-------
77
78
79
80
31
83
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
123
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
(1) IF NPOL=1 AND ICT=0 OR 1, SURFACE CONCENTRATIONS AND DEPOSI-
TION FLUXES OF ONE GASEOUS OR PARTICUUTE POLLUTANT, WITH THE
GIVEN DEPOSITION AND SETTLING VELOCITIES, VD1 AND HI RESPECTI-
VELY, ARE CALCULATED. IF ICT=1, THEN CHEMICAL DECAY OF POLLU-
TANT IS ALSO CONSIDERED IF THE DECAY RATE XKT > 0. IS GIVEN
IN PERCENT PER HOUR.
00000770
00000780
00000790
00000800
00000810
00000820
00000830
00000840
00000850
00000860
(2i IF NPOL=2 AND ICT=0, SURFACE CONCENTRATIONS AND DEPOSITION
FLUXES OF TWO DIFFERENT AND UNCOUPLED GASEOUS OR PARTICULATE
POLLUTANT SPECIES WITH THE GIVEN DEPOSITION AND SETTLING VELOC-00000870
ITIES VD1 AND Wl (FOR SPECIES-1) AND V02 AND W2 (FOR SPECIES-2)00000880
RESPECTIVELY, ARE CALCULATED. EMISSION RATES FOR BOTH SPECIES 30000890
MAY BE DIFFERENT. CHEMICAL DECAY IS NOT CONSIDERED FOR EITHER 00000900
SPECIES EVEN IF A VALUE OF XKT > 0. IS SPECIFIED. 00000910
00000920
(3) IF NPOL=2 AND ICT=1, THE TWO GASEOUS OR PARTICULATE POLLUTANT 00000930
SPECIES ARE COUPLED THROUGH A FIRST-ORDER CHEMICAL TRANSFORMA- 00000940
TION. THE SURFACE CONCENTRATIONS AND DEPOSITION FLUXES OF BOTH00000950
THE PRIMARY POLLUTANT (SPECIES-1 OR REACTANT) AS WELL AS THE 00000960
SECONDARY POLLUTANT (SPECIES-2 OR REACTION PRODUCT) ARE CALCU- 00000970
LATEO. THE CHEMICAL TRANSFORMATION RATE (XKT > 0.) SHOULD BE 00000980
GIVEN. BOTH SPECIES MAY BE GIVEN NON-EQUAL DEPOSITION AND SET-00000990
TLINS VELOCITIES. A NON-ZERO DIRECT EMISSION RATE FOR THE
SECONDARY POLLUTANT FROM THE POINT AND/OR AREA SOURCES MAY
ALSO BE SPECIFIED AS INPUT FOR THIS CASE.
00001000
00001010
00001020
00001030
00001040
00001050
FOR FURTHER DETAILS REGARDING THE USE OF THE PEM AND ITS I/O
OPTIONS, INPUT PARAMETERS AND UNITS, AND EXAMPLE PROBLEMS, THE
USER SHOULD CONSULT THE PEM USER'S GUIDE BY RAO AND STEVENS (1982)00001060
00001070
*** REFERENCES *** 00001080
00001090
00001100
00001110
00001120
00001130
(2) RAO, K. S., 1981: ANALYTICAL SOLUTIONS OF A GRADIENT-TRANSFER 00001140
MODEL FOR PLUME DEPOSITION AND SEDIMENTATION. EPA- ,00001150
U.S.E.P.A., RESEARCH TRIANGLE PARK, NC; 00001160
NOAA TECH. MEMO. ERL/ARL-109, NOAA-ATDL, OAK RIDGE, TN 37830, 00001170
75 PP. ATDL CONTRIBUTION FILE NO. 81/14. 00001180
00001190
RAO, K. S., 1982: GAUSSIAN PLUME CONCENTRATION ALGORITHMS HITK00001200
(1) STAFF OF THE TEXAS AIR CONTROL BOARD, 1979: USER'S GUIDE
TEXAS EPISODIC MODEL. TEXAS AIR CONTROL BOARD, PERMITS
SECTION, AUSTIN, TEXAS 78723, 215 PP.
(3)
DEPOSITION, SEDIMENTATION, AND CHEMICAL TRANSFORMATION.
EPA- , RESEARCH TRIANGLE PARK, NC;
NOAA TECH. MEMO. ERL/ARL- , NOAA-ATDL, OAK RIDGE, TN 37830.
ATDL CONTRIBUTION FILE NO. 82/27.
POLLUTION EPISODIC
, RESEARCH
(4) RAO, K. S., AND Ml. M. STEVENS, 1982:
MODEL: USER'S GUIDE. EPA-
TRIANGLE PARK, NC.
NOAA TECH. MEMO. ERL/ARL- , NOAA-ATDL, OAK RIDGE, TN 37830.
ATDL CONTRIBUTION FILE NO. 82/28.
*** PEM (VERSION 82360) : FORTRAN LISTING.
*** COMMON BLOCKS, DIMENSIONS, AND DATA STATEMENTS.
COMMON/PEMCOM/CONC(50,50,2),SOF(50,50,2), TT(20),
1 XP(300),YP(300),EP(300,2),HP(300),OP(300),VP(300),TP(300),
2 XA(50),YA(50),EA(50,2),SIZE(50),
3 WO(24),WS(24),TA(24),HMIX(24),PEN(24),
4 AX(7,3),BX(7,3),P(7),SCLAB(7),DTDZ(2), SECTAN(16),
5 XSWC,YSMC,GRID,LX,LY, A(2),8(2),POLNAM(3,2),CALNAM(7,2),
6 ITA,IRD,IWR,IDSK, D8C,047,D3047,DIST,DELTA,
7 ESH(2),PEAK,IBUOY,IRISE,IDWN,EFF,XS, UINV,WVEC,
8 NAS.NPS,INDEX,IGRID,IAV,ISCEN,IWDOPT,IWD,ISC,IPS,
9 NTOPT,NWDOPT,NWSOPT,NSCEN,NLIST,NARRAY,NTAPE,NCSOPT,NMAX,
* NSTDWN,INTER,NPRINT
00001210
00001220
00001230
00001240
00001250
00001260
00001270
00001280
00001290
00001300
00001310
00001320
00001330
00001340
00001350
00001360
00001370
00001380
00001390
00001400
00001410
00001420
00001430
00001440
00001450
00001460
00001470
00001480
00001490
00001500
00001510
00001520
00001530
-------
154
155
156
157
158
159
160
161
162
163
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
COMMON/PARM1/NPOL,ICT,V01,HI,VD2,HZ,TAUC
COMMON/PARM1A/GAMMA
COMMON/PARM2/ISPEC f UTAUC,Q2Q1,XCT,EXCT
COMMON/PARM2A/AA,BA
COMMON/PARM3/HC,VDC1,MCI,VDC2,WC2
COMMON/PARM4/V11,V21,V12,V22,V13
COMMON/PARM5/D11,021,012,022,031,032,033,06
COMMON/PARM6/H11,R21,R12,R22,R13,R23,R31,R41,R32,R42
COMMON/PARM7/qZCl,QZC2
COMMON/BLOCK1/PI,SQPI,SQRT2, A1B,A1C
COMMON/BLOCK2/AI,BI,EPSABS,EPSREL,LM,NIH
COMMON/EXPCHK/EXPMAX,EXPMIN,ETAMAX
C
EXTERNAL FUNS
REAL*8 FUN3
REAL#8 WORK(800),AI,81,EPSABS.EPSREL,RESULT,A8SERR,T1A,T2A
DIMENSION IH(102)
DIMENSION PRL(2,2),DHL(4),ANGLIM(7)
DIMENSION ITABLE(5,10),EPSLIM(10)
DIMENSION AAR(6),BAR(6),CX1(7),DX1(7),CX2(7),DX2(7)
DIMENSION XA1(5),XA2(5),XA2C(5),RCA1(5),RCA2(5)
DIMENSION RCA2CTI5,50),QA2QAK 50),TERMB2(5)
C
DATA PRL/4HMOHE,4HNTUM,4HBUOY,4HANCY/
DATA DML/4H ,4H ,4HDOWN,4HWASH/
DATA EPSLIM/.12427,.16511,.24504,.35884,.46373,
1 .55868,.64350,.69482,.71890,.78540/
DATA ITABLE/0,0,0,0,0, 0,0,0,0,1, 0,0,0,1,1, 0,0,1,1,1, 0,0,1,1,
1 0,1,1,2,2, 0,1,1,2,3, 0,1,2,2,3, 0,1,2,3,3, 0,1,2,3
DATA ANGLIM/0.610865,0.488692,0.366519,0.244346,
1 0.244346,0.183260,0.122173/
DATA CXI/.495,.310,.197,.122,.122,.0934,.0625/
DATA DX1/.873,.897,.908,.916,.916,.912,.911/
DATA CX2/.606,.523,.285,.193,.193,.141,.080/
DATA DX2/.851,.840,.867,.865,.865,.868,.884/
DATA AAR/.4,.4,.33,.22,.15,.06/
DATA BAR/.91,.91,.86,.80,.75,.71/
C
C
C
C *** DEFINE PROGRAM CONSTANTS.
C
PI=3.14159
SQPI=SQRT(PI)
SQRT2=SQRT(2.)
A1B=1000./( S<3RT2*SQPI)
A1C=2.*SQPI
AI=0.
BI=1.
EPSABS=1.0E-4
EPSREL=1.0E-4
LW=800
NIM=102
C EXPMAX=174.
EXPMAX= 87.
EXPMIH=50.
ETAMAX=SQRT(EXPMAX)
C
WRITE (IWR.5432)
5432 FORMAT C'1',///////46X,'PEM (VERSION 82360)'/////
1 45X,1POLLUTION EPISODIC MODEL1/////
2 52X,1INCLUDINSV/
3 30X,'DEPOSITION, SEDIMENTATION, AND CHEMICAL TRANSFORMATION'//
4 SOX,'OF POLLUTANTS1/)
C
C
C
C
C
C
C
C
INDEX=0
CALL INPUT MODULE TO READ ALL HEATHER AND SOURCE INFORMATION,
DEPOSITION AND SEDIMENTATION VELOCITIES OF POLLUTANT SPECIES,
AND CHEMICAL DECAY OR TRANFORMATION RATE.
CALL INMOD
MKMKMMMMMMMM
VD136=VD1*36.
00001540
00001550
00001560
00001570
00001580
00001590
00001600
00001610
00001620
00001630
00001640
00001650
00001660
00001670
00001680
00001690
00001700
00001710
00001720
00001730
00001740
00001750
00001760
00001770
00001780
00001790
00001800
00001810
2,00001820
4/00001830
00001840
00001850
00001860
00001870
00001880
00001890
00001900
00001910
00001920
00001930
00001940
00001950
00001960
00001970
00001980
00001990
00002000
00002010
00002020
00002030
00002040
00002050
00002060
00002070
00002080
00002090
00002100
00002110
00002120
00002130
00002140
00002150
00002160
00002170
00002180
00002190
00002200
00002210
00002220
00002230
00002240
00002250
00002260
00002270
00002280
00002290
131
-------
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
VD236=VD2*36.
C
C
C *** DETERMINE VALUE OF PARAMETER ISPEC.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
ISPEC IS AN INTERNAL ROUTING PARAMETER USED IN PEM
TO DETERMINE THE APPROPRIATE CONCENTRATION ALGORITHMS
TO BE USED FOR A GIVEN PROBLEM.
VALUE OF ISPEC IS BASED ON NUMBER OF POLLUTANTS.
AND CHEMICAL TRANSFORMATION OPTION PARAMETER.
IF(NPOL.EQ.2) 60 TO 41
ONLY ONE POLLUTANT SPECIES. CHEMICAL DECAY CAN BE CONSIDERED
BY SETTING ICT = 1 AND XKT > 0.
ISPEC=1
GO TO 43
TWO POLLUTANT SPECIES.
41 IF(ICT.EQ.l) GO TO 42
NO CHEMICAL COUPLING. THE TWO SPECIES ARE INDEPENDENT
OF EACH OTHER. CHEMICAL DECAY IS NOT CONSIDERED FOR
EITHER SPECIES.
ISPEC=2
GO TO 43
CHEMICAL COUPLING EXISTS BETWEEN SPECIES-1 (REACTANT)
AND SPECIES-2 (PRODUCT).
42 ISPEC=3
43 CONTINUE
DEFINE TIME-AVERAGING MULTIPLIER CONSTANTS.
IF(NTOPT.Eq.l) STCONV = 1.
IF(NTOPT.Eq.Z) STCONVs 0.04166667
IF(NTOPT.EQ.3) S7CONV= 1.0/FLOAT(NSCENI
CALL INPUT MODULE TO BRING IN HEATHER DATA FOR ONE SCENARIO
(NUMBER OF SCENARIO = ISCEN).
CALL INMOD
XKKKMIOtXXKM
INDEX=1
C
C
C
C
C
100
C
C
C CALCULATE MIND VECTOR (HVEC) FOR SCENARIO. IFLAG IS USED BELOW
C (STMT. 275) TO DETERMINE METHOD OF RESTRICTING THE AREA OF THE
C RECEPTOR GRID AFFECTED BY EACH SOURCE.
C
175 IF(NWDOPT.EQ.l) GO TO 200
DO 180 IWD=1,16
DETA=ABS(WD(ISCEN)-SECTAN(IKD))
IF(DETA.LE.0.19634954I GO TO 185
180 CONTINUE
185 GO TO 205
200 HD(ISCEN)=SECTANUWDJ
205 IFUUD.LT.8.0R.IMD.6T.10) GO TO 210
IFLAG=1
GO TO 241
210 IFCIWD.NE.il) GO TO 215
IFUG=2
GO TO 241
215 IF(IWD.LT.12.0H.IND.6T.14) GO TO 220
IFLAG=3
GO TO 241
220 IFdMD.NE.15) GO TO 225
IFLAG=4
GO TO 241
225 IF(IHD.LT.16.AND.IHD.6T.2) GO TO 230
IFLAG=5
GO TO 241
230 IFCIWD.NE.3) GO TO 235
IFLAG=6
GO TO 241
235 IF(IMD.LT.4.0R.IUD.GT.6) GO TO 240
IFUG=7
132
00002300
00002310
00002320
00002330
00002340
00002350
00002360
00002370
00002380
00002390
00002400
00002410
00002420
00002430
00002440
00002450
00002460
00002470
00002480
00002490
00002500
00002510
00002520
00002530
00002540
00002550
00002560
00002570
00002580
00002590
00002600
00002610
00002620
00002630
00002640
00002650
00002660
00002670
00002680
00002690
00002700
00002710
00002720
00002730
00002740
00002750
00002760
00002770
00002780
00002790
00002800
00002810
00002820
00002830
00002840
00002850
00002860
00002870
00002880
00002890
00002900
00002910
00002920
00002930
00002940
00002950
00002960
00002970
00002980
00002990
00003000
00003010
00003020
00003030
00003040
00003050
00003060
-------
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
245
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
240
241
C
c
C
GO TO 241
IFLAG=8
WVEC= MO(ISCEN) + 3.14159265
IFtMVEC.ST.6.2831853) WVEC=MVEC - 6.2831853
MDV=4.712388981-HD(ISCEN)
IFCKDV.LT.O.)HDV=HDV+6.283185307
MDPANG=MOV*ANGLIM(ISC)
MDMANG=HDV-ANGLIM(ISC)
CALL AUTGRD TO CALCULATE RECEPTOR GRID PARAMETERS AUTOMATICALLY.
IF(IGRID.EQ.l) CALL AUTGRO
mtmummiomii
c
c
c
**» INITIALIZATION.
INITIALIZE CONCENTRATION AND SURFACE DEPOSITION FLUX ARRAYS
IF(NTOPT.ST.l.ANO.ISCEN.ST.l) SO TO 4
DO 2 1=1, LX
DO 2 J=1,LY
CONC(I,Jtl)=0.
SDF(I,J,1)=0.
IF(ISPEC.EQ.l.AND.NCSOPT.EQ.O) GO TO 2
CONC(I,J,2)=0.
SDFU,J,2)=0.
2 CONTINUE
4 VGRID= l./GRID
6RIDSQ= 6RIDKGRID
ELX= LX
ELY= LY
XB1= XSWC
XB2= XSHC
YB1= YSMC
YB2= YSMC
0.5*GRID
(ELX-0.5)*GRID
o.s*GRiD
(ELY-0.5)*GRID
C
C
IF NO AREA SOURCES, SKIP AREA SOURCE CALCULATIONS.
IF(NAS.LT.l) GO TO 245
C
C
C
C**» AREA SOURCE CALCULATIONS ***
C
IMV HELPS DETERMINE THE PATTERN OF GRID SQUARES AFFECTED BY EACH
AREA SOURCE. PATTERN DEPENDS ONLY ON HIND DIRECTION.
EPS IS THE ANGLE BETWEEN THE MIND VECTOR AND THE NEAREST
COORDINATE AXIS.
C
C
C
C
c
IMV= 1 + MVEC/0.78540
60 TO (2411,2412,2413,2414,2415,2416,2417,2418),IHV
2411 ITABX=1
ISIGNX=1
ISIGNY=1
EPS= MVEC
GO TO 2419
2412 ITABX=0
ISISNX=1
ISIGNY=1
EPS= 1.5708 - MVEC
60 TO 2419
2413 ITABX=0
ISIGNX=1
ISIGNY=-1
EPS= HVEC - 1.57080
GO TO 2419
2414 ITABX=1
ISIGNX=1
ISISNY=-1
EPS= 3.1416 - MVEC
GO TO 2419
2415 ITABX=1
ISIGUX=-1
ISIGNY=-1
EPS= MVEC - 3.1416
GO TO 2419
00003070
00003080
00003090
00003100
00003110
00003120
00003130
00003140
00003150
00003160
00003170
00003180
00003190
00003200
00003210
00003220
00003230
00003240
00003250
00003260
00003270
00003280
00003290
00003300
00003310
00003320
00003330
00003340
00003350
00003360
00003370
00003380
00003390
00003400
00003410
00003420
00003430
00003440
00003450
00003460
00003470
00003480
00003490
00003500
00003510
00003520
00003530
00003540
00003550
00003560
00003570
00003580
00003590
00003600
00003610
00003620
00003630
00003640
00003650
00003660
00003670
00003680
00003690
00003700
00003710
00003720
00003730
00003740
00003750
00003760
00003770
00003780
00003790
00003800
00003810
00003820
00003830
133
-------
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
2416
2417
2418
2419
2420
2421
2422
C
c
C
c
2423
C
C
c
c
44
C
C
45
C
C
C
C
C
C
46
47
ITABX=0
ISIGNX=-1
ISIGNY=-1
EPS= 4.7124 - HVEC
SO TO 2419
ITABX=0
ISISNX=-1
ISISNY=1
EPS= WVEC - 4.7124
60 TO 2419
ITABX=1
ISIGNX=-1
ISI6NY=1
EPS= 6.2832 - HVEC
IF(ITABX.EQ.O) SO TO 2420
ITABY=0
INCRX=0
INCRY=1
60 TO 2421
ITABY=1
INCRX=1
INCRY=0
DO 2422 L=l,10
IF(EPS.ST.EPSUMIL)) SO TO 2422
IEPS=L
60 TO 2423
CONTINUE
IEPS=10
REDUCE STABILITY CUSS BY 1 (EXCEPT FOR ISC=1) TO SIMULATE
SURFACE TURBULENCE IN URBAN CONDITIONS.
IA= ISC-1
IFUA.EQ.O) IA=1
AA= AAR(IA)
BA= BAR(IA)
BA1=2.*(1.-BA)
DXA=1000.*6RID/COStEPS)
UPL=MS(ISCEN)
UINV=1./UPL
UINV1=UINV/100.
DEFINE NONDIMENSIONAL DEPOSITION AND SEDIMENTATION PARAMETERS.
ISPEC - 1 OR 2 OR 3
8AVD1=0.01*VD1*BA1
VDC1=VD1*UINV1
HC1=W1*UINV1
V11=VDC1-0.5*WC1
V21=VDC1-WC1
IF(V21.EQ.O.) 60 TO 44
R11=V11/V21
R21=0.5*WC1/V21
IF(ISPEC.Eq.l) SO TO 46
ISPEC = 2 OR 3
BAVD2=0.01*VD2*BA1
VDC2=VD2*UINV1
HC2=W2*UINV1
V12=VDC2-0.5*WC2
V22=VDC2-MC2
IF(V22.EQ.O.) 60 TO 45
R12=V12/V22
R22=0.5*WC2/V22
IF(ISPEC.EQ.2) SO TO 47
ISPEC = 3
V13=V11-0.5*
-------
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
CALCULATE RELATIVE CONCENTRATIONS AT A RECEPTOR LOCATED AT THE
CENTER OF THE CALCULATION GRID SQUARE CONTAINING THE AREA SOURCE
EMISSIONS, AND AT THE CENTER OF EACH OF THE FOUR GRID SQUARES
IMMEDIATELY DOWNWIND OF THE SOURCE.
FIRST DEFINE DOWNWIND DISTANCES TO THE LEADING AND TRAILING EDGES
AND MID-POINTS OF THE FIVE CALCULATION GRID SQUARES.
XA1(1)=0.0
XA2C1)=0.5*DXA
DO 102 1=1,5
SZ2=AA*(XA2(I)**BA)
IF(SZ2.ST.5000. ) SZ2=5000.
XA2C( I J=XA2( I )/( SQRT2*SZ2 )
IFU.EQ.5) GO TO 102
XA1(I+1)=XA2(I)
XA2( 1+1 )=XA1C 1+1 )+DXA
102 CONTINUE
K=l
IFdSPEC.NE.31 GO TO 104
START LOOP ON ALL AREA SOURCES IF ISPEC = 3
DO 114 K=1,NAS
IF(EA(K,1).EQ.O.) EA(K,l)=l.E-6
QA2QA1(K)=EA(K,2)/EACK>1)
IF(K.EQ.l) GO TO 103
IF(QA2QA1(K).EQ.QA2QA1(K-D) GO TO 112
103 Q2Q1-QA2QAKK)
G42PX1=Q2Q1
104 G41PX1=1.
IF(ISPEC.EQ.Z) S42PX1=1.
START LOOP ON FIVE CALCULATION GRID SQUARES WITH RECEPTORS.
DO 111 1=1,5
X1A=XA1(I)
X2A=XA2(I)
X2CA=XA2C(I)
ISPEC = 1 OR 2 OR 3
031=2. *V11*X2CA
D11=WC1*X2CA
021=011*011
R31=l.+2.*021
R41=2.*D11/SQPI
IF(ISPEC.EQ.l) GO TO 107
ISPEC = 2 OR 3
D32=2.*V12»X2CA
D12=UC2*X2CA
022=012*012
R32=l.+2.*022
R42=2.*012/SQPI
IFUSPEC.EQ.2) GO TO 107
ISPEC = 3
D33=2.*V13*X2CA
D6=4-.*SQPI*( V21-V22 )*X2CA
107 IF(ICT.EQ.O) XCT=0.
IF(ICT.EQ.l) XCT=X2A/UTAUC
EXCT=EXP(-XCT)
IF(ISPEC.EQ.3) GO TO 108
ISPEC = 1 OR 2
* ***********
CALL PSG4P(G41PX2,G42PX2)
IF(ICT.EQ.l) 60 TO 108
ISPEC = 1 WITH ICT = 0 OR ISPEC = 2
RCAK I )=( G41PX1-G41PX2 J/BAVD1
IFCRCAldKLT.O.) RCA1(I)=0.0
G41PX1=G41PX2
IF( ISPEC. EQ.l) GO TO 111
ISPEC = 2
135
00004610
00004620
00004630
00004640
00004650
.00004660
00004670
00004680
00004690
00004700
00004710
00004720
00004730
00004740
00004750
00004760
00004770
00004780
00004790
00004800
00004810
00004820
00004830
00004840
00004850
00004860
00004870
00004880
00004890
00004900
00004910
00004920
00004930
00004940
00004950
00004960
00004970
00004980
00004990
00005000
00005010
00005020
00005030
00005040
00005050
00005060
00005070
00005080
00005090
00005100
00005110
00005120
00005130
00005140
00005150
00005160
00005170
00005180
00005190
00005200
OC005210
00005220
00005230
00005240
00005250
00005260
00005270
00005280
00005290
00005300
00005310
00005320
00005330
00005340
00005350
00005360
00005370
-------
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
553
559
560
561
562
563
564
565
566
567
569
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
C
C
C
RCA2(I)=(642PX1-G42PX2J/BAVD2
IF(RCA2(I).LT.O.) RCA2(I)=0.0
G42PX1=G42PX2
GO TO 111
ISPEC = 1 WITH ICT = 1 OR ISPEC = 3
108 IF(K.GT.l) GO TO 109
T1A=X1A/UTAUC
T2A=X2A/UTAUC
COMPUTE INTEGRAL FUNC=F3(T1A,T2A); FUN3 IS THE INTEGRAND FUNCTION
MKMHIOmKmCKlt
CALL D01AJFC FUN3,T1A,T2A,EPSABS,EPSREL,RESULT,
1 ABSERR,WORK,LH,IW,NIW,IFAIL)
KKKXKMKMKKKH
FUNC=RESULT
TERMB1=FUNC
IF(ISPEC.EQ.l) GO TO 106
TERMB2(I)=GAMMA*FUNC*VDC1/VDC2
IFCISPEC.EQ.3) GO TO 109
ISPEC = 1 WITH ICT = 1
106 RCA1(I)=((G41PX1-G41PX2)/VDC1-TERMB1)/BA1
IF(RCA1(I).LT.O.) RCA1(I)=0.0
RCAKI)=RCA1(I)*UINV
G41PX1=G41PX2
GO TO 111
ISPEC = 3
109 CALL PSG4P(G41PX2,G42PX2)
IF(K.GT.l) GO TO 110
TERMAl=t G41PX1-G41PX2 )/VDCl
DUM1=(TERMA1-TERMB1 )/BAl
IFCDUM1.LT.O. ) DUM1=0.0
RCA1(I)=OUM1*UINV
G41PX1=G41PX2
110 TERMA2=(G42PX1-G42PX2)/VOC2
OUM2=(TERMA2+TERMB2( I) )/BAl
IF(DUM2.LT.O.) DUM2=0.0
RCA2CTC I , K )=DUM2*UINV
G42PX1=G42PX2
C
111 CONTINUE
C END LOOP ON 1=1,5 CALCULATION GRID SQUARES.
GO TO 114
C
112 DO 113 1=1,5
RCA2CTI I,K )-RCA2CT( I,K-1 )
113 CONTINUE
C
114 CONTINUE
C
C
C
C
c
c
c
c
c
34
END LOOP ON K=1,NAS AREA SOURCES IF ISPEC = 3
LOOP THROUGH ALL AREA SOURCES. EMISSIONS FROM EACH AREA SOURCE
ARE APPORTIONED AMONG THE RECEPTOR GRID SQUARES WHOLLY OR
PARTIALLY COVERED BY THE SOURCE. EACH AFFECTED RECEPTOR GRID
SQUARE IS TREATED AS A SOURCE.
START LOOP ON K=1,HAS AREA SOURCES.
DO 2429 K=1,NAS
AREA= SIZE(K)*SIZE(K)
AX1= XA(K)
AX2= AX1 + SIZE(K)
NX1= (AX1-XSWC)*V6RID + 5.
NX2= (AX2-XSWC)*VGRID + 5.
