-November  1983-
          POLLUTION EPISODIC MODEL

                USER'S GUIDE
 ENVIRONMENTAL SCIENCES RESEARCH LABORATORY
     OFFICE OF RESEARCH AND DEVELOPMENT
    U.S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27711

-------
           POLLUTION EPISODIC MODEL

                 USER'S GUIDE
                      by
      K. Shankar Rao and Martha M. Stevens
 Atmospheric Turbulence and Diffusion Division
National Oceanic and Atmospheric Administration
          Oak Ridge, Tennessee 37830
              IAG-AD-13-F-1-707-0
                Project Officer

               Jack H. Shreffler
      Meteorology and Assessment Division
  Environmental Sciences Research Laboratory
 Research Triangle Park, North Carolina 27711
  ENVIRONMENTAL SCIENCES RESEARCH LABORATORY
      OFFICE OF RESEARCH AND DEVELOPMENT
     U.S.  ENVIRONMENTAL PROTECTION AGENCY
 RESEARCH TRIANGLE PARK, NORTH CAROLINA 27711

-------
                                  DISCLAIMER
     This report has been reviewed by the Environmental Sciences Research
Laboratory, U.S. Environmental Protection Agency, and approved for pub-
lication.  Approval does not signify that the contents necessarily re-
flect the views and policies of the U.S. Environmental Protection Agency,
nor does mention of trade names or commercial products constitute
endorsement or recommendation for use.

-------
                                  ABSTRACT
     The Pollution Episodic Model (PEM) is an urban-scale model designed
to predict short-term average ground-level concentrations and deposition
fluxes of one or two gaseous or particulate pollutants at multiple recep-
tors.  The two pollutants may be non-reactive, or chemically-coupled through
a first-order chemical transformation.  Up to 300 isolated point sources and
50 distributed area sources may be considered in the calculations.  Concentra-
tion and deposition flux estimates are made using the mean meteorological
data for an hour.  Up to a maximum of 24 hourly scenarios of meteorology
may be included in an averaging period.

     The concentration algorithms used in PEM are specially developed to
account for the effects of dry deposition, sedimentation, and first-order
chemical transformation.  The Gaussian plume-type algorithms for point
sources are derived from analytical solutions of a gradient-transfer model.
In the limit, when deposition and settling velocities of the pollutants
and the chemical transformation rate are zero, these expressions reduce to
the familiar Gaussian plume diffusion algorithms.  The concentration
algorithms for area sources in PEM are derived from an innovative approach
based on mass balance considerations.  These algorithms are simple, efficient,
and accurate.  The computer program of the Texas Episodic Model is used
as a framework for the development of the PEM program.

     When the chemical transformation option is considered, PEM calculates
the average surface concentrations and deposition fluxes of both the primary
(reactant) and the secondary (reaction product) pollutants.  The model also
permits a possible direct emission of the secondary pollutant.  The deposi-
tion and settling velocities of the two species may be different.  Either
of the species may be a gaseous or particulate pollutant.

     PEM is intended for studies of the atmospheric transport, transformation,
and deposition of acidic, toxic, and other pollutants in urban areas, and to
assess the impact of new sources or source modifications on air quality for
regulatory purposes and urban planning.  The information in this report is
directed to the model user and the programmer.

     This User's Guide to PEM was prepared by NOAA's Atmospheric Turbulence
and Diffusion Division in partial fulfillment of Interagency Agreement No.
AD-13-F-1-707-0 with the U.S. Environmental Protection Agency.  Details of
the development and testing of the concentration algorithms used in PEM for
point and area sources are given in another report prepared under this
Interagency Agreement.  This work, covering the period September 1981 to
March 1983, was completed as of April 30, 1983.
                                     111

-------
                              CONTENTS






Abstract 	 iii




Figures	 vii




Tables 	 viii




Acknowledgements 	 ix






1.   MODEL OVERVIEW




     1.1  Introduction 	  1




     1.2  Capabilities and Applications 	  2




     1.3  Assumptions and Limitations 	  3




     1.4  Summary of Input Data 	  5




     1.5  Summary of Model Output 	   7




2.   TECHNICAL DISCUSSION




     2.1  Theoretical Basis	  9




     2.2  Point Sources 	 10




          2.2.1  Concentration Algorithms 	 10




          2.2.2  Plume Rise 	 12




          2.2.3  Dispersion Parameters 	 14




          2.2.4  Restrictions on Receptors for Calculations 	 16




     2.3  Area Sources 	 17




          2.3.1  Emission Grid 	 17




          2.3.2  Concentration Algorithms 	 23




          2.3.3  Dispersion Parameters 	 26




     2.4  Receptors  	 27




          2.4.1  Receptor Grid 	 27




          2.4.2  Automatic Grid Selection 	 28

-------
          2.5  Meteorology	  34

               2.5.1  Atmospheric Stability 	  34

               2.5.2  Wind Speed 	  35

               2.5.3  Wind Direction 	  37

               2.5.4  Mixing Depth 	  38

3.   COMPUTER PROGRAM OVERVIEW

          3.1  Basis for PEM Program 	  40

          3.2  Structure of the Program	  41

          3.3  General Flow of the Program 	  43

4.   PROGRAM USER'S GUIDE

          4.1  Summary of Program Input	  45

          4.2  Details of Program Input 	  46

               4.2.1  Control Parameters 	  46

               4.2.2  Scenario Parameters 	  52

               4.2.3  Area Source Parameters 	  53

               4.2.4  Point Source Parameters 	  54

               4.2.5  Discussion of Input Parameters 	  55

          4.3  Guide to Program Output 	  58

          4.4  Example Problems 	  60

References 	  61

Appendices

     A.   Point Source Algorithms 	  62

     B.   Plume Rise Equations 	  71

     C.   Surface Deposition Fluxes, and Deposition and Settling
          Velocities 	  74

     D.   D01AJF - NAG FORTRAN Library Routine Document 	  77

     E.   Input and Output Listings of Example Problems 	  81

     F.   PEM FORTRAN Listing 	128

                                      vi

-------
                                   FIGURES
Number                                                                     Page

1  Schematic diagram showing a single grid square with emissions
   and four downwind calculation grid squares with receptors, and
   the distances used in area-source algorithms 	 18

2  Spatial patterns of affected calculation grid squares downwind
   of an area source 	 20-21

3  Schematic diagram showing a single grid square with receptor and
   four upwind grid squares with emissions, and the distances used
   in area-source algorithms 	 25

4  Points used for automatic selection of receptor grid by AUTGRD
   subroutine 	 30

5  Example of a receptor grid selected by AUTGRD subroutine 	 33

6  Structure of PEM computer program 	 42
                                     VII

-------
                                   TABLES
Number                                                                Page
  1  Values of a and b in a  = a x  for point sources 	 15
                           z


  2  Values of c and d in a  = c x  for point sources 	 15
                           7            F


  3  Maximum crosswind angle values for point source plumes 	 16



  4  Values of i and j for each spatial pattern of affected squares

     downwind of an area source 	 19



  5  Values of a and b in a  = a x  for area sources 	 27
                           z


  6  Atmospheric stability classes	 34



  7  Atmospheric conditions defining stability classes 	 35



  8  Wind speed classification 	 36



  9  Values of exponent p in wind speed power law 	 36



 10  Wind direction sectors 	 37



 11  Input data for Example Problem 1 	 82



 12  Output listing for Example Problem 1 	 83



 13  Input data for Example Problem 2 	 96



 14  Output listing for Example Problem 2 	 97



 15  Input data for Example Problem 3 	109



 16  Output listing for Example Problem 3 	110
                                     Vlll

-------
                              ACKNOWLEDGEMENTS
     This report was prepared for the Office of Research and Development,




Environmental Sciences Research Laboratory of the U. S. Environmental




Protection Agency to support the needs of EPA's Office of Air Quality




Planning and Standards in urban particulate modeling.  This work was accom-




plished under interagency agreements among the U. S. Department of Energy,




the National Oceanic and Atmospheric Administration, and the EPA.  The




authors are grateful to Dr. Jack Shreffler of ESRL for the opportunity to




do this work, and for his interest and patience.  The authors also express




their appreciation to the following members of the Atmospheric Turbulence




and Diffusion Division:  Director Bruce B. Hicks for his understanding and




support, Dr. Ray Hosker for useful suggestions and discussions during the




course of this work, and Mrs. Mary Rogers for her expert technical typing




and patient revisions.  Special thanks are due to Bernadette Kirk, Nancy




Price, and Louise Taylor, who worked as programmers for this project at




various times and assisted in the development and testing of the concen-




tration algorithms for PEM.




     Several figures and tables shown in this report are reproduced from




the Users' Guide to Texas Episodic Model with permission from the Texas




Air Control Board.  The library routine D01AJF used for numerical integration




in PEM has been released by the Computer Sciences Division of the Oak Ridge




National Laboratory for inclusion in the program listing.  The Numerical




Algorithms Group holds the copyright to this routine and its document.  The




latter is reproduced in this report from the NAG FORTRAN Mini-Manual.
                                     IX

-------
                                  SECTION 1








                               MODEL OVERVIEW








1.1  INTRODUCTION








     The Pollution Episodic Model (PEM) is an urban-scale model designed




to predict short-term ground-level concentrations and deposition fluxes




of one or two gaseous or particulate reactive atmospheric pollutants in




an urban area with multiple point and area sources.  PEM uses point and




area-source concentration algorithms developed by Rao (1982) which




explicitly account for the effects of dry deposition, gravitational




settling, and a first-order chemical transformation.  These algorithms,




derived analytically from a gradient-transfer model, are based on




Gaussian plume modeling assumptions.  The surface concentrations and




deposition fluxes of both the primary (reactant) and the secondary




(reaction product) pollutants are calculated.








     The PEM is based on the Texas Episodic Model (TEM) developed by the Texas




Air Control Board (1979) for the atmospheric dispersion of non-reactive




pollutants over a perfectly reflecting surface.  In the limit, when the




deposition and settling velocities and the chemical transformation rate




are zero, the point-source concentration algorithms used in PEM reduce to

-------
the familiar Gaussian plume dispersion algorithms used in TEM.  As this

limit is approached, the new area source algorithms used in PEM give

essentially the same values as TEM for ground-level concentrations of

pollutants.  The two models share the same framework for calculations.

Some of the key assumptions of TEM, also retained in PEM, are as follows:
          All area source emissions are assumed to occur at the ground-
          level.  The variation of the vertical dispersion coefficient
          CT (x) was expressed by a power law given by Gifford and Hanna
          (1970).   The enhanced near-surface diffusion over urban areas
          was simulated by decreasing the stability class index by one
          for all classes except Class A.  The horizontal diffusion was
          ignored for the narrow plumes resulting from distributed area
          sources.

          Values for the horizontal and vertical dispersion coefficients,
          a (x) and 0 (x), for point sources were derived from power laws
          fitted to tne empirically-derived Pasquill-Gifford curves given
          by Turner (1970).  Their values were identical to those used in
          EPA's Climatological Dispersion Model (Busse and Zimmerman, 1973).

          The wind speed at the anemometer height was adjusted to the stack
          height using a power law with the exponents given by DeMarrais (1959)
          The penetration of an inversion layer aloft by a buoyant plume
          was considered by defining an inversion penetration factor capable
          of simulating inversions of various strengths.
     Some of the important differences between PEM and TEM are listed in

Section 3 of this report.


1.2  CAPABILITIES AND APPLICATIONS


     The capabilities of PEM are as follows:

     1.   PEM is an urban-scale model applicable to downwind distances
          of up to 60 km.

     2.   Up to a maximum of 300 point sources and 50 area sources
          can be included in the model inputs to estimate concentra-
          tions at a maximum of 2500 receptors located on a 50 x 50
          square receptor grid.

-------
     3.   PEM calculates short-term (1 to 24 hr) average ground-level
          concentrations and deposition fluxes of one or two gaseous
          or particulate pollutants.

     4.   The two pollutants may be non-reactive, or chemically-
          coupled through a first-order chemical transformation.
          Either or both of the two pollutants may be gaseous or
          particulate species.

     5.   If only one pollutant is calculated, the effects of a first-
          order chemical decay can be considered.

     6.   There is no restriction on the size of the particles.  The
          chemical transformation or decay rate may vary from 0.1 to
          100 percent per hour.

     7.   The deposition (and settling) velocities of the two species
          may be equal or different.   Direct emission of the secondary
          (reaction product) pollutant may be zero or non-zero for point
          and area sources.
     Some areas of potential application of PEM are the following:
     1.    Urban particulate modeling.

     2.    Studies of the transport,  diffusion,  transformation,  and
          deposition of acidic,  toxic,  and other pollutants in urban
          areas.   An important example  is_the atmospheric transport
          and transformation of SO-  to  SOT.

     3.    Impact analyses of new sources or source modifications
          for regulatory purposes.

     4.    Stack parameter design studies.

     5.    Fuel conversion/switching  studies.   Evaluation of pollution
          control technology and strategies.

     6.    Prevention of significant  deterioration.

     7.    Urban planning.
1.3  ASSUMPTIONS AND LIMITATIONS

     PEM is based on steady state Gaussian plume modeling assumptions.

Some of the important assumptions of PEM are as follows:

     1.   The sources are stationary and the emission rates are constant
          over the concentration-averaging period.

-------
 2.    Concentration estimates may be made  for  each hour using  the
      mean meteorological  conditions for that  hour.   Concentrations
      for a period longer  than an hour  can be  determined by  averaging
      the hourly  concentrations  of  that period.  This can be done
      externally  with minimal programming  to calculate, for  example,
      24-hour  average concentrations with  diurnally varying  emission
      rates.

 3.    Total concentration  at a receptor is the sum of the concentra-
      tions calculated  at  the receptor  from each source; i.e.,  con-
      centrations are additive.

 4.    Pollutants  released  from a stack  are transported downwind at
      a  rate equal to the  mean wind speed  at the physical stack
      height.   The wind direction is constant  for each hour.   The
      horizontal  wind field is homogeneous and the effects of
      directional wind  shear are neglected.

 5.    Diffusion of continuous plumes gives time-averaged Gaussian
      distributions for concentrations  in  the  crosswind and  vertical
      directions.  The  diffusion in the downwind direction is
      negligible  compared  to advection.

 6.    The reactant and  the product  species are coupled through a first-
      order chemical transformation.  The  deposition  and settling
      velocities  of the species, and the chemical transformation rate
      are constant over the concentration-averaging period.  The diurnal
      variation of these parameters can be considered, if necessary,
      by averaging the  hourly concentrations as discussed above.

 7.    Particulate pollutants consist of particles of  a known size
      (or size distribution) with a representative settling
      velocity.

 8.    Pollutant concentration at a  receptor due to the distributed
      area  sources depends only  on  sources located in a narrow
      upwind  sector.  Therefore, horizontal diffusion can be ignored
      for area sources.

 9.    The crosswind variations of urban area source-strength patterns
      can be  ignored.   The contributions of more remote upwind area
      sources  to  the  concentration  at a receptor are  quite  small.
      For this reason,  it  is generally  adequate to consider  only
      four  area source  grid  squares immediately upwind of each
      receptor grid  square.

10.    The enhanced near-surface  diffusion  over urban  areas  is  simulated
      by decreasing  the stability  class index  by one  for all classes
      except  Class A.   This  correction  is  applied only to distributed
      urban area  sources,  assumed  to be at ground-level, and not to
      the  isolated point sources, which are generally located  at
      higher  elevations.

-------
     Every air pollution model is limited by the assumptions used to predict

the pollutant concentrations in the atmosphere.  PEM is subject to the same

basic limitations as any Gaussian plume-type model.  The limiting assumptions

of the state-of-the-art algorithms developed for PEM are discussed in detail

by Rao (1982).  Other general limitations of the model can be summarized as

follows:
     1.    Receptors farther than 60 km downwind of a source are
          ignored.  Thus the maximum downwind distance is limited
          to 60 km.

     2.    The number of point sources is limited to 300, and the number
          of area sources is limited to 50.  A user can easily expand the
          maximum number of point and/or area sources, if necessary.
          All sources are stationary.

     3.    The maximum number of scenarios (sets of hourly meteorological
          data) in an averaging period is limited to 24.  PEM is designed
          to calculate only short-term (1 to 24 hr) average surface
          concentrations and deposition fluxes of one or two pollutants.

     4.    PEM does not make any adjustment for differences in terrain
          elevation between sources and/or receptors.  The model assumes
          level terrain.

     5.    Only a first-order chemical transformation/decay is considered.
          The transformation rate, and the deposition and settling velo-
          cities of the species, should be specified by the user.  If area
          sources are included, the deposition velocities should be non-
          zero to avoid singularities in the computations.
1.4  SUMMARY OF INPUT DATA

     Input to PEM is divided into four main sections:

     1)  Control parameters

     Control parameters remain constant throughout the model run.  They

specify:


     1.   An alphanumeric title

     2.   Time-averaging option

     3.   Options for types of input and output

-------
     4.    Number of scenarios (sets of hourly meteorological data)

     5.    Stack-tip downwash option for point sources

     6.    Receptor grid coordinates and spacing

     7.    Automatic receptor grid option

     8.    Potential temperature gradient d6/dz for calculation of plume
          rise with E and F atmospheric stability classes

     9.    Parameters for one or two pollutants

          a.    Deposition velocity
          b.    Gravitational settling velocity

    10.    Option to calculate chemical transformation or decay for first
          pollutant

          a.    Chemical transformation or decay rate
          b.    Ratio of molecular weights of product to reactant

    11.    Scaling factors for area source emission rates

    12.    Calibration coefficients to be applied to the calculated
          concentrations

    13.    Alphanumeric labels for pollutants

    14.    Alphanumeric labels for the calibrated concentrations


     2)    Scenario Parameters

     A scenario is a set of mean meteorological data for one hour.  From

one to twenty-four scenarios may be included in each run.  Each scenario

uses the same receptor grid and the same point and area source inventories.

Meteorological parameters for each scenario are

     1.    Atmospheric stability class

     2.    Wind speed class or specific wind speed

     3.    Wind direction sector or specific wind direction

     4.    Ambient temperature

     5.    Inversion penetration factor

     6.    Mixing height

-------
     3)   Area Source Inventory




     From zero to fifty area sources may be included in each run.  Each




area source square is described by:




     1.   Location in receptor grid coordinates




     2.   Length of a side




     3.   Emission rates for pollutants






     4)   Point Source Inventory




     From zero to three hundred point sources may be included in each run.




Each point source is described by:




     1.   Location in receptor grid coordinates




     2.   Emission rates for pollutants




     3.   Stack height




     4.   Inside exit diameter of the stack




     5.   Exit velocity of the plume




     6.   Exit temperature of the plume




     7.   Alphanumeric identification






     Details of the input data to PEM are given in Section 4 of this report.








1.5  SUMMARY OF MODEL OUTPUT




     For ease of reference, PEM output lists and briefly explains all input




control parameters used in a run.  Input data for meteorological conditions,




area sources, and point sources are also listed.








     Calculated values of surface concentrations, deposition fluxes, and




other useful information may be displayed in the following optional forms:

-------
     1.    List Option 	 For each receptor in the grid,  the calculated
          values of concentrations and deposition fluxes  are listed for
          each scenario.

     2.    Spatial Array Option 	 The calculated values  of concentra-
          tions and deposition fluxes at each receptor are displayed in
          map form for each scenario.

     3.    Tape Option 	 The calculated values of concentrations and
          deposition fluxes at each receptor are written  on a magnetic
          tape (designated for output) for each scenario.  This option
          may be used to generate inputs to a contour-plotting routine.

     4.    Culpability List Option 	 The five point sources which contri-
          buted most to the total concentration at each receptor are identi-
          fied by point-source sequence number.  A list of these source
          numbers and their percent contributions are printed for each
          receptor in the grid for each scenario.  This option may be used
          only when the model calculates concentrations of a single
          pollutant.

     5.    Maximum Concentration Option 	 The maximum calculated values
          of surface concentration and deposition flux for each scenario,
          and the receptor where these values occur, are  printed for each
          pollutant at the end of the run.

     6.    Point Source List Option 	 The input stack parameters, the wind
          speed at physical stack height, the maximum effective source
          height and the dominant plume rise influence are listed for
          each point source.


     These output options are selected by the user by specifying appropriate

values for the control parameters in the inputs to the model.  It may not

be possible to elect some of these options in combination with the others.

The details are discussed in Section 4.

-------
                                  SECTION 2








                            TECHNICAL DISCUSSION








2.1  THEORETICAL BASIS








     The concentration algorithms used in PEM are derived from analytical




solutions of a steady state gradient-transfer (K-theory) model, which




describes the atmospheric transport, diffusion, deposition, and first-




order chemical transformation of gaseous or particulate pollutants from an




elevated continuous point source.  The eddy diffusivity coefficients in




these analytical solutions are expressed in terms of the empirical Gaussian




plume dispersion parameters, so that the latter can be conveniently specified




as functions of the downwind distance and the atmospheric stability class




within the framework of the standard turbulence-typing schemes.  The point-




source concentration algorithms for the primary (reactant) and the secondary




(product) pollutants are presented for various stability and mixing condi-




tions of the atmosphere.  In the limit when deposition and settling velocities




and the chemical transformation rate are zero, these algorithms reduce to




the well-known Gaussian plume dispersion algorithms presently used in EPA




air quality models.  Details of the gradient-transfer model formulations,




analytical solutions, parameterizations, and development of the point-source




concentration algorithms can be found in the reports by Rao (1982, 1981).

-------
     The PEM algorithms for ground-level concentrations of the primary and




secondary pollutants resulting from urban area source emissions are derived




from an innovative mathematical approach based on mass budgets of the species.




These expressions for area sources involve only the point-source algorithms




for the well-mixed region; this permits the use of the same subroutines for




both point and area sources in the PEM computer program.  Thus, the area-




source concentration algorithms used in PEM are simple, efficient, and




accurate.  Details of their mathematical derivation, physical interpretation,




and application to multiple urban area sources and receptors can be found




in the report by Rao (1982).








     PEM uses Briggs' (1969, 1975) plume rise formulations for point




sources, empirically-derived Pasquill-Gifford dispersion parameters




(Gifford, 1968, 1976), and the urban area-source modeling techniques due




to Gifford and Hanna (1970).
2.2  POINT SOURCES








2.2.1     Concentration Algorithms








     The ground-level concentrations of the primary and the secondary




pollutants (denoted by subscripts 1 and 2, respectively) from an elevated




continuous point source are calculated in PEM from one or both of the




following sets of algorithms, depending on the atmospheric stability and




mixing conditions:
                                     10

-------
Near-source region (0 < x < x ),
	™	        —  m
                                   r
                                    y
                                                                     n
                                                                     (la
                         „    Qi   8i   822                           ,,,,
                         C2= IT • r • r-                           (lb)
Well-mixed region  (x > 2 x ),
	a	
                              Qi   81

                         ci" r • r
                                    y
                                                                     (2b)
                         Ly = V5 oy , L2 = V2S az                   (3)
In the above, Q- is emission rate (source strength) of the primary pollutant,




U is mean wind speed at physical stack height, L is mixing depth (height of




inversion lid), x  is the downwind distance (from source) at which



a (x ) = 0.47 L, and L  and L  are length scales characteristic of
 z  m          '      y      z        °


diffusion in the horizontal crosswind and vertical directions, respec-




tively.  The nondimensional functions g,(x,y), g' (x,0), g' (x,0),



g! (x), and g!_(x), defined in terms of dimensionless parameterized




variables, are given in Appendix A.
                                    11

-------
     In Eqs. (1) and (2), it should be noted that the concentrations for



both primary and secondary pollutants are expressed in terms of Q1.   This



does not preclude consideration of a non-zero value for Q,,, the direct



emission rate of the secondary pollutant.  The algorithms g'» and g!2



provide for this possibility.








     The well-mixed region algorithms, Eq. (2), are generally used under



convective or neutral stability conditions.  The ground-level plume center-



line concentrations of the species in the plume-trapping region (x  < x < 2x )



can be obtained by calculating the concentrations at x  and 2x  from Eqs. (1)
                 '           °                        mm


and (2), and interpolating between these values on a log-log plot of concen-



trations versus downwind distance (Turner, 1970).  PEM uses this interpola-



tion approach in the plume-trapping region.
2.2.2  Plume Rise








     Plume rise is calculated from equations given by Briggs (1969, 1975).



The stack-exit conditions of the plume and the ambient temperature determine



whether the upward motion of the plume is dominated by momentum or buoyancy.



For atmospheric stability classes A to D, the unstable/neutral plume rise



equations are used.  For stability classes E and F, the stable plume rise



equations are used.  Thus, there are four different situations for plume



rise:   (1) unstable/neutral atmosphere with buoyancy-dominated plume,



(2) stable atmosphere with buoyancy-dominated plume,  (3) unstable/neutral



atmosphere with momentum-dominated plume, and (4) stable atmosphere with
                                     12

-------
momentum-dominated plume.  In each situation except the last one, the



plume rise is calculated as a function of downwind distance from the source



until the final plume rise is attained.  The equations for these four



cases are given in Appendix B.







     For a given atmospheric stability class for each scenario, PEM cal-



culates both momentum and buoyancy-dominated maximum plume rises for each



stack.  Based on the higher of these two values, the appropriate plume-



rise equation is selected and used to calculate the plume rise, Ah(x) ,



for each stack.  The effective source height, H, is then obtained from



H = h  + Ah, where h  is the physical stack height.
     s              s






     Following Briggs (1973) , PEM provides an option to account for stack-



tip downwash effects on the effective stack height.  When the stack-exit



velocity (V) of the plume is less than 1.5 times the mean wind speed (U)



at the physical stack height, the stack-tip downwash correction term,



H , is calculated as
                        Hc = 2 (1.5 -  ) d                           (4)
where d is the inside diameter of the stack-tip.  This value of H  is



subtracted from the effective stack height H.  When this option is used,



care should be taken to see that H  has the same units as H.
                                  c
                                    13

-------
2.2.3     Dispersion Parameters





     The Gaussian dispersion parameters, a  and a ,  used in PEM for each


hourly scenario, are identical to those used in EPA's Climatological


Dispersion Model (Busse and Zimmerman, 1973) to represent a 1-hour average


dispersion, and in the Texas Episodic Model (TACB, 1979) to represent a


10-minute average dispersion from point sources.  The values of these


parameters are calculated from power laws fitted to the Pasquill-Gifford


empirical data curves (Turner, 1970; Gifford, 1976), as follows:
                         a (x) = a xb                                (5a)
                          2
                         a (x) = c xd                                (5b)
The values of a and b used in PEM for point sources are shown in Table 1


as functions of the atmospheric stability class and the downwind distance.


The values of c and d are shown in Table 2.  Unlike the TEM, the cr  values


in PEM are not adjusted for horizontal meander of the plume since they are


assumed to represent 1-hour average dispersion.






     It should be noted that the Pasquill-Gifford curves were derived from


measurements taken in open, level to gently rolling terrain, and may not be


the best estimate of dispersion coefficients for urban areas or rough terrain.


The diffusion over cities is enhanced, compared to that over rural areas, due


to increased mechanical and thermal turbulence resulting from the larger


surface roughness and heat capaicty of the cities.  This is reflected in


the urban dispersion parameter curves based on interpolation formulas given


by Briggs (see Gifford, 1976, Figure 7).
                                    14

-------
                                   TABLE 1

                       Values of a and b in a  = a x
                                             z
                             for Point Sources
  Atmospheric                      Downwind Distance
Stability Class  	(meters)	

               100 < x < 500        500 < x < 5000              5000 < x

	a	b	a	b	a	b

     A=l       .0383   1.281       .0002539   2.089         .0002539   2.089
     B=2       .1393    .9467      .04936     1.114         .04936     1.114
     C=3       .1120    .9100      .1014       .926         .1154       .9109
    DD=4       .0856    .8650      .2591       .6869        .7368       .5642
    DN=5       .0818    .8155      .2527       .6341       1.2970       .4421
     E=6       .1094    .7657      .2452       .6358        .9204       .4805
     F=7       .05645   .8050      .1930       .6072       1.5050       .3662
                                   TABLE 2

                       Values of c and d in a  = c x
                             for Point Sources
  Atmospheric                      Downwind Distance
Stability Class 	(meters)

A=l
B=2
C=3
DD=4
DN=5
E=6
F=7
x <
c
.495
.310
.197
.122
.122
.0934
.0625
10,000
d
.873
.897
.908
.916
.916
.912
.911
x >
c
.606
.523
.285
.193
.193
.141
.080
10,000
d
.851
.840
.867
.865
.865
.868
.884
                                    15

-------
2.2.4     Restrictions on Receptors for Calculations






     Pollutants from each point source may not contribute to all of the



receptors in a grid.  The receptors excluded from calculations are those



located upwind of the source, too far from the plume centerline, or more



than 60 km downwind of the source.  For each source and each scenario,



PEM selects a rectangular area of the receptor grid downwind of the source,



and calculations for that set of conditions are restricted to the receptors



located within that area.  The source contribution is considered to be zero



at receptors located outside the area.  Model inputs used for determining



this area are the source coordinates, grid boundaries, wind direction, and



the crosswind angle (A) between wind direction azimuth and the azimuth



from the source to the receptor.  If A exceeds the maximum crosswind angle



of the plume (A   ), then the receptor is excluded from calculations.  The
               Q132C


values of the maximum crosswind angle used in PEM for 1-hour averaging of



the plume are shown in Table 3 as a function of the atmospheric stability



class.








                                   TABLE 3



                       Maximum Crosswind Angle Values


                           for Point Source Plumes
Atmospheric
Stability Class
A
B
C
DD and DN
E
F
A
max
(degrees)
35
28
21
14
10.5
7
                                    16

-------
2.3   AREA SOURCES








2.3.1     Emission Grid








     PEM defines a "calculation grid" by shifting the receptor grid to the




South and to the West by one-half the side of a grid square (Ax/2).   Thus




each square in the calculation grid has one receptor at its center,  since




the calculation grid squares are of the same size (Ax) as the receptor grid




squares.








     Each area source used in PEM should be sized so that it covers an




integral number of calculation grid squares.  The size Ax should be defined




such that the smallest area source is at least as large as one calculation




grid square.








     The relationship between area sources and calculation grid squares can




be divided into three cases.  In the first case, the area source is the size




of a calculation grid square.  Emissions (Q ) are assumed to be located at




the center of the square; contributions of this area source are determined




at the receptor (R ) located at the center of the emission grid square, and




at the receptors (R  to R,) located at the center of each of the four cal-




culation grid squares immediately downwind of the source.  This is schema-




tically illustrated in Fig. 1.








     The location of the four downwind squares is not apparent in cases




when the wind direction is not parallel to one of the calculation grid
                                    17

-------
to
re
oo
Q

fe
                              oT
          rO
         CM
•a?
                             o
                               o
                             tr  -
                           o
                          a
                                                                                      . CM
                                                                                       X
                                                                              ro
                                                                              CM.
                                                                     CM
                                                                     OJ
                                                          -CM.
                                                           x
                                          CM

                                        "x"
                                                    O
                                                    CM      ^
                                                   x	x
                         O

                       •x—
                                                                       •O M
                                                                    co  c! a>
                                                                    d  Q u
                                                                    o     a
                                                                          «
                                                                       ca 4J
                                                                       >-i to
•H
 co
 to
                                                                     -  O -H
                                                                    S  *•» T>
                                                                      -l
 d  oo
•H
 co  a
    o
 (8 -i-l
    +->
 00 03
 d r-(
•H  3
 3  o
 O r-l
J3  (0
 CO  U
                                                                    n>  d
                                                                    M -H
                                                                    00  3
                                                                    CQ  d
                                                                    •H  3
                                                                    •o  o
                                                                       TJ
                                                                    U
                                                                    •H  )->
                                                                    4J  3
                                                                    te  o
                                                                    S IH
                                                                      ca
       ca  to

       ^  i


       xi  2
       4->  <0
                                                  18

-------
coordinate axes as shown in Fig. 2.  The angle between the wind azimuth and

the nearest calculation grid coordinate axis is defined as 4, so 0° < 4 < 45°.

PEM considers ten ranges of values for 4 as shown in Table 4.  For each range

of 4> the location of the four downwind squares is shown in Fig. 2.  For each



                                   TABLE 4
                 Values of i and j for Each Spatial Pattern
                        of Affected Squares Downwind
                              of an Area Source
4 range, degrees
0-7.
7.12 -
9.46 -
14.04 -
20.56 -
26.57 -
32.01 -
36.87 -
39.81 -
41.19 -
12
9.46
14.04
20.56
26.57
32.01
36.87
39.81
41.19
45.00

*
i=0
0
0
0
0
0
0
0
0
0
0

i=l
0
0
0
0
0
1
1
1
1
1
Values
i=2
0
0
0
1
1
1
1
2
2
2
for j**
i=3
0
0
1
1
1
2
2
2
3
3

i=4
0
1
1
1
2
2
3
3
3
4
          *i  is the number of calculation grid squares
              downwind from the area source

         **j  is the number of calculation grid squares
              from the axis used to define 4

         For each value of |, a diagram of the downwind squares
         is shown in Figure 2.
                                    19

-------
   WIND
   AZIMUTH
CALCULATION GRID
COORDINATE AXIS
                              i=4
                                 9.46
                                                               14.04°
\
i=4
i=3
i=2
iM
i=0
£
.- 	
\
\
\

^MHM
\
\
i=4
i = 3
i=2
i= 1
i=0
V
\

^_
\
\
\
j=1 j=0 j=2 j = 1
14.04°<£< 20.56° 20.56°<£<

\
\]
C
i=4
i=3
i = 2
i= 1
i = 0
\
\

j=0 j=2
26.57° 26.57°

\
\
< £•<
\
N


j = 0
32.01 <
Figure 2.    Spatial patterns of affected calculation grid  squares downwind
            of an area source.
                                  20

-------
                                         ATDL-M83/149
j=3  j=2  j=1  j=0
   M°
-------
value of 4, the location of each downwind square is denoted by i (the number


of calculation grid squares downwind from the area source) and j (the


number of calculation grid squares from the axis used to define £)•   In


all cases, the square covered by the area source has i=0 and j=0.   For


each value of i, values for j depend upon the value for 4, as illustrated


in Fig. 2 and summarized in Table 4.  These patterns of squares are stored


in PEM data tables that list values of i and j as shown in Table 4.   For a


given scenario, each area source will have the same spatial pattern of


affected squares downwind.





     In the second case, the area source is larger than one calculation


grid square.  Let m be the number of calculation grid squares covered by


the source of area A.  Then the emissions, Q, from the source are divided


into m component emission rates defined by


                    Q. = Q A /A  ,  j = 1,2, ..., m
                     J      J

where A. is the area of the source contained in the jth square,
       J


                                              m
                 •2   AJ     and      Q=  2   V
                    =l                       j=L
Then the contributions from each of the m squares are determined as


was done from a single square.





     In the third case, a small area source may be imbedded in a large area


source.  For each source the emission rate is divided into components for


each covered square as described above.  Then each square is considered as


an area source with an emission rate equal to the sum of the component


emission rates from the original area sources.
                                    22

-------
2.3.2     Concentration Algorithms





     The area-source concentration algorithms used in PEM are derived by


Rao (1982) from the governing equations, using a new mathematical approach


based on mass balance considerations.  These algorithms are listed and


briefly explained below.  For details of their derivation, physical inter-


pretation, extension to multiple sources and receptors, and other related


discussion, the user should refer to Rao (1982).





     We consider five calculation grid sources (denoted by i=0, 1, 2, 3, 4),


each with a receptor located at its center, as shown in Fig. 1.  The source


emissions (Q ) are assumed to be located at the center of the first square


(i=0) upwind of the receptors.  The emission rate of the primary pollutant


from this single area source is Q...  Then the ground-level concentrations


of the primary and secondary pollutants, C.,.  and C.~. respectively, at the


receptor R. in the ith calculation grid square are given by
                                                     X2i
     CAli ~ 2(l-b)V     841^Xli^ " 84l^x2i^ ~  ~   -i  g'^Wdx      ^^
                   QX I                         L    X-i *            I
                                                    r


                              i> " 842($2i> + -f  JL
CA2i = 2(l-b)VJO |  842'Ali^ ' 542VA2i' '  ~T  J.  64l^"*   |   (6b)

                                          Tc   Xli
                                    23

-------
Here, g!..(x) and g!2(x) are point-source concentration algorithms for the


well-mixed region.  These nondimensional functions, and other dimensionless


parameters (capped quantities) in this equation, are defined in Appendix A;


x,.  and x_. are distances measured from Q  to the upwind and downwind edges,


respectively, of the calculation grid square with the ith receptor (see Fig. 1);


x.. .  and jL. are the corresponding dimensionless values; T  is characteristic


time scale of the first-order chemical transformation, and t  is its dimension-
                                                            c

less value as defined in Appendix A; Y is the ratio of molecular weights of the


product species to the reactant species;  V,, and V ,„ are deposition velocities


of the primary and secondary pollutants, respectively; b is the value of the


exponent in the power-law,
                              a (x) = a xb                                (7)
                               Z
for area sources.
     Now let us consider five area sources, located upwind of a single


receptor R  in i=0th grid square, as shown in Fig. 3.  The total surface


concentrations at the receptor in this case can be obtained by summing up


the individual contributions of all five area sources, as follows:
                  t*                                      rtl
          i      v       r     „                  i/^^i
          JL       X  y*    I   I  y ^  N    f  /   \    A     f   T/"\J    I
         	   7  O    t  ft  (TC   I — OT  I V  I — —    f  a !  I V ) nv   I
         -b)V,,  2J  Wli    84ltxliJ   84ltx2i;    a   J  »4lwax
             dl  i=0      L                        *c  1^          J
CA2 " 2(1-
                                                         /            -


         =BTCT  I Qli  I  *42<*li> - «42«2i^ + -f-  J  «4l^di   I
             d2  i=0      L                        Tc   x            J
                                     24

-------
in
2 ^
^
ro
CO i' **•
/Vl
S
Jj
O
r*
 CO K
ro ^ co co
X X 4-1 -fl 0)
•H S
-C CU
0) 4-> W
^ CQ
{Q ^3
a d ca
C7^ CO CU
ca u
- d
•Q CO CO
•H d 4-1
MOW
CVJ lO 00 -H -H
rvl •»• ca -0
^ x 
4J ft co J3
«> a 
-------
Here x, .  and x~. are the distances measured from the receptor R  to the




downwind and upwind edges, respectively, of the ith emission grid square,




as shown in Fig. 3.  Note that these distances are identical to those used




in Eq. (6), since all grid squares are equal in size.  The multiple-source




algorithms, Eq. (8), can be easily adapted to calculate concentrations at




multiple receptors.  For details, the user is referred to Rao (1982).








2.3.3     Dispersion Parameters








     It should be noted that the area source concentration algorithms,




given above, ignore horizontal diffusion.  Gifford (1959) postulated




that concentration at a receptor due to the distributed area sources




depends only on sources located in a rather narrow upwind sector.  The




horizontal width of this sector is generally much less than the usual




22.5° resolution of observed wind directions.  Consequently, horizontal




diffusion can be ignored.  This assumption is also referred to as the




"narrow plume hypothesis."








     The vertical dispersion parameter is given by Eq. (7).  The coeffi-




cients a and b are functions only of atmospheric stability.  Their values,




based on extensive observational data, can be found  in various texts, hand-




books and other references.  These values, given by  Gifford and Hanna (1970),




are listed  in Table 5.
                                    26

-------
                                   TABLE 5



                       Values of a and b in a  = a x
                                             £t

                              for Area Sources
Atmospheric Stability
Class
A = 1
B = 2
C = 3
DD = 4
DN = 5
E = 6
F = 7
a
0.4
0.4
0.33
0.22
0.15
0.06
0.06
b
0.91
0.91
0.86
0.80
0.75
0.71
0.71
     The diffusion over cities is enhanced, compared with that over open



country, due to the increased mechanical and thermal turbulence resulting



from the larger surface roughness and great heat capacity of the cities.



To simulate the increased surface turbulence over urban areas, PEM uses a



so-called "decreased stability class index."  The latter is obtained by



decreasing the atmospheric stability class index by one, for all classes



except Class A.







2.4  RECEPTORS






2.4.1  Receptor Grid







     PEM calculates pollutant concentrations at each receptor in a



rectilinear receptor array.  A maximum of 2500 receptors may be used,



with 50 columns and 50 rows.  The spacing between each column and row



is uniform, and is specified by the user.  Receptors are located at the



intersections of grid columns and rows.  The grid spacing, number of columns,



number of rows, and coordinates of the receptor at the southwest corner of



the grid are used to define the grid.





                                    27

-------
     Point and area sources need not necessarily be located within the




grid boundaries.   If area sources are included in the source inventory, the




grid spacing should be selected so that the smallest area source is of the




same size as a grid square.  An area source is positioned on the grid by




specifying the coordinates of its southwest corner.  This corner should be




located in the center of a receptor grid square, and not at a grid inter-




section, so that each square covered by the area source is centered on a




receptor.  For computations involving area sources, a calculation grid is




defined with grid squares the same size as receptor grid squares, but with




a receptor located in the center of each calculation grid square.  For




details, see Section 2.3.1.








2.4.2     Automatic Grid Selection








     PEM has an optional subroutine which will automatically select a




receptor grid for each scenario.  The size and location of grids for




different scenarios may differ since the selection of the receptor grid




is based upon wind speed, wind direction, and atmospheric stability




class.








     Each source is examined sequentially.  Two orthogonal axes are used




with the origin located at the origin of the coordinate system for the




point sources.  The y axis is oriented in the north-south direction with




positive values in the northerly direction.  The x axis is oriented in the




east-west direction with positive values in the easterly direction.  Angle




E is defined by



                              E = 9Q<> - w
                                    28

-------
where W is the angle (measured relative to north) of the direction of the



flow (see Fig. 4).  The axes are then rotated through angle E such that the



wind blows down the x axis.  Negative values of E correspond to a clockwise



rotation of coordinate axes; positive values correspond to a counter-



clockwise rotation.







     Parameters will be chosen for each scenario to define the automatic



grid so as to provide good coverage by receptors near the point of maximum



concentration.  This point is determined using the Gaussian plume algorithms



without pollutant removal or transformation mechanisms.  For a point source,



the downwind distance to the point of maximum concentration, x „, is thus



calculated from
                         =  FJLJ
                            L a2(b
]l/2b
where H is the effective source height, and a, b, d are coefficients defined



in Tables 1 and 2.  This expression is obtained by using the power laws,



Eq. (5), for a  and a  in the equation for ground-level centerline concen-



tration from an elevated point source, differentiating with respect to x,



equating to zero, and solving for x.







     Equation (9) is also used to determine x ,, the point of maximum



concentration using the physical stack height h  instead of H.  Then let
                                               s


                    XTM(l) = XT + xml



                    XTM(2) = XT + x 0
                                   m/
                                    29

-------
                                                      ATDL-M 83/150
                                                  EMISSION  SOURCE
Figure 4.    Points used for automatic selection of receptor grid by AUTGRD
            subroutine.
                                 30

-------
where XT is the x coordinate of the point source in the rotated coordinate



system.







     The largest value of XTM(2) for all point sources is GX2 and the



smallest value of XTM(l) for all point sources is GX1.  Let YT be the y



coordinate of the point source in the rotated coordinate system.  Then



GY2 is the largest value of YT for all point sources and GY1 is the



smallest value of YT for all point sources .  These points are illustrated



in Fig. 4.







     Next, the points (GX1, GY1) , (GX2, GY1) , (GX2, GY2) and (GX1, GY2)



are rotated back to the original coordinate sytem.  The largest of the



four x values and the largest of the four y values are chosen for the



coordinates of the northeast corner of the grid.  The smallest of the



four x values and the smallest of the four y values are chosen for the



coordinates of the southwest corner of the grid.







     Then XT is defined as the distance between the x coordinates of the grid



corners and YT is the distance between the y coordinates of the grid



corners.  Let D    be the larger of XT and YT.  Then D    is used to
               max                                    max


determine the number of columns and rows in the receptor grid and the grid



spacing.  If D    is larger than 10 km, then the number of rows (or columns)
              max


is 50 and the grid spacing is XT/50 (or YT/50) km.  If 5 < D    < 10 km,
                                                            OQciX


then a grid spacing of 0.2 km is used and the number of rows (or columns) is



XT/0.2 (or YT/0.2).  If 0.25 < D    < 5 km, then the number of rows (or
                                ID3X


columns) is 25, and the grid spacing is D   /25.  If D    < 0.25 km, the
                                         IB 3.X
grid spacing is 0.01 km, the smallest possible, and the number of rows  (or
                                    31

-------
columns) is XT/0.01 (or YT/0,01).   A typical example of the receptor grid




selected by the automatic grid option is illustrated in Fig. 5.








     If the culpability list option is elected in PEM, the receptor grid is




limited to 25 rows and 25 columns.  In this case, the grid spacing is




increased so that the number of rows (or columns) does not exceed 25.








     The automatic grid selection procedure, outlined above, considers only




point sources.  However, the chosen receptor grid may not be suitable if area




sources are included in the inventory.  Furthermore, the point of maximum




concentration determined from Eq.  (9) may be significantly in error for prob-




lems which include deposition, sedimentation, and chemical decay/transformation.




The optimum receptor grid in this case should be determined by trial and error,




using the receptor grid defined by this automatic grid option as the first




approximation.
                                    32

-------
                                               ATDL-M  83/144
                               (GX2, GY2)
                                                      NORTH
    WIND
           (GX1, GY2)
                                      ~"7(GX2,GY<)
                       (GXf, GY1)
                                      EMISSION SOURCE
Figure 5.    Example of a receptor grid selected by AUTGRD subroutine.
                           33

-------
2.5  METEOROLOGY








     The meteorological data used as input to PEM consist of the atmos-




pheric stability class index, wind speed, wind direction, ambient tempera-




ture, mixing depth, and inversion penetration factor.  This data set,




which represents the mean atmospheric conditions over an hour, is called




a scenario.  The  maximum number of scenarios in an averaging period in




PEM is limited to 24, i.e., PEM is designed to predict only short-term




(1 to 24 hr) average concentrations.








2.5.1  Atmospheric Stability








     The Pasquill-Gifford atmospheric stability classes used in PEM are




defined in Table 6.








                                   TABLE 6




                        Atmospheric Stability Classes
NSC
1
2
3
4
5
6
7
Atmospheric
Stability Class
A
B
C
DD
DN
E
F
Description
Extremely unstable
Moderately unstable
Slightly unstable
Neutral day
Neutral night
Slightly stable
Stable (rural only)
     The relationship between the atmospheric stability classes and wind




speed, incoming solar radiation, and cloud cover is given by Turner (1970)




and shown below in Table 7.  Class A is the most unstable, while Class F is
                                    34

-------
the most stable class considered in PEM.  Night refers to the period from
one hour before sunset to one hour after sunrise.  Note that the neutral class,
D, should be assumed for overcast conditions during day or night, regardless
of wind speed.


                                   TABLE 7
                       Atmospheric Conditions Defining
                      Stability Classes  (Turner, 1970)


Surface Wind Speed
(at





10 meters) , m/s
<2
2-3
3-5
5-6
>6

Day

Incoming Solar Radiation
Strong
A
A-B
B
C
c
Moderate
A-B
B
B-C
C-D
D
Slight
B
C
C
D
D

Night
Thinly overcast
or >4/8 low

E
D
D
D
clouds <3/8 cloud

F
E
D
D
2.5.2  Wind Speed


     PEM gives the user the option of specifying either an hourly mean wind
speed or the wind speed class number.  The latter is based on National
Weather Service (NWS) classification.  Any wind speed which lies in a given
range is assigned that class number; PEM uses a representative wind speed
for each class as shown in Table 8.
                                    35

-------
                                   TABLE 8
                          Wind Speed Classification
NWS Wind Speed
Class
I
2
3
4
5
6
Wind Speed Range
(knots)
0-3
4-6
7-10
11 - 16
17 - 21
> 21
Rep r e s ent a t i ve
Wind Speed (m/s)
1.50
2.46
4.47
6.93
9.61
12.52
     Wind speed near the surface generally increases with height.  Most NWS



wind speed measurements are taken at a height (h ) of 10 m above the surface



and are listed as "ground-level" wind speeds (U ) in knots.  Then the wind



speed (U) at the physical stack height (ho) is determined as follows:
                                         i3



                         U = Uo (Vho)P                             C10)


The wind speed U is used in the plume rise calculations and the concen-



tration algorithms of PEM.  Equation (10) is applied when the stack height is



greater than 10 m.  The exponent p is a function of atmospheric stability



as shown in Table 9.





                                   TABLE 9
                 Values of Exponent p in Wind Speed Power Law

                              (DeMarrais, 1959)
Atmospheric Stability
Class
A = 1
B = 2
C = 3
DD = 4
DN = 5
E = 6
F = 7
P
0.10
0.15
0.20
0.25
0.25
0.30
0.30
                                    36

-------
2.5.3  Wind Direction








     By convention, wind direction is defined as the direction from which




the wind is blowing.  PEM gives the user the option of specifying either




an hourly mean wind direction, or the wind direction sector number based




on the standard 16-point compass.  Wind blowing from any angle in a 22.5°




sector is assigned the number of that wind direction sector, and the wind




direction is represented in the calculations by the median of that sector,




as shown in Table 10.








                                  TABLE 10




                           Wind Direction Sectors
Sector Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Compass Point
N
NNE
NE
ENE
E
ESE
SE
SSE
S
SSW
SW
WSW
W
WNW
NW
NNW
Representative
Wind Direction (deg)
0.0
22.5
45.0
67.5
90.0
112.5
135.0
157.5
180.0
202.5
225.0
247.5
270.0
292.5
315.0
337.5
     PEM also includes an option in which the user specifies the wind




direction in degrees for the first of four sub-scenarios; for each
                                    37

-------
succeeding sub-scenario, the wind direction is automatically shifted




clockwise by 90, 45, 30, 15, 10, or 5 degrees, depending on the option




number specified in the input.   Details of these I/O control paramters




are discussed in Section 4.2.. 1.








2.5.4  Mixing Depth








     The turbulent mixing layer near the ground is frequently bounded by




a layer of stable air aloft.  The latter effectively limits vertical dis-




persion to the mixing layer.  The height of the base of the inversion above




the ground is called the mixing depth, L.  The hourly mixing depths are




specified in the input to PEM.








     If vertical mixing is limited, pollutants emitted from a point source




into the mixing layer will be trapped and, beyond some point downwind, will




become uniformly mixed in the vertical.  PEM uses different sets of concen-




tration algorithms for the (near-source) mixing region and the well-mixed




region.  The concentrations in the intermediate plume-trapping region are




then obtained by interpolation as described in Section 2.2.1.  The determina-




tion of the mixing regime and the algorithms to be used in the model depend




on the atmospheric stability class, mixing depth, effective height of the




source, and the downwind distance.








     If the physical stack height exceeds the mixing depth, pollutants




are emitted into the stable layer aloft; these pollutants will not be




brought to the  ground level and the source is neglected.
                                    38

-------
     If the physical stack height is less than the mixing depth, but the




effective source height (H) exceeds L, then the plume may or may not escape




the mixing layer, depending on the value of H - L and the strength of the




inversion.  A strong inversion layer can retard the plume rise, causing




the plume to be trapped in the mixing layer.  PEM simulates inversions of




various strengths by defining an inversion penetration factor, I.  This is




an optional user-specified input parameter with a default value of 2.0.  The




weakest inversion uses 1=1.  If H > I • L, then it is assumed that the plume




escapes the mixing layer and the source is neglected.  If L < H < I • L,




then it is assumed that the plume is trapped within the mixing layer and H




is set equal to L.  Though somewhat crude, this procedure allows the user




to account for the strength of the inversion and to obtain conservative




estimates of concentrations.
                                    39

-------
                                  SECTION 3








                          COMPUTER PROGRAM OVERVIEW








3.1  BASIS FOR PEM PROGRAM








     The PEM (Version 82360) computer program, listed in Appendix F, is based




on the FORTRAN program of the Texas Episodic Model Version 8 (TEM-8) and its




Users' Guide published by the Texas Air Control Board (1979).  The latter model




uses the Gaussian plume concentration algorithms developed for non-reactive




pollutants and a perfectly reflecting lower boundary.  Chemical and physical




depletion processes are therefore ignored, except for an option which allows




a simple exponential decay of pollutant with travel time.  This method requires




an accurate estimate of the pollutant's half-life.








     In contrast, PEM explicitly accounts for the dry deposition, gravita-




tional settling, and a first-order transformation of two chemically-coupled




gaseous or particulate (any size) pollutants in the concentration algorithms.




The latter were developed especially for PEM by Rao (1982).  The surface concen-




trations and deposition fluxes of both the primary pollutant (species-1 or




reactant) as well as the secondary pollutant (species-2 or reaction product)




are calculated.  Thus, the concentration algorithms used in PEM and TEM-8




are different, though both models share essentially the same framework for




calculations.  Figures 2, 4, 5 and several tables shown in this report are
                                    40

-------
reproduced from TEM Users' Guide with permission from Texas Air Control

Board (TACB).



     There are several other important differences between PEM and TEM-8.

These are briefly listed below:


1.   PEM uses standard EPA values for 1-hour average dispersion parameters
     for point sources.   These correspond to the values of the 10-minuta
     average dispersion parameters used in TEM.

2.   For averaging periods longer than 10 minutes, TEM-8 uses a power law
     to adjust the values of a  to account for the greater horizontal
     plume meander due to fluctuations in wind direction.  This is not
     done in PEM, since its cr  values are assumed to represent 1-hour
     average dispersion of the plume.

3.   TEM has eight averaging time options (NTOPT), whereas PEM has only
     three, namely, 1-hour, 24-hour, and N-hour (1 < N < 24) averaging
     options.

4.   TEM uses the area-source algorithms given by Gifford and Hanna (1970)
     to calculate ground-level concentrations.  The area-source algorithms
     used in PEM are derived by Rao (1982) from an innovative alternate
     approach based on mass balance considerations.  These efficient new
     algorithms do not require additional subroutines in the program.

5.   TEM uses the fast numerical technique of Christiansen and Porter (1975)
     in which the horizontal and vertical diffusion functions in the equation
     for relative concentration from a point souce are precalculated for
     selected values of model parameters, and stored in large arrays.  For
     multiple sources and receptors, this technique considerably reduces
     the computation times required by the model, at the expense of some
     accuracy.  Because of the large number of model parameters, PEM does
     not use this tabular data technique in calculations.

