EPA-650/4-74-008
February 1975
Environmental Monitoring Series
HIGH
\
uJ
O
^fti^f onmentol Protection Agency
l^ixpiJy-cijftK^i^^::^
^t^:|i::i:|:'hift^^
-------
-------
EPA-650/4-74-008
USER'S GUIDE FOR HIWAY,
A HIGHWAY AIR POLLUTION MODEL
by
John R. Zimmerman
and
Roger S. Thompson
Program Element 1AA009
NATIONAL ENVIRONMENTAL RESEARCH CENTER
OFFICE OF RESEARCH AND DEVELOPMENT
U.S . ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, N.C. 27711
February 1975
-------
During the period in which this document was prepared, John R. Zimmerman
was assigned to the Environmental Protection Agency by the National Oceanic
and Atmospheric Administration, U.S . Department of Commerce.
RESEARCH REPORTING SERIES'
Research reports of the Office of Research and Development, Environmental
Protection Agency, have been grouped into five series. These five broad
categories were established to facilitate further development and application of
environmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The five series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
This report has been assigned to the ENVIRONMENTAL MONITORING series.
This series describes research conducted to develop new or improved methods
and instrumentation for the identification and quantification of environmental
pollutants at the lowest conceivably significant concentrations. It also includes
studies to determine the ambient concentrations of pollutants in the environment
and/or the variance of pollutants as a function of time or meteorological factors.
EPA REVIEW NOTICE
This report has been reviewed by the Office of Research and Development,
Environmental Protection Agency , and approved for publication. Approval
does not signify that the contents necessarily reflect the views and policies of
the Environmental Protection Agency, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
DISTRIBUTION STATEMENT
This report is issued by the Environmental Protection Agency to report techni-
cal data of interest to a limited number of readers. Copies are available free
of charge to Federal employees , current contractors and grantees , and non-
profit organizationsas supplies permitfrom the Air Pollution Technical
Information Center, Environmental Protection Agency, Research Triangle
Park, North Carolina 27711. Document is available to the public, for a fee,
through the National Technical Information Service, 5285 Port Royal Road,
Springfield, Virginia 22161.
Publication No. EPA-650/4-74-008
-------
ABSTRACT
A computer model, called HIWAY, that can be used for estimating the
concentrations of nonreactive pollutants from highway traffic is described.
This steady-state Gaussian model can be applied to determine air pollution
concentrations at receptor locations downwind of "at-grade" and "cut-
section" highways located in relatively uncomplicated terrain. For an at-
grade highway, each lane of traffic is modeled as though it were a finite,
uniformly emitting line source of pollution. For the cut section, the top of
the cut is considered an area source. The area source is simulated by using
ten line sources of equal source strength. The total source strength equals
the total emissions from the lanes in the cut.
The air pollution concentration representative of hourly averaging
times at a downwind receptor location is found by a numerical integration
along the length of each lane and a summing of the contributions from each
lane. With the exception of receptors directly on the highway or within the
cut, the model is applicable for any wind direction, highway orientation,
and receptor location. The model was developed for situations in which
horizontal wind flow occurs. The model cannot consider complex terrain
or large obstructions to the flow such as buildings or large trees.
An interactive version of the computer model is available on the Environ-
mental Protection Agency's Users' Network for Applied Modeling of Air
Pollution (UNAMAP).
in
-------
PREFACE
HIWAY is one of the atmospheric dispersion models on both of the UNAMAP
(Users' Network for Applied Modeling of Air Pollution) systems. One of these
systems is restricted to Environmental Protection Agency users. The other
system is available to non-EPA users. The systems are accessed through
phone lines and time-share computer terminals. For information on accessing
UNAMAP contact: Chief, Data Management, Meteorology Laboratory, U.S.
Environmental Protection Agency, Research Triangle Park, N. C. 27711,
Although attempts are made to thoroughly check out computer programs
with a wide variety of input data, errors are found occasionally. In case
there is a need to correct, revise, or update this model, revisions will be
distributed in the same manner as this report. If your copy was obtained by
purchase or special order, you may obtain revisions as they are issued by
completing the mailing form on the following page. A user can be assured
that the latest version of HIWAY is on the UNAMAP system.
Comments and suggestions regarding this document should be directed
to Chief, Environmental Applications Branch, Meteorology Laboratory, EPA,
Research Triangle Park, N. C. 27711.
ACKNOWLEDGMENTS
The authors greatly appreciate the assistance of Adrian Busse, Lea
Prince, Susan Godfrey, and Karl Zeller.
IV
-------
Chief, Environmental Applications Branch
Meteorology Laboratory
U.S. Environmental Protection Agency
Research Triangle Park, N. C. 27711
I would like to receive future revisions to User's
Guide for HIWAY, A Highway Air Pollution Model. I do
not receive EPA documents through the regular mailing
list.
Name
Address
ZIP.
-------
-------
CONTENTS
Section Page
LIST OF TABLES viii
LIST OF FIGURES viii
ABBREVIATIONS AND SYMBOLS ix
1. INTRODUCTION 1
2. DESCRIPTION OF MODEL 3
At-grade Highway 3
Cut Section 9
3. DISPERSION FUNCTIONS ay AND a z 11
4. PREPARATION OF INPUT DATA 17
Card Input Sequence 17
Interactive Operation 17
REFERENCES 19
GLOSSARY 21
APPENDIX A. EXAMPLE PROBLEM 23
Introduction 24
Solution Using the Interactive Version 24
Solution Using the Batch Version 26
APPENDIX B. FORTRAN SOURCE PROGRAM LISTING FOR
BATCH VERSION OF HIWAY 35
TECHNICAL REPORT DATA AND ABSTRACT 59
VII
-------
LIST OF TABLES
Table Page
1 Pasquill Stability Classes , ... 11
2 Values of c and d Used to Calculate 0p ... 12
3 Values of g and h Used to Determine oz for Downwind
Distances Less Than 0.1 km ... 13
4 Virtual Distances a and b Corresponding to Initial crz
of 1.5 meters and Initial Oy of 3.0 meters, Respectively ... 15
5 Input Delta Cards 18
A-l Example of Interactive Version of HIWAY 27
A-2 Card Input for Example Problem 32
A-3 Example of Batch Version of HIWAY 35
LIST OF FIGURES
Figure Page
1 Overhead View of the Geometry of an At-grade Highway
as Seen by the Computer Model 4
2 Line Source and Receptor Relationships 5
3 Method of Simulating Dispersion from a Cut Section 10
4 Data Points Used to Determine an Estimate of Initial oz 14
VIII
-------
ABBREVIATIONS AND SYMBOLS
ABBREVIATIONS
EPA
g
hr
km
m
mi
sec
UNAMAP
veh
U.S. Environmental Protection Agency
grams
hours
kilometers
meters
miles
seconds
Users' Network for Applied Modeling of Air Pollution
vehicles
SYMBOLS
A
a
B
b
C(p)
c
d
D
EF
f
9
H
h
L
SL
P
-3
end point of line source
virtual distance for initial oz, km
end point of line source
virtual distance for initial a y, km
concentration at the perpendicular distance , p , g m
term to determine 0p, dependent upon stability, degrees
factor to determine 0p, dependent upon stability, degrees
line source length, meters
emission factor, g veh~l mi"*
point source dispersion function, m~^
factor to determine az (depends upon stability and distance
range) , meters
effective source height, meters
exponent to determine oz (depends upon stability and distance
range) , dimensionless
mixing height, meters
distance from point A to point R, S, meters
perpendicular distance of receptor from line source, meters
emission rate from line source, g m~* sec~l
IX
-------
R east coordinate, meters
R^ east coordinate of point A , meters
RQ east coordinate of point B , meters
Rk east coordinate of receptor k, meters
S north coordinate, meters
SA north coordinate of point A , meters
SB north coordinate of point B , meters
8^ north coordinate of receptor k, meters
TV traffic volume , veh hr~ 1
u wind speed, m sec"1
x downwind distance, meters or km
xo normalizing distance, km
y crosswind distance, meters or km
z receptor height above ground, meters
g direction, relative to north, of line from point A to point B,
degrees
Y angle between wind direction and a perpendicular to the line
source, degrees
0 wind direction, relative to,north, degrees
0p half angle of horizontal plume spreading, degrees
Oy standard deviation of the concentration distribution in the
crosswind direction, meters
a initial oy, meters
az standard deviation of the concentration distribution in the
vertical direction, meters
azo initial az , meters
_ o
X concentration, g m a
-------
USER'S GUIDE FOR HIWAY,
A HIGHWAY AIR POLLUTION MODEL
1. INTRODUCTION
The National Environmental Policy Act of 1969 requires any Federally
funded highway construction project to be preceded by an impact statement
analyzing the effect of the proposed roadway on air quality. This report
describes a computer program, called HIWAY, for calculating air quality
levels of nonreactive pollutants produced by highway automotive traffic at
distances of tens to hundreds of meters downwind of the highway in rela-
tively uncomplicated terrain.
In making estimates of pollution concentrations for an "at-grade" high-
way, highway emissions are considered to be equivalent to a series of finite
line sources. Each lane of traffic is modeled as though it were a straight,
continuous, finite line source with a uniform emission rate. Air pollution
concentrations downwind from a line source are found by a numerical
integration along the line source of a simple Gaussian point-source plume.
Although most applications of this model will be for ground-level sources
and receptors, and for receptors close to the source where mixing height
will have almost no effect, the more general case of nonzero source and
receptor heights and inclusion of the effects of mixing height can be con-
sidered by the model.
The HIWAY model is similar to the line-source equations (5.19 and
5.20) in the Workbook of Atmospheric Dispersion Estimates (Turner, 1970)
but can also consider finite line sources at any angle to the wind.
An estimate may also be made of air pollution concentrations downwind
of a "cut section." To do this, the top of the cut section is considered to be
1
-------
equivalent to an area source. ] nis arc*. -;c>ut ee is simulated by using a
series often equal line soarcob surh that the total source strength is equal
to the total pollution emissions of ihe highway.
No pollution emissions morlu-k >rf included in the batch (card input)
_ 1 _ i
version of the model, A value, of the Jine -source strength , q (g m sec ) ,
for each lane of traffic nubl bo OOI^IUKJ from a separate computation (EJeaton
et al. , 1972) . Line-source strength 1..-- generally a function of traffic rate,
average vehicle speed, and traffic mix (fraction of heavy-duty vehicles,
fraction of late models with t'im.ssin: c'oim-oi devices . etc.) . Data input for
the HIWAY program, can be ueeorapLslK d h\ two v\ays: (1) throug'h batch
mode, with data cards that i'oiicnv U e program deck (see Section *-.-. for
format) and (2) through conti.iao ,;, mode, thnt is, interactively 01 a time-
share computer terminal. Th.e trrni interactive refers to the information
exchange between the use,' and Iv <:o;vpuier program in asking and
answering questions ,
In the interactive vsirtJoa <;i tin ^-(.de-l. lobe discussed iri Section 4
and Appendix A, the user c an u;jt<, crude estimate of line-soui-ce emission
rate for the pollutant carbon uor.o-,% i>.> If ono do-^a not enter emission rates
interactively, an estimate o^ uoissi ~>n ratf: nan be dotermined by entering a
value for vehicle speed .-ai:! !i axfi, voinnu1 per hour Cor each lane of traffic.
This emission rate is repr.^er.ijuh . <. or ti:;,f for- 1959 model-year automobiles
(Ludwig et al. , 1970). According . ' " r/ipi I a, -ion o/ ?> ir Pollutant 5 mission
Factors (EPA, 1973), this orr^s^on (',,<./. or of L8 7 g veh"1 mi"1 for a speed
of 19.6 mi hr~l is also rtprest ntauvc: -,A emls ions, for the vehicle model mix
near the end of 1973. S se I; blu 3 , i . 1 lii.-lii'A, 1973.
-------
2. DESCRIPTION OF MODEL
AT-GRADE HIGHWAY
A view of an idealized four-lane at-grade highway is shown in Figure 1,
Traffic pollution emissions from each lane are simulated in the computer
model by a straight line source of finite length. As shown in Figure 1 for a
four-lane highway, the location of the highway is specified by the coordi-
nates at the centerline (from edge to edge) of the highway (points 1 and 2) .
The ordering of the lanes is from left to right when one looks from point 1
to point 2. One lane or any even number of lanes from 2 to 24 can be used
in the model.
The width of the highway and its center strip must also be entered as
input data. With this information, the computer program HIWAY will assign
a finite uniform line source to each lane of traffic. These line sources are
placed at the center of each traffic lane.
A uniform emission rate, q , must be specified for each line source.
