A"/
February 1982
ENAMAP-1A LONG-TERM S02 AND SULFATE AIR POLLUTION MODEL
Refinement of Transformation and Deposition Mechanisms
Contract 68-02-3424
ENVIRONMENTAL SCIENCES RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27711
-------
ENAMAP-1A LONG-TERM S02 AND SULFATE AIR POLLUTION MODEL
Refinement of Transformation and Deposition Mechanisms
by
P.M. Mayerhofer, R.M. Endlich, B.E. Cantrell
R. Brodzinsky and C.M. Bhumralkar
SRI International
Menlo Park, California 94025
Contract 68-02-3424
Project Officer
Terry L. Clark
Meteorology and Assessment Division
Environmental Sciences Research Laboratory
Research Triangle Park, North Carolina 27711
ENVIRONMENTAL SCIENCES RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27711
-------
DISCLAIMER
This report has been reviewed by the Office of Research and
Development, U.S. Environmental Protection Agency, and
approved for publication. Approval does not signify that the con-
tents necessarily reflect the views and policies of the U.S.
Environmental Protection Agency, nor does mention of trade
names or commercial products constitute endorsement or recom-
mendation for use.
-------
ABSTRACT
The ENAMAP-1 model for long-range air pollution transport has been modified in several
ways to produce the newer version, ENAMAP-1 A. The geographic region of the modeled
domain has been increased to include more of southeastern Canada; the meteorological and
emission data for this area have been added to the U.S. data base. The transformation rate for
SO2 to SOJ and the deposition rates for SO2 and SOT have been changed to agree with recent
published values. In ENAMAP-1 these rates were all constants; in ENAMAP-1 A they are vari-
able in space and time. The transformation rate has been made a function of latitude and sea-
son. The new transformation rate is on the average about twice as large as the old one. In
ENAMAP-1 A, the dry deposition rate has been made dependent on the type of underlying ter-
rain and vegetation, on thermal stability in the boundary layer, and on time of day. The wet
deposition is treated as a function of rainfall rate and cloud type (convective, warm process, or
Bergeron process).
We have run ENAMAP-1 A for each day of January and August 1977 and have computed
average monthly values of airborne concentration, dry deposition, and wet deposition for SO2
and SO|". The boundary exchanges of SO2 and SOJ have been computed for each of 41 states
(or provinces) and also for 12 especially sensitive areas (such as parks) of special interest.
The computations show the history of pollution from emission to deposition and are docu-
mented in the form of maps and tables.
In contrast to the previous computations using ENAMAP-1, the new computations have
much larger amounts of SOJ in the form of airborne concentration and deposition, while the
amount of S02 deposition is decreased. The total sulfur deposition (SO2 and SO^ combined) is
approximately 40 percent of the previously computed value in winter and 70 percent of the pre-
vious value in summer.
Because measurements of dry and wet deposition of SO2 and SO J are not available, the
ENAMAP-1 A computations can be only partially verified by comparison to air quality measure-
ments (S02 and SO J airborne concentrations). Scatter diagrams of calculated and observed
concentrations show reasonably good agreement for SO2; however, computed SO^ concentra-
tions are usually too large. This may be interpreted as tentative evidence that the new transfor-
mation rate is too large on the average or that SOJ deposition is too low.
We are making further changes to ENAMAP-1 A to increase its accuracy and versatility.
The boundary layer is being divided into three sublayers with vertical mixing between them,
and the transport winds are being adjusted for the effects of mountainous terrain. NOX emis-
sions and NOX chemistry will later be included in the model.
This report was submitted in partial fulfillment of Contract 68-02-3424 by SRI Interna-
tional under the sponsorship of the U.S. Environmental Protection Agency. This report covers
the period 17 July 1980 to 31 July 1981 for work completed as of 31 July 1 981:
in
-------
CONTENTS
Abstract [[[ v
Figures [[[ vi
Tables [[[ vii
1. Introduction [[[ 1
2. Description of ENAMAP-1A Model [[[ 2
Background [[[ 2
Features of ENAMAP-1A [[[ 3
3. Review of the Data Bases [[[ 1 0
Emissions Data Base [[[ 1 0
Air Quality Data Bases [[[ 10
Meteorological Data [[[ 1 2
4. Results of Model Application for January and August 1977 [[[ 14
General [[[ 1 4
-------
FIGURES
Number Page
1 Eastern North America Model Domain 4
2 Sensitive Receptor Areas 5
3 Land-Use Types Used for Dry Deposition Calculations 7
4 Annual SC>2 and SO^Emissions for 1977 11
5 Measured Monthly Precipitation for January and August 1977 13
6 SC>2 Concentrations for January 1977 15
7 SO^Concentrations for January 1977 16
8 SC>2 Concentrations for August 1977 18
9 S0|° Concentrations for August 1977 19
10 Comparison of SC-2 Dry Deposition Calculated by ENAMAP-1A
and ENAMAP-1 for January 1977 21
11 Comparison of SC>2 Wet Deposition Calculated by ENAMAP-1 A
and ENAMAP-1 for January 1977 22
12 Comparison of SO^Dry Deposition Calculated by ENAMAP-1 A
and ENAMAP-1 for January 1977 23
13 Comparison of SO^Wet Deposition Calculated by ENAMAP-1 A
and ENAMAP-1 for January 1977 24
14 Comparison of SC>2 Dry Deposition Calculated by ENAMAP-1 A
and ENAMAP-1 for August 1977 25
15 Comparison of SO2 Wet Deposition Calculated by ENAMAP-1 A
and ENAMAP-1 for August 1977 26
16 Comparison of SOjDry Deposition Calculated by ENAMAP-1 A
and ENAMAP-1 for August 1 977 27
17 Comparison of SOjWet Deposition Calculated by ENAMAP-1 A
and ENAMAP-1 for August 1977 28
18 Scatter Diagram of Observed Monthly Values versus Calculated
Monthly Values of S02 Concentrations for January and August 1977 42
19 Scatter Diagram of Observed Monthly Values versus Calculated
Monthly Values of SO|°Concentrations for January and August 1977 43
VI
-------
TABLES
Number Page
1 Principal Common Features of ENAMAP-1 A and ENAMAP-1 ................................................ 2
2 Transformation Coefficients K. for SC>2 and
Based on Homogeneous Mechanisms [[[ 6
3 S02 Dry Deposition Velocities by Land Use Type [[[ 8
4 SO^Dry Deposition Velocities by Land Use Type [[[ '. .............. 8
5 Wet Deposition Coefficients K for SOg and SOj
Based on the Precipitation Rate R [[[ 9
6 Comparison of ENAMAP-1 A and ENAMAP-1 Results
for Illinois, Indiana, and Ohio Emissions for January 1977 [[[ 20
7 Comparison of ENAMAP-1 A and ENAMAP-1 Results
for Illinois, Indiana, and Ohio Emissions for August 1977 [[[ 20
8 Calculated Interstate/Province Exchanges of Sulfur Depositions
for January 1977 [[[ 30
9 Calculated Interstate/Province Exchanges of Sulfur Depositions
for August 1977 [[[ 33
10 Comparison of Interregional Exchanges of Sulfur Depositions
-------
SECTION 1
INTRODUCTION
Under contract to the U.S. Environmental Protection Agency (EPA), SRI International (SRI)
developed and evaluated an eastern North American Model of Air Pollution (ENAMAP-1)
(Bhumralkar et al., 1980a). The ENAMAP-1 model was adapted from the SRI-developed Euro-
pean Model of Air Pollution (EURMAP). It is designed to study the long-term transport and
deposition of airborne sulfur pollutants from industrial sources and to calculate ambient sulfur
concentrations for monthly, seasonal, and annual time periods over the eastern United States
and Canada. The model has been used to calculate exchanges of airborne sulfuramong vari-
ous U.S. and Canadian regions. ENAMAP-1 was further tested to study the variability of the
model's calculations of seasonal sulfur concentrations and depositions due to year-to-year
changes in the wind and precipitation patterns, as described by Bhumralkar et al. (1980b).
Under a subsequent contract with EPA, SRI continued work on further development of
ENAMAP-1. A new version of the model, designated as ENAMAP-1 A, has been developed by
modifying the modeling domain of ENAMAP-1 to include the area bounded by 29°N and 55°N
latitude and 60°W and 104°W longitude. Other modifications include:
« Treating most states and Canadian provinces as separate receptor and emitter areas;
in addition, considering 12 smaller receptor areas.
Incorporating more realistic deposition and transformation coefficients.
Specifying land-use and geographical characteristics for each receptor area.
ENAMAP-1 A has been applied to emissions and meteorological data for January and August
1977 and the results have been compared with the measured concentrations as well as with
the results of ENAMAP-1.
This report describes the refinements to the model and the results of applying it to two
months' data. Section 2 describes the revised wet and dry deposition (removal) rates for SO2
and SO^ and the transformation rate for SO2 to SOJ. These parameters are now allowed to
vary in time and space over the modeling domain. This section also discusses the changes in
the domain of the emitter and receptor regions. Section 3 presents a review of the additional
input data used for the Canadian region. Emissions, meteorological data, and air quality data
are described. Section 4 provides the results of model runs for January and August 1977.
Plots of SO2 and SOJ concentrations and wet and dry depositions over Eastern North America
are included. The impact of sulfur emissions from each state/province on every other
state/province in the model domain are presented in tabular form. Section 5 analyzes the
impact of emissions on 1 2 special areasregions (such as state parks and recreational areas)
in which it is important to assess present pollutant levels now and project them for the future.
Section 6 presents an evaluation of model performance in predicting S02 and SO^" concentra-
tions and compares the results of ENAMAP-1 A with monitored air quality data. Section 7 sum-
marizes and reports the conclusions of the study and future research.
-------
SECTION 2
DESCRIPTION OF ENAMAP-1 A MODEL
Background
As stated in Section 1, ENAMAP-1 has been updated in various ways in the course of
developing ENAMAP-1 A. Table 1 lists the principal features common to both models. The
differences between them are described later in this section. Algorithms for wet and dry depo-
sition rates and transformation rates have been developed, with the EPA project monitor's
approval, to take into account temporal and spatial variability in the parameters. These algo-
rithms have been formulated on the basis of an extensive literature search; they represent the
state-of-the-art treatment of dry and wet deposition in long-range transport models. These
algorithms will be discussed below. Other modifications include increasing the size of the
modeling region domain and calculating the pollutant impact on 12 especially sensitive areas.
A description of the model's basic structure, including grid cell sizes and the puff advection
and diffusion scheme, has been presented previously by Bhumralkar et at. (1980a). Pollution
being transported into the model domain from the west and background concentrations are not
considered: The results calculated by the model are the direct result of emissions from within
the model domain only.
TABLE 1. PRINCIPAL COMMON FEATURES
OF ENAMAP-1 A AND ENAMAP-1
Feature Derivation
Emission rate Data provided by season
Transport windspeed Derived by integrating winds over
(V)(m s~1) and boundary layer
direction (6)
Mixing height (h) h0 = 1.3; £ = -0.15
h = h0 + £A*
*A is a seasonal parameter taken as +1 in winter, -1 in sum-
mer, and 0 in spring and fall.
-------
Features of ENAMAP-1A
Extension of Model Domain
Figure 1 shows the boundaries of ENAMAP-1A's model domain. This region covers the
area between 29°N and 55°N latitude and 60*W and 104°W longitude. It represents the addi-
tion of 560 km (eight 70-by-70-km grid cells) to the northern side and 210 km (three 70-by-
70-km grid cells) to the eastern side of the previous grid. This extension to the model domain
provides increased coverage of southern and eastern Canada. The model has been modified to
calculate interregional exchanges of sulfur pollution between 41 states and provinces (as
opposed to 13 EPA and Canadian regions in ENAMAP-1). Figure 1 shows the locations of the
state/province emitter-receptor regions. (The interstate/province exchange results are
presented in Section 4.)
Impact on Special Areas
The impact of sulfur pollution on 12 selected sensitive areas has been calculated for
January and August 1977. These areas were chosen by the EPA project monitor and are con-
sidered to be sensitive to sulfur deposition. Figure 2 shows the locations and names of the
sensitive areas. (Results are presented in Section 5.)
Treatment of Chemical Transformation
The transformation rate for SO2 to SOJ is expressed as the sum of two components: a
homogeneous transformation rate (based on the work of Altschuller, 1979) and a heterogene-
ous transformation rate. We have calculated the homogeneous rate as a function of solar inso-
lation (i.e. latitude and season) from rates for clean air given in Altschuller's Figure 2. They are
midday values; diurnally averaged rates (for use in the model) are one-third as large. In addi-
tion, Altschuller states that the diurnally averaged rates should be multiplied by a factor of
approximately three to account for the increased transformation in polluted air. The equation
and empirical constants that are used to represent this homogeneous transformation rate are
given in Table 2. The rates obtained in this way are lower than many values given in the litera-
ture (e.g., Moller, 1980); therefore we have increased them by multiplying them by an additional
arbitrary factor of 2. Table 2 shows the resulting rates for 35° and 45"N. These rates are well
within the range of normally accepted values; however, the arbitrary factor can be altered as
additional information becomes available.
