REGION  V

         JOINT FEDERAL/STATE

  SURVEY OP ORGANPCS  &  INORGANICS

                 IN

  SELECTED DRINKING MATER SUPPLIES
              JUNE 1975

              DRAFT
U.S. ENVIRONMENTAL PROTECTION AGENCY
      230 South Dearborn Street
      Chicago, Illinois  60604

-------

-------
ACKNOWLEDGEMENT
        Region V wishes to acknowledge the cooperation H received
from each of the State and local agencies and Water Treatment Plant
officials without whose participation this study would have been
Impossible.

-------
                                TABLE OF  CONTENTS
                                                                            Page
  I.   Introduction  	  1
 II.   Summary of Results  and Conclusions  	  3
      1.   Volatile  Organic Compounds 	  3
      2.   Linear Regressions 	 10
      3.   Pesticides, PCB's and Phthalates 	 21
      4.   Non-Volatile Organic Compounds  	 ,  	 21
      5.   Inorganic Parameters	   	25
      6.   Economic  Considerations  	 31
III.   Significance	31
 IV.   Recommendations	34
  V.   Sample Collection,  Analytical  Procedures 4 Quality Assurance 	 35
      T.   Sampling  Procedures  	 36
      2.   Volatile Organlcs  	 37
          a)  Analytical  Procedures	37
          b)  Quality Assurance for  Volatile Organlcs   	 40
      3.   Pesticides, PCB's and Phthalates 	 50
          a)  Introduction	50
          b)  Experimental Procedures  	 50
          c)  Quality Assurance	.'	59
      4.   Non-Volatile Organic Compounds 	 64
          a)  Analytical  Procedures   	 64
              1)  One Liter Water Grab Samples	64
             11)  Carbon Filtered Samples  	 65
      5.   Metals	68
          a)  Analytical  Procedures  & Quality Assurance  	 58
              1)  Flame Atomic Absorption  	 68
             ii)  Flameless Atomic Absorption   	 71
                                       H

-------
                            TABLE OF CONTENTS  (Cont'd)

       6.   Inorganic  Parameters	75
           a}   Analytical  Procedures  	   75
           b)   Quality Assurance  	   80
                                  LIST OF FIGURES
   I.   Plot of CHCla  vs.  BrCHCla	16
  II.   Plot of BrCHCl2 vs. Br2CHCl	17
 III.   Plot of CHC13  vs.  Total  Chlorine Dosage (All  Plants)  	 18
  IV.   °lot of CHC13  vs.  Total  Chlorine Dosage (River Plants)  	 19
   V.   Frequency Distribution for Ammonia In Finished Water  	 20
  VI.   Sampling Assembly  for Volatile Organlcs 	 38
 VII.   Analytical Assembly for Volatile Organlcs 	 39
VIII.   Gas Chromatogram of Volatile Organic Compounds  	 44
  IX.   Computer Printout  for List A Pesticides 	 54
   X.   Gas Chromatogram of Pesticides Containing Phosphorous 	 55
  XI.   Computer Printout  for List B Pesticides (SE-30/OV-210 Column) 	 56
 XII.   Computer Printout  for List B Pesticides (OV-17/OV-210 Column) 	 57
XIII.   Dual ColumnrDual Pen Recorder Tracing of Compounds 1n List B	58
 XIV.   Carbon  Filter  Assembly  	 65
                                  LIST OF TABLES
   I.   Summary of Analytical Results 	  3
  II.   Analytical Results (Volatile Organlcs)   	  4
 III.   Volatile Organic Compound Concentration Ratios (10 highest) 	  8
  IV.   Water Supply System Information 	 12
   V.   Desticides, PCB's  and Phthalates in Each Water Supply 	 22
  VI.   Drinking Water Standards for Inorganic  Parameters 	 27
                                       111

-------
                              LIST OF TABLES (Cont'd)

  VII.   Summary of Inorganic Parameter Drinking Water  Results 	   28
Mil.   Frequenty Distribution of the Finished Mater -
            Results for Inorganic Parameters	   29
   IX.   Percentage of Raw Water COD Values Exceeding the Mean
            of 15 mg/1 Versus Chloroform Concentrations 	   30
    X.   Additions of Armenia and Phosphorus to Finished Waters  	   30
   XI.   Estimated Cost Data for the Region V Survey	   32
  XII.   Gas Chromatograph Detector Response as a Function
            of Purge Time In Arbitrary Units	   42
 XIII.   ReproducibHlty of the Analytical Method (Volatile Organics)  ....   42
  XIV.   Summary of Results for All Volatile Organic Reagent  Blanks	   45
   XV.   Analytical Results of All Volatile Organic Samples Collected
            1n Duplicate	   47
  XVI.   Results of Volatile Organic Results versus Time . ,  	   49
 XVII.   Recovery Data for Samples Spiked with Pesticides    	   61
XVIII.   Precision for Metals Based on Analysis of Duplicate
            Samples by Flame Atomic Absorption Spectroscopy 	   69
  XIX.   Recovery Data for Samples Spiked with Metals by Fl.me AA	   70
   XX.   Statistical Summary of Results from the Laboratory
            Control Standards by Flame AA 	   70
  XXI.   Precision Based on the Analysis of Duplicates  by F'ameless AA . . .  .   72
 XXII.   Metal Concentration Ranges in Drinking Water  	   74
XXIII.   Summary of Quality Assurance Data for Inorganic Parameters	   81
                                          iv

-------
INTRODUCTION
       In response to public concern resulting from publicity about alleged toxic
organic compounds 1n the New Orleans, Louisiana and other municipal drinking
water supplies, Region V States asked for assistance 1n obtaining current data
concerning certain drinking water supplies 1n Region V.  The study was designed
to provide frequency of occurrence and concentration values of volatile and
non-volatile organic compounds, selected pesticides, herbicides and fungicides,
polychlorlnated blphenyl mixtures, certain phthalate esters, metals and other
Inorganic parameters 1n drinking waters.  Another Interest was to establish
baseline concentrations for those organic compounds of health concern or thought
to result from chlorlnatlon, and therefore to be widely distributed 1n our water
supplies.  These compounds Include carbon tetrachlorlde (CC1J, chloroform (CHC13),
bromodlchloromethane (BrCHClp), dlbromochloromethane (B^CHCl), bromoform (Br^CH),
l,2-d1chloroethane (C1-CH2-CH2-C1), dichloromethane (CH2C12), aldrln, dieldrln
and DDT.
       The 83 cities were selected jointly by both State and Federal personnel
to get a broad representation of Region V water supply systems.  The study evalu-
ates organic pollution 1n drinking water supplies of most concern to State
agencies, provides appropriate background data for quality assurance purposes,
and complements  the National Reconnaissance Survey In determining the concentra-
tions,  sources,  and potential danger of organic chemicals 1n drinking water.
        A maximum number of parameters per sample were included to provide a com-
plete description of each water supply and to detect possible relationships
between  the more traditional Inorganic parameters and the organic parameters of
current  interest.  In addition, since many expenses of the study, such as sampling
costs,  report writing, instrument and otner fixed caoitol depreciations, trans-
portation, etc., remain constant, the most efficient study includes a maximum
number  of parameter analyses per samoTe.

-------
        It should be emphasized that this study occurred Curing winter months
when waters were cold, surface streams v-are generally at higher than normal
flows and contained considerable suspended solid materia s, agricultural and
gardening activities were at a minimum as were certain industrial activities.
Therefore, concentrations could vary substantially from  values reported  in this
iwnuscript for samples collected at different times of tie year.
                                                         1,2
        Based  on the data presented 1n Table I, It is cleir that chloroform,
bromodichloromethane, dibromochloromethane and bromoform are consistently higher
1n  treated drinking water than in raw waters at most cities in the Region.  The
loean  concentrations however are quite low.
        Table  II is a listing of the analytical results f*om which the summary
data  1n Table I were calculated.  All concentrations are in micrograms per
liter (ug/1).  It  is the practice of the Central Regional Laboratory to  report
detection  limits based on each day's quality assurance d»ta.  Therefore, dif-
ferent detection  limits are given for some parameters in Table II and other
places  1n  this report.
        Conclusions that may be reached  from an examinati )n of the data  in
Table II are  as follows:
        a.   Clear  raw water results in finished water that is relatively  free of
            chloroform and related halogenated compounds.  Of the 25 supplies
            having  the lowest concentrations of chlorofonu, 12 obtain their
            water  from the Great Lakes,  8 from deep wells and only 5 from
            surface sources.
        b.   There  is a correlation between concentrations of chloroform,  bromo-
            dichloromethane, dibromochloromethane, and brxnofonn  in the
            finished water.   It appears  they result  from  :hlorination of  precursors
            in'the raw water.  Since  there is no  pattern  to their occurrence,

-------
 II.  SUMMARY OF RESULTS AND CONCLUSIONS

     1.  Volatile Organic Compounds

         Table I is a summary of the analytical results.


                        _v .TABLED
_	 SUMMARY.OF.ANALmCALJlESULTS (VOLATILE ORGANICS)
  	.	ml croqraras_oer. liter	-
Chemical
Formula & Name

C11CL3 -
Chloroform
CHBrO.2 - Bromodi-
chloromethane
CHBr2Cl - Dibro-
nochlorome thane
CHBf3 - Bromoform
CC14 - Carbon
Tetrachloride
CH2C12 - Methyl ene
chloride
C2H4C12 -1,2-
Dichloroethane
X of Samples
Giving Positive
Results
Finished
Water
95
78
60
14
34*
a
13
Raw
Water
27
5
2
0
lo
1
14
Mem
Concentration
(ug/1)
Finished
Water
20 pg/1
6 yg/1
1 pg/1
<1 yg/1
*2 yg/1
<1 yg/1
<1 yg/1
Raw
Water
<1.0

-------
                                   TABLE II
                    ANALYTICAL RESULTS CYOLATILE ORGANICS)
                            Cmlcrogra^s per liter)
Raw     F » Finished
City
SURFACE SOURCE
Cairo, 111.
Carlyle, 111.
Chicago, 111.'
Chester, 111.
Danville, 111.
Fa1rf1eld, 111.
Kankakee, 111.
Mt. Carmel, 111.
Newton, 111.
Quincy, 111.
R;,ck Island, 111.
-oyalton, 111.
, : reator, 111.
i Bedford, Ind.
Bloomlngton,, Ind.
Evansvllle, Ind.
Fort Wayne, Ind.
Gary, Ind.
Uaranond, Ind.
Indianapolis, Ind.
Kokorao, Ind.
' -fayette, Ind.
CMC 13 ~
R F
2
<1
<1
5
6
10
<1
<1
<1
<1
94
«
<]
5
<1
<1
4
<1
-<1
<1
14
48
7
182|
16
47
52
52
4
58
79
68
35
84
19
29
29
7
4
19
9 I 30
i

5
BPCHL12
R F
<1
<1
<1
<1
<1
3
<1
<1
<1
<1
11
11
20
3.4
17
6
16
10
15
5
13
8.3
<1 29
t
<]

-------
TABLE II
(Cont'd)
City
CHC13 BrCHCl2
R F R F
WACE SOURCE Ccontinued) l
Lbgansport, Ind.
Michigan City, Ind.

Mt. Vernon, Ind.
Muncle, Ind.
New Albany, Ind.
<1 , 7 | <1 1.2
j
<1 j 5 <1 4
i ;
i ;
<1 18 jlii
IMenorr.ii**, «-ch. | <1 | 42 • * * i i ' '
1 ! i ' >
1 | ! i i l 1 1
,'Wyandctte. **'ch. ! <1 14 <1 7 : <1 ' 1 1 <1 • 0.4 , <1
' ' : i 1 i
2.1 <1 <1 <1 !<2
i 1 1
l
: • ! • . i

Breckenridce, ^inn. ! <1 128 <1 15
i i !
<1 '<0.5 : <1 <2 4 ; 12 <1 <1
i ' ' i ! !

<1
1
<3
i
i
Crookston, Minn. <1 7 <1 0.8! <1 <0.2 <1 :
-------
TABLE II
(Cont'd)
^ City
SURFACE SOURCE Cconti
Granite Fa 11s, Minn.
International Falls,
"Minneapolis, M1nn.
Oslo, "Minn.
St. Cloud, M1nn.
St. Paul, M1nn.
Berea, Ohio
Bowling Green, Ohio
Cincinnati , Ohio
Cleveland, Ohio
Columbus, Oh to
Defiance, Ohio
East Liverpool , Ohio
Fremont, Ohio
Piqua, Ohio
Portsmouth, Ohio
Toledo, Ohio
Warren, Ohio
Green Bay, Wise.
Kenosha, Wise.
Manltowoc, Wise.
Marinette, Wise.
Milwaukee, Wise.
caci3
R P
nued
S
<1
<1
3
<1
4
<1

-------
TABLE II
(Cont'd)
City
SURfACE SOURCE CCon'
l)shkosh, Wise.
Two Rivers, Wise.
GROUND WATER SOURCE
Galesburg, 111.
Peorla, 111.
Morocco, Ind.
South Bend, Ind.
Jackson, Mich.
Kalamazoo, M1ch.
Lansing, Mich.
Mt. Pleasant, Mich.
Waterford Township
Mich.
Mankato, Minn.
Richfield, Minn.
Willmar, Minn.
Black River ralls,
Wise.
Eau Claire, Wise.
Mean

Median






CHC
R
1nue
6
1

4
<1
<1
<1
i
<1
<1
C12
F

< .5
< .5

1
<0.5
<0.5
<0.5
<'
<1
<1
<0.5
<0.5
<0.5
<1
<0.5
«
7
<}

<]


']


i
C2H
R

<]
<]

<]
3
<1
<1
<1
<1
4
<1
<]
<1
<1
<1
<]
^
<}

<]






4^2,
F

<]
<]

<1
<1
<1
<1
3
<1
<2
<1
<]
<1
<0.5
<0.5
<2
3
<}

<1







-------
                            TABLE HI


           VOLATILE ORGANIC COMPOUND CONCENTRATION RA"IOS
          _^	(10 HIGHEST..CONCENTRATIONS)	
                        mlcrograros per liter

Fremont, Ohio
Bessemer Township,
Fairmount, Minn.
Chester, 111.
Dundee, Mich.
Bowling Green,
Ohio
Warren, Ohio
Breckenridge,
Minn.
Piqua, Ohio ,.
Bedford, Ind.
CHC13
366
312
200
182
170
160
138
128
102
84
BrCHClz
18
4
31
17
26
27
19
15
10
12
Br2CHCl
1.4
0
0.7
1.1
2
5
0.8
0
0.7
0.8
CHBr3
0 '
0
c
c
(1
0
0
1)
D
0.8
Ave.
Std. Dev.
BrCHCl2
CHC13
4.9*
1.2*
15.
9.3
15.
17.
14.
12.
10.
14
13.3
2.6
BrpCMCl
BrCHCle
8
0
2
6
8
19
4
0
7
7
6.1
5.5
*excluded from calculation of average and standard deviation.  If all  data

 In Table II are used, both ratio percentages and the scatter  increase as

 the measurements approach the detection limit

-------
    tt do«$  not appear  that  carbon  tetracMorlde, methylene chloride or
    1,2-dlchloroethane  are produced by  a  chemical reaction within  the  treat-
    ment process,
c.  Using only the more accurate  data  (higher  concentrations  can be measured
    more accurately than lower concentrations) for  those  cities having over
    100 ug/1 of chloroform In their finished water,  the concentration  ratio
    percentages (see Table Til of BrCHCl2 to CHC13  range  from 1.2X to  17%.
    The range for the BrCHC^/BrgCHCl  ratios 1s 0 to 19*.  A  careful examina-
    tion of these ratios suggests that  the concentration  of BrCHCl2 will  be
    approdmately 13S that of CHCl^ and the concentration of  B^CHCl will be
    about 6X that of BrCHCl2-  This relatively constant ratio Indicates  a
    common precursor or group of  precursors of the  halogenated pollutants.
    Since the ratios described above are  much  higher than the ratio of
    bromine to chlorine 1n the chlorine used to purify the raw waters, we
    conclude that bromlnatlon is  much  faster than chlorination and that  the
    halogen 1s acting as an  electrophile  rather than a nucleophile during
    the chemical reaction producing the subject pollutants.   The ratios
    for Fremont, Ohio;  Bessemer Township, Michigan  and certain other cities
    do not follow this  general pattern  but have an  excess of  chloroform.
    We suggest that a source of chloroform 1s  'operative that  differs from
    that of most cities studied.   At first we  suspected an industrial
    discharge but that conclusion 1s inconsistent with a  zero chloroform
    concentration for the raw water.  Therefore, these supplies Ttay contain
    a particularly reactive  precursor  for chloroform.   Additional  analytical
    data will be required to identify  any such precursor, to  establish whether
    or not these measured values  are common throughout the year, and

-------
           to  suggest  a .method of rejpoyal.   It  1s suggested  that check  samples
           6e  collected to fertfy results that  truly represent  these water supplies.
           The concentrations of bromlnated  compounds are  Mch  relative to the
           concentrations of chlorinated compounds  for  some  cities.   If this
           pattern  1s  repeated 1n check samples, and should  i:he bromlnated com-
           pounds be discovered to  be  of significance,  the concentration of bromine
           In  the chlorine used for purification should be reduced.
       d.   The use  of  carbon treatment 1s not effective as was  practiced by the
           water treatment plants during the time of this  study.   (See  Table  IV)
           We  suspect  that most of  those cities presently  us'ng carbon  have chosen
           to  do so to reduce taste and odor problems and  that  the carbon 1s  much
           wore effective 1n removing  those  compounds causing the  water to have
           a taste  and odor  than  1t 1s In removing  the  halogonated methanes or
           other organic  compounds  that react to form chloroform.
       Table IV summarizes water  supply systems Information. Data 1s  reported  as
It was obtained on  field  sheets at  the time  of  sample collection.   It can be  noted
from this table that 1n addition  to the characteristics of t!ie  raw water, chloro-
form production also depends upon  the  amount of chlorine applied.   Another Impor-
tant factor is the  time of  contact.  For this study contact  :ime  must be considered
to be the entire elapsed  time  from  chlorine  application until sample  analysis
0-5 days).  Recent experiments with aliquots of southern  Lace  Michigan water that
were-treated with  2 r.g/1  of chlorine have shown chloroform production to be cut in
half when the allquots were again treated  1n one hour  to remove all remaining
chlorine.  Chlorine was  allowed  to react a  number  of days  in the  aliquots where
1t was not removed after one hour.
2.  Linear Regressions
       Figures I,  II, III,  and  IV show the  linear  regression equations  and asso-
ciated F ratios calculated  from  the measurements  for chlcrofsr-i,  bromodichl3rorr,ethane,
                                       10

-------
 d1bjrojDoch.lorojDettiane, and total dhJorlne dosage 1n rlyer water systems.  Since
 the F value at tRe 0,01 probability point ts 7, the null hypothesis of no rela-
 tionship Is rejected and 1t 1s concluded that significant correlation does exist
^between the parameters plotted on Figures I, II, III, and IV.
        Further research should be directed to determining the rates of reactions
 of the parameters analyzed 1n this study with particular attention to the source
 of raw water used 1n treatment.

-------
           TABLE IV
HATER SUPPLY SYSTEM INFORMATION
1
City
j SURFACE SOURCE
;Ca1ro, 111 I
Carlyle, 111.
Chicago, 111.
Chester, 111.

Danville. 111.
Falrfleld, 111.

Kankakee, 111.

Mt. Carmel, 111.

Newton, 111.
Quincy, 111.

Rock Island, 111.
Royalton, 111.
Streater, 111.
Bedford, Ind.
Bloomington, Ind.

Evansvllle, Ind.
Fort Wayne, Ind.
Gary-Hcbart, Ind.
Hanmond, Ind.
Indianapolis, Ind.
-l.Kokomo, Ind.
1
CHC13
fua/1)
H
48
7
182

16
Source
Ohio River
Kaskaskla River
Lake Michigan
Mississippi R

Verm1ll1on R
47 [Little Uabash

52

52

4
58

79
68
35
84

Kankakee River

Uabash River

Deep Wells
Mississippi R

Ussissippi R
B1g Muddy River
Vermlll Ion River
ftiHe River
19 Monroe River
1
29
29
7
4
19
30
)h1o River
!t. Joseph River
Lake Michigan
Lake Michigan
Ihlte River
Mldcat Creek
Raw
Water
Charac-
eHstlcs
M/I
M/I
I
M/I

M/I
M/I-A
*
Activated
Carbon
Powdered
None
Powdered
None

None
None

A JAnthrccHe
•I Co«il
M/I . INone

Clear INone
M/I (Powdered

M/I
M/I
A/ 1
A
i
'owdered
tone
'owdered
tone
A None
1
M/I 1 *
M/I
I
I
M/I
f
lone
Powdered
Powdered
None
Clg Oose ^
(ppm)/
Detention
Time (hr)
Prior to
Sample
're- Post-
7,.0/6
7.3/7
1.2 j).l
7.2/ 2.4/
4 1
1.2/2
6.2/~2.5/
6.5 3.5
l.O/ 1.0
2.5
7. 1/ 4.0 /
29 21
1.7/37
4-20/ 1-3/
4 1.5
8-12/24
3.4/7
3.3/4
4.9/5
2.8/7


3.15/6
1.4/8 0.4/2
1.7/10
7.8/6
Powdered JB.4/2 2.2
i 1
Population
7,700
7.200

7.90C

50 ,.000
10,100

60,000

11 ,500

4,900
50,000
i
52,000
3,300
20,000
17,000
50,000

*
200 ,000
200,000
•127.CCO
700 ,000
53,300
                12

-------
TABLE IV
(Continued}
: C1tv
.afayette, Ind.
Michigan City, Ind.
Mt. Vernon, Ind.
Muncle, Ind.

New Albany, Ind.
Terre Haute, Ind.
Whiting, Ind.
Logansport, Ind.
Bay City, Mich.

Bessemer Township,
Mich.
Cadillac, Mich.
Detroit, Mich.
Dundee, Mich.
Grand Rapids, Mich.
Menominee, Mich..
Mt. Clemens, Mich.

Sault St. Marie, Mich.
Wyandotte, Mich.


Breckenridge, Minn.
Crookston, Minn.
CHC13
(uq/1)
5
5
18
1
Source jt
1
Raw
Water
Charac-
Deep Wells I Clear
Lake Michigan 1
Ohio River
31 White River

41 I0h1o River
5
<>
7
17

312

47
5
170
24
42
10

27
14


128
7
Deep Wells
Lake Michigan
Eel River
Saginaw Bay

Black Rfver

Deep Wells
Detroit River
River Ra"1s1n
Lake Michigan
Lake Michigan
Lake St. Clair .

St. Mary's Rfver
Detroit River


Otter Tail Rfver
Red Lake River
I
M/I
M/I

M/I
Clear
Activated
Carbon
None
Powdered
Cl£ Oose i
(ppm)/
Detention
Time (hr)
Prior to
Sample
5re- Post-
.75/0.1
.9/ 0.3/7
19
1.5/6
Anthracite
Coal
None
Powdered
I (Powdered
A (None
I 1 Powdered

C Powdered

Clear SNone
M/I [Powdered
M/I [powdered
Clear
M/C
M/I

Clear
[None
None
Carbon
Filters
Hone
M/I Powdered
i
i
C
Clear
'tone
^one
4.5/3

3.9/9
10'5V'§{l
3.8/8+Ozone
2.0/6 1.5/2
3.2/ 0.03
2.4
5.31/0.

4.5/0.1
1.3/3 0.2/1
9/4
2.0/4
3.1/24
4.4/8 1

1.7/0.1
3.3/3


5.0/24
Population
50,000
40,000
7,000
87,000

41 ,000
78,000
7,054
19,000
75,000

Uooo

9,500
4,000,000
2,500
216,000
11,000
50,000

17,000
43,000


4,300
i
1.6/8 [ 9,:CO •
t ,
    13

-------
 TABLE IV
(Continued)
! C1tv
'Duluth, M1nn.
East Grand Forks,
Minn.
Fall-mount, M1nn.
Granite Falls.Mlnn.
International Falls
Minn.
Minneapolis, Minn.
Oslo, Minn.
St. Cloud, Minn
St. Paul , Minn.
Berea, Ohio
Bowling Green, Ohio
Cincinnati, Ohio
Cleveland, Ohio
Columbus, Ohio
Defiance, Ohio
East Liverpool, Ohi
Fremont, Ohio
P1qua, Ohio
Portsmouth,. Ohio
Toledo, Ohio
CHC13
UQ/1)
26
22
200
5
26
8
79
37
82
60
160
127
10
51
14
5
366
102
25
62
I
Source
Lake Superior
Red Lake River
Budd Lake
Minnesota River
Rainy River
Mississippi R
Red River
Mississippi R
Mississippi R
Rock River -
Coe Lake
Maumee River
Ohio River
Lake Erie
Scioto River
Maumee River
Ohio River
Sandusky Rtver
Swift Run River
Ohio River
Lake Erie
Raw
Water
Charac-
teristics
Clear
A
C
M/A
C
M/I
CCE
M/I
M/I
A
A/ 1
M/I
Clear
M/I
M/A
M/I
A
M/I
M/I
M/I
Activated
Carbon
None
None
None
None
None
Powdered
None
Powdered
Powdered
Powdered
Powdered
None
Powdered
Powdered

Carbon
Filtur
Powdered
(PPm)/
Detention
Time (hr)
Prior to
Sample
re- Post-
1.3/1
12.0/24
10. O/ 3.0/
6. 8
3.5/16
0.7/3
2.9/ 0.36/
19 12
1.2/12
1.3/4
7.0/12
3.65/1
4.5/6

3.3/6
4.3/4 4.3A
l.O/ 3.0/
1 0.5
2.3/7

4/5 3/2
1.39/1
Population
100,000
8,000
11,000
3,500
621 ,000
500
45,000
402,000
2.3,000
21 ,000


260,000
17,000
30,000
21 ,000
22,000
455,000
     14

-------
 TABLE  IV
(Continued)
i C1tv

i
Warren, Ohio
Green Bay, Wise.
Kenosha, Wise.
flanltowoc, Wise.
Marinette, Wise.

Milwaukee, Wise.
Oshkosh, Wise.
Two Rivers, Wise.
GROUND WATER SOURCE
Galesburg, 111.
Peoria, 111.
Morocco, Ind.
South Bend, Ind.
Jackson, Mich.
Kalamazoo, Mich.
Lansing, M1ch.
Mt. Pleasant, Mich.
Waterford Township,
Mich.
i Mankato, Minn.
!
CHC13
(UQ/1 )

138
9
3
14
53

2
55
9

30
2
12
11
• <1
4
10
11
<1

10
i
Source
Raw
Water
Charac-
eHstlcs

Mosquito River
Lake Michigan
Lake Michigan
Lake Michigan
Green Bay

Lake Michigan
Lake Wlnnebago
Lake Michigan

Ranney Well
San Koty Wells
Deep Wells
Deep Wells
Deep Wells
Deep Wells
Deep Wells
9anny Wells
Deep Wells '

Deep Wells
T/0
Clear
Clear
Clear
M/I
»
Clear
CCE
Clear

Clear
Clear
Clear
Clear
Clear
Clear
Clear
Clear
Clear

Clear
i
Activated
Carbon

Powdered
Powdered
Powdered
None
Granular
Filter
None
Powdered
None

None
None
None
None
None
None
None
None
None

lone

tig Dose ""
(ppm)/
Detention
Time (hr)
Prior to
Sample
^re- Post-

5.0/ 0.5/
6 ' 0.1
0.94 .35/3

1.4/10
1.5/ 0.8/
6 4
1.2 0.8
2.39/ .84/
1.40£ .04£

1.4/24
1.59Z 1.71
1.33/0.2
2.3/1
4.5/10
0.75/0.1
2.5/27
2.5 2.3
2.0/3
Population

80,000
90,000
78,000
34,000
12,500

717,000
53,000
13,500

38,000
155,000
1,200
125,000
52,000

140,000
j
20,500 !
I
48,000 !
i i
3.5/5 | 35,000 I
i '.
$

-------
 TABLE IV
(Continued)
C1tv
: Richfield, M1nn.
HWmar, M1nn.
Black River Falls,
Wise.
Eau Claire, H1sc.
M Municipal c
A Agriculture
I Industrial <
C- Color-produ<
T/0 Taste and o<
CCE Carbon chloi
1
CHC13
(ua/1 )
<1
2
6
50
fluents
runoff
iffluent
In* con
or*pro<
of orm t
Source
Deep Halls
Deep Hells
Hells
Deep Hells
affect the raw
j affects the raw
s affect the raw
>ounds.
icing compounds.
(tracts have bee
Raw 1
Hater
Charac-
*r1 sties
Clear
Clear
Clear
Clear
rater sour
water soi
water soi
detectec
.
Activated
Carbon
None
None
None
None
:e.
xe.
•ce.
»
CL Dose '
Ippm)/
Detention
Time (hr)
Prior to
Sample
Jre- Post-
1.0^1.5^
3.5/48
0.46/3

Population
47,500
15,000
3,200
47,000
t
1
    ISA

-------
      400
                                       .  MtoUKC 1
                             Plot of CHC13 vs. BrCHClaJn ug/1
                                 Region V Organic Survey
      300 r     «•
/I
       200r
       100-

-------
         705
         60;
         50-
                            Plot of 3rCHCl2 vs. Br2CHCl in ug/1

                                   Itegfon V Organic Survey
BrCHCl2
ug/1
         40
         30
         20
         10
                                              Br2CHCl
                                               ug/1

                                                17

-------
jg/l
        4001
        300..
                                           FIGURE III
                      Plot of  CHC1   (ug/1)  vs.  Total  C12 Dosage (mg/1) for
                                 ATI  Water  Treatment  Facilities
        200-1
        100
                                        Total  C'9  Dosage
                                              TC/1
                                               13

-------
        400 T
                                           FIGURE  IV

                       Plot of CHC1,  (ug/1) vs. Total C12 Dosage  
-------
Anvnonla Expressed  as
mg Nitrogen per Liter
X "-•-
II II
o n
c c
•0 XJ
•o -a
<9





















— • — 'OOOOOOOOOOOOOOOOOOO
1 I I ! 1 N I I ' M M ! i
X -». *^^ -^ X X X X X — . X
X
X XX X X
X X
X X
^•^ X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X





—1
S3
m
z
0
1 cyi
I .
i
— (
0
z
i
§
s
>
z
—1

|2
C3
5
—1
pr





-------
3.  Pesticides. PCB's and Phthalates
       Table V 1s a listing of those cities where pesticides, PCB's and/or
phthalates were Identified.  The other samples analyzed did not contain a detect-
able amount of any of the fifty pesticides Included 1n the survey.  All analytical
results are Included 1n the appendix and from these we conclude that:
       a.  A large majority of the samples do not contain these types of compounds
           1n concentration! that can be measured with the procedures used for
           this study.
       b.  For this class of compounds, the most commonly found are dlethylhexyl-
           phthalate, dleldrfn. DOT, treflan, aldHn and hexochlorobenzene.  The
           concentrations of all pesticide type compounds Identified to date
           are low.  The highest concentrations found were 63 nanograms per
           liter (ng/1) for DOT, 11 ng/1 for dieldrln. 17 ug/1 for dlethyl-
           hexlphthalate and 50 ng/1 for treflan.  All positive results are
           given In Table V.
       c.  Concentrations of PCB's in tnose samples from Lake Michigan and the
           Ohio River were too low to detect.
4.  Non-Volatile Organic Compounds
       Finished water was passed through small carbon filters used for sample
collection at Mt. Vernon, Evansville and Indianapolis, Indiana.  Raw water samples
were also collected at Mt. Vernon.  Presently the water from Whiting, Indiana
and Mt. Carmel, Illinois are being sampled for carbon filter and extraction
analyses.  All of the exposed filters have been extracted with hexane, chloroform
and methanol.  Each of the extracts has been separated *n acidic, basic and
neutral  fractions giving a total of nine concentrates per *
-------


<••*
I
a
2
s
•>
§
i
£
f
co
IV
i
3T
e Detect
%
r—
M



c
ft



*•
a






--
l&alesburg, in. i
1





*






n
*
^ X
s
s
-







1
ICarlyle. 111. 1


OD








-
•|

II
Ot
-

«tf
o





-J
t
1
s
*
JL

»
*
-







-«j
!


=
*







-i
!
1
*»
4
*
tan
t



t-J






i
I
I
1
*
••
a
*












1 Morocco, Ind. l
1 1







o



1
22
a
n
a
to
a
r
$
m

s









— i
ILogansport, Ind. 1
1


O*








J
1 Lafayette. Ind. l
] 1






-s


s

\
i
I


Ul
f\>








„
1


-







1

I
I


Jk








-
S
I

V*








j
— !
•v
r^-
S
X
^
I

Jk —







i
i
i
J
CD
1
O
3.
i



9^ OO








o

Diethylhexyl
Phthalate
1
Dieldrin
Tref Ian
3 Crf C3
M n
fl> 3"
(^ O
O
Q.
1
O
3
1—
Q.
3
O
ro r\j
^-00
3
V
JH»?|>-«OIHJ
eiuiit'j
a- S"



m
ICIDES - PO
oncentratio
LYCIILORIN
n is nana
•-3 ;>
Oi r-l
3 3
O —
-I X
n
— ' Z
O l/>
n
3
33 >
33 —1
-
-



-------

M
S
2
i


"n x






















0»


























1



1





Minneapolis,
Minn.


"n re

o*
i












































i











Fafnnont, Hi
§
•
*^ X

__
§













































i
i



i





a 
§§



















0»






















,
1



t
(

1
!





C
a-
a"
*

"t 3C












































(









1




y 'uoisaooji
a
p
~n x

	 .
O
8



















0«




















1
1
,










,


Uyandotte, M
o
a-
*
^1 30

^^
§











































j
i
i

i



i




rTc
Ul
i
JT
















































i











X 3
T
•>
Ml








..




















































"
O
I/I
§
36
0
2P

"**


Ul
3
























































«
x
JT
*







.



















I





1








r*
O
*
X
o
ar














































I
,

!








1


•>
a
o
x
n
ar




















,




























|

i
1

(






Bessewr Twp
Mich.
•



_
i
























































a
o>
X
n
3
n
3-



•^ — -
II




























1
1

'












I





r





3C
*— <
I
MM
'






£






































;














Streator, 11













CU















r









J,






















Peoria, ill.






























































O
a*
~
_*











01 =




m r\9
0 C3




































i

i



n
v;



0
3T .D
r* (-»
0. X
fO x

O
o
—4


0
rti"
S
a


— ^
(O
—
3

-^
3- -3 =
o x rj
M O
O 3"
fO O
-1
O



.
.-s
1 -1
1 —
3
<
X
O

f—
! i.
5^
n


i r\j PSJ
i yt i i
•^- C7 ^3
T 1.1Z
fc/» "^
O —
; "5
o
]~3
—
-^
i is- n
: 3"!
' -I 3
• a. a>
^
.-o










13
m
0 iC
a o
n —
(» 0
a *"n
c^ i/^
Bl 1
— • "^
o o
3 ^
<-.. 0
I/I «
3 0
ii XI
O 3
« 5
. ^^
a. .—
'3 =3
•C 2
i* =
^^ ^
— -<
<-r r-

T
i
2
—
"Zl
: '' ^
: 33 r^?
Oi ty^
I5

-n

.1
-n

j ~^
•o"
' S.
k|


i


I
"1



i
!



-------
o
r>
a>
tt
1



O



in





— *





^


v<






4k



""^



••*






— •





*-







O?
















































































































i




I
1


1
































































i

•*•
<
T
*n 3r

	
i














































j




1



** '

1
IT
8
K
n
*
^1 X


i












































j



i



i


^ -

n j


™
1























































_

1



i























































«•

Kenosha. Wise. 1



ii












































i










«_• _<

c o
V» ffl
O ro
• a



1











































1
I



t



I



24
o
1
§
o"



i













































j


i

•

i
(
t


Portsmouth, '
Ohio 1





















































1



i


t
I
East Liverpool »
Ohio 1



i



o







































j
]
]




1
1
1
(
i
'

Colunbus, Ohio »
1



i












































i





i

i



•
C level and .Ohio >



i§












































;
i
i










Cincinnati *
Ohio f


<••*
•XJ r\J








(-»





































1




;





C3
fB
T
§
o"



ii

















































j
t
i

,

:

r»
8
a.
X
i



NJ



00




















o*




















(



1
1
'



j
<.U
n
n
a.
3E
5"



§
























































~~-
rt

O
T3 —
ar >e
r» r>
?>?
5£
« X
v<
I


s
0)
a.
•n
3


—i
i
n
a>
3
^.
o- o" zi
,t> x >->
3 * C3
M n
ro 3-
3 — •
n o
T
0

>
£L
n
="

o;
o
3
r-
3"
3L
O
3
ro
IN> IN}
• «
<9 ^k ^h
? ? -5
-i _. —
J ~
o
•3
n
— ^~*
O 3

aj
3
f3
^ _
OJ O
— —
~ .
*








•o
^1

o — <
§ 0
n —
n o
3 m
-«
a> i
f^
— • -3
O O
3 1—
^
— n
«/> r:
20
Z)
3 —
£ §
™ 1 ~H
O -r.
**
"?,
1 — ~
f"l
— z
r* i —
-1
t
•Q
«C
~
«'*;
5"^
*


.^

t

3

—
i

















-------
             Mt. Vernon                           Evansvll le
       tr1-n-buty1 phosphate                trl-n-butyl phosphate
       butylphthalate                       butylphthalate
       dloctyl phthal ate                    dloctyl adipatij
       trlmethyl benzene                    methyl palmlnate
       toluene                              farnesol-
       n-octane and other homologs          n-octane and other homologs
       xylene                               xylene
       ethyl benzene                        dlphenylether
       methyl cyclohexane
Many more of these high boiling compounds are present, but further purification
(we are attempting to accomplish the preparation by high pressure liquid chroma-
tography techniques) will be necessary to Identify them.  He have not yet
attempted to analyze the extracts for any low boiling compounds except for the
bis-2-chloroisopropyl and b1s-2-chloroethyl ethers.  Neither of these compounds
gave a gas chromatographlc peak above the detection limit and therefore they
are not present to the extent they have been In Evansville samples analyzed
previously.  In general, the current water samples from Evansville contain fewer
organic compounds than similar samples analyzed by the Region V laboratory and
Indiana State University-Evansville over the previous four years.  This reduc-
tion in pollution is an expected product of the National Pallutant Discharge
Elimination System program and should reduce concern for E^ansville water.
5.  Inorganic Parameters
       All samples were analyzed for the following fourteen metals:  silver,
arsenic, calcium, cadmium, chromium, copper, iron, potassijm, magnesium, man-
ganese, sodium, lead, selenium, and zinc.  Concentrations (49 ug/1) of arsenic
were found at Kokomo, Indiana and prompted us to resample that plant.  It was
subsequently found  that Kokomo was using Wildcat Creek and severa"! deeo wells
as  sources.  The water from Wildcat Creek does not contain 3 measurable arcun:
of  arsenic but watar from two of the 15 ieso wells ccntained up to 2CCO jg/1.
This is aooarently  a very localized proc'em af'ect^ng  cnly * -?w ^slls.  .^f
       treatment and slerc'ng the Kokcrrc *ater /.arks has bee" »bla to ^.a;-ta-r

-------
safe concentrations of arsenic 1n the finished drinking water.   It is recommended
however that Kokomo analyze for the presence and quantity of arsenic in the
finished water at least once per month during periods when Wells 4* or *7 are
1n use.
       The arithmetic mean values for all  finished water parameter concentrations
are less than drinking water standards with the exception of phenolics (Table VI i
VII).  Since the detection limit of the analytical method used to measure phenol
concentrations 1s greater than the recommended levels, we do not interpret the
measured mean phenolic concentration to be significantly higher than the recom-
mended values.
       Table VIII 1s an abbreviated frequency distribution of the finished water
                                              (8)
data and shows that the Water Quality Criteria   recommendations were occasionally
exceeded.  In addition, the table shows the mean value for each parameter is
generally larger than the median value which Indicates the data distribution
1s log normal rather than gaussian.  This  point 1s illustrated in Figure 1.
       It can be concluded from the data in Table IX that a high chemical oxygen
demand (COO) 1n the raw water is necessary for a high chloroforn concentration
to result 1n the finished water.  However, the converse is not always true as
some supplies had raw water COD'S of 30 mg/1 or higher but CHCU concentrations
of 40 ug/1 or less.  These data suggests that chloroform results from a single
or small group of compounds.  They also support the concept that we chloroform
precursor reduces potassium dichromate and that those supplies having a lew COD
need not be tested for chloroform.
                                      26

-------
                           TABLE VI
          DRINKING MATER STANDARDS FOR  INORGANK PARAMETERS
PARAMETER
Ammonia - N
Alkalinity
Chloride
Chemical
Oxygen Demand
Cyanide
Dissolved
Solids
Fluoride
Mercury
Nitrate - N
Nitrite - N
pH
Phenol ics
Silica
Specific Cond.
Sulfate
Suspended Solid
Total Phosphoru
Total Kjeldahl
Nitrogen - N
UBLIC HEALTH
SERVICE (7)


250

0.01, 0.2b
500
0.8-1. 7C
0.0002
10


0.001


250

si
i
WATER QUALITY
CRITERIA (8)
0.5

250

0.2

1.4-2.4C

10
1
5-9
0.001


250



ENVIRONMENTAL PROTECTION
AGENCY (6)




0.2

1.4-2.4Cl
0.0002
10









a.  Values expressed in mg/1 except pH units.

b.  0.01 mg/1 acceptable but 0.2 rcg/1 constitutes grounds for rejection
    of the supply.

c.  Exact limits are temperature dependant.   See ref.  5-9.

-------
                           TABLE  VII

       SUMMARY  OF  INORGANIC PARAMETER  DRINKING WATER RESULTS.8
                            RAW WATER
FINISHED WATER
PARAMETER
Ammonia - N
Alkalinity - CaCOa
Chloride
COO
Cyanide
Dissolved Solids
Fluoride
Mercury
Nitrate & Nitrite - N
Nitrite - N
pH, units
Phenol 1cs
S111ca
Specific Conductance,^
Sulfate
Suspended Solids
Total Phosphorus - P
Total Kjeldahl - N
Hardness - CaC03b
' MEAN
0.154
141
18
15
0.004
267
0.19
0.0001
1.44
0.017
7.6
0,003
7.9
426
44
33
0.11
0.68
192
STD. OEV.
0.114
83
17
12
0.003
142
0.18
0.0001
2.02
0.024
0.3
'0.002
6.4
202
39
64
0.12
0.57
105
»
MEAN
0.154
106
21
7
0.004
254-
0.87
0.0001
1.39
0.005
7.9
0.003
7.0
406
56
3
0.10
0.39
156
STO. DEV.
0.356
78
21
5
0.002
129
0.37
O.onoi
1.91
0.004
0.8
• o.nm
5.1
198
44
5
0.18
0.44
90
a.   Expressed as mg/1,  except pH  (units)  and  specific conductance
    (micro Siemens, us).

b.   Obtained from metals  section  report.
                               28

-------
                                 TABLE VIII
FREQUENCY DISTRIBUTIONS OF THE FINISHES WATER RESULTS FOR INORGANIC PARAMETERS

Parameter
Ammonia - N
Alkalinity - CaC03
Chloride
COO
Cyanide
Dissolved Solids
Fluoride
Mercury
Nitrate & N1tr1te-N
Nitrite - N
pH, units
Phenol 1cs
Silica
Specific Conductance
us
Sulfate
Suspended Solids
Total Phosphorus - P
Total Kjeldahl
Nitrogen - N
Hardness - CaCOs
Percent of Samples Less
Than Concentrations Shown
50
0.05
90
20
6
0.003
220
1.0
0.0001
<0.5
<0.005
8.0
£0.003
7
360
48
<2
<0.02
0.25
130
75
0.15
140
24
8
0.004
300
1.2
0.0002
2.0
4). 005
8.5
<0.003
9
500
76
3
0.10
0.50
180
90
0.4
230
36
12
0.006
420
1.2
0.0003
4.5
0.005
9.5
0.005
16
680
104
5
0.28
0.75
290
95
0.65
290
40
14
0.008
520
1.4
0.0003
5.5
0.005
9.5
0.006
18
860
152
7
0.4n
0.85
320
100
2.61
390
179
28
o.oi;>
700
2.2
0.000'
8.0
0.025
10.1
0.003
22
925
279
42
0.67
3.20
430
No. Exceeding
WQC Rec.

5

0

0

0
0
0
0
9
6


' 1




 a.   Expressed  as mg/1 except pH (units) and specific corductance  (ir.-cro  Siemens,
 b.   Phenolics  not  considered due to method.
                                  29

-------
                                    TABLE IX
                 PERCENTAGE OF RAW WATER COD VALUES EXCEEDING THE
                   MEAN OF 15 mq/1 VERSUS CHCli CONCENTRATIONS
            Number of Samples      CHCl3(ug/l)        tCOD   15 mg/1
                   40                   20                  20
                   12                   40                  42
                   13                   60                  77
                    4                   80                  75
                    2                  100                 100
                    1                  120                 100
                    3                  140                 100
                    1                  160                 100
                    1                  180                 100
                    4                  180                 100
       Numberous drinking water plants add chemicals other than chlorine to the
water during the treatment process.  Two commonly used chemicals are ammonia
and polyphosphate.  Fluoride is also added to many supplies.
       Twenty-one (21) supplies added arrmonia or ammonium ion to maintain
acceptable residual chlorine concentrations as chloramines.  Nineteen (19) of
these supplies had ammonia - N concentrations above the median of 0.05 mg/1 for
finished water.  The average increase of arrcnonia - N in finished versus raw
water was 0.195 mg/1 for these supplies compared to the overall average of
zero (0) increase for all supplies (Table X)
       Thirteen (13) supplies added polyphospnate.  Twelve (12) of  these supplies
«ere 3>x ve the T.ecian finished water total ^-.G^nc-us concentration.  Also the
overall average change 1n phosphorus fron ra* to ^livshed water was negative
0.01 mg/1.  Howeve^, these 13 supplies averaged an increase of 0.168 mg/1.
                                  TABLE X
            ADDITIONS OF AWiQNlA AND PHOSPHORUS TO FINISHED VJATER
   SUPPLY               MEAN PHOSPHORUS, mg/i          MEAN AMKOMIA - N.
                       Raw    Finished  Charge      3aw     Flnisned    Change
 All supplies          0.11     0.10     O.C1      0.154      0.154        0
 Added Ammonia                                     0/55      0.350      0.195
 Added Phosphorus      0.125    0.293
                                       30

-------
       Most supplies add fluoride.   This 1s evident from the median fluoride
concentration of 1.0 mg/1.  However, 9 supplies apparently do not add fluoride.
       Nine (9) supplies had pH values between 9.0 and 10.1.  Of these supplies,
six (6) also had CHC13 concentrations greater than 50 ug/1.  No additional rela-
tionships were found.
       Suspended solids removal was 90 percent based on the mean raw and finished
water values.  The highest suspended solids value for a finished water was 42 mg/1,
the second high was 13 mg/1, and all other values were 8 mg/1 or less.  No positive
correlation exists between suspended solids and the presence of halogenated organic
compounds.  However, COO removal averaged only 50 percent indicating that signi-
ficant amounts of organic materials remained In the filtered water.  This sug-
gests that the turbidity standard (suspended solids is the cause of turbidity)
may not be sufficient to protect water supplies from halogenated organic compounds.
6.  Economic Considerations
       Table XI gives estimates of resources expended tc complete this survey.
All dollar estimates are based on the assumption that total expenses, including
all overhead, costs $40,000 per position and a year contains 260 working days.
III.  SIGNIFICANCE
       It 1s not surprising that trace amounts of various organic chemicals can
be detected  in drinking water.  With the sensitivity available in the gas
chromatograph/mass spectrometer-computer equipment it is probable that many
such compounds can be found in almost any facet of our environment that one
chooses  to look.  Absolute purity 1s only a theoretical term and is not attain-
able in  drinking water.
       Concentrations that are above a normal background and that do pose a
significant  health  risk should of course be reduced.  There are currently not
enough data  to  fully understand either the normal background level or the health
significance of the  organic compounds included in this study.  However, with
                                       31

-------
                               TABLE  XT
           ESTIMATED COST  DATA FOR THE  REGION V  SURVEY

1.  Number of Cities Sampled                                             83
2.  Number of Samples collected Including duplicates for
    Quality Assurance (QA) purposes                                     210
3.  Number of Bottles collected                                       2,940
4.  Number of Analyses per Sample  •                                      94
5.  Total Number of Analyses performed  *                            19,740
6.  Total Number of Analyses reported                                15,604
7.  Total Number of QA measurements made                              4,136
                               Resources Required
1.
2.
3.
4.

1.
2.
3.
1.
2.
3.
4.
Labor 3 $40,000/Yr. including Overhead Man-Days
Completion of Study Plan by Project Officers
and Administration Officials 6
Sample collection - One man day for preparation 30
and four man days for collection per State
Laboratory Analysis - One fourth of the total 289
CRL staff of 33 positions for 7 weeks
Preparation, typing and editing of final report 15
Supplies
Sampling bottles, caps, teflon liners, etc.
Organic solvents
Miscellaneous supplies
Cost Per Unit Total
Cost per City
Cost per Sample Including QA
Cost per Analysis " "
Cost per Reported Concentration Value
Cost
$ 920.00
4,620.00
44,400.00
2, 3CO.no

400.00
2,600.00
1,000.00
$ 56,240.00
$ 673.00
$ 263.00
J 2.85
$ 3.60
     Does not include non-volatile and carbon filter analyses although
     these are Included 1n the estimation of recuired resources.
                               32

-------
perhaps the' exception of chloroform, concentrations of or^anics analyzed in
these drinking waters should not be considered atypical.   It 1s not likely that
they will be found to present a significant risk to health.   Exposures to these
same compounds from ambient levels 1n other aspects of our environment (smoke,
air, food, medicines, etc.) can be expected to be much greater than that from
drinking water.
       Chloroform, 1t appears, 1s affected by chlorine application.  Concentra-
tions of chloroform 1n water supplies with a high chlor1n»» demand may exceed
0.1 milligram per liter (mg/1).  However, even at the highest concentration
found (0.366 mg/1), chloroform should not be considered to present an Imminent
risk to health.  There 1s no evidence that chloroform causes tumors In workers,
and the allowed occupational exposure to chloroform in a I'- is over 100 times that
from drinking water with 0.5 mg of chloroform per liter.
       The possibility must be recognized, however that traces of micropollutants
in drinking water may Indeed contribute to the total exposure of persons to
environmental factors that contribute to carcinomas.  An  ad hoc Study Group of
EPA's independent Science Advisory Board in their May 1,  1975 report on the
health significance of drinking water chemicals, concluded that 1'some health
risk exists."  A portion of the Study Group's summary follows:
      "Based upon recent, reasonably extensive, water quality data for
       many U.S. water supplies and on extremely limited  data from
       experimental carcinogenesls studies, the Study Group concludes
       that there may be some cancer risk associated with consumption
       of  chloroform in drinking water.  The level of risk, estimated
       from consideration of the worst case and for the expected
       cancer site for chloroform (the liver) might be extrapolated
       to  account for up to 40$ of the observed liver career incidence
       rate.  A more reasonable assumption, based upon c-.rrent water
       quality data which show much lower levels than the worst case in
       the majority of U. S. drinking water supplies, wot Id place the
       risk of hepatic cancer much lower and possibly nil.  Further,
       it  is emphasized that both the experimental carcinogenicity data
       and the mathematical and biological extrapolation principles jsed
       to  arrive at the upper estimate of risk are extremely tenuous.
       Epidemiologic studies do not, thus far, support the conclusion
       of  an increased risk of liver cancer;  a'though hypothesisfomulating
                                       33

-------
       studies 1n southern Louisiana suggest the possibility of an
       association with contaminated water and overall  high cancer
       Incidence.  Critical definitive tests of this hypothesis have
       not been conducted.  Although some other organic contaminants
       contained 1n the charge to the Study Group have  carcinogenic
       potential, the cancer risk to man Is Judged to be minor because
       of their low concentration and/or Infrequent occurrences 1n
       drinking water."
IN SUMMARY;  The study's findings do raise questions about the quality of
drinking water and there Is a need for a better definition of the health rela-
tionships between these substances and man.  At this point, though, there 1s
no evidence to Justify quantum changes 1n current water treatment practices.
For example* EPA's statement from last November holds true . . . "the benefits
of continued use of chlorine for the disinfection of drinking water far out-
weigh the possible health risks from chlorine-derived organic compounds."  While
trace organic* 1n drinking water are an Important problem which deserves Investi-
gation, the situation today 1s not a crisis to be met with fear and precipitous
action.
IV.  RECOMMENDATIONS
     1.  When wells contaminated with arsenic are used  1n Kokomo, the drinking
         water should be monitored at least monthly to  be certain that 1t
         consistently meets drinking water standards.  Appropriate precautions
         should be taken before drilling any new wells  1n the area.
     2.  Since our results are based on Individual grab samples collected at
         what may not be normal conditions, the data may not reflect the long
         term quality of any given supply.  Therefore,  the finished water of
         those 31 supplies showing higher chloroform concentrations above
         33 ug/1 should be re-analyred for the volatile organic compounds and
         selected metal and other Inorganic parameters.  In addition, a complete
         organic compound analysis should be completed  on as many of these water
         supplies as possible.
                                       34

-------
     3.  An  effoft  should be made to Identify the precursors) that react with
        chlorine and bromine to produce the pollutants found 1n the finished
        water samples.  As a first step, raw waters shoul1 be analyzed com-
        pletely and halogenatlon studies completed on potential precursors.
        The best treatment for these pollutants may be removal of a precursor
        rather than removal of the organic compounds founi 1n the finished
        water supplies.  Raw water samples should be takei and analyzed com-
        pletely at those cities having the highest chloroform concentrations.
     4.  In  addition to treatment methods Involving carbon and ozone, aeration
        should be  looked at for removing volatile organic compounds.
     5.  The relationship of COD (or TOC) and CHC13 concentrations should be
        further Investigated to Include raw water source  comparisons and
        other parameter correlations such as pH to act as Indicators for
        volatile organics.
V.  SAMPLE COLLECTION. ANALYTICAL PROCEDURES AND QUALITY ASSURANCE
     In general, all samples were collected, preserved and analyzed according
                             (3)
to recommended EPA  procedures    .  In cases where official procedures have not
been recommended or approved, such as for the volatile organic and carbon filter
methods or where superior  analytical methods have been developed as for the COD,
standard methods 1n current use  1n Region V were employed.  All of these methods,
with corresponding  quality assurance data that will permit the reader to estimate
the quality of data on  a parameter or group of parameters  basis are described
later 1n this section.

