-------
APPENDIX B
REFERENCED SUPPORT INFORMATION
1.0 GASOLINE VAPOR CONTROL-REGULATIONS
In certain areas of the country, hydrocarbon emissions
attributable to gasoline marketing facilities are at such levels
that regulations pertaining to their control have become necessary.
This section contains discussions on the quantities and signifi-
cance of these emissions, procedures provided by the Clean Air
Act of 1970 for establishing national air quality standards,
standards of performance for new stationary sources, and the status
of control strategies.
Although the focus of this report is the study of vapor
control systems for hydrocarbon emissions in the gasoline marketing
industry, ambient air quality standards are briefly discussed here.
Ambient air standards, which apply to existing facilities, are
an important forerunner to standards of performance for new sources
and are central to much of the logic behind them. With some ex-
ceptions, equipment and control technology are the same for both
types of standards.
B-l
-------
1.1 The Clean Air Act
The Clean Air Act p_f 1970 serves as the basis for all
laws and regulations on Federal, State, and local levels pertaining
to the prevention and control of air pollution. The Act provides
for the establishment of ambient air quality standards and standards
of performance for new stationary sources. Each type of standard
and its impact on the gasoline marketing industry will be briefly
discussed below.
1.2 Ambient Air Quality Standards
1.2.1 Establishing and Implementing the Standards
for Existing Sources
Briefly, the procedure provided by the Clean Air Act
for the establishment of national air quality standards and the
subsequent plans for meeting those standards in existing sources
is as follows:
(1) Substances are determined to be air
pollutants and are listed as such by
the Administrator of EPA.
Clean Air Act (42 U.S.C. 1857 et seq.) includes the Clean Air
Act of 1963 (P. L. 88-206), and amendments made by the Motor
Vehicle Air Pollution Control Act--P.L. 89-272 (October 20,
1965), the Clean Air Act Amendments of 1966--P.L. 89-675
(October 15, 1966), the Air Quality Act of 1967--P.L. 90-148
(November 2, 1967), and the Clean Air Amendments of_ 1970--
P. L. 91-604 (December 31, 1970).
B-2
-------
(2) Air quality criteria, information on
control techniques, and proposed national
primary2 and secondary3 ambient air
quality standards are issued within 12
months from the time a substance is
listed as an air pollutant.
(3) Within 9 months of the promulgation of
national primary or secondary ambient
air quality standards each state must
submit an implementation plan for
maintaining and enforcing that standard
in each of its air quality control
regions (AQCR). Reasonable notice
and public hearings must precede the
publication of such plans.
(4) The Administrator of EPA will approve
or disapprove state plans or portions
thereof within 4 months of their sub-
mission. Plans may be more stringent
than required to meet national standards
but they cannot be less stringent.
2Primary standards reflect the level of control required to
protect the public health with an adequate margin of safety.
Specific Federal compliance dates are set for primary
standards which must be met irregardless of cost (RO-102).
3Secondary standards reflect the level of control required to
protect the public welfare; to enhance the quality of the
environment as opposed to protecting the public health.
These standards are to be met within "a reasonable length
of time" with states and local agencies setting compliance dates
B-3
-------
1.2.2 Ambient Air Quality Standard for
Photochemical Oxidants
Hydrocarbons, the major emissions from gasoline market-
ing operations, are the subject of national standards, primarily
because of their function as precursors of photochemical oxidants
rather than because of their direct effect on the atmosphere
(NA-009). The national primary and secondary ambient air quality
standard for photochemical oxidants, measured and corrected for
NO and S02 interferences, is 160 micrograms/cu. meter, 0.08 ppm,1*
X
maximum 1 hour concentration not to be exceeded more than once per
year (40 CFR 50.9)
The standard for hydrocarbons measured and corrected
for methane, which is used as a guide in preparing implementation
plans to achieve the oxidant standard, is 160 micrograms/cu. meter,
0.24 ppm,5 maximum 3-hour concentration (6-9 a.m.), not to be
exceeded more than once per year (40 CFR 50.10). The correction
for methane, which involves the subtraction of the methane
concentration from the total HC concentration, is made because
methane, considered to be a photochemically non-reactive hydro-
carbon, is naturally present in the ambient atmosphere at a
relatively high level. The non-urban background level for methane
has been measured as 1.0-1.5 ppm (NA-009). This background level
is primarily attributed to biological sources and considered
uncontrollable.
^ *
^Conversion between ppm and micrograms/cu. meter: ppm Oa _
micrograms 03 x 5 IQ x lO"1* (40 CFR 50, Appendix D) .
m3 "
5Conversion between ppm and micrograms/cu. meter: ppm carbon
(as CHJ= [mg. carbon (as CHO/m. ] x 1.53 x 10"3 (40 CFR 50,
Appendix E).
B-4
-------
1-2.3 State Implementation Plans and Transportation
Control Plans to Meet Ambient Air Standards
The Federal role, as provided for by the Clean Air
Act of 1970, is primarily one of guidance and assistance to the
states. The states are responsible for writing a plan "which
provides for implementation, maintenance, and enforcement of
primary and secondary standards in each air quality control
region (or portion thereof) within their state". (Clean Air
Act of 1970, Sec. 110(a) (1).)
In order to assist the states in channeling time and
resources toward the control of the most complex air pollution
problems first, EPA, in consultation with the States, has
assigned a priority classification for SO , particulate matter,
X
NO , CO, and photochemical oxidants (hydrocarbons) to each AQCR.
J\.
A Priority I classification for a pollutant indicates that
emissions are above the national standards for that pollutant.
A Priority III rating indicates the emissions are below the
level specified by the standards. Control strategies must
specify a means of attaining and maintaining ambient air quality
standards for all Priority I classifications. Provisions must
also be made for maintaining emissions below secondary air quality
levels in Priority III areas.
Priority ratings as described In 40 CFR 51.3 are
based on measured ambient air quality where known or on estimated
air quality. When no data is available, a Priority I classifi-
cation is assigned to urban areas of 200,000 or more (latest
census figures). Following a three month data collection period
this classification may be changed to Priority III if the data
indicate such reclassification is justified.
B-5
-------
For photochemical oxidants (hydrocarbons), a Priority I
classification is assigned to all AQCR with a photochemical oxidant
level equal to or above 195 micrograms/cu. meter, 0.10 ppm, 1 hour
maximum. Below this level, a Priority III classification is assigned.
1-2.4 Implementation Plans
In formulating control strategies, the states could apply
a straight percentage rollback from baseline emissions in each
AQCR to determine the percentage of control required to meet
national ambient air quality standards. Baseline inventories in-
clude the projected effect of the Federal Motor Vehicle Control
Program (FMVCP) and the projected effect of any existing state
regulations.
The Clean Air Act of 1970 called for control strategies
to include emission limitations and "such other measures as may
be necessary to insure attainment and maintenance of primary or
secondary standards, including, but not limited to, land use and
transportation controls" (Section 110(A) (i)). EPA recognized
at the time, however, that the states had no experience with
transportation control measures.6 Accordingly, the implementation
plans submitted in 1972 were oriented toward stationary source
emission limitation controls.
Stationary source controls for photochemical oxidants
(hydrocarbons) frequently involved the extension of existing
controls or the writing of new requirements for the bulk storage
and loading of organic chemicals such as gasoline. Table 1.2-1
""Transportation control measures are defined as any measures
which are directed toward reducing emissions of air pollutants
from transportation sources.
B-6
-------
ua
u cj en CD 4->
J U-j CD CJ «C
D O CLU 1-1 • 3 CD
•i CD c « jj c
^ w o w CD at
C u &C O w bO
CU X: D CD QJ C O QJ
S5 -w B B M "*•* {X E
to
CD 4-1 t—J
i— I F- I
w *a 3 -H CD
C • O .-< C CO ,-( 14H X:
CD o 1—4 O- to to CD r~4 -U
£ ^4JCOCQtn .W t-( *O
> j-i e 6o > o -i-1 *H CD E
3 -HI O. C J-> WO
V-< >>O > «tr( ^~i X< CU CD *W
E -H x: > ^ X) 60
< CDM-t *O i-l £ CD 3 C
3 60T3 Q4-)£3CDicOi-l
C en to CT-u XI "O
•H • 10 p CD W 3X3 W
J -O --i .* E C xw .u O
come: oV4co f-if-i
O CC to >M-( O B-S 3
^H 4-J 4J JJ 60 LO Vrf •
O -w cj E c CT* .Vw o £
CO O ,X CJ CD CD i-l CD O
j£ O CJ C3 r—* 4-J *O CO i*"^ CD •*-*
CJ - 3 D.-— ' W CO 4-1 O.-U
COOJ-I to O X O C-H-H O
Q£ iTi 4-1 CJ CJ cn*-H*«-4 CD P ,^
I
CO
a.
CO X
O l-i
CD
• i^
-* o
to o
1 I-l
O 1
O V4
o o
. o.
O eg
»J5 >
c u
10 i-l
j: w
4J CO
J3
V
K 01
O ^*
3
<4j cr
O QJ
ti
CO •
p2(i X ^4
(^ i-l CO
CO i-l 01
H 0 00
X
4J
C
3
O
U
CD
i—i
,A
£
eg
B
•B
<0
t-4
<
i e
3 O B C
00 i-l O O
h QUO)
^ « * C
33 cu-rt
Ci-l n
• 00 to en _i
4J C C 3 •
Ci-l to O 00 to
Of V-l 4J o QJ V4
CO CU C U CO
01 > CO h O
l-i O-J 01 JZ
p O CX*O 4-1 00
4-J en o) 3 3 1-1
CO C 00 -4
o co en oo cu
01 -H I-l ,Y C P
C 4J O C O W-4
Z I— 1 01 4J CO I-l
01
en
3
1 1
W CO
3 01
E O-
00 O.
B
O U4
,— I
•D
j: 01
O 00
cej f-i
14 CU
i— i ,0
-4 3
< en
i
CO X
a >*
CO CD
0 >
CJ
CD O
§^ S
t
I-i O
o a
CO
ft
to o
00 1-*
1 CO
0 ,0
O
- 01
in u
3
et-i cr
0 01
CO
t^ X ^4
C 4-J tO
CO i-l 01
H O 00
01
eg
4J
VI
eg
C
o
N
)J CO
00 01 £
C 4-1
•^ CO 4J
-—I 01 to
•01-13
C 00 E
CO
j: to cu
1 -H 00
4J CO
O X V4
3 4J o
*D -H 4J
O 0 01
IW CO
O.O.C
eo O
•-I O *r4
^w iJ .
co jc: to TJ
C 4-1 CU
4-1 CO CO 4-1
CO 4J CO
T3 QJ • CU
01 ^1 4J C
1J O 3 0)
•^£ O. 00
cr oo co
eu QJ 3 ^
h 00 O O
CO ^ CL
4J I-l £ CO
C 0 4J >
01 4-1
tx o o
1-1 ^
3 O cns-J
0*1-1 en O
01 4J CU CTf*
to *—i
V4 eo I-i QJ
01 10 >
>T3 CT 0
O C 01 0
O CO IH CU
QJ l-<
h 01 to
1^ co 0 eo
0 >j 10 3
P- o ^ E
> to oo to
C E
O 4J -r4 01
"*•* B T3 4-1
co co co en
CD »— 1 O >>
CQ 0.1-4 in
X
4-1
B
3
o
u
01
oo
E
CO
0
to
£
O
'W
•H
i— I
CO
U
01
•o
4-1 C
en co •
TO -C 01
01 OO
-4 CO CO
4J 0 O
CO CO 4-1
t4 CO
CO
-r4 00 1-1
C O
4J "U
•r4 CO IJ
O O CD
TO -H CU
O. Ot
CO 01
O h >>
01 V4
v r- fli
6 3 >
CO O
4J T3 O
C QJ
01 eo 14
01-^1
£-^ 0
3 CO (X
01 CO
to o. >
B tx cu
i-4 1^
O--I •<-!
CX»— i 3
1-1 cr
01 t4_l 01
00 V4
CO "O
I-i 01 O
O OC 4J
4-1 j-l
tn CU 00
E B
— i 3 C
CD in c
CO
4J CU —
to > cx
co
14 AJ
O 4J B
4-1 CO 3
co 3 O
•DEO
c
CO CU
E oc •
CO X
|J I-" CO
co o "o
01 4-1
00 CO CO
>-. c •
eu-rf eg
o co
U 4JO
01 en O
1 «•
li -O
O — I CsJ
CX CO
CO 004J
0 CO
O O 01
i-4 O •-<
en •*
COO 4J
^
4-1
B
o
,.
-HjicDCuco CD»H o^stf
4J V-i > CU CT* W *~* X *O CT^ CD P"^ CD
CDCDO-^E W WC >C7\>
iJ DC 4-J 4J O- CU -U CO CU O i-" CO
WtoCOCJi-(>-«-tO >CJ JC
O E-*-»r^co i w
«CCUL^J-i33 4J P &. 3 f^1
c X *<~t CD CT> > cu *~* •— * ^ co u~i
O CD •i-' CU O W X) 0) ^ 3
f-< CD^CUCJ'V'CDCD •••V^CD X} E "^
CD Stnc^ww-H-rHS c w -H 01 ID ao
w "3 cu'^"11 i S t/ > ^ -2 So cuctfcu
i— 'J-vC-w OC-i-GJfOCJ-'G.^J-'J-'E
cu C-£ CJ p ro-t-«l+-J wx:-'-'-^*1*-' >.-w 3
Si-H JiXJ E >O CDCOJJ in'OtDcnc-OOi
n
. jj
1 «-O 3 •
W J-l -H CD Ct -U
T3 O ^ , r W
CD P.-UI-I GO 3
CD to CD 3 3 E
cj >.c cr o
X U CD M CO
-i x:
>^JJ JJ W
4j r-t c: co T-;
3 »H 0) i-l X
CL co g ^»-i
x: -0 taij^^
CiO i-l C <0 i-l
D . 3 cyo iw
o t— i cr**4
k en CU I-* CD
Ki O O E
x: 10 CD t-o o 3
3 CM KOOI^ 10
. .
4J r— 1
C 1 *-*
W 1 CD CJ -H
•» C .X 60^-< CO *W
C ^ CO C C co CX
C3 C XI 1 CO *H > 03 T3
i-i 4-i !-( co 3 60
,u * o cr • ^
CD cu 4-* o i-o **^ *o E
4-* CU 03 CD TD 60X1
CO CD O. C >. CD 3
CD >il«i wroxi >O to
Vy ij 60 i x; o o
CX)i-t "O 4J T3 l-r O V
O W CD CD (X - >
« to ^4 a> x:
en D--W AJ CD o a* cj
O w i-t Xi cj 60 to
CDO ^ CX > CO CD
•-< (0 3 V4CO>H
a
CO
CD
<
CO
CQ
o
o
CO
•H
CJ
c
CO
V4
{x^
B
eg
en
eg
c
o
*V«(
rt
CO
CJ
01
B
o
z
01
B
S
,
,«!
to
oo
1
O I
0 V.
o o
- Cu
0 eg
•vt >
E CJ
eg 1-4
X CO
4-1 CO
JO
QJ
I-. 01
O I-i
6 --I .
3 V4
tM cr*
o eu 01
1- 00
CO
-* >.>.
C 4-1 I-l
to i-l tv
4-1 U >
CO 0
3 0.0
o; eg ti
Z CJ |H
01
4J
eg
4J
o
•o
eg
0
r-l
o
u
B-7
-------
to
4-1
C
01
E
01
•H
3
O
01
a.
/~"x
-IJ
0
O
r-l
CNl
r— 1
W
rf\
^<
^•4
01
CO
o
4-1
l/l
w
01
rH
E
3
^
U
CO
ai
61
c
>r-l
•o
CO
o
.J
u
a
CO
o
V)
Jt
•H
g
CO
«
(U
M
0)
-,-1
U
u
IH
U
V
j_J
(0
•0 1
C "Or-^ Ol I-l -1
rH 3CrH TJrH V4 O CO O UJ
CO O3-— ' CrH3CUI WO O
co wo cco-r(cococioio -a oi
i oi 60 w oi oj o u-i to > o eu u-i -TJoicox:
O 13 W 60 > > ^-s CU Or4jOrHOl4_l34-l4JrHCO
in30IICOr~4-IOJ13WeO O rHCOO rH^^
CMrH-OOJXCOCCOJCU OOIWl-irHT3WWOIi-*
CJC> >0>'HCO -C 2£ > 01 CO OCOWU-IJt
CC3O4-1 > r-4 r4 CO 4-1 rH 6013 4-1 CU W *r4 01 C
C0-r4 ,Q 10 4J 0) T-l COq£CO>OIWXC:cQ
4-IT3CU E 01 3 q -Q -Q E *-* *H 4J C CU
r-i 6C-O >3O3 13014-JcotO O 3 13 CU 3 t)
01 3 CO C --N o>c04JO»4jqOr*Xcu OI4J4JC
WOWCQOICCO t04JtflOlrHq4JU-l XrH CO CU CO
O3O OOO>J!4-l34JX>UHCO^-ltlHnrH'OJ3
E^4-l4JCOl-IICCElHlO HOCUCOCO C
to C W AJ 01 CO 01 U-l CC CO IJOIOIO
tr4X CO O CO W 4-1 C W XOO CU O W CO > C 1-1
O4JCrH4J>3 COOWWl-l "•C04JOClHT'l4J •
•1-IOrXCOWtOU-lE O CU 4-J 13 4J O •H4JrHCJ4-l
10 O '--I 1 CU to O E - >COOICu WCO CJ 01 Or
.^ co 4J ,x ,x w 01 oi cu.* o > w 5 -ooijccurHcto
C &- CO rH rH C WT3 CU CU C CJ W-H 01 rH ..H rH CU-lrH C U-
ra CO 4-1 3 3 O CX C *H COOIOJ3XIOW3CO UH »rH O U-t
o
O -u-l X
O co O X|V4
-.i! U 01
O CJ CO -r4 >
rH 3 |J CJ O
W CO CO U
4J 4J CJ CU 01
tO ,M OJ W
CO ^£ C CJ 1
cu C CO M
rH CO -U • O
i-l rH CU
4-1 rH CO CO
co O i-l 00 >
4J CO
BO C WO U
C "r^ O 1-t
•H V4 CNl en
•o x o co •
O 1-* CO CQ j;
rH CO W X QJ CU
T3 01 4-1 Li E
tO rH .rt CU
,X • -H Ol 3i-l
CJrH CO r4 CT 3
co to w o 01 cr
o; 004-1 E w oi
1
CO
Cu
a x
CJ W
01
-H O
CO 0
60 01
O I
o w
O 0
- CU
O CO
-3- >
c u
x to
U CO
.Q
W 41
E i-* •
3 4-)
u-i tr B
O Q) 0)
to cu
C 4J 3
EH CJ 0)
01
4J
CO
en
4J
3
u
CJ
CU
c
c
o
u
,
,_|
CO C 4-1
oo o c i
1 1 .
C 01^ 3 iJ
CO > JO O C
X CO U VI CJ
i-l C co Cu
01 4-1 Cu 3 Xt i-l
W to 0 3
o 3 -H w w er
E E-1 ooo oi
•
.a CO M HO
C (X W T3 O 0
co CD 01 c 4-1 0)
H CJ E CO to W
CJ
•,-4
CO
CO
rQ
01 W
> co
X 60
4j X
en w
3 CU
E >
o
to u
Jt: oi
CJ W
CO 1
0
-i Cu
rH CO
1
• M
rH O
co a
OC CO
1 >
o
o u
Ol-l
- CO
O CO
B cu u
co > q
X CO CU
"xcL
ft) tJ -r^
W to 3
o 3 cr
UH XX
O 4-1 W
en cj >
j: co o
C CU CJ
CO CO 0)
EH CJ W
4iJ
u
w
Q
o
4-1 Q
CJ i-l
u'i
CO rH
—I O
QCJ
01
rH . O
W ^3 CO CO
O CO COT3 rH
B B B <0
Ol Ol O 3
C 4J tO O 4J
IH to co ex to
r-4 XOI E 3
o to w o E
to u
CO W 0) CO
fccow.cc
3 U O
•C co 3 -H
CO O) 4J CO 4J
O CJ tO CO
r-i -r4 3 60 W
C > E C Oi •
3 01 -r4 CU4J
•0 X Cu 0 W
W oi E oi
O-H.E 3 BrH
O tH-cl O CO
T3 W -r(
co xj w 4J q
o c: o co o
rH O • 4-1 f-4
CJ rH 60 CO 4J
O C 3
01 C W -r< T3 rH
TJ-rJ C 3 CO O
c to o o ex
CO CO CJ CU to 1
£;•-> c w
EC - 0 i-l
O 1 1-1 C 4-1
in 4J >H CO C
CuO 3 CU W CO
E CUrH CU 01
3 COrH CU CUU-I
CU > O M 0 0
CX,
- 6C " 60 CO
01 C"4H CC C 01
W iH O C ft M
0 iJ ^< 13 CO
4-1 10 -rH CO .C
10 ^-1 4-1 rH O O.
X CUi-lrH
O CU 01 Cu B co
.c D to 3 3
3 T3 O
C 01 -131-1
01 COX 00 B W
to 4J c co eg
r; 5 X-^ 00
4-1 ox a B 60
C 01 i-l C
4-1 JC; "D rH T3 >H
3: oi co w
XI W • O 3
CU O 60-H 13
• 1013 C
to 3 W iH 4-1 CO
C O 60 C C
O 4-1 W CO O
T4 COT3 CO rH .H
4J 3 CX CU4-I
co E co u i cj
rH CO ^ CO
3 10 X-rJ rH
0£4J WT3 3 0
01 C CO rQ 1-1
W CU CO "O U-l
> tO T-4 *D 1-i
Or-4 CU O C CJ
•r4 O CJ > CO 01
tM CO CU CO Cu
1-4 C rH tO
U U O CO
01 -r!13 4-1 C 3
Cu q 01 -HO
to co E oi E rH
60 CU W W rH
o w 01 ca 01 o
2 O"O OH tw
01
4J
CO
u
e/o
CO
T)
w
o
IK
rH
0
w
4J
q
o
u
o
4J
to
13
0
4J
cu
B
cu
t-H
rQ
CO
rH
•rJ.
CO
CO
iJ
to
cu
rQ
cu
X
4J
to
CU
•f-l
4-1
•H
rH
•r4
CJ
CO
U-l
3
01
B
to
4-1
3
,Ti
•k
w
4J •
CT.I
a.
