC
3. // EXEC FGICLG
i.. //SYSIN DD *
5. C ... USING WIND AND PRECIP ANALYSES FROM U MICH, THIS' PROGRAM WILL
5. C PRODUCE THE TRAJECTORY STATISTICS REQUIRED BY ASTRAP.
7. C
8. C VARIABLES USED IN MORE THAN ONE SUBROUTINE
9. C
l.'J. C CONC : STATISTICS DESCRIBING THE AIRBORNE PORTION OF THE
11. C TRACERS.
12. C CONCd,*,*) AND CONC(2,*,*> : USED TO CALCULATE THE MEAN
13. C LOCATION IN THE X AND Y DIRECTIONS, RESPECTIVELY,
14. C OF THE AIRBORNE TRACER FOR EACH TIME STEP/SOURCE
15. C COMBINATION.
IS. C CONC(3,*,*) AND CONCU,*,*) : USED TO CALCULATE THE STANDARD
17. C DEVIATION IN THE X AND Y DIRECTIONS OF THE AIRBORNE
13. C TRACER FOR EACH TIME STEP/SOURCE COMBINATION.
19. C CONC<5,*,*> : THE SUM OF THE AMOUNTS OF AIRBORNE TRACER FOR
2.'j . C THE TIME STEP/SOURCE COMBINATIONS.
21. C CONC(S,*,*> : USED TO DETERMINE THE CORRELATION BETWEEN THE X
22. C AND Y POSITIONS IN THE ENSEMBLE PUFFS.
23. C DC : THE NUMBER OF MEASUREMENTS CONTRIBUTING TO THE
24. C RESULTS FOR EACH TIME STEP/SOURCE COMBINATION.
25. C DELT : THE NUMBER OF SECONDS IN A TIME STEP.
26. C DELX AND DELY : LENGTH OF AN NMC GRID INCREMENT IN METERS
27. C AT 6£f DEGREES NORTH LATITUDE.
25. C DXP AND DYP : THE LENGTHS IN NMC UNITS OF A PRECIPITATION GRID
29. C CELL IN THE X AND Y DIRECTIONS.
30. C DXWI AND DYWI : THE LENGTH IN NMC UNITS OF A WIND GRID CELL
31. C IN THE X AND Y DIRECTIONS, RESPECTIVELY.
32. C FAC3 : A SEASONAL FACTOR USED TO DETERMINE THE SPEED OF THE
33. C NOCTURNAL JET.
34. C INCPR : THE TIME INCREMENT FOR V/IND/PRECIP DATA.
35. C IPER : A NUMBER FROM 1 TO 4 REPRESENTING THE SIX-HOUR PERIOD
33. C OF THE DAY (GMT) TO WHICH THE WIND DATA APPLY.
37. C LANDE: REPRESENTS THE TRAJECTORY CALCULATION GRID. CELLS WHICH
33. C HAVE NONZERO VALUES WILL BE USED AS VIRTUAL SOURCES.
39. C THESE CELLS WILL BE ASSIGNED SEQUENTIAL IDENTIFICATION
4J. C NUMBERS PROCEEDING ROW-BY-ROW FROM THE LOWER LEFT CORNER.
'-:. C MEAS : THE NUMBER OF MEASUREMENTS READ.
^2. C NDAY : THE NUMBER OF DAYS THE PROGRAM SHOULD MODEL.
43. C NF : THE NUMBER OF DATA SETS FOR THE DESIRED PERIOD.
44. C NS : THE NUMBER OF SOURCE (LAND-CONTAINING) CELLS.
45. C NTS : THE NUMBER OF TIME STEPS TO BE CALCULATED.
iJ. C NX? AND MYP : THE NUMBER OF CELLS IN THE X AND Y DIRECTIONS IN
47. C THE PRECIPITATION GRID.
43. C NXWI AND NYWI : THE NUMBER OF CELLS IN THE X AND Y DIRECTIONS
49. C IN THE WIND GRID.
5.-J. C PRECIP : 24-HOUR PRECIPITATION TOTALS.
51. C ?Z : SET TO PI DIVIDED BY 2.
52. C RO : A CONSTANT USED TO CONVERT LATITUDE AND LONGITUDE TO NMC
£3. C UNITS.
E-,. C TR : THE FRACTION OF THE TRACER LEFT FOR EACH TIME STEP/SOURCE
55. C COMBINATION.
5.:. C U AND V : X AND Y COMPONENTS Or THE TRANSPORT WIND.
57. C ALONG 30 DEGREES WEST LONGITUDE X IS WEST-EAST AND V IS
53. C NORTH-SOUTH.
59. C UTROP : THE FRACTION OF A TRACER LOST TO THE UPPER TROPOSPHERE
c.I . C QY CONVECTION. '
C WC : THE NUMBER OF WET DEPOSITION EVENTS FOR EACH TIME STEP/
C SOURCE COMB I NATION.
C WD : WET DEPOSITION DATA
49
-------
54.
So.
67.
63.
59.
72.
11 .
72 .
73 .
74.
75 .
73 .
77.
73.
79.
a .y .
21 .
o o .
SS.
57.
S3 .
S3.
50.
92.
93 .
94 ,
95.
96 ,
97 .
C £
99.
1
l.C'3 .
l/i'9 .
1 1 £',
Hi .
112.
113.
11'.
115,
116.
1 17.
11C.
C
r
C
C
C
C
C
c
C
c
c
c
c
c
c
c
C
C
c
c
c
c
c
c
c
c
c
c
WD(1,*,*) AND WD(2,*,*) : USED TO COMPUTE THE MEAN
LOCATION IN THE X AND Y DIRECTIONS, RESPECTIVELY,
OF WET DEPOSITION FOR EACH TIME STEP/SOURCE COMBINATION.
WD(3,*,*) AND WD<4,*,*> : USED TO COMPUTE THE STANDARD
DEVIATION IN THE X AND Y DIRECTIONS OF WET DEPOSITION FOR
EACH TIME STEP/SOURCE COMBINATION.
WD<5,*,*> : THE AMOUNT OF MASS REMOVED BY WET DEPOSITION FOR
EACH TIME STEP/SOURCE COMBINATION.
WD(6,*,*) : USED TO DETERMINE THE CORRELATION BETWEEN THE X AND
Y POSITIONS IN THE ENSEMBLE PUFFS.
. READ PARAMETERS AND INITIALIZE VARIABLES
CALL I NIT
, READ DATA AND COMPUTE TRAJECTORIES
CALL MODEL
, COMPUTE STATISTICS AND PRINT RESULTS.
CALL RESULT
STOP
END
SUBROUTINE INIT
. READ USER-SPECIFIED PARAMETERS AND INITIALIZE VARIABLES.
VARIABLES USED ONLY IN INIT
DXEM AND DYEM : NMC LENGTH OF AM TRAJECTORY GRID CELL IN NMC
UNITS IN THE X AND Y DIRECTIONS, RESPECTIVELY.
NXEM AND NYEM : NUMBER OF CELLS IN THE X AND Y DIRECTIONS,
RESPECTIVELY, ON THE TRAJECTORY GRID.
COMMON/WIND/IK 17,19),V<17,19),DXWI,DYWI,XWILL,YWILL,DELT,X( 17),
X Y( 19),DELX,DELY,NXWI,NYWI,MEAS -
COMMON/PREC/PRECIP(5#,45),WD<6,23,123),DXP,DYP,XPLL,
% YPLL,UTROP,WC<23,123>,NXP,NYP
COMMON/STAT/ XC(29,123 ) ,YC(29,123 ) ,TR(29,123>,CONC(6,28,123),
Y, F ACS, DC ( 28, 1 23 ) , P2 , RO , XEMLL , TRL < 29 , 123 >,
% YEMLL,DXEM,DYEM,NS,NTS,IPER,LANDE(19,16),NXEM,NYEM
COMMON /CONTRL/ NDAY,NF,ITP, IOUTST,IOUTEN,IDD(4)
. DEFINE MISCELLANEOUS CONSTANTS
P2=3.14159/2.
R0=6397./381
CALCULATE NMC COORDINATES FOR SOURCE
125 .
125.
127.
... READ DATA FOR LANDE
CELLS.
NXEM=19
NYEM=16
XEMLL = -11 .5
YEMLL=20.5
DXEM=1 .
DYEM=1.
READ 2023,( ,!=!,NXEM),0=1,NYEM)
2023 FORMAT(1913)
NS=0
DO 1030 0 = 1 , NYEM
DO 1030 1 = 1, NXEM
IF (LANDE(I,0>.EQ.0> GO TO 1030
NS = MS + 1
IF (NS.GT.123) GO TO 40
LANDE = MS
XC< 1 , NS ) = XEi1LL > DXEX"< 1-1 )
50
-------
128. YC< 1,NS)=YEMLL - D YEM* ( 0- 1 >- 1 6 .3
129. 1030 CONTINUE
_;4 . GO TO 60
131 . 42 PRINT 2050
132. 2050 FORMAT* /'^'WARNING: TOO MANY SOURCE CELLS. ONLY 123 USED #*'/)
103. NS=123
134. 60 PRINT 2070, NS
135. 2070 FORMAT* 15,' SOURCE CEILS WERE READ1)
135. PRINT 2080, ( ')
1~3. PRINT 2100,XPLL,YPLL
174. PRINT 2110,DXP,DYP
175. XPLL=XPLL-DXP/2.0
173. YPLL=YPLL+DYP/2.0
177. YPLL=YPLL-15.0
173. C
179. C ... INPUT MISCELLANEOUS PARAMETERS.
135. READ 2140,UTROP
1C: . 2140 FORMAT(F5.0)
132. PRINT 2150,UTROP
133. 2150 FORMAT*/1 FRACTION OF SULFUR LOST TO THE" UPPER TROPOSPHERE BY CONV
XECTIVE PRECIPITATION = ',F6.3>
C
C ... READ DAY/TIME INFORMATION.
READ 2220, I DO , MDAY , NTS
2220 FORMAT* 4* IX, 12), 14. IX, 12 )
INCPR=6
240 NF=4rtNDAY
51
-------
192. ITP=20
1-Z. 2250 FORMAT(4(IX, 12) )
1?-' . PRINT 2250,17?
Ii5. 2260 FORMAT,' PRECI? DATA: START WITH FILE',13)
135. PRINT 2270,NDAY,< IDD(MM),MM=1 , 4 ), NTS , INCPR
197. 2270 FORMAT(/,' RUN MODEL FOR1,15,' DAYS STARTING WITH',13, '/ ' ,
US. % 12, '/' ,12, 13, '00Z USING1,13,' TIME STEPS,1,
13S. % ' WIND/PRECIP DATA READ EVERY1,13,' HOURS.1)
zzz. c
201. IOUTST=40
2.02. IOUTEN = 44
203. C ... INITIALIZE STATISTICAL ARRAYS
204. DO 1330 0=1,NS
205. TR(1,0)=1.
205. TRL(1,0)=1.
207. DO 1330 1=1, NTS
20E. XC< 1 + 1 ,0 )=9999.
2£S. YC( 1 + 1 ,0> = 9999.
210. WC<1,0)=0.0
211. DC(I,0)=0.0
212. TRLCI+i,0)=0.
213. TR(1 + 1,0 )=0.
21-;. DO 1330 K=l ,o
215. CONC,NXP,NYP
2-!C. COMMON/STAT/ XC ( 29 , 1 23 ) , YC< 29 , 1 23 ) , TR( 29 , 1 23 ) , CONC( 6 , 28 , 123),
2-; 4. % FAC3,DC(28, 1 23 ) , P 2 , RO , XEMLL , TRL ( 29 , 123),
245. % YEMLL,DXEM,DYEM,NS,NTS,IPER,LAilDE(19,16),NXEM,NYEM
2 5. COMMON /CONTRL/ NDAY,NF,ITP,IOUTGT,IOUTEN,IDD(4 )
Z-\l. DIMENSION IDPU)
C
NEWMON=1
MEAS=0
NF=0
C
253. C ... COMPUTE TRAOECTORIES
254. DO 1222 ITI = I ,,IDAY
255. DO 1222 IPER=1,4
52
-------
256. C
257. C ... SET SEASONAL VARIABLES IF A NEW MONTH WILL BE STARTED.
258. IF (NEWMON.NE.i> GO TO S3
259. NEWMON=0
263-. ITEMP=IDD(1>/3+l
251. GO T0(40,10,20,30,40),ITEMP
252. C ... SPRING (MARCH-MAY)
253. 10 FAC3=1.I5
254. GO TO 50
255. C ... SUMMER (JUNE-AUGUST )
235. 20 FAC3=1.25
257. GO TO 50
258. C ... FALL (SEPTEMBER-NOVEMBER)
259. 30 FAC3=1.15
270. GO TO 50
271. C ... WINTER (DECEMBER-FEBRUARY )
272. 40 FAC3=1.05
273. 50 MEAS=MEAS+1
274. C
275. C . . . READ WIND DATA.
275. READ <10,END=996) U,V
277. C
27G. C ... READ PRECIPITATION DATA.
