EPA-650/4-74-042
SEPTEMBER 1974
Environmental Monitoring Series
;;;;;;;;*;;;;
I"
55
\
al
O
:;:;:;:x:i:;?;?;:!^^
-------
-------
EPA-650/4-74-042
A STUDY OF INDOOR AIR QUALITY
by
William A. Cote, Willard A. Wade III, John E. Yocom
The Research Corporation of New England
125 Silas Deane Highway
Wethersfield, Connecticut 06109
Contract No. 68-02-0745
ROAP No. 22ACB
Program Element No. 1HA326
EPA Project Officer: Elbert C. Tabor
Quality Assurance and Environmental Monitoring Laboratory
and
ROAP No. 21AYB
Program Element No. 1AA005
EPA Project Officer: Robert M. Burton
Human Studies Laboratory
National Environmental Research Center
Research Triangle Park, North Carolina 27711
Prepared for
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
WASHINGTON, D.C. 20460
September 1974
-------
This report has been reviewed by the Environmental Protection Agency
and approved for publication. Approval does not signify that the
contents necessarily reflect the views and policies of the Agency,
nor does mention of trade names or commercial products constitute
endorsement or recommendation for use.
11
-------
ABSTRACT
This report describes the results of a three-phase study to investigate
the indoor generation of air pollutants. Both field and laboratory measurements
of nitrogen dioxide (NCL), nitric oxide (NO), and carbon monoxide (CO) were
made to evaluate the contribution of gas stoves to indoor pollutant levels. An
inventory of significant sources of indoor air contaminants was also made.
In the field program, four private residences with gas stoves were
selected for monitoring during the spring and fall of 1973. A two-week
measurement period at each residence for each season was utilized. Measurements
of the three pollutants were made at three indoor locations, the kitchen,
living room and bedroom as well as outdoors.
In order to sample at all four locations simultaneously and yet conserve
equipment and manpower, TRC designed and built a measurement system that
enabled the use of a single analyzer for NO,, and NO and a second analyzer for
CO. An electronic timer, solenoid valves and continuously purged teflon
sampling lines were used to permit the analysis of sample streams from each
location in rapid sequence.
The laboratory program was designed to evaluate the mass emissions from
both old and new stoves and also a small unvented space heater. The
effectiveness of vented and unvented kitchen hoods in removing gaseous pollutants
was also evaluated. A variety of stove operating modes were evaluated in
order to establish a relationship between operating conditions and pollutant
levels.
Two of the homes in the field program were surveyed to determine all
significant indoor sources of contaminants. Information from these two in-
depth surveys was used in surveying a broad range of TRC employees regarding
contaminant generating activities.
if
-------
The results of this program show the concentrations of NO., NO, and CO
to which the occupants of residences are exposed, the variation of pollutant
concentrations within a structure, the relative magnitude of indoor generated
pollutants and oxitdoor pollutants which penetrate a structure, the influence
of stove operations upon the generation of pollutant quantities, and the
relative importance of contaminant sources other than gas appliances.
iii
-------
TABLE OF CONTENTS
Section Title Page
INTRODUCTION 1
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 3
I. TASK 1 - LABORATORY INVESTIGATIONS
1.0 INTRODUCTION 10
2.0 SUMMARY AND CONCLUSIONS 11
3.0 DESCRIPTIONS AND PROCEDURES 14
3.1 Appliance Selection 14
3.2 Procedures 17
3.3 Test Plan 24
3.4 Calculations 28
4.0 RESULTS AND DISCUSSION 29
4.1 Gas Stoves 29
4.2 Hoods 35
4.3 Unvented Space Heater 38
II. TASK 2 - FIELD STUDIES
1.0 INTRODUCTION 43
2.0 SUMMARY AND CONCLUSIONS 44
2.1 Summary 44
2.2 Conclusions 47
3.0' PROCEDURES 49
3.1 Structure Selection 49
3.2 Measurement System 58
3.3 Calibration Procedures 63
3.4 Field Operations 66
3.5 Data Summarization 70
-------
TABLE OF CONTENTS (continued)
Section
Title
4.0 RESULTS AND DISCUSSION 73
4.1 House No. 1 - Suburban Split Level Home 73
4.2 House No. 2 - Urban Two Story Home 106
4.3 House No. 3 - Suburban Two Story Apartment 127
4.4 House No. 4 - Suburban Ranch Home 147
III. TASK 3 - INVENTORY OF INDOOR SOURCES
1.0 INTRODUCTION
163
2.0 SUMMARY AND CONCLUSIONS
164
IV.
TASK 1;
Tables
2-1
3-1
4-1
4-2
4-3
4-4
3.0 SURVEY RESULTS
3.1 Preliminary Interviews and Inspection
3.2 Aerosol Product Survey
APPENDICES
Summary of Pollutant Emissions of Gas Appliances
for Several Typical Operating Conditions
Characteristics of Gas Appliances and Hoods
Pollutant Emission Levels For The Pilot Lights
and Different Burner Operating Conditions
Pollutant Emission Levels For Broiler and Oven
of Two Gas Stoves
Pollutant Concentrations Related to Various
Utensils
Pollutant Removal Efficiencies For Newer Gas
Stove With Vented Hood
166
166
169
182
12
15
30
34
36
37
-------
TABLE OF CONTENTS (continued)
Tables
4-5
4-6
Figures
3-1
3-2
3-3
Title
Pollutant Removal Efficiencies For Newer Gas
Stove With Recirculating Hood
Pollutant Emission Levels of The Unvented
Space Heater
Testing Room and Equipment Arrangement
NO, NO and CO Sampling and Measurement System
NO - N02 Calibration System
39
40
18
20
22
TASK 2:
Tables
2-1
Summary of Indoor/Outdoor Air Quality Data in
Each Home for Both Seasons, Spring-Summer 1973
and Pall-Winter 1973-74
46
3-1
4-1
4-2
4-3
4-4
4-5
4-6
Characteristics of Field Program Residences
Spring (1973) Sampling at House No. 1 -
Daily Average NO Concentration and Stove
Usage Data
Fall (1973) Sampling at House No. 1 -
Daily Average NO. Concentrations and Stove
Usage Data
Summary of Average N0? Values and Stove Use
House No. 1 - Spring and Fall Sampling, 1973
Spring (1973) Sampling at House No. 1 -
Daily Average NO Concentrations and Stove
Usage Data
Fall (1973) Sampling at House No. 1 -
Daily Average NO Concentrations and Stove
Usage Data
Summary of Average NO .Values and Stove Use
House No. 1 - Spring and Fall Sampling, 1973
50
75
76
78
91
92
94
vi
-------
TABLE OF CONTENTS (continued)
Tables Title
4-7 Spring (1973) Sampling at House No. 1 -
Daily Average CO Concentration and Stove
Usage Data 102
4-8 Fall (1973) Sampl'" - "ouse No. 1 -
Daily Average CO Concentrations and Stove
Usage Data 103
4-9 Summary of Average CO Values and Stove Use
House No. 1 - Spring and Fall Sampling, 1973 105
4-10 Spring (1973) Sampling at House No. 2 -
Daily Average NO Concentration arid Stove
Usage Data 110
4-11 Spring (1973) Sampling at House No. 2 -
Daily Average NO Concentration and Stove
Usage Data 114
4-12 Spring (1973) Sampling at House No. 2 -
Daily Average CO Concentration and Stove
Usage Data
4-13 Peak Five-Minute Concentrations of Oxides of
Nitrogen and Carbon Monoxide During Diffusion
Experiments 122
4-14 Spring-Summer (1973) Sampling at House No. 3 -
Daily Average NO. Concentration and Stove
Usage Data 128
4-15 Fall-Winter (1973) Sampling at House No. 3 -
Daily Average NO. Concentration and Stove
Usage Data 129
4-16 Summary of Average NO Values and Stove Use
House No. 3 - Spring and Fall Sampling, 1973 131
4-17 Spring-Summer (1973) Sampling at House No. 3 -
Daily Average NO Concentration and Stove
Usage Data 135
4-18 Fall-Winter (1973) Sampling at House No. 3 -
Daily Average NO Concentration and Stove
Usage Data 136
4-19 Summary of Average NO Values and Stove Use
House No. 3 - Spring and Fall Sampling, 1973 137
vii
-------
TABLE Of" CONTENTS (continued)
Tables Title Page
4-20 Summer (1973) Sampling at House No. 3 -
Daily Average CO Concentration and Stove
Usage Data 140
4-21 Fall-Winter (1973) Sampling at House No. 3 -
Daily Average CO Concentration and Stove
Usage Data 141
4-22 Summary of Average CO Values and Stove Use
House No. 3 - Spring and Fall Sampling, 1973 143
4-23 Winter (1974) Sampling at House No. 4 -
Daily Average NO Concentration and Stove
Usage Data 148
4-24 Winter (1974) Sampling at House No. 4 -
Daily Average NO Concentration and Stove
Usage Data 154
4-25 Winter (1974) Sampling at House No. 4 -
Daily Average CO Concentration and Stove
Usage Data 159
Figures
3-1 Plan Layout of House No. 1 51
3-2 Front View of House No. 1 52
3-3 Plan Layout of House No. 2 54
3-4 Front View of House No. 2 55
3-5 Plan Layout of House No. 3 56
3-6 Front View of House No. 3 57
3-7 Plan Layout of House No. 4 59
3-8 Oblique Front View of House No. 4 60
3-9 NO, N02, and CO Sampling and Measurement System 61
3-10 Sample N0/N02 Trace 64
3-11 N0-N02 Calibration System 65
3-12 Stove Usage Form 69
viii
-------
TABLE OF CONTENTS (continued)
Figures Title Page
4-1 Diurnal Indoor/Outdoor Pattern for NO - House
No. 1; Spring-Summer, 1973 80
4-2 Diurnal Indoor/Outdoor Pattern for NO - House
No. 1; Fall, 1973, 1st half 81
4-3 House No. 1 - A Time History of N0_ Concentration,
2-hour averages; Spring, 1973 83
4-4 House No. 1 - A Time History of N09 Concentrations,
2-hour averages; Fall, 1973 84
4-5 House No. 1 - Frequency Distribution of NO-
Concentrations, Five-minute data; Spring, 1973 86
4-6 House No. 1 - Frequency Distribution of N0?
Concentrations, Five-minute data; Fall, 1973,
1st half of period 88
4-7 House No. 1 - Frequency Distribution of NO,,
Concentrations, Five-minute data;; Fall, 1973,
2nd half of period 89
4-8 House No. 1 - A Time History of NO Concentrations,
2-hour averages; Spring, 1973 96
4-9 House No. 1 - Frequency Distribution of NO
Concentrations, Five-minute data; Spring, 1973 97
4-10 House No. 1 - Frequency Distribution of NO
Concentrations, Five-minute data; Fall, 1973,
1st half of period 99
4-11 House No. 1 - Frequency Distribution of NO
Concentrations, Five-minute data; Fall, 1973,
2nd half of period 100
4-12 House No. 1 - Frequency Distribution of CO
Concentrations, Five-minute data; Spring, 1973 107
4-13 House No. 1 - Frequency Distribution of CO
Concentrations, Five-minute data; Fall, 1973,
1st half of period 108
4-14 House No. 1 - Frequency Distribution of CO
Concentrations, Five-minute data; Fall, 1973,
2nd half of period 109
4-15 House No. 2 - A Time History of NO,, Concentrations,
2-hour averages; Spring, 1973 '' 111
ix
-------
TABLE OF CONTENTS (continued)
Figures Title Page
4-16 House No. 2 - Frequency Distribution of NO-
Concentrations, Five-minute data; Spring, 1973
4-17 House No. 2 - A Time History of NO Concentrations,
2-hour averages; Spring, 1973
4-18 House No. 2 - Frequency Distribution of NO
Concentrations, Five-minute data; Spring, 1973
4-19 House No. 2 - A Time History of CO Concentrations,
2-hour averages; Spring 1973 120
4-20 House No. 2 - Frequency Distribution of CO
Concentrations, Five-minute data; Spring, 1973 121
4-21 House No. 2 - Decay of N02 Concentrations, Five-
minute data vs. time 124
4-22 House No. 2 - Decay of NO Concentrations, Five-
minute data vs. time 125
4-23 House No. 2 - Decay of CO Concentrations, Five-
minute data vs. time 126
4-24 House No. 3 - A Time History of N02 Concentrations,
2-hour averages; Spring, 1973 132
4-25 House No. 3 - A Time History of N02 Concentrations,
Five-minute data; Spring, 1973 134
4-26 House No. 3 - A Time History of NO Concentrations,
2-hour averages; Spring, 1973 139
4-27 House No. 3 - Frequency Distribution of CO
Concentrations, Five-minute data; Spring, 1973 144
4-28 House No. 3 - Frequency Distribution of CO
Concentrations, Five-minute data; Fall, 1973,
1st half of period 145
4-29 House No. 3 - Frequency Distribution of CO
Concentrations, Five-minute data; Fall, 1973,
2nd half of period 146
4-30 Diurnal Indoor/Outdoor Pattern for NO- - House
No. 4; Winter, 1973 150
4-31 House No. 4 - A Time History of NO- Concentrations ,
2-hour averages ; Winter, 1974 151
-------
TABLE OF CONTENTS (continued)
Figures
4-32
4-33
4-34
4-35
4-36
Title
House No. 4 - Frequency Distribution of N02
Concentrations, Five-minute data; Winter, 1974
House No. 4 - A Time History of NO Concentrations,
2-hour averages; Winter, 1974
House No. 4 - Frequency Distribution of NO
Concentrations, Five-minute data; Winter, 1974
House No. 4 - A Time History of CO Concentrations ,
2-hour averages; Winter, 1974
House No. 4 - Frequency Distribution of CO
Concentrations, Five-minute data; Winter, 1974
Page
153
156
157
160
161
TASK 3:
Tables
3-1
3-2
3-3
3-4
3-5
3-6
3-7
Check List for Identification of Indoor Sources
of Air Contamination
Summary of Indoor Sources at Two Test Homes
Data on Households for Aerosol Use Survey
Aerosol Product Category Use for TRC Households
Aerosol Usage Patterns
Typical Active Ingredients and Propellants for
Frequently Used Aerosol Products
Emission Estimates of Propellants for Aerosol
Products
167
168
171
172
174
176
178
-------
INTRODUCTION
The Research Corporation of New England (TRC) carried out a study
of indoor/outdoor air quality relationships for the forerunner of EPA, The
National Air Pollution Control Administration (Contract CPA-22-69-14). The
results of this study were published in the technical literature
and showed that indoor air quality is a complex function of outdoor pollutant
concentrations, building permeability, meteorological conditions, ventilation
system design and indoor generation of pollutants. While more work is
needed in establishing the specific effect of each of these factors on indoor
air quality, the one factor of those listed which is least understood and which
will assume greater importance as outdoor air quality improves, is indoor
generation of air contaminants.
In 1972, a conference was held at South Berwick, Maine on the subject
(3)
of improving indoor air quality. The meeting brought together a wide
range of scientists, engineers, and physicians concerned with the subject.
The meeting showed the complexity and high degree of interest in the entire
subject of indoor air quality. While indoor air quality in general appears to
be dominated to a great degree by outdoor air pollution, the indoor/outdoor
relationship is also a complex function of building permeability, type of
ventilation system, meteorological conditions and internal generation. An
especially important outcome of the meeting was the indication that internal
^ ' Yocom, J.E., W.L. Clink, and W.A. Cote1, "Indoor/Outdoor Air Quality
Relationships", APCA Journal, Vol. 21, 5, pp. 251-59, May 1971
(2)
Yocom, J.E., W.A. CotS, W.L. Clink, "Measurement of Air Pollution
Penetration into Building Interiors", Presented at 17th Annual ISA
Analysis Instrumentation Symposium, April 19-21, Houston, Tex., published
In the Proceedings: "Analysis Instrumentation", Vol. 9-ISA, Pittsburg, Pa.
(3)
Improving Indoor Air Quality", Engineering Foundation Conference
Berwick Academy, South Berwick, Maine, August 13-18, 1972.
_ 1 _
-------
generation of pollutants is a more critical aspect of the problem than was
heretofore suspected. Gas stoves were implicated repeatedly as to their
potential emissions of CO, hydrocarbons, NO , odorous materials and
X
unspecified compounds that one doctor felt were responsible for adverse
reactions on some of his highly sensitive patients.
TRC's earlier indoor/outdoor work for EPA demonstrated that unvented
gas stoves can indeed contribute measurable quantities of CO to the indoor
atmosphere and our sampling methods were able to track the travel of CO from
this source to other parts of the house. However, the scope of this work did
not include the measurement of other pollutants. The objective of the present
EPA sponsored program is to investigate further the indoor generation of air
pollutants in private residences. This effort has been organized into three
major tasks as follows:
Task 1 - Laboratory Investigation
Task 2 - Field Studies
Task 3 - Inventory of Indoor Sources
This report summarizes the entire program. Following this general
introduction, we present the Summary, Conclusions and Recommendations for the
entire program. Then, in sequence, we present reports of each of the three
tasks. Since these tasks represent discrete efforts within the overall program,
we present them essentially as self-contained reports but with cross references
to other tasks where appropriate.
See page 1
- 2 -
-------
SUMMARY. CONCLUSIONS AND RECOMMENDATIONS
SUMMARY
TRC has completed a 15-month research program on indoor air quality. The
program was carried out in three tasks which are briefly summarized as follows:
1. Task 1 - Laboratory Study
The objective of this task was to measure emmissions of NO, NOo,
and CO from normally used and operated gas stoves and unvented space
heaters in relation to several stove and heater operating variables.
Emissions from the gas appliances as well as emissions as modified by
ventilating hoods were determined in a laboratory study. A brief
survey of stove and heater designs was made to select representative
models for testing. A completely enclosed laboratory structure was
constructed for the evaluation of emissions from the appliance on a
mass basis. Operating variables evaluated included air-fuel ratios,
flame intensity, time and temperature and use of pilot lights.
2. Task 2 - Field Studies
Measurements for N02, NO and CO were made continuously over
2-week periods in 4 homes with gas stoves in the Hartford, Connecticut
area. Separate field measurement programs were carried out during
the spring-summer of 1973 and fall-winter of 1973-1974.
Sampling was carried out by means of a TRC-designed system which
utilized single instruments to obtain data on a 5-minute sequential
basis from four sampling points. Three of the sampling points were
located indoors (one or two locations in the kitchen and either the
living room or bedroom) while one monitored outdoor concentrations.
3
-------
Data on stove use was recorded by the homeowner to permit
comparisons of indoor air quality with stove use.
3. Task 3 - Inventory of Indoor Sources
A two-phase study to identify indoor sources was carried out.
Initially, two of the houses used for the Task 2 effort were used
as a basis for cataloging sources of potential indoor emissions.
We determined that there are many sources of indoor air contamination
which take many forms based on practices within each household.
One of the most widespread source categories within the home
is the dispersal of household products in aerosol form. We
carried out a survey of TRC employees to develop use patterns of
aerosol products and to estimate the effect of such use on
indoor air quality.
CONCLUSIONS
From the results of the work performed, we draw the following conclusions:
1- Combustion products from gas stoves degrade indoor air quality
especially in terms of N02, NO, and CO. In several cases,
levels of indoor N0~ and CO could exceed the air quality standards
for these pollutants if such outdoor standards were to be applied
indoors.
2. Propellant dispersed aerosols also have a significant but widely
variable impact on indoor air quality. While concentrations of
propellants are estimated to be below the Threshold Limit Values
(TLV's) for these materials, special circumstances may cause
these levels to be exceeded on occasion.
- 4 -
-------
3. The half-life of indoor concentrations of CO, an unreactive gas, was
found to be 2.1 hr. NO is also relatively unreactive in the indoor
atmosphere with a half-life of 1.8 hr. N02, on the other hand, showed
a half-life in the same home of 0.6 hr. We conclude that N02 is
lost through reaction, absorption and adsorption.
4. The ratios of N02 to NO produced by gas stoves varied somewhat, but
there was some tendency to produce slightly more NO than NO^.
5. Pilot lights on gas stoves produce a measureable amount of NO, N02,
and CO during inactive stove use periods.
6. Outdoor air quality has a significant effect on indoor air quality,
particularly in the warmer months when the house is relatively
permeable.
7. Highest indoor concentrations of stove-generated pollutants occurred
in the winter when the house was tightly closed.
8. Gas stoves and to a lesser extent unvented space heaters generate
significant quantities of NO, N02> and CO as determined in our
laboratory study. Some difference in emission levels were observed
for older and newer stoves, but these are not directly attributable
to age or design differences. Amounts of pollutants generated are
directly related to the number of burners in operation and the amount
of gas being consumed.
9. Vented stove hoods are moderately effective in removing gaseous
pollutants but recirculating hoods are not effective.
RECOMMENDATIONS
The work performed has shown the need for further work in further defining
indoor air quality, sources of indoor contamination, and the impact of indoor
- 5 -
-------
air quality on occupants of indoor spaces. We believe further work in the
following areas is needed:
1. Further analysis and evaluation is needed of the data developed from
this program. Task 2 of this program generated a large body of
valuable data on the indoor/outdoor patterns of air quality in
several different types of houses with gas stoves. While the data
and their evaluation presented show clearly the magnitude of the
influence of gas stoves on indoor air quality, further analysis of
the data of the type listed below would put these evaluations in
more precise perspective.
a. Extrapolate the data obtained in this program to provide an
estimate of total exposure to NO,-, and CO for the occupants of
houses tested. This would involve the development of typical
occupancy patterns for individuals and patterns of travel,
activity and occupation together with outdoor ambient air
quality data from this program and the State of Connecticut,
and judgments based upon TRC's previous work and literature
sources on what regimes of exposure could be expected for
different occupations and within different types of enclosures.
b. Utilize the existing data to develop preliminary models of the
indoor concentrations in terms of indoor sources (stove use),
design of house, relative permeability of the house, outdoor
concentrations, and meteorological factors (temperature, wind
direction and speed, etc.).
c. Make a detailed analysis of indoor NO,, and CO patterns in
Houses 1, 3 and 4 to corroborate the shorter half life of NO-
as opposed to CO as was determined in the diffusion experiment
at House No. 2.
- 6 -
-------
2. Further definition and quantification of indoor sources is needed.
More detailed inventories together with well designed field measurement
programs should be carried out. Highest priorities should be given to
such common household activities as cleaning, smoking, cooking and use
of aerosol products.
3. Epidemiological studies should be made of the possible effects on the
occupants of homes of the wide range of materials present in the indoor
air. These should be carried out simultaneously with programs to
identify sources, likely contaminants, and field programs to measure
indoor air quality.
4. In the diffusion studies, we determined that NO- from gas stoves
disappears 3 times as fast as NO. Research should be carried out to
determine what happens to N0~. One possible route which has strong
health implications is the formation of nitrate or nitrite aerosol
in the highly humid kitchen atmosphere. A study to establish the
ultimate disposition of N0? in the indoor atmosphere should be
carried out.
5. The indoor/outdoor relationships for nitrate and sulfate aerosol and
their precursors NO and S00 should be developed particularly in view
X 4*
of the formation of N0_ and NO by gas appliances.
6. Air quality standards are based on outdoor concentrations, but
epidemiological data supporting these standards undoubtedly include
the integrated exposure to both indoor and outdoor air pollutants.
Since people spend most of their time indoors, studies should be
designed to establish true human exposure (both indoors and
outdoors) to air pollutants.
7
-------
7. Indoor/outdoor air quality studies need to be carried out on a broader
base. There is a need for studies in different types of structure
located in different types of communities. At the same time there is
a need for carrying out such work in sufficient depth to permit
statistical evaluation of the data, in order to verify the findings
of initial surveys conducted to date.
8. Instrumentation is needed which can reliably operate on a continuous
basis over longer periods of time to permit increased data recovery.
-------
TASK 1
LABORATORY INVESTIGATIONS
- 9 -
-------
1.0 INTRODUCTION
As part of The Research Corporation of New England's study of sources
of indoor air pollution, Task 1 was planned to investigate emissions
characteristics of gas appliances in a laboratory environment. Task 1 was
developed in response to the lack of information available for pollutant
emissions from gas appliances and their relationship to operating conditions.
TRC evaluated emissions from two gas stoves, an old and a new model,
and an unvented space heater. Emission levels from the gas stoves were measured
for the following types of operation:
1. pilot lights
2. burners
3. oven and broiler
The effects of flame intensity, air-fuel mixture, number of burners in
use, and utensils were determined in this laboratory test program.
The oven and broiler emissions were evaluated under transient and
steady-state operating conditions. In addition to these evaluations, we
determined the effects of recirculating and vented hoods on the characteristics
of pollutant emissions for gas stoves.
We measured nitric oxide (NO), nitrogen dioxide (N0«),and carbon
monoxide (CO) emissions from the gas appliances under the different operating
conditions. These measurements were made with sequential sampling equipment
in an enclosure built to isolate the appliances during the tests. We found
through contact with the local gas utility that the sulfur content of the
odorant in the natural gas was very low, 0.21 yg/kcal. Measurement of SO-
with available monitoring equipment would not have yielded reliable results
and therefore was not performed.
- 10 -
-------
2.0 SUMMARY AND CONCLUSIONS
A brief summary of the results from Task 1 is presented in Table 2-1.
Emission measurempnts are presented for an older and newer gas stove and an
unvented space heater. For comparison, the emissions from a domestic gas
furnace are also included in Table 2-1.
Pilot light NO and NO emissions from the newer stove were less and
CO emissions higher than those from the older stove. The newer stove also has
a pilot light designed to use less gas than the older stove.
Tests designed to evaluate the effect of air-fuel mixture upon burner
operation indicated that the best blue luminous flame was produced at an
intermediate air shutter opening for each stove. Variation in the shutter
opening had little effect on the pollutant emissions for the older stove but
had a greater effect on the newer stove. The intermediate air shutter
opening (best flame) also had the highest oxides of nitrogen levels for the
newer stove.
Evaluation of the number of burners in use and their flame intensity
showed that the emissions are similar for all conditions when adjusted to an
equivalent heat input basis. Oven and broiler emissions are somewhat less
than those for the burners on the same heat input basis. An exception was
the large amount of CO from the oven of the newer stove.
Total pollutant emissions per unit of time from a gas stove are roughly
proportional to the number and type of burners used and the period of use.
The unvented space heater had lower emissions than the stoves with the
exception of NO at high flame and CO at low flame conditions.
Vented stove hoods could capture and exhaust about 40 to 50 percent
of the pollutants generated by the stove depending upon the fan sp^ed used.
Our tests could not detect any removal of gaseous pollutants by a recirculating
hood with a charcoal filter.
- 11 -
-------
H
1
CM
W
hJ
pq
tH
co
2
0
H
CO
CO
M
s
H
*2
EH
&
>j
nj
o
p-l
PH
O
>
g
R
CO
,-1
3
H^
Oi
>-l
H
|_J
<5 w
PH ^g
£S
W H
CO H
. Q
Pd g
0 0
|i( CJ
W3 O
W g
U H
^ E~*
hj «
iJ W
PH PU
P^O
CO
-4
§
H
CO
co
H M
S 5d
w "*-^
a
C
cd
3
rH
rH
0
*
a
O /~s
H H
CO CO
CO U
H fc^
3.
rt
CO CO
4J ,J
3 O
rH 4J
rH CJ
(i, f
3
P.
(3 cu
M 4->
CO
4J p^
CO
CU
«
PI
O
H
4J
CO
CU
O
a)
a
g
H
rH
P.
P.
O
U
CM
O
O
&
O
CJ
CM
§
'f}
W
^^
rH
CO
CJ
1*"^
~
O\ rH O VO
. CO CM VO
CM O CM rH
SO H CO i-H
CM O Sf rH
» -^ O\ SO
CO rH
CU rH CO O
CU
O O
4-) rl
W H
CO 4J
CO CO CO
O CO rl
cj cu
rl C
a> ,c C
*T3 4J P
rH ^H pq
o &
CM in CO «*
00 i 1 vO
^ r^ CM to
00 rH CO CO
a\ r-- a\ rH
r**> so rH
rH CM vO i-H
in m oo I-H
m o P-"
O -» -* rH
rH
CM o in o
^t rH rH CM
oo in co vo
rH
vO O VO st
oo CTI m o
I-H r^ vo in
Is* o o a.
3" O OO Is*
co co r^
rH rH
O 0 O O
O O O O
rH in CM CM
CO o CM
rH
92
cu 8
3 rH Q)
rH fLt 4-1
P4 CO
J2 4J
rC 60 CO
tO 00 -rl 1
60 1 CO CO
rl rl rl CU
l-J CU 0) 4J
6p co
fi 1
0 3 3 C
rH pq pq cu
rl 5
CXi rH CO CD
01
>
O CO
4-> *rj Vl
CO CU CU
CO p
CO CO rl
CO 0) 3
O rl ,0
rl rH
CU J3 CU
5 4J CU
8 -rl 4J
2; > to
o oo
r* cy>
H rH
O CM
co- r^
rH CM
-3- r^
rH CO
CM CO
CM a\
CO rH
vO CO
S^ *rj
T3 CO
CO CU
CU 4J
4J CO
CO I
1 CU
cu a
CO rH
H fe
a oo
5 iH
cu
o
cd
p.
CO
cu
4J rl
^ IH~*
^J fC
o
00
o
rH
O
O
CM
0
(X
p.
CO
o
o
a\
**
CM
^^
^5^
o
^
X
o o
rl O
D.O
P. «
CO
|
|
1
!
co
(0
O
a *
H CU
4J O
CO CO
cu p
O 3
f*^ fV|
CM
r^
o\
rl
8
g
60
§
H
4->
a
cu
4J
o
cO
4J
c
CU
to
CO
rl
O
4J
G
O
H
CO
CO
H
g
O
(X,
rl
H
ti
O
H
I
-19-
-------
From the laboratory study, we conclude that:
1. Gas stoves emit significant quantities of oxides of nitrogen and
carbon monoxides in the following ranges depending upon stove
operation:
NO = 90 - 130 vg/Kcal, 200-1000 mg/Hr
N02 =50-80 vg/Kcal, 100-500 mg/Hr
CO - 400 - 1000 yg/Kcal, 1000-4000 mg/Hr
2. In our tests, pollutant emissions from the newer stove were not
consistently higher or lower than the older stove for the
range of operations evaluated. The oven of the newer stove did
emit about three times more CO than the older stove oven.
3. The different designs of the burners for the two stoves did not
appear to have consistent and reproducible effects upon
pollutant emissions.
4. Pilot lights, although using gas at a small rate, do contribute
quantities of pollutants comparable to those generated during
cooking operations over a typical 24-hour period because of their
continuous nature.
5. Vented stove hoods are moderately effective in removing gaseous
pollutants but recirculating hoods are ineffective in removing
pollutants.
6. An unvented space heater has pollutant emissions in the
following ranges depending upon operation:
NO - 80 - 130 yg/Kcal , 200-800 mg/Hr
N02 = 40-50 vg/Kcal , 100-300 mg/Hr
CO - 300 - 600 vg/Kcal , 1000-2000 mg/Hr
These emissions are less than that for a gas stove, however, total
emissions could be greater if the heater were used continuously.
- 13 -
-------
3.0 DESCRIPTIONS AND PROCEDURES
3.1 Appliance Selection
A preliminary survey was conducted to determine the different types
of stoves, hoods, & space heaters available for residential use. Design
features that could possibly affect pollutant emissions fall into two major
categories, heat input rate and burner construction. Maximum heat input rates for
range top burners are split evenly between 2300 Kcal/hr and 3000 Kcal/Hr. Oven
and broiler heat input rates vary from 3000 Kcal/hr to 6300 Kcal/hr. Burner
construction is divided into four major categories:
1. Steel tube (venturi) with ports or slots
2. Infrared type
3. Cast iron with drilled ports
4. Pressed steel with formed ports
The latter two are predominant with most modern gas stoves having
the pressed steel burners and older stoves the cast iron burners. We chose
one stove from each of these latter two categories for the laboratory study.
Space heaters, not in general use in the Northeast, are available
in several different configurations. They have single or multi-port cast iron
burners and are vented to either the living space or outdoors. The heating
medium is either hot air, steam or hot water. The Project Officer supplied
us with a multi-ported, unvented, hot air space heater for the task.
Range top hoods are available in many different sizes and either
recirculate indoor air or exhaust to the outside. For this study, we selected
a representative hood for each category, one recirculating and one vented.
Table 3-1 summarizes the characteristics of the applicances selected for this
test program.
- 14 -
-------
TABLE 3-1
CHARACTERISTICS OF THE GAS APPLIANCES AND HOODS
Appliance Age
New Gas Stove 5 Years
Old Gas Stove Approx.
20 Years
Unvented Space Approx.
Heater 15 Years
Recirculating New
Hood
Vented Hood
New
Description
4 pressed steel
burners, 3 pilot
lights
4 cast iron
burners, 3 pilot
lights
Cast iron multi-
port burner, hot
air^manual
ignition
2 speed fan
930 CM2
Inlet Area
3 speed9fan
1677 CM2
Inlet Area
Nominal Rated Capacity
Burners:
Each: 3000 Kcal/Hr
Burners:
Each
Small: 2550 Kcal/Hr
Large: 3000 Kcal/Hr
6700 Kcal/Hr
Rated Fan Capacity
4.2 M3/MIN
8.4 M°/MIN
Oven/Broiler
5500 Kcal/Hr
Oven/Broiler
3550 Kcal/Hr
- 15 -
-------
3.1.1 Newer Gas Stove
This five year old gas stove was purchased used and has four pressed
steel burners. Each burner is rated at 3000 Kcal/hr. There are two pilot
lights for the burners and broiler. The oven, with a capacity of 5500 Kcal/hr,
3
has its own pilot light and has a volume of approximately 98,300CM . It
was chosen as representative of one of the two major types of gas stoves
available and in common use. Air-to-fuel ratios are controlled at each of
the burners by shutters.
3.1.2 Older Gas Stove
This stove is approximately twenty years old and has four cast iron
burners with two pilot lights. Another pilot light is located near the oven
and broiler. The broiler and over are separate compartments of 23,600 CM and
3
65,600CM , respectively. This appliance represents the second major category
of gas stove in use in residential structures. There are two small burners
and two larger ones having individual rated capacities of 2550 and 3000 Kcal/hr,
respectively. The oven has a 3550 Kcal/hr capacity,
3.1.3 Recirculating-Type Range Hood
This hood, which is the most commonly used in modern residences,
has a two-speed fan that draws a maximum of 4.2 cu.m/min. Air from above
the stove passes through a 930 square centimeter aluminum grease filter and
activated charcoal unit. The exhaust from this hood is discharged directly
into the kitchen space.
3.1.4 Vented Range Hood
This second type of hood made by the same manufacturer as the
leclrculating type used in this study has a greater exhaust capacity. The
-------
three-speed fan draws a maxiuua of 8.4 cu.m/min through a 1677 on2 aluminum
grease filter and exhausts this air through a .15 meter diameter sheet
metal duct to the outside.
3.1.5 Space Heater
The space heater which was supplied by the Project Officer, was an
unvented hot air system with a multi-port cast iron burner. This fifteen-year
old space heater has neither a pilot light nor an air-fuel adjustment device.
Combustion air was provided to the 12 finned burners by aspiration. It has
a maximum heat input of 6700 Kcal/hr.
3.2 Procedures
3.2.1 Laboratory Test Enclosure
Figure 3-1 shows the laboratory test enclosure and sampling system
built specifically for this study. The test enclosure was designed and
built to isolate the stoves, hoods and space heater from external influences
and to allow us to monitor the generation of pollutants in a convenient
manner.
The test room enclosed 8.0 cubic meters, 2.4 aeters long and 1.4 meters
wide, and was 2.4 meters high. One door and two sealed windows were installed
to allow access to and observation of the stoves in the test chamber. The sheet
rock walls were covered with a non-adsorbent epoxy base paint and all openings
were sealed with silicone weatherstripping. The air intake for the test
enclosure was a .2 meter- diameter duct. Control of the intake air was
achieved by a variable guillotine damper placed in the inlet duct.
2
Ventilation of the test enclosure was provided with a 8.4 m /Min
fan placed in the .2 meter room outlet duct in the ceiling.
- 17 -
-------
room
inlet
Pitot
Station
Ducted Hood
Outlet
Pi tot
Each Mixing
Chamber Connected
To Separate Pump
to mixing
chamber
0 Pollutant Concentration
Measurement Points
Figure 3-1: Testing Room and Equipment Arrangement
18 -
-------
A .15 meter diameter exhaust outlet for the vented hood was placed
in the back wall of the test enclosure. Air flow through the inlet and outlet
was measured by standard type pitot tubes and inclined manometers.
3.2.2 Measurement System
In order to measure pollutant concentrations at multiple locations
and yet conserve the amount of instrumentation and manpower required to
obtain this data, TRC designed and built a unique measurement system as
shown in Figure 3-2. The major components of the system are four continuously
purged sampling lines with an integrating chamber, solenoid valves, Bendix
Chemiluminescent NO/NO Analyzer, Intertech Non-Dispersive Infrared Carbon
X
Monoxide Analyzer, carbon monoxide and NO/NO- Calibration Systems, strip chart
recorders and electronic sequencer. The system design acknowledged the need for:
1. Continuous, uninterrupted operation with only periodic service
2. Frequent automatic and manual calibration checks.
As shown schematically in Figure 3-2, the sample stream from each
of the four locations is piped to a central location through 15 meters of
4.8 mm I.D. Teflon tubing at a rate of approximately 9.5 LPM. This is
equivalent to a retention time of approximately 2 seconds. Each sample
stream is then drawn through an individual 500 ml glass integrating chamber,
through a dlaphram pump and then vented. This arrangement provides continuous
purging of the sampling lines.
From the integrating chamber two small streams are drawn, one to the
Bendix Chemiluminescent NO/NO analyzer and the other to the Intertech
X
NDIR CO analyzer. Solenoid valves (normally closed) on each sample line
are energized by the electronic sequencer at five minute intervals with
- 19 -
-------
c
o
"rO
V- E
_a ru
r -j J
i 10
O "3 >,
CJ O to
S-
QJ .*
-a c
o ^j J-
>
r
01 S-
s- cj
JC O) Nl
O CLt3 >,
CO tO OJ i
-M -i S- rO
i- "O ra C
CJ 1 S- <£
4-> C ^1-
c o c o
> i ;z < o
__ - -u
J
o
r- i.
C. OJ
O CJ
^ r"
-(-> CJ
u rs
aj a~
i ca
UJ l/l
1
1
M1LJ
1 ._
1 ~ -
o
r"»
M
ft)
CM S- E
g -Q GJ
-^ in to
CD ra >,
;r o to
OJ-
a c
ID--I-) S- O
L ra u
*-> JZ CU (XI
(,<-) (j i_ % ^
k
I
i *
c s_
QJ C1J
U Nl
in >,
OJ r
C ro
*l d
E -^,
CJ -C O
C3 CJ 2T
.
10 -
T3 CO
CU
>
'J
ro
E
3
Q.
O
1
±t
c
0
+J
ro
CO
^
r
V
c
0
4->
ro
S-
cn
01
4->
C
» i
J
s-
Q)
.0
ra
CJ
//
c
^
c
o
r
4->
ra
CD
c;
4->
C
I (
M
J
t-
C
i i
"0
r "
s_
CL)
n
cr
ra
o
V
c
0
>->
m
S-
en
(1)
-4-1
C
(
a-
[^
s_
01
o
E
ro
r
O
ra
a> c
i- O
4-> -i-
01 +-)
CJ i-
CLT-
E -
O)
ra
o a.
c:
cu «^-
CM
ro
to
>>
oo
O)
E
a>
to
na
C'
5:
-a
c
ra
en
c
LU
o:
CL
ro
CO
o
C_3
a
c
rO
CM
O
O
- 20 -
-------
each station having its sample being drawn to the detectors once every
twenty minutes. The two solenoid valves that allow samples to be drawn
to the CO analyzer and the NO/NO- detector from the integration chamber are
kept in phase so that the sample stream from each station is being
analyzed simultaneously for CO and NO/NO-. A two pen recorder was used for
the NO and NO. output of the chemiluminescent analyzer and a separate single
pen unit for recording the CO output.
An additional function of the electronic sequencer was to mark the
beginning of each 20-minute sampling cycle. This was accomplished by creating
a vertical slash on each strip chart immediately before the analysis of the
Station 1 sample stream for the three pollutants of interest. This sampling
and measurement system is the same as the one used for the Task 2 field
measurements.
3.2.3 Calibration Procedures
Calibration of the Bendix Chemiluminescent NO/NO- Analyzer was
accomplished with a dynamic dilution module. This module was provided
by the Environmental Protection Agency and is described schematically
in Figure 3-3. A wide range of concentrations of NO and N0« can be
generated by this unit for calibrating the NO/NO- analyzer. Bottled NO
calibration gas with a guaranteed concentration of 95.1 ppm and purified room
air were used to produce the various nitric oxide concentrations. Nitrogen dioxide
can be produced in different concentrations by the use of the ozone generator
that is part of the calibration module.
The procedures used to calibrate the Bendix Chemiluminescent
N0/N0~ Analyzer were provided by the EPA and are identical to those used in
Task 2. A copy of the procedures can be found in Appendix A.
- 21 -
-------
TASK 1 - LABORATORY INVESTIGATION
Outlet
Scrubbers^
Ultraviolet,
lamp
Air
intake
Mixing ^
chamber
,Aperature
slide
NO
std.
gas
Ozone
generator
Pressure
gauge
3-way
valve
VW
'Pressure
regulator
Capillary
Vent
Bubble
flowmeter
FIGURE 3-3
NO - N02 Calibration system
- 22 -
-------
The calibration of the non-dispersive infrared (NDIR) carbon monoxide
3
analyzer was accomplished with zero gas and 13.0 ppm (14,950 yg/m ) CO calibration
gas. Zero gas was introduced into the detector cell to establish the zero
baseline of the device. Calibration gas was then used to determine the span,
or chart displacement, of a known concentration of carbon monoxide. Finally,
the zero gas was re-introduced to ensure the baseline stability.
3.2.4 Sampling Locations
To determine the generation and behavior of the pollutants from the
gas appliances with and without the hoods in operation, we chose the four
sampling locations within the test structure as follows:
Station 1: Test enclosure air inlet
Station 2: Above the gas appliance - approximately 1.7 meters
above the floor
Station 3: Test enclosure air outlet directly downstream of the
sealed fan unit.
Station 4: Recirculating hood outlet or in outlet duct from vented
hood.
Station 1 pollutant measurements were used to establish the baseline,
or background, levels in the air entering the test structure during the
experiments. Initial comparisons of measured inlet and outlet air volumes
showed the presence of sufficient leakage, 10% to 50%, to disallow the conversion
of the inlet concentrations to a mass basis. The concentration of the air
entering the structure through all openings was assumed to have a pollutant
concentration as measured in the inlet duct.
Station 2 was placed in the breathing zone directly above the stove.
This location was chosen to provide data that would be representative of
- 23 -
-------
concentrations encountered by the person using the gas appliance and to
monitor the presence of steady-state concentrations within the enclosure.
Room outlet pollutant concentrations were measured at Station 3
in the test enclosure outlet duct. Air flow measurements taken at Station 3
were used with the Station 1 inlet pollutant concentrations to determine the
mass input rate of pollutants into the test structure. The pollutant
concentrations at this outlet were converted to a mass basis by the use of
these air flow data as well.
Station 4, depending upon the individual test, was placed in either
the recirculating hood outlet or in the outlet duct from the vented hood.
When neither hood was in use, this station remained inoperative.
Test personnel monitored pollutant concentrations at all four locations
throughout each test sequence. Our reported results were taken from
reproducible, steady-state conditions except when transient conditions were
under study. The steady-state condition was achieved when pollutant levels
at Station 2, above the gas appliance, stopped fluctuating. In most cases,
duplicate tests were run to verify the initial tests.
3.3 Test Plan
A comprehensive test plan was prepared to guide the measurement
personnel in performing the laboratory tests in rapid sequence. The plan
was designed to assess the emission quantities produced by gas stoves, space
heaters and the pollutant removal capability of vented and unvented hoods.
The tests designed for these objectives are discussed in the next three
sections.
- 24 -
-------
3.3.1 Gas^ Stoves
The generation and behavior of pollutants from gas stoves is a
function of many inter-related variables including burner and oven size
and design, pilot lights, air-fuel mixture, flame intensity, etc.. To have
a test plan of manageable size to give us meaningful results we divided
these effects into the following categories:
1. pilot lights
2. air-fuel mixtures
3. burner size
4. flame intensity
5. combinations of burner use
6. broiler
7. oven
8. utensils
Each of these variables was individually isolated for testing with
each of the two stoves and determined in the sequence listed above.
Pilot Lights- With most modern stoves having continuous rather than
manual pilot lights, we decided that this aspect of the stove's impact on indoor
air quality deserved investigation. It was relatively easy to seal each stove
in the test enclosure and monitor the pollutant emissions of the pilot lights.
Burner Air-Fuel Mixture- The first series of tests on each stove was
designed to give comparative data for each stove showing the effects of different
air-fuel mixtures on pollutant emissions. On the older stove with two sizes of
burners, we tested the larger one which was comparable to those on the newer stove.
A high flame intensity was used for these tests on one burner on each stove.
- 25 -
-------
Changes in the air-fuel mixture were made by adjusting the primary
air-shutter under each burner. Three air-shutter adjustments were tested:
maximum primary air, intermediate and minimum primary air. The intermediate
air-shutter setting was judged as the position which created the best
luminous blue flame, considered a; * nost efficient operating condition.
This setting was used for all the subsequent tests.
Burner Size- Since the newer stove had four equal size burners, this test
series was run on the older stove with 2 small and 2 large burners. Separate
tests were run with each size burner set at a high flame intensity. The data
were used to evaluate what effects of pollutant emissions could be attributed
to the different size burners.
Burner Flame Intensity- Two extremes of flame intensity, high and low,
were chosen for this test series on the newer stove. Each flame intensity was
tested separately to compare the effects of these two operating conditions on
pollutant generation.
Combination of Burner Use- This test series was designed to determine
the buildup of pollutant emissions with the successive ignition of each burner
at 15 minute intervals. Each stove was tested at low flame and at high flame
intensity. The newer stove had one burner with a temperature sensor that
shuts off the flame when the preset temperature is reached. This burner was
the last one ignited in the test sequence so that any possible disturbance in
pollutant emissions by the modulating flame could be avoided.
Broiler- The broiler in each stove was tested under two different
operating conditions, transient and steady-state. We monitored the pollutant
emissions during the transient phase as the broiler heated up to its thermostat
setting, 500°F. When the broiler reached this temperature, the steady-state
tests were run. These two operating conditions were re-tested with one burner
in operation at a high flame.
- 26 -
-------
Oven Our spring-summer phase of the Task 2 field measurements showed
the oven and broiler as significant sources of NO , NO and CO. As far as we
could tell, these emissions were greatest during the oven warm-up period.
To investigate these findings in a laboratory situation we tested each
stove under two conditions, transient and steady-state. The transient condi-
tion was represented by the oven's warming up to the thermostat setting, 475°F(245°C)
The steady-state tests were run after the oven reached and maintained the
preset temperature. This series of tests at the two operation conditions was
repeated with the addition of one burner set on high flame.
Utensils- We chose several representative types of utensils for
testing on one burner of each stove. Pollutant concentrations were determined
separately for aluminum, cast iron, stainless steel, and Pyrex utensils. The
flame settings, low and high, remained unchanged until the effect of each uten-
sil had been measured. Another test for comparative purposes was run at the
same flame setting with no utensil on the burner. This test with no utensil
was used as a baseline to compare the relative effects of each utensil. Water was
placed in each utensil and brought to a boil during each test.
3.3.2 Hoods
A comparison of the unvented and vented hoods was made from tests with
a combination of burners and the oven in use on the newer stove. These
tests were run to determine the respective pollutant removal efficiencies,
if any, for each hood. Tests were also run with the fan on the vented
hood operating at two different speeds to determine the effect of exhaust
rate on removal efficiencies.
3.3.3 Space Heater
The unvented space heater is a fairly uncomplicated appliance and in
contrast to the gas stoves there are few operating conditions that could be
- 27 -
-------
investigated. Our tests were conducted under two operating conditions,
transient and steady-state for a low and high heat input. Pollutant
emission levels were measured for each of these four conditions.
3.4 Calculations
The pollutant emissions from the gas appliances were determined from
comparisons of the data collected at each of the four sampling locations
within the test enclosure. The contribution of the gas appliance was
calculated as the difference between the mass emissions at the outlet,
Station 3, and the mass rate of pollutants entering the test enclosure. The
concentration of pollutants in the room inlet air was measured at Station 1
and the mass inlet rate was then calculated with air flow data from Station 3.
Using the Station 3 air flow data took into account any leakage that would
not be detected at the Station 1 room inlet.
For the tests with the vented hood in operation, the total air flow
and pollutant concentration were determined as the sum of the emissions
through the room outlet duct, Station 4 and the hood outlet duct, Station 3.
From this sum, the pollutant mass rate entering the test enclosure was sub-
tracted to obtain the mass emission rate of the gas stove.
Pollutant emission levels from the stove on a heat input basis were
calculated from the mass emission rates and gas usage data taken from an
integrating meter installed in the natural gas supply line.
The effect of various utensils was determined by a simple measurement
scheme utilizing the concentration of pollutants measured directly over the
stove adjusted for any change in the incoming room air pollutant concentrations.
Concentration measurements were judged more sensitive for measurement of small
differences which may not have to be uncovered using the above mass emission
calculation procedure.
- 28 -
-------
4.0 RESULTS AND DISCUSSION
The pollutant emission levels for the gas appliances were calculated
from the concentrations measured at Stations 1 and 3, the room inlet and outlet,
respectively. The difference between the inlet and outlet mass rates of
pollutant are attributable to the effect of the stove.
The emission results shown in Tables 4-1 to 4-6, with the exception
of Table 4-3, are presented on a heat input basis, micrograms per kilocalorie,
yg/Kcal and also on a per unit time basis, mg/Hr. Results on both bases are
shown to provide an emission factor independent of the amount of fuel used
and an emission rate for a particular set of conditions. Table 4-3 shows
the pollutant concentrations above the stove as a measure of the effect of
utensils on pollutant generation.
4.1 Gas Stoves
The gas stove provided the greatest variety of operating situations
that could affect the generation of pollutants. The effects of pilot lights,
burners, oven, broiler and utensils were evaluated. For the burners, additional
characteristics including air-fuel mixture, size, flame intensity, and number
in use were evaluated for their effect on pollutant emissions.
4.1.1 Pilot Lights
The results for the pilot light tests on the two stoves are presented
in Table 4-1. Some significant differences in pilot light pollutant emissions
levels are apparent in these data. Both of these appliances have three pilot
lights yet gas consumption for those in the older stove was 50% higher than
for the newer stove. Carbon monoxide emissions for the newer stove were
approximately twice as high as from the older one. Oxides of nitrogen emissions
were substantially lower from the pilot lights of the newer stove.
The pilot lights on newer gas stoves are designed to consume less gas
than those on older stoves. This design change is confirmed by our natural gas
input measurements taken during the pilot light tests.
- 29 -
-------
TABLE 4-1
POLLUTANT EMISSION LEVELS FOR THE PILOT LIGHTS AND
DIFFERENT BURNER OPERATING CONDITIONS
Test
1
2
3A
313
3C
4A
4B
4C
5
6
7A
7B
8A
8B
9A
9B
Operating Condition
Pilot Lights:
Air-Fuel Mixture:
Maximum Primary Air
Intermediate Primary
Air
Minimum Primary Air
Air-Fuel Mixture:
Maximum Primary Air
Intermediate Primary
Air
Minimum Primary Air
Burner Size:
Small
Large
Flame Intensity:
Low
High
Ignition Sequence:
Low Flame
1 Burner
2 Burners
3 Burners
4 Burners
Eigli Flame
1 Burner
2 Burners
3 Burners
4 Burners
Low Flame
1 Burner
2 Burners
3 Burners
4 Burners
High Flame
1 Burner
2 Burners
3 Burners
4 Burners
Stove
New
Old
New
New
Mew
Old
Old
Old
Old
New
New
New
Old
Old
Natural Gas
Input Rate
(Kr. ; x
100
150
3500
3500
3500
2700
2700
2800
2400
2700
1700
3500
1200
2400
3600
4800
3400
6800
10200
13600
500
1000
1500
2000
2260
4520
6780
9040
Pollutant Emission
Factors (ug/Kcal)
NO
4.65
45.3
78.6
117
119
98.7
99.7
93.8
85.9
92.6
140,
130
42.2
106
75.0
76.2
109
137
138
96.3
36.3
40.8
51.5
47.7
102
111
117
100
N02
18.6
54.6
120
71.7
112
55.9
55.4
54.1
53.1
51.8
76.0
79.0
59.2
67.7
66. 7
93.1
55.8
57.3
65.6
55.2
99.8
95.4
84.8
84.0
57.1
77. h
72.8
70.4
CO
842
419
461
794
419
416
413
354
376
382
346
510
280
221
291
486
832
405
315
274
1540
2130
1420
1430
554
672
475
461
Pollutant Emission Rates
(mg/Hr)
NO
0.5
6.8
275
410
417
266
269
263
206
250
238
455
51
254
270
366
371
932
1408
1310
18
41
77
95
231
502
793
904
N02
1.9
8.2
420
251
392
151
150
151
127
140
129
277
71
162
240
447
19C
390
669
751
50
95
127
168
129
351
494
636
CO
84.2
62.9
1614
2779
1467
1123
1115
991
902
1031
588
1785
336
530
1048
2333
2829
2754
3213
3726
770
2130
2130
2860
1252
3037
3230
4167
- 30 -
-------
Ambient background NO, NO , and CO levels in the test enclosure of 26,
50, and 2490pg/m , respectively, were comparable to those encountered in the
field sampling program during inactive periods, such as late night and early
morning. It is during this time period that measured pollutant levels reflect
only the pilot light emissions. The difference in pollutant emissions from the
pilot lights is undoubtedly due to a combination of factors including stove age,
condition, and design.
4.1.2 Burner Primary Air-to-Fuel Mixture Effects
One of the most fundamental factors of burner operation that can be
modified is the air-fuel mixture. Changing the air-fuel mixture by adjusting
the air shutter under the burner would expectedly alter the combustion charact-
eristics and subsequently affect pollutant generation. One burner on each stove
was used for this test series. The burner was set at high flame and its air
shutter was adjusted to three positions; full open, full closed, and intermediate.
The intermediate air shutter setting was judged as the position which created the
best luminous blue flame, considered as the most efficient operating condition.
At the intermediate air shutter setting the emission levels from the
newer stove were noticeably higher than those from the older unit as shown
in Table 4-1. Increasing the primary air to a maximum for the newer stove caused
a 33% and 42% reduction in NO and CO levels while NO levels increased by 67%.
Reducing the primary air in the burner of the older stove caused a slight decrease
in the pollutant emissions. The minimum air setting on the newer stove affected
NO emissions only slightly while the CO decreased and the N0? increased as
compared to the intermediate shutter setting values.
Generally, these data show that the emissions from the older stove
are less sensitive and more uniformly independent of the air-fuel mixture.
- 31 -
-------
Emissions from the newer stove are noticeably higher at the optimum air shutter
setting.
4.1.3 Burner Size Effects
Since the newer stove had four burners of equal size, we ran these
tests on the older stove only. The .^.^11 and large burners were tested separately
at high flame intensity. The pollutant emissions data presented in Table 4-1
show the burner size has little effect when compared on a heat input basis.
4.1.4 Burner Flame Intensity Effects
TRC investigated pollutant emissions at two flame intensities, high
and low, on one burner of the newer stove. The high flame had a heat input
more than twice that used for the lower flame. As shown in the results presented
in Table 4-1, emission factors for NO, N02> and CO during these two different
conditions of burner operation are closely correspondent. The greatest
difference in emissions is apparent for the carbon monoxide with the high
flame having a 50% higher CO emission factor than the low flame. Total emission
rates per unit time increase in proportion to the amount of fuel used.
4.1.5 Burner Ignition Sequence Effects
For this series of tests, each burner was ignited successively at
15-minute intervals. The build up of pollutant emission levels was monitored
for a 60-minute period, until 15 minutes after the fourth burner was ignited.
At each flame intensity, nitric oxide and N02 emission factors
were
relatively constant with a few exceptions for each stove, regardless of the
number of burners in use, when adjusted to a heat input basis.
Carbon monoxide emission factors seem to be affected the most by
increased number of burners in use. The burners of the older stove generated
more N02 and CO per unit of heat input than those of the newer one, especially
during the low flame tests. In these low flame tests, nitric oxide emission
- 32 -
-------
factors for the newer stove burners were noticeably higher than those from
the older stove. These differences are less apparent for the high flame
tests.
Pollutant emission quantities per unit time were less for the older stove
than the newer stove except for carbon monoxide, particularly when a low flame
was used. The difference in emission quantities between stoves was due to the
smaller fuel consumption rate of the older stove at a specified setting. In
spite of this smaller fuel consumption rate, the carbon monoxide emissions for
the older stove were greater than the newer stove.
4.1.6 Broiler and Oven
For the tests on each stove's broiler and oven, we chose two operating
conditions for investigation defined as transient and steady-state. The
transient condition included the period from oven or broiler ignition until
the temperature reached 475°F (245°C) for the oven and 500°F (260°C) for the
broiler. For the steady-state mode, we then operated the oven and broiler at
the above settings for a similar time period during which the oven or broiler
flame would cycle on and off to maintain the desired temperature. The thermostat
for the older stove did not work properly and consequently, the flame remained on
even after the desired temperature was reached.
The results for this test series are shown in Table 4-2. For both
stoves, pollutants are generated at a generally higher rate per amount of heat
input while operating in the transient condition as compared to steady-state.
The broilers of both stoves have comparable emission levels except the NO
from the newer broiler is 50% higher than the older one during a steady-state
operation. The newer oven generates more carbon monoxide but less oxides of
nitrogen than the older oven at steady* state.
- 33 -
-------
CO
w
o p
f^ H
CO
O
W
P=J
§H
H PH
W O
CO
H
rJ W
O rJ
PH M
O
PQ
PI
o
H
CO
CO M
W ~M
e
4J
cd *»
4-1 CD
3 cu
T-H 4-1
rH Cd
O PH
PH
O x-v
H rH
co cd
CO O
W ~M
_~1
4J N^
cd co
rH 4-1
rH O
O cd
PH PH
O
CJ
CM
O
0
O
o
CM
O
53
O
55
CO
Cd CU x-s
CJ 4-1 r(
cti ffi
rH Pi ^
Cd rH
M 4J Cd
3 3 CJ
4J p, [s/J
cd c ^
53 H
cu
j>
o
4J
CO
00 C
Pi 0
rl i-l
4-1 4-1
cd iH
CU PI
P. O
O U
4J
CO
01
H
m o
si" O
rH OO
- rH
CO CN
r^ co
rH 0
vo in
orx
*xf in
oo r~-.
VO rH
*
g£
« *
^O \O
,
CO TJ
pj cd
C 9 cu
CU M 4J
> H w
o
< M
"d" ^d"
rH rH
r^vo
rH VO
rH rH
VO rH
CO rH
rH rH
VO O
CO CN
o o
CTi CO
i in
rH
rH
ON CO
in t^
rH
~3"
P>» rH
m cy,
rH
O O
0 0
CO CM
CN CN
T3
rH
0
cu
4J
cd
4-1 4-1
C CO
CU 1
CO TJ
C cd
pi cd cu
CU V-l 4-1
>HW
< m
VO VD
rH rH
- 34 -
-------
Comparing the oven and broiler emissions with the burner emissions in
Table 4-1 shows that based upon equivalent heat input, the oven and broiler
generally produce less oxides of nitrogen and more carbon monoxide than the
burners. However, the quantity of pollutants per unit time is greater for
the oven and broiler than the burners because of the greater fuel consumption
of the former during normal operation.
4.1.7 Utensil Effects
Table 4-3 shows the results of our pollutant concentration measurements
with different utensils on one burner of the new stove under two flame inten-
sities, high and low. The cast iron and the stainless steel utensils show the
ability to reduce NO- to NO in the low flame test condition, although the relative
change is not significant. The most substantial utensil effect apparent is the
much higher CO concentrations for the aluminum pot test. Each utensil shows the
effect of decreasing NO- concentrations when compared to the test done without
utensils.
Behavior of each utensil in affecting pollutant concentrations during
the high flame tests was different from the low flame tests. Nitric oxide and
NO. concentrations were generally higher with a utensil on the burner than without
one. Except for the stainless steel utensil, carbon monoxide levels were lower
with the use of each utensil.
The magnitude of the observed effects of utensils upon pollutant concen-
trations , although measurable, does not appear substantial. No one utensil has
a substantial effect upon pollutant measurements.
4.2 Hoods
Table 4-4 shows the results of our tests on the vented hood's efficiency
in removing pollutants from the test enclosure. These data ghow that the vented
hood is moderately effective in removing pollutants from the room. The higher
- 35 -
-------
e
60
3.
CO
a
-H
HV-J
cd
4-1
C
cu
a
C
0
4-J
P
H
rH
O
O
U
CM
O
is
O
Hgr
1)
C
4-1
'CO
!
;
,"
t! C
0 O
H -H
I i .[ i
Cd vH
M 13
CU C
P. 0
O O
CO
CU
H
vD lO CO -^- to
O LO ^3" "-d" ^O
1-1
OO v£> CM VO CM
LO ^>o I""*** r^ oo
r- CM CM r-- r-~
CM m CO CM CM
0)
^
rH
CU
CU
4-J
CO
C cn
8 o co
Lf M CU
HH i~H
"f" C ?S
§ 4-> vH CU 0)
P CO Cd rl fi
r- Cd 4J >, 0
, 0
< u en & £*:
cu
CO
rH
J3
bO
H
ffi
<: PQ o o w
rH rH H H rH
G
cu
co
cd
cu
a
2
o
"O 4J
cu cu
H CU 4J
C 4-> OC
cu cd 0
4J H -H
cu >
o cu cd
> cu
CO O rH
Cd 4->
& CO T3
C cu cd
O J3
H 4-1 00
M C
cd CU -H
cu o cu
cu cd a
60 cu
rH
4J
O -H
O cc»
&. ifi 3
1C f^i
rH fn
H 4-!
a; C
C 0)
cu o
4J Pi
3 O
O
cx
U MH
O 4J
4-1 Cd
CJ 4-1
cu 3
MH rH
CU O
CX
cu
.d m
H o
§ .