X/
This line-source emission rate can be found if the emission factor, EF
11 1
(g veh mi ) , and the traffic volume, TV (veh hr ) , are known:
EF (g veir1 mi'1) TV (veh hr"1)
q., (g sec'1 m"1) = (1)
1609.3(m mr1) 3600 (sec hr )
= 1.726 x 10"7 (EF) (TV)
A value of the emission factor for vehicles can be obtained from the most
current issue of Compilation of Air Pollutant Emission Factors (EPA, 1973) .
It should be noted that for many pollutants the emission factor varies with
vehicle speed.
Calculations
The calculation of concentration is made by a numerical integration of
the Gaussian plume point-source equation over a finite length. The coordi-
nates (meters) of the end points of a line source of length D (meters) ,
-------
WIND DIRECTION
RECEPTOR
Figure 1. Overhead view of the geometry of at-grade highway as seen by the computer model.
The endpoints of the highway are specified by the centerline coordinates, (R-| ,S-|) and (R2.S2),
while the receptor coordinates are given as (R^.S^). Line sources (four) are indicated by
the dashed lines at the center of each lane of traffic.
-------
representing a single lane extending from point A to point B (see Figure 2) ,
are R^ ,S^ and Rg ,Sg . The direction of the line source from A to B is g
(degrees) . The coordinates, R,S, of any point along the line at an arbitrary
distance, £ (meters) , from point A are given by:
R =
R . + I sin
(2)
S = S , + £ cos/3
(3)
NORTH
WIND
(RA,SA)
RECEPTOR
(Rk,Sk)
EAST
Figure 2. Line source and receptor relationships.
-------
Given a receptor at R^.S^, the downwind distance, x (meters), and
the crosswind distance, y (meters) , of the receptor from the point R,S for
any wind direction, 9 (degrees) , is given by:
x = (S -
cos 0 + (R - R, ) sin Q
(4)
y = (S -
sin 9 - (R -
cos 0
(5)
Since R and S are functions of £ , x and y are also functions of £ . The con-
centration, X (g m~3) , from the line source is then given by:
-<£/
' J
D
(6)
where:
u = wind speed, m sec"
D = line source length, meters
_ rt
f = point source dispersion function (Equations 7 to 9), m
For application of this model to a highway segment in relatively open terrain,
an approximate estimate of the wind speed, u, at 2 meters height above
ground is suitable.
For stable conditions or if the mixing height is >. 5000 meters,
r
exp
[/ \2~
-i£^
2\ ffz / .
exp
(7)
where:
°y
z
H
= standard deviation of the concentration distribution in the
crosswind direction, meters
= standard deviation of the concentration distribution in the
vertical direction, meters
= receptor height above ground, meters
= effective source height, meters
-------
In unstable or neutral conditions, if az is greater than 1.6 times the mixing
height, L (meters) , the distribution below the mixing height is uniform with
height regardless of source or receptor height, provided both are less than
the mixing height:
f =
(8)
In all other unstable or neutral conditions:
f =-
exp
i£
O I (7
exp
N = »
N = 1
IZ-H
exp
1 /z-H - 2NLy
"H ', J
+ exp - -
1 (z + H + 2NL\ 2
- +
exp -
1 Iz - H + 2NL\ 2
1 /z + H + 2NL\ :
exp - - I )
(9)
The infinite series in Equation 9 converges rapidly, and more than four or
five sums of the four terms are seldom required.
In each of the three above equations, °v and °z are evaluated for the
given stability class and the distances x + b for °v and x + a for ° z. The
virtual distances, a and b (km), are required to produce the initial
az and ay (ozo and ayo) > respectively.
If z, H, or both are zero, the resulting simpler forms of Equations 7,
8, and 9 are used by the computer program.
-------
The value of the integral in Equation 6 is approximated by use of the
trapezoidal rule. Let A £ =D/N. Then the trapezoidal approximation gives:
X =
u
N-l
1
2 °
(10)
where /^ is evaluated, as appropriate, from Equation 7, 8, or 9 for £ = z'A a.
The distances x and y are, of course, functions of £ ,
For a given initial choice of the interval length, A £, the calculation is
then successively repeated with twice the number of intervals, that is,
with A a/2, A £/4 ..., until the concentration estimates converge to within 2
percent of the previous estimate. This value is then used as the value of
the integral.
The above evaluation of the integral is repeated for each lane of traffic,
and the resulting concentrations are summed to represent the total concen-
tration from the highway segment.
Computer Model
The FORTRAN computer program consists of a main program, three
subroutines, and two functions. The main program handles input and sets
up a separate line source for each lane of traffic. Subroutine DBTLNE does
the integration and output of results. This subroutine calls DBTRCX, which
evaluates Equations 7, 8, or 9, or simplifications of these equations if H or z
is zero. Evaluation of Oy and oz are done by subroutine DBTSIG, which is
called from DBTRCX. Functions XVY and XVZ determine virtual distances
for a given stability class corresponding to the initial av and initial az,
respectively.
An east-north coordinate system is used in the computer model. The
width of the highway and of its center strip, the coordinates of the centerline
of the highway, and the coordinates of the receptor(s) are input parameters.
8
-------
It should be noted that in Equations 4 and 5, x and y refer to a coordinate
system aligned along the wind vector (x the downwind direction, and y the
crosswind direction). That system is distinct from the coordinate system
used for locating sources and receptors in the model.
In the basic equations given earlier (Equations 2 to 5) , units of the
coordinate system have been specified as meters for dimensional balance.
However, units of the computer coordinate system, for practicality, are in
kilometers. The user may use any convenient highway map unit if he enters
an appropriate scaling factor to convert those units to kilometers. For
example, if it is desired to use the units of meters for highway coordinates,
the scale factor should be entered as 0.001. Section 4 contains a list of the
input variables, including a brief description of each of the units by which
the input parameters must be expressed. An example of input data, as well
as the output of a run made with the example input data, is given in Appendix
A.
CUT SECTION
Estimates of air pollution concentrations at locations downwind of a.
depressed highway (cut section) can be determined by considering the top
of the cut section to be an area source of pollution (Figure 3) . In the model,
this area source is approximated by using ten line sources located at the top
of the cut section. The total emission rate for the highway is first found by
adding together the emission rates for each individual lane of traffic. Then
this emission rate is distributed equally over each of the ten line sources
used to simulate the area source at the top of the cut section.
Once this has been done, the procedure used to determine pollutant
concentrations downwind of the cut section is entirely similar to the procedure
used to determine the concentrations for an at-grade highway. It should be
emphasized that these estimates of air pollution concentrations should be
made for receptors downwind of the cut section and not for locations inside the
cut section itself.
-------
VERTICAL CROSS SECTION OF I X
POLLUTION SPREADING FROM
TOP OF CUT SECTION.
t,
Figure 3. Method of simulating dispersion from a cut section. In this illustration, there
are four lanes of traffic in a cut section with pollution emission rates q-|, 0,2, $3, and q^
These emission rates are summed up and distributed equally over ten line sources placed
at the top of the cut section, ie., q^ _(q1 +q2 +q3 + q4)/(10).
10
-------
3. DISPERSION FUNCTION'; cr AND a
z
The dispersion functions v uid ? n^.-ioi; .--.; indicate the amount the
pollutant plume has spread (di^p^! s--r! , u'ior )o; ving its source. The values
for these functions are those of Pa^uii. (;f Ui< )< tual distance is taken as
zero) as given in graphical t'ori^ i;. 'lu-vi r > i9''-;st . Pasquill stability classes
are given in Table 1,
Table 1. PASOuU L MAh:.: > '.iASSfcS
Stabil-M
A
B
C
D
£
F
;y cldsi-.
(1)
(2]
(3)
(4i
(5)
(6.
;< J-s; "lit ion
vV.v -n-uole
i "i^'u. ; t '- ' v^is table
i \ ' -v'i "y s.'iS table
iv Jt> .a "I
; ')' ;jh:.;v ->table
1 MootM a;f;1.y stable
aThe stability classt-i :ir>: i.j'j;o;riy referred
to by letter, fcr ir,,'Ut ',: -,f computer pro-
gram, the numbers in -rirf-r, I'- >; - ort1 used,
The horizontal dispersion nm-a-M.-ter v.uu" \K given by
- M t,;; .f (11)
where:
x = downwind disUinoe r-oii, si..vt.«j > '-.,::- .-,;.; ailing', degrees
The factor 465,1 is 1000 rr. Kin ' di-. i-'iO'.i s.y ' ' ,, , the number of standard
deviations of a Gaussian dlsi i ibat:'.' ''.>« M>. .-.Mtterline to the point where
the distribution faii^ to 10 peJ-.-'i-nl .>; in < > .: i;ne value. The angle GD is
given by:
Op , ,- - u in (-'' ' '' j (12)
-------
where c and d (degrees) are functions of Pasquill stability class and the
normalizing distance, x0, is 1 km. Values of the parameters c and d are
given in Table 2.
Table 2. VALUES OF c AND d
USED TO CALCULATE 9n
Stcibility class
A (1)
B (2)
C (3)
D (4)
E (5)
F (6)
Value, degrees
c
24.167
18.333
12.5
8.333
6.25
4.167
d
2.5334
1.8096
1 . 0857
0.72382
0.54287
0.36191
The vertical dispersion parameter value, oz (meters) , is given by
equations of the form:
x + a
h
= 9
(13)
where a is the virtual distance (km) to give the initial az (meters) , and
g (meters) and h (dimensionless) are functions of stability class arid also
various ranges of the distance x. When a is zero, the values are the same
as those in Figure 3-3 of Turner (1970). Since the values of oz for x less
than 0.1 km are not given in that figure, the values of the parameters g and
h for x less than 0.1 km are given in Table 3. The values corresponding
to g and h for x at other distances can be determined by examining; the
program listing for subroutine DBTSIG (Appendix B) .
Turbulence of the air produced by the motion of automobiles results in
a rapid mixing of the pollutants near the highway. This is modeled by
assuming that an initial spreading of the pollutant plume occurs over the
highway. To determine an acceptable initial vertical plume spread , data
taken near at-grade Elections from various highways were used. When the
12
-------
Table 3. VALUES OF g AND h USED TO DETERMINE a,
FOR DOWNWIND DISTANCES LESS THAN 0.1 km
Stability class
A (1)
B (2)
C (3)
D (4)
E (5)
F (6)
Value
g, meters
122.8
90.673
61.141
34.459
24.26
15.209
h, dimensionless
0.9447
0.93198
0.91465
0.86974
0.8366
0.81558
wind direction is less than 75 degrees from the perpendicular to the highway,
it has been shown that an approximate expression can be used to determine
pollutant concentrations from an infinite line source (Calder, 1973) . Solving
this expression for a z yields:
:(*) = V
C(p) u cosy
(14)
where:
az (x) = the vertical standard deviation of plume distribution
at the downwind distance, x, from the source
C(p) = the measured concentrations at the perpendicular distance,
p (meters) , from the highway (x =
cos y
g m
Y
= the angle between the wind direction and a perpendicular
to the highway , degrees
By making estimates of the line-source emission rate, q , and obtaining
JC
observed data for air pollution concentrations, a plot of az versus distance
was determined (Figure 4) . From this analysis, it is seen that an initial
oz ( aZQ) equal to 1.5 meters is a conservative approximation of the vertical
13
-------
20
18
16
14
12
- 10
N
o
o
0 50 100 150 ;!00 250
PERPENDICULAR DISTANCE DOWNWIND OF HIGHWAY, meters
Figure 4. Data points used to determine an estimate of initial az. Also plotted is the
crz(x) curve for neutral stability. The line is the approximate lower bound of the data.
300
standard deviation of the plume at the downwind edge of the at-grade highway.
This is only a tentative value based on a limited amount of data and may be
revised as more data become available. This empirical value of azo is
applied in the operation of the model to each of the line sources placed along
each lane of traffic.
For at-grade pollution dispersion, an arbitrary value for initial ay (oy0)
of 3 meters (approximately one-half the length of a car) was selected. The
value given to avo has little effect on the computation of air pollution con-
centrations when the wind direction has a component perpendicular (o the
highway. The use of an initial a is to account for a reasonable amount of
-------
cross-highway spreading caused by vehicle-generated turbulence when the
wind direction is parallel or nearly parallel to the highway.
The virtual distances, a , corresponding to an initial oz of 1.5 meters
and the virtual distances, b, corresponding to an initial oy of 3.0 meters
for each stability class are given in Table 4.