IF(NXl.GT.LX+8.0R.NX2.LT.l) GO TO 2429
IF(NXl.GE.l) GO TO 32
NX1= 1
AX1= XSWC - 4.*GRID
IF(NX2.LE.LX+8) GO TO 34
NX2= LX+8
AX2= XSWC * (ELX + 4.J*GRID
Xl= XSWC * CFLOAT(NX11-5.)*GRID
X2= XSWC + (FLOAT(NX2J-4.)*GRID
AY1= YA(K)
00005380
00005390
00005400
00005410
00005420
00005430
00005440
00005450
00005460
00005470
00005480
00005490
00005500
00005510
00005520
00005530
00005540
00005550
00005560
00005570
00005560
00005590
00005600
00005610
00005620
00005630
00005640
00005650
00005660
00005670
00005680
00005690
00005700
00005710
00005720
00005730
00005740
00005750
00005760
00005770
00005780
00005790
00005800
00005810
00005820
00005830
00005840
00005850
00005860
00005870
00005880
00005890
00005900
00005910
00005920
00005930
00005940
00005950
00005960
00005970
00005980
00005990
00006000
00006010
00006020
00006030
00006040
00006050
00006060
00006070
00006080
00006090
00006100
00006110
00006120
00006130
00006140
136
-------
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
36
38
C
C
10
11
12
C
C
13
20
21
22
23
C
C U
C
C
C
C
C
C
C
C
C
C
C
C
C
C
242*
C
2426
C
C
2427
AY2= AY1 + SZZE(K)
MY1= NY,2)=SDF(NX,NY,2)+VD236«CINC2
CONTINUE
END LOOP ON L=l,5 CALCULATION GRID SQUARES WITH RECEPTORS.
CONTINUE
00006150
00006160
00006170
00006180
00006190
00006200
00006210
00006220
00006230
00006240
00006250
00006260
00006270
00006280
00006290
00006300
00006310
00006320
00006330
00006340
00006350
00006360
00006370
00006380
00006390
00006400
00006410
00006420
00006430
00006440
00006450
00006460
00006470
00006480
00006490
00006500
00006510
00006520
00006530
00006540
00006550
00006560
00006570
00006580
00006590
00006600
00006610
00006620
00006630
00006640
00006650
00006660
00006670
00006680
00006690
00006700
00006710
00006720
00006730
00006740
00006750
00006760
00006770
00006780
00006790
00006800
00006810
00006820
00006830
00006840
00006850
00006860
00006870
00006880
00006890
00006900
00006910
137
-------
693
69*
695
696
697
698
699
700
701
702
703
70*
705
706
707
708
709
710
711
712
713
71*
715
716
717
718
719
720
721
722
723
72*
725
726
727
726
729
730
731
732
733
73*
735
736
737
738
739
7*0
7*1
7*2
7*3
7**
7*5
7*6
7*7
7*8
7*9
750
751
752
753
75*
755
756
757
758
759
760
761
762
763
76*
765
766
767
768
769
C
C
2*2(
C
C
242<
C
C
C
C
C »
C
C f
C
245
C
C
c :
c
c
c
C**j
c
C 1
246
C
C I
c
c
c
c
c
c
c
c
c
c
c
c
END LOOP ON JY=NY1,NY2 ROMS OF THE RECEPTOR GRID.
2*28 CONTINUE
END LOOP ON IX=NX1,NX2 COLUMNS OF THE RECEPTOR GRID.
2*29 CONTINUE
END LOOP ON K=1,NAS AREA SOURCES.
C *** POINT SOURCES.
HPEN= MINIMUM EFFECTIVE SOURCE HEIGHT NECESSARY FOR PLUME TO
PENETRATE INVERSION.
HPEN- PEN(ISCEN)*HMIX(ISCEN)
IF NO POINT SOURCES, SKIP POINT SOURCE CALCULATIONS.
IF(NPS.LT.l) GO TO 603
C*** POINT SOURCE CALCULATIONS ***
LOOP THROUGH ALL POINT SOURCES.
DO 600 1=1,NPS
IF((NUDOPT.6T.1.ANO.IHDOPT.GT.1).OR.NTOPT.EQ.2) 60 TO 2*6
IFCNPRINT.EQ.O) GO TO 246
IF((I-1)/50*50.NE.I-1) GO TO 2*6
URITE(IUR,1005) TT,ISCEN,HMIX(ISCEN),HPEN
HRITE(IHR,1007)
IPS=I
IF(HP(I).6E.HMIX(ISCEN)) 60 TO 600
IRISE=2
IBUOY=1
EFF= 2 .*5*VP( I )*DP( I )*DP< I )*( TP( I )-TA< ISCEN ) )/TP( I)
IF(EFF.LT.O.) EFF=1.0E-7
CALCULATE INVERSE MIND SPEED (UINV) AT THE PHYSICAL HEIGHT (HP(D)
OF POINT SOURCE I. DO NOT CHANGE IF STACK HEIGHT IS LESS
THAN 10 METERS.
UINV = l./HS(ISCEN)
IF(HP(I).GT.10.) UINV = UINV*((10./HP(I))**P(ISC))
UPL=1.AIINV
UINV1=UINV/100.
DEFINE EMISSION RATES (SOURCE STRENGTHS) OF POLLUTANT SPECIES,
AND NONDIMENSZONAL DEPOSITION AND SEDIMENTATION PARAMETERS.
ISPEC = 1 OR 2 OR 3
VDC1=VD1*UINV1
WC1=W1*UINV1
V11=VDC1-0.5*HC1
V21=VDC1-HC1
IFCV21.EQ.O.) GO TO *3
R11=V11/V21
R21=0.5*MC1/V21
48 IF(ISPEC.EQ.l) GO TO 50
ISPEC = 2 OR 3
<32=EP(I,2)
VDC2=VD2*UINV1
HC2=M2*UINV1
V12=VDC2-0.5*HC2
V22=VDC2-MC2
IF(V22.EQ.O.) SO TO 49
R12=V12/V22
R22=0.5*MC2/V22
49 IFUSPEC.EQ.2) GO TO 51
ISPEC = 3
IFCQ1.EQ.O.) qi=l.E-6
V13=V11-0,5*(MC1-MC2)
IF(V21.EQ.O.) 60 TO 50
00006920
00006930
000069*0
00006950
00006960
00006970
00006980
00006990
00007000
00007010
00007020
00007030
00007040
00007050
00007060
00007070
00007080
00007090
00007100
00007110
00007120
00007130
00007140
00007150
00007160
00007170
00007180
00007190
00007200
00007210
00007220
00007230
000072*0
00007250
00007260
00007270
00007280
00007290
00007300
00007310
00007320
00007330
000073*0
00007350
00007360
00007370
00007380
00007390
00007*00
00007410
00007420
00007430
000074*0
00007*50
00007*60
00007*70
00007*80
00007*90
00007500
00007510
00007520
00007530
00007540
00007550
00007560
00007570
00007580
00007590
00007600
00007610
00007620
00007630
00007640
00007650
00007660
00007670
00007680
138
-------
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
C
C
c
C
c
C
c
C w
C
C
C I
c
c
c
c
c
247
248
249
C
C (
C
C
c
c
c
C I
c
12!
250
252
C
c :
c
c
253
C
c :
c
c
c
c
c
C !
C
C
C
275
R13=V13/V21
R23=0.5*WC2/V21
ISPEC = 1 OR 3
50 UTAUC=TAUC*UPL
51 KLID=0
*** PEAK EFFECTIVE SOURCE HEIGHT CALCULATIONS.
IFUSC.LT.6) 60 TO 247
DETERMINE WHETHER PLUME IS MOMENTUM-DOMINATED (IBUOY=0),
OR BUOYANCY-DOMINATED (IBUOY=1).
IFUSC.EQ.6) BRI6C=115.28
IFCISC.EQ.7) BRIGC=87.14
IFt VP< I).GT.BRIGC*(TP( I )-TA(ISCEN) )*SQRT(TA< ISCEN) )/TP( II ) 1BUOY'
SO TO 249
AF= 21.425
BF= 0.75
IF(EFF.LT.S5. ) SO TO 248
AF= 38.710
BF= 0.6
IF( 3.*VP( I )*OP< I ) .ST. AF*EFF**BF ) IBUOY=0
CONTINUE
CALL SUBROUTINE RISE WITH IRISE=2 TO GET PEAK EFFECTIVE SOURCE
HEIGHT, ESW2).
CALL RISE
ximmtuxHKmtn
IRISE=1
IF(NPRINT.EQ.O) GO TO 1250
IF(NWDOPT.LE.l.OR.IMDOPT.LE.l) WRITE(IHR,1010 )
1 I >XP( I ) , YP( I ) ,EP( 1 ,1 ) , EP( 1 ,2 ) f HP( I ) ,DP( I ) » VP( I ) ,TP( I ) ,
2 PRLU,IBUOY+1),PRLC2,IBUOY+1),DHL(IDWN),DWL(IDWN+1),UPL,ESH(2)
CALCULATE DISTANCE AT WHICH PLUME REACHES MAXIMUM HEIGHT (PEAK).
1250 IFUBUOY.EQ.O) GO TO 252
IFUSC.LT.6) GO TO 250
PEAK=0. 00207148/1 UINV*SQRT(DTDZ(ISC-5)«9.8/TA(ISCEN) ) )
SO TO 253
PEAK=0.001*XS
GO TO 253
PEAK= 0.
IF(ISC.GE.6) GO TO 253
IF(ABS(VP(I)).LT.. 000001) 60 TO 253
PEAK=(0.004*UINV*(DP(I)*(VP(I) + 3./UINV))**2)/VP(I)
IF MAXIMUM EFFECTIVE SOURCE HEIGHT EXCEEDS HPEN, PLUME ESCAPES
THE MIXING LAYER, AND SOURCE IS IGNORED.
IF(ESH(2).GT.HPEN) GO TO 600
IF MAXIMUM EFFECTIVE SOURCE HEIGHT EXCEEDS MIXING HEIGHT BUT
NOT HPEN, PLUME DOES NOT ESCAPE THE MIXING LAYER, AND MAXIMUM
EFFECTIVE SOURCE HEIGHT IS SET EQUAL TO THE MIXING HEIGHT.
IF( ESH( 2 ) .GT.HMIX( ISCEN) ) ESHt 2 )=HMIX( ISCEN )
SET LIMITS (XMIN,XMAX,YMIN,YMAX) ON PORTION OF RECEPTOR GRID
EXAMINED FOR EACH SOURCE. THE EXTENT OF THIS PORTION DEPENDS
ON SOURCE LOCATION, GRID DIMENSIONS, AND MIND DIRECTION.
XMAX= XB2
XMIN= XB1
YMAX= YB2
YMIN= YB1
IFCXP(I)+60.0.LT.XB2) XMAX= XP(I) + 60.
00007690
00007700
00007710
00007720
00007730
00007740
00007750
00007760
00007770
00007780
00007790
00007800
00007810
00007820
00007830
00007840
00007850
00007860
00007870
00007880
00007890
=000007900
00007910
00007920
00007930
00007940
00007950
00007960
00007970
00007980
00007990
00008000
00008010
00008020
00008030
00008040
00008050
00008060
00008070
00008080
00008090
00008100
00008110
00008120
00008130
00008140
00008150
00008160
00008170
00008180
00008190
00008200
00008210
00008220
00008230
00008240
00008250
00008260
00008270
00008280
00008290
00008300
00008310
00008320
00008330
00008340
00008350
00008360
00008370
00008380
00008390
00008400
00008410
00008420
00008430
00008440
00008450
139
-------
847 IF(XP/TAN(WDMANG)
891 IF(XL1.6T.XMIN)XMIN=XU
892 IF(XL1.6T.XP{I))XMIN=XPCI)
893 YL2=YP(I)*(XB2-XP(I))*TAN(WDPAN6)
894 IF(YL2.LT.YMAX)YMAX=Yt2
895 IF(YL2.LT.YP(I))YMAX=YP(I)
896 GOT0320
897 300 IF(M)PAN6.6T.6.28)6070302
898 IF(MDMANG.L7.3.14)6070304
899 YMAX=YP(I)
900 XU=XP(I)+(YB1-YP(I))/7AN(HDMANG)
901 IF(XL1.67.XMIN)XMIN=XL1
902 IF(XL1.67.XP(I))XMIN=XP(I)
903 XL2=XP(I)+(YB1-YP(I))/TAN(HDPANG)
904 IF(XL2.L7,XMAX)XMAX=XL2
905 IF(XL2.L7.XP(I))XMAX=XPtI)
906 6070320
907 302 YMAX=YP
-------
924
925
926
927
928
929
930
931
932
933
93*
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
935
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
IF(YL1.6T.YMIN)YMIN=YL1
IF(YL1.GT.YP(I))YMIN=YP(I)
YL2=YP(I)+< XB1-XP(I))*TAN(WDMANG)
IF(YL2.LT.YMAX)YMAX=YL2
IFCYL2.LT.YP(I))YMAX=YPm
GOT0320
312 XL2=XP(I)+(YB2-YP(I))/TAN(WDMANG)
IF(XL2.LT.XMAX)XMAX=XL2
IFCXL2.LT.XPtI))XMAX=XP(I)
YL1=YP(I)+(XBl-XP(I))*TAN(WDPANG)
IF(YL1.6T.YMIN)YMIN=YL1
IF(YL1.ST.YP(I))YMIN=YP(I)
SOT0320
314 XL2=XP(I)+(YBl-YPm)/TAN(WDPANG)
IF
-------
1001
1002
1003
1004
1005
1006
1007
1003
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
XM=OIST*1000.
IF(XM.SE.10000.) GO TO 323
SIGY=CXltISC)*(XM**DX1(ISC))
60 TO 324
323 SIGY=CX2(ISC)*(XM**DX2(ISC))
324 YM=XM*TAN(DELTA)
DUMY=YM/SIGY
ARG=0.5*OUMY*DUMY
IF(ARG.GE.EXPMIN) SO TO 325
EXPA=EXP(-ARG)
GO TO 326
325 EXPA=1.
326 PYC=(AlB/SIGY)tiEXPA
DETERMINE PROBABILITY DENSITIES OF VERTICAL DISTRIBUTIONS
OF SPECIES-1 AND SPECIES-2 POLLUTANT CONCENTRATIONS.
IFCDIST.6T.D47) GO TO 330
NEAR-SOURCE REGION (DIST .LE. D47).
CALCULATE QZC1 AND QZC2 FROM QZCAL (MODULE M=l).
CALL QZCAL
XXXXXXXXKXXM
GO TO 350
330 IF(DIST.LT.DSO) GO TO 331
**** WELL-MIXED REGION (DIST .GE. D80).
CALCULATE QZC1 AM) QZC2 FROM QZCAL (MODULE M=2).
CALL QZCAL
XXXXXXXXXXXM
GO TO 350
331 IFCKUD.EQ.l) GO TO 337
CALCULATE QZC1 AND QZC2 FOR POLLUTANT SPECIES
AT DIST=D47 AND DIST=D80 FOR USE IN INTERPOLATION
IN PLUME-TRAPPING REGION.
DUMX=OIST
DIST=D47
JHHHHHHHHHHH»
CALL QZCAL
XXXXXXXXXXXH
QZC11=QZC1
IF(ISPEC.EQ.l) 60 TO 332
QZC21=QZC2
332 DIST=D80
XXXXXXXXXXXH
CALL QZCAL
QZC12=QZC1
IRC1=1
IF(QZC11.EQ.O.OR.QZC12.EQ.O. ) IRC1=0
IF(ISPEC.EQ.l) GO TO 333
QZC22=QZC2
IRC2=1
IF(QZC21.EQ.O.OR.QZC22.EQ.O.) IRC2=0
333 KLID=1
DIST=DUMX
IF(IRCl.EQ.O) 60 TO 334
DIFX1=ALOG( D80/D47 )
DIFC1=AL06( QZC12/QZC11 )
GO TO 335
334 DIFC1=QZC12-QZC11
335 IF(ISPEC.EQ.l) GO TO 337
IFCIRC2.EQ.O) £0 TO 336
DIFX2=ALCG(D80/D47)
DIFC2=ALOG( QZC22/QZC21 )
GO TO 337
336 DIFC2=QZC22-QZC21
**** PLUME-TRAPPING REGION (D47 < OIST < D80).
CALCULATE QZCZ AND QZC2 BY LINEAR INTERPOLATION
(BETWEEN VALUES AT DIST=D47 AND DIST=D80) ON
A LOG- LOG PLOT OF QZC VERSUS DOWNWIND DISTANCE.
00010000
00010010
00010020
00010030
00010040
00010050
00010060
00010070
00010080
00010090
00010100
00010110
OC010120
00010130
00010140
00010150
00010160
00010170
00010180
00010190
00010200
00010210
00010220
00010230
00010240
00010250
00010260
00010270
00010280
00010290
00010300
00010310
00010320
00010330
00010340
00010350
00010360
00010370
00010380
00010390
00010400
00010410
00010420
00010430
00010440
00010450
00010460
00010470
00010480
00010490
00010500
00010510
00010520
00010530
00010540
00010550
00010560
00010570
00010580
00010590
00010600
00010610
00010620
00010630
00010640
00010650
00010660
00010670
00010680
00010690
00010700
00010710
00010720
00010730
00010740
00010750
00010760
142
-------
1078
1079
1080
1081
1083
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
C
C
337
338
339
C
340
C
C
C
C
C
C
C
C
C
350
355
C
C
C
C
360
C
365
370
C
500
C
C
600
C
C
C
C
C ***
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
603
IF EITHER OF THE QZC VALUES AT D47 AND D80 ARE
ZERO, USE A LINEAR PLOT FOR INTERPOLATION.
IFURC1.EQ.O) 60 TO 338
RATX1=ALOG(DIST/D47)/DIFXl
QZC1L=ALOG(QZC11)+RATXl*DIFCl
QZC1=EXP(QZC1L)
60 TO 339
RATX1=(DIST-D47)/D8047
9ZC1=QZC11 +RATX1WIFC1
IF(ISPEC.EOJ.l) 60 TO 350
IFURC2.EQ.O) GO TO 340
RATX2=ALOG(DIST/D47)/DIFX2
QZC2L=ALOG(QZC21)+RATX2*DIFC2
QZC2=EXP(QZC2L)
60 TO 350
RATX2=(DIST-D47)/D8047
QZC2=QZC21+RATX2*DIFC2
CALCULATE GROUND-LEVEL CONCENTRATIONS CONC (MICROGRAMS PER CUBIC
METER) AND SURFACE DEPOSITION FLUX SDF (MICROGRAMS PER SQUARE
METER PER HOUR) OF POLLUTANTS AT RECEPTOR IN COLUMN IX, ROM JY
OF THE RECEPTOR GRID DUE TO POINT SOURCE I.
ISPEC = 1 OR 2 OR 3
Cl=Ql*UINV*PYC*qZCl
IF(NCSOPT.EQ.O) 60 TO 355
CALL WORSTCIX.JY.Cl)
IFCNTOPT.GT.l) CONC(IX,JY,2)=CONC(IX,JY,2) + Cl
CINC1=C1*STCONV
CONCCIX,JY,1)=CONC(IX,JY,1HCINC1
SOF(IX,JY,1)=SOF(IX,JY,1)+VD136*CINC1
IF
-------
1155
1156
1157
lisa
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
122C
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
C
c TIME AVERAGING: wropr=2 OR 3
c
IF(NCSOPT.ST.O) CALL HOROUT
IFCISCEN.NE.NSCEN) 60 TO 100
CALL OUTMOO
SO TO 999
C
c NO TIKE AVERAGING: NTOPT=I
c
620 CALL OUTMOO
IF(ISCEN.NE.NSCEN) GO TO 100
IF(NWDOPT.LE.l) GO TO 999
IF(IWDOPT.LT.4) GO TO 100
C
999 IF(NMAX.GT.O) CALL MAXOUT
C
STOP
C
C
1005 FORMAT(1H1,45X>' POLLUTION EPISODIC MOOELV//4X, 'OUTPUT: ',20A4//
14X, 'SCENARIO', 12 ,4X, 'POINT SOURCE PLUME RISE CALCULATIONS'/
221X, 'MIXING HEIGHT: HMIX=',F7.2,' M'/
321X,'IF MAXIMUM EFFECTIVE SOURCE HEIGHT IS GREATER THAN SF7.1,
4' M, THE SOURCE IS IGNORED1/)
1007 FORMATC14X, 'SOURCE ' ,8X, ' EMISSION RATES' ,61X, 'HIND SPEED AT' ,4X,
1 'MAXIMUM1/' POINT1, 6X, 'COORDINATES', 4X, 'POL-1' ,6X, 'POL-21 ,4X,
2 'HEIGHT DIAMETER EXIT VEL EXIT TEMP' ,6X, 'DOMINANT' ,5X,
00011540
00011550
00011560
00011570
00011580
00011590
00011600
00011610
00011620
00011630
00011640
00011650
00011660
00011670
00011680
00011690
00011700
00011710
00011720
00011730
00011740
00011750
00011760
00011770
00011780
00011790
00011800
00011810
3 'STACK HEIGHT ' ,4X, ' EFFECTIVE'/1 SOURCE' ,3X, 'X( KM)' ,4X, 'Y( KM)' ,3X, 00011820
4 >(G/S)1,6X,'
END
C
C
SUBROUTINE QZCAL
C SUBROUTINE QZCAL (VERSION 82360), PART OF PEM.
C
C
C SUBROUTINE QZCAL CALCULATES QZC1 AND QZC2, REPRESENTING THE
C PROBABLITY DENSITIES OF VERTICAL DISTRIBUTIONS OF CONCENTRATIONS
C OF POLLUTANT SPECIES 1 AND 2, RESPECTIVELY, AT A GIVEN
C DISTANCE DOUNMIND OF A POINT SOURCE.
C
C
C *** PEM ALGORITHMS AND PROGRAM DEVELOPMENT: DECEMBER 1982
C
C K. SHANKAR RAO, PHYSICAL RESEARCH SCIENTIST
C ATMOSPHERIC TURBULENCE AND DIFFUSION LABORATORY (ATDL)
C NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (NOAA)
C U.S. DEPARTMENT OF COMMERCE, P.O. BOX - E
C OAK RIDGE, TENNESSEE 37830
c PHONE: (615) 576-1238
C FTS: 626-1238
C
C ( THIS WORK HAS DONE UNDER AN ZNTERA6ENCY AGREEMENT
C BETWEEN THE ENVIRONMENTAL PROTECTION AGENCY AND THE
C NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION )
C
C
c
COMMON/PEMCOM/CONC(50,50,2),SDF(50,50,2), TT120),
1 XP( 300 ) , YP( 300 ) , EP( 300 ,2 ) ,HP( 300 ) ,DP( 300 ) ,VP( 300 ) ,TP( 300 ) ,
2 XA(50),YA(50)»EA(50,2),SIZE(50),
3 HOC 24) ,WS( 24 ) ,TA( 24 ) ,HMIX( 24) ,PEN( 24) ,
4 AX(7,3),BX(7,3),P(7)*SCLAB(7),DTDZ(2), SECTANC16),
5 XSWC,YSWC,GRID,LX,LY, A( 2) ,B( 2 ),POLNA?1( 3,2 ),CALNAM( 7,2),
6 ITA,IRD,IHR,IDSK, 080, 047, D8047.DIST, DELTA,
7 ESH(2),PEAK,IBUOY,IRISE,IDWN,EFF,XS, UINV.WVEC,
8 HAS , NPS , INDEX , IGRID , IAV , ISCEN , IWDOPT, IWO , ISC , IPS ,
9 NTOPT . NWDOPT , NWSOPT , NSCEN , NLIST , NARRAY , NT APE , NCSOPT , NMAX ,
* NSTDWN, INTER, NPRINT
C
COMMON/PARM1/NPOL,ICT,VD1,H1,VD2,H2,TAUC
COMMON/PARM1A/GAMMA
COMMON/PARM2/ISPEC , UTAUC , Q2Q1 , XCT , EXCT
00011830
00011840
00011850
00011860
00011870
00011880
00011890
00011900
00011910
00011920
00011930
00011940
00011950
00011960
00011970
00011980
00011990
00012000
00012010
00012020
00012030
00012040
00012050
00012060
00012070
00012080
00012090
00012100
00012110
00012120
00012130
00012140
00012150
00012160
00012170
00012180
00012190
00012200
00012210
00012220
00012230
00012240
00012250
00012260
00012270
00012280
00012290
00012300
144
-------
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
C
c
C
c
c
c
c
COMMON/PARM3/HC,VDC1,WC1, VDC2, HC2
COMMON/PARM4/V11,V21,V12,V22fV13
COMMON/PARM5/D11,021,012,022,031,032,033,06
COMMON/PARM6/R11,R21,R12,R22,R13,R23,R31,R41,R32,R42
COMMON/PARM7/QZC1,QZC2
COMMON/BLOCK1/PI,SQPI,SQRT2,A1B,A1C
COMnON/BLOCK2/AI,BI,EPSABS,EPSREL,U4,NXM
COMMON/EXPCHK/EXPMAX,EXPMIN,ETAMAX
EXTERMAL FUN!
REALMS FUN1
REAL*8 WORK(800>tAI,BI,EPSABS,EPSREL.RESULT,ABSERR
DIMENSION IWU02)
IF(DIST.BE.PEAK) GO TO 5
CALL SUBROUTINE RISE FOR EFFECTIVE SOURCE HEIGHT AT DOWNWIND
DISTANCE = DIST, LESS THAN DISTANCE TO MAXIMUM HEIGHT (PEAK).
KKII Mil KM MMM Mil
CALL RISE
************
HGT= ESH(l)
GO TO 6
C
C
C
USE MAXIMUM EFFECTIVE SOURCE HEIGHT, SINCE DOWNWIND DISTANCE
EXCEEDS THE DISTANCE TO MAXIMUM HEIGHT.
5 HGT= ESM2)
6 JD=2
IF(DIST.LT.O.S) JD=1
IFCDIST.GT.5.0) JD=3
C
C
C
c
c
c
c
c
HL=HMIX(ISCEN)
X=OIST
XM=X*1000.
SIGZ= AX(ISC,JD)*(XM«*BX(ISC,JD))
IF(SIGZ.GT.5000.) SIGZ=5000.
SZ=SIGZ
C2=SQRT2*SZ
HC=H6T/C2
XC=XM/C2
ISPEC = 1 OR 2 OR 3
D31=2.*V11«XC
D11=WC1*XC
021=011*011
R31=l.+2.*021
R41=2.*011/SQPI
IF(ISPEC.EQ.l) GO TO 9
ISPEC = 2 OR 3
032=2.»V12*XC
D12=WC2*XC
022=012*012
R32=l.+2.*022
R42=2.*D12/SQPI
IFCISPEC.EQ.2) GO TO 10
ISPEC = 3
033=2.*V13*XC
06=4.*SQPI*
-------
1309
1310
1311
1312
1313
131*
1315
1316
1317
1319
1319
1320
1321
1322
1323
132*
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
11 QZC1=0.0
QZC2=0.0
RETURN
C
c
C **** NEAR-SOURCE REGION (X .LE. D47).
C
100 K=l
A1=A1B/SZ
C3=HC*HC
IF(C3.GE.EXPMIN) SO TO 11
A2=1./EXP(C3>
C
C ISPEC = 1 OR 2 OR 3
C SPECIES-1 (PRIMARY) POLLUTANT: GAS OR PARTICLES.
ETA1=HC+D31
ETA1SQ=ETA1*ETA1
IF(ETAISQ.GT.EXPMAX) CALL ARGCHK(ETAI.ETAISQ)
B11=EXP( ETA1SQ )*ERFCt ETA1 )
ALPHA1=A1C*D31*B11
SUM=2.-ALPHA1
IF(SUM) 115,115,116
115 G21P=0.0
GO TO 120
116 IFCWCl.EQ.O.) 60 TO 117
BETA1=-2.*011*HC+D21
CALL EXPO(-BETAl.EBTl)
GO TO 118
117 EBT1=1.0
118 G21P=EXCT*EBT1*A2*SUH
120 QZC1=A1*G21P
IF( ISPEC. EQ.l) RETURN
C
C
C ISPEC = 2 OR 3
C SPECIES-2 (SECONDARY) POLLUTANT: GAS OR PARTICLES.