4J
to
o
X
Q
•o
M
<-< -U 1
CD C n !»<
GO a* o
1 C ^ W P-
O CO O i-f tO
in B w >
CN S W 3 60
u-i >-, a) (u (u *o X
O 4-> DO-— ' 1-i OJ ^
•*4 i-< co p ex W CX >
_ii tn £ -H W -rH O
c c.rrO p ai 3 o
TO en p cr IM cr QJ
H U W 01 P. QJ J-l
AJ &£ 1
U) C ^ 1
AJ 3 -H O J-J
^ g -Q p-i Q }„, (u
a. QJ o :-. -u x:
j.: • ex i-i -o c -U
CkQr-H CX J-) QJ O O
3 fl -^ C M O
O be D O C T3
J= O Q> I O 3
iJ O C CU O
o w o QJ .r: S
X « OJ "4 «— i U
t— * O CX4J ,£.. 4J "D
*r4
O Q) AJ 3 *U W
CQ M-J tn »H O" ^s Q) ^
0- O 3 3 GJ ^ r~( S
oo i
co -rf o q
6C WOO
1 1 01 CJ
O W XUJ c 13
O O 4J O 3 .—
O Cu co 3
- CO 6C OJ >M C
O > -H O 3 •
CJ O CO 01 4J 01
C -re CU CU r4 CO 4-1
CO CO CO CC O X 4J
-C CO > CJ E 4-1 iH
•r OJ W CO CU
CU T3 W JO O W
rJ CU CO O 0)
O CU CU 4J B-S CUX
E c oc to m co
3QO > V
UH X XE M
O 4-1 W 60T3 -H
•H cu E q oi 3
tO CJ > OJ 1-1 rH W
^C CO O 4J 4-1 rH 01
C Cu u co u O X
tO CO 0> X OJ r4 U
H CJ W tO rH 4-1 O
OJ
-Ul
CO
C/5
CO
•f-l
o
c
•rJ
rH
H
'
CO
00
O -Q C Vi
in 3 •* o
CNl CO W CU
C 01 13 >
CO >
-C CO 01 G
4J.C Cui-l
flj L1 p. m ij
W CO jO to
0 3 rH 01
E E rH W 00
dj ^J7 ^
n ^U rVl L?
.^T3 C ft!
A: to 60^3 O
C CX )-j CD CJ
co co a. o QJ
E— < U G r— » ^4
CJ
w ^p c w
^0 ^ O O QJ
•,Q C -H
t-l 4J CO •• W)'-'
CD at c ±J *-i c o-
oo > Q> cy *H CL
«! E >S^ O «
O X CX C iH 00
O -f-l CO CO
o
O 0
Ofl
» to
O CO
-3-.0
B CU
CO > •
X co en
4-1 x E
ft) -U U
w co en
E 3 to
UH XX
0 4J t?
T< CU
CO O >
r* CO O
C CU U
CO CO 01
HOW
V
3 u
01 CO
Z 4-1
CO
13
B 4J
co 3
o
-tf
MX
X
•*•( V
W u
o w
r-l
CO
B
CO
-------
CO
4J
q
01
E
cu
i-
~
D
CU
a?
•
a
o
o
N— X
rH
CM
•
1-1
w
PQ
H
01
M
CD
O
4J
C/3
01
1-4
CO
S
u
CO
o£
OC
q
•i-i
•o
a
J
cu
to
o
4J
CO
X.
3
ca
CO
V
cu
1-(
o
cu
-4
U
01
4J
CO
4J
CO
cu
c
o
2
Ol
q
o
•^
i
CO
a
CO CN L,
0 r-» CO
CTv 01
• —i 00
1-4
CO - >s
DC — * I-l
1 CU
c • >
o q o
O CO CJ
-•-) u
0 14
01 QJ O
LI ,-1 -H
O ^ CO
E co co
U-l CO
o q cu
*!-* ^
W -r4
,* x a
C w cy
CO T-* 0)
in tl r-4 O
CU -H O
U-l 4J U-l CU
O co LI
cu -o i
CO LI (U LI
^ 60 00 o
q L, a
CO Li CU CO
H o e >
E' >-
CU > CJ
cu 4J LI i q
LI CO O *U CU
q-H >, CL— 4 1-1 -r4
C03COCOC034JCJ
_q cr > co cr co -i-i
4J CU X O '1-4 3 U-l
&4 LI u-i 0.1— ' S u-i
CU Ol O CO I O1
Ll ^1 > 'i-t Ll 4-J
E *^ cj ^4 Pu 3
CO CU CO -O CO - E
OCT3 Li (i. c > 4J i-|
q i co 1-1 q
•^ • L. -H to q-H
•D-^ O co c 3 S
co CD CL co o co
O OCco O i-l T4 Li^S
—i > ex 4-1 cu o
O c/l CJ g ,£> CT-
CO O CJ — 4 QJ O1 Li
CJ - CO — 1 W CO >
CD O CO U-l O >l-£l CO
OSCN.OM CJ CO COX
1
CO
a
co :>•>
CJ *
CU
« >
i-i o
CO C)
00 CU
O I
O M
O O
- O.
O CO
-3- >
q o
CO 1-1
-C U)
4-1 CO
CU
LI CU
O Li
E-4 .
3 4-1
u-i crc
o cu o>
LI E
co o*
q 4J 3
co 1-1 cr
H o 01
cu - o 3
q i— i q — i 4J L, o C O
CO CO C V4 4-t 01 4-1
CU -H CU CO Q) CJ
4J 0 U T3 -2)1c S
--|>J --q-ococu
— IN-* cu q cu co x
1-1 q IH A, - S
CJ XO 4J CO O X
CO 4J O CO *U QJ «H ^1
3 f-i co too >
oo o c co a>
C O i-l O 4J c «
•r4 q T-i -^ CO
4J q T3 « CO 4J CU
iHCOCOi— IOCJC4J
XL, 01 -H C-H
u-i co B. q q cj -H
Liu-icuEgSCcj
tS^«cj6cSo[2
V*
o
4J
q
CU
1
1 CU I-l
CO > O
CL CO p
U-l CO -C CO
O CJ 1 >
cu • i— i co oi o c;
OO—i 3 3 o. o
co co jo B 1-1 -,-1
LI 00 a E ct)
O 1 CO^M-( 01 >
4-1 O CU 0) i— 1 4-* -r4
w in *o oCi-t co 3
CM 3 co u-i >>cr
>-i r— 1 Ll CO Q)
LI C 0 O TJ
CO CO C 4J CU ^"O
q Jl -H co 00 L» cu
o 4->^-< L, a >
•r4 4J CU > O
4-1 cu >! c E o LI
CD L* 4J (0 ^ CJ p.
4J o T4 1-^ 3 cu a.
co E cj CL co LI ca
0
O I
» cu co c co
o > LI o LI 3 en
<±COCU4J -H O 0 — 1 1 L,
—1 CO X4J 1-4 C O
4J ^-,4 4J O 4J q 1-1 O
cococou-iT4cucoci.ocn
cui4J co — i E co i-iq
r-4 O CO (X O CLl-t 4J T) fl
m w,is co cj i-i j> q «— 4
co X-X co ^4 D* Li I> q oo
C U 4-1 • O CU (X, CU CD C
00 CO 3 —1 P. L, i-|
q — ' LI oo co co 1-4 CL oo— (
i-l 4JqoO>co. q^
O-r-l4Jl-IO>CLCU CJ
— icoq>tNcflcOr-icucoCiO
T3 ~r4 LI rr i-i ro "o 4-1 q
f; CU4J PO>C04J*r-(.
CJr--CU COWT33 CJE
cccccoo-'Ecocuxii-iqco
1
a
c.
CO r^l
CJ Li
01
1—4 O
CO CJ
00 CU
O i
0 >-
0 0
- o.
O CO
in >
C CJ
CO 1-1
JZ tfi
U CO
01
L, CU
e-iJ
3
u-i cr
O 01
CO
q 4J co
CO -H 01
H O Ml
CU
4J
CO
4J
CO
a
q
CO
ca
3
2
3 00 01
cu q o
q q •*•! q
•W 1 00 O O CO
i cu q >*o c 4J oOi-^
cn^i i-icooq co
V V4 CO -1-1 CO S XI
-coijcu in 4J i— o
^ Ol 3 u-i B COO.C •
ON -H 4J C Li ' CO CO ^ CO |
^J — 1 CO U-l .C 1-4 4J 1
"C Li 4J CO 3 CO CM
— I 0 CO OOI-D HUJCU
q c Li 3-D 1-1 u
•co^-i-iooi— 'q *>-i
q^^q 4-iEcjco • tu u-i
CO CO CO T3 q '•^ CU U-l
(->-Q4-)0>4JU-li"4cuolc03
1 Li o O ^ 00 00 CO
cuOaj^T^^ -)-4l-i4-iflj
4-1 O- QJ CT1 O C ^^ O O q
U-ICD 3CU LicOC04-l4-Jq«H
L, 00
cu -a q .
O CO 'O CO U
CO 00-H
00 >s O CO
q co -H o co
TD CO o
CO CO J! -01
O q O LI
•-I • C0, o.
O CO CU •— 1 *H
S *-i-4 Li ^-1 3
cu o * o co cr
*Z CN 0) E "^3 O1
•o
cu
-^ ^
3 q cu •
cr co q — 4
cu .q co
LI 4J q oo
O I
Lt Li o
co cu T; o
o 4J q o
oc co to -
cu o
L| 004J
oi 1-4 q
> CO 0 CO
O j: co £
CJ C O.4J
CU ca eg
Lj 4-1 CJ CU
1 L|
Li 00 • 0
o q — i E
Cu'rH CO •
CO 4J OOU-I >s
> CO 1 O 4-1
1-4 O i-(
CJ XO CO CJ
1-4 CUO .* «
w - q a.
ra cm m ,O
V Lj 01
LI oiO
0 E
E o q-H
«££
c
CD
«,
£
01 O -U 01
M 1 *-* tO C --H
6 (fl Jj c *"* O X C W •*** *H J^ ^4
CU CW CQ -r-) P.^^ O 4-* C AJ A-l 4J O
"4-(t— > AJ iJ CO CO t— " CJ OOCJCQ
(U 3 ^-^^-* oJ-iocrfic^aico ft/
to • ^ 4-1 CO CO Ot *r4 O C ^4
^ ,,_!,_( Kj3 ^ _c C "~^ W «r< CD
O--^c03"D*-i OCJO OJ t— l^i
"'^o-o^.'^Sq^iqo.BE .£
XO O C *H (0 E *H CJ CO tO p pit O
KOOTO4-4^( r-HOJ i-HI^AJCJ^
0 irT5 o Jo -roo'I^e'^O.S^ijS
4-*C C^JiMU-i^tooj^-'O^'cno -^ ?— i
mmcn TOOZJ Ct^1 **-! ^ P. Qi C *H
,, i— _£ AJ jj l-i m TO 4-< X CO '-M C CD CO CO
M4J4JCOC04J4JrDO>«>00>4JL1
i -a
J-i 0) X ^ C ' W
O ^ CJ O CO 1 F-*Jd
p, D c P. p- cy c
O > co (U OC > >C C 3 4^ ^
o u co GO oi cr cy
O ^ 4-) VH toC O 4-J 5 W
_C3 •HW^jX>t^'W
J-. GO C C 0^-t O
>w cn-H ai-Hcota
CO O W 4J (J t*
O J-t X"O t.7 ^3 3 0) 4J O
CL 01 co > C CCO
co >'Do-'-*wato 0
co co QJ -U CX O -H — * -^ OlC
O i
P. U 14
t-j i co -^ O
(0 ^ > CX
GC O * CO CO
i CL cu co ^
O to f *^ AJ
o > a> w o CL
O .C P.-H 01
- CJ & W CJ
O --I O co X
^ CO . ^ "° *
CO C O C
.C 01 QJ CO 01
— 1 P. 0) M fcl •
0) 3-^ (U to ^J 4-1
^ cr 3 a a S O
o 0) cr x cr o
E >-* (0 jQ > JJ
^d co O OT O ro
c CL cj cy c cj o
CO (0 0) J-J CO 0) i— (
H cj ^ CL O k*W
1
(0 o
*J M
CJ -U
i-l 1 01
i_t co E
^J CO
CO CO ••>
^-i «j x C
OS cu B
r-l Q)
I— i t— 1 ^-t ,J^
c c ^ w
O QJ ^ O 0)
r-4 CO CO 3
r-l^l iJ C J3
o ^ -u ca o
CL, QJ Q> 4-1 (0
PQ CO T^ W
< o o as
CO
4-1
cu
CO
_r;
y
CO
CO
CO
B-9
-------
en
4J
C
eu
OJ
|j
ij
D
(7
01
a:
/~N
"
4J
(-H
1-4
o
' '
I-l
1
cN
, — |
W
,-4
CO
HH
<4
H
OJ
OC
CO
^!
O
4J
CO
)J
CU
,-J
CO
E
CO
^£
CJ
CO
££
01
C
>H
13
CO
.3
cu
M
CO
IH
O
4J
CO
.i-
3
00
CO
01
IH
<
01
>
1-1
4J
O
01
^
Wj
U
OJ
CO
4J
C/l
iJ IH
OJ UH 01
XI >
•0 0
C 4-1 CU CJ
JT 3 U IJ
4-1 E 01 1
E ij
cu >>x> O
Ij 4-i 3 CL
O IH en co
E u >
CO JC
UJ CL4J OJ
O eo iJ >
CJ 3 CO •
en Xi 4J
*. -T3 C
Ct-J OJ >J 01
eo CO CL O B
U M CL CL
1 -r-4 01 -r-l
30 3 CL P
ai m CT--H cr
2 CN CU CL OJ
OJ
C
O
2
.
r—4
CO
OC >%
I-l
O OJ
0 >
o o
- o
m oj
vO IH
C U
to iJ
x; en
4-1 CO
x>
OJ
>j CU
0 >
E co
x;
UH
O 4J
en
41 3
oc E
CO
IJ >,
0 4J
en ej •
eo u
3 CL CO
O CO OJ
z o oo
01
4J
eg
u
c/3
CO
0
en
01
C
c
1-4
X
IJ
01
4J
CD
S W
tn
<^S 3 QJ
E >
U CO
i-i -x;
co O
OJ OC4J
4J
co O en
4J O 01
OUJ |J
CJ O<4H
OJ
IH cu ea
1 OOlH
|J CO
0 IH C
O.O O
CO 4-1 -H
> en 4J
a
IJ X |J
O 4J 4J
•H en
en 3—4
-4 00
O 01 OJ •
In en a: u
4-1 O CJ
ex; 3
O 4J . T3
CJ en O
4-1 01 IJ
C 10 -H CL
ox; 4J
iH 4J iH 00
en — < c
en en IH >H
IH OJ O ~H
B IH COT)
CU-HUJ c
i 3 co
|j cr OJ X;
O OJ 4J
CL >H co en
to IJ 01
> C OJ CJ
O CL IH
0-t O 3
4J tn o
>M-I 4J
—i E uj
D. E u O
CL O-H
COCJ E IH
|J CU
en f-« aj xi
OJ O CL B
^H IJ 3
3 4-1 to q
IH C
O IHUH
o u o o
IH Uj
Uj C CO
•H O |j eu
O i-l OJ 13
D. 3 en
en •-! i-* 41
-H oc E
o o u o
ZB. IH en
OJ
4J
eo
4J
CO
•1-4
CL
CL
en
en
i-l
en
en
•~4
S
>, a:
U 4-1 CO
iH CXI
U 01
OJ C IJ
CL CO O
eo E
U IJ 41 IJ
• CL-H 01
—> CL 00
CO OJ
OC IJ.-H X
1 -H t-< |j
O 3-H OJ
in CTUJ >
CM OJ O
IJ T3 O
UH OJ OJ
O OJ 00 ^
IJ Ij 1
in o ai |j
X E E O
C X CL
ro iJ 3 ra
H o en ;>
0)
C
O
Z
X
>J
• eu
l-H >
CO O
OCU
1 0)
O IH
O I
O IH
- O
O D.
-ct eo
>
C
eo O
X;-H
4J en
CO
CU X)
U
O en
& 01
|j
CM IH iH
to O 3
• x; cr
IH cu eu
eo 4J CL
00 en -H >,
I 3 CL IH
O E 0)
in r-4 >
CN IH^H O
OJiH CJ
UH 4j UH cu
O CO IH
CUT! 1
X Ij (U Ij
^ OC OC O
C IJ CL
CO Ij CU CO
H 0 E >
.
cu
c
o
z
>,
1 IH
OJ 01
IH >
O
• O
-H QJ
eo IJ
OC 1
Li
o o
O CL
O co
- >
in
to cj
iH
C tn
to eo
x:x>
4J
cu
01 >
Ij eo
O X
E
O 4J
u-i 4-j q
O cu
*u E
en 0) CL
X. \~i -rH
C IH 3
co 3 er
H cr OJ
OJ
4J
CO
4J
CO
eo
C
CO
4J
C
o
S
ij
IH 01
iH CJ
CO iH
OJ U-l
4-1 O
4J *^
en o
IH
>,4J
XI C
O
•o u
01 1
> c
0 O
iJ 1^
CL4J
CL 3
CD -^
en O
< CL
,
01
CL
iH
CL
I-H
r-4
•f-t
UH
•o
01
oo
IH
01
3
en
cu
en
3
4J
en
3
•£.
>>
IH
OJ
>
O
CJ
01
• Ij
J—t 1
CO IJ
00 O
i CL
O co
O t>
o
« CJ
OiH
H
Uj >,
O 4J
en cj
H, CO 1-4
C CL to
co co eu
H CJ 00
^
o
CJ
^
IH
CO
F-4
o
4J
CL
01
CJ
X
01
OJ
4J
CO
4-1
CO
CO
•a
eo
>
CU
2
§C 4J QJ O -r4
to x; iw "j-i *w v^
f-JCU QJ 4J4JOO-HQJ CO
eo^ xi AJ i-( 3X)Qico -a
OO-H o QJ 4J • cr x; o • QJ
O CT W UJ -r» UroOiUQ; UOCQ'— *
majQj33E *H >-icyo ooco
CsJ JH O-fi O" O O QjlAJiJ r— ' ^ (U 4J 1 4-1
•t-( «H)-ilJX)UOcoQJCflJOtO .
M_i 0) CL QJ •— ' ^ QJCux:CcnOCQJ
O»-i P- Ci-iC WSO^O.H4J
O--HI-IC • O «-< C i-* C CJ4-J • co
«£•— (&,QjC'HCOOr- «.r40O OCM >,*O
.x •»-( x:^-i4-Jx:u'r4 \oc 4-1
c,v-jt4H4-j3 aw UH^C^QJWU^^-IW
fOO O >£>QJ U-i C-—fQJ*HOCJCO
4-» *D T) CQJOTJto 3 cox:
>^QJb£)QJcocCLOQJ4J " -tJ ^t. ^t D, -U
&D 4J oo c &0-H O'--itH&o mcuccto
C-HjH-HV* CJO.CXIH .Xcvl Xl CtJ CO CJ Q)
•r-JCJUCGJ'—' IQJC 4J4J W
r-HCQEOJiSlJ^— '^EtO ' CU WO
r-H CLX: O-Xl >W'~, w t-i
•Hco3O3QJO'HQJpCn3'^CCQJO>
[14 cj w*— 'c/)»-ix:UHr-C
•>CO*<-t<0*HQjiH CD *i-( r— 1 ^-i QJ
r-OQJ XJ^ OC OE»H
rau >N CLCDu.^ta;jHiHXii
ocQJ»H4J.uEJHcacoi-icyjj3C
i SwO-^QJC(J31-'J-'3X:Cl''O
OlU-(<— -CjWWiKCiJWO •*•*
OOOJCj^COJOfOC X>«
»CLQJt04-l-HE e ^* uo-iJx; 4jwtn
Cco«-HC4-'W(/)'Ucn 3-H
COO O-^ 4J3 CXEGC
(O.^^^^tOi-tCg^OX) Q>
X;tni-iQJ.u£Cco o-H >»i-i
4JCOCO>C QJCW WTJQJ
XI M QJO"OE-H QJMWOjXfS
Q» 4J^CjCCLE'^'a-^^4-'C
UQjwoj CD *r-i ro 4J IM E *^ co
O^-r-IX: * 34J'^OQ>3'O
E^tC3'O^crc-^o crc**-<
PQJ O)r— (QJO-^OUHQJCOO
MH cr ^« }HCQ u y >H o (W
OQJ tQJ4JOO C? VJ4-IU
tn comwC*H*i-( cucotjeocy
^•fi >,3w>*r-I>'-tu cox: V-i 3-H-r-l Cu3
c^c GO en cj-i-foa-iy-J cf
CO'iH C W QJ O QJ ^H 3 3 E CO ^ M QJ
H cj<^-)^4J4JOeocrcoEOcoi-i
/-^v
V)
CO
ciO
QJ
>
w
3
^-s
.
o
CJ
^
IH
CO
1-4
CJ
CO
•o
CO
>
41
z
^ 1 CJ
a_4 m ^
C 3 r^ Q) i «
co XI CN > Xl »
e*H co 3 XI
&c c x: w
* C TO AJ u *
C 4J 4J W C
M 3 QJ QJ
*D «rJ V-l E C P-
C X QJ CO v*
CD Q> -u >-, E CL
CO 4-1 tl
C T? QJ •«-* QJ i- *
O C *-• O CLi- <
T-t co 00 to -H
4J CL CD M-<
co 0) QJ CO
4J bD oc U V-i *O
w co co QJ at
in v-: • x: oc
S O O -H 4J l-i
QJ 4-1 4J CO -r-f QJ
S w in oo QJ B
*«4-(
M-l CO O
O ,-*
O W CJ
QJ CO 3 iH *t-l
00 O JH CO CO
CO J-J 4J 4J CJ CO
JH at c ^c&
QJ > -H ;* C
> O C CO QJ
CQ "U CO 4-1 >
>, O 4J CO
c .—i .H "~ ' i-* j:
CO •-* M -H
CO QJ QJ CO 4J
bO-D O.&0 i4 in
C ca 3
1-1 • xi *-i IH gj
-U r-f 4J O O
tO to C J-J ^N
O c>o o w w oj
f-i E ^ N
O I QJ OJ -H
en O QJ I-H I-H to
^ O QJ -i-l *H
a * v-j xi co >*
CQ o x: o JH c
K •
00 O <~i CO
1 Cl-tu GJ-J
O rg i-i to
O > XI Q) D*
o AJX:
- O *H ?O
m f4 3 *
\o w *o i-i
10 » ,XCO 01
O 4J IH en |j
iH QJ 3 3
en cj > en
^ eo O UH en
C a. ej o cu
co co oj O M
H U IH IH D.
r
o
fr° .
IH IH O
u cu cj •• o
4J OO
AS en TJCJ
IJ CU C M
ox; co 3i-<
>H O'-' CO O
4-J ^ en UH
3 en cj en eiH
OJ U O eo 3
Z'S-CA'Z.in
^
Ij
O
>!
3
cu
Z
4J
c -o
.= s
C CO
CL-O
,H C CO 4-J
3 3 C O
V O O C
OJ IH -H
604J en
>, lJ TO -H
I-l Ol 4J
oi 13 en OJ
> C 00
O 3 4J eg
CJ CO JH •
OJ M OT)
IH C 01 4J 01
1 *r4. GO WO
I-l 4J CO 3
O en }-i E I-H
CLi-4 o IH CJ
co X 4J eo C
> It] in u-i -H
}H XX
O V-< ^H 1
^jl-l ,-4 -4
4J 01 CO 03 O
CXi'O 3 >H
cu 3 cr 4J
E • OJ C
O. eni-i o
•H flj co IH O
3 CL 00 OJ
cr-rH x: UH
CU CLO 4-J O
0 O
>Sr-4 O CO
IJ-H . L, >.