The term for the heterogeneous conversion of SO2 to sulfate is based on the review by
Moller (1980). There seems to be uncertainty in the literature as to the relative importance of
the various heterogeneous conversion mechanisms described by Moller, particularly the
differentiation between the strong oxidizing agents (such as H2O2 and 63) and the effect of
metallic catalysts on conversion. Because of the difficulty in determining the relative impor-
tance of the various heterogeneous conversion mechanisms, a constant conversion rate of
0.005 (0.5 percent h~1) for the heterogeneous conversion is used in the model. The total
transformation rate varies from approximately 0.01 in winter to 0.04 in summer.
Treatment of Dry Deposition
Because of the natural variability of dry deposition, ENAMAP-1 A treats it as a function of
land-use type, stability, and time of day. Land-use type is defined by the surface characteris-
tics (land type or water) and the type of vegetation. Land-use type (from Sheih et al., 1979)
-------
FIGURE 1 EASTERN NORTH AMERICA MODEL DOMAIN
Dashed line indicates domain of ENAMAP-1
-------
LA VERENDRYE
PROVINCIAL PARK
ALGONQUIN
PROVINCIAL PARK
NORTH
NEW HAMPSHIRE
SOUTH LAKE
MICHIGAN
ADIRONDACK PARK
FINGER LAKES
SOUTH CENTRAL
PENNSYLVANIA
CHARLOTTESVILLE
APPALACHIAN
MOUNTAINS OF
NORTH CAROLINA
NORTH CENTRAL
FLORIDA
FIGURE 2 SENSITIVE RECEPTOR AREAS
-------
TABLE 2. TRANSFORMATION RATE (IT1) FOR SO2 AND
BASED ON HOMOGENEOUS MECHANISMS
Rate: K, = 2[a + b In (latitude *N)]/100
Season
Empirical Constants
Transformation
Rate (IT1) at
35°N Latitude
45'N Latitude
Summer 6.3
Fall/spring 4.4
Winter 2.5
-1.4
-1.0
-0.61
0.0265
0.0169
0.0066
0.0194
0.0119
0.0036
was gridded to each 70-by-70-km receptor cell to incorporate dry deposition variability at this
resolution. Figure 3 illustrates land-use type by receptor grid. Dry deposition velocities for
each land-use type for SO2 and SOJ for January (winter) and August (summer) for stability
classes 1 through 6 (very unstable through very stable) are applied in ENAMAP-1A. Dry depo-
sition velocities for three stability classes are shown in Tables 3 and 4. To account for the low
adsorption by plant surfaces at night, SO2 and SO^" dry deposition velocities have been
reduced to 0.07 cm s~1 during nighttime hours. The length of night is adjusted for each season.
This nighttime value, based on recent empirical data, was suggested by Clark (1981).
Treatment ol Wet Deposition
Wet deposition is treated as a function of season and rainfall rate (mm h~1). The removal
rates are based primarily on the work of Scott (1978), who presented graphs of the washout
ratio as a function of precipitation rate and three cloud types: cold clouds (in which nucleation
of rain is essentially caused by the Bergeron or ice growth process), warm or maritime clouds,
and convective clouds. The rate constant for wet deposition, Kw is proportional to the washout
ratio, (, and the rate of precipitation, R (as well as the density of the droplet and inversely pro-
portional to the density of air and to cloud height, all taken to be constants). Thus,
Kw a £R
From Scott's work, an empirical relationship can be calculated between the washout ratio, £ ,
and precipitation rate, R, in the form
where /3 < 0 and c is a constant. From this equation, it is seen that
Kw cc
or
aRb
-------
Line
i
2
3
4
5
b
7
3
9
10
11
12
13
14
15
16
17
16
19
20
21
22
23
2*.
25
26
27
28
29
30
31
32
33
3*.
35
36
37
36
3=>
40
41
1 10
000000OJll
0000000/1 l
Column
20
<,44<,4444444yFF(4444
44444444444fFFfc444
FFV.44
300050000111111111
000050000000 00 (XlllllFF
000111000000000
200111P50000JOOOOOO
00012000000000000000
OOF FK> Of Fill
OOOV/OOQ\FJ11
000000006.1
OOOOOOOOOU1
00050000011
00000100011
550001000111
500050000111
0050500C0111 1
220055000111 16111
300000200000001
300000000000J011lfpoACllllll
5 500000000 00 001111*) C/l 11 111 11
-------
TABLE 3. SO2 DRY DEPOSITION VELOCITIES (cm S~1) BY LAND USE TYPE
Land-Use Type
Swamp
Marshland
Metropolitan city
Lake or ocean
Cropland and pasture
Cropland, woodland and
grazing pasture
Irrigated crops
Grazed forest
and woodland
Ungrazed forest
and woodland
Subhumid grassland and
semiarid grazing land
Open, grazed woodland
Desert shrubland
Slightly
Stable
0.45
0.25
0.55
0.35
0.25
0.55
0.25
0.25
0.25
0.25
0.25
0.25
Winter
Neutral
0.65
0.35
0.65
0.75
0.45
0.75
0.35
0.35
0.35
0.45
0.45
0.35
Slightly
Unstable
0.65
0.35
0.65
0.55
0.45
0.75
0.35
0.35
0.35
0.45
0.45
0.35
Slightly
Stable
0.55
0.05
0.05
0.35
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
Summer
Neutral
0.95
0.35
0.05
0.75
0.35
0.35
0.35
0.35
0.35
0.25
0.25
0.35
Slightly
Unstable
0.75
0.85
0.05
0.55
0.75
0.75
0.85
0.85
0.85
0.75
0.75
0.85
TABLE 4. SOJ DRY DEPOSITION VELOCITIES (cm s"1) BY LAND USE TYPE
Land-Use Type
Swamp
Marshland
Metropolitan city
Lake or ocean
Cropland and pasture
Cropland, woodland and
grazing pasture
Irrigated crops
Grazed forest
and woodland
Ungrazed forest
and woodland
Subhumid grassland and
semiarid grazing land
Open, grazed woodland
Desert shrubland
Slightly
Stable
0.65
0.85
0.85
0.25
0.35
0.65
0.85
0.85
0.45
0.35
0.35
0.85
Winter
Neutral
0.75
0.95
0.95
0.35
0.55
0.85
0.95
0.95
0.95
0.55
0.55
0.95
Slightly
Unstable
0.75
0.95
0.95
0.35
0.45
0.85
0.95
0.95
0.95
0.45
0.45
0.95
Slightly
Stable
0.65
0.85
0.85
0.25
0.65
0.75
0.85
0.85
0.85
0.65
0.65
0.85
Summer
Neutral
0.85
0.95
0.95
0.35
0.85
0.85
0.95
0.95
0.95
0.85
0.85
0.95
Slightly
Unstable
0.85
0.95
0.95
0.35
0.85
0.85
0.95
0.95
0.95
0.85
0.85
0.95
8
-------
For the model, we have assumed that winter precipitation follows the Bergeron process, that fall
and spring precipitation are warm cloud phenomena, and that summer precipitation is confined
exclusively to the convective type of precipitation. The semiempirical representation of these
removal rates for SOJ and also for S02 for use in the model is shown in Table 5. To keep the
algorithm for the SO2 component of the washout consistent with that for SO J, we have relied on
the work of Chamberlain (1953) in regard to gaseous SO^ The seasonal variation in the
parameters a and b for SO2 were adopted to reflect the variation obtained by Scott for sulfate.
They may be revised at a later date when data can be obtained to make a more appropriate dis-
tinction between summer and winter washout of gaseous SO2.
TABLE 5. WET DEPOSITION RATE (rT1) FOR SO2 AND SO4~
BASED ON THE PRECIPITATION RATE, R (mlT1)
Rate: Kw = (aRb)
Empirical Constants
Wet Deposition
Rate (rr1) for
Pollutant
S02
SO 4
Season
Summer
Fall/spring
Winter
Summer
Fall/spring
Winter
a
0.14
0.036
0.009
0.39
0.091
0.021
b
0.12
0.53
0.70
0.06
0.27
0.70
5 mm h 1 of Rain
0.1698
0.0845
0.0278
0.4295
0.1405
0.0648
The choice of these parameters has resulted in a significant difference in the treatment of
wet deposition in ENAMAP-1 and ENAMAP-1 A. In ENAMAP-1, the wet removal rate was four
times greater for SO2 than for SOJ for both January and August. The SO2 removal rate in
ENAMAP-1 A is approximately 40 times lower than in ENAMAP-1 for January and five times
lower in August. The SO J wet removal rate in ENAMAP-1 A is approximately five times lower
than in ENAMAP-1 in January and two times higher in August. Naturally, these changed rates
produce large differences in the wet deposition patterns and statistics, as is shown later.
-------
SECTION 3
REVIEW OF THE DATA BASES
The three Canadian data bases (which were added to the existing data for the United
States) are meteorological (winds and precipitation), SO2 and SOJ* emissions, and air quality
(SO2 and SO J ambient concentrations). A detailed description of the data bases used for the
U.S. portion of the ENAMAP-1A domain is given by Bhumralkar et al. (1980a); a review of Cana-
dian data is given below.
Emissions Data Base
The Canadian emissions data base furnished by Environment Canada gives point and area
sources separately. Point sources were gridded to the 80-by-80-km emissions grid, which is
also used for U.S. sources, using the latitude and longitude of each point source. All point
source emissions within each grid cell are combined and treated as a single source by the
model. Because Canadian area source emissions were furnished on a grid with 1 27-by-1 27-
km grid cells, this grid size was used for Canadian area sources.
Canadian data provide only S02 and not SOJ emissions; therefore, the ratio of SOJ to S02
from the SURE emissions data for each season was used to compute separate SO2 and SOT
emission rates. Figure 4 shows the average annual values of SO2 and SOT emissions for 1977.
For four of Canada's largest sources (namely, Inco, Sudbury, and the Lakeview, Lambton, and
Nanticoke Plants of Ontario Hydro) the Canadian emissions data include seasonal variations of
the sulfur emissions.
Air Quality Data Bases
To evaluate ENAMAP-1 A results for the extended domain in Canada, two air quality data
bases were obtained. Monthly average SO2 and SOJ concentrations for January and August
1977 for Ontario were supplied by the Ontario Ministry of the Environment. Air quality data
from monitors that were not source-oriented were used. Monitored SO2 concentrations for
Quebec, New Brunswick, and Nova Scotia were supplied as monthly averages by Atmospheric
Environment of Canada. It was not possible to ascertain which monitors in Quebec and pro-
vinces to the east were source-oriented. The concentration levels were suspiciously high, pos-
sibly because of local sources, so these data were not used. Because the air quality data were
already averaged at each site for the month, it remained only to grid the data. To average out
(as much as possible) unrepresentative local values, SO2 and SO^ concentration averages
were computed for 140-by-140-km grid squares.
10
-------
(a) S02
(b) 804
FIGURE 4 ANNUAL S02 AND SO^ EMISSIONS FOR 1977 (1CT1ton km'2)
11
-------
Meteorological Data
Historical meteorological data for this study (upper-air winds and surface data) for Canada
were obtained from the National Climatic Center (NCC) in Asheville, North Carolina. Over the
entire domain, 64 upper air stations, 224 surface stations, and 2400 precipitation stations were
used to determine the meteorological inputs to the model. Data-processing programs were
used to create three-hour averages of the meteorological data and to grid the data to the 70-
by-70-km weather grid of ENAMAP-1 A. Processing included integrating the winds over the
mixing depth and gridding the wind, precipitation, stability data. Information on the U.S.
meteorological input to ENAMAP-1 A is contained in a report by Bhumralkar et al. (1980a). The
processing of the Canadian meteorological data is described below.
Program WINFIL was used to determine the surface and upper-air wind direction and
speed at each grid cell. The objective analysis scheme that was used for obtaining grid-point
values of upper-air winds was based on a distance-weighted averaging of five observations
The winds aloft were integrated over the layer between the surface and the 850 mb level. The
weighting factor for a particular observation was calculated by
W - C2/(C2 + R2) (1)
where C is the weighting constant (set to 70 km) and R is the distance in km between the
observation point and the grid point. To ensure that data from the full surrounding region were
used to determine a grid value, one station from each 90° sector adjacent to the grid cell was
used along with the next-closest station as the fifth station. The west-east component (U) and
the south-north component of the wind (V) were interpolated separately for each cell, using the
same five stations with their appropriate weights.
