EPA-450/3-75-046-b
 April 1975
A  STUDY OF  VAPOR CONTROL
      METHODS  FOR GASOLINE
     MARKETING OPERATIONS:
        VOLUME II - APPENDIX
     U.S. ENVIRONMENTAL PROTECTION AGENCY
        Office of Air and Waste Management
      Offiee of Air Quality Planning and Standards
     Researeh Triangle Park, North Carolina 27711

-------
                                EPA-450/3-75-046-b
A STUDY OF VAPOR  CONTROL
   METHODS FOR  GASOLINE
   MARKETING  OPERATIONS:
     VOLUME II  -  APPENDIX
                   by
          C.E. Burklin, E.G. Cavanaugh,
        J.C. Dickerman, and S.R. Fernandas

              Radian Corporation
            8500 Shoal Greek Boulevard
              Austin, Texas 78766

             Contract No. 68-02-1319
        EPA Project Officer: Edwin J. Vincent
                Prepared for

        ENVIRONMENTAL PROTECTION AGENCY
         Office of Air and Waste Management
      Office of Air Quality Planning and Standards
      Research Triangle Park, North Carolina 27711

-------
This report is issued by the Environmental Protection Agency to report
technical data of interest to a limited number of readers.  Copies are
available free of charge to Federal employees, current contractors and
grantees, and nonprofit organizations - as supplies permit - from the
Air Pollution Technical Information Center, Environmental Protection                  J
Agency, Research Triangle Park,  North Carolina  27711;  or, for a fee,                ,*
from the National Technical Information Service, 5285 Port Royal Road,
Springfield, Virginia 22161.
This report was furnished to the Environmental Protection Agency by
Radian Corporation, Austin, Texas 78766, in fulfillment of Contract
No. 68-02-1319- The contents of this report are reproduced herein as
received from Radian Corporation.  The opinions, findings, and conclusions
expressed  are those of the author and not necessarily those of the Environmental
Protection Agency. Mention of company or product names is not to be
considered as an endorsement by the Environmental Protection Agency.
            Publication No. EPA-450/3-75-046-b
                                    11

-------
                        TABLE OF CONTENTS
                            Volume I
                                                          Page
            INTRODUCTION	  1
1. 0         SUMMARY	  2
1.1         Report Obj ectives	  2
1.1.1       Regulations	  2
1.1.2       Control Technology	 .  3
1.1.3       Statistics	'	  4
1. 2         Conclusions and Comments	  5

2 .0         TECHNICAL DISCUSSION	  9
2.1         Gasoline Marketing Industry	 11
2.1.1       Background	 11
2.1.1.1     Size and Extent of the Industry	 11
2.1.1.2     The Gasoline Marketing Network	 20
2.1.1.3     Gasoline Market - Projections	 32
2.1.2       Air Pollution Contribution	 40
2.1.2.1     Adverse Effects of Hydrocarbon Emissions	 40
2.1.2.2     How Gasoline Marketing Contributes to Atmos-
            pheric Hydrocarbons	 43
2.1.2.3     Magnitude of Gasoline Marketing Emissions	 44
2.1.2.4     Seasonal Characteristics - Photochemical
            Oxidant Levels	 50
2.1.3       Gasoline Marketing Systems	 59
2.1.3.1     Bulk Terminals	 59
2.1.3.2     Marine Terminals	 61
2.1.3.3     Bulk Plants	 61
2.1.3.4     Service Stations	 65
2.1.4       Uncontrolled Emissions	 67
2.1.4.1     Bulk Terminals	 67
2.1.4.2     Bulk Plants	 73
2.1.4.3     Service Stations	 74
                              111

-------
TABLE OF CONTENTS - Volume I (cont.)                     Page

2.2         Emission Control Technology	  76
2.2.1       Terminals	  76
2.2.1.1     Tankage Control Measures	  76
2.2.1.2     Loading Rack Vapor Controls	  89
2.2.1.3     Vapor Recovery Units	  95
2.2.2       Service Stations	 114
2.2.2.1     Stage I Control Technology	 116
2.2.2.2     Stage II Control Technology	 128
2.2.2.3     Nozzle Design-Effects on Vapor Recovery	 164
2.2.3       Bulk Stations	 170
2.2.3.1     Vapor Balance	 170
2.2.3.2     Vapor Recovery Sys terns	 171
2.2.3.3     Cost	 171
2.2.3.4     Operating Reliability	 173
2.3         Environmental Effects	 174
2.3.1       Hydrocarbon Emissions	 174
2.3.2       Impact on Water Pollution	 178
2.3.3       Impact on Solid Wastes	 178
2.3.4       Energy Considerations	 180
2.4         Advantages/Disadvantages of Various
            Regulation Criteria	  180
2.4.1       Regulations Based on Percent Reduction	  180
2.4.2       Regulations Based on Mass Emissions	  183
2.4.3       Regulations Based on Equipment Standards....  184

            BIBLIOGRAPHY	  186
                               IV

-------
                                  IA
  9-9  	suT2-[a
  g-g  • • • • spxBpueris  Jty ^uaTquiy ^aaw 03 sue^a
                       Jiog paBpUB^s  A3f[Bno ^TV  ^uafquiy     2'3'I
                                    saoanog BUT^sixg aog
                                        PUB SuTqs-nqBasg     I'Z'l
                                             aTV  auaTquiy        3 '"[
  ^-g  	^oy ^TV UBa~[0 aqi        "[ "[
   T_rr  •....	CKTAT TWTn^'H^I — T A\I T NTA*™^ \IOJT\7A fLTMTrTOC'V7c^        C\ "T
    a.                bNUliLV lllkJida  iUaiiiNUJ aUdVA aNl lUbVvJ        U  L
                              a
^£-[-y  	asB^Bai >[onax  ^UBI     £ • g • g
0£T"V  	3Tufl uoT^BaaSfaja'a     Z ' $ ' $
SZI~V  	3Tufl UOT5daosqv-uo"t^Bj:aSTj;g:3)j-uoT:ssaj:duioo     I'S'S
63I-V  	s^-[nsa-a        g • g
83I-V  	s^sai
                                                                ^7'S
g^T-V  	^T^Q asax  aq^ jo
                                            jo
                                 3sax  aq3 jo
ZZ1~V  	uoT^Baado jo a"[dTOUTaa

111~V  	uot^oa^as 3TUI1 ^sax jo  sjseg
6IT-V  	
5^-[-y  	uoTrjonpoarjul       i • g
611-v  	raoaaa isai iVNiwaai, sina       o • g
                                   siwaiwoa jo aiavi  -  v xiawaaav

-------
                                 A
                                  srjaaqg A'aBinmns B:}BQ     ^'9 't7
eZ.-V ................... %OOT
•[£-V '  ' 'suoTssfiag  pa^ojiauoouQ uo pasBg saTouaTOTjjg     Z'9'1?
0£-V ................ sa-[OTqaA 3J.3 sojoj jo uofSTVpui     T '9 '^
0^-y ............. B:JBQ jo uofaBrjaadaarmi SuTjeaufSug       9 -^
89-V ................................... suoT5B-[no-[Bo       g -^
^g-Y ......................... sdoJLQ ^UBI punoa.Sj.apuQ     ^ '"^ <1?
£9~V ................................. suoTssfuig
09-V
gg-y ........................ saTOuaTOTjjg jo  X^Bunnns     I '^ 'V
gg-V ................................... s^insa^ asai       17-17
OS-V ..................................... II  UOTIBIS     Z'^'-i?
e^-v ...................................... I  uo-caBas     T'€'-<7
                                        jo XSoxouoaqo       £ -^
                                                             \ •
                   raoaas isai ao^nos NOIIVIS
     ••••siinsaa  ^o  A^vwwns - s^anxo AS si^odan isai
82-V .................................. ufi^jng  -g -3
                     TQ '0 T Xq pa^aoda^ PUB
                        -3 T  q pa^aoa-a PUB
                                                             £'£
81 -y .............. uj-[>[ang -g -3 puB UBraaa^OTQ  'D T
                   puB pa^TSTA TBUTuizai UT^sny-NOXXa       Z'Z
                                                 '0 T
                   puB pa^TSTA iBUfuaai uoasnon-NOXXa       I'Z
          AS si'aodaa isai QNV sinoaaa di^i AaA^nsa^a       0*3
 i-v .............................. SIDVXNOO A^xsnaNi       o • i
               isai QNV 'si^oaas dini  'SIOVXNOO

-------
APPENDIX B - TABLE OF CONTENTS (cont.)                    Page

1.2.5     Transportation Control Plans	  B-15
1.2.6     Compliance Schedules	  B-17
1.2.7     Standards of Performance for New Stationary
          Sources	  B-22

2 . 0       COST DATA	  B-23

3.0       SEASONAL EFFECTS ON VAPOR RECOVERY EFFICIENCIES  B-39
3.1       Gasoline Composition Bases	  B-39
3 . 2       Calculation Bases	  B-39
3 . 3       Conclusions	  B-41

4. 0       ENFORCEMENT MONITORING	  B-45
4.1       Terminals	  B-45
4.2       Service Stations	  B-46
4. 3       Bulk Stations	  B-47

5.0       PHYSICAL AND CHEMICAL PROPERTIES OF GASOLINE
          AND ITS VAPORS	  B-48
5.1       Chemical Composition of Gasoline	  B-48
5.2       Reid Vapor Pressure of Gasoline	  B-55
5.3       Chemical Composition of Gasoline Vapors	  B-55
5.4       Photochemical Reactivity of Gasoline Vapors....  B-55
5 . 5       Vapor-Liquid Equilibria	  B-62
5.6       Solubility of Air in Gasoline	  B-67
                         APPENDIX C
              HYDROCARBON EMISSION FACTORS FOR
                GASOLINE MARKETING FACILITIES
1.0       INTRODUCTION	  C-l

2.0       DETERMINATION OF HYDROCARBON EMISSIONS	  C-2

                             vii

-------
APPENDIX C - TABLE OF CONTENTS (cont.)                    Page

2.1       Determination of Emissions from Floating-Roof
          Tanks	 C-2
2.1.1     Standing Storage Emissions	 C-2
2.1.2     Withdrawal Emissions	 C-5
2.2       Determination of Emissions from Fixed-Roof
          Tanks	 C-8
2.2.1     Breathing Losses	 C-8
2.2.2     Working Emissions	 C-9
2.3       Determination of Emissions from Variable
          Vapor-Space Tanks	 C-14
2.4       Determination of Emissions from Low-Pressure
          Tanks	 C-14
2.4.1     Breathing Emissions	 C-16
2.4.2     Working Emissions	 C-17
2.5       Determination of Emissions from Underground
          Storage Tanks	 C-21
2.6       Determination of Emissions from Tank Cars or
          Trucks	 C-23
2.6.1     Splash Loading	 C-23
2.6.2     Submerged Loading	 C-25
2.6.3     Unloading Losses	 C-27
2.6.4     Transit	 C-29
2.7       Determination of Emissions from the Filling of
          Vehicle Gasoline Tanks	 C-29
2.7.1     Vapor Loss	 C-29
2.7.2     Liquid Spillage Loss	 C-30
2.8       Determination of Emissions from Marine
          Vessels	 C-30

3 . 0       DEFINITION OF TERMS	 C- 33

          REFERENCES	 C- 34
                            vi ii

-------
                        LIST OF TABLES
                           Volume I
TABLE 2.1-1   Gasoline Refining and Marketing
              Facilities	
12
TABLE 2.1-2   Gasoline Consumption By State 	  17

TABLE 2.1-3   Average Fuel Consumption 1969-1973	21

TABLE 2.1-4   1973 Oil Company Marketing Statistics ...  24
TABLE 2.1-5   Number of Gasoline Service Stations and
              Sales Volume 1968 - 1974	
31
TABLE 2.1-6   Gasoline Marketing By State 	  34

TABLE 2.1-7   Contribution of Pollutants to Vegetation
              Damage in California	42
TABLE 2.1-8   National Emissions of Hydrocarbon
              Compounds, 1968 	
45
TABLE 2.1-9   Hydrocarbon Emissions Inventory Summary--
              Air Quality Control Region 7,  Houston -
              Galveston	47

TABLE 2.1-10  Hydrocarbon Emissions Inventory Summary--
              Air Quality Control Region 3,  Austin-
              Waco	48
                              IX

-------
LIST OF TABLES - Volume I (cont.)
                                                         Page
TABLE  2.1-11   Summary of Hydrocarbon Emission Trends
               From Gasoline Marketing	49
TABLE 2.1-12   U. S. Bulk Storage Capacity By Tank
               Size	
 60
TABLE 2.1-13   Uncontrolled Hydrocarbon Emissions From
               250,000 Gal/Day Bulk Terminal	  72
TABLE 2.2-1    Summary of Storage Tank Costs
 82
TABLE 2.2-2    Installed Costs for Variable Vapor Space
               Tanks (50,000 bbl-1961) 	   83

TABLE 2.2-3    Characteristics of Vapor Recovery Units
               for Bulk Terminals	113

TABLE 2.2-4    Summary of Computer Calculations	115

TABLE 2.2-5    Data and Results of Displacement Vapor
               Recovery Study for Underground
               Deliveries	117

TABLE 2.2-6    Summary of Bulk Drop Data	118

TABLE 2.2-7    Summary of Vapor Emissions - Tank Truck
               Delivery Tests with Service Station Vapor
               Control Systems 	  119
TABLE 2.2-8    Predicted Potential Efficiency of a
               Carbon Storage System 	
148

-------
LIST OF TABLES - Volume  I  (cont.)

                                                         Page
TABLE 2.2-9    Summary of Service Station Staple II
                                                           1 f~\ ft
               Vapor Recovery Systems	

TABLE 2.3-1    AQCR 8  (Dallas - Fort Worth) Baseline
               Emission  Inventory (Tons/Year)	   •*-''

TABLE 2.3-2    AQCR 8  (Dallas - Fort Worth) Emission
               Inventory Under Proposed Strategy
               (Tons/Year)  .....  	   179

TABLE 2.3-3    Energy Conserved or Used at Gasoline
               Marketing Facilities	   '-^l


                           VOLUME  II
                         LIST OF TABLES

                           APPENDIX  A
                                                           Paee
 TABLE 4.4-1   SUMMARY OF VAPOR RECOVERY EFFICIENCIES  FOR
              TESTING PERFORMED 7/30/74 -  8/16/74	  A-56
 TABLE 4.4-2   SUMMARY OF BASELINE  CURVES FOR TESTING
              PERFORMED 7/30/74 -  8/16/74	  A-61
 TABLE 4.4-3   SUMMARY OF MASS EMISSIONS FOR TESTING
              PERFORMED 7/30/74 -  8/16/74	  A-67
 TABLE 5.5-1   PHILADELPHIA TRUCK DATA SUMMARY	  A-131
 TABLE 5.5-2   PHILADELPHIA VAPOR RECOVERY  UNIT DATA
              SUMMARY	  A-132
 TABLE 5.5-3   BAYTOWN TERMINAL TRUCK DATA  SUMMARY	  A-135
 TABLE 5.5-4   BAYTOWN VAPOR RECOVERY UNIT  DATA SUMMARY....  A-136
 TABLE 5.5-5   SUMMARY OF TEST RESULTS CORRECTED TO INCLUDE
              TANK  TRUCK LEAKAGE	  A-139
                               xi

-------
                         APPENDIX B

TABLE 1.2-1  STATE VAPOR RECOVERY REGULATIONS	 B-7

TABLE 1.2-2  AQGR'S REQUIRED TO SUBMIT TRANSPORTATION
             CONTROL PLANS TO MAINTAIN THE NATIONAL
             STANDARD FOR PHOTOCHEMICAL OXIDANTS (HYDRO-
             CARBONS) 	 B-16

TABLE 1.2-3  VAPOR RECOVERY REGULATIONS FOR SERVICE
             STATIONS	 B-18

TABLE 2.0-1  ESTIMATED INSTALLED COSTS OF STORAGE TANKS.. B-24

TABLE 2.0-2  SOURCES OF COST DATA - VAPOR RECOVERY
             EQUIPMENT FOR CONE ROOF STORAGE TANKS	 B-25

TABLE 2.0-3  INVESTMENTS - FLOATING ROOF VS. FIXED
             ROOF TANKS	 B-27

TABLE 2.0-4  PURCHASE COST OF STORAGE TANKS	 B-28


TABLE 2.0-5  SUMMARY OF ESTIMATED OPERATING COSTS FOR
             GASOLINE STORAGE TANKS	B-29

TABLE 2.0-6  DIFFERENTIAL SAVINGS VS. DIFFERENTIAL
             CAPITAL INVESTMENT AND PAYOUT  (BASE CASE -
             FIXED ROOF TANK)	B-30

TABLE 2.0-7  SOURCES OF COST DATA - LOADING RACK
             VAPOR RECOVERY EQUIPMENT	B-31

TABLE 2.0-8  SOURCES OF COST DATA FOR TANK TRUCK
             RECOVERY EQUIPMENT	 B-32

TABLE 2.0-9  SOURCES OF COST DATA FOR TERMINAL VAPOR
             RECOVERY UNITS	 B- 33

TABLE 2.0-10 COSTS AND STATISTICS FOR TERMINAL VAPOR
             RECOVERY UNITS (1974)	 B-34

TABLE 2.0-11 SOURCES OF COST DATA FOR DELI VERY-RELATED
             SERVICE STATION VAPOR RECOVERY EQUIPMENT	 B-35

TABLE 2.0-12 COSTS FOR SERVICE STATION VAPOR RECOVERY
             UNITS	 B-36

TABLE 2.0-13 COST SUMMARY FOR DIRECT DISPLACEMENT AND
             VAPOREX VAPOR CONTROL SYSTEMS	 B-37
                             XI1

-------
APPENDIX B - LIST OF TABLES (cont.)
TABLE  2.0-14  ESTIMATE  FOR THE  INSTALLATION OF A  SIMPLE
              DISPLACEMENT SYSTEM AT TYPICAL  SERVICE
              STATION	 B-38

TABLE  3.1-1   SEASONAL  COMPOSITIONS OF  GASOLINE AND ITS
              VAPORS IN MOLE PERCENT	 B-40

TABLE  3.2-1   INPUTS AND RESULTS FROM THE VAPOR-LIQUID
              EQUILIBRIUM  MODEL OF A REFRIGERATION VAPOR
              RECOVERY  UNIT	 B-42

TABLE  5.1-1   DETAILED  CHEMICAL COMPOSITION OF A  FULL
              RANGE MOTOR  GASOLINE	 B-49

TABLE  5.1-2   AVERAGE COMPOSITION OF 15 SAMPLE MOTOR
              GASOLINES	 B-51

TABLE  5.1-3   COMPOSITION  SUMMARY OF TYPICAL  PREMIUM
              GASOLINES	 B-52
 TABLE 5.1-4  SUMMARY OF VALUES, MOTOR GASOLINE SURVEY,
              WINTER 1971-72	 B-53

 TABLE 5.1-5  SUMMARY OF VALUES, MOTOR GASOLINE SURVEY,
              SUMMER 1973	 B-54

 TABLE 5.2-1  MOTOR GASOLINE SURVEY, SUMMER 1973 AVERAGE
              DATA FOR BRANDS  IN EACH DISTRICT--
              CONTINUED	 B-57

 TABLE 5.2-2  MOTOR GASOLINE SURVEY, WINTER 1971-72
              AVERAGE DATA FOR BRANDS IN EACH DISTRICT--
              CONTINUED	 B-58

 TABLE 5.3-1  EXAMPLE GASOLINE VAPOR COMPSOITIONS	 B-60

 TABLE 5.4-1  COMPARISON OF PRODUCT YIELDS AND EFFECTS
              CAUSED BY VARIOUS HYDROCARBONS	 B-63
                         APPENDIX C

 TABLE 2.1-1  MULTIPLYING FACTORS FOR FLOATING ROOF
              TANKS	 C-7

 TABLE 2.4-1  ATMOSPHERIC PRESSURE AT ALTITUDES ABOVE
              SEA LEVEL	 C-19

 TABLE 2.5-1  GASOLINE VAPOR LOSSES FOR DIFFERENT TYPES
              OF UNDERGROUND TANK FILLING TECHNIQUES	 C-24


                             xiii

-------
                         LIST OF FIGURES
                            Volume I
FIGURE  2.1-1   U. S. Gasoline Consumption	    16

FIGURE  2.1-2   The Gasoline Marketing Distribution
               System in the United States	    22

FIGURE  2.1-3   Marketing Trends at Gasoline Service
               Stations	    29

FIGURE  2.1-4   Monthly Oxidant Maxima, Los Angeles and
               San Bernadino, California - 1972	    51

FIGURE  2.1-5   Monthly Oxidant Maxima, Camden, New Jersey
               and Denver,  Colorado - 1972	    52

FIGURE  2.1-6   Monthly Oxidant Maxima, San Diego and
               Oceanside, California - 1972	    53

FIGURE  2.1-7   Monthly Oxidant Maxima, Sacramento,
               California - 1972	    54

FIGURE  2.1-8   Monthly Oxidant Maxima, Bakersfield and
               Stockton, California - 1972  .......    55

FIGURE  2.1-9   Monthly Oxidant Measurements, Azusa, Los
               Angeles,  and San Diego, California -
               1972	    56

FIGURE  2.1-10  Monthly Oxidant Measurements, San Bernadino
               and Sacramento California - 1972	    57
                               XIV

-------
 LIST  OF  FIGURES  -  Volume  I  (cont.)
                                                         Page
FIGURE  2.1-11   Hourly Oxidant Measurements, Bakersfield
                and Stockton, California, and Denver,
                Colorado - 1972	    53

FIGURE  2.1-12   Diagram of a Fixed Roof Tank	    62

FIGURE  2.1-13   Diagram of a Floating Roof Tank	    63

FIGURE  2.1-14   Vapor and Liquid Flow in a Typical
                Bulk Terminal	'.....    64

FIGURE  2.1-15   Vapor and Liquid Flow in a Typical Bulk
                Plant	    66

FIGURE  2.1-16   Vapor and Liquid Flow in a Typical Service
                Station	    68

FIGURE  2.2-1   Standard Fixed Cone Roof Tanks  	    78

FIGURE  2.2-2   Pan-Type Floating Roof Tank	    78

FIGURE  2.2-3   Pontoon Floating Roof Tank 	    79

FIGURE  2.2-4   Double Deck Floating Roof.  .  	    79

FIGURE  2.2-5   Pan-Type Internal Floating Cover ....    80

FIGURE  2.2-6   Lifter Roof Tank	    80
FIGURE  2.2-7   Integrated Vapor Gathering System.  .  .  .
84
                               xv

-------
 LIST  OF  FIGURES  -  Volume  I  (cont.)

                                                         Page
FIGURE 2.2-8    Combined Storage Tank and Flexible
                Diaphragm	    86

FIGURE 2.2-9    Independent Flexible Diaphragm 	    87

FIGURE 2.2-10   Top Loading Arm Equipped With A Vapor
                Recovery Nozzle	    90

FIGURE 2.2-11   Detail of a Vapor Recovery Nozzle. ...    92

FIGURE 2.2-12   Bottom Loading Vapor Recovery	    93

FIGURE 2.2-13   Compression-Refrigeration-Absorption
                Unit By Parker Hannifin	    97

FIGURE 2.2-14   Compression-Refrigeration-Absorption Unit
                By Rheem Superior	    98

FIGURE 2.2-15   Compression-Refrigeration-Condensation
                Unit By GESCO	   101

FIGURE 2.2-16   Compression-Refrigeration-Condensation
                Unit By Vaporex	   102

FIGURE 2.2-17   Refrigeration Vapor Recovery Unit By
                Edwards	   104

FIGURE 2.2-18   Lean Oil Absorption System By Southwest
                Industries /	   106
                               xvi

-------
 LIST OF FIGURES - Volume I (cont.)
                                                          Page

 FIGURE 2.2-31   Schematic of a Compression-Absorption-

                 Adsorption Vapor Recovery System. .... 163


 FIGURE 2.2-32   Schematic of an Adsorption-Absorption

                 Vapor Recovery System	165


 FIGURE 2.2-33   Low Pressure Tank Emissions vs Tank

                 Operating Pressure Range	172





                          Volume  II

                       LIST OF FIGURES


                         APPENDIX A
                                                          Page

 FIGURE 2.4-1   SHELL VACUUM ASSIST	 A-29

 FIGURE 4.1-1   TYPE I VAPOR BALANCE SYSTEM	 A-47

 FIGURE 4.1-2   TYPE II VAPOR BALANCE SYSTEM	 A-48

 FIGURE 4.3-1   SCHEMATIC OF TYPE A PRESSURE-VACUUM
               VALVE	 A-54

 FIGURE 4.3-2   SCHEMATIC OF TYPE B PRESSURE-VACUUM
               VALVE	 A-54

 FIGURE 4.4-1   COMPARISON OF DISPENSED GASOLINE
               TEMPERATURES	'	 A-57

FIGURE 4.4-2   COMPARISON OF DISPENSED GASOLINE
               TEMPERATURES	 A-58
                             xvn

-------
LIST OF FIGURES - Volume II - Appendix A (cont.)


FIGURE 4.4-3   COMPARISON OF DISPENSED GASOLINE
               TEMPERATURES	 A-59

FIGURE 4.4-4   BASELINE CURVES FROM TESTS PERFORMED
               7/30/74 - 8/16/74	 A-62

FIGURE 4.4-5   COMPARISON OF MEASURED HYDROCARBON CONCEN-
               TRATIONS AGAINST HYDROCARBON CONCENTRATIONS
               OF SATURATED FUEL VAPORS	 A-64

FIGURE 4.4-6   COMPARISON OF MEASURED HYDROCARBON CONCEN-
               TRATIONS AGAINST HYDROCARBON CONCENTRATIONS
               OF SATURATED FUEL VAPORS	 A-65

FIGURE 4.4-7   PREDICTED HYDROCARBON CONCENTRATION AS A
               FUNCTION OF RETURNED VAPOR TEMPERATURE	A-66

FIGURE 5.3-1   SCHEMATIC OF A COMPRESSION-REFRIGERATION-
               ABSORPTION VAPOR RECOVERY SYSTEM	 A-123

FIGURE 5.3-2   SCHEMATIC OF AN OPEN REGRIGERATION VAPOR
               RECOVERY SYSTEM	 A-126

FIGURE 5.5-1   HYDROCARBON REMOVAL EFFICIENCY VERSUS
               CONDENSER TEMPERATURE	 A-134




                         APPENDIX B
                                                          Page

FIGURE 5.2-1   VAPOR PRESSURES OF GASOLINES ANF FINISHED
               PETROLEUM PRODUCTS, 1 Ib TO 20 Ib RVP.
               NOMOGRAPH DRAWN FROM DATA OF THE NATIONAL
               BUREAU OF STANDARDS (AMERICAN PETROLEUM
               INSTITUTE, 1962b)	 B-56

FIGURE 5.2-2   MAP SHOWING LOCATIONS AND NUMBERS OF
               SAMPLES FOR THE NATIONAL MOTOR GASOLINE
               SURVEY, SUMMER 1973	 B-59

FIGURE 5.5-1   SENSITIVITY OF DISPLACED LOSS TO TEMPERA-
               TURE AT VARIOUS VALUES OF RVP	 B-64

FIGURE 5.5-2   HYDROCARBON PROFILE IN DROP TUBE	 B-65

FIGURE 5.5-3   VAPOR COMPOSITION IN UNDERGROUND TANK	 B-66

FIGURE 5.6-1   SOLUBILITY OF AIR IN OCTANE	 B-68
                             xviii

-------
LIST OF FIGURES  - Volume  II  (cont.)
FIGURE 2.1-1


FIGURE 2.1-2

FIGURE 2.2-1


FIGURE 2.2-2


FIGURE 2.2-3


FIGURE 2.2-4

FIGURE 2.2-5


FIGURE 2.4-1


FIGURE 2.4-2



FIGURE 2.4-3
          APPENDIX C

VAPOR PRESSURES OF GASOLINES AND FINISHED
PETROLEUM PRODUCTS	 C-4

LOSS FACTORS FOR FLOATING ROOF TANKS	 C-6

EQUIVALENT OUTAGE H FOR HORIZONTAL
CYLINDRICAL TANKS	 C-10

ADJUSTMENT FACTOR FOR SMALL-DIAMETER
TANKS	 C-ll

BREATHING LOSS OF GASOLINE FROM FIXED-
ROOF TANKS	 C-12
EFFECT OF TURNOVER ON WORKING LOSS	 C-13


                                      .... C-15
WORKING LOSS OF GASOLINE FROM FIXED-
ROOF TANKS	
STORAGE PRESSURE REQUIRED TO ELIMINATE
BREATHING LOSSES	 C-18

RELATIONSHIP FOR ESTIMATING MOTOR GASOLINE
BREATHING LOSS FROM TANKS OPERATING AT LESS
THAN THE RECOMMENDED 2.5 PSIG VENT SETTING C-20

LOSS IN PERCENT OF VOLUME PUMPED INTO TANK
FOR VARIOUS VENT SETTINGS	 C-22
FIGURE 2.6-1   LOADING LOSSES FROM MARINE VESSELS, TANK
               CARS AND TANK TRUCKS	 C-26

FIGURE 2.6-2   CORRELATION OF TANK VEHICLE-LOADING
               LOSSES (50% SUBMERGED FILLING) WITH REID
               VAPOR PRESSURE AND LIQUID TEMPERATURES OF
               THE MOTOR GASOLINE	 C-28

FIGURE 2.8-1   LOSS FROM LOADING TANKERS AND BARGES	 C-32
                              xix

-------
o
o
o
S
                                                   o
                                                   o
                                                   o
                                                                                         co
X
I—I

i
W
          CO

          H
          O
          u
          Pi
          H
          CO
          p
          O
          o






CO
4-J
P
QJ

g
0


..
CO
4-1
O
QJ
•r—
ff1
3
CO












QJ
C
O

P-i

-O
p
CO

CO
co
Q)
j^
T3
T)
<








C
O
•H
4-J
CO

rH
•H
IH
MH
->

T3
QJ
rH
<

>.

TJ
QJ
, — |




























CO T3 CX rH i— 1
, — |
cO
C

R
£J
QJ


4-1
cO

>.


P QJ
o rH

P 4-1
O 3
H M-l
4-J
CO TlJ
8 C •
}-i cO co
O p
M-H 
O
a
QJ


^_i
o
cx
CO
>







CO
CrH
• -H 3
co bD
P CO QJ
0 B r-l
•H QJ
4-1 4—1 4-J
cO CO Q)
4-> >^ QJ
CO CO B







LO
r;
CX
o
^£> -d"
rH o r-~
O

£
cO
rv]


W

O
o
CN











CO
QJ

p
CO
P- O
B o
0
CJ rH
•r-l
rH 0
•H
O 0
a
o
rH H
^o m
m
j i i
H VO
-IT)
O 00
bO
CO s~^
a CN
•H rH
,P CO
o ^









a
o
co
}-l
QJ
T3
p
QJ


"4-1
<4H
•H
rH
0



CO
4-J
CO
P
•H

CO
4-J
•H
P


f>->
J_l
QJ
£>
0
a
QJ
j_i

^_i
o
cx
cO
>
**o
vO
 t) r--
< CCN
M i
ON
>-i -m
• bO*>o
£2 P
•rH /'"s
O 4-1 ON
O -H rH
m .rl CN
CN !2V-'










}_l
QJ
rH
rH
QJ
W

B
CO
•H
r— 1
rH
•H
^



CO
4-1
CO
p
•rH

CO
4J
•r-l
g


1>~>
J_l
QJ
f>
O
O
Q)
j_i

^_l
O
CX
CO
>


CO
X— s
QJ CTi
BrH
CO CN
CO ^









r]
bO

3
o
CO
P
•H
O

p
•H
a
M









QJ
tsl
•H
co

p
O
•H
4-1
cO
4->
CO

QJ
O
•H
£>
r-l
QJ
CO






.
4J
CO

r-l
QJ
£
0
1— 1
fj-l


CO

m
rH
m






.
o
CJ

*^3
rH
QJ
•H
<4-l
r|
Q
•H
P^

O
•H
4-1
p
CO
rH
4-1




























rH
r^
o
0
cr\


CO

QJ
CJ
•H
!>
>-i
QJ
CO











CO
CO
QJ
r-l
T3

cO

QJ

cO
CO
r-l
bO
P
W

rH
CO
4-1
•H P
P Q)
C S
CO P
^ o
0 rH
•rH -l-l
O >
•H C
Q W

-
CO •
rH
• bD
« S






bO
P
•H
4-J
CO
QJ
4-J

P
0
•rH
4-J
CO
4-1
CO

QJ
O
•H
>
rH
QJ
CO
rH
QJ
4-J
P
QJ
O

rH
CO
O O
•H >> O
P QJ O
rP rH CO
O rd 1
QJ -rH |-J CO
H CO M CO
-CO
r*^ ' K^
QJ W QJ -/~^
> >CN
M O M rH
CO O cO co
ffi-^ ffi^"





}H
QJ
QJ
P
rP -H
O bO
•rH P
J> [T"]
O
fcj 1
,_X4 T^^
co co
O 0
S-H
rH
• 4->
PH 0
QJ
• rH
p_, fjj



4->
•H
P

r^
r-l
QJ
>
O
O
QJ
r-l

}H
O
CX
cO
>

_r]
4J
•H
^

QJ
O
P
QJ
•H
M
QJ
CX
X
w











CO
CO
0)
rH
T3
13
co

QJ
E
cO
CO











CO
QJ
B
•H
r^
O

>.
QJ
>
rH
CO
ffi



rH
3
r0
rrj
C
cO

co
rH
CO
C
•H
B
H
QJ
4-J

4-1
CO

K"I
rH
QJ
>
O
o •
QJ CO
rH p
O
5H -H
O 4-J
CX CO
CO 4-J
> co





in
vO
rH
m
in rH
r~»
g in
O S oo
i
X -m
o I-H m
PQ ^ 
-------
                                     W)
en
H
ra
o
Pi
H
CO







CO
4-1
d
QJ
S
g
o
O

-
co
4-1
O
QJ
•r—
43
0
CO










rH
0
43

Td
d
CO

CO
rH
Cfl
d
•H

p
0)
4-1

4-1
CO

>>
r-l
QJ
>
O
O
QJ
M

M
O
(X
cfl
>




QJ
d
O
43
PH

Td
d
cfl

CO
co
QJ
r-l
13
Td
<










QJ
d
•H
>-l
cfl
B

4-1
cO

>.
r-l
Q)
>
0
O
0) •
(H co
CU
r-i-H
O 4J
CX-H
CO rH
>-H
O
cfl
•4-1
co
d bO
o d
•H-H
4-1 Td
cfl CO
4-) O
CO i— 1


















•
M
d
•r-l
4-1
CO
QJ
4-1

d
0
•H
4-1
cfl
4-1
CO

QJ
o
•H
>
M
QJ
CO




d
o
•H





































r^
CO VO
VH 0
cfl o
4-i cr>
d VH
r-l 'H O
o 4-1 a
Pn4-l Cfl
CO QJ >
> CO
rH
d d co
O-H d
•H
d-o a
O QJ ft
•H a. QJ
4-1 rH 4-1
Cfl CU
6 WM-I
r-l O
o
MH • bO
d CO C
•H B -H •
QJ 4-J CO
43 4-> CO 4-1
O CO QJ -H
2 ^4J d
B w 3
QJ
T3 >, 0 >,
QJ r-l rH rH
•H QJ 0 QJ
rH > O >
CX O CO O
CX O CJ
3 QJ fX QJ
CO r-l 3 r-4






































CU
B
cfl
CO






































QJ
g
S
CO





















.
QJ
N
•H
CO

d
o
•H
4-J
Cfl
4-1
CO

QJ
O
•H
>
r-l
QJ
CO






















QJ
N
•H
CO

£
o
•H
4J
Cfl
4J
co

QJ
CJ
•r-1
>
J_|
QJ
CO







bJDCO rH




o
o
CO

X
o
PQ

ft
O

•
PH





d
O
•H
4-1
CO
•H
rH
•H
m
MH

r-l
QJ
CO

CO
Q)
•H
4-1
•H
U


CM
O O
rH in

O CO
m
M
cO /~\
CO 00
rH rH
;do»
Hv-/







•
ex
QJ
Pi

rH >
cO -H
4->Q
•H d
cfl CU bO
QJ B d
ra d -H
O 4J
rH r-l CU
Cfl-H X
0 > V-l
d d co
<:ws




QJ
Pi

rH
•H
Cfl
4-1
CU
Pi

a
•H
M-l
•H
O
cfl
PH












.
<

CO
.
^

-
.
o
0

d
o
X
X!
W

QJ
43 <
4-1 OO
O
m -r-.
O CO CM
QJ 1
• rH CT>
QJ cu r^
!> bOco
< d


d
o
T)
n
o
o









CO
CO
QJ
r4
T)
td
cfl

QJ
B
cfl
CO












T3
r-l
•1-4
cO
d
d
•H
«

d
43
O
>->









CO
co
QJ
r-l
Td
Td
<

QJ
B
cfl
CO





CO
r-l
•H
TJ cfl
4J d^H
43 cfl 14-1
bO 43
•H
- rH
43 4J
4-1 CO
•H -H
TJQ
QJ
HTd
QJ d
S cfl

• r-l
W QJ co
B r-l
>i3-H
M CO cfl
J3 d1^
QJ om
ffio<




•H
4-1
o
QJ
CX
CO
d
M .
4-1
•H
• d
rH 3
cfl
d r^.
•H r-l
B 
QJ O
4-1 O
QJ
d rH
•H
4-1 rH
CO O
P a.
<3 co
>
o
4-> CO
Td
4J r-l
•H cfl
co £
•HTd
> w

d
o
•H
4->
3-0
43 cfl
•H O
r-l Pi
4-1
CO QJ
•HrH rH
Q Cfl rH
Td CO
<£ M ^
O 60
PiS





.
CO
QJ
•r-l
4-1
•H
>
•H
4-1
O
Cfl

/-^
M
PH
<
^s

QJ
O
VH
O
fe

X
CO
cfl
H

>3-
rH
1
fe
W
co
4-1
4-1
CO
>•>
ffi

>i
Cfl •
S O
QJ43
O W) • O
•H -H O CN
MH ffi 00
m -rH
o • d i
IS O CTi
4-1 4-J r-^
O • bOr-~
•H W d
>-l -H s^
4-1 O 43 CM
CO O CO O
•H vO cfl CM
Q CO |2 v-'









QJ
CJ
}_l
M O
!-l PH fn
QJ 
-------
en
        C
        CO

        co
        C
        O
       •H
       4-1
        CO
       4-)
        co
        cO
 5-1
 CU

 O    •
 O  co
 0) rH
 5-i  cO
    C
 rl-H
 o  g
 PH J-l
 CO  (U
>  4-J
A:
tH
13
C
CO
CO
tH
CO
C
•rl
0

cu
4-J

4-1
CO

>>
J-l
CU
J>
o
a
0)
5-i

r-|
O
PH
CO
>
irector of
Q

o
4-J

rH
CO
j-i
5-1
0)
IH
cu
P^


.
co
C
0
•H
4-J
CO
4_>
CO
CO
CJ
•H
M-I
•H
O
cu
P-*
co

J-l
0
M-4

bO
C
•H
rl
CU
CU
£j
•H
bO
pj
W
rH
t3
cO
CO
I— 1
cO
c
•H
0
5-1
CU
4-J

4J
cO

r*.
rl
CU
f>
O
o
CU
}-i

M
O
PH
cO
>
0
co
rH
•H
4-J
CU
-a
c
o

CU
>
•H
4-1
cO
0
r-l
0
M-l
C
M


.
CO
rj
0
•H
4-1
cO
4-1
CO
in planning
CU
CO
o
(~l
4-1

-a
C
CO

cu
CO
;3

C
•H

CO •
0 co
CU 01
4-i bO
co cO
r>~> 4-J
CO CO




.

J-i
CU
en
rH
C
cO
CO
rH
CO
c
•H
0
J-l
CU
4-1

4-1
CO

£>-,
J-|
CU
J>
o
o
cu
J-i

J_l
O
PH
CO
J>
















.
CO
C
O
•H
4-J
cO
4-J
CO
                                                                                   bO
                                                                                   C
                                                                                  •H
                                                                                  4-1
                                                                                   CO
                                                                                   CU
 CU
 O
 J-l

 O
 CO

 C
 O
•H
 4-1
 cfl
 4-J
 CO

 CU
 O
•r-l
 >
 J-l
 cu
en
 C
 cO

 co
rH
 CO
 C
•H
 0
 rl
 CU
 4-1

 4-J
 cO
 J-i
 CU

 o
 o    •
 cu   co
 J-i   C
     o
 rl-r-l
 O  4-1
 P-  CO
 cO  4->
>•   co
en
H
0
%tH
4-1 1
•rl on
m cj m
o pM
CU
*H -
C rl
CU O
pLl 4-1
O
C cu
XI VJ
0-H
"-> Q



co
C
O
•H
4-1
CO
5-i
CU
a
o

o£J

co
cu
•H
4-1
•H
rH
•H
0 >
CO -rl
pr | f*"^




.
4-1
a
CU
Q

co
C
0
•H
C 4-1
O cO
CO J-i
tH CU
• -H P,
O
O

rH
•r-l
O

M-l
I
l~~1
O
Is o

-
CJ
5-i
• bO
W S





bO
C
•H
J_j
CU
CU
pj
•H
toO
^> C
13 M
C

M J-l
o o
4-1
• o
H CU
5-i
• T-!
W O






rH
rH
CO O
CO iH
0) |
J-l vO
13 CN
13 CN
cO
x-s
cu on
£3 ' — '
cor-
en ^


•
C •
0>
0
5-1 CU
3 >
XJ-rl
H 4-J
cO
• 5-1
PM 4-1
co
T) -H
rH C
cO -H
rl 0
CU Tj



CO OS)
CCN
CO CN
•H O rH
CO 00 tH
•H m
3 I — 1
O O i
rJ O VO
m
~r-^
W J-i
CUx^
o > on
-,-H -H
• CO b04-J
0 O C 0
o w 3
>•> j-i
rH CU - 4-1
•H C • CO
013 5-i C
O M O
t^Pd SO
co
ffi



^o
**o
-U CM
M ^C r^*
0 0 I

v* - vo
co 13 m
o c
cO /^.
rH iH in
O A! rH
c^ cO -^
r~- o "^-^



O
O

g
3 co
CU ,i*J
tH O
0 0
J-4 13
4-1 CO
cu S
PM

co 12
p.
•H •
rH f-j
_J
r i
•H
PM
                     CN
               CO    O
               N    un
               CO X! CN
              rH H   I
              PM    O
                    -CN
              rH  CCN
              rH  O
               CU 4-J/-S
              X!  CO on
              en  j3 i—i
                   o r^
              CN 33 ^
                                                                                                               bO
                                                                                                               C   -
                                                                                                              •H  C    •
                                                                                                               J-t  O  4-1
                                                                                                           13  CU -H  PH
                                                                                                            rl  CU 4-1  CU
                                                                                                            cO  C  3P
                                                                                                           13 -H Xi
                                                                                                           13  bO-rf  rH
                                                                                                            O  C  J-(  CO
                                                                                                           JJ ft) 4-1  4-J
                                                                                                           en
                                                                                                                   co  C
bO-H CU
O
O

tH
•H
0

rH
[
CU
en
• CO 0
W-H C
4J rH O
C CU -H r-(
O A! (0 -H
M rl 4-1 >
fx> CO CU C
PQ S Prf W


                                                  A-3

-------
                                                                                            CU
CO
H
O
O
U
H
CO
D
Q
S3
co
4-1
a
CU
O
CJ

.
CO
4-1
O
0)
•I — 3
43
3
CO








cu
f3
o
43
PH
13
C
cfl

co
CO
0)
5-i
13
13
<





C
O
•H
4-J
cd
•H
r-H
•H
MH
MH
 w
43
co <£
•rH
5-i b£
Pn £3
•H
CJ 4J
CU CU
M ^
5-1 M
cfl cfl
rsS


   o
   rH
   -*
   ON


   <
   O
    O co
  •  O 1^
4J  CO CN|
CO -rH  I
    0->
4J
co
O>
&
station vapor
CU
o
•H
>
5-1
CU
co

m
o

co
4-1
O
CU
ft
CO
cfl

rH
rH
<
discussed with

01
5-4
0)
£

co
E
0)
4-1
co
>•>
co

>->
5-1
CU
>
O
o
0)
'H
ry informative
0)
>

01
M
01
£

t^
01
43
H



(3
0
5-i
>
0)
43
CJ
13
•H
>
0
5-1
ft
0
4-1
hO
C
•H
rH
rH
•H
S

0)
4J
•H
3
cr

13
01
M
cd
0)
on requested.
•H
4-1
cfl
E
p
o
<4H
c
•H

13
c
cfl

ft
rH
3
43
13 '
£3
cd
w
rH
CO
a
•H
E
M
0)
4-1

4-1
CO

>s
V4
01
>
o
CJ
0)
on specifics
company plans.
0)
>
•H
4J
CO
E
5H
O
LW
S3
M


.
CO
ft"-* 5-1 C
ft
cfl

13
£3
cd
01
43

>>
C
cd

M
O
ft
cfl
>
o
•H
4-1
CO
4-1
CO

13
cj
cd

01
co
3

S3
•H

co
E
0)
4-J
co
>-
co

m
o



.
ti
cu
4-1
O
cd
4-1
a
o
o
0)
5-)

Q)
,43

CJ
cO
CJ

.
0>
N
•H
CO

CJ
O
•H
4-1
cfl
4-1
CO

0)
o
•rl
>
5-1
O)
CO


co
co
CU
M
13
13
cO
0)

cfl
w


co
co
0)
5-i
13
13
CO
O)
E
cfl
CO


CO
co
01
5-1
13
T3
CO
O>
E
cfl
CO
4-1
CO O
O
O
13 r^ vo
CrH 1
CM O CO
< CM
in rH
CO • CJ
r-(&^-'


co
CO
0)
5-1
13
13
cO
CU
E
cfl
C/3
                                                                                  a
                                                                                  •H
                                                                                  d)
                           43
                            co
                           •H
                           rH
                            toO
                            C
                           W
 O
•g
 ft
                                                                                                          a
                                                                                                          o
                                                                                                          w
                                                    co

                                                cjg
                                                •H -r-l
                                                E  4-1
                                                13  Cfl
                                                 3  5-1
                                                    cu
                                                  - ft
                     33
                                                                                               o
        O
        O
        031
        X
        0)
 o>
43 5-1
 O bO  -
 4->S  C
,3     O
IffirH-H
    cd  4-1
    5H  cd
|H 0)  5n
    CJ  4->
    0)  CO
    O-H
    4-1
    ft
    cu
    Q

    co
13  0)
 CJrH
 cfl  cfl
rH  CO
 bO
 CJ    -
W  5n
    O)
  •  bO
rJ  CO
    C
  •  cfl
DS2
                                                            A-4

-------



































CO
H
u
H
Pi
H
CO
p
O
•z
M













CO
P
d
0)
B
B
O
CJ

-
CO
p
CJ
01
•i — ]
43
P
CO












CU
d
o
43
PM
13
d
CO

CO
CO
0)
JH
13
13
^**
<*



d to 13
o cj cu
^ -rH -H CO
i— i P MH co
P CO -H P
43 i— i o cj
p cu co
13 bO CX-H
d CU co 13
Cfl J-l
o cu
co O & JH
i-H P 0)
cO [g
d w •
•H Cfl B CU
B cu co
JH 13 43 P
CU CU P
p B d
1 J-i 4J -H
>-: O CU
JH M-H CU CO
cu C B B
> M OJ
O OP
CJ P CO
CU • >,
JH d £ co
0 0
M -H 43 O
OP P
CX cfl 13
cfl P £ co
> co cfl cfl


  O  O
     O
  o;  cu   •
 42  JH cu
 P     >
     JH -H
  COP
  O  CX CO
     cfl B
  C  > JH
        O
       ; M-I
 o
•rH
 p  o d
 CO -i-l -H
 B  P
 JH  co >,
 O  P JH
 MH  co CU
 d     >
 •H  CU
     O
    •H
 CU
        CO
    >
13  J-i  B
•rH  CU  CU
 >  CO P
 O      CO
 JH M-l  >,
P-,  O  co
 CO
 CO
 cu
 JH
13
 01
 B
 CO
CO
CO
p
CO
d
0)
o

r--
>~D
cr\
r-H

s
o
S-l
MH

ec
P
•^
15

OJ
N
•H
CO

CO . d
0) bO O
JH d -r-*
P -HP
T3 4-1 Cfl 0
0) CO P 0
o cu co a
0 4-> C
J-i  PC
co p JH
CU O CU M-
H CO CO C


X 1
J-l CU
CO O
PM JH
O
CU i— 1 M-l
i— 1 i— 1 d
bOr-- W
d r- v£>
CO CN Ni CU
•H i— 1 if, O
JH oo co
H CJ' I CU 3 >
•Z, CO J-i O -rH
43 OO 13 CO Q
CJ -vO 13
J-l B CO CU P
03 Cfl /~\ rH C
cu 43 a^ cu -rH 01
CO J-l rH B 43 B
cu P en co O
ft Q ^ CO ^




0
JH 0
0 JH
MH p
0
CO CO
d
0 £
•H S
p d
cO
r-l JH
P 0
bOM-H
CU
JH 13
C
M-l CO
O
w
CO 0)
d-rH
O P
•H -H
P r-H
CO -H
0 CJ
0 -i-l Cfl
a r-H MH •
J CX CO
3 B bOl3
H vH C JH
3 -rH CO
3 i-H P 13
5 cfl co d
bO-H cfl
4 CU X P
> rJ CU CO
r-H
•rH
o o o
>£> d VD
-d- P  cu •
co ~o u en -
d i d
• o LO MH • o
p p LO O P P
CO bOr^ co bO
w- c cu d
S vH /~x CJ S -H
CU
d
•H
r-H
O
W
CO


1
r-H
•H
cO C
> 0
M co

B
O
JH
m

CO
d
o
•H
CO
CO
•H
E
cu

CJ
X

rH
O
MH

CO
C
O
•H
p
cfl
I— 1
3
QO
CU
Pi



i— i
CO
JH
CU
13
CU
P"H

>%
13
CU
d
q
cu
«
13
13 CU
d B
cfl VH
O
P M-l
a d
CO -r(
P
d r-H
O r-H
O CU
13
p
C
0) • •
r-H P d
r-H 0 O
CU Cfl -H
CJ P P
x d co
WOP
CJ P
CU -rH
• JH co
M
d JH r-H
•rH O Cfl
P MH C
cu o
^ 0) -H
JH r-H bO
cfl 43 CU
S cfl JH







OO
o
CN
CN OO
0-)
• CO i-H
B O vD
p3 ro ^^


d
o
•rH
P
CO
•H
r-H
•H
MH
MH
<

T3
d
cfl

(U
B
cO
S




•»
cO
•H
d
JH
0
MH
•H
r-H
CO
U

MH
0

i— I
•rH
vD O
r^
C
C 0
0 -i-H
•rH C
Ch-}
t— '













/~^
.
>
•H
Q
d
rH
CU
p
CO
CU
Ds










B
o
o
r-H
PQ

13
JH
cfl
£
T3
W



CO
cu
CJ
d
cu
•rH
O
C/)

r-H
CO
P
d
cu
B
d
o
JH
•rH •
> >
d-H
W Q











>~
O
JH
CU
PM


:s

C
cfl
i-H
i-H
<




J-l
CU
CU
C
•H
bO
d
w

d
o
•rH
P
P
4D
•H
JH
P
CO
•H
Q









CO
0)
•H
CJ
d
cu
b£
<£,

i— i
cfl
JH
CU
13
CU
PH


C
•rH
i— 1
P
CO
cu
£i

j-i
0)
p
cu
Q-i

<
Pw
CM pq







>•>
i— 1
r-H
OJ
W


W

c
o
p
q
•H
|3














^
;?
cr
*v

p
JH
CU
43
O
OS



                                                             a:
                                                             d
                                                            •rH
                                                             d
                                                             o
                                                            CO

                                                             d
                                                            43
                                                             O
                                                                             •H
                                                                              d
                                                                              cO
                                                                              bO
                                                                             i-H
                                                                              CO
                                                                             CJ
                                                                          d
                                                                          o
                                                                              c
                                                                          wid
                                                                          cu
                                                                          (X,
                                                                          w
                         A-5

-------
  c_>


   CO
  4-J
   CJ
   0)

  ,£>
  3
  C/}
                   CO
                   3
                 C o
                 O -H
                   M
                                   cd
                                                         cd
                                                0 co 4-J  CO
       CD  CO 0) 4J
•H 0) r-H
•U C X)  •
CO T-l  CO C
tH i-( i—i O
3 O T-I -H
                                           co
                                      •H  01 CJ
                                      4->  C CO
                                      cfl -H 4-1
                                      i—I i—I C
                                      3  O O
                                      00  CO O


                                                                                            s
                                                                      ass
M
o
o
u

>H
cd
H
CA)
t»
Q
s
M
0)
c
o
rC
PH





CO
73
C
CO

CO
co
0)
V-i
T3
T3
<
N
CO
I— 1
PH

i-l
CO
M
0) a
T3 C
a> a






r~-
O r^-
O T-H
O LO
i-H CN

^D
                           O
                               4J O
                               C/l CO
                                 O

                        4-1 CflrH

                                                   "
                                                                                   S
                                                                             <» ^
                                                                        ^      ^
                                                                         SoS"
                                                                  27

                                                                                          IS
      •r-l
      M-l
13
C
cfl

CU

I
          •H
          Q
          <
          PH
          W
-o-
c
o
•H
M
QJ
Pi
1
.
                                                                                           ^H
                                                                                           O
                                                                                           M
                                                                                           QJ
                                                                                           M
                                                                                          O
                                              A-6

-------











en
4->
C
cu
g
g
o
CJ

1
cn
4-1
o
cu
•I—)
o
rj
CO













B
o

M-l

cn
c
0
•H
cn
cn
•rl
B
cu

CJ


J_l
0
M-l

cn
C
O
•r-l
4-J
CO
r-l
rj







O
4-J

r-l
CO

rl
CU
M-l
CU
Pi


.
bO
c
•H
4-J
CU
^
rl
CO
B

CU
c
•rl
i— 1
0
O
] \
c
CU
B
cO
rl
O
CO
CO

~
.
rO
PQ

CU
o
rl
rj
0
en
cu
Pi

rl
•rl
tj^

cO
•r-l
a
rl
O
M-l
•H
bO en rH
cu
Pi
CO
CO



















^•^
en
cu
•H
a
C
(U
bO


CU
4-J
CO
4-J
CO

CU
cu
cn
bOCJ -— '