01 f4O O <•
> UH -d; £
0 -
CJ -3 C T3 4J
OJ CU CO Q) C
IH OCX! -O OJ
1 I-l 4-1 CO I-l
i-i cu o u
o e en i-< *•<
O-X5 en UH
to 3 cu eo UH
> en — i -H 01
60
C
iH
4J
QJ
01
B
c
o
•rt
4J
3
1-1
f-H
O
o.
iJ
1-1
CO
6C
C
IH:
,—1
«—4
CO
>
o
IJ
8:
to
>•.
ej
c
cu
00
eg
B-10
-------
en
c
1
GJ
t-4
S,
o
01
<^N
•U
o
O
J '
r"*1
ex
CO
M
o
4J
CO
^
4)
,__(
1
e/3
CJ
CO
01
c
«H
•o
CO
3
0>
c
o
z
•O M
eg O
O
C r-i co
CO 0) •
x: 4J o. to
4J CO t-t C
3 O. eo
01 E 01
M ^ B
O XrH
grH-H OI
.H V4-4 4— 1
OC to Xl
C-O "O to
•H OJ 4J
-i . oo o.
•O rH r4 O)
C eg 11 u
eg 00 E U
.c xi co
O 3
CO O 10 *H
*^ O 01
O - CO JC
ego -H 4-1
«2tM > 0
CIM .H
o o x-< -4 u j-i E
«— t 1 OI O OI
CO r4 r-4 C7*
00 O —4 l-i
i o- o oi o
O CO CJ Xl O.
O > co
O r4 4J >
» cj o en
O-H 0. 3 U-i
in to co E O
CXI 4J c
eg oi 1-1 o
4J }-l 01 - 4J
•HX: 13 o
01 3 3 01 3
1* CF CO "O
§01 3 01
r4 • r4
4J CO
U-4 X C -H C
O 4J 01 -H
•H E B
CO O O. 01 4-1
JC, CO -H 4-1 C
C p. 3 co 01
co co cr x*4-*
H c* cu w cj
01
4J
a
4J
tn
eg
a
r-4
o
u.
u
z
01
c
o
z
01
c
.
eg
oo
X
O lj
O Oi
0 >
• o
in cj
\O (U
r4
c
CO U
4J eo
CO
OJ
4J CO
CO 01
01 t-4
003
cr
01 OI
00 r4
CO
O 4-1
4-1 *H
eo cj .
CO k4
1* O. co
O1 CO 01
01
CO
4J
t/]
eg
o
I
z'
_; x
00
•O eg
I/II-H - >
— 1 01 CO
G<* o.x:
4JXI O
01 4J^J T3
E E co
TJ 0
°iJ £?B
j2 eo E °
C O-Xl 4J
H 0 to Xl
01 1
> o.
CO i-l
x: 3
C cru-l
x: eo
E r* 01
01 Q> XI
O *— * O O
E •— i o en
CO 01 Xl
OOT3 1-4 en
C I
"O *— * O 4—4
CO CO CL*— '
O 00 CO
O O
COO 0
0 - CO c
COO to 01
pe; — i
• CO
1—4 •ft CJ 4W
00 CO 01 *O
O Cu C
O — X 3
O ^ 4-1
O co
•*^~\,*£ i-4
in «— 4 o
vO — ' 01 01
C Oi I 3
_r" (o —-4 en
4-t x: xi o;
^
>
h O
O cj
O O.
2 4J
a u
01
oo -a
5 01
egxi
0 3
e4-l T3
O
r-< 4J
4J r^ ^
4J CO CO CO CO
CO M^
4J >-4 O^^ E O. 1-4 •
a> CN QJ co o co
E > 4J ^^ 4-1 > C
QJ o -C eo "CO
4J CJ 00 •> Xr-< E CD
en cu *H en en •— < 01 E
X ^4 0) 01 CO 4J
co S eo OC en T3
*U to C CO X 01
C C XOOi-l 4J CO >
4J MJ^'^'C JJ |J £_
CD CJ iJ^ CD 03 «H bfl CU
(fl y] (Js J TJ (^
C w w i »-i
Ottt>J-JMJ-t-CQJ)-i
c o
rj D---1 > > 3 « O
"O
(U
w >
CO -W
E u a
4j fg
c.*"i 0) i^
VI CJ
i-N^
^^iQ JJ
iM O
tu w
> c -^^
o o n
Q> W
iU W .M
-H O
>-4 E
3 r< O (U -
ai 4J o a. o. 4J
O 3 ki
E E V4 o
o a.
O 4J C >
•H O
^ CO 4J r4
co eg O x:
4J
3
^
cxi
T) 3
S8
x:
O! U
U co
O'O)
<-H
4J
MiH
-^
X*4-4
4J U
•^ eg •
^4 [14 OJ
O 4-1
•H J CO
r4 0) 4J
fcZtlO
O
£
o
eg co x:
> CU 00
O -rJ
x^ 3 01
•^ cu
^4 X •
tO 4_) C
« x: o a)
01
03 1
.C T3 ^ I
r- < « CO OD O
co 3 Q) C •-< >
eo E O. O &. en
I *H *^ I O B)
in .w CQ i-i m B
N B*-1 «^5 -S
O JJ C O «
Ji X 0) « O-~N >^
Sii £f^! ciej.ooi
^ co §'aai 2 o
> o.^ a*u o u
2 u ws^ p w *
Q>
> juifc t*^ |
(Q (— J 4_) »t-(
CQ }-i 3 M-j C ,jQ ^ •'-'
}_j cvg i_< (jj >~j
P i— i • W O >
•t^ i-t E ^ Q
6J3 !0 C Q> tu -,
w o o o M E u
u - w « a,?-? a'
03 O flJ t-( dj O -H
>
^-1 • u
CQ •i-' •» O
&0 C E 0)
| 4> QJ r— 1
o cS •*-* ^^
O "^ -*s O •
- 3 w tn
O cr jj V4
^-j (y ^ o) 4Q
V4 3 a
c u u E co
.C W O 4J
^ 0) CO 0)
Q) M PI^
,U QJ 1 >— 4
O to to OC O
E-H 0 C ^
3 B,i^ u
u-4 o-eo M C
O V > V O
.U j= o
« (0 AJ C
^ X co 3
03 ^H- IM
i-t (j u to Cf
CO-H O
3 o.^ aej«
o
4J
CO
4J
in
E
x:
eg
r-l
0
a)
eo
tw
O
.u
i^e!
n
O
UJ
•o
c
^*
CO I-l
.^ CO 4-1 OJ
^4 *4^ CJ . ***- X C *O •
O OW3O4— icut-iiccn
>-ieo O!tn4JC£coo. O O
O. CXIOC- 3OCOJ4J
> O O.T3 ^ TD r-4 01 4J T3
^* " CO C C QJ CO XU-( *H C
.MfcsO 4-ietJ > OIO
COenoil«iE'HOX:tjctooo
4-1 014JO5 O 331-iC
01OO.Xcoe4-i^ocoO
O* ?* O CO 00 01 *H 00 C 01 iH
eo coCcjcoCtocox:'Ol
1 •"— ^ 00>H CO I-l *H CO O 4J C1J X!
1-4 01H 1—^4— 44J4— 4 01 r— 4CO
ra'x; -H3to-HccoKX:oMO.
^ -o
CO 01 •"-•
oo 1-4 Q
cixi's-o oi|
in tn 01 4-4 -H
k^l rH QJ
c oi^-^ co o 4J
eg > 4J r^ 4J
4-ix; p. Cr- B
0) 4-1 O. "rH
O 3 r-4 ^ -H
E B-H C •»
•H eg C 1
4| | ^,eu 4J CO CO
°ii-o^ ^2
JS n oo "eg o 1
C O. 4-4 C ^
H O E O en t_)
i
O.
t— 4 T4
eg 3
oooi cr
O co
0 r4
-4J 01
P*J D O
E o
DO 01
C. 0) 1^
rH O r4
"c a
to b O
JC 0 .>
co X CJ •
CJ T-l tO C
CO to CO OJ
4—4 1
ooo
i O.
o io
o >
0
- CJ
O-H
^3- CO
CO
CX)
CO
x; cu
01 3 P
IU creo
§01 01
r4 00
"4J X X
O 4J M
•H 01
CO O >
je; co O
c 0.0
CO CO 01
a"
p-j
^
o) o
4JCJ
UP-
E
CO 01
4-1 4J
iH 4J
£§
1 CO
CO-1
rQ «H
I"*
rH-O
O *H
C
3,
0)
o
J^
!>
O
U
01
1
o
CO
>
u
"w
5 h
CQ
o oo
B-ll
-------
tfl
c
4*
c*
J^
•H
O
(U
C£
x*"S
•
U
•t— '
d
o
CJ
>-"-'
1
1
0)
^
^.J
J~H
CQ
f^
9t
m
t-
0
in
Li
cu
-*
•4
TO
B
w
^
u
(0
J^
61
E
•H
•o
eg
3
01
ex
eg
Li
0
4-1
(/)
J!
y
O3
eg
u
Ll
<
01
^4
U)
CJ
OJ
4>4
Uj
•a
V
u
eg
1/3
•
CO
cu
o
1-1
J> •
0> in
T3 fx
O*
fl fl
O
Ll -
Ui-4
•
u c
i eo
Ll "J
o
D. X
eg XI
X
01 fl
4J (X
co B
3 O
er 0
01
•D 4-1
eg co
3
Li E
O
Q
•—1 u
33;
U-I
•0 0
01
oo CD
Li 01
01 Li
E co
3 E
CO CO
iJ
OJ i-l
Ll fl
i-l O
3 &
er o
eu Li
Ll 4J
01
oi E
0 E
E -I
Ll CO
O E
0
• *H
r—t JJ-J
ID 0)
f*4
o eg
O 4-1
in co
- C
fi 1-1
U-I 00
o c
•H
CO 4-1
p^S CO
C i-l
eg ^c!
4J CU
3 *"*
01 fl
Q
U
a.
O eg
U E
O
0) H
C 00
•3.S
E
O
60
01
Ll
O
OI
C
0
z
^
E 4J X
co co Li
E u OJ
CD o: co >
X 4J TJ 3 O
4-1 E 01 B CJ
•H 4J 01
01 CO • Ll
Li X Li fi 1
O fll CO Li
E i-l 00 O
CO.*
1-4 • 4J CN
•Ofl CJ •
co CO Li E i-l 4J
O 00 co co co C
fl fl X CO CU
O 3 4JX B
coo o eg er
OSCN > EX 01
X
O eu
0 >
o o
- CJ
o oi
1
E Ll
co O
x a.
4J CO
>
cu
Ll CJ
§1-4
CO
CO
eg
0)
•a Li
01 i-l
4-1 3 .
CO CT4-I
_Ll OJ E
g
.X --H
E-i 3
eo co er
H 00 cu
i eg LI
fl i fi 01 B
X 01 > E-5
co>x eg o w
E CO OJi-l CO
B B OOPS OOCO
GJ O E ^^ 0!
fii-l 0 (2 Li
OOB X i-l
4-1 eu a oi <
eoosSfi •-
co 1-1 eo XX
01 •> CO E 0) 4J
X ••" Xt> i-l f i E
3 1-1 B Li CD co o
O eo 3 01 CO > e_)
en eg o >
m o eg LI LI cv
1 OI i-l 01 CJ
U XB3 < > C
Mi-IE eg 01
< 01 ~~* 01 Ll
B xx xca s
o eg oo Q) 4J co
•H i-l QJ fl E 1 fl
00 Efi fi 3
a cgfi CD o M E
eg
G
eg
X
CO
B
E
OJ
Cu
E
eu eg
CD o cu
fi O"* X CU
H Ll
eo E eo cu
> CO CD >
CO X 01
4J 4J CO
4-1 O
CO 01 E 01
01 Ll Li
XI O 0 O
e -a B
O UJ 4J 01
O eo XI
01 X
M 4J -O
3 • f<
: co co 3
•o B o
Li E eg u
0 3 Ll
u-i o oo eo
ex o B
fl B 14 O
fl O CL-rl
CD CJ 4-1
U fl CJ
CJ 0-H
COH Ll Ll
E E 4J 4J
O co E co
1-1 oo o oi
u Li CJ Li
CO O
3 Oi O O*
ooi—i 1-1 *o
01 i-l 4J
LI 4J 3 X
eg fi cu
OJfifl j;
4J 0 O 4J
CD > (X
4J 1 U-I
CO E Li-rJ
O-H
EU-I 6
GJ 01 CO
CO CO >
01 C eg B
Li OX 01
(X-H X
co co 2
- 01 QJ
m — i -4
4J B 4-1 •
E 01 E CO
i-l 3-O
O fi O E
(X O CJ 3
Ll O
Ll 4J Ll (X
GJ C 3 E
14-1 0 0 0 •
CO U «-l CJfi
E 01
CO O - CJ >
Li 4J 01 i-l OJ
4-1 4J Ef
1 = CO CD
4-1 X— ' 00 OI
CJ 00 CO Ll 4J
3 o o eg
O OX OJ CO
Li E 4J fi
(XX -H OJ
cj B 4JX
3 oi 1-1 co 4J
GJ 4-1 fl
E co o 4J
4-1 OJ > CD
fl E -r<
ft 0) 4J Li OJ
co Li B GJ co
Li 3 > O
4J 3 O OX
•< CJ CJ CJ 4J
OJ
4J
ce)
ij
CO
01
01
CO
CO
OI
E
E
01
H
X
1 L4
0 0)
O 01 >
O > Li 0
- CD O CJ
fi X 01
01 Ll
c 4j a i
eo eo 1-1 LI
x 3 a o
4-> B a
fl CO
01 Xfi >
Li 4J -H
§1-1 U-i O
CJ -H
CO T3 CO
uw a oi eg
o a OOA
U Ll
01 01 Li •
M • E GJ Li
Cfi XIX CO
CD CD 3 4-1 GJ
H 00 CO O 00
.
GJ Li
E Li CD
CO i-l OJ
X 3 00
4J IT
OJ X
OJ Li Li
Li OJ
O X>
B fi O
•H CJ
00 eg oi
E-0 Li
•*•< I
fi • Li
•O fi O
E co (X
eg .00 eg
X >
O
co O O
'i!0.'co
COO eg
02 CN XI
01
Li
O -
Bfi
GJ U-I
• x o x
fi I 4-1 m
eg LI co £
00 O E Je:
i C^i-* E OJ
o co CD >
O CO 4J
- CJ CO O CJ
OfJ O 4J OJ
m en cx u-i
eg O co U-i
CXI Li-rl 01
CD a. x
X 01 4J •
4J Ll f 1
—I • LI eg
01 3 Li 01 60
LI cr n s
§01 GJ OO
Li OOfi O
O
U-i X XO -
o u LI 4j in
i-l GJ CO
^ CD O pX E m
E CL cj Li co r^
CD co o1 o x o%
E-. cj Li 3 JJfi
*
J
*"rj
* d 6 u c <5 d
ouo o u u
U O 4-1
CO CO 01 CO CO CO
Li CD i-l eg 01 i-l OJ
CDfi >0. > Li CJ
X fi co i-i Li 01
GJ co Li fi cd co 3
eo
01
H
fl COt)
eg oi E
00 -H 3
i I -i O
OX> (XLi Li
in 3 o. oo O
csl CO eg Li X
^ 01 ^ Li
E 01 13 GJ GJ
CD > CO E 00 >
x co 01 3 CD o
4-ix; a. LI 01
•rl •O CO (X B
CO CJ 01 4J | CJ D.
J4 CO M> CO M -H -H
C &. Ll — CO 3
CD CD oj O 3 CD ejr
H cj E *-* X> X GJ
eg u
1-1
• CO
fl CO
COX
00
01
0 >
O eg
ox
O 4J
in co
B
•H 01
T3 Li •
eg o u
0 B E
r-l OJ
Li E
CO o (X
CJ X 3
eg eg er
o! -a oj
.
1 1
c
01
.a
f! 1-1
eg 3
oc cr
QJ
O
O CJ
OH
* CO
in CD
B V
CO >
X CO
4JX
01 U
Li en
O 3
B B
U-l X
O 4J
•H
CO CJ
.* eg
E (X
CD CD
H o
E
3
O
•o
3 •
O 01
fl O
c e
0 eg
4-1 ft
oo*— ^
i-l -H
fi3
Li
< OJ
CJ
-E
eg Li
U-lf,
Li
i-l t3
CD E
b, eg
eg
i-l
E
•H
60
Li
>H
>
O
4J
=
CO
E
O
J^>
3
eg
CJ
Li
(X
CU
x
eg
E
O
CO
CO
GJ
~
GJ
eg
4J
4-1
CO
3
OI
eo
3
•o
E
CO
oo
E
•H
•D 01
E ex
eg CO
X U
CO
• OJ
QJ
00 Li
co O
Li
O B
4J O
CO T-4
01
- CO
4-1 1-1
cj B
3 S
•D
O C
Li 0
CL XI
Li
E co
i-l CJ
O
•0 Ll
oi -a
> x
o
> 4J
C E
•H GJ
fl 01
fl Ll
< 0.
CJ
•H
01 Li
4J U
eg n
CO Q
Li
01 —i
4J O
B Ll
B
B O
CO
B X
O 4J
Oi-l
0) i— 1
i-l eg
Q»
*
2 Li
B
— 1
CO
B
O
O
CO
1-1
2
i
eo j£ oo
fl U-I fl CJ 4J E
flO 3 iHECO fl -H
•H X^COGlE^C i—1
U-ICO C CD B 01 O CO fl
^ • Ll COX1 (X4^ 4J >'iH
*OCf O CO Ol Ll "O CX*H Ll OJ CD fl
3*O '•4JOOO'OJOICOU-l4JC04Jfl
oioificoca>>Li 3 iH
01 ^^LicaOi-14-iELi Old
4-I3C oxcj3Et-io: > n
E CO X4J ai *-O4-i4Jj
CD cj 4-i E LI LI CD ^ 4-i B oi
E4-I01CO ccooo cx^ CJ 3 O >
M CO Ll O_ C13 CP d. CJ1 CD 3 CO 4J QJ
GJ 3 O CO f— ' OeO'—<4-if i4jr cDf,
4J
3 I I
(X Li Li
X E O O III
3*H CO cQfi^XLi OlO OtJLi
O 4J > > fi OOfi O Li O 01 O
LIO -I-IE^ cx»4joo
E X 01 • -u-i-r-l LiUJ O 3 Lir*
x fioiLioima. cj x BON
4JXO4-iO"UO cocox OOXi •
oi-r^ixo.3 cuco -HOCOWO
O"O O -OLlOCJEX XOJO4J
E CXfl COO4-I4J OOC04JCQflQJ
• coco 4-icocoi-ifAc; 3 B
Xr-i>cOE'-iOX fiUX *J
4-1 TO OOcoxi LieocDfiu«fi
1-1 oo oi CX-H oi -— • tx o oiijcn fi
^ COC04-ICO O CO C03U-I**4
O3-HCJ -OJ-iT) •OBOUw
coo 'UQJUO aioo* LI
JCO4J —xxxeoEOi -cofioi
^•^ECDU4JE30CgCO OCfl U-I 3
01
60
eg
Li
o
4J 4-1 Ll
co co eg
3 eu
T?
01 XX
CO 4J L4
egi-l 01
01 CJ >
Li CO O
O D. O
c eg o)
•H O Li
— • 1
• Ll
oi eg (X
i-l 00 CO
i-IO
•o o cj
E .co
O eg
LKJ-Xi
o
Li 01
3 oi &
OJ > CO
•z. ox
B-12
-------
/"V
.
4J
C
o
o
>1«— X
I— 1
1
OJ
i-l
w
I-J
PQ
.-•1
<3
H
0
OS
(1
1
<
1
"
L
U,
01
(Q
4_)
w
• > ,O QJ O
•— ' O E W X^ U
OJ u O T3 O O
tc a; u c c E a
t »-. 3 OJ « >
O 1 — • O QJj ^|
O XJ TO O. ^ >. AJ
o OQtnEcjj^o
u - c. o o E W %
jr w a) co c J2 ^-»
* u eo w CC 3 ^-<
-< Xi w M o a> eo
3 0» CO O T) J3 3
o ^ a) 3 ? cr
o u ^ o i-i ^M4Jq)4-»J-*^-t O
CiJtocoto> *
tO*H(D?s >t— t (U *^
Ho&OwtO«*w*O >
m
p^
CT\
f-4
V)
s
0)
1 Z
B
5
QJ
r-4
0
Ll
*•*
01
Ow
i-i
re
c
o
•H
(U 4J
u a
co Z
4J
W3 *J
C
•fH
^
a
^ 0
3 to
B-13
-------
gives the National Petroleum News 1973 summary of state vapor
recovery regulations. The list includes twenty-three states
which had vapor recovery requirements in 1973 for one or more
of the following points in the gasoline marketing industry:
bulk storage, loading racks, and smaller storage (including
service station storage). These regulations appear to have
been patterned after the examples of emission limitations
attainable with reasonable available technology published in
40 CFR Ft. 51, App. B as a guide for the preparation of state
implementation plans.
Table 1.2-1 specifies the vapor recovery requirements,
the affected areas in each state, and whether the requirements
listed apply to existing and/or new facilities. As Table
1.2-1 indicates, all of the 23 states listed have bulk storage
requirements: 22 states have loading rack requirements with
eighteen specifying vapor recovery gear and four specifying
submerged fill. Sixteen states have requirements for smaller
storage facilities with five specifying vapor recovery gear
and eleven specifying, submerged fill or vapor recovery gear.
B-14
-------
1.2.5 Transportation Control Plans
Because hydrocarbon emissions are primarily attributed
to motor vehicles, the stationary source emission limitations
included in the implementation plans were, in some cases, not
sufficient to attain ambient air quality standards in AQCR's
with heavy vehicle use. In these cases, the states were
required to submit transportation control plans by 15 February
1973, as a supplement to their 1972 implementation plans.
Table 1.2-2 specifies which AQCR's were required to submit
such plans to attain the national standard for photochemical
oxidants (hydrocarbons).
Both stationary and mobile source controls can fall
into the category of transportation control measures. In
general, stationary source controls included in transportation
control plans involve controls, or the extension of controls,
for the various phases of the gasoline marketing industry
including storage, truck loading at terminals, truck unloading
at service stations, and vehicle refueling. In some cases
where such requirements were already in existence, the effective
area of these controls was extended. Mobile source measures
include reduction of vehicle miles traveled, inspection and
maintenance programs, retrofit emission controls for in-use
vehicles, and gasoline supply limitations.
B-15
-------
TABLE 1.2-2
AQCR's REQUIRED TO SUBMIT TRANSPORTATION CONTROL PLANS
TO MAINTAIN THE NATIONAL STANDARD FOR
PHOTOCHEMICAL OXIDANTS (HYDROCARBONS)
Arizona
California
Colorado
District of Columbia
Indiana
Maryland
Massachusetts
New Jersey
New York
Ohio
Oregon
Texas
Virginia
Washington
Phoenix-Tuscon Intrastate
San Francisco Bay Area Intrastate
Metro L.A. Intrastate
Sacramento Valley Intrastate
San Joaquin Valley Intrastate
San Diego Intrastate
Metro Denver Intrastate
National Capital Interstate
Metro Indianapolis Intrastate*
National Capital Interstate
Metro Boston Intrastate
N.J., N.Y., Connecticut Interstate
N.J., N.Y., Connecticut Interstate
Metro Dayton Intrastate
Portland Interstate
Austin-Waco
Corpus Christi-Victoria
Metro Houston-Galveston
Metro Dallas-Fort Worth
Metro San Antonio
El Paso, Texas, Las Cruces, N.M.,
Alamorgordo
National Capital Intrastate
Puget Sound Intrastate
Source: Federal Register 3JL May 1972, pp. 10847-10906.