ETA2=HC+032
ETA2S<3=ETA2*ETA2
IF(ETA2SQ.6T.EXPMAX) CALL ARGCHKtETA2,ETA2SQ)
B12=EXP( ETA2SQ )*ERFCt ETA2 )
ALPHA2=A1C*032*B12
SUM1=2.-ALPHA2
IFdSPEC.EQ.3) GO TO 145
C
C ISPEC = 2
IF(SUtll) 135,135,140
135 622P=0.0
QZC2=0.0
RETURN
140 IF(WC2.EQ.O.) GO TO 141
BETA2=-2 . *012*HC+D22
CALL EXPO(-BETA2,EBT2)
GO TO 142
141 EBT2=1.0
142 G22P=EBT2*A2*SUM1
QZC2=A1*G22P
RETURN
C
C ISPEC = 3
145 TERMl=(Q2Ql+GAmA)*A2*SUMl
C
ETA3=HC+D33
ETA3SQ=ETA3*ETA3
IF(ETA3SQ.GT.EXPMAX) CALL ARSCHK(ETA3,ETA3SQ)
B13=EXP( ETA3SQ )*ERFCt ETAS)
ALPHA3=A1C*D33«B13
TERM2=-GAMMA*EXCT*A2*( 2 . -ALPHAS )
C
IF(V21.EQ.V22) GO TO 150
C COMPUTE INTEGRAL FUNC=F1(XC,0. ;HC); FUN1 IS THE INTEGRAND
CALL D01AJF(FUN1,AI,BI,EPSABS,EPSREL, RESULT,
1 ABSERR,MORK,LH,IU,NIM,IFAIL)
RES=RESULT
FUNC=RES/PI
TERM3=-GAMMAJK)6*FUNC
C
150 SUMT=TERM1+TERM2+TERM3
00013080
00013090
00013100
00013110
00013120
00013130
00013140
00013150
00013160
00013170
00013180
00013190
00013200
00013210
00013220
00013230
00013240
00013250
00013260
00013270
00013280
00013290
00013300
00013310
00013320
00013330
00013340
00013350
00013360
00013370
00013380
00013390
00013400
00013410
00013420
00013430
00013440
00013450
00013460
00013470
00013480
OC013490
00013500
00013510
00013520
00013530
00013540
00013550
00013560
00013570
OOC13580
00013590
00013600
00013610
00013620
00013630
00013640
00013650
00013660
00013670
00013680
00013690
00013700
00013710
00013720
00013730
00013740
00013750
00013760
FUNCTION00013770
00013780
00013790
00013800
00013810
00013820
00013830
00013340
146
-------
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
IF(SUIT) 155,155,160
155 G22P=0.0
QZC2=0.0
RETURN
160 IF(WC2.EQ.O.) 60 TO 161
BETA2=-2.*D12*HC+D22
CALL EXPO(-BETA2,EBT2)
GO TO 162
161 EBT2=1.0
162 G22P=EBT2*SUMT
QZC2=A1*G22P
RETURN
**** HELL-MIXED REGION (X .GE. 080).
IN THIS REGION, THE CONCENTRATION BELOW THE MIXIN6 HEIGHT IS
UNIFORM REGARDLESS OF THE SOURCE OR RECEPTOR HEIGHTS BECAUSE
OF THOROUGH MIXING OF POLLUTANT BETWEEN THE GROUND AND THE
MIXING HEIGHT.
200 (1=2
A1A=1000./HL
CALL PSG4P(G41P,642P)
qZCl=AlA*G41P
IF(ISPEC.EQ.l) RETURN
QZC2=A1A*G42P
RETURN
END
SUBROUTINE PSG4P(G41P,G42P)
SUBROUTINE PSG4P (VERSION 82360), PART OF PEM.
THIS SUBROUTINE CALCULATES AND RETURNS VALUES OF G41P AND G42P.
THESE ARE NONDIMENSIONAL VERTICALLY-INTEGRATED PROBABILITY
DENSITY FUNCTIONS USED IN THE WELL-MIXED REGION CONCENTRATION
ALGORITHMS FOR SPECIES-1 AND SPECIES-2, RESPECTIVELY, DOWNWIND
OF A POINT SOURCE. THESE FUNCTIONS ARE INDEPENDENT OF BOTH
SOURCE HEIGHT AND RECEPTOR HEIGHT. THIS SUBROUTINE IS
USED BY BOTH POINT AND AREA SOURCES. FOR AREA SOURCES,
G41P AND G42P REPRESENT SUSPENSION RATIOS OF POLLUTANTS.
*** PEM ALGORITHMS AND PROGRAM DEVELOPMENT: DECEMBER 1982
K. SHANKAR RAO, PHYSICAL RESEARCH SCIENTIST
ATMOSPHERIC TURBULENCE AND DIFFUSION LABORATORY (ATOL)
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (NOAA)
U.S. DEPARTMENT OF COMMERCE, P.O. BOX - E
OAK RIDGE. TENNESSEE 37830
PHONE : C615) 576-1238
FTS: 626-1238
( THIS WORK WAS DONE UNDER AN INTERAGENCY AGREEMENT
BETWEEN THE ENVIRONMENTAL PROTECTION AGENCY AND THE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION )
EXTERNAL FUN2
REAL*8 FUN2
REAL*8 WORK(800),AI,BI,EPSABS,EPSREL,RESULT,ABSERR
DIMENSION IWU02)
COMMON/PARMIA/GAMMA
COMMON/PARM2/ISPEC,UTAUC,Q2Q1,XCT,EXCT
COMMON/PARM4/V11,V21,V12,V22,V13
COMMON/PARM5/D11,021,012,022,031,D32,D33,D6
COMMON/PARM6/R11,R21,R12,R22,R13,R23,R31,R41,R32,R42
COMMON/BLOCK1/PI,SQPI,SQRT2,A1B,A1C
COMMON/BLOCK2/AI.BI,EPSABS.EPSREL.LW.NIW
COMMON/EXPCHK/EXPMAX,EXPMIN,ETAMAX
ISPEC = 1 OR 2 OR 3
00013850
00013860
00013870
00013880
00013890
00013900
00013910
00013920
00013930
00013940
00013950
00013960
00013970
00013980
00013990
00014000
00014010
00014020
00014030
00014040
00014050
00014060
00014070
00014080
00014090
00014100
00014110
00014120
00014130
00014140
00014150
00014160
00014170
00014180
00014190
00014200
00014210
00014220
00014230
00014240
00014250
00014260
00014270
00014280
00014290
00014300
00014310
00014320
00014330
00014340
00014350
00014360
00014370
00014380
00014390
00014400
00014410
00014420
00014430
00014440
00014450
00014460
00014470
00014480
00014490
00014500
00014510
00014520
00014530
00014540
00014550
00014560
00014570
00014580
00014590
00014600
00014610
147
-------
1463
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
C***** SPECIES-1 (PRIMARY) POLLUTANT: GAS OR PARTICLES.
C
IF(D21.ET.EXPMAX) CALL ARGCHKC011,021)
B11=EXP(D21)*ERFC( Oil)
IF(V21.EQ.O.) GO TO 201
D31SQ=D31*D31
IFCD31SQ.GT.EXPMAX) CALL ARGCHK(D31,D31Sd)
SUf1=Rll*< EXPC D31SQ )*ERFC( D31) )-R21*Bll
60 TO 202
201 SUM=R31*B11-R41
202 IF(SUM.LT.O.) SUM=0.0
G41P=EXCT»EXP(-021)»SUM
IF(ISPEC.EQ.l) RETURN
C
C ISPEC = 2 OR 3
C***** SPECIES-2 (SECONDARY) POLLUTANT: GAS OR PARTICLES.
C
IF(D22.ST.EXPMAX) CALL ARGCHK(012,022)
B12=EXP(022)*ERFC(D12)
IFCV22.EQ.O.) GO TO 203
03250=032*032
IF(D32Sq.ST.EXPMAX) CALL ARGCHK(D32,D32SQ)
SUMl=R12*(EXP(D32Sq)»ERFC(D32))-R22*B12
GO TO 204
203 SUM1=R32*B12-R42
204 IFUSPEC.EQ.3) GO TO 205
C
C ISPEC = 2
IF(SUM1.LT.O.) SUM1=0.0
G42P=EXP(-022)*SUM1
RETURN
C
C ISPEC = 3
205 TERMl=(Q2qi+GAMMA)*SUHl
C
IF(V21.EQ.O.) GO TO 206
D33SQ=D33*D33
IF(D33SQ..GT.EXPMAX) CALL ARGCHK(D33,D33SQ)
SUM2=R13*tEXP5D33SQ)*ERFClD33))-R23*B12
GO TO 207
206 SUM2=R32*B12-R42
207 TERM2=-GAMMA*EXCT*SUM2
C
IF(V21.EQ.V22) GO TO 208
C COMPUTE INTEGRAL FUNC=F2(XC); FUN2 IS THE INTEGRAND FUNCTION.
CALL D01AJF(FUN2.AI»3I.EPSABS,EPSREL.RESULT,
1 ABSERR,WORK,LH,IH,NIH,IFAIL)
RES=RESULT
FUNC=RES/(2.*PI)
TERM3=-GAMMA*D6*FUNC
GO TO 209
208 TERM3=0.0
C
209 SUMT=TERM1+TERM2+TERM3
IFtSUMT.LT.O.) SUMT=0.0
G42P=EXP(-022)*SUMT
RETURN
END
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
DOUBLE PRECISION FUNCTION FUNKT)
REAL*8 T,TERM1,TERM2,TERM3
REAL«8 FUNCTION FUNK VERSION 82360), PART OF PEN
00014620
00014630
00014640
00014650
00014660
00014670
00014680
00014690
00014700
00014710
.00014720
00014730
00014740
00014750
00014760
00014770
00014780
00014790
00014800
00014810
00014820
00014830
00014840
00014850
00014860
00014870
00014880
00014890
00014900
00014910
00014920
00014930
00014940
00014950
00014960
00014970
00014980
00014990
00015000
00015010
00015020
00015030
00015040
00015050
00015060
00015070
00015080
00015090
00015100
00015110
00015120
00015130
00015140
00015150
00015160
00015170
00015180
00015190
00015200
00015210
00015220
INTEGRAND FUNCTION USED IN THE NUMERICAL INTEGRATION IN
QZCAL (FOR POINT SOURCES) IS DEFINED HERE.
PEM ALGORITHMS AND PROGRAM DEVELOPMENT: DECEMBER 1982
K. SHANKAR RAO
NOAA-ATDL, P.O. BOX-!-
OAK RIDGE, TENN 37830
COMMON/PARM2/ISPEC,UTAUC,Q2Q1,XCT,EXCT
COMMON/PARM3/HC,VDC1,HC1,VDC2,WC2
00015230
00015240
C0015250
SUBROUTINEOQ015260
00015270
00015280
00015290
00015300
00015310
00015320
00015330
00015340
00015350
00015360
00015370
148
-------
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
COMMON/PAR M5/D11,D21,D12,D22,D31,D32,D33, 06
COMMON/BLOCK1/PI,SQPI,SQRT2,A1B,A1C
COMMON/EXPCHK/EXPMAX , EXFMIN , ETAMAX
SQT=SqRT(T)
SqiT=SqRT(l.-T)
HCl=HC/SqT
ARG1= -(HC1*HC1)-(T*XCT>
CALL EXPO(ARG1,EXP1)
IFfEXPl.EQ.O. ) GO TO 10
TERM1= EXPl/(SqT*SqiT)
ETA4=HCl+033*SqT
ETA4Sq=ETA4*ETA4
IF(ETA4Sq.GT.EXPMAX) CALL AR6CHK(ETA4,ETA4SQ)
TERM2A= EXP( ETA4SQ )*ERFC( ETA4 )
HClSq=HCl*HCl
IF(HClSq.GT.EXPMAX) CALL ARGCHK(HC1,HC1SQ)
TERM2= 1. -SQPI*( ETA4-HC1 )*TERM2A
IF(TERM2.LE.O.) GO TO 10
ETA5=032*SQ1T
ETA5Sq=ETA5*ETA5
IF(ETASSQ.GT.EXPMAX) CALL ARGCHK(ETA5,ETA5SQ)
TERM3=1 . -SqPI*ETA5*( EXP( ETA5SQ )*ERFC( ETAS ) )
IF(TERM3.LE.O.) GO TO 10
FUN1=TERM1*TERM2*TERM3
60 TO 11
10 FUN1=0.0
11 RETURN
END
DOUBLE PRECISION FUNCTION FUN2(T)
REAL»S T
REALMS FUNCTION FUN2 (VERSION 82360),
INTEGRAND FUNCTION USED IN THE NUMERICAL INTEGRATION
PSG4P (FOR POINT AND AREA SOURCES) IS DEFINED HERE.
PEM ALGORITHMS AND PROGRAM DEVELOPMENT: DECEMBER 1982
K. SHANKAR RAO
NOAA-ATDL, P.O. BOX-E
OAK RIDGE, TENN 37830
COMMON/PARM2/ISPEC , UTAUC , 32Q1 , XCT , EXCT
COMMON/PARM4/V11 , V21 , V12 , V22 , V13
COMMON/PARM5/011,D21,D12,D22,D31,032,033,D6
COMMON/PARM6/R11,R21,R12,R22,R13,R23,R31,R41,R32.R42
COMMON/BLOCK1/PI , SqPI , SQRT2 , A1B , A1C
COMMON/EXPCHK/EXPMAX , EXPMIN , ETAMAX
sqT=sqRT(T)
SQ1T=SQRT(1.-T)
ETA4=D33*SqT
ETA5=D32*SqiT
ETA6=012*SqiT
ETA6Sq=ETA6*ETA6
IF(ETA6SQ.GT.EXPMAX) CALL ARGCHK(ETA6,ETA6SQ)
ARG1=T*XCT
EXP1=EXP(-AR61)
TERMl=EXPl/SqT
IF(ETA4.£q.O.) GO TO 10
ETA4Sq=ETA4*ETA4
IF(ETA4Sq.GT.EXPMAX) CALL ARGCHK(ETA4,ETA4SQ)
TERM2=1.-SQPI*ETA4*(EXP(ETA4SQ)*ERFC(ETA4))
IF(TERM2.LT.O.) TERM2=0.
GO TO 11
00015380
00015390
00015400
00015410
00015420
00015430
00015440
00015450
00015460
00015470
00015480
00015490
00015500
00015510
00015520
00015530
00015540
00015550
00015560
00015570
00015580
00015590
00015600
00015610
00015620
00015630
00015640
00015650
00015660
00015670
00015680
00015690
00015700
00015710
00015720
00015730
00015740
PART OF PEM. 00015750
00015760
00015770
IN SUBROUTINE00015780
00015790
00015800
00015810
00015820
00015830
00015840
00015850
00015860
00015870
00015880
00015890
00015900
00015910
00015920
00015930
00015940
00015950
00015960
00015970
00015980
00015990
00016000
00016010
00016020
00016030
00016040
00016050
00016060
00016070
00016080
00016090
00016100
00016110
00016120
00016130
149
-------
1617
1618
1619
16ZO
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
10 TERM2=1.
11 IF(V22.EQ.O.) SO TO 12
ETA5SQ=ETA5*ETA5
IF(ETASSQ.GT.EXPMAX) CALL AR6CHK(ETAS,ETA5SQ)
T3A=EXP(ETA5SQ)*ERFCC ETAS)
T3B=EXP(ETA6SQ)*ERFC(ETA6)
TERM3=R12*T3A-R22*T3B
IF(TERM3.LT.0.) TERM3=0.
SO TO 13
12 T3A=(1.+2.*ETA6SQ)*< EXP(ETA6SQ)*ERFCC ETA6))
T3B=2.*ETA6/S<3PI
TERM3=T3A-T3B
1F(TERM3.LT.O.) TERM3=0.
13 FUN2=TERM1*TERM2*TERM3
RETURN
END
DOUBLE PRECISION FUNCTION FUN3(T)
REAL*8 T
REAL*8 FUNCTION FUN3 (VERSION 82360). PART OF PEN.
INTEGRAND FUNCTION USED IN THE NUMERICAL INTEGRATION FOR AREA
SOURCES IN MAIN PROGRAM IS DEFINED HERE.
PEM ALGORITHMS AND PROGRAM DEVELOPMENT: DECEMBER 1982
K. SHANKAR RAO
NOAA-ATDL, P.O. BOX - E
OAK RIDGE. TENN 37830
COMMON/PARM2/ISPEC,UTAUC,Q2Q1,XCT,EXCT
COMMON/PARM2A/AA,BA
COMMON/PARM3/HC,VDC1,MCI,VDC2,WC2
COMMON/PARM4/V11,V21,V12,V22,V13
COMMON/PARM6/R11,R21,H12,R22,R13,R23,R31,R41,R32,R42
COMMON/BLOCK1/PI,SQPI,SQRT2,A1B,A1C
COMMON/EXPCHK/EXPMAX,EXPMIN,ETAMAX
ON=SQRT2*AA
BA1=1.-BA
UTBA1=(UTAUC)**BA1
Pl=2.*V11*UTBA1/DN
TBA1=T*«BA1
ETA1=P1*TBA1
ETA1SQ=ETA1»ETA1
IF(ETAISQ.ST.EXPMAX) CALL ARGCHKtETAl.ETAlSQ)
TERM=EXP(ETA1SQ)*ERFCt ETA1)
EXP1=EXP(-T)
IFtWCl.NE.O.) GO TO 11
10 SUM=TERM
GO TO 13
11 IF(V21.EQ.O.) 60 TO 12
P2=WC1*UTBA1/DN
B1=P2*TBA1
BlSq=Bl*Bl
IF(BISQ.GT.EXPMAX) CALL ARGCHMBI.BISQ)
SUM=EXP(-BISq)*(R11*TERM-R21*(EXP(31SQ)*ERFC
-------
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
SUBROUTINE EXPOlBX,EX)
SUBROUTINE EXPO (VERSION 82360)> PART OF PEM.
6IVEN THE ARGUMENT BX, SUBROUTINE EXPO CALCULATES AND
RETURNS EX=EXP(BX). EXPO LIMITS THE ARGUMENT TO AVOID
OVERFLOW/UNDERFLOW ERRORS.
PEM ALGORITHMS AND PROGRAM DEVELOPMENT: DECEMBER 1982
K. SHANKAR RAO
NOAA-ATDL, P.O. BOX-E
OAK RIDGE, TENN 37830
COMMON/EXPCHK/EXPMAX,EXPMIN,ETAMAX
BXABS=ABS(BX)
IF(BX) 5,10,15
5 IF(BXABS-EXPMIN) 6,7,7
6 EX=EXP(BX)
GO TO 20
7 EX=0.
GO TO 20
10 EX=1.
GO TO 20
15 IF(BXABS.ST.EXPMAX) BXABS=EXPMAX
EX=EXP(BXABS)
20 RETURN
END
SUBROUTINE ARGCHK(E.ESQ)
SUBROUTINE ARGCHK (VERSION 82360), PART OF PEN.
SUBROUTINE ARGCHK LIMITS THE ARGUMENTS OF EXP(ESQ)»ERFC(E)
TO AVOID OVERFLOW/UNDERFLOW ERRORS.
PEM ALGORITHMS AND PROGRAM DEVELOPMENT:
K. SHANKAR RAO
NOAA-ATDL, P.O. BOX-E
OAK RIDGE, TENN 37830
COMMON/EXPCHK/EXPMAX,EXPMIN,ETAMAX
ESQ=EXPMAX
IF(E.LT.O.) NSI6N=-1
IF(E.GE.O-) NSIGN=1
E=NSIGN*ETAMAX
RETURN
END
DECEMBER 1982
SUBROUTINE INMOO
SUBROUTINE INMOO
(VERSION 82360), PART OF PEM.
SUBROUTINE INMOO READS IN ALL INPUTS TO THE MODEL, SCREENS THEM,
PRINTS WARNING MESSAGES, AND INSERTS DEFAULT VALUES AS NEEDFO.
THE SUBROUTINE PRINTS OUT LISTS OF THE CONTROL PARAMETERS,
SCENARIO PARAMETERS, AND SOURCE DATA FOR REFERENCE.
INMOO ALSO PROCESSES THE INPUT FOR EACH SCENARIO BEFORE
TRANSMITTING IT TO THE MAIN PROGRAM.
*** PEM MODIFICATIONS AND FORMATS BY M.M. STEVENS,
NOAA-ATDL, P.O. BOX-E, OAK RIDGE, TENN 37830
DECEMBER 1982
COMMON/PEMCOM/CONC(50,50,2),SDF(50,50,2), TT(20),
00016900
00016910
00016920
00016930
00016940
00016950
00016960
00016970
00016980
00016990
00017000
00017010
00017020
00017030
00017040
00017050
00017060
00017070
00017080
00017090
00017100
00017110
00017120
00017130
00017140
00017150
00017160
00017170
00017180
00017190
00017200
00017210
00017220
00017230
00017240
00017250
00017260
00017270
00017280
00017290
00017300
00017310
00017320
00017330
00017340
00017350
00017360
00017370
00017380
00017390
00017400
00017410
00017420
00017430
00017440
00017450
00017460
00017470
00017480
00017490
00017500
00017510
00017520
00017530
00017540
00017550
00017560
00017570
00017580
00017590
00017600
00017610
00017620
00017630
00017640
00017650
00017660
151
-------
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
X836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
1 XPC 300 ) , YP( 300 ) , EP( 300 , 2 ) ,HP( 300 ) ,OPl 300 ) , VP( 300 ) ,TP( 300 ) ,
2 XA(50),YA(50),EA(50,2),SIZE(50),
3 WD(24),WS(2<*),TA(24),HMIX(24),PEN(24),
4 AX(7,3),BX(7,3),P(7),SCLAB(7),DTDZ(£), SECTANU6),
5 XSWC,YSHC,GRID,LX,LY, A(2),B(2),POLNAM(3,2),CALNAM(7,2),
6 ITA,IRD,IMR,IDSK, D80, 047, D8047,DIST, DELTA,
7 ESH(2), PEAK, IBUOY, IRISH, IDWN.EFF.XS, UINV.HVEC,
8 NAS.NPS, INDEX, IGRID,IAV,ISCEN,IWDOPT,IWD, ISC, IPS,
9 NTOPT, HWDOPT.NMSOPT, NSCEN, NLIST, NARRAY, NTAPE, NCSOPT.NMAX,
* N5TDHN, INTER, NPRINT
O)MMON/CSWOR/NHORST(25,25,5),CMORST(25,25,5)
COMMON/PARM1/NPOL,ICT,VD1,H1,VD2,M2,TAUC
COMMON/PARM1A/6AMMA
DIMENSION NAME(2),MDINC(6),SUMAQ(2),SUMPq(2),SUMAR(2),EAR(2),
1 AMSG(2),CWS(6)
DIMENSION DCR( 24,2) ,NSC( 24) ,NMD( 24) ,NHS( 24) .ASCALEt 2 )
DATA NAHE/4H ,4H /
DATA AMSG/4HVD1 ,4HVD2 /
DATA WDINC/1 . 5707963. 0 . 7853982 , 0 .5235988, 0 .2617994,
1 0. 1745329*0. 08726646/
DATA CUS/1.5,2.46,4.47,6.93,9.61.12.52/
IF( INDEX. NE.O) GO TO 300
ISTOP=0
READ ALL INPUT DATA.
**** READ FIRST CONTROL PARAMETER CARD (TITLE).
REAO(IRD,800)TT
HRITE(IWR,900) TT
**** READ SECOND CONTROL PARAMETER CARD (OPTIONS).
NTOPT = AVERAGING TIME OPTION (1 OR 2 OR 3).
NWDOPT = MIND DIRECTION INPUT OPTION (0 TO 7).
NMSOPT = HIND SPEED INPUT OPTION (0 OR 1).
NSCEN ~ NUMBER OF SCENARIOS (1 TO 24).
NLIST = OUTPUT OPTION: LISTS OF CONC AND SURF DEP FLUX (0 OR 1)
NARRAY = OUTPUT OPTION: MAPS OF CONC AND SURF DEP FLUX (0 TO 3)
NTAPE = OUTPUT OPTION: TAPE OF CONC AND SURF DEP FLUX (0 OR 1)
NCSOPT = OUTPUT OPTION: POINT SOURCE CULPABILITY LIST (0 OR 1).
NMAX = OUTPUT OPTION: MAXIMUM CONC. FOR EACH SCENARIO (0 OH 1)
NSTDMN = STACK-TIP DOWNWASH OPTION (0 OR 1).
INTER = RECEPTOR INTERVAL ON TAPE OUTPUT (1,2, ).
NPRINT = OUTPUT OPTION: POINT SOURCE PLUME RISE INFO (0 OR 1)
INPTSC = INPUT OPTN: POINT SOURCE DATA ON UNIT IRD OR IDSK (1 OR
READ( IRD ,805 ) NTOPT, NWDOPT.NWSOPT, NSCEN, NLIST, NARRAY, NTAPE,
1 NCSOPT, NMAX, NSTDMN, INTER, NPRINT, INPTSC
IF(NTOPT.GE.l .AND. NTOPT.LE.3) GO TO 2
HRITE(IMR,660) NTOPT
NTOPT=1
Z IF(NMDOPT.LE.l) GO TO 6
IF(NWDOPT.GT.7) GO TO 5
IF(NTOPT.EQ.l .OR. NMOQPT.LE.il GO TO 6
WRITE CIWR, 615)
5 NUDOPT=0
6 IF(NHSOPT.GT.l) NWSOPT=0
IF(NSCEN.EQ.O) NSCEN=1
IF(NTOPT.EQ.2 .AND. NSCEN. NE. 24) GO TO 500
10 IF(NSCEN.GT.24) GO TO 510
20 IF( NLIST. EQ.O) GO TO 25
IF( NLIST. GT.l) 60 TO 22
IF(NWDOPT.LE.l) GO TO 25
WRITE! IWR, 605)
22 NLIST=0
25 IF(NARRAY.GT.3) NARRAY=0
IF( NTAPE. EQ.O) SO TO 40
IF( NTAPE. GT.l) GO TO 30
IF(NWDOPT.LE.l) GO TO 40
MRITE(IMR,62C)
30 NTAPE=0
00017670
00017680
09017690
00017700
00017710
00017720
00017730
00017740
00017750
00017760
00017770
00017780
OC017790
00017800
00017810
00017820
00017830
00017840
00017850
00017860
00017870
00017880
00017890
00017900
00017910
00017920
00017930
00017940
00017950
00017960
00017970
00017980
00017990
00018000
00018010
00018020
00018030
00018040
00018050
00018060
00018070
00018080
00018090
00018100
00018110
. 00018120
00018130
00018140
00018150
2)00018160
00018170
00018180
00018190
00018200
,00018210
00018220
00018230
00018240
00018250
00018260
00018270
00018280
00018290
00018300
00018310
00018320
00018330
00018340
00018350
00018360
00018370
00018380
00018390
00018400
00018410
00018420
00018430
152
-------
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
186 2
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
40 IF(NCSOPT.ST.l) NCSOPT=0
IF(NMAX.GT.l) NMAX=0
IF(NSTDUN.GT.l) NSTDWN=0
IF ( INTER. EQ.O) INTER=1
IF(NPRINT.ST.l) NPRINT=0
IFdNPTSC.LT.l .OR. INPTSC.6T.2) INPTSC=1
C
C SET LABEL FOR TIME AVERAGING
IAV=1
IF(NTOPT.EQ.2) IAV=24
IF (NTOPT.EQ.3) IAV=NSCEN
C
C **** READ THIRD CONTROL PARAMETER CARD (GRID. DTDZ)
C
00018440
00018450
00018460
00018470
00018430
00018490
00018500
00018510
00018520
00018530
00018540
00018550
00018560
00018570
C XHSWC.YRSHC = COORDINATES OF SOUTHWEST CORNER OF RECEPTOR GRID (KM)00018580
C LX = NUMBER OF COLUMNS IN RECEPTOR GRID.
C LY = NUMBER OF ROMS IN RECEPTOR GRID.
C GRID = SPACING BETWEEN ROMS AND COLUMNS OF RECEPTOR GRID (KM)
C
C DTDZC142) = VERTICAL POTENTIAL TEMPERATURE GRADIENT
C FOR STABILITY CUSSES E * F.