.
bO
a
•H
.LJ
cn
cu
4-1

a
o
•H
4J
cO
4-1
en

cu
O
•H
E>
rl
cu
CO






B
0
rl
M-l

CO
rj
0
•rl
CO
cn
•rl
B
cu

CJ
EC

j_i
O
M-l

en
d
O

4-J
cO
r-l
rj
bO
CU
pi




















•
bO
pj
•H
4J
CU
^
J_l
cO
B

cu
a
•H
r-l
0
cn
cO
bO
en
CO
cu
£
•H
cn
pj
PQ

M-l
O

co
;3
en
C
CU
CJ

CM
r--
CTv
i— 1



O
4-1

a
cO
•rl
Td
cO
pi

j_i
o
4-1

CU
T3
CO
B

cu
rl
M-l CU
O £

>-. cn
4-1 4->
•rl C
r-l CU
•H B
XI CU
CO bO
r-l CJ
•rl CO
CO rl
> 5-1



cu
pj
o
XI
d<
cu
r-l
cu
4-)

cO
•H
f>

cn
a
•H
4J
CO
•rl
4-J
CO
4-1
en

rH
CO
Pi
•H
M-l

a
•H
CO
4-J
O
0


(~|
M
;3
O
V-i
XJ
4-1

CU
t-l
Xi
cO
r-l
•rl
cO •
> M-l
cO M-l
O
CU rM
rl >,


£*•< •
CU rl
Xl ^
4-J
M-l
cn o
cO
P-
C ' — i
O CU
O XI
co
CU
co Xl
CO 4-1
CO
o
01
-o
crj
^_l
H

r-l
•H
cO
4-)
QJ
Pi
cn
CO
CU
C
•H
CO
pj
PQ

M-l
0
to
rj
CO
PJ
cu
o

CN
r^
cn
i — i
H
4-1
CO
•H
4J
CO
4-1
CO

CN
^
(Tv
_l
^^
4-1
O

CU
O
rl
^
O
CO


cn
o
•r-l
4-1
CO
•rl
4-1
CO
4-J
CO
















CU
r-l
_n
CO
rH
•H
CO
>
cO
(U
rl
cO

>•>
CU
f~i
4J

eo
cO
CU
r-l
CO
co
CU
rH
O
r{
^

-
cn
en
CU
pj
•H
CO
rj
PQ

M-l
0

CO
pj
co
cu
0

CN
r^
CTv
rH

co
o
•rt
4-1
CO
•H
4-J
CO
4-1
CO

CN •
r-. cu
CTv r-l
rHXl
CO
MH rH
O-H
cO
cu >
O CO
rl
d ai
0 rl
CO CO
K^
• cu
culxl
T3 4->
cO
ri en
H cO
H
CJ
H CU
2 C
O 0
PM
pH
Pi T3
H a
co co
ju
Q eo
2; co
M CU
r-l
T3
T3
  t—l
4-1 ^-v
O 4-> vO
O CO 0
CM CU CM
r-l CO ^

cn
CN
O
CN

CJ

• ""sj"
^^ %^
vO
** r^1
C i
O cn
• 4-J VO
4-J bOr^-
co pi
•H X^y
f~] f-^ ,— ^
4-> CO O

en
C
CU
CJ

4-1
O

2
CO
CU
rl
3
PQ
Xi CU co
ox: 3
M-i 4-) en
M-l • C
O > M-i cu
^ -H O CJ
r^Q
& P M-4
• cO O
C 4-1 CU
XI CO rl 0
O en 0 co
•-}  3
CU 1 O -H CO
13 Pi Q CU
CO rl
rl 3
Hi PQ
t3
CU
T)
CO
rl
H

cu
r-l
CO
CO
cu
I—I
o
rj
5
CO
CU
N EC
4-1
Be
O
&4'H
cn
C-rl
XI >
O -H
^Q



                           A-7

-------
 O
CJ
 co
 4-J
 O
 CU



5
CO
emissions .
ontact .
u o
ffi 0)
}-i
rl
0 rl
4-1 O
4-1
co
£ CU
O r-l
•rl ,fi
4-1 CO
cO r-4
i-l -H
£) cfl
bO >
CU cO
M i
CU
CO >
•rl -H
£ 4-J
rl Cfl
0 0
4-1 }-<
•H O
r-l 4-1
CO £
0 I-l
co
•H
,£
4J
0
4-4
PQ
cj
•.
rl
CU
>
co
r-l
0
rl
4-J
£
O
O

K*~l
rl
CU
[>
O
o
cu
j_i
co
r-l
O
rl
4-J
a
o
O

!>•>
^_i
CU

0
O
cu

rl
0
CX
cO
• pj
co O
r-l -rl
O 4-1
r4 Cfl
4J 4-1
£ co
o
O CU
O
bvr-l
rl >
CU M
> CU
O co
0
CU.£
r4 4-)
rl b04-4 O -H

£
0
•r-4
4-J
cfl
g
p
O
4-1
£
M
t^l
rl
CU
J>


•
K*^
13
0
4-1
CO
rl
CO
rO

13
£
CO

CX
•H
r;
CO
O co

CO CU
r-l O
•H £
cO CO
4-J -H
CU i-l
13 CX
0
£ 0
O 0
rl •
O CU
cx >
CO •!-!
> u
cO
CU 0
£ &
•r-l O
rl 4-1
CO £
S -rl
J_4
O
CX

£>

CU
£
•H
rl
CO
s
rl IS
0
CX CU
cd o
> £
CU
CU -H
£ rl
•rl CU
r4 CX
cd X
S W













•
co
0
CU
4-)
CO
>>-!
CO

K***
J-4
CU
l>
0
o
cu
rl






.
bO
£
•H
4-1
CO
CU
4-1

pj
0
•r4
4-1
CO
4-J
CO

CU
O
•H
£>
rl
cu
CO
CU
• cO
CU
o^a
bO
CU O
•H 4-1

co
£ -r-l

CO £
o
•H
• 4-1
co cfl
CU 0
CJ rl
r-l O
p 4-1
O £
CO h- 1
CU

O

O X
•i-l CU

cO £
rt 1 	 j





.
j-j
CO
•rl

CO
Pi

O
4-J

CU
i— 1
rQ
crt
rl r-4
O Q -H
4-1 O cO
£ Pw >
M  ctj <^^
i-l CO v-x

13
PQ

CU
a
^(
jj
o
co co
cu cu
•rl Pi
0
£ rl
CU -r4
M 

j_i
cu
4J
CU
CM




-r)
J>
I—I
PQ

CU
cu i— i
r4 r- 1
O r^
in
r-l X| 1
CO H r-l
O m
r£ " *^t"
CO £
•pH ^^
O 4-J CM
CM CO i— 1
in 3 in
oo 
•rl
O
CU
13 co
cfl £
Its o
•H
r£ 4-J
4-) Cfl
(U r-l
£ »3
£ bO
CU CU
^ Pi






co
CO
CU
r-l

T3
cd
cu
0
cd
CO


co
co
CU
rl
13
13
cO
CU
0
cd
CO
rd co o
4-J £ r-l
r-4 ^ CM
Cfl bOCTv
<1) -r-l
Pd ffi vo
<£ CM
O O CJ CO
•H -H CO
r-l 4-1 - 1
n T-l o m
3 o bOco
PH Cfl CU CM
PM -rl
4-J 0 
                                                       CO
                                                      P
 rl
 CU
I-l

•s
 ex
CO
 £
 CO
 M
rl
0)
CU
£
•H
P
O
CM
•<£

f>-,
4-J
£
p
o
o

o
cu
•H
P
£
cd
CO
bO
£
W
cu
rl £
•H 0
4-1 -H
Cj -M
W r^
CJr-l

o
• CM
V4
. T-l
PQ 
-------
CO
H
CJ
O
CJ
P
23
CO
CO
cO
£3








CO
4-J
c
QJ

E
O
CJ

^
CO
4-1
CJ
QJ
•T — ]
n
3
CO











QJ
pj
O
43
PM

13
C
CO

CO
co
QJ
VH
TJ
13
<3j






G
O
•H
4J
CO
•H
rH
•H
M-l




QJ
P

13
P]
cO

CO
G
0
•rH
CO
CO
'E
QJ













O
CJ

-
j_l
QJ
£>
(3
QJ
P





i — i
O

4-1
G
0
CJ

G
0
•H
4-J
*3
rH
rH
O
PM

^_|
•H
<:

QJ
rH
43

rH
•H
cO •
> CO

pi
•H
• 0
co O^
pj
co a
rH -H
P , m
•r-l
rH O
O QJ
VH (^
4J CO
O M-l
CJ O









rH
rH
i-H
O
1
00
OO
co

s-^
CO
o
CO










o
o
p;
O

H

4-J
co
QJ
G

W




13
0
O
O


.
CO
QJ
CJ

rj
0
CO

a
o
•H
4J
cO

£!
0
MH
a
H



.
4-1
CO

O
VH
13
QJ
PM

G
cO
CO

.
CO

 — 1
rH
•>!-•.
CO —)






13 O
O 4J
O
W bO'd
0 (3
r-J CO O
H ex
(3 PM co co
•H <| -H QJ
VH
CO M-l 4-1
p! O 4-J O •
O -H 4-1 CO
•H VH > (3
CO QJ QJ 13 O
CO 43 23 CO -H
•HE rH 4-1
B QJ • bO co
QJ B VH QJ
S QJ 3
cj , 1 -H 4-J
M-l 4-J fn £ 4-J
(3 W -H
co 3 13 VH
ed O QJ (3 £
O CJ 0 cO
•rH VH O
4-J co O 4-1 -H
co QJ fn a MH
rH rH CO vH
|3 QJ ^ 4-1 O
bO bO co (3 QJ
QJ £3 cO O CX
Orf < H O co











CO
co
QJ
}_j
13
13
cO

QJ
B
cO
C/3











4J
4J
•rH
J>
QJ
13

f3

0
t— 3









CO
CO 4-1
. 1 KJ fl
cd i— ( f^
C 3 3

S ^>
VH 4-J VH
0) cO QJ
4-1 p> •
co O P
QJ QJ O CJ
C VH QJ Pn

VH 13
co QJ VH co
B O O -H
O PX43
4-1 VH cO 4-J
CO CX >
p|
>~, bOT3 -H
VH G G
QJ -H cO CO
> 4-1 rH
O co - co
cj QJ co £3
QJ 4-J rH -H
VH CO B
QJ G VH
VH O -r-l QJ
O VH B 4-J
CX 3 VH
CO O QJ 4-J
> CO 4-1 CO









rH
VD
co <}•
co r-~
QJ i
VH 
cO
j_i
VH

2

4-1
VH
QJ
43
O
Pi









bO
13
•H
VH

13

t>N
rH
rH
CO
•H
O
QJ
ex
co
QJ

-
QJ
£>



QJ
O
VH
3 CX
0 3
co
4J
p| QJ
O co
•H
4-J 13
CO QJ
4-> CX
CO rH .
QJ CO
QJ ffi 4-1
O CO
•rH QJ
> -4-1
VH co
QJ QJ W
CO VH-H
3 t>


























•H M-l 13 CO
4-J
CO
E
VH
0
M-l
p|
•H

VH
QJ
>










•
4-J
CO

co
•H
rH
rH
W

ON
CO
ON













P
CJ
PL,
<£

CO
QJ
VH
 CO











co co
co co
QJ QJ
VH VH
13 13
13 13
cO cO

QJ QJ
S B
cO cO
W W
VH
QJ
QJ 4-J
f3 co
•rH QJ
bO H
C
W QJ
CO O
G rH VH
rH O QJ 3
rH vH >-| O
CO 4-1 CO CO
33 J3 fvj
I 1 1 1
• rH • O
> 0 O
p , tm
13 QJ QJ
QJ VH rH-H
VH v-n cO 43
fe  CXrH M-l
VH i— I 43 O
QJ CJ O
co 43 VH bO
CX G
M-l >-, -H
O VH M-H 4->
QJ O CO
CO > Q)
G W 4-1
O CO
•rH • QJ QJ
4-1 CO VH O
cO rH cO VH
VH co 3
QJ C C O
CX-rH -H CO
0 E
VH QJ 43
bO QJ > 4-)
p| 4-J -H -H
•H 4-J ^
4-J 13 CO
CO C B T3 •
QJ CO VH QJ co
4-J O 4-> rH
C MH CO CO
QJ O G -H (3
a -H -H CJ -H
VH 4-J O E
3 co 13 CO VH
O 4-J G co QJ
CO CO CO CO 4-J











CO
co
QJ
VH
13
13
cO

QJ
E
cO
CO








•H
13
VH
cfl
VH
QJ
PM

co
cO
B
O
43
H




                                           A-9

-------
 co

 O
 cu

43

C/3
                    rl
                    O
                    &4
                    cO    •
                    >  CO
                       0)
                    CU -r-l
                    C  4-J
 O -rl
 CO  O
 CO  CO
 bom

 rl  M
 O  pi
MH -rl
    4-1
<}•  0)
pi-,  CO
W  S

 0)  4-)
 O  cO
 rl
 O  rH
fe  O

^  4-1
 co  pi
 CO  O
H  O
 O
 cx
 cO
 >   •
     CO
 0)  a
 a  o
•H -rl
r-H 4-1
 O  CO
 CO  O
 CO  O
 M  bO
 O  pi
l[ I »^



r{
CX4->
cO
>
•rl
Is


c
CO

a
P
o
J_l
bO

CO
•H
r)
4-1

14H
0
CO
0)
•rl
4-1
•H
J>
•H
4-J
O

CO
CO
O
•H
4-1
CO
•H
4-J
CO
4-J
CO





CO
CU
•H
4-J
•iH
>
•H
4-1
O
CO

rH
O
4J
Pi
O
O

J_l
0
P,
CO
>
                                                                                                                        co
                                                                                                                        cu
                                                                                                                       •H
                                                                                                                       4-J
                                                                                                                       •H
                                                                              4-J
                                                                               O
                                                                               CO
                                                                               O
                                                                               rl
                                                                               4-J
                                                                               a
                                                                               o
                                                                               o
                                                                               o
                                                                               P-,
                                                                               cO


CU
PI
o
^r\
PM

13
{2
cO

co
CO
cu
rl
13
13
^^










•
|3 CJ

•
!3 Q

«
4J p|
co o
4-1
^0
O
o **o
o o
CM O
IT)
r~~
• CJ
!3 4J
O • 00 X r-l CO
O • Q O CM H r-l
>JD co co 2 t— i r~- - CU
p; p_i
cO
P- C
B co
0 0
C_> -H
rl
CU
























^x
1— 1
PM
5
CO CO W Pi r-H Q
s~^ -rl /~s • O x-v CU
CM 0) 0) t-HXlCMOrl bO rH rH > rP
4-1 -rl C rl CO -H 43
0Q-H O-4-J i-H-Q O
O rl O • Pi -rl • "-)
CObOCU COrlCU OrlM
plcu cu-HE CU-HPI I-H
13 -H pi Pi Q pi CJ O -H -r-l
rl 4-1 -H O 4-1 O
CO QJ M • • rl CU • CU
Xl^C C^4-J-H 04-1^1 i-H
O rl W C0t> T-tCOrl CO
•HcO -cop! ricocO pl
P^S'-S <3'^ - O -H
rl £42 UH
CO cO 4-J CU
r-H 4-) pL, 0 0) Pi
i-H CU 0 rl S
CU rl rl -r-l 0
^i o 4-> co i— i 0
O CU rl 42 O CU
4-1 CO O O rl i-H
•H 2 4-1 O
S CU CX CU PJ rl
> CU O 4-1
CO -H B 4-) U CU
CO 4-1 CO 4-) P-i
rH 0 -H -H rl
MO r-l g O rH
00) rH B PH CO
OX -H 0 CO pi
Q W ^ O > O
•H
4-1
CO






















.
a
CO
co
O
CO
O
o
CM

.
CJ

• CM
Q CM
r^ co
-CO CO
C " cu
O 00 rl
4-) CO 13
bO«i> 13
PI CO
•f—j X"~N
42 CM  cu o -H




             A-10

-------
co
H
O

0
CU
•' — ;
JD
d
CO









c
o
P-I

13
PI
CCj

co
CO
CL)
r-|
13
13




Pi
O
•H
4-1
O
CU
rH
rH
0
o

5-)
O
PL,
cd
£>
1
bO
pj
•r-1
4J
CU
vj
r-l
cd
B

CD
q;
•H
i
T~l
O
co
cd
O




4-1
CO

4-1
co
rH
01


W
ON
f*^
LO
iH




C
0
•H
4-1
cd
•H
iH
•H
til
111
^

T3
a
cd

0)
B

23












4-1
Pl
0)
B
p.
•H
p
cr
W

g
^
CU
iH
O
^
4-1
0)
Pn





































*4
0

-
co
rH
d
H



















CU
4J
jj
4J
•H
4J
CO
Pl
M







































01
CO
VO
00
1
01


CU
>
•H
4-1
^3
O
CU
X
w




cu
Pl
•H
rH
0
CO
cO
bO

M— 1
0

bO
C
•H
4-1
CD
*^
r-l
cO
£3

Pl
•H

CO
CU
•H
4J
•H
•H
4-1
O







5-1
CO


rH
•H
0

co
cd
X
0)
H




























.
co
CD
r|
4-1
O


i^.
VD
r^
00
r>.


X
H

»
Pl
,_J
*rl
4-1
CO

<






r*
co
O
4-1
Pl
M
O
*rj

.
CO

Pl
•H
>
H
cd
o











































r^


CU
>
•r-l
4J
^j
O
CD
X
w




 co
 a
•H
4-1
 CO
•H
4-1
 Cd
4-1
 CO

 CD
 Cd
rH
•H
 cd

 cd
 Pl  PL,
 cd  d
    o
 co  5-i
 CD  bO
•H
 4J  CO
•H  -H

•H  4-1

 o  a

  -  I
 CO rH
•H 01
 dr-
 o
hJ ^~^
   
                                                                                               CO
                                                                                               CU
                                                                                               4-J

                                                                                               0)
                                                                                               O
                                                                                               H
                                                                                               d
                                                                                               o
                                                                                               CO
                                                              co
                                                             •H
                                                              CO
                                                              cd
                                                              P!
                                                              cd

                                                              cd
                                                             4-1
                                                              cd
                                                                    co
                                                                                                                      co
                                                             cd
                                                             cd
                                                             4-1
                                                             cO
                                                                   co
                                                                   4-1
                                                                  •H
                                                                   B
                                                        cu
                                                        r>
                                                        O
                                                        a
                                                        cu
                                                                                                               13    ""O
                                                                                                               0    0
                                                                                                               cd    cd
                                                             bO
                                                             Pi
                                                             •r-l
                                                             4-1
                                                             CO
                                                             CU
                                                             4-1

                                                             CU
                                                             O
                                                             r-l
                                                             d
                                                             o
                                                             co
                                                             bO
                                                             PI
                                                            •H
                                                            4-1
                                                             CO
                                                             cu
                                                            4J

                                                             01
                                                             O
                                                             V-i
                                                             d
                                                             o
                                                            CO
                                                        bO
                                                        PI
                                                        •H
                                                        4-1
                                                        CO
                                                        0)
                                                        H
                                                                       CO
                                                                       4-1
                                                                       •H
                                                                                         cu
                                                                                         >
                                                                                         o
                                                                                         o
                                                                                         cu
                                                                       r-l
                                                                       o
                                                                       PL,
                                                                       cO
                                                                                         4-1
                                                                                         CO

                                                                                         bO
                                                                                         C
                                                                                        •r-l
                                                                                         4J
                                                                                         CO
                                                                                         01
                                                                                        H
cd <
p~] p |

-
bO bO
4-1 0
^ -<-t O
4-1 O
,0 CD 00
4-1 CD CO
d ^ i
O LO
B -0 01
(5^i 4-1 OO
rH d
PH O^N

CD P,rH
0 rH CN
O P-l s-^
CO
CO
r-l
CD
r-l
d

o
cd
LM
d
pj
cd
*£

4-1
0
CD
B
PL
•H
d
cr
W
M
CD
CD
0
•H
bD
0
W

iH
cd
4-)
0
CU
B
0
0
5-1
•H
£>
0
W

N
4-1
CD
LO PQ









5-i
0)
bO
•H
CD
O

.
JT{

CO
CD
B
cd
t— 3












CO
CO
CU
5-1
*"O
TJ
cO

CD

CO






•H
^
co
0
•H
O
PQ

.
"-3

CO
•r-l
O
p]
Ctj
r-l
fa












co
CO
CD
r-l

t)
cd

CD
6
cd
CO







0
o
4-1
bO
0
•H
j_i
5-i
cd
r^
O

r-l
CD
4J
CD
P-.




0
CO
01
LO
rH

•^ LO
PL|rH
O -H 
•H 0)
f£j Q












CO
co
CD
5-1
""O
13
cd

CD
B
cd
CO

co
CD
d
cr 5-1
o CD
Cd CD
•r-l 0
13 -r-l
0 bO
CO 0
r-l W
O
4J
• 0
rJ CD
B
13 PL,
5-1 0
CO rH
0 CU
5-i t>
CD CU
PQ Q




                                                                   A-ll

-------
 cu
 o
•H
 CO   •
T3 rH


 CO M-l
W  0)
CO
4-1
£3
QJ
B
B
O
CJ

~
CO
4J
O
QJ
• !—)
43

co










o •
M-l CO
4->
4J -H
fi C
QJ 3
E

•H r-l
3 
QJ O
O
MH QJ
0 r-l

r^ J-l
4-1 0
•H a
i — 1 cO
•H >
43
cd QJ
rH C
•H -r-l
CO r-l
t> cO
<3 S
j_)
QJ
CO

J_l
o
M-l

CO
4-1
•H
C


fx,
^
QJ
£>
O
O •
QJ CO
r-i a
o
tl ,_J
0 4->
ft CO
cd 4-J
> CO
M-l
0"O
a
4-> cd
a
QJ QJ
E >
CVH
O 4-1
rH Cd
QJ B
r^ M
QJ O
TJ MH
c
T3-H
(3
cd t>~>
;_i
(3 cu
0 >
•H
4-1
cd •
r-i 4-1
CU «H
ft C
0 3
























Q)
1

CO
                     CO
                     bO
                     J3
                    •H
                     4-J
                     4J
                    •H
                     4-1
                     QJ
                     5-1


                     r-l
                     O

                     cd
                                                    co
                                                    QJ
                                                   rH
                                                    N
                                                    N
                                                    O
                                                    a

                                                    c
                                                    o
                                                   4-1
                                                    cd
                                                    cu
                                                    o
                                                    a

                                                   I
 CO
 QJ
rH
 N
 N
 O
 a

 c
 o
 4-1
 cd
 QJ
 I
 O
 o
 E
w
              CU
              o
             •r-l
                                                          QJ
                                                          CO

                                                          r-l
                                                          o
 co
 4-1
•H
 f3
              QJ
              O
             •H


              r-l
              QJ
              co
CO
4J
r-l
QJ
O
O •
QJ co
V-t (3
O
r-l 'H
0 4-1
ft cd
cd 4-i
> CO
j_i
cu
o
o •
cu co
r-l C
o
r-l -H
O 4-1
ft cd
CO 4-J
> CO
H
H
£3
O
0

s
H
CO
D
Q
J3
M

QJ
C
O
43
PM
TJ
C
CO

CO
co
CU
^
*t3
Tj

<3
^,
cd O
4-1 O
co r^
 1
4-1 O
•H "CO
43 E v^
5 -H
QJ /-N
rH 43 -J-
LO CO rH
oo (3 r~-
CM ^
ftrH
rH B 0
O O CM
rH PL,^









CO
CO
QJ
r-l
T3
T3
cO

QJ
E
cO
CO





•
K,
rH rH
PQ m
ffirH
C Ooo
•r-l 1
Cd "ON
rH 4-ION
r-i 3m
CU cO
n QJ/— N
B C vo
CO f3rH
43 OCM
U C_)1^-'









CO
CO
QJ
r-l

T3
cd

QJ
B
cd
CO
o
vO
^•O
CM
ON


~i
O
bd
J3
•H
j^
0)
r-l • CU
QJ > f3
rH -H -H
OJ Q bO
QJ f3
43 bO W
5 a
•r-l r-l
rj
cd
43
CO

•H

CJ
CU T) 'H
(3 cd  QJ
r-l O CO
cO -H T3
S > rH
cd
[5
Tj
W
4-1
r-l -H

C S bC
r-l 4-1 O CU
QJ {3 4-1 CO 4J
£  co C
rH -H f3 CO • QJ O
<3 h> [d Q £5 [3 >H
•H
>
a
w
rO f!
• -H QJ
O CO B
QJ {3
• M 0
^ PM >H
•H
>
C
w







}_(
QJ
ft
CU

.
U
.
M
.
w


.
o
CJ
CJ
CO

CU
(3
CO
3
Q




                     A-12

-------
C/)
H
O

x>
d
CO















•
co
^
C
cd
4-1

rH CO
CU rH
3 0
"4-1 rH
4-1
rH C
CU O
rQ O
,0
3 bO
VH C
•H
CU rH
rH ^
X> CO
•H cd
CO CU
P-. E
cd
ll g
rH O
O rH
C_) £n

cu
c
0
rC
PH

T3
C
cd
co
CO
cu
rH
13
13
Jf^

fH W
o
IH >-
rH
CO CU
4-1 >
•H 0
C 0
d cu
rH
>%
VH rH
CU O
> P-
o co
o >
cu
VH 4-1
4-J
fH CU
O rH
P* N
cd cd
> ffi
rH
rH t)
00 Pd

CU
C
o
•H
4-1
cd
4-1
co

cu
a
•H •
> cu
^rH >
CU -H
CO 4-1
cd
rH E
O rH CO
UH O 4-i
U-l -H
cu C C
>-H D
rH
cd ^ t^
> rH rH
CU CU
,» >
i 0
PH O
cu
Cd bO rH
c
T) -H rH
CU 4-1 O
T3 CO CX
•rH CU Cd
> 4-J >
co
m
CTi
CO
o>
4-) bO



•rH 
-
•H C
O X-N -rH /-N
C rH g in
OOO rH rH
cd m cd CN
"^>^ ^ S r~^ v^^
^-1 »->




c
o
•H
4-J
cd
•H
rH
•H
m
m
<:
13
c
cd
cu
E
cd
2










"
• • rH
rH > CU
C bO-H 4J
OS P rH
> 0 •
cd bO,^ PL, O PH
rH C C U PH
£4 -H cd 13 O
4J H CJ 4-1 W
cu >, cu cd C
C VH^rH CU C
O rH rH CU rH E rC
4-J cu cd 3 cu P o
CO I-) ^ PH ^ VH 1-3
CU O 4-J
rH CO CO
•H -H C
PL, PL, M
X cd
CU rH
OO rH
O O -rH
vo <; o >
rH CJ O
00 rH C
- i cd
X O CO -rH
O bom 13
PQ cu
O co
o cu
>•, 0) W
O cd pd -H
O rH J-l
rQ rH P.
O ^ O rH
•H O PH CU
E S cd 4-1
0 > co C
4-1 T3 E W
0 >, 4-)
rH O O S CO CU
CU CO rH
C W N
cu O cd
Oh-' W

<
C_> CM
CN 
-CTv O >JD
,c MD in o
0  OO O CO OO
rQ O rH rH
CU -,
W
cu
rH
IS!
N
0
C

m
o

CO
4-1
a
cu



bO
CU C
>-rH
•H 4-1
4-J CO
O CU
<3 4-J

cu
• o
C 5-1
PH bO d
co
cd
CO
4-J C
•H 0
c
d cu
>
r^ -rH
rH 4-J
cu cd
> E
O P
0 O
cu UH
VH C
•H
rH
o >
PH VH
cd cu
> >

0)
W)
CU
rH v£>
rH O CU
O 00 >
U CN <£
cr\ o
CU CO C
4-1 CO -H
Cd  -H 0
<-< ^4-l O
C cd C U
M H CU
13 rH
-•*! • >H CU
!H rS CO >
cd cu o
E ; VH P
JH pd PH ^^
CU
4-> S
C PH
M O
•H O
co co
CU
T3 CU
x;
13 4-J
c
cd p
•H
bO
C co
•H 4-J
VH C
d cd
4-> PH •
0 -H E
cd o cd
m -H JH
> d 4-) bO CU
C VH O E
cd cd f-i cd
E PH PH CO








fd o
OO
^cf co
-in co
•rH 1 CU
4-JrH VH
cd 
-------
 O
o
co
s for service stations
5H
CU

O
O
cu
5-i

5n
O
CX
CO
               t^
               5n
               CU
               >
               O
               o
               cu
               5-J

               5H
               O
               ex
               co
               >

               5H
               O
              MH

               co

               d
               cu
               E
               cu
                       cr
                       cu
                       M co
                       >H  4J
                       CU -H
                       d  d
                      w  3
                                  co

                                  •rl
                                  d
cu

Q
CJ
cu
o
cx
cO
               co
               4-J
              •rl
               d
cu

o
a
•>
               5H
               CU
               !>
               o
               o
               cu
               5H

               5-i
               O
               ex
               cO
                                                                CO
 CO

T3
w

m
 o

 co
 cu
rH
 CO
            CO
            4->
           •rl
            d
5H

CU


O
CJ

(U
5-1
O
CX
CO
 CO
 cu
 co
 o
 ct)

 O

•rl
 d




*
co
l-i
CU
13
13
cO
rH
43

O
4->
CU
O
•H
>
5H
CU
CO

5H
O
MH

co
4-J
•H
d
                                                                                                         cO
                                                                                                                    CU
                                                        Q)
                                                        O
                                                       •H
                                                        >
                                                        5n
                                                        CU
                                                        co

                                                        SH
                                                        O
                                                       m

                                                        co
                                                        4-J
                                                       •H
                                                        d
                                                                                                                                   cu
d
•r-l

43
O
J_J
CO
CU
co
Q>

£>
o
o •
CU CO
5n d
0
5n -H
O 4-J
ex cfl
CO 4-»
> co
J>
O
O •
CU CO
5-1 d
O
5H -rl
0 4-1
ex to
CO 4-1
> co
CO
H
<
H CU
£$ p|
O 0
CJ 43
PH
|>H
fVj ^rj
H d
CO CO
[31
Q co
&, CO
I-H CU
j_l
T3
13
<£





cu
l>
-
d
r-H 0) /-s
CM 13 CO
CTi 5H rH
xO CO CM
i — 1 O ^-^












CO
CO
0)
5H
H5
13
CO

CU
e
CO
CO


o
co r~-
• cO <}"
T3 O O  *-)  X CO
PQ vo o cu o —i
CU CM O CM rH CO VO 00 tr-H  O CM r-« CU CO i— 1 CM O Z CO -rl CO
5-J O -iO MrH CO CO CO
O CO i— 1 X CM -Hi—I rHXCM OZm CM MH-elJCO CO
43 <3 1 Hi COl Hi 1 "1 CUCJI CU
E O co X in P-( i — i x r — • ~ ^^ co in bo CTN 5n
ctj co o-oo 5HCN cOcM cflgoo t3
0) O O O<3O £ 5H-H CO
r-ld^^ .4-J^-s 4-J/-N -4Jx^ >H/-v COx-% OCUx-v
CM -rl rH drH EO 3rH CO|3rH CO I— 1 OCOrH E
oo5-ir^. -or^ OCM -01^- CMCUCM -HCM O(3r^ co
t—l M ^~-s PH 33 '*-' PH v— ' PM |U 'x — ' i — 1 ^ v— ' ^ s— ' ON 

0)
P^




CO
0)
r-l
OT
d
o
4J
CO
rj
° O
^ .r4
1l
^||J
r.'°
bO
^







co
0)
4-J
cfl
•H
O
O
CO
CO
<
0)
rV{
d
•H
01
pi



OJ
y
d
•rl
CU
P^
T3
CU
H




en

•H
rl
4-J
co
^
13
d
M

4-J
CO
CU
[5
43
4-1
rj
0
CO


d
cu
^~\co
13 5-4
d o
C0>
pqi— H
i cfl
i — l|DC
rH
o d
co 43
5n 0
CU1-)
bO
d
M
v— '

£
0
rH
CO
d

!2 >
•rl
Pi^l
•rl
rH CO
rH
Cfl
>-
0
^
•H
d
J^
rH CU
•H i-H
43 cfl
S CO






43
O
cO
43

0)
13-
O
p£

43
co
0
PQ




cu •
o >
•rl -rl
4-IP
pj
0) bD
5n d
PM -rl
4J
5-i CU
CU X
X
01
5H
O
a.
cfl
4-1 rl
CU CO
PM &



V-i
cu
0)
d
CO -rl
13 bO
5n d
CO W
^
t3 M-l
W CU
•H
1343
W CJ



                                                              A-14

-------
                            CO
CO
H
CJ
<
EH
!3
0
CJ
>>
rv*
M-i
EH
CO
&
Q
S
HH



QJ
C
O
42
PM
13
j— i
M
crj

en
CO
QJ
( .
H
^
13
CO
 CO
 C
 O
•H
CO
CO
•H
A;
O
O
43
4-J
U
cd
Pn

rH
O
M-I
cd
4-1
cd
p
CO
cd
CJ
•rH
1 .
H

rH
MH >-i CO
O S CN
1
OJ AJ 0\
> rH C^

O
O
QJ
rH
i .
H
O
P<
cd
>








CO
CO
QJ
I .
H
13
13
cd
QJ
B
cd
CO
CO
a
Q)
o
1
rH
•H
cd
4-J
QJ
1 1
M
a >•>
O QJ
MH >
O CO rH
	 i r«i
i 1~~l ^
SH -H CO
QJ cd
•9 -t-1 <8
B QJ
3 p co
a 4-j
• -H
C co -rj
O C d
0 <
QJ -rH
CO 4-1 ^
cd cd h
QJ 4-J
i— 1 CO TJ
0) QJ
(£ OJ B
O p
CO -H o
CO >14-|
QJ rH )-|
rH QJ QJ
PM co PL,




QJ
Pi
•H
i~H
0
CO
ca
bO

rH
0
MH

QJ
rH
43
cd
rH
•H
cd
>
cd

CO •
O bO
•H a
4-J-H
CO 4-1
•H QJ
4-> A!
cd M
4-> cd
co B
                           O
                           O
                         O
                        K^j ^_

                           CN
                         £rH
                         CD CN
                        o

                          -1—I
                         CO r-l
                        rH rH
                        rH U~>
                        •rH  I
Pi
0
•rH
4-1
crj
B
rH
O
MH
C
M

M-I
O

X
QJ
13
C
M






4->
5H
O
PL
QJ
r-l

CO
B
cd
•H
rH
rH
•rH
3
P
CJ •
P-l rH
< Q

• C
0 -H
O
O
« 4J
O
b013
0) QJ
•H ,H
P rH
QJ
CMH
Cd QJ
CO M
Pi
O
•H
4->
Cd
2
rH
crj
>
w

13
C
cd

£
s
•H
>
QJ
Ctf

rH
'TJ
CJ
•H
a
42
CJ
QJ
EH







13 pi
0 O
O -H
&04-J
cd
< B
rH
O
• MH
CO
B
QJ
4->
CO
>!
CO

rH
O
rH
4-1
C
0
CJ

TJ SH
QJ O
rH p.
4-1 Cd
•H >
4->
C MH
0) O
(2
•H

i— 1
cd
o
•H
C
42
O
QJ
4-1

rH
0
MH

4-1
o
cd
4-1
C
O
O



13
QJ
4J
cd
C
•H
B
rH
d
o

42
O
•H
42
s

>>
13
d
4->
CO

QJ
42
4-1

0
4-1

13
QJ
4-1
cd
rH
QJ
rH











QJ
>
O
43
cd

13
QJ
C
O
•H
4-1
C
QJ
B

4-1
rH
O
a
QJ
rH

QJ
42
4-J

C
•H









>
13
d
4-1
W

rH
O
4-1
CJ
cd
MH

C
0
•H
CO
CO
•H
B
QJ

MH
0

CO
d
4-1
cd
4-1








QJ C
, CJ-H
C
QJ13
d QJ
rHl3
MH -H
C<
•i-l

4-J •
cd co
42 QJ
4-i -H
a
co C
M QJ
QJ -H
4-J a
QJ -H
B M-I
Cd MH
rH 0
cd
PH p*,
M
Pi QJ
bO P>
•H O
CO O
QJ QJ
COP rH







rH
o
MH

QJ
M
d
13
QJ
O
O
M
P,

4-1
CO
QJ
4-1

C
O

4-1
a
cd
4-1
p;
o
CJ

rH
crj
u
•H
G
42
CJ
QJ
4-J

13
O
O
rH
d
MH
P,
rH
QJ
42

>^
M
QJ
>



B
QJ
rH
43
0
rH
a

QJ
42
bO-U
QJ
42
4-J

bO
C
•H
P.
O
rH
QJ
>
QJ
13

<



CO
rH
CO
C
•H
B
M
Q)
4-J

MH
o

CO
QJ
CO
cd
42
p,

rH
rH
cd
4-)
cd
cd
•H
C
rH
O
MH
•H
rH
cd
u

^0
rH

4->
X
W

O
0
O
CN
1
O CO
                        0) 00
                        >rH
                        0) CN
                        pq -^
                                                     O  QJ •
                                                       •H
•H  f2'
 C  Cd I
;z> oo •
 o  >
CJ rH vt
   PQ vo
 C    V£>
•H  0) CN O
MH  QJ CT\ O
•H  rH    O
 (2  O    CO
 (243 <   I
 cd  B U co
PC  cd    co
 i  "-j   -oo
 rH     QJ
 o> T—i  p; x-s
A: CN -H  rH
 cd oo  >H r-^
co


Pi
O
•H
4-1
crj
•H
rH
•H
MH
MH
s
QJ
>
rH
d
CO

1— 1
cd
•H
a
QJ
P
en

13
a
cd
0 QJ C
CO B M
>, rH rH PL,
Cd QJ QJ -rH rH
B
d
QJ
rH
CO
rH
Q)
42
CO
•rH
r-l
43
d
PM
O
}H
4->
QJ
PM

rH
cd
a
o
•rH
4->
crj
^0 3
fe bO 13 d O co
bO cd O CT4-J ;>,
C pi M W -H QJ
•H cd pq -~~ T3 >
B S co pq )H
QJ co pi d
W 42 d O rH co
CJ -H -rH -rH
C ^ rH 4-1 O 13
o cd QJ cd pi
•rH QJ Pi rH rH Cd
rH CO H QJ Q)
cd QJ o p, d co
S Prf O O piH 4-1
•rH
13
d
<

CO
CO
o
pi
M

„
rH >!
QJ QJ
>, >
OJ rH
PQ d
CO
C
crj b£
rH rH
rH QJ
< 43
T3
C
d
hJ
4-1
!-(
QJ
P-
X
X W
O
U rH
crj
.12 o
4-1 -H
QJ C
f2 42
pi u
QJ QJ
^ H
B
S
•H
rH
rH
•H
|3



-------
 o
 a
 CO
 CO
 QJ
 CO
 CO
 cfl

 C CO
 o B
    QJ

 >-l CO
 o >-,
 & CO

 CO t^

 £2 QJ
 CO >
•H O
U O
 CO QJ
4-1
 C
 QJ

 a
                      0*
                      QJ
 V-i
 QJ

 O
 CJ
 QJ
 M  co
 O  M
 CX QJ
 cO  ^
 >  2
    4-1
m  o
 o  co
 co  c2
•H  cO
•J  B
H
0
H

O
O

S-J
Pi
H

£3
O
£2
M

































01
C
o
42
P-i

13
C
CO

CO
CO
QJ
T3
13
<£






CNJ
VO
O
• 0
13 vO
Pi
h4 O
C H O
QJ 00
4J - 00
CO .JxJ I
bO O 01
C O l^
M-l 42
p | (-* x™\
4J CN
CO M i— 1
CO O "^





fj
O
•H
4-1
cO
•r-l
i-l
•H
[11
111
i
CL< J-i |S 4J cfl
al — 1 1.1
• cO lj
« QJ 4J ^ CO
13 CO CO N
• f2 co cO cO
ed p  uri
 o
4-) m
•H *>
O -r-l rH r-l
CO >-4 CO CO
M 0 0 0
OJ 4-1 'H<
T3 CO 4-J
f2 )-J >iW
JJ Or-4 B
O 43 cO QJ
Cti £2 4-J
• nJ -> o S to
                                             A-16

-------
2.0       PRESURVEY TRIP REPORTS AND TEST REPORTS BY OTHERS

2.1       EXXON-Houston Terminal Visited and Reported
          by J. C. Dickerman

          On June 7, 1974, the writer met with Mr. W. A. McDonald
to tour EXXON's Almeda Road Terminal vapor recovery facilities.
At this terminal EXXON has a Parker Hannifin refrigeration-
compression vapor recovery unit to recover hydrocarbon vapors
resulting from tank truck loading.  They also have a test facility
to evaluate vapor recovery controls for service stations.  Both
of these vapor recovery systems were visited on this tour and
are discussed below.

          Terminal Loading System

          Tank trucks filled at this terminal are bottom loaded,
and the resulting vapors are collected and sent underground to
the vapor recovery system.  The vapor recovery system is a
Parker Hannifin unit which has been in service for several years.

          The hydrocarbon vapors enter the vapor recovery unit
through a saturator where the vapors become partially saturated
with hydrocarbons.  The vapors are compressed and cooled,
then enter a low temperature absorber where the hydrocarbons
in the vapor are absorbed by a spray of recirculating gasoline.
Essentially hydrocarbon free air exits the top of the absorber.

          Detailed information on flow rates, temperatures and
pressures of the streams to and from the Parker Hannifin unit
was not available; however,  experience with the system indicates
it should be possible to achieve about 90% hydrocarbon removal.
Data on horsepower requirements and operational costs of this unit
can be provided by EXXON.

                               A-iy

-------
          There were several maintenance problems associated with
this unit when it first came into service, but it now requires
only minor intermittent maintenance attention.  At present, ac-
cording to Mr. McDonald, this unit operates at a greater than 80%
stream factor.

          Service Station Test Facility

          The test facility consisted of an underground storage
tank, a gasoline dispensing pump, and an Atlantic Engineering
Unit which was used for testing vacuum assist systems.  The
purpose of the test facility has been the evaluation of
gasoline dispensing nozzles.  A gasoline tank from a 1973 Olds-
mobile was also located at this test unit.  The vent line on the
gasoline tank could be vented directly to the atmosphere if de-
sired to simulate conditions for prior-to-1970 model automobiles.

          Other EXXON Terminal Units

          Mr. McDonald described the Edwards Vapor Recovery
Unit installed at EXXON1s Austin, Texas terminal.  The Edwards
unit differs from the Parker-Hannifin in that there is no gaso-
line vapor compression stage.  Instead, the gasoline vapors are
condensed on low temperature refrigeration coils.  The unit
is newly  installed.  It is not fully lined-out and not ready
for  a thorough pre-survey inspection.

2.2       EXXON-Austin Terminal Visited and Reported by
          J. C.  Dickerman and G.  E. Burklin

          On July 2,  L974, the writers met with Mr. Walker, the
Terminal Manager, to tour the terminal vapor recovery facilities.
                               A-18

-------
EXXON's Austin terminal employs an Edwards Engineering vapor
recovery unit to recover hydrocarbon vapors from tank truck
loading operations.

          System Description

          All tank trucks are bottom loaded and the resulting
vapors are sent underground to the vapor recovery unit.  At this
terminal the driving force for vapor flow is direct displacement
only.

          There are currently no service stations in the Austin
area utilizing vapor recovery control techniques; consequently,
the vapor space in the returning tank trucks are filled with a
sub-saturated hydrocarbon mixture.  Hydrocarbon concentration
in  the vapors returned to the vapor recovery unit vary from 670
to  greater than 20%, with the balance being air.

          System Operations

          The principle of operation of the Edwards unit is
relatively simple.  The tank truck vapors are passed over a
refrigerated coil where the hydrocarbons and water are condensed
from the vapor mixture.  Essentially hydrocarbon free air exits
the top of the condenser.  The condensate is first pumped to a
water-hydrocarbon separator where the water stream is routed
to waste water treatment and the hydrocarbon stream to gasoline
storage.

          The refrigeration package of the Edwards unit is
designed to continuously maintain the condenser coils at a pre-
set temperature.  A wide swing in vapor rates can be accomo-
dated by the unit.  A hydrocarbon vapor surge tank is not
required.
                               A-19

-------
           At the time of our visit,  the  condenser  was  operating
 at -50 F although temperatures as  low as -100°F can be reached.
 It was learned through a telephone conversation with Mr.  Normal
 Watt,  an Edwards engineer,  that a  series of tests  to determine
 optimum operating conditions for this unit  was  planned for the
 near future.
          System Problems and Costs

          Mr. Walker was pleased with the unit operation.  He
indicated that it had been running for over two months with no
major problems.  The only problem indicated by Mr. Walker was
frost buildup  on the cooling coils; however, this problem had
been solved  by increasing the number of defrosting cycles.
          The unit currently recovers about one gallon of condensed
vapors per 1000 gallons of gasoline loaded-  This value would,
of course, increase if the hydrocarbon concentration in the tank
truck vapor space were higher.  According to Mr. Walker, operat-
ing costs run about $450/month.  Purchase cost of the unit was
$37,000.  Operating costs are primarily associated with running
two-30 HP refrigeration compressors.

          Recommendations for Further Work

          We feel this unit should be tested as part of the termi-
nal source testing program.  Considerable interest in this unit
has been expressed by several major oil companies.  Mr. Walker
indicated that representatives from several oil companies had
made inquiry about the unit, and that they were either considering
                               A-20

-------
ordering or had already ordered similar units.   Edwards Engineer-
ing personnel indicated that an improved hydrocarbon-water
separator will soon be placed on this unit.   We feel testing should
be conducted on this unit after equipment improvements have been
completed and operations are placed on a routine basis.

2.3       San Diego-San Francisco Service Stations
          Visited and Reported by J.  C. Dickerman

          This report summarizes a June 17-21,  1974 trip to
San Diego and San Francisco for the pre-survey investigation of
hydrocarbon vapor recovery facilities at service stations.   While
in San Diego, a test of a vapor displacement type system was
witnessed, and discussions were held with several persons on
these systems.  Meetings were held in San Francisco with Region
IX EPA Bay Area Air Pollution Control District (BAAPCD) person-
nel to determine the times and locations of a service station
source sampling trip to be conducted later in later months.

          Observations of Vapor Displacement Test

          The parameters measured by EPA and TRW during the
test conducted at a Chevron Station at the corner of Baltimore
and Lake Murray Boulevard in San Diego were similar to those
proposed by  the writer as necessary for material balance
determinations to be included in planned service station tests.
Continuous monitoring of hydrocarbon concentrations in the
underground  tank vent line was not performed, although this
was effectively accomplished by measuring the volume of vapors
lost the  the weight of hydrocarbon pick-up on activated carbon.

          The tests were well conducted and most measurements
were made with only a small delay to participating customers.
Although  the time delays were small, it was evident that obtain-
ing customers willing to participate in the testing was a

                               A-21

-------
problem.  Several factors probably contributed to the lack of
customers,  some of which may have to be addressed while testing
in  the  Bay  Area.  Two  factors contributing most to the lack of
customer participation appeared to be:  (1) the service station
opened  only four days  prior to the source test, and  (2) there
were  always several observers standing around the gasoline dis-
pensers which may have dissuaded customers from entering the
station.

          Test Procedure Comments from Other Observers

          An attempt was made to include all comments relevant
to vapor recovery systems from other observers in this section.
Some  comments from a meeting held with the BAAPCD authorities
will  also be included.

          Many of the  observers were asked what additions or
deletions they would recommend to the testing procedure
being used by TRW.   There were only a few specific procedural
changes recommended.   These were:   (1) include continuous monitor-
ing of the HC concentration of the underground task vent line,
and (2) add the use of a dual range explosimeter for checking
nozzle-fill neck leaks.  The dual range explosimeter can give
a qualitative indication of the severity of a leak at the nozzle-
fill neck interface.   Personnel from the BAAPCD commented that
the use of a flowmeter in the vapor return line to the underground
tank may cause a pressure drop which could affect  the design of a
vapor balance system.

           In general,  most  of  the  comments received  offered
no  recommendations for change  of  the  testing  procedure.
Personnel  from the San Diego Air Pollution Control District
 (SDAPCD) did make  some comments, however, which should
                               A-22

-------
probably be considered in future testing.  They commented that
the empirical method used in determining vapor losses from the
nozzle-fill neck interface  (establishing a base line and using
it for assessing the total vapors produced) might not be ac-
ceptable due to the wide variations from the base line that can
be obtained.  They also commented that the flow rate of gasoline
dispensed to the automobile varied from test to test, and that
the flow rate of gasoline dispensed for vacuum-assist systems
generally was larger than that dispensed for the displacement
systems.

          Miscellaneous Comments from Other Observers

          Through discussions with persons at the test site, it
was learned that safety evaluations and acceptance tests are
presently being conducted on both vacuum assist systems and
vapor return nozzles by Factory Mutual and/or Underwriters
Laboratory.  It was also pointed out that no acceptance testing
procedures have yet been promulgated by the National Fire Pro-
tection Agency (NFPA), and it is very unlikely that a certifying
test laboratory will report on a system without such guidelines.

          Bob Carl from OPW commented that although their vapor
recovery nozzles were in short supply, he should be able to
supply any station to be tested in the Bay Area by late July
with nozzles.  He also said that the new type nozzles deliver
lower flow rates than the older style nozzle.

          A discussion was held with Mr. Ray Skoff of SDAPCD to
determine his interpretation of the word "all" as stated in the
San Diego Regulations.  There appears  to be considerable
confusion as to the exact  meaning of the term.   The intent  of the
                               A-23

-------
regulation, according to Mr.  Skoff,  was that "all" vapors were
collected when the explosimeter showed no reading at the fill
neck interface.
          EPA Region IX Meeting

          A brief conference was held at the EPA Regional Offices
prior to meeting with BAAPCD personnel.  The purpose of the meet-
ing was to inform the regional personnel of the proposed service
station source testing program tentatively scheduled to occur in
the Bay Area.  It was recommended by region personnel that a
vapor displacement system developed by Hazlett Enterprises be
considered for testing.  This system is completely sealed and
operates from a vacuum created in the underground tank.  The sys-
tem also has a unique ball valve system in the nozzle which is
reported to be very advantageous.

          Meeting with Bay Area APCD Personnel

          The purpose of this meeting was to inform the BAAPCD
personnel of the proposed testing of vapor balance systems to
occur in the Bay Area.  Assistance was solicited from BAAPCD in
selecting the test sites.  The following list of test sites
and sampling dates was agreed upon.   Oil company representatives
will, of course, be contacted for concurrence.

             July 29 - August 2; An Exxon Manifolded
             System

             August 5 - 9; A Phillips Petroleum station
             utilizing the Hazlett system

             August 12 - 16;  A Chevron station located
             at Davis, California.
                              A-24

-------
          A discussion on testing procedures occurred at which
time the writer presented a proposed list of parameters to be
observed in performing hydrocarbon material balances around
vapor displacement systems.  There were generally no objections
to the proposed testing,  but the following points were raised.
             Care should be taken when measuring the
             volume of vapor returned to the underground
             tank to assure that an unduly large pressure
             drop is not created.

             It would be of interest to compare
             hydrocarbon concentrations obtained by
             both a hydrocarbon monitor and by
             calculations from an oxygen monitor.

             It may be beneficial to utilize a bonded,
             certified testing laboratory, such as
             Charles Martin in San Francisco, to run
             complete analyses on the dispensed
             gasoline to confirm that tests are repre-
             sentative .
             It may be possible to determine nozzle
             losses by the use of a plastic bag surrounding
             the nozzle.

          BAAPCD personnel offered to help in any way possible,
and agreed to arrange publicity releases of the testing in an
attempt to attract willing participants.
                              A-25

-------
          Recommendations for Vapor Recovery Tests

          Based on discussions and observations at  the service
station test site on June 18 and 19,  the writer developed the
following recommendations for consideration in planning future
service station source tests.   These comments may be divided
into three categories; alterations of the San Diego test pro-
cedure, other test procedures to be considered, and methods to
attract customers for test participation.

          1.  Alterations of San Diego Test Procedures

                 The underground tank vent should be
                 continuously monitored for hydro-
                 carbon concentration.

                 A dual range explosimeter should be
                 employed to check for the relative
                 severity of nozzle-fill leaks.

                 Complete gasoline analyses should  be
                 conducted of both the dispensed gaso-
                 line and the gasoline dropped to under-
                 ground storage.

          2.  Other Test Procedures to be Considered

                 Care should be taken to permit no  pres-
                 sure drop across a system that could
                 affect the system's operability.  For
                 this reason,  methods other than using
                 a dry gas meter for measuring the  amount
                 of vapors displaced from a vehicle tank
                 should be considered.
                               A-26

-------
                 The use of a vapor trap, such as a sealed
                 plastic bag surrounding the nozzle,  should
                 be considered in evaluating nozzle losses.

          3.  Methods of Attracting Participating Customers

                 Publicity releases should be given a few
                 days prior to the start of testing.
                 BAAPCD agreed to handle this.

                 The number of observers standing at  the
                 dispenser islands should be limited  to
                 test personnel.

                 Signs should be  placed at the test sites
                 clearly indicating that a service station
                 test is in progress and willing partici-
                 pants are needed.

                 Some type of incentive offered the customer
                 to encourage his participation, such as a
                 5
-------
2.4
             Tony Eggleston
             Jim Presten
             Howard Klein
             Al English
             Bob Lupcho
             Bob Carl
             R. W. Taylor
             Belle K. Tom
             Dick Fus;co
             B. McEntire
             Ray Skoff
             Jim Talbot
             Fred Hall
             Gale Karels
             Tom Peraldi
             Fred Thoits
                            TRW
                            Chevron Oil Co.
                            Chevron Oil Co.
                            Chevron Oil Co.
                            Chevron Oil Co.
                            OPW (VP-Engineering)
                            Intermark (President)
                            EXXON
                            Calgon
                            San Diego APCD
                            San Diego APCD
                            Bay Area APCD
                            Bay Area APCD
                            Bay Area APCD
                            Bay Area APCD
                            EPA Region IX
Shell Service Station - Concord, California,
Visited and Reported by J.  C.  Dickerman and
C. E. Burklin
          On August 7, 1974, the writers met with Dale Size of
Shell's regional marketing office, at Shell's experimental service
station in Concord, California.  The purpose of the meeting was
to investigate Shell's vacuum assist gasoline vapor recovery sys-
tem installed in the. Concord service station and to assess the
merits of testing the facility's vapor recovery efficiency.

          System Operation

          Figure 2.4-1 is a flow diagram of the vacuum assist vapor
recovery system employed at Shell's experimental service station
in Concord, California.  The hydrocarbon vapors are collected by
handmade prototype McDonald nozzles.  These nozzles are equipped
                               A-28

-------
 *«•
-------
with on/off valves on the vapor lines which operate in conjunc-
tion with the throttling fuel valve.  Actuating any fuel pump also
actuates the vacuum pump (P-l) and maintains a 2 to 6 in H20
vacuum in the vapor return line.

          The vacuum pump (P-l) pumps the recovered vapors under-
ground to the "Super Shell" storage tank where they are saturated
for safety by a spray saturator.  Excess vapors are displaced
from the "Super Shell" tank via the vapor manifold to the stor-
age tanks from which the fuel was drawn.

          When the pressure in the vapor system reaches 4/10 in
H20, control valve CV-1 opens, allowing the gasoline vapors in
the underground storage system to enter the vapor oxidation
system.  The entering vapors are metered and then passed through
an activated carbon bed where the hydrocarbon components of the
gasoline vapor are adsorbed.  The air component of the vapor
stream is vented to the atmosphere.  At this time valve CV-2 is
open and valve CV-3 is closed.

          After an hour of operation the carbon regeneration
cycle is initiated automatically by the control unit.  Valve CV-2
is closed, valve CV-3 is opened and pumps P-2 and P-3 are switched
on.  Air is drawn by pump P-2 through the carbon adsorption column,
desorbing the adsorbed hydrocarbons.  In the combustion chamber
the hydrocarbon stream from P-2 is combined with an air stream
introduced by P-3 and is ignited.

          When the desorbed hydrocarbons have dropped below the
combustible concentration,  the control unit shuts off pumps P-2
and P-3, closes valve CV-3,  and reopens valve CV-2.  Another one
hour adsorption cycle begins.   The activated carbon life for this
system is projected to be two years.
                               A-30

-------
          System Evaluation

          The Shell service station in Concord is well arranged
and offers ample space for the positioning of test equipment.
In addition, the Shell oxidation unit is simple and very ac-
cessible for measurements.

          There was some leakage at the nozzle-fill pipe inter-
face, however.   Vapors could be seen escaping from all of the
five automobile refuelings observed during the pre-survey visit.
The bellows-hose on the nozzle had been replaced with stiff
sections of swimming pool vacuum hose.   The result was a very
poor nozzle-auto interface fit.
                               A-31

-------
 3.0       TEST REPORTS BY OTHERS  - SUMMARY OF RESULTS

          Nine reports of service station testing conducted
by others have been reviewed.  These test reports are pre-
dominantly concerned with evaluating the operation of displace-
ment systems.  Each report is briefly discussed and summarized
below in the following pages.  The reports reviewed are as
follows:

          Calgon Report - April 19, 1973 (FU-035)
          Calgon Report - July 10, 1974 (GR-106)
          Olson Laboratory Report - October,  1973 (OL-018)
          Scott Laboratories Report (Cape 9 Study) -
            September 1,  1972 (SC-167)
          Standard Oil of California - November 27,  1973
            (ST-187)
          Atlantic Richfield Report - April 8,  1974 (AT-045)
          Exxon Report -  May 31,  1974 (PO-100)
          Scott Laboratories Report - June 26,  1973 (SC-186)
          TRW Report - August, 1974 (HA-256)

Calgon Report - April 19, 1973

          Test results were reported for a "displacement"
system and a vacuum assist system (-0.1 -> -0.5" H20) employing
an activated carbon canister to capture excess  vapors.   Results
indicated that the activated carbon system would control vapor
emissions well in excess  of San Diego's 90% requirement while
the "displacement" system would be able to control approximately
only 807o of the total emissions .   Attempts were made to measure
                              A-32

-------
excess underground tank filling losses but they were unsuccess-
ful because of tank truck leakage.