279. 998 READ (ITP,END=999> PRECIP
23.0. C
231. GO TO 1220
282. 999 REWIND ITP
283. ITP=ITP+1
2C4. IF (ITP.GT.22) GO TO 996
255. GO TO 998
215. 1220 CALL TRAJ
237. 1222 NF=NF+1
288. 995 CONTINUE
289. RETURN
290. END
291.
292.
293. SUBROUTINE TRAJ
294. C
295. C ... TRAJ TRANSPORTS TRACERS FOR A TIME STEP AND COLLECTS
295. C STATISTICS.
297. C
298. C VARIABLES USED ONLY IN TRAJ
299. C
300. C DA , DB , DD , AND DE : RECIPROCALS OF THE. DISTANCES FROM
3^1. C THE TRACER'S LOCATION TO THE FOUR CLOSEST WIND MEASUREMENTS.
3.S'2. C Dl , D2 , D3 , AND D4 : PERPENDICULAR DISTANCES FROM THE
303. C TRACER'S LOCATION TO THE FOUR CLOSEST WIND CELLS.
304. C DT : NUMBER OF SECONDS IN A CENTER-DIFFERENCED TIME STEP.
305. C FRMOV : THE FRACTION OF A TRACER REMOVED--BY WET DEPOSITION
306. C AND CLOUD CONVECTIVE EXCHANGE.
307. C FRMAI1 : THE FRACTION OF THE TRACER REMAINING AFTER WET
300. C DEPOSITION.
309. C FRMOV1 : THE FRACTION OF THE TRACER DEPOSITED 3Y WET DEPOSITION.
310. C IM : THE TIME STEP BEING PROCESSED.
311. C I : THE NEXT TIME STEP.
312. C IQ AND JQ : THE COLUMN AND ROW, RESPECTIVELY, OF THE TRACER'S
313. C LOCATION ON THE TRAJECTORY CALCULATION GRID.
314. C IX : COLUMN Of THE WIND GRID TO THE LEFT OF THE POINT OF
315. C INTEREST.
315. C IY : ROW OF THE WIND GRID BELOW THE POINT OF INTEREST.
317. C IXX : COLUMN OF THE WIND GRID TO THE RIGHT OF THE POINT OF
318. C INTEREST.
319. C IYY : ROW OF THE WIND GRID ABOVE THE POINT OF INTEREST.
53
-------
320. C JX AND JY : COLUMN AND ROW ON THE PRECIPITATION GRID FOR THE
321. C TRACER'S NSW LOCATION.
322. C MM : INITIAL VALUE OF THE INNER LOOP INDEX SO ONLY TIME
323. C STEPS THAT HAVE VALUES WILL BE PROCESSED.
324. C PP : PRECIPITATION IN THE TRACER'S CELL.
325. C UU AMD VV : THE ESTIMATIONS OF THE U AND V COMPONENTS OF
326. C THE WIND IN THE TRANSPORT LAYER.
327. C
328. COMMON/WIND/U<17,19),V(17,1 9 ) , DXWI,DYW!,XWILL,YWILL,DELT,X{17>,
329. % Y<19),DELX,DELY,NXWI,NYWI,MEAS
330. COMMON/PREC/PRECIP(50,45),WD<5,23,123>,DXP,DYP,XPLL ,
331. % YPLL.UTROP,WC(23,123),NXP,NYP
332. COMMON/STAT/ XC<29,123),YC(29,1Z3),TR<29,123),COMC(5,28,123),
333. % FAC3,DC(28,123),P2,RO,XEMLL,TRL(29,123),
334. % YEMLL,DXEM,DYEM,NS,NTS,IPER,LANDE<19,16 ) ,NXEM,NYEM
335. C
336. C ... COMPUTE TRAJECTORIES FOR THE TIME STEP/SOURCE COMBINATIONS.
337. C
333. C ... UNTIL THERE ARE DATA FOR EACH TIME STEP, ONLY LOOK AT
339. C THE TRAJECTORIES FOR WHICH THERE ARE DATA.
340. MM=MAX0(1,(NTS+1-MEAS) )
341 . DO 1040 ITS = MM,NTS
342. DO 1040 J = l ,MS
343. IM=NTS + 1 -ITS
344. I=IM+1
3-15. C
346. DT=DELT
347. C IF THIS IS THE FIRST TIME STEP, FORWARD DIFFERENCING IS DONE
340. C SO DT IS DIVIDED BY 2.
349. IF (IM.EQ.l ) DT=DELT*.5
350. C ... CHECK TO SEE IF THE TRACER IS OUTSIDE THE WIND GRID ( XC AND
351. C YC ARE SET TO 9999 WHEN A TRACER IS OUTSIDE THE WIND GRID).
352. IF (XC(IM.J>.GE.1000.> GO TO 30
353. C
354. C ... USE BILINEAR INTERPOLATION TO ESTIMATE THE WIND AT THE CURRENT
355. C TRACER LOCATION.
356. C
357. C FIRST OBTAIN THE FOUR CLOSEST GRIDDED WIND VALUES.
358. IX = -XWILL>/DXWI + 1.
359. IY = (YWILL - YC(IM,J ) )/DYWI + 1.
360. IXX=IX+1
3S1. IYY=!Y+1
362. IF (IXX.LT.l) IXX=1
363. IF UYY.LT.l) IYY=1
364. IF -V( IY )
374. D3 = XC( IM,0 )-)(< IXX >
375. D4 = YC(IM,0>-Y< IYY)
375. C
377. C ... OBTAIN WEIGHTINGS.
378. DA=1 ./< SCRT(D1*DH-D2*D2) + 1 .E-10)
379. DB=1 ./< SQRT*1 . E-10)
381 . DD=1 ./( SQRT(D3*D3+D4*D4)+1 . E-1.9)
382. DENOM=1./
-------
334. C ... COMPUTE SPEEDS.
385. UU=(DA*U< IX,1Y)-H)B*U( IX , I YY )+DE*U( I XX , IY >
386. % +DD*U< IXX,IYY) )*DENOM
387. VV=(DA*V< IX, IY>+DB*V< IX, IYY)+DE*V< IXX,IY>
388. % +DD*V
405. UMAP=UMAP*SIG/DELX
405. VMA?=VMAP-SIG/DELY
A 07 . C
403. C ... TRANSPORT THE TRACER FOR A TIME STEP.
409. XC(I,J)=XC(IM,J>+UMAP"DT
410. YC( I ,J ) = YC( IM,J >+VMAP*DT
411. TR(I,J )=TR(IM,J )
.112. TRL(I.J)=TRL(IM,J)
413. C ... HAVE TRAJECTORIES DEPARTED THE WIND GRID?
4U. IF GO TO 30
416. IF (YC( I,J).GT.{Y(1 ) + 2. » GO TO 30
417. IF (YC< I,J ).LT.(Y(NYWI )-2. >> GO TO 30
418. C
419. FRMAIl=1.0
420. C
421. C ... IF THE TRACER IS NOT WITHIN THE PRECIPITATION ANALYSIS,
422. C EXTEND THE LAST CELL ON THE ROW OUTWARD.
"23. JX = (XC( I ,0 5-XPLD/DXP + 1.
424. JY=(YPLL - YC(I,J))/DYP + 1.
425. IF JX = NXP
428. IF (JX.LT.1 ) JX=1
A29. C
430. C ... CALCULATE WET DEPOSITION IF THERE IS PRECIPITATION.
431. PP=PRECIP(JX,JY>
432. IF < PP.LE.1.0) GO TO 20
433. FRMOV = SQRT( . 1»PP )
434. C ... DURING THE WINTER { FAC3 =1.05 IN THE WINTER) IN NORTHERN
435. C AREAS, WET DEPOSITION IS REDUCED BECAUSE THERE IS SNOW
436. C INSTEAD OF RAIN.
437. IF (FAC3.EQ.1.05 .AND. YC(I,J).LT.0) FRMOV=FRMOV*.5
430. IF !FRMOV.GT.1.0) FRHOV=1.0
'139 . FRMOV1 = < 1 .0-UTROP )*FRMOV
^'40. FRMAI1 = 1 .0-FRMOV1
TRL( I,J )=TRL< !M,J >*( 1.-FRHOV)
TR( I,J >=TR( IM,J )-FRt1AIl
C
"-M. C ... GATHER STATISTICS IF ENOUGH STEPS HAVE ELAPSED.
'- J 5 . WTF RAC = TR ! IM , J ) '- F RMOV 1
446. V/D < 5 , If j, J ) =\/D { 5 , I M , J ) +WTFRAC
447. WD< 1 , IM.J )=>/D{ 1 , IF1,J ) + XC( I ,0 --WTFRAC
55
-------
448.
449.
450.
451.
452.
453.
454.
455.
456.
457.
458.
459.
460.
461 .
462.
453.
464 .
465.
456.
467.
463 .
469.
''-70.
471.
472.
473.
474.
475.
475.
477.
478.
479.
480.
481 .
482.
433.
484.
1- i i. ,
AS3.
4 £ 4 .
=WD(2,IM,
WD(3,IM,0)=WD(3,IM,
WD<4,IM,0 )=WD(4,IM,
WD(5,IM,0 )=WD<5,IM,
WC(IM,0)=WC
0)+YC{I,J}*WTFRAC
0)+XC(I,0)*XC + YC + XC< I,J >*YC=CONC(2,
>=CONC(3,
>=CONC(4,
CONC<6,IM,0)=CONC<6
DC( IM,0 ) = DC( IM.O> + l
GO TO 1040
IM,
IM,
IM,
J )=CONC(5, IM,
,IM,
.0
0 ) » XC( I,0)*DRFRAC
0) + YC(1,0 >*DRFRAC
0)*XC(I,0 )*XC( I ,
0)+YC(1,0 >*YC( I,
0)+DRFRAC
0) + YC*DRFRAC
0)*DRFRAC
0>*DRFRAC
c
c
c
c
c
c
c
: ... TAG TRACERS OUTSIDE GRID
33 XC(I,0 ) = 9999.
YC< I,J) = 9999.
TR(1,0)=0.0
TRL( I,0 )=0.0
1040 CONTINUE
RETURN
END
SUBROUTINE RESULT
. FINISH CALCULATION. OF STATISTICS AND OUTPUT RESULTS.
VARIABLES USED ONLY IN RESULT
TITLE , WDLBL , AND REMLBL : LABELS FOR OUTPUT.
COMMON/PREC/PRECIP<50,45),WD(6,28,123),DXP,DYP,XPLL,
% YPLL.UTROP,WC(28,123),NXP,NYP
COMMON/STAT/ XC ( 29 , 1 23 >, YC ( 29 , 12.3 ), TR{ 29 , 1 23 ), CONC( 6 , 28 ,123 ),
% FAC3,DC<20,123),P2,RO,XEMLL,TRL(29,123),
% YEMLL,DXEM,DYEM,NS,NTS,IPER,LANDE(19,15),NXEM,NYEM
COMMON /CONTRL/ NDAY , TJF , ITP , IOUTST, IOUTEN , I DD( 4 )
DOUBLE PRECISION TITLEt7,6 ) ,WDL3L(5 ) ,REMLBL(5>,NUL3L(7)
DATA
, ' MEAN LO1
1 MEAN LO1,
S.D. I ' ,
S.D. I'.
SUM 0',
, ' X-Y COR'
OSITION ','
'/. REMLBL/1 RZMAINI ' , 'NG TRACE1,
% NULBL/1 NUMBER1,' OF MEAS','
FOR'/
TITLE/3*'
3* .
4*'
4*'
4*.
4*'
WDLBL/' WET DEP:
REMLBL/1 REMAIN I ' , '
NULBL/' NUMBER','
1 THE RES','ULTS
, 'CATION I
'CATION I '
1 N X DIRE '
1 N Y DIRE '
'F THE MA'
, 'RELATION
EXTRACT I ' ,
'R FRACTI '
UREMENTS' ,
1 , 'N X DIRE
, ' N Y DIRE1
, 'CTION OF '
, 'CTION OF '
, 'SSES FOR'
'ON
, 'ONS EXTR1
1 CONTRIB1 ,
1 , 'CTION OF1 ,
, 'CTION OF ' ,
' / ,
'/,
, 'ACTION '/,
'UTING TO1 ,
COMPLETE THE CALCULATIONS FOR CONC ,
DO 1030 1=1,NTS
DO 1030 0 = 1 ,NS
IF (CONC(5,I,0J.LE.0.) GO TO 10
COMC( 1 , I .0 )=CONC< 1,1,0 )/COt!C(5, I
CONC(2, I , J >=COMC(2, I ,0 )/COi\!C<5, I
IF (DC( I ,J ).LT.3. ) GO TO 21
DD = DCiI.0)/(DC(I,0 >-l.0)
0 )
0 )
DQ = DC' I ,0 ;/'( DC( I ,0 )-2.