C
READ(IRD,810)XRSWC,YRSWC,LX,LY,GRID,DTDZ(1),DTDZ(2)
C
IFCLX.Eq.Oh LX=1
IF(LY.EQ.O) LY=1
IF(NTAPE.EQ.O) GO TO 115
C
NRECS=( ( LX+1 )/INTER )*( ( LY+1 )/INTER )*NSCEN
IF(NTOPT.EQ.2) NRECS= NRECS/24
IF(NTOPT.E<3.3) NRECS= NRECS/NSCEN
IFCNRECS.LT. 10000) GO TO 115
WRITE(IWR,600)
NTAPE=0
115 CONTINUE
C
C **** READ FOURTH CONTROL PARAMETER CARD C POLLUTANTS)
C
C NPOL = NUMBER OF POLLUTANTS 11 OR 2)
C ICT = CHEMICAL TRANSFORMATION OR DECAY OPTION (0 OR 1)
C VD1 = DEPOSITION VELOCITY FOR POLLUTANT SPECIES-1 (CM/S)
C Ml = SETTLING VELOCITY FOR POLLUTANT SPOECIES-1 (CM/S)
C VD2 = DEPOSITION VELOCITY FOR POLLUTANT SPECIES-2 (CM/S)
C H2 = SETTLING VELOCITY FOR POLLUTANT SPECIES-2 (CM/S)
C XKT = CHEMICAL TRANSFORMATION OR DECAY RATE OF POLLUTANT
C SPECIES-1 (PERCENT PER HOUR)
C GAMMA = RATIO OF MOLECULAR WEIGHTS OF SPECIES-2 (PRODUCT)
C TO SPECIES-1 (REACT ANT) IN CHEMICAL TRANSFORMATION
C
C NOTE: FOR DEPOSITION TO OCCUR, H SHOULD BE LESS THAN OR EQUAL TO VD.
C FOR DEPOSITION OF GASES AND VERY SMALL PARTICLES, W=0.
C FOR DEPOSITION OF SMALL PARTICLES, W IS LESS THAN VD.
C FOR DEPOSITION OF MEDIUM AND URGE PARTICLES, U=VD.
C
READ (IRD.812) NPOL, ICT, VD1, HI, VD2.W2.XKT, GAMMA
C
IF(NPOL.LT.l .OR. NPOL.GT.2) NPOL=1
IF(NPOL.EQ.l .OR. NCSOPT.EQ.O) GO TO 116
URITE(IWR,635)
NCSOPT=0
116 IF(Wl.GT.VDl) W1=V01
IF(NPOL.EQ.2) GO TO 117
VD2=0.0
W2=0.0
GO TO 118
117 IF(W2.GT.VD2) H2=VD2
118 IF(ICT.EQ.l) GO TO 119
XKT=0.0
GAKMA=0.0
GO TO 122
119 IF(XKT.GE.0.1 .AND. XKT.LE.100.) GO TO 120
TXKT=0.1
IF(XKT.6T.100.) TXKT=100.
URITE(IUR,640) XKT.TXKT
XKT=TXKT
C
C CONVERT CHEMICAL TRANSFORMATION RATE XKT (PERCENT PER HOUR) TO
00018590
00018600
00018610
00018620
00018630
00018640
00018650
00018660
00018670
00018680
00018690
00018700
00018710
00018720
00018730
00018740
00018750
00018760
00018770
00018780
00018790
00018800
00018810
00018820
00018830
00018840
00018850
00018860
00018870
00018880
00018890
00018900
00018910
00018920
00018930
00018940
00018950
00018960
00018970
00018980
00018990
00019000
00019010
00019020
00019030
00019040
00019050
00019060
00019070
00019080
00019090
00019100
00019110
00019120
00019130
00019140
00019150
00019160
00019170
00019180
00019190
00019200
153
-------
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953-
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
C THE EQUIVALENT TIME SCALE TAUC (SECONDS).
120 TAUC=0.36E06/XKT
C
122 IF(NCSOPT.EQ.O .OR. (LX.LE.25 .AND. LY.LE.25>) SO TO 125
WRITE (IWR, 645)
NCSOPT=0
C
C SHIFT THE RECEPTOR GRID TO THE COMPUTATION GRID.
125 XSWC= XRSWC - 0.5*6RID
YSWC= YRSWC - 0.5*6RXD
C
130 IF(DTDZ(1).LT. 0.00001) OTDZ(1)=0.020
IF( DTCZt 2 ).LT. 0.00001) DTDZt 2)=0.035
C
C IF GRID IS ZERO, SWITCH ON AUTOMATIC GRID OPTION.
IGRID=0
IF(GRID.LT.l.OE-S) IGRID=1
IF(IGRID.EQ.l.AND.NTOPT.GT.l) GO TO 520
C
00019210
00019220
00019230
00019240
00019250
00019260
00019270
00019280
00019290
00019300
00019310
00019320
00019330
00019340
00019350
00019360
00019370
00019380
00019390
C JHHHt READ 5TH CONTROL PARAMETER CARD (AREA SOURCE SCALING, CALIBRATION )00019400
C
C ASCALE(U2) = AREA SOURCE EMISSION SCALING FACTORS
C FOR EACH POLLUTANT.
C A(U2) = CONCENTRATION CALIBRATION FACTOR (INTERCEPT)
C FOR EACH POLLUTANT.
C B(lt2) = CONCENTRATION CALIBRATION FACTOR (SLOPE)
C FOR EACH POLLUTANT.
C
135 READ(IRD,815) ASCALE,,A(1),BU),A(2),B(2)
C
IF(ASCALE(1).LE.O.) ASCALE(1)=1.0
IF(ASCALE(2).LE.O.) ASCAL£(2)=1.0
C
C **** READ CARD 6 (POLLUTANT AND CALIBRATION LABELS)
C
READ(IRD,817)(POLNAM(I,1),I=1,3),(CALNAM(I,1),I=1,7),
1 (POLNAM(I,2),I=1,3),(CALNAM(I,2),I=1,7)
C
C **** READ ONE TO 24 SCENARIO PARAMETER CARDS.
C
C NSC = STABILITY CLASS NUMBER (1 TO 7)
C NMS = HIND SPEED CLASS NUMBER (1 TO 6)
C MID = HIND SECTOR NUMBER (1 TO 16)
C MS = MIND SPEED (M/S)
C MO = MIND DIRECTION (DEGREES)
C TA = AMBIENT TEMPERATURE (DEGREES CELSIUS)
C PEN = INVERSION PENETRATION FACTOR (PEN .GE. 1.0)
C HMIX = MIXING HEIGHT (METERS)
C
DO 150 IS=1,NSCEN
READ(IRD,820)NSC(IS)»NMS(IS),NHD(IS),HS(IS),HD(IS),TA(IS),
1 PEN(IS),HMIX(IS)
C
IF(NSC(IS).GE.l .AND. NSC(IS). LE.7) GO TO 140
NUM=1
IF(NSC(IS).GT.7) NUM=7
MRITE(IMR,535) IS, NSC (IS), HUM
NSC(IS)=NUM
140 IF(NWSOPT.EQ.O) GO TO 142
IF(NMS(IS).GE.l .AND.. NWS(IS).LE.6) GO TO 144
NUM=1
IF(NWS(IS).ST.6) NUM=6
MRITE(IMR,545) IS,NMS(IS),NUM
NWS(IS)=NUM
GO TO 144
142 IF(WS(IS).GT.O.) GO TO 144
HRITE(IWR,565) IS.NSIIS)
MS(IS)=1.0
144 IF(NWDOPT.NE.l) GO TO 146
IF(NWD(IS).GE.l .AND,. NWO(IS). LE.16) GO TO 146
NUM=1
IF(NMD(IS).GT.16) NUM=16
WRITE (IWR, 555) IS,NWD( IS) ,NUM
NWD(IS)=NUM
146 IF(PENUS).LT.l.O) PEN(IS)=2.0
IF(HMIX(IS).LT.1.0E-5) HMIX(IS)= 9999.9
150 CONTINUE
00019410
00019420
00019430
00019440
00019450
00019460
00019470
00019480
00019490
00019500
00019510
00019520
00019530
00019540
00019550
00019560
00019570
00019580
00019590
00019600
00019610
00019620
00019630
00019640
00019650
00019660
00019670
00019680
00019690
00019700
00019710
00019720
00019730
00019740
00019750
00019760
00019770
00019780
00019790
00019800
00019810
00019820
00019830
00019840
00019850
00019860
00019870
00019880
00019890
000199QO
00019910
00019920
00019930
00019940
00019950
00019960
00019970
154
-------
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2033
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
206?
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
C
C
C
C
C
C
C
C
C
C
C
1<
PRINT INPUT CONTROL PARAMETERS
IF(ISTOP.EQ.l) HRITE(IWR,900) TT
WRITE(IWR,902) NTOPT
MRITE(IURi904) NHDOPT
HRITE(IWR,906) NMSOPT
WRITE(IWR,908) NSCEN
WRITE(IWR,910) NSTDUN
IF(IGRID.EQ.O) WRITE(IWR,916) LX,LY,6RID,XRSWC,YRSWC
IFUSRID.EQ.l) WRITE (IWR, 914)
WRITE(IWR,920) OTOZ(1),DTDZ(2)
WRITE(IWR,900) TT
WRITE (IWR, 922) NPOL,(POLNAMU,1),I=1,3)
IF(NPOL.EQ.2) WRITE!IWR,923) (POLNAM(I,2),I=1,3)
WRITE(IWR,924) ASCALE(l)
IF(NPOL.EQ.2) WRITE(IWR,935) ASCALE(2)
WRITE(IWR,925) Ad),8(1)
IF(NPOL.EQ.2) WRITE(IMP,926) A(2),B(2)
WRITE(IWR,927) (CALNAM(1,1),1=1,7)
IF(NPOL.EQ.2) WRITE(IWR,921) (CALNAMlI,2),I=1,7)
WRITE(IWR,928) V01
IF(NPOL.EQ.2) WRITE(IWR,931) VD2
WRITE(IWR,929) Ml
IF(NPOL.EQ.2) WRITE(IHR,933) W2
WRITE(IWR,930) ICT
IF(NPOL.EQ.l) WRITE(IWR,932)
IF(NPOL.EQ.2) WRITE(IWR,934)
IF(ICT.EQ.O) BO TO 152
WRITE(IWR,936) XKT
WRITE(IWR,938) GAMMA
152 WRITE(IWR,940)
IF(NLIST.ST.O) WRITE(IWR,942) NLIST
IF(NARRAY.ST.O) WRITE(IWR,944) NARRAY
IF(NARRAY.EQ.l) WRITE(IWR,946)
IF(NARRAY.EQ.2) WRITE(IWR,948)
IF(NARRAY.EQ.3) WRITE(IWR,950)
IF(NTAPE.GT.O) WRITE(IWR,952) NTAPE,INTER
IF(NCSOPT.ST.O) WRITE(IWR,954) NCSOPT
ZF(NPRINT.GT.O) WRITE(IWR,956) NPRINT
IF(NMAX.GT.O) WRITE(IWR,958) UMAX
PRINT INPUT PARAMETERS FOR SCENARIOS
HRITE(IWR,960)TT
WRITE(IWR,962)
WRITE(IWR,963)
WRITE(IWR,964)
DO 160 IS=1,NSCEN
KS=NSC(IS)
WRITE(IWR,966) IS,SCLAB(KS)
IF(NWSOPT.EQ.O) 60 TO 153
KW=NWS(IS)
WS(IS)=CWS(KW)
WRITE(IWR,970) KM
153 WRITE(IWR,972) HS(IS)
IF(NWDOPT.EQ.l) GO TO 155
WOOUT=WD(IS)
SO TO 156
155 KD=NWD(IS)
MDOUT=SECTAN(KO) * 180./3.14159265
WRITE(IWR,974) KD
156 WRITE(IWR,978) WDOUT,TA(IS),PEWIS),HMIX(IS)
HD(IS)= MO(IS)»3.14159265/180.
TA(IS)= TA(IS) + 273.15
FOR EACH SCENARIO, CALCULATE THE CRITICAL DOWNWIND DISTANCES
AT WHICH VERTICAL MIXING IMPENDS (DCRIT(IS.l)) AND IS COMPLETE
(DCRITUS.2)).
JSC=NSC(IS)
JD=3
IF(AX(JSC,2)*5000.**BX(JSC,2).GT.0.47*HMIX(IS)) JD=2
IF(AX(JSC,1)*500.*«BXUSC,1).GT.0.47*HMIX(IS)) JD=1
DCR(IS,1)=0.001*(0.47*HMIX(IS)/AX(JSC,JD))**(1./BX(JSC,JD))
DCR(IS,2)= DCR(IS,1)*2.
>0 CONTINUE
00019980
00019990
00020000
00020010
00020020
00020030
00020040
00020050
00020060
00020070
00020080
00020090
00020100
00020110
00020120
00020130
00020140
00020150
00020160
00020170
00020180
00020190
00020200
00020210
00020220
00020230
00020240
00020250
00020260
00020270
00020280
00020290
00020300
00020310
00020320
00020330
00020340
00020350
00020360
00020370
00020380
00020390
00020400
00020410
00020420
00020430
00020440
00020450
00020460
00020470
00020480
00020490
00020500
00020510
00020520
00020530
00020540
00020550
00020560
00020570
00020580
00020590
00020600
00020610
00020620
00020630
00020640
00020650
00020660
00020670
00020680
00020690
00020700
00020710
00020720
00020730
00020740
155
-------
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
C
C
C
C
C
C
C
**** READ UP TO 50 AREA SOURCE CARDS.
XA.YA
SIZE
EA(1*2)
- COORDINATES OF SOUTHWEST CORNER OF AREA SOURCE
= LENGTH OF A SIDE OF AREA SOURCE (M).
= EMISSION RATES OF 2 POLLUTANTS (G/S).
(KM).
C
170
C
WRITE(IHR,990) TT
NAS=1
SUMAQ(1)=0.
SUMAQ(2)=0.
SUMAR(1)=0.
SUMAR(2)=0.
READ(IRD,825)XA(NAS),YA(NAS),SIZE(NAS),EA(NAS,1),EA(NAS,2>
GO TO 180
172
175
C
C
00020750
00020760
00020770
00020780
00020790
00020800
00020810
00020820
00020830
00020840
00020850
00020860
00020870
00020880
00020890
00020900
00020910
00020920
00020930
00020940
00020950
00020960
00020970
00020980
00020990
00021000
00021010
00021020
00021030
00021040
00021050
00021060
00021070
00021080
00021090
00021100
00021110
00021120
00021130
THEN DEPOSITION VELOCrTY00021140
00021150
00021160
00021170
00021180
00021190
00021200
00021210
00021220
00021230
00021240
00021250
00021260
00021270
00021280
00021290
00021300
00021310
00021320
00021330
00021340
00021350
00021360
00021370
00021380
00021390
185 IF(INPTSC.EQ.2)REAO(IDSK,830)XP(NPS),YP(NPS),EP(NPS,X);EP(NPS,2), 00021400
1 HP(NPS),DP(NPS)»VP(NPS),TPtNPS),NAMEU),NAME(2)
IF(INPTSC.EQ.l) READ(IRD,830)XP(NPS),YP(NPS),EP(NPS,1),EP(NPS,2>,
1 HP(NPS),OP(NPS),VP(NPS),TP(NPS3,NAME(1),NAMEC2>
180
C
C
C
181
IF(NPOL.EQ.l) EA(NAS.2)=0.0
IF«SIZE(NAS)+EA(NAS,1)+EA(NAS,2)).LT.1.0E-04)
IF(SIZE(NAS).GE.1.0E-4) GO TO 172
SIZE(NAS)=1.0E-4
IFIGRID.NE.O.) SIZE(NAS)=SRID*10CO.
WRITE(IWR,585) NAS,SIZE(NAS)
DO 175 K=l,2
EAR(K)=EA(NAS,K)
SUMAR(K)=SUMAR(K)+EAR(K)
EA(NAS,K)= EA(NAS,K)*ASCALE(K)
SUMAQ(K)=SUMAQ(K)+EA(NAS,K)
PRINT INPUT PARAMETERS FOR THIS AREA SOURCE
WRITE(IWR,992)NAS,XA(NAS),YA(NAS),SIZE(NAS),EAR(1),EA(NAS,1),
1EAR(2),EA(NAS,2)
SIZE(NAS)=SIZE(NAS)*0.001
IF(NAS/50*50.EC».NAS) WRITE(IHR,990)TT
NAS=NAS+1
GO TO 170
NAS=NAS-1
WRITE(IWR,994) SUMAR(1),SUMAQ(1),SUMAR(2),SUMAQ(2)
IF AREA SOURCE CALCULATIONS ARE TO BE MADE,
VALUE(S) MUST BE GREATER THAN ZERO
IF(NAS.LT.l) GO TO 184
IFtVDl.GT.O.) GO TO 181
WRITE(IWR,655) AMSG(l)
VD1=0.01
IFCNPOL.EQ.l .OR. VD2.GT.O.) GO TO 184
WRITE(IWR,655) AMSG(2)
VD2=0.01
C
C
C
C
C
C
C
C
C
C
C
C
**** READ UP TO 300 POINT SOURCES
XP.YP = COORDINATES OF POINT SOURCE (KM).
EPU42) = EMISSION RATES OF 2 POLLUTANTS
HP = SOURCE HEIGHT CM).
DP = INSIDE DIAMETER (M).
VP = VELOCITY (M/S).
TP = TEMPERATURE (DEGREES CELSIUS).
NAME = IDENTIFICATION.
184 WRITE (IWR, 980) TT
NPS=1
SUMPQ(1)=0.
SUMPQ(2)=0.
(6/S)
C
C
IF(NPOL.EQ.l) EP(NPS,2)=0.0
IF(HP(NPS)+DP(NPS)+VP(NPS)+TP(NPS).LT.1.0E-4) GO TO 190
IF(DP(NPS).GT.O.O) GO TO 137
WRITE(IUR,575) NPS
DP(NPS)=1.0E-4
PRINT INPUT PARAMETERS FOR THIS POINT SOURCE
00021410
00021420
00021430
00021440
00021450
00021460
00021470
00021480
00021490
00021500
00021510
156
-------
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
187 WRITECIMR,984) NPS,NAMEU),NAME(2),XP1'00022120
1) 00022130
ISTOP=1 00022140
60 TO 135 00022150
535 FORMATUHO,'IN SCENARIO',13,' STABILITY CUSS NUMBER NSC=',I2, 00022160
I1 IS OUT OF RAN6E. NSC SET TO',12) 00022170
545 FORMATUHO,'IN SCENARIO',13,' MIND SPEED CUSS NUMBER NUS=',I2, 00022180
1* IS OUT OF RAN6E. NWS SET TO',12) 00022190
555 FORMATUHO,'IN SCENARIO*,13,' MIND DIRECTION SECTOR NUMBER NHD=', 00022200
1 13,' IS OUT OF RAN6E. NWO SET TO1,13) 00022210
565 FORMATUHO,'IN SCENARIO*,13,' SPECIFIED MIND SPEED MUST BE 6REATER00022220
1 THAN ZERO. MS SET TO 1.0 M/S') 00022230
575 FORMATUHO,'POINT SOURCE',14,': INSIDE DIAMETER MUST BE 6REATER T00022240
1HAN ZERO. DP SET TO .0001 M1 ) 00022250
585 FORMATUHO,'AREA SOURCE1,13,': LEN6TH OF SIDE MUST BE 6REATER THA00022260
IN ZERO. SIZE SET TO SF9.2) 00022270
600 FORMATUHO,'RUN REQUESTED MOULD PRODUCE OVER 10000 RECORDS ON TAPE00022280
157
-------
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
IV OUTPUT OPTION NTAPE HAS BEEN SET TO ZERO') 00022290
605 FORMATdHO,'OUTPUT OPTION NLIST MAY NOT BE USED WITH AUTOMATIC MIN00022300
ID SHIFT OPTION (NMDOPT>1)'/' NLIST HAS BEEN SET TO ZERO1) 00022310
615 FORMATdHO,'AUTOMATIC WIND SHIFT OPTION (NWDOPT>1) MAY NOT BE USED00022320
1 WITH TIME AVG OPTION NTOPTMV NMDOPT HAS BEEN SET TO ZERO1) 00022330
620 FORMATdHO,'OUTPUT OPTION NTAPE MAY NOT BE USED WITH AUTOMATIC WIN00022340
ID SHIFT OPTION (NWDOPT>1)V NTAPE HAS BEEN SET TO ZERO') 00022350
630 FORMATdHl//' SERIOUS ERROR(S) IN INPUT PARAMETERS',5X, 00022360
1 'RUN CANNOT BE CONTINUED') 00022370
635 FORMATdHO,'CONTROL STRATEGY OUTPUT OPTION NCSOPT MAY NOT BE USED 00022380
1WITH TMO POLLUTANTS'/' NCSOPT HAS BEEN SET TO ZERO' ) 00022390
640 FORMATdHO,'CHEMICAL TRANSFORMATION RATE XKT=',F7.3,' IS OUT OF RA00022400
1NGEV XKT HAS BEEN SET TO',F8.3) 00022410
645 FORMATdHO,'CONTROL STRATEGY OUTPUT OPTION NCSOPT MAY NOT BE USED 00022420
1MHEN NUMBER OF COLUMNS OR ROWS IN RECEPTOR GRID IS GREATER THAN 2500022430
2V NCSOPT HAS BEEN SET TO ZERO")
655 FORMATdHO,'AREA SOURCE CALCULATIONS REQUIRE DEPOSITION VELOCITY
1REATER THAN ZERO.',4X,A4,'HAS BEEN SET TO 0.01')