^Transportation control plan not specifically required.
B-16
-------
The plans for most affected AQCR's involve some combi-
tion of the above controls depending on the degree of the pollu-
tion problem, the pollutant controlled, availability of control
measures, existing local activities and conditions and the expected
impact of specific new measures. Considering all factors, control
strategies have generally followed these priorities: (1) sta-
tionary source control; (2) some VMT (vehicle miles traveled)
reduction measures and/or limited inspection and maintenance;
(3) additional VMT reduction measures and/or vehicle retrofits;
(4) catalytic converter retrofits; (5) gasoline supply limitations
in 1977 (EN-126).
According to an EPA summary dated 1 May 1974, transpor-
tation control plans and/or state or county regulations for ten
states specify vapor recovery requirements for gasoline marketing
operations and terminal loading. Table 1.2-3 lists the states
and the 17 AQCR's involved. Vapor recovery control points include
truck loading at terminals, service station unloading, and auto
refueling. Two stages of controls have been identified for the
purposes of implementing vapor recovery regulations at service
stations. Controls placed on the filling of service station
tanks are referred to as Stage I controls; while controls placed
on the filling of vehicle tanks (vehicle refueling) are considered
Stage II controls.
1.2.6 Compliance Schedules
The Clean Air Act p_f 1970 states that compliance
dates for primary ambient air quality standards are three (3)
years from the date of issuance, or 1975. A two-year extension
is allowed in cases where the "necessary technology or other
alternatives are not available or will not be available soon
enough to permit compliance within such three-year period and
the State has considered and applied as a part of its plan
B-17
-------
CO
CM
rH
W
rJ
rQ
id
to
O
W
Z
M
rJ
P,
c
O
H
R SERVICE SI
v_>
1
o
<*
I RECOVERY
O
Pw
,_,
M
fa
.J
•<
r-l
H
z
O
AUTO
REFUEL
d
CO rJ
w <
HZ
Qfa
)MPLIANC
fITIAL
NLOADING
CE STATION
^g
o w
2*
D<
CM
O
rl
g
O
o
ON
Sacramento
Valley AQCR
r—
CO
IA
5
VD
O
M
O
O
O
ON
VO
r-l
CO
r-l
VO
rH
O
rl
g
O
g
ON
tM
O
rl
G
O
o
g
ON
O >N
i-j a)
r-l
Cr-l
td rt
f-»
co
m
J
VO
-------
.j
«!
z
CO M
CO fci
w
E-i
<: rJ
0 2
n
U H
O M
Z Z
r-l <
£ Pi QH
g W « J
W W
0 OH
o P
W 0!H
3 H <
fyr)
g
Pi CO
< O
> gH
O 04
W >i
££
»
i-4
p^
^
r—
iH
m
iH
O
rl
4-1
g"
O
e-s
0
co
vo
p-
^s»
rH
^_
en
•tf
p-
rH
m
rX
rl
O
o
CD
rl
rl
O
a
CO
>
B-S
O
OV
4J
0
6-S
O
ON
c
Co. of Mario
Indianapolis
•)!
•1C
.jc
CO
S
CO
•rl
•o
M
en
•a-
p^
•^^
rH
^^.
rH
C
1-1
0) CO
C 4-1
•H rl
rH CU
O
:•
4-1
CUT)
rl CD CO
rl 0)
rll-l O
O 3 rl
acr 3
CO CU O
> M CO
•o
rH CU
0 rl
rl 1-1
4J 3
C cr
O CU
O rt
. i c
WJ-H O
a) 4J -a 4-1
rlrH C M
CO CO C •
cu PQ i-l m
4J a> j3 «
CO M rl CO CU
4-1 O Q CO rl
ta«n S 3 rt
•a
C
CO
t— i
>,
rl
S
r*»
p-
rH
en
in
0
•o
rH CU
O rl
rlfl
4J 3
C cr
o cu
U rl
• C
MO
CU U
rl CO
O
cum
4J rt
rt rl
>•-
CO
c
c
1)
CU
r»
r^
rH
en
in
in
p^
rH
en
en
rH
0
rl
4-1
C
O
U
B-S
O
Ov
VO
p~
-^
iH
en
**^
in
in
i
en
en
in
rH
O
rl
4J
O
U
B-S
O
Ov
rH
O
M
4-1
O
U
B-5
0
Ov
1
CO
v?
in
P-.
rH
en
en
rH
O
r-l
4-1
C
O
0
B-S
O
00
VO
p-
--.
r-4
en
~v
in
in
rH
en
en
in
rH
S
4-1
g
0
irS
O
ON
r^
O
rl
4-1
g
0
6-5
O
Ov
J3
4-1
rl
O
S
4-1
h
01
CO
rH Kl
rH O
CO O"
0<
P-.
P~
rH
en
in
in
p~
rH
cn
* —
m
rH
0
rl
4J
g
O
r«
o
ON
v&J
P~
-^
rH
en
—
in
in
P^
rH
en
en
in
rH
O
rl
4->
g
O
B-S
O
ON
O
fc
4-1
C
O
O
l>«
O
Ov
OS
o
?
San Antonio .
-------
/^*\
*
4_J
C!
o
C_!)
s^*
<-»^
n
1
CM
I—I
a
PQ
^f*
t-'
,
cO t-l
w
H
Q ^
M
W H
CJ HI
13 2
< rH
r-l
£ o
o z
O r-l
O rJ
S S
r-l <
I* OH
W -l O r-
W p:
> be! W
O OH
CJ D
S H<:
O
Sc c
^2
H ^
COO
O
z#
o ^
1
TRANSPORTAT]
CONTROL PL/
w
H
<
H
Lfl
in
^^
r-l
rO
m
•d-
r-l
^
in
r-l
O
rl
4-1
O
o
6**
o
en
r-l
8
4-1
rj
O
CJ
8-S
O
in
r-l
CO
in
-d-
~~
f—i
r*.
r-l
O
4-1
O
U
0
co
in
.^
i
C
m
r~
r-i
^
in
r-l
O
rl
4J
G
0
u
g^O
o
en
r-l
8
4J
G
o
CJ
g
cn
£
r-l
in
^3-
r-
-^
i—l
vo
r-l
O
rl
4->
§
CJ
O
en
^
^^
r-i
cn
P.
atl. Capital
nterstate
Va. portion)
Z M ^^
cti
C
•rl
rl
>
re che same except for the exceptions described
CR's.
« cy
&:
CU CO
> X
O cu
OH
V
M rl
O
rl >W
O
P. CO
CO CU
> 4J
CO
%'°
•rl 01
44 CJ
« C
4J CO
CO -H
r-l
cu a
O H
•rl 0
e°
CD 01
cox!
u
bO
•^^ O
H QJ
01 B
0 o
C 01
O
C) rl
O
CO >4-l
Pu "O
H ccj
CU "
r-l
l-l CU
cfl
in
01 co
e
0 -
CO
O
rl CD
a cu
4J
0) O
x c
H 4->
O
He <4-i
>,
h
r-l 4-1
CU
co IH
CO O
01
> 4->
»•&
rl-H
01 01
> r*
•H
rH ^
01 J3
•o
44
C G
01 01
•O CJ
CO rl
r-l CU
(X
rl
OO
pxcn
«
> 44
CO
01 CO
rj al
Hr-l
44
- CO
CO
Xrl
co cu:
CO > •
O bo
4= 0 C
CJ 01 -rl
•rl rlr-l
43 r-l
3 d-rl
COlt-l
C CJ W
O rl
•rljS
co CJ 00
•rl -rl G
>X!-rl
0 > Vl
rl 3
CX0T3
CU
CO 4Jr-l
co eu
0) Xco
> 01 CO
CO 01
43 >^>
M
co eu X
- > rl
CX, 0 0)
O CJ >
H 0) -rl
rlr-l
C 01
•H MT)
O
co a. at
gc043
> 44
44 CO 0
CO O
r~^ *C V-l
3 4414-1
OO-rl
B
CO 01 O
n) r-i cj
Mr-l
•rl CJ
l-l >4-l -rl
r-l CU C
< rl CO
bO
•i< 0) l-l
•it 43 O
cn
cn
r-l
m
o
n
„
co
cn
M
01
44
CO
t-l
bf
cu
PC!
r-l
CO
^)
01
•o
01
G
o
•rl
44
CO
O
C
•rl
*4-l
0
cu
CJ
rl
3
O
CO
*
^
*
overy regulations :
u
0)
rl
rl
O
a
2
G
O
•H
44
CO
44
01
01
o
•rl
rl
01
CO
bO
G
•H
Vj
01
•o
•rl
CO
13
0
O
01
t-l
CO
CO
01
i-l
44
G
3
0
CJ
CO
•rl
e
o
m
•rl
l-l
CO
CJ
bO
C
•H
O
r-l
O
U-l
CU
43
H
r-l
Q
O
Si
O
O C
44 CO
Ci-l
eu o
B co
co i
rl 0
CJr-H
CO O
CO |X
C
•H
3
cr
CO
0
h-j
G
a
cn
o
gp
cu C
M 01
fa ^
•4H
o
CO
(U
•rl
44
§
O
o
G
•rl
CO
CO
pf)
44
01
CO
O
CJ
A
44
3
o
CO
O
G
•rl
T3
rl
CO
5 CO
01 rl
« 3
44
C C
co eu
co>
CO
n
CO
01 M
•O efl
•rl fO
CO
rl CO
01 44
r* C
pt! co
CO
OJ
I-l
CU
bO
13 01
< bO
co cO
O rl
rJO
.at exclusively service delivery vehicles that
:nce system will not be required to have a
43 CO
44 rH
CO
CO 43
01
•rl rl
44 O
•rl
r-l C
•rl rl
CJ 3
CO 44
fa
tOT3
•rl CD
13
O 3
<4-l 0"
i-l 0)
l-l rl
CO
U <0
01 CU
43 r*
44 CO
43
c
•H 4-1
O
l**i C
l~*
C Q
0
CO 4-J
CO 43
0) 44
O.
Ou CO
cd »i
a ft)
•rl 00
0 rl
rl O
a4J
CO
60
C CU
•H O
O >
r-l M
r-l 0)
O CO
M-!
43 ^
H 44
• pj
O» i4
g
44
CO
CO
rS
rl
CU
>
o
u
01
rl
rl
O
&>
CO
>
B-20
-------
•o c eu
4) Oft
4-1
C
c
CN
r-1
W
hJ
CQ
rH 4J O
•rl 10 4-1
<4HrH
4) 3 to
rl 60 B
41 01
01 M 01
43 CO
60
W B 41
JrfiH |H
CJT3 01
3 CO 43
rl OH
4J|-H
X*CJ
rl -rl M
01 3 01
> CT-rl
iH -rl 4J
rHrH -rl
41 rH
•O CJ -rl
iH CJ
C B to
0) co MH
•O 60
tO rl X
rH O td
1 -O
vi cu **^
O43rH
CXH CO
CO 60
•O
^•1 ^O
rH CJO
eg c -
cu o
4J iH CM
10 O
43 iH 4J
4JMH Id
VH
CO 01 X
01 rH
IH 4J B
iH B O
3 01
cr o t>o
01 IH C
rl 01 iH
p.-n
p, (jj
oo o
t-4 O^ »~~l
043 A!
•at! o
10-H 3
rl ^ rl
O 4-1
rH-a
0 01 60
0 > B
01 B IH
43 4) 3
4J f-i *O
B 41 to
-rl 43 IH
O
B B a
O eg to
i-l CJ >
4-1
tg coin
rH |H O
3 0
600.B
41 10 O
rl > T-l
4J
rH-O CJ
O 41 01
H OrH
4J tg rH
§rH O
CXO
O CO
•H 4J
ri-a c
O 41
(X 41 O
«43 IH
> 4-1 41
a.
Vl 01
41 rlO
«H 4)0
1043
C 3 «
td 41
IH co M
4J 4)-rl
i-l 3
4i 4J cr
(3-rl 4)
1-frH rl
rH >rl
OOP*
to eg o
tOSH EH
60
4J CO
1 X£
• B B
m OtH
01
^
a)
r3
x
CJ
i
Cu
0)
IH
CJ
to
i-l
T3
CO
4J
Q.
IH
eg o
CO
14H 43
O 10 :
60 M
4J - C3_O
iH O rl"
co -H 41 *a
C 4J > rl
OO.OO
O In CJ 3
o
C to co 01 IH
COT3- 43 41
O td {LI H 4-1
r U co
CH i-l
B cd • M
01 cu /*** 01
4-1 043 BCti
CO 4-1 4J O
X iH rH
CO rl B 4-1 Cd
0 5 Vl |H
01 IH O 01
43 ^ M-l £X*a
4J B 01
tO 13 'Dfe
4-1 4-1 01 Z
td 4-1^ -
43 604-1 <
4J E i-l tti I--
•rl SUCy>
tO 10 O CTrH
X B ^
cd 0) to
CO CX'rl 01 00
CO 4-1
S -H; cd X
01 T3 H 4-1 Vl
4J O CO tO
to cu: l-i 3
X43 0) IH
to 4J 13 4-143
rl B 01
C O O r-H PL,
O4-I?
•rl 4J 0)
4J CU 01 343
CJ O43 O 4-1
0) to H i-l
r-H HH 4J B
i— I IH O iH
o cu : eu
O 4-1 • C "O
B 4J B 01
IH -H B O 4J
O 1) O CJ
(X^r-H 1 CU
td U td ^i l-i
> 01 > Z IH
43 i-l 1 O
60 3 *-> CJ
B IH crz
•rl 01 01 CO
r-Hr-l -O Id
41 iH CO B 3
3-H 4J tO
<4HM-I i-l B
CU 1 - O
IH 0) tHOdlH
r-H O O CO
ON O- to
4-1 N S < -rj
300) B
CO B 4-1 B O
CO O
CU rH X4-1 to
42 rH CO 01 iH
4-> i-l O43
"4H C P3 4-1
60 O
(3 01 -H B 4->
•H 43 4J Cd 3
C 4J CO 4-1 43
tH CO-rl
01 6 CrH -
cj o cu o to
B IHTJ tx-
o<4H c o a,
0 O (HO
CU O 4-1 H
to B i o)
- i-l C S co
CXirH O <0
o 1-1 - x
H £3 4J Pi 0)
C tOO H
4J 3 l-i Cf
co 4J cu <; B
O 0) 60 O
B Vi i-l IH M
rl 01 UH
M-4 Vl *4H £>
O O 4) B "O
O. Vl CU 0)
hOrt Q 4J
C J* - 4-1
•rl C E ft
•a 4-1 o cd B
M43 -H 4J O
O 60 4J -rl
3 *rl Cd rH C
4J Vl O CU
01 1 CU O. -rl S 43
CO
_
CM
CJ
H
CO
C
o
rH
rH
CO
M
O
O
O
rH
B
CO
43
4-1
Vl
0)
4-1
cd
4)
•u
60
X
4J
•rl
CJ •
to X
CX 4-1
tO-rl
0 0
CO
H) C^«
CO
43 CJ
4-1
•rl B
3 O
COr-H
rl CO
01 OU
B
•rlO
co m
4J C^4
B
O c
o td
0) 4-1
60
td IH
IH 0)
O 4J
4-1 CO
to 01
M
^"> bO
in
C014H
C 0
O
iH CO
4-1 IH
4-1 B
tO iH
CO
C 4J
°§
rH CJ
Sc
4J O
B
O^-i-
Cl O
M
a) 4J
IH B
•H 0
3 O
cr
0) 4)
IH V4
•H
co 3
- cr
CM 0)
u w
H
CO
CO 4)
tO 4J
X to
41 4-1
H to
01 iH
CO 01
CO 41
Vi IH IH 41
O O O M
CX tX1" O
eg eg 4) B
*a
o co xai
•ri eg o 4J
B BO)
eg 43 4) M
60 O-rl (X
iJ 3 O U
O «0 -rl 0)
I4H 4J
41 ->W B
r-l IJ CU-H
41 O
•gg-|3
41 l*H O O
4-1 O 4) IH
CO rH 4J
X tO r-H C
CO rl O O
4) O O
i-H >4H
eg cos-5 4J
eo BO B
CXrl CJ
CO 4J B rl
iH eg 4)
•O 0)43 (X
4-1 4-1
IH eg X
O-rl |H 4J
(x*a cu 01
CO 41 4-1 B
> S COiH
H 0) 55
to a) IH
4-> 60
O B
4-1 M 43 4-1
0 B
•a 30)
01 • £ 'H
4J X CJ
SO 4) i-l
C -H>4H
> 0) -rl<4H
•H 3 0)
4i o cr o
MH rHO
HMH C^
iH 4) X
eg eg co
SB 1-1
_ •
S-rl - B CO
4J CO 0) B
OrH 4-1 O
V4 4) 01 CO iH
O rH CO X4J
(X— 1 CO CO O
eg o cu -H
> 0 > 01 -O
4-1 eo
•O 4J XOI-rl
01 43 IH rH )H
O 60 01 tX 3
eo -ri > B -~i
rH 01 -rl O
ex t* •-< o IH
to 01 01
-r« x~o cu 4:
•O 41 43 4J
O 4J O
rH 4-1 4-1
rH B H C
eg oi^; O-H
4-1 rl Cd CO
eg cu 4J rH -ri
43 (X td
4-1 B tO 4J
O O O-rl
CO O -rl CX
01 4J CO B
IH eg eg -ri co
•H 4J-O43
3 43 co 4J
41 -H 0) O O
IH 3 0 a W)
•ri to eu
00 4) IH Q
41 |H CUrH
•rl 4) CO rH E
o > to S
O B IH CO
B U O 0)
CO 01 rl > B
en n>4H o-ri
43
-------
reasonably available alternative means of attaining such
primary standard. . ." (Clean Air Act o_f 1970, Section 110(a)
(4) (e) (1)). As indicated in Table 1.2-3, the two year exten-
sion has been allowed for the implementation of vapor recovery
regulations at service stations in some states. In general,
Stage I controls, related to the filling of service station
tanks are to be implemented by 1 March 1976. Stage II controls,
related to the filling of vehicle tanks, are scheduled to be
completed by 31 June 1976 if they involve 80% control and 31
may 1977 if they involve 90?0 control. Compliance dates for
Stage II controls are currently under review by EPA.
1.2.7 Standards of Performance for New Stationary Sources
The procedure for establishing standards of performance
for new stationary sources is much the same as that for establishing
ambient air quality standards. In this case, however, categories
of stationary sources are the subject of regulations as opposed
to specific pollutants. New or modified sources within the
designated categories are expected to achieve the maximum recovery
possible with consideration given to industrial processes, their
operation, available control systems, and costs.
Thus far, storage and loading facilities at new or
modified petroleum refineries are the only gasoline marketing
operations under standards of performance for new stationary
sources.
B-22
-------
2.0 COST DATA
This section presents detailed cost data for the
vapor control technology discussed in this report. These costs
are subject to continuous escalation. Therefore, dates have
been attached to the cost data where possible.
Tables 2.0-1 and 2.0-4 report the capital and in-
stalled costs of several tankage vapor controls. At the bottom
of Table 2.0-1 are the bases for calculating operating costs
as functions of capital costs. Operating costs for tankage
controls are reported in Table 2.0-5. Table 2.0-6 presents
the differential investment and payout of various tankage con-
trols .
Table 2.0-7 presents the costs of top and bottom
loading vapor control equipment for terminal loadings racks.
Tank truck vapor recovery equipment costs are presented in
Table 2.0-8.
Costs for terminal vapor recovery units are reported
in Table 2.0-9 and 2.0-10. Table 2.0-10 also includes vapor
holder costs, installation costs, operating costs, and statis-
tics on terminal vapor recovery.
Costs for service station vapor recovery equipment
are reported in Tables 2.0-11 through 2.0-14. Table 2,0-1.1
covers delivery-related vapor recovery equipment for service
stations. Table 2.0-12 is concerned with the cost of secondary
vapor recovery units. Table 2.0-13 summarizes the cost incurred
by eight companies in installing and operating direct displace-
ment systems and Vaporex vapor control systems. The materials,
labor, and equipment costs contributing to the installation cost
of a direct displacement vapor recovery system are itemized in
Table 2.0-14.
B-23
-------
TABLE 2.0-1
ESTIMATED INSTALLED COSTS OF STORAGE TANKS
Nominal Tank Capacity,
Barrels
50,000
100,000
150,000
Size
90' dia x 48' 120' dia x 48' 150' dia x 48'
Installed Costs, $
Fixed Roof Tank 161,000
Pontoon Floating
Roof Tank 176,000
Internal Floating
Cover in Existing
Roof Tank 34,000
257,000
279,000
54,000
379,000
403,000
68,000
Operating Cost Bases
Maintenance
Depreciation
Property Taxes
Insurance
Corporate Overhead
Gasoline Loss
SOURCE: MS-001 (1972)
@ 2% Capital Cost
@ 10% Capital Cost
@ 17» Capital Cost
@ .5% Capital Cost
@ 3% Plant Level Cost
@ $5.50/Barrel or $.131/gal.
B-24
-------
TABLE 2.0-2
SOURCES OF COST DATA
VAPOR RECOVERY EQUIPMENT FOR CONE ROOF STORAGE TANKS
Buffalo Tank Div. . Bethlehem Steel Co. ,
Supplies Floating pans covers made by
others. Price not given.
Chicago Bridge and Iron Co. Weather-
type internal float-cover, steel. Vapor-
phere for four or more tanks. Prices not
given.
Graver Tank and Mfg. Co., Div. Enviro-
genics. Vapor miser, ground-based vapor-
collecting tank with bladder-like device.
Custom-built to individual storage. Pan-
type internal cover of 3/16 in, carbon
steel. Turnkey job, depends on size,
distance from supply point, labor.
Mayflower Vapor Seal Corp. Vapor Seal
internal floating roof of aluminum deck
on pontoons. Can be small as 10 ft.
diameter up to 285 ft. diameter. Turn-
key job, from $1500 for 10 ft. cover,
up to $110,000 for 285 ft. cover.
Pittsburgh-Des Moines Steel Co., Hammond-
flote IIinternal floating cover of
urethane foam as core covered top and
bottom with reinforced fiberglass poly-
ester resin; for 10 to 215 ft. tank
diameters. Turnkeys job with price
depending on tank size, freight, labor.
Innerflote internal floating cover of
3/16 in. steel plate on upper and lower
deck, with center of structural supports.
For any diameter tank. Turnkey job, price
depending on tank size, freight, labor.
B-25
-------
TABLE 2.0-2 (cont.)
Buoyroof (new product), floating roof
of steel installed in open tank top.
Can be added to cone-roof tank after
old roof is removed. Any size tank.
Turnkey job, price depending on tank
size, freight, labor.
Qlin Corp., Aluminum Div., Vaconodeck
internal floater(replaces Aludeck
floater); aluminum structure covered by
aluminum sheeting supported by aluminum
pontoons filled with rigid, fire-retardant
urethane foam; size from 0 ft. diameter
up to 214 ft. Turnkey job, from $1800
to $2500 for 10 ft. tank (depends on
shipping charges) to about $80,000 for
214 ft. tank.