-------
         1.  Sampling Procedures
         Fourteen bottles of water were collected at each dty.   These
 bottles were divided according to sample preservative as described
 below.  In all cases the bottles were filled completely to avoid an
 a1r-Uqu1d Interface.  Raw water samples were collected just prior to
 chlorlnatlon.  Finished water samples were collected several hours
 after chlorlnatlon depending on plant flow.
         Bottle   '              For                 Preservative
a)   four one liter glass     two bottles for             Ice
    bottles w/teflon lined   raw water organlcs
    caps                     and two bottles for
                             finished water
                             organlcs
b)   two 500 ml high          raw and finished
    density polyethylene     water - metals              HNCh
    bottles,
c)   two 250 ml polyethylene  raw and finished
    bottles                  water-nutrients             H2S04
d)   two 250 ml polyethylene  raw and finished water
    bottles                  cyanides                    NAOH
e)   two 250 ml polyethylene  raw and finished water      CuS04/H3P04
    bottles                  phenolics
f)   two 250 ml polyethylene  raw and finished             1ce
    bottles                  water
                            (pH, specific conductance,
                             alkalinity, etc.)
          Since  these  types  of  bottles  had been  in use in the Region for some
  time ynd were  known  to be  clean, they were not washed prior to sample
  collection.  However, to insure that  results due to bottle contamination
  or some  other  contamination were not  reported, the normal  set of reagent
                             36

-------
blanks (preservative and distilled water 1n a sampling bottle) were
prepared dally by each sampling team and analyzed as the samples were
analyzed.  No contamination problems associated with sampling were
detected.
        The maximum holding times for the organic parameters are
unknown.  Therefore, all organic samples  were refrigerated upon
collection and either extracted or analyzed as quickly as possible
after sample collection; usually within forty eight hours but no
later than five days after sample collection.  A laboratory standard
containing the seven volatile organlcs of Interest v»as analyzed dally
during the study and remained stable for four weeks.  Although chlor-
inated hydrocarbon pesticides are stable, other pesticides are known
to degrade with time so only minimum concentration values can be mea-
sured for these parameters.
        All Inorganic parameters were analyzed within those holding
times recommended for approval by Region V to the Methods Development
and Quality Assurance Research Laboratory, National Environmental
Research Center, Cincinnati, (Appendix I).
         2.  Volatile Organics
         a)  Analytical Procedures.
            The procedure described below is a modification of methods
         described by Kleopfer    ' for air studies and by Bellar and
                                                   (1 2)
         Lichtenberg for volatile organics in water/  '    We have used
         the experimental apparatus and organic trap described by Kleopfer,
         the water sampling method of Bellar and Li tchtenberg and have
                                 37

-------
developed our own  gas chromatographlc analytical  techniques.
Quality Assurance  data given at the end of  this  section shows
the procedure to give accurate results within  the defined
experimental'scatter.
    Ten milliters  of sample are transferred to a  mlcroware
centrifuge  tube with a 14/20 ground glass Joint  from a com-
pletely filled  glass sampling bottle.  The  centrifuge tube
1s then placed  on  the debubbler apparatus held 1n place by
two springs  as  shown 1n Figure VI.

                    FIGURE H
             Nitrogen Gas  Source
             Flow Control  & RoUmeter
                               P- Rubber Serum Cap
                           Teflon
                              Stopcock
                           Sample
                          Centrifuge Tube
                           Teflon Stopcock
  /
/ Quick Disconnect
 5" x k" Stainless Steel
    Gauge Needle
                        38

-------
    The needle  of a trap that has been  cleaned by being  heated

to 135°C and  flushed while hot with  nitrogen 1s Inserted into

the rubber septum.  The stopcocks are opened permitting  nitrogen

to flow through the debubbler. sample water and into the trap

where the organic compounds are adsorbed on the surface  of the

Tenax.  A nitrogen flow rate (Purge)  of 80 ml/min for 8  minutes

1s sufficient to quantitatively transfer those volatile  organics

studied 1n this project.  The trap 1s then removed and attached

to the gas chromatograph - desorptlon oven system as shown 1n

Figure YJI
                             FIGURE VII

                           Stopcock (witch -A*}
                           Quick Oilconnect
                           SUintus Steel H* Tubing
                           126 t*«fl« Needle
                                          \ -1
                        Copper or   ;-  Co«*Kttvity Oet Ktor
            now Control I  Polyethylene) ' *- Ci* ChraMtOfrapi
               totMetcr           '__ tttmtard Liquid Injector
                 Source
                                 •	 He*Um Unit (H««tmq T«pe
                                    AroMtf 12M GUit '>.
The  trap  1s  placed 1n the desorptlon oven w1ti switch  "A"  (see

Figure  3)  1n the off position and  left for 2 ninutes while

thermal equilibrium Is being established.  The syringe needle

on the  trap  penetrates the GC Injection septum as the  trap is

placed  In the desorption oven.  At the end of the 2 minute

period, switch "A" 1s opened and  the sample  Is carried into
                          39-

-------
the GC column where a standard chromatographic analysis 1s
completed,   Quantitative data are obtained by comparing the
recorder response of standard solutions to the response of
unknowns.  Operating conditions of the chromatograph and
detector are as foil cms:  oven temperature - 30°C for 3 m1n.
and then raised to 200°C at a rate of 20°C/m1n; Injector
temperature - 200°C; detector oven temperature - 80n°C;
nitrogen carrier gas flow rate - 40 ml/m1n; detector reducing
gas (Hg) flow rate - 80 ml/m1n;  desorptlon gas (^J flow
rate - 40 ml/m1n; column - 6' x 1/8" aluminum packed with
10% by weight FFAP on 60/80 Mesh Anakrom.  A typical gas
chromatogram of a laboratory quality assurance control
standard is shown later.
b) 'Quality Assurance for Volatile Organics
    Before any samples were analyzed for the presence of
halogenated volatile organics, extensive analytical quality
control data was collected to optimize the analytical con-
ditions and to determine the reproducibility of the method.
Table XII lists the. responses given by the seven halogenated
organics Included In this study as a function of purge time.
The purge gas flow rate was maintained at 80 ml/m1n during
investigation of the flow tine.  Preliminary work indicated
that longer purging times were required  if the purge rate is
lowered.  The data summarized in TableXIT indicates that,
with a purging rate of 80 ml/min, a purge time of 8 min.
1s optimum for the seven compounds of interest.
                     40

-------
    Table  XIII summarizes the data obtained for a standard
mixture which was analyzed five different times (three
different traps were used to trap the volatiles).   The
relative standard deviation is larger for methylene chloride
and carbon tetrachloride because of time limitations peak
heights Instead of peak areas were used for quantification
check.  Since methylene chloride and carbon tetrachloride
give broader and more poorly resolved peaks than the other
compounds investigated, a larger amount of scatter was
observed when the peak height was used for quantification
check.
                          41

-------
               TABLE XIP
     Gas Chromatograph Detector
Response As A Function Of Purge Time
         In Arbitrary Units
              RESPONSES
Purging Time
4 m1n.
6 mln.
8 min.
10 min.

CH2C12
2370
2170
2370
2110

CC14
1090
1340
1150
880

CHC13
2240
2560
3260
2820

C2H2C12
5570
6140
9150
7740

C^BrCH
3970
4030
5500
4610

ClBr2CH
8000
8770
12030
9660

Br3CH
4350
5690
7870
7920

                TABLE XIII
Reproducibility Of The Analytical Method
(Arbitrary Units Of Detector Response)
Compound
CH2C12
CC14
CHC13
C2H2Cl2
Cl2BrCH
C1Br2CH
Br3CH
Concentration
ug/i
49
59
55
54
73
*5
107
Run
11
2880
1860
2880
7360
4740
0050
6590
Run
12
2370
1150
3260
9150
5500
12030
7870
Run
13
2690
1470
3070
8060
5180
11140
7420
Run
#4
2110
770
3330
9280
4360
11340
78801
Run
15
2430
1380
3230
9730
6270
12540
7170
Average
2500
1320
3160
8720
5310
11520
7380
Relative
Std. Deviation
i
12*
30*
6S
112
nr.
10*
8%

-------
        Analytical  quality control  employed during analysis consisted
of routinely:  1) analyzing blank traps, 2) analyzing standards, 3) con-
firming the highest concentrations  (10%) qualitatively on the mass-
spectrometer and 4) collecting and  analyzing 101 of the samples in
duplicate.
        Blanks were analyzed at random throughout each day of the study.
A blank consisted of carrying out the complete analytical procedure
but leaving out the 10 ml of sample.  Table X1VT summarizes the data
obtained for the blanks.  It should be pointed out that the highest
blank values were obtained on two days when methylene chloride, carbon
tetrachloride and chloroform were being used as solvents in another
part of the laboratory and illustrates the sensitivity and extreme
care that must be used when performing these analyses.  Figure VIII
shows the gas chromatogram of a typical blank.
        Standards, made by dissolving approximately seven  wl of a mix-
ture containing stoichiometric amounts of the seven halogenated organics
in 300 ml of water followed by diluting an aliquot of this to give a
final concentration in the 10 to 50 vg/1 range for each compound, were
analyzed at least three times a day (morning, noon and afternoon).  The
average response factors were then used to calculate the concentration
of the samples.  Fresh standards were made at least every 48 hours.
F1g .VIII also shows examples of chromatograms for a standard solution.
        Even though the Coulson conductivity detector employed  is
specific and warrants a high degree of confidence, over  10* of  the
samples giving positive results were qualitatively confirmed using
gas  chromatography - mass spectroscopy.
                               43

-------
                                FIGURE VUI
               Gas Chromatogram of Volatile Organic Compounds
       vt
       *J
       f»
       c
      •e
       41
       v*



       I
      ai

       u
       o
Concentrat
on
52.     48  41    64     76      95   (ug/1)


    Glassware, Instrument and reagent blank
I
4

1
5


6 7
Minutes
1
8

1
9

1 1
10 11


-------
                 TALLE XIV





Summary of Results Obtained for All Reagent



     Blanks Analyzed During the Study
j Range Fourc:
Compound j w2/l
CH2C12
CC14
CHC13
C2H2C12
Cl26rCH
C1Br2CH
Br3CH
0-3
0-5
0-7
< 1
< 0.5
< 0.5
< 0.5
Average
u
-------
        As an overall  quality control  check,  approximately 131 of the
cH1e$ were sampled 1n duplicate.   The analytical  results for the dupli-
cate samples are summarized 1n Table XV    and defines for the reader
the precision of the total sample  collection  and analytical  procedures
employed.
        Fourteen samples were stored 1n a refrigerator after being
analyzed.  A month later 1t was decided to re-analyze the samples.
The results are given 1n Table XVI..  Only the data for CHC13, and
CHC^Br are reported.   The other five compounds of Interest  were below
detection limits.  Since there was originally no Intention of re-
analyzing the samples, they were not tightly  stoppered nor were they
filled completely to the top (approximately 30 ml  were removed when
the samples were first analyzed).   This we believe 1s responsible for
the lower CHC13 values obtained at the latter date 1n those  samples
containing higher chloroform concentrations.   However, the data in
Table   agrees in sufficient detail to augment the other AQC data
and to increase the credibility and the validity of the reported
sample concentrations.  The data also Indicate that refrigerated
samples can probably be preserved  for over a  month prior to  analysis.
                              46

-------
                 TABLE  -'V
Analytical Results ( ug.'l) of All  Samples  Collected
               In Duplicate

Peorla, 111. Raw I
Raw II
Fin I
Fin II
Mt. Vernon, Raw I
Ind. Raw II
Fin I
Fin II
Gary, Ind. Raw I
Raw II
Fin I
Fin II



Detroit, Mich. Raw I
Raw II
Fin I
Fin II
Menominee > Raw I
Mich. Raw II
Fin I
Fin II
Minneapolis , Raw I
Minn. Raw II
Fin I
Fin II
Duluth, Minn. Raw I
Raw II
Fin I
Fin II
Cleveland, Ohio Raw I
Raw II
Fin I
Fin II
MeCl2
<1
< .5
< .5
<1
4
<1
<1
2
< .5
< .5
< .5
< .5



< .5
< .5
ecu
CHC13
<1 ' <1

-------
TABLE XV (Cont'd)

PortsWorth, ... Raw I
Ohio Raw n
F1n I
Fin I!
Black River Raw I
Falls, Wise. Raw n
Fin I
F1n II
Green Bay Raw I
Wise. ' Raw II
Fin I
F1n II
MtClz
2
<1
3
3
<.5
< .5
<1
<1
Sample
<1
<1
<1
CC14
2
2
1
1
4
<2
8
<2
Lost du
3
<1
O
CHC13
2
6
29
21
3
<1
8
4
•ing Ana
1
10
9
C^OrCjtU
2
2
*1
<-!
<1
<2
<1
<}
lysis
<1
<1
<3
Cl2BrCH
<.2
<.2
15
14
<.5
<.5
<.5
<.5

<.5
11
3
C10r2CH
<.2
<.2
5
4
<.5
<.5
<,5
<.5

^.5
2
<1
Br3
<.;
<.;
.1
j
<.!
<.!
<.!
<.'

<.m

-------
                TABLE XVt
VOLATILE ORGANIC CONCENTRATIONS VERSES TIME
Sample #
14313
14309
14297
14325
14289
14321
14293
14337
14853
14366
14345
14410
14317
14329
14825
14374
14301
CHCh
Analyzed On
2/20/75 3/26/75
37
2
10
22
7
36
3.5
1C
It!
9
7 ! 9.4
82 73
1
26 23
3 2.5
8
26
366
128
79
2
5
200
20
17
205
101
53
4
<:12B>CH
Analyzed On
2/20/75 3/26/75
4

9
0.8

0.3
6
0.3

4
3
18
15
6

4 <1
130 ! 31
6

8
0.7

0.4
5.4
0.9

5
2.2
19
9.6
5

1.3
16
i

-------
3.  Pesticides. PCB's and Phthalates.
    t)  Introduction
    Tht procedure used 1s based on "Methods for Organic
Ptstlddes 1n Water and Wastewater," 1971, EPA publication
from NERC - Cincinnati.' '  The procedure differs from the
NERC's 1n that 1t has been expanded to Include 47 pesti-
cides, 5 PCB mixtures and 2 phthalate esters.   Also, the
gas chromatograph analysis step has been automated.
    b)  Experimental Procedures
    The samples are received 1n glass quart bottles with
teflon lined screw caps and are transferred into clean two
liter separatory funnels.  The first portion of the extract-
Ing solvent 1s used to rinse out the sample bottle and then
1s added to the separatory funnel.  The samples are extracted
twice with 100 ml of 15S (v/v) ethylether /hexane, then
once with hexane, dried over N82S04, and concentrated to about
5 ml in a Kuderna-Oanish concentrator.  The volume is reduced
to less than 4 ml using a stream of dry filtered air, diluted
to exactly 4 ml, and split into two 2 ml portions (I and II).
    Portion (I) 1s spiked with phorate (2 ug), placed in a
2 »1 vial fitted with a screw cap, and analyzed for phosphorus-
containing compounds.   The analysis is performed on a Perkin-
Elmer model 900 gas chromatograph using a flame-photometric
(phosphorous mode) detector.  This instrument is equipped with
                       50-

-------
an automatic sampler (adjusted for 10 ul Injection) and a
PEP 1 G.C. data reduction system.  A 6' x 1/4" glass column
packed with 14X SE-30 and 6X OV-210 on 80/100 mesh gas chrom
Q Is used for the original analysis and a 6'  x M4" column
                             i
packed with 1.95X OV-17 and 1.51 0V 210 on gas chrom Q 30/ino
rtesh 1s used for confirmation.  The gas chromatociraph con-
ditions are as follows:   Inlet temperature - 25()°C, detector
temperature -. 240°C, oven programmed from 200°C 1:0 265°C at
4°/ra1n, carrier gas - N£ at 60 ml/min.
    Portion (II) Is placed on a column of Florisll (18 g.
obtained from NERC, RTP, slurry packed with hexaie) with 1/2"
of Na2S04 at the top and bottom of the florisil.
    Two fractions are collected; the first is eljted with
200 ml of 6X ethyl ether in hexane, and the second with
200 ml of SOX ethyl ether in hexane.  Each fraction is con-
centrated to less than 2 ml in the same manner as that used
for the extract, diluted to 2.0 ml with hexane, spiked with
Dieldrin  (50% ether fraction) or Aldrin (6% ether fraction)
and placed  in a 2 ml vial with a septum cap for GC analysis.
    Each  fraction from the Florisil column is analyzed using
a Perkin-Elmer 3920 gas chromatograph equipped vn'th a two-
column injector splitter, automatic sampler with 10 pi syringe,
                      -51-

-------
two columns each leading to an electron capture detector,
and a PEP-1 data reduction system.  The columns are both
6' x 1/4" glass.  One 1s packed with 41 SE-30 and 61 OV-210
and the other with 1.951 OV-17 and 1.51 OV-210 on 80-100
ffltsh gas - chrom Q.  The oven 1s maintained at 205°; the
carrier gas 1s 51 methane in argon for both columns.
    A measured aliquot of each sample from the 61 ether
fraction which 1s thought to contain PCB's, as shown from
Its chromatogram, 1s removed from the vial and placed onto
a column of deactivated silicic acid (6 g, Bio-Rad Laboratories,
2.01 water content) which has been packed and washed with
60 ml hexane.  The first fraction is eluted with hexane
(45 ml) and the second with 150ml of a mixture of 80% methylene
chloride, 19* hexane, and It acetonltrlle .   Each fraction is
concentrated to less  than 2 ml  as  previously described,  diluted
with hexane to 2.0 ml,  spiked  with Dieldrin, and  placed  in a
vial  for GC analysis.   These fractions  are analyzed  for  PCB's
and pesticides on  the Perkin-Elmer model  3920 dual-column
electron capture system describe:!  above.
    An overall  flow diagram  of  the analysis  scheme  is  shown
below with typical chromatograms and  computer printouts  for
list A & B compounds.
                    -52-

-------
                                        SAMPLE
                 Portion I
               Fraction I
                            Extract 3X with ethyl  ether/hexane
                                divide into Portions I  and  U

                                              Portion  II
                           Chromatograph
                           with Florlsll
                                 Fraction  II
                                              Perform  GC  Analysis
                                              for  Phosphorous
                                              Compounds - List A
                 Analyze for
                 List B Compounds
                           Aliquot  I
                                  Aliquot  II
                                              ^Krotna tograph
                                              with Silicic Acid
                                                List 0, E
                              GC Analysis for
                              List 0 Compounds
                                                          Analysis for
                                                          List C Compou
                                              GC Analysis for
                                              List E Compounds
                                        LIST
Phosphorous^
Dyfonate
Ethion
Dursban
Olazinon
Ronnel
Methyl Parathion
Ethyl Parathion
EPN
Malathion
Phencapton
DEF
Phosalone
Azinphos methyl
Azinphos ethyl
Carbcphenothion
Coun-.aphos
Fraction I

01-n-butyl phthalate
D1-(2-ethythexyl)
   phthalate
Endosulfan I & II
Nltrofen
Dilan
2,4-0: Isopropyl
       ester
OCPA
Oieldrin
Endrin
Chlorobenzilate
2,4,5-T: Isooctyl
         ester
Tetradifon
Aliquot II of
Fraction II	
Treflan
Lindane
Hexachlorobenzene
Isodrin
Gamma Chlordane
Beta-BHC
Aldrin
Zytron
Heptachlor Epoxide
0,P - ODE
W~- DDE
GT - ODD
   - 000
   - DOT
PT - DOT
ffTrex
Methoxychlor
Al
Aroclor 1221
Aroclor 1242
Aroclor 1248
Aroclor 1254
Aroclor 1260
Huxachloro-
benzene
Aldrin
Pi^ DOE
Mfrex




	 • —
Treflan
Lindane
Beta BHC
Zytron
Isodrin
Heptachlor
Epoxide
Garwa CMorda
OP DDE
OP" ODD
PT ODD
DT DDT
PT DOT
Rethoxychlcr
                                       •53-

-------
                                          IX.
                   COMPUTER PRINTOUT  FOR LIST A COMPOUNDS

TMKESHOLUS   IfcOO       200              (  • UAR B7S
INST
ME1H0D
42    ,  FILE
19,    3t
TIME
3.41
4.27
4.60
5.39
5.71
6.63
7.64
8.12
8.55
9.03
9.87
11.31
11.92
13.67
13.98
16.91
18.52
19.76
20. 11
21 .04
22.35
25.64 .
AREA
7.6124
4.466*
5*956*
.1156
.2465
9.5539
2.8457
5.3657
3.5236
.0847
6.4339
3.1529
.1847
9.3273
4.7611
1.0771
6.6851
13*0163
9.5878
4.8905
I . 32KO
20.4416
RRT
.341*
. 427 *
.460*
.539*
.571*
.663*
.764*
.812*
.855*
.903*
.987*
.131*
.192*
.367*
.39ft*
.691*
1.852*
1 .976*
2*01 i *
2.104*
2.235*
2.564*
HF
.7500*
•98KO*
.7655*
.0000*
.0000*
.0539*
' .0070*
.0421 *
.4420*
.0000*
.94bO*
.9172*
1 .0000*
.6342*
1 .1502,
1 .0363*
1 .0375*
2.5H69*
,7152*
1 .3901 *
1 .0000*
I.9fll5*
C
10.0000.
7.7300*
7.9U6b,
.2025*
.431ft,
• 17.6360*
5.0190*
9.7940*
8.9000*
•14B4,
10* 64ft£«
5.0650*
.3235*
10.360ft*
9.5920*
1 .9551*
' 12.14fcO*
5B.9776*
12.0100*
1 1 .9074*
2.3260*
70*9440*

H
D
U
t
!
i<
D
M
M
i
F.
0
i
£

P
F
A
K
A
;
C
                                                               NAME
                                                            HkitmAlE  bl
                                                            01 A/. IrtvM: j_
                                                                   : M
                                                            D UK SB AN: »"
                                                            ME1HYL HArtATHI MM
                                                            MALAIHION:!
                                                            i

                                                            ETHYL
                                                            OEF:
                                                                    i?  F IhTL:
            Area * Area under respective  peak.

            RRT'» Relative retention time as compared to a standard retention
                 time entered previously in the computer.

            RF * Detector response factor (sensitivity factor) based on previously
                 Injected primary standard solutions;
                      /
            C  • Calculated concentration using RF of named compound.

            Name « Name of standard having same retention time as unknown.
                                      -54-

-------
< •:.]..
r-.l
.   -r
1    '  '"~"i"""j"-  "j•*•:!:•  |     •:.  -\\   ".".' \   ~v    |  :  ::•   ] :. •:   '.'          |'
                                                               *.—i. .."".~T_.t" . i  _.  i.  .*",.. ...    TTT
                                 oc	 or  •••  ;.os---'. --co •  *!•_... ot:.:;  --no-.  -- . ;co -_---j •_•_oo»\

                                            ~ -8.0 ftvfofiatel'"  !-"-

                                         "
                                   rba n   — : rr-.:-::
                                                                                  .. * !• .1 .*.•• *^ _*. —- . *. „
                                                                                  	j	1	4	.

                       • i          *    •    »          *         i          i     	>     "        ^^—£^ —.—
               ,_  ••   —»   ' < -	t—-• r—-—•<	>	{——" •— -1   -'• — •-—•f~—	i~l_	~"t—m—tn— •-—j
              ".,.  '  ;~~'" . ~"*~~~~|~~—r    i     .   ~ i	 -  i~~"  '  ~yr^"~_~'  'r'~~"'~~'!  't/>'~ TtT^rrl




                                                                                                        O
                                                                                                        C
                                                                                                        30
                                                                                          -i—rj-
                     >^-ii_    •     .	_.	^^_	>	^_.^^_«..	i „	^
                                                                                     *-*	*—;n~~o — ~ i

                                                                    	>.        '       ~     *~
               ,    —=—          "'    -  •— •        -         ...  gQ '/nJTTi ^SKCJ" "t--'3t?Y\L; ! ~'~.  .—H—t




              ' •      •" - - 	»• -QC	;~ -c» —;•—roj'—	o?.——--, ~O
-------
                  FIGURE XI
   »                    •

 COMPUTER PRINTOUT FROM THE SE-30/OV-210 GC COLUMN

            OF LIST B COMPOUNDS
300
100
n;.iE
*.M
a.i«
C.^6 '
A . 0^
4.90
6.C»K '.
6.92
7.67
9.93
1 1 • b*
13.16 •
1 4'. 40
15.42
17.83
19. H9
PO.K5
25.54
33. 13

.0653'
b.497ii
.0605
. 1 407
.4.701 1
'9.2758
.21 19
7.2752
7.027fi
5.S230
6.5840
20.2240
I 1 .1398
3.1784
1 .2404
6. '471 6
14*2963 '<
.0734 ;
»
Kri 1
. ;< sn *
.366,
.445,
.534,
.6*6,
.901 ,
• Oil,
.195,
.3.07,
.400,
.619,
• &06,
• *93,
» . 3 1 9 ,
3.U08,
5.15V,
KF
1 .0000,
- .3091,
.0000,
.0000,
.001)0,
.0000*
• 00(JO*
.0326*
.050?*
.0449*
. .0534,
•2*02*
.0476,
1. 0000,
1 .0000,
. 199K,
1 .2344,
I .0000,
•Ob38,
C
• 01 3t<,
.361 4*
.05*3*
.0299,
1 .0000,
.0450,
.0504,
.OTb*,
.0556,
.0746,
1 .200:?*
.1 124,
. 67 60 *
.2638,
.2750,
- "j
.01 56,
1
NAXiE
t
2, 4-UIH:
i
i
ALOiUN Sro:
i
UCpft :
EN 00 I:
DIKLDitlNi
KNOKl.M:
tNOO II AND
NL 'IK OPEN:
!
I
'S. 4, 5-'l 10:
DEHP: O
I
ETKAUIKSN: <.
                                                            CHL
                 -t6-

-------
                                      FIGURE XII

                     COMPUTER PRINTOUT F30M OV-17/OV-210 COLUMN

                                 OF LIST B COMPOUNDS
THKE1SHCLOS    300
         t3TS
             * MtllKCO
1>3
* FILE
19
TlilE
l.Ifi
1.P3
2.2*
2.74
3.i*7
3.6K
£.34
S.ftl
7.02
«.43
9.?9
10.07
11.39
12.09
14. ?0
1 6.03
20. 12
27.80
AKEA '
.0000
* 8.9494
•2oT5
• 1H4?
X . 37 47
12.5740
1 1 .673*
1 I '. 60 1 9
9 . 629 I
10. POO 9
14.3046
43.5532
4. £9 20
1 5.f,793
6.93HH
25.4771
2 1 . H5?9 1
25.347*
Rnl
.106*
.1 6^>*
.206*
' .24^;,
.296*
.333*
.392*
.525*
.633*
• 7 ft.j*
.r40.
.911*
• 031 * *
.09-1,
.P.faS*
.451 *
• F2t*
2.51 6*
«F
1 .OOOO*
.?6V3*
1 .OOCO*
I .0»"»00*
1 .COvO*
^ ,a«/07 *
.i)40^.
.0443*
.04<>5*
.Ob36*
• f:6GV*
•C36«*
1 .JOOO*
.1 474,
1 .OODO*
•063P*
2.1375,
.0547*
3:
                                                     •0000*  !
                                                     • ^^77,  ;-,
                          I -OOO'i*  *U
                         ? • 7 (i -f e f  "if
                           • ft 57 'c ,  '.u
                           «l»6lc*  ?.
                                                                   f M S i v:
                                                                 ;i  J :
                                                                 L-/.' t.s-:
                                                                               -
                                                                 >.  I I A.^'J Nil,
                                                             '<•
                                                             i
                                                          >* ol
                                         -57-

-------

-------
    c)  Quality Assurance For Pesticide Analysis
    In order to insure validity  of the analytical results,
extensive analytical quality control was performed on each
step In the analytical scheme.  Ten percent of the samples
were collected 1n duplicates for AQC purposes.
    In the laboratory, samples were analyzed 1n groups.  A
"blank" and a "spike" were analyzed with each group to provide
analytical quality control for that group.  The "blanks"
and "spikes" were prepared using distilled water.   The "spike"
contained a mixture of the 47 pesticides included  In this
study.  The concentrations of the various compounds in the
spike were in the 0 to 5 ug/1 range for the phosphate pesticides
and 20 to 200 ng/1 range for the chlorinated pesticides.  A
total of ten sets of "blanks" and "spikes" were analyzed.  All
the AQC samples were treated in the identical manner as the
real samples were treated.
    In order to evaluate the automatic gss chromatographic
system, standards were chromatographed at: least every tenth
sample.  This was used to monitor any change in the retention
time and/or in the response factor for ee.ch pesticide.  If
changes were noted, the system was recal'brated and the samples
re-analyzed.
                      -59-

-------
    Recovery data for the "spikes" are summarized in Table XVII
   and relates to the reader the precision on a parameter
by parameter basis.  None of the blanks Indicated the
presence of pesticides above the detection limits.  A normal
percentage of the samples collected 1n duplicate gave Iden-
tical results within' the precision given in Table XX.  The
only serious problem is the high recovery values for phthalates
which probably Indicates contamination.  We have reported
unconnected phthalate concentrations with quality assurance
Information to permit the reported data to be evaluated
by the user and urge each data user to use the phthalate
results with appropriate caution.
                        -60-

-------
            TALLE
         Recov i • ry Data



Ten Or More Sar. . n 'es Spiked With Pesticides
COMPOUND
Diazlnon
Dyfonate
Ronnel
Dursban
Methyl parathion
Malathlon
Ethyl parathion
DEF
Ethion
1 Carbophenathion
Phencapton
JEPN
Methyl azinphos
Phosalone
Ethyl azinophos
Coumaphos
2»4D,isoprcpyl-
ester
Di-N-butyl-
phthalate
pg/1 Acded
C.O
6.0
14.0 •
4.0
Average 1
Recovery
0,,
81
?3
100
8.0 ; -a
8.0 ' G.c;
8.0 ' 93
4.0 ' 111
8.0 100
8.0 92
2.0
10.0
60.0
10.0
10.0
• 60.0
280
20CO
107
92
61
89
86
95
36
73
Standard Deviation I
of I Recovery
33
38
33
30
34
28
35
33
41
32
36
34
34
36
37
25
13
58
            — Ol—

-------
TABLE XVII* (Cont'd)
COMPOUND
DCPA
Endo I
Dleldrtn
Endrin
Chi orobenzi late
Endo II I
Nitroflen J
2.4,-5-T-
isooctyl ester
01 Ian
DEHP
Tetrad if on
Treflan
Hexachloro-
benzene
Llndane
B BHC
Aldrin
Zytron
Isodrin
Heptachlor
Epoxide
Gamma
Chlordane
yg/1 Added
48
60
48
64
80
80 I
80 J
240
200
3200
120
24-.4S
12-22
20
56-400
20-40
80-98
23
20-24
20-24
Average I ^
Recovery
70
90
78
. 66
52
62
89
56
289
102
98
61
70
74
76
. 75
82
78
103
Standard Deviation
of X Recovery
50
97
42
45
36
i
65
67
47
200
130
20
20
28
33
28
22
29
42 !
i
i
19
             -62-

-------
                       TABLE XVII  (Cont'd)
COMPOUND
0-P DDE
P-P DDE
0-P DOD
0-P DDT
P-P ODD
P-P DDT
Ml rex
Methoxychlor
vg/1 Added
60
60
'60
60
60
60
40
200
Average 2
Recovery *
86
86
ICQ
93
TOO
101
77
97
Standard Deviation
of X Recovery
14
21
11
13
12
22
39
17
* Calculated as follows:

  Average % Recovery =  Original sample concentration +• Spike - OSC
                                       Spike

  We choose to use this cc. .-,-,cr; because the equation recommended by

  EPA makes the data appear to be of a higher quality than they really

  are.
                                 -63-

-------
    Since the adsorption and desorption efficiency on
carbon 1s not known for most organic compounds, quanti-
tative data can not be obtained and therefore only
approximate flow rates need to be obtained.  These are
easily obtained by using a large (2-5 1) graduated
cylinder and stopwatch dally during the sampling period.
Using a small stream of water, the sample volume per
week is usually between two and four thousand liters
for clean waters that do not significantly reduce
the flow by depositing foreign material in the filter.
The efficiency of adsorption is known to decrease as
the flow Increases thus a greatly Increased flow rate
may actually reduce the total quantity of material ad-
sorbed by the carbon.  Carbon from the exposed filters
is transferred to a soxhlet and extracted for 24 hours
with hexane, 24 hours with chloroform and 24 hours with
methanol.  Each extract Is then divided into an acidic
basic and neutral fraction by standard techniques using
5% HC1, 5X NaOH and the organic solvent used to extract
the solvent or toluene 1n the case of the methanol ex-
tract.  The nine resulting extracts are dried over an-
hydrous sodium sulfate and concentrated to approximately
two milliters before a gas chromatographic and mass
spectrometric analysis is attempted.  Experience to date
                   -6&-

-------
shows that the separations described above are usually
adequate for all except the neutral chloroform fraction,
which contains more compounds than can be separated using
gas chromatography.  High pressure liquid chromatcqraphy
                                           i
techniques for further purification of this fraction are
being investigated.  Compounds identified to diite are
shown below.  Of significant interest is that bis-2-chloro-
ethyl and isopropyl ethers are below detection limits in
these samples.
          Mt. Vernon,
           Indiana
   Evansville,
     Indiana
    tri-n-butyl phosphate
    butyl phthalate
    dioctyl phthalate
    tri methy!benzene
    toluene
    ethyl benzene
    xylene
    methyl cyclohexane
    other hydrocarbons
tri-n-butyl phosphate
butyl phthalate
dioctyl phthalate
Farnesol
n-octane
methyl palmitate
xylene
di-phenyl ethtjr
other hydroca-bons
                     -67-

-------
5.  Metals.
    a)  Analytical Procedures
    1)  Flame Atomic-Absorption
            Procedure
        Standard flame atomic absorption procedures were
used for the determination of calcium, chromium, copper,
Iron, magnesium, manganese, potassium, sodium, and zinc (3).
The reported results were obtained by direct aspiration
of water samples preserved with 0.5X concentrated nitric
add.  Thus the listed values represent metal concentra-
tions that were dissolved by the acid preservation, and
these will be equal to or lower than total metal concen-
trations as defined by the US EPA analytical procedures (3).
            Analytical Quality Control
        The accuracy and precision of the analytical
measurements were assessed by the use of duplicate samples,
spike recoveries, and Intralaboratory control standards.
Data supporting the validity of the reported results and
that are pertinent to this study are listed in Tables XVIII
XIX ^and XX. - ...The listings are self-explanatory and show
that the determinations were performed with good accuracy
and precision.
                      -68-

-------
                        TABLE XVIII
Precision Based On Analysis of Duplicate Samples by Flame AA
Element
Ca Calcium
Cr Chromium
Cu Copper
Fe Iron
K Potassium
Mg Magnesium
Mn Manganese
Na Sodium
Zn Z1nc
Hardness (Ca & Mg)
Cone. Range (ppm)
9.0 - 100.0
* •
0.005-0.030
0.020-0.200
0.5 - 3.0
3.0 - 50.0
0.005-0.800
1.5 - 20.0
0.005-0.200
38 - 433
NO. Of
Determinations
44

14
20
44
44
20
44
14
44
Std. Dev. of
01 ff. (ppm)
0.36

0.003
0.007
0.04
0.16
0.009
0.27
0.003
1.1
* Insufficient data
                           -69-

-------
         Recovery  Data  For Spiked Samples  Based  On  Flame AA
Element
Ca Calcium
Cr Chromium
Cu Copper
Fe Iron
K Potassium
Mg Magnesium
Mn Manganese
Na Sodium
Zn Zinc
Cone. Added
(Ppm)
10.0
0.25
0.25
0.25
1.0
10.0
0.25
10.0
0.25
I Recovery
(Ave.)
99
100
100
101
101
99
95
98
101
NO. Of
Determinations
4
4
6
3
4
4
3
4
6
                               TABLE
Statistical  Summary of Results From the Laboratory Control  Standards by Flame AA
Element
Ca Calcium
Cr Chromium
Cu Copper
Fe Iron
K Potassium
Mg Magnesium
Mn Manganese
Na Sodium
Zn Z1nc
Cone. Mean
(ppm)
39.9
0.494
0.530
1.442
1.5
8.5
0.507
14.2
0.759
Std. Oev.
(ppm)
0..50
0.014
0.019
0.061
0.11
0.14
0.015
0.47
0.024
Rel. Std.
Oev. , S
1.2
2.9
3.6
4.2
7.3
1.6
2.9
3.3
3.1
NO. Of
Determinations
33
15
11
12
33
34
12
38
11
                                  -70-

-------
   11)  Flameless  Atomic Absorption
            Procedure
        Flameless  atomic absorption procedures were used
for the determination of arsenic,  cadmium,  lead, selemium,
and silver.  The Perkln-Elmer HGA-2000 was  utilized for
this purpose.  This unit was mounted on a double-beam
atomic absorption  spectrophotometer equipped with a deuterium
background corrector and interfaced to A strip chart re-
corder.  The technique of standard additions was applied
exclusively for sample analysis.   At le-ist  3 working standards
and a reagent blank were prepared  just Drior to use from
commercial atomic absorption standard concentrates using
quality water and  high purity acids.  The instrumental
setup was optimized for the appropriate working range of
the element to be  determined, and  standards were checked
for linearity prior to use.  Appropriate volumes (10-50
of sample and standard were injected and analyzed by pre-
viously established operating conditions.  Linear working
curves (peak height vs. concentration) were extrapolated
graphically to zero absorbance for sample concentration
results.  Samples outside the linear range  were diluted.
In addition, acidities were closely controlled, since it
has been established in this laboratory that for certain
                    -71-

-------
         metals,  I.e.  arsenic,  selemlum,  signal  response  Is  a
         function of  acid  type  and  concentration.
                 Analytical  Quality Control
            Table XXI  lists  appropriate  precision  data  based on  the
         analysis of  duplicate  samples.   These  results  are consistent
         with precision and  accuracy ranges  previously  established
         for this method.   Data on  recoveries and  laboratory control
         standards  were not  collected.   The  use of standard  additions
         provides points on  the analytical working curve  that  are
         1n effect a  measure of recovery.
                             TABLE  XXI
Precision Based on the Analysis  of  Duplicates  by  Flameless  AA
Element
Ag Silver
As Arsenic
Cd Cadmium
Pb Lead
Se Selemium
Cone. Range
(ppb)
*
1 - 10
0.2 - 0.7
2-25

Std. Oev. of
Offf. (ppb)

0.8
0.07
0.8

No. of
Determinations

10
6
12

* Insufficient Data
i
                              -72-

-------
    B.  Results and Discussion
    Table XXII summarizes the ranges of metals found in the
water supplies covered by this study.  The results reflect
the conformance of the finished drinking waters to the
proposed  maximum allowable concentrations (6).  One water
supply approaches the maximum suggested contamination level
for arsenic, and subsequent analytical data Indicated that
this particular source was being polluted by supplemental
water originating from deep wells.  In order to circumvent
potential problems, the mixing ratios of these two supplies
should be closely controlled or the use of the wells should
be discontinued , or the efficiency of the treatment plant
arsenic  removal  should be greatly  increased.
                     -73-

-------
TABLE  XXII
Metal Concentration Ranges
In Drinking Water
I Concentration Range
Element

Ag Silver
As Arsenic
Ca Calcium
i
Raw Water

<0. 0002-0. 0003
<0.001 - 0.010
5.2 - 135.0
Cd Cadmium <0. 0002-0. 01 2


Cr Chromium
Cu Copper
Fe Iron
X Potassium
Mg Magnesium
Mn Manganese
Na Sod i urn

Pb Lead

Se Selemium
Zn Zinc
Hardness, (Ca, Mg)


cO. 005-0. 01 7
<0. 005-0. 20
<0. 02-3. 30
0.5-7.4
1.8-62.0
<0.005-C.76
1.1-77.0

<0. 002-0. 03C

<0.005
<0. 005-0. 21
20-492
Finished Water
mg/1

<0. 0002- 0.0003
<0.001 - 0.050
4.9 - 108.0
<0. 0002-0. 0004


<0.005 - 0.006
<0.005 - 0.20
<0.02 - 1.10
0.5 - 7.7
0.8 - 49.0
cO. 005 - 0.35
1.0-91.0

<0.002 - 0.020
i
<0.005

-------
6.  Inorganic Parameters
    a)  Analytical Procedures
    1)  Ammonia - Technlcon Co. method no. 15^-71 VI was modified
to analyze samples In the range 0-1 mg/1 'Hj-fi.  ~'-.e method in-
volves a hypochlorUe oxidation of an ammonia - phenol reaction
product using nltroprusside as a catalyst.  The complexing reagent
and wash solutions were modified by the addition of 7.6 ml/1 of
10% NaOH and 1 ml/1 of concentrated sulfuric acid, respectively,
to compensate for the nutrient preservative.
    11) Alkalinity - Unaltered samples were titrated using an
automatic Fisher Titralyzer to an electrcmetrically determined
end-point of pH 4.5.
   Hi) Chloride - Technicon Co. method no. 9n-70 w was modified
to analyze samples in.the range 0-200 mg/1 chloride by the addi-
tion of a twenty-five *old dilution loop.  The method involves
the stoichiometric liberation of thiocyanate ic- -rom mercuric
thiocyanate to form soluble but unionized me^c-Hc chloride.
The free thiocyanate reacts with ferric  ;on tc form ferric
thitcyanate proportional to the origina   ;.iloride concentration.
    iv) Chemical Oxygen Demand (COO) -"he Centra1 Reg-'ona1
Laboratory semi-automated micro method "/as used to ana^ze the
drinking water samples  for COO.  T'JO and  ore-ha^ ml o£ samole,
3.5 ml o* sulfuric acid - silver su'^ate  solution JPC 2.5 -'. of
potassium d'chromate solution are addec  to 'n x l°r ~r- so^csili-
cate  screw-top test tubes.  The tubes ere sea'ec! .vth a teflon
                     -75-

-------
Untd cap and then heated In an oven at 150°C for 2 hours.
The amount of Cr(lll) produced by the oxidation of the
sample is proportional to the COO of the sample.  The
appearance of Cr(III) 1s measured at 600 nm with Technicon
AA II equipment at 40 samples per hour.  The method is
described 1n detail 1n Appendix II, which is a manuscript
that will appear 1n the July, 1975, issue of Analytical
Chemistry.
    v)  Cyanide - Technicon method no. 315-74W for cyanide
analysis was modified to Improve sensitivity to lnn ug/1
full scale.  The improvement was accomplished by addition
of a large diameter 13-turn coil to the manifold just be-
fore the colorimeter.  The method involves an ultra-violet
digestion and distillation from acidic solution to separate
the cyanide from the sample matrix.  Cyanide is converted
to cyanogen chloride by reaction with chloramine-T which
subsequently reacts with pyridine and barbituric acid to
give a red colored complex.
     vi)  Dissolved  and Suspended Solids - The CRL Ticro
technique was used  to' analyze the drinking water samnles for
the  residue  parameters.  Ten ml of sample were  filtered
through  a tared  nuclepore  filter and  the residue weighed
to  the  nearest microgram to determine  suspended solids.  One
hundred  microliters  of  filtrate was evaoorated  on  12 TW
aluminum pans and  the residue weighed  to the Dearest micro-
                      -76-

-------
gram to determine dissolved solids.  A manuscript, submitted
for publication, describing the methods 1n detail is attached
as Appendix III.
   vll) Fluoride - The EPA electrode metho'd ('fa-iual of Methods
for Chemical Analysis of Water and Wastes  , p. 65, 1974) for
fluoride was used without modification.
  v111) Mercury - The CRL automated method was used for mercury
analysis.  The method consists of a persulfate oxidation followed
by reduction with stannous chloride using hydroxylamine hydro-
chloride to reduce any residual chlorine present.  The mercury
1s detected by passing it through a 22 cm cell mounted in a
dual-wavelength spectrophotometer.  A manuscript, submitted
for publication, describing the method is atta:hed as Appendix
IV.
    1x) Nitrate plus Nitrite - Technicon Co. method no. 100 -
70 W was modified by the addition of a 5 fold dilution loop
to analyze samples 1n the range of 0 - 5 mg/k N03 •*• NC^-N.
In addition, the ammonium chloride buffer and wash solutions
were modified by adding 11.5 ml/I of 10S NaOH and 1 ml/I o*
concentrated sulfuric acid, respectively,  to compensate *or
the nutrient preservative..  Nitrate plus nitrite  is determined
by reducing the nitrate to nitrite with a copper-cadmium column.
The nitrite ion then reacts with sulfaniianrd.: at a low pH  to
form a diazo compound.  This compound  then couches .vith '1-1-
naph-thylethylene diamine dihydrochlori^e  to  "orm  ^ radd;s  -
purple azo dye which is analyzed at 529 ran.
                      -77-

-------
    x)  Nitrite - Techrilcon method no. 102-70 x was used without
modification to analyze samples for nitrite.  The analytical
method 1s the same as fdr nitrate plus nitrite except that the
copper-cadlum column 1s deleted.
   x1)  pH - the pH of the drinking water samples was measured
with a pH meter equipped with a combination glass-reference
electrode.
   x11) Phenol1cs - Technlcon method no. 127 - 71 W for analysis
of phenollcs was modified for samples 1n the range 0-200 mg/1.
The method Involves the distillation of phenollcs and the sub-
sequent reaction of the distillate with alkaline ferrlcyanlde
and 4 - amlnoantlpyrene to form a red complex which 1s measured
at 505 nm.
  xi1i) S1Hca - Technicon Co. method no. 105 71 W was modified
by cutting the sample volume 1n half to analyze samples for
silica 1n the range 0-20 mg/1.  This procedure for the deter-
mination of soluble silicates 1s based on the reduction of a
sllicomolybdate complex In acidic solution to "molybdenum blue"
by ascorbic acid.
   x1v) Specific Conductance - The specific conductivities were
measured with a Radiometer COM3 conductivity meter.  The meter
1s essentially an ohmmeter, calibrated in reciprocal ohms.  A
built-in oscillator applies an ac voltage of suitable frequency
to the electrodes to avoid false readings from the polarization
of the solution.
                      -78-

-------
    xv)  Sulfate - Technlccn Co.  method no.  11R - 71  W was used
for sulfate analyses.   The sample containing sulfate is passed
through a cation-exchange column to remove interferences and
then reacted with barium chloride and methyl thymol blue.  Barium
chloride and methylthymol blue are added in  equal molar amounts
so the excess methylthymol blue corresponds  to the sulfate con-
centration.
    xv1) Total Phosphorus and Kjeldahl Nitrogen - The CRL methods
were used for the analysis of TP and TKN.   Ten ml of samole were
mixed with 2 ml of the solution described in sections 6.2 and 6.3
of the 1974 EPA Methods Manual for TKN.^  The solution was
evaporated and then digested at 370°C for 1/2 hour.  The dlgestate
was cooled and then diluted to 10 ml with distilled water.  The
resulting solution was analyzed for phosphorus by Technicon Co.
method no. 155 - 71 W modified as follows:  Five grams per liter
of sodium chloride was added to the manifold water line to com-
plex the mercury catalyst and avoid its reduction.  Nitrogen
was analyzed as ammonia by the method described in paragranh 1.
In addition, a five-fold dilution loop with i!5 ml of 10 N NaCK
per liter was used for both methods.  The sanpler wash solutior
consisted of 35 ml of concentrated sulfuric acid per liter.  A
manuscript describing these methods in detai   is being prepared.
                   -79-

-------
Quality Assurance Procedures for Inorganic Parameters.

        The accuracy and precision of the analytical data were  assessed
by the use of dally Instrument calibration and the analyses  of  duplicate
samples and Intralaboratory quality control standards.   The  precision
and detection limit data 1n Table XXIUshow that all of  the  methods
used (with the exception of phenoUcs) are much more sensitive  than
necessary when compared to the drinking water quality  standards (Table XXIIl).
SUMMARY
       The Region V Drinking Water Study has satisfied most of the goals
of the project.  It has provided the most complete 11st of parameter
concentration values yet reported for so large a group of water supplies.
These values were from samples collected approximately two months after
                         . (6)
the Safe Drinking Water Act  became law and therefore they can be used
as baseline concentrations from which the effects of the Act can be
measured.  The study clearly supports the conclusion drawn by Bellar &
           2
Uchtenberg that the chlorlnatlon water treatment process produces
chloroform 1n finished drinking waters.  It also provides experimental
evidence of the absence of most pesticides 1n our drinking water sup-
plies and where these compounds are present the concentrations are very
low.  It showed that the waters at Evansville, Indiana are not now as
contaminated as they were a few years ago.  Because we expect these
results to be used for a long period of time and to be rigorously
evaluated, we have made available a very limited number of copies of
all data.  Appendix V is a complete listing of the field sheets as
they were received and Appendix VI is a complete set of analytical
results.  Generally these appendices will not accompany this report.
                              -80-

-------
                                  TABU XXIII

                      SUMMARY OF QUALITY ASSURANCE DATA
                         FOR INORGANIC PARAMETERS*
PARAMETER
Ammonia • N
Alkalinity - CaCO,
Chloride
Chemical Oxygen Demand
Cyanide
Dissolved Solids
Fluoride
Mercury
Nitrate 6 Nitrite - N
Nitrite - N
pH
Phenol 1cs
Silica
Specific Conductance
Sulfate
Suspended Solids
Total Phosphorus - P
Total Kjeldahl Nitrogen - N
PRECISION0
0.0061
0.9
1.0
1.4
0.0010
19.8
0.025
0.00005
0.019
0.0007
0.04
0.0003
0.07
2.3
1.0
1.7
0.006
0.037
CCTECTION LIMIT0
0.010
10
2
3
0.002
40
0.1
0.0001
0.03
0.005
0.1
0.002
0.1
5
3
2
0.02
Q05



















a.  Expressed as mg/1, except pH  (units)  and  specific conductance
    (micro Siemens, ys).
b.  Precision was determined from the estimated standard deviations  of
    twenty-two duplicate samples  for each parameter.   T est»
/ Xl A^*
'     N
                                                                 A
                                                                 2N
c.  Detection limits were calculated as two times  the standard deviation
    of the blank results.
                                    -81-

-------
                        REFERENCES

1.   Thomas A.  Bellar and James  J. Uchtenberg,  "The  Determination  of
    Volatile Organic Compounds  at theug/1  Level  in  Water  by Gas
    Chromatography", EPA-670/4-74-009,  November,  1974,  National
    Environmental  Research Center,  Office of  Research and  Development,
    Cincinnati,  Ohio  45268.
2.   Thomas A.  Bellar, James J.  Uchtenberg, and Robert  C.  Kroner,
    "The Occurrence  of Organohalldes  1n Chlorinated  Drinkinq Waters"
    EPA-670/4-74-008.
3.   "Manual of Methods for Chemical Analysis  of Water and  Wastes"
    EPA-625/6-74-003 (1974).
4.   Robert Kleopfer, US-EPA,  Region VII, I!5 Funston  Road,  Kansas City,
    Missouri  66115, Private Communications.
5.   "Methods for Organic Pesticides in  Water  and  Wastewater",
    Environmental  Protection Agency,  National  Environmental Research
    Center, Cincinnati, Ohio  45268.
6.   (a) "Safe Drinking Water Act",  Public Law 93-523, 93rd Congress,
    S. 433, December 16, 1974;  (b)  Primary  Drinking  Water  Proposed
    Interim Standards, Federal  Register, 40 CFR Part 141,  No.  51,
    March 14, 1975.
7.   "Public Health Service Drinking Water Standards  - Revised  1962"
    U.S. Department  of Health,  Education and  Welfare -  Public  Health  Service.
8.   "Water Quality Criteria - 1972"  EPA-R3-73-033  (March  1971)
                            82

-------
APPENDIX I

-------
                   UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
                               CENTRAL REGL'.AL LABORATORY
  SUBJECT: Preservation and Holding Times fo» Nutrient
           and  Demand  Parameters

  FROM:    Dr.  Mark Carter, Chief
           Inorganic Section, CRL

  TO:      Dwlcht Ballinger, Director
           MOQARL

THROUGH:   BHIy  Falrless, Chief, Chemistry Branch, CRL
           Thomas E. Yeates, 21 rector, CRL
           David  A. Payne, Chief, Quality Assurance Branch, CRL
DATE: October 9, 1974
           The recommended sample holding times to be appearing 1n the next edition
           of "Methods  for Chemical Analysis of Water and Wastes," for some nutrient
           and demand parameters, have caused great concern 1n Region V.  The
           Surveillance and Analysis Division has been preserving surface and waste-
           waters vilth  1 ml H?S04/1 of sample for ammonia, nitrate plus nitrite,
           total  Kjeldahl nitrogen (TKN), total phosphorus, chemical oxygen demand
           (COO), and total organic carbon (TOC) parameters since early 1973.  All
           samples to be analyzed for the above parameters are shipped via ground
           transportation to  the Central Regional Laboratory (CRL) 1n Chicago while
           «a1pte1ned.at.arr.b1entit«nperature.  In only a few cases have samples been
           analyzed within the  24 fiour holding time you are recommending for the
           above  parameters.  Typically, the holding times for sulfurlc add pre-
           served samples have  ranged from several days to approximately one month
           from the time of sample collection.

           The CRt has  been actively Investigating the preservation of samples since
           January of this year.  Although our results are preliminary we feel com-
           pelled to release  the data now before critically Important administrative
           decisions are being  made.  Our conclusions and recommendations which
           follow are based on  the sample types studied.  All the data we have col-
           lected are Included  1n Attachment A.

           Conclusions:

               1) On  the basis of our work, and data 1n the literature
                   (Howe and Holley, 1969; Charplot, 1969; Jenkins, 1965)
                   we  find no  support for your recommended 24 hour holding
                   time for  ammonia, nitrate plus nitrite, Kjeldahl nitrogen,
                   total phosphorus, and total organic carbon.

               2) The recormended holding time for TOC (24 hours) 1s Incon-
                   sistent with the 7 day holding time for chemical oxygen
                   demand.   Since the COD method Inherently takes Into
                   account the oxidation state of a waste, any sample Insta-
                   bility will be reflected 1n the COO before the TOC.  In
  CPA F«m 13234 nu.. 4.71)

-------
                              - 2 -

         addition, on the basis of our experimental  results the
         recomnended holding time of 7 days for COO  measurement
         1s unnecessarily stringent.

     3)  The recommendation of one holding time for  eich para-
         meter for-all sample typts 1s unnecessarily cautious.
         Howe and Hoiley (1969) have shown that the  greatest
         cause of sample Instability 1s biological activity.
         Our work has verified this observation. The data In
         Attachment A shows a tremendous difference  In stability
         between samples of high biological activity (raw sewage)
         and low activity (clean surface water).