660 FORMATdHO,'TIME AVERAGING OPTION NTOPT=',I2,' IS OUT OF RANGE.
1TOPT SET TO I1)
C
C
C
800
805
810
812
815
817
820
825
830
C
C
C
INPUT FORMATS
FORMATC20A4)
FORMATd3I5)
FORMATt 2F10.0,2110,3F10.0)
FORMAT(2I5,6F10.0)
FORMAT(6F10.0)
FORMAT(3A4,7A4,3A4,7A4)
FORMAT(3I5,5F10.0)
FORMAT(5F10.0)
FORMAT(8F9.0,2A4)
OUTPUT FORMATS
00022440
G00022450
00022460
N00022470
00022480
00022490
00022500
00022510
00022520
00022530
00022540
00022550
00022560
00022570
00022580
00022590
000226GO
00022610
00022620
00022630
900 FORMAT(1H1,45X,'POLLUTION EPISODIC MODELV//4X,'INPUT CONTROL PARA00022640
1METERS: ',20A4//) 00022650
902 FORMATdOX,'AVERAGING TIME OPTION? NTOPT=',I1// 00022660
1 18X,'A SCENARIO IS A SET OF METEOROLOGICAL DATA FOR ONE HOUR'// 00022670
2 13X,'1 1 HOUR: CONCENTRATIONS ARE CALCULATED FOR EACH SCENARIO'/00022680
3 13X,'2 24 HOURS: CONCENTRATIONS CALCULATED FOR 24 SCENARIOS ARE 00022690
4AVERA6ED'/13X,'3 VARIABLE: CONCENTRATIONS CALCULATED FOR A GIVEN 00022700
5NUMBER (2 TO 24) OF SCENARIOS ARE AVERAGED'//)
904 FORMATdOX,'MIND DIRECTION OPTION: NWDOPT=,II//
113X,'0 DIRECTION IN DEGREES TO BE SPECIFIED FOR EACH SCENARIO'/
213X,'l SECTOR NUMBER TO BE SPECIFIED FOR EACH SCENARIO'/
312X,'2-7 DIRECTION IN DEGREES TO BE SPECIFIED FOR THE FIRST OF FOU00022750
4R SUB-SCENARIOS.V17X,'FOR EACH SUCCEEDING SUB-SCENARIO, MIND DIRE00022760
5CTION IS AUTOMATICALLY INCREASEDV17X,'BY 90,45,30,15,10,OR 5 DEGR00022770
6EES, DEPENDING ON THE OPTION NUMBER SELECTED.'//) 00022780
906 FORMATdOX,'HIND SPEED OPTION: NWSOPT=',I1//
113X,'0 SPEED IN M/S TO BE SPECIFIED FOR EACH SCENARIO'/
213X,'l MIND SPEED CLASS NUMBER TO BE SPECIFIED FOR EACH SCENARIO'00022810
3//) 00022820
908 FORMATdOX,'NUMBER OF SCENARIOS: NSCEN=',I2//)
910 FORMATdOX,'STACK-TIP DOWNHASH ALGORITHM OPTION: NSTDWN=,II//
1 13X,'0 ALGORITHM IS IN EFFECT'/
2 13X,'l ALGORITHM IS NOT USED'//)
914 FORMATdOX,'AUTOMATIC RECEPTOR GRID OPTION IS IN EFFECT'//)
916 FORMATdOX,'RECEPTOR GRIDS',
16X,'COLUMNS! LX=',I3,4X,'ROWS: LY=',I3/
230X,'SPACING: GRID=',F7.3,' KM'/
330X,'SOUTHWEST CORNER XRSWC= ',F8.3,' KM HV
450X,'YRSWC= '.F8.3,' KM S'//)
920 FORMATdOX,'POTENTIAL TEMPERATURE GRADIENT: DTDZ(1)= ',F7.3,
I1 DEG/M STABILITY CLASS E'/
242X,'DTDZ(2)= ',F7.3,' CEG/M STABILITY CLASS F1//)
921 FORMAT(1H+,85X,7A4)
922 FORMATdOX,'NUMBER OF POLLUTANTS: NPOL=',I1/
1 51X,'POLLUTANT-i: ',3A4)
923 FORMAT(1H+,85X,'POLLUTANT-2: S3A4)
924 FORMAT(/10X,'AREA SOURCE SCALING FACTOR:',17X,'ASCALE=',F9.3)
925 FORMATdOX,'CALIBRATION COEFFICIENTS:1,
1 16X,'A=',F10.3,' B=',F10.3)
926 FORMATdH+,85X,'A=',F10.3,' B=',F10.3)
927 FORMATdOX,'CALIBRATION IDENTIFICATION:' ,14X,7A<*,6X,7A4)
928 FORMATdOX,"DEPOSITION VELOCITY (CM/S):',20X,'VD1=',F8.3)
00022710
00022720
00022730
00022740
00022790
00022800
00022830
00022840
00022850
00022860
00022870
00022880
00022890
00022900
00022910
00022920
00022930
00022940
00022950
00022960
00022970
00022980
00022990
00023000
00023010
00023020
00023030
00023040
00023050
158
-------
2310
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2323
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
929 FORMATdOX,'SETTLING VELOCITY (CM/S):',23X,'Hl=',F8.3)
930 FORMAT(//10X,'CHEMICAL TRANSFORMATION OPTION: ICT=',I1/J
931 FORMAT!1H+.91X,'VD2=',F8.3)
932 FORMAT(13X,'NPOL=1'/
00023060
00023070
00023080
00023090
215X,'ICT=0 CHEMICAL TRANSFORMATION LOSS OF POLLUTANT IS IGNOREDV00023100
315X,'ICT=1 FIRST-ORDER CHEMICAL TRANSFORMATION LOSS OF POLLUTANT 00023110
4IS CONSIDERED'//) 00023120
933 FORMAT(1H+,92X,'H2=',F8.3) 00023130
934 FORMATU3X, 'NPOL=2V 00023140
215X,'ICT=0 CHEMICAL TRANSFORMATION LOSS OF POLLUTANTS IS IGNORED'00023150
3/15X,'ICT=1 FIRST-ORDER CHEMICAL TRANSFORMATION OF POLLUTANT-1 T000023160
4 POLLUTANT-2 IS CONSIDERED'//) 00023170
935 FORMAT(1H+,88X,'ASCALE=',F9.3) 00023180
936 FORMATdOX,'CHEMICAL TRANSFORMATION RATE: XKT=*,F7.3, 00023190
I1 PERCENT/HRV) 00023200
938 FORMATdOX,'RATIO OF MOLECULAR HEIGHTS OF POLLUTANT-2 (PRODUCT) T000023210
1 POLLUTANT-1 (REACTANT): GAMMA=',F6.3/) 00023220
940 FORMAT(//9X,'OUTPUT OPTIONS SELECTED:'/) 00023230
942 FORMAT(13X,'NLIST=',II,3X,'LISTS OF CONCENTRATION AND SURFACE DEP000023240
1SITION FLUX AT EACH RECEPTOR IN THE GRID,V24X,'ONE COLUMN PER PAG00023250
2E1) 00023260
944 FORMAT(13X,'NARRAY=',I1,2X,'MAPS OF CONCENTRATION AND SURFACE DEP000023270
1SITION FLUX AT EACH RECEPTOR IN THE GRID,') 00023280
946 FORMAT(24X,'CALIBRATED AND UNCALIBRATED') 00023290
948 FORMATC24X,'UNCALIBRATED ONLY') 00023300
950 FORMATC24X,'CALIBRATED ONLY') 00023310
952 FORMAT(13X,'NTAPE=',I1,3X,'TAPE CONTAINING COORDINATES, CONCENTRAT00023320
1ION, AND SURFACE DEPOSITION FLUXV24X,'AT EACH RECEPTOR IN THE GRI00023330
2DV13X,'INTERS',12,2X,'INTERVAL OF RECEPTORS WHICH HILL BE WRITTEN00023340
3 ON TAPE') 00023350
954 FORMAT(13X,'NCSOPT=',I1,2X,'LIST OF POINT SOURCE CULPABILITY FOR C00023360
10NCENTRATION AND SURFACE DEPOSITION FLUXV24X,'AT EACH RECEPTOR IN00023370
2 THE GRID') 00023380
956 FORMAT(13X,'NPRINT=',I1,2X,'LIST OF POINT SOURCE PARAMETERS AND EF00023390
1FECTIVE STACK HEIGHTS'/24X,'PRINTED AT BEGINNING OF EACH SCENARIO'00023400
2) 00023410
958 FORMAT(13X,'NMAX=',I1,4X,'LIST OF RECEPTORS HITH HIGHEST CONCENTRA00023420
1TION AND SURFACE DEPOSITION FLUXV24X,'FOR EACH SCENARIO - PRINTED00023433
2 AT END OF RUN') 00023440
960 FORMAT(1H1,45X,'POLLUTION EPISODIC MODELV//4X,'INPUT SCENARIO PAR00023450
1AMETERS: '.20A4//26X,'WIND DIRECTIONS',27X,'HIND SPEED CLASSES', 00023460
212X,'STABILITY CLASSES'/) 00023470
962 FORMATdOX,'SECTOR DIRECTION',6X,'SECTOR DIRECTION*,9X, 00023480
1'CLASS SPEED CLASS',15X,'CLASS'/ 00023490
210X,'NUMBER*,8X,'(DEG)',6X,'NUMBER',8X,'(DEG)',9X,'INDEX (M/S) 00023500
3 INTERVAL(KT)*,9X,'INDEX CLASSV/13X,'1 N',7X,*0.0*,9X,'9 00023510
4S',5X,'180.0'/13X,'2 NNE 22.5',8X,'10 SSH 202.5',11X, 00023520
5*1',6X,'1.50',7X,'0-3',16X,'I1,7X,'A'/13X,'3 NE',5X,'45.0',8X, 00023530
6'11 SW 225.0',11X,'2',6X,'2.46',7X,'4-6*,16X,'2',7X,'B') 00023540
963 FORMAT(13X,'4 ENE 67,5',8X,'12 HSH 247.5',11X,'3',6X, 00023550
l'4.47*,7X,'7-10t,15X,'31,7X,'C'/13X,'5 E',6X,'90.0',8X,'13 W00023560
2',5X,'270.0',11X,'4',6X,'6.93*,6X,'11-16*,15X,'41,7X,'DO (DAY)'/ 00023570
313X,'6 ESE 112.5',8X,'14 WNW 292.5',11X,'5*,6X,'9.61', 00023580
46X,'17-21',15X,'5',7X,'DN (NIGHT)*/13X,'7 SE 135,0',8X,'15 00023590
5 NH 315.0',11X,'6',5X,'12.52 OVER 21*,15X,'6*,7X,'EV ,00023600
613X,'8 SSE 157.5',8X,'16 NNH 337.5',48X,'7',7X,'F'///) 00023610
964 FORMAT(5X,'SCENARIO',3X,'STABILITY',3X,'HIND SPEED',5X,'WIND',8X, 00023620
I'HIND*,6X,'WIND*,8X,'AMBIENT',9X,'INVERSION*,8X,'MIXING'/ 00023630
26X,'NUMBER*,6X,'CLASS',7X,'CLASS',8X,'SPEED',6X,'SECTOR*,3X, 00023640
3'OIRECTION',3X,'TEMPERATURE',3X,'PENETRATION FACTOR',3X,'HEIGHT'/ 00023650
443X,'(M/S)',17X,'(DEG)',7X,'(DEG C)',27X,'(M)'/) 00023660
966 FORMAT(8X,I2,10X,A2) 00023670
970 FORMAT(1H+,31X,I1) 00023680
972 FORMAT(1H+,42X,F6.3) 00023690
974 FORMAT!1H+,55X,12) 00023700
978 FORMAT(1H*,63X,F6.2,7X,F7.2,11X,F6.3,8X,F7.1) 00023710
980 FORMAT(1H1,45X,'POLLUTION EPISODIC MOOELV//4X,'INPUT POINT SOURCE00023720
i PARAMETERS: ,20A4/// 00023730
26X,'POINT SOURCE1,10X,'COORDINATES',9X,'EMISSION RATE', 00023740
36X,'EMISSION RATE',5X,'HEIGHT*,4X,'DIAMETER',4X,'EXIT VEL*,5X, 00023750
4'EXIT TEMPV5X,'NUMBER',3X,'LABEL',7X,'X(KM)',5X,'Y(KM)',6X, 00023760
5'POLLUTANT-l (G/S)',2X,'POLLUTANT-2 (G/S)',3X,*(M)*,8X,'(M)',8X, 00023770
6*(M/S)',8X,'(DE6 C)1/) 00023780
984 FORMAT(6X,I3,3X,2A4,3X,F8.2,2X,F8.2,10X,F9.3,10X,F9.3,6X,F6.2,5X, 00023790
1F6.3,6X,F7.3,6X,F8.3) 00023800
986 FORMAT(1HO,5X,'SUMS OF THE POINT SOURCE EMISSION RATES',6X,F9.3, 00023810
1* G/S',6X,F9.3,' G/S') 00023820
159
-------
2387
2383
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
990 FORMATUH1.45X,1 POLLUTION EPISODIC MODEL'///4X,'INPUT AREA SOURCE
IPARAMETERS: ',20A4///
270X,'POLLUTANT-11,17X,'POLLUTANT-2'/5X,"AREA SOURCE1,8X,
3'COORDINATES',9X,'LENSTH OF SIDE1,11X,'EMISSION RATE',15X,
4'EMISSION RATE1/
57X,'NUMBER',9X,'X(KM)1,5X,'Y(KM)1,13X,'(M)1,12X,'INPUT (S/S)1,
64X,'SCALED1,7X,'INPUT (S/S)1,4X,'SCALED'/)
992 FORMAT(9X,I2,8X,F8.2,2X,F8.2,10X,F8.2,9X,F9.3,4X,F9.3,6X,
1 F9.3.4X.F9.3)
994 FORMATdHO.SX,'SUMS OF THE AREA SOURCE EMISSION RATES IN THIS RUN'
l,8X,F9.3i4XtF9.3,6X,F9.3,4X,F9.3)
END
SUBROUTINE OUTMOD
SUBROUTINE OUTMOD (VERSION 82360), PART OF PEN.
SUBROUTINE OUTMOD COORDINATES OUTPUT OF THE CONCENTRATIONS)
AND SURFACE DEPOSITION FLUX(ES) CALCULATED FOR EACH RECEPTOR
IN THE 6RID FOR EACH SCENARIO.
ON OPTION, THE OUTPUT MAY BE IN THE FORM OF LISTS, ARRAY
MAPS, OR TAPE.
OUTMOD CALLS SUBROUTINE SCENMX TO DETERMINE AND STORE THE
RECEPTORS WITH MAXIMUM CCNCENTRATION(S) AND SURFACE DEPOSITION
FLUX(ES) FOR THE SCENARIO.
*** PEM MODIFICATIONS AND FORMATS BY MARTHA M. STEVENS,
NOAA-ATDL, P.O. BOX-E, OAK RIDGE, TENN 37830
DECEMBER 1982
COMMON/PEMCOM/CONC(50,50,2),SDF(50,50,2), TT(20),
1 XP(300),YP(300),EP(300,2),HP( 300),DP(300),VP(300),TP(300),
2 XA(50),YA(50),EA(50,2),SIZE(50),
3 NO(24),US(24),TA(24),HMIX(24),PEN(24),
4 AX(7,3),BX(7,3),P(7),SCLAB(7),DTDZ(2), SECTANU6),
5 XSWC,YSWC,SR!D,LX,LY, A(2),B(2),POLNAM(3,2),CALNAM(7,2),
6 ITA,IRD,IUR,IDSK, 080,047,08047,OIST,DELTA,
7 ESH(2),PEAK,IBUOY,IRISE,IDWN,EFF,XS, UINV.WVEC,
8 NAS.NPS,INDEX,IGRID,IAV,ISCEN,IMDOPT,IWD,ISC,IPS,
9 NTOPT,NWDOPT,NWSOPT,NSCEN,NLIST,NARRAY,NTAPE,NCSOPT,NMAX,
* NSTDMN,INTER,NPRINT
COMMON/PARMl/NPOL,ICT,VD1,Wl,VD2,M2,TAUC
DIMENSION COW 2),CALCON(2),SD(2),CALSD(2)
HOUT= WD(ISCEN)*180./3.1415927
CONTROL STRATEGY RESULTS OUTPUT BY SUBROUTINE HOROUT
IF(NCSOPT.GT.O.AND.NTOPT.EQ.l) CALL WOROUT
PRINT AND/OR WRITE-ON-TAPE LISTS OF CONCENTRATIONS) AND
SURFACE DEPOSITION FLUX(ES)
IF(NLIST.EQ.O .AND. NTAPE.EQ.O) GO TO 350
IF(NTAPE.EQ.l) HRITE(ITA,900)TT
NREP=0
BEGIN LOOP ON COLUMNS
100 DO 325 1=1,LX
IF(NLIST.EQ.O) GO TO 250
ISKIP=0
DO 125 JM=1,LY
DO 125 KM=1,2
IF(CONC(I,JM,KM).NE.O.) GO TO 130
125 CONTINUE
ISKIP=1
IF(NTAPE.EQ.O) GO TO 325
GO TO 250
130 IF(NREP.EQ.l) GO TO 150
WRITE(IWR,905)TT,ISCEN,SCLAB(ISC),HS(ISCEN),MOUT,
1 HMIX( ISCEN ),IAV
WRITEUWR,910)(CALNAM(L,1),L=1,7),(CALNAM(L,2),L=1,7),
1 (POLNAM(L,1),L=1,3),(POLNAM(L,2),L=1,3),(POLNAM(L,1),L=1,3),
2 CPOLNAM(L,2),L=1,3)
160
00023830
00023840
00023850
00023860
00023870
00023880
00023390
00023900
00023910
00023920
00023930
00023940
00023950
00023960
00023970
00023930
00023990
00024000
00024010
00024020
00024030
00024040
00024050
00024060
00024070
00024080
00024090
00024100
00024110
00024120
00024130
00024140
00024150
00024160
00024170
00024180
00024190
00024200
00024210
00024220
00024230
00024240
00024250
00024260
00024270
00024280
00024290
00024300
00024310
00024320
00024330
C0024340
00024350
00024360
00024370
00024380
00024390
00024400
00024410
00024420
00024430
00024440
00024450
00024460
00024470
00024480
00024490
00024500
00024510
00024520
00024530
00024540
00024550
00024560
00024570
00024580
00024590
-------
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
GO TO 250
150 WRITE(IWR,907) TT,ISCEN,SCLAB(ISC),HSCALSDtK),K=l,2)
300 CONTINUE
325 CONTINUE
C
IFtNLIST.EQ.O .OR. NREP.EQ.l) GO TO 350
C
C IF NO SURF DEP FLUX HAS CALCULATED. SKIP PRINT
IF(VD1.LE.0.01 .AND. VD2.LE.0.01) GO TO 350
NREP=1
GO TO 100
C
C PRINT ARRAY MAPS OF CONCENTRATIONS
350 IF(NARRAY.GT.O) CALL ARRAY
C
C DETERMINE MAXIMUM PREDICTED CONCENTRATIONS) FOR SCENARIO VIA SCENMX
IFlNMAX.ST.O.AND.lNTOPT.EQ.l.OR.ISCEN.EtJ.NSCEN)) CALL SCENMX
C
900
RETURN
FORMAT(20A4)
00024600
00024610
00024620
00024630
00024640
00024650
00024660
00024670
00024680
00024690
00024700
00024710
00024720
00024730
00024740
00024750
00024760
00024770
00024780
00024790
00024800
00024810
00024820
00024830
00024840
00024850
00024860
00024870
00024880
00024890
00024900
00024910
00024920
00024930
00024940
00024950
00024960
00024970
00024980
00024990
00025000
00025010
00025020
00025030
00025040
00025050
00025060
00025070
00025080
00025090
00025100
00025110
00025120
00025130
00025140
00025150
00025160
00025170
905 FORMATUHl.'PEM OUTPUT: PREDICTED CONCENTRATION: ', 00025180
120A4/' SCENARIO ',I2t't STABILITY^,A2,', WIND SPEED=«,F5.2,' M/S,00025190
2 MIND DIRECTION^',F6.2,' DEC, MIXING HEIGHTS',F7.1, M, AVERAGING 00025200
3TIME=',I3,' HRV/) 00025210
907 FORMATtlHl.'PEM OUTPUT: PREDICTED SURFACE DEPOSITION FLUX: ', 00025220
120A4/1 SCENARIO ',12,', STABILITY^,A2,', HIND SPEED=', 00025230
2F5.2,1 M/S, HIND DIRECTIONS',F6.2,' DEG, MIXING HEIGHT=',F7.1, 00025240
3' M, AVERAGING TIME='.I3,' HR'//) 00025250
910 FORMAT(33X,'UNCALIBRATED CONCENTRATION',11X,'CALIBRATED CONCENTRAT00025260
1ION POL-i: '.7A4/16X,'RECEPTOR1,9X,'(MICROGRAMS PER CUBIC METER)'00025270
2,9X,'CALIBRATED CONCENTRATION POL-2: ',7A4/15X,'COORDINATES',7X, 00025280
3'POLLUTANT-1,5X,'POLLUTANT-2',10X,'POLLUTANT-1',5X,'POLLUTANT-2 V00025290
4' COL ROH',6X,tX(KM)t,4X,'Y(KM)t,5X,3A4,4X,3A4,9X,3A4,4X,3A4) 00025300
912 FORMAT(32X,'UNCALIBRATED SURFACE DEPOSITION FLUX1,4X,'CALIBRATED V00025310
1ALUE POLLUTANT-i: '.7A4/16X,'RECEPTOR',9X,'(MICROGRAMS PER SQ MET00025320
2ER PER HOUR)',5X,'CALIBRATED VALUE POLLUTANT-2: ',7A4/ 00025330
315X,'COORDINATES',7X,'POLLUTANT-11,5X,'POLLUTANT-21,12X, 00025340
4'POLLUTANT-1',5X,'POLLUTANT-21/1 COL ROH1,6X,'X(KM)1,4X,'Y(KM)', 00025350
55X,3A4,4X,3A4,11X,3A4,4X,3A4) 00025360
161
-------
2541
2542
2543
2544
2545
2546
2547
2543
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
970 FORMAT(2(2X,I2),2X,F9.2,F9.2,6X,F11.4,5X,F11.4,10X,F11.4,5X,F11.
975 FORMATUOF8.2)
END
SUBROUTINE ARRAY
C
c
C
c
c
c
c
c
c
c
c
C *** PEM MODIFICATIONS AND FORMATS BY M.M. STEVENS,
SUBROUTINE ARRAY (VERSION 82360), PART OF PEM.
SUBROUTINE ARRAY CREATES ARRAY MAPS OF THE CONCENTRATIONS AND
SURFACE DEPOSITION FLUXES IN THE RECEPTOR GRID AND
PRINTS THEM AT THE END OF EACH SCENARIO.
UNCALIBRATED AND CALIBRATED CONCENTRATIONS OF EACH POLLUTANT
APPEAR ON SEPARATE MAPS OF UP TO FOUR SECTIONS (PASES) EACH.
C
C
C
C
125
150
175
NOAA-ATDL, P.O. BOX E, OAK RIDGE, TN 37830
DECEMBER 1982
COMMON/PEMCOM/CONC(50,50,2),SDF(50,50,2), TT(20),
1 XP(300),YP(300),EP(300,2),HP(300),DP(300),VP(300),TP(300),
2 XA(50),YA(50),EA(50,2),SIZE(50),
3 WO(24),WS(24),TA(24),HMIX(24),PEN(24),
4 AX(7,3),BX(7,3),P(7),SCLAB(7),DTDZ(2), SECTAN(16),
5 XSUC,YSUC,GRID,LX,LY, A(2),B(2),POLNAM(3,2),CALNAM(7,2),
6 ITA.IRD.IWR.IDSK, 080,047,08047,DIST,DELTA,
7 ESH(2),PEAK,IBUOY,IRISE,IDHN,EFF,XS, UINV.WVEC,
8 NAS.NPS,INDEX,IGRID,IAV,ISCEN,IWDOPT,IWD,ISC,IPS,
9 NTOPT,NWDOPT,NWSOPT,NSCEN,NLIST,NARRAY,NTAPE,NCSOPT,NMAX,
* NSTDW*,INTER,NPRINT
COMMON/PARM1/NPOL,ICT,VD1,Ml,VD2,M2,TAUC
DIMENSION X(50),CC(50),SSDF(50),DV(2)
INTEGER CC.SSDF
DV(1)=VD1
DV(2)=VD2
WOUT= KO(ISCEN}*180.73.1415927
NLX=1
NLY=1
IF(LX.GT.25) NLX=2
IF(LY.6T.25) NLY=2
NSECT=NLX*NLY
100 ISECT=0
DO 700 JLX=1,NLX
MX2= JLX»25
IF(MX2.GT.LX) MX2=LX
MX1=1
IF(JLX.EQ.2) MX1=26
00 125 I=MX1.MX2
XI=I
X(I)= XSWC * (XI-0.5)*6RID
DO 600 JLY=1,NLY
ISECT=ISECT+1
IFULY.EQ.l) 60 TO 150
MY1=26
MY2=LY
GO TO 175
MY1=1
MY2=25
IF(I.Y.LT.25) MY2=LY
DO 500 N=1,NPOL
NREP=0
180 IF(NARRAY.E<3.3) GO TO 320
WRITE(IWR,900)ISECT,NSECT,ISCEN,TT
MRITE(IWR,902)SCLAB(ISC),WS(ISCEN),HOUT,HMIX(ISCEN),IAV,
1 N,(POLNAM(L,N),L=1,3)
IF(NREP.EQ.O) GO TO 185
LOOP THROUGH SOF ARRAY TO FIND ANY VALUE GE 1000. IN THAT CASE,
SET FLAG TO SCALE SDF VALUES AS THEY ARE SET IN SSDF ARRAY
IFLAG=0
DO 182 NX=1,LX
DO 182 NY=1,LY
IF(SDF(NX,NY,N).GT.999.49) GO TO 184
4)00025370
00025380
00025390
00025400
00025410
00025420
00025430
00025440
00025450
00025460
00025470
00025480
00025490
00025500
00025510
00025520
00025530
00025540
00025550
00025560
00025579
00025580
00025590
00025600
00025610
00025620
00025630
00025640
00025650
00025660
00025670
00025680
00025690
00025700
00025710
00025720
00025730
00025740
00025750
00025760
00025770
00025780
00025790
00025800
00025810
00025820
00025830
00025840
00025850
00025860
00025870
00025880
00025890
00025900
00025910
00025920
00025930
00025940
00025950
00025960
00025970
00025980
00025990
00026000
00026010
00026020
00026030
00026040
00026050
00026060
00026070
00026080
00026090
00026100
00026110
00026120
00026130
162
-------
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
C683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
182 CONTINUE
MRITE(IUR,905)
GO TO 190
184 IFLAG=1
URITE(IWR,910)
GO TO 190
185 HRITE(IWR,904)
190 WRITE(IWR,915) (X(I),I=MX1,MX2,2)
DO 300 J=MY1,MY2
IY= MY2 + MY1 - J
Y=IY
Y= YSWC + (Y-0.5)*GRID
C
IF(NREP.EQ.l) GO TO 240
00 230 1=11X1, (1X2
230 CC(I)= CONCU.IY.N) + 0.5
WRITEtIWR,920)Y,(CC(I)tI=MX1,MX2)
GO TO 300
240 DO 250 I=MX1,MX2
IF(IFLAG.EQ.O) GO TO 245
SSDF(I)=SDF(I,IY,N)*1.0E-03 * 0.5
60 TO 250
245 SSDF(I)= SDF(I,IY,N) + 0.5
250 CONTINUE
WRITE(IWR,920) Y,(SSDF(I),I=MX1,MX2)
300 WRITE(IWR,925)Y
WRITE(IWR,915)(XCI),I=MX1,MX2,2)
320 IF(NARRAY.EQ.2) GO TO 450
WRITEtIWR,900)ISECT,NSECT,ISCEN,TT
WRITE(IWR,902)SCLAB(ISC),WS(ISCEN),HOUT,HMIX(ISCEN),IAV,
1 N,(POLNAM(L,N),L=1,3)
IF(NREP.EQ.O) URITE(IWR,906)(CALNAM(L,N),L=1,7),A(N),B(N>
IF(NREP.EQ.l) WRITE(IWR,907) (CALNAM(L,N),L=1,7),A(N),B(N)
WRITE (1MB, 915) (X( I), 1=11X1, MX2,2 )
DO 400 J=MY1,MY2
IY= MY2 + MY1 - J
Y=IY
Y= YSWC * (Y-0.5)*GRID
C
IFCNREP.EQ.l) GO TO 340
DO 330 I=MX1,MX2
330 CC(I)= A(N) + B(N)*CONC(I,IY,N) + 0.5
WRITEtIWR,920)Y,(CCCI),I=MX1,MX2)
GO TO 400
340 DO 350 I=MX1,MX2
350 SSDF(I)= AIN) + B(N) * SDF(I,IY,N) + 0.5
WRITE(IWR,920) Y,(SSDFII),I=MX1,MX2)
400 WRITE(IWR,925)Y
WRITElIWR,915)tXU),I=MXl,MX2,2)
450 IF(NREP.EQ.l) 60 TO 500
C IF NO SURF DEP FLUX HAS CALCULATED, SKIP PRINT
IF(DV(N).LE.0.01) GO TO 500
MREP=1
GO TO 180
CONTINUE
CONTINUE
CONTINUE
500
600
700
C
RETURN
C
900
SECTION ',11,' OF ',11,
SCENARIO
UINO SPO=',F5.2,1 M/S, HIND DIR=',F6.2
M, AVERAGING TIME=',I3,' HR.',6X,
00026140
00026150
00026160
00026170
00026180
00026190
00026200
00026210
00026220
00026230
00026240
00026250
00026260
00026270
00026280
00026290
00026300
00026310
00026320
00026330
00026340
00026350
00026360
00026370
00026380
00026390
00026400
00026410
00026420
00026430
00026440
00026450
00026460
00026470
00026480
00026490
00026500
00026510
00026520
00026530
00026540
00026550
00026560
00026570
00026580
00026590
00026600
00026610
00026620
00026630
00026640
00026650
00026660
00026670
00026680
00026690
00026700
00026710
00026720
00026730
00026740
OC026750
.00026760
00026770
00026780
FORMATCIHI.'PEM OUTPUT:
1 I2,2X,20A4)
902 FORMATC STABILITY^ ,A2,
1 ' OES, MIXING HT=',F7.1,"
2 'POLLUTANT-Ml,': ',3A4)
904 FORMATC UNCALIBRATED CONCENTRATION - NICROGRAMS PER CUBIC METER')00026790
905 FORMAT(' UNCALIBRATED SURFACE DEPOSITION FLUX - MICROGRAMS PER SQU000268GO
1ARE METER PER HOUR') 00026810
906 FORMATC CALIBRATED CONCENTRATION - ',7A4,18X,'CALIBRATION COEFFIC00026820
IIENTS: A =',F11.4,', B =',F11.4) 00026830
907 FORMATC CALIBRATED SURFACE DEPOSITION FLUX - ',7A4,10X, 00026840
1'CALIBRATION COEFFICIENTS: A=',F10.4,5X,'B=',F10.4) 00026850
910 FORMATC' UNCALIBRATED SURFACE DEPOSITION FLUX - KILOGRAMS PER SQUA00026860
IRE KILOMETER PER HOUR') 00026870
915 FORMAT(1HO,14X,13F8.2) 00026880
920 FORMAT(1HO,4X,F8.2,4X,25I4) 00026890
925 FORMAT!1H+,122X,F8.2) 00026900
163
-------
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
END
SUBROUTINE WORSTU.J.CHI)
SUBROUTINE WORST
C
c
C
c
c
c
c
c
c
c
c
C *** PEM MODIFICATIONS BY H.M. STEVENS.
(VERSION 82360), PART OF PEN.
SUBROUTINE WORST DETERMINES THE FIVE POINT SOURCES CONTRIBUTING THE
HOST TO THE TOTAU CONCENTRATION AT EACH RECEPTOR. SOURCE
IDENTIFICATIONS AND CONTRIBUTIONS ARE STORED IN NWORST AND CWORST
RESPECTIVELY, FOR OUTPUT BY SUBROUTINE MOROUT.
C
C
c
c
NOAA-ATDL, P.O. BOX-E, OAK RIOGE, TENN 37830
DECEMBER 1982
COMMON/PEMCOM/CONC(50,50,2),SDF(50,50,2), TT(20),
1 XP(300),YP(300),EP(300,2),HP(300),DP(300),VP(300),TP(300),
2 XA(50),YA(50),EA(50,2),SIZE(50),
3 MD(24),WS(24),TA(24),HMIX(24),PEN(24),
4 AX(7,3),BX(7,3),P(7),SCUB(7),DTDZ(2), SECTANU6),
5 XSWC,YSWC,GRID,LX,LY, A(2),8(2),POLNAM(3,2),CALNAM(7,2),
6 ITA,IRD,IMR,IDSK, 080,047,08047,DIST,DELTA,
7 ESH(2),PEAK,IBUOY,IRISH,IDWN.EFF.XS, UINV,UVEC,
8 NAS,NPS,INDEX,IGRID,IAV,ISCEN,IWDOPT,IWD,ISC,IPS,
9 NTOPT,NMDOPT,NMSOPT,NSCEN,NLIST,NARRAY,NTAPE,NCSOPT,NMAX,
* NSTDWN,INTER,NPRINT
COMMON/CSWOR/NWORST(25,25,5),CWORST(25,25,5)
C
C
205
IF(CHI.LE.CUORST(I,J,5)) RETURN
IF(CHI.GT.CMORST(I,J,4)) 60 TO 205
CUORST(I,J,5)= CHI
NWORST(I,J,5)= IPS
RETURN
IF(CHI.GT.CWORSTCI,J,3M GO TO 210
NW=1
GO TO 225
210 IF(CHI.GT.CHORST(I,J,2)) GO TO 215
NW=2
GO TO 225
215 IF(CHI.GT.CHORST(I,J,D) GO TO 220
NW=3
GO TO 225
220 NW=4
225 DO 250 IW=1,NW
CWORST(I,J,6-IH)= CWORST(I,J,5-IW)
250 NWORST(I,J,6-IW)= NWORST(I,J,5-IW)
CUORST(I,J,5-NU)= CHI
NWORST(I,J,5-NW)= IPS
RETURN
END
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
SUBROUTINE MOROUT
SUBROUTINE MOROUT (VERSION 82350), PART OF PEN.