H a)
4J H
cd 3
rH CO
3 O
CJ rH
rH O
rt C
U CU
- 36
-------
I W M
W ^ W
pq O O
< S H
H H co
13
o
0
JTj
1-4
x:
M
0
0)
O -H
3 o <*
0) -rl
PH 4H
W
o
CD
d
0) TJ
> o
o
,d a
4-1
H
13
01
4-1
d
0)
o
4J 0
o
4-1
rl
CO
r-H rH St
CM rH CT>
CO rH O
CTI CM >a-
rH CM H
CM rH O
1 1
CM
0 0 O
tt £5 O
O
o
~d~
V
0
CM
- 37 -
-------
fan speed, with its greater induced draft above the stove, will capture and
exhaust about 50% of the pollutants generated by the stove. With the fan shut
off , there is enough draft to allow measurable amounts of pollutants to ebcape
through the hood outlet duct.
Table 4-5 presents the result ~r tests to determine the ability of
the charcoal filter in the recirculating hood to remove gaseous pollutants.
Two separate tests were run, one with the ducted hood without a filter and one
with the recirculating hood with the charcoal filters. In both cases, the newer
stove was used. Comparison of the data from both tests shows in our judgment
no collection efficiency for the charcoal. While these is a difference of
about 10% in the NO and CO measurements between tests, we estimate this to be
measurement error. From comparison of other data taken during the test program,
the mass balance approach we have used to determine emissions has an accuracy
of +10% which is reasonable for the objectives of this task. A more precise
evaluation of a charcoal filter would have to be determined by a different
laboratory method which was beyond tha scope of this task.
4.3 Unvented Space Heater
Table 4-6 shows the results of our tests on the unvented space
heater. The uncomplicated nature of this appliance left us with relatively
fextf operating conditions to evaluate. We chose two operating conditions,
transient and steady-state for the emission measurement tests.
Our measurements show that the pollutant emissions are relatively higher
during steady-state operation of the space heater at the preset temperature.
This is opposite to our findings for the gas stove oven and broiler tests.
- 38 -
-------
m
i
w
T3 £0
O CU
O tH
a cj
§
S -H
H CJ
4-1 -H
cd m
3 W
CJ
J-l i-H
H cd
CJ >
cu o
P4 a
CU 00
rH E
4-1
O CO
O «rl
O CO
£ CO
W
4-> fd
TS-S
o o
.£! O
4-1 ri
H Cd
co cd
Cd P3 H
0 w^.
-H 3 rH
cd ex cd
rl (3 O
cd
cu
EC
CU
« 0)
O P.
o oo
§
H
4-1
cd
rl
-------
(3
O
H
CO !-i
CO PS
w a
4-1 »
pi to
Cd CU
O
PM
Cd
0 H
H cfl
co q
W N*!
rl ->»
0 00
W 3.
4-* «\
fj CO
cd n
4-> O
7 ^J
i-H 0
rH Cd
O F&H
PM
O
a
CM
O
£?5
O
^
o
u
CM
O
^
O
^
to
cd
o n
4-1 Bd
rH 3 ~^
td P4 rH
S-i d cd
3 H 0
td
tldition
o
u
00
H
4J
2
CU
Q^
0
4-1
CO
&
O 0
co r*"»
LO I^*
rH
oo o
rH CO
rH
00 ,
rH CO -XJ
ta Q cd
CO CU
& V-l 4-1
Q f-J y^
in vo
CM CM
00 00
r^> r^
00 O\
rH
m CM
CM r^
rH CM
vo r^
IT "
m oo
CO CTv
CO rH
rH CO
O 00
C^ CO
rH Si"
CM
st m
OO CO
H
O O
0 0
vO CM
vO ^O
0)
4J
cd
CU 4-J 4-1
0 (3 to
cd cu 1
H -H >,
FH tfl T)
ri cd
J3 S CU
tb M 4J
H H c/D
m
r^ co
CM CM
- 40 -
-------
We also see that the high flame operating condition as having greater emissions
than the low flame condition. In general, our tests show pollutant emissions
as somewhat lower than those from the gas stoves when adjusted to a heat
input basis. However, using the space heater continuously would add a consider-
able amount of pollutants to the indoor atmosphere when compared to the inter-
mittent operation of gas stoves.
- 41 -
-------
TASK 2
FIELD STUDIES
- 42 -
-------
1.0 INTRODUCTION
The purpose of this task is to determine the impact of gas stove emis-
sions and outdoor air quality on indoor air quality. The work performed in this
task consisted of a field measurement program at four private homes with gas
stoves in the Hartford, Connecticut area. The homes selected represented a
spectrum of conditions related to:
Home age, size, and configuration
Stove age and condition
Stove use
Home location in relation to outdoor sources.
The field sampling program was divided into two sampling periods, spring-
summer and fall-winter and carried out at three separate homes during each period.
Because of sparsity of stove use at one of the houses sampled in the
spring-summer sampling period, another house was selected and used as a replace-
ment for this house during the fall-winter sampling period. Thus, in all, four
different houses were investigated during this task. Nitric oxide (NO), nitrogen
dioxide (N0_), and carbon monoxide (CO) were monitored continuously at three loca-
tions within and at one location outside each house for about two weeks in each
sampling period.
The data were compiled as 2-hour and daily averages. Stove use data
recorded by the residents provided the basis for our evaluation of the impact
of gas stoves on indoor air quality.
- 43 -
-------
2.0 SUMMARY AND CONCLUSIONS
2.1 Summary
During the spring and early summer of 1973,, and again in the following
fall and winter, TRC conducted a measurement program in three private residences
to determine the effect of internal generation of pollutants from gas appliances
upon indoor air quality. A modern suburban home, an older urban home, and a
suburban two-story apartment each with a gas stove were selected for the program.
After the spring-summer sampling period, we decided to replace the older urban
home because of little stove use. Thus, for the fall-winter period, a replace-
ment home was selected. It was a 14-year old suburban, single-family home in a
development of similar homes.
Approximately two weeks of monitoring for nitrogen dioxide (N0_), nitric
oxide (NO) and carbon monoxide (CO) were conducted at each structure. Three
sampling sites inside each structure and one outside were used as data collec-
tion points.
In order to sample at all four locations simultaneously and yet conserve
equipment and manpower, TRC designed and built a measurement system that enabled
the use of a single analyzer for NO- and NO and a second analyzer for CO. An
electronic timer, solenoid valves and continuously purged sampling lines were
used to permit the analysis of sample streams from each location in rapid sequence.
During the spring-summer sampling period the four sampling locations
for each house were: kitchen (over the stove, except as noted below), living
room, bedroom and outside. At the request of the Project Officer, sampling
during the fall-winter period was modified somewhat. A second sampling
position was located in the kitchen but displaced somewhat from the stove.
The purpose of this sampling point was to provide data which would be more
representative of the generalized kitchen atmopshere than the sampling point
- 44 -
-------
immediately adjacent to the stove. The third sampling point was placed in
the living room during the first week and in the bedroom during the second
week of the 2-week sampling period.
At House No. 1, during the spring-summer sampling period, we initially
encountered a number of off-scale readings and subsequently moved the kitchen
sampling location about 1 meter from the stove, over the sink for the rest of
this period.
All monitoring equipment was placed inside the structure sampled and
serviced usually every other day by a TRC staff member.
All field data were recorded on strip charts which were examined and
verified before reduction to five-minute average values using a semi-automatic
chart reading instrument. The five-minute data were then keypunched and
entered into TRC's computer to facilitate data analysis.
A summary of the data for this task is presented in Table 2-1. The
data show that there are significant differences in the indoor patterns of
pollutants within each of the houses which are undoubtedly a function of house
design, stove use patterns, outdoor concentrations and other factors. How-
ever, two points are clear: (1) Except for CO in House No. 2, the concen-
trations of the pollutants measured are higher inside than outside and (2)
kitchen concentrations are always higher than those in other parts of the
house.
Indoor concentrations of NCL in the kitchen at most of the houses are
at levels which would exceed the annual average air quality standard of
3
100 yg/m if projected over one year. In several instances, a concentration
3
of 100 yg/m is approached or exceeded throughout the house. Indoor CO
concentrations during the winter at House No. 3 and No. 4 approached the 8-hour
3
average air quality standard of 10,000 yg/m .
- 45 -
-------
CM
W
io
cn
>, to
tO 4J
Q to
o
O T3
H rH ,_|
(U tO vj.
n p>
53 o
a)
> 03 .-^
O 3 CO E>>
4J rH M «)
co |ii cu a
c-^
d § l-|
4-1 > M g
00
EH s^
^
"M
a
^
c
o
H
JJ
cd
u
o
^
s
tO
H
4-1
tfl
c
o
H
4-1
«
!H
ncent
o
CJ
01
60
CO
n
QJ
3
01
t3
H
tn
4-1
3
O
0
H O
iJ cxj
CM
d
C1J
X P
O o <1)
4-1 V4 P>
H I4H O
^ 4J
1 g CO
< H
rH
C1J
e >
OJ o
-C 4-1
CJ tO
4J
H V4
^ Q)
1 >
-1 O
4-1
9
4-1
3
i-H
rH
o
P-.
60
C T3
H 0
rH -rl
«X »J
H Q)
(0 PH
to
0)
3 o
Sz
vD VO CTi
O O CO
CM CM CTi
CM CM rH
~f VD O
-* CM CO
-*
CO
CM m o
m vo i
rH
vf
rH -J- O
vD vO 1-^
o
a-
O CM O
O O CT\
rH rH <"
J
o o- o
rH cn CP.
rH rH t^
X
rH 4-1
rH C T3
CO -H C
fn & CN
in in cn
cn cn cn
^- 0 M
c cu
H E
1-1 a
a 9
to w
cn
rH rH VO
O O £>
CM CM VD
in o o
cn o- oo
cn
cn
l l 1
l l 1
l 1 i
1 l 1
CO CM O
CM -d- r~
O
U">
f» m o
vf CM
-j-
vO
tn rH O
Ul rH CM
rH OO
r^
CN
o o o
Z S3 u
MH
I
^1 CO
I V 33
rH 4-1
rH C 4J
CO -H tn
PH & rH
cn cn co
j -a- m
I-- r~s rH
rH
CN O O
cn CM o
in
CM
O
CM
O O O
S3 S3 U
MH
1
M CO
i a) pa
rH 4-1
rH cd -a
CO -rl C
fH tS CN
r*« r^ vo
CT> OS rH
cn cn o
rH rH CM
cr> ^ o
tn rH rH
^t
CM
1 ! !
i i i
i i i
rH VO O
^ in o>
H rH
CO
o as o
CM CM O
rH CM O
OS
cn m o
rH O f^
CM cn o
OS
CM
o o o
S3 Z U
l-l
i cu
rH 4J
d c
cd -H
PH S
-3-
o
0)
rH
o.
6
CO
CO
c
c
CO
CO
QJ
CO
a)
J2
4-1
60
C
H a)
M |
3 -a
73 CO
rH
Qi -H
cn co
3 >
O CO
J=
01
JS l-i
CJ QJ
CO 5
O
CO
>-i cu
0 3
co
CO >
a)
60 (1)
CO 60
l-i CO
OJ M
> ID
CO >
CO
X
rH ^J
H 3
CO O
T3 J3
T3 O
H IS
r-t 4-1
tfl
> CM
rH
rH .C
CO O
tH
C J2
o 3
XI P
01 O
CO MH
CO
.a cn
X
0) to
^i T3
CO
r.
co
4-1 O
CO
Q -rl
.
cu
tn
3
o
J3
cn
H
.C
4J
M
0
MH
a
o
H
H
cu
(^4
t-t
01
4-1
C
H
?
1
rH
rH
CO
MH
MH
O
rH
CO
.C
a
c
0
CJ
01
CO
p
o
MH
0)
rH
"CO
rH
H
OJ
^
CO
4J
O
C
to
4J
CO
T3
0)
in
3
0)
>
o
4-)
cn
- 46 -
-------
Using a study of brief records from the continuous analyzers together
with stove use data showed clearly the response of indoor air quality throughout
the house to stove use. A statistical analysis of the 5-minute air quality data
showed the frequency of occurrence of various values for each sampling location.
In most cases, the relative positions of the cummulative frequency distribution
curves could be explained in terms of season, stove operation, and the behavior
of the pollutant in question.
A diffusion experiment conducted at House No.2 showed the decay patterns
of NO , NO and CO. NO was found to decay much more rapidly than the other
pollutants, and several possible theories were postulated.
The study showed that the impact of continuously burning pilot lights on
several of the stoves contributed air contaminants to the indoor atmosphere.
2.2 Conclusions
Based upon the findings of this task effort we draw the following conclu-
sions :
1. Stove use and outdoor air quality both influence indoor air quality.
This joint influence is a function of house permeability as deter-
mined by season. No evidence could be found that stove and house
aSe Per se influenced indoor air quality.
2. The patterns of indoor air quality are influenced by interior design
features.
3. The half life of CO, an extremely unreactive gas, was found to be
2.1 hours in House No.2 during an unoccupied period. The half life
for NO was 1.8 hours indicating its relatively high stability in the
indoor atmosphere. On the other hand, NO had a half life of 0.6 hours
- 47 -
-------
indicating that in addition to dispersion and dilution, NCL
disappears through reaction, absorption, and/or adsorption.
Ihis effect was noted in a qualitative way in several of the other
houses, especially House No. 4 in the winter.
4. Stove pilot lights were ^ocuid to be a significant source of
N0«, especially at House No. 3.
5. If one can assume that an outdoor air quality standard can be
applied indoors, the data show that the air quality standard
for CO (8-hour average) can be exceeded.
6. Average kitchen N0_ concentrations for most sampling periods
were two to four times the outdoor NO- concentrations.
- 48 -
-------
3.0 PROCEDURES
3.1 Structure Selection
The field measurement program was designed specifically to evaluate the
effect of gas cooking appliances on indoor pollutant levels. While gas
stoves are certainly not the only source of indoor pollutants, they are a
readily identifiable source about which little is known. The major
pollutants of interest that are emitted from gas appliances are nitrogen
dioxide (NO..), nitric oxide (NO), and carbon monoxide (CO). Four structures,
a modern suburban house, a suburban 2-story apartment, an older, urban
single-family house and a medium size and age, suburban, single-family house
were selected for the measurement program. Table 3-1 lists the characteristics
of the four structures.
These residences represent the wide differences in land use, house type
and layout, gas applicance age and life styles which are desirable in an
exploratory study such as this.
We chose House No. 1 as representative of a large, modern split-level
2
house with approximately 2000 ft of floor area. Figure 3-1 is a schematic diagram
of this house and Figure 3-2 is a photograph of the house. House No. 1 is in a
residential development of similar homes in Rocky Hill, Connecticut, and is
located about 2400 feet west of Interstate 91 which is a major north-south highway
that follows the Connecticut River Valley. This eight-year old house consists of four
half-levels each spaced approximately 3 or 4 steps above the other in a split-level
arrangement. The kitchen is large and open and directly connected to the dining,
living and family rooms. The stove, which is the same age as the house, is located
on an exterior wall near a window and has a recirculating type exhaust hood above
the surface burners. A family of four occupies the house. The children are
teenagers and the housewife does not have an outside job.
- 49 -
-------
CO
w
C/)
H
Pi
o
o
W
r-}
CO
U
H
Pi
W
H
-i 4-1
CU
rH C CO
H 0) 3
i 0*^
CO
» cu o
>> 43
M O CO
O 4J Cfl
4-1 -rl 0)
CO AJ r4
cfl
cu "
rH 0) i-l
00 rH 01
rj £>., t~{
H 4J 4-1
CO CO O
C
4-1 CU
C 43
cu o
4-1 -rl
M 4d
cO
f^j rQ
crt » QJ
rH 4-1
>> rH cfl
H rt H
0 B -H
4-1 CO -U
co C
J 43 CU
O 4-1 >
> -H (3
EH > 3
a
g CU
3 rH 43
H >-,rH CJ
13 rH 0) 4J
CU rH £ -H
£3 tfl r^
}-l 13
" 4-1 G 13
r^ C Cfl CU
rl CU W
O O 13 tfl
4J 0) rH
CO ~ 4J -rl
1 0) Cfl 4-1
O N O C
JS -H O CU
H CO rH >
cu oi
00 13 4J
M CU cfl
CO 4J rH
rH Cfl -H
O 4-1
» O (3
rH rH 0)
Split-leve
centrally
and well v
kitchen
0)
P-I
^-»
H
CN
4J
P^
0
o
rH
CN
p4
O
o
o
rH
CN
4J
PH
O
O
m
rH
CN
4-1
O
O
O
CN
cu
N
H
C/3
0)
M
cO
CU
^H
i-H
CO
M
1
CN
CO
H
cO
CU
o
CO
M
at
0)
JH
oo
*
cu
op
<
)_l
tfl
cu
C
IJ
pj
CU
a
O *^3
rH Cfl
cu o
> rl
cu
iH
C tfl
to s
43
3 "cfl
W rH
s^
4J
H
3
g
B
O
O
r*
cd
Q
tj
43
3
rH
tfl
H
4J
f3 rH
CU CO
T) CJ
rl O
CO H
0)
M (3
O >
rt ^j
tfl CO CU
43 CU 4J
l=> CO CO
4-1 i
C rl
CU 0)
E 4J
O, C
O -H
rH
> O cfl
cu vt s
T3 MH 43
01
(3 CU -H
cfl rH JS
43 -H
r4 £ CU
34-1
42 CN Cfl
3 "-. 4J
CO rH CO
f3
O
H
4-1
tO
CJ
O
rJ
4-1
CO
CO
00
H
4-1
cO
OJ
43
*"O
f3
0
cu
M
13
rH
H
o
o
4?
Is
cfl
CO
4J
rH
3
O
4J
4-1
o co
CO tV
co
cu
CJ
C
Cfl
H
rH
&
a
CO
cfl
0
'T3
CO
O
HH
O C
S cu
4-1 rl
T3
13 rH
C -H
CO 43
CJ
CO
4-1 i-H
rH O
3 0
*"O . ^*1
CO 0
CO
O CU
H a
4_l
H
T3
cO
cu
rH
a
H
C/3
»>
w §
CO H
.J
Two adults
teenage ch:
CO
4-1
t3
CO
(X
CJ
CJ
O
CO
-------
GARAGE
T
FAMILY
ROOM
BEDROOM
BEDROOM
.Stove
KITCHEN
DINING
ROOM
LIVING ROOM
FIRST FLOOR
I5ATHROOM
BEDROOM
Sampling Locations
o
BEDROOM
LEGEND:
Spring-Summer
Fall-Winter
I
|
UPPER LEVELS
FIGURE 3-1
Plan Layout of House No. i
-51-
-------
o
la
D
0)
o
ifi
14-1
o
I
g
B
M
Pn
- 52 -
-------
House No. 2, shown as a schematic in Figure 3-3 is an older home with an
equally old stove. This house, a photograph of which is shown in Figure 3-4, is
2
a seven-room, 2-story single family dwelling of about 1500 ft of floor area.
The neighborhood is an area of similar aged houses located in the south-end of
Hartford. Campfield Avenue, an artery for local traffic in that area, runs in
front of the house. Living areas of the house are located on the first floor
and bedrooms upstairs. The stove is located next to an interior wall and there
is no exhaust hood. The oven exhaust is vented to the outside. The only
occupant is a young bachelor. This house was not used for the fall sampling
period because of the sparse stove use during the spring-summer period.
The third dwelling used for the Task 2 field measurement program, is
shown schematically in Figure 3-5. House No. 3 is a two-floor, 4-room apartment
with the kitchen and living area on the first floor and 2 bedrooms on the second
floor. A photograph of this home is shown as Figure 3-6. This dwelling is part
of a garden apartment complex in the town of Newington, Connecticut. This complex
is located approximately 500 feet north and west of local main roads. Although
the area surrounding the complex is commercial and residential, large tracts
of undeveloped land lie to the north and to the west of this apartment.
On the first floor there are no openings to the outside except the
front door and a glass sliding door at the opposite end of the living area.
Typical of many modern apartments, the kitchen is only a small
workspace with no windows or other outside ventilation. There is a recirculating
type hood over the stove. The housewife and two small children are normally
home during the day.
The fourth dwelling used for the Task 2 field measurement program,
House No. 4, replaced House No. 2 for the fall sampling period. A plan
-------
r i
Living Room
Stove
Kitchen
Dining Room
I J
I
FIRST FLOOR
Porch
LEGEND:
Sampling
A aampii
Locati
Locations
A
Bedroom
Bathroom
UPPER LEVEL
Bedroom
Bedroom
A
FIGURE 3-3
Plan Layout of House No. 2
-------
csl
0)
CO
O
a
o
sf
CO
- 55 -
-------
©
A
A©
©
Living Room
L
1A
s«x
Kitchen
FIRST LEVEL
Bath
room
J
LEGEND:
Sampling Locations
/ \ Spring-Suromei
o
Fall-Winter
SECOND LEVEL
Bedroom
Bathroom
-H I
Bedroom
f
FIGURE 3-5
Plan Layout of House No. 3
- 56 -
-------
If
- 57 -
-------
layout of this house is presented in Figure 3-7. This house is a single floor
ranch-style home enclosing approximately 1500 square feet. A photograph of
this home is shown as Figure 3-8. Located in Enfield, Connecticut, this house
is part of a large development of similar dwellings built in 1959. It is located
approximately 1000 feet from a local main thoroughfare, Elm Street. The area
surrounding this house is zoned residential and commercial. Several large
shopping centers lie to the south of this house, on the opposite side of Elm
Street.
The kitchen in this house opens directly into the dining area and
living room and the stove is not vented to the outside. The occupants of this
dwelling are two adults, one teenager and one young adult.
3.2 Measurement System
The objective of the field measurement program dictated that pollutant
concentrations be determined at several points within the structure being
sampled. A simultaneous measurement of the ambient outdoor concentration of
each pollutant measured is also desirable to act «s a reference and to gauge
the possible influence of outdoor concentration on the levels measured
indoors. Locating individual monitors at each sampling point would represent
a substantial equipment investment and would result in multiple servicing and
space requirements,not to mention data reduction problems, and lack of
confidence in the comparability of data from point to point.
In order to measure pollutant concentrations at multiple locations and
yet conserve the amount of instrumentation and manpower required to obtain
this data, TRC designed and built a unique measurement system as shown in
Figure 3-9. Four sampling locations as described in Section 3.4 were chosen
- 58 -
-------
Bedroom
Bedroom
Bedroom
Living Room
Bathroom
-f _ I-
LEGEND:
o
Kitchen
Dining Room r Stove
VIA ) \ 1
SAMPLING LOCATIONS
FIGURE 3-7
Plan Layout of House No. 4
- 59 -
-------
- 60 -
-------
+->
c
cu
>
c
o
03
S- E
_a cu
r 10
O 03 >>
C_> 0 >
S-
"O C
r- l_ o Q.
Sw 03 O
4J .C CU i
co o i-
1
1
1
1
1
itertech
jn-dispersive
ifrared
) Analyzer
I-H "Z. i C_5
1
. H--
1
J
'
^
Electronic
sequencer
/""^
^-
i
NO/ NO 2
calibration
system
-o c
Q.4J J- CU
i- 03 O
+J jC CU CM
CO O S-
I
1
1
1
1
C S-
cu cu
O N
on >,
QJ i
C 03
r- C
E <:
X i X
r- T- O
c cu ~-~
CQ CJ) "Z.
1
"3
to C
!- 03
10 -4-> O
03 -r-
O) S- S-
i JD +->
Q.T- O
E O)
03 03 r
CO CJ UJ
00
UJ
C
CD
CU
3
to
03
CU
T3
C
03
01
Q.
I
O
O
c
03
CNJ
O
- 61 -
-------
for sampling, three indoors and one oiitside. The major components of the
system are four continuously purged sampling lines with an integrating chamber,
solenoid valves, Bendix chemiluminescent NO/NO analyzer, Intertech Non-
Dispersive Infrared Carbon Monoxide Analyzer, carbon monoxide and NO/NO
Calibration Systems, strip chart recorders and electronic sequencer. The
system design acknowledged the need for:
(1) Continuous, uninterrupted operation with only periodic service
(2) Frequent automatic and manual calibration checks
(3) Ability to be readily moved from one location to another
(4) Small space requirement within the sampled structure.
As shown schematically in Figure 3-9 the sample stream from each
of the four locations is piped to a central location through 15 meters of
4.8 millimeter I.D. Teflon tubing at a rate of approximately 9.5 LPM. This
Ls equivalent to a retention time of approximately 2 seconds. Each sample
stream is then drawn through an individual 500 ml glass integrating chamber,
through a diaphram pump and then vented. This arrangement provides continu-
ous purging of the sampling lines.
From the integrating chamber two small streams are drawn, one to
the Bendix Chemiluminescent NO/NO analyzer and the other to the Intertech
NDIR CO analyzer. Solenoid valves (normally closed) on each sample line are
energized by the electronic sequencer at five-minute intervals with each
station having its sample being drawn to the detectors once every twenty
minutes. The two solenoid valves that allow samples to be drawn to the CO
analyzer and the NO/NO detector from the integration chamber are kept in
phase so that the sample stream from each station is being analyzed simultaneously
for CO and N0/N0~. A two-pen recorder was used for the NO and NO output of
the chemiluminescent analyzer and a separate single pen unit for recording the
CO output.
- 62 -
-------
An additional function of the electronic sequencer was to mark the
beginning of each 20-minute sampling cycle. This was accomplished by creating
a vertical slash on each strip chart immediately before the analysis of the
Station 1 sample stream for the three pollutants of interest. A sample of
an NO/NO trace is shown in Figure 3-10.
£~
3.3 Calibration Procedures
Calibration of the Bendix Chemiluminescent NO/NCL analyzer was
accomplished with a dynamic dilution module. This module was provided by
the Environmental Protection Agency and is described schematically in
Figure 3-11. A wide range of concentrations of NO and N02 can be generated
by this unit for calibrating the NO/NO analyzer. Bottled NO calibration gas
with a guaranteed and EPA verified concentration of 95.1 ppm and purified room
air are used to produce the various nitric oxide concentrations. Nitrogen
dioxide can be produced in different concentrations by the use of the ozone
generator that is part of the dilution module.
The procedures used to calibrate the Bendix Chemiluminescent NO/
NO- Analyzer were provided by the EPA. A copy of the procedures can be
found in Appendix A.
The calibration of the non-dispersive infrared (NDIR) carbon monoxide
analyzer was accomplished with zero gas and 13.0 ppm CO calibration gas.
Zero gas was introduced into the detector cell to establish the zero baseline
of the device. Calibration gas was then used to determine the span, or chart
displacement, of the known concentration of carbon monoxide. Finally, the
zero gas was re-introduced to ensure the baseline stability. The electronic
sequencer automatically charged zero gas to the NDIR CO analyzer once every
twenty-four hours as another check for baseline stability between manual
calibrations.
- 63 -
-------
) J ]
I NO :' 3627 yg/m
I £ \ ,
FIGURE 3-10
Sample NO/NO Trace
- 64 -
-------
TASK 1 - LABORATORY INVESTIGATION
Scrubbers*^
Ultraviolet,.
lamp
Air
intake
NO
std.
gas
Pump
Outlet
Mixing -<
chamber
Vent
Aperature
slide
CN
Ozone
generator
Pressure
gauge
3-way
valve
VW
'Pressure
regulator
Capillary
Bubble
flowmeter
FIGURE 3-11
NO - N02 Calibration System
- 65 -
-------
3.4 Field Operations
The sampling equipment and auxiliary calibration devices were installed
in an unobtrusive location in each house that would not result in interference
with the residents' activities. Teflon sample lines were run from the
equipment to four sampling locations:
Designation Spring-Summer Fall-Winter
Station #1 Kitchen-Over Stove Kitchen-Over Stove
(except Home No.l)
Station #1A Kitchen-Approx. 1 meter from Stove
Station #2 Living Room Living Room
Station #3 Bedroom Bedroom
Station #4 Outside of Structure Outside of Structure
The sample intake for each station was placed in the breathing zone,
between 1.4 and 1.8 meters above the floor. The sample intake for Station #1,
in the kithcen, was placed directly over the stove except at House No. 1 during
the spring-summer sampling period. For this sampling period at House No. 1,
the sample intake was placed approximately 1 meter from the stove. This
location corresponds to Station 1A for the fall-winter sampling period when
it was possible to locate Station 1 directly above the stove. The data from
Station 1 was used to determine the concentrations of N0_, NO and CO at the
source, the stove. Comparison of these data with those obtained from the other
stations shows the behavior of the pollutants as they diffuse through the
structure and the effect of the source on the indoor air quality within the
structure.
Station 1A (placed approximately 1 meter from the stove) was used in the fall-
winter sampling period to determine N0?, NO and CO concentrations within the
- 66 -
-------
kitchen, other than directly above the stove. These data were intended to show
the behavior of the pollutants in the vicinity of the stove as they diffuse
from the source throughout the structure.
Station 2 was placed in the living room away from windows, doors and
air conditioners. Station 2 was used (alternately with Station 3) for
about half of the fall-winter sampling period at each house. Comparison of the
»
data obtained from Stations 1, 1A and 2 was intended to show the characteristic
changes in indoor air quality in an area on the same level as the source,
at Station 1.
Station 3 was placed in an upper level bedroom to provide data to
determine the relationship between concentrations in the kitchen and more
remote areas within the structure, particularly where people spend 8 hours
sleeping. As noted earlier, this sampling location was alternated with
Station 2 during the fall-winter sampling period at each house with the
exception of House No. 4. At this house, it was not possible to sample at
Station 3 because of the inconvenience it would have caused the residents.
Station 4 was placed outside the structure to provide reference
measurements for the pollutants measured indoors. Measurement of the outdoor
pollutant concentrations was necessary to determine if they control the indoor
concentration by infiltration. The net contribution of the stove to indoor
air quality was determined by comparing the outdoor with the indoor concentrations.
After installation of the equipment and deployment of the sampling
lines, TRC personnel verified their correct function in the operating mode.
Calibration procedures as mentioned in Section 3.3 were used after a warm-up
period of several hours and sampling of the four stations was started.
- 67 -
-------
A form was developed for use by the housewife or other person using
the kitchen to record pertinent data on stove use. The total number of ninutes
of oven and burner use were tabulated for each day of sampling. These forms
provided a record of the level of use and the respective time of use of the
stove that was useful for interpretation of the sampling data. A copy of
this form is shown as Figure 3-12.
TRC personnel serviced the equipment at least every other day. The
service included calibration and functional checks of the sampling equipment.
Adjustments were made as necessary. The residents assisted by frequently
recording time and events directly on the strip charts and alerting TRC to
any possible malfunction that occurred.
In general, the instrumentation in the measurement system performed
well and dependably for the duration of both portions of Task 2, except
for several problems at House No. 3. The Bendix Chemiluminescent NO/NO
x
Analyzer held its calibration and baseline very well and in retrospect we
probably could have reduced the frequency of calibration checks.
Substantial data were lost at House No. 3 during the spring-summer
sampling period by a. combination of sticking solenoid valves for Stations
1 and 2.
Shortly after this problem was rectified, a solenoid valve in the
Bendix Chemiluminescent NO/NO Analyzer malfunctioned, thus preventing
X
separate determinations for NO and NO . We replaced this instrument with a
back-up one and the amount of lost data was minimized.
- 68 -
-------
HOME OF
DATE
STOVE USAGE FORM
PROJECT 32247 - A STUDY OF INDOOR AIR QUALITY
(1) TIME ON
(2) TIME OFF
(3) SETTING
MEAL: B
(4) TYPE OF FOOD PREPARED
OTHER
(1) TIME ON _
(2) TIME OFF
(3) SETTING
(4) TYPE OF FOOD PREPARED
(5) DESCRIBE COOKING UTENSIL USED
(5) DESCRIBE COOKING UTENSIL USED
(1) TIME ON
(2) TIME OFF
(3) SETTING
(4) TYPE OF FOOD PREPARED
(5) DESCRIBE COOKING UTENSIL USED
(1) TIME ON _
(2) TIME OFF
(3) SETTING
(4) TYPE OF FOOD PREPARED
(5) DESCRIBE COOKING UTENSIL USED
OVEN
BROIL
TIME ON
I
TIME OFF
TEMP. , °F
TYPE OF FOOD
PREPARED
DESCRIBE COOKING
UTENSIL USED
TEST CONDITIONS
(1) EXHAUST FAN: ON
OFF
(2) KITCHEN WINDOW: OPEN
COMMENTS:
CLOSED
(3) AIR CONDITIONING:
(4) WHAT DOORS OPEN?
ON
OFF
- 69 -
-------
Zero drift in the CO detector was a recurring problem during the
spring-summer sampling period. In most cases, we were able to interpret the
data adequately but in a few cases the baseline drift was so extreme that some
data were lost. TRC personnel performed an extensive overhaul of the CO
analyzer prior to the outset of the f " "* -"'nter sampling period and the CO
zero drift problem was solved.
The schedule of monitoring periods was as shown below:
Spring-Summer Fall-Winter
House No. 1 May 9, 1973 to May 25, 1973 Nov. 6, 1973 to Nov. 21, 1973
House No. 2 May 29, 1973 to June 10, 1973
House No. 3 June 11, 1973 to July 13, 1973 Nov. 28, 1973 to Dec. 28, 1973
House No. 4 Jan. 29, 1974 to Feb. 15, 1974
3.5 Data Summarization
The considerable amount of data accumulated from the field effort in
Task 2 precluded manual examination of the data in its entirety. Semi-automatic
analog to digital conversion equipment and computer programs were used to reduce
the labor in the data evaluation process.
Each strip chart was examined and valid data periods were identified for
further reduction. Those sections of the charts that showed questionable data were
eliminated from evaluation. The data from the NO/NO charts were converted to
digital form and thence to punch cards using a Gerber analog-to-digital converter.
The data from the CO charts were hand reduced, then transferred to coding forms
for subsequent keypunching. Random samples of the punch cards were cross-checked
with the original charts. Care was taken to insure that the data matched and
- 70 -
-------
keypunch errors were eliminated. Initial computer printouts included both
concentration values and net chart division displacement to facilitate further
checking of the results. The results were then put on punch cards or magnetic
tape for additional analysis.
To develop diurnal trends in air quality at the three indoor and one
outdoor sampling locations, we accumulated five-minute bits into two-hour
averages. Occasionally, less than 6 (the maximum possible number) five-minute
bits of data were available for each two-hour period since some data were lost
during instrument servicing periods and during periods of instrument malfunctions.
In a few isolated cases, there were as few as one or two five-minute bits for
a given two-hour period. Nevertheless, we defined the two-hour average as the
average of all five-minute bits in that period even though less than 6 bits
might be available The data in Appendix B show the two-hour averages for each
location and the number of five-minute bits used for calculation of the averages.
In calculating the daily averages, we gave equal weight to all two-hour
averages even though some were based on less than 6 bits of data. However, a
daily average was not computed for any day which had one or more two-hour
average values missing for all four stations. Note in Appendix B that daily
averages are shown only for those days in which a full compliment of two-hour
averages were available.
In addition to the above summaries, we developed a number of summaries
of the diurnal pattern of N0? for several of the house-pollutant-season
combinations in terms of a "composite day". Here we determined the average
concentration for each two-hour time interval for all those days for which 12
valid two-hour average values were available.
- 71 -
-------
Frequency distributions for NO, NO- and CO data were compiled from all
the five-minute data at each location for each house in order to assess the
frequency of exposure to the range of concentrations measured during the field
program. In constructing these distribution curves, we used all five-minute
data and assumed that any loss of da 1 -"ing a sampling period was more or
less randomly distributed by time of day. While these frequency distributions
may not be statistically valid because of the loss of a certain amount of
data, we believe they provide useful information. However, we did not include
N0~ and NO data from House No. 3 because we judged the loss of data for these
pollutants at this house to be excessive.
In addition to the above data presentations, we plotted graphs showing
the time history of N0~, NO and CO for brief episodes in order to show the
direct dependence of indoor concentrations on stove usage.
- 72 -
-------
4.0 RESULTS AND DISCUSSION
The sampling data were organized and evaluated in terms of several
different time averaging periods. The shortest time averaging period is the
five-minute average concentration of each pollutant at each of the four
sampling locations. For each sampling location there are three five-minute
average readings in each hour. We chose to compile these five-minute readings
into two-hour and daily averages in order to view the diurnal variation of
pollutant concentrations as well as to compare the measured values on a daily
basis.
The procedure for summarizing data was presented in Section 3.5. The
air quality data for each house are presented in Appendix B and are organized
as follows:
Appendix House No. Season
B-l 1 Spring-Summer
B-2 1 Fall-Winter
B-3 2 Spring-Summer
B-4 3 Spring-Summer
B-5 3 Fall-Winter
B-6 4 Fall-Winter
In each Appendix, the tables are organized for each of the pollutant
gases in the order of NO , NO, and CO.
In some instances, we have prepared graphs of the five-minute data
which illustrate short term episodes of interest. Finally, to provide a
more meaningful indication of the pollutant concentrations to which the home
occupants are exposed than would be shown by a hourly or daily average
concentrations, a frequency distribution of all the five-minute average data
for each pollutant was constructed.
4.1 House No. 1 - Suburban Split Level Home
During the spring-summer sampling period, the four sampling points
were located as follows:
1. Kitchen (approximately 1 Meter from stove)
2. Living Room
- 73 -
-------
3. Upstair-1 Bedroom
4. Outside
This was the first house we sampled in this program and early indica-
tions were that a kitchen sampling location directly above the stove would
produce peak values which would exceed the capability of the nitrogen oxides
sensing instrument. Thus, the sampling point was moved approximately 1 meter
away from the stove for the two-week spring-summer sampling period. At the
other three houses we found we were able to use a sampling point above the stove.
Between the spring-summer and fall-winter sampling period, the EPA
Project Officer requested that data be collected at somewhat different locations
during the fall period to provide additional data on diffusion of stove contami-
nants through the house. Thus , the sampling in the fall-winter period was some-
what different for each half of the two-week period as shown below:
FIRST HALF SECOND HALF
1. Kitchen - above stove 1. Kitchen - above stove
1A. Kitchen - approximately 1A. Kitchen - approximately
1 meter from stove 1 meter from stove
2. Living Room 3. Bedroom
4. Outside 4. Outside
4.1.1 Nitrogen Dioxide (N0?)
Tables 4-1 and 4-2 present data for House No. 1 during the spring-summer
and the fall-winter sampling periods respectively. Even though stove use data
for the second half of the fall sampling period were lost, the indoor/outdoor air
quality data for this portion of the sampling period are reported. It is apparent
in a general way from Tables 4-1 and 4-2 that N0« concentrations in this house are
strongly influenced by stove use. During the spring-summer sampling the periods
3
when daily average NO- concentrations in the kitchen were near or exceeded 100 pg/m
coincided with days of significant stove use.
- 74 -
-------
TABLE 4-1
SPRING (1973) SAMPLING AT HOUSE NO. 1
DAILY AVERAGE NO CONCENTRATION AND STOVE USAGE DATA
Date
5/12/73
5/13/73
5/15/73
5/22/73
5/23/73
5/24/73
OVERALL
DAILY
AVERAGE
P?.ily Average NO Coucuutiatiux^, (yg/m )
1-Kitchen (1
Meter from
Stove)
125
65
154
70
94
87
100
2-Living
Room
74
38
95
40
60
56
61
3-Upper
Bedroom
62
35
78
31
54
49
52
4-Outside
44
25
73
25
56
42
44
Total Stove Use
(min)
U v-en
195
0
220
20
45
40
Burner^
335
50
195
75
80
60
(1)
In this table and all subsequent tables of this type the burner use times are
computed from the sum of all minutes of individual burner use during the day
shown, e.g., if during a day three burners were on for 10 minutes, two burners
on for 20 minutes, and one burner was on for 30 minutes, the total burner time
would be (3 x 10) + (2 x 20)+ 30 = 100 minutes.
- 75 -
-------
TABLE 4-2
FALL (1973) SAMPLING AT HOUSE NO. 1
DAILY AVERAGE NO CONCENTRATIONS AND STOVE USAGE DATA
Date
11/07/73
11/08/73
11/10/73
11/11/73
11/12/73
11/13/73
11/14/75
OVERALL
DAILY
AVERAGE
11/15/73
11/16/73
11/17/73
11/18/73
11/19/73
11/20/73
OVERALL
DAILY
AVERAGE
Q[
Daily Average NO- Concentration, ug/nf
1-Kitchen
Above Stove
67
98
28
62
71
84
62
67
84
63
85
67
219
139
110
lA-Kitchen
1 meter
from stove
56
77
28
50
64
95
53
60
65
58
65
61
119
34
67
2 -Living
Room
59
97
16
34
51
78
51
55
3-Bedroom
60
43
32
37
53
71
49
4-Outside
35
57
20
32
64
86
58
50
69
62
18
29
44
53
46
Total Stove
Usej_Min*
Oven
55
130
0
165
70
70
0
Burner
76
62
21
113
59
98
20
* Stove use data not available during second half of period.
- 76 -
-------
The same conclusion can be drawn for the fall-winter period, but it
is not nearly as clear cut as for the spring-summer period. Relatively less
stove use during the fall-winter period and higher outdoor N0_ levels as
compared to the spring-summer period contribute to a reduced indication of a
direct cause and effect relationship between indoor NO- and stove use. During
both sampling periods, there is an indication that the oven is more influential
than the burners in contributing to levels of NO,., indoors.
Outdoor concentrations appear to influence indoor concentrations to the
extent that they penetrate the structure and produce indoor "background"
levels to which indoor-generated N0« is added. This is shown in comparing the
patterns of indoor/outdoor NO. for May 12 and 15, 1973, in Table 4-1. These
were both days of relatively high and similar stove use, but outdoor N0?
3 3
concentrations were quite different: 44 Mg/m on May 12 and 73 pg/m on
May 15th. Kitchen concentrations were higher on May 15 by about the same
amount as outdoor concentrations as compared to May 12th. Furthermore, the
relatively high outdoor concentrations on May 12 prevented the bedroom
3
concentrations from getting below 78 yg/m on a daily basis.
If a similar analysis is attempted on data for the fall-winter
period (Table 4-2) it is not possible to show a clear-cut influence of outdoor
NO - levels on indoor concentrations. This can be attributed largely to the
house being closed up to a greater extent in November as compared with May.
Table 4-3 is presented to compare further the two sampling periods
in House No. 1 in terms of average values over the entire sampling periods.
In addition, we have computed non-kitchen values as a percent of the kitchen
value (either directly over the stove in the fall-winter or 1 meter from the stove
- 77 -
-------
CO
1
CM
O
a
w
*3
K
w
CO
1 ,
ON
i~H
bC
C
H
1
i^n
ex
cfl
CO
rH
1
^n
cd
P-i
C
cd
bO
C
>r^
5-4
O.
CO
CU
cn
o
EC
0)
CO
p
0) rH
0 >
4-1 Cfl
CO T3
*~
cu u
60 -H
cd E
>
<£
Q
H
4J
C3
U
o
rJ
M
fl
H
rH
a
e
cd
co
a)
-a
cn
4J
3
o
e
0
o
0)
tofi
d
H
£>
H
rJ
C J-4
QJ a>
x: 4J
o a)
H
XI rH
a
CU
o
4J
H
w
""N
N
rH
Cfl
0
H
M
01
C
$-t
3
PQ
fi
OJ
£>
O
6
0
o
etf
Q)
£>
o
4J
CO
0
QJ
o
4-1
01
(U
O
CN
CM
CO
CO
^
CO
H
vt
VO
!
r~»
00
O
o
CO cfl
a
Ol
CO 3
6 r"!
~^ cd
Spring, 1973
N0? Concentration, yg
% of remote kitchen v
Indoor /Outdoor ratio
O
O
O
0 1 *
m i
i i :
i i
Q
r-H
*
in CN >-i H
in oo ON
C3
^
0 O 0 H
sr
CO
r- o I r-J
V£) 0 1
i i
CO
cl
<+7~^- Q)
Fall, 1973 (first hal
N0_ Concentration, Pg
% max. ..kitchen value
% remote kitchen valu
Indoor /Outdoor ratio
o
o
4H
O
U-4
cd
rC
-o
c
o
U
01
cn
1-1
o
^M
0)
T i
f>
rH
H
cd
J>
cd
4-1
O
C
cd
4_)
Cfl
T3
0)
cn
3
QJ
£>
O
4-1
C/3
13
C3
jx,
T 1
CJ
H
I-l
1 i
cn
4-1
o
r*H
QJ
>-"
O
4-1
QJ
r^
H
Q)
cn
3
^
QJ
C
J^
3
,0
TU
c
^3
a
OJ
^
0
14-1
o
e
3
cn
Q)
r~]
E t
ai
d
o
H
|-j
iJJ
a.
00
13
H
rH
cx-
B
cd
1/5
(DO
C
H
I-l
cfl
GJ
e
ij
c
H
3
c
'U
|_4
OJ
-H
11)
;_{
- 78 -
-------
in the spring-simmer); indoor/outdoor ratios; and relative stove use during
the period.
Average stove use in the first half of the fall period was only 0.6
of the use in the spring. The ratio of fall to spring values for the
comparable kitchen locations (1 meter from stove) was 0.6 and for the living
room, 0.9. Although several interpretations of these values are possible
because of the complex interplay of a number of effects, the most logical
is that the more closed-up attitude of the house in the fall lessens dilution
of N0« as it diffuses through the house. Furthermore, the relatively low
concentrations inside the house during the fall relative to outside concentrations
tend to obscure any dilution effects. Also, note in the data for the fall
period (Table 4-2) that there are two instances where average living room
concentrations exceeded those at the remote kitchen location 1 meter from
the stove (See data for 11/7 and 11/8). On both days, outdoor NO- levels
were considerably below those indoors. We attribute this to a lack of dilution
of indoor air by outdoor air because the house is sealed relatively tightly.
Figures 4-1 and 4-2 are graphs showing the diurnal patterns of NO
in House No. 1 for the spring and first half of the fall periods respectively.
These graphs are based on a "composite day" which was developed from the
averages of all two-hour average values for a given time period for each of
the complete sampling days (no two-hour average values missing).
These graphs show clearly the rapid drop off of NO concentrations
between the kitchen and the living room during the spring and the more gradual
drop off between these two rooms in the fall. This presumably is the result
of the house being more tightly closed during the colder weather. Note also
the lack of a morning and noon kitchen peak during the fall period.
- 79 -
-------
CO
CTl
i-
E
E
GO
cn
c
r
Q.
GO
ro
-P
rtJ
0-0
-------
M-
"fO
CM
I
CM
CM
CM
CM
I
O
CM
O
CM
I
CO
00
CM
CM
' O
'O
oo
oo
CM
CM
I
O
CO
r^
CTl
to
"3
O) to
00 >>
3 (O
O "O
CM
I
UJ CMO
ct: o
rD -ZZ. T3
O CO
i i S- l^
U- O
-i-> cu
ro 4J
Q- -i-
to
s- o
o ex
O E
-a o
4-> O
S-
o
o
T3
(O
c
o
CM
O
O
o
CO
o
CM
ju/6rt
- 81 -
-------
Figure 4-3 is a time history of a 4-day period during the spring
sampling at House No. 1, showing NO concentrations based on two-hour average
values together with data on stove use. This graph shows the immediate
response of the kitchen NCL levels to stove use. NO levels elsewhere indoors
also respond quickly to stove use. Analysis of the two-hour average NO
data shows that the greatest effect on indoor NO concentrations is caused by
the oven.
Figure 4-4, a graph of the two-hour average N0? concentrations during
a two-day period in the fall, further illustrates the effect of stove use on
the indoor air quality. As with the spring sampling period, the
oven creates the highest two-hour average N0? levels. When only the burners
on the stove were used, the average NO concentrations were noticeably less.
Note that on two occasions the 2-hour average N0? level at Station 2
(living room) exceeded one or both of the kitchen values. While part of this
is doubtless the effect of entrapment of N0_ within a relatively tightly
closed house, this apparent anomaly may have been caused in part by the
sequential nature of our sampling method. If the stove is turned on just
before Station 2 (living room) is sampled, this station will respond rapidly
to stove contributions. If the stove is turned off within the 10minute
period before Station 1 (kitchen over stove) is sampled, the level of N0_ in the
kitchen could drop below the earlier level in the living room.
A cursory examination of Figure 4-4 might give the impression that
outdoor concentrations are influenced by indoor generation. This is not
-------
ur>
\
ID
to
HI
en
ro
cu
i.
rs
o
:r
i
CM
to
oo
O CD
z c
I"
4- S^
O D.
CO
O
to
i
CU
c\j
^
LO
Ol
o
- 83 -
-------
s-
CU
C.
5- CU
13 ID c S- in
DO i- LO 3 CM
3 rCO
CO
3 LT> 3 Lf>
CO CO
o o o o o
O 00 VO
(Mi r i
LJLJ
DC
CO
OJ
crc
(T3
S-
cu
i-
3
O
3:
i
CM
co
C
O
-------
the case, but the converse Is true. Outdoor NO- levels reached peak values at
approximately the same times of day during both the summer and the fall sampling
periods. These peaks are associated with the time periods of greatest traffic
activity on nearby roads and are frequently coincident with times of meal
preparation at this house.
During inactive periods, NO concentrations were close to but slightly
greater than the outdoor NO- levels. This difference is attributable to the
pilot lights. Our laboratory study (Task 1) showed that the pilot lights
consume approximately 0.5 cubic feet(.014 cu M) of natural gas per hour.
A frequency distribution of all the five-minute NO data acquired
from House No. 1 was prepared to show the relative occurrence of various
NO 2 levels within this structure. Figure 4-5 is a log-probability graph of
the ML frequency distribution for all five-minute data at each of the four
sampling locations for the spring sampling period.
The graph shows that for any chosen percent of data less than a
given value, the sampling locations were arranged high to low in the same
order: kitchen, living room, bedroom, and outside, the expected
pattern. Although displaced in terms of concentration in the aforementioned
order, the three indoor locations have essentially parallel distributions
up to the 90% level. The living room and upper bedroom data are parallel
through their entire length but the kitchen has a noticeably divergence from
this general trend at the 90% level. This noticeable effect of indoor
generation on the distribution of NO concentrations measured in the kitchen
was not as evident in the data for the other indoor locations.
Figure 4-5 clearly shows that the NO- concentrations measured
indoors have a distribution quite distinct from the outdoor data. The kitchen
particularly reflects the influence of internal generation of NO- by the
3
stove with a significant number of observations above 100 yg/m .
- 85 -
-------
1000
500
250-
Kitchen - 1 M. from stove
Living room
Bedrc,. ( ;.per level)
Outside of structure
o>
,=* 100
(O
OJ
o
o
o
50-
CM
25
10.0-
5.0
2.5
5 10 20 40 60 80 90 95 98
% of values less than stated concentration
FIGURE 4-5
House No. 1 - Frequency Distribution of N02 Concentrations, Five-minute Data
Spring, 1973
-------
3
We use 100 yg/m as a basis for comparing the frequency distribution of N0?
concentrations at various points in the house since this is the outdoor air
quality standard. While we are dealing with the indoor inhabited atmosphere
for which there is as yet no air quality standard, it is still part of the
total human exposure and use of an adopted outdoor standard based on human
health effects as a guideline for exposure seems appropriate at this time. If
o
greater than 50% of the values at a given sampling point are above 100 yg/m ,
it is conceivable that the arithmetic average of the 5-minute data would
exceed 100 yg/m . If these data are typical of long term occurrences, they
would then be considered to be reasonably representative of long term (annual)
exposures.
o
NO. levels in excess of 100 yg/m occurred in 16% of the data from
the kitchen, 9% of the data from the living room and 6% of the data from the
upperlevel bedroom. Except for a few isolated instances, no data in excess
3
of 100 yg/m were collected from Station 4, outside House No. 1
The frequency distribution of the N02 data for the fall sampling
period at House No. 1 was separated into two sub-periods, one for the time when
Station 2 was located in the living room (first half of sampling period), and
the other for Station 3 in the bedroom (second half of sampling period).
The results for the two sub-periods are shown In Figures 4-6 and 4-7 respectively.
With Station 2 in the living room (Figure 4-6), the N02 distribution curves
for each of the locations are quite similar and in fact intertwine with each
other in many instances. These distributed data do not shown the clear cut
separation as appeared in the spring sampling period.
Approximately 10 percent of the indoor data from all three locations
3
was in excess of 100 yg/m , which is less for Station 1 and slightly more
for Stations 1A & 2than was shown in the summer. As mentioned earlier, this
is primarily due to the lower level of stove activity during the fall as
compared with the spring. The relatively larger quantity of concentration
3
readings greater than 100 yg/m at the other indoor locations and the close
relationship of the indoor concentration distributions, again, appear to show
- 87 -
-------
1000
500 -
250 ~
en
100 ~
OJ
o
CM
O
50 -
25 -
10
Kitchen - over stove
Kitchen - 1 M. from stove
Living Room
Outside of Structure
10 20 30 40 50 60 70 80 90 95
% of values less than stated concentration
98
House No. 1 -
FIGURE 4-6
Frequency Distribution of N02 Concentrations, Five-minute Data
Fall, 1973, 1st half of period.
- 88 -
-------
ro
E
en
01
O
O
u
1000
500 h-
250
100
C\J
CD
---Kitchen - over stove
Kitchen - 1 M. from stove
Bedroom
Outside of Structure
House Ho. 1
50
25
10
5 10 20 30 40 50 70 80 90 95 98
% of values less than stated concentration
FIGURE 4-7
- Frequency Distribution of HO^ Concentrations, Five-minute Data
Fall, 1973, 2nd half of period.
- 89 -
-------
the effect of the house being in more of a closed-up attitude in the colder
weather.
The frequency distribution of NO data with Station 3 in the bedroom,
(Figure 4-7) shows a more distinct separation of the NO levels in the Kitchen
from the bedroom and outdoors. Fifteen percent of the station //I concentrations
were greater than 100 |ig/m , and eight, six, and five percent of the data from
Stations 2,3, and 4 respectively, were in excess of 100 yg/m . The upper
level bedroom, the farthest possible location from the stove within this house,
shows relatively high independence from the outdoor ambient NO levels through
the top 50% of the data.
4.1.2 Nitric Oxide (NO)
Table 4-4 presents a summary of the daily average NO concentrations
for the six full days of spring sampling at House No. 1. Over this sampling
period, the NO concentration in the kitchen was approximately four times the
average NO level outside the structure. In comparing Table 4-4 with 4-1, the
overall indoor concentrations of NO and N0_ are about equal for this sampling
period. However, the overall outdoor NO,, concentration is almost twice the
outdoor NO concentration. While most sources of nitrogen oxides generate
much more NO than NO with eventual conversion of NO to NO in the atmosphere,
TRC's laboratory investigations of stove operations (Task 1) indicate that the
NO and NO,., are formed in nearly equal amounts over a wide range of stove
operating conditions.
Comparison of stove use and daily NO concentrations yeilds about the
same correlations as was earlier noted with respect to N0». In general, the
highest daily NO concentrations were associated with days of high stove usage.
Table 4-5 shows a summary of the daily average NO concentrations
for the fall sampling period at House No. 1. Overall, the NO concentrations
during the fall were substantially greater both indoors and outside during the
fall than they were in the spring. The outside NO concentration was more than
twice as high as that measured in the spring. Conservation of NO within the
kitchen was more apparent than for NO,,.
- 90 -
-------
TABLE 4-4
Spring (1973) Sampling at House No. 1
DAILY AVERAGE NO CONCENTRATIONS AND STOVE USAGE DATA
Date
5/12/73
5/13/73
5/15/73
5/22/73
5/23/73
5/24/73
OVERALL
DAILY
AVERAGE
3
Daily Average NO Concentration, (pg/m )
1-Kitchen
1 Meter
from stove
112
47
175
66
142
72
102
2-Living
Room
65
22
132
30
101
34
64
3-Upper
Bedroom
57
28
145
20
106
31
65
4-Outside
18
12
37
16
66
9
26
Total Stove Use
(min)
Oven
195
0
220
20
45
40
Burner
335
50
195
75
80
60
- 91 -
-------
TABLE 4-5
Fall (1973) Sampling at House No. 1
DAILY AVERAGE NO CONCENTRATIONS AND STOVE USAGE DATA
Date
11/07/73
11/08/73
11/10/73
11/11/73
11/32/73
11/13/73
11/14/73
OVERALL
DAILY
AVERAGE
11/15/73
11/16/73
11/17/73
11/18/73
11/19/73
11/20/73
OVERALL
DAILY
AVERAGE
Daily Avera
1-Kitchen
Above Stove
91
207
21
126
184
215
109
136
141
66
71
65
228
235
134
lA-Kitchen
1M from Stove
75
191
20
130
190
219
113
134
138
73
76
65
195
241
131
o
a;e N" " ntration, pg/m
2-Living
Room
73
160
12
60
128
140
88
94
3-Bedroom
112
55
43
46
147
209
102
4-Outside
22
90
14
46
112
100
59
63
99
22
15
21
60
171
65
Total Stove
Use Min. *
Oven
55
130
0
165
70
70
0
Burner
76
62
21
113
59
98
20
* Stove use data not available during second half of period.
- 92 -
-------
The effect of ambient outdoor NO levels on the indoor NO concentration
is somewhat different than appeared with the N02. In Table 4-5 we see that
two days of similar stove activity, 7 November and 12 November, had substantially
different NO levels outdoors and subsequently, indoors as well. Outdoor NO
levels on 12 November averaged 5 times those recorded on 7 November. On each
3
of these days, NO levels at Station 1 were approximately 70 yg/m higher
than ambient levels outdoors on the same day. The direct influence is dampened
somewhat by the relatively isolated indoor environment caused by closed doors
and windows during the colder season.
Table 4-6 is organized similarly to Table 4-3 for NO- and is based
on averages for entire sampling periods. In comparing Table 4-6 with Table 4-3,
one is struck with the extreme complexity of the indoor/outdoor patterns
of NO and NO-. Thus, interpretations must be made largely on the basis of
experienced judgment together with data which appear to show some trends.
The principal variables which affect indoor patterns of NO and N0_ are:
1. Stove use
2. Permeability of the house (higher in spring than in fall)
3. Indoor/outdoor ratio
4. Loss of pollutant through reaction, adsorption, and other
mechanisms
In Table 4-3, note that outdoor concentrations of NO- are about the
same for spring and fall, but fall concentrations of NO as shown in Table 4-6
are more than twice the average for the spring. While an analysis of the
meteorology and the details of outdoor air quality are outside the scope of
this program, we presume that the warmer weather, higher incidence of sunlight
- 93 -
-------
W
CO
W
O
H
v£>
I
W
rJ
CO
I
01
(3
H
rH
o.
§
a
cd
00
C
H
t-i
CX
CO
I
0)
CO
3
O
ffi
a)
en
!=
j£
CJ *
> / s
0 >
4-1 Cfl
co id
.
cu a
00 -H
cfl B
S-i ^
a>
>
<;
c
o
H
4-1
Cfl
O
0
nJ
01
(3
H
rH
P.
E
cfl
CO
cu
13
H
co
4-1
3
O
6
o
0
(-1
13
CU
pq
00
(3
H
>
H
,-1
C H
0) m
43 3
o cu
4-1 S
rH *
W rH
C
Q)
43
CJ
4-1
H
W
>-,
13 J-i
CJ 0
cfl 00
CU
(3 W
O nl
CO U
cfl
a) cfl
CO 4->
cfl
p
rH
Ct)
4-1
O
H
M
CU
C
J-i
3
pq
c3
cu
>
O
B
O
o
Pi
a)
>
0
4J
cn
E
O
1-1
U-4
0)
>
o
4-1
CO
a)
>
0
42
cfl
O
CN
CM
CO
CO
H
«*
CO
rH
<}
-X)
r^
oo
O
o
SO 1 H
CN 1
O
"1
in o CM
VO <£>
iO
^£>
CN
O\
«
CM o o cu ---.
00 C rJ r4
(30 0
H O 4-< O
^ O 13
Cu O C
CO 2^ &-S M
O
r^
O
O
CO 1 1 "H
VO 1 1
1 1 1 1
1 1 1 1
Os
-*
* OS O H
O vo r~-
co
H
*
sr as o CM
CO OS O
r-l rH
VO
H
vO O CM
co o
rH rH
0)
CO 01 rH
/-s B 3 *
MH -^ rH >
rH 00 Cd O
Cd 3- > (3 -H
43 0)4-1
« C 43 cfl
4-1 C -i
H 4-1 4-1 ^ O
MH cd -H o
v-" n A! 1) TJ
CO 4-1 4J4-1
r-. C -03
as cu !* S O
rH O CO CU --.
C E rJ r4
- O O
rH CJ MH y-i O
rH O O TJ
co o a
(XH ^ 6-S ^2 M
Q
O
m i rH
vO |
r^
LO
CN SO 00 rH
O r-» t~v
rH
CN
O
«
H CO O CN
CO OS 0
rH rH
vO
O
Bl 60 rH O
43 3- Ct) (3 -tH
> 0) 4J
T3 43 Ct)
C d C3 0 &
O O CU 4-1
O iH 43 -rl )H
Q) JM 0 W O
CD Cd 4-1 O
N-X M -rl CU 13
CO 4-1 $4 4-1 4-1
r^ C o 3
os cu y s o
rH 0 Cd S -«.
C S nd !H
.0 0
rH U 14-1 4-| O
H o o -a
cd O C3
fxi f3 B^o &vO M
O
H
M
Q)
P.
rH
MH
O
4-4
i-H
(3
8
00
c
3
13
cu
H
Cd
4-1
O
cfl
4J
cd
'O
a)
CO
3
CU
O
4-1
CO
K
-------
and photochemical processes contributed to the more complete conversion of
NO to N0_ in the spring as compared with the fall.
In comparing the "percent" of remote kitchen value" for NO in the spring
and fall in Table 4-6, there is a drop to 63% in the spring and 70% in the
fall. This is presumed to be the joint effect of higher house permeability
in the spring and higher outdoor NO levels in the fall.