Floater cover, fixed roof installed over
existing floating roof, aluminum; for
tanks 25 to 85 ft. diameter. Turnkey
job, prices from $10 sq. ft. for smaller
tanks to $16 sq. ft. for higher tanks.
SOURCE: BR-163 (1973)
B-26
-------
t-J
CO
1
0
'
CM
w
,-J
PQ
<£
H
.*.
^
O
M
H
CJ
j — 1
pi
H
CO
13
CO
H*4
z
52
H
pl_|
O
O
Pi
P
w
M
Pn
•
CO
fe
0
0
Pi
0
Z
M
H
<^
0
i-J]
Pn
1
CO
H
z
W
s
t-i
CO
w
H-1
O
CJ
PS
H
pi
o
H
CO
O
CJ
•o
H
1— 1
[•TI
O
Pi
H
Pi
O
H
H
CO
O
o
Pn
0
o
Pi
P
w
X
M
p^
CO
£>
[T(
o
o
pi
o
z
M
H
O
,_]
P>4
<
i
O
£x^
53 MIX,
f
li
H
w > >
-(- -j-
P E3
W M fe
Pi
H
PJ
0
O
o
Pi
b >-i
CJ PL,
h
f
2
O
O
o
o
4-
O M PJ-I
0
H
[-1
4-
pi
PJ
w <; >
H
O
2; J
h
H
fr ,
O
o
CJ
O O 0
o o o
oo m o
.,
CM >-O CM
r-l
P P^
PJ M Pn
Pi
H
W <1
S.
J^
>
O
o
o
Pi
O hJ
CJ
PJ
N
^ |
CO
|v|
z
-)-
O
0
o
»
m
CM
>
-f-
o
o
o
-
CM
CM
•co-
o
o
o
-
CM
^ct~
•co-
0
o
0
.
o-
un
o
°"
i
o
o
o
-
CO
CO
•co-
-)-
o
o
0
-
r--
CM
-------
Q W
W Pn O
XO
M O Pd
O
O
O
CO
o
o
o
w w
.-4 t^U/ ,
PQ U M>
£> W P3V
O Q PM
Q
O
O
O
m
o
o
o
o
r-
2
O W
OUx-v
H M-crt-
iS Pd^
O PM
PM
o
o
o
•t
00
o
o
0
00
W
H
fn
O
CNI
W
J
PQ
3
en
W
o
o
H
en
H
en
o
w
en
o
Pi
!=3
w
o
W
CJ
PM
o
o
o
o
o
o
Csl
o
o
o
00
o
o
o
•-,
00
m
w
H
PM
M
W
M
o
W
O ^-s
I—I >
&^s
PM
W
Pi 3
o o
o
o
o
o
o
o
00
o
o
o
Csl
o
o
o
00
CN
cs
o
I
o
>
p
O
O
O
O
O
O
o
w
o
o
en
B-28
-------
TABLE 2.0-5
SUMMARY OF ESTIMATED OPERATING COSTS
FOR GASOLINE STORAGE TANKS
Tank Capacity, Barrels
Annual Operating Costs, $
Fixed Roof Tank
50,000 100,000 150,000
29,000 48,600 72,200
Pontoon Floating Roof Tank
25,000 39,500 57,100
Internal Floating Cover
(In Fixed Roof Tank)
28,600 45,600 66,000
Annual Operating Cost, $/1,000 Barrels
Fixed Roof Tank
600
490
480
Pontoon Floating Roof Tank
500
400
380
Internal Floating Cover
(In Fixed Roof Tank)
570
460
440
SOURCE: MS-001 (1972)
B-29
-------
TABLE 2.0-6
DIFFERENTIAL SAVINGS VS DIFFERENTIAL CAPITAL
INVESTMENT AND PAYOUT (BASE CASE - FIXED ROOF TANK)
Tank Capacity, Barrels
Pontoon Roof
Differential Installed
Capital Cost, $
Differential Net Savings
(Before Tax), $
Differential Tax, A 50%, $
Differential Savings
(After Tax), $
Payout After Taxes (yr)
Internal Floating Cover in
Existing Fixed Roof Tank
Differential Installed
Capital Cost, $
Differential Net Savings
(Before Tax), $
Differential Tax @ 50%, $
Differential Net Savings
(After Tax), $
Payout After Taxes (yr)
SOURCE: MS-001 (1972)
50.000 100,000 150,000
15,000
4,900
2,450
2,450
3.80
34,000
1,300
650
650
8.40
22,000 24,000
9,100 15,100
4,550
4,550
3.26
3,000
1,500
1,500
7.83
7,550
7,550
2.41
54,000 68,000
6,200
3,100
3,100
6.87
B-30
-------
TABLE 2.0-7
SOURCES OF COST DATA
LOADING RACK VAPOR RECOVERY EQUIPMENT
AMB Div., Aeroquip, Vapor-recovery dome
assembly conversion kit for any 4 in.
conventional top-loading arm, mechanical
seal. $350,000. Top-loading vapor-
recovery loading assembly with automatic
shutoff, interlocks, pneumatic or hydraulic
seal. $2500-$3000.
Chicksan, Div. of FMC Corp., Top-loading
vapor-recovery arm, pneumatic control
for sealing to hatch. About $3000 for
4 in. arm; involves some custom design-
ing. 6 in. and 3 in. arms also available.
Emco Wheaton. Top-loading vapor-recovery
loading assembly, mechanical seal. $1700
FOB. Bottom-loading assembly, metallic
hose, $1290. Bottom-loading A-frame as-
sembly, $725. Vapor-recovery coupler,
4 in. $204.
Ever-Tite Coupling Co., Supplies various
couplers for loading lines, vapor-recovery.
From $1500 FOB, depending on size. Bottom-
loading assembly, cross-over type, $1000
FOB per arm. (Does not include vapor-return
line.)
Parker Hannifin, loading hose coupler,
4 in., $294.50 list FOB (matching vapor-
return line coupler supplied by user).
Top-loading tight-fill system. (Includes
mechanical manhold seal, loading-hose
adaptor, electrical relief valve, vapor-
return adaptor, electrical con.necc.ion for
float switch as backup to pre-set meter
filling to prevent overfills). $750 list
FOB.
SOURCE: BR-163 (1973)
B-31
-------
TABLE 2.0-8
SOURCES OF COST DATA FOR TANK TRUCK VAPOR RECOVERY EQUIPMENT
Emco Wheaton
Vapor-line adaptor, 4 in. $ 98.00
Vapor-line coupler, 2 in. 30.00
Coaxial loading-vapor coupler 134.00
Slow-flow/fast-flow valve 165.00
Bottom-loading coupler, 4 in. 233.00
Vapor hood, emergency vent 57.00
Ever-Tite Coupling Co.
Supplies various couplers for
delivery hose, vapor-return
lines.
McDonald Mfg. Co.
Delivery-hose tight-fill connec-
tion, 4 in. 60.00
Vapor-return line tight-fill
connection, 2 in. 26.00 - 30.00
OPW Diy.. Dover Corp.
Vapor-line coupler, 2 in. 69.50
Combined product-vapor coupler,
6 in. 121.50
Single-point product-vapor
coupler, 4 in. 121.50
Delivery coupler, tight-fill, 4 in. 50.10
Loading vapor-recovery system From 80.00
(depending on
size)
Parker Hannifin
Leading-line adaptor, 4 in.
List, FOB (user supplies his
own vapor-line adaptor). 160.00
Float switch. Price not given
Emergency vent (includes
vent, hood, linkage to in-
ternal valve) . List, FOB. 185.00
Drop-tube deflector. List, FOB. 11.86
Philadelphia Valve Co.
Super valve, 4 in., balanced
and air-operated, used with auto-
matic high-level shutoff in load-
ing. 473.79
Float valve, air-operated. 157.69
Float switch, magnetic, high-level 83.38
Vent, 5 in., used with 4 in.
balanced super valve. 96.06
Hood, vapor collecting, for vent. 79.75
Super valve, 4 in., with 5 in.
vent. 435.00
Manhole, spring loaded for 5 in.
vent. 188.50
SOURCE: BR-163 (1973)
B-32
-------
TABLE 2.0-9
SOURCES OF COST DATA FOR TERMINAL VAPOR RECOVERY UNITS
Gulf Environmental Systems
Vapor-recovery system,condensing
type, skid-mounted, FOB, depending
on size plus installation. §75,000 - 80,000
Parker Hannifin
Vapor-recovery system, absorption
type, skid-mounted, FOB, depend-
ing on size, plus $25,000-$80,000
for installation. $60,000 -175,000
Rheem Superior
Vapor-recovery system, absorbing
type, skid-mounted, FOB, depend-
ing on size, plus installation.
$68,000 - 99,000
Southwest Industries,
Eiv. Ingersoll Rand
Vapor absorption-type converters.
Seven models with capacity to
handle vapors in loading from
30,000 gal. daily. Requires extra
cost vapor holder. Price not given,
but work is done on turnkey basis.
Vaporex
Vaporex condensation system, skid-
mounted. Requires no vapor-holding
tank; biggest unit eliminates need
for floating roof on storage. FOB,
plus installation. From $75,000 -200,000
Vaportrol VS-1 system, cooling-
condensing type, 4 ton capacity,
FOB plus $6000 installation for
existing aboveground storage. 4,000
$2000 FOB, plus about $2500 in-
stallation for underground storage.
AER Corp.
Custom-built to terminal's product
throughput. Capacity range from
50 cfm to 350 cfm. From $20,000
to $50,000, FOB, plus installation.
SOURCE: BR-163 (1973)
B-33
-------
SU
U
JC «
u —i
2C
n
! s
u u
SoS
PO
V* C u*i «
o a*-* •
«• i o
** cc» u
M <• O*M
o
r-t
O
CNJ
TABLE
^V*
|5!
S
CO
H
M
B
r^
W
O
O
Pi
O
P-4
^
^3
a
El TERMI
o
Fn
CO
u
H
CO
H
H
CO
Q
CO
H
CO
O
u
X*J
I* U
n rt
u o
0
a
MT)
^
a
1 1>
a.*0 M
V O
h CO
&, o
V 4J *J
•^ M C
W •» M
u*
««?*"
W O w
u ~*
c « cu
* c i i_ i u-i O. O. T3C.&0 *> t
EC ?'•£££ ? Ir* e1^ & e* Bx rE
^j in t^r-< dm v> rH > rM v> r>j ox-j «/> ,— i > tnt^
r-» r* «o to ao ^ O»
ii ii I il
o* o* » a. « av w
o •* m
2^3 ^
f^ 00
in mo o m B • fl
^ ^^ 1-1 a a u C
-« 4 ^-in i i 4
II II J £ 1
£ S
u u
ii
* -
41-H a ^
; c « v
e «i a.
if m -CO
.£ K in
^ -
SS IS
B-34
-------
TABLE 2.0-11
SOURCES OF COST DATA FOR DELIVERY-RELATED SERVICE STATION VAPOR
RECOVERY EQUIPMENT
Emco Wheatqn
Submerged fill tube, 4 in.
x 10 ft. $15.00
Dry-break adaptor, vapor return. 16.50
Vapor adaptor cap. 12.00
Overfill protection valve. 44.00
Multiple-access tank unit. 36.00
Pressure-vacuum vent. 12.25
Manhold 9 in., 12 in. 10.40 - 14.75
Extractable float valve. Price not set
Coaxial adaptor, tube. 58.00
Ever-lite Coupling Co.
Supplies various adaptors for
delivery, vapor-return lines.
McDonald Mfg. Co.
Fill cap assembly (can also
be used for vapor-return line
cap assembly). 15.00
Pressure-vacuum vent. 15.00
OPW Div., Dover Corp.
Combined liquid and vapor-
return line adaptor, 4 in. Under 50.00
Same as above, 6 in. Under 50.00
Vapor-return adaptor,
tank. From 32.50
Float valve, vent-line
manifold. 33.50
Extractor vent valve assem-
bly with float valve. 66.20
Float valve only. 13.25
Vapor-line recovery adaptor
for above-ground manifold. 56.50
Manhold, 9 in., 12 in. 12.80 - 18.70
Drop tube, 4 in. x 10 ft. 18.45
SOURCE: BR-163 (1973)
B-35
-------
TABLE 2.0-12
COSTS FOR SERVICE STATION VAPOR RECOVERY UNITS
Atlantic Engineering
Mark I Intennark vapor recovery
system, condensing type, $5000
FOB, plus $2500 installation at
existing stations. (Includes vapor-
recovery gasoline nozzles.)
Nozzle, vapor-recovery type, $20-
25 installed.
Vaporex
Vaportrol VS-1 system, cooling-
condensing type, 1 ton capacity,
$1500 FOB, plus about $2500 in-
stallation at existing stations,
$500 installation at new stations.
SOURCE: BR-163 (1973)
B-36
-------
TABLE 2. 0-13
COST SUMMARY FOR DIRECT DISPLACEMENT
AND VAPOREX VAPOR CONTROL SYSTEMS
0.
Azco
Materials T
Labor J
Maintenance
Std-Cal
Materials
Labor
Maintenance
Mobil
Materials
Labor
Maintenance
Exxon
Materials
Labor
Maintenance
Shell
Materials
Labor
Maintenance
Sunoco
Materials
Labor
Maintenance
Cltgo
Materials
Labor
Maintenance
Union (Vapor ex)
Materials
Labor
Maintenance
A
Modify
Existing
Station:
Tanks &
G. Piping
System
$4,500*
526
4,200
0
2,310
1,165
1,405
3,000
220
1,850
2,050
100
2,500
1,500
100
2,250
3,850
25
3,000
5,300
Std-Cal (Vapor ex)
Materials A, 026
Labor 6,700
Maintenance 125
B
Incremental
Cost - New
Station:
Tanks &
U.G. Piping
System
I }
526
0
550
1,405
220
1,850
100
1,500
2,000
25
2,900
4,000
4,026
2,500
125
C D* E* F
Cost - All Cost Incremental
Aboveground To Equip Cost To
Equipment Existing Equip New Annual
Modif. £• Station Station Maint.
Norzles (A+C) (B+C) Cost
$1,500* $6,000 — —
690 5,476 $1,276 $. 130
60
130
810 4,615 1.690 —
330
600 5,005 2,005 280
60
720 5,000 2,950 620
380
520
410 4,570 2,070 450
160
350
990 7,450 3,350 215
360
180
800 9,800 8,400 —
700
**
1,590 12,646 fl,*«6 535
330
225
* Materials and labor only
** Includes estimated annual operating cost of $185 (electricity)
SOURCE: SC-186 (1974)
B-37
-------
TABLE 2.0-14
ESTIMATE FOR THE INSTALLATION OF A SIMPLE
DISPLACEMENT SYSTEM AT TYPICAL SERVICE STATION
SOURCE: AR-047 (1974)
MATERIAL
Pipin* 2" calvsnised 9 $1.25/ft. x 1»00' $ 500.00
Fittinss 2 S.25/ft. 100.00
Installation 5 $2.90/ft. 1,160.00
Excavation
Savcut concrete 2 $1.50/ft. x 150' 225.00
Tanks § $150/tank U tanks) 600.00
Islands @ 150/island (3 islands) UJO.OO
Driveways 500.00
Backfill - Sand & Mat 150.00
Labor 350.00
Concrete Work § Island 3 $75-00/island 225.00
§ tanks S $100.00/tank 300.00
Miscellaneous Fittings-Adapters, Manholes, etc. 200.00
^Asphalt Patching 375.00
Testing of Pipes 200.00
Say $5,500.00
6 vapor recovery nozzles completely
installed inc. hose and codifications
to dispensers 6 & $250.00 each.
Total System Complete $T»000.00
B-38
-------
3.0 SEASONAL EFFECTS ON VAPOR RECOVERY EFFICIENCIES
Concern has been expressed over the possibility that
the efficiency of vapor recovery units will markedly decrease
in winter months due to the high concentration of light ends
in winter gasoline vapors. Discussed below are the results from
simulations of a refrigeration vapor recovery unit where the
effects of hydrocarbon concentration and seasonal blending were
studied. Although a refrigeration vapor recovery unit was
chosen, the results and conclusions should also apply to CRA,
CRC, and LOA units.
3.1 Gasoline Composition Bases
Table 3,1-1 contains the liquid composition of a
typical 13 RVP winter gasoline (AM-078). Flash calculations
were performed on the winter gasoline at 40°F, assuming a vapor
to liquid ratio of three, to determine the equilibrium vapor
composition.
The composition of vapor from typical summer gasoline
was estimated by averaging the compositions of vapors from
ten summer gasolines reported by Scott Research Laboratories
(SC-186). This composition is given in the third column of
Table 3.1-1.
3.2 Calculation Bases
The summer and winter vapor compositions reported in
Table 3.1-1 were used in a vapor-liquid equilibrium model to
calculate the effects of seasonal gasoline composition changes
on vapor recovery unit efficiencies. The model used for cal-
culations was a refrigeration vapor recovery unit operating at
B-39
-------
TABLE 3.1-1
SEASONAL COMPOSITIONS OF GASOLINE
AND ITS VAPORS
IN MOLE PERCENT
Air
Ci,
C5
C6
C7
C8
C9
GI o
Total
RVP
Temp . , °F
Winter
Liquid
Composition
-
12.8
23.3
14.1
19.6
17.2
6.5
6.5
100.0
13.0
-
Gasoline
Calculated
Vapor (D
Composition
76.2
15.1
7.0
1.1
0.5
0.1
-
_
100.0
-
40
Average of ,
Summer Vapor ^
Compositions
58.4
20.9
13.6
7.1
-
-
-
-
100.0
-
80
(1) Vapor in equilibrium with liquid assuming a vapor to
liquid ratio of 3.0 at 40°F.
(2) Average of ten typical compositions (SC-186).
B-40
-------
atmospheric pressure and -100°F coil temperature. Four cases
were studied; winter vapor compositions containing 15 mole %
and 40 mole % hydrocarbons in the vapor, and summer vapor
compositions containing 15 mole % and 40 mole 70 hydrocarbons
in the vapor. Various amounts of air were added to or sub-
tracted from the winter and summer vapor compositions presented
in Table 3.1-1 to synthesize the four case inputs listed in
Table 3.2-1. The resulting outlet vapor compositions for the
four calculated cases are also presented in the table. Vapor
recoveries ranged from 93.570 for winter vapors with lower hydro-
carbon content to 98.670 for summer vapors with higher hydro-
carbon content.
The equations for calculating recovery efficiency from
mass rates and hydrocarbon concentrations are presented below.
M, - M
efficiency = — - x 100 (3-1)
M.
N. - N (l-N./l-N )
efficiency = —-i °- 1 °_ x 10Q (3-2)
Ni
M. = hydrocarbon mole rate in
M = hydrocarbon mole rate out
N. = hydrocarbon mole fraction in
N = hydrocarbon mole fraction out.
3.3 Conclusions
The hydrocarbon concentrations in the outlet streams
from the refrigeration system model are essentially identical
for all cases. It is concluded that at a given temperature
B-41
-------
TABLE 3.2-1
INPUTS AND RESULTS FROM THE VAPOR-LIQUID
EQUILIBRIUM MODEL OF A REFRIGERATION VAPOR RECOVERY UNIT
Inlet Vapors
Mole
(1)
Winter Vapors Summer Vapors
Case 1Case 2 Case 3Case 4
C5
C6
C7
C8
Air
Total
Outlet Vapors
C*
C5+
Air
Total
Recovery
Percent
9.5
4.4
0.7
0.3
0.1
85.0
100.0
1.1
0.03
98.9
100.03
93.5
25.4
11.8
1.8
0.8
0.2
60.0
100.0
1.1
0.04
98.8
99.94
98.2
7.5
4.9
1.7
0.9
0.0
85.0
100.0
0.9
0.04
99.1
100.04
94.9
20.0
13.2
4.4
2.4
0.0
60.0
100.0
0.9
0.05
99.1
100.05
98.6
(1) Vapor compositions are based on assuming 15 mole percent
hydrocarbons in Cases 1 and 3, 40 mole percent hydrocarbons
in Cases 2 and 4. Equilibrium conditions in all cases
are atmospheric pressure and -100°F.
B-42
-------
and pressure, the concentration of hydrocarbons in the exhaust
from a vapor recovery unit is fixed and independent of the inlet
hydrocarbon concentration.
Although the inlet hydrocarbon concentration does not
control the outlet hydrocarbon concentration, it does have a
direct effect on the removal efficiency. Equations 3-1 and 3-2
indicate that the hydrocarbon recovery efficiency of a vapor
recovery unit is directly proportional to the total hydrocarbon
concentration in the inlet vapors. Higher recovery efficiencies
are therefore to be expected with vapors containing higher
hydrocarbon concentrations.
Seasonal effects on the efficiency of vapor recovery
units are made evident by comparing the outlet vapors of Case
1 to Case 3 and of Case 2 to Case 4 in Table 3.2-1. Recovery of
winter vapors, which contain more butanes than summer vapors,
is slightly more difficult. However, these changes in the hydro-
carbon composition of vapors due to summer and winter blending
changes have less effect on the efficiency of vapor recovery
units than do changes in the total hydroca?:bovj concentration.
This is attributed to the fact that gasoline vapors are con-
sistently high in butanes and pentanes and the content of these
components change very little as the gasoline RVP changes.
In summary:
1) The hydrocarbon concentration in the vent
from vapor recovery units is essentially
independent of the inlet hydrocarbon
concentration to the unit.
B-43
-------
2) The hydrocarbon recovery efficiency of
vapor recovery unit, at a given set of
operating conditions, is directly propor-
tional to the inlet hydrocarbon concen-
tration.
3) The seasonal effect (of gasoline composition)
on vapor recovery unit efficiency is
small. Recoveries can be expected to be
slightly higher in the summer.
B-44
-------
4.0 ENFORCEMENT MONITORING
A procedure for monitoring emissions from a stationary
source must be specified as part of the technical support docu-
ment. For the transportation industry, separate monitoring
procedures may prove to be needed for each segment of the
distribution process; that is for terminals, bulk plants, and
service stations. Since enforcement monitoring is definitely
an unresolved issue at this time, this section will serve
primarily to focus upon factors that need to be considered
in developing an enforcement monitoring procedure.
The purpose of enforcement monitoring is to determine
whether or not a source is complying with a regulation. Monitor-
ing procedure requirements, therefore, may vary with the type
of regulation. This is to say that a regulation based on a
percentage control may require a different monitoring procedure
than would a regulation based on either mass emission standards
or equipment standards. Other factors to be considered are the
simplicity, reliability, and accuracy of the eniorcement monitor-
ing procedure.
4.1 Terminals
The regulations governing emissions trom terminals
will probably be based on either a percent recovery or mass
emission limit. Monitoring procedures would therefore be
designed to measure the necessary parameters to determine
compliance with these regulations.
The simplest monitoring procedure for terminal vapor
recovery systems would be to measure the hydrocarbon concentra-
tions in the in'.et ana outlet vapors Ttuj. a?..fi'«..*ence in the
B-45
-------
concentrations could be used to calculate the recovery effi-
ciency. This method is simple, quick, and relatively inexpen-
sive to perform, however, it will not reveal whether or not
the system has internal leaks.
An alternative method for enforcement monitoring of
terminals includes measurement of the volume and hydrocarbon
and air concentration of vapors emitted from the tank truck and
from the vapor recovery system. These data can then be used
to calculate either percent recovery efficiencies or mass
emissions. This method is slightly more involved than the pre-
vious method, but it would provide data to reveal the presence
of internal leaks in the vapor recovery system.