SUBROUTINE MOROUT PRINTS A CULPABILITY LIST OF THE IDENTIFICATIONS
AND CONTRIBUTIONS OF THE FIVE POINT SOURCES CONTRIBUTING THE MOST
TO THE TOTAL CONCENTRATION AND SURFACE DEPOSITION FLUX AT EACH
RECEPTOR, USING DATA COMPILED BY SUBROUTINE WORST
PEM MODIFICATIONS AND FORMATS BY M.M. STEVENS,
NOAA-ATDL, P.O. BOX E, OAK RIDGE, TN 37830
DECEMBER 1982
COMMON/PEMCOM/CONC(50,50,2),SDF(50,50,2), TT(20),
1 XP(300),YP(300),EP(300,2),HP(300),DP(300),VP(300),TP(300),
2 XA(50),YA(50),EA(50,2),SIZE(50),
3 WD(24),WS(24),TA(24),HMIX(24),PENC24)»
4 AX(7,3),BX(7,3),P(7),SCUB(7),DTDZ(2), SECTANU6),
00026910
00026920
00026930
00026940
00026950
00026960
00026970
00026980
00026990
00027000
00027010
00027020
00027030
00027040
00027050
00027060
00027070
00027080
00027090
00027100
00027110
00027120
00027130
00027140
00027150
00027160
00027170
00027130
00027190
00027200
00027210
00027220
00027230
00027240
00027250
00027260
00027270
00027280
00027290
00027300
00027310
00027320
00027330
00027340
00027350
00027360
00027370
00027380
00027390
00027400
00027410
00027420
00027430
00027440
00027450
00027460
00027470
00027480
00027490
00027500
00027510
00027520
00027530
00027540
00027550
00027560
00027570
00027580
00027590
00027600
00027610
00027620
00027630
00027640
OC027650
00027660
00027670
164
-------
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
C
C
C
2!
C
C
3(
31
4(
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
5 XSMC,YSWC,GRID,LX,LY, A(2),BC2),POLNAM(3,2),CALNAMC7,2),
6 ITA,IRD,IWR,IDSK, 080,0*7,08047,DIST,DELTA,
7 ESH(2),PEAK,IBUOY,IRISE,IDWN,EFF,XS, UINV.WVEC,
8 NAS.NPS,INDEX,IGRID.IAV,ISCEN,IWDOPT.IWD,ISC,IPS,
9 NTOPT,NWDOPT,NWSOPT,NSCEN,NLIST,NARRAY,NTAPE,NCSOPT,NMAX,
* NSTDWN,INTER,NPRINT
COMMON/CSWOR/NWORST(25,25,5),CWORST<25,25,5)
HOUT= MM ISCEN)*180./3.1415927
N=l
IF(NTOPT.EQ.l) 60 TO 250
N=2
10 00 400 1=1, LX
IF ALL CONCENTRATION VALUES ARE ZERO IN THIS COL, SKIP IT
DO 275 JM=1,LY
IF(CONC(I,JM,N).NE.O.) GO TO 280
275 CONTINUE
SO TO 400
00027680
00027690
00027700
00027710
00027720
00027730
00027740
00027750
00027760
00027770
00027780
00027790
00027800
00027810
00027820
00027830
00027840
00027850
00027860
00027870
00027880
00027890
00027900
00027910
00027920
00027930
00027940
00027950
00027960
00027970
00027980
00027990
00028000
00028010
280 WRITE(IWR,905) TT, 00028160
915 FORMAT(45X,'POINT SOURCE SEQUENCE NUMBER AND PERCENT1/ 00028170
115X,1COORDINATES',15X,'OF TOTAL CONCENTRATION AND SURFACE DEPOSITI00028180
20N FLUX',14X,-TOTAL1,8X,'TOTAL SURFACE1/ 00028190
3' COL ROM1,4X,'X CKM)',4X,'Y CKM)',9X,'HIGHEST1,6X,'SECOND1,8X, 00028200
4'THIRD',7X,'FOURTH1,8X,'FIFTH',6X,'CONCENTRATION',3X,'DEPOSITION F0002S210
5LUXV) 00028220
925 FORMAT(2(2X,I2),3X,F8.2,2X,F8.2,3X,5(3X,I3,F7.2),6X,F8.2,9X,F8.2) 00028230
00028240
00028250
00028260
00028270
00028280
00028290
00028300
00028310
SUBROUTINE SCENMX LOCATES AND STORES THE COORDINATES, CONCENTRATION, 00028320
AND SURFACE DEPOSITION FLUX AT THE RECEPTOR GRID POINTS RECORDING 00028330
THE HIGHEST CONCENTRATION AND SURFACE DEPOSITION FLUX OF EACH 00028340
POLLUTANT IN EACH SCENARIO. STORED VALUES ARE PRINTED BY SUBROUTINE 00028350
MAXOUT AT THE END OF THE RUN. 00028360
00028370
00028380
00028390
00028400
00028410
00028420
00028430
00028440
END
SUBROUTINE SCENMX
SUBROUTINE SCENMX (VERSION 82360), PART OF PEN.
C *** PEM MODIFICATIONS BY M.M. STEVENS,
NOAA-ATDL, P.O.BOX - E, OAK RID5E, TN 37830
DECEMBER 1982
COMMON/PEMCOM/CONC(50,50,2),SDF(50,50,2), TT(20),
165
-------
2849
2850
2851
2852
2853
2854
2855
2856
2857
2853
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2903
2909
2910
2911
2912
2913
2914
2915
2916
2917
2913
2919
2920
2921
2922
2923
2924
2925
C
C
C
120
130
140
150
350
400
C
C
C
C
C
c :
c :
c
c
c
c
c
c *
c
c
c
c
c
c
c
1 XP(300),YP(300),EP(300,2),HP(300),DP(300),VP(300),TPt 300),
2 XA(50),YA(50),£A(50,2),SIZE(50),
3 MDC24),WS(24),TA(24),HMIX(24),PEN(24),
4 AX(7,3),BXt7,3),P<7),SCLAB<7),OTDZ(2), SECTAN(16),
5 XSUC,YSUC,GRID,LX,LY, A(2),B(2) ,POLNAM(3,2),CALNAM(7,2),
6 ITA,IRD,IWR,IDSK, 080,047,08047,DIST,DELTA,
7 ESH(2),PEAK,IBUOY,IRISE,IDWN,EFF,XS, UINV.WVEC,
8 NAS.NPS,INDEX,IGRID,IAV,ISCEN,IWDOPT,IWD,ISC,IPS,
9 NTOPT,NWDOPT,NWSOPT,NSCEN,NLIST,NARRAY,NTAPE,NCSOPT,NMAX,
* NSTDWN,INTER,NPRINT
COMMON/MAX/XMX(24,4,2),YMXC24,4,2),ZMXC24,4,2),SMX(24,4,2)
COMMON/PARM1/NPOL,ICT,VD1,W1,VD2,W2,TAUC
IF(NTOPT.EQ.l) 6O TO 120
1= 1
60 TO 130
1= 1SCEN
IF(NWDOPT.LE.l) SO TO 140
J= IWDOPT
GO TO 150
J= 1
DO 400 K=1,NPOL
Z= 0.
DO 350 NX=1,LX
DO 350 NY=1,LY
IF(CONC(NX,NY,K).LT.Z) GO TO 350
Z= CONC(NX,NY,K)
ZS=SDF(NX,NY,K)
ZX=NX
ZY=NY
CONTINUE
ZMXCI,J,K)= Z
SMX(I,J,K)=ZS
XMX(I,J,K)= XSWC * (ZX - 0.5)»GRID
YMXtI,J,K)= YSWC + ,
4 AX(7,3),BX(7,3),P(71,SCLAB(7),DTDZt2), SECTANU6),
5 XSUC,YSHC,GRID,LX,LY, A(2),B<2),POLNAMC3,2)>CALNAM(7,2),
6 ITA,IRD,IWR,IDSK, D80,047,D8047.DIST,DELTA,
7 ESH(2),PEAK,IBUOY,IRISE,IDMN,EFF,XS, UINV.WVEC,
8 MAS,NPS,INDEX,IGRID,IAV,ISCEN,IWDOPT,IMD,ISC,IPS,
9 NTOPT,NWDOPT,NWSOPT»NSCEN,NLIST,NARRAY,NTAPE,NCSOPT,NMAX,
* NSTDWN,INTER,NPRINT
COMMON/MAX/XMXf 24,4,2) ,YMX( 24,4,2) ,ZMX( 24,4,2) ,SMX( 24,4,2)
COMMON/PARM1/NPOL,ICT,VD1,W1,VD2,W2,TAUC
DIMENSION ZC(2),ZS(2J
CHECK WHETHER SURF DEP FLUX HAS CALCULATED AND SET FLAG
NREP=1
IF(VD1.LE.0.01 .AND. VD2.LE.0.01) NREP=0
00028450
00028460
00028470
00028480
00028490
00028500
00028510
00028520
00028530
00028540
00028550
00028560
00028570
00028580
00028590
00028600
00028610
00028620
00028630
00028640
00028650
00028660
00028670
00028680
00028690
00028700
00028710
00028720
00028730
00028740
00028750
00028760
00028770
00028780
00028790
00028800
00028810
00028820
00028830
00028840
00028850
00028860
00028370
00028880
00028890
00028900
00028910
00028920
00028930
00028940
00028950
00028960
00028970
00028980
,00028990
00029000
00029010
00029020
00029030
00029040
00029050
00029060
00029070
00029080
00029090
00029100
00029110
00029120
00029130
00029140
00029150
00029160
00029170
00029180
00029190
00029200
00029210
166
-------
2926
2927
2928
2929
2930
2931
2932
2933
293*
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
C
c
C
c
c
c
c
c
c
c
c
c
c
IF(NHDOPT.GT.l) GO TO 300
J=l
N=l
IF(NTOPT.EQ.l) N=NSCEN
PRINT HIGHEST CONCENTRATIONS
WRITE(IWR,900) TT
WRITE(IWR,902) (CALNAWL,l),L=1,7)
IF(NPOL.EQ.2) WRITE(IWR,903) (CALNAM(L,2),L=1,7)
WRITE(IWR,910) (POLNAM(L,1),L=1,3)
IF(NPOL.EQ.2) WRITE(IWR,911) (POLNAtKL,2),L=1,3)
WRITE(IWR,912)
WRITE(IWR,915)
DO 200 1=1,N
DO 120 K=1,NPOL
120 ZC1 - SUB-SCENARIOS
300 N=NSCEN
PRINT HIGHEST CONCENTRATIONS
00 500 1=1,N
IF«(I-1)/8)*8.NE.I-1) GO TO 310
URITE(IUR,900) TT
WRITE(IWR,902) (CALNAMtL,1),L=1,7)
IF(NPOL.EQ.2) HRITEUWR,903) (CALNAIK L,2),L=1,7)
WRITE(IWR,910)
-------
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
DO 520 K=1,NPOL
520 ZS(K)= A(K) + B(K)*SMX(I,J,K)
WRITECIWR,925) I,J,(XMX(I,J,K),YMX(I,J,K),SMX(I,J,K),ZS(K),
1 K=1,NPOL)
550 CONTINUE
600 CONTINUE
700 RETURN
00029990
00030000
00030010
00030020
00030030
00030040
00030050
00030060
00030070
900 FORMAT(1H1,45X,'POLLUTION EPISODIC MODELV//4X,'OUTPUT: ',20A4//)00030080
902 FORMAT(4X,'HIGHEST PREDICTED CONCENTRATION OF EACH POLLUTANT FOR E00030090
1ACH SCENARIOV/4X,'UNCALIBRATED CONCENTRATION IN MICROGRAMS PER CU00030100
2BIC METER - CALIBRATION, POLLUTANT-l: ',7A4) 00030110
903 FORMAT!65X,1CALIBRATION, POLLUTANT-2: S7A4) 00030120
910 FORMAT(//40X.'POLLUTANT-l: ',3A4) 00030130
911 FORMAT(1H+,93X,'POLLUTANT-2: -,3A4) 00030140
912 FORMATC/1 SCENARIO WIND DIRECTION',7X,'COORDINATES1,14X, 00030150
1'CONCENTRATION',16X,'COORDINATES',14X,'CONCENTRATION1) 00030160
915 FORMAT(2X,'NUMBER',4X,'SUB-SCENARIO',6X,'X(KM)',5X,'Y(KM)',6X, 00030170
1'UNCALIBRATED',4X,'CALIBRATED',7X,'X(KM)',5X,'Y(KH)1,6X, 00030180
2'UNCALIBRATED1,4X,'CALIBRATED'/) 00030190
920 FORMATUX) 00030200
925 FORMAT(4X,I2.11X,I2,8X,F9.2,1X,F9.2,5X,F11.4,4X,F11.4,4X,F9.2,1X, 00030210
1F9.2,5X,F11.4,4X,F11.4) 00030220
932 FORMAT(4X,'HIGHEST PREDICTED SURFACE DEPOSITION FLUX OF EACH POLLU00030230
1TANT FOR EACH SCENARIOV/4X,'UNCALIBRATED VALUES IN MICROGRAMS PEROC030240
2 SQUARE METER PER HOUR - CALIBRATION, POLLUTANT-l: ',7A4) 00030250
933 FORMATC68X,'CALIBRATION, POLLUTANT-2: f,7A4) 00030260
942 FORMAT!/' SCENARIO MIND DIRECTION*,7X,'COORDINATES',9X, 00030270
I1SURFACE DEPOSITION FLUX',11X,'COORDINATES',9X,'SURFACE DEPOSITION00030280
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
2 FLUX1 )
END
SUBROUTINE RISE
SUBROUTINE RISE (VERSION 82360), PART OF PEM.
SUBROUTINE RISE CALCULATES PLUME RISE VIA ONE OF SIX EQUATIONS
(BRIS6S.1969). IF IRISE=1, DISTANCE DEPENDENT EFFECTIVE SOURCE
HEIGHT (ESHU)) IS RETURNED. IF IRISE=2, MAXIMUM EFFECTIVE SOURCE
HEIGHT (ESH(2>) IS RETURNED. RISE IS CALLED ONCE PER SOURCE PER
SCENARIO WITH IRISE=2.. IT IS CALLED WITH IRISE=1 WHENEVER THE
DOWNWIND DISTANCE (DIST) IS LESS THAN THE DISTANCE TO MAXIMUM
PLUME RISE (PEAK).
COMMON/PEMCOM/CONC(50,50,2),SDF(50,50,2), TT(20),
1 XP(300),YP(30C),EP(300,2),HP(300),DP(300),VP(300),TP(300),
2 XA(50),YA(50),EA(50»2),SIZE(50),
3 HD(24),fclS(24),TA(24),HMIX(24),PEN(24),
4 AX(7,3),BX(7,3),P(7I,SCLAB(7),DTDZ(2), SECTAN(16),
5 XSWC,YSWC,GRID,LX,LY, A(2) ,B(2),POLNAM(3,2),CALNAM(7,2).
6 ITA,IRD,IWR,IDSK, 080,047,08047, DIST, DELTA,
7 ESH(2),PEAK,IBUOY,IRISE,IDMN,EFF,XS, UINV,WVEC,
8 NAS.NPS, INDEX, IGRID,IAV,ISCEN,IWDOPT,IWO, ISC, IPS,
9 NTOPT.NHDOPT,NUSOPT»NSCEN,NLIST,NARRAY,NTAPE,NCSOPT,NMAX,
* NSTDWN, INTER, NPRINT
IDMN=1
IF(IRISE.EQ.l) GO TO 300
DWNWSH= 1.0
IF(IBUOY.EQ.O) 60 TO 205
IF(EFF.GE,55.) GO TO 150
XS,CTB, AND CTMU ARE INDEPENDENT OF DISTANCE, AND ARE THEREFORE
CALCULATED ONCE PER SOURCE PER SCENARIO (WHEN IRISE=2).
XS= 49.*EFF**0.625
GO TO 160
150 XS=119.*EFF**0.4
160 CTB= 1.6«UINV*EFF»*0. 333333
C
C
C
IF(ISC.GE.6> GO TO 170
PEAK PLUME RISE: BUOYANCY-DOMINATED PLUME, UNSTABLE AIR (A-D).
DELTAH= CTB*XS**0. 666667
60 TO 250
00030290
00030300
00030310
00030320
00030330
00030340
00030350
00030360
00030370
00030380
00030390
00030400
00030410
00030420
00030430
00030440
00030450
00030460
00030470
00030460
00030490
00030500
00030510
00030520
00030530
00030540
00030550
00030560
00030570
00030580
00030590
00030600
00030610
00030620
00030630
00030640
00030650
00030660
00030670
00030680
00030690
00030700
00030710
00030720
00030730
00030740
00030750
168
-------
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
C PEAK PLUME RISE: BUOYANCY-DOMINATED PLUME, STABLE AIR (E,F).
170 OELTAH= 2.6*(EFF*UINV*TA(ISCEN)/(9.8*OTOZ(ISC-5) ) )**0. 333333
60 TO 250
205 IF(ISC.6E.6) GO TO 230
00030760
00030770
00030780
00030790
CTMU= 1.89*(VP(IPS)*VP(IPS)*OP(IPS)*UINV/(VP(IPS)+3./UINV))**0. 66600030800
1667
C
C PEAK PLUME RISE: MOMENTUM-DOMINATED PLUME, UNSTABLE AIR (A-D).
DELTAH= 3.0*VPCIPS)*OP(IPS)*UINV
SO TO 250
C
C PEAK PLUME RISE: MOMENTUM-DOMINATED PLUME, STABLE AIR (E,F).
230 DELTAH= 1.5*(0.5*VP(IPS)»OP
-------
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
317*
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
C
C
170
200
300
400
00031530
00031540
00031550
00031560
00031570
00031580
00031590
00031600
00031610
00031620
00031630
00031640
00031650
00031660
00031670
00031680
00031690
00031700
00031710
00031720
00031730
IF(VP(I).GT.90.67*(TP(I)-TA= 6X1
YCRNR(1)= 6Y1
YCRNR(2)= 6Y1
YCRNR(3)= 6Y2
YCRNR(4)= 6Y2
DO 300 J=l,4
XCRKRT= XCRNR(J)
XCRNR(J)= XCRNRU)*COSNE - YCRNR(J)*SINEE
YCRNR(J)= YCRNR(J)*COSNE * XCRNRT*SINEE
XSMC= XCRNR(l)
XNEC= XSWC
YSWC= YCRNR(l)
YNEC= YSWC
DO 400 1=2,4
IF(XCRNR(I).ST.XNEC) XNEC= XCRNR(I)
IF(XCRNRd).LT.XSWC) XSWC= XCRNR(I)
IF(YCRNR(I).GT.YNEC) YNEC= YCRNR(I)
IFtYCRNH(I).LT.YSWC) YSWC= YCRNR(I)
XT= XNEC - XSWC
YT= YNEC - YSWC
DMAX= XT
IF(YT.GT.XT) DMAX= YT
IFCDMAX.LT.10.) GO TO 500
IF(XT.GT.YT) GO TO 420
LY= 50
6RID= YT/50.
LX= XT/GRID
IF(LX.LT.SO) LX= LX+1
GO TO 600
LX= 50
GRID= XT/50.
LY= YT/GRID
00031880
00031890
00031900
00031910
00031920
00031930
00031940
00031950
00031960
00031970
00031980
00031990
00032000
00032010
00032020
00032030
00032040
00032050
00032060
00032070
00032080
00032090
00032100
00032110
00032120
00032130
00032140
00032150
00032160
00032170
00032180
00032190
00032200
00032210
00032220
00032230
00032240
00032250
00032260
00032270
00032230
00032290
170
-------
323*
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
IF(LY.LT.SO) LY=LY+1 00032300
GO TO 600 00032310
500 IF(DMAX.LT.5.) GO TO 540 00032320
GRID= 0.2 00032330
LX= XT/GRID 00032340
LY= YT/GRID 00032350
IF(LX.LT.SO) LX=LX+1 00032360
IF(LY.LT.SO) LY=LY+1 00032370
GO TO 600 00032380
540 IF(DMAX.LT.0.25) GO TO 580 00032390
IF(XT.GT.YT) GO TO 560 00032400
LY= 25 00032410
GRID= YT/25. 00032420
LX= XT/GRID 00032430
IF(LX.LT.25) LX=LX+1 00032440
GO TO 600 00032450
560 U= 25 00032460
GRID= XT/25. 00032470
LY= YT/GRID 00032480
IF(LY.LT.25) LY=LY+1 00032490
GO TO 600 00032500
580 SRID= 0.01 00032510
LX= XT/GRID 00032520
LY= YT/GRID 00032530
IFCLX.LT.25) LX=LX*1 00032540
IF(LY.LT.25) LY=LY+1 00032550
600 XSMC= XSWC - 0.5«GRID 00032560
YSWC= YSMC - 0.5*GRID 00032570
IF(NCSOPT.LT.1.0R.(LX.LE.25.AND.LY.LE.25)) GO TO 700 00032580
XL=LX 00032590
YL=LY 00032600
IF(LX.GT.LY) GO TO 640 00032610
DELG= YL/25. 00032620
LY=25 00032630
SRID= 6RID*OELS 00032640
LX= XL/OELG 00032650
IF(LX.LT.25) LX=LX+1 00032660
GO TO 700 00032670
640 DELG= XL/25. 00032680
LX=25 00032690
SRID= GRID*OEL6 00032700
LY= YL/DELG + 1. 00032710
700 CONTINUE 00032720
HRITE(IWR,900)ISCEN,IHDOPT,TT 00032730
XRSNC=XSHC+0.5*GRID 00032740
YRSWC=YSWC+0.5*GRID 00032750
WRITE(IHR,905)LX,LY,GRID,XRSHC,YRSMC 00032760
900 FORMATdHl.'PEM: AUTOMATICALLY GENERATED RECEPTOR GRID PARAHETER00032770
IS FOR SCENARIO ',12,' (MIND DIRECTION SUB-SCENARIO M2,')V/ 00032780
221X.20A4/1X,1201'-')//) 00032790
905 FORMATC RECEPTOR GRID CONSISTS OF ',12,' COLUMNS AND ',12,' ROMS 00032800
10F SPACING =',F7.4,' KM. SOUTHWEST CORNER OF GRID =',F8.3t' KM H, 00032810
BLOCK DATA
2',F8.3,' KM S.1)
RETURN
END
C
C
C
C
C
C
C
C THIS SUBPROGRAM INITIALIZES VARIABLES IN COMMON/PEMCDM/
C
C *** PEM MODIFICATIONS BY M.M.STEVENS,
BLOCK DATA (VERSION 82360), PART OF PEM.
C
C
C
NOAA-ATDL, P.O.BOX-E. OAK RIDGE, TENN 37830
DECEMBER 1982
COMMON/PEMCOM/CONC(50,50,2),SDF(50,50,2), TT(20),
1 XP(300),YP(300),EP(300,2),HP(300),DP(300),VP(300),TP(300),
2 XA(50),YA(50),EA(50,2),SIZE(50),
3 MD(24),MS(24),TA(24),HMIX(24),PEN(24),
4 AX(7,3),BX(7,3),P(7),SCLAB(7),DTDZ(2), SECTANU6),
5 XSWC,YSWC,GRID,LX.LY, A(2),B(2),POLNAM(3,2),CALNAM(7,2),
6 ITA,IRD,IMR,IDSK, D80,D47>D8047,DIST,DELTA,
7 ESH(2),PEAK,IBUOY,IRISE,IDMN,EFF,XS, UINV.WVEC,
00032820
00032830
00032840
00032850
00032860
00032870
00032880
00032890
00032900
00032910
00032920
00032930
00032940
00032950
00032960
00032970
00032980
00032990
00033000
00033010
00033020
00033030
00033040
00033050
00033060
171
-------
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C$P
8 NAS.NPS,INDEX,IGRID,IAV,ISCEN,IHOOPT,IWO,ISC,IPS,
9 NTOPT,NWDOPT,NWSOPT,NSCEN,NLIST,NARRAY,NTAPE,NCSOPT,NMAX,
* NSTDWN,INTER,NPRINT
DATA INDEX,NAS,NPS/0,0,0/
DATA irA,IRD,IWR,IDSK/l,5,6,8/
DATA SCUB/2HA ,2HB ,2HC ,2HDD,2HDN,2HE ,2HF /
DATA P/0.1,0.15,0.2,0.25,0.25,0.3,0.3/
DATA AX/.0383,.1393,.112,.0856,.0818,.1094,.05645,
1 .0002539,.04936,.1014,.2591,.2527,.2452,.1930,
2 .0002539,.04936,.1154,.7368,1.297,.9204,1.505/
DATA BX/1.281,.9467,.9100,.865,.8155,.7657,.805,
1 2.089,1.114,.926,.6869,.6341,.6358,.6072,
2 2.089,1.114,.9109,.5642,.4421,.4805,.3662X
DATA SECTAN/0.,.39270,.78540,1.17810,1.57080,1.96350,2.35620,
1 2.74890,3.14159,3.53429,3.92699,4.31969,4.71239,5.10509,
2 5.49779,5.89049/
END
SUBROUTINE D01AJF(F, A, B, EPSABS, EPSREL, RESULT, ABSERR.HORK,
* LWORK, IWORK, LIWORK, IFAIL)
SUBROUTINE 001AJF, PART OF PEM (VERSION 82360).
MARK 8 RELEASE. NAG COPYRIGHT 1980
DOIAJF IS A GENERAL PURPOSE INTEGRATOR WHICH CALCULATES
AN APPROXIMATION TO THE INTEGRAL OF A FUNCTION OVER A FINITE
INTERVAL (A,B). THIS ROUTINE CAN BE USED WHEN THE INTEGRAND
HAS SINGULARITIES, ESPECIALLY WHEN THESE ARE OF ALGEBRAIC OR
LOGARITHMIC TYPE. DOIAJF IS AN ADAPTIVE ROUTINE, USING THE
GAUSS 10-POINT AND KRONROO 21-POINT RULES. THE ALGORITHM
INCORPORATES A GLOBAL ACCEPTANCE CRITERION TOGETHER WITH
EPS-ALGORITHM TO PERFORM EXTRAPOLATION. THE LOCAL ERROR IS
ESTIMATED.
THE GENERAL PURPOSE INTEGRATOR DOIAJF INCLUDES THE FOLLOWING:
SUBROUTINES (1) DOIAJF, (2) D01AJV, (3) D01AJX, (4) D01AJY,
(5) D01AJZ, INTEGER FUNCTION P01AAF, DOUBLE PRECISION FUNCTIONS
(1) X02AAF, (2) X02ABF, (3) X02ACF, AND SUBROUTINE X04AAF.
THE PROGRAM LISTINGS FOR THESE SUBROUTINES AND FUNCTIONS, COPIED
HERE FROM ORNL - NAG LIBRARY, FOLLOW. THESE ARE DEVELOPED BY
NUMERICAL ALGORITHMS GROUP (NAG)
1131 WARREN AVENUE
DOWNERS GROVE, ILLINOIS 60515
WHICH HOLDS THE COPYRIGHT (NAG FORTRAN MINI MANUAL, MARKS, 1980).
THESE PROGRAM LISTINGS ARE INCLUDED HERE WITH PERMISSION FROM
COMPUTER SCIENCES DEPARTMENT
OAK RIDGE NATIONAL LABORATORY (ORNL)
OAK RIDGE, TENNESSEE 37830
EXCLUSIVELY FOR PEM. THESE LIBRARY SUBROUTINES AND PROGRAMS
SHOULD NOT BE USED FOR ANY OTHER PURPOSE WITHOUT PRIOR APPROVAL
FROM NAG AND ORNL.