          The displacement system efficiency of 807o was based
on an excess vapor growth of greater than 20%.  The regression
line for this data is:

                    V/L = -0.007AT + 1.224

where

          V/L is the volume ratio of returned vapor
              to dispensed gasoline (ft3/ft3)

          AT  is the temperature difference in the
              vehicle tank temperature and the dis-
              pensed gasoline temperature.

          This vapor growth is much greater than reported by
other investigators.   It should not be considered as a repre-
sentative value,  however.   The results were obtained on a sys-
tem that is not typical of displacement systems in use today.
The results obtained for the displacement portion of this study
are questionable for the following reasons:

          1.  The data was obtained from a system
              operating with -0.1" H20 vacuum assist,
              and thus cannot be related to displace-
              ment systems in use today.

          2.  The amount of vapor actually displaced
              was estimated but not measured.
                               A-33

-------
Calgon Report - July 10, 1974

          The purpose of their tests was to determine the vapors
emitted from vehicle fueling operations during summer conditions
with a low RVP (8.2 psi) fuel.  Results of the study indicate
a 5% vapor growth at zero AT can be expected.  Regression line
for the system was:

                    V/L = -0.008AT + 1.050

          Only "no leak" or baseline cars were used as data
points for the regression curve.  A tight seal between the
nozzle and fill neck was accomplished by cementing a rubber
bushing to the inside of the fill neck which would make a tight
fit with the vapor return nozzle.

          Testing was conducted at a small fleet fueling center
in San Diego.  The test procedures used appeared valid except
for the fact that the dispensed fuel temperature was measured
in the underground tank instead of at the nozzle.  Other data
indicated that the temperature of the dispensed fuel may have
been several degrees warmer than the underground tank temperature
when it reached the nozzle, especially when the nozzle was
exposed to direct sunlight on a hot summer day.  Both the volume
and hydrocarbon content of the displaced vapors were measured;
however,  hydrocarbon content was not reported.

Olson Laboratory Report - October, 1973

          The objective of this study was to determine the
technical and economic feasibility of using a carbon canister
system on automobiles to control refueling vapor losses.  The
study concluded that a large carbon canister could effectively
                              A-34

-------
control vapor losses resulting from vehicle refueling.  It
should be noted, however, that before this system can work
properly, a tight seal at the nozzle-fill neck interface is
necessary.

Scott Laboratories Report - September 1, 1972

          This report presents the results of a combination
field and laboratory study to determine the amount of hydro-
carbon losses which occur upon vehicle refueling with no emission
controls.  The study indicated that the amount of noncontrolled
hydrocarbon emissions were 5.3 grams per gallon of fuel dis-
pensed.  Of that amount 5 gm/gal were attributed to displaced
vapor losses and 0.3 gm/gal were attributed to gasoline spillage.

          A  regression  line was  developed which can  be used
predict the amount of uncontrolled hydrocarbon emissions from
vehicle refueling.  The equation is:

            LD = exp (a + b'TDF + C-Ty + d'T^RVP)

where

          L_ = Estimate of displaced loss (gm/gallon)

         TDF = Average dispensed fuel temperature ( F)

          TV = Average displaced vapor temperature  (°F)

         RVP = Reid Vapor Pressure (PSI)

           a = -0.02645
                               A-35

-------
           b = 0.01155

           c = -0.01226

           d = 0.00246

          The spillage loss was determined from data provided
by 7,151 field observations of refueling operations.  The
report states that the effect of the presence of the observers,
if any, is unknown; and, therefore, the results obtained may
reflect spill losses closer to a minimum than an average.

          Refueling losses were evaluated from experimental
data obtained from filling automobile gasoline tanks contained
in a mini-SHED (acronym for Sealed Housing for Evaporative
Determinations).   The results obtained from this study have been
questioned due to the fact that the dispensed gasoline was
reused over a period of several days and had shown signs of
weathering.

          Attempts were made during this study to determine the
amount of displaced hydrocarbon emissions attributable to en-
trained gasoline droplets.  The determination was to be made
by quantitatively measuring losses from both top filling and
bottom filling operations.  A statistically significant difference
in losses was noted; however, the difference cannot all be
attributed to entrained droplets since bottom filling operations
preclude the inclusion of excess fuel vaporization which may
result from top filling.  This issue was not resolved during the
course of this study as it was outside the scope of Scott's
work.  It is, however, an issue that should definitely be
resolved in some future study.
                              A-36

-------
Standard Oil of California Report - November 27, 1973

          This report presents the results of a study to deter-
mine the hydrocarbon vapor recovery effectiveness of a displace-
ment system conducted by Standard Oil of California in September
and November, 1973.  Data obtained from field monitoring of 113
vehicle refuelings and 18 underground tank refills were used
in preparing this report.  Results indicated that a vapor re-
covery efficiency of 95.6% could be expected from underground
tank refills and an efficiency of greater than 85% was achievable
during vehicle refueling.  There were no losses from the under-
ground tank vent.

          The experimental procedure used was essentially the
same as that used during EPA tests except that analyses for the
hydrocarbon concentration of returned vapors were not made.
Results were, however,  evaluated on the basis of hydrocarbon
recovery after the following assumptions were made:

          1.  The returned vapors are saturated with
              hydrocarbon at the temperature of the
              returned vapor.

          2.  The total possible amount of hydrocarbon
              to be collected is 80% of the Cape 9
              Study.

          These baseline curves were developed in this study.
Curve 1 results from data obtained in September and Curves 2
and 3 result from data obtained in November.  Equations for the
curves are:
                               A-37

-------
          Curve 1:  V/L = 1.07 - 0.018AT

          Curve 2:  V/L = 0.86 - 0.0157AT

          Curve 3:  V/L = 0.93 - 0.0114AT

          Reasons for differences in the curves are not readily
apparent.  The dispensed fuel RVP was 8.5 psi for all tests.
The ambient temperature was 20°F cooler in November than
September.  Dispensed gasoline temperatures reflected the change
in ambient temperatures in this data.

          Results of tests demonstrating other vehicle refueling
emissions were also presented.  Tests of vehicles with and with-
out evaporative emission controls showed that approximately
5.6% of the total displaced hydrocarbons were emitted out the
vents of vehicles containing no emission controls.  Data was
also presented which indicated that less than 270 of the total
vapor emitted from a vehicle would pass forward to the carbon
canister.

Atlantic Richfield Report - April 8, 1974

          This report presents the results of a. study to deter-
mine the performance of a vapor balance system.  Testing was
conducted by Atlantic Richfield Company at a service station in
Diamond Bar, California, from March 5-12, 1974.  Tests showed
their vapor balance system to have an overall vapor recovery
efficiency of greater than 88% with a vapor recovery efficiency
of greater than 99% for the underground tank filling operation.
These results were based on data obtained from 137 vehicle
refuelings and only one underground tank refill.  ARCO stated
in their report that previous testing of underground tank refills
                               A-;

-------
indicated a vapor recovery efficiency of 95% is more typical
for that operation.

          ARCO used a material balance approach in their test
program.  Oxygen content of returned vapors was measured.  This
data was used to calculate the amount of displaced hydrocarbons.
Preweighed carbon canisters were placed on the vehicle vent
lines to measure the amount of hydrocarbon absorbed.  Results
of this measurement showed that 0.087 gm hydrocarbon were
absorbed for each gallon dispensed.  This accounts for approximately
27o of vapors displaced.

          The baseline used for calculation by ARCO differs
from that required by EPA in that the underground tank temperature
was used by ARCO in calculating AT's instead of the dispensed
gasoline temperatures.  Test data taken by others indicate that
dispensed gasoline temperatures may vary by several degrees
from the underground tank temperature.  The regression curve
derived from the ARCO data is:

                     V/L = 0.9 - 0.012AT

Exxon Report - May 31, 1974

          This report presents the results of a detailed study
of hydrocarbon emission controls at service stations.   The study
and testing undertaken by Exxon were predominately concerned
with various aspects of vapor balance systems; however, some
testing of a vacuum-assist system was also performed.

          Their determinations of vapor recovery efficiencies
during vehicle refueling were based upon a comparison of the
actual measured amount of returned vapors with the amount predicted
                              A-39

-------
by a theoretical regression line.   The equation of the line,  as
derived by EXXON, is:

                     V/L = 1.00 - 0.013AT

These  tests  showed an average vapor recovery of 81% was achievable
with existing technology.

          Exxon  reported the results of numerous tests on under-
ground tank  refills.  The average vapor recovery efficiency for
these  fuel drops was reported to be 977°.  Additional results
reported  for the balance system indicate there are essentially
no  losses attributable to underground tank breathing.  It was
also reported that an average of only 270 of all displaced vapors
is  lost through  vehicle vents.

          Vacuum assist testing involved only evaluation of
the vapor recovery nozzle portion of these systems.  It was
demonstrated that an explosive mixture could be created in the
vehicle fuel tank by using this type nozzle.  For this situation
to  occur, however, conditions would have to be extreme; the
dispensing nozzle must continue to draw in air after product
flow has been stopped.  Data was also presented which showed that
a positive pressure was maintained in the vehicle tank while
liquid was being dispensed with as much as 17" HaO vacuum at
the nozzle-fill neck interface.

Scott  Report - June  26, 1974

          Three  vapor recovery systems (direct displacement,
carbon canister, and refrigeration) were tested by Scott
Laboratories to  determine their vapor recovery efficiency.  Data
was obtained on  97 underground tank refills and 292 vehicle
refuelings.  All vehicle refueling data was obtained only on
                               A-40

-------
vehicles employing emission control systems (carbon canisters)
and upon which a "tight fit" or "no leak" seal could be maintained
at the vehicle-fill neck interface.

          Of the 97 tests on underground tank vapor recovery
efficiencies, six were conducted on a refrigeration-condensation
system and four were conducted on a carbon absorption system.
The average control efficiency for these ten tests was 99.99+%.

          The remaining 87 underground tank filling tests were
conducted at direct displacement systems.  The average recovery
of these tests was 96.49%.  The displacement tests were further
broken down into three categories:

          1.  systems employing an open 2" vent,

          2.  systems employing a restrictive
              orifice, and

          3.  systems employing a P-V valve.

Results of this breakdown indicated the following:

          1.  The average recovery efficiency for an
              open 2" vent was 92.24%.

          2.  The average recovery efficiency for a
              restrictive orifice was 96.90%.

          3.  The average recovery efficiency for a
              P-V valve was 99.03%.
                              A-41

-------
          The vapor displaced from individual vehicles was
not measured during these tests as only the vehicles whose
nozzle-fill neck interface showed a zero leak were used.
Measurements of the amount of vapors emitted from the system
were taken only at the vent of the underground tank.

          Only five vehicle refueling tests were performed on
the refrigeration system due to equipment malfunctions.   Data
from these limited tests did indicate, however, that the system
would produce little or no hydrocarbon emissions when operating
properly.

          The remaining tests of the displacement system were
performed either on an open system or one employing a P-V valve.
It was shown that the restrictive orifice does nothing to control
emissions from vehicle refueling and that such systems behave
essentially the same as those with open vents.  Tests showed
that the systems with the P-V valve allowed little or no emissions,
and that a simple direct displacement system with an open vent
would control approximately 9670 of the hydrocarbon emissions.

          It must be remembered that the data in this study
was obtained only from vehicles employing evaporative emission
controls, and then only on vehicles producing a "tight" or
"no leak" seal at the nozzle-fill neck interface.  While these
two conditions certainly are not the "norm" today, it is highly
plausible that they will become the "norm" in a couple of years.
These data are useful, at any event, as a demonstration of the
degree of control achievable with a "tight-fit" connection at
the nozzle-fill neck interface.
                               A-42

-------
TRW Report - August, 1974

          This report presents the results of three weeks of
field testing performed in June, 1974, to evaluate the vapor
recovery efficiency of five vapor recovery systems.   Two of the
systems evaluated were displacement type systems and three
were vacuum assist type systems.

          A material balance approach was used in the test
procedure.  All necessary parameters were monitored to permit
calculations of percent recovery and the mass amount of hydro-
carbon emissions (gin/gal) .   Results were reported on a percent
recovery basis.

          Only one baseline curve was generated for both dis-
placement systems tested, and it was used to calculate recovery
efficiencies for both systems tested.   The equation as developed
by TRW for the baseline is:

                     V/L = 0.91 - 0.0155AT

          Hydrocarbon recovery efficiencies are reported to be
from 65 to 85 percent for the two systems tested.  The main
source of vapor loss was leakage at the nozzle-fill neck interface

          Only one of the three vacuum assist systems tested
was found to be operating properly.  Testing showed that a
properly operating secondary system can achieve over 9070 hydro-
carbon recovery efficiency.   These tests also illustrated,
however, that secondary systems available today are subject to
many hours of downtime due to operational problems and hence will
have great difficulty in achieving 9070 hydrocarbon control.
                              A-43

-------
          Data was also taken during these tests to determine
the hydrocarbon recovery efficiency of  each system for under-
ground  tank refills.  Results indicated that a recovery ef-
ficiency of 99+% was achievable on bulk drops when using a
secondary recovery system.  Results on the two displacement
systems indicated recovery efficiencies of greater than 96%  can
be attained.

Summary of Results by Others

          Although the final recovery efficiencies varied from
report to report, the results do illustrate the level of hydro-
carbon recovery efficiency attainable today by several different
methods.  All reported results on underground tank refilling
indicate that recovery efficiencies of approximately 96% are
achievable today by employing the displacement system only.
There is significant data on secondary recovery systems for bulk
drops indicating a 99% vapor recovery is achievable when equip-
ment is operating properly.  Since the secondary equipment
generally processes only the excess vapors, a nonoperative
secondary system can still be approximately 96% efficient.

          All reported results on vapor recovery efficiencies
of properly designed displacement systems for vehicle refueling
(except the 19 April 1973 Calgon Report) indicate that a vapor
recovery efficiency of greater than 80% is attainable with
equipment available today.  One of the systems tested by TRW
exhibited a vapor recovery efficiency somewhat less than 80%,
but the system piping was originally installed for a vacuum
assist unit and was modified for displacement.  The losses
experienced by these systems occurred predominately at the
nozzle-fill neck interface for each case.
                               A-44

-------
           Results  provided  in  the  June,  1974  Scott Report
 indicate that  recovery efficiencies  of  95%  are  attainable with
 displacement  systems  which  have  no leaks  at the nozzle-fill
 neck interface.   It  is evident that  the effectiveness  of dis-
 placement systems  are heavily  dependent upon  achieving a tight
 fit  at  the nozzle-fill neck interface.

           Results  were presented in  three reports giving vapor
 recovery efficiencies for vacuum assist units.  All  reports
 stated  that the  secondary processing units  were capable of
 vapor recovery efficiencies well over 90%.  These claims are
 reasonable.  Hydrocarbon vapor recovery equipment has  been in
 use  for many years,  and the technology  of such  is well
 established.

          These reports also cited cases where some of the units
could not be tested at times due to equipment malfunctions.
Since these units can only process vapors when the equipment is
in proper working order, the expected working time,  or "stream
factor" must be considered  in evaluating  the overall recovery
efficiency of this type unit.

          Another potential source of hydrocarbon loss from
vacuum assist systems is the nozzle-fill neck interface.  Data
taken by TRW indicates that over 20% of the vehicles refueled
exhibited positive explosimeter readings.  The positive readings
may have been caused by leakage of gasoline, but they  also may
have been caused by hydrocarbon vapor losses.   Should  the read-
ings have been caused by escaping vapor,  the amount lost is
presently not determinable.   Methods should be developed to
quantify these possible leaks.
                               A-45

-------
4.0       SERVICE STATION SOURCE TEST REPORT

          Source testing has been performed at two service
stations employing vapor displacement recovery systems.  Dis-
cussion of the test procedures and analysis of results of
these tests are included in this section.

4.1       Introduction

          Source testing of displacement vapor recovery systems
installed at service stations was conducted from July 29 through
August 16,  1974.   Testing was performed at two service stations:
one was located in Hayward,  California and the other in Davis,
California.   Schematics of each vapor recovery system are
included as Figures 4.1-1 and 4.1-2   The actual testing was
conducted by a source testing team from Betz Environmental
Engineers.   The major variables measured are listed for each
vehicle tested on the attached data sheets.  No outbreathing
from the underground tank vent lines was recorded during these
tests.  Radian had personnel at the test sites throughout the
duration of the tests, and EPA had personnel present during the
first l-3^ weeks.
          The test objectives were to gather data on vapor
balance system performance under several conditions.   Both
mass emissions (gm/gal) and recovery efficiency were to be
evaluated from this data.  Vapor balance modifications that were
to be evaluated from these tests are:

             the effect of manifolding vapor return lines
             on hydrocarbon recovery,

             the effect of a pressure-vacuum valve on
             hydrocarbon recovery, and
                              A-46

-------
                                                H
                                                CO
                                                ><
                                                CO

                                                w
                                                o
                                                a

                                                5
                                                <
                                                PQ
                                                W
                                                PH

                                                >-i

                                                H

                                                i
                                               i-l


                                               st


                                               W
                                                O
                                                M
A-47

-------
                                            a
                                            w
                                            H
                                            w
                                            CJ
                                            Pd
                                            O

                                            I
                                            w
                                            PM
                                            CN
                                            O
                                            M

                                            Pn
A-48

-------
             the effect of different nozzle designs on
             vapor recovery.

          Over 700 vehicles were tested over this three week
period.  The breakdown of vehicles by test type is:

          Regular Fills       424    (58.5%)
          Baseline            128    (17.6%)
          Baseline Attempts   142    (19.6%)
          Bad Data             31    (4.3%)

          Total Vehicles      725

4.2       Service Station Selection

          Two service stations were selected for testing in
an attempt to evaluate the effects of differences in system
design.  Station I employed a manifolded vapor recovery system
and Station II had individual vapor return lines for each grade
of gasoline.

          The station locations were selected in an attempt to
provide the greatest temperature differentials.  Station I was
located in Hayward, California which is near San Francisco Bay.
Ambient temperatures during testing ranged from the low 50's
to the high 70's.  Temperatures experienced at Station II
located in Davis, California, varied from near 60°F to over 100°F.

 4. 3       Chronology of Testing Events

 4.3.1    Station I

          The test crew arrived at the site early on the morning
of July 29, and spent that day preparing and setting up equip-
ment.   The equipment setup continued for a portion of the following
day,  July 30, with field testing beginning around 11:00 a.m.
                                A-49

-------
The testing schedule for the remainder of the week was as
follows:

                July 31    0800 - 1600
                Aug. 1     1200 - 2000
                Aug. 2     0800 - 1200

          During the first week of testing,  data was obtained on
235 vehicles.   Of these, between 50 and 60 cars were classified
as baseline.  There were no fillings of the underground tanks
during the test period.

          Baseline data was defined as that obtained from auto-
mobiles which met the following criteria:  (1) there could be no
leak at the nozzle-fill neck interface as indicated by a 0%
explosimeter reading, (2) the fuel tank must hold a positive
pressure of 3" H20.   The carbon canisters or vent lines were
blocked on baseline attempts.

 4.3.2    Station II

          Testing of this station was started August 5.  Only
about half a day was used for equipment setup for this station.
Testing objectives were to evaluate the collection efficiency
of two different vapor recovery nozzles in addition to evaluating
the service station's overall vapor recovery efficiency.
Measuring the effects of a pressure-vacuum valve were also
planned for this station.  The testing schedule for the week
of August 5 was as follows:
                 Aug.  5      0800  -  1700
                 Aug.  6      0700  -  1500
                 Aug.  7      1100  -  1900
                 Aug.  8      0800  -  1600
                 Aug.  9      0700  -  1200
                                A-50

-------
The schedule for testing was staggered in an attempt to obtain
test data under a variety of temperature conditions.

          The two types of nozzles used during testing at
Station II were very similar in appearance as each employed
rubber boots to effect a seal at the nozzle-fill neck interface.
The major difference in the nozzles was the design of their check
valves.  Nozzle Type I employed a mechanical check valve which
would open only when it was forced onto the lip of a vehicle fill
neck, and nozzle Type II employed a "flapper" valve in the nozzle's
vapor return line which would open under a very small pressure
gradient.

          The comparative nozzle efficiency evaluation was dis-
continued after the third day due to inbreathing problems ex-
perienced by one of the nozzles (Type II) .  Several times through-
out the test period this nozzle was observed inbreathing air while
not in use.  This phenomena appeared to occur only when the other
nozzle (Type I) pumped a large volume of gas, say greater than
15 gallons.  As both vapor return lines were manifolded together
very close to the gasoline dispenser, it is believed that the
inbreathing resulted from a negative pressure in the vapor return
line caused by pumping a relatively large volume of gasoline
from the underground tank.  The effect of inbreathing was to
lower the vapor recovery efficiency of the system.  The results
from these days cannot be used to compare the system efficiency
of Station I and Station II.

          The Type II nozzle was used alone on Thursday,  August 8.
On Friday,  August 9, vehicle refueling was conducted using two
of the Type I  nozzles,  which were retained for the duration of
testing.   This type nozzle was utilized in testing Station I
also.
                             A-51

-------
          Underground tank  refilling was performed  on Friday
August 9 due to low gasoline avails.  Only 4350 gallons  were
dropped to insure that adequate room would be  left  for a drop
the following week while evaluating the effects of a pressure-
vacuum valve.  Both types of nozzles were still in  place
during this tank refueling.  The nozzles were  sealed with
plastic bags in an attempt  to prohibit vapor leaks.

          Testing of vehicles resumed the morning  of August 12
and continued through August 14.   On August  15  and 16,  the system
was tested with a pressure-vacuum valve on the  underground vent
line.

          During the weekend, an unexpected tank drop was
made.   The dry gas meter showed that no outbreathing occurred
during this drop.  Unfortunately, the meter measuring in-
breathing was not read before vechicle refueling was started
the morning of August 12;  consequently,  the  amount of inbreathed
air was not determined.

          The  test schedule for the week of August  12 was  as
 follows:

               Aug.  12   0800 - 1500
               Aug.  13   0700 - 1500
               Aug.  14   1200 - 1900
               Aug.  15   1000 - 1800
               Aug.  16   0800 - 1200

As before, the test schedule was  staggered in an attempt  to
obtain data under a variety of temperature conditions.
                             A-52

-------
          Early in the week, two different types of pressure-
vacuum valves were bench tested.  Figures 4.3-1 and 4.3-2 are
schematics of the valves.  The pressure and vacuum settings were
preset on the Type A valve by selection of the density of the
balls used to seal the valve openings.  The settings of the
Type B valve were varied by adjusting the tensions of the
springs inside the valve.

          The Type A valve opened at -4" H20 and at +0.8" H20.
The Type B valve was set to open at the same pressure.  The bench
scale tests showed that the settings on the Type B valve varied
slightly when subjected to repeated pressure and vacuum surges.
This was attributed to wear on the sealing gaskets.  The Type A
valve showed little or no variance in the pressures at which
it opened when subjected to the same tests.   Consequently,  the
Type A valve was selected for use on the system for the tests
evaluating recovery efficiencies using a pressure-vacuum valve.

          Testing proceeded smoothly during the week.  Early in
the week, however, one of the thermocouples measuring dispensed
gasoline temperature malfunctioned.  These thermocouples were not
field calibrated.

          The system was modified on August 15, to include
the pressure-vacuum vent on the underground tank.  Vehicle
refueling was conducted for a two hour period prior to
a tank drop and the underground tank pressure remained at about
atmospheric pressure.   During the drop,  the tank pressure dropped
to about -7" H20 but quickly rose to -.15" H20 at the drop's
termination.   The  pressure remained at that value through the
vehicle refueling testing.
                               A-53

-------
                              JI
FIGURE  4. 3-1-SCHEMATIC OF TYPE A
              PRESSURE-VACUUM VALVE
    FIGURE 4.3-2  -SCHEMATIC OF TYPE B
                  PRESSURE-VACUUM VALVE
                  A-54

-------
4.4       Test Results

4.4.1     Summary of Efficiencies

          Vapor recovery efficiencies were determined for each
of the systems tested.  Table 4.4-1 is a summary of those results.

          These results were obtained only after an engineering
analysis of the raw data.  It was evident after a preliminary
look at the assembled test data that major discrepancies existed
in the recorded dispensed gasoline temperature values.  Each
nozzle being monitored dispensed gasoline from the same under-
ground tank.  Therefore, the dispensed gasoline temperatures
should have been about the same for all nozzles.  Differences
as great as 20 F were recorded, however.  Dispensed gasoline
temperatures were subsequently plotted for each day of testing
and are shown in Figures 4.4-1, 4.4-2, and 4.4-3.

          The effect of inaccurate dispensed gas temperature
data can be critical since the temperature differential between
the vehicle tank and the dispensed gasoline is fundamental in
the calculation of system efficiency.  The following example
illustrates this point.   The recorded test data were as follows:

               Vehicle Tank Temperature   95°F
               Dispensed Gas Temperature  95°F
               Volume Returned Vapor      0.65 ft3

The AT for these values is zero.  The baseline curve from Station
II would have predicted a volume of returned vapor to be 0.973 ft3
at a zero AT,  assuming 7.48 gallons dispensed.  For the above
test data,  recovery efficiency is calculated to be only 67%.
For a dispensed gasoline temperature of 75°F,  the AT becomes
                               A-55

-------
                         TABLE 4.4-1
           SUMMARY OF VAPOR RECOVERY EFFICIENCIES
           FOR TESTING PERFORMED 7/30/74 - 8/16/74
Test Condition                             Vapor Recovery
   Station I
7/30 - 8/2   Overall recovery with              69.6
             Type I nozzle

   Station II
8/5 - 8/8    Overall recovery with Type I       75.5
             and Type II nozzles

8/5 - 8/8    Recovery with Type II nozzle        78.9
             only

8/5 - 8/7    Recovery with Type I nozzle        71.8

8/9 - 8/14   Overall recovery with Type I       83.5
             nozzle

8/15 - 8/16  Recovery with P-V valve            78.2
                             A-56

-------
                 I  /
                    I
                   00
                                              I
                                              O
                                                       o
                                                       o
                                                       00
                                                       o
                                                       o
                                                       o
                                                       o
                                                       o
                                                       o
                                                       in
                                                       o
                                                       o
                                                       o
                                                       o
                                                       o
                                                       o
                                                       o
                                                       o
                                                      o
                                                      o
                                                      o
                                                      o
                                                      o
                                                             0
                                                            •H

                                                            H
                                                           w

                                                           I
                                                           w
                                                           H

                                                           w
                                                                  O
                                                                  en
                                                           o
                                                           w
                                                           CO
                                                           ^
                                                           w
                                                           p^
                                                           CO
                                                           o

                                                           §
                                                           CO
                                                                       
                                                                  o
o
o
o
CO
Q

00
O

ON
O

00
o
CO
                               A-57

-------
      I
     00
     00
                  I
                 CO
                         \
                                     I
                                    IT)

                                     I

                                    00
                                                     O

                                                     O
                                                     CO
                                                     o
                                                     o
                                                     VD
                                                     o
                                                     «•>
                                                     o
                                                     o
                                                     o
                                                     o
                                                    M-l
                                                     o
                                                          Jj

                                                          H
                                                     o
                                                     o
                                                     o
                                                o
                                                o
                                                               CO
                                                               H



                                                               W
                                                               W
                                                               H


                                                               W
                                                         O
                                                         CO
                                                   CO



                                                   PH
                                                   co
                                                   M
                                                   Q


                                                   fe
                                                               O
                                                               co
                                                               M
                                                               04
                                                               o
                                                               c_>
                                                               M
                                                               Cn
                                                              <3  M


                                                               0)  (U
                                                                  t—l
                                                                  N


                                                                  O
                                                                    N
                                                                    N
O

o
09
                                 pasuadsTQ
                              A-58

-------
r-
 i
 I

00
 i
ut
r-l
 I
00
                     V
                        I
                       CO
             i
             00
                             i
                            CM
                        I
                       00
                                  i
                                 00
   o
   00
o
00
o
00
o
o
o
tr\
o
00
o
o
o
CO
o
o
o
ON
o
00
                                                                             o
                                                                             o
                                                                             o
                                                                             o
                                                                             <£>
                                                                             o
                                                                             o
                                                                             CS1
                                                                         w
                                                                         H

                                                                         W
                                                                         a
                                                                         H
                                                                         HJ
                                                                         O
                                                                         CO
                                                                         <:
                                                                         o

                                                                         p
                                                                         w
                                                                         en
                                                                         ^
                                                                      >.  w
                                                                      n)  PL,
                                                                     Q  en
                                                                         M
                                                                     U-l  Q
                                                                      O
                                                                         Pn
                                                                      QJ  O

                                                                     •H  S
                                                                     H  O
                                                                                     CO
                                                                                      i
                                                                                     o
                                                                             < FQ


                                                                             0)  0)
                                                                                          N  N
                                                                                          O  O
                                                                                          a  a
    se ji
                                   U0)

                                  auj"[osB3 pasuadsTQ


                                   A-59

-------
+20  , and the baseline prediction of returned vapors is 0.653 ft3.
This would correspond to a vapor recovery efficiency of 99%+.
Again, the above example is to demonstrate the effect of AT
on calculated recovery efficiency.

          Figures 4.4-1, 4.4-2 and 4.4-3 illustrate the dis-
crepancies in the dispensed gas temperatures recorded during
the source tests.  Corrections to data for the temperature of
dispensed gasoline from one nozzle or the other were made to be
consistent with recorded temperatures of the other nozzles in
use at the same time.  Vehicles on which these changes were made
are appropriately marked on the data summary sheets attached.

          These results indicate that Station II was more ef-
ficient than Station I.  Reasons for this conclusion have not
yet been determined.

          The results also indicate that the pressure-vacuum
valve used on Station II was ineffective.  Data taken on the
underground tank pressure confirms this.

4.4.2     Baseline Curves
          Least square fits were performed on all baseline
vehicles for each case listed in Table 4.4-1.  Table 4.4-2
provides a summary of these baseline curves.  Figure 4.4-4
diagrammatically compares each of these curves.

          It can be seen from these plots that the baseline
data taken under a variety of conditions are quite consistent.   This
would indicate that the amount of vapors displaced are inde-
pendent of the design of the displacement system.
                              A-60

-------
                           TABLE 4.4-2
                 SUMMARY OF BASELINE CURVES FOR
               TESTING PERFORMED 7/30/74 - 8/16/74
Test Condition
  Station I
7/30 - 8/2   Type I nozzle
Baseline Equation*
V/L = 1.022-0.015AT
  Station II
8/5 - 8/8    Both nozzle types

8/5 - 8/8    Type II nozzle

8/5 - 8/7    Type I nozzle

8/9 - 8/14   Type I nozzle

8/15 - 8/16  P-V valve
V/L = 0.947-0.017AT
V/L = 0.906-0.014AT
V/L = 1.023-0.023AT
V/L = 0.973-0.016AT
V/L = 0.926-0.017AT
                              A-61

-------
                                                        vo
                                                        i-H


                                                        CO
                                                        o
                                                        en
                                                        Q
                                                         w
                                                         CO
                                                         H
                                                         CO
                                                         w
                                                         H
                                                         §
                                                         CO
                                                         u

                                                         W
                                                         123
                                                         H
                                                         K-l
                                                         W
                                                         CO
                                                         <:
                                                         PQ
A-62

-------
4.4.3     Mass Emiss1ons

          The test plan was designed to obtain data to permit
calculations of mass emissions (grams per gallon dispensed).
After the completion of the tests it was discovered by the test
crew that the monitors measuring hydrocarbon content in vapor
displaced from vehicle tanks were not working properly.  Con-
sequently, these measured hydrocarbon values were not usable.

          Mass emissions were subsequently calculated, however, by
assuming the displaced vapors were saturated with hydrocarbons at
their measured temperature in the vapor return line.  The RVP
of the dispensed gasoline at both service stations was 8.5 psi.
This RVP was used for the calculations.

          The assumption was checked with data taken by TRW
in San Diego in June, 1974.  Plots were made comparing the
measured hydrocarbon concentration of the returned vapors to
the calculated saturated vapors of the dispensed gasoline.
The plots, shown in Figures 4.4-5 and 4.4-6, would indicate  the
assumption to be valid.  A plot of the calculated hydrocarbon
concentrations versus returned vapor temperature for the test
vehicles is provided as Figure 4.4-7.

          Tabular results of the mass emission calculations are
provided in Table 4.4-3.  It is emphasized that these emissions
were made without the benefit of actual hydrocarbon concentration
measurements, and are estimates only.

4.4.4     Underground Tank Drops

          Measurements were made on underground tank refillings
which occurred on August 9, and August 15.  Essentially no out-
breathing was recorded during these drops and the recovery
                               A-63

-------
   100
       I	i	
    90 7"
       I—

    80~:
-L—  • Measured
..'__    (volume percent)
Concentrations
    70 —
                •  Hydrocarbon Concentration of Saturated
                  Fuel Vapors
                     Returned Vapor Temperature  ( F)

FIGURE 4.4-5 - COMPARISON OF MEASURED HYDROCARBON CONCENTRATIONS
               AGAINST HYDROCARBON CONCENTRATIONS OF SATURATED
               FUEL VAPORS
                                A-64

-------
      l__

    90	
      L	

    80-'	
            Measured Hydrocarbon Concentration
            (volume percent)
                  Hydrocarbon Concentration of Saturated Fuel
                  Vapors
o
a.
•H

C
O
O
O
M
13
0)
o
^
0)
PM

0)
                  Fuel RVP =8.1
       Calculated
       Saturated
       Condtions
                60       65      70       75

                Return Vapor Temperature  (°F)


FIGURE 4.4-6 - COMPARISON OF MEASURED HYDROCARBON
               CONCENTRATIONS AGAINST HYDROCARBON CONCEN-
               TRATIONS OF SATURATED FUEL VAPORS
                                                                  85
                             A-65

-------
100 —
     l-
 90
 80-4—


 70	
 60-
                   -Hydrocarbonl -Coricehti
                   Used  in
Cdlculai;ing 'Mass|- Emii;si
            atioin-V-a
                     ues
                   Returned Vapor  Temperature ( F)

   FIGURE 4.4-7 - PREDICTED HYDROCARBON CONCENTRATION AS A
                  FUNCTION OF  RETURNED VAPOR TEMPERATURE
                               A-66

-------
                           TABLE 4.4-3
                SUMMARY OF MASS EMISSIONS FOR TESTING
                     PERFORMED 7/30/74 - 8/16/74
Test Condition
  Station I
7/30 - 8/2  Type I nozzle

  Station II
8/5 - 8/8   Both nozzles

8/5 - 8/8   Type II nozzle

8/5 - 8/7   Type I nozzle

8/9 - 8/14  Type I nozzle

8/15 - 8/16 Type I nozzle
Mass Emission (gm/gal)*

         1.23


         1.06

         0.932

         1.17

         0.655

         1.02
^Results are estimates.  No useful hydrocarbon measurements
 were obtained during the tests.
                              A-67

-------
efficiency approached 10070.

          The results of the August 9 drop were not expected.
The underground tank inbreathed a total of 41.13 ft3 and out-
breathed only 0.76 ft3.   All outbreathing occurred at the very
beginning of the fill only.  The pressure in the underground tank
during filling was -7" H20 which quickly rose to 0" HzO at the
termination of the fill.  Both of the plastic bags covering
the nozzles were collapsed and the Type II nozzle inbreathed air
fairly rapidly.  The Type I nozzle also appeared to inbreathe,
but only a small amount.  No data was taken on the flow meters
connected to the nozzles, as it was anticipated that the plastic
bags would prohibit all nozzle leaks.  The underground tank
temperature went from 72°-70° during the fill.  Reasons for the
large amount of inbreathing have not yet been determined.

          Due to the large volume of gasoline in the under-
ground tank, only 2059 gallons of gasoline were dropped on August
15.  As in the previous measured drop,  inbreathing was experienced.
This time, however, only 1.128 ft3 of air was inbreathed at the
underground tank vent versus greater than 40 ft3 for the earlier
measured drop.  No outbreathing was measured.  The gas meters
at the nozzles were also monitored and showed a total of 0.76 ft3
of inbreathed air, 0.12 ft3 through one nozzle and 0.64 ft3
through the other.

4.5       Calculations

          Calculation methods used to determine the vapor collection
efficiency results presented in Table 4.4-1 and the mass emission
results listed in Table 4.4-3 are explained below.  For each
calculation, the basic equation is presented.  All values used
in that calculation are then defined.
                              A-68

-------
          Basis for Vapor Collection Efficiency
Calculated Vapor _        f       (Actual Returned Vapors)     1
    Loiiection   -  luu x  [_(Baseiine Predicted  Returned  Vapors)J
    Efficiency
Actual Returned  = A direct measurement  found  in  the

 Vapors  (ft3)      attached data sheets.
Baseline Predicted   = A calculated value.

Returned Vapors  (ft3)
Baseline Predicted     /Volume of Gasoline's    f~    ,.   T7/T\
Returned Vapors (ft3) = (,     Dispensed    ) x  (Baseline V/L)
where :



          Baseline V/L is determined from the regression  line

formed by a least squares fit of all the baseline data obtained

during the test.  The regression equation is in the form:



                     V/L  =  a AT + b



Using the measured test value for AT, a value for the baseline

V/L is  easily calculated.



          Basis for Mass Emissions
   Mass Emissions (SS_). ^&a^rie Returned  _ (Actual Returned^
                 Vgal/  V  Hydrocarbon   /   V.  Hydrocarbon  J
                               A-69

-------
           Baseline Returned Hydrocarbon = A calculated value



 Baseline Returned _ /Baseline Predicted
   Hydrocarbon     -    Returned Vapor
 where:
           Baseline Predicted  =  rfl1f,ulat-pd flo ahovp
             Returned Vapor       Calculated as above
 and:
 r>  j-  *. j u j     v.      Calculated from the slope and intercept
 Predicted Hydrocarbon =  Qf Figure 4 4_?  using ^ measured
     Concentration        retured vapor temperture.
 and:
                             /Corresponds to 65 Ib/mole.  A\
 Vapor Density = 82.2 gin/ft3 (typical molecular weight for  J
                             Vgasoline reports.             /
           Actual Returned Hydrocarbon = A calculated value
/Actual Returned)  .          )  K           „  \ x (Vapor  )
V Hydrocarbon  )    V,VaporS /    Vconcentratlotv/   VDensitx/


 All values used in this calculation have been defined above.


 4, 6       Engineering Interpretation of Data


 4.6.1     Inclusion of Force Fit Vehicles


           Displacement: system vapor recovery efficiencies  and mass
 emissions as reported earlier in this section are based only on


                                A-70

-------
those vehicles which were designated as regular fill attempts.
If all vehicles, except those few which had bad data, are used
for the calculations the results are significantly improved.
The vehicles that would be included are baseline and baseline
attempt vehicles.   Calculated results employing this change are
as follows.  Only the test values where nozzle Type I was used
alone were used for this illustration
          Displacement System Vapor Recovery Efficiencies
                     Percentage Recovery Basis
                   Regular Fill
                   Vehicles Only
                           Regular Fill,  Baseline and
                            Baseline Attempt Vehicles
   Station I
   Station II
            69.61
            83.57,
78.3%
87.7%
                 Mass Emissions Basis (gm/gallon)

                   Regular Fill    Regular Fill, Baseline and
                   Vehicles Only    Baseline Attempt Vehicles
   Station  I
   Station  II
             1.23
             0.655
 0.883
 0.487
These values are included to illustrate how the recovery can be
significantly improved by operator diligence in effecting a
tighter seal at the fill-neck interface.
4.6.2
Efficiencies Based on Uncontrolled Emissions
          All displacement system efficiencies reported above
and in previous sections have been based on baseline recoveries,
                               A-71

-------
This assumes that baseline recovered vapors represent the un-
controlled vapor emissions.

          Calculations based on regular vehicle fills show that
1.23 gm/gallon emissions result in a collection efficiency of
69.6% for Station I, and that 0.655 gm/gallon emissions result
in a collection efficiency of 83.5%.  A 0% collection efficiency
would result in an uncontrolled mass emission for these stations
of 4.04 and 3.97 gm/gallon, respectively.

          Studies performed by Scott Laboratories (SC-167)
indicate that uncontrolled emissions from vehicle refueling is
5 gm/gallon.  Scott's tests were performed with a regular nozzle
in a SHED.

          Scott suggested that a portion of the loss could be
due to entrained liquid droplets in the vapors, although this
theory was not substantiated.  It is conceivable that the dif-
ference in uncontrolled emissions reported by Scott and those
measured in the field are due to knockout of entrained droplets
from the emerging vapor stream.  The type nozzles used for these
tests employed large rubber face plates to make the seal at the
fill neck interface, and only a relatively small vapor passage
was provided.   Some of the entrained vapor droplets are forced
to strike against the faceplate, coalesce, and finally drop back
to the underground tank.

          Calculated collection efficiency results are improved
if uncontrolled emissions  from vehicle refueling are used as a
basis of calculation instead of baseline vapor recoveries.  The
amount of atmospheric losses or mass emissions, however, would
remain constant.  The recovery efficiency calculated on the basis
of uncontrolled emissions would be:
Efficiency - 100 x  [^™**™™d)- (£S£.d   )] /(^°ntrolle,A
                                      '   \Hydrocarbon/-1 / ^
                              A-72

-------
          Calculating efficiencies on this basis would raise
the vapor recovery efficiency of Station 1 to about 75% and
Station 2 to about 8770.

4.6.3     Recoveries Greater than 100%

          Many vapor recovery efficiencies in excess of 100%
were measured during this test.  It has been suggested that the
vapor recovery nozzle design may have been partially responsible
for this.

          The nozzle used for most of the testing employed a
mechanical check-valve which also served to latch the nozzle
onto a fill neck.   The opening the mechanical check valve, i.e.
the vapor passage, is directly proportional to the thickness of
the fill neck lip.

          Baseline emissions are calculated from a least squares
fit of the baseline data and are thus an average value.   Likewise,
the baseline represents an average opening of the check valve
or vapor passage.   Non-baseline vehicles possessing thick fill
neck lips would cause the check valve to be open wide.   The
resistance to flow through the vapor passage would be less, and
consequently more vapors would be displaced from the vehicle
tank than indicated by baseline values; thus the calculated
recovery would be greater than 100%.

          This effect, if it exists, could be compounded under
certain situations.  For example, consider a situation where
several vehicles are being simultaneously refueled with the
same grade fuel and where the vapor return lines are manifolded
together at the dispenser.  Assuming one of these vehicles has
a thick fill neck lip and that the others have extremely thin
                              A-73

-------
fill neck lips ,  it  is feasible that the vacuum created in the
underground tank would strongly affect those vapors experiencing
the least flow resistance.   The displacement system could pos-
sibly, in this situation, behave as a vacuum assist system and
"pull" vapors from the vehicle tank with the thick lip while,
at the same time, recovering only a small amount of vapors from
the other vehicles.

          This is an area which has many unanswered questions.
Further analysis of existing data and possibly even further
testing is needed to attempt to resolve these questions.
                              A-7 4

-------
                 4.6.4   Data Summary Sheets
Vehicles marked with an asterisk (*) have corrected dispensed
fuel temperatures.
                             A-75

-------
•. Hi
•» *-
iw ^
OB:
      a.    (
_i a. ca    ^Tioir>inK~«
o •« •-•      »*••••
> >• o    -«K—• — -<-«
i- cr>
Z •<
«« o

a. a
to a.

      CO
      or
      a
                              K. S
                                                   1C. K3
                                                            «E«&(S«OS-HajS,
                                                                                       SEEKS
                                                                                                            1C
I— *T


IO 03
a.u.
>-o
OCCCCQCCCCCCCCCCCCCOCOCOOCOOCCG
ooooooooooaoooaoooooooooocooooo
                                                                                                                  CCC
                                                                                                      oooooco
                                                                                                      0000000
                     O »-
                     O U.1
                                                         Z
                                                         O
                                                               X Uj
                                                                        >-»->-O
                                                                        UI Lu Ui CD
o
i
                                                                                          UJ
                                                                              o
                                                                              a:
                                                                                                OCCJUUUJ
                                                                                                         a: o a
                                                                                                         to cc u
                                                                                                                        UJ
                                                                                                                        o
                                                                                                                        at
                     __
            jtCOOTOC~C_'COOC.
or
---a. i
                                                                                          cv-c
crc
             Illlllllllllllll
                                                                                       zzzzzzzzzzzz
            oooooooooaooooooooooooooooooooooooooo
            x>«xxxxxxxxxxxxxxxxxxxxxx>txxxx>cxx;>«xxxx
            xxxx.xxxxxxxxxxxxxxxxxxxxxx.xxxxxxx:xxxx
                                                                                                                               A-76

-------
   «-<>.^rvcv<«'9cviKniOKir>O)
   zrr  »»•*•»•...»»»«»*••»•••*»•••»•«•»»»»•»
   UilSSCveS--'—ifOIO«N-«-«B.^«M''re£eB'»--«l'>«i*»6:«5JK.«B>CU«B«-»eCf>l»5«-''K:tB«&Si
          III'  II               I           I              I              I                          III

   ^UiCvjrocvt-OTCviiositMCvixjtcxjrBcoioao^aiio—«S(O*io<~iCMis.sacorvf>eM-4instC>~«;5ici>
   ttcosi^r«^'ffio»«"'«-iitr>    so    otflCi«-«^»«Diy.oi    •* iv crt v* >-i •••
         «HI    «r« •-•«-«»«  |           «-«         •»•            ^«             *4                        «-(>«-4*-f


   oi-f>.®otc»-«ir>eotc(\i'^mK)      '     i.ev          xrm        ill



                           cviicr^iss'^aoinivoi-cvif)«sCMKSi-rvif>fOoiiotcc\(c\i'»«infxS!«t^infO—t ro
         "a    ro^t^fO^    .- n ro    cv    cv^    ro    ro    cMCVir;»ctV'« —  «    ^-•^•'«orO(orv«->cvif\»rv---i£jiri--.ir!«orvrsn*c
   OJO  •••••••••»•*•••••••••»••»»•«•>••••••
   a IK ^riv(c fv-<^..••......»».««..••.»«*»>...  .*^*.«
      Q^(Otfifv*®rv^rv^^--'C&--*--'tvrociO!O»r\i55^i-*O)o«oiN.fvp».aies.
      orr>rOir:rrJrOrr>rtrOi»3^t'^^'T^r^T^i'O'awir)^f^^r^'i»3'»porOW«O»oiorOK!rr!^





   i—i
   >-•-•—»-»-                  »-                         »—             *->_
   •^*^       lu»Mt                  >-<                IU       I»HI             »-*Uj»-fU^
»-a
_» z
U. UJ.
                                                      1*1
•« "-t Jt.
                                                                                                                         fl-77

-------
M •«         .«.«.
OK       -*v-<'w-«
              i      *     I
       a.
_i a. en
O •« »•«
»~  CO
JE  •<


o.  a.
-  Vll
co  or
    o.

       fiO
I  y uj
UJ  ^- OC
»     a


i  «• a.
                                                                      il
                                                                                                                    it
x C
uta:
                                    K
a.  •«
to  CD
                          m
                                                                     to
>- Q  a-
             COCO COCCCCCOCOOCCCCCOOOOOOOOCCCCOO COO
             ooooooocjoooacooooooooooaoaoooocoooooo
72'
oo
O IB
                toco
                                       UJ
2
o
IS
                                       •->    UK    IS    X    i~
                                       a:.    _»>-•«»—    o>
                                       C'    c or 3    o •* c
                                       xuj;£<:^>co-
U-l
co
                                                                                        O>
coo
U.'  2
•«
»-
CO
ZZZZZZZZZZZZ
oaoooooooon
                                                     ZZZZZZ2ZZZ
                                                                                     ZZZZZZZZ2ZZZZZZ
                                                 c.  oooooaoaaooo
                                                                                            ZZZZZZ2ZZZZZZ     .-in
                                                                                            oooaoooooaooo     A- 78
             XXXXXXXXXXXXXX^lXXXXXXXXXXXXXXXXXXXXXX

             ^1 l|l ^1 Ifl 1*1 |^l 111 ill t^l 111 tli III 111 Iti Lit lit U' Ul ttl ill  til 1^1 ikt ill III til Ipl ill ill tit Ul Itt ill ill UJ lit IlJ

-------
         ti
      ID -* S3 — a CM ^ « «o 01 «o -« Ok s    a    ® -« r> » tw « rv •* w rs a N.    ono *r o> n **
   ieo  ••»«•.««•••••••••««•••••••«
      cio^^s^rr>~4^r-«rvir>i
      _II||OPOCV>«       I     I -t    fO    tO        I       CM CVJ —<
OUJC3. *.  »^  •,«»*.•,  •^«L*.«.«(.^.*«tt. ».
•«crxao^«s»cvo>FQv8aD
         cvtv    '«r«-<»r>Wfor)io«v    ^w    CM
UJ »-
tOUJCJ
   O         13    t3  •                                                    •
   •-*         Z    Z  _»                                                   _J
   »—    >-    M    <-• 1-1                 >-                             ^-«-(                  t—
IU •«    t--£ <         UJlLl    1-1 Itl   IliUJ
iu
t- a    i  i  i  i    rv  i     i     x    i     ti     i     i  i  i  i  i rv  r    11    -»
_i x                  i                                                     it
UJ UJ
O *-
or;i-

«>       -3CMQ.otoxu.o:c3>-cjsu.jt®sv
z       sa^coi-iinn-— •^»r^o'»»-s
uj       iovou.«-<>i'r«-taoioii_s:<->c9>>>)etao^aaa^«m
u       -<-^'v--«aroa3xr>»«

-------
•n it-
»-« •<
oac
                                        «-• fc
                                                                                               t f
O « •*
•« is

Q. a.
•< x
>• t-

coo.
•«x
o »-

coco
>-UJ
mo:
   O.

      tn
                                                     II
                                                                                                                  II
a LD
X O
Ii I (V
                                  CVJ
                                                    
                                                                                        CMS
aJ
O.
>-
            CCOCCOOOOOCOOOOOOCCOCOOOOOUJOOCOCOOC'OO
            ZZZ2fZZZZZZZZZZZZZZZZZZZZZZ>-ZZZZZZZZZZ

            acoooooaoaooooooooooooooooaaoooooaaao
            ocooococooocooococoooocoooocoooocoooo
            ooooooooGoosooooooooooooooooooooaoooo
            CJtaOtSlSUtSOOOtEOOOtOOtPUJOlSdtDlSOOUtSlOOtSOtDUllOtriSO
               UJ  I
            >-_!»-
            ttor>-«
                                  Ul
o
at
                                              UJUJ
                                              o o
                                              x ac.
Z UJi
O_l
tD»-«
<03
me
en jc
                                                                                     UJ
                                                                                  Z_l
                                                                                ^_»o
                                                                         >-    i-oa
                                                                                                           Z
                                                                                                           O
                                                                                                                       Z Z
                                                                                                                       O O
                                                                                                                 a ct
                                                                                                                    CM
o
»-l
»~
<
t-
V)
            QOOOOOOOCaODODOOOOOOOOOOOOOOOOOOOOOOO        )
            >cacxxxx    .  nn
            xxxxxxx^xxxxxxxxxxxxxxxxxxxx,xxxxxx:xxxx   A-80

-------
x «-• ^ oj cv cu •«! K>»«cviio«o«o-«tB—«^BJ-<-*weBH*eDeMr>»
   XZ1»*>»»»«|  »»»«»«•'•>••>«*«•>•'••'•**•••••'•••
   ll_>l3K)K;S.CV. — K«eSSirr>C\ieBK:--«(M«BeSRKujao«^inosrv«fvcW'^«-''''*ro^!W(oa>^i«oirv
   o to  ••••••••••••«••••»•••••»•»•••••••
OLU<.io^r^(OiOCMoom'^e9|iocK«-ico!o<^>iv.iors.N.5ii«->'VCM'«i
xacicao* o>wevEoisic«-«««Si65iowoiOiotosOisiniO6>o>ehicoi«~ot-fO-*ccir!tv-^mf^S'K3— 'iccvr^— *ir>«M-— oiev«\iine;i:ar'roesc\»^»io— •— i^stssiiccsE. »-«ewec- -•rt'S— rDir>
      _»         POII     i     in  oj  i  i  —• cvj               I-H|       — *    cv    i    «M
                                                                     i


i— i—    roo>[^oo««s«c\)po-^--fv!O^-*(x^c\!rv^-ip«.c\i(CpO(Ccuc\*POiain-<^^ttir>«sro
         •»--'^^e\i!^5'<'icv!\«~(rsoo''JO->^J!<~/tvc\,iCtvioiri— 'loio^rvCuOioDcwcvco-^SfN.fvfvroinE^.
   z
   o
> C     «« O •«* U.'
                                              U-! O  •« UJ U.1 U! «5 C'  UJ C, -«I •<* U- U^ Uj UJ ll^ li^ UJ U.1 U.l U. C  C
                        i  -^ i     i    •>•*
                                              C\(cviioro— «(v-«infO43-o— • ts> es -* FV <\i -o
                                              i  i  i  t  i  i     iiiiiiii              i     ^,
                                                               s— «
                                     Si d— •
                                                                                                          CM
                                                                                                                         „   0,
                                                                                                                         A-o I

-------
co *-
M «
occ
       &.
       co
o •< •-"
               >  BS  «S OB K> «E
a a
                                                                   cw >-• cu
to t-

toco
   ft:
   a.
                                           it
                                                          ll
       in
       Of

       CL
                                                                            CD     eocco>o>o>rvOtc£aceoec    ^^
             r^ rv
                             re
                                oo
                                          cc  ac  cc  a: a;
                                                                a,  oc CX>CXXXXXXX>'.  XXXXXXXXKXXX>CXXXXXXXXX

-------
                                CD
                                CO
                                              I.     I  I'     I
                                                                                                                       II
   or  IB
                                                to  CM •* «•« •-<
                                                                                                                       in »* rv
                                                                       CM
                                                             UJ
z    z
(-»«-!
C.    Ci
                                                                                                                   13
                                                                                                                   z
                                                                                                                   »-*
                                                                                                             UJ    O     lu
x«/3     ~ujr
_t r
UJ UJ
O t—
                                                                       II
-•  ae
> _»
                                cv
                                 i
             CM
                                                                          O*              Ol
                                                                          rr>tr'»»v>"CV
                                                                          ^^_ii
-------
      a.
_i a co
o < >-t
•« es
a. a.
            enir>ir>in«)<«->onin(O«oinnir>ins>minir>ioir>    O.