A graph of the two-hour average NO concentrations versus time for the
same time period in the spring as shown earlier for N02 (Figure 4-3) is
presented in Figure 4-8. Comparison of the two figures (4-3 and 4-8) shows
them to be basically similar with common peaks and analogous traces. Stove
use readily affected the indoor NO levels and the behaviour of the NO with
time and distance from the source was the same during both periods.
We do not present a typical time history for NO during the fall since
such a graph would not add significantly to our basic knowledge.
Comparison of NO and N09 two-hour averaged data in addition to the
graphical data also shows that the total oxides of nitrogen (NO and N0?) did
not remain constant during and after stove operation but increased and declined
with stove use. This observation is evidence that the generation and diffusion
of NO- rather than conversion of NO to N09 is the predominant source of indoor
N02. The conversion of NO to NO. by reaction with atmospheric oxygen is inhibited
by the lack of sunlight available inside the house to promote that reaction.
A frequency distribution of the five-minute average NO data obtained
during the spring sampling period at House No. 1 is shown in Figure 4-9. The NO
3 3
concentrations measured in the kitchen ranged from 4 ug/m to 500 yg/m . Although
Tf
the distribtuions of NO and NO- concentrations in the spring are somewhat
similar, one notable difference between the two sets of data is the uniform
- 95 -
-------
LO
LO
LT>
to
01
en
s_
O)
«=c
i.
13
o
I
C\J
CO
c
o
in
s-
O)
ro
un
oo
i
03
0)
u
o
o
14-
o
o
+->
1/1
O)
CO
r^.
CTi
Q.
oo
CVJ
uo
OJ
OO
o
3:
[ ui/Brt]
- 96 -
-------
1000
500
250
en
c
o
rO
S_
-P
c
cu
o
c
o
o
TOO
50
25
10.0
5.0 -
2.5 _
Kitchen - 1 M. from stove
Living room
Bedroom (upper level)
Outside of structure
I
5 10 20 40 60 80 90 95 98
% of values less than stated concentration
FIGURE 4-9
House No. 1 - Frequency Distribution of NO Concentrations, Five-minute Data
Spring, 1973
- 97 -
-------
distribution of the kitchen NO data compared to the abrupt increase in NO
levels at high concentrations. This observation may be explained by our results
from laboratory study of stove operations which indicate that some stove
operating conditions generate more N0_ than NO.
The frequency distribution of the five-minute NO data from the fall
sampling period with Station 2 in the living room is presented in Figure 4-10.
Figure 4-11 is a graph of the frequency distribution of five-minute NO data
with Station 3 located in the bedroom of House No. 1. Figure 4-10 shows the
very close relationship between Stations 1 and 1A. Nitric oxide is shown as
relatively inert and is conserved well in its diffusion into the kitchen from
the stove. The living room has a distinctly lower occurrence of a specific
NO concentration than the kitchen. All of the indoor locations in both
sampling periods showed higher NO concentrations than occurred outdoors. The
frequency distribution presenting NO data when Station 3 was located in the
bedroom (Figure 4-11) shows the three indoor locations as more closely related
than during the earlier sampling. Approximately 60% of the indoor NO concentrations
3
were less than 100 yg/m during this week of sampling.* The earlier week's
sampling, with Station 2 in the living room (Figure 4-10) showed NO concentrations
3
less than 100 yg/m only 40% to 60% of the time. During the spring sampling
period, the indoor NO levels were less than 100 yg/m for 70-80% of the time.
Generally, the occurrence of higher NO concentrations indoors during the fall
is caused by the higher background NO levels present outdoors and the more
tightly closed attitude of the house in the fall.
3
*The 100 yg/m is not significant for NO since there is no ambient air quality
standard for this pollutant. However, it is convenient to use this concen-
tration as a basis for comparison since it is the ambient air quality standard
for N09 (annual average) and NO and NO- and generated together in gas flames.
- 98 -
-------
1000
500
250
CO
E
o>
.c
o
r<3
4->
c
-------
ro
CT)
a.
rd
S-
4->
C
O)
o
c
o
o
Kitchen - over stove
Kitchen - 1 M. from stove
Bedroom
Outside
e- 50 -
25 -.
10
10 20 30 40 50 60 70 80 90 95 98
% of values less than stated concentration
FIGURE 4-11
House No. 1 - Frequency Distribution of NO Concentrations, Five-minute Data
Fall, 1973, 2nd half of period
- 100 -
-------
4.1.3 Carbon Monoxide (CO)
The daily average carbon monoxide levels for the spring sampling
period at House No. 1 are compiled in Table 4-7. Over the entire spring
sampling period at House No. 1, the daily average carbon monoxide concentration
in the kitchen was approximately 1.3 times greater than the daily average
CO concentration outside the structure. This is considerably less than the
ratio between kitchen and outdoor concentrations for NO- and NO. (2.3 and
3.9 respectively for the same period)
An examination of the two-hour time averaged data contained in
Appendix B-l also shows that the CO generated within the house was not as
widespread as were the two oxides of nitrogen. The carbon monoxide levels
generally did not increase at rates similar to NO and NO and in some
cases did not reach peak levels until after the stove was shut off. The
rates of increase of CO concentrations in the living room and bedroom were
similar to the rate of increase in the kitchen.
Table 4-8 is a summary of the daily average CO concentrations at
House No. 1 during the fall sampling period. In spite of a considerably
lower level of stove activity during the first half of this sampling period,
carbon monoxide levels were about the same indoors but lower outdoors when
compared to the spring data. During the second half of the fall sampling
period when stove use data were not available, the indoor CO levels again were
similar to those in the spring but the outdoor levels were lower. CO levels in
the kitchen average 2.5 times greater than outdoors during the first part of
the fall sampling period. Stations 1 and 1A showed a similarity in average
CO levels that were comparable to those measured for NO, with Station 1A
averaging concentrations that were 84% and 88% of those measured directly over
the stove for the first and second halves of the fall period. As demonstrated
with N02 and NO, the indoor CO levels at various indoor locations were much
- 101 -
-------
TABLE 4-7
Spring (1973) Sampling at House No. 1
DAILY AVEEAGE CO CONCENTRATION AND STOVE USAGE DATA
Date
5/12/73
5/13/73
5/14/73
5/15/73
5/16/73
5/21/73
5/22/73
5/23/73
5/24/73
OVERALL
DAILY
AVERAGE
3
Daily Average CO Concentration, (yg/m )
l-Kitchen(lM
From Stove)
6430
8980
5650
5660
3280
3070
1400
3190
2770
4490
2-Living
Room
5800
8680
5430
5150
2720
2630
1120
2750
2360
4070
3-Upper
Bedroom
5920
8980
5610
5430
2840
2600
1020
2840
2330
4170
4-Outside
5080
8230
5070
4060
2240
2100
970
1930
1660
3480
Total S1
(Ma
Oven
195
0
130
220
15
20
20
45
40
;ove Use
in)
Burner
335
50
85
195
165
50
75
80
60
- 102 -
-------
TABLE 4-8
Fall (1973) Sampling at House No. 1
DAILY AVERAGE CO CONCENTRATIONS AND STOVE USAGE DATA
Date
11/07/73
11/08/73
11/09/73
1
11/10/73
OVERALL
DAILY
AVERAGE
11/15/73
11/16/73
11/17/73
11/18/73
11/19/73
11/20/73
OVERALL
DAILY
AVERAGE
Daily Average CO Concentration, yg/m
1-Kitchen
Above Stove
4670
6130
3240
2730
4190
5270
3920
3750
4140
5082
6550
4790
lA-Kitchen
1 M from Stove
3800
5330
2870
2080
3520
4730
3480
3140
3550
4360
6010
4210
2-Living
Room
3570
4800
2580
1960
3230
3-Bedroom
4430
2850
2800
3217
4090
5600
3830
4-Outside
1800
2530
1200
1140
1670
2790
1560
1550
1834
2370
3760
2310
Total Stove
Use, Min *
Oven
55
130
0
0
Burner
76
62
82
21
*Stove use data not available for second half of period.
- 103 -
-------
..loser to each other during the fall than in the summer. This shows the effect
of a more sealed up attitude of the house in the fall as compared with the
spring.
As noted earlier, CO concentrations at House No. 1 during the fall do
not appear to peak as fast as NO and NO. In several cases, CO levels did not
reach peak values until after the stove was shut off. The rate of increase of
CO levels indoors was similar for all locations.
Table 4-9 summarizes CO concentrations and stove use data for House
No. 1 for both the spring and fall sampling periods. Because of less stove use
in the fall (first half of period), indoor concentrations of CO are slightly
lower in the fall as compared to the spring. However, the indoor/outdoor ratio
is much higher for the fall data which reflects the more tightly closed aspect
of the house in the fall. Also it appears that there are other sources of
indoor CO besides the stove. This house was used in the first indoor/outdoor
air quality study conducted by TRC* and we found that the attached garage in
this house could contribute significantly to indoor CO concentrations under
certain circumstances. It is conceivable that auto exhausts entrapped in the
garage, in diffusing through the house, add to the levels of indoor CO. Such
an effect will be enhanced by cold weather when the warm house acts like a
"stack" and can induce air from the garage at the lower level and spread it
through the house.
We do not present any typical CO time histories for House No. 1 but
the two-hour average data for the spring and fall are presented in Appendices
B-l and B-2 respectively.
*See Reference (1) on page 1.
- 104 -
-------
I
sr
w
pq
E-:
CO
oc
C
a.
cfl
CO
CO
Pn
C
CO
H
S-I
CO
I
OI
CO
o
01
co
^
OI
0 >
4-1 CO
CO 13
0) C
60 -H
_» £-<
CO pj
01
^
>
-O r)
c o
CO 00
CU
C -W
O CO
co o
CO
0) cO
CO 4J
CO
Q
r
CC
4-J
C
,_,
0
p
V;
ce
a
^
o
6
0
o
01
£>
o
4-)
to
s
0
s-l
<4H
01
[>
o
4-1
CO
01
p>
o
cfl
00
o>
rH
CM
CM
rH
*>
r***
o
o
O H
00 1
si- 1
CO
o
CM
O CO rH
rH
1^
rH
O I-H rH
r*** CT*
O
sl-
G*t
CM
% § H<
Si" rH
Sl-
1
1
0»
CO rH
4 2
2 c 3
OI 4J
43 CO
flap
O 4-1
iH -H r4
4-> rid O
CO cfl O
r^ (-1 Q) t>
O\ 4-* 4J 4J
rH C 0 3
01 g 0
« a 01 \
t>0 a rl rl
CO O
H O M-* O
i-i O TJ
a o c
CO CJ B^S 1 I
o
rH
O
vO
sr
0
o
0 rH
r^ 1 1
vO I I
rH
1 1 1 1
1 1 1 1
CO
(3^
O 1^ CM rH
CO P** G\
CN
CO
rH
rH
O ST O CM
CM CO O
LO rH
CO
rH
u"l
O o CM
cy> o i
rH ,-H 1
sr
OI
3
/-CO OI i-H
m 0 3 co
H ~^ rH >
Cfl 00 03 O
,TJ 3- > C -H
0) 4-1
4J > C J2 CO
CO (3 0) O M
M 0 JS 4J
H -H O -H )-i
U-l 4-1 4-1 ^ O
v^ Cfl -rl O
rl J 01 X B 0
rH O Cfl OI ^
a e n ri
> o o
rH CJ U-4 UH O
rH O O Id
CO O C
FZI O fr-S B-S M
0
o
O H
rH 1 1
CO | 1
CM
VO
vO
O 0 rH rH
co oo o>
OO
CO
CM
CO
O 00 0 rH
rH 00 O
CM rH
* o I
r~~ rH I
sr
0)
i-^
4H CO 01 rH
rH 0 ^3 Cfl
<& oo 5 <- °
^- r M !-(
1 " S -S f»
O r1 0) ^* J4
a § J3 ^
0) Bf-f CJ *H ^
CO 4J 4-j -» o
^ CCt "^ ... O
CO rl ^ 0} TJ
r^ 4J *; 4J
CTi C 2 3
rH CD JS K O
. ti & * "rT
i-H 0 0
rH U 14H 4H O
CO O O 13
Fn 0 (3
CJ B~S fr-S H
^
*rj
O
^|
O)
p.
rH
rH
CO
m
MH
o
M-l
rH
CO
a
o
0
0)
to
j.^
o
<4H
CU
rH
cO
rH
H
CO
CO
4-1
O
(3
cd
4-1
(0
T)
CO
O
4J
C/3
X
- 105 -
-------
Figures 4-12, 4-13, and 4-14 are cumulative frequency distributions
of the five-minute averaged CO data from House No. 1 during the spring, the fall
with Station 2 in the living room, and the fall with Station 3 in the bedroom,
respectively. The two distributions from the two fall periods have similar
shapes, but the curves for spring measurements drop off sharply for low
values. For each sampling period, the three indoor locations had very similar
frequency of occurrences of specific concentrations. This illustrates the
relative independence of CO concentrations from the sampling location as
compared to N02 and NO for five-minute periods. For the fall distributions,
the curves for the three indoor locations are closely grouped and there is a
greater difference between the grouped indoor curves and the outdoor curve
than was shown in the spring data.
4.2 House No. 2 Urban Two Story Home
4.2.1 Nitrogen Dioxide (NO )
Fall sampling was not carried out at this house since the amount of
stove use by the single occupant was not sufficient to make an adequate evaluation.
Table 4-10 presents the daily averages of NO- at House No. 2. It
ic readily apparent that there is little difference in the concentrations
measured at the four locations when averaged over a day. Outdoor
N02 concentrations were about twice as high at House No. 2 compared to the
other structures. This reflects the urban location and proximity of House No. 2
to local traffic arteries. The frequency of stove use was considerably less
than for House No. 1 and this appeared to be the reason for the uniformity
until we examined the two-hour averaged data.
Figure 4-15 is a graph of a portion of the two-hour averaged data
included in Appendix B-3. It shows the specific influence of stove
- 106 -
-------
10000 -
00
en
c
o
-13
£
4->
C
O)
o
c
o
o
o
C_J
5000
2500 -
- Kitchen - 1 M. from
Living Room
Bedroom (upper level)
Outside of structure
1000 -
stave
250
125
20 30 40 50 60 70 80 90 95 98
% of values less than stated concentration
FIGURE 4-12
House No. 1 - Frequency Distribution of CO Concentrations, Five-minute Data
Spring, 1973
- 107 -
-------
CO
e
CD
c:
01
o
c
o
o
50000 --
250C
1000C --
2500 --
100C --
250 --
100
Kitchen - over stove
Kitchen- 1 M. from stove
Living room
Outsi'
H 1 1 h
4-
yes
5 10 20 40 bU 8U
% of values less than stated concentration
FIGURE 4-13
House No. 1 - Frequency Distribution of CO Concentrations, Five-minute Data
Fall, 1973, 1st half of period
- 108 -
-------
co
E
C
o
tO
C
OJ
o
C
o
o
o
o
100000
50000--
25000 -
1000Q--
5000--
2500--
1000--
500--
250--
100
Kitchen - over stove
Kitchen - 1 M. from stove
Upstairs Bedroom
Outside
H r
5 10 20 30 40 50 60 70 80 90 95
% of values less than stated concentration
98
FIGURE 4-14
House No. 1 - Frequency Distribution of CO Concentrations, Five-minute Data
Fall, 1973, 2nd half of period
-109-
-------
TABLE 4-10
Spring (1973) Sampling at House No. 2
DAILY AVERAGE NO- CONCENTRATION AND STOVE USAGE DATA
Date
5/30/73
5/31/73
6/02/73
6/03/73
6/04/73
OVERALL
DAILY
AVERAGE
Daily Average NO- Concentration, (yg/m )
1-Kitchen
80
71
133
127
153
113
2 -Living Room
63
60
125
125
144
103
3-Bedroom
62
58
123
124
147
103
4-Outside
55
57
119
123
152
101
Total Stove
Use (Min)
Oven
0
0
0
0
0
Burner
86
22
49
26
30
- 110 -
-------
r OJ
CD S-
> 3
r O
1- S_
CU 4-»
CL co
E CL
O 3 «f-
0- O
l_
c E > -O 4->
r- -r- 0) 3
^ _J CD O
CU C
C !-
S- E
CQ n
/V.
\
co
LO
o
o
CM
O
O
C\J
CO
o
o
CO
o
o
o
o
o
o
o
o
0
CNJ
o
o
o
CM
CM
o
o
co
o
o
o
oo
10
OJ
en
O)
3
O
i
CM
to
C.
o
cu
o co
o
o
CT>
LO
o
o
o
o
o
o
o
CM
o
o:
CJ3 <*-
t-H O
o
-p
to
Ol
CM
O)
01
o
c\j «
O CD
s_
Q.
oo
o
o
CM
o
in
o
o
o
LO
[ ui/Brt]
- Ill -
-------
operating periods on the kitchen locations and to a lesser extent on the
other indoor locations. This figure also shows the uniformity of concentrations
for all four sampling locations when the stove is not being used. By contrast,
our results from the other two structures show a consistent difference between
kitchen and outdoor NO- concentrations during inactive stove use periods.
The explanation for the different observations was developed after evaluating
stove operation in each house. Houses No. 1,3, and 4 have relatively new
stoves, each with three continuous automatic pilot lights, one for each pair
of burners and one for the oven/broiler. The much older stove in House No. 2,
however, has only a single manual pilot which must be activated first before
igniting a burner. This type of pilot uses very little gas and therefore
generates only a small amount of NO compared to the multiple continuous pilots
of the newer stoves which generate enough NO to maintain a kitchen concentration
higher than outside levels.
A frequency distribution of the five-minute averaged NO data for the
spring data at House No. 2 is presented in Figure 4-16. The distribution of
concentrations is identical for all four locations for about 90% of the
observations. Approximately 50% of the NO levels measured at all four locations
were greater than 100 yg/m . Similar to House No. 1, the kitchen had a
greater frequency of NO concentration above 100 yg/m than the other sampling
locations. We attribute the uniformity of the distributions for all four
locations to both lack of stove use as well as the absence of multiple,
continuous pilot lights on the stove.
4.2.2 Nitric Oxide (NO)
Table 4-11 presents the daily average nitric oxide (NO)
concentrations at House No . 2. The overall average NO concentration within
- 112 -
-------
1000
500
250
o>
3
(/)
c
o
to
4-»
c.
-------
TABLE 4-11
Spring (1973) Sampling at House No,. 2
DAILY AVERAGE NO CONCENTRATION AND STOVE USAGE DATA
Date
5/30/73
5/31/73
6/02/73
6/03/73
6/04/73
OVERALL
DAILY
AVERAGE
3
Daily Average NO Concentration, (yg/m )
1 -Kitchen
65
31
34
35
42
41
2-Living Room
46
19
27
28
31
30
3-Bedroom
43
15
27
29
27
28
4-Outside
36
14
25
24
22
24
Total Stove
Use (Min)
Oven
0
0
0
0
0
Burner
86
22
49
26
30
- 114 -
-------
the kitchen during the sampling period was greater than the overall outside
NO concentration by 70%. The contribution of the stove to NO concentrations
in the kitchen is more apparent than for NO . Outdoor NO concentrations were
much lower than the corresponding N0» values during the sampling period and
therefore ambient NO penetration did not influence the kitchen NO concentrations
as greatly as ambient NO^ influenced the kitchen NO measurements.
A graph of the two-hour average NO concentration for a two-day period
at House No. 2 is presented in Figure 4-17. A tabulation of the two-hour
averages for the entire sampling period at House No. 2 is in Appendix B-3.. The
graph shows that the generation and diffusion of NO followed a pattern similar
In comparing Figure 4-17 with Figure 4-15, the higher ambient NO causes the
indoor NO levels to be much higher than NO indoor concentrations during
periods of stove inactivity.
Figure 4-18 is a graph of the frequency distribution of the five-
minute NO data from House No. 2. The distributions of the four sampling
locations are not identical but certainly very similar. The kitchen has
slightly greater frequency for higher NO concentrations than the other three
3
sampling locations particularly above 200 yg/m .
4.2.3 Carbon Monoxide (CO)
A summary of the carbon monoxide daily averages at House No. 2 is
given in Table 4-12. There is little difference in the concentrations measured
at the three indoor and one outdoor locations. In fact, on the day of highest
stove usage, (5/30), the daily average in the kitchen is somewhat lower
than the outside concentration. Outdoor CO concentrations greatly
influenced the indoor concentrations.
- 115 -
-------
CO
LD
CO
1-
Qi
to
I O
>* o
o
co
> i o
o
4->
to
O)
I
CM
Ol
CO
Q_
OO
QN
- 116 -
-------
Kitchen - over stove
Living room
Bedroom (upper level)
Outside of structure
5 10 20 40 60 80 90 95 98
% of Values Less Than Stated Concentration
FIGURE 4-18
House No. 2 - Frequency Distribution of NO Concentrations, Five-minute Data
Spring, 1973
- 117 -
-------
TABLE 4-12
Spring (1973) Sampling at House No. 2
DAILY AVERAGE CO CONCENTRATION AND STOVE USAGE DATA
Date
5/30/73
5/31/73
6/06/73
OVERALL
DAILY
AVERAGE
3
Daily Average N0? Concentration, (yg/m )
1-Kitchen
2950
2650
3460
3000
2-Living Room
3440
2510
3300
3080
3-Bedroom
2920
2520
3260
2900
4-Outside
3170
2550
3100
2940
Total Stove
Use (Min)
Oven
0
0
0
Burner
86
22
10
- 118 -
-------
Figute 4-19 Is a graph of the two»hour average CO concentrations
for a two-day period at House No. 2. Appendix B-3 contains all of the two-hour
averaged data for the sampling period. The time variation of CO is very similar
to that of NO. The outdoor concentrations fluctuate considerably and the indoor
concentrations at the three locations generally follow the outdoor pattern.
The influence of the stove on indoor CO concentrations is shown briefly during
operating periods and afterwards the indoor concentration rapidly declines to
the outdoor CO concentration.
Figure 4-20 is a frequency distribution of all the five-minute CO
data recorded at House No. 2. The four curves for the four sampling locations
are closely spaced and frequently cross each other. The occurrence of any
specific concentration was fairly uniform irregardless of sampling location.
Overall stove inactivity was responsible for the close proximity of the
indoor concentration to the outdoor CO levels.
4.2.4 N02, NO, CO Diffusion Experiment
Although the small amount of stove usage at House No. 2 produced a
disappointingly small amount of interesting data, the relative inactivity
gave us an excellent opportunity to conduct a diffusion experiment. The
purpose of this experiment was to study the behavior of the 3 pollutants as
they diffused through the house and became diluted with outdoor air.
We operated all five burners of the stove for a period of 71 minutes
until pollutant concentrations in the kitchen approached a maximum. The
burners were then shut off and the sampling for N09, NO and CO continued
until the indoor concentrations returned to their former levels.
Table 4-13 shows the peak values measured at each indoor sampling
location before the burners were shut off. The living room and bedroom
- 119 -
-------
in
S-.
o
Lf)
cn
(O
O)
CM
O
(U
o
co
r>.
CTi
CD
c
!-
s-
Q.
o
[eiu/6rt]
- 120 -
-------
10000
co
o>
M
(O
+J
c
OJ
O
c
O
O
O
O
5000
2500
1000
500
250
125
j_
j_
Kitchen-over stove
Living Room
Bedroom (upper level)
Outside of structure
J i L
5 10 20 30 40 50 60 70 80 90 95 98
% of values less than stated concentration
FIGURE 4-20
House No. 2 - Frequency Distribution of CO Concentrations, Five-minute Data
Spring, 1973
- 121-
-------
TABLE 4-13
PEAK FIVE-MINUTE CONCENTRATIONS OF OXIDES OF NITROGEN
AND CARBON MONOXIDE DURING DIFFUSION EXPERIMENTS, yg/nf
Parameter
N02
NO
CO
Kitchen
1,450
2,030
12,800
Living Room
900 (62%)*
1,560 (77%)*
10,400 (81%)*
Bedroom
790 (55%)*
1,400 (69%)*
9,300 (73%)*
* Percent of five-minute peak value measured in kitchen.
- 122 -
-------
concentrations are also expressed as percentages of the peak kitchen
concentration for each pollutant. The living room and bedroom peak values showed
that both CO and NO were conserved to a considerably greater extent than NO^
as they diffused through the house. NO disappears either through reaction or
surface adsorption as it diffuses through the house.
Figures 4-21, 4-22 and 4-23 show graphically the time history of
the NO , NO and CO concentrations respectively during the diffusion experiment
at House No. 2. All of the indoor sampling locations showed sharply increased
pollutant concentrations within the first five-minute sampling period at
each location and all locations had a similar decay rate for the same
pollutant when the burners were shut off.
The NO- exhibited the most rapid decay; it reached pre-experiment
levels about 2 1/2 hours from the time the stove was turned off. The CO
required about 7 hours to return to previous levels and the NO about
8 hours. From the shapes of the three curves, we computed that the half life
of CO in the house was 2.1 hours. Since CO is unreactive, this half life represents
loss solely through diffusion and dilution. The half lives for NO and N07
were 1.8 and 0.6 hours respectively. The behavior of NO is quite similar
to that of CO. Thus, the oxidation of NO to NO- or loss through other
mechanisms is not significant. NO ,. on the other hand, is lost relatively
rapidly. Among the possible mechanisms for the depletion of N0« is the
formation of nitrate and/or nitrite aerosol. Such a mechanism might be
enhanced by the high moisture content of kitchens with gas stoves water
vapor production associated with cooking, and that produced as a by product
in the combustion of natural gas. Some of our data from the other structures
show more N0_ than NO present during inactive stove use periods which perhaps
can only be explained by the generation of more NO than NO from the pilot
lights since NO,, should disappear more rapidly than NO when neither are being
generated.
- 123 -
-------
r d)
O)
i-
=J
OJ 4->
i O
3
S- S-
QJ 4->
Q. I/)
E Q.
O 3 i+-
O- O
C E OJ
O) cn O "O
-C C O -r-
CJ 13
CD O
to
i-
QJ
c:
CO
in
C
O
E
in
s_ t-
a> tn a)
c LT> c:
s_ ro s-
CD
in
CO
o
o
C3
O
CXI
CM
O
O
o
CM
o
o
CO
o
o
o
o
o
o
CM
o
o
o
o
o
CO
o
o
o
UD
o
OJ
>
S-
CM
i
LU
a:
CD
(13
Q
CO
(->
3
I
-------
o
(U
d)
>
CO
c:
o
fC
O
O
CJ
01
to
3
O
ON
- 125 -
-------
5 Burners on
355 min.
en
E
O
C.
-------
4.3 House No. 3 Suburban Two-Story Apartment
4.3.1 Nitrogen Dioxide (N02)
Tables 4-14 and 4-15 show respectively the summer and fall daily
average data for NCL at House No. 3. In addition we present Table 4-16
which summarizes the data for both seasons to facilitate their comparison.
Because of severe instrument malfunction problems in this house we had
available only two complete days of sampling during the spring-summer
period and one and three days respectively during each of the two fall
periods. Nevertheless, we believe it is still possible to draw conclu-
sions from the available data on the effect of stove use and outdoor air
quality on the concentrations of pollutants found inside this house.
Q
Concentrations of N02 in the kitchen of this home exceeded 100 ug/mj
even when the stove is little used. Note that on 6/22 the daily average
kitchen concentrations exceed 100 Pg/m with only 5 minutes of stove use.
However, at this time outdoor concentrations were relatively high (60 vig/m-5).
In this connection, we point out that outdoor concentrations were higher in
the spring-summer period than the fall-winter period. These conditions are
the reverse of those encountered while sampling at House No. 1.
One reason for the elevated N02 readings in the kitchen of this house
in spite of a low level of stove use is undoubtedly the stove pilot lights.
Another reason for this effect is the configuration of the kitchen. This
kitchen is a small, unventilated workspace that is relatively isolated from
the rest of the living quarters. This configuration appears to inhibit the
diffusion of N02 into the other rooms. The sharp drop in measured N0_ con-
centration from the kitchen to the other indoor sampling locations is further
evidence of the slow diffusion of kitchen air to the rest of the apartment.
- 127 -
-------
TABLE 4-14
Spring - Summer (1973) Sampling at House No. 3
DAILY AVERAGE N02 CONCENTRATION AND STOVE USAGE DATA
Date
6/21/73
6/22/73
OVERALL
DAILY
AVERAGE
.
Daily Average N02 Concentration, (Vg/m^)
1-Kitchen
(above stove)
116
111
114
2-Living
Room
75
75
75
3-Upper
Bedroom
53
62
58
4-Outside
42
60
51
Total Stove Use
(min)
Oven
0
0
Burner
17
5
- 128 -
-------
TABLE 4-15
Fall-Winter (1973) Sampling at House No. 3
DAILY AVERAGE N02 CONCENTRATION AND STOVE USAGE DATA
* Date
11/30/73
OVERALL
DAILY
AVERAGE
12/15/73
12/16/73
12/23/73
OVERALL
DAILY
AVERAGE
Daily Average N02 Concentration, (ug/m^)
1-Kitchen
(above stove)
53
53
161
160
220
180
lA-Kitchen
(1 meter
from stove)
47
47
87
93
241
140
2 -Living
Room
28
28
3 -Bedroom
63
58
89
70
4-Outside
35
35
30
30
37
32
Total Stove
use (min)
Oven
0
0
0
75
Burner
20
37
63
48
- 129 -
-------
Indoor sampling locations, outside of the kitchen, had overall average N0?
levels during both sampling periods that were noticeably lower than the
other three structures despite the high concentration in the kitchen.
In Table 4-16 we see that the overall average NOo concentration in
the living room during the summer was 66% of the corresponding N0£ concen-
tration directly over the stove. In the first part of the fall sampling
period, at the same location, the N02 level was only 53% of that measured
directly over the stove. This could be the result of the occupant sealing
off direct access to the living room from the kitchen with a plywood section
between the spring and fall sampling periods. However, such a conclusion is
somewhat conjectural in view of the limited number of complete sampling days
available.
A comparison of indoor/outdoor ratios in the spring and fall (2nd
half) shows the joint effect of stove use and permeability of the apartment.
Note that in the spring the indoor/outdoor ratio for the kitchen is about 2
but drops to almost 1 in the bedroom. In the second half of the fall the
ratio exceeds 5 in the kitchen corresponding to a 7 times higher stove use
than in the spring, but the indoor /outdoor ratio in the bedroom remains above
2 in the fall presumably because of the decreased permeability.
Figure 4-24 is a graph of some of the typical two hour average N02
data from the spring sampling period at House No. 3. The graph shows how
short burner operating times result in considerable increases in N0« concen-
trations in the kitchen which decay very slowly and consistantly remain
higher than outside and other indoor NC^ concentrations. We suspect that
the limited kitchen ventilation and the pilot lights are responsible for
the increased concentrations of N0 in the kitchen of this house.
- 130 -
-------
I
sl-
en
r-»
CTi
60
C
c/a
OJ
60
C
co
CO
o
EC
CO
(0
co
> /-N
o >>
4-J Cd
C/3 *O
"»^.
co fl
60 -H
2 "S-
cu
^
(3
O
H
4-1
td
CJ
o
i_3
6C
(3
H
rH
a
8
OT
cu
T3
CO
4J
3
O
g
O
M
*"O
cu
a
60
0
rt
^
H
C M
0) CU
43 4J
U CU
4J 3
H
W H
C
cu
43
CJ
4-1
H
^
a o
C 60
td cu
4-J
B cd
O CJ
cd cd
CO 4J
W Q
rH
td
4-1
O
H
H
CU
£3
3
M
cu
O
e
O
o
pvj
cu
o
4-1
CO
s
o
0
4J
CO
CO
^
o
rH
rH
rH
H
O
O
O
rH rH
L»O
sr
*"!
00 rH rH
lO lO
^
n^
m vo i i
i***. vo
i i i
i i i
CO
CM
»
-H
P** ** 4_)
CTl £3 C Cd
rH O CU H
H 43
* 4J CJ M
M cd 4J o
CU H -H O
R -M v^ *£)
I f3 4J
3 CU 3
wo x c5
ffS * "S
H UH o
M CM O T3
a o c
o
CM
O
CM
O
O
o
in 1 rH
CO I
1 1 1
1 1 1
o
oo
00 CO O O
CM in vo
en
r^ oo O rH
-a- oo o
rH
rH
in
CO O rH
m o
H
(U
* en 3
^ 0 0) rH
IM 3 td
rH 60 H f>
cd 3. td o
43 > C -rl
* CO 4-1
W C G 43 td
W O 0) O t-l
M -H 43 -U
H 4-1 O -H r4
"4-1 CO 4-J ^ O
' I* iH O
4-* ^4 CO TJ
CO C 4J 4J
r^ CU O 3
O g M H
- U O
rH CM O O T3
* ° o o C
r«^
O"*
-a-
m
CM
0
o
CM 1 1 rH
CO 1 1
CTi
O Oi O CM
i-» co m
till
1 1 1 1
oo
en
o oo o «*
sr r- o
rH t-H
CM
vO
o o I m
oo o I
rH rH
O /-s CU
(3 <4HCO 3
O rH S CU rH
0 td ^- 3 ct)
CU 43 60 rH >
CO 3. td O
^ > fi -H
« CU 4J
en C3 (3 43 cd
r-s O CU O >-i
O> -H 43 4->
rH 4-> (_> -H l-l
td 4J A! O
« M -H O
M 4J ^(i CU T)
CU C 4-1 4J
4-> (0 O 3
H C itj CU -^
is o s r< n
10 0
rH MH MH O
rH CM O O T)
td o -c
td
TJ
0)
C
O
C3
O
S-l
o
td
4J
cd
T)
(3
O
CU
CO
td
M
- 131 -
-------
1 1 1
I I I I I II i I (I I I I
1 1 1 1
r OJ
OJ S-
> 3
OJ -M
r O
t- S-
OJ -!->
Q. CO
C E OJ
QJ cn o ~o
-C C O T-
O T- S- 00
4-> > "O 4->
i- -r- OJ 3
^ _J CO O
: i
o
QJ -r i-
C E OJ C
S- C T-
3 n s. E
03 i 3
CO «*
I I I I I
I I I I I I I I I I I I I I I I I
O
o
CM
CM
O
O
00
o
o
o
o
o
o
o
VO
o
CM
CM
vr>
CO
o
|£
o
o
CM
CM
O
§
o
o
CM
O
O
o
^^
8
o
o
CM
o
o
to
CM
O
o
CM
O
in
o
o
o
IT)
CVJ
10
-------
Figure 4-25 presents a more detailed look at a portion of the data
contained in Figure 4-24 by utilizing the five-minute data obtained directly
from the strip charts. The immediate response to stove operation is quite
evident by observing the kitchen trace at approximately 0815. Notice that
approximately one hour earlier the living room NC>2 concentration shows a sharp
peak. Examination of the stove use log kept by the occupants and the original
strip chart showed that one burner was turned on for 4 minutes at the same time
the living room sampling location was in its 5 minute active mode. No effect
of this brief stove use is recorded by the kitchen since the kitchen location
was not actively sampling until 15 minutes later. During periods when the stove
is inactive the indoor and outdoor concentrations generally rise and fall
together which shows the influence of outdoor N02 penetrating the structure.
At all times, however, a sharp differential existed between the kitchen and
outdoor concentrations.
In view of the considerable loss of N02 data at this house at non-
random times, we do not present frequency distributions for N02 at House No. 3.
4.3.2 Nitric oxide (NO)
Tables 4-17 and 4-18 present the daily average data for NO at House No. 3
during the spring-summer and fall-winter periods respectively. Table 4-19
summarizes the average data from both periods to facilitate comparisons. As in
the case of NO-, there are relatively few complete days during each sampling
period on which to base our evaluations.
While outdoor N02 levels were 1/3 greater in the summer than in the winter,
outdoor NO was about the same during the spring and second half of the fall
period and about twice as high in the first part of the fall period as compared
to either of the other two periods. These relatively higher outdoor concentra-
tions account for some of the higher indoor levels of NO found in the winter
- 133 -
-------
CU !~
> 3
O) +->
S- S-
cu +J
Q. CO
Q-
M-
O
O
O'
C E OJ
OJ en O ~U
-c c o -r-
O -i- S- (/)
4-> > -O -P
r- -r- O) 3
^ _l CQ O
: i
:.-?gE?5£?
c I
o I
s- c
O) -r-
3 CO
03 i
a
(U
e w
ex w
H (!)
3 H
cr
w
X
\
\
/
T
O
cu
CQ
L
o
o
CM
O
O
CM
CM
O
O
O
(NJ
O
O
CO
o
o
UD
O
O
=3-
O
O
CM
8
o
O CM
CO
o ^
o
o
VO
o
o
o
o
o
CM
o
CM
<*
LU
o;
C3
t-J
C2
O)
3
f
E
O)
u".
to
o
s:
O)
o co
c§ 2
CM «
o cn
Q-
oo
o
4->
CO
^C
cu
I
CO
CD
to
o
o
CO
o
LT>
CM
o
o
CM
o
ID
o
o
o
in
o
- 134 -
-------
TABLE 4-17
Spring - Summer (1973) Sampling at House No. 3
DAILY AVERAGE NO CONCENTRATION AND STOVE USAGE DATA
Date
6/21/73
6/22/73
OVERALL
DAILY
AVERAGE
Daily Average NO Concentration, (pg/m )
1-Kitchen
(above stove)
45
60
53
2-Living
Room
33
50
42
3-Upper
Bedroom
23
45
34
4-Outside
13
29
21
Total Stove Use
(min)
Oven
0
0
Burner
17
5
- 135 -
-------
TABLE 4-18
Fall-Winter (1973) Sampling at House No. 3
DAILY AVERAGE NO CONCENTRATION AND STOVE USAGE DATA
Date
11/30/73
OVERALL
DAILY
AVERAGE
12/15/73
12/16/73
12/23/73
OVERALL
DAILY
AVERAGE
Daily Average NO Concentration, (pg/m )
1-Kitchen
(above
stove)
111
111
92
97
144
111
lA-Kitchen
(1 meter
from stove)
95
95
67
77
158
101
2-Living
3-Bedroom
Room
I
42
42
57
58
78
64
Total Stove
use (miri)
4-Outside Oven
40*
40
19
21
20
20
C
0
0
75
Burner
20
37
63
48
*Based on 11 out of 12 valid 2-hour values
- 136 -
-------
CTi
rH
I
w
I
CO
60
C
CO
rH
cd
TJ
e
cd
60
c
H
rt
p.
CO
CO
CU
CO
o
w
4-
o
CU H
CO
» k
CU rl
> X- fl)
o > c
4-j cd ^-
co TJ 3
>- PQ
cu c
60 -r "
cd ^E
O
H Pi
^
01
^
^1 O
C CU 4J
CU 4J CO
A cu
S B S
H rH ^
cu
o
4-)
ca
c
01 O>
<{ £>
0 O
.Li ^v
4-.I ri_f
H cd
^
^4
TJ O
C 60
cd cu
4J
a cd
0 C_>
ca
cd cd
0) 4-1
co cd
Q
rH
i |
rH
O
0
o
*>
rH 1 rH
CN 1
CN
«* * rH
CO vO
o
0
CM CTl CM
1 1 1
1 1 1
CM
m
CO O CN
m o
t-H
31
CO rH
S cd
^ >
60 0
co n a -H
r^ o) 4-1
CTl " J2 Cd
rH C CJ M
0 4J
-H -H >-i
M 4J M Q
cu cd o
S t-J CU TJ
H 4-1 4-J 4->
9 c o 3
co cu SO
1 O Ol
00 C l-l rl
Cl O O
H U U-| 0
H 0 TJ
Cu O c!
co J3 &-s i i
o
CM
o
CM
0
0
o
O 1 rH
*^ 1
in
o
CM 00 ~* rH
*vj" co ^"
oo
CO
m v£> o CM
CTl 00 O
00
r*.
rH O CM
rH O
rH rH
CU
* 3
/CO CU rH
M-l g 3 Cd
rH -^ r-t >
cd 60 cd O
J3 3. > C -H
CU 4-1
u > C J2 cd
co a o) a t->
r< O ^C 4->
H -H O -r-l rl
MH 4-J 4J ^ O
^ cd -H o
rl r^ 01 TJ
CO 4J 4J 4J
r^ (3 o 3
CT. Q) X S 0
rH O Cd 0) ->>
C e rl rl
« O O
rH O O TJ
CO O o C
sj-
r*^
en
^~
in
CM
o
o
O 1 rH
CN 1
0
CN
O- OO CO CO
so in **o
m
o
rH rH 0 m
O CTl O
I i
rl ti
m
m
rH o m
rH O
rH rH
TJ CU
C ^ 3
O MHCO CU r-l
O rH 0 3 Cd
CU Cd ^ rH >
CO J3 60 cd O
^ 3. > a -H
CU 4->
co > C J3 cd
r- c cu o ri
CTl O rC 4-1
H -H O -H rl
4-1 4-1 ^ O
Cd -H O
M M ^ci CU TJ
QJ 4-J 4-1 4-J
4J C 0 3
a cu x e o
H O cd CU ~~~
& C S H rl
1 O O
rH U U-| 14-| O
rH O O TJ
cd O C
CU
c
o
c
o
r<
o
cd
TJ
g
TJ
CU
CO
cd
ca
- 137 -
-------
but in addition the apartment being less permeable in the winter also allows
build up of NO indoors. To illustrate this point, note the pattern of
indoor/outdoor ratios for the spring and second half of the fall in Table
4-19. As in the case of N02 (see Table 4-16) this comparison shows the
joint influence of stove use and house permeability.. In addition in com-
paring these two tables we can see clearly the difference in behavior of NO
and NO-. Recall that in the spring the indoor/outdoor ratio for N0£ dropped
to almost 1 in the bedroom. While there is a significant drop in this ratio
between the kitchen and bedroom for NO during this period, the bedroom ratio
is 40 percent higher for NO than N02. This difference is shown even more
clearly in comparing indoor/outdoor ratios for NO and N0£ in the second half
of the fall period. The ratio for NO drops from 5.5 to 3.2 between the
kitchen and the bedroom while that for N02 drops from 5.6 to 2.2. These
observations substantiate the results of the diffusion experiment carried
out in House No. 2 where we noted the reduced half Life of N02 as compared
with that of NO.
A graph of the two-hour average data from the spring shown in Figure
4-26 is essentially similar in shape to Figure 4-24 for NOn. The only signif-
icant difference is that there is not as sharp a drop in concentrations
between the kitchen and the other rooms of the house. This phenomenon, we
believe, illustrates the difference in decay characteristics of NO and N02 as
discussed elsewhere in the report.
As in the case of NOo we do not present frequency distributions for
NO because of the limited data here.
4.3.3 Carbon Monoxide (CO)
Tables 4-20 and 4-21 present the daily average CO concentrations at
House IIo. 3 during the summer and fall-winter sampling periods respectively.
- 138 -
-------
1 I I I
1 I
I I I
S- C
O) !-
c E s- .
S- CL) C
3 ro c -
CO r S_ E
3
i CO =*
l_
I I I I
I I I
o
o
CM
CM
O
o
00
o
o
ef
cu
Osl
O
O
V£>
O
O
O
CM
O
O
CM
O
O
00
O
O
«a-
o
o
o
o
o
U3
O
o
o
CM
O
10
00
LlJ
Qi
0)
O>
2
OJ
>
C
-------
TABLE 4-20
Summer (1973) Samr1J-~ qt House No. 3
DAILY AVERAGE CO CONCENTRATION AND STOVE USAGE DATA
Date
6/22/73
6/23/73
6/24/73
6/25/73
6/26/73
6/27/73
7/06/73
7/07/73
7/08/73
7/09/73
7/10/73
7/11/73
7/12/73
OVERALL
DAILY
AVERAGE
3
Daily Average CO Concentration, (wg/m )
1-Kitchen
(above stove)
3440
3910
3910
4320
3260
3780
4090
5900
4570
4340
5370
5150
4010
4310
2-Living
Room
3-Bedroom
!
2720 2460
3210 3210
2720 2370
3010 3050
2190
2040
2820
5010
3590
3270
4490
3920
2730
3210
2080
2090
2870
4240
2410
1860
2370
2920
2870
2680
4-Outside
1810
2950
1790
2600
1820
1650
2470
3920
2000
1470
1780
2220
2540
2230
Total Stove Use
(min)
Oven
0
34
0
0
65
0
0
0
0
30
0
0
52
Burner
5
28
77
55
25
21
0
14
24
0
14
0
38
- 140 -
-------
TABLE 4-21
Fall-Winter (1973) Sampling at House No. 3
DAILY AVERAGE CO CONCENTRATION AND STOVE USAGE DATA
Date
-
11/29/73
12/07/73
12/08/73
12/09/73
12/10/73
12/11/73
OVERALL
DAILY
AVERAGE
12/14/73
12/15/73
12/16/73
12/21/73
12/22/73
12/23/73
12/24/73
12/25/73
OVERALL
DAILY
AVERAGE
2
Daily Average CO Concentration, (yg/m )
1-Kitchen
(above
stove)
6870
7150
7130
8340
9190
8220
7820
8860
6150
6450
7680
6520
6740
6980
7650
7130
lA-Kitchen
(1 meter
from stove)
5360
5830
6010
6990
7530
6800
6420
7310
4590
5370
7390
6500
6850
7230
7730
6620
2 -Living
Room
3970
4750
4570
5340
6160
5650
5070
3-Bedroom
6820
4230
4770
6560
4850
5530
5400
5810
5500
4-Outside
1860
4100
2660
3290
4920
3440
3380
2530
1810
2330
3160
2110
2880
2390
2740
2500
Total Stove
use (min)
Oven
0
0
51
15
0
0
343
0
0
0
70
75
72
0
Burner
73
25
50
91
84
5
29
37
63
36
103
48
14
28
- 141 -
-------
Table 4-22 summarizes the data from all sampling periods.
Indoor CO concentrations are more strongly influenced by outdoor con-
centrations than by stove use. This experience is similar to that from the
other houses. In contrast to v- *T^. 1, the fall-winter CO levels out-
side were somewhat higher than those measured in the spring. We attribute
this to differences in the meteorological conditions in the two separate
sampling periods.
The indoor kitchen concentrations for the fall sampling period
approached the air quality standard of 10,000 pg/m^ for an 8-hour averaging
period. This was due primarily to the high level of carbon monoxide measured
outdoors. A secondary reason is the isolation of the kitchen from the rest of
the living space. This results in less diffusion and dilution of the stove
effluent. Overall, the contribution of carbon monoxide by the stove is of the
same order as originally measured by TRC in 1969 and 1970 in our earlier study.*
Frequency distributions of the CO data at House No. 3 for the summer and
first and the second week of the fall sampling periods, are presented in Figures
4-27} 4-28, and 4-29 respectively. We did not experience the same loss of
CO data that we had for N0£ and NO at this house. Tabulations of all two-hour
average CO data for House No. 3 for the summer and fall sampling periods are
presented in Appendices B-4 and B-5 respectively.
All three of these distributions are basically similar in shape except
that the fall frequency distributions, Figures 4-28 and 4-29, show signifi-
cantly higher concentrations, furthermore, there is greater separation of the
*See Reference 1, Page 1
- 142 -
-------
CM
CM
I
w
CO
!=>
8
co
CO
8
W
CO
r-
ON
00
C/3
T3
00
H
M
ft
co
I
CO
!§
O
K
01
CO
£3
OJ x-s
^ ^"1
O cfl
4J T3
CO ~~-
S
Q) iH
60 0
cd N^
>H
01
^
PI
o
4-1
cd
CJ
o
c?
M
H
rH
p
g
53
w
rH
cfl
4-J
O
H
rl
01
C
rl
3
FQ
C
01
^
01
-o
CO
4-1
3
o
!
1
1
J
1
(
a
5
3
H
3
U
PQ
00
P! 3
r
H O
> 0
V
H
H K
J
^
cu
rl 0
C 0) 4J
CU 4-1 W
Si CU
use
4J
3^
c
01
s
4J
H
^
^
^J
'"U o
P! ClO
(fl 01
4J
a «
0 CJ
co
cfl cd
01 4-1
CO Cfl
Q
O
H W
01
O
4J
W
>
O
cfl
V /
CO
CO
CM
»^
^
0
0
O 1 rH
CO 1
CM
CM
O
CM
O CN rH
oo vo
VO
CN
sj-
0 «* rH
CN
CO
1 1 1
1 1 1
CO
ON
O O rH
rH O
CO H
sf
CO CU
0 3
^ rH
N) cfl O
CO 3. > vH
r>- 4-i
ON * d Cfl
rH f3 0) rJ
O &
> -H O (-<
M 4-1 4-1 O
CU Cfl -rl O
£i rl _*^i 'O
a 4-1 4-1
3 (3 -3
V3
CO 60 cd O
,C 3. > P! -H
01 4J
CO 0 01 U rl
M O ,G 4J
H -rl U TH Vi
MH 4J 4J ^
CO 60 fl) O
^ 3. > (3 -H
0) 4J
CO ** C3 i^J cfl
^ Pl 0) CJ rl
CJN O Si 4J
rH -H O -H H
4J 4-1 ^ O
> cd -H O
rl rl V^ Ci) T3
OJ 4-J 4-J 4-J
4-J C O 3
.s s g § ^
^ g 0 M M
rH CJ MH MH O
i-H O O 13
CO O Pl
Pn U 6^ B-S rH
- 143 -
-------
10000 -
CO
E
en
to
S_
-------
50000 "
25000 --
2
10000--
"a 5000 - -
o 2500 --
CJ
c
o
o
o
o
1000 --
500..
250--
100.
Kitchen - over stove
Kitchen - approximately 1 meter from stove
Living Room
Outside
H 1 1 1
5 10 20 30 40 60 80 90 98
% of values less than stated concentration
FIGURE 4-28
House No. 3 - Frequency Distribution of CO Concentrations, Five-minute Data
Fall, 1973, 1st half of period
- 145 -
-------
co
E
->v
CD
ra
-M
C
OJ
o
c
o
o
o
o
50000-
25000 -
10QOO--
5000--
2500
looo--
500
250
100
Kitchen
Kitchen
Bedroom
Outside
over stove
approximately 1 meter from stove
-\ 1 f-
5 10 20 30 40 50 60 70 80 90 95 98
% of values less than stated concentration
FIGURE 4-29
House No. 3 - Frequency Distribution of CO Concentrations, Five-minute Data
Fall, 1973, 2nd half of period
- 146 -
-------
grouped indoor distribution curves as related to the outdoor curves in the
fall than in the spring. This result is probably the result of the more
closed up attitude of the house in the fall as compared to the spring.
4-4 House No. 4 - Suburban Ranch Home
We chose this house to replace House No. 2 for the fall-winter 1974
sampling period. The following locations were selected for the entire two
week sampling period at this house:
Station 1. Kitchen-above the stove
Station 1A. Kitchen-1 meter from the stove, over the sink
Station 2. Living Room
Station 4. Outside
Sampling In one of the two bedrooms for half the test period was not
possible because of the inconvenience it would have caused the residents.
4.4.1 Nitrogen Dioxide (N02)
Table 4-23 is a summary of the daily average N0£ and stove use data
for seven complete days during the winter sampling period. The overall
3
average NCL concentration in the kitchen, 213 jig/m , was the highest for all
the houses tested in this task. This overall average was approximately 5.5
times greater than the outdoor N02 level of 39 ug/m^. As we found from
sampling at the other three houses, the NC^ levels indoors are In-
creased by stove usage. Stove age and condition are also factors contri-
buting to the high NC>2 levels at House No. 4. The level of stove activity,
an average of 66 oven minutes and 73 burner minutes per day, was one of the
highest that we encountered in the field sampling program. Stove use in
- 147 -
-------
Winter (1974) Sampling at House No. 4
DAILY AVERAGE NO CONCENTRATION
AND STOVE USAGE DATA
Date
1/31/74
2/01/74
3
Daily Average NO Concentration (yg/m )
1-Ki tchen
Over Stove
177
LA-Ki tchen
1 M. From
Stove
103
f
187 106
2-Living Room
83
53
i i
2/02/74
2/07/74
2/09/74
2/10/74
2/14/74
OVERALL
DAILY
AVERAGE
Overall N0?
Average :
1. As % of
Maximum
Ki tchen
Level
2. As % of
Remote
Kitchen
Level
3. Indoor/
Outdoor
Ratio
197 i 78
246 173
194 ; 136
189 123
304 200
213
100
5.46
120
56
100
3.08
54
135
90
84
136
71
4-Outside
70
Total Stove Use
(Min)
Oven
65
23
25
42
38*
44
32
39
91
Burners
38
104
30 64
131 73
10 ^ 57
0
135
66
_ _ 4 i
33
59
1.82
. .
1.00
1
68
110
73
....
* Based on 11 out of 12 valid 2-hour values.
- 148 -
-------
in House No. i was about the same as the winter use level in House No. 4.
The daily average NO concentrations were generally highest on days
of high stove activity. Another factor affecting the indoor average N0~
levels was the corresponding concentration outside, but such an effect
could not be established with precision based on the available data.
Comparison of the twenty-four hour averages for each of the four
sampling locations shows a sharp decline in N0« levels within a short distance
from the stove. Station 1A was 1 meter from the stove and the average NO,,
concentration decreased 44% from the levels measured directly above the
stove. We did not observe this sharp drop in NO. within the kitchen
(comparing concentrations at Station 1 with Station 1A) at either House No. 1
or No. 3.and initially believed that the outside door located close to the
stove was diluting stove effluents since neither of the other houses had this
configuration. However, as we shall see later this apparent dilution effect
did not show up with either NO or CO. Therefore, the outside kitchen door
cannot be considered as an important factor in affecting the pattern of
indoor concentrations in House No. 4. We believe that the rapid disappearance
of NO generated by the stove in this house is enhanced by mechanisms such as
adsorption, absorption and reactions which are not present in the other houses.
One possible explanation might be the effect of high humidity within the
kitchen of this house. Sampling was done during cold weather when the house
was tightly closed, and with the considerable amount of cooking done in this
house, the relative humidity in the kitchen could have been quite high which
in turn might have enhanced the disappearance of N0~ by one of several mechan-
isms. The relative higher temperature in the kitchen should not be discounted
as a contributory factor.
Figure 4-30 shows the diurnal pattern of N0» concentrations in House
No. 4 in winter. This graph like the others of this type presented earlier
- 149 -
-------
,ui/6rt
- 150 -
-------
g
(O
L-
c
03
O
c
o
o
CM
O
600
575
550
525
500
475
450
425
400
375
350
325
300
275
250
225
200
175
150
125
100
75
50
25
0
' 1 Burner on i
4 min. *i
1 Burner onl
_ 5 min. """I
il
~~ Oven on
30 mini
1 Burner onl
_ 7 m i n . A
1 Burner on 1
_ 7 min. J
~1 Burner on I
2 min._»]
1 Burner 1
_on 12 minTl
1 Burner on
4 min. "i
-
i
r /\
i- ' \
/\
\
i
*l| Kitrhpn over stove
1 1 - l\ 1 ^^[ICII WVtl OI/WTC
| i Kitchen - 1 metey- frnm Qtnup
Living Room ~
i A i " I
1 Outside _
i
i
1 1 Burner on
U- 6 m i n . _
1
| 1 1 Burner on
r*-12 min. _
1 Burner on
6 min. H
1 Burner on l Burner on
5 min; »4 3 min. n _
1 Burner on
i C m n n ^
1 J III 1 1 1 ^i A
! 1 Burner on / \
x., s\ R min / \
v. -'^\s / \ mm. i \_
i i %s/ \ /
~x" -J/ r~x 'N '""N--' -
A / \ A~
/\ / A\/\ / *
-, / v ^ ' ^*s y / S
~^-~^ ^'" ~~~' ^^~, / ~
" "_ ^~" \ " ^-^/
TIII ii i i i i i i i
0400 0800 1200 1600 2000 2400 0400 0800 1200
2/2 2/3
Time>[hrs]
FIGURE 4-31
House No. 4 - A Time History of N02 Concentrations, 2-Hour Averages
Winter, 1974
- 151 -
-------
for House No. 1 (Figures 4-1 and 4-2) are based on a "composite day"
developed from 7 days of data. This graph shows the dominant influence of
the peak associated with preparation of the evening meal. We are not able
to explain the dip in the NC^ value in the kitchen 1 meter from the stove
'(and to a lesser degree in the living room) which occurs in the early
afternoon.
Figure 4-31 is a graph of 2-hour average NO concentrations for a
typical period at House No. 4. As we found at the other houses, N07 levels
immediately respond to stove activity. This stove use also becomes readily
apparent as N02 concentrations increase throughout the house. Periods of
intense activity generally create higher concentrations. But these peak
levels did not persist after the stove was turned off. The graph also shows
the distinctly higher concentration found at Station 1, and the more closely
related NO- levels elsewhere indoors. A complete list of the 2-hour NO-
averages can be found in Appendix B-6.
Figure 4-32 is a frequency distribution of all of the five-minute
averaged NO,, data. This distribution shows that 70% of all the five-minute
3
NO. data in the kitchen above the stove was in excess of 100 ug/m . Note
that there is a logical separation of curves for the kitchen (over the stove)
and the living room. However, the curve for the kitchen location near the
door does not have a logical relationship to the others. As we mentioned
before, the rapid loss of NO- between Stations L and 1A for unexplained
reasons causes this apparent anomaly.
4.4.2 Nitric Oxide (NO)
Table 4-24 summarizes the daily average NO levels and the stove use
data at House No. 4. As we found with NO-, the NO levels at this house were
the highest we encountered in the field sampling program. NO levels at
Station 1 averaged 14 times greater than those outside. As with NO- these
high average NO concentrations are caused primarily by the high levels of
stove activity with stove age as a contributing factor also. A complete
listing of the 2-hour average NO concentrations can be found in Appendix B-6.
- 152 -
-------
1000
500
">E 250
05
° 100
2
4->
C
O)
o
c
o
o
oo
O
50
25 -
--- Kitchen - over stove
Kitchen - 1 meter from stove
Living Room
*- Outside
10
5 10 20 30 40 50 60 70 80 90 95 98
% of values less than stated concentration
FIGURE 4-32
House No. 4 - Frequency Distribution of N02 Concentrations, Five-minute Data
Winter, 1974
- 153 -
-------
TABLE 4-24
r (1974) Sampling at House No. 4
DAILY AVERAGE NO CONCENTRATION AND STOVE USAGE DATA
Date
1/31/74
2/01/74
2/02/74
2/07/74
2/09/74
2/10/74
2/14/74
3
Daily Average NO Concentration (yg/m )
1-Kitchen j LA- Kitchen 2-Li
Over Stove j 1 M. From
Stove ;
<
322 272 i
f
264 , 212
281 222
410 : 386
224 185
236 : 198 ]
' i
400 352 ':
"
I '
OVERVLL
I '
DAIL" 1 :
AVERAGE
305 j 229 |
Overall NO ! j \
Average: 1 i
1
i i
f
1. As % of i '
!
-maximum
Kitchen
Level 100 75
I
2. As % of
Remo te
Kitchen !
Level
3. Indoor/
Outdoor
Ratio
i nn
16.1 12.1
Total Stove Use
: (Min)
ving Room ] 4-Outside \ Oven Burners
' i
' i 1 i
' ' > 1
150 ! 33 65 : 38 ;
95 12 91 ! 104
i
127 : 8
352 19
30 ' 64
131 ; 73
160 24 10 57
177 16
0 68
!
323 21
135 110
' j
i
156 19
66 73
.
51 ; 6 *
i
68 8
8.2 1-00
- 154 -
-------
The conservative behavior of NO as compared with NCL is demonstrated
by comparing the relationships of living room to kitchen (over the stove) for
NO with NO- as shown in Tables 4-24 and 4-23. The living room value for NO
is 51 per cent of the kitchen value, and for NO- the living room value is
only 33 per cent of the kitchen value.
Figure 4-33 is a graph of the two-hour average NO concentrations for
the same time period as shown for NO- in Figure 4-30. Comparing these two
graphs shows peaks occurring in the same time periods of stove use. However,
NO obviously does not decay as rapidly as NO- as stove effluents diffuse
through the house. This confirms our previous findings in the diffusion
experiment we conducted at House No. 2 in which the NO half-life was about
three times greater than the half-life of N0~. The two-hour NO averages
indoors are much more closely related than shown for NO-. They are also
much higher than the outdoor NO levels during this time period.
A frequency distribution of all five-minute averaged NO data is shown
in Figure 4-34. The most striking characteristic shown in this graph is the
wide separation between indoor and outdoor concentrations. With all three
indoor locations having basically similar occurrences of any given NO con-
centration, our earlier observations are further substantiated.
4.4.3 Carbon Monoxide
The daily average carbon monoxide concentrations at House No. 4 are
presented in Table 4-25. As we found in the case of NO, carbon monoxide levels
were exceedingly high indoors. The overall average CO concentration above the
stove was approximately 3.8 times the overall average measured outdoors. This
is substantially higher than we found at the other three houses. Carbon monoxide
levels at House No. 4 appear closely related to stove use. The stove as the
primary cause of high indoor CO levels can be seen by comparing the daily average
concentration for February 1 and February 2. On February 1 the outdoor CO con-
centration was somewhat lower than that on February 2, yet kitchen concentrations
- 155 -
-------
500
400
1 Burner on
2 min.-*
1 Burner on
-12 min.»<
1 Burner on
4 min.-*^
2.
to
c
o
Ol
u
o
o
300
275
250
225
200
175
150
125
100
75
50
25
0
1 Burner on
4 min.»
1 Burner en I
5 mm. H
Oven on I
30 min.-»^
1 Burner on I
7 min. H
Kitchen - over stove
Kitchen - i M. from stove
Living Room
Outside
/ in i 11 - t
1 Burner on » ll Burner on
I- nrin.-w j\ **~6 min.
I \ |J Burner on
12 min.
1 Burner on I
6 min,-»J
1 Burner on
3
1 Burner on
\
I I L
i 1 1
1 1 I
0400 0800 1200 1600 2000 2400 0400 0800 1200
2/2 2/3
FIGURE 4-33
House No. 4 - A Time History o'f NO Concentrations, 2-hour Averages
Winter, 1974
- 156 -
-------
2500 -
CO
£
Ol
o
-!3
-------
(over the stove) were higher on the 1st as compared to the 2nd because of the
higher stove use. The interplay between indoor and outdoor CO concentration is
probably minimized during the colder season when the house is closed up. At
this time, the indoor CO levels are more responsive to stove activity.