DOIAJF ITSELF IS ESSENTIALLY A DUMMY ROUTINE WHOSE FUNCTION IS TO
PARTITION THE WORK ARRAYS WORK AND IWORK FOR USE BY D01AJV.
WORK IS PARTITIONED INTO 4 ARRAYS EACH OF SIZE LWORK/4.
IWORK IS A SINGLE ARRAY IN D01AJV.
.. SCALAR ARGUMENTS ..
DOUBLE PRECISION A, ABSERR, B, EPSABS, EPSREL, RESULT
INTEGER IFAIL, LIWORK, LWORK
.. ARRAY ARGUMENTS ..
DOUBLE PRECISION WORK(LWORK)
INTEGER IWORK(UIWORK)
.. FUNCTION ARGUMENTS ..
DOUBLE PRECISION F
.. LOCAL SCALARS ..
DOUBLE PRECISION SRNAME
INTEGER IBL, IEL, IER, IRL, LIMIT
.. FUNCTION REFERENCES ..
00033070
00033080
00033090
00033100
00033110
00033120
00033130
00033140
00033150
00033160
00033170
00033180
00033190
00033200
00033210
00033220
00033230
00033240
00033250
00033260
00033270
00033280
00033290
00033300
00033310
00033320
00033330
00033340
00033350
00033360
00033370
00033380
00033390
00033400
00033410
00033420
00033430
00033440
00033450
00033460
00033470
00033480
00033490
00033500
00033510
00033520
00033530
00033540
00033550
00033560
00033570
00033580
00033590
00033600
00033610
00033620
00033630
00033640
00033650
00033660
00033670
00033680
00033690
00033700
00033710
00033720
00033730
00033740
00033750
00033760
00033770
00033780
00033790
00033800
00033810
Q0033820
00033830
172
-------
3386
3389
3390
3391
3393
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3413
3413
3414
3415
3416
3417
3418
3419
3430
3431
3432
3433
3434
3435
3436
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3453
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
C
C
C
C
C
C
C
i
C
30
40
60
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
INTEGER P01AAF
.. SUBROUTINE REFERENCES ..
D01AJV
EXTERNAL F
DATA SRNAME /8H D01AJF /
CHECK THAT MINIMUM WORKSPACE REQUIREMENTS ARE MET
IF (LHORK.LT.4) GO TO 30
IF (LIWORK.LT.LHORK/8+3) GO TO 20
LIMIT = UPPER BOUND ON NUMBER OF SUBINTERVALS
LIMIT = LWORK/4
SET UP BASE ADDRESSES FOR WORK ARRAYS
IBL = LIMIT + 1
IEL = LIMIT + IBL
IRL = LIMIT + IEL
PERFORM INTEGRATION
00033840
00033850
00033860
00033870
00033880
00033890
00033900
00033910
00033930
00033930
00033940
00033950
00033960
00033970
00033980
00033990
CALL D01AJV(F> A, B, DABSJEPSABS), DABS(EPSREL), UORK(1),HORK(IBL)00034000
i, UORK(IEL), WORK(IRL), LIMIT, IUORK, LIHORK,RESULT, A8SERR, IER) 00034010
IF (IER.NE.O) 60 TO 40
IFAIL = 0
GO TO 60
ERROR 6 = INSUFFICIENT WORKSPACE
IER = 6
IFAIL = P01AAFCIFAIL,IER,SRNAME)
RETURN
END
SUBROUTINE D01AJV(F, A, B, EPSABS, EPSREL, ALIST, B LIST, E LIST,
* RLIST, LIMIT, IORD, LIORD, RESULT, ABSERR, IER)
SUBROUTINE D01AJV, PART OF PEM (VERSION 82360).
MARK 8 RELEASE. NAG COPYRIGHT 1979
BASED ON QUADPACK ROUTINE DQAGS (FORMERLY QAGS)
PURPOSE
THE ROUTINE CALCULATES AN APPROXIMATION
/RESULT/ TO A GIVEN DEFINITE INTEGRAL I =
INTEGRAL OF /F/ OVER (A,B), HOPEFULLY
SATISFYING FOLLOWING CLAIM FOR ACCURACY .
ABS(I-RESULT) .IE. MAX(EPSABS,EPSREL*ABS(I) ).
CALLING SEQUENCE
CALL D01AJV (F, A, B, EPSABS, EPSREL, ALIST.BLIST.ELIST,
RUST, LIMIT, IORD , LIORD .RESULT, ABSERR , IER )
PARAMETERS
F
- FUNCTION SUBPROGRAM DEFINING THE INTEGRAND
FUNCTION F(X). THE ACTUAL NAME FOR F
NEEDS TO BE DECLARED EXTERNAL
IN THE DRIVER PROGRAM
- LOWER LIMIT OF INTEGRATION
- UPPER LIMIT OF INTEGRATION
EPSABS - ABSOLUTE ACCURACY REQUESTED
EPSREL - RELATIVE ACCURACY REQUESTED
ALIST,BLIST,E LIST,R LIST
- WORK ARRAYS (FUNCTIONS DESCRIBED BELOW)
LIMIT - UPPER BOUND FOR NUMBER OF SUBINTERVALS
IORD - WORK ARRAY
LIORD - LENGTH OF IORO (AT LEAST LIMIT/2 + 2)
RESULT - APPROXIMATION TO THE INTEGRAL
ABSERR - ESTIMATE OF THE MODULUS OF THE ABSOLUTE ERROR,
WHICH SHOULD EQUAL OR EXCEED ABS(I-RESULT)
IER - IER =0 NORMAL AND RELIABLE
TERMINATION OF THE ROUTINE.
00034030
00034030
00034040
00034050
00034060
00034070
00034080
00034090
00034100
00034110
00034130
00034130
00034140
00034150
00034160
00034170
00034180
00034190
00034300
00034310
00034220
00034230
00034240
00034350
00034360
00034370
00034380
00034290
00034300
00034310
00034320
00034330
00034340
00034350
00034360
00034370
.00034380
00034390
00034400
00034410
00034430
00034430
00034440
00034450
00034460
00034470
00034480
00034490
00034500
00034510
00034530
00034530
00034540
00034550
00034560
00034570
00034580
00034590
00034600
173
-------
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
347S
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3493
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
IT IS ASSUMED THAT THE
REQUESTED ACCURACY HAS BEEN
ACHIEVED .
- IER .NE. 0 ABNORMAL TERMINATION OF
THE ROUTINE. THE ESTIMATES
FOR INTEGRAL AND ERROR ARE
LESS RELIABLE. IT IS ASSUMED
THAT THE REQUESTED ACCURACY
HAS NOT BEEN ACHIEVED.
- 1 MAXIMUM NUMBER OF SUBDIVISIONS ALLOWED
HAS BEEN ACHIEVED. THE USER CAN
ALLOW MORE SUB DIVISIONS BY
INCREASING THE DIMENSIONS OF THE
WORK ARRAYS WORK AND IWORK.
HOWEVER, THIS MAY
YIELD NO IMPROVEMENT, AND IT
IS RATHER ADVISED TO HAVE A
CLOSE LOOK AT THE INTEGRAND.
IN ORDER TO DETERMINE THE
INTEGRATION DIFFICULTIES. IF
THE POSITION OF A LOCAL
DIFFICULTY CAN BE DETERMINED
(I.E. SINGULARITY,
DISCONTINUITY WITHIN THE
INTERVAL) ONE WILL PROBABLY
GAIN FROM SPLITTING UP THE
INTERVAL AT THIS POINT AND
CALLING THE INTEGRATOR ON THE
SUB-RANGES. IF POSSIBLE, AN
APPROPRIATE SPECIAL-PURPOSE
INTEGRATOR SHOULD BE USED
WHICH IS DESIGNED FOR
HANDLING THE TYPE OF
DIFFICULTY INVOLVED.
= 2 THE OCCURRENCE OF ROUNDOFF
ERROR IS DETECTED WHICH
PREVENTS THE REQUESTED
TOLERANCE FROM BEING
ACHIEVED. THE ERROR MAY BE
UNDER-ESTIMATED.
= 3 EXTREMELY BAD INTEGRAND BEHAVIOUR
OCCURS AT SOME INTERIOR POINTS OF THE
INTEGRATION INTERVAL.
= 4 IT IS PRESUMED THAT THE REQUESTED
TOLERANCE CANNOT BE ACHIEVED,
AND THAT THE RETURNED RESULT
IS THE BEST WHICH CAN BE
OBTAINED.
= 5 THE INTEGRAL IS PROBABLY DIVERGENT,
SLOWLY CONVERGENT. IT MUST BE NOTED
THAT DIVERGENCY CAN OCCUR
WITH ANY OTHER VALUE OF IER.
OR
.. SCALAR ARGUMENTS ..
DOUBLE PRECISION A. ABSERR, B, EPSABS, EPSREL, RESULT
INTEGER IER, LIMIT, LIORD
.. ARRAY ARGUMENTS ..
DOUBLE PRECISION ALIST( LIMIT), BLISTC LIMIT), EUST( LIMIT),
* RLIST( LIMIT)
INTEGER IORD( LIORD 1
.. FUNCTION ARGUMENTS ..
DOUBLE PRECISION F
. . SCALARS IN COMMON . .
INTEGER JUPBND
. , LOCAL SCALARS .,
DOUBLE PRECISION Al, AS, ABSEPS, AREA12, AREA1, AREA2, AREA, Bl,
* B2,CORREC, DEFAB1, DEFAB2, DEFABS, ORES, EPMACH, ERLARG,ERLAST,
* ERRBND, ERRMAX, ERR012, ERROR1, ERROR 2, ERRSUM.ERTEST, OF LOW,
* RESABS, RESEPS, SMALL, UFLOW
INTEGER ID, IERRO, IROFF1, IROFF2, IROFF3, K, KSGN. KTMIN.LASTl,
* LAST, MAXERR, NRES, NRMAX, NUMRL2
LOGICAL EXTRAP, NOEXT
.. LOCAL ARRAYS ..
DOUBLE PRECISION RES3LA(3), RLIST2152)
00034610
00034620
00034630
00034640
00034650
00034660
00034670
00034680
00034690
00034700
00034710
00034720
00034730
00034740
00034750
00034760
00034770
00034780
00034790
00034800
00034810
00034820
00034830
00034840
00034850
00034860
00034870
00034880
00034890
00034900
00034910
00034920
00034930
00034940
00034950
00034960
00034970
00034980
00034990
00035000
00035010
00035020
00035030
00035040
00035050
00035060
00035070
00035080
00035090
00035100
00035110
00035120
00035130
00035140
00035150
00035160
00035170
00035180
00035190
00035200
00035210
00035220
00035230
00035240
00035250
00035260
00035270
00035280
00035290
00035300
00035310
00035320
00035330
00035340
00035350
00035360
00035370
174
-------
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
.. FUNCTION REFERENCES ..
DOUBLE PRECISION X02AAF, X02ABF, X02ACF
.. SUBROUTINE REFERENCES ..
D01AJX. D01AJY, D01AJZ
m »
EXTERNAL F
COMMON /A001AJ/ JUPBND
THE DIMENSION OF /RLIST2/ IS DETERMINED BY
DATA /LIMEXP/ IN SUBROUTINE D01AJY (/RLIST2/
SHOULD BE OF DIMENSION (LIMEXP+2) AT LEAST).
EPMACH s X02AAFU.ODO)
UFLOM = X02ABFC 1.000)
OF LOW = X02ACFC1.0DO)
LIST OF MAJOR VARIABLES
ALIST - LIST OF LEFT END-POINTS OF ALL SUBINTERVALS
CONSIDERED UP TO NOW
BLIST - LIST OF RIGHT END-POINTS OF ALL SUBINTERVALS
CONSIDERED UP TO NOW
RLIST(I) - APPROXIMATION TO THE INTEGRAL OVER
(ALIST(I),BLIST(D)
RLIST2 - ARRAY OF DIMENSION AT LEAST LIMEXP+2
CONTAINING THE PART OF THE EPSILON TABLE
WHICH IS STILL NEEDED FOR FURTHER
COMPUTATIONS
ELIST(I) - ERROR ESTIMATE APPLYING TO RLIST(I)
MAXERR - POINTER TO THE INTERVAL WITH LARGEST ERROR
ESTIMATE
ERRMAX - ELIST( MAXERR)
ERLAST - ERROR ON THE INTERVAL CURRENTLY SUBDIVIDED
(BEFORE THAT SUBDIVISION HAS TAKEN PLACE)
AREA - SUM OF THE INTEGRALS OVER THE SUBINTERVALS
ERRSUM - SUM OF THE ERRORS OVER THE SUBINTERVALS
ERRBND - REQUESTED ACCURACY MAX( EPSABS.EPSREL*
ABS( RESULT))
*****! - VARIABLE FOR THE LEFT INTERVAL
*****2 - VARIABLE FOR THE RIGHT INTERVAL
LAST - INDEX FOR SUBDIVISION
NRES - NUMBER OF CALLS TO THE EXTRAPOLATION ROUTINE
NUMRL2 - NUMBER OF ELEMENTS CURRENTLY IN
RLIST2. IF AN APPROPRIATE
APPROXIMATION TO THE COMPOUNDED
INTEGRAL HAS BEEN OBTAINED IT IS
PUT IN RLIST2(NUMRL2) AFTER NUMRL2
HAS BEEN INCREASED BY ONE.
SMALL - LENGTH OF THE SMALLEST INTERVAL CONSIDERED
UP TO NOWt MULTIPLIED BY 1.5
ERLARG - SUM OF THE ERRORS OVER THE INTERVALS LARGER
THAN THE SMALLEST INTERVAL
CONSIDERED UP TO NOW
EXTRAP - LOGICAL VARIABLE DENOTING THAT THE
ROUTINE IS ATTEMPTING TO PERFORM
EXTRAPOLATION. I.E. BEFORE
SUBDIVIDING THE SMALLEST INTERVAL
WE TRY TO DECREASE THE VALUE OF
ERLARG
00035380
00035390
00035400
00035410
00035420
00035430
00035440
00035450
00035460
00035470
00035480
00035490
00035500
00035510
00035520
00035530
00035540
00035560
00035570
00035580
00035590
00035600
00035610
00035620
00035630
00035640
00035650
00035660
00035670
00035680
00035690
00035700
00035710
00035720
00035730
00035740
00035750
00035760
00035770
00035780
00035790
00035800
00035810
00035820
00035830
00035840
00035850
00035860
00035870
00035880
00035890
00035900
00035910
00035920
00035930
00035940
00035950
00035960
00035970
00035980
00035990
00036000
00036010
00036020
00036030
00036040
00036050
00036060
00036070
00036080
00036090
00036100
00036110
00036120
00036130
00036140
175
-------
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
C
C
C
C
C
C
C
C
C
C
C
C
C
NOEXT
- LOGICAL VARIABLE DENOTING THAT EXTRAPOLATION
IS NO LONGER ALLOUEOC/TRUE/ VALUE)
C
C
C
C
C
C
C
C
C
C
C
C
FIRST APPROXIMATION TO THE INTEGRAL
USTl = 1
IER = 0
IERRO = 0
CALL D01AJZ(F, A, B, RESULT, ABSERR, DEFABS, RESABS)
TEST ON ACCURACY
ORES = DABS(RESULT)
ERRBND = DMAX1(EPSABS,EPSREL*ORES)
IF (ABSERR.LE.1.0D+02*EPMACH*OEFABS .AND. ABSERR.ST.ERRBNDHER
IF (LIMIT.LT.2 .AND. ABSERR.GT.ERRBND) IER = 1
IF (IER.NE.O .OR. ABSERR.LE.ERRBND) GO TO 320
INITIALIZATION
ALIST(l) = A
BLIST(l) = B
RLISTU) = RESULT
RLIST2U) = RESULT
ERRMAX = ABSERR
MAXERR = 1
AREA = RESULT
ERRSUM = ABSERR
ABSERR = OFLOW
NRMAX = 1
NRES = 0
NUMRL2 = 2
KTMIN = 0
EXTRAP = .FALSE.
NOEXT = .FALSE.
IROFF1 = 0
IROFF2 = 0
IROFF3 = 0
KSGN = -1
IF (DRES.GE.C0.1D+01-0.5D+02*EPMACH)*OEFABS) KSGN =
MAIN DO-LOOP
IF (LIMIT.LT.2) GO TO 220
DO 200 LAST=2,LIMIT
BISECT THE SUBINTERVAL WITH THE NRMAX-TH LARGEST
ERROR ESTIMATE
LAST1 = LAST
Al = ALIST(MAX£RR)
Bl = 0.50+00*(ALXST(MAXERR)+BLIST(MAXERR))
A2 = Bl
B2 = BLISTCMAXERR)
ERLAST = ERRMAX
CALL D01AJZ(F, Al, Bl, AREA1, ERROR1, RESABS, DEFAB1)
CALL D01AJZCF, A2, B?, AREA2, ERROR2, RESABS, DEFAB2)
IMPROVE PREVIOUS APPROXIMATION OF INTEGRAL
AND ERROR AND TEST FOR ACCURACY
AREA12 = AREA1 + AREA2
ERR012 * ERROR1 + ERROR2
ERRSUM = ERRSUM + ERR012 - ERRMAX
AREA = AREA + AREA12 - RLIST(MAXERR)
IF (DEFABl.Eq.ESRQRl .OR. DEFAB2.EQ.ERRQH2) GO TO 40
IF (OABS(RLIST(MAXERR)-AREA12).GT.0.1D-04*DABS(AREA12) .OR.
* ERR012.LT.0.99D+00*ERKMAX) GO TO 20
IF (EXTRAP) IROFF2 = IROFF2 + 1
IF (.NOT.EXTRAP) IROFF1 = IROFF1 + 1
20 IF (LAST.ST.10 .AND. ERR012.GT.ERRMAX) IROFF3 = IROFF3 + 1
40 RLIST(MAXERR) = AREA1
RLIST(LAST) = ARCA2
ERRBND = DMAX1(EPSABS,EPSREL*DABS(AREA>)
00036150
00036160
00036170
00036180
00036190
00036200
00036210
00036220
00036230
00036240
00036250
00036260
00036270
00036280
00036290
200036300
00036310
00036320
00036330
00036340
00036350
00036360
00036370
00036380
00036390
00036400
00036410
00036420
00036430
00036440
00036450
00036460
00036470
00036480
00036490
00036500
00036510
00036520
00036530
00036540
00036550
00036560
00036570
00036580
00036590
00036600
00036610
00036620
00036630
00036640
00036650
00036660
00036670
00036680
00036690
00036700
00036710
00036720
00036730
00036740
00036750
00036760
00036770
00036780
00036790
00036800
00036810
00036820
00036830
00036840
00036850
00036860
00036870
00036880
00036890
00036900
00036910
176
-------
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
IF (ERRSUM.LE.ERRBND) GO TO 280
TEST FOR ROUNDOFF ERROR AND EVENTUALLY
SET ERROR FLAG
IF (IROFF1+IROFF2.GE.10 .OR. IROFF3.GE.20) IER = 2
IF (IROFF2.6E.5) IERRO = 3
SET ERROR FLAG IN THE CASE THAT THE NUMBER OF INTERVAL
BISECTIONS EXCEEDS /LIMIT/
IF CLAST.EQ.LIMIT) IER = 1
SET ERROR FLAG IN THE CASE OF BAD INTEGRAND BEHAVIOUR
AT INTERIOR POINTS OF INTEGRATION RANGE
IF (DMAX1(DABS(A1),DABS(B2)).LE.(0.1D+01+0.1D«03*EPMACH)*
* (DABS(A2)*0.1D+04*UFLOW)) IER = 4
IF (IER.NE.O) GO TO 220
APPEND THE NEWLY-CREATED INTERVALS TO THE LIST
IF (ERROR2.GT.ERROR1) GO TO 60
ALIST(LAST) = A2
BLIST(MAXERR) = 81
BLIST(LAST) = B2
ELIST(MAXERR) = ERROR!
ELIST(LAST) = ERROR2
60 TO 80
60 ALIST(MAXERR) = A2
ALIST(LAST) = Al
BLIST(LAST) = Bl
RLIST(MAXERR) = AREA2
RLIST(LAST) = AREA1
ELIST(MAXERR) = ERROR2
ELIST(LAST) = ERROR1
CALL SUBROUTINE D01AJX TO MAINTAIN THE
DESCENDING ORDERING IN THE LIST OF ERROR
ESTIMATES AND SELECT THE SUBINTERVAL WITH
NRMAX-TH LARGEST ERROR ESTIMATE (TO BE BISECTED
NEXT)
80 CALL D01AJX(LIMIT, LAST, MAXERR, ERRMAX, ELIST, IORD,LIORD,
* NRMAX)
IF (LAST.EQ.2) GO TO 180
IF (NOEXT) GO TO 200
ERLARG = ERLARG - ERLAST
IF (DABSIB1-A1).ST.SMALL) ERLARG = ERLARG + ERR012
IF (EXTRAP) GO TO 100
TEST WHETHER THE INTERVAL TO BE BISECTED NEXT IS THE
SMALLEST INTERVAL
IF (DABS(BLIST(MAXERR)-ALIST(MAXERR)).GT.SMALL) GO TO 200
EXTRAP = .TRUE.
NRMAX s 2
100 IF (IERRO.EQ.3 .OR. ERLARG.LE.ERTEST) GO TO 140
THE SMALLEST INTERVAL HAS THE LARGEST ERROR.
BEFORE BISECTING DECREASE THE SUM OF THE ERRORS
OVER THE LARGER INTERVALS!ERLARG) AND PERFORM
EXTRAPOLATION
ID = NRMAX
DO 120 K=1D,JUPBND
MAXERR = IORD(NRMAX)
ERRMAX = ELISTCMAXERR)
IF (OABS(BLIST(MAXERR)-ALIST(MAXERR)).GT.SMALL) GO TO 200
NRMAX = NRMAX + 1
120 CONTINUE
PERFORM EXTRAPOLATION
140 NUMRL2 = NUMRL2 + 1
R LIST2(NUMR L2) = AREA
CALL D01AJY(NUMRL2, RLIST2, RESEPS, ABSEPS, RES3LA, NRES)
00036920
00036930
00036940
00036950
00036960
00036970
00036980
00036990
00037000
000370X0
00037020
00037030
00037040
00037050
00037060
00037070
00037080
00037090
00037100
00037110
00037120
00037130
00037140
00037150
00037160
00037170
00037180
00037190
00037200
00037210
00037220
00037230
00037240
00037250
00037260
00037270
00037280
00037290
00037300
00037310
00037320
00037330
00037340
00037350
00037360
00037370
00037380
00037390
00037400
00037410
00037420
00037430
00037440
00037450
00037460
00037470
00037480
00037490
00037500
00037510
00037520
00037530
00037540
00037550
00037560
00037570
00037580
00037590
00037600
00037610
00037620
00037630
00037640
00037650
00037660
00037670
00037680
177
-------
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
378*
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
KTMIN = KTMIN + i
IF (KTMIN.ST.5 .AND. ABSERR.LT.0.10-02*ERRSUM) IER = 5
IF (ABSEPS.6E.ABSERR) GO TO 160
KTMIN = 0
ABSERR = ABSEPS
RESULT = RESEPS
CORREC = ERLARG
ERTEST = OMAX1(EPSABS,EPSREL*OABS(RESEPS))
IF (ABSERR.LE.ERTEST) SO TO 220
PREPARE BISECTION OF THE SMALLEST INTERVAL
160
IF (NUMRLZ.Eq.l) NOEXT = .TRUE.
IF (IER.EQ.5) 60 TO 220
MAXERR = lORD(l)
ERRMAX a ELISTCMAXERR)
NRMAX = 1
EXTRAP = .FALSE.
SMALL = SMALL*O.50+00
ERLARS = ERRSUM
60 TO 200
SMALL = DABStB-A1*0.3750+00
ERLARG = ERRSUM
ERTEST = ERRBND
RLIST2(2) = AREA
200 CONTINUE
SET FINAL RESULT AND ERROR ESTIMATE
180
220 IF (ABSERR.EQ.OFLOM) 60 TO 280
IF CIER+IERRO.EQ.O) 60 TO 260
IF (IERRO.EQ.3) ABSERR = ABSERR + CORREC
IF (IER.EQ.O) IER = 3
IF (RESULT.HE.O.D+00.AND .AREA. NE.0.0+00) GO TO 240
IF (ABSERR.6T.ERRSUM) GO TO 280
IF (AREA.EQ.0.0+00) 60 TO 320
60 TO 260
240 IF (ABSERR/DABS(RESULTl.GT.ERRSUM/DABS(AREA)> 60 TO 280
TEST ON DIVERGENCY
260 IF (KSGN.EQ.-l .AND. DMAX1(DABS(RESULT),OABS(AREA)).LE.DEFABS*
*0.1D-01) 60 TO 320
IF (0.1D-01.6T.(RESULT/AREA) .OR. (RESULT/AREA).6T.0.10+03.OR.
« ERRSUM.ST.DABS(AREA)) IER = 6
SO TO 320
COMPUTE 6LOBAL INTEGRAL SUM
280 RESULT = O.D+00
DO 300 K=1,LAST
RESULT = RESULT + RLIST(K)
300 CONTINUE
ABSERR = ERRSUM
320 IF (IER.GT.2) IER =' IER - 1
lORD(l) = 4*UST1
RETURN
END
SUBROUTINE D01AJX( LIMIT, LAST. MAXERR, ERMAX. ELIST, IORD,LIORO>
* NRMAX)
SUBROUTINE D01AJX. PART OF PEM (VERSION 82360).
MARK 8 RELEASE. NAG COPYRIGHT 1979
BASED ON QUAD PACK ROUTINE ORDER
PURPOSE
THIS ROUTINE MAINTAINS THE DESCENDING ORDERING
IN THE LIST OF THE LOCAL ERROR ESTIMATES
RESULTING FROM THE INTERVAL SUBDIVISION
PROCESS. AT EACH CALL TWO ERROR ESTIMATES
ARE INSERTED USING THE SEQUENTIAL SEARCH
METHOD . TOP-DOWN FOR THE LARGEST ERROR
ESTIMATE, BOTTOM-UP FOR THE SMALLEST ERROR
00037690
00037700
00037710
00037720
00037730
00037740
00037750
00037760
00037770
00037780
00037790
00037800
00037810
00037820
00037830
00037840
00037850
00037860
00037870
00037880
00037390
00037900
00037910
00037920
00037930
00037940
00037950
00037960
00037970
00037980
00037990
00038000
00038010
00038020
00038030
00038040
00038050
00038060
00038070
00038080
00038090
00038100
00038110
00038120
00038130
00038140
00038150
00038160
00038170
00038180
00038190
00038200
00038210
00038220
00038230
00038240
00038250
00038260
00038270
00038280
00038290
00038300
00038310
00038320
00038330
00038340
00038350
00038360
00038370
00038380
00038390
00038400
00038410
00038420
00038430
00033440
00036450
178
-------
3850
3851
3852
3853
3854
3855
3856
3857
3S58
3859
3860
3861
386 Z
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
ESTIMATE.
CALLING SEQUENCE
CALL D01AJX
( LIMIT , LAST , MAXERR , ERMAX , E LIST , IORD , LIORD , KRMAX )
PARAMETERS (MEANING AT OUTPUT)
LIMIT - MAXIMUM NUMBER OF ERROR ESTIMATES THE LIST
CAN CONTAIN
LAST - NUMBER OF ERROR ESTIMATES CURRENTLY
IN THE LIST. ELIST(LAST) CONTAINS
THE SMALLEST ERROR ESTIMATE.
MAXERR - MAXERR POINTS TO THE NRMAX-TH LARGEST ERROR
ESTIMATE CURRENTLY IN THE LIST.