Monitoring of these systems is still in the development
stage. As data is developed, emission factors may be developed
that could eliminate the need of measuring some of the above
parameters. For example, tests to determine the amount of vapor
returned from loading operations may produce factors that could
be used reliably to predict the volume of vapor emitted per
gallon of fuel loaded for bottom loading and top loading opera-
tions. Development and use of these factors would be a practical
approach to monitoring operations.
4. 2 Service Stations
Regulations governing emissions from service stations
could possibly be based on an equipment standard, on a mass
standard, or on a percent recovery standard. An equipment stan-
dard could either be implemented as part of Stage I or Stage II
standard for displacement systems. An enforcement monitoring
procedure would not be necessary with this standard. Periodic
visits to the source may be necessary to insure that the equipment
is in good working order.
B-46
-------
A regulation based on either mass emission or percent
recovery would require a rather detailed monitoring procedure
to evaluate compliance of vapor recovery systems in use today.
Losses at the nozzle-fill neck interface for both displacement
and vacuum assist systems should be determined to evaluate
compliance with regulations. The determination of these nozzle-
fill neck interface losses have thus far been accomplished only
by indirect methods, and then only for the displacement system;
considerable test development work remains to be done in this
area.
In addition to measuring losses fcotc r.ozzles, losses
from the vapor recovery system itself muse, be measured. Monitor-
ing procedures which would determine the volume and hydrocarbon
concentrations of the inlet and outlet vapor streams should be
performed to provide data upon which to evaluate efficiencies.
A testing program to provide data certifying compliance
on a station-by-station basis would be extremely expensive and
perhaps unrealistic. Most such procedures would "vnuire several
days of testing in addition to fol Icv-a,'- ir o.'_, , io . A mechanical
specification therefore appears to be the more practical approach.
4.3 Bulk Stations
Bulk station vapor recovery standards could possibly
be in the form of an equipment specification, a mass emission
limit, or a percent recovery. As wl <;]- s,--'! - -—4,-.,-s, ,i
standard based on equipment specifications would require no
enforcement testing as long as the proper equipment was installed.
A mass emission or percent reccve^v standards would
require the same, testing procedure.0 required ^>- service stations
and terminals to certifv compliance.
B-47
-------
5.0 PHYSICAL AND CHEMICAL PROPERTIES OF GASOLINE AND
ITS VAPORS
The chemical and physical properties of gasoline
and the vapors emitted from gasoline handling facilities
are described in this section. Special attention has been
given to the particular properties of gasoline and emitted
vapors that are considered critical in assessing the impact
on air quality.
5.1 Chemical Composition of Gasoline
Motor gasolines are blends of petroleum distillates
carefully combined to yield the proper volatility and com-
bustion characteristics for good motor performance. Their
composition is complex and varies greatly with the sources
of crude oil from which it was distilled and with the types of
conversion processes to which it has been subjected. Gasoline
compositions also vary greatly because the temperatures and
altitudes at which gasolines are used vary, and the gasoline
blends must be altered to ensure proper fuel volatility
and car performance at each locale and for each season.
Table 5.1-1 (MA-291) and Table 5.1-2 (AM-078) detail the
chemical compositions of several full range premium gasolines.
For simplicity Table 5.1-3 summarizes data from Table 5.1-1 and
Table 5.1-2, The characteristics of typical summer and winter
gasoline blends are contrasted in Table 5.1-4 (SH-137) and
Table 5.1-5 (SH-138). The compositions of the gasolines in
these two tables are expressed by means of boiling fractions.
B-48
-------
TABLE 5.1-1
DETAILED CHEMICAL COMPOSITION OF A FULL RANGE MOTOR GASOLINE
Component
Propane
Isobutane
Isobutylene
+ Butene-1
it-Butane
Trans-2'butene
Neopentanc
Cis-2-butene
3-Methyl-l-butene
Isopentane
Pentene-1
2-Methyl-l-butene
2-MethyM.3-butadiene
n-Pentane
Trans-2-pentene
Cls-2-pentene
2-Methyl-2-butene
3,3-Dimethyl-l-butene
W-Dimethylbutane
Cyclopentene
3-Methyl-l-pentene
+ 4-Methyl-l-pentene
4-Methyl-cis-2-pentene
t,3-Dimethyl- 1-butene
Cyclopentane
2,3-Dimethylbutane
+ (4-Meihyl-trans-2-pentene)*
2-Methylpentane
2-Methyl-l-pentene
3-Methvipentane
+ (Hexene-1)
-f (2-Ethyl 1-butene)
Cls-3-hexene
Trans-3-hexene
3-Methylcyclopentene
2-Methyl-2-pentene
3-Methyl-cis-2-pentene
n-Hexane
4- (4.4-Dimethyl-l-pentene)
Trans-2-hexene
Cis-2-hexene
3-Methyl-trans-2-pentene
4,4-Dimethyl-trans-2-pentene
Methylcyctopentane
•+• (3,3-Dimethyl-l-pentene)
2,2-Dimethylpentane
-f- 2,3-Dimethyt-2-butene
+ (2.3,3-Tnmethyl-l-butene)
Benzene
2.4-Oimethylpentane
4,4-Dimethyl-cis-2-pentene
2,2,3-Tnmethylbutane
2,4-Dimethyl-l-pentene
1-Methylcyclopentene
+ 2-Methyl cis-3-hexene
2,4-Dimethyl-2-pentene
+ 3-Ethyl-l pentene
-f- 3-Methyl-l-hexene
2.3-Dimethyf-l-pentcne
2-Methyl-trans-3-hexene
4- 5-Methyl 1-hexcne
3.3-Dimethylpentane
Cyclohexane
+ (4-Methyl-cis-2-hexene)
4-Methyl-l-hcxene
+ 4-Methy|.trans-Miexene
3-Mcthyl 2-ethyl 1-bulcne
5-Methyl-trans 2-hexene
Cyclohexene
Boiling
Point. *C'
—42.07
-11.73
-6.90
-6.26
-0.50
0.83
9.50
3.72
20.05
27.85
29.97
31.16
34.07
36.07
36.35
36.94
38.57
41.24
49.74
44.24
54.14
53.83
56.30
55.67
49.26
57.99
58.55
60.27
60.72
63.28
63.49
64.66
66.47
67.08
65.0
67.29
67.70
68.74
72.49
67.87
68.84
70.44
76.75
71.81
77.57
79.20
73.21
77.87
80.10
80.50
80.42
80.88
81.64
75.8
86
83.26
84.11
84
84.28
(6
85.31
86.06
80.74
87.31
86.73
87.56
86.1
88.11
82.98
Composition,
%wt
0.01
0.37
0.04
4.29
0.20
0.04
0.17
0.12
10.17
0.45
0.22
5.75
0.90
0.67
0.96
0.46
0.18
0.18
0.04
0.08
0.51
1.55
0.18
3.76
0.22
2.23
0.11
0.12
0.04
0.27
0.37
1.51
0.18
0.15
0.34
Trace
0.62
0.14
0.81
1.71
0.04
0.03
0.32
0.05
0.02
0.04
0.02
0.17
0.09
0.02
0.02
0.03
Component
2-Methylhcxanc
+ (5-Methyl-cis-2-hexene)
2,3-Dimethylpentane
+ (1,1-Dimelhylcyclopentane)
+ (3,4-Dimethyl-cis-2-pentene)
3-Methylhexane
l-Cis-3-dimethyf cyclopentane
•+• 2-Methyl-l-hexene
4- 3,4-Dimethyl-trans-2-pentene
l-Trans-3-dimethylcyclopentane
+ 1-Heptene
+ 2-Ethyl-l-pentene
3-Ethylpentane
+ 3-Methyl-trans-2-hexene
l-Trans-2-dimethylcyclopentane
2.2,4-Trimethylpentane
+ (Trans-3-heptene)
Cfs-3-heptene
3-Methyl-cis-3-hexene
+ 2-Methyl-2-hexene
+ 3-Methyl-trans-3-hexene
3-Ethyl-2-pentene
Trans-2-heptene
n-Heptane
+ (3-Methyl-cib J-hexei.a)
2,3-Dimethyl-2-pentene
+ Cis-2-heptene
l-Cls-2-dimethylcydopentane
Methylcyclohexane
+ 2,2-Dimethylhexane
+ 1,1,3-Tnmethyicyclopentane
2,5-Dimethylhexane
+ Ethylcyclopentane
2,4-Dimethylhexane
2,2,3-Trimethylpentane
l-Trans-2-cis-4-trimethylcyclopentane
Toluene
3,3-Dimethylhexane
l"Trans-2-cis-3-tnrnethytc\'c!openlane
2,3,4-Trimethyip^ntr. ie
2,3,3-Ttimeth>Ih entanc
l.l.Z-TnmcthyVvrJc^c.- - ..
2.3-Oimethylnexane
+ 2-Methyl-3 etnylpentane
2-Methylheptane
4-Methylheptane
3,4-Dimethylhexane
-f- (l-Cis-2-trans-4-tnmethylcyclopentane)
3-Ethylhexane
3-Methylheptane
+ (3-Methyl-3-e',hyipent2ne)
l,l,3-Trans-4-tetrarr,ethylc> elope ntane
2,2.5-Tnmethylhexane
+ (l-Cis-2-cis-4-tnmethylcyclopentane)
l,l-Dimethyicyc!o(iL'Xdne
+ l.Trans-4-dimethyicyciohCKane
l-Cis-3-dimethy!c:;dchcxjnv
1-Methyl trjni i ci'i)i^^.upt...lal,^
2.2,4-Trimethylhex.me
l-Methyl-trans-2-ethylcyclopentane
-f 1-Methyl-cis 3-e(hylcyclopcntane
Cycloheptane
l'Mcthyl-1-ethylcyclopentane
l-Trans-2-dimplhylcyclohcxane
+ 1 Cis-2-cis-3-tiimelliyicyclopentane
n-Octane
l-Cis-4 dimethyicyciohcxdne
i-Tfans-3dmiethyicyCiOh-Aaoe
2,4,4-Tfinicthylhtfxane
2,3,3-Trimcthylhoxnno
Boiling
Point, 'Cl
90.05
89.5
87.78
87.85
17.9
91.85
91.73
91.95
90.5
90.77
93.64
94
93.48
94
91.87
99.24
95.67
95.75
95.3
95.44
93.53
96.01
97.95
98.43
94
. 97.40
98.5
99.57
100.93
106.84
104.89
109.10
103.47
109.43
109.84
109.29
110.63
111.97
110.2
113.47
114.76
U3.73
115.61
115.65
117.65
117. 71
117.73
116.73
118.53
118.93
118.26
121.6
124.08
118
119.54
119.35
120.09
120.8
126.54
121.2
121.4
118.79
121.52
123.42
123.0
125.67
124.32
124.45
130.65
126.42
131.34
Composition,
% wt
1.48
4.17
1.77
0.27
0.27
0.16
0.16
4.58
0.16
0.31
0.04
0.06
1.96
0.12
0.09
0.31
0.60
0.50
0.23
0.04
12.20
0.10
0.06
2.26
2.28
0.09
0.60
0.43
0.22
0.16
0.01
0.63
0.74
0.14
0.03
0.06
0.11
0.07
0.03
0.02
0.12
0.38
0.04
0.03
0.02
0.01
0.15
B-49
-------
TABLE 5.1-1 (Cont.)
Component
2,3-Dim«thylheptan»
l-Methyl-cls-2-ethylcyclopentane
2,4-Dimethylheptane
+ 2.2.3-Tnmcthylhexane
2,2-Dimethyl-3-ethylpentane
+ 2-Melhyl-4-elhylhexane
2,6-Dimethylheptane
+ (l-Cis-2-dimethylcyclohexane)
n- Propy tcyclope n lane
Ethylcyclohexane
2,5-Oimcthylhep(ane
+ 3,5-Dimethylheptane
Ethylbenzene
2,4-Dimethyl-3-ethylpentane
3,3-Dimethylheptane
1.1.3-Trimethylcyclohexane
2,3.3- Trimethylhexane
l-Cls-S-cis-S-trimethylcyclohexane
2-Methyl-3-ethylhexane
p-Xylene
m-Xylene
+ (3,3.4-Trimethylhexane)
2.3-Dimethylheptane
3,4-Dimethylheptane
4-Methyloctane
2-Methyloctane
3-Ethylheptane
3-Methyloctane
o-Xylene
+ (2,2,4.5-tetfamethylhexane)
2,2,4-Tnmethylheptane
2.2.5-Trimethylheptane
+ 2,2,6- Trimethylheptane
2,5,5-Trimethylheptane
+ 2,4.4-Trimethylheptane
isopiopylbenzene
n-Nonane
3.3,5-Trimethylheptane
2,4.5-Tnmcthylheptane
+ 2,3,5-Trimethylheptana
n-Propylbenzene
2,2.3.3-Tetramethylhexane
4- 2,6-Dimethyloctane
l-Methyl-3-ethylbenzene
1-MethyW-elhylbenzene
3,3.4-Tnmethylheptane
+ 3,4,4-Tntnethylheptane
4- 3.4,5-Trimethylheptane
l-Methyl-2-ethylbenzene
-f 5-Methylnonane
4-Methylnonane
1,3,5-Trimethylbenzene
2-Me(liylnonone
tert-Butylbenzene
Unidentified Cm alkylate peak
3-Melhylnonan»
1.2.4'Trimcthylbenzene
see-Butylbenzene
Isobutylbcnzene
J-Methyl-3-isopropylbenzene
n-Decane
1.2.3-Tnmelhylbenzene
4- l-Mclhyl-4 isopropylbenzen*
l-Mclhyl-2 isopropylbunzene
+ Ind.ine
1.3-0icthylbenzcn<
Unidentified Cn alkyljto peak
l-Melhyl-3 n propylbenzeno
n Bulylbcnjene
Point. -C*
132.69
128.05
133.5
133.6
133.83
133.8
135.21
129.73
130.95
131.78
136.0
136.0
136.19
136.73
137.3
136.63
137.68
138.41
138.0
138.35
139.10
140.46
140.5
140.6
142.48
143.26
143.0
144.18
144.41
147.88
147.8
148
148
152.80
153
152.39
150.80
155.68
157
157
1S9.22
160.31
158.54
161.31
161.99
164
164
164
165.15
165.1
165.7
1M.72
1G6.8
169.12
167.8
169.35
173.31
172.76
175.14
174.12
176.03
177.10
178.15
177
181.10
181.80
183.27
%*t
. 0.01
C.07
0.08
0.02
0.07
0.01
0.17
0.16
1.70
0.03
0.04
0.05
0.04
1.58
3.83
0.13
0.07
0.11
0.14
0.02
0.60
1.93
0.17
0.27
0.21
0.10
0.14
0.02
0.17
0.24
0.06
0.83
0.42
0.35
0.34
0.04
0.39
0.06
0.01
0.06
1.61
0.01
0.01
0.03
0.08
0.32
0.15 •
0.08
0.16
0.05
Component
1,2-Diethyl benzene
+ 1,4-Dicthylbenzene
4- l-Methyl-4 n propylbenzene
l-Methyl-2-n-propylbenzene
l,3-Dimethyl-!J-cthylbenzcne
Unidentified CM alkylate peak
2-Methylmdane
l,4-Dimethyl-2-ethylbenzene
1-Methylmdane
l-Methyl-3-tert-butylbenzene
+ Unidentified Cn alkylate peak
l,3-Dimethyl-4-ethylbenzene
l,3-Dimethyl-2-ethylbenzene
-f l,2-Dimethyl-4-ethylbenzene
l-Methyl-4-tert-butylbenzene
1.2-Dimethyl-3-ethylbenzene
n-Undecane
1,2,4.5-Tetramethylbenzene
1^,3,5-Tetramethylbenzene
Isopentylbenzene
5-Methylindane
4-Methylindane
n-Pentylbenzene
1.2,3.4-Tetramethylbenzene
Tetralin
Naphthalene
1.3-Oimethyl-S-tert-butylbenzene
n-Dodecane
•
•
Point. »Cl
183.42
183.30
183.75
184.80
183.75
184
186.91
186.5
189.26
188.41
190.01
189.75
192.76
193.91
195.89
196.8
188.0
198.9
199
203
205.46
205.4
205.57
217.96
205.1
216.28
*
%WL
0.09
0.05
0.13
0.02
0.09
0.07
0.03
0.13
0.19
0.04
0.03
a. o;
ti.10
0.17
0.07
0.11
0.03
0.03
0.03
0.02
0.10
0.02
0.05
B-50
-------
TABLE 5.1-2
AVERAGE COMPOSITION OF 15 SAMPLE MOTOR GASOLINES
Component % wt
Saturates:
Methane ,
Ethane
Isobutane 1
n-butane 7
Isopentane 10
n-pentane 4
2,3-dimethylbutanc 2
2-methylpentanc 3
3-methylpcntano 2
n-hexan<: 2
Methylcyclopentane 1
2,4-dinnethy!pcntar,e. .. . 2
Cyclohexanc 1
2-methylhexane 5
2,2,4-trimcthylpentane... 6
n-heptane 1
Methylcyclohcxanc 1
2,4-dimethylhexane 1
2,3,4-trimelhyIpeutane... '1
2,3,3-trimethylpentane... 1
2-methyI-3-ethylpentane.. 1
3,4-dimethylhexane 1
2,2,5-trimethylhexanc 1
n-octane 1
Other 8atur»tr3. . ..,,. ii
Olcfins and acetylenes-
Ethylt-ne
Fropylene
Isobutylcne/1-butcnc
2-butcne
2-methyl-l-butene I
2-pentenc I
2-mcthyl-2-butcn.- . 2
2-methyl-2-pi.>titcr.p t
1,3-butadicne. ., ,
2-methyl-l,3-butadicne
Acetylene
Methylacetylene
Other nlnfins 6
•Aroinatics:
Benzene 1
Toluene 6
EthylbcnzetiG I
w and 7>-xylene 5
nylenc 2
f. . ... t
i. i,r»-enrnet!'"!|!i'n7cn'» .. I
HnetiiyWJ-ctliyltwnzi-ne.. 1
(,',',4-trimcthj Ibcnzcne... 3
I.S.^-trimethylhenz^ne... 1
O'iiiT aromatic.'; 4
B-51
-------
TABLE 5.1-3
COMPOSITION SUMMARY OF TYPICAL PREMIUM GASOLINES
Component
Saturates
Olefins & Acetylenes
Aromatics
Composition % wt
Table 3.9-1 Table 3.9-2
62
29
100%
62
11
27
100%
C5
C6
C7
C8
C9
Other
8
18
13
15
21
9
16
100%
B-52
-------
TABLE 5.1-4
SUMMARY OF VALUES, MOTOR GASOLINE SURVEY. WINTER 1971-72
T«t
Gravity, "API
Corrosion, No.
Sulfur content, wt %
Gum, mg/100 ml
Lead, g/gal
Octane number, Research
Octane number, Motor
Reid vapor pressure, Ib
Distillation
Temp, °F
IBP
5% evaporated
10% Do.
20% Do.
30% Do.
50% Do.
70% Do.
90% Do.
95% Do.
End point
Residue, vol %
Loss, vol %
ASTM
method
D287
D130
D1266
D381
D526
D2699
D2700
D323
D86
Regular -price gasoline
Average
62.7
1
0.044
1
1.88
94.0
86.5
12.1
84
96
Premium -price gasoline
Average
62.9
1
0.026
1
2.43
99.8
92.3
12.1
83
95
108 109
J23 1 132
150
199
255
336
369
4C3
1,0
2.1
158
209
253
321
353
398
0.9
•> >
i.t
SUMMARY OF VALUES, MOTOR GASOLINE SURVEY, WINTER_1970-71
Test
Gravity, "API
Corrosion, No.
Sulfur content, wt %
Gum, mg/100 ml
Lead, g/gal
Octane number, Research
Octane number. Motor
Reid vapor pressure, Ib
Distillation
Temp, °F
IBP
5% evaporated
10% Do.
20% Do.
30% Do.
50% Do.
70% Do.
90% Do.
95% Do.
End point
Residue, vol %
Loss, vol %
ASTM
method
D287
D130
D1266
D381
D526
D2699
D2700
D323
D86
i
Regular-price gaso. nc , Premium-price gasoline
Average Average
63.1
1
0.039
1
2. 1,2
93.9
86.4
12.1
62.6
1
0.023
1
2.60
99.8
92.2
12.1
34 * 83
*3 i 95
108
127
149
197
253
335
109
132
158
210
253
321
3o6 353
406
1.0
396
1.0
2.1 i 2.3
B-53
-------
TABLE 5.1-5
SUMMARY OF VALUES. MOTOR GASOLINE SURVEY, SUMMER 1973
Test
Grovity, °API
Corrosion, No.
Sulfur content, wt %
Gum, mg/100 ml
Phosphorus, g/gol
Lead, g/gal
Octane number. Research
Octane number. Motor
Research + motor octane Nos./2
Reid vapor pressure, Ib
Vapor-liquid ratio of 20, °F
Distillation
Temp, °F
IBP
5% evaporated
10% Do.
20% Do.
30% Do.
50% Do.
70% Do.
90% Do.
95% Do.
End point
Residue, vol %
Loss, vol %
ASTM
method
D287
D130
D1266
D381
D3231
D526
D2699
D2700
D323
D439
086
Regular-price gasoline
Average
60.3
1
0.040
1
0.004
2.01
93.5
86.1
89.8
9.3
136
91
108
121
142
163
211
265
342
378
417
1.0
1.6
Premium-price gasoline
Average
61.7
1
0.026
1
0.003
2.42
99.3
91.9
95.6
9.5
137
'
90
107
121
146
171
215
255
325
361
405
1.0
1.7
SUMMARY OF VALUES, MOTOR GASOLINE SURVEY, SUMMER 1972
Test
Gravity, 'API
Corrosion, HO.
Sulfur content, wt %
Gum, mg/100 ml
Phosphorus, g/gal
Lead, g/gal
Octane number, Research
Octane number, Motor
Research + motor octane Nos./2
Reid vapor pressure, Ib
Vapor- liquid ratio of 20, °F
Distillation
Temp, °F
IBP
5% evaporated
10% Do.
20% Do.
30% Do.
50% Do.
70% Do.
90% Do.
95% Do.
End point
Residue, vol %
Lots, vol %
ASTM
method
D287
D130
D1266
D381
D3231
D526
D2699
D2700
D323
D439
D86
Regular- price gasoline
Average
60.5
1
0.042
1
-
2.04
94.1
86.4
90.3
9.2
-
92
108
122
142
163
208
262
339
372
411
0.9
1.5
Premium-price gasoline
Average
60.7
1
0.026
1
-
2.52
99.8
92.2
96.0
9.3
-
91
108
123
147
172
217
257
324
357
401
0.9
1.6
B-54
-------
5.2 Reid Vapor Pressure of Gasoline
Gasoline is often characterized by Reid Vapor Pres-
sure (RVP), a technique developed as a means of expressing
the vapor pressure or volatility of petroleum fractions. This
is a fundamental property in the study of hydrocarbon emissions
from gasoline marketing facilities. Figure 5.2-1 (DA-004)
correlates Reid Vapor Pressure with true vapor as a function
of temperature. In the absence of distillation data, the
value of S (the slope of the ASTM distillation curve at 1070
evaporation) may be estimated as three for motor gasolines.