The same objective analysis scheme and weighting factor were used to calculate surface
winds and fractional cloud cover from surface data taken at six-hourly intervals. The surface
wind speed and cloud cover, along with the time of day, are then used to calculate the stability
class for each cell using Turner's method (1969). Stability classes 1 (very unstable) through 6
(very stable) are defined, based on the above input.
As described by Mayerhofer (1980) the precipitation analysis method used in ENAMAP-1
has been replaced with a modified form of the EPA precipitation-gridding programs. In the
ENAMAP-1 version, missing observations were treated as if no precipitation was measured at
the site; consequently, analyzed precipitation tended to be low. The new method averages
hourly precipitation data for the stations within each grid cell in which precipitation occurred.
Figure 5 shows the measured total monthly precipitation amounts for January and August 1977.
12
-------
I
3
<
r-
O)
I-
co
D
O
Q
Z
2
CC
O
u.
2
O
Z
<
O
LU
CC
Q.
-J
I
t-
2
O
Q
LU
CC
D
CO
LO
LU
CC
g
u.
13
-------
SECTION 4
RESULTS OF MODEL APPLICATION FOR JANUARY AND AUGUST 1977
General
To determine the effects of using the new sulfur deposition and transformation algorithms
as described in Section 2, the model was run for the months of January and August 1977,
Separate runs were made for the states/provinces for which emissions were available. For
each month, fields of SO2 and SOJ concentrations, dry deposition, and wet deposition resulting
from sulfur emissions in each of the individual areas were then combined into maps showing
the monthly area totals. Interregional exchange tables were also generated. These results are
shown in this section and in the Appendices.
For comparison purposes, plots of S02 and SOJ deposition and concentration patterns
and source/receptor tables from the previous version of the model (ENAMAP-1) are included in
this section.
SO2 and SO4" Concentrations
January
The calculated concentrations for January 1977 are shown in Figure 6. The measured
values of the SO2 concentrations are averaged over 140-by-140-km grid squares. The monitor-
ing stations included in the figure are those used for the ENAMAP-1 validation as well as
Ontario stations that are considered rural. The area of maximum concentration (^ 64 ^g m~3)
is near Pittsburgh. The general areas of calculated and observed S02 concentrations are in
good agreement, except that calculated concentrations are low (10 /^g m~3 versus 52 /ug m"3)
in northern border states such as Wisconsin. Concentrations calculated by ENAMAP-1 A are
more spread out (that is, they are higher at the northern and southern boundaries of the model
domain) than those calculated by ENAMAP-1 (Figure 6). The concentrations from the new
model run are closer to the measured values in this respect; previously the calculated concen-
trations were too low in southern states such as Alabama and Georgia. The slightly higher SO2
concentrations calculated by ENAMAP-1 A are due to its much lower wet and dry removal rates,
which counteract the higher transformation rate.
Figure 7 shows the measured and calculated concentrations of SO^" from ENAMAP-1 and
ENAMAP-1 A for January 1977. The ENAMAP-1 A results are approximately twice as large as
both the previously calculated values and the measured values, but the pattern of the isopleths
is very similar to the earlier run. The reason for the higher SOJ concentrations calculated by
ENAMAP-1 A is the higher transformation rate and lower wet removal rate, which overshadow
the higher dry removal rate.
14
-------
z
Ul
CO
Q
Ul
u
3
,
<
z
CO
Q
UJ
H
U
<
U
Q
ui
cc
UJ
cc
<
D
(T
O
r>
£
O!
3.
CO
O
I-
cc
O
1
(N
O
to
UJ
cc
D
15
-------
UJ
ffl
Q
u
U
<
U
Q
01
a:
D
2
tr
O
LL
z
ui
m
Q
ui
K
_l
3
U
U
0)
Z
O
<
tr
01
0
2
O
O
II T
O
UJ
IT
16
-------
August
The calculated SO2 concentrations for August 1977 compare favorably with the measured
concentrations both in regard to pattern and magnitude (Figure 8). The new model results
(from ENAMAP-1 A) in the northern and southern states are higher than the previous model
results (from ENAMAP-1), which make them closer to the measured values in these areas. The
higher SO2 concentrations calculated by ENAMAP-1 A are due to the lower wet and dry removal
rates, even though the transformation rate is higher.
The calculated and measured SOJ concentrations are shown in Figure 9. As in the Janu-
ary SOJ model results, the August SOJ concentrations from ENAMAP-1 A increased by a factor
of two over the previously calculated concentrations. This unfortunately makes them much
higher than the measured values. The new calculated concentrations are higher than the previ-
ous values because of the higher transformation rate, although the wet and dry removal rates
are also several times higher than before.
Tables 6 and 7 (for January and August) show the effect that the new wet and dry removal
and transformation rates have on the calculations of ENAMAP-1 and ENAMAP-1 A. The com-
parisons are for S02 and SOJ emitted from Illinois, Indiana, and Ohio (Region V-South). In
January (Table 6) the wet removal of SO2 decreased from 145.6 kton to 7.2 kton, a factor of
approximately 20. Dry deposition also decreased, whereas the transformed SOJ increased by a
factor of approximately 2.6. For this reason the calculated SOT concentrations are increased,
and the amount of SOJ leaving the model domain is greater for ENAMAP-1 A.
Table 7 shows the comparable figures for the month of August. In ENAMAP-1A the
conversion of SO2 to SOJ is 4.5 times greater than in ENAMAP-1 because of a higher transfor-
mation rate. Lower wet and dry depositions of SO2 were observed in the ENAMAP-1 A results.
Both the wet and dry deposition of SOJ increased by a factor of approximately 4.7.
Wet and Dry Depositions
In this section we compare wet and dry deposition maps from ENAMAP-1 A and ENAMAP-
1. Figure 10 shows the calculated SO2 dry deposition during January. Dry depositions calcu-
lated by ENAMAP-1 A are much lower than the ENAMAP-1 results, which display a closed iso-
pleth of 1024 mgrrT2 of SO2 deposition over eastern Pennsylvania (absent in ENAMAP-1 A
results). Figure 11 shows the January S02 wet deposition results. This figure indicates that
the wet deposition was drastically reduced by using the new coefficients in ENAMAP-1 A. This
is the largest change of any of the SO2 or SOJ wet or dry deposition results. Figure 1 2 shows
the January dry deposition results for SOJ from both model versions. The new dry deposition
of SOJ is increased by a factor of approximately two, similar to the change in SOJ concentra-
tion. Figure 13 indicates that wet SOJ deposition results were reduced in ENAMAP-1 A
because of the lower wet removal rate. Comparable figures for August are displayed in Figures
14 through 1 7. The increases or decreases in deposition of ENAMAP-1 A compared to
ENAMAP-1, shown in the figures of the entire model domain, are in the same direction as the
changes indicated in Tables 4 and 5 (for Illinois, Indiana, and Ohio).
17
-------
Z
Ul
a
3
U
£» -
-«"' y*
tjj**
*"
*
...- '*"*
Z
UJ
a
a
UJ
3
O
O
Q
UJ
EC
C/9
2 p:
O)
CE
O
en
00
Z
O
I
CN
O
00
CO
01
cc
D
18
-------
ui
CD
O
Ul
t-
_l
D
o
z
Ul
CD
O
Ul
H
U
_J
<
U
Q
UJ
cc
Ul
£
U)
CC
O
O)
00
O
(-
<
cc
UJ
O
z.
O
O
ii
-------
TABLES. COMPARISON OF ENAMAP-1 A AND ENAMAP-1 BUDGETS
FOR ILLINOIS, INDIANA, AND OHIO EMISSIONS (kton)
FOR JANUARY 1977
Process ENAMAP-1 ENAMAP-1 A
S02
Total SO2 emitted 638.7 645.1
Wet deposition -145.6 -7.2
Dry deposition -372.7 -213.5
Flux* -19.7 -165.4
Transformation (SO2 SOJ) -100.7 -259.0
so4-
Total SOJ emitted and transformed 165.9 403.8
Wet deposition -44.6 -11.7
Dry deposition -44.3 -131.7
Flux* -77.0 -260.4
'Flux is the amount of SO2 or SOJ" that was transported out of the
model domain by the wind.
TABLE 7. COMPARISON OF ENAMAP-1 A AND ENAMAP-1 BUDGETS
FOR ILLINOIS, INDIANA, AND OHIO EMISSIONS (kton)
FOR AUGUST 1977
Process ENAMAP-1 ENAMAP-1A
S02
Total SO2 emitted
Wet deposition
Dry deposition
Flux*
Transformation (SO2 SOJ)
576.8
-210.6
-286.4
-2.4
-77.4
582.9
-164.7
-68.1
-7.5
-342.3
SOJ
Total SO J emitted and transformed 127.6 525.9
Wet deposition -65.5 -305.7
Dry deposition -36.6 -170.7
Flux* -25.5 -49.5
'Flux is the amount of SO2 or SOJ that was transported out of the
model domain by the wind.
20
-------
(a) CALCULATED BY ENAMAP-1A
64
266
256
(b) CALCULATED BY ENAMAP-1
FIGURE 10 COMPARISON OF S02 DRY DEPOSITION (mg rrf2)CALCULATED
BY ENAMAP-1A AND ENAMAP-1 FOR JANUARY 1977
21
-------
(a) CALCULATED BY ENAMAP-1A
4 4
44 16
LOCAL MAXIMUM VALUES SHOWN APPLY AT POINTS MARKED BY PLUS SlONS
(b) CALCULATED BY ENAMAP-1
FIGURE 11 COMPARISON OF S02 WET DEPOSITION(mg m'2)CALCULATED
BY ENAMAP-1 A AND ENAMAP-1 FOR JANUARY 1977
22
-------
\i
(a) CALCULATED BY ENAMAP-1A
16 16
16 IP
(b) CALCULATED BY ENAMAP-1
FIGURE 12 COMPARISON OF SO^ DRY DEPOSITION(mg m'2)CALCULATED
BY ENAMAP-1A AND ENAMAP 1 FOR JANUARY 1977
23
-------
(a) CALCULATED BY ENAMAP-1A
*--v ' ' I ^"% » * -* . . Jkw^i +
\ 2 88 '88 "-32--
16
(b) CALCULATED 8Y ENAMAP-1
FIGURE 13 COMPARISON OF SO^ WET DEPOSITION (mg m"2)CALCULATED
BY ENAMAP-1A AND ENAMAP-1 FOR JANUARY 1977
24
-------
^^...,._._.*,-,ox^ -.., / v
''- ) \^--r-4<:;: --./
(a) CALCULATED BY ENAMAP-1A
256
64 64
(b) CALCULATED BY ENAMAP-1
FIGURE 14 COMPARISON OF SO2 DRY DEPOSITION(mg m'2)CALCULATED
BY ENAMAP-1A AND ENAMAP-1 FOR AUGUST 1977
25
-------
(a) CALCULATED BY ENAMAP-1A
4 I6I6
16 16 I66464
(b) CALCULATED BY ENAMAP-1
FIGURE 15 COMPARISON OF S02 WET DEPOSITIONfmg m-2)CALCULATED
BY ENAMAP-1A AND ENAMAP-1 FOR AUGUST 1977
26
-------
(a) CALCULATED BY ENAMAP-1A
(b) CALCULATED BY ENAMAP-1
FIGURE 16 COMPARISON OF SO^ DRY DEPOSITION (mg m-2)CALCULATED
BY ENAMAP-1A AND ENAMAP-1 FOR AUGUST 1977
27
-------
»&
~>*Fr. '. /
lY
-------
Interregional Exchanges
Tables 8 and 9 show the January and August sulfur* exchanges between the different
states (or provinces) of Figure 2. The tables show dry and wet sulfur depositions (in kilotons)
resulting from emissions from each of the 41 emitter regions. An example of how to interpret
these tables follows: The values along the diagonal of the matrix represent the amount depo-
sited within each emitter region from its own emissions; for example, 6.0 kton of the sulfur
depositions within Alabama (Emitter Region 1) came from its own emissions. Similarly, Illinois
receives from itself 6.9 kton of sulfur deposition. The values in each column (for a given
emitter region) show the amount of deposition it received from each of the other emitter
regions. For example, Indiana (Emitter Region 8) received 0.1 kton from Alabama, 0.0 kton from
Mississippi, 4.1 kton from Illinois, and so forth.