6.   In TEM, input data can be specified in metric or British units.  PEM
     uses only metric units.
3.2  STRUCTURE OF THE PROGRAM



     Figure 6 shows the structure of PEM computer program, its subroutines

and functions.  All input data to the model is read through subroutine
                                    41

-------
  MAIN


 	  INMOD

•• Loop  an  scenarios

  	  INMOD

  	AUTGRD	RISE
+ Loop an  area sources

  	 PSG4P  	 DO1AJF

  	D01AJF	FUN3 -
I
+ Loop on  point sources

  	RISE
       QZCAL
RISE
EXPO
ARGCHK
PSG4P -
DO1AJF
 	 WORST

 	 WOROUT

 	 OUTMOD
 WOROUT
 ARRAY
 SCENMX
 	 MAXOUT
           -  FUN2

           ARGCHK
                                  D01AJF
                                 - FUN1 -
-  FUN2
ARGCHK
EXPO
    Figure 6.   Structure of PEM computer program.
                       42

-------
INMOD.  For area source concentrations, the main program calls subroutines




PSG4P (to calculate g'  and g' ) and D01AJF.  The latter is a general




purpose integration routine which calculates the integral of a function




over a finite interval.  After area source calculations are completed, the




program starts point source calculations by calling subroutines RISE and




QZCAL.  The latter calculates the probability densities of vertical distri-




butions of concentrations of the two pollutants using the appropriate




algorithms.  All output is printed in subroutine OUTMOD, which calls and




uses other optional output routines.  This procedure is repeated for all




scenarios.








3.3  GENERAL FLOW OF THE PROGRAM








     At the beginning of the run, PEM reads in all input data, screens them,




prints warning messages, and sets default values as necessary.  All control




parameters are listed and explained.  Input data for meteorological conditions,




area sources, and point sources are also listed.  Some errors in input data




may be serious enough to cause cancellation of the run; however, in general,




PEM attempts to recover from input errors and complete the run using default




values.








     Inventories of area and point sources must include the locations of




the sources on a receptor grid, their emission rates, the size for area




sources, and stack parameters for point sources.








     The inventories are used with sets of hourly meteorological data




called scenarios.  For each scenario, the concentration and surface deposi-




tion flux are calculated at each impacted receptor in the grid.
                                    43

-------
     Output options are many and varied.   Concentration and surface depo-




sition flux may be presented in the form of lists,  array maps,  and records




on tape.  Other options include a culpability list  of point sources, a list




of receptors with the highest concentration for each pollutant  for each




scenario, and information on plume rise and effective stack height for point




sources.  The calculation of the surface deposition fluxes of the species is




discussed in Appendix C.
                                    44

-------
                             SECTION 4

                        PROGRAM USER'S GUIDE
4. 1  SUMMARY OF PROGRAM INPUT

    SSD.tr.2l PaCMJitters (6 cards)
         Control  parameters remain constant throughout the run.
    They  specify  1) a title;  2) options -for  time  averaging,
    types o-F input and output, and use of the stack-tip downwash
    algorithm;  3)  receptor grid coordinates  and  spacing;  4)
    pollutant  parameters  and an option to  calculate  chemical
    transformation or decay;  5) scaling factors for area source
    emissions  and calibration coefficients to be applied to the
    calculated concentration;  and 6) labels for the  pollutants
    and calibration coefficients.

    S-Si-Qario E^C
-------
4.2  DETAILS OF PROSRAM INPUT

4.2.1  Control. Parameters  (6 cards)

  Card 1 : Title   FORMAT(2OA4)

     Alphanumeric in-formation which identifies  the run.   The
     information  is  printed  at the  top of  each  page  of
     output.

  Card 2 : Input and output options    FORMAT(1315)

     NTOPT    Averaging time option
              In PEM,  a scenario is a set of meteorological
               data for one hour.
        —1     One hour:  Concentrations are calculated for
               each scenario.  No averaging is  done.
        =2     Twenty—four  hours:   Concentrations   are
               calculated  for  exactly  24  scenarios    and
               averaged.
        =3     Variable:  Concentrations are calculated for
               a  given number of scenarios  (2  to 24)  and
               averaged.
           The default value is NTOPT=1 .

     NWDOPT   Wind direction input option
        =O     The  user  will specify wind  direction   in
               degrees for each scenario.
        =1     The user will specify a wind direction sector
               number for each scenario.
        =2-7   The   user  will  specify wind   direction  in
               degrees for the first of four  sub-scenarios.
               For  each succeeding sub-scenario,  the  wind
               direction is automatically shifted  clockwise
               by 9O,45,30,15,1O, or 5 degrees, depending on
               the option number selected.
           NWDOPT= 2-7  is not allowed with  time  averaging
               (NTOPT=2  or 3).
           The default value is NWDOPT=O .

     NWSOPT   Mind speed input option
              Surface wind speed is measured at 10 meters.
        -O     The  user will specify  surface wind speed  in
               meters/second for each  scenario.
        = 1     The  user  will  specify a wind  speed  cl.ass
               number for each scenario.
           The default value is NWSOPT=0 .

     NSCEN    Number of scenarios
        =1-24  The number of sets of one—hour meteorological
               data to be read and processed by the program.
               When  the  time-averaging  option  NTOPT=2,
               NSCEN  must equal 24 .  If NSCEN  is not specified
               properly, the input data file will be misread.
           The default value is NSCEN=1 .

                                  46

-------
NLIST    Output option for lists of calculated  concen-
          tration  and surface deposition flux at  each
          receptor in the grid.
   =O     The lists are not printed.
   =1     Lists of concentration and surface deposition
          flux are printed,  one column of the grid per
          page.
      The default value is NLIST=0  .
      NLIST=1  may not be used with  the  automatic
          windshift option 1) .

NARRAY   Output  option  for  array maps of  calculated
          concentration and surface deposition flux  at
          each receptor in the grid.
   =O     No array maps are printed.
   =1     Separate  maps of uncalibrated and calibrated
          concentration and surface deposition flux are
          printed—a  total of four maps for each  pol-
          lutant.
   =2     Maps of uncalibrated values only are printed
          —two maps for each pollutant.
   =3     haps of  calibrated values  only are printed
          —two maps for each pollutant.
      The default value is NARRAY=O .

NTAPE    Output   option   for  a  list  on   tape   of
          concentration  and surface deposition flux at
          each receptor in the grid.
   =O     The list is not written to tape.
   =1     A   list   of   concentration   and   surface
          deposition  flux  is written  on  a  separate
          output tape, one receptor per record. Control
          parameter  INTER  may  be set  to  limit  the
          number  of receptors written onto  tape.  The
          program checks the total number of records to
          be  written;   if the number is greater  than
          1O,OOO  a message is printed and NTAPE is set
          to zero.
      The default value is NTAPE=O .
      NTAPE=1  may not be used with  the  automatic
          windshift option 1) .

NCSOPT  Output option  for a culpability list  of  the
         five  point sources which contribute most  to
         the  total  concentration calculated at  each
         receptor.
   =O    The culpability list is not printed.
   =1    For  each  receptor in the grid,  the  program
         lists up to five point sources and the percent
         of the total concentration contributed by each
         source.  The  total  concentration and  surface
         deposition  flux  at each  receptor  are  also
         listed.  The information is printed one column
         of the grid per page.
     The default value is NCSOPT=O .

                            47

-------
     NCSOPT=1  may not be used when two  pollutants
         are specified 
-------
     INPTSC  Input option for point source data
        = 1   Point  source  data  is read from  the  normal
              input stream (on cards, for example).
        = 2   Point  source  data is read from a  disk  file
              specified by the user in his job control set.
          The default value is INPTSC=1 .

Card 3 : Grid information   FORMAT (2F1O.0,2110,3F10.0)

     XRSWC   The x,  or east-west coordinate of the receptor
              at the southwest corner of the grid,  in kilo-
              meters.
          The default value is XRSWC=O.O km.

     YRSWC   The y,  or north-south coordinate of the recep-
              tor  at the southwest corner of the  grid,  in
              kilometers.
          The default value is YRSWC=O.O km.

     LX      The  number  of  columns of receptors  in  the
              receptor grid.
              Allowable values are 1 to SO .
          The default value is LX=1 .

     LY      The  number  of  rows  of  receptors  in   the
              receptor grid.
              Allowable values are 1 to 50 .
          The default value is LY=1 .

     GRID    Automatic grid option or grid spacing
        =O.O  The  program chaoses the size and placement of
              the receptor grid to insure that the point  of
              maximum  concentration  calculated from  point
              sources will fall within the grid.   Note that
              area sources are not taken into  consideration
              in this selection.
        *O.O  The size of the spacing between  columns
              and   rows  of  receptors  in  the  grid,   in
              kilometers.
          The default value is GRID-O.O km.,  the  automatic
              grid selection.

DTDZ(l), DTDZ(2)  The potential temperature gradient, dd/dz,
              for Class E and Class F atmospheric stability,
              in units of degrees Celsius/meter.
              The potential temperature gradient  is used in
              the  stable/buoyant and stable/momentum  plume
              rise equations.
          The  default values are DTDZ<1)=O.02 deg C/meter
              and DTDZ<2)=O.O35  deg C/meter.
                                49

-------
Card 4 :  Pollutant information and  calculation  option
            FORMAT(215,6F10.0)

   NPOL    The number of pollutants
            Allowable values are 1 or 2 .
        The de-fault value is NPOL=1 .

   ICT     Option to calculate chemical trans-formation or
            decay
      =0    Chemical    transformation    loss    of
            pollutant(s) is not considered.
      =1     When  NPQL*1,  the first-order chemical decay
            of the pollutant is considered.
            When NPQL=2,  the first-order chemical  trans-
            formation  of pollutant-1 to  pollutant-2
            is considered.
        The default value is ICT=O  .

   VD1     Deposition velocity for pollutant—1, in cm/second
            When  area  source calculations are  included,
            VD1 should not be zero.

   Wl      Settling velocity for pollutant—1, in cm/second

   VD2     Deposition   velocity   for   pollutant—2,   in
            cm/second.  When NPOL=2 and area source calcu-
            lations are included, VD2 should not be zero.

   W2      Settling velocity for pollutant-2, in cm/second

        In general,   for deposition to occur, the settling
            velocity   (W) should be less than or equal  to
            the  deposition velocity (VD) .  For gases  and
            very small particles,  W should be zero.   For
            small particles, W should be less than VD. For
            medium and large particles, W should equal VD.

   XKT     Chemical   transformation or decay rate of  pol-
            lutant-1,  in  percent/hour.  Allowable values
            are 0.1  to 10O.O percent/hour?   input  values
            outside  that  range  are set  to  the  nearer
            limit.  For example,  if XKT=O.O is specified,
            the program prints a message  and sets XKT—O.1
            percent/hr.
        XKT is used only when option ICT—1 is selected.

   GAMMA   The   ratio  of  the  molecular   weights   of
            pollutant-2  (product)  to  pollutant-1
            (reactant) in the chemical transformation.
        GAMMA is used only when option ICT=1 is selected.
        The default value is GAMMA=O.O .
                               50

-------
Card 5 : Scaling and calibration   FORMAT(6F1Q.0)

   ASCALE(l), ASCALE(2)  Area source scaling factors for
            pollutants 1 and 2 .
            All  area source emission rates are multiplied
            by ASCALE(l) for pollutant-1 and by  ASCALE<2)
            for pollutant-2 .
        The   default  values  are  ASCALE<1)=1.0  and
            ASCALE<2)=1.0 .

        The entire area source inventory can be scaled
            to  reflect higher  traffic  volume,  etc.  in
            future  years,  without having to generate  an
            entire new set of area sources.

   Ad), B(l)  Coefficients  used to calibrate the  calcu-
            lated concentration of pollutant—1.
            The  calibrated  value  Xcal  is  computed  by
            applying  A  and B to the concentration  X  by
            the formula
                          Xcal = A + BX
        The default values are A(l)=0.0 and B(1)-O.O .

   A(2), B<2)   Coefficients used to calibrate the  calcu-
            lated concentration of pollutant—2.
        The default values are A(2)=0.0 and B(2)=O.O .

        The normal output units for calculated  concentra-
            tion are micrograms per cubic meter. The cali-
            bration coefficients can be used to convert to
            percent allowable ,  parts per million, or any
            other convenient units.

Card 6 :  Labels    FORMAT <3A4,7A4,3A4,7A4>

   POLNAM(l)   Name for pollutant-1
            Up to 12 alphanumeric characters are allowed.

   CALNAM(l)   Label for calibrated values of concentration
            of  pollutant-1,    computed  from  calibration
            coefficients A(l>  and B(l> on Card 5.
            Up to 28 alphanumeric characters are allowed.

   PQLNAM(2)   Name for pollutant-2
            Up to 12 alphanumeric characters are allowed.

   CALNAM(2)   Label for calibrated values of concentration
            of  pollutant—2,    computed  from  calibration
            coefficients A(2)  and B(2) on Card 5.
            Up to 28 alphanumeric characters are allowed.

      Defaults for all labels are blanks.
                                51

-------
!.2 Scenario Parameters     FORMAT(315,5F10.0)

  One to 24 cards, each containing  a  set  of meteorological
  data for one hour.

  NSC     Atmospheric stability  class number
           Allowable  values are 1  through 7;    an  input
           value  outside that range  will be set to   the
           nearer   limit.
           See  List of Tables for  atmospheric   stability
           classes used in PEM.
  NWS     Wind speed class
           Allowable  values are 1  through 6;   an   input
           value  outside  that  range will be set to   the
           nearer limit.
           See List of Tables for wind speed classes  used
           in PEM.
       Note  that NWS is used only  when the windspeed
           input option NWSOPT on Card 2  is specified  as
           NWSQPT=1 .

  NWD     Wind direction sector
           Allowable values are  1 through 16;   any  input
           value  outside  that  range will be set to   the
           nearer limit.
           See List of Tables for wind direction sectors
           used  in PEM.
       Note  that   NWD  is  used   only   when   the    wind
           direction   option    NWDOPT   on  Card   2    is
           specified as NWDOPT=1  .

  WS      Wind speed
           Surface  wind speed in meters/second measured
           at a height of ten meters. If  WS=O.O is  speci-
           fied,  a message is printed  and WS  is set to
           l.O m/sec.
       Note  that  WS  is used only when  the  wind  speed
           input  option NWSOPT  on  Card 2 is specified as
           NWSOPT=O .

  WD      Wind direction
           The  azimuthal angle  in  degrees from which the
           wind  is  blowing.  Allowable  values are   0.0
           through 360.0 degrees.
       The default value is WD=O.O  ,  wind from  the  north.
       Note  that WD is used only when the wind direction
           input option NWDOPT on Card 2  is  specified as
           NWDOPT=*O or 2 through 7  .

  TA      Ambient temperature in degrees  Celsius.
       The default value is TA=O.O  deg C.
                              52.

-------
     PEN     Inversion penetration factor
              When  the  top of a stack is below the  mixing
              height,  but  the calculated  effective  stack
              height is greater than the mixing height,  the
              inversion penetration  factor  is  used   to
              determine  whether the plume can penetrate the
              upper level inversion boundary .
              Values  for PEN can range from 1.0 for a  weak
              inversion   to  2.O  or  more  for  a   strong
              inversion.
          The default value is PEN=2.0 .

     HMIX    Mixing height
              The distance in meters from the ground to  the
              bottom of a layer of stable air.
          The default value is HMIX=9999.99 m.

4.2.3  Area Source Parameters     FORMAT<5F10.0)

     Zero  to 50 cards,  each containing parameters for  one
     area  source.  A  blank card must follow the last  area
     source data card.
                                             >•*
     XA      The x,  or east-west,  coordinate of the south-
              west corner of the area source, in kilometers.
          The default value is XA=O.O km.

     YA      The y, or north—south, coordinate of the south-
              west corner of the area source, in kilometers.
          The default value is YA=0.0 km.

     SIZE    The  length  of a side of the area  source,  in
              meters.
          The default value is SIZE=6RID*1000.0, the size of
              one  grid  square  in  meters.    If  GRID  is
              specified as zero,  then SIZE is set to 1.OE-4
              meters.

     EA<1),  EA<2)   Emission rates for pollutants 1 and 2  in
              grams/second.
              Note  that  this is .not an emission  rate  per
              unit  area;  this  is the emission rate of  an
              equivalent point source located at the center
              of the area source.
          The default   values   are  EA<1)=O.O  g/sec   and
              EA<2)=O.O g/sec.

     Note:   The area source inventory is followed by a blank
              card to signal the end of area source data.
                                53

-------
4.2.4  Point Source Parameters    FORMAT<8F9.O,2A4)

     Zero  to 300 cards,  each containing parameters for one
     point source.   A blank card must -follow the last  point
     source data card.

     XP      The x,  or east-west,  coordinate of the point
              source,  in  kilometers.
          The default value is XP-0.0 km.

     YP      The y, or north—south, coordinate of the point
              source,  in kilometers.
          The default value is YP=0.0 km.

     EP(1), EP(2)  Emission rates for pollutants 1 and 2  in
              grams/second.
           The default   values  are  EP(1)=O.O  g/sec   and
              EP(2)=O.O g/sec.

     HP      The physical height of the stack,  in  meters.
          The default value is HP=O.O m.

     DP      The  inside  exit diameter of  the  stack,  in
              meters.  If DP=O.O is specified,  a message is
              printed and DP is set to l.OE—4 meters.

     VP      The   stack—exit  velocity  of  the  plume, in
              meters/second.
          The default value is VP=O.O meters/sec, which will
              yield zero plume rise.

     TP      The  stack-exit temperature of  the  plume,  in
              degrees Celsius.
          The default value is TP=O.O deg C, which usually
              results in a momentum—dominated plume rise.

     NAME    Label  which identifies the point source. Up to
              eight  alphanumeric characters may  be  used.
          The default is blanks.

     Note:  The  point  source inventory is  followed  by  a
              blank  card  to  signal the end of  the  point
              source data.
                                 54

-------
4.2.5  Discussion of Input Parameters








     The PEM, designed to predict short-term (1 to 24 hr) average ground-




level concentrations, assumes that emission rates are constant over the




averaging period for NTOPT > 1.  This may not be a good assumption for




cases where the emissions are strongly time-dependent.  For these cases,




concentration estimates may be made for each hour using the appropriate




emissions and the mean meteorological conditions for that hour.  Then con-




centrations for a period longer than an hour can be determined by averaging




the hourly concentrations of that period.  This can be done externally




with minimal programming.








     The deposition and sedimentation velocities of the species and the




chemical transformation rate are also assumed to be constant over the




concentration-averaging period.  If it is important to consider the hourly




variations of these parameters, a procedure similar to that described




above for emissions, can be used in the concentration calculations.








     The meteorological data input to PEM consist of atmospheric stability




class, wind speed, wind direction, temperature, the inversion penetration




factor, and mixing height.  Each of these hourly data sets is called a




scenario.  For a given set-up of the receptor grid, the pattern of the




impacted receptors downwind of a source depends primarily on the wind




direction.  For urban-planning or regulatory purposes, it may be necessary




to investigate the effects of different wind directions on the calculated




concentration patterns in the receptor grid.  The PEM has an option which




divides each scenario into four sub-scenarios, each consisting of the same
                                     55

-------
hourly meteorological data except for the wind direction.  When the user


selects this automatic windshift option, (i.e., NWDOPT > 1), the wind


direction for only the first of the four sub-scenarios is specified


by the user.  For each succeeding sub-scenario, the wind direction is


automatically shifted clockwise by a fixed number of degrees and the


concentration calculations are repeated.  The magnitude of this shift may


be as large as 90° (for NWDOPT =2), or as small as 5° (for NWDOPT = 7).
     The calculated concentrations, C., of the species in the PEM are given

       3
in |Jg/m ; these are referred to as uncalibrated values,  and represent only


the contributions of the sources to the concentrations at the receptors.


The user may add the background concentrations, or express the calculated


concentrations in parts per million or percent allowable, by the formula
          C, = A, + B.• C. ,    i = 1 or 2,
where A. and B. are the user-specified calibration coefficients (with

                              *
default values of zero), and C. are the calibrated concentrations of the


species.  Depending on the value specified for NARRAY, the PEM output may


consist of array maps of either uncalibrated values or calibrated values,


or both, of concentrations and surface deposition fluxes.
     The culpability list output option, NCSOPT, is used for evaluation


of control strategies.  When this option is in effect, the five point


sources which contributed most to the total concentration at each receptor


are identified and their percent contributions are printed for each


scenario.  This option may be used only when the model calculates concen-


trations of a single pollutant (NPOL = 1).
                                      56

-------
     Based on the number of pollutants (NPOL = 1 or 2) and the chemical

transformation/decay option parameter (ICT = 0 or 1) specified in the input

to the model, PEM program does one of the following:
(1)  If NPOL = 1 and ICT = 0 or 1, surface concentrations and deposition
     fluxes of one gaseous or particulate pollutant, with the given depo-
     sition and settling velocities, VD1 and Wl respectively, are calculated.
     If ICT = 1, then chemical decay of the pollutant is also considered if
     the decay rate XKT > 0. is given.
(2)  If NPOL = 2 and ICT = 0, surface concentrations and deposition fluxes
     of two different and uncoupled gaseous or particulate pollutant species
     with the given deposition and settling velocities, VD1 and Wl (for
     species-1) and VD2 and W2 (for species-2) respectively, are calcu-
     lated.  Emission rates for both species may be different.   Chemical
     decay is not considered for either species even if XKT > 0.
(3)  If NPOL = 2 and ICT = 1, the two gaseous or particulate pollutant
     species are coupled through a first-order chemical transformation.
     The surface concentrations and deposition fluxes of both the primary
     pollutant (species-1 or reactant) as well as the secondary pollutant
     (species-2 or reaction product) are calculated.  The chemical trans-
     formation rate (XKT > 0.) should be given.  Non-zero direct emissions
     of the secondary pollutant from the point and/or area sources may
     also be specified as input for this case.
     In the expressions for concentrations from area sources, Eq. (8),

the parameter V,  and V,_ should be non-zero to avoid singularities in

the computations.  If either one of these parameters is input as zero,

PEM uses a default value of 0.01 cm/s when area sources are included in

the emission inventory.  The specification of the deposition and gravi-

tational settling velocities in the model is discussed in Appendix C.
                                     57

-------
4.3  GUIDE TO PROGRAM OUTPUT
                                                     4t
    6t the beginning of each scenario or sub-scenarig :

         NPRINT --- Point source parameter list

    For each point source,   the output  lists  its coordinates on
    receptor grid,  emission  rates,   stack  parameters,  dominant
    influence o-f plume rise,, wind speed at physical stack height,
    and maximum e-f-fective source height.
    Qt febg gQd of each scenario or sub— scenario:

         NCSOPT --- Point source culpability list

    For each receptor in the grid,  the five point sources which
    contributed  most to the total concentration at the receptor
    are identified.   For each receptor, the output includes the
    five point source sequence numbers, the percent of t-he total
    concentration  each  of the five  produced,  and  the  total
    concentration  and surface deposition flux at the  receptor.
    The  information is printed one column of the grid per page.
    To  reduce  the  amount of  output  produced,  only  columns
    containing non— zero concentrations are printed.

         NLIST --- Concentration and surface deposition flux list

    For each receptor in the grid,  the calculated concentration
    and  surface deposition flux are listed,  one column of  the
    grid  per page.   To reduce the amount of  output  produced,
    only columns containing non-zero concentrations are printed.

         NTAPE --- Concentration and surface deposition flux tape

    The  calculated concentration and surface deposition flux at
    each receptor on the grid are written onto a separate output
    tape.   All records on the tape contain eighty  alphanumeric
    characters.  A separate record is written for every receptor
    in  the grid,  unless the interval parameter INTER has  been
    specified as greater than one.
    The  first record on the tape contains the title information
    given on Card 1 of the Control Parameter cards,  written  by
    FORMAT (2OA4) .     Succeeding   records   contain   the   x,y
    coordinates  of  the  receptor;  values  for  concentration,
     When the automatic windshift option is selected  (NWDOPTM),
    a  scenario is divided into four sub—scenarios,   each with  a
    different wind direction.
                                  58

-------
surface  deposition  flux,   calibrated  concentration,   and
calibrated  sur-face  deposition -flux  for  pollutant-lj   and
values   for   concentration,   surface    deposition   flux,
calibrated concentration,  and calibrated  surface deposition
flux   for  pollutant—2.    These  values  are  written    by
FORMATUOFB.2) .

     NARRAY	Array  maps  of  concentration  and  surface
                 deposition flux

Separate  maps  are printed for  concentration  and  surface
deposition  flux for each pollutant.   The concentration   or
surface  deposition flux at each receptor  is printed at   its
relative location on the grid to aid in visualization of  the
distribution  of  the pollutant.
The  value  specified for NARRAY determines which  maps   are
printed.   If  output  for both uncalibrated and  calibrated
values is chosen,  four maps will be produced for each  pol-
lutant.   If output is chosen for only uncalibrated, or only
calibrated, values, two maps will result for each pollutant.
Each  map can require one,  two,  or four  pages of output  to
display the entire grid,  since each page  can display values
for up to 25 grid columns and 25 grid rows.
6t the end of the run:

     NMAX	Maximum  concentration  and  surface  deposition
             flux

For each scenario,  the receptor which receives the  highest
concentration of pollutant—1 and the receptor which receives
the   highest   concentration  of   pollutant-2,   and   the
concentration at each,  are listed.  A second list gives the
surface deposition flux at these receptors.



When  time  averaging  is selected  
-------
4.4  EXAMPLE PROBLEMS
         Three  example runs are  described here  and their results
    shown in  Appendix E to demonstrate the use of the PEM program.
         Pollutant-1 is a gas, and pollutant-2 is made o-f  small
    particles  which  deposit on the ground without  significant
    settling   O  and W = 0) .  This example  uses  an  area
    source  and  two point sources on a  finely— spaced  receptor
    grid.   Chemical transformation is selected with a transfer —
    mation  rate of one percent/hour;  however,  the  relatively
    high   emission   rates  chosen  for  pollutant-2   probably
    contribute  most  to its concentration.   The example  is  a
    simple  one,  with no time averaging and only one  scenario.
    Wind speed class number and wind direction sector number are
    specified.   The output options selected print point  source
    plume rise information, concentration and surface deposition
    flux  array maps,  and the receptor with the highest concen-
    tration.

          e 2
         This  example demonstrates the chemical  transformation
    of  a  gaseous  pollutant to a  smal1—particulate  pollutant
    whose  deposition  is  due  primarily  to  non-gravitational
    effects (V  > W > O).   A fast transformation rate of twenty
    percent/hour  is specified.   Concentrations contributed  by
    multiple point and area sources are calculated and  averaged
    over three hours with the meteorological data held constant.
    Array  maps of concentration and surface deposition flux and
    the receptor with the highest concentration are printed.

          e 3
         A  gaseous pollutant and a large—particulate  pollutant
    are  modeled,   using one large area source and  three  point
    sources on a widely—spaced receptor grid.   In this example,
    point source emission rates for pollutant—2 are specified as
    zero.   Under this condition, the chemical transformation of
    pollutant-1, at a rate of ten percent/hour, accounts for all
    of  the  pollutant-2  concentration produced  by  the  point
    sources.   Concentrations  are  averaged over six  hours  of
    slightly   varying   meteorological   data.    The   general
    atmospheric conditions are slightly stable,  with relatively
    cool  temperatures and low mixing heights;  low wind  speeds
    and  constant wind direction are specified in  meters/second
    and degrees, respectively.  The output includes point source
    plume  rise  information for each scenario,  array  maps  of
    concentration and surface deposition flux,  and the receptor
    with the highest concentration in each of the six scenarios.
                                  60

-------
                                 REFERENCES
Briggs, G. A., 1969:  Plume Rise.   AEC Critical Review Series.   Available
     as TID-25075 from NTIS, Springfield, VA, 81 pp.

          , 1973:  Diffusion estimation from small emissions.   ATDL
     Contribution File No. 7_9, NOAA-ATDL, Oak Ridge, TN, 59 pp.

          , 1975:  Plume Rise Predictions.  Lectures on Air Pollution
     and Environmental Impact Analyses, D.  A.  Haugen,  Workshop Coordinator,
     Amer. Meteorol. Soc., Boston, MA, 59-111.

Busse, A. D., and J. R.  Zimmerman, 1973:  User's Guide for the Climatolo-
     gical Dispersion Model.   EPA-R4-73-024, U.S. Environmental Protection
     Agency, Research Triangle Park,  NC, 131 pp.

Christiansen, J.  H., and R. A. Porter, 1975:  Ambient air quality predic-
     tions with the fast air quality model.  Proc. of Conf.  in Ambient
     Air Quality Measurements, APCA,  Southwest Section, III  - 34-35.

DeMarrais, G. A., 1959:   Wind speed profiles at Brookhaven National
     Laboratory.   J. Appl. Meteor. 16, 181-189.

Gifford, F. A., 1959:  Computation of pollution from several sources.   Int.  J.
     Air Pollut.  2,  109-110.

          , 1968:  An outline of theories of diffusion in the lower layers
     of the atmosphere.   Chapter 3,  Meteorology and Atomic Energy 1968,
     D. H. Slade, ed.;  available as  TID-24190.  NTIS, Springfield, VA,
     65-116.

    	, and S. R.  Hanna, 1970:   Urban air pollution modeling.  In  Proc.
     of 2nd Int. Clean Air Congress, Washington,  B.C.   ATDL Contribution
     File No. 37, 6 pp.

    	, 1976:  Turbulent diffusion-typing schemes:   A review.   Nuclear
     Safety 17, 68-86.

Rao, K. S., 1981:  Analytical solutions of a gradient-transfer model for
     plume deposition and sedimentation.   EPA-6QO/3-82-079,  U.S.  Environmental
     Protection Agency, Research Triangle Park,  NC;  NOAA Tech. Memo. ERL ARL-109,
     75 pp.  ATDL Contribution File No. 81/14.

	, 1982:  Plume Concentration Algorithms with Deposition, Sedimentation,
     and Chemical Transformation.  EPA-	, U.S. Environmental Protec-
     tion Agency, Research Triangle Park, NC; NOAA Tech.  Memo. ERL ARL-   ;
     ATDL Contribution File No. 82/27, 87  pp.

Texas Air Control Board, 1979:  Users' Guide:  Texas Episodic Model.
     Permits Section, Austin, TX, 215 pp.

Turner, D. B.,  1970:  Workbook of Atmospheric Dispersion Estimates.  Public
     Health Service Publication No. 999-AP-26,  U.S.  Environmental Protection
     Agency, Research Triangle Park, NC,  84 pp.


                                     61

-------
                                 APPENDIX A
                           POINT SOURCE ALGORITHMS


     The algorithms used in PEM to calculate ground-level concentrations
of gaseous or particulate pollutants released from an elevated continuous
point source are derived by Rao (1982).  These algorithms are based on a
gradient-transfer model which describes the atmospheric transport, diffusion,
dry deposition, sedimentation, and a first-order chemical transformation of
pollutants.  The analytical solutions of the model are expressed in terms
of the empirical Gaussian plume dispersion parameters and extended to
various atmospheric stability and mixing conditions.  Details of the model
and the solutions can be found in that reference.  Here we only list the
parameterized point source algorithms for the primary (reactant) and the
secondary (reaction product) pollutants, denoted by subscripts 1 and 2,
respectively.


     For convenience, we adopt the following nondimensionalization scheme:
All velocities are nondimensionalized by U, the constant mean wind speed.
The horizontal downwind distance x and all vertical height quantities are
nondimensionalized by -/2~ a  ; the chemical transformation time scale t  is
                          z                                          c
nondimensionalized by 
-------
where
               Vdl = Vdl/U     >     Vd2 = Vd2/U
                  = wyu       ,     w2 = w2/u
                   = V   -W/2     V   =V
                     Vdl   W17/  '  V12   Vd2
                               - W2)/2
               V   = V   -W       V   =V   -W
                21    dl   Wl   '  V22    d2    2
               x = x/V2 a       ,   z = zA/2
               H = H/V2 a       ,   L = L/V2~ a
                         Z                   Z
               T  = T U/V2 a    ,   y = y/V2~ a
                c    c      z   '             y
H              = effective height of source


L              = height of the inversion lid or mixing depth


V,- , V,_      = dry deposition velocities of primary and secondary pollutants


W1 , W_        = gravitational settling velocities of primary and secondary

                 pollutant particles


x, y, z        = horizontal downwind,  horizontal crosswind,  and vertical

                 coordinates


c^ , a         = Gaussian dispersion parameters in y and z directions


T              = characteristic time scale of first-order chemical trans-
 £
                 formation.
                                     63

-------
     The nondimensional functions gi- and g'? used in Eq.  (1) of Section



2.2.1 are now defined as follows:
                           (x,y) = exp(- y
                                                (A-2)
               g21(x,0) = exp(-p  - E   -  x/tc)  -  (2 - a
                                                                      (A-3)
where
    P; = - 2
      W, x H +  W?  x2
                                       x  e   erfc
                                                                      (A-4)
                                   2  v
                                      u
                    (x,0) = e
                             -3
                               2

                            .-» • (2
                          -Y e
         xp(-H2 - x/t ) •  (2 - a,)
                          -V
                                                                       (A-5)
 where
4
2 W2 x H
W2 x2
W2 X
                               12
                                  x  e   erfc
                                      64

-------
                     a  = 4n V13 x  e   erfc
                     42 = H + 2 V^ x ,   43 = H + 2 V^ x
and
                                                 erfc
                                       5                                  
                          l -4   e    erfc t    dt
where                     £/  - "/ -y«- •  ». •, ^
                                                                          (A~8)
In Eq. (A-5), y is the ratio of molecular weight of the secondary pollutant




to molecular weight of the primary pollutant, and Q^/Q, is the corresponding




ratio of emission rates of species.  In Eq. (A-7), t is a dimensionless




dummy variable of integration with limits of 0 and 1.
     The nondimensional functions g!.. and g!_ used in Eq. (2) of Section 2.2.1




are defined as follows:
                                     65

-------
For V   # W  or V   # 0,
       = exp(-p2 - x/tc) [(VU/V21) e 1 erfc ^
                                             i         i


                                               erfc  Pl J
where     |  = 2 Vn x   and   p  = Wj x.
For Vdl = W  or V^ = 0,
                  - x/fc)    (1 + 2 4) e   erfc 4j  -  2
where     4j = 2 VT1 * = V,  x = W  x.
For V2  ^ 0 and V   # 0,






                                                                      ,2
[
                              f   ^   "      ^2             "    *      P2

       = e       (Q^Qj + V)    ( Vi2/V22 } e    erfc  ^2  " ( V2V22} e   erfc
                *                  2                         2
               -x/t  f             |_                        p.
     CJ (V13
                          /V21)  e J erfc 43  -  (W,,/2 V21)  e  '  erfc  p.
                                          1
            Y W5F (V21 - V22) x  • F2(x)   J                             (A-ll)
where          42 = 2 ^2 ^  '   P2 = W2 ^
                  = 2V   x     V   =V   -fW-W)/2                  (A-12)
                    Z  13 X  '   V13    11    *•  1     2J/*
                                        66

-------
                                                     erfc

               (V12/V22)
                                      "  (W2/2V22}  e    erfc
                                       ] dt,
where
                                                                        (A_14)
For V   / 0 and V   = 0,
842(*) = «
   V)
                                   2 |) e    erfc
                                                       -   2
J (V13
            Y e"X/Tc     (V/V21) e 3 erfc
                                                           e    erfc
                       x  - F2(x)
                                  J
where
             = 2 VJ2 x = Vd2 x = W£ x =
             = 2 V   x
           ,




   i) = fe
          •/0
              7t
                       2    5
              [(1 + 2 £*) e * erfc
                                       -  2
                         fr]  dt,
                                                                        (A_16)
with
                                     67

-------
For V   = 0 and V   # 0,
*«(i) •
           ;2



           '3

  (Q2/Q!
           Y)
                               (V12/V22) e   erfc
- (W2/2V22) e J erfc ^
 -*Xtc  (         2   ^3
e    C  { (1 + 2 d) e J erfc
                                  -   2
                                                            ^


                                                        /Vi" J
                       x - F2(x)
                                                       (A-17)
where
     2 V^ x ,   43 = 2 V13 2 = W2 x
and F?(x) is given by Eq.  (A-13) .
For V   = 0 and V   = 0,
                 QJ/Q! + Y (1 • e'X/Tc
e  2     (1+ 2 I2)  e 2 erfc
                                                -  2
                                                       (A-18)
where
             X =:
                                    68

-------
     In Eqs. (A-7), (A-13), and (A-16), t is a parameterized integration




variable.  The integrand functions in these equations have singularities




at the end-points t=0 and t=l of the integration domain in t.  Because of




their complexity, these integrations cannot be carried out analytically;




therefore, they should be evaluated by numerical integration to a suffi-




ciently high degree of accuracy.








     A computer-library subroutine named D01AJF, developed by the Numerical




Algorithms Group (NAG), is utilized in PEM (Version 82360) for numerical




integration.  This general purpose integrator routine, which is capable




of handling the singularities, has been selected because of its accuracy




and applicability.  It estimates the value of a definite integral of an




externally defined function over a finite range, to a specified absolute




or relative accuracy, using Gauss-Kronrod rules in an adaptive strategy




with extrapolation.  Further details of this subroutine can be found in




Appendix D.








     In the limit, when V,. = W. =0 and I  = °°, the algorithms for gi.,




g'  , g!  , and g!~ (defined above) reduce to the familiar Gaussian-plume




diffusion algorithms currently used in EPA air quality assessment models.




Thus the new algorithms given in this section may be thought of as exten-




sions of the latter to include deposition, sedimentation, and chemical




transformation.








     It should be noted that the algorithms for g!1 and g!~ are also used in




Eqs. (6) and (8) of Section 2.3.2 to calculate ground-level concentrations




from area sources.  In these equations, V,. and V,- should be non-zero to




avoid singularities.
                                     69

-------
                                  REFERENCE
Rao, K. S., 1982:  Plume Concentration Algorithms with Deposition,
     Sedimentation, and Chemical Transformation.   EPA-	,  U.S.
     Environmental Protection Agency,  Research Triangle Park,  NC;   NOAA Tech.
     Memo. ERL ARI-   ;  ATDL Contribution File No.  82/27,  87   pp.
                                     70

-------
                                 APPENDIX B



                            PLUME RISE EQUATIONS



     PEM calculates plume rise from equations given by Briggs (1969, 1975).

These equations are listed below.  For details, the user should consult the

references cited.



     For unstable/neutral atmosphere, with a buoyancy-dominated plume,



          Ah(x) = 1.6 F1/3 x2/3 U"1 ,  for x < 3.5x*                 (B-l)
and
                = 1.6 F1/3 (3.5x*)2/3 U"1 ,   for x £ 3.5x*           (B-2)
where           x* = 14 F5/8     if F < 55 m4/s3, and

                                                                     (B-3)
                x* = 34F2/5     if F > 55
For stable atmosphere, with a buoyancy-dominated plume,
                Ah(x) = 1.6 F1/3 x2/3 U'1                            (B-4)
and
                             F ,1/3
                             -J                                     (B-5)
                                     71

-------
where          s = 0.02 g/TA       for E-stability,
and            s = 0.035 g/TA      for F-stability.
                                                                     (B-6)
For unstable/neutral atmosphere, with a momentum-dominated plume,







                    Ah(x) = 3.78 [        ]2/3 ()1/3              (B-7)
and



                          = 6RV/U                                    (B-8)
For stable atmosphere, with a momentum-dominated plume,







                          = 1.5 (VR)2/3 U"1/3 s"1/6                  (B-9)
where s is defined in Eq. (B-6).
     The variables used in the above equations are defined below:



     F = gVR2 (T-TA) /T                                              (B-10)


                                               4  3
is the plume buoyancy flux at the stack exit, m /s


                                                     2
     g         = acceleration due to gravity, 9.8 m/s



     Ah        = plume rise, m



               = maximum plume rise, m



     R         = inside radius of stack exit, m



     T         = plume temperature at stack exit, °K



     TA        = ambient temperature, °K
      A


     U         = mean wind speed at physical stack height, m



     V         = plume velocity at stack exit, m/s



     x         = downwind distance, m
                                     72

-------
                                 REFERENCES
Briggs, G. A., 1969:  Plume Rise.   AEC Critical Review Series.   Available
     as TID-25075 from NTIS, Springfield,  VA,  81 pp.

Briggs, G. A., 1975:  Plume Rise Predictions.   Lectures on Air Pollution
     and Environmental Impact Analyses, D. A.  Haugen,  Workshop Coordinator,
     Amer. Meteorol. Soc., Boston, MA, 59-111.
                                     73

-------
                                 APPENDIX C







                       SURFACE DEPOSITION FLUXES, AND



                     DEPOSITION AND SETTLING VELOCITIES







C.I  SURFACE DEPOSITION FLUXES








     The surface deposition fluxes of the primary and the secondary pollutants



at ground level receptors are calculated directly as
                            = Vdl • Ca(x,y,0)                        (C-l)
                    D2(x,y) = Vd2 • C2(x,y,0)                        (C-2)
D gives the amount of pollutant deposited per unit time per unit surface area,


                                  2
and is usually calculated as kg/km -hr, while seasonal estimates are expressed


        2
as kg/km -month.  The estimation of the monthly or yearly surface deposition



fluxes at a given downwind distance x from the source in a given wind-direc-



tional sector requires the knowledge of the fraction of the time that a mean



wind of a given magnitude blows in that direction in a month or a year, respec-


                             2                                         3
tively.  To obtain D in kg/km -hr when V, is given in cm/s and C in g/m ,



the right-hand side of the equations should be multiplied by 36000.  To obtain


         2                                          3
D in |Jg/m -hr when V, is given in cm/s and C in (Jg/m > the corresponding



multiplication factor is 36.  For D calculations, the ground-level receptor
                                     74

-------
is generally defined as any receptor which is not higher than 1 meter above


the local ground-level elevation.





     PEM calculates the surface deposition fluxes of one or two pollutants.


These values are printed in a map or list form, as specified by the user, in


the same way the program prints the concentrations.  The flux units are

              2
generally (Jg/m -hr; however, if these values are too large to be clearly

                                                                  2
printed in a map format, then the program converts them into kg/km -hr


before printing.





C.2  DEPOSITION AND SETTLING VELOCITIES





     The values of the settling and deposition velocities primarily depend


on the particle diameter d.  In the trivial case of W = V, = 0, settling and


deposition effects are negligible.  For very small particles (d < 0.1 |Jm),


gravitational settling can be neglected, and dry deposition occurs primarily


due to nongravitational effects.  In this case, W = 0 but V, > 0.  For small


to medium-sized particles (d = 0.1^50 |Jm),  0 < W < V,; deposition is enhanced


here beyond that due to gravitational settling, primarily because of increased


turbulent transfer resulting from surface roughness.  For larger particles


(d > 50 |Jm), it is generally assumed that V, = W > 0, since gravitational settling


is the dominant deposition mechanism.  When W > V, > 0, re-entrainment of the


deposited particles from the surface back into the atmosphere is implied,


as in a dust storm, for example.  The first four types of model parameters


given above are widely used in atmospheric dispersion and deposition of


particulate material.  The deposition of gases is a special case of the
                                     75

-------
particulate problem with W = 0.   Thus, one has to carefully select the values

of W and V, for use in the models.   A more complete discussion of these

model parameters is given by Rao (1982).
                                 REFERENCE
Rao, K. S., 1982:  Plume Concentration Algorithms with Deposition,  Sedimen-
     tation, and Chemical Transformation.  EPA-	,  U.S.  Environ-
     mental Protection Agency, Research Triangle Park, NC;   NOAA Tech.  Memo.
     ERL ARL-    ;  ATDL Contribution File No. 82/27, 87  PP-
                                     76

-------
                                      APPENDIX   D
                   D01AJF - NAG FORTRAN Library Routine Document
NOTE: before using this routine, please read the appropriate implementation document to check the interpretation of bold italicised
terms and other implementation-dependent details. The routine name may be precision-dependent.
1. Purpose
  DO 1 AJF is a general-purpose integrator which calculates an approximation to the integral of a function
  f(x) over a finite interval (A,B):
                                            B
                                        / - ; F(X) dx.


2. Specification
       SUBROUTINE D01AJF (F. A, B, EPSABS, EPSREL, RESULT, ABSERR,
       1    W, LW, IW, LIW, IFAIL)
  C     INTEGER LW, IW(LIW), LIW, IFAIL
  C     real F, A, B, EPSABS, EPSREL, RESULT, ABSERR, W(LW)
  C     EXTERNAL F
3. Description
  DO 1 AJF is based upon  the  QUADPACK [3]
  routine DQAGS. It is an adaptive routine, using
  the Gauss 10-point and Kronrod 21-point rules.
  The algorithm, described in [I], incorporates a
  global acceptance  criterion  (as  defined  by
  Malcolm and Simpson [2])  together with the
  e-algorithm  [4] to perform extrapolation. The
  local error estimation is described in [3].
  The routine is  suitable  as a general  purpose
  integrator, and can be used when the integrand
  has singularities, especially when  these are of
  algebraic or logarithmic type.


4. References
[1]  DEDONCKER, E.
    An  Adaptive  Extrapolation  Algorithm  for
    Automatic Integration.
    Signum • Newsletter 13,  No.  2, pp.  12-18,
    1978.
[2]  MALCOLM, M.A. and SIMPSON, R.B.
    Local versus Global Strategies for Adaptive
    Quadrature.
    A.C.M.  Trans.   Math.  Software  1,   pp.
    129-146, 1976.
[3]  PIESSENS,   R.,   DE   DONCKER,   E.,
    U BERHUBER, C. and KAHANER, D.
    •QUADPACK',  A  Quadrature  Subroutine
    Package.
    To be published, 1980.
[4j  WYNN, P.
    On  a  Device  for Computing  the em  (S )
                                     irt    ft
    Transformation.
                                                   M.T.A.C, 10, pp. 91-96, 1956.

                                                5. Parameters


                                                F - real FUNCTION, supplied by the user.
                                                 F must return the value of the integrand  at a
                                                 given point.
                                                 Its specification is:
                                                  real FUNCTION F(X)
                                                  realX

                                                  X - real.
                                                    On entry, X specifies the point at which the
                                                    integrand value  is required by  D01AJF. X
                                                    must not be reset by  F.
                                                 F  must be  declared  as EXTERNAL  in  the
                                                 (sub)program from which DO 1 AJF is called.

                                                A - real.
                                                 On  entry, A must specify  the lower limit of
                                                 integration.
                                                 Unchanged on exit.

                                                B - real.
                                                 On  entry, B  must  specify the upper limit of
                                                 integration.
                                                 Unchanged on exit.

                                                EPSABS - real.
                                                 On  entry,  EPSABS  must specify the absolute
                                                 accuracy required. If EPSABS is  negative, the
                                                 absolute value is used. See Section  10.
                                                 Unchanged on exit.
                                             77
                     January 1981]
                                                                                       Pa  • l

-------
D01AJF
                            D01 - Quadrature
EPSREL - real.
 On entry, EPSREL must specify the  relative
 accuracy required. If EPSREL  is negative, the
 absolute value is used. See Section 10.
 Unchanged on exit.

RESULT - real.
 On exit, RESULT contains the approximation to
 the integral /.

ABSERR - real.
 On exit, ABSERR contains  an  estimate of the
 modulus of the  absolute error, which should be
 an upper bound for (/-RESULT).

W - real array of DIMENSION (LW).
 Used as workspace.

LW - INTEGER.
 On entry, LW must specify the dimension of W
 as declared in the calling (sub)program. LW/4 is
 an  upper bound for the number of subintervals
 into which the interval  of integration is  divided.
 A value in the range 800 to 2000 is adequate for
 most problems. The more difficult the integrand,
 the larger LW should be. Trivially  LW >: 4. See
 IW below.
 LW is unchanged on exit.

IW - INTEGER array of DIMENSION  (LIW).
 Used as workspace.
 On  exit,  IW(1)  contains the amount  of real
 workspace actually  used (the smallest  possible
 value of LW).

LIW - INTEGER.
 On entry, LIW must specify the dimension of
 IW, as declared  in  the  calling  (sub)program.
 LIW > LW/8  + 2.
 Unchanged on exit.

I FAIL-INTEGER.
 Before entry, IFAIL must be assigned  a value.
 For users not  familiar  with  this parameter
 (described in Chapter  P01)  the  recommended
 value is 0.
 Unless  the routine  detects an  error (sec  next
 section), IFAIL contains 0 on exit.

6.  Error  Indicators and Warnings

Errors detected by the routine:-
 IFAIL -  1
  The maximum number of subdivisions allowed
  with  the given workspace  has been reached
  without  the  accuracy  requirements  being
  achieved. Look at the integrand in order to
  determine  the  integration  difficulties.  If  the
  position of a local difficulty within the interval
  can be determined (e.g.  a singularity  of  the
  integrand  or  its  derivative,  a  peak,  a
  discontinuity...) one will  probably gain from
  splitting up the interval at this point and  calling
  the integrator on the  subranges. If necessary,
  another  integrator which  is  designed  for
  handling the type of difficulty involved, must be
  used.  Alternatively   consider  relaxing   the
  accuracy requirements specified by EPSABS
  and EPSREL, or increasing  the  amount  of
  workspace.

 IFAIL =  2
  Roundoff  error  prevents   the   requested
  tolerance from  being achieved. The error may
  be under-estimated. Consider requesting  less
  accuracy.

 IFAIL -  3
  Extremely  bad  local  integrand   behaviour
  causes a very strong subdivision around one (or
  more) points of the interval. The same advice
  applies as in the case of IFAIL = 1.

 IFAIL -  4
  The requested  tolerance  cannot be achieved,
  because the extrapolation does not increase the
  accuracy satisfactorily; the returned result is
  the best which can  be  obtained. The same
  advice applies as in the case of IFAIL = 1.

 IFAIL =  5
  The integral  is probably divergent, or  slowly
  convergent. It must be noted that divergence
  can also occur with  any  non-zero value of
  IFAIL.

 IFAIL = 6
  On entry, LW < 4, or LIW < LW/8  +  2.

7. Auxiliary  Routines
 This  routine  calls  NAG  Library  routines
 D01AJV,    D01AJX,   D01AJY,   D01AJZ,
 P01AAF, X02AAF, X02ABFand X02ACF.

8. Timing
 This depends on the integrand and the accuracy
 required.
                                               78
Page 2
                                  January 198!]

-------
DOI - Quadrature
                                                                                      D01AJF
9. Storage
  The  storage  required by internally declared
  arrays is 107 real elements.

10. Accuracy
  The routine cannot guarantee,  but in  practice
  usually achieves, the following accuracy:
  |/-RESULT|.\. 31H- LOWHR  LIMIT OF INTEGRATION
                                                79
(SAGFLIR
                      Jjnu.ir> 1981]
                                                                                         Pa ft 3

-------
D01AJF                                                                D01 - Quadrature
      F10.4/1H . 2X, IHB, 6X, 31H- UPPER LIMIT OF INTEGRATION - ,
      F10.4/1H . 2X. 39HEPSABS - ABSOLUTE ACCURACY REQUESTED -
      E9.2/1H . 2X, 39HEPSREL - RELATIVE ACCURACY REQUESTED - .
      E9.2/)
99997
FORMAT (1H , 2X, 41HRESULT - APPROXIMATION TO THE INTEGRAL -
     E14.5/IH , 2X. 42HABSERR - ESTIMATE OF THE ABSOLUTE ERROR -
     E10.3/1H , 2X, 42HKOUNT - NUMBER OF FUNCTION EVALUATIONS
     14/1H , 2X, 43HIW(1) - ELEMENTS OF REAL WORKSPACE USED - ,
     I4/1H , 2X, 22HIFAIL - ERROR FLAG - . I4/)
99996 FORMAT (1H . 7X, 27H  - EXACT ABSOLUTE ERROR - , E10.3)
     END
     REAL FUNCTION FST(X)
C    .. SCALAR ARGUMENTS ..
     REAL X
C
C    .. SCALARS IN COMMON ..
     REAL PI
     INTEGER KOUNT
C
C    .. FUNCTION REFERENCES ..
     REAL SIN, SQRT
C
     COMMON /TELNUM/ PI, KOUNT
     KOUNT  - KOUNT + t
     FST  - X'SIN(30.EO'X)/SQRT(1.EO-X"2/(4.EO'P1"2))
     RETURN
     END
C    DOIAJF  EXAMPLE PROGRAM TEXT
C    MARK 8 RELEASE. NAG COPYRIGHT 1979.

13.2. Program Data

None.