Table 4. VIRTUAL DISTANCES a AND b
CORRESPONDING TO INITIAL crz OF 1.5 METERS
AND INITIAL o-y OF 3.0 METERS, RESPECTIVELY
Stability class
A (1)
B (2)
C (3)
D (4)
E (5)
F (6)
Distance, km
o
0.00944
0.01226
0.01736
0.02722
0.03590
0.05842
b
0.00863
0.0132
0.0210
0.0348
0.0471
0.0733
There are very few published measurements of air quality downwind
of a cut section. Nevertheless, the available data indicate that the cut-
section configuration tends to increase the dispersion of the air pollution
originating from the cut section. This is particularly true when wind
speeds are light, for then the release of heat from combustion, the long
travel time of the pollutant to the receptor , and mechanical turbulence
produced by the cut-section highway aid the dispersion. Thus, for the
cut-section case, based upon very limited data, the initial o's for wind
speeds less than 1 m sec"1 were set at 10 meters for Oy and 5 meters for
az. It was assumed that for wind speeds greater than 3 m sec"1 the cut
section did not enhance the initial dispersion and that it was the same as
for the at-grade highway: 3 meters for oy and 1.5 meters for oz. For
speeds between 1 and 3 m sec"1, the initial sigmas are linearly interpolated.
These initial o's are assumed for each of the ten lanes used to represent the
cut. The initial values of oy and az (meters) are found from:
15
-------
'yo = 3
for u > 3 m sec
(15)
/u - 1
= 10-7
u - I
«zo = 5 - 3.5
and
for 1 < u < 3 m sec 1
(16)
- 10
for u < 1 m sec
-1
(17)
= 5
16
-------
4. PREPARATION OF INPUT DATA
CARD INPUT SEQUENCE
The arrangement of data on the input cards for the batch mode of
operation is given in Table 5. The coordinates of the roadway are in the
center of the highway (from edge to edge). The ordering of the lanes is
from left to right when looking from point 1 to point 2,
INTERACTIVE OPERATION
The HIWAY model has been placed on the Environmental Protection
Agency's (EPA) Users' Network for Applied Modeling of Air Pollution
(UNAMAP) computer system and is accessible to EPA users. The model is
also on the UNAMAP system available to all users. For information on this
system contact: Chief, Data Management, Meteorology Laboratory, U .S .
Environmental Protection Agency, Research Triangle Park, N. C. 27711.
The self-explanatory listing produced by the model on a remote com-
puter terminal is shown in Appendix A to illustrate the operation of the
model in an interactive mode. The computer communicates to the user in
upper case letters, while the user replies in lower case letters. To initiate
the program, the user issues the command , hi way.
Operation of the model in an interactive mode is similar to batch mode
operation. To determine emission rates for the pollutant carbon monoxide,
however, the user can elect the option to use the internally generated
emission rates for carbon monoxide that are representative of the emissions
for the vehicle model mix near the end of 1973. This applies a correction
factor for vehicle speed.
17
-------
Table 5. INPUT DATA CARDS
Name
Card type 1 (1 card)
Head
Card type 2 (1 card)
REP1
SEP1
REP2
SEP2
H
WIDTH
CNTR
XNL
Card type 3 (up to 3
cards)
QLS
Card type 4 (1 card;
can be blank for at
grade)
CUT
WIDTC
Card type 5 (1 card)
THETA
U
HL
XKST
Card type 6 (1 card)
GS
Card type 7 (any num-
ber of cards)
XX RR
XXSR
Z
Columns
1-80
1-10
11-20
21-30
31-40
41-50
51-60
61-70
71-80
1-80
1-10
11-20
1-10
11-20
21-30
31-40
1-10
1-10
11-20
21-30
Format
20A4
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
Form
AAAA
XXXX.XXX
XXXX.XXX
XXXX.XXX
XXXX.XXX
XX. X
XX.
XX.
X.
.xxxxxxxxx
X.
XX.
XXX.
XX. X
xxxx.
X.
X.
XXXX.XXX
XXXX.XXX
XX.
Variable
Alphanumeric data for
heading
East coordinate, point 1
North coordinate, point 1
East coordinate, point 2
North coordinate, point 2
Height of line source
Total width of highway
Width of center strip
Number of traffic lanes
Emission rate for each lane
1 , if cut; 0, if at grade
Width of top of cut section
Wind direction
Wind speed
Height of mixing layer
Pasquill stability class
Scale factor3
East coordinate of recep-
tor b
North coordinate of recep-
tor
Height (above ground) of
receptor
Units
-
Map units
Map units
Map units
Map units
Meters
Meters
Meters
-
g sec'V1
-
Meters
Degrees
n sec"^
Meters
-
Map units
Map units
Meters
aThe scale factor converts map units to kilometers.
If map units in kilometers, scale factor = 1.0
If map units in meters, scale factor = 0.001
If map urrits in feet, scale factor = 0.000305
If map units in miles, scale factor = 1.61
bTo begin again with another set of data, a value of 9999. is punched for XXRR (card type 7)
following the last receptor card.
18
-------
REFERENCES
Beaton, J.L., A.J. Ranzieri, and J.B. Skog (1972). Motor Vehicle Emission
Factors for Estimates of Highway Impact on Air Quality. In: Air Quality
Manual, Vol. 2. California Department of Public Works, Division of
Highways. Sacramento, California. Report No. FHWA-RD-72-34.
April 1972. 58 p.
Calder, K.L. (1973) . On Estimating Air Pollution Concentrations from a
Highway in an Oblique Wind. Atmos. Environ. T: 863-868, September
1973.
EPA (1973) . Compilation of Air Pollutant Emission Factors, 2nd Ed. U.S.
Environmental Protection Agency. Research Triangle Park, North
Carolina. Publication No. AP-42. April 1973.
Holzworth, G.C. (1972) . Mixing Heights, Wind Speeds, and Potential for
Urban Air Pollution throughout the Contiguous United States. U.S.
Environmental Protection Agency. Research Triangle Park , North Carolina.
Publication No. AP-101. 1972. 118 p.
Ludwig , F .L. , W ,B . Johnson, A .E . Moon, and R .L. Mancuso (1970) . A
Practical Multipurpose Diffusion Model for Carbon Monoxide. Stanford
Research Institute. Menlo Park, California. Contracts CAPA-3-68 and
CPA 22-69-64. 184 p.
Pasquill, F . (1961) . The Estimation of the Dispersion of Windborne Material,
Meteorol. Mag. 90(1063): 33-49, 1961.
Turner, D .B . (1970) . Workbook of Atmospheric Dispersion Estimates. U.S.
Environmental Protection Agency. Research Triangle Park, North Carolina,
Publication No. AP-26. 1970. 84 p.
19
-------
-------
GLOSSARY
Several frequently used terms have become part of the jargon used by
air quality dispersion modelers, and these terms are defined briefly in this
section. For a more complete discussion of the concepts implied by these
terms, the reader should consult the references cited.
Stability class: Atmospheric stability ranked according to classes, which
are given in indexes A through F (or 1 through 6) , as shown in Table 1 (Pas-
quill, 1961). Class A is very unstable and is found when skies are clear and
sunny, while class F is moderately stable and occurs under calm conditions
on clear nights.
Mixing height: The height to which pollutants are actively mixed. The
air close to the earth's surface generally becomes unstable after sunrise,
resulting in a zone of vigorous atmospheric mixing in the layer of air at ground
level. The height of this layer increases after sunrise and reaches a maximum
about 4: 00 p.m. (Holzworth, 1972) . For most locations close to the pollution
source, the mixing height will have very little influence on the calculation of
pollution concentration. When the receptor is located at a great distance from
the pollution source and the travel time of the pollutant from source to recep-
tor location is long, the mixing height will be the limiting height to which
pollution will spread vertically.
Receptor: A location for which it is desired to predict pollutant concen-
trations. When a model is being validated, it is necessary to obtain model
predictions at the receptor locations for which air quality data are measured.
Emission rate of a line source: An estimate of the amount of pollution being
generated by a line source (e.g. , lane of automobile traffic) . To determine this
value, two pieces of information are required: (1) the volume of traffic and
(2) the emission factor, which is dependent on vehicle speed. The emission
rate can then be determined by
q. = (CV) (EF) (TV)
21
-------
where:
q = line source emission rate, g see"* m~l
-1 -1
EF = emission factor , g veh mi
TV - traffic volume, veh hr~l
-7 -1 _1
CV = conversion constant = 1.726 x 10 , mi hr nr sec *
ay and cz: The standard deviation of concentration distribution in the
horizontal and vertical planes, respectively. The values of Oy and oz will
increase with downwind distance from the source of pollution as the dimensions
of the pollution plume increase. This increase in pollution plume dimension is
caused by atmospheric turbulence. The intensity of atmospheric turbulence is
in turn related to atmospheric stability. The plume growth will be greatest in
an unstable atmosphere (more turbulence) and least when the atmosphere is
stable.
22
-------
APPENDIX A. EXAMPLE PROBLEM
23
-------
INTRODUCTION
In order to clarify the procedure for using both the batch and interactive
(continuous) versions of the HIVVAY model, the following test problem is solved
using both versions.
Given: Length of highway - 5 km.
Orientation - east-west,
Number of lanes - four.
Road width (edge to edge) - 46 meters.
Median width - 30 meters.
Emission rate in each lane from south to north - 0.0112, 0.0103,
0.0106, and 0.0156 g sec"1 nT1.
Wind direction -42 degrees .
Wind speed -3.7m sec~ .
Stability class - 3.
Find: The expected concentration at receptors along a line perpendicular
to the center of the highway segment at distances 1, 5, 10, 30, and
50 meters from the downwind edge of the roadway (1) if the road
is an at-grade section, and (2) if the road is a cut section with the
top of the cut being 50 meters in width.
SOLUTION USING THE INTERACTIVE VERSION
Assuming that you have already logged on the compmter, etc. , type in the
name hiway as indicated in Table A-l. You are then given the choice of re-
ceiving a description of the model. Following that, enter the input parameters
as the model calls for them. Most of them are self-explanatory; however, a
few comments are in order:
1. When entering ihe mixing height never use the value 0.
2. If you do not want the effect of a limit to vertical mixing in your cal-
culation, use a large enough mixing height so that there is no chance
of its influencing your results , such as 5000 meters.
24
-------
3. When entering the receptor coordinates, remember that this program
is valid only downwind of the line source. A receptor location defined
on the line source will not give a valid answer. If you are interested
in the concentration at the edge of the highway, use a downwind dis-
tance greater than 0.1 meter from the edge of the highway and the
result will be valid.
4. The coordinates for the ends of the roadway segment are assumed to
be in the center of the road (from edge to edge) .
5. The ordering of emission rates is for lanes in order from left to right
when looking from point 1 to point 2.
The results for the at-grade section are given following the entry of
receptor coordinates. For convenience, the center of the roadway has been
placed 0.023 km north of the origin in this example so that the edge of the
road is on the axis and the y coordinate of the receptor is the distance from
the edge of the road. The roadway and receptors could have been placed
at any location.
The option to run the model for a new receptor location (LOG) , change
the road type (TYPE) , or to end the program (END) is given after the
results.
In the second part of the problem, the road type (cut) , the width
(50 meters) , and the location of the road (to again place the edge of the
road at a y coordinate value of zero) are changed. The results for the cut
section are shown following the entry of data. Note that the concentrations
are in micrograms per cubic meter (UGM/M**3). The part per million (PPM)
column is a conversion from micrograms per cubic meter for the pollutant
carbon monoxide. The part per million column would be incorrect for any
other pollutant.
If you decide to continue and change the receptor locations (LOG) ,
remember that the receptors must remain downwind from the downwind
edge of the roadway.
25
-------
SOLUTION USING THE BATCH VERSION
The batch version requires at least seven input cards. Depending upon
the number of receptor points and number of problems to be run , there may
be more. The format for each card is given in Table 5. Table A-2 lists the
input for the example problem; Table A-3 lists the results. Note that for
the cut section the sixth and seventh fields (columns 51 to 70) in card type
2 were left blank. Also note that the card with 9999. for the variable XXRR
is only used if more than one set of input data are used. A card like Ihis
does not follow the last set of input data. As in the interactive version, the
parts per million column is only valid if carbon monoxide is the pollutant
being modeled.
26
-------
OF INTERACTIVE VERSION OF HIWAY
UJ
o.
2:
^^
X
LU
"
1
0
(0 >-
5
O
jc o
O
^
cr
c
to
LU
>-
N^-
O"
1-
^
O
-jr
^_
_J
Q-
CL
<£
UJ
cr
0
u,
LU
CO
TES INERT POLLUTANT CONCENTRATIONS IN THE
ID
0.
ZH
e
CJ
_j
UJ
c.
c
T
~
>-
<£
"^
"T~
*
<;
CL
Ul
LU
X
1
t/)
0! t-1
V
cn i-
uj
to to
ID Ul
CC
to
UJ 00
a
<
cr >-
UJ <
> ~.
< a
> c
_J a:
cc
XI LU
C 2-
X C
v^
to <
or
- c
< u.