X S£ Q.
XC
                           — > K. -•    cocccooccooooooooooooooooooooooo
>-ou,    oooooooooocsaoooooooooooooooooaoo
t-            u  a.  t« ta t"» ti «•! »n t5 t5  til  
0:0
                                            2
                                            a
                                            in
   a    3  a
ujcoocoz>
lu
j
o
a:
                                                           lu
a
a:
                                                                 a  <*
                                                                                              0
                                                                                           UJQT
                                                                                                          uj uj
                                                                                                    2000
                                                                                                    Z3 cc a: ct
                                                                                                                   0
UJ
UJ
CO
UJ
2
O
CO
            22Z2Z2ZZZZ22Z2ZZ22ZZ222222Z2ZZ2ZZ2222
            ooooooooooaoooooooooooooooooooooaaooo
            XXXXXXXXXXXXXXXXXXXXXXX>CXXXXXXXXX9
-------
                   i                               till             it             fitr                       i


    CJOT  ••••••••••••••••••••••••••*••••••••••










                                                      ii                                   t



U  UJ LJ  •  •   «.  •   •  •   •  «   «  •  ».  •   *.«,«.«   •  •   •   •  •  *  •   •  «.  •  •   «_««_ «L  «.«   m. *  «.  •






(OU1O  •««»•  •   ••••••«••••»••«•«•  »**»«••••»••.
•a  or i  in IT.  cu rv c*  r^ K:  ui cv r-j m  >o  >«—•Qrf>»~-*-                   »-»-»-                   M»_



*~*  H     	J,  ^   jj|   1  ,1  __t   ^  _^   It _f ^^J^ t* I ^j^  t   ^  t ^|J   t  	j  Ll  _1	I i^ t  _1 _J f* j i^|  ^  t   I  _^  ^ t ^* ^^^ ^J   l tt i
31  c^     ~~~  *~^  *^ t^. ^ ^ t  '^ ^j  ^  *^ii ^^ ^j  ^^ ^ t ^| t ^* i ^*  L i  "~i  ^^j j^ ^j ~^  ^j ^. ~^ ^j t^^ ^| * j^ ^,i ^t ^\    ^;  *^*j. ^^ ^i

^  c     tt *  *ii -  IA*' ^  ^z  ^ij if *  \^'  it > ti._,' ^j  t^i ^t  ^i ^^  t^  t^,  ^ i ^t ^t ^|'. m ^j ^ i it i (^ d*i ^^ ^t ^. ** i ^|, ^i ^i  ^| ^ ^ ^ ^~^




_»  ir
lij  UJ
O  »-
    >-« a:
(O
z
           CM u.  Q m  u is m  i
                                                                                                                                                    A-ftR
                                                                                                                                                    rvuj

-------
oor
                                                i   i
       a,
_i a «o
o •< »••
>• > o
-  ua
to  or
    a.
I  X  UJ
uj  •-  ac
>     0.
K  SB
                                                                                          !S «S. G.  1T>  S.
                                                                                                    Si -au.
             ooocaoooocioociciociooooooooooaaoooaooaoo
       Z                  UJ,
       O *-           f— _'        *-    »-                  >-»-»-»-        f-
       C: UJ           UJ »—     I  llj    IU                  UJ UJ    LU Ul        UJ
u     •* _»        >- _i ro     *-_!_»                  _J_itJ_l_i        _»
i     3c C.        oroc     z;cr    c     -=t           c? c < c c     zc
•—i     s/? Or        ~> {^ JE     O  QC UJ. or     ^~ UJ tfc*    Qc ^ i»™* fy fy     ~~^ ^
i-     3t>c,ocj>cr>csi3't5>cou>tDc. >>»->>-o
zej—ijJQiaj-tuJc-a:*-  jjoujjc
                                                                                                              Z     O
                                                                                                              to     or
                                                                                                  UJ X
                                                                                                  —t »-
                                                                                                  Q n
                                                                                                  or o
                                                                                                  >  r c.
                                                                                                  ua >- a:
             CJi.CXOC'UJX—jC—lXCXCCOCC.XXC-XICi'rtXOCCCJXCCIjO
             Q  ^_^l ^^- ^.J' ^  M_|_ ^^  LJ d" ^V  Q  L ^ ^i ^ > l^_ ^— j^ j|*^ t^  j^.1 I 1 Q^ l^_ t  ^ 1 ^^ ^^  L_3 d ^^ ^* {JL. ^^ ^L. dr ^ * Q,  ^.
U.'
LJ
     _>»-'—.roms.  ^
                                                                         fv
                                                                         to
L rv1_—«.ZJ>-  > i— X  a  ^•"-'SIorOV—JfOlflCt'^^'^M-CRZ
j»u--'tra:u.>-)u.u.eccev._,'«T^ir'«u.&cj«ca  o>sc
-,,^^i^,r>SiPO«7irv--i_JTMK —•lf>•  C
          tr i*>  c: ^
CTi SJ  3i >• &.  in —«
CV  _/ Oi O
r^  •<»  s tn
tc  c* -» •—  —.>-jii.'csc^oLfO.r««COtitXiCt«rt!CZN.'»CViQ.r*."7O!
              u5fO'C^i)c\i(Oovo!-«;jiiO'xcv)
ST. C

JL! Z
              Iflltll
UJ
             sCocaocCstaccCflDorcctcecacooccatccxa. xitaoaccacaoacoca-acfrocococ-occcac
to
oaooooooaaoc2Ooooaooooooooooooacocoooo
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx^xxxx
UJUJUJUJUJUJUJUJUJUJUJUJLUll-IUJUJliJU-;LUUJUJlUU.lltiUJliJllJUJllJUJUJUJUJlU
                                                                                                                                              A-86

-------
                                             I         I          I      I              I                    I





 XQTtD     r)SlOS<£. OvoCCC^-ODOKOOlOKlt)  — O^OlKOCOlinoDOiK-Oi    Cft          2f                                                               2"
    t->-ll->-»-                           >-«l—                                                    »-







^  d     tjL.  •*? ^5  u.1  ^1 4A' CT- d ^t  tt' ^t  C"i ^,  ^  uJi -
-------
ft. tu       m »*m cmo ^ fet »*a « ••«> o» B A
« »-       r>v *t 011*9 « ~« « m •«. n cu is. c* s ««
      a.    ~«a>is 01   IB n s CM •* a>  > o    B> -*oa e» «->es » *»>« to ® » ® s> is
«tia       eooiiooo'vrsf^otKi^riKOiaDiv
                       *+          *+
a. o.

> >—       «C«5-UJ
   a.                t             till
UJI-IK
>    a.
x it a.
X O       E  «S    S    E R 6T tS «S  S K S3 K !S
            ccicooccoccccocc
ut    »~    KOOteoooooaOiKOoo
a u. »-^    coocooooocceooo
>-ou_    oooooaooooaoooo
            »—       O          t-       I—    »-
            LU       O I       UJ       OJ I UJ
            _l       < t-       _l       _« >- _l
            c       3trs       c       one
            ac.       coo       crtxicKOir
            > o o x- x    c>c.t3>z>c
               U_ U. »a.C9U_UU.OLJO. O U.
UJ                  rO
co          m c o. ir;    o •« CD    co oc (^ »-.
z          aou-too    »— v- tv    »— oo co 4n
t-          CNiCVCNiCNICMCVICMCMCMCMTaCMCWCMCU

O          V.^^>v>v'v^.^v-X^^^v1^>.>>
            cceccccctticoccaoeoccflcccocaotc


z
c
»-«
t-          ZZZZZZZZZZZZZZZ                                                                      ^  '
<          ooaaooooooooooo                                                                    noo
K          XXXXXX.XXXXXXXXX                                                                    M-OO
CO          XXXXXXXXXXXXXXX

-------
xteot-                    I—




ito     ^^z»r:—unnzj^rjrjrit n •

S> C     lJU *^'  Uj UJ UJ O '*' '>'  UJ Itt |i^ l«t tat tfcl |



i- a     i  i  i      i            —          i

UJ UJ
Q H-



ou»-  •••••»••••••••

< 1-1  Cfc
Uj                 rO
en       mocnm    LJ - >- i^     »~aoc\iir>
                                                                                                                                   A-89

-------
o re      io-«
              *
     ft.    n<9
o •« »•>     •>••••
>• >• O    ««Sa»~«.-<
1-01      ^*»innc
x •<       • •••
•«ia      o»coincM
                  «•*
a. a.
•»-      cococo«c

«o a.      ioiov*»ionioroininintn w   f                CM  m CD
com      Qi-«e9(BM-«~4isc&«f'9cBS>- Ul       • ••(•••••••(•••••••^•••••••
•oar      CDisf9csa3GiS»c5si
   a.      *         • r  n »  «       » n       c i     «      t
     (Bss(BSsa»aaCaSi<&SkCBS>BC£>S&9~<9SCBS>S>S>.->fSeBC9in
IU »— IK     ••••••••••••.•••••••••••••••••••••••I**
>   a.    ssss<9SK^eetfise>fBcv
                                                  •                 K

x ^ a.    »v»inc»inf>>v<»<9'«ai^cocw'««'i«»s.io»v
u »~ z    oicoKOt(sse9oicnsckoi(>»-i(a<]iak•••

O- C3      4Se3(BSCBC9CBSSSC9(9SSe8c9SISSe
X O      CWCBOE2   SS   SS«DmC9SS^COSS      «B «-•    S    (9B>         OH «
O. •<
00 CD
          -zzzzzzzzzzzzzzzzzzzzzzzzz>-zzzzzzzzzz

ui   *-   oooooooooooooooaooroooooaacoorooaooooaoco
0. U. M   OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
>- o u.   oooooooooaooooooooooooooooooooooooooo
*-        (aouocacsttot9ttotat9ououa.oouoooa.taa.ocac9oiaoi5oa.t9

             z                                       z z                                  z    ui
             O                     »•- H-             OOI-         »-»-      »-»-      »- O »- _t
             O                CO   U1IU   XX      43 49 BU         IU Ul U   tU IU      IU 13 Ul •-•
             •*              out   _i_i   t-»-      -«•«--»         _»_!•<   _* _j      _j-«_im
IU           3:              .»oxxt9Oiac;ae>O(JO>>->Hio>^>-c9o>-x.>>co«3cji
          oc _»   ceoocKZt£Uuiiua:>->-Qa:  _i_ituaca:ceiuuio»-uiiuo>Hiiu_iiuaao
          oo	_.._		— — _...—. — — ^. — — -^___ _»_  ,__
HE
•«
tu
Ul              Ok
«o        n i*. <• *t o u w o _t * » x x      ea   « » z    «o u» •>• -»m _»x o. >-   _i    x >• o
z        •vLJsu.MrttssEDiSiiaca      -ev-<>-zjs>>-x   _i    x o o
IU        «l U. « IU IU «O » •> V •» « «J ID    »v O» IO *v ^ C9 ft. X •« tt B> »- A SC » *a U. » •< X X U. IU
tj        * « -«^r * s >• w »^ IK. x A 10    §». -««o * o *> *~ ^ o» •** _»«•«»•> co »s.rv K. o
-------
             BB             BBBBBBBB          B                      BBBBB


   t)«O  **••«••••••*•••>«•••»•••••••• »••"*•"

X Of U A Ot«B A CD»v A rt B « A x«*S • CB « W    K. IB A W A • •    « « A «« B> •« M <0 I
            w4 w4



x X w•  •»••»••

      _i     BB            (M«B    B B *     »l «* •« •V -« *   -.   -« x fO Ol Ol    BBC II
                              t                         B                                  V



(j i«i t>  «- •»- m. m  m.  m. m m. *
^COCXAOIfOOI^cOASA
         M W Ol IO ^ ^f AcOlOCOmiDID^. Ctf fO V) Ol    ^M^>Clt^i<^.    «* tt^*V90 ^FAfO^V)





a> tet u  »  •
•« ac ZCB «
ao       •««



>-1

M '






   b                                                                                                         u

   t-       »-         *-          »~    »-         »-»-               »-         t-                        MI


^J 49    ^^    ^^ ^E *^   ^* **** ^*    ^*    ** ^* ^*     -  "^* "^"» ^C ^*^ ^*   ^» ** ^^    ^t ^^ ^* •)"* ^C ^K ^««-• at _* x a. »-    _»   z>4>
Z       IK. O (Bfe. M A S X 9-< (B (9«D       a    M«U    *T OC >• «-t » Z» » >-I    _J   X C9 O
ui       «i^.iouia»in*w«eo«>    •xAM^twtaB>.X4«asi-(Ax:ir)**ttl.A«zxit.M
O       •« CO •«•*•«»>-«>»v fry X A »    IV »««B 1C O It B- IN. A » •« JK> -< rt « p>, (s. »v O «0 CM CD      .  „,
                                   co _i-*o a o « • a->» ^-«« «D u-»u ea «B « « co A oo ui 10 » •>     A-91

-------
o«r
     a.    ro*vS'«--*«>'«
_i*. m    »>.a»«>«*»s.t^'«
o •« ••*     • •••••*••«••••••»•*«••>•  »C

a. &
•< JC      fv
>• »-      ot

ma.      K>
•* 3C      4
>-|4l       •
« oc      se
                                                                        ts ea « s • OB IB
iti t- x   w iv K »v »v (v «  s> o» ai a> ~* o> «* s at to »v at
»   »—                                                            •*»••••   v« _•


0.0      s>«iscsiosst9(seBci(SS(sessss>in(ssssses9(9S(99(s>ssssseD
X C      (DO   8»CMCBVCVI«OS«        S fQ V S 61    S      -ZZZZZZZZZZZZZZZZZZZZZ7ZZZZZZZZZZZZZ

iu   »-   oo a o o o aaa a: o oaa o o a ao o o ooo ac aao oo o o oo a a o
•.tk.k-1   OOOOOOOOOOOOOOOOOOODOOOOOOOOOOOOOOOOO
>- ou_   aooooooooaoooooooooooaoooaoooaooooaoo
*-        ta*3iaocat3tstaa>a-t3iatai3t!)C3t3i3t3iae)i3t3tao.ot»ooc3o«at3e>tscoc3

                       z                               z                z                     z
                       o           *-                  o      »- »-   »- o                     o
               X      13           IU                XIAtUUJUU                     t9CE
               »- ac   •<           .j           >-»-•«      _i _j   _KT                     •<    iu
ui             oiuat           o           tt   n ar      c o   o 3r                     z-«_t
ae             o_ttu«o           IE   ^      r>   o «o      ot cc   a: «o           ia      iu « *-    uo    uoz:^oci>>o>ic   o
ui
ui        • »- 0 * •»> « •« u. is »- KM o » a *j z •« —• >- z -i o   a. «o o
z        o»«(O
-------
                                                         »BflOBfeB«*         HI
                                                                     «0
   u •»
      _• i -*      M    ••   -•    a»    -. ro    «•« ~« • «o »v  i>   CM CM * t  r  t* ~* •* t,  t,
                                              ~+              — t      — »-   <»oo>*intoc» -*o> «^ m »v -q- - s r^ «o«->KflocM'«aiNOi K> n cv •    «•«••»••}•«   n « 01 »«    •« o» «x tv •» •« « 01 »« ot cv «
                                                                     w«
                                                                      B
                                                                     «
tu»-   •ooi-eBr>ioo»c«(O»^-«»  •••«•••••"••••••"••••»••••••••••••••••
•«acX'ooK>inatn-»«oi'«a)-«ois«>i>vS
to      -••«in'«iniO'«r3N'«cv»>wi>><«oi«ov>'<»K>««tooieM«
                   •»                 —       -<              CM
m
   o                                  •       •              *       •
   •-«                                _»_»_»_*
   »-t-              »-        »-«»-»^»-        »-•»-•         »-
111 •<      •-• Ul            »i        <    *•« •«    t-i        •< Ut U •<         l-i kl    IU tkl
M n   _» IU _l _» _i _* _t Ui _l _t _»  »_«UI  «_»U1 _!_!_> "_»-J » J _» _» Ul
i »   =>uu3=>
tuiu   {9tr«»t3C9(
   o.       ic  r — t e •-•       »!)>-•«>
   z:             *     t            r  v
O I-
o
S»e»'*K>-«-««S>«S>S>CDeD(9SiS>SS>(9C9t*>
•«*-««                                                              (O
» _»                                                                -•
                                                                      II

        rv
lid      to   rq
«>      Mnieai-«>-»-z»en«e'«ik.ta*-iMei«attsiz-«'M>-
z      o»mn»aot9O*7^«i«ft«
ui      •« «->ion -*a» a u. « « a> n IL x oiu ui «> to lu 10 »t « •»» •< u
o      -< s: -4 -i ic « n at at n x aa «> r^ 
-------
 aac
      a.    «
 _IOL 0>    e»ntt'»«
 o •< »-•     »•••
 >• >• O    -«eB<9>4
 •« «o

 Q. a.
•OIL.
Hi<^<-«
>- tu        .•.•.•
WOC
            l<  ft  It  D •     »                     D        •                        r  R  »

      to    seweBSA«9S(aois«
      O.   S S S «DS (9 M S a '•IS CB S CD (B IB CB S CD S S 0> CSin tO CB S «9 CD (9 «9 S> S CD S (S CD
X O         B>eaCDB»C3CB    CB   *B €S>    CBC9CB    CD       S       •^CU^SCDSinS       BB    CStCU
UI tK         »* ~* «* «»• »-• »*    »*   ••• w*    wH ^p* «•»    »*       *HI               wHI w« «••    «4       «^    •>•
                                                     (O
CL.«C      ooooooooooooooocuoooooooooooooaooooooo
«oeo      zzzzzzzzzzzzzzz^zzzzzzzzzzzzzzzzzzzzz

IU    I-   O O Q OflC O Q £> O O O O O Q O O O O OQ O O O O O O O O (T Q O O O Q a at O
(LI*.*-*   OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
>~ o it.   0000000000000000000000000000000000000
I-         Ut3t3C9a.U»tai9i9tat9Utai!>(9(AU>U(aU>l9UCDC9ta(ac9t9K.(9Ul9OOC9&.ti>

                                                                   z                                   z z
                            »- t-                    I-    »>      O                        »-         OO    »-
                    X      IU 111    U              UJ    UI    113       IT X            Ul         O (9    111
              UI-      _»_!•<              _J 2 _J    »- •<       IU»-            _*         •«•«-!
ui            •«    r>      oo_j              o -j o    rj x       ._t rj      zo         xaro
ae            >-t    o      moe^-fui    ui    UJCTOIK    ocoud    100      r> o ct         o> o»    ac
ui                                                                                           ev
»            >e <« « cb «B ui o a. b. z «o >- co o • x -««o o «J «o o x o> »-
mo                    «*«•«••••• -« «« — -. -< oa oi oa l!|i|iKLI*t>lltl!Blll)k»ll»CBri>
           ooaooaoooaoaooooooaaooooooooooooooooo
           acacaEiKacacaeKacaeKaeoeiKatKaciKKeeQcccKacKiracaciKKacaeaeacKKac
           •«•«•«•«•«•<-«•«•<•*•«•«:•«•«•«•<•••-•<••*-«:•«•«•«•<•<•«-«•«•«•««•«•«•«•<•«<•«
           oooooooooooooooooooooaooooooooooooooo
           z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z
«>
                                                                                       <•<•«•<•<[•«•««•<•<   A-Q4
                                                                                       »-•- i- »-»-»-»-•-»- •-      •"

-------
      _|    !)»•    rT) t •*  B -<-•»•    t. CM V> <^ —• li    •*<   -^     B >« —> CM
ui                                                                                        et
-«> 3« « -»»-•»» O    _t» X T.» OU« t> 31 13 »- 3BU
z         x «w —• 10 ui 0 o »« *-•»€»•« w o -•« x or> u.  »^- u u. M 01 x o«o o u o >• >K u»
z < om o» -«w w «o w o» o CM »- »o w «o in •« x -«»t»* «*•» io
•» »•»« •• a a iv n n et •. 01 x 01 « 01 «« ui n o 01 A z a
«* r-» •»« «a
a n n »v sa>
                                                                                                                     A-95

-------
 o o:
      a.
 o •« »•«
 » > O
 «* ac      <*]«>aoaoaooo«>cococD(0ao
 01-
   a.      DDi'BtiiBiiafinii    *    i< >  •  e    *     D    UK*
      oe     ..»»«».«,•«..•».»«.•..«..
      a.   CD s s B> s «B s as s o» ea s s a s» «D o> a s sea s> s s
     a:      « s s w ea ea « « « s> ® « •« • » a a • » «c •    ^*    ** «« «>•    w«

t--x                                                                                      mm
a •<     oooocooooaooooooooooooooooaoooooiuiuooo
com     zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz>->-zzz

hi   »-   o ac at o o o o o «t o o o o o ae o o at oo oc at o o o o o ac o o oat •: at o oo
a.u.*-t   oooooooaoooooooooaooooooooooooooooooo
>- o it   oaooooooaooooooaoaoooooooooooooooaoao
*-        uia.a.ocaot9i9a.i9iat9Uua.(9(9tt.t3t9a.a,(9c9(9C9ua.(9(9oaL.a.av(9ut9

             Z                U                  Z «kl                        Z      IU
             O             W _»          »-      O_l»-             »-      O      JC   t-
             tS             OC M          W      <5fr4UJ             U      t9      •<   HJ
             •« K           00          _»      •< a _i             _»   z •*         uj _»        >•
uj           * ui           »- o        •< o      x o o «        ->c o   _*:E      z ac o        at
x.        if. m ~t           oz        »- at      wj ac ct »-        »-KO«>      »-< o -aiacac_totu>-ac:a£ae:>-iuacz_iacaca»aciaaca:aac
tu        aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
w           « •« is ui •->>--«•« a. a a. z *-•««» «o «« o •»-« rv o» o **«•« •».   01 to •«   m o o x
z        ea tv <« a at ac •* -* » a s »- o i a oo » raw « « 10 » ar tu —ro   oram   « x o *
ui        —«BCMfc.-n
   O           •* «* •« ^» •- «* «•• •* -* •« «i « 01 «i o» CM M e» «* «w 10
   Z       l-»->-»-»-»-l-»-»-»->~»-»-l-*-»-»-*-l-»-*-»-»-»~»-»-»-»-»-»-»-»-»-
          0»«)towQoao«>4a«n *»-•» nm«90>mwn«Q09M«)*9M«»OT

-------
I Ot CD «•*   -*-*«BOl«O«e    <»« «0 O»»< « «D V »« S IV   » K 69 -• -* « IX S» ^T      W « Ol S)
•a.    OSWOOIOIM— •CM«5      —•            (MB    OJ       I)  ! -M ^    I  .-• IT)

        —I       ft                                                           f
                                                                                          >^. « c\j
                                                                                           *»•
        CM      ex n 10 •« ro    •* « 01 w •« »v cu n -« 10 to --•   CM -• c« 10 «o   01 «o »<    «-• ei w «* -<
                                                                                             is
                                                                                             z
                                                => 3 => => r> r> => r> =» in r> u r» z» 3 r> =>   r> u o
uj w   M(3cai9(oo(rc9t9ut9(Ao«ao>a;
>o   ziuujujouiujuiiLioiLtoixi-«uaCLibuiijujujuiiLiiutLi-<<:
        •-•ae(ririk.aeaE:ssssssss>SBKiis»sssf5 «s ~« s> « -«B s s K> K> s>
•< »-« a:
ui
«         r> •«• cs fci «-•>--*•« o. at a. z: K1 •«!• «o • » B» »- 01 »OB «o rj « «o w » w at ut ~*n    oioto    eo >c o •« jc
M      -< •>« u- •» w •» « oa •> -* x •» o » •» •« j* «o w n ca « •» tu « «B <*• ts 9 CM •« o> •< u. "» x
u      o •: N co •«• V«PI « 10 CM ui A »-v >• en »-CM M o» «> x o •v n u u 
-------
•LIU
«o *-
*-« •<
o oc
      a.    ~  «•
                                                         'XSCB— iCM— >&(S f«D«B
                                                                              *
JL •«
•« e>

a. a.
•< z
> »-

MO.      »a>ivininiD<(OfloaaaDt^i^tvt^»vrv»vdO(o«itB«MPJS>«Mf«C>>«JPUCMOJ»'>fO«
>- UJ       »>•»•««»••••••>»««..»..«...«.«.....«.
*3 (t      fla(D(BSSSSCD8S»l9SSSGE(BeDSS<9eBI9<)CaSSS6tS
   a.      r  i! »  » ii  e  ii ft  » i>  f r     BRvnrtBtoii    re    liepBetnne*
     CO    <9S
     uj    eus
     ac     ••
     a.    ss
           •

     a.    rv-»
». 13      Sa>CBCS>Ske&G>(B(BS)CBSaiC9<9e)4SI9sm6)SS»Cg>eB(9
»co        sss   cu    scseaeas     - o u.    oaoaoooaoooooaoooooaooooooaoooooooaoo
»-         (9l9a.(!>O-»-                »- 1~     a      o   »-
             IU tLl Ul           O O   13 CU   to    hi Ul   X   Z      UJ UJ     O      t3   taJ
             _j_i_tcj    >- -   «• >-   _« _»     •<      •«   _r
UJ           o o o -f    or UJ _i 3t UJ x o   o    oo   r^   u tc   oo   zx      x   oz
ic           tracaci-i    n _i -i« _f oo a;   KUJKK   o   >-*=>   cc ae •« zj w         •<
•<         o >• > > »- o uat < ac a> se >   >(•>>>•   x o K u a > > om x o c x o >• « «->o
x:         acujuiujzacaixo^ix_i[u   LU o uu iu
           OXIXOOUJ-«-xaeu>a:>-o   o o u c_>
UJ
01
u
•» o      «««•«• -*« «i eu eu cw 01 m 01 -« 01 « n     ,                   -• ^ «< «- •• -» — . »« «• -• »ii>»cB»ii
          ooooooaoaooaocioaooooioooooooQOooaooooo
»-        ooaaooooaooooaouooooooaoaooocioociockctoo
«        ZZZZZZZZZZZZZZ^ZZZZZZZZZZZZZZZZZZZZZZ
»-        «•«•<<<•«•<•<<•«•<•<<<•«<•<«•«•«•<<«•«•<<«<«•«•«•«•««•«•«•««•«•«<«•«
W

-------
                 »  r  t e                •    it  *     B •
                                            -*«t»<»»«      -* c« T t rv     * *    —•
                    B                     *       I)
           10    •xraoin   ^ m CM -« iv    -* « *o K. «o -• -^ w *v •> — « « cw        =1 r> u r> ^ => ai => => z> => u z> n r> u ^ u 3 u    o 3 u n o
                                                          *  r — t
tu uj
o •-
   a a o* st ~+  +. -«-*(K,
oc»->i-«
o r>»-
> _§
                                                               19                  .             .     i.
                                                                               a.niBS>««z«9«i«*ai>«    A-99

-------
 a. u      01 « « «o CM •» 10 •* ••» r> 0110 oi «o
 «o >-      «M oi oiio « •« -« ^ in *i e» CM in ei
 1-14:       •••••••••*»••>•
 Q QC      ««O»'<*IK«'V'«'«ai
      a.    * co «o * oo i^. v •• rt at «D « m 01
 _»•.«    « cum »v  s> <» ^ m «
 O •« M     ••••••••*»•••>•
   09       n «o «o mo •> in (v « ^« « w« «<
   •«        ••••••••»»•••
   u»       « n •> tv tv 01 s rv •> a  »-       o»aiaai«o«ovaiaa    at at o>

 no.       ao e»ig»i)rii
      ao    a»s>satssascM
   XU    CSS»*CBS(SSS
   »- (K     ••••••••
  •    a.    «BCBS»eDseBCDea
                                n
x *: a.    tv ot is. ta <••• -« ro » • •» « -< oo tv
tu •- z    tt 01 o» o> oi 01 01 a « o» en o> 01 s
X O
«U QC
»- ae
O. •«       OOOOOOOOOOOOOO
«0 OS       ZZZZZZZZZZ2TZZ2

in    »-    o o o Q o o o Q o or a oo a
a. u. »-•    o o o o o o a oo o o o o o
>- O tL.    OOOOOOOOOOOOOO
I-          OU)l9UU(9l9tS«9a.UIUU>(9
              IU          X   141 X         bJ
iu            otuz   o => lu «    oz
*c            <£ _o ^ o   QC o _i »-•    oe=>
z         tu-«-a>xai- •<. n •< « CD •» ae o* 0 » o *>
O         ^ S» • H» *v « •* ~« •« X « Iv « I«J
»-i          •» •*•» I

-------
      e» w <
      _i «
uutu «.
i«it-   « «M r>-*-^-* e» w « « ai-^ « w
09 U>CJ •»••••••••••••

A      oirs.'W'wromtaoiio   N> w 10
•< I 2  .«.«..  «...*•
 •«• §«v «-«•
u«a   ««<«   •«    •«   <•<•«•<•«   •
MM   _» _» U _» Ul _» IU _l _»_»_»_! Ill
IU hi   O OOC OK t9 (K «3 (9 (3 t3 OK IS
» O   UJ UJ O UJ O IU O1U Ui W W UJ O taJ
                           -• co «•• •> «i iv-«
                                 p     •   -»
   U
O Of-
                      • «o •< 3 at >c a •< 
-------
    UJ
                           I







 O •«  *-t      «••••»••»••»•••

                                                                 *



 r*          ••»•»»•••••••••


 Q- Q.





 CJ K


 >- taJ          »*«•*•»««•.«•.•»••.»••»•••»«,•••»**»«,»».«

    O.                           I              I  I   I      I  I       I          t   I          I       I  I   I   »      »  t   r  I       I.



 uj »—  or      •»••••«•••••-••••»•,••••».*••••»..•».•«•«•








 X  C                       IS            E  tS     K <£ OJ         CSSG&GK'ElStvGSKCV)            IS


 I-  X                                                                                                             «/3
 O.1         CCCCCCCOCCCCCCOOCOCCCCOCCCCOUICCOCCCOC
 SO  X!         2Z2ZZ2ZZ2Z22Z222Z2222ZZZ222Z>-ZZ2Z2Z22

 uJ      »—     OQ,OarOOOQQOOOOQOOQQOQQQQOQOQa:trOpOOCiOQO

 >-ou_      oooooooaaoooocooooooooooooooooooooooo


                             -Z UJ                                                    2         Z      IU     Z                    UJ     2
                             O_*             I-        >-*-»-»-            C »-     O     _» »- O                    _JC


UJ                    ~'     jl C      ^     C"        O O     C  O Cf         1 O     3C      O O jt                 -i  O ^  3 Or
 ^.             x      o     c/jx      M     a:        oca     a:cto         tocc     i/>     xocto         *     10  x. »— CT(7lOl3>OIOI131CJiai3»Oia5l(>Cft<>lO!O)OlO!O)OlCNlCVC\ICVIfVIC\J<>ievCV
-------
                                                  t
x ^C»(VO)tOJSK-»eBr«.rO(V^K;tV(S:---« —
      _ttrv       ioo>Si       «*    •<     tio    -<    •<    ~          -^«iew     *     i-*    »  i  — •
                      i     —                                                                              t           i
         ocr>io    m
in
   o         •     •     *o                       -        i-it-<»-*-»»-i*—          »— H-  »-l H-    H- >-    H-       H-             »-^-*—
li.l-4    Uj  •«  Uj «J  "-i <  O    »-l    UJ    »-.«-«  C •-<    »-4»-f    t-t    UJI-tlLl          >-€    t-4    t-l          UJ
_s z    zu.^:u.u.u_-«Qcu_oc2a:ii-u. -<4        UJ     •«*       •«    •< t-t    !-••««•<    •<    •<     «l  «* •< »-i
.-. 1-1    _t   » _i  • ui  • cr _i LU _i _i _» ui lu  a: uj _» LU uj _i UJ _j _i lu _» _i _i _i uJ _i iti _* Hi _i _i _t _j
xco    uj  »-  uj i— o »-     ~cjr3iur5«jc3    orjocjrsuziujcjiuS'nzjijracjratjnnnuj
(-O.IOC        I  
-------
       a.
_» Q. • >• G
a  a
OOIO
>-tu
«5  Or
    a.
       UJ
       ae
       O.
O.L3       SiSS(S(SlS}S(S6i(S;lSSB;fnSK.(SStSS;S)SOSllSStS>SlSlSi(S!CIS
X C        S     CSS     K        K    IS     OOCOOOOOOOOOOCOOCOOOOOCCCCOOOOOCOOOOO
>- O  U.    OOOOCDOOOOOQOOOOOOOOOOOOOOOQOOOOOOOOOO
>-           Q.C9{La.OOlSlSt2t3L5c2t&OOOQ.t3t3t5OOQ.CIOOOC3OQrC3t!>l3GLt£OO

             z     z                                  z                                                      in z  z
             O     O >-               t-              dt~                        t- k-              »-_*QO            »-
             L5COUJ           I  UJ              CS UJ                        UJ UJ              UJi-tlSiS            UJ
             <*<_J.        Of-_l              •<_!                        _l_l        Z >- -I    1C •«  •«            -1
Uj1           3t3tc        «:DC»              31 o                  •«    o c        jaoo^z            o
xr           in     en a:        i-ioa:              tfjoruj           t-uJaia:        a r> or    z «o  to            or

£           -I     _iuJCEkiJi.>-uJa:cta:cr_iUJ     o    ccct>-oijJuja:Qczar:uJiuo_j_i    aca:uj
             d     CXOUJC—SICOOOOX     O    COOOXXOOt-iUJXQ._JOO     CCX







                                    cv
UJ                                  -<  O3                                        OD
                                                         ll
Z           OQOOQQOOOOQQOOQOOOOQQOQOOQOOOOaQOQOOO


»-           OOOOOCOOOCSOODOCiOOOOOOOCiOOOOOOCOOCiQCOO
•<           zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

-------
   ££•»••••••*•.•«•»•»••••*•**•»••»••'•»*•••<•••

                       r         i            i  i      •   i      i         i  i     i      i  i  i  i      i         i


   Ot/J   •«»••••••••••••••«•••«••••••••»••••«•

I CK IT     OCV     K«  «HI    «^ v^    «-•        W4 «H     «^    «^ ••* •-<* *-•    «^        *^



f X -        >-    »-     t- I-                                    K-       »-     ^-              (-»-»-           I-



•-< >-i     JUJ^UJ^ujuJJjjJ^^JJJ^Jua_t_iuj_juj_i_j_i:Jiuj_.iui_Jui_j_i_iuJ





f-aii*—      ^ SI
CJ        ^ «*•* C\i
                                                                                                                                       A-105

-------
       a.    rvoooo(MCMroK>cii«'V''«-tD«-tioo>«in<«-«>~*«}aiciicvini'}^ra»a>06'tei'>Tir>c>incDM>tvs>
a •<  «-«      ••*•••*••>*•••»••*•••••»*•«*««••»••••*






ac •«         •  *•••*•*»••»•••*••••>*•»•**»•.»•*••»**•


a. a.






ts >•-


>- UJ         «••.••»*  «»•»«•.•«»•«•»•••.»••»

   a.                          «                       i  i  •     i  i     i        i  i




"^    4L.    S? 63 C5J tS3 C5 (& CB Ct ^S1 ^^ ^S Ci» CS»< S OS CB BB ^) C5 CS1 63 t£ (& C^ Qj> CSS^ ^E


H ^rvcoeo«coaacieciOi    coowoiaiiSCTOiaiccioactv
>    i-                                                             •-«


XO       G^&S'CMSS'S-       S(S                v^flOSiR
a.-*
ui    •-
Q. U. n
>-ou_
            coocccccoccccooC'CccciiiCocoooocccoccacc
a
C
c
a
=>
LJ
ct
               ooooaaroarooooaraoooooooooooaoacoaoooooo
               COC'OCOCCCOOCOCOCOOOCOOOCCCOOCCOOOCOC
               ooaooaaoaooaooooooaaoooooaoooooQoooo
               C£(JHC5OOCLCSQ. C3dlSOCLCSOt?OCDtSC}t3t£fl£iL!>(3C>l£Qi.t3t£t2t!ltSOCDO
ci
or
a: ua
ci
U. (_>
            uj Q
            x c
            l_» Q
                                             cc
                                             a: a:
               cc_ioxx
               O U- O LL LJ (_)
                                                            0>UI
                                                         >- ut _i    >•
                                                         orc-coc
                                                         z> UJ a: uj r>
                                                      coc;>u>u
                                                      tririrujoa:
                                                      cujujxouj
                                                      U.ZIXLJOZ.
                                                                                                2"

                                                                                                O
                                                                                                      »— O
                                                                  c
                                                               ^ a: uj       ui
                                                               o>ir;cico
                                                               •-< iu cj a: i c,
                                                               ^>xoocc
                                                               CD U Q U. U. O
                                                                                                t/5 ULJ a: tn
                                                                                                s«:ts>>c    c
                                                                                                _IOUJ_I(->IK
                                                                                                ocicraEcr
                                                                                                > O (J >• C3 U_
UJ
UJ
co
u
                 « 'CV*CU.^«r*CVt7:flCfil.X5t^*CXOv^X'X*^>^'
               «u-OJt»jrv'»Q:incM--'C\iir>«ci>t7;osKc:«>z£M«-«oi»Q:oo>cev'«rrv^3»—
               Kic«-««'»v.z;Taoojrv«(vi^so!eQ.ff5>-.'«SiS,sa»vz!r.K-«cca.
               -»ts|iOZC7ifNi:-!Ofx-«
oJ 2"
             Illlllllllllll
                                                                         ll
                                                                                                                   llt
            OOQQOOQQOCQCC:. OOOaQQOQOQOOQQOQQOOCOQOCS
            cttrQrorcraQraartto-acrcrtrQ-ctttraraacKQ-crctQrcrQrcrQrD'a-QrarQrQrcr
            <^I-rt<-4-
-------
                I      I      I      I          III         I   I   f          I         I          I                     I      I






               «••    w-4    «»•«•*         w« ^4 *•«         v4 <•"• «MI         «4         «m        ^*                   v«    ^4




 JI  X  CO   •'*••**••!*•«•'•'•*•••'••***•»»•'•***»»*•••*
 •4      o tc *v  o> ^v 10 is  01  ID to to  s flo if} ^r o^  fO **•* f^. cu CM  to ts ^9~  tfy 10 if? in *-*  10 to  »-• «^ s w ^ *^  i
        _j      i      |*H^4fO^<         I   I   I GO     III          I -^     I  —     ICM^             I      I
                              I      I



 CJUJC^   »•.••„••«.»**,».•»,»«»,  •.•*«**,*••.•.*».•«•.•*.•.*.•.







 t/>iUO   »»»»•••»*•••   »»tt»»**»*»*»»«»»**«i*»»*»


                                                          «H<










    2
    d                                                      *                                                 *

    fc-         »-            •-             I—            •-»     I-                   i—                   «_,*_!_


C_T  O     4     **f *"-* **S     4  ^^ •<      ^  *^ 4     4     -4 >"-* < *—*  ^     <  >—s 4  4 -^     —  ^  ~  1^, CJ ^  tiJ ^  LJ1  "






fr—  Q.                                      •-*     •-* «-» ^     CV? *^ ^^ *-*' "i"1  *^ *-» *-*      I      I  ^      I      I              |
 ->  z                                                     i                                                  i

o  •-
           C5— -
ut

-------
EL ui       K-^*foa»«iO'«-*«Bir)«io^«o«oiosc»'«rvir>»*sCMm«>ioinioooiK'v>-<«>'««>scvi»vCvGi'«'vnirio«os'««3Kir>r>CMio
*-• •«        <•>»«....«..»««»•»««.«..•»*•«,«.«>.«•««
on:       ininiCTrininnr>r>ir>ir>~«ininin«>inr>r>vK>Kincoininior>r>inr>
                                                                    V* w*




            KS<&S>CSGCE^K&&iKSK>K.&IBS:KIBGSSie:&.KS,S.&>
      a.    •vcoinis.(stni'>'«ioiin~*C4«>inBi*tniooinaiio«D««DPs.s«o'««>«(Ma>4&^>o»'rte5'vo»«*«oivc»cv > O    SE-<«B—«S«S'-««S«-'SCM®-<--«i>v«cai•«« «sK.—rv.-*iot»
jc «        ••••••••••••••••••••••••••••••••••*••
•« ts       rveo«oo>^rmKCMis.eDinA^cvi^*«-*ao>-'(OCMcoCM^'«CMiooiaDinars.«oo>^a»oorv
                        «HI^««^               v*v«v^«^«-i v« v« «-«    •*-• WHI ^    «•«      •-« «-•
a. a
< x       tseB'«(M«-«o4S9xCM
> i-       rvrviNi^fv.rvpvr«.ooicoD«;eoioiO(Esinir>in>O'««DK.ic«>ivCiac'«i<>ioi?ioio«}
< Z       aoaDaocoaDa)(DcosD
O t-
            mmsisss«(ns:Bss»CBjotn»'-<—•
>-UJ        •»•«•••.••••••»••••••*»•••••••»»•.••••»••
10 a       S. S. R. (S (S ss>ssams>insSiSi'Visiins»ms(SIOtSS)K.CU    O.    KS-^KSSK.S.'SSS.KKKISS.tS.KK-ISCURGK.SISlSei—'KSSStSCiKS


i it a    (oiovrors.rvsa4orvss;i.M*o^>rr)ts^'vc»Kc\)ir5«'»rvs'Soc(>fvr^soii(Oflv(crvf^rv(vvaDoooDrNOOooaDaD<>oDCT'OCoc
   ac
a. «»
IO CD

UJ    I-
a. u. «-i
>- o u.
UJ
1C
or
-2ZZZZZZZZZVZZZZ2ZZZZZZZ222ZZZZZZ

QQroctQrararooo:nozroo(ra:ccQOQQccoQactroociaoooocs
ocoococccccocctrccocoocococoooocooocco
ooocooooooaooaooooooooooooooooooooooo
UO.OO. Q.O.  a.LSl3<-9(.3t3CL L5OQ.O. O. LSUCSUCLirtStrtTQ-tStStildCSOtDtrCD
               z z     z
   t-          o o    c
   uJ    I    IS 15    ID
   _J,    I—    os.cst^csc
arujjc>-a:_i_tcc
C X C _' C C C C  C C C  X  •« I C UJ
u-ou.a.u.j-r>u.^u.u.<_»QrtJoa.
»~    t—       o  h-             a    i—
Ui    UJ       U  UJ             U    UJ.
_»it_»    K-<_I    >-       n:=>u:iSi--3>    u u u ^ c: >
                       CE •-< Q _i Q UJ
                                                                    Ua —  C  C O X
                                                                    5E 01  Q  > C.
                                                                                            I-     O
                                                                                            LU     13       X
                                                                                            _l       >C  F,
            so Oi ^ rv  ft  —•
                                          U  I  I
                                                      I   I   I   I
                                                                       I  I  I
                                                                                                        I  t  I  I  I
z
o
wiraiioocicccajacocxaocccaccacoctcociocicxociarototacwtcaDooocccccac


COQOQQOOQC'CICiCCCClOC-. QOCClOOCQOOCOOClOoeOCl
crafatttrcKao-acotQ'QrQrota-araaorattarQriarQraQrftararQraaararcrQr
*-l— t— I— »-l— >-»->-  !-(-»—>-»— k-k->— >—»-»—»— K-»— »— I— >-»->-*-»-»—*-»— I— K-
(Ointocococncococococniot^cococotococococomcoiocococococococococococococo

-------
       t5SE.(SCV-->CV(\IIS
                   I                I
                                           II!
    LJJfi   ..
U>UJ
-------
fL.  UJ
CO  t-
c.  o:
               K.e»K3»*3OiiOIOC5
O «* «      •   ••••••••
>>C     —«6>—"K«S«5lS.K—•
                                                                                                                                       S.  R K
                                                                                                                                       •»*  S! "O
                                                                                                                                       tt  CD f*v
                                              —•SS'-«IS'S-'»-K-->—»-»(i«S«S—>•

V)

LT
    a
    x
    X UJ

       a
              n  <£ in
                                ryinif^K^-inioir—'ic.  ir(»'<<»oooiins.»ciriccm —  e\iir. in«rx-«»
              Kocacicaoatcoccoco-cro,
                                                                                                                                           CM —
                                                                                                                                              a
              oo. oo  -f.  N.  ac as  OD
              x>in?oio«ecwKS'«'V'«i  •«•*»  "Jir^i^iC'tvrvfvaoi  s. «  a
                                                                                                                                              CC'
                                                                                                                                           •«» cv
                                                                                                                                           •-» CV
                  ^. ^  &  K. IS  CSi1 1^  C». C.
                          II      I   I  I   I
               •S.  rMSSSSt^*3.S
               Si  ^~*  G. K  C^ K  Ci &  "^
                                                                                                               11
                                                                                                                             11
                      IS  K  S
                                           US,
                                                                                                                                    (S  C

                                                                                                                                    E.  S
                                                                                                                   IS  (^.
                                                                                                                    I   I
                                                                                                                   •!»  S



                                                                                                                   R   fV
                  o>cro-t.acoca'C->o-i?o— e-
                                                                                                                                    S CT
                                                                                                                                           •« rvi
                                                                                                                                           cr cf
a
>c
    ^r
    <:
    a
                      s,  in  -s.  rr  s^fsrs
                      --  V         «£  JS     —
               c  c  c  c  c  c  c c  c c  c
                                                                                         e?«c     sir-
                                                                                                                         iss
                                                                                                                   s.  c;oooccoc  ooooocooc-acooc  o
                                                                                                                                    to
                                                                                                                                    Ik. C
                                                                                                                                    cc
                                                                                                                   c  c


                                                                                                                   C-  0
               "*-^  -n  "s  T CM  c- x  z  x  j«r  01 ~  --  i  r  JL,'  ^  .:'     s^j
               <  i  -r -a  _ T  *-. i  — r  *•  <  s  j:  wr.  T CL  a  •v  t; •«  u cv  c:  <  T  — ir  ^ •-:• 2  u tr  x f  ^  a.'
               •c  >r  r. ix  —< -x  T .r  ^ CM  rr.  .n jc  f  T>  o *v  n  cv  i x  tr> T  tv  cv —>  o Oi  it •v •*>  fn  'J  •£ *> T:  o

               •t   r  % -o  Ai  P  >i> -O  —I --.  »  1  _>  •S  >  Ct  3  i  s  i >-  G >-  tj-  —. —•  .c •}  X iJi >*2  •-•  C  % •> i/J  n

               r-  <-  ,x. ^*  cv n  3 .r;  ^' ix  -c  ,> ^  —• CM  •*} ^  n  £  x, &  T. s  «->  rv  "J  »-—  —• —  —  ——--— <\{\CVCVCV                                  —
               i   i  i   i  i   i  i   i  i  i   i  i   i  i   i   i   i  e   i  t  i   i   i   i  i   i  i   i   i   i   i  i   i   i  i   i  i
               a  .-t   ct  ,1  x. a  cr cr  t a  tt  -t  .£  n




               c  eer~.c-cccLt-C.-c.rc
                                                                       rr  r   x  a  .%  cr  ar  at  oc  ac  x  or  a  ac  a  ut  ut  at  x  5-


                                                                       L  '^   c  £r c  o .c  a  ~-  o  *"r c  c- cr  o .c:  cj  o o  c.
                                                                       c  c, c  c c
                                                                                             c  c  c  c  c
                                                                                                                           i  c  c  c .o  c c
                                                                                                                                                      A-110

-------
                       il
                                          i     i    i
I- - • 
      _nr>  i    -.   -.
                                 evi
                                  t
                                                                             cv -«
   o     •
   »-    _)
   *-    >-•
   -«    < UJ      LU         UJtlilL.
                                                     l-i    UJ
>  c
UJ
UJ
CI
        Qc
                 a u
                 •< _j
                                                                                           X UJ 13 *: ro w i
                                                                                                                      A-ni

-------
Q- tfti       1*5  (O (0 CD  lO lO CO (O If) 1^. Ol «•* 1*5 IB flO  I
CO IV—       Ctt  CM CM CK  ^ «•* lO K) ^t fO fO IK  *^ ^9 ^V"  *

OK       mm n x  x-m x nn ^ ID s  n 10 n  n n in
                                                 w«









o<»-«      •••..«.».««»•.»•*•







r <         •**•««*••*••«•••••



Q. Q.


^ ^"       Ol  Ot O% CD  00 00 00 OD flD QD CD CO  CD flC OO  CC CC OC

co &.       ^3  rs. ^ 10  10 ^x ^ x x ^ fv x  m m 10  tf^ x ^j
^K Z!       CO  flO OO CO  QD **^ CO QD OO OO QD CO  **^ QO CO  CO QD 00
iS t-

(OtO       -..»»•.»»•••<







>•     H-








a«t       occoccccccccoccccc
Q. U.  »-i    OOCCCCOOOC.CC.  OC.OCCTC
>-ou_    cooocooooaooooocoo
                    a
                    U
                    •«>-
                              T
                                    iu     l»J
UJ
sc
«t
                                                           UJ

                                                           —I
                                                           C
                                                           IOCI
•Jj

^
u_!
             c ir; s ,  v.     — ~> tv  o  :T' is «n  * cv in  tn  r: r»»
             jr.-o^^     — .oi-o^ca— itcu_^3inujt-  sr< x ac  cc  a. cc tr  or. a: a>
U-
z
c
•4
K
tO
             QC.CDcacQOC!"cci£r cocao
             aarororactQ-. QraQtaororCKOrQraa:
             <«-4«l<
-------
           I  I   I   I                             I


   u en   ««•»»»•»».»•«»»»•»

TC or cc ^~* *•"* *"-| s  oo    ^^  *o        tc cc ^^ oo ^, ^* $CJ 10




rrio   **««****«**»«'^*»««














t/) iiJ (_)   •*•**»•*•*»•*•*••»


                                  «—i



























U^ OJ


   c:  c: at fv st  O'.  tr, jn ^i  x  tc  s:  & rfy or cc *c 01 ;> in
£^ >—••—»ac. D"-c?f^trj^.tc"s  c*c;^^acyDir;trv'<7irJ
cz>»~   »»«•••«*•••*••»•••

< »-*> J;
                                                                                                                                              A-113

-------
 »-       «« -• f> «v to o> itv<





            CtSSSKSi&SSSfBI
      o.    o»«mrceBsrvsoi'vir>-9Oioioin«D'«'«ivS(Dsss^
O •« *-•      ••••••••••'••••••••••••••••••••••••VVK
>>O    —•—•—»--       O)Cv««>-'CEeorvOieEin^r)tC'oDO'ir)
            ^^^^*^             »* *^    »•«       •>*      01             v««««-»       «>«       —t    —*             «•*
a a.
«« X       ««•«—«SSSilO'»e\lSO»(S>SS(MV
> t-       rvrvOia>ososa>o»oia>otoooii>vFvi^

en a       Ksiccuc&cvinnniRinininir}(r)KmK(£s
<£       a>(dcC!X)CDcD(CCD(OfloecioO(Dcocoooaooor^43ao
is »-
            iS!SSSSitsiss>sissiseassiSflo«o^reo<9i5ioscD(s^scvis>4SC\iSEn(s«->CMC\jeE.
>- UJ         »««»»«:r»»  •*•«»••»•««»•»•••.,»«»««•••»•.
tfi QC       SeS.SKK-K. — KSS.CE.—tISKISK'-'KlKtS.BSSKGlSKS'KKiKKK.ISISKKtS
   a.           i   i  i  i  i  i  i  i  i  i  i     i     rii     i  i  i  i  i  i  i   i   i      i   i  i  i  i  t  i

      to    sssissms ssis.sissssssss;s>s/sisa>(sstsis!s.sisjss.ssasisj
X St UJ    SK«KKimKii"-'SKlSKlSC«SS.S>«S(se\ie«»S. «EISS!K.-«SK.IO«SSiK«S.K«S-S
uj»-a:      »»••«««••»••••»••«..•».»•«•«»«.•»«..»
~>    O.    S tS (S IS  S^  S S, CS  S. C?  S^ S  K  S S K K K Ei K S E' K )S S Ki K> K  Ci S  S  K  SJ K  K  K  eocooova)Oa
OZCC3:OC
ac3>za:coa:s:
COLD
o«t    <
CJ3-    3
   <«    ic
                                                              UJiiJtiJ
                                                              _*_i_j
                                                              CC-C
                                                                                         UJ
                                                  -2
                                                  ot—
                                                  t5 kU
                                                                                                           -3
                                                                                                           o
                                                                                                           LD
                                                                                                                 UJ    UJ
                                                                                                                 O    C
                                                                                                                 a:    ot
             Illllllllllllllllllllllllllllllllllll
t-
            f> m if., «^^u^^'/>iOX3tninx!«/5^;ir;snir;«inin«Oininirir)ur5r>iCininintn^>«


            >*V.V>^^^^V.^>..^X"vV.'V->v>vNv"v->v^>^^».>v^>vV.^«v>v^^>v^v>^^
            « cc  a:  ccaca:ocococcpoc*ccao»ot,


            aOOQOOClQOOCOOOOC.GOOCCCQDCl,C-C,OClOOOOCiC. CsO
                                                                                                   .
            ZZ22ZZZZZZZ2ZZ2ZZZZZZZ7ZZZZZ2ZZZZZZZZ

-------
                                                t -*          III
                                                                                                        II
   (_:  •«-»••««•«•.«»•••••«•••«••«•
•a    o^w^mrviooootr^^rvoisnin^— •r^eccvroio^rv^— «'*
      _l CM — « CM    CM   IO    CM          CV — • OO — • T    II    <9  I — i ,-     r
                                                I
                                                                                                    «  » — •  I
C/JU1CJ
                                — •VOlOilO«SK1«»-HK'W          UJ Ci
                                                                                        UJUJ
UJULt
> C
   a.     i     i  i        i        i  i     i   i  oc
   x                                             r
                                                                                                                 ii
UJ
eo
                                                                                                    uasi-ox
                                                                                                    zxrooxco
         acaoujic— 'in— '
                                                                                                                            , A- 1 1 5

-------
CO »-       CO«V'»lc«tB«a'««>l»9<«'*r>'»
•1 •<        ••••••••••••••••••••••••••••••••••••I*
OK       nv>»inir>ininir>in*»cBinininv>inin«ininin<0in^iftinv>in«OK>
      a.
_j a. co
o •< 1-1
> >• O
•« ts

a a.
•« X       r
(9 K-
            (
COCO       -*Ci-«S»C\lC\tlO*»--«eB<\jeB«OK>«SK-<-<61—»—<5
>- IU        •••••••••••••••••••••••••••••••»
COOT       6t«5S>GeaSKS!S«SOISt5t5S>6:tPS»S'6»t5egiSt5C5G»CBStCBt5«DB»
   Q.           i     i  i  i  r  i  i  f  t  »  »  t        i   t  i      it        i  i  i  i  t  i  t  i

      co    ss>«>(9inG»insinsist9Ssioeaiv«s(Beaine9eos
x sc ui    t
(u »- at
>    a    (
Q. 13       (SK:SiKC9ISS«SSSSS!       K    S e K                €£(?&&<--<       S         «S «    K  —    Ct K
Ui Of       «^       *Ht          ~+   •** «-« v«                «^ *+    vt «M*          wHI         «-•       «-C       v« «HI

H- JC
a •«       ccroocoooooooocooocooooooooooooooooooo
       zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

UJ    »-    QOOOQOOerOOarQOOQOOOQOQCCOQOQQOOCCOOQCOaQO
Q- U. «-»    OCOODOOCOOCOCCCOCOCOOOOOOOCOOOOOOOOOO
>- Q U.    OOOOOOOOOOOOOOOQOOOODOOOOOOOODOOOOCOO
t-          L3tSOC3CSOtBQ.lSOa. C9C9C'<£(AC5t9(5C5UILCSUOU>i9(9t3a.{2UB.(2C9UU

                                      z                                           z          tu z           z
                  »-             i—    o             t-                            01— _ioa>»-Of-*-
                  u:             uj    ts             Ui                            oai*--_»                            • o LS c     >    it c. m u c. >       e o ts    u       ^  ^o>>
z:          xoiucroa:     HJ    -jariiaixuiu    a «-« o    a       _i»-    u• U.. £C X U. LJ L3    li^COO    O       >•  Q    UO>    •< CJ  »  U-  O U

a:          cvi^ioc\t(Ovcwt\»waisio>cvi--«<>jro<\ic>itviO'«oi'«'ioo>iortxrxoio>oiOioic7>CTioiarsoic3io>oi
IU
in          «^a.x
z          T x LJ
ill Z.        lllllllllllllltllllllllllll§lllllllll
^          CD (C CD CD flD CC flC £C CD d^ CD CD GO CD OD GC OD CD DD CD CD QD CO CO CO CC flD OD CD CD CD CCc CD OD CD CD CD
U)
O          •X.'^X.'N.V'X.'vX.-'w'N.V. •v>v'V^X.X>»>v'S.X.-s.>.>^'>.>v-N.>^'V'v>v-»v>v
            OC QC OC CO OC flC CC QD GC  QC  QC' OC CC> CC1 00 CO 00 flC OQ (C 00 CC OC QO ff) flO 00 CP OD flC  0& QC OQ OC~ OO OO CC


Z          OQQOQOQaOQOQOOOOQOCJOOQOOQQQQQQDQOOQCliO
o          aorarttactctcictettraaDrcraaaractttQrctactecctacECrceaaactartca;
r-t          -«--»-»-»-l— !-»->-»- H->-l-»-»-»-l-t-»-»-»-»-l— *-»-l~l-*-»-*-»-l-l— »-!-»-             lu

-------
   UJOKKK— •
                                              It     t  I   I     t  »    -•     I   I  I  t   I
                                          mil
                                                                                                            i     t\j     i  oj --
t— t-     fO<*^rs;33'«-'-«aO«tO'«'«rOrt«lOIOC»(O(DaO!SfOOJ5rinS{S'J3(vsO—•
CJUJCJ- •.-•««••««.••••••.••.•••••««••««.••.•«•
uau-r     3: j to  ts or u a:
> c:     cti
-------
a. uj       •« co at-* a» a s to « CM « sioiO'<*o>io«n^tOk'W<->«>«Hi
n •«        •••••>*•>*•••>•>•••
o cc       ivcD«>r^inir>rv«>
      a.    «o  •» w to a> »v « « rv a> CM     co®s-«ojO)iorvioio'*s-««B
o •< •->     »••«»•.•»•••««
   «o
   <
   cs
a. a.
-t x      «o«orvinrvivooiv(Ocotx)at<»(ssi
(AO.
(OCO
CCK       K.ESKKKS'S.SKIKISS&IS
   a.       i  i  i  i  i  i  i  i  i              it
uj *- or     ••.»••••••»»••»••
>    a.   s st «s «• cs.  CE s —i s fs is s ® «s- CB
a o       s ^» s S;   s «: rs si s, is.  s si s.
XO       SlKKKIO  — KSStS. (S    ECS
t- »:
a.-*       cc'ccococcocccoo
O-U.»-t   OCCCCCCC. OCCC-OC-C
>• o u.   aocooaooociooaoo
              UJ
              ^(               *-            »-    I-
              »-    a          u            uj    tu
              as    uj          _i            _i    _*
It            C    3E          C            CO
x:         uj x    •«    'Al    a:    uJ      or    at
•«         tltOC    OOO>    O      >_)>
a:          aciastoctciaua    o   UJaiDiu
           e_icr;ccoi    c   XIQ.I
           dou.(£>»-«— «'»fvX(O:. S— 'CVfO'WiCSD
           — -i-i — — «--«-»-«cvcvevcvic\iev:v^^>v^^^>^"^^'v>^>vV.
           i a x oc  ao  a. ac Jt ac  oc  a; or » a: x


J?         iQQOC,  DOOQCOOOdQ
c         actcearafQr-aaroraaaaQ'Q:
M         -4<4<.-«<:«*-<-tf«»-t-»-i-t-i-t— »-»-t-»~»-i— »-i-                                                                    A- 118

-------
X»-^Ol»<-UJ:aaif>aBrx.!MCVC\l^->-*!*>a>iOiftvr'>otfvto^
TOrffsocx— accoir^f^ocrsioiv    01
         «•«                              *•*


i- c_>i-rr>K«ocvim»v-«riss>«->fOir>«if)aiw-Si(MSIs.
ou;«-)  «••«.«.•••.«.•••.•••
•a. x las ^ai^roevsrs.iVfv^!»r>»!S'S3i
         CVl 1C SC    •«|*3«G«V«T'«IO<<»    S



U.-I-    sma—rvifjo;r^B:-'-««rvSOi
i/>iuo  •  •   •  «   «   •»••«•••••
o-^<^^eMsot
CD       CV(OOCCV«'OOirOIOin CM CM
'-1    _l_»_*_«_l_l_tUJ_li
T<«    3~~ZS3~Z?€J^«
tUUJ    caUJtBtJUlDC'XiDt
> C    bJUJkuUJUJLLtlUCUJOUJClLiOlLt
         3c  !xa:acaiara:ki.ctu.ccu.a:u>a:

<       fv?N.«j«-"fvs»ao»-«ao^.K!ro^ic»

_i s:     ii     it     i  i  i  i     ill
uj at
o »-

   oocve^io-*r^a!Cviscois.oifv^s«>
a •-••-icviOsaccv.^'r^ — oitcsrv^wsoi
cr?»-  •   •••*•••••*••»•
O. C •« »-  SB S--E'"K CIS!
UJ
in
z
                                                                                                                               fllio
                                                                                                                              , «- u y

-------
5.0       BULK TERMINAL TEST REPORT

5.1       Introduction

          Source testing of hydrocarbon emissions resulting
from bulk terminal loading operations was conducted by a team
from Betz Enviornmental Engineers during December, 1974.
These tests were intended to determine control efficiencies
which can be expected to result from the use of commercially
available hydrocarbon vapor recovery systems.