CONC(3, I ,0 > = DD«((CONC(
CONC' 1,1,0))
I,0 )/CONC<5,1,0) )-CONC(1,I ,0 >*
56
-------
512,
513.
514.
515.
515.
517.
518.
519.
520.
521 .
522.
523.
524.
525.
525.
527.
523 .
32S.
-.
5 -' 4 .
545 .
.
525 .
5"£G.
£57 .
5£1 .
5- o
j t..
T- ~ O
O SO .
3 O 4 .
5 5 o .
572 ,
573 .
574 ,
575 .
CONG (4, !,J) = DD*« CONG (4
CONC( 2, ! ,0 ) )
CONCC6, I,0)=DQ*((CONC<6
CONC<2, 1,0 )>
IF =CCNC< 2,1,0)+ 15.0
CONC( 3,1,0 >=SQRT(CONC<3, 1,0))
CONC( 4,1,0 )=SQRT(CONC<4, 1,0))
GO TO 1030
1 ,0 }/CONC( 5 , I ,0 ) )-CONC( 2 , I ,0)*
I,J)/CONC<5, I,0))-CONC< 1 ,1 .0)*
»
) )
GO
GO
TO
TO
20
20
10
21
20
CONCt1,
CONC(2,
CONC<6,
CONC(3.
CONC(4,
CONC(2,
0 )=0.
0)=0.
0)=0.0
0)=DKP/SQRT(12,
0)=DYP/SQRT(12.
0 )=CONC(2,I,0 ) + 16.0
1030
CONTINUE
C
C
COMPLETE THE CALCULATIONS
DO 1050 1=1,NTS
DO 1060 0=1,NS
FOR WD
IF (WD<5,I ,0).LE.£T. ) GO TO 40
WD(1,I,0)=WD(1,1,0)/WD(5,1,0)
WD(2,I,0)=WD(2,I,0)/WD(5,I,0 )
IF (WC( I,0 ).LT.3. > GO TO 51
WW=WC(I,0)/(WC(I,0)-1.0)
WQ=WC(I,0 )/(WC(I,0)-2. )
WD < 3,I,0)=WW* « WD(3,I,0)/WD(5,
)=WW*((WD(4,I,0 >/WD(5,
>=WQ*((WD(6,I,0 )/WD(5,
,I,0 ).LE.(DXP*DXP/12. !
,I,0 ).LE.(DYP*DYP/12. )
WD(4,1 ,0
WD(5 , I , 0
IF (WD(3
I r ( '.;D ( 4
WD(3,I,0
WD(4,I
WD(2, I
GO TO
I,0»-WD( 1
I ,0 »-WD(2
1,0)>-WD(1
> GO TO 50
) GO TO 50
I,0)*WD(1
I,0>*WD(2
I,0)*WD(2
,I,J
!i!o
))
»
»
40
51
50
WD( 1 .
WD(2,
WD(6,
WD(3,
WD(4,
WD(2,
I ,0
I ,0
I ,0
1,0
I ,0
I ,0
>=SQRT(WD(3,I ,0) )
,0 )=SQRT(WD(4, 1,0))
,0 )=WD(2, I ,0 ) + 16.0
1060
)=0.
}=3.
)=0.0
) = DXP/SQRT( 12. )
) = DYP/SQRT( 12
>
)=WD(2, I ,0 ) + 16.0
1060
CONTINUE
1080
2093
:>,L=1,7),R£MLBL,(J,
-------
577.
573 .
579.
530.
531 .
532.
583.
584.
535 .
585.
587.
588.
539.
590.
591.
592.
593.
534.
595 .
59sl
597.
59C.
599.
6."' rj .
5 C' 1 .
6.: 2.
END
//GO.FT09F001 DD DSN = B254S8 .TSUM80HC , UNI7=ALLPFRM,
// DISP=(NEW,CATLG),DCB=(LRECL=X,BLKSIZE=6144,RECFM=VBS),
// SPACE=(TRK,(10,5),RISE)
//GO.FT10F001 DD LABEL = ( 19,NL, ,IN ),UNIT=READ5250,OISP = , UN IT=READ625£T,
// DISP=,DCB=,
// VOL=SER=201436
//GO.?T21FJr01 DD DSN=OUL80. PF8HR , LABEL = { 8 , SL , , I N> , UNIT = READ6250,
// DISP = (OLD,KEEP > , DCB = (LRECL = X,BLKSIZE = 6136,RECFM=VBS),
// VOL=SER=201435
//GO.FT22F001 DD DSN=AUG80. PF6HR , LABEL = { 9 , SL., , IN >, UN IT = READ6250,
// DISP=(OLD,KEEP),DCB=,
// VOL=
'SER=201436
//GO.SYSIN DD *
0
0
0
0
0
0
0
0
0
0
0
vj
0
0
0
0
0
0
0
0
0000000
0 0123 0000
0 0120121122 0 0
0114115116117118119
01041051061071081091101
87
71
55
42
0
0
0
0
2T
0
0
88 89 90 91 92 93 94
72 73 74 75 76 77 78
57 58 59 50 61 62 63
43 44 45 45 47 48 49
30 31 32 33 34 35 35
0 19 20 21 22 23 24
0 0 3 11 12 13 14
0004567
0000200
0000000
0000000
0.500
6
MO
/*
1
DA
80 0 92 28
YR TI NDY NT
0 SS
0 0
0 0
0 0
11 0
95 95
79 80
64 65
50 51
37 38
25 25
15 16
8 9
0 0
0 0
0 0
UTROP
MO , DA
0
0
0
0
0
97
81
56
52
39
27
17
10
3
1
0
,YR
0
0
0
0
0
98
32
57
53
40
28
18
3
0
0
0
,HR
0
0
0
0
0
99
83
68
54
41
29
0
0
0
0
0
0 0
0 0
0 0
0 0
01.121
0
0
0
0
13
0
0
0
0
0
100101102103.
84 85
69 70
55 0
0 0
0 5
0 0
0 0
0 0
0 0
0 0
86
0
0
0
0
0
0
0
0
0
OF START, #
0
0
0
0
0
0
0
0
0
0
DAYS
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
INDICATOR
ARRAY FOR
VIRTUAL
SOURCES OF
TRAJECTORY
STATISTICS
# TIMESTETS
58
-------
Appendix B: Program VERT Listing
59
-------
1. //VERT JOB REGION»ZU3rK,TIME=ljer.,CLASS-X
2. //"MAIN ORG=RM080
3. /'/ EXEC FGICLG
4. //SYSIN DD *
5. C THIS PROGRAM CALCULATES THE HORIZONTALLY INTEGRATED VERTICAL
5. C PROFILES OF GAS, PRIMARY AND SECONDARY PARTICLES
7. C AS A FUNCTION OF TIME AFTE3. RELEASE (PLUME AGE).
3. C
9. C DIURNAL AND VERTICAL VARIATIONS OF PARAMETERS ARE SIMULATED,
10. C BUT NOT HORIZONTAL VARIATIONS. TYPICAL PATTERNS OF VERTICAL EDDY
11. C DIFFUSIVITY ARE SPECIFIED BY LAYER AND TIME OF DAY. THE RATE OF
12. C TRANSFORMATION FROM GAS TO PARTICLE IS. A FUNCTION OF TIME OF DAY.
13. C DEPOSITION VELOCITIES FOR S02 OR NO/N02 AND S04 OR N03
14. C ARE SPECIFIED BY TIME OF DAY.
15. C
15. C THE TYPICAL STABILITY CYCLE IMPLIED 3Y THE EDDY DIFFUSIVITIES IS
17. C A NOCTURNAL INVERSION, FORMING AROUND SUNSET, DEEPENING DURING
13. C THE NIGHT, AND RISING AND ERODING FROM BELOW DURING THE MORNING.
19. C DURING THE AFTERNOON THE ATMOSPHERE IS UNSTABLE UP TO THE
23. C SYNOPTIC-SCALE MIXING HEIGHT.
21. C
22. C THE MODEL CAM HAVE A MAXIMUM OF 9 LAYERS WITHOUT REDIMENSIONING,
23. C WITH THE NUM3ER OF LAYERS AND THE LAYER THICKNESSES BEING INPUT.
24. C CONCENTRATIONS ARE. ALSO CALCULATED AT THE SURFACE.
25. C
2o. C THROUGHOUT THE PROGRAM, S02/N02 IS POLLUTANT 1, PRIMARY S04/N03
27, C IS POLLUTANT 2, AND SECONDARY S04/N03 IS POLLUTANT 3.
23. C
29. C
3~. C VARIABLES IN LABELLED COMMON1
31. C
32. C ABVML : AVERAGE MASS OF S OR N ABOVE THE MIXING LAYER
33. C FOR EACH TIME STEP AND POLLUTANT.
34. C A123 ,. A? , AND AS : PARTIAL CALCULATIONS FOR EACH LAYER.
35. C CONV : FRACTION OF A MOLECULE COMPOSED OF S OR N (BY MASS) FOR
~3G. C EACH POLLUTANT.
37. C DCOR : AIR DENSITY AT EACH LEVEL AS A FRACTION. OF SURFACE
C DENSITY.
C DEPT : DRY DEPOSITION MASS INCREMENT FOR EACH TIME STEP AND
C POLLUTANT, FOR A UNIT EMISSION.
4i. C 02 : THICKNESS OF EACH LAYER IN METERS.
.12. C DZD , DZU , AND DZZ : PARTIAL CALCULATIONS FOR EACH LAYER.
43. C EMR : RELATIVE DIURNAL EMISSION RATE.
4-1. C FAC : SEASONAL FACTOR AFFECTING THE TRANSFORMATION RATE.
45. C KZ : VERTICAL EDDY DIFFUSIVITY BY LAYER AMD HOUR.
45. C NTS : NUMBER OF TIME STEPS.
47, C NZ : NUMBER OF LAYERS.
4S. C NZ1 : ONE LESS THAN THE NUMBER OF LAYERS.
49. C SBUD : REMAINING AIRBORNE MASS FROM A UNIT EMISSION OF
53. C ATMOSPHERIC S OR N, BY TIME STEP AND POLLUTANT.
51. C SOXS : AVERAGE ONE-DIMENSIONAL SURFACE CONCENTRATION OF
52. C S OR N FOR A UNIT EMISSION.
53. C SRCLVL : SOURCE LEVEL POINTER.
54. C TR : HOURLY S02-S04 OR N02-N03 TRANSFORMATION RATE.
E5. C USTAR : FRICTION VELOCITY IM M/SEC.
55. C VD : DEPOSITION VELOCITIES 3Y AG£ CF THE PLUME, HOUR OF
57. C THE DAY, AND POLLUTANT.
Sa. C VK : VON KARMAN CONSTANT.
59. C Zl : HEIGHT FOR SURFACE CALCULATIONS.
£j.j. C 22 : HEIGHT OF THE CONSTANT FLU!! LAYER.
6:. C IPOL : POLLUTANT SYSTEM INDICATOR <1=SOX, 2=t!OX)
5i!. C
53. C
60
-------
54. C VARIABLES ONLY IN MAIM
55. C
56. C AVADML : AVERAGE MASS CF SOX OR NOX AB'OVI THE MIXING LAYER
67. C CORRESPONDING TO TRAJECTORY TIME STEPS.
GG. C A'-'BGT : AVERAGE MASS OF AIR30RME SOX OR NOX COERTSPOND! NG TO
53. C TRAJECTORY TIME STEPS.
73. C AVDD : AVERAGE DRY DEPOSITION CORRESPONDING TO TRAJECTORY
71. C TIME STEPS.
72. C AVSFC : AVERAGE SURFACE CONCENTRATIONS CORRESPONDING TO
73. C TRAJECTORY TIME STEPS.
74. C NSEASN : CODE FOR THE SEASON <1=SUMMER, 2-AUTUMN, 3=WINTER,
73. C 4=SPRING>.
7,5. C NVI : NUMBER OF VICTUAL SOURCE LEVELS.