13.3. Program Results
 DOIAJF EXAMPLE PROGRAM RESULTS

  A     - LOWER LIMIT OF INTEGRATION -     0.0000
  B     - UPPER LIMIT OF INTEGRATION -     6.2832
  EPSABS - ABSOLUTE ACCURACY REQUESTED -  O.OOE 00
  EPSREL - RELATIVE ACCURACY REQUESTED - 0.10E-Q3

  RESULT - APPROXIMATION TO THE INTEGRAL -  -0.25433E 01
  ABSERR - ESTIMATE OF THE ABSOLUTE ERROR -  0.128E-04
  KOUNT  - NUMBER OF FUNCTION EVALUATIONS - 777
  IW(1)  - ELEMENTS OF REAL WORKSPACE USED =•   76
  IFAIL  - ERROR FLAG -    0

        -  EXACT ABSOLUTE ERROR - 0.893E-08
    ( This  document  is reproduced from NAG  FORTRAN  Library  Mini-Manual,
      Mark  8,  1980;   Copyright of Numerical algorithms Group, 1131  Warren
      Ave.,  Downer's Grove,  1L 60515).
                                          80

                                                        [.V.4GFL/B.n95,UMl.S IKih January

-------
       APPENDIX E
INPUT AND OUTPUT LISTINGS




   OF EXAMPLE PROBLEMS
           81

-------
                                                                                    — !M



                                                                                    U U
                                        -1 ~*   • Q  •
                                        •J    O   •  O
Ed
I
•
                                 • 
                                            in o 2
o o i-
      z
                                                                                    o o u.
                                                                                     .  • a
                                                                                          a
                                                                                          z
                                        a. —  •
                                        01    O
                                        I
                                IN -I
                                a «
                                  • z
                                        _l _«  • ^ o
                                        0.    O     •
                                                       -•      ^r
                                                       <
                                                       19
                                 =0  o
                                 m  t.
                                    Z
                                    
      a
o w ce

 •  • o

      ^c
      z
         <
                                     < vu a    3 -» «i   o
                                                                      j
                                                                      u
                                                             ua
                                                             o
                                                                                 82

-------
                            <
                            X.
                            at
                            O
                            u.
                            SI
                            z
            a
            a

-------
                                     a
                                     LU

                                     <
                                     •J)
          LU                         3                      a

          u                         ae                      --n
          —                         «                    «<  •
          *•*                         Z                   ^1 -U 3
          oe                         LU                   a ae -u

          a                         m                   oe z u                                                                      LUU.
                                                          •< — LU
          _l                         U.                   Z    -J                                                                      (/>
          <                      a                      u -i >/>                                                                      <  <
          z                      ai —                     _i
          t/»                      o -r                    l  < ac                                                                      o  u
                                                             u LU
                                                             — 03                                                                      >•>.
          t-                      -u a                   i/> >- z                                                                      ^  i—

                                «                      ae z z                                                                      -J  -i
          <             ae          M                   30                   a                                                    ——

                         3    3 ae ""                   LU 3 a                x                                                    <<
 -i       z             x    — «ac             o       •« —                «                                         x w>      >->-
 LUQ                   ac    LU             •*    LU    *•                z                                                    ^n  in
 a       —             LU    < m 03             a:    3 i/i a.                LU                                         zz
 OH-             zzoz             <       — o                o                                         :* *
 Z       4             3    LU •» 3             2    t-                      i/>
          z                   o oc z             LU^ZLU
 u       ce             ae    at <                u    ac a x                x                                                    zz
 »•»       Q             3       ZZ             ^o-.-.*-                (j                                         OO      •»  >.
 OU>             IUXLUUJ                M*U.h*                3<                                          ctOU
 av>                   o o >             xacuz             — uj                                   in    o o      LU  LU
 urz             <*«             U                                   >               nt(«i
                               Q                   aeu)ac->             o        ••
 o       <             «       03             LUXU.ZZ                LU                 »                 ~Z3a      oo
 •*LJ             UOLUU.                O"*LU             X>^                 Z                ^»»Ct/>- Q a             OJLULULU             < —                 o                3ox>

 •JJL             -J-J»»^             LWOetJ-U                   LU                 t/>                   O            «*«»
 O       LJ             33«             _ Q — _  .             OCOL,                 Z                    •            -*(M
 OL                      2CLJ«J«t             LJ^UOCCV             ULf                                      O            ww
                  ^J^33             4JLU4LU             ij»                    M                      X          M4*M
                         LU«O*J             O.UQ.^BUJ                LU                 JB                mui          UU
          M*             ^*LJ-J^             LnLULnLUOC             O03                 O                rSIMZ          N-^-
                         uj       4 ^                •••    vj O             uj                  ^ ••                   o oe          o  o
          LU             ZLUOU             LUUtoLUt/fLU             ••CJ                 ^                HMQ
          -j                   «              —   aa — 10  i a             u. >-                 OL                xaei_>           ••
          Ob"^LU<<>/lc/tNtH)aQ                "^                   O                ^O            ^*
          z        n     3       zz        t-   a jj u 3 in             o ae        -»                               *•           z
          <        ^         t/>ao        e.^x^-Ln                LULU                 z*»          ••••(/>          LU
          X        Q»*-Z~-*        a      UO'OC        ^^0.33        It        XLJ-3       !/>OuJ          •—
          LU        ULuat~>-        oi/iuooa        »    ^i x        z       «-LULU       zzJt          u
                    *-"*>-*<<        2UJLULUZ*        ^      3        UJ       MLUV)       Z-*X          <
          z        f.         i—xae        ^£   ii ta uj — u        a.LU«        LJ       x    u. _j       j o H-          ac
          uj             <«^-»-             a    ac a —        33)           i^       3Lu          -i<3          u
          OL        ••         aezz        ~OOOLU»        i/>      <^       z       o       ^-       30.0
                    Zt/1*-LULU        ZLU^-UJUJJ^        33U)                 ^^TO       <_I(/)V)          LU
                    a   —    zoo        o   a    o o —        Zf-<        ••       «—z                        ae
           ••"••ajzz        —      aeo»                -ji/>                                          3
          t/1        "LJ'^JOU        ^~ZLU^3O        ••V)O        d       XL/>V)                        ^
          ac        o-   -•    zoo        OL   — «j — mm        -jr   ^*           —       >n    — —                         <
          u>aae3              oz»azaac«                                  ac
          H-              <    o  «  «             Z3ZX>A        —      LU        <       2ZZ                         LU
          LU        LUZ       t^iuj        ecjZkjLj^r        »~ZLU        z       zxx       ••               a^
          z        ZLU««ae_i        3-*»<*.        o-i-ie.        at       a    >— *—       a                z
          <        *^oac33)        ^MH-OC^UJO        cj      to       o       o»«i^       M*                LU
          ac        >-   1/1     :_) o •«*        >-   u u LJ    a>             cj           v>       oacac       a               »
          ^                  hjj»M        OLU^*Luac           OLua                       LJO       U9
          a        o    «    x    oc        uj   oc o a o >        LU   LU z        LU       a.    o o                         -i
                    «>        «*C3V>C1              OUU13                »•««       O                M
          30                         a                .vi                ae        I                 ^               ^
          a        •»                                    r-                                LU       K                ou                z
          ^>        ae         ** ^v m        4^   o *^  i              o   o •*       1^1       u    0 •«       uj                in
          z        uj                         ^c         -~t              z                z«                LJ               •-
           o>                         —                         —                3       >-                LU                a
           LJ       <                         3!                         3>Zl^aCCV,

          f-

           a.
           z
                                                                                      84

-------
       o
        •
       o
fit
     o
     o     o
     o     o
ifi   . »   -> O
<   —00    • •
J         O O
                                         O
                                         o
                             Ul
                             a
3


X
J
UJ
o
o
3C,
a
a
t/v
••
a.
LU

Z
a
M«
*-
3
_J
-J
U
OL



































LU
U
ac
a.
_j
_j
<
X
V)
a
t/i
z
a
*•
<
x
3
a.
u)
Z

ae
*•

_i
4
u
M
X
LU
x
u



•^

-J
a.
x
4
X
UJ

a.
UJ
a.

••
V)
oe
UJ
»-
Ul
X
4
oe
«
a.

_i
a
ae
t»
z
o
u
f-
1
»-
z
^
.J
•*
in
«
o
•«
1
*-
z
«
»•
3
-J
-J
a
a.












r«*
H
^
a
Ck
z
..
in
H-
Z
<
*-
3
_j
-J
^
^

'4.


ae
'^U
•a

^
z

» o
UJ •
-J 3
<
II
<
3
•
0
O
o
o
• H
— 31

II 0
LU >
-J 0
4
u
t/»
«.

H
«














ac z
o •• a
*— i/> —•
O ^ f
« z<
a. LU o

o o u.
,£ -. —
tM tk •"•
-" u. z
< UJ UJ
O -J C3
ul o —

Ul ^ Z
o u a
oe p» —

a <  ae ae
oa 03
< "* -•
LU -J _J
ac «
< LJ VJ

H H
tM N
O '
o
o
0 O
-> o

II >
~t *+
a x
3*



















•»
•^
V> "
>* —
Z LO
O 'v
— X
o
>• —
to-*
M> >
U >-
o —
-J CJ
LU a
> -J
Ul
Z >
a
«o
)- Z
bd W«
t/> -J
u ^
Ok H>
UU LU
3 ul

















«•
II
»«•
O
•-
„
Z

•^
^
g^
^

Z
a
>—
<
x
ae
o
u.
(/I
z
4
ac
^


^
tj
••*
x
Ul
X.
O

TS IS IGNORED
ULLUTANT-1 TQ POLLUTANT-^ IS CONS I
z a.
<
1- U,
30
_(
- Z
a a
a. —

u. <
a x
ae

(/> U*
O on
-J Z
•t
z at
a H-

« «

ae —
o x
IL IU
v> £
s o

ac ac
a
-i ae
«* a
O 1
"•* t^-
3C ^
•-LI t£
J. MM
O U.


O —
CM H H

— 1 (J O
Q BM WM
G,
z





tX
X
X
w
z
m
Lj

AI
a.

a
0
u
•
ft*


H
^
X

•*
at

^
ae

2
3
K-
<
a.
ae
a
IL
i/i
z
^
ae
*»


<
o
••*
x,

j;
O

11
X
X
•<
0
«»
!•
z
p—
u
<
UJ
ac
t
z
«
!>-
3
-J
_J
O

<^
h*

fw

o
ai
x

ac
^



UJ
_j
O
X

u.
o

p


^
X






























(v
a

(j
LU
_i
LU


i/l
Z
u

^.
a.
a

H-
^j
OL.
hv
O
U
ITION FLUX M tACH RECEPTOR IN IHt
ECTIVE STACK HEIGHTS
Ul U.
a u.
(X UU
UJ
o a
z
XI <
u
< fc^
uw oe
ac UJ

W* Ul
X
a <
< ac
4 ^
a.
z
a uj
*- >• ae
« -1 3
X Z 3
V- O 
z
ui o *-
U UJ Z
Z 1- —
a •* u
o ae CL
03
u. — a.
a _j o

i/i t\ ^
a. z v

& -j


rv -^
It H
> *•

ae —
oe ae
< o-
Z 2




AJJON AND SUKFACE OEPOSITJCN FLUX
RUN
oc
a t— u.
— zo
ac uj
^ ' T C3
Z Z Z
UJ C3 LU
O U
U) ^
^^ 4
X f)
•J LU Q
•« I LU
LU U >-
— Z

j ae
a. o.
O N*
Z — 1
Z 3
Z "» "•
— ac ae
0 Q <
ui H- z
ca cu ui
Ul o

4 LU
ae x
a o
UJ LU <
t— a ui

— >- ac
ae ioa
a. -iu.
_j




»•*

x
<
X
^




                                               85

-------
                                          >• O

                                          -3 Z                Z X.        •

                        in                                     x — x    o
                        i/l                .3 Z                -i UJ —    O
                        <       < (o u a a ai u.          xi       -»

                        j
                     « a       x         I   I   I   I   I                    K
         _*    ^    uise       o •» »•» -« f- as             k-3—    o
         _i    w>    « uj                .» — ILI             zi-oo
         *««JH-                      >             01 <        •
         r    _i    o z                      a             MQEuin
         v>    u       »                                     si uj aj    —
                                                               * a. o
         O    O                                              « X —
         t—    ai                                                 LU
               a.
         u          ax       >d04«xog>N
               a    j> —                      -^                z
         Z    2                                                 O
_l       O    «-                                                 ~—    O
ai       —    M                                              a t- o    o
a       K.          -ix                                     2uu-
o       <          tniu                                     -. uj a    o
                                                               » oc —    =o
a       vf
o       z
       <                                                       a
—       at                                                    o a
—       —          o o     ........
i_       x          — uj    o 
3       ua          U.Q    oo
.1       I          U—    -*
-J       U          UJ
a                   a                                           a
a.                   -•                                        a uj fc
                     a          VJEXJI          z aj -
         <-M                      (^Xi^^JVZ          MQb
                              i/>i/fO-*"»J«>-4*'rt-O
         X     i-.   (JX       _<^_-.-.^—          3
         U*     >•   LU 3                                     U^
         uj     at                                              w> t/»
         a.     ~«                                                <
                a                                              a _i
                                                                r <->
         ..     a                                              —
         w»     z    z->    o in o in a m o «N          at
         o:     ••    cju>     ........
         01     3    *«uJ    opjtnr«-cfv'n**'
          X          -U
          <          at
          at          —
          <          Q
          a.

          o
          *•                                                    ^
          CC          XX
          «          a uj
          Z          *-3J    -*fM(*1^T*n>O^»
          UJ          U i.                                     CJ
          j          uj 3                                     »• at
          i/»          t/» z                                     at uj
                                                                < a
          >-                                                    z x
          3                                                    if 3
          a.                                                    u z
          Z                                                    vj
                                                                                  86

-------
               a    o
               *u    '^
               -I    O
               •«      •
            UJ O    O
                                    o
                                    ir>
                                    o

                                    o
                              -
                              o
                               •
                              O
                           O
                           -n
                           o
                             •
                           O
<
z
t/)

a
                        a    o
                        IXI    O
                           o
                           O
01
a



u
oe
a
                  I- 3 —
                  3 — •Jt
                  ^v*'*.
                  _) l« 13
                  O — —
                  i X
                        a.
                        2
                      O    O
                      O    O
            Ul
            o
O       Ul

^       o
3
                            z
                            3
                            oc
                      O    VI
                      
£t
4
a
at
j
a
             o —
             a z
                                     a
                                     3
                                     o
                                     1/1

                                     <
                                     OJ
                                     tr
                            a

                            V)
                            Z
                                                                        87

-------
                  a.       oo
                  X —    00
                  -jo    •»• -r
                  DC
                  IU      O O
                  (-      00
                  01 —   00
                  XX    •  •
         at
         <       >••      o c
         a.       x      oo
                  13 ~    •  •
         -i       -• x   -n 3
         »-         X             
         z
U       «         —
»       a;         .
O                IU 13
l/l       -I       t- —    O O
—       <       «       O O
tt.       U       OC —    O O
U>       *w          (      •  •
         X       Z *•    -*•<
Z       01       o Z
a       x       >-><
                 "• -J
                 X -I
O
a
                    —       -r    se
                    X    O O
                   >*:     •  •    z
                   i •—    o o    a
         «       a
         ae       ae
         111       O —    O SO
         >-       OX    
-------
                            X UJ -JJ
                            •« U. (J

                            X U. ot
                            m yj —
                            a. I u»
                            O O —
                            Z <
                      OC
                      O
                      —       *- LU    Z Z
                               Z U    -£2
                      v)       < z    o a
                      —       2 '.U    30
                               — 3
                      Ul       I _1    > >
                      VJ       O l^    (J o
                      ge       a z    z z
                                        a a
                                        3 3
                                        03 01
                               a.
                               I —
                     O
                     O
                     O
         _l                    _>       O O
         O                    IU —    O O
         •—          z        > j>    a in
         »—          <           X.     •  •
         ac          Z        t- X    Ji o
         <          >-        — —
         a                    x
                     ce        LU
         -I          Ul
O       X          UJ       UJ        O O
o       i/»          at       H-        o o
u)                   13       UJ  -»    o O
Ul                   «       -.
         vi                   a
z       <          >-
a       u    wt    x
M             z    o       t-       o a
«-       z    a    —       x       oo
               O   • *
               -J O _>
               < O O                 O O
               tjov>       r«—    — • «*
                  «•       VI  I  -ft     •  •
               jjlltlj    UJ^1^    OO
               X  «  -L    O
               _3 H-  a.    «—           U U
               -J i Ol    i/1           O O
               O 
                           o z
                           OC "^
                           3 O
                           a ae
                           o a — »    o to
                              <_> x    •>* 
-------
        JO                                                                                                                                                       O             -t    —    —   —    OOOOOOCOOOCIOOOOOOOOOO
     z  •
     < a       ^a>'M(M-r-•-•       O                                                                                                             rg    rr,    ^    ^     m    0          o
'-if J                                                                                                                                           Kg     r^    fM
     « •
   vOV*             O-OOOOOOOOOOOOOOOO9p^ODfMIM^r»^O
    *xl                                    -                                                                                 ivmommo
    • at          a                                                                                                                               (v    •><    rv          o
     iui9       -r                                                                                                                                                      -r
     zz        •aooooooooooooaoooj'-«aorgtv-»--«o     •
     U—>       O                            '                                                                                 04    <«    o    it>     m    o          O
        X                                                                                                                                        -    r«--           .     .     .     .     .      .....      ,      .........     .     .     .     ,     .
     3 >- <          ooooaooooooooooooooooooou
     a t- at
     i- — a
     3 _l —
     o — -i
        OB 4
     I < O
                                                                                    90

-------
                                                                                                                                                  ~4-i•    O     O    O
   v3        ~0                                                                                                                                                                    O
             !J>                                                                                                                                                                   »
   ••         •    oooooosjoooooooooooooocooo      •
   -<        O                                                                                                                                                                   O
    I

   z              oooooooooooocroooooooooooo
   <
   w        «                                                                                                                                                                   -o
   !3        »                                                                                                                                                                   CD
   -J         •    OOOOOOOOOOOOOOOOOOOOOOOOO      •
   «J        O                                                                                                                                                                   O
   O

                   OOOOOOOOOOOOOOOOOOQOOOOOO
ut
JO                                                                                                                                                                   O
O           co                                                                                                                                                                   «
—            «OOOOOSOOOOOOOOOOOOOOOOOOO      •
>-           O                                                                                                                                                                   O
oe  •
< oe
O. I              —     -«-«    —     - «     «                                                                                                                                                                    -O
« « j     m                                                                                                                                                                    in
X.    O      -OOOOOOOOOOOOOCOOOOOOOCOOO      '
*  -I     O                                                                                                                                                                    O
a x
a.    ec
Ul O IU           OOOOOOOOCOOOOOOOOOOOOOOOO
r  -a.
< o        33                                                                                                                                                                    MO»ajr-O      t
O — tu     o                                                                                                                                                                    O
   X IX
   -• <
   1^3           COOOOOOOOOOOOOOOOOOOOOO3O
—    or
    • t/»     rM                                                                                                                                                                    CNJ
kU o        f*                                                                                                                                                                    "^
JUJOC      *OOOOOOOOUOOUOOOOOOOOOOOOO      •
a. o ai     o                                                                                                                                                                    o
X    3.
< a
XOU1           OOOOOQOOUOOCJOOOOOOOOOOOOO
uj  « a;
   o <     ^r                                                                                                                                                                    -r
X oo ae     -g                                                                                                                                                                    ->j
LU*^U      ••M^*«MW*-«-^^«^^^-4~4«4>-4^(_JOWUOUO      •
a.  it  a     o                                                                                                                                                                    o
   % -J

•«Q^           -^-^-^•^^*-^^^-^^j-Ni>J^-^-v«lw>-n^-*1'^-^OOOO

   01-0                                                                                                                                                                    0
a z        "                                                                                                                                                                    —
<^MX      »-4-*— *-*-*    —    ^*—»-<«--rf--^-,-«^-*OOOOOOOO      •

-------
                   oooooaooooooooaoooooooooo
   J        -O                                                                                                                                                                       -O
             (3*                                                                                                                                                                       CJ*
   «         .0000000000000000000000000      •
   fN        O                                                                                                                                                                  >    O
    I
   i_
   z               0000000000000000000000000
   <
   w        a>                                                                                                                                                                       0
   3        B                                                                                                                                                                       »
   -J         •OaOOOOOOOOOOO33OO3OOOOOOO      •
   _l        O                                                                                                                                                                       O
   3
   &
                    ooooaoooaoooooooooooooooo
UJ
-I           O                                                                                                                                                                       O
O           00                                                                                                                                                                       »
_            «-»-«-«ooooooaooooaooaoo:DOooo      •
i-           o                                                                                                                                                                       o
X   »
< IX
ax               r\,r\j'vjrM<\j-M-*-'-<-"-«-»     —    oaooaoaooooo

_l -1        !M                                                                                                                                                                       ir'sri'rt-M-*oooooo      •
X it        o                                                                                                                                                                       o
                                                                                                                                                                                      o


                    Mrg-y,>jrj!N    —    —     -•-•-•-•— -ooooaooooooo
_ ai
i- >        -O                                                                                                                                                                       -O
« «        vn                                                                                                                                                                       in
x             ••«*4--*ooooooooQaooooooooooao     •
DC  -       O                                                                                                                                                                       O
OX
u.
»                                                                                                                                                                       •«
UJ O  *"    f^                                                                                                                                                                       ^
_j uj  a>      •     —    ooooocooao'-joooooooooooco     •
a. a  x    o                                                                                                                                                                       o
UJ  • 0
    O J     -r                                                                                                                                                                      •*•
X 3O o    rj                                                                                                                                                                      <"M
U4*^         •p**p«4«'^''^f'>(«sm(*if«rn*«mfn(*^7M<*"*ota^ooo      •
o. H  -r    o                                                                                                                                                                      o
    cr UJ
    — a.
•~ •* cc      »
at at o    o
<    Q
z  -at
     .
m x x    «                                                                                                                                                                       co
             o                                                                                                                                                                       o
 • i-  i       '-«oooaooooaooeooo3oOQ3oooa      •
•••TO                                                                                                                                                                       O
     • Z
u. - z o
o — z
LU n a
w>    u

    aa           sorN=o^ruo(*4aa*ro-oru>orMQD^r
 ••QUJ           ^<^=O330O**f*->O^^^nx>>T>T^I(*>mt^rsi^i-«^OOO
*-«•-             ......     ....     .......      ........
O><           OUOOOOOCOOC3OOOOOOOOOOOOOO
a. fc- oe
1- — O
3 J —
o — -;
    a <
    < o
    *- i
                                                                                        92

-------
                                                                                                                                                             ooo
   O                                                                                                                                                                         0*
   ~         .ooouooooooooououoaooaoooo     •
   tv        a                                                                                                                                                                 o
    i
   ^
   Z              OOOOOOOaoOOOOOOOOOQOOOOOO
   <
   (-33                                                                                                                                                                 31
   3        3O                                                                                                                                                                 «
   _i         •    0000000000000003030330030     •
   -JO                                                                                                                                                                 O
   o
   a.
                   «*    O    O     O    O    O    O~   O3OOOOOOOOOOO3OOOO
kU
-jo                                                                                                                                                                 a
4    r>«    u        -o                                                                                                                                                                 <0
Qoc              •o*o*o-O^O>otri-n«l*^mrT«r«i-^-^oooooooooo
•^ uj
H- >        -O
^ <        in
Z            .tMix: >i    (M    .»    _    _i     _    OOOOOOOOOOOOOOOOO
x  - at     o
a x 3
u-    a
l/>OX           —OOOOOOOOOOOOOOOOOOOOOOOO
Z  •
< o x     a
te o iii     •»
H»OO.      •oooQooooooooooooo-r9'i'>*>-*.nmo
   «^o                                                                                                                           -^.JMO»»(^
-J    ae
< ti uj
U*»H»           oaooaouoooooooooo^ff'^^'-^in'no
M*XUJ                                                                                                                                  •••rNiataoi^
z    z     o
01 o        -r
xziu      •aoooooooooooooaooo
o«^eeo                                                                                                                           <^
    •         o     oi
O
»**
0!
4
JC
ui(
O
      o     - <           OOOOOOOOOOOOOOOO3OOOOOOOO
Q. H OC
H-— CO
3 J —
O _ _j
   o <
x < o
UJ fc- Z
a. is> 3
                                                                                  93

-------
                         II
                        3 3
                        a a
                        a. a.
                        z z                a
                        3 a                *•
         tu             — —                «       a
         _i             >- >-                at        •
         u             < •<                «       o
         —       ax*                —
_i       v-       —    no m             z -i
aj       ae       *    — —             a •«
a       <
a       a.
u       -<       
ca       u»       o                      u >—       t^
IA                •<    0£                Z <       0-
—       a       tu    uj                o at       a\
&       ^-             t—          -^    *j at        «
UJ                OC    LU                   -.00
         v»       o    X          ^>       _l       O
Z       <       U.                «t       «       M
O       13             u          O       U
—                »-    —                   Z
I-       Z       Z    CD                   3
3       a       «.    j          ->
-I       —       t-    O           I
— »       *-       3                »—
O       <       -J    X          Z
a.       a:       ^    tu          «
         x       a    a.          >-                o
         U       a.                JJ       -»       fN
         U.             Ul          _J       X        •
         IA       xx          j    i/j x       a
         z       u    <          a    uj —
         <       <    =e          a.    •- >
          -1        O
          <
          U        Z
          —        a
          x        ->
          UJ        ^
          X        <•
                         Z
                   i-    a
                   a    i-                a u
                   u    z                — —
                         >jj                x- ac
                   cj    j                u <
                   UJ    ^                iU Z
                   >-    j                ae iu
                   u    LJ                — ^j
                   —                      on
                   O    a                    I
                   vu    LU                a a
          ^       LU    _;                a
          e.       i    <                — ae
          *-       (5    O                X UJ
          3       —    z                < a
          0x2                z z
                                                                                 94

-------
                                     V»    U. _J        O
                                     4    * 4        -<
                                     O    30
                                      I
                                     h_
                                     z
                                     4
                                     >-                 O
                                     3       -^       rtj
                                     J       X
                                     -J    tsi H       O
                                     Q    vU ""
                                     (^    — >•
                          i   i              o
                         >- ^             ae           »
                         z z             a —       -o
                         44             (J X        •
                         fc- >-             OX       O
                         o a
                         a a.
                   o
                                               Q
                                               LU
         u        r    — —             a. a       o
         —        o    -J -i                —
J       I-        <    < <             Z -4
u<       oe        uj    u o             a 4
04                                ~ u
O       Q.        3:                      >-
*                 a     i                 —
         _j        a.                      
o       _i                                a
«•       4        *-    at                id
O       X        Z    O                ai aj       *
o       i/>        4    a                a *»       f«
W)                 h-    I                   4       04
—       O        3                      aj oe       in
o.       i-        _j    it          -•    u »        •
UJ                 «|    '^4                4 •«•       O»
         lA        J    &          wO    t^ -J       >O
Z       4        a.                4    at 4       •»
U       O              X          O    O O       0>
PM                 I    UJ                »    -J          J       ~       04
         o.        3    C*          _l       X        •
         4/1        J    */>          j    01 X       O
         Z        U.                O    kU —
         4              3t          3.    >- >
         ae        x    01                4
         >-        3    Q.                Z

         _1        i-    ^1                Q
         4        —    x                oe           =o
         o        */»    4                a -*       >o
         ••        O    *                U X        •
         z        a*    o                o at       o
         UJ        UJ    Q                   «.
         I        Q    SC                   X
         (J              O
                   Ol    -~
                   u    z
                   4
         —        U.    Z
                   OC    —                Z
         '•U        3                      O U
         _J        <^I    v/»                — * -•
         o.              LU                h- ac
         *        O    3                U 4
         4        UJ    -J                UJ ^
         x        *-    4                a. UJ       -»
         LU        W    >                •* U)
                   •«                      O to
         X        Q    Q                    I
         UJ        LU    LU                U O3
         0.        X    t—                Z ->
                   a.    4                — <«
                         X                X
                   LU    _i                 a
                   i    4                 —a:             —
                   O    
-------
                                                               —» rsi rn
        (/»


        a                                                     o u u

        W                                                     ».»_*-
        •<                                                     t/1 l/> l/»
        at

        Z                                                      • Otft
        -u    • ui                                             IM a IM
        u   o  •
        §      -
        o                    o  o o
        »                    o  o o                           •  •  •
        <                    o  o o                          o tr\ IM

        at o  • o  •
        X   O  • O
         i       o


           o                   ...
        at                    —  __                          a o a
        _i                                                      •  •  •
        o                                                     IN CM •»
        CL            J                                a              H-
                      u                                •-              z
        a-«         —       o o o                  z       •••in
        *~            »*•••                  UJOO1D>
                      aewiniA                  >      IN -4 m z
        vn            «                                z              —
        <            a                                —
        oomvn*                        ••••                 uj
              CM  . o                       lAinininiu              o
        Zca                          -«f>i    rt  .o                       oooo<              a.
        zo                          o o o o
                                            •cM/>                               «               «»
        111            <                               _l               -1
        a.            u                               01               to
                                         vt                 a
                                         o                 =t
                w>                       at                 «
                »-         u»            <                 u
      uj        Z         (J            U

      QC   Z   >- Z ^   «            Ul                 U

      o -" — o i-i _i uu                 at                 ->
         »—»~*M..J
-------
o
o
             O
             a
             Ul

             z
             a
                               z
                               Q
                               O
                               U.
                               Z
                               <
                               ac
19
z   a
"•   Z
a   <
Z
a
                               •«
                               >•»
                               z
                               o
                               I/)
                               a
                               a.
           O
           a.
                                    97

-------
        VI


        0
                                    Q
                                    uu
        u
        z
        a
        u

        a
        >
         z
a
a
         I/)
         <
         (9
         z
         a
•«       X
u       ae
o       a
vi       a,
•*       VI
at       z
UJ       <
         ac
3
-I
-1
a
         tu
         .J
         a.
         VI

         K
         UJ
         o
         ac
                                    VI
                                    O
                                    01

                                    U
                                    a
                                 Q
                                 UJ —
                                 o -r
                                 « IN
            fa ee
            •» < ae
            ac    ui
     UJ    < VI CO
     z    z a x
     O    UJ -• 3
            
     «    < VI —
     t-    at    tj
     <       -r
     O    g«.«

     -i    u. ae ac
     <       o o
     U    a u. a.
     «•    UJ
     U    k- Q 0
     o    < uj ui
     -J    _!>->-
     a    3 « <
     ac    o-j -i
     u    .j 3 3
     uj    « o w
     •-    u _) -i
     UJ       « «
     x    uj u u
            IX
m   u.    < vi vi
•    a       z z
»-          vi o a
a   i-    z — —
a   uj    a >- >-
I-   VI    -i < <
z          i- ac ae
      «    « i- i-
••          ac z z
Z   '/I    I- Ul UJ
o   —    z u u
—          uj z z
•-   o    o a u
a    —    zu u
a    oc    o
      **    u •• «
Oi    Z       VI Ul
X    uj    n ee -i
—    -    V    3 U <
            ax.—
u    <    z    ac
z             •»«
                                                            O
                                                            Ul
                                                            V)
                                                          • <  •
                                                         ui aia
                                                         O at to
                                                         — o •-
                                                         ac zu
                                                         u -J v>
                                                         VI -I
                                                          I  « K
                                                         CB U Ul
                                                   a
                                                   »••
                                                   ae
                                                         a x z
                                                         3 o
                                                         at- z
                                                         U. 30
            o vi a.
      «       —a
      z    >-
      Ul    VI Z UJ
      u    ae o z
      VI O ** •* H»
         — U. I-
      Z ac    uz
      u < uj uj a
      < z x ac
      UJ Ul H> » O
         U    O Z
      ac vi ac-    •*
      O    OO Q
      u. Z u, zz
         U    — UJ
      o < Q xa.
      ui ui uj    uj
      _>    M  .C3
      u. ac u. a
      — o — —  •
      o u. o oe vi
      uj    at < uj
      a a Q. z iu
      VI Ul VI UJ Off
         ~    oo
      uj u. uj en 01
—    co — CD  I  a
N       O    CO
»-    a ai a 3 u\
a.    ^ a. H- i/i
a       vi       oe
C3    VI    VI U o
X    UJ Ul Ul Z  *•
z    uj oa ui ".<« o
      oe    oc o —
••    o a o '-u  -
Z    -jj *- UJ iJJ irt
a    o    a ' J -•
~       ae    o  •
•-    z ui z ao
A.    ••* co -^ «o m
O       X        •
      Z 3 Z £ in
z.    o z o o -r
0    —    — <  .
•^    ^- OB ^- ui o
>•    o a u    
ac    — uj — iu co
—    o vi a
Q
a
ee
                                                                                  u
                                                                                  VI

                                                                                  z
                                                                              z  a
                                                                              uj  u»

                                                                              So
                                                                                  UJ

                                                                              o  u.
                                                                              ae  o.
                                                                              o  vi
                                                                              u.
                                                                                  Ul
                                                                              a  ea
                                                                              UJ
                                                                              -t  O
                                                                               U UJ
                                                                         —    a. a
                                                                         It     VI X
                                                                         i-       2
                                                                         a.    uj f
                                                                         a    to
                                                                         VI       VI
                                                                         x    a vi
                                                                         z    i- ««
                                           o o
                                            •  •
                                           a o
                                                                                                                                        VI VI
                                                                                                                                        VI VI
                  CO ID
                  < «
                  ^ I-
                  VI VI
                                                                                                                                        o o
                                                                                                                                        UJ UJ
                                                                                                                                        QO
                                                                                                    o
                                                                                                     H
                                     IN                O 10
                                     •                 oj m
                                     >    »  •        o o
                                     -J    U U        •  •
                                        XXX       00
                                     « ^ VI VI
                                         oc ae
                                     xo x >
                                     ao             » *
                                                                         Z
                                                                         a
                                                                               vi t
                                                                               x a
                                                                         »       UJ
                                                                         i-    z uj
                                                                         a.    —a.
                                                                         a       vi
                                                                               a
                                                                         a    uj a
                                                                         uj    uj z
                              «» v»
                                                       a a
                                                       *• (•
                                                       a a
                                                                                                                                        UJ
                                                                                                                                        ac
                                                                                                                      u
                                                                                                                      UJ
                                                                                                                      ae
                                                                                                                                         a
                                                                                                                                         a.
                                                                                   98

-------

\n
z
O
J^
oe

Ul
u
S
u

U
5
ae
X

w



Ul
u

ac
Ok

(M
1

Z
h-
_J
j
a
a
o

o

o
o
o
• «
_l a>


• o
Ul •
-1 O
u
«

If
4C





00
OU1
in M
oo


» *
(M              it                xx
                                                           Z            <                1-3
                                                           ax                      -i
                                                           u            x                z    u.


                                                           —                              ae    o
                                                                          ..                ea-
                                                           rn            -*                >-    •-
                                                           I             i—                a.    -.
                                                           K            Z                Ul    l/>
         ui                                                z            «                o    a
         _i                                                <            »-                ui    a
         u                                                >-            o                ac    ui
         —                                                3            «                      a
         t-                                                _i            ui                x
         ae                                                -i            ac                u    ui
         «                                                a            —                •«    o
         a.                                                &                              ui    «
                                                                         -<                      u,
         O                  o                         o o             I                *•    at
         >-                   »                         Ul I—            >-                «    3
                             o                         at               z                      v»
         w>                                             a i->            <                x
         <                                             z i             >-                3    o
-JO               O                            Ol-            3                -J    Z
Ul                        OO                   — Z            -I                U.    «
a       z               o       o                      «            -<
oa         w>«*oo                w^>            o                zz
x   .    «•         «   --«     •  •                —3            at                a    o
         fc-         O            OIO                   -I                              —    — Z
o       «                                             >/» -i            a                •-    t- 3
—       x          ~                                  i- o            >-                —    < a:
a       ae         —                                 zaae                     u>ae
u       a          i     • o     •  »                 «          x—                OH-U.
I/I       u>         ^>UI*"4"^                V-U.       "VH^                C4.ZO
-•       i/>         z   _io    ox                30       •-   o                ui    ui
a.z<<>                   _i          z    3                a    ua
Ul       <         H>O                            -I Z       LU   O                      ZZ
         ae         3wi                            ooi->o                uiO'ai
z       i—         -J   <                            o. —       ae   K                u    u
O                  -J                                    H-       ui   ev                <       >~
—       -j         an                         u. <       a.   —                u.    >- «
^       <         a.      «                         ax                              ae    ifl
n       LJ                                                ae       o   "*                3uia
                                                        v» o       o    i                v>    x u<
                                                        -                <       ee
                                               <-       zae             ->                      Ji a.
         ix                                    u       a >-       »    _)                z    H-

         ai                                    ""       r_i       5   o                S    x  '
         -i                                    ••       <«       x   a.                >- >    a
         a.                                    zxu                              «_n/» —
         x                                    a       «—       ••    u.                aezaeoe
         <       og                           _       OX       Ul   O                »- O O <
         x       n        ......          i_       u. aj       •-                     z    »- z
         ui       *j      aez<^          a.       ^ox       
         ui       z      u>-^xv>       z       aeae       zo          ~o
         a.               .       o       •- ui       a   —          o    o oe oe x

                  l/»         — —    o       ,_       _| 5^       >__   x          t-    U. — U. <
         ~       »-      o u u. > —       <       < a       <               o    a _i o uj
         is>       z      z — — i-          x       ui        xac          ui       «
         ae       <      -. u. >--->•       ac       — h-       ae    «          -i    is> o ^ ae
         ui       t-      _j u. z u K       a       x u>       o    -i          ui    a. z vn o
         ».       3      < ui ui a»       u.       ui ae       u.    3          M    < 3»u.
         ui       _i      uuawo       vn       X—       vtu                X    -i
         X       -i      1/1 o — ai a       z       u u.       z    ui          v>
         <       a               > _j       <                   <    _j          z
         ae       a      utzz    ui       ac                   ae    a          u    IN
         a       u.       a — — o                MUD                         ta.    v    -•
                  a       3»~^*-*O       ^     llt^^       ^U.         Ok«    M
                           a « i- z       <    _io o       <    a         o    ae    x
         a       ae        oe a: — —       o    C3 — —       u                     at
         ae       ui          «3 01 vi _<       —a.             —    a         >-    <
         »>       m       •« — — o>-       x    z             x    »         J    z
         z       x       UI_J^OL»-       ui                   ut»-         CL
         a       3       x«uiui       x                   x    «         H>
         u       z       •« o o a fi       u                   o    *         a
                                                                                     o
         »•
         3
         a
                                                                               99

-------
                                        > o
                                        < —               at-       ooo
              ui                        a z               z x        >  •  •

              v>       v>                                   x »•*  x   o o o
              v>       vi               o z               — 01  —   o o o
              «c       <      ^ co o o O- ui u>          xx       -*«-*-*

        z    u       u
        o
        —    >.                                               jt
        I-    I-                                               O
        «    >•    wt x                                      •-
        3t    -J    V» UI                                      O

        Z    01    _) Z                                   ZU.
        01    <    o—                                   O         OOO
        U    V-                                       .    — Z       O O O
              §J>                                            v»O       OO O
                                                            flC •*        •  «  •

                                                            > •«
        (J                                                  Z<£
        >                                                  -»N-
        •<                                                     UI
        01    01    u»       I  I   I   I   I                   06
        ^j    wi    (Aoe      o^^-^^ae            *-^~»    ooo
        U    (A    < IU               —,-.01            Z t- U    OOO
        — •    «    J >-                     »            OK        •••
        »-    j    o z                     o            -> at o    in ^ ir\
        at    o       —                                   a>ai 01
        «                                                  x a. o
        a.    a                                            < x —
              ui                                               at
                                                               §
_1            »                                               ——OOO
01       z    i                                            a >- u    o o  o
oo          u>x                                   z u 01     •  •   t
O*~          t/)lil                                   *MUJOlAtAlA
X       H>           -•                                      a

a       c
\fi
a       *
at       at
                    z—    oino
                    ao
                    »* 01    o PU in r- o <>• in r-
                                                                        OOO
                                                               o —    « <•< «i
                                                            Zol-s.     .  .  .
         x    -.   ux       — — — «-< — —         a
         Ot    V*   Ol 3                                   UI
               U   W> Z                                   IU
         X    01                                           4. VI
         ai    ac                                           'S* v»
         a    —                                              <
               a                                           o _i
                                                            z u
         ..    o
         ai    x    —01    o r>i m r- o IM in f»
         t-          t- O       ni .* •£ o> <•* m tn
         Uf          LJ -»                  ^* -^ «*         v
         X          UJ                                      H*
         •«          X                                      —VI
         ac          —                                      -i«/i       zz z
         4|          Q          OIUIIUUI         »^4       UQU
         O.                     Z VU Z    lA UI VI         O> _J
                             ZzZLUotoiv)vy         
-------
                       o   m m in in
        I/I             01   — 0| - a —
        O       3 "• w>
                 SJl/l X
                 _j 1/1 o    ITS in  m m
        O       O — —    •* (VfMIM
                 ^ X        •  •   •  •
        (3          01 »-    O O  O O
        >             3
        <             a.
         01
         _j
         u            o    o o o o    o
         —            UJ    O O O O    O
         |_            _!.<•..
         oc            «    in in in in    o
         <         01 U    -I ru !N CM    O>
                             O O O O    O
                    — —    o o o o    o
         a      &x        ••••     •
_<       -•         tut-    in in min    o
IU       l»            3->
O       <            &

S       5            5
         a
u       o.
•«       1/1
a       z
a       <
v)       et
—       t-
a.                  LU
01       _)         a
         <         —                     z
z       u         v>       o o a o    3
a       —                  o o o o    oe
>»       z         it—     ••••
^       01         OX    O O O O    i^
3       X            —    O O OO    —
-i       o         i       aooox
-I                  ^       « 01 oir4    ^
O       M         U
a.                  z                     z
         01         01                     k*
         X                                <
         ui                                ce
                       —    0000    O
                       x    oooo    —
                    O                     Ul
                    OC                     U
                    O —    oooo   oe
                    ox    oooo   3
                    o a£     •  •  t  t   o

                       X       ri4 (M (N
                                           •«
                                           IU
                                           X
         oe
         3
         o
                    iu                      X
                    u                      >-
                    at
                    3 oe                   tL
                    O ui                   o
                    m oi    -• ni ^ -r
                       Z                   v>
                    < 3                   X
                    Ul Z                   3
                    oe                      trt
                                                                            101

-------

                                         O
                                                 a.      O O Q
                                                 x —   ooo
                                                 'u o   -r a o
                                                 *»       •  •  •
                                                    o   mo in
                                                 »- ui   1*1 o IN
                                                 »»o      —•-
                                                 X —
                                                 01
                                                 _l      OOO
                                                 UI      OOO
                                                 >—    000
                                                    (/»     •  •  t
                                                 ^ -x    oin 01
                                                 -,*    -4-. _.
                                                 M —
                                                 UI
                                                 UI      O C O
                                                 *•      ooo
                                                 U»—   OOO
                                                 XX    •  •  •
                                         X
                                          I
                                         fl
                                                 >-      OOO
                                                 X      OOO
                                         UI      O —    •  •  «
                                         _i      — x   OO in
                                         ac
                                         <         —
                                         OL         UI
                                                    •V
                                         a      utta
                                         *~      >• **   OOO
                                                 4      -*(n m
                                         (A      flC CM    •  •  •
                                         <          I    OO O
                                         19      Z>-
§
                                 o.      x      uj a
                                 a      «         a.
                                 at      o
                                 a      «         -»              a
                                 a      a.      \u-—    ooo   o
                                 •«              «       OO O   O
                                 a,      «A      oc«*     •••     •
                                 w      <          I     oo o   o
                                         u      z*»    -^ m 
                                         x                          ui
                                         «                          h-
                                         X                          «
                                         ui         ~    o o o    oe
                                                    x    ooo
                                         X      UI ^     • .  i    Z
                                         UI      UI —    IN "4 -O    O
                                         a.      M >         -.    —
                                         at       ae                  ui
                                         U!       O —    OOO
                                         >-       ax    ooo    ui
                                         UI       W a£     •  •  •    o
                                         X         —    nj* CM    at
                                         <         X      ~       3
                                         K                          a
                                         <                          UI
                                         U
                                         ce
                                                  ae <    < < <    x
                                         ^       3 «^    ^ ^» N»    ^>
                                         Z       O      ui U) t/i
                                         —       u»                 u.
                                         a                          o
                                         a.       i— «
                                                  z ui               w>
                                         k-       —03    —ISll»i    X
                                         3       OX               3
                                                                                                          102

-------
                   oooooooooooooooooooooooo
                   OOOOOQOGOOOOOOOOOOOQOOOOO
W1 Wl
z<
00       o                                                                                                                                                               o
->          o                                                                                                                                                               o
H- ••         •    OOOOO-'-'-'aOOOOOOOOOOOOOOOO     •
< -•       CO                                                                                                                                                               IS
oe  I        -r                                                                                                                                                               •*>
*- fc»
ZZ              OOOOOO    —    —    -                 OOOOOOOO-^'^-^OOOOOOOOOOOOOO
<<
            o                                                                                                                                                               o
a          o                                                                                                                                                               o
x            •aoooooooo-'-'-'Ooooooooooooo     •
 10                                                                                                                                                               O
m  •       *                                                                                                                                                               *
   ae
   X              OOOOOOOOOO    —    'M-'OOOOOO-TOOOOO
Ul
_1 i«       O                                                                                                                                                               O
oo                                                                                                                                                               o
—            •-•oooooooooo    —    rg-iooooooir\oooo     •
H- II        -O                                                                                                                                                               ~0
at ai       m                                                                                                                                                               m
< X
a.—              -4-«ooooaooooo-«"J    —    oooo-ror-ooo

a          o                                                                                                                                                               o
>-o       o                                                                                                                                                               o
   Z         •    —    -•-'OOOOOOOOOO-'Of~Oir>o
z m                                                                                                                                                                    o                                                                                                                                                               o
— «       o                                                                                                                                                               o
>-            «oo    —    —    —     oooooooooor^^       CO                                                                                                                                            -1                 CO
X X       IN                                                                                                                                                               j

_j i-              aoooo-|
o —
   X              OQOOOOO    —    miNOOOOO    —    —    OOOOOOOO
(M    QC                                                                                                                                             i»l
    •IU    O                                                                                                                                                               O
UJO »•    O                                                                                                                                                               O
juiiu      •oooooaoo»vj*isioooo-«-'-'OOOomoo     •
a. o x    l         •OOOOOOOOC7U>^rM*^OOUOOm<-4OOOOO     •
a. «  at    "N                                                                                                                                                               IM
   (X UJ    —                                                                                                                                                               _•
   — a.
mo              OOOOOOOOPOO^O«4OOOO-^(A-*OOOO
      tyl                                                              '                       IBM
   a x    o                                                                                                                                                               o
a z <    o                                                                                                                                                               o
— — at      •oooooooaoooo-'OOoooo-"co-'Ooo     <
OC 3C C9    CD                                                                                    ^                                                  '00
•«    o
z  -cc
UJ|/)O           OOOOOOOOOOOOQOeOOOOOO-^ICiNOO
O«»~                                                                                                 (V                                          -t
SIX X    O                                                                                                                                                               O
            o                                                                                                                                                               o
 -I"  I       •OOOOOOOOOOOOQOOOOOOOONKIOO     «
-«o>       -r                                                                                                 «                                         *    —           *
    • z
u. -o o
a    ~           oooooooooooocoooooooooooo

— o«                                                                                                                                                   "    "
   a. a    o                                                                                                                                                               o
zt/it»      *ooooooooooooooooooooooooo     •
u    z    o                                                                                                                                                               o
— a uj
l-Z tj
u- z
OJ 3 O
(/)    u

   ZQ           O3OOOOOOOOOOOOUOOOOOOOOO
•«OUJ           OOOOOOOOOOOOOOOOOOOOOOOOO

3><(           ea«*(NQco.o*r\iocoo.rrMO3>.o>rrMO
CL^Q:           ^^^^^mmmmmrMrgtMrMngp^    —    -*-^-*
b* B^ CQ
3 J —
a — -j
   ca <
   £< o
   I- Z
ft. t/» 3
                                                                                  103

-------
                COOOOOOOOOOOQOOOOOOOQOOQ
                ooooooooooooooooooooooooo
QO       Q                                                                                                                                           o
—         o                                                                                                                                           o
»- ~        lOOOOOOOOOOOOOOOOOOOOOOOOO    .
< —       09                                                                                                                                           09
at I       •*                                                                                                                                           -r

ZZ            OOOOOOOOOOOOOOOOOOOOOOOOO

OH-       O                                                                                                                                           O
   §30                                                                                                                                           o
   -I        .0000000000000000000000000    •
o J                     oooooaooooooooooooooooooo

           o                                                                                                                                           o
           So                                                                                                                                           o
            •   OOOOOOOOOOOOOOOOOOOOOOOOO    •
 I          O                                                                                                                                           O


   I            OOOOOOOOOOOOOOOOOOOOOOOOO
Ul
_i«       o                                                                                                                                           o
o         o                                                                                                                                           o
—          .OOOOOOOOOOOOOOOOOOOOOOOOO    .

o£ ui       <*^                                                                                                                                           c*

a. ••            ooooooooooooooooooooo    —    ooa

o         o                                                                                                                                           o

   x        .0000000000000000000000    —   00    .
W1 w*       O»                                                                                                                                            DC    O                                                                                                                                           O
— < 3    O                                                                                                                                           O
H-   a     «ooooooooooocoooooooooo    —   oo    •
<  »x    «                                                                                                                                           a
XX        a.
(/tOO                                                                                                                                           O
zo ac    o                                                                                                                                           o
«oui     .000000000000000000   —    000    —   00    .
at — •-    -r                                                                                                                                           -r

   II X
    •o         ooooooooooooooooooo    —   ooovno
o    —    o                                                                                                                                           o
— O X    O                                                                                                                                           O
xz       '00000000000000000000—0000     •
iu» ui    o                                                                                                                                           o
Xx«    nt                                                                                                                                           r*
o— <
   X 3          OOOOOOOOOOOOOOOOOOOOOOOOO
          OOOOOOOOOOOOOOOOOOOOOOOOO
Ul  • X
   m <    o                                                                                                                                           o
XIM ac    o                                                                                                                                           o
UI

2-i
HIM            OOOOOOOOOOOOOOIMOOOOOO-'OOO
ov. z
1/1X O    O                                                                                                                                           O
      —    o                                                                                                                                           o
 .rn >-     .coooa>oacDooooooo-roooooom-

   ZO          OOOOOOOOCOOCOOOOOOOOOOOO
 u O Ul          OOOOOOOOOOOOOOOOOOOOOOOOO
   2> •
   K I
   09 <

   
-------
                oooooooooooooooooooooooo
                ooooooooooooooooooooooooo
vice
z<
oo.      o                                                                                                                                       o
_>         o                                                                                                                                       o
*• ••       »OOOOO    —   —   —    OOOOOOOOOOOOOOOOO     t
« rw      co                                                                                                                                       eo
at I       •*                                                                                                                                       -r
ft-
zz           oooooo   —   —    —    oooooooooooooooo
UK
o»-      o                                                                                                                                       o
r 3      o                                                                                                                                       o
Oj       •    OOOOOOO-*-*~_;      -r                                                                                                                                       -r
   o      -r                                                                                                                                       »
OCL
>              oooooooo-^-«   —   oooooooooooaoo

"
at         o                                                                                                                                       O
x          •oaooooooo-*   —   —   ooooooooooooo     •
 I          O                                                                                                                                       O
oooooaoooooo
ui
j-
a. ii K    IM                                                                                                                                       CM
   ee ui    >*                                                                                                                                       >4
   '^ &
« b           OOOOOOOOOOOOr»QOOQOO-«OQOGO
     w
           C                                                                                                                                       O
           o                                                                                                                                       o
            tooooooooooooof^oooooo    —    oooo     •
           «                                                                                                                                       CO

z.S
UlvtU         UOOOOOOOOOOOOOOJOOOCOO    —   OOO


sfz    §                                                                                                                                       g
 »M I      •OOOOOOOOOOOOOOOIMO3COOO      •*•                                                                                                                                       *
   • z
u. oooooooooooooooooaoooaooo     •
           o                                                                                                                                       o
o^   IU
>- JEO
o — z
01 3 O
W»   (J
   •»
   za         oooooooooooooaoooocooaoo
« a ui         oooooooooooooooooccoooooo

3 > <         ao^^^oaj^-rixoajfl-roacjoo^-r^oaD^-TiNo
OLKeE         <4>^^<^^'mm(«HromrMojr^r^r<4>^*>^-H«^'^
h» •• co
3-1-
O — _l
   a> <
r 
-------
                 oooooooooooooooooooooooo
                 QOOQOOQOOOOOOOOQOOOOOOOOO
9>4O«-      o                                                                                                                                                o
Z3      O                                                                                                                                                O
aw       •oo-»-*«*»>>o               •>nt(n^«mmxoi»mr>«M**m-4OOOQOoooooo     •
 I          o                                                      •<    
<3«
z"            K»o*o*    —   —    «<*i«*-«0(Min(fl.r    —    o   —    o*^                                           co


lei   "*o-^o-.o«oo-***-o-~,»oo^omo~
U,*                             •4««*4                                                           -»«|O                                «4
v>o ef   o                                                                                                                                                o
zout   o                                                                                                                                                o
                                  _    .     .