          Two vapor recovery systems were tested.  The first
system was a compression-refrigeration-absorption system and
the second was an open refrigeration system.  Testing of the
compression-refrigeration-absorption system was conducted in
Philadelphia, Pennsylvania at a bulk terminal operated by
Exxon during the week of December 9.  The refrigeration system
was tested the week of December 16 at a bulk terminal operated
by Exxon in Baytown,  Texas.

5.2       Conclusions

          The following comments and conclusions are presented
to summarize the results of the terminal testing program.

          (1)  The compression-refrigeration-absorption type
               unit should be able to achieve greater than
               90% reduction of hydrocarbon emissions from
               loading operations for tank trucks that supply
               service stations equipped with Stage II controls
               Greater than 80% reduction of these vapors is
                              A-120

-------
     achievable under today's conditions.   Both
     recoveries assume no loss of vapors through
     leakage from tank truck openings.

(2)  The refrigeration type unit should be able
     to achieve greater than 907., reduction of
     hydrocarbon emissions from loading operations
     under today's conditions.  For tank trucks
     supplying service stations with vapor recovery
     controls, an efficiency of 95+70 should be
     achievable using this type of unit.  This also
     assumes no tank truck leakage.

(3)  Leakage of hydrocarbon vapors from tank trucks
     is a significant source of emissions.   Routine
     inspection and maintenance of vapor seals on
     tank truck openings should greatly reduce these
     emissions.

(4)  The test method used provided sufficient data
     to permit material balance calculations around
     the recovery units.   The test method  appears to
     be valid for use on other types of vapor re-
     covery systems.

(5)  The hydrocarbon concentration of vapors emitted
     from a vapor processing unit is relatively
     constant and is fixed by vapor-liquid equilibria-
     relationships at the operating conditions of
     the processing unit.

(6)  An increase in the hydrocarbon concentration of
     tank truck vapors should result in an increase
     in the vapor recovery efficiency of a processing
     unit.

-------
5.3       System Description

5.3.1     Basis of Test Unit Selection

          The two systems tested were selected after Radian
had completed a review of vapor recovery systems available
for terminal use.  Factors considered in the selection of the
test systems were:  (1) the principle of operation, (2) the
expressed demand for the system, (3) available information on
operating reliability, (4) predicted theoretical efficiencies,
and (5) the location of systems available for testing.

          The systems tested were selected for the following
reasons:

          Refrigeration Unit

               low cost,
               very high predicted vapor recovery efficiency,
               large interest expressed by oil companies,
               continuous vapor processing,
               no compression of hydrocarbon vapors,
               no saturation of hydrocarbon vapors;

          Compression-Refrigeration-Adsorption Unit

               predicted vapor recovery efficiency of 90%,

               manufacturer highly experienced in hydrocarbon
               vapor recovery,

               mode of operation different from refrigera-
               tion unit:
                             A-122

-------
                    batch vapor processing,
                    saturation of vapors,
                    compression of vapors.
5.3.2     Compression-Refrigeration-Absorption

5.3.2.1   Principle of Operation

          Gasoline vapors, collected from tank truck loading
operations are first sprayed with gasoline to insure that they
are outside of the explosive range, then compressed and cooled.
Water and heavy hydrocarbons which condense are collected in
a separator.  The vapors go to an absorber where the light
uncondensed hydrocarbons are absorbed in fresh gasoline.
Essentially hydrocarbon-free air collects in the top of the
absorber and is released to the atmosphere through a control
valve and flame arrester.  The gasoline in the absorber is
continuously recirculated, cooled, and replenished with fresh
gasoline.  The unit is designed for the absorber to operate
at 50 psig and 0°F.

          Premium gasoline from storage is used to cool the
refrigerant condenser and as a source of fresh absorbent.
The fresh absorbent stream is first used in the saturator
and passes through an economizing heat exchanger as it enters
the absorber.   The rich absorbent also passes through the
economizing heat exchanger before being pumped back to storage.
Figure 5.3-1 is a schematic of a compression-refrigeration-
absorption unit.
                             A-123

-------
                                                  o
                                                  M
                                                  EH
                                                  §
                                                  w
                                                  Pi
                                                  P«H
                                                  w
                                                  Pi
                                                   I
                                                  53
                                                  o
                                                  M
                                                  CO
                                                  O
                                                  O
                                                      W
                                                      CO
C_>

M

H




W




CO
                                                  I

                                                 CO
                                                 O
                                                      O
                                                      CO
                                                     Pi
                                                     o
                                                     PH
                                                     <
                                                     >
A-124

-------
5.3.2.2   Operations of the Test Unit

          Vapors collected from the loading of tank trucks
were saturated and then stored in a vapor storage tank which
employed an expandable bladder for vapor containment.  At a
set level, the vapor recovery unit would come on line and
process the contained vapors.  It is estimated that about
2500 ft3 of vapors were processed during each cycle.

          Throughout the test period, the vapor recovery unit
operated with no apparent problems.  Absorber operating con-
ditions varied only slightly, with pressures ranging from 48-
52 psig and temperatures ranging from 0-4°F.

          The unit tested received vapors from three loading
racks for processing.  Only two loading racks, however, were
used during the tests due to sampling equipment limitations.
The test was designed to provide data to permit material
balance calculations by monitoring all vapors from the trucks
passing to the processing unit and all vapors emitted from
the processing unit.  At the beginning of each day of sampling,
before data were taken, the processing unit was manually tripped
and all vapors in the vapor holder were processed.  This proce-
dure was repeated at the end of a sampling day to insure that
all vapors monitored from the loading operations were also
monitored after processing.

5.3.3     Refrigeration

5.3.3.1   Principle of Operation

          Vapors displaced from tank truck loading operations
are routed directly to a finned tube vapor condenser where
moisture and hydrocarbons are condensed and separated from
the vapors.   Because vapors are treated on demand, no vapor

                             A-125

-------
holder is needed.  Entrained moisture in the entering vapor-air
moisture condenses and collects as frost on the cold plate fins
Condensed liquid hydrocarbon is collected at the bottom of the
vapor condenser.

          The vapor condenser is continuously maintained at
a low temperature (about -90 to -100°F) by the circulation of
low temperature brine coolant through the condenser tubes.
The circulating coolant, methylene chloride, is circulated
through an evaporator-interchanger to maintain its low tempera-
ture.  A cascade refrigeration system is used to produce tem-
peratures of about -110°F in the evaporator-interchanger.

          At intervals, defrosting of the condenser fins is
accomplished by circulation of warm coolant stored in a
separate reservoir.   The temperature of the warm defrost
coolant is maintained by heat reclamation from the refrigera-
tion equipment.  Defrosting is completed in 10 to 30 minutes
depending upon the amount of frost collected on the finned
coil.  Figure  5.3-2 depicts a schematic of a refrigeration
unit.

5.3.3.2   Operations of the Test Unit

          The terminal used for testing had only one gasoline
loading rack.  Vapors produced from tank truck loading opera-
tions were routed directly to the vapor condenser.  There was
no vapor holder; the unit processed all vapors "on the fly".

          Operational problems were encountered with this
system during the tests.  It was discovered at one point on
Monday, December 16, that a leak had developed in the high
pressure portion of the refrigeration system.  A low tempera-
ture could not be maintained in the evaporate-interchanger
                            A-126

-------
     "il-

                            . K
                           CC UJ
                           OO
                           h-Z
                           «
                           CC X
                           OO
                           a. cc
                           < UJ
                           >l-
                           UJZ
                                   	I
K
UJ

Z,
o
u
                         0°

                           u
                           CC

                                      I"*.
                                                                   Pi
                                                                   O
                                                                   PH
                                                                   O
                                                                   M
                                                                   H
                                                                   O
                                                                   w
                                                                   PH
                                                                   O
                                                                   <:  w
                                                                       H
                                                                   fn  en
                                                                   O  >-•
                                                                       en
                                                                   H  Pi
W
                                                                       O
                                                                   U  W
                                                                   en  pi
                                                                  CM
                                                                  m
                                                                   P
                                                                   O
                                     .A-127,

-------
because refrigerant  (Freon 503) had leaked from the system.
A service engineer was flown in from the manufacturers head-
quarters to repair the unit.

          Because of this leak, the circulating coolant could
not be maintained at its design temperature, and hence the
vapor condenser operated above optimum temperature.  The
coolant storage reservoir is designed to contain enough cold
brine to permit hydrocarbon recovery while minor repairs are
made to the system.  Testing was therefore conducted while the
refrigeration portion of the unit was not in service.  Conden-
ser temperatures observed during these tests averaged about
-50°F whereas the condenser temperature observed during testing
after the leak was fixed averaged about -60°F.

5.4       Sampling Chronology

5.4.1     Philadelphia Tests

          Two days were spent setting up and checking out
equipment at the Philadelphia terminal.  Testing was begun
the third day, December 11, with no apparent problems.

          Material balance checks on the sampling data
indicated, however, that one of the hydrocarbon vapor flow
meters was operating improperly.   An equipment inspection the
following morning showed that the problem was caused by liquid
gasoline which had collected in the meter.  The source of the
gasoline was not determined, but due to the quantity involved,
it was suspected of coming from the overfill of a truck.

          On Thursday,  December 12, testing was conducted
with no problems.   Flow meters were frequently inspected
throughout the day for collected gasoline.  Material balance
                              A-128

-------
checks of the data indicated all was well.  Thursday night
and Friday morning the test equipment was dismantled and
loaded into a van for transport to Baytown.

5.4.2     Baytown Tests

          Equipment setup and check-out took only one day.
Testing was begun on Tuesday, December 19, even though the
unit was not properly operating.  As discussed in Section
5.3, the high pressure refrigerant system had a leak which
affected the temperatures of the whole refrigeration unit.
Condenser temperatures of -50°F were observed, and testing was
initiated to determine how the system would operate under
adverse conditions.

          On December 18, the unit was still under repair and
the condenser temperature had risen to -20°F.  Testing was
not conducted on that day.

          Testing was resumed December 19, after the completion
of repairs to the unit.   The condenser temperatures averaged
around -60°F throughout the day.

          A minor problem occurred in measuring the temperature
of the unit off-gas.   Apparently the thermocouple originally
used for this measurement did not extend far enough into the
gas stream to obtain a true reading and the value being
measured was influenced by the wall temperature of the pipe.
A thermistor was finally used which extended well into the
vapor stream and produced a constant and reproducible value.
A value of 10°F was consequently used for this value in all
calculations performed by Radian.
                            A-129

-------
 5.5       Results

          Hydrocarbon vapor recovery efficiencies were
 calculated  for each of the systems tested.  Results for the
 compression-refrigeration-absorption system were based solely
 upon data collected, on December 12.  Data taken on December 11
 were not used due to improper operation of one of the flow
 meters.  Results were calculated for both days of tests on the
 refrigeration unit.

 5.5.1     Compression-Refrigeration-Absorption Unit

          Material balance calculations indicated that the
 hydrocarbon recovery efficiency of the collected vapors dis-
 placed from loading operations was 82%.  A computer equili-
 brium model developed by Radian predicted a vapor recovery of
 83% for the test conditions.  The test data indicated that the
 hydrocarbon vapors approached equilibrium conditions in the
 vapor recovery system.  They also showed the model to be a
 valuable tool for predicting recovery efficiencies.

          After the implementation of Stage II controls at
 service stations, the hydrocarbon concentration of vapors
 displaced from loading operations will be higher than those
 measured during this test period.  The hydrocarbon concentra-
 tion of the displaced vapors from loading operations should at
 that time approach saturated values.

          Several samples of the vapors were taken after they
 had passed  through the saturator.  These samples were then
'used to provide data for calculation of recovery efficiencies
 at conditions that would approximate those occuring after
 implementation of Stage II vapor recovery controls at service
 stations.
                             .A-130

-------
          After the saturator, the hydrocarbon concentration
had changed from an average value of 24% to one of about 537o
(both percentages expressed as propane).   The hydrocarbon
recovery efficiency of the higher vapor concentration was
calculated to be 92%.   The computer predicted value was also
92%.

           These  tests  illustrated the  point  that  the  degree  of
recovery  efficiency achieved  by  a recovery system is  propor-
tional  to the hydrocarbon concentration  of the vapors displaced
from loading operations  since the concentration of vapors  at
the outlet of a  vapor  recovery unit  is relatively constant and
is  fixed  by equilibrium  conditions which are determined by
the operating temperature and pressure of the unit.   Measured
hydrocarbon recovery efficiencies can  be expected to  increase
as  service station vapor recovery controls begin  to be imple-
mented  since this will tend to increase  the  hydrocarbon concen-
tration of vapors displaced from the tank trucks.   Tables  5.5-1
and 5.5-2 present summaries of data  taken during  testing of  the
compression-refrigeration absorption type unit.

           The total amount of hydrocarbons collected  from
loading operations on  December 12 was  93,561 grams  (0.73 gm/
gallon  of fuel loaded).   The  amount  of hydrocarbons emitted
to  the  atmosphere from the recovery  unit was  16,810 grams
(0.13 gm/gallon  of fuel  loaded).

5.5.2      Refrigeration  Unit

           The average  hydrocarbon recovery efficiency of this
unit was  found to be 85% on December 17,  1974.  During these
tests,  a  temperature indicator which monitored the vapors
leaving the condenser  indicated  a condenser  temperature  of
-50°F.
                              A-131

-------



























§
I
(A
r<
g

SD
B
S
S
H
9
.-2
£
















J3 C° •->
^ -H r-4
Cd 0) 4J Cd
O O W 'rl W
rl " SS~B
TJ 0 S
>s H >-*
X (X,
C
O 00
"° 5
CO CO U E
O O W-rl M
S " 03 M
TJ Q N^
X V4
s en
O i-l
* .0 4J
rl rl Cfl
Q.Su'J
cd O C s-'

•O 0
33 o
o
o
1-t
S^5>
K i-l C
O H
jj> 1
°^J9
•o
a a
C i-l *>
tt) I— 1 4J
•rl Cd
OO
•0 <-J
CO C B
C-H O

CL O r-t
00 00 03
•H fl^W

O Q*s~*

R) 0> 0
y-s
| 0>O

E 3SC
•H W

l|5
•o
0)
to B"*^
^_l jj jj
O.i- cMOr»«o*>csiton*AtT> oo oo co

^D C4»-*cnO\i-tf^es» r-4 t-41^ CM





oo0©!^^ ONfiOinr^ m mmm
r*.ON-^a\rMi>.oo^ocCT»^O(nmQOONooi-i
^ rH rH rH rH CM CM CM CM CM CM fl





unPo^i~4fncM'*r«*o*oinovin-*cno\
CMS^lrtoOCMfr|^)esvoo^inv&^cvom«— ivoiAvommvovo
OO^OOO^OOOCTiONOO^OO^OOO


OCMOOOU-IOOO-*OOOOOOOO
meMinoo-\onf-i

                »ncM^io\D      rooirt      fninoocM«^oom
                in  oo  r~  in  in  in  r-i
                                            O  vo  m  o

                                            oo  oo  cs  oo
                                                                to   \o o CM   in  m
                                                            PO  oo   r^.  f"« n
                                                            i-l  *-•   iH  »-l CM
                    -*  O  *N  m  in
                    -^  - Q
ti 5
X
r^
i— 1
-x.
CM
r-l



CO CM
1 1
DO VO
IV tO

CM CM





.» CO
1 1
00 VO
CO
so
CM





in
i
00
•» as
r^ r~
CM CM





-3- vo
1 1
SO 00
CO
>0
CM
•*




C^
1
00
in
r^
CM





00

00
CO -3-
so r*.
CM CM





in as
i i
so oo
so r^
r- vo
CM CM




O
SO i-l
1 1
so 00
in oo
r- vo
CM CM
-3- -»





1 1
00 SO
f~ 00
r*» f^
CM CM
^T -J



CN
I-t 00
1 1
OO so

                                                                                                 4J

                                                                                                 o
                                                                                                 b
                                                                                                 01
                                                                                                 0.

                                                                                                 §
                                                                                                I
                                                                                                 o
                                                                                                 s
                                                                                                t)
                                                                    CO ON  i—*  00
A-132

-------

























CN
m
m
W
»J
PQ
<
H


















O
E C
cu cu
4-> -H
CO O
M-l
W
0 bO
/2 C X-N
cO 6 co 4-> cO
O O co -H b£
O M 

ffi

i_J
W
p
~> C
K o
o
cu
cu 3
C 4-1
•H CO x-s
i~~i v-i rTi
0 CU o
to g<^-'
O CU
H
-








CN





CO
>-l g 4-J
O O -H
CX M S

m
un
m
                   CN
                   OO
                   CN
                   VD
                   co
                   m
                  oo
       CO


       4J
       O
      H

       >,
      M
      •H

      ft
•
-------
          Equilibrium predictions of hydrocarbon recovery
efficiencies at -50°F for this unit indicated that a recovery
efficiency of only about 6070 could be attainable with the
inlet composition experienced during this test.  Discussions
with representatives of the unit manufacturer indicated that
the temperature inside the condenser was probably 20 to 30°F
colder than the temperature indicated at the condenser outlet.
Equilibrium predictions at this lower temperature agree quite
well with the measured value.  Figure 5.5-1 is a plot of pre-
dicted removal efficiencies versus condenser temperatures for
the average vapor composition observed during testing.

          As was the case with the compression-refrigeration-
absorption unit, the hydrocarbon concentration in the vapors
emitted from the vapor recovery unit, was for all practical
purposes, constant and fixed by the temperature and pressure
of the unit.  An increase in the hydrocarbon concentration
of vapors processed by the unit will result in an increase in
the hydrocarbon recovery efficiency for a given set of operat-
ing conditions.

          On December 19, the hydrocarbon recovery efficiency
was found to be 83%.  The temperature of the vapors leaving
the condenser averaged about -60°F.   Unit operations on Decem-
ber 19 were somewhat less stable than on December 17 operations,
probably because the system was not completely lined out after
startup.

          Hydrocarbon mass emissions for the two days of
testing are summarized below.  Tables 5.5-3 and 5.5-4 present
summaries of all data obtained during testing of the refrigera-
tion type unit.
                             A-134

-------
    100
o
z
UJ

o
UJ
     90
     80
2
O
m
o:
<
o
o
o:
o
70
     60
     50
    40]
      -50
           -60
  I	I

-70       -80


 TEMPERATURE
-90
	|

 -100
  FIGURE  5.5-1 - HYDROCARBON REMOVAL EFFICIENCY VERSUS

                  CONDENSER TEMPERATURE
                        A-135

-------
C
O 00
.0 n <~*
I-l -rl r-l
Cd CO 4J CO
O O CO -rl 60
rl 03 6
•a o M
>» rl "•'
O 60
•2 .S ~
id to u Q
O O CO -rl Cd
rl 03 M
TJ O ^
>. M
SB OH
C§
O-rl
•K rO 4J
'rl rl «
O CO rl^-N
W O C^
•O O
>>C
SO
S "^
S 4J CD
g W C
1 ^0^
cn a) a o
r.^15
CO ^ >^
• B
LO O CD 0)
Ot! co C/-N
H C-H"
LO CUi-H 4J
J °-OJ^
tJ !S 45 cd
3 £ ao
si
•"^ E-i co cu to
H co C C
L Z C -rl O
S Oll-lr-l
H co co (d
>> -rl 10 W
< QO^
-J^cAcor-oooo^ooo
r-IOOi-IOOOOr-IO
sssssssgs™
C ^ in i— i in r^f-oo^
r-l rH
cMvor-mcMoooocoo
co-^moi— lO^oincocjN

t^cJScSoooocoooIo^
o
ooooo -*ooo
i-l i-l r-l r-l r-l r-lr-liH
ininminoooomin
CXJCOOOOOr-IOCOi-IOOOO
r-li-lr-li-IOin'OOr-lr-l
oooooooooo cooocooo
ooco^coavvocoooovocovooo
Or-lrHr-IOOOOOOrJOO
cMr-ir-*\c>i-ior^-r-icorocMi-ioo
oOr-i-Ji-ir^oovOi-i-a-cointscM
r^ o co CM co \o co to !-** co vo to
iH i-l i-l
in
COCOrH-*inOr-ICOr-IOOOinr-l

or-ooovcMocMOr-i H
x3
 a o

 3£
 CO
 CO  -
 cu C
 rl 1-1
rV-'1
                 inoooinc>iCOininin
                                                               ininooootnocNiocsoco
T3
 CU
 O CU/-V
 CO S «
r-l 9 W
 P.1-OW
 to O'-'

s>
 rl
 01 rl
•-< a)

 si
HZ
   <0.
   a
                                                               tTt  \£>  CM CS
                                                               r*1  ro  ON oo
                                                               O  00  i-l ON
r^.  ro  
-------
          o
        oj ft
     >, oca)
     i-l (TJ -H /-s
     •r< H OS'S
     rt ,
(•I  o  o  oo
r-l  i-l  CM  O
                                                     CO
                                                     o
                                                                  CO  C")  ON
                                                                  CM  r-1  i-l
                                                                           ON  vo
                                                                           O  O
  5
33°
£ S1"
H-S
   M -H «

   Q) C K
   O 3 M

   O


  Oi
        o Ce-s
        M Q^ N—',
       •a o


       *J
          (U

       _  3

        )J w
        A 03 y

        E.H!
          01
          t-1
o I "",
CXM
                                                                 ON  CM  -tf
                                                                 CO  ON  CO
                                                                 c^  O  m
                     i  ^  r~ O
                                          csi  o o
                                          co  o o
                                                                         o  o  o  o  oo  in
-*  o  oo
o  in  o
m     m
                                                                                      r~ oo
                                                                                      r-l VO
                                                                                                         CM    2
                                                                                                                       h  a
                                                                                                                       o   X
                                                                                                                       o  at
                                                                                                                       r-l
                                                                                                                           CO
                                                                                                                       
-------
          Hydrocarbons Collected      Hydrocarbons Emitted
         from Loading Operations    	from Unit	
Date     (grams)  (g/gal loaded)    (grams)  (g/gal loaded)
12/17
12/19
52,650
81,679
0.87
0.90
7,954
13,744
0.13
0.15
5.5.3     Tank Truck Leakage

          The unit operating efficiencies and mass emission
rates reported in Sections 5.5.1 and 5.5.2 are based only on
the vapors actually collected and measured.  At both test
locations,significant amounts of hydrocarbon vapors were
emitted to the atmosphere primarily through leaks in the tank
truck manhole covers which are located on the tops of the
tankers to permit access to each fuel storage compartment.
After several months of use, the vapor seals around these
openings become loose and subject to leaks.  An explosimeter
was used to check for leaks on each truck, however, in some
cases the leaks were so severe that the escaping vapors could
be felt by hand.

          All of the trucks tested at the Philadelphia
terminal, except one, were found to leak.  The ratio of the
measured displaced vapor volume to the volume of gasoline
loaded varied from about 0.2 to 0.86 for the leaking trucks.
The truck found not to leak had a displaced vapor to liquid
volume ratio of 0.963.  The overall or average measured
displaced vapor to liquid volume ratio on December 12 was
0.47.
                             A-138

-------
          Hydrocarbon leaks were also detected by explosimeter
readings on most of the trucks loaded at the Baytown terminal.
The overall collection efficiency of vapors was higher at the
Baytown terminal, however.  The average measured displaced
vapors to dispensed liquid volume ratio was 0.86 on December
17 and 0.75 on December 19.  The average for the test period
was 0.79.

          It is significant to note that when a truck was
found to have little or no leakage, its volume ratio of
displaced vapor to gasoline loaded was near one.  This is the
ratio which would be expected to result from bottom loading
operations.

          If it is assumed that a leak free truck will produce
an equal volume of displaced vapor as dispensed gasoline, the
total system efficiencies would be much lower than the effi-
ciencies of the process units reported earlier due to vapors
leaking from the trucks.   To calculate these efficiencies any
truck that had a vapor to liquid ratio less than 1.0 had its
vapors adjusted to make the ratio become 1.0.   The hydrocarbon
concentration of the vapors was assumed to remain as measured
for each truck.   Applying these criteria to the test data yielded
the results  presented in Table 5.5-5.
                             A-139

-------

































1
L«fc
I
W
| 1
PQ
a

































XO
ri c
01 01
o o
0-rl
01 !H ^\
041-1 6-5
W N-<'
o -u
4J O
U^-rl^
OB-!
cgiw
4J M-l
O W
H
U

•J2
5

rJ
8
to
B


5
H

W
§
d
z
I-I

o
H
O
W
ORRECT
u
CO
1
CO
s
H
H

b
O

£

i
CO




CM
00


<*
eo




CO
C
O

rl O 01
10 4J rl
U 01
OTJ.C
rl 01 d
*O 4J CO
X4J O
x *ri a
S 4-*
r-l W<
id
o
H

r-l
eg

•^
Is





0




y— S
1


O
00

00
I-I
r-l

M
C «
1-1 rl
O
CO Cl

,2>
M T3
n) 4)
U 1-1
0 3
"O nj
XOI

CO

CO O
C n
O CO
u u
O 4J
rl O
T3H
X
X C
•rl
y^s
r-l
to
tit

I
\_>>

e"n
p^

o


i -1
Cl *°
1 "1
* — | n
1 Ov
r-l
0)
Of
i
s^


in
r-l



^-^

oC
^^

r-l
cn
r-l
«
in
O\
r-l
01 CO/-V


CO tVW
eg eg v-"
ic5*
•o-

•-I 0 rl"
eg eg o 4->
4Ji-l euM-l

H ^
a

C a>
o u
.rl Id
4J Q
CO
O C
rJ *



vo
r^
0
K
00


o\
00
r-l

r^

eg
a

0)1^
"S"**
T-4 rH
•H — .
_r; CM
D^ i— 1




m
00


CO
VO








.
o


vO
00
0
VO
CM




r-»
00

o


o
CM
in


CM
r-l


CM
GO
r^
•
0
r^

f«-
vO

»
vo


in
CM
r-l

00



^
G "^

4JrH
CO CM
CO r-l




CO


vO
in







vo

o


o

vo
CM
in




0
0.

o


vO
r-l
00


CO
r-l


in
0
VO

O
CM
r-l

^
00
O
»
o\


i-l
CO
i-l

CM



-3-

3"^
4JiH
10 CM
pa 1-4
                        73
                         0)
                        4J
                         O
                         01
                        r-l
                         60
                         a
                         CO
                    CO    0)
                         3
                   U   r-l
                    U    CO
                    0)    >
                   l-l
                   IM   T3
                         01
                         H

                         a
                         eg
                         01
                         E
                              O
                              D.
                              cd
•w
 g
                              •s
                              e   
-------
                           APPENDIX B
                 REFERENCED SUPPORT INFORMATION

1.0        GASOLINE VAPOR CONTROL-REGULATIONS

          In certain areas of the country, hydrocarbon emissions
attributable to gasoline marketing facilities are at such levels
that regulations pertaining to their control have become necessary.
This section contains discussions on the quantities and signifi-
cance of these emissions, procedures provided by the Clean Air
Act of 1970 for establishing national air quality standards,
standards of performance for new stationary sources, and the status
of control strategies.

          Although the focus of this report is the study of vapor
control systems for hydrocarbon emissions in the gasoline marketing
industry, ambient air quality standards are briefly discussed here.
Ambient air standards, which apply to existing facilities, are
an important forerunner to standards of performance for new sources
and are central to much of the logic behind them.   With some ex-
ceptions, equipment and control technology are the same for both
types of standards.
                               B-l

-------
1.1       The Clean Air Act

          The Clean Air Act p_f 1970  serves as the basis for all
laws and regulations on Federal,  State,  and local levels pertaining
to the prevention and control of air pollution.   The Act provides
for the establishment of ambient air quality standards and standards
of performance for new stationary sources.   Each type of standard
and its impact on the gasoline marketing industry will be briefly
discussed below.

1.2       Ambient Air Quality Standards

1.2.1     Establishing and Implementing  the Standards
          for Existing Sources

          Briefly, the procedure provided by the Clean Air Act
for the establishment of national air quality standards and the
subsequent plans  for meeting those standards in existing sources
is as follows:

          (1)  Substances are determined to be air
               pollutants and are listed as such by
               the Administrator of EPA.
 Clean Air Act (42 U.S.C. 1857 et seq.) includes the Clean Air
 Act of 1963 (P.  L. 88-206), and amendments made by the Motor
 Vehicle Air Pollution Control Act--P.L. 89-272 (October 20,
 1965), the Clean Air Act Amendments of 1966--P.L. 89-675
 (October 15, 1966), the Air Quality Act of 1967--P.L. 90-148
 (November 2, 1967), and the Clean Air Amendments of_ 1970--
 P. L. 91-604 (December 31, 1970).
                               B-2

-------
          (2)  Air quality criteria,  information on
               control techniques, and proposed national
               primary2 and secondary3 ambient air
               quality standards are issued within 12
               months from the time a substance is
               listed as an air pollutant.

          (3)  Within 9 months of the promulgation of
               national primary or secondary ambient
               air quality standards each state must
               submit an implementation plan for
               maintaining and enforcing that standard
               in each of its air quality control
               regions (AQCR).   Reasonable notice
               and public hearings must precede the
               publication of such plans.

          (4)  The Administrator of EPA will approve
               or disapprove state plans or portions
               thereof within 4 months of their sub-
               mission.  Plans may be more stringent
               than required to meet national standards
               but they cannot be less stringent.
2Primary standards reflect the level of control required to
 protect the public health with an adequate margin of safety.
 Specific Federal compliance dates are set for primary
 standards which must be met irregardless of cost (RO-102).
3Secondary standards reflect the level of control required to
 protect the public welfare; to enhance the quality of the
 environment as  opposed to protecting the public health.
 These standards are to be met within "a reasonable length
 of time" with states and local agencies setting compliance dates
                              B-3

-------
1.2.2     Ambient Air Quality Standard for
          Photochemical Oxidants

          Hydrocarbons,  the major emissions from gasoline market-
ing operations, are the subject of national standards, primarily
because of their function as precursors of photochemical oxidants
rather than because of their direct effect on the atmosphere
(NA-009).   The national primary and secondary ambient air quality
standard for photochemical oxidants, measured and corrected for
NO  and S02 interferences, is 160 micrograms/cu. meter, 0.08 ppm,1*
  X
maximum 1 hour concentration not to be exceeded more than once per
year (40 CFR 50.9)

          The standard for hydrocarbons measured and corrected
for methane, which is used as a guide in preparing implementation
plans to achieve the oxidant standard, is 160 micrograms/cu. meter,
0.24 ppm,5 maximum 3-hour concentration (6-9 a.m.), not to be
exceeded more than once per year (40 CFR 50.10).  The correction
for methane, which involves the subtraction of  the methane
concentration from the total HC concentration,  is made because
methane, considered to be a photochemically non-reactive hydro-
carbon, is naturally present in the ambient atmosphere at a
relatively high level.  The non-urban background level for methane
has been measured as 1.0-1.5 ppm (NA-009).  This background level
is primarily attributed to biological sources and considered
uncontrollable.
^ *
^Conversion between ppm and micrograms/cu. meter: ppm Oa _
micrograms 03 x 5 IQ x lO"1*  (40 CFR 50, Appendix D) .
    m3            "
5Conversion between ppm and micrograms/cu. meter: ppm carbon
(as CHJ=  [mg. carbon (as CHO/m. ] x 1.53 x 10"3 (40 CFR 50,
 Appendix E).
                                B-4

-------
1-2.3     State Implementation Plans and Transportation
          Control Plans to Meet Ambient Air Standards

          The Federal role, as provided for by the Clean Air
Act of 1970, is primarily one of guidance and assistance to the
states.  The states are responsible for writing a plan "which
provides for implementation, maintenance, and enforcement of
primary and secondary standards in each air quality control
region (or portion thereof) within their state".  (Clean Air
Act of 1970, Sec. 110(a) (1).)

          In order to assist the states in channeling time and
resources toward the control of the most complex air pollution
problems first, EPA, in consultation with the States, has
assigned a priority classification for SO ,  particulate matter,
                                         X
NO ,  CO,  and photochemical oxidants (hydrocarbons) to each AQCR.
  J\.
A Priority I classification for a pollutant indicates that
emissions are above the national standards for that pollutant.
A Priority III rating indicates the emissions are below the
level specified by the standards.   Control strategies must
specify a means of attaining and maintaining ambient air quality
standards for all Priority I classifications.  Provisions must
also  be made for maintaining emissions below secondary air quality
levels in Priority III areas.

          Priority ratings as described In 40 CFR 51.3 are
based on measured ambient air quality where known or on estimated
air quality.  When no data is available, a Priority I classifi-
cation is assigned to urban areas of 200,000 or more (latest
census figures).   Following a three month data collection period
this  classification may be changed to Priority III if the data
indicate such reclassification is justified.
                                B-5

-------
          For photochemical oxidants (hydrocarbons),  a Priority I
classification is assigned to all AQCR with a photochemical oxidant
level equal to or above 195 micrograms/cu.  meter,  0.10 ppm, 1 hour
maximum.  Below this level, a Priority III classification is assigned.

1-2.4     Implementation Plans

          In formulating control strategies,  the states could apply
a straight percentage rollback from baseline emissions in each
AQCR to determine the percentage of control required to meet
national ambient air quality standards.  Baseline inventories in-
clude the projected effect of the Federal Motor Vehicle Control
Program (FMVCP) and the projected effect of any existing state
regulations.

          The Clean Air Act of 1970 called for control strategies
to include emission limitations and "such other measures as may
be necessary to insure attainment and maintenance of primary or
secondary standards, including, but not limited to,  land use and
transportation controls" (Section 110(A) (i)).  EPA recognized
at the time,  however, that the states had no experience with
transportation control measures.6  Accordingly, the implementation
plans submitted in 1972 were oriented toward stationary source
emission limitation controls.

          Stationary source controls for photochemical oxidants
(hydrocarbons) frequently involved the extension of existing
controls or the writing of new requirements for the bulk storage
and loading of organic chemicals such as gasoline.  Table 1.2-1
""Transportation control measures are defined as any measures
 which are directed toward reducing emissions of air pollutants
 from transportation sources.
                                B-6

-------
ua
u cj en CD 4->
J U-j CD CJ «C
D O CLU 1-1 • 3 CD
•i CD c « jj c
^ w o  w CD at
C u &C O w bO

CU X: D CD QJ C O QJ
S5 -w B B M "*•* {X E




to
CD 4-1 t—J
i— I F- I
w *a 3 -H CD
C • O .-< C CO ,-( 14H X:
CD o 1—4 O- to to CD r~4 -U
£ ^4JCOCQtn .W t-( *O
> j-i e 6o > o -i-1 *H CD E
3 -HI O. C J-> WO

V-< >>O > «tr( ^~i X< CU CD *W

E -H x: > ^ X) 60
< CDM-t *O i-l £ CD 3 C
3 60T3 Q4-)£3CDicOi-l
C en to CT-u XI "O
•H • 10 p CD W 3X3 W
J -O --i .* E C xw .u O
come: oV4co f-if-i
O CC to >M-( O B-S 3
^H 4-J 4J JJ 60 LO Vrf •
O -w cj E c CT* .Vw o £
CO O ,X CJ CD CD i-l CD O
j£ O CJ C3 r—* 4-J *O CO i*"^ CD •*-*
CJ - 3 D.-— ' W CO 4-1 O.-U
COOJ-I to O X O C-H-H O
Q£ iTi 4-1 CJ CJ cn*-H*«-4 CD P ,^



I
CO
a.
CO X
O l-i
CD
• i^
-* o
to o
1 I-l
O 1
O V4
o o
. o.
O eg
»J5 >

c u
10 i-l
j: w
4J CO
J3
V
K 01
O ^*

3
<4j cr
O QJ
ti
CO •
p2(i X ^4
(^ i-l CO
CO i-l 01
H 0 00






X
4J
C
3
O
U

CD
i—i

,A

£

eg
B
•B
<0
t-4
<


i e
3 O B C
00 i-l O O

h QUO)
^ « * C
33 cu-rt

Ci-l n
• 00 to en _i
4J C C 3 •
Ci-l to O 00 to
Of V-l 4J o QJ V4
CO CU C U CO
01 > CO h O
l-i O-J 01 JZ
p O CX*O 4-1 00
4-J en o) 3 3 1-1
CO C 00 -4
o co en oo cu
01 -H I-l ,Y C P
C 4J O C O W-4

Z I— 1 01 4J CO I-l






01
en
3

1 1
W CO
3 01
E O-

00 O.
B

O U4
,— I
•D
j: 01
O 00
cej f-i
14 CU

i— i ,0
-4 3
< en





i
CO X
a >*
CO CD
0 >
CJ
CD O
§^ S
t

I-i O
o a
CO

ft
to o
00 1-*
1 CO
0 ,0
O
- 01
in u

3
et-i cr
0 01

CO
t^ X ^4
C 4-J tO
CO i-l 01
H O 00














01

eg
4J
VI

eg
C
o
N

)J CO
00 01 £
C 4-1
•^ CO 4J
-—I 01 to
•01-13
C 00 E
CO
j: to cu
1 -H 00
4J CO
O X V4
3 4J o
*D -H 4J
O 0 01
IW CO
O.O.C
eo O
•-I O *r4
^w iJ .
co jc: to TJ
C 4-1 CU
4-1 CO CO 4-1
CO 4J CO
T3 QJ • CU
01 ^1 4J C
1J O 3 0)
•^£ O. 00

cr oo co
eu QJ 3 ^
h 00 O O
CO ^ CL
4J I-l £ CO
C 0 4J >
01 4-1
tx o o
1-1 ^
3 O cns-J
0*1-1 en O
01 4J CU CTf*
to *—i

V4 eo I-i QJ
01 10 >
>T3 CT 0
O C 01 0
O CO IH CU
QJ l-<
h 01 to

1^ co 0 eo
0 >j 10 3
P- o ^ E

> to oo to
C E
O 4J -r4 01
"*•* B T3 4-1
co co co en
CD »— 1 O >>
CQ 0.1-4 in






X
4-1
B
3
o
u

01
oo
E
CO

0
to
£
O
'W
•H
i— I
CO
U





01
•o
4-1 C
en co •
TO -C 01
01 OO
-4 CO CO

4J 0 O
CO CO 4-1
t4 CO
CO
-r4 00 1-1
C O
4J "U
•r4 CO IJ
O O CD
TO -H CU
O. Ot
CO 01
O h >>
01 V4
v r- fli
6 3 >
CO O
4J T3 O
C QJ
01 eo 14

01-^1
£-^ 0
3 CO (X
01 CO
to o. >

B tx cu
i-4 1^
O--I •<-!
CX»— i 3
1-1 cr
01 t4_l 01
00 V4
CO "O
I-i 01 O
O OC 4J
4-1 j-l
tn CU 00
E B

— i 3 C
CD in c
CO
4J CU —
to > cx
co

14 AJ
O 4J B
4-1 CO 3
co 3 O
•DEO
c
CO CU
E oc •
CO X
|J I-" CO
co o "o
01 4-1
00 CO CO

>-. c •

eu-rf eg

o co
U 4JO
01 en O

1 «•
li -O
O — I CsJ
CX CO
CO 004J

0 CO
O O 01
i-4 O •-<
en •*
COO 4J








^
4-1
B


o


,.
-HjicDCuco CD»H o^stf
4J V-i > CU CT* W *~* X *O CT^ CD P"^ CD
CDCDO-^E W WC >C7\>
iJ DC 4-J 4J O- CU -U CO CU O i-" CO
WtoCOCJi-(>-«-tO >CJ JC
O  E-*-»r^co i w


«CCUL^J-i33 4J P &. 3 f^1

c X *<~t CD CT> > cu *~* •— * ^ co u~i
O CD •i-' CU O W X) 0) ^ 3
f-< CD^CUCJ'V'CDCD •••V^CD X} E "^
CD Stnc^ww-H-rHS c w -H 01 ID ao
w "3 cu'^"11 i S t/ > ^ -2 So cuctfcu
i— 'J-vC-w OC-i-GJfOCJ-'G.^J-'J-'E

cu C-£ CJ p ro-t-«l+-J wx:-'-'-^*1*-' >.-w 3
Si-H JiXJ E >O CDCOJJ in'OtDcnc-OOi




n
. jj
1 «-O 3 •
W J-l -H CD Ct -U
T3 O ^ , r W
CD P.-UI-I GO 3
CD to CD 3 3 E
cj >.c cr o
X U CD M CO
-i x:
>^JJ JJ W
4j r-t c: co T-;
3 »H 0) i-l X
CL co g ^»-i
x: -0 taij^^
CiO i-l C <0 i-l
D . 3 cyo iw
o t— i cr**4
k en  CU I-* CD
Ki O O E

x: 10 CD t-o o 3
3 CM KOOI^ 10





. .
4J r— 1
C 1 *-*
W 1 CD CJ -H
•» C .X 60^-< CO *W
C ^ CO C C co CX
C3 C XI 1 CO *H > 03 T3
i-i 4-i !-( co 3 60
,u * o cr • ^

CD cu 4-* o i-o **^ *o E
4-* CU 03 CD TD 60X1
CO CD O. C >. CD 3
CD >il«i wroxi >O to
Vy ij 60 i x; o o
CX)i-t "O 4J T3 l-r O V
O W CD CD (X - >
« to ^4 a>  x:
en D--W AJ CD o a* cj
O w i-t Xi cj 60 to
CDO ^ CX > CO CD
•-< (0 3 V4CO>H
a
CO
CD
<
CO
CQ
o
o
CO
•H
CJ
c
CO
V4
{x^

B
eg
en
eg
c
o
*V«(
rt
CO
CJ




















01
B
o
z

























01
B
S





,
,«!
to
oo
1
O I
0 V.
o o
- Cu
0 eg
•vt >

E CJ
eg 1-4
X CO
4-1 CO
JO
QJ
I-. 01
O I-i
6 --I .
3 V4
tM cr*
o eu 01
1- 00
CO
-* >.>.
C 4-1 I-l
to i-l tv
4-1 U >
CO 0
3 0.0
o; eg ti
Z CJ |H














01
4J
eg
4J


o
•o
eg

0
r-l
o
u
                                        B-7

-------








































to
4-1
C
01
E
01

•H
3
O
01
a.







































/~"x
-IJ
0
O


r-l

CNl
r— 1
W


rf\
^<
^•4









01
CO
o
4-1
l/l
w
01
rH
E
r-l
•o
CO
o
.J























u
a
CO

o

V)

Jt
•H
g
CO












«
(U
M


0)

-,-1
U
u
IH
U






V


j_J
(0




•0 1
C "Or-^ Ol I-l -1
rH 3CrH TJrH V4 O CO O UJ
CO O3-— ' CrH3CUI WO O
co wo cco-r(cococioio -a oi
i oi 60 w oi oj o u-i to > o eu u-i -TJoicox:
O 13 W 60 > > ^-s CU Or4jOrHOl4_l34-l4JrHCO
in30IICOr~4-IOJ13WeO O rHCOO rH^^
CMrH-OOJXCOCCOJCU OOIWl-irHT3WWOIi-*
CJC> >0>'HCO -C 2£ > 01 CO OCOWU-IJt
CC3O4-1 > r-4 r4 CO 4-1 rH 6013 4-1 CU W *r4 01 C
C0-r4 ,Q 10 4J 0) T-l COq£CO>OIWXC:cQ
4-IT3CU E 01 3 q -Q -Q E *-* *H 4J C CU
r-i 6C-O >3O3 13014-JcotO O 3 13 CU 3 t)
01 3 CO C --N o>c04JO»4jqOr*Xcu OI4J4JC
WOWCQOICCO t04JtflOlrHq4JU-l XrH CO CU CO
O3O OOO>J!4-l34JX>UHCO^-ltlHnrH'OJ3
E^4-l4JCOl-IICCElHlO HOCUCOCO C
to C W AJ 01 CO 01 U-l CC CO IJOIOIO
tr4X CO O CO W 4-1 C W XOO CU O W CO > C 1-1
O4JCrH4J>3 COOWWl-l "•C04JOClHT'l4J •
•1-IOrXCOWtOU-lE O CU 4-J 13 4J O •H4JrHCJ4-l
10 O '--I 1 CU to O E - >COOICu WCO CJ 01 Or
.^ co 4J ,x ,x w 01 oi cu.* o > w 5 -ooijccurHcto
C &- CO rH rH C WT3 CU CU C CJ W-H 01 rH ..H rH CU-lrH C U-
ra CO 4-1 3 3 O CX C *H COOIOJ3XIOW3CO UH »rH O U-t


o
O -u-l X
O co O X|V4
-.i! U 01
O CJ CO -r4 >
rH 3 |J CJ O
W CO CO U
4J 4J CJ CU 01
tO ,M OJ W
CO ^£ C CJ 1
cu C CO M
rH CO -U • O
i-l rH CU
4-1 rH CO CO
co O i-l 00 >
4J CO
BO C WO U
C "r^ O 1-t
•H V4 CNl en
•o x o co •

O 1-* CO CQ j;
rH CO W X QJ CU
T3 01 4-1 Li E
tO rH .rt CU
,X • -H Ol 3i-l
CJrH CO r4 CT 3
co to w o 01 cr
o; 004-1 E w oi



1
CO
Cu
a x
CJ W
01

-H O
CO 0
60 01

O I
o w
O 0
- CU
O CO
-3- >

c u

x to
U CO
.Q

W 41

E i-* •
3 4-)
u-i tr B
O Q) 0)

to cu

C 4J 3

EH CJ 0)














01
4J
CO

en
4J
3
u


CJ
CU
c
c
o
u

,
,_|
CO C 4-1
oo o c i
1 1  .
C 01^ 3 iJ
CO > JO O C
X CO U VI CJ
i-l C co Cu
01 4-1 Cu 3 Xt i-l
W to 0 3
o 3 -H w w er
E E-1 ooo oi
•
.a CO M HO
C (X W T3 O 0
co CD 01 c 4-1 0)
H CJ E CO to W






CJ
•,-4
CO
CO
rQ
01 W
> co

X 60

4j X
en w
3 CU
E >
o
to u
Jt: oi
CJ W
CO 1

0
-i Cu
rH CO









1
• M
rH O
co a
OC CO
1 >
o
o u
Ol-l
- CO
O CO


B cu u
co > q
X CO CU
"xcL
ft) tJ -r^
W to 3
o 3 cr


UH XX
O 4-1 W

en cj >
j: co o
C CU CJ
CO CO 0)
EH CJ W












4iJ
u
w


Q
o
4-1 Q
CJ i-l

u'i

CO rH
—I O
QCJ






01
rH . O
W ^3 CO CO
O CO COT3 rH
B B B <0
Ol Ol O 3
C 4J tO O 4J
IH to co ex to
r-4 XOI E 3
o to w o E
to u
CO W 0) CO
fccow.cc
3 U O
•C co 3 -H
CO O) 4J CO 4J
O CJ tO CO
r-i -r4 3 60 W
C > E C Oi •
3 01 -r4 CU4J
•0 X Cu 0 W
W oi E oi
O-H.E 3 BrH
O tH-cl O CO
T3 W -r(
co xj w 4J q
o c: o co o
rH O • 4-1 f-4
CJ rH 60 CO 4J
O C 3
01 C W -r< T3 rH
TJ-rJ C 3 CO O
c to o o ex
CO CO CJ CU to 1
£;•-> c w
EC - 0 i-l

O 1 1-1 C 4-1
in 4J >H CO C
CuO 3 CU W CO
E CUrH CU 01
3 COrH CU CUU-I
CU > O M 0 0
CX,
- 6C " 60 CO
01 C"4H CC C 01
W iH O C ft M
0 iJ ^< 13 CO
4-1 10 -rH CO .C
10 ^-1 4-1 rH O O.
X CUi-lrH
O CU 01 Cu B co
.c D to 3 3
3 T3 O
C 01 -131-1
01 COX 00 B W
to 4J c co eg

r; 5 X-^ 00
4-1 ox a B 60
C 01 i-l C
4-1 JC; "D rH T3 >H
3: oi co w
XI W • O 3
CU O 60-H 13
• 1013 C
to 3 W iH 4-1 CO
C O 60 C C
O 4-1 W CO O
T4 COT3 CO rH .H
4J 3 CX CU4-I
co E co u i cj
rH CO ^ CO
3 10 X-rJ rH
0£4J WT3 3 0
01 C CO rQ 1-1
W CU CO "O U-l
> tO T-4 *D 1-i
Or-4 CU O C CJ
•r4 O CJ > CO 01
tM CO CU CO Cu
1-4 C rH tO
U U O CO
01 -r!13 4-1 C 3
Cu q 01 -HO
to co E oi E rH
60 CU W W rH
o w 01 ca 01 o
2 O"O OH tw














01
4J
CO
u
e/o


CO
T)

w
o

IK








rH
0
w
4J
q
o
u

o
4J
to
13
0
4J
cu
B

cu
t-H
rQ
CO
rH
•rJ.
CO
CO

iJ
to
cu
rQ

cu
X
4J

to
CU
•f-l
4-1
•H
rH
•r4
CJ
CO
U-l

3
01
B


to

4-1
3
,Ti

•k
w
4J •
CT.I















a.
4J
to






o
X
Q
•o
M


<-< -U 1
CD C n !»<
GO a* o
1 C ^ W P-
O CO O i-f tO
in B w >
CN S W  3 60
u-i >-, a) (u (u *o X
O 4-> DO-— ' 1-i OJ ^
•*4 i-< co p ex  W CX >
_ii tn £ -H W -rH O
c c.rrO p ai 3 o
TO en p cr IM cr QJ
H U W 01 P. QJ J-l


AJ &£ 1
U) C ^ 1
AJ 3 -H O J-J
^ g -Q p-i Q }„, (u
a. QJ o :-. -u x:
j.: • ex i-i -o c -U
CkQr-H CX J-) QJ O O
3 fl -^ C M O
O be D O C T3
J= O Q> I O 3
iJ O C CU O
o w o QJ .r: S
X « OJ "4 «— i U
t— * O CX4J ,£.. 4J "D
*r4 
O Q) AJ 3 *U W
CQ M-J tn »H O" ^s Q) ^
0- O 3 3 GJ ^ r~( S









oo i

co -rf o q
6C WOO
1 1 01 CJ
O W XUJ c 13
O O 4J O 3 .—
O Cu co 3
- CO 6C OJ >M C
O > -H O 3 •

CJ O CO 01 4J 01
C -re CU CU r4 CO 4-1
CO CO CO CC O X 4J
-C CO > CJ E 4-1 iH
•r OJ W CO CU
CU T3 W JO O W
rJ CU CO O 0)
O CU CU 4J B-S CUX
E c oc to m co
3QO > V
UH X XE M
O 4-1 W 60T3 -H
•H cu E q oi 3
tO CJ > OJ 1-1 rH W
^C CO O 4J 4-1 rH 01
C Cu u co u O X
tO CO 0> X OJ r4 U
H CJ W tO rH 4-1 O














OJ
-Ul
CO

C/5

CO
•f-l
o
c
•rJ

rH
H

'

CO
00

O -Q C Vi
in 3 •* o
CNl CO W CU
C 01 13 >
CO >
-C CO 01 G
4J.C Cui-l
flj L1 p. m ij
W CO jO to
0 3 rH 01
E E rH W 00
dj ^J7 ^
n ^U rVl L?
.^T3 C ft!
A: to 60^3 O
C CX )-j CD CJ
co co a. o QJ
E— < U G r— » ^4


CJ

w ^p c w
^0 ^ O O QJ
•,Q C -H
t-l 4J CO •• W)'-'
CD at c ±J *-i c o-
oo > Q> cy *H CL
«! E >S^ O «
O X CX C iH 00
O -f-l CO CO 
o
O 0
Ofl
» to
O CO
-3-.0

B CU
CO > •
X co en
4-1 x E
ft) -U U
w co en

E 3 to

UH XX
0 4J t?
T< CU
CO O >
r* CO O
C CU U
CO CO 01
HOW
V
3 u
01 CO
Z 4-1
CO
13
B 4J
co 3
o

-tf
MX
X
•*•( V
W u
o w

r-l


CO
B
CO

-------
















































CO
4J
q
01
E
cu

i-
~
D
CU
a?
