77. C
73. C
79. COMMON /DP/ DZ<10),A123(9),A7(9>,A3(9 ) ,DZD<9 ), DZU(9 ), DZZC 9 )
ZiJ. COMMON /R/ DEPT( 163,3), 30XS( 158,3), SBUD( 168,3), ABVML( 168,3), Z1..Z2,
31. . y. VK,USTAR,KZ(2,9,24),VD{2,24,2>,TR(24),DCOR{ 10 ) , COMV( 4 ) , EMR< 9 , 24 )
32. COMMON /INT/ NTS , fiZ, NZ1 , SRCLVL, FAC , I POL
T3. DOU3LE PRECISION DZ, Al 23 , A7 , A8 , DZD , DZU., DZZ
2-\. DOU3LE PRECISION A1,A2,A3
Co. DOUBLE PRECISION SEASON(4 ) ,IP0(2 )
e3. REAL AVSFC (28, 3), AVDD (23, 3) , AV3GT< 28 , 3.) , AVABML ( 28 ,3 ) , KZ
37. INTEGER SRCLVL
S3. DATA SEASON/' SUMMER ',' AUTUMN ',' WINTER ',' SPRING '/
89. DATA IPO/' SULFUR ' ,'NITROGEN ' /
90. C
91 . C ... INPUT DATA
32. READ 2010,NSEASN,IPOL
93. 2010 FORWAT(2I3)
34. NZ=9
95. NTS-158
i'S. NVI =6
37. Z1 = 2.0
30. 22=35.0
39. PRINT 2021,IPO(IPOL)
!£?. 2J021 FORMATS CALCULATIONS FOR QXIDTS OF ' ,A8 )
131. PRINT 2020,NZ,NVI,SEASCfU NSEASN>, NTS,Zl,Z2
132. 2020 FORMAT(I2,' LAYERS WITH THE BOTTOM1,12,' BEING SOURCE LEVELS.1/
103. % ' MODEL',AS,'WITH',14,' TIME STEPS.'/' SURFACE CONCENTRATIONS',
104. X ' CALCULATED AT',F6.1,'M AND CONSTANT FLUX LAYER AT',
1J5, % 76 . 1 , 'M. ' >
10S. C
I.i7. C
153. C ... SET CONSTANTS.
USTAR=0.4
i.l, CONV<1)=32./54.
i;2. COMV(2>=32./96.
13. CONV<3>=32./96.
114. CONV<4)=96./64.
115. IF (IPOL.EQ. 1 ) GO TO 10
iio. COMV<1 ) = 14./46.
117. CCMV(2)=14./G2.
ll^J. CO;IV(4> = 62./46.
125. 10 CONTINUE
'.2;.. C ... CHECK PARAMETERS.
122. IF riZ.LE.9 .AND. NVL.LE.9 .AND. NSEASJH ^L£. 4) GO TO 50
12?. PRINT 2.750
:24. 2JET50 FORMATi'1 A USEP.-SUPPL.I^D PARAffETUR IS TOO LARG.E AND MAKES'/
125. % ' EXECUTION IMPOSSIBLE. EXECUTION HALTED.')
::ro. STOP
127, 50 IF (iiZ.ST.l .AMD. NVI.GT.-Cf .AND. MSIASti. GT .3 .AND. Z1.GT.0)
61
-------
128.
129.
135.
131.
132.
133.
134.
135.
135.
137.
133.
139.
1 40 .
141.
142.
143.
144.
145.
145.
147.
143.
1-19.
i30.
I 51 .
152.
153.
154.
155.
156.
157.
1 58 .
1 = 3.
160.
161 .
162.
153.
134.
1G5.
166.
167.
153.
i i 3 .
1-0.
1 - [
1-2 .
1 7C .
1-4.
175.
176.
177.
178.
179.
130.
1 G 1 ,
132.
133.
1S4.
105.
135.
i'37.
183.
139.
Isfl.
191.
?
2070
2
C
80
C
C . . .
2090
2100
2110
C
C . . .
2121
2120
2122
2123
2130
2124
2125
1140
C
C
9934
C
r*
c
c
c . . .
c
c
c
c . . .
150
C . . .
160
C . . .
170
GO TO 80
PRINT 2070
FORMAT* ' A USER-SUPP1_X£D PARAMETER IS TOO SMALL ACT MAKES1/
1 EXECUTION IMPOSSIBLE. EXECUTION HALTED.')
STOP
NZL=NZ-1
AMD DENSITY
,I=1,MZ)
READ THICKNESSES
READ 2090,
FORMAT*//1 LAYER THICKNESSES
READ 2090,,1=1,NZ)
FORMAT' DENSITY CORRECTION
CtCRRECTIONS.
IN M1 , / , 20F5..jSn
,/, 11F8.3/)
INPUT DATA UNTIL PROPER FIELDS ARE READ.
DO 1140 i<:, 0 = 1 , 24), I =-1, NZ )
1 )
IPOL
1> GO TO 2125
READ
READ
READ
READ
FORMAT* 12F5
DO 2124 KQ-1
READ 2120, TR
IF (IPOL.EQ
GO TO 1140
READ 2 120, WASTE
READ 2120, WASTE
CONTINUE
INPUT DUMMY VALUES FOR DIURNAL EMISSION VARIATION.
DO 9934 1=1 ,9
DO 9934 0 = 1 ,24
EMR( 1,0 )=1.0
SET DEPOSITION VELOCITIES FOR THE FIRST 2.5 HOURS EQUAL TO
THOSE FOR AFTER 2.5 HOURS, UNLESS THEY ARE LE.SS THAN A
SEASONAL MINIMUM.
IN SUBROUTINE INTGRT THE PRIMARY SULFATE. DEPOSITION VELOCITY
IS SET TO 1.0 CM PER SECOND DURING THE FIRST 2.5 HOURS TO
ALLOW FOR GRAVITATIONAL SETTLING OF LARGE PARTICLES.
GO TO < 150, 160,170,1S0),NSEASM
SUMMER
S02MIN=.0030
S02MAX= .0050
GO TO 190
FALL
S02MIN=.0015
S02 MAX =.0040
S04MIM=..a020
GO TO 190
WINTER
S02MIM-.
62
-------
192. S04M!N=
193. GO TO 190
194. C ... SPRING
195. 130 S02MIN=.002S
196. S02MAX=.0040
197. S04MIN=.0020
133. 190 DO 1200 1=1,24
199. VD!2,I,1 )=VD(1,1,1)
200. IF ;VD(2,I,1 >.LT.S:02MIN> VDC2-,-! , 1 )=S02M1N
251. IF ;VD(2,I ,1 ).GT.S02MAX> VD( 2,-L, 1 ) = S02MAX
202. VD;2,I,2)=VD;1,1,2)
253. 1200 IF ; VD(2., I , 2 ) . LT . S04MIN > VD< 2,1, 2 ) = S04MI N
254. C
205. C ... PRINT DEPOSITION VELOCITIES.
255. PRINT 2210
207. 2210 FORMAT;- FIRST 2.5 HOURS OF DISPERSION')
208. PRINT 2220,>
2:5. PRINT 2220,,I=1,24)
211. PRINT 2210
2:2. PRINT 2230,(VD;2,I,2),1=1,24>
213. 2230 FORMAT;' PARTICLE DEPOSITION VELOCITY IN M/S',/,z(5X,i2F7.4,/>>
21.;. PRINT 2230,;VD( 1,1,2),1 = 1,24)
215. C
216. C ... SET EDDY DIFFUSIVITIES FOR THE FIRST 2.5 HOURS EQUAL TO THOSE
217. C FOR AFTER THE FIRST 2.5 HOURS, EXCEPT FOU THE FIRST
210. C AND SECOND LAYERS.
219. DO 1240 1=1,NZ
225. DO 1240 J=l,24
221. 1240 KZ<2,1,0)=KZ(1,1,0)
222. DO 1250 J = l ,24
223. 1250 IF ;:
235. PRINT 2260,<
231 . PRINT 2270,TR
232. 2270 FORMAT;' HOURLY TRANSFORMATION RATE',/,2;5X,i2F7.4,/)>
233. C
234. C ... CALCULATE, FOR LATER USE, FACTORS RELATED TO THE THICKNESSES
235. C OF THE LAYERS.
235. DO 2280 K=l,NZ
237. !*
245. A2 = *DZ< K )*DZ< K >/( 4.*DZD(K) )
245. A3=*DZU/4. )
Z-".7. A123;X)=A1-A2->A3
243. A7<;<) = ( DZD
2-'9. 2280 AS-vK) = DZ( K)*DZ{ K )/( 4 . *DZD( K ) )
205. FAC=2-.5rt:ABS;NSEASN-3)
251 . C
2B2. C ... SET DUMMY VALUES FOR USE IN COMPUTING DIFFUSION UP ACROSS THE
252. C TOP OF THE MIXING LAYER.
25-1. oz(NZ+i ) = DZ;NZ>
DCCR
-------
256.
257.
253.
259.
230.
231 .
252.
253.
254.
2S5.
265.
267.
253.
259.
270.
271.
272.
273.
274.
275.
275.
277.
278.
279.
280.
281 .
232.
233.
234.
2S5.
233.
287.
283.
289.
290.
231.
292.
293.
294.
293.
295.
297.
298.
299.
300 .
301 .
302.
303.
304 .
305.
305.
307.
3.V8.
309.
310.
311 .
312.
313.
314.
315.
316 .
317.
313 .
313.
C
C
C
C
C
C
C
C
C
C
C
C
C
. DO FOR EACH SOURCE. LEVEL.
DO 1390 SRCLVL=1,NVI
DO 1290 1=1,168
DO 1290 0=1,3
ASVMLtI,J)=0.
S3UD< I,0)=0.
SOXS(I,0)=0.
12.90 DEPT=AVSFC( 11,0 ) + St>XS( 1,0 5/6.JET
AVDD( II,0)=AVDD< II,0)+DEPT< 12.2 ,0 >/Z.0
IF (II.ME.l) AVDD< II ,0 >=AVDD( II ,0)-DEPT< 11,0 5/2.JET
AVBGT( II,0)=, ' PRIMARY PARTICLE', 2< T21_ 14-( 1
XX,F6.5>/>,' SECONDARY PARTICLE',2(T21,14(1X,F5.5)/))
PRINT 2350
2360 FCRMATi ' MASS OF DRY CrEPOSITTON: ' >
PRINT 2350,AVDD
PRINT 2370
2370 FORMAT< ' MASS OF S OR N ABOVE THE MIXING LAYER'.1)
PRINT 2350,AVABML
PRINT 2380
2380 FORMAT(' MASS OF AIRBORNE S OR N:1)
PRINT 2350,AVBGT
WRITE (11) AVSFC,AVDD,AVBGT
1390 CONTINUE
STOP
END
SUBROUTINE INTGRT
C ... DIFFUSE UNIT ZMISSIONS OT SOX OR XOX ORIG1NATTN-G ' IN A GIVEN
64
-------
223. C SOURCE LAYER.
321 . C
322. C
323. C VARIABLE'S ONLY IN INTCRT
324. C
325. C AML : AMOUNT ABOVE THE MI X ING...LAYER FOtt A 1-HOUR
326. C TIME STEP.
327. C CP : THE DISPLACEMENT IN METETtS OF THE CENTER OF MASS OF A
328. C PUFF AFTER DIFFUSION.
329. C DEP : AMOUNT OF DEPOSITION IN A 1-HOUR TIME STEP.
330. C DTT : LENGTH OF A SU3STEP LN SECONDS.
331. C FL2 AND FL4 : FLUXES OF GAS AND PARTICLE.
332. C ID : EQUALS 1 AFTER THE FIRST 2.5 HOURS. EQUALS 2
333. C DURING THE FIRST 2.5 HOURS.
334. C L : HOUR OF DAY SEING MODELLED.
335. C Ml , M2 , AND M3 : THE FRACTION OF THE MASS ORIGINALLY1 IN
336. C THE CURRENT LAYER WHICH HAS DIFFUSED TO THE LOWER
337. C ADJACENT, THE CURRENT, AND THE UPPER ADJACENT LAYERS,
333. C RESPECTIVELY.
339. C NTI : NUMBER OF SUBSTEPS IN AN HOUR.
340. C ORIGHR : HOUR OF THE DAY THE PLUME ORIGINATED.
341. C P : FRACTIONAL ALLOTMENT OF POLLUTANT PUFFS FROM EACH LAYER
342. C TO THE LOWER, CURRENT, AND UPPER LAYERS FOR EACH POLLUTANT.
343. C RATIO : RATIO BETWEEN THE CONCENTRATIONS AT THE TOP OF THE
344. c CONSTANT FLUX LAYER AND THE SURFACE.