Intern Recommendations For Holding Times

In all cases, the samples are assumed to be stored at room temperature.
As of yet, we have not found 2 ml/1(sulfurlc acid  / sample)to be any
more effective than 1 ml/1 so the latter procedure Is also assumed.

     1)  Ammonia - At least one week for raw sewage  and one month
         for surface waters and Industrial wastes lov 1n biologi-
         cal activity.

     2)  Nitrate plus Nitrite - At least one month for all sample
         types.

     3)  Total Kjeldahl Nitrogen - At least one month for raw
         sewage.  For organic nitrogen follow ammonia recommenda-
         tions.

     4)  Total and Dissolved Phosphorus - Up to two  months for all
         sample types.

     5)  COO/TOC - At least two weeks for raw sewage.

These holding times are based on preliminary data and are subject to modi-
fication pending the completion of one more study.   However, they are sup-
ported by data from the literature and are much longer than yours.  Vie
request that you make available to us any analytical data or literature
references that support your recommendations and hence contradict our
results.  We believe our preliminary data are accurate and that our
Intern recommendations outlined above should be accepted 1n Region V
pending further work.  He would be most happy to have your Input Into
our one remaining preservation study and hope to discuss this matter
with members of the Quality Assurance evaluation teem during the visit
to the CRL on October 15.

-------

Mark Carter, Ph.D.

-------
APPENDIX II

-------
                               Central Regional Laboratory
                               Environmental Protection Agency
                               Chicago, Illinois 60609
MICRO SEMI-AUTOMATED ANALYSIS OF SURFACE AND WASTEWATERS

          FOR CHEMICAL OXYGEN DEMAND
                    PRELIMINARY
             SUBJECT TO REVISION
        Andrea M. Jlrka and Mark J. Carter
     +Author to whom correspondence should be addressed.

-------
                             BRIEF

A micro stml-automated spectrophotometrlc method for determining the
chemical oxygen demand of surface and wastewaters 1s described and
compared to the standard method.

                          ABSTRACT
A micro sample digestion technique for the determination of chemical
oxygen demand (COO)  1s described.   An automated spectrophotometrlc
measurement of the appearance of  chromium (III) after sample digestion
completes the method.   Adequate sensitivity at 600 run 1s achieved by
using a 50 mm flowed! to measure COO values 1n the range 3-900 mg/1.
The send-automated method 1s  compared to  the standard method with
respect to precision,  accuracy, ease  of analysis and comparability of
data.

-------
                          - 2 -

                       INTRODUCTION

     The oxidation of organic and  Inorganic wastes  1n  a  receiv-
ing water depletes the dissolved oxygen  supply, which  can  have
a profound effect on aquatic Hfe  (1).   A meaningful determina-
tion of the natural oxygen demand  of wastewaters  has been  a
problem since the previous century.  The biochemical oxygen
demand (BOO) test was developed to measure  the nat.ural oxygen
demand of wastes under laboratory  conditions siml'ar to  those
found In receiving waters (2-4).   The advantage o?  the BOD test
1$ that It 1s a good Indicator of  the blo-degradtaility  of a
waste.  The major disadvantages of the BOD  test are the  long
time required for analysis,  the poor precision and  the Indeter-
minable accuracy of the method (4,5).
     In order to substantially reduce the time required  to esti-
mate the ultimate oxygen demand of a wastewater,  the chemical
oxygen demand (COO) test was developed (6).  The  addition  of
silver sulfate (7, 8) and mercuric sulfate  (9) to the  acidic
dlchromate digestion solution, increased the readability  of the
COD test (10, 11).  However, since chemical oxidation  does not
differentiate between biologically stable and unstable wastes, a
correlation between COO and  800 values must be developed for
each sample type (12).                                    •
      Stenger and Van Hall  reported a very rapid  method for measur-
 ing  the  total organic carbon (TCC) content of vater samples, which •

-------
                           . 3 .
         •
can be related to oxygen demand (13).   However,  the advantage
              t
1n being able to rapidly determine TOC values 1$ offset by the
high Initial equipment cost.  In addition,  the Informational
content of the TOC analysis 1s less useful  than  that gained
from the BOO or COD methods (14).   The TOC  test  does not dif-
ferentiate between compounds with  the  same  number of carbon
atoms, but which are In different  stages  of oxidation and hence
have different oxygen demanding potentials.   Since the COO and
BOO tests measure the amount of oxygen required  to stabilize
waste samples, their values Inherently reflect the original
oxidation state of the chemical  pollutants.
                                       •
     The standard COO test (4)  1s  widely  used because 1t pro-
vides a good balance between the value of the Information gained
and the speed of analysis when compared to  the BOD and TOC tests
        •
(12).  However, the standard method for determining COO has
limitations which are not inherent 1n  the concept of the test.
The bacx-titration of dichromate after sample digestion is an
Insensitive method of detection.   This lack  of method sensitiv-
ity has been partially alleviated  by using  two different concen-
trations of dichromate and a relatively large sample volume.  In
addition, the consumption of large quantities of expensive rea-
gents, the extensive bench space requirement of  the COO hot plates
which limits the number of analyses  that  can be  performed in a
day, and the difficulty of disposing of large quantities of highly
acidic mercury,  silver and  chromium  wastes,  are  serious problems
for most industrial  laboratories (15).

-------
                           - 4 -

     Recently, there has been considerable Interest in simpli-
fying the rather tedious standard COO method (16-19).   Unfortun-
ately, procedures using a much shortened digestion period or
lower digestion temperatures produce results equivalent to those
obtained by the standard method only for very readily  oxidized
wastewaters (20-22).
     Bloor (23) and Johnson (24) determined the organic content
of biological  materials using dichrotnate as an oxi lant and then
measuring the excess dichrcmata spectrophotometricilly.  This
procedure eliminated the tedious detection procedure of the stand-
                             •
ard method.  The spectrophototretric procedure has !>een applied to
the analysis of water samples in which the COD was determined by
measuring the appearance of Cr (III) after rtanual digestion (25-27).
     Several COO methods which use a spectropnotorcstric means of
detection and automated sample digestion have also been reported.
Sample digestion was accomplished using a continuous digester (28,
29) or high temperature bath (30-32).   However, Tift and Cain
reported data which show that these automated procedures do not
produce results equivalent to the standard method for  all sample
types (33).  The incomparability of data was attributed to Incom-
plete sample oxidation caused by the short digestion times in the
automated methods.  In addition, the higher concentration of sul-
furlc acid used in  most autcmarad systa^s requires a  smaller
amount of mercuric sulfate be used to  avoid its precipitation in

-------
                           . 5 •

the sample lines and flowcell.  The lesser amount of mercuric
sulfate caused chloride to be more of an Interference 1n these
automated methods than 1n the standard method.
     The method reported here combines the advantages of the
reliability of the standard digestion procedure (4), with the
superior sensitivity and precision of an automated procedure
based on the spectrophotometrlc measurement of  Cr (III) (27).
Use of the resultant micro semi-automated COO method has
Increased the productivity of this laboratory three-fold and
reduced the consumption of very expensive reagents and the
quantities of wastes twenty-fold.

                      EXPERIMENTAL

     Apparatus.    Samples were digested 1n Corning -«9949 16x100
m screwcap (cap #9998) culture tubes.   Spectrophotometrlc measure-
ments  were made with the apparatus shewn schematically in Figure 1.
The automated system was fabricated using Technicon Corporation
AutoAnalyzer II  equipment consisting of a Sampler IV, Pump III,
Colorimeter II,  Recorder II,  and single channel  Digital Printer.
The colorimeter  was  used in the direct mode and  equipped with 500
nm Interferencs  filters and 50 irm  flowcells.  The Standard Calibrra-
tlon control was set at 228 to attain 1000 mc/1  CCO full  scale on
the recorder.  A glass  capillary was  used as  a samole probe.   The
sampler was operated at 40 jamoles/hr *ith a  3:1,  sample  to wash
ratio.

-------
                           - 6  -
     Wastewater samples  with participate matter were  blended
with a Teckmar Model  SOT homogenUer before taking an aliquot
for analysis.  An adjustable 0-5 ml  Oxford pipette with dis-
posable polypropylene tips was used  for allquotlng samples and
addition of reagents.

     Reagents.   Unless  otherwise  noted, all chemicals were ACS
reagent grade.  All reagent water  was de-Ionized  and  distilled.
     Digestion solution  was prepared by adding 10.216 g of
K2Cr207 (dried at 105° C), 167 ml  of cone  H2S04 arid 33.3 g of
HgS04 to 500 ml of water and. diluting the  cooled  solution to
1 1.
     Catalyst solution was prepared  by dissolving 22  g of Ag2S04
1n a 9-1 b bottle of cone HgSO.;.
     Sampler wash solution was 502 sulfuric acid  by volume.
     A stock potassium add phthalate solution, equivalent to
10 g/1 COO, was prepared by dissolving 8.500 g of a dried portion
of NBS standard reference material 84 h 1n water  and  diluting to
1 1.  Working standards  of 25, 50, 75, 100, 250.  500  and 750 mg/1
COO were prepared by  diluting 2.5, 5, 7.5, 10, 211, 50 and 75 ml
of stock solution to  1 1, respectively.
     Procedures.   It was necessary  to wash all  culture tubes and
screw caps with 202 H2S04 before their first use  to prevent random
contamination.
     Digestion was carried out by  placing  2.5 ml  of sample and 1.5
art of digestion solution in * culture tube.  Three and one half ml

-------
                          - 7 -

of catalyst solution  were  added carefully down  the  side  of the
culture tube so that  the-add formed a  layer  on the bottom.
The tube was capped tightly and then shaken to  mix  the layers.
Two blanks and a set  of standards were  prepared 1n  the same
manner and analyzed with each sample set.
     All samples, blanks and standards  were heated  1n an oven
at 150° C, which 1s the observed reflux temperature of 50* sul-
furlc add.  After two hours the tubes  were removed from the
oven, cooled, and placed 1n the Sampler IV tray.
     The analytical manifold and reagents were  set  up as Indi-
cated 1n Figure 1. Two digested blanks were  analyzed at the
beginning of each sample set to zero the baseline.   A raid-scale
standard was used to  calibrate  the  recorder and printer  (34).
Standards were rerun  periodically during the  course of an ana-
lysis run to assure that the system remained  1n calibration.
The COD val^e of unknown samples was obtained by direct  print-
out.  A typical recorder trace  for  standards  is shown in Figure  2.
                   RESULTS AND DISCUSSION
     Sample Digestion.   It has been shown that COD procedures
using a shortened digestion period  and/or a reduced digestion
temperature do not attain  the same  degree of  sample oxidation as
the standard method (20-22, 33).  Any  alternate test procedure
used to analyze wastewaters for CCO must produce results equiva-
lent to or better than the current  standard method  (35).  There-
fore, to insure data  comparability  the  temperature  and length of

-------
                           - 8 -

.sample  digestion and concentration of reagents usec  1n the
 standard method were adopted for use 1n the semi-automated
 procedure  described here  (4).
     Since the micro colorlraetrlc detection technique  required
 only 2  ml  of digested sample the quantities of sample  and rea-
 gents used were reduced twenty-fold In comparison  1:0 the
 standard method (4, 11).  Use of the standard COO  digestion
 apparatus  was eliminated  and Instead all samples,  blanks and
 standards  were digested In small screw-cap culture tubes.   The
 potential  for sample contamination from large glass  surfaces
 was  consequently reduced.
     Screw caps with phenolic rssin liners were fojnd  to be
 unacceptable since they were attacked by the digestion solution
 giving  erroneously high CCO values.  Teflon-lined  caps greatly
 reduced this problem especially if each cap -.vas used cnly once.
 Any  sarrple tube which leaked, is evidencad by a black  residue
 on the  outside of the tube, was discarded.
     Uniform addition of  reagents and improved precision was
 achieved by dissolving all chenicals in one of twci solutions.
 The  catalyst solution was prepared by the standard method (4).
 The  oxidizing solution v/as prepared by combining potassium
 dlchrotnate with mercuric  sulfate and making the solution o N
 with sulfuric acid to solubilizs the mercury silt.  However,
 the  mercuric sulfaze .-/as  not ccr:ple:2'y scl'js'e in the cooled,
 combined reaction mixture.  The hei^. of :r.e samolar  :robe

-------
                           - 9 -

was carefully adjusted so as to avoid aspirating the precipitate.
Otherwise, aspiration of the particulate matter caused severe
btMlfne noise.
     SptctrophotOHMtHc Analysis.    The COO of wtstewater jaaples
has been determined spectrophotonetrlcally, after digestion, by
measuring the decrease 1n Cr (VI)  concentration at 352 (32) or
440 nm (19).  Alternatively, the Increase 1n Cr (III) concentra-
tlonhas been measured at 600 (27)  or 650 nm (25).  All of these
authors found the spectrophotometric procedure to be easier to
perform than the manual titration.
     Holov and Zalelko showed that better sensitivity could be
achieved by measuring the decrease in Cr (VI) concentration than
the increase in Cr (III) concentration (28).  However, the preci-
sion of., a method based on measuring the decrease in Cr (VI) absorb-
ance is very dependent on the reproducibility of reagent addition.
This problem was avoided and adequate sensitivity achieved by
measuring the appearance of Cr (III) at 6CO rm, using a 50 mm
flowcell, and the scale expansion  capability of the Technicon
colorimeter.
     In order to increase the sensitivity of the standard method,
two different concentrations of oxidizing reagent are ccrrmonly
used.  These correspond to tv:o levels of CCD Teasurement, 5-50
jng/1 and 5C-3CO "9/T  (.1).   .''oore  and talker found that the
working rang* of the  "cw level  r.odification was limited by the
diminished oxidation  rozantial  of  the digestion solution after
505 of the cjicr,rc(r.at3 *as  consumed  (36).

-------
                         - 10 -

     Due to the adequate sensitivity of the spectrophotometHc
serai-automated method, only one set of reagent concentrations
was necessary to cover both levels  of the standard method.  In
order to test the linearity of the  serai-automated meithod,
standards between 500 and 1000 rag/1 COO were analyzed 1n Incre-
ments of 25 mg/1.  Potassium hydrogen phthalate was chosen for
use as a standard because of Us stability in solution and Us
complete oxidation under the conditions of the COO test (4).
The results, presented in Figure 3, show the colorinetrlc method
to.be linear up to 900 mg/1 COO.
     Due to the use of 502 sulfuric acid, the original automated
manifold was constructed with acidflex tubing.  However, the
system exhibited very poor hydra!ic characteristics.  This problem
was alev.iated by replacing the acidflex tubes with tygon pump
and transmission tubing.  The recorder trace in Figure 2 was
undamped.  The entire system was cleaned for about 1/2 hour before
first use with 50* sulfuric acid to prevent severe baseline drift
due to Teachable organic matter. Also 1:1 dilution loco was added
to the system to reduce the viscosity cf the sample stream so that
proper debubbling occurred in the flcwcell.
     Precision, Acc'jr^cy i?j Detection Licrit.   Since it was dif-
ficult to correct the semi-autc-ated results for r.he srrall baseline
drift, the working -atacfion 1-ir.it  was defined as l:he mean bias of
the blank plus ;wo standard deviations.  Eleven bl
-------
                         -11 -
'obtained was 1 mg/1 with a standard deviation of 0.8 mg/1 COD.
These values were used to define the detection limit at 3 mg/1
COD.  This number compares quite favorably with the detection
11ra1t of 5 mg/1 COD reported by Moore and Walker for the low
level standard COD method (36).
     The relative precision of both modifications of the stand-
ard and the semi-automated COD methods was determined by perform-
ing replicate analyzes on four wastewater samples.  Since the
standard and semi-automated determinations were performed at
different times, two similar sets of water samples were chosen
so that the relative standard deviations could be meaningfully
compared.  The relative standard deviations of both methods for
low COD concentrations, as shown in Table I, compare very closely.
However,- the precision of the semi-automated method at high COD
concentrations was approximately seven times better than the
standard method,
     Adelman pointed out that one of the factors contributing to
the poor precision of the standard method was the potential loss
of  volatile components of the wastewater samples (30).  This can
be caused by the heat generated by the mixing of the sample with
the concentrated acid prior to reflux or during the reflux step.
This problem was eliminated in the semi-automated procedure by
avoiding mixing the samole and acid layers until  the t'jbe is
capped and the fact that sample digestion occurs in a completely
 closed systsm.

-------
                           -12-
     The authors found that the ability to take a representative
aliquot of a nonhonogeneous sample was the limiting component of
analysis variability regardless of method.  Precision data for
the standard COO method determined from 1 n ter-labors to-y analyses
of standard-lllce solutions must be regarded only as a lower limit
(5, 37).
     The accuracy of the semi-automated method was determined by
measuring the recovery of standard addition of potassium hydrogen
phthalate to several types of water samples!  The mean recovery
from 14 water and wastewater samples, shown 1n Table II, was 101*
with a standard deviation of 42.
     Comparison of Semi-Automated end Standard Methods.   A variety of
surface and wastewater samples were analyzed by both the standard
and semi-automated COO methods to determine the comparability of
data.  These samples Included raw and treated sewage, industrial,
chemical and food process wastes.  Results comparing the two methods
are shown 1n Table III.  Initially the largest discrepancies between
methods occurred 1n samples which contained large quantities of
particulate matter, e.g., raw sewage.  Homogenizing samples of
this type greatly improved the comparability of the data.  Within
the standard deviation of the mean ratio of results, no significant
bias 1n COO values exists between methods.
     In addition, several pure organic compounds wtre analyzed to
determine if the secri-autcsated method achieved a nore complete

-------
                           - 13 -
                    •
digestion than the standard method.   The experimental  results
and calculated maximum theoretical  COD values are shown in
Table IV.  The semi-automated values were slightly higher than
the standard method results Indicating that the former method
achieved a more complete sample digestion.   The difference
could also be due to the fact that  no volatile material can
excape from the sealed tubes during  oxidation 1n the semi-auto-
mated method, while in the standard  method, volatile material
nay escape before sample oxidation  1s complete.
     Interferences.  One of the major problems encountered 1n
other automated COD methods 1s the  Inability of the techniques
                                       •
to compensate for the positive interference caused by the oxida-
tion of chloride present in wastewater samples (28-32).  The
standard procedure for eliminating  the chloride Interference 1s
the addition of mercuric sulfate to  form a  complex and prevent
Its oxidation (4, 9).   Experiments  performed by this laboratory
Indicate that no interference results up to 2000 mg/1  chloride
when the standard procedure is used  (9).
     In other automated techniques,  the high acid concentration
reduces the solubility of HgS04 so  that the quantity of Hg(II)
1n solution is not sufficient to complex the same amount of
chloride as in the standard method  (23-32).
     In the semi-automated COO method,  the  ratio of HgS04 to
sample volume is identical  to the standard  method.   Standards of
SCO mg/1 CCD were spiked with varying amounts  of chloride in

-------
                           - 14  -

order to determine the limiting  concentration at which the inter-
ference was significant.   The  results*  shown in Figure 4,  indi-
cate that chloride does not Interfere below 1000 mg/1.  Above
this concentration, some precipitation  occurs when the dilution
water combines with the sample stream 1n the automated system,
which results In a noisy recorder  trace.  If it is necessary to
routinely analyze samples containing between 1000 and 2000 mg/1
chloride, the dilution loop can  be removed.  Air spikes will then
appear at the beginning and end  of each sample peak, due to
Improper debubbling, but the results are not affected.

     Any chemical species remaining after sample digestion, which
absorb at 600 nra, cause a positive Interference in the semi-auto-
mated method.  Since almost all  organic matter is digested by the
COD technique the possible interference from organic compounds
was not considered (6, 8, 36).
     The presence of Cr (III)  in a water sample gives an apparent
COD of 1.39 times the concentration of  chromium.  Also, a potential
Interference from iron was investigated by spiking standards of
500 mg/1 COO with increasing amounts of ferric iron.  The results,
presented in Figure 5, show no apparent COO belcw 5 g/1 Fe.  The
positive bias caused by high concentrations of interfering sub-
stances is routinely eliminated  by diluting samples pr-icr to
analysis or correcting the reported CCO values frcm independent
determinations of chrcraiun, iron and chloride.

-------
                          - 15 -

                  ' 'ACKNOWLEDGEMENT

     The authors would like to thank B. J. Fair!ess and
D. A. Payne for their helpful coranents during the course of
this work and their critical review of the manuscript.
     .The mention of trade names or commercial products does
not constitute endorsement or recommendation for use by the
Central Regional Laboratory or the Environmental Protection
Agency.

-------
                      REFEREHCES
 (1)  "Water Quality Criteria," Federal Water Pollution  Control
      Administration, Washington, 0. C. , 1968, pp  32-5.
 (2)  E,  B.  Phelps,  "Stream Sanitation," John Wiley  and  Sons,
      New York,  N. Y., 1944, pp 65-6.
 (3)  E.  0.  Therlault, Public Health Bulletin No.  17-1, U.S.
      Public Health  Service, Washington. 0. C., 1927.
 (4)  "Standard  Methods  for the Examination of Water and Waste-
      water," 13th ed.,  American Public Health Association,
      New York,  N. Y., 1971, % 489.
 (5)  0.  G.  BalUnger and R. 0. Ushka, 0_. Water Pollut. Contr.
      Fed.,  3£,  470  (1962).
 (6)  W.  A.  Moore, R. C. Kroner and C. C. Ruchhoft,  Anal. Chem.,
      21, 953 (1949).
                                          •
 (7)  M.  M.  Muers, J.. Soc.  Chem. Ind.. 55_, 71T (1936).
 (8)  W.  A.  Moore, F. J. Ludzack and C. C. Ruchhoft, Anal. Chem.,
      23, 1297 (1951).
 (9)  R.  A.  Dobbs and R. T. Williams, Anal. Che*., 35, 1064  (1963),
(10)  "Water and Atmospheric Analysis," Annual Book  of Standards,
      Part 23, American  Society for Testing and Materials,
      Philadelphia,  Penn.,  1973.
(11)  "Methods for Chemical Analysis of Water and  Wastes,"
      Environmental  Protection Agency, Cincinnati, Ohio, 1971,
      pp  17-23.

-------
                           - 17  -
(12)  "Handbook for Monitoring  Industrial  Wastewater,"
              t
      Environmental Protection Agency,  Wash., D. C., 1973.
(13)  V.  A. Stenger and C.E. Van Hall,  Anal.  Chem.,  39., 206
      (1967).
(14)  C.  Gelsler,  J. F.  Andrews  and  G.  Schlerjott, Water and
      Wastes Eng., n.,  26 (1974).
(15)  R.  B. Dean,  R. T.  Williams and R. H.  Wise, Environ. Scl.
      Techno! »  5.,  1044  (1971).
(16)  A.  F. Westerhold,  The Digester, 22,  4 (1965).
(17)  Ibid.. 22, 18 (1965).
(18)  J.  S. JeHs, Water and Wastes  Eng..  4,  89 (1967).
                                        •
(19)  T.  K. Wu, Michigan Department  of  Natural  Resources Laboratory,
      Lansing,  Michigan, private coimiunlcatlon, 1974.
(20)  J.  M. Foulds and  J.  V. Lunsford,  Water  and Sewage Works. 115,
      112 (1968).
(21)  W.  N. Wells, Water and Sewage  Works.  117. 123  (1970).
(22)  L.  E. Shriver and  J.  C. Young,  J. Water PoTlut.  Contr. Fed.,
      44, 2140  (1972).
(23)  W.  R. Bloor, J, B1cl.  Chem., 77,  53  (1928).
(24)  M.  J. Johnson. J.  B1ol. Chem..  181,  707 (1949).
(25)  R.  R. McNary, M.  H.  Dougherty  and R.  W. Wolford, Sewage and
     'Industrial Wastes. 29,  894 (1957).
(26)  N.  Chaudhuri, S. N1yog1, A. Qe  and A. Basu,  £. Water Pollut.
           . Fed..  £5,  537  (1973).

-------
                            -  18  -

(27)  A. F.  Gaudy and M.  Ramanithan, _J.  Water Pollm:.  Contr.  Fed..
      36, 1479 (1964).
(28)  A. H.  Molof and N.  S.  Zaleiko,  19th  Purdue Industrial  Waste
      Conference, Lafayette, Ind.,  May,  1964
(29)  J. H.  Ickes, E. A.  Gray,  N. S.  Zaleiko and M.  H.  Adelman in
      "Automation in Analytical Chemistry,  Technicon Symposia
      1967,"  Mediad Inc., Tarrytown,  N. Y., 1968.
(30)  M. H.  Adelman, 18th Pittsburgh  Conference  on Analytical
      Chemistry and Applied  Spectroscopy,  Pittsburgh,  Pennsylvania,
      March, 1967.
(31)  M. H.  Adelman in "Automation  in  Analytical  Chemistry,
      Technicon Symposia  1965," Mediad Inc., Tarrytov/n,  N. Y.,
      1966.
(32)  "Industrial Method  No. 137-71W," Technicon Instruments  Corp.,
      Tarrytown. N. Y., 1973.
(33)  E. C.  Tifft and B.  E.'.Caln  in "Automation  in Analytical
      Chemistry, Technicon Symposia 1972,"  Mediad Inc.,  Tarrytown,
      M. Y., 1973.
(34)  "Technicon Operation Manual," Technicon Instruments  Corp.,
      Tarrytown, N. Y., 1973.
(35)  Federal  Register. 38.  28759 (1973).
(36)  W. A.  Moore and W.  W.  Walker, Anal.  Chan..  28, 167 (1956).
(37)  J. A.  Winter, "Metnod  Research Study  3, Demand Analyses,''
      Environmental Protection Agency, Cincinnati, Ohio, 1971.

-------
TABLE I,    COMPARISON OF THE PRECISION OF THE SEMI-AUTOMATED
               AND STANDARD CHEMICAL OXYGEN DEMAND (.ETHODS
MANUAL
 UTOKATED
•
1PLE NO,
1
2
3
4

No, OF
DETNS,
11
10
U
10
'" Ic
MEAN .
40
230
26
270
ion/ , h
RANGE
4
90
4
12
Ki/L
STD, DEV,
LI
28,0
1,3
4,6

Rf&S?
DEV/ X
3,5
12,2
5,0
1,7

-------
       '  •        \
TABLE II,     RECOVERhES OF POTASSIUM HYDROGEN PKTHALATE ADDED
                TO VfoTER SAMPLES WITH $EMI-AuTO,WED METHOD
                                          M3/T
  SAMPLE SOURCE       SAMPLE  IflP ADDED   SAMPLE +KHP   RECOVERY^
                •
ORGAWCS INDUSTRY      13      200          217           102
RAW SEWAGE            164      200          370           103
RIVER HATER            31-100          122            91
HARBOR WATER           16      200          224  '
INDUSTRIAL COOLING     65       200          262            99
 WATER
RIVER WATER            15       100          116           101
RIVER HATER            28    '   100          124            96
CHANNEL WATER          52       100         '152           100
.NEAR DREDGING
INDUSTRIAL DISCHARGE    30       100          131           101
INDUSTRIAL DISCHARGE    16       100          116           100
TREATED SEWAGE         40       100       '   144           104
RECEIVING WATER        25       100          127           102
 OF- SEWAGE
TREATED SB^AGE         14       100          124           110
STEEL MILL EFFLUENT     14       100.         112            98
STANDARD DEVIATION

-------
TABLE III,     CAPARISON OF SEMI-ALTTCMATUD AID STANDARD
                    CHEMICAL OXYGCN DEMAND I-ETUODS
   SAMPLE SOURCE
RAW SEWAGE
PAPER MILL cooL.it s
SmRm WASTE
TREATED SEKAGE
PRIMARY TREATED
«SEWAGE
BOILER BLOVSCV/N
POTTERY SHOP WASTE
CREEK DOWN-STREAM
^FROM POTTERY SHOP
folMARY TREATED
PAPIERGMILL WASTE
RAWSB-(AGE
TREATED SE^GE
TREATED SSNAGS
TREATED SB-JAGE
CRGANIC CMSMICAL
 PLAm-V.'-STE
STEEL MILL V.^STH
• t 1. . *•«.*•.<• - f» p* • •
rrnoiL
STANDARD METHOD
(S)
120
39
270
50
63
180
110
91
SO
150
170
36
27
21
270

SEMI-AJTOMTED
MEHOD (AT
121
16
273
51
51 .
133
155
99
87
151
161
35
27
22
2o

S/A
XJOO
99,8
81, 8
98.9
98,0
123 .V
>).'!
89,7
91,9
103','1
97,0
103,7
302',9
300,0
95,5
93,2
                         3CCO                9220         l:-5,
                                                           £2,2
      ?D :r/j,\T::N                                     .     5-2
  RESULT REJECTS FC?. CALCJLATICN CF f^.N ATD ^-A.ND^ :r/!.;Tic.N,

-------
TABLE IV*   COMPARISON OF CHEMCAI. OXYGEN DEMAND
            , HETK)DS ON ORGANIC lOKPOUNDS
   COMPOUND
SODIUM ACETATE
ACETONE
ETHANOL
DEXTROSE
Lconl, MS/I •
THEORETICAL
238
470
221
J97
107
150
127
490
98
64
197
223
239
244

i
STANDARD toco SEMI -/AUTOMATE
(S) METHOD (AJ
.230
450
200
170
100
130
120
470
90
60
190
"5
64
250


240
462
207
180
IB
139
128
496
98
62
202
•<3
77
242


D S/A
X100
95:,8
97','4
96,6
94',4
83,8
93','5
93,8
94V8
91,8
96,8
94,1
— A
83',1A
103,3
95,0
3,5
OXALIC ACID
SODIUM CITRATE
GLUTAMIC ACID
GLYCINE
BENZDIC ACID
PmiDINE
3-PlCOLINE
TETKAHYDROFURAN
MEAN
STANDARD DEVIATION
  RESULTS REJECTED PCS CALCULATION OF raw AND STAND^.=U) EEVJATICN,

-------
TITLES FOR FIGURES,

FIGURE 1,   AUTOMATED SYSTEM FOR CHEMICAL OXYGEN DEMWD,  NUMBERS IN
            PARENTHESES CORRESPOND TO THE FLOW RATE OF THE PUMPTUBES
            IN ML/MIN,  NUMBERS ADJACENT TO GLASS COILS AND FITTINGS
            ARE TECHNICON CORP, PART NUMBERS,   •

FIGURE 2,   RECORDER TRACE FOR CHEMICAL OXYGEN DEMAND OF POTASSIUM
            HYDROGEN PHTHALATE STANDARDS ANALYZED IN EXPLICATE,

FIGURE 3,   CALIBRATION CURVE FOR AUTOMATED CHEMICAL OXYGEN DEMAND,
            EACH POINT IS THE AVERAGE OF DUPLICATE DCTERMmTICNS,

FIGURE 4,   PLOT OF APPARENT CHEMICAL OXYGEN DEMAND CAUSED BY THE
            OXIDATION OF CHLORIDE,  &TA DETERMINE) BY ADDING THE
            INDICATED AMOUNTS OF CHLORIDE TO A SCO MG/L COD POTASSIUM
            HYDROGEN PHTHALATE STANDARD,
FIGURE 5,   PLOT OF APPARENT CHEMICAL OXYGEN EET-WND CAUSED BY THE
            ABSORBANCE AT 600 W FROM FERRIC IRON IN SOLUTION,  DATA
            DETERMINED BY ADDING THE INDICATED AMOUNTS OF IRON TO A
            500 MS/L COD POTASSIUM HYDROGEN PHTHALATE ij

-------
1
                                 n
                                 w
                                                    •o

                                                    -    o
             —  u
              s-
              « I
             V)

              o "i
                              - 0
                                                                     ac

                                                                     UJ
                                                                     a
                                            a

-------
                       t
               Ill
              o 6 ff"
* '[COD]

-------

-------
                 K>
                        [COD] ,m£/l

                                    2>
£2  e
_ I


£i
00  C3

-------
                                Central Regional Laboratory
                                Environmental Protection Agency
                                Chicago, Illinois 60609
MICRO SEMI-AUTOMATED ANALYSIS OF SURFACE AND WASTEWATERS

          FOR CHEMICAL OXYGEN DEMAND
                    PRELIM! MARY
             SUBJECT TO  REVISION
                   *
        Andrea M. Jlrka and Mark J. Carter
     *Author to whom correspondence should be addressed.

-------
                              -1
                             BRIEF

A alcro semi-automated spectrophotometrlc method for determining the
chemical oxygen demand of surface and wastewaters 1s described and
compared to tht standard method.

                          ABSTRACT
A »1cro sample digestion technique for the determination of chemical
oxygen demand (COO)  1s described.  An automated  spectrophotometric
measurement of the appearance of  chromium (III)  after sample digestion
completes the method.   Adequate sensitivity at 600 ran 1s achieved by
using a 50 mm flowcell to measure  COO values 1n  the range 3-900 mg/1.
The semi-automated method is  compared to  the standard method with
respect to precision,  accuracy, ease  of analysis and comparability of
data.

-------
                          - 2 -

                       INTRODUCTION

     The oxidation of organic  and inorganic wastes in a receiv-
ing water depletes the dissolved  oxygen supply,  whi:h can have
a profound effect on aquatic life (1).   A meaningful  determina-
tion of the natural oxygen demand of wastewaters has  been a
problem since the previous century.   The biochemical  oxygen
demand (BOO) test was developed to measure the natural  oxygen
demand of wastes under laboratory conditions similar  to those
found in receiving waters  (2-4).   The advantage  of the BOD test
1s that it is a good indicator of the bio-degradcbility of a
waste.  The major disadvantages of the  BOO test  am the long
time required for analysis,  the poor precision and the indeter-
minable accuracy of the method (4,5).
     In order to substantially reduce the time required to esti-
mate the ultimate oxygen demand of a wastewater, tie  chemical
oxygen demand (COD) test was developed  (6).   The addition of
silver sulfate (7, 8) and  mercuric sulfate (9) to the acidic
dlchromate digestion solution, increased the real lability of the
COD test (10, 11).  However, since chemical  oxidation does not
differentiate between biologically stable and unstable wastes, a
correlation between COO and  BCD values  must be developed for
each sample type (12).                                     -
      Stenger and '/an Hall  reported a very rapid  method for measur-
 ing the  total organic carbon (TCC) content of wat;r sarroles, which

-------
                           .  3  -
         •
can be related to oxygen demand (13).   However,  the advantage
In being able to rapidly determine TOC values 1s offset by the
high Initial equipment cost.   In  addition,  the Informational
content of the TOC analysis 1s  less useful  than  that gained
from the 800 or COO methods (14).   The TOC  test  does not dif-
ferentiate between compounds  with the  same  number of carbon
atoms, but which are In different stages  of oxidation and hence
have different oxygen demanding potentials.   Since the COO and
BOD tests measure the amount  of oxygen required  to stabilize
waste sample's, their values Inherently reflect the original
oxidation state of the chemical poll-joints.
                                       •
     The standard COD test  (4)  1s  widely  used because 1t pro-
vides a good balance between  the  value of the Information gained
and the speed of analysis when  compared to  the 800 and TOC tests
        m
(12).  However, the standard  method for determining COD has
limitations which are not Inherent 1n  the concept of the test.
The back-titration of dlchromate  after sample digestion is an
Insensitive method of detection.   This lack of method sensitiv-
ity has been partially alleviated  by using  two different concen-
trations of dichromate and  a  relatively large sample volume.  In
addition, the consumption of  large quantities of expensive rea-
gents, the extensive bench  space  requirement of  the CCO hot plates
which limits the number of  analyses  that  can be  performed 1n a
day, and the difficulty of  disposing of large quantities of highly
acidic mercury, silver and  chromium wastes,  are  serious problems
for most industrial  Isboratorias  (15).

-------
                           - 4 -

     Recently, there has been considerable Interest 1n simpli-
fying the rather tedious standard COO method (16-19),   Unfortun-
ately, procedures using a much shortened digestion period or
lower digestion temperatures produce results equivalent to those
obtained by the standard method only for very readily oxidized
wastewaters (20-22).
     Bloor (23) and Johnson (24) determined the organic content
of biological materials using dichrcmate as an oxidant and then
measuring the excess dichrcmate spectrophototnetrically.  This
procedure eliminated the tedious detection procedure of the stand-
                             *
ard method.  The spectrophotcr.etric procedure has  been applied to
the analysis of water samples in which the COO was determined by
measuring the appearance of Cr (III) after manual  digestion (25-27)
     Several COO methods which use a spectrophotometric means of
detection and automated sample digestion have also been reported.
Sample digestion was accomplished using a continuous digester (28,
29) or high temperature bath (30-32).   However, Tift and Cain
reported data which shew that these automated procedures do not
produce results equivalent to the standard method  for all sample
types (33).  The ^comparability of data was attributed to incom-
plete sample oxidation caused by the snort digestion times in the
automated methods.  In addition, the higher cor.cenrration of sul-
furlc acid used in  most automated systems requires a smaller
amount of mercuric sulfata 36 used to  avoid its precipitation in

-------
                           .  5 -
the sample lines and flowed!.  The lesser amount  of mercuric
sulfate caused chloride to be more  of an  Interference 1n these
automated methods than 1n the standard method.
     The method reported here combines the advantages of the
reliability of the standard digestion procedure  (4), with the
superior sensitivity and precision  of an  automated procedure
based on the spectrophotometrlc measurement of Cr  (III)  (27).
Use of the resultant micro semi-automated COO method has
Increased the productivity of this  laboratory three-fold and
reduced the consumption of very expensive reagents and the
quantities of wastes twenty-fold.
                      EXPERIMENTAL

     Apparatus.   Samples were digested 1n Coming ?9949 16x100
mn screwcap (cap 19998)  culture tubes.  Spectrophotometrlc measure-
ments  were made with the apparatus  shewn schematically  1n Figure 1,
The automated system was fabricated using Technicon Corporation
AutoAnalyzer II equipment consisting of a Sampler  IV, Pump III,
Colorimeter II, Recorder II,  and single channel  Digital  Printer.
The colorimeter was used In the direct mode and  equipped with 600
nra Interference filters  and 50  mm flowcells.  The  Standard Calibrra-
tlon control was set at  228 to  attain  1000 mg/1  CCO full  scale on
the recorder.  A glass  capillary was used as a sample probe.   The
sampler was operated at  40 samples/hr with a 3:1,  sample to wash
ratio.

-------
                            -  6 -
     Wastewater samples with parti :ulate natter were  blended
with a Teckir-ar Model SOT homogenize before taking «.n aliquot
for analysis.  An adjustable 0-5 ml  Oxford pipette with dis-
posable polypropylene tips was used for allquoting samples and
addition of reagents.

     Reagents.   Unless otherwise noted, all chemicals were ACS
reagent grade.  All reagent water was de-ionized and distilled.
     Digestion solution was prepared by adding 10.215 g of
K2Cr207 (dried at 1C5° C), 1S7 ml  of ccnc H2S04 an-i 33.3 g of
HgS04 to 500 ;nl of water and. diluting the cooled solution to
1 1.
     Catalyst solution was preparei by dissolving 22 g of Ag2S04
1n a 9-lb bottle of cone H^i?  .
     Sampler wash solution «as 5C« sulfuric acid by volume.
     A stock potassium 
-------
                           - 7 -
of catalyst solution were added carefully down the side of the
culture tube so that the acid formed a  layer on the bottom.
The tube was capped tightly and then shaken to mix the layers.
Two blanks and a set of standards  were  prepared 1n the same
manner and analyzed with each sample set.
     All samples, blanks and standards  were heated 1n an oven
at 150° C, which 1s the observed reflux temperature of 50- sul-
furlc add.  After two hours the tubes  were removed from the
oven, cooled, and placed in the Sampler IV tray.
     The analytical manifold and reagents were set up as Indi-
cated 1n Figure 1.  Two digested blanks were analyzed at the
beginning of each sample set to zero the baseline.  A mid-scale
standard was used to calibrate the recorder and printer (34).
Standards were rerun periodically  during the course of an ana-
lysis run to assure that the system remained in calibration.
The COD value of unknown samples was obtained by direct print-
out.  A typical  recorder trace for standards 1s shown in Figure 2.
                    RESULTS AND DISCUSSION
     Sample Digestion.    It has been shown that COD procedures
using a shortened digestion period and/or a reduced digestion
temperature do not attain the same degree of sample oxidation as
the standard .-nethod (20-22,  33).   Any alternate test procedure
used to analyze  -vastswaters  *cr COD must produce  results equiva-
lent to or bettar than  :he cur-ent standard met.iod (35).   There-
fore, to insure  data ccncarability the  temperature and length of

-------
                           - 8 -

.sample  digestion and concentration of reagents used in  the
 standard method were adopted for use in the semi-automated
 procedure described here (4).
     Since the micro colorimetric detection technique required
 only 2  ml of digested sample the quantities of sample and rea-
 gents used were reduced twenty-fold in comparison to the
 standard method (4, 11).  Use of the standard COO digestion
 apparatus was eliminated and instead all samples, blanks and
 standards were digested in small screw-cap culture tubes.  The
 potential for sample ccnta.Tination from large glass surfaces
 was  consequently reduced.
     Screw caps with phenolic resin liners were found to be
 unacceptable since they were -itiscked by the digestion  solution
 giving  erroneously high CCD values.  Teflon-lined caps  greatly
 reduced this problen especially if each can -.-.as u:;ed cr.ly once.
 Any  sample tube which lacked, is evidenced by a black residue
 on the  outside of the tube, v/as discarded.
     Uniform addition of reagents and ircoroved precision was
 achieved  by dissolving r.ll chemicals -in cne of two solutions.
 The  catalyst solution was prepared by tne standard method  (4).
 The  oxidizing solution was prepared by chaining  :ctissium
 dlchrcmate with merfjr-c sulfate and -naking the solution 5 N
 with sulfjr-'c 3c:c to sclubilize :r.e lerrjry salt.  However,
 the  mercuric sulrV.a  -.as net cc-o'^ta"/ lol^cle in t.-.e  cooled,
 combined  raacvcn v.;:jr-2.  7%.e r.i'r^.t of the scalar orobe

-------
                           . 9 -
                       f
was carefully-adjusted so as to avoid aspirating the precipitate.
Otherwise, aspiration of the participate matter caused severe
baseline noise.
     Sp€$troohotometr1c Analysis.    The COO of wastewater samples
has been determined spectrophotometHcally, after digestion, by
measuring the decrease 1n Cr (VI)  concentration at 352 (32) or
440 noi (19).  Alternatively, the Increase 1n Cr (III) concentra-
tlonhas been measured at 600 (27)  or 650 nm (25).  All of these
authors found the spectrophotometrlc procedure to be easier to
perform than the manual tltratlon.
     Molov and Zalelko showed that better sensitivity could be
achieved by measuring the decrease 1n Cr (VI) concentration than
the Increase In Cr (III)  concentration (23).  However, the preci-
sion of ..a method based on measuring the decrease 1n Cr (VI) absorb-
ance 1s very dependent on the reproducebillty of reagent addition.
This problem was avoided  and adequate sensitivity achieved by
measuring the appearance  of Cr (III) at 6C3 rrn, using a 50 ran
flowcell, and the scala expansion  capability of the Technicon
colorimeter.
     In order to increase the sensitivity of the standard method,
two different concentrations of oxidizing reagent are ccrrnonly
used.  These correspond to tv/o levels of CCD msasurenent, 5-50
nig/1 and 50-oCO -g/1  (11).   ,'taore  and 'Jalker found that t:ie
working range of the  lew  Isvel  modification was limited by the
diminished oxidation  pocaniial  of  the digestion solution after
5C2 of the iichrcmata was  consumed  (35).

-------
                         - 10 -
     Due to the adequate sensitivity of the spectrophotometric
semi-automated method, only one set of reagent concentrations
was necessary to cover both levels of the standard method.   In
order to test the linearity of the semi-automated method,
standards between 500 and 1000 mg/1 COO were analyzed  in incre-
ments of 25 mg/1. " Potassium hydrogen phthalate was chosen for
use as a standard because of its stability in solution and its
complete oxidation under the conditions of the COD te;t (4).
The results, presented in Figure 3, show the colorime-ric method
to be linear up to 900 mg/1 CCO.
     Due to the use of 5C« sulfuric acid, the original automated
manifold was constructed with scidflex tubing.  However, the
system exhibited very poor hydra"ic character-sties.  This problem
was aleviatsd by replacing the scidflax tubes with ty;on au~p
and transmission tubing.  The reorder trace in Figure 2 was
undamped.  The entirs system was cleaned for about I/' hour  before
first use with 50* selfuric acid to prevent severs baseline  drift
due to Teachable organic :iittar.  Also 1:1 dil-j-ion locc was added
to the system to reduC3 tra viscosity of the sample 3 :r*~~. so that
proper debubbling ccc-jrred in the flcwcsll.
     Precision, -"cc-riry *"d "st^ct'CT '."In-'*:.   Siics  "it vas dif-
ficult to ccrrsct the ca--i-aiJt:rit2C -ssults -:r -.he .:rz.'.' baselin
drift, the working iatection lirrit ^as define: ^c the ~=in bias cf
the blank plus t:,-o tr.anc:-;! leviafions.  l~.*-'=r, ilan.<  i-.-.-1*s
were analyzed to ieta-mine ths daracticn l:'.7,it.  T>,£ "£:n  /alje

-------
                         -11-

'obtained was 1 mg/1 with a standard deviation of 0.8 mg/1 COD.
These values were used to define the detection Hm1t at 3 mg/1
COO.  This number compares quite favorably with the detection
limit of 5 mg/1 COO reported by Moore and Walker for the low
level standard COD method (36).
     The relative precision of both modifications of the stand-
ard and the semi-automated COD methods was determined by perform-
ing replicate analyzes on four wastewater samples.  Since the
standard and serai-automated determinations were performed at
different times, two similar sets of water samples were chosen
so that the relative standard deviations could be meaningfully
compared.  The relative standard deviations of both methods for
low COD concentrations, as shown in Table I, compare very closely.
However, the precision of the semi-automated method at high COO
concentrations was approximately seven times better than the
standard method.
     Adelman pointed out that one of the factors contributing to
the poor precision of the standard method was the potential loss
of  volatile components of the wastewater samples (30).   This can
be caused by the heat generated by the mixing of the sample with
the concentrated acid prior to reflux or during the reflux stap.
This problem was eliminated in the semi-automated procedure by
avoiding mixing the sample and acid layers until  the tube is
capped and the fact that sample digestion occurs  in a ccrnoletely
 closed systam.

-------
                           - 12 -

     The authors found that the ability to take a  representative
aliquot of a nonhomogeneous sample was the limiting component of
analysis variability regardless of method.  Precision data for
the standard COO method determined from Inter-laboratory analyses
of standard-!1ke solutions must be regarded only as a lower limit
(5, 37).
     The accuracy of the semi-automated method was determined by
measuring the recovery of standard addition of potassium hydrogen
phthalate to several types of water samples.  The mean recovery
from 14 water and wastewater samples, shown 1n "able II, was 101 *
with a standard deviation of 41.
     Comparison of Seni-Automated and Standard Methods.   A variety of
surface and wastewater samples were analyzed by both the standard
and serai-automated COO cethods to determine the comparability of
data.  These samples included raw and treated sewage, industrial,
chemical and food procass wastes.  Results comparing the two methods
are shown 1n Table III.  Initially the largest discrepancies between
methods occurred in samples which contained la-ge quantities of
particulars matter, e.g., raw sewage.  Homogenizing samples of
this type greatly improved the comparability of the data.  Within
the standard deviation of the mean ratio of results, no significant
bias 1n CCO values exists between methods.
     In addition, several pure organic cctnpcur;cs were analyzed to
determine if the semi-autcna:ad Tathcd achieved a rr.crs cc^olete

-------
                           • 13 -

digestion than the standard method.   The experimental results
and calculated maximum theoretical  COD values are shown In
Table IV.  Tht semi-automated values were slightly higher than
the standard method results Indicating that the former method
achieved a more complete sample digestion.   The difference
could also be due to the fact that  no volatile material can
excape from the sealed tubes during  oxidation 1n the semi-auto-
mated method, while 1n the standard  method, volatile material
nay escape before sample oxidation  is complete.
     Interferences.  One of the major problems encountered 1n
other automated COO methods 1s the  Inability of the techniques
                                       •
to compensate for the positive Interference caused by the oxida-
tion of chloride present in wastewater samples (28-32).  The
standard procedure for eliminating  the chloride interference 1s
the addition of mercuric sulfate to  form a  complex and prevent
Its oxidation (4, 9).  Experiments  performed by this laboratory
Indicate that no interference results up to 2000 mg/1 chloride
when the standard procedure is used  (9).
     In other automated techniques,  the high acid concentration
reduces the solubility of HgS04 so  that the quantity of Hg(II)
1n solution is not sufficient to complex the same amount of
chloride as in the standard method  (23-32).
     In the se-ni-automated COO method,  the  ratio of HgSC4 to
sampl- volume is identical  to the standard  method.   Standards of
500 mg/1 CCD *ere spiked *ith varying amounts  of chloride in

-------
                          - 14 -
order to determine the limiting concentration  at which the inter-
ference was significant.   The  results,  shown 1n  Figure 4,  indi-
cate that chloride does not  Interfere below 1000 mg/1.  Above
this concentration, some precipitation  occurs  when the dilution
water combines with the sample stream 1n the automated system,
which results 1n a noisy recorder  trace.  If 1t  1s necessary to
routinely analyze samples containing between 1000 and 2000 mg/1
chloride, the dilution loop  can be removed. A1r spikes will then
appear at the beginning and  end of each sample peak, due to
Improper debubbling, but the results are not affected.

     Any chemical species remaining after sample digestion, which
absorb at 600 nm, cause a positive interference  in the semi-auto-
mated method.  Since almost all  organic matter is digested by  the
COO technique the possible interference from organic compounds
was not considered (5, 3, 36).
     The presence of Cr (III)  in  a water sample  gives an apparent
COD of 1.39 times the concentration of  chrcniun.  Also, a potential
Interference from iron was investigated by spikir.c standards of
500 mg/1 COO with increasing amounts of ferric iron.  The results,
presented 1n Figure 5, show no apparent COO below 5 g/1 Fe.  The
positive bias caused by high concentrations of inisrfering sub-
stances is routinely eliminated  by diluting sa.r.pl ;s ?r:cr to
analysis cr correcting the reported CCD values fr:m independent
determinations of chromium,  iron  and chloride.

-------
                          - 15 -
                  •  ACKNOWLEDGEMENT

     The authors would like to thank B.  J. Fair!ess and
D. A. Payne for their helpful comments during the course of
this work and their  critical review of the manuscript.
     The mention of  trade names or commercial products does
not constitute endorsement or recommendation for use by the
Central Regional Laboratory or the Environmental Protection
Agency.

-------
                         - 16 -

                      REFERENCES

 (1)   "Water Quality  Criteria," Federal Water  Pollution  Control
      Administration, Washington, 0. C. .1968, pp  32-5.
 (2)   E.  B.  Phelps, "Stream Sanitation," John  Wiley  and  Sons,
      New York,  N. Y., 1944, pp 65-6.
 (3)   E.  J.  Therlault, Public Health Bulletin  No.  1/3, U.S.
      Public Health Service, Washington, 0. C.,  1927.
 (4)   "Standard  Methods  for the Examination of Water- and Waste-
      water," 13th ed.,  American Public Health Association,
      New York,  N. Y., 1971, 3 489.
 (5)   D.  G.  Ballinger and R. J. Lishka, £. Water Pollut.  Contr.
      fed.,  34_,  470 (1962).
 (6)   W.  A.  Moore, R. C. Kroner and C. C. Ruchhoft,  Anal.  Chem.,
     •21,, 953 (1949).
 (7)   M.  M.  Muers, J. Soc. Chem. Ind.. 5j[, 71T (193(5).
 (8)   W,  A.  Moore, F. J. Ludzack and C. C. Ruchhoft, Anal. Chem..
      23, 1297 (1951).
 (9)   R.  A.  Dobbs and R. T. Williams, Anal. Chem.. _35_, 1064 (1963)
(10)   "Water and Atmospheric Analysis," Annual Book  of Standards,
      Part 23, American  Society for Testing and  Materials,
      Philadelphia, Penn., 1973.
(11)   "Methods for Chemical Analysis of Water  and  Wastes,"
      Environmental Protection Agency, Cincinnati, 3hio, 1971,
      pp  17-23.

-------
                           - 17 -

(12)  "Handbook for Monitoring  Industrial  Wastewater,"
      Environmental Protection  Agency,  Wash., D. C.t 1973.
(13)  V.  A.  Stenger and C.E. Van Hall,  Anal.  Chem.. 39_, 206
      (1967).
(14)  C.  Gelsler,  J. F. Andrews and G.  Schlerjott, Water and
      Wastes Eng., lj_,  26 (1974).
(15)  R.  B.  Dean,  R. T. Williams and R. H.  Wise, Environ. Sci.
      Techno!.  5_,  1044  (1971).
(16)  A.  F.  Westerhold, The Digestor. 22,  4 (1965).
(17)  Ibid.. 22,, 18 (1965).
(18)  J.  S.  JeHs, Water and Pastes Eng.,  4_,  89 (1967).
                                        •
(19)  T.  K.  Wu, Michigan Department of  Natural  Resources Laboratory,
      Lansing,  Michigan, private communication, 1974.
(20)  J.  M.  Foulds and  J.  V. Lunsford,  Water  and Sewage Works, 115.
      112 (1968).
(21)  W.  N.  Wells, Water and Sewage Works.  117, 123 (1970).
(22)  L.  E.  Shriver and J.  C. Young, J_.  Water Pollut.  Ccntr. Fed.,
      44, 2140  (1972).
(23)  W.  R.  Bloor. J. Bid.  Chem.,  77_,  53  (1928).
(24)  M.  J.  Johnson, J.  Biol. Chem..  181.  707 (1949).
(25)  R.  R.  McNary,  M.  H.  Dougherty and R.  W. Wolford, Sewage and
      Industrial Wastes.  29_,  894 (1957).
(26)  N.  Chaudhuri,  S.  Niyogi,  A. De and A. 3asu.  £. Water Pollut.
    '  Contr.  Fed., 45,  537  (1973).