O                                                                                                                                                O
o                                                                                                                                                a
« X UI

U    Z
   5X <<   M
   «-3
   zar
I*    !»
    •      o
moot   o
CL O &    >o                                                      r>i                                                                       in               *o
X          -<                                                                                                                                                —
OOOO'*'OIMOOOOOO
UI  • ^                                                                 1H                                      ^^
   vn «    o                                                                                                                                                o
X «l 19    O                                                                                                                                                O
a. »  a:    m                                                                 daooo
                                                                                    (M                                      -•
   a I     o                                                                                                                                               o
oz       o                                                                                                                                               o
•»»x     •oooooooooooo-'    —   ooooo    —   inoooa    «
CE> 3    «o                                                                            m                                     -•                          «
«    -J
z  -u,
iuw>            oooooooooaoooa'-ooooooao-"ao
o*^ Z                                                                                       m                                      -»
vox o    o                                                                                                                                               o
      •"•    O                                                                                                                                               O
 • OIK-     •OOOOOOOOOOe3OOOOJ'OOOOO-««(MO    •
-•W —    *                                                                                       *                                      rw              •••
    • 
u. « o
O    a.         ooooooocjoooooooooooooo'viva
   »  \u
— a a
   a       o                                                                                                                                               a
zi/iui     >oooooooaaoooooooooooooooo    •
o    u    o                                                                                                                                               o
   za         ooaooooooooooooooooooooo
 .. Q uj         ooooaooooooooooaooooooooo
   a <
 K o
 uii- 2
 a. wi 3
                                                                            106

-------
                                           <       o
                                           ae        •
                                           03       O
                                        oc
                                   -(   Z 4       •>•
                                   o   O a:       o
                                   —   on        •
                                   >-      «.       pri
                                   OC      -I
                                   4      4
                                   a.      u
                                        4


        VI                              O
        Z             ~ «.            at          o
        o             «*«M            a —       o
        —              ii             o a        •
        I-             I- >-            U X       09
        Z            33
        UI            -J -I
        U            J -J
        z            o a
        O            a. a-
        o
                                           «       O
                                           ec        •
                                           at       o
o               «    _i -j
o               z    < <
x       ui      ui    uu
         _(      O

                 w
o      >-      i                     ui ui      iv
o      ac      u                     o >—      i"
S      <      <    oe               z <      -r
••      a.      ui    ui               a oc      o
a.                     t-               u «B       •
ui      o      at    ui                  -•      
        t-      a    *          <«      -i      -o
z               u.                <      •«
         e      z   -   U          I
         03               «-
         —      -i   at          z
         *-      «J   111          <
         <      a   o.          »               o
         z      a.               3       —      0
         ac                      -i       c       •
         o      z   z          -i   ««  x      •
         Z      UI   O               «
         <            a               z
         as      u.   a(               —
         >-      a   o               a
                       —               oe          o
         -i      z   z               a  —      o
         <      a                    a  x       •
         u      —   z               u  *      o
                  UI   H-
         
-------
                                        X »-
                                        3 <
                                        -» ae
                                        U, CO
                                        o <
                                        •—o
                                        a
                                        a. a
                                  o    ui ac
                                  —    o co
                                  r-    < —
                                        5u. _i
                                        ac <
                                  a.    =o
         w?             ii             a
         Z            t-«-            fit          o
         a            z. z            a —       a
         —            «            ax        •
         z            a a
         al            a. a.
         u.      a

         o      x    z z
         u      <    oa
                 z    «->—               o
         O      t*i    >— >—               at
         >      U    «            X »"•
         «      w>    ac ac            -a <       o
                       ana            _i oe        •
         ae      X    ——            u. co       o
         r      <_>    _i J               —
j       i       •<    «            z _j
uj       m      uj    o ^>            O <
a                                      — u
a               de                     t-
x       ui      a     i                —
         -I      U.                     tf)
o       u                             a
—       —      *-    OE               a. a
a       t-      z    3               u u       o
o       ae      4    a               a t-       o
a.                -u   ac               o ca
UI       O       -I   UI               < —
         H-       O   0.          U>   U, _J
                                        at •«       o
                                        3
O       U>            K          U    3 O       •*
»       «       X    UJ                W1 Z
*-       l»       U    )-          ••      3
3                <    OJ          •»
-J       Z       01    X          |
-I       U                        >-
O       —       U.    UJ          Z
o.       »-       o    oe          •<
         «            «          )-               O
         a.       x    _j          a      -.       o
         oe       3    o>          _i      x        •
         O       —I    V>          ->    W X       fM
         z       z    ai                «
         •<       a    a.                z
         oe       —                     —
         *•       t-    t«                C9
                  -«x                ae         o
         _i       on    <                a ~       o
         «       O    X                UX         •
         o       a.    o                o x       o
         *•       Ul    O                   *-       (*>
         X       O    at                   x
         ui             u
         X       ui    —
         u       ox
                   .
                        5—               Z
                                         a a
         _j       m    «               — ~
         a.             tu               »— ac
         x       o    J               o «
         •«       uj    _i               ui z             ci
         x       ^    <               ac ui        •—
         ui       o    »               •- o
                  —                     o 
         x       a    a                  i
         UJ       UJ    UI               O CO
         a.       cc    f               23
                  a.    <               —to             a.
                        ae               x               o
          ••       t—    a                                i»
         ^-       w»    «•                                »^i
         3       uj    _i               c
         a       x    <               — ae             —
         *-       O    (->               ae ui             (vi
         3       «•    z               < as        -•   O
         0X3               Z X             o
                                                                             108

-------


















<

pi
o




H
5s
f-i
H
s
55
M









Z
a
w
<
X

z
ij o in
z • •
a o -•
u
 a u*irn«*-*min
« <« III
o in o o
(/) Z fN • •
111 Q ^ O
O —
X < O O O O O O O
ac o o o o o o

4 i/> CM in o o
u Z nj t i
< o o
a

o o m o in o in
< >N CM r« rg isj tM
o
x -a o u o
I 0— —
°
a a o u o o o
m
Ul
_l O O —O O O O O O O
IX ••
z o -«
<
X
UJ
% v>
UJ 4
OL 19




















"J ,.
(MIX
1—
Z
>
z
a
• UJ
0 0

a
t/i

UJ
• a
o <
o
O UL
o a

                   <                            >-
»-                 z                  <        2
Z'^(Njrn*«-knvOuj                  \u        ~
o                 u                  oe        a
U                 10                  <        Q.
                           109

-------
                            o
                            •o
a
a
w
H
                            ac
                            at
                                       a
                                       ••*

                                       N"
                                       3
                                                      r
                                                      u
                                                 V9
                                                 r   o
                                                 •"   Z
                                                 a   <
                                                      z
                                                 z   a   a.
                                       o
                                       a.
                                                               110

-------
         o                          <
         u
                                     ui
         o                          ae
         >                          <
         <
                                     bO
         ae                          a                      a
         x                          —                      ui
          I                           oe                      v>
         •0                          «                    • <  •
                                     z                   oo ui a
                                     jj                   a ae uj
         UJ                          u                   •* L» I—
         _i                          oo                   x z o                                                                        uj u.
         o                                               < — uj
         M                          u.                   Z    .J                                                                        OO CO
         >-                          a                   ui > uj                                                                        bo«o
         ae                       o                      o -j"»                                                                        «<
         <                       uj —                   co j                                                                           _j _i
         a.                        >
         >~                       uj O                   w>t~x                                                                        h->-
                                  > t-                      < 3                                                                        — —
         bo                       <                      ae X z                                                                        -i -J
         «             ee           IN                   3 a                    a                                                     -"»
         o             3        uj —                   a i- z                 —                                                     as as
                        a     3 ae                      u. 3 o                 ae                                                     11
-i       z             x     — < ac             o       < —                 <                                         3 w>       >-»-
uio                    ac    uj             ••    u»    *•                 z                                                     i/> bo
O       —             UJ     < 00 03             at    O 00 O.                 UJ                                         XX
at-             z     rax             «       —o                 o                                         **
X       «             O     UJ «• 3             Z    t-                       bO
         X                    uaez             ui    oo z uj
u       ae             ae     oo«                u    ae o x                 x                                                     XX
««o             QZZ             coa>->->i-                 a                                         oo^-v
a       u.             buxujuj                —u.»-                 o<                                          «*             XOCUZ              — '-U                                         O O       UJ UJ
oo       z             «     «co —             o < uj cu O              ae                                                        o Q
•*       <             ^*ujo              — o              zo                                  •    »  »       oo
z       -j             -j     u, oc ac             o    a a a              oo o                -•                _i    o u        ••
o       <             «        ao             U.XU.ZZ                 uj                 u                    xxx       oo
wO             OOU.C.                O^^UJ              X««                Z                ••^bObO
h.       ™             —     uj                   o «Q 3 o.              o u.                x                onaeae
3       x             c9^-oo             LUUJUJUJ              
_i       uj             a     < ui uj             —    —  »a              uj o                —                oo              » it
_J       I             -l     _i t- i—             u. ae u. a                    uj                oo                aco             — ~
ao             O3«<             «-o — —-              aeo.                z                     •             -«U.-ouja3in              o ae       o                                »-          z
         <       H           bOOO       O.h-Cu^-bO                 UJUJ                XH>          •••«(/)          UJ
         x       a.    ^-     Z — ^-^       o       oo       ae        3a»a3       u       xoo       coouj          >^
         uj       auja^~b.       Qcobooo        u     ^>x       z       ^ujui       zzx          a
                  b-bO*-*<<       XUJUJCJZ*        »-        3       UJ       MU.CO       X"i"X          <
         X       z           t-acac       Zuja>ui>-*o        Q.     uj ^       o       x    u. j       31_> >-          X
         uj             «<(-i-             or    a: a —        003          co       oui          _j<3          cs
         OL        »           a£ZZ       »>OOl9UJ«        00        V)       Z       O       *~       OOkO
                  ZcolvUJUJ       ZUJ^UJUJ*/^        XOoO                ^ZO       ObObO          UJ
                  OMZOO       ac3ao«^        z     t— <       ••       oxoae<                                   oe
         UJ        UJZ       00 LU       ZO2OO-T        >-ZUJ       Z       ZXZ        ••                 Q.
         X        X    ou     •• ac _i       o    —    — <  ••        o.    — Q.       uj       x    i- i_        a                 x
         <        •^OXJCD       «*^aC^*UJO        CJ       bO       O       CJHMMB        M*                 UJ
         X        ^C03O<       1-    U U U    0-              LJ          bO       U    X X        at                 H-
         <                    QX^       OUJ^*UJX           OUJO                      OO        19
         O.        O        UIUJZ       U»       CLL9O                          -I
                   Z                    —QbOQ              O.COX                K»<<        O                 —
         O        O                          O                          CO                X        I                  *»                 k-
         «        «                                      r-                                uj       x                 a.                 z
         ^-        x           -« XZ                X<                 u                 r-
         a>                          —                          —                3       >-                 uu                 a
         o<                          x                          xzcoacQ.

         H>
         3
         a
         z
                                                                                   111

-------
        I—         UJ
        <         -I
        ac         o    o
        »»         w    O      O O
        Z         t-    O      O O
        uj         ee     • »    o o                                                 -
        O         <    -" CO     •  >                 Q            O               O
        z         a.            
                 »•    uj  •    r>j PW                             it                x         x
        <         Z    -I O    OTt                 Z            •<               t-         3
                   «    <      >                    ax                          -j
        ac         K    o                            ox               z         u.
        X         3    l            t>                          Z
        •O         J                                  —                             «         O
                   a       ii                                        ••               a         -•

        ui                                              i             i—               a.         —
        -I                                             H-            Z               Ul         
        u                                             z            <               o         a
        —                                             «            i—               ui         a.
        i-                                             H.            u               ac    u>   uj
        ae                                             3            <                     H-   o
        <                                             _i            ui               x    I
        OB                                             ••!            QC               O    O   UJ
                                                       O            —               «    —   O
        o                                             a.                             ui    ui   «
        t-                                                           ->                     I   u.
                           o                        ao             i                i-         ac

        <                 o                        a:               z                     o   
        a                                           o —            <               x    <
                                                     z  i             i-               3    *-   Q
_J      Z               O                          />   Z
ui      a               o      o                  »z            -i               u.         <
Q      —               O      O                    «            -J                     UJ
        21-         y>>*oo               i/»-            a               2    >   z
        «         <    -• a>     •  •               —3            a.               o    —   o
        x         u            ->a                 _j                             «.    ^   —z
oac                                           1/1 -J            a               t-    u   >- —

o      u.         —                                z a.       oe                    in    u.   at
a      ^          i     n o     » »               «          x   —               a    u. at- u,

»      <         z    _i o    ox               3O       *-   o               ui       ac uj
a      at         5    <      >                  _i          z   3               a    o < u a
UJ      H-         <-    O                          J Z       UI   Q                     ZZZZ

Z      J         :j    <                          i —       at   ae               o       U O
a      «         -i                                  i-uuok               «w>v>>-

+1      —         a.      i                        ox            "               ac    uixi/i
3      X                                             aC       O   >4               3    V-O-uO
^      uj                                           n*z               Q    <   — z
a.                                           -•      j z       o   «               z    a: u, i —

        m                                   *"#*            •*                     a   i o.


        ui                                           >- _i       K   o               —    o — i
        -j                                   ««>aeza
        0.                                   Z      XO                             «_)3Z->
        x                                   o      a —       ••   u.               aczooa«<


                 c      Q*«QVI««       o      zo       ae^*               ouizujo
        X       Q»      N«U)*M'X«^               4               X               Zl'^'^^Ob'f
        ui       z      oi-k-z       z      acac       zia          ••    a < o •« ui
        a.               < z  < o-^       O      i- ui       a—          QuaCQ-ocx
                 ••      \l»vuo~z       —         o~*ui          ui       CD    a    o

         ••       t-      13 o  u. >• —       <             ge      -4^       ae<          ^i/io^*M^ac
        uj       t-      _iu.zo>-       a      z wi       a   -i          uj    a.z^acvtc3
        N»       3      <«3H*au»«u>
        ui       _i      u a  u _i o       >A      z-»       i«   o               i    j   -j
        X       ^      (OO^^UJO       Z      OU.       ZUl          v\
        «       a               > _i       «                 <   _i          z
        K       at      uizzui       «                 aca          (_>    ix    -•
        o               oooz>       K-      o —       b-x
        a.o,aci-i~o                     «^ —a>-       x   z            x   ••          3
        z       x      ui _j  -j o, >-       ui                 ui»-          a.
        a       3      ac <« oj uj       x                 X<          >-
        O       Z      ^ O U O ^       Lit                 O   Of          3
                                                                                 a

        3
        a.
        z
                                                                          112

-------
             VI
             at
                       ^ o
                       < —
                       a z

        VI
        vi             a z
        4     403UQQUIU.
                                               ui-      o o o o o o
                                               Z I       	
                                               •*(£•«   o o tn m o o
                                               x •• x   o o ^ f* in tn
                                               M Ul -•   (NJ OJ •* -«4 -^ ^
        t-    •.   VI X

        Z    .1   VI UI
        O    09   -> Z
        Z    •«   
        X
        I
        •e
                                               o
                                               — z
                                               via
                                               ee-«
                                               LU 1-
                                               X
                                               z ae
                                               •^ ^»
                                                 01
                                                 z
                                                 UJ
                                                 a.
                                                                 o o o o o o
                                                                 o o o o o o
                                                                 o o o o o o
UI           _l           O < -• —
.j   vi      <      m ^ -*••« ?M rsi
U   ui   v> >      I  I  I  I   I
—i   v»   vi ae      o * ^» — f~ ae
     o      —

     o
     UI
     ui   a —
     a,   ui vt
                                                         ui
                                                         ae
                                                      >-3—    O O O O O O
                                                      Z>-0    OOOOOO
                                                      — ae 13
                                                      so ui ui

                                                      5*2
                                                         UI
     VI
                  a. X
                            in -r -r o ~o in
                             «•••«.
                            -i rg -r -O e> IN
o
i
O
o
VI
          VI X
          VI UJ
          < a
                                            »«-   OOOOOO
                                          a ^- o   oooooo
                                          z o tu    >>>...
                                          — uj a   oooooo
        o
        u.
        <
        ac
                                                         -»      IM oira IM
                                                                              IM
                                                 ac
                                               aa
                  z—   o m o in o in o m
                  ao    ........
                  — UJ   O J« vi   X * Z
                  VIVIVIZXXZZ
                                                       xui
                                                         vt
                                                                 oooooo
                                                         a—    oooooo
                                                      a ui v>    o in o m o in
                                                      Z '-u ^     ......
                                                      -1 Qv %    'Vlvr^pyrw'V
                                                      XVI —
        X
        UI
        V)
        ae
        ui
        h*
        UI
        X
        <
        a
        «
        a.

        a

        oc
        UI
        o
        V)
vi   ac a:
Z   O UI
o   *-  o "
—   ox     -«-•
H-   UI 3
U   VI Z
UI
ae

a

o
z   z —•   o tf* o
«•   a o    .  .  .


     o —
     UI
     ac
                                               O
                                               ui
                     Z ui z   vi ui vi
                  ZZZUIUIUJVIVI
                                                         U. Ui U, U. U. U.
                  ae oe
                  a ui
                                                      SI
                                                      oz
                                                                    113

-------
                            o   o
                            o   o
                            in   in
         u      «z
         z      i- a —
         a      3 — v>
         u      .jut ^
                 _i   in    m
         »-       I <      IM    ~.
        o       ^utu>    o   o
        —       o — —    o   o
        t-       xx      a   o
_i      «         iu^.     •    •
ut      X            3    O   O
O      ac            &    in   tn
a      a            z    (M   IN
x      u.            «•
a      ac
o      i-
ut
"•      -i
a.      «         iu
tu      o         a

z      x         M      o    3
a      iu                 o    £
~      x         u.—     •
>-      o         ax    o    oo
3                   •»    o    —
-*                 ior
J                 *•      o    *•
O      Ifl         O      !M
a.                 z           z
        ui         ui           i
        -J         _i
        a                      u>
                    »X    •
                    i -_   a
       ^-         a            iu
       ui         at            3
       x         o«   o    ct
       «         ax   o    3
       2         o*    .    o
       J            —   «    rf>
                     X

                  O at         O
                  ui o    -«
                     Z         VI
                                                                      114

-------
       a.      ooo
       I —    ooo
          is    ooo
          ui     —    ooo
i-
2
UI
a
u     ne
       ui      ooo
is     i-      o m o
>     ui —    i« N- o
<     XX     •  •  •
       < —    o o ->
ui     »•      ooo
_l     X      OOO
O     (3 —    «  .  .
-.     «x   o m o

ae     x

o,

a        M
       • IX    OOO
          I     ...
       zt-    ooo
       oz
UI
o
o
X
u
o
o
v»
M*
a.
UI

§

*•
3
-1
O
a.































ee
a
u.
>
25

VI O
— -J
ui a
a.




f^
x
•A **
UI «»
h- >
Z
a

o —
O X

>^
X




J
UI UI

ae«
a

H- flC
»oa
ax
a a
z







ooo
ooo
o in o
...
O IM O
— -« m









ooo
ooo
...
CO 40 «
•r 01



ooo
ooo
...
•A -r o
^ ^



a W>K
« •« <


0 UO
•- ^t-
t/> c^ t*

•^ 
-------
                              X
                           oi j    r» o> o
                         I > —    O> « O
                         3 « uj     •  •   •
                         x ^ z    oo er> o
                         "• U       —  •*
                         m uj —    o u> (O
                         a. X u»    O IM r-
                         V)   ^     •  •  f
                            3£ X    (M (M CM
                         QU —
                            zu
                          < z
                   —       Z Ul
                            — 3
                   ui       x _i   > > >
                   §u       a u.   o o u
                   ae       a z   z z z
        —         3          —   « <
        H-         a               v > >
        <         ui               aa a
        ae                          33=)
        H-         Ul               O B (O

        Ul         ^       O*
        o                  X — •   t/> i^ in
        z          •       ui v   -• •• -»
        o         z       *-       i  •  •
                    o
                    o
                            -i      oo o
                            Ul—   O O O
                            >
-------
                           UJ O   O «4 Sf
                         x >—   * a> -a
                         3~ UJ    •  •  «
                         X t- I   a> « co
                         X U. OC
                           UJ 3
                              a
                         ui —      o m -o
                         tutu —   o IN f-
                         & I i/»   m co <•
                           * x
                         a o —
                   o
                   HI
                   o

                   i/>
                   IU      X -I    > > >
                   o      a u.    o u o
                   et      az    z z z
                   3         -•«<•«
                   O               >• > >
                   v>               a a o
                                    333
                   ai               a ata
        a         *      »»        .
        o                    o    *•* f
                   a      »- tu    m -
        o          •      "* o    c*»
        »         O      X —
        <         o      ui
                           111—    O O O
                           > u>    O O O
UJ
a      tu
a      -i
x      u
                   5<        I  W     •   •  •
                         IU -J X    O O O
                         t- O 13
               :  X »-
                 Z O
        <    IU         _
        u    x •• u.    a
        —    3 »- a.    •—         o o o
        X    JZ1U    W5
        iu    o. o       fi •* —
        X       —X    i-lirt    O01O
        U    IU IU 3    I -J "V    -I—<\J
              u z x    lua o
              QE   fc-       Q. —
              3 OX
        m    a z «

        •JJ       X            —    O O O
        .j    H>"«U.       -    aj              iu
        3    O            »- O
        o    i/»            z ae    -* o* "i

                            33
                            o. at
                                                                          117

-------
                         ui o   m-« in
                       X > —   -i-< iv
                       3 » UI    • .  .
                       X I- X   O" O O
                       -. o      -i m in
                       X UJ UI
                       «« u. o
                       a a
                       ui *•      o * <•*
                       uj uj -»   o IA &
                       a. r "i   o 
                  o     o u.   uu  o
                  ae     o z   zz  z
                                 i
                                   >3 3
                  _

        UI         >-       O.
        o                 x —   tn in in

        o         x       "-        ...

                  o       i- uj   m * m

        >         in       x —
        <         p.       ui

        at
        X                 -J      OO O
                          Aui —   ooo
                  z       > ui   ooo
_i                «         •>     .  •  «
UI                X       I- X   -«      t-         •-
—      oe         <       oe
O      <         UJ       UJ      OOO
        80k         oe       >-      om o
                  o       uj -^   IA ^ o
•^      o                 x z     •  •  •
&      >•         ««       < —   OO —
ui         -       ««       »
        (A                 O

O      (3    vt   X
•»           Z   U>       *-      OOO
>-      Z    O   i—       X      OOO
a      <   -10 uj      x
&      x   p o o
        ae   u  «ae
        o   -i/»   U-«   >- o o


        !I   *IE   51~
        <   UI   UJ   Z
        u   * » u,   o
        -i   3»-u.   —         ooa
        x   -i X ui   to         o in o

        x     — x   — i     ooio
        O   UI UJ 3   X -I •>.    ——rg
             c; X x   ui o o
             oe   —      a. —
             3 O X
        «   O Z<
             (/» •« X
        UI     X           -^    O W O
        _l   >-•—u,      lyj X    OOO
        a.   zx>^      ui^     ••.
        x   —           i- —    oo co a
        <   a        ui« >      -r rg
        x   a.        u z
        ui             oe «•
                       3 a
        x             o ac
        ui             w» a —    c o o
        o»   m           o x    o o o
                          o 5*     •   .  .
             o             —    •a -r «o
        «   —.             x    —    -r
        i-   ae
        3   t
        a.   z
        *-   ui
        3   U
                          O O
                          OL l/>
                                                                    118

-------
                                z
                             ui o    in «* -*
                          I > —    if, — (7.
                          3 -. LU     •  •  •
                          X t- X    o» o> CD
                          — O       -« IM •»•
                          X Ul Ul
                          « a. o
                          uj —       o m .
                          Ul Ul —•    O     m co
                          (/i    ^     •  •
                             XX    IM        •< 2
                    —       Z Ul
                             — 3
                    ui       z -J    >  >•  >•
                    U       O U.    U  O  O
                    ae       a z    z  z  z
                    3          •«    «  «
                    a                >•  >  >•
                    ut                a  a  o
         ui         t-       a.
         U                  X -^    tn  in
         Z          *       ui *    —  -*
         O         X       >-        •   •
         o                     o    tn  m
                    o       K- ui    m  ^ t
         o          t       — o    <*»  wi f
         9         in       x —
         <         r>       Ul
         Z                  U      O O O
         I                   ui —   o o o
         •o         z       >                   a       \u —•   if r- o
—       O                  X X     •  •  •
         ut                  a
z       <         >-
O       O    ifl   I
                             I-      O O O
                             Z      OOO
a       «    -i o ui       x
a       x    3 o u
         at    o   • dc
         U    -i in 3
         u.    « r- a
         */»    O*^l/)       «M-»   QOO
         Z               i/t |  i/>     •  •  •
         <    uiii'^i    ui-i^   ooo
         *    u> x >    t- a u
         i-    _ — —    - X
         Ul      X             — •   O O O
         -J    t— — U.       (^X   OOO
         &    zaL»*       UIM:     •••
         X    <-*             H- «—   CO flo 30
         4    Q          Ul < >      >T (M
         x    a.          u z
         ui               a ~
                          30
         X               3ac
         ui               to a *»   o o o
         a.    -T             u x   a o o
                             U 3t     I  •  •
               o                —   o •*• »
         «•    •«                x   —    ->•
         H-    OC
         3    4
         a    z
         ^    ui                ui
         3    O             I- O
         O    in             z c£   — M m

                             00
                             a vi
                                                                            119

-------
                          ui  -v o>
                          » —    IM fl *
                       x uiui
                       •« u. u
                       x u. «

                          "S
                       QO
                       UJ M4      O W "*
                       UJ UJ *»    O in W
                       a. i w»    o  >• >
                  •-»      Qt    000
                  ee      az
                                  > > >
                                  o a o
        uj
        u
                  o      >- Ul    m ^ i
                   •      •> a    m m
                  o      x —
        x                 w      ooo
        I                 Ul—   O O O
        •a         x      >   o o o
^                <         ->.•••
Ul                X      ^ X   — IM «
am         »»      _ —
a      _>                 x
x      u         ae      ai
••      at        «      a:
o      <        u      ui      o o o
a      a        ae      >-      o m o
IA                o      ui *•   m ^ o
•»      O                XX    •  •  •
Ok      H-        V>      < —   O O -<
             v>   X
             Z   19      >-      O O O
             O   •—      X      OOO
             —   Ul      O-~    ...
             >-xx      «x   o m o
             41           ulw/> x >    K. a o
                xv-
                X'u
        —   3H-U.    —        000
        x   .jxui    v>        omo
        ui   0.0      v)^<^    ...
        x      —x    — iw»   OIMO
        U   IUUI3    X-I-V   —-«M
             u x x    ai a - — 'J.      >^x   ooc
        &   ZX*^      U13£    •••
        X   —           i- —   « a> go
        •<   a         ui< >•      -f 
                                                                      120

-------
                                X
                             Ul o    O> •* (M,
                          X > ~    -0«( —
                          3 •« Ul     •  •  •
                          r >- I    «o o> »
                          — o       -K CM •»
                          x ui ui
                          < u, o
                          xu.ee
                             01 3
                                o
                                V)
                          QO
                          ui •*       o m
                          1U Ul —    O  > >.
                    §o       on.    o u o
                    ee       o r    z z z
         ••         3          —    « <
         >-         a                > >• >•
         «         ^                o a a
         at                           333
         >-         ui                a a> m
         z         z
         ui         i-       a.
         u                  x —    in u>  irt    O O O
Ul   .
O       Ul
O       -I
X       U
         oe          <       oe
         •<
a       «c         ui       ui       ooo
o       CL         (K    ~~~-»»       o in o

—       a                  x x     •  •  •
a.       H*         *n       < *•    o o ••*
ui                  ••       ~
         i/l                  O

3       (3      X
—            Z   O       I-       OOO
»-       ZO—       X       OOO

_i       —   £xx       —x    omo

a       <   -j oui       x
a.       x   300
         ef   o  • ac
         O   -i o i>
         u.   « in o
         ^   o •* */i       <^ '^    o o o
         Z               i/i  |  t/f     •  •  •
         •«   UJ U UJ    il _) »v    OOO
         ae   .   — _< _•    < ^ —
              at x >-    ae
         -J      XO
         <   UJ   Ul    Z
         o   I .. u.    6
         ••*   3»»o>    <^          OOO
         X   -JI uj    vi          omo


         O   UIUJ3    I -J -X    -1 _< (N>
              O XX    UJ O O
              ac   —       a. —
              3 ox
         i"   a z •<

         ui      x             —ooo
         _1   I- — LL       i^X    OOO

         Jt   —            t- —    00 » SO
         •«   a         4i <>       * 01
         x   o.         02
         UJ               CC ••*

         x               o     -r
         30             t- O
         O   w>             2 at
                             Si
                             O.
                                                                              121

-------
                       oooooooooooooooooooooooo
                       ooooooooooooooooooooaoooo
      5         o                                                                                                                                                 o
      • •«       .00000000000000000^0000000     «



      O 35            OOOOOOOOOOOOOOOOOmoOOOOOO

      O»-      O                                                                                                                                                 O
      O 3      O                                                                                                                                                 O
         j       •    ooooooooooooooooomooooooo     •
      o -J      «o                                      •                                                                                                           a
      > O      W                                                                                                                                                 °3

                       ooooooooooooooooo-roooaoao

      z         o                                                                                                                                                 o
       I          O                                                                                                                                                 O
      4          •    aooooooQOooooooooiAooooooo     •
                 o                                                                                                                                                 o
          »      «                                                                                                                                                 19

      -j I            oaooooooooooooooor-ooooooo
      u
      — <      o                                                                                                                                                 o
      K         O                                                                                                                                                 O
      oe          .0000000000000000000000000     *

      a. LU      r~                                                                                                                                                 r-

      o—            00000000000000000*0000   —    00

                 O                                                                                                                                                 O

      -»      o                                                                                                                                                 o
      <«      o                                                                                                                                                 o
      x          .000000000000    —    0000*0000   —    00    t
      *  -      •O                                                                                                    l/>                                           -O
      OX      XI                                                                                                                                                 -—       .000000000000    —    000000000^00    •
                 IB                                                                                                                                                 O)
      _i         -r                                                                                                                                                 *

•     u^            ooooooeraoooofjooooooooo«oo


      i«      §                                                                                                                                                 s
      zz       «oooooooooaoorxoo    —    —   —    —    —   00*00    •
      o—      o                                                                                                                                                 o
         *      *                                                                                                                                                 -•*


          •IU   O      '                                                                                                                                           O
      Ul O»-   O                                                                                                                                                 O
      _i uj ai    •oooooooooooo*aor~f~^r-r~oo»oo    •
      a. a x   rtmiAininoornoo
            */J                                                                             «"4f*r^r-^-^*
         ax    o                                                                                                                                -IPMOO0>9>0>9>»OOOOO
       o>«—                                                                             -»               ^    4f         JjcO'rQ>O'N9-4'O
       a.h>Qe         o9kep«ccr-r»o>o>«tf*-tr*-«>irmriniM(Mn«»4    —
       h- -* C0
       3 J —
       O — J
         a *t
                                                                                   122

-------
                 OOOOOOOQQOOOOOOOOOQOOOOO
                 OOQQOOOOQQOOOQOOOOQOOOOOO
Oi/l

•- o       o                                                                                                                                                   o
<          o                                                                                                                                                   o
« ••        .0000000000000000000000000     •
t-•»       -a                                                                                                                                                   4
Z  I        9>                                                                                                                                                   O>
LU1-
OZ            OOOOOOOOOOOOOOOOOOOOOOOOO
z<
a H-       o                                                                                                                                                   o
030                                                                                                                                                   O
   -I        (0000000000000000000000000     '
O -J       CO                                                                                                                                                   CO
>a       co                                                                                                                                                   co
« a
                 OOOOOOOOOOOOOOOOOOOOOOOOO

r          o                                                                                                                                                   o
 I           O                                                                                                                                                   O
-o           ^0000000000000000000000000     •
            o                                                                                                                                                   o
    .00                                                                                                                                                   CO
met
-J I            OOOOOOOOOOOOOOOOOOOOOOOOO
u
— o       o                                                                                                                                                   a
t-          O                                                                                                                                                   O
ae           .oooooooooooooooooeooooooo     •
« II        IM                                                                                                                                                    t»       O                                                                                                                                                   O
«Z        .OOOOOOOOOOOOOOOOO    —    OOOOOOO     •

   O       *O                                                                                                                                                   4

a at            ooooooooooooooooo    —    ooooooo

>- > a    o                                                                                                                                                   o
< o    o                                                                                                                                                   o
ZO     •OOOOOOOOOOOOOOOOOlMOOOOOOO     •
oe  »x    -o                                                                                                                                                   .o
a x       LO                                                                                                                                                   m
It    CX
W>OU1         OOOOOOOOOOOOOOOOOOOOOOOOO
Z  • CL
 X O    O                                                                                                                                                   O
      —    o                                                                                                                                                   o
 • O>-     •OOOOOOOOOOOOi/\OO{IMOOOOO     •
^ in N^    co                                                                                                                                                   co

u» - Z u.
o — oc
IU X 3


      a         oooooooooooooooooooooooo
>« u. LU         ooooooooooooaoooooooooooo
JJI- Z
o.i« 3
                                                                              123

-------
                 OOOOQOOQOOOOOOOOOOOOOOOO
                 ooooQOOoooooooooooooooooo
*>a.       o                                                                                                                                                      o
<          o                                                                                                                                                      o
(K~        '0000000000000000000000000     •
t-                                                                                                                                                       0>
Ulh-
oz            ooooooooooooooooo-*ooooooa
z<
at-       o                                                                                                                                                      o
oo       o                                                                                                                                                      o
   -i        •    ooooooooooooooaoo-'ooooooo     •
(J -J       «                                                                                                                                                      09
>O       00                                                                                                                                                      «
«L
                 OOOQOQOOQOOOOOOOO-*OOOOOOO
ac
            fo                                                                                                                                                      o
            o                                                                                                                                                      o
•o           •    000000000000000000*0000000     •
            o                                                                                                                                                      o
    •       00                                                                                                                                                      09
liiot
_JX            QOOOOOOOOOOOOOOOOooooooooooooooooo>nooooooo     •
o—       •»                                                                                                                                                      -r
   IS       -O                                                                                                                                                      -O
z«
Oat            ooooooooooooooooor»ooooooo
•MUJ
i->       O                                                                                                                                                      O
4«C       O                                                                                                                                                      O
x           •000000000000000009*0090000     •
ac  -       -o                                                                                                                                                      •a
ax       m                                                                                                                                                      m
u.
v>o            000000000000000000*0000000
Z  •
- -<        •ooooooaoooooaoooaoooooooa     •
            00                                                                                                                                                      CO
-i          -f                                                                                                                                                     -r
<  »
Ut-            OOQQOQOOOOOOOOOOOOOOOOQOO

X          O                                                                                                                                                      O
moo                                                                                                                                                      o
xz        -ooooooooooooooo    —    —   -•    —    —    ooooo     •
o—       o                                                                                                                                                      o
   X       *                                                                                                                                                      -r

   X            OOOOO-OOOOOOOOOOtNlNjMcMtMOO-'OO
m    ae
    • ma                                                                                                                                                     o
ai o i-    o                                                                                                           .                                           o
-jaiui     •ooooooooooQO-«oo>^mmmrio-e'OJ3OO*oo     •
a.  » ee    -f                                                                                                                                                     -r
   ae uj    rst                                                                                                                                                     rg
   — a.
•oo            oooooooc    00-30^00    >ac     •oooooooooo-3o-rao~r-r-T->-»-ooooo     •
« 31 o    «                                                                                                                                                      -a
«    C    ~<                                                                                                                                                     -4
z  -»
U1MO         OOOOQOOOOOQO^OOi'immmfAOQOOO
O-v»
W>X X    O                                                                                                                                                     O
            o                                                                                                                                                     o
 •01      .OOOOOOO    COO3OlNOO---i-<-<    —    C>OOOO     •
-i IT       OB                                                                           —                                                                         00
    • z
U.PJ ra
O4>         COOOCOOCOO3OOOOOOOOOOOOOO
    » h-
-"O *
    a, £    o                                                                                                                                                     o
at  & *•     *QOOC?OOOC*OOOQOOOOOUOOOUOOO     •
a    z    o                                                                                                                                                     a
—  a uj
>-  » o
O  -4 Z
ai  i a
VI    U

      C2          POOCOOOC2QOOOOOOOOOOOOOOO
 ••  u. 01          0000000030000000000000000
I-  « >-           .......      .................     t
O  > <           oojao-roo^ajsro-O'MJJj'O-oiNiii-ro-ofMH-ro
Q,  >— tf          ^o*coa99Dr»^o     a>o^m^^^>f^mrxrM^^^
i-  — to
a_» —
o— -i
    a «
x  < u
  J  t- Z
                                                                                 124

-------
                  oooooooooooooooooooooooo
                  ooooooooooooooooooooooooo

                  •o^jj-i-o-O'Mco-rO'Otvjco.ro.or^aD.co.orMaj.ro
                  o»9QDa»aor»F-j**-4
   Ul
   _J
   o
   M
Zh-
aac
••<
H.Q.       o                                                                                                                                                        o
<          o                                                                                                                                                        o
ac ••        «oooooooooooaooooo-*ooooooo     •
^(M       -O                                                                                                         R>                                             -O
at  i        o»                                                                                                                                                        a>

oz             ooooooooaoooooooomooooooa
   S<                                                                                                                  -r
   »-       a                                                      •                                                                                                  o

   -1        .OOOOOOOOaOOOOOOOOi-MOOOOOOO     t
O -J       OB                                                                                                         4                                             CD
>O       »                                                                                                                                                        -t"                                                                                                                  O"
            a                                                                                                         (M                                             o
wio       o                                                                                                                                                        o
«Z        •OOOOOOOOOOOO    —    OOOOr-OOOO-'OO     I
o~       •*                                                                                                         ca                                             -r
   u       -o                                                                                                         m                                             -a

a ac             ooooooooooooniooocmoaooiMoo
-»0j                                                                                                                  O
h- >       a                                                                                                         in                                             o
«•<       o                                                                                                                                                        o
X           «oooooooooooo«oooo    —    oooo-roo     •
91  *ae    ->-          ooooooooaooomoooooooooaoo
M* X IU                                                                                 •«                                                         •«
X    X    O                                                                                                                                                        O
IUO       O                                                                                                                                                        O
XZUI     •OOOOOOOOOOOOlMOOVa>9COOOO-
            O                                                                                             ^-4^^-<                                  O
            o                                                                                                                                                        a
•*&
xox          oaooooooaooo-*-ooa'(>cro    fl    c^   W                "*                O
jcr-o    o                                                                                                                                                        o
ui cv o     *c»ooQ.oooooc2o.o-rc3Oiriminmmc?Qowo     <•
a. «  oe    -r                                                                           x                _    _    _    _   _•                _«                ^>
   ac u    >v                                                                           ->*j--rj--rmrM
                                                                                         *•                *r    •»•    -*•    >»••«•                m

OX  'o                                                                           —                mmmmmf-o

-.~X     •    OOOOOOOOOOOO'-OO—•    —    •-    —   --OOOOO     •

<«l*^                                                                           ^jrafg^)(Mf>i                                  p^



O "*» Z                                                                                 r«                oo    ea    9    co   eo
tnxo    o                                                                           ^                —    -.    —    _i   _                                  o
    1 •»    o                                                                                                                                                        o
 •Gl-     •OOOOOOOOOOOO'-OO-O-O-O^3^3OOOOO     •
•*IT~«    00                                                                           ^CDCOOOJO                                  03
    •                                                                                  00

OO>          OOOOOOOOOOOOOOOOOOOOOOOOO

-•O Q
   a.       o                                                                                                                                                        o
Zvtiu     >oooooooaooooooooooooooooo     •

SOS    «*
                  oooooooooooooooooooooooo
                  ooooooooooooooooooooooooo
                                                                                125

-------
                                           o
                                           ui
                                        «t
                                        a

                                        z u
                                        ui vu       in
                                   u*   u >-       o»
                                   J   z«       -o
                                   u   a ae       f»
                                                    O
                                                    O
                                   -I    I/I X
                                   O    UI —
                                   &    t- >•
                                         <



                       „„             I
                       — ^             a—
                        ii              ax
                       >-—             o at
         O             -1-1
         u             a o
                       a. a.
         ifl
         >              «  »                a
         «             z z                ui
                       o a                •-
         ac             - —                <      o
         I             i->-                oc        i
         I             < <                a      o
         -o        a    at at                —
-i                »   a> a>             z _i
uj                ae    — —             a <
o       ui        «    -J j             — o
o       -i        z    < <             i-
x       u        ui    u u             <
-       tx             i                za
a              -I       *
Z       <       U.               •<       •«       —
a       —                o
         o       &               3       —       a
         u.            i«          -J       X        •
         l/>       XX          -J    «" «       -
         X       UI   U                <
         >-            a                z
                  u.   ce                -
         _j       a       ui               a 33
         a.       ae    t.               z J
                  GL    4               •« VI
                        _
         O-       I    <                —a:
         h-       O    
-------
                                       X
                                       3
                                       Z -I
                                       o «
                                       » 

I      5

H-      z
                      at
                      iu
                      a.
                 x
                 u    >-
                 «    JJ
                 01    x
                               a
                               a. o
                               m iu
                               a >-
                                 <
                               01 ac
                               u oa
                               < ••
                               u. _j
                               ce <
o
a.
                                 I—
                                 z
        ac
        o
                                                  (M

                                                  CO
                                                  - >•
                                      z

                                      a
                                                 o
                                                 o
        Ol
        .j
        a.
3
a.
H
3
O
O    »


O    O
UJ    Ol
ac    t-
a.    «
      ac
h-    03
(/I    M
UJ    -J
X    <
u    o

X    3
                                      u <
                                      UJ Z
                                      ac ai
                                      M O
                                      O i/)

                                      oi
                                      z o
                                      -• vl
                                      O
                                      N> ac
                                      ac 01
                                      < as
                                      z z
                                                       3.
                                                       O
                                                       
-------
                                 APPENDIX F
                            PEM FORTRAN LISTING


     The PEM (Version 82360) computer program was developed and tested on

the IBM computers at the Oak Ridge National Laboratory.  The program was

later modified slightly to run it on the UNIVAC computer at Research

Triangle Park.  A listing of this UNIVAC-compatible FORTRAN program follows.

This listing clearly shows the modifications made to adapt the PEM computer

code from the IBM to the UNIVAC.  A summary of the statements (identified

by their line numbers in the listing) required for each computer is given

below:
                    IBM                           UNIVAC
                     208                           209
                                                  1524
                                                  1577
                                                  1639
                    4362                          4359-4361
                    4389                          4386-4388
                    4415                          4412-4414
                                     128

-------
RAPS*PEM( 1 ) . PROGRAM 4 )
1
2
3
4
5
6
7
8
9
10
11
12
13
1*
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
00000010
00000020
00000030
**» PEM (VERSION 82360) *** 00000040
00000050
00000060
POLLUTION EPISODIC MODEL 00000070
INCLUDING 00000080
DEPOSITION, SEDIMENTATION, AND CHEMICAL TRANSFORMATION 00000090
OF POLLUTANTS 00000100
00000110
00000120
*** PEM PROGRAM DEVELOPMENT : 	 DECEMBER 1982 00000130
00000140
K. SHANKAR RAO AND MARTHA M. STEVENS 00000150
ATMOSPHERIC TURBULENCE AND DIFFUSION LABORATORY 
-------
77
78
79
80
31
83
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
123
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c











    (1) IF NPOL=1 AND ICT=0 OR 1, SURFACE CONCENTRATIONS AND DEPOSI-
      TION FLUXES OF ONE GASEOUS OR PARTICUUTE POLLUTANT, WITH THE
      GIVEN DEPOSITION AND SETTLING VELOCITIES, VD1 AND HI RESPECTI-
      VELY, ARE CALCULATED.  IF ICT=1, THEN CHEMICAL DECAY OF POLLU-
      TANT IS ALSO CONSIDERED IF THE DECAY RATE XKT > 0. IS GIVEN
      IN PERCENT PER HOUR.
                                                                  00000770
                                                                  00000780
                                                                  00000790
                                                                  00000800
                                                                  00000810
                                                                  00000820
                                                                  00000830
                                                                  00000840
                                                                  00000850
                                                                  00000860
    (2i IF NPOL=2 AND ICT=0, SURFACE CONCENTRATIONS AND DEPOSITION
      FLUXES OF TWO DIFFERENT AND UNCOUPLED GASEOUS OR PARTICULATE
      POLLUTANT SPECIES WITH THE GIVEN DEPOSITION AND SETTLING VELOC-00000870
      ITIES VD1 AND Wl (FOR SPECIES-1) AND V02 AND W2 (FOR SPECIES-2)00000880
      RESPECTIVELY, ARE CALCULATED.  EMISSION RATES FOR BOTH SPECIES 30000890
      MAY BE DIFFERENT.  CHEMICAL DECAY IS NOT CONSIDERED FOR EITHER 00000900
      SPECIES EVEN IF A VALUE OF XKT > 0. IS SPECIFIED.              00000910
                                                                     00000920
    (3) IF NPOL=2 AND ICT=1, THE TWO GASEOUS OR PARTICULATE POLLUTANT 00000930
      SPECIES ARE COUPLED THROUGH A FIRST-ORDER CHEMICAL TRANSFORMA- 00000940
      TION.  THE SURFACE CONCENTRATIONS AND DEPOSITION FLUXES OF BOTH00000950
      THE PRIMARY POLLUTANT (SPECIES-1 OR REACTANT) AS WELL AS THE   00000960
      SECONDARY POLLUTANT (SPECIES-2 OR REACTION PRODUCT) ARE CALCU- 00000970
      LATEO.  THE CHEMICAL TRANSFORMATION RATE (XKT > 0.) SHOULD BE  00000980
      GIVEN.  BOTH SPECIES MAY BE GIVEN NON-EQUAL DEPOSITION AND SET-00000990
       TLINS VELOCITIES.  A NON-ZERO DIRECT EMISSION RATE FOR THE
       SECONDARY  POLLUTANT FROM  THE POINT AND/OR AREA SOURCES MAY
       ALSO BE SPECIFIED AS INPUT  FOR THIS CASE.
                                                                  00001000
                                                                  00001010
                                                                  00001020
                                                                  00001030
                                                                  00001040
                                                                  00001050
       FOR  FURTHER  DETAILS REGARDING THE USE OF THE  PEM AND  ITS I/O
    OPTIONS,  INPUT  PARAMETERS AND UNITS, AND EXAMPLE PROBLEMS, THE
    USER  SHOULD CONSULT THE PEM USER'S GUIDE BY RAO  AND STEVENS (1982)00001060
                                                                      00001070
                          *** REFERENCES ***                          00001080
                                                                      00001090
                                                                      00001100
                                                                      00001110
                                                                      00001120
                                                                      00001130
    (2) RAO,  K. S., 1981: ANALYTICAL SOLUTIONS OF A  GRADIENT-TRANSFER  00001140
       MODEL FOR PLUME DEPOSITION  AND SEDIMENTATION.  EPA-           ,00001150
       U.S.E.P.A., RESEARCH TRIANGLE PARK, NC;                        00001160
       NOAA  TECH.  MEMO.  ERL/ARL-109, NOAA-ATDL, OAK RIDGE,  TN 37830,  00001170
       75  PP. ATDL CONTRIBUTION FILE NO. 81/14.                      00001180
                                                                      00001190
       RAO,  K. S., 1982: GAUSSIAN  PLUME CONCENTRATION ALGORITHMS HITK00001200
(1) STAFF OF THE TEXAS AIR CONTROL BOARD,  1979:  USER'S GUIDE
    TEXAS EPISODIC MODEL.   TEXAS AIR CONTROL BOARD,  PERMITS
    SECTION, AUSTIN, TEXAS 78723, 215 PP.
(3)
        DEPOSITION,  SEDIMENTATION,  AND  CHEMICAL TRANSFORMATION.
        EPA-          ,  RESEARCH TRIANGLE PARK, NC;
        NOAA TECH. MEMO. ERL/ARL-   , NOAA-ATDL, OAK RIDGE,  TN 37830.
        ATDL CONTRIBUTION FILE  NO.  82/27.
                                              POLLUTION EPISODIC
                                                  ,  RESEARCH
(4) RAO, K. S., AND Ml. M. STEVENS, 1982:
    MODEL:  USER'S GUIDE.  EPA-
    TRIANGLE PARK, NC.
    NOAA TECH. MEMO. ERL/ARL-   , NOAA-ATDL, OAK RIDGE, TN 37830.
    ATDL CONTRIBUTION FILE NO. 82/28.
*** PEM (VERSION 82360) : FORTRAN LISTING.





*** COMMON BLOCKS, DIMENSIONS, AND DATA STATEMENTS.
    COMMON/PEMCOM/CONC(50,50,2),SOF(50,50,2),  TT(20),
   1 XP(300),YP(300),EP(300,2),HP(300),OP(300),VP(300),TP(300),
   2 XA(50),YA(50),EA(50,2),SIZE(50),
   3 WO(24),WS(24),TA(24),HMIX(24),PEN(24),
   4 AX(7,3),BX(7,3),P(7),SCLAB(7),DTDZ(2),  SECTAN(16),
   5 XSWC,YSMC,GRID,LX,LY,    A(2),8(2),POLNAM(3,2),CALNAM(7,2),
   6 ITA,IRD,IWR,IDSK,        D8C,047,D3047,DIST,DELTA,
   7 ESH(2),PEAK,IBUOY,IRISE,IDWN,EFF,XS,    UINV,WVEC,
   8 NAS.NPS,INDEX,IGRID,IAV,ISCEN,IWDOPT,IWD,ISC,IPS,
   9 NTOPT,NWDOPT,NWSOPT,NSCEN,NLIST,NARRAY,NTAPE,NCSOPT,NMAX,
   * NSTDWN,INTER,NPRINT
00001210
00001220
00001230
00001240
00001250
00001260
00001270
00001280
00001290
00001300
00001310
00001320
00001330
00001340
00001350
00001360
00001370
00001380
00001390
00001400
00001410
00001420
00001430
00001440
00001450
00001460
00001470
00001480
00001490
00001500
00001510
00001520
00001530

-------
154
155
156
157
158
159
160
161
162
163
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
      COMMON/PARM1/NPOL,ICT,V01,HI,VD2,HZ,TAUC
      COMMON/PARM1A/GAMMA
      COMMON/PARM2/ISPEC f UTAUC,Q2Q1,XCT,EXCT
      COMMON/PARM2A/AA,BA
      COMMON/PARM3/HC,VDC1,MCI,VDC2,WC2
      COMMON/PARM4/V11,V21,V12,V22,V13
      COMMON/PARM5/D11,021,012,022,031,032,033,06
      COMMON/PARM6/H11,R21,R12,R22,R13,R23,R31,R41,R32,R42
      COMMON/PARM7/qZCl,QZC2
      COMMON/BLOCK1/PI,SQPI,SQRT2, A1B,A1C
      COMMON/BLOCK2/AI,BI,EPSABS,EPSREL,LM,NIH
      COMMON/EXPCHK/EXPMAX,EXPMIN,ETAMAX
C
      EXTERNAL FUNS
      REAL*8 FUN3
      REAL#8 WORK(800),AI,81,EPSABS.EPSREL,RESULT,A8SERR,T1A,T2A
      DIMENSION IH(102)
      DIMENSION PRL(2,2),DHL(4),ANGLIM(7)
      DIMENSION ITABLE(5,10),EPSLIM(10)
      DIMENSION AAR(6),BAR(6),CX1(7),DX1(7),CX2(7),DX2(7)
      DIMENSION XA1(5),XA2(5),XA2C(5),RCA1(5),RCA2(5)
      DIMENSION RCA2CTI5,50),QA2QAK 50),TERMB2(5)
C
      DATA PRL/4HMOHE,4HNTUM,4HBUOY,4HANCY/
      DATA DML/4H    ,4H    ,4HDOWN,4HWASH/
      DATA EPSLIM/.12427,.16511,.24504,.35884,.46373,
     1            .55868,.64350,.69482,.71890,.78540/
      DATA ITABLE/0,0,0,0,0, 0,0,0,0,1, 0,0,0,1,1, 0,0,1,1,1, 0,0,1,1,
     1            0,1,1,2,2, 0,1,1,2,3, 0,1,2,2,3, 0,1,2,3,3, 0,1,2,3
      DATA ANGLIM/0.610865,0.488692,0.366519,0.244346,
     1 0.244346,0.183260,0.122173/
      DATA CXI/.495,.310,.197,.122,.122,.0934,.0625/
      DATA DX1/.873,.897,.908,.916,.916,.912,.911/
      DATA CX2/.606,.523,.285,.193,.193,.141,.080/
      DATA DX2/.851,.840,.867,.865,.865,.868,.884/
      DATA AAR/.4,.4,.33,.22,.15,.06/
      DATA BAR/.91,.91,.86,.80,.75,.71/
C
C
C
C *** DEFINE PROGRAM CONSTANTS.
C
      PI=3.14159
      SQPI=SQRT(PI)
      SQRT2=SQRT(2.)
      A1B=1000./( S<3RT2*SQPI)
      A1C=2.*SQPI
      AI=0.
      BI=1.
      EPSABS=1.0E-4
      EPSREL=1.0E-4
      LW=800
      NIM=102
C     EXPMAX=174.
      EXPMAX= 87.
      EXPMIH=50.
      ETAMAX=SQRT(EXPMAX)
C
      WRITE (IWR.5432)
 5432 FORMAT C'1',///////46X,'PEM   (VERSION  82360)'/////
     1 45X,1POLLUTION EPISODIC MODEL1/////
     2 52X,1INCLUDINSV/
     3 30X,'DEPOSITION, SEDIMENTATION, AND CHEMICAL TRANSFORMATION'//
     4 SOX,'OF POLLUTANTS1/)
C
C
C
C
C
C

C
C
   INDEX=0

CALL INPUT MODULE TO READ ALL HEATHER AND SOURCE INFORMATION,
   DEPOSITION AND SEDIMENTATION VELOCITIES OF POLLUTANT SPECIES,
   AND CHEMICAL DECAY OR TRANFORMATION RATE.


   CALL INMOD
   MKMKMMMMMMMM

   VD136=VD1*36.
  00001540
  00001550
  00001560
  00001570
  00001580
  00001590
  00001600
  00001610
  00001620
  00001630
  00001640
  00001650
  00001660
  00001670
  00001680
  00001690
  00001700
  00001710
  00001720
  00001730
  00001740
  00001750
  00001760
  00001770
  00001780
  00001790
  00001800
  00001810
2,00001820
4/00001830
  00001840
  00001850
  00001860
  00001870
  00001880
  00001890
  00001900
  00001910
  00001920
  00001930
  00001940
  00001950
  00001960
  00001970
  00001980
  00001990
  00002000
  00002010
  00002020
  00002030
  00002040
  00002050
  00002060
  00002070
  00002080

  00002090
  00002100
  00002110
  00002120
  00002130
  00002140
  00002150
  00002160
  00002170
  00002180
  00002190
  00002200
  00002210
  00002220
  00002230
  00002240
  00002250
  00002260
  00002270
  00002280
  00002290
                                           131

-------
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
      VD236=VD2*36.
C
C
C *** DETERMINE VALUE OF PARAMETER ISPEC.
C
C
C
C
C
C

C
C
C
C

C
C
C
C
C
C
      ISPEC IS AN INTERNAL ROUTING PARAMETER USED IN PEM
      TO DETERMINE THE APPROPRIATE CONCENTRATION ALGORITHMS
      TO BE USED FOR A GIVEN PROBLEM.
      VALUE OF ISPEC  IS BASED ON NUMBER OF POLLUTANTS.
      AND CHEMICAL TRANSFORMATION OPTION PARAMETER.

      IF(NPOL.EQ.2) 60 TO 41
      ONLY ONE POLLUTANT SPECIES.  CHEMICAL DECAY CAN BE CONSIDERED
      BY SETTING ICT = 1 AND XKT > 0.
      ISPEC=1
      GO TO 43

      TWO POLLUTANT SPECIES.
   41 IF(ICT.EQ.l) GO TO 42
      NO CHEMICAL COUPLING. THE TWO SPECIES ARE INDEPENDENT
      OF EACH OTHER.  CHEMICAL DECAY IS NOT CONSIDERED FOR
      EITHER SPECIES.
      ISPEC=2
      GO TO 43

      CHEMICAL COUPLING EXISTS BETWEEN SPECIES-1 (REACTANT)
      AND SPECIES-2 (PRODUCT).
   42 ISPEC=3
   43 CONTINUE
      DEFINE TIME-AVERAGING MULTIPLIER CONSTANTS.

      IF(NTOPT.Eq.l) STCONV = 1.
      IF(NTOPT.Eq.Z) STCONVs 0.04166667
      IF(NTOPT.EQ.3) S7CONV= 1.0/FLOAT(NSCENI
   CALL INPUT MODULE TO BRING IN HEATHER DATA FOR ONE SCENARIO
     (NUMBER OF SCENARIO = ISCEN).
      CALL INMOD
      XKKKMIOtXXKM
      INDEX=1
C
C
C
C
C
100
C
C
C  CALCULATE MIND VECTOR (HVEC) FOR SCENARIO. IFLAG IS USED BELOW
C    (STMT. 275) TO DETERMINE METHOD OF RESTRICTING THE AREA OF THE
C    RECEPTOR GRID AFFECTED BY EACH SOURCE.
C
175   IF(NWDOPT.EQ.l) GO TO 200
      DO 180 IWD=1,16
      DETA=ABS(WD(ISCEN)-SECTAN(IKD))
      IF(DETA.LE.0.19634954I GO TO 185
180   CONTINUE
185   GO TO 205
200   HD(ISCEN)=SECTANUWDJ
205   IFUUD.LT.8.0R.IMD.6T.10) GO TO 210
      IFLAG=1
      GO TO 241
210   IFCIWD.NE.il) GO TO 215
      IFUG=2
      GO TO 241
215   IF(IWD.LT.12.0H.IND.6T.14) GO TO 220
      IFLAG=3
      GO TO 241
220   IFdMD.NE.15) GO TO 225
      IFLAG=4
      GO TO 241
225   IF(IHD.LT.16.AND.IHD.6T.2) GO TO 230
      IFLAG=5
      GO TO 241
230   IFCIWD.NE.3) GO TO 235
      IFLAG=6
      GO TO 241
235   IF(IMD.LT.4.0R.IUD.GT.6) GO TO 240
      IFUG=7
                                  132
00002300
00002310
00002320
00002330
00002340
00002350
00002360
00002370
00002380
00002390
00002400
00002410
00002420
00002430
00002440
00002450
00002460
00002470
00002480
00002490
00002500
00002510
00002520
00002530
00002540
00002550
00002560
00002570
00002580
00002590
00002600
00002610
00002620
00002630
00002640
00002650
00002660
00002670
00002680
00002690
00002700
00002710
00002720
00002730
00002740
00002750
00002760
00002770
00002780
00002790
00002800
00002810
00002820
00002830
00002840
00002850
00002860
00002870
00002880
00002890
00002900
00002910
00002920
00002930
00002940
00002950
00002960
00002970
00002980
00002990
00003000
00003010
00003020
00003030
00003040
00003050
00003060

-------
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
245
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
240
241
C
c
C
      GO TO 241
      IFLAG=8
      WVEC= MO(ISCEN) + 3.14159265
      IFtMVEC.ST.6.2831853) WVEC=MVEC - 6.2831853
      MDV=4.712388981-HD(ISCEN)
      IFCKDV.LT.O.)HDV=HDV+6.283185307
      MDPANG=MOV*ANGLIM(ISC)
      MDMANG=HDV-ANGLIM(ISC)

   CALL AUTGRD TO CALCULATE RECEPTOR GRID PARAMETERS AUTOMATICALLY.
      IF(IGRID.EQ.l) CALL AUTGRO
      mtmummiomii
c
c
c
  **» INITIALIZATION.