•
a
o
o
N— X

rH
CM
•
1-1
w

PQ

H






01
M
CD

O
4J
C/3

01

1-4
CO
S















u
CO
o£
OC
q
•i-i
•o
a

J




















cu
to
o
4J
CO

X.

3
ca














CO
V


cu
1-(

o
cu
-4
U






01
4J
CO
4J
CO























cu
c
o
2






















Ol
q
o
•^



i
CO
a
CO CN L,
0 r-» CO
CTv 01
• —i 00
1-4
CO - >s
DC — * I-l
1 CU
c • >
o q o
O CO CJ
-•-) u
0 14

01 QJ O
LI ,-1 -H
O ^ CO
E co co

U-l CO
o q cu
*!-* ^
W -r4
,* x a
C w cy
CO T-* 0)


















in tl r-4 O
CU -H O
U-l 4J U-l CU
O co LI
cu -o i
CO LI (U LI
^ 60 00 o
q L, a
CO Li CU CO
H o e >


E' >-
CU > CJ
cu 4J LI i q
LI CO O *U CU
q-H >, CL— 4 1-1 -r4
C03COCOC034JCJ
_q cr > co cr co -i-i
4J CU X O '1-4 3 U-l
&4 LI u-i 0.1— ' S u-i
CU Ol O CO I O1
Ll ^1 > 'i-t Ll 4-J
E *^ cj ^4 Pu 3
CO CU CO -O CO - E
OCT3 Li (i. c > 4J i-|
q i co 1-1 q
•^ • L. -H to q-H
•D-^ O co c 3 S
co CD CL co o co
O OCco O i-l T4 Li^S
—i > ex 4-1 cu o
O c/l CJ g ,£> CT-
CO O CJ — 4 QJ O1 Li

CJ - CO — 1 W CO >
CD O CO U-l O >l-£l CO
OSCN.OM CJ CO COX



1
CO
a
co :>•>
CJ *
CU
« >
i-i o
CO C)
00 CU

O I
O M
O O
- O.
O CO
-3- >

q o
CO 1-1
-C U)
4-1 CO
CU
LI CU
O Li
E-4 .
3 4-1
u-i crc
o cu o>
LI E
co o*
q 4J 3
co 1-1 cr
H o 01


cu - o 3

q i— i q — i  4J L, o C O
CO CO C V4 4-t 01 4-1
CU -H CU CO Q) CJ
4J 0 U T3 -2)1c S
--|>J --q-ococu
— IN-* cu q cu co x
1-1 q IH A, - S
CJ XO 4J CO O X
CO 4J O CO *U QJ «H ^1

3 f-i co too >
oo o c co a>
C O i-l O 4J c «
•r4 q T-i -^ CO
4J q T3 « CO 4J CU
iHCOCOi— IOCJC4J
XL, 01 -H C-H
u-i co B. q q cj -H
Liu-icuEgSCcj
tS^«cj6cSo[2



V*
o
4J
q
CU

1
1 CU I-l
CO > O
CL CO p
U-l CO -C CO
O CJ 1 >

cu • i— i co oi o c;
OO—i 3 3 o. o
co co jo B 1-1 -,-1
LI 00 a E ct)
O 1 CO^M-( 01 >
4-1 O CU 0) i— 1 4-* -r4
w in *o oCi-t co 3
CM 3 co u-i >>cr
>-i r— 1 Ll CO Q)
LI C 0 O TJ
CO CO C 4J CU ^"O
q Jl -H co 00 L» cu
o 4->^-< L, a >
•r4 4J CU > O
4-1 cu >! c E o LI
CD L* 4J (0 ^ CJ p.
4J o T4 1-^ 3 cu a.
co E cj CL co LI ca
0
O I

» cu co c co
o > LI o LI 3 en
<±COCU4J -H O 0 — 1 1 L,
—1 CO X4J 1-4 C O
4J ^-,4 4J O 4J q 1-1 O
cococou-iT4cucoci.ocn

cui4J co — i E co i-iq
r-4 O CO (X O CLl-t 4J T) fl
m w,is co cj i-i j> q «— 4
co X-X co ^4 D* Li I> q oo
C U 4-1 • O CU (X, CU CD C
00 CO 3 —1 P. L, i-|
q — ' LI oo co co 1-4 CL oo— (
i-l 4JqoO>co. q^

O-r-l4Jl-IO>CLCU CJ
— icoq>tNcflcOr-icucoCiO
T3 ~r4 LI rr i-i ro "o 4-1 q
f; CU4J PO>C04J*r-(.

CJr--CU COWT33 CJE
cccccoo-'Ecocuxii-iqco



1
a
c.
CO r^l
CJ Li
01

1—4 O
CO CJ
00 CU

O i
0 >-
0 0
- o.
O CO
in >

C CJ
CO 1-1
JZ tfi
U CO
01
L, CU
e-iJ
3
u-i cr
O 01
CO
q 4J co
CO -H 01
H O Ml

















CU
4J
CO
4J
CO


a
q
CO

ca
3
2
3 00 01
cu q o
q q •*•! q
•W 1 00 O O CO
i cu q >*o c 4J oOi-^
cn^i i-icooq co
V V4 CO -1-1 CO S XI
-coijcu in 4J i— o
^ Ol 3 u-i B COO.C •

ON -H 4J C Li ' CO CO ^ CO |
^J — 1 CO U-l .C 1-4 4J 1
"C Li 4J CO 3 CO CM

— I 0 CO OOI-D HUJCU
q c Li 3-D 1-1 u
•co^-i-iooi— 'q *>-i
q^^q 4-iEcjco • tu u-i
CO CO CO T3 q '•^ CU U-l
(->-Q4-)0>4JU-li"4cuolc03
1 Li o O ^ 00 00 CO

cuOaj^T^^ -)-4l-i4-iflj
4-1 O- QJ CT1 O C ^^ O O q
U-ICD 3CU LicOC04-l4-Jq«H








L, 00
cu -a q .

O CO 'O CO U
CO 00-H
00 >s O CO
q co -H o co
TD CO o
CO CO J! -01
O q O LI
•-I • C0, o.
O CO CU •— 1 *H
S *-i-4 Li ^-1 3
cu o * o co cr
*Z CN 0) E "^3 O1





•o
cu

-^ ^
3 q cu •
cr co q — 4
cu .q co
LI 4J q oo
O I
Lt Li o
co cu T; o
o 4J q o
oc co to -
cu o

L| 004J
oi 1-4 q
> CO 0 CO
O j: co £
CJ C O.4J
CU ca eg
Lj 4-1 CJ CU
1 L|
Li 00 • 0
o q — i E
Cu'rH CO •
CO 4J OOU-I >s
> CO 1 O 4-1
1-4 O i-(
CJ XO CO CJ
1-4 CUO .* «
w - q a.
ra cm m ,O
V Lj 01
LI oiO
0 E
E o  q-H
«££



c
CD

«,
£
01 O -U 01
M 1 *-* tO C --H

6 (fl Jj c *"* O X C W •*** *H J^ ^4
CU CW CQ -r-) P.^^ O 4-* C AJ A-l 4J O
"4-(t— > AJ iJ CO CO t— " CJ OOCJCQ


(U 3 ^-^^-* oJ-iocrfic^aico ft/

to • ^ 4-1 CO CO Ot *r4 O C ^4
^ ,,_!,_( Kj3 ^ _c C "~^ W «r< CD
O--^c03"D*-i OCJO OJ t— l^i

"'^o-o^.'^Sq^iqo.BE .£
XO O C *H (0 E *H CJ CO tO p pit O
KOOTO4-4^( r-HOJ i-HI^AJCJ^

0 irT5 o Jo -roo'I^e'^O.S^ijS

4-*C C^JiMU-i^tooj^-'O^'cno -^ ?— i
mmcn TOOZJ Ct^1 **-! ^ P. Qi C *H
,, i— _£ AJ jj l-i m TO 4-< X CO '-M C CD CO CO
M4J4JCOC04J4JrDO>«>00>4JL1
i -a
J-i 0) X ^ C ' W
O ^ CJ O CO 1 F-*Jd
p, D c P. p- cy c

O > co (U OC > >C C 3 4^ ^
o u co GO oi cr cy

O ^ 4-) VH toC O 4-J 5 W

_C3 •HW^jX>t^'W
J-. GO C C 0^-t O

>w cn-H ai-Hcota

CO O W 4J (J t*
O J-t X"O t.7 ^3 3 0) 4J O

CL 01 co > C CCO
co >'Do-'-*wato 0

co co QJ -U CX O -H — * -^ OlC









O i
P. U 14
t-j i co -^ O
(0 ^ > CX
GC O * CO CO
i CL cu co ^
O to f *^ AJ
o > a> w o CL
O .C P.-H 01
- CJ & W CJ
O --I O co X

^ CO . ^ "° *

CO C O C
.C 01 QJ CO 01
— 1 P. 0) M fcl •
0) 3-^ (U to ^J 4-1
^ cr 3 a a S O
o 0) cr x cr o
E >-*  (0 jQ > JJ
^d co O OT O ro
c CL cj cy c cj o
CO (0 0) J-J CO 0) i— (
H cj ^ CL O k*W
1
(0 o
*J M
CJ -U
i-l 1 01
i_t co E
^J CO
CO CO ••>
^-i «j x C
OS cu B
r-l Q)
I— i t— 1 ^-t ,J^


c c ^ w
O QJ ^ O 0)
r-4 CO CO 3
r-l^l iJ C J3
o ^ -u ca o
CL, QJ Q> 4-1 (0
PQ CO T^ W

< o o as
CO
4-1
cu
CO
_r;
y
CO
CO
CO

B-9

-------

















































en
4J
C
eu

OJ
|j
ij
D
(7
01
a:



































/~N
"

4J
(-H
1-4
o


' 	 '


I-l
1
cN
, — |

W
,-4
CO
HH
<4
H



OJ
OC
CO
^!
O
4J
CO

)J
CU

,-J
CO
E
CO
















^£
CJ
CO
££

01
C
>H
13
CO
.3
























cu
M
CO
IH
O
4J
CO

.i-
3
00












CO
01
IH
<

01
>
1-1
4J
O
01
^
Wj
U










OJ
CO
4J
C/l




iJ IH
OJ UH 01
XI >
•0 0
C 4-1 CU CJ
JT 3 U IJ
4-1 E 01 1
E ij
cu >>x> O
Ij 4-i 3 CL
O IH en co
E u >
CO JC
UJ CL4J OJ
O eo iJ >
CJ 3 CO •
en Xi 4J
*. -T3 C
Ct-J OJ >J 01
eo CO CL O B
U M CL CL
1 -r-4 01 -r-l
30 3 CL P
ai m CT--H cr
2 CN CU CL OJ
























OJ
C
O
2




.
r—4
CO
OC >%
I-l
O OJ
0 >
o o
- o
m oj
vO IH

C U
to iJ
x; en
4-1 CO
x>
OJ
>j CU
0 >
E co
x;
UH
O 4J
en
41 3
oc E
CO
IJ >,
0 4J
en ej •
eo u
3 CL CO
O CO OJ
z o oo


















01
4J
eg
u
c/3


CO
0
en
01
C
c
1-4
X

IJ
01
4J
CD
S W
tn
<^S 3 QJ
E >
U CO
i-i -x;

co O
OJ OC4J
4J
co O en
4J O  01
OUJ |J
CJ O<4H
OJ
IH cu ea
1 OOlH
|J CO
0 IH C
O.O O
CO 4-1 -H
> en 4J
a
IJ X |J
O 4J 4J
•H en
en 3—4
-4 00
O 01 OJ •
In en a: u
4-1 O CJ
ex; 3
O 4J . T3
CJ en O
4-1 01 IJ
C 10 -H CL
ox; 4J
iH 4J iH 00
en — < c
en en IH >H
IH OJ O ~H
B IH COT)
CU-HUJ c
i 3 co
|j cr OJ X;
O OJ 4J
CL >H co en
to IJ 01
> C OJ CJ
O CL IH
0-t O 3
4J tn o
>M-I 4J
—i E uj
D. E u O
CL O-H
COCJ E IH
|J CU
en f-« aj xi
OJ O CL B
^H IJ 3
3 4-1 to q
IH C
O IHUH
o u o o
IH Uj
Uj C CO
•H O |j eu
O i-l OJ 13
D. 3 en
en •-! i-* 41
-H oc E
o o u o
ZB. IH en


















OJ
4J
eo
4J
CO

•1-4
CL
CL
en
en
i-l
en
en
•~4
S
>, a:
U 4-1 CO
iH CXI
U 01
OJ C IJ
CL CO O
eo E
U IJ 41 IJ
• CL-H 01
—> CL 00
CO OJ
OC IJ.-H X
1 -H t-< |j
O 3-H OJ
in CTUJ >
CM OJ O
IJ T3 O
UH OJ OJ
O OJ 00 ^
IJ Ij 1
in o ai |j
X E E O
C X CL
ro iJ 3 ra
H o en ;>
























0)
C
O
Z


X
>J
• eu
l-H >
CO O
OCU
1 0)
O IH
O I
O IH
- O
O D.
-ct eo
>
C
eo O
X;-H
4J en
CO
CU X)
U
O en
& 01
|j
CM  IH iH
to O 3
• x; cr
IH cu eu
eo 4J CL
00 en -H >,
I 3 CL IH
O E 0)
in r-4 >
CN IH^H O
OJiH CJ
UH 4j UH cu
O CO IH
CUT! 1
X Ij (U Ij
^ OC OC O
C IJ CL
CO Ij CU CO
H 0 E >



















.




cu
c
o
z





>,
1 IH
OJ 01
IH >
O
• O
-H QJ
eo IJ
OC 1
Li
o o
O CL
O co
- >
in
to cj
iH
C tn
to eo
x:x>
4J
cu
01 >
Ij eo
O X
E
O 4J
u-i 4-j q
O cu
*u E
en 0) CL
X. \~i -rH
C IH 3
co 3 er
H cr OJ


















OJ
4J
CO
4J
CO



eo
C
CO
4J
C
o
S
ij
IH 01
iH CJ
CO iH
OJ U-l
4-1 O
4J *^
en o
IH
>,4J
XI C
O
•o u
01 1
> c
0 O
iJ 1^
CL4J
CL 3
CD -^

en O
< CL


,
01
CL
iH
CL

I-H
r-4
•f-t
UH

•o
01
oo
IH
01

3
en
cu
en
3

4J
en
3
•£.



>>
IH
OJ
>
O
CJ
01
• Ij
J—t 1
CO IJ
00 O
i CL
O co
O t>
o
« CJ
OiH
H

Uj >,
O 4J
en cj
H, CO 1-4
C CL to
co co eu
H CJ 00

^
o
CJ

^
IH
CO
F-4
o

4J
CL
01
CJ
X
01


OJ
4J
CO
4-1
CO



CO
•a
eo
>
CU
2
§C 4J QJ O -r4
to x; iw "j-i *w v^
f-JCU QJ 4J4JOO-HQJ CO
eo^ xi AJ i-( 3X)Qico -a
OO-H o QJ 4J • cr x; o • QJ
O CT W UJ -r» UroOiUQ; UOCQ'— *
majQj33E *H >-icyo ooco
CsJ JH O-fi O" O O QjlAJiJ r— ' ^ (U 4J 1 4-1
•t-( «H)-ilJX)UOcoQJCflJOtO .
M_i 0) CL QJ •— ' ^ QJCux:CcnOCQJ
O»-i P- Ci-iC WSO^O.H4J
O--HI-IC • O «-< C i-* C CJ4-J • co
«£•— (&,QjC'HCOOr- «.r40O OCM >,*O
.x •»-( x:^-i4-Jx:u'r4 \oc 4-1
c,v-jt4H4-j3 aw UH^C^QJWU^^-IW
fOO O >£>QJ U-i C-—fQJ*HOCJCO
4-» *D T) CQJOTJto 3 cox:
>^QJb£)QJcocCLOQJ4J " -tJ ^t. ^t D, -U
&D 4J oo c &0-H O'--itH&o mcuccto
C-HjH-HV* CJO.CXIH .Xcvl Xl CtJ CO CJ Q)
•r-JCJUCGJ'—' IQJC 4J4J W
r-HCQEOJiSlJ^— '^EtO ' CU WO
r-H CLX: O-Xl >W'~, w t-i
•Hco3O3QJO'HQJpCn3'^CCQJO>
[14 cj w*— 'c/)»-ix:UHr-C
•>CO*<-t<0*HQjiH CD *i-( r— 1 ^-i QJ
r-OQJ XJ^ OC OE»H
rau >N CLCDu.^ta;jHiHXii
ocQJ»H4J.uEJHcacoi-icyjj3C
i SwO-^QJC(J31-'J-'3X:Cl''O
OlU-(<— -CjWWiKCiJWO •*•*
OOOJCj^COJOfOC X>«
»CLQJt04-l-HE e ^* uo-iJx; 4jwtn
Cco«-HC4-'W(/)'Ucn 3-H
COO O-^ 4J3 CXEGC
(O.^^^^tOi-tCg^OX) Q>
X;tni-iQJ.u£Cco o-H >»i-i
4JCOCO>C QJCW WTJQJ
XI M QJO"OE-H QJMWOjXfS
Q» 4J^CjCCLE'^'a-^^4-'C
UQjwoj CD *r-i ro 4J IM E *^ co
O^-r-IX: * 34J'^OQ>3'O
E^tC3'O^crc-^o crc**-<
PQJ O)r— (QJO-^OUHQJCOO
MH cr ^« }HCQ u y >H o (W
OQJ tQJ4JOO C? VJ4-IU
tn comwC*H*i-( cucotjeocy
^•fi >,3w>*r-I>'-tu cox: V-i 3-H-r-l Cu3
c^c GO en cj-i-foa-iy-J cf
CO'iH C W QJ O QJ ^H 3 3 E CO ^ M QJ
H cj<^-)^4J4JOeocrcoEOcoi-i



/-^v
V)
CO
ciO
QJ
>

w
3
^-s

.
o
CJ

^
IH
CO
1-4
CJ



CO
•o
CO
>
41
z
^ 1 CJ
a_4 m ^
C 3 r^ Q) i «
co XI CN > Xl »
e*H co 3 XI
&c c x: w
* C TO AJ u *
C 4J 4J W C
M 3 QJ QJ
*D «rJ V-l E C P-
C X QJ CO v*
CD Q> -u >-, E CL
CO 4-1 tl
C T? QJ •«-* QJ i- *
O C *-• O CLi- <
T-t co 00 to -H
4J CL CD M-<
co 0) QJ CO
4J bD oc U V-i *O
w co co QJ at
in v-: • x: oc
S O O -H 4J l-i
QJ 4-1 4J CO -r-f QJ
S w in oo QJ B



*«4-(
M-l CO O
O ,-*
O W CJ
QJ CO 3 iH *t-l
00 O JH CO CO
CO J-J 4J 4J CJ CO
JH at c ^c&
QJ > -H ;* C
> O C CO QJ
CQ "U CO 4-1 >
>, O 4J CO
c .—i .H "~ ' i-* j:
CO •-* M -H
CO QJ QJ CO 4J
bO-D O.&0 i4 in
C ca 3
1-1 • xi *-i IH gj
-U r-f 4J O O
tO to C J-J ^N
O c>o o w w oj
f-i E ^ N
O I QJ OJ -H
en O QJ I-H I-H to
^ O QJ -i-l *H
a * v-j xi co >*
CQ o x: o JH c
K  •
00 O <~i CO
1 Cl-tu GJ-J
O rg i-i to
O > XI Q) D*
o AJX:
- O *H ?O
m f4 3 *
\o w *o i-i
10 » ,XCO 01
O 4J IH en |j
iH QJ 3 3
en cj > en
^ eo O UH en
C a. ej o cu
co co oj O M
H U IH IH D.









r
o
fr° .
IH IH O
u cu cj •• o
4J OO
AS en TJCJ
IJ CU C M
ox; co 3i-<
>H O'-' CO O
4-J ^ en UH
3 en cj en eiH
OJ U O eo 3
Z'S-CA'Z.in



^
Ij
O
>!

3
cu
Z

4J
c -o
.= s
C CO
CL-O
,H C CO 4-J
3 3 C O
V O O C
OJ IH -H
604J en
>, lJ TO -H
I-l Ol 4J
oi 13 en OJ
> C 00
O 3 4J eg
CJ CO JH •
OJ M OT)
IH C 01 4J 01
1 *r4. GO WO
I-l 4J CO 3
O en }-i E I-H
CLi-4 o IH CJ
co X 4J eo C
> It] in u-i -H




}H XX
O V-< ^H 1
^jl-l ,-4 -4
4J 01 CO 03 O
CXi'O 3 >H
cu 3 cr 4J
E • OJ C
O. eni-i o
•H flj co IH O
3 CL 00 OJ
cr-rH x: UH
CU CLO 4-J O
0 O
>Sr-4 O CO
IJ-H . L, >.
01 f4O O <•
> UH -d; £
0 -
CJ -3 C T3 4J
OJ CU CO Q) C
IH OCX! -O OJ
1 I-l 4-1 CO I-l
i-i cu o u
o e en i-< *•<
O-X5 en UH
to 3 cu eo UH
> en — i -H 01





























































































60
C
iH
4J
QJ
01
B

c
o
•rt
4J
3
1-1
f-H
O
o.
iJ
1-1
CO

6C
C
IH:
,—1







































































































«—4
CO
>
o
IJ
8:
to

>•.
ej
c
cu
00
eg



































































B-10

-------










































en
c
1
GJ

t-4
S,
o
01



































<^N

•U

o

O



J '
r"*1




ex
CO
M
o
4J
CO
^
4)
,__(

1
e/3













CJ
CO


01
c
«H
•o
CO
3





















0>
c
o
z

•O M
eg O
O
C r-i co
CO 0) •
x: 4J o. to
4J CO t-t C
3 O. eo
01 E 01
M ^ B
O XrH
grH-H OI
.H V4-4 4— 1
OC to Xl
C-O "O to
•H OJ 4J
-i . oo o.
•O rH r4 O)
C eg 11 u
eg 00 E U
.c xi co
O 3
CO O 10 *H
*^ O 01
O - CO JC
ego -H 4-1
«2tM > 0















 CIM .H
o o x-< -4 u j-i E
«— t 1 OI O OI
CO r4 r-4 C7*
00 O —4 l-i
i o- o oi o
O CO CJ Xl O.
O > co
O r4 4J >
» cj o en
O-H 0. 3 U-i
in to co E O

CXI 4J c
eg oi 1-1 o

4J }-l 01 - 4J
•HX: 13 o
01 3 3 01 3
1* CF CO "O
§01 3 01
r4 • r4
4J CO
U-4 X C -H C
O 4J 01 -H
•H E B
CO O O. 01 4-1
JC, CO -H 4-1 C
C p. 3 co 01
co co cr x*4-*
H c* cu w cj














01
4J
a
4J
tn

eg
a
r-4
o
u.
u

z















01
c
o
z






















01
c


.

eg
oo
X
O lj
O Oi
0 >
• o
in cj
\O (U
r4
c
CO U

4J eo
CO

OJ
4J CO
CO 01
01 t-4
003
cr
01 OI
00 r4
CO

O 4-1
4-1 *H
eo cj .
CO k4
1* O. co
O1 CO 01















01

CO
4J
t/]


eg
o
I

z'
_; x

00
•O eg
I/II-H - >
— 1 01 CO
G<* o.x:

4JXI O
01 4J^J T3


E E co
TJ 0
°iJ £?B
j2 eo E °
C O-Xl 4J

H 0 to Xl

01 1
> o.
CO i-l
x: 3
C cru-l

x: eo

E r* 01
01 Q> XI

O *— * O O
E •— i o en
CO 01 Xl
OOT3 1-4 en
C I
"O *— * O 4—4
CO CO CL*— '
O 00 CO

O O
COO 0

0 - CO c
COO to 01
pe; — i
• CO
1—4 •ft CJ 4W

00 CO 01 *O
O Cu C
O — X 3
O ^ 4-1
O co
•*^~\,*£ i-4
in «— 4 o
vO — ' 01 01

C Oi I 3

_r" (o —-4 en
4-t x: xi o;



^
>
h O
O cj

O O.
2 4J


a u
01
oo -a
5 01
egxi
0 3

e4-l T3

O
r-< 4J
4J r^ ^
4J CO CO CO CO
CO M^

4J >-4 O^^ E O. 1-4 •
a> CN QJ co o co
E > 4J ^^ 4-1 > C
QJ o -C eo "CO
4J CJ 00 •> Xr-< E CD
en cu *H en en •— < 01 E
X ^4 0) 01 CO 4J
co S eo OC en T3
*U to C CO X 01
C C XOOi-l 4J CO >
4J MJ^'^'C JJ |J £_
CD CJ iJ^ CD 03 «H bfl CU
(fl y] (Js J TJ (^
C w w i »-i
Ottt>J-JMJ-t-CQJ)-i

c o 
rj D---1 > > 3 « O


"O
(U
w >

CO -W
E u a

4j fg

c.*"i 0) i^
VI CJ
i-N^
^^iQ JJ
iM O
tu w
> c -^^
o o n

Q> W
iU W .M
-H O
>-4 E
3 r< O (U -
ai 4J o a. o. 4J

O 3 ki
E E V4 o
o a.

O 4J C >
•H O

^ CO 4J r4
co eg O x:

4J
3
^
cxi
T) 3
S8
x:
O! U
U co
O'O)
<-H
4J
MiH
-^
X*4-4
4J U
•^ eg •
^4 [14 OJ
O 4-1
•H J CO
r4 0) 4J
fcZtlO




O

£
o
eg co x:
> CU 00
O -rJ
x^ 3 01

•^ cu
^4 X •

tO 4_) C
« x: o a)



























01

03 1
.C T3 ^ I
r- < « CO OD O
co 3 Q) C •-< >
eo E O. O &. en
I *H *^ I O B)
in .w CQ i-i m B
N B*-1 «^5 -S


O JJ C O «
Ji X 0) « O-~N >^
Sii £f^! ciej.ooi
^ co §'aai 2 o
> o.^ a*u o u

2 u ws^ p w *

Q>
> juifc t*^ |
(Q (— J 4_) »t-(

CQ }-i 3 M-j  C ,jQ ^ •'-'
}_j cvg i_< (jj >~j

P i— i • W O >
•t^ i-t E ^ Q
6J3 !0 C Q> tu -,
w o o o M E u

u - w « a,?-? a'
03 O flJ t-( dj O -H




>
^-1 • u
CQ •i-' •» O
&0 C E 0)
| 4> QJ r— 1
o cS •*-* ^^

O "^ -*s O •
- 3 w tn
O cr jj V4
^-j (y ^ o) 4Q
V4 3 a
c u u E co

.C W O 4J

^ 0) CO 0)
Q) M PI^
,U QJ 1 >— 4
O to to OC O
E-H 0 C ^
3 B,i^ u
u-4 o-eo M C
O V > V O
.U j= o
« (0 AJ C
^ X co 3

03 ^H- IM
i-t (j u to Cf
CO-H O
3 o.^ aej«















o
4J
CO
4J
in



E
x:
eg
r-l
0



a)
eo
tw
O
.u

i^e!

n

O
UJ
•o
c

^*
CO I-l
.^ CO 4-1 OJ
^4 *4^ CJ . ***- X C *O •
O OW3O4— icut-iiccn

>-ieo O!tn4JC£coo. O O

O. CXIOC- 3OCOJ4J

> O O.T3 ^ TD r-4 01 4J T3
^* " CO C C QJ CO XU-( *H C

.MfcsO 4-ietJ > OIO
COenoil«iE'HOX:tjctooo
4-1 014JO5 O 331-iC
01OO.Xcoe4-i^ocoO
O* ?* O CO 00 01 *H 00 C 01 iH
eo coCcjcoCtocox:'Ol
1 •"— ^ 00>H CO I-l *H CO O 4J C1J X!
1-4 01H 1—^4— 44J4— 4 01 r— 4CO

ra'x; -H3to-HccoKX:oMO.






























































^ -o
CO 01 •"-•
oo 1-4 Q
cixi's-o oi|
in tn 01 4-4 -H
k^l rH QJ
c oi^-^ co o 4J
eg > 4J r^ 4J
4-ix; p. Cr- B
0) 4-1 O. "rH

O 3 r-4 ^ -H
E B-H C •»
•H eg C 1
4| | ^,eu 4J CO CO
°ii-o^ ^2
JS n oo "eg o 1
C O. 4-4 C ^

H O E O en t_)

i
O.
t— 4 T4
eg 3
oooi cr

O co

0 r4
-4J 01

P*J D O
E o
DO 01
C. 0) 1^
rH O r4
"c a
to b O
JC 0 .>

co X CJ •

CJ T-l tO C
CO to CO OJ









4—4 1

ooo
i O.
o io
o >
0
- CJ
O-H
^3- CO
CO
CX)
CO
x; cu

01 3 P
IU creo
§01 01
r4 00

"4J X X
O 4J M
•H 01
CO O >
je; co O
c 0.0
CO CO 01

a"
p-j
^

o) o
4JCJ
UP-
E
CO 01
4-1 4J
iH 4J
£§
1 CO
CO-1

rQ «H
I"*

rH-O
O *H





C
3,
0)
o



J^
!>
O
U
01
1
o

CO
>
u
"w
5 h
CQ

o oo






















































































B-ll

-------

















































tfl

c
4*

c*
J^
•H

O
(U
C£








































x*"S
•
U
•t— '
d
o
CJ
>-"-'


1
1
0)
^


^.J

J~H
CQ

f^







9t

m
t-
0
in

Li
cu
-*
•4
TO
B
















w
^
u
(0
J^

61
E
•H
•o
eg
3



















01
ex
eg
Li
0
4-1
(/)

J!

y
O3


















eg
u
Ll
<

01
^4
U)
CJ
OJ
4>4
Uj
•a








V
u
eg

1/3













•
CO
cu
o
1-1
J> •
0> in
T3 fx
O*
fl fl
O
Ll -
Ui-4

•
u c
i eo
Ll "J
o
D. X
eg XI

X
01 fl
4J (X
co B
3 O
er 0
01
•D 4-1
eg co
3
Li E
O
Q
•—1 u
33;
U-I
•0 0
01
oo CD
Li 01
01 Li
E co
3 E
CO CO
iJ
OJ i-l
Ll fl
i-l O
3 &
er o
eu Li
Ll 4J
01
oi E
0 E
E -I

Ll CO
O E
0
• *H
r—t JJ-J
ID 0)

f*4
o eg
O 4-1
in co
- C
fi 1-1

U-I 00
o c
•H
CO 4-1
p^S CO
C i-l
eg ^c!
4J CU

3 *"*
01 fl














Q
U
a.

O eg
U E
O
0) H
C 00
•3.S






E
O
60
01
Ll
O





















OI
C
0
z





^
E 4J X
co co Li
E u OJ
CD o: co >
X 4J TJ 3 O
4-1 E 01 B CJ
•H 4J 01
01 CO • Ll
Li X Li fi 1
O fll CO Li
E i-l 00 O
CO.* 
1-4 • 4J CN
•Ofl CJ •
co CO Li E i-l 4J
O 00 co co co C
fl fl X CO CU
O 3 4JX B
coo  o eg er
OSCN > EX 01






X

O eu
0 >
o o
- CJ
o oi

1
E Ll
co O
x a.
4J CO
>
cu
Ll CJ
§1-4
CO
CO

eg
0)
•a Li
01 i-l
4-1 3 .
CO CT4-I
_Ll OJ E

g

.X --H
E-i 3
eo co er
H 00 cu
i eg LI
fl i fi 01 B
X 01 > E-5
co>x eg o w
E CO OJi-l CO
B B OOPS OOCO
GJ O E ^^ 0!
fii-l 0 (2 Li
OOB X i-l
4-1 eu a oi <
eoosSfi •-
co 1-1 eo XX
01 •> CO E 0) 4J
X ••" Xt> i-l f i E
3 1-1 B Li CD co o
O eo 3 01 CO > e_)
en eg o >
m o eg LI LI cv
1 OI i-l 01 CJ
U XB3 < > C
Mi-IE eg 01
< 01 ~~* 01 Ll
B xx xca s
o eg oo Q) 4J co
•H i-l QJ fl E 1 fl
00 Efi fi 3
a cgfi CD o M E

eg
G
eg


X
CO
B
E
OJ
Cu



E
eu eg


CD o cu
fi O"* X CU
H Ll
eo E eo cu
> CO CD >
CO X 01
4J 4J CO
4-1 O
CO 01 E 01
01 Ll Li
XI O 0 O
e -a B

O UJ 4J 01
O eo XI
01 X
M 4J -O
3 • f<
: co co 3
•o B o
Li E eg u
0 3 Ll
u-i o oo eo
ex o B
fl B 14 O
fl O CL-rl
CD CJ 4-1
U fl CJ
CJ 0-H
COH Ll Ll
E E 4J 4J
O co E co
1-1 oo o oi
u Li CJ Li
CO O

3 Oi O O*
ooi—i 1-1 *o
01 i-l 4J
LI 4J 3 X
eg fi cu
OJfifl j;
4J 0 O 4J
CD > (X
4J 1 U-I
CO E Li-rJ
O-H
EU-I 6
GJ 01 CO
CO CO >
01 C eg B
Li OX 01
(X-H X
co co 2
- 01 QJ
m — i -4
4J B 4-1 •
E 01 E CO
i-l 3-O
O fi O E
(X O CJ 3
Ll O
Ll 4J Ll (X
GJ C 3 E
14-1 0 0 0 •
CO U «-l CJfi
E 01
CO O - CJ >
Li 4J 01 i-l OJ
4-1 4J Ef
1 = CO CD
4-1 X— ' 00 OI
CJ 00 CO Ll 4J
3 o o eg

O OX OJ CO
Li E 4J fi
(XX -H OJ
cj B 4JX
3 oi 1-1 co 4J
GJ 4-1 fl
E co o 4J
4-1 OJ > CD
fl E -r<
ft 0) 4J Li OJ
co Li B GJ co
Li 3 > O
4J 3 O OX
•< CJ CJ CJ 4J




















OJ
4J
ce)
ij
CO



01
01
CO
CO
OI
E
E
01
H
X
1 L4
0 0)
O 01 >
O > Li 0
- CD O CJ
fi X 01
01 Ll
c 4j a i
eo eo 1-1 LI
x 3 a o
4-> B a
fl CO
01 Xfi >
Li 4J -H
§1-1 U-i O
CJ -H
CO T3 CO
uw a oi eg
o a OOA
U Ll
01 01 Li •
M • E GJ Li
Cfi XIX CO
CD CD 3 4-1 GJ
H 00 CO O 00





.
GJ Li
E Li CD
CO i-l OJ
X 3 00
4J IT
OJ X
OJ Li Li
Li OJ
O X>
B fi O
•H CJ
00 eg oi
E-0 Li
•*•< I
fi • Li
•O fi O
E co (X
eg .00 eg
X >
O
co O O
'i!0.'co
COO eg
02 CN XI




01
Li
O -
Bfi

GJ U-I
• x o x
fi I 4-1 m
eg LI co £
00 O E Je:
i C^i-* E OJ
o co CD >

O CO 4J
- CJ CO O CJ
OfJ O 4J OJ
m en cx u-i
eg O co U-i
CXI Li-rl 01
CD a. x
X 01 4J •
4J Ll f 1
—I • LI eg
01 3 Li 01 60
LI cr n s
§01 GJ OO
Li OOfi O
O
U-i X XO -
o u LI 4j in
i-l GJ  CO
^ CD O pX E m
E CL cj Li co r^
CD co o1 o x o%
E-. cj Li 3 JJfi














*
J
*"rj
* d 6 u c <5 d
ouo o u u
U O 4-1
CO CO 01 CO CO CO
Li CD i-l eg 01 i-l OJ
CDfi >0. > Li CJ
X fi co i-i Li 01
GJ co Li fi cd co 3







eo


01
H
fl COt)
eg oi E
00 -H 3
i I -i O
OX> (XLi Li
in 3 o. oo O
csl CO eg Li X
^ 01 ^ Li
E 01 13 GJ GJ
CD > CO E 00 >
x co 01 3 CD o
4-ix; a. LI  01
•rl •O CO (X B
CO CJ 01 4J | CJ D.
J4 CO M> CO M -H -H
C &. Ll — CO 3
CD CD oj O 3 CD ejr
H cj E *-* X> X GJ




eg u
1-1
• CO
fl CO
COX
00
01
0 >
O eg
ox

O 4J
in co

B
•H 01
T3 Li •
eg o u
0 B E
r-l OJ
Li E
CO o (X

CJ X 3
eg eg er
o! -a oj





.
1 1
c
01
.a
f! 1-1
eg 3
oc cr
QJ
O
O CJ
OH
* CO
in CD


B V
CO >
X CO
4JX

01 U
Li en
O 3
B B

U-l X
O 4J
•H
CO CJ
.* eg
E (X
CD CD
H o


E
3
O
•o
3 •
O 01
fl O

c e
0 eg
4-1 ft
oo*— ^
i-l -H
fi3
Li
< OJ
CJ
-E

eg Li
U-lf,
Li
i-l t3
CD E
b, eg




eg
i-l
E
•H
60
Li
>H
>








O
4J
=
CO
E
O

J^>
3
eg
CJ

Li
(X
CU

x
eg
E
O
CO
CO
GJ

~

GJ

eg
4J

4-1
CO
3

OI
eo
3
•o
E
CO

oo
E
•H

•D 01
E ex
eg CO
X U
CO
• OJ
QJ
00 Li
co O
Li
O B
4J O
CO T-4
01
- CO
4-1 1-1
cj B
3 S
•D
O C
Li 0
CL XI
Li
E co
i-l CJ
O
•0 Ll
oi -a
> x

o
> 4J
C E
•H GJ

fl 01
fl Ll
< 0.


CJ
•H
01 Li
4J U
eg n

CO Q
Li
01 —i
4J O
B Ll

B
B O

CO
B X
O 4J
Oi-l
0) i— 1
i-l eg

Q»
*
2 Li




B
— 1
CO
B
O
O
CO
1-1
2
i
eo j£ oo
fl U-I fl CJ 4J E
flO 3 iHECO fl -H
•H X^COGlE^C i—1
U-ICO C CD B 01 O CO fl
^ • Ll COX1 (X4^ 4J >'iH
*OCf O CO Ol Ll "O CX*H Ll OJ CD fl
3*O '•4JOOO'OJOICOU-l4JC04Jfl
oioificoca>>Li 3 iH
01 ^^LicaOi-14-iELi Old
4-I3C oxcj3Et-io: > n
E CO X4J ai *-O4-i4Jj

CD cj 4-i E LI LI CD ^ 4-i B oi
E4-I01CO ccooo cx^ CJ 3 O >
M CO Ll O_ C13 CP d. CJ1 CD 3 CO 4J QJ
GJ 3 O CO f— ' OeO'—<4-if i4jr cDf,



4J
3 I I
(X Li Li
X E O O III

3*H CO cQfi^XLi OlO OtJLi
O 4J > > fi OOfi O Li O 01 O
LIO -I-IE^ cx»4joo
E X 01 • -u-i-r-l LiUJ O 3 Lir*

x fioiLioima. cj x BON
4JXO4-iO"UO cocox OOXi •

oi-r^ixo.3 cuco -HOCOWO

O"O O -OLlOCJEX XOJO4J
E CXfl COO4-I4J OOC04JCQflQJ
• coco 4-icocoi-ifAc; 3 B
Xr-i>cOE'-iOX fiUX *J
4-1 TO OOcoxi LieocDfiu«fi
1-1 oo oi CX-H oi -— • tx o oiijcn fi
^ COC04-ICO O CO C03U-I**4
O3-HCJ -OJ-iT) •OBOUw
coo 'UQJUO aioo* LI
JCO4J —xxxeoEOi -cofioi
^•^ECDU4JE30CgCO OCfl U-I 3





01
60
eg
Li
o
4J 4-1 Ll
co co eg
3 eu

T?
01 XX
CO 4J L4
egi-l 01
01 CJ >
Li CO O
O D. O
c eg o)
•H O Li
— • 1
• Ll

oi eg (X
i-l 00 CO

i-IO
•o o cj

E .co
O eg
LKJ-Xi
o
Li 01
3 oi &
OJ > CO
•z. ox




































B-12

-------










































/"V
.
4J
C
o
o
>1«— X

I— 1
1
OJ

i-l
w
I-J
PQ
.-•1
<3
H
0
OS
































(1
1

<

1


"
L

U,






01
(Q
4_)
w



• > ,O QJ O
•— ' O E W X^ U
OJ u O T3 O O
tc a; u c c E a
t »-. 3 OJ « >
O 1 — • O QJj ^|
O XJ TO O. ^ >. AJ
o OQtnEcjj^o
u - c. o o E  W %
jr w a) co c J2 ^-»
* u eo w CC 3 ^-<
-< Xi w M o a> eo
3 0» CO O T) J3 3
o ^ a) 3 ? cr
o u ^ o i-i ^M4Jq)4-»J-*^-t O
CiJtocoto> *
tO*H(D?s >t— t (U *^
Ho&OwtO«*w*O >
m
p^
CT\
f-4
V)
s
0)
1 Z

B
5
QJ
r-4
0
Ll
*•*
01
Ow
i-i
re
c
o
•H
(U 4J
u a
co Z
4J
W3 *J
C
•fH
^
a
^ 0
3 to
B-13

-------
gives the National Petroleum News 1973 summary of state vapor
recovery regulations.  The list includes twenty-three states
which had vapor recovery requirements in 1973 for one or more
of the following points in the gasoline marketing industry:
bulk storage, loading racks, and smaller storage (including
service station storage).   These regulations appear to have
been patterned after the examples of emission limitations
attainable with reasonable available technology published in
40 CFR Ft. 51, App.  B as a guide for the preparation of state
implementation plans.

          Table 1.2-1 specifies the vapor recovery requirements,
the affected areas in each state, and whether the requirements
listed apply to existing and/or new facilities.  As Table
1.2-1 indicates, all of the 23 states listed have bulk storage
requirements:  22 states have loading rack requirements with
eighteen specifying vapor recovery gear and four specifying
submerged fill.  Sixteen states have requirements for smaller
storage facilities with five specifying vapor recovery gear
and eleven specifying, submerged fill or vapor recovery gear.
                              B-14

-------
 1.2.5     Transportation  Control Plans

          Because  hydrocarbon  emissions  are  primarily  attributed
 to motor vehicles,  the  stationary  source emission  limitations
 included in  the  implementation plans were, in  some cases, not
 sufficient to  attain  ambient air quality standards in  AQCR's
 with heavy vehicle use.   In these  cases,  the states were
 required to  submit transportation  control plans by 15  February
 1973,  as a supplement to  their 1972 implementation plans.
 Table  1.2-2  specifies which AQCR's were  required to submit
 such plans to  attain  the national  standard for photochemical
 oxidants (hydrocarbons).

          Both stationary and mobile source  controls can fall
 into the category of  transportation control measures.   In
 general, stationary source controls included in transportation
 control plans  involve controls, or the extension of controls,
 for the various phases of the gasoline marketing industry
 including storage, truck loading at terminals,  truck unloading
 at service stations,  and vehicle refueling.   In some cases
where such requirements were already in existence,  the effective
 area of these  controls was extended.  Mobile source measures
 include reduction of vehicle miles traveled,  inspection and
maintenance programs,  retrofit emission controls for in-use
vehicles,  and gasoline supply limitations.
                              B-15

-------
                          TABLE 1.2-2

     AQCR's REQUIRED TO SUBMIT TRANSPORTATION CONTROL PLANS

               TO MAINTAIN THE NATIONAL STANDARD FOR

               PHOTOCHEMICAL OXIDANTS  (HYDROCARBONS)
Arizona

California
Colorado

District of Columbia

Indiana

Maryland

Massachusetts

New Jersey

New York

Ohio

Oregon

Texas
Virginia

Washington
Phoenix-Tuscon Intrastate

San Francisco Bay Area Intrastate
Metro L.A. Intrastate
Sacramento Valley Intrastate
San Joaquin Valley Intrastate
San Diego Intrastate

Metro Denver Intrastate

National Capital Interstate

Metro Indianapolis Intrastate*

National Capital Interstate

Metro Boston Intrastate

N.J., N.Y.,  Connecticut Interstate

N.J., N.Y.,  Connecticut Interstate

Metro Dayton Intrastate

Portland Interstate

Austin-Waco
Corpus Christi-Victoria
Metro Houston-Galveston
Metro Dallas-Fort Worth
Metro San Antonio
El Paso, Texas,  Las Cruces, N.M.,
  Alamorgordo

National Capital Intrastate

Puget Sound Intrastate
Source:  Federal Register 3JL May 1972, pp. 10847-10906.

^Transportation control plan not specifically required.
                                B-16

-------
          The plans for most affected AQCR's involve some combi-
tion of the above controls depending on the degree of the pollu-
tion problem, the pollutant controlled, availability of control
measures, existing local activities and conditions and the expected
impact of specific new measures.  Considering all factors, control
strategies have generally followed these priorities:  (1)  sta-
tionary source control; (2) some VMT (vehicle miles traveled)
reduction measures and/or limited inspection and maintenance;
(3) additional VMT reduction measures and/or vehicle retrofits;
(4) catalytic converter retrofits; (5) gasoline supply limitations
in 1977 (EN-126).

          According to an EPA summary dated 1 May 1974,  transpor-
tation control plans and/or state or county regulations for ten
states specify vapor recovery requirements for gasoline marketing
operations and terminal loading.  Table 1.2-3 lists the states
and the 17 AQCR's involved.   Vapor recovery control points include
truck loading at terminals,  service station unloading,  and auto
refueling.  Two stages of controls have been identified for the
purposes of implementing vapor recovery regulations at service
stations.   Controls placed on the filling of service station
tanks are referred to as Stage I controls;  while controls placed
on the filling of vehicle tanks (vehicle refueling) are considered
Stage II controls.

1.2.6     Compliance Schedules

          The Clean Air Act p_f 1970 states that compliance
dates for primary ambient air quality standards are three (3)
years from the date of issuance, or 1975.  A two-year extension
is allowed in cases where the "necessary technology or other
alternatives are not available or will not be available soon
enough to permit compliance within such three-year period and
the State has considered and applied as a part of its plan
                                B-17

-------












CO
CM
rH
W
rJ
rQ





id
to
O
W
Z
M
rJ
P,

c

O
H
R SERVICE SI
v_>
1
o
<*
I RECOVERY
O
Pw

,_,
M
fa
.J
•<
r-l
H
z

O
AUTO
REFUEL
d
CO rJ
w <
HZ
Qfa
)MPLIANC
fITIAL

NLOADING
CE STATION
^g
o w
2*
D<

CM
O
rl
g
O
o
ON

Sacramento
Valley AQCR
r—
CO
IA
5
VD

O
M
O
O
O
ON
VO
r-l
CO
r-l
VO
rH
O
rl
g
O
g
ON
tM
O
rl
G
O
o
g
ON

O >N
i-j a)
r-l
Cr-l
td rt
f-»
co
m
J
VO

-------

.j
«!
z
CO M
CO fci
w
E-i
<: rJ
0 2
n
U H
O M
Z Z
 r-l <
£ Pi QH
g W « J
 W W
0 OH
o P
W 0!H
3 H <
fyr)
g
Pi CO
< O
> gH
O 04
W >i
££
»
i-4

p^


^
r—
iH

m

iH
O
rl
4-1
g"
O

e-s
0
co


vo
p-
^s»
rH
^_
en

•tf
p-
rH
m

rX
rl

O
o
CD
rl
rl
O
a
CO
>
B-S
O
OV




4J
0
6-S
O
ON








c
Co. of Mario
Indianapolis


•)!
•1C
.jc

CO
S
CO
•rl
•o
M
en


























•a-
p^
•^^
rH
^^.
rH




C
1-1
0) CO
C 4-1
•H rl
rH CU
O
:•
4-1
CUT)
rl CD CO
rl 0)
rll-l O
O 3 rl
acr 3
CO CU O
> M CO




•o
rH CU
0 rl
rl 1-1
4J 3
C cr
O CU
O rt
. i c
WJ-H O
a) 4J -a 4-1
rlrH C M
CO CO C •
cu PQ i-l m
4J a> j3 «
CO M rl CO CU
4-1 O Q CO rl
ta«n S 3 rt








•a
C
CO
t— i
>,
rl
S


r*»
p-
rH
en

in


 0




•o
rH CU
O rl
rlfl
4J 3
C cr
o cu
U rl
• C
MO
CU U
rl CO
O
cum
4J rt
rt rl 

>•-
CO
c
c
1)
CU


r»
r^
rH
en

in

in
p^

rH
en

en

rH
0
rl
4-1
C
O
U

B-S
O
Ov

VO
p~
-^
iH
en
**^
in
in
i
en
en




in
rH
O
rl
4J
O
U
B-S
O
Ov


rH
O
M
4-1
O
U
B-5
0
Ov







1
CO

v?

in
P-.

rH
en

en

rH
O
r-l
4-1
C
O
0

B-S
O
00

VO
p-
--.
r-4
en
~v
in
in
rH
en
en




in
rH
S
4-1
g
0
irS
O
ON


r^
O
rl
4-1
g
0
6-5
O
Ov







J3
4-1
rl
O
S
4-1
h
01
CO
rH Kl
rH O
CO O"
0<














P-.
P~
rH
en

in

in
p~

rH
cn
* —
m

rH
0
rl
4J
g
O

r«
o
ON

v&J
P~
-^
rH
en
—
in
in
P^
rH
en
en




in
rH
O
rl
4->
g
O
B-S
O
ON


O
fc
4-1
C
O
O
l>«
O
Ov







OS
o
?
San Antonio .















-------





















/^*\

*
4_J
C!
o
C_!)
s^*

<-»^
n
1
CM


I—I

a
PQ
^f*
t-'
























,
cO t-l
w
H
Q ^
M
W H
CJ HI
13 2
< rH
r-l
£ o
o z
O r-l
O rJ
S S
 r-l <
I* OH
W -l O r-

W p:
> be! W
O OH
CJ D
S H<:
O
Sc c
^2
H ^
COO
O
z#
o ^
1
TRANSPORTAT]
CONTROL PL/






w
H
<
H
Lfl












in
^^
r-l
rO
m
•d-

r-l
^




in
r-l
O
rl
4-1

O
o

6**
o
en



r-l
8
4-1
rj
O
CJ
8-S
O

in
r-l
CO
in

-d-

~~
f—i
r*.
r-l
O
4-1
O
U
0
co
in
.^
i
C
m

r~
r-i
^




in
r-l
O
rl
4J
G
0
u

g^O
o
en



r-l
8
4J
G
o
CJ
g
cn
£
r-l
in

^3-
r-
-^
i—l
vo
r-l
O
rl
4->
§
CJ
O
en

^
^^
r-i
cn
 P.












atl. Capital
nterstate
Va. portion)
Z M ^^


cti
C
•rl

rl

>
re che same except for the exceptions described
CR's.
« cy
&:
CU CO
> X
O cu
OH
V
M rl
O
rl >W
O
P. CO
CO CU
> 4J
CO
%'°
•rl 01
44 CJ
« C
4J CO
CO -H
r-l
cu a
O H
•rl 0
e°
CD 01
cox!
u
bO

•^^ O

H QJ
01 B
0 o
C 01
O
C) rl
O
CO >4-l
Pu "O

H ccj

CU "


r-l
l-l CU

cfl
in
01 co
e
0 -

CO

O
rl CD
a cu
4J
0) O
x c
H 4->
O

He <4-i
>,
h
r-l 4-1
CU
co IH
CO O
01
> 4->
»•&
rl-H
01 01
> r*
•H
rH ^
01 J3
•o
44
C G
01 01
•O CJ
CO rl
r-l CU
(X
rl
OO
pxcn
«
> 44
CO
01 CO
rj al
Hr-l
44
- CO
CO
Xrl
co cu:
CO > •
O bo
4= 0 C
CJ 01 -rl
•rl rlr-l
43 r-l
3 d-rl
COlt-l
C CJ W
O rl
•rljS
co CJ 00
•rl -rl G
>X!-rl
0 > Vl
rl 3
CX0T3
CU
CO 4Jr-l
co eu
0) Xco
> 01 CO
CO 01
43 >^>
M
co eu X
- > rl
CX, 0 0)
O CJ >
H 0) -rl
rlr-l
C 01
•H MT)
O
co a. at
gc043
> 44
44 CO 0
CO O
r~^ *C V-l
3 4414-1
OO-rl
 B
CO 01 O
n) r-i cj
Mr-l
•rl CJ
l-l >4-l -rl
r-l CU C
< rl CO
bO
•i< 0) l-l
•it 43 O










cn
cn
r-l
m
o
n
„
co
cn

M
01
44
CO
t-l
bf
cu
PC!

r-l
CO
^)
01
•o
01


G
o
•rl
44
CO
O

C
•rl

*4-l
0
cu
CJ
rl
3
O
CO
*
^
*
overy regulations :
u
0)
rl
rl
O
a
2
G
O
•H
44
CO
44
01
01
o
•rl
rl
01
CO
bO
G
•H
Vj
01
•o
•rl
CO
13
0
O

01
t-l
CO

CO
01
i-l
44
G
3
0
CJ

CO
•rl
e
o
m
•rl
l-l
CO
CJ
bO
C
•H

O
r-l
O
U-l

CU
43
H


r-l
Q
O
Si
O
O C
44 CO
Ci-l
eu o
B co
co i
rl 0
CJr-H
CO O
CO |X









C
•H
3
cr
CO
0
h-j

G
a
cn










o
gp
cu C
M 01
fa ^










































•4H
o

CO
(U
•rl
44
§
O
o
G
•rl
CO
CO
pf)

44
01
CO
O
CJ

A
44
3
o
CO




O
G
•rl
T3
rl
CO
5 CO
01 rl
« 3
44
C C
co eu
co>








CO
n
CO

01 M
•O efl
•rl fO
CO
rl CO
01 44
r* C
pt! co






CO
OJ
I-l
CU
bO
13 01
< bO
co cO
O rl
rJO















.at exclusively service delivery vehicles that
:nce system will not be required to have a
43 CO
44 rH
CO
CO 43
01
•rl rl
44 O
•rl
r-l C
•rl rl
CJ 3
CO 44
fa 
tOT3
•rl CD
13
O 3
<4-l 0"
i-l 0)
l-l rl
CO
U <0
01 CU
43 r*
44 CO
43
c
•H 4-1
O
l**i C
l~*
C Q
0
CO 4-J
CO 43
0) 44
O.
Ou CO
cd »i
a ft)
•rl 00
0 rl
rl O
a4J
CO
60
C CU
•H O

O >
r-l M
r-l 0)
O CO
M-!