Tables 10 and 11 show comparisons of interregional sulfur deposition results for January
and August. The 13 regions are the same as those used previously in ENAMAP-1. The
source-receptor tables for ENAMAP-1 A were produced by summing emitter and receptor
results from the 41 regions/provinces. For example, Region V-South is made up of the states of
Illinois, Indiana, and Ohio. It can be seen from Table 10, by summing the sulfur depositions in
all the regions, that the ENAMAP-1 A total January deposition is much lower (about 40 percent
of the ENAMAP-1 deposition). This is because of the overall lower deposition rates of SO2 and
SOT; more S02 and SOT is transported out of the model domain. In August (Table 11) the total
deposition from ENAMAP-1 A is about 70 percent of that given by ENAMAP-1, and the relative
proportions of S02 and SO^ are reversed. Additional regional comparison tables for SO2 and
SOJ are given in Appendices A and B.
'The amount of sulfur (S) is given by S = S02/2 + SOJ/3
29
-------
c
o
J£
CO
"Z.
O
K
CO
O
a.
LU
O
cc
3
u.
CO
1 1
LL.
O
CO
LU
0
Z r-
T ^
o "~
X >
UJ GC
. . 3
£*
£°
5; u.
UJ
H
H-
CO
rir
UJ
1-
"y
iL
Q
LU
L_
p_
<
_i
O
i
O
CO
LU
_J
m
ff
If
»
o
Ari
Iff"
o
iro
UJ
a.
X
o
&
Ul
t-
U;
X
«
Z
T
3-
i/?
z
o
K- *
e
a.
u.
C-o
»- -
Cu^
O O- jr (N. o <-> j- o-<->
-too o
u « «
ij->oa vn > Z r t-
IzSf^Ei* «%^u,-£
«22iooITB5zzr.*ol.ff
««£cc:il:--£JK2ftrt
o o o
O GO COO C
*Vi O O O
G OOO O
- 0-v.O ,CO^
G O
IT G O
G OOOOO O
-. 0 OOir
G GGOO
wo o
G OOOOO O
» o
G GO GOO O
0 0 0 OO
o «
« f> tf l-«
^ Z w^ (iff i u> O O O
o««*--ii>a>t
I^ZK *3 33*22
t FS?iz'^ !£zzo
o o o o
OOO C CO C OO
o o o o o ** o «c o
O O CO
O ^* O O O G ^» ^* O ^ O fst
o o
o «. OOO
OOO OO O OO
OO O O O O r-> o OO
O Ari O O
O OOO O
oo o o c
o o «. o o
OOO OO GOG
-c O O <"> O O O O
GO fw OOO
O OT OOOO O
oo o ei o
G«.GOG -o o
OO OO OOC
I u, iz
a »- «Ui «Z«-« C
TL -JO: KU,'"'"" ffG^*au*O
« £ C U*t'fK^-U.3
Saa^^tt>a5l*o6^
w
»
9
f**
*t
r
V
f\.
<
PV,
r-
-
"^
<,
K.
«,
-------
0)
3
C
*
c
o
CO
UJ
_l
m
o
O
a.
« -c
^-
o
»O !->*«. OO O «. O OOO *O^~ 1N.O O
OO O O OOOO OO C OC
OO O«v. * OO MO * O O>-- *v< O t*> O rv« rw o 9- o
o *»<* no o ooo n o «s fs< o o
O cu*_o*»- Of^l^ fw O **l «OOOLO o^ oo
OO IN* O VO OOOOO OOOO OO OOO
IN* O flCO OO O Of- O O *Vl OQt\r O O
f\* OO O O OOOOO O OOO OO O OC
>o « 5 «
(_> « « u><_ Z Z Ui Z
««C-i««« x« - ? I >-~J-, _^^
««o>^ix« «I^K- Zx*uou-i»-«> ««o«zt««J«<2 t. 5«lcu
«K_j_iOO_>C3ZZ l-:Zu^>^*Cl'v333(_-O _Z^C~OZxa>tAZt»-U.J
J-jOO _.C
3U. U. _t *
wffOVk UJ.jZO«U>O<*-*- C)UjIU;UjUj XKUr UJUi*- -« Z.LL;
««C.CUU >TX_>CCCECCZZZZZZZOOaE^vO»-k->aaC7o(37
31
-------
0)
a
.2
o
c
0
o
*~~f
CO
111
CD
<
1
VA*
O
ISO
a
o
^ m
UJ
K
I
H **
i/i1""1
O
*- *
^
Q
a.
u.
c v^
(*)
o»
z
o
~
a
>- IV
c
»~
0
U-Z
>- o
is
u. a
O (M^. OO O » O OOO INi O
ooo oo o o o o o
O O » W » O *! -4.9 OV 9 O
o o oo o 1-1 o o o o
O O »-HrO<-> O»-«V <. OOO » O
O O OOO -- O O
o oooo ooo o o ooooo
r>»o o <% vr * <"* o ir o w> n< o v o o o
o o <- - «SJO>-- 0 * OIT 0 0 0-4,0
O » ^rf ^ O OOO
O O OO IM O O O
oooo o o oo o ooooo
n o«- » ni-io o o «
u « « ui<_ z
w^ o o t/^ 9> Z Z *"" ^ u^ ^ k£ * 4
«Zzt <-:J« «_-i^^-^ -o« « »- -lit > «c *
OC OU^^Ui ^Z C4[ UvO4 . fc. C3 U- Z UyU,U>
««t_cu-- xK_CcrcECzzzxzzz
O 00
ooo
- *- « u-
(, ^_ y*)
C) -v OOW1
x « a x u.ui
o« z £ « « z <
^ fcj Z ^* Cj C Z *<
C-Cft-K^w^^-*-
O'v.'iOO^ *
0
o>- o * «*
~ *«.o
O (r <* O * rn
*v. «. 0
PW fM o ir < o
0
0
ooo o oo
H- O o
O O (Vi O O O
<\i y n O O
WOO
».» mo o
IN.*, 0 0
oo
oo oooo
O O P»- O O
o oo
0 0
ooo o oo
«
z
zc: zo;p2<_*
ac c>- 11 ix u-o
£t ^ V/l J? K W- ^, 3
>33t*coi£
r^
**7
9
O
«.
o
*r
V
w
a.
-I
T
O
fr.
fw
4,
***
i
(V,
u*
e
V-
-
C
32
-------An error occurred while trying to OCR this image.
-------An error occurred while trying to OCR this image.
-------
O
_3
O
c
o
O5
LU
CD
z
o
fc~ f
JJ f
o
»- <-l
o
O O O O O O O O *r O O OOO - OOOOO O O O O O *>- O » »N.
O O OO OOO O O
O f* IS* «t O O
.* o oo«o» <
AM o O O O ^) O
« o«. o
<\. n
OO *S* ' O m O OOOOO O OOO OO< O OO
O IVlf *- OR. OOO * »O -1C>«* x
Xtr*C,J <_-
>-
O-iOJ** <-*u^
uimx«>.a3at_e S>.tje*>««>v^>a«:H-i
U. U- « <
P^ «, 9- O f
35
-------An error occurred while trying to OCR this image.
-------An error occurred while trying to OCR this image.
-------
SECTION 5
IMPACT OF SULFUR EMISSIONS
ON ESPECIALLY SENSITIVE RECEPTOR AREAS
Twelve especially sensitive regions in eastern North America were chosen by EPA for
more specific receptor analysis. The 1 2 regions (shown in Figure 2) include state parks,
recreational areas, and other areas in which it is important to assess the current and future
impact of sulfur pollution. Each receptor region is defined as a 70-by-70-km grid cell. Tables
12 and 13 show the contributions to sulfur depositions within the receptor areas for the months
of January and August, respectively. The amount of sulfur that is contributed to a special area
from an emitter region is dependent primarily on the amount of sulfur emitted, the prevailing
wind direction, and the distance between the emitter region and the receptor area.
Appendix C gives the interregional exchange tables for SO2 and SOJ wet and dry deposi-
tions for the sensitive areas. The computed wet deposition in Canada is very low in January
because snowfall data are not included in the hourly precipitation reports.
38
-------An error occurred while trying to OCR this image.
-------An error occurred while trying to OCR this image.
-------
SECTION 6
MODEL EVALUATION
The previous comparisons (in Section 4) of computations from ENAMAP-1 and ENAMAP-
1A showed large differences in the results. These differences resulted from changing the
transformation and deposition rates used previously in ENAMAP-1 to conform in ENAMAP-1 A to
recently published results. Model validation is very difficult because of the uncertainties of
representing these complex processes in practical ways as well as the lack of validation data
for wet and dry deposition. We also wish to point out that no empirical adjustments have been
made to the model to improve its validation.
The principal validation data are for SO2 and SO^ concentrations. In Section 4 we
showed that the modeled patterns conform reasonably well to measured patterns, although
there are considerable differences in local values. In this section scatter diagrams are shown
for observed and modeled concentrations for areas 140 km on a side. Figure 18 shows
predicted versus measured concentrations of SO2for January and August. The calculated
results for January show a correlation coefficient (r) of 0.71 with measured results; this is the
highest correlation of the four concentration fields. The August SO2 correlation coefficient is
0.48, which indicates that there is much random scatter. Figure 19 is a comparable figure of
the SOJ results. The correlation coefficient for January is 0.51. As shown in Figure 7 (parts a
and c), the model concentrations of SO* are tower than observed values in the western part of
the domain, and greater than observed values in the eastern part. (As mentioned earlier, the air
entering the domain is assumed to be pollution free.) The concentrations for August show the
same general pattern and have a correlation factor of only 0.23. One can interpret the
overprediction in the eastern part of the grid to indicate that the new transformation rate is too
high or that the SOJ deposition rates (perhaps the nighttime dry deposition in particular) are
too low; however, this interpretation is tentative.
41
-------
0 10.00 20 00 30 00 10.00 50 00 *0 00 70 00 80 00 »0 00
OBSERVED SO2 AIR CONCENTRATION M9 rrf3
(a) JANUARY
i
i
i
i
*
l
i
i
i
100.00
6.00 12.00 II 00 21 00 30.00 36.00 1} 00 1? 00 51 00
OBSERVED S02 AIR CONCENTRATION tig rrT
(b) AUGUST
FIGURE 18 SCATTER DIAGRAM OF OBSERVED MONTHLY VALUES VERSUS CALCULATED
MONTHLY VALUES OF S02 CONCENTRATIONS FOR JANUARY AND AUGUST 1977
42
-------
3» 00 *
O
.00 12.00 I(.00 20.00 21.00 2« 00
OBSERVED 504 AIR CONCENTRATION M9
(a) JANUARY
32.00
-3
3* 00
0 4 00 (.00 12 00 I(.00 20.00 21 00 It 00 32.00 36 00 10.00
OBSERVED S04 AIR CONCENTRATION ^9 m'3
(b) AUGUST
FIGURE 19 SCATTER DIAGRAM OF OBSERVED MONTHLY VALUES VERSUS CALCULATED
MONTHLY VALUES OF SO^ CONCENTRATIONS FOR JANUARY AND AUGUST 1977
43
-------
SECTION 7
SUMMARY AND CONCLUDING REMARKS
This study describes a new version (called ENAMAP-1 A) of the ENAMAP-1 model for
long-range airborne pollution transport and removal. Applications of ENAMAP-1 have been
described by Bhumualkar et al. (1980a, 1980b). The new version covers a larger geographical
area and includes emission data and weather observations from southeastern Canada as well
as from the eastern United States.
The transformation and deposition rates in ENAMAP-1 A have been changed to conform to
recently published values. The new transformation rate for S02 to SOJ in ENAMAP-1 A varies
with solar insolation (i.e. depends on latitude and season). It is several times larger than the
rate used previously. This factor, combined with greater SO J deposition rates, significantly
increases the SOJ deposition amounts, and the deposition amounts for SO2 are correspond-
ingly decreased. In ENAMAP-1 A the total sulfur depositions (from SO2 and SOJ combined) are
much less than previous (ENAMAP-1) amounts for January and are moderately less for August.
Unfortunately, extensively measured deposition data to compare with the simulations are not
available. However, the computed SO2 and SOj concentrations can be compared to air quality
data (measured values of airborne S02 and SO^"). The S02 concentrations given by ENAMAP-
1 A for January are closer to measured values than previous computations, particularly in the
northern and southern parts of the domain. The pattern of August SO2 concentrations are very
similar to previous computations. The ENAMAP-1 A computations of SO^" concentrations are
too large for both January and August by a factor of approximately 2 over much of the eastern
part of the model domain. Because of the lack of S02 and SOJ deposition measurements it is
not possible to judge the overall accuracy of the ENAMAP-1 A results. As such data become
available, total model evaluation will become possible. The present overprediction of SOJ con-
centrations can be taken as evidence that the new transformation rate is too high and/or that
the new SO J deposition rates are too low.
Research under the existing contract is continuing. ENAMAP-1 A is being further
developed to include the effects of terrain on the wind flow and to divide the boundary layer
into three sublayers with vertical mixing between them. This formulation will permit emissions
from near-ground sources to be injected into sublayer 1 and tall stack emissions to be injected
into sublayer 2. As more research is conducted, the transformation rates will be refined.