-------
                            - 18 -
(27)  A. F. Gaudy and M.  Ramanathan, J.  Water Pollut.  Contr. Fed.,
      36, 1479 (1964).
(28)  A. H. Molof and N.  S.  Zalelko. 19th Purdue Industrial Waste
      Conference, Lafayette, Ind., May,  1964
(29)  J. H. Ickes, E. A.  Gray, N.  S. Zaleiko and M. H. Adelman in
      "Automation fn Analytical  Chemistry, Technicon Symposia
      1967,"  Mediad Inc., Tarrytown, N.  Y., 1968.
(30)  M. H. Adelman, 18th Pittsburgh Conference on  Analytical
      Chemistry and Applied  Spectroscopy,  Pittsburgh,  Pennsylvania,
      March, 1967.
(31)  M. H. Adelman in "Automation in Analytical  Chein'stry,
      Technicon Symposia  1965,"  Mediad Inc., Tarrytown, N. Y.,
      1966.
(32)  "Industrial Method  No.  137-71W," Technicon Instruments Corp.,
      Tarrytown, N. Y., 1973.
(33)  E. C. Tifft and 8.  E.'.Cain in "Automation in  Analytical
      Chemistry, Technicon Symposia 1972," Mediad Inc., Tarrytown,
      H. Y., 1973.
                            r*
(34)  "Technicon Operation Manual," Technicon Instruments Corp.,
      Tarrytown, N. Y., 1973.
(35)  Federal  Register, 23,  28759  (1973).
(36)  W. A. .Vcore and H.  W.  Walker, Anal.  Ciem..  23, I«i7 (1956).
(37)  J. A. Winter, "Method  Research Study 3, Oesand Ara?yses,"
      Envlrcrmental Protection Agency, Cincinnati,  Ohio, 1971.

-------
TABLE I,    COMPARISON OF THE PRECISION OF THE SEMI-AVOWED
              AND STANDARD CHEMICAL UMTGEN HEMAND IETHODS
MANUAL
   i-
•
1PLE to,
1
2
3
4

to, OF
DETNS,
11
10
11
10
|(
MEAN .
40
230
26
270
ion / , ^
RANGE
n
90
4
12
V5/L
SroV DEV','
LI
28,0
1,3
W

REL,':
DEV,
3,5
12,2
5',0
1,7

-------
TABLE II,     RECOVERIES OF POTASSIUM HYDROGEN PKTHALATE ADDED
               TO MffER SAMPLES WITH SEMI-AUTOMATED f's
  SAMPLE SOURCE
                •
ORGANICS INDUSTO
  EFFLUENT
RAW SEWAGE
 HARBORWATER
 INDUSTRIAL COOLING
 ff UKR
 RIVER tt
TNEAR DREDGING
INDUSTRIAL DISCHARGE
INDUSTRIAL DISCHARGE
TREATED SEWAGE
RECEIVING WATER
 OF-SEKAGE
TREATED SB^AGE
STEEL MILL EFFLUENT
                                    fen)], MS/I
SAMPLE
13
W
31
16
65
15

28
52
^f\
30
16
40
25
14
WiP ADDED
200
200 '
. 100
200
200
100
4
100
100
IfW
ILJU
100
100
100
103
SAMPLE -HOP
217
370
122
224 "
262
116

124
152
116
144
127
124
RECOVERY,%
102
103
91
104
99
301

96
100
100
104
102
no
100.
                                              112
  STANDARD DEVIATION

-------
TABLE III,     Cbf-PAftiSQN or SEMI-AUTCT-'ATI-D Ate STANDARD
                    CHEMICAL OXYGCN CEMVND

                               frnnT;
fvcMtrv  oi iv-T"' 'dcrt:     c;"rn                c1'"*'"'
V _ ..V^A— I — • I I • ."— IW     M-.WW                «^..«J
                    STANDARD KETHOD     SEMI-AJTOVATED     S/A
   SAMPLE SOURCE         (S;              HETJCD  (AT    X 300
RAW SB-AGE               420                 421          99,8
PAPER MILL coou'ns        39                  46          84,8
STKLMILL WASTE         270      ...       273          98.9
TREATED SEWAGE            50                  51          98,0
PRIMARY TREATED           63                  51         !2.:-rt
  SEWAGE
BOILER BLBVSCUN          180                 1S3          '.?>,  •
POTTERY SHOP WASTE       140                 155          89,7
CREEK DOWNSTREAM          94            .      99          94,9
 FROM POTTERY SHOP                                          ..
FfclMARY TREATED           90                  87         103,4
 SEWAGE
PAPER MILL WASTE         450                 454      '    97,0
RAWSB^AGE               170                 164         103',7
TREATED SE-&GE            35                  35         102,9
TREATED SS-^GE            27                  27         IQO',0
TREATED SEKAGE            21                  22          95,5
CRGANIC CH^HCAL         270
^PLAf^T WASTE
STEEL HILL v^sn          EG
          »/T,r^^f                                          •.  t

A RESULT SEJE:TED per. CALCULATICN CF ,'-^;j A?S r-fcx^ :-/-;T"-

-------
TABLE IV.   COMPARISON OF &EMICAL OXYGEN DEMAND
             . METHODS ON ORGANIC COMPOUNDS
   COMPOUND
SODIUM ACETATE
ACETONE
EIHANOL
DEXTROSE
• *••••••
THEORETICAL
238
170
221
197
107
150
127
190
98
W
197
223
239
211

i
faro. i«/i
•

STANDARD J-!ETHOD SEwr-Ai/rawED S/A
(S) MEFHOD (ATXIOO
.230
150
200
170
100
130
120
170
SO
60
190
<5
61
250


210
162
207
180
113
139
128
196
98
62
202
<3
77
212


95:,8
97,1
96,6
91,1
88V8
93,5
93,8
91.8
91,8
96,8
91,1
• A
83,1A
i03,3
95,0
3,5
       ACID
SODIUM CITRATE
GLUTAMIC ACID
GLYCINE
BENZOIC ACID
PYRIDINE
5-PlCOLINE
TEIRAHYDROFURAN
MEAN
STANDARD DEVIATION
A                                                            .....
  RESULTS REJECTED PCS CALCULATION CF MEAN AND STANDA-ID :EVIATICN,

-------
TITLES FOR FIGURES,

FIGURE L   AUTOMATED SYSTEM FOR CHEMICAL OXYGEN DEMAND,   NUMBERS IN
            PARENTHESES CORRESPOND TO THE FLOW RATE OF THE PUMPTUBES
            IN ML/MIN,  NUMBERS ADJACENT TO GLASS COILS AND FITTINGS
            ARE TECHNICON CORP, PART NUMBERS,   •

FIGURE 2,   RECORDER TRACE FOR CHEMICAL OXYGEN DEMAND OF  POTASSIUM
            HYDROGEN PHTHALATE STANDARDS ANALYZED IN DUPLICATE,

FIGURE 3,   CALIBRATION CURVE FOR AUTOMATED CHEMICAL OXYGEN DEMAND,
            EACH POINT IS THE AVERAGE OF DUPLICATE DETERMINATIONS«

FIGURE 4,   PLOT OF  APPARENT CHEMICAL OXYGEN DEMAND CAUSED BY THE
            OXIDATION f>F CHLORIDE,   DATA DETERMINED BY ADDING THE
            INDICATED AMOUNTS OF CHLORIDE TO A 500 MG/L COD POTASSIUM
            HYDROGEN PHTHALATE STANDARD,

FIGURE 5,   PLOT OF  APPARENT CHEMICAL OXYGEN DG-VAND CAUSED BY THE
            ABSORBANCE AT 600 NM FRCM FERRIC IRON IN SOLUTION,  DATA
            DETERMINED BY ADDING THE INDICATED AM3UNTS OF IRON TO A
            500 MS/L COD POTASSIUM HYDROGEN PHTHALATE STANDARD,

-------
•






























^
L*
P*
v
i
£

















g
aa
5
§'
«£
1
M
(O
a









f
1
b
0
**
1
V)
0
*""*







9
*
j
4
^
1
1
<
O
i













*£
^tf


55
d







o
» ^4
• u
* w
j a.
u u
1 O
a oc
1
,-g
3 M
-5
•


•





^«


o
?
0
V)

-o
c







•
••















„
5
e
^
cc
n
CC
0
r
»«•
o
1
r>
»
w
«
^
^*
"I
— i O
1
n
















i
^c



-------
    oX 9
 [coo].«o/i
PI        8
i

-------
                                         AISOR8MI, O.D.
a

-------
    C3
    cn
                          [coo] ,mg/i
                                             en
                                             CD
£2  c
, i


3  -*
oro  e
    1*0

-------
APPENDIX III

-------
         AN AUTOMATED METHOD TOR THE DETERMINATION OF

 TOTAL AND INORGANIC MERCURY IN WATER AND WASTEWATER SAMPLES
                            ' BY

    ABBAS A. EL-AWADY*.  ROBERT  B. MILLER AND MARK J.  CARTER

            U.S. Environmental  Protection Agency
                Central  Regional  Laboratory
                   1819 W.  Pershing Road
                  Chicago,  Illinois  60609
*Author to whom correspondence should be addressed;  on leave (1974-1975)
 from Western Illinois University, Macomb,  Illinois, 61155.

-------
                           ABSTRACT

        An automated method for the determination of total as well as
inorganic and organic mercury by the cold vapor method is given.  The
method is suitable for the analysis of samples in a variety of environ-
mental water matrices.  A detection limit of 0.05 ug/1 is obtained by
the use of a highly sensitive spectrometer.   The method is suitable
for the analysis of samples with mercury concentrations in the range
0.05 - -6 ug/1 and a COD less than 700 mg/1.   The use of potassium per-
sulfate, potassium permanganate, potassium dichromate and mixtures of
these salts as oxidizing agents for the digestion step is discussed,
and a study of sample preservation '.s given.   Twenty samples and/or
standards per hour can be analyzed asing this method.

-------
                          INTRODUCTION
         In recent years a number of methods have been  Introduced  for
                                                       1-10
 the determination of mercury  1n a variety of matrices.      The most
 wldaly used method utilizes a flameless atomic absorption technique
                                  10
 first Introduced by Hatch and Ott.    Most of these are time consuming,
  K.  K.  S.  PHlay, C. C. Thomas, Jr., J. A. Sondel, and C. M. Hyche;
  Anal.  Chem..  43, 1419  (1971).  ,
 2V.  I.  Muscat,  T. J. Vickers, A. Andren;  ibid.. 44, 218  (1972).
 3E.  W.  Bretthauer, A. A. Moghissi, S. S.  Snyder, and N.  W. Mathews;
  1b1d.. 46,  445 (1974).
 it
  J.  J.  Bisogni, Jr. and A. Wm. Lawrence;  Env. S£. Tech., 8, 851  (1974).
 5C.  T.  Elly; J_.  Water Pol. Cont. Fed.. 45, 940 (1973).
  R.  F.  Overman; Anal. Chem. 43, 616  (1971).
 7T.  J.  Rohm, H.  C. Nipper, and W. C. Purdy; Ibid.. 44. 869 (1972).
 Y  J.  Issaq and W. L. ZieHnski, Jr. ibid.. 46, 1436 (1974).
 9W.  F.  Fitzgerald, W. 8. Lyons, and  C. D. Hunt, ibid.. 46, 1882  (1974).
10W.  R.  Hatch and W. L. Ott, Ibid., 40, 2085 (1968).
 however,  and  do  not allow for the analysis of a large number of samples,
 such as  Is  generally encountered by environmental laboratories.  The
 solution  to this  problem has been to move in the direction of establishing
 automated procedures, which will allow either continuous monitoring or
 the analysis  of  reasonable numbers of samples per day.  This increase

-------
in the sample analysis  rate should  be  done without  affecting  either

the sensitivity or the  accuracy of  the procedure.

        Recently a number of automated methods       for the determina-

tion of mercury have appeared 1n print.   These  methods  are highly suit-

able for the analysis of clean water samples  and other  samples with a
UB. W.  Bailey and F.  C.  Lo;  Anal.  Chem.  43,  1525 (1971).
12
  T. B.  Bennett, Jr.,  W.  H.  McDaniel,  and R.  N.  Hemphill;   Advances
  1n Automated Analysis,  1972 Technicon International  Congress,  Vol.  8;
  Mediad Incorp., Tarrytown,  N.Y.

  P. D.  Kluckner, "Investigation of an Automated Method for the  Deter-
  mination of Total Mercury  in Water and  Wastewater"  a report to the
  Chemistry Laboratory Water Resources Service,  3650  Wesbrook Crescent,
  Vancouver, British Columbia, Canada (1973).
very low content of oxidizable materials.   However,  for samples with a

high content of particulate matter as well  as for those with high con-

centrations of oxidizable impurities, the  suitability of these methods

1s questionable.  An automated method that addresses itself to these

questions is presented in this paper.  The comparability of the des-

cribed method has been checked against the manual method presently
                m
accepted by EPA   and has been found suitable for the analysis of mercury

In all types of water samples Including those samples with a high content

of particulate matter and oxidizable impurities.
  "Methods For Chemical Analysis of Water and Wastewat.er',  EPA Publication
   No. EPA-625/6-74-C03, U.S. Environmental  Protection Agency, Office of
   Technology Transfer, Washington, O.C., 20460,  pp.  118

-------
                              EXPERIMENTAL

           Apparatus.  All glassware used In this work was boroslHcate
   glass.  Standard mercury solutions were prepared 1n volumetric flasks
   with glass stoppers. All glassware was first washed with water, soaked
   for two hours 1n a IX potassium permanganate solution, soaked for an
   additional two hours 1n a 1:1 mixture of concentrated nitric and sul-
   fuMc adds, and then washed with doubly deionized water.  The glass-
   ware was then baked for 3-4 hours at 400°C.  It was found that for
   subsequent use of the same glassware, a rinse with cone. KNO^ followed
   by several rinses with doubly deionized water was sufficient.  No traces
N  of mercury were observed 1n these flasks.  All domestic and industrial
   waste samples were stored 1n high density polyethylene, 1-liter screw-
   cap bottles with polyethylene lined caps and preserved to give a final
   concentration of 0.52 HNC^.  Liquid transfers for dilution purposes
   were made with Eppendorf  pipets of 0.1, 0.25, 0.5, and 1 ml capacity.
           Instrumentation.  The Instruments used consisted of:
           1.  Spectre Products Mercury Analyzer Model HG-2
           2.  Perkin-Elmer Model 56 multi-range chart recorder
           3.  Harmonically smoothed voltage stabilizer
           4.  Technlcon Auto-Analyzer Unit consisting of:
               a.  Sampler IV
               b.  Proportioning Pump III
               c.  Heating bath with heating coil (20 ft. long
                   and 2.4 mm internal  diameter).

-------
        5.   Gas-Liquid Separator
        6.   A rotameter to measure the rate of air. flow irc the gas-
            liquid separator.
                        t
        7.   High speed blender for sample homogenization

        The operating principle of the mercury analyzer is based upon
                                                    o
balancing the intensity of the mercury line at 2537 A fron a hollow
cathode lamp "A" against the intensity of one or more lines from a
reference hollow cathode lamp  "B"  in the same wavelength region as
observed by a single detector.  Lamp "A" is a pulsed mercury hollow
cathode lamp, and lamp "8" is  a pulsed iron hollow cathode lamp.  The
two lamp sources are pulsed 180° out of phase above a sustaining base
current in a square wave mode.  The instrument is balanced with the
absorption cell swept free of  any  residual mercury.  In the absence
of any interfering substance,  any  observed absorption is solely due
to mercury.  The net intensity due to mercury absorption is directly
obtained from the output of a  phase sensitive, lock-in amplifier.  The
instrument is equiped with an  automatic gain control to t.he lock-in
amplifier, so that compensation for the background or extraneous ab-
sorption is accomplished automatically.  In addition, a 10X scale
expansion  is provided for the analysis of samples containing low con-
centration levels of mercury.
        It was found necessary to modify the absorption cell supplied
with the instrument.  The main modifications were:  1. To decrease the
internal diameter by a factor of two;  2. To position th<» inlet and
exit tubes as close as possible to the quartz windows so as to decrease

-------
the dead air space 1n the vicinity of the window.   In order to compensate
for the factor of four decrease 1n signal strength caused by these modi-
fications, 1t was necessary to Increase the gain (voltage) on the photo-
multiplier tube,  The present cell's dimensions are:  22 cm long, 7 mm
Internal diameter, and 11 mm external diameter.  The cell is constructed
completely from quartz.
        The chart recorder is equiped with a variable input voltage,
allowing several scale expansions.  The recorder was operated at its
lowest chart speed of 5 mm/min.
        Reagents.  All chemicals used are analytical reagent qrade or
better.  The water used was doubly deionized.  The reagents and their
concentrations are as follows:
        1.  Concentrated sulfuric acid; obtained from Baker and desig-
            nated a$ "suitable for Hg determination".
        2.  lOt stannous chloride solution; prepared in a solution
            10t1nHCl.
        3.  IX potassium permanganate solution; a fresh stock solution
            was prepared every three weeks.
        4.  2t potassium dichromate solution.
        5.  31 hydroxylamine hydrochloride; prepared in a solution
            3% In sodium chloride.
        6.  At potassium persulfate; this solution was prepared fresh
            weekly.
        7.  Con. nitric acid.
        8.  A tank of purified nitrogen.
        9.  Mercury stock solutions; 1 mg/ml («1000 mg/1) of either
            mercuric chloride or methyl mercuric chloride.
        10.  Mercury standard solutions.  Mercury standard solutions
            in the range 0.05 - 6.0 ug/1 were prepared by proper
            dilutions of a 100 wg/1 stock solution prepared from

-------
            solution  9 above.  All  standards were  prepared  in  a
            solution  0.52  in HN03 and  °-05- ^n 
-------
agent, both the hydroxylamine and permanganate or  dichromate reagent
lines  are disconnected,  and the reagents  Introduced 1n the order
HgSO^ SnCU, and ^^a*   Aftcr a stablc  baseline 1s obtained,  standards
In the range 0.05 - 6.0 ug/1 Hg are placed 1n  a sample tube (prerlnsed
with the same solutions),  and transferred  to the sampler.   For all
samples judged to be high In mercury I.e.  0.5  - 6  ug/1, only standards
1n that range are used.  For low level  mercury determination I.e. less
than 0.5 ug/1, standards 1n the range 0.05 - 0.5 ug/1 are used,  and
the mercury analyzer 1s set at Us 10X scale expansion.  In addition,
a recorder scale expansion (a factor of 2) is  used for runs with mercury
concentrations 1n the range 0.2 - 3 ug/1.   Samples to be analyzed are
then placed in the sampler while the standards are running.   Standards
were prepared fresh dally from the stock solution  and analyzed by the
system before and after each run 1n order  to provide a calibration curve
and to check for the stability of the standards during the analysis
period.  In some, experiments the same standards were run over a  period
of two to four weeks to check for the effectiveness of the preservatives
used  (0.05X HN03 and 0.05S I^C^O;).  Both mercuric chloride and methyl
mercuric chloride standards were used to check for the recovery  of or-
ganomercury compounds.
        All sampling was done using a 20/hour  sample cam with 2:1 wash-
sample ratio.  For recovery studies, arbitrarily selected samples were
spiked with the equivalent of 0.3 ug/1  Hg  for  samples with less  than
1 ug/1 Hg, and with 2-3 ug/1 Hg for samples containing 1-4 ug/1  Hg.

-------
                                                                       8
  *
        All staples containing  high  concentrations of paniculate matter
were first homogenized using  a  Techmar Co. high speed homogenlzer model
SOT.  In addition,  samples were stirred before and during sampling.
        After the analyses are  completed, all lines with the exception of
the sulfurlc add line are placed  In a It HNOj solution until all reaqents
are completely flushed out.   This  Is followed by placing the sulfurlc
add line 1n the wash.  All the lines are then flushed for 10 rain, with
32 NHjjOH'HCl to remove any build-up  of manganese codes.  This 1s then
followed by flushing the system with IX HN03 for a period of 20-30 min.
The above flushing Includes all colls In and outside the high temperature
bath.  For all experiments, using  I^S^ or K2Cr2°7 as oxidizing agents,
the system was flushed with a IS HN03 solution for 20-30 min.

-------
                        SYSTEM DEVELOPMENT

        During the early stages 1n the development of the system,
several studies were undertaken to optimize the analysis conditions.
These studies included mechanical, electrical,  as well  as chemical
modifications.
        Modifications in the Mercury Analyzer.   It was  observed
that the absorption cell provided by the manufacturer was inadequate
for our4 purposes.  The position of the inlet and outlet tubes was
too far from the quartz windows leaving a dead  air space.  This re-
sulted 'in the retention of mercury in the cell  and slowed the response
time.  The response time could not be sufficiently improved by varying
the flow rate of the nitrogen carrier gas.  In  addition, the volume
of the cell was too large, requiring a much longer sampling period.
In the present cell these problems were corrected as described in
the experimental section.  As a result of these modifications, we
observed an increase in the sensitivity of the  system,  a decrease
1n the background level, and a decrease in the  time required for the
maximum absorption to take place.
        Air or Nitrogen flow rate.  Table I gives the relationship
between the scale reading on the recorder and the flow rate of air
used for aspiration, for mercury concentrations of 0.5, 1, 2, 3 and
4 vg/1.  Inspection of Table I shows that the scale reading increases
with the increase of the flow rate of air up to a maximum.  The max-
imum is reached at a flow rate of 20-25 cm-Vmin.  Above 30 cm3/min,

-------
                                                                     10
however, the scale reading of the recorder  decreases.   The variations
in the scale reading are more significant at  higher mercury levels.
It should be noted here that the results will  vary from one system to
another.  The flow rates of the other reagents will, of course,  change
the molar concentrations of mercury in the  solution to  be  aspirated
and hence, the response of the mercury analyzer.
        It should be mentioned here,  however,  that the  total  area
under the peak of a given mercury concentration  remained virtually
constant up to 30 cnr/min of air.  Peak separation, however,  decreases
with the decrease 1n air flow.
        Preservation of Samples and Standards.   It has  been recognized
for a number of years  " * that aqueous solutions of mercury  compounds
lose their strength on storage.  This result  was observed  for samples
15A. E. Ballard and C.  0.  H.  Thornton;  Ind.  Eng.  Chem.  13,  893 (1949).
US. SMmomura, Y. Nishihara  and Y.  Tanase;  Jap.  Anal.,  17, 1148 (1968)
  and 18, 1072 (1969).
stored in glass as well as polyethylene vessels.   Although the mechanism
for the loss of mercury 1s currently unknown,  several  interpretations
have been given.  The absorption of mercury on th<» surface of the con-
tainer 1s perhaps the most common of these Interpretations.  The amount
of mercury lost from aqueous solutions decreases,  however, when the
sample 1s. stored in acid solution.   "    Feldman    showed that mercury
  R. V. Coyne and J. A. Collins, Anal.  Chem.  44,  '093 (1972).
  C. Feldman; Ibid., 46, 99 (1974).

-------
                                                                       11
standards preserved In a solution  52 HN03 + 0.052 K2Cr207 will maintain
their mercury concentrations  over  a period of 10 days.
        In an attempt to establish the  stability of  the  standard mercury
solutions, as well  as that of mercury 1n environmental samples, several
                                         j
solutions were prepared and analyzed over a one month period.  Table  II
gives data collected on samples  prepared in deionlzed water, surface
water containing industrial waste, sewage treatment  plant (STP) effluent
and STP Influent.  Three different sets of solutions were prepared  for
a given sample type:  unpreserved, 0.5X HNOj preserved,and  0.5% HNO-j  -
0.05X I^C^Oy preserved solutions. Both polyethylene and glass bottles
were used for the unpreserved samples.  All other samples were prepared
1n polyethylene bottles.  The mercury content of all samples was first
analyzed.  Each sample was then  spiked  with a known  amount  of Hgd2»
and the total mercury present was  determined within  10 minutes of sample
preparation.   The volume of the  samples was measured using  a graduated
cylinder,and hence a difference  of 2-3% between the  mercury found at
zero time and the sum (Hg present  and Hg added) is not significant.
        Table II shows that unpreserved standards (samples  prepared in
delonized water) lost 20t of  their strength within 10 minutes of prepar-
ation and 60* over a 10 day period.  Standards prepared  in  0.5S HN03
lost 6X and 3W of their strength  over  a 10 minutes  and  a 10 day period
respectively.  The use of sulfuric acid Instead of nitric acid as a pre-
servative did not significantly  alter the results, although sulfuric  acid
preserved standards were generally 3-55 higher.  This could be attributed
to the presence of trace amounts of Hg  in sulfuric acid.  Increasing  the

-------
acid concentration up to 6* resulted in a mercury  loss  of  202 over a in
day period.   The preservation of  standards  in  a  solution containing 0.5'/
HN03 + 0.05* K2Cr20;, however, resulted in  no  significant  mercury loss
over a four week period.  Similar results were obtained for standards
stored 1n borosllicate glass, with a slight increeise  in stability over
polyethylene bottle stored solutions.
        Further Inspection of table II  shows that  all environmental
samples studied maintained their  mercury content over a one month period
when preserved in either 0.5* HN03 or 0.5*  HN03  -  0.05* K2Cr207.   Although
unpreserved solutions of the same samples exhibit  Hg  loss, they do so at
a much slower rate than that for  standards  prepared  in  deionized water.
The rate of loss decreased with the Increase In  particulate matter in
the sample.  The stability of these samples, could,  thus be attributed
to the preferential .adsorption of Hg on the partlculate matter.   The
stability of samples preserved in 0.5* HN03 -  0.05X  <2Cr2°7» however,
was Independent of the partlculate matter content.   The stability of
samples preserved in 0.5* HN03 alone, showed a dependence  on the parti-
culate matter.  The absence of particulate  matter  will  result in lower
stability.  It is thus suggested that all  sample>  should be preserved
In 0.5* HN03 - 0.05S K2O207.
        Of particular interest is the comparison of  the data for unpre-
served samples over a 24 hour period.  Here we observe  that deionized
water samples lost 30* of their strength, while  environmental samples
lost up to 10* of their strength over the  same period.   This result
bears very heavily on the method of sampling.   It  is  suggested that

-------
                                                                      13
grab samples are collected followed by immediate preservation with 0.52
HMO? - 0.051 K2Cr207 solution.   This 1s preferred over,  say, a 24 hour
non-acidified compos it sampling method.  Any loss of mercury due to
surface adsorption in a grab sampling method should be recovered upon
the addition of the preservative.   Thus it was  observed  that if a mix-
ture of 0.51 HNO^ - 0.051 <2Cr2°7  was added to  a neutral  aqueous solution
of HgCl2 (2 wg/1) which had been left standing  for 24 hours, all the Hg
was recovered within 20 minutes.  In addition,  a comparison (table II)
of the Hg concentration 1n the samples prior to the addition of the
spike (HgClj), shows that the n1tr1c-dichromate values are significantly
higher than nitric alone, which in turn are higher than  the unpreserved
samples.  The difference is attributable to the redissolution of Hg
adsorbed on the surface of the flask, since the reagents  did not show any
measurable Hg contamination.
        Comparison of Organic and  Inorganic Standards.  Methyl mercuric
chloride and mercuric chloride produced the same standard graphs over
the range 0.05 * 6.0 vg/1 Hg.  All data in the  range 0.05 - 0.5 vg/1
were run on the 10X scale of the mercury monitor and IX  scale expansion
for the chart recorder.  All data in the range  0.5 - 5.0 yg/1 Hg were
run on the IX scale of the mercury monitor and  at the 2X scale expansion
of the chart recorder.  Two types  of standard graphs were attempted.
The first 1s a plot of the percent absorption due to mercury versus the
mercury concentration; the second  is the absorbance (optical density)
versus the mercury concentration.   Both graphs  gave very  good straight
lines, and the results (for real samples) calculated from both graphs
are indistinguishable,  At concentrations of mercury of  10 yg/1 or above,
however, the 5 absorption graphs are generally  non-linear.

-------
                                                                     14
                    RESULTS AND DISCUSS IOf IS

        Figures III and IV give typical chart recordings  of measurements
made on standard solutions.  Recorder plots  of 0.5,  1.0,  2.0,  3.0 and
4.0 yg/1 Hg (F1g. Ill) were obtained on the  IX scale of the mercury
Monitor and scale expansion of 2X on the  chart recorder.   Attempts to
vary the damping of the instrument (without  significantly affecting
the response of the monitor) were unsuccessful in decreasing the base-
line noise.  The present chart recordings are donu at a damping control
of 10 sec.  Figure IV gives the plots of  mercury concentrations of
0.05, 0.1, 0.2, 0.3, and 0.4 yg/l, all done  on the 10X scale of the
mercury monitor, and a IX scale of the chart recorder.   Here again
attempts to decrease the noise level of the  baseline beyond what is
given were unsuccessful.  The detection limit of the method (defined
as the concentration that gives a signal  that is twice the level of
the baseline noise) on the range 0-0.6  ug/1 is 0.05 yg/1.  The de-
tection limit could be decreased beyond the  0.05 yg/1 level to perhaps
0.02 ug/1  if an  Integrator is coupled with the chart recorder, which
would average the  baseline noise and hence increase the sensitivity
of the procedure.  Inspection of Figures  III and IV shows that the
wash sample ratio  of 2:1 is sufficient for our system with a complete
return to  the baseline between samples.  The shape of the peaks is
quite characteristic at all levels of mercury, and with a one minute
sampling  time, a steady state concentration  of mercury is reached  in

-------
                                                                    15
the absorption cell.   This was established by sampling for an extended
period of time and observing that the percent absorption attained is
the same.  The reproducibility of the results (precision of the method)
was established by replicate analyses of the same sample.   Table III
gives the standard deviations and the coefficients of variations (per-
cent relative standard deviation) at various levels of mercury.  Data
for the manual method are also given as a reference.   These data were
obtained from standards run during the same day as well as over an
extended time period.  Reproducibility data for real  samoles were
generally within the standard deviation of the standards (for samples
with small amounts of partlculate matter when run on the same day).
Reproducibility data for samples run on different days, however, were
within 2-3 standard deviations of the standards.   This could be attri-
buted to sample deterioration, preferential adsorption of mercury on
partlculate matter, or day to day changes in the elasticity of pump
tubing.  Samples with considerable amounts of particulate matter were
sampled representatively by homogenization using a high speed blender.
The reproducibility of these samples was within 2-3 standard deviations
of the standards.
        Since mercury 1n water can exist as organic mercury, it was
necessary to establish the completeness of the digestion procedure,
as well as the effectiveness of the various chemicals involved in the
break-down of organic mercury compounds to ionic mercury.   This is
necessary since SnClo will not reduce organic mercury under the exper-
imental condition given.   It should be mentioned here that it was not

-------
necessary to use potassium permanganate nor potassium persulfate for
samples containing inorganic mercury only.   In addition,  the temperature
of the reaction need not be above room temperature.
        Standards containing methyl  mercuric chloride,  however,  required
high temperature (100°C) and the presence of persulfate.   Potassium
permanganate alone gave less than 301 recovery of  the mercury present.
Potassium persulfate alone was sufficient to recover all  the mercury
present.  Variation of the concentration of l^S^Og between 0.5 - 5£ did
not alter the results obtained for methyl mercur c chloride.  Since
the variation of the flow rites of reagents and/or the total volume of
solution 1n the reduction step affects the  final  value obtained for the
percent absorption on the chart recorder at a given concentration, all
data were obtained relative to mercuric chloride  standards.   Table IV
gives recovery data for methyl mercuric chloride  using various reagent
combinations.  The methyl mercuric chloride standard solution used
(obtained from Alpha Inorganic) was found to contain 115 HgCl2-  This
was established by treating a 100 yg/1 sample of  CH3HgCl  with SnCl2
and observing an absorbance level 15 of the expected absorbance.
        The variation of the concentrations of the various reagents,
however, affected the data obtained for real sairples.  It was thus
observed that there is a direct correlation between the chemical
oxygen demand (COD) and the amount of persulfatj  and/or'permanganate
required to completely oxidize all organic  mercery present.   The COD
                      19
of a sample is defined   as "the quantity  of oxygen required to oxidize
 19 W. A. Moore, F. J. Ludzack, and C. C. Ruchhoft. Anal. Chem. 23, 1297
   (1951)                                          	

-------
                                                                      17
organic and Inorganic matter in a  waste sample."   This  definition is
based on acidic dichromate oxidation at the  reflux temperature of a
                                                           -2
501 H2$04 solution with a Ag2S04 catalyst.   Since both  S208   and Mn04
arc excellent oxidizing agents,  all  organic matter  oxidized by dichromate
should also be oxidized by persulfate or  permanganate  and  hence the
correlation between the COO of the  sample and  the concentration of
these reagents.  It was thus observed that the suggested concentrations
of 0.5t KMn04 and 0.5X ^£$203 by Bennett  et. al .   , are insufficient
for most samples treated 1n this laboratory.   In  the present system,
a 4X K^OS (F1g> *) 1s sufficient  to treat samples with a COD of up
to 700 mg/1,  Attempts to increase  the concentrations  of  these reagents
were judged inadequate for our purposes,  because  an increase in KMn04
concentration would require a large  increase in the hydroxylamine
needed to reduce excess MnO^".  Increasing the persulfate  concentration
by the use of up to 155 (NH^SgOg  solutions,  resulted in  the formation
of high levels of ozone after the digestion step, and  hence, a need
for a high concentration of SnCl2.   Since over 90S  of  water and waste-
water samples that come to this laboratory have a COO  value of less
than 500 mg/1, it was decided that  a It KMn04  and/or 42 K2S20g solutions
are sufficient.  Samples with much  higher COO  levels (above 700 mq/1)
should therefore be diluted.  It was also observed  that spiked samples
with high COO levels gave a mercury concentration lower than the spike.
Here methyl mercuric chloride should be used as the spike.
        Table  V  gives a comparison between the automated method and
 the manual  method  for river,  lake,  sewage, and industrial  samples.  Data

-------
                                                                     18
were Included for experiments  performed  using  persulfate  alone,  persulfate-
d1chromate, and persulfate-permanganate  as  digestion  solutions.   Table VI
gives recovery data of spiked  real  samples  using  the  above  solutions.
Inspection of the two tables shows  that  there  is  no significant  difference
in the values obtained for the same sample  by  the various methods studied,
and that potassium persulfate  1s  sufficient as a  digestion  reagent.   Per-
haps the main purpose for permanganate in these experiments 1s Us five
electron oxidation property as compared  to  the two electron step for per-
sulfate.  The electrode potential for the S2<>82~/S042~  couple is 2.03 V
while for the MnO^/Mn2* couple 1s  1.60, and here it  appears that apart
from kinetic effects, the persulfate on  a thermodynamic basis is a better
oxidizing agent.  The fact that the use  of  MnO^"  .ilone  results in a maximum
of 3W recovery of CH^HgCl eliminates the value oF MnO^~  for the analysis
of organic mercury compounds.
                                       20
       It was eluded to by Kopp,  et al.   ,  that the use of  MnO^ might
 20
  0. F. Kopp, M. C. Longbottom and L.  B.  Lobring;  AWA;  64,  20(1972).
 be  required for the oxidation of some interferences such as l^S.  Since
 persulfate is a strong oxidizing agent, it appears that the permanganate
 will  not be required for this purpose.   In addit on, it was observed
 that  sulfide concentrations as high as  20 mg/1 (as NazS) do not interfere
 with  the recovery of inorganic mercury  added to  distilled water.  This
 result was obtained in experiments using persulf.ite, persul fate-pennanganat*

-------
                                                                  19
and persulfate-dfchromate combinations  as  digestion solutions.   At higher
sulffde ion concentrations,  however,  negative  interferences  were observed
In experiments using persulfate alone.   In experiments  using persulfate-
permanganate or persulfate-dichromate,  a positive  interference  was ob-
served.  Other common Ions encountered,  such as  chloride,  did not inter-
fere 1n concentrations of up to 5000  mq  Cl"/l  in all  three digestion
solutions.  Residual chlorine results in a positive interference, when
the K2S2°8 manifold is used.  For these samples, a solution  32  in
NH^H'HCl-NaCl 1s to be added to the  sample stream immediately  after
the digestion step at the rate of 0.3 ml/mfn.   CuSffy  did not interfere
fn concentrations of up to 1 g/1.   Ethyl alcohol,  methyl alcohol, glycerol,
chloroform, and carbon tetrachloride  did not  interfere  when  added in
concentrations as high as 0.5S.   Major  interferences  were  observed,
however, from benzene and toluene.  A maximum  tolerance of SOOyq/l was
obtained for these compounds.   The above illustrates  that  the use of
I^SgOs as the sole oxidizing reagent  in the digestion step is sufficient.
The elimination of KMn04 results in a stable base  line  and removes inter-
ferences caused by the precipitation  of manganese  oxides in  the tubes.
In addition, high backgrounds generally observed in Hg  determinations
using KMn04 are eliminated.
        The present method is suitable  for the separate determination
of inorganic and organic mercury.   For  this purpose,  the inorganic mercury
1s determined by the removal of all reagents except for the  Snd2 solution
                            ?•*•
used for the reduction of Hg6 .   The  temperature of the system  is maintained
at room temperature, and the inorganic mercury concentration is read off

-------
                                                                      20
a calibration curve made of known concentrations of HgCl? run under
the sane conditions.  Inorganic mercury as determined by this method
Is defined as all mercury compounds that are reduced to elemental
mercury by SnCl2 without predlgestlon of the sample.  The total mercury
In the system Is then determined, using the normal  digestion and re-
duction steps and read off a calibration curve done under the same
conditions.  The difference between total and incrqanlc mercury Is
the amount of organic mercury In the samples.  Table VII gives the
date for Inorganic and organic mercury content of real as well as
artificial mixtures.  No attempts were made to analyze for organic
mercury Independently.

-------
                          ACKNOWLEDGMENT
       The authors arc grcatful  for the help received from many


of the personnel of the U.S.  Environmental  Protection Agency,


Region V, Central Regional Laboratory.
       The mention of trade names or commercial products does
      •

not constitute endorsement nor recommendation for use by the


Environmental Protection Agency.

-------
                            TABLE I
           Variation of Scale Reading with Rate of Alt- Flow
Flow Rate*
cm3/m1rt
0
10
15 •
17
19
22
24
25
31
37
b
Scale Reading
0.5

10.8
12.5

13.0
13.0

12.0
10.0
9.0
1.0

22.0
24.0

26.0
25.0
i
23.0
20.0
19.0
2.0

32.5
41.0

42.0
44.0

40.0
35.0
32.0
3.0

48.0
58.0

58.5
63

60
55
50
4.0 pg/1
25.0
59.0
69.0 j
72.5
76
i
77
77
75
70
60
*Flow rates are those of the air used for aspiration (inly.
 Full scale 100 division at SOX absorption.

-------
        I/I
        01

CO
         wo
Ol
-^ 01
en en i-
X 3 Cl. j
Preservative
Ol
1
m

CM"
oo
o

o
CO
o
8

LO

CO
LO
CM
10
CM
00
CM
8
<•*>
0
o
o
01
Ol
01
"o
Q.
Ol
o

CM
LO


m
oo
CM
c
CM
§
CM

f>
CM

O
m
CM
S
CM
§
CM
Lrt
C*
CM
8
m
§
O
2
in
6

S
CM

m
en
c\j
m
O
r>
g
*
m

en
en
CM

71
cn
CM
CM
O
m
O
m
.0
o
m
8
m
§
0
?
£
.K
o
o
o
1
n
o:
o
o
e ionized
ater
2>
CM
8
CM
n
ft


in


n
o
CM

M
CM

r>
CM
X)
CM
O
CO
CM
8
CM
§
O
^"*,
t/l
r*~
CT
C
O
hlZ
l_
Ol
44
01
u
fc.
3
P

LO

S
•—

c
00


LO
o
CM

0
CM
CM

S
CM
s
CM
m
00
CM
8
CM
&
O
I
41
4-1
Ol
o
a.
ontainlng I None
Mi/
X.
M
^
CM
00
IM

30
CM

$
CM

g
CM

CM
00
CM

O
00
CM
8
CM
3

0
2
tf>
o
w
(n
«
ro
cr-
r«

30
I-.

M
n

m
n

M
V
m

S
ro
LO
CM
O
—
LO
O
o
1
rn
O
LO
C)
ndus trial
aster
a

en
—
S
CM

O
CM

S
CM

O
CM

£
CM
S
CM
p*.
CM
LO
CSI
CM
O
cr>
Oi
o
Ol
o-
£
s

^
—
1M
CO
—

en
—

8
CM

Lf>
CM

r*>
CM
LO
CM
LO
CM
O
CM
tNJ
0
reaUnent . Hone (polyethylene)
a

CM

£
CM

LO
CM
O
CM
O
o
r-i
O
I
*o
"a>

CM
00
CM
£
(M

CO
CM

tO
00
CM


CM

n
CM

£
CM
a
CM
CM
0
O
f\
Co
o
CD
i
r»
g
0
c
Ol
4-1 3
C •—
•— >*-
M *
O

CM
•n
0
m

S
m

^
">

M
n

LO
ro
LO
en
so
m
5
CM
n
CM
—
in
"8
CJl
Ol
c
0
oV

n
CM
00
CO

5;
CM

0
^

r—
n

LO
m
o
CM
CO
00
C1)
m
o
CM
O
CM
r—
None (polyethylene)
V?

£
«n
S
c->

s
CO

*
M

0
n

en
m

m
LO
en
8
CM
SO
i—
•H
..n
LO
*
0
•>.

S
Hi
3
n->

C
LO
m

\o
to
en


n

LO
LO
en

LO
LO
m
8
CM
LO
LO
•—
t\
u
o
CD
f
2
z
co
01
o>
TJ Ol

-------
                                TABLE III

                             REPROOUCIBILITY

Hg. Level
wg/1
0.05a
0.1 Oa
0.20*
0,30a
0.40*
0.60a
0.25b
0.50b
0.75b
1.0b
2.0b
3.0b
4.0b
6.0b
Automated
Standard6
Deviation
0.005
0.007
0.01
0.008
0.02
0.04
0.04
0.04
0.04
0.04
0.09
0.08
0.2
0.48
Relative Std.
Deviation X
10 X
7
5
3
5
4
17
7
5
4
5
3
5
8
Manual
Standard0
Deviation






0. 063


3.083

0.13


Relative Std.
Deviation *






28. Q


8.0

4.0


Standards run using  10X  expansion of the Hg monitor (automated system).

"Standards run using  IX scale of  the Hg monitor and 2X expansion of the
 recorder (automated  system  only).

C8ased on 10 or more  replicates.

-------
                                   TABLE V
                   COMPARISON  OF AUTOMATED AND MANUAL METHODS
                                    (wg/1 Hg)
Sample Type
Reagent blank
Reagent blank
Well
Stream
Industrial Intake
" efflu.
II W H
M II W
M N H
It H H
MUM
M M H
U M H
M M H
II II H
Raw Sewage
N II
N II
II N
II H
II II
II II
II H
II M
II II
II II
II II
II II
II II
N H
M U
STP Effluentt
STP Effluent
n H
II N
II H
n n
n n
II H
II H
II II
II II
COO
m
-
<3
90
9
24
26
9
72
120
38
215
179
1480*
4
278
479
521
441
567
292
329
244
554
380

407
441
-
434
447
281
29
237
301
94
225
244
29
448
199
218
Automated [
« *2S2°8
0.07
<0.05
0.11
0.52
0.15
<0.05
0.05

0.15
0.10
0.19
0.23

1.81

0.28
0.20



0.21
0.55
0.30
0.10
0.22
1.17
0.43
1.50
0.54

0.76
0.18
0.10
0.33
0.64
0.24

0.30



0.30
« K?S?08
IT, KMnOfl

<0.05


0.16
<0.05
»0.05
0.45
0.20
0.13


0.15
1.96
0.11


0.85
0.30
0.18
0.21
0.42

0.10
0.23
0.95
O.A3
1.30



0.18
0.11
0.23


43 K2S2Oo |
2". K?Cr207 <
0.07

0.13




i
i


0.16
0.26

















0.62






0.18 |
0.24 ! 0.27
; 0.30
0.68
0.39
0.32
i
Manual
<0.2
<0.2

0.8
<0.2
<0.2
<0.2
0.5
<0.2
<0.2
<0.2
0.2
<0.2
2.4
<0.2
0.2
0.2
1.0
0.4
0.2
0.2
• 0.7
0.3
<0.2
0.3
1.0
0.3
1.7
0.5
0.6
0.9
<0.2
<0.2
0.3
0.7
0.3
0.2
0.3
0.2
0.6
0.4
0.3
*Sample diluted by a factor of  three before analysis.

Sewage treatment plant effluent.

-------
                              TABLE IV

         Recovery of Known Amounts of Methyl  Mercuric Chloride

         by KMn04, K^r^y, and K2S2°8 OxCation  Procedures.(a
CH3HgCl, Addtd
ug/1
0.5
1.0
2.0
3.0
4.0
Thtrwl , .
Dtconiposltlon*0'
X
17.4
20.0
18.0
23.8
24.2
IX KHn04
I
2% *2Cp2°7
X
27.3 ; 45.5
25.0 40.0
23.4
29.7
31.5
35.9
39.2
40.6
45 K2S208(c)
2
100.1
100.5
98.5
103
98.0
(*)Based  on  HgClj standards.

(b)No oxidizing agent added, all other reagents  are  used,  however.

(C)sim1lar results are obtained using IS KMn04 - 4X  K2$208 *nd
   2X KCrO  - 45

-------
                                    TABLE VI
                    RECOVERY OF MERCURY FROM SPIKED SAMPLES
Sample Type
Reagent blank
Cooling water
Industrial Effluent
n N MM
H H N H
N H n H
II II II tt
II II H N
U H H •
H H UN
Raw Sewage
U II
H N
H H
N n
II H
STP Effluent
n n
n n
II N
COD
—
30
123
13
26
120
278
252
.
23
261
168
120
_
448
597
40
94
218
199
wg/1 Hg
In Sample

-------
i


V*




%

»4

r*
O
rt-
O>
ft
re
a
re

o

-1 -1
_». _..
I!! IT
o 

Oi At
a a
T> -0
•^J  o
cn o


o — •
cn O
O 0

0 p
ro vo
-•o cn






O ro
• •
-•4 — •
CO O





•^
SO
cn



cn cn


J
-*•
jjj
n
0^

•?
a
T5
^•^
re

o
§
















o
&


ro
S

o
CD
O






CO
•
Ctl
^^






^O
•^



o
00


3 3 i? £ £ S |

2m m «/> u» v» re* re
£ £
c e «0 <0 «0 uo <£>
a a
C* !•*





— • o o o
O vO vO Co






ro fs> ro

So^
Si






A cn ro f\>
SO cn O
O O O


— • — • O
g g S

j" f* r0 r^
O% -^ •£** O
-*j \o vo ro






CO CO CO
• • •
cn ^ cn
— A O





^+
O CD vQ 

-*. OL —
3
03 CD n:
re to
?
re
10 3*
o
Q.U3
Cl« tof
re 3
a. -••
r>
re o
iQ
CX 3
a. —
2.°
-«t«£5 3
r* O
re -n -i
-i o o
c 01
u> 3 3
TO O. -^«
-•• o
3
l
(/> -n — «
•a o o
-•• C rf
7C 3 Q<
-* Q_ — •
3
L^f ^p» ^|^
re
-s
^^
O 0
1 O
0 O
& <
3 re
n *<
o "
o» n
3 0
n ro
70
m

n

O
                                                                                                   TO


                                                                                                   m




                                                                                                   O
                                                                                                   TI


                                                                                                   O
                                                                                                         CD
                                                                                                   o


                                                                                                   i



                                                                                                   m

                                                                                                   o

                                                                                                   -c

-------

-------

      01
       c|c
         o
               0)
ac  ex
           T
           U

           °
           u
                 I
                 2
             O
              CM

                                                    OLT
                                                                  00
                                                                  H-

                                                                  loJ
                                                                  C3


                                                               CJ3 C3
                                                   c»
                                                   6
oo
                                                             01
                                                                   CO
                                                                   CD
                                                                   CVI
                                                                   CO
  00
 CD
  Ol

-------
FIGURE  3. RECORDER PLOT WITH STAHDARD SOLUTIONS OF MERC!

-------
                0.30-cfg/l
                         0.20^g/l
                                 O.IO^g/l
                                         0.05.<
-------
APPENDIX IV

-------
                                Environmental Protection Agency
                                Central Regional Laboratory
                                1819 West PersMng Road
                                Chicago, Illinois   60609
      MICRO METHODS  FOR THE DETERMINATION OF

       NON-FIITRABIE AND FILTRABLE RESIDUES
J. Carter, Madellene T.  Huston and Oliver J. Logsdon II
                       April  18,  1975

-------
                           ABSTRACT

Rapid, micro methods for the determination of non-fHtrable
and fUtrable residues  are  reported.   Non-flltrable residue analysis
of wastewaters 1s accomplished  using  up  to  10 ml of sample for a de-
tection limit of 1 mg/1.  Using the suggested sample  sizes, all filtra-
tion work 1s completed  within  ttn  minutes.   FUtrable residues are
determined on a 100 ul  sample which 1s dried at  180°C for one-half hour.
Thirty samples can be analyzed  for both  residue  parameters in less
than three hours.  Both micro methods were shown  to produce results
comparable to the standard  methods with  better precision.
                              -1-

-------
        The determination of non-f1ltrable and filtrable residues
are among the oldest determinations 1n water analysis.   While old,
residue analyses remain Important 1n assessing the quality of waste ,
surface and potable waters.   At least one residue parameter 1s
Included 1n a 11st of significant parameters for assessing the quality
of effluents from ea
-------
of a Cahn micro balance 1n a drying oven at 105°C.   Unfortunately,
this drying technique is not applicable to the 180°C filtrable re-
sidue procedure because the maximum operating  temperature of the weighing
chamber 1s 11QOC.
        A substantial amount of work has been performed on improving
the standard Gooch crucible-asbestos mat procedure for the deter-
                                   io-i«»
mination of non-filtrable residues.       Chanln et al., have Iden-
tified the major difficulties with the asbestos mat technique as
being due to variations 1n asbestos quality, preparation of non-
uniform mats, mat disturbance during handling, and a slow filtration
     10
rate.    Degen and Nussberger found that the mat must be carefully
washed, before taring and after sample filtration, to avoid erroneous
        u
results.
                     10             u
        Chanln et al., and Nusbaum   simultaneously reported similar
non-filtrable residue methods using glass fiber filters which greatly
reduced problems with mat preparation.  Engelbrecht and McKlnney
used the membrane filter for non-filtrable residue analysis but re-
ported a  slow filtration rate for  some samples.  Harada et al., also
noted  this  problem using glass fiber filters  and reported a procedure
utilizing a  combination filter mat consisting of both coarse asbestos
and  a  glass  fiber disk.
        Smith and Greenberg compared and evaluated five of the non-
filtrable residue methods in common use, including the standard
procedure.    Three glass fiber filtration techniques were compa
to an asbestos mat and a membrane filter method.  They found no
                             -3-

-------
statistically significant bias  or different coefficients  of  variation
between the five methods.  However,  none of the  procedures studied
combines speedy filtration with ease of filter media  preparation.
The problem of a slow filtration rate becomes  serious when a large
volume of sample must be filtered for flltrable  residue analysis.
A  fast, efficient and accurate method for determining non-f1ltrable
residues that combines • minimum of filter handling with rapid
filtration  1s reported 1n this paper.  A rapid method for deter-
mining  flltrable residues using only 100 ul of sample 1s also reported.
                               -4-

-------
 METHODS
 Apparatus^   All  weighings were  performed on a Mettler ME22  electronic
 mlcrobalance equipped with  BE22 control and BA25 digital  display  units
 and & Nuclear Products  Co.  500  uC  Po  210 Ionizing  source.   All  of the
 filters  evaluated  are listed  In Table I.  The Nuclepore  25  mm  diameter
 0.4 urn standard  polycarbonate membrane filter was  chosen for routine
 use.   Sample filtration was performed with a Mill 1 pore thirty-place
 membrane sampling  manifold  using 15 x 125 mm culture  tubes  to  receive
            *
 the filtrate.  Liquid transfers for non-f1ltrable  residue analysis
 were performed with a 1-5 ml  or 5-10  ml Oxford Laboratories Macro-Set
 plpet with disposable tips.  A  100 ul Eppendorf pipet with  disposable
 tips was used for  liquid  transfers for filtrable residue determinations.
 Cahn 12 mm diameter aluminum  pans  were used as evaporating  dishes for
 filtrable  residue analysis.  Coors 03 12-place spot  plates were  used
 to hold the aluminum pans.  Two control standards  for filtrable residue
 analysis were prepared  with Nad to be 400 and 500 mg/1.  Non-uniform
 samples  were homogenized with a Tekmar model SOT.

Non-rFntrable Residue. Weigh the Nuclepore  filters  to  the nearest
mlcrogram directly  out of the  box.  Pass the  filters about 1 inch  over
the Po 210 ionizing source 1n  the weighing  chamber  to  reduce the
electrostatic charge.  Place the weighed filters  in numbered 60 rnm
aluminum weighing dishes until they are to  be  used.  Wash and  dry  t'he
sample wells and  filter  supports of the sampling manifold.  Load the
filtrate receiving  rack  with 15  x 125  mm culture  tubes and assemble the
manifold as per Millipore Co.  Instructions.   Place  the filters  on  the
                             -5-

-------
manifold by first dipping each filter 1n distilled «ater so they
adhere to the support.  Homogenize all non-uniform samples.  Choose
a volume of a surface or wastewater to filter so that no more than
2.0 mg of residue will remain.  Discard any sample which does not
filter 1n ten minutes and re-fliter a smaller sample volume.  Gener-
ally, volumes filtered are 10 ml for a surface water or wastewater
effluent (up to a concentration of 200 mg/1), and 1 ml for grossly
polluted samples (up to a concentration of 2000 mg/1).  In addition,
analyze one sample 1n duplicate and the two flltrahle residue control
standards (also used as blank filters) per set of samples.  When
filtration 1s complete, disassemble the sampling manifold, remove
the filtrate receiving rack and reassemble the manifold.  Wash each
filter with two 5 ml portions of distilled water.  Remove the filters
from  the sampling manifold, return them to the numbered aluminum
weighing dishes and place In an oven at 103-105°C for 1/2 hr.  Remove
from  the oven at one time only the number of filters that can be
weighed before the aluminum pans cool.  The final non-f1ltrable residue
values are corrected for the change 1n blank filter weights.  The cause
for a blank of more than 0.01 mg should be investigated before reporting
the results.

Flltrable Residue.  Heigh the Cahn 12 mm diameter aluminum pans to
the nearest mlcrogram and place on a numbered Coors spot plate.  Trans-
fer one hundred ul of each sample to the residue  jishes with an
Eppendorf plpet.  Analyze the A and 8 control standards just like t^e
real  samples.  Carry  two blank  pans tnrough the drying and weighing
process.  Correct final flltrable res'due values  for the change in
blank pan weights.  The cause for a b.ank of more  thar 0.003 rcg should
                               -6-

-------
be Investigated before reporting the results,

RESULTS AND DISCUSSION

Non-Flltrable Residue Method Development.  The primary considerations
In developing a new non-flltrable residue method were the ease of
filter media handling and a rapid filtration rate.  Harada et al.,
solved the filtration rate problem by using a media that was difficult
to prepare.    Most Investigators have found qlass fiber and membrane
filters easy to use but of limited loading capacity) especially  the
latter ones.  One proposed solution to this problem 1s to use larae
                 11
diameter filters.