43 ^
H 44

• pj
O» i4




































g
44
CO
CO

rS
rl
CU
>
o
u
01
rl

rl
O
&>
CO
>
B-20

-------
         •o c eu
         4) Oft
4-1
C
c
CN


r-1


W
hJ
CQ
rH 4J O
•rl 10 4-1
<4HrH
4) 3 to
rl 60 B
41 01
01 M 01
43 CO
60
W B 41
JrfiH |H
CJT3 01
3 CO 43
rl OH
4J|-H

X*CJ
rl -rl M
01 3 01
> CT-rl
iH -rl 4J
rHrH -rl
41 rH
•O CJ -rl
iH CJ
C B to
0) co MH
•O 60
tO rl X
rH O td
1 -O
vi cu **^
O43rH
CXH CO
CO 60
•O
^•1 ^O
rH CJO
eg c -
cu o
4J iH CM
10 O
43 iH 4J
4JMH Id
VH
CO 01 X
01 rH
IH 4J B
iH B O
3 01
cr o t>o
01 IH C
rl 01 iH
p.-n
p, (jj
oo o
t-4 O^ »~~l

043 A!
•at! o
10-H 3
rl ^ rl
O 4-1
rH-a
0 01 60
0 > B
01 B IH
43 4) 3
4J f-i *O

B 41 to
-rl 43 IH
O
B B a
O eg to
i-l CJ >
4-1
tg coin
rH |H O
3 0
600.B
41 10 O
rl > T-l
4J
rH-O CJ
O 41 01
H OrH
4J tg rH
§rH O
CXO
O CO
•H 4J
ri-a c
O 41
(X 41 O
«43 IH
> 4-1 41
a.
Vl 01
41 rlO
«H 4)0
1043
C 3 «
td 41
IH co M
4J 4)-rl
i-l 3
4i 4J cr
(3-rl 4)
1-frH rl
rH >rl
OOP*
to eg o
tOSH EH
60
4J CO

1 X£

• B B
m OtH


































































































01
^
a)
r3

x
CJ
i
Cu
0)
IH
CJ
to
i-l
T3
CO
4J
Q.
IH
eg o
CO
14H 43
O 10 :
60 M
4J - C3_O

iH O rl"
co -H 41 *a
C 4J > rl
OO.OO
O In CJ 3
o
C to co 01 IH
COT3- 43 41
O td {LI H 4-1
r U co
CH i-l
B cd • M
01 cu /*** 01
4-1 043 BCti
CO 4-1 4J O
X iH rH
CO rl B 4-1 Cd
0 5 Vl |H
01 IH O 01
43 ^ M-l £X*a
4J B 01
tO 13 'Dfe
4-1 4-1 01 Z
td 4-1^ -
43 604-1 <
4J E i-l tti I--
•rl SUCy>
tO 10 O CTrH
X B ^
cd 0) to
CO CX'rl 01 00
CO 4-1
S -H; cd X
01 T3 H 4-1 Vl
4J O CO tO
to cu: l-i 3
X43 0) IH
to 4J 13 4-143
rl B 01
C O O r-H PL,
O4-I?
•rl 4J 0)
4J CU 01 343
CJ O43 O 4-1
0) to H i-l
r-H HH 4J B
i— I IH O iH
o cu : eu
O 4-1 • C "O
B 4J B 01
IH -H B O 4J
O 1) O CJ
(X^r-H 1 CU
td U td ^i l-i
> 01 > Z IH
43 i-l 1 O
60 3 *-> CJ
B IH crz
•rl 01 01 CO
r-Hr-l -O Id
41 iH CO B 3
3-H 4J tO
<4HM-I i-l B
CU 1 - O
IH 0) tHOdlH
r-H O O CO
ON O- to
4-1 N S < -rj
300) B
CO B 4-1 B O
CO O
CU rH X4-1 to
42 rH CO 01 iH
4-> i-l O43
"4H C P3 4-1
60 O
(3 01 -H B 4->
•H 43 4J Cd 3
C 4J CO 4-1 43
tH CO-rl
01 6 CrH -
cj o cu o to
B IHTJ tx-
o<4H c o a,
0 O (HO
CU O 4-1 H
to B i o)
- i-l C S co
CXirH O <0
o 1-1 - x
H £3 4J Pi 0)
C tOO H
4J 3 l-i Cf
co 4J cu <; B
O 0) 60 O
B Vi i-l IH M
rl 01 UH
M-4 Vl *4H £>
O O 4) B "O
O. Vl CU 0)
hOrt Q 4J
C J* - 4-1
•rl C E ft
•a 4-1 o cd B
M43 -H 4J O
O 60 4J -rl
3 *rl Cd rH C
4J Vl O CU
01 1 CU O.  -rl S 43





CO
_
CM
CJ
H



CO
C
o
rH
rH
CO
M

O
O
O
rH

B
CO
43
4-1

Vl
0)
4-1
cd
4)
•u
60

X
4J
•rl
CJ •
to X
CX 4-1
tO-rl
0 0
CO
H) C^«
CO
43 CJ
4-1
•rl B
3 O

COr-H
rl CO
01 OU
B
•rlO
co m
4J C^4
B
O c
o td
0) 4-1
60
td IH
IH 0)
O 4J
4-1 CO
to 01
M
^"> bO
in
C014H
C 0
O
iH CO
4-1 IH

4-1 B
tO iH
CO
C 4J
°§
rH CJ
Sc
4J O
B
O^-i-
Cl O
M
a) 4J
IH B
•H 0
3 O
cr
0) 4)
IH V4
•H
co 3
- cr
CM 0)
u w
H
CO
CO 4)
tO 4J
X to
41 4-1
H to
01 iH
CO 01

CO 41
Vi IH IH 41
O O O M
CX tX1" O
eg eg 4) B

*a
o co xai
•ri eg o 4J
B BO)
eg 43 4) M
60 O-rl (X
iJ 3 O U
O «0 -rl 0)
I4H 4J
41 ->W B
r-l IJ CU-H
41 O
•gg-|3

41 l*H O O
4-1 O 4) IH
CO rH 4J
X tO r-H C
CO rl O O
4) O O
i-H >4H
eg cos-5 4J
eo BO B

CXrl CJ
CO 4J B rl
iH eg 4)
•O 0)43 (X
4-1 4-1
IH eg X
O-rl |H 4J
(x*a cu 01
CO 41 4-1 B
> S COiH
H 0) 55
to a) IH
4-> 60
O B
4-1 M 43 4-1
0 B
•a 30)
01 • £ 'H
4J X CJ
SO 4) i-l
C -H>4H
> 0) -rl<4H
•H 3 0)
4i o cr o

MH rHO
HMH C^
iH 4) X
eg eg co
SB 1-1
_ •
S-rl - B CO
4J CO 0) B
OrH 4-1 O
V4 4) 01 CO iH
O rH CO X4J
(X— 1 CO CO O
eg o cu -H
> 0 > 01 -O
4-1 eo
•O 4J XOI-rl
01 43 IH rH )H
O 60 01 tX 3
eo -ri > B -~i
rH 01 -rl O
ex t* •-< o IH
to 01 01
-r« x~o cu 4:
•O 41 43 4J
O 4J O
rH 4-1 4-1
rH B H C
eg oi^; O-H

4-1 rl Cd CO
eg cu 4J rH -ri
43 (X td
4-1 B tO 4J
O O O-rl
CO O -rl CX
01 4J CO B
IH eg eg -ri co
•H 4J-O43
3 43 co 4J

41 -H 0) O O
IH 3 0 a W)
•ri to eu
00 4) IH Q
41 |H CUrH
•rl 4) CO rH E
o > to S
O B IH CO
B U O 0)
CO 01 rl > B
en n>4H o-ri
43






































-------
reasonably available alternative means of attaining such
primary standard. .  ." (Clean Air Act o_f 1970,  Section 110(a)
(4) (e) (1)).  As indicated in Table 1.2-3,  the two year exten-
sion has been allowed for the implementation of vapor recovery
regulations at service stations in some states.  In general,
Stage I controls, related to the filling of service station
tanks are to be implemented by 1 March 1976.  Stage II controls,
related to the filling of vehicle tanks, are scheduled to be
completed by 31 June 1976 if they involve 80% control and 31
may 1977 if they involve 90?0 control.  Compliance dates for
Stage II controls are currently under review by EPA.
1.2.7     Standards of Performance for New Stationary Sources

          The procedure for establishing standards of performance
for new stationary sources is much the same as that for establishing
ambient air quality standards.  In this case, however, categories
of stationary sources are the subject of regulations as opposed
to specific pollutants.   New or modified sources within the
designated categories are expected to achieve the maximum recovery
possible with consideration given to industrial processes, their
operation, available control systems, and costs.

          Thus far, storage and loading facilities at new or
modified petroleum refineries are the only gasoline marketing
operations under standards of performance for new stationary
sources.
                               B-22

-------
2.0        COST DATA

          This section presents detailed cost data for the
vapor control technology discussed in this report.  These costs
are subject to continuous escalation.  Therefore, dates have
been attached to the cost data where possible.

          Tables 2.0-1 and 2.0-4 report the capital and in-
stalled costs of several tankage vapor controls.  At the bottom
of Table 2.0-1 are the bases for calculating operating costs
as functions of capital costs.  Operating costs for tankage
controls are reported in Table 2.0-5.  Table 2.0-6 presents
the differential investment and payout of various tankage con-
trols .

          Table 2.0-7 presents the costs of top and bottom
loading vapor control equipment for terminal loadings racks.
Tank truck vapor recovery equipment costs are presented in
Table 2.0-8.

          Costs for terminal vapor recovery units are reported
in Table 2.0-9 and 2.0-10.  Table 2.0-10 also includes vapor
holder costs, installation costs,  operating costs, and statis-
tics on terminal vapor recovery.

          Costs for service station vapor recovery equipment
are reported in Tables 2.0-11 through 2.0-14.   Table 2,0-1.1
covers delivery-related vapor recovery equipment for service
stations.   Table 2.0-12 is concerned with the cost of secondary
vapor recovery units.   Table 2.0-13 summarizes the cost incurred
by eight companies in installing and operating direct displace-
ment systems and Vaporex vapor control systems.  The materials,
labor,  and equipment costs contributing to the installation cost
of a direct displacement vapor recovery system are itemized in
Table 2.0-14.
                                B-23

-------
                         TABLE 2.0-1
          ESTIMATED INSTALLED COSTS OF STORAGE TANKS
Nominal Tank Capacity,
Barrels
     50,000
100,000
150,000
Size
90'  dia x 48'   120'  dia x 48'   150'  dia x 48'
Installed Costs,  $
  Fixed Roof Tank         161,000
  Pontoon Floating
    Roof Tank             176,000
  Internal Floating
    Cover in Existing
    Roof Tank              34,000
                   257,000
                   279,000
                    54,000
              379,000
              403,000
               68,000
Operating Cost Bases

  Maintenance
  Depreciation
  Property Taxes
  Insurance
  Corporate Overhead
  Gasoline Loss

SOURCE:  MS-001  (1972)
    @ 2% Capital Cost
    @ 10% Capital Cost
    @ 17» Capital Cost
    @ .5% Capital Cost
    @ 3% Plant Level Cost
    @ $5.50/Barrel or $.131/gal.
                              B-24

-------
                   TABLE 2.0-2

                SOURCES OF COST DATA

VAPOR RECOVERY EQUIPMENT FOR CONE ROOF STORAGE TANKS
   Buffalo Tank Div. .  Bethlehem Steel Co. ,
   Supplies Floating pans covers made by
   others.  Price not given.

   Chicago Bridge and Iron Co.   Weather-
   type internal float-cover,  steel.   Vapor-
   phere for four or more tanks.   Prices not
   given.

   Graver Tank and Mfg.  Co.,  Div.  Enviro-
   genics.  Vapor miser,  ground-based vapor-
   collecting tank with bladder-like  device.
   Custom-built to individual  storage.  Pan-
   type internal cover of 3/16 in, carbon
   steel.   Turnkey job,  depends on size,
   distance from supply point,  labor.

   Mayflower Vapor Seal Corp.   Vapor Seal
   internal floating roof of aluminum deck
   on pontoons.  Can be small as 10 ft.
   diameter up to 285 ft. diameter.  Turn-
   key job, from $1500 for 10 ft.  cover,
   up to $110,000 for 285 ft.  cover.

   Pittsburgh-Des Moines Steel Co., Hammond-
   flote IIinternal floating cover of
   urethane foam as core covered top and
   bottom with reinforced fiberglass poly-
   ester resin; for 10 to 215 ft.  tank
   diameters.  Turnkeys job with price
   depending on tank size, freight, labor.

   Innerflote internal floating cover of
   3/16 in. steel plate on upper and lower
   deck, with center of structural supports.
   For any diameter tank.  Turnkey job, price
   depending on tank size, freight, labor.
                       B-25

-------
 TABLE 2.0-2 (cont.)
          Buoyroof (new product),  floating roof
          of steel installed in open tank top.
          Can be added to cone-roof tank after
          old roof is removed.   Any size tank.
          Turnkey job, price depending on tank
          size, freight, labor.

          Qlin Corp., Aluminum Div.,  Vaconodeck
          internal floater(replaces Aludeck
          floater);  aluminum structure covered by
          aluminum sheeting supported by aluminum
          pontoons filled with rigid, fire-retardant
          urethane foam; size from 0 ft. diameter
          up to 214 ft.  Turnkey job, from $1800
          to $2500 for 10 ft. tank (depends on
          shipping charges) to about $80,000 for
          214 ft. tank.

          Floater cover, fixed roof installed over
          existing floating roof,  aluminum; for
          tanks 25 to 85 ft.  diameter.  Turnkey
          job, prices from $10 sq. ft. for smaller
          tanks to $16 sq. ft.  for higher tanks.
SOURCE:   BR-163 (1973)
                              B-26

-------
t-J
































CO
1
0
'
CM

w
,-J
PQ
<£
H





























.*.
^
O
M
H
CJ
j — 1
pi
H
CO
13
CO
H*4
z
52
H

pl_|
O
O
Pi

P
w

M
Pn

•
CO
fe
0
0
Pi

0
Z
M
H
<^
0
i-J]
Pn
1

CO
H
z
W
s
t-i
CO
w
H-1
O
CJ

PS
H


pi
o


H
CO
O
CJ

•o






H
1— 1
[•TI
O
Pi
H

Pi
O
H

H
CO
O
o




















Pn
0
o
Pi

P
w
X
M
p^


CO
£>

[T(
o
o
pi

o
z
M
H

O
,_]
P>4

<
i
O
£x^


53 MIX,
f
li
H
w   
-(- -j-




P E3
W M fe
Pi
H
PJ 
0
O
o
Pi
b >-i
CJ PL,





h
f





2




O

O
o
o

4-






O M PJ-I
0
H
[-1 
4-





pi
PJ
w <; >
H
O
2; J
h



H



fr ,


O
o
CJ


O O 0
o o o
oo m o
.,
CM >-O CM
r-l




P P^
PJ M Pn
Pi
H
W <1
S.
J^
>
O
o
o
Pi
O hJ
CJ








PJ
N
^ 	 |
CO

|v|
z

-)-




O
0
o
»
m
CM

-f-




o
o
o
-
CM
CM
•co-



o
o
o
-
CM
^ct~
•co-



0
o
0
.
o-
un





o
°"





i







o
o
o
-
CO
CO
•co-
-)-




o
o
0
-
r--
CM

-------
              Q    W
              W Pn O
              XO
              M O Pd
                         O
                         O
                         O
                               CO
                       o
                       o
                       o
              w   w
              .-4 t^U/  ,
              PQ U M
              £> W P3V
              O Q PM
              Q
                         O
                         O
                         O
                               m
                       o
                       o
                       o

                       o
                       r-
2
O W
OUx-v
H M-crt-
iS Pd^
O PM
PM
                               o
                               o
                               o
                                 •t
                               00
                                 o
                                 o
                                 0

                                 00
         W
         H
         fn
O

CNI

W
J
PQ

3
      en
W
o
o
H
en
H
en
o
      w
      en
o
Pi
!=3
               w
               o
                   W
                   CJ
                   PM
                         o
                         o
                         o
              o
              o
              o

              Csl
                       o
                       o
                       o
                                       00
         o
         o
         o
          •-,
         00
         m
         w
         H
         PM
         M
               W
               M
               o
   W
   O ^-s
   I—I 
   &^s
   PM
                   W
                   Pi  3
                   o  o
o
o
o
o
o
o

00
                         o
                         o
                         o
                               Csl
                       o
                       o
                       o

                       00
                       CN
                                                         cs
                                                         o
                                                          I
                   o
                   >
                   p
                         O
                         O
                         O

                         O
                       O
                       O
                       o
                                        w
                                        o
                                                         o
                                                         en
                                              B-28

-------
                          TABLE 2.0-5
             SUMMARY OF ESTIMATED OPERATING COSTS
                    FOR GASOLINE STORAGE TANKS
Tank Capacity, Barrels

Annual Operating Costs, $
  Fixed Roof Tank
50,000    100,000   150,000
29,000     48,600    72,200
  Pontoon Floating Roof Tank
25,000     39,500    57,100
  Internal Floating Cover
  (In Fixed Roof Tank)
28,600     45,600    66,000
Annual Operating Cost, $/1,000 Barrels
  Fixed Roof Tank
   600
490
480
  Pontoon Floating Roof Tank
   500
400
380
  Internal Floating Cover
  (In Fixed Roof Tank)
   570
460
440
SOURCE:   MS-001 (1972)
                              B-29

-------
                         TABLE 2.0-6
          DIFFERENTIAL SAVINGS VS DIFFERENTIAL CAPITAL
     INVESTMENT AND PAYOUT (BASE CASE - FIXED ROOF TANK)
Tank Capacity, Barrels

Pontoon Roof
Differential Installed
  Capital Cost, $

Differential Net Savings
  (Before Tax), $

Differential Tax, A 50%, $

Differential Savings
  (After Tax), $

Payout After Taxes (yr)
Internal Floating Cover  in
Existing Fixed Roof Tank
Differential Installed
  Capital Cost, $

Differential Net Savings
  (Before Tax), $

Differential Tax @ 50%,  $

Differential Net Savings
  (After Tax), $

Payout After Taxes (yr)

SOURCE: MS-001 (1972)
50.000     100,000    150,000
15,000
 4,900
 2,450
 2,450
  3.80
34,000
 1,300
   650
   650
  8.40
22,000     24,000
 9,100     15,100
 4,550
 4,550
  3.26
 3,000
 1,500
 1,500
  7.83
7,550
7,550
 2.41
54,000     68,000
6,200
3,100
3,100
 6.87
                            B-30

-------
                          TABLE 2.0-7

                     SOURCES OF COST DATA

              LOADING RACK VAPOR RECOVERY EQUIPMENT
           AMB Div.,  Aeroquip, Vapor-recovery dome
           assembly conversion kit for any 4 in.
           conventional top-loading arm, mechanical
           seal.  $350,000.  Top-loading vapor-
           recovery loading assembly with automatic
           shutoff, interlocks, pneumatic or hydraulic
           seal.  $2500-$3000.

           Chicksan,  Div. of FMC Corp.,  Top-loading
           vapor-recovery arm, pneumatic control
           for sealing to hatch.  About $3000 for
           4 in. arm; involves some custom design-
           ing. 6 in. and 3 in. arms also available.

           Emco Wheaton. Top-loading vapor-recovery
           loading assembly, mechanical seal.  $1700
           FOB.  Bottom-loading assembly, metallic
           hose, $1290.   Bottom-loading A-frame as-
           sembly, $725.  Vapor-recovery coupler,
           4 in. $204.

           Ever-Tite Coupling Co.,  Supplies various
           couplers for loading lines,  vapor-recovery.
           From $1500 FOB, depending on size.  Bottom-
           loading assembly, cross-over type, $1000
           FOB per arm.   (Does not include vapor-return
           line.)

           Parker Hannifin, loading hose coupler,
           4 in., $294.50 list FOB (matching vapor-
           return line coupler supplied by user).
           Top-loading tight-fill system.  (Includes
           mechanical manhold seal, loading-hose
           adaptor, electrical relief valve,  vapor-
           return adaptor, electrical con.necc.ion for
           float switch as backup to pre-set meter
           filling to prevent overfills).  $750 list
           FOB.
SOURCE:   BR-163  (1973)
                              B-31

-------
                              TABLE 2.0-8

SOURCES OF  COST DATA  FOR  TANK TRUCK VAPOR RECOVERY EQUIPMENT
                  Emco Wheaton
                  Vapor-line adaptor, 4 in.           $ 98.00
                  Vapor-line coupler, 2 in.             30.00
                  Coaxial  loading-vapor coupler        134.00
                  Slow-flow/fast-flow valve            165.00
                  Bottom-loading coupler, 4 in.        233.00
                  Vapor hood, emergency vent            57.00

                  Ever-Tite Coupling Co.
                  Supplies various couplers for
                  delivery hose, vapor-return
                  lines.

                  McDonald Mfg. Co.
                  Delivery-hose tight-fill connec-
                  tion, 4 in.                           60.00
                  Vapor-return line tight-fill
                  connection, 2 in.             26.00 - 30.00

                  OPW Diy.. Dover Corp.
                  Vapor-line coupler, 2 in.             69.50
                  Combined product-vapor coupler,
                  6 in.                                121.50
                  Single-point product-vapor
                  coupler, 4 in.                       121.50
                  Delivery coupler, tight-fill, 4  in.    50.10
                  Loading vapor-recovery system    From 80.00
                                               (depending on
                                                       size)

                  Parker Hannifin
                  Leading-line adaptor, 4 in.
                  List, FOB (user supplies his
                  own vapor-line adaptor).             160.00
                  Float switch.               Price not given
                  Emergency vent (includes
                  vent, hood, linkage to in-
                  ternal valve) .  List, FOB.           185.00
                  Drop-tube deflector.   List,  FOB.       11.86

                  Philadelphia Valve Co.
                  Super valve, 4 in., balanced
                  and air-operated, used with auto-
                  matic high-level shutoff in load-
                  ing.                                 473.79
                  Float valve, air-operated.           157.69
                  Float switch, magnetic, high-level    83.38
                  Vent, 5 in., used with 4 in.
                  balanced super valve.                 96.06
                  Hood, vapor collecting, for vent.     79.75
                  Super valve, 4 in., with 5 in.
                  vent.                                435.00
                  Manhole, spring loaded for 5 in.
                  vent.                                188.50

       SOURCE:   BR-163  (1973)
                                    B-32

-------
                           TABLE  2.0-9

SOURCES OF  COST  DATA FOR TERMINAL VAPOR  RECOVERY UNITS
            Gulf Environmental Systems
            Vapor-recovery system,condensing
            type, skid-mounted,  FOB,  depending
            on size plus installation.  §75,000  -  80,000

            Parker Hannifin
            Vapor-recovery system,  absorption
            type, skid-mounted,  FOB,  depend-
            ing on size, plus $25,000-$80,000
            for installation.          $60,000  -175,000

            Rheem Superior
            Vapor-recovery system,  absorbing
            type, skid-mounted,  FOB,  depend-
            ing on size, plus installation.
                                       $68,000  -  99,000

            Southwest Industries,
            Eiv.  Ingersoll Rand
            Vapor absorption-type converters.
            Seven models with capacity  to
            handle vapors in loading  from
            30,000 gal.  daily.   Requires extra
            cost vapor holder.   Price not given,
            but work is done on  turnkey basis.

            Vaporex
            Vaporex condensation system, skid-
            mounted.   Requires no vapor-holding
            tank; biggest unit eliminates need
            for floating roof on storage.  FOB,
            plus installation.     From  $75,000  -200,000
            Vaportrol VS-1 system,  cooling-
            condensing type,  4 ton capacity,
            FOB plus  $6000 installation for
            existing  aboveground storage.         4,000
            $2000 FOB,  plus about $2500 in-
            stallation for underground  storage.

            AER Corp.
            Custom-built to terminal's  product
            throughput.   Capacity range from
            50 cfm to 350 cfm.   From  $20,000
            to $50,000,  FOB,  plus installation.

 SOURCE:   BR-163 (1973)
                              B-33

-------
                SU

                U

               JC «

               u —i

                2C

                n
            !  s
            u  u

            SoS
            PO
           V* C u*i «
           o a*-* •
            «• i o
           ** cc» u
           M <• O*M




























o
r-t
O

CNJ
TABLE



















^V*
|5!
S


CO
H
M
B



r^

W
O
O





Pi
O
P-4

^
^3
a
El TERMI
o
Fn

CO
u
H
CO
H
H
CO
Q
CO
H
CO
O
u
X*J

I* U
n rt
u o
0
a
MT)

^
a

1 1>
a.*0 M
V O
h CO
&, o
V 4J *J

•^ M C
W •» M
u*
««?*"
W O w
u ~*
c « cu
* c  i i_ i u-i O. O. T3C.&0 *> t
EC ?'•£££ ? Ir* e1^ & e* Bx rE
^j in t^r-< dm v> rH  rM v> r>j ox-j «/> ,— i  tnt^


r-» r* «o to ao ^ O»
ii ii I il
o* o* » a. « av w

o •* m
2^3 ^
f^ 00
in mo o m B • fl
^ ^^ 1-1 a a u C
-« 4 ^-in i i 4


II II J £ 1
£  S
u  u
                                    ii
 *   -
41-H  a ^
 ; c  « v
 e  «i a.
if m  -CO
 .£  K in
                    ^   -

                    SS IS
                   B-34

-------
                         TABLE 2.0-11

SOURCES OF COST DATA FOR DELIVERY-RELATED SERVICE STATION VAPOR

                      RECOVERY EQUIPMENT


          Emco Wheatqn
          Submerged  fill tube, 4  in.
          x 10 ft.                        $15.00
          Dry-break  adaptor, vapor return. 16.50
          Vapor adaptor cap.               12.00
          Overfill protection valve.       44.00
          Multiple-access tank unit.       36.00
          Pressure-vacuum vent.            12.25
          Manhold 9  in., 12 in.    10.40  - 14.75
          Extractable float valve. Price  not  set
          Coaxial adaptor, tube.           58.00

          Ever-lite  Coupling Co.
          Supplies various adaptors  for
          delivery,  vapor-return  lines.

          McDonald Mfg. Co.
          Fill cap assembly (can  also
          be used for vapor-return line
          cap assembly).                   15.00
          Pressure-vacuum vent.            15.00

          OPW Div.,  Dover Corp.
          Combined liquid and vapor-
          return line adaptor, 4  in. Under 50.00
          Same as above, 6 in.       Under 50.00
          Vapor-return adaptor,
          tank.                       From 32.50
          Float valve, vent-line
          manifold.                        33.50
          Extractor  vent valve assem-
          bly with float valve.            66.20
          Float valve only.                13.25
          Vapor-line recovery adaptor
          for above-ground manifold.       56.50
          Manhold, 9 in., 12 in.   12.80  - 18.70
          Drop tube, 4 in. x 10 ft.        18.45


SOURCE:   BR-163 (1973)
                              B-35

-------
                         TABLE 2.0-12

       COSTS FOR SERVICE STATION VAPOR RECOVERY UNITS
          Atlantic Engineering

          Mark I Intennark vapor recovery
          system, condensing type, $5000
          FOB, plus $2500 installation at
          existing stations. (Includes vapor-
          recovery gasoline nozzles.)
          Nozzle, vapor-recovery type, $20-
          25 installed.

          Vaporex
          Vaportrol VS-1 system, cooling-
          condensing type, 1 ton capacity,
          $1500 FOB, plus about $2500 in-
          stallation at existing stations,
          $500 installation at new stations.
SOURCE:  BR-163 (1973)
                              B-36

-------
                               TABLE 2. 0-13
COST SUMMARY FOR DIRECT DISPLACEMENT
AND VAPOREX VAPOR CONTROL SYSTEMS

0.
Azco
Materials T
Labor J
Maintenance
Std-Cal
Materials
Labor
Maintenance
Mobil
Materials
Labor
Maintenance
Exxon
Materials
Labor
Maintenance
Shell
Materials
Labor
Maintenance
Sunoco
Materials
Labor
Maintenance
Cltgo
Materials
Labor
Maintenance
Union (Vapor ex)
Materials
Labor
Maintenance
A
Modify
Existing
Station:
Tanks &
G. Piping
System
$4,500*
526
4,200
0
2,310
1,165
1,405
3,000
220
1,850
2,050
100
2,500
1,500
100
2,250
3,850
25
3,000
5,300
Std-Cal (Vapor ex)
Materials A, 026
Labor 6,700
Maintenance 125
B
Incremental
Cost - New
Station:
Tanks &
U.G. Piping
System
I }
526
0
550
1,405
220
1,850
100
1,500
2,000
25
2,900
4,000
4,026
2,500
125
C D* E* F
Cost - All Cost Incremental
Aboveground To Equip Cost To
Equipment Existing Equip New Annual
Modif. £• Station Station Maint.
Norzles (A+C) (B+C) Cost
$1,500* $6,000 — —
690 5,476 $1,276 $. 130
60
130
810 4,615 1.690 —
330
600 5,005 2,005 280
60
720 5,000 2,950 620
380
520
410 4,570 2,070 450
160
350
990 7,450 3,350 215
360
180
800 9,800 8,400 —
700
**
1,590 12,646 fl,*«6 535
330
225
     *  Materials and labor only
     ** Includes estimated annual operating cost of $185 (electricity)
SOURCE:   SC-186  (1974)
                                       B-37

-------
                               TABLE 2.0-14

             ESTIMATE  FOR  THE  INSTALLATION OF  A SIMPLE
           DISPLACEMENT SYSTEM AT  TYPICAL  SERVICE  STATION
SOURCE:   AR-047 (1974)
        MATERIAL

        Pipin* 2" calvsnised 9 $1.25/ft. x 1»00'                    $   500.00
            Fittinss 2 S.25/ft.                                     100.00
            Installation 5 $2.90/ft.                              1,160.00

        Excavation

            Savcut concrete 2 $1.50/ft. x 150'                       225.00
            Tanks § $150/tank U tanks)                              600.00
            Islands @ 150/island (3 islands)                         UJO.OO
            Driveways                                              500.00

        Backfill - Sand & Mat                                        150.00

            Labor                                                  350.00

        Concrete Work § Island 3 $75-00/island                        225.00
                     § tanks S $100.00/tank                          300.00

        Miscellaneous Fittings-Adapters, Manholes, etc.                200.00

        ^Asphalt Patching                                             375.00

        Testing of Pipes                                             200.00



                                        Say                     $5,500.00

        6 vapor recovery nozzles completely
            installed inc. hose and codifications
                 to dispensers 6 & $250.00 each.
        Total System Complete                                     $T»000.00
                                      B-38

-------
3.0       SEASONAL EFFECTS ON VAPOR RECOVERY EFFICIENCIES

          Concern has been expressed over the possibility that
the efficiency of vapor recovery units will markedly decrease
in winter months due to the high concentration of light ends
in winter gasoline vapors.  Discussed below are the results from
simulations of a refrigeration vapor recovery unit where the
effects of hydrocarbon concentration and seasonal blending were
studied.  Although a refrigeration vapor recovery unit was
chosen, the results and conclusions should also apply to CRA,
CRC, and LOA units.

3.1       Gasoline Composition Bases

          Table 3,1-1 contains the liquid composition of a
typical 13 RVP winter gasoline (AM-078).   Flash calculations
were performed on the winter gasoline at 40°F, assuming a vapor
to liquid ratio of three, to determine the equilibrium vapor
composition.

          The composition of vapor from typical summer gasoline
was estimated by averaging the compositions of vapors from
ten summer gasolines reported by Scott Research Laboratories
(SC-186).   This composition is given in the third column of
Table 3.1-1.

3.2       Calculation Bases

          The summer and winter vapor compositions reported in
Table 3.1-1 were used in a vapor-liquid equilibrium model to
calculate the effects of seasonal gasoline composition changes
on vapor recovery unit efficiencies.   The model used for cal-
culations  was a refrigeration vapor recovery unit operating at
                              B-39

-------
                           TABLE 3.1-1
SEASONAL COMPOSITIONS OF GASOLINE
AND ITS VAPORS
IN MOLE PERCENT


Air
Ci,
C5
C6
C7
C8
C9
GI o
Total
RVP
Temp . , °F
Winter
Liquid
Composition
-
12.8
23.3
14.1
19.6
17.2
6.5
6.5
100.0
13.0
-
Gasoline
Calculated
Vapor (D
Composition
76.2
15.1
7.0
1.1
0.5
0.1
-
_
100.0
-
40

Average of ,
Summer Vapor ^
Compositions
58.4
20.9
13.6
7.1
-
-
-
-
100.0
-
80
(1)   Vapor in equilibrium with liquid assuming a vapor to
     liquid ratio of 3.0 at 40°F.

(2)   Average of ten typical compositions (SC-186).
                              B-40

-------
atmospheric pressure and -100°F coil temperature.  Four cases
were studied; winter vapor compositions containing 15 mole %
and 40 mole % hydrocarbons in the vapor, and summer vapor
compositions containing 15 mole % and 40 mole 70 hydrocarbons
in the vapor.  Various amounts of air were added to or sub-
tracted from the winter and summer vapor compositions presented
in Table 3.1-1 to synthesize the four case inputs listed in
Table 3.2-1.  The resulting outlet vapor compositions for the
four calculated cases are also presented in the table.  Vapor
recoveries ranged from 93.570 for winter vapors with lower hydro-
carbon content to 98.670 for summer vapors with higher hydro-
carbon content.

          The equations for calculating recovery efficiency from
mass rates and hydrocarbon concentrations are presented below.
                        M, - M
         efficiency  =  —	-       x  100             (3-1)
                          M.

                         N. - N  (l-N./l-N  )
         efficiency  =  —-i	°-	1	°_  x 10Q     (3-2)
                                Ni
         M.  =  hydrocarbon mole rate in
         M   =  hydrocarbon mole rate out
         N.  =  hydrocarbon mole fraction  in
         N   =  hydrocarbon mole fraction  out.
3.3       Conclusions

          The hydrocarbon concentrations  in  the  outlet  streams
from  the refrigeration  system model  are essentially  identical
for all cases.   It  is concluded  that at a given  temperature
                              B-41

-------
                          TABLE 3.2-1

            INPUTS AND RESULTS FROM THE VAPOR-LIQUID
    EQUILIBRIUM MODEL OF A REFRIGERATION VAPOR  RECOVERY UNIT
Inlet Vapors
                                  Mole
                                       (1)
                   Winter Vapors          Summer Vapors
                 Case 1Case 2      Case 3Case 4
    C5
    C6
    C7
    C8
  Air
  Total
Outlet Vapors
    C*
    C5+
   Air
   Total
Recovery
Percent
                  9.5
                  4.4
                  0.7
                  0.3
                  0.1
                 85.0
                100.0

                  1.1
                  0.03
                 98.9
                100.03
                 93.5
 25.4
 11.8
  1.8
  0.8
  0.2
 60.0
100.0

  1.1
  0.04
 98.8
 99.94
 98.2
  7.5
  4.9
  1.7
  0.9
  0.0
 85.0
100.0

  0.9
  0.04
 99.1
100.04
 94.9
 20.0
 13.2
  4.4
  2.4
  0.0
 60.0
100.0

  0.9
  0.05
 99.1
100.05
 98.6
(1)   Vapor compositions  are  based on assuming  15 mole  percent
     hydrocarbons  in Cases 1 and 3,  40 mole percent hydrocarbons
     in Cases  2 and 4.   Equilibrium conditions in  all  cases
     are atmospheric pressure and -100°F.
                              B-42

-------
and pressure, the concentration of hydrocarbons in the exhaust
from a vapor recovery unit is fixed and independent of the inlet
hydrocarbon concentration.

          Although the inlet hydrocarbon concentration does not
control the outlet hydrocarbon concentration, it does have a
direct effect on the removal efficiency.  Equations 3-1 and 3-2
indicate that the hydrocarbon recovery efficiency of a vapor
recovery unit is directly proportional to the total hydrocarbon
concentration in the inlet vapors.  Higher recovery efficiencies
are therefore to be expected with vapors containing higher
hydrocarbon concentrations.

          Seasonal effects on the efficiency of vapor recovery
units are made evident by comparing the outlet vapors of Case
1 to Case 3 and of Case 2 to Case 4 in Table 3.2-1.  Recovery of
winter vapors, which contain more butanes than summer vapors,
is slightly more difficult.  However, these changes in the hydro-
carbon composition of vapors due to summer and winter blending
changes have less effect on the efficiency of vapor recovery
units than do changes in the total hydroca?:bovj concentration.
This is attributed to the fact that gasoline vapors are con-
sistently high in butanes and pentanes and the content of these
components change very little as the gasoline RVP changes.

          In summary:

           1)  The hydrocarbon concentration in the vent
               from vapor recovery units is essentially
               independent of the inlet hydrocarbon
               concentration to the unit.
                              B-43

-------
2)  The hydrocarbon recovery efficiency of
    vapor recovery unit,  at a given set of
    operating conditions,  is directly propor-
    tional to the inlet hydrocarbon concen-
    tration.

3)  The seasonal effect (of gasoline composition)
    on vapor  recovery unit efficiency is
    small.  Recoveries can be expected to be
    slightly  higher in the summer.
                   B-44

-------
4.0       ENFORCEMENT MONITORING

          A procedure for monitoring emissions from a stationary
source must be specified as part of the technical support docu-
ment.  For the transportation industry, separate monitoring
procedures may prove to be needed for each segment of the
distribution process; that is for terminals, bulk plants, and
service stations.  Since enforcement monitoring is definitely
an unresolved issue at this time, this section will serve
primarily to focus upon factors that need to be considered
in developing an enforcement monitoring procedure.

          The purpose of enforcement monitoring is to determine
whether or not a source is complying with a regulation.  Monitor-
ing procedure requirements, therefore, may vary with the type
of regulation.  This is to say that a regulation based on a
percentage control may require a different monitoring procedure
than would a regulation based on either mass emission standards
or equipment standards.   Other factors to be considered are the
simplicity,  reliability, and accuracy of the eniorcement monitor-
ing procedure.

4.1       Terminals

          The regulations governing emissions trom terminals
will probably be based on either a percent recovery or mass
emission limit.  Monitoring procedures would therefore be
designed to measure the necessary parameters to determine
compliance with these regulations.

          The simplest monitoring procedure for terminal vapor
recovery systems would be to measure the hydrocarbon concentra-
tions in the in'.et ana outlet vapors   Ttuj. a?..fi'«..*ence in the
                               B-45

-------
concentrations could be used to calculate the recovery effi-
ciency.  This method is simple, quick,  and relatively inexpen-
sive to perform, however, it will not reveal whether or not
the system has internal leaks.

          An alternative method for enforcement monitoring of
terminals includes measurement of the volume and hydrocarbon
and air concentration of vapors emitted from the tank truck and
from the vapor recovery system.  These data can then be used
to calculate either percent recovery efficiencies or mass
emissions.  This method is slightly more involved than the pre-
vious method, but it would provide data to reveal the presence
of internal leaks in the vapor recovery system.

          Monitoring of these systems is still in the development
stage.   As data is developed, emission factors may be developed
that could eliminate the need of measuring some of the above
parameters.  For example, tests to determine the amount of vapor
returned from loading operations may produce factors that could
be used reliably to predict the volume of vapor emitted per
gallon of fuel loaded for bottom loading and top loading opera-
tions.   Development and use of these factors would be a practical
approach to monitoring operations.

4. 2       Service Stations

          Regulations governing emissions from service stations
could possibly be based on an equipment standard, on a mass
standard, or on a percent recovery standard.  An equipment stan-
dard could either be implemented as part of Stage I or Stage II
standard for displacement systems.  An enforcement monitoring
procedure would not be necessary with this standard.  Periodic
visits to the source may be necessary to insure that the equipment
is in good working order.
                              B-46

-------
          A regulation based on either mass emission or percent
recovery would require a rather detailed monitoring procedure
to evaluate compliance of vapor recovery systems in use today.
Losses at the nozzle-fill neck interface for both displacement
and vacuum assist systems should be determined to evaluate
compliance with regulations.  The determination of these nozzle-
fill neck interface losses have thus far been accomplished only
by indirect methods, and then only for the displacement system;
considerable test development work remains to be done in this
area.

          In addition to measuring losses fcotc r.ozzles, losses
from the vapor recovery system itself muse, be measured.  Monitor-
ing procedures which would determine the volume and hydrocarbon
concentrations of the inlet and outlet vapor streams should be
performed to provide data upon which to evaluate efficiencies.

          A testing program to provide data certifying compliance
on a station-by-station basis would be extremely expensive and
perhaps unrealistic.  Most such procedures would "vnuire several
days of testing in addition to fol Icv-a,'- ir o.'_, , io .   A mechanical
specification therefore appears to be the more practical approach.

4.3       Bulk Stations

          Bulk station vapor recovery standards could possibly
be in the form of an equipment specification, a mass emission
limit,  or a percent recovery.  As wl <;]- s,--'!  -  -—4,-.,-s, ,i
standard based on equipment specifications would require no
enforcement testing as long as the proper equipment was installed.

          A mass emission or percent reccve^v standards would
require the same, testing procedure.0 required ^>- service stations
and terminals to certifv compliance.

                              B-47

-------
5.0       PHYSICAL AND CHEMICAL PROPERTIES OF GASOLINE AND
          ITS VAPORS

          The chemical and physical properties of gasoline
and the vapors emitted from gasoline handling facilities
are described in this section.  Special attention has been
given to the particular properties of gasoline and emitted
vapors that are considered critical in assessing the impact
on air quality.

5.1       Chemical Composition of Gasoline

          Motor gasolines are blends of petroleum distillates
carefully combined to yield the proper volatility and com-
bustion characteristics for good motor performance.  Their
composition is complex and varies greatly with the sources
of crude oil from which it was distilled and with the types of
conversion processes to which it has been subjected.  Gasoline
compositions also vary greatly because the temperatures and
altitudes at which gasolines are used vary, and the gasoline
blends must be altered to ensure proper fuel volatility
and car performance at each locale and for each season.
Table 5.1-1 (MA-291) and Table 5.1-2 (AM-078) detail the
chemical compositions of several full range premium gasolines.
For simplicity Table 5.1-3 summarizes data from Table 5.1-1 and
Table 5.1-2,  The characteristics of typical summer and winter
gasoline blends are contrasted in Table 5.1-4 (SH-137) and
Table 5.1-5 (SH-138).  The compositions of the gasolines in
these two tables are expressed by means of boiling fractions.
                             B-48

-------
                       TABLE  5.1-1
DETAILED  CHEMICAL COMPOSITION OF A FULL RANGE MOTOR GASOLINE
Component
Propane
Isobutane
Isobutylene
+ Butene-1
it-Butane
Trans-2'butene
Neopentanc
Cis-2-butene
3-Methyl-l-butene
Isopentane
Pentene-1
2-Methyl-l-butene
2-MethyM.3-butadiene
n-Pentane
Trans-2-pentene
Cls-2-pentene
2-Methyl-2-butene
3,3-Dimethyl-l-butene
W-Dimethylbutane
Cyclopentene
3-Methyl-l-pentene
+ 4-Methyl-l-pentene
4-Methyl-cis-2-pentene
t,3-Dimethyl- 1-butene
Cyclopentane
2,3-Dimethylbutane
+ (4-Meihyl-trans-2-pentene)*
2-Methylpentane
2-Methyl-l-pentene
3-Methvipentane
+ (Hexene-1)
-f (2-Ethyl 1-butene)
Cls-3-hexene
Trans-3-hexene
3-Methylcyclopentene
2-Methyl-2-pentene
3-Methyl-cis-2-pentene
n-Hexane
4- (4.4-Dimethyl-l-pentene)
Trans-2-hexene
Cis-2-hexene
3-Methyl-trans-2-pentene
4,4-Dimethyl-trans-2-pentene
Methylcyctopentane
•+• (3,3-Dimethyl-l-pentene)
2,2-Dimethylpentane
-f- 2,3-Dimethyt-2-butene
+ (2.3,3-Tnmethyl-l-butene)
Benzene
2.4-Oimethylpentane
4,4-Dimethyl-cis-2-pentene
2,2,3-Tnmethylbutane
2,4-Dimethyl-l-pentene
1-Methylcyclopentene
+ 2-Methyl cis-3-hexene
2,4-Dimethyl-2-pentene
+ 3-Ethyl-l pentene
-f- 3-Methyl-l-hexene
2.3-Dimethyf-l-pentcne
2-Methyl-trans-3-hexene
4- 5-Methyl 1-hexcne
3.3-Dimethylpentane
Cyclohexane
+ (4-Methyl-cis-2-hexene)
4-Methyl-l-hcxene
+ 4-Methy|.trans-Miexene
3-Mcthyl 2-ethyl 1-bulcne
5-Methyl-trans 2-hexene
Cyclohexene
Boiling
Point. *C'
—42.07
-11.73
-6.90
-6.26
-0.50
0.83
9.50
3.72
20.05
27.85
29.97
31.16
34.07
36.07
36.35
36.94
38.57
41.24
49.74
44.24
54.14
53.83
56.30
55.67
49.26
57.99
58.55
60.27
60.72
63.28
63.49
64.66
66.47
67.08
65.0
67.29
67.70
68.74
72.49
67.87
68.84
70.44
76.75
71.81
77.57
79.20
73.21
77.87
80.10
80.50
80.42
80.88
81.64
75.8
86
83.26
84.11
84
84.28
(6
85.31
86.06
80.74
87.31
86.73
87.56
86.1
88.11
82.98
Composition,
%wt
0.01
0.37
0.04
4.29
0.20
0.04
0.17
0.12
10.17
0.45
0.22

5.75
0.90
0.67
0.96

0.46
0.18

0.18
0.04
0.08
0.51
1.55
0.18
3.76
0.22
2.23

0.11
0.12
0.04
0.27
0.37
1.51

0.18
0.15
0.34
Trace

0.62


0.14
0.81
1.71

0.04
0.03
0.32


0.05
0.02

0.04
0.02

0.17
0.09
0.02
0.02
0.03
Component
2-Methylhcxanc
+ (5-Methyl-cis-2-hexene)
2,3-Dimethylpentane
+ (1,1-Dimelhylcyclopentane)
+ (3,4-Dimethyl-cis-2-pentene)
3-Methylhexane
l-Cis-3-dimethyf cyclopentane
•+• 2-Methyl-l-hexene
4- 3,4-Dimethyl-trans-2-pentene
l-Trans-3-dimethylcyclopentane
+ 1-Heptene
+ 2-Ethyl-l-pentene
3-Ethylpentane
+ 3-Methyl-trans-2-hexene
l-Trans-2-dimethylcyclopentane
2.2,4-Trimethylpentane
+ (Trans-3-heptene)
Cfs-3-heptene
3-Methyl-cis-3-hexene
+ 2-Methyl-2-hexene
+ 3-Methyl-trans-3-hexene
3-Ethyl-2-pentene
Trans-2-heptene
n-Heptane
+ (3-Methyl-cib J-hexei.a)
2,3-Dimethyl-2-pentene
+ Cis-2-heptene
l-Cls-2-dimethylcydopentane
Methylcyclohexane
+ 2,2-Dimethylhexane
+ 1,1,3-Tnmethyicyclopentane
2,5-Dimethylhexane
+ Ethylcyclopentane
2,4-Dimethylhexane
2,2,3-Trimethylpentane
l-Trans-2-cis-4-trimethylcyclopentane
Toluene
3,3-Dimethylhexane
l"Trans-2-cis-3-tnrnethytc\'c!openlane
2,3,4-Trimethyip^ntr. ie
2,3,3-Ttimeth>Ih entanc
l.l.Z-TnmcthyVvrJc^c.- - ..
2.3-Oimethylnexane
+ 2-Methyl-3 etnylpentane
2-Methylheptane
4-Methylheptane
3,4-Dimethylhexane
-f- (l-Cis-2-trans-4-tnmethylcyclopentane)
3-Ethylhexane
3-Methylheptane
+ (3-Methyl-3-e',hyipent2ne)
l,l,3-Trans-4-tetrarr,ethylc> elope ntane
2,2.5-Tnmethylhexane
+ (l-Cis-2-cis-4-tnmethylcyclopentane)
l,l-Dimethyicyc!o(iL'Xdne
+ l.Trans-4-dimethyicyciohCKane
l-Cis-3-dimethy!c:;dchcxjnv
1-Methyl trjni i ci'i)i^^.upt...lal,^
2.2,4-Trimethylhex.me
l-Methyl-trans-2-ethylcyclopentane
-f 1-Methyl-cis 3-e(hylcyclopcntane
Cycloheptane
l'Mcthyl-1-ethylcyclopentane
l-Trans-2-dimplhylcyclohcxane
+ 1 Cis-2-cis-3-tiimelliyicyclopentane
n-Octane
l-Cis-4 dimethyicyciohcxdne
i-Tfans-3dmiethyicyCiOh-Aaoe
2,4,4-Tfinicthylhtfxane
2,3,3-Trimcthylhoxnno
Boiling
Point, 'Cl
90.05
89.5
87.78
87.85
17.9
91.85
91.73
91.95
90.5
90.77
93.64
94
93.48
94
91.87
99.24
95.67
95.75
95.3
95.44
93.53
96.01
97.95
98.43
94
. 97.40
98.5
99.57
100.93
106.84
104.89
109.10
103.47
109.43
109.84
109.29
110.63
111.97
110.2
113.47
114.76
U3.73
115.61
115.65
117.65
117. 71
117.73
116.73
118.53
118.93
118.26
121.6
124.08
118
119.54
119.35
120.09
120.8
126.54
121.2
121.4
118.79
121.52
123.42
123.0
125.67
124.32
124.45
130.65
126.42
131.34
Composition,
% wt

1.48
4.17
1.77

0.27


0.27
0.16
0.16
4.58
0.16


0.31
0.04
0.06

1.96
0.12
0.09
0.31
0.60
0.50
0.23
0.04
12.20
0.10
0.06
2.26
2.28
0.09

0.60
0.43
0.22

0.16
0.01

0.63


0.74
0.14
0.03
0.06
0.11

0.07
0.03
0.02

0.12
0.38
0.04
0.03
0.02
0.01
0.15
                          B-49

-------
TABLE 5.1-1 (Cont.)

Component
2,3-Dim«thylheptan»
l-Methyl-cls-2-ethylcyclopentane
2,4-Dimethylheptane
+ 2.2.3-Tnmcthylhexane
2,2-Dimethyl-3-ethylpentane
+ 2-Melhyl-4-elhylhexane
2,6-Dimethylheptane
+ (l-Cis-2-dimethylcyclohexane)
n- Propy tcyclope n lane
Ethylcyclohexane
2,5-Oimcthylhep(ane
+ 3,5-Dimethylheptane
Ethylbenzene
2,4-Dimethyl-3-ethylpentane
3,3-Dimethylheptane
1.1.3-Trimethylcyclohexane
2,3.3- Trimethylhexane
l-Cls-S-cis-S-trimethylcyclohexane
2-Methyl-3-ethylhexane
p-Xylene
m-Xylene
+ (3,3.4-Trimethylhexane)
2.3-Dimethylheptane
3,4-Dimethylheptane
4-Methyloctane
2-Methyloctane
3-Ethylheptane
3-Methyloctane
o-Xylene
+ (2,2,4.5-tetfamethylhexane)
2,2,4-Tnmethylheptane
2.2.5-Trimethylheptane
+ 2,2,6- Trimethylheptane
2,5,5-Trimethylheptane
+ 2,4.4-Trimethylheptane
isopiopylbenzene
n-Nonane
3.3,5-Trimethylheptane
2,4.5-Tnmcthylheptane
+ 2,3,5-Trimethylheptana
n-Propylbenzene
2,2.3.3-Tetramethylhexane
4- 2,6-Dimethyloctane
l-Methyl-3-ethylbenzene
1-MethyW-elhylbenzene
3,3.4-Tnmethylheptane
+ 3,4,4-Tntnethylheptane
4- 3.4,5-Trimethylheptane
l-Methyl-2-ethylbenzene
-f 5-Methylnonane
4-Methylnonane
1,3,5-Trimethylbenzene
2-Me(liylnonone
tert-Butylbenzene
Unidentified Cm alkylate peak
3-Melhylnonan»
1.2.4'Trimcthylbenzene
see-Butylbenzene
Isobutylbcnzene
J-Methyl-3-isopropylbenzene
n-Decane
1.2.3-Tnmelhylbenzene
4- l-Mclhyl-4 isopropylbenzen*
l-Mclhyl-2 isopropylbunzene
+ Ind.ine
1.3-0icthylbenzcn<
Unidentified Cn alkyljto peak
l-Melhyl-3 n propylbenzeno
n Bulylbcnjene

Point. -C*
132.69
128.05
133.5
133.6
133.83
133.8
135.21
129.73
130.95
131.78
136.0
136.0
136.19
136.73
137.3
136.63
137.68
138.41
138.0
138.35
139.10
140.46
140.5
140.6
142.48
143.26
143.0
144.18
144.41
147.88
147.8
148
148
152.80
153
152.39
150.80
155.68
157
157
1S9.22
160.31
158.54
161.31
161.99
164
164
164
165.15
165.1
165.7
1M.72
1G6.8
169.12

167.8
169.35
173.31
172.76
175.14
174.12
176.03
177.10
178.15
177
181.10

181.80
183.27

%*t
. 0.01
C.07
0.08
0.02

0.07
0.01
0.17

0.16
1.70
0.03
0.04

0.05

0.04
1.58

3.83
0.13
0.07
0.11
0.14
0.02
0.60

1.93
0.17

0.27

0.21
0.10
0.14
0.02

0.17
0.24

0.06
0.83
0.42


0.35

0.34
0.04
0.39
0.06
0.01

0.06
1.61
0.01
0.01
0.03
0.08

0.32

0.15 •
0.08

0.16
0.05

Component
1,2-Diethyl benzene
+ 1,4-Dicthylbenzene
4- l-Methyl-4 n propylbenzene
l-Methyl-2-n-propylbenzene
l,3-Dimethyl-!J-cthylbenzcne
Unidentified CM alkylate peak
2-Methylmdane
l,4-Dimethyl-2-ethylbenzene
1-Methylmdane
l-Methyl-3-tert-butylbenzene
+ Unidentified Cn alkylate peak
l,3-Dimethyl-4-ethylbenzene
l,3-Dimethyl-2-ethylbenzene
-f l,2-Dimethyl-4-ethylbenzene
l-Methyl-4-tert-butylbenzene
1.2-Dimethyl-3-ethylbenzene
n-Undecane
1,2,4.5-Tetramethylbenzene
1^,3,5-Tetramethylbenzene
Isopentylbenzene
5-Methylindane
4-Methylindane
n-Pentylbenzene
1.2,3.4-Tetramethylbenzene
Tetralin
Naphthalene
1.3-Oimethyl-S-tert-butylbenzene
n-Dodecane














•






•




















Point. »Cl
183.42
183.30
183.75
184.80
183.75
184
186.91
186.5
189.26

188.41
190.01
189.75
192.76
193.91
195.89
196.8
188.0
198.9
199
203
205.46
205.4
205.57
217.96
205.1
216.28





































*



%WL
0.09
0.05
0.13
0.02
0.09
0.07

0.03
0.13

0.19
0.04
0.03
a. o;
ti.10
0.17
0.07
0.11
0.03
0.03
0.03
0.02
0.10
0.02
0.05









































                               B-50

-------
                             TABLE  5.1-2
AVERAGE  COMPOSITION  OF  15   SAMPLE  MOTOR GASOLINES
                     Component           %  wt

                       Saturates:
                         Methane	,	
                         Ethane	
                         Isobutane	   1
                         n-butane	   7
                         Isopentane	  10
                         n-pentane	   4
                         2,3-dimethylbutanc	   2
                         2-methylpentanc	   3
                         3-methylpcntano	   2
                         n-hexan<:	   2
                         Methylcyclopentane	   1
                         2,4-dinnethy!pcntar,e. .. .   2
                         Cyclohexanc	   1
                         2-methylhexane	   5
                         2,2,4-trimcthylpentane...   6
                         n-heptane	   1
                         Methylcyclohcxanc	    1
                         2,4-dimethylhexane	   1
                         2,3,4-trimelhyIpeutane...   '1
                         2,3,3-trimethylpentane...   1
                         2-methyI-3-ethylpentane..   1
                         3,4-dimethylhexane	   1
                         2,2,5-trimethylhexanc	   1
                         n-octane	   1
                         Other 8atur»tr3.   .  ..,,.   ii
                       Olcfins and acetylenes-
                         Ethylt-ne	
                         Fropylene	
                         Isobutylcne/1-butcnc	
                         2-butcne	
                         2-methyl-l-butene	   I
                         2-pentenc	   I
                         2-mcthyl-2-butcn.-   .       2
                         2-methyl-2-pi.>titcr.p	   t
                         1,3-butadicne. .,  ,  	
                         2-methyl-l,3-butadicne	
                         Acetylene	
                         Methylacetylene	
                         Other nlnfins       	    6


                      •Aroinatics:
                         Benzene	   1
                         Toluene	   6
                         EthylbcnzetiG	   I
                         w and 7>-xylene	   5
                         nylenc	   2
                                     f.    . ...   t
                         i. i,r»-enrnet!'"!|!i'n7cn'»  ..   I
                         HnetiiyWJ-ctliyltwnzi-ne..   1
                         (,',',4-trimcthj Ibcnzcne...   3
                         I.S.^-trimethylhenz^ne...   1
                         O'iiiT aromatic.';	    4
                                   B-51

-------
                   TABLE 5.1-3
COMPOSITION SUMMARY OF TYPICAL PREMIUM GASOLINES
Component
Saturates
Olefins & Acetylenes
Aromatics
    Composition % wt	
Table 3.9-1   Table 3.9-2
     62
     29
    100%
 62
 11
 27
100%
C5
C6
C7
C8
C9
Other
      8
     18
     13
     15
     21
      9
     16
    100%
                        B-52

-------
                        TABLE 5.1-4
SUMMARY OF VALUES, MOTOR GASOLINE  SURVEY. WINTER  1971-72
T«t
Gravity, "API
Corrosion, No.
Sulfur content, wt %
Gum, mg/100 ml
Lead, g/gal
Octane number, Research
Octane number, Motor
Reid vapor pressure, Ib
Distillation
Temp, °F
IBP
5% evaporated
10% Do.
20% Do.
30% Do.
50% Do.
70% Do.
90% Do.
95% Do.
End point
Residue, vol %
Loss, vol %
ASTM
method
D287
D130
D1266
D381
D526
D2699
D2700
D323
D86













Regular -price gasoline
Average
62.7
1
0.044
1
1.88
94.0
86.5
12.1


84
96
Premium -price gasoline
Average
62.9
1
0.026
1
2.43
99.8
92.3
12.1


83
95
108 109
J23 1 132
150
199
255
336
369
4C3
1,0
2.1
158
209
253
321
353
398
0.9
•> >
i.t
SUMMARY OF VALUES, MOTOR GASOLINE SURVEY, WINTER_1970-71
Test
Gravity, "API
Corrosion, No.
Sulfur content, wt %
Gum, mg/100 ml
Lead, g/gal
Octane number, Research
Octane number. Motor
Reid vapor pressure, Ib
Distillation
Temp, °F
IBP
5% evaporated
10% Do.
20% Do.
30% Do.
50% Do.
70% Do.
90% Do.
95% Do.
End point
Residue, vol %
Loss, vol %
ASTM
method
D287
D130
D1266
D381
D526
D2699
D2700
D323
D86













i
Regular-price gaso. nc , Premium-price gasoline
Average Average
63.1
1
0.039
1
2. 1,2
93.9
86.4
12.1

62.6
1
0.023
1
2.60
99.8
92.2
12.1


34 * 83
*3 i 95
108
127
149
197
253
335
109
132
158
210
253
321
3o6 353
406
1.0
396
1.0
2.1 i 2.3
                           B-53

-------
                      TABLE  5.1-5



SUMMARY OF VALUES. MOTOR GASOLINE SURVEY, SUMMER 1973
Test
Grovity, °API
Corrosion, No.
Sulfur content, wt %
Gum, mg/100 ml
Phosphorus, g/gol
Lead, g/gal
Octane number. Research
Octane number. Motor
Research + motor octane Nos./2
Reid vapor pressure, Ib
Vapor-liquid ratio of 20, °F
Distillation
Temp, °F
IBP
5% evaporated
10% Do.
20% Do.
30% Do.
50% Do.
70% Do.
90% Do.
95% Do.
End point
Residue, vol %
Loss, vol %
ASTM
method
D287
D130
D1266
D381
D3231
D526
D2699
D2700

D323
D439
086













Regular-price gasoline
Average
60.3
1
0.040
1
0.004
2.01
93.5
86.1
89.8
9.3
136


91
108
121
142
163
211
265
342
378
417
1.0
1.6
Premium-price gasoline
Average
61.7
1
0.026
1
0.003
2.42
99.3
91.9
95.6
9.5
137

'
90
107
121
146
171
215
255
325
361
405
1.0
1.7
SUMMARY OF VALUES,  MOTOR GASOLINE SURVEY,  SUMMER 1972
Test
Gravity, 'API
Corrosion, HO.
Sulfur content, wt %
Gum, mg/100 ml
Phosphorus, g/gal
Lead, g/gal
Octane number, Research
Octane number, Motor
Research + motor octane Nos./2
Reid vapor pressure, Ib
Vapor- liquid ratio of 20, °F
Distillation
Temp, °F
IBP
5% evaporated
10% Do.
20% Do.
30% Do.
50% Do.
70% Do.
90% Do.
95% Do.
End point
Residue, vol %
Lots, vol %
ASTM
method
D287
D130
D1266
D381
D3231
D526
D2699
D2700

D323
D439
D86













Regular- price gasoline
Average
60.5
1
0.042
1
-
2.04
94.1
86.4
90.3
9.2
-


92
108
122
142
163
208
262
339
372
411
0.9
1.5
Premium-price gasoline
Average
60.7
1
0.026
1
-
2.52
99.8
92.2
96.0
9.3
-


91
108
123
147
172
217
257
324
357
401
0.9
1.6
                         B-54

-------
 5.2       Reid Vapor Pressure of Gasoline

          Gasoline  is  often  characterized by Reid Vapor Pres-
 sure  (RVP),  a technique  developed  as  a means of  expressing
 the vapor pressure  or  volatility of petroleum  fractions.  This
is a fundamental property in the study of hydrocarbon emissions
from gasoline marketing  facilities.   Figure 5.2-1 (DA-004)
 correlates Reid Vapor  Pressure with true vapor as a  function
 of temperature.  In the  absence of distillation  data, the
 value  of S  (the slope  of the ASTM  distillation curve at 1070
 evaporation) may be estimated as three for motor gasolines.
 Seasonal and locational  variations in Reid Vapor Pressures
 and several  other gasoline characteristics for both  premium
 and regular  grades  are presented in Table 5.2-1  (SH-137)
 and Table 5.2-2 (SH-138).  Districts  to which  these  tables
 refer  are shown in  Figure 5.2-2 (SH-137).