345. C SOX : VERTICAL PROFILES OF SOX OR NOX.
346. C TRR : FRACTION OF GAS NOT TRANSFORMED TO PARTICLE.
347. C SX : HOLDS NEW PROFILE OF SOX OR NOX.
343. C TX : LENGTH OF A TIME STEP IN SECONDS.
349. C VAR : THE SPATIAL VARIANCE OF THE POLLUTANTS' CONCENTRATIONS.
350. C
351 . C
352. COMMON /DP/ DZ< 113), A 1.23 ( 9 ), A7< 9 > ,A8( 9 ), DZD< 9 ), DZU( 9 >, DZZ< 9 )
353. COMMON /R/ DEPT< 153 , 3 ), SOXS< 168, 3 ), SBUD< 1 S3 , 3 ), ABVML ( 1 63 , 3 ) ,21,22.,
354. X VK,USTAR,KZ{2,9,24>,VD(2,24,2),TR<24>,DCOR<10),CONV(4>,EMR<9,24>
355. COMMON /INT/ NTS,NZ,NZi,SRCLVL,FAC,I POL
355. DOUBLE PRECISION DZ, A123 ,A7 ,AS , DZD , DZU., DZZ
337. DOUBLE PRECISION SOX ( \S3, 3 ), F 1 < 9 ), F3( 9 ) , AA , AAA , TRR
358. DOUBLE PRECISION A12,A21,P(9,3,3 ) ,A1,A2,A3,AB,D,DD
3£9. DOUBLE PRECISION RATIO*6),SX(9,3>,VDD,VDU,CP,VAR
3 0.0. DOUBLE PRECISION Ml,M2,M3,DEP<3 ) ,AML<3>
361. REAL KZ
362. INTEGER SRCLVL,ORIGHR
3S3. C
354. C ... SET DUMMY VALUES FOR USE IN CALCULATING DIFFUSION ACROSS
365. C THE TOP OF THE MIXING LAYER ASSOCIATED. WITH CLOUD PENETRATION.
366. SOX(NZ+1,1>=0.
357. SOX(NZ+1,2)=0.
358. SOX(NZ+1,3)=0.
369. C
370. DO 1190 ORIGHR=1,24
371. AML(1)=0.
372. AML(2>=0.
373. AML(3)=0.
374. C
375. C ... KIPUT UNIT EMISSIONS OF GAS AND PRIMARY PARTICLE INTO
375. C THE SOURCE LAYERS. PUT A VERY SMALL AMOUNT OF SOX OR NOX INTO
377. C THE OTHER LAYERS TO ELIMINATE DIVISION BY ZERO.
373. SOX< SRCLVL,1 ) = !.*EMR(SRCLVL,ORIGHR)
379. SOX{SRCLVL,25 = 1.*EMR(SRCLVL,ORIGHR )
20,'j. DO 1U10 0 = 1 ,3
331. DO 1010 1 = 1, NZ
332. 17 ( I.EQ.SRCLVL .AND. J.LT.3) GO TO 101.3
333. SCX! I , J ) = OZ( I )*1 . E-ljCT
65
-------
384.
385.
385.
387.
388.
339.
390.
391 .
392.
393.
394.
395.
395.
397.
398.
399.
400.
401 .
402 .
403.
1013
407 ,
4,19
412.
413.
414.
415.
415.
417.
413.
419.
420.
421 .
422.
423.
424.
42S.
428.
423.
429.
430.
431 .
'132.
433.
434.
435.
435.
437.
433.
439.
44£f,
441 .
442.
443 .
444.
445.
445.
4 4 7 ,
C
C
C
C
C
C
1020
C
C
C
1021
C
C
C
1030
1040
C
C . . .
50
CONTINUE
PRODUCE INTEGRATION TO CORRESPOND TO THE TRAJECTORY
CALCULATIONS.
DO 1190 ITT=1,NTS
ID=1
IF (ITT.LT.4) ID=2
DEP(1>=0.
DEP<2)=0.
DEP(3)=0.
L=MOD((ITT+ORIGftR-2),24)+l
COMPUTE RATIOS BETWEEN CONCENTRATIONS AT THE'TOP OF THE
CONSTANT FLUX LAYER AND AT THE SURFACE HEIGHT.
DO 1020 0=1,2
RR=VK*USTAR/VD=RR/(RR+ALOG = RATIO(5)
COMPUTE THE LARGEST ALLOWABLE TIME INCREMENT OF INTEGRATION
FOR A SUBSTEP.
TX=3600.
DTT=TX
RS=10000.
DO 1030 1 = 1,NZ.
RR=DZ/KZ(ID,I,L)
IF (RR.LT.RS) RS=RR
AAA=0.
DO 1040 0=1,3
DO 1040 I = l,NZ.l
SS = SOX+A2*DZ(I >
AA=A12/A21
IF (AA.GT.AAA) AAA=AA
CONTINUE
DTT=0. i250*RS/AAA
IF (DTT.GT.TX) DTT=TX
NTI=TX/DTT + 0.9999
DTT=TX/NTI
CHECK FLUXES. IF EITHER IS TOO LARGE, REDUCE THE TIME STEP,
FL2 = VD(!D,L,1}*DTT/DZ<1 )
FL4=VD
-------
448. C ... IF FIRST TOUR, REDUCE THE TIME STEP SINCE DOING FORWARD
449. C INSTEAD OF CENTERED FINITE DIFFERENCING.
450. 60 IF UTT.EQ.l) DTT=DTT/2.
451. C
452. C ... MODIFY TRANSFORMATION RATE FOR SOURCES IN EOTTOM TWO LAYERS
453. C DURING THE FIRST 2.5 HOURS.
454. AFAC=0.
455. IF (ITT.GT.3 .OR. SRCLVL.GT.2) GO TO 70
456. AFAC=0..25*(3.-SRCLVL)'-<4.-FLOAT( ITT) )/( FAC*FLOAT( IPOD)
457. 70 TRR=1 .0-(TR< L )+AFAC* .01 )
458. C
459. C ... MAKE A PORTION OF THE DIFFUSIVITV CALCULATIONS.
450. DO 1080 K=2,NZ.
451. F1(IO=2D0*KZ< ID.K-1 ,L)*DTT
462. 1080 F3(K)=2D0*KZ< ID,K,L)*DTT
453. Fl(l>=0.0
464. F3(1)=F1(2>
455. F3(NZ)=F3*DCOR< KU ) )
434. A3=SOX(KD,I >/< DZ( KD >*DCOR< KD ) )
405. C
435. VDU=F3+A3*DZ )
433. CP=(VDU-VDD>*.5
',09. VAR=(DZZC<) -i- 5D-r-'/A123 M3=0.
436. C ... FOR BOTTOM LAYER
497. IF (K.EQ. 1 ) Ml=0.
493. M2=1.-M1-M3
499. P=0.
1110 CONTINUE
C
5J9. C ... REALLOCATE DISPERSED PUFFS.
51J. DO 1120 0=1 ,3
511. SX
-------
512.
513.
514.
515.
515.
517.
513.
519.
520.
521.
522.
523.
524.
525.
526.
527.
528.
529.
530.
531.
532.
533.
534.
535.
536.
537.
533.
539.
540.
541.
542.
543.
544.
545.
5 -IS.
547.
540.
549.
550.
551 .
532 .
553!
534.
555.
555.
557 .
553.
559.
550.
561 .
562.
563.
554.
C '^ C
566.
567.
568.
559.
570.
571 .
572.
573.
574.
575.
1120
t
/
C
C . . .
1
c
c
1130
C
C . . .
1140
1150
C
C . . .
1150
C
C . . .
1170
1130
1190
C
C . . .
c
1210
//GO.:
// UN
// SP-
//GO.:
1
SX< 1,0)=P( U2.,0)*SOX(UO)+4>(2,1,J)*SOX{2,0)
AML<0)=-AML.<0)+P*SOX(NZ,0 )
DO 1120 1=2,NZ1
11=1-1
12=1+1
SX 00=2
IF 0*DTT*RATIO{ 0 + 3)*SXC1,0)
/DZ(1 )
ALLOW NO MORE THAN 3% OF THE S OR N TO BE DEPOSITED IN
ONE SUBSTEP.
IF (D.GT.(SX( 1 ,0 )*.03) ) D=SX( 1 ,0 )*0.,03.00
DEP<0)=DE?<0)+D
SX( 1,0) = SX<1 ,0 )-D
CONTINUE
TRANSFER NEW, VALUES TO ARRAY SOX .
DO 1140 1 = 1,NZ
DO 1140 0=1,3
SOX<1,0 > = SX(1,0)
CONTINUE
CALCULATE CHEMICAL TRANSFORMATION FROM GAS TO PARTICLE.
DO 1160 I=1,NZ
SOX=TRR*SOX<1,1)
AML(3)=AML< 3)+CONV(4)*(1.0-TRR >*AML(1)
ABVML(ITT,3)=A3VML(ITT,3>+AML<3>
ABVML
SUM FIELDS.
DO 1180 0=1,3
SOXS
-------
575.
577.
570.
573.
530.
531 .
532.
533.
5C4.
505 .
535.
507.
533.
589.
590.
591 .
592.
593.
534.
595 .
596.
597.
590.
599.
60,0' .
601 .
602.
603 .
60- .
5^5.
60'6.
657 .
60S ,
509.
610.
611.
612.
613.
614.
615.
613.
617.
613.
619.
620.
62 i .
622,
623.
624.
625 .
625.
627.
623.
629.
630.
631 .
632.
633.
634.
635.
636.
6 C 7 .
630.
639.
100
1 .
10
90
5
45
3
50
16
120
1 .
10.
1 .
10.
1.
10.
0.5"
10.
1 .
10.
1 .
10.
1 .
10.
1.
10.
1.
10.
40
400
100
1000
10
65
5
35
3
40
8
50
1 .
10.
1 .
10.
1.
10.
.75
10.
1.
10.
1 .
10.
1.
10.
1 .
1 .
1 ,
1 .
24
200
50
485 .
10
70
100 100
.988 .975 .
10 10 10
85 30 75
555
45 45 45
333
55 50 45
16 16 16
110 100 90
1 . 1.
10. 10.
1. 1.
10. 10.
1. 1.
10. 10.
0.5 0.5
10. 10.
1. 1 .
10. 10.
1 . 1 .
10. 10.
1 . 1 .
10. 10.
1 . 1 .
10. 10.
1 . 1 .
10. 10.
40 40 40
380 360 300
100 100 100
950 900 750
10 10 10
55 50 45
555
36 36 30
388
35 30 25
888
55 50 45
1. 1.
10. 10.
1 . 1 .
10. 10.
1 . 1 .
10. 10.
.75 .75
10. 10.
1 . 1 .
10. 10.
1 . 1 .
10. 10.
1 . 1 .
10. 10.
1 . 1.
1 . 1 .
1 . 1 .
1 . 1 .
24 24 24
180 L60 140
50 50 60
''50 400 350
10 10 10
60 55 50
100
.965
15
70
5
40
10
40
20
80
1.
10.
1 .
10.
1.
10.
0.5
10.
1.
10.
1 .
10.
1 .
10.
1 .
10.
1 .
10.
40
220
100
550
10
40
5
25
8
20
3
40
1 .
10.
1 .
10.
1 .
10.
.75
10.
1 .
10.
1 .
10.
1 .
10.
1 .
1 .
1 .
1 .
24
112
60
280
13
40
200 200
.950 .930 .
25
55
10
30
15
35
30
70
2.
10.
1 .
10.
1.
10.
45 55
30 15
15 25
20 10
30 45
25 10
60 90
50 20
4.
10.
1 .
10.
1 .
10.
0.S 0.5
10.
1 .
10.
i
10!
i .
10.
i .
10.
i.
10.
60
140
150
350
20
35
8
20
15
15
15
35
1 .
10.
1 .
10.
1 .
10.
.75
10.
1 .
5.
1 .
5.
1 .
3.
1 .
1 .
1 .
1 .
24
30
50
200
10
35
10.
1 .
5.
1 .
5 .
1 .
5.
1 .
5.
1 .
5.
80 140
80 60
200 3B0
200 150
30 40
20 10
12 16
10 5
25 30
10 a
30 45
20 B
2.
5.
1 .
5.
1 .
5 .
.75
5.
1 .
1 .
1 .
1 .
1 .
1 .
1.
1 .
1 .
1 .
5-6 80
55 24
140 200
1 .10 30
10 30
10 10
200
910 .
80
10
35
5
55
8
110
16
8.
6.
3.
5.
1 .
5.
0.5
5.
1 .
1.
1 .
1.
1 .
1.
1 .
1 .
1 .
1.
220
40
550
100
50
10
20
5
35
8
55
8
5.
1.
2.
1.
1 .
1 .
.75"
.75
1 .
1 .
1 .
1 .
1 .
1 .
1.
1 .
1 .
1 .
112
24
280
50
50
10
400
.830
90
10
40
5
60
8
120
15
10.
2.
7.
i .
i!
i .
3.
0.5
1.
1 .
1 .
1.
1 .
1 .
1 .
1 .
1 .
1.
300
40
T50
100
60
10
25
5
40
8
60
8
3.
1 .
5.
1.
3.
1 .
.75
.75
1 .
1 .
i .
1 .
1 .
1 .
i .
1 .
1 .
1 .
U0
24
350
60
60
10
400 LAYER TWICKNFSS
.340 DENSITY CORRECTION
90 90
10 10
45 45
5 5
60 60
8 8
120 120
16 16
10. 10
1. 1
10. 10
1 . 1
13. 10
1 . 1
10. 10
0.5 0.
5. 10
1. 1
1. 5
1. 1
1. 5
1 . 1
1 . 1
1 . 1
1. 1
1. 1
360 3SJ0T
40 40
900 9-50
100 100
65 65
10 10
30 36
5 5
40 40
8 3
60 60
8 8
10. 10
1. 1
8. 10
1. 1
7. 10
1. 1
3. 10
S02 DRY
*
S04 DRY
NO/N02
DEP
100
DEP
S.UMMFR
DRY DEP
NITRATE/HNO3
10.