The authors decided the best solution to the media handling and fil-
tration problem was to use glass fiber or membrane filters with a
small enough water sample volume that would pass through the media
quickly.   Initial experiments with grossly polluted wastewaters, using
25 mm glass and membrane filters, showed that no more than 10 and 5 ml,
respectively, could be filtered in less than 10 minutes.  For monitoring
stream and wastewaters the method must be capable of measuring down to
5  mg/1.  This means that residues of 0.05rag (using ln ml samples) must
be determined accurately.  Since micro balances measuring to the nearest
0.0001 mg are available, the real limitation of the method is the stabil-
ity of the filters.

-------
Filter Stability.  The two major causes of filter instability are
weight loss due to wash-out or "media migration" during filtering16 l8
and the volatilization of filter material during the drying process.
The bias Introduced by "media migration" during sample filtration
can be eliminated by pre-wash1ng the filter.*   However, this In-
volves an extra step 1n the analytical procedure.  The thermal
Instability problem exists mainly with the membrane-type filters and
                                                 19
has only been resolved by drying 1n a desiccator.    However, this
procedure 1s more time consuming and  could result In a positive  bias
when   compared to the 105°C drying method.

When filtering small volumes, and hence weighing s:nal1 amounts of
residue, an undetected weight loss from a filter cm significantly
bias the results.   Ten filters were evaluated for their stability
upon filtering 10 ml of water and drying at 105°C ror 1/2 hour.  The
results in Table I show the weight losses for threij binderless glass
fiber filters (Reeve-Angel 934 AH, Gelman type £ and Millipore AP4^)
two glass fiber  filters with an acrylic resin binder (Milllnore AP15
and AP20) and five different membrane-type filters (Nudepore,
Millipore MF, Gelman TCM, MllUpore HATF, Gelman AH1200).
                             -3-

-------
                                        TABLE.I
                     WEIGHT CHANGES FOR TEST FILTERS (In Milligrams)8

Mean Weight
before
Mean weight
after
Mean weight
change
Std. dev. of
weight changes
Reeve-Angel Gelman
934 AH : Type E
25.38
25.27
-0.118
0.026
36.69
36.59
-0.106
0.020
Hi 1H pore
AP40
34.30
34.19
-0.117
0.023
Nuclepore
4.303
4.301
-0.003
0.002
Mlllipore
AP20
34.45
34.33
-0.121
0.012
MNHpor
MF
29.22
28.89
-0.328
0.013
•
Mean weight
before
Mean weight
after
Mean weight
change
Std. dev. of
weight changes

Gelman
TCM
14.25
14.13
-0.120
0.008

Mil li pore
APIS
46.62
46.51
-0.107
0.013
Mllllpore
HATF
28.44
28.16
-0.286
0.016
i
Gelman
AN! 200
27.85
27.67
-0.175
0.006

a These values are based on ten replicate experiments  with  each  type of filter.
  The filters were pre-weighed, exposed  to a  in ml  deionized  water  filtration,
  dried at 105°C for one-half hour and re-weighed.


-------
The mean weight loss and the standard deviation cr weight loss based
on ten replicates were very similar for the three binderless glass
filters."  The weight loss, 1f unaccounted for, would bias the results
by an average of 11 t 5 mg/1 at the 952 confidence level.  While the
mean weight loss for the blndered and unhindered 'Miters was similar
the standard deviation of the weight loss for the former has half
that for the latter filters.  These experimental results confirmed
the visual observation that the blndered filters were structurally
sounder and sloughed off less filter material during handling.  Except
for the Nuclepore filter, the membrane filters exhibited either a
larger mean or standard deviation of weight loss than the glass filters.
The Nuclepore filters showed the smallest mean ami standard deviation
of weight loss of all the filters tested.

Table II shows weight loss results from filters which were pre-washed
three times with 10 ml of de-ionized distilled water and dried before
filtering the test 10 ml aliquot of water.  Prewashlng the glass fiber
filters substantially reduced the mean and standard deviation of weight
loss.   Prewashlng  the cellulose membrane filters substantially reduced
their weight  loss  during filtration.

Further experiments were performed to determine  the cause of weight
loss during the  filtration-drying process.  Samples of the filters listea
in  Table  I were  dried at 1C5°C for 1/2 hour.  The Muclepore and all of
                             .10-

-------
                             TABLE II
       WEIGHT CHANGES FOR PRE-WASHED TEST FILTERS (In Milligrams)a

Mean weight
change
'Std. dev. of
weight changes
Mil lipore
APIS
-0.012
0.004
Mlllipore
AP20
-0.012
0.011
Mlllipore
AP40
-0.031
0.007
Mill ipore
MF
-O.nia
0.013
Gelman j
TCM i
1
-0.015
0.019
i
a These values are based on ten replicate experiments  with  each  type  of filter.
  The filters were pre-washed three  times with  in ml of  water, dried  at 105°C
  for one-half hour and pre-welghed.   They then were exposed to  a  in  ml water
  filtration, dried at 1C5°C-for one-half hour  and  re-weighed.

-------
glass fiber filters were stable to 0.002 mg.  The other membrane filters
showed substantial weight losses which were less than the total weight
losses from the filtering and drying process,  "herefore, the glass
filter* lose weight only during the filtering process whereas the cellu-
lose membrane filters lose weight during both the filtering and drying
process.  This conclusion was verified by experiments which showed that
the cellulose membrane filters continued to lose weight during the drying
process even after they were thoroughly washed.

As a results of the above experiments the Nuclepore and the Ml Hi pore
AP20 hindered glass filter were chosen to evaluate the micro technique.
A drying time of  30 minutes was shown to be adequate for both filter
types by re-drying a set of partlculate laden filters for 24 hours
without any addition weight loss.  Due to the low heat capacity of the
filters, they could be weighed directly from the oven without cooling
In a desiccator.

The relative humidity during the course  of this  work  was  always  below
30% and although a desiccator was not used no filter  weight  gain from
hygroscopic effects was observed.   Tierney and Conner showed that at
100% relative humidity clean glass fiber filters will gain  about 5*, 1n
                    "                  •
weight.19  They also showed weight gains up to 805 for particulate-
laden glass filters at 1005 relative humidity.   However,  at  relative
humidities below 555 the weight gain of three different samples was
less than 15.  A weight gain of only 0.2** has bten reported for
                                                 20
Nuclepore filters immersed 1n water for 24 hours.    This property.
combined with the low tare weight of the
                                -12-

-------
filter were the deciding factors  1n choosing  the Nuclepore filter
for routine use.   If cost 1s a serious consideration,  then pre-washed
glass fiber filters can also be substituted.   Whichever filter 1s
used, 1t 1s desirable to maintain the relative humidity below 50*
during the weighing process.  It was also determined to be necessary
to keep a Po 210 alpha Ionizing source in the balance  weighing
chamber to eliminate an electrostatic charge  build-up  on the Nuclepore f1l

Non-flltrable Residue Methods Comparison.  The data in Table III compare
                                                       2 7
results using the micro method and the standard method. '  The ratio
of the micro (using the Nuclepore filter) to  the standard method results
1s 1.04 ± 0.37 which 1s not significantly different from one (T-test,
a * 0.05).  Smith and Greenberg also reported no statistically significant
bals 1n results determined using the standard method with membrane and
glass filters.    However, their results from the membrane filters were
slightly greater than the glass filters,

For the micro method, the ratio of results using Nuclepore and MUlipore
AP20 filters is 1.07 * 0.11, which is not significantly different from
one (T-test  0 » 0.05).  However, the results from the Nuclepore filters
are slightly greater than from the glass filters.  Cranston and Suckley
reported that both Nuclepore and gUss filters quantitatively retained
2 um beads, whereas the retention of 1 -m beads was 93 and 267', respec-
       18
tively.    Therefore, filtering the same volume o* a wastewats*- througn
Nuclepore and glass filters of the same diameter snould produce higner
results for the former filter.  The magnitude of the dif-'erence would
depend on the particle size distribution of the samples.
                             -13-

-------
                        TABLE  III
      COMPARISON OF MICRO AND STANDARD METHODS  FOR  THE
            DETERMINATION OF NON-FILTRABLE  RESIDUE3
Sample Type
Cooling Water
Industrial Eff.
Industrial Eff.
Starch Waste
Well Water
Surface Water
Raw Sewage
Raw Sewage
Treated Sewage
Raw Sewage
Treated Sewage
Refinery Eff.
River Water
Well Water
Refinery Waste
Raw Sewage
Surface Water
Steel Eff.
Food Eff.
Steel Eff.
Steel Waste
Treated Sewage
Treated Sewage
Micro Method
Nuclepore
4,4

7,7
2.2
7,6
14,15
192,186
195.204
98,102
156,157
39,43
23,20
20,21
22.24
20,22
339,322
14
907,910
20
11
13
12

Micro Method
Mllllpore AP20
<2,4
72,74
2,3
9,10
9,9
13,15
179,183
199,202
94,96
146,151
39,41
21,21
21,19
23,17
22.19
327,320
13,13
890.860
19.19
Q
ii
9
9
Standard Method
<5
72
<5
12
<5
15
190
18*
106
162





320
9
880

15
16
7
7
a All results are expressed in mg/1.   Values separated by a comma
  are results from duplicate determinations.
                           -14-

-------
A paper Industry report presented data to show that using the standard
method, the larger the volume filtered, the higher the determined
                                    21
non-f11trable residue concentration.     Obviously, the larger the
volume of water filtered, the greater the amount of residue collected
and the more difficult 1t would be to thoroughly wash the filter.
Cranston and Buckley found that a rinse of 25 ml of deionized water
was not sufficient to remove trapped Inorganic salts from a 25 mm
                                             u
glass fiber filter after filtering sea water.    In addition, if
enough residue was collected to act as a pre-fliter, higher results
would be determined for larger volumes filtered.

Several samples were analyzed in triplicate by the micro method using
three different sample volumes.  The results in Table IV show that,
using the micro technique, there is no universal increase in non-
flltrable residue results with increasing sample volume.  The largest
volume filtered corresponds to no more than 3 mo of residue on a 25 mm
filter with a maximum filtration time of 10 minutes.  No problem was
encountered washing the filters.  The results reported in tne paper
industry report correspond to a 10 mg residue on a 21 mm fliter with
filtration times over 2 hours.  Obviously, the pacer -'ncustry f'te-s
could not be washed properly.  In order to assure proper washing of
the residue, sample volumes are chosen so that the maximum filtration
time  is 10 minutes.  This corresponds to a maximum  of 2-3 mg  residue
depending on the clogging characteristics of the samcle.  Any fil-er
that  becomes clogged must be discarded to avoid erroneous results such
as those reported in the paper industry report.21
                              -15-

-------
Initial work to dtflnt the precision of tht method revealed poor
duplication of results for samples with non-unlfjrm particulate
matter.  Thereafter, all samples with non-unlfonn partlculate matter
were homogenized with a Tekmar SOT blender.  In Drder to show that
the process of homogen1zat1on does not alter the non-f11trab1e re-
sidue concentration, a raw sewage sample was analyzed ten times
before and after blending.  The results (blended, 279.0 ± 4.8 mg/1;
unblended, 280.0 t 8.0 mg/1) show that the mean results are not
affected but the precision 1s Improved by blending the samples.

The precision of the micro method on the variety of sample types
studied 1s 3 mg/1 below 50 mg/1 non-flltrable residue and 9 mg/1
above  50 mg/1 at the 95S confidence level.  The average coefficient
of variation for all samples 1s 4.W.  Smith and Greenberg reported
a coefficient of variation of 4.2* using the standard method.
The absolute detection 11«1t of the method 1s 0.01 mg (37).  This
corresponds to 1 mg/1 for a 10 ml sample volume.

Flltrable Residue Method Development.  The method of Allen and Sacon
was evaluated for use 1n combination with  the micro non-f11trab1e
                                    9
residue method described previously.   Their method used 50 ul of
sample dried at  105°C for 15 minutes and the residue was weighed to
0.0001 mg with results  reported to  the nearest  1 mg/1.  Initial ex-
periments showed that the extra significant figure gained-by weighing
                             -16-

-------
                       TABLE IV
          CONCENTRATION OF NON-FILTRABLE  RESIDUE
                 VERSES VOLUME OF SAMPLE
                            Non-Flltrable Residue.  mg/la
Sample Volume, ml
Sewage I
Swage II
5
74
141
10
72
139
20
73
142
a Determined using Mm 1 pore AP20 glass fiber filters.   All
  filters were washed twice with 5 ml  of water.
                           -17-

-------
to 0.0001 mg was at the expense of several  minutes extra weighing
time per sample.  Therefore, a 100 ul sample size was chosen, the
residue weighed to 0.001 mg and the results reported to the nearest
10 mg/1.  With this sample size, a ten-fold advantage of sample
size to evaporating dish weight exists for the micro over the standard
method.
Howard showed that the figure for total dissolved solids, based
on the weight of residue after drying at 180°C, is close to the
sum of the determined constltutents  for most natural  waters.6
Therefore, the drying and weighing procedure of Allen and Bacon
was modified to accommodate a 180°C drying procedure.  Advantage
was taken of the very large difference 1n heat capacities of the
aluminum pans and the supporting porcelain spot plate to simplify
the weighing process.  After drying for 30 minutes (found to be
sufficient), the spot plates are removed from the oven.  As each
aluminum pan 1s weighed, the remaining ones are kept hot by the
spot plate for  up to ten minutes.  This technique eliminates the
need for a desiccator.

Comparison of FUtrable Residue Methods.  The micro  and standard
filtrable residue methods were compared on a variety of samole
types  (Table V).  The mean  ratio of micro to standard method resjIts,
0.99  ±0.18 at  the  95*  confidence level, 1s  not significantly
different from  one  (T-test. * * 0.05).
                          -18-

-------
                            TABLE V
             COMPARISON OF MICRO AND STANDARD METHODS



             FOR THE  DETERMINATION OF FILTRABLE RESIDUE
                      FUtrable Residue, mg/1
Sample Type
Refinery waste
Refinery effluent
Well water
River water
Refinery effluent
River water
Refinery effluent
Steel mill effluent
Steel mill waste
Treated Sewage
Lake Water
Lake water
Food process waste
Well water
Starch waste
Industrial waste
Industrial effluent
Lake water
Raw sewage
Treated sewage
Treated sewage
Micro*
620,590
1930,1940
720,710
370,390
830,820
500,520
910,930
670,680
510,510
880,820
230,240
240,240
1530,1530
350,330
800,790
370,350
860,850
250,250
1250,1240
520,520
630,630
Raw sewage j 510,500
I
Standard
635
1930
640
395
820
495
870
670
600
800
270
260
H80
370
710
310
970
250
1210
Spec. Cond., us
970
3370
1120
580
H10
800
1460
1050
780
1230
385
370
2 "'50
610
nan
510
1570
410
2070
590 850
580
580
1070
320
i
a Values separated by  a  comma are  results from duplicate determinations,
                               -19-

-------
The precision of the micro method was determined from the paired results
in Table V to be 26 mg/1, at the 95% confidence level.   At a mean result
of 705 mg/1, this corresponds to a coefficient of variation of 2*.
"Standard Methods" quotes a coefficient of variation of 5% for the macro
       2
method.   The absolute detection limit, based on three times the standard
deviation of thirty-two blank values, 1s 0.0021 m<|.  This corresponds
to a detection limit of 21 ag/1 using a 100 ul sample volume.

There is no method of assessing the accuracy of filtrable residue
determinations on real samples.  Howard  and Sokolof*    showed that the
loss of some chloride and nitrate are unavoidable 1* the determination
of filtrable residues.  However, the A and B control standards were
used to evaluate day-to-day bias in results.  cor ten determinations
on different days the values of the A and B standards were 506* 19 and
411 ± 13 mg/1, respectively.  Specific conductance values were also used to
assess  the  consistency of filtrable  residue measurements.  The  ratio
of  residue  to  conductivity  results  1n Table V  is  0.62  ±  0.08 at the
955 confidence level.  This ratio corresponds  ve'-y  closely  to that
reported by Rainwater and Thatcher,  for  comparatively  dilute solutions.
For solutions  with  dissolved salt concentrations  exceeding  2000 to
3000 mg/1 or with substantial  concentrations  of dissolved silica and
organic matter, the ratio may be much  higher,   -or waters high in
 acidity or  alkalinity the ratio can  be  .nucu  'ower t^an 0.62.  The
 cause of a  filtrable residue to conductivity  -atio o^ts'je of ^.62 :  ?.'
 should be investigated before any results are "gpcrtec.

-------
                          ACKNOWLEDGEMENTS

Credlts
We thank Or. Billy Falrless, Chief, Chemistry Branch,-Central
Regional Laboratory, for his critical  evaluation of alternative
flltrable residue drying procedures.

Authors
Mark J. Carter, Madeliene T. Huston and Oliver J.  Logsdon II
are chief, chemical technician and chemist,  respectively, of
the Inorganic Section, Central Regional Laboratory, Environmental
Protection Agency, Chicago, Illinois.
The mention of trade names or commeHcal  products does not constitute
endorsement or recommendation for use by  the Central  Regional  Laboratory,
or the Environmental Protection Agency.
                              -21-

-------
                         REFERENCES
 1.   "Handbook for Monitoring Industrial Wastewater", U.S. Environmental
     Protection Agency, Washington, O.C. (1973).

 2.   "Standard Methods for the Examination of Water and Wastewater",
     13th Ed.. Amer. Pub. Health Assn.. New York, N.Y. (1971).

 3.   "Official and Tentative Methods". Assoc. Official Agr. Chem.,
     pp. 35-6 (1916).

 4.   Mason, W. P., "Examination of Water", 3rd ed., Wiley, pp. 22-4
     (1908).

 5.   Dole, R.B.,  U.S. Geol. Survey, Water Supply Paper 236, pp.  13-15,
     30-1  (1909).

 6.   Howard. C.S., "Determination of Total Dissolved Solids 1n Water
     Analysis",  Ind. Eng. Chea., 5_, 4  (1933).

 7.   "Manual of  Methods  for Chemical Analysis of Water and Wastes",
     U.S.  Environmental  Protection Agency, Wash., C.C. (1974).

 8.   Federal Register. 38, 38759 (1973).

 9.   Allen, H.E.  and Bacon, C.W., "Rapid Determination of Filtrable
     Residue  1n  Natural  Waters", J. Amer. Water Works Assoc.. 61,
     355 (1969).                                              ~~

10.   Chanln. G..  et al.,  "Use of Glass Fiber Filter Medium 1n the
     Suspended Solids Determination".  This Journal. 30.,  1062  (1958).

11.   Nusbaum,  I., "New Method for Suspended Solids' , This Journal.
     30, 1067  (1958).

12.   Engelbrecht, R.S.,  and McKlnney,  R.E., "Membrane Filter  Method
     Applied  to  Activated Sludge Suspended So^'ds Determinations",
     This  Journal,  28_,  1321  (1956).

13.   Harada,  H.M.,  et al., "Modified Filtration Method for Suspended
     Solids Analysis", This Journal. 45_, 1853  (1973).

14.   Degen,  J.  and Nussberger,  F.E.,  "Notes of  the  Deterninaticn of
     Suspended Solids",  This Journa1.  23,  2:~  "35';v.

15.   Smith,  A.I.  and Greenberg, A.E.,  "Evaluation  3*  '-'et^cds  for
     Determining Suspended Solids  1n Wastewater,"   'his  ,'curnal.
     35, 940  (1963).
                               -22-

-------
16.   Cranston,  R.E.  and Buckley,  O.E.,  "The Application  and  Performance
     of Mlcrofliters 1n Analyses  of  Suspended  Particulate  Matter",  un-
     published  manuscript,  Bedford  Institute of  Oceanography,  Dartmouth,
     Nova Scotia,  Canada (1972).

17.   Jenkins,  0.,  "Analyses of Estuarlne  Waters",  This Journal,  39,
     159 (1967).

18.   Wlnneberger,  J. H., et al.,  "Membrane Filter  Weight Determinations",
     This Journal. 35.,  807  (1963)

19.   Tlerney,  G.P. and  Conntr, W.O., Amer. Inc.  Hygiene  Assn.  J.,  28
     363 (1967).

20.   "Specifications and Physical  Properties", Nuclepore Corporation
     (1973).

21.   "A Preliminary Review  of Analytical  Methods for  the Ceterm1nat1on
     of Suspended  Solids 1n Paper Industry Effluents  for Compliance
     with EPA  - NPOES Permit Terms", National  Council  of the Paper
     Industry  for  Air and Stream  Improvement,  Inc., New  York,  N.Y.  (1975)

22.   Sokoloff,  V.P., "Water of Crystallization in  Total  Solids of
     Water Analysis", Ind.  Eng. Chem.,  5., 336  (1933).

23.   Rainwater, F. H. and Thatcher,  I.  L., "Methods for  Collection
     and Analyses  of Water  Samples", Geological  Survey Water Supply
     Paper 1454, Washington, O.C.,  p, 83  (I960).
                                -23-

-------
APPENDIX V

-------
CHLS 05APR OSN*CNCRLS.RGD.IL.OW04 ON TS0009  04/19/75                  0£VC
                             •STUDY DESCRIPTION	
                            STATTYPE SMPLDAY ATLA8BY OUEDATE ACCOUNT-NUMBE1
                            77777777 03FE875 05FE875 OJMAY75
                                 - ILLINOIS
                             •SAMPLE DESCRIPTIONS	
                               STATTYPE DEEP T M NO tNOOATE TIME PRLU
NPAR NLOC
96 7;
>»REGIOr
LA8IDNUM
14045
14046
14047
14046
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
U067
14068
U069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14C81
U082
14083
U084
14085
14086
14087
14088
U089
14090
U091
14092
> AOENCYIO UNLOCKEY ST
1 77
4 V DRINKING WATER STU
STORETID COLLDAY Tl*E
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203

-------
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
>»14045
»>14046
>»14047
>»14Q48
»>14049
>»14050
>»14051
>»14052
>»14053
>»14054
>»14055
>»14056
>»14057
>»14058
>»14Q60
>»14062
>»14063'
>»14Q64
>»14065
>»14Q66
>»14067
>»14068
>»14069
>»14Q70
>»14071
>»14072
>»14Q73
»>1*074
>»14Q75
I <~
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
HN03 REAGENT BLANK
H2SO*- REAGENT BLANK.
NAOH REAGENT BLANK
CUS04/H3P04 REAGENT BLANK
OPEW
CAIRO RAW WATER SERIES A  —
CAIRO RAW WATER SERIES B
CAIRO FINISHED WATER SERIES A
CAIRO FINISHED WATER SERIES d
CHESTER RAW WATER SERIES A  —
CHESTER RAW WATER SERIES B
CHESTER FINISHED WATER SERIES
CHESTER FINISHED WATER SERIES
CHESTER RAW WATER SERIES ft
CHESTER RAW WATER SERIES a
CHESTER FINISHED WATER SERIES
CHESTER FINISHED WATER SE-?iEi»
QUINCY RAW WATER SERIES A  	
QUINCY RAW WATER SERIES 9
QUINCY FINISHED WATER SERIES A
QUINCY FINISHED WATER SERIES B
CARLYLE RAW WATER SERIES ft  	
CARLYLE RAW WATER SERIES 3
CARLYLE FINISHED «ATER SERIES  A
CAPLYLE FINISHED WATER SE-IES  B
ROYALTON RAW WATER SERIES A 	
ROYALTON RAW WATER SERIES 3
ROYALTON FINISHED «ATE^ SERIES 4
ROYALTON FINISHED -A7EH SERIES E
FAIRFIELO RAW WATER SERIES  A   —
          PAW WATER SERIES  3
           0  } _S
A
B
A
B

-------
2.
3.
4.
5,
6.
7
t
9
0
1
2
3
V
J
s
T
J
I
.
I
i
i



>»14Q76 >
>»14Q77 >
>»140?a >
>»14079 >
>»14Q80 >
>»14081 >
>»14Q82 >
>»14083 >
>»14084 >
>»14085 >
>»14Q86 >
>»14087 >
>»14088 >
>»14089 >
>»14090 >
>»U091 >
>»14092 >
>»14093 >
>»14Q94 >
>»14095 >
>»14096 >
»>14Q97 >
>»14Q98 >
»>14099 >
>»14100 >
»>U102 >
>»U103 >
>»14105 >
>»14106 >
>»14107 >
>»14108 >
>»14L10 >
» > 1 4 11 2 >
>»14U6 >
> FAIRFIELO FINISHED WATER SERIES A
> FAIRFIELD FINISHED WATER SERIES 8 _. . _ _ _
> MT.CAHMEL RAW WATER SERIES A -— 3 £ ' ^ ^ NJ °7.^f B V
> MT.CARMEL RAW WATER SERIES B
> MT.CARMEL FINISHED WATER SERIES A
> MT.CAHMEL FINISHED WATER SERIES B
» NEWTON RAf WATEU SF«IES A , . -„,- 3^ 5"^ ^ ^^' * n
> NEWTON RAW WATER SERIES 8
> NEWTON FINISHED WATER SERIES A
> NEWTON FINISHED WATER SERIES 9 -
> DANVILLE RAW WATER SERIES A 	 UO . O^ tO $ 1 . 3 1 ^
> DANVILLE RAM MATER SERIES B
> DANVILLE FINISHED MATER SCRIES A
> DANVILLE FINISHED MATER SERIES B
> PFDPIA RAW WATC» SF-RTFS A - 	 	 UQ M:3 K) <5 PEORIA RAW WATEfl SERIES B i~- •--
> PEORIA FINISHED WATER SERIES A
> PEORIA FINISHED WATER SERIES 8
> PEORIA HAW WATER SERIES A
> PEORIA RAW WATER SERIES 8
> PEOPIA FINISHED WATER SERIES A
> PEORIA FINISHED WATER SERIES 8 , . -, n K\ a Q 3 -
> ROCK ISLAND RAW WATER SERIES A 	 4 1 • 3 u ^ \
> ROCK ISLAND AAW WATER SERIES B
> ROCK ISLAND FINISHED rfATER SERIES A
> ROCK ISLAND FINISHED WATER SERIES B
> STRFATftH RAW WATFH 5PRIFS A 	 • O \ 0 "? M ^ » ' ^
> STREATOR RAW WATER SERIES B ,,.-,--
> STPEATOR FINISHED WATER SERIES A
> STREATOR FINISHED WATER SE«IES B <_,<._,
> KANKAKEE RAW WATEfl SERIES A — 	 . . .... 	 M \ % O « ^ 0 ' v '
> KANKAKEE RAW *ATER SERIES B
> KANKAKEE FINISHED WATER SERIES A
> KANKAKEE FINISHED WATE« SERIES B
> HN03 REAGENT BLANK
> H2S04 REAGENT BLANK
> NAOH REAGENT BLANK
> CUS04/H3P04 'REAGENT BLANK „ _ . c
** ri A i c~ CQI t on DAW w A TrR ctrDfrc n ., 	 	 .,,—. -.— .-^ ^ V ,O « ^S n *^
> GALESBURG ^AW WATER SERIES 8
> GALESBUBG FINISHED WiTjs SESIES •
> GALES8URG FINISHED **AT£R SERIES ?

-------
liPA-CRL
1975
SAMPLE
LOG NO.
U050
U052
14054
14056
14058
14062
14064
14066
14068
14070
14072
14074
14076
14078
14080
14082
14084
14086
14088
14090
14092
14094
14096
14098
14100
14102
14104
14106
U108
14114
14116

.IL.OW04
S0003 OA
TREFLAN
«HL SMPL
UG/L
:<0.002
:<0.302
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:0.028
:0;050
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:0.010
:<0.002
:<0.002
:<0.002
1°
REGION
S0001 OA
HC9ENZ
WHL SMPL
UG/L
:0.010
:<0.002
:<0.002
:<0.002
:
-------
•Pft-CRL
1975
; AMPLE
.00 NO.
k050
k052
>054
.056
k056
.062
.064
.066
.068
k070
k073
k074
k076
k078
.080
.082
.084
.086
.088
.090
.092
.094
.096
.098
.100
.102
.104
.106
.108
kl 14
.116


39430 OA
ISOOHIN
WHL SMPL
UG/L
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO'.OC3
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
8P
REGION
39420 OA
HCHLR-EP
WHL SMPL
UG/L
xO.002 :
xO.002 :
x 0 . 0 0 2
XO.002 :
XO.002 :
XO.002 :
XO.002 :
XO.002 :
xO.002 t
XO.002 :
XO.002 :
xO.002 :
xO.002 :
XO.002 :
xO.002 :
XO.002 :
xO.002 :
XO.002 :
XO.002 !
XO.002 :
x 0.0 02
XO.002 :
XO.002 :
xO.002 :
xO.002 :
xO.002 :
xO.002 :
XO.002 :
xO.002 :
xO.002 :
XO.002 :
9P
V DRINKING
S0006 OA
CHLOROAG
WHL SMPL
UG/L
<0.002
<0.002
<0.002
0.004
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
10P
S0007 OA
DOE OP
WHL SMPL
UG/L
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
:0.008
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
t<0.003
xO.003
xO.003
xO.003
xO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
IIP
S0008 OA
DOE P?
WHL SMf*L
UG/L
XO.003
XO.003
XO.003
XO.003
XO.003
xfl.003
XO.003
XO.003
XO.003
XO.003
X0.003
XO.003
XO.003
XO.003
XO.003
XQ.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
12P
S0009 OA
ODD OP
*HL SMPL
UG/L
XO.003
xO.003
XO.003
XQ.C03
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
xC.003
xO.003
xO.003
XO.003
xO.003
x 0 . 0 0 3
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XC.003
13P
S0010 OA
DOT OP
WHL SMPL
UG/L
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
X0.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
xO.003
xO.003
XO.003
XO.003
14P




: 6S
• o c
• ™ J
: 105
: 125
: 145
: 18?
:20S
:22S
:24S
:26S
:28S
:30S
:32S
: 34S
:365
s 33S
:40S
; 42S
:44S
:46S
:48S
:50S
:52S
:54S
:56S
J 5«iS
:60S
:62S
:64S
:70S
:72S
»
WATER STUDY - ILLINOIS •

-------
cPA-CRL
1975
SAMPLE
LOG NO.
14050
14052
14054
14056
14058
14062
14064
14066
14068
14070
14073
14074
14076
14078
14080
14082
14084
14086
U088
14090
14092
14094
14096
14098
14100
14102
U104
14106
14108
14114
14116

.IL.OW04
SOOll OA
000 PP
WML SMPL
UG/L
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
15P
HEGION
S0012 OA S0013 OA
DOT PP CARBPHTH
WHL SMPL WHL SMPL
UG/L UG/L
tO. 006 K0.003
:<0.003 K0.003
:0.068 K0.003
:<0.003 :<0.003
:<0.003 :<0.003
:<0.003 :<0.003
:<0.003 :<0.003
t<0.003 K0.003
K0.003 :<0.003
:<0.003 :<0.003
:<0.003 :<0.003
:<0.003 t<0.003
:<0.003 :<0.003
:<0.003 :<0.003
:<0.003 :<0.003
:<0.003 :<0.003
:<0.003 K0.003
K0.003 K0.003
:<0».003 t<0.003
:<0.003 :<0.003
:<0.003 :<0.003
:<0.003 :<0.003
:<0.003 :<0.003
:<0.003 :<0.003
:0.012 :<0.003
:<0.003 :<0.003
:<0.003 :<0.003
i<0.003 :<0.003
:<0.003 t<0.003
:<0.003 :<0.003
:<0.003 :<0.003
16P 17P
S0014 OA 39440 OA S0020 OA S0021 OA
MIRE* MThXYCC* 2.4-QtIP DN9P
WHL SMPL WHL SC>H. WHL SMPL WHL SMPL
UG/L UG/L UG/L UG/L
K0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
K0.005 :<0.01
:<0.005 :<0.01
K0.005 :<0.01
:<0.005 :<0.01
t<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
t<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 KO.Ol
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
<.02 :<1 * 6-
<.02

<.02
i
<.02
<.02
<.02
<.C2
<.02 :
<.02 i
<.02
<.02
<.02 :
<.02 !
<.02 !
<.02 :
<.02 :
<.02
<.02 :
<.02
<.02
<.02
<.02 !
<.02
<.02
<.02
<.02
<.02
<.02
<.02
<1 : -T
: 1:V
<1 : 12'
: 14<
• < 1 : 1 8 «
<1 :20:
<1 :22.
<1 :2*
<1 :26
><1 :29
<1 : 30'
,<1 :32
<1 :3*
<1 :36
<1 :3«
<1 :4Q
<1 :42

-------
EPA-CRL
1975
SAMPLE
LOG NO.
14050
14052
14056
14062
14064
14066
14068
14070
14073
14074
14076
U078
14080
14082
14084
14086
14088
14090
U092
14094
14096
14098
14100
U102
14104
14106
14108
14114
14116
39770 OA
OCPA
WHL SMPL
UG/L
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
•31O
S0023 04
ENOOS I
WHL SMPL
UG/L
<.005
<.005
<.OOS
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
K.OOS
P3P
39380 OA
OIELORIN
WHL SMPL
UG/L
.004
<.003
,007
<.003
<.003
<.003
<*003
<.003
<.003
<.003
<.003
.011
.006
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
.004
<.003
K.003
24P
&&' — —
.IL.OW04 PEOION V OP-INKING WATE3
39390 OA 39460 OA
ENQRIN CLR°NZLT
WHL SMPL WHL SMPL
UG/L UG/L
<.003 <.01
<.003 <.01
<.003 <.01
<.003 <.01
<.003 <.01
<.003 <.01
<.003 <.01
<.003 <.01
<.003 K.01
<.003 K.Oi
<.003 K.01
<.003 <.01
<.003 <.01
<.003 <.01
<.003 <.0l
<.003 <.01
<.003 <.01
<.003 <.0l
<.003 <.01
<.003 <.01
<.003 <.01
<.003 <.01
<.003 <.01
* f\ rt •} s f\ \
<«003 <.01
* f\ f\ t S A 1
< • 003 < • 0 1
< . 0 0 .3 < . 0 1

-------
 EPA-CRL
  1975
 SAMPLE
 1.06 NO.
14050
14052
14054
U056
14062
14064
14066
14068
14070
140*3
14074
14.076
14078
14080
14082
 14084
 14086
 14088
 14090
 14092
 14094-
 1*096
 14098
 1*100
 14102
 14104
 1*106
 1*108
 14114
 14116
 ,IL.O*04
S0029 OA
245-T:IO
V«HL SMPL
  UQ/L
S0030 OA S0031 OA
 PROLAN   8ULAN
WHL SMPL WML SMPL
  UO/L     UO/L
                  S0026 OA 39808 OA
                    OEHP    TE3IO*
                  WML SMPL WML SMPL
                    JQ/L     UO/L
 <
 <
 <
 <
 <
 <
K.Ol
K.Ol
t<.01
K.Ol
K.Ol
K.Ol
          <
          <
    29P
   REGION
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
   30P      31P
V DRINKING WATER
          K.Ol
          K.Ol
          K.Ol
          K.Ol
            31P
:3
•
•
:3
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
                           Kl
                           Kl
                           Kl
                           Kl  '
                                    K.O:
                           K.Cl
                           K.Ol
                           K.Ol
                   Kl       K.Ol
                   Kl       K.Ol
                   t < 1       K.Ol-
                      32P       33P
                  STUDY  -  ILLINOIS
                                    39570 OA
                                    OIAZINON
                                    »»HL SMPL
                                      UO/L
                                   Kl
                                   Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
:<1
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
                                                 34P
                            S0016 OA
                            OYfONaTE
                                SHPL
                              UO/L
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
 Kl
 Kl
 Kl
 :
-------
FPA-CRL
1975
SAMPLE
t_OG NO.
14050
14052
14054
U056
14062
14064
14066
14068
14070
14073
1*074
14076

14078
14080
14082
14084
1*086
14088
14090
14092
14094
14C96
14098
14100
14102
14104
U106
14108
141U
14116
.IL.DW04
S0017 OA S0032 OA 39600 OA 39530 OA 39540 OA
RONNEL DU«SBAN MPARATHN MALATHN PARATHN,
4HL SMPL '4HL SMPL »HL SMPL '-HL SMPL WHL SM»L
UG/L UG/L UG/L UG/L UG/L
• ...1 « * 1 • < 1 Kl
Kl Kl Kl •  * \ ' * 1 «<1
• <1 :<1 KI • < * *^4
.-i »^1 !<1 *<1
:
-------
14052"
14054
14062
U064
14066
 14088
 14090
 14092
 14094
  14114
          »
Kl
                  «
                  " -
'<
 <


 co*-rPL  S0018 04 5003* OA 39580 OA
 -**i*    PHrNCAPT   EPN    GUTHION
 ;  Es.

                          $0035 OA S0036 0

                            ;


                             *
                          VML SMPL MHL
                            UG/L     UG/L
                          Kl      Kl
                          Kl      Kl
                          !<1      Kl
  14116    Kl       Kl       —         w      47P      43"

  .tL.0-04   REllON^IN^^^	
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
46P
STUOY -
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
47P
ILLINOIS
S0037 OA
COUMAFOS
*HL SMPL
UG/L
<5

39488 OA
AROCLOR
1221
UG/L
K0.3
:<0.3
:<0.3
:<0.3
:<0.3
:<0.3
:<0.3
KQ.3
K0.3
K0.3
K0.3
K0.3
K0.3
: < 0 . 3
:o.3




: 6S
: *S
:10S
:12S
: las
:20S
J22S
:2^S
:26S
»29S
:30S
:32S
:34f
:36S
:38S
                                                        <5
                                             t<5
K0.3
K0.3
:<0.3
:<0.3
K0.3
:<0.3
K0.3
K0.3
:<0.3
K0.3
K 0 . 3
K0.3
K0.3
K0.3
49P
:42S
:44!:
:46<
:495
:50:
J525
:54'
J56
:«5ai
:60'
:62'
:64
:70
t72


-------
ePA.CRL  «.i. 0. 3,500 0. ,,«».. ..«..» "0*7 0. S003, 0, SOO^O*
1975
SAMPLE
LOG NO.
1*050
1*051
1*052
1*053
1*054
14055
14056
14057
14058
14062
14063
U064
14065
14066
14067
14068
1*069
14070
1*071
1*072
1*07*
1*075
14076
1*077
1*078
1*079
1*080
1*081
14082
1*083
1*08*
1*085
1*036
1*087
14088
14089
14090
14091
1*092
1*093
1*09*
14095
1*096
14097
14098
14099
1*100
1*101
1*102
1*103
1*104
1*105
U106
1*107
14108
U109
1411*
AROCLOR
12*2
UG/L
:<0.3
t
«
:<0.3
:
:<0.3
i
:<0.3
»
:<0.3
:<0.3
t
:<0.3
t
:<0.3
•
•
:<0.3
•
•
:<0.3
:
:<0.3
:<0.3
:
:
K0.3
•
•
:<0.3
:
:<0.3
:
:<0.3
•
•
:<0.3
j
• :<0.3
t
!<0.3
:
: . 3
• *• i • * • j
•  r C.
'
: < 1 . 5 : 1
•
TOT VOLA
UG/L
s s 6
:2 : T-
: ' °
: 14 : «'
: : 1 0 '
:5 :ll'
: :12
:182 :13'
j : 1*'
: U8
:<2 :19'
: :20-
i58 tar
: J22
:<1 =23
: :2*
:*q :25
: :26
:<1 :27
:69 ;23
: :30
: 1 0 : 3 1
: :32
:*7 :33
: :3*
:4i
: :*2
:6 :43
: :44
:16 :^5
• • 4ft
; • ** o
:<1 :-»7
: : 4fl
:2 «*9
: ' :50
• <\ : 5 1
« S 1 • -* *
: : 52
: 1 .6 553
• : 54
:9* :55
: :56
:79 :S7
• • S o.
« • J
f ^ 1 ' •% Q
J < I < 3 ^
• J A il
I » O v
I« a • 4k *i
35 . e i
, . i 9
; • TC
• 
-------
14115
U116
U117

•IL.OHO
:
:<0.3
t
50P
4 REGION
i
t<0.3
t
SIP
t
K0.3
1 '
52P
V OPINKING WATEH
t
K0.4
t
53P
STUDY -
:
-------
EPA-CRL
1975
SAMPLE
LOG NO.
14051
'4053
055
»* w *f
14057
14063
14065
14067
14069
14071
14072
14075
14077
14079
14081
14093
14095
14087
14089
14091
14093
U095
14097
14099
14101
14103
14105
U107
14109
14115
141 17
± ^ & • *
.IL.DW04
S0056 OA SOOfcO OA
C2H4CL2 CHCL28R
TOT VOL TOT VOL
UG/L UG/L -
t <1 :<0.2
t
-------
EPA-CRL
1975
SAMPLE
LOO NO.
14050
1 ' *^9
1 7C •
C A
1 J*
14059
14062
14064
14066
& V -' W^*
14068
14070
14072
14074
14076
14078
14080
1 A.ftft?
1 * '• 9C
14084
14086
U088
14090
14092
14094
14096
14098
U100
U102
14104
U106
14108
14110
14114
14116
.IL.DW04
01067 MM
NICKEL
NI.TOT
UG/L

.
'





:
64P
REGION
00916 MW
CALCIUM
CAfTQT
MG/L
134.2
141.4
138.5
143.4
151.6
135.7
154.0
168.9
150.5
150.5
128.3
123.4
151.9
137.3
162.5
149.9
155.7
145.2
191.5
191.0
192.7
191.4
152.1
!46.3
172.1
161,7
167.2
129.2
!<1
145.5
151.8
65P
00927 MW
MGNSIUM
MG.TOT
MG/L
Ill.l
110.6
114.7
:0.8
:21.6
U4.9
123.3
:23.3
18.3
17.0
17.0
17.2
116.7
116.0
124.8
124.0
121.8
122.0
149.2 •
149.4
149.0
:49.3
:17.7
:17.2
134.3
134.5
124.3
111.6
t<0.1
119.4
:20.1
66P
V DRINKING WATER
00929 MM 00937 MM
SODIUM PTSSIU*
NA.TOT KtTOT
MG/L MG/L
110.8 :2.2
110.7 " "
113.1
U6.2
112.0
111.8
113.1
113.5
120.6
120.9
U7.4
117.9
17.1
17.7
17.1
17.4
13.7
13.7
121.3
120.8
120.2
119.3
19.1
18*5
110.3
ill.l
16.5
"130.5
KO.l
16.0
15.1
67P
STUDY -
ii.a
13.0
:2.9
:2.4
:2.3
:2.0
12.2
13.5
13.5
13,6
13.6
12.3
:2.2
10.5
10.5
11.2
11.3
11.7
11.9
U.7
12.0
11.7
:1.7
U.6
H.9
U.8
11.7
KO.l
tl.4
11.2
68P
ILLINOIS
01034 MW 01042 Mv*
CHPOMIUM COPPER
CR«TOT CU»TOT
UG/L UG/L
:<5 :5
» ^ C * Q
i 0 J
:56S»J
:58S»J
:60S*J
:62S»J
164S*J
166S»J
170S»J
• *f ^ c A i
I 725*J
»*J
**J

-------
EPA-CRL
1975
SAMPLE
LOG NO.
14050
)'-052
/54
U059
14062
14064
14066
U068
14070
14072
14074
14076
14078
14080
14082
14084
14086
14088
14090
14092
14094
14096
14098
14100
14102
14104
14106
14108
14110 .
14114
14116
01045 M*
IRON
>E»TOT
UG/L
:1790
:<20
:2310
:40
:440
:<20
:450
:90
:82
:<20
:1350
:<20
:1870
:130
:2810
:<20
:290
j _
:<20
:135
:<20
:135
:<20
:140
:28
:130
:130
:740
:38
:<20
:1600
:85
TIP
01055 MW
MANGNESE
MNtTOT
UG/L
:240
:<5
:260
:<5
:160
:<5
1130
:17
:65
rfl
:240
:20
:190
J25
:320
:<5
:24
k ^ f
1
ARSENIC
AStTOT
UG/L
• 1
• 2
i « i
* x i
»rt
9
• < 1
• * i
s < 1
* * i
f «• 1
i * i
• *
• I
t < \
• * i
• i
i 1
»^ i
< 1
:5
i f \
1*1
»• A
1 u
» rf 1
I < 1
t A
* 4
t * \
1*1
• 1
• i
t <1
• ^ A
t f \
I < I
, f \
I < 1
• * 1
• < I
t * 1
1*1
• * \
' < 1
• < 1
• * 1
• f \
• * 1
» t \
1*1
• 1
i 1
t f \
1*1
t f \
1*1
f t \
• * 1
• < 1
• ^ *
74P
STUDY -
K 01051 M*
LEAD
PBtTOT
US/L
• i •»
• i J
;2
* w
t i e
• i j
: 3
: 4
J<2
• •»
• w
:2
• fc
:*2
• ^ fc
t ^
• O
17
: <2
• ^ *•
: 1 1
• i j
j 2
* b
• 4
S 2
* w
t 4
12
t <2
• ^ fc
: 3
• J
: <2
• ^ t.
: 2
• fc-
t ?
• C
:2
:2
• w
:5
:3
: <2
i <2
* ^ fc
i <2
:2
75P
ILLINOIS
i 01027 M*
CADMIUM
COtTOT
UG/L
: 0 .4
:<0.2
« 1 .1
:<0.2
:<0.2
:<0.2
:<0.2
i<0.2
:<0.2
i<0.2
SO. 3
:<0.2
: 0.4
: <0.2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
:*0.2
: < 0 . 2
:<0.2
: 0.3
:0.3
: < 0 . 2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
76P

01077 MW
SILVEO
AGtTOT
UG/L
:<0.2
t<0.2
:<0.2
:<0.2
:<0.2
: < 0 . 2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
J<0.2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
i<0.2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
t<0.2
:<0.2
:<0.2
77P

»K
•K
•K
*K
: 6S*<
: 8S»*
S 10S«K
:15S»K
:19S»K
:20S*K
:22S*K
:24S*K
:26S«K
J23S»K
:30S»K
!32S*K
:34S*K
:36S*K
:3«S*K
540S*K
:42S«K
J44$*K
J46S»K
:43S*K
:50S*K
:52S»K
:54S*K
:56S*<
:58S»<
:60S*K
:62S»K
:64S«K
:66S»K
I70S*K
:72S*K
• •K
«*K
	 K

-------
EPA-CRL 01147 MW 01007 MW
1975 SELENIUM BADIUM
SAMPLE SE»TOT BAtTOT
LOG NO. UG/L UG/L
14050 :<5 : : t
52 :<5 :
UOS4 :<5 :
U059 :<5 :
14062 :<5 :
14064 :<5 t
14066 t<5 t
14068 :<5 l
14070 :<5 t
14072 :<5 i
U074 :<5 J
14076 :<5 :
U078 :<5 :
14080 :<5 :
14082 :<5 :
14084 :<5 :
U086 :<5 i
14088 :<5
14090 :<5
14092 :<5
14094 :<5
14Q96 :<5
UC98 :<5
U100 :<5
14102 :<5
14104 :<5
14106 :<5
14108 :<5
14110 :<5
14114 :<5
: i
• •
• •
• •
• I
3
I
I
t

1
1
: t
« A
* I
I I
t I
i I
\ I !
! / J J
> • •
te m
' I
lit
I I I
! ! J
• • •
• • •
: : :
j t J
: t i
its
* * . t
• •
14116 :<5 : j *
78P 79P 80P 81P
•IL.OW04 REGION v DRINKING WATE* STUDY -
«L
•L
• i
W
• 1
k.
: : 6S*L

,,
,
,
,
,

1
1
t
{

!
:
•
.
9
,
*

•
•
*
J
•
•
•

•
•
J •
(t
•
t j
: i
: BS»L
:1DS»L
:15S*L
:18S»L
:20S*L
:22S*L
: 34S*L
• <• ^ w W
»26S»L
»28S«L
:30S*L
. :32S*L
• 14.C •!
•O*o wl_
:36S«L
:33S«L
I40S*L
: 4?S*L
• ^ t. w L.
:44S«L
:46S»L
:4«S*L
:50S«L
:52S*L
: 54S*L
• »f — * ^»
:56S«L
: sfls^L
« j \j ^j ^
J60S«L
:62S»L
• <>4^*l
• w ^ J L,
:66S»L
:70S*L
t ; : S72S*L
«2P 83P 84P ««L
ILLINOIS «*L

-------
EPA-CRL
1975
SAMPLE
LOO NO.
U050
14052
. 54
U056
1 ».062
14064
14066
14068
U070
14072
14074
14076
14078
14080
14082
14084
14086
14088
14090
14092
14094
14096
14098
UlOO
14102
14104
U106
14108
14114
14116

.IL.OW04
00530 tM
RESIDUE
TOT NFLT
MO/L
1 146
i <3
U62
: <3
: 19
1 <3
144
14
til
13
1153
13
1274
: <3
13
1 <3
110
l<3
14
t<3
HA.
i <3
16
:<3
: is
16
t3l
i 13
14
:<2
85P
PEGION
70300 IM
PESIOUE
OISS-180
C MO/L
1150
U90
1200
1180
1200
1180
1290
1290 •
t£20
1200
1160
1230
1210
1240
1310
1310
:290
1280
1490
1420
1480
1480
1225
1200
1370
1350
1400
1250
1280
1310
86P
00095 IM
CNOUCTVY
AT 25C
MICROMHO
1310
1369
1376
1341
1471
1356
1494
1578
1466
1456
1323
:369
1412
1441
1508
1505
1459
1468
1837
1842
:842
1843
1396
1454
1627
1638
t59S
1433
14S3
1461
87P
00945 U
SULFATE
S04
MO/L
til
:6S
148
:49
132
142
146
196
1150
1149
160
191
146
168
138
136
140
»57
155
157
1ST
:57
J 18
:58
175
175
1 101
1103
122
tl9
88P
t 00940 In
CHLOPIOE
CL
MO/L
116
119
l 17
:23
120
:24
123
126
119
122
133
135
117
121
»7
19
U4
U8
127
t29
:25
128
1 12
1 16
• 21
• 24
US
121
17
1 10
89P
00956 IM
SILICA
SI02
MO/L
16.8 :
17.3 :
:8.3 :
17.7 s
:9.5 :
:8.5 :
16.0 1
15.4 i
11.6 * l
11.3 l
16.2 t
15.4 1
17.0 1
:6.7 :
:15.9
:15.9 i
17.6 l
i?.6 1
? 18,0 1
:18.3
U7.8
:18.2 :
: 1 0 . 0 :
:9.0 :
J4.8 :
:5.2 :
19.4 ;
17.2 i
118.2 i
* \ O A t
• 4 " * v *
90°
00410 I
T ALK
CAC03
MO/L
68
72
107
63
175
92
162
144
45
31
32
30
120
106
213
201
142
115
368
364
364
354
152
134
197
187
166
49
204
201
91P
M • *
•t-
»>.
•t-
1 6S*S
: 95*'
: lOS*"1
5 12S4**
: 18S*V
:20S«»
522S*'
1 24S*>
126S«'
128S«:
i 30S*I
S32S*'
: 34S*;
:36S»i
:33S»'
:40S»'
142S*
: 445*
I46S»
!48S»
:50S»
:52S»
: 5<»S»
:56S°
: 58S*
1605*
:62S*
: 64S*
I70S*
: 72S*
• •
V OPINKINQ WATEP STUDY - ILLINOIS »»

-------
EPA-CRL
1975
SAMPLE
LOG NO.
14045
' -»50
i j52
14054 .
14056
14062
14064
14066
14068
U070
14072
14074
14076
14078
14080
U082
U084
14086
uree
U090
14092
14094
14096
14*98
14.100
U102
14104
U106
14104
14111
14112
14113
14114 *
14116

.IL.DW04
00403 IM
LAB
PM
su
•
•
17.4
17.8
17.5
HO. 1
17.8
19.4
17.9
lT.5
17.9
18.0
17.0
16.9
17.6
17.4
17.5
17.5
17.9
17.2
17.4
17.3
17.4
17.2
17.7
17.6
18.0
17.8
17.7
19.0
t
•
•
•
•
:7.4
17.3
92*
REGION
00951 IM 32730 IM
FLUORIDE PHENOLS
F, TOTAL
MG/L UO/L
1 l<3
tO. 16 i<3
tl.2 t<3
10.21 15
10.83 14
10.18 16
tl.O t6
tO. 20 13
tO. 77 t3
tl.3 t7
tl.2 16
10.46 18
10.52 14
10.18 14
10.42 13
10.17 t<3
tO. 60 :<3
10.17 13
:0.52 13
10.20 t<3
tl.O i<3
10.20 i<3 .
tl.l l<3
10.17 113
10.84 14
10.27 l<3
10.76 l<3
tO. 17 t<3
tO. 97 t<3
t t
• •
• •
i i<3
10.15 K3
10.90 t<3
93P 94P
00720 I*
CYANIDE
CN
MG/L
K0.002
10.007
tO. 002
tO. 005
10.003
tO. 004
tO. 003
10.003
10.003
10.002
MO. 002
10. 010
tO. 003
10. 005
:
-------
rPA-CRL
1975
SAMPLE
LOG NO.
14045
U«50
1 >2
14054
U056
14062
14064
U066
U068
14070
14072
14074
14076
14078
14080
14082
14084
14086
U088
14090
14092
14094
14096
U098
14100
14102
U104
14106
14108
14110
Ulll
UH4
U116

.IL.OW04
00665 IN
PMOS-T
P-*ET
MG/L
:<0.02
:0.24
tO. 04
:0.45
:0.58
tO. 19
tO. 19
tO. 12
K0.02
t<0.02
K0.02
:0.33
:0. 02
tO. 38
:<0.02
:0.11
:<0.02
:0.12
t<0.02
:<0.02
:0.02
;<0.02
t<0.02
:0.15
:0.03
:0.15
:0.12
:0.08
to. 02
t
:<0.02
:0.13
:0.02
99P
REGION
003*0 IN
coo
HI LEVEL
MG/L
t<3
:22
18
!40
t9
128
t!2
119 .
t6
t9
t7
t43
t6
t37
:a
:<3
:<3
:13
IS
17
t<3
:9
t6
:22
:13
:T
:«
:19
:*
t
:<3
:4
:<3
100P




t
t
t
•
•
•
•
t
t
i
t
i
t
t
t
t
*
*
•
•
t
•
*
t
»
:
t
t
•
•
•
•
t
•
•
•
•
:
t
t
t
t
«
•

00680 IN 71900 IN
T ORG C MERCURY
C HGfTOTAL
MG/L UO/L
t
10.2
to. 2
to. 2
to.i
10.1
10.3
r
-------
CRI s 05APQ DSN«CNCRLS.RGD.IN.DWO* ON 150009  o*/ia/7&
                              •STUDY DESCRIPTION————	——
                            ST4TTYPE SMPLDAY ATLA88Y OUEOATE ACCOUNT-NUMBED
                            777T7777 03FEB75 05FF875 03««AY7S
                                 - INDIANA
                              •SAMPLE DESCRIPTIONS
                               STATTyPE DEEP T M NO ENQOATE  TIME  oqLll
NPftR NL06
94 90
>RE6ION
LARIDNUM
U118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
U129
14130
14131
14132
14133
U134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
U148
14149
l'*150
U151
14152
U153
14154
U155
U156
1*157
U158
14159
U160
U161
14162
14163
14164
141$5
14166
AGENCYID UNLOCKEV ST
77
v DRINKING WATER STU
STORETIO COLUOAV TIME
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203

-------
U167
U168
14169
14170
'  '71
.  .73
14173
14174
14175
14176
14177
1417S
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
U194
14195
14196
14197
14.196
14199
U200
U201
14202
14203
14204
14205
14206
14207
>»14120
>»14122
>»14123
>»14124
>»14!25
»>14126
»>14127
>»14128
>»14129
>»14130
>»14\32
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
HN03 REAGENT BLANK
H2S04 REAGENT BLANK
NAOM REAGENT BLANK
CUS04/H3P04 REAGENT BLANK
OPFri         750203
MT VErtNON RAW WAT£* SERIES A
MT VERNON RAM WATER SERIES 8
MT VERNON FINISHED *ATER SERIES A
MT VERNON FINISHED *ATER SERIES 8
MT VERNON RAW WATE» SERIES A
MT VERNON RAW WATER SERIES 8
MT VERNON FINISHED WATER SERIES 4
MT VERNON FINISHED WATER SERIES 9
EVANSVILLE RAW WATER SERIES A  —
                         :S d
O )  A AM
     (i ~). 5 S
                                                                       • * -3 v\^

-------
>14133

>U135
>   37
•>i -i38
•>14147
•>14i48
•>14149
•>14150
•M4152
•>14153
•>14154
•>14155
•>14156
•>U157
•>14158
•>14159
•>14160
•>14162
•>14163
•>14164
•>14165
•>14166
•>14167
•>14168
•>14169
->14170
•>14172
•>14173
•>14174
•>1417S
•>14176
•>U177
•>14178
•>14179
•>14180
•>14183

•>14195
EVANSVILLc FINISHED WATER SERIES A
EVANSVILLE FINISHED WATER SEKIES B
NEW ALBANY RAM WATER SERIES A
NEW ALBANY RAW WATER SERIES B
NEW ALBANY FINISHED WATER SERIES A
NEW ALBANY FINISHED WATER SEMES B
BEDFORD RAW WATER SERIES A	
BEDFORD PAW WATER SERIES 9
BEDFORD FINISHED WATEP SERIES A
BEDFORD FINISHED WATER SERIES B
TERRE HAUTE RAW WATER SERIES A  	
TERRE HAUTE P-AW WATER SCRIES B
TERRC HAUTE FINISHED WATER SCRIES A
TERRC HAUTE FINISHED WATER SCRIES 8
INDIANAPOLIS RAW WATER SERIES A 	
INDIANAPOLIS PAW WATER SCRIES B
INDIANAPOLIS FINISHED WATER SERIES A
INDIANAPOLIS FINISHED WATER SERIES B
KOKOMO RAW WATER SERIES A  	
KOKOMO RAW WATER SERIES B
KOKOMO FINISHED WATER SERIES A
KOKOMO FINISHED WA-TER SERIES a
LOGANSPORT RAW WATER SERIES A
LOGANSPORT RAW WATER SERIES B
LOGANSPORT FINISHED WATER SERIES A
LOGANSPORT FINISHED WATER SE«IES B
FOPT WAYNE RAW WATER SERIES A 	
FORT WAYNE RAW WATER SERIES 8
FORT WAYNE FINISHED WATER SERIES A
FORT WAYNE FINISHED WATER SERIES 8
MICHIGAN  CITY RAW WATER SERIES  A	
MICHIGAN  CITY RAW WATER SERIES  B
MICHIGAN  CITY FINISHED WATER SERIES  A
MICHIGAN  CITY FINISHED WATER SERIES  B
GARY RAW  WATER SERIES A	   	
GARY RAW  WATER SCRIES B
GARY FINISHED WATER SERIES A
GARY FINISHED WATER SERIES B
GARY SAW  WATEP. SERIES A
GARY RAW  WATER SERIES B
GARY FINISHED *AT£R SERIES A
GA3Y FINISHED WATER SERIES 3
HAMMOND RAW WATER SERIES A 	—
HAMMOND RAW WATER SERIES B
HAMMOND FINISHED WATER SERIES A
HAMMOND FINISHED WATER SCRIES B
HN03 REAGENT BLANK
H2S04 REAGENT BLANK
NAOH REAGENT BLANK
H3P04 REAGENT BLANK
OP€M         750203
SOUTH BEMO PA« WATER SERIES  A  —	
SOUTH SEND OAW WATER SERIES  fl
SOUTH BENO FINISHED  WATER  SERIES  A
SOUTH 3ENO FINISHED WATER  SERIES -3
"UNCIE PAW WATER SERIES A    .	
                                                         3i;,s
                                                          3 c).