   INITIALIZE CONCENTRATION AND SURFACE DEPOSITION FLUX ARRAYS
      IF(NTOPT.ST.l.ANO.ISCEN.ST.l) SO TO 4
      DO 2 1=1, LX
      DO 2 J=1,LY
      CONC(I,Jtl)=0.
      SDF(I,J,1)=0.
      IF(ISPEC.EQ.l.AND.NCSOPT.EQ.O) GO TO 2
      CONC(I,J,2)=0.
      SDFU,J,2)=0.
    2 CONTINUE
    4 VGRID= l./GRID
      6RIDSQ= 6RIDKGRID
      ELX= LX
      ELY= LY
      XB1= XSWC
      XB2= XSHC
      YB1= YSMC
      YB2= YSMC
                  0.5*GRID
                  (ELX-0.5)*GRID
                  o.s*GRiD
                  (ELY-0.5)*GRID
C
C
   IF NO AREA SOURCES, SKIP AREA SOURCE CALCULATIONS.
      IF(NAS.LT.l) GO TO 245
C
C
C
C**»  AREA   SOURCE   CALCULATIONS  ***
C
     IMV HELPS DETERMINE THE PATTERN OF GRID SQUARES AFFECTED BY EACH
     AREA SOURCE.  PATTERN DEPENDS ONLY ON HIND DIRECTION.
     EPS IS THE ANGLE BETWEEN THE MIND VECTOR AND THE NEAREST
     COORDINATE AXIS.
C
C
C
C
c
      IMV= 1 + MVEC/0.78540
      60 TO (2411,2412,2413,2414,2415,2416,2417,2418),IHV
2411  ITABX=1
      ISIGNX=1
      ISIGNY=1
      EPS= MVEC
      GO TO 2419
2412  ITABX=0
      ISISNX=1
      ISIGNY=1
      EPS= 1.5708 - MVEC
      60 TO 2419
2413  ITABX=0
      ISIGNX=1
      ISIGNY=-1
      EPS= HVEC - 1.57080
      GO TO 2419
2414  ITABX=1
      ISIGNX=1
      ISISNY=-1
      EPS= 3.1416 - MVEC
      GO TO 2419
2415  ITABX=1
      ISIGUX=-1
      ISIGNY=-1
      EPS= MVEC - 3.1416
      GO TO 2419
00003070
00003080
00003090
00003100
00003110
00003120
00003130
00003140
00003150
00003160
00003170
00003180
00003190
00003200
00003210
00003220
00003230
00003240
00003250
00003260
00003270
00003280
00003290
00003300
00003310
00003320
00003330
00003340
00003350
00003360
00003370
00003380
00003390
00003400
00003410
00003420
00003430
00003440
00003450
00003460
00003470
00003480
00003490
00003500
00003510
00003520
00003530
00003540
00003550
00003560
00003570
00003580
00003590
00003600
00003610
00003620
00003630
00003640
00003650
00003660
00003670
00003680
00003690
00003700
00003710
00003720
00003730
00003740
00003750
00003760
00003770
00003780
00003790
00003800
00003810
00003820
00003830
                                          133

-------
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
2416
2417
2418
2419
2420
2421
2422

C
c
C
c
2423
C
C
c
c
   44
C
C
   45
C
C
C
C
C
C
   46
   47
ITABX=0
ISIGNX=-1
ISIGNY=-1
EPS= 4.7124 - HVEC
SO TO 2419
ITABX=0
ISISNX=-1
ISISNY=1
EPS= WVEC - 4.7124
60 TO 2419
ITABX=1
ISIGNX=-1
ISI6NY=1
EPS= 6.2832 - HVEC
IF(ITABX.EQ.O) SO TO 2420
ITABY=0
INCRX=0
INCRY=1
60 TO 2421
ITABY=1
INCRX=1
INCRY=0
DO 2422 L=l,10
IF(EPS.ST.EPSUMIL)) SO TO 2422
IEPS=L
60 TO 2423
CONTINUE
IEPS=10

REDUCE STABILITY CUSS BY 1 (EXCEPT FOR ISC=1) TO SIMULATE
SURFACE TURBULENCE IN URBAN CONDITIONS.

IA= ISC-1
IFUA.EQ.O) IA=1
AA= AAR(IA)
BA= BAR(IA)
BA1=2.*(1.-BA)
DXA=1000.*6RID/COStEPS)
UPL=MS(ISCEN)
UINV=1./UPL
UINV1=UINV/100.

DEFINE NONDIMENSIONAL DEPOSITION AND SEDIMENTATION PARAMETERS.

ISPEC - 1 OR 2 OR 3
8AVD1=0.01*VD1*BA1
VDC1=VD1*UINV1
HC1=W1*UINV1
V11=VDC1-0.5*WC1
V21=VDC1-WC1
IF(V21.EQ.O.) 60 TO 44
R11=V11/V21
R21=0.5*WC1/V21
IF(ISPEC.Eq.l) SO TO 46

ISPEC = 2 OR 3
BAVD2=0.01*VD2*BA1
VDC2=VD2*UINV1
HC2=W2*UINV1
V12=VDC2-0.5*WC2
V22=VDC2-MC2
IF(V22.EQ.O.) 60 TO 45
R12=V12/V22
R22=0.5*WC2/V22
IF(ISPEC.EQ.2) SO TO 47

ISPEC = 3
V13=V11-0.5*
-------
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
    CALCULATE RELATIVE CONCENTRATIONS AT A RECEPTOR LOCATED AT THE
    CENTER OF THE CALCULATION GRID SQUARE CONTAINING THE AREA SOURCE
    EMISSIONS, AND AT THE CENTER OF EACH OF THE FOUR GRID SQUARES
    IMMEDIATELY DOWNWIND OF THE SOURCE.

    FIRST DEFINE DOWNWIND DISTANCES TO THE LEADING AND TRAILING EDGES
    AND MID-POINTS OF THE FIVE CALCULATION GRID SQUARES.
    XA1(1)=0.0
    XA2C1)=0.5*DXA

    DO 102 1=1,5
    SZ2=AA*(XA2(I)**BA)
    IF(SZ2.ST.5000. ) SZ2=5000.
    XA2C( I J=XA2( I )/( SQRT2*SZ2 )

    IFU.EQ.5) GO TO 102
    XA1(I+1)=XA2(I)
    XA2( 1+1 )=XA1C 1+1 )+DXA
102 CONTINUE

    K=l
    IFdSPEC.NE.31 GO TO 104

    START LOOP ON ALL AREA SOURCES IF ISPEC = 3
    DO 114 K=1,NAS
    IF(EA(K,1).EQ.O.) EA(K,l)=l.E-6
    QA2QA1(K)=EA(K,2)/EACK>1)
    IF(K.EQ.l) GO TO 103
    IF(QA2QA1(K).EQ.QA2QA1(K-D) GO TO 112
103 Q2Q1-QA2QAKK)
    G42PX1=Q2Q1

104 G41PX1=1.
    IF(ISPEC.EQ.Z) S42PX1=1.

    START LOOP ON FIVE CALCULATION GRID SQUARES WITH RECEPTORS.
    DO 111 1=1,5
    X1A=XA1(I)
    X2A=XA2(I)
    X2CA=XA2C(I)

    ISPEC = 1 OR 2 OR 3
    031=2. *V11*X2CA
    D11=WC1*X2CA
    021=011*011
    R31=l.+2.*021
    R41=2.*D11/SQPI
    IF(ISPEC.EQ.l) GO TO 107

    ISPEC = 2 OR 3
    D32=2.*V12»X2CA
    D12=UC2*X2CA
    022=012*012
    R32=l.+2.*022
    R42=2.*012/SQPI
    IFUSPEC.EQ.2) GO TO 107

    ISPEC = 3
    D33=2.*V13*X2CA
    D6=4-.*SQPI*( V21-V22 )*X2CA

107 IF(ICT.EQ.O) XCT=0.
    IF(ICT.EQ.l) XCT=X2A/UTAUC
    EXCT=EXP(-XCT)
    IF(ISPEC.EQ.3) GO TO 108

    ISPEC = 1 OR 2
    * ***********
    CALL PSG4P(G41PX2,G42PX2)
    IF(ICT.EQ.l) 60 TO 108
    ISPEC = 1 WITH ICT = 0 OR ISPEC = 2
    RCAK I )=( G41PX1-G41PX2 J/BAVD1
    IFCRCAldKLT.O.) RCA1(I)=0.0
    G41PX1=G41PX2
    IF( ISPEC. EQ.l) GO TO 111
    ISPEC = 2

                               135
 00004610
 00004620
 00004630
 00004640
 00004650
.00004660
 00004670
 00004680
 00004690
 00004700
 00004710
 00004720
 00004730
 00004740
 00004750
 00004760
 00004770
 00004780
 00004790
 00004800
 00004810
 00004820
 00004830
 00004840
 00004850
 00004860
 00004870
 00004880
 00004890
 00004900
 00004910
 00004920
 00004930
 00004940
 00004950
 00004960
 00004970
 00004980
 00004990
 00005000
 00005010
 00005020
 00005030
 00005040
 00005050
 00005060
 00005070
 00005080
 00005090
 00005100
 00005110
 00005120
 00005130
 00005140
 00005150
 00005160
 00005170
 00005180
 00005190
 00005200
 OC005210
 00005220
 00005230
 00005240
 00005250
 00005260
 00005270
 00005280
 00005290
 00005300
 00005310
 00005320
 00005330
 00005340
 00005350
 00005360
 00005370

-------
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
553
559
560
561
562
563
564
565
566
567
569
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
C
C
C
    RCA2(I)=(642PX1-G42PX2J/BAVD2
    IF(RCA2(I).LT.O.) RCA2(I)=0.0
    G42PX1=G42PX2
    GO TO 111

    ISPEC = 1 WITH ICT = 1 OR ISPEC = 3
108 IF(K.GT.l) GO TO 109
    T1A=X1A/UTAUC
    T2A=X2A/UTAUC
    COMPUTE INTEGRAL FUNC=F3(T1A,T2A); FUN3 IS THE INTEGRAND FUNCTION
    MKMHIOmKmCKlt
    CALL D01AJFC FUN3,T1A,T2A,EPSABS,EPSREL,RESULT,
   1   ABSERR,WORK,LH,IW,NIW,IFAIL)
    KKKXKMKMKKKH
    FUNC=RESULT
    TERMB1=FUNC
    IF(ISPEC.EQ.l) GO TO 106
    TERMB2(I)=GAMMA*FUNC*VDC1/VDC2
    IFCISPEC.EQ.3) GO TO 109

    ISPEC = 1 WITH ICT = 1
106 RCA1(I)=((G41PX1-G41PX2)/VDC1-TERMB1)/BA1
    IF(RCA1(I).LT.O.) RCA1(I)=0.0
    RCAKI)=RCA1(I)*UINV
    G41PX1=G41PX2
    GO TO 111

    ISPEC = 3
  109 CALL PSG4P(G41PX2,G42PX2)
      IF(K.GT.l) GO TO 110
      TERMAl=t G41PX1-G41PX2 )/VDCl
      DUM1=(TERMA1-TERMB1 )/BAl
      IFCDUM1.LT.O. ) DUM1=0.0
      RCA1(I)=OUM1*UINV
      G41PX1=G41PX2
  110 TERMA2=(G42PX1-G42PX2)/VOC2
      OUM2=(TERMA2+TERMB2( I) )/BAl
      IF(DUM2.LT.O.) DUM2=0.0
      RCA2CTC I , K )=DUM2*UINV
      G42PX1=G42PX2
C
  111 CONTINUE
C     END LOOP ON 1=1,5 CALCULATION GRID SQUARES.
      GO TO 114
C
  112 DO 113 1=1,5
      RCA2CTI I,K )-RCA2CT( I,K-1 )
  113 CONTINUE
C
  114 CONTINUE
C
C
C
C
c
c
c
c
c
34
    END LOOP ON K=1,NAS AREA SOURCES IF ISPEC = 3
 LOOP THROUGH ALL AREA SOURCES.  EMISSIONS FROM EACH AREA SOURCE
   ARE APPORTIONED AMONG THE RECEPTOR GRID SQUARES WHOLLY OR
   PARTIALLY COVERED BY THE SOURCE.  EACH AFFECTED RECEPTOR GRID
   SQUARE IS TREATED AS A SOURCE.

    START LOOP ON K=1,HAS AREA SOURCES.
    DO 2429 K=1,NAS
    AREA= SIZE(K)*SIZE(K)
    AX1= XA(K)
    AX2= AX1 + SIZE(K)
    NX1= (AX1-XSWC)*V6RID + 5.
    NX2= (AX2-XSWC)*VGRID + 5.
    IF(NXl.GT.LX+8.0R.NX2.LT.l) GO TO 2429
    IF(NXl.GE.l) GO TO 32
    NX1= 1
    AX1= XSWC - 4.*GRID
    IF(NX2.LE.LX+8) GO TO 34
    NX2= LX+8
    AX2= XSWC * (ELX + 4.J*GRID
    Xl= XSWC * CFLOAT(NX11-5.)*GRID
    X2= XSWC + (FLOAT(NX2J-4.)*GRID
    AY1= YA(K)
00005380
00005390
00005400
00005410
00005420
00005430
00005440
00005450
00005460
00005470
00005480
00005490
00005500
00005510
00005520
00005530
00005540
00005550
00005560
00005570
00005560
00005590
00005600
00005610
00005620
00005630
00005640
00005650
00005660
00005670
00005680
00005690
00005700
00005710
00005720
00005730
00005740
00005750
00005760
00005770
00005780
00005790
00005800
00005810
00005820
00005830
00005840
00005850
00005860
00005870
00005880
00005890
00005900
00005910
00005920
00005930
00005940
00005950
00005960
00005970
00005980
00005990
00006000
00006010
00006020
00006030
00006040
00006050
00006060
00006070
00006080
00006090
00006100
00006110
00006120
00006130
00006140
                                          136

-------
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692







36


38

C
C




10


11


12
C
C
13



20


21


22
23
C
C U
C
C
C





C
C
C
C
C
C
C





C
C




C
C
242*


C
2426
C
C
2427
     AY2=  AY1  + SZZE(K)
     MY1=  NY,2)=SDF(NX,NY,2)+VD236«CINC2

     CONTINUE
     END LOOP ON L=l,5 CALCULATION GRID SQUARES WITH RECEPTORS.

     CONTINUE
00006150
00006160
00006170
00006180
00006190
00006200
00006210
00006220
00006230
00006240
00006250
00006260
00006270
00006280
00006290
00006300
00006310
00006320
00006330
00006340
00006350
00006360
00006370
00006380
00006390
00006400
00006410
00006420
00006430
00006440
00006450
00006460
00006470
00006480
00006490
00006500
00006510
00006520
00006530
00006540
00006550
00006560
00006570
00006580
00006590
00006600
00006610
00006620
00006630
00006640
00006650
00006660
00006670
00006680
00006690
00006700
00006710
00006720
00006730
00006740
00006750
00006760
00006770
00006780
00006790
00006800
00006810
00006820
00006830
00006840
00006850
00006860
00006870
00006880
00006890
00006900
00006910
                               137

-------
693
69*
695
696
697
698
699
700
701
702
703
70*
705
706
707
708
709
710
711
712
713
71*
715
716
717
718
719
720
721
722
723
72*
725
726
727
726
729
730
731
732
733
73*
735
736
737
738
739
7*0
7*1
7*2
7*3
7**
7*5
7*6
7*7
7*8
7*9
750
751
752
753
75*
755
756
757
758
759
760
761
762
763
76*
765
766
767
768
769
C
C
2*2(
C
C
242<
C
C
C
C
C »
C
C f
C
245
C
C
c :

c
c
c
C**j
c
C 1






246





C
C I
c
c
c




c
c
c
c









c
c
c









c
c




      END LOOP ON JY=NY1,NY2 ROMS OF THE RECEPTOR GRID.

2*28  CONTINUE
      END LOOP ON IX=NX1,NX2 COLUMNS OF THE RECEPTOR GRID.

2*29  CONTINUE
      END LOOP ON K=1,NAS AREA SOURCES.



C *** POINT SOURCES.

   HPEN= MINIMUM EFFECTIVE SOURCE HEIGHT NECESSARY FOR PLUME TO
     PENETRATE INVERSION.
      HPEN- PEN(ISCEN)*HMIX(ISCEN)


   IF NO POINT SOURCES, SKIP POINT SOURCE CALCULATIONS.
      IF(NPS.LT.l) GO TO 603



C***  POINT   SOURCE   CALCULATIONS  ***

   LOOP THROUGH ALL POINT SOURCES.
      DO 600 1=1,NPS
      IF((NUDOPT.6T.1.ANO.IHDOPT.GT.1).OR.NTOPT.EQ.2) 60 TO 2*6
      IFCNPRINT.EQ.O) GO TO 246
      IF((I-1)/50*50.NE.I-1) GO TO 2*6
      URITE(IUR,1005) TT,ISCEN,HMIX(ISCEN),HPEN
      HRITE(IHR,1007)
      IPS=I
      IF(HP(I).6E.HMIX(ISCEN)) 60 TO 600
      IRISE=2
      IBUOY=1
      EFF= 2 .*5*VP( I )*DP( I )*DP< I )*( TP( I )-TA< ISCEN ) )/TP( I)
      IF(EFF.LT.O.) EFF=1.0E-7

   CALCULATE INVERSE MIND SPEED (UINV) AT THE PHYSICAL HEIGHT (HP(D)
     OF POINT SOURCE I.  DO NOT CHANGE IF STACK HEIGHT IS LESS
     THAN 10 METERS.

      UINV = l./HS(ISCEN)
      IF(HP(I).GT.10.) UINV = UINV*((10./HP(I))**P(ISC))
      UPL=1.AIINV
      UINV1=UINV/100.
      DEFINE EMISSION RATES (SOURCE STRENGTHS) OF POLLUTANT SPECIES,
       AND NONDIMENSZONAL DEPOSITION AND SEDIMENTATION PARAMETERS.

      ISPEC = 1 OR 2 OR 3
      VDC1=VD1*UINV1
      WC1=W1*UINV1
      V11=VDC1-0.5*HC1
      V21=VDC1-HC1
      IFCV21.EQ.O.) GO TO *3
      R11=V11/V21
      R21=0.5*MC1/V21
   48 IF(ISPEC.EQ.l) GO TO 50
      ISPEC = 2 OR 3
      <32=EP(I,2)
      VDC2=VD2*UINV1
      HC2=M2*UINV1
      V12=VDC2-0.5*HC2
      V22=VDC2-MC2
      IF(V22.EQ.O.) SO TO 49
      R12=V12/V22
      R22=0.5*MC2/V22
   49 IFUSPEC.EQ.2) GO TO 51

      ISPEC = 3
      IFCQ1.EQ.O.) qi=l.E-6
      V13=V11-0,5*(MC1-MC2)
      IF(V21.EQ.O.) 60 TO 50
00006920
00006930
000069*0
00006950
00006960
00006970
00006980
00006990
00007000
00007010
00007020
00007030
00007040
00007050
00007060
00007070
00007080
00007090
00007100
00007110
00007120
00007130
00007140
00007150
00007160
00007170
00007180
00007190
00007200
00007210
00007220
00007230
000072*0
00007250
00007260
00007270
00007280
00007290
00007300
00007310
00007320
00007330
000073*0
00007350
00007360
00007370
00007380
00007390
00007*00
00007410
00007420
00007430
000074*0
00007*50
00007*60
00007*70
00007*80
00007*90
00007500
00007510
00007520
00007530
00007540
00007550
00007560
00007570
00007580
00007590
00007600
00007610
00007620
00007630
00007640
00007650
00007660
00007670
00007680
                                 138

-------
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846


C
C
c
C
c
C
c
C w
C

C
C I
c
c
c
c
c




247




248
249
C
C (
C
C
c

c





c
C I
c
12!



250

252



C
c :
c
c
253
C
c :
c
c
c

c
c
C !
C
C
C
275




     R13=V13/V21
     R23=0.5*WC2/V21

     ISPEC = 1 OR 3
  50 UTAUC=TAUC*UPL

  51 KLID=0
 *** PEAK EFFECTIVE SOURCE HEIGHT CALCULATIONS.

     IFUSC.LT.6) 60 TO 247

  DETERMINE WHETHER PLUME IS MOMENTUM-DOMINATED  (IBUOY=0),
                          OR BUOYANCY-DOMINATED  (IBUOY=1).
     IFUSC.EQ.6) BRI6C=115.28
     IFCISC.EQ.7) BRIGC=87.14
     IFt VP< I).GT.BRIGC*(TP( I )-TA(ISCEN) )*SQRT(TA< ISCEN) )/TP( II ) 1BUOY'
     SO TO 249
     AF= 21.425
     BF= 0.75
     IF(EFF.LT.S5. ) SO TO 248
     AF= 38.710
     BF= 0.6
     IF( 3.*VP( I )*OP< I ) .ST. AF*EFF**BF ) IBUOY=0
     CONTINUE

  CALL SUBROUTINE RISE WITH IRISE=2 TO GET PEAK EFFECTIVE SOURCE
    HEIGHT, ESW2).
     CALL RISE
     ximmtuxHKmtn
     IRISE=1
     IF(NPRINT.EQ.O) GO TO 1250
     IF(NWDOPT.LE.l.OR.IMDOPT.LE.l) WRITE(IHR,1010 )
    1 I >XP( I ) , YP( I ) ,EP( 1 ,1 ) , EP( 1 ,2 ) f HP( I ) ,DP( I ) » VP( I ) ,TP( I ) ,
    2 PRLU,IBUOY+1),PRLC2,IBUOY+1),DHL(IDWN),DWL(IDWN+1),UPL,ESH(2)

  CALCULATE DISTANCE AT WHICH PLUME REACHES MAXIMUM HEIGHT (PEAK).

1250 IFUBUOY.EQ.O) GO TO 252
     IFUSC.LT.6) GO TO 250
     PEAK=0. 00207148/1 UINV*SQRT(DTDZ(ISC-5)«9.8/TA(ISCEN) ) )
     SO TO 253
     PEAK=0.001*XS
     GO TO 253
     PEAK= 0.
     IF(ISC.GE.6) GO TO 253
     IF(ABS(VP(I)).LT.. 000001) 60 TO 253
     PEAK=(0.004*UINV*(DP(I)*(VP(I) + 3./UINV))**2)/VP(I)

  IF MAXIMUM EFFECTIVE SOURCE HEIGHT EXCEEDS HPEN, PLUME ESCAPES
    THE MIXING LAYER, AND SOURCE IS IGNORED.

     IF(ESH(2).GT.HPEN) GO TO 600

  IF MAXIMUM EFFECTIVE SOURCE HEIGHT EXCEEDS MIXING HEIGHT BUT
    NOT HPEN, PLUME DOES NOT ESCAPE THE MIXING LAYER, AND MAXIMUM
    EFFECTIVE SOURCE HEIGHT IS SET EQUAL TO THE MIXING HEIGHT.

     IF( ESH( 2 ) .GT.HMIX( ISCEN) ) ESHt 2 )=HMIX( ISCEN )
  SET LIMITS (XMIN,XMAX,YMIN,YMAX) ON PORTION OF RECEPTOR GRID
    EXAMINED FOR EACH SOURCE. THE EXTENT OF THIS PORTION DEPENDS
    ON SOURCE LOCATION, GRID DIMENSIONS, AND MIND DIRECTION.

     XMAX= XB2
     XMIN= XB1
     YMAX= YB2
     YMIN= YB1
     IFCXP(I)+60.0.LT.XB2) XMAX= XP(I) + 60.
 00007690
 00007700
 00007710
 00007720
 00007730
 00007740
 00007750
 00007760
 00007770
 00007780
 00007790
 00007800
 00007810
 00007820
 00007830
 00007840
 00007850
 00007860
 00007870
 00007880
 00007890
=000007900
 00007910
 00007920
 00007930
 00007940
 00007950
 00007960
 00007970
 00007980
 00007990
 00008000
 00008010
 00008020
 00008030
 00008040
 00008050
 00008060
 00008070
 00008080
 00008090
 00008100
 00008110
 00008120
 00008130
 00008140
 00008150
 00008160
 00008170
 00008180
 00008190
 00008200
 00008210
 00008220
 00008230
 00008240
 00008250
 00008260
 00008270
 00008280
 00008290
 00008300
 00008310
 00008320
 00008330
 00008340
 00008350
 00008360
 00008370
 00008380
 00008390
 00008400
 00008410
 00008420
 00008430
 00008440
 00008450
                                139

-------
847            IF(XP/TAN(WDMANG)
891            IF(XL1.6T.XMIN)XMIN=XU
892            IF(XL1.6T.XP{I))XMIN=XPCI)
893            YL2=YP(I)*(XB2-XP(I))*TAN(WDPAN6)
894            IF(YL2.LT.YMAX)YMAX=Yt2
895            IF(YL2.LT.YP(I))YMAX=YP(I)
896            GOT0320
897      300   IF(M)PAN6.6T.6.28)6070302
898            IF(MDMANG.L7.3.14)6070304
899            YMAX=YP(I)
900            XU=XP(I)+(YB1-YP(I))/7AN(HDMANG)
901            IF(XL1.67.XMIN)XMIN=XL1
902            IF(XL1.67.XP(I))XMIN=XP(I)
903            XL2=XP(I)+(YB1-YP(I))/TAN(HDPANG)
904            IF(XL2.L7,XMAX)XMAX=XL2
905            IF(XL2.L7.XP(I))XMAX=XPtI)
906            6070320
907      302   YMAX=YP
-------
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 93*
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 935
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
      IF(YL1.6T.YMIN)YMIN=YL1
      IF(YL1.GT.YP(I))YMIN=YP(I)
      YL2=YP(I)+< XB1-XP(I))*TAN(WDMANG)
      IF(YL2.LT.YMAX)YMAX=YL2
      IFCYL2.LT.YP(I))YMAX=YPm
      GOT0320
312   XL2=XP(I)+(YB2-YP(I))/TAN(WDMANG)
      IF(XL2.LT.XMAX)XMAX=XL2
      IFCXL2.LT.XPtI))XMAX=XP(I)
      YL1=YP(I)+(XBl-XP(I))*TAN(WDPANG)
      IF(YL1.6T.YMIN)YMIN=YL1
      IF(YL1.ST.YP(I))YMIN=YP(I)
      SOT0320
314   XL2=XP(I)+(YBl-YPm)/TAN(WDPANG)
      IF
-------
1001
1002
1003
1004
1005
1006
1007
1003
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077













C
C
C
C
C

C
C
C

C

C

C
C
C

C

C

C
C
C


C

C



C

C

C







C













C
C
C
C
C
    XM=OIST*1000.
    IF(XM.SE.10000.)  GO TO 323
    SIGY=CXltISC)*(XM**DX1(ISC))
    60 TO 324
323 SIGY=CX2(ISC)*(XM**DX2(ISC))
324 YM=XM*TAN(DELTA)
    DUMY=YM/SIGY
    ARG=0.5*OUMY*DUMY
    IF(ARG.GE.EXPMIN) SO TO 325
    EXPA=EXP(-ARG)
    GO TO 326
325 EXPA=1.
326 PYC=(AlB/SIGY)tiEXPA
    DETERMINE PROBABILITY DENSITIES OF VERTICAL DISTRIBUTIONS
    OF  SPECIES-1 AND SPECIES-2 POLLUTANT CONCENTRATIONS.

    IFCDIST.6T.D47) GO TO 330
     NEAR-SOURCE REGION (DIST .LE. D47).
    CALCULATE QZC1 AND QZC2 FROM QZCAL (MODULE M=l).
    CALL QZCAL
    XXXXXXXXKXXM
    GO TO 350

330 IF(DIST.LT.DSO) GO TO 331
**** WELL-MIXED REGION (DIST .GE. D80).
    CALCULATE QZC1 AM) QZC2 FROM QZCAL (MODULE M=2).
    CALL QZCAL
    XXXXXXXXXXXM
    GO TO 350

331 IFCKUD.EQ.l) GO TO 337
    CALCULATE QZC1 AND QZC2 FOR POLLUTANT SPECIES
    AT DIST=D47 AND DIST=D80 FOR USE IN INTERPOLATION
    IN PLUME-TRAPPING REGION.
    DUMX=OIST
    DIST=D47
    JHHHHHHHHHHH»
    CALL QZCAL
    XXXXXXXXXXXH
    QZC11=QZC1
    IF(ISPEC.EQ.l) 60 TO 332
    QZC21=QZC2

332 DIST=D80
    XXXXXXXXXXXH
    CALL QZCAL
    QZC12=QZC1
    IRC1=1
    IF(QZC11.EQ.O.OR.QZC12.EQ.O. ) IRC1=0
    IF(ISPEC.EQ.l) GO TO 333
    QZC22=QZC2
    IRC2=1
    IF(QZC21.EQ.O.OR.QZC22.EQ.O.) IRC2=0

333 KLID=1
    DIST=DUMX
    IF(IRCl.EQ.O) 60 TO 334
    DIFX1=ALOG( D80/D47 )
    DIFC1=AL06( QZC12/QZC11 )
    GO TO 335
334 DIFC1=QZC12-QZC11
335 IF(ISPEC.EQ.l) GO TO 337
    IFCIRC2.EQ.O) £0 TO 336
    DIFX2=ALCG(D80/D47)
    DIFC2=ALOG( QZC22/QZC21 )
    GO TO 337
336 DIFC2=QZC22-QZC21

****  PLUME-TRAPPING REGION (D47 < OIST < D80).
    CALCULATE QZCZ AND QZC2 BY LINEAR INTERPOLATION
    (BETWEEN VALUES AT DIST=D47 AND DIST=D80) ON
    A LOG- LOG PLOT OF QZC VERSUS DOWNWIND DISTANCE.
00010000
00010010
00010020
00010030
00010040
00010050
00010060
00010070
00010080
00010090
00010100
00010110
OC010120
00010130
00010140
00010150
00010160
00010170
00010180
00010190
00010200
00010210
00010220
00010230
00010240
00010250
00010260
00010270
00010280
00010290
00010300
00010310
00010320
00010330
00010340
00010350
00010360
00010370
00010380
00010390
00010400
00010410
00010420
00010430
00010440
00010450
00010460
00010470
00010480
00010490
00010500
00010510
00010520
00010530
00010540
00010550
00010560
00010570
00010580
00010590
00010600
00010610
00010620
00010630
00010640
00010650
00010660
00010670
00010680
00010690
00010700
00010710
00010720
00010730
00010740
00010750
00010760
                                 142

-------
1078
1079
1080
1081
1083
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
C
C
337




338

339
C





340

C
C
C
C
C
C
C
C
C
350



355




C
C


C
C
360
C
365


370
C
500
C
C
600
C
C
C
C
C ***
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
603
IF EITHER OF THE QZC VALUES AT D47 AND D80 ARE
ZERO, USE A LINEAR PLOT FOR INTERPOLATION.
IFURC1.EQ.O) 60 TO 338
RATX1=ALOG(DIST/D47)/DIFXl
QZC1L=ALOG(QZC11)+RATXl*DIFCl
QZC1=EXP(QZC1L)
60 TO 339
RATX1=(DIST-D47)/D8047
9ZC1=QZC11 +RATX1WIFC1
IF(ISPEC.EOJ.l) 60 TO 350

IFURC2.EQ.O) GO TO 340
RATX2=ALOG(DIST/D47)/DIFX2
QZC2L=ALOG(QZC21)+RATX2*DIFC2
QZC2=EXP(QZC2L)
60 TO 350
RATX2=(DIST-D47)/D8047
QZC2=QZC21+RATX2*DIFC2
CALCULATE GROUND-LEVEL CONCENTRATIONS CONC (MICROGRAMS PER CUBIC
METER) AND SURFACE DEPOSITION FLUX SDF (MICROGRAMS PER SQUARE
METER PER HOUR) OF POLLUTANTS AT RECEPTOR IN COLUMN IX, ROM JY
OF THE RECEPTOR GRID DUE TO POINT SOURCE I.

ISPEC = 1 OR 2 OR 3
Cl=Ql*UINV*PYC*qZCl
IF(NCSOPT.EQ.O) 60 TO 355
CALL WORSTCIX.JY.Cl)
IFCNTOPT.GT.l) CONC(IX,JY,2)=CONC(IX,JY,2) + Cl
CINC1=C1*STCONV
CONCCIX,JY,1)=CONC(IX,JY,1HCINC1
SOF(IX,JY,1)=SOF(IX,JY,1)+VD136*CINC1
IF
-------
1155
1156
1157
lisa
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
122C
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
C
c TIME AVERAGING: wropr=2 OR 3
c
IF(NCSOPT.ST.O) CALL HOROUT
IFCISCEN.NE.NSCEN) 60 TO 100
CALL OUTMOO
SO TO 999
C
c NO TIKE AVERAGING: NTOPT=I
c
620 CALL OUTMOO
IF(ISCEN.NE.NSCEN) GO TO 100
IF(NWDOPT.LE.l) GO TO 999
IF(IWDOPT.LT.4) GO TO 100
C
999 IF(NMAX.GT.O) CALL MAXOUT
C
STOP
C
C
1005 FORMAT(1H1,45X>' POLLUTION EPISODIC MOOELV//4X, 'OUTPUT: ',20A4//
14X, 'SCENARIO', 12 ,4X, 'POINT SOURCE PLUME RISE CALCULATIONS'/
221X, 'MIXING HEIGHT: HMIX=',F7.2,' M'/
321X,'IF MAXIMUM EFFECTIVE SOURCE HEIGHT IS GREATER THAN SF7.1,
4' M, THE SOURCE IS IGNORED1/)
1007 FORMATC14X, 'SOURCE ' ,8X, ' EMISSION RATES' ,61X, 'HIND SPEED AT' ,4X,
1 'MAXIMUM1/' POINT1, 6X, 'COORDINATES', 4X, 'POL-1' ,6X, 'POL-21 ,4X,
2 'HEIGHT DIAMETER EXIT VEL EXIT TEMP' ,6X, 'DOMINANT' ,5X,
00011540
00011550
00011560
00011570
00011580
00011590
00011600
00011610
00011620
00011630
00011640
00011650
00011660
00011670
00011680
00011690
00011700
00011710
00011720
00011730
00011740
00011750
00011760
00011770
00011780
00011790
00011800
00011810
3 'STACK HEIGHT ' ,4X, ' EFFECTIVE'/1 SOURCE' ,3X, 'X( KM)' ,4X, 'Y( KM)' ,3X, 00011820
4 >(G/S)1,6X,'
END
C
C
SUBROUTINE QZCAL
C SUBROUTINE QZCAL (VERSION 82360), PART OF PEM.
C
C
C SUBROUTINE QZCAL CALCULATES QZC1 AND QZC2, REPRESENTING THE
C PROBABLITY DENSITIES OF VERTICAL DISTRIBUTIONS OF CONCENTRATIONS
C OF POLLUTANT SPECIES 1 AND 2, RESPECTIVELY, AT A GIVEN
C DISTANCE DOUNMIND OF A POINT SOURCE.
C
C
C *** PEM ALGORITHMS AND PROGRAM DEVELOPMENT: 	 DECEMBER 1982
C
C K. SHANKAR RAO, PHYSICAL RESEARCH SCIENTIST
C ATMOSPHERIC TURBULENCE AND DIFFUSION LABORATORY (ATDL)
C NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (NOAA)
C U.S. DEPARTMENT OF COMMERCE, P.O. BOX - E
C OAK RIDGE, TENNESSEE 37830
c PHONE: (615) 576-1238
C FTS: 626-1238
C
C ( THIS WORK HAS DONE UNDER AN ZNTERA6ENCY AGREEMENT
C BETWEEN THE ENVIRONMENTAL PROTECTION AGENCY AND THE
C NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION )
C
C
c
COMMON/PEMCOM/CONC(50,50,2),SDF(50,50,2), TT120),
1 XP( 300 ) , YP( 300 ) , EP( 300 ,2 ) ,HP( 300 ) ,DP( 300 ) ,VP( 300 ) ,TP( 300 ) ,
2 XA(50),YA(50)»EA(50,2),SIZE(50),
3 HOC 24) ,WS( 24 ) ,TA( 24 ) ,HMIX( 24) ,PEN( 24) ,
4 AX(7,3),BX(7,3),P(7)*SCLAB(7),DTDZ(2), SECTANC16),
5 XSWC,YSWC,GRID,LX,LY, A( 2) ,B( 2 ),POLNA?1( 3,2 ),CALNAM( 7,2),
6 ITA,IRD,IHR,IDSK, 080, 047, D8047.DIST, DELTA,
7 ESH(2),PEAK,IBUOY,IRISE,IDWN,EFF,XS, UINV.WVEC,
8 HAS , NPS , INDEX , IGRID , IAV , ISCEN , IWDOPT, IWO , ISC , IPS ,
9 NTOPT . NWDOPT , NWSOPT , NSCEN , NLIST , NARRAY , NT APE , NCSOPT , NMAX ,
* NSTDWN, INTER, NPRINT
C
COMMON/PARM1/NPOL,ICT,VD1,H1,VD2,H2,TAUC
COMMON/PARM1A/GAMMA
COMMON/PARM2/ISPEC , UTAUC , Q2Q1 , XCT , EXCT
00011830
00011840
00011850
00011860
00011870
00011880
00011890
00011900
00011910
00011920
00011930
00011940
00011950
00011960
00011970
00011980
00011990
00012000
00012010
00012020
00012030
00012040
00012050
00012060
00012070
00012080
00012090
00012100
00012110
00012120
00012130
00012140
00012150
00012160
00012170
00012180
00012190
00012200
00012210
00012220
00012230
00012240
00012250
00012260
00012270
00012280
00012290
00012300
144

-------
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
C
c
C

c
c
c
c
      COMMON/PARM3/HC,VDC1,WC1, VDC2, HC2
      COMMON/PARM4/V11,V21,V12,V22fV13
      COMMON/PARM5/D11,021,012,022,031,032,033,06
      COMMON/PARM6/R11,R21,R12,R22,R13,R23,R31,R41,R32,R42
      COMMON/PARM7/QZC1,QZC2
      COMMON/BLOCK1/PI,SQPI,SQRT2,A1B,A1C
      COMnON/BLOCK2/AI,BI,EPSABS,EPSREL,U4,NXM
      COMMON/EXPCHK/EXPMAX,EXPMIN,ETAMAX
      EXTERMAL FUN!
      REALMS FUN1
      REAL*8 WORK(800>tAI,BI,EPSABS,EPSREL.RESULT,ABSERR
      DIMENSION IWU02)
    IF(DIST.BE.PEAK) GO TO 5

 CALL SUBROUTINE RISE FOR EFFECTIVE SOURCE HEIGHT AT DOWNWIND
   DISTANCE = DIST, LESS THAN DISTANCE TO MAXIMUM HEIGHT (PEAK).
    KKII Mil KM MMM Mil
    CALL RISE
    ************
    HGT= ESH(l)
    GO TO 6
C
C
C
 USE MAXIMUM EFFECTIVE SOURCE HEIGHT, SINCE DOWNWIND DISTANCE
   EXCEEDS THE DISTANCE TO MAXIMUM HEIGHT.
5   HGT= ESM2)
6   JD=2
    IF(DIST.LT.O.S) JD=1
    IFCDIST.GT.5.0) JD=3
C
C
C
c
c
c
c
c
    HL=HMIX(ISCEN)
    X=OIST
    XM=X*1000.
    SIGZ= AX(ISC,JD)*(XM«*BX(ISC,JD))
    IF(SIGZ.GT.5000.) SIGZ=5000.
    SZ=SIGZ
    C2=SQRT2*SZ
    HC=H6T/C2
    XC=XM/C2

    ISPEC = 1 OR 2 OR 3
    D31=2.*V11«XC
    D11=WC1*XC
    021=011*011
    R31=l.+2.*021
    R41=2.*011/SQPI
    IF(ISPEC.EQ.l) GO TO 9

    ISPEC = 2 OR 3
    032=2.»V12*XC
    D12=WC2*XC
    022=012*012
    R32=l.+2.*022
    R42=2.*D12/SQPI
    IFCISPEC.EQ.2) GO TO 10

    ISPEC = 3
    033=2.*V13*XC
    06=4.*SQPI*
-------
1309
1310
1311
1312
1313
131*
1315
1316
1317
1319
1319
1320
1321
1322
1323
132*
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
11 QZC1=0.0
QZC2=0.0
RETURN
C
c
C **** NEAR-SOURCE REGION (X .LE. D47).
C
100 K=l
A1=A1B/SZ
C3=HC*HC
IF(C3.GE.EXPMIN) SO TO 11
A2=1./EXP(C3>
C
C ISPEC = 1 OR 2 OR 3
C SPECIES-1 (PRIMARY) POLLUTANT: GAS OR PARTICLES.
ETA1=HC+D31
ETA1SQ=ETA1*ETA1
IF(ETAISQ.GT.EXPMAX) CALL ARGCHK(ETAI.ETAISQ)
B11=EXP( ETA1SQ )*ERFCt ETA1 )
ALPHA1=A1C*D31*B11
SUM=2.-ALPHA1
IF(SUM) 115,115,116
115 G21P=0.0
GO TO 120
116 IFCWCl.EQ.O.) 60 TO 117
BETA1=-2.*011*HC+D21
CALL EXPO(-BETAl.EBTl)
GO TO 118
117 EBT1=1.0
118 G21P=EXCT*EBT1*A2*SUH
120 QZC1=A1*G21P
IF( ISPEC. EQ.l) RETURN
C
C
C ISPEC = 2 OR 3
C SPECIES-2 (SECONDARY) POLLUTANT: GAS OR PARTICLES.
ETA2=HC+032
ETA2S<3=ETA2*ETA2
IF(ETA2SQ.6T.EXPMAX) CALL ARGCHKtETA2,ETA2SQ)
B12=EXP( ETA2SQ )*ERFCt ETA2 )
ALPHA2=A1C*032*B12
SUM1=2.-ALPHA2
IFdSPEC.EQ.3) GO TO 145
C
C ISPEC = 2
IF(SUtll) 135,135,140
135 622P=0.0
QZC2=0.0
RETURN
140 IF(WC2.EQ.O.) GO TO 141
BETA2=-2 . *012*HC+D22
CALL EXPO(-BETA2,EBT2)
GO TO 142
141 EBT2=1.0
142 G22P=EBT2*A2*SUM1
QZC2=A1*G22P
RETURN
C
C ISPEC = 3
145 TERMl=(Q2Ql+GAmA)*A2*SUMl
C
ETA3=HC+D33
ETA3SQ=ETA3*ETA3
IF(ETA3SQ.GT.EXPMAX) CALL ARSCHK(ETA3,ETA3SQ)
B13=EXP( ETA3SQ )*ERFCt ETAS)
ALPHA3=A1C*D33«B13
TERM2=-GAMMA*EXCT*A2*( 2 . -ALPHAS )
C
IF(V21.EQ.V22) GO TO 150
C COMPUTE INTEGRAL FUNC=F1(XC,0. ;HC); FUN1 IS THE INTEGRAND
CALL D01AJF(FUN1,AI,BI,EPSABS,EPSREL, RESULT,
1 ABSERR,MORK,LH,IU,NIM,IFAIL)
RES=RESULT
FUNC=RES/PI
TERM3=-GAMMAJK)6*FUNC
C
150 SUMT=TERM1+TERM2+TERM3
00013080
00013090
00013100
00013110
00013120
00013130
00013140
00013150
00013160
00013170
00013180
00013190
00013200
00013210
00013220
00013230
00013240
00013250
00013260
00013270
00013280
00013290
00013300
00013310
00013320
00013330
00013340
00013350
00013360
00013370
00013380
00013390
00013400
00013410
00013420
00013430
00013440
00013450
00013460
00013470
00013480
OC013490
00013500
00013510
00013520
00013530
00013540
00013550
00013560
00013570
OOC13580
00013590
00013600
00013610
00013620
00013630
00013640
00013650
00013660
00013670
00013680
00013690
00013700
00013710
00013720
00013730
00013740
00013750
00013760
FUNCTION00013770
00013780
00013790
00013800
00013810
00013820
00013830
00013340
146

-------
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462












C
C
C
C
C
C
C
C
C








C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C












C
C
C
    IF(SUIT) 155,155,160
155 G22P=0.0
    QZC2=0.0
    RETURN
160 IF(WC2.EQ.O.) 60 TO 161
    BETA2=-2.*D12*HC+D22
    CALL EXPO(-BETA2,EBT2)
    GO TO 162
161 EBT2=1.0
162 G22P=EBT2*SUMT
    QZC2=A1*G22P
    RETURN
**** HELL-MIXED REGION (X .GE. 080).

    IN THIS REGION, THE CONCENTRATION BELOW THE MIXIN6 HEIGHT IS
    UNIFORM REGARDLESS OF THE SOURCE OR RECEPTOR HEIGHTS BECAUSE
    OF THOROUGH MIXING OF POLLUTANT BETWEEN THE GROUND AND THE
    MIXING HEIGHT.

200 (1=2
    A1A=1000./HL
    CALL PSG4P(G41P,642P)
    qZCl=AlA*G41P
    IF(ISPEC.EQ.l) RETURN
    QZC2=A1A*G42P
    RETURN
    END
    SUBROUTINE PSG4P(G41P,G42P)
                     SUBROUTINE PSG4P (VERSION 82360), PART OF PEM.
    THIS SUBROUTINE CALCULATES AND RETURNS VALUES OF G41P AND G42P.
    THESE ARE NONDIMENSIONAL VERTICALLY-INTEGRATED PROBABILITY
    DENSITY FUNCTIONS USED IN THE WELL-MIXED REGION CONCENTRATION
    ALGORITHMS FOR SPECIES-1 AND SPECIES-2, RESPECTIVELY, DOWNWIND
    OF A POINT SOURCE.  THESE FUNCTIONS ARE INDEPENDENT OF BOTH
    SOURCE HEIGHT AND RECEPTOR HEIGHT.  THIS SUBROUTINE IS
    USED BY BOTH POINT AND AREA SOURCES.  FOR AREA SOURCES,
    G41P AND G42P REPRESENT SUSPENSION RATIOS OF POLLUTANTS.
*** PEM ALGORITHMS AND PROGRAM DEVELOPMENT: 	 DECEMBER 1982

    K. SHANKAR RAO, PHYSICAL RESEARCH SCIENTIST
    ATMOSPHERIC TURBULENCE AND DIFFUSION LABORATORY (ATOL)
    NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (NOAA)
    U.S. DEPARTMENT OF COMMERCE, P.O. BOX - E
    OAK RIDGE. TENNESSEE 37830
    PHONE : C615) 576-1238
             FTS: 626-1238

    ( THIS WORK WAS DONE UNDER AN INTERAGENCY AGREEMENT
    BETWEEN THE ENVIRONMENTAL PROTECTION AGENCY AND THE
    NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION )
    EXTERNAL FUN2
    REAL*8 FUN2
    REAL*8 WORK(800),AI,BI,EPSABS,EPSREL,RESULT,ABSERR
    DIMENSION IWU02)
    COMMON/PARMIA/GAMMA
    COMMON/PARM2/ISPEC,UTAUC,Q2Q1,XCT,EXCT
    COMMON/PARM4/V11,V21,V12,V22,V13
    COMMON/PARM5/D11,021,012,022,031,D32,D33,D6
    COMMON/PARM6/R11,R21,R12,R22,R13,R23,R31,R41,R32,R42
    COMMON/BLOCK1/PI,SQPI,SQRT2,A1B,A1C
    COMMON/BLOCK2/AI.BI,EPSABS.EPSREL.LW.NIW
    COMMON/EXPCHK/EXPMAX,EXPMIN,ETAMAX
    ISPEC = 1 OR 2 OR 3
00013850
00013860
00013870
00013880
00013890
00013900
00013910
00013920
00013930
00013940
00013950
00013960
00013970
00013980
00013990
00014000
00014010
00014020
00014030
00014040
00014050
00014060
00014070
00014080
00014090
00014100
00014110
00014120
00014130
00014140
00014150
00014160
00014170
00014180
00014190
00014200
00014210
00014220
00014230
00014240
00014250
00014260
00014270
00014280
00014290
00014300
00014310
00014320
00014330
00014340
00014350
00014360
00014370
00014380
00014390
00014400
00014410
00014420
00014430
00014440
00014450
00014460
00014470
00014480
00014490
00014500
00014510
00014520
00014530
00014540
00014550
00014560
00014570
00014580
00014590
00014600
00014610
                                147

-------
1463
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
C***** SPECIES-1 (PRIMARY) POLLUTANT: GAS OR PARTICLES.
C
      IF(D21.ET.EXPMAX) CALL ARGCHKC011,021)
      B11=EXP(D21)*ERFC( Oil)
      IF(V21.EQ.O.) GO TO 201
      D31SQ=D31*D31
      IFCD31SQ.GT.EXPMAX) CALL ARGCHK(D31,D31Sd)
      SUf1=Rll*< EXPC D31SQ )*ERFC( D31) )-R21*Bll
      60 TO 202
  201 SUM=R31*B11-R41
  202 IF(SUM.LT.O.) SUM=0.0
      G41P=EXCT»EXP(-021)»SUM
      IF(ISPEC.EQ.l) RETURN
C
C     ISPEC = 2 OR 3
C***** SPECIES-2 (SECONDARY) POLLUTANT: GAS OR PARTICLES.
C
      IF(D22.ST.EXPMAX) CALL ARGCHK(012,022)
      B12=EXP(022)*ERFC(D12)
      IFCV22.EQ.O.) GO TO 203
      03250=032*032
      IF(D32Sq.ST.EXPMAX) CALL ARGCHK(D32,D32SQ)
      SUMl=R12*(EXP(D32Sq)»ERFC(D32))-R22*B12
      GO TO 204
  203 SUM1=R32*B12-R42
  204 IFUSPEC.EQ.3) GO TO 205
C
C     ISPEC = 2
      IF(SUM1.LT.O.) SUM1=0.0
      G42P=EXP(-022)*SUM1
      RETURN
C
C     ISPEC = 3
  205 TERMl=(Q2qi+GAMMA)*SUHl
C
      IF(V21.EQ.O.) GO TO 206
      D33SQ=D33*D33
      IF(D33SQ..GT.EXPMAX) CALL ARGCHK(D33,D33SQ)
      SUM2=R13*tEXP5D33SQ)*ERFClD33))-R23*B12
      GO TO 207
  206 SUM2=R32*B12-R42
  207 TERM2=-GAMMA*EXCT*SUM2
C
      IF(V21.EQ.V22) GO TO 208
C     COMPUTE INTEGRAL FUNC=F2(XC); FUN2 IS THE INTEGRAND FUNCTION.
      CALL D01AJF(FUN2.AI»3I.EPSABS,EPSREL.RESULT,
     1  ABSERR,WORK,LH,IH,NIH,IFAIL)
      RES=RESULT
      FUNC=RES/(2.*PI)
      TERM3=-GAMMA*D6*FUNC
      GO TO 209
  208 TERM3=0.0
C
  209 SUMT=TERM1+TERM2+TERM3
      IFtSUMT.LT.O.) SUMT=0.0
      G42P=EXP(-022)*SUMT
      RETURN
      END
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
DOUBLE PRECISION FUNCTION FUNKT)
REAL*8 T,TERM1,TERM2,TERM3
                REAL«8 FUNCTION FUNK VERSION 82360), PART OF PEN
          00014620
          00014630
          00014640
          00014650
          00014660
          00014670
          00014680
          00014690
          00014700
          00014710
         .00014720
          00014730
          00014740
          00014750
          00014760
          00014770
          00014780
          00014790
          00014800
          00014810
          00014820
          00014830
          00014840
          00014850
          00014860
          00014870
          00014880
          00014890
          00014900
          00014910
          00014920
          00014930
          00014940
          00014950
          00014960
          00014970
          00014980
          00014990
          00015000
          00015010
          00015020
          00015030
          00015040
          00015050
          00015060
          00015070
          00015080
          00015090
          00015100
          00015110
          00015120
          00015130
          00015140
          00015150
          00015160
          00015170
          00015180
          00015190
          00015200
          00015210
          00015220
INTEGRAND FUNCTION USED IN THE NUMERICAL INTEGRATION IN
QZCAL (FOR POINT SOURCES) IS DEFINED HERE.
PEM ALGORITHMS AND PROGRAM DEVELOPMENT: DECEMBER 1982
K. SHANKAR RAO
NOAA-ATDL, P.O. BOX-!-
OAK RIDGE, TENN 37830
      COMMON/PARM2/ISPEC,UTAUC,Q2Q1,XCT,EXCT
      COMMON/PARM3/HC,VDC1,HC1,VDC2,WC2
          00015230
          00015240
          C0015250
SUBROUTINEOQ015260
          00015270
          00015280
          00015290
          00015300
          00015310
          00015320
          00015330
          00015340
          00015350
          00015360
          00015370
                                            148

-------
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616



C
C



C




C








C





C





C
C


C
C
C
C
C
C
C
C
C
C
C
C
C






C
C







C



C








C
C



C




C








C





C





C
C


C
C
C
C
C
C
C
C
C
C
C
C
C






C
C







C



C






COMMON/PAR M5/D11,D21,D12,D22,D31,D32,D33, 06
COMMON/BLOCK1/PI,SQPI,SQRT2,A1B,A1C
COMMON/EXPCHK/EXPMAX , EXFMIN , ETAMAX


SQT=SqRT(T)
SqiT=SqRT(l.-T)
HCl=HC/SqT

ARG1= -(HC1*HC1)-(T*XCT>
CALL EXPO(ARG1,EXP1)
IFfEXPl.EQ.O. ) GO TO 10
TERM1= EXPl/(SqT*SqiT)

ETA4=HCl+033*SqT
ETA4Sq=ETA4*ETA4
IF(ETA4Sq.GT.EXPMAX) CALL AR6CHK(ETA4,ETA4SQ)
TERM2A= EXP( ETA4SQ )*ERFC( ETA4 )
HClSq=HCl*HCl
IF(HClSq.GT.EXPMAX) CALL ARGCHK(HC1,HC1SQ)
TERM2= 1. -SQPI*( ETA4-HC1 )*TERM2A
IF(TERM2.LE.O.) GO TO 10

ETA5=032*SQ1T
ETA5Sq=ETA5*ETA5
IF(ETASSQ.GT.EXPMAX) CALL ARGCHK(ETA5,ETA5SQ)
TERM3=1 . -SqPI*ETA5*( EXP( ETA5SQ )*ERFC( ETAS ) )
IF(TERM3.LE.O.) GO TO 10

FUN1=TERM1*TERM2*TERM3
60 TO 11
10 FUN1=0.0
11 RETURN
END


DOUBLE PRECISION FUNCTION FUN2(T)
REAL»S T
REALMS FUNCTION FUN2 (VERSION 82360),


INTEGRAND FUNCTION USED IN THE NUMERICAL INTEGRATION
PSG4P (FOR POINT AND AREA SOURCES) IS DEFINED HERE.