Seasonal and locational variations in Reid Vapor Pressures
and several other gasoline characteristics for both premium
and regular grades are presented in Table 5.2-1 (SH-137)
and Table 5.2-2 (SH-138). Districts to which these tables
refer are shown in Figure 5.2-2 (SH-137).
5.3 Chemical Composition of Gasoline Vapors
The gas phase above gasoline contains a high per-
centage of highly volatile hydrocarbon compounds. The quantity
and composition of gasoline vapors are dependent on such
parameters as the temperature and pressure of the containing
system, the composition and Reid Vapor Pressure of the Gasoline,
and the method of vapor generation. Table 5.3-1 presents
example chemical compositions for the vapor phases in equilibrium
with several motor gasolines.
5.4 Photochemical Reactivity of Gasoline Vapors
The primary goal in controlling hydrocarbon emissions
from stationary and mobile sources is to reduce the production
of photochemical smog from reactive hydrocarbons. Photo-
chemical smog can cause eye and respiratory irritation, vegeta-
tion and materials damage, and it has an annoying odor.
B-55
-------
— 0.20
— 0.30
— 0.40
0.50
0.60
0.70
o.eo
0.9O
1.00
— 1.50
2.00
2.50
3.00
3.50
4.00
— 5.00
— 6.00
7- 7.00
T-. e.oo
— «.oo
— 10.0
— i i.o
• 12.0
13.0
14.0
15.0
16.0
I7.O
16.0
19.0
20.0
21.0
22.0
23.0
24.0
,1 0
I20-]
I 10-
100-
TO-
CO-3
50 -E
40 —
30-
20 ~
S = SLOPE OF THE astffl DISTILLATION
.CURVE AT 10% EVAPORATED=
"f AT 15« MINUS °F AT _S»_
10
IN THE ABSENCE OF DISTILLATION
DATA THE FOLLOWING AVERAGE VALUE
OF S MAY BE USED:
0-3
MOTOR GASOLINE
AVIATION GASOLINE
LIGHT NAPHTHA (9 TO U Ib
NAPHTHA (2 TO 6 Ib rvp)
rvp)
3
2
3.5
2.5
FIGURE 5.2-1 - VAPOR PRESSURES OF GASOLINES AND FINISHED
PETROLEUM PRODUCTS, 1 Ib to 20 Ib RVP. NOMOGRAPH
DRAWN FROM DATA OF THE NATIONAL BUREAU OF STANDARDS
(AMERICAN PETROLEUM INSTITUTE, 1962b), (DA-004)
B-56
-------
r-4
1
04
in
M
t-4
m
p3
o
Fn
<
S
**<
O
w
0
^
2
w
5
en
r-
,-1
Pi
i
rn
>•
W
g
£D
W
2
i— i
>j
o
CO
til
O
Pd
O
q
&
H *
O ->
H °
IV^ «
H
co "
M "
Q J
I
ffi 5
0 |
< 5
w -
^
o
PQ
C
Z
n
V)
c
_J
0
a.
cc
a:
ur
u
*
Ul
_J
V)
o
CL
X
0
u.
g
2
Jl
o
0
o
o
Uf
Ul
OC
OL
O
Ul
£
K
a.
X
Ul
1-
X
-
1—
X
1-
X
t/I
2
X
fr-
•w
X
I—
4
X
M
•«
fr-
•
X
V)
u.
0
•
o
X
0
tf
o
tn
v>
Ul
UJ
a:
CO
Ul
z
Ul
tJ
a.
o*
0
CM
O
1
X
-
o
*>
o
0
o
«
o
M
O
J
ft.
V)
3
CC
GO
Ul
X
n
M
^
t>
in
•n
^
IA
a.
CD
m
„
o
0
c*
-1
0
o
0
o
ar
L
«.oo^.o-ooo..ooo
oSSnSoo2SSS2"oSoS
^«.^«««~««^in««~-«o
«««0,« «,«,««C,.,CVC,C,^0,^
«CV.«0.~«,««C«.~"'>0-«>0'S"-«'2 ^OI-CM»n^<,^^0.0^
«-.^- ^.-, -* CM-
kJ U
•-I 1- »-
1- CL •< <
o «o a. ui *-* •-
O *>IA»-* VI ZZXZZ
O OV) ft- «_» Q; z K «: j; r> r> ~i rr 'j o: -i>
o
0
*4
in
0.
«
o
o
^
-
01
-
__,
..
M
o
0
-0
CM
O
<>
Ul
OL
Ul
Z
_J
o
tf)
o
Ul
o
ce
•
O£
J
-j
Ul
DC
O
«*>
_JJ
d.
w»
O
«
z
5
u
o
_J
o
CM
^
U.
cc
or
ru
X
r>
y
'ri
-tf
a
"I
Ul
O
o.
X *
».
u.
-J 1
<*
or
0 «
•1
«
c
t
—- --
1
*
I
fl
4
*
4
"
_J
UJ >«
x-i —
0
o
•0
0 UJ|
•< o
o cr »*-
UJ CJ
t*i :>• m
CC UJ
cc
o
UJ CM
» tt.
Ul
=> -*
1—
QC m
a. ~J
x a.
ui m
«£ 0
»- CM CD
•< O
X I
+ • CM
O
3E -< a
o.
*o »— «o
-J
w .n v
* Q C5
— C-J O
^c.cr
* CJ
X <0 M
W *-i 1—
< o z
/> ?\' >X
C 0 -F
• ^
K _J
A CL
h. f/t
3 O
" •* j
3
C U*
-» X
-*
f. 0
•4
a
O •-« O — »O OOOOOOOOO OOOO
S«SSfC^«S*t;«o'^^.So Sj^
«mm^mn^-,«m««^^^^^^
!
r4OJAfC4CMC^CVC4CMCM Oc'lO'OO*C>O*
iSS£S2««SS««S«SSSr?
1
^cCNcC.'.^^cC^-^-d.:^--^
^> «-«,»OO OOOOOOOO
« O» OOOO3 3 I OOOOOOOO
o
OOOOOO O O O OOOOOOOOO
o
.: ;- '; ,7 ; £ ,; ^ i; ;• ,v ^ i' ^ i" s S S
r^o-o^w,,. -.^^^^(Mo.0.^^ ji>
««---- -0.- 1C
._-,.. u -— . -1 1 . — — '— — - • ' ' "— {>
UJ (/
. ~, ^* ^ ,-t w ^ -* «-•* v-» *M *•* -i-f •** —«•-*-*_
oc a
UJ Ul £p
t- a. •«: ^
a' o -D /•' • > oe je je K ac -3 5 S fir o u: 5
— — « — "2-«2222i
B-57
-------
H
a
w
o
""
cc
X
*
0
c*
UJ
_J
*
X
c
u.
_J
M
49
X
X
O
0
O
0
UJ
u
UJ
EC
oz
a
ac.
ac
UJ
TT
tn
*
X
o
*
U)
cc
x
*
X
»-
"
*
X
<
•
z
u.
o
o
!f
c
z
u
cc
»-
»•
o
i/>
V)
o
«J
cr
0
UJ
«
0
a.
>
^k)
z
UJ
a.
«v
i
z
t/>
o
flO
c
CM
O
CO
O
•A
UJ
a.
V)
o
z
o:
to
Ul
z
z
o
z
a.
Ul
0
*.
<1
IV
o
m
a.
cc
CD
_j
o
CO
o>
o>
«-*C*Q-«C*«-*NC»OOOCfcO»O
„ _ „ ^-^ „ «
2;»»gSSSS2S»S5S»S
sssssssssssssssss
.M^^^CVICV-C.CVJ.VOJ^.V^C.,,^.,
«^o««ocMWO.in«-^«rn«-
ooooooo — «-«-^o^-oo— —
o.»»o.o»»o.o.<>o.»o.o.o.o>o
««««««ieo«o
w^-wtCtCcCwrJ----^^^^
«* «' « J « « « o X « o" «' «,' / « * ^
SSSSSSSSiSSSSererSJS*
«««-««,»-- ««0«K»«0
OOOOOOOOO-OOOCOOOOO
OOOOOCKOOOOOOOOOO'O
CM" CM* CM* * cC cC cO cC cC cC CM" cC cC cC cC cC cC
ooooooooooooooooo
0
S2g22S2=S2!SS=*°5
mo.ooK.«-.o^i-.o«««o-.-
«/> t/>
V> C. »- »- *- 1-
O *ft OL. Ui *^ **
O «Ot/l»^ *O ZZXZZ
••*»••»/> z «-»*-»xccce
o o«n*o«/i»-«^> •*•*»- o o
V>
f.
0
•"
a.
CO
cc
_J
M
O
CV
0
o
O-
0
_J
0
o
M
*
____ _ ^^._^_ -
SS2n2S22^g-S"SSSn
CMCMCMrMCMCMCMCMCMCMCMCMCMCMCMCMCM
OOOOOOOOO -^ — -^ *^ O C — • *•
rt »
CKOC^O-OOOOO-OOO-OOO-OO
«
1 w^-^^^^rC^----^^-^
««*-«o«^ooooeo oooooooo
»«S=S»SSSS£«£SoS£
N»«<»B«
-------
§
M
I
w
g
W
M
,-J
M
h
o
e
en r
K
W
en
MpS
oo
W Pi
o
CM
(N
m
B
B-59
-------
TABLE 5.3-1
EXAMPLE GASOLINE VAPOR
Month
Location
Ambient Temp
Compound
air
methane
ethylene
ethane
propane
isobutane
butene
. n-butane
isopentane
pentene
n-pentane
hexane
heptane and
Reference
Feb. Oct.
Las Vegas
45°F
78.4
0.*3
0.0
0.0
0.4
3.1
-
10.2
4.3
-
1.8
1.0
higher 0 . 4
WE-111
70.9
0.0
0.1
0.0
0.5
1.8
-
9.6
10.8
-
1.1
2.9
2.2
WE-111
COMPOSITIONS
May
Volume
67.5
0.4
0.0
0.0
1.9
7.8
-
10.9
5.4
-
3.9
1.4
0.7
WE-111
May
%
87.7
0.0
''0.0
0.0
0.1
0.2
-
2.6
5.1
-
1.1
1.6
1.2
WE-111
Summer
58.1 58.4
-
1 0.8
J
0.6 1.3
2.9
3.2
17.4
7.7
5.1
2.0
J3.0 '
J
H8.8
•13.6
•7.1
DA-069 SC-1
B-60
-------
Chemical Reactions
Reactive hydrocarbons and nitrogen oxides react
in the presence of ultraviolet light and under suitable
meteorological conditions to form photochemical oxidants which
cause the major effects associated with photochemical smog.
All hydrocarbons are reactive to some degree with olefins,
aromatics, and aldehydes being the most reactive. The
photochemical oxidant products are primarily ozone (03),
nitrogen dioxide (N02), peroxyacylnitrates (PAN), and oxygenated
organics. The photochemical reaction is complex and still
under research, but can be simplified to the following major
reactions (PI-040).
uv
N02 J NO + 0
0 + N02 •* N03
0 + 02 -> 03
reactive hydrocarbons + 03 ->- aldehydes + oxygenated hydrocarbons
*o
reactive hydrocarbons + N03 -> R-C
OON02
The rate of photochemical oxidant production is dependent
on hydrocarbon reactivity, ambient temperature, and ultra-
violet light intensity and exposure.
Relative Reactivity
The relative reactivity of the hydrocarbons contained
in gasoline vapors is important in assessing the merits of
controlling gasoline vapor emissions. Relative reactivity is
B-61
-------
the tendency of hydrocarbons to undergo chemical reactions
leading to the formation of photochemical oxidants, and ac-
counts for the reaction rate and the severity of reaction
product effects on plants and animals. Table 5.4-1 (MS-001)
lists the relative reactivity of several hydrocarbons con-
tained in gasoline vapors. The high reactivity of gasoline
vapor can be attributed to its high aromatic and olefinic
content. The conversion to unleaded gasoline will further
increase the reactivity of gasoline vapors due to the sub-
stitution of high octane aromatics for less reactive compounds.
This increased reactivity of unleaded gasoline vapors is
estimated to be 12% for premium grades and 28% for regular
grades (MS-001).
5.5 Vapor-Liquid Equilibria
A very important property of gasoline to consider
when studying gasoline vapor emissions is vapor-liquid
equilibria. Figure 5.2-1 (DA-004) correlates the vapor
pressure of gasoline vs. RVP and temperature. From this
vapor pressure correlation Figure 5.5-1 (SC-167) was derived-
It is used to estimate the quantity of hydrocarbons lost from
displacement of saturated gasoline vapor. It can also be
used to estimate the hydrocarbon emissions from a tank during
refill, assuming vapor-liquid equilibrium has been reached in
the tank.
However, it is often erroneous to assume that the
vapor and liquid phases of an air-gasoline system are in
equilibrium. Figure 5.5-2 and Figure 5.5-3 (AM-100) present
the results of two tests by Chevron Research Company to define
the composition gradient existing in the vapor space of service
station gasoline storage tanks. The time duration between
B-62
-------
m
W
rJ
CQ
C/l
Q
_J
U
•O 0)
0) 03
60 C
cd o
M P-
(U CO
CU
M
cd
0
cd
Q
4-1
r-l
C
o
•rl
4-1
cd
•H
rl
H
CU
Cd
*
e
o
•rl
Z 4J
P-i d
O
ft,
^^
x-s O O ^2
Cd vO CNJ r-l r-l ^
OOOO>>-^ Olll 1 +1
Q «d~ o m oo
fj
4-1 0
C-H
cd -u
*O cd
•H S
X M
o o
O O 0 O
•<}• r-l 00 r-l r-l l-l
OOOl
•H tO ^ O C T!
M
0
CO
(U CO
o cd
cd u
•U 1
CO J3
r^ 3
— J c/3
CO
14-1 rj T) r-l T3 -H ,H
M-l .J5 C cd T! i CD
14 0) 14.1 v-' C /-s CO CO Cd 1 r-l r-l O
Cd£ cd OCOrf 0)
Pt,% 0) Cd 4-1 (3
r-ICcdCCCUCUM-l ^4* N T"1 3CUN >^r-l i-l i-lcdN CUT) Oi O
1 0) C -I- r-lj:C ,C Cd O Cd-rlC 4->C 1-1 CO
-< CJ 0) <*> O4-10) 4J 1 -rl-rlMCU C!Or-< Cd
CJ cd XI U 4JOJ3 <1> r-l T) 'O4JrQ -r-lja cd 60
CU
l-l
o
cd
l-l
•rl
cd
cd
cd
4J
cd
l-l
cd
4J
c
0)
Q
•rl
^J
cu
(X
X
(1J
0
z
^-^
cd
0)
4J
cd
JJ
•rl
4-1
cr
o
4-1
4J
c
(1)
•l-l
u
M-l
M-l
"3
CO
c
•H
cd
4J
cd
•o
4J
^
•o
01
4J
o
c
^ i
u
0)
M-l
14-1
w
/«s
_Q
N^
B-63
-------
16-
14-
FIGURE 5.5-1 - SENSITIVITY OF
DISPLACED LOSS TO TEMPERATURE AT
VARIOUS VALUES OF RVP (SC-167)
Temperature, °F
FIGURE 5.5-1 - SENSITIVITY OF DISPLACED LOSS TO TEMPERATURE
AT VARIOUS VALUES OF RVP
B-64
-------
/oo -,
•v
I
o
SI
V
Q
-------
8
of
FIGURE 5.5-3 - VAPOR COMPOSITION IN UNDERGROUND TANK
(AM- 100)
B-66
-------
the previous fuel delivery and the test was not noted but it
was alluded to be several days. This concentration gradient
indicates that only the vapor space adjacent to the vapor-
liquid interface is saturated with hydrocarbons and that the
hydrocarbon losses estimated by Figure 5.5-1 (MS-001) for
displacement and tank breathing may be exceedingly high.
5•6 Solubility of Air in Gasoline
A number of recent vapor recovery studies indicate
that when gasoline is transferred in the presence of air,
the volume of vapor displaced is often less than would be
theoretically predicted. A possible explanation for this vapor
shrinkage is that the gasoline as it is dispensed absorbs a
sufficient amount of air to account for the lost volume.
Figure 5.6-1 predicts the solubility of air in octane based
upon K values. Chevron Research Company performed tests
which indicated that air free gasoline, when exposed to the
atmosphere, "immediately" absorbed air to within 7270 of the
estimated equilibrium value (AM-100). These results indicate
that the absorption of air by gasoline is a rapid reaction, and
is in sufficient quantity to account for the vapor volume
contraction often observed with balanced displacement vapor
recovery systems.
B-67
-------
.30 .
w
.24 j
.20
I | I ^ i
-20
I I
I T
ZO'
40'
50°
FIGURE 5.6-1 - SOLUBILITY OF AIR IN OCTANE
B-68
-------
APPENDIX C
HYDROCARBON EMISSION FACTORS FOR
GASOLINE MARKETING FACILITIES
1.0 INTRODUCTION
The following pages provide a survey of the methods
available for the calculation of hydrocarbon emissions from
various sources. Whenever possible, three different methods
have been provided for each source: 1) a rough estimate employing
emission factors, 2) a more precise value through the use of
specific equations, and 3) a graphical solution utilizing
nomographs.
C-l
-------
2.0 DETERMINATION OF HYDROCARBON EMISSIONS
Various types of emissions occur during the marketing
of gasoline. Standing storage emissions, caused by the capillary
flow of liquid between the wall and seal, and withdrawal emissions,
resulting when the roof moves downward exposing the wet walls to
the air, occur in floating-roof tanks. Breathing losses and
working emissions are commonly associated with fixed-roof tanks.
Breathing losses occur when vapors expand with temperature increases
When the temperature decreases, the vapors contract and air enters
the tank, causing further evaporation of liquid. Working losses
include filling and emptying losses. As liquid is forced into a
tank, vapors are displaced. As liquid is withdrawn, air enters
and evaporation occurs„
2.1 Determination of Emissions from Floating-Roof Tanks
2.1.1 Standing Storage Emissions
The emission factor for standing storage losses from
a "new" floating - roof tank is 0.033 lb/day-1000 gal, while the
factor for "old" tank conditions is 0.088 lb/day-1000 gal.
Fairly accurate values for standing storage emissions
from a specific tank may be obtained by the equation
1.5 p 0.7 0.7
Ls - FTD Vw KsKcFp
where
Lg = standing storage emissions, bbl/yr.
Frp = tank factor based on type of roof,
number and condition of seals, and
construction defined as follows:
C-2
-------
0.045 for welded tank with pan, double
deck, or pontoon roof, single or
double seal;
0.11 for riveted tank with pontoon or
double deck roof, double seal;
0.13 for riveted tank with pan roof,
double seal;
0.14 for riveted tank with pan roof,
single seal.
D = tank diameter, ft. (If D is greater than 150,
multiply the loss for D = 150 by factor of
tank diameterK
150 ;'
P = true vapor pressure of the blend at
average storage temperature, psia.
This vapor pressure can be obtained
from Figure 2.1-1 if the Reid Vapor
Pressure is known.6
V = average wind velocity, mph.
K_ = seal factor as follows:
S
1.00 for tight-fitting seal
1.33 for loose-fitting seal
K = stock factor = 1.00 for gasoline
F = paint factor for shell and roof:
1.00 for aluminum or light grey
0.90 for white
C-3
-------
Ul
S3
0
Ul
ce
o.
a
o
o.
>
Ul
o:
i-
— 0.20
— 0.3O
120-n
— 0.40 :
r °-50 s HO-^
— 0.60 _i o :
A32 -:
— O.70 ? .11 1 1 :
— 0.90 -H-l-i ' -
— i.oo TT 1
~ 111 *°~:
~ 111 '-
"" i 1 L* 2 ••
"~ 1 \^l "
— ' 1 .50 1 1 ct "
- 1 1 I D 6,0-7
""" it Jf 3 |A ™
~ 1 \T\ Ul —
~ 2-oo lU L 4 £ :
li\ \f\ *TA **
•— JTll I ff "
III 1 J' 5fe ™
r- 2-5° l|rL 6 ° 4
- lul/f > :
~ 3-°° WMl 8 a *°":
— 11 TXt 9 ui ;
=" 3'50 |M |o 1
z- 4.00 ^ -j/J 12 5O-;
- JlU/t 14 -
"~ tf^^ "
"** ^ YT/V 16 ~
~ 5'°° Wt^f 16 40-^
— t M//V 20 :
I~ 6>0° Wf ":
"" JJl *
- 4* 30 ""•
— 7.0O \
~ ~
E- 8.00 :
= 20-^
— 9.0O
S - SLOPE OF THE ASTM DISTILLATION CURVE AT :
— |0.0 10 PER CENT EVAPORATED s -
L. ||.o DEC F AT 15 PER CENT MINUS DEG F AT 5 PER CENT IO~r
IO ~
— 12.0 Z
~ I3'° IN THE ABSENCE OF DISTILLATION DATA THE FOLLOW- QJj
— 14.0 ING AVERAGE VALUE OF S MAY BE USED :
~ I5'° MOTOR GASOLINE 3
— 16.0 AVIATION GASOLINE 2
— |7.0 LIGHT NAPHTHA (9-14 LB RVP) 3.5
1_ ,8>0 'NAPHTHA (2-6 LB RVP) ^.5
— 19.0
— 20.0
— 21.0
— 22.0
— 23.0
t- 24.0
H
u
I
Z
UJ
tc
X.
1/1
Id
tiJ
K
Ul
O
Z
Ul
a
\-
<
K
Ul
&
Ul
1-
Source: Nomograph drawn from data of the National Bureau of Standards.
FIGURE 2.1-1 - VAPOR PRESSURES OF GASOLINES AND FINISHED
PETROLEUM PRODUCTS
-------
Expected accuracy of emissions determined by this
equation for tanks with seals in good condition is ±25%. Actual
emissions for tanks with seals in poor condition may exceed the
estimated value by a factor of two or three.
A graphical solution for the standing storage emission
factor can be found in Figure 2.1-2, and emissions can be deter-
mined through application of Table 2.1-1 .
2.1.2 Withdrawal Emissions
Withdrawal emissions from floating-roof tanks may be
calculated by the equation
^ - 22,400
-------
CO
a
§
o
55
M
I
,-J
fa
2 2
o
H
0
CO
CO
3
eg
i
CM
O
H
fa
C-6
-------
CN
W
hJ
PQ
<
H
CO
^
1
U.
o
o
cc
o
o
u.
cc
o
u.
(O
cc
o
o
a.
RIVETED TANKS
WELDED TANKS
+-
ii.
O
O
K
Z
O
O
6
0.
u.
8
*
1
PAN OR PONTOON ROOpf
DOUBLE SEAL
SINGLE SEAL
DOUBLE SEAL
SINGLE SEAL
JOUBLE SEAL
SINGLE OR t
•
Q
O
MODERN
OLD*
MODERN
OLD*
MOOERN
•
Q
J
O
MODERN
*
Q
J
O
MODERN
TANK
PAINT
TANK
PAINT
TANK
PAINT
TANK
PAINT
TANK
PAINT
Mfe
{££
TANK
PAINT
TANK
PAINT
TANK
PAINT
*l
f;
a.