The behavior of carbon monoAxue onows it to be even more persistant than
NO. As shown in Table 4-25 indoor CO levels averaged within 90% of the concen-
tration directly above the stove. On several days the average CO concentration
was higher at the remote kitchen location than directly above the stove. The
reasons for this are not clear and some characteristics of the specific situation
are unknown.
Figure 4-35 shows a time history of 2-hour average CO concentrations for
a typical sampling period at House No. 4. This graph shows clearly the conser-
vative nature of CO especially when compared to the time histories for N0? and
NO for the same period (Figures 4-31 and 4-33). In fact, the CO time histories
for the three indoor locations are almost identical and distinctly separate from
the outside values. Figure 4-35 also shows the increases in CO levels with stove
use. Carbon monoxide levels decrease after stove use more slowly than NO,, but
similar to NO. The CO concentrations at the indoor sampling locations appear to
increase and decrease in unison with incidents of stove use. The compilation of
all the two-hour CO averages is in Appendix B-6.
Frequency distributions of all the five-minute averaged CO data are shown
in Figure 4-36. In this format of data evaluation, we see again the similarities
between CO and NO (compare with Figure 4-34). All three indoor CO levels cor-
respond closely and are distinctly higher than the outside values. Approximately
3
40% of the indoor concentrations are in excess of 10,000 ug/m .
- 158 -
-------
TABLE 4-25
Winter (1974) Sampling at House No. 4
DAILY AVERAGE CO CONCENTRATION AND STOVE USAGE DATA
Date
1/31/74
2/01/74
2/02/74
2/04/74
2/05/74
2/14/74
OVERALL
DAILY
AVERAGE
Overall CO
Average :
1. As % of
Maximum
Kitchen
Level
2. As % of
Remo te
Kitchen
Level
3. "Indoor/
Outdoor
Ratio
<*
Daily Average CO Concentration (yg/m3)
1-Kitchen
Over Stove
8650
9150
8860
8870
10840
8710
9070
100
3.76
lA-Kitchen
1 M. From
Stove
8530
8890
9210
9470
10910
7690
9000
99
100
3.73
3-Living Room
7730
8020
8450
8430
9790
7180
8190
90
91
3.40
4-Outside
2390
2010
2500
2300
4070
1190
2410
27
27
1.00
Total Stove Use
(mln)
Oven
65
91
30
0
140
135
85
Burners
38
104
64
233
188
110
116
- 159 -
-------
Kitchen - over stove
Kitchen - 1 "^ from stove
Living Room
Outside
E
CD
1 Burner on I
14 min.-4
1 Burner on I
3 min. -wl
1 Burner on
3 min.
1
1 Burner
3 mi
urner on I
7 min.-d
1 Burner
Oven
I I I I ^^ ' \J V t I I
Burner on on ,J L
11 min.-J 65 I T
1 Burner
6 mi
1 Burner on
5 m
er onj
in.-w
er on
in. -^
rt>
S-
O)
u
c:
O
o
o
0400 0800 1200 1600 2000 2400 0400 0800 1200
1/31 Timef,[hrs] 2/01
FIGURE 4-35
House No. 4 - A Time History of CO Concentrations, 2-hour Averages
Winter, 1974
- 160 =
-------
100000
50000
25000
O)
o
c
o
o
o
10000
5000
2500
1000
-- Kitchen - over stove
Kitchen - 1 meter from stove
Living Room
Outside
I
l
5 10 20 30 40 50 60 70 80 90 95 98
% of values less than stated concentration
FIGURE 4-36
House No. 4 - Frequency Distribution of CO Concentrations, Five-minute Data
Winter, 1974
- 161 -
-------
TASK 3
INVENTORY OF
INDOOR SOURCES
- 162 -
-------
TASK 3 - INVENTORY OF INDOOR SOURCES
1.0 INTRODUCTION
The purpose of this task is to identify actual and potential sources
of indoor air contamination other than gas stove emissions. These sources were
to be identified in two of the homes where indoor/outdoor sampling was carried
out. Then, based on the results of this general and preliminary survey, those
source categories judged to be important in determining indoor air quality and
which could be quantified were to be studied in greater detail by an analysis
of their activities in the homes of TRC employees.
In the course of the study we determined that the indoor source other
than gas stoves which appeared to be most significant and was amenable to
quantification was the use of aerosol products. Therefore, the bulk of this
task was devoted to this indoor source category.
- 163 -
-------
2 r SUMMARY AND CONCLUSIONS
We have carried out a two-phase study to identify and, to the
extent possible, quantify sources of indoor air contamination. We found
that potential indoor sources take many forms. The emissions characteristics
are highly variable and are related to c* */ide range of household operations.
The one category of source found to be common to the households surveyed and
which promised to be reasonably quantifiable was the use of products
dispensed as aerosols by propellants.
Estimates were made for emissions of propellants into indoor atmospheres
based on a survey of aerosol use patterns among TRC employees.
From the results of this work we draw the following conclusions:
1. Indoor sources of air contamination take many forms and are
highly variable as to location in the home, intensity and
frequency.
2. Quantification of indoor emissions of air contaminants is not
straightforward and much more work is needed in developing
appropriate emission factors.
3. The most common and important sources of indoor air
contamination were identified as:
a. Smoking
b. House cleaning activities
c. Cooking
d. Use of aerosol products
4. Of the important source categories identified, the only one whose
quantification could be attempted within the scope of this study
was use of aerosol products.
- 164 -
-------
5. A wide range of "active" ingredients and to a lesser extent pro-
pellants are used in aerosol form. We were able to determine
typical active ingredients for many aerosol products but not
specific quantities of each ingredient. For this reason no quan-
titative estimates of emissions were made for the active ingredients.
6. Fluorocarbon propellants are used in an estimated 75 percent or more
of the aerosol products. Other propellants are used but in much
smaller quantities.
7. Based on aerosol use data in a survey of TRC employees, we conclude
that propellant concentrations in the home are usually well below
the TLV's for these materials. However, combinations of circumstances
could produce concentrations approaching or exceeding these levels.
8. The co-existence of aerosol product active ingredients, propellants,
and contaminants from other sources in the home could produce an
environment capable of producing adverse health effects. This whole
area needs further study.
- 165 -
-------
3.0 SURVEY RESULTS
3.1 Preliminary Interviews and Inspections
The two houses chosen for a generalized survey in indoor sources
were House Nos. 1 and 3. A general description of their lay-out and other
physical aspects is included in the Task 2 report.
In surveying the two houses, we used a list of possible sources of
indoor air contamination as a basis for our interviews with the homeowners.
This list is shown as Table 3-1.
Table 3-2 presents the results of interviews with the householders in
Houses 1 and 3 based upon the format presented in Table 3-1. As one might
expect, there is considerable variability in the habits and practices in
these two homes which are capable of creating indoor air contamination.
We discussed this survey with many TRC employees and determined that the
variability (in character, time, degree and location) in practices which can
cause indoor air contamination is typical.
Many of the sources were deemed to be extremely intermittent (e.g.,
interior painting) or so variable in nature (e.g, hobby and home repair
activities),at least among TRC employees, that further detailed considerations
within this task would have yielded little useful information. We also
found that the incidence of smokers among the TRC staff and their families
was extremely low (less than 10%) and pursuing this potential source in detail
within the population under study would have yielded little information.
We identified cooking, cleaning and the widespread use of products
dispensed with propellants as important and common sources of indoor air con-
tamination. The first two source categories can take many forms.
- 166 -
-------
TABLE 3-1
CHECK LIST FOR IDENTIFICATION OF INDOOR SOURCES
OF AIR CONTAMINATION
1. Personal habits of individuals
a. Smoking
b. Use of spray products such as hair sprays, deodorants,
shaving foam, etc.
2. House cleaning
a. Vacuuming, sweeping and dusting
b. Use of liquid (solvent) waxes and cleaning agents.
c. Use of spray products such as air fresheners, disinfectants,
oven cleaners, etc.
3. Cooking
a. Stove use (included in Task 2) *
b. Types and quantities of foods cooked and methods used.
4. Household maintenance
a. Painting of house interior with solvent, water-based and
aerosol spray paints.
b. Home workshop projects (sawdust, glue solvents, soldering
and brazing, etc.).
c. Automobile repair in attached or in basement garage.
5. Hobbies
a. Model airplane (glue and dope)
b. Photographic dark room (So~ from Hypo, etc.)
c. Woodworking (particulates, solvents, etc.)
6. General
a. Attached or basement garage
b. Use of electric motors (NO , 0~)
X -2
- 167 -
-------
TABLE 3-2
SUMMARY OF INDOOR SOURCES AT TWO TEST HOMES
Source Category
House No. 1
House No. 3
Smoking
Personal Products
Cleaning
Cooking
Household
Maintenance
Hobbies
Basement and/or
Garage Activities
Use of Electrical
Appliances
(Surburban Split Level with (town-house with basement-
basement-8 yea. . ^ J- -attached 2 years old-apartment-no
garage-4 occupants) attached or basement garage-
4 occupants)
Wife smokes, 1 pack/day
Men use spray deodorants.
Women use creams, used in
morning.
Vacuum rugs every other
day-kitchen floor swept
every day-House dusted
2 to 3 times a week, aerosol
dust spray and rug cleaners
used.
Gas stove-mostly roasting
and baking. Most meals
prepared and eaten at home.
Interior painting done
as needed (roughly yearly)
Usually spring or fall.
Very limited indoor
hobbies.
Auto repair and lawn mower
maintenance in attached
garage. Lawn mower
and auto started in garage.
Toaster used daily, blender
seldom used, can opener,
hair dryer and stylers
electric razors, electric
frying pan, television and
radios.
No smokers in family
Spray deodorants used - no
hair spray or shaving foams.
Vacuuming, sweeping and
dusting on erratic schedule-
usually 1 to 2 times a week.
Household spray products
limited to disinfectants,
oven cleaners, and furniture
polish.
Gas stove - mostly roasting
and baking, very little
frying done.
Painting done yearly by
apartment owner.
Wife paints using a variety
of media.
Extensive use of basement
for spray finishing of
pictures (art), refinishing
of furniture and woodworking.
Can opener and blender
(seldom used) hair dryer,
sewing machine used
frequently, electric dryer,
television and stereo.
- 168 -
-------
Quantification of these indoor emissions could only be determined by means
of laboratory and field measurement programs and developing adequate data on
these relative importance in influencing indoor air quality would be outside
of the scope of this project. Therefore, we identified the use of aerosol
products in the home as the category to be studied further.
3.2 Aerosol Product Survey
The use of aerosol products was shown to be prevalent among the TRC
employees interviewed. The variety of products dispensed from pressurized
containers has grown remarkably in the past ten years or so and are associated
with many household and personal care uses. Since the average family employs
a significant number of aerosol products which directly dispense material into
the home air environment, TRC decided to investigate further their emissions.
A checklist of common spray products was distributed among the employees
at TRC and the responses from nearly 40 households were evaluated. Information
was gathered on the usage habits (rate of use, time of use, and the
frequency of use) from which estimates of the quantity of contaminants emitted
to the indoor environment were obtained. We believe that this inventory
represents a cross-section of middle-class Southern New England homes.
3.2.1 Design of the Survey
A check list was prepared and distributed among the employees at TRC.
Information on the usage habits of each household with respect to aerosol
products was recorded. The following product areas appeared on the check list:
- 169 -
-------
Hair Sprays
Breath Sprays
Deodorant Sprays
Hair Removers
Perfumes & Cologne Sprays
Mouth Wash Sprays
Feminine Deodorant Sprats
Medicinal & First Air b^^
Foot Sprays
Shoe Polish Sprays
Shaving Foams
Hair Coloring Foams
Air Fresheners
Window Cleaners
Dust Sprays
Fabric Finish Sprays
Anti-Static Sprays
Stain Repellents
Non-Stick Cooking Sprays
Oven Cleaners
Furniture Polish & Dust Spray
Spot Remover Sprays
Spray Starch
Rug Shampoo Sprays
Disinfectants
Tile Cleaners
Spray Waxes
Veterinary Products
Spray Paints
Craft Adhesives
Car Starters
Insect Repellents
Anti-Rust Sprays
Degreasers
Whipped Cream
Cheese
Cake Frostings
We noted the usage rates, location of use, and the frequency and time of use
for each product used by the households interviewed. Information regarding the
makeup of the households was also recorded.
3.2.2 Results and Discussions
General Characteristics
The inventory consisted of responses from approximately 40 households
which represent essentially half of TRC's employees. Statistics on the households
appear in Table 3-3.
Usage habits of aerosol products among the households surveyed showed
that essentially all families use some aerosol spray product of one kind or
another. The data showed that an average of 10 product categories are used
by each household. Table 3-4 presents the most frequently reported aerosol
products. Six of the nine categories appearing come under the heading of
household cleaning aids. This is of particular consequence since this would
necessarily subject the housewife to a good number of potential air contaminants
during the course of the day. Another major class of spray products is the
Personal Care Category with contributions from deodorant sprays, hair sprays, arid
shaving foams.
-------
TABLE 3-3
DATA ON HOUSEHOLDS FOR AEROSOL USE SURVEY
Type of Residence:
Apartment 55%
House 45%
Number of Persons in Household:
1
2 40%
3 8%
4 24%
5 5%
>5 5%
Size of Residence (No. of Rooms):
3 10%
4 16%
5 26%
6 13%
7 16%
8 11%
>8 8%
- 171 -
-------
TABLE 3-4
AEROSOL PRODUCT CATEGORY USE FOR TRC HOUSEHOLDS
Product Category Pe~^"ntage of Households using this Product
Furniture Polish . 84%
Deodorant Spray 74%
Hair Spray 71%
Disinfectant Sprays 63%
Window Cleaners 47%
Shaving Foams 45%
Oven Cleaners 42%
Air Fresheners 26%
Dust Sprays 18%
- 172 -
-------
Emission Characteristics
Some aerosol products are limited or confined to specific locations of use
in the house. Others are used throughout the residence. The time, frequency,
and rate of use are also shown to vary among spray products. For the most
part, deodorants and shaving foams are most heavily used in the bathroom
in the early morning before work or school and possibly at night before bed.
Most members of the family will be present at their time of use. Hair sprays
are applied on a less frequent schedule. Housecleaning is generally performed
a few times per week, in the morning or afternoon. Chores such as cleaning
the oven are done at greater intervals. In any case, the housewife and any
pre-school children would be exposed to aerosol contaminants from household
spray products.
Usage patterns and rates for the aerosol products appearing in
Table 3-4 are presented in Table 3-5. The quantities of materials used are
based on the numbers of various sizes of cans of a product which the householder
reported using. Window cleaners were not listed and were not considered
lurther since we found that a significant portion of their use is likely to be
out-of-doors.
Propellant Emission Estimates
Most spray systems consist of two components: Functional or "active"
ingredients and the propellent. The functional ingredients comprise the cleaning
agents, perfumes, solvents, polishing waxes, disinfectants, etc. Propellants are
used to dispense the functional portion from the container. Although the exact
proportions and ingredients used in aerosol products are proprietary information,
TRC was able to determine the majority of ingredients for the most frequently used
- 173 -
-------
CO1
C 4-;
Or HI
-' t\
ft
O
Vl
PM
M| 4-|
O
0)
s-sl
O
oo
o
00
o
vD
0)
4-1
3
cu
00
cfl
CO
cu
00
cfl
Vl
01
-d
rH
o
f~j
cu
CO
3
pH
M
0
M-l
o
~ o
Prf
MOM
C O 0
H Vl -rl
> T) (3
H CU iH
*i PQ p
B 8
o o
o o
& m &
MOM
COS
i-l Vl -rl
H O -H
tJ pq p
c
cu
,c
CJ
cu
CO
H |
0
1
rl
H
M
CJ M
H C
C -H M
Vi C 0
o cu
S > MM
. w g c
>i -H -rl
rH CU C C!
J^ 4J Vl CU
cd cfl O ^
w H-l S W
o
bC
a
H
a
Vl
o
S
M
C
H
g
>
W
C
1 O
M O
C (3
rl Vl
e s
O *4-l
S <1
1
M
a
H
a
O
c
o
o
ti
Vl
CU
4-1
4H
<
1
M
rl
e
o
S
G
O
o
C
cu
4-1
m
~>
U-l CO
Pi Vi
H ft
CO CO
H
p
O
PM
CU
Vl CO
3 >>
4J CO
H Vl
CJ PI
Vl CO
En
cd
Vi
ft
CO
4-1
CO
CO
Vi
cu
C
CO
CU
r-\
CJ
C
a)
-------
products in Table 3-4 with the exception of dust sprays. Table 3-6 shows the
wide variety of active ingredients that can be packaged in aerosol form.
Because of the diversity of compounds used as ingredients, the lack of any
information about the quantity of each ingredient in a single product and the
amounts of active ingredients actually used versus the amount emitted to the
atmosphere, we did not attempt to quantify the emission of active ingredients
to the indoor atmosphere. It is our judgement the impact of. the active ingre-
dients can only be determined from a well-designed measurement program, which
was beyond the scope of the present study.
There are a number of propellants used as well as shown in Table 3-6.
Of those listed, however, the Freons appear to predominate in use. Isobutane
is used in some window cleaners, propane, methylene chloride and vinyl chloride
are used in a few hair sprays and nitrous oxide is used in some shave creams and
food products. Although we did not develop any conclusive propellant usage data,
we estimate that Freon propellants are used in at least 75 percent of the aerosol
products. For this reason in estimating propellant emissions we have assumed
that the propellants are fluorocarbons.
By focussing on fluorocarbon propellants we are not suggesting this is
the only class of compounds worth examining. Until we can more accurately deter-
mine the amount of active ingredients emitted to the indoor atmosphere and the
usage of propellants other than fluorocarbons, quantitative assessments of their
impact would be speculative.
Emission estimates are a function of the rate of use, frequency of use,
and the proportion of propellant in the spray container. Taking for an example
the information appearing in Table 3-5 for deodorant sprays, and making certain
assumptions, it is possible to compute the approximate quantity of propellant
- 175 -
-------
TABLE 3-6
TYPICAL ACTIVE INGREDIENTS AND PROPEL1ANTS FOR FREQUENTLY
USED AEROSOL PRODUCTS
Product Category
Furniture Polish
Deodorant Spray
Hair Spray
Disinfectant Sprays
Window Cleaners
Shaving Foams
Oven Cleaners
Air Fresheners
Active Ingredients
Silicone, wax, morpholine
Hydrated aluminum chloride, isopropyl myristate, talc,
triglycerides
Vinyl acetate copolymer resins, polyvinyl-pyrrolide
resins, ethanol, lanolin
Triisopropanolamine, morpholine
Sodium nitrite, isopropyl alcohol, ethylene glycol,
ammonium hydroxide
Stearic acid, triethanolamine, menthol, glycerine
Potassium hydroxide, hydroxyethyl cellulose
polyoxyethylene fatty ethers
Proplylene glycol, morpholine, ethanol
Freon - 11 )
Freon - 12 )
Freon - 114 )
Propellants
Chlorinated fluorocarbons
Isobutane, propane, nitrous oxide, methylene chloride,
vinyl chloride
- 176 -
-------
emitted into the indoor atmosphere during each individual use. If we assume
that the deodorant is used in a household with three occupants, and that each
occupant uses a deodorant product every other day (this is generally consistant
with the inventory data shown in Table 3-5) the number of individual uses each
month will be 45. At 40% propellant, the amount of propellant emitted during
each individual use can be computed as follows :
(112 - 140 g/mo) x .40 (fraction propella.nt) . _ t , 0 ,
*" TT / ec * 1.0 to 1.2 g/use
45 uses/mo
Application of this estimating technique to the other aerosol products
resulted in the emission quantities appearing in Table 3-7.
An experiment conducted at TRC was performed to validate data from the
inventory. Several brands of deodorant were tested to determine the dispensing
rate of aerosol. Analytical measurements gave a range of .3-.9 g/sec. If we
assume an average rate of .6 g/sec, 40% propellants and a typical use of 4 seconds,
the amount of propellant emitted per use would be:
.6 g. x.40x4-1.0g propell ant/use
sec
This result is in excellent agreement with our inventory findings.
We expect that information assembled on less frequently used products would
be somewhat less reliable especially with respect to estimates of usage
rate. Those spray products that are used regularly are likely to be more
closely estimated.
Referring once again to Table 3-7, we note a wide range of propellant
emission rates per household use for the aerosol products listed. Shaving
foams are estimated to emit less than .5 grams of propellent per use, while
a maximum emission of 25 grams/use was determined for oven cleaners. We have
less confidence in the emission estimate for each use of oven cleaners than
- 177 -
-------
TABLE 3-7
EMISSION ESTIMATES OF PROPELLANTS FOR AEROSOL PRODUCTS
Product Category Propellant Emission Estimates (g/use)
Deodorant Sprays 1.0 - 1.2
Hair Spray 4.9 - 6.5
Shaving Foam 0.3 - 0.4
Air Fresheners Spray . 5.6-11.2
Disinfectant Spray 7.5
Furniture Polish Spray 8.4
Dust Spray 4.2 - 8.4
Oven Cleaners 20 - 25
- 178 -
-------
for some of the other products, because this material is used only infrequently.
While the contamination of the indoor air relates to these emissions,
the level of contamination will also be influenced by factors such as location
of use, volume space of room, air circulation rate, contaminant half-life,
and the specific design of the residence. Those products which are dispensed
in small, poorly ventilated areas are not likely to disperse readily throughout
the house yet they would be expected to contribute to relatively high initial
concentrations within the room where they are dispensed. Aerosols which are
employed throughout the residence under condition of adequate air circulation
would result in somewhat lower initial room concentrations and decay more
rapidly with time.
The nature and extent of indoor air contamination,,aa was indicated,
is a function of many independent variables. Some limits and the scale of the
problem may be obtained, however, by using the propellant emission data collected
in our inventory and several appropriate assumptions. For the purpose of com-
parison, we will investigate three situations as described below:
(1) Case 1: Deodorant Spray Propellant, 1-2 g/use, dispensed in bathroom.
(2) Case 2: Air Freshener Spray Propellant, 8.4 g/use, dispensed
throughout house
(3) Case 3: Oven Cleaner Propellant, 25 g/use, dispensed in kitchen.
If we assume that a deodorant spray is used in a tightly closed
3
bathroom of 10m volume, we would expect that the initial concentration of
propellant would be:
i - .12 g/m3 - 120,000 yg/m3
- 179 -
-------
Since fluoro carbons are extremely unreactive under ambient conditions,
we would expect the half life of the material based on dispersion and
dilution would be similar to that measured for CO in House No. 2 in Task 2,
or roughly 2 hours. Thus, as long as someone remained in the closed bathroom,
they would be exposed to concentrations at approximately this level.
If we assume that the amounL or propellant from two sequential
uses of aerosol deodorant is dispersed completely throughout a small house of
255 m volume, the initial concentration would be:
K 1() * 940°
Using a half life of two hours, concentrations after 8 hours would
3
be about 600 yg/m .
Air freshener sprays are considered to be applied In most rooms of the
house so that an initial concentration of propellant for the indoor environment
is established quickly and for the most part uniformly.
8'255gm3 = .033 g/m3 = 33,000 yg/m3
With a 2-hour half -life, the average indoor concentration would be
3
2000 yg/m after 8 hours.
Application of spray oven cleaners in the confines of the kitchen
O
(assume a 22m volume) would possibly produce an initial room concentration
of propellant as follows, assuming the kitchen is closed off from the rest of the
house: 7C- 3 3
-Q.&. 3 = 1.14 g/m - 1,140,000 yg/m
22 m
Assuming that contaminants from a single use would be rapidly dispersed
throughout the whole house, the average propellant concentration would be:
=0.10 g/m * 100,000 Pg/m
- 180 -
-------
After eight hours, the indoor concentrations in the house would be
about 6,300 ug/m3.
The Threshold Limit Values (TLV's) set by the American Conference of
Governmental Industrial Hygienists for propellants of the types commonly
3
used are in the approximate range of 5000 to 7000 mg/m . Thus, with the
possible exception of oven cleaner use, none of the individual aerosol product
use in the house appears to approach the TLV for propellant. However,
depending on use patterns and in a given house, (e.g., simultaneous or sequential
use of several products) indoor concentrations of propellants could exceed
these limits on occasion. Furthermore, the active materials dispensed could
add an unknown but probably significant component to indoor air contamination
from these products.
Further research on the specific impact on indoor air quality of
aerosol products and other activities identified above is clearly needed.
- 181 -
-------
IV APPENDICES
- 182 -
-------
APPENDIX A
CALIBRATION PROCEDURES FOR BENDIX
NO/NOX ANALYZER
- 183 -
-------
CALIBRATION PROCEDURES
FOR THE BENDIX CHEMILUMINESCENT
NO & N02 ANALYZER
GENERAL
1. Allow instrument to warm up as long as possible, but at least
4 hours. Use the mode at all times.
.li.
2. Set up calibration apparatus: Connect in order: 1) pump,
2) UV lamp, 3) scrubber. 4) ozone generator, 5) mixing chamber,
and 6) output manifold. Connect the NO supply in the following
order: 1) NO Cylinder, 2) pressure regulator, 3) capillary,
and 4) valve for bubble flowuieter. The NO and air should join
ahead of the mixing chamber.
3. Set the instrument's three range scales to the 0 to 0.5 ppm
range.
4. Switch the instrument to zero, turn on zero ozone lamp on the
zero air scrubber, and allow at least 10 minutes for stabili-
zation.
5. Adjust the "N02 ZERO" knob until the N0£ pen reads 5% of scale,
then lock the knob.
6. Adjust the "NO ZERO" knob until the NO pen reads 5% of chart.
Lock.
7. Turn the meter switch to "NOx" position and adjust the
"NOX ZERO" knob until the meter reads 5% of scale. Lock.
8. Recheck the zero on the two pen chart recorder and allow 5-10
minutes to check the chart trace on zero.
9. Connect the instrument inlet to the output manifold of the
calibration apparatus. Keep the ozone and NO off, so that zero
air is being provided.
10. Switch the instrument to "AMBIENT" and sample the calibration
zero air. There should be no change in the zero readings. If
there is a change, check the following:
a. If calibration zero air reads higher than instrument
zero, check UV lamp and zero scrubber on calibration
apparatus and replace scrubber material.
b. If calibration zero air reads lower than instrument
zero, check zero scrubber and UV lamp on instrument zero
module and change scrubber material.
- 184 -
-------
II. NO CALIBRATION
1. Turn the 3-way valve to the bubble flowmeter position and turn
on the NO cylinder valve.
2. Adjust air flow and NO pressure to get approximately 0.4 ppm NO.
(A) NO ppm = NO flow rate (cc/min) x N0 Cylinder ppm
NO flow (cc/min) + air flow (cc/min)
3. Measure the NO flow at least twice with the bubble flowmeter.
4. Switch the 3-way valve back to regular flow and allow the
instrument to sample the concentration for at least 10 minutes.
5. Calculate the exact concentration, using (A) above. Extrapolate
desired chart reading using (B) below:
(B) Chart reading (%) = (NO concentration x 200) + 5.
6. Adjust the "NO SPAN" knob until the NO recorder reads correctly,
as determined in step 5 above. Lock the knob.
7. Adjust the "NOX SPAN" knob until the instrument meter reads the
same percent of scale as determined in step 5. Lock the knob.
8. Repeat steps 1-4 to 1-8 to recheck the NO and NOX zero baseline.
If adjustment is necessary, repeat steps II-2 to II-8.
9. Reduce the NO concentration by changing the NO flow. Measure
the NO flow with bubble flowmeter and calculate the concentration
as in II-2(A). Sample and measure at least three other NO
concentrations. Do not change "NO ZERO" or "NO SPAN" settings.
10. Plot the 5 or more chart readings versus the NO concentration
in ppm. Draw calibration curve or obtain computer printout of
net chart divisions versus the NO concentration in ppm.
III. N02 CALIBRATION
1. Adjust the NO concentration to about 0,45 ppm. Measure the
NO flow rate and calculate the exact NO concentration, using
formula (A) from II-2 above.
2. Allow the instrument to sample the concentration. Switch the
meter to NOX and observe and record the meter reading. Turn on
the ozone generator and adjust the slide such that the 03 output
is sufficient to oxidize about 90% of the NO present to N02.
If the NOX value drops more than .015 ppm (3% chart) the analyzer
converter needs to be replaced.
- 185 -
-------
3. Wait 10 minutes until the NO recorder reading is stable, then
calculate the N02 concentration as follows:
(C) N02 (ppm) = NOX (ppm) - NO (ppra)
where:NOX is the original NO concentration from III-l.
NO conc^._ ___^n is the reading on the NO recorder,
converted to ppm by the calibration curve prepared
in II-9.
4. Now calculate the desired N0£ chart reading :
N02 chart reading (%) - (N02 concentration x 200) + 5.
5. Adjust the "N02 SPAN" knob until the N02 recorder reads correctly
as determined in III-4. Lock the knob.
6. Turn off the ozone lamp on the zero air scrubber and reconnect
analyzer to sampling system.
- 186 -
-------
APPENDIX B
Indoor/Outdoor Air Quality Data (NO , NO, and CO)
2-hour and daily averages
Appendix No. House No. Season
B-l 1 Spring-Summer
B-2 1 Fall-Winter
B-3 2 Spring-Summer
B-4 3 Spring-Summer
B-5 3 Fall-Winter
B-6 4 Fall-Winter
- 187 -
-------
Appendix B-l
NO., NO and CO data for House No. 1 - Spring/Summer
- 188 -
-------
N82 AvtKAGE C8NCENTRATISM5
VALUES IN ( ) ARE N9. 3F 8BSERVATIRNS IN PERI83
MAX.: 6 PER 2HR»72 PER DAY
UG/13
STATI9M
DATE
TIME
5/ 9/73
5/ 9/73
~5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/10/73
5/10/73
5/10/73
5/10/73
5/10/73
5/10/73
5/10/73
5/10/73
5/10/73
5/10/73
5/10/73
5/10/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2PCO
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1300
1800-2000
3000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
1
1M from Stove
******
******
******
******
******
******
81.5 ( 3)
454.7 ( 6)
33.4 ( 6)
89.1 ( 6)
88.5 ( 6)
75.1 ( 6)
84.6 ( 6)
99.9 ( 6)
125.4 ( 6)
******
******
******
208.7 ( 3)
199.2 ( 6)
90.4 ( 6)
93.5 ( 6)
84.6 ( 6)
67.2 ( 5)
57.3 ( 6)
56.6 ( 6)
82.1 ( 6)
79.5 ( 6)
******
26.7 ( 3)
<£9«3 ( 6)
51.2 ( 5)
******
100.5 ( 6)
76.4 ( 6)
?
Liv Rm
******
******
******
* *****
******
******
78.9 ( 3)
150.2 ( 6)
72.5 ( 6)
56*6 ( 6)
65.5 ( 6)
5?. 2 { 6)
42*0 ( 6)
55.4 ( 6)
66.8 ( 6)
******
******
******
89.1 ( 3)
140*6 ( 6)
73*8 ( 6)
75.1 ( 6)
57.9 ( 6)
40.1 ( 6}
35.6 ( 6)
39*5 ( 6)
47.7 ( 6)
69.4 ( 6)
******
33*1 ( 3)
31.2 ( 6)
55*0 ( 5)
******
78.3 ( 6)
58.5 ( 6)
3
3D RM
******
******
* *****
******
******
******
71.3 ( 3)
129.8 { 6)
73.2 ( 6)
63.6 ( 6)
59.8 ( 6)
50.9 ( 6)
48.4 ( 6)
57.9 ( 6)
59.8 ( 6)
******
******
******
78.9 ( 3)
117.1 ( 6)
70.0 ( 6)
68.1 ( 6)
52.8 ( 6)
36.9 ( 6)
30.5 ( 6)
35.6 ( 6)
41.4 ( 6)
73.2 ( 6)
******
34.4 ( 3)
35. D ( 6)
74.8 ( 5)
******
73.2 ( 6)
51.5 ( 6)
4
3UTSIDE
******
******
******
******
******
******
66.2 ( 3)
67*5 ( 6)
63*0 ( 6}
61«1 ( 6)
62.4 ( 6)
47.7 ( 6)
48.4 ( 6)
47.7 ( 6)
52.8 ( 6)
******
******
******
54.7 ( 3)
63*6 ( 6)
56.6 ( 6)
58.5 ( 6)
38.2 ( 6)
28.0 ( 6)
26.7 ( 6)
28.0 ( 6)
41»4 ( 6)
66.2 ( 6)
******
28.0 ( 3)
34.4 ( 6}
64.1 ( 5)
******
49.6 ( 6)
32.5 ( 6)
Note: **** indicates no
valid data collected
_ 1 flO
-------
UE
UMME
)
AVERAGE:
6 PER 2HR/72 PER DAY
IN PER I
UG/H3
TIME
STATION
73
5/IP/73
5/12/73
5/12/73
5/12/73
5 / 1 " ' "^ ?
5/1
5/1
5/1
5/1
' 73
2/73
0000-
0200-
0400-
0600-
0800-
1000-
1200-
HOO-
DOO-
1800-
2000-
2200-
0200
0400
0600
0800
1000
1200
1400
1600
1300
2000
2200
2400
DAILY AVERAGE =
(AV'l 8F ?MR VALUES)
1 A
1M from Stove
71-9 i
80. S l
70O i
102.4 i
98.0 (
167.1 i
302.9 i
152.7 l
174.4 1
80.3 1
37.3 1
69.1 (
t 6)
I 6)
! 6)
t 6)
I 6)
( 4)
; 6)
: 6)
: 6)
: 6)
: 6)
: 6)
2
Liv
49.0
45. «
30*5
56.6
5P.2
81.1
143.2
146*4
91.6
70.0
69.4
57.3
Rm
( 6)
( 6)
( 6)
( 6)
( 6)
( 4)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
3
3D RM
38.2 (
37.5 (
31.2 (
44.5 {
84.6 {
55.4 (
66.8 (
136.2 (
96.7 (
62.4 (
50.3 (
42.6 (
6)
6)
6)
6)
6)
4)
6)
6)
6)
6)
6)
6)
124.S
74.4
4
9JT3I
31-3
33.7
21.6
44*5
45*8
34.4
45.2
37.5
33.1
55.4
71.3
70.6
JE
( 6)
( ft)
( 6)
( 6)
( 6)
( 4)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
62.2
43.7
5/13/73
5/1 j/73
5/13/73
5/1 J/73
5/1 J/73
5/1 :v 73
.5/1 J/73
5/1 V73
5/13/73
5/13/73
5/1.^7?
5/1 3/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
91.6
83.4 i
35.9 i
64.9 i
92.3 i
41.4 i
49.0 i
47.7 1
<+7»l 1
54*7 1
61.7 1
62*4 1
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
C 6)
: 6)
: 6)
: 6)
: 6)
: 6)
55*4
59.? i
41.4 i
36.9 i
5?. 2 i
33.8 i
30.5 i
22*3 1
21.6 l
26-7 l
25.0 1
42.6 1
( 6)
( 6)
C 6)
( 6)
( 6)
( 6)
f 6)
I 6)
! 6)
: 6)
: 6)
: 6)
41.4 i
37.5 l
33.1 l
29.3 l
44.5 l
43.9 i
54.7 l
25.5 (
24.2 (
25.5 <
29.3 (
34.4 (
( 6)
[ 6)
[ 6)
[ 6)
( 6)
[ 6)
; 6)
i 6)
: 6)
: 6)
: 6)
: 6)
57.9
40.7
33.7
28.0
22«9
12.7
8.3
9.9
13.4
12.1
22.9
4U«7
( 6)
( 6)
( 6)
( 0)
( 6)
( 6)
( 6)
( 5)
( 6)
( b)
( 6)
( 6)
:AILY AVERAGE »
(AVb Rf ?HR VALUES)
65.2
33.0
35.3
25.3
5/14/73
5/1^/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
?000-
2200-
0200
0400
0600
OSOO
1000
1200
1400
1600
1800
2000
2200
2400
69.4 ( 6)
57.9 ( 6)
51.5 ( 6)
108.2 ( 6)
60.5 ( 6)
45.3 ( 6)
#*#*##
******
207.1 ( 6)
114.5 ( 6)
120.9 ( 6)
116.4 ( 6)
43.4 ( 6)
38.8 ( 6)
36.9 ( 6)
59.2 ( 6)
3'-<.8 ( 6)
42.6 ( 6)
******
******
94.8 ( 6)
9?. 3 ( 6)
96.7 ( 6)
91.0 ( 6)
32.5 ( 6)
29.3 ( 6)
32.5 ( 6)
38.2 ( 6)
42.6 ( 6)
58.5 ( 6)
******
******
84.0 ( 6)
88.5 ( 6)
75.1 ( 6)
67.5 ( 6)
42.6 ( 6)
37.5 ( 6)
30.5 ( 5)
36.9 { 6)
22.9 ( 6)
12.7 ( 6)
******
******
62»4 ( 6)
80.8 ( 6)
117.7 { 6)
110.1 ( 6)
- 190 -
-------
H9USL 1
VALUES
MAX.
DATE
5/15/73
5/1-J/73
- 5/15/73
5/15/73
5/15/73
j/15/73
5/15/73
5/15/73
5/15/73
5/lEj/73
3/15/73
5/15/73
SPRING-bUMM
IN ( ) ARE
: 6 PER 2HR
TIME
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POOO-2200
2200-2400
DAILY AVERAGE =
(AVf.i SF
5/16/73
5/16/73
.5/16/73
5/16/73
5/16/73
5/16/73
5/16/73
5/16/73
5/16/73
5/16/73
5/16/73
5/16/73
5/21/73
5/21/73
5/21/73
5/21/73
. 5/21/73
5/21/73
5/21/73
, 5/21/73
5/21/73
5/21/73
5/21/73
5/21/73
2HR VALUES)
0000-0200
0200-0400
0400-0600
06GO-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
ER M92 AVERAGE CONCENTRATIONS
NQ. 3F 8BSERVATI>=)NS IN PERI9D
»12 DER DAY
STATI8N
U6/M3
1
1M from Stove
109.4 ( 6)
95.4 ( 6)
37.2 ( 6)
138.1 ( 6)
99.3 ( 6)
113.9 ( 6)
J2l»3 ( 6)
318.8 ( 6)
229*1 ( 4)
129*2 ( 6)
99«9 ( 6)
107.5 ( 6)
154.1
99.9 ( 6)
78.3 ( 6)
74.5 ( 6)
129.8 ( 6)
77.0 ( 6)
50.3 ( 6)
45.8 ( 6)
65.9 ( 4)
******
******
******
******
******
******
******
******
******
******
45.8 ( 6)
54.7 ( 6)
49.0 ( 6)
62.4 ( 6)
134.9 ( 6)
52.8 ( 6)
2
Liv Rm
79.5 ( 6)
66*2 ( 6)
43.4 { 6)
56.0 ( 6)
56.6 ( 6)
60«5 ( 6)
159.7 ( 6)
201*1 ( 6)
169.9 ( 4)
78.3 ( 6)
79.5 ( 6)
82*7 ( 6)
94«9
59.2 ( 6)
42*6 ( 6)
40*1 ( 6)
71.3 ( 6)
62»4 ( 6)
29.3 ( 6)
37.5 ( 6)
52*5 ( 4)
******
** ****
******
******
******
******
******
******
******
******
28.6 ( 6)
36.3 ( 6)
36.9 ( 6)
36.3 ( 6)
57.9 ( 6)
33.1 ( 6)
3
'30 RM
57.3 ( 6)
53.5 ( 6)
49.0 { 6)
45.8 { 6}
49.0 ( 6)
49.6 ( 6}
125.4 ( 6)
168.6 ( 6)
146.3 ( 4)
77.0 ( 6)
57.9 ( 6)
64.9 ( 6)
78.7
61.1 ( 6)
40.7 ( 6)
37.5 ( 6)
54.1 ( 6)
69.4 ( 6)
29.9 ( 6)
34.4 ( 6).
46. 3 ( 4)
******
******
* ** »**
******
******
******
******
******
******
******
26.7 ( 6)
30.5 ( 6)
25.5 ( 6)
30.5 ( 6)
104.4 ( 6)
33.1 ( 6)
4
9UTSIDE
87.8 ( 6)
70.6 ( 6)
66.8 ( 6)
59.2 ( 6)
51.5 ( 6)
63.0 ( 6)
85.9 ( 6)
89.1 ( 6)
64.9 ( 4)
70»0 ( 6)
96.7 ( 6)
74.5 ( 6)
73.3
31.8 ( 6)
22.3 ( 6)
26»1 ( 6)
28.0 ( 6)
31.2 ( 6)
18.5 ( 6)
24.2 ( 6)
24.8 ( 4)
******
******
******
******
******
******
******
******
******
******
23«5 ( b)
16.5 ( 6)
19.1 ( 6)
21.6 ( 6)
32.5 ( 6)
13.4 ( 6)
- 191 -
-------
H9USL 1
VALUES
MAX-
DATE
SPRING-SUMMER
IN ( ) ARE NS.
: 6 PER 2HR/72
N32 AVERAGE
?F 93SERVATIPNS
PER DAY
CONCENTRATIONS
IN PERIOD
STATI8N
UG/M3
TIME
1
1M from Stove
5/22/73
5/22/73
5/22/73
5/22/73
5/22/73
5/22/73
5/22/73
5/22/73
5/22/73
5/22/73
5/22/73
5/22/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
43.3 (
47.1 (
bO.3 (
155.9 (
55.4 (
36.9 (
39.5 (
57.3 (
124.1 (
71.3 (
77.6 (
78.3 (
6)
6)
6)
6)
6)
6)
6)
3)
6)
6)
6)
6)
26.1
26.7
,_7.4
37.5
46.5
24.8
?7.4
?9.3
64.9
54.7
54.1
56.6
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
{ 6)
( 3)
( 6)
( 6)
( 6)
( 6)
23.5 (
22.9 (
19.1 (
22.3 (
35.0 (
17.8 (
19.1 (
25.5 (
40.7 (
52.2 (
47.1 (
42.0 (
6)
6)
6)
6)
6)
6)
6)
3)
6)
6)
6)
6)
6.9 1
9*2 1
13.4 1
22.3 I
14«0 1
9.5 I
12«1 I
21*6 \
21.0 i
36.9 i
66.2 i
62.4 i
: 5)
I b)
! 6)
: 6)
: 6)
; 6)
( 6)
I 3)
[ 6)
[ 6)
( 6)
( 6)
DAILY AVERAGE =
(AV3 6F 2HR VALUES)
69.7
39.7
30.6
5/23/73
5/21/73
5/23/73
5/23/73
5/21/73
5/23/73
5/23/73
i/23/73
5/23/73
5/21/73
5/23/73
5/23/73
0000-0200
0200-0400
0400-0600
0600-OROO
3800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
91»6
9L6
87.3
81.5
78.3
7LS
85.9
97.4
181.4
88.5
101.8
75.1
< 6)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
< 6)
56.6
47.7
4?.0
56.6
62.4
54.?
55.4
63.6
112.0
74.5
52.2
46.5
( 6)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
42.6
37.5
46.5
38. S
62.4
55.7
53.5
57.3
89.7
66.2
50.3
43.3
( 6)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
54.7 (
49.0 (
39.5 (
46»5 (
81.5 (
64.0 (
39.5 (
55*4 (
75.7 (
68. 7 (
49.6 (
54.1 (
6)
6)
6)
6)
6)
4)
6)
b)
6)
6)
6)
6)
DAILY AVERAGE *
(AVa 8F 2HR VALUES)
94.4
60.3
53.6
56»5
5/24/73
5/24/73
5/24/73
5/24/73
5/24/73
5/24/73
5/24/73
5/24/73
5/24/73
5/24/73
5/2^/73
5/24/73
0000-0200
0200-0400
0400-0600
0600-OROO
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
70.0 (
64.9 (
68.1 (
163.5 (
93.5 (
63O (
87.2 (
73-2 (
78.9 (
87.8 (
110.7 (
86.5 (
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
43.9 1
4B.4 1
45.2 1
77.6 1
59.8 i
43.3 l
78. 9 i
56.6 l
59.8 i
54.1 i
54.7 i
49.6 i
[ 6)
[ 6)
! 6)
,' 6)
I 6)
( 6)
( 6)
I 6)
( 6)
! 6)
( 6)
( 6)
42.6
40.7
38.8
54.7
49.0
44.5
57.9
46.5
54.1
54.1
56.6
46.5
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
34*4 I
47.1 (
43.9 1
54.1 l
49.0 i
33.7 i
34.4 i
34.4 \
43.3 i
38.8 i
45.8
47.7
I 6)
I 6)
I 6)
I 6)
t 6)
( 6)
( 6)
( 6)
! 6)
( 6)
( b)
( 6)
DAILY AVERAGE = 37*3
(AV-1 OF 2HR VALUES)
56.0
48.8
42»2
- 192 -
-------
H9USE 1
VALUES
MAX.
SPRIMG-SUMMER
IN ( ) ARE NJ9*
: 6 PER 2HR»72
N92 AVERAGE
3F 9BSERVATI9NS
PER DAY
CSNCENTRATI^MS
IN PERIOD
STATI9N
UG/13
OATE
5/^5/73
5/P5/73
5/^5/73
5/?b/73
Vc'b/73
5A£5/73
5/25/73
5/.Jb/73
5/?5/73
5/J5/73
5/r?5/73
5/?5/73
T I ME
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POOO-2200
P200-2400
1
1M from Stove
71.9 ( 6)
57.9 ( 6)
b5.4 ( 6)
52.2 ( 6)
64.9 ( 6)
59. 8 ( 6)
70.3 ( 5)
******
******
******
******
******
2
Liv Rm
4P.6 ( 6)
40*1 ( 6)
2^*1 ( 6)
35*6 ( 6)
30*5 ( 6)
40«7 ( 6)
42*0 ( 5)
******
** ****
******
******
******
3
3D RM
35.6 ( 6)
30.5 ( 6)
22.3 ( 6)
28.6 ( 6)
32.5 ( 6)
40.1 ( 6)
39.7 ( 5)
******
******
******
******
******
4
9JTSIDE
43.9 ( 6)
27.4 ( 6)
12«7 ( 6)
38»2 ( 6)
31»8 ( 6)
36.3 ( 6)
42.0 ( 5)
******
******
******
******
******
193 -
-------
H9USL 1 SPRING-SUMMER N8. AVERAGE CONCENTRATION?
VALUES IN ( ) ARE NO. >.3F OBSERVATIONS IN PERIOD
MAX.: 6 PER 2HR*72 PER DAY
UG/M3
DATE
TIME
5/ 'V73
5/ 9/73
5/ 1/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/10/73
5/10/73
5/10/73
5/10/73
5/10/73
5/10/73
5/10/73
-5/1 J/73
5/1J/73
5/10/73
5/U/73
5/1 )/73
BAD TI
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
0000-0200
0200-0*00
0*00-0600
0600-0800
0800-1000
1000-1200
1200-1*00
1*00-1600
1600-1800
1800-2000
2000-2200
2200-2*00
0000-0200
0200-0*00
0*00-0600
0600-0800
0800-1000
1000-1200
1200-1*00
1*00-1600
1600-1800
1800-2000
2000-2200
2200-2*00
ME f)N CARD
0000-0200
0200-0*00
0*00-0600
0600-0800
0800-1000
1000-1200
1200-1*00
1*00-1600
1600-1800
1800-2000
2000-2200
2200-2*00
STATI9N
1
IM from Stove
***** *
******
******
******
******
******
******
275.0 (
D*2»* (
202*3 (
128.3 (
8*» 9 (
7*.0 (
58 * 5 (
53.1 (
115.6 (
******
******
*** ** *
135.8 (
153.8 (
7.9 (
5.0 (
7.1 (
3)
6)
6)
6)
6)
6)
6)
6)
6)
3)
6)
6)
5)
6)
2
Liv Rm
******
******
*****
******
* *****
******
******
107«« (
31* .8 (
172.6 (
116.2 (
6*. 8 (
**.7 (
31.8 (
28.* (
* 1 * (
******
******
******
17.6 (
39.7 (
3*5 (
4.2 (
*.0 (
3)
6)
6}
6)
6)
6)
6)
6)
6)
3)
6)
5)
3)
5)
*1.6
57.7
57.7
63.5
*9.7
******
11.3 ( 2)
5)
6)
6)
6)
6)
1*.0 ( 5)
******
118.1 ( 6)
15.0 ( 6)
17.6
37.2
35.5 (
33*0 (
16.7 (
******
6.3 ( 2)
2.5 ( *)
15.0 ( 5)
* *****
6)
6)
6)
6)
6)
3
"3D
******
******
******
******
******
******
******
*6.8 ( 3)
267.7 ( 6)
156.8 ( 6)
122.9 ( 6)
96.1 ( 6)
67.3
*8.1
41.0
48.1
******
******
******
10.0
32.2
5.*
2.5
6)
6)
6)
6)
3)
6)
6)
3)
6)
6)
6)
6)
6)
6)
6*.0
7.1
6)
6)
13.8
26.3
21.3
22.6
21.3
******
5.0 ( 2)
*.5 ( 5)
35.1 ( 5)
** ****
86.1 ( 6)
10.0 ( 6)
9JTSIDE
******
******
******
******
**** **
** ****
******
lo»9 ( 3)
17«6 ( 6)
17«1 ( 6)
1J.9 ( b)
7.9 ( 6)
7-9 ( b )
3 b ( b )
6*7 ( 6}
10.0 ( 3)
******
******
******
7.5 ( 3)
1*.6 ( 6)
b.O ( *)
3.8 ( 2)
4*2 ( 6)
8.*
6)
6)
6)
6)
b)
11.7
lb-0
9.6
#* »***
4.2 ( 3)
3*5 ( 5)
2£»6 ( 5)
******
* 5 ( b )
J.S ( 6)
- 194 -
-------
H3JSF. 1
VALUES
MAX.
DATE
5/12/73
5/12/73
5/12/73
5/12/73
5/12/73
5/12/73
5/12/73
5/12/73
5/12/73
5/12/73
5/1P/73
5/12/73
SPRING-SUMMER
IN ( ) ARE N8.
: 6 PER 2HR»72
TIME
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
0400
0600
0800
1000
1200
1400
1600
1800
2000
2200
2400
N8 AVFRAGE C9NCENTRATI9MS
JF 8BSERVATI9NS IN PERI90
PER DAY
STATI9N
UG/M3
1 A
1M from
14.2 (
21^3 (
18 8 (
92»0 (
130.0 (
197-2 (
313-1 (
177.6 (
147.6 (
87.4 (
48.9 (
89O (
Stove
6)
6)
6)
6)
6)
4)
6)
6)
6)
6)
6)
6)
2
Liv.
3.8
3.3
6.7
35.9
83.3
105.3
169.3
10?. 8
110.4
71.5
30.9
60.6
Rm
( 2)
( 3)
( 3)
( 6)
( 6)
( 4)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
3
30
5.0
4.5
6.7
27.6
130.2
43.3
44.3
103.2
120.0
89.9
42.2
67.7
RM
( ?)
( 5)
( 3)
( 6)
( 6)
( 4)
( 6)
( 6)
( M
( 6)
( 6)
( 6)
4
3UTSIDE
2«5 (
4.5 (
13.4 (
29»1 (
19*6 (
8*8 (
13-4 (
16.3 (
26.3 (
24.6 (
30»1 (
32»2 (
1
5
3
5
6
4
6
6
6
5
5
6
DAILY AVERAGE »
(Avu 8F 2HR VALUES)
111*5
65.1
57.1
18.4
5/13/73
5/13/73
5/13/73
5/13/73
5/13/73
5/13/73
5/13/73
n/13/73
5/13/73
5/11/73
5/13/73
5/13/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
DAILY AVERAGE =
(AVG 9F
5/1H/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
2HR VALUES)
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
P200-2400
84.4 (
64.4 (
46.4 (
41.8 (
125.4 (
3LS (
28.4 (
23. S (
26.8 (
25.1 (
27«2 (
4LO (
47.2
6)
6)
M
6)
6)
6)
6)
6}
6)
6)
6)
6)
(
6)
6)
6)
6)
6)
6)
63*5
122.9
99.1
286.1
186.4
45.6
******
******
202.7 { 6)
21*7 ( 6)
35.1 ( 6)
78-6 ( 6)
51.8 (
15.9 (
61.9
26.8
13.8
10.9
13.8
7.1
5.0
16.7
21.9
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
41.4 { 6)
105.8 ( 6)
86.5 ( 6)
219.7 ( 6)
150.9 ( 6)
35.1 ( 6)
******
******
75.7 ( 6)
15.7 ( 4)
14.5 ( 5)
49.7 ( 6)
65.2
49.3
30.9
19,6
61.4
32.6
13.4
13.0
14.6
8.4
6.3
18.4
27.8
(
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
4)
6)
6)
6)
6)
6)
6)
6)
42.2
100.3
101.6
191.0
188.9
29.3
******
******
105.3 ( 5)
28.2 ( 4)
9.0 ( 5)
44.7 ( 6)
42.6
5.3
3.3
4.6
7.5
14.2
13»0
13*0
7-9
5«0
10*9
11.6
(
6)
6)
6)
6)
6)
6)
6)
6)
6)
b)
6)
6)
6)
6)
6)
6)
6)
49.3
105*8
62*3
169*7
38.5
13«0
******
******
4*5 ( 5)
4.2 ( 3)
27.0 ( 4)
30*9 ( 6)
- 195 -
-------
H3J3L 1
VALUES
MAX.
JATE
5/15/73
-j/15/73
5/15/73
5/15/73
SPRlMG-bUIMKR
IN ( ) ARF Nb.
: 6 PER 2HR.72
TIML
N8 AVERA3E
JF OBSERVATIONS
PER DAY
5/15/73
5/15/73
5/15/73
5/15/73
5/15/73
5/1^/73
5/15/73
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
0400
0600
0800
1000
1200
1400
1600
1800
2000
2200
2400
DAILY AVERAGE =
(AVG OF 2HR VALUES)
5/16/73
J/1-./7?
5/16/73
5/16/73
5/16/73
5/16/73
5/16/73
5/10/73
5/16/73
5/lb/73
5/16/73
5/lo/73
5/21/73
5/21/73
5/21/73
5/21/73
5/21/73
5/21/73
5/21/73
5/21/73
5/21/73
5/21/73
5/21/73
?/21/73
0000-
U200-
04CO-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
POOO-
2200-
0200
0400
0600
0800
1000
1200
1400
1600
1800
2000
2200
'2400
0000
0200
0400
0600
0800
1000
1200
1400
1600
1800
2000
2200
0200
0400
0600
0800
1000
1200
1400
1600
ldOO
2000
2200
2400
CBNCFNTRATIOMS
IN PERIOD
STATI9N
'JGX'13
M from Stove
60.6 ( 6)
58.1 ( 6)
65«6 ( 6 )
152. B ( 6)
155.5 ( 6)
1&5.3 ( 6)
294.5 ( 6)
560.7 ( 6)
294.7 ( 4)
166.6 ( 6)
62.3 ( 6)
57.7 ( 6)
174.5
29.3 ( 6)
14.2 ( 6)
15.9 ( 6)
134.4 ( 6)
43.9 ( 6)
18.4 ( 6)
8.5 ( 5)
25.7 ( 4)
******
******
******
******
******
******
******
******
******
******
27.6 ( 6)
24.7 ( 6)
20.9 ( 6)
33.4 ( 6)
261*9 ( 6)
^4.9 ( 6)
2
Liv Rm
27.6 ( 6)
31-3 ( 6)
> * . 7 ( 6 )
76.9 ( 6)
129.2 ( 6}
133.3 ( 6)
296.6 ( 6)
410.1 ( 6)
25^.6 ( 4)
116.6 ( 6)
38.0 ( 6)
2^.8 ( 6)
132.3
6.5 { 5)
3.1 ( 4)
5.0 ( 5 )
61.9 ( 6)
23.4 { 6)
7.1 ( 6)
5.4 ( 6)
10.7 ( 4)
******
******
******
» *****
******
******
******
******
******
******
18.8 ( 6)
1D.9 ( 6)
7.9 ( 6)
10.9 ( 6)
155.1 ( 6)
63.1 { 6)
3
35.9 ( 6)
35.9 ( 6)
43.5 ( 6)
75.7 ( 6)
137.5 ( 6)
132.1 ( 6)
294.1 ( 6)
425.5 ( 6)
279.0 ( 4)
163.0 ( 6)
69.8 ( 6)
42.2 ( 6)
144.5
16.3 ( 6)
2.5 ( 4 )
2.5 ( l)
46.4 ( 6)
7.9 ( 6)
5.4 ( 6)
3.8 ( 6)
9.4 ( 4)
******
******
******
******
******
******
******
******
******
******
18.0 ( 6)
7.5 ( 6)
5.0 ( 6)
7.5 ( 6)
211.3 ( 6)
58.9 ( 6)
4
3UTSIOE
/9 ( 6 )
28»6 ( 5)
27»2 ( 6)
66 O ( 6)
49-7 ( 6)
105«S ( 6)
76.1 ( 6)
39.3 < 6}
11« 3 ( 4)
3.5 ( 5 }
15*5 ( 6)
15*0 ( 3)
37-2
4.5 ( D )
2*3 ( 5 )
3-1 ( 4)
j 8 ( 6 )
5*9 ( 6 )
5.9 ( 6 )
6»0 ( 5 )
b 3 ( ^ )
******
******
******
******
******
******
******
******
******
******
17*6 ( 6)
9«6 ( 6 )
7.1 ( 6 )
7.5 ( 6 )
51« 8 ( 6)
8*8 ( 6 )
_ IQfi -
-------
HOUSE 1 SPRING-SUMMER
VALUES I\ ( ) ARE N9»
MAX.: 6 PER 2HR/72
N8 AVERAG" CONCENTRATIONS
3F 9L;SERVATI3NS IN PERI8D
PER DAY
STATI8N
UG/M3
DATE
5/22/73
5/22/73
5/2P/73
5/22/73
5/22/73
5/22/73
V22/73
5/22/73
5/22/73
-5/22/73
5/22/73
5/22/73
TIME
0000-0200
3200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
1 A
1M from
41.0
33.4
36.4
248.3
'99.5
33.9
19.2
16.7
99.9
31.3
42.6
91« 5
Stove
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 3)
( 6)
( 6)
( 6)
( 6)
2
Liv Rm
21.7
13.8
17.1
54.3
69.4
7.9
11.7
7.5
35.5
15.9
?2.2
77.3
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 3)
( 6)
( 6)
( 6)
( 6)
3
4
'3D RM
14.6 (
7.5 (
12.1 (
22.6 (
51.4 (
6.3 (
9.6 (
3.3 (
17.6 (
13.4 (
17.6 (
59.8 (
6)
6)
6)
6)
6)
6)
6)
3)
5)
6}
6)
6)
9JTSI
4«5
0*4
8«8
14.6
12.1
4.6
8.4
3*3
5.0
1U.O
ai»3
93.2
DE
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 3)
( 6)
( 6)
( 6)
( 6)
DAILY AVERAGE =
(AVG 6F 2HR VALUES)
66.1
19.6
15.9
5/23/73
riA..-73
5/23/73
5/23/73
-5/23/73
3/J3/73
5/23/73
5/23/73
5/?i/73
5/23/73
5/23/73
5/<:>3/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1300
3800-2000
2000-2200
2200-2400
1&4.7
190.6
189.8
226.1
142.1
126.4
46.4
52.2
311-2
106.2
91.5
60-2
( 6)
( 6)
( 6)
( 6}
( 6)
( 5)
f 6)
( 6)
( 6)
( 6)
( 6)
( 6)
127.9
153.4
152.6
179-1
1P3.7
117.9
3?.?
16.3
135.0
94.5
46.8
35.9
( 6)
( 6)
( f)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
125.4
158.3
164.3
178.5
142.1
98.8
21.7
16.3
142.1
110.3
68.6
47.7
( 6)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
153.0
143*4
163.9
136.3
89*0
28.3
10*4
16.7
21»7
13«0
4.0
7.5
( 6)
( 6)
( 6)
( 6)
( 6)
( 4)
( 6)
( 6)
( 6)
( 6)
( 5)
( 5)
DAILY AVERAGE =»
(AVG OF 2HR VALUES)
142.3
101-2
106.2
65« fo
5/24/73
5/2^/73
5/24/73
5/2t/73
5/P-+/73
5/24/73
5/24/73
5/24/73
5/2H/73
5/24/73
5/2<+/73
5/24/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
44.3 (
42*6 (
44.3 (
255. D (
142.1 (
50.6 (
103.0 (
18.8 (
20.9 (
24.2 (
58.9 (
56.8 (
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
?0»9
22*2
20*9
100.7
81.1
29.3
43-9
13.0
11.7
11.7
16»7
29.7
( M
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( M
( 6)
( 6)
( 6)
30.9 i
26.3 1
25.1 i
91,5 i
72.7 i
23.8 i
17.1 i
8.4 i
10.4 i
8.4 i
19.2 i
40.1 '
! 6)
[ 6)
( 6)
[ 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
2.5 (
4.6 (
8*4 (
9.2 (
2J.9 (
11.7 (
13.8 (
9.6 (
b.8 (
4.6 (
4»2 (
4.2 (
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
DAILY AVERAGE *
(AVG 8F 2HR VALUES)
7LS
33-5
31.?
- 197 -
-------
H3USE 1
VALUES
MAX.
SPRING-SUMMER N8
I\! ( ) ARE >J3. 3F
: 6 PER 2Hk>72 PER
DAY
AVERAGE CONCENTRATION!?;
IN PFRI9J
STATI9N
JG/M3
DATE
5/_>->/73
5/i 1/73
5/?r-/73
5/^/73
5/^5/73
5/25/73
5/2*5/73
5/25/73
5/25/73
5/25/73
0/2^/73
o/2ri/73
TIME
0000-0200
0200-0-+00
0400-0^00
3600-0300
0800-1000
1000-1200
1200-1400
1400-1600
1600-1*00
1800-2000
?000-2200
2200-2400
1 A
1M from Stove
51«4 ( 6)
48.5 ( 6 )
40*1 ( 6)
43.5 ( 6)
60.2 ( 6)
33. J ( 6)
42.1 ( 5)
******
******
******
**« ** *
******
2
Liv Rm
27.2 ( 6)
?7.6 ( 6)
17.1 ( 6)
24.2 ( 6)
30.5 ( 6)
15.0 ( 6)
17.1 ( 5)
******
******
******
******
******
3
3D RM
40.5 ( 6)
33.9 ( 6)
25.1 ( 6)
26.3 ( 6)
25.1 ( 6)
12.5 ( 6)
13.5 ( 5)
******
******
******
******
******
4
9UTSIUE
16.3 ( 6)
4.0 ( j)
3»5 ( 5 )
13.4 ( 6)
9*6 ( 6 )
11*3 ( 6)
11.0 ( o)
******
******
******
******
******
-------
H^USE 1
VALUES
MAX.