1.
. 10.
1 .
. 10.
1 .
13.
5 0.5
. 10.
1 .
. 10.
1 .
. 10.
1.
5.
1 .
1 .
1 .
S02 OXID
TIMES
10.
1.
10.
1 .
10.
1 .
10.
0.5
10.
1.
10.
1 .
10.
1 .
10.
1 .
5.
1 .
DRY DEP
DIURNAL
PATTERN OF
VERTICAL
EDDY
DIFFUSIV.
IN METERS
SQUARED
PER S
BY HR AND
LAYER
. RATE IN X/ttR
100
NOX OXLDATION
. 10.
1.
10.
1 .
. 10.
1.
10.
.75 .75 .75
1 . 3
1 . 1
1 . 1
1 . 1
1 . 1
1 . 1
1. 1
1 . 1
1 . 1
1 . 1
160 150
24 24
400 450
50 60
73 70
10 10
10.
1 .
1 .
1 .
1 .
1 .
1 .
1 .
1 .
1 .
10.
1 .
10.
1 .
10.
1 .
10.
.75
10.
1 .
10.
1 .
10.
1 .
1 .
1 .
1 .
1 .
RATE
FALL
69
-------
Appendix C: Program CONCDEP Listing
70
-------
640. ;3 5 5 5 5 5 5 12 15 18 21 24 WINTER
641.
642.
643.
644.
5-5.
645 .
647.
643.
649.
650.
651 .
652.
653.
654.
655.
655 .
657.
658.
659.
663.
651 .
632.
663.
654 .
6G5 .
66S.
567.
5S3. 10 10 10 10 15 25 35 55 70 80 80 80 STRING
G59 .
67.2?.
671.
672.
673.
6 7 -I.
675.
675.
6 7 7 .
673.
679.
63.1?.
o» 1 .
632.
633.
684.
6S5.
6S6.
637.
683.
639.
695.
691 .
6S2.
693.
694.
6'J5.
653.
697.
693.
;3
25
9
45
15
3£?
1.
10.
1.
10.
1 .
ISS.
.75
10.
i .
12.
I.
10.
1.
1.
1 .
1 .
1 .
1 .
16
112
40
280
10
80
5
40
a
50
a
60
1 .
10.
1.
10.
1 .
10.
.75
10.
1 .
IS.
1 .
12.
1 .
10.
i .
10.
1 .
10.
32
325
35
800
/*
5
25
9
35
15
80
1
i *
10.
1 .
10.
1 .
10.
.75
10.
1 .
10.
1 .
10.
1.
1 .
1 .
1 .
1 .
1 .
16
96
40
5 5
25 25
9 9
30 25
15 15
75 70
1.
10.
1 .
10.
1 .
10.
.75
10.
1 .
10.
1.
10.
1.
1 .
1 .
1 .
1 .
1.
15 16
30 64
40 40
240 Z00 1S0
10
75
5
40
3
45
3
55
1 .
10.
1 .
10.
1 .
10.
.75
IS.
1 .
10.
1 .
10.
1 .
10.
1 .
10.
1 .
10.
32
230 2
80
10 10
70 65
5 5
40 40
8 8
40 35
8 B
50 45
1.
10.
1 .
li?.
1 .
10.
.75
10.
1 .
10.
1 .
10.
1.
10.
1 .
15.
1 .
10.
32 32
40 200
80 80
750 500 500
5
16
9
20
15
65
1 .
10.
1 .
10.
1 .
10.
.75
10.
1 .
10.
1 .
10.
1.
1 .
1 .
1 .
1 .
1 .
16
48
40
L20
15
60
5
35
3
30
10
40
1 .
10.
1 .
10.
1 .
10.
.75
10.
1 .
10.
1 .
10.
1 .
10.
1 .
10.
1 .
10.
32
160
80
400
5
12
9
15
15
40
1.
5.
1.
5.
1 .
5.
.75
5.
1 .
1 .
1 .
1 .
1.
1 .
1 .
1 .
1 .
1.
16
32
40
80
25
45
10
25
15
25
15
35
1.5
10.
1 .
10.
1 .
10.
.75'
10.
1 .
10.
1 .
10.
1 .
10.
1 .
10.
1 .
5 .
56
1.25
140
300
5 12
10 5
9 30
9 9
15 45
20 15
1 .
1 .
1.
1.
1 .
1.
.75 .
.75 .
1 .
1 .
1 .
1 .
1.
1 .
1 .
1 .
1 .
1 .
16 32
16 16
40 80
40 40
35 55
30 15
15 20
15 10
25 35
20 10
30 45
25 10
3.
10.
1 .5
10.
1 .
10.
.75 .
10.
1 .
10.
1 .
10.
1.
10.
1.
5.
1 .
i
80 12.B
80 56
200 300
200 140
15
5
35
9
70
15
1 .
1.
1.
1.
1.
1 .
75
75
1 .
1 .
1 .
1 .
1 .
1.
1 .
1 .
1.
1 .
48
16
120
40
70
10
30
5
45
3
55
3
7.
5.
4.
5.
3.
5.
75
5.
1 .
5.
1 .
5.
1.
5.
1.
1.
1 .
1 .
18
5
40
9
80
15
5 .
I!
i .
i.
i .
i .
.75
.75
1 .
1 .
1 .
1.
1.
1 .
1 .
1.
1 .
1 .
64
16
L60
40
80
10
35
5
50
8
60
8
1.0.
1 .
3.
1 .
6.
1 .
5.
.75
1 .
1 .
1 .
1 .
1 .
1 .
1 .
1 .
1 .
1 .
1 60'. 200
32
400
80
32
500
80
21
5
45
9
80
15
10.
1.
5.
1 .
3.
1 .
.75
.75
1 .
1.
1.
1.
1.
1 .
1 .
1 .
1 .
1.
80
16
2JST0
40
80
10
40
5
50
3
60
3
10.
1 .
10.
1 .
10.
1 .
10.
.75
5.
1 .
1 .
1 .
1.
1 .
1 .
1.
1 .
1 .
240
32
500
80
24
5
45
9
80
15
10.
1.
10.
1.
10.
1 .
10.
.75
1 .
1 .
1 .
1 .
1.
1 .
1 .
1 .
1.
1 .
9-6
16
240
40
80
10
40
5
50
3
60
8
10.
1 .
10.
1 .
10.
1 .
10.
.75
10.
1 .
5.
1 .
5.
1 .
1 .
1 .
1 .
1 .
28J2T
32
7'00
80
10.
1.
L0r.
1 .
1J3.
1.
10.
.75
10.
1 .
1 .
1 .
1.
1.
1 .
1.
1.
1.
LSr.
l.
10.
1 .
10.
l .
10.
.75
10.
1 .
10.
1 .
10.
1.
5.
1.
i[
I .
10.
1.
10.
1 .
10.
1 .
10.
.75
10.
1 .
10.
1 .
1 .
1.
1 .
1 .
1.
1 .
10.
1 .
10.
1.
10.
i *
10.
.75
10.
1 .
10.
1 .
10.
1 .
10.
1.
5.
1 .
71
-------
3.
9.
10.
11 .
12.
13.
14.
15.
15.
17.
33,
O *v ,
C 5
3 5 ,
33.
42 .
44
//CONCDEP JOB
//*VAIN ORG=RM080
// EXEC FGICLG
//SYS IN DD *
DIMENSION
DInZMSIOM
DIMENSION
DIMENSION
DIME MS I ON
DIMENSION
DIMENSION
REAL MAXM
R0 = 5397./381 .
R018=l.866*RO
P2=3.14159/2.
= 1,REGION=5J2TJ3TK,CLASS=W
C
C
C
C
C
C
C
C
C
C
,45)
CO(6,28,123),WD(6,28,123),LANDE< 19,16)
S02<51 ,45), 204(51 ,45>,DDEP(51,45),WDEP(51,
X(51 ),Y(45), INDO(51 ,45)
SOX<28,3,6),DEPT{28,3,6),S8UD(28,3,6),MAXN( 12)
EM(720,6),XS{720),YS(720),WF(6>,EW( 12)
ISTPR<60>, IND(51 ,45)
AREA(60),AREAA(60),ADRY(60),AWET(60)
NSP
MSP =
333:
IS
12
THE NUMBER OF TELESCOPED TIME STEPS,
SBXX AMD SBYY ARE THE VARIANCES OF A UNIFORM DISTRIBUTION ACROSS
A 1/3 NMC
SBXX=(1,/3.
SBYY = ( 1 ./3
CELL
)*( 1 ,
)*( 1
AND ARE USED IN RESOLUTION LIMITATIONS,
C!<1 AND OUTSID ARE USED IN REDISTRIBUTING PUFF MASS BEYOND .
2.5 STANDARD DEVIATIONS.
OUTSID=1.045
CK1=0.0175*0.3939*2.0*3.14159
CK1=ALOG(CK1 )
FAC1 AMD FAC2 ARE USED IN CALCULATING CONCENTRATION AND DEPOSITION
FIELDS.
FAC1=1.E06*OUTSID
FAC2=365."OUTSID
UTROP IS THE FRACTION OF SULFUR MASS REMOVED
THE PBL 3Y PRECIPITATION TRANSFERRED TO THE
TROPOSPHERE.
UTROP=l./2.
UT = UTROP/(1.-UTROP )
FROM
FREE
INPUT PARAMETERS
NXC=51
NYC = .-t5
X<1)=-10.83
DXC=1 ./3.
DESCRIBING CONCENTRATION/DEPOSITION GRIDS.
V ( 1 ) = 1 9 . S 3 3
DYC=1./3.
YS=Y< 1 ) + DYC/2.0
DO 2333 1=2,NXC
X( I > = X! 1-1 J + DXC
DO 3332 0=2,NYC
YCO ) = Y(0-1 )-DYC
FACX=38l.*381.*2.*3.1416/(1.866*1.366)
FACXX = 381 .-'381 .*DXC*DYC/( 1 .366*1 .865)
DEFINE PARAMETERS DESCRIBING TRAJECTORY PROGRAM FIELDS.
NG=19
MG=>5
X L = - 1 1 . 5
YL=20.5
72
-------
64. GX=1.0
S 5 . G Y = 1 .0
IS. NTS=2S
63. DO 901 1=1,NXC
69. DO 901 0=1,NYC
70. S02*I,0)=0.0
71. S04(I,0)=0.0
72. DDEP
84. 7003 FORMAT*1812)
S5. 7002 FORMAT*33I2)
CJ. C
S7. C ... INDD IDENTIFIES EACH STATE AND PROVINCE.
£3. DO 34.J 00 = 1 ,45
S3. 0=46-00
20. 940 READ (50,7005) *1.51*1.61*10.0
C
iZ'7. C ... MAXN IS USED IN CALCULATING THE MAXIMUM POTENTIAL TRAJECTORIES
103. C CONTRIBUTING TO A STATISTIC IN THE TELESCOPED TIME STEPS.
l.-:9. READ 8020, MAXN
lit/. 3020 FORMAT* 12F6. 1 )
111. C
112. C ... EW IS USED TO WEIGHT PUFFS IN THE TELESCOPED TIME STEPS.
113. READ 8021,EW
114. 8021 FORMAT*12F2.0)
115. C
ue. c
117. C ... READ RESULTS OF TRAOECTORY PROGRAM.
113. C IN THE TRAOECTORY PROGRAM ARRAY CO IS CALLED CONC.
113. READ <10) CO,WD,LANDE,NF
12.0'. XNF = NF
12.. DO 700 0 = 1, 123
122. DO 701 1=1,23
i:3. CO*6, I ,0)=CO<5,I,0)/*CO*3,1,0)*CO(d,!,J) )
124. 701 WD(5,I,0)=WO(6,I,0)/*WD(3,I,0 )*WD*4,I,0) )