PEM ALGORITHMS AND PROGRAM DEVELOPMENT: DECEMBER 1982
K. SHANKAR RAO
NOAA-ATDL, P.O. BOX-E
OAK RIDGE, TENN 37830


COMMON/PARM2/ISPEC , UTAUC , 32Q1 , XCT , EXCT
COMMON/PARM4/V11 , V21 , V12 , V22 , V13
COMMON/PARM5/011,D21,D12,D22,D31,032,033,D6
COMMON/PARM6/R11,R21,R12,R22,R13,R23,R31,R41,R32.R42
COMMON/BLOCK1/PI , SqPI , SQRT2 , A1B , A1C
COMMON/EXPCHK/EXPMAX , EXPMIN , ETAMAX


sqT=sqRT(T)
SQ1T=SQRT(1.-T)
ETA4=D33*SqT
ETA5=D32*SqiT
ETA6=012*SqiT
ETA6Sq=ETA6*ETA6
IF(ETA6SQ.GT.EXPMAX) CALL ARGCHK(ETA6,ETA6SQ)

ARG1=T*XCT
EXP1=EXP(-AR61)
TERMl=EXPl/SqT

IF(ETA4.£q.O.) GO TO 10
ETA4Sq=ETA4*ETA4
IF(ETA4Sq.GT.EXPMAX) CALL ARGCHK(ETA4,ETA4SQ)
TERM2=1.-SQPI*ETA4*(EXP(ETA4SQ)*ERFC(ETA4))
IF(TERM2.LT.O.) TERM2=0.
GO TO 11
00015380
00015390
00015400
00015410
00015420
00015430
00015440
00015450
00015460
00015470
00015480
00015490
00015500
00015510
00015520
00015530
00015540
00015550
00015560
00015570
00015580
00015590
00015600
00015610
00015620
00015630
00015640
00015650
00015660
00015670
00015680
00015690
00015700
00015710
00015720
00015730
00015740

PART OF PEM. 00015750
00015760
00015770
IN SUBROUTINE00015780
00015790
00015800
00015810
00015820
00015830
00015840
00015850
00015860
00015870
00015880
00015890
00015900
00015910
00015920
00015930
00015940
00015950
00015960
00015970
00015980
00015990
00016000
00016010
00016020
00016030
00016040
00016050
00016060
00016070
00016080
00016090
00016100
00016110
00016120
00016130
149

-------
1617
1618
1619
16ZO
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693

C








c




C



c
c


c
c
c
c
c
c
c
c
c
c
c
c
c







c
c










c



c







c



c




c
10 TERM2=1.

11 IF(V22.EQ.O.) SO TO 12
   ETA5SQ=ETA5*ETA5
   IF(ETASSQ.GT.EXPMAX) CALL AR6CHK(ETAS,ETA5SQ)
   T3A=EXP(ETA5SQ)*ERFCC ETAS)
   T3B=EXP(ETA6SQ)*ERFC(ETA6)
   TERM3=R12*T3A-R22*T3B
   IF(TERM3.LT.0.) TERM3=0.
   SO TO 13

12 T3A=(1.+2.*ETA6SQ)*< EXP(ETA6SQ)*ERFCC ETA6))
   T3B=2.*ETA6/S<3PI
   TERM3=T3A-T3B
   1F(TERM3.LT.O.) TERM3=0.

13 FUN2=TERM1*TERM2*TERM3
   RETURN
   END
   DOUBLE PRECISION FUNCTION FUN3(T)
   REAL*8 T
                  REAL*8 FUNCTION FUN3 (VERSION 82360). PART OF PEN.
   INTEGRAND FUNCTION USED IN THE NUMERICAL INTEGRATION FOR AREA
   SOURCES IN MAIN PROGRAM IS DEFINED HERE.
   PEM ALGORITHMS AND PROGRAM DEVELOPMENT: DECEMBER 1982
   K. SHANKAR RAO
   NOAA-ATDL, P.O. BOX - E
   OAK RIDGE. TENN 37830
   COMMON/PARM2/ISPEC,UTAUC,Q2Q1,XCT,EXCT
   COMMON/PARM2A/AA,BA
   COMMON/PARM3/HC,VDC1,MCI,VDC2,WC2
   COMMON/PARM4/V11,V21,V12,V22,V13
   COMMON/PARM6/R11,R21,H12,R22,R13,R23,R31,R41,R32,R42
   COMMON/BLOCK1/PI,SQPI,SQRT2,A1B,A1C
   COMMON/EXPCHK/EXPMAX,EXPMIN,ETAMAX
   ON=SQRT2*AA
   BA1=1.-BA
   UTBA1=(UTAUC)**BA1
   Pl=2.*V11*UTBA1/DN
   TBA1=T*«BA1
   ETA1=P1*TBA1
   ETA1SQ=ETA1»ETA1
   IF(ETAISQ.ST.EXPMAX) CALL ARGCHKtETAl.ETAlSQ)
   TERM=EXP(ETA1SQ)*ERFCt ETA1)
   EXP1=EXP(-T)

   IFtWCl.NE.O.) GO TO 11
10 SUM=TERM
   GO TO 13

11 IF(V21.EQ.O.) 60 TO 12
   P2=WC1*UTBA1/DN
   B1=P2*TBA1
   BlSq=Bl*Bl
   IF(BISQ.GT.EXPMAX) CALL ARGCHMBI.BISQ)
   SUM=EXP(-BISq)*(R11*TERM-R21*(EXP(31SQ)*ERFC
-------
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
C

C
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c













c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c





c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

    SUBROUTINE EXPOlBX,EX)
                      SUBROUTINE EXPO (VERSION 82360)>  PART OF PEM.
    6IVEN THE ARGUMENT BX,  SUBROUTINE EXPO CALCULATES AND
    RETURNS EX=EXP(BX).  EXPO LIMITS THE ARGUMENT TO AVOID
    OVERFLOW/UNDERFLOW ERRORS.
    PEM ALGORITHMS AND PROGRAM DEVELOPMENT:  DECEMBER 1982
    K.  SHANKAR RAO
    NOAA-ATDL, P.O. BOX-E
    OAK RIDGE, TENN 37830
    COMMON/EXPCHK/EXPMAX,EXPMIN,ETAMAX
    BXABS=ABS(BX)
    IF(BX) 5,10,15
  5 IF(BXABS-EXPMIN) 6,7,7
  6 EX=EXP(BX)
    GO TO 20
  7 EX=0.
    GO TO 20
 10 EX=1.
    GO TO 20
 15 IF(BXABS.ST.EXPMAX) BXABS=EXPMAX
    EX=EXP(BXABS)
 20 RETURN
    END
    SUBROUTINE ARGCHK(E.ESQ)
                      SUBROUTINE ARGCHK (VERSION 82360), PART OF PEN.
    SUBROUTINE ARGCHK LIMITS THE ARGUMENTS OF EXP(ESQ)»ERFC(E)
    TO AVOID OVERFLOW/UNDERFLOW ERRORS.
    PEM ALGORITHMS AND PROGRAM DEVELOPMENT:
    K. SHANKAR RAO
    NOAA-ATDL, P.O. BOX-E
    OAK RIDGE, TENN 37830
    COMMON/EXPCHK/EXPMAX,EXPMIN,ETAMAX
    ESQ=EXPMAX
    IF(E.LT.O.) NSI6N=-1
    IF(E.GE.O-) NSIGN=1
    E=NSIGN*ETAMAX
    RETURN
    END
        DECEMBER 1982
    SUBROUTINE INMOO
                   SUBROUTINE INMOO
(VERSION 82360), PART OF PEM.
 SUBROUTINE INMOO READS IN ALL INPUTS TO THE MODEL, SCREENS THEM,
   PRINTS WARNING MESSAGES, AND INSERTS DEFAULT VALUES AS NEEDFO.
   THE SUBROUTINE PRINTS OUT LISTS OF THE CONTROL PARAMETERS,
   SCENARIO PARAMETERS, AND SOURCE DATA FOR REFERENCE.
   INMOO ALSO PROCESSES THE INPUT FOR EACH SCENARIO BEFORE
   TRANSMITTING IT TO THE MAIN PROGRAM.
*** PEM MODIFICATIONS AND FORMATS BY M.M. STEVENS,
    NOAA-ATDL, P.O. BOX-E, OAK RIDGE, TENN 37830
    DECEMBER 1982
    COMMON/PEMCOM/CONC(50,50,2),SDF(50,50,2),  TT(20),
00016900
00016910
00016920
00016930
00016940
00016950
00016960
00016970
00016980
00016990
00017000
00017010
00017020
00017030
00017040
00017050
00017060
00017070
00017080
00017090
00017100
00017110
00017120
00017130
00017140
00017150
00017160
00017170
00017180
00017190
00017200
00017210
00017220
00017230
00017240
00017250
00017260
00017270
00017280
00017290
00017300
00017310
00017320
00017330
00017340
00017350
00017360
00017370
00017380
00017390
00017400
00017410
00017420
00017430
00017440
00017450
00017460
00017470
00017480
00017490
00017500
00017510
00017520
00017530
00017540
00017550
00017560
00017570
00017580
00017590
00017600
00017610
00017620
00017630
00017640
00017650
00017660
                                151

-------
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
X836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847










C



C








C

C

C
C
C
C
C


C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C


C























1 XPC 300 ) , YP( 300 ) , EP( 300 , 2 ) ,HP( 300 ) ,OPl 300 ) , VP( 300 ) ,TP( 300 ) ,
2 XA(50),YA(50),EA(50,2),SIZE(50),
3 WD(24),WS(2<*),TA(24),HMIX(24),PEN(24),
4 AX(7,3),BX(7,3),P(7),SCLAB(7),DTDZ(£), SECTANU6),
5 XSWC,YSHC,GRID,LX,LY, A(2),B(2),POLNAM(3,2),CALNAM(7,2),
6 ITA,IRD,IMR,IDSK, D80, 047, D8047,DIST, DELTA,
7 ESH(2), PEAK, IBUOY, IRISH, IDWN.EFF.XS, UINV.HVEC,
8 NAS.NPS, INDEX, IGRID,IAV,ISCEN,IWDOPT,IWD, ISC, IPS,
9 NTOPT, HWDOPT.NMSOPT, NSCEN, NLIST, NARRAY, NTAPE, NCSOPT.NMAX,
* N5TDHN, INTER, NPRINT

O)MMON/CSWOR/NHORST(25,25,5),CMORST(25,25,5)
COMMON/PARM1/NPOL,ICT,VD1,H1,VD2,M2,TAUC
COMMON/PARM1A/6AMMA

DIMENSION NAME(2),MDINC(6),SUMAQ(2),SUMPq(2),SUMAR(2),EAR(2),
1 AMSG(2),CWS(6)
DIMENSION DCR( 24,2) ,NSC( 24) ,NMD( 24) ,NHS( 24) .ASCALEt 2 )
DATA NAHE/4H ,4H /
DATA AMSG/4HVD1 ,4HVD2 /
DATA WDINC/1 . 5707963. 0 . 7853982 , 0 .5235988, 0 .2617994,
1 0. 1745329*0. 08726646/
DATA CUS/1.5,2.46,4.47,6.93,9.61.12.52/

IF( INDEX. NE.O) GO TO 300

ISTOP=0

READ ALL INPUT DATA.

**** READ FIRST CONTROL PARAMETER CARD (TITLE).

REAO(IRD,800)TT
HRITE(IWR,900) TT

**** READ SECOND CONTROL PARAMETER CARD (OPTIONS).

NTOPT = AVERAGING TIME OPTION (1 OR 2 OR 3).
NWDOPT = MIND DIRECTION INPUT OPTION (0 TO 7).
NMSOPT = HIND SPEED INPUT OPTION (0 OR 1).
NSCEN ~ NUMBER OF SCENARIOS (1 TO 24).
NLIST = OUTPUT OPTION: LISTS OF CONC AND SURF DEP FLUX (0 OR 1)
NARRAY = OUTPUT OPTION: MAPS OF CONC AND SURF DEP FLUX (0 TO 3)
NTAPE = OUTPUT OPTION: TAPE OF CONC AND SURF DEP FLUX (0 OR 1)
NCSOPT = OUTPUT OPTION: POINT SOURCE CULPABILITY LIST (0 OR 1).
NMAX = OUTPUT OPTION: MAXIMUM CONC. FOR EACH SCENARIO (0 OH 1)
NSTDMN = STACK-TIP DOWNWASH OPTION (0 OR 1).
INTER = RECEPTOR INTERVAL ON TAPE OUTPUT (1,2, 	 ).
NPRINT = OUTPUT OPTION: POINT SOURCE PLUME RISE INFO (0 OR 1)
INPTSC = INPUT OPTN: POINT SOURCE DATA ON UNIT IRD OR IDSK (1 OR

READ( IRD ,805 ) NTOPT, NWDOPT.NWSOPT, NSCEN, NLIST, NARRAY, NTAPE,
1 NCSOPT, NMAX, NSTDMN, INTER, NPRINT, INPTSC

IF(NTOPT.GE.l .AND. NTOPT.LE.3) GO TO 2
HRITE(IMR,660) NTOPT
NTOPT=1
Z IF(NMDOPT.LE.l) GO TO 6
IF(NWDOPT.GT.7) GO TO 5
IF(NTOPT.EQ.l .OR. NMOQPT.LE.il GO TO 6
WRITE CIWR, 615)
5 NUDOPT=0
6 IF(NHSOPT.GT.l) NWSOPT=0
IF(NSCEN.EQ.O) NSCEN=1
IF(NTOPT.EQ.2 .AND. NSCEN. NE. 24) GO TO 500
10 IF(NSCEN.GT.24) GO TO 510
20 IF( NLIST. EQ.O) GO TO 25
IF( NLIST. GT.l) 60 TO 22
IF(NWDOPT.LE.l) GO TO 25
WRITE! IWR, 605)
22 NLIST=0
25 IF(NARRAY.GT.3) NARRAY=0
IF( NTAPE. EQ.O) SO TO 40
IF( NTAPE. GT.l) GO TO 30
IF(NWDOPT.LE.l) GO TO 40
MRITE(IMR,62C)
30 NTAPE=0
00017670
00017680
09017690
00017700
00017710
00017720
00017730
00017740
00017750
00017760
00017770
00017780
OC017790
00017800
00017810
00017820
00017830
00017840
00017850
00017860
00017870
00017880
00017890
00017900
00017910
00017920
00017930
00017940
00017950
00017960
00017970
00017980
00017990
00018000
00018010
00018020
00018030
00018040
00018050
00018060
00018070
00018080
00018090
00018100
00018110
. 00018120
00018130
00018140
00018150
2)00018160
00018170
00018180
00018190
00018200
,00018210
00018220
00018230
00018240
00018250
00018260
00018270
00018280
00018290
00018300
00018310
00018320
00018330
00018340
00018350
00018360
00018370
00018380
00018390
00018400
00018410
00018420
00018430
152

-------
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
186 2
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
40 IF(NCSOPT.ST.l) NCSOPT=0
IF(NMAX.GT.l) NMAX=0
IF(NSTDUN.GT.l) NSTDWN=0
IF ( INTER. EQ.O) INTER=1
IF(NPRINT.ST.l) NPRINT=0
IFdNPTSC.LT.l .OR. INPTSC.6T.2) INPTSC=1
C
C SET LABEL FOR TIME AVERAGING
IAV=1
IF(NTOPT.EQ.2) IAV=24
IF (NTOPT.EQ.3) IAV=NSCEN
C
C **** READ THIRD CONTROL PARAMETER CARD (GRID. DTDZ)
C
00018440
00018450
00018460
00018470
00018430
00018490
00018500
00018510
00018520
00018530
00018540
00018550
00018560
00018570
C XHSWC.YRSHC = COORDINATES OF SOUTHWEST CORNER OF RECEPTOR GRID (KM)00018580
C LX = NUMBER OF COLUMNS IN RECEPTOR GRID.
C LY = NUMBER OF ROMS IN RECEPTOR GRID.
C GRID = SPACING BETWEEN ROMS AND COLUMNS OF RECEPTOR GRID (KM)
C
C DTDZC142) = VERTICAL POTENTIAL TEMPERATURE GRADIENT
C FOR STABILITY CUSSES E * F.
C
READ(IRD,810)XRSWC,YRSWC,LX,LY,GRID,DTDZ(1),DTDZ(2)
C
IFCLX.Eq.Oh LX=1
IF(LY.EQ.O) LY=1
IF(NTAPE.EQ.O) GO TO 115
C
NRECS=( ( LX+1 )/INTER )*( ( LY+1 )/INTER )*NSCEN
IF(NTOPT.EQ.2) NRECS= NRECS/24
IF(NTOPT.E<3.3) NRECS= NRECS/NSCEN
IFCNRECS.LT. 10000) GO TO 115
WRITE(IWR,600)
NTAPE=0
115 CONTINUE
C
C **** READ FOURTH CONTROL PARAMETER CARD C POLLUTANTS)
C
C NPOL = NUMBER OF POLLUTANTS 11 OR 2)
C ICT = CHEMICAL TRANSFORMATION OR DECAY OPTION (0 OR 1)
C VD1 = DEPOSITION VELOCITY FOR POLLUTANT SPECIES-1 (CM/S)
C Ml = SETTLING VELOCITY FOR POLLUTANT SPOECIES-1 (CM/S)
C VD2 = DEPOSITION VELOCITY FOR POLLUTANT SPECIES-2 (CM/S)
C H2 = SETTLING VELOCITY FOR POLLUTANT SPECIES-2 (CM/S)
C XKT = CHEMICAL TRANSFORMATION OR DECAY RATE OF POLLUTANT
C SPECIES-1 (PERCENT PER HOUR)
C GAMMA = RATIO OF MOLECULAR WEIGHTS OF SPECIES-2 (PRODUCT)
C TO SPECIES-1 (REACT ANT) IN CHEMICAL TRANSFORMATION
C
C NOTE: FOR DEPOSITION TO OCCUR, H SHOULD BE LESS THAN OR EQUAL TO VD.
C FOR DEPOSITION OF GASES AND VERY SMALL PARTICLES, W=0.
C FOR DEPOSITION OF SMALL PARTICLES, W IS LESS THAN VD.
C FOR DEPOSITION OF MEDIUM AND URGE PARTICLES, U=VD.
C
READ (IRD.812) NPOL, ICT, VD1, HI, VD2.W2.XKT, GAMMA
C
IF(NPOL.LT.l .OR. NPOL.GT.2) NPOL=1
IF(NPOL.EQ.l .OR. NCSOPT.EQ.O) GO TO 116
URITE(IWR,635)
NCSOPT=0
116 IF(Wl.GT.VDl) W1=V01
IF(NPOL.EQ.2) GO TO 117
VD2=0.0
W2=0.0
GO TO 118
117 IF(W2.GT.VD2) H2=VD2
118 IF(ICT.EQ.l) GO TO 119
XKT=0.0
GAKMA=0.0
GO TO 122
119 IF(XKT.GE.0.1 .AND. XKT.LE.100.) GO TO 120
TXKT=0.1
IF(XKT.6T.100.) TXKT=100.
URITE(IUR,640) XKT.TXKT
XKT=TXKT
C
C CONVERT CHEMICAL TRANSFORMATION RATE XKT (PERCENT PER HOUR) TO
00018590
00018600
00018610
00018620
00018630
00018640
00018650
00018660
00018670
00018680
00018690
00018700
00018710
00018720
00018730
00018740
00018750
00018760
00018770
00018780
00018790
00018800
00018810
00018820
00018830
00018840
00018850
00018860
00018870
00018880
00018890
00018900
00018910
00018920
00018930
00018940
00018950
00018960
00018970
00018980
00018990
00019000
00019010
00019020
00019030
00019040
00019050
00019060
00019070
00019080
00019090
00019100
00019110
00019120
00019130
00019140
00019150
00019160
00019170
00019180
00019190
00019200
153

-------
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953-
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
C THE EQUIVALENT TIME SCALE TAUC (SECONDS).
120 TAUC=0.36E06/XKT
C
122 IF(NCSOPT.EQ.O .OR. (LX.LE.25 .AND. LY.LE.25>) SO TO 125
WRITE (IWR, 645)
NCSOPT=0
C
C SHIFT THE RECEPTOR GRID TO THE COMPUTATION GRID.
125 XSWC= XRSWC - 0.5*6RID
YSWC= YRSWC - 0.5*6RXD
C
130 IF(DTDZ(1).LT. 0.00001) OTDZ(1)=0.020
IF( DTCZt 2 ).LT. 0.00001) DTDZt 2)=0.035
C
C IF GRID IS ZERO, SWITCH ON AUTOMATIC GRID OPTION.
IGRID=0
IF(GRID.LT.l.OE-S) IGRID=1
IF(IGRID.EQ.l.AND.NTOPT.GT.l) GO TO 520
C
00019210
00019220
00019230
00019240
00019250
00019260
00019270
00019280
00019290
00019300
00019310
00019320
00019330
00019340
00019350
00019360
00019370
00019380
00019390
C JHHHt READ 5TH CONTROL PARAMETER CARD (AREA SOURCE SCALING, CALIBRATION )00019400
C
C ASCALE(U2) = AREA SOURCE EMISSION SCALING FACTORS
C FOR EACH POLLUTANT.
C A(U2) = CONCENTRATION CALIBRATION FACTOR (INTERCEPT)
C FOR EACH POLLUTANT.
C B(lt2) = CONCENTRATION CALIBRATION FACTOR (SLOPE)
C FOR EACH POLLUTANT.
C
135 READ(IRD,815) ASCALE,,A(1),BU),A(2),B(2)
C
IF(ASCALE(1).LE.O.) ASCALE(1)=1.0
IF(ASCALE(2).LE.O.) ASCAL£(2)=1.0
C
C **** READ CARD 6 (POLLUTANT AND CALIBRATION LABELS)
C
READ(IRD,817)(POLNAM(I,1),I=1,3),(CALNAM(I,1),I=1,7),
1 (POLNAM(I,2),I=1,3),(CALNAM(I,2),I=1,7)
C
C **** READ ONE TO 24 SCENARIO PARAMETER CARDS.
C
C NSC = STABILITY CLASS NUMBER (1 TO 7)
C NMS = HIND SPEED CLASS NUMBER (1 TO 6)
C MID = HIND SECTOR NUMBER (1 TO 16)
C MS = MIND SPEED (M/S)
C MO = MIND DIRECTION (DEGREES)
C TA = AMBIENT TEMPERATURE (DEGREES CELSIUS)
C PEN = INVERSION PENETRATION FACTOR (PEN .GE. 1.0)
C HMIX = MIXING HEIGHT (METERS)
C
DO 150 IS=1,NSCEN
READ(IRD,820)NSC(IS)»NMS(IS),NHD(IS),HS(IS),HD(IS),TA(IS),
1 PEN(IS),HMIX(IS)
C
IF(NSC(IS).GE.l .AND. NSC(IS). LE.7) GO TO 140
NUM=1
IF(NSC(IS).GT.7) NUM=7
MRITE(IMR,535) IS, NSC (IS), HUM
NSC(IS)=NUM
140 IF(NWSOPT.EQ.O) GO TO 142
IF(NMS(IS).GE.l .AND.. NWS(IS).LE.6) GO TO 144
NUM=1
IF(NWS(IS).ST.6) NUM=6
MRITE(IMR,545) IS,NMS(IS),NUM
NWS(IS)=NUM
GO TO 144
142 IF(WS(IS).GT.O.) GO TO 144
HRITE(IWR,565) IS.NSIIS)
MS(IS)=1.0
144 IF(NWDOPT.NE.l) GO TO 146
IF(NWD(IS).GE.l .AND,. NWO(IS). LE.16) GO TO 146
NUM=1
IF(NMD(IS).GT.16) NUM=16
WRITE (IWR, 555) IS,NWD( IS) ,NUM
NWD(IS)=NUM
146 IF(PENUS).LT.l.O) PEN(IS)=2.0
IF(HMIX(IS).LT.1.0E-5) HMIX(IS)= 9999.9
150 CONTINUE
00019410
00019420
00019430
00019440
00019450
00019460
00019470
00019480
00019490
00019500
00019510
00019520
00019530
00019540
00019550
00019560
00019570
00019580
00019590
00019600
00019610
00019620
00019630
00019640
00019650
00019660
00019670
00019680
00019690
00019700
00019710
00019720
00019730
00019740
00019750
00019760
00019770
00019780
00019790
00019800
00019810
00019820
00019830
00019840
00019850
00019860
00019870
00019880
00019890
000199QO
00019910
00019920
00019930
00019940
00019950
00019960
00019970
154

-------
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2033
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
206?
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
C
C
C






































C
C
C




C

















C
C
C
C






1<
 PRINT INPUT CONTROL PARAMETERS

    IF(ISTOP.EQ.l) HRITE(IWR,900) TT
    WRITE(IWR,902) NTOPT
    MRITE(IURi904) NHDOPT
    HRITE(IWR,906) NMSOPT
    WRITE(IWR,908) NSCEN
    WRITE(IWR,910) NSTDUN
    IF(IGRID.EQ.O) WRITE(IWR,916) LX,LY,6RID,XRSWC,YRSWC
    IFUSRID.EQ.l) WRITE (IWR, 914)
    WRITE(IWR,920) OTOZ(1),DTDZ(2)
    WRITE(IWR,900) TT
    WRITE (IWR, 922) NPOL,(POLNAMU,1),I=1,3)
    IF(NPOL.EQ.2) WRITE!IWR,923) (POLNAM(I,2),I=1,3)
    WRITE(IWR,924) ASCALE(l)
    IF(NPOL.EQ.2) WRITE(IWR,935) ASCALE(2)
    WRITE(IWR,925) Ad),8(1)
    IF(NPOL.EQ.2) WRITE(IMP,926) A(2),B(2)
    WRITE(IWR,927) (CALNAM(1,1),1=1,7)
    IF(NPOL.EQ.2) WRITE(IWR,921) (CALNAMlI,2),I=1,7)
    WRITE(IWR,928) V01
    IF(NPOL.EQ.2) WRITE(IWR,931) VD2
    WRITE(IWR,929) Ml
    IF(NPOL.EQ.2) WRITE(IHR,933) W2
    WRITE(IWR,930) ICT
    IF(NPOL.EQ.l) WRITE(IWR,932)
    IF(NPOL.EQ.2) WRITE(IWR,934)
    IF(ICT.EQ.O) BO TO 152
    WRITE(IWR,936) XKT
    WRITE(IWR,938) GAMMA
152 WRITE(IWR,940)
    IF(NLIST.ST.O) WRITE(IWR,942) NLIST
    IF(NARRAY.ST.O) WRITE(IWR,944) NARRAY
    IF(NARRAY.EQ.l) WRITE(IWR,946)
    IF(NARRAY.EQ.2) WRITE(IWR,948)
    IF(NARRAY.EQ.3) WRITE(IWR,950)
    IF(NTAPE.GT.O) WRITE(IWR,952) NTAPE,INTER
    IF(NCSOPT.ST.O) WRITE(IWR,954) NCSOPT
    ZF(NPRINT.GT.O) WRITE(IWR,956) NPRINT
    IF(NMAX.GT.O) WRITE(IWR,958) UMAX

   PRINT INPUT PARAMETERS FOR SCENARIOS

    HRITE(IWR,960)TT
    WRITE(IWR,962)
    WRITE(IWR,963)
    WRITE(IWR,964)

    DO 160 IS=1,NSCEN
    KS=NSC(IS)
    WRITE(IWR,966) IS,SCLAB(KS)
    IF(NWSOPT.EQ.O) 60 TO 153
    KW=NWS(IS)
    WS(IS)=CWS(KW)
    WRITE(IWR,970) KM
153 WRITE(IWR,972) HS(IS)
    IF(NWDOPT.EQ.l) GO TO 155
    WOOUT=WD(IS)
    SO TO 156
155 KD=NWD(IS)
    MDOUT=SECTAN(KO) * 180./3.14159265
    WRITE(IWR,974) KD
156 WRITE(IWR,978) WDOUT,TA(IS),PEWIS),HMIX(IS)
    HD(IS)= MO(IS)»3.14159265/180.
    TA(IS)= TA(IS) + 273.15

 FOR EACH SCENARIO, CALCULATE THE CRITICAL DOWNWIND DISTANCES
   AT WHICH VERTICAL MIXING IMPENDS (DCRIT(IS.l)) AND IS COMPLETE
   (DCRITUS.2)).
    JSC=NSC(IS)
    JD=3
    IF(AX(JSC,2)*5000.**BX(JSC,2).GT.0.47*HMIX(IS)) JD=2
    IF(AX(JSC,1)*500.*«BXUSC,1).GT.0.47*HMIX(IS))  JD=1
    DCR(IS,1)=0.001*(0.47*HMIX(IS)/AX(JSC,JD))**(1./BX(JSC,JD))
    DCR(IS,2)= DCR(IS,1)*2.
>0   CONTINUE
00019980
00019990
00020000
00020010
00020020
00020030
00020040
00020050
00020060
00020070
00020080
00020090
00020100
00020110
00020120
00020130
00020140
00020150
00020160
00020170
00020180
00020190
00020200
00020210
00020220
00020230
00020240
00020250
00020260
00020270
00020280
00020290
00020300
00020310
00020320
00020330
00020340
00020350
00020360
00020370
00020380
00020390
00020400
00020410
00020420
00020430
00020440
00020450
00020460
00020470
00020480
00020490
00020500
00020510
00020520
00020530
00020540
00020550
00020560
00020570
00020580
00020590
00020600
00020610
00020620
00020630
00020640
00020650
00020660
00020670
00020680
00020690
00020700
00020710
00020720
00020730
00020740
                                155

-------
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
C
C
C
C
C
C
C
**** READ UP TO 50 AREA SOURCE CARDS.
  XA.YA
  SIZE
  EA(1*2)
- COORDINATES OF SOUTHWEST CORNER OF AREA SOURCE
= LENGTH OF A SIDE OF AREA SOURCE (M).
= EMISSION RATES OF 2 POLLUTANTS (G/S).
(KM).
C
170
C
   WRITE(IHR,990) TT
   NAS=1
   SUMAQ(1)=0.
   SUMAQ(2)=0.
   SUMAR(1)=0.
   SUMAR(2)=0.

   READ(IRD,825)XA(NAS),YA(NAS),SIZE(NAS),EA(NAS,1),EA(NAS,2>
                                                     GO TO 180
  172
175
C
C
                                                                     00020750
                                                                     00020760
                                                                     00020770
                                                                     00020780
                                                                     00020790
                                                                     00020800
                                                                     00020810
                                                                     00020820
                                                                     00020830
                                                                     00020840
                                                                     00020850
                                                                     00020860
                                                                     00020870
                                                                     00020880
                                                                     00020890
                                                                     00020900
                                                                     00020910
                                                                     00020920
                                                                     00020930
                                                                     00020940
                                                                     00020950
                                                                     00020960
                                                                     00020970
                                                                     00020980
                                                                     00020990
                                                                     00021000
                                                                     00021010
                                                                     00021020
                                                                     00021030
                                                                     00021040
                                                                     00021050
                                                                     00021060
                                                                     00021070
                                                                     00021080
                                                                     00021090
                                                                     00021100
                                                                     00021110
                                                                     00021120
                                                                     00021130
                                             THEN DEPOSITION VELOCrTY00021140
                                                                     00021150
                                                                     00021160
                                                                     00021170
                                                                     00021180
                                                                     00021190
                                                                     00021200
                                                                     00021210
                                                                     00021220
                                                                     00021230
                                                                     00021240
                                                                     00021250
                                                                     00021260
                                                                     00021270
                                                                     00021280
                                                                     00021290
                                                                     00021300
                                                                     00021310
                                                                     00021320
                                                                     00021330
                                                                     00021340
                                                                     00021350
                                                                     00021360
                                                                     00021370
                                                                     00021380
                                                                     00021390
185 IF(INPTSC.EQ.2)REAO(IDSK,830)XP(NPS),YP(NPS),EP(NPS,X);EP(NPS,2), 00021400
   1 HP(NPS),DP(NPS)»VP(NPS),TPtNPS),NAMEU),NAME(2)
    IF(INPTSC.EQ.l) READ(IRD,830)XP(NPS),YP(NPS),EP(NPS,1),EP(NPS,2>,
   1 HP(NPS),OP(NPS),VP(NPS),TP(NPS3,NAME(1),NAMEC2>
180

C
C
C
  181
   IF(NPOL.EQ.l) EA(NAS.2)=0.0
   IF«SIZE(NAS)+EA(NAS,1)+EA(NAS,2)).LT.1.0E-04)
   IF(SIZE(NAS).GE.1.0E-4) GO TO 172
   SIZE(NAS)=1.0E-4
   IFIGRID.NE.O.) SIZE(NAS)=SRID*10CO.
   WRITE(IWR,585) NAS,SIZE(NAS)
   DO 175 K=l,2
   EAR(K)=EA(NAS,K)
   SUMAR(K)=SUMAR(K)+EAR(K)
   EA(NAS,K)= EA(NAS,K)*ASCALE(K)
   SUMAQ(K)=SUMAQ(K)+EA(NAS,K)
 PRINT INPUT PARAMETERS FOR THIS AREA SOURCE
   WRITE(IWR,992)NAS,XA(NAS),YA(NAS),SIZE(NAS),EAR(1),EA(NAS,1),
  1EAR(2),EA(NAS,2)

   SIZE(NAS)=SIZE(NAS)*0.001
   IF(NAS/50*50.EC».NAS) WRITE(IHR,990)TT
   NAS=NAS+1
   GO TO 170
   NAS=NAS-1
   WRITE(IWR,994) SUMAR(1),SUMAQ(1),SUMAR(2),SUMAQ(2)
 IF AREA SOURCE CALCULATIONS ARE TO BE MADE,
  VALUE(S) MUST BE GREATER THAN ZERO
   IF(NAS.LT.l) GO TO 184
   IFtVDl.GT.O.) GO TO 181
   WRITE(IWR,655) AMSG(l)
   VD1=0.01
   IFCNPOL.EQ.l .OR. VD2.GT.O.) GO TO 184
   WRITE(IWR,655) AMSG(2)
   VD2=0.01
C
C
C
C
C
C
C
C
C
C
C
C




**** READ UP TO 300 POINT SOURCES



XP.YP = COORDINATES OF POINT SOURCE (KM).
EPU42) = EMISSION RATES OF 2 POLLUTANTS
HP = SOURCE HEIGHT CM).
DP = INSIDE DIAMETER (M).
VP = VELOCITY (M/S).
TP = TEMPERATURE (DEGREES CELSIUS).
NAME = IDENTIFICATION.

184 WRITE (IWR, 980) TT
NPS=1
SUMPQ(1)=0.
SUMPQ(2)=0.
(6/S)










 C
 C
   IF(NPOL.EQ.l) EP(NPS,2)=0.0
   IF(HP(NPS)+DP(NPS)+VP(NPS)+TP(NPS).LT.1.0E-4) GO TO 190
   IF(DP(NPS).GT.O.O) GO TO 137
   WRITE(IUR,575) NPS
   DP(NPS)=1.0E-4

 PRINT INPUT PARAMETERS FOR THIS POINT SOURCE
                                                           00021410
                                                           00021420
                                                           00021430
                                                           00021440
                                                           00021450
                                                           00021460
                                                           00021470
                                                           00021480
                                                           00021490
                                                           00021500
                                                           00021510
                                            156

-------
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
  187 WRITECIMR,984) NPS,NAMEU),NAME(2),XP1'00022120
     1)                                                                 00022130
      ISTOP=1                                                           00022140
      60 TO 135                                                         00022150
  535 FORMATUHO,'IN SCENARIO',13,' STABILITY CUSS NUMBER NSC=',I2,    00022160
     I1 IS OUT OF RAN6E.  NSC SET TO',12)                               00022170
  545 FORMATUHO,'IN SCENARIO',13,' MIND SPEED CUSS NUMBER NUS=',I2,   00022180
     1* IS OUT OF RAN6E.  NWS SET TO',12)                               00022190
  555 FORMATUHO,'IN SCENARIO*,13,' MIND DIRECTION SECTOR NUMBER NHD=', 00022200
     1 13,' IS OUT OF RAN6E.  NWO SET TO1,13)                           00022210
  565 FORMATUHO,'IN SCENARIO*,13,' SPECIFIED MIND SPEED MUST BE 6REATER00022220
     1 THAN ZERO.  MS SET TO 1.0 M/S')                                  00022230
  575 FORMATUHO,'POINT SOURCE',14,':  INSIDE DIAMETER MUST BE 6REATER T00022240
     1HAN ZERO.  DP SET TO .0001 M1 )                                    00022250
  585 FORMATUHO,'AREA SOURCE1,13,':  LEN6TH OF SIDE MUST BE 6REATER THA00022260
     IN ZERO.  SIZE SET TO SF9.2)                                      00022270
600   FORMATUHO,'RUN REQUESTED MOULD PRODUCE OVER 10000 RECORDS ON TAPE00022280

                                  157

-------
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
     IV OUTPUT OPTION NTAPE HAS BEEN SET TO ZERO')                     00022290
  605 FORMATdHO,'OUTPUT OPTION NLIST MAY NOT BE USED WITH AUTOMATIC MIN00022300
     ID SHIFT OPTION (NMDOPT>1)'/' NLIST HAS BEEN SET TO ZERO1)         00022310
  615 FORMATdHO,'AUTOMATIC WIND SHIFT OPTION (NWDOPT>1) MAY NOT BE USED00022320
     1 WITH TIME AVG OPTION NTOPTMV NMDOPT HAS BEEN SET TO ZERO1)    00022330
  620 FORMATdHO,'OUTPUT OPTION NTAPE MAY NOT BE USED WITH AUTOMATIC WIN00022340
     ID SHIFT OPTION (NWDOPT>1)V NTAPE HAS BEEN SET TO ZERO')         00022350
  630 FORMATdHl//'  SERIOUS ERROR(S)  IN INPUT PARAMETERS',5X,           00022360
     1 'RUN CANNOT BE CONTINUED')                                       00022370
  635 FORMATdHO,'CONTROL STRATEGY OUTPUT OPTION NCSOPT MAY NOT BE USED 00022380
     1WITH TMO POLLUTANTS'/' NCSOPT HAS BEEN SET TO ZERO' )              00022390
  640 FORMATdHO,'CHEMICAL TRANSFORMATION RATE XKT=',F7.3,' IS OUT OF RA00022400
     1NGEV XKT HAS BEEN SET TO',F8.3)                                 00022410
  645 FORMATdHO,'CONTROL STRATEGY OUTPUT OPTION NCSOPT MAY NOT BE USED 00022420
     1MHEN NUMBER OF COLUMNS OR ROWS  IN RECEPTOR GRID IS GREATER THAN 2500022430
     2V NCSOPT HAS BEEN SET TO ZERO")
  655 FORMATdHO,'AREA SOURCE CALCULATIONS REQUIRE DEPOSITION VELOCITY
     1REATER THAN ZERO.',4X,A4,'HAS BEEN SET TO 0.01')
  660 FORMATdHO,'TIME AVERAGING OPTION NTOPT=',I2,'  IS OUT OF RANGE.
     1TOPT SET TO I1)
C
C
C
800
805
810
812
815
817
820
825
830
C
C
C
INPUT FORMATS

  FORMATC20A4)
  FORMATd3I5)
  FORMATt 2F10.0,2110,3F10.0)
  FORMAT(2I5,6F10.0)
  FORMAT(6F10.0)
  FORMAT(3A4,7A4,3A4,7A4)
  FORMAT(3I5,5F10.0)
  FORMAT(5F10.0)
  FORMAT(8F9.0,2A4)

OUTPUT FORMATS
                                                                      00022440
                                                                     G00022450
                                                                      00022460
                                                                     N00022470
                                                                      00022480
                                                                      00022490
                                                                      00022500
                                                                      00022510
                                                                      00022520
                                                                      00022530
                                                                      00022540
                                                                      00022550
                                                                      00022560
                                                                      00022570
                                                                      00022580
                                                                      00022590
                                                                      000226GO
                                                                      00022610
                                                                      00022620
                                                                      00022630
900 FORMAT(1H1,45X,'POLLUTION EPISODIC MODELV//4X,'INPUT CONTROL PARA00022640
   1METERS:  ',20A4//)                                                00022650
902 FORMATdOX,'AVERAGING TIME OPTION? NTOPT=',I1//                    00022660
   1 18X,'A SCENARIO IS A SET OF METEOROLOGICAL DATA FOR ONE HOUR'//  00022670
   2 13X,'1  1 HOUR: CONCENTRATIONS ARE CALCULATED FOR EACH SCENARIO'/00022680
   3 13X,'2  24 HOURS: CONCENTRATIONS CALCULATED FOR 24 SCENARIOS ARE 00022690
   4AVERA6ED'/13X,'3  VARIABLE: CONCENTRATIONS CALCULATED FOR A GIVEN 00022700
   5NUMBER (2 TO 24) OF SCENARIOS ARE AVERAGED'//)
904 FORMATdOX,'MIND DIRECTION OPTION: NWDOPT=•,II//
   113X,'0  DIRECTION IN DEGREES TO BE SPECIFIED FOR EACH SCENARIO'/
   213X,'l  SECTOR NUMBER TO BE SPECIFIED FOR EACH SCENARIO'/
   312X,'2-7 DIRECTION IN DEGREES TO BE SPECIFIED FOR THE FIRST OF FOU00022750
   4R SUB-SCENARIOS.V17X,'FOR EACH SUCCEEDING SUB-SCENARIO, MIND DIRE00022760
   5CTION IS AUTOMATICALLY INCREASEDV17X,'BY 90,45,30,15,10,OR 5 DEGR00022770
   6EES, DEPENDING ON THE OPTION NUMBER SELECTED.'//)                 00022780
906 FORMATdOX,'HIND SPEED OPTION: NWSOPT=',I1//
   113X,'0  SPEED IN M/S TO BE SPECIFIED FOR EACH SCENARIO'/
   213X,'l  MIND SPEED CLASS NUMBER TO BE SPECIFIED  FOR EACH SCENARIO'00022810
   3//)                                                               00022820
908 FORMATdOX,'NUMBER OF SCENARIOS: NSCEN=',I2//)
910 FORMATdOX,'STACK-TIP DOWNHASH ALGORITHM OPTION: NSTDWN=•,II//
   1 13X,'0  ALGORITHM IS IN EFFECT'/
   2 13X,'l  ALGORITHM IS NOT USED'//)
914 FORMATdOX,'AUTOMATIC RECEPTOR GRID OPTION IS IN EFFECT'//)
916 FORMATdOX,'RECEPTOR GRIDS',
   16X,'COLUMNS! LX=',I3,4X,'ROWS: LY=',I3/
   230X,'SPACING: GRID=',F7.3,' KM'/
   330X,'SOUTHWEST CORNER    XRSWC= ',F8.3,' KM HV
   450X,'YRSWC=  '.F8.3,' KM S'//)
920 FORMATdOX,'POTENTIAL TEMPERATURE GRADIENT: DTDZ(1)=  ',F7.3,
   I1 DEG/M    STABILITY CLASS E'/
   242X,'DTDZ(2)= ',F7.3,' CEG/M    STABILITY CLASS F1//)
921 FORMAT(1H+,85X,7A4)
922 FORMATdOX,'NUMBER OF POLLUTANTS: NPOL=',I1/
   1 51X,'POLLUTANT-i:  ',3A4)
923 FORMAT(1H+,85X,'POLLUTANT-2:  S3A4)
924 FORMAT(/10X,'AREA SOURCE SCALING FACTOR:',17X,'ASCALE=',F9.3)
925 FORMATdOX,'CALIBRATION COEFFICIENTS:1,
   1 16X,'A=',F10.3,'  B=',F10.3)
926 FORMATdH+,85X,'A=',F10.3,'  B=',F10.3)
927 FORMATdOX,'CALIBRATION IDENTIFICATION:' ,14X,7A<*,6X,7A4)
928 FORMATdOX,"DEPOSITION VELOCITY (CM/S):',20X,'VD1=',F8.3)
                                                                        00022710
                                                                        00022720
                                                                        00022730
                                                                        00022740
                                                                        00022790
                                                                        00022800
                                                                        00022830
                                                                        00022840
                                                                        00022850
                                                                        00022860
                                                                        00022870
                                                                        00022880
                                                                        00022890
                                                                        00022900
                                                                        00022910
                                                                        00022920
                                                                        00022930
                                                                        00022940
                                                                        00022950
                                                                        00022960
                                                                        00022970
                                                                        00022980
                                                                        00022990
                                                                        00023000
                                                                        00023010
                                                                        00023020
                                                                        00023030
                                                                        00023040
                                                                        00023050
                                            158

-------
2310
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2323
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
929 FORMATdOX,'SETTLING VELOCITY (CM/S):',23X,'Hl=',F8.3)
930 FORMAT(//10X,'CHEMICAL TRANSFORMATION OPTION: ICT=',I1/J
931 FORMAT!1H+.91X,'VD2=',F8.3)
932 FORMAT(13X,'NPOL=1'/
00023060
00023070
00023080
00023090
   215X,'ICT=0  CHEMICAL TRANSFORMATION LOSS OF POLLUTANT IS IGNOREDV00023100
   315X,'ICT=1  FIRST-ORDER CHEMICAL TRANSFORMATION LOSS OF POLLUTANT 00023110
   4IS CONSIDERED'//)                                                 00023120
933 FORMAT(1H+,92X,'H2=',F8.3)                                        00023130
934 FORMATU3X, 'NPOL=2V                                              00023140
   215X,'ICT=0  CHEMICAL TRANSFORMATION LOSS OF POLLUTANTS IS IGNORED'00023150
   3/15X,'ICT=1  FIRST-ORDER CHEMICAL TRANSFORMATION OF POLLUTANT-1 T000023160
   4 POLLUTANT-2 IS CONSIDERED'//)                                    00023170
935 FORMAT(1H+,88X,'ASCALE=',F9.3)                                    00023180
936 FORMATdOX,'CHEMICAL TRANSFORMATION RATE: XKT=*,F7.3,             00023190
   I1 PERCENT/HRV)                                                   00023200
938 FORMATdOX,'RATIO OF MOLECULAR HEIGHTS OF POLLUTANT-2 (PRODUCT) T000023210
   1 POLLUTANT-1 (REACTANT): GAMMA=',F6.3/)                           00023220
940 FORMAT(//9X,'OUTPUT OPTIONS SELECTED:'/)                          00023230
942 FORMAT(13X,'NLIST=',II,3X,'LISTS OF CONCENTRATION AND SURFACE DEP000023240
   1SITION FLUX AT EACH RECEPTOR IN THE GRID,V24X,'ONE COLUMN PER PAG00023250
   2E1)                                                               00023260
944 FORMAT(13X,'NARRAY=',I1,2X,'MAPS OF CONCENTRATION AND SURFACE DEP000023270
   1SITION FLUX AT EACH RECEPTOR IN THE GRID,')                       00023280
946 FORMAT(24X,'CALIBRATED AND UNCALIBRATED')                         00023290
948 FORMATC24X,'UNCALIBRATED ONLY')                                   00023300
950 FORMATC24X,'CALIBRATED ONLY')                                     00023310
952 FORMAT(13X,'NTAPE=',I1,3X,'TAPE CONTAINING COORDINATES, CONCENTRAT00023320
   1ION, AND SURFACE DEPOSITION FLUXV24X,'AT EACH RECEPTOR IN THE GRI00023330
   2DV13X,'INTERS',12,2X,'INTERVAL OF RECEPTORS WHICH HILL BE WRITTEN00023340
   3 ON TAPE')                                                        00023350
954 FORMAT(13X,'NCSOPT=',I1,2X,'LIST OF POINT SOURCE CULPABILITY FOR C00023360
   10NCENTRATION AND SURFACE DEPOSITION FLUXV24X,'AT EACH RECEPTOR IN00023370
   2 THE GRID')                                                       00023380
956 FORMAT(13X,'NPRINT=',I1,2X,'LIST OF POINT SOURCE PARAMETERS AND EF00023390
   1FECTIVE STACK HEIGHTS'/24X,'PRINTED AT BEGINNING OF EACH SCENARIO'00023400
   2)                                                                 00023410
958 FORMAT(13X,'NMAX=',I1,4X,'LIST OF RECEPTORS HITH HIGHEST CONCENTRA00023420
   1TION AND SURFACE DEPOSITION FLUXV24X,'FOR EACH SCENARIO - PRINTED00023433
   2 AT END OF RUN')                                                  00023440
960 FORMAT(1H1,45X,'POLLUTION EPISODIC MODELV//4X,'INPUT SCENARIO PAR00023450
   1AMETERS:   '.20A4//26X,'WIND DIRECTIONS',27X,'HIND SPEED CLASSES', 00023460
   212X,'STABILITY CLASSES'/)                                         00023470
962 FORMATdOX,'SECTOR    DIRECTION',6X,'SECTOR    DIRECTION*,9X,     00023480
   1'CLASS   SPEED    CLASS',15X,'CLASS'/                             00023490
   210X,'NUMBER*,8X,'(DEG)',6X,'NUMBER',8X,'(DEG)',9X,'INDEX   (M/S)  00023500
   3 INTERVAL(KT)*,9X,'INDEX   CLASSV/13X,'1    N',7X,*0.0*,9X,'9    00023510
   4S',5X,'180.0'/13X,'2    NNE    22.5',8X,'10    SSH   202.5',11X,  00023520
   5*1',6X,'1.50',7X,'0-3',16X,'I1,7X,'A'/13X,'3    NE',5X,'45.0',8X, 00023530
   6'11    SW    225.0',11X,'2',6X,'2.46',7X,'4-6*,16X,'2',7X,'B')    00023540
963 FORMAT(13X,'4    ENE    67,5',8X,'12    HSH   247.5',11X,'3',6X,  00023550
   l'4.47*,7X,'7-10t,15X,'31,7X,'C'/13X,'5    E',6X,'90.0',8X,'13    W00023560
   2',5X,'270.0',11X,'4',6X,'6.93*,6X,'11-16*,15X,'41,7X,'DO (DAY)'/  00023570
   313X,'6     ESE   112.5',8X,'14    WNW   292.5',11X,'5*,6X,'9.61',  00023580
   46X,'17-21',15X,'5',7X,'DN (NIGHT)*/13X,'7    SE    135,0',8X,'15  00023590
   5  NH    315.0',11X,'6',5X,'12.52    OVER 21*,15X,'6*,7X,'EV      ,00023600
   613X,'8     SSE   157.5',8X,'16    NNH   337.5',48X,'7',7X,'F'///)  00023610
964 FORMAT(5X,'SCENARIO',3X,'STABILITY',3X,'HIND SPEED',5X,'WIND',8X, 00023620
   I'HIND*,6X,'WIND*,8X,'AMBIENT',9X,'INVERSION*,8X,'MIXING'/         00023630
   26X,'NUMBER*,6X,'CLASS',7X,'CLASS',8X,'SPEED',6X,'SECTOR*,3X,      00023640
   3'OIRECTION',3X,'TEMPERATURE',3X,'PENETRATION FACTOR',3X,'HEIGHT'/ 00023650
   443X,'(M/S)',17X,'(DEG)',7X,'(DEG C)',27X,'(M)'/)                  00023660
966 FORMAT(8X,I2,10X,A2)                                              00023670
970 FORMAT(1H+,31X,I1)                                                00023680
972 FORMAT(1H+,42X,F6.3)                                              00023690
974 FORMAT!1H+,55X,12)                                                00023700
978 FORMAT(1H*,63X,F6.2,7X,F7.2,11X,F6.3,8X,F7.1)                     00023710
980 FORMAT(1H1,45X,'POLLUTION EPISODIC MOOELV//4X,'INPUT POINT SOURCE00023720
   i PARAMETERS:   •,20A4///                                           00023730
   26X,'POINT  SOURCE1,10X,'COORDINATES',9X,'EMISSION RATE',           00023740
   36X,'EMISSION RATE',5X,'HEIGHT*,4X,'DIAMETER',4X,'EXIT VEL*,5X,    00023750
   4'EXIT TEMPV5X,'NUMBER',3X,'LABEL',7X,'X(KM)',5X,'Y(KM)',6X,      00023760
   5'POLLUTANT-l (G/S)',2X,'POLLUTANT-2 (G/S)',3X,*(M)*,8X,'(M)',8X,  00023770
   6*(M/S)',8X,'(DE6 C)1/)                                            00023780
984 FORMAT(6X,I3,3X,2A4,3X,F8.2,2X,F8.2,10X,F9.3,10X,F9.3,6X,F6.2,5X, 00023790
   1F6.3,6X,F7.3,6X,F8.3)                                             00023800
986 FORMAT(1HO,5X,'SUMS OF THE POINT SOURCE EMISSION RATES',6X,F9.3,  00023810
   1* G/S',6X,F9.3,' G/S')                                            00023820
                                            159

-------
2387
2383
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463












C
c

C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c











c


c
c

c
c

c
c
c



c
c
















990 FORMATUH1.45X,1 POLLUTION EPISODIC MODEL'///4X,'INPUT AREA SOURCE
   IPARAMETERS:  ',20A4///
   270X,'POLLUTANT-11,17X,'POLLUTANT-2'/5X,"AREA SOURCE1,8X,
   3'COORDINATES',9X,'LENSTH OF SIDE1,11X,'EMISSION RATE',15X,
   4'EMISSION RATE1/
   57X,'NUMBER',9X,'X(KM)1,5X,'Y(KM)1,13X,'(M)1,12X,'INPUT (S/S)1,
   64X,'SCALED1,7X,'INPUT (S/S)1,4X,'SCALED'/)
992 FORMAT(9X,I2,8X,F8.2,2X,F8.2,10X,F8.2,9X,F9.3,4X,F9.3,6X,
   1 F9.3.4X.F9.3)
994 FORMATdHO.SX,'SUMS OF THE AREA SOURCE EMISSION RATES IN THIS RUN'
   l,8X,F9.3i4XtF9.3,6X,F9.3,4X,F9.3)
    END
    SUBROUTINE OUTMOD
                   SUBROUTINE OUTMOD (VERSION 82360), PART OF PEN.
    SUBROUTINE OUTMOD COORDINATES OUTPUT OF THE CONCENTRATIONS)
    AND SURFACE DEPOSITION FLUX(ES) CALCULATED FOR EACH RECEPTOR
    IN THE 6RID FOR EACH SCENARIO.
    ON OPTION, THE OUTPUT MAY BE IN THE FORM OF LISTS, ARRAY
    MAPS, OR TAPE.
    OUTMOD CALLS SUBROUTINE SCENMX TO DETERMINE AND STORE THE
    RECEPTORS WITH MAXIMUM CCNCENTRATION(S) AND SURFACE DEPOSITION
    FLUX(ES) FOR THE SCENARIO.
*** PEM MODIFICATIONS AND FORMATS BY MARTHA M. STEVENS,
    NOAA-ATDL, P.O. BOX-E, OAK RIDGE, TENN 37830
    DECEMBER 1982
    COMMON/PEMCOM/CONC(50,50,2),SDF(50,50,2),  TT(20),
   1 XP(300),YP(300),EP(300,2),HP( 300),DP(300),VP(300),TP(300),
   2 XA(50),YA(50),EA(50,2),SIZE(50),
   3 NO(24),US(24),TA(24),HMIX(24),PEN(24),
   4 AX(7,3),BX(7,3),P(7),SCLAB(7),DTDZ(2),  SECTANU6),
   5 XSWC,YSWC,SR!D,LX,LY,    A(2),B(2),POLNAM(3,2),CALNAM(7,2),
   6 ITA,IRD,IUR,IDSK,        080,047,08047,OIST,DELTA,
   7 ESH(2),PEAK,IBUOY,IRISE,IDWN,EFF,XS,    UINV.WVEC,
   8 NAS.NPS,INDEX,IGRID,IAV,ISCEN,IMDOPT,IWD,ISC,IPS,
   9 NTOPT,NWDOPT,NWSOPT,NSCEN,NLIST,NARRAY,NTAPE,NCSOPT,NMAX,
   * NSTDMN,INTER,NPRINT