DATE
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/ 9/73
5/10/73
5/10/73
5/10/73
5/10/73
5/10/73
5/10/73
5/10/73
5/10/73
5/10/73
5/10/73
5/10/73
5/1&/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
5/11/73
SPRING-SI
IN ( ) ARE
: 6 PER 2Hi
TIME
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
JMMER C9 AVERAGE C9NCENTRATI9NS >UG/M3
NO. 9F 93SERVATI9N3 IN PERIOD
i*72 PER DAY
STATI9N
1
IM from Stove
******
******
******
******
******
1672. ( 4)
137b. ( 6)
1189. ( 6)
3903. ( 6)
3160. ( 6)
3457. ( 6)
2528. ( 6)
2453. ( 2)
******
******
******
******
******
******
6036. ( 3)
4350. ( 6)
3413. ( 6)
4928. ( 6)
3394. ( 6)
4321. ( 6)
4179. ( 6)
5039. ( 6)
4979. ( 6)
5145. ( 6)
***** *
3031. ( 6)
2157. ( 6)
3964. ( 6)
971. ( 6)
1574. ( 6)
2565. ( 6)
2
Liv Rm
******
******
******
******
******
1617. ( 4)
1375. ( 6)
892- ( 6)
2639. ( 6}
2676. ( 6)
3234. ( 6)
2230. ( 6)
2007. ( 2)
******
******
******
******
******
******
3319. ( 3)
348?. ( 6)
3488. ( 6)
4F55L ( 6)
3054. ( 6)
4019. ( 6)
3870. ( 6)
4889. { 6)
4602* ( 6)
4013. ( 6)
******
2292. ( 6)
1962. ( 6)
1791. ( 6)
582. ( 6)
1068. "( 6)
2099. ( 6)
3
'3D RM
******
******
******
******
******
145Q. ( 4)
1189. ( 6)
706. ( 6)
2342* ( 6)
2602- ( 6)
3420* ( 6)
2825* ( 6)
2565. ( 2)
******
******
******
******
******
******
3018* ( 3)
3671. ( 6)
3601* ( 6)
4513* ( 6)
3318' ( 6)
3831. ( 6)
3802« ( 6)
4474* ( 6)
426P. ( 6)
4285» ( 6)
******
2292* ( 6)
1962* ( 6)
171Q. ( 6)
582» ( 6)
1185* ( 6)
2565* ( 6)
4
9UTSIDE
******
******
******
******
******
1115. ( 4)
1204. ( 5)
713. ( 5)
713. ( b)
929. ( 6)
1635. ( 6)
1040. ( 6)
1449. ( 2)
******
******
******
******
******
******
2640. ( 3)
3067. ( 6)
3601. ( 6)
4136. { 6)
2827. ( 6)
3265. ( 6)
3199. ( 6)
3945. ( 6)
3923. ( 6)
4014. ( 6)
******
1787. ( 6)
1690. ( 6)
932. ( 6)
232. ( 4)
581. ( 4)
1340. ( 6)
- 199 -
-------
H'^USf- 1 SPRING-SUMMER C8 AVERAGE CONCENTRATIONS *UG/M3
VALUES IN ( ) ARE Nfj. dF 9BSE3VATIPNS IN PERIOD
MAX.: 6 PER 2HR.72 PER DAY
DATE
5/12/73
5/12/73
5/12/73
5/12/73
5/12/73
5/l?/73
5/12/73
5/12/73
5/12/73
5/12/73
5/12/73
5/12/73
TIME
STATI9N
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
0400
0600
0300
1000
1200
1400
1600
1800
2000
2200
2400
DAILY AVERAGE =
(AVC» BF 2HR VALUES)
1 A
1M from
4547.
3994.
2897.
2920.
3105.
6767.
9950.
8725.
3395.
6996.
9153-
9678.
Stove
( 6)
( 6,
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
p
Liv Rm
4158* (
= 567. (
2431. (
2414. (
1S?3* (
5873. (
9055* (
* 1 3 1 (
7812* (
6635* (
3725. (
8901. (
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
3
BD
474P.
4111«
3130-
2686«
1605*
5339-
789o»
3026-
7773«
6996»
9231.
9406.
RM
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
8JTS
3536.
3333.
2314.
2103.
1002.
5117.
7346.
6821.
6179.
o219.
3492.
3473.
4
IDE
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
6427.
5802
5915'
5078.
5/13/73
5/13/73
5/13/73
5/13/73
5/13/73
5/13/73
5/13/73
5/13/73
5/13/73
5/13/73
5/13/73
5/13/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
10416- i
9650* I
9389. i
9338. i
8303. i
9359. i
7618. i
6844. i
3014. i
9421.
9270. '
9118. <
t 6)
: 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
9911- i
9133. i
3805. i
9294. i
9332« i
°820. i
7074. i
6534. i
7819. i
1071. i
3570. i
3651 « i
( 6)
( 6)
( 6)
( ft)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
10455* i
9961. <
9466. i
10033- i
9421- i
9976* i
7074* <
6689. i
7811. i
9071.
3842*
3962«
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
t 6)
( 6)
t 6)
( 6)
( 6)
( 6)
9367.
3755.
3494.
3983.
7944.
9043.
6452.
6417.
7742-
9032.
3337.
3224.
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
DAILY AVERAGE =
(AVU RF 2HR VALUES)
3978.
3676.
3981
3233«
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
5/14/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1300
1800-2000
POOO-2200
2200-2400
7454.
7964.
3901.
6477.
3290*
7750-
3504.
2329.
2825.
P476.
3695.
3653.
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
7027.
7730.
8784.
7674.
7979.
7206.
562*-.
P.33R.
1958.
2325.
3431.
3125.
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
7454« i
3275' i
9173* '
7712.
3251-
7089-
5400*
2187.
2108-
2551*
3544*
3616«
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
6910. <
7575. i
3667.
8792.
6774.
6467.
4307.
1735.
1391.
2438.
3280.
2484.
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
DAILY AVERAGE -
(AVG 8F 2HR VALUES)
5652'
5434.
5613-
5068'
- 200 -
-------
MAX
( ) AKF \s.
6 PER 2Hs,72
}F
) AVERAGE C^NCENTRATI 1NS
1 _ SER VAT HNS IN
"MY
ATF
5/1^/73
j/ IS/73
'5/1 V73
5/i >/73
3/r.-/73
i/; V73
5/1--/73
J/I-.-/73
i/1 j/73
->/l->/73
5/15/73
oooo-
nsoo-
0400-
0600-
r)8C,'0-
1000-
1?00-
1400-
1600-
1HOO-
? 0 0 0
0200
0400
Ob oo
0800
1000
1400
1600
loOO
2000
220C
2400
r-MLY AVFRAGcl
(AV.i HF" 2'
VALUES)
"5/16/73
5/16/73
5/16/73
5/16/73
5/16/73
5/16/73
5/16/73
5/16/73
5/16/73
5/16/73
5/16/73
oooo-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2200-
0200
0400
0600
0800
1000
1200
1400
1600
1800
2000
2200
2400
1 A
IM from
306 o.
5 o 2 8 «
j 8 2 2
b 1 3 9
SJ23.
760J.
.5163.
6073*
-j y 9 6 «
£?!!»
-J.34/.
3730.
j 6 b b
4106.
3461.
2703.
2399.
4358.
5070.
2820.
2198.
4099.
3375.
2557.
2261.
Stove
( 6)
( 6)
( b )
( 6)
( 6)
( 6)
( b)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
?
Liv Rm
'46!?. (
M*q. (
u. h ^ ^ , /
A, P /I R (
7646- (
72?3« (
4?b2« (
-168. (
-^475. (
1-007. (
b 3 1 9 . (
1 1^7. (
~ 1 4 7 .
3577. (
3008. (
2137. (
1682* (
3716. (
4731- (
?631« (
1858. (
2854. (
2254. (
?360« (
1867. (
6)
6)
6)
M
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
3
in
DlO?- 1
5528* i
j82°. i
n324» i
7608" (
7336« I
4?25' '
:)357. i
3587. -
-? 6 0 ° « '
T847. i
5841-
-3»J».
4256-
361P.
2627*
2015-
3225"
4580*
2593.
1670-
2666*
2236.
?557.
2024-
RM
[ 6)
( 6)
[ 6)
! 6)
: M
! 6)
( 6)
( 6)
( 6 )
( b)
( 6)
( M
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
4
3UT-3I
4ldl«
4811.
j219«
3909-
b778.
6016.
?22b «
1886.
928.
1070.
'.5168*
4560*
4058.
2974.
2744*
1986.
1083.
3188.
4316.
2405.
1443*
2327.
1219.
1807.
13b4-
JE
( b)
( b )
( b )
( b )
( b )
( 6)
( b)
( ft )
( 6)
( 0)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
DAILY AVERAGE =
(AVG 6F 2HR VALUES)
3284.
P723.
2838-
2237.
- 201 -
-------
H3USE 1
VALUES
MAX.
DATE
5/21/73
5/21/73
5/21/73
5/21/73
5/21/73
5/21/73
5/21/73
5/21/73
5/21/73
5/21/73
5/21/73
5/21/73
SPRING-SUMMER C8 AVERAGE CONCENTRATIONS MJG/M3
( ) ARF N9. OF OBSERVATIONS IN PERIS}
6 PER 2hR,72 PER 3AY
TIME
0000-
0200-
0400-
0600-
0300-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
0400
0600
0800
1000
1200
1400
1600
1800
2000
2200
2400
DAILY AVERAGE =
(AVG OF 2HR VALUES)
STATI0N
1 A
1M from Stove
4407.
5007. -
4538. i
4009. i
3210- (
3793. i
1185. i
1002. i
1290. i
2514. i
4444* i
1460* i
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
I 6)
( 6)
( 6)
( 6)
2
Liv Rm
4135.
4579.
4183.
3076.
2705.
33?6»
913-
614.
1013. ,
2125.
3414-
1421.
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
3
4
BD RM
425?.
4618«
403P.
,2882*
2977.
3294*
757.
497«
979.
2086*
327?.
1578«
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( M
( 6)
( 6)
( 6)
( 6)
dUTS]
3591.
J841.
3449.
2338.
2510.
3060.
641.
341.
746.
1931.
2079.
710.
IDE.
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( fo)
( 6)
( 6)
( 4)
3072'
2626.
2602'
2103.
5/22/73
5/22/73
5/22/73
5/22/73
5/22/73
5/22/73
5/22/73
5/22/73
5/22/73
5/22/73
5/22/73
5/22/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
18CO-2000
POOO-2200
2200-2400
2407. i
1737. i
1026- i
1066. i
329. i
1223. <
1302-
1697. i
Ib39. i
1105. i
710. i
2210. i
( 6)
! 6)
t 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 3)
( 5)
( 6)
2249.
1421.
1P31-
750«
521*
908.
1184.
1658.
7P6*
434.
379.
2013.
( 6)
( 6)
( 5)
( 6)
( 5)
( 6)
( 6)
( 5)
( 6)
( 6)
( 5)
( 6)
?323« i
1539. i
1105. i
1026* i
474« i
789. i
1066*
947. i
276* '
434* <
323* <
1894. <
[ 6)
! 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
16b8. i
947. i
1066. i
1381. i
829.
671.
987.
987.
316.
434.
521.
1815.
( 6)
! 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
DAILY AVERAGE = 1404.
(AV'J BF 2HR VALUES)
1123.
1017.
968'
5/c'j/73
5/23/73
5/23/73
5/23/73
5/23/73
5/23/73
5/23/73
5/23/73
5/23/73
5/23/73
5/23/73
5/23/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
b038.
5604.
4617.
3749.
2210.
377b.
2259.
1649.
3136.
2195-
1712.
1381.
( 6)
( 6)
( 6)
( 6)
( 6)
( 4)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
5209.
5091.
4133*
3039.
1855.
3593.
1944.
1358.
?119.
2073.
1243.
1258.
( 6)
( 6)
( 6)
( 6)
( 6)
( 4)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
-j323»
5367.
4499.
3039*
1894.
3121.
1678«
1431.
2192«
2347.
1663*
1554.
( 6)
( 6)
( 6)
( 6)
( 6)
( 4)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
4105.
4420.
3631.
2170.
1933.
1778.
1049.
898.
837.
1434.
345.
528.
( 6)
( 6)
( 6)
( 6)
( 6)
( 4)
( b)
( 6)
( 6)
( 6)
( 6)
( 6)
DAILY AVERAGE = 3194.
(AVu RF 2HR VALUES)
2747.
2843*
1927'
- 202 -
-------
MAX
IN ( ) ARF N-. JF U
: 6 PER 2Hro72 PEW
AVERAGE CONCENTRATIONS
. StRVATI'iNS IN
<,AY
JG/M3
>
5/
5/
5/
,/
S/
5/
;/
3/
5/
5/
5/
5/
-vTF
.N/73
.-"4/73
J4/73
2 4/73
.'4/73
^4/73
't/73
J-+/73
04/73
24/73
.>/73
24/73
T I x
oooo-o
0200-0
0 4 00-0
0600-0
0800-1
1000-1
12CO-1
1400-1
1600-1
1800-2
2000-2
2200-2
000
+00
f 00
c>00
)00
POO
400
600
bOO
000
200
400
1A
1M from
2201.
S315.
3 4 1 2 «
4 6 4 o «
4985.
3484.
1727.
1 i b 0 «
1455-
1 751-
J 6 3 9 .
H25.
Stove
( 6)
( 6 )
( 6)
( 6 )
( 6)
( 6)
( 6)
( 6 )
( 6)
( 6)
( 6)
( 6)
P
3
4
Liv Rm n RN
POOR.
?0S6«
3049.
3 P 3 0
4307.
P95P.
1529.
1776.
H»4.
1406.
A / "} n
| O ^ O *
15?9.
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
2226.
324?.
3266*
3«7P«
<+085«
-^75 R.
1036-
1505-
1011.
1357.
1677.
1973*
( 6 )
( 6 )
( 6 )
( 6)
( 6 )
( 6 )
( 6)
( <>)
( 6)
( 6)
( 6)
( 6)
8JTL,]
1718.
2347.
2540*
2928.
j0^9.
I960.
641
1 3ol «
338.
338.
863.
6b6.
:UE
( ^ )
( b )
( i> )
( 6)
( 0)
( b )
( o)
( 6)
( 6)
( 6)
( 6)
( 5)
3AILY AVFPAGE =
(Av'j OF 2hO< VALUES
2774.
2356«
2334'
165b'
5/
5/
5/
5/
^/
5/
- /
j/
> /
'"'
^
P:3/73
Po/73
25/73
25/73
p ---, / 7 3
t.b/73
25/73
2 5 / 7 3
2_>/73
0/73
-i/73
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
*-> f \ ,"\ r\
2 U 0 u -
??00-
0200
0400
0600
0300
1000
1200
1400
1600
1300
2000
O O A M
rdOO
^602.
3502 «
3009.
3b30»
1948.
1583.
2220.
* ##
* #*
* * *
* * *
(
(
(
(
(
(
(
* *
**
**
* *
6)
6)
6)
6)
6)
6)
4)
*
#
*
*
^306. ( 6)
3157. ( 6)
O^.OQ / £. N
i O T :j \ ^*^
3145. ( 6)
1159. ( 6)
1258. ( 6)
1887. { 4)
******
******
******
»-> -M- M M M-
W * IT TT W
******
P97?«
3551.
2910.
3170.
361-
1184.
1813.
*#*
**»
* **
»u JL
* "
***
(
(
(
(
(
(
(
* *
* »
**
* *
* *
6)
6)
6)
6)
6)
6 )
4 )
*
*
*
jt
»
2479. ( 6)
3540. ( 6)
2318. ( 6)
25 J4. ( b)
567. ( 6)
9J7. ( 6)
1813. ( 4)
*****#
******
******
******
******
- 203 -
-------
Appendix B-2
N0_, NO and CO data for House No. 1 - Fall/Winter
- 204 -
-------
-1
VALUfS IM
MAX.: 6
DATE
) ARE v
PEP 2HK<
TI"E
3F
, JG/'13
IN
72
DAY
STATIBN
1 1A 2
ST9VE IM FRPM ST^VE LlV/
9JT5IDE
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
/
/
/
/
/
/
/
/
/
/
/
/
6/73
h/73
b/73
6/73
t>/73
c/73
6/73
6/73
6/73
o/73
6/73
6/73
0000
0200
0400
0600
0800
1000
1200
1400
1600
1800
?OGO
2200
-
-
-
-
-
-
-
-
-
-
-
-
0200
0400
0600
0800
1000
1200
1400
1600
1800
2000
2200
2400
*******
******
*** ***
******
******
* *****
** * ***
******
311.3 ( 3)
2J8-2 ( M
o7.8 ( 6)
33.8 ( 4)
*******
******
******
******
******
******
******
******
P79.0 ( 3)
143.0 ( 6)
4 ? . F ( 6 )
32.0 ( 4)
*******
******
******
******
******
******
*»* **»
******
^43.3 ( 3)
164.5 ( 6)
59.2 ( fa)
24.8 ( 4)
*******
** »***
******
******
******
******
** « ***
******
125.7 ( 3
3o.3 ( o
17.? ( 6
1 J 3 ( 4
)
)
)
)
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
1 I/
ll/
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
0000-0200
0200-0400
0400-3600
0-600-0*00
0800-1000
1000-1200
1200-1400
1400-1600
1600-ldOO
1800-2000
POOO-2200
2200-2400
36
36
41
40
)
CMLY AVERAGE =
(AV'i f'E 2HR
7 d
55.7
58.5
34 « 6
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
5/73
*-,/73
^/73
S/73
K/73
fe/73
x/73
.S/73
-73
V73
S/73
S/73
0000-0200
0200-0400
0400-0600
J600-0300
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
°200-?400
-jO.
o5.
o2.
:sl.
5o«
62.
61.
138.
j 0 7
1 j9.
-i2«
n2.
2
3
5
7
3
7
5
j
7
3
7
7
( 6)
( 6)
( 6)
( 6)
( b)
( 6)
( 6)
( 3)
( 6)
( 6)
( A)
( M
45.0
46.3
46.5
^6.5
43.0
47.0
50.3
10-. 3
P47. 3
^7.7
65.3
70.2
( 6)
( 6)
( 6)
( 6)
( 6)
( 4)
( 6)
( 3)
( 6)
( 6)
( 6)
( 6)
59.?
54.0
56.7
72. S
62. 8
77.8
72.7
110.7
316.5
111.7
87.8
81. 5
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 3)
( 6)
( 6)
( 6)
( 6)
44. U (
56. ? (
64.0 (
74.0 (
45.3 (
46.^ (
41.5 (
37.7 (
101. n (
64»o (
5J.S (
52.7 (
6)
6)
b)
b)
6)
6)
b)
3)
i)
b)
6)
6)
DAILY AVERAGE =
(Av'J OF ?HR VALUES)
77.2
97.0
57.0
- 205 -
-------
-1
VALUES
MAX.
DATE
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
1/73
9/73
rJ/73
9/73
9/73
'9/73
'3/73
9/73
9/73
°/73
I\
( ) ARE N-3.
PER 2HR,72
TIME
0000-
0200-
0400-
0600«
0800-
1000
1200-
1400-
1600-
1800-
?000-
2200-
0200
0400
0600
0800
1000
1200
1400
1600
1800
2000
2200
24uO
AVERAGE C^NJCFNTRATI^
:iF OnSERVATleMS IN PERI8J
PER DAY
STATION
/ UG/:13
1
1A
9VER ST8VE 1M rR^M
51.5 (
49.0 (
52.7 (
59.0 (
57.3 (
******
P51.S (
36.5 (
44.0 (
30.2 (
f 0 » 2 (
22.8 (
6)
6;
6)
6)
ft)
4)
ft)
ft)
ft)
ft)
ft)
45.0
:5»0
41.3
50* R
49.0
****
87.8
32-7
42*7
30-2
37.7
2ft« 5
ST9VE
( ft)
( 6)
( ft)
( ft)
( 6)
**
( 5)
( ft)
( ft)
( ft)
( ft)
( 6)
2
LIV/
67.5 (
46.3 (
37.5 (
50.3 (
45.3 (
******
34.5 (
17.7 (
21.5 (
25.3 (
17.7 (
10.3 (
ft)
ft )
ft)
ft )
6)
4)
ft)
6)
ft)
ft)
ft)
4
9JTSIDE
36.3 (
21.2 (
22.7 (
37.7 (
30.2 (
** ****
17. ft (
10.3 (
23.? (
21.7 (
1 6 "3 (
lb«0 (
6)
5)
6)
6)
ft)
5)
b)
ft )
6 )
6)
ft)
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
jOOO-0200
0200-0400
0400-0600
0600-ObOO
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
18CO-2000
?000-?200
?200-?400
?2»
24.
18.
26.
17.
26.
29.
2b.
24.
33.
36.
30.
3
d
p
7
8
5
0
3
?
s
5
J
( 7)
( 6)
( 5)
( A)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
?4»
23.
23.
2'.
30.
30-
31.
?5«
27.
3^.
37.
31
0
0
0
8
3
o
^J
2
3
7
7
S
3
( 7)
( 6.)
( 5)
( 6)
( 6)
( 6)
( 6)
( ft)
( ft)
( 6)
( ft)
( 6)
14.0
11.5
10. S
15.0
12.7
15.0
17.7
9.2
16.3
24.2
20.3
25.2
( 7)
( *)
( 5)
( ft)
( 6)
( 6)
( 6)
( 6)
( ft)
( 6)
( ft)
( ft)
lo.O
15.0
15*0
15.0
16.3
16.3
17.7
16.3
25.2
26.5
24.?
3L5
( 7)
( 6)
( 5)
( ft)
( S)
( 6)
( 6)
( 6)
( b)
( 6)
( h)
( ft)
DAILY AVEKAGF =
(AV3 RF ?.HR VALUES)
16.0
13.5
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
0000-OPOO
T200-0400
0400-0600
0600-0800
0800-1000
1000-1?00
1200-1400
1400-lftOO
1600-1 SCO
1800-2000
POOO-2200
P200-2400
30.0
28.8
28. S
54.0
32.7
55.2
145.7
94.?
1 4 3 3
D 6 » 5
36.5
35.3
( 6)
( ft)
( ft)
( ft)
( ft)
( 6)
( ft)
( ft)
( ft)
( 6)
( ft)
( ft)
2* 8
27.7
30.0
41-5
33.8
35.2
3ft .T)
«4. ?
1 4 3 S
5ft. b
37.8
38»0
( 6)
( ft)
( ft)
( 6)
( ft)
( 6)
( ft)
( ft)
( ft)
( ft)
( 6)
( ft)
25.2
23.0
30.2
29.0
24.0
24.2
44.0
30.3
65.2
41.5
32.7
33.3
( ft)
( 6)
( ft )
( ft)
( ft)
( ft)
( ft)
( ft)
( ft)
( ft)
( ft)
( ft)
2K « S
32.7
34.0
30.0
27.7
lb»5
io.°,
18* ?
43.8
4ft. -j
40.3
bb. 3
( 6)
( b)
( ft)
( f>)
( 6)
( o)
( 5)
( t>)
( 0)
( 0)
( 6)
( 6)
DAILY
( AV>J
AVERAGE =
8F ?HR VALUES)
33.5
32.1
- 206 -
-------
H3USE -1
VALUES
MAX.
DATE
11/12/73
11/12/73
fl/12/73
11/12/73
11/12/73
1-1/12/73
11/12/73
11/12/73
11/12/73
11/12/73
11/12/73
11/12/73
FALL-WINTER
IN ( ) ARE N9«
: 6 PER 2HR/72
TIME
oooo-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
0400
0600
0800
1000
1200
1400
1600
1800
2000
2200
2400
DAILY AVERAGE *
6)
6)
4)
5)
( 6)
( 6)
( 6)
( 6)
( 6)
( -6)
2
LIV/
35.3 (
34.0 (
32.7 (
34.0 (
38.0 (
42.0 (
28.3 (
48.3 (
51.7 (
98.5 (
93.3 (
70.0 (
50.5
61.7 (
53,3 <
48.3 i
61.7
50.0 <
50.0
50.0 <
61.7 1
227.5 (
139.0 1
71.7
60. D
77.9
50.0
50.0
48.3
81.8
60.0
40.0
40.0
40.0
50.0
58.3
48.3
41.7
4
9JTSIDE
6)
6)
6)
6)
4)
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
( 6)
[ 6)
( 6)
4)
I 5)
( 6)
6)
( 6)
( 6)
( 6)
( 6)
52.7 1
36.7 1
41.7 (
44.0 1
49.3
42.0 1
38.3
53.3 (
90.2 (
114.0
125.2
76.7
63.7
76.7
75«0
65*0
65.0
60.0
61.7
71.7
108*8
157.7
132.5
90«0
73.3
86-4
70.0
70.0
58»3
81.7
67.5
48*0
30.0
30.0
6U»0
60.0
66.7
5L7
6)
6)
6)
6)
4)
5)
6)
6)
6)
6)
6)
6)
! 6)
( 6)
( 6)
I 6)
( 6)
( 6)
( 6)
( 6)
6)
! 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 4)
( 5)
( 6)
( 6)
( 6)
( 6)
( b)
( 6)
DAILY AVERAGE =
(AVU SF 2HR VALUES)
62.3
53.4
50.7
57.8
- 207 -
-------
VALUES
MAX.
DATE
11/15/73
11/15/73
ll/lb/73
11/15/73
11/15/73
11/15/73
11/15/73
11/15/73
11/15/73
11/15/73
11/15/73
ll/lb/73
IN ( ) ARE N^.
: 6 PER 2HR*72
3F QBSERVATI^NJS
PER DAY
IN PER I
TI^IE
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
0400
0600
OSOO
1000
1200
1400
1600
1800
2000
2200
2^00
1
fiVER STOVE 1M
DAILY AVERAGE =
(AV3 SF 2HR VALUES)
61.7
81.7
60.0
86. 3
114.2
97.0
80.0
104.4
85.0
35.0
91.7
65.0
84.4
6)
6)
6)
6)
6)
6)
6)
5)
6)
6)
6)
6)
1A
FR9M
53.3
58.3
55.0
--.o
73.3
58.3
65.0
74.0
70.0
66.7
60.0
53.3
STBVE
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
STATI8N
3
/BD
45.0 (
45.0 (
41.7 (
78.5 (
65.0 (
51.7 (
65.0 (
80.0 (
73.3 (
75.? (
51.7 (
41.7 (
RM
6)
6)
6)
6)
6)
6)
6)
5 )
6)
6)
6)
6)
4
8JTSIDE
58.3 (
87.0 (
51-7 (
60.0 (
75.0 (
60. 0 (
65.0 (
106.6 (
83.5 (
70.0 (
56.7 (
53.3 (
6)
6)
6)
6)
6)
6)
b)
5)
6)
6)
6)
6)
64.5
59.5
69.3
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
71.7
75.0
58.3
90»2
85.0
46.7
48.3
46.7
80.2
500
60»0
40.0
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 3)
( 5)
( 6)
( 6)
( 6)
58.3
60.0
51 .7
78.7
63.3
46.7
46.7
40.0
102.0
55.0
51.7
41.7
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 3)
( 6)
( 6)
( 6)
( 6)
46.7
50.0
40.0
43.3
40.0
40.0
40.0
33.3
58.5
43.3
43.3
36.7
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 3)
( 6)
( 6)
( 6)
( 6)
60.0
61.7
60. 0
56.7
38.3
3b«0
23.3
20.0
23.3
20.0
15. 0
21-7
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 3)
( 6)
( 6)
( 6)
( 6)
DAILY AVERAGE =
(AVG 9F 2HR VALUES)
62.7
58.0
42.9
36«2
11/17/73
11/17/73
11/17/73
11/17/73
11/17/73
11/17/73
11/17/73
11/17/73
11/17/73
11/17/73
11/17/73
11/17/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POOO-2200
2200-2400
38.3
41.7
36.7
J5«0
50.0
51.7
45.0
43.3
477.2
56.7
85.2
58.3
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
40.0
40.0
40.0
56.8
45.0
83.5
40.0
36.7
246.2
48.3
50.0
53.3
( 6)
( 6)
( 6)
( 6)
{ 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
28.3
23.3
20.0
23.3
23.3
28.3
40.0
23.3
65.0
38.3
30.0
35.0
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
15.0 (
16.7 (
10.0 (
16.7 (
leO (
12.0 (
15.0 (
16.7 (
20«0 (
31.7 (
25.0 (
23.3 (
6)
6)
6)
6)
5)
5)
6)
6)
6)
6)
6}
6)
DAILY AVERAGE *
(AVG 8F 2HR VALUES)
84.9
65.0
31.5
18.3
- 208 -
-------
h'JUSF -1
VALUES
MAX.
DATE
11/1S/73
11/13/73
11/18/73
11/14/73
11/13/73
11/13/73
11/1-5/73
11/18/73
11/18/73
ll/lh/73
11/18/73
FALL-MINTCR
( ) ARE N'J«
6 PER 2HR/72
TIME
N92 AVERAGE
3F 9BSERVATIPNJS
PER DAY
UG/M3
IN
0000-
0200-
ZI400-
0600-
0800-
10CO-
1200-
1400-
1600-
POOO-
2200-
0200
0400
0600
0300
1300
1200
1400
1600
1300
2000
2200
2400
DAILY AVERAGE =
(AVu OF ?HR VALUES)
STATI9N
1
5WER 3T6VE 1
60. 'J (
56.7 (
46.7 (
50.0 (
48.5 (
o6.7 (
61.7 (
48.3 (
86.8 (
71.7 (
38. D (
88.3 (
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
1A
M FR0M STOVE
5S.3 (
48.3 (
43.3 1
43.3 I
115.3 i
43.3 i
6?. 5 I
*5-2 i
60.0 i
45.0 i
56.7 .
43.3 i
: 6)
: 6)
: 6)
: 6)
( 6)
! 6)
1 6)
( 6)
( 6)
( 6)
( 6)
( 6)
3
4
/3D RM
45.0
33.3
30.0
26.7
43.3
33.3
35.0
36.7
41.7
38.3
36.7
38.3
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
9JTSIOE
2fa.7
23.3
20.0
20.0
18.3
1&.3
21.7
2b»7
36»3
45*0
43*3
4U«0
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( b)
( 6)
( 6)
( 6)
( 6)
( 6)
67.0
60.5
36.5
28.5
1 1/1-V73
11/19/73
1 1/19/73
11/15/73
11/19/73
11/1^/73
11/19/73
11/19/73
11/1-V73
11/19/73
11/19/73
11/19/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1SOO
1800-2000
POGO-2200
2200-2400
63
63
68
65
65
70
60
978
319
80
107
sil
.3 (
.3 (
3 (
.0 (
O (
0 (
0 (
.4 (
3 (
J (
3 (
S (
6)
6)
6)
6)
?)
6)
3)
5)
6)
6)
6)
6)
50.
55.
45.
«n.
55.
55*
56.
"2«.
30^.
70.
61.
56.
0 (
0 (
0 (
2 (
G (
0 (
7 (
2 (
« (
0 (
7 (
7 (
6)
6)
6)
6)
?)
6)
3)
5)
6}
6)
6)
6)
36.7
35.0
30.0
40.0
40.0
40.0
40.0
90.4
152.7
56.7
41.7
38.3
( 6)
( b)
( 6)
( 6)
( 2)
( 6)
( 3)
( 5)
( 6)
( 6)
( 6)
( 6)
43.3
61.7
4j. 3
43.3
35. J
41.7
4J.O
2b»0
63.3
36.7
43.3
46.7
( 6)
( 6)
( 6)
( 6)
( 2)
( 6)
( J)
( b)
( 6)
( b)
( 6)
( »)
DAILY AVERAGE =
(AV3 RF 2HR VALUES)
dl8«
53.4
43.9
11/20/73
11/20/73
11/20/73
11/20/73
11/20/73
11/20/73
11/20/73
11/20/73
11/20/73
11/20/73
11/20/73
11/20/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1 200-1400
1400-1600
i6oo-noo
1800-2000
2000-2200
?200-2400
172.8
1 J7.2
58.3
63.3
137.7
76.7
103.7
78.3
341.3
2J2.7
118.8
152.3
( 4)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
90.0
46.7
41 .7
45«0
128.7
53.3
4A..7
60. 0
304.7
145.7
66.7
91.8
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
74.7
31.7
25.0
31.7
61.8
40.0
43.3
38.3
123.8
165.8
143.8
71.3
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
71.5
3-j.O
33.3
83.7
53.3
43.3
38.3
43.3
51.7
78.5
50.0
b8.3
( 6)
( fa)
( 6)
( 6)
( 6)
( 6)
( 6)
( b)
( b)
( b)
( b)
( b)
JAILY AVERAGE = 139«4
(AVli RF 2HR VALUES)
93.8
49.9
74.
- 209 -
-------
H3USE -1 FALL-WINTER
VALUES IN ( ) ARE NO-
MAX.: 6 PER 2HR>72
N92 AVERAGE
e)F fJBSERVATIQNS
PER 3AY
CONCENTRATIONS
IN PERIRD
STATI8N
UG/M3
DATE
11/21/73
11/51/73
11/21/73
11/21/73
11/21/73
11/21/73
11/21/73
11/21/73
11/21/73
11/21/73
11/21/73
11/21/73
TIME
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POOO-2200
2200-2400
1
BVER ST8VE 1M
1 17.0 ( 6)
125.3 ( 6)
162.5 ( 6)
113.8 ( 6)
138.8 ( 6)
127.0 ( 3)
******
******
******
******
******
******
1A
F3PM ST8VE
60.0 ( 6)
134.4 ( 6)
111.8 ( 6)
137.2 ( 6)
90.2 ( 6)
50.0 ( 3)
******
******
******
******
******
******
3
/BD RM
43.3 ( 6)
81.8 ( 6)
55.0 (
52.8 { 6)
35.0 ( 6)
76.7 ( 6)
83.7 ( 3)
******
******
******
******
******
******
-------
H-3USF -1 FALL-WINTLR N
VALUES IN ( ) ARE N'). t)F
MAX.: 6 PER 2HR/72 PtR DAY
DATE
AVERAGE
S , LJG/M3
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
18CO-
2000-
2200-
0200
0400
0600
0800
1000
1200
1400
1600
1*00
2000
2200
2400
DAILY AVERAGE =
(AVG 8F ?HR VALUES)
IN PER I FT.)
STATI9N
1
1A
8VtW 3T8VE 1M FR9M
29.5
26.3
29.3
29« 6
123.0
31«8
34.7
65.5
324. 'J
160. B
110.5
129.7
( 6)
( 3)
( 6)
( 5)
( 2)
( 6)
( 6)
( 6)
( 6)
( S)
( 6)
( 6)
27.0
21.3
23.3
25.8
83.5
23.2
19.8
37.5
212.8
176.0
115.5
130.5
2
STflVE LIV/ 9M
( M
( 4)
( 6)
( 5)
( 2)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
15.8 ( 6)
18.3
19.2
20.8
218.5
25.7
19.2
27.7
3)
6)
5)
2)
6)
6)
6)
245.2 ( 6)
99.7 ( 6)
79.7 ( 6)
89.0 ( 6)
4
9JTSIDE
9.2
8.3
8.0
1 1 «0
22.5
13.3
10.0
16.5
26.3
53«2
31.7
bl. 3
( 6
( 3
( 5
( j
( C
( 6
( b
( b
( 6
( 6
( 6
( 6
75.1
73.2
21.
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
8/73
8/73
8/73
4/73
4/73
S/73
8/73
s/73
4/73
^/73
:s/73
4/73
0000-0200
0200-0400
0400-0600
0600-0300
0800-1000
1000-1200
1200-1400
1400-1600
1600-1300
1800-2000
POOO-2200
2200-2400
1 J6.J
107.2
Io4.2
274.3
244.2
206.0
126.2
226. 0
430. J
2e>9.3
1 79.3
154. 'i
( 6)
( 6)
( 6)
( 6)
( 6)
( ?)
( 6}
( 3)
( 6)
( 6)
( 6)
( 6)
103.0
107.2
150.8
244.8
T37.b
1 l=i.3
12^.5
160.7
416.8
231 .8
188.3
153-2
( 5)
( 6)
( 6)
( 6)
( 6)
( 4)
( 6)
( 3)
( 5)
( 6)
( 6)
( 6}
74.
92.
156.
252.
313.
174.
103.
140.
338.
161.
118.
94.
0
7
5
3
7
5
2
7
2
2
0
0
( 6)
( 6)
( 6}
( 6)
( 6)
( 2)
( 6)
( 3)
( 6)
( 6)
( 6)
( 6)
48.3
103.2
216.5
272. u
136.0
59« 0
5d«5
42.7
34.2
49.0
41.7
27.8
( 6)
( b)
( 6)
( 6)
( 6)
( 2)
( 6)
( 3)
( 6)
( 6)
( 6)
( b)
DULY AVERAGE =
(AV'j OF 2HR VALUES)
'06.5
159.9
90.2
- 211 -
-------
H3USL -1
VALUES
MAX.
DATE
FALL-WINTER
IN ( ) ARE N8.
: 6 PER 2HR/72
TIMF
NQ AVERAGE
9F OBSERVATIONS
PER JAY
IN PFRI8D
, UG/M3
STATI8N
1 1A 2
ST8VE 1M FR9M STPVE LIV RM
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
9/73
9/73
9/73
9/73
9/73
9/73
9/73
9/73
9/73
?/73
9/73
9/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
104
76
31
23
29
*
261
28
64
28
28
15
.8 (
3 (
8 (
.8 (
.5 (
* *** <
.3 (
.7 (
.7 (
.5 (
.0 (
0 (
6)
6)
6,
5)
6)
»
4)
6)
6)
6)
6)
6)
100.0
73.7
... . o 7
13.0
19.8
»**
109.8
27.7
49.?
30*8
23.8
13.3
( 6)
( 6)
( 6)
( 5)
( 5)
»**
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
77.3 (
54.3 (
24.0 (
25.8 (
22.8 (
* ###*H
26.8 (
9.2 (
15.0 (
14.2 (
10.0 (
9.2 (
6)
6)
6)
5)
5)
»
4)
6)
3)
6)
6)
6)
17.5
b" 3
6.3
6.0
11.7
****
17.0
8.3
6.3
9.2
12.5
8.3
( 6)
( 3)
( 4)
( b)
( 3)
* *
( 5)
( o)
( 6)
( 6)
( 6)
( 6)
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
17.1
15.0
15.0
21.5
33.7
20.8
19.0
15.8
20.8
20.8
23.7
30.7
( 7)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
15.0 (
15.0 (
14.0 (
16.5 (
?6.2 (
19-2 (
20*7 (
15.0 {
17.5 (
21.7 (
?=».5 (
32.3 (
7)
6)
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
10.0 (
10.3 (
10.0 (
10.0 (
12.5 (
13.3 (
12.5 (
11.7 (
10.0 (
12.5 (
13.3 (
15.8 (
7)
6)
5)
6)
6)
6 )
6)
6)
6)
6)
6)
6)
10.7
10»0
10.0
11.7
15»0
15.0
17*5
13.3
12.5
15*0
16.7
20»0
( /)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
DAILY AVERAGE =
(AVG 0F 2HR VALUES)
21.2
20.2
11.3
13.9
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1 400-1600
1600-1800
1800-2000
2000-2200
2200-2400
30.8
34.0
31.5
51.5
63.8
65.5
82.4
176.8
423.3
220.3
150.5
18LO
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
30.7
34.0
30.7
54.7
57.3
50.7
98.8
175.3
460.2
P37.3
136.2
191.7
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
16.7 (
?3.2 (
19.2 (
19.2 (
27.0 (
22.3 (
35.3 (
51.5 (
140.2 (
99.0 (
102.2 (
164.5 (
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
18.3
27.0
15«8
2L5
23.0
16.7
16.7
20.7
24.7
45.7
100.7
225.2
( 6)
( 6}
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
DAILY AVERAGE =
(AVO 8F 2HR VALUES)
1260
129.8
60.0
46.3
-------
HTUSF -1 hALL-WINTER N8 AVERAGE C8NCF.NTRAT 19NS » UG/13
V..LUES IN ( ) ARE Ng. 3F 9BSE9VATI ^NS IN PERI8D
: 6 PER 2HFo72 PER DAY
DATE
TIME
11/12/73
11/12/73
11/12/73
11/12/73
11/12/73
11/12/73
11/12/73
11/12/73
11/12/73
11/12/73
11/12/73
11/12/73
0000-0200
0200-0400
0400-0600
0600-0300
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
DAILY AVERAGE *
(AVG 8F 2HR VALUES)
1
BVER ST8VE 1
187.7
160.5
138.8
167.2
206.5
177.0
37.3
52* 5
174.o
375.7
261*3
213.0
( 6)
( 6)
( 6)
( 6)
( <0
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
1A
M FR8M
191.7
158.8
141.2
162*2
159.5
176.8
101.7
57.8
238.3
386.7
285.0
225.0
STATIBN
2
ST8VE
( 6)
( 6)
( 6)
( 6)
( 4)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
LIV RM
159.8 (
131.2 (
116.3 (
137.2 (
190.3 (
120.6 (
63.3 (
29.5 (
104.0 (
188.8 (
169.0 (
131.2 (
6)
6)
6)
6)
4)
5)
6)
6)
6)
6)
6)
6)
4
8JTS]
144.2
108.0
128.7
144.2
220.0
35.4
28.2
32.8
128.0
118.0
134.3
124.7
:DE
( 6)
( 6)
( 6)
( 6)
( 4)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
183.5
190.4
128.4
112*2
11/13/73
11/1 J/73
11/13/73
11/13/73
11/13/73
11/13/73
11/13/73
11/13/73
11/13/73
11/13/73
11/13/73
11/13/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
168.3 (
136.6 (
121.5 (
188.8 (
152.8 (
123.5 (
114.5 (
134.5 (
575.7 (
397.5 {
265.5 (
205.5 (
6)
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
180.0 (
142.8 (
123.7 {
142*0 (
157.2 (
126.0 (
120.3 (
144*3 (
548.2 {
423.8 (
296.2 (
218.5 (
6)
5)
6)
6)
6)
5)
6)
6)
6)
6)
5)
6)
114.7
92.8
88.5
103.7
114.5
88.5
87.2
112.7
277.5
243.7
194.5
163.7
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
94.0
73.3
73.5
103.8
86.3
70.0
88»3
103.7
166.0
137.5
123.7
78.5
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
DAILY AVERAGE * 215.4
(AVu 8F 2HR VALUES)
218.6
140.2
99.9
11/14/73
11/14/73
11/14/73
11/14/73
11/14/73
11/14/73
11/14/73
11/14/73
11/14/73
11/14/73
11/14/73
11/14/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
136.7 (
103.7 (
85.2 (
117.0 (
126.5 (
107.2 (
68. D (
25.0 (
64.2 (
132.2 (
13LO (
208.5 (
6)
6)
6)
6)
4)
5)
6)
6)
6)
6)
6)
6)
144.2
111.3
91.7
127.8
137.8
104.6
64.5
23.0
53.8
139.7
141.8
203.5
( 6)
( 6)
( 6)
( 6)
( 4)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
105.8 (
66.8 (
51.2 {
86. 3 (
101.5 (
102.0 (
56.8 (
20.8 {
62.3 (
92.8 (
117.0 (
188.8 (
6)
6)
6)
6)
4)
5)
6)
6)
6)
6)
6)
6)
43.7 (
59»0 (
30.5 (
72.2 (
70«5 (
35.4 (
17.5 (
11.0 (
36.0 (
28.5 (
129.0 (
178.2 (
6)
6)
fa)
6)
4)
5)
6)
6)
6)
6)
6)
6)
DAILY AVERAGE »
(AVG 8F 2HR VALUES)
108.8
112-7
87.7
59.3
- 213 -
-------
VALUES
MAX
DATE
11/1
11/1
11/1
11/1
11/1
11/1
11/1
11/1
11/1
11/1
11/1
11/1
5/73
5/73
5/73
5/73
5/73
5/73
5/73
5/73
5/73
5/73
5/73
5/73
t- ALL-WINTER
IN { ) ARE N9.
: 6 PER 2HR/72
TIME
NO AVERAGr
3F QBSERVATITNS
PER DAY
C8NCLNTRATI3NS
IN
oooo
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
0^00
0600
0800
'1000
1200
1400
1600
1800
2000
2200
2400
DAILY AVERAGE =
(AV3 6F 2HR VALUES)
STATI0N
1
1A
VER ST9VE 1M FRfM
206.7
193.3
203.3
216.3
207.5
175.7
85.2
71.0
84.3
94.0
72.2
79.0
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
209.8
199.0
'5°1.2
220.8
?16.3
181.3
91.8
57.6
69.8
79.8
70.0
58.0
STSVE
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
2
4
LIV RM
195.5 (
163.7 (
183.5 (
184.5 (
163.7 (
111.7 (
75.7 (
52.4 (
52.2 (
58.8 (
42.5 (
60.2 (
6)
6)
6)
6)
6)
6)
6)
5)
6)
6)
6)
6)
9JTS]
162.7
142.0
178.0
180*3
171.3
103.8
60.0
32.6
36.2
47.7
39.2
29.3
:DE
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( s)
( 6)
( 6)
( 6)
( 6)
140.7
138.0
112.0
98.6
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
59. J (
57.8 (
77.7 (
122.3 (
89.7 (
66.5 (
54.5 (
30.7 (
93.0 (
65.7 (
39.2 (
31.7 (
6)
6)
6)
6)
6)
6)
6)
3)
5)
6)
6)
6)
73.3
74.5
88.5
144.0
106.2
79.0
49.0
26.0
93.5
76.7
39.0
26.2
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 3)
( 6)
( 6)
( 6)
( 6)
31. b
42.5
64.7
73.3
100.5
77.8
51.3
24.0
53.7
76.5
41.5
17.5
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 3)
( 6)
( 6)
( 6)
( 6)
13.0
26.0
4
-------
H3USE -1 FALL-wINTtR N8 AVERAGE CflNCFNTRAT
VALUES IN ( ) ARE MfJ« 3F 3BSE3VAT I SNS IN PERISH
MAX.: 6 PER 2HR*72 PE.R DAY
UG/M3
DATE
TIME
STATI9N
11/18/73
11/18/73
11/18/73
11/18/73
11/18/73
11/18/73
11/14/73
11/13/73
11/13/73
ll/l»j/73
11/18/73
11/15/73
0000-0200
0200-0400
0400-0600
0600-0800
3800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
DAILY AVERAGE =
(AVu 9F
11/19/73
11/19/73
11/19/73
11/19/73
11/19/73
11/19/73
11/13/73
11/19/73
11/19/73
11/19/73
11/19/73
11/19/73
2HR VALUES)
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
^000-2200
2200-2400
DAILY AVERAGE =
(AV'l 9F 2HR VALUES)
1
1A
1VER STBVE 1M F^ftM
38. C
32.7
32.3
30.7
131.3
45. S
34.3
43.5
S6.3
30. J
140.S
45.3
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
41 .2
26.2
23-8
22.8
141 .0
38.0
43.5
81.7
75.3
8'. 2
1 1 ? . 5
88.7
-> I r-\
STHVE
( 6)
( 6)
< 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
1 1 J i 1
2
30
32.7 i
16.3 i
13.0 i
13.0 i
49.3 i
25.0 I
33.3 i
33.7 i
68.3 I
82.2 I
99.5 1
87.7 I
4
RM
( 6)
( 6)
( 6)
( 6)
I 6)
[ 6)
( 6)
( 6)
: 6)
: 6>
: <=>)
: 6)
8JTSIDE
13.0
14.2
13.0
13.0
16.3
13.0
lb.3
13*0
2o»2
57-0
33*3
27.2
( b)
( 6)
( 6)
( 6)
( b)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
65.?
78. s
97.3
126. b
129.0
147.5
1U3.8
76.7
770. 6
773.2
181.3
129.0
1?2.2
( 6)
( 6)
( 6)
( 6)
( ?)
( 6)
( 1)
( 5)
( 6)
( 6)
( 6)
( 6)
64.7
82.2
=»=5.0
126.8
1^0.7
147.5
93.0
63.7
604.2
490.2
201.0
137.7
147.3
( 6)
( 6)
( 6)
( 6)
( 2)
( 6)
( 3)
( 5)
( 6)
( 6)
( 6)
( 6)
194.9
46.2
21.2
79.0
85.3
114.7
119.2
131.0
91.8
65.7
169.0
J92.0
240.3
140.8
138.7
( 6)
( 6)
( 6)
( 6)
( 2)
( 6)
( 3)
( 5)
( 6)
( 6)
( 6)
( 6)
37*0
103.8
9o«0
71.2
72.5
54.3
41.7
o)
6)
6)
6)
a
D
-j
13.2 ( 5
49.0 ( 6
19.7 ( 6
64.3 ( 6
101*8 ( 6)
147.3
60.3
11/20/73
11/20/73
11/20/73
11/20/73
11/20/73
1 1/20/73
11/20/73
11/20/73
11/20/73
11/20/73
11/20/73
11/20/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
'000-2200
2200-2400
150.8
113.7
^2.2
108.2
233.3
164.3
121.3
81.0
351«7
452.0
506. 3
452.2
( 4)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
°7.2
111.5
70.3
99.5
299.5
150.7
9H.5
59.2
453.8
474.8
491.3
480.7
( 6)
( 6)
( 6)
( 6)
( 6)
( M
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
96.0 i
107.2 I
72.5 i
76.7 i
200.3 i
169.2 1
109.2 (
79.0 (
211.3 1
446.7 1
486.0 (
458.7 (
[ 6)
( 6)
( 6)
( 6)
! 6)
: 6)
: 6)
: 6)
: 6)
: 6)
: 6)
: 6)
59.0 i
26.2 i
19.7 <
170-0 i
107.2 i
48.2 1
20.7 1
20. b 1
276.3 I
492.5 1
529.7 1
281.8 (
I 0)
1 5)
( 6)
[ 6)
( 6)
! 6)
i 6)
: 6)
: 6)
; 6)
: 6)
: 6)
DAILY AVERAGE =
(AVQ 8F 2HR VALUES)
2 S
241.0
209.5
17LO
- 215 -
-------
VALUES
MAX
DATE
11/21/73
11/21/73
11/21/73
11/21/73
11/21/73
11/21/73
11/21/73
11/21/73
11/21/73
11/21/73
11/21/73
11/21/73
~ W I N I t R
IN ( ) ARE MS-
: 6 PER 2HR,72
NO
PER
AVERAGE CQNCFMTRAiigMs * ub/
IMS IN PERI9-J
3VER STRVE 1M
0000-0200 3b7.0 ( 6)
0200-0400 301.5 ( 6)
0400-0600 281.7 ( 6)
0600-0800 336.5 ( 6)
0800-1000 372.5 ( 6}
1000-1200 356O ( 3)
1200-1400 ******
1400-1600 ***»«*
1600-1800 ******
1800-2000 ******
2000-2200 ******
2200-2400 ******
STATI9M
1A 2
STBVE BEDROOM
QJTSIDE
356*0 { 6)
296.0 ( 6)
^«.0 ( 6)
309.2 ( 6)
342*0 ( 6)
231.7 ( 3)
******
******
******
******
******
******
322.3 ( 6)
196.7 ( 6)
95.2 ( 6)
131.2 ( 6)
322.5 ( 6)
223.0 ( 3)
******
******
******
******
******
******
2(o)
194.b ( 6)
254.5 ( 6)
317.7 ( 6)
299.2 ( 6)
221.0 ( 3}
******
******
******
******
******
******
-------
H3USE 1
VALUES
MAX.
DATE
FALL-WINTER
IN ( ) ARE NQ.
: 6 PER 2HR*72
TIME
C9 AVERAGE C8NCENTRATI9NS *UG/M3
3F 9BSERVATIPNS IN PERI6D
PER DAY
STATI8N
1 1A 2
OVER STBVE 1M FR8M ST8VE LIV/ RM
8JTSIDE
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
6/73
6/73
6/73
6/73
6/73
6/73
6/73
6/73
6/73
6/73
6/73
fo/73
OOOC-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
******
******
******
******
******
***** *
******
3816. ( 3)
6710. ( 6)
7300. ( 6)
6508. ( 6)
3545. ( 4)
******
******
******
******
******
******
******
4409. ( 3)
6)
5756.
6149.
4501.
3052.
6)
6)
4)
******
******
******
******
******
******
******
2763. ( 3)
4012* ( 6)
5820* ( 6)
4436* ( 6)
3101* ( 4)
******
******
******
******
******
******
******
856.
1051.
1510.
1639.
1325.
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2UOO
POOO-2200
2200-2400
3070.
3081.
3026.
4320-
o383«
J671.
2305.
+057.
7045.
5334.
6001.
7023.
( 6)
( 6)
( 5)
( 2)
( 5)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
2197.
?587.
?553.
3736.
4080.
3053.
2431.
3080.
4797. i
4845* <
5512- i
6679. i
{ 6)
( 6)
( 6)
( 2)
( 5)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
2093«
2423*
2355.
3242*
3609.
2759.
2221*
2885* i
4504* i
5106* <
4958* i
6718- i
( 6)
( 6)
( 6)
( 2)
( 5)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
880. (
1074. (
1138. (
1959. (
1682. (
1782. (
1667. (
1438. (
1930. (
3151. (
2645. (
2188. (
DAILY
(AVG
AVERAGE =
BF ?HR VALUES)
4668*
3300.
3573.
1794
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
DAI
8/73
3/73
8/73
8/73
8/73
8/73
8/73
8/73
8/73
8/73
8/73
8/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
P200-2400
LY AVERAGE =
(AVG OF
2HR VALUES)
5479.
4953.
4598.
5275.
6586.
5987.
4597.
11364.
8639.
5549.
5316.
5226.
6131.
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 2>
( 6)
( 6)
( 6)
( 5)
- 217
4340
4566
4017
5997
6206
5431
4123
7875
5682
4951
5449
5303
5332
-
<
i
. i
i
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 2)
( 6)
( 6)
( 6)
( 5)
4308
4340
3824
5275
5826
5133
3869
4585
5117
5084
5217
4994
4798
<
<
i
i
i
i
. i
. i
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 2)
I 6)
f 6)
[ 6)
I 5)
1468. (
2210. (
2501. (
4705. (
3388. (
2505- (
24f5. (
1994. (
1861. (
2559. (
2525- (
2205. (
2530*
-------
H9USE 1 FALL-WINTER
VALUES IN ( ) ARE N8»
MAX.: 6 PER 2HR,72
DATE
TIME
C8 AVERAGE C8NCENTRATISNS >UG/M3
9F 9BSERVATI9NS IN PFRI8D
PER DAY
STATI8N
1 1A 2
OVER ST6VE 1M FR9M ST8VE LIV/ RM
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
ll/
9/73
9/73
9/73
9/73
9/73
9/73
9/73
9/73
9/73
9/73
9/73
9/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POOO-2200
2200-2400
4718.
4055.
3243.
P815.
3714.
2109.
3068.
2693.
3S63»
J300-
3029.
2305.
< 6)
( 6)
( 6)
( 5)
( 5)
( 1)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
3641.
3603*
2662.
24*24.
3323.
1918.
4091.
2693.
3147.
?518.
2769.
1640.
( 6)
( 6)
( 6)
( 5)
( 5)
( 1)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
3609.
3538*
2533*
2189*
2854.
1726.
2493.
2067.
2951.
2583.
2769.
164Q. i
( 6)
( 6)
( 6)
( 5)
( 5)
( 1)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
1221.
1151.
1146.
1134.
1251.
1342.
895.
1012.
1680.
1345.
1302.
937.
( 6)
( o)
( 6)
( 5}
( ::>)
( 1)
( fa)
( :i)
( 6)
( M
( e>)
( D)
DAILY AVERAGE =
(AVG OF 2HR VALUES)
3243-
2869.
2579'
1201
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
11/10/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
DAILY AVERAGE =
(AVC5 6F
2HR VALUES)
2378.
2335.
226b«
2091.
3114.
2985*
2597.
2187.
1920.
2727.
3388.
4274.
2730.
< 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
1428.
1651.
1515.
1587.
2920.
1952.
1952.
1568.
1307.
2243.
3178.
3712-
2034.
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 4)
1330
1553
1418
1394
1984
1883
1985
1645
1242
2146
3307
3664
1963
. i
i
* i
. i
i
i
.
t i
.
( 6)
( 6)
[ 6)
( 5)
[ 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 4)
907
1064
962
1045
887
952
1210
910
1049
1113
1339
2203
1137
. i
. i
i
* i
i
* i
*
.
.
! to)
( 6)
( 6)
t 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
11/11/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POOO-2200
2200-2400
4469. ( 6)
4520* ( 3)
******
******
******
******
******
7929. ( 4)
9483. ( 6)
6328. ( 6)
7541. ( 4)
******
3894. ( 6 )
4073. ( 3)
***** *
******
******
******
******
7687« ( 4)
7354- ( 6)
6133- ( 6)
7105» ( 4)
******
3779. ( 6)
3945* ( 3)
******
******
******
**« ***
******
6428*
7096*
6377.
7396*
4)
6)
6)
4)
******
2858. ( 15 )
3370. ( 3)
****** -
******
******
******
******
2749. ( 4)
3321. ( 6)
3634. { 6)
5992. ( 4)
******
- 218 -
-------
H9USE 1
VALUES
MAX.
DATE
FALL-WINTER
IN ( ) ARE N9.
: 6 PER 2HR,72
TIME
11/12/73
11/12/73
11/12/73
11/12/73
11/12/73
11/12/73
11/12/73
11/12/73
11/12/73
11/12/73
11/12/73
11/12/73
11/13/73
11/13/73
11/13/73
11/13/73
11/13/73
11/13/73
11/13/73
11/13/73
11/13/73
11/13/73
11/13/73
11/13/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POOO-2200
2200-2400
C8 AVERAGE C9NCENTRATI9NS ,!JG/M3
9F OBSERVATIONS IN PERIOD
PER DAY
STATI9N
1
in
Z
3VER ST8VE 1M FR9M ST9VE LIV/ RM
******
******
******
******
******
******
******
******
******
7058. ( 6)
6331. ( 6)
6638. ( 5)
4430* ( 6)
5827. ( 6)
5717. ( 3)
******
5393. ( 4)
+572. ( 6)
4332* ( 6)
7732. ( 3)
9141. ( 5)
7058. ( 5)
6227. ( 3)
******
******
******
******
******
******
******
******
******
6193- ( 6)
5847. ( 6)
6223. ( 5)
3973- ( 6)
541L ( 6)
5163. ( 3)
******
4823* { 4)
4024. ( 6)
3989. ( 6)
7115. ( 3)
7783. ( 6)
6518. ( 5)
5674. ( 3)
******
******
******
******
******
******
******
******
******
6055- < 6)
5950» ( 6)
6223- ( 5)
4014- ( 6 )
330S* ( 6)
5094« ( 3)
******
4674. ( 4)
3989- ( 6)
3852* ( 6)
7184* ( 3)
7573. ( 6)
6642* ( 5)
5674* ( 3)
4
9UTSIDE
******
******
******
******
******
******
******
******
******
3667. ( 6!
3806. < 6]
3234. ( 5)
3309. ( 6)
3128. ( 6)
3295. ( 3)
******
2620- ( 4)
2517. ( 6}
3030. ( 6)
4718. ( 3)
5010. ( 6)
3072. ( 5)
2491« ( 3)
******
******
******
******
11/14/73
11/14/73
11/14/73
11/14/73
11/14/73
11/14/73
11/14/73
11/14/73
11/14/73
11/14/73
11/14/73
11/14/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
******
******
******
******
******
4359. ( 6)
3880. ( 6)
2849. ( 5)
3692« ( 6>
5150. ( 6)
6468. ( 6)
7052- ( 5)
******
******
******
******
******
4369. ( 6)
3?51« ( 6)
2346. ( 5)
3308. ( 6)
4696. ( 6)
6013. { 6)
6637. ( 5)
******
******
******
******
******
4439. ( 6)
3006* ( 6)
2136* ( 5)
3133. ( 6)
4800* ( 6)
6118« ( 6)
6637. ( 5)
******
******
******
******
******
2028. ( 6)
1258. ( 6)
1423. ( 5)
2888. ( 6)
2878. ( 6)
4930. ( 6)
3897. ( 5)
- 219 -
-------
h-lUSE 1
VALUES
MAX
JATE
11/15/73
11/15/73
11/15/73
11/15/73
11/15/73
11/15/73
11/15/73
11/15/73
11/15/73
11/15/73
11/15/73
11/15/73
FALL-WINTER
IN ( ) ARE N9.
: 6 PER 2HR/72
TIME
0000-
0200-
0400"
0600-
0800-
1000-
1200-
1400-
1600-
1800-
?000-
?200-
0200
0400
0600
0800
1000
1300
'1400
1600
1800
'2000
2200
2400
CO AVERAGE CONCENTRATIONS *UG/M3
8F 93SFRVATI8NS IN PFRI8D
PER DAY
STATI6N
1
1A
9VL-R STOVE 1M FR8M
6030»
5793.
5663*
5210.
6348.
6106.
4965.
4273.
4208.
4612.
4914.
5127.
, 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
4714*
5447.
5178.
4712.
6175.
5899.
37SB.
3650*
3966.
4267.
4395.
4534.
ST8VE
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
3
/BD
4714*
5378*
5074*
4795.
5933.
5587*
3961.
3194*
3170*
3851*
4152*
3347*
4
RM
( 6)
( 6)
( 6)
f 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
3JTS.
2984.
3440.
3276.
3342.
3892.
2647.
2301.
2737.
2582.
2295.
2111.
1821-
*"-
( 6) .
( 6)
( 6)
( 5),
( 6
( 6
( t>
(£.