Efforts will be made to fine-tune the model using these parameters to improve model perfor-
mance. Also a version of the model is being developed to include NOX emissions and NOX
chemistry.
44
-------
REFERENCES
Altshuller, A.P. 1979. Model Predictions of the Rates of Homogeneous Oxidation of Sulfur
Dioxide to Sulfate in the Troposphere. Atmos. Env. 13:1653.
Bhumralkar, C.M., R.L Mancuso, D.E. Wolf, R.H. Thuillier, K.C. Nitz, and W.B. Johnson. 1980a.
Adaptation and Application of a Long-Term Air Pollution Model ENAMAP-1 to Eastern
North America. Final Report, Contract 68-02-2959, SRI International, Menlo Park,
California.
Bhumralkar, C.M., R.L. Mancuso, D.E. Wolf, K.C. Nitz, and W.B. Johnson. 1980b. Adaptation and
Application of the ENAMAP-1 Model to Eastern North AmericaPhase II. Final Report,
Contract 68-02-2959, SRI International, Menlo Park, California.
Chamberlain, A.C. 1953. Aspects of Travel and Deposition of Aerosol and Vapor Clouds.
Atomic Energy Research Establishment Report AERE HP/R 1261, Her Majesty's Stationery
Office, London.
Clark, T.L. 1981. Private communication describing nighttime dry deposition of SO2 and SO^.
19 May.
Mayerhofer, P.M. 1980. A Precipitation Data Gridding Program for Regional Air Quality Simula-
tion Models: Program Description and User's Guide. Report prepared for the EPA Acid
Rain Assessment Team, Office of Research and Development, U.S. Environmental Protec-
tion Agency, Washington, D.C. December.
Moller, D. 1980. Kinetic Model of Atmospheric SO2 Oxidation Based on Published Data.
Atmos. Env. 14:1067.
Scott, B.C. 1978. Parameterization of Sulfate Removal by Precipitation. J. Appl. Met. 17:1375.
Sheih, C.M., M.L. Wesely, and B.B. Hicks. 1979. Estimated Dry Deposition Velocities of Sulfur
over the Eastern United States and Surrounding Regions. Atmos. Env. 13:1361.
Turner, D.B. 1969. Workbook of Atmospheric Dispersion Estimates. PHS Publication No. 999-
AP-26. U.S. Department of Health, Education, and Welfare, NAPCA, Cincinnati, Ohio.
45
-------
APPENDIX A
CALCULATED INTERSTATE EXCHANGES
OF SO2 AND SO4- DRY AND WET DEPOSITIONS (kton)
FOR JANUARY AND AUGUST 1977
-------An error occurred while trying to OCR this image.
-------
0
3
C
"c
O
^0
1
m
i
o
»
«.
IS
fth.
\fl
**
ti
tu
«r
U;
C-
u. »
Z
z
h- *n
3
tr
*-
wt
C
.
C.
>
K
CO
Arf
o
v»
0»
VI
Z
=>
K
K
*- "
0
(^
« «.
O
»-
t- o
u
WO "C ^» O » O ^ ^ O
oo o
0 0
oo o o
oooo o o oo
o o « » » o-*
o
ooooooooo oooo
*.Q «.^ OOO >~.
o *« ** » o
o o oo e »
o
ooooooooo oooo
oo *«oo*> r oo»« oc.
0 0
oooo o
o ooo
o oooo o oooo
o ** oo*r**>w«so o
O O *"! O
K, OO O
<-> 1
moo i« >Z Z
4 X tt E *~ t^ Jr < 4( » V) ^, ^~
^ < C ** ^ t " ** tf ^ ^~ " * I
* O ~ oro
o ooo r oo
o o o
ooo ooooo ooooo oo
o ooo » o *
«") An O OO «fc O O * OO OO
o o o <^ ^* ^^
o o o o
oooo ooooo o ooo o
O O O * &OGGOO-OOO O
o o o «*.
o o o o
ooo o o o
O O OOOuO O OOO O
O 0
oooo ooooo oooooooo
m o «. ^* o *J o « «
« lut_j Z Z UJ
*- ^.0 0
o oo
o
*. o o
00 O
OO O OG
o » * o * o
r o o
o o
ooo o oo
+* ^. *> Q O O
«-> o o
^ - ^l O
oooooooo
**m o o
o O
o »*"*oo r *->
_o
oo o
oo ooo
oooooooo
o o o o o
o o
oo o oo
^
V
- « o»- a u. o
>i3 J»5S*
**.
*
o
*
0
A.
0
«.
r
A.
IT
*.
o
r*.
9*
AM
»
ft
C
«.
V
V
*
C
t^
*
C
*-
kc
«
o
»-
48
-------
o
(D
TJ
3
0
C
o
o
t
111
m
^_
o
J£*
t
BO
»-
ft.
UJ
o
c m
X
X
3^
CO
G»^
t-
t/>
O
O IT
M**1
0
o r
^
£m
«
a
o
51-
o
o ooo o m o ooo o o oo o *a o o tr tr
ooo oo o oo ooooo o
o o * m m o ~* *^ ^ o w* * ov o & ^ o o o o ** o o * o *k-
OOOO OflOO O O ^- O K. o
o ^ w- o r o " ^ O
M ^
O O O *^ *v o t *~ f V' r ^ " O v^ ^ T f O *v O^"OOOC*" *v «" O Vr «fc "
o oo o o o
o o o o o
OOOOOOOOOOOOOC OOO OOOOO OOOOO OOOOO O OO
o «-> w^o *->« o o o o o *
o oooo ooo PMO o ooooo o ooo o oor o oo
O O *ri**-4<^O^O *- *»* O W O O O » O «" OOVOA<««vO «O
oo*-v ^ o oooo >». ^ o ^ o o
w o *-or-t o^-o ** or o o o**. 0^.0 «wo*^o mo o
o m m o ooo no rr o o
OO O OO o O O m O O * OO
oooo o o oo o ooooo o ooo v> o o oooo
fi~i .« o tf^r^moo o ** ** ID o o o o * o o r '* o o ^ o o
o o * m o ^ o o o o o o o <, ooo
OO 0 O *J O OO OO
oooooooo oooo ooo ooooo o ooo o ooo o oo
.5
««u «-> »- ^*»--«,»-o «j**>r ^*»^«)^o *jmrw» -o ^- * o fs*^ r tfv * ^- * »^ o --
49
-------
c
o
CO
2
g
\-
co
O
Q.
LU
Q
1-
LU
§
CM
O
Ui
N.
c-
o>
*~
cc
_^
2
r
»
n
*,
I-
s
*
KO
*.
L
Uj*
X
I
a
^
o>-
~
~
o
£
If
3 IT
Ow
0
O V
o
£
*
J
41
o
o ooo o o oo o
oooooor>o ooooo o o ooooo ooooo oooo o oo
o o ooooo o o o o oooo o ooo o oo
o o oo oo o o ooo o oo o o o
O 0 OOOOO OOO O OOO OOOOOOO OOOOOOOOOO
O O 00 OOOO O O
MO OOOOO* O--OO OO OO OO
oo o o oo o ooooo o ooo oo oooo
o o *0 * * « 1C
l_ « « kULJ * * lu ~» t-
iw^joo-igSz'ir. ozuivoiK-xaaat^o _*^t_>c*««tt>uirK:i-^.5 i >-
_fvr-. »KV.*,N.«.»-O **<">»W'<<.*^«'»-C> *.'pi«-tr**-«.»'O f^^>»!r><->*«.»o
50
-------
T3
03
3
C
"c
O
C\J
<
LU
_l
CD
a
v<
I
x
o
O O «*. O O O O OOO O GOO ^ O O O O O O O
OO O O OOOO OO O OO
O O OOOOO OOO O OO OOOOOOOOOOOOO
O O OO OOOO <
OO O OOOO OOO OO OO **>O IT O O O OO O » O O OO
o o oo
o o
OO
O OO O OOO O
O O OOO
OOOO O O OO O OOOOO O OOO OOO OOOO
oo o *w r o o ft* ooo o o o tr o o oooo oo o
OOO
O OOOO
OO
o OO
OOOOOOOOOOOOOO OOO OOOOO OOOOO OOOOO OOOO
O OO O O *< O OOO O »OOOO O *u O OO O
O OOOO
o OO
O O OOOOO OOO O OOO ?* O O O O O O OO O O O OO
O O OO
OOOOOOOOOOOOOOOOOO OOOOOOOOOOOOO
O OOOOOOOO OOO O OO OOOOOOOOOOOOO OO
oo oooo oo
O OOOOO OOO O OOO O OOOOO OO OOOOOOO
OOO OO
o o o o o o
OOO OO OO OO
C OOOOOO OOOO O O OOOOO O OOO O OOO O OO
o
oooo'oooo^ »-oooooooooooooo oooooooooooooooo
OO O*WOC'OOOOO»O OO OOO OOO
oo o
o ooooo o ooo oo o oo
;O OO OOOO<*- OOI*» O O O O O OO O
''o'o o o ooooo o ooo oo o oo
>o
m. wcj
«»- « m
«0 C«* KXS.J
tstrt ^i v> Ufi^oo
« u, « »« C
j-jV-wl ^ e «."> O «
-OOul Z tl * O I (_<~
51
-------
T3
0)
TJ
3
O
C
O
C\J
1
<
LU
1
m
i-
ISI
X
O
cs
«0
vu
UJ»
X
h- «.
3
^n
t-
v/l
«. *
£m
$
Ki
0.
£m
=
a
O
u
JT_
o
*
ts
000000000000000
ooooooooooooooo
O O O«OGO IS. O
o o oo oo
o o ooooo ooo
O O OO 0
ooooooooooooooo
o oooo o
o oooo ooo
oo o o«-*«oor->o oo
o o o
OO OOO OO1S.O 00
0 0
O O O O ^"> O
oooooo o oo
o o ^ ^ ~* o o ^* o o o
c c o
CO O
oooooooo oooo
oooooooooooo
oooooooooooo
o o oooo
o o ooo o
o ooo o oo
o o ooo
o
ooooooooo oo
o o o o
o o ooooo o
ooo o o o
o oooo
oo o 0^0*^0
o ooo
OC 0 00
o ooooo o
o o ooo
o oooo o
o o
OOO OOOOO 00
>e «
w o w
O4C^"tB.VCt£ X
oooooooooooooo
oooooooooooooo
o ooooooo o
oo o o
oo oooooooooo
0 0
e
ooooooooo oooo
o o o o
ooo o oo o oo
OO*-O trOO OC
o o o
o oo or<->oo oo
o o o
ooir o
ooo ooo oooo
oovoo oo o
o o o ooo
o o o
ooo ooooo o oo
f«
ui x
k- « U. « X « 0
c
c
a
IV
c
*Si
o
*.
*.
,
.
o
*ri
s
c
52
-------An error occurred while trying to OCR this image.
-------
TJ
0
=3
C
"c
O
CO
I
UJ
_1
CD
z
IV.
o
U, fv<
oo
fSa
O
f O "~ O W* ^ fta O O " O ^ O O
oo o o oooo
oo *~
> o
o o o
* " O ** O O ^- * O »* O O <«O
V dO O *
o o - f»«i o ** o
O O OOH- O
On OO»- OO O
oooo o o oo o ooooo o ooo oo o oo
O«*>OOK. o A4 O
O O IM » O O OOO
OO
O O
oo
ooooooooo oooo ooo ooooo ooooo ooooo o oo
O «M«M tx O O COO o O O
O O ^> ^ O 9fi O O y R4 O * ^ & O O ^ O nOOOOvvd<»OO ^ V
O O OO O fl O O O *N* «* 1^ O
o o oooo
ooooooooo oooooooo ooooo o ooo o oooooooo
O O *^ » O «S4 O (
j 4OOVOV- OOO
o o oo
o oo
o oo ooo
o o o oo o
o oooo o oooo o o ooooc o ooo o oo o oo
o o
ooooo oooooooooooooooo
> o r o o
oo
«wo ooooo o ooo oo o oo
SiO» O»-O O» O -C f O O 0.1 OW*- O O
oo o o ooooo o ooo oo o oo
>o « * «
C-> 4C ^ Cu '_' Z Z ^J Z
I/) o O ^ V Z Z *- ^^ 4 ^ p«)c*^4 4K ^*»4 W 4 Z *~ 4 O
L 4L O ^- C 4 * $ W 4 4 O ff$^ CkKC^^' It * . _ i fc- in*) « . v^ A vA O Z
izaClijrc « 13i/iu1 w o««*-*>lL>-*te x -«a:te^^ «o>-^«u-o
f«_,_- oo!Ic5za^ L^z«^uiz«-^aa3oci _zvocz**>^z«it-t!i
c u.
u. a
' O
> r r
54
-------
__^
o
0)
O
3
O
C
0
.<->
n
<
LU
CO
-
E"
o
o
g£
T
o
1/1
or
K ci
IA
o
£
c
C_J
;_
o
"z
- o
^
o mv» o r- ** o ooo f*> o **> o oo o»i«*o oo
OOO OO O OO OOOOO O
o o ww^or. «. «* or- »- o~o-^ rsoooo*-,-,.