    COMMON/PARMl/NPOL,ICT,VD1,Wl,VD2,M2,TAUC
    DIMENSION COW 2),CALCON(2),SD(2),CALSD(2)
    HOUT= WD(ISCEN)*180./3.1415927

  CONTROL STRATEGY RESULTS OUTPUT BY SUBROUTINE HOROUT
    IF(NCSOPT.GT.O.AND.NTOPT.EQ.l) CALL WOROUT

 PRINT AND/OR WRITE-ON-TAPE LISTS OF CONCENTRATIONS) AND
    SURFACE DEPOSITION FLUX(ES)
    IF(NLIST.EQ.O .AND. NTAPE.EQ.O) GO TO 350
    IF(NTAPE.EQ.l) HRITE(ITA,900)TT
    NREP=0

 BEGIN LOOP ON COLUMNS
 100 DO 325 1=1,LX
    IF(NLIST.EQ.O) GO TO 250
    ISKIP=0
    DO 125 JM=1,LY
    DO 125 KM=1,2
    IF(CONC(I,JM,KM).NE.O.) GO TO 130
 125 CONTINUE
    ISKIP=1
    IF(NTAPE.EQ.O) GO TO 325
    GO TO 250
 130 IF(NREP.EQ.l) GO TO 150
    WRITE(IWR,905)TT,ISCEN,SCLAB(ISC),HS(ISCEN),MOUT,
   1  HMIX( ISCEN ),IAV
    WRITEUWR,910)(CALNAM(L,1),L=1,7),(CALNAM(L,2),L=1,7),
   1  (POLNAM(L,1),L=1,3),(POLNAM(L,2),L=1,3),(POLNAM(L,1),L=1,3),
   2  CPOLNAM(L,2),L=1,3)

                                160
00023830
00023840
00023850
00023860
00023870
00023880
00023390
00023900
00023910
00023920
00023930
00023940
00023950
00023960
00023970
00023930
00023990
00024000
00024010
00024020
00024030
00024040
00024050
00024060
00024070
00024080
00024090
00024100
00024110
00024120
00024130
00024140
00024150
00024160
00024170
00024180
00024190
00024200
00024210
00024220
00024230
00024240
00024250
00024260
00024270
00024280
00024290
00024300
00024310
00024320
00024330
C0024340
00024350
00024360
00024370
00024380
00024390
00024400
00024410
00024420
00024430
00024440
00024450
00024460
00024470
00024480
00024490
00024500
00024510
00024520
00024530
00024540
00024550
00024560
00024570
00024580
00024590

-------
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
      GO TO 250
  150 WRITE(IWR,907) TT,ISCEN,SCLAB(ISC),HSCALSDtK),K=l,2)
300   CONTINUE
  325 CONTINUE
C
      IFtNLIST.EQ.O .OR. NREP.EQ.l) GO TO 350
C
C   IF NO SURF DEP FLUX HAS CALCULATED. SKIP PRINT
      IF(VD1.LE.0.01 .AND. VD2.LE.0.01) GO TO 350
      NREP=1
      GO TO 100
C
C  PRINT ARRAY MAPS OF CONCENTRATIONS
350   IF(NARRAY.GT.O) CALL ARRAY
C
C  DETERMINE MAXIMUM PREDICTED CONCENTRATIONS) FOR SCENARIO VIA SCENMX
      IFlNMAX.ST.O.AND.lNTOPT.EQ.l.OR.ISCEN.EtJ.NSCEN)) CALL SCENMX
C
900
      RETURN
FORMAT(20A4)
                                                                  00024600
                                                                  00024610
                                                                  00024620
                                                                  00024630
                                                                  00024640
                                                                  00024650
                                                                  00024660
                                                                  00024670
                                                                  00024680
                                                                  00024690
                                                                  00024700
                                                                  00024710
                                                                  00024720
                                                                  00024730
                                                                  00024740
                                                                  00024750
                                                                  00024760
                                                                  00024770
                                                                  00024780
                                                                  00024790
                                                                  00024800
                                                                  00024810
                                                                  00024820
                                                                  00024830
                                                                  00024840
                                                                  00024850
                                                                  00024860
                                                                  00024870
                                                                  00024880
                                                                  00024890
                                                                  00024900
                                                                  00024910
                                                                  00024920
                                                                  00024930
                                                                  00024940
                                                                  00024950
                                                                  00024960
                                                                  00024970
                                                                  00024980
                                                                  00024990
                                                                  00025000
                                                                  00025010
                                                                  00025020
                                                                  00025030
                                                                  00025040
                                                                  00025050
                                                                  00025060
                                                                  00025070
                                                                  00025080
                                                                  00025090
                                                                  00025100
                                                                  00025110
                                                                  00025120
                                                                  00025130
                                                                  00025140
                                                                  00025150
                                                                  00025160
                                                                      00025170
905 FORMATUHl.'PEM OUTPUT:  PREDICTED CONCENTRATION:   ',             00025180
   120A4/' SCENARIO ',I2t't STABILITY^,A2,',  WIND SPEED=«,F5.2,'  M/S,00025190
   2 MIND DIRECTION^',F6.2,' DEC,  MIXING HEIGHTS',F7.1,•  M,  AVERAGING 00025200
   3TIME=',I3,' HRV/)                                                00025210
907 FORMATtlHl.'PEM OUTPUT:  PREDICTED SURFACE DEPOSITION FLUX:   ',    00025220
   120A4/1 SCENARIO ',12,', STABILITY^,A2,',  HIND SPEED=',            00025230
   2F5.2,1 M/S, HIND DIRECTIONS',F6.2,' DEG, MIXING HEIGHT=',F7.1,    00025240
   3' M, AVERAGING TIME='.I3,'  HR'//)                                 00025250
910 FORMAT(33X,'UNCALIBRATED CONCENTRATION',11X,'CALIBRATED  CONCENTRAT00025260
   1ION  POL-i: '.7A4/16X,'RECEPTOR1,9X,'(MICROGRAMS PER  CUBIC METER)'00025270
   2,9X,'CALIBRATED CONCENTRATION  POL-2:  ',7A4/15X,'COORDINATES',7X, 00025280
   3'POLLUTANT-1•,5X,'POLLUTANT-2',10X,'POLLUTANT-1',5X,'POLLUTANT-2 V00025290
   4' COL ROH',6X,tX(KM)t,4X,'Y(KM)t,5X,3A4,4X,3A4,9X,3A4,4X,3A4)      00025300
912 FORMAT(32X,'UNCALIBRATED SURFACE DEPOSITION FLUX1,4X,'CALIBRATED V00025310
   1ALUE  POLLUTANT-i: '.7A4/16X,'RECEPTOR',9X,'(MICROGRAMS  PER SQ MET00025320
   2ER PER HOUR)',5X,'CALIBRATED VALUE  POLLUTANT-2: ',7A4/            00025330
   315X,'COORDINATES',7X,'POLLUTANT-11,5X,'POLLUTANT-21,12X,           00025340
   4'POLLUTANT-1',5X,'POLLUTANT-21/1 COL ROH1,6X,'X(KM)1,4X,'Y(KM)',  00025350
   55X,3A4,4X,3A4,11X,3A4,4X,3A4)                                     00025360
                                           161

-------
2541
2542
2543
2544
2545
2546
2547
2543
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
  970 FORMAT(2(2X,I2),2X,F9.2,F9.2,6X,F11.4,5X,F11.4,10X,F11.4,5X,F11.
  975 FORMATUOF8.2)
      END
      SUBROUTINE ARRAY
C
c
C
c
c
c
c
c
c
c
c
C *** PEM MODIFICATIONS AND FORMATS BY M.M. STEVENS,
                   SUBROUTINE ARRAY  (VERSION 82360),  PART OF  PEM.
 SUBROUTINE ARRAY CREATES  ARRAY MAPS  OF  THE CONCENTRATIONS AND
   SURFACE  DEPOSITION FLUXES  IN THE RECEPTOR  GRID AND
   PRINTS THEM AT THE END  OF  EACH  SCENARIO.
   UNCALIBRATED AND  CALIBRATED CONCENTRATIONS OF EACH  POLLUTANT
   APPEAR ON SEPARATE MAPS OF UP TO FOUR SECTIONS (PASES) EACH.
C
C
C
C
125
150
175
    NOAA-ATDL,  P.O.  BOX E,  OAK  RIDGE,  TN 37830
    DECEMBER 1982
    COMMON/PEMCOM/CONC(50,50,2),SDF(50,50,2),   TT(20),
   1 XP(300),YP(300),EP(300,2),HP(300),DP(300),VP(300),TP(300),
   2 XA(50),YA(50),EA(50,2),SIZE(50),
   3 WO(24),WS(24),TA(24),HMIX(24),PEN(24),
   4 AX(7,3),BX(7,3),P(7),SCLAB(7),DTDZ(2),  SECTAN(16),
   5 XSUC,YSUC,GRID,LX,LY,    A(2),B(2),POLNAM(3,2),CALNAM(7,2),
   6 ITA.IRD.IWR.IDSK,        080,047,08047,DIST,DELTA,
   7 ESH(2),PEAK,IBUOY,IRISE,IDHN,EFF,XS,    UINV.WVEC,
   8 NAS.NPS,INDEX,IGRID,IAV,ISCEN,IWDOPT,IWD,ISC,IPS,
   9 NTOPT,NWDOPT,NWSOPT,NSCEN,NLIST,NARRAY,NTAPE,NCSOPT,NMAX,
   * NSTDW*,INTER,NPRINT

    COMMON/PARM1/NPOL,ICT,VD1,Ml,VD2,M2,TAUC
    DIMENSION X(50),CC(50),SSDF(50),DV(2)
    INTEGER CC.SSDF

    DV(1)=VD1
    DV(2)=VD2
    WOUT= KO(ISCEN}*180.73.1415927
    NLX=1
    NLY=1
    IF(LX.GT.25) NLX=2
    IF(LY.6T.25) NLY=2
    NSECT=NLX*NLY

100 ISECT=0
    DO 700 JLX=1,NLX
    MX2= JLX»25
    IF(MX2.GT.LX) MX2=LX
    MX1=1
    IF(JLX.EQ.2) MX1=26
    00 125 I=MX1.MX2
    XI=I
    X(I)= XSWC * (XI-0.5)*6RID
    DO 600 JLY=1,NLY
    ISECT=ISECT+1
    IFULY.EQ.l) 60 TO 150
    MY1=26
    MY2=LY
    GO TO 175
    MY1=1
    MY2=25
    IF(I.Y.LT.25) MY2=LY
    DO 500 N=1,NPOL
    NREP=0
180 IF(NARRAY.E<3.3) GO TO 320
    WRITE(IWR,900)ISECT,NSECT,ISCEN,TT
    MRITE(IWR,902)SCLAB(ISC),WS(ISCEN),HOUT,HMIX(ISCEN),IAV,
   1             N,(POLNAM(L,N),L=1,3)
    IF(NREP.EQ.O) GO TO 185
   LOOP THROUGH SOF ARRAY TO FIND  ANY VALUE GE 1000. IN THAT CASE,
    SET FLAG TO SCALE SDF VALUES AS THEY ARE SET IN SSDF ARRAY
    IFLAG=0
    DO 182 NX=1,LX
    DO 182 NY=1,LY
    IF(SDF(NX,NY,N).GT.999.49)  GO  TO 184
4)00025370
  00025380
  00025390
  00025400
  00025410
  00025420
  00025430
  00025440
  00025450
  00025460
  00025470
  00025480
  00025490
  00025500
  00025510
  00025520
  00025530
  00025540
  00025550
  00025560
  00025579
  00025580
  00025590
  00025600
  00025610
  00025620
  00025630
  00025640
  00025650
  00025660
  00025670
  00025680
  00025690
  00025700
  00025710
  00025720
  00025730
  00025740
  00025750
  00025760
  00025770
  00025780
  00025790
  00025800
  00025810
  00025820
  00025830
  00025840
  00025850
  00025860
  00025870
  00025880
  00025890
  00025900
  00025910
  00025920
  00025930
  00025940
  00025950
  00025960
  00025970
  00025980
  00025990
  00026000
  00026010
  00026020
  00026030
  00026040
  00026050
  00026060
  00026070
  00026080
  00026090
  00026100
  00026110
  00026120
  00026130
                                            162

-------
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
C683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
  182 CONTINUE
      MRITE(IUR,905)
      GO TO 190
  184 IFLAG=1
      URITE(IWR,910)
      GO TO 190
  185 HRITE(IWR,904)
  190 WRITE(IWR,915) (X(I),I=MX1,MX2,2)
      DO 300 J=MY1,MY2
      IY= MY2 + MY1 - J
      Y=IY
      Y= YSWC + (Y-0.5)*GRID
C
      IF(NREP.EQ.l) GO TO 240
      00 230 1=11X1, (1X2
230   CC(I)= CONCU.IY.N) + 0.5
      WRITEtIWR,920)Y,(CC(I)tI=MX1,MX2)
      GO TO 300
  240 DO 250 I=MX1,MX2
      IF(IFLAG.EQ.O) GO TO 245
      SSDF(I)=SDF(I,IY,N)*1.0E-03 * 0.5
      60 TO 250
  245 SSDF(I)= SDF(I,IY,N) + 0.5
  250 CONTINUE
      WRITE(IWR,920) Y,(SSDF(I),I=MX1,MX2)
300   WRITE(IWR,925)Y
      WRITE(IWR,915)(XCI),I=MX1,MX2,2)
320   IF(NARRAY.EQ.2) GO TO 450
      WRITEtIWR,900)ISECT,NSECT,ISCEN,TT
      WRITE(IWR,902)SCLAB(ISC),WS(ISCEN),HOUT,HMIX(ISCEN),IAV,
     1             N,(POLNAM(L,N),L=1,3)
      IF(NREP.EQ.O) URITE(IWR,906)(CALNAM(L,N),L=1,7),A(N),B(N>
      IF(NREP.EQ.l) WRITE(IWR,907) (CALNAM(L,N),L=1,7),A(N),B(N)
      WRITE (1MB, 915) (X( I), 1=11X1, MX2,2 )
      DO 400 J=MY1,MY2
      IY= MY2 + MY1 - J
      Y=IY
      Y= YSWC * (Y-0.5)*GRID
C
      IFCNREP.EQ.l) GO TO 340
      DO 330 I=MX1,MX2
330   CC(I)= A(N) + B(N)*CONC(I,IY,N) + 0.5
      WRITEtIWR,920)Y,(CCCI),I=MX1,MX2)
      GO TO 400
  340 DO 350 I=MX1,MX2
  350 SSDF(I)= AIN) + B(N) * SDF(I,IY,N) + 0.5
      WRITE(IWR,920) Y,(SSDFII),I=MX1,MX2)
400   WRITE(IWR,925)Y
      WRITElIWR,915)tXU),I=MXl,MX2,2)
  450 IF(NREP.EQ.l) 60 TO 500
C   IF NO SURF DEP FLUX HAS CALCULATED, SKIP PRINT
      IF(DV(N).LE.0.01) GO TO 500
      MREP=1
      GO TO 180
      CONTINUE
      CONTINUE
      CONTINUE
500
600
700
C
      RETURN
C
900
                                 •SECTION ',11,' OF ',11,
                                                            SCENARIO
                                 UINO SPO=',F5.2,1 M/S, HIND DIR=',F6.2
                                 M, AVERAGING TIME=',I3,' HR.',6X,
 00026140
 00026150
 00026160
 00026170
 00026180
 00026190
 00026200
 00026210
 00026220
 00026230
 00026240
 00026250
 00026260
 00026270
 00026280
 00026290
 00026300
 00026310
 00026320
 00026330
 00026340
 00026350
 00026360
 00026370
 00026380
 00026390
 00026400
 00026410
 00026420
 00026430
 00026440
 00026450
 00026460
 00026470
 00026480
 00026490
 00026500
 00026510
 00026520
 00026530
 00026540
 00026550
 00026560
 00026570
 00026580
 00026590
 00026600
 00026610
 00026620
 00026630
 00026640
 00026650
 00026660
 00026670
 00026680
 00026690
 00026700
 00026710
 00026720
 00026730
 00026740
 OC026750
.00026760
 00026770
 00026780
      FORMATCIHI.'PEM OUTPUT:
     1 I2,2X,20A4)
902   FORMATC STABILITY^ ,A2,
     1 '  OES, MIXING HT=',F7.1,"
     2 'POLLUTANT-Ml,': ',3A4)
904   FORMATC UNCALIBRATED CONCENTRATION - NICROGRAMS PER CUBIC METER')00026790
  905 FORMAT(' UNCALIBRATED SURFACE DEPOSITION FLUX - MICROGRAMS PER SQU000268GO
     1ARE METER PER HOUR')                                              00026810
906   FORMATC CALIBRATED CONCENTRATION - ',7A4,18X,'CALIBRATION COEFFIC00026820
     IIENTS:  A =',F11.4,',  B =',F11.4)                                00026830
  907 FORMATC CALIBRATED SURFACE DEPOSITION FLUX - ',7A4,10X,          00026840
     1'CALIBRATION COEFFICIENTS:  A=',F10.4,5X,'B=',F10.4)              00026850
  910 FORMATC' UNCALIBRATED SURFACE DEPOSITION FLUX - KILOGRAMS PER SQUA00026860
     IRE  KILOMETER PER HOUR')                                           00026870
915   FORMAT(1HO,14X,13F8.2)                                            00026880
920   FORMAT(1HO,4X,F8.2,4X,25I4)                                       00026890
925   FORMAT!1H+,122X,F8.2)                                             00026900

                                   163

-------
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
      END
      SUBROUTINE WORSTU.J.CHI)
                     SUBROUTINE WORST
C
c
C
c
c
c
c
c
c
c
c
C *** PEM MODIFICATIONS BY H.M. STEVENS.
(VERSION 82360), PART OF PEN.
   SUBROUTINE WORST DETERMINES THE FIVE POINT SOURCES CONTRIBUTING THE
     HOST TO THE TOTAU CONCENTRATION AT EACH RECEPTOR. SOURCE
     IDENTIFICATIONS AND CONTRIBUTIONS ARE STORED IN NWORST AND CWORST
     RESPECTIVELY, FOR OUTPUT BY SUBROUTINE MOROUT.
C
C
c
c
      NOAA-ATDL, P.O. BOX-E, OAK RIOGE, TENN 37830
      DECEMBER 1982
      COMMON/PEMCOM/CONC(50,50,2),SDF(50,50,2),  TT(20),
     1 XP(300),YP(300),EP(300,2),HP(300),DP(300),VP(300),TP(300),
     2 XA(50),YA(50),EA(50,2),SIZE(50),
     3 MD(24),WS(24),TA(24),HMIX(24),PEN(24),
     4 AX(7,3),BX(7,3),P(7),SCUB(7),DTDZ(2),  SECTANU6),
     5 XSWC,YSWC,GRID,LX,LY,    A(2),8(2),POLNAM(3,2),CALNAM(7,2),
     6 ITA,IRD,IMR,IDSK,        080,047,08047,DIST,DELTA,
     7 ESH(2),PEAK,IBUOY,IRISH,IDWN.EFF.XS,    UINV,UVEC,
     8 NAS,NPS,INDEX,IGRID,IAV,ISCEN,IWDOPT,IWD,ISC,IPS,
     9 NTOPT,NMDOPT,NMSOPT,NSCEN,NLIST,NARRAY,NTAPE,NCSOPT,NMAX,
     * NSTDWN,INTER,NPRINT

      COMMON/CSWOR/NWORST(25,25,5),CWORST(25,25,5)
C
C
205
      IF(CHI.LE.CUORST(I,J,5)) RETURN
      IF(CHI.GT.CMORST(I,J,4)) 60 TO 205
      CUORST(I,J,5)= CHI
      NWORST(I,J,5)= IPS
      RETURN
      IF(CHI.GT.CWORSTCI,J,3M GO TO 210
      NW=1
      GO TO 225
210   IF(CHI.GT.CHORST(I,J,2)) GO TO 215
      NW=2
      GO TO 225
215   IF(CHI.GT.CHORST(I,J,D) GO TO 220
      NW=3
      GO TO 225
220   NW=4
225   DO 250 IW=1,NW
      CWORST(I,J,6-IH)= CWORST(I,J,5-IW)
250   NWORST(I,J,6-IW)= NWORST(I,J,5-IW)
      CUORST(I,J,5-NU)= CHI
      NWORST(I,J,5-NW)= IPS
      RETURN
      END
C
C

C
c
c
c
c
c
c
c
c
c
c
c
c
c
      SUBROUTINE MOROUT
                     SUBROUTINE MOROUT (VERSION 82350), PART OF PEN.
   SUBROUTINE MOROUT PRINTS A CULPABILITY LIST OF THE IDENTIFICATIONS
     AND CONTRIBUTIONS OF THE FIVE POINT SOURCES CONTRIBUTING THE MOST
     TO THE TOTAL CONCENTRATION AND SURFACE DEPOSITION FLUX AT EACH
     RECEPTOR, USING DATA COMPILED BY SUBROUTINE WORST
      PEM MODIFICATIONS AND FORMATS BY M.M. STEVENS,
      NOAA-ATDL, P.O. BOX E, OAK RIDGE, TN 37830
      DECEMBER 1982
      COMMON/PEMCOM/CONC(50,50,2),SDF(50,50,2),  TT(20),
      1 XP(300),YP(300),EP(300,2),HP(300),DP(300),VP(300),TP(300),
      2 XA(50),YA(50),EA(50,2),SIZE(50),
      3 WD(24),WS(24),TA(24),HMIX(24),PENC24)»
      4 AX(7,3),BX(7,3),P(7),SCUB(7),DTDZ(2),  SECTANU6),
00026910
00026920
00026930
00026940
00026950
00026960
00026970
00026980
00026990
00027000
00027010
00027020
00027030
00027040
00027050
00027060
00027070
00027080
00027090
00027100
00027110
00027120
00027130
00027140
00027150
00027160
00027170
00027130
00027190
00027200
00027210
00027220
00027230
00027240
00027250
00027260
00027270
00027280
00027290
00027300
00027310
00027320
00027330
00027340
00027350
00027360
00027370
00027380
00027390
00027400
00027410
00027420
00027430
00027440
00027450
00027460
00027470
00027480
00027490
00027500
00027510
00027520
00027530
00027540
00027550
00027560
00027570
00027580
00027590
00027600
00027610
00027620
00027630
00027640
OC027650
00027660
00027670
                                             164

-------
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848






C

C
C




2!
C




C








3(
31




4(
C

C

















C

C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

   5 XSMC,YSWC,GRID,LX,LY,    A(2),BC2),POLNAM(3,2),CALNAMC7,2),
   6 ITA,IRD,IWR,IDSK,        080,0*7,08047,DIST,DELTA,
   7 ESH(2),PEAK,IBUOY,IRISE,IDWN,EFF,XS,    UINV.WVEC,
   8 NAS.NPS,INDEX,IGRID.IAV,ISCEN,IWDOPT.IWD,ISC,IPS,
   9 NTOPT,NWDOPT,NWSOPT,NSCEN,NLIST,NARRAY,NTAPE,NCSOPT,NMAX,
   * NSTDWN,INTER,NPRINT

    COMMON/CSWOR/NWORST(25,25,5),CWORST<25,25,5)
    HOUT= MM ISCEN)*180./3.1415927
    N=l
    IF(NTOPT.EQ.l) 60 TO 250
    N=2
10   00 400 1=1, LX
   IF ALL CONCENTRATION VALUES ARE ZERO IN THIS COL, SKIP IT
    DO 275 JM=1,LY
    IF(CONC(I,JM,N).NE.O.) GO TO 280
275 CONTINUE
    SO TO 400
                                                                        00027680
                                                                        00027690
                                                                        00027700
                                                                        00027710
                                                                        00027720
                                                                        00027730
                                                                        00027740
                                                                        00027750
                                                                        00027760
                                                                        00027770
                                                                        00027780
                                                                        00027790
                                                                        00027800
                                                                        00027810
                                                                        00027820
                                                                        00027830
                                                                        00027840
                                                                        00027850
                                                                        00027860
                                                                        00027870
                                                                        00027880
                                                                        00027890
                                                                        00027900
                                                                        00027910
                                                                        00027920
                                                                        00027930
                                                                        00027940
                                                                        00027950
                                                                        00027960
                                                                        00027970
                                                                        00027980
                                                                        00027990
                                                                        00028000
                                                                        00028010
280 WRITE(IWR,905) TT,                  00028160
915 FORMAT(45X,'POINT SOURCE SEQUENCE NUMBER AND PERCENT1/            00028170
   115X,1COORDINATES',15X,'OF TOTAL CONCENTRATION AND SURFACE DEPOSITI00028180
   20N FLUX',14X,-TOTAL1,8X,'TOTAL SURFACE1/                          00028190
   3' COL ROM1,4X,'X CKM)',4X,'Y CKM)',9X,'HIGHEST1,6X,'SECOND1,8X,   00028200
   4'THIRD',7X,'FOURTH1,8X,'FIFTH',6X,'CONCENTRATION',3X,'DEPOSITION F0002S210
   5LUXV)                                                            00028220
925 FORMAT(2(2X,I2),3X,F8.2,2X,F8.2,3X,5(3X,I3,F7.2),6X,F8.2,9X,F8.2) 00028230
                                                                      00028240
                                                                      00028250
                                                                      00028260
                                                                      00028270
                                                                      00028280
                                                                      00028290
                                                                      00028300
                                                                      00028310
 SUBROUTINE SCENMX LOCATES AND STORES THE COORDINATES, CONCENTRATION, 00028320
 AND SURFACE DEPOSITION FLUX AT THE RECEPTOR GRID POINTS RECORDING    00028330
 THE HIGHEST CONCENTRATION AND SURFACE DEPOSITION FLUX OF EACH        00028340
 POLLUTANT IN EACH SCENARIO.  STORED VALUES ARE PRINTED BY SUBROUTINE 00028350
 MAXOUT AT THE END OF THE RUN.                                        00028360
                                                                      00028370
                                                                      00028380
                                                                      00028390
                                                                      00028400
                                                                      00028410
                                                                      00028420
                                                                      00028430
                                                                      00028440
      END
      SUBROUTINE SCENMX
                     SUBROUTINE SCENMX (VERSION 82360), PART OF PEN.
C *** PEM MODIFICATIONS BY M.M. STEVENS,
      NOAA-ATDL, P.O.BOX - E, OAK RID5E, TN 37830
      DECEMBER 1982
      COMMON/PEMCOM/CONC(50,50,2),SDF(50,50,2),  TT(20),
                                165

-------
2849
2850
2851
2852
2853
2854
2855
2856
2857
2853
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2903
2909
2910
2911
2912
2913
2914
2915
2916
2917
2913
2919
2920
2921
2922
2923
2924
2925










C


C
C



120
130


140
150








350




400


C
C

C
C
C
c :
c :
c
c
c
c
c
c *
c
c
c
c











c



c
c


  1 XP(300),YP(300),EP(300,2),HP(300),DP(300),VP(300),TPt 300),
  2 XA(50),YA(50),£A(50,2),SIZE(50),
  3 MDC24),WS(24),TA(24),HMIX(24),PEN(24),
  4 AX(7,3),BXt7,3),P<7),SCLAB<7),OTDZ(2),  SECTAN(16),
  5 XSUC,YSUC,GRID,LX,LY,     A(2),B(2) ,POLNAM(3,2),CALNAM(7,2),
  6 ITA,IRD,IWR,IDSK,         080,047,08047,DIST,DELTA,
  7 ESH(2),PEAK,IBUOY,IRISE,IDWN,EFF,XS,    UINV.WVEC,
  8 NAS.NPS,INDEX,IGRID,IAV,ISCEN,IWDOPT,IWD,ISC,IPS,
  9 NTOPT,NWDOPT,NWSOPT,NSCEN,NLIST,NARRAY,NTAPE,NCSOPT,NMAX,
  * NSTDWN,INTER,NPRINT

   COMMON/MAX/XMX(24,4,2),YMXC24,4,2),ZMXC24,4,2),SMX(24,4,2)
   COMMON/PARM1/NPOL,ICT,VD1,W1,VD2,W2,TAUC
   IF(NTOPT.EQ.l) 6O TO 120
   1= 1
   60 TO 130
   1= 1SCEN
   IF(NWDOPT.LE.l) SO TO 140
   J= IWDOPT
   GO TO 150
   J= 1
   DO 400 K=1,NPOL
   Z= 0.
   DO 350 NX=1,LX
   DO 350 NY=1,LY
   IF(CONC(NX,NY,K).LT.Z) GO TO 350
   Z= CONC(NX,NY,K)
   ZS=SDF(NX,NY,K)
   ZX=NX
   ZY=NY
   CONTINUE
   ZMXCI,J,K)= Z
   SMX(I,J,K)=ZS
   XMX(I,J,K)= XSWC * (ZX - 0.5)»GRID
   YMXtI,J,K)= YSWC + ,
  4 AX(7,3),BX(7,3),P(71,SCLAB(7),DTDZt2),  SECTANU6),
  5 XSUC,YSHC,GRID,LX,LY,    A(2),B<2),POLNAMC3,2)>CALNAM(7,2),
  6 ITA,IRD,IWR,IDSK,        D80,047,D8047.DIST,DELTA,
  7 ESH(2),PEAK,IBUOY,IRISE,IDMN,EFF,XS,    UINV.WVEC,
  8 MAS,NPS,INDEX,IGRID,IAV,ISCEN,IWDOPT,IMD,ISC,IPS,
  9 NTOPT,NWDOPT,NWSOPT»NSCEN,NLIST,NARRAY,NTAPE,NCSOPT,NMAX,
  * NSTDWN,INTER,NPRINT

   COMMON/MAX/XMXf 24,4,2) ,YMX( 24,4,2) ,ZMX( 24,4,2) ,SMX( 24,4,2)
   COMMON/PARM1/NPOL,ICT,VD1,W1,VD2,W2,TAUC
   DIMENSION ZC(2),ZS(2J

 CHECK WHETHER SURF DEP FLUX HAS CALCULATED AND SET FLAG
   NREP=1
   IF(VD1.LE.0.01 .AND. VD2.LE.0.01) NREP=0
00028450
00028460
00028470
00028480
00028490
00028500
00028510
00028520
00028530
00028540
00028550
00028560
00028570
00028580
00028590
00028600
00028610
00028620
00028630
00028640
00028650
00028660
00028670
00028680
00028690
00028700
00028710
00028720
00028730
00028740
00028750
00028760
00028770
00028780
00028790
00028800
00028810
00028820
00028830
00028840
00028850
00028860
00028370
00028880
00028890
00028900
00028910
00028920
00028930
00028940
00028950
00028960
00028970
00028980
,00028990
00029000
00029010
00029020
00029030
00029040
00029050
00029060
00029070
00029080
00029090
00029100
00029110
00029120
00029130
00029140
00029150
00029160
00029170
00029180
00029190
00029200
00029210
                             166

-------
2926
2927
2928
2929
2930
2931
2932
2933
293*
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
C

c



C














c
c
c















c

c
c

c

















c
c
c












    IF(NHDOPT.GT.l) GO TO 300

    J=l
    N=l
    IF(NTOPT.EQ.l) N=NSCEN
  PRINT HIGHEST CONCENTRATIONS
    WRITE(IWR,900) TT
    WRITE(IWR,902) (CALNAWL,l),L=1,7)
    IF(NPOL.EQ.2) WRITE(IWR,903) (CALNAM(L,2),L=1,7)
    WRITE(IWR,910) (POLNAM(L,1),L=1,3)
    IF(NPOL.EQ.2) WRITE(IWR,911) (POLNAtKL,2),L=1,3)
    WRITE(IWR,912)
    WRITE(IWR,915)
    DO 200 1=1,N
    DO 120 K=1,NPOL
120 ZC1  -  SUB-SCENARIOS
300 N=NSCEN
  PRINT HIGHEST CONCENTRATIONS
    00 500 1=1,N
    IF«(I-1)/8)*8.NE.I-1) GO TO 310
    URITE(IUR,900) TT
    WRITE(IWR,902) (CALNAMtL,1),L=1,7)
    IF(NPOL.EQ.2) HRITEUWR,903) (CALNAIK L,2),L=1,7)
    WRITE(IWR,910) 
-------
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
    DO 520 K=1,NPOL
520 ZS(K)= A(K) + B(K)*SMX(I,J,K)
    WRITECIWR,925) I,J,(XMX(I,J,K),YMX(I,J,K),SMX(I,J,K),ZS(K),
   1 K=1,NPOL)
550 CONTINUE
600 CONTINUE

700 RETURN
                                                                      00029990
                                                                      00030000
                                                                      00030010
                                                                      00030020
                                                                      00030030
                                                                      00030040
                                                                      00030050
                                                                      00030060
                                                                      00030070
900 FORMAT(1H1,45X,'POLLUTION EPISODIC MODELV//4X,'OUTPUT:  ',20A4//)00030080
902 FORMAT(4X,'HIGHEST PREDICTED CONCENTRATION OF EACH POLLUTANT FOR E00030090
   1ACH SCENARIOV/4X,'UNCALIBRATED CONCENTRATION IN MICROGRAMS PER CU00030100
   2BIC METER  -  CALIBRATION, POLLUTANT-l: ',7A4)                    00030110
903 FORMAT!65X,1CALIBRATION, POLLUTANT-2: S7A4)                      00030120
910 FORMAT(//40X.'POLLUTANT-l: ',3A4)                                 00030130
911 FORMAT(1H+,93X,'POLLUTANT-2: -,3A4)                               00030140
912 FORMATC/1 SCENARIO  WIND DIRECTION',7X,'COORDINATES1,14X,         00030150
   1'CONCENTRATION',16X,'COORDINATES',14X,'CONCENTRATION1)            00030160
915 FORMAT(2X,'NUMBER',4X,'SUB-SCENARIO',6X,'X(KM)',5X,'Y(KM)',6X,    00030170
   1'UNCALIBRATED',4X,'CALIBRATED',7X,'X(KM)',5X,'Y(KH)1,6X,          00030180
   2'UNCALIBRATED1,4X,'CALIBRATED'/)                                  00030190
920 FORMATUX)                                                        00030200
925 FORMAT(4X,I2.11X,I2,8X,F9.2,1X,F9.2,5X,F11.4,4X,F11.4,4X,F9.2,1X, 00030210
   1F9.2,5X,F11.4,4X,F11.4)                                           00030220
932 FORMAT(4X,'HIGHEST PREDICTED SURFACE DEPOSITION FLUX OF EACH POLLU00030230
   1TANT FOR EACH SCENARIOV/4X,'UNCALIBRATED VALUES IN MICROGRAMS PEROC030240
   2 SQUARE METER PER HOUR  -  CALIBRATION, POLLUTANT-l: ',7A4)       00030250
933 FORMATC68X,'CALIBRATION, POLLUTANT-2: f,7A4)                      00030260
942 FORMAT!/' SCENARIO  MIND DIRECTION*,7X,'COORDINATES',9X,          00030270
   I1SURFACE DEPOSITION FLUX',11X,'COORDINATES',9X,'SURFACE DEPOSITION00030280


c
c

c
c
c
c
c
c
c
c
c
c
c
c











c





c
c
c


2 FLUX1 )
END


SUBROUTINE RISE
SUBROUTINE RISE (VERSION 82360), PART OF PEM.


SUBROUTINE RISE CALCULATES PLUME RISE VIA ONE OF SIX EQUATIONS
(BRIS6S.1969). IF IRISE=1, DISTANCE DEPENDENT EFFECTIVE SOURCE
HEIGHT (ESHU)) IS RETURNED. IF IRISE=2, MAXIMUM EFFECTIVE SOURCE
HEIGHT (ESH(2>) IS RETURNED. RISE IS CALLED ONCE PER SOURCE PER
SCENARIO WITH IRISE=2.. IT IS CALLED WITH IRISE=1 WHENEVER THE
DOWNWIND DISTANCE (DIST) IS LESS THAN THE DISTANCE TO MAXIMUM
PLUME RISE (PEAK).


COMMON/PEMCOM/CONC(50,50,2),SDF(50,50,2), TT(20),
1 XP(300),YP(30C),EP(300,2),HP(300),DP(300),VP(300),TP(300),
2 XA(50),YA(50),EA(50»2),SIZE(50),
3 HD(24),fclS(24),TA(24),HMIX(24),PEN(24),
4 AX(7,3),BX(7,3),P(7I,SCLAB(7),DTDZ(2), SECTAN(16),
5 XSWC,YSWC,GRID,LX,LY, A(2) ,B(2),POLNAM(3,2),CALNAM(7,2).
6 ITA,IRD,IWR,IDSK, 080,047,08047, DIST, DELTA,
7 ESH(2),PEAK,IBUOY,IRISE,IDMN,EFF,XS, UINV,WVEC,
8 NAS.NPS, INDEX, IGRID,IAV,ISCEN,IWDOPT,IWO, ISC, IPS,
9 NTOPT.NHDOPT,NUSOPT»NSCEN,NLIST,NARRAY,NTAPE,NCSOPT,NMAX,
* NSTDWN, INTER, NPRINT

IDMN=1
IF(IRISE.EQ.l) GO TO 300
DWNWSH= 1.0
IF(IBUOY.EQ.O) 60 TO 205
IF(EFF.GE,55.) GO TO 150

XS,CTB, AND CTMU ARE INDEPENDENT OF DISTANCE, AND ARE THEREFORE
CALCULATED ONCE PER SOURCE PER SCENARIO (WHEN IRISE=2).
XS= 49.*EFF**0.625
GO TO 160
150 XS=119.*EFF**0.4
160 CTB= 1.6«UINV*EFF»*0. 333333

C
C


C
IF(ISC.GE.6> GO TO 170

PEAK PLUME RISE: BUOYANCY-DOMINATED PLUME, UNSTABLE AIR (A-D).
DELTAH= CTB*XS**0. 666667
60 TO 250

00030290
00030300
00030310
00030320
00030330
00030340
00030350
00030360
00030370
00030380
00030390
00030400
00030410
00030420
00030430
00030440
00030450
00030460
00030470
00030460
00030490
00030500
00030510
00030520
00030530
00030540
00030550
00030560
00030570
00030580
00030590
00030600
00030610
00030620
00030630
00030640
00030650
00030660
00030670
00030680
00030690
00030700
00030710
00030720
00030730
00030740
00030750
                                            168

-------
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
C PEAK PLUME RISE: BUOYANCY-DOMINATED PLUME, STABLE AIR (E,F).
170 OELTAH= 2.6*(EFF*UINV*TA(ISCEN)/(9.8*OTOZ(ISC-5) ) )**0. 333333
60 TO 250
205 IF(ISC.6E.6) GO TO 230
00030760
00030770
00030780
00030790
CTMU= 1.89*(VP(IPS)*VP(IPS)*OP(IPS)*UINV/(VP(IPS)+3./UINV))**0. 66600030800
1667
C
C PEAK PLUME RISE: MOMENTUM-DOMINATED PLUME, UNSTABLE AIR (A-D).
DELTAH= 3.0*VPCIPS)*OP(IPS)*UINV
SO TO 250
C
C PEAK PLUME RISE: MOMENTUM-DOMINATED PLUME, STABLE AIR (E,F).
230 DELTAH= 1.5*(0.5*VP(IPS)»OP
-------
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
317*
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
C
C
170
200
300
400
                                                                   00031530
                                                                   00031540
                                                                   00031550
                                                                   00031560
                                                                   00031570
                                                                   00031580
                                                                   00031590
                                                                   00031600
                                                                   00031610
                                                                   00031620
                                                                   00031630
                                                                   00031640
                                                                   00031650
                                                                   00031660
                                                                   00031670
                                                                   00031680
                                                                   00031690
                                                                   00031700
                                                                   00031710
                                                                   00031720
                                                                   00031730
 IF(VP(I).GT.90.67*(TP(I)-TA= 6X1
 YCRNR(1)= 6Y1
 YCRNR(2)= 6Y1
 YCRNR(3)= 6Y2
 YCRNR(4)= 6Y2
 DO 300 J=l,4
 XCRKRT= XCRNR(J)
 XCRNR(J)= XCRNRU)*COSNE  - YCRNR(J)*SINEE
 YCRNR(J)= YCRNR(J)*COSNE * XCRNRT*SINEE
 XSMC= XCRNR(l)
 XNEC= XSWC
 YSWC= YCRNR(l)
 YNEC= YSWC
 DO 400 1=2,4
 IF(XCRNR(I).ST.XNEC) XNEC= XCRNR(I)
 IF(XCRNRd).LT.XSWC) XSWC= XCRNR(I)
 IF(YCRNR(I).GT.YNEC) YNEC= YCRNR(I)
 IFtYCRNH(I).LT.YSWC) YSWC= YCRNR(I)
 XT= XNEC - XSWC
 YT= YNEC - YSWC
 DMAX= XT
 IF(YT.GT.XT) DMAX= YT
 IFCDMAX.LT.10.) GO TO 500
 IF(XT.GT.YT) GO TO 420
 LY=  50
 6RID= YT/50.
 LX= XT/GRID
 IF(LX.LT.SO) LX= LX+1
 GO TO 600
 LX= 50
 GRID= XT/50.
 LY= YT/GRID
                                                                  00031880
                                                                  00031890
                                                                  00031900
                                                                  00031910
                                                                  00031920
                                                                  00031930
                                                                  00031940
                                                                  00031950
                                                                  00031960
                                                                  00031970
                                                                  00031980
                                                                  00031990
                                                                  00032000
                                                                  00032010
                                                                  00032020
                                                                  00032030
                                                                  00032040
                                                                  00032050
                                                                  00032060
                                                                  00032070
                                                                  00032080
                                                                  00032090
                                                                  00032100
                                                                  00032110
                                                                  00032120
                                                                  00032130
                                                                  00032140
                                                                  00032150
                                                                  00032160
                                                                  00032170
                                                                  00032180
                                                                  00032190
                                                                  00032200
                                                                  00032210
                                                                  00032220
                                                                  00032230
                                                                  00032240
                                                                  00032250
                                                                  00032260
                                                                  00032270
                                                                  00032230
                                                                  00032290
                                            170

-------
323*
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
      IF(LY.LT.SO) LY=LY+1                                              00032300
      GO TO 600                                                         00032310
500   IF(DMAX.LT.5.) GO TO 540                                          00032320
      GRID= 0.2                                                         00032330
      LX= XT/GRID                                                       00032340
      LY= YT/GRID                                                       00032350
      IF(LX.LT.SO) LX=LX+1                                              00032360
      IF(LY.LT.SO) LY=LY+1                                              00032370
      GO TO 600                                                         00032380
540   IF(DMAX.LT.0.25) GO TO 580                                        00032390
      IF(XT.GT.YT) GO TO 560                                            00032400
      LY= 25                                                            00032410
      GRID= YT/25.                                                      00032420
      LX= XT/GRID                                                       00032430
      IF(LX.LT.25) LX=LX+1                                              00032440
      GO TO 600                                                         00032450
560   U= 25                                                            00032460
      GRID= XT/25.                                                      00032470
      LY= YT/GRID                                                       00032480
      IF(LY.LT.25) LY=LY+1                                              00032490
      GO TO 600                                                         00032500
580   SRID= 0.01                                                        00032510
      LX= XT/GRID                                                       00032520
      LY= YT/GRID                                                       00032530
      IFCLX.LT.25) LX=LX*1                                              00032540
      IF(LY.LT.25) LY=LY+1                                              00032550
600   XSMC= XSWC - 0.5«GRID                                             00032560
      YSWC= YSMC - 0.5*GRID                                             00032570
      IF(NCSOPT.LT.1.0R.(LX.LE.25.AND.LY.LE.25)) GO TO 700              00032580
      XL=LX                                                             00032590
      YL=LY                                                             00032600
      IF(LX.GT.LY) GO TO 640                                            00032610
      DELG= YL/25.                                                      00032620
      LY=25                                                             00032630
      SRID= 6RID*OELS                                                   00032640
      LX= XL/OELG                                                       00032650
      IF(LX.LT.25) LX=LX+1                                              00032660
      GO TO 700                                                         00032670
640   DELG= XL/25.                                                      00032680
      LX=25                                                             00032690
      SRID= GRID*OEL6                                                   00032700
      LY= YL/DELG + 1.                                                  00032710
700   CONTINUE                                                          00032720
      HRITE(IWR,900)ISCEN,IHDOPT,TT                                     00032730
      XRSNC=XSHC+0.5*GRID                                               00032740
      YRSWC=YSWC+0.5*GRID                                               00032750
      WRITE(IHR,905)LX,LY,GRID,XRSHC,YRSMC                              00032760
900   FORMATdHl.'PEM:   AUTOMATICALLY GENERATED RECEPTOR GRID PARAHETER00032770
     IS FOR SCENARIO ',12,'  (MIND DIRECTION SUB-SCENARIO M2,')V/    00032780
     221X.20A4/1X,1201'-')//)                                           00032790
905   FORMATC RECEPTOR GRID CONSISTS OF ',12,' COLUMNS AND ',12,' ROMS 00032800
     10F SPACING =',F7.4,' KM. SOUTHWEST CORNER OF GRID =',F8.3t' KM H, 00032810
      BLOCK DATA
     2',F8.3,' KM S.1)
      RETURN
      END
C
C
C

C
C
C
C
C     THIS SUBPROGRAM INITIALIZES VARIABLES IN COMMON/PEMCDM/
C
C *** PEM MODIFICATIONS BY M.M.STEVENS,
                     BLOCK DATA (VERSION 82360), PART OF PEM.
C
C
C
      NOAA-ATDL, P.O.BOX-E. OAK RIDGE, TENN 37830
      DECEMBER 1982

      COMMON/PEMCOM/CONC(50,50,2),SDF(50,50,2),  TT(20),
     1 XP(300),YP(300),EP(300,2),HP(300),DP(300),VP(300),TP(300),
     2 XA(50),YA(50),EA(50,2),SIZE(50),
     3 MD(24),MS(24),TA(24),HMIX(24),PEN(24),
     4 AX(7,3),BX(7,3),P(7),SCLAB(7),DTDZ(2),  SECTANU6),
     5 XSWC,YSWC,GRID,LX.LY,    A(2),B(2),POLNAM(3,2),CALNAM(7,2),
     6 ITA,IRD,IMR,IDSK,        D80,D47>D8047,DIST,DELTA,
     7 ESH(2),PEAK,IBUOY,IRISE,IDMN,EFF,XS,    UINV.WVEC,
00032820
00032830
00032840
00032850
00032860
00032870
00032880
00032890
00032900
00032910
00032920
00032930
00032940
00032950
00032960
00032970
00032980
00032990
00033000
00033010
00033020
00033030
00033040
00033050
00033060
                                             171

-------
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
 C
 C
 C$P
     8 NAS.NPS,INDEX,IGRID,IAV,ISCEN,IHOOPT,IWO,ISC,IPS,
     9 NTOPT,NWDOPT,NWSOPT,NSCEN,NLIST,NARRAY,NTAPE,NCSOPT,NMAX,
     * NSTDWN,INTER,NPRINT
      DATA INDEX,NAS,NPS/0,0,0/
      DATA irA,IRD,IWR,IDSK/l,5,6,8/
      DATA SCUB/2HA ,2HB ,2HC ,2HDD,2HDN,2HE ,2HF /
      DATA P/0.1,0.15,0.2,0.25,0.25,0.3,0.3/
      DATA AX/.0383,.1393,.112,.0856,.0818,.1094,.05645,
     1 .0002539,.04936,.1014,.2591,.2527,.2452,.1930,
     2 .0002539,.04936,.1154,.7368,1.297,.9204,1.505/
      DATA BX/1.281,.9467,.9100,.865,.8155,.7657,.805,
     1  2.089,1.114,.926,.6869,.6341,.6358,.6072,
     2 2.089,1.114,.9109,.5642,.4421,.4805,.3662X
      DATA SECTAN/0.,.39270,.78540,1.17810,1.57080,1.96350,2.35620,
     1 2.74890,3.14159,3.53429,3.92699,4.31969,4.71239,5.10509,
     2 5.49779,5.89049/

      END
 SUBROUTINE D01AJF(F, A, B, EPSABS, EPSREL, RESULT, ABSERR.HORK,
* LWORK, IWORK, LIWORK, IFAIL)
                 SUBROUTINE 001AJF, PART OF PEM (VERSION 82360).

 MARK 8 RELEASE. NAG COPYRIGHT 1980

 DOIAJF IS A GENERAL PURPOSE INTEGRATOR WHICH CALCULATES
 AN APPROXIMATION TO THE INTEGRAL OF A FUNCTION OVER A FINITE
 INTERVAL (A,B).  THIS ROUTINE CAN BE USED WHEN THE INTEGRAND
 HAS SINGULARITIES, ESPECIALLY WHEN THESE ARE OF ALGEBRAIC OR
 LOGARITHMIC TYPE.  DOIAJF IS AN ADAPTIVE ROUTINE, USING THE
 GAUSS 10-POINT AND KRONROO 21-POINT RULES.  THE ALGORITHM
 INCORPORATES A GLOBAL ACCEPTANCE CRITERION TOGETHER WITH
 EPS-ALGORITHM TO PERFORM EXTRAPOLATION.  THE LOCAL ERROR IS
 ESTIMATED.

 THE GENERAL PURPOSE INTEGRATOR DOIAJF INCLUDES THE FOLLOWING:
 SUBROUTINES (1) DOIAJF, (2) D01AJV, (3) D01AJX, (4) D01AJY,
 (5) D01AJZ, INTEGER FUNCTION P01AAF, DOUBLE PRECISION FUNCTIONS
 (1) X02AAF, (2) X02ABF, (3) X02ACF, AND SUBROUTINE X04AAF.
 THE PROGRAM LISTINGS FOR THESE SUBROUTINES AND FUNCTIONS, COPIED
 HERE FROM ORNL - NAG LIBRARY, FOLLOW.  THESE ARE DEVELOPED BY
      NUMERICAL ALGORITHMS GROUP (NAG)
      1131 WARREN AVENUE
      DOWNERS GROVE, ILLINOIS 60515
 WHICH HOLDS THE COPYRIGHT (NAG FORTRAN MINI MANUAL, MARKS, 1980).
 THESE PROGRAM LISTINGS ARE INCLUDED HERE WITH PERMISSION FROM
      COMPUTER SCIENCES DEPARTMENT
      OAK RIDGE NATIONAL LABORATORY (ORNL)
      OAK RIDGE, TENNESSEE 37830
 EXCLUSIVELY FOR PEM.  THESE LIBRARY SUBROUTINES AND PROGRAMS
 SHOULD NOT BE USED FOR ANY OTHER PURPOSE WITHOUT PRIOR APPROVAL
 FROM NAG AND ORNL.
 DOIAJF ITSELF IS ESSENTIALLY A DUMMY ROUTINE WHOSE FUNCTION IS TO
 PARTITION THE WORK ARRAYS WORK AND IWORK FOR USE BY D01AJV.
 WORK IS PARTITIONED INTO 4 ARRAYS EACH OF SIZE LWORK/4.
 IWORK IS A SINGLE ARRAY IN D01AJV.

 .. SCALAR ARGUMENTS ..
 DOUBLE PRECISION A, ABSERR, B, EPSABS, EPSREL, RESULT
 INTEGER IFAIL, LIWORK, LWORK
 .. ARRAY ARGUMENTS ..
 DOUBLE PRECISION WORK(LWORK)
 INTEGER IWORK(UIWORK)
 .. FUNCTION ARGUMENTS  ..
 DOUBLE PRECISION F

 .. LOCAL SCALARS ..

 DOUBLE PRECISION SRNAME
 INTEGER IBL, IEL, IER, IRL, LIMIT
 .. FUNCTION REFERENCES ..
00033070
00033080
00033090
00033100
00033110
00033120
00033130
00033140
00033150
00033160
00033170
00033180
00033190
00033200
00033210
00033220
00033230
00033240
00033250
00033260
00033270
00033280
00033290
00033300
00033310
00033320
00033330
00033340
00033350
00033360
00033370
00033380
00033390
00033400
00033410
00033420
00033430
00033440
00033450
00033460
00033470
00033480
00033490
00033500
00033510
00033520
00033530
00033540
00033550
00033560
00033570
00033580
00033590
00033600
00033610
00033620
00033630
00033640
00033650
00033660
00033670
00033680
00033690
00033700
00033710
00033720
00033730
00033740
00033750
00033760
00033770
00033780
00033790
00033800
00033810
Q0033820
00033830
                                           172

-------
3386
3389
3390
3391
3393
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3413
3413
3414
3415
3416
3417
3418
3419
3430
3431
3432
3433
3434
3435
3436
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3453
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464

C
C
C


C


C

C



C

i



C
30
40
60

C
C


C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
 INTEGER P01AAF
 .. SUBROUTINE REFERENCES ..
 D01AJV

 EXTERNAL F
 DATA SRNAME /8H D01AJF /
 CHECK THAT MINIMUM WORKSPACE REQUIREMENTS ARE MET
 IF (LHORK.LT.4) GO TO 30
 IF (LIWORK.LT.LHORK/8+3) GO  TO 20
 LIMIT = UPPER BOUND ON NUMBER OF SUBINTERVALS
 LIMIT = LWORK/4
 SET UP BASE ADDRESSES FOR WORK ARRAYS
 IBL = LIMIT + 1
 IEL = LIMIT + IBL
 IRL = LIMIT + IEL
 PERFORM INTEGRATION
                                                    00033840
                                                    00033850
                                                    00033860
                                                    00033870
                                                    00033880
                                                    00033890
                                                    00033900
                                                    00033910
                                                    00033930
                                                    00033930
                                                    00033940
                                                    00033950
                                                    00033960
                                                    00033970
                                                    00033980
                                                    00033990
 CALL D01AJV(F> A, B,  DABSJEPSABS),  DABS(EPSREL),  UORK(1),HORK(IBL)00034000
 i, UORK(IEL), WORK(IRL), LIMIT,  IUORK,  LIHORK,RESULT,  A8SERR,  IER)  00034010
 IF (IER.NE.O) 60 TO 40
 IFAIL = 0
 GO TO 60
 ERROR 6 = INSUFFICIENT WORKSPACE
 IER = 6
 IFAIL = P01AAFCIFAIL,IER,SRNAME)
 RETURN
 END
 SUBROUTINE D01AJV(F, A, B, EPSABS, EPSREL,  ALIST,  B LIST, E LIST,
* RLIST, LIMIT, IORD, LIORD, RESULT, ABSERR, IER)
                 SUBROUTINE D01AJV, PART OF  PEM (VERSION 82360).