WHITE
H«
^g
WHITE
H«
5g
WHITE
H«
^g
WHITE
H-
5g
WHITE
. >
1_ Ul
S g
WHITE
-•*
5g
WHITE
H"
5g
WHITE
• Id
h tc.
J u>
WHITE
. >-
t- u
5g
WHITE
. >
t- u
Sg
U
- « 2
>• t H
-1 ° 0 >
in -•
q
n
n
o
IM
•
N
n
•
N
^r
n
e
m
n
N
«
•
IM
»
n
a
•
n
n
N
o
N
O
m
N
•«
81
N
N
n
o
H
ft
1
O
01
o
GASOLINE
•2-5 o
g8c?
5 S §
o o S
O j.
(o CD O
CD -S a
CO ^ O
« . Q
* *-
C-7
-------
where
Lr_ = withdrawal loss, bbl/yr.
V = volume of liquid withdrawn from
tank, bbl/yr.
D = tank diameter, ft.
2.2 Determination of Emissions from Fixed-Roof Tanks
2.2.1 Breathing Losses
The accepted emission factor for breathing losses
from fixed-roof tanks is 0.22 lb/day-1000 gal storage capacity
for "new" tanks, 0.25 lb/day-1000 gal for "old" tanks.3
More accurate values for breathing emissions may
Q
be obtained from the following equation:
24 P 0.68 1.73 0.51 0.50 I
LB = TOOO (14.7-P} D H T FpC
where
= breathing emissions, bbl/yr.
P = true vapor pressure, psia, determined by
Figure 2.1-1 at the average body temperature
If the average temperature is unknown,
5°F above ambient temperature should be
used.
D = tank diameter, ft.
C-8
-------
H = equivalent outage in ft. (see Figure 2.2-1).
T = average daily ambient temperature change, °F.
F = paint factor (see Figure 2.2-3)
8
C = an adjustment factor for tank size (see
Figure 2.2-2).8 For D > 30, use C = 1.
Alternatively, breathing emissions can be determined
by use of the nomograph in Figure 2.2-3.
2.2.2 Working Emissions
Working emissions for fixed-roof tanks may be estimated
3
by use of the emission factor 9.0 lb/1000 gal throughput.
More accurate values for working emissions from
Q
fixed-roof tanks may be obtained from the equation
3 PV .
where
LF = working loss, bb-1.
P = true vapor pressure of the blend at
average stock temperature, psia.
V = volume of liquid pumped into tank, bbl,
Q
K = turnover factor (see Figure 2.2-4) .
C-9
-------
OS
Ul
Ul
5
1.0
0.9
0.8
0.7
>•
10 0.6
o
ui
o
0.5
0.4
tu
o
2 0.3
H
Ul
< 0.2
ui
5 0.1
0.0
0.0 .1 .2 .3 .4 .5 .6
COEFFICIENT
.7
.8 .9
1.0
TO FIND EQUIVALENT OUTAGE H FOR USE IN FIGURE 3,
MULTIPLY LENGTH OF HORIZONTAL CYLINDRICAL TANK
BY APPROPRIATE COEFFICIENT.
Example:
Horizontal Tank
Diameter 10 Feet
Length 40 Feet
Average Outage 3 Feet
Outage/Diameter 0.3
Coefficient 0.25
Equivalent Outage H = 40 x 0.25= 10 Feet
FIGURE 2.2-1 - EQUIVALENT OUTAGE H FOR HORIZONTAL CYLINDRICAL
TANKS
C-10
-------
1.00
40
U M
.»
•«
10 20
Tank Diom*t*r in Fc«t
30
FIGURE 2.2-2 - ADJUSTMENT FACTOR FOR SMALL-DIAMETER
TANKS
C-ll
-------
£
¥
o
*"
u
•2
c
o
c
1
c
•o
o
O
•o
C
*
"6
M
J
<^iea^r»c0«u««
g-T-OOOO-ort-o
O'-r,
• • S. S. 2 2. °"o
ii7^iis,rE
Jill S|
! ! I ^
• 2-. 2- . -5 ,?S
1 i i "1
a *o o
o
Pi
1
p
W
pi
'Z,
M
b4
O
}
<
O
Pn
o
en
en
o
nJ
O
*Z
H
^•N
§
pq
rn
g
3
C-12
-------
Turnover Factor, KT
S 2 g S 5
36
\
\
\
NOTE: For
or Itu
s
^
36 Turnovers per y«or
Kr=1.0
V
—
~
0 100 200 300 400
tuma..r, Mr Y-T Annual Throughput
Tank Copocily
FIGURE 2.2-4 - EFFECT OF TURNOVER ON WORKING LOSS
C-13
-------
In addition, working emissions may be found using
Figure 2.2-5.6
2.3 Determination of Emissions from Variable Vapor-Space
Tanks
Variable vapor-space tanks are useful in reducing
breathing losses, especially when throughput is low. Working
losses, however, are still significant, and may be estimated
3
by an emission factor of 10.2 lb/1000 gal throughput.
For a more precise value for emissions, the following
9
formula may be used:
^p
LF - 1000
-------
JO-f
15
EXAMPLE:
36000 Borrtl Tank
Throughput = 560000 Sarreli p«r Y*ar
Tumov«ti=10
True Vapor Pre»ure=: 58 piia
Working leu = 973 Barrett p«r y«ar
20
- 15
10-
1000 -
•
:
1300 -
2000-
3000-
-
4000-
5000 -
6000 -
7000 -
8000 -
9000 -
10000 -
^
^
5
"
Throughput
^S
10.0-
9.0T-
8.0-
6.0-
5.0-
4.0-
3.0-
i
-^ 2.0-
•
1J-
*
f
1J5-
Kvol
8.0-
7JO*
^ 6.0-
* * 3.0-
4.0-
*
34-
"~* "™l
S.
i
z
1
£
- 0 la 36
-40 2.0-;
-30 ".
-60 1-3-
=M ""
-W I
•10° 1.0-
0.9-
-130 0.8.:
-175
-200 0.7-
-250
-300 0.6-
OJ-
1
•
04-
•
— 9.0
- 8.0
- 7.0
- 60
•
- 5.0
- 4.0
*
- 3.0
.
- 2.0
- \S
- 1.0
- 0.9
- o.»
— 0.7
— 0.6
-as
— 0,4
0.2-
0.13
0.10-
0.09
0.08-
0.2
— 0.15 r:
0.10
— 0.09
0.08
- 0.07
Note: The throughput is divided by a number (1, 10, 100, 1,000) to bring it
into the range of the scale. The working loss, read from the scale, must
then be multiplied by the same number.
FIGURE 2.2-5 - WORKING LOSS OF GASOLINE FROM FIXED-ROOF TANKS
C-15
-------
2.4.1 Breathing Emissions
Since data for actual correlations with field conditions
are scarce, the American Petroleum Institute has formulated'7 a
way to calculate emissions from low-pressure tanks based on a
theoretical pressure ?2, the design storage pressure required
to prevent breathing losses, such that:
P2 = l.l(Pa + PI - Pi) - (Pa - P2)
where
P2 = gage pressure at which pressure vent
opens, psig.
P = atmospheric pressure, psia.
3.
P! = gage pressure at which vacuum vent
opens, psig.
pi = true vapor pressure of the blend at
90°F minimum liquid surface temperature,
psia.
pa - true vapor pressure of the blend at
100°F maximum liquid surface temperature,
psia.
This equation is applicable only when pi is less than
When pi exceeds (Pi + P ), air is kept 01
Si
tank and the pressure required to prevent boiling is
(Pi + P ). When pi exceeds (Pi + P ), air is kept out of the
3. 3.
C-16
-------
For a plot of these equations, see Figure 2.4-1. Corrections for
altitude can be made using the appropriate atmospheric pressure
(see Table 2.4-1.7
The relationship between low-pressure breathing emissions
and tank pressure setting, PZ , for pressure settings from 0 to
2.5 psig has been found to be demonstrated by the curve in
Figure 2.4-2. The breathing losses are given as percentages of
losses from atmospheric tanks.
2.4.2 Working Emissions
Working losses in low-pressure tanks occur when the
pressure of the vapor space exceeds the vent setting during filling
and vapors are expelled.
Calculation of working emissions from low-pressure
tanks is complicated by temperature changes due to condensation.
As a result, two assumptions are made:
(1) Vapor and liquid phases are in equilibrium
(2) Filling begins at slightly less than
atmospheric pressure.
The resulting equation for LF , working emissions, is
-, 3p (P -Pi-p )
1 _ *yv a *v
F 100(Pa+P2-pv)
C-17
-------
14
13
II
10
0
?
°i 9
•^-^
in
a. e
UJ
? 7
Q. '
UJ
| 6
3
2
1
0
ft
tib
Tr
s
iftt
|:^
i
"*
T1-
•*..*-.
iU
t::
ri
f'1
;, •
•ill
• It*
::^
— •"!
-••-
::::
-— j
:r.T
i^i
TTT-
-ffp-ip:
-----t
-~—
. . .. I .-
II 1'*
' . . •
n LI
LT.:
— — 1
BR
EATHING CURVED
^-l-i f - r - _f^*T* I I 1 1 I 1
— . — j.-.- ..„.
~r.&.&
-—*-•-» r*** *
« i n
:rf:
jljililife
^Tj
y
/
4-
™r
rn;
imp
— -i
>
/
znd
>
/
BOILING CURVE /
y
/
-^tr
rtr— T
im::-r
^v:{±~:i~ir
iiiijJHi
y
/
'
^=
^
/
'
~4~>-*~f-
"t^Tt"
•i^t^
^HfHS
y
/
r
r~r
/
— m
•*7~
y
/
'
^
/
/
/
-bi:
_U. _,j ^—-IT^^J
_.( j-..., ,__
E!E!H!EJE
iilpi
"•-( '
;7~^
f
/
f
*7^"^7"
-rHK
/
'
i^j.
z^:
HE
^p
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
TRUE VAPOR PRESSURE AT lOOF^pA PSIA
Note: For values of p> between 20 and 30 psia, multiply the Reid vapor pressure at 100 F by 1.07.
FIGURE 2.4-1 - STORAGE PRESSURE REQUIRED TO ELIMINATE BREATHING
AND BOILING LOSSES
C-18
-------
TABLE 2.4-1
ATMOSPHERIC PRESSURE AT ALTITUDES ABOVE SEA LEVEL
Pounds per Square
Feet Inch Absolute
1,000 14.17
2,000 13.66
3,000 13.17
4,000 12.69
5,000 12.23
C-19
-------
100
8
ay eo
cr
-------
where
= working emissions, % of volume pumped.
p = true vapor pressure at liquid
temperature, psia.
P = atmospheric pressure, psia.
a
PI = gage pressure at which vacuum vent opens,
psig (see 2.4.1).
P2 = gage pressure at which pressure vent opens,
psig.
In Figure 2.4-3, emission values are shown for various
vapor pressures, with pressure vent settings greater than the
pressure required to prevent breathing losses. Twelve turnovers
per year are assumed.
When the pressure vent setting is equal to the
pressure required to prevent breathing losses, no pressure
rise is available to reduce working loss, and working losses
may be calculated from Figure 2.2-5, assuming an equivalent
fixed-roof tank.
2.5 Determination of Emissions from Underground Storage
Tanks
Filling losses from service station underground
storage tanks are highly dependent on such variables as pipe
and tank diameters, temperature and vapor pressure of the
gasoline, vent pipe size and length, and method of filling. In
a study performed by Robert L. Chass and others of emissions
C-21
-------
in
ZD
O
M
I
co
CM
NI oadwnd ainon do j.N3oa3d 'SSOT SNIMUOM
C-22
-------
from service stations in the Los Angeles area, the only factor
2
varied was the method of filling.
In order to complete the study, the trxick was
adequately sealed and there was a vapor recovery system at
the bulk loading terminal. The resulting emission factors
are shown in Table 2.5-1.
Additional working losses occur when fuel is pumped
from the underground tank to the car. As gas is removed,
air is inhaled and expands as it becomes saturated with vapor.
As it expands, vapor is exhaled, and this process occurs until
equilibrium is achieved. The emission factor for this piot.a "^
2
was found to be 1 lb/1000 gal gasoline pumped. Forty percent
gasoline vapor in the exhaled mixture was assumed.
Breathing losses in underground tanks are negligible
due to small temperature changes.
2.6 Determination of Emissions from Tank Cars or Trucl:^
2.6.1 Splash Loading
Splash loading occurs when the entry point of liquid
lies above the surface level of the stored fluid. Estimates of
emission losses during splash loading of tank cars or trucks
may be made using an emission factor of 12.4 lb/1000 gal
3
transferred.
A more precise value may be obtained using the following
3
equation :
T = Q.023 x 106)W
sp (690 - 4M)r"
14.7 - YP
14.7 - (0.95)P
- 1
C-23
-------
TABLE 2.5-1
GASOLINE VAPOR LOSSES FOR DIFFERENT TYPES OF
UNDERGROUND TANK FILLING TECHNIQUES
Type of Fill Loss (lb/1000 gal pumped)^
Splash 11.5
Submerged 7.3
Vapor return-open system 0.8
Vapor return-closed system 0
C-24
-------
L = splash loading loss, lb/1000 gal.
sp
W = density of hydrocarbon liquid at
temperature T, Ib/gal.
T = bulk absolute temperature of organic
liquid, °R.
Y = fraction of saturation of hydrocarbon
in vapor space at time of loading.
P = true vapor pressure of the blend ac
temperature T, psia.
M = molecular weight of liquid, Ib/lb-mole.
For a correlation between true vapor pressure and
losses, see Figure 2.6-1.
2.6.2 Submerged Loading
The accepted emission factor for submerged loading
3
of tank cars or trucks is 4.1 lb/1000 gal transferred.
Accuracy within ±25% may be obtained by the equr,ti.v
,1.00-Y. 69,600 PW
Lsub k 2 ;(690-4M)T'
where
L , = submerged loading loss, lb/1000 gal
of liquid loaded.
C-25
-------
0.5
o
<
o
_J
u-
O
0.4
0.3
CO
o
-J
z
o
O
Q.
<
UJ
0.2
O.I ^
0.0
0123456789
TRUE VAPOR PRESSURE (TVP), PSIA
FIGURE 2.6-1 - LOADING LOSSES FROM MARINE VESSELS, TANK CARS
AND TANK TRUCKS
C-26
-------
Y = fraction saturation in tank before
loading.
P = true vapor pressure of blend at
temperature T, psia.
W = density of hydrocarbon liquid at
temperature T, Ib/gal.
T = bulk absolute temperature of liquid,
M = molecular weight of liquid, Ib/lb-mole.
For a relation between true vapor pressure and losses,
see Figure 2.6-1. Figure 2.6-2 provides a correlation between
temperature, Reid Vapor Pressure, and filling losses for 50% sub-
merged loading.
2.6.3 Unloading Losses
Unloading losses from tank trucks and cars occur when
air enters the truck and evaporation occurs . The vapor expands
and is expelled until equilibrium is reached. An accepted
emission factor for unloading tank cars and trucks is 2.1 lb/1000
3
gal transferred.
3
Accurate to within ±10% is the following equation for
calculation of unloading losses from tank cars and trucks:
T . 69.600 YPW
u (690-4M)T
C-27
-------
0.26
70 60
GASOLINE LIQUID TEMPERATURE °F
80
FIGURE 2.6-2 - CORRELATION OF TANK VEHICLE-LOADING LOSSES
(50% SUBMERGED FILLING) WITH REID VAPOR
PRESSURE AND LIQUID TEMPERATURES OF THE
MOTOR GASOLINE
C-28
-------
where
L = unloading loss, lb/1000 gal of liquid loaded.
Y = degree of saturation of organic blend in
vapor space at time of unloading (estimated
or measured) .
T = bulk absolute temperature of organic liquid,
P = true vapor pressure of blend at
temperature T, psia.
M = molecular weight of liquid, Ib/lb-mole
W = density of hydrocarbon liquid at
temperature T, Ib/gal.
2.6.4 Transit
Transit breathing losses from tank cars and trucks
3
are assumed to be negligible due to the short travel time.
2.7 Determination of Emissions from the Filling of
Vehicle Gasoline Tanks
2.7.1 Vapor Loss
Vapor loss incurred during filling of motor vehicle
gasoline tanks may be estimated by an emission factor of
11.0 lb/1000 gal. pumped.3
C-29
-------
3 +
An expression accurate to within -0.5 lb/1000 gal for
the calculation of these losses was formulated by Scott Research,
Inc. :
= 2.22 exp(-0. 02645 + 0.01155 T
DF
0.01226 T + 0.00246 T P vp)
V V Kvr
where
LD = vapor loss, lb/1000 gal.
TDF = avera§e dispensed fuel temperature, °F.
T = average temperature of vehicle tank vapor
displaced, °F.
p
RVP = Reid Vapor Pressure of gasoline pumped at
temperature T^p, psia.
2.7.2 Liquid Spillage Loss
The average emission factor for liquid spillage has
3
been found to be 0.67 lb/1000 gal pumped.
2.8 Determination of Emissions from Marine Vessels
Tankers and barges, due to their large capacities, are
the source of major hydrocarbon emissions. Losses occur during
loading, transit, and unloading. Emissions may be minimized by
careful carrier design.
C-30
-------
Unloading losses may be estimated by the analogous
shore-tank withdrawal losses, that is, -0.007 percent by volume
per psia true vapor pressure of the blend.
Transit losses have been shown by limited data to be
roughly 0.01 percent by volume pej. psia true vapor pressure of
the blend for a one-week voyage.
Although a limited amount of data is available, it is
thought that loading losses from marine vessels may be estimated
by a factor of 0,008 percent by volume ptr psla true vapor pres-
sure of the blend for ships relatively vapcn free. For ships
having a significant amount of existent vapor, the loss would be
lower.
A correlation for losses during loading of relatively
vapor-free ships is found in Figure 2.8-1. Loading losses are
minimized when fill pipes are an integral part of the carrier
and are arranged to minimize splashing.
C-31
-------
o
<
o
-J
0.
to
>
o
2 o.
i-
<
o
Q_
r::-t_--±t
-f-
ft
w
m
-rtr-
ifff.
I!
TT"
m-i
•:;#
^^
HtM.
i
flii
M
l±w
t±ff
r-fr
ip
ft:i
ttiT -7- C
TTT-P + T;
0 2 4 6 8 10 12 14
TRUE VAPOR PRESSURE (TVP) PSIA
FIGURE 2.8-1 - LOSS FROM LOADING TANKERS AND BARGES
C-32
-------
3.0 DEFINITION OF TERMS
Breathing Loss - vnpor less due to expansion and
contraction of vapors as a result of alternate
heating and cooling.
Filling Loss ~ loss due to tho rvpulMon of y^por
;IR Ifqvid is cnaj -^ed •<> ._he vesse^.
Outage - the vertical distance between the liquid
is a tank -m<1 ! ^<- f-^ •'•> H •-.-••' *
Sp]ash Lqadiru? - filling vhfc1' fyVt. --; r;1.u-e wl f <•• ••
;.;-. ry <~ r i hf '..quid above the s,.:r"f".-i.:e level of the
stored fliiici. Splash loading encourages ev~r»ora-
f i r\r< -1: f- r r- ' ht' 1' *. ! ! " v ^ ->-<:ft-«-' 'hr*' takes pl-'^Ce.
Standing Sforare (wicking) Los^ - Icsv caused by
the -"^ni ! !si \ ; low of ' t-he lic,\>ir ?rf-< --f --; '-, ''er •
and the ta^H- •, • i^ f > T^- j ns; • -ro-' f ;
.?il?. JPfl1" _y°5JC " annual thro-ri'-irxu. divided by
tank capacirv.
when fhf* w." ?~.)nk WP ; i .^ nrt3 exi.'o^ed .- "» air o<; liouid
is withdrawn is floating-roof tanks.
-------
REFERENCES
T
1. Danielson, John A., Air Pollution Engineering Manual, 2nd
Ed., Research Triangle Park, North Carolina, EPA, 1973. AP-40.
i
2. Chass, R. L., et. al., "Emissions from Underground Gasoline
Storage Tanks", J. Air Pol. Control Assoc. 13 (11), 524-530 (1963)
3. Supplement No. 1 for Compilation of Air Pollutant Emission
Factors, 2nd Ed., Research Triangle Park, North Carolina,
EPA, 1973.
4. American Petroleum Institute, Hydrocarbon Emissions from
Refineries, Washington, D. C., 1973. Publication No. 928.
5. Nichols, Richard A., Control of Evaporation Losses in
Gasoline Marketing Operations, Irvine, California,
Parker-Hannifin.
6. American Petroleum Institute, Recommended Procedures for
Estimating Evaporation and Handling Losses of Volative
Petroleum Products in Marketing Operations, Washington,
D.C., 1971. Publication No. 4080.
7. American Petroleum Institute, Evaporation Losses from Low
Pressure Tanks, Washington, D. C., 1962. API Bulletin 2516.
»
8. American Petroleum Institute, Evaporation Loss from Fixed-
Roof Tanks. Washington, D. C., 1962. API Bulletin 2518.
^
9. American Petroleum Institute, Use of Variable Vapor-Space
Systems to Reduce Evaporation Loss, Washington, D. C.,
1964. API Bulletin 2520.
C-34
-------
10. American Petroleum Institute, _Eyap.prat'Lon I^oss, from Transpor-
tation Vessels, Washington, D. C., 1959, AFT Bulletin 2514.
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1 . REPORT NO.
EPA-450/3-75-046-5
2.
3. RECIPIENT'S ACCESSIOI*NO.
4. TITLE ANDSUBTITLE
A Study of Vapor Control
Marketing Operations
Volume II - Appendix
Methods for Gasoline
5. REPORT DATE
April 1975
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
C.E. Burklin, E.G. Cavanaugh, J.C.
Dickerman, and S.R. Fernandes
r
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
10. PROGRAM ELEMENT NO,
Radian Corporation
8500 Shoal Creek Boulevard
P. 0. Box 9948
Austin, Texas 78766
11. CONTRACT/GRANT NO.
No. 68-02-1319
12. SPONSORING AGENCY NAME AND ADDRESS
U.S. Environmental Protection Agency
OAWM, OAQPS
Research Triangle Park, North Carolina
13. TYPE OF REPORT AND PERIOD COVERED
Final Report
14. SPONSORING AGENCY CODE
27711
15. SUPPLEMENTARY NOTES
16. ABSTRACT
Background information is given on the size and extent of the gasoline
marketing industry and the magnitude of hydrocarbon vapor emissions. The
principal sources of emissions, tank truck filling at bulk terminals, service
station storage tank filling and vehicle refueling are characterized. Vapor
control techniques for bulk terminals are described: compression, refrigeration,
absorption, adsorption, incineration, and combinations of these techniques.
The two types of control systems for service stations are evaluated, vapor
balance systems and vacuum assist/secondary processing systems. Test data are
given.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS C. COS AT I Field/Group
Air Pollution
Gasoline Service Stations
Gasoline Bulk Terminals
Vapor Processing
Vapor Balancing
Vapor Recovery
Air Pollution Control
Stationary sources/
Mobile sources
Organic Vapors
18. DISTRIBUTION STATEMENT
Unlimited
19. SECURITY CLASS (ThisReportj
Unclassified
21. NO. OF PAGES
262,
20. SECURITY CLASS (This page)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
C-36
-------