0 0 00~». 0 IT 0 0 0-0 «- 0 m »«,0
o o -0*0" on* K. ooo no-^oro oooo»*^o«v«-
oooo^«f^ or^oo o o A* vo
oo n» o ». o n ,* «M o (». 0~ roo<^o«n oo o «*>«->oiior
ooo o o o
o o o o o o
O O O O O O O O O O O O O O O OO OOOOO O O OOO O OOOO O O O
O O*wO «- O O O O O «O O
O OOOO OOO O O OOOOO O OOO O OO O OO
^o o ftwvA*^*o o r*rfOo v-f>o o
OO <*^ *4O OOOO ^ O O O
*o otroc.rwo.fcO «tvo^ 0 o ono«or -o»oo«c,»o oo
O *w *N* ** O OOO * O " O o
O O OO O 0 IM<* O « OOO OO
OOOO O O OO O OOOOO O OOO f*> O O OOOO
ofio*jror ofv *J o ooo^* 00*^(^00^10 o
OO 1^ O »WO OOOO OO ISi O OO
oo o o o oo oo
OOOOOOOO OOOO OOO OOOOO O OOO O OOO 0 Oo
« *"° 2 { * *
w-ioo f >Z Z *- « fcrt«-jr « « *- « uj < Z ~* « o
C w* 4 O O " O Z ^/^ ^ ^* ***' ^/l ^ Z ^1 ^i u ' O O O O ^OO^/l Z^ZOZ " CJ 5.
«o-s.«« «f^- Ixz^>">-«:> ««o«JC««J«
-------
c
o
CO
2
O
H;
CO
O
Q_
UJ
O
UJ
O
CO
Oi
cc
ID
UJ
_J
CD
**
o**-
O
ft. *
o
w
ZJ
X
o
O 000 0 O 00 O
oooooooo ooooo o o ooooo ooooo oooo o oo
o o ooooo o o o o ooeo o ooooo oo
o o oo oo o o ooo o oo o o o
o o ooooo ooo o ooe ooooooo ooeooooooo
o o oo oooo o o
»O OOO OO
O
O O OO OO
oc o o oo o ooooo o ooo oo eooo
O O V-^OOiDO OOOfw O OOOOO OOtrOOOOO O
00 O O OOOO
o o oo o ooo o
0 00
o o
o oo o
o oooo o o oo o ooooo o ooo o oo o eo
O O 00 00 00 00 00 00 O
o oooo o ooo o o ooooo o ooo o oo o oo
OO MOgOO OO O OOO OOO OOO O
oooo oo o ooooo ooo o o oo
OO *a OOOO OOOINJ O OOO OOO OO O
oooo
OI*> ooon o
o ooooo ooo oo o oo
o o fwor>
oo o o oooo o oo o oo
o oooo oo o oo o oooooooo o
oo oo o oooo o oo o oo
OO OO OO OOO O O OOO*4O OOOOO ISOO OO
OO
OOO
o o o o
oooooooc.*- oooooooo ooooo ooooooo oooooooo
OO OOOO OO»-) O
OO
oo o ooooo o ooo oo oooo
i <->mo o o o o o oo o ooiv* oo o
oo o o oooo o oo oo o oo
U. X
>- O
t U.
C->
vnoo
>o « * *
§« Ur(_> C Z UJ C
«>- « <7i_«t « g t- «uu «* « o
««C-v««< K « «O C.S* *>"cz'*~ *- t-J-J'-""' £JviO g
« 2 flE IL -i£ 3C « a K Z « C V Uj w^ C O*- 5 K Uw O
«>«o>-««: «UM- 8x*uivi>-«> ««o«*I««*«u. (_ *««:u
«>r_<^OO_/c3XX=>OXw^u^X«[>->.H3oQ ->ZVUOZ»K>>n(B>-|^3
56
-------
D
3
C
C
O
_o
M-
1
UJ
CD
<
I
o
»
at
^
K.
Z
PV ^<
CD
l*J
a
our
o **
*.
t*<
CJ
flC *V
*
X
fc- f
5""
1/1
if
0*4
.-f.
O
a.
gt*
*-
To
r
o
0»
t-
\S>
f
a
|
a
t- .-
f ~
o
51*
o
t-
YC O * » O O *< O O O O T> O OOO fMGfWOOOOO o
oo o o oooo oo c oo
o o ooooo o o o ooo oo o ooooo ooo
o o oo oooo o
C. O O O O O O O O O « OO O
0 O OO O O O O
oo o oo o o o o o o o o o
OOOO O 0 OO O OOOOO O OOO OOO OOOO
oo o **> » o o *- oo o oo^oo oooo o o
ooo oo o oooo oo o oo
o o o o o
oooooooooooooo ooo ooooo ooooo ooooo oooo
*,o oo«.««.-o«-o o-or o ro-oo ^o»oe> « « « o
cj « « UJLJ v JC u< *- * »~
U-. CO m >* * t- - « U1 >t « < t- « u. «« « p *
« « O * « « « * « «O ««« «»»«^t- C CJ-Jt-^ _ _ wo«luno S _
ec t^«co c* i^t tsto *»/> u-itiooo o ^>oo^ «-il>«w X ««««it>« a:o>--. au-c _
»-o «r«o--«« «i^>- zxzi^uM-a> ««o«rc««Z«e <_ a « «; u. «
»-« «x_;_oo-jC3VX^"M(^f>^v^^c,v333^.Q ^z>hc-cx*^XB^u.3 >-
(i _jflLOUJ--u- XC^U-O*1 CU-J^^U* ZKU;> U'Lu « V~u* o
tu. ««ooue;-. K»«--ftctti*S*«i»«ou».K^i«it-*->aae*oojf i-
u^ &
57
-------
o
0)
o
c
o
111
_l
CD
r
o
»- *
C. :
a.
u..o
o
s
o »
OOOOOOOOOOOOOOOOOO
OOOOOO
o o ooo o o o o oooo ooooooo oo
O O 00 00 O O OOO O OO O O
O O OOOOO OOO O OOO O OO O O
o c oo
oooooo
oooooooooooooooooooooooo ooooooooooo oooo
00 O O OOO
oooo oo o o
OOO O O OOOOO O OOO O OO O OO
O OOOO
oo o oivroowo ooo o 00*0 OOIMC- moo oo
o o o o oooo o o o
00 OO '
o
> o o o
o oooo
oo m o o
> OQ*OG OO
o o o
o o o o w-
oooooo o oo o ooooo o ooo ooo oooo
o o *"» «»* o o
?« C x « « « M * *
w^^C.Ci'-C'Z V^L (i
«*ttC u.J< « ± u^ i,
>o I I
c
c.
--
. c u u ---
58
-------
c
o
CO
z
o
CO
o
Q_
HI
Q
>
*> e ooooo oo oo o c. c
oo ooo o o o «. ""i o o o o <^> o » o o ri o » o o o o o o r* ~ o w a.
o o o c
ft* O OOOOOOOOO O *> O O O OO O ISr O O
O fn o O O OOOO O OO O O O O C- C- O
4O OO^V^OC^O OOO^« O O OOTOO OOwOOOO O
O f^ «. O O O OO O O OO
OO OOO O O O O W- O O *Nj O O O'n
oo o o oo o ooooo o oo .ooccooo
OO OOTO***' OO O«SiOw O OO O OO O O
OO O O OOOO O OOO OO O OO
y O O O *- * O O OOw O OOOOO
oo ^ w o o o c- o o o
^,O O
o oc
O O O O » W» <*i O O O O O OOOOO O O O O O'n O O
O «. O O « « «
<^ « « vuo z z u. z
W*5 O O *^** ^ it X *~ "" 41 "^ " *C * 4| ^- " * Uj < ^ * C
44C*v44C*«4| M 4 < O S4V *«&*" t (_^^~^^ - ^ w^ " v^- Cj1 2
59
-------
0)
3
C
"c
o
LU
_l
CD
a
K IT
o
z
o
z-
c
O O O If O O O O O OCOO O O OrOOQO OOO O C C c. '
O O O O O O * o CO I
oo o o o o o o o o o ** o o o or o o *« o P~ ** o c o o o * o o o
O O O c C
OO *.OO*«.OQV*O OOO O O
o o ooo
r*. O O O O r* V O r- e >w
*^o »cc.'»
o ooo oo oo o or ooor c >-
OO O O OO O OOOOO O OO OO O G O C C »
OO flOOO^-O « O ^ O OO*^O OO^OOJ-'O
> » rs, o ** ooooo *r o
OO OOO O O OO O OOOO O O OO I <.
4 K j o OwOZizz ^j"c~-5 (^> *^J 2f *c "v 3 jlHc-0*"". 5*i-c-c***fic*^it'^-^.5
_ s. o l4j _i ^ jJo^lLuC"1"""""^^C-^J^W^ X V Uu * C^l**"*" *~5 2 V-
60
-------
a
_3
o
c
o
^o
in
<
LU
_l
CD
z
»- <
3
ts>
o
mm t~*
*- t~l
£
O O OOOOOOO OOO OOC C OC.OOC O00<
O O OO OOO O
o ooo<. r oo«-oo«. o ooc > oo r o «. o o o o o » c -» «. i~
o oo r c ' c.
O «t O <"> O «, O O O ^. OO ^ O O » I^A*
* O OOO *- C O
OO OOO O O O » »-> O O O O O ^i o O O *"O O O O O . O O O » -
o o o c.
OO OOO O OO C
OOOOOOOO OOOO O O OOOOO CCOOO O OOO O C.
oo oo^orooo *-o o oo ooo roo
- - r
OO O*- OOOOOOOOOO OO*>OOGI
o oo **iooo*ro «oo o o o~o*^o
O O OOO » O
-- o i*-
4 C OC I -c
O »O »OO«.0 IMOOO O O
O O OOO
- O»0«.»00
O f- O C
O O O O O O O O O «. OOO O O O O O O «. O C
o oo ooooeoooo f. e
OO O O O O -4. O O *, O OO O O OOO O^OOOCO O
«>*o o oooo o f c
OO OOOO O Co O
OOOOOOOO O OO O O OOOOO C OOO O OOO O C. O
U.X
>- O
C u,
U.O.
> o « « «
« « i~<- z * k. jr
>» * >- « >^~>«« a -«u. «»
>«« «O ««>" «»>«_>- C i -.- ^-
- «. e>- :
-------An error occurred while trying to OCR this image.
-------
T3
CD
C
O
CD
LU
_J
m
~<^
Wi
O
Uj A*
O
»
o
mO O m O O O O O O OOOO O -C OOO O O O O O O
o o ooo oo o ovo o oo
oo is*oo fwoo oo ooo off- * ooo^otrw-oooo *oo rwo
^o *^o o'^oo-ccs o o OM o
o - «w ~ o *w ooo ft. * o
oo ooo eo ooiv o o » o «.
o oooo
<, o oo
« o oo
oo
oo
oooooooo oooo ooo ooooo ooooo o ooo oooo
r O * O O O O
O Ni O
ooo»-o o o ooo
o (SO
o * 9- <
o ooooooooo
oooooooo
O <*l *^ O O «
oo o o o ** o o o r> r o o o o^ «-oo»- o » ooooo* o
O O Of* <
o o oo o ooo o
o o o
o oo ooo o oo o ooooo o ooo o oooooooo
oooooooooooooooooooooooo ooooo oooooooooo
mm o o o <> o *s* o v> o o «s* o o o o * ootsiu^o oo
o o oooooo oo o oooo
OO OOOOO *C O«-OO O Ov*o O
m oo oo o ooooooo oo o oo ooooo
(_> « « 1
moo w> > z x *- « «
«* c «-«« « « < «o K S " '
«zat e.z« Si/iu^ ixi £««>-
o o ui * /> a c »- i, au^
. , ^
B«0^- Z3CZ^kA>-«>««0«Z««!|«t: (.-a;*^^
«>«_i_joc_;o3l3f i-.zi/nm*!^a:»3t_c _jJ^Ljoz»a:>i>- z « t- u. 5
_- C OU* ' U- J Z O « W O *«- O U< J U» Uf W X JC m U< U> > 4 K U.