                                                         40 ."50
                                                         ^\  ,
                                                                           .5" 4
                                                             .  34
                                                             MO.U

-------
4189
4190
4191
4. 1 O9
^ 1 TC
4193
4
4i95
4196
4197
4198
4199
4200
4201
4202
4203
4204
~ C V ^
420S
4206
4207
»
»
»>
> %
J 9
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
. MUNCIE RAW WATER SERIES B
MUNCIE FINISHED WATER SERIES A
MUNCIE FINISHED WATER SERIES B • -

MOROCCO RAW WATER SERIES B
MOROCCO FINISHED WATER SERIES A
MOROCCO FINISHED WATER SERIES B . i ~ -, C" lOl ft L> ,
LAFAYETTE RAW WATER SERIES A 	 • 	 ' H <-> * •*• ^ "^
LAFAYETTE RAW WATER SERIES 8
LAFAYETTE FINISHED WATER SERIES A
LAFAYETTE FINISHED WATER SERIES B -j A , .. . \ c /
BLOOMIN9TON RAW WATER SERIES A 	 	 ^ "| , \ 0 NJ OU
BLOOMINOTON RAW WATER SERIES 1
BLOOMINOTON FINISHED WATER SERIES A
BLOOMINOTON FINISHED WATER SERIES I • ,. , .. , , .. „

WHITING RAW WATER SERIES 8
WHITING FINISHED WATER SERIES A
WHITING FINISHED WATER SERIES B

-------
EPA-C&L
1975
SAMPLE
LOG NO.
14123
14125
14127
14129
14133
14135
14137
14139
14141
14143
14145
14147
14149
U150
U152
14153
14156
14157
U159
U161
14163
14165
14167
U169
14171
14173
14175
14177
14184
14186
14188
14190
U192
14194
14196
14198
14200
14202
14204
U206

.IN. 0*04
S0003 OA
TREFLAN
WH

XO
KO
KO
KO
KO
xO
KO
KO
KO
xO
XO
XO
XO
xO
xO
xO
KO
KO
:<0
KO
:<0
xO
xO
XO
XO
KO
:<0
xO
KO
xO
xO
xO
xO
XO
xO
xfl
xO
KO
xO
xO

L; SMPL
UG/L
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
IP
PEGION
soooi OA
HCBENZ
WHL SMPL
UG/L
xO.002 :
xO.002 :
xO.002 :
xO.002 :
XO.002 :
xO.002 t
XO.002 (
xO.002 i
xO.002 :
xO.002 :
xO.002 :
xO.002 :
xO.002 :
:0.010 :
xO.002 :
xO.002 :
K0.002 :
K0.002 :
xO.002 :
xO.002 :
xO.002 :
xO.002 :
xO.002 :
xO,002 :
xO.002 :
xO.002 :
xO.002 :
t<0,002 :
xO.002 «
xO.002 :
K0.002 :
xO.002 :
xO.002 :
XO.002 :
xO.002 :
XO.002 :
XO.002 :
XO.002 :
xO.002 :
xO.002 :
2P
v DRINKING
39782 OA
LINDANE
MHL SMPL
UG/L
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.602
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.00?
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
3P
S0002 OA
88HC
WML SMPL
UG/L
KO.OOS
XO.OOS
KO.OOS
KO.OOS
KO.OOS
K0.002
K0.002
K0.002
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
XO.002
XO.002
KO.OOS
K0.002
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
XO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
'xO.OOS
XO.OOS
xO.OOS
xO.OOS
XO.OOS
xO.OOS
XO.OOS
KO.OOS
KO.OOS
KO.OOS
K0.002
4P
S0004 OA
OICLONt
WHL SMHL
UG/L
KO.Ol :
KO.Ol :
KO.Ol :
KO.Ol :
KO.Ol s
KO.Ol !
KO.Ol 1
KO.Ol :
KO.Ol t
KO.Ol :
xO.Ol :
KO.Ol t
KO.Ol :
KO.Ol :
KO.Ol :
KO.Ol :
KO.Ol :
KO.Ol :
KO.Ol :
xO.Ol :
KO.Ol :
KO.Ol
xO.Ol :
xO.Ol :
XO.Ol :
xO.Ol :
xO.Ol :
xO.Ol :
xO.Ol :
xO.Ol :
XO.Ol :
: <0 .01 :
xO.Ol :
xo.Ol :
xO.Ol :
xO.Ol :
xO.Ol :
XO.O! :
XO.Ol :
xO.Ol :
SP
39
330 OA
S0005 OA
ALO^IN ZYTPON
«H

<0
P
MH

xO
xO
xo
XO
xO
xO
XO
KO
XO
xO
xO
XO
xO
XO
xo
:<0
xo
xO
:<0
KO
:<0
xO
:<0
xO
:<0
xo
xo
xO
xo
xO
xO
xO
xO
: o .
xo
xO
xO
XO
xO
:<0

L SMPL
UG/L
.02 :
.02 :
.02
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 i
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02
.02 :
0»A
»»a
••A

-------
rPA-CRL
1975
SAMPLE
LOG NO.
14123
14125
14127
14129
14133
14135
14137
14139
14141
14143
14145
14147
14149
14150
14152
14153
14156
14157
14159
14161
U163
U165
14167
14169
14171
14173
14175
U177
14194
14196
14188
U190
14192
U194
U196
14198
14200
14202
14204
U206

.IN. 0*04




•
•
*
•
•
t
t
1
t
!
1
:
:
:
:
:
t
i
:
•
•
t
•
i
:
t
*
•
t
»
•
i
•
•
i
t
t
:
:
•
•
t
•
•
:
*
•
:
:
«


39430 OA
ISOO«IN
WHL SMPL
UG/L
<0.003
<0.003
<0,003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.002
<0.002
s*m
: »s*«
nos*^
1 12S*R
1 16 2flS*R
^os*?
:32S*B
t 33S**;!
:35S*R
J36S*8
t 39S«M
»40S»S*fl
• 4AS*H
:50S*3
:52S*-->
:54S*n
i 56S*>1
:5flS*R
1 ftOS*9
1 475*8
: 495*.)
: 71S«M
:73S«8
:75?«q
:77S*p
: 79S»s
t 31 S*8
I93S*B
:85S*9
I87S*«
J«I9S**
*•%
••8

-------
FPA-CRL
1975
SAMPLE
LOG NO.
14123
U125
14127
U129
14133
14135
U137
14139
14141
14143
14145
14147
14149
14150
1*151
14152
14153
14156
U157
14159
1*161
14163
14165
14167
14169
14171
14173
14175
14177
14184
14186
14188
14190
14192
14194
14196
14198
14200
U202
14204
14206

•TN.DW04




i
•
•
:
t
:
S0011 OA
000 PP
WML SMPL
UG/L
<0.003
<0.003
<0.003
<0.003
<0.003
XO.003
l
i
*
•
<0.003
<0.003
<0.003
XO.003
:
•
*
•
•
:
:
•
•
•
•
:
:
•
•
:
•
•
:
f
•
•
t»
i
i
<
t
t
t
•
•
•
•
•
•
•
•
•
•
i
<0.003
<0.003
<0.003
<0.003

<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
XO.003
t
•
•
t


<0.003
<0.003
<0.003
15P
REGION
S0012 OA
DOT PP
WHL SMPL
UO/L
XO.003
xO.003
XO.003
XO.003
XO.003
xO.003
10.014
xO.003
xO.003
XO.003
:<0.003
xd.003
xO.003
:0.006
:
:0.032
xO.003
10.016
xO.003
to. 020
xO.003
r<0.003
xO.003
XO.003
XO.003
XO.003
XO.003
10.010
xO.003
10.006
:0. 006
tO. 006
XO.003
:<0.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
xO.003
16P
S0013 OA
CARBPHTH
WHL SMPL
UG/L
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
xO.003
«0.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
:
xO.003
XO.003
XO.003
XO.003
XO.003
xO.003
xO.003
xO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
17P
SOO
MI
VHL
14 OA
'EX
SMPL
UG/L
XO.
xo.
XO.
XO.
XO.
XO.
XO.
XO.
XO.
1 <0.
t<0.
XO.
XO.
XO.
t
XO.
XO.
XO.
XO.
XO.
XO.
xO.
XO.
XO.
XO.
xo.
XO.
XO.
XO.
XO.
XO.
xO.
xO.
xO.
XO.
xO.
xO.
xo.
xO.
XO.
XO.
005
005
005
005
005
003
003
003
003
003
005
005
005
003

003
005
003
OOS
005
005
005
005
005
005
005
005
005
OOS
OOS
005
005
005
005
OOS
005
005
005
005
005
005
18P
V DRINKING WATE3 STUDY
39490 OA S0020 OA S0021 OA
MTHXYCLR 2.
WHL SMt»L «M
UG/L
XO.Ol XI)
XO.Ol X.
XO.Ol X,.
XO.Ol X,
XO.Ol X<>
xO.Ol x,,
xO.Ol X,,
xO.Ol x,,
xO.Ol x,,
xO.Ol x,,
XO.Ol :<„
XO.Ol
xO.Ol
xO.Ol
:
xO.Ol
XO.Ol
XO.Ol
XO.Ol
xO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
xO.Ol
XO.Ol
xO.Ol
xO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
xO.Ol
<„
<„

«)

<„

<..
<„
<„
*C
1*S*C
18S«C
20S*C
J22S«C
:
•
•
:
•
*
•
•
•
•
•
t
:
•
t
•
•
•
•
:
:
•
:
•
•
*
•
•
•
•
:
:
;
•
:
•
:
:
:
:
•
•
:

- INDIANA
24S«C
26S»C
2SS»C
30S»C
32«s»C
33S«C
34S»C
35S»C
36S»C
39S«C
40S*C
*2S«C
44S»C
4*S»C
<*&s»c
50S»C
S2S»C
54S»C
56S*C
58S«C
60S»C
67S»C
69S»C
71S«C
735«C
7SS»C
77?«C
7<»S«C
i»lS»C
"SS^C
*55»C
87S»C
•39S«C
•«c
••C

-------
EPA-CRL 39770 OA
1975 OCPA
SAMPLE «HL SMPL
LOG NO. UG/L
14123 K.003
14125 K.003
14127 K.003
U129 <.003
U133 <.003
U135 <.003
14137 <.003
14139 <.003
14141 <.003
14143 <.003
14145 <.003
14147 <.003
14149 <.003
14151 <.003
U153 K.003
14157 K.003
14159 K.003
U161 K.003
U163 K.003
14165
14167
U169
U171
14173
U17S
U177
14184
14186
U18i
14190
14192
1*194
14196
14198
14200
U202
U204
<.003
<.003
<.003
<.003
<.003
<.003
<*00)
<.003
<.003
<.003
<.003
<.003
<.003
<.ooi
<.003
<.003
<.003
K.003
14206 K.003
22«>
.IN. o*Q4 REGION
S0023 OA
ENOOS I
WHL SMPL
UO/L
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
23P
39380 OA
OIELORIN
WHL SMPL
UG/L
: .003
K.003
K.003
K.003
K.003
1.006
K.003
1,008
t.006
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
1.007
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
:.007
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
2*P
39390 OA
ENDRIN
WHL SMPL
UG/L
K.003
K.003
K.003
K.003
K.003
! .003
1 .003
1 .003
1 .003
1 .003
K.003
K.003
K.003
K.003
K.003
K.003
K.003 '
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.001
K.003
K.003
K.003
K.003
250
39460 OA
CLRttNZLT
WHL SMPL
UG/L
K.01
K.01
K.01
K.Ol
K.01
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
:<.01
K.Ol
2fto
S0027 OA S0026 OA
ENOOS II NIT90FEN
*HL SMPL WHL SMPL
UG/L UO/L
K.005 K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.OOS
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.OOS
<.005
<.OOS
<.005
<.OOS
<.005
<.005
<.005
<.005
<.005
<.005
<.005
K.005
270 ;>flp
V DRINKING WATER STUDY - INDIANA
*0
*D
*D
»n
: 6S»0
: hS*0
:10S*0
:12S*D
:16S*0
«16S*0
S20S*0
I22S»0
124S*Q
:26S*0
:28S*D
:30S*0
:3?S*o
:34S»0
: 36^*0
:40S*0
:42S*0
:44S»D
:46S*l>
:*«S»o
:50S*n
:52S*0
:5-»S»0
:56S*0
:5*S*0
:60?*0
:67S*0
:69S*r>
:7is*0
:7iS*0
:75S*0
: 775*0
:79S*0
:81S*0
:«i3S»0
:85S
-------
PPA-CRL
1975
SAMPLE
LOG NO.
U123
U125
14127
1 •» 4 fc *
U129
U133
U135
14137
14139
14141
14143
14145
14147
14149
14151
14153
14155
U157
14159
UUl
141*3
14165
14167
14169
14171
U173
14175
14177
14184
U186
1*188
14190
14192
14194
U196
14198
14200
14202
14204
14206
.TN.D*
S0029 OA
24S-THO
«HL SMPL
UG/L
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
•
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
29 P
04 BEtilC
S0030 OA
PROLAN
WHL SMPL
UG/L
K.OI
K.OI
K.OI
K.OI
_ _ j* t
: < .0 1
• ^ rt \
i < . 0 i
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
t
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
30P
)N V DrfIN*
S0031 OA
8ULAN
WHL SMPL
UG/L
K.OI
K.OI
• * f\ \
K.OI
K.OI
i < 01
• ^ • 'J 4
t  35P
*E
•E
»e
«»P
: ^S«E
: «S*t"
tlOS*^
: 12Q%*E
: 1^S*£
• \ Q C 4S C
l i ^5*6.
• o r c •c
5 cuj^r.
:22S»E
:24S»P
t26S*E
t28S«E
:30S»E
:32S*E
:34S*E
:36S*E
:38S*E
* i rt C i±C
J 405*t
:42S»E
S44S«E
I*6S»E
:4«)S«E
:SOS«E
:52S*E
:54S*E
:56S*E
!58S*E
:60S*F
:*>7S*E
I69S»E
:71S*E
:73S*E
:7«SS»E
:77S»E
:79S*E
: -Jl S*E
:
-------
FPA-CRL
1975
SAMPLE
LOO NO.
U123
14125
14127
14133
14135
14137
14139
U141
14143
14145
14147
14149
14151
14153
14155
14157
14159
U161
U163
14165
14167
14169
U171
14173
14175
14177
14184
14186
14188
14190
14192
14194
14196
U198
14200

14202
14204
14206
.IN.DW04
S0017 OA
RONNEL
«HL SMPL
UG/L
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl

Kl
Kl
Kl
36P
S0032 OA
OURSBAN
WML SMPL
UO/L
Kl
Kl
Kl
Kl
•
» <1
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
:<1
Kl
»
: <1
: <1
Kl
37P
REGION V D*INK1
39600 OA
MPARATH-M
MHL SMPL
UO/L
^ \
\ < \
, - •
: < 1
Kl
Kl
» 4 \
K 1
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
1 <1
Kl
Kl
Kl
Kl
Kl
» <1
Kl
Kl
Kl
Kl
:<1
Kl
. * \
K 1
• * i
! < 1
Kl
38P
;NO WATER
3<*530 OA
MALATMN
«HL SMPL
UG/L
. 4 \
1*1
• * 1
• < 1
: < 1
Kl
! < 1
• ^ 1
: < 1
Kl
Kl
_ - *
Kl
Kl
Kl
t <1
• * \
K 1
Kl
>^ •
< 1
Kl
Kl
- - *
1 <1
Kl
J^ \
< 1
1 <1
. , i
t < 1
• - i
K 1
: A ••**
, f\ . < i • < i
Z<1 1^4 »^1
• < 1 K 1 K 1
• ^ 4 • *
1^1 • < 1 K 1
l<| «^l • ^ »
! * \ K 1 S < 1
• ^ i * *
: *
• f \ \<\ 5 < 1
»<1 »^i ••»*
Kl Kl Kl
1 <1 Kl Kl
1 % £ ' *
» rfi : <1 • <1
5 < I «^i •-**
Kl KI :<1
Kl Kl Kl
• * \ ! < 1 J < 1
• <\ »^i •"»*
• ^ 1 * < 1 5 < 1
j^l «^i •-•*
• rf 1 ' < 1 t < 1
5
-------
EPA-CRL
1975
SAMPLE
LOG NO.
14123
U125
14127
14129
1*133
14135
14137
14139
14141
14143
14145
14147
14149
14150
1*151
14153
14155
14156
U157
14159
U161
U163
U165
14167
U169
14171
14173
14175
14177
14184
14186
U188
14190
14192
U194
U196
14198
14200
14202
14204
14206

.IN.DW04
S0018 OA S0034 OA 39910 OA
PHENCAPT EPN GUTMION
WHL SMPL WHL SMPL NHL SMPL
UG/L UG/L UG/L
:<1 :<1 : <5
:<1 :  K0.3
K!J K0.3
K'i :<0.3
:<«.» :<0.3
! :  : :<0.3
: :<0.3
: :<0.3
: K0.3
: :.3
: : K0.3
K!) i :<0.3
: :<1..1
:60S*G
«<>7S«G
!6<*S*G
:71S»G
:73S»G
:75S«G
:77S*G
:795»G
: -115*G
: 83S*R
SftSS*^
:87S*«
:rt9S»R
••f,
*«G

-------
?PA-CRL
1975
SAMPLE
LOG NO.
14123
14124
U125
14126
14127
U128
14129
14130
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14U6
14147
14148
14149
14150
14152
14153
14154
14156
14157
14158
14159
14160
14161
14162
14163
14164
U165
U166
U167
Ulf>8
U169
14170
14171
U172
14173
U174
U175
14176
U177
14178
14194
.4185
14196
14187
Uldd
39496 OA
AROCLOR
1242
UG/L
:<0.3
t
X0.3
:
:<0.3
t
:<0.3
t
K0.3
l
K0.3
t
:<0.3
t
XO.3
t
:<0.3
i
XO.3
t
XO.3
•
xO.3
:
xO.3
:<0.3
xO.3
t<0.3
t
K0.3
K0.3
1
l<0.3
t
:<0.3
•
:<0.3
!
xO.3
j
XO.3
•
•
xo,3
j
xO.3
•
•
:<0.3
•
•
xo.3
•
:<0.3
•
•
:<0.3
•
:<0.3

:<0.3
39500 OA
AROCLOR
1248
UO/L
t<0.3
(
:<0.3
t
:<0.3
t
l<0.3
1
»<0.3
t
XO.3
1
t<0.3
t
XO.3
:
i<0.3
t
:<0.3
i
!<0.3
t
t<0.3
t
XO.3
:<0.3
XO.3
XO.3
t
l<0.3
K0.3
t
XO.3
t
K0.3
t
!<0.3
t
:<0.3
t
l<0.3
:
:<0.3
:
: OA S0038 OA *H
MET«C CL CCL4 CHCL3 »M
TOT VOL TOT VOL TOT VOLA »H
UG/L UG/L U1/L *M
:4
•
t
XI
:
xo.5
1
12
l
XO.5
l
XO.5
:
11.3
t
XO.5
t
XO.5
:
XO.5
•
XO.5
:
XO.5
1
:2
XO.5
•
XO.5
XO.5
•
xo.s
t
XO.5
'
xi
:
xo.s
•
•
XO.5
t
xo.«
•
•
xo.s
:
XO.5
•
•
XO.S
:
xo.5
t
xO.5
•
xo.5
:
: <0.5
:
! i 03"—
2 :3 : 7S*M
! ! HS*H
2.4 :20 i OS*'*
t J10S»H
<2 x? :11S»H
: M2S»i
2 »15 M3S»M
t M6S*H
<1 129 M7S*H
» U8S«H
1 :3 I19S«H
t !20S*H
1.6 $41 :21S»H
t :22S»H
<1 :5 :21S»H
l :24S*H
2 S84 :25S*H
J :26S»H
<1 14 J27S»H
» J2RS»H
<1 :~ . --« -
4
<
<1 :
'•
<\ i
<1 :
i
<0.5 :
<1 J
l
<1 i
l
<0.5 !

0.9

<1

<0.5

<1

1

<1

1

<1

1

<1

<1

S ^^b-H
:30S«H
<1 :31S*H
: 3?S*H
19 !33S*M
a<;«u
XI :5^c;»M
: >.'iOS*1-i
:4 :*,i<5*w
• :^7^«wi
x? :*,«S»H
5 j i,g!;«^
Ml :70S*-
: ; ? i c o u.

-------
14189
U190
14191
141*1
1419S
14194
1419S
14196
14197.
14198
U199
14200
14201
14202
14203
14204
14205
14206
14207

.IN. 0*04
1
» wp^
! 87S*H
« A A e ALJ
• Wo 5> WH
• a A C AkJ
• 395*H
:<»OS*H
**H
**H

-------
EPA-CRL
1975
SAMPLE
LOG NO.
14124
14126
14128
14130
14134
14136
14138
14140
14142
14144
14146
1414S
14150
14152
14154
U156
14158
14160
14162
14164
14166
14168
14170
14172
14174
14176
14178
14185
14187
14189
14191
14193
I4l«5
14197
14199
14201
14203
U205
14207

.IN.OW04
S0056 OA
C2H4CL2
TOT VOL
UG/L
:<2
Kl
:<2
Kl
:<2
:2
K2
s<2
Kl
slS
Kl
S3
S<1
:<4
Kl
:1
Kl
:4
S21
:<2
s<2
:<2
s<2
:<4
s<2
S<2
:<2
S<1
S<1
12
«<1
Kl
Kl
<2
Kl
Kl
Kl
:
:<2
S7P
REGION
S0040 OA
CHCL2BR
TOT VOL
UG/L
KO.S
tQ
:<0.5
:o
112
:fl.4
slS
s<0.5
S12
KO.S
15
KO.S
S6
s<0.5
sll
KO.S
:1.2
KO.S
SO, 7
KO.S
14
S<0.5
sS
KO.S
:5
KO.S
s<0.5
KO.S
S3. 4
s<0.5
S17
KO.S
S10
s<0.5
Sl
KO.S
:5
KO.S
KO.S
58P
S0041 OA S0042 OA
CHCLBR2
TOT VOL
U9/L
KO.S
:1.S
KO.S
:1
ll.7 •
K0.2
:1.4
K0.5
10.8
KO.S
16
KO.S
10. 5
KO.S
Sl.4
KO.S
KO.l
K.5
SO. 4
KO.S
:1
K0.5
:1
KO.S
:1
KO.S
KO.S
:<0.5
S3
KO.S
ll
KO.S
13
KO.S
SO. 3
KO.S
:O.S
KO.S
KO.S
59P
V DRINKING 4ATEP-
CMB*3
TOT VOL
UG/L
KO.S
: 1.6
:<0.5
tn.3
Sl
s<0.2
Sl
i<0.5
10.8
S<0.5
13
KO.S
10.6
KO.S
SO. 3
K0.5
KO.l
KO.S
Sl
:<0.5
s<0.5
KO.S
KO.S
KO.S
KO.S
KO.S
KO.S
K0.5
S2
K0.5
KO.S
KO.J
SO. 3
KO.S
SO. 6
KO.S
s<0.3
KO.S
S i
: i
: i
: i
: i
« »
* i
• '
* i
: :
: i
t i
t !
S 1
! :
i :
1 S
l t
I S
1 S
1 S
1 S
t s
! !
! S
! t
; :
i :
! t
1 S
! t
1
i :
1*
•
: :
i t
t •
i :
: :
i i
t t
t i
I S
t s s
: i s
: : s
: : :
: : :
: : :
: : s
61P 62P 63
STUDY - INDIANA
•I
•1
•I
»I
: 7S*1
t <»«:»1
:11SM
J 135*1
si7<;*i
: 135*1
t2\S*I
S23SM
J25S*I
S 275*1
S29S*I
S31S*!
S33S*I
t35S*I
t37S*I
:39?M
:*1S*I
:4lS*I
t*5S*I
!47S*I
:*9S*I
:51S»I
:53S*I
:55<5*r
:575*1
:59S*I
:MS»I
S68S*!
S70S»I
J72S*1
J74S*I
S76S*I
1785*1
SJ»OS*!
:32S*I
:«4S*!
:9«>s*I
S88S*I
: ^ftS*I
P **i
**I

-------
EPA-CRL
1975
SAMPLE
LOG NO.
14118
U119
14120
14123
1412*
14125
14126
14133
14135
14137
14139
14141
14143
14145
14147
14149
14151
14153
14155
14157
U159
U161
1*163
14165
14167
14169
14171
14173
14175
14177
14179
14180
14194
14186
1*188
U190
14192
14194
14196
14198
14200
14202
U204
U206
00916 MM
CALCIUM
CA.TOT
M«5/L
!<1
:<1
:<1
128.0
129.4
130.0
130.2
131.0
:32.8
:27.2
. 141.9
146.4
198.5
:86.4
:69.7
:68.5
171.0
181.6
:80.9
179.9
160.7
123.0
135.5
135.4
:35.7
:34.a
136.1
134.8
136.3
134.7
Kl
Kl
163.6
165.9
167.2
169.6
157.1
130.0
166. a
179.1
til.4
115.4
138.0
134.9
*.4.P
0)927 MW
MSNSIUM
<4G«TOT
MG/L
m - A 1
KO.l
• * A 1
* <0 • 1
. _ » *
KO.l
ia.6
18.6
18.2
18.1
ta.4
110.1
18.7
112.9
113.1
130.5
127.2
124.3
123.8
120.9
12*. 2
121.1
120.7
115.9
13.2
111.2
111.2
111.3
ill.O
* * • 1
111.3
Ill.O
111.3
U0.9
KO.l
KO.l
126.2
126.0
128.1
127.7
116.9
18.6
120.2
126.2
14.9
15.2
:ll.*
110.9
6SP
00929 MM
SODIUM
NA.TOT
MG/L
• * A 1
• *'» . 1
• 
STUDY -
0103* "« OiiO*2 MM
CHROMIUM COPPED
C9»TQT CU»TOT
LIG/L CG/L
:<5 K'>
i<5 i<5
: <5 i < 5
•  • •-•
KS 1C7
i<5 1*5
i<5 »*5
i<5 «^5
f ^ C 1 4 ' S
* ^3 * -*
:<5 i<;5
• s l <: 5
• j • • •*
• * * ! < C 5
• ^ J • * ^
• <<; :;>5
• x j • '- -*
: <5 '. *5
* ^ j *~
Id l?7
:9S»J
:?1S*J
:73S*J
:?55»o
:77S»J
:79S»J
HIS'J
M3S*J
:85S*o
:87«"»J
M9S*J
**J
A A 1
INDIAN* "J

-------
PPA-CP-L
1975
SAMPLE
LOO NO.
14118
U119
U120
14123
U124
14125
4 ^ » •• K*
14126
14133
» ~ • w J
14135
U137
14139
14141
U143
14145
14147
U149
U151
14153
14155
U157
1 A 1 CO
14159
14161
• , « f ^
14163
14165
1416,7
14169
14171
U173
U175
U177
14179
14180
14184
14186
14188
14190
U192
14194
14196
U198
14200
14202
14204
14206
.IN.OM04
01055 MM
MANONgSE
MN,TOT
UO/L
t<5
l<5
J<5
:330
:300
120
:18
:<5
1470
:<5
>120
K5
:280
:19
'.33
:<5
:28
:9
:39
U9
• 4)
t ^ 1
:<5
• «S
i<5
»7
:<5
i<5
:<5
i<5
114
: 14
• 4 ~
:<5
! «§
* ^ J
K5
:<5
t<5
i<5
K5
112
!<5
:<5
!<5
:<5
t<5
K5
t<5
:5
:<5
:31
:<5
:<5
:<5
K5
i<5
72P
01002 MM
ASSENIC
AStTOT
UO/L
Kl
Kl
Kl
18
<6
Kl
Kl
Kl
19
Kl
15
Kl
Kl
Kl
:l
Kl
;1
ISO
12
Kl
•>6
Kl
t 1
Kl
:1
Kl
Kl
Kl
ll
Kl
Kl
Kl
<8
:2
:1
:1
Kl
Kl
:2
H3
Kl
Kl
:1
!<1
73P
V DRINKING KATEO
01051 MI
LEAD
PB«TOT
UO/L
l<2
:<2
14.
125
S32
:5
«5
13
H5
l<2
17
t<2
l<2
J<2
16
l<2
12
:<2
i<2
l<2
(3
t<2
13
J20
13
t<2
:3
:<2
:3
:2
«2
K2
i<2
«2
:<2
:<2
:<2
:<2
:<2
13
t<2
J<2
:4
: 4
74P
STUDY -
" 01027 ««
CADMIUM
CO»TOT
UO/L
10.5
K0.2
t<0.2
10.5
SO. 7
:0.4
to. 3
K0.2
10. 5
K0.2
K0.2
K0.2
K0.2
K0.2
:0.4
:<0.2
K0.2
K0.2
K0.2
K0.2
K0.2
K0.2
K0.2
:<0.2
:<0.2
K0.2
K0.2
K0.2
K0.2
K0.2
:0.8
»0, 4
K0.2
K0.2
K0.2
K0.2
:<0.2
:<0.2
K0.2
K0.2
K0.2
K0.2
K0.2
:<0.2
75P
INDIANA
i 01077 M*
SILVER
AG.TQT
UO/L
K0.2
:<0.2
t<0.2
K0.2
• ^ n o
5 <0 .2
K0.2
K0.2
t<0.2
K0.2
K0.2
K0.2
K0.2
K0.2
K0.2
t <0 .2
K0.2
t<0.2
K0.2
K0.2
K0.2
K0.2
:<0.?
:<0.2
K0.2
:<0.2
K0.2
K0.2
K0.2
K0.2
s<0.2
K0.2
K0.2
:<0.2
K0.2
K 0 . 2
:<0.2
:<0.2
: < 0 . 1
:<0.2
:<0.2
K0.2
:<0.2
:<0.2
:<0.2
76P

I 01147 MW »K
SELENIUM •*
SP:.TOT »K
UO/L »K
l<5 I 1S*K
J<5 t 2S*K
t<5 : 3S«»<
:S*K
t<5 «20S»K
t<5 t22S*K
:<5 I24S*K
K5 t?6S*K
:<5 !28S»K
• - C •11C«w'
• >S*<
:<5 :71S»K
:<5 :73S*K
: <5 s 75S*<
:
s < s : 3 1 s •,<
:
-------
FPA-CRL
1975
SAMPLE
LOG NO.
14123
1*12*
14125
14126
14133 .
14135
14137
14139
14141
14143
14145
14147
14149
14151
14153
1 4155
1 * 4 -J ^
U157
14159
14161
14163
14165
1*167
1*169
1*171
1*173
14175
14177
14184
14186
14188
14190
14192
14194
14196
1*198
14200
1*202
1*20*
00530 IM
RESIDUE
TOT NFLT
MG/L
1181
1181
:2
:2
• ^ O
2 .
. i J y
i i -i
• 1 J
82p
INDIANA
C0«56 II
SILICA
SI02
MG/L
:<>.5
:i>.5
: <» . 3
1 
-------
FPA-CRL
1975
SAMPLE
LOG NO.
14118
U119
U120
14121
14123
U124
14125
U126
U133
14135
14137
14139
14141
UU3
14145
14147
14149
14151
U153
U155
14157
U159
14161
U163
14165
14167
14169
14171
14173
14175
: 14177
U179
14180
14184
14186
14188
14190
14192
14194
14196
14198
14200
14202
14204
14206

00403 IM
LAB
PH
su
•
t
t
t7.4
t7.3
>6.5
16.5
t7.7
t7.2
t7.1
t7.3
t7.6
t7,5
t8.0
t7.5
t7.9
t7.5
J7.5
t7.7
t7.6
t7.7
t9.1
:7.9
:7.3
f7.9
t7.9
t7.9
t7.9
J7.8
t7.5
t
•
*
S7.8
:7.9
:7.7
t7.6
:7.5
t7.9
t8.0
t7.6
t7.4
:7.3
t7.8
t7.2
flSP
00951 IM
FLUORIDE
F, TOTAL
MG/L
f
•
•
•
t
: 0 . 1 3
tO. 13
10.78
10.86
tO. 93
tO. 14
10.56
tO. 14
12.1
tO. 16
tO. 12
tO. 19
to. 76
tO. 16
tl.O
10.20
tO. 99
10.18
tO. 83
SO. 13
tO. 22
tO. 12
tO. 82
tO. 12
tO. 83
tO. 14
tO. 19
•
•
t
S0.15
SO. 87
tO. 19
tl.O
SO. 17
tfl.93
tO. 23
ll. 1
t<0.10
tO. 80
t 0. 16
tO. 13
86P
.IN. 0*04 REGION v D^INK
32730 In
PHENOLS
UG/L
: 7
! ft
• o
:3
t
:5
t7
t<3
:<3
16
:3
S4
ts
tO
13
t<3
sio
t5
t7
13
14
t5
.'6
t5
t5
S3
t<3
s5
t<3
IS
13
18
tS
t7
t<3
t<3
:4
14
s<3
t<3
S3
t7
:3
s<3
, i A
• 1 4
:5
87P
IMG MATER
00720 IM
CYANIDE
CN
MG/L
t<0.002
t 0. 010
!<0.002
t n.002
tO. 006
tO. 006
10.003
K0.002
10.003
10.010
tO. 003
10.003
10. 003
tO. 005
tO. 003
tO. 003
10.010
tO. 004
10. 00ft
10.003
tO. 004
tO. 004
tO. 004
tO. 006
10.002
tO. 004
K0.002
X0.002
s<0.002
10.005
K0.002
10.005
tO. 008
:0. 002
:<0.002
10.003
sO. 004
iO. 003
tO. 00 3
10.002
tO. 005
s<0.002
tO. 002
. n n i c
• .' . V 1 J
SO. 003
88?
STUDY -
00630 IN
N02<»N03
N-TOT4L
MG/L
S<0.03
:<0.03
s<0.03
t 1.04
SO. 99
tO. 99
tO. 99
tO. 98
tl. 13
U.10
12.49
S2.60
t2.53
S3. 94
S4.8«>
S4.44
t9.03
16.53
14.91
14.80
13.45
S3. 31
SO. 23
SO. 22
so.ie
SO. 16
tO. 17
tO. If)
tO. 23
tO. 16
t<0.03
X0.03
s<0.03
s<0.03
t3.13
S3. 24
tO. 06
to.i?
10.07
SO. 66
tO. 25
0.23
0 . ??
"•* • C C.
0.21
39P
JNOUNA
00610 IN
NH3-N
TOTAL
MG/L
K0.010
K0.010
:<0.010
•
SO. 155
SO. 153
M0.010
K0.010
SO. Oil
SO. 153
s<0.010
SO. 064
0.012
0.281
<0.010
0.178
0.293
0.090
0.012
0.124
0.687
0.190
0.273
0.075
0.145
0.014
0.148
0.011
0.153
0.068
0.357
<0.010
<0.010
0.107
0.015
0.102
0.016
0 .209
0.014
0.325
0.142
0 .026
<0.010
0.231
0.375
9ft n
" **


00625 IN
TOT KJEL
N
MO/L
t<0.05
s<0.05
:<0.05
j
si. 25
11.22
10.61
10.66
tO. 72
tl.47
tO. 71
tl.59
iO. 80
tl.io
tO. 7*i
tO. 77
tO. 64
tO. 6*
10.23
tO. 88
SI. 15
11.51
to. 5*
t 0.24
SO. 2?
50.16
SO. 23
SO. 16
SO. 24
to.?o
tO. 45
J<0.05
K0.05
to. 11
:<0.05
to. so
50.20
• 0.^1
SO, 11
SO. 42
50.29
ft A ^ A
S 0, 14
!<0.05
to. *i
:n.4V
Q 1 P
71*^

•M
• M
• M
•M
s IS*1-
t 2<^*>*
! 3S»M
s fcS*^
S 6S»M
s 7S«'-t
s 8S*w
t 9S*v
t!6S»*
tlflS*"
t20S»M
t22S»M
t24S»"
!26S»v
s?8S«^
S305i»v
S325»v
s 34S»"
536?*^
S3«S*M
s *OS*M
S42S**
S 44S«w
S46S* •(
!4!JS»*
SSOS*^
S52S»-
S54S»M
S56S*^
t53S«M
t60«»«M
t62S««
t63S»M
$67S»M
S69S«M
STIS*^
s 73?«M
* 7 R ^ o \A
• ' J 3 v M
:77S*M
S7VS*"
sais*-
• tl ^S C A *J
• H 35 •*
:ass*«
S875««
:89S»M
• «M
tt A vJ
ir W \f


-------
EPA-CRL
1975
SAMPLE
LOG NO.
14118
14119
14120
14123
U124
U125
14126
U133
U135
U137
14139
14141
14143
14145
14147
141*9
14151
14153
U1S5
14157
14159
14161
14163
14165
14167
14169
14171
U173
14175
1*177
14179
14180
1*16*
1*186
1*188
1*190
1*192
1*194
1*196
14198
U200
U202 .
14204
14206

.IN.OWO*
00665 IN
PHOS-T
P-nET
MG/L
t<0.02
:<0.02
t<0.02
tO. 28
10.27
tO. 03
10.02
tO. 02
tO. 47
tO. 36
tO. 31
tO. 03
tO. 02
K0.02
tO. 15
10.03
10.08
K0.02
10.07
t<0.02
tO. 16
t<0.02
t<0.02
t<0.02
tO. 02
10.02
tO. 03
tO. 03
10.02
10.02
10.02
K0.02
tO. 03
tO. 03.
10.09
tO. 05
tO. 06
to. 01
K0.02
:<0.02
t<0.02
t<0.02
tO. 02
t<0.02
92P
REGION
00340 IN 00680 IN 71900 IN
COO T 0*6 C MERCURY
HI LEVEL C HGtTOTAL
MG/L MG/L UG/L
:<3 t t<0.1
t<3 t KO.l
t<3 t KO.l
t25 t tO. 3
'.22
t*
t5
i<3
135
15
130
no
t*
t<3
H3
:7
no
13
116
18
t32
• a
t5
t<3
t3
l<3
16
t<3
i<3
13
t<3
to.2
10.3
10.3
10.2
tO.l
KO.l
KO.l
KO.l
KO.l
KO.l
tO.l
10.2
10.1
tO.l
in. 3
tO.2
10.1
10.2
10.1
tO. 3
:0.1
KO.l
10.1
KO.l
KO.l
tn.3
KO.l
t<3 t 10.1
t<3 t to. 2
t<3 t :0.2
1 10 t tO.l
:5 t t o.l
:6 t KO.l
:S t 10.2
t* t to. 2
t<3 : :0.3
t3 t :<0.1
t<3 t :P.2
:10 t :<0.1
:9 t :0.2
93P 9*P 95P
00900 IN
TOT HArtO
CAC03
MG/L
t<3
t<3
t<3
t!05
t!09
1109
1109
>112
113*
110*
H58
1170
1372
t32f»
t27*
1269
:263
1303
1289
1285
1217
171
1135
U35
1136
:132
1137
1132
1137
1132
l<3
t<3
t267
t272
1283
1288
1212
tllO
t250
1305
:*9
160
ti42y
t!32
96P
OOfrlS IN »N
N02-N *M
TOTAL *N
I»G/L *N
: t t 1S«N
•
•
•
•
:0.028
:<0.005
t<0.005
K0.005
K0.005
10.007
K0.005
tO. 060
:<0.005
tO. 015
:<0.005
tO. 043
K0.005
10.0*0
K0.005
:0.017
K0.005
t<0.005
10.026
10.008
K0.005
:0.006
K0.005
10.007
K0.005
10.023
KO^OOS
1
•
K0.005
t<0.005
:0.026
t<0.005
K0.005
Ktl.005
K0.005
t<0.005
tO. 009
K0.005
:0.010
:
-------
CRLS 05APR DSN«CNCRLS,RGD.MC.DW01 ON TS0009  04/19/75
                              •STUDY DESCRIPTION	——	—
                            STATTY»»E SMPLDAY ATLA8BY DUEDATE ACCOUNT-NUMBER
                            77777777 C3FE875 05FE975 03MAY75
                                 - MICHIQftN
                              •SAMPLE DESCRIPTIONS	
                               STATTYPE DEEP T M NO £NOO*TE TIME PPLU
NPAR NLOf
94 71
>»REG^
LABIONUM
14208
U209
14210
14211
14212
14213
U214
U215
14216
14217
14218
14219
14220
14221
14222
14223
U224
U225
U226
U227
14228
14229
U230
14231
14232
U233
14234
14235
U236
U237
14238
14239
U240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
U?51
U252
U253
14254
14255
14256
1 AGFNCYIO UNLOCKEY ST
r 77
4 V DRINKING *ATEP STU
STORETID COLLDAY TIME
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
7<50?03
750203
750203
750203
750203
750203

-------
U257
U2S8
U2S9
l'-SO
I  ,1
14262
14263
14264
14265
14266
1*267
14268
U269
14270
14271
14272
14273
14274
14275
14276
14782
U783
U784
U785
U786
14.787
14788
14789
>»14208
>»14209
>»14212
>»14213
>»1421*
>»14215
>»14216
>»14217
>»1*218
>»14219
>»14220
>»14221
»>14222
>»14223
 »>14225
 >»14226
 >»14227
 >»14223
 >»14229
 >»14230
 >»14231
 >»14232
 >»14233
 >»14234
 »>1423S
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
.  750203
  750203
  750203
  750203
.  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
  750203
HN03  REAGENT  BLANK
H2S04 REAGENT BLANK
NAOH  REAGENT  BLANK
H3PO*- REAGENT BLANK
OPEN
DUNDEE RAM  MATER  SERIES  A   . - .
DUNDEE RAM  MATER  SCRIES  9
DUNDEE FINISHED MATER  SERIES  A
DUNDEE FINISHED MATER  SERIES  a
DETROIT RAM MATER SERIES A  _
DETROIT RAM MATER SERIES 8
DETROIT FINISHED  WATER SERIES A
DETROIT FINISHED  MATER SERIES 8
DETROIT RAW W4TER SERIES a
DETROIT RAM MATER SERIES 9
DETROIT FINISHED  MATER SERIES A
DETROIT FINISHED  *ATgR S£RIC» 8
MT. CLEMENS  »AM MATER SCRIES A -
MT. CLEMENS. RAM MATER SERIES d
MT. CLEMENS  FINISHED  WATER  SERIES A
MT. CLEMENS  FINISHED  MATER  SE»iES 9
JACKSON RAM MATER SERIES A  -
JACKSON RAM MATER SERIES 3
JACKSON FINISHED  MATE? SERIES A
 JACKSON FINISHED  «ATER SERIES 3
KALAMAZOO "AM *AT£R  SERIES  A --
           3A» MATER  SERIES  3
4 |.S* d  23-3*6 u)

          0  . o S" u)
 KALAMAZOO FINISHED MATER SERIES A

-------
»14236
»14237
»14238
»14239
»14242
»14243
»14244
»14245
»14246
»14247
»14248
»14249
»>14250
»>14251
»>14252
•>14253
•>14254
•>14255
>>14256
•>14,257
•>14258
•>i4259
•>14260
 •>14262
 •>14263
 •>14264
 •>14265
 •>14266
 >14267
 >14268
 >14269
 >14270
 >14271
 >14272
 >14273
 >1*274
 >14783

 >1478S
 >14787
 >14788
 KALAMAZOO FINISHED WATER SERIES 8
 LANSING RAW WATER SERIES A.	
 LANSING RAW WATER SERIES B
 LANSING FINISHED WATER SERIES'A
 LANSING FINISHED WATER SERIES 8
 GRAND RAPIDS RAW WATER SERIES A
 0RAND RAPIDS RAW WATER SERIES 8
 GRAND RAPIDS FINISHED
                                           SERIES A
               GRAND RAPIDS FINISHED WATER SERIES 8
 MT.PLEASANT RAW WATER SERIES a
 MT.PLEASANT FINISHED WATER SERIES A
 MT.PLEASANT FINISHED WATER SERIES B _
 CADILLAC RAW WATER SERIES A  	•
 CADILLAC RAW WATER SERIES 8
 CADILLAC riNlSHED WATER SERIES A
 CADILLAC FINISHED WATER SERIES 3
  SAULT STE.MARIE RAW WATER SERIES A	
 SAULT STE.MARIE RAW WATER SERIES 8
 SAULT STE.MARIE FINISHED WATER SERIES  A
 SAULT STE .M_AR_IEF INI SHED WATER SERIES  B
 WATERFORcQJwNSllTP^RAW WATER SERIES A   	
 WATERFORO TcJwTTSTTTP RAW. WATER SERIES 8
 WATERFORD TOWNSHIP FINISHED WATER SERIES A
 WATERFORD TOWNSHIP FINISHED WATER SE«IES B
 MENOMINEE PAW WATER SERIES A  ———	
MENOMINEE RAW WATER SERIES a
 MENOMINEE FINISHED WATER SERIES A
MENOMINEE FINISHED WATER SERIES B
 MENOMINEE «A« WATER SERIES A
 MENOMINEE RAW WATER SERIES B
 MENOMINEE FINISHED WATER SERIES A
 MENOMINEE FINISHED WATER SERIES B
 HN03 REAGENT BLANK
 H2S04 REAGENT BLANK
 NAOH REAGENT BLANK
 H3P04 REAGENT BLANK
 aiSSE««ER TOWNSHIP RAW WATER SERIES A	
 8ISSEMER TOWNSHIP RAW WATER SERIES B
 8ISSEMER TOWNSHIP FINISHED WATER SERIES A
 fllSSEME* TOWNSHIP FINISHED WATER SERIES 8
 BAY CITY RAW WATER SERIES A  -	
 BAY CITY RAW 'OTEd SERIES B
             3»H ^J


S "/  M  £ (o -4 O K


.3 UNl   %4.4(,v
                                                                91 .^ o
                                                                                .37 I
                                                                3.
               BAY CITY FINISHED WATER SERIES 4
               BAY CITY FINISHED WATER SERIES B
               WYANOOTTE RAW WATER SERIES A  —	
               WYANOOTTE RAW WATER SERIES 3
               WYAMDOTTE FINISHED *ATER SERIES A
               WYANDOTTE FINISHED WATER SERIES B
              	SAMPLE/PARAMETER DATA-
       0   
-------
FPA-CRL
1975
SAMPLE
LOG NO.
14213
14215
14217
14219
14221
14223
14225
14227
14229
U231
14233
14235
14237
14239
14241
14244
14245
14247
U249
14251
14253
14255
U257
U259
14261
14263
14265
14267
14273
U275
14782
14784
14786
14788

."I. 0*01




•
:
•
•
•
•
•
!
t
I
•
•
S0003 OA
TREFLAN
WHL SMPL
UG/L
0.007
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
xO.002
:
•
•
t
•
•
•
•
•
t
:
:
:
•
•
•
•
•
•
s
:
•
•
:
•
•
•
•
0.003
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
xO.002
•
•
•
•
!


<0.002
<0.002
<0.002
IP
REGION
S0001 OA
HC6ENZ
WHL SMPL
UO/L
XO.002
XO.002
XO.002
xO.002
XO.002
XO.002
xO.002
xO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
xO.002
XO.002
xO.002
XO.002
xO.002
xO.002
XO.002
XO.002
xO.002
xO.002
XO.002
XO.002
XO.002
XO.002
2P
39782 OA
LINOANE
WML
SMPL
UO/L
:<0.
xO.
xO.
xO.
XO.
XO.
XO.
XO.
XO.
xo.
XO.
XO.
XO.
XO.
XO.
XO.
XO.
XO.
XO,
XO.
XO.
XO.
XO.
xo.
xo.
XO.
xo.
XO.
xo.
XO.
xo.
XO.
XO.
xo.