125. C
125. C
127. C
73
-------
12S. C
129. C ... POST-PROCE'SSING OF TRAJECTORY STATISTICS TO COMPRESS TIMESTEPS,
1?7. DO 500 K=3,4
131. DO 502 1=1,4
132. IA=2*I+4
133. IB=IA-1
134. IC=I+4
135. W1=CO<5,IA,0 )
135. W2 = CO<5,IB,J )
137. WA=W1+W2
133. IF (WA.LE.0. ) WA=1.
139. X1=UD(5,IA,J)
140. X2=WD<5,IB,J)
141. XA=X1+X2
142. IF (XA.LE.0.) XA=1.
143. Y1=CO(K-2,IA,0)
1A4. Y2 = CO(K-2,IB,0 )
145. Z1=WD(K-2,IA,0)
145. Z2=WD(K-2,IB,J)
147. YY=\W1*Y1+W2*Y2)/WA
140. ZZ=(X1*ZUX2«Z2)/XA
143. CC=(W1*CO(K,IA.O>*CO(K,IA,0)+W2*CO(K,IB,0)*CO* + X2*(Z2-ZZ>*(Z2-ZZ»/XA
153. C0(K,IC,0 ) = SQRT(CC>
154. WD(K,IC,0>=SQRT(DD)
155. 5J?2 CONTINUE
156. DO 503 1=1,4
137. IA=4*I+12
lie. IB=IA-1
IC=IA-2
ID=IA-3
IE=I+8
W1=CO(5,IA,0 )
153. W2 = CO<5,18,0 )
164. W3=CO(5,IC,J)
165. W4 = CO(5,ID,J )
166. WA=W1+W2+W3+W4
157. IF (WA.LE.0. ) WA=1.
153. X1=WD<5,IA,0>
:.-;. X2=WD(5, IB.O )
i7,. X3=WD(5,IC,J)
1"'.. X4=WD<5, ID,0 )
1/2. XA=:;i-x2-;:3-M4
173. IF < XA.LZ.Cf. ) XA=1 .
174. Yl=CO(K-2,IA,0)
175. Y2 = CO(!<-2, IB,0 )
175. Y3 = CO(K-2,IC,0 )
177. Y4=CO(K-2,ID,0>
178. Zl=WD(K-2,IA,0>
179. Z2=WD(K-2,IB,J>
180. Z3=WD
181. Z4=WD( !<-2, ID,J >
102. YY = (Wl*Yl+W2*Y2-s-W3*Y3-t-W4*Y4)/WA
133. ZZ=< X1*Z1+X2*Z2 + X3*Z3 + X4*Z4>/XA
1S4. CC = (Wl-*CO(K,IA,0 ) + ( Yl-YY )*( Y 1-YY » +
1G5. 1 W2-«CO + ( Y2-YY >*( Y2-YY ) ) +
1SS. 2 W3*(CO(I<:, IC,0 )?;CO(K, IC,0 > + ( Y3-YY)*( Y3-YY) > +
187. 3 W4*/WA
133. DD = < Xla(WD*(Zl-ZZ ) )+
1S9. 1 X2~(V/D(K, IB,0 )*WD(K, IB,0 ) + ( 22-ZZ )'-; { Z2-ZZ ) ) +
190. 2 X3*(WD(K,IC,0)-WD(K,IC,0)-K Z3-ZZ)*(Z3-ZZ ) ) +
191 . 3 X4-'/XA
74
-------
192.
193.
194.
135.
1S6.
197.
193.
199.
200.
201 .
202.
203.
204.
205.
206.
207.
208.
259.
210.
21 1 .
212.
213.
214.
215.
216.
217.
213.
21S.
220.
221 .
222.
223.
224.
225.
226.
227.
223.
229.
230.
231 .
232.
233 .
234.
235.
235.
237.
233.
239 .
240.
241.
242.
243.
2 -' 4 .
245 .
246.
247.
243.
249.
250.
251 .
252.
253.
254.
255.
CO(K, 11, J )=SQRT
503 CONTINUE
500 CONTINUE
DO 710 !<=! ,5
IF (K.EQ.3) GO TO 7
IF (K.EQ.4) GO TO 7
DO 702 1=1,4
IA=2*I+4
IB=IA-1
IC=I+4
W1=CO(5, IA,0 )
W2=CO<5, IB,0 )
WA=W1+W2
X1=WD(5, IA,0 )
X2=WD(5, IB,0 )
XA=X1+X2
IF (WA.LE.0. ) WA=1 .
IF ( XA.LE .0. ) XA=1 .
C0( K, IC,0 )=(W1*CO
W4 = CO(5, ID,0 )
WA=W1+W2+W3+W4
X1=WD(5, IA,0 )
X2=WD(5, IB,0 )
X3=WD<5, IC,0)
X4=WD<5, ID,0 >
XA=X1+X2+X3+X4
IF ( XA.LE. 0. ) XA=1 .
IF (WA.LE.0. ) WA=1 .
CO(K, IE,0 >= C0<5, I ,0 ) = -0.99
, I ,0 >*CO(3, I ,0 )+2.*SBXX)
, I ,0 )*CO< 4,1,0 )+2.*SBYY)
, I ,0 )*WD< 3,1,0 )+3.*SBXX )
, I ,0 )*WD< 4,1,0 ) + 3.*SBYY>
C ... READ RESULTS OF VERTICAL DISPERSION PROGRAM.
C NVI IS THE NUMBE
C VERTICAL INTEGRA
DO 10 0=1,5
R OF EFFECTIVE EMISSION LEVELS FOR WHICH
TIONS ARE MADE.
75
-------
256.
257.
258.
259.
260.
261.
262.
263.
254.
265.
266.
267.
268.
269.
270.
271 .
272.
273.
274.
275.
276.
277 .
278.
279.
230.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291 .
292.
293.
294.
295.
296.
297.
298.
299.
300.
301 .
302.
303.
304.
305.
306.
307.
308.
309.
310.
311 .
312.
313.
314.
315.
316.
317.
318.
319.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
READ (20) «SOX(I,K,0),I = 1,NTS>,K=1,3),«DEPT(I,K,0),I = 1,NTS>,
# K=1,3),«SBUD,K=1 ,3)
10 CONTINUE
REWIND 22
... POST-PROCESSING OF VERTICAL INTEGRATION STATISTICS TO COMPRESS
TIMESTEPS.
DO 706 K=1,NVI
DO 706 J=l,3
DO 707 1=1 ,4
IA=2*I+4
IB=IA-1
IC=I+4
SOX( IC,J,K)=(SQX< IA,J,K)+SOX< IB,J,K)>/2.
DEPT +DEPT( IB,J,K) >/2.
707 SBUD< IC,0,K) = (SGUD< IA ,0 , K)+SBUD< IB,J,K) 5/2.
DO 708 1=1 ,4
IA=4*I+12
IB=IA-1
IC=IA-2
ID=IA-3
IE=I+8
SOX( IE,J,K>=(SOX( IA,0,IO + SOX< I2,J,K)+SOX( 1C , J , K >+SOX( ID ,0 , K ) )/4.
DEPT+DEPT< 1C , 0 , K >+DEPT< ID,J,K»
S /4 .
708 SBUD + SBUD(ID,0,!<))
# /4 .
706 CONTINUE
GO TO 4444
... IS DEFINES THE APPROPRIATE SEASONAL EMISSION FIELD.
DO 4460 L = l , IS
READ (30) NS,NZ,( (EM< I ,0 >, 1 = 1 ,NS),0 = 1 ,NZ),(XS( I ),
1 I=1,NS),(YS(I),I=1,MS),DX,DY
4460 CONTINUE
DO 4488 1=1, MS
XS( I ) = XS< I ) + DX
4488 YS< I ) = YS( I )-DY
... THE GO TO 4444 STATEMENT AND THE FOLLOWING 11 STATEMENTS
... AND COMMENT CARDS SHOULD BE DELETED IN REAL SIMULATIONS.
4444 NS=1
XS( 1 ) = -4.5
YS< 1 ) = 15.5
EM< 1,5)=250.0
EM< 1 , 1 )=0.0
EM< 1 ,2)=0.ff
EM( 1 ,3)=0.0
EM( 1 ,4 >=0.0
EM( 1 ,6)=0.0
... EMISSION SOURCE IS LOCATED IN EASTERN OKLAHOMA.
... EMISSION RATE IS 250 KT S02 PER SEASON.
76
-------
320. C
321 . C
322. SUMM=0.0
323. DO 771 1=1,NS
324. DO 771 0=1,NVI
325. SUMM=SUMM+EM<1,0 )/365.
326. 771 EM(I,0>=1.E03*EM- GO TO 9999
343. IF (Il.GT.MG) GO TO 9999
344. IF (Ol.LT.l ) GO TO 9999
345. IF (Ol.GT.MG) GO TO 9999
346. IF (LANDE(II,015.EQ.0) GO TO 779
347. GO TO 773
348. 779 13=11-1
349. 14=11+1
350. 03=01-1
351. 04=01+1
352. IF ( I3.LT.1 ) 13 = 1
353. IF (I4.GT.NG) I4=NG
354. IF (03.LT.1 ) 03=1
355. IF (04.GT.MG) 04=MG
356. DO 777 i<=13, 14
357. DO 777 L=03,04
358. IF .GT.0) GO TO 7708
359. 777 CONTINUE
360. GO TO 9999
361. 7708 I1=K
362. 01=L
363. 778 CONTINUE
364. XBI=XS- )
355. YBI=YS(IO)-
356. I=LANDE( II ,J1 )
337. 8000 FORMAT(' TOTAL EMISSIONS = ',F8.1,' KT S PER SIMULATION1)
o < p p
369. C ... PMF IS THE FRACTION OF TOTAL SULFUR EMITTED AS
370. C PRIMARY SULFATE. IT IS HIGHER IN THE NORTHEAST, FLORIDA, AND
371. C IN THE FIRST EMISSION LAYER, UNDER THE ASSUMPTION
372. C THAT MOST EMISSIONS THERE ARE FROM OIL COMBUSTION.
373. PMF=0.015
374. IF (XS( 10 KGT.0.5) PMF = 1.33
375. IF (YS< 10 ).GT. 17.5 .AnO. XS( I 0>.GT.-3.0 ) PMF=0.03
376 . C
377. DO 86 M=l,NVI
373. 86 WF(M)=0.£f
379. C
3S0. C ... DO-LOOP FOR THE TELESCOPED TIME STEPS.
381. DO 100 0=1,NSP
382. 00=0-1
383. IF (O.EQ.1 ) 00 = 1
77
-------
334. C
385. C ... CALCULATE MASS WEIGHTING OF DRY AND WET PUFFS.
325. TW=CO(5,0,I>/ GO TO 95
396. PMQ=PMF
397. IF (M.EQ.l) PMQ=0.05
398. EMQ=1.0-PMQ
393. PMQ=1.5*PMQ
4.;/0. V2=V2+EW(0)*EM(IJ,M)*SOX(0,1,M)*EMQ
401 . V4=V4+EW< J )*EM< 10 , M ) * < SOX < 0 , 2 , M ) *PMCH-SOX ( 0 , 3 , M >*EMQ )
4.J2. IF (O.EQ. 1 ) GO TO 995
403. DO 85 L=l,00
4.74. 85 WF(M>=WF(M>+(UT*WD(5,L,I) *(EMQ*(DEPT(0J,1,M>
^75. 1 + DEPT(00,3,M)) + PMQ-/( UT*WD < 5 , L , I )+CO(5,L, I ) >>
<;75. WETF=WETF + EW< J )'£;!( 10 , M )*< WF < M )-M SBUD< J J , 1 , M > + SBUD< 0 0 . 3 , M > >*EMQ
407. # + PMQ*SBUD(00,2,M>)
458. WQ = UTi'WD(5,JO, I >+CO(5,00, I >
409. IF (WQ.LE.0.> GO TO 996
410. WF < M)=WF < M)*(1.0-WD(5,0,1)/WQ >
411. GO TO 996
412. 995 WETF=WETF+0.5*EW<0)*EM*EM
416. 95 CONTINUE
417. C
418. C ... ADD BIAS BETWEEN TRAJECTORY VIRTUAL SOURCE AND EMISSION CELL TO
419. C PUFF CENTROID, AND DETERMINE RECEPTOR GRID RECTANGLE CONTAINING
420. C 2.5 STANDARD DEVIATION PUFF FOR CONCENTRATIONS AMD DRY DEP.
421 . IF (TV/.LE.0. > GO TO 601
422. XB = XBI+CO< 1,0,1 )
423. YA = YBI-i-CO( 2,0,1)
''2-\. SCALE=CO< 3,0,1 )-vCO(4,0, I )*FACX
!i5. R01=SG!rf{ 1 .-C0< 5,0,1 )-CO( 5,0,1))
425. R02 = -2.'-'R01"ROi
427. ROW=-2.*CO<6,0,I>
423. R01=R01*SCALE
429. TWR=TW/R01
43,0'. I1 = (XB-2.5"CO< 3,0, I )-X0)/DXC + 1.
431. !2 = (XB + 2.5*CO(3,0,I )-X0)/DXC + 1.
432. IF { II .LT.1 ) 11 = 1
433. IF ( I2.GT.NXO I2 = NXC
434. 01 = ( Y0-YA-2.5*CO<4,0, I ) >/DYC + 1.