^
C. LU
- to
J ^
<£
z a
O UJ
"*~
> H
MODEL "AM BF USED cop /\T GR\DE \ND CUT
'ICES OF TENS TO ''UMPRFDS OF METERS DOWNWIND
IVELY UNCOMPLI^ATEn TEPPAIN.
< \~
ui I
»_
UJ
uj H-
h-
CO U'
>_ :
to
X
Ul ~'"
1-
< t-
I.: to
ex.
C
LJ
1-
-
**
I."
"~t
c;
^
c.
(~
c
U '
h-
-
h
;-- a.
ul C
C f l^.
UJ «r c
C Li. f*^
U. i- c;
U. O C r-
1- : c c era.
cr, < . . . .
^__
«
00 01
c a
UJ LJ
t- t- J-
UI h - UJ CO
L I., cr o;
C- T" C UJ 1 li
J ^ MJ | UJ .
~- Li ' UJ
^*' v^ !L LL rr_
c
!"
'/)
(-
~'
Uj
r.'
UJ
00
o
la
C'
LU
C-
t/1
L.
D
~
___ J
a
O-
<'
0
H-
~~3
txi
c
t
,; j:
<^
U.
ti.
j
<*
^ -
c ,i
C. T'T
D
UJ Ui
fv> U.
^ «r
r; cc
r LU
C UJ
7" C_
<:
_j
OO 1
UJ
O l-~
c a
ui c:
u C
a a
OO O.
U. UJ
1 "'
J .^ .
c s
"3. tO
U- U'
> CJ
C UJ
t.
t~< Cl:
H-
LU ~
f' C
UJ CJ
C
T"
^ C
V.
C "i
<' (.0
i- fc-
^ *_1
C LJ
_- ( ,
C 7t
* * <^
O IO %
UJ ^ CO
1 !jj
to 17 .J
i , I J " ?
t , ^! ".
t.J "j._ '^I'
r- i ~~»
«
rn
0
U)
UJ
D-
00
>-
O
C
cr
Ul
o
cr
Ul
^
L:.-
Ul
1-
<
cr
IT"
c
, .
1,0
^
UJ
>-
_!
Ul
<-1 -z:\ *-
o < u. ^
to a, cr ui
x ID r> _i o
n o o en
< Q 0 Z.
>- o tu - LL. 2
o a cc _i -J o a
LU - UJ C
h-t H- o CNI LU oo i co sr
«r'- v-^ i rr cc
U. UJ Q UJ C - H-
u;h-h-ccrz:x uis: Q-
.< couj
r- or cr x t- ^ to «r cj
-^C|
cir-.'--> o o uj cr U-
u. : c : u (-- to H C, co to 2:
s LU u- IL. n < I 1 - CL f C to C"- - Ul X Z* to H) 1. tO
-i ii., r- -.. < O r. ( c LU a cr
LU CL c I. O Q. CC a. z- UJ
> ^f-"QLC;>-CH-> UJX
CO UJ Ul '-^ -Z. CO 2T CL h- XI-
l~ ^1 X" ^-^ Zl LU C UJ
cr x ~^ i
Li ] C' ' 1" H- " LL. | di Y *C.
\~- ~^. "^ CO C" CC Z -J CO I
--.' i j to rr LU LU o. co < r: o cj <_ito- ci co ts cj o o cr i z; c LU
T" i.l I ui '"' 7" C- Q- Zl H O
r: ;:. r ;. - f. c: u: cr
-'';<. x uj c c o
* * «
-=f LH tD h-»
27
-------
O
II
CO
UJ
o:
o_
s:
X
T3
-
o
c
^**
Cr
UJ
K-
UJ
c
CO
h-
or.
LU
CO
cc
c
h-
CJ
iH
CO
r-t
CO
CO
_J
o
H
CO
H
CO
or.
LU
z
or.
)
H
f
_J
_l
Z)
C"
CO
D.
fy*
LU
H
5*
LU
h
CO
LU
_J
U.
c
o:
LU
CO
3
y
UJ
cr.
UJ
H
Z
LU
i"> ~
O
Z
or.
c
CO
LU
C-
CO
LU
H
.
o
Q
r
STRENGTH VECTOR. (A VALUE FOR EACH LANE)
.0156
TION? (YES OR NO)
LU xCJ
O VO LU
or. o co
ID r-t
O O \
co -r>
x O
LU IA
Z 0 <
» r^
1 0 CO
««
a: xx
LU CM J
H -<
Ifl Z rH CO
0) UJ 0
>»
(METERS).
X
H
c.
^r*
>_,
<£
2
X
(V
LU
H
O UJ
C
NTER STRI P (METERS).
UJ
CJ
u_
c
X
H
c
3:
o:
LU
H
Z
CO LU O
J- IA
to
CM
U-
c
z_
X
C.
LU
cr.
co
LU
c.
CO
c
H
o
c
CT.
c
H
Q.
UJ
O
UJ
or;
LJL
o
cc
LU
en
^
z-
OL
tU
H-
Z
LU
CO
UJ
H
UJ
M
V
CO
H
cr
c
H
-l
H o
2L 1
C, 0
Or. x
COO
C x x
o in o
o in
or. o o
o
H i i
a. x x
UJ O O
O x x
111 ^^ f"^
or. x x
rH O
Q; O fA
LU O O
H
Z 1 1
UJ v x
in o o
28
-------
c
t-
< *
i-l r«> CO O CM
1^. K* ID o in
CO tf\ CO (Tl ^f
3:
u_
o
z.
o
II
CO
2T O. tO to CM rH r-l
UJ
a;
a:
0.
<
X
O)
3
c
c
o
o
=c
cu
ro
to
CM
o
to
^t-H
LU O
Z I
< co
i tn
CO
or
UJ
o
ir>
CM
o
o
in
CM
UJ I
O
or
Z3
O O
co 2:
<
UJ
*?T
to
_ICM
O
UJ
u.
o
TH
*-N O
co or i
t£ UJ ID
UJ I O
I UJ iH
UJ SL
z; *
C!
o 2:
Sc
°o
0 UJr-l
CO O
^ I
CO to
2:0
CO < r-l
or
UJ CO
s: or
UJ
O I-
O UJ
O 2
l-l
CD O
j- o co
O UJ
UJ
o or
to O
CO UJ
o
< CO
3 CM
X J-
CJ O_
x or
l-
UJ CO tO
c
< or
ct ui-z.
o h- c
O
u-i
to
-^
to
a:
UJ
h-
UJ
CO
to t-
ui
^.-
<
U.
O
x
co o
I O
2: in
IM
O CM
a.
»- UJ
«c o
UJ < rH
x or o
I
2: 2: CM
O O t-l
CO CO
CO CO I
o
U. U-
o c
X X
UJ
O-
co
O ' U-
>- U- UJ
I- C -J
# CD tH =* J- CT
K -* H~v CT, CO U3
2. -=t CO CM i-) CD
-^ J- tO IA CM t-l
O O O O O
O C O O O
O O O O O
o o o o o
z: o o o o o
C tH in o o o
>- o o t-« f . tn
|_ O C C O O
<*
O I I I I I
c
or
c
l-
O- O O O O O
UJ O O O O O
C_" O O O O O
UJ X O O O O O
Oi
X UJ UJ UJ
X CO
CQ O
< UJ
K- LU X
CO X I
X
c
c
00
or
<
CJ
or
o
u.
CJ
UJ
or
or
c
o
CO
z
o
<
or
o
6
O-
o.
29
-------
tinued). EXAMPLE OF INTERACTIVE VERSION OF HIWAY
c
o
o
(
I
1- 0
a. cr
LU O.
O
LU UJ
cr x
[u a
z z
LU
0
cr H-
o
u- cr
0
LU LU
Q a.
H K-
Ul >-
X <
Q
Z < Q
= OZ
cr cr ui
o ui cr
h- X 0
H~
^Z. ^
O UJ Ul
O CL
H" ^* >
a. < H-
0 X
o cr
LU O
x o
1- H- x
O
LU cr o
> O-J
< x
O LU
Z> 0 1-
0 _l Z
>- vy ui
CM
CM
X
x
I-H
x
rH
X
to
cr
a.
o
UI
cr
Ul
c. *-+
cr to
o cr
^s Ul
^_
to ui
H- Z
3? v-/
O
D- 1
Q X
Z CD
LU
in LU
<-N CM X
Q 0
< -Z
C xC
cr in
^ to
LU CM IO
Z 1
x sr
i in LU
CM
cr o cr
LU LU
V r- x}
az m z
>LU LU
M CM 0
C
cr
LU
M
CO
X
r-
cr
o
z
LU
^"
C
«_
p-
o
Ul
cr
r^
Q
3c
cr
LU
r-
Z
LU CM
J-
TERS/SEC).
UJ
2_
o
UJ
LU
CL
to
C.
f
3£
d
LU
r-
Z 1
LU
1
(METERS).
H-
X
CD
_
UJ
X
CD
Z
_
X
_
*r
cr
LU
h-o
h. 0
LU O
fA rH
CO
1
i-l
to
to
_J
0
H-
cc
^-
cr
UI
z
cr
ID
t-
1
_j
_>
ID
c
to
-
C
Q
.3-
LL!
Z
X
O
LLJ
cr
c
LL
LU
0
cr z
0
o o
LU
> CO
LU
X >-
L» v^
a
z
LU ID O~
cr LCI z
H- i-l O
CO 0
H-
LU xO
o ca uJ
cr o co
ID rH
C O h-
to rs
xO
LU ro
Z 0 <
T-<
_i o to
__
cr xx
LU CM H
h- rH
to Z «H CO
QJ LU O
><
^^
to
cr
LU
l-
Ul
5:
^*
^-
o
u.
o
O-
o
l-
u.
o
X
1-
_
31
DC
LU
\-
to z
(U UJ
>>
in
CM
u.
o
x
2!
*
c
UJ
cr
to
UJ
Q
to
0
1-
cr
o
i-
o
u.
LU
O
to
X
CO
1-
LU
CO
LU
H
O
cr
O O O
O x x
o in o
O K\
cr o o
o
H I I
0- x x
Ul O O
0 x x
LU O O O
cr x x %
r-» O O
cr o in m
LU O O O
J- . . .
Z 1 1 1
LU x x x
0 O O
30
-------
o
z:
o
t oo fr\ in ro ro
< * oo o ^t ro 04
cr: 21 KI o ID co .3-
l~_> n
Z O- K"i m cvj i-H «-t
UJ
o
1 1
CO
cc
INTERACTIVE VE
u_
o
LU
1
D_
s:
<;
X
1 1 1
* *
~o
OJ
3
E
4->
C
o
T
ej-
*-**
O)
1
J2
n3
1
O
in
Csl
Jt
I--
Z
c
^_
CO
a:
LU
>
>-
<
-_ -
X
IT.
CM
cr
^
0 CO
0 C-
in LU
I
CM LU
LU 1 31
C5
CC 0
r: o
coo
CO 2"
Z
«.
CO r-
co
< £.
1
O _J
>- U-
H- C
i
* 1
X
CO O
<
r- UJ
GO X
*
S
CO
r-
2
^
cr
LU
CO
:D
c^
o
o
o
*
rH
CO
D:
o
i_
o
<
LJL
LU
_J
<
C_3
to
LU
X
r-
o
o
1-
X
o
LU
X
z.
c
1-
o
o
_J
a:
o
h-
CL
LU
O
LU
f-y*
U-
* -*
* cn
31 oo
^x.f*
31
0
r>
o
*-» 0
SO
v^ O
M
O
rH
>- 0
0
1
o
o
o
X 0
CM O
in j-
J- 0
N~I r^
O 0
o o
o o
o o
O 0
in o
O t-H
0 0
1 1
0 0
0 0
0 O
0 0
I-- ID
o K-.
i-H tD
CM rH
0 0
0 O
0 0
O 0
0 0
o o
Ki in
0 0
1 1
o o
0 O
0 0
o o
LU
o
ARBOM MONOXI
c?
a:
c
1 1
LJL.
h-
o
LU
-------
ST
Ij
CO
o
cc
D_
Ld
_I
CL_
s-
X
UJ
C£.
o
u_
i
ID
Q_
2:
t <
Q
QC
O
CM
1
=c
O)
^
fO
H-
co a
cn
CO
f-
co
1C
M
H
r- o
cn
00
trt
s
H
<0 Q
cn
OQ
^"*
10
m
*
a
u^ 0}
P
US
in
^
ro
(N
H
* $
03
^?
m
41
M
(N
H
K) U
CO
r~
u>
in
*
fM
t-^
rj o
cn
CO
u>
in
Or
fO
(VJ
H O
cn
«Q
r-
V0
m
if
N
H
il-
0
a
u
10
&"
_J
U
z:
z: a
i/i
a.
U-l
a-
>.