««i-ou.u. >- MM_jCCCXKCxzz2z>Kooa.Kwomi-k->3afzoo:r
63
-------
0)
3
0
C
0
CD
I
HI
_l
03
H-
0
CO
*
CO
z
I
a
t/i
o
--£
jgl->
fc-
llt V1
S
O
ac
o
LJ
0
OOO OOO OOOO OOOOO
ooooooo oo o oo oo oo o o o c, o o o o o o
« O O O O At V O O ft* O O O " O O O O O ft O O ^"i O ^* O O O O O O O *> <"">
O O O fM V O
O " ^ O * O OOO A( O O «- O
o o o » o
0 0
oooooooooooooooooooooooo ooooooooooo oooo
OO O^nf^^OO f^O^O O OO ^ O O
OO OAri 0 O M O OOOOO O OOO OO* O OO
«>o o**>*r*S(OO^o K.OO*- o o o^>o«ro^ oo o o o o o
o **»o ooo **o - « o oo
o o o o o ** o - * is. o oo
o o o o o o o ^"* o o o o o o o ^
oo o o o o o ooooo o ooo iroooooooo
»* O ** O O O OO O O Oft O OO
oo oooo *^ o oo o
OOOOOOOO O OO O O OOOOO O OOO O OOO OOOO
« «
K tM
t«o>><«
VA * o o o
ujw ooo o
>- iZ>«»t x
iwn»^.^*-»»-'i5 ^rtirir^^w^o *N^» *«* o
64
-------An error occurred while trying to OCR this image.
-------
c
o
o
LU
_l
m
t
Ctr
*-
ft.
UJ
£s
x
i
*-tn
5T**
v>
O
CJ
« -c
h-
O
4> O fV^^^irOO**-"* ^ O «* ^ O ^* O r O >* O " t^O^O^^^O O
O O OOO OM O OO
oo o o «r »r o «v o o ** o IN* o<">*v « o
o o o ~-
C
»
O ^1 O >* *** N< O «D O » rn O ^ O O **> » O «* O » O^O^fc^O OO
*w AJO->*«*O^> f«J O O OV- O O -- O
oo o o oo o ooooo o oo * o o ooooo
oo ootr*^ moo nro» o oo^o oo*oo*^»o f-
o «-^ro^ ooooo 9 o ooo
OO OOO OOO O OOO O OC
«DO w attr oo»o o ^w*o*o»- fco^o^^wo
O M.O OOO^^-^O »!S*^. OOO
w OOf^ ^M
O OC"
. O '^ O
o
c
o o o o o or
ooooooooo o oooooo ooooo o ooo o oooooooo
OO f O O ** O *^ O O O O * IT O IT O O O O O o mo or">o * o<*io*^ooo o ^woo»v
o m o o «. o
oo oo oo ooo o o o * o
oo oo o oo o ooooo o ooo ooo oooo
oooooooooooooooooo ooooo ooooo oooooooooo
- oiNjf* o oooro
o » o oooo o
^ " O t 9" ^ ^> *o<5^" "( O OOOOO OO^^iOO*~O O
o o r* iv o o o oooo o PU o oo
f 5»'
c « « O g « K
f i
j ff O W j UJ -
66
-------
o
c
o
UJ
_!
m
i-
So
»
O O ri OOOO OrifMO OOO *g O O O OOOOO^.O !->»
O O OO OOO O fSi A* O
* O O
ftrf OO
fM O OOM«.*»-OW*«M r *» * o p->o **i O *N ootrfwOfwri tr FVI
w» O A* ^f ^ O & ^* OOOO *" O * O *~ * <
OOO
OO 0
OOOOOOOO OOOO 0 O OOOOO OOOOO O OOO O 00
4 O O O O fw o
O OOOOO O OOO O O Cg O OO
*-o**) m o >* o o
» r o
ooo
o -to oo
o o «- o *r o w ^of>o«cf!
o OO ^ >X
hfc* Z I v V V C *~ O V < ^ ^*! Iw 4^i ' O *
f- O I A 4 O ^ C K " *« * v*i H- - 2x7 ^ ^^ ^
»- I «K_-_JOO_JB?*»=J ui^^J
ti i _.«o^-JV₯-'"£«ujo« <
Cui I «*CjJEu.3 mx_flKCCi
> O «
UJCJ K
CJ O
X
z ~
l-CZ>«I>^ZK>-u.3
LuUj^- ^~4 ^ ' ^
ini/n-t->33t*ao;f
67
-------
c
o
CO
O
H
0
CL
LU
O
1-
!*
CO
N-
t-~
0>
|
-)
0
13
"*
CO
1
**
LU
m
1
-
C
X
3
£
o
4. «
IS
b
!l
»o oo^m.r.omo «»om o o-o or- . _ « »
oo «« r o« o ooooo ooo oo"-> o oo
A.
«^o *~oi^^itrfttO4DO ^&^o^4 Oir^ ^ft'Oi*o^-«H>»ovOv-iriro^rrv' v
0 _ m» o _ o~ ». ~ ,ro £
** o ^* o * 4^0 o o **i «.
oo ooooooooo ooooooooo oooo oooooooo 9-
W^ 0«*«v^*-OI^- --»* 0 0 IVOWO^ ^0^-»^^o 0
oo * * -.o1 v> o oo o « ooo*^
** 4.
^K tn fn o oiwo o o oo r o
oo oo o o o »- o ooooo o o o ooooooooo
MO OO ~>-"^>O^> O » f*« « O ft* *4 « O *C ^ O O O
oo m *r> o * o oooo oooo oo o oo *
» o o VMT f*«*w ft-O P«O OOOO OO O~ O OO T
«* r
» O ** «>*.-* o ^ »Oir'ri ^ »-O* » OO^«C^O O *r
* e **i*r *^ * o ooo oo o O^JOM o oo *
«"
IM O O*->fw OOOOO no O O OO 0 OOOOO *l> <*>
mo ooo ooo oo o o o oo oo *
o ^o«n^f^oo^ iroof> o *goo«^o» *«oiro *f«o m *^
O^> f^ fw O "-OOO^^^W^O »K. OOO4L
O C O O ^ rsj
ooooooooo o oooooo ooooo ooooooo oooooooo
w> K. ir< *** * o o o o if\ ft* ^ ^ o o ^ i*"i «o o «~
oo «- oo o ooooo o oooo oo ooooo f^
«o r^oea'ooc^* o o o ooo « o o o o o
ft o O ^* fV* OO O OOOO O O O OO OO ^
^ ri
o
w-
2
> o « « < o
0 « 4K lutJ ft K LU * *-
fcflOO *^ >« JT>- *- < */) M««4t « W- « UJ «C * « O *
Cw^^tOD^-O^ *^ V *" CD k/i * J k/i UJ VL* O O O G x. O O vO 3t c: I" O Z c
* _<aafzco!f >-
Mmr^«N.«»o >«»o -o ^mrve>-c»o
68
-------
3
C
c
o
CO
I
<
UJ
_J
CD
<
H-
3
fi
O
A.
Uj ftJ
O
*s
o
X
o
a
*~ »
X-
o
OOfw ft,OOO
o *">» o o i
OOO OO O C»r O
oo r o o o ~ ftj o er o o ft* o o ^ 9-
o o
w* oft«o o«. « » o
is. o
o *<
OOO » O
fv. is.
ew OO IN- 9- <.
l » 'v*o "z
v^OO k" >Z « *- « U-1.-X« « >--.«Uj «Z« C
tl-'1*OCl"*QZ i/l^..^- tiw^ ^Z^^ UJWOOO p ^OO^1 ZtnZCLJp(_-
69
-------An error occurred while trying to OCR this image.
-------
APPENDIX B
COMPARISON OF INTERREGIONAL EXCHANGES
OFS02AND SO4-DRY AND WET DEPOSITIONS (kton)
FOR JANUARY AND AUGUST 1977
CALCULATED BY ENAMAP-1A AND ENAMAP-1
-------An error occurred while trying to OCR this image.
-------An error occurred while trying to OCR this image.
-------An error occurred while trying to OCR this image.
-------
'c
:*:
*"*
w
2
O
t
CO
o
Q.
LU
Q
,
LU
5;
O
CO
N-
s.
r-
DC
<;
ID
_-y
1
CD
LU
_l
j^
m
(V
Z
O
15
lu "
1
«
k-O
Ui
U.
»
J[
1-
5*.
^
< 0
V ^»-
CL s
<- O
5 4.
,3; o*
2 >-
LU %
.-. »w
3 °
o
t
X
o
ZJ«
e
c
t~
*
o
*~
K
tr
u. a
OOOOOOOOOOOOO
0 0
o »s< o o **> o « n o o
o
G> ^t ~ Jt O ^ ftJ * f "~ O O
o ^« *~ ^
O^lO'^ «- <^ -C
o n r ooo
O OO »-O«t»:O
_ o f> OOO
orotr o^-o»
o - ooo
O O ^j - *-
O O"~ OOOO
o o o
OO O OOOOOOO
O O -4, (s. « O O
O OOOO
o r^ o o o ooo o
o o o
Of* O O OOOOO
0 0
OOOO
ooooooooo
X 0 T
_ JJT ^ ^ ^
fr « £>-s>-i- :
«| ^l§i 1
HT -imHi>>«M
»^» » --_lfl
o
o ""
". N
in
... z
. D -
"" o
u
tr
* K 0
IB -
a.
u
o
UI 9
K
z
^ z
* 3
0)
T- Z
~ I ON
< E
^r ft
J> O
< §
_~* Lu
LU K
u
0 -~ S 10
^ T
^ o
^ 0 T
*"
z
o
» - 0
5
01
ce
^ ^- N
I
o <
o
t-
J
o
^
o
^
« t5
c ^ cc
*~
t O OI-OOIOO-OS1OO
' N OO O O
1
t
i ON rg N
i otMntNootNonniaie
i ON cy
1
I Q^^TNOO^OJONOJ O
I O N T 10
'
I OK>O«O«NO«NOOO
i O CON OOO
1
i O(MO«OO ^01 OOO
I O O N 01 N OOO
1
i OOOOONTO NOOO
1 o f* N O O
1
i O OOOOOTNOOOO
i O-O^ - OOOO
'
i OOOOOOOOOOOOO
i OOOO OOOOOOO
1
. ONoaoito-oooo
i O O OOOO
1
i OOIOOOO1OMOO ^
i O 10 O ftl O
1
i OOOOOOTOOOOOO
I O O O
i OOOOOOOOOOOOO
i O O OOOOOOO
1
I O Z
1- - 1- 0
o: K D ir w
or< OI-ZI-K o
ZHK ioto>-oce ui
' K Z I < D 0 0 D
OO LuOOZ O
Z i CO i i
1 . ,>>__
-«0^r>(ONI0010-
1 N
1
' O
! '
1
1 _
I ^
1
1 O
' N
1
I 1C
1 M
' O
I
1
TT
o
I/I
2
o
*£
t
o
75
-------
*c
J£
CO
Z
O
1-
co
0
0.
Q
>_
CC
o
o
*/s
CD
£
O3
T-
1
CO
o
ID
<
tri
CD
LU
1
t-
<
'
d
5
^
LU
03
n
fx
irt
I
IB
*
K
Q
»- O
*.
UJ
0
UJ
»
X
z
5?«
*
0
£l-
fcrt
0
ft.
&«
>
c
o
IV Vv
o
w»
o
^
»
o
=><>
>
K
*-
X
u
_ J
«
o
K
UlZ
t- o
C Ui
U: (X
*> O O
OOO O IT O IV *W">
o»*- o»-o»»<^o
oo-v-i o» »»»n o
O r> V «D O
>VI
0«->0» _r>«_«-0
O K.^ fM OO
"*
O *-O *w O O
0.
oir r> »si K.K.IT>
f> no «t r ooo
fM
OO « Ovf^^^O
O OO OOO
OO OOO
o o o ooooo
r oo » » o ooo
O ^ A< ^> ^ M ^ ^> 13 ^
o » o
fM O 4M
mooo o
O OOOOOO 0
Z 0 I
ff K ^3 XX U;
?t->- 1/1 1^> »- r> oc u.
c Z i « r-. o o 5
-OO ^^VfjO^^ff O
rf .rrlTi>r- .
is*fn*v<^«».0'-^n
m
*\t
^i
"
«
^
O
IT
O
*.
f~>
fn
w
<\.
«s.
9~
*
ISj
O
o
J_l
_^
fn
K.
ff'
V
r*
O
irt
g
^£
^
V*
O
*-
V)
z.
O
3
L.
K
E
5
a.
u
o
Ul
K
z
X
t-
y
to
z
1 0
CL p
^
_. Q
£ N
O
to
O
«
z
o
D
a
I
_j
<
o
0
N
*~
^.