J
( 6
( 6
( 6)
C 5)
DAILY AVERAGE =
(AVG QF 2hR VALUES)
5271
4727.
4430'
2786.
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
11/16/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1SOO
1800-2000
2000-2200
2200-2400
4311.
4217.
4348.
4648.
4373.
3552.
3083.
2389.
3419.
4636.
4863.
3221«
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
3522*
4217.
4206.
4262«
4123.
3231*
2517.
1923.
2607.
4530*
4122.
2457.
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
2144* i
2804« i
3146. i
2892' '
3981» i
3124* i
2517. i
1711. '
1794* i
3364* i
4051* '
2669.
! 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
t 6)
( 6)
( 6)
1473. i
1956. I
21b8. i
2163. i
1732. i
1732. i
1553. i
1245. i
1253. '
1104. i
1084.
1271.
( 6}
[ 6)
[ 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 5)
( 6)
( 6}
( 6)
DAILY AVERAGE =
(AVG 8F 2HR VALUES)
3322.
3476»
2350«
1560'
11/17/73
11/17/73
11/17/73
11/17/73
11/17/73
11/17/73
11/17/73
11/17/73
11/17/73
11/17/73
11/17/73
11/17/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
12CO-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
2921.
2603.
2633.
2b38.
2989.
5051.
3443.
2326.
5420.
4414.
5600«
5072.
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
< 5)
( 6)
( 5)
1959.
1932.
1926.
?1 19.
2639.
396*.
2849.
1734.
4714.
394S.
5247.
4695.
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 5)
( 6)
( 5)
2080* I
1932* i
1891- i
1909* i
2814* i
2570* i
2370« (
1776* i
3053* '
3777. i
468?» i
4695*
[ 6)
: 6)
I 6)
[ 5)
[ 6)
[ 6)
[ 5)
C 5)
[ 6)
( 4)
( 6)
( 5)
1323* i
1190. <
1291.
1405.
1311.
2045.
1136.
1394.
1747.
2337.
2068.
1381.
( 6 »
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( b)
( 6)
( 5)
DAILY AVERAGE =
(AVG PF 2HR VALUES)
3751.
- 220 -
3144.
2796«
I5b2«
-------
HJUSL 1
VALUES
MAX.
rALL-WINTER
IN ( ) ARE N9.
: 6 PER
C9 AVERAGE C9NCENTRATI9NS /UG/M3
3F 9BSERVATI8NS IN PERI8D
PER DAY
DATE
11/18/73
11/18/73
11/18/73
11/18/73
11/16/73
11/18/73
11/18/73
11/18/73
11/18/73
11/18/73
11/18/73
11/18/73
TIME
STATI9N
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
0400
0600
0800
1000
'1200
1400
1600
1800
2000
2200
2400
DAILY AVERAGE =
(AVG 8F 2HR VALUES)
1
1A
3
IVER ST8VE 1M FR9M ST8VE /BD
4176.
3568.
3272.
2538.
4401*
3860*
3496.
3973.
4581.
5745. '
5814. i
4197. i
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
t 6)
3060.
3113.
2608.
2029.
3482-
3154.
3002*
4016.
4037. -
5074. i
5284. i
3688. i
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
I 6)
3025*
2974*
2538.
1902.
2317.
2412* '
2437«
3083* i
4016« i
5074* I
4931. l
3900* (
4
RM
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
[ 6)
: 6)
9UTS;
1173.
1540.
1455.
1097.
1292.
1423.
1412.
1727.
2815.
3237.
3059.
1781.
IDE
(
(
(
(
{
(
(
(
(
( i
( i
< e
4135.
3550.
3217.
1834,
11/19/73
11/19/73
11/19/73
11/19/73
11/19/73
11/19/73
11/19/73
11/19/73
11/19/73
11/19/73
11/19/73
11/19/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
DAILY AVERAGE =
(AVG 8F
11/20/73
11/20/73
11/20/73
11/20/73
11/20/73
11/20/73
11/20/73
11/20/73
11/20/73
11/20/73
11/20/73
11/20/73
2HR VALUES)
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POOO-2200
2200-2400
3434.
4239.
4345.
5467-
3695.
5460-
7293.
6963-
5331.
5282.
4734.
5082.
DAILY AVERAGE »
(AVG 8F 2HR VALUES)
5076.
4695.
4156.
4640.
6420-
-+596.
5508.
3751.
5994.
9263.
1J504.
13970.
6548.
6)
6)
6)
5)
6)
6)
5)
4)
6)
6)
6)
6 )
6)
6)
6)
5)
6)
6)
6)
5X
6)
6)
6)
6)
3073.
3638.
3638-
4406.
4690*
3236.
4894.
5370.
5606.
4690.
4641.
4376-
4355.
3820.
4173-
3559.
4377.
6019.
3830-
4414-
3176.
5625-
9152.
9803-
14147.
6)
6)
6)
5)
6)
6)
5)
4)
6)
6)
6)
6)
6)
6)
6)
5)
6)
6)
6)
5)
6)
6)
6)
6 )
3109.
3603.
3638.
3854.
4372»
3272.
4671.
3504*
4965*
4992*
4603*
4466*
4087*
6008.
3894*
4210.
3746-
3589-
5180-
4085»
4231.
3796-
4187.
8304-
9951.
12112-
5607.
6)
6)
6)
5)
6)
6)
5)
4)
6)
6)
6)
6 >
6)
6)
6)
5)
6)
6)
6)
5)
6)
6)
6)
6 )
1837.
2649.
2628.
2922.
2394.
1766.
1866*
2429.
1873.
2163.
3095.
2855.
2373.
2104.
2122.
2068.
4640-
2626.
1642.
1605.
1627.
4703.
9005.
8033.
4987.
3763.
- 221 -
-------
Appendix B-3
NO , NO, and CO data for House No. 2 - Spring/Summer
_ 222 -
-------
'J3/13
VALUES I\ ( ) A^E \0. -)F 9-SE. R V AT I °NS IN
MAX.: 6 PER 2HR,72 PER jAY
JATE
5 / 2 ? -
5/20/73
1/^/73
5/29/73
-j/2~/73
3/20/73
5/2^/73
T/20/73
5/2 n/7 3
5/2 V73
19/73
O
0000-
0200-
0400-
0600-
0800-
12JO-
1400-
1600-UOO
I8r.0-200"i
?000-2200
J 200-2400
o;
0400
0600
0*00
1000
1PCO
1400
1600
1
v ~R L TB Vr
******
**«»»#
******
******
******
******
******
167.J ( 4)
34.7 ( ft)
96.1 ( 6)
66. £ ( M
5TAT
?
Liv Rm
******
******
******
******
******
******
******
93. b ( 4)
5-4.1 ( 6 )
=>+.« ( ft )
6 5, . 7 ( M
I9N
3
******
******
******
******
******
******
******
68.7 < 4)
47.1 ( 6)
87.3 { ft)
78.9 { ft)
4
******
******
******
******
»* ****
******
******
******
79.- ( H)
42« 6 ( ft)
97.4 { t>)
S 0 « 2 ( >-' )
T/3
3/3
-5/3
5/3
I/ j
5/3
5/3
3/5
5/3
5/3
3/3
1/3
o/73
V73
j/73
_ / 7 3
;73
u/73
0/73
:/73
;/73
0/73
0/73
0/73
0000-0200
0200-0400
0400-06^0
0600-0300
0800-1000
10 30-1 POO
12-0-1400
14^0-1600
1600-1 ^00
1300-2000
P Q r J . P p -i -)
2200-^400
!iO «
36.
-*2«
95-
54.
b6.
126.
ol.
163.
j>3.
78.
75.
j
5
0
t
'j
s
i_;
9
1^
~<
9
7
( ft)
( ft)
( ft )
( f j
( 6 )
( ft)
( ~- }
( 5)
( 6)
( 6)
( ft)
( ft)
ftft.P
55 « t
42 »0
52« P
^5.Q
6 j » b
57.3
51.2
37.2
5ft. 0
7ft. 4
70.0
( ft)
( ft)
( 6)
( 6 )
< 6)
( ft)
( 5)
( 3 )
( ft)
( ft )
( "')
( ft)
61. 1 (
57.3 (
42.6 (
63.0 (
97.4 (
45.3 (
37.4 (
43.5 (
90.4 (
54.1 (
73.3 (
73.2 (
ft )
ft )
ft)
ft )
ft )
6)
-j )
5 )
ft)
ft)
ft)
ft)
7*
64
44
57
80
42
23
31
44
DJ
70
7J
. n
-J
"
3
. _*
« 0
s
^
5
3
6
b
( ft)
( o)
( G)
( o)
( 6)
( ft)
( -J)
( 5)
( b )
( ^)
( ft)
( ^ )
79. b
62.
5=>«1
j OF 2-iR
3/31/73
5/ Jl/73
5/31/73
5/31/73
5/31/73
5/31/73
5/31/73
5/31/73
1/31/73
1/31/73
5/31/73
5/31/73
:oco-
0200-
^4CC-
0600-
"^800-
1000-
12CO-
1400-
16CD-
1800-
^000-
?200-
0200
04CO
0600
OSOO
1000
1200
1400
1600
1500
2DOO
2 £00
?400
61
62
43
1 jG
t,9
OS
^7
^9
H6
61
175
70
1 (
.4 (
.'+ (
5 (
.'* (
.0 (
.7 (
0 (
.5 (
1 (
.? (
6 (
6)
6)
6)
6)
ft)
6)
6)
6)
ft)
ft)
6)
'->)
5?. 5
52« ?
45»5
66.2
67.5
5?.?
5 2 ?
54.1
51.5
"? 5
^3.5
62 « 4
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( ft)
( 6)
( 6)
( 6)
( ft)
56.5
56.0
45.2
54.1
65.5
53.5
50.3
43 . <*
47.1
56.6
91.0
70.0
( ft )
( 6)
( ft)
( ft )
( ft )
( ft )
( ft)
( ft )
( ft )
( * )
( 6 )
( 6 )
55 « *
6o.5
39-5
49. ft
57.=
47.7
46.3
40.1
f2»6
57.3
9-«?
3t « I
( ft)
( 0)
( ft)
( 6 )
( ft)
( t )
( 6 )
( 1 )
( -:. )
( -J)
( :>)
( i )
70.7
57.3
(AVO
- 223 -
-------
H9.J3EI 2
VALUES
MAX.
DATE
T/
6/
->/
6/
O/
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
SPRING-SIHMEP
IN ( ) ARE \fj.
t 6 PER 2HR/72
rnt
.oooo-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
'0200
'0400
0600
0800
1000
1200
1400
1600
1800
2000
v92 AVERAG-
ItF ab3ERVATI/
'->/
']/
6/
S/
->/
?/
6/
6/
-j/
'>/
S/
P/73
2/73
2/73
?/73
2/73
2/73
2/73
2/73
'/73
?/73
2/73
2/73
0000-0200
0200-0400
0400-0600
0600-0300
TSOO-1GOO
1000-1200
1200-1400
1400-1600
1600-1KCO
1800-2000
2000-2200
2200-2400
] 39
112
99
105
100
108
277
1 10
308
120
163
152
.4
.6
,3
6
» 3
.2
b
.1
.2
. 3
. o
1
( 6)
( 6)
( 6)
( 6)
( 6)
( M
( 6)
( 6)
( 6)
( 6)
( M
( 6)
145-1
113.3
10S.2
110.1
109.4
112.6
142.5
10=?. 8
110.1
12^.2
165.4
145.1
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6}
( 6)
( 6)
138.1
108. S
105.6
106.3
105.6
110.7
139.4
111.4
115.2
129.8
156.5
143.8
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
13J.6
107.5
94.?
102.4
102.4
113.3
116.4
10o»U
105.b
133.0
164.2
152.1
( 6)
( b)
( 1)
( 6)
( b)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
DAILY AVERAGE = 133.2
UVG OF 2HR VALUES)
1P4.6
122.6
>'>/
.o/
S/
;>/
i/
3/
6/
6/
6/
6/
-j/
S/
M
3/73
3/73
3/73
3/73
V73
3/73
3/73
3/73
3/73
3/73
3/73
3/73
LY AVE
0000-0200
0200-0400
0400-
0600-
0800-
1000-
12CO-
1400-
16GO-
1SOO-
POOO-
?200-
RAGF =
0600
OHOO
1000
1200
1400
1600
1800
2000
2200
2400
126.0 (
123.4 (
122.8 (
117.1 (
141-9 (
110.1 (
111.4 (
110.1 (
1 15.8 (
117.7 (
171.2 (
Io8.4 {
127.2
6)
6)
6)
6)
6)
6)
6}
6)
6)
6)
6)
6)
124.7 ( 6)
120.3 ( 6)
124*7 { 6 >
120. =>
125.4
116.4
1 14.5
u?.o
1 17.7
6)
6)
6)
6)
6)
6)
123.4 ( 6)
153.4 ( 6)
14S.9 ( 6)
125.2
122. S
119.6
127.3
120.3
129.2
119.0
114.5
106.3
115.2
121 .5
156.5
138.1
124.2
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
135.5
128.5
124. 1
117.1
114.5
116.4
107.5
102.4
113.3
119.0
145.7
154.0
123.2
( 6)
( 6)
( b)
( ft)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( b)
UV.i BF 2-lR VALUES)
- 224 -
-------
H9U5C 2
VALUES
MAX.
DATE
6/ 4/73
6/ 4/73
6/ 4/73
6/ 4/73
/ 5/73
6/ 5/73
6/ '5/73
6/ j/73
6/ j/73
6/ b/73
6/ 6/73
6/ 6/73
6/ 6/73
6/ 6/73
6/ b/73
6/ 6/73
6/ 6/73
6/ h/73
6/ 6/73
6/ 6/73
6/ b/73
6/ b/73
?HR VALUES)
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-P400
0000-0200
0200-0400
J400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
P200-2400
'3F
AVERAGE CONCENTRATIONS
ON3 IN
UG/M3
DAY
STATI8N
1
VER =»T8VE
145.7 ( 6)
129.2 ( 6)
112.0 ( 6)
140.6 ( 6)
139.4 ( 6)
146.4 ( 6)
190.9 ( 6)
139.4 ( 6)
147. 0 ( 6)
166.7 ( 6)
178«? ( 6)
1-J2.S ( 6)
1'J2»3
168.6 ( 6)
117.1 (
-------
H8USB 2 SPRING-SUMMER N8. AVERAGE CONCENTRATIONS * UG/-13
VALUES IN ( ) ARE N5» :JF 063ERVATI3N9 IN PERI83
MAX.: 6 PER 2HR,72 PER 3AY
DATE
5/29/73
5/29/73
'3/2^/73
5/29/73
5/29/73
5/29/73
5/29/73
5/29/73
5/29/73
5/29/73
5/29/73
TIME
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POOO-2200
2200-2400
5/33/73
5/ 3U/ 73
5/30/73
5/30/73
5/30/73
5/33/73
5/3u/73
5/30/73
5/33/73
5/33/73
5/30/73
5/30/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
DAILY AVERAGE =
(AVu 9F 2HR VALUES)
5/31/73
0/31/73
5/31/73
5/31/73
5/31/73
5/31/73
5/31/73
5/31/73
5/31/73
5/31/73
5/31/73
5/31/73
0000-
3230-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
3400
0600
0800
1000
1200
1400
1600
l&OO
2000
2200
2400
STATION
DAILY AVERAGE =
(Av'.i QF 2HR VALUES)
1
VER 3TBVE
******
******
******
*** ** #
** »***
******
*** ***
******
81.1 ( 3)
2.5 { 2)
53.3 ( 6)
120. 6 ( 6)
113.7 ( 6)
S9.9 ( M
SO »7 < 6)
lbl.7 ( 6)
101.2 ( 6)
7.5 ( 6)
:34.3 ( 5)
4.0 ( 5)
109.3 ( 5)
4.4 ( 4)
9*2 ( 6)
13.8 ( 6)
65.0
13.4 ( 6)
18 »J ( M
ISO ( 6)
78«4 ( 6)
27.2 ( 6)
10.4 ( 6)
6.3 ( 5)
4.0 ( 5)
6.7 ( 6)
7.9 ( 6)
101*4 ( 6)
87.4 ( 6)
31«3
P
Liv Rm
******
******
******
******
******
******
******
******
13.8 ( 4)
3-8 ( ?)
47.7 ( 6)
117.0 ( 6)
109.5 ( 6)
89.0 ( 6)
78.6 ( 6)
111.2 ( 6)
100.7 ( 6)
7.1 ( 6)
10.0 ( 5)
4.4 ( 4)
14.6 ( 6)
4.2 ( 3)
8.8 ( 6)
7.9 ( 6)
45.5
7.5 ( 6)
10*9 ( 6)
8.8 ( 6)
1H.8 ( 6)
23*0 ( 6)
7.9 ( 6)
3.8 ( 6)
4.2 ( 6)
4-0 ( 5)
5.9 ( 6)
48.1 ( 6)
85.3 ( 6)
i?.o
3
/BD RM
******
******
******
******
******
******
******
******
17.6 ( 4)
3,3 ( 4)
43,1 ( 6)
113.3 ( 6)
107.4 ( 6)
86.5 ( 6)
76.9 { 6)
104,5 ( 6)
88.2 ( 6)
5.9 ( 6)
5,5 ( 5)
5.0 ( 1)
13.0 ( 6)
3.8 ( 2)
5.9 ( 6)
8.4 ( 6)
43.0
4.2 ( 6)
3.5 ( 5)
3.1 ( 4)
16.3 ( 6)
21.3 ( 6)
5.0 ( 6)
3.8 ( 6)
3.8 ( 6)
5.0 ( 4)
5.0 ( 6)
46.8 ( 6)
67.3 ( 6)
15.4
4
9UTSIOE
*** ***
******
******
******
******
******
******
******
13.4 ( 3 )
6.3 ( 4)
42.? ( 6)
117.0 ( b)
10U.3 ( b)
69.0 ( '.., )
78.6 ( 6)
83.? ( 6)
64*0 ( 6)
8.S ( 6)
6« 5 ( 5 )
2 5 ( d)
3«8 ( 4)
2»9 ( 6)
7-9 ( 6)
4.? ( 6)
36.0
2»5 ( 5)
3»1 ( 4 )
2*5 ( 1)
7.1 ( 6)
12»1 ( b)
4.6 ( 6)
3.0 ( 5)
3.8 ( 6)
b»7 ( 6)
10«0 ( 6)
60»6 ( 6)
51.8 ( 6)
14.0
- 226 -
-------
H9USE 2
VALUES
MAX
SPRI'N'j-SUMMEk
IN ( ) ARE Ny»
: 6 PER 2HR/72
N8. AVERAGE
6F 86SERVATI9NS
PER DAY
CONCENTRATIONS
IN PER I S3
STATI9N
UG/^3
DATE
6/
6/
6/
6/
6/
6/
6/
6/
6/
6/
6/
6/
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
TIME
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
1
9VER ST8VE
47.? ( 6)
18.8 ( 6)
13.0 ( 6)
38.1 ( 5)
******
******
******
5.0 ( 5)
5.9 ( 6)
22.5 ( 6)
15.9 ( 6)
18.8 ( 6)
P
Liv Rm
43.1 ( 6)
13.8 ( 6)
6.3 ( 6)
19.1 ( 5)
*** ***
******
******
4.4 ( 4)
5.9 ( 6)
23.4 ( 6)
3-8 ( 6)
14.6 ( 6)
3
/BD RM
22
6
2
IS
.2
.3
. 5
.1
(
(
(
(
6)
6)
6)
5)
******
*
*
5
7
25
8
13
***** /
***** r/
.0
.1
.9
.8
.4
(
(
(
{
(
2) 1
6 } i
6) ;
6)/
6) /
/,/
6/JT
Vo»
/4.
/3.
/17.
4
SIDE
9 (
2 (
3 (
1 (
6)
6)
2)
5)
/ ******
I **
****
******
5.
h«
33»
8.
' 10.
0 (
4 (
9 (
8 (
9 (
5)
6)
6)
6)
b)
6/
u/
6/
6/
i)/
6/
6/
6/
6/
6/
6/
6/
2/73
_V73
2/73
?/73
?/73
P/73
2/73
P/73
?/73
2/73
2/73
2/73
0000-0200
n200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POOO-2200
2200-2400
18.4
9.2
10.0
5.0
7.1
7.9
74. R
5.9
8.8
11.3
91.5
159.3
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
12.5 (
6.3 (
4.6 (
4.4 (
4.2 (
6.7 (
11.7 (
4.5 (
7.9 (
15.0 (
qp. g (
152.2 (
6)
6)
6)
4)
6)
6)
M
5)
6)
6)
6)
6)
10.4
5.0
5.0
4.?.
2.5
S.5
12.5
4.0
7.9
12.5
94.5
150.9
( 6V
( 6/
( 7)
( J)
( /2 )
(/5 )
(' 6)
r-
( ( 6 )
(/ 6 )
( 6)
( 6)
10*4
2»9
3.3
3.8
5.4
10.4
14.6
6.3
10.0
lb»5
109.1
110*4
( 6)
( 6)
( 3)
( 4)
( 6)
( 6)
( 6)
( b)
( 6)
( 6)
( 6)
( 6)
DAILY AVERAGE =
(AVG 6F 2HR VALUES)
34.1
26.5
6/
6/
6/
6/
6/
6/
6/
6/
6/
6/
6/
6/
DAI
3/73
3/73
3/73
3/73
1/73
3/73
V73
3/73
3/73
3/73
3/73
3/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POOO-2200
2200-2400
LY AVERAGE *
(AV3 QF
2HR VALUES)
108
114
35
10
53
7
5
5
7
7
33
25
34
.7 (
1 (
1 (
0 (
.9 (
1 (
.9 (
9 (
5 (
1 (
.9 (
5 (
5
6)
6)
6)
6)
6)
5)
6)
6)
6)
6)
6)
6)
107.4
108. 7
31.3
7.5
10.4
7.1
6«7
6.7
6.3
6.3
20» 5
1s* .4
28.]
*
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
103.3 (
107.4 (
33.9 (
7.9 (
18.0 (
7.1 (
5.4 (
5.4 (
6.3 (
5.9 (
18.4 (
18.0 (
28.5
6)
6)
6)
6)
6)
6)
6 )
6)
6)
6)
6)
6)
112.4 (
73.1 (
19-2 (
10.0 (
12«5 1
i»4 1
7.1 I
5O i
5*4 i
5.4 i
15.0 i
14.6 1
24.0
i 6)
; 6)
; b)
: 6)
: 6)
; &)
I 6)
( 6)
( 6)
( 6)
( 6)
( 6)
- 227 -
-------
H30SP. 2
VALUES
MAX
\9
» UG/M3
PJ
) ART
M ")
.72
S IN
JAY
STATI3N
OATE
TIME
1
2
3
9Vt^ 3TPVE LlV Rm /B3 f?M
o/
,/
S/
,/
6/
->/
T/
,/
--,/
,/
6/
->/
M
( A
4/73
4/73
4/73
4/73
4/73
4/73
4/73
4/73
4/73
4/73
4/73
4/73
LY AVE
V^ OF
.0000-0200
0200-0400
0400-OoOO
J600-0'-00
OROO-1000
1000-1200
1200-1400
1 100-lftGO
1600-1; 00
1SOO-2000
2000-2200
2200-2400
^AG-I =
2hR VALUt^)
30.1
^5.3
21-3
b3« 3
j3« -j
33 «4
78.2
19.2
24 /
40«1
D! «4
74.4
42.1
( 6)
( ft)
( ft)
( ft)
( ft)
( ft)
( ft)
( 6)
( ft)
( ft)
( ft)
( 6)
1ft. 7
13.4
11.7
23. S
45. 1
27.6
43-1
15.0
2? .ft
27-6
S?»?
7~>.7
31.0
( ft)
( 6)
( ft)
( ft)
( 6)
( ft)
( ft)
( ft)
( ft)
( ft)
( ft)
( ft)
16.3 (
11.7 (
11.7 (
21.3 (
41.0 (
23.0 (
18.0 (
11.3 (
21.7 (
26.15 (
43.5 (
71.1 (
26.9
6)
6)
6)
ft)
ft)
ft)
ft)
ft)
6)
ft)
6)
ft)
eji
10.
:3»
9«
lb.
37.
la.
13.
12.*
17.
\3»
59.
45.
2d.
4
3IOE
0 (
6 (
^ (
7 (
t- (
^ (
4 (
1 (
1 (
ft (
- (
1 (
4
ft)
ft)
0)
b )
t. )
6)
6)
ft)
t )
6)
b)
ft)
'->/
'-,/
:>/
ft/
,/
o/
i/
'->/
j/
,/
o/
3/73
5/73
S/73
-;/73
^/73
H/73
L~ / "7 "3
L->/ 7 3
s/73
\-/73
'V73
S/73
-V73
0000-
j2CO-
"400-
0600-
J800-
1000-
1400-
1600-
i 800-
POOO-
P200-
0200
0400
0 ft 0 0
0 ^ t-' 0
1 JOG
1T.OO
1/1 MM
4 (J U
1600
1 tf 0 0
2000
?200
2400
43.9
1 [) « 0
16.3
4 1-0
70.2
* * *
*« *
* **
* * *
* *«
13.2
( f )
( ft)
( ft)
( ft)
( 1 )
** *
** *
* * *
** *
** *
( 4)
"H . q
1 3 0
13.0
"i^.T
70.2
ft **
* # #
«* »
* **
« » *
» * »
11 3
(
(
(
(
(
* **
** *
*»*
* * *
»* »
(
6)
ft)
ft)
ft)
1)
4 )
35.9
9.2
12.1
45.1
70.2
***
*»*
* »*
* * *
* * *
12.5
( ft)
( ft)
( 6)
( ft)
( 1 )
* * *
* * *
***
* * *
***
***
( 4 )
19-2 ( b)
6.7 ( o)
IJ.O ( fe)
64.0 ( 5)
77.7 ( 1)
******
*»*»**
*******
******
******
7* J ( 4)
S/
ft/
o/
T/
->/
ft/
'-,/
>/
ft/
T/
T/
'3/
h/73
,/73
n/73
/-/73
o/73
ft/73
h/73
n/73
t-, / 7 3
b/73
s/73
6/73
TOOO-
J200-
0400-
0600-
18GO-
1000-
1200-
1400-
1600-
1800-
20CO-
?200-
0200
0400
0000
o "> o u
1000
1^00
1400
1ft 00
l.SOO
2000
2200
2400
2.5
* * *
* * *
8.4
103.b
10.0
J8« -j
* * *
* * *
( 1 )
»* *
** *
( 3)
( 6)
( ft)
< 3)
** *
* * *
******
***
* *«
* * *
***
5.0 ( 1 )
******
******
7 . b ( 3 )
23.0 ( ft)
7.1 ( ft)
10.0 ( 3)
******
******
******
******
******
5.0
***
* »*
5.?
25.1
5.0
10.9
(
**
**
(
(
(
(
*** *#
* »*
*» »
***
* * *
**
1 )
»
»
3)
6)
ft)
3)
»
»
**#
**
**
*
*
3..J ( 1
******
******
16.7 ( :<
6-7 ( b
7.5 ( 6
6.7 ( j
******
**** **
**** *#
******
******
)
)
)
)
)
- 228 -
-------
H9USE 2 SPRING-SUMMER C8 AVERAGE CONCENTRATIONS /UG/M3
VALUES IN ( ) ARE N9» 9F 9BSERVATI8NS IN PERIOD
MAX.: 6 PER 2HR,72 PER DAY
DATE
5/30/73
5/30/73
5/30/73
5/30/73
5/30/73
5/30/73
5/30/73
5/30/73
5/30/73
5/30/73
5/33/73
5/30/73
TIME
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
?000-
2200-
0200
0400
0600
0800
1000
1200
1400
1600
1800
2000
2200
2400
DAILY AVERAGE *
(AVG 9F 2HR VALUES)
5/31/73
5/31/73
5/31/73
5/31/73
5/31/73
5/31/73
5/31/73
5/31/73
5/31/73
5/31/73
5/31/73
5/31/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POOO-2200
2200-2400
DAILY AVERAGE *
(AVG 0F 2HR VALUES)
6/
o/
6/
6/
6/
6/
6/
6/
6/
6/
6/
6/
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
0000'
0200'
0400-
0600-
0800-
1000-
1200-
HOO-
DOO-
1800-
?000-
2200-
0200
0400
0600
0800
1000
'1200
1400
1600
1800
2000
2200
2400
STATI9N
1
9VER ST9VE
3828. (
4391. (
4909. (
5871. (
4391. (
1554. (
806. (
844. (
2474. (
682. (
1820. (
3206. (
2898.
2337. (
2358. (
2296. (
2647. (
3188. (
3073. (
2256. (
1344. (
863. (
1021. (
5951. (
4409. (
2645.
2798. (
^875. (
4194. (
5746. (
4908. (
4053. (
2190. (
1232. (
1081. (
5583. (
******
******
6)
6)
6)
6)
6)
6)
6)
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
2
Liv
4149.
4662«
5032*
5969.
577?.
?555»
3103.
713-
3777.
682.
1944.
2875.
3436*
2358.
2420.
?296»
2283.
3234.
2923-
2107.
1270.
813.
971-
5164-
4234.
P506.
?674»
3180.
4218.
5238.
4784.
3356.
3037.
1196.
1081.
5759.
Rm
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
{
(
(
(
(
(
(
(
(
(
(
(
(
6)
6)
6)
6)
6)
6)
6)
4)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
******
******
3
/3D
4124* (
4588* (
5007* (
5846* (
5747. (
2565* (
1034» (
68?. (
351. (
268» (
1903* (
2896* (
2918«
1799- (
2316. (
2213* (
364Q. (
3354- (
?884« (
2007. (
1045* (
714. (
1071. (
5015. (
4210« (
?522-
2450« (
3255. (
4467* (
534?. (
4559* (
3231* (
2140» (
1156* (
1217. (
5985« (
******
******
RM
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6}
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
4
9JTSIDE
4025. (
4489. (
4983. (
6167. (
5081. (
2023. (
661. (
537. (
4005. (
661. (
2130. (
3227. (
3166.
2255. (
2805. (
2482. (
2834. (
3883. (
2475- (
2135. (
896. (
739. (
1245. (
-j837. (
3014. (
2550.
1578. (
29b6. (
4168. (
5099. (
4236. (
3032. (
2464. (
1056. (
1207. (
5834. {
******
******
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
- 229 -
-------
H9USE 2 SPRING-SUMMER C9 AVERAGE C9NCENTRATI9NS *UG/M3
VALUES IN ( ) ARE N9« 3F 9BSERVATI9NS IN PERI93
MAX.: 6 PER PHR,72 PER DAY
STATI9M
DATE
6/
6/
5/
6/
6/
6/
6/
6/
6/
6/
6/
5/
6/73
6/73
6/73
6/73
6/73
6/73
6/73
6/73
6/73
6/73
6/73
6/73
TIME
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POOO-2200
P200-2400
1
9VER 3
1767.
2120.
3428.
4343.
5702.
3987.
3835.
2019.
1625.
3454.
5295.
3936.
2
TOVE Liv
( 6) 1767.
( 6) ?120.
( 6) 3428.
( 6) 4393.
( 6
( 6
( 6
( 6
( 6
( 6
( 6
4991.
3835.
3454.
1790.
1320.
3479.
5194.
( 6) 3784.
Rm
(
(
(
(
(
(
(
(
(
(
(
(
3
/BD
6) 1793. (
ft) 2120* (
6) 3454* (
ft) 4393. (
f
o
.f
o
o
o
A
4813* (
3835* (
3250» (
1536* (
1371. (
3657* (
5244* (
6) 363?. (
RM
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
9JTS
1717.
2070.
3479.
4520.
4330.
3504.
3047.
1434.
1015.
3657.
5041.
3327.
4
IDE
( 6)
( b)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
DAILY AVERAGE = 3459*
(AVG 8F 3HR VALUES)
3296
3258
3095
6/
f>/
6/
6/
6/
6/
6/
6/
6/
6/
6/
6/
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
?000-2200
P200-2400
1473. ( 6)
939. ( 6)
837. ( 6)
******
******
******
******
******
******
******
******
******
1422. ( 6)
939. ( 6)
863. ( 6)
******
******
******
******
******
******
******
******
******
139.6* ( 6)
863* ( 6)
863. ( 6)
******
******
******
******
******
******
******
******
*##**#
1346. ( 6)
812. ( 6)
863. ( 6)
******
******
******
******
******
******
******
******
******
- 230 -
-------
Appendix B-4
N0«, NO, and CO data for House No. 3 - Spring/Summer
-------
3 J3t 3
VALUES
MAX.
DATE
6/14/73
6/14/73
6/14/73
6/14/73
6/14/73
o/lH/73
0/14/73
6/14/73
T/14/73
6/14/73
.1/11/73
6/14/73
6/15/73
5/15/73
6/15/73
6/15/73
3/1C./73
6/15/73
3/15/73
6/15/73
6/lr/73
6/15/73
6/1.1/73
5/15/73
6/20/73
6/P.3/73
o/2u/73
6/20/73
6/20/73
n/20/73
3/20/73
6/PJ/73
6/20/73
3/2 )/73
6/20/73
6/^j/73
SPRING-GUM
I\ ( ) ARE
: 6 PER PH
TIML
0000-0200
0200-0400
0400-0600
0600-0800
0800-1 GOO
1000-1 POO
1200-14CO
1400-1600
1600-1SOO
1800-2000
POOO-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
5800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
'000-2203
^200-2400
0000-3200
0200-3400
0400-0600
)600-05CO
0800-1000
1000-1200
1200-1400
1400-16CO
1600-1300
1800-2000
7000-2200
3230-2403
dF
AVERAGE
93SERVATI?N<3
JAY
IN
STATI8N
1
3v'tR ST6VE
******
******
******
******
******
***** *
******
71.3 ( 6)
439.4 ( 6)
335.2 ( 6)
227 5 ( 6)
101-
04.
S7.
32.
108.
103.
,io«
ft7.
96.
109.
108.
)7.
.2 (
2 (
« (
1 (
2 (
7 (
9 (
6 (
1 (
4 (
P (
4 (
6)
6)
6)
6)
6)
6)
6)
6}
6)
6)
6)
"I \
- )
******
******
******
******
******
******
95.4 (
IPO.
131.
111.
37.
129.
103.
3 (
9 (
4 (
S (
2 (
7 (
3)
6)
6)
6)
6)
6)
6)
2
Liv Rm
******
******
******
******
******
*# ****
* * * ***
30.5 ( 6)
45.2 ( 6)
77.8 ( 6)
56.0 ( 6)
5«.
71.
53.
64.
73.
66.
33.
34.
35.
66.
56.
59.
* *
'5 (
3 <
2 (
9 (
2 (
8 (
2 (
4 (
0 (
2 (
6 (
2 (
6)
6)
6)
6}
6)
6)
6)
6)
6)
6)
6)
?)
»***
* * * *
It & it * » ir
******
******
******
59. » (
66.
61.
73.
45.
77.
77.
g (
6 (
? (
* (
6 (
6 (
3)
6)
6)
6)
6)
6)
6)
3
/BD RM
#** »**
******
******
******
******
***** *
******
54.7 ( 6)
75.1 ( 6)
105.6 ( 6)
54.7 ( 6)
52.8 (
51.
42.
45.
56.
61.
36.
33.
36.
56.
61.
55.
5 (
6 (
2 (
0 (
1 (
3 (
7 (
9 (
0 (
7 (
4 (
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6 )
?.)
******
******
***« **
******
******
*#* »#*
40.7 (
50.
53.
54.
50.
69.
9 (
5 (
7 (
9 (
4 (
58.5 (
3)
6)
6)
6)
6)
6)
6)
4
3JTSIDE
******
******
******
******
******
******
******
26.7 ( 6)
93-5 ( 6)
38.2 ( 6)
41-4 ( b)
40*1 ( '>)
40«
22-
31.
52.
34.
22.
24.
28.
47.
48.
45.
**
7 (
3 (
£> (
S (
4 (
3 (
3 (
6 (
7 (
4 (
c. (
****
6)
6)
6)
b)
6)
0)
6)
6)
h)
6)
2)
******
******
******
** *»**
* * ****
35*6 ( j)
31.
29.
32.
37.
56«
58.
2 (
3 (
5 (
5 (
6 (
D (
6)
6)
6 )
6 )
6)
6)
- 232 -
-------
H3U3E 3
VALUES
1AX
JATE
6/P1/73
6/21/73
6/21/73
6/21/73
6/21/73
6/21/73
S/21/73
6/21/73
6/21/73
6/21/73
6/21/73
6/21/73
SPRING-SUMMEk
IN ( ) ARE Mt>»
: 6 PER 2HR/72
TIME
PER
OOGO-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
^000-
0?00
0400
0600
0800
1000
1200
1400
1600
1800
2000
2200
2400
DAILY AVERAGE =
(Avb 9F ?HR VALUES)
6/22/73
6/2?/73
6/22/73
6/2?/73
6/2P/73
6/22/73
6/22/73
6/22/73
6/2P/73
6/22/73
0000-
J200-
0400-
0600-
0800-
1000-
1200-
1400-
1 600-
1800-
0200
0400
0600
0800
1000
1200
If 00
1600
1800
2000
6/22/73 .^200-2400
'AILY AVERAGE =
(AvC 8F 2-IR VALUES)
N92 AVFRA»~E CRNCFNTRATI1M9
Ms IN PERIOD
STATI9N
UG/,13
1
VER i>T9'
J2.3 (
85. 3 (
77.0 (
89.7 (
205.9 (
120.3 (
134.3 (
148.3 (
141-3 (
39.3 (
96.1 (
380 (
115.7
103.1 (
S3 .4 (
38.5 (
96.1 (
112.6 (
131.7 (
134.3 (
113.3 (
130.4 (
112.0 (
122.2 (
106.3 (
k/E
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
M
6)
6)
6)
6)
6)
6)
6)
6)
3)
6)
6)
6)
6)
p
Liv Rm
64. o (
58.5 (
57.9 (
80.8 (
115.2 (
71.3 (
82«7 (
103.1 (
85.3 (
55.4 (
60- r^ (
61.1 (
74.7
66.8 (
53.2 (
57.9 (
63.6 (
32.7 (
87.X (
RT.l (
73.8 (
^9»5 {
67.5 (
76.4 (
"»1.0 (
6)
6)
6)
6)
6)
6)
6)
M
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
3)
6)
6)
6)
6)
3
/dp
43.3
41.4
42.0
43.3
73.8
62.4
56.5
58.5
57.3
53.5
54.1
47.7
52.3
47.7
47.1
49.0
47.1
70.0
77.0
77.0
66.?
73.3
54.1
65.5
70.6
) RM
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 3)
( 6)
( 6)
( 6)
( 6)
4
3UTSI
37.5
26.1
22.3
32.5
47.7
5b»4
46.6
53» j
52«?
45*8
47.1
32.5
41«6
31.8
36.9
45.8
51. -j
59.2
71.9
65*5
66.?
83.4
72.5
7U.O
66.2
DE
( 6)
( 6)
( 6)
( 6)
( t-)
( 6)
( 5)
( fa)
( 6)
( 6)
( 6)
( ft)
( 6)
( 6)
( 6)
( o)
( 6)
( 6)
( 6)
( 3)
( 6)
( 6)
( 6)
( 6)
111.2
75.4
62.1
6U«1
- 233 -
-------
JSE 3
VALUES
MAX.
DATE
6/14/73
6/14/73
6/14/73
6/14/73
6/14/73
6/14/73
6/H/73
D/ 14/73
6/14/73
6/14/73
0/14/73
6/14/73
6/15/73
6/lr>/73
6/lb/73
6/lb/73
6/15/73
6/lb/73
6/1^/73
6/1-5/73
-------
HOUSE 3
VALUES
MAX.
DATE
SPRING-SUMMER
IN ( ) ARE N9
: 6 PER 2HR,7
TIME
NcJ AVLRAG" CONCENTRATIONS , U
2 PLR DAY
STATI9N
1 2 3
9VER STOVE
6/21/73
6/21/73
6/21/73
6/21/73
6/21/73
6/21/73
6/21/73
6/21/73
0/21/73
6/21/73
6/21/73
6/21/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
DAILY AVERAGE *
(AvO 0F
6/22/73
6/22/73
6/22/73
6/22/73
6/22/73
6/22/73
6/22/73
6/22/73
6/22/73
6/22/73
6/22/73
6/22/73
DAILY AVE
(AV3 OF
2HR VALUES)
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
RAGE =
2HR VALUES)
o2.7
32.2
33.4
43.5
127.7
32.6
HO * 6
39.7
28.4
23*4
30.1
50.2
15.0
53.1
31.3
31.3
bO.2
57,3
f2« 5
b9»4
24.2
64.8
32.3
32.3
125.0
59.6
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 3)
( 6')
( 6)
( 6)
( 6)
4?.l
26.8
25*9
58.5
80.7
18.4
33.4
24.7
12.5
10.9
15*9
40*5
33.0
47.7
22.2
23.0
43»1
56.0
30.1
46.8
11.7
53.9
66.0
82.8
121.2
50.4
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 3)
( 6)
( 6)
( 6)
( 6)
/3D RM
39.7 (
18.3 (
16.7 (
32.6 (
64.0 (
13.3 (
12.1 (
10.3 (
6.7 (
10.9 (
15,3 (
37.2 (
23.3
42.2 (
18.3 {
20.1 (
40,1 (
51.8 (
22.6 (
19.2 (
11.7 (
51.8 (
62.3 (
83.2 (
121.6 (
45.4
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
3)
6)
6)
6)
6)
UCi/'U
4
3JTSI
14.2
7.5
7.5
23 »R
33.4
12.5
8.5
1U.4
6.7
10.0
11.7
10.4
13.1
10.0
11.7
11-7
33«0
31* S
19. £
11»7
11-7
26.8
24.2
64. 8
94.0
DE
( b)
( 6)
( 6)
( b)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 3)
( 6)
( 6)
( 6)
( 6)
29.2
- 235 -
-------
H6U3E. 3
VALUES
MAX.
DATE
SPRING-SUMMER
IN ( ) ARE N9.
: 6 PER 2HR*72
Njg AVERAGE
9F QoSE^VATIDNS
PER DAY
UG/M3
IN PERIOD
TIME
STATI9N
1 2
9VER ST0VE Liv Rm
9JTSIDE
6/27/73
6/27/73
6/27/73
6/27/73
6/27/73
6/27/73
6/27/73
6/27/73
6/27/73
6/27/73
6/27/73
6/27/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1300
1800-2000
2000-2200
P200-2400
******
******
******
**#*#«
»#»»**
15. J ( 1)
28.8 ( 6)
25.1 ( 6)
17.6 ( 2}
******
******
******
******
******
* *****
******
******
1?.5 ( 1)
24.7 ( 6)
23.3 ( 6)
16.3 ( 2)
******
* *****
******
******
******
*** ***
******
******
15.0 ( 1)
23.3 ( 6)
24.7 ( 6)
13.3 ( P)
******
******
»*.****
******
******
******
******
******
12.5 ( 1)
23»8 ( 6)
18.0 ( 6)
lb»0 ( 2)
******
******
******
- 236 -
-------
3 SPRING-SUMMER C8 AVERAGE C8NCENTRATI3NS *U3/M3
VALUES IN ( ) ARE N9» 3F 8BSERVATI9N3 IN
MAX.: 6 PER 2HR*72 PER DAY
DATE
TIME
6/20/73
6/20/73
6/20/73
6/20/73
6/20/73
6/20/73
6/20/73
6/20/73
6/20/73
6/20/73
6/20/73
6/20/73
6/21/73
6/21/73
6/21/73
6/21/73
6/21/73
6/21/73
6/21/73
6/21/73
6/21/73
6/21/73
6/21/73
6/21/73
6/22/73
6/22/73
6/22/73
6/22/73
6/22/73
6/22/73
6/22/73
6/22/73
6/22/73
6/22/73
6/22/73
6/22/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1300
1800-2000
POOO-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
DAILY AVERAGE *
(AVG 8F
2HR VALUES
STATI9N
1
VER ST8VE
******
******
******
******
******
******
4305
3154
4168
3177
2915
(
(
« (
* (
(
4)
6)
6)
6)
6)
******
******
1603
1710
2101
3887
2921
4346
5255
3954
2565
2333
3064
2993
2013
2316
1520
1978
4545
5863
2718
4341
4245
3513
5208
(
(
(
(
(
(
(
* (
t (
(
(
t (
(
* (
(
(
(
(
* (
* (
(
(
(
2)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
5)
6)
6)
6)
6)
2
Liv Rm
******
******
******
******
******
******
3396. (
2384. (
3242- (
2062. (
2095. (
******
******
1495. (
1460. (
2280. (
3509. (
2066. (
3919. (
4344. (
2814. {
1532. (
1514. (
2316. (
22«0« (
1514- (
185?. (
9R6. (
1850. (
2599. (
4910* (
1815. (
3558. (
3319. (
3477. (
4495. (
3
/3D RM
4)
6)
6)
6)
6)
2)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
5)
6)
6)
6)
6)
******
******
***** *
******
******
******
2755* (
1849* (
1674. (
1933* (
2095* (
******
******
1175* (
1032- (
1638* (
2761. (
1567. (
1710* (
2084* (
1745- (
1603. (
1549- (
2031. (
1959- (
1585* (
1710- (
985* (
1621. (
2774. (
3701* (
177?. (
2809* (
2927* (
3334» (
4389. (
4
9JTSIDE
******
******
******
**
****
******
******
4)
6)
6)
6)
6)
1526
1421
961
1598
1311
#*
{
. (
* (
. (
(
****
4
6
6
6
6
)
)
)
)
)
******
2)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
5)
6)
6)
6)
6)
748
641
1211
1514
1389
1567
1656
1567
1460
1300
926
961
1086
1460
665
1087
2639
2821
1184
2132
1608
2408
3640
(
(
. (
. (
(
. (
. (
. (
. (
(
. (
(
(
. (
. (
. (
. (
* (
. (
(
* (
(
. (
2
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
5
6
6
6
6
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
3438'
2721.
2464*
1808.
- 237 -
-------
H-3USF 3
VALUES
MAX
DATE
6/23/73
6/'~\V73
6/23/73
6/23/73
6/23/73
6/23/73
6/23/73
6/23/73
6/23/73
6/23/73
6/23/73
6/23/73
IK' ( ) ARE NQ.
: 6 PER 2HR*72
TIME
C8 AVERAGE
-}F 93SERVAT I
PER DAY
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
0400
0600
0800
1000
1200
1400
1600
1800
2000
2200
2400
DAILY AVERAGE =
(AVu 8F 2HR VALUES)
C9NCENTRATI 3NS
IN PER 18 3
STATI9N
'UG/M3
1
9VER ST8VE
4198.
3096.
2868.
3341.
3998.
4559.
4596.
3218.
3242.
5295.
5023«
3491.
( 7)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
2
Liv Rm
3806. i
2704. i
2404. i
2^14. i
3322- i
3832. i
3527. i
1970. i
2230. i
5201* i
4163* i
2351. i
( 7)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
3
/BO
3500. i
2419. <
2226* i
2771. i
3393. '
4302* '
3598* '
1507- i
2209* i
5629. i
4417* i
2565* '
4
RM
( 7)
( 6 )
( 6)
! 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
9UTS]
2615.
1742.
1442.
2201.
2894.
4117.
2850.
1472.
2138.
h306.
5095.
2565.
[DE
( 7)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( fy)
( 6)
3910.
3?07.
3211
2953.
6/24/73
6 / .. * / 7 3
6/24/73
6/24/73
6/24/73
6/24/73
6/24/73
6/24/73
6/24/73
6/24/73
6/24/73
6/24/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
4133.
3705.
3384.
3135.
4988.
1482.
2636.
3491.
3901.
D451-
5059.
5490*
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
2529. ( 6)
?422« ( 6)
1995- ( 6)
2133.
2173-
641.
1339.
2209.
3153.
6)
6)
6)
6)
6)
6)
4524. ( 6)
4026. ( 6)
5433* ( 6)
2672-
2494*
2066«
2244*
2209.
854.
676-
1496.
2043.
2529*
3064*
6074*
(
(
(
(
(
(
(
(
(
(
(
(
6)
6 )
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
2707.
2351.
1817.
2031.
1282.
342.
498.
1389.
908.
1603.
1995.
4506.
( 6)
( 6)
( 6)
( 6)
( b)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
DAILY AVERAGE =
(AV3 BF 2HR VALUES)
3905
2719.
2369*
1786
6/25/73
6/?5/73
6/25/73
6/25/73
6/25/73
6/25/73
6/25/73
6/25/73
6/25/73
6/25/73
6/25/73
6/25/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
8087.
6805-
3519.
4553.
5024.
2160.
2515.
2422.
3393.
3044.
3790.
6475.
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
6306.
4937.
1339.
2843.
3491.
2721.
2037.
840.
2039.
2046.
2636.
4244*
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
6626* '
5303. i
2023* i
3092* i
3776* i
1973* '
1517. i
890« <
2039. i
1797- '
3042* '
4529* '
( 6)
( 6 )
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
6377.
4952*
1667.
2701.
2357.
1061.
1481.
676.
1861.
1405.
2223.
3781.
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
DAILY AVERAGE =
(AVo OF 2HR VALUES)
4316.
3008-
3051
2595.
- 238 -
-------
H9USL 3 Sr"lNJu-SUMMER C8 AVERAGE C^MCFNTRAT! 9NS /IJG/M3
VALUES IN ( ) ARE N^. 3F 863ERVAT I f)NIS IN PERIOD
MAX.: 6 PER 2HR,72 PER DAY
STATI8N
(DATE
6/26/73
6/26/73
6/26/73
6/26/73
6/26/73
6/26/73
6/26/73
6/26/73
6/26/73
6/26/73
6/26/73
6/26/73
TIMF
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
P200-2400
DAILY AVERAGE =
(AVG 8F
2HR VALUES)
1
8VER
4571
2364
2202
2669
4460
3938
3091
2296
2383
2824
4311
3442
3263
5T8VE
*
* '
»
* 1
1
* |
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
[ 6)
9
Liv Rm
3610.
2613.
777.
1 17?.
2353.
?980» <
1308. *
108?» i
1343. i
240?. i
?8?9. i
2836. l
2193.
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
f 6)
( 6)
( 6)
( 6)
[ 6)
I 6)
3
/BO
3533.
2685*
ss<+.
1457.
1895*
2909* i
1803* i
1?27« i
1701. i
1690* i
3579« i
2551. 1
2077.
RM
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
[ 6)
[ 6)
4
3JTSIOE
3075
2399
813
1386
1610
2802
1665
1156
1380
906
1973
2694
1822
*
i
i
1
» 1
1
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
I 6)
6/27/73
S/27/73
6/27/73
6/27/73
6/27/73
6/27/73
6/27/73
6/27/73
6/27/73
6/27/73
6/27/73
6/27/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
^000-2200
2200-2400
DAILY AVERAGE =
(AVG 8F
2HR VALUES)
4743.
3795.
3830-
4076.
3852.
3584. i
2776. i
2512. '
2002.
3338. i
4568. i
6254. 1
3777.
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
I 6)
( 6)
( 7)
( 6)
[ 6)
2283.
2173.
1616.
1636.
1918.
2354.
1265.
1 177.
703*
1716.
2846.
4773.
2043-
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 7)
( 6)
( 6)
2635«
2283«
1897.
2103.
2002*
2354*
1229. i
93l«
63?.
1385« '
2986* i
4603* I
2087*
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 7)
( 6)
( 6)
2248.
1405.
1265.
1475.
1328.
1792. i
913. i
931.
527. i
903. i
2846. i
till, i
1645.
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 7)
( 6)
( 6)
6/2c>/73
6/29/73
6/29/73
6/29/73
6/29/73
6/29/73
6/29/73
6/29/73
6/29/73
6/29/73
6/29/73
6/29/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
3479. ( 6)
3092. ( 6)
2776. ( 6)
3198. ( 6)
2951. ( 6)
2494. ( 6)
2389. ( 6)
2108. ( 1)
******
******
******
******
2459. ( 6)
2037. ( 6)
1756. ( 6)
200?. ( 6)
1791. ( 6)
913* ( 6)
738. ( 6)
843. ( 1)
******
******
*** ***
*******
1967. ( 6)
1581. ( 6)
1335» ( 6)
1721. { 6)
1475. ( 6)
873* ( 6)
667» ( 6)
843" ( 1)
******
******
******
******
1229. ( 6)
759. ( 5)
632. ( 6)
1019. ( 6)
1019. ( 6)
773. ( 6)
667. ( 6)
843. ( 1)
******
******
******
******
239 -
-------
H3USF 3
VALUES
MAX.
DATE
7/ 5/73
7/ b/73
7/ 5/73
7/ 5/73
7/ 5/73
7/ 5/73
7/ 5/73
7/ 5/73
7/ 5/73
7/ 5/73
7/ 5/73
7/ 5/73
7/ r>/73
// -,/73
7/ 6/73
7/ 6/73
7/ 6/73
7/ 6/73
7/ 6/73
7/ 6/73
7/ 6/73
7/ 6/73
7/ 6/73
7/ 6/73
SPRiNG-SU
INJ ( ) ARE
: 6 PER 2HR
TIME
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POOO-2200
2200-2400
DAILY AVERAGE =
(AV3 6F
7/ 7/73
7/ 7/73
7/ 7/73
7/ 7/73
7/ 7/73
7/ 7/73
7/ 7/73
7/ 7/73
7/ 7/73
7/ 7/73
7/ 7/73
7/ 7/73
2HR VALUES)
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
'.R C9 AVERAGE CONCENTRATIONS »UG/M3
N9. 9F 9B3ERVATI9NS IN PERI6D
,72 PER DAY
STATI9N
1
VER ST9VE
******
******
******
******
******
****
* *
2
Llv Rm
******
******
******
******
« *****
******
******
2791.
1869.
2882.
4380.
4288.
2997.
J498.
2671.
3622.
3009.
3995.
3157.
2583.
3543.
4482*
7303.
9173.
4086.
3863*
7534.
5216.
4227.
4068.
3296-
2120.
3788.
5342.
6166.
8665.
9007.
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
3)
6)
6)
6)
6)
6)
6)
6)
5)
6)
6)
6)
6)
7)
6 )
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
******
1660
1223
1649
3538
3043
1865
1366
1539
2399
1862
2599
1988
1520
2121
2746
5563
S3 05
28?3
7391
6214
4311
3053
2735
2240
637
2619
4711
3680
9254
8177
(
(
(
t (
(
(
(
(
* (
(
* (
(
(
(
(
* (
(
(
» (
(
(
* (
(
{
(
(
(
(
* (
3)
6)
6)
6)
6)
6)
6)
6)
5)
6)
6)
6)
6)
7)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6
6
6
6
6
6
3
/3D RM
******
******
******
******
**
* ***
4
9JTSIDE
******
******
*«
**
****
****
******
******
******
1886
1303
4162
3323
2893
1865
1404
1614
2490
1749
2486
1761
1451
2282
286Q
5983
3456
2867
7263
6327
434g
3171
2747
1373
875
921
3315
5499
7231
7800
. (
. (
. (
. (
. (
(
. (
. (
. (
(
. (
* (
(
(
(
. (
* (
.
. (
. (
(
(
. (
. (
(
(
(
(
* (
. (
3)
6)
6)
6)
6)
6)
6)
6)
5)
6)
6)
6)
6)
7)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
******
**
1584
1076
2766
2758
2176
1299
839
1011
1902
1409
2184
1422
1262
2185
2746
5530
7890
2473
7354
5497
3179
1714
1163
920
687
997
3428
7624
7594
6932
***»
. (
(
. (
(
. (
(
« (
. (
(
. (
(
. (
. (
. (
(
. (
. (
.
. (
. (
. (
. (
(
. (
. (
. (
. (
(
. (
. (
3)
5)
6)
b)
6)
6)
M
6)
5)
6)
6)
6)
6)
7)
6)
6)
6)
6)
6)
6)
6)
6)
6)
t>)
6)
6)
6)
6)
6)
DAILY AVERAGE '
(AVG BF 2HR VALUES)
5899.
5010.
4239.
3924.
- 240 -
-------
H3USF 3
VALUES
MAX<
9ATE
7/ 8/73
7/ 8/73
7/ 8/73
7/ 6/73
7/ S/73
7/ 8/73
7/ 8/73
7/ 8/73
7/ 8/73
7/ d/73
// 8/73
7/ 8/73
SPRING-SUMMER C8 AVERAGE CONCENTRATIONS
IN ( ) ARE N9« 3F QBSERVAT I <3N<3 IN
: 6 PER 2HK/72 PER DAY
TIME
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
0400
0600
0800
1000
1200
1400
1600
'1800
2000
2200
2400
DAILY AVERAGE *
(AV'j RF 2HR VALUES)
STATI8N
1
8VER ST8VE
5620.
4194.
3041.
2635.
2820.
3188.
2857.
3280.
3032.
5568.
3482.
10158.
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
?
Liv Rm
4639.
3327.
2061.
1654.
2568.
R509.
1687.
2035.
1674.
4022.
7954.
89n.
( 6)
( 6)
( 6)
( 6)
{ 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
3
/30
4413. i
3176*
1910^
1616* '
1624* i
1339* i
329. i
639. i
316« i
928* i
618Q. i
6423- i
RM
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
4
9JTSIDE
3432.
1969.
778.
447.
681.
510.
518.
715.
3b4.
2400.
5848.
6310. <
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
4573.
3537.
2408-
1997.
7/
7/
7/
7/
7/
7/
7/
7/
7/
;/
7/
7/
9/73
-»/73
9/73
9/73
9/73
9/73
9/73
9/73
9/73
9/73
9/73
9/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
6620.
4327.
2335.
3258.
4134.
J849.
4497.
3713.
3202.
3387.
4803.
7422.
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
5677.
3233.
1779.
2277.
2927.
2529.
33?7«
2657.
1768.
3172-
35?0.
6434.
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
345l» i
2328. i
1401* i
1900- i
1606. i
1057* i
1555* i
1789* <
336* i
555* '
3077. i
3235* '
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
2471.
11*6.
534.
1221. <
2419. '
452.
1155. i
1865.
336.
481.
3077.
2442.
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
DAILY AVERAGE =
(AVG PF 2HR VALUES)
4337.
3273-
1858'
1471
7/10/73
7/10/73
7/1J/73
7/10/73
7/10/73
7/10/73
7/10/73
7/10/73
7/10/73
7/1C/73
7/13/73
7/10/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
6639.
5696.
5168.
5847.
o038.
5762.
4233.
3458.
4635.
5296.
5606.
6027.
( 6)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
5658. i
4790. i
4263. i
4790. i
74?0. i
b407. i
3115. i
2340.
2859. i
3783. i
4554* i
4909. i
I 6)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
2263* '
1999.
2074-
2414*
5771.
2920*
944. i
1090.
1116.
2073*
3501.
221?.
( 6)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
1547.
1244.
1471.
2187.
2640.
2486.
812.
1057.
1182.
1908.
2811.
1949.
( 6)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
< 6)
( 6)
( 6)
( 6)
( 6)
DAILY AVERAGE =
(AVo 0F 2HR VALUES)
5367.
4491.
2365^
1775.
- 241 -
-------
HrJUbf 3 SPRI\3-SIMMER C8 AVERAGE CONCENTRATIONS /UG/M3
VALUFS IN ( ) ARE N0. 3F 93SERVATI?NS IN PERI9J
MAX.: 6 PER 2HR/72 PER DAY
STATI9N
DATE
TIME
1
9VER ST9VE
7/11/73
7/11/73
7/11/73
7/11/73
7/11/73
7/11/73
7/11/73
7/11/73
7/11/73
7/11/73
7/11/73
7/11/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1PCO-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
DAILY AVERAGE =
(AVfi 9F
2HR VALUES)
7205.
5356.
3848*
4036*
5658.
5922.
4526.
1489.
4036.
5356.
7959.
3432.
5152.
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
?
Liv Rm
5834. i
4451* i
2716. i
2904. i
4942- i
4489. i
3244. i
?867. i
2489. i
3885. i
6828. i
2338. i
3920.
( 6)
[ 6)
[ 6)
( 6)
( 6)
( 6)
I 6)
( 6)
( 6)
( 6)
( 6)
( 6)
3
/3D
1773* i
2602* <
2150* i
2376* i
4414. '
2376- i
2753- i
2263* '
?1 12*
3621* i
6601- i
1999* i
2920.
RM
( 6)
( 6)
I 6)
( 6)
( 6)
( 6)
( 6)
( (S )
( 6)
( 6)
( 6)
( 6)
4
9JTSIDE
1282.
1131.
1018.
1697.
1961.
18S6.
1773.
1999.
1622.
4640.
6111.
1508.
2219.
( 6)
( 6}
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( to)
7/1P/73
7/12/73
7/12/73
7/12/73
7/UV73
7/12/73
7/12/73
7/12/73
7/1P/73
7/12/73
7/12/73
7/12/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
DAILY AVERAGE =
(AVG 8F
2HR VALUES)
1735.
1358.
1519.
2402.
6564.
b602»
5545.
2942.
2451.
5095.
6451.
5470.
4011*
( 6)
( 6)
( 7)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
905.
5?R»
743.
1018. i
3998. i
5432.
4225.
1R56.
1244.
2339.
56?1
4829.
2728.
( 6)
( 6)
( 7)
( 6}
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
754* i
45?. i
517- i
1244* '
445l» I
6526* i
426?. '
1901» i
1244* '
2603- i
5960* i
4527* i
2870-
( 6)
t 6)
( 7)
[ 6)
( 6)
( 6)
( 6)
( 5)
t 6)
( 6)
( 6)
( 6)
452. '
226. i
498. i
679. i
3923. l
4828. i
3960. i
1720. i
1433. i
2678. i
6262. -
3848. i
2542.
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 5)
f 6)
1 6)
( 6)
t 6)
7/13/73 0000-0200 3696» ( 6)
7/13/73 0200-0400 2829. ( 6)
7/13/73 0400-0600 2565» ( 6)
7/13/73 0600-0800 3357. ( 6)
7/13/73 0800-1000 4753. ( 1)
7/13/73 1000-1200 ***#**
7/13/73 1200-1400 ******
7/13/73 1400-1600 ******
7/13/73 1600-1800 ******
7/13/73 1800-2000 ******
7/13/73 2000-2200 ******
7/13/73 P200-2400 ******
( 6)
1886. ( 6)
1622* ( 6)
?376» ( 6)
3621. ( 1)
******
******
******
******
******
******
******
2716*
1886.