435. 02=
-------
443. PH!=P2-2.*A7AN-t-Y(L)*Y )/R013)
449. SIG=1.0+SIN-(RANFt-1 5-0.5 )*DYC
434. DLX=ABS(X5-XB )/CO(3,J,I )
455. DLY=ABS-X0)/DXC + 1.0
491. IF (II.LT.1 ) 11 = 1
<192. IF (I2.GT.NXC) I2 = NXC
493. 01 = (Y0-B-2.5*WD(4,0,I) )/DYC + 1.0
434. 02=(Y0-B+2.5*WD(4,0,I))/DYC + 1.0
495. IF (01.LT.1> 01=1
495. IF (02.GT.NYC) 02=NYC
497. DO 92 K=I1 , 12
49S. DO 91 L=01 .02
4C9. IF (IND(K,L).EQ.0) GO TO 91
5.-0. MI = 1
5 " 1 . F I = 1 .0
5,:2. IF (O.GT.l ) GO TO 54
53. N I = 13
5.-'. FI=0.1
5.5. 64 CONTINUE
: .:. ?HI=?2-2.*ATAN(SQRT(X
-------
512. C
513. C
5.4. C
515. C ... FOLLOWING 2 STATEMENTS SHOULD Be DELETED AND THE 2 STATEMENTS
516. C ... FOLLOWING THEM SHOULD BE ACTIVATED IN REAL SIMULATIONS.
517. X5=X(K>
518 . Y5 = Y( L )
519. C X5 = X< K)-(RANF(-1 )-0.5)*DXC
520. C Y5 = Y(L )-(RANF(-l )-0.5)*DYC
521. WLX=ABS(X5-A)/WD(3,0,I )
522. WLY=ABS< V5-B >/WD( 4 , J , I )
523. B B = < WL X * WL X +WRCW*WL X *WL Y + WL Y * WL Y > /WR2
524. IF (BB.LT.CK1) GO TO 93
525. WCON=FI*WTWW*EXP=WDEP(K,L >+WCON*WETF
527. 93 CONTINUE
5:3. 91 CONTINUE
529. 92 CONTINUE
S3£T. 600 CONTINUE
531 . 100 CONTINUE
532. 9999 CONTINUE
533. DO 9230 1=1, NXC
534. DO 9233 0 = 1 ,NYC
535. S02( I ,0 ) = S02( I ,0 )*FAC1
536. S04( I ,0 )=S04< I ,0 )*FAC1
537. DDEP< 1,0 )=DDEP( 1,0 >*FAC2
53S. 9200 WDEPf I ,0 )=WDEP( I ,0 )*FAC2
329. PRINT 20S0
2 ::. PRKIT 2373
5,;. 2053 FORMATi i H 1 ,//. ' TABLE 6: AVERAGE CONCENTRATION OF'
1 , ' S02 IN MICROGRAMS PER CUBIC METER1)
DO 173 00 = 1 ,MYC
170 PRINT 20S1 ,0,(S02( 1,0 ), 1=1 1,50)
2061 FORMAT( !3, IX, 40F3.0)
G<7. 2070 FORMAT;' 11 12 13 14 15 16 17 13 19 23 21 22 23 24 25 26 27 23
543. S29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
549. % ' >
550. PRINT 2062
551. PRINT 2070
552. 2062 FORMAT; i HI ,//,' TASLE T. AVERAGE CONCENTRATION OF
553. 2 ,' S04 IN MICROGRAMS PER CUBIC METER')
5=J. DO 171 00=!,NVC
dc5, 0 = M\'C + 1-J3
5 = 0. 1/1 PRI;;T 2051 ,o , i S04( i ,o ) , 1 = 11 ,50)
5S7. PRI-IT 2063
5?8. PRINT 2070
5E9. 2063 FORMAT( 1H1 ,/, ' TABLE 8: CUMULATIVE DRY DEPOSITION OF'
3 ,' TOTAL SULFUR IN GRAMS PER SQUARE METER SIMULATION1)
DO 172 00 = 1 ,NYC
0=NYC+1-00
553. 172 PRINT 2064 , 0 , < DDEP < I , 0 > , I = 1 1 , 50 )
5G4. 2064 FORMAT< 13, 1X.40F3.2)
555. PRINT 2065
555. PRINT 2070
557. 2065 FORMAT; ii-ii ,/,' TABLE 9: CUMULATIVE WET DEPOSITION OF'
5S3. 4 ,' TOTAL SULFUR IN GRAMS PER SQUARE METER SIMULATION1)
Ec9. DO 173 00=1 ,NYC
570. 0=NYC+1-00
571. 173 PRINT 2064 . 0 , ( WDEP ( I , 0 ) , I = 1 1 , 50 )
572. COMDRY=0.0
573. CONWET=0.0
574. DO 200 1 = 1 , NXC
573. DO 200 0 = 1 , MYC
80
-------
S7S. IF ( INDD< !,OKIE.JEM GO TO 283
577. PHI=P2-2.*ATAN< < XU >*X< I > + Y< 0 >*Y< 0 »**0. 5/R018 >
578. SIG=1.+SIN(PHI>
579. SF=SIG*SIG*FACXX
5C0. IQ=INDD(I,J)
531. IF ( IQ.EQ.0) GO TO 2.882
582. AREAA.LE.0.) GO TO 921
590. ADRY*1.E-3*AREA(I)/AREAA(I>
591. AWET*1.E-3*AREA,AWET(I>,! = !,60)
613. 2044 FORMAT(10X,A4,2F12.3 )
314. C
315. STOP
615. END
j.T'. //GO.FT10F7J1 DD DSN = B2545S . TSUMS0HC , D I SP=OLD
£i3. //GO.FT50F001 DD DSN=B25458.ITC.DATA,DISP=OLD
3:9. //GO.FT20F001 DD DSN=B2546S.VSUMMER,DISP=OLD
S:.J. //GC.FT30F001 DD DSN = 325468 . EMI 980SU . AU84 , D I SP =OLD
62i. //GO.FT£r9F;j.ai DD D3n = B25468 . CONDTE ST , D I SP = < NEW, CATLG ),
622. // UNIT=LONGSHRD,DC3=,
523. // SPACE = (TRK,{10,5),RLSE )
624. //GO.SYSIN DD *
325. 3 IS IDENTIFIES EMISSION SEASON ( 1=W,2 = SP,3 = SU,4 = F )
626.
627.
628.
629 .
o.. o ,
c"o
537
623.
639 ,
3 IS IDENTIF1
0
33333
33331133
22111111
22111111
22111111
2 2 2 1 1 1 i i
22211111
22211111
22211111
EES EMISSION
3 3
3 3 1
3 3 1
3311
3311
33331 1
311111
i 1 1 1 i 1
111111
111111
1 i i i 1 1
1 i 1 1 1 1
111111
111111
SEASON ( 1=W
3 3
1 3 3
1 3 3
1 3 3
1 3 3
0 0
3 3
3 3
1 3 3
1133
11133
111133
111113
111133
81
-------
540.
641 .
542 .
643.
644.
6^5.
646.
647.
5 i>. 8 .
649.
222111111
222111111
222211111
222211111
222111111
222111111
222111111
279711111
£££11111
277711111
£££lllii
279711111
£££11111
277711111
£££11111
C £ C £""£"1 1-1
2 7 7 7 7 71 1 1
£££££i 1 1
2-2-2-2-2-2-2-1-1
277777-77 1
£££u£££ I
.77-77777-77
£ £ £ £ £ £ £ £ £
2-2-2-2-2-2-2-2-2
,7-7 7 9 9 7 9 9 o
£ £ £ £ £ £ £ £ t.
2 9 ""^ 7 7 ""* 7 7 7
£££££_ £ £ £
2-2-2-2-2-2-2-2-2
2-2-2-2-2-2-2-2-2
2-2-2-2 33333
2-2 333
233
3 3
0
0
S3
0
1
1
1
1
1
1
1
1
1
1
i
" 1 -
1
1
-1-
1
1
1
-2
3
2
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
o
O
3
3
1 1 1
1 1 1
1 1 1
1 1 1
1 1-1
1 1 - 1 -
1 1-1-
111
1 1 1
ill
-1-1-1
1 1 1
ill
1 77
i O %3
333
i
1
1
1
i-
- 1 -
i
3-
o
o
3
0
3-
0
1
1
1
i
1
1
1
1
i
1
3
i
i
i
3
1
1
1
1
1
1
-1
1
"I
1
-1
1
-1
3
1 I
i i
i i
i i
i i
-i i
11
-1-1
- 1 1
11
-1-1
1 1
-1-1
3 3
3
3
1
1
1
i
1
_ 1
-1
1
-1
1
3
3
r>
o
3
3 3
1 3
1 1
1 1
I 1
1 1
i 1
1. 1
-1-1
-1-1
11
-1-1
1 1
1 1
11
-1 3
3 3
3
3
3
3
1
i
1
1
1
-1
1
-1
1
3
3
3
3
. 1
1
_ 1
-1
1
-1
_ 1
i
1
i
_ 1
-1
i
-1
. 1
1
1
-1
i
3
M
J
1
i
1
0
w
-1
i
3
1
3
-1
i
3
_
^
o
3
^
INDICATES EASTERN U.S.A.
0
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
3
o
J
3
3
3
3
3
2
2
2
2
2
2
2
2
9
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
3
2
2
2
2
O
£
2
2
2
2
2
2
2
2
2
2
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
2
2
2
2
2
2
2
9
2
2
2
2
2
2
2
2
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
2
2
2
2
2
2
2
2
2
O
£.
2
O
2
2
2
9
2
2
--)
2
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
7
2
9
2
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
9
2-
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-2
82
-------
704,
725.
705.
737 .
7Z3.
739.
710.
711 .
712.
713.
714.
715.
716.
717.
718.
719.
720.
721 .
722.
723.
724.
725.
72G.
727.
728.
5160 11390
8360 5640
5820 8410
4960 5270
4220 26730
25530 35630
AL AZ AR
MD MA MI
PA RI SC
NFLD NS ONT
00 10
111122
/*
322 2-2-2
3-2-2-2-2-2'
3-2-2-2-2-2
3-2-2-2-2-2-
3-2-2-2-2-2'
3 3-2-2-2-2'
3-2-2-2-2-
3 3-2-2-2
3 3 2-2-
3 3 2-2-
3 3 2-2-
3322-
5310 15870
3630 5630
5970
4120
961
2S00
CO CT
MS MO
4770
7070
8490
24650
CA
MN
SD TN TX
PEI QUESASK
20 30
224444
2-2-2-2-2-2
2-2-2-2-2-2
2-2-2-2-2-2
2-2-2-2-2-2
2-2-2-2-2-2
2-2-2-2-2-2
2-2-2-2-2-2
-2-2-2-2-2 3
2-2-2-2 3 3
2-2-2 3 3
2-2 3 3
2-2 3 3
10420 501
3230 4040
14710 7720
6990 9700
4080 6820
15540 2110
DE DC FL
MT MB NV
UT VT VA
(2) INDICATES WESTERN U.S.A.
(3> INDICATES NEAR-SHORE REGION
NECESSARY FOR PLOTTING
206 07
4850 3320
11050 930
4530 121
2420 5610
41260 218
GA ID IL
NH NO NM
WA WV WI
5860 7300
1060 825
784 12170
3110 7700
9790 9470
59490 21570
IN IA KS
NY NC ND
WYG LKALTA
STATE/PROV.
AREA IN TENS
OF SQ. MILES
45
65
85
105
135
175
KY LA
OH OK
BC MAM
215
ME
OR
NB
255
83
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
REPORT NO.
2.
3. RECIPIENT'S ACCESSION NO.
TITLE AND SUBTITLE
5. REPORT DATE
USER'S GUIDE FOR THE ADVANCED STATISTICAL TRAJECTORY
AIR POLLUTION (ASTRAP) MODEL
6. PERFORMING ORGANIZATION CODE
AUTHOR(S)
Jack D. Shannon
8. PERFORMING ORGANIZATION REPORT NO.
PERFORMING ORGANIZATION NAME AND ADDRESS
Environmental Research Division
Argonne National Laboratory
Argonne, IL 60439
10. PROGRAM ELEMENT NO.
CCVN1A/05-3102 (FY-85)
11. CONTRACT/GRANT NO.
DW930060-01
2. SPONSORING AGENCY NAME ANO ADDRESS
Atmospheric Sciences Research Laboratory - RTF ,NC
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final (10/82 - 6/85)
14. SPONSORING AGENCY CODE
EPA/600/09
5. SUPPLEMENTARY NOTES
6. ABSTRACT
The Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model
simulates long-range, long-term transport and deposition of air pollutants, primarily
oxides of sulfur and nitrogen. The ASTRAP model is designed to combine ease of
exercise with an appropriate detail of physical processes for assessment applications
related to acid deposition.
The theoretical basis and the computational structure of the ASTRAP model are
described. The model is evaluated with observed data, and an illustrative exercise
is provided. Computer codes of the model subprograms are provided in appendices.
7.
KEY WORDS ANO DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
COSATI Field/Group
18. DISTRIBUTION STATEMENT
RELEASE TO PUBLIC
19. SECURITY CLASS (This Report I
UNCLASSIFIED
21. NO. OF PAGES
20. SECURITY CLASS (This page)
UNCLASSIFIED
22. PRICE
EPA Form 2220-1 (R«v. 4-77) PREVIOUS EDITION is OBSOLETE
-------