«!'
3 M U>
M CM in
3: a H
a
a: t
c>
u.
UJ
a, in u)
«? * t ~~\
£ U
< CS( H
X i O
U
Z f f)
O N C3
H 0 H
L«* * C" \
r^ » uj
o »
u
l/t
^i J
iff J_^ ^^ ("
a- -
5
J.
_J
u
§
s: a
& '
u
^3
>.
<*.
n 3« m u>
H r\i in
X O H
» a
a: t
o
u.
a
Q CJOCJOQ D.U1U)
O < (M H
H x I a
u *
r-. Hinooo mMo
« aaHMin (MQin
M OOOOO OH
1 1 1 1 1
o
M
6
DNHCJCJQQQ tLJUIfM'-'l
^ «44T»cnw«H
(Tl | CM H
cn t C3
cng .
M
a o a a a a
a
H
r*. H in a a a
a a H n in
ro o a o o o
1 1 1 1 1
3 H a cj cj a a
C3 CO
cn
00
c-
(0
in
*
N
a r-
cn
oo
K)
^s
CJ U?
cn
S?
h-
liO
in
(yH
J
a
Q in
P
U)
in
*
j^.
ro
fM
H
g *
oo
i0
in
^
Pj
51
g M
CO
10
m
*
N
H
a cs
cn
00
10
in
*
3
SH
00
h-
m
M
P.
H
32
-------
CJ3
O
o
O
=C
CQ
u
t/l
ct
UJ
I/I
3
M
Z
ce
u
i/i
(/)
X
UJ
oo
i
«=c
a>
M
X
u
H
m
H
X
X
ra
a
o
u,
u
a.
JE:
x
u
z
o
U
u
a
N1
CM
0
l/l
o:
a u
a >~
uj a
z 1
< UJ
_J in
H
3"
jr
O
U.
0 UJ 3C
r-4 It
*~ a C3
Ct | * 00
U U) O U
V- O M U O
U H CE U
o
u
u
u
«
rH
uo
6;
u
V-
u
s: i/i
H
CD
l/i
a UJ
Q X
u CN
a ! a
o
vn
CM
o
(A
u
Q
a
»
a
z
o
o
a
cr
1/1
u
z
r-t3MCMUjn
S
i/i
r-4 H
u
o t~
rKSfc
O X CC
ri P*
UJ I/I
1/1
K
Ul
>
<
M
X
U.
O
X
o
H
UJ
X
UJ
Q
?5
I H- UJ
I «* O
I U. U,
rH
H a
.J o
o
H ul
Z (/T M H
O I/I < 3C
H H _J M U.
O O
UJ )jj
fe
H U") H M H
CL CM 1/1
O H
Z X
UJ bj
I/I
M
£
Q Q
H M
Q I/I _l K O
M X C1
Q o cn o
Z Z
*
*
a
Ul
i-
u
3C
V
j;
0
3
»»"
X
*rf
>
X
£
JO
t
f)
en
C1
;*
if
CJ
CJ
a
a
u
r-t
CJ
o
!
CD
a
o
0
S
M
*
M
^
M
CO
Kl
C'J
0
a
o
CJ
in
a
a
1
o
a
o
o
(-0
00
CM
,3.
01
f*J
M
O
a
a
a
a
a
H
a
t
C~)
a
o
o
1
u
J>
H
j.
CO
«~<
0-J
a
u
o
a
u
O
o
1
o
a
o
a
rg
it
»
H
Ol
u)
U3
H
a
o
u
a
a
a
in
o
!
a
u
o
u
*
,
>
~j
z
o
UJ
o
M
O
z
o
s:
z
o
CD
a
o
cc
o
u.
,_
o
en
o
u
1/1
z
o
t-
a
h-
Z
LtJ
o
z
o
o
3T.
Q.
CL
-------
II
X
>-
2
CD
CO
a:
LU
CO
U_
O
X
LU
(1)
3
C
O
O
ro
i
cu
ns
U
3
Z
OC
U
w H
u a
z I
*X U3
CTION EXAMPLE FOR HIWAY
W
J
H
3
0
in *
CM
0
u.
o
(A a
» K U
a u H
OKU
m u z
u z »
o rj a
a l a z
o CD o
o do
t/1 UJ
a a to
in LJ Z X
CM 5 3 to
.^. | 1 OB
r~ LJ in 1/1 <
N H CK
* u a o
Z X 1
OK- X
H 0 U
t/1 U. H H
a: o u <
u x ce
> i/i »
H- a z z
> Z 0 0 O
< M in H H
3t O 1/1 1/1
H a. CC U O
» M O to Q
U X H
z o to
o a:
H U '-0
t- h- M
«-l U (M LU M
a u if s: Q
| t/l M
co h- J
o t~
H D to to e>
t O t-0 M Z
H H
U, to t-
O Z t/1 H
o to < z
a. H M _j H
H O H O ,J
a t- o Q
J W U| >. u,
Csj U. tt LJ r* O
H O H (X H
H O o * M eg
d. K) O U)
Z UJ (O M K)
-j
z
0
LU
Q
H
O
Z
0
z
z
0
CO
cc
o
a:
o
u.
X -
O N
H
O
u
Z
o
H
et
O
O
a
o
H-
a.
u
u
LU
a
H
O
a
> l
o
a
o
a
x *
a
in
a
o
l
a
a
a
C3
a
o
o
*
t
a
a
o
a
a
u
a
I
o
o
a
*
a
a
o
!
a
o
a
a
*
to
z
o
M
5
a:
H1
Z
LU
O
Z
o
o
£
a.
a.
-------
APPENDIX B. FORTRAN SOURCE PROGRAM LISTING
FOR BATCH VERSION OF HIWAY
35
-------
-».»_»-»_«-«_*J_*-»_«-«.^_*_*.*-»_»-*_»_*-«_*-»_»_*.Jt_«_«_«_*_*_«_«_«_*_«
HHHMHHHHMMHHHHHHHHHMHHHHMHHHHHHHHHHMH
XlXXXXXXXXXXXXXXXXXXXXXXXXXXXXXdCXXXXX
in
«o
H H
C- CO
H ^
O H
H »
-j
in
< CM
ae o
SCO
o:
U.
in
(VJ
Ul
U
ui
ft
*%
in
ui
UJ
I
in
N
< «J
O 3
H O
Ul »J
tt <
U U
a
M
a
M
a
<
ui
x
CM
o -S
ui a
zo
o
in
CM
** *»
58
C3 M
Z
O
u
Ul
H O
in »
^ jlfi
H^UI
in H x
«- t/i x
a :*:
ui » *»
-. «. In
H «t «-
in H a:
u CK
a x x «
ce H. x H
in
XXX*.
O ^ h- N
^^gz
xxxo
§Z Z Ul
o o z
R
a
<
Ul
X
»«
Q cn
a H
< n
O Q
a:
1-
z
0
X
t~
0
H
:»
Ul
Q.
Ul
oe
»
H
-Q.
UJUI
HU1
**a.
zui
oa:
i/i ce
sr >
«t H >-
a ui a N a 3 ui
Ul » H » fsl M *
aa^inxinxa
< o * » » *
U
x
Z
H
o
H!
U,
0
z
H
o
Q.
Q
z
U
a
a
2
U
o
OC
t/l U
a
<
at
X
ta
H
UJ
a
X f
H-l/l
UJ
UH
O<
» Z
H-CCH
X 0 Ul
tOU.
H CC.
I.J LJ
»
Ul
O
CCCL.O
Ul Ul
55
sg
Q a
a a:
o o
o o
o o
Ul Ul
X O
ui a
H a
< o
z o
H U
Q
CC Ul
O U
o a:
O 3
O
Ul Ul
X
H
UIOUI
z
o x
M H
l/l Q
V> M
H 3
5*
<
U 3
> I
M CO
H H
U X
Ul
ZU,U1 U.
Ul »UI»
O(/)1M2»
UIO.H*
UZU-J*
I z
: ui K «t
O U, I
in
H inHUJ
a. o
ui ui
u u>
X
P
ui a o »
x u m a. M
H x in a
* z en
U) H Ul U,
H u> a: »
U)
Wm"32!5ujSES£
SiiSa9St;it;ii9
Ul
Ul
H
O
H
Ul
X
R
*
U
-. fe
»
U)
U Ul
Ul
x:
*
a
u
ui
X
(A
53
a z
o
ui
z »
O -I Z Ul
X H Z O _J
*» Ul H O
Q Ul O U) *-
10 H r- ui
in x: m H o
ft uJ X *
gft gwi.
s-s«s
ul5 u < -
o o n H
O O O Q
> a: 3
H H M
^£5£S£t^£
a
r«
ftti§fc
o cn
u. u,
SHI
o u
oSS
a
H
in
o
«M
in
o
sr
in
ooouoaao
o
in
in
o
U5
in
in
36
-------
M M
2 3
H H
X X
IT)
+
UJ»tOOC3H HWO
CO Q H Ul II _J «
*** D£ H* C3 * (/i 4 H^ G3i CD
S23S5dffoftrt
§9 OQl/JMl/J^
°C^ h §Q QX
a
oo a
*/> O O O f\J
in in in in in
33333
H H H H H
X X X X X
ro * in 10 c-
n 1*1 n n M
,^
^
>
»
ro
*
n
H
4s
to
H
Z
O
H
H
O
Ul
to
>_
^5
O
u.
o
a.
O Q
h- »-
Q
H U.
3 O
<**
_J 0 X
Q cn t-
z in Q
X H
ui a 3 ^
U 0 J5 « H
z f? u t; ii
it ^ M iS
_J O CC O O
z a 3 u. o
0
en
Ul
ininmminu>u)u>u)
333222223
HHHHHHHHH
XXXXXXXXX
CO^lOtH(MK>tf Ul
n^**d-J3-» j-
«>
N.
.*
jt;
*
H
»
9
u.
» *
00 £
M
>» »
«t H
3 *
x a
O r-4
H U. H
X oo
» X
UJ t/t X
CC Q H *
z a o. ^
O O H
1 CC 0
X H t- »
1 < 00 «t
Q H
M u. a; ui
3 0 U X
U X Z
a t- ui «
U) Q O CJ
tO O « M Jf
J K H 3 u, m
a Q cc c »
O H _4 3 a
II 3 O * H *- X OJ
u zao^'^'H'M
MxSTtmuj in
tp i^ i^ 4£ ^^ ij^ J*« p» f^- p p»
22333232222
HHHHHMHHMHH
XXXXXXXXXXX
u) f^» oo cn
» * ^ ^
0
z
» H
LO H-
U
CV U.
00 O
a l~
z £
M CD
3 H
U!
»
*s *
» «
» \k **
to y:
o iu ui *:
AE tf ^
U4 O O » 1/1
Ul U O U tO Ul
a to M OH i-
O -J <<
uj a oo z
O UJ i-3 * tO M
a z * *^ Q
z R a J cc
M 00 H « O O
cc H _j r- o
z u ac x u. >- o
O H tO M * t
MUOO_JH-»H Z
K- a: < LO oo _J ui
O J U 1C M M UJ
Ul Z O X » CO 3
CCM »~3Z<-» »-
M > * O K* L i
QQHU. «tHOOOO CO
UJ H O t K CC
OUI.J U4O»U1 Ul
Za,HHXUiXh- CC
MOICnXt-CCwUI D
3 «< to M o a: to
Q H H -> Q UJ <
UJZLOUO 00»tOUI
XM Xr^QX«C3Z
H-3UU U»Zl/1rH-»
XU»HK ^OUJ
WUit-XMSuJCOa-X
MX HCC >--u.int-.
F (/! 3 U » »
H-< MOOM '2:*QtO
tOh-tO H tOCCH
XUHK H»HH
XX OOJUJ<» tO
II Ht>XXl-»SHQQO
t M CC t H <
to CK o r>- j u
« 2 U, L S
* *
o
a H
O O U O U) 1.0 O
37
-------
co en a n (M
co oo oo oo co
H
3
a:
w
(/i
^
»
0!
*
*
a
H
U
»
ft
1/1
M
1/1
U
X
flt
u
K
z
H
C3
a:
o
o
0
u
"Z
t-
u,
o
UJ
w _J
CD <
** o
O Ul
N
U) UJ
X
H H
CC
"X *
l-l *
u$^
ss*.
g o a:
5 u, ^
*
o
eg
U3
z
8r
V- #
<
ce z
t- 0-
Z CL
O
z
8
n
#
*
tr
UJ
H. H
5^
H N
UJ £
X 0
ID
^*
Z X
o
H N
H-
<
O
0
-J
CK
O
^-
o.
UJ
0 X
UJ »
*-« GC *
0 X
M a
10 H
» » »
H Q * C'i tl 1/1 l/>
a; x x o o "
N
«~ O
a: en
H
z »
O u
i t;
^H
Q°.