002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
3P
S0002 OA
88HC
WHL
SMPL
UG/L
: <0.
xO.
xO.
: S»A
>29S*A
?30*?*A
:32S*A
' 34S»A
:37S«A
:3£S*A
:40S*A
»42S*4
S44S*A
:46S»A
:4P$*A
:50S»A
:=>2S»A
: 54S»A
:56S«A
:58S»A
:60S«A
:66S*A
!68S»A
t70S»A
:72S«A
:74S*A
:76S«A
••A


-------
EPA-CRL
1975
SAHPLE
LOG NO.
U213
U215
U?17
U219
14221
14223
14225
U227
14229
14231
14233
U235
14237
14239
U241
14245
14247
14249
14251
14253
14255
14257
14259
14261
14263
U265
14267
14273
14275
U782
14784
14786
14788


39430 OA
ISOO«IN
WHL SHPL
UO/L
XO.003
XO.003
XO.003
X0.003
XO.003
Xfl.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
X 0.003
xO.003
XO.003
xO.003
XO.003
11.0
XO.002
K0.002
xO.002
xO.002
xO.002
xO.002
xO.003
XO.002
xO.003
xO.003
xO.003
XO.003
XO.003
XO.003
BP
REGION
39420 OA
HCMLR-EP
WHL SHPL
UG/L
xO.002
xO.002
XO.002
XO.002
XO.002
xO.002
XO.002
xO.002
xO.002
xO.002
xO.002
xO.002
xO.002
xO.002
xO.002
XO.002
xO.002
XO.002
xO.002
XO.002
XO.003
xO.003
xO.003
XO.003
xO.003
xO.002
XO.002
xO.002
xO.002
xO.002
XO.002
xO.002
xO.002
9P
S0006 OA S0007 OA
CHLOROAO DOC OP
MHL SHPL *HL
UO/L
XO.002
XO.002
XO.002
xO.002
XO.002
XO.002
XO.002
XO.002
xO.002
XO.002
XO.002
XO.002
XO.002
xO.002
xO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.003
xO.003
XO.003
XO.003
XO.003
xO.002
!<0.002
XO.002
XO.002
xO.002
XO.002
xO.002
XO.002
IOP
V DRINKING WATER
SHPL
UO/L
xO.
xO.
i <0 .
x 0 .
XO.
XO.
XO.
XO.
XO •
t <0*.
XO .
I <0 •
! <0 .
: <0.
x 0 .
• < 0 .
X 0 .
xO .
I <0.
: <0.
t <0.
: <0.
! <0.
xO .
XO ,
: <0 .
xO •
! <0 .
x 0 .
l <0.
I <0 .
xO.
xO •
1
STUDY
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
IP
- MI
S0008 OA
DOC PP
WML SMPL
UO/L
XO.003
J < 0 . 0 0 .1
XO.003
:<0.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
12°
CHIG4N
S0009 OA
000 OP
«HL SMPL
UG/L
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
:
-------
£PA-C*L
1975
SAMPLE
LOO NO.
4213
14215
14217
14219
14221
14223
14225
14227
14229
14231
14233
14235
U237
14239
14241
14244
14245
14247
14249
14251
U253
14255
U257
U259
U261
14263
14265
14267
14273
14275
14782
14784
14786
14788

S0011 OA
DOO PP
WHL SMPL
UG/L
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
t< 0.003
K0.003
K0.003
K0.003
t
K0.003
10.006
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
:<0.003
K0.003
K0.003
K0.003
ISP
S0012 OA
DOT PP
WHL SMPL
UG/L
tO. 004
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
j
tO. 004
K0.003
KO.OOS
K0.003
K0.003
:<0.003
K0.003
K0.003
K0.003
:<0.003
K0.003
K0.003
K0.003
K0.003
t<0.003
K0.003
K0.003
K0.003
16P
S0013 OA
CAQBPHTH
WHL SMPL
U8/L
t<0.003
K0.003
:<0.003
K0.003
:<0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
:
K0.003
K0.003
K0.003
KO.OOS
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
17P
S0014 OA
^IRCX
WHL SMPL
UO/L
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
J
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
K0.003
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
ISP
39480 OA
MTHXYCL*
WHL S*PL
UG/L
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
t
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
19P
S0020 OA
2.4-OtIP
WHL SMPL
UG/L
K.O?
:<,02
: < .0?
: <.02
' <.02
: <.02
:<.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.Q2
:<.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
20°
S0021 OA
nwqp
WHL SMPL
UG/L
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
21P
.^I.DViOl &E6IO.N V DRINKING HATE* STUfTv' - MICHIGAN

-" *






•C
*C
*c
•C
: *S*C
t as*c
:10S*C
:12S*C
: I45»c
:16S*C
: ias*c
:20S*C
:22S«C
t24S«C
t26S»C
:2BS*C
t30S*C
:32S»C
!34S*C
:37S»C
t 3*S»C
S40S»C
I42S*C
I44S»C
I46S*C
:4^S*C
:50S»C
tS2S«C
t54S»C
:56S«C
^SS^C
:60S«C
t66S«C
t 68S«C
t70S*C
t72S»C
t74S»C
: 7bS*C
••C
**c


-------
EDA-C&L 39770 0* S0023 OA 39380 OA 3*390 OA 39*60 OA S0027 OA S0028 04 *D
1975 OCPA ENOOS I DIELDRIN ENQRIN CLP^NZtT E*DOS 11 N!T*OFEN *0
SAMPLE »HL SMPL «HL SMPL *HL SMPL *HI SHPL *HL SMHL *HL SMPL «HL SMPL »o
LOG NO. UG/L UG/L UG/L UG/L UG/L UG/L Uo/L »0
4213
*4215
14217
U219
14221
U223
14225
14227
14229
14231
14233
14235
14237
U239
14241
14244
14245
14247
14249
U251
U253
14255
U257
14259
14261
U263
14265
14267
14273
14275
14782
14784
14786
U788
<.0fl3
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.ooi
<.003
<.003
<.003
<,003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
«.003
<.003
<.003
<.003
<.003
<.003
<.005
<.005
<.005
<.005
<.005
<,005
<.005
<.005
<.OC5
<.005
<.005
<.005
<.005
<.OOS
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<,005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.OOS
<.005
<.005
<,005
<.003 K.005
.005
<.003
<.003
<.003
<.003
<.003
<.003*
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.OQ3
<.003
<.003
<.003
<.003
<*003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003 t<.01
<.003 :<.01
<.003 :<.01
<.003 K.01
< .003 :<.01
< .003 :<.01
<.003 :<.01
<.003 K.01
<.003 :<.01
<.003 :<.01
<.003 :<.01
<.003 :<.01
< .003 : <.P1
< . 0 0 3 : < . 0 1
<.003 :<.01
<.003 :<.01
<.003 :<*01
<.003 :<.01
<.003 »<.01
<.003 S<,01
<.003 :<.01
<.003 '• < . 0 1
<.003 :<.01
<.003 K.01
<.003 »<.01
<.003 K.Ql
<.003 K.01
<.003 K.01
<.003 K.01
<.031 K.01
<.003 K.01
<.003 K.01
<.003 K.01
<.003 K.01
<.005 K.005 : 65*0
<.005
< .005
<.005
<.005
<«005
<.005
<.005
<*OOS
<.005
<.005
<.005
<.005
<-005
<.005
.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005 : ^«i«o
<.005 :10S»0
<.005 :l2S»n
<.005 :l4S»o
<.005 :16S»0
<.005 :18S»0
<,005 :20S»n
<.OOS t22S*D
<.005 I24S*0
<,005 t26S*0
<.005 :28S»0
<.005 :30S«D
<.005 :32S*0
<.005 :34S»0
<.005 :37S«0
<,005 :3B5»D
<,005 140S»0
<.005 !42S»0
<,005 J44S»n
<.005 J46S*0
<.005 :»«S*0
<.005 :50S»o
<.005 :52S*0
<.005 :5*S*o
<.00b :56S*0
<.005 :5^?*0
<,005 :60S*o
<.005 J ,005 :66S»0
<.005 1 ,005 1685*0
<.005 « .005 J70S«0
<.005 J ,005 J72S«0
<.005 8 .005 174S*D
<.005 K.005 :7bS*D
22? 23P 24P 25P 26P 27P 23<» *»o
.MI. 0*01 REGION v DRINKING WATER STUDY - MICHIGAN »»i

-------
EPA-CRL
1975
SAMPLE
LOG NO.
4213
i4215
14217
U219
U221
U223
U225
14227
14229
14231
14233
14235
14237
14239
14241
14244
14245
14247
142*9
U251
14253
U255
14256
14257
14259
14261
14243
U265
14267
U273
U275
U782
14784
14786
14738

.Ml.OwOl
S0029 OA
245-HIO
*HL SMPL
UO/L
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
•
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
:<.0l
K.Ol
29P
PEGION
S0030 OA S0031 OA S0026 OA 39808 Oft
PMOLAN BULAN OClP TCDIQN
WML SM«»L WML SMPL NHL SMPL WHL SM»»L
UG/L UG/L UG/L UG/L
K.Ol K.Ol Kl
K.Ol :4.01 :<1
K.Ol K.Ol Kl
K.Ol K.Ol t <1
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol »2.5
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol «1
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol
K.Ol
•
K.Ol
:<.01
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
:<.01
K.Ol
<.01 Kl
<.0l Kl
:
<.01 Kl
<.01 Kl
<.01 Kl
<.01 :<1
<.01 Kl
<.01 Kl
<.01 U
<.01 Kl
<.01 11
<.01 :i
<.01 :i ,
<.01 :<1
<.01
<.01 :
.01 :
.01 :
.01 :
.01 :
.01 :
.01 :
<.01 t
<.01 :
<.01 :
<.0l !
<.01 :
<.01 t
<.oi :
<.01 :
<.01 :
<.01 :
<.01 :
<.01 :
<.01 :
<.01 :
•
•
<.01 :
<.01 :
<.01 :
<.01 :
<.01 :
<.01 :
<.01 i
<.01 :
<.01 :
<«01 :
<.01 :
<.01 :
30P 31P 32P 33P
V DRINKING «ATE« STUDY •* MICHIGAN
39570 OA
DIAZINON
4HL SMPL
UG/L
<1
<1
<1
< 1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1

<1

<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
34P

SOOlb OA
OYFONATE
*HL SMPL
UG/L
:<1
:<1
:<1
:S«P
: 1*S«E
:20S«£
!22S«E
:24S»E
:2*S«E
:28S»E
:30S»E
:32S»E
:345»E
:37S»fi
:3^S»F
t40S»E
!42S«£
!44S»E
!4«bS«P
•^es*^
; fco<;»F
:50S»E
:5as»E
:54S»E:
:56S*E
:S«S»£
:6ftS»E
»66S*E
t68S»E
»70S«E
:72S»E
:74S«E
:7i?»E
• or
««c

-------
FPA-CRL
1975
SAMPLE
LOG NO.
4213
14215
14217
14219
14221
14223
1*225
U227
14229
14231
14233
U235
14237
14239
U241
U244
14245
14247
14249
U251
U255
14256 .
U257
14259
U261
14263
14265
14267
14273
14275
14782
14784
14786
14788

.Ml.DwOl
S0017 OA
RONNEL
*HL SMPL
UG/L
s < 1
: <1
: <
! <
: <
K
K
1 <
> <1
Kl
Kl
Kl
t <1
Kl
Kl
Kl
Kl
Kl
Kl
Kl
: <1
: <1
t <1
Kl
: <1
t22S*F
<1 >24S*r
<1 I26S*F

<1 :30S«F
<1 :32S*F
<1 :34S*F
< 1 ! 37S*F
<1 S3fS°F
<1 :40S*F
<1 !42S*F

<1 !4i3S*':'
< 1 ! *9S*F
< 1 1 50S*F
<1 :52^*F
<1 :54«»f
<1 :56S«F
<1 «58S*F

<1 :6fr5*F
<1 Kl :68S*F
<1 Kl J70S»F
<1 Kl I72S*F
<1 Kl J7»S»F
<1 Kl :74S*F
40P *1P 42P »«F
REGION v DHINKING WATEP STUDY - MICHIGAN »»F

-------
FPA-CRL
197$
SAMPLE
LOO NO.
•4213
i4215
U217
U219
U221
14223
U22S
14227
14229
14231
14233
14235
U237
14239
14241
14244
14245
14247
14249
14251
14255
14256
14257
14259
U261
U263
U265
14267
14273
14275
14782
14784
14786
14788

.Ml. DM01
S0018 OA S0034 OA
PHENCAPT £PN
*HL SMPL WHL SMPL
UO/L UO/L
Kl 5 <1
Kl Kl
:<1 :<1
:< 1 Kl
:<1 :<1
:<1 Kl
Kl Kl
Kl Kl
Kl Kl
Kl Kl
Kl Kl
: <1 Kl
Kl I<1
:<1 : <1
:<1 :<1
:<1 Kl
: <1 :<1
Kl Kl
Kl Kl
Kl Kl
Kl Kl
:<1 :
-------
C-PA-CRL
"1975
«AMPLE
LOG NO.
14213
4214
U21S
14216
U217
14218
U219
14220
14221
1*222
U223
14224
U225
14226
U227
U228
U229
14230
14231
14232
14233
14234
U23S
14236
14237
14238
14239
U240
14241
14242
14244
14245
14246
14247
U248
14249
U250
U2S1
14252
14253
14254
U255
14256
H257
U258
U259
U260
U261
14262
U263
1426*
U265
U266
i267
i4268
U273
U274
39496 OA
AROCLOR
1242
UG/L
:<0.3
i
!<0.3
:
:<0.3
:
:<0.3
t
><0.3
t
X0.3
I
xo.3
:
xo.3
:
XO.3
:
xO.3
t
XO.3
*
:<0.3
:
xo.3
:
xo.3
:
xo.3
;
*
xo.3
:
xo.3
:
xo.3
:
XO.3
:
xO.3
e
XO.3
t
XO.3
:
xo.3
:
xo.3
:
XO.3
5
XO.3
«
X0.03
i
X0.03
:
39500 OA
IROCLOR
12*8
UG/L
t<0.3
;
xO.3
;
xO.3
t
xO.3
:
xO.3
:
xO.3
:
xO.3
•
xO.3
:
xO.3
:
XO.3
:
xO.3
:
xO.3
:
xO.3
*
xO.3
:
xO.3
:
*
xO.3
:
XO.3
•
xO.3
:
xO.3
:
xO.3
:
xO.3
t
xO.3
:
xO.3
:
x 0 . 3
•
XO.3
;
xO.3
:
t<0.3
:
xO.3
:
39504 OA
AHOCLOR
1254
UQ/L
xO.3
•
xO.3
;
xO.3
:
xO.3
t
XO.3
t
XO.3
S
xO.3
t
xO.3
:
XO.3
:
XO.3
:
XO.3
:
xO.3
:
XO.3
*
XO.3
:
XO.3
:
:
XO.3
:
XO.3
:
XO.3
:
xO.3
:
xo.3
s
XO.3
:
XO.3
:
xO.3
:
xO.3
:
xO.3
•
XO.3
:
XO.3
:
XO.3
;
39S08 OA S0047 OA 50039 OA S0018 OA «H
A«OCLOH MET^E CL CCL4 CMCL3 *H
1260 TOT VOL TOT VOL TOT VOL* *H
UG/L UG/L U3/L 0'3/L *H
X0,4
1
XO .4
;
X0.4
:
I<0.4
I
X0.4
I
X0.4
I
X0.4
j
X 0 . 4
•
: <0 .4
j
X0.4
:
X0.4
j
X0.4
:
X0.4
:
X0.4
:
X0.4
:
:
: <0 .4
t
: -i
; 44S°^
47 :<»5?*-
: 4^<;»»
<1 :47S*H
:4^5«H
27 :49S»H
:SOS»-t
< 1 : si ^»-"
; 5 p i; » _,
< 1 : 53S°-<
: 5 » t-*"->
<2 JSSS*-'
5 56'S*H
• 2 :57S«k"
: 5 j 5 o H
ty :505«H
• /ijr; si**.
5* J615J*"
• /s n « « _
f : 6 7 '3 » -

-------
14275
14276
14782
14783
14784
4785
14786
14787
14788
14789

.Ml. 0*01
:<0.3
•
s<0.3
:
:<0.3
:
»<0.3
:
<0.3 I
t
0.3 t
:
<0.3 :
:
<0.3 :
:
:<0.3 :<0.3 t
t t t
SOP SIP
RCOION v OAINKINO
<0.3 t<0.4

<0.3

<0.3

<0.3

<0.3


<0.4

<0.4

<0.4

<0.4

5tP 53P
WATER STUOY -
I 1
t<»5 s<,b
i :
:<0.«i :<0*6 12.1 U4
S4P 55P 56P
MICHIGAN
I68S»H
! 69S*H
170S»H
: 7is»H
j ?2S*H
• 7?S»H
: 74 s*1-1
j ?c;s«H
• 7^ S«H
:77S«H
**H
•*M

-------
ePA-c*L
1975
SAMPLE
LOG NO.
'4214
.4216
14218
U220
U222
14224
14226
14228
14230
14232
14234
14236
14,?38
14240
14242
14244
14246
14246
14250
14252
14254
1425,6
14256
14260
14262
14264
14266
14268
14274
14276
14783
14785
14737
14789

.MI.DWOI
$0056 04
C2H4CL2
TOT VOL
UG/L
t<1
:<1
:<1
:<1
:3
:<2
:26
s<2
:9S»i
S71S»1
»73S»I
:75S«I
:77S»I
61P 62P 63P ••!
V DRINKING HATE* STUDY - MlCMlGiN **I

-------
EPA-CRL
1975
SAMPLE
LOG NO.
14208
14214
14216
14218
14220
14222
14224
14226
14228
U230
14232
14234
14236
14238
14240
14242
14244
1*2*6
14248
1*250
1*252
1*25*
1*256
14258
U260
U262
1*26*
14266
14268
U269
14274
14276
14783
14785
14787
14789

.Ml. 0401
00916 Mm
CALCIUM
CA.TOT
MG/L
!<1
:58.9
:35.4
:20.9
122.2
122.1
123.6
133.5
136.0
M35
M08
M30
189.8
Ml*
M6.7
:30.6
136.9
196.*
182.9
:33.9
1*3.8
M3.4
M3. 7
162.4
129.3
:33.4
127.9
132.5
126.6
Kl
M4. 3
140.6
:27.1
126.0
120.-)
133.7
64 P
REGION
00927 M*
MGNSIUM
MG.TOT
MG/L
KO.l
M5. 7
12.0
17.0
17.1
17.4
16.9
17.3
17.6
131.7
135.7
131.8
132.1
131.8
M3.*
Ml. 8
M1.8
125.5
125.3
19.5
Ml. 7
12.9
12.9
125.0
:9.2
M3. 2
M3.2
M3.2
M3.2
KO.l
13.7
!*.!
19.3
17.0
17.4
17.5
65P
00929 M«
SODIUM
NA.TOT
MO/L
KO.l
17.4
127.8
:4.1
13.5
13.6
13.3
13.9
16.0
125.0
1*5.9
121.9
12*. 0
18.3
M7.9
15.2
15.*
M7.1
M6.5
13.9
17.5
M.I
M.O
123.*
19.8
13.7
13.9
13.5
!*.!
KO.l
12.2
131.6
16.1
16.6
13.5
l*.5
66P
V DRINKING MATE?
00937 MN 0103* "* 010*2 M>
PTSSIUM CMPOMIU* COPPER
K.TOT CR.TOT CUtTOT
MO/L UG/L UG/L
i <0 . 1 * "c * •""•
13.0
:2.t)
M.O
: 0.8
10.9
10.8
M.I
M.3
12.5
13.6
12.2
12.7
12.*
12.0
M.4
M.*
M.5
M.5
10.7
M.2
to. 6
10.6
M.3
10.7
M.2
M.2
M.2
M.3
KO.l
in. 7
10.9
M.I
M.I
:n.9
10.8
67P
STUDY -
. «3 « '•s
l<5 Ml
i<5 : 
. - tr • 1 7
1 f\
# ^ C v
K20
1648
K2C
• ^ A
: 3*
: <20
•17^
« i f '
!—•)**
*o
:37S»J
139S»J
»*1S»J
t*3S»J
i*5S*j
:47S»J
149S* J
:51S»J
• C 1 C » '
• ^ J > ^ w
» xc, c * i
• J J Jl \J
• c 7 c* i
• T ' 3 0
• CU<« 1
• f * - sj
: ttl ^« i
• D A » *J
i«»2S»J
167S»J
169S»J
• T 1 C • i
J 7 I T** J
• *T ^ C A >
: 73S*J
! 7^^>» 1
• • t J O
• 7 y c A ,
• I f 3 w « 1
J
**J
	 J

-------
eP4-C«L
1975
SAMPLE
LOG NO.
i 4?ng
A w b V w
14214
14216
14218
14220
14222
14224
14226
14228
14230
14232
14234
U236
14238
14240
14242
14244
14246
14248
14250
14252
14254
14256
14258
14260
14262
14264
14266
U268
14269
14274
U276
14783
14785
14787
14789
.Ml. 0*01
01055 MW
MANGNESE
MN.TOT
UG/L
i<5
146
:<5
:•<
*•<

-------
FPA-CRL
1975
SAMPLE
t_OG NO.
lx.914
14C I*
14216
14218
14220
14222
14224
14226
14228
14290
14232
U234
14236
14238
14240
14242
14244
14246
14248
14250
14252
14254
14256
14258
14260
14262
14264
14266
14268
U274
14276
14783
14785
14787
14789
.Ml.OfO
00530 IM
RESIDUE
TOT NFLT
M9/L
:67

:7
:<5
:<5
:7
t<5
i<5
i<5
t<5
t<5
t<5
:6
:<5
:<5
:6
'j<5
:<5
:<5
:<5
:<5
:2
:2
:13
:8
:<2
. _ "5
: <2
:<2
t<2
112
t<2
12
i<2
:7
:<2
70300 IM
RESIDUE
OISS-180
C MO/L
1350
• 34LA
I cOU
1130
• 1 9 A
: Ic J
:120
:140
1170
1180
1470
1690
1520
1535
1480
1130
1200
:210
:470
1460
1160
1265
150
150
1370
1360
1180
• 91 fl
• civ
:205
:171
180
1240
1190
1200
1170
1160
00095 IN
CNDUCTVY
AT 2SC
MICROMHO
1516
:404
1214
• 215
:212
1214
1217
1246
1842
11022
li!3
t808
1687
1301
1302
1326
1702
1708
:307
1377
1104
• 1 A9
I 1 WC
1625
1625
1282
:29B
:279
1298
1114
1390
1291
1261
1214
199^
CCn
*«a
7Bp 7*t* ow
1 REGION V DRINKING «UTER
00945 If
SULFATE
SO*
MO/L
164
184
11*
:17
114
115
115
123
1124
1150
179
«**
165
161
124
:31
:94
:94
:17
126
l<3
:<3
11*
»17
U9
:43
:19
:*4
16
till
121
:33
115
i 18
• 49
HIP
w 4
STUDY -
4 00940 I*
CHLORIDE
CL
MG/L
123
t 9T
• C f
:7
:9
:8
18
19
114
144
173
145
154
19
t!8
til
113
:35
:37
:10
118
t<2
12
132
135
17
:ll
18
til
12
17
116
117
18
til
82P
MICHIGAN
OOV56 I»
SILICA
SI02
MO/L
16.5
16. 1

: l.b
; 2 * G
: 1 .6
52.0
11.6
12.4
114.7
114.7
112.9
113.9
til. 4
19.0
:1.8
:2.1
:9.b
:9.7
18.2
:7.4
:2.4
:3.1
:18.2
:17.3
:4.7
:5.1
:4.5
:5.1
:14.0
:5.0
i<0.2
to. e
l l.b
:2.2
83P
.__.-_--
4 Q0410
T AL«
CAC03
MG/L
1146
144
• ^ C
1 75
16°
• TC
• 75
:70
175
163
1269
1288
1286
1294
1299
143
illl
J112
1234
:222
1120
1136
!43
140
:274
:263
:113
!84
• 1 1 4
* 1 1 J
;«5
-.40
:68
llOO
166
179
172
*4
.. 	
[M »L
*L
•L
•L
l 7S»L
J 9S*L
. i i e*i
• i i ' ^-
:13S«L
• i 5S»L
* * -J •* *—
S17S»L
119S*L
121S-L
t23S*L
I25S*L
I27S*L
I29S*L
t31S*L
!33S»L
135S*L
:37S*L
139S*L
141S»L
143S«L
145S»L
147S*L
14-aS*L
• C 1 C •!
I "JlS^L
153S»L
J55S"L
:57S*»L
:59S»L
:61S»L
:67S*L
:69S*L
!71S»L
l73S»L
I75S*L
177S»L
Pjfc At
**L
••L

-------
FPA-CRL
1975
SAMPLE
LOG NO.
14209
U210
14214
U216
U216
U220
U222
14224
142*26
U228
14230
U232
14234
14236
14238
14240
14242
14244
14246
14248
U250
14252
14254
14256
14258
U260
14262
14264
1*266
14268
14270
14271
14274
14276
14783
14785
14787
14789

.Ml. 0*01
00403 IM
LAB
PM
su
:
t
17.8
19.7
18.0
17.6
18.0
t7.7
17.9
t7.4
t7.7
t7.5
t7.8
t7.9
t7.7
19.4
18.1
18.1
17. SI
17.7
18.1
t7.9
57.5
t7.0
:7.7
:7.8
t7.8
t7.2
1 7.y
17.7
1
1
16.9
t7.2
17.9
18.4
17.9
17.5
85P
REGION
00951 IM 32730 IM
FLUORIDE PHENOLS
F, TOTAL
MG/L UG/L
: i
* •
in. 19 15
tl.l t3
tO. 10 t<3
10.92 t<3
tO. 11 l<3
tO. 90 l<3
to. 11 :<3
ll. 0 :<3
tO.24 i<3
JO. 26 t<3
:0.13 :<3
tO. 94 t<3
t0.4l :<3
10.40 !<3
10.13 l<3
tl.O !<3
tl..l t<3
tl.l t<3
K0.10 :<3
K0.10 l<3
K0.10 i<3
tl.l i<3
tft.52 i<3
10.44 :<3
tO. 12 :3
U. 3 :<3
to. 13 14
tl.3 l<3
t :
i t
K0.10 J5
10.14 i<3
10.13 t<3
tl.2 l<3
to. 11 i<3
U.3 K3
86P 87P
00720
IM 00630 IN
CYANIDE N02MY03
CN
MG/L
t
10.002
10.004
10.005
K0.002
K0.002
t<0.002
tO. 002
16.003
10.003
10.007
tO. 004
tO. 004
10.003
10.008
10.004
K0.002
tO. 003
tO. 002
tO. 004
K0.002
tO. 006
10.003
10.003
10.003
10.004
t 0.004
tO. 004
tO. 003
K0.002
l
K0.002
10.004
10.004
10.003
10.006
tO. 003
ift.003
88?
V DRINKING MATE1* STUDY -
N-TOT*L
MG/L
K0.03
l
13.00
14.10
10.36
tO. 28
iO. 28
tO. 27
tO. 29
10.38
K0.03
K0.03
tO. 84
tO. 63
K0.03
10.04
10.40
10.40
10. 31
10.30
K0.03
K0.03
tO. 28
tO. 29
K0.03
tO. 13
tO. 16
tO. 16
10.14
!0. 14
K0.03
!
10.17
tO. 20
tO. 25
10. ?6
tO. 23
10.30
89P
MICHIGAN
00610 IN
NM3-N
TOTAL
MG/L
K0.010 l
: i
:0.228 t
: 0.0*2 t
K0.010 t
K0.010 t
K0.010 i
K0.010 t
10.011 1
K0.010 t
10.179 1
t<0.010 t
:0.156 t
10.055 i
10.277 t
10.213 1
tO. 34 t
:<0.010 t
tO. 080 t
K0.010 t
10.115 t
10.022 l
10.040
10.013 t
10.218 t
10.159 t
:0.027 t
tO. 013 t
10.035 t
t 0 . 0 1 3 t
K0.010 t
l t
tO. 107 t
10.030 i
50.020 t
10.025 t
50.022 l
:0.021 1
90P

00625 IN
TOT KJEL
N
Mfi/L
<0 .05 5
l
1.20 l
0.33 i
0.15 l

o»w
••M

-------
EPA-CRL
1975
SAMPLE
LOG NO.
1*208
1*209
1*21*
1*216
1*218
14220
14222
14224
14226
14228
14230
14232
14234
14236
14238
142*0
1*2*2
1*244
14246
14248
1*250
U2S2
1425*
1*256
1*258
1*260
1*262
1*26*
1*266
14268
14269
14270
14274
1*276
1*783
1*785
1*787
1*789

.MI. 0*01
00665 IN
PMOS-T
P-wET
MG/L
•
:<0.02
10.18
sO.l*
X0.02
:0.02
K0.02
X0.02
K0.02
tO. 11
tO. 02
tO. 02
K0.02
tO. 38
:<0.02
10.10
10.02
10.01
10.4*
tO. 39
10.03
: 1.10
10.02
10.02
:0.05
:0.06
xO.02
X0.02
10.03
xO.02
t
xO.02
10.02
xO.02
10.02
10.02
10.05
XO.02
92°
REGION
00340 IN
coo
HI LEVEL
MG/L
t
:<3
125
ill
16
t5
13
13
tlO
t<3
Ul
l<3
t7
t<3
14
1*
13
!<3
16
19
113
i*
1 10
17
13
t*
116
14
118
ia
t
i <3
138
113
19
:5
J5
15
93P
00680 IN
T one c
c
MG/L
:
:
:
!
:
:
t
i •
i
t
i
t
i
t
s
i
t
:
:
i
:
:
:
:
5
i
*
*
*
*
i
t
t
i
:
:
:
:
:
:
9*P
71900 IN
MEHCURV
HGt TOTAL
UG/L
xO. 1
•
:<0.
: <0.
:<0.
xn.
t <0.
1 < 0 .
1^0.
XO.
xO.
10.1
XO.
xO.
10.1
10.1
xo.i
xo.i
KO.l
KO.l
xO.l
XO.I
10.2
• ^ 0 • 1
• ^ 0 • 1
10.1
• ^ 0 • 1
* ^ 0 • I
* ^ 0 • 1
XO.I
XO.I
1
10.2
10. I
: n. 1
10.4
: 1.2
: 0. 1
9S?
00900 IN
TOT HAHU
CAC03
MG/L
i <3
:
:212
:»
:^9S»>,
: 71S»»i
• 73c^^^
: 75Sa\
: 7 7 s tt '<
97P 98P ••*,
V DRINKING «*ATE«^STUDY - MC-
-------
CHLS 05APP DSN»CNCPLS.«GD.»«N.DW01 ON TS0009  0*/19/7b                   "EV01  T
                              •STUDY DESCRIPTION——	
                            ST4TTYPE SMPLDAY ATLA8BY OUEOATE  ACCOUNT-NUMBED
                            77777777 03FEB75 OSFE875 03«<«AV75
                                 • MINNESOTA
                              •SAMPLE DESCRIPTIONS	
                               STATTyPE DEEP T M NO tNOOdTE  TIME
NPAR NLOG
94 77
>»REGION
LA8IDNUM
1*277
14278
1*279
1*280
U281
1*282
1*283
1*28*
1*285
1*286
1*287
1*288
14289
1*290
1*291
1*292
1*293
1*294
1*295
14296
1*297
1*298
1*299
1*300
1*301
1*302
1*303
1*30*
1*305
1*306
1*307
1*308
1*309
1*310
1*311
1*312
1*313
U31*
U315
1*316
1*317
1*318
1*319
1020
1*321
1*322
1023
143?*
U325
AGCNCYIO UNLOCKCY ST
77
V DRINKING *ATE» STU
STORETID COUOAY TIME
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750?03
7S0203
750^03
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203

-------
1*324
1.327
1*32S
1*329
1*330
1*331
1*332
1*333
1*33*
1*335
1*336
1*337
1.336
1*339
1*3*0
1*3*1
1*3*2
1*3*3
1*3**
1*3*5
1*3*6
1*3*7
i*3*a
1.3*9
1*350
1*351
1.3*2
1*353
»>!»277
>»1*278
>» 1*274
>»l*290
»>1*Z«5
>»U29*
>»l*295
»>l*31l
>»1*312
>»l»303
  750213

  750213
  750213
  750111
  740213
  7502)1
  750211
  750243
  75020T3
  750203
  7502C3
  750203
  750213
  750213
  750213
  750213
  750213
  750203
  750203
  750233
  7502)3
  750213
  750203
  750213

  750213
1N03 4£*j
-2S3* ȣi
                  r.a»uL
                >j ; J . j J?"
K\
                                                                 '.co ^    -H l  i  r u\.'
                     «47C* SC-i'ff 4

                            i *
                                  5£>I-S
                                                                                o  '• -
                                                               •-4
                                          !t» 9
              4lT£-< SCRIES

-------
>»1»306
>»i43or
»>IA30I
>»1439»
>»14319
>»>14329
>»143Z3
>»14324
>»1O30
>»14333
>»>14334

>»I4335
>»1»33I


»>l»340
»>l*34{

»»14343
»»l»345
>»1434»

>»14347
>»14351


>»143S3
                       F4ULS
                •ILL^AW
                                 S£*t!S
                ST.
               ST.CLOUO
                ST.CLOOO
                1T.CLOWO
                MtCKINOIOM
                                      sc*:is s
                        »A« «*TC» SC»IIS A  	
                                     .ATf« IC*|C1
                                           SC«ICS

                                   ««IfS I  '
^^-03 w,1


 ^^•10 v\J


 ^u.">rw


  CM-
                         rtsi$-t3
                                        SOUS 4
                EAST
                EAST
                EAST (JMA-.O
                EAST 3MANO '0»
                                          n»tt» *
                                         ««TE» iE»ii»  »
                                         •AT|« IC*tl>  I
                OSLO »A« »ATE9 $E»IIS I
                OSLO ri<4t$MC3 
-------
FPA-CrtL
"1975
SAMPLE
LOG NO.
1' ""eg
1 3*
14296
U288
U290
U292
14294
U296
U298
U300
U302
U304
U306
14308
U310
14312
U314
U316
14318
14320
U322
U324
14326
14328
U330
14332
U334
U336
U338
14340
14342
14344
U350
U3S2

."N.OW01
S0003 OA
TPEFLAN
WHL SMPL
UG/L
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.032
K0.002
K0.002
K0.002
IP
PEGION
S0001 OA
HC8ENZ
WHL SMPL
UO/L
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
10.006
:0.006
K0.002
:0.006
K0.002
K0.002
K0.002
K0.002
:<0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
2P
39782 OA
LlNDANt
*h

KO
:<0
:<0
:<0
:<0
:<0
KO
KO
KO
KO
KO
KO
KO
KO
:<0
:<0
:<0
KO
KO
KO
:<0
:<0
KO
:<0
:<0
:<0
KO
:<0
KO
KO
:<0
:<0
KO
:<0

v OA INK ING '«
L SMPL
UG/L
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.00*2
.002
.002
.002
.002
3P
S0002 OA
BBHC
WHL SMPL
UG/L
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
K0.002
K0.002
4P
SOOQ4 On
OlCLONt
«HL SMPL
UG/L
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
K0.002
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
:<0;0l
KO.Ol
KO.Ol
KO.Ol
KO.Ol
5P
39330 OA
A
itfH

: cO
: cO
: <0
: (0
: (0
KO
cO
<0
cO
<0
<0
<0
KO
KO
:0.
:<0
:<0
:<0
KO
:<0
:<0
:<0
KO
KO
:<0
:<0
:<0
:<0
KO
:<0
KO
: <0
:<0
:<0

LO^IN
L SMPL
UG/L
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
OOb
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
*>?
S0005 OA «A
z
WH

KO
KO
:<0
:<0
KO
:<0
KO
KO
KO
KO
KO
KO
KO
KO
KO
KO
:<0
KO
KO
:<0
KO
:<0
KO
KO
KO
: OS»A
:fc2S»\
:6<»s*4
: 66S*A
* ^ o 5 **
• T ^ S * A
: 76S*i
•»A
ATE* STUOX - MINNESOTA •».*

-------
1975
SAMPLE
LOO NO.
"82
t * DOO OP DOT OP »H
WML SMPL MHL SMPL tfHL SMf
UG/L
tO. 003
: <0.003
xO.003
xO.003
xO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
xO.003
xO.003
XO.003
XO.003
XO.003
XO.003
xO.002
xO.002
xO.002
xO.002
xO.002
XO.002
XO.002
xO.002
IP
SEGION
U6/L
XO.002
xO.002
XC.002
xO.002
xO.002
xO.002
xO.002
XO.002
xO.002
XO.002
XO.002
X0,002
XO.002
XO.002
XO.002
xO.002
XO.002
XO.002
XO.002
XO.002
XO.002
xO.002
XO.002
XO.002
XO.002
xO.002
xO.002
xO.002
XO.002
xO.002
xO.002
xO.002
XO.002
xO.002
9P
V D*INK
U6/L
XO.002
XO.002
XO.002
:<0.002
xO.002
XO.002
XO.002
xO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
xO.002
XO.002
K0.002
XO.002
xO.002
XO.002
XO.002
xO.002
xO.002
xO.002
xO.002
XO.002
xO.002
xO.002
xO.002
XO.002
xO.002
10P
ING WATER
'L *ML SMPL dHL 5*^
U6/L
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.OOS
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.OOS
XO.OOS
XO.OOS
XO.OOS
XO.OOS
XO.OOS
XO.OOS
XO.OOS
UP
STUDY -
UG/L
XO.003
XO.003
XO.003
XO.003
XO.003
XO.Q03
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
xo.oi
12°
MINNESOTA
L tfHL SMPL 4ML SMPL •»
UG/L
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
x.0.003
xO.003
XO.003
XO.003
XO.003
xO.003
XO.003
xO.003
xO.003
xO.003
XO.003
XO.003
xO.002
XO.002
XO.002
X0.002
XO.002
XO.002
XO.002
XO.002
13P

UG/L
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
X0.093
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
14P

•9
: 6S*4
i AS*A
: ios«3
: 125*5!
: 14S*3
: 16S««
:18S«H
*20S«a
:22S*a
1 24S*ft
«26S«8
I28S«8
I30S«R
J32S»«5
:34S»R
1 3bS*H
t 38S*B
S40S»3
t 42S*<)
»44S»9
I46S*B
:48S*R
:SOS*s
•• 52S*^
I54§*q
:S6S*8
t 5«S»q
tbOS*8
1 £25*o
16*5*3
1 66S*>j
I6BS**
I 74<|*«4
l74S*f>
• •b
**B

-------
FPA-CRL
1975
SAMPLE
LOG NO.
4282
14284
14296
14288
14290
14292
14294
14296
14298
14300
14302
14304
14306
14308
14310
14312
14314
14316
14318
14320
U322
14324
U326
14328
14330
14332
14334
14336
14338
14340
14342
14344
14350
14352

.MN.OW01
SOOll OA S0012 OA S0013 OA S0014 OA 39480 OA
ooo PP DOT PP CARBPHTH MIREX MTHXYCL*
•ML SMPL WHL SMPL WHL SMPL WHL SMPL WHL SMPL
UO/L UG/L UO/L UO/L U9/L
KO.OOS KO.OOS K0.003 KO.OOS KO.OIO
KO.OOS K0.003 KO.OOS KO.OOS KO.OIO
K0.003 KO.OOS KO.OOS KO.OOS KO.OIO
K0.003 :<0.003 KO.OOS KO.OOS :<0.01
KO.OOS KO.OOS KO.OOS KO.OOS KO.Ol
KO.OOS K0.003 K0.003 KO.OOS KO.Ol
KO.OOS KO.OOS KO.OOS KO.OOS KO.Ol
KO.OOS KO.OOS KO.OOS KO.OOS KO.Ol
KO.OOS KO.OOS KO.OOS KO.OOS KO.Ol
KO.OOS KO.OOS KO.OOS KO.OOS KO.Ol
KO.OOS :<0.003 KO.OOS KO.OOS KO.Ol
KO.OOS ixO.003 K0.003 KO.OOS KO.Ol
K0.003 xO.003 KO.OOS KO.OOS KO.Ol
KO.OOS KO.OOS KO.OOS KO.OOS KO.Ol
K0.003 iO.008 KO.OOS KO.OOS KO.Ol
K0.003 K0.003 KO.OOS KO.OOS KO.Ol
KO.OOS KO.OOS KO.OOS KO.OOS KO.Ol
xO.003 XO.003 XO.003 KO.OOS KO.Ol
K0.003 KO.OOS XO.003 KO.OOS KO.Ol
K0.003 K0.003 K0.003 KO.OOS KO.Ol
XO.003 KO.OOS KO.OOS KO.OOS KO.Ol
KO.OOS KO.OOS XO.003 xO.005 KO.Ol
XO.003 XO.OOS KO.OOS KO.OOS KO.Ol
.XO.003 XO.OOS XO.OOS KO.OOS KO.Ol
XO.003 xO.003 XO.OOS KO.OOS XQ.Ol
XO.OOS xO.003 KO.OOS KO.OOS xO.Ol
XO.003 KO.OOS XO.OOS KO.OOS KO.Ol
XO.OOS KO.OOS KO.OOS KO.OOS KO.Ol
XO.OOS KO.OOS KO.OOS KO.OOS KO.Ol
XO.003 KO.OOS XO.OOS KO.OOS KO.Ol
XO.OOS KO.OOS XO.OOS KO.OOS KO.Ol
XO.003 KO.OOS KO.OOS KO.OOS KO.Ol
XO.OOS KO.OOS XO.OOS XO.003 XO.Ol
xO.003 KO.OOS XO.OOS xO.003 KO.Ol
IS9 16P 17P 18P 19P
REGION V CHINKING MATER STUDY • MINNESOTA
SOC20 Oft
,> ,.. -,•} : jo
UNI. SMPL
'JG/L
•J.02
c .0'
c.C2
c.02
.*;?
.02
.02
.02
.02
< .0?
<.02
<.02
<.o?
<.02
<.02
<.02
<.02
<.02
<.02
<.02
<.02
<.02
<.02
<.02
<.02
<.02
<.0 1
<.01
<.01
<*01
< .0 1
<*01


2 'IP

s? 021 04 »r
'"^ \ -4 3 o '
rfi-U S^L »
•jG/L »•
< 1 : *.t» •
< 1 : *> '
< I : '.<"•'»
< 1 : '. f <•«•'
< I : - s * :
< 1 : 1 *^ » ~
< 1 : . c * :
< 1 ' -' .' S ° "
 4AS*C
!<1 !?OS«C
<1 :?«2^»C
<1 :5*S»C
<1 :56S*C
l
-------
EPA-C&L
1975
S»MPLE
LOG NO.
U282
1428*
1*286
14288
1*290
U292
14294
14296
1*298
1*300
1*302
14304
14306
14308
14310
U312
1431*
14316
1*318
1*320
1*322
1*33*
U326
14328
U330
14332
14334
14336
14338
14340
14342
14344

.MN.DW01
39770 OA
OCPA
WML SMPL
UG/L
:<.003
:<.003
:<.003
:<.003
:<.003
:<.003
K.003
K.003
K.003
:<.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.OOJ
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
22^
REGION
S0023 OA
ENDOS I
WML SMPL
UG/L
<.005
<.005
:<.005
:<.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
23P
39380 OA 39390 OA
DtELOftlN ENDWIN
WML SMPL JML SMPL
UO/L UO/L
K.003 K.003
K.003
K.003
K.003
K.003
K.003
: .003
I .003
> .003
I .003
t .003
I ,003
I .003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
<.003
<.003
<.00.1
<.003
<.003
<.003
<.003
<.003
<,003
<.003
4.003
<.001
<.001
<.003
<.003
<.003
<*003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
K.003 K.003
K.003 K.003
K.003 K.003
2*P 25P
39460 0« S0027 OA S0026 CA
CLP^NZLT ENOOS 11 SIT^O^F*
WML SMHL *HL SMPL w*L SMPL
UO/L UO/L UG/L
K.01
K . 0 1
K.Ol
K.01
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
<.005
< .005
<.005
<.005
<.005
< .005
<.005
<.005
<.005
<.OOS
<.OOS
<.005
<.005
<.OOS
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.OOS
<.005
<.005
<.005
<.00b
<.005
<.005
<.005
<.005
<.005
<.OQ5
<.005
.005
.005
.005
.005
.005
.005
<.005
«.005
<.005
<.005
<.005
<.005
<.005
<,005
<.005
<.005
<.005
<.005
<.005
<.005
<.00b
<.005
<.005
<.00b
<.005
<.005 K.005
2*»P 27P 28P
V OfllNKINO WATER STUDY - MINNESOTA
*0
• 0
•0
*n
: ^S»P
: *S«0
UOS«C
J12S*0
: 1*5*0
:16S»0
: IdS*')
s20S»0
:22S*^
«24S«D
126S«0
:28S»0
«30S»t:
:32S*0
:1*S*0
:36S«0
:3ftS*D
: «»OS»o
:*2S»0
:44S»o
:46S»0
:*HS«n
:SOS*0
:52S*o
:54S*o
:56S*o
:5«S*0
: 605*0
:62S*0
tb*S*D
:66S«0
:6ftS-»0
•«n
• •n

-------
EPA-CRL
1975
SAMPLE
LOG NO.
142182
14284
14286
14288
14290
14292
14294
14296
14298
14300
14302
14304
14306
14308
14310
1*312
14314
14316
14318
14320
14322
14324
14326
14328
14330
14332
U334
14336
14338
14340
14342
14344

.MN.DW01
S0029 OA
245-TUO
MHL SMPL
UG/L
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
29"
KEGION
S0030 OA
PROLAN
XML SMPL
UG/L
K.Ol
K.Ol
KiOl
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
30P
S0031 OA S0024 OA
BULAN
uHL SMPI
UG/L
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol ,
K.Ol
K.Ol
K.Ol
K.Ol
<.01
<.01
<.01
<.01
<.01
<.01
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
31P
V OHINKING tUTEP.
OEMP
. *HL SMPL
UG/L
Kl
Kl
I*
Kl
Kl
Kl
Kl
Kl
11
Kl
Kl
Kl
Kl
Kl
12
Kl
Kl
Kl
«<1 .
tl
<2
:l
Kl
Kl
Kl
:2
Kl
Kl
:l
Kl
itO
:2
32*
39*08 OA
TEnio*
»HL S**L
UG/L
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
33°
39570 OA
DIAZINON
•IbL SMPL
UG/L
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
:<1
:<1
Kl
Kl
Kl
Kl
Kl
Kl
34P
S0016 OA
TVFONATE
*ML SMPL
0«>/L
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
: <1
Kl
Kl
Kl
Kl
Kl
Kl
T5P
*r
• F
• c
*c
: •»$•?•
: &S*E
:10S«E
: 12S»iE
: 1*5»E
: lftSȣ
t 1«S»E
«20S«E
«22S»€
»24S»E
J2*S»€
:2«»S*E
t30S»E
:32Sȣ
rSftS*-7
:36>»t
: 3«S*r
:4CS»E
:42S«?
I44S«£
»46S»?
:4*S*E
:S05»E
:S2S»E
:5*S«E
: S6S»E
:5^Sȣ
:60S«E
:62S*E
t64S*E
:66S»E
i*flS»E
•«E
STUDY - MINNESOTA **£

-------
 1975
SAMPLE
LOG NO.
50017 OA S0032 OA
 P.QNNEL  QU4S6AN
    SMPL teHL SMPL
  UO/L     UG/L
39600 OA 39530 OA 39540 04 S0033  OA  39394 OA
MPAOATMN MALATHN
    SMPL »HL SMPL
  UO/L     UO/L
                                      £THION
          •F
          •F
                    UO/L
  SMPL
UG/L
Ovi/L
14282
i4284
U2S6
U288
U290
14292
14294
14296
14298
14300
14302
14394
14336
14308
14310
14312
14314
14316
14318
14320
U322
14324
14326
14328
14330
14332
14334
14336
14338
14340
14342
14344

.MN.OWOl
Ml Ml I
t < 1 <1 :
Ml <1 :
Ml <1 :
Ml < 1 :
Ml <1 1
Ml 
Ml :5»F
< 1 . 3 ', MS*F
< 1 : 1 j><»r
< 1 ! 1 2S*F
< 1 ! 1 *S*F
< 1 * I 6S*F
< 1 : 1 ^s»c
<1 :20S*r
<1 :22S*F
<1 s24S*F
<1 !26S*F
<1 :2*(S»r
<1 :30S»F
<1 :32S*F
<1 :34S*F
< 1 : 36S*F
<\ » 1 Q C » C*
i * O ™ J ™
< 1 : 40S*F
<1 S42S*F
< 1 I 44S*F
<1 !46S*F
<1 :*3S*F
<1 tS05»*F
<1 • C 9 C 4k f
* * j fc 3 •
<1 :54«5*F
60S*F

-------
F.PA-CRL
1975
SAMPLE
L0« NO.
4282
.4284
U286
14288
14290
U292
14294
U296
14298
14300
14302
14304
14306
14308
14310
14312
14314
14316
14318
14320
U322
14324
14326
14328
U330
14332
14334
U336
U338
14340
14342
14344
14350
14352

.MN.OM01
S0018 OA
PHENCAPT
WHL SMPL
UG/L
Kl
Kl
Kl
Kl
t <1
Kl
Kl
Kl
Klp
Kl*
Kl
Kl
Kl
Kl
t <1
Kl
t <1
Kl
Kl
Kl
Kl
Kl
Kl
Kl
t <1
Kl
: <1
Kl
Kl
Kl
1 «1
Kl
:
t
43"
REGION
$0034 OA
E?N
WHL SMPL
UG/L
J <1
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
1
t
46P
S0036 OA
AZlNFOSt
WHL SMr>L
UG/L
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
t
1
47P
1.0037 OA
COUMAFOS
«»HL SMPL
UG/L
: <:5
: <:5
: «:5
:«:5
t«:5
J«:5
t <:5
J<:5
s <:5
s <:5
»<:5
t «rb
:<:5
:<5
t«:5
«-:5
J -:5
J-tS
I'tS
l
-------
EPA-CRL
19T5
SAMPLE
LOG NO.
14282
4283
14284
U28S
14286
14287
14288
14289
14290
U291
14292
14293
14294
U295
1429*6
U297
14298
U299
14300
14301
1*302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
U314
U315
14316
14317
14318
14319
14320
14321
1*322
14323
14324
14325
14326
14327
14328
14329
14330
U331
14332
14333
14334
4335
14336
14337
14338
39*96 OA 39500 QA 3950* OA 39508 OA S0047 OA S0039 OA S0038 OA *H
AROCLOR AROCLOR AROCLO« AROCLOR METHE CL CCL* CHCL3 •*
12*2 12*8 125* 1260 TOT VOL TOT VOL TOT VOU •*
UG/L UG/L UO/L UG/L UG/L UG/L UG/L *H
KO.S K0.3 K0.3 XO.* : : « i 6S«H
. , , . *
xO.3
*
X0.3
:
s<0.3
•
K0.3
t
K0.3
:
X0.3
•
xO.3
:
xO.3
•
•
xO.3
:
xO.3
•
XO.3
:
XO.3
t

XO.3
{
xO.3
l
KO.S
1
KO'.S
t
KO.S
t
K0.3
t
XO.3
!
XO.3
t
XO.3
t
KO.S
1
xO.3
l

xO.3
!
K0.3
t
:<0.3
i

KO.S
1

KO.J
s
K0.3
t
•

XO.3
:

xO.3
t
KO.S
:
i
t
•
•
:
•
•
:
:
•
•
t
:
t
:
t
•
•

<0.3

<0.3

<0.3

<0.3

<0.3

<0.3

<0.3

<0.3
> .
• •* v • •* - — •
- •
K0.3 :<0.4 i >
t • t *n ^ tin
S • »^U.J '4W
xO.3 xO.4 : i
i i t < ft <\ : • t^nc *^3
I 1 < U . ~> «>c
KO.S xO.4 t :
i • 1 <0 .S I < 1
i t »^V.J *^*
KO.S XO.4 1 t
« : K0.5 t<2
KO.S XO.4 t t
• • 19

KO.S K0.4 1 i
t I I < 0 » S 1 4
KO.S t
' 5
:<0.3 :
i S
: <0.3 :
: t
XO.3 i
t t
xO.3 l
i i
txO.S s
i :
: <0.3 :
t :
XO.3 :
: :
xO.3
:
xO.3
s
xO.3
:
xO.3
• -^ V • -* - '
<0.4 i s
i < i : 12
• ™ * • * "fc
<0.4 : :
KO.S : <2
• ^ \/ * j • ^ fc
<0.4 ! :
• ^ A C • S
*  :
i • f r\ a • A
1 « * u . O • ^J
: <0.4 : :
i XO.5 xl
: <0.4 : :
> • t n ^ • 7
i • ^ \j . ^ t j
:<0.4 : :
! • < n t\ ' i
i • ^ V • J * J
: <0.
• • % I • % C
t <0 . 4 t '
: XO .S :25S»H
J I26S*H
«S I27S»H
: i2**i*H
:5 :29S*H
• • tn ^ n
«37 I37S»H
tl ^ • C4fckJ
• JP »wn
Xl I39S*H
: t40S*H
:12« :4lS*n
• • A OC A LJ
• • •• C -5 w **
: l :»3S»H
• • A. L. C 4ft .J
• • •» •» 3 'r rl
:7 :45S«H
: :463*M
tl !47S«H
• • A a C * -j
• • %*j r* WH
122 !49S»H
:• c rt 'i n w
* ^ fl 3 w ri
• i * E; i c»-<
• J »T>l^wn
• • 5* "3 C 0 kJ
« • 3e J WH
:79 ;53S*N
« • C A ^ m »_.
• • O* iw>-
xl :55S»-«
* • C JL C o ^
2 • DO ^ w H
:<1 :57S-»H
* 1 ^ R ^ *M
• • j ~ ^ ~
t rf- 1 • Q **A C • kd
• * 4 •^*»3W'1*
! * eC •^•H
: 26 : -SI S*H
• • te. 3 C -A L.
. * £ £ :* •*«

-------
14339
14340
14341
14342
14343
4344
14345
14350
U352

.MN.OtfOl
1
KO
1
J<0
t
KO
!
:<0
KO

t
.3 :<0.3

.3

• 3


<0.3

<0.3

.3 :<0.3
.3 :<0.3
SOP 51P
t
1
1

<0

KO
1
t
:
*
•
:

PEOION V DRINKING

<0

<0
<0


.3

.3

.3

.3
.3
52P
HATER
1
K0.4
1
:<0.4
*
:<0.4
t
:<0.4
K0.4
53P
STUDY -
t
1
t
t
:
:
:
:
s

<0.5 »<2
:
<1 :20
i
<0.5 :3
i
<1 :25
t
i
54P 55P
120
1
128
:
: 1
t
:26
t
:
56?
:63S»H
I64S*H
:65S*H
166S«H
»67S*H
:
-------
FPA-CHL
1975
SAMPLE
LOG NO.
U283
4285
14287
14289
U291
14293
14295
U297
U299
14301
14303
14305
14307
14309
14311
14313
U315
14317
14319
14321
14323
14325
14327
14329
U331
U333
14335
14337
U339
143*1
14343
14345

.MN.DxOl
S0056 OA
C2H4CL2
TOT VOL
UG/L
Kl
:<1
:<1
Kl
:<1
:<5
KO.S
Kl
:<3
t<5
Kl
KO.S
Kl
KO.S
Kl
Kl
Kl
:<3
Kl
Kl
KO.S
Kl
:<2
:<5
KO.S
:<0.5
Kl
Kl
Kl
Kl
KO.S
Kl
57"
REGION
S0040 OA
CHCL2QR
TOT. VOL
UG/L
KO.S
K0.5
Kl
KO.S
Kl
:6
KO.S
:9
Kl
131
Kl
:Q.S
KO.S
K0.2
Kl
:*
K0.5
tlS
Kl
10. 8
KO.S
:0.»
Kl
:5.0
:<0.5
:<0.5
Kl
:0.3
Kl
13
KO.S
13
S8P
S0041 OA S0042 OA
CHCL8R2 CH**3
TOT VOL
UO/L
KO.S
:<0.2
K0.5
K0.2
KO.S
:<0.2
KO.S
12
KO.S
tO. 7
KO.S
K0.2
KO.S
K0.2
KO.S
K0.2
KO.S
KO.S
KO.S
K0.2
KO.S
:<0.2
KO.S
K0.2
:<0.5
KO.S
KO.S
K0.5
KO.S
KO.S
KO.S
KO.S
59P
V DRINKING WATER
TOT VOL
UG/L
KO.S » »
:<0.5 s «
:<0.5 «
•:<0.5 : :
:<0.5 s '
:<0.5 : *
KO.S : »
KO.S » '
KO.S 1 *
KO.S 1 >
KO.S < »
KO.S > :
Kl : :
KO.S 5 »
KO.S ' :
KO.S 1 :
Kl : »
i<2 » :
KO.S : <
KO.S > <
KO.S I >
KO.S > *
KO.S : «
KO.S : »
KO.S : •
KO.S »
KO.S * •
Kl : :
Kl t <
Kl 1 <
KO.S I I
Kl 1 1
«o» *ip *i
STUDY - MINNESOTA
•I
•I
•I
A f
•I
J s 7S*I
_ m rt C Jk T
t J 95*1
: : 1 !$•!
• 1 ^ t A ?
: : 135*I
• • \ C C 4fc T
: s 155*1
J J17S*I
1 U9SM
• • *9 t C A T
> I 2 1 5.* I
I :23S«I
i :25S»I
i »27S«I
t :29S«I
: »31S*I
: s33S*I
i :35S*I
: :. 175*1
I J39S*I
: :41S*1
: :43S*I
k • A. • C A 9
1 »45S*l
1 »47S*1
t :40$*I
i :51S*I
t :53S*I
': :55S*I
: :S7S*1
: :59S*i
t :61S*I
: I63S*I
« »65S*I
1 *67$*I
t I69S*I
!P 63P •*!
**I
	 1