^
O
^
a
e
N
1C
n
t
o
t<5
i OOOOOOONN^WO ' O
i nnocu ^ n i &
O» OOOVON NV > O
i o o ONf^N'r-
1 1 O
. OnNOOOO-OBNOON . 0
i NIBOIO OOtv 'O
I ^ _ i (0
i o«N oonococmoo i o
i *VD o n»~ocv** o*w
" CM
i 010 100 owooooo ' ev
i o en n o N o ' N
i CM n o> i 10
i O ONO1ONCM OOO ' (0
IO O « N 10 OOlN
i cn i o
i onwooiMiinr-.toooo ' «
i coNno woi'-ooO'O
i (ON"- i 1
(M
i o OTO nnicooooo '
i o~oo-o-ooooi«
v IT
i OOOOO OOOOOOO '
i OO O OOOOOOO'
1 1
i ono ooiooooo i c
i Nonono oooo'n
1 O 1 «
i oo Nooonir^tMON ' «
i ^n o N cy«-^o»'O
1 O a - i TT
1 OOinOONID «5OOOO i <0
i Nnno TT oooo»oi
1 4£ - I CO
i OOOOOOOOOOOO ' N
i o ooooooo'
5
c
(0
z
X O X O
H t- O H
tc cc D xx u/ *
DX< DHXI-1- ffl
ZJ-H WWHDCC UJ
iJCZ i-
1 . !>>__ . O
>>trt^>>>~~ » to ^~
-CMO^oioNeoio-tMn
76
-------
c
o
~£
co
2
O
1-
co
o
0.
UJ
Q
|_ <£
UJ T-
5 Q.
o i
CO <
N- 2
N- UJ
*~ "to
1 ~~"
CO
ID
O
^
CO
CD
UJ
i
_J
m
H
1
fV,
I
ts
!t ~"
K
O
t-o
k
Ul
i«
K
5
X
>-
a.
V)
Z
o
E"
0
o *
5
0
o
£*
o
= m
E
£
Z
0 (i o o
M O »
O<«O~- O *»«<!»*
iv, e m ««oni
o»o- o*o»r, n
+4 t*4 O ^ l*> ^
»
0«»« _»_0<»
F> O » m »-IV OO
0 -
0 or «-niM-»o
o o o o o o
r*
O O v> OOOO
o o o
OO O OOOOOOO
-*0»- ^-wv~0
>-omr ooo
O»KV*- OM»-» * «n
» « o -e o
-«»«- m-jyimir r <-».
^ o o o
O O OOOOOOO
X O X
K If = XX VM
«-OO UiO ^
JS
r>* «.
z
0
*r o
<
' C
~
o
f
o
£{
«
o
^>
&
Ctj
-
0
91
e
N
o
i *-
i OONOOOO nieono
> on o e « o n
. os>-oooNr.»- -
i O OOO WtONOOOO
r . ...
i O N 0 10 O O
i .- CJ (D
i OOOOOTT^OWOOOO
i O O !M O O O
i 01
i
i 01 O O N N OOO
' 0000010-10^0000
i P5
i OOOOO OOOOOOO
i OO O OOOOOOO
. 09.000<0(CN-0000
I OIOOMN COOO
1 CM
I O (ONOONOOlONOftl
i 01 O N 0 O N
" CM O
i ONrtUO r- NOOOO
1
i IONOO CM OOOO
1 Tf
. OOOOOOOOOOOOO
i o OOOOOOO
I D I
t- - K 0
Ct C 3 XI UJ
OX-1 Ot-XHl- C
Zt->~ «rtK3K UJ
' K Z i < D O O 3
OO UJOW2 O
z i » i i
! .
I O
' O
1 CM
I V
I 91
; »
i O
-
; »
1
' O
> 91
! '
> te
i IO
i O
i 0
1 -
1
, u
t O
i O
i O
i e
; *>.
s
. u
'
0
to
z
o
V
h-
o
77
-------An error occurred while trying to OCR this image.
-------An error occurred while trying to OCR this image.
-------
APPENDIX C
CALCULATED CONTRIBUTIONS (kton) OF STATES AND PROVINCES
TO SO2 AND SOT DRY AND WET DEPOSITIONS
IN SPECIAL AREAS, JANUARY AND AUGUST 1977
-------An error occurred while trying to OCR this image.
-------
c
o
co
z
o
K
to
o
O.
UJ
Q
h-
UJ
OJ
o
cc
:D
o
UJ
m
t-
5t-^
UJ
oe u.
>- * v
« U.UJ
IV
Suito
» «
O Mi' *^
IK
*- « I
»/^
& «"
||> UJ «<
at
*«« «
o
^/i
ej§
UiK
VHJ O
OZu
^ I
Ou-jr
>- u»
u<
o«
« o
*!
O O *. O O
C OOOO*N,» 00
.v*fs.
££:
OOO OOOO O CO
<->.-. ^ ^ «, < ^ fs. c. r> o *S> vr » »Ow»rs.*N,o fv<
o o f>v c
o ooooo
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOClOOOOO
ooooooooooooooooooooooooooc oooooooooooooo
oooooooooooooooooooooooooooo
» O O » O
O O O O O O OOO«L O O OOOOO O OOOOO OO*- O OO
*"> O O OO WO OOOOO O OOO OO OOOC
* trtrO
OOw- o OO OOOOOO OOOOO
OOO ©O
oo w^wn
«D OO
-mo ,
v o o r
* o » o »
5 OO OO» <\* O O
O O O O tr O OO* OO O OO
ooo r^oo
OOO
' OOOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOC
«L O O «.»(V O
r^ O O ^-OO O
OOO OOO
t fi (*> OO» O O r^ o O
OO OOO OOO " " _ o
V «« hwoJr 71^ x
w^OO >^ >* « »" * w^« * « « »- *U- * » 4[ C
*OV«4E at IB z **fcu,^ ao*~Taujt;
*o^*« «'-'*- 3rxf-^^K«> *
-------An error occurred while trying to OCR this image.
-------An error occurred while trying to OCR this image.
-------
z
o
c/j
D.
LU
Q
O
CO
s.
O5
=)
O
O
LU
**
I UJ
»- w
O-;
^
51^
u,
UJ
5^J
K kw^*>
oc; u/
UUJ*
Ui>O
SS*
g .
* j
*"
* o o o o QOO*-
O O O O OO *n*. o»s« O O O O
o «'»-«^»mO'<.*^ *">*
mAj «-,o»i">*><~»
mo O O «. » ir » <
o
o m
ooo o
o v *<**<*»* *. .-
o
o
o *r o 0*^0
o ^ * »
O O *» O OOOOO OOO OOw O » O
o o o o <
O OOOOO OO
O O # O «- O
9- ^ ** o »r
C. P»rf «, Oil * WN -* m G
O »
O GO
OO OOOOO OOO OO ^ O OO
.
oooo MOO
o ooooo
ootr^
ooooo o o *S*G
IT *T O O
» o m G o
o o o o
O »-)O OO»*-G O
O »* ^ *S._ G 00
O ^ **^ w^ *c mt ^ G O V ^ ^ ^ ^ O V- *- m ^ ^* O *
oo ^)O*-*r»^>*kG'*>' ^^«*O* o Aj^o^-oir mo»
» O O
«M*N »
irO OOO ^ O -CO
o »
»» OOOO
^- VO«-O«D-« < *>*X>O«' *w * ^) O * O *- «^OO<-!»»» «fS,
o O tr
G »G*-»»-mG*G mOO«t G C > x * i <
85
-------An error occurred while trying to OCR this image.
-------
CO
Z
o
H
CO
O
a.
UJ
Q
>
oc
Q
X t
O
co
O)
,
h-
co
3
o
Z)
h-
6
UJ
_l
m
10 l/l
§
?s
I*
1 UJ
ff >
L O ^*
: J
K
3CUJ
-**
L «
WU, .J
J
MS
1^>
ju-a:
.1 > O
" t
t 1 O
E*»
0 5
> w 3
»« x
- _j u
1 M
3 «
*
=>t'S
Luff
>« U.
D < ft
S?5
r k.
j
»-
;uz
-<_>S
ink.
,
i z
It K
*- tj
O <
*
a*
$»
K±
ow- f^y» »
c> o ^
f^
^« 0^-^^.r
<-i 'oV VIM'« '
ft V **
»* -r.M^>o*
IT OO«»'«.-«
O *u^BO
W-. « O »M»
» oo o««
<* IM oir o
»»< oo »
S» Soo^e
o o o ^ .
^^ -.^^w *
it < o o ft ir fw irv
v fw o *«*) »r
^. IM #
""
e- -.-.^Biro
ori^J4**^'
IS) ft
ZZ StSoSS
o o * » K. « o
-0 ^ewc.yvW-m
* Arf O » -* f*
ISl O «* W M
^ ^1
^$ ^o-e,o«
J "O^ '-«6fsl*
fWft
?fV O It (» f^ O O O Oil** ft ^O^*OO O^t^^ "O*OO
* 4b >» fw fw ft ^i V w
*< « *M *» *
« « * r*«, fwoow *v oo-*ftit«,<»r »»-o
» is* i>* <.*-ir »»
*OV^*H if fw O ^ fj Oooo° r 000 r'*'00*~0jsc'
* ^
ft o ^ * fw o ooooo tr oo fwfsioo**- oo o
« M
v*v-^ iro*-^ 0 « »oir£» «ofto-*»-o c,
^^.o rt rto o«ooo es* ftois* r * o oo
*s,
ess i?^s s SR^!:^? £ss?it^s ,?
yvO- «rM»t*M «>»« tr«.<*w^» O --*MO o O t o tr-OO^n^o^ir tir
firoy* »^o o«t.-o «. K-O*S* *> w- O»N*O
ft & <^) *4D -4) fw V- ** t "
*" - - fS
«»r-o-K« *^» ^^^^-^^r,* *- *
V ' fV ^ ^' ' » 0 * « it 0 0 »r' ' - V ' -' V '»'»-' ' 0 *-' 0 0
~ K "" ^ * *" ~ I^*'' "^
f>
9-
K.
0'
0
^'
J;
^
D
«c
*t
r-
IT
4.
ft
^
*
^
«C
JT
_
f
o-
fS,
9-
>r
V
IS,
«-
V
*,
_
o
i
87
-------An error occurred while trying to OCR this image.
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
2.
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
ENAMAP-1A LONG-TERM S0? AND SULFATE AIR POLLUTION
MODEL *
Refinement of Transformation and Deposition Mechanisms
5 REPORT DATE
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
P.M. Mayerhofer, R.M. Endlich, B.E. Cantrell,
R. Brodzinsky, and C.M. Bhumralkar
8. PERFORMING ORGANIZATION REPORT NO.
SRI Project 2003
9. PERFORMING ORGANIZATION NAME AND ADDRESS
SRI International
333 Ravenswood Avenue
Menlo Park, California
10. PROGRAM ELEMENT NO.
CCVN1A/01-0511 (FY-82)
94025
11. CONTRACT/GRANT NO.
68-02-3424
12. SPONSORING AGENCY NAME AND ADDRESS
Environmental Sciences Research LaboratoryRTP, NC
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final, 7/17/80 to 7/31/81
14. SPONSORING AGENCY CODE
EPA/600/09
15. SUPPLEMENTARY NOTES
Previous report on ENAMAP-1: EPA-600/4-81-102
is. ABSTRACT
The ^^r\?- 1 model for long-range air pollution transport has been modified
in several ways to produce a newer version, ENAMAP-1A. The geographic region of the
modeled domain has been increased to include southeastern Canada, and the meteorologi-
cal and emission data for this area have been added to the U.S. data base. The trans-
formation rate for S0? to S0| and the deposition rates of S0~ and S0| have been updated
In ENAMAP-1 these rates are all constants; in ENAMAP-1A they are variable in space and
time. The transformation rate has been made dependent on the amount of sunshine (i.e.
a function of latitude and season) and is about twice as large as the previous rate.
In ENAMAP-1A the dry deposition rate has been made dependent on the type of underlying
terrain and vegetation, on thermal stability in the boundary layer, and on time of day.
Wet deposition is treated as a function of rainfall rate and cloud type (convective,
warm process, or Bergeron process). Boundary exchanges of S0? and S0j have been com-
puted for each of 41 states (or provinces) and also for 12 especially sensitive areas
of special interest such as parks. The computations show the history of pollution from
emission to deposition and are documented in the form of maps and tables. In contrast
to ENAMAP-1 computations, ENAMAP-1A computations for January and August 1977 have much
larger amounts of S0| in the form of airborne concentration and deposition, while the
amount of SO- deposition is decreased.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
18. DISTRIBUTION STATEMENT
RELEASE TO PUBLIC
19. SECURITY CLASS (This Repor!)
UNCLASSIFIED
21. NO. OF PAGES
97
20. SECURITY CLASS (Tins page)
UNCLASSIFIED
22. PRICE
EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION is OBSOLETE
89
------- |