2^
i>y
^! M.
at R
O
f-
O
on
o
o
o
CJ
lJ")
o
CD «
(SJ
». X
« *"*
H *
t r-4
a Q
* *
* LO
i f
!
O
a
ct:
a
»
a
u
u
o
+
u
o
«J
Ul
Q
«t <
0: I/) f-
31
*
*
J
- »- Q
fi 7
-j t*
i-
Z
(J
Z
»
H
ti
H 1/1
O -4
V UJ
i-t Q
a +
o <
* cc
o a
* *
ui a
u -J
u u
9?
CO <
a: i/1
a
*
cc
?
CO
*
CP
do
uuuu
3S
^00 «-
0 O
-
OOZ_3J
H R R
**t W «**
O C3I C3
§s
ss
o
CO
Ul
f~-
o
00
o
en
o
a
38
-------
O
Q
H
Z
Z
H
z z
zi^
8z
Ul N
ZH
28
3
*
I/I
1 z: x:
< => o
+ H O Q
If) I/I » »
H (/> I/)
o a -j _j
x u uj
+ H Q Q
Shss
VViiU
in
z: z:
Z> 3
O O
« *
CC CC
J _l Q
U U H
O -
I V/l
K^
H II
n _i p a Q o q
a H H R H R
a
H
<
o n
a o z
< CD -I
(A l/t O
a
H
H
O
M
rt
z
M
*
,
Z
%»
(X
I/I
X
X
a
< >»
Z H
o: o
ce K
X
X O
* o
a
m o
M en *
ii en H
a en
z on ca
u » a
* U H d-
Q CD U)
* a
in « u> H
* Z H CC
CC QC H H
Tt S x T S
1 1 ** ?S 1 uJ
i£ Q X 2E H*
2 H ** w *** H
u H u u. u. a
^H SS OC hH H 3R
u a
n *
H H
O
v cr
o
u.
a
LO UJ
Q Ul
UJ CO
-J 3B
I/I I/I
H Z
O
I/) M
ce i-
o <
H- K
CL 3
UJ CL
o £
Ul O
u. *
o t-
ce H
^J Ul
CO
X Ul
33 31
Z H-
uj a
x «t
H UJ
ce
gg
H
«* O
h; U fM
< p II
y n "^
52 s 2
o u u
*
o K
* H
LO
n
UJ
u
a 1/1
3 «
O O
t/1 H
0.
U UJ
Z 0
1/1 I/I H Ul
o o z -J ce
» # >
-» H U> U.
z z n o o
^ *^ 3_ C3
ce ce *» 3 1 1 ce ce
acei/iz o a*»uiui
^i>5xM 15 Hoi-:c
oilliUHOHSail
H'ZZZ^h 1 r < -ur
«-- 'Z ZZl/)l/»
oceccceiioiiQQHH
OCCI^NIZOZCjO
n: z
a a o
U) h- eo
H H H U CJ
39
-------
»
UJ »
S3
u
o
H
Z
O
u
-------
U>
in in
H H
> >
< <
3
H H
I I
H (SI
« - >-
< «*
3
H M
I I
O r-l
U> U)
>- >"
«t <
(SI M
U> U>
H H
>"
< «*
2
M H
I I
* in
u> 10
H H
> >-
< <
2 2
M M
I I
00
UO f-
UJ U>
t-( H
> >
«« «t
I I
en
eo en
u> u)
H
>-
< <
-*
H H
I I
CD
QH(siM4»-inujh-ooffioHrMM-oo-4HHHHi-l
>>>->>->>->>>">->>">->">>->">>>>>-
<<<<<<<<<<<:<<<<<<<<<<<«*
3CjK2323!3:ac23c333223333jK33a!
HMMHHMHHHHHHHHHHHHH
IIIIIIIIIIIIIIXI
3
(SI
o
ca
i/i
»
^
in
(SI
o
ca
a:
H
CC
3
H
%
*^
a
(SI
in
(S|
3
in
(M
a
ce.
»
u")
(SI
s
in
cc
ft
T
H »
in t-
o
0
u
cc.
U
ce
l/i
o
h- a K s
m i/) a 1/1 o
N o o a
a z u u.
(^ » O »
o u. o
at
« ana
H to * a u.
in i a: j o
t>) ck
K w U. w U
l/t O O
~» z
CC U ** I/I
ft ft (/I ft
'a 3
z in -»*
w (S| rH <
UJ * * m h-
z z o ui
D -J m ce x
CQ z
Q v o «s N
»j o o <
UI O » IU LU
Z U) Z CC 3
H S P N N
i- Kl
x, H
X H
U
ce i-t u o o z > C£ CX <3
^ _ _ H (SI ft ft
i/iuit/>«i/iioinin
zzzvo » » a- a-
^.««.2H(sift» a
oaz«-aainp r-
caca.jz' foSF a-
a:i/io.Jxx«<««a
X r< Csl O
3O>«OpOH
COOWOOOQX
II II II II X X ||
|| MM
(si .j H M U, I
to 3 X X X R K
s
*
2 2
u. u,
H H
in u>
* *
in a
-------
M*uiio^eoenoHNfo»^ifi^ooaiOHfNjna>inu)^oooiO'--»«>->>->-»
< < «c < .J6 -*.*B,JE,££35!X!iB!JK3E 3E!Z
HHHHHHHHHHHHMHHHHMMMMHMHHHHHHHHHHHHHH
xxxxxxxxxxxxxxrxxx-a: xxxxxxxxxxxxzxxxxx
in to
u
u
ae
o
CO
eo en o H (M
ro n * * d-
K)
T
.d" 1.1
in
u) a)
u> u>
UJ
CJ
z
H
N
Q
H
O
CC
o
l/J
H
O
CL
U
o
u
cc
CO
H
~ X
eo t~
tt »
*
H Q iM
ce x in a
3 H U3 |
H * N
U
CC
(I
o o u
u. o a
U
d
o:
a.
M in
U .H
o *
cc in
r> a
o TH
u co *
a in
H LU M
* -Z" ?~4
U1 M
in ^4 ^
rvj a
.-i » » o
co » -» o (si a
»-« csi o > *
i co co H c,1
» *
co a: a r^ rj
H > > J, , ^
rM U. O
CO M II > H 'i
W H !>) U. :
a >>-(- j
u
a
*
S
M
CO
L3 in
3 <-)
.4 >'-J
.-< H
-( r-t
_> a
!4
i"
a,
j
,1
a
H
O.
f,3
H
U
Si)
H
U
O
O
a
( J
*
>.
M
':'!
--J U
o tn
H H
» »
tii a
& ul
~l H
.ft »
H H
»-< H
a cj
t3 O
a a
«
j a
i +
h- ce
M d
-i a
'-, ^
ID
irt
in
H
a
a
rj
9
n
I
<£
d
(5
««P
b
o:
u
o
X
CO
_J
U4
Q
h
a.
-j
CJ
UJ
cc
cc
II
8
c^
*
ce
1
o
o
(X
It
fl
_3 o
I/) CJ
r-J
" 0
8K
J C5
i/i o
in
U)
H
in
u>
H
»
in
r-
H
H
O
a
a
«
o
+
a:
d
o
M
13
H
H
a
C-
H
H
a
a
a
t
o
l
cc
d
Q
&
H
ce
II
8
s?
CO
o
o
*
o
u
cc
cc
t
o
o
1
cc
«*
II
^
LO
a
03
H
i
H
a
01
H
a
0
C3
*
o
C3 +
C3
N 10
o d
H 0
sh
8
H
2
*
in
00
H
H
a
a
a
9
O
1 H
1/1
d"
28
h co
CO
*
r-
H H
in o in
S "0 °O
?-4 H H
42
-------
CM M * tf) 10
U) 10 IO UO 10
CM CM CM CM CM
inio
H H H H H
X X X X X
u> r- co en o
on 01 01 en a
H
u
u
Q£
a
(/>
o
u
Z
M
I/I
u
u
ce
I
u
UI
I
X
Jf
§
a
z
u
o
UI
x
***
o
u
a
ui
I
u
H U
u a: a:
O tt (/I
ss*
o M
e
a:
o
*-
o
LJ
a
z
H U
3 O
£3
O
°
, ,
UJ
O
z
H
t/>
O
H
tt
ce
o
ui
u
z
3
0
u
z
H
O Z
0
H a in a a 1/1
* * in u) 3
10 CM N CM rg o
to co
o z
o <
N l~
+ o
U. LJ
o x ce
H a
cc u <
J O. H I
U O X
a _j o o
o * a u H
_J U. O fM > CM
O O * H
ui u in H- a
M Z W W H H
O CM UI CM
OHO O
o ui p in a. o
a
M
CM
«
in
CM
CM
in
CM
J CM CM CM CM
» «
o in in in in
z in in in in
H CM CM CM CM
3 v* m M f,
a. z o z o
3 H O H O
a;
o
5nV"3 "riSi" "
" "A" "o" "U3232o
H H
X >
a
CM (M R
X > _
II II II
a
ffi
H O
U
a
a
o o CM
in a
a H
O CM CM
in
N
a in
CM CM
CM CM
a
n
ONCMNCJCNIO
-------
r-f»cooococoeDcocoeoeoeo(noicri(n->>>.>->>>>->.>.>.
3333333333333333333333333333333333333
HHHHHHHHHHHHHHHHHMHHHHMHHMHHHHHHHHHHH
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
H N KI a- in U> f- CO
a a a a a a a a
H HHHHHHH
O H (si
H -H
H H
H H H N
H H H H
H N
N u>
(S| (N (S|
H H H
Is- co cr* a
(SI (SJ (SJ t*l
t-1 H H H
*
u
o
§
o
u
z
H
_l
o
on
^5
- X
H H II II II
g xZx
a
U)
CSI U
Q
LJ
K
LU
Q
~ H
Eg
H 0
Q a
*
> Ul
01 z
H H
Q -J
+ u..
O
X
00 *
M JC
Q it: a
« « H
X X M
I/I K- >
H ca in
«t < a z a
x > u M
1 1 H "' C3
a: ot H
m CD o H W
X > 01 «
« H H
o 1 1 1 1 1 1 yj j/j
P**i r*i
II X > H Q 0
i/i in v\ **
g H H H u,
> a a a H
a
a
K) U
t
Ml
H
I/)
H
Q
(si U.
O
y
X O
H> H
N
Z H
H
0 U
U X.
Q H
3 H"
0-1 M
CM O U. >
*s Z -J *
t H < M
ax «-« x
a 01 | H
a H u » x
H Z U q H U
«U.OHH
inoi«toox>- H
OMHXHOIOIt MLJIIII
rfQT HHOII<- inOm»
OUZO _J llinh-MH
gHHoaii iig^" "H.^^PP
3OQ X>-O:ZHHZO 0101
O Q QQtti<:X>-iCQ X>
in a
a H
M ro o o «
U t
a u
N H
M h-
ft a
x C1-
% l/>
Z H
«t
* O
t? «
itf J
H
H K
>" Z
:3
>
X U
;3
N Z
X H
H
J Z
X _J 0
* o: o
X H O
* Z 0 M
N 5C O N M
» 3 in N a (si
> > M K> in M
x X x M i/j ro
a » H » in
f + o: in a CM
H H 03 M 5 K) »
XXQ5u.GV
II II -JH H gH
s^3§ teh
in o
H (S|
O M hO
01
3
o
H
U
ac
a.
u
z
o
ti
f
_J
0
H
«^
)_
Z
H
O
a.
(si in
M $ Lj
J O UJ
pc ^* of
z o
X U
in
(SJ
ro O
-------
a
M
5
H
X
«-)
H
*»
..j
1
H
fc
X
II
55
O
M
M
MMMMMMMMMMM
22233232222
HHHMHHHHHHH
XXXXXXXXXXX
cj ^o ^ \f) o) ^* co o^ o *H
g
t!
g
H-
z
u
o
5
o
o
a:
Id
M
X
Q
«f
Id
a
u.
H
in
M m
» H-
«*> a z H
H * H X >-
I ^O O + Q Q
H » a.
<« CM m o OH-+ +
tl IIMMUHMM^HM
>. «, trt x > X >-
M £H K a n n i-H n u
2ggfc 9£§iB£
in o mo
M * * in
MOM MM
M M M M
2222
H M M H
X X X X
*5*
O
H
h-
g
X
U
U1
1/1
H
X
K
J£
O
cr
u.
o
z
a o
(Tl O
in M
U) » »
M S 2
* a r-
O M M
Is* >
SO
H
CJ M
r* * h-
y 2 f y
H^ 5 U.