1735-
2414*
3621»
******
******
******
******
******
*****#
******
6)
6)
6)
6)
1)
2678.
1206.
980.
2075.
2489.
6)
6)
6)
6)
1)
******
******
******
******
******
** ****
******
- 242 -
-------
Appendix B-5
N02, NO, and CO data for House No. 3 - Fall/Winter
- 243 -
-------
-3 FALL-WINTER
VALUES IN ( ) ARE N9«
MAX.: 6 PER 2HR,72
DATE
N92 AVERAGE CONCENTRATIONS
3F 8BSERVATI8NS IN PERI9D
PER DAY
UG/M3
TIME
1
8VER ST8VE 1M
STATIBN
1A 2
STOVE LIV/
RM
OJTblDE
11/2S/73
11/2S/73
11/23/73
11/28/73
11/23/73
ll/LM/73
11/23/73
ll/2*/73
ll/2rf/73
11/28/73
11/28/73
11/28/73
11/29/73
11/29/73
11/29/73
11/P9/73
11/29/73
11/29/73
11/29/73
11/23/73
11/29/73
11/29/73
11/29/73
11/29/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
P200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1300
1800-2000
2000-2200
P200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
DAILY AVERAGE =
(AVu 8F
2MR VALUES
******
******
******
******
******
******
******
85.0 ( 2)
266.2 ( 6)
415.3 ( 6)
173.8 ( 6)
97.0 ( 3)
86.8 ( 6)
75.0 ( 6)
86*8 ( 6)
71.7 ( 6)
139O ( 6)
******
******
36.7 ( 3)
103.7 ( 6)
128.8 ( 6)
155.5 ( 6)
75.2 ( 6)
38.3 ( 6)
48.3 ( 6)
48.3 ( 6)
92.0 ( 6)
46.7 ( 6)
46-7 ( 6)
42.0 ( 5)
50.0 ( 4)
53.3 ( 6}
58.3 ( 6)
61»7 ( 6)
45.0 ( 6)
******
******
******
******
******
******
« *****
80.0 ( 2)
93.7 ( 6)
159.3 ( 6)
95.2 ( 6)
62.5 ( 4)
51.7 ( 6)
51.7 ( 6)
38. 3 ( 6)
40*0 ( 6)
56.7 ( 6)
******
******
46.7 ( 3)
86*8 ( 6 )
85.2 { 6)
6«.5 ( 6)
35.0 ( 6)
43.3 { 6)
40«0 ( 6)
36.7 { 6)
60.2 ( 6)
41.7 ( 6)
43.3 ( 6)
44.0 ( 5)
4?. 5 ( 4)
51.7 ( 6)
60.0 ( 6)
53.3 ( 6)
41.7 ( 6)
******
******
******
******
******
******
******
60.0 ( 1)
58.5 ( 6)
115.8 { 6)
78.0 ( 5)
124.0 ( 3)
56.7 ( 6)
46.7 ( 6)
41.7 ( 6)
33.3 ( 6)
38.3 ( 6)
******
******
16.7 ( 3)
20.0 ( 6)
38.3 ( 6)
25.0 ( 6)
31.7 ( 6)
28.3 ( 6)
16.7 ( 6)
23.3 ( 6)
31.7 ( 6)
36.7 ( 6)
23.3 ( 6)
16.0 ( 5)
25.0 ( 4)
30.0 ( 6)
33.3 ( 6)
55.2 ( 6)
20.0 ( 6)
******
**#**»
******
******
******
******
******
70.0 ( I
6b.O
68.3
53.3
30.0
26.7
26.7
2L7
23.3
31.7
******
******
20.0 ( 3
35.0
31.7
41.7
15.0
6;
6;
6;
6!
3b.O
25«0
28.0
40.0
26.7
21.7
28.0
35.0
45*0
58.
58.
21<
6;
6;
5:
6;
6;
6;
5;
4!
6;
6!
6;
6!
52*6
46.9
28.3
35.2
-------
H-1USE -3 FALL-'wINTER
VALUES IN ( ) ARE Ne.
MAX.: 6 PER 2HR/72
DATE
N8? AVERAGE
"iF 98SERVATISN3
PER DAY
CONCENTRATIONS
IN PFRI93
STATI9N
UG/M3
12/
127
127
12/
12/
12/
12/
I?/
12/
12/
1 2/
I?-/
12/
12/
12/
12/
12/
12/
12/
12/
I?/
12/
1-2/
I?/
127
127
127
127
IrV
127
127
127
127
127
127
1?7
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
?/73
2/73
P/73
2/73
2/73
2/73
?/73
2/73
P/73
2/73
2/73
2/73
3/73
3/73
3/73
3/73
3/73
3/73
3/73
3/73
3/73
3/73
3/73
3/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POOO-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POOO-2200
P200-2400
0000-0200
0200-0400
0400-0600
0600-OSOO
0800-1000
1000-1200
1200-1400
1400-1600
1600-1300
1800-2000
2000-2200
2200-2400
1
*/ER ST8VE 1M
oO.O ( 6)
43.3 ( 6}
38.3 ( 6)
45O ( 6)
48.3 ( 6)
61.7 ( M
71.7 ( 6)
******
******
******
******
******
******
******
******
73.3 ( 3
66.7 ( 6
73.3 ( 6
70.3 ( 6
76.7 ( 6
63.3 ( 3)
***** «
******
******
******
******
******
***** *
»*»»*»
100.3 ( 3)
SI. 7 ( 6)
95.3 ( 6)
30.0 ( 6)
277.7 ( 6)
112.2 ( 6)
73.3 ( 6)
1A
FR9M STftVE
41.7 ( 6)
r>«o ( 6)
40»0 ( 6)
41-7 ( 6)
45.0 ( 6)
43.3 ( M
53.3 ( M
»*»«**
»***»*
******
******
******
»*»»*»
******
******
36.7 ( 3
46.7 ( 6
55.0 ( 6
5H.3 ( 6
5s?. 3 ( 6
56.7 ( 3
» ** ***
******
******
******
******
*»»»**
» *****
******
46.7 ( 3)
43.3 ( 6 )
53.0 ( 6)
40.0 ( 6)
162-3 ( 6)
63«5 ( 6)
43.3 ( 6)
2
LIV/ RM
18.3 ( 6)
18.3 ( 6)
16.7 ( 3)
17.5 ( 4)
20.3 ( ?)
13.3 ( 3)
16.7 ( 3)
*»* ***
******
******
******
******
******
*»* ** *
******
15.0 ( ?)
14.0 ( 5)
12.5 ( 4)
13.3 ( 6)
18.3 ( 6}
36.7 ( 3)
******
******
******
******
******
»»«***
******
** * ** *
53.3 ( 3)
70.0 ( 6)
61.7 ( M
60.0 ( 6)
58.3 ( 6)
90.2 ( 6)
46.7 ( 6)
4
OUTSIDE
21-7 ( 6)
20.0 ( 6)
21). 0 ( 4)
17.5 ( 4)
17.5 ( 4)
18.3 ( 6)
16.0 ( b)
******
*» *»*#
******
** ****
******
******
******
** ****
20.0 ( 3)
20.0 ( 5)
15.0 ( 4)
18.3 ( 6 )
28.3 ( 6)
60»0 ( 3)
******
******
** »***
******
******
******
******
******
46.7 ( i)
41.7 ( 6)
53.3 ( 6)
76.7 ( 5)
130.5 ( b)
71.8 ( 6)
50»0 ( 6}
- 245 -
-------
HTJSE -3 FALL-WINTER
VALUES IN ( ) ARE My.
MAX.: 6 PER 2HR/72
AVERAGE
9F 88SERVATI8NS
PER DAY
, UG/M3
IN
DATE
TIME
I?/ 4/73
12/ 4/73
I-?/ 4/73
12/ 4/73
\2/ 4/73
l.e/ 4/73
I-:/ 4/73
l.V 4/73
I-?/ 4/73
12/ 4/73
12/ 4/73
12/ 4/73
I?./ 5/73
I-?/ b/73
12/ 5/73
I?/ 5/73
I?/ 5/73
I?/ 5/73
\?J 5/73
12/ 5/73
I,-?/ 5/73
12/ 5/73
\?./ 5/73
I?/ 5/73
12/11/73
12/11/73
12/11/73
1.V11/73
12/11/73
12/11/73
12/11/73
12/11/73
13/11/73
12/11/73
12/11/73
12/11/73
3000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
^000-2200
P200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POOO-2200
2200-2400
STATI8N
1
VER ST8VE
45.0 ( 6)
53.3 ( 6)
46.7 ( 6)
132.3 ( 6)
81.8 ( 6)
S3. 5 ( 6)
107.2 ( 6)
******
*»» »# »
******
******
******
******
*»*»«»
******
******
65.0 < 2)
61.7 ( 6)
65«0 ( 6)
60*0 ( 6)
314.3 ( 6)
82.2 ( 5)
******
* *****
* *****
******
******
******
******
******
******
74.0 ( 5)
50.0 ( 6)
56.7 ( 6)
68.3 ( 6)
58.3 ( 6)
1A
1M FRSM STOVE
45.0 ( 6
31.7 ( 6
48.3 ( 6
83.7 ( 6
75.7 ( 6
63.3 ( 6
108.5 ( 6
* *****
******
*»**#*
******
*»»«*»
******
******
******
******
70.0 ( 2)
63.3 ( 6)
61.7 ( 6)
60.0 ( 6)
210.8 ( 6)
60.0 ( 5)
»»»***
******
******
******
******
******
»*« ***
******
******
60.0 ( 5)
50.0 ( 6)
53.3 ( 6)
43. 3 ( 6)
48.3 ( 6)
2
i-IV/ RM
36.7 ( 6)
45.0 ( 6)
40.0 ( 6)
51.7 ( 6)
90.3 ( 6)
98.7 ( 6)
97.2 ( 6)
******
*#*#*#
******
****»»
******
******
******
»* »»* *
******
85.5 ( 2)
55.0 ( 6)
48.3 ( 6)
45.0 ( 6)
83.7 ( M
56.0 ( 5)
******
»***»»
******
******
******
******
******
»»*»*»
******
36.0 ( ^)
31.7 ( 6)
43.3 ( 6)
46.7 ( 6)
28.3 ( 6)
4
3JTSIOE
56.7 ( 6)
41.7 ( 6)
46.7 ( 6)
73.3 ( 6)
90»2 ( 6)
91.7 ( 6)
93-7 ( fa)
******
»»**»»
******
** »*»*
******
******
******
» *****
******
60.0 ( c)
51.7 ( b)
41»7 ( 6)
36.7 ( 6)
78.8 ( 6)
32»0 ( 5)
******
******
** ****
******
******
******
** *»* *
******
******
38*0 ( 5)
36.7 < 6)
38*3 ( 6)
3o»0 ( 6)
25.0 ( 6)
- 246 -
-------
H'lUSE -3
VALUES
MAX.
'- ALL-WINTL*
I'M i ) ARE N9»
: 6 PER 2HR/72
"J92 AVERAGE CBNCENT
3F 9riSE3VATI
PclR DAY
'JNS IN PERI
RATI9MS * 'JG,
83
/M3
STATI8N
DATE
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
1 2/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
l?/i4/73
12/15/73
12/15/73
12/15/73
12/15/73
12/15/73
12/15/73
12/15/73
12/15/73
12/15/73
12/15/73
12/15/73
12/1F/73
TIME
3000-0200
0200-3400
0400-0600
0600-0800
0800-1000
1000-1POO
1200-1400
1400-1600
1600-1800
1800-2030
2000- 2?00
2200-2400
3000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-ObOO
J600-3800
3800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
'000-2200
22CO-24QO
1
9VER 3T8VE 1M
48.3 ( M
63.3 f
73.3 ( 6)
61.7 ( 6)
48.3 ( 6)
28.3 ( 6)
45.0 ( 2)
******
******
******
*»»»**
******
******
******
******
******
***** *
******
******
335.3 ( 3)
462.3 ( 6)
216.3 ( 6)
151.3 ( 6 )
179*3 ( 6 )
147.7 ( 6)
147.7 ( 6)
187. 8 ( M
141.3 ( 3)
243.2 ( 6)
1 74.3 ( 6)
157.7 ( 6)
141.3 ( 6 )
136.J ( 6)
120«8 ( 6)
141-0 ( 6)
144.3 ( 6 )
1A
F99M ST9VE
55.0 ( 6)
7 ( 6)
45.0 ( 6)
48.3 ( 6)
53.3 ( 6)
40.0 ( 6)
43.0 ( 2)
******
******
******
******
******
******
******
******
******
******
******
###»**
351 .7(3)
443.7 ( 6)
c 1 P 7 ( M
80.2 ( 6)
75.0 ( f>)
63*0 ( 6)
61.7 ( 6)
101.8 ( 6 )
63.3 ( 3)
1^4.0 ( 6)
73.0 ( M
6^.3 ( 6)
85.0 ( M
8 « . 3 ( 6 )
88.3 ( 6)
7^.8 ( 6)
83.7 ( 6)
3
/8D RM
31.7 ( 6)
43.3 ( 6)
38.3 ( 6)
30.0 ( 6)
33.3 ( 6)
20.3 ( 6)
15.3 ( 2)
# * **»*
******
******
**«**»
*»*#»*
***** *
******
*** *»*
******
# *****
******
* **** »
314.7 ( 3 )
360.0 ( M
142.5 ( 6)
65.3 ( 6)
65.3 ( 6)
60.3 ( 6)
60.0 ( 6 )
66.7 ( 6)
60.3 ( 3)
125.5 ( 6)
66.7 ( 6 )
56.7 ( 6)
50.3 ( 6)
53.3 ( 6 )
56.7 ( 6)
48.3 ( M
51.7 ( 6)
4
8UTSlL>E
31.7 ( 6 )
31.7 ( 6)
26.7 ( 6)
43.3 ( 6)
26.7 ( 6)
16.7 ( b)
15.0 ( 2)
******
******
******
******
******
******
******
******
******
******
** ****
******
100.3 ( 3)
164.3 ( 6)
98.5 ( 6)
4D.O ( ^ )
3J.3 ( 6)
30.3 ( 6)
3 3 J ( b )
30.0 ( b)
23.3 ( 3)
3b«3 ( t>)
38.5 ( 6)
20.0 ( 6)
20.3 ( 6)
26.7 ( 6)
31.7 ( 6)
3b.3 ( 6)
3rf. i ( b)
DAILY AVERAGE '
(AVO GF 3HR VALUES)
161.0
87.2
63.0
30.4
- 247 -
-------
H.il/SE -3 FALL-WINTER N92 AVERAGE C8NCFNTRAT19MS * UG/N3
VALUES IN ( ) ARE N9. 9F SBSFRVATHNS IN PERIOD
MAX.: 6 PER 2HR/72 PER DAY
STATI9N
DATE
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
TIME
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
DAILY AVERAGE «
(AVG 8F
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
2HR VALUES)
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
1
8VER STBVE
159. j < 6)
147.7 ( 6)
124.2 ( 6)
141.0 ( 6)
141. 0 ( 6)
119.3 ( 6)
156.0 ( 6)
137.0 ( 5)
154.3 ( 6)
224.5 ( 6)
171.0 ( 6)
159.3 ( 6)
159.6
******
** »**»
******
******
******
104.0 ( 3)
132.5 ( 6)
127.5 ( 6)
156.0 ( 6)
382. 3 ( 6)
162.7 ( 6)
?14«5 ( 6)
?
1M FRSM STftVE
75.0 ( 6)
73.3 < 6)
73.3 ( 6)
76.7 ( 6)
81.7 ( 6)
68.3 ( M
68.3 ( 6)
144.4 ( 5)
88.5 ( 6)
175.7 ( 6)
133»3 ( 6)
61.7 ( 6)
93.1
******
******
******
******
******
47?. 3 ( 3)
130.8 ( 6)
P06.0 ( 6)
157.7 ( 6)
398.5 ( M
16?. 7 ( 6)
164.2 ( 6)
3
/30 R^
50.0 ( 6)
41.7 ( 6)
41.7 ( 6)
50.0 ( 6)
51.7 ( M
55.0 ( 6)
46.7 ( 6)
60.0 ( 5)
58.3 ( 6)
103.7 ( 6)
78.5 ( 6)
63.3 ( 6)
58.4
******
******
******
»**»*»
*»*»*»
207.3 ( 3)
60.0 ( 6)
71.8 ( 6)
70.0 ( M
147.3 ( 6)
61.7 ( 6)
71.7 ( 6)
4
8UTS10E
33.3 ( 6)
30.0 ( 6)
30*0 ( 6)
26.7 ( 6)
30« 0 ( 6)
28.3 ( 6)
2L7 ( 6)
32.0 ( 5)
38»3 ( 6)
38.3 ( 6)
85»0 ( 6)
20.0 ( 6)
29*5
******
******
** ****
******
******
33.3 ( 3)
33*3 ( 6)
35»0 ( 6)
36.7 ( 6)
33.3 ( 6)
20.0 ( 5)
35. 0 ( 5)
DAILY AVERAGE « 182.7
(AVG 0F 2HR VALUES)
241.7
98.5
32.4
- 248
-------
H9USE -3 FALL-WINTER
VALUES IN ( ) ARE N9«
MAX.: 6 PER 2HR*72
N82 AVERAGE
3F 9BSERVAT
PER DAY
C8NCENTRATI8NS * UG/M3
IN PFRI8D
STATI8N
DATE
12/23/73
12/23/73
12/23/73
12/23/73
12/23/73
12/23/73
12/23/73
12/23/73
12/23/73
12/23/73
12/23/73
12/23/73
TIME
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
DAILY AVERAGE »
(AVu 8F
2HR VALUES)
8VER
131
177
181
179
266
244
146
159
164
345
460
137
220
1
1A
ST8VE 1M FR9M ST8VE
.0
.7
.0
.3
.3
.7
0
.3
.3
2 <
.3 (
.7 (
.3
[ 6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
181.
181.
1S1.
177.
263.
166.
147.
204.
167.
589.
464.
174.
241.
0
0
0
7
0
0
7
5
7
7
0
5
5
( 6
( 6
( 6
( 6
( 6
6
( 6
t 6
6
6)
6)
6)
3
/BD
80.0
80.0
80.0
78.3
105.3
73.3
60.0
71.8
51.7
150.5
154.0 (
76.3 (
88.5
RM
( 6
f 6
[ 6
6
6
6)
6)
6)
6)
6)
6)
6)
4
8UTSIDE
28*3
30»0
30.0
30.0
31.7
25.0
28.3
3L7
41.7
53.3
63.3
46.7 (
36.7
( 6)
( 6)
t 6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
- 249 -
-------
H3USE -3 FALL-WINTER N8 AVERAGE C8NCENTRATI8MS * UG/M3
VALUES IN ( 5 ARE N8« 9F 8B5ERVATI6NS IN PERIS?
MAX.: 6 PER 2HR/72 PER DAY
DATE
11/28/73
11/28/73
11/28/73
11/28/73
11/28/73
11/28/73
11/23/73
11/28/73
11/28/73
11/28/73
11/23/73
11/28/73
11/29/73
11/29/73
11/29/73
11/29/73
11/29/73
11/29/73
11/29/73
11/29/73
11/29/73
11/29/73
11/29/73
11/29/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POOO-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
STATION
1
VER sieve i
******
******
******
******
******
******
******
216.
321.
431 »
384.
233*
317.
162.
119.
96.
84.
131*
5 (
0 (
3 (
3 (
2 (
3
2 (
0 (
3 (
2 (
3 (
2)
6)
6)
6)
5)
5)
6)
6)
6)
6)
******
******
21*
59.
101.
174.
100.
250.
76.
70.
153.
82.
81.
71*
75.
87.
126.
169.
86-
7 (
0 (
3 (
8 (
7 (
2 (
7 (
8 (
0 (
0 (
0 (
2 (
5 (
7 (
S (
0 (
3 (
3)
6)
6)
6)
6)
6)
4)
6)
6)
6}
5)
4)
6)
6)
6)
6)
1A
M FR8M STOVE
******
******
******
******
******
» * ****
******
216
243
338
270
179
249
101
65
42
45
50
5 (
7 (
8 (
8 (
4 (
8
0 (
7 (
3 (
7 (
2 (
?. >
ft)
6)
6)
5)
5)
6)
6)
6)
6)
******
******
24
20
6?
96
52
297
52
50
70
68
73
60
64
72
115
147
62
*
*
*
0 (
7 (
5 (
3 (
0 (
4 (
0 (
5 (
8 (
8 (
3 (
4 (
3 (
5 (
7 (
3 (
2 (
3)
6)
6)
6)
6)
5)
5)
4)
6)
6)
6)
5)
4)
6)
6)
6)
6)
2
LIV/ RM
******
******
******
******
******
******
******
163.
220.
310.
206.
183.
216.
106.
64.
41.
41.
28.
5 (
5 (
3 (
5 (
4 (
S
2 (
7 (
3 (
3 (
3 (
2)
6)
6)
6)
5)
5)
6)
6)
6)
6)
******
******
7.
10.
22.
36.
45.
18.
20.
13.
41.
58.
32.
21.
31.
35.
85.
124.
21.
0 (
S (
S (
2 (
7 (
0 (
0 (
0 (
7 (
S (
5 (
0 (
0 {
2 (
3 (
3 (
8 (
1 )
5)
6)
6)
6)
4 )
5)
3)
6)
6)
6)
5)
4)
6)
6)
6)
6)
4
8UTSIDE
******
******
******
******
******
******
******
190.0 (
245.5 «
123.5 <
16.3 (
18.0 (
118.7
******
******
******
******
******
******
******
******
******
******
******
******
59.0 (
13»0 (
16.5 (
28.8 (
19.7 (
12.0 (
8.2 (
8.5 (
59.2 (
96.2 (
120.8 (
***** (
2)
6)
6)
6)
4)
2)
1)
2)
5)
6)
6)
5)
4)
6)
6)
5)
4)
DAILY AVERAGE *
(AVG 8F 2HR VALUES)
110.8
94.6
41.9
40-2
- 250 -
-------
H9USF -3 FALL-WINTER
VALUES IN ( ) ARE N9.
MAX.: 6 PER 2HR,72
NB AVERAGE
3F 8B3ERVATIONS
PER DAY
DATE
TIME
12/
12/
12/
127
12/
12/
12/
12/
12/
12/
12/
12/
12/
12/
12/
12/
12/
127
I,?/
127
127
127
127
127
127
127
127
127
127
127
127
127
127
127
127
127
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
1/73
2/73
2/73
2/73
2/73
2/73
2/73
2/73
?/73
2/73
2/73
2/73
2/73
3/73
1/73
1/73
3/73
3/73
3/73
3/73
3/73
3/73
3/73
3/73
3/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
C8NCENTRATI9NS
IN PERI6D
STATI8N
UG/M3
1
VER STBVE
b2«5 ( 6)
67.0 ( 6)
54.7 { 6)
45.8 ( 6)
fl«3 ( 6)
33.8 ( 6)
39.2 ( 6)
******
******
******
******
******
******
******
******
56.7 ( 3)
6l«2 ( 6}
55«8 ( 6)
61.3 ( 6)
73.5 ( 6)
74.7 ( 3)
******
******
******
******
******
******
******
******
183.3 ( 3)
124.7 ( 6)
107.0 ( 6)
'30.8 ( 6)
254.5 ( 6)
332-2 ( 6)
279.5 ( 6)
IA
1M FR8M ST8VE
43.5 ( 6)
52.0 ( 6)
36.8 ( 6)
31.5 ( 6)
26.0 ( 6)
22.0 ( 6)
26.0 ( 6)
******
******
******
******
******
******
******
******
39.0 ( 3)
39.0 ( 6)
38.0 { 6)
43.5 ( 6)
53.2 ( 6)
61.3 ( 3)
******
******
******
******
******
******
******
******
122.3 ( 3)
85.3 ( 6)
56.8 ( 6)
66.7 ( 6)
193.3 ( 6)
304.7 ( 6)
256.7 ( 6)
3
LIV/ RM
11.0 ( 6)
13.0 { 6)
10.0 ( 4)
999.0 ( 6)
999.0 ( 6)
999.0 ( 6)
999.3 ( 5)
******
******
******
******
******
******
******
******
7.0 ( 2)
7.0 ( 6)
7.0 ( 2)
8.0 ( 6)
11.0 ( 6)
15.3 ( 3)
******
******
******
******
******
******
******
******
126.7 ( 3)
86.5 ( 6)
60.3 ( 6)
62.2 ( 6)
157.3 ( 6)
297.0 ( 6)
200.0 ( 6)
4
9UTSIDE
******
******
******
******
******
******
******
******
** ****
******
******
******
******
« *****
******
7«0 ( 2)
7.0 ( 1 )
7.0 ( 6)
9.6 ( 5)
28.3 ( 3)
******
******
******
******
******
******
******
******
36»0 ( 3)
15«3 ( 6)
!*?. ( 6)
59*0 ( 6)
267.7 ( 6)
241.3 ( 6)
202.0 ( 6)
- 251 -
-------
H3USE -3 FALL-WINTER
VALUES IN ( ) ARF NQ.
MAX.: 6 PER 2HR,72
NS AVERAGE
3F 8B3ERVATI8NS
PER DAY
DATE
TIME
12/ 4/73
12/ 4/73
12/ 4/73
13/ 4/73
12/ 4/73
12/ 4/73
12/ 4/73
12/ 4/73
12/ 4/73
I?/ 4/73
12/ 4/73
12/ 4/73
12/ 5/73
L-V l5/73
12/ 5/73
12/ 5/73
12/ 5/73
12/ 5/73
12/ b/73
12/ 5/73
I?/ 5/73
12/ 5/73
12/ 5/73
12/ 5/73
12/11/73
12/11/73
12/11/73
12/11/73
12/11/73
12/11/73
12/11/73
12/11/73
12/11/73
12/11/73
12/11/73
13/11/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
CONCENTRATIONS
IN PERI8D
STATI8N
UG/M3
1
VER ST8VE
278.5 ( 6)
292.5 ( 6)
280.5 ( 6)
376*8 ( 6)
358.2 { 6)
246.7 ( 6)
173.7 ( 6)
******
******
******
******
******
******
******
******
******
45.5 ( 2)
94.2 ( 6)
116.6 ( 5)
98.3 ( 6)
277.5 ( 6)
82*8 ( 5)
******
******
******
******
******
******
******
******
******
59.0 ( 5)
43.7 ( 6)
43*5 ( 6)
50O ( 6)
53.5 ( 6)
1A
1M FR8M 5T8VE
P76.2 ( 6)
291*5 ( 6)
279.5 ( 6)
353.8 ( ft)
359.2 ( 6}
226.2 ( 6)
130«2 ( 6)
******
******
******
******
******
******
******
******
******
52.5 { 2)
80*0 ( 6)
105.0 ( 6)
87.3 ( 6)
147.7 ( 6)
56.4 ( 5)
******
******
******
******
******
******
******
******
******
52.0 ( 5)
38.0 ( 6)
33*7 ( 6)
48.0 ( 6)
4'4«5 ( 6)
3
LIV/ RM
250.2 ( 6)
249.0 ( 6)
223.0 ( 6)
314.7 ( 6)
267.7 ( 6)
149.3 ( 6)
74.2 ( 6)
******
******
******
******
******
******
******
******
******
35. 5 ( 2)
67.0 ( 6)
67.0 ( 6)
66.0 ( 6)
98.5 { 6)
56.2 ( 5)
*** ***
******
******
******
******
******
******
******
******
28.6 ( 5)
24.2 ( 6)
21.7 ( 6)
27.2 ( 6)
27.3 ( 6)
4
9UTSIDE
268.5 ( 6)
227.0 ( 6)
226.3 ( 6)
376.7 { 6)
169.2 ( 6)
112.5 ( 6)
27.2 ( 6)
******
******
******
******
******
******
******
******
******
23.0 ( 2)
24.0 ( 6)
27«2 ( 6)
26.0 ( 6)
24.0 ( 6)
23»6 ( 5)
******
******
******
******
******
******
******
******
******
20.0 ( 5)
17.3 ( 6)
8.0 ( 5)
9«0 ( 6)
7.0 ( 6)
- 252 -
-------
H3USE -3 FALL-WINTER
VALUES IN ( ) ARE NQ.
MAX.: 6 PER 2HR/72
N8. AVERAGE
9F 9BSERVATI0NS
PER DAY
DATE
TIME
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/15/73
12/15/73
12/15/73
12/15/73
12/15/73
12/15/73
12/1^/73
12/15/73
12/15/73
12/15/73
12/15/73
12/15/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0*00
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
DAILY AVERAGE =
(AVG 6F
2HR VALUES
C8NCENTRATI9NS
IN PERI9D
STATI9N
UG/H3
1
VER ST8VE
44. b ( 6)
55.7 ( 6)
50«0 ( 6)
71.2 ( 6)
67.7 ( 6)
11*5 ( 4 )
19*5 ( 2)
******
******
******
******
******
******
******
******
******
******
******
******
168O ( 3)
315.7 ( 6)
142. 0 ( 6)
83.2 ( 6)
130.2 ( 6)
88.5 ( 6)
79.0 ( 6)
123-3 ( 6)
100.3 ( 3)
171.5 ( 6)
106.0 ( 6)
78.7 ( 6)
67.0 ( 6)
65.7 ( 6)
68.0 ( 6)
75.7 ( 6)
85.2 ( 6)
IA
1M FR9M ST9VE
39.0 ( 6)
42»5 ( 6)
39.0 ( 6)
66.7 ( 6)
68»8 ( 6)
13«0 ( 6)
13«0 ( ?)
******
******
******
******
******
******
******
******
******
******
******
******
194.7 ( 3)
321-3 ( 6)
12?. 2 ( 6)
67.0 ( 6)
90»8 ( 6)
61.3 ( 6)
53.2 ( 6
68.7 ( 6
79.0 ( 3
143.2 ( 6
72.3 ( 6
54.7 { 6
51.2 ( 6
50.0 ( 6
51.3 ( 6
48.8 ( 6 )
64*5 ( 6 )
3
LIV/BD RM
26.0 ( 6)
26.0 ( 6)
25.0 ( 6)
51.3 ( 6)
42.7 ( 6)
7.0 ( 4)
999.0 ( 6)
******
******
******
******
******
******
******
******
******
******
******
******
135.3 ( 3)
257.7 ( 6)
108.3 { 6)
53.5 ( 6)
88.7 ( 6)
63.7 ( 6)
52.0 ( 6)
64.2 ( 6)
79.0 ( 3)
115.7 ( 6}
77,8 ( 6)
52.7 ( 6)
33.7 ( 6)
32.7 ( 6)
35.8 ( 6)
34.8 ( 6)
40.2 ( 6)
4
8UTSIDE
10.0 ( 6)
15.8 ( 5)
13.2 ( 6)
64.5 ( 6)
13.0 ( 6)
7.0 ( 6)
7.0 ( 2)
******
******
******
******
******
******
******
******
******
******
******
******
91.3 ( 3}
38.0 ( 6)
32.7 ( 6)
26.2 ( 6)
32.7 ( 6)
26»0 ( 6)
23.0 ( 6)
18.8 { 6}
15.3 ( 3)
20.8 { 6)
15.3 ( 6)
13.0 ( 6)
13.0 ( 6)
13.0 ( 6)
17.5 ( 6)
19.7 ( 6)
26.0 ( 6)
92.4
66.5
56.8
18.5
- 253 -
-------
H9USE -3 FALL-WINTER
VALUES IN ( ) ARE N9»
MAX.: 6 PER 2HR,72
N8 AVERAGE
dF 9bSERVATI9NS
PER DAY
C8NCENTRATI9MS
IN PERI80
STATI8N
UG/M3
DATE
TI^E
1
1A
8VER ST8VE 1M FR9M ST9VE
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
DAILY AVERAGE =
(AVG 9F
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
2HR VALUES)
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
90.8 ( 6)
92.0 ( 6)
90.8 ( 6)
90. S { 6)
90«8 ( 6)
87.5 ( 6)
83»2 ( 6)
105.2 ( 5)
79.0 ( 6)
156.2 ( 6)
102.8 ( 6)
90.8 ( 6)
96.7
******
******
******
******
******
484.7 ( 3)
98.0 ( 6)
52*5 ( 6)
52*5 ( 6)
171.5 ( 6)
86.5 ( 6)
86.5 ( 6)
69.2 ( 6)
68.0 ( 6)
65.7 ( 6)
66.8 ( 6)
65.5 { 6)
57.7 ( 6)
55.7 ( 6)
83.8 { 5)
56.8 ( 6)
150.8 ( 6)
120.3 ( 6)
64.3 ( 6)
77.1
******
******
******
******
******
382.0 ( 3)
42.7 ( 6).
26.2 ( 6)
14.2 ( 6)
17.5 ( 6)
15.2 ( 6)
25.0 < 6)
3
/3D RM
52.0 ( 6)
52.0 ( 6)
52.0 ( 6)
52.0 ( 6)
52.0 ( 6)
52.0 ( 6)
48.8 ( 6)
41.8 ( 5)
39.0 ( 6)
101.8 ( 6)
85.3 ( 6)
66.7 ( 6)
58.0
******
******
******
******
******
242.3 ( 3)
91.7 ( 6)
118.0 ( 6)
54.7 ( 6)
206.3 ( 6)
90.8 ( 6)
76.7 < 6)
4
9JTSIDE
26-0 ( 6)
26.0 ( 6)
26.0 ( 6)
26«0 ( 6)
26.0 ( 6)
23.0 ( 6)
19*7 ( 6)
18.4 ( 5)
17.3 ( 6)
24.0 ( 6)
12.0 ( 6)
12.0 ( 6)
21*4
******
******
******
******
******
150.7 ( 3)
90.5 (6)
61.0 C 6)
53.2 ( 6)
123.5 ( 6)
64.5 ( 6)
43.5 ( 6)
- 254 -
-------
H3USL -3 FALL-WINTER
VALUES IM ( ) ARF N9»
MAX. : 6 PER 2HR>72
N8 AVERAGE C8NCENTRATI8MS
3F 86SERVATIBNS IN PFRI8D
PER DAY
5TATI8N
UG/M3
DATE
TIME
1
8VER STBVE 1
12/23/73
12/23/73
12/23/73
12/23/73
12/23/73
12/23/73
12/23/73
12/23/73
12/23/73
12/23/73
12/23/73
12/23/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
16CO-1800
1800-2000
2000-2200
2200-2400
89.7
96.0
99.3
94.0
130.0
141.0
59.0
64.5
52.2
404.0
397.5
97.3
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
1A
M FR9M
91.8
103.8
10L5
98.3
122.3
87.5
63.7
124.5
49.8
468.3
438.0
139.8
ST9VE
( 6)
( 6}
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
3
/BO f
65.8 (
75.5 (
75.5 (
66.0 (
66.8 (
55.5 (
29.3 (
40.3 (
15.3 (
161.8 (
202.0 (
82.2 (
4
RM 8UTSIDE
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
18.8
17.7
16.5
13.0
16*5
13.0
13.0
12.0
8.0
27.2
63.2
22.8
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
DAILY AVERAGE = 143.7
(AVG BF ?HR VALUES)
157.5
78.0
20»1
12/24/73
12/24/73
12/P4/73
12/24/73
12/24/73
12/24/73
12/24/73
12/24/73
12/24/73
12/24/73
12/24/73
12/24/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
P200-2400
90.7 ( 6)
96.3 ( 6)
95.2 ( 6)
93.0 ( 6)
83.2 ( 6)
133.3 ( 6)
******
******
******
******
******
******
93.0 ( 6)
99.3 ( 6)
97.2 ( 6)
93.0 ( 6)
87.5 ( 6)
141.8 ( 6)
******
******
******
******
******
******
62.3 ( 6)
67.0 ( 6)
67.0 ( 6)
64.8 ( 6)
57.3 ( 6)
92. S ( 6)
******
******
******
******
******
******
14.2 ( 6)
24.0 ( 6)
24.0 ( 6)
17.5 ( 6)
18.8 ( 6)
26.0 ( 6)
******
******
******
******
******
******
- 255 -
-------
H9USE 3 FALL-WINTER C8 AVERAGE C9NCENTRATI9NS j»UG/M3
VALUES IN ( ) ARE N9» 3F 9BSERVATIBNS IN PERI8D
MAX.: 6 PER 2HR/72 PER DAY
STATI9N
DATE
TIME
11/23/73
11/28/73
11/28/73
11/28/73
11/28/73
11/28/73
11/28/73
11/28/73
11/28/73
11/28/73
11/23/73
11/23/73
11/29/73
11/29/73
11/29/73
11/29/73
11/29/73
11/29/73
11/P9/73
11/29/73
11/29/73
11/29/73
11/29/73
ll/2rV73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
DAILY AVERAGE *
(AVG 0F
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
11/30/73
2HR VALUES)
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
1 1A 2
9VER ST8VE 1M FR9M ST9VE LIV RM
****** ****** ******
****** ****** ******
****** ****** ******
****** ****** ******
******
10341. ( 3)
10549. ( 6)
10849. ( 5)
11133. < 4)
28074. ( 2)
22073. ( 6)
12060* ( 6)
9565. ( 6)
7892. ( 6)
6897. ( 6)
o355. ( 3)
6176. ( 6)
3933. ( 5)
4674. ( 6)
0090. ( 6)
5519. ( 5)
10178* ( 5)
.-.929. ( 6)
7230. ( 6)
6870.
7254. ( 6)
7526. ( 3)
7032. ( 3)
8523. ( 6)
7918. ( 6)
7558. ( 6)
7128. ( 6)
******
******
******
******
******
******
7876- ( 3)
7775* ( 6)
?354» ( 5)
9163. ( 4)
26870. ( 2)
19373- ( 6)
10659. ( 5)
7852. ( 6)
6000. { 6)
5361. ( 6)
471?. ( 3)
4820. ( 6)
2562. ( 5)
2782. ( 6)
3213. ( 5)
3673* ( 5)
8290. ( 5)
9279. ( 6)
5781. ( 5)
5360.
5227. { 6)
5359. ( 3)
5214. ( 3)
8382« ( 5)
5471. ( 6)
5216* ( 6)
4716. ( 6)
******
******
******
******
******
******
7602« ( 3)
7844* ( 6)
8354* ( 5)
8178- ( 4)
22493* ( 2)
15033. ( 6)
8003* ( 5)
5246* ( 6)
3679* ( 6)
3077* ( 6)
2928* ( 3)
3249. { 6)
2605. ( 5)
2925« ( 6)
3339. ( 5)
3547* ( 5)
7158* ( 5)
5993* ( 6)
3894« ( 5)
3970*
4283» ( 6)
4171* ( 3)
3746* ( 3)
4481* ( 5)
5087* ( 6)
5006* ( 6)
433?. ( 6)
******
*** «**
******
******
******
4
9UTSIDE
******
******
******
******
******
4315. ( 3)
43*5. ( 6)
5684. ( 5)
7194. ( 4)
3890. ( 2)
3324. ( 6)
1835. ( 5)
1426. { 6)
1573. ( 6)
1684. ( 6)
2142. ( 3)
1678. ( 6)
1791. ( 5)
1354. ( 6)
2081. ( :.i)
22*7. ( ">}
1998. ( 5)
2602. ( 6)
1713. ( 5)
1857.
2046. ( 6)
1863. ( 3)
2068. ( .3)
2719. ( 151
2500. ( 6)
2210. ( 6)
2235. ( 6)
******
******
******
******
******
- 256 -
-------
H9USE 3
VALUFS
MAX.
FALL-WINTER
IN ( ) ARE NO.
: 6 PER 2HR,72
C8 AVERAGE C8NCENTRATI8NS ,UG/M3
9F 8BSERVATI8NS IN PERI8D
PER DAY
13ATE
TIME
STATI8N
12/ 3/73
I?./ 3/73
12/ 3/73
I?/ 3/73
12/ 3/73
12/ 3/73
12/ 3/73
12/ 3/73
12/ 3/73
12/ 3/73
12/ 3/73
12/ 3/73
12/ 4/73
12/ 4/73
12/ 4/73
12/ 4/73
12/ 4/73
12/ 4/73
12/ 4/73
12/ 4/73
12/ 4/73
12/ 4/73
12/ 4/73
12/ 4/73
12/ 5/73
12/ 5/73
12/ 5/73
12/ 5/73
12/ 5/73
12/ 5/73
12/ 5/73
12/ 5/73
12/ 5/73
12/ 5/73
12/ 5/73
12/ 5/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
1
OVER ST8VE
******
******
******
******
*****
10335.
8926.
7443.
7469.
7732.
14015.
12271.
12171.
12261.
11949.
11338.
17251.
12703.
12190*
6740.
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
*
3
6
6
6
6
3
6
6
6
6
3
6
6
5
\J\ 2
1M FR8M ST8VE LIV RM
****** ******
****** ******
****** ******
****** ******
******
)
)
)
)
)
)
)
)
)
)
)
)
)
)
2)
******
******
******
12000.
9631.
8020.
7350.
7058.
7502.
6222.
7311.
6801.
5477.
(
(
(
(
(
(
(
(
(
(
5)
6)
6)
6)
6)
6)
6)
6)
6)
5)
******
******
******
9673.
7830.
6238.
5790.
6317.
12765.
10468.
10157.
10147.
9801.
9051.
15488.
10568.
10237.
4785.
(
(
(
{
(
(
(
(
(
(
(
(
(
(
(
3)
6)
5)
6)
6)
3)
5)
6)
6)
6)
2)
6)
6)
5)
1)
******
******
******
10470.
8255.
6510.
5738.
5600.
6087.
4347.
5535.
4752.
3262.
(
(
(
(
(
(
(
(
(
(
5)
6)
6)
6)
5)
6)
6)
6)
5)
5)
******
******
******
******
7879.
5769.
4540»
4145*
5198*
10265*
9542-
9486-
10046-
9600.
8847.
15013*
10127.
9058-
4186-
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
3)
6)
5)
6)
6)
3)
5)
6)
6)
6)
2)
6)
6)
5)
1)
******
******
******
8779.
5940*
4564.
4128*
4179*
5462*
4577.
5206.
4027-
2497.
(
(
(
(
(
(
(
{
(
(
5)
6)
6)
6)
5)
6)
6)
6)
5)
5)
******
******
******
4
8UTSIDE
******
******
******
******
******
2429. (
2613. (
2843. (
3290. (
6317. (
6712. (
5918. (
7405. (
6590. (
5640. (
7525. (
7963. (
4975. (
3892. (
3190. (
3
6,
5;
6;
61
3)
5]
6)
6)
6)
2)
6)
6)
5)
1)
******
******
* *****
o557. (
2953. (
2483. (
2685. (
3784. (
4541. (
2768. (
2640. (
1450. (
725. (
******
******
******
5)
6)
6)
6)
5)
6)
6)
6)
5)
5)
- 257 -
-------
MUSE 3 FALL-WINTER C8 AVERAGE C9NCENTRATI
VALUES IN ( ) ARE N9. 3F OBSERVATIONS IN PERIOD
MAX.: 6 PER 2HR/72 PER DAY
*UG/M3
DATE
TIME
12/
12/
127
12/
12/
I?./
\?./
12/
12/
12/
12/
12/
12/
12/
12/
12/
12/
12/
12/
12/
12/
12/
12/
12/
OAI
6/73
6/73
6/73
6/73
6/73
6/73
6/73
6/73
6/73
6/73
6/73
6/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
7/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1300
1800-2000
2000-2200
2200-2400
LY AVERAGE =
(AVG 6F
127
127
127
127
127
127
127
127
127
127
127
127
8/73
8/73
8/73
8/73
8/73
8/73
8/73
8/73
3/73
8/73
8/73
8/73
2HR VALUES)
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
STATION
1 1A
9VER ST8VE 1M FRSM ST0VE
****** ******
****** «*»***
****** ******
****** **»*#*
******
4866.
5101.
4671.
5134.
5470.
6362.
7048.
6442.
6147.
5819. i
6913. i
11210.
7875. i
7011. i
5823. i
5494. i
6310. i
7238. i
9004.
7149.
3941.
6294.
5324.
5063.
7134.
5681.
6476.
7522.
10124.
3384.
8025.
6568.
( 6)
( 6)
( 5)
( 6)
( 6)
( 5)
( 6)
( 6)
f 6)
( 6)
( 6)
( 3)
( 6)
( 6)
( 6)
( 6)
t 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
< 6)
( 6)
( 6)
( 6)
( 6).
( 6)
** ****
2853.
2953.
3322.
3759.
3994.
5336.
5453.
5213.
4187.
4092* '
5201. i
10076.
6512* i
621 3 .
3652»
4277»
5461. i
6120-
8992
5833.
7431
5086»
4116.
3780»
5724«
4003«
4596*
9066»
8973»
7397»
6775«
5157«
( 6)
( 6)
( V)
( 6)
{ 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 4)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( .6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
2
LIV RM
******
******
******
******
******
3255*
2685«
2618*
2483* '
3222*
3826*
4417.
4117.
4154* '
3925* i
5240* i
8399.
455?. i
471S« '
3040* i
2863*
3943« '
4733. '
7261.
4746*
5719*
3341.
2472.
2572»
3979*
4103*
4462*
6697*
6275.
5587.
5591-
4051.
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 4)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
4
OUTSIDE
******
****** v
******
******
* ***** ~
1980.
1846. '
2013.
1745. i
1879.
29a7.
3141.
3020.
3131. i
3128. i
7586. i
6227.
4087. i
3854. '
2527. i
2665.
2369. i
4178.
6415.
4099.
2095.
1495.
1566.
1847.
2100.
25bO.
2952.
2946.
3610.
4337.
4110.
2354.
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
t 3)
( 6)
( 4)
( 4)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
< 5.)
( 6)
( 6)
( 6.)
( 5)
( 6)
( 6)
( 6)
( 5)
DAILY AVERAGE =
(AVG 8F 2HR VALUES)
7128.
6009.
4571
2664.
- 258 -
-------
H-3USE 3
VALUES
MAX.
FALL-WINTER
IN ( ) ARE NI8.
: 6 PER 2HR/72
C0 AVERAGE CftNCENTRATIBNS /UG/M3
3F 9BSERVATI8N3 IN PERIBD
PER DAY
DATE
12/ 9/73
12/ 9/73
12/ 9/73
12/ 9/73
12/ 9/73
12/ 9/73
12X 9/73
12/ 9/73
12/ 9/73
12/ 9/73
12/ 9/73
12/ 9/73
TIME
STATI8N
0000-
0200-
0400-
0600-
0800-
1000-
1200-
HOO-
DOO-
1800-
2000-
2200-
0200
0400
0600
0800
1000
1200
'1400
1600
1800
2000
2200
2400
DAILY AVERAGE =
(AVG OF 2HR VALUES)
12/10/73
12/10/73
12/10/73
12/10/73
12/10/73
12/10/73
12/10/73
12/10/73
12/10/73
12/10/73
12/10/73
12/10/73
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
0400
0600
'0800
1000
1200
1400
1600
1800
2000
2200
2400
DAILY AVERAGE »
(AVG 8F 2HR VALUES)
12/11/73
12/11/73
12/11/73
12/11/73
12/11/73
12/11/73
12/11/73
12/11/73
12/11/73
12/11/73
12/11/73
12/11/73
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
0400
0600
0800
1000
1200
1400
1600
1800
2000
2200
2400
DAILY AVERAGE *
(AVG 6F 2HR VALUES)
1
8VER ST8VE
6373.
6311.
6545.
5559.
6057.
8086.
13048.
17412.
8896.
7978.
6522.
7259.
8337.
8213.
6919.
6353.
6410.
6275.
6889.
7274.
5852.
7207.
15365.
15735.
17768.
9188.
17828.
14311.
9600.
7274.
10068.
8073.
6711.
5756.
5178.
3459.
4600.
5763.
8218.
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 4)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
< 6)
( 6)
( 6)
( 6)
( 6)
( 6)
< 6)
( 6)
( 6).
( 6)
- 259
IA
1M FR8M
4959.
4962.
5163.
4130.
472L
7272.
11973.
15158.
7123.
7535.
5002.
5930.
6994.
6282.
4608.
4643.
4671.
4933.
4798.
4995.
4860.
6193.
13940.
14089.
16398.
7534.
16182.
12697.
7986.
5737.
8136.
6522.
5161.
4956.
3872*
2248.
4009.
4101*
6801.
^_
2
ST8VE LIV
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 4)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( .6)
( 5)
< 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
3610*
3515*
3715*
2722.
3581.
5773.
9008*
11625.
5952«
5604.
3957.
5026-
5341.
4984*
3658.
309?.
3101. '
4094* i
4658* i
3602* i
3720- i
4072» I
10489* 1
12981. <
15508* 1
6163*
14504* (
10471. (
5953. (
4369. (
6237. (
4907. (
3514* (
4621. (
3531» (
1781. (
3512* (
4360* (
5647*
RM
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 4)
( 6)
( 5)
[ 6)
: 6)
I 6)
; 5)
6)
6)
6)
5)
6)
6)
6)
5)
6)
6)
6)
5)
8UTS
2327.
2561.
2794.
2018.
2702.
3981.
6662.
4521.
4432.
3007.
2469.
1949.
3285.
2166.
1980.
1635-
2497.
2450.
1781.
2083.
2315.
5244.
8716.
13044.
15120.
4919.
11245.
5889.
2694.
3989.
4464.
2722.
2343.
2383.
1946.
756.
1213.
1663.
3442.
4
IDE
( (
( f.
( t
( £
( 6
( t
( 6
( E
( 6
( 6
(
( 5
( 6
( a
( 6
( 5
( 6
( 4
( 6
( 5
( 6
( 6
( 6
( 5
( 6
( 6
( 6
( 5
( 6
( 6
( 6
( 5
( 6
( 6
( 6
( 5
-------
H3USE 3 FALL-WINTER CO AVERAGE C9NCENTRATI9NS *UG/M3
VALUES IN ( ) ARE N3« oF 88SERVATI9NS IN PERI8D
MAX.: 6 PER 2HR/72 PL'R DAY
DATE
TIME
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/12/73
12/13/73
12/13/73
12/13/73
12/13/73
12/13/73
12/13/73
12/13/73
12/13/73
12/13/73
12/13/73
12/13/73
12/13/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
12/14/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POCO-2200
P200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
STATI8N
1
9VER STBVE
4936. ( 6)
4939. ( 6)
5260. ( 6)
5739. { 6)
10016* ( 6)
6063. ( 6)
5574. ( 5)
******
******
******
******
******
1A
1M FR9M ST9VE
3954. 1
3895. i
4310* i
4137. l
7705* l
4131. l
I 6)
( 6)
( 6)
I 6)
[ 6)
( 6)
3827. ( 5)
******
******
******
******
******
3
BD RM
3353* ( 6)
3483* ( 6)
3708* ( 6)
4643* ( 5)
7040* ( 6)
4606* ( 6)
3743* ( 4)
******
******
******
******
******
4
8 UTS IDE
1390. ( 6.)
1837, ( 6)
1936. ( 6)
4338. ( b)
3083. ( 6)
2833. ( 6)
2841. ( 4)
******
******
******
******
******
******
******
******
******
******
******
******
12514.
20903.
13655.
13079.
11763.
9616.
8764.
8514.
3031.
9187.
7164.
10249.
10521.
9541.
10930.
5977.
7832.
( 5)
( 6)
( 5)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 5)
( 5)
( 5)
( 5)
( 6)
( 4)
( 6}
( 5)
******
******
******
******
******
******
******
17212* i
18293. i
13058. i
12831. i
10547. i
7747. i
6833. i
6741* i
6315* i
7732* i
6045.
9802*
10263*
9449.
7482.
4099.
5246.
( 5)
( 6)
( 5)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 5)
( 5)
( 5)
( 5)
( 6)
( 6)
( 6)
( 5)
******
******
******
******
******
******
******
10986*
14005*
12020*
9941*
9939*
7937*
6959*
6867*
6539.
8180*
7539»
3176-
6679.
7540-
6343-
3853.
5246*
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 5)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
******
******
******
******
******
******
******
3752.
3099.
2884.
2856.
2018.
2239.
2432.
2657.
2239.
2773.
3717.
3546.
2586.
2737,
2094.
1513.
1850.
( 5)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( b)
( 6)
( 6)
( 6)
( 6)
( 6)
DAILY AVERAGE *
(AVG 6F 2HR VALUES)
8860-
7313-
6821'
2532.
- 260 -
-------
H9USE 3
VALUES
MAX.
DATE
12/15/73
12/15/73
12/15/73
12/15/73
12/15/73
12/13/73
12/15/73
12/15/73
12/15/73
12/15/73
12/15/73
12/15/73
DAILY AVE.
(AVG 8F
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
12/16/73
FALL-WINT
IN ( ) ARE
: 6 PER 2HR
TIME
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
RAGE =
2HR VALUES)
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
DAILY AVERAGE =
(AVG 8F
12/17/73
12/17/73
12/17/73
12/17/73
12/17/73
12/17/73
12/17/73
12/17/73
12/17/73
12/17/73
12/17/73
12/17/73
2HR VALUES)
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
ER C6 AVERAGE C8NCENTRATI8NS /UG/M3
N9. 9F 8BSERVATI9NS IN PERI8D
/72 PER DAY
STATI8N
1
IVER ST8VE
7112. ( 6)
6527. ( 6)
7020. ( 6)
7140. ( 5)
8166. ( 5)
6541. ( 6)
5173. ( 6)
4778. ( 5)
4866. ( 6)
5354. ( 6)
5446. ( 6)
D663. ( 5)
6149.
5762. ( 6)
5935. ( 6)
6076. ( 6)
5537. ( 5)
5939. ( 6)
6549. ( 6)
6867. ( 6)
5890. ( 4)
5897. ( 6)
9926. ( 6)
7152. ( 6)
5835. ( 5)
6446.
5715. ( 6)
5706. ( 6)
5881. ( 6)
5668. ( 5)
6227. ( 5)
******
******
******
******
******
******
******
1A
1M FR8M ST6VE
4187. ( 6)
3756. ( 6)
4310. ( 6)
4493. ( 5)
7215. ( 5)
4987. ( 6)
3931. ( 6)
411S. ( 5)
4195. ( 6)
4530. ( 6)
4470* ( 6)
4880. ( 5)
4589.
4674. ( 6)
4816* ( 6)
4926. ( 6)
4521. ( 5)
493?. ( 6)
5340* { 6)
5748. ( 6)
4756. ( 4)
5051. ( 6)
9200. ( 6)
5839. ( 5)
4615. ( 5)
5368.
4330. ( 6)
4413. ( 6)
4650. ( 6)
4586. ( 5)
4568. ( 4)
******
******
******
******
******
******
******
3
8D RM
4279- ( 6)
3725" ( 6)
4064« ( 6)
4717* ( 5)
7256» ( 6)
5205« ( 6)
3775* ( 6)
3?76' ( 5)
3463- ( 6)
3829» ( 6)
3432. ( 6)
3762* ( 5)
4232.
3898. ( 6)
4070» ( 6)
4211. ( 6)
3760- ( 5)
4176* ( 6)
4886* ( 6)
5234. ( 6)
4056. ( 5)
4174. ( 6)
7749. ( 6)
6305* ( 6)
4763« ( 5)
4773.
4452* ( 6)
4443* ( 6)
4527* ( 6)
4474* ( 5)
4894. ( 4)
******
******
******
******
******
******
******
4
OUTSIDE
1693. ( 6)
1663. < 6)
1816. ( 6)
1846. ( 6)
1756. ( 6)
1569. ( 6)
1663. ( 6)
1790. ( 6)
1968. ( 6)
1998. ( 6)
1937. ( 6)
1979. ( 6)
1806.
1940. ( 6)
2050. ( 6)
2285. ( 6)
1925. ( 6)
2241. ( 6)
2740. ( 6)
3178. ( 6)
22b2- ( 6)
2118. ( 6)
2398. ( 6)
2829. ( 6)
2006. ( 6)
2331.
2113. ( 6)
2042. ( 6)
2217. ( 6)
2197. ( 6)
2535. ( 5)
******
******
******
******
******
******
******
- 261 -
-------
h )USt 3 FALL-WINTER
VAuUFS IN ( ) ARE M8t
MAX.: 6 PER 2HR/72
C9 AVERAGE C9NCENTRATI8NS >UG/M3
9F 8BSERVATI8NS IN PERI8D
PER DAY
DATE
12/20/73
12/20/73
12/20/73
12/20/73
12/20/73
12/20/73
12/20/73
12/20/73
12/20/73
12/20/73
12/20/73
12/20/73
TIME
12/21/73
12/21/73
12/21/73
12/21/73
12/21/73
12/21/73
12/21/73
12/21/73
12/21/73
12/21/73
12/21/73
12/21/73
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
0400
0600
0800
1000
1200
1400
1600
1300
2000
2200
2400
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
?000-
?200-
0200
0400
0600
0800
1000
1200
1400
1600
1800
2000
2200
2400
CAILY AVERAGE =
(AVG 8F 2HR VALUES)
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
12/22/73
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
0400
0600
0800
1000
1200
1400
1600
1800
2000
2200
2400
DAILY AVERAGE =
(AVG OF 2HR VALUES)
1
9V£R
1A
STATION
3
STSVF 1M FR8M ST9VE 3D RM
******
******
*** ***
**
* ***
******
******
******
******
******
**
****
**
****
******
******
******
6333
6681
7780
9579
9481
7223
6596
6304
6538
10922
3105
5556
b230
11000
3219
5956
7677
6859
7390
7517
6480
7185
7261
5003
5623
5240
6535
7595
5554
6520
(
. (
. (
(
(
. (
(
(
. (
(
. (
(
. (
. (
. (
(
. (
. (
(
. (
. (
. (
* (
. (
(
. (
. (
(
.
-
5)
6)
6)
6)
5)
6)
6)
6)
2)
2)
6)
5)
6)
5)
6)
4)
6)
6)
6)
5)
4)
6)
6)
6)
6)
6)
6)
6)
262
******
******
5491
6010
7841
8695
8530
6095
5436
5206
5348
11014
7739
6749
6323
11979
8188
6101
73^2
7045
7433
7486
6480
7002
6468
5003
6429
5122
6217
7665
5605
6500
-
(
(
(
(
(
(
(
(
« (
« (
(
(
<> (
(
(
(
41
(
(
(
(
-» (
(
(
(
(
(
(
(
<»
5
6
6
6
5
6
6
6
2
2
6
5
6
4
6
5
6
6
6
5
4
6
6
5
6
5
5
5
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
******
******
******
******
*** ***
******
******
******
5674» (
6071* (
7383- (
9061. (
8603* (
6461. (
5955* (
560?. {
5806- (
9275* (
7129. (
4922* (
5112* (
9471. (
6059. (
4274* (
6556*
5212* (
5463* (
5746* (
4686* (
659Q. (
4881- (
3265* (
399?. (
3032- (
4887. (
6005. (
4418» (
4843.
4
9JTSIDE
«*
****
******
******
******
******
******
******
******
5)
6)
6)
6)
5)
6)
6)
6)
2)
2)
6)
5)
6)
5)
5)
5)
6)
6)
6)
5)
6)
6)
6)
5)
6)
6)
6)
5)
5088
5369
6468
7810
7175
3715
3362
3223
3609
3417
3lo3
2711
2532
1789
1694
1495
3157
1700
2045
2390
1598
1617
1739
1556
1777
2090
2708
3827
2325
2114
. (
. (
. (
(
. (
* (
. (
. {
. (
(
. (
. (
. (
. (
(
. (
.
* (
. (
(
(
. (
* (
. (
(
. (
. (
(
. (
5)
6)
6)
6)
5)
6)
6)
6)
2)
2)
b)
6)
6)
5)
6)
6)
6)
6)
6)
5*)
6)
6)
6')
6)
6)
6)
6)
5)
-------
H5USE 3 FALL-WINTEK C9 AVERAGE C9NCENTRATI <-jNS *UG/"13
VALUES IN ( ) ARE N9. 3F 9HSERVATI "3N3 IN PERI90
MAX.: 6 PER 2HR*72 PER DAY
DATE
12/23/73
12/23/73
12/33/73
12/23/73
15/23/73
12/23/73
12/23/73
12/23/73
12/23/73
12/23/73
12/23/73
12/23/73
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
'0400
'0600
0800
1000
1200
1400
1600
1800
2000
2200
2400
DAILY AVERAGE =
(AVG 8F 2HR VALUES)
12/24/73
12/24/73
12/24/73
12/24/73
12/24/73
12/24/73
12/24/73
12/24/73
12/24/73
12/24/73
12/24/73
12/24/73
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
'0400
'0600
'0800
1000
1200
1400
1600
1800
2000
2200
2400
DAILY AVERAGE =
(AVG 8F 2HR VALUES)
12/25/73
12/25/73
12/25/73
12/25/73
12/25/73
12/25/73
12/25/73
12/25/73
12/25/73
12/25/73
12/25/73
12/25/73
0000-
0200-
0400-
0600-
080C-
1000-
1200-
1400-
1600-
1800-
2000-
'0200
0400
0600
0800
1000
1200
1400
1600
1800
2000
2200
2400
STATI8N
1
8VER ST8VE
5920.
6900.
8598.
6282.
5560.
7421.
6201.
5915.
9146.
6690.
b325-
5893.
6738.
5296.
o676.
5702.
5663.
5947.
6307.
5394.
5694.
6972. i
9323. i
3547. i
11680. i
o983«
9745. (
7716. (
7130. (
6341. (
6815. (
6714. (
7671. (
7292. (
7649. (
8263. (
8435. (
8U64. (
( 6)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
( 5)
( 5)
( 6)
( 6)
( 3)
( 1)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
: 6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6.)
6)
1A
1M FR8M
6190.
6960.
8778.
5676.
5710.
7601.
6291.
6055.
9217.
6750.
7156.
5828.
6851
5650.
5706.
5643.
5771.
6005.
6191-
5046-
5659.
7420-
9836.
9749.
14124.
7233.
9568.
7716.
7219.
6250.
7639.
6831*
7554.
7346.
7766«
8292.
8464.