5.3       Chemical  Composition of  Gasoline Vapors

          The gas phase  above gasoline contains  a high per-
 centage of highly volatile hydrocarbon compounds.  The quantity
 and composition of  gasoline vapors are dependent on  such
parameters as the temperature and  pressure of  the containing
 system, the  composition  and Reid Vapor Pressure  of the Gasoline,
and the method of vapor  generation.   Table 5.3-1 presents
example chemical compositions for  the vapor phases in equilibrium
with several motor  gasolines.

5.4       Photochemical  Reactivity of Gasoline Vapors

          The primary  goal in controlling hydrocarbon emissions
from stationary and mobile sources is to reduce  the  production
of photochemical smog  from reactive hydrocarbons.  Photo-
chemical smog can cause  eye and respiratory irritation, vegeta-
tion  and materials  damage, and it  has  an annoying odor.

                             B-55

-------
               — 0.20



               — 0.30


               — 0.40


                  0.50

                  0.60

                  0.70

                  o.eo
                  0.9O
                  1.00
               — 1.50



                  2.00


                  2.50


                  3.00


                  3.50

                  4.00



               —  5.00


               —  6.00


               7-  7.00


               T-.  e.oo

               —  «.oo

               — 10.0

               — i i.o

                • 12.0

                 13.0

                 14.0
                 15.0

                 16.0
                 I7.O
                 16.0
                 19.0
                 20.0
                 21.0
                 22.0
                 23.0
                 24.0
    ,1 0
                                  I20-]
                                  I 10-
                                  100-
                                   TO-
                                   CO-3
                                   50 -E
                                   40 —
                                   30-
                                   20 ~
S = SLOPE OF THE astffl DISTILLATION
.CURVE AT 10% EVAPORATED=
   "f AT 15« MINUS °F AT _S»_
           10
IN THE ABSENCE OF DISTILLATION
DATA THE FOLLOWING AVERAGE VALUE
OF S MAY BE USED:
                                    0-3
MOTOR GASOLINE
AVIATION GASOLINE
LIGHT NAPHTHA (9 TO U Ib
NAPHTHA (2 TO 6 Ib rvp)
rvp)
3
2
3.5
2.5
FIGURE 5.2-1  - VAPOR PRESSURES  OF  GASOLINES  AND FINISHED
                   PETROLEUM PRODUCTS,  1  Ib  to 20  Ib RVP.   NOMOGRAPH
                   DRAWN FROM  DATA  OF  THE NATIONAL BUREAU  OF  STANDARDS
                   (AMERICAN PETROLEUM INSTITUTE,  1962b),   (DA-004)
                                       B-56

-------

















r-4
1
04
in
M
t-4
m























p3
o
Fn
<
S
**<
O
w
0
^
2
w
5
en
r-
,-1
Pi
i
rn

>•
W
g
£D

W
2
i— i
>j
o
CO
til
O
Pd
O
q
&






















H *
O ->
H °
IV^ «
H
co "
M "
Q J
I
ffi 5
0 |
< 5
w -
^

o
PQ












C

Z
n

V)
c




_J
0
a.
cc
a:

ur
u

*
Ul
_J
V)
o
CL
X
0
u.
g









2
Jl
o
0
o
o
Uf
Ul
OC
OL
O
Ul
£
K
a.
X
Ul
1-
X
-
1—
X
1-
X
t/I


2
X
fr-
•w
X
I—
4
X
M
•«
fr-
•
X
V)
u.
0
•
o
X

0
tf
o
tn
v>
Ul



UJ
a:
CO
Ul
z
Ul
tJ
a.




o*
0
CM
O
1
X

-


o
*>
o
0
o
«
o
M
O

J
ft.
V)
3
CC
GO

Ul
X
n


M
^

t>


in
•n

^
IA
a.
CD


m
„
o
0

c*

-1
0
o
0
o

ar
L








«.oo^.o-ooo..ooo
oSSnSoo2SSS2"oSoS
^«.^«««~««^in««~-«o


«««0,« «,«,««C,.,CVC,C,^0,^
«CV.«0.~«,««C«.~"'>0-«>0'S"-«'2 ^OI-CM»n^<,^^0.0^
«-.^- ^.-, -* CM-


kJ U
•-I 1- »-
1- CL •< <
o «o a. ui *-* •-
O *>IA»-* VI ZZXZZ
O OV) ft- «_» Q; z K «: j; r> r> ~i rr 'j o: -i>


o
0
*4
in

0.
«



o
o

^
-

01
-
__,
..



M
o
0



-0
CM
O
<>


Ul
OL
Ul





















Z
_J
o
tf)
o
Ul
o
ce
•
O£
J
-j
Ul
DC






O
«*>
_JJ
d.
w»






O
«
z
5
u
o




_J
o
CM
^
U.
cc
or
ru
X
r>
y
'ri
-tf
a
"I

Ul
O
o.
X *
».
u.
-J 1
<*
or
0 «

•1
«
c
t
—- --

1
*
I
fl
4
*
4
"
_J
UJ >«

x-i —
0
o
•0
0 UJ|
•< o
o cr »*-
UJ CJ
t*i :>• m
CC UJ
cc
o
UJ CM
» tt.
Ul
=> -*
1—
QC m
a. ~J 	
x a.
ui m

«£ 0
»- CM CD
•< O
X I
+ • CM
O
3E -< a
o.
*o »— «o

-J
w .n v
* Q C5
— C-J O
^c.cr

* CJ
X <0 M
W *-i 1—
< o z
/> ?\' >X
C 0 -F
• ^
K _J
A CL
h. f/t
3 O
" •* j

3
C U*
-» X
-*
f. 0
•4
a

O •-« O — »O OOOOOOOOO OOOO
S«SSfC^«S*t;«o'^^.So Sj^


«mm^mn^-,«m««^^^^^^
!
r4OJAfC4CMC^CVC4CMCM Oc'lO'OO*C>O*

iSS£S2««SS««S«SSSr?

1

^cCNcC.'.^^cC^-^-d.:^--^
^> «-«,»OO OOOOOOOO
« O» OOOO3 3 I OOOOOOOO
o


OOOOOO O O O OOOOOOOOO
o
.: ;- '; ,7 ; £ ,; ^ i; ;• ,v ^ i' ^ i" s S S
r^o-o^w,,. -.^^^^(Mo.0.^^ ji>
««---- -0.- 1C
._-,.. u 	 -— . -1 1 . — 	 — '— — - • ' ' "— {>
UJ (/
. ~, ^* ^ ,-t w ^ -* «-•* v-» *M *•* -i-f •** —«•-*-*_
oc a
UJ Ul £p
t- a. •«: ^
a' o -D /•' • > oe je je K ac -3 5 S fir o u: 5
— — « — "2-«2222i
B-57

-------
   H
   a
   w
   o
   
""

cc
X

*
0
c*
UJ
_J
*
X
c

u.
_J
M
49








X
X
O
0
O
0
UJ
u
UJ
EC
oz
a

ac.

ac
UJ
TT

tn
*
X

o
*
U)
cc
x
*
X
»-
"

*
X
<
•
z
u.
o
o
!f
c
z
u
cc
»-
»•
o

i/>
V)
o
«J
cr


0
UJ
«
0
a.
>
^k)
z
UJ
a.





«v

i


z
t/>

o
flO
c

CM
O
CO
O
•A
UJ
a.
V)
o
z
o:
to
Ul
z
z
o
z




a.
Ul

0
*.

<1
IV
o

m
a.
cc
CD
_j


o
CO
o>
o>
«-*C*Q-«C*«-*NC»OOOCfcO»O
„ _ „ ^-^ „ «
2;»»gSSSS2S»S5S»S
sssssssssssssssss

.M^^^CVICV-C.CVJ.VOJ^.V^C.,,^.,

«^o««ocMWO.in«-^«rn«-

ooooooo — «-«-^o^-oo— —

o.»»o.o»»o.o.<>o.»o.o.o.o>o

««««««ieo«o
w^-wtCtCcCwrJ----^^^^

«* «' « J « « « o X « o" «' «,' / « * ^

SSSSSSSSiSSSSererSJS*
«««-««,»-- ««0«K»«0
OOOOOOOOO-OOOCOOOOO
OOOOOCKOOOOOOOOOO'O

CM" CM* CM* * cC cC cO cC cC cC CM" cC cC cC cC cC cC



ooooooooooooooooo
0
S2g22S2=S2!SS=*°5
mo.ooK.«-.o^i-.o«««o-.-

«/> t/>
V> C. »- »- *- 1-
O *ft OL. Ui *^ **
O «Ot/l»^ *O ZZXZZ
••*»••»/> z «-»*-»xccce
o o«n*o«/i»-«^> •*•*»- o o
V>

f.



0

•"
a.
CO
cc
_J

M
O
CV
0
o
O-
0
_J
0
o


M
*








____ _ ^^._^_ -
SS2n2S22^g-S"SSSn


CMCMCMrMCMCMCMCMCMCMCMCMCMCMCMCMCM



OOOOOOOOO -^ — -^ *^ O C — • *•
rt »
CKOC^O-OOOOO-OOO-OOO-OO

«
1 w^-^^^^rC^----^^-^

««*-«o«^ooooeo oooooooo

»«S=S»SSSS£«£SoS£
N»«<»B«
-------
                                           §
                                           M

                                           I

                                           w
                                           g
                                           W
                                           M
                                           ,-J
M

h
o
  e
en r
K
W
                                             en
                                           MpS
                                           oo
                                           W Pi
                                             o
                                           CM

                                           (N

                                           m
                                           B
B-59

-------
TABLE 5.3-1
EXAMPLE GASOLINE VAPOR
Month
Location
Ambient Temp
Compound
air
methane
ethylene
ethane
propane
isobutane
butene
. n-butane
isopentane
pentene
n-pentane
hexane
heptane and
Reference
Feb. Oct.
Las Vegas
45°F

78.4
0.*3
0.0
0.0
0.4
3.1
-
10.2
4.3
-
1.8
1.0
higher 0 . 4
WE-111

70.9
0.0
0.1
0.0
0.5
1.8
-
9.6
10.8
-
1.1
2.9
2.2
WE-111
COMPOSITIONS
May
Volume
67.5
0.4
0.0
0.0
1.9
7.8
-
10.9
5.4
-
3.9
1.4
0.7
WE-111
May
%
87.7
0.0
''0.0
0.0
0.1
0.2
-
2.6
5.1
-
1.1
1.6
1.2
WE-111
Summer

58.1 58.4
-
1 0.8
J
0.6 1.3
2.9
3.2
17.4
7.7
5.1
2.0
J3.0 '
J

H8.8


•13.6

•7.1

DA-069 SC-1
    B-60

-------
 Chemical Reactions

           Reactive hydrocarbons and nitrogen oxides react
 in the presence of ultraviolet light and under suitable
 meteorological conditions to form photochemical oxidants which
 cause the major effects associated with photochemical smog.
 All hydrocarbons are reactive to some degree with olefins,
 aromatics,  and aldehydes being the most reactive.  The
 photochemical oxidant products are primarily ozone (03),
 nitrogen dioxide (N02), peroxyacylnitrates (PAN), and oxygenated
 organics.  The photochemical reaction is complex and still
 under research, but can be simplified to the following major
 reactions (PI-040).
                            uv
                        N02 J NO + 0

                    0 + N02 •* N03

                    0 + 02  -> 03

reactive hydrocarbons + 03  ->- aldehydes + oxygenated hydrocarbons

                                 *o
reactive hydrocarbons + N03 -> R-C
                                  OON02
 The rate of photochemical oxidant production is dependent
 on hydrocarbon reactivity, ambient temperature, and ultra-
 violet light intensity and exposure.

 Relative Reactivity

           The relative reactivity of the hydrocarbons contained
 in gasoline vapors  is  important in assessing the merits of
 controlling gasoline vapor emissions.  Relative reactivity is
                              B-61

-------
the tendency of hydrocarbons to undergo chemical reactions
leading to the formation of photochemical oxidants,  and ac-
counts for the reaction rate and the severity of reaction
product effects on plants and animals.  Table 5.4-1  (MS-001)
lists the relative reactivity of several hydrocarbons con-
tained in gasoline vapors.   The high reactivity of gasoline
vapor can be attributed to its high aromatic and olefinic
content.  The conversion to unleaded gasoline will further
increase the reactivity of gasoline vapors due to the sub-
stitution of high octane aromatics for less reactive compounds.
This increased reactivity of unleaded gasoline vapors is
estimated to be 12% for premium grades and 28% for regular
grades (MS-001).

5.5       Vapor-Liquid Equilibria

          A very important property of gasoline to consider
when studying gasoline vapor emissions is vapor-liquid
equilibria.   Figure 5.2-1 (DA-004) correlates the vapor
pressure of gasoline vs. RVP and temperature.   From this
vapor pressure correlation Figure 5.5-1 (SC-167) was derived-
It is used to estimate the quantity of hydrocarbons lost from
displacement of saturated gasoline vapor.  It can also be
used to estimate the hydrocarbon emissions from a tank during
refill,  assuming vapor-liquid equilibrium has been reached in
the tank.

          However, it is often erroneous to assume that the
vapor and liquid phases of an air-gasoline system are in
equilibrium.   Figure 5.5-2 and Figure 5.5-3 (AM-100) present
the results  of two tests by Chevron Research Company to define
the composition gradient existing in the vapor space of service
station gasoline storage tanks.   The time duration between
                             B-62

-------
m

W
rJ
CQ
   C/l
   Q
   _J
   U
•O 0)
0) 03
60 C
cd o
M P-
(U CO
CU
M
cd
0
cd
Q

4-1
r-l
C
o
•rl
4-1
cd

•H
rl
H

CU
Cd

*






e
o
•rl
Z 4J

P-i d
O
ft,

^^
x-s O O ^2
Cd vO CNJ r-l r-l ^
OOOO>>-^ Olll 1 +1
Q «d~ o m oo





fj
4-1 0
C-H
cd -u
*O cd
•H S
X M
o o


O O 0 O
•<}• r-l 00 r-l r-l l-l
OOOl
•H tO ^ O C T!
M
0
CO
(U CO
o cd
cd u
•U 1
CO J3
r^ 3
— J c/3
CO
14-1 rj T) r-l T3 -H ,H
M-l .J5 C cd T! i CD
14 0) 14.1 v-' C /-s CO CO Cd 1 r-l r-l O
Cd£ cd OCOrf 0)
Pt,% 0) Cd 4-1 (3
r-ICcdCCCUCUM-l ^4*  N T"1 3CUN >^r-l i-l i-lcdN CUT) Oi O
1 0) C -I- r-lj:C ,C Cd O Cd-rlC 4->C 1-1 CO
-< CJ 0) <*> O4-10) 4J 1 -rl-rlMCU C!Or-< Cd
CJ cd XI U 4JOJ3 <1> r-l T) 'O4JrQ -r-lja cd 60


































CU
l-l
o
cd
l-l
•rl
cd

cd

cd
4J
cd

l-l
cd
4J
c
0)
Q
•rl
^J
cu
(X
X
(1J
0
z
^-^
cd























0)
4J
cd
JJ
•rl
4-1
cr
o
4-1

4J
c
(1)
•l-l
u
M-l
M-l
"3
CO
c
•H

cd
4J
cd
•o

4J
^

•o
01
4J
o
c

^ i
u
0)
M-l
14-1
w
/«s
_Q
N^
                                    B-63

-------
  16-
  14-
       FIGURE  5.5-1 - SENSITIVITY OF
         DISPLACED  LOSS  TO TEMPERATURE AT

         VARIOUS  VALUES  OF RVP   (SC-167)
                          Temperature, °F

FIGURE 5.5-1 - SENSITIVITY OF DISPLACED LOSS TO TEMPERATURE
               AT VARIOUS VALUES OF RVP
                              B-64

-------
   /oo -,
•v
I
 o
SI
 V
 Q
 
-------
                                          8
                                of
FIGURE 5.5-3 -   VAPOR COMPOSITION  IN UNDERGROUND  TANK
                  (AM- 100)
                          B-66

-------
the previous fuel delivery and the test was not noted but it
was  alluded to be  several days.   This  concentration gradient
indicates that only the vapor space adjacent to the vapor-
liquid interface is saturated with hydrocarbons and that the
hydrocarbon losses estimated by Figure 5.5-1 (MS-001) for
displacement and tank breathing may be exceedingly high.

5•6       Solubility of Air in Gasoline

          A number of recent vapor recovery studies indicate
that when gasoline is transferred in the presence of air,
the volume of vapor displaced is often less than would be
theoretically predicted.  A possible explanation for this vapor
shrinkage is that the gasoline as it is dispensed absorbs a
sufficient amount of air to account for the lost volume.
Figure 5.6-1 predicts the solubility of air in octane based
upon K values.   Chevron Research Company performed tests
which indicated that air free gasoline, when exposed to the
atmosphere, "immediately" absorbed air to within 7270 of the
estimated equilibrium value (AM-100).  These results indicate
that the absorption of air by gasoline is a rapid reaction, and
is in sufficient quantity to account for the vapor volume
contraction often observed with balanced displacement vapor
recovery systems.
                             B-67

-------
  .30 .
w
  .24 j
  .20
           I    |    I    ^    i
     -20
                                        I    I
                                                    I    T
ZO'
40'
50°
             FIGURE 5.6-1 - SOLUBILITY OF AIR IN OCTANE
                              B-68

-------
                           APPENDIX C

                HYDROCARBON EMISSION FACTORS FOR
                  GASOLINE MARKETING FACILITIES
1.0       INTRODUCTION

          The following pages provide a survey of the methods
available for the calculation of hydrocarbon emissions from
various sources.  Whenever possible, three different methods
have been provided for each source:  1) a rough estimate employing
emission factors, 2) a more precise value through the use of
specific equations, and 3) a graphical solution utilizing
nomographs.
                              C-l

-------
2.0       DETERMINATION OF HYDROCARBON EMISSIONS

          Various types of emissions occur during the marketing
of gasoline.  Standing storage emissions, caused by the capillary
flow of liquid between the wall and seal, and withdrawal emissions,
resulting when the roof moves downward exposing the wet walls to
the air, occur in floating-roof tanks.  Breathing losses and
working emissions are commonly associated with fixed-roof tanks.
Breathing losses occur when vapors expand with temperature increases
When the temperature decreases,  the vapors contract and air enters
the tank, causing further evaporation of liquid.  Working losses
include filling and emptying losses.  As liquid is forced into a
tank, vapors are displaced.  As  liquid is withdrawn, air enters
and evaporation occurs„

2.1       Determination of Emissions from Floating-Roof Tanks

2.1.1     Standing Storage Emissions

          The emission factor for standing storage losses from
a "new" floating - roof tank is  0.033 lb/day-1000 gal, while the
factor for "old" tank conditions is 0.088  lb/day-1000 gal.

          Fairly accurate values for standing storage emissions
from a specific tank may be obtained by the equation

                  1.5  p    0.7   0.7
          Ls - FTD     Vw   KsKcFp

where

          Lg = standing storage emissions, bbl/yr.

          Frp = tank factor based on type of roof,
               number and condition of seals, and
               construction defined as follows:

                               C-2

-------
     0.045 for welded tank with pan, double
           deck, or pontoon roof, single or
           double seal;
     0.11  for riveted tank with pontoon or
           double deck roof, double seal;
     0.13  for riveted tank with pan roof,
           double seal;
     0.14  for riveted tank with pan roof,
           single seal.

 D = tank diameter, ft. (If D is greater than 150,
     multiply the loss for D = 150 by factor of
     tank diameterK
          150     ;'

 P = true vapor pressure of the blend at
     average storage temperature, psia.
     This vapor pressure can be obtained
     from Figure 2.1-1 if the Reid Vapor
     Pressure is known.6

V  = average wind velocity, mph.

K_ = seal factor as follows:
 S
     1.00 for tight-fitting seal
     1.33 for loose-fitting seal
K  = stock factor = 1.00 for gasoline
F  = paint factor for shell and roof:
     1.00 for aluminum or light grey
     0.90 for white
                      C-3

-------








Ul
S3
0

Ul
ce
o.
a
o
o.

>
Ul
o:
i-















— 0.20
— 0.3O
120-n
— 0.40 :
r °-50 s HO-^
— 0.60 _i o :
A32 -:
— O.70 ? .11 1 1 :

— 0.90 -H-l-i ' -
— i.oo TT 1
~ 111 *°~:
~ 111 '-
"" i 1 L* 2 ••
"~ 1 \^l "
— ' 1 .50 1 1 ct "
- 1 1 I D 6,0-7
""" it Jf 3 |A ™
~ 1 \T\ Ul —
~ 2-oo lU L 4 £ :
li\ \f\ *TA **
•— JTll I ff "
III 1 J' 5fe ™
r- 2-5° l|rL 6 ° 4
- lul/f > :
~ 3-°° WMl 8 a *°":
— 11 TXt 9 ui ;
=" 3'50 |M |o 1
z- 4.00 ^ -j/J 12 5O-;
- JlU/t 14 -
"~ tf^^ "
"** ^ YT/V 16 ~
~ 5'°° Wt^f 16 40-^
— t M//V 20 :
I~ 6>0° Wf ":

"" JJl *
- 4* 30 ""•
— 7.0O \
~ ~

E- 8.00 :
= 20-^
— 9.0O
S - SLOPE OF THE ASTM DISTILLATION CURVE AT :
— |0.0 10 PER CENT EVAPORATED s -
L. ||.o DEC F AT 15 PER CENT MINUS DEG F AT 5 PER CENT IO~r
IO ~
— 12.0 Z
~ I3'° IN THE ABSENCE OF DISTILLATION DATA THE FOLLOW- QJj
— 14.0 ING AVERAGE VALUE OF S MAY BE USED :
~ I5'° MOTOR GASOLINE 3
— 16.0 AVIATION GASOLINE 2
— |7.0 LIGHT NAPHTHA (9-14 LB RVP) 3.5
1_ ,8>0 'NAPHTHA (2-6 LB RVP) ^.5
— 19.0
— 20.0
— 21.0
— 22.0
— 23.0
t- 24.0










H
u
I
Z
UJ
tc
X.


1/1
Id
tiJ
K
Ul
O
Z

Ul
a
\-
<
K
Ul
&
Ul
1-

























     Source: Nomograph drawn from data of the National Bureau of Standards.
FIGURE  2.1-1 - VAPOR PRESSURES  OF GASOLINES AND FINISHED
                PETROLEUM PRODUCTS

-------
          Expected  accuracy of  emissions determined by  this
 equation  for  tanks  with seals in good condition is ±25%.  Actual
 emissions for tanks with seals  in poor condition may exceed  the
 estimated value by  a  factor of  two  or three.

          A graphical solution  for  the standing storage  emission
 factor  can be found in Figure 2.1-2, and emissions can be deter-
 mined  through application of Table  2.1-1 .

 2.1.2     Withdrawal  Emissions

          Withdrawal  emissions  from floating-roof tanks may be
 calculated by the equation

          ^  - 22,400  
-------
                                                 CO
                                                 a

                                                 §

                                                 o
                                                 55
                                                 M


                                                 I
                                                 ,-J
                                                 fa
                                          2     2
                                                 o
                                                 H
                                                 0
                                                 CO
                                                 CO

                                                 3
                                                 eg
                                                  i
                                                 CM
                                                 O
                                                 H

                                                 fa
C-6

-------
CN


W
hJ

PQ

<
H
    CO
    ^


    1

    U.
    o
    o
    cc

    o
o

u.

cc
o
u.

(O
cc
o

o
    a.
RIVETED TANKS
WELDED TANKS
+-
ii.
O
O
K
Z
O
O
6
0.
u.
8
*
1
PAN OR PONTOON ROOpf
DOUBLE SEAL
SINGLE SEAL
DOUBLE SEAL
SINGLE SEAL
JOUBLE SEAL
SINGLE OR t
•
Q
O
MODERN
OLD*
MODERN
OLD*
MOOERN
•
Q
J
O
MODERN
*
Q
J
O
MODERN
TANK
PAINT
TANK
PAINT
TANK
PAINT
TANK
PAINT
TANK
PAINT
Mfe
{££
TANK
PAINT
TANK
PAINT
TANK
PAINT
*l
f;
a.
WHITE
H«
^g
WHITE
H«
5g
WHITE
H«
^g
WHITE
H-
5g
WHITE
. >
1_ Ul
S g
WHITE
-•*
5g
WHITE
H"
5g
WHITE
• Id
h tc.
J u>
WHITE
. >-
t- u
5g
WHITE
. >
t- u
Sg
U
- « 2
>• t H
-1 ° 0 >
in -•
q
n
n
o
IM
•
N
n
•
N
^r
n
e
m
n
N
«
•
IM
»
n
a
•
n
n
N
o
N
O
m
N
•«
81
N
N
n
o
H
ft
1
O
01
o
GASOLINE

                                                         •2-5 o

                                                         g8c?

                                                         5 S §
                                                         o o S
                                                      O  j.
                                                     (o CD   O

                                                         CD -S  a
                                                         CO ^  O

                                                         «  .  Q

                                                            *  *-
                                    C-7

-------
where
          Lr_ = withdrawal loss, bbl/yr.

           V = volume of liquid withdrawn from
               tank, bbl/yr.

           D = tank diameter, ft.

2.2       Determination of Emissions from Fixed-Roof Tanks

2.2.1     Breathing Losses

          The accepted emission factor for breathing losses
from fixed-roof tanks is 0.22 lb/day-1000 gal storage capacity
for "new" tanks, 0.25 lb/day-1000 gal for "old" tanks.3

          More accurate values for breathing emissions may
                                        Q
be obtained from the following equation:

                24     P    0.68 1.73 0.51 0.50 I
          LB = TOOO (14.7-P}    D    H    T    FpC

where

             = breathing emissions, bbl/yr.

           P = true vapor pressure, psia, determined by
               Figure 2.1-1 at the average body temperature
               If the average temperature is unknown,
               5°F above ambient temperature should be
               used.

           D = tank diameter, ft.
                               C-8

-------
          H = equivalent outage in ft.  (see Figure 2.2-1).

          T = average daily ambient  temperature  change,  °F.

         F  = paint factor  (see Figure 2.2-3)
8
          C = an adjustment factor for tank  size  (see
              Figure 2.2-2).8  For D > 30, use C = 1.

          Alternatively, breathing emissions  can be  determined
by use of the nomograph in Figure 2.2-3.

2.2.2     Working Emissions

          Working emissions for fixed-roof tanks may be  estimated
                                                         3
by use of the emission factor 9.0 lb/1000 gal throughput.

          More accurate values for working emissions from
                                                  Q
fixed-roof tanks may be obtained from the equation

                 3 PV .
where
          LF = working loss, bb-1.

           P = true vapor pressure of the blend at
               average stock temperature, psia.

           V = volume of liquid pumped into tank, bbl,
                                                 Q
          K  = turnover factor (see Figure 2.2-4) .
                                C-9

-------
OS
Ul
Ul

5
    1.0
    0.9
0.8
    0.7
>•
10   0.6
o
ui
o
    0.5
    0.4
tu
o
2   0.3
H
Ul
<   0.2
ui

5   0.1


    0.0
            0.0    .1     .2    .3    .4     .5    .6

                                      COEFFICIENT
                                                  .7
.8     .9
1.0
               TO FIND EQUIVALENT OUTAGE H FOR USE IN FIGURE 3,
               MULTIPLY LENGTH OF HORIZONTAL CYLINDRICAL TANK
               BY APPROPRIATE COEFFICIENT.
                                    Example:
                                             Horizontal Tank
                                             Diameter            10 Feet
                                             Length             40 Feet
                                             Average Outage       3 Feet
                                             Outage/Diameter     0.3
                                             Coefficient          0.25
                      Equivalent Outage H = 40 x 0.25=    10 Feet
     FIGURE  2.2-1  - EQUIVALENT OUTAGE H  FOR HORIZONTAL CYLINDRICAL
                      TANKS
                                         C-10

-------
           1.00







            40







        U   M
        .»







            •«
                      10        20



                     Tank Diom*t*r in Fc«t
30
FIGURE  2.2-2 - ADJUSTMENT  FACTOR FOR SMALL-DIAMETER

                TANKS
                         C-ll

-------

£
¥
o
*"





u
•2



c
o
c
1
c
•o
o
O
•o
C
*
"6

M


J


<^iea^r»c0«u««




g-T-OOOO-ort-o
O'-r,
• • S. S. 2 2. °"o
ii7^iis,rE
Jill S|
! ! I ^
• 2-. 2- . -5 ,?S

1 i i "1
a *o o
                                            o

                                            Pi
                                             1
                                            p

                                            W
                                            pi
                                            'Z,
                                            M
                                            b4
                                            O
                                            
-------
Turnover Factor, KT
S 2 g S 5
36
\
\
\



NOTE: For
or Itu

s
^



36 Turnovers per y«or
Kr=1.0
V

— 	



~

0 100 200 300 400
tuma..r, Mr Y-T Annual Throughput
                             Tank Copocily





FIGURE 2.2-4 - EFFECT OF  TURNOVER ON WORKING LOSS
                          C-13

-------
           In  addition, working emissions may be found using
 Figure   2.2-5.6

 2.3       Determination of Emissions from Variable Vapor-Space
          Tanks

          Variable vapor-space tanks are useful in reducing
 breathing losses, especially when throughput is low.  Working
 losses, however, are still significant, and may be estimated
                                                     3
 by an emission factor of 10.2 lb/1000 gal throughput.

          For a more precise value for emissions, the following
       9
 formula  may be used:

                 ^p
          LF - 1000 
-------
                                                                            JO-f
                                                                            15
 EXAMPLE:
    36000 Borrtl Tank
    Throughput = 560000 Sarreli p«r Y*ar
    Tumov«ti=10
    True Vapor  Pre»ure=: 58 piia
    Working leu    =  973 Barrett p«r y«ar
                                                                                 20
    - 15
10-
1000 -
•
:
1300 -
2000-
3000-
-
4000-
5000 -
6000 -
7000 -
8000 -
9000 -
10000 -


^
^
5
"

Throughput


^S





10.0-
9.0T-
8.0-
6.0-
5.0-
4.0-
3.0-
i
-^ 2.0-
•
1J-
*
f
1J5-
                                         Kvol
8.0-
7JO*
^ 6.0-
* * 3.0-

4.0-
*
34-
"~* "™l



S.
i
z
1
£
- 0 la 36
-40 2.0-;
-30 ".
-60 1-3-
=M ""
-W I
•10° 1.0-
0.9-
-130 0.8.:
-175
-200 0.7-
-250
-300 0.6-
OJ-
1
•
04-
•
— 9.0
- 8.0
- 7.0
- 60
•
- 5.0
- 4.0
*
- 3.0
.

- 2.0
- \S
- 1.0
- 0.9
- o.»
— 0.7
— 0.6
-as
— 0,4
                                                                           0.2-
                                                                           0.13
                                                                           0.10-
                                                                           0.09
                                                                           0.08-
                                                                                 0.2
                                                                               — 0.15  r:
                                                                                 0.10
                                                                               — 0.09

                                                                                 0.08

                                                                               - 0.07
        Note: The throughput is divided by a number (1, 10, 100, 1,000) to bring  it
        into the range of the scale.  The working loss,  read from the scale, must
                        then be multiplied by the same number.

FIGURE  2.2-5  - WORKING LOSS OF GASOLINE  FROM  FIXED-ROOF  TANKS
                                        C-15

-------
2.4.1     Breathing Emissions

          Since data for actual correlations with field conditions
are scarce, the American Petroleum Institute has formulated'7  a
way to calculate emissions from low-pressure tanks based on a
theoretical pressure ?2,  the design storage pressure required
to prevent breathing losses, such that:

          P2 = l.l(Pa + PI - Pi) - (Pa - P2)
where
          P2 = gage pressure at which pressure vent
               opens, psig.
          P  = atmospheric pressure, psia.
           3.
          P! = gage pressure at which vacuum vent
               opens, psig.

          pi = true vapor pressure of the blend at
               90°F minimum liquid surface temperature,
               psia.

          pa - true vapor pressure of the blend at
               100°F maximum liquid surface temperature,
               psia.
          This equation is applicable only when pi is less than
            When pi exceeds (Pi + P ), air is kept 01
                                   Si
tank and the pressure required to prevent boiling is
(Pi + P ).   When pi exceeds (Pi + P ), air is kept out of the
       3.                           3.
                                C-16

-------
For a plot of these equations,  see Figure  2.4-1.   Corrections for
altitude can be made using  the  appropriate  atmospheric pressure
(see Table  2.4-1.7

          The relationship  between low-pressure breathing  emissions
and tank pressure  setting,  PZ ,  for pressure settings  from  0  to
2.5 psig has been  found to  be demonstrated by  the  curve  in
Figure  2.4-2.    The breathing losses  are given as  percentages of
losses from atmospheric tanks.

2.4.2     Working  Emissions

          Working  losses in low-pressure tanks occur when  the
pressure of the vapor space exceeds the vent setting  during  filling
and vapors are expelled.

          Calculation of working emissions from low-pressure
tanks is complicated by temperature changes due to condensation.
As a result, two assumptions are made:

          (1)   Vapor and liquid phases are in  equilibrium

          (2)   Filling begins at slightly less than
               atmospheric pressure.

The resulting equation  for  LF ,  working emissions,  is
           -,     3p (P -Pi-p )
           1  _   *yv  a    *v
           F    100(Pa+P2-pv)
                               C-17

-------
14
13
II
10
0
?
°i 9
•^-^
in
a. e
UJ
? 7
Q. '
UJ
| 6





3
2
1
0
























ft
tib
Tr
s
iftt
|:^
i
"*























T1-
•*..*-.
iU
t::
ri
f'1























;, •

•ill
• It*























::^
— •"!
-••-
::::























-— j
:r.T























i^i























TTT-
-ffp-ip:























-----t























-~—
. . .. I .-


II 1'*
' . . •
n LI
LT.:























— — 1























BR



















































































































EATHING CURVED
^-l-i f - r - _f^*T* I I 1 1 I 1
— . — j.-.- 	 ..„.
~r.&.&
-—*-•-» r*** *
« i n
:rf:

jljililife























^Tj













































y
/
4-
™r


rn;
imp
— -i



















>
/


znd




















































>
/
BOILING CURVE /







y
/




-^tr
rtr— T
im::-r
^v:{±~:i~ir
iiiijJHi





y
/
'






^=




^
/
'







~4~>-*~f-
"t^Tt"
•i^t^
^HfHS

y
/
r









r~r
/












— m













•*7~





y
/
'















^



/
/
/

















-bi:
_U. _,j 	 ^—-IT^^J
_.( 	 j-..., 	 ,__
E!E!H!EJE
iilpi
"•-( 	 '
;7~^

f
/
f




















*7^"^7"
-rHK
/
'





















i^j.
z^:
HE
^p
0    2     4    6    8     10    12    14    16    18    20    22    24    26    28    30
                          TRUE VAPOR PRESSURE AT lOOF^pA PSIA

Note: For values of p> between 20 and 30 psia, multiply the Reid vapor pressure at 100 F by 1.07.



 FIGURE  2.4-1  - STORAGE PRESSURE REQUIRED  TO ELIMINATE BREATHING
                   AND BOILING  LOSSES
                                    C-18

-------
                  TABLE 2.4-1
ATMOSPHERIC PRESSURE AT ALTITUDES ABOVE SEA LEVEL

                                Pounds per Square
 Feet                             Inch Absolute
1,000                                  14.17
2,000                                  13.66
3,000                                  13.17
4,000                                  12.69
5,000                                  12.23
                       C-19

-------
              100
           8

           ay eo
           cr 
-------
 where
              = working emissions,  % of volume pumped.
           p   =  true  vapor pressure  at  liquid
                temperature,  psia.

           P   =  atmospheric pressure, psia.
           a

           PI  =  gage  pressure at  which  vacuum vent  opens,
                psig  (see  2.4.1).

           P2  =  gage  pressure at  which  pressure  vent  opens,
                psig.

           In  Figure  2.4-3, emission values  are  shown for various
vapor pressures, with pressure vent settings greater than  the
pressure  required  to prevent breathing losses.  Twelve  turnovers
per year  are  assumed.

           When  the pressure  vent setting  is  equal  to the
pressure  required  to prevent breathing losses,  no  pressure
rise is available  to reduce  working loss, and working losses
may be calculated  from Figure  2.2-5, assuming an equivalent
fixed-roof tank.

2.5        Determination of Emissions from Underground Storage
           Tanks

           Filling  losses  from service  station underground
storage tanks are highly  dependent  on  such variables as pipe
and tank  diameters,  temperature and vapor pressure of the
gasoline,  vent pipe  size  and length, and method of filling.  In
a study performed by Robert  L. Chass and  others of  emissions
                                 C-21

-------
                                                             in
                                                             ZD
                                                             O
                                                             M


                                                             I
                                                             co
                                                             CM
NI oadwnd ainon do j.N3oa3d 'SSOT SNIMUOM
                            C-22

-------
 from service  stations  in  the  Los  Angeles  area,  the only factor
                                  2
 varied was  the method  of  filling.

          In  order  to  complete  the  study,  the  trxick was
 adequately  sealed and  there was a vapor recovery system at
 the  bulk  loading terminal.  The resulting  emission factors
 are  shown in  Table  2.5-1.

          Additional working  losses  occur  when  fuel is  pumped
 from the  underground tank  to  the  car.  As  gas is removed,
 air  is inhaled and  expands as it  becomes saturated with vapor.
 As it expands, vapor is exhaled,  and this  process  occurs until
 equilibrium is achieved.   The emission factor  for this piot.a "^
                                              2
 was  found to  be 1 lb/1000  gal gasoline pumped.    Forty  percent
 gasoline  vapor in the  exhaled mixture was  assumed.

          Breathing losses in underground  tanks  are negligible
 due  to small  temperature changes.

 2.6       Determination of Emissions  from  Tank  Cars or  Trucl:^
2.6.1     Splash Loading

          Splash loading occurs when the entry point of liquid
lies above the surface level of the stored fluid.  Estimates of
emission losses during splash loading of tank cars or trucks
may be made using an emission factor of 12.4 lb/1000 gal
            3
transferred.

          A more precise value may be obtained using the following
         3
equation  :
          T    = Q.023 x 106)W
           sp    (690 - 4M)r"
   14.7 - YP
14.7 - (0.95)P
- 1
                              C-23

-------
                      TABLE 2.5-1

     GASOLINE VAPOR LOSSES FOR DIFFERENT TYPES OF
          UNDERGROUND TANK FILLING TECHNIQUES
	Type of Fill	      Loss (lb/1000 gal pumped)^
Splash                                     11.5
Submerged                                   7.3
Vapor return-open system                    0.8
Vapor return-closed system                  0
                          C-24

-------
          L   = splash  loading  loss,  lb/1000  gal.
           sp

            W = density of hydrocarbon  liquid at
                temperature T,  Ib/gal.

            T = bulk absolute temperature of  organic
                liquid, °R.

            Y = fraction of saturation  of hydrocarbon
                in vapor space  at time  of loading.

            P = true vapor pressure of  the blend ac
                temperature T,  psia.

            M = molecular weight of liquid, Ib/lb-mole.

          For a correlation between true vapor pressure and
losses, see Figure  2.6-1.

2.6.2     Submerged Loading

          The accepted emission factor  for submerged loading
                                                      3
of tank cars or trucks is 4.1 lb/1000 gal transferred.

          Accuracy within ±25% may be obtained by the equr,ti.v

                 ,1.00-Y.  69,600 PW
          Lsub   k   2  ;(690-4M)T'
where
          L  ,  = submerged loading loss, lb/1000 gal
                 of liquid loaded.
                               C-25

-------
      0.5
o
<
o
_J

u-
O
      0.4
      0.3
CO
o
-J

z
o
  O
  Q.

  <


  UJ
      0.2
    O.I  ^
      0.0
         0123456789

           TRUE  VAPOR  PRESSURE  (TVP),  PSIA
FIGURE 2.6-1 - LOADING LOSSES FROM MARINE VESSELS, TANK CARS

             AND TANK TRUCKS
                           C-26

-------
           Y = fraction saturation in tank before
               loading.

           P = true vapor pressure of blend at
               temperature T,  psia.
           W = density of hydrocarbon liquid at
               temperature T,  Ib/gal.
           T = bulk absolute temperature of liquid,
           M = molecular weight of liquid,  Ib/lb-mole.

           For a  relation between true vapor pressure and losses,
see Figure 2.6-1.  Figure 2.6-2 provides a correlation between
temperature, Reid Vapor Pressure, and filling losses for 50% sub-
merged loading.

2.6.3      Unloading  Losses

           Unloading  losses  from tank trucks and cars occur when
air enters  the truck and evaporation occurs .   The vapor expands
and is expelled  until equilibrium is reached.   An accepted
emission  factor  for  unloading  tank cars and trucks is  2.1 lb/1000
                 3
gal transferred.
                                                            3
          Accurate to within ±10% is the following equation  for
calculation  of unloading losses  from tank  cars and trucks:

          T   . 69.600 YPW
           u  (690-4M)T
                               C-27

-------
          0.26
                       70          60

                    GASOLINE LIQUID TEMPERATURE °F
80
FIGURE  2.6-2  - CORRELATION  OF TANK VEHICLE-LOADING LOSSES
                (50% SUBMERGED FILLING) WITH  REID VAPOR
                PRESSURE AND LIQUID TEMPERATURES OF THE
                MOTOR GASOLINE
                             C-28

-------
where

          L  = unloading loss, lb/1000 gal of liquid loaded.

           Y = degree of saturation of organic blend in
               vapor space at time of unloading  (estimated
               or measured) .

           T = bulk absolute temperature of organic liquid,
           P = true vapor pressure of blend at
               temperature T, psia.

           M = molecular weight of liquid, Ib/lb-mole

           W = density of hydrocarbon liquid at
               temperature T, Ib/gal.
2.6.4     Transit
          Transit breathing losses from tank cars and trucks
                                                          3
are assumed to be negligible due to the short travel time.

2.7       Determination of Emissions from the Filling of
          Vehicle Gasoline Tanks
2.7.1     Vapor Loss

          Vapor loss incurred during filling of motor vehicle
gasoline tanks may be estimated by an emission factor of
11.0 lb/1000 gal.  pumped.3
                               C-29

-------
                       3                    +
          An expression  accurate to within -0.5 lb/1000 gal for
the calculation of these losses was formulated by Scott Research,
Inc. :
              =  2.22  exp(-0. 02645  + 0.01155  T
                                             DF
               0.01226  T   + 0.00246   T  P  vp)
                       V             V Kvr
where

           LD  =  vapor  loss,  lb/1000  gal.

          TDF  =  avera§e  dispensed fuel  temperature,  °F.

           T   =  average  temperature  of  vehicle  tank  vapor
                displaced,  °F.

        p
          RVP  =  Reid Vapor  Pressure  of  gasoline pumped at
                temperature T^p,  psia.

2.7.2      Liquid  Spillage  Loss

           The average emission  factor  for  liquid spillage  has
                                         3
been found to be  0.67 lb/1000 gal pumped.

2.8        Determination of Emissions from Marine Vessels

           Tankers and barges,  due to their large capacities, are
the source of major hydrocarbon emissions.   Losses occur during
loading, transit,  and unloading.  Emissions may be minimized by
careful carrier design.
                              C-30

-------
          Unloading losses may be estimated by the analogous
shore-tank withdrawal losses,  that is,  -0.007 percent by volume
per psia true vapor pressure of the blend.

           Transit losses have been shown by  limited  data  to  be
roughly 0.01 percent by volume pej. psia true  vapor pressure of
the blend for a one-week voyage.

           Although a limited amount of data  is available,  it  is
thought that loading losses from marine vessels may be  estimated
by a factor of 0,008 percent by volume ptr  psla true  vapor pres-
sure of the blend for ships relatively vapcn  free.    For  ships
having a significant amount of existent vapor, the loss would  be
lower.
           A correlation for losses during loading of relatively
vapor-free ships is found in Figure 2.8-1.   Loading losses are
minimized when fill pipes are an integral part of the carrier
and are arranged to minimize splashing.
                              C-31

-------
o
<
o
-J
     0.
to

o
2   o.
i-
<
o
Q_

                     r::-t_--±t
                     -f-

                                         ft
                                         w
                                           m
                                           -rtr-
                                           ifff.
I!
                                           TT"
                                              m-i
                                              •:;#

                                              ^^
                                           HtM.
i
                                                   flii
                                                   M
                                                   l±w
                                                   t±ff
                                                r-fr
                                                   ip
    ft:i
ttiT -7- C
TTT-P + T;
          0     2    4    6     8    10   12    14


          TRUE   VAPOR  PRESSURE  (TVP)   PSIA





FIGURE 2.8-1 - LOSS FROM LOADING TANKERS  AND BARGES
                         C-32

-------
3.0        DEFINITION OF  TERMS
           Breathing Loss  -  vnpor less  due to expansion and
           contraction of  vapors as a result of alternate
           heating and cooling.

           Filling Loss  ~  loss due to tho rvpulMon  of y^por
           ;IR  Ifqvid is  cnaj -^ed  •<> ._he  vesse^.

           Outage  - the vertical distance between the liquid
           is  a  tank -m<1 ! ^<-  f-^ •'•>  H    •-.-••'  *

           Sp]ash Lqadiru?  -  filling vhfc1' fyVt. --; r;1.u-e  wl f <•• ••
           ;.;-. ry <~ r i hf  '..quid above  the  s,.:r"f".-i.:e level of the
           stored fliiici.   Splash loading  encourages  ev~r»ora-
           f i r\r<  -1: f- r r- ' ht' 1' *. ! ! " v ^ ->-<:ft-«-'  'hr*' takes pl-'^Ce.

           Standing Sforare  (wicking) Los^ - Icsv caused by
           the -"^ni ! !si \ ; low  of ' t-he  lic,\>ir ?rf-< --f --;  '-,    ''er •
           and the ta^H- •,   •  i^ f > T^- j ns; • -ro-' f ;
           .?il?. JPfl1" _y°5JC " annual  thro-ri'-irxu. divided by
          tank  capacirv.
          when  fhf* w." ?~.)nk  WP ; i .^ nrt3 exi.'o^ed .- "» air  o<; liouid
          is withdrawn is  floating-roof  tanks.

-------
                          REFERENCES
                                                                     T
1.  Danielson, John A.,  Air Pollution Engineering Manual, 2nd
    Ed., Research Triangle Park, North Carolina, EPA, 1973. AP-40.
                                                                     i
2.  Chass, R. L., et. al., "Emissions from Underground Gasoline
    Storage Tanks", J. Air Pol. Control Assoc. 13 (11),  524-530  (1963)

3.  Supplement No. 1 for Compilation of Air Pollutant Emission
    Factors, 2nd Ed., Research Triangle Park, North Carolina,
    EPA, 1973.

4.  American Petroleum Institute, Hydrocarbon Emissions  from
    Refineries, Washington, D. C., 1973. Publication No. 928.

5.  Nichols, Richard A., Control of Evaporation Losses in
    Gasoline Marketing Operations, Irvine, California,
    Parker-Hannifin.

6.  American Petroleum Institute, Recommended Procedures for
    Estimating Evaporation and Handling Losses of Volative
    Petroleum Products in Marketing Operations, Washington,
    D.C., 1971.  Publication No. 4080.

7.  American Petroleum Institute, Evaporation Losses from Low
    Pressure Tanks, Washington, D. C., 1962.  API Bulletin 2516.
                                                                     »
8.  American Petroleum Institute, Evaporation Loss from  Fixed-
    Roof Tanks. Washington, D. C., 1962.  API Bulletin 2518.
                                                                     ^

9.  American Petroleum Institute, Use of Variable Vapor-Space
    Systems to Reduce Evaporation Loss, Washington, D. C.,
    1964.  API Bulletin 2520.
                             C-34

-------
10.   American Petroleum  Institute,  _Eyap.prat'Lon I^oss, from Transpor-
     tation Vessels, Washington,  D.  C.,  1959, AFT Bulletin 2514.

-------
                                   TECHNICAL REPORT DATA
                            (Please read Instructions on the reverse before completing)
1 . REPORT NO.
 EPA-450/3-75-046-5
                             2.
                                                           3. RECIPIENT'S ACCESSIOI*NO.
4. TITLE ANDSUBTITLE
 A Study of Vapor  Control
 Marketing Operations
 Volume II - Appendix
Methods for Gasoline
                                                           5. REPORT DATE
                                                             April  1975
                                6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
 C.E.  Burklin,  E.G.  Cavanaugh, J.C.
 Dickerman,  and S.R. Fernandes
                    r
                                                           8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
                                                           10. PROGRAM ELEMENT NO,
 Radian Corporation
 8500 Shoal Creek  Boulevard
 P. 0. Box 9948
 Austin, Texas   78766	
                                11. CONTRACT/GRANT NO.

                                   No.  68-02-1319
12. SPONSORING AGENCY NAME AND ADDRESS
 U.S. Environmental  Protection Agency
 OAWM, OAQPS
 Research Triangle  Park,  North Carolina
                                13. TYPE OF REPORT AND PERIOD COVERED
                                   Final  Report
                                14. SPONSORING AGENCY CODE
                27711
15. SUPPLEMENTARY NOTES
16. ABSTRACT
        Background  information is given on  the  size and extent of the  gasoline
   marketing industry  and the magnitude of  hydrocarbon vapor emissions.   The
   principal sources of emissions, tank truck filling at bulk terminals,  service
   station storage  tank filling and vehicle refueling are characterized.   Vapor
   control techniques  for bulk terminals are described:  compression,  refrigeration,
   absorption, adsorption,  incineration, and combinations of these  techniques.
   The two types of control  systems for service stations are evaluated,  vapor
   balance systems  and vacuum assist/secondary  processing systems.  Test  data are
   given.
17.
                                KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
                   b.lDENTIFIERS/OPEN ENDED TERMS  C. COS AT I Field/Group
 Air Pollution
 Gasoline Service Stations
 Gasoline Bulk Terminals
 Vapor Processing
 Vapor Balancing
 Vapor Recovery
                    Air Pollution Control
                    Stationary sources/
                        Mobile sources
                    Organic Vapors
18. DISTRIBUTION STATEMENT
        Unlimited
                   19. SECURITY CLASS (ThisReportj
                     Unclassified
21. NO. OF PAGES
    262,
                                              20. SECURITY CLASS (This page)
                                                Unclassified
                                                                         22. PRICE
EPA Form 2220-1 (9-73)
                                            C-36

-------