Z2 5H
s^h
mo in
in u) u>
M M M O
MMMMMMMMMMMMMMMM
2233332333232333
MHHHMHHHHMHHHHHH
XXXXXXXXXXXXXXXX
inu>f-«Hcvj K)«rin u>
*
a.
u
h-
Z
t
z a
H^
CQ JH
£&
*^ Ou
z z
a u
a u oo
^^ So
Z UJ W H-
O > H
H < Q < 1/1
t- I # a
«t > S U!
o H a u
o u ce o u. z
H HO
0 Z + Z
Z H < Z H
H X JC
_J H 10 - H
« <* «< H UJ l/\
U1 O X Q O H
CO M H- * Z 0
M O X < t
» N >- 1/1 >- a o
a u _j H i/i a .H
CO Q. U Q H H X
M - K H
IT) f K- H-.JIICei/11/ll/l
F- in o o i/i a CQCQOHHM
M u0 mo;u>uj*-i/i Q
««*na-R«j-5 H M o
^ c1^^^11-^?^^ " " ' ' W " H
O OHO OHOH H U
HI|HW>-ll^bQHX>-HQQa
ai Z M i/l ul iJ
gPQMOOOp HHH UJ
S co u. o cc to o a Q Q a
o io a in o a
r- r-. eo co en a
MM M M MOO* O O
M M M M M
32222
H H H H M
X X X X X
t*- «o
H H C3
o o n M
11 "x§§
X >- 3 Q Q
Q Q tf X 5=
-------
N
in u> r»
h- r* r«
«<<<<«<<<<<«««*<<<<«<<<<<<«*<«*<<<<<<<<<<<<<
3333333333333333333333333333333333333
HHMHHHHMHMMHHHHHWMHHHMHHMHMHMHH-tHHMHH
xxxxacxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
cno
r- «
HH
05 00
i-4 H
i 01 CH (71
H H H H H
U
2
>
M
(/}
I/I
U
cc
M
l/l
I/!
1/1
*
»
£
3
a
>
>
X
»
N
X
-J
X
«
X
£ s:
X X
OC £
> N O
U
IIIIX
a ca
x a
a
sr
«
0
o:
>
N
I/I
in
£
z
«x
«»
t-
1/1
^
£
O
0
>-
«k
>
X
«
M
X
Ifr
_J
X
»
X
o a M > ^ N)
> > M O
+ + X X 3 Qi
«*r
£ £ + + X +
3D O
X *" 2 a m J3
II II X X O
3 § " " d x
822x53
f
Ul
a
CC Ul
a i
o a
Ul
t/l H-
M Ul
_J
ui a.
3 £
_/ O O
< J 0
> Ul
a u
o >-*
U) » <
H- £ QC
< £ H tt
a 3 a H 3
CO (A rH 00 O
Ul Ul
fe" " H"
MSSS5
81 1 ij fV
J 1^ LTJ
G
0 O S
UATED.
^
>
Ul
>-
§
U
4
Ul
(/I
o
X
h-
z
u
u
3
t-
LJ
aJ
Z
H
l/l
K-
z
H
O
a.
ce
o
u.
Ul
K~
1
$
Ul
u
r*
y
^
*
M
I/I
t/1
£
Z
<4
* U
1- >
l/l O
-i 00
£
O Q
Q Z
>- 3
» O
> u.
X
N *
X O
Of.
X 0
» f-»
X
£ » Ul
N r>4 H _l _J M in
S. *v -I N > Ul
« X > H > > N X U
MO a x x 3 t- is
N. rH *
a + + + + x Q >
dll O Q
< < £ £ a: < x
Q X >- H 3 3 H :3
2 a co ui t/i
SXXQfe i,
3 5 § * " " d z s
U! C3 Q O M V
_i tsJ
a. ce
£ a.
Q O T
x > _i o a
o o ui ce
Q U 3
+ + H- O
i» ^f 1^
£ £ £ -
SB^PS
X >- V\ t/1 ««
II II II Q II
~5§ S§ S
S^3^
in
d- O
46
-------
a- in to
(T> 01 d
i-1 r-< %H
en
CO
<
*
(~
Ul
u
ul
CO
o
LO
cc
a
o
o
H
cc
o
LU
u
^
i/> a
t (M
u. a
O
>-
X
N
X
X
*
X
M
X
o
XXQ
u
cc
Q
LU
U
a.
o
cc
a:
o u
N M
-* *
>
LU O
a: n
JH-CKIO
*
O 3 Z
M M II
UI
Z
H
I/I CL
Z
H
U.
O
u
u
H
O
z
z in
H in
U. *
*
LU m
i?
H || LJ
t O
N a in * a:
v H n *
2 §
cc
cc
a 3 to o
cc
cc
u
+
a to
u a a
o
hri
~ s n u
U, -I X >
H H Q O
OHO
a
LO H
x a x >-
ll U u u
a
u
in
&
o
a
sf
O
in u
* in
a- or
in
in
47
-------
HHHHHNNMM
HHHHHHHHH
xxxxxrtxxx
t/l
^«-
u
X
U
fc
a
u
00
SC
1/1
ui
u
**
Z
8
u
Z
cc
M
S3
3
o
z
o
Z U.
o
u
u
u.
*
»
u
z
z
o
u
<~ O «
U Z X
Z N
o a:
z z ce *
o - x
u z x a
O * H
UD O O U.
+ * CO *
U f- UJ K>
a co *
OH
H 5 a x
t/i
a
3
o
X
o
o
o o
10 h.
*f *
o in
u> u>
U) *
eg
-------
tfini0r^CrtQHr^ro*inu)h»oocfiQHNM*inu>p"W(nQH(Nro*inu)f*»<>!)CfiQ
CMCM>>>>>>>>->->->>>">">>>>>>>>->->«>>>>->>>->>>>>-
<<<<<<<<<<<<<<<«t<«r<<<<<<«C<<<<<<«t«C«t<
O
ce
M
ui
x
z
»
I-
Ul
z a
o
H
OK
<
(- a
« <
H r-
Z Ul
UJ
8
X
*
X
»
N
3
X
O
cc
t-
00
a
« m
X O O
o s
CC H O
H X I-
co o
Q O
Ul H
U. Ul Ul t
O H I- *
3 Ul « H
X O J Ul
CM o cc CQ a X
r*° cc GO ^t ui
wo
a: u
t «
X Z
O X.
cc
z a.
M: a. u
« < o
yal
ggu.
ssg
a «f z
z H
H ce 3
« 2 o ui
z r z tx ui
** «* 3 O
O Q CC
H a a u o
x H u>
O _J Ul 3 Ul
H H H
ui a u
X Z CC O CC
H O Z O
Q
$
3
Ul
ui
H
1
g ro
H ft
H ft
< X
x o
3 Ul
Ul Ul
Ul
X
t H-
Ul
Ul Ul
5£
XO
K-Q.WU1
a
Z I-
O 3
H O
5 oe.
cc o
UJ Ul
h-HOHO_J«JOHZO
i/i _j ui a ui o co oo
cc cc < cc a o
UIU. _l >- M U Ul _J
o
Ul Z
X Ul O
Ul tr
1 I *^\
a. o x < ce < H z HZ
auuicoi-HHcai- o «< o
cc to
ui
: i
z
o
H
B
^ «<
< £
£ O
O H
H U)
OL K
H
~ 3
m M M CO
CM CM (M
* « in
« « « v-
~. ~ M <
M M N Z Z
Ul
Ul
CO CO C9 <
H H H 3
Ul Ul Ul O
V S S Ul
u
Ul
o
O Ul
z z
CM (M
ul
_J O ft _| I ±
O H « J X X
o
Ul
Ul
H
z
o
U» tM O I
ft U. N
+ * cc
X X «*
»(*-(
M N rM H
3
<3
Ul
CD
H
3
O
-1
d
< CO
Z H
O U)
Ul ~
» X
3 |
M
Ct. ^^
ft ft
N in
ul «»» « H
X * * ft * Ul
K in in in in
* t t ui
u. t-3 a u ci H
o i i i i
_ w «. z
z a. a. a. a. o
3 X X X X H
Ul UJ Ul Ul U t-
z
ce
3
Ul
CC
Q
Z
t
13
O
CC
Ul
Ul
Ul
X
CM
! 1 3
h '> ^ o
ui
ux
o!^
Ul CC CC CC CC Ul
3 Ul Ul Ul Ul >
_l I- H- H- H O
a. co
o. a H
Ul Z U
H H
a > ui
H >
cc z ui
Ul H >
X O
CL J CO
ui 3 <
OH *
Z r- Ul a Q UJ
h- Z H M >O O
< Ul * fO
Z Ul (M O >
u. o o a a u)
o o, cc ro n u
x 3 * ro
x ui o CM a
o ui a a a
m
H
d
cc
o
Ul
09
H
Ul
X
H
X
Ul
X
Ul
g
CQ
Ul Ul
N
Ul
O CO
z
xi
X Z
Is- O O
a co
ro * z
o
o H
o uj ro ro to H x
CQXUI*»«'"»CeH
o
5?
ui
H
Sfeu-xr
11 ^- -_ ».
u, u, u,
H H H
CC O
5
U, Ul
ft
ouooooooooouuoooo oooooouooooo
CM tf u) r
o o a a
to to ro to
-------
*************************************
<<<<<<<<<<<<<<<<<<«t<<<«t<<<<<<<<«t«t<<<<
3333333333322223222222222222222322333
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
oo oi
MM*
H H H
kn u) r- eo en a
H H H H H
t/> U
.3
2
2
s: o
H £K
a
z o
< u
l/l
§
u
z
o
H
<
cc.
H
o
u
I/I
< Nl
> I/I
»
Z >»
M t/1
«t »
O t- H
H CO Ul
I*) O i£
S*?
OX
a H
M l/l
» H O
&
u
X
cc.
z
u
z
8 8
u. u
o o
g s
H H
H- h-
< <
M H
> >
U U
a a
a a
a: K
a o
i §
u
X
V M
Z Z
< o < o
S H Z H
(3 l_ (Q ^_
H U H U
B
§
a
ca
II H II H
o a
£?^Q
X O -J
LL *^
R O
in
a
oe
u
Ul
2:
H
Ul
o
z
1/1
H
a
i/»
o
cc
?of°
iSSW
PHo
dfcg
a
M
O M
* »
s: u>
a *
* a
a
*
»
a
-» *
u a
0
a
u
N
H 1
X Z
H
O
*
M
to
CM M
*
z
-------
in ui in 10 uo ui in
m in to
in to 01
f. a"; u*> ~n tn m
10 ui 10 to
to ui ui in
M H
X X
M a-
n M
(M CM
X X
S(Q
u
» *
»
d
*
M
I/I
ft
fc
*
3
*
CO
H
O3 H M
0 H H CO
» a- (M
» «. fO t
00 H CO
Q r-) Z M
a- -« a- ~ O X
> K) » a- H «
r*" o +
Ul * Ul U
5? ^ $ "i u £
4,HJ>H9-
U It O M 31 ||
*** ^»
&9h2 y
i"* co an H
a o a H
* or a- o a-
H H M
XXI
a H
* *
4h
H*
X
O
B
X
CO
2.
M
X
u
£
Ul
£
u
X
M
K-
Ul
Z
<
K-
a
Ul
K-
Ul
cc
to
M
M
Jc
£
CD
Z^
(M CC U.
II 3 H
*g
U
H H H H H
X X X X I
CM K>
* J-
5
H
3C
Z
O
U.
H
g
5
(/i
M
H
X
H
H
C3 X
Z 03
H M
X W
H i.
U
uJ O
x oe
O "*
3! Ul H
0 0
-J U. *
U 0 ^J
03 X
(/I »
Z l/» 03 IT> V
O Ul * s '-I
H _J CT> f^ *
h- a r
3 a 3E »
CO if
h ^
o a r- o oo
H M M H H M H r-< H H
xxxacxxxxxx
ar in u^ N
* * * *
W
O .Z
^' UL ^t
>., Hi w"
^t O vl
J W UJ
--i "£, > U! ,W
j; a v"i x
O Ul Z I OC
J K O O
TsT '--I i». »-
i._, -, j o
7-2* **C C-i
^ »w ,«i *"" 'fi
"° ^4 '"J ^
«* i,-", '.,1 Ui Z,
_J iw, »J 3T <
j "^ ""/ ^"
."r ,4, ;,. ,-." r-
t, : fj
v i .; , - <- " Ui
' » >X
r r. D- o
,-'"''- -re
f- !, -3 >
" j : T t. - .j_t ijj
~> '-- a s, 7:
.J ~,- <£ .'<*' t/;
r- < t/" H
v^ iJ i~i O w
;,^ I :» f". y
O
^r ir D i : ^ ^
«T '. " . ; f i"
- 5
U, ^.< »- ."» .,j 2"
r ^? i 13
. j lu «-t U.
u c: : ^ cc sr
r> af .-r ., « .,j
_J " Ui «*,
tt f~t X U < H
..J * U' X: '. * .Jj
«? C'J £ C> M.