8054.
srevE
( 6)
( 6)
( 6)
( 5)
( 6)
( 5)
( 6)
( 4)
( 5)
( 6)
( 6)
( 2)
( 1)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
< *>)
( 4)
( 6)
( 6)
( 5) 1
( 6)
< 6)
( 6)
{ 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
3
BD
4751. 1
5731. 1
7909* (
4274* 1
433?. 1
7229« <
4793* (
4379. (
8481. (
574Q. (
4870* (
3885. (
3531.
3883. (
3881. (
3847. (
3753. (
4182* (
4600* (
3744" (
3992* (
6307. (
7551* (
8187. (
0804- (
5395-
777?- (
5450" (
4923* (
3989. (
5520. (
5094* (
5905* (
5580* (
3971. (
6585. (
6693* (
6284. (
4
RM
[ 6)
: 6)
: 6)
; 5)
: 6)
: 6)
: 6)
: 5)
6)
6)
6)
2)
1 )
6)
6)
5)
6)
6)
6)
5)
6)
6)
6)
5)
6)
6)
6)
5)
6)
6)
6)
5)
6)
6)
6)
5)
6JTSI
2414.
3454.
5602.
3044.
2534.
2256.
2306.
2274.
3106.
Jlb6.
2345.
2110.
2883.
1764.
1821.
1845.
2165.
2504.
2343.
2414.
2147,
2459.
3298.
2980.
2916.
2388.
2621.
2624,
2774. i
2169. <
2193. i
2681. i
2667. l
2321. i
2998- l
3435. 1
3224. (
3168. <
UE
( 6
( 6
( 6
( b
( 6
( 6
( 6
( 5
( 6
( b
( 6
( ?
( 1
( 6
( 6
( 5
( 6
( 6,
( 6;
( 5;
( 6!
( 6]
( 6)
( 5)
( 6)
( 6)
( 6)
t 5)
( 6)
( 6)
t 6)
( 5)
[ 6)
: 6)
: 6)
: 5)
DAILY AVERAGE =
(AVG 8F ?HR VALUES)
7653.
7725.
5814*
2739.
- 263 -
-------
3
VALUES
MAX
DATE
12/26/73
12/26/73
12/26/73
12/26/73
12/26/73
12/26/73
12/26/73
12/26/73
12/26/73
12/26/73
12/26/73
12/26/73
FALL-WINTER
IN ( ) A^?E No.
: 6 PER 2HR/7:
TIME
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
0400
0600
OSOO
1000
1200
1400
1600
1800
2000
2200
2400
Ca AVERAGE CONCENTRATIONS /UG/M3
bF SbSERVATIftNS IN PFRI8D
PER DAY
STATI8N
1 1A 3
8v'CR ST8VE 1M FR9M ST9VE 'BO RM
7912. (
7623. (
7912. (
-S582. (
9686* (
10189. (
11075. (
10906. {
11466. (
12474. (
******
******
6)
6)
6)
6)
6)
6)
6)
6)
6)
^ )
7912. (
7739. (
R0?8. {
R72C). (
9803 (
10248- (
11163- (
10844. (
11319. (
1256?. (
******
******
6)
6)
6)
5)
6)
6)
6)
5 )
6)
*f )
6119- (
606l» (
6235- (
7095- (
7978- (
S540- (
9485* (
9184* (
9552« (
10399. (
******
**#**#
6)
6)
6)
5)
6)
6)
6)
5)
6)
4)
4
9UTSIDE
3081. (
3284. (
3804. (
5826. (
3769. (
5332. (
5511. (
5527. (
7374. (
10752. (
6)
6 )
6)
5)
-6]
6]
6)
5;
6;
4;
******
*****
»
12/27/73
12/27/73
12/27/73
12/27/73
12/27/73
12/27/73
12/27/73
12/27/73
12/27/73
12/27/73
12/27/73
12/27/73
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1300
1800-2000
2000-2200
2200-2400
11834. (
8684. (
7830. (
3287. (
9317. (
6962. (
5431. (
5179. (
4934. (
7074. (
3392* (
******
3)
6)
6)
6)
6)
6)
6)
6)
6)
6)
4)
11598. (
8566. (
7860- (
8339* (
9376. (
6835- (
5549. (
4978. (
4846- (
73 3C*« (
R980« (
******
3)
6)
6)
5)
6)
5)
6)
5)
6)
6)
4 )
9479- (
6623« (
6005* (
6583. (
7639- (
5254- (
40H- (
3212- (
3492» (
6044* (
7037« (
******
3)
6)
6)
5)
6)
6)
6)
5)
6)
6 )
4)
1943. (
2473. (
3945. (
4681. (
5137. (
3253. (
3164. (
2682. (
2226. (
3012. (
3726. (
******
3)
6)
6)
5)
6]
6)
6!
5 !
6;
6;
4
- 264 -
-------
Appendix
N02, NO, and CO data for BMUM Ho. 4 - Fall/Winter
- 265 -
-------
HdUSE -4 FALL-WINTER N92 AVERAGE CONCENTRATIONS ,
VALUES IN ( ) ARE NO. =)F flBSERVATI^NS IN
MAX.: 6 PER 2HR*72 PER DAY
DATE
TIME
1/29/74
1/29/74
1/29/74
1/29/74
1/29/74
1/29/74
1/29/74
1/29/74
1/29/74
1/29/74
1/29/74
1/29/74
1/30/74
1/30/74
1/30/74
1/30/74
1/30/74
1/30/74
1/30/74
1/30/74
1/30/74
1/30/74
1/30/74
1/30/74
1/31/74
1/31/74
1/31/74
1/31/74
1/31/74
1/31/74
l/Jl/74
1/31/74
1/31/74
1/31/74
1/31/74
1/31/74
.0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
P200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
3000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
STATI8N
1
VER ST8VE 1
* *****
******
******
******
******
******
36.4 (
75.4 (
t>3«5 (
110.5 (
67.0 (
40.2 (
40.2 (
33.5 (
35»1 (
46.9 (
40.2 (
190.9 (
******
235.1 (
649.7 (
130.9 (
199.3 (
2b4.5 (
234.4 (
115.6 (
108.8 (
147.4 (
117.2 (
S3. 7 (
174.1 (
113.9 (
5S7.7 (
207.6 (
147. t (
87.1 (
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
4)
5)
6)
6)
6)
6}
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
1A
M FR9M STftVE
***** *
** ***#
******
******
******
******
74.4 (
40.2 (
40.2 (
33.5 (
139.0 (
142.3 (
70.3
7S.7
6K.7
118.9
113.9
P77.3
******
120.6 (
453.8 (
154.0 (
129.0 (
103.8 (
103.8 (
95.5 (
80.4 (
97.1
85.4
70.3
97.1
75.3
301.4
9*. 8
75.3
60.3
5)
6)
6)
6)
6 )
M
6)
6)
6)
6)
6)
5)
5)
6)
6)
6)
6)
6}
6)
6)
6)
6)
6)
6)
6)
6 )
6)
6)
6)
2
LlVx RM
* *****
******
******
******
* *****
******
72.4 (
30.1 (
33.5 (
56.9 (
78.7 (
100.5 (
70.3 (
100.5 (
67.0 (
65.3 (
83.7 (
77.8 (
* »* ***
166. £ (
P06.0 (
130.6 (
125.6 (
123.9 (
102.2 (
70.3 (
70.3 (
107.2 (
92.1 (
60.3 (
82.1 (
82.0 (
82.1 (
128.9 (
78.7 (
40.2 (
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
4)
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
4
9UTSIOE
******
»* * ***
******
** »***
******
******
120.6 (
120.6 (
219.4 (
232.7 (
162.4 (
55.2 (
51»9 (
56.9 (
48.5 (
70.3 (
67.0 (
145.7 (
******
56«3 (
Ib9»l (
130.6 (
144.0 (
110-5 (
87.1 (
80» 4 <
82.1 (
93.8 {
83.7 (
80.4 (
92.1 (
56.9 (
67.0 (
80.4 (
26.8 (
10-0 (
5)
b)
6)
6)
6 )
6)
6)
6)
6)
6)
6)
4)
b)
5}
6)
6)
6)
6)
6)
6)
6)
6)
0)
6)
6)
6)
6)
6)
3)
DAILY AVERAGE =
(AVG BF 2HR VALUES)
177.1
103.4
83.0
70*1
- 266 -
-------
H-JUSE -4
VALUES
MAX.
DATE
Z/
^/
p/
p./
1/74
1/74
1/74
1/74
1/74
1/74
1/74
1/74
1/74
1/74
1/74
1/74
FALL-WINTER
( ) ART "^«
6 PER 2HR,72
TIME
N82 AVERAGE
PER DAY
ooco
0200
0400
0600
0800
1000
1200
1400
1600
1800
OPCO
0400
0600
0800
1000
-1200
1400
1600
1SCO
2000
2200
P200-2400
DAILY AVERAGE *
(AVG OF 2-(R VALUES)
IN PERIS)
STATI9N
UG/M3
1
QVtR ST8VE 1
72.0
63.6
58.6
97.1
125.6
204.3
155.7
207.7
^14.6
2f9.5
23L1
l&b.a
( 6)
( 6)
( 6)
( bi
( 6)
( 3)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
1A
M FR9M
43.5
43.5
4^.5
60«3
73.7
180.8
82.1
93.8
346.6
107.2
117.?
75«4
2
4
ST^VE LlV/ RM
( 6)
( 6)
( 6)
( 6)
( 6)
( P)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
31.8 (
31.8 (
28.4 (
36.8 (
50.2 (
63.6 (
46.9 (
40.2 (
90.4 (
73.7 (
88.8 {
56.9 (
6)
6 )
6)
6)
6)
3 )
M
6)
6)
6)
6)
6)
9JT5I
12. b
lc«0
12*0
2o« 1
20»1
33.1
lb.0
14.0
26.8
26.8
43.5
33.5
UE
( 4)
( 5)
( 5)
( 6)
( 6)
( 2)
( 6)
( 5)
( 6)
( 6)
( 6)
( 6)
187.1
106«1
53.3
23.0
2/
2/
2/
£/
;>/
V
2/
?/
3/
?/
> /
v
2/74
2/74
2/74
2/74
2/74
2/74
2/74
2/74
2/74
2/74
2/74
?/74
0000-0200
0200-0400
0400-0600
0600-0300
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
?000-P200
2200-2400
142.4
125.6
117.2
122.3
239. 5
150.7
582.7
185.9
Io9.1
177.5
160.8
184.2
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
60*
^=5.
5=5.
56.
97.
60.
1 25«
1?3»
95.
60«
6?«
87.
3
2
2
9
1
3
O
Q
5
3
6
1
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
41.9 1
48.5 1
36.8 1
35.1 1
45.2 I
53.6 1
50. P 1
63.6 1
67.0 (
88.8 1
65.3 i
46.9 i
: 6)
: 6)
; 6)
: 6 )
: 6)
: 6>
; 6)
; 6)
: 6)
[ 6)
: M
[ 6)
2u« 1
loO
21- S
2J.1
21.8
la* 4
26. fe
33.5
38.5
36.3
25.1
23« 4
< 6)
( 6)
< 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( h)
( 6)
( 6)
( fa)
DAILY AVERAGE
VALUES)
196.5
78.4
53.6
>/
?/
p/
2/
2/
?/
P/
2/
P/
2/
?/
2/
3/74
3/74
i/74
j/74
3/74
3/74
3/74
3/74
3/74
3/74
3/74
j/74
3000-0200
0200-0400
3400-0600
0600-0300
J800-1000
1000-1200
12CO-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
127.3 ( 6)
130.6 ( 6)
144.0 ( 6)
118.9 ( 6)
127.3 ( 6)
204.3 ( 6)
164.1 ( 6)
236.1 ( 6)
******
******
******
******
58.6 ( 6)
55»2 ( 6)
51.9 ( 6)
=0.2 ( 6)
51.9 ( 6)
100«5 ( 6)
67.0 ( 6)
73.7 ( 6)
******
»»*««*
* *****
******
41.8 ( 6)
41. S < 6)
43.5 ( 6)
30.1 ( 6)
28.4 ( 6)
58.6 ( 6)
75.4 ( 6)
67.3 ( 6)
»«»**#
******
******
******
20-1 ( 6)
2U«1 ( 6)
18.4 ( 6)
20«1 ( 6)
21.8 ( 6 )
21.8 ( 6 )
20.1 ( 6)
30«1 ( 6)
******
******
******
******
- 267 -
-------
HJUSE -4 FALL-WINTER
VALUES IN ( ) ARE N9.
MAX.: 6 PER 2HR/72
N82 AVERAG"
If 9BSE9 VAT I 'JNS
PER DAY
IN PFRIQJ
DATE
TIME
2/
2/
?/
2/
2/
2/
?/
2/
2/
2/
/
2/
-=>./
2/
?/
2/
V
?/
V
2/
?/
2/
f/
2/
?/
2/
2/
?/
P/
-3/
2/
.?/
2/
2/
2/
2/
4/74
4/74
4/74
4/74
4/74
4/74
4/74
4/74
4/74
4/74
4/74
4/74
5/74
5/74
5/74
5/74
5/74
5/74
5/74
5/74
5/74
5/74
5/74
000-2200
2200-2400
STATIBN
1 1A 2
OVER STOVE 1M FRBM ST9VE LlV RM
9UTSIDE
»*
* *
**
* »
*»
*»
*»
*»
562*
197.
200*
182.
127.
115.
105.
?ol «
187.
164.
* »
**
281.
135»
Io9»
,,9.
117.
48.
33.
1 44.
144.
120.
*»
296.
1239.
3Ul.
274.
254.
« »»#
# #« #
»*-K *
»*«*
» #*»
»« *»
* »* *
*»**
6 (
6 (
3 (
5 (
3
6
5
2
6
1 (
ft* *
*»»#
3 (
9 (
2 (
11
2 (
7 (
7 (
0 (
3 (
5 (
* »««
4 (
L> (
4 (
b (
5 (
3)
6)
6)
6)
6)
6)
6)
6)
6)
3)
3)
6)
6)
'"
6)
6 )
6 )
6 )
6)
1 )
6)
6)
6)
6)
6)
»
*
*
*
*
«
*
»
r 64
93
80
77
56
46
45
87
8?
80
«
»
224
103
8?
56
55
48
97
87
60
«
236
765
?51
18?
170
»*««*
» « * * »
«*«« *
» »»»»
* »»» »
« # »# »
* « » »
« « ** »
.6 (
8 (
4 (
0 (
.9 (
.9 (
.2 (
.1 (
.7 (
4 (
» # #* #
** « « ft
4 (
.5 (
0 (
'"
.9 (
2 (
5 (
1 (
1 (
3 (
»*»»»
1 (
.3 (
.? (
5 (
.8 (
3)
6 )
6)
6)
6)
6)
6)
6)
6)
3)
3)
ft )
6)
6)
6)
6)
6)
6)
1 )
ft )
6)
ft)
6)
6)
ft
*
«
*
«
»
*
»
144
77
67
58
48
40
25
48
50
67
ft
»
83
88
51
46
36
30
36
50
75
SO
«
160
649
195
140
127
»» »»»
»« *»»
*« **«
»# »* »
»««* »
«« »« *
»» ##»
** »» »
.0 (
.0 (
.0 (
.6 (
.6 (
.2 (
.1 (
.6 (
.2 (
.0 (
«*#*#
»* » » *
.7 (
.7 (
.3 (
.9 (
.3 (
.1 (
.3 (
.2 (
4 (
.4 (
» * »# »
.7 (
.7 (
.9 (
.7 (
.3 (
1 )
6)
6)
6)
6)
6)
6)
6)
6)
3)
3)
6)
6)
"
6)
6)
6)
6)
6)
1 )
6)
6)
6)
6)
6)
*«
**
*»
«»
**
#*
**
**
53.
48.
31 «
23.
20.
18.
21.
28.
20.
13.
**
**
20.
25.
20.
""
26.
23.
36.
61.
62-
4u«
« *
48«
72.
86.
63.
46.
»#**
« ***
»#**
»«**
«**»
****
* ft * *
»***
6 (
ft (
8 (
4 (
1 (
4 (
8 (
4 (
1 (
4 (
«»»*
***»
1 (
1 (
1 (
"
(; (
4 (
?> (
^ (
(j (
2 (
*»**
5 (
0 (
4 (
6 (
9 (
3)
6)
6)
"'
6)
6)
6)
6)
b)
3)
3)
b )
b)
6)
6)
0)
0 )
M
fa)
1)
6)
6)
b)
6)
6)
- 268 -
-------
H3USE -4
VALUES
MAX.
DATE
I/ 7/74
2/ 7/74
2/ 7/74
2/ 7/74
2/ 7/74
V 7/74
?./ 7/74
2/ 7/74
2/ 7/74
2/ 7/74
2/ 7/74
2/ 7/74
FALL-WINTER
IM ( ) ARE NC-t
: 6 PER 2HR/7
TIME
3000-
0200-
0400-
0600-
080O
1000-
1200-
1400-
1600-
1800«
2200-
0200
0400
0600
0800
1000
1200
1400
1600
1800
2000
2200
2400
DAILY AVERAGE =
(AVo 8F ?HR VALUES)
?/ o/74
2/ 3/74
2/ 8/74
,?/ 8/74
2/ 8/74
?./ 8/74
?/ d/74
2/ 8/74
2/ 8/74
?./ 8/74
2/ 8/74
?./ 8/74
0000-
D2CO-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
?000-
P2GO-
0200
0400
0600
OSOO
1000
1200
1400
1600
1*00
2000
2200
2400
P/ 9/74
2/ 9/74
P/ 9/74
2/ 9/74
2/ 9/74
P/ 0/74
?./ 9/74
P/ -V74
2/ 9/74
2/ 9/74
iiOOO-
02GO-
0400-
^600-
^800-
1000-
1200-
1400-
1600-
1800-
'?000-
P200-
0?00
0400
0600
OSOO
1000
1200
1400
1600
1800
2000
2200
2400
DAILY AVERAGE =
(AVG RF LHIR VALUES)
N82
UF 8BSE3
PER DAY
1
AVERAGE C8NicENTR«ji*iNs *
VATI^NS IN PERI8D
STATI8N
1A 2
f)v£R STSVE 1
192.5 (
Ib7.4 (
144.0 (
150.7 (
176.8 {
334.9 (
3 3 3 * 3 {
214.3 (
5o5«9 (
247.8 (
216. 0 (
212.7 {
246.4
172.5 (
132.3 (
134.0 (
******
# *****
******
1 36.9 (
236.1 (
750.2 (
234.4 (
244.5 (
214.3 (
170.8 (
139.0 (
117.2 (
107.2 (
?63»3 (
222.7 (
164.1 (
2ul «0 (
209.3 (
239.4 (
Ib9«l (
338.2 (
194.3
6)
6)
6)
t
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
3)
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
5)
6)
6)
6)
6)
6)
6)
6)
M F39M ST8VE
115.5 (
122.2 (
92.1 (
"7.3 (
138.7 (
288.0 (
214.3 (
170.8 (
348.3 (
164.1 (
149.0 (
147.3 (
173.2
105.5 (
90.4 (
90.4 (
******
******
*** ***
116.6 (
18?. 5 (
465.5 <
18?. 5 (
175.3 (
14?. 3 (
108.8 (
^3. P (
88.7 (
75.3 (
17?. 8 (
150.7 (
15?. 4 (
14?. 3 (
184.2 (
167.4 {
103.8 (
192.6 (
136-1
6)
6
6
6
5
6
6
6)
6)
6)
6)
6)
6)
6)
3)
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
5)
6)
6)
6)
6)
6)
6)
M
UGA13
4
LIV/ RM
80.4 (
70.3 (
70.3 (
88.8 (
103. S (
234.4 (
165.8 (
128.9 (
272. 9 (
115. (5 (
190.9 (
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
100.5 ("-.6)
135.2
75.3 (
68.6 (
67.0 (
******
»** *» »
******
90.4 (
105.5 (
304.8 (
130.5 (
113.9 (
93.8 (
72.0 (
7J.3 (
62.0 (
63.6 (
96.5 (
85.4 (
72.0 (
93.8 (
145.7 (
120.6 (
77.0 (
118.9 (
89.8
'-
6)
6)
3)
8UTSIDE
30.1 (
41.9 (
40.2 (
50. 2 (
53.6 (
36. a (
35.2 (
46.5 (
46.? (
67.0 (
25.1 (
33-5 (
42. 2
. ,55.3 (
- 5fi.6 (
J5-6; 9 (
6)
6)
6)
6)
6)
6)
6)
6)
b)
6)
6)
6)
6)
6)
3)
*******
.** * ** *
!**»***
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
5)
6)
6)
6)
6)
6)
6)
6)
."*H>«~2 (
5«t6 (
70.^3. I
?o."r-<
6'2 0 (
6t^3 C
60.3 (
60«3 (
53.6 (
58.6 (
3&»2 (
17.6 (
5)
6)
6)
6)
6)
S)
6)
6)
6)
(> )
5)
4)
**********
10.0 (
22«6 (
4b»5 (
33.5 (
18.4 (
38.3
'3)
4)
b)
6)
b)
- 269 -
-------
-4 FALL-MNTER
VALUES IN ( ) ARE N9.
MAX.: 6 PER 2HR/72
N92 AVERAGE
3F 86SERVAT I P»N3
PER DAY
UG/M3
DATE
TIME
2/10/74
2/10/74
2/10/74
2/10/74
2/10/74
2/10/74
2/10/74
?/10/74
2/10/74
2/10/74
2/10/74
2/10/74
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
2400-1600
1600-1800
1800-2000
2000-2200
2200-2400
DAILY AVERAGE =
(AVG OF
2/11/74
2/11/74
2/11/74
2/11/74
2/11/74
2/11/74
2/11/74
2/11/74
Vll/74
2/11/74
2/11/74
2/11/74
2/13/74
2/13/74
2/13/74
2/13/74
2/13/74
2/13/74
2/13/74
2/13/74
2/13/74
2/13/74
2/13/74
2/13/74
2MR VALUES)
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1SCO
1800-2000
2000-2200
P200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
P200-2400
IN PERI9D
STATI9N
1
VER ST6VE
207.6 ( 6)
169.1 ( 6)
122.? ( 6)
88.7 ( 6)
177.5 ( 6)
192.6 ( 6)
227.7 ( 6)
216. D ( 6)
286.3 ( 6)
207.6 ( 6)
2H. 3 ( 6)
155.8 ( 6}
188.8
132.3 ( 6)
137.3 ( 6)
125.6 ( 6)
182.5 ( 6)
325.5 ( 5)
487.3 ( 6)
^23. 9 ( 6)
194.3 ( 3)
*«***«
******
******
«*»***
* *****
***** *
******
******
******
******
******
268.8 ( 4)
J46.6 ( 6)
227.7 ( 6)
236.1 ( 6)
219.4 ( 6)
JA
1M FRBM ST9VE
150.7 ( 6)
8!?. 8 ( 6)
73.7 ( 6)
63.6 ( 6)
107.? ( 6)
130.6 ( 6)
142-3 ( 6)
155.7 ( 6)
219.3 ( 6)
132.3 ( 6)
117.? ( 6)
90.4 ( 6)
1?2«7
80.4 ( 6)
73.7 ( 6)
85.4 ( 6 )
123.9 ( 6)
2?6«0 ( 6)
321.5 ( 6)
^66.0 ( 6)
167.5 ( 3)
******
******
******
******
******
******
»** ***
******
******
******
******
26H.8 ( 4)
Z' 8 8 0 ( 6 )
180.? ( 6)
202.6 ( 6)
364.1 { 6)
2
LIV/ RM
88. 3 ( 6)
68.6 ( M
56.9 ( 6)
48.5 ( 6)
73.6 ( 6)
85.4 ( 6)
88.7 ( 6)
107.2 ( 6)
142.4 ( 6)
92.1 ( 6)
87.1 ( 6)
63.6 ( 6)
83.6
60.3 ( 6)
77.0 ( 6)
62.0 ( 6)
87.1 ( 6)
160.8 ( 6)
254.5 ( 6)
370.1 ( 6)
123.9 ( 3)
******
* *****
******
******
******
******
******
******
******
»* *»* *
******
120.6 ( 4)
189.2 ( 6)
112.2 ( 6)
134.0 ( 6)
120.6 ( 6)
4
8JTSIOE
20.1 < 6)
51-9 ( 6)
46.9 ( 6)
46.9 ( 6)
4U.P ( 6)
36-8 ( 6)
3U«1 ( 6)
16«7 ( 6)
2S.4 ( 6)
51»9 ( 6}
92»1 ( 6)
67«0 ( t>>
44.1
48.5 ( b)
7 b » 3 ( 6 )
67.0 ( 6)
7b«3 ( 6)
97.1 ( 6)
6b.3 ( 6)
30»1 ( 6)
15.0 ( 2)
** ****
******
******
** ****
******
******
******
******
** ****
******
******
135.7 ( 4)
154.1 ( b)
154.1 ( 6)
117.2 ( 6)
100.5 ( 6)
- 270 -
-------
H3USF -4 FALL-WINTLR
VALUES I\l ( ) AKE NB«
MAX.: 6 PER 2HR/72
AVERAGE
JF QnSE^VATI^MS
PER DAY
CRNCENTRATIJIMS , UG/MS
IN
DATE
DAILY
(AVu
TIMF
2/ 14/74
f/14/74
"V14/74
2/14/74
j/}4/74
2/14/74
3/14/74
2/lt/74
2/14/74
2/1 <+/74
P/14/74
0000-0200
0200-0400
0400-0£00
0600-OSOO
0800-1000
1000-1200
1200-1400
1 400- 1600
1600-U.CO
1800-2000
^000-P?00
-2400
BF 2HR VALUES)
STATION
1 1A 3
SvtR STRVE 1M F78H ST^VE LIV/ RM
VJ4.3
191.6
135.5
9JTSI3E
1 32»b
1*4.2
170.3
329.9
?05« 9
d36»^
1">5 9
^38. 9
bjB.9
239.7
^22.7
169.1
( 6)
( 6)
( ft)
( ft)
( 6)
( ft )
( 6)
( ft)
( ft)
( b)
( ft)
( 6)
1P5.6
1 1 3 q
9^.8
179. ?
149.1
IH^.b
117.2
619.6
41?. 6
1*3.9
110.5
^8.8
( 6)
( 6)
( ft)
( ft)
( 6)
( ft)
( ft)
( ft)
( ft)
( 6)
( ft)
( 6)
92.1
87.1
77.0
108.9
93. S
103. B
95.4
333.2
344.9
120.6
95.4
73.7
( ft)
( 6)
( ft)
( ft)
( 6)
( ft)
( ft)
( 6)
( 6)
( 6)
( 6)
( 6)
90.4
82.0
36. S
36.8
24.1
120
13-4
120
la. 4
20.1
2u« 1
20« 1
( b)
( 6)
( ft)
( 6)
( b)
( 3)
( 3)
( 0)
( ft)
( 3)
( b)
( 6)
32.2
- 271 -
-------
H3USE -4 FALL-WINTER
VALUES IN ( ) ARE N8»
MAX.: 6 PER 2HR*72
N8 AVERAGE
9F 8BSERVATI8NS
PER DAY
DATE
TIME
1/29/74
1/29/74
1/29/74
1/29/74
1/29/74
1/29/74
1/29/74
1/29/74
1/29/74
1/29/74
1/29/74
1/29/74
1/30/74
1/30/74
1/30/74
1/30/74
1/30/74
1/30/74
1/30/74
1/30/74
1/30/74
1/30/74
1/30/74
1/30/74
1/31/74
1/31/74
1/31/74
1/31/74
1/31/74
1/31/74
1/31/74
1/31/74
1/31/74
1/31/74
1/31/74
1/31/74
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
C8NCENTRATI8NS
IN PERI8D
STATI8N
UG/M3
1 1A
8VER ST8VE 1M FR8M STl?VE
****** ******
****** ******
****** ******
****** ******
****** ******
******
165
125
130
159
180
282
263
219
136
225
293
609
2 (
.6 (
.0 (
.5 (
2 (
8 (
.2 (
5 (
.8 (
0 (
8 (
4 (
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
5)
******
491
1053
511
478
480
433
291
219
270
245
184
280
166
917
437
288
130
4 (
9 (
1 (
3 (
5 (
6 (
6 (
5 (
.8 (
7 (
6 (
7 (
.0 (
4 (
.9 (
3 (
0 (
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
******
183.
120.
105.
136.
340*
478.
340.
265.
227.
340.
389.
633.
5 (
1 (
9 (
5 (
8 (
3 (
7 (
4 (
? (
1 (
9 (
0 (
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
5)
******
454.
873.
416.
454.
445*
398.
283.
201.
235.
231*
172.
?32«
146.
655.
393.
21S.
90«
7 (
7 (
1 (
3 (
6 (
6 (
9 (
0 (
9 (
5 (
6 (
6 (
3 (
3 (
1 (
4 (
6 (
5)
6}
6}
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
2
LIV/ RM
******
******
******
******
******
******
101.6 (
*******
*******
*******
144.1 (
291.6 (
264.3 (
221.7 (
187.9 (
232.6 (
297.0 (
370.9 (
******
302.7 (
350.6 (
345.1 (
255.5 (
192.2 (
145.3 (
156.2 (
155.1 (
168.2 (
185.7 (
172.6 (
158.4 (
102.6 (
167.1 (
195.5 (
123.4 {
66.6 (
4
8UTSIDE
******
******
******
******
******
******
4)
5)
6)
6)
6)
6)
6)
6)
5)
173
243
512
560
366
116
53
65
65
136
146
96
0
5
2
2
9
3
5
5
5
5
3
6
(
(
(
(
(
(
(
(
{
(
(
(
5)
6)
6)
6)
6)
6)
6)
5)
6)
6)
6)
4)
******
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
110
36
32
54
22
23
16
17
38
69
100
51
23
21
18
10
15
1
0
8
6
9
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
(
(
(
(
(
(
(6
(
(
(
(
{
(
(
(
{
(
5)
6)
6)
6)
6)
6 )
)
6)
6)
6)
6)
6)
6.)
6 )
6 )
6 )
6 )
DAILY AVERAGE =
(AVG 8F 2HR VALUES)
322*2
271.7
149.7
33.0
- 272 -
-------
HtfUSL -4 FALL-WINTER
VALUES IN ( ) ARE Ny.
MAX.: 6 PER 2HR,72
N8 AVERAGE
'JF OBSERVATIONS
PER DAY
DATE
2/
2/
1/74
1/74
1/74
1/74
1/74
1/74
1/74
1/74
1/74
1/74
1/74
1/74
TIME
0000-
0200-
0400-
0600-
080O
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0?00
0400
0600
OSOO
1000
1200
1400
1600
1800
2000
2200
2400
DAILY AVERAGE =
(AVG 8F 2HR VALUES)
CONCENTRATIONS
IN PERIQD
STATI8N
UG/M3
1
1A 2 4
VER ST8VE 1
61-
52.
52.
131.
151 «
231.
170-
310.
779.
539.
391.
299.
1
4
4
0
8
5
4
2
8
5
0
2
( 6)
( 6)
( 6)
( 6)
( 6)
( 3)
( 6)
< 6)
( 6)
( 6)
( 6)
( 6)
M FR9M
37.
36.
40*
89.
128.
114.
115.
178.
723.
4^2.
344.
242.
1
0
4
5
9
6
7
0
0
5
0
4
ST8VE
( 6)
( 6)
( 6)
( 6)
( 6)
( 2)
( 6)
( 6>
( 6)
( 6)
( 6)
( 6)
LIV
30
25
26
55
67
89
73
71
140
182
205
168
RM
6
. 1
.2
.7
.7
« 5
. 1
6)
6)
6)
6)
6)
3)
6)
.0 ( 6)
.9(6)
.4(6)
.3 ( 6)
.2 ( 6)
9UTS
IQ.O
12.0
7.0
10.0
13-0
8.8
12*0
16.4
19-7
14.2
9.8
7.9
IDE
(
(
(
(
(
(
(
(
(
(
6 )
6 )
6 )
6 )
6 )
3)
6)
6)
6)
6)
6)
6)
264.2
94.6
12. 0
2/
2/
2/
2/
2/
2/
2/
2/
2/
2/
2/
2/
2/74
2/74
?/74
P/74
2/74
2/74
2/74
2/74
?/74
2/74
2/74
2/74
0000-0200
0200-0400
0400-0600
0600-OSOO
0800-1000
1000-1200
1200-ltOO
1400-1600
1600-1300
1800-2000
2000-2200
2200-2400
229
190
174
163
238
222
491
t06
370
326
250
261
.3 (
0 (
.7 (
.8 (
3 (
.8 (
.4 (
3 (
2 (
5 (
1 (
0 (
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
168.2
136.5
123.4
114.6
222.8
175.8
290.5
407.3
326.5
269.7
202.0
221.7
( 6)
( 6)
( 6)
( M
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
122.3 (
97.2 (
85.2 (
77.5 (
105.9 (
114.7 (
115.7 (
206.4 (
193.3 (
171.5 (
123.4 (
111.3 (
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
7.7
6.6
6.6
6.6
6.6
6.6
9-S
13.1
10.9
8«8
6«6
6*6
( 6)
( 4)
( 2)
( 2)
( 2)
( 3)
( 6)
( 6)
( 6)
( 6)
( 4)
( 2)
DAILY AVERAGE =
(AVG 9F 2HR VALUES)
221.6
127.0
8*0
2/
2/
2/
2/
2/
2/
2/
2/
2/
2/
2/
2/
3/74
3/74
3/74
3/74
3/74
3/74
3/74
3/74
3/74
3/74
3/74
3/74
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1300
1800-2000
2000-2200
2200-2400
196.6 ( 6)
166.0 ( 6)
Io7.3 ( 6)
145.3 ( 6)
144.2 ( 6)
221.7 ( 6)
227.1 ( 6)
328.7 ( 6)
#»»»**
******
*»**»»
******
150.7 ( 6)
110.3 ( 6)
92.8 ( 6)
90.6 ( 6)
88.4 ( 6)
166.0 ( 6)
173.6 ( 6)
230.4 ( 6)
******
******
******
******
98.3 ( 6)
72.0 ( 6)
65.5 ( 6)
60.1 ( 6)
57.9 ( 6)
92.8 ( 6)
126.7 ( 6)
125.6 ( 6)
*** ***
******
******
******
6«6 ( 1)
6.6 ( 1)
6.6 ( 5)
6*6 < 6)
10. 9 ( 6)
13-1 ( 6)
14.2 ( 6)
17.5 ( 6)
******
******
******
******
- 273 -
-------
H9USE -4 FAui_-WlNTER
VALUES IN ( ) ARE NQ.
MAX.: 6 PER 2HR.,72
N8 AVERAGE
9F 8BSERVATIPNS
PER DAY
CONCENTRATI-3MS
IN PERI8D
UG/M3
STATI8N
DATE
TIME
2/
2/
2/
2/
?./
2/
2/
2/
?/
2/
2/
2/
?./
2/
2/
2/
?./
2/
2/
?J
^/
?./
2/
2/
2/
2/
2/
2/
?/
2/
2/
2/
2/
2/
2/
2/
4/74
4/74
4/74
4/74
4/74
4/74
4/74
4/74
4/74
4/74
4/74
4/74
5/74
5/74
5/74
5/74
5/74
5/74
5/74
5/74
5/74
5/74
5/74
5/74
6/74
6/74
6/74
6/74
6/74
6/74
6/74
6/74
6/74
6/74
6/74
6/74
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
1
9VER ST8VE 3
******
******
******
******
******
******
******
******
672.7 ( 3)
423.7 ( 6)
334.2 ( 6)
271*9 ( 6)
180.2 ( 6)
143.1 ( 6)
122.3 ( 6)
245.7 ( 6)
204.2 ( 6)
S27.2 ( 3)
******
******
552.6 ( 3)
338.5 ( 6)
258.8 ( 6)
204.2 ( 6)
147.4 ( 6)
113.6 ( 6}
114.7 ( 6)
263.2 ( 6)
300.3 ( 6)
268.7 ( 1)
******
499.1 ( 6)
1245.0 ( 6)
1150.0 ( 6)
780.8 ( 6)
518.8 ( 6)
1A
2
LM FR9M STBVE LIV/ RM
******
******
******
******
******
******
******
******
626.9 ( 3)
396.4 ( 6)
P71-9 ( 6)
202.0 ( 6)
124.5 ( 6)
91.7 ( 6)
71.0 ( 6}
122.3 ( 6)
145.2 ( 6)
163.8 ( 3)
******
******
463.1 ( 3)
293.8 ( 6)
214.0 ( 6 )
151.8 { 6)
97.2 ( 6)
84.1 ( 6)
80.8 ( 6)
173.6 ( 6)
259.9 ( 6)
235.9 ( 1)
******
423.1 ( 6)
1?45«0 ( 6)
1143.4 ( 6)
753.5 ( 6)
489.3 ( 6)
******
******
******
******
******
*** ***
******
******
172.6 ( 3)
205.3 ( 6)
162.7 ( 6)
139.8 ( 6)
91.7 C 6)
69.9 ( 6)
53.5 ( 6)
78.6 ( 6)
85.2 ( 6)
107.0 ( 3)
******
******
192.2 ( 3)
169.3 ( 6)
128.9 ( 6)
99.4 ( 6)
74.2 ( 6)
64.4 ( 6)
59.0 ( 6)
115.8 ( 6)
206.4 ( 6)
209.7 ( 1)
******
344.0 ( 6)
1216.6 ( 6)
1105.2 ( 6)
744.8 ( 6)
459.8 ( 6)
4
9JTSIDE
******
******
******
******
******
******
******
******
32.8 ( 3)
17.5 ( 6)
13»1 ( 6)
13»1 ( 6)
12«0 ( 6)
8.8 ( 6)
12.0 ( 6)
14.2 ( 6)
18.6 ( 6)
13.1 ( 3)
******
******
19.7 ( 3)
16.4 ( 6)
13»1 ( 6)
14.2 ( 6)
13»1 ( 6)
13.1 ( 6)
9.8 ( 6)
96.1 ( 6)
136.5 ( 6}
52.4 ( 1)
******
31.7 ( 6)
52.4 ( 6)
66.6 ( 6)
39.3 ( 6)
13»1 ( 6)
- 274 -
-------
HOUSE -4 FALL-WINTER
VALUES IN ( ) ARE N8-
MAX.: 6 PER 2HR/72
N8 AVERAGE
3F 88SEIRVATI8NS
PER DAY
C8NCENTRATI9NS * UG/M3
IN PERI8D
DATE
TIME
STATI9N
1 1A 2
9VER ST8VE 1M FR0M ST8VE LIV/
2/
^/
?/
2/
2/
2/
2/
2/
2/
2/
2/
2/
DAI
7/74
7/74
7/74
7/74
7/74
7/74
7/74
7/74
7/74
7/74
7/74
7/74
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
LY AVERAGE *
(AVG 8F
2/
2/
2/
2/
2/
2/
?./
2/
2/
2/
2/
2/
2/
2/
2/
2/
2/
P/
2/
2/
2/
2/
2/
2/
8/74
8/74
8/74
8/74
8/74
8/74
8/74
8/74
8/74
R/74
8/74
8/74
9/74
9/74
y/74
9/74
9/74
9/74
9/74
9/74
9/74
9/74
9/74
9/74
2HR VALUES)
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
POOO-2200
2200-2400
340.7 (
261-0 (
219.5 (
250.1 (
263.2 (
575.5 (
540*6 (
3b8.2 (
798.3 (
508.9 (
451*0 (
350.5 (
409.8
242*4 (
197.7 (
170*4 (
******
******
******
267.3 (
326.5 (
789.6 (
476.2 (
364. S (
317. S (
238*1 (
192*2 (
156*2 (
150*7 (
326*5 (
250*1 (
186*7 (
156*2 (
191*1 (
229*3 (
219*5 (
393*2 (
6)
6)
6)
6)
6)
6}
6)
6)
6)
6)
6)
6}
6)
6)
3)
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
301*4 (
211*9 (
168*2 (
210*8 (
265*4 (
594*1 {
489*3 (
351*7 (
773*7 (
537.3 (
389.9 (
332.0 (
385.9
?03«1 (
153*4 (
139*8 (
******
******
******
239*8 (
303*6 (
705*5 (
462*0 (
322*1 (
274*1 (
187*9 (
152*9 (
132.2 (
132*1 (
288*3 (
223*9 (
126*7 (
123*9 (
161*6 (
203*1 (
183*5 (
29"7*0 (
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
3)
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6}
6)
6)
6)
6)
6)
6)
6)
286.1 (
204.2 (
164.9 (
182.4 (
212.9 (
545.0 (
474.0 (
325*4 (
664.0 (
525.3 (
336.4 (
300.3 (
351*7
193.3 (
148.5 (
131.1 (
******
******
******
221*3 (
250.1 (
606.1 (
431.4 (
310.? (
262.1 (
179.1 (
143.1 (
120*1 (
129.9 (
249.3 (
172.6 (
114.7 (
95.0 (
135.4 (
182.4 (
170.4 (
233.7 (
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6 )
3)
5)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
6)
9JT
7.
6*
6*
14*
29*
26*
26*
26.
25.
30.
13.
16.
4
SI
7
6
6
2
5
?
2
2
1
6
1
4
DE
( 6
( 6
( 6
( 6
( 6
( 6
( 6
( 6
( 6
( 6
( 6
( 6
19*0
40.4 ( 6)
16.4 ( 6)
2L9 ( 3)
******
******
******
14.4
27.3
24*1
9*8
22*9
15«3
5)
6)
6)
4)
2)
6)
19-6
6«6
21*3
64*4
98*3
20.8
10.
6.
6.
11.
10.0
6.1
,4
7
,3
,1
4)
2)
4)
6)
4)
6 )
6 )
6 )
6 }
6 )
6 )
6 )
DAILY AVERAGE *
{AVG BF 2HR VALUES;
224*2
184*8
160.4
23.5
- 275 -
-------
-4 FALL-WINTER
VALUES IN ( ) ARE N8«
MAX.: 6 PER 2HR,72
N8
AVERAGE
OF 9BSERVATI8NS
PER DAY
C8NCENTRATI9MS
IN PERI9D
UG/M3
DATE
2/10/74
2/10/7*
2/10/7*
2/10/7*
2/10/7*
2/10/7*
2/10/7*
2/10/7*
2/10/7*
2/10/7*
2/10/7*
2/10/7*
TIME
0000-0200
0200-0*00
0*00-0600
0600-0800
0800-1000
1000-1200
1200-1*00
1*00-1600
1600-1800
1800-2000
2000-2200
2800-2*00
DAILY AVERAGE »
(AVG 8F
2HR VALUES)
8VER
320
207
157
109
216
2*5
2**
2*6
305
275
283
217
235
1
ST8VE 1
.0
5
3
2
2
.7
6
8
8
2
.9
.3
.8
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
1A
M FR9M
30*. 7
173.6
130.0
100.5
176.9
205.3
202.0
190.0
?5*.5
237.0
?3*«8
163.8
197.8
STATION
2
ST8VE
( 6)
( 6)
( 6)
( 6)
< 6)
( 6}
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
LIV
275.2
161.6
117.9
92.8
151.8
181.3
171.5
172.6
225.0
211.8
211.9
155.1
177.*
RM
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
< 6)
( 6)
( 6}
( 6)
( 6)
( 6)
*
9UTS
6.
21.
6.
19.
34.
27.
21.
9.
10.
14.
16.
9.
16.
4
3
0
8
2
9
0
1
7
8
0
5
4
IDE
( 6 )
( 6 )
( 6 )
(6 )
(6 )
(6 >
( 6)
( 6 )
( 6 )
( 6 )
( 6
'( 6 )
2/11/7*
2/11/7*
2/11/7*
2/11/7*
2/11/7*
2/11/7*
2/11/7*
2/11/7*
2/11/7*
2/11/7*
2/11/7*
2/11/7*
0000-0200
0200-0*00
0*00-0600
0600-0800
0800-1000
1000-1200
1200-1*00
1*00-1600
1600-1800
1800-2000
2000-2200
2200-2*00
185.6 ( 6)
151.8 ( 6)
137.6 ( 6)
267.6 ( 6)
405.2 ( 6)
*57.6 ( 6)
712.1 ( 6)
377.9 ( 3)
******
***** *
******
******
126.7 ( 6)
101.5 ( 6)
108.1 ( 6)
208.6 ( 6)
372.* ( 6)
**8»9 ( 6)
618.1 ( 6)
406*3 ( 3)
******
******
******
******
119.0 ( 6J
91.7 ( 6)
92.8 ( 6)
175.8 ( 6)
309.0 ( 6)
*18.3 ( 6)
576.6 ( 6)
393.2 ( 3)
******
******
******
******
6.0 ( 6 )
9.3 ( 6,)
13.1 ( b )
31»7 ( 6)
132.1 ( 6)
*1.5 ( 6)
13»1 ( 2)
******
******
******
******
2/13/7* 0000-0200 ****** ******
2/13/7* 0200-0*00 ****** ******
2/13/7* 0*00-0600 ****** ******
2/13/7* 0600-0300 ****** ******
2/13/7* 0800-1000 ****** ******
2/13/7* 1000-1200 ****** ******
2/13/7* 1200-1*00 ****** ******
2/13/7* 1*00-1600 389.9 ( *) 419.*
2/13/7* 1600-1800 498.0 ( 6) **1»2
2/13/7* 1800-2000 35*.9 ( 6) 335*3
2/13/7* 2000-2200 **1»2 < 6) 439*0
2/13/7* 2200-2400 411.7 ( 6) 39"l»0
4)
6)
6)
6}
6)
******
******
******
******
******
******
******
299.8 ( 4)
393.1 ( 6)
303.6 ( 6)
407.3 ( 6)
369.1 ( 6)
******
******
******
******
******
******
******
57.3
59.0
49.1
72«0
83»0
4)
6)
6)
6)
6)
- 276 -
-------
HtfUSE -4 FALL-WINTLR
VALUES IN ( ) ARE N8«
MAX.I 6 PER 2HR/72
DATE
TIME
N9 AVERAGE CSNCENTRATIQMS » UG/MS
8F 8BSERVATI8NS IN PERI9D
PER DAY
STATI9N
1 1A 2 4
9VE.R ST9VE 1M FR9M ST9VE LIV/ RM 9JTSIDE
a/14/74
5/14/74
2/14/74
2/14/74
2/14/74
2/14/74
2/14/74
2/14/74
2/14/74
2/14/74
2/14/74
2/14/74
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
DAILY AVERAGE *
(AVG 9F
2HR VALUES)
317.8 (
277.4 (
243.5 (
375.7 (
263.2 (
270*8 (
231.5 (
S36.5 (
319.1 (
522.0 (
397.5 (
249.0 (
400.3
6)
6)
6)
6)
6)
6)
6}
6)
5)
6)
6)
6)
300.3 (
241.3 (
206.4 (
280.7 {
277.4 (
208.6 (
194.4 (
678.8 (
795.5 {
^22-0 (
310.2 (
206.4 (
351.8
6)
6)
6)
6)
6)
6)
6)
5)
5)
6)
6)
6)
286.1
233.7
193.3
228.2
204.2
175. 8
192.2
591.9
775.8
486.0
308.0
197.7
322. S
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 5)
( 6)
{ 6)
( 6)
69.9
54.6
18.6
7.7
13.1
13.1
7.7
12»0
14.2
13.1
13.1
13.1
20»8
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
( 6)
2/15/74
2/15/74
2/15/74
2/15/74
2/15/74
2/15/74
2/15/74
2/15/74
2/15/74
2/15/74
2/15/74
2/15/74
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
190O ( 6)
160.6 ( 6)
199.9 ( 6)
221*7 ( 6)
234.8 ( 6)
256.6 ( 6)
208.0 ( 4)
******
******
******
******
******
139.8 ( 6)
114.7 ( 6)
135.4 ( 6)
185.6 { 6)
240.2 ( 6)
213.0 ( 6)
175.3 ( 4)
******
******
******
******
******
131.1 ( 6)
103.7 ( 6)
102.6 ( 6}
161.6 ( 6)
167.1 ( 6)
167.1 { 6)
172.0 ( 4)
******
******
******
******
******
9.8 ( 6)
7.7 ( 6)
8.8 ( 6)
8.8 ( 6)
13.1 ( 6)
14.2 ( 6)
13.1 ( 4)
******
******
******
******
******
- 277 -
-------
4 FALu-WINTER C8
VALUES IN ( ) ARE N-i). JF 3dSERVAT IPNS IN PERI6J
MAX.: 6 PER 2HR*72 PER DAY
UG/M3
DATE TIME 1 1A
8VER ST8VE 1M FRBM =
1/30/74 0000-0200 ******
1/30/74 C200-0400 ******
1/30/74 0400-0600 ******
1/30/74 0600-0800 ******
1/30/74 0800-1000 ******
1/30/74 1000-1200 ******
1/30/74 1200-1400 ******
1/30/74 1400-1600 11268. ( 5)
1/30/74 1600-1800 1705l« ( 6)
1/3J/74 1800-2000 9991- ( 6)
1/30/74 2000-2200 12842. ( 6)
1/3-J/74 2200-2400 14377. ( 5)
5TATI9M
******
******
******
******
« *****
******
******
10751* ( 5)
16436* ( 6}
11469. ( 6)
13058. ( 6)
14377. ( 5)
LIV/ RM
******
******
******
******
******
******
******
10344* ( 5)
13449. ( 6)
8667* ( 6)
12349. ( 6)
13262. ( 5)
9UTSIDE.
******
******
******
******
******
******
* *****
1145. ( b)
2089. ( 6)
2140. ( b)
3329. ( 6)
2871. { 5)
1/31/74
1/31/74
1/31/74
1/31/74
1/31/74
1/31/74
1/31/74
1/31/74
1/31/74
1/31/74
1/31/74
1/31/74
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
13308.
9216.
6597.
3603.
8819.
6442.
6477.
. 7260-
11747.
9617.
1256.
6443.
( 6)
< 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
13308.
8887.
6298.
8127*
S11S.
6198.
7301«
6817.
12178.
^832*
9256.
6077.
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
12140*
3468*
5788«
7578.
7690-
5618«
5959.
6374*
11378-
S354*
7871.
5491.
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
2162. i
1666. i
1564. i
3149. i
2931.
2751. i
2084.
2605.
3034.
2751*
1652.
2380.
( b)
i 6)
t 6)
( 5)
( 6)
< 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
DAILY AVERAGE =
(AVG 8F 2HR VALUES)
8649.
8533.
7726-
2394.
2/
?./
2/
?./
?./
?./
?/
2/
2/
2/
2/
2/
1/74
1/74
1/74
1/74
1/74
1/74
1/74
1/74
1/74
1/74
1/74
1/74
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
1
1
1
1
1
1
J183* i
4394. i
4291. i
5175. '
6131* i
1J83« '
1149. i
9079. i
5901. i
3739. i
3004* i
0619. i
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
t 6)
( 5)
451?» i
3998* i
3558* i
466?. i
6649* i
11388. i
10752. i
9445. i
15321* i
12855. i
1?820« i
10766* i
[ 6)
( 6)
I 6)
( 5)
( 6)
( 6)
( 6)
t 5)
( 6)
[ 6)
( 6)
( 5)
4146- i
363?* i
3375* i
437Q. i
4380* <
9679- i
9257. i
7798- i
14863* '
12214* i
11753* i
10217* i
1 6)
[ 6)
( 6)
t 5)
t 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
2467. i
2198.
2094.
2429*
1799.
3053.
2180*
1903.
2020.
591.
953.
2456.
( 6)
( 6)
( 6)
( 5)
( 6)
( 5)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
DAILY AVERAGE =
(AVG OF 2HR VALUES)
9146.
8894'
8015-
2012'
- 97R -
-------
VALUF.S
MAX
LnLL-wiNTE«
( ) ARE N9-
6 PER 2HR/72
C8 AvtxAaE C^MCENTRAT I0NS
9F 913SERVAT I ONS IN PFRI90
PER DAY
U3/M3
OATT
?./ ?/74
i3./ 2/74
2/ ?/74
2/ 2/74
2/ 2/74
2/ ?/74
?/74
?/74
TIM-I
STATI9NI
2/
2/ 2/74
2/ 2/74
2/ 2/74
0000-
0200-
0400-
0600-
0800-
1000-
1200-
HOO-
DOO-
1300-
2000-
2200-
0200
'0400
'0600
0800
1000
1200
1400
1600
1800
2000
2200
2400
DAILY AVERAGE =
(AVu PF ?HR VALUES)
2/ 3/74
2/ 3/74
2/ 3/74
2/ 3/74
2/ 3/74
2/ 3/74
2/ 3/74
2/ 3/74
2/ 3/74
2/ 3/74
2/ 3/74
?/ 3/74
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
0400
0600
OSOO
1000
1200
1400
1600
1800
2000
2200
2400
2/
2/
?./
*./
P./
2/
2/
2/
4/74
4/74
4/74
4/74
4/74
4/74
4/74
4/74
4/74
4/74
4/74
4/74
0000-
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
0200
'0400
0600
'0300
1000
1200
1400
1600
1800
2000
2200
2400
1 IH
-------
HdUSE 4 FALL-WINTER
VALUES IN ( ) ARE N6»
MAX.: 6 PER 2HR,72
C8 AVERAGE CONCENTRATIONS , UG/M3
3F 6BSERVATI9NS IN PERIOD
PER DAY
DATE
2/ 5/74
2/ 5/74
?/ 5/74
2/ 5/74
2/ 5/74
?./ 5/74
2/ 5/74
2/ 5/74
2/ 5/74
?/ 5/74
?./ 5/74
2/ 5/74
TIME
STATI9N
0000-
0200-
0400'
0600-
0800-
1000-
1200-
HOO-
DOO-
1800-
2000-
2200-
0200
0400
0600
0800
1000
1200
1400
1600
1800
2000
2200
2400
DAILY AVERAGE =
(AVG fiF 24R VALUES)
1
1A 2 4
9VER ST6VE 1M FR9M ST9VE LlV/
5962.
4411.
3065.
3386.
11391.
14340.
15856.
11752.
16612.
14618.
12098.
11125.
( 6)
( 5)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
6454- 6}
4842.
3435*
9051
11668.
14347.
15578.
6)
6)
5)
6)
6)
6)
11935. ( 5)
16246. ( 6)
13276. ( 6)
12190. ( 6)
11850- ( 5}
5715.
4781.
2881.
7721.
9852.
12253.
13639.
11861.
14385.
12086.
11824.
10435.
RM
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
9UTSIDE
3006.
1918.
1403.
4396.
4988.
4557.
4125.
4905.
5568.
4245.
4441.
5284.
( 6)
< 6)
( 6)
( 5)
( 6)
( 6)
( 6)
( 5)
< 6)
( 6)
( 6)
( 5)
13843.
10906-
9786«
4070-
^/
2/
s./
2/
2/
2/
2/
2/
2/
2/
2/
2/
6/74
6/74
6/74
6/74
6/74
6/74
6/74
6/74
6/74
6/74
6/74
6/74
0000-0200
0200-0400
0400-0600
0600-0800
0800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-2200
2200-2400
3413. ( 6)
7001. ( 6)
6476. ( 6)
******
******
******
******
12245. ( 5)
21806. ( 6)
13734. ( 6)
15139. ( 6)
18484. ( 5)
8927. ( 6)
7364. ( 6)
6718. ( 6)
******
******
******
***** *
13930. ( 5)
21669. ( 6)
19453. ( 6)
14352. ( 6)
11678. ( 5)
3141» ( 6)
6819. ( 6)
6264* ( 6)
******
******
******
******
10643. ( 5)
21361. ( 6)
17980* ( 6)
14489. ( 6)
10873* < 5)
5088. ( 6)
4491. ( 6)
f478. ( 5)
******
******
******
******
925. ( 4)
1431. ( b)
1256. ( 5)
929. ( 5)
282. ( b)
- 280 -
-------
VALUES
MAX
^ALL-WINTER
IN ( ) ARE \9.
: 6 PER 2HR,72
CB AVERAGE C^MCENTRAT I8MS
:iF QRSERVATnNS IN PERlfj'J
PER DAY
» UG/M3
DATE
TIME.
STATI6N
1A
2/13/74
2/13/74
2/13/74
2/13/74
2/13/74
'2/13/74
2/13/74
2/13/74
2/13/74
2/13/74
2/13/74
2/14/74
V14/74
V14/74
2/14/74
2/14/74
2/14/74
2/14/74
2/14/74
2/14/74
p/14/74
0000'
0200'
0400-
0600-
0800-
1000-
1200
1400-
1600-
1800-
3000-
2200-
0200
0400
06CO
OrfOO
1000
1200
1400
1600
1800
2000
2200
2400
0000-
0200'
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
0200
04QO
0600
0800
1000
1200
1400
1600
1600
2000
2200
2400
"MILY AVERAGE =
(AVLi 9F 2HR VALUES)
2/15/74
2/15/7-+
2/1-J/74
2/15/74
V15/74
2/15/74
2/15/74
2/li/74
2/15/74
V15/74
2/15/74
2/15/74
0000
0200-
0400-
0600-
0800-
1000-
1200-
1400-
1600-
1800-
2000-
2200-
-o?oo
-0400
-0600
-0800
-1000
-1200
-1400
1630
1*00
2000
2200
2400
^
8vER STOVE
******
******
******
******
*»«***
******
******
12345. ( 5)
1-+246. ( 6)
12093. ( 6)
13038. ( 6)
11410. ( 5)
-073. ( 6)
-> 0 7 8 ( h )
'f 8 8 5 ( 6 )
10248. ( 5)
13247. ( 6)
-i 4 6 9 ( 6 )
3413. ( 6)
It497. ( 5)
I* 142. ( 6)
1 1 , ] 1 K . / £. \
llUi-J. I oj
, _) >i 3 / £ »
o r. t o . ( h )
o209. ( 5)
8710»
J191. ( 6)
1767. ( 6)
1701. ( 6)
5865. ( 5)
-3J57. ( 6)
1J615. ( 6)
7733. { 3)
******
******
******
******
******
1M FR^M STBVE LIV/ RM
******
******
******
******
* *****
******
******
12986. ( 5)
13368. { 6)
11712. ( 6)
12386. ( 6)
11141. ( 5)
7737. ( 6)
5668. ( 6)
4362. ( 6)
° 1 4 5 ( 5 )
10695. { 6)
664?. ( 6)
5139. ( f>)
10873. ( 5)
13173. ( 6)
O *5 T C < X k
^ 3 7 5 . ( 6 )
K 6 8 8 . ( 6 )
46?3» ( 5)
76S6.
2644. ( 6)
1329. ( 6,
1008. ( *)
5515. ( 5)
10638. ( 6)
r 3 3 R , i A i
-1 " ' * ( O )
72^>5. ( 3)
******
******
**« ***
«»***»
******
******
******
»*»**»
******
******
******
******
10469. ( 5)
12606* ( 6)
1J53Q. ( 6)
12466* ( 6)
Ij515« ( 5)
729Q. ( 6)
533^. ( 6)
4139. ( 6)
7206* ( 5)
871 8* ( 6)
567P. < 6)
5333. ( 6)
13112* ( 5)
1373?. ( 6)
8181. ( ft)
jS38. ( 6)
4596« ( 5)
7179.
249S« ( 6)
1147. ( 6,
753. ( fa)
4727. ( 5)
i7lS. ( ft)
8499. ( 6)
7295. ( 3)
******
******
******
»»#**»
******
4
3UTSIOE
******
******
******
******
******
******
******
3285. ( 5)
4025. ( b)
3055. ( 6)
2475. ( 6)
2685. ( 5)
1995. ( 6)
1007. ( 6)
783. { 2)
I960. { 4)
1634. ( 6)
1309. { -j)
398. { 4)
890. ( 6 )
1330. ( 6 )
550. ( 6 )
400. ( 6 )
2060. ( 6 )
1193.
1840. ( 6 )
1230. ( 6 )
1620. ( 6 )
2100. ( 5 )
I860. ( 6 )
1880. (.6 )
1640. ( 6 )
**** »*
******
******
******
******
- 281 -
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
2.
3. RECIPIENT'S ACCESSION>NO.
4. TITLE AND SUBTITLE
A Study of Indoor Air Quality
5. REPORT DATE
September 1974
6. PERFORMING ORGANIZATION CODE
Pro-ject No. -32247
7. AUTHOR(S)
8. PERFORMING ORGANIZATION REPORT NO.
William A. Cote, Willard A. Wade III and
John E. Yocom
9. PERFORMING ORG \NIZATION NAME AND ADDRESS
TRC - The Research Corporation of New England
125 Silas Deane Highway
Wethersfield, Connecticut 06109
10. PROGRAM ELEMENT NO.
1AA005/1HA316
11. CONTRACT/GRANT NO.
/
68-02-0%5
12. SPONSORING AGENCY NAME AND ADDRESS
Environmental Protection Agency
National Environmental Research Center, RTF
Research Triangle Park, North Carolina 27711
13. TYPE OF CTEPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
A study of indoor air quality was carried out over a 15-month
period by TRC - The Research Corporation of New England. The program
consisted of three tasks:
1. Laboratory investigations
2. Field studies
3. Inventory of indoor sources
Tasks 1 and 2 established the emissions and effect on air quality
(N02, NO, and CO) of gas stoves and heaters both in the laboratory and in
4 homes with gas-fired stoves in the Hartford, Connecticut area.
Task 3 developed information on indoor sources of air contamination
in typical southern New England homes and provided the basis for assessing
the impact of aerosol products and their use on indoor air quality.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS
c. cos AT I Field/Group
..J
1. Indoor Air Quality
2. Indoor/Outdoor Pollution
3. Nitrogen Oxides-generation
4, Nitrogen Oxides-indoor concentration
5. Indoor Pollutant Sources
6. Aerosol Products
Air Pollution
Pollutant generation
Indoor Air Pollution
13 b
8. DISTRIBUTION STATEMENT
19. SECURITY CLASS (ThisReport)
UNCLASSIFIED
21. NO. OF PAGES
292
Unlimited
20. SECURITY CLASS (Thispage)
UNCLASSIFIED
22. PRICE
NSP
EPA Form 2220-1 (9-73)
-------
-------
NO 3)
0)
n,
=, J
(6
0> 0)
Q. -*
Q. _
fi
> Ci
ex
ex
D
O
-C*
. O
O 0)
SI <
O> (D
3 I
05
ID
i-
Tl
O
9
^
i
O J> m
*^>
I T) ~
J>
So
"m
O
O
Z
n
------- |