 MARK 8 RELEASE. NAG COPYRIGHT 1979
 BASED ON QUADPACK ROUTINE DQAGS (FORMERLY QAGS)
    PURPOSE
       THE ROUTINE CALCULATES AN APPROXIMATION
       /RESULT/ TO A GIVEN DEFINITE INTEGRAL   I =
       INTEGRAL OF /F/ OVER (A,B), HOPEFULLY
       SATISFYING FOLLOWING CLAIM FOR ACCURACY .
       ABS(I-RESULT) .IE. MAX(EPSABS,EPSREL*ABS(I) ).

      CALLING SEQUENCE
       CALL D01AJV (F, A, B, EPSABS, EPSREL, ALIST.BLIST.ELIST,
                    RUST, LIMIT, IORD , LIORD .RESULT, ABSERR , IER )
    PARAMETERS
        F
- FUNCTION SUBPROGRAM DEFINING THE INTEGRAND
  FUNCTION F(X). THE ACTUAL NAME FOR F
  NEEDS TO BE DECLARED EXTERNAL
  IN THE DRIVER PROGRAM

- LOWER LIMIT OF INTEGRATION

- UPPER LIMIT OF INTEGRATION
        EPSABS - ABSOLUTE ACCURACY REQUESTED

        EPSREL - RELATIVE ACCURACY REQUESTED

        ALIST,BLIST,E LIST,R LIST
               - WORK ARRAYS (FUNCTIONS DESCRIBED BELOW)

        LIMIT  - UPPER BOUND FOR NUMBER OF SUBINTERVALS

        IORD   - WORK ARRAY

        LIORD  - LENGTH OF IORO (AT LEAST LIMIT/2 + 2)

        RESULT - APPROXIMATION TO THE INTEGRAL

        ABSERR - ESTIMATE OF THE MODULUS OF THE ABSOLUTE ERROR,
                 WHICH SHOULD EQUAL OR EXCEED ABS(I-RESULT)

        IER    - IER   =0 NORMAL AND RELIABLE
                         TERMINATION OF THE ROUTINE.
00034030
00034030
00034040
00034050
00034060
00034070
00034080
00034090
00034100
00034110
00034130
00034130
00034140
00034150
00034160
00034170
00034180
00034190
00034300
00034310
00034220
00034230
00034240
00034350
00034360
00034370
00034380
00034290
00034300
00034310
00034320
00034330
00034340
00034350
00034360
00034370
.00034380
00034390
00034400
00034410
00034430
00034430
00034440
00034450
00034460
00034470
00034480
00034490
00034500
00034510
00034530
00034530
00034540
00034550
00034560
00034570
00034580
00034590
00034600
                             173

-------
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
347S
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3493
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C


C



C

C
C

C
C







C

          IT IS ASSUMED THAT THE
          REQUESTED  ACCURACY HAS BEEN
          ACHIEVED .
- IER   .NE. 0 ABNORMAL TERMINATION OF
          THE ROUTINE.  THE ESTIMATES
          FOR INTEGRAL AND ERROR ARE
          LESS RELIABLE. IT IS ASSUMED
          THAT THE  REQUESTED ACCURACY
          HAS NOT BEEN ACHIEVED.
      - 1 MAXIMUM NUMBER OF SUBDIVISIONS ALLOWED
          HAS BEEN ACHIEVED. THE USER CAN
          ALLOW MORE SUB DIVISIONS BY
          INCREASING THE DIMENSIONS OF THE
          WORK ARRAYS WORK AND IWORK.
          HOWEVER, THIS MAY
          YIELD NO  IMPROVEMENT, AND IT
          IS RATHER ADVISED TO HAVE A
          CLOSE LOOK AT THE INTEGRAND.
          IN ORDER TO DETERMINE THE
          INTEGRATION  DIFFICULTIES. IF
          THE POSITION OF A LOCAL
          DIFFICULTY CAN BE DETERMINED
          (I.E.  SINGULARITY,
          DISCONTINUITY WITHIN THE
          INTERVAL) ONE WILL PROBABLY
          GAIN FROM  SPLITTING UP THE
          INTERVAL AT THIS POINT AND
          CALLING THE INTEGRATOR ON THE
          SUB-RANGES. IF POSSIBLE, AN
          APPROPRIATE SPECIAL-PURPOSE
          INTEGRATOR SHOULD BE USED
          WHICH IS DESIGNED FOR
          HANDLING THE TYPE  OF
          DIFFICULTY INVOLVED.
      = 2 THE OCCURRENCE OF ROUNDOFF
          ERROR IS DETECTED WHICH
          PREVENTS THE REQUESTED
          TOLERANCE  FROM BEING
          ACHIEVED. THE ERROR MAY BE
          UNDER-ESTIMATED.
      = 3 EXTREMELY BAD INTEGRAND BEHAVIOUR
          OCCURS AT SOME INTERIOR POINTS OF THE
          INTEGRATION INTERVAL.
      = 4 IT IS PRESUMED THAT THE REQUESTED
          TOLERANCE CANNOT BE ACHIEVED,
          AND THAT THE RETURNED RESULT
          IS THE BEST WHICH CAN BE
          OBTAINED.
      = 5 THE INTEGRAL IS PROBABLY DIVERGENT,
          SLOWLY CONVERGENT. IT MUST BE NOTED
          THAT DIVERGENCY CAN OCCUR
          WITH ANY OTHER VALUE OF IER.
                                                             OR
 .. SCALAR ARGUMENTS ..
 DOUBLE PRECISION A. ABSERR, B, EPSABS, EPSREL, RESULT
 INTEGER IER, LIMIT, LIORD
 .. ARRAY ARGUMENTS ..
 DOUBLE PRECISION ALIST( LIMIT), BLISTC LIMIT),  EUST( LIMIT),
* RLIST( LIMIT)
 INTEGER IORD( LIORD 1
 .. FUNCTION ARGUMENTS ..
 DOUBLE PRECISION F

 . . SCALARS IN COMMON . .
 INTEGER JUPBND

 . , LOCAL SCALARS .,
 DOUBLE PRECISION Al, AS, ABSEPS, AREA12, AREA1, AREA2, AREA, Bl,
* B2,CORREC, DEFAB1, DEFAB2, DEFABS, ORES, EPMACH, ERLARG,ERLAST,
* ERRBND, ERRMAX, ERR012, ERROR1, ERROR 2, ERRSUM.ERTEST, OF LOW,
* RESABS, RESEPS, SMALL,  UFLOW
 INTEGER ID, IERRO, IROFF1, IROFF2, IROFF3, K, KSGN.  KTMIN.LASTl,
*  LAST, MAXERR, NRES, NRMAX, NUMRL2
 LOGICAL EXTRAP, NOEXT
 .. LOCAL ARRAYS ..
 DOUBLE PRECISION RES3LA(3), RLIST2152)
00034610
00034620
00034630
00034640
00034650
00034660
00034670
00034680
00034690
00034700
00034710
00034720
00034730
00034740
00034750
00034760
00034770
00034780
00034790
00034800
00034810
00034820
00034830
00034840
00034850
00034860
00034870
00034880
00034890
00034900
00034910
00034920
00034930
00034940
00034950
00034960
00034970
00034980
00034990
00035000
00035010
00035020
00035030
00035040
00035050
00035060
00035070
00035080
00035090
00035100
00035110
00035120
00035130
00035140
00035150
00035160
00035170
00035180
00035190
00035200
00035210
00035220
00035230
00035240
00035250
00035260
00035270
00035280
00035290
00035300
00035310
00035320
00035330
00035340
00035350
00035360
00035370
                            174

-------
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
C

C
C
C


C
C
C
C
C



C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
.. FUNCTION REFERENCES ..
DOUBLE PRECISION X02AAF, X02ABF, X02ACF
.. SUBROUTINE REFERENCES ..
D01AJX. D01AJY, D01AJZ
m »
EXTERNAL F
COMMON /A001AJ/ JUPBND

THE DIMENSION OF /RLIST2/ IS DETERMINED BY
DATA /LIMEXP/ IN SUBROUTINE D01AJY (/RLIST2/
SHOULD BE OF DIMENSION (LIMEXP+2) AT LEAST).

EPMACH s X02AAFU.ODO)
UFLOM = X02ABFC 1.000)
OF LOW = X02ACFC1.0DO)

LIST OF MAJOR VARIABLES

ALIST - LIST OF LEFT END-POINTS OF ALL SUBINTERVALS
CONSIDERED UP TO NOW

BLIST - LIST OF RIGHT END-POINTS OF ALL SUBINTERVALS
CONSIDERED UP TO NOW

RLIST(I) - APPROXIMATION TO THE INTEGRAL OVER
(ALIST(I),BLIST(D)

RLIST2 - ARRAY OF DIMENSION AT LEAST LIMEXP+2
CONTAINING THE PART OF THE EPSILON TABLE
WHICH IS STILL NEEDED FOR FURTHER
COMPUTATIONS

ELIST(I) - ERROR ESTIMATE APPLYING TO RLIST(I)

MAXERR - POINTER TO THE INTERVAL WITH LARGEST ERROR
ESTIMATE

ERRMAX - ELIST( MAXERR)

ERLAST - ERROR ON THE INTERVAL CURRENTLY SUBDIVIDED
(BEFORE THAT SUBDIVISION HAS TAKEN PLACE)

AREA - SUM OF THE INTEGRALS OVER THE SUBINTERVALS

ERRSUM - SUM OF THE ERRORS OVER THE SUBINTERVALS

ERRBND - REQUESTED ACCURACY MAX( EPSABS.EPSREL*
ABS( RESULT))

*****! - VARIABLE FOR THE LEFT INTERVAL

*****2 - VARIABLE FOR THE RIGHT INTERVAL

LAST - INDEX FOR SUBDIVISION

NRES - NUMBER OF CALLS TO THE EXTRAPOLATION ROUTINE

NUMRL2 - NUMBER OF ELEMENTS CURRENTLY IN
RLIST2. IF AN APPROPRIATE
APPROXIMATION TO THE COMPOUNDED
INTEGRAL HAS BEEN OBTAINED IT IS
PUT IN RLIST2(NUMRL2) AFTER NUMRL2
HAS BEEN INCREASED BY ONE.

SMALL - LENGTH OF THE SMALLEST INTERVAL CONSIDERED
UP TO NOWt MULTIPLIED BY 1.5

ERLARG - SUM OF THE ERRORS OVER THE INTERVALS LARGER
THAN THE SMALLEST INTERVAL
CONSIDERED UP TO NOW
EXTRAP - LOGICAL VARIABLE DENOTING THAT THE
ROUTINE IS ATTEMPTING TO PERFORM
EXTRAPOLATION. I.E. BEFORE
SUBDIVIDING THE SMALLEST INTERVAL
WE TRY TO DECREASE THE VALUE OF
ERLARG
00035380
00035390
00035400
00035410
00035420
00035430
00035440
00035450
00035460
00035470
00035480
00035490
00035500
00035510
00035520
00035530
00035540
00035560
00035570
00035580
00035590
00035600
00035610
00035620
00035630
00035640
00035650
00035660
00035670
00035680
00035690
00035700
00035710
00035720
00035730
00035740
00035750
00035760
00035770
00035780
00035790
00035800
00035810
00035820
00035830
00035840
00035850
00035860
00035870
00035880
00035890
00035900
00035910
00035920
00035930
00035940
00035950
00035960
00035970
00035980
00035990
00036000
00036010
00036020
00036030
00036040
00036050
00036060
00036070
00036080
00036090
00036100
00036110
00036120
00036130
00036140
175

-------
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
C
C
C
C
C
C
C
C
C
C
C
C
C
        NOEXT
- LOGICAL VARIABLE DENOTING THAT EXTRAPOLATION
  IS NO LONGER ALLOUEOC/TRUE/ VALUE)
C
C
C
C
C
C
C
C
C
C
C
C
         FIRST APPROXIMATION TO THE INTEGRAL
   USTl  =  1
   IER  =  0
   IERRO  =  0
   CALL D01AJZ(F,  A, B, RESULT, ABSERR, DEFABS, RESABS)

         TEST ON ACCURACY

   ORES = DABS(RESULT)
   ERRBND = DMAX1(EPSABS,EPSREL*ORES)
   IF (ABSERR.LE.1.0D+02*EPMACH*OEFABS  .AND. ABSERR.ST.ERRBNDHER
   IF (LIMIT.LT.2  .AND. ABSERR.GT.ERRBND) IER = 1
   IF (IER.NE.O  .OR. ABSERR.LE.ERRBND)  GO TO 320

         INITIALIZATION
   ALIST(l)  =  A
   BLIST(l)  =  B
   RLISTU)  =  RESULT
   RLIST2U) = RESULT
   ERRMAX =  ABSERR
   MAXERR =  1
   AREA = RESULT
   ERRSUM =  ABSERR
   ABSERR =  OFLOW
   NRMAX = 1
   NRES = 0
   NUMRL2 =  2
   KTMIN = 0
   EXTRAP =  .FALSE.
   NOEXT = .FALSE.
   IROFF1 =  0
   IROFF2 =  0
   IROFF3 =  0
   KSGN = -1
   IF (DRES.GE.C0.1D+01-0.5D+02*EPMACH)*OEFABS)  KSGN =

         MAIN  DO-LOOP
   IF (LIMIT.LT.2) GO TO 220
   DO 200 LAST=2,LIMIT

         BISECT THE SUBINTERVAL WITH THE NRMAX-TH  LARGEST
         ERROR ESTIMATE

      LAST1 = LAST
      Al = ALIST(MAX£RR)
      Bl = 0.50+00*(ALXST(MAXERR)+BLIST(MAXERR))
      A2 = Bl
      B2 = BLISTCMAXERR)
      ERLAST = ERRMAX
      CALL D01AJZ(F, Al, Bl, AREA1,  ERROR1,  RESABS,  DEFAB1)
      CALL D01AJZCF, A2, B?, AREA2,  ERROR2,  RESABS,  DEFAB2)

         IMPROVE PREVIOUS APPROXIMATION OF INTEGRAL
         AND ERROR AND TEST FOR ACCURACY

      AREA12 = AREA1 + AREA2
      ERR012 * ERROR1 + ERROR2
      ERRSUM = ERRSUM + ERR012 - ERRMAX
      AREA = AREA + AREA12 - RLIST(MAXERR)
      IF (DEFABl.Eq.ESRQRl .OR. DEFAB2.EQ.ERRQH2)  GO TO 40
      IF (OABS(RLIST(MAXERR)-AREA12).GT.0.1D-04*DABS(AREA12) .OR.
  *   ERR012.LT.0.99D+00*ERKMAX) GO TO 20
      IF (EXTRAP) IROFF2 = IROFF2 + 1
      IF (.NOT.EXTRAP) IROFF1 = IROFF1 + 1
20    IF (LAST.ST.10 .AND.  ERR012.GT.ERRMAX) IROFF3 = IROFF3 + 1
40    RLIST(MAXERR) = AREA1
      RLIST(LAST) = ARCA2
      ERRBND = DMAX1(EPSABS,EPSREL*DABS(AREA>)
 00036150
 00036160
 00036170
 00036180
 00036190
 00036200
 00036210
 00036220
 00036230
 00036240
 00036250
 00036260
 00036270
 00036280
 00036290
200036300
 00036310
 00036320
 00036330
 00036340
 00036350
 00036360
 00036370
 00036380
 00036390
 00036400
 00036410
 00036420
 00036430
 00036440
 00036450
 00036460
 00036470
 00036480
 00036490
 00036500
 00036510
 00036520
 00036530
 00036540
 00036550
 00036560
 00036570
 00036580
 00036590
 00036600
 00036610
 00036620
 00036630
 00036640
 00036650
 00036660
 00036670
 00036680
 00036690
 00036700
 00036710
 00036720
 00036730
 00036740
 00036750
 00036760
 00036770
 00036780
 00036790
 00036800
 00036810
 00036820
 00036830
 00036840
 00036850
 00036860
 00036870
 00036880
 00036890
 00036900
 00036910
                                            176

-------
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772

C
c
C
c


c
c
c
c

c
c
c
c



c
c
c














c
c
c
c
c
c
c







c
c
c
c




c
c
c
c
c
c







c
c
c



       IF  (ERRSUM.LE.ERRBND) GO TO 280

          TEST  FOR ROUNDOFF ERROR AND EVENTUALLY
          SET ERROR  FLAG

       IF  (IROFF1+IROFF2.GE.10  .OR. IROFF3.GE.20) IER = 2
       IF  (IROFF2.6E.5) IERRO = 3

          SET ERROR  FLAG IN THE CASE THAT THE NUMBER OF INTERVAL
           BISECTIONS EXCEEDS /LIMIT/

       IF  CLAST.EQ.LIMIT)  IER = 1

          SET ERROR  FLAG IN THE CASE OF BAD INTEGRAND BEHAVIOUR
          AT INTERIOR POINTS OF INTEGRATION RANGE

       IF  (DMAX1(DABS(A1),DABS(B2)).LE.(0.1D+01+0.1D«03*EPMACH)*
   *   (DABS(A2)*0.1D+04*UFLOW)) IER = 4
       IF  (IER.NE.O) GO TO 220

          APPEND  THE NEWLY-CREATED INTERVALS TO THE LIST

       IF  (ERROR2.GT.ERROR1) GO TO 60
       ALIST(LAST) = A2
       BLIST(MAXERR) = 81
       BLIST(LAST) = B2
       ELIST(MAXERR) = ERROR!
       ELIST(LAST) = ERROR2
       60  TO 80
 60    ALIST(MAXERR) = A2
       ALIST(LAST) = Al
       BLIST(LAST) = Bl
       RLIST(MAXERR) = AREA2
       RLIST(LAST) = AREA1
       ELIST(MAXERR) = ERROR2
       ELIST(LAST) = ERROR1

          CALL  SUBROUTINE  D01AJX TO MAINTAIN THE
          DESCENDING ORDERING IN THE LIST OF ERROR
          ESTIMATES  AND SELECT THE SUBINTERVAL WITH
          NRMAX-TH LARGEST ERROR ESTIMATE (TO BE BISECTED
          NEXT)

 80    CALL D01AJX(LIMIT,  LAST, MAXERR, ERRMAX, ELIST, IORD,LIORD,
   *    NRMAX)
       IF  (LAST.EQ.2) GO TO 180
       IF  (NOEXT) GO TO 200
       ERLARG = ERLARG - ERLAST
       IF  (DABSIB1-A1).ST.SMALL) ERLARG = ERLARG + ERR012
       IF  (EXTRAP) GO TO 100

          TEST  WHETHER THE INTERVAL TO BE BISECTED NEXT IS  THE
          SMALLEST INTERVAL

       IF  (DABS(BLIST(MAXERR)-ALIST(MAXERR)).GT.SMALL) GO TO 200
       EXTRAP = .TRUE.
       NRMAX s  2
100    IF  (IERRO.EQ.3 .OR. ERLARG.LE.ERTEST) GO TO 140

          THE SMALLEST INTERVAL HAS THE LARGEST ERROR.
          BEFORE  BISECTING DECREASE THE SUM OF THE ERRORS
          OVER  THE LARGER  INTERVALS!ERLARG) AND PERFORM
          EXTRAPOLATION

       ID  = NRMAX
       DO  120 K=1D,JUPBND
          MAXERR  = IORD(NRMAX)
          ERRMAX  = ELISTCMAXERR)
          IF (OABS(BLIST(MAXERR)-ALIST(MAXERR)).GT.SMALL) GO TO 200
          NRMAX = NRMAX  +  1
120    CONTINUE

          PERFORM EXTRAPOLATION

140    NUMRL2 = NUMRL2 + 1
       R LIST2(NUMR L2) = AREA
       CALL D01AJY(NUMRL2, RLIST2, RESEPS, ABSEPS, RES3LA,  NRES)
00036920
00036930
00036940
00036950
00036960
00036970
00036980
00036990
00037000
000370X0
00037020
00037030
00037040
00037050
00037060
00037070
00037080
00037090
00037100
00037110
00037120
00037130
00037140
00037150
00037160
00037170
00037180
00037190
00037200
00037210
00037220
00037230
00037240
00037250
00037260
00037270
00037280
00037290
00037300
00037310
00037320
00037330
00037340
00037350
00037360
00037370
00037380
00037390
00037400
00037410
00037420
00037430
00037440
00037450
00037460
00037470
00037480
00037490
00037500
00037510
00037520
00037530
00037540
00037550
00037560
00037570
00037580
00037590
00037600
00037610
00037620
00037630
00037640
00037650
00037660
00037670
00037680
                               177

-------
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
378*
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849









C
C
C














C
C
C
C









C
C
C





C
C
C









C
C


C
C
C
C
C
C
C
C
C
C
C
C
C
C
       KTMIN = KTMIN + i
       IF (KTMIN.ST.5 .AND.  ABSERR.LT.0.10-02*ERRSUM)  IER  =  5
       IF (ABSEPS.6E.ABSERR) GO TO 160
       KTMIN = 0
       ABSERR = ABSEPS
       RESULT = RESEPS
       CORREC = ERLARG
       ERTEST = OMAX1(EPSABS,EPSREL*OABS(RESEPS))
       IF (ABSERR.LE.ERTEST) SO TO 220

          PREPARE  BISECTION OF THE SMALLEST INTERVAL
160
       IF (NUMRLZ.Eq.l)  NOEXT =  .TRUE.
       IF (IER.EQ.5)  60  TO 220
       MAXERR = lORD(l)
       ERRMAX a ELISTCMAXERR)
       NRMAX = 1
       EXTRAP = .FALSE.
       SMALL = SMALL*O.50+00
       ERLARS = ERRSUM
       60 TO 200
       SMALL = DABStB-A1*0.3750+00
       ERLARG = ERRSUM
       ERTEST = ERRBND
       RLIST2(2) = AREA
200 CONTINUE

          SET  FINAL RESULT AND  ERROR ESTIMATE
180
220 IF (ABSERR.EQ.OFLOM) 60 TO 280
    IF CIER+IERRO.EQ.O) 60 TO 260
    IF (IERRO.EQ.3) ABSERR = ABSERR + CORREC
    IF (IER.EQ.O) IER = 3
    IF (RESULT.HE.O.D+00.AND .AREA. NE.0.0+00) GO TO 240
    IF (ABSERR.6T.ERRSUM) GO TO 280
    IF (AREA.EQ.0.0+00) 60 TO 320
    60 TO 260
240 IF (ABSERR/DABS(RESULTl.GT.ERRSUM/DABS(AREA)> 60 TO 280

          TEST ON DIVERGENCY

260 IF (KSGN.EQ.-l .AND. DMAX1(DABS(RESULT),OABS(AREA)).LE.DEFABS*
   *0.1D-01) 60 TO 320
    IF (0.1D-01.6T.(RESULT/AREA) .OR. (RESULT/AREA).6T.0.10+03.OR.
   « ERRSUM.ST.DABS(AREA)) IER = 6
    SO TO 320

          COMPUTE 6LOBAL INTEGRAL SUM

280 RESULT = O.D+00
    DO 300 K=1,LAST
       RESULT = RESULT + RLIST(K)
300 CONTINUE
    ABSERR = ERRSUM
320 IF (IER.GT.2) IER =•' IER - 1
    lORD(l) = 4*UST1
    RETURN
    END
    SUBROUTINE D01AJX( LIMIT, LAST. MAXERR, ERMAX. ELIST, IORD,LIORO>
   * NRMAX)
                    SUBROUTINE D01AJX. PART OF PEM (VERSION 82360).

    MARK 8 RELEASE. NAG COPYRIGHT 1979
    BASED ON QUAD PACK ROUTINE ORDER
          PURPOSE
             THIS ROUTINE MAINTAINS THE DESCENDING ORDERING
             IN THE  LIST OF THE  LOCAL ERROR ESTIMATES
             RESULTING FROM THE  INTERVAL SUBDIVISION
             PROCESS. AT EACH CALL TWO ERROR ESTIMATES
             ARE INSERTED USING  THE SEQUENTIAL SEARCH
             METHOD  . TOP-DOWN FOR THE LARGEST ERROR
             ESTIMATE,  BOTTOM-UP FOR THE SMALLEST ERROR
00037690
00037700
00037710
00037720
00037730
00037740
00037750
00037760
00037770
00037780
00037790
00037800
00037810
00037820
00037830
00037840
00037850
00037860
00037870
00037880
00037390
00037900
00037910
00037920
00037930
00037940
00037950
00037960
00037970
00037980
00037990
00038000
00038010
00038020
00038030
00038040
00038050
00038060
00038070
00038080
00038090
00038100
00038110
00038120
00038130
00038140
00038150
00038160
00038170
00038180
00038190
00038200
00038210
00038220
00038230
00038240
00038250
00038260
00038270
00038280
00038290
00038300
00038310
00038320
00038330
00038340
00038350
00038360
00038370
00038380
00038390
00038400
00038410
00038420
00038430
00033440
00036450
                                 178

-------
3850
3851
3852
3853
3854
3855
3856
3857
3S58
3859
3860
3861
386 Z
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c


c


c
c

c
c


c

c
c
c
c




c
c
c
c
c
c
c









c
c
c
c
            ESTIMATE.

         CALLING SEQUENCE
            CALL D01AJX
            ( LIMIT , LAST , MAXERR , ERMAX , E LIST , IORD , LIORD , KRMAX )

           PARAMETERS (MEANING AT OUTPUT)
            LIMIT  - MAXIMUM NUMBER OF ERROR ESTIMATES  THE LIST
                     CAN  CONTAIN

            LAST   - NUMBER OF ERROR ESTIMATES CURRENTLY
                     IN THE LIST. ELIST(LAST) CONTAINS
                     THE  SMALLEST ERROR ESTIMATE.

            MAXERR - MAXERR POINTS TO THE NRMAX-TH LARGEST ERROR
                     ESTIMATE CURRENTLY IN THE LIST.

            ERMAX  - NRMAX-TH LARGEST ERROR ESTIMATE
                     ERMAX = ELIST( MAXERR)

            ELIST  - ARRAY OF DIMENSION LAST CONTAINING
                     THE  ERROR ESTIMATES

            IORD   - ARRAY CONTAINING POINTERS TO ELIST SO
                     THAT lORD(l) POINTS TO THE LARGEST
                     ERROR ESTIMATE,..., IORD (LAST) TO THE
                     SMALLEST ERROR ESTIMATE

            LIORD  - DIMENSION OF IORD

            NRMAX  - MAXERR = lORD(NRMAX)
   .. SCALAR ARGUMENTS ..
   DOUBLE PRECISION ERMAX
   INTEGER LAST, LIMIT, LIORD, MAXERR, NRMAX
   .. ARRAY ARGUMENTS ..
   DOUBLE PRECISION ELIST(LAST)
   INTEGER IORD (LIORD)

   .. SCAURS IN COMMON ..
   INTEGER JUPBND

   .. LOCAL SCAURS ..
   DOUBLE PRECISION ERRMAX, ERRMIN
   INTEGER I, IBEG, IDO,  ISUCC, J, JBND, K

   COMMON /A001AJ/ JUPBND

          CHECK WHETHER THE LIST CONTAINS MORE THAN
          TWO ERROR ESTIMATES

   IF (LAST.6T.2) GO TO 20
   IORD(1) = 1
   IORD(2) = 2
   GO TO 180

         THIS PART OF THE ROUTINE IS ONLY EXECUTED
         IF, DUE TO A DIFFICULT INTEGRAND, SUBDIVISION
         INCREASED THE ERROR ESTIMATE. IN THE NORMAL CASE
         THE INSERT PROCEDURE SHOULD START AFTER THE
         NRMAX-TH LARGEST ERROR ESTIMATE.

20 ERRMAX = ELIST(MAXERR)
   IF ( NRMAX. EQ.l) GO TO 60
   IDO = NRMAX - 1
   DO 40 1=1, IDO
      ISUCC = lORD(NRMAX-l)
      IF ( ERRMAX. LE.ELIST( ISUCC)) SO TO 60
      IORD (NRMAX) = ISUCC
      NRMAX = NRMAX - 1
40 CONTINUE

         COMPUTE THE NUMBER OF ELEMENTS IN THE LIST TO
         BE MAINTAINED IN DESCENDING ORDER. THIS NUMBER
         DEPENDS ON THE NUMBER OF SUBDIVISIONS STILL
00038460
00038470
00038480
00038490
00038500
00038510
00038520
00038530
00038540
00038550
00038560
00038570
00038580
00038590
00038600
00038610
00038620
00038630
00038640
00038650
00038660
00036670
00038680
00038690
00038700
00038710
00038720
00038730
00038740
00038750
00038760
00038770
00038780
00038790
00038800
00038810
00038820
00038830
00038840
00038850
00038860
00038870
00038380
00038890
00038900
00038910
00038920
00038930
00038940
00038950
00038960
00038970
00038980
00038990
00039000
00039010
00039020
00039030
00039040
00039050
00039060
00039070
00039080
00039090
00039100
00039110
00039120
00039130
00039140
00039150
00039160
00039170
00039180
00039190
00039200
00039210
00039220
                              179

-------
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
C
C
C
C
C
C
C
C
C
C
C
C
C
          ALLOWED

 60 JUPBND = LAST
    IF (LAST.6T.(LIMIT/2+2)) JUPBND = LIMIT + 3 - LAST
    ERRMIN = ELIST(LAST)

          INSERT ERRMAX BY TRAVERSING THE LIST TOP-DOWN
          STARTING COMPARISON FROM THE ELEMENT
          ELIST(IORD(NRMAX+1))

    JBND = JUPBND - 1
    IBE6 = NRMAX + 1
    IF USES.ST.JBND) SCI  TO 100
    00 80 I=IBEG,JBND
       ISUCC = IORDCI)
       IF (ERRMAX.GE.ELISTCISUCC)) GO TO 120
       lORD(I-l) = ISUCC
 60 CONTINUE
100 IQRD(JBNO) = MAXERR
    IORD(JUPBND) = LAST
    GO TO 180

          INSERT ERRMIN BY TRAVERSING THE LIST BOTTOM-UP

120 IORDd-1) = MAXERR
    K = JBND
    DO 140 J=I,JBND
       ISUCC = IORD(K)
       IF 
-------
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
C
c
C
c
c
c
c
c
c
c


c

c
c




c

c
c
c
c
c
c
c
c



c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
























c
c
c
c
c
          ABSERR - ESTIMATE OF THE ABSOLUTE ERROR  COMPUTED  FROM
                   RESULT AND THE 3 PREVIOUS /RESULTS/

          RES3LA - ARRAY CONTAINING THE LAST 3 /RESULTS/
NRES
                 - NUMBER OF CALLS TO THE ROUTINE
                   (SHOULD BE ZERO AT FIRST CALL)
 .. SCALAR ARGUMENTS ..
 DOUBLE PRECISION ABSERR, RESULT
 INTEGER N. NRES
 .. ARRAY ARGUMENTS ..
 DOUBLE PRECISION EPSTAB(52),  RES3LA(3)

 .. LOCAL SCALARS ..
 DOUBLE PRECISION OELTA1, DELTA2, DELTAS,  EO,  El,  E1ABS,  E2,  E3.
* EPMACH.EPSINF, ERR1,  ERR2,  ERR3, ERROR.  OF LOW, RES.  SS, TO LI,
* TOL2.TOL3
 INTEGER I, IB2, IB, IE, IND.  Kl, K2, K3,  LIMEXP,  NEWELM, HUM
 . . FUNCTION REFERENCES ..
 DOUBLE PRECISION X02AAF, X02ACF
        MACHINE DEPENDENT CONSTANTS
        /LIMEXP/ IS THE MAXIMUM NUMBER OF ELEMENTS THE EPSILON
        TABLE CAN CONTAIN. IF THIS NUMBER IS REACHED, THE UPPER
        DIAGONAL OF THE EPSILON TABLE IS DELETED.

 DATA LIMEXP /SO/
 EPMACH = X02AAF(1.000)
 OFLOH = X02ACFC1.000)

       LIST OF MAJOR VARIABLES
       EO     - THE 4 ELEMENTS ON WHICH THE
       El       COMPUTATION OF A NEW ELEMENT IN
       E2       THE EPSILON TABLE IS BASED
       E3                 EO
                    E3    El    NEW
                          E2
       NEWELM - NUMBER OF ELEMENTS TO BE COMPUTED IN THE NEH
                DIAGONAL
       ERROR  - ERROR = ABSCE1-EO)+ABS(E2-E1)*ABSCNEH-E2)
       RESULT - THE ELEMENT IN THE NEH DIAGONAL WITH LEAST
                ERROR

 NRES = NRES * 1
 ABSERR = OFLOU
 RESULT = EPSTAB(N)
 IF (N.LT.3) GO TO 200
 EPSTAB(N-fZ) = EPSTAB(N)
 NEWELM = (N-D/2
 EPSTAB(N) = OFLOH
 HUM = N
 Kl = N
 DO 80 1=1,NEWELM
    K2 = Kl - 1
    K3 = Kl - Z
    RES = EPSTABJK1+2)
    EO = EPSTAB(K3)
    El = EPSTAB(KZ)
    E2 - RES
    E1ABS = DABS(El)
    DELTA2 = E2 - El
    ERR2 = DABS(DELTAZ)
    TOL2 = DMAX1(OABS(E2),E1ABS)*EPMACH
    DELTAS = El - EO
    ERR3 = DABS(DELTAS)
    TOL3 = DMAX1(E1ABS,OABS(EO))*EPMACH
    IF (ERR2.GT.TOL2 .OR. ERR3.GT.TOLS) GO TO 20

       IF EO, El AND E2 ARE EQUAL TO WITHIN MACHINE
       ACCURACY, CONVERGENCE IS ASSUMED
       RESULT = E2
       ABSERR = ABS(E1-EO)+ABS(E2-E1)
00040000
00040010
00040020
00040030
00040040
00040050
00040060
00040070
00040080
00040090
00040100
00040110
00040120
00040130
00040140
00040150
00040160
00040170
00040180
00040190
00040200
00040210
00040220
00040230
00040240
00040250
00040260
00040270
00040280
00040290
00040300
00040310
00040320
00040330
00040340
00040350
00040360
00040370
00040330
00040390
00040400
00040410
00040420
00040430
00040440
00040450
00040460
00040470
00040480
00040490
00040500
00040510
00040520
00040530
00040540
00040550
00040560
00040570
00040580
00040590
00040600
00040610
00040620
00040630
00040640
00040650
00040660
00040670
00040680
00040690
00040700
00040710
00040720
00040730
00040740
00040750
00040760
                           181

-------
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
C








C
C
C
C



C
C
C
C
C



C
C
C
C








C
C
C



















C
C
C








C
C

C
C
C
C
C
40
60
       RESULT = RES
       ABSERR = ERR2  +  ERRS
       60 TO 200
       E3 = EPSTAB(Kl)
       EPSTAB(Kl)  = El
       OELTA1 = El -  E3
       ERR1 = DABS(DELTAl)
       TOU = OMAX1(E1A8S,OABS(E3H*EPMACH

          IF TWO ELEMEHTS ARE VERY CLOSE TO EACH OTHER> OMIT
          A PART OF THE TABLE BY ADJUSTING THE VALUE OF N

       IF (ERR1.LT.TOL1 .OR. ERR2.LT.TOL2 .OR. ERR3.LT.TOL3) GOTO 40
       SS = 0.1D+01/DELTA1 + 0.1D+01/OELTA2 - 0.10+01/DELTA3
       EPSINF = OABS(SS*E1)

          TEST TO  DETECT IRREGULAR BEHAVIOUR IN THE TABLE, AND
          EVENTUALLY  OMIT A PART OF  THE TABLE ADJUSTING THE VALUE
          OF N

       IF (EPSINF.GT.0.1D-03) GO TO  60
       N a I + I - 1
       GO TO 100

          COMPUTE  A NEH ELEMENT AND  EVENTUALLY ADJUST
          THE VALUE OF  RESULT
       RES = El * 0.1D+01/SS
       EPSTAB(Kl) = RES
       Kl = Kl - 2
       ERROR = ERR2 + DABS(RES-EZ) + ERR3
       IF (ERROR.GT.ABSERR)  GO TO 80
       ABSERR = ERROR
       RESULT = RES
 80 CONTINUE

          SHIFT THE TABLE

100 IF (N.EQ.LIMEXP) N = 2*
-------
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
A! Q4
f l7fc
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C
C



C

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PURPOSE
TO COMPUTE I = INTEGRAL OF f OVER fA.B), WITH ERROR
ESTIMATE
J s INTEGRAL OF ABSCF) OVER (A,B)

CALLING SEQUENCE
CALL D01AJZ (F, A, B.RESULT.ABSERR, RESABS, RESASC)

PARAMETERS
F - FUNCTION SUBPROGRAM DEFINING THE INTEGRAND
FUNCTION F(X). THE ACTUAL NAME FOR F NEEDS
TO BE DECLARED EXTERNAL IN THE
CALLING PROGRAM

A - LOWER LIMIT OF INTEGRATION

B - UPPER LIMIT OF INTEGRATION

RESULT - APPROXIMATION TO THE INTEGRAL I.
RESULT IS CALCULATED BY APPLYING
THE 21-POINT GAUSS-KRONROD RULE
CRESK), OBTAINED BY OPTIMAL
ADDITION OF ABSCISSAE TO THE
10-POINT GAUSS RULE (RESS).

ABSERR - ESTIMATE OF THE MODULUS OF THE
ABSOLUTE ERROR. WHICH SHOULD NOT
EXCEED ABSCI-RESULT)
RESABS - APPROXIMATION TO THE INTEGRAL J

RESASC - APPROXIMATION TO THE INTEGRAL OF
ABS(F-I/(B-AM OVER (A, B)
WWWWWWWHWIfWVWWHVWWHHWWWWWVWWWMWW
.. SCALAR ARGUMENTS ..
DOUBLE PRECISION A, ABSERR. B, RESABS, RESASC, RESULT
.. FUNCTION ARGUMENTS ..
DOUBLE PRECISION F
• *
. . LOCAL SCALARS . .
DOUBLE PRECISION ABSC, CENTRE, DHL6TH, EPMACH, FC, FSUM, FVALL,
* FVAL2.HLGTH, RESG, RESK, RESKH, UFLOH
INTEGER J
.. LOCAL ARRAYS ..
DOUBLE PRECISION FVK10), FV2UO), H6(10), HGKdDr XGK(ll)
.. FUNCTION REFERENCES ..
DOUBLE PRECISION X02AAF, X02ABF
. .

THE ABSCISSAE AND HEIGHTS ARE GIVEN FOR THE
INTERVAL 1-1,1) . BECAUSE OF SYMMETRY ONLY THE
POSITIVE ABSCISSAE AND THEIR CORRESPONDING
HEIGHTS ARE GIVEN.
XGK - ABSCISSAE OF THE 21-POINT GAUSS-KRONROD RULE
XGK(2), XGKC4), 	 ABSCISSAE OF THE 10-POINT
GAUSS RULE
XGK(l), XGK(3), .... ABSCISSAE WHICH
ARE OPTIMALLY ADDED TO THE 10-POINT
GAUSS RULE
MGK - WEIGHTS OF THE 21-POINT GAUSS-KRONROD RULE
M6 - HEIGHTS OF THE 10-POINT GAUSS RULE,
CORRESPONDING TO THE ABSCISSAE XGK(2),
X6K(4), ... UG(1), UG(3), ... ARE SET
TO ZERO.

00041540
00041550
00041560
00041570
00041580
00041590
00041600
00041610
00041620
00041630
00041640
00041650
00041660
00041670
00041680
00041690
00041700
00041710
00041720
00041730
00041740
00041750
00041760
00041770
00041780
00041790
00041800
00041810
00041820
00041830
00041840
00041850
00041860
00041870
nAA4.i ftftn
UvU*rxOOU
00041890
00041900
00041910
00041920
00041930
00041940
00041950
00041960
00041970
00041980
00041990
00042000
00042010
00042020
00042030
00042040
00042050
00042060
00042070
00042080
00042090
00042100
00042110
00042120
00042130
00042140
00042150
00042160
00042170
00042180
00042190
DATA XGK(l), XSK(2), XGK(3), XGK(4), XGK(S), XGK(6), XGK(7),XGK(8)00042200










*, XGK(9), XGK(IO), XGK (11) /0.9956571630258080807355272807D+00,
*0. 973906528517171 7200779640121D+00,
«0 . 93015749135570822600120718010+00 ,
*0. 8650633666889845107320966884D+00,
*0 . 78081772658641689706371757830+00 ,
*0. 67940956829902440623432736510+00,
•0.56275713466860468333900009930+00,
»0. 43339539412924719079926594320+00,
*0.2943928627014601981311266031D+00,
*0 . 14887433898163121088482600110+00 . 0 . ODD/
00042210
OG042220
00042230
00042240
00042250
00042260
00042270
00042280
00042290
00042300
183

-------
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
A9C7
*tC3/
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
DATA HGKU), HGK(2), WGKC3), WGKC4), MGK(5), WGKC6), WGK(7),HGK(8)00042310
*, HGK(9), WGKUO), WGK(ll) /O. 116 94638867371874278064396060-01 >
*0. 325581623079647274 78818972460-01,
*0. 54755896574351996031381300240-01,
*0. 750396 7481091995276 7043140920-01,
*0. 93125454583697605535065465080-01,
*0. 10938715880229764189921059030+00,
*0 . 12349197626206585107795810980+00 ,
*0. 13470921731147332592805400180+00,
*0. 14277593857706008079709427310+00,
*0. 14773910490133849137484151600+00,
*0.14944555400291690S6649364684D+00/
DATA W6(l), MG(2), UG(3), WG(4), WG(5), WG(6), M6(7), WG(8),HG(9>
* WG(10) /O. 000 ,0.66671344308688137593566809890-01, 0.000,
*0 . 14945134915058059314577633970+00 , 0 . 000 ,
*0 . 21908636251598204399553493420+00 , 0 . 000 ,
*0 . 26926671930999635509122692160+00 , 0 . 000 ,
*0.2955242247147528701738929947D+00/
EPMACH = X02AAF(1.0DO)
UFLOW = X02ABF( 1.000)
C
C LIST OF MAJOR VARIABLES
c ~-» — —- • —
C CENTRE - MID POINT OF THE INTERVAL
C HLSTH - HALF LENGTH OF THE INTERVAL
C ABSC - ABSCISSA
C FVAL* - FUNCTION VALUE
C RESG - 10-POINT GAUSS FORMULA
C RESK - 21-POINT SAUSS-KRONROO FORMULA
C RESKH - APPROXIMATION TO MEAN VALUE OF F OVER
C (A,B), I.E. TO I/CB-A)
C
CENTRE = 0.50+00*(A+B)
HLSTH = 0.5D+00*(B-A>
OHLGTH = DABS(HLGTH)
C
C COMPUTE THE 21-POINT SAUSS-KRONROO APPROXIMATION TO
C THE INTEGRAL. AND ESTIMATE THE ABSOLUTE ERROR
C
RESG = 0.00+00
FC = F( CENTRE)
RESK = UGK(11)*FC
RESABS = DABS(RESK)
00 20 J=l,10
ABSC = HLGTH*XGK(J)
FVAL1 = F(CENTRE-ABSC)
FVAL2 = F{CENTRE+ABSC>
FV1CJ) = FVAL1
FV2U) = FVAL2
FSUM = FVAL1 + FVAL2
RESG = RESG + WG(J)*FSUH
RESK = RESK + WGK(J)*FSUM
RESABS = RESABS + WGKC J)*(DABSCFVAL1)+DABS(FVAL2))
20 CONTINUE
RESKH = RESK*0. 50+00
RESASC = WGK(11)*DABS(FC-RESKH)
00 40 J=l,10
00042320
00042330
00042340
00042350
00042360
00042370
00042380
00042390
00042400
00042410
00042420
,00042430
00042440
00042450
00042460
00042470
00042480
00042490
00042500
00042510
00042520
AAnAOc-xn
vUvtC? JU
00042540
00042550
00042560
00042570
00042580
00042590
00042600
00042610
00042620
00042630
00042640
00042650
00042660
00042670
00042680
00042690
00042700
00042710
00042720
00042730
00042740
00042750
C0042760
00042770
00042780
00042790
00042800
00042810
00042820
00042830
00042840
00042850
00042860
00042870
RESASC = RESASC + WGK( J)*(DABS(FV1CJ)-HESKH)+DABS{FV2< J)-RESKH)00042880
* )
40 CONTINUE
RESULT = RESK*HL6TH
RESABS = RESABS*OHLGTH
RESASC = RESASC*OHLGTH
ABSERR = DABS((RESK-RESG)*HL6TH)
IF (RESASC. NE. 0.0+00) ABSERR = RESASC*OMIN1( 0. 10+01, ( 0.20+03*
WABSERR/RESASC )**! . 500 )
00042890
00042900
00042910
00042920
00042930
00042940
00042950
00042960
IF (RESABS. GT.UFLOW/(0.5D+02*EPMACH)) ABSERR =OMAX1(EPMACH*RE5ABS*00042970
*0. 50+02, ABSERR)
RETURN
END
C'
C
INTEGER FUNCTION POlAAFdFAIL, ERROR, SRNAME)
C FUNCTION P01AAF, PART OF PEM (VERSION 82360).
C
C MARK 1 RELEASE. MAG- COPYRIGHT 1971
C MARK 3 REVISED
00042980
00042990
00043000
00043010
00043020
00043030
00043040
00043050
00043060
00043070
184

-------
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
432S
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
C
c
C
c

CSP

c

c

c

c

c

c
c




999


C
C

C
C
c
c

c
c
c
c
c
c
c
c
c
c
c
c




c



c
c

c
c
c
c

c
c
c
c
c
c
c
c
c
c
c




      HARK 4A REVISED,  IER-45
      HARK 4.5 REVISED
      HARK 7 REVISED (DEC 1978)
      RETURNS THE VALUE OF ERROR  OR TERMINATES THE  PROGRAM.
      INTEGER ERROR, IFAIL, NOUT

      DOUBLE PRECISION  SRNAME
      TEST IF NO ERROR  DETECTED
      IF (ERROR.EQ.O) 60 TO 20
      DETERMINE OUTPUT  UNIT FOR MESSAGE
      CALL X04AAF (O.NOUT)
      TEST FOR SOFT FAILURE
      IF (MOO(IFAIL,10).EQ.l) GO  TO 10
      HARD FAILURE
      WRITE (NOUT,99999) SRNAME,  ERROR
      STOPPING MECHANISM MAY ALSO DIFFER
      STOP
      SOFT FAIL
      TEST IF ERROR MESSAGES SUPPRESSED
   10 IF (MOD(IFAIL/10,10).EQ.O)  GO TO  20
      WRITE (NOUT,99999) SRNAME,  ERROR
   20 P01AAF = ERROR
      RETURN
99999 FORMAT (1HO, 38HERROR DETECTED  BY NAG LIBRARY ROUTINE
     * 11H - IFAIL * ,  IS//)
      END
A8,
      DOUBLE PRECISION FUNCTION X02AAFCX)
                         FUNCTION X02AAF,  PART OF PEM (VERSION 82360).

      NAG COPYRIGHT 1975
      MARK 4.5 RELEASE
      DOUBLE PRECISION X
      * EPS *

      IBM DOUBLE PRECISION VERSION

      RETURNS THE VALUE EPS WHERE EPS IS THE SMALLEST
      POSITIVE
      NUMBER SUCH THAT 1.0 + EPS > 1.0
      THE X PARAMETER IS NOT USED
      FOR ICL 1900
      X02AAF = 2.0**(-37.0)
      FOR IBM 360/370
      X02AAF = 2.0DO**(-52.000)
      DOUBLE PRECISION Z
      DIMENSION ZZC2)
      EQUIVALENCE (ZZ(1),Z)
      DATA ZZ /Ol71410000000,OOOOOOOOOOOOO/
      DATA Z/Z3410000000000000/
      X02AAF = Z
      RETURN
      END
      DOUBLE PRECISION FUNCTION X02ABFIX)
                         FUNCTION X02ABF, PART OF PEM (VERSION 82360).

      NAG COPYRIGHT 1975
      MARK 4.5 RELEASE
      DOUBLE PRECISION X
      * RMIN *

      IBM DOUBLE PRECISION VERSION

      RETURNS THE VALUE OF THE SMALLEST POSITIVE REAL FLOATING-
      POINT NUMBER EXACTLY REPRESENTABLE ON THE COMPUTER
      THE X PARAMETER IS NOT USED
      FOR ICL 1900
      X02ABF = 2.0**t-257.0)
      FOR IBM 360/370
      X02ABF = 16.0DO**(-65.0DO)
      DOUBLE PRECISION Z
      DIMENSION ZZ(2)
      EQUIVALENCE (ZZ(1),Z)
      DATA ZZ /0000110000000,OOOOOOOOOOOOO/
00043080
00043090
00043100
00043110
00043120
00043130
00043140
00043150
00043160
00043170
00043180
00043190
00043200
00043210
00043220
00043230
00043240
00043250
00043260
00043270
00043280
00043290
00043300
00043310
00043320
00043330
00043340
00043350
00043360
00043370
00043380
00043390
00043400
00043410
00043420
00043430
00043440
00043450
00043460
00043470
00043480
00043490
00043500
00043510
00043520
00043530
00043540
          00043550
          00043560
          00043570
          00043580
          00043590
          00043600
          00043610
          00043620
          00043630
          00043640
          00043650
          00043660
          00043670
          00043680
          00043690
          00043700
          00043710
          00043720
          00043730
          00043740
          00043750
          00043760
          00043770
          00043780
                                  185

-------
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4433
4439
4440
4441
4442
4443
AAAA
4445
4446
4447
*»
C



C
C

C
C
C
C

C
C
C
C
C
C
C
C
C
C




C



C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C

C






                 DATA Z/Z0010000000000000/
                 X02ABF = Z
                 RETURN
                 END
                 DOUBLE PRECISION FUNCTION X02ACFCX)
                                     FUNCTION X02ACF, PART OF PEM (VERSION 82360).

                 NAG COPYRIGHT 1975
                 MARK 4.5 RELEASE
                 DOUBLE PRECISION X
                 * RMAX *

                 IBM DOUBLE PRECISION VERSION

                 RETURNS THE VALUE OF THE LARGEST POSITIVE REAL  FLOATINS-
                 POINT NUMBER REPRESENTABLE ON THE COMPUTER
                 FOR ICL 1900
                 X02ACF = (2.0 - 2.0**(-36.0))*2.0**254.0
                 FOR IBM 360/370
                 X02ACF : (1.0DO-16.QOO**(-14.000H*16.000**63.000
                 DOUBLE PRECISION Z
                 DIMENSION ZZ(2)
                 EQUIVALENCE (ZZ(1),Z)
                 DATA ZZ /0377777777777,0777777777777/
                 DATA Z/Z7FFFFFFFFFFFFFFF/
                 X02ACF = Z
                 RETURN
                 END
                  SUBROUTINE  X04AAFU.NERR)
                                 SUBROUTINE X04AAF,  PART OF PEM  (VERSION 82360).

                  MARK 7 RELEASE. NAG COPYRIGHT  1978
                  MARK 7C REVISED IER-190  (MAY 1979)
                  IF I = 0, SETS NERR TO CURRENT ERROR MESSAGE UNIT NUMBER
                  (STORED IN  HERRI).
                  IF I = 1, CHANGES CURRENT ERROR MESSAGE UNIT NUMBER TO
                  VALUE SPECIFIED BY NERR.


                  THIS ROUTINE ASSUMES  THAT THE  VALUE OF NERR1 IS SAVED
                  BETWEEN CALLS.  IN SOME  IMPLEMENTATIONS IT MAY BE
                  NECESSARY TO STORE NERR1 IN A  LABELLED COMMON
                  BLOCK /AX04AA/ TO ACHIEVE THIS.

                  .. SCALAR ARGUMENTS  ..
                  INTEGER I.  NERR

                  .. LOCAL SCALARS ..
                  INTEGER NERR1

                  DATA NERR1  /6/
                  IF (I.EQ.O) NERR = NERR1
                  IF (I.EQ.l) NERR1 = NERR
                  RETURN
                  END
00043790
00043800
00043310
00043820
00043830
00043840
00043850
00043860
00043870
00043880
00043890
00043900
00043910
00043920
00043930
00043940
00043950
00043960
00043970
00043980
00043990
00044000
00044010
00044020
00044030
00044040
00044050
00044060
00044070
00044080
00044090
00044100
00044110
00044120
00044130
00044140
00044150
00044160
00044170
00044180
00044190
00044200
00044210
00044220
00044230
00044240
00044250
00044260
00044270
00044280
00044290
00044300
00044310
00044320
00044330
00044340
3BRKPT  PRINT*
                                              186

-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
4. TITLE AND SUBTITLE
POLLUTION EPISODIC MODEL
User's Guide
2.

3. RECIPIENT'S ACCESSION-NO.
5. REPORT DATE

6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
K. Shankar Rao and Martha M. Stevens
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Atmospheric Turbulence and Diffusion Divisi
National Oceanic and Atmospheric Administrc
Oak Ridge, Tennessee 37830
12. SPONSORING AGENCY NAME AND ADDRESS
Environmental Sciences Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27
8. PERFORMING ORGANIZATION REPORT NO.
10. PROGRAM ELEMENT NO.
on CDTA1D/02-1606 FY_84
itiOH 11. CONTRACT/GRANT NO.
IAG-AD-13-1-070-0
13. TYPE OF REPOR
- RTP, nc Final 9/
ToW/1^00 COVEBED
'Ol-^/OJ
14. SPONSORING AGENCY CODE
711 EPA/600/09
15. SUPPLEMENTARY NOTES
^.ABSTRACT ^ ^ ^^ -^ ^^ ^^ ^^ ^ ^ urban-scale model designed to predict
short-term average ground-level concentrations and deposition fluxes of one or two
gaseous or particulate pollutants at multiple receptors. The two pollutants may be
non-reactive, or chemically-coupled through a first-order chemical transformation.
Up to 300 isolated point sources and 50 distributed area sources may be considered in
the calculations. Concentration and deposition flux estimates are made using the
mean meteorological data for an hour. Up to a maximum of 24 hourly scenarios of mete-
orology may be included in an averaging period.
The concentration algorithms used in PEM are specially developed to account for
the effects of dry deposition, sedimentation, and first-order chemical transformation.
The Gaussian plume- type algorithms for point sources are derived from analytical
solutions of a gradient- transfer model. In the limit, when deposition and settling
velocities of the pollutants and the chemical transformation rate are zero, these
expressions reduce to the familiar Gaussian plume diffusion algorithms. The concen-
tration algorithms for area sources 1n PEM are derived from an innovative approach
based on mass balance considerations. These algorithms are simple, efficient, and
accurate. The computer program of the Texas Episodic Model is used as a framework
for the development of the PEM program.
17.
KEY WORDS AND DOCUMENT ANALYSIS
*. DESCRIPTORS

13. DISTRIBUTION STATEMENT
RELEASE TO PUBLIC
b.lDENTIFIERS/OPEN ENDED TERMS
- *
19. SECURITY CLASS (This Report)
UNCLASSIFIED
2O. SECURITY CLASS (This page)
UNCLASSIFIED
c. COSATI Field/Group

21. NO. OF PAGES
22. PRICE
EPA Form 2220-1 (9-73)

-------