M § T ° £ £ S > r £
,'^ ^"* 1 ^ "^ * -
Uj £ u.
o en o o o o a
>.
5
X*
^
H.
-~s
w<
(_
~3
c?
U^-
o
uJ
Z
k-t
. J
*£
*
5
<
X
.- '
EX
ij
f"
U.
H
*
a
f
u
M
X
t
^^
^_i
h-
U-
O
0
Z
H
3£
a:
u.
2
M
Q
i _,
h-
g
£
U
H H H M
X X X X
CO 01 0
* * m
M
k~
X
O
H
X1
a:
0
t
cu
o
u
CK
5
(A
Z
O
H
(~
O
a
u.
Ul
a
>- u
o «
Q M
U (A
3
UJ >-
-J I/I
a. »
M 3
t~ #
_J 03
rj H
2; co
CO
Ul (Si
h- Nl
< u> w
1 ^^ #
3-\ Nl
2 oo
^ H # 0
0 II ^1 II
3V5t
a
u a-
H H M H H
X X X X X
tH ^ ^j *f if)
if) lO 'rt t-O Irt
(M (M
X X
< CO
o u
. f ? -3 i5
O M N O O
M II II II II
338G5
51
-------
u> r- eo en
m m m in
a-incor-oocncDHf\jMa-mu3r"-cQcn
f***r""p*"f*p**f**oococooooocooQoooooo
a H
en
ce
o
a
u
cc
o
z
o
cc
CO
s
z
o
H
u
a
a
eo
»
§
u>
h-
H u
O
H
H
fg
*
C3 ~
C1 00
H O
H « «
Z -At
a.
O Q Ul ll in U
0000 I "»
a. »
2 CM^
^ C5 M £
r?!i.jT?""""""""""""" "n1
9115 5 3 3 !* 513 B 8 tt b
a. Q.
3 x o x
7) u in u
J-^o^^
(M
>
o » r-
CM
Q. «t
o
a
o
O ft
O M
U (/I
J Ul
Q. *
H 3
=J
-------
33iat3ai33l3i3JR33323t333l3(273B22K2B
HHHHHHHHHHHHHHHHHHHHHHHHH 1/1
XXXXXXXXXXXXXXXXXXXXXXXXX t-
z
ft
o
u
00
5C
z
3!
u
o
t!
s
Z
Z
o
u
a
H
N a u
I/I UJ «-
N ro a.
N p * x
t/i v » u
*. fS^
X t
H
*
a
O)
a a
oo »
st *« W *"
N N a u a u
o o M * 3
a to
Psl
* +
a M
in <
x oau x«~x< -
PiO O O U U X H *
i
o
§
u
o
u
o o a
10 H CM
M *
-------
MHHMMMMMMMMMHMHHHHMHHHHHHHHHHHHHHHHHH
xxxxxxxxxxxxxxxxxxxxxxxx:rxxxxxxxxxxxx
so cn o «H CM K> tf in u> h- co cn ci
H H H H H
H CM
in
H
10
H
r-
H
'IN fM N *N CM
f\l
XX
ca r*
» a-
CM «
a
U}
a
N
CM
R
n
CQ
<
oo
<
ca
-.
00
««
3
w a
U.H
x«»
-»*U_
IM*»3
1/100*
oo CM
a *
in
» CJ
in
H H
» »
CM CM
CM M
*
M CO M
a
M
U}
»
a
a-
ul
H
h-
UT
«
O
15
10
a
m
a
M
M
CM
00
*
03
08
O
ft
m
U
in
*
in
o
»
o
en
u>
a-
o
»
5
in
H
03
in
o->
CM
ft'
X
oo
in
en
CM
ft*
t/>
x
>-
X
ft
X
u
Q
£
in < H
M ». i
x cn
» »*
-% u
CM 00
CM
*
i
in
CM
x cn
» - M
«t r+
X U3
%*
Z Q
o m
a
MfMMtn »aaco »u>
« » c\i t-i cn M cn CM
ft ft ftCM*COft
*f-.tnMMr^Qino
H fth-ocitoMinujfsi
t *{vd*cou3in*
Q in u3 r- «cn *
MHH* tea tioain
co
CM*fc» H »OiaHiO
* f * «MHOIQ «in «
aoaw «a *a- «r~
S
U)
*
t
o
ft
in
a
»
CM X
cn u>
in uo
cn M
CM CO
*
U}
*
CM
CM
*
h-
a
*
fc
»
cn x
H cn
CM a
« CM
CM
fO
*
U
X
CO
U X
U)
ui vn
co en
H
X H
«
U. f-
t
QQQQ
Q o Q a
(M
a
* in
f- H
CM CO
*
a o
» »
ID h*
H O
r- *
H 00
CM r«-
^^
U. UJ
ras
S10.
< a
X
o
o
a
u>
»
o
in
»«
a a
»
*
M
to
m
cn
LO
a
M <
*
o >-
CM I-
cSS
H H
« CQ
O?
O
CD
CM
H
O
O
O
tf
CM
-. r-. «
a
H
H
*
a
CO
*
*
8
II «- H
CO Z
H
X M
«- z
CO
o
o
CM
CN
*
ca cn
cn u>
-. a
a eo o
CM i
w H
O
CO | CD CM
O
O
K K)
13^^
S9n!Q
< - co
H «-H
I/I II X CM
O
W
CD
X
X
N 0
W O
o
O rll
H
H
CM
H
a
O CM
-------
UO
l-O LO LO LO
UJ LO
UJ
'-0
QHCMM.*inu>NCOClp
U)U)U)U>lOU)l0U)lAU>n*
t£lQu3l£U}l01idLOl£l0CO
HHHHHMHHHHHMMHHHMMMHHHHHHMMHHHHHMHMHH
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
H CM
in us
00 Cn CJ H
n n * -*
K)
co a H
* * in in
CO
CO
*
tt
X
«
i
00
in
H
a
x
a
H
a
CO
*
*
X
*
oo
in
01
CM
in
u
o
CM
in
"- CO O
O CM CO
in st
» in **
u a co o
» H
£ ' HS
H in it x
X
M
a
M
u
oa
X
*
i
UJ
en
fM
t
X
a
<
H
01
O M
U)
-. a
u. i
fc£
U>
o
o
co
en Q
* H
M t
m *
t M II
q Q N
O H 01
O
to
II II
N _
l/l O
jE N p
M
x
t= II
01 ii in
tC O Lbi
P Q H
II II H 01 ||
SUI LJ
co 3
HX'3
10 « t
O Q
O H
N O
t/1 CO
U.
CO
*
X
tt
i
O U. P
H
-------
10
cxi
r-
U>
inu>r»ooenoHrvJW'»inu>
r-f-r-r-h-cocooococococo
Ujy>U)i0U)U)u}U)lOUjL0l0
333333333333333
HHHHHHHHHHHHHHH
xxxxxxxxxxxxxxx
U
* 5
H
H
«r m
H H
fc
Q
g
<
fc
u
CD
2
, m "
U) *
X (M O
Z H >
O > "
a
H
«
*
in
in
(SI
en
a
*
*
P
H
O
n
u) u> eo
r* co a
a u
r-\
H H #
* » «
* tt A
" in
o
u
a
t
eo
<
o
t
a
in
O II
l/l
«k#
u § n § u § n
1/1
«^
gn
a
5
u
a £
S §
a
85
z:
o
H CM
u>
56
-------
HHHHHHHMMMHHHHHHMHHHHHHHHHHHHHMHHHHr-ir-i
xtrxxixrrxxxxacxrnxxxrrxrrxxxzxxxxxxxxxxxxx
CM
ermush-eocncDr-t
4 s
CJ
H
M a- in u)
.-I -4 H H
CO
o H
m
in
oo
in
u>
o
cr>
3
03
O
H
U>
H
en
a
u. H
~ o d-
oo »
en
UJ
a
in *
K)
o
1st
1/1 (M
» m
o i/i
M
h-
M «*
> f)
X
2
z o
O H
cn
O CM
O
a
K)
H
CO fM
cn cn M
H CD
in
cn u fM
r- or »
x
fM
in
fNl
cn
CM
oof-to
OJCM»
a-
K) M
H «
r~-
fOHH
stM
n»
UIM
uo
»h-
j-»
a-d-
fcCJ
o
U^ tf
ijj«
mrg
*CM
*»
003
m CM
«u)
CM
H
«M in
U)
s, a
a CM
d- M
CM
r^> cn co
cn * u>
, ( fs. ^ f) T-JI
H M <~« * * fM
(N H » to fO *
oo cn ,H
a
on (Ji
u> oo
M CP
* u")
cn
co
55
s
3 H
U. O
Q
f> cn
CM a
O fM
co a
t/i 1/1
t- H t~
< < <
Q S Q
CM
f > a- H
O d- d-
cn M CM
V X V
QOOQQ
co
H
»
tc
H
»
tn
CM
co
in
en
K)
in
en
uj
in
in
en
a
CTi
o
a
in
fM
H
o
o
CO
o
H
u
ft
CM
CM
O
O
H x a « o
uo, cn ro - H (M K U1
i 8 s
* O
CO CM »
» H H Q _J U
** < O Z
o
CD
HUJ g II
SliiSS
3
o
T?g
S^
*
> H
5n
M Q
m H
co
LU
O
H
<*>
m
u
o
m
S
CM «-
o
u
O H
H H
CM
H
a H
O CM CS|
CM
M
57
-------
HHHHHHHHHHHHHHHHHHMHMHHHH
xxxxxxxxxxxxxxxxxxxxxnrxxx
H (NJ
K) tt in CD
cn o H
in uo ( to
O H X
- H I/I
f- «
H II W
a
u
u
*
*
o
H
u
8
a
0
o
CD
«- Q
Q
U3
*
U,
m H
>- H U-
h- l^
H II
u u
H D -J
03 H *
< o
h- «H N
Q
H
«»
u.
u
o
s
CO
z
o
o
a
u
o
5
u
o
CJ
a
(M
a
u in
in
fSI
to
a
U U)
H
to
u>
58
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-650/4-74-008
3. RECIPIENT'S ACCESSION-NO.
4. TITLE AND SUBTITLE
USER'S GUIDE FOR HIWAY: A HIGHWAY AIR POLLUTION
MODEL
5. REPORT DATE
February 1975
6 PERFORMING ORGANIZATION CODE
7. AUTHORIS)
John R. Zimmerman,* and Roger S. Thompson
8. PERFORMING ORGANIZATION REPORT NO.
9. R.ERFORMIN.G ORGANIZATION. NAME. AND ADDRESS .
Nationar Environmental Research "enter
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, N.C. 27711
10. PROGRAM ELEMENT NO.
1AA009
11. CONTRACT/GRANT NO.
12. SPONSORING AGENCY NAME AND ADDRESS
13. TYPE OF REPORT AND PERIOD COVERED
Final report
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
*0n assignment from the National Oceanic and Atmospheric Administration, U.S.
Department of Commerce
A computer model, called HIWAY, that can be used for estimating the concentrations
of nonreactive pollutants from highway traffic is described. This steady-state Gaus-
sian model can be applied to determine air pollution concentrations at receptor loca-
tions downwind of "at-grade" and "cut-section" highways located in relatively uncom-
plicated terrain. For an at-grade highway, each lane of traffic is modeled as though
it were a finite, uniformly emitting line source of pollution. For the cut section,
the top of the cut is considered an area source. The area source is simulated by
using ten line sources of equal source strength. The total source strength equals
the total emissions from the lanes in the cut. The air pollution concentration re-
presentative of hourly averaging times at a downwind receptor location is found by
a numerical integration along the length of each lane and a summing of the contribu-
tions from each lane. With the exception of receptors directly on the highway or
within the cut, the model is applicable for any wind direction, highway orientation,
and receptor location. The model was developed for situations in which horizontal
wind flow occurs. The model cannot consider complex terrain or large obstructions
to the flow such as buildings or large trees. An interactive version of the computer
model is available on Environmental Protection Agency's Users' Network for Applied
Modeling of Air Pollution (UNAMAP).
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS c. COSATI Field/Group
Air pollution
Turbulent diffusion
Highway transportation
Meteorology
Mathematical models
Computer models
Dispersion
Air quality simulation
model
18. DISTRIBUTION STATEMENT
Release unlimited
19. SECURITY CLASS (This Report)
Unclassified
21 NO. OF PAGES
74
20 SECURITY CLASS (This
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
59
U.S. GOVERNMENT PRIOTING OFFICE: 1975 - 640-880/648 - Region 4
-------
-------
-------
-------
------- |