ERMAX - NRMAX-TH LARGEST ERROR ESTIMATE
ERMAX = ELIST( MAXERR)
ELIST - ARRAY OF DIMENSION LAST CONTAINING
THE ERROR ESTIMATES
IORD - ARRAY CONTAINING POINTERS TO ELIST SO
THAT lORD(l) POINTS TO THE LARGEST
ERROR ESTIMATE,..., IORD (LAST) TO THE
SMALLEST ERROR ESTIMATE
LIORD - DIMENSION OF IORD
NRMAX - MAXERR = lORD(NRMAX)
.. SCALAR ARGUMENTS ..
DOUBLE PRECISION ERMAX
INTEGER LAST, LIMIT, LIORD, MAXERR, NRMAX
.. ARRAY ARGUMENTS ..
DOUBLE PRECISION ELIST(LAST)
INTEGER IORD (LIORD)
.. SCAURS IN COMMON ..
INTEGER JUPBND
.. LOCAL SCAURS ..
DOUBLE PRECISION ERRMAX, ERRMIN
INTEGER I, IBEG, IDO, ISUCC, J, JBND, K
COMMON /A001AJ/ JUPBND
CHECK WHETHER THE LIST CONTAINS MORE THAN
TWO ERROR ESTIMATES
IF (LAST.6T.2) GO TO 20
IORD(1) = 1
IORD(2) = 2
GO TO 180
THIS PART OF THE ROUTINE IS ONLY EXECUTED
IF, DUE TO A DIFFICULT INTEGRAND, SUBDIVISION
INCREASED THE ERROR ESTIMATE. IN THE NORMAL CASE
THE INSERT PROCEDURE SHOULD START AFTER THE
NRMAX-TH LARGEST ERROR ESTIMATE.
20 ERRMAX = ELIST(MAXERR)
IF ( NRMAX. EQ.l) GO TO 60
IDO = NRMAX - 1
DO 40 1=1, IDO
ISUCC = lORD(NRMAX-l)
IF ( ERRMAX. LE.ELIST( ISUCC)) SO TO 60
IORD (NRMAX) = ISUCC
NRMAX = NRMAX - 1
40 CONTINUE
COMPUTE THE NUMBER OF ELEMENTS IN THE LIST TO
BE MAINTAINED IN DESCENDING ORDER. THIS NUMBER
DEPENDS ON THE NUMBER OF SUBDIVISIONS STILL
00038460
00038470
00038480
00038490
00038500
00038510
00038520
00038530
00038540
00038550
00038560
00038570
00038580
00038590
00038600
00038610
00038620
00038630
00038640
00038650
00038660
00036670
00038680
00038690
00038700
00038710
00038720
00038730
00038740
00038750
00038760
00038770
00038780
00038790
00038800
00038810
00038820
00038830
00038840
00038850
00038860
00038870
00038380
00038890
00038900
00038910
00038920
00038930
00038940
00038950
00038960
00038970
00038980
00038990
00039000
00039010
00039020
00039030
00039040
00039050
00039060
00039070
00039080
00039090
00039100
00039110
00039120
00039130
00039140
00039150
00039160
00039170
00039180
00039190
00039200
00039210
00039220
179
-------
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
C
C
C
C
C
C
C
C
C
C
C
C
C
ALLOWED
60 JUPBND = LAST
IF (LAST.6T.(LIMIT/2+2)) JUPBND = LIMIT + 3 - LAST
ERRMIN = ELIST(LAST)
INSERT ERRMAX BY TRAVERSING THE LIST TOP-DOWN
STARTING COMPARISON FROM THE ELEMENT
ELIST(IORD(NRMAX+1))
JBND = JUPBND - 1
IBE6 = NRMAX + 1
IF USES.ST.JBND) SCI TO 100
00 80 I=IBEG,JBND
ISUCC = IORDCI)
IF (ERRMAX.GE.ELISTCISUCC)) GO TO 120
lORD(I-l) = ISUCC
60 CONTINUE
100 IQRD(JBNO) = MAXERR
IORD(JUPBND) = LAST
GO TO 180
INSERT ERRMIN BY TRAVERSING THE LIST BOTTOM-UP
120 IORDd-1) = MAXERR
K = JBND
DO 140 J=I,JBND
ISUCC = IORD(K)
IF
-------
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
ABSERR - ESTIMATE OF THE ABSOLUTE ERROR COMPUTED FROM
RESULT AND THE 3 PREVIOUS /RESULTS/
RES3LA - ARRAY CONTAINING THE LAST 3 /RESULTS/
NRES
- NUMBER OF CALLS TO THE ROUTINE
(SHOULD BE ZERO AT FIRST CALL)
.. SCALAR ARGUMENTS ..
DOUBLE PRECISION ABSERR, RESULT
INTEGER N. NRES
.. ARRAY ARGUMENTS ..
DOUBLE PRECISION EPSTAB(52), RES3LA(3)
.. LOCAL SCALARS ..
DOUBLE PRECISION OELTA1, DELTA2, DELTAS, EO, El, E1ABS, E2, E3.
* EPMACH.EPSINF, ERR1, ERR2, ERR3, ERROR. OF LOW, RES. SS, TO LI,
* TOL2.TOL3
INTEGER I, IB2, IB, IE, IND. Kl, K2, K3, LIMEXP, NEWELM, HUM
. . FUNCTION REFERENCES ..
DOUBLE PRECISION X02AAF, X02ACF
MACHINE DEPENDENT CONSTANTS
/LIMEXP/ IS THE MAXIMUM NUMBER OF ELEMENTS THE EPSILON
TABLE CAN CONTAIN. IF THIS NUMBER IS REACHED, THE UPPER
DIAGONAL OF THE EPSILON TABLE IS DELETED.
DATA LIMEXP /SO/
EPMACH = X02AAF(1.000)
OFLOH = X02ACFC1.000)
LIST OF MAJOR VARIABLES
EO - THE 4 ELEMENTS ON WHICH THE
El COMPUTATION OF A NEW ELEMENT IN
E2 THE EPSILON TABLE IS BASED
E3 EO
E3 El NEW
E2
NEWELM - NUMBER OF ELEMENTS TO BE COMPUTED IN THE NEH
DIAGONAL
ERROR - ERROR = ABSCE1-EO)+ABS(E2-E1)*ABSCNEH-E2)
RESULT - THE ELEMENT IN THE NEH DIAGONAL WITH LEAST
ERROR
NRES = NRES * 1
ABSERR = OFLOU
RESULT = EPSTAB(N)
IF (N.LT.3) GO TO 200
EPSTAB(N-fZ) = EPSTAB(N)
NEWELM = (N-D/2
EPSTAB(N) = OFLOH
HUM = N
Kl = N
DO 80 1=1,NEWELM
K2 = Kl - 1
K3 = Kl - Z
RES = EPSTABJK1+2)
EO = EPSTAB(K3)
El = EPSTAB(KZ)
E2 - RES
E1ABS = DABS(El)
DELTA2 = E2 - El
ERR2 = DABS(DELTAZ)
TOL2 = DMAX1(OABS(E2),E1ABS)*EPMACH
DELTAS = El - EO
ERR3 = DABS(DELTAS)
TOL3 = DMAX1(E1ABS,OABS(EO))*EPMACH
IF (ERR2.GT.TOL2 .OR. ERR3.GT.TOLS) GO TO 20
IF EO, El AND E2 ARE EQUAL TO WITHIN MACHINE
ACCURACY, CONVERGENCE IS ASSUMED
RESULT = E2
ABSERR = ABS(E1-EO)+ABS(E2-E1)
00040000
00040010
00040020
00040030
00040040
00040050
00040060
00040070
00040080
00040090
00040100
00040110
00040120
00040130
00040140
00040150
00040160
00040170
00040180
00040190
00040200
00040210
00040220
00040230
00040240
00040250
00040260
00040270
00040280
00040290
00040300
00040310
00040320
00040330
00040340
00040350
00040360
00040370
00040330
00040390
00040400
00040410
00040420
00040430
00040440
00040450
00040460
00040470
00040480
00040490
00040500
00040510
00040520
00040530
00040540
00040550
00040560
00040570
00040580
00040590
00040600
00040610
00040620
00040630
00040640
00040650
00040660
00040670
00040680
00040690
00040700
00040710
00040720
00040730
00040740
00040750
00040760
181
-------
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
40
60
RESULT = RES
ABSERR = ERR2 + ERRS
60 TO 200
E3 = EPSTAB(Kl)
EPSTAB(Kl) = El
OELTA1 = El - E3
ERR1 = DABS(DELTAl)
TOU = OMAX1(E1A8S,OABS(E3H*EPMACH
IF TWO ELEMEHTS ARE VERY CLOSE TO EACH OTHER> OMIT
A PART OF THE TABLE BY ADJUSTING THE VALUE OF N
IF (ERR1.LT.TOL1 .OR. ERR2.LT.TOL2 .OR. ERR3.LT.TOL3) GOTO 40
SS = 0.1D+01/DELTA1 + 0.1D+01/OELTA2 - 0.10+01/DELTA3
EPSINF = OABS(SS*E1)
TEST TO DETECT IRREGULAR BEHAVIOUR IN THE TABLE, AND
EVENTUALLY OMIT A PART OF THE TABLE ADJUSTING THE VALUE
OF N
IF (EPSINF.GT.0.1D-03) GO TO 60
N a I + I - 1
GO TO 100
COMPUTE A NEH ELEMENT AND EVENTUALLY ADJUST
THE VALUE OF RESULT
RES = El * 0.1D+01/SS
EPSTAB(Kl) = RES
Kl = Kl - 2
ERROR = ERR2 + DABS(RES-EZ) + ERR3
IF (ERROR.GT.ABSERR) GO TO 80
ABSERR = ERROR
RESULT = RES
80 CONTINUE
SHIFT THE TABLE
100 IF (N.EQ.LIMEXP) N = 2*
-------
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
A! Q4
f l7fc
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
PURPOSE
TO COMPUTE I = INTEGRAL OF f OVER fA.B), WITH ERROR
ESTIMATE
J s INTEGRAL OF ABSCF) OVER (A,B)
CALLING SEQUENCE
CALL D01AJZ (F, A, B.RESULT.ABSERR, RESABS, RESASC)
PARAMETERS
F - FUNCTION SUBPROGRAM DEFINING THE INTEGRAND
FUNCTION F(X). THE ACTUAL NAME FOR F NEEDS
TO BE DECLARED EXTERNAL IN THE
CALLING PROGRAM
A - LOWER LIMIT OF INTEGRATION
B - UPPER LIMIT OF INTEGRATION
RESULT - APPROXIMATION TO THE INTEGRAL I.
RESULT IS CALCULATED BY APPLYING
THE 21-POINT GAUSS-KRONROD RULE
CRESK), OBTAINED BY OPTIMAL
ADDITION OF ABSCISSAE TO THE
10-POINT GAUSS RULE (RESS).
ABSERR - ESTIMATE OF THE MODULUS OF THE
ABSOLUTE ERROR. WHICH SHOULD NOT
EXCEED ABSCI-RESULT)
RESABS - APPROXIMATION TO THE INTEGRAL J
RESASC - APPROXIMATION TO THE INTEGRAL OF
ABS(F-I/(B-AM OVER (A, B)
WWWWWWWHWIfWVWWHVWWHHWWWWWVWWWMWW
.. SCALAR ARGUMENTS ..
DOUBLE PRECISION A, ABSERR. B, RESABS, RESASC, RESULT
.. FUNCTION ARGUMENTS ..
DOUBLE PRECISION F
*
. . LOCAL SCALARS . .
DOUBLE PRECISION ABSC, CENTRE, DHL6TH, EPMACH, FC, FSUM, FVALL,
* FVAL2.HLGTH, RESG, RESK, RESKH, UFLOH
INTEGER J
.. LOCAL ARRAYS ..
DOUBLE PRECISION FVK10), FV2UO), H6(10), HGKdDr XGK(ll)
.. FUNCTION REFERENCES ..
DOUBLE PRECISION X02AAF, X02ABF
. .
THE ABSCISSAE AND HEIGHTS ARE GIVEN FOR THE
INTERVAL 1-1,1) . BECAUSE OF SYMMETRY ONLY THE
POSITIVE ABSCISSAE AND THEIR CORRESPONDING
HEIGHTS ARE GIVEN.
XGK - ABSCISSAE OF THE 21-POINT GAUSS-KRONROD RULE
XGK(2), XGKC4), ABSCISSAE OF THE 10-POINT
GAUSS RULE
XGK(l), XGK(3), .... ABSCISSAE WHICH
ARE OPTIMALLY ADDED TO THE 10-POINT
GAUSS RULE
MGK - WEIGHTS OF THE 21-POINT GAUSS-KRONROD RULE
M6 - HEIGHTS OF THE 10-POINT GAUSS RULE,
CORRESPONDING TO THE ABSCISSAE XGK(2),
X6K(4), ... UG(1), UG(3), ... ARE SET
TO ZERO.
00041540
00041550
00041560
00041570
00041580
00041590
00041600
00041610
00041620
00041630
00041640
00041650
00041660
00041670
00041680
00041690
00041700
00041710
00041720
00041730
00041740
00041750
00041760
00041770
00041780
00041790
00041800
00041810
00041820
00041830
00041840
00041850
00041860
00041870
nAA4.i ftftn
UvU*rxOOU
00041890
00041900
00041910
00041920
00041930
00041940
00041950
00041960
00041970
00041980
00041990
00042000
00042010
00042020
00042030
00042040
00042050
00042060
00042070
00042080
00042090
00042100
00042110
00042120
00042130
00042140
00042150
00042160
00042170
00042180
00042190
DATA XGK(l), XSK(2), XGK(3), XGK(4), XGK(S), XGK(6), XGK(7),XGK(8)00042200
*, XGK(9), XGK(IO), XGK (11) /0.9956571630258080807355272807D+00,
*0. 973906528517171 7200779640121D+00,
«0 . 93015749135570822600120718010+00 ,
*0. 8650633666889845107320966884D+00,
*0 . 78081772658641689706371757830+00 ,
*0. 67940956829902440623432736510+00,
0.56275713466860468333900009930+00,
»0. 43339539412924719079926594320+00,
*0.2943928627014601981311266031D+00,
*0 . 14887433898163121088482600110+00 . 0 . ODD/
00042210
OG042220
00042230
00042240
00042250
00042260
00042270
00042280
00042290
00042300
183
-------
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
A9C7
*tC3/
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
DATA HGKU), HGK(2), WGKC3), WGKC4), MGK(5), WGKC6), WGK(7),HGK(8)00042310
*, HGK(9), WGKUO), WGK(ll) /O. 116 94638867371874278064396060-01 >
*0. 325581623079647274 78818972460-01,
*0. 54755896574351996031381300240-01,
*0. 750396 7481091995276 7043140920-01,
*0. 93125454583697605535065465080-01,
*0. 10938715880229764189921059030+00,
*0 . 12349197626206585107795810980+00 ,
*0. 13470921731147332592805400180+00,
*0. 14277593857706008079709427310+00,
*0. 14773910490133849137484151600+00,
*0.14944555400291690S6649364684D+00/
DATA W6(l), MG(2), UG(3), WG(4), WG(5), WG(6), M6(7), WG(8),HG(9>
* WG(10) /O. 000 ,0.66671344308688137593566809890-01, 0.000,
*0 . 14945134915058059314577633970+00 , 0 . 000 ,
*0 . 21908636251598204399553493420+00 , 0 . 000 ,
*0 . 26926671930999635509122692160+00 , 0 . 000 ,
*0.2955242247147528701738929947D+00/
EPMACH = X02AAF(1.0DO)
UFLOW = X02ABF( 1.000)
C
C LIST OF MAJOR VARIABLES
c ~-» -
C CENTRE - MID POINT OF THE INTERVAL
C HLSTH - HALF LENGTH OF THE INTERVAL
C ABSC - ABSCISSA
C FVAL* - FUNCTION VALUE
C RESG - 10-POINT GAUSS FORMULA
C RESK - 21-POINT SAUSS-KRONROO FORMULA
C RESKH - APPROXIMATION TO MEAN VALUE OF F OVER
C (A,B), I.E. TO I/CB-A)
C
CENTRE = 0.50+00*(A+B)
HLSTH = 0.5D+00*(B-A>
OHLGTH = DABS(HLGTH)
C
C COMPUTE THE 21-POINT SAUSS-KRONROO APPROXIMATION TO
C THE INTEGRAL. AND ESTIMATE THE ABSOLUTE ERROR
C
RESG = 0.00+00
FC = F( CENTRE)
RESK = UGK(11)*FC
RESABS = DABS(RESK)
00 20 J=l,10
ABSC = HLGTH*XGK(J)
FVAL1 = F(CENTRE-ABSC)
FVAL2 = F{CENTRE+ABSC>
FV1CJ) = FVAL1
FV2U) = FVAL2
FSUM = FVAL1 + FVAL2
RESG = RESG + WG(J)*FSUH
RESK = RESK + WGK(J)*FSUM
RESABS = RESABS + WGKC J)*(DABSCFVAL1)+DABS(FVAL2))
20 CONTINUE
RESKH = RESK*0. 50+00
RESASC = WGK(11)*DABS(FC-RESKH)
00 40 J=l,10
00042320
00042330
00042340
00042350
00042360
00042370
00042380
00042390
00042400
00042410
00042420
,00042430
00042440
00042450
00042460
00042470
00042480
00042490
00042500
00042510
00042520
AAnAOc-xn
vUvtC? JU
00042540
00042550
00042560
00042570
00042580
00042590
00042600
00042610
00042620
00042630
00042640
00042650
00042660
00042670
00042680
00042690
00042700
00042710
00042720
00042730
00042740
00042750
C0042760
00042770
00042780
00042790
00042800
00042810
00042820
00042830
00042840
00042850
00042860
00042870
RESASC = RESASC + WGK( J)*(DABS(FV1CJ)-HESKH)+DABS{FV2< J)-RESKH)00042880
* )
40 CONTINUE
RESULT = RESK*HL6TH
RESABS = RESABS*OHLGTH
RESASC = RESASC*OHLGTH
ABSERR = DABS((RESK-RESG)*HL6TH)
IF (RESASC. NE. 0.0+00) ABSERR = RESASC*OMIN1( 0. 10+01, ( 0.20+03*
WABSERR/RESASC )**! . 500 )
00042890
00042900
00042910
00042920
00042930
00042940
00042950
00042960
IF (RESABS. GT.UFLOW/(0.5D+02*EPMACH)) ABSERR =OMAX1(EPMACH*RE5ABS*00042970
*0. 50+02, ABSERR)
RETURN
END
C'
C
INTEGER FUNCTION POlAAFdFAIL, ERROR, SRNAME)
C FUNCTION P01AAF, PART OF PEM (VERSION 82360).
C
C MARK 1 RELEASE. MAG- COPYRIGHT 1971
C MARK 3 REVISED
00042980
00042990
00043000
00043010
00043020
00043030
00043040
00043050
00043060
00043070
184
-------
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
432S
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
C
c
C
c
CSP
c
c
c
c
c
c
c
999
C
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
HARK 4A REVISED, IER-45
HARK 4.5 REVISED
HARK 7 REVISED (DEC 1978)
RETURNS THE VALUE OF ERROR OR TERMINATES THE PROGRAM.
INTEGER ERROR, IFAIL, NOUT
DOUBLE PRECISION SRNAME
TEST IF NO ERROR DETECTED
IF (ERROR.EQ.O) 60 TO 20
DETERMINE OUTPUT UNIT FOR MESSAGE
CALL X04AAF (O.NOUT)
TEST FOR SOFT FAILURE
IF (MOO(IFAIL,10).EQ.l) GO TO 10
HARD FAILURE
WRITE (NOUT,99999) SRNAME, ERROR
STOPPING MECHANISM MAY ALSO DIFFER
STOP
SOFT FAIL
TEST IF ERROR MESSAGES SUPPRESSED
10 IF (MOD(IFAIL/10,10).EQ.O) GO TO 20
WRITE (NOUT,99999) SRNAME, ERROR
20 P01AAF = ERROR
RETURN
99999 FORMAT (1HO, 38HERROR DETECTED BY NAG LIBRARY ROUTINE
* 11H - IFAIL * , IS//)
END
A8,
DOUBLE PRECISION FUNCTION X02AAFCX)
FUNCTION X02AAF, PART OF PEM (VERSION 82360).
NAG COPYRIGHT 1975
MARK 4.5 RELEASE
DOUBLE PRECISION X
* EPS *
IBM DOUBLE PRECISION VERSION
RETURNS THE VALUE EPS WHERE EPS IS THE SMALLEST
POSITIVE
NUMBER SUCH THAT 1.0 + EPS > 1.0
THE X PARAMETER IS NOT USED
FOR ICL 1900
X02AAF = 2.0**(-37.0)
FOR IBM 360/370
X02AAF = 2.0DO**(-52.000)
DOUBLE PRECISION Z
DIMENSION ZZC2)
EQUIVALENCE (ZZ(1),Z)
DATA ZZ /Ol71410000000,OOOOOOOOOOOOO/
DATA Z/Z3410000000000000/
X02AAF = Z
RETURN
END
DOUBLE PRECISION FUNCTION X02ABFIX)
FUNCTION X02ABF, PART OF PEM (VERSION 82360).
NAG COPYRIGHT 1975
MARK 4.5 RELEASE
DOUBLE PRECISION X
* RMIN *
IBM DOUBLE PRECISION VERSION
RETURNS THE VALUE OF THE SMALLEST POSITIVE REAL FLOATING-
POINT NUMBER EXACTLY REPRESENTABLE ON THE COMPUTER
THE X PARAMETER IS NOT USED
FOR ICL 1900
X02ABF = 2.0**t-257.0)
FOR IBM 360/370
X02ABF = 16.0DO**(-65.0DO)
DOUBLE PRECISION Z
DIMENSION ZZ(2)
EQUIVALENCE (ZZ(1),Z)
DATA ZZ /0000110000000,OOOOOOOOOOOOO/
00043080
00043090
00043100
00043110
00043120
00043130
00043140
00043150
00043160
00043170
00043180
00043190
00043200
00043210
00043220
00043230
00043240
00043250
00043260
00043270
00043280
00043290
00043300
00043310
00043320
00043330
00043340
00043350
00043360
00043370
00043380
00043390
00043400
00043410
00043420
00043430
00043440
00043450
00043460
00043470
00043480
00043490
00043500
00043510
00043520
00043530
00043540
00043550
00043560
00043570
00043580
00043590
00043600
00043610
00043620
00043630
00043640
00043650
00043660
00043670
00043680
00043690
00043700
00043710
00043720
00043730
00043740
00043750
00043760
00043770
00043780
185
-------
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4433
4439
4440
4441
4442
4443
AAAA
4445
4446
4447
*»
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
DATA Z/Z0010000000000000/
X02ABF = Z
RETURN
END
DOUBLE PRECISION FUNCTION X02ACFCX)
FUNCTION X02ACF, PART OF PEM (VERSION 82360).
NAG COPYRIGHT 1975
MARK 4.5 RELEASE
DOUBLE PRECISION X
* RMAX *
IBM DOUBLE PRECISION VERSION
RETURNS THE VALUE OF THE LARGEST POSITIVE REAL FLOATINS-
POINT NUMBER REPRESENTABLE ON THE COMPUTER
FOR ICL 1900
X02ACF = (2.0 - 2.0**(-36.0))*2.0**254.0
FOR IBM 360/370
X02ACF : (1.0DO-16.QOO**(-14.000H*16.000**63.000
DOUBLE PRECISION Z
DIMENSION ZZ(2)
EQUIVALENCE (ZZ(1),Z)
DATA ZZ /0377777777777,0777777777777/
DATA Z/Z7FFFFFFFFFFFFFFF/
X02ACF = Z
RETURN
END
SUBROUTINE X04AAFU.NERR)
SUBROUTINE X04AAF, PART OF PEM (VERSION 82360).
MARK 7 RELEASE. NAG COPYRIGHT 1978
MARK 7C REVISED IER-190 (MAY 1979)
IF I = 0, SETS NERR TO CURRENT ERROR MESSAGE UNIT NUMBER
(STORED IN HERRI).
IF I = 1, CHANGES CURRENT ERROR MESSAGE UNIT NUMBER TO
VALUE SPECIFIED BY NERR.
THIS ROUTINE ASSUMES THAT THE VALUE OF NERR1 IS SAVED
BETWEEN CALLS. IN SOME IMPLEMENTATIONS IT MAY BE
NECESSARY TO STORE NERR1 IN A LABELLED COMMON
BLOCK /AX04AA/ TO ACHIEVE THIS.
.. SCALAR ARGUMENTS ..
INTEGER I. NERR
.. LOCAL SCALARS ..
INTEGER NERR1
DATA NERR1 /6/
IF (I.EQ.O) NERR = NERR1
IF (I.EQ.l) NERR1 = NERR
RETURN
END
00043790
00043800
00043310
00043820
00043830
00043840
00043850
00043860
00043870
00043880
00043890
00043900
00043910
00043920
00043930
00043940
00043950
00043960
00043970
00043980
00043990
00044000
00044010
00044020
00044030
00044040
00044050
00044060
00044070
00044080
00044090
00044100
00044110
00044120
00044130
00044140
00044150
00044160
00044170
00044180
00044190
00044200
00044210
00044220
00044230
00044240
00044250
00044260
00044270
00044280
00044290
00044300
00044310
00044320
00044330
00044340
3BRKPT PRINT*
186
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
4. TITLE AND SUBTITLE
POLLUTION EPISODIC MODEL
User's Guide
2.
3. RECIPIENT'S ACCESSION-NO.
5. REPORT DATE
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
K. Shankar Rao and Martha M. Stevens
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Atmospheric Turbulence and Diffusion Divisi
National Oceanic and Atmospheric Administrc
Oak Ridge, Tennessee 37830
12. SPONSORING AGENCY NAME AND ADDRESS
Environmental Sciences Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27
8. PERFORMING ORGANIZATION REPORT NO.
10. PROGRAM ELEMENT NO.
on CDTA1D/02-1606 FY_84
itiOH 11. CONTRACT/GRANT NO.
IAG-AD-13-1-070-0
13. TYPE OF REPOR
- RTP, nc Final 9/
ToW/1^00 COVEBED
'Ol-^/OJ
14. SPONSORING AGENCY CODE
711 EPA/600/09
15. SUPPLEMENTARY NOTES
^.ABSTRACT ^ ^ ^^ -^ ^^ ^^ ^^ ^ ^ urban-scale model designed to predict
short-term average ground-level concentrations and deposition fluxes of one or two
gaseous or particulate pollutants at multiple receptors. The two pollutants may be
non-reactive, or chemically-coupled through a first-order chemical transformation.
Up to 300 isolated point sources and 50 distributed area sources may be considered in
the calculations. Concentration and deposition flux estimates are made using the
mean meteorological data for an hour. Up to a maximum of 24 hourly scenarios of mete-
orology may be included in an averaging period.
The concentration algorithms used in PEM are specially developed to account for
the effects of dry deposition, sedimentation, and first-order chemical transformation.
The Gaussian plume- type algorithms for point sources are derived from analytical
solutions of a gradient- transfer model. In the limit, when deposition and settling
velocities of the pollutants and the chemical transformation rate are zero, these
expressions reduce to the familiar Gaussian plume diffusion algorithms. The concen-
tration algorithms for area sources 1n PEM are derived from an innovative approach
based on mass balance considerations. These algorithms are simple, efficient, and
accurate. The computer program of the Texas Episodic Model is used as a framework
for the development of the PEM program.
17.
KEY WORDS AND DOCUMENT ANALYSIS
*. DESCRIPTORS
13. DISTRIBUTION STATEMENT
RELEASE TO PUBLIC
b.lDENTIFIERS/OPEN ENDED TERMS
- *
19. SECURITY CLASS (This Report)
UNCLASSIFIED
2O. SECURITY CLASS (This page)
UNCLASSIFIED
c. COSATI Field/Group
21. NO. OF PAGES
22. PRICE
EPA Form 2220-1 (9-73)
-------