-------
EPA-CaL
1975
SAMPLE
LOG NO.
14277
.4282
14284
14286
14288
14290
14292
14294
14296
14298
14300
14302
14304
14306
14308
14310
14312
14314
14316
14318
14320
14322
14324
14326 -
14328
14330
14332
14334
14336
14338
14340
14342
14344
14346

.MN.DM01
00916 M«
CALCIUM
CAtTOT
MG/L
:<0.1
140.8
116.3
140.8
H6.5
142.4
120.5
1102
144.5
151.4
124.0
195.0
177.5
196.0
197.2
147.7
122.0
143.1
:18.6
145.2
144.3
145.3
125.6
152.9
118.7
162.6
US. I
15.2
14.9
112.5
112. 
-------
EPA*CP-L
1975
SAMPLE
LOG NO.
14277
4*82
• ^ *r " ••
14244
14286
* t ^ a 0
14288
14290
14292
14294
14296
1*298
14300
14302
14304
14306
1*308
14310
14312
14314
14316
14318
14320
14322
14324
14326
14328
14330
14332
14334
1 *116
1 • J JO
14338
14340
14342
1434*
14346
.MN.D'Ol
01055 MN
MAMGNESE
MN.TOT
UG/L
MS
t*5
MS
132
t ^C
S <5
128
MS
r
1320
MS
1180
MS
1120
MS
:95
:70
:72
:6
126
MS
ue
:30
:20
MS
:36
:5
»10*
:<5
:6
MS
MS
MS
16
MS
MS
71P
REGION
01092 MW
ZINC
ZN.TOT
UG/L
MS
:19
MS
no
• **
I O
1120
MS
17
118
111
It
19
MS
MS
MS
18
MS
113
MS
114
MS
MS
MS
17
MS
17
MS
MS
MS
191
1170
191
1170
MS
72P
Q1002 H«
ARSENIC
AS. TOT
UG/L
Ml
Ml
Ml
Ml
! <1
* ^ 4
11
Ml
Ml
Ml
13
11
14
11
14
Ml
11
Ml
13
Ml
11
11
11
Ml
:2
tl
Ml
Ml
Ml
Ml
Ml
Ml
Ml
Ml
Ml
73P
v OHINKING *ATE»
01051 M«
LEAD
P8.TOT
UO/L
:<2
2<2
Mt
:<2
: <2
:3
:3
t<2
Mt
IS
13
Mt
Mt
Mt
Mt
Mt
Mt
Mt
Mt
Mt
Mt
M2
t<2
13
l<2
Mt
M2
Mt
Mt
Mt
Mt
Mt
Mt
13
74»
l 01027 H«
CADMIUM
CO. TOT
UG/L
MO. 2
MO. 2
MO. 2
MO.?
MO. 2
MO. 2
MO. 2
MO. 2
MO.t
MO. 2
MO.t
MO.t
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
7SP
l 01077 MW
SILVER
AG.TOT
UG/L
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
10.3
10.3
10.3
10.3
to. *t
10.3
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO.?
MO. I
MO. 2
MO. 2
MO.?
MO. 2
MO. 2
MO. 2
MO. •?
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
:0.7
76P
01147 Mri
SELENIUM
SE.TOT
UG/L
MS
MS
MS
M5
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
77P
SrUDY - MlNNESOT*
*<
•K
•*
•K
1 1S*K
S 6S*K
1 8S*K
: 10S**
U2S«K
U4S*K
I16S»K
1 14S*K
14 A tf A ^
tos**
I22S*K
!24S«K
I26S»X
I28S»K
I30S*K
!3
-------
EPA-CRL
1«TS
SAMPLE
LOG NO.
14282
14284
14?86
& ^ *m W **
14288
14290
14292
14294
14296
14298
A " *• ~ "
14300
14302
14304
14306
14308
14310
14312
14314
14316
14318
14320
14322
14324
14326
14328
14330
U332
1 4334
4 ^ J w ~
14336
14338
14340
14342
14344

.HN.DW01
00530 IM
RESIDUE
TOT NFLT
MG/L
:2
J<2
:4
!<2
:<2
:<2
i<2
!<2
t<2
i<2
15
i<2
:74
142
12
:<2
113
i<2
16
:5
:9
:2
:6
:<2
:<2
:<2
: <2
i<2
13
t3
14
13
78»»
REGION
70300 IM
RESIDUE
OISS-180
C MG/L
:220
1110
:200
:140
1260
5170
1660
1360
1440
1330
1860
T690
1490
1520
1270
1200
:360
1230
(270
1280
1230
:160
:360
1250
1330
:130
:40
HO
170
1100
ISO
145
79P
00095 IH
CNDUCTVY
AT 25C
MICROMHO
1354
1205
:338
:202
1352
1222
1910
1496
1585
1425
11070
I860
1720
1815
1404
1234
1487
1293
(355
1367
1348
1182
1496
1364
1525
1198
154
192
1105
1104
1103
1104
80P
V DRINKING WATER
00945 I
SULFATE
S04
MG/L
112
123
til
123
112
17
1162
1162
158
163
1244
I27t
142
162
123
135
126
120
(14
125
113
:17
18
:<3
:17
128
i<3
114
t<3
t<3
Ml
i<3
81P
STUDY -
M Q0940 I*
CHLORIOK
CL
Mfi/L
16
:9
17
= 11
110
:9
125
130
128
138
123
128
U6
(16
117
U8
117
124
(14
(3
(2
15
13
12
14
14
t<2
12
i<2
i<2
J<2
14
82P
MINNESOTA
00956 IM
SILICA
SI02
MG/L
112.9
19.8
112.9
19.8
15.5
11.9
117.1
19.4
126.1
115.8
130.0
116.0
124.0
122.0
112.9
110.2
U7.4
19.6
(9.4
17.3
19.1
17.7
:6.3
:0.6
:17.4
:9.1
:2.5
15.0
11.3
13.2
12.7
13.2
83P

004io IM
T ALK
CAC03
MG/L
1158
157
lisa
157
1 15*
164
1323
131
I 1H4
182
:314
1126
1394
1381
1176
165
1234
1100
(175
(156
1168
152
1220
:154
1256
149
119
U5
144
139
144
139
84P

•L
•L
•L
»L
1 6S»L
1 8S»L
110S*L
U2S»L
1 14S*L
I16S*L
118S»L
120S«L
122S«L
124S»L
126S»L
128S»L
130S*L
!325*L
134S*L
136S*L
138S»L
140S*L
142S»L
(44S*L
(46S»L
148S*L
150S-L
152S«L
154S»L
1565>»L
158S*L
160S»L
1625»L
I64S«L
166S*L
16«S*L
**L
**L
	 	 — L

-------
EPA-CO-L
1975
e AMDi C
^•n~UC
LOG NO.
14278
14279
1*280
14282
14284
14286
14288
14290
14292
14294
14296
14298
14300
14302
14304
14306
14308
14310
14312
1*31*
14316
14318
14320
14322
1*324
U326
14328
14330
14332
14334
14336
U338
14340
1*342
14344
1*347
U348
.MN.OwO
00403 IM
LAB
PH
su
•
•
•
•
57.7
57.6
57.7
S7.6
17.6
J8.1
17.4
t7.1
t7.5
59.4
57.8
58.7
S7.3
S7.3
S7.6
18.8
t7.8
:8.3
t7.7
57.2
57.6
59.4
S7.7
59.2
t7.6
58.8
t7.2
t6.7
t7.3
t7.0
t7.2
S7.0
s
•
AQ 3
00951 IM
FLUORIDE
F. TOTAL
MG/L
:
•
•
•
k A 11
t 0. 12
11. 1
to. 11
tl.2
10.12
_ • ••
1 1 .2
tO. 25
* 1 4
1 1 .2
t».37
t % "y
1 1 .2
tO. 26
. * *\
51.3
tO. 31
tl.l
10.14
II A
1*0
10.17
tO. 96
tO. 12
tO. 91
tO. 12
tl.2
. fn « c
t 0. 15
tQ. 89
tO. 20
tl.5
K0.10
10.92
t<0.10
tl.l
:j ft 1 A
<0. 1 0
tl.l
•
t
rtfeP
32730 IM
PHENOLS
UG/L

•
t <3
t * ^
• *3
t<3
t<3
t<3
t<3
i * i
i * *
l<3
t *\
1 * J
t<3
I <1
I ^ J
t<3
1 <1
* ^ J
t<3
t<3
t<3
1*1
I < j
t<3
t<3
t<3
t<3
• ^ 1
J < 3
t<3
• 1 •»
• * J
to
to
to
iO
IO
to
to
» tl
» < J
s<3
t
•
87P
Bar^ —
1 PEGION V DRINKING MATER
00720 IM 00630 IN
CYANIDE N02«.NOJ
CN N-TOTAL
MG/L
{
t <0 .002

1 0 . 003
* w • w v -J
tO. 003
s<0.002
tO. 003
10.003
I 0 » 004
* w • w v ^
10.005
t 0.003
sO.004
t 0.006
10.005
5 0 .004
50.002
10.003
tO. 003
t 0.003
• V • w W «7
10.002
tO. 003
:<0.002
10.006
: o . 00?
• VI . W V C
SO. 004
t 0 .002
tO. 004
K0.002
tO. 002
:<0.002
10.003
10.003
10.002
i n .003
• W 1 W W J
tO. 002
j Q .002
• V • V v k
88P
STUDY -
MG/L
K0.03
t
•
50.41
SO. 40
iO. 40
tO. 39
tO. 57
tO. 37
tO. 46
tO. 59
iO. 90
tO. 89
tO. 41
tO. 41
i<0.03
t<0.03
tO. 34
50.30
tO. 14
tO. 16
tO. 03
5<0.03
t 0.0^
to.o*
to. is
tO. 14
:<0.03
:<0.03
SO.OQ
tO. 08
tO. 25
tO. 25
S0.2A
SO. 27
:<0.03

99P
MINNESOTA
00610 IN
NH3-N
TOTAL
MG/L
s<0.010
:
t
50. IBS
50.649
80. H5
50.6*7
50.100
50.297
tO. 441
K0.010
tO. 339
50. BIS
tO. 966
51.50
51.73
52.61
$ 0 . 1 1 7
SO. 122
10.322
SO. 010
50.034
10.292
50.062
50.382
50.219
50.123
50.273
50.374
s<0.010
:0.1«2
s
-------
EPA-CRL
1975
SAMPLE
LOG NO.
.4277
14278
14282
14284
14286
14288
14290
14292
14294
U296
14298
14300
14302
14304
14306
14308
14310
14312
14314
14316
U318
14320
14322
1*324
14326
14328
14330
14332
14334
14336
14338
14340
14342
14344
14346
14347
00665 II*
PHOS-f
P-wET
MG/L
•
K0.02
tO. 0«
K0.02
tO. 08
tO. 02
tO. 06
tO. 03
10.03
t<0.02
tO. 18
tO. 14
tO. 23
tO. 26
tO. 17
tO. 19
tO. 09
10.29
tO. 20
tO. 67
tO. 05
10.06
tO. 03
tO. 35
tO. 11
tO. 04
K0.02
KO.U2
10.02
10.02
tO. 02
tO. 03
tO. 03
tO. 04
•
:<0.02
1 00340 IN 0
COD T
HI LEVEL
MG/L
t J
t<3 5
:18 :
if '
t!7
t ] 0
t«'3
. • «•
t . 3
t»>
K3
• *m
t.!9
t 12
: 33
H6
• 1 A
t 10
t 7
116
IB
120
tlZ
130
• 4 A
1 28
m K A
1 30
t24
:29
:26
:3
:6
20
.44
: 14
:3
16
:6
:5
!
•
: <3
ft •* O
0680 IN 71900 I
ORG C MERCURY
CUR. TQTA
^w . i *J i ^
MA /i UO/L
14(9/1,, W V>
KO.l
9 4 ft 1
* * V • 1
! A 1
* v * 1
KO.l
10.1
• V • •
KO.l
1 0.1
10.1
KO.l
KO.l
KO.l
to .1
• V V •
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
i *(\ \
I * v . 1
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
t<0.1
» ^ w » »
KO.l
KO.l
j
QAO 
L CAC03
MG/L
:<3
:
: 159
t76
:159
:76
tl66
t82
1322
1141
1263
t!23
t492
t218
t4lO
:430
t!89
190
t237
illl
:177
:174
t!77
t72
t223
t!27
1265
174
:20
t20
143
144
144
143
t<3
t
961
IN 00615 IN
*0 N02-N
TOTAL
MG/L
t «
t
0.009 :
<0.005 :
0.010 :
<0.005 t
0.005 >
0.005 t
:0.008 >
;<0.005 t
10.006 <
tO. 006 :
10.009 :
:0.007 :
:<0.005 t
: 0.006 :
tO.005 t
K0.005 I
tO. 007 «
K0.005 <
tO.005 :
:<0.005 t
tO. 006 >
tO. 008 i
:O.OOS t
K0.005 !
K0.005 '•
:0.014 t
K0.005 s
K0.005 <
K0.005 t
K0.005 1
:<0.005 i
:<0.005 :
: t
t :
a 97P 9
*N
*N
«N
»N
t 1S«N
t 2S*N
t 6S»N
t flS»N
1 10S*N
t!2S*N
t 14S»N
tl6S*N
t 1«S*N
I20S*N
t22S*N
*» * ft i± « t
t 24S*N
:26S*N
t 28S*''i
t30S*N
t 3?S*N
t 34S*N
:36S*N
t38S*N
J40S«M
t42«>»N
t44S»N
JJL A. C. A JL4
46S*N
t 4AS*N
t50S»H
t52S*N
t54S*N
t56S*N
t58S»N
• t60S»N
t* *«C AK|
625*N
I64S*N
t66S»N
t 68S*N
t 7 0 S * >*i
• ^1 *"* • fcl
t 7 I s*N
gp »*HJ
         OOP     9J"    Tr^~     * •+•
.MN.O-OI  «"i^.i.;:i^is."I2.!ISI.:--™---	

-------
COLS 05APR OSN«CNCRlS.RGD.OH.OW04 ON TS0009  OWW/75                   »EV01 T
                              •STUDY DESCRIPTION	—
                            STATTYPE SMPLOAY ATLA8BY UUEDATE  ACCOUNT-NU««BE9
                            T7777777 03FE875 05FE«*75 03MAY75
                                 - OHIO
                              •SAMPLE oESc^iPTIONS	—
                               STATTYPE DEEP T M NO ENQDATE  TIME  PPLU
M04R NLO'3
9<» 69
»>>REGION
LA9IDNUM
14354
14355
14356
14357
14356
14359
14360
14361
14362
14363
14364
U365
14366
U367
14368
U369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
U344
14385
U386
U387
14388
143*9
14390
14391
U392
14393
14394
U395
U396
U397
14398
1O99
14400
14401
U*02
A6ENCYID UNLOCKEY ST
77
V DRINKING rfftTEP STU
STORETID qOLLOAY TIME
t50203
750203
750203
750203
•T50203
750Z03
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
7S0203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203

-------
l**o*

1**06
1*407
14401
14410
1441)
14415
l**l«
1**1T
i»*i*
>»;*)5*
»> 1*355
»>U35*
>»l»3JT
>»1*35»
»»'.*3»3
»»l*3Sl
>»l»3*3
>»1*34»
>»1*364

>»L*34«

»>l»370
 »>1»3TT
 »>1*37^
 »>1*379
 »»1*381
                  T50Z03
                  7502)3
                  TS02C3
                  750213
                  T10HJ
                  T»OI03
                  T50103
                  T50113
                  T90H3
                  750203
                  750203
                  750203
                  750203
                  750203
                  750203
                OP's
                          »•« «4T*4 SERIES 4
                                                                               1.4 I
                «»»«£•, 44« ^ATE» SC'TES 4
                       *4« .4T§» SCKIES •
                 »O»TS-OUT-  *4«  ««rc>i  scries  4
                 aO«T$-40uTrt  •;xiSnC9 «4*£i» SERIES  4
                 •oars'OvT-i  ri*ts*ca »t~i» SERIES  4

-------
>»1OM
>»144tl
>»14»03
                »tou» «« «»ee«» 'iftifco  »«rt»  seam •
           »   ratrtONT «4« «»TC» UH(!S  *	
               Hj»0»
                            -S**»\.t/»*tH«ttl3 2*^4-
H 0 .J3 I N    ^ u • '  L



MK\1N.'    t*'1'



Ml-HONi   ^^'3^
                                                 0^ \.ii  r^   ^^

-------
EPA-CRL
1975
SAMPLE
LOG NO.
14359
14361
14363
U365
U367
14369
14371
14373
14375
14377
14379
14381
143*3
14385
14387
14389
14391
14393
14395
14397
U399
14401
14403
14405
14407
14409
14415
14417

.QH.DW04
50003 OA
TPEFUN
*HL SMPL
UG/L
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
IP
REGION




:
*
:
:
:
i
i
i
SOOOl OA
HC8ENZ
«HL SMPL
UG/L
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
K0.002
l
<0.002
K0.002
]
:
•
•
:
*
t
t
i
t
t
t
t
i
•
*
:
i

V
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
2P
39782 OA
LINOANE
WHL SMPL
UG/L
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
3P
S0002 OA
8BHC
WHL SMPL
UG/L
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
4P
S0004 UA
OICLONE
*HL SMr*L
UG/L
K0.01
K0.01
K0.01
K0.01
KO.ni
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
5P
39330 OA
ALORIN
WHL SMPL
UG/L
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
t<0.002
K0.002
KO.Q02
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
6P
S0005 OA
ZVTSON


:
*
*
*
*
t
t
t
4H

<0
<0
<0
<0
<0
<0
<0
<0
KO
I
J
1
1
s
:
:
t
I
:
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
KO
t
t
i
:
:
t
*
:

<0
<0
<0
<0
<0
<0
<0
<0

L SMPL
UG/L
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
• 02
.02
.02
.02
,02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
7P
DRINKING MATER STUDY - OHIO
•A
•A
*A
•A
: 6S»A
I 8S*A
: IOS«A
:i2S*i
: 1*5*4
: i»»s*4
t 1&S«A
«20S*A
J22S*4
J24S*A
126S*A
S2%S*A
J30S»A
:32S*A
:34c»A
: 3bS*- a
:3flS»A
I40S*A
1425*4
:44S»A
I46S»A
!48S*A
J50S*A
:52S*A
:54S*A
:56S*4
:62S»A
:64S*A
»*A
**A

-------
EPA-CRL 39430 OA
1975
SAMPLE
LOG NO.
14359
14361
14363
14365
14367
14369
14371
14373
14375
14377
14379
14381
143S3
14385
14387
14389
14391
14393
14395
14397
14399
14401
14403
14405
14407
14409
14415
14417

.OM.DW04
IS
MH

:<0
XO
xO
xO
xO
XO
XO
:<0
XO
xO
XO
XO
xO
:<0
xO
:<0
xO
xO
xO
xO
XO
XO
XO
XO
XO
xO
XO
xO

OD*tN
L SMPL
UG/L
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
• 003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
ftp
REGION



t
t
:
i
:
t
t
39420 OA
HCHLR-EP
«HL SMPL
UG/L
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
xO.002
t
t
<0.002
<0.002
XO.002
t
t
t
:
t
*
t
t
:
t
t
:
:
*
:
i
:

V
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
9P




t
t
i
t
:
t
i
t
t
i
i
t
i
i
!
t
i
j
j
t
:
:
:
t
:
t
*
j

DRINKING
S0006 OA
CHLORDAI3
«HL SMPL
U6/L
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
10P
S0007 OA
ODE OP
WrtL SMPL
UG/L
XO.003 t
XO.003 :
XO.003 :
xO.003 :
xO.003 :
XO.003 :
XO.003 t
XO.003 1
XO.003 t
xO.003 t
XO.003 <
xO.003 >
XO.003 s
XO.003 :
xO.003 :
XO.003 J
XO.003 >
XO.003 :
XO.003 :
XO.003 t
XO.003 :
XO.003 t
XO.003 :
xO.003 :
XO.003 t
XO.003 :
xO.003 :
XO.003 :
UP
SOOOft 04
ooe p"
dHL S-M°L
UG/L
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
12P
S0009 OA
ODD OP
WHL SMPL
UG/L
XO.003
XO.003
XO.003
xO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
xO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
13P
S0010 OA
DOT OP
*ML SMPL
UG/L
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
14P
»8
•B
• *
*R
t 6S*P
t 85*8
: ios*?
j 12S*M
:14S*R
U6S*8
t IbS**
t20S*B
t22S*S
>24S*H
«2»>S*B
t 2dS*R
«30S*9
• 32S*3
• 34S*H
:365*s
t 38S*M
I40S»«
I42S*B
»44S*B
:46S*Q
:46S»8
: 50S*S
t52S»«
: 54$»q
»56S»8
: b?S*-3
: 6<*S*i3
*«g
WATER STUDY - OHIO »«R

-------
FPA-CRL
1975
SAMPLE
LOG NO.
14359
14361
14363
14365
14367
14369
14371
14373
14375
U377
14379
14381
14383
14385
14387
14389
14391
14392
14393
U39S
14397
U399
14401
14403
14407
14409
14415
14417

.OH.OW04
S0011 OA
000 PP
•IHL SMPL
UG/L
KO.OOS
K0.003
K0.003
KO.OOS
K0.003
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
:
-------
PPA-CHL
1975
SAMPLE
LOG NO.
U359
U361
14363
U365
14367
14369
14371
14373
U375*
14377
14379
14381
14383
14385
14387
14389
14391
14392
14393
14395
14397
14399
14401
14403
14405
14407
14409
14415
14417
.OM.OW04
39770 OA
OCPA
WML SMPL
UG/L
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
22P
REGION
S0023 OA 39380 OA
ENOO- ! OIELOHIN
wML SMPL WML SMPL
UG/L UG/L
K.005 K.003
K.005 K.003
K.005 K.003
K.005 K.003
K.005 K.003
K.005 K.003
K.005 : .003
K.005 .003
K.005 .003
K.005 .003
K.OOS .003
K.005 .003
K.005 .003
K.005 <.003
K.005 .003
K.005 <.003
: .005 .004
i .005 <.003
t .005 <.003
t .005 <«003
t .005 <,003
: .005 <.003
: .005 <.003
K.005 .009
K.005 <.003
K.005 <.003
K.005 <.003
K.OOS <*003
K.OOS <.003
23P 24P
V DRINKING WATCH
39390 OA 39460 OA
ENOHIN CLP-^NZLT
WML SMPL WML SM^-
Ufl/L UG/L
K.003 K.01
K.003 .01
K.003 .01
:<.003 .01
: .003 .01
: .003 .01
t .003 .01
: .003 .01
> .003 .01
I .003 .01
t .003 .01
» .003 <.01
: .003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.C1
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
25P 26P
STUDY - OHIO
50027 OA
PNDOS 11
,,M!_ >Wr>l,
uG/L
<.005
<.005
<.905
<.005
<.005
<.005
<.005
<.OOS
<.005
<.005
<.005
<.005
<.005
<,005
<.OOS
<.005
<.OOS
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
K.005
K.OOS
K.OOS
27P
S0028 (
NIT90FI
rfHL S*
UG/L
K.OOS
K.OOS
K.005
K.OOS
K.OOS
K.O'JS
K.OOS
K.005
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
: .005
: .005
: .005
: .005
: .005
i .005
K.OOS
K.OOS
K.OOS
K.005
K.OOS
K.OOS
28P
34 »0
EN *0
DL »0
•0
: 6S»D
s frS»0
: 10S*D
:12S«0
:i4S«n
»16S*D
:18S*C
«20S*D
»22S*D
I24S*D
»26S*0
I28S*0
»30S*0
:32S*D
:34S«D
:36S«0
J38S*0
»39S*0
540S»D
I42S«0'
J 445*0
J46S*0
:48S*0
' :505»0
:52S*0
:54S*D
:56S*0
:62S*D
:6»S*0
•»0
•»n
— — 	 o

-------
F'PA-CP-L
"1975
SAMPLE
LOG NO.
14359
14361
14363
14365
14367
14369
14371
14373
14375
14377
14379
14381
14383
14385
14387
14389
14391
14392
14393
14395
14397
14399
14401
14403
14405
14407
14409
14415
14417

.OH. 0*104
S002V OA
245-TUO
WML SMPL
UG/L
t 4 • 0 1
* K 9 0 1
t ^ • 0 1
K.Ol
K.Ol
» < « 0 1
! < . 0 1
K.Ol
K.Ol
K.Ol
S0030 OA
P30LAN
WHL SMPL
UG/L
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
S0031 OA
BULAN
«HL SMPL
UG/L
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol K.Ol
K.Ol
K.Ol
K.Ol K.Ol K.Ol
K.Ol K.Ol K.Ol
K.Ol
K.Ol !
<.oi
K.Ol K.Ol K.Ol
K.Ol K.Ol K.Ol
K.Ol K.Ol K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
29P
REGION
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
<*01
<«01
<»01
^•01
^ • 0 1
^•01
^•01
^ » 0 1
K 9 0 1
^•01
*t v 0 1
K.Ol K.Ol
K.Ol
30P
K.Ol
31P
S0024 OA 39808 OA 3*570 OA
OEHP TEOION CIAZINON
WNL SMPL WHL SM^L hHL SMPL
UG/L UG/L UG/L
Kl
12
11
Kl
Kl
Kl
Kl
11
11
Kl
Kl
Kl
Kl
Kl
12
117
Kl
Kl
Kl
Kl
Kl
<»0l
<.01
<.0l
<«01
<«01
<*01
<»01
<*01
<.01
<«01
^ • 0 1
^.01
<.0l
<.01
<«01
<«01
<.01
<.01
<.01
<»01
<»01
Kl K.Ol
14 K.Ol
Kl K.Ol
Kl K.Ol
Kl K.Ol
Kl K.Ol
14 K.Ol
12 K.Ol
«1.
4 i
«1
<1
<:1
«:1
<1
<:1
<1
 4>
•'•I

<:1
«:1
<:1
tf \
k m
•:1
•cl
•cl
cl
cl
cl
cl
32P 33P 34P
S0016 OA
DYFONATE
WHL SMPL
UG/L
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
•
*
Kl
*<1
Kl
Kl
I<1
Kl
Kl
Kl
Kl
Kl
Kl
35P
•E
•E
•E
•e
t ftS»^
1 8S*€
UOS»E
U2S»E

: 16S*E
:18S*E
: ?OS*E
»22S*E
»24S«E
*26S*E
«23S»E
:30S*E
:32S«E
t 34S*E
:36S*E
! 3flS*£
i39S*C
I40S*E
1 42S*E
:44S*E
J 46S*E
:4ftS*€
:50S»E
:52S»E
t54^*E
:56S+£
:62S*E
:64S*E
••E
V DRINKING WATER STUDY - OHIO »•£

-------
EPA-C*L
1975
SAMPLE
LOG NO.
14359
14361
14363
14365
14367
14369
14371
14373
14375
14377
14379
14381
14383
14385
14387
U389
14391
14393
14395
14397
14399
14401
14403
14405
14407
14409
14415
14417

.OM.DW04
S0017 OA
RONNEL
WML SMPL
UG/L
: <1
1 <1
: <1
: <1
t <1
Kl
Kl
Kl
Kl
Kl
I <1
: <1
Kl
J <1
: <1
:<1
t <1
Kl
Kl
Kl
Kl
Kl
1 <\
Kl
Kl
: <1
i <1
• <1
36P
REGION
S0032 OA
OURSBAN
WML SMPL
UO/L
Kl J
Kl J
Kl i
:<1 :
:<1 :
Kl :
K! :
:<1 :
Kl !
Kl :
Kl t
Kl 1
Kl 1
* 4 \ •
* ^ • *
Kl J
Kl t
Kl I
Kl f
1 <1 1
Kl :
Kl t
Kl :
Kl t
KI :
Kl :
Kl t
Kl
5 <1 I
37P
V DRINKING
39600 OA
MPARATMN
WML SMPL
UO/L
<1 1
<1 I
<1 5
<1 '•
<1 t
<1 :
<1 J
<1 :
<1 <
<1 >
<1 t
<1 t
<1 >
<1 t
<1 <
<1 :
<1 :
<1 I
<1 1
<1 i
<1 :
<1 !
<1 1

-------
EOA-CRL
1975
S&MPLE
LOG NO.
14359
14361
14363
14365
14367
14369
14371
14373
14375
14377
14379
14381
14383
14385
14387
14389
U391
14393
14395
14397
14399
14401
14403
14405
14407
14409
14415
14417
.OH.OW04
S0018 OA
PHENCAPT
«HL SMPL
UG/L
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
43P
REGION
S0034 OA
EPN
WHL SMPL
UG/L
_ •
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
- _ •
Kl
(41
Kl
Kl
Ki
Kl
Kl
Kl
_ •
Ki
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
44P
39580 OA
OUTHION
WHL SMPL
UG/L
• fH
I *^
KS
J<5
:<5
• ^c
• <;>
• ^c
I <5
K5
• *K
1 <5
KS
KS
KS
»^m
o
KS
KS
KS
KS
• *e
* o
• «i&
KS
KS
• «•
K9
KS
KS
KS
KS
KS
KS
KS
• ^K
• o
45P
V DRINKING HATER
S003S OA
PHOSALON
WHL SMPL
UG/L
Kl
• ^ I
Kl
• - 1
• <1
• ^ 1
Kl
• 
-------
39496 OA 39500 OA 39504 OA 39508 OA S0047 0* SOOJ9 OA S0038 OA
1975
SAMPLE
LOG NO.
14359
14360
U361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
U374
U375
14376
14377
14378
14379
14340
14381
14382
14383
14384
14385
14386
U387
\4388
14389
14390
U391
14392
U393
U394
U395
14396
14397
143^8
U399
14400
144Q1
14402
14403
1440*
144Q5
14406
14407
14408
14409
14410
14415
1441ft
14417
U418

AROCLOR
1242
UO/L
:<0.3
I
:<0.3
*
:<0.3
t
K0.3
t
t<0.3
t
l<0.3
:
:<0.3
:
:<0.3
:
:<0.3
:
:<0.3
j
:<0.3
:
:<0.3
i
K0.3
:
:<0.3
:
K0.3
t
K0.3
!
:<0.3
;
:<0.3
:
:<0.3
;
:<0.3
:
:<0.3
*
:<0.3
t
:<0.3
;
:<0.3
•
:<0.3
:
:<0.3
:
J<0.3
i
:<0.3
:
51?
AHOCLOR
. ?<»8
UG/L
:<0.3
:
:<0.3
:
:<0.3
:
:<0.3
:
i<0.3
t
:<0.3
t
:<0.3
:
:<0.3
*
!<0.3 .
:
l<0.3
l
K0.3
i
t<0.3
:
:<0.3
:
:<0.3
i
:<0.3
t
:<0.3
:
:<0.3
t
:<0.3
:
:<0.3
:
:<0.3
:
:<0.3
:
:<0.3
;
:<0.3
*
:<0.3
:
:<0.3
t
s<0.3
*
:<0.3
•
:<0.3
;
51P
AROCLOR
1254
UG/L
:<0.3
:
:<0.3
:
:<0.3
:
K0.3
t
K0.3
t
K0.3
t
K0.3
i
K0.3
j
:<0.3
t
t<0.3
J
t<0.3
t
K0.3
t
K0.3
:
:<0.3
:
:<0.3
t
:<0.3
:
:<0.3
*
:<0.3
:
:<0.3
:
:<0.3
;
J<0.3
:
:<0.3
i
:<0.3
:
:<0.3
:
:<0.3
*
K0.3
:
:<0.3
•
K0.3
•
52P
A»OCLOR
1260
UG/L
:<0.4
t
: < 0 * 4
;
K0.4
*
: <0»-4
i
l<0.4
t
r<0.4
i
:<0.4
i
K0.4
;
:<0.4
t
1<0.4
I
K0.4
t
:<0,4
*
:<0.4
:
t<0.4
t
K0.4
1
K0.4
1
:<0.4
:
:<0.4
*
:<0.4
:
:<0.4
*
:<0.4
:
: <0.4
:
:<0.4
;
:<0.4
:
: <0.4
t
:<0.4
:
:<0,4
:
:<0.4
:
53P
METME CL
TOT VOL
UO/L
]
:64«»M
: *>SS«M
• «H

-------

pOA-cRL
"1975
SAMPLE
LOG NO.
14360
U362
14364
14366
14368
14370
14372
14374
14376
14378
14380
14382
14384
14386
14388
14390
14392
14394
14396
14398
14400
14402
14404
14406
14408
14410
14416
14418

S0056 OA S0040 OA
C2H4CL2 CHCL28R
TOT VOL TOT VOL
UG/L UG/L
,<0.5 »<0.5
• • A.
:<1 *6
. + rf t
:<1 »*»
• t A
:<1 l4
:<1 :<0.2
- • 1 Q
:<1 •**
i
-------
EPA-CRL
1975
SAMPLE
LOG NO.
14354
14360
\4362
14364
14366
U368
14370
1*372
14374
14376
14378
14360
14382
14384
14386
14388
14390
14392
14394
14396
14398
14400
14402
14404
14406
144C8
14410

14411
14416
14418
.OM.DrtO
00916 M«
CALCIUM
CA.tOT
MG/L
:<1
:31.5
:32.4
:32.1
:31.6
:20.8
133.5
131.6
143.4
140.4
145*6
>22.3
J27.7
121.4
:27.4
:24.3
:33.1
-.44.9
:29.0
179.4
:64.a
:43.2
:17.4
:62.7
:34.o
:45.7
:52.9

:<1
149.4
141.2
64P
4 REGION
00927 MW
MQNSIUM
M^«TOT
MG/L
» _ n •
: 
-------
EPA-CRL
197S
SAMPLE
LOG NO.
14354
14360
14362
14364
14366
14368
14370
14372
14374
14376
14378
14380
14382
14384
14386
14388
14390
14392
14394
14396
14398
14400
14402
14404
1*406
14408
14410
14411
14416
14418

.OH. 0*04
01055 M*
MANQNESE
MN.TOT
UO/L
KS
16
t<5
:9
:7
126
:<5
1470
t!3
152
t<5
1460
1<5
:470
:<5
:250
:<5
146
i<5
129
15
119
16
155
:8
1110
:<5
:<5
:130
t32
7l*»
REGION
01092 «t
ZINC
ZN.TOT
UQ/L
:<5
:
:<5
t<5
t<5
l<5
l<5
:<5
l<5
KS
KS
l<5
t<5
:<5
t<5
K5
1<5
l<5
K5
KS
i<5
i<«5
t<5
:<5
:<5
1<5
l<5
:<5
77P
STUDY - OHIO
*<
««
•K
•K
1 1S»K
1 7S»K
1 *»S««
tllS-K
1135«K
115S«K
U7S«K
119S-K
121S«K
123S«K
125S»K
127S«K
129S»K
131S*K
133S«K
135S«K
137S»K
139S«K
14lS»K
143S*K
I4SS*K
147S«K
14QS«K
151S»K
153S»K
155S*K
:57S*K
15BS»K
163S»K
165S»K
•«K
••K

-------
FPA^CPL
1975
SAMPLE
LOG NO.
14360
14362
14364
14366
14368
14370
14372
14374
14376
14378
14380
14382
14384
14386
14388
14390
14392
14394
14396
14398
14400
14402
14404
14406
14408
14410
14416
14418

.OH.OW04
00530 IM
RESIDUE
TOT NFLT
Mfi XL
13
i<2
13
i<2
:3
t<2
117
t<2
1203
18
1165
t<2
1165
12
179
:<2
:68
i<2
123
:<2
:53
:<2
H27
:5
133
l<2
134
l<2
7dP
REGION
-'0300 IM
"ESIDUE
niss-i«jo
C M0/L
1160
1 190
l 170
1150
: 170
1 >30
1 200
1230
t?65
1280
1120
1170
>145
1140
:15»
1190
l 290
1230
1 t4D
1350
1?70
1180
l 380
I 340
1 240
1 290
! 390
: t80
79P
00095 IM
CNDUCTVY
AT 25C
MICROMHO
1282
1278
:270
1277
1254
1308
1350
1397
1391
1364
1236
1266
1233
1265
1249
1307
1441
1374
1642
1506
1376
:257
1510
:488
1392
1520
1780
1845
SOP
00945 I"
SULFATE
SO*
M«XL
120
126
120
127
131
156
182
189
153
180
149
154
153
155
155 .
169
142
143
1103
1113
141
139
179
1109
154
181
170
182
81P
l 00940 IM
CHLORIDE
CL
MG/L
119
118
:16
:19
:20
:25
129
133
118
121
112
113
113
U5
113
121
119
125
132
136
125
124
:26
131
124
139
:142
1179
82°
00956 IM
SILICA
SI02
MGXL
!<0.?
K0.2
:<0.2
:<0.2
:<0.2
10.6
:6.3
15.4
16.4
16.3
16.2
16.4
16.4
16.6
16.6
:
n*>
1*5
:*7
130
150
195
142
129
«35
«29
136
:38
:40
:141
:«5
U71
J61
S97
:31
1122
149
178
1100
179
t42
84P
V DRINKING *ATER STUDY - OHIO
•L
*L
»L
•L
1 7S«L
1 9S*L
111S*L
113S»L
: 15S»L
U7S»L
U9S»L
121S*L
123S*L
I25S»L
I27S»L
129S»L
I31S«L
133S*L
13SS*L
137S*L
139S»L
:*IS*L
143S»L
»*5S»L
«47S«L
:49S»L
151S»L
153S»L
155S*L
157S»L
163S»L
165S*L
**L
»*L
	 L

-------
EPA-CRL
1975
SAMPLE
LOG NO.
14355
14356
14357
14360
14362
14364
14366
14368
14370
14372
14374
14376
14378
14380
14382
14384
14386
14388
U390
14392
14394
14396
14398
14400
14402
14404
14406
14408
14410
14412
14413
14414
14416
14418
.OH.DW04
00403 IM
LAB
PH
su
•
*
:
:
:7.8
:7.7
:7.8
t7.7
t7.4
t7.7
17.2
19.4
t7.7
t9.7
tT.O
t8.4
:7.0
:8.3
t7.2
t8.2
t7.7
:7.9
t7.8
:8.5
:7.8
:8.9
t7.7
t8.5
t7.7
19.0
t
t
:
:7.8
:9.0
85?
REGION
00951 IM
FLUORIDE
F. TOTAL
M6/L
t
:
•
•
to. 13
:0.13
tO. 16
10.13
tO. 13
ll. 0
10.18
tl.3
tQ.21
tO. 98
tO. 13
tO. 96
to. 13
tO. 96
tO. 13
tO. 13
tO. 20
tO. 19
to. 26
tO. 74
to. 18
tl.l
tO. 22
tl.O
to. 21
to. 96

t
t
:o.l8
tO. 74
86P
32730 IM
PHENOLS
UO/L
•
•
t
t<3
t<3
t<3
t<3
t<3
:4
:3
16
IO
»6
15
t*3
t<3
t<3
t<3
t<3
t<3
'14
t<3
:3
t<3
:3
t<3
t5
t<3
t6
t<3

1
• ^ ^
to
tS
:3
87P
V DRINKING WATER
00720 IM 00630 1*
CYANIDE NO?*NOJ
CN N-TOTAL
MO/L MO/L
« t «A - 0^
•
t<0.002
t
tO. 004
tO. 005
tO. 003
tO. 003
10.005
K0.002
10.020
tO. 012
10.005
10.005
tO. 010
10.003
tO. 008
tO. 005
tO. 008
10.004
tO. 004
tO. 003
t
tO. 007
10.007
10.004
iO. 009
tO. 009
tO. 006
tO. 006
t

tO. 004
tO. 010
10. 010
88P
STUDY -
• •• w v » *r
•
•
•
iO. 26
tO. 25
tO. 25
iO. 25
tO. 27
tO. 28
11.07
tO. 25
15.31
14.62
tO. 93
tl.37
tO. 90
tO. 92
tl.Ol
tl.OO
t3.46
13.3*
t5.25
t5.17
13.61
t2.72
t7.15
t7.28
16.82
15.30
<0.03


1.11
l.lfl
89P
OHIO
00610 IN
NH3-N
TOTAL
M-3/L
:<0.010
•
•
:0.013
:<0.010
:0.012
:<0.010
tO. 044
tO. 019
10.293
tO. 231
tO. 224
tO. 102
tO. 123
tO. 032
tO. 161
:0.030
J0.047
:<0.010
tO. 157
tO. 020
tO. 424
:0.121
tO. 157
tO. 024
tO. 275
tO. 018
tO. 186
tO. 022
t<0.010

I
tO. 201
iO. 040
90P

00625 IN
TOT KJEL
N
MQ/L
:<0.05
•
*
•
tO. 32
tO. 15
tO. 25
:<0.05
tO. 64
to. 22
to. 80
tO. 37
12.16
tO. 60
tO. 69
to. 14
tO. 76
tO. 13
tO. 39
tO. 08
tl.16
tO. 24
tl.33
tO. 65
tl.03
tO. 2*
tl.43
tO. 48
t2.09
10.42
K0.05

I
tO.<»7
tO. 25
91P

• u
»M
*M
«M
t 2S*H
t 3S**
t 4*i*M
• ^ *9 ^
: TS«M
: OS*"
tllS»"
t!3S»M
t!5S*M
t!7S«*
I19S«M
t21S«"
t23S*"
I25S*M
t27S»M
t 29S*H
t31S«M
t33S*^
t35S»M
t37S»»«
t39S»"
t4lS*M
t43S«^
t45S*»*
t47S*^
:49S»M
t51S»M
t53S»«
t55S»M
t57S*M
t5QS*M
1 6 0 S • M
t6lS»M
t63S*M
t65S»M
• »M
^ ^ vi

-------
EPA-CRL
1975
SAMPLE
LOG NO.
U354
U355
U360
U362
U364
U366
14368
U370
14372
14174
U376
14378
14380
14382
14384
14386
14388
14390.
14392
14394
14396
U398
14400
14402
14404
14406
14408
14410
14411
14412
14416
14418
.OH.OW04
00665 IN
PHOS-T
P-*ET
MG/L
t
10.31
tO.03
10.02
10.04
K0.02
10.04
K0.02
tO. 15
tO. 19
10.39
10.07
10.20
K0.02
10.21
K0.02
10.14
K0.02
JO. 17
10.23
10.29
10.26
10.26
10.19
:0.36
10.10
10.35
10.14
•
•
K0.02
10.33
10.65
92°
REGION
00340 IN 00680 IN
COO T ORG C
HI LEVEL C
MG/L MG/L
l t
15 t
• A t
1 >J t
IS J
_ «* *
1 7 t
:S :
* *i A *
120 1
: 10 »
118 1
17 t
144 t
t!2 1
:26 1
14 |
l?9 l
15 t
118 t
13 t
125 t
»7 1
t22 :
1 7 t
119 t
18 1
133 l
s f) i
:43
17 1
i i
:<3 t
t24 t
19 1
93P 94P
V DRINKING MATER
71900 IN
*£RCURy
HO. TOTAL
UG/L
« < ft \
» « v • 1
t
I  * 1
• ^ V • i
KO.l
KO.l
KO.l
to.l
10.2
1", I
10.4
10.2
to. 3
10. 2
10.3
10.1
KO.l
10.1
• ,} 1
> ') . J
10.1
10.3
10.2
• n ">
• IJ . C
KO.l
KO.l
>— *\ \
<0. 1
KO.l
K0,l
95P
00900 IN
TOT MA*0
CHC03
M3/L
t<3

l 106
111?
• * A *-
till
1110
177
l 108
1113
rlM
1161
1117
183
195
178
194
191
U13
S19C
:120
J285
: 193
• • f »7
1152
167
1222
1117
• 4 » f
:167
1147
I < "\
• ^ J
*
t
U74
1154
96P
00615 IN
NOP-N
TOTAL
MO/L
<
j j
K0.005 1
K0.005 1
K0.005
KO.OOS
KO.OOS
KO.OOS
10.023
tO. 021
10.150
10.017
tO. 012
KO.OOS
10.016
10.005
10.014
K0.005
10.060
KO.OOS
tO. 049
10.010
10.050
10.007
10.059
10,009
10.072
KO.OOS
: i
10.032
KO.OOS t
97P <
STUDY - OHIO
•N
•N
• N
•N
J 1S»M
t 2S*N
1 7S»S
t 9'5»N
H1S»N
:13S*N
H5S«\
!17S»*J
: 19S»N
t21S*N
t23S«N
!25S»N
127S»N
:29S«N
131S»N
133S«N
!35S»N
t37S»N
t39S»N
I41S»N
J43S»N
145S*N
147S*N
149S*N
151S»N
:53S«N
155S*N
157S*N
t58S*N
J59S*N
163S«N
t6SS*N
)gp *«N
Jfe 4fc fe.1
**N

-------
 COLS  05APR  OSN«CNCRLS.ROD.*S.0*01  ON TS0009  04/l«/7i>
 	.	....	....STUDY DESCRIPTION
•NPAR  NLOO AQENCYIO IJNLOCKEY STATTYPE SMPLOAY ATLAflflY OUEDATE ACCOUNT-NUMBER
   94    53                    77777777 03FCB75 05FEB75 0"MAY75
 >»REGION V DRINKING WATER  STUDY - WISCONSIN
                              •SAMPLE DESCRIPTIONS—	—
                                STATTyPE DEEP T H NO liNQOATE TIME
L48IDNUM
U801
U892
U«03
U804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
U841
U842
14843
1*844
14845
14846
14847
148*8
14849
STORETID COLLOAY TIME
750203
750203
750203
750203
750203
750203
7S0203
750203
750203
750Z03
750203
T50203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
7'i0203
7H0203
7«i0203
75J0203
7S0203
7S0203
7S0203
7«50203
750203
7SO?03
750203
750203
750203
750203
750203
750203
750203
750203
7S0203
750203
750203
750203
750203
750203
750203

-------
1.951

14*53
>»l*105
»»t4«2fl
»> 14 o'.    >
> > > '
>»i -M 41

»> 14 J»J
» >; * r 4 »

» > J4J«^


>»14;150
                                                              3 CON)  ;>/
                ni OH
                »JPO»
                OP»N
                e»u cu*t"e •»>• '«»TI«  series  *
—  4 ^
                e«u
                3L«
                81. *C*
                                           se«ies
                                   •**«
                                                  $£4l»S d


                                             SE»t!i 9
                                                         «
                                                         9
                t« cwsse
                UA CCOSSE •»-
                L* c»osse
                U* C»OSSE
                                          SC»I£S
                                          5  »
                                            a
                Mll>»UKEE
                                          SERIES  9
                            «4T*a SERIES
                v4NtTO»OC
                                   ««T£B  SE'lES  A
                                          i£«I£S  1
                               «*T£<» S£fil£$  t
                               *4T£<»  SE^IICS
                                          5E«I£S
                        «4« >
                                                                                        • "b S

-------
>»1*853   »   KENOSHA  FINISHED rfATER SERIES d
.....	—-———SAHPLE/PARAMETEH DATA-

-------
P°A-CRL
1975
SAMPLE
LOG NO.
14*06
14808
U810
14912
14*14
14816
14822
14824
14A26
14628
14830
14832
14834
14836
14839
14840
U842
14644
14846
14648
14850
U852

.WS.OM01
S0003 OA
TREFLAN
*HL SMPL
U6/L
:<0.002
:<0.002
:<0.002
:<0.002
K0.002
!<0.002
K0.002
:<0«002
t<0.002
K0.602
K0.002
:<0.002
K0.002
:<0.002
t<0.002
xO.002
:<0.002
:<0.002
t<0.002
:<0.002
:<0.002
K0.002
IP
REGION




t
•
:
•
•
:
•
*
:
t
t
t
SOOOl OA
HCBENZ
WML S*PL
UG/L
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
XO.002
t
*
J
•
•
:
t
:
t
:
:
•
•
t
*
*
•

V
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
2P




t
t
•
•
t
!
t
t
1
t
t
1
1
39782 OA
LINOANC
WHL SHPL
UG/L
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
:<0.002
>
:
:
i
t
»
t
I
t

09INKING
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
3P
S0002 OA
BBHC
WML SMPL
UG/L
KO.OOS
XO.OOS
:<0.005
:<0.005
XO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
l<0*005
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
4P




t
1
:
t
1
1
:
1
t
1
t
t
1
I
t
t
1
t
t
:
:
:

S0004 OA
OICLONE
rfHL SM*L
UG/L
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
5P
39330 OA
ALO«IN
WHL SHPL
UG/L
K0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
K0.002
K0.002
K0.002
K0.002
K0.002
X0.002
K0.002
K0.002
:<0.002
K0.002
K0.002
K0.002
:<0.002
K0.002
K0.002
AP
SOOOS OA
2YTRON
WHL SMPL
UG/L
K0.02
K0.02
K0.02
:<0.02
K0.02
K0.02
J<0.02
K0.02
K0.02
K0.02
K0.02
K0.02
K0.02
K0.02
K0.02
t<0.02
K0.02
K0.02
K0.02
J<0.02
J<0.02
K0.02
7P
*AT£«» STUDY - WISCONSIN
*A
•A
•A
•A
: 6S»A
I ««S*A
:10S»A
»12S«A
:14S*A
U6S*A
J22S*A
:2*S*A
>2*S*A
:28S*A
«30S»A
t32S«A
I34S*A
:36S«A
I39S«A
:40S*A
:42S»A
:44S*A
I46S»A
«4^S*A
:50S*A
:52S»A
••A
**A

-------
f-PA-CRL
1975
SAMPLE
LOG NO.
14A06
U808
UP10
14812
14814
14816
14822
14824
14826
14828
14830
14832
14834
14836
14*39
14840
14842
14844
148*6
148*8
14850
14852

.WS.OMOl




t
:
•
:
:
*
:
:
i
t
t
t
:
i
t
t
:
;
I
I
:
*


39430 OA
isooaiN
^^i ^£UQl
W™^ 3^^\p
U3/L
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
a?
REGION
39420 OA
H;HL»-EP
SML SMPL
UG/L
XO.002
XO.002
XO.002
:<0.002
XO.002
xO.002
xO.002
xO.002
xO.002
XO.002
xO.002
xO.002
XO.002
XO.002
XO.Q02
xO.002
xO.002
xO.002
XO.002
xO.002
xO.002
XO.002
9P
S0006 OA
CHLORQAO
WHL SMPL
UG/L
XO.002
XO.002
xO.002
XO.002
xO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
xO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
xO.002
10P
S0007 OA
DDE OP
*HL SMPL
UQ/L
X0.003
X0.003
X0.003
X0.003
X0.003
X0.003
xO.003
X0.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
IIP
S0004 01
DOE PP
WHL SMf*l.
UG/L
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
12P
S0009 OA
ODO OP


:
•
•
«
•
:
i
*
t
:
:
t
tfri

<0
<0
<0
<0
<0
<0
<0
<0
<0
XO
t
i
:
:
:
:
;
:
t
t
*
*
*

<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0

L SHPL
US/L
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
IIP
S0010 OA
DOT OP
WHL SMPL
UG/L
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.Q03
XO.003
XO.003
140
•8
*P
*•?
*B
: 6S*R
: 9S*q
: 10S»3
i IJJS*^
; 14S**
: 16S*a
:22S»«
:24S*B
J26S»P
t2HS*<^
«30S»fl
:32S»«?
:34S*R
:36S*B
: 3QS*B
: 40 5*8
:42S*C>
; 44S«a
:46S*B
t4RS*R
:50S*^
:5?S»R
• «q
V DRINKING MATER STUDY - WISCONSIN »«q

-------
PPA-C"L
1975
SAMPLE
1.03 NO.
14806
14808
* ^ * " w
1AS10
14*12
14814
U816
14822
14824
U826
U828
U830
14832
14834
14836
14839
14A40
14842
14844
14846
14848
14850
14852
.WS.OWOl
SOoll OA
000 PP
«H\ SMPL
UO/L
XO.003
xO.003
xO.003
K0.003
XO.003
XO.003
XO.003
XO.003
XO.003
K0.003
XO.003
XO.003
:*0.003
XO.003
K0.003
XO.003
K0.003
K0.003
K0.003
J<0.003
XO.003
K0.003
ISP
OEOION
S0012 OA
30 T PP
WHL SMPL
UO/L
XO.003
XO.003
xO.003
XO.003
xO.003
xO.003
XO.003
XO.003
xO.003
xO.003
XO.003
XO.003
xO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
16P
S0013 OA
CARBPHTM
WHL SMPL
UQ/L
XO.003
XO.003
xO.003
xO.003
K0.003
xO.003
xO.003
xO.003
XO.003
xO.003
XO.003
xO.003
XO.003
xO.003
xO.003
xO.003
xO.003
K0.003
K0.003
XO.003
xO.003
K0.003
17P
V DRINKING WATER
S0014 OA
MIP.EX
*HL SMPL
UO/L
xO.005
xO.005
xO.005
XO.005
XO.005
xO.005
t<0.005
XO.005
K0.005
XO.005
XO.005
XO.005
XO.005
XO.005
XO.005
XO.005
XO.005
X0.005
XO.005
K0.005
K0.005
XO.005
18P
STUDY - W
394^0 OA
MTHXVCLH
*HL SMPL
ur,/L
K0.01
X0.01
S0020 OA
?|4-0»IP
«HL SMPL
v'O/L
<.oi
<.01
At
X0.01 « • v i
K0.01 <.01
K0.01 <.01
xO .0 1 ' " 1
X0.01
K0.01
xo.oi
xo.oi
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
xO.Ol
XO.OI
19P
ISCONSIN


«• • OS»C
«52S*C
••c
A A f*

- ~\.
— 	 C

-------
PPA-CRL
1975
SAMPLE
LOG NO.
14*06
44«06
U810
14812
14814
14916
14822
14824
14826
14828
14830
14832
14834
14836
14839
14840
14842
14944
14846
14848
14850
14652

.WS.DM01
39770 OA
OCPA
WML SMPL
UG/L
K.003
K.003
K.003
K.003
K.OOJ
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
: K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
22P
REGION
S0023 OA
ENDOS I
WML SMPL
UG/L
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
39380 OA
OIELDRIN
«ML SMPL
UG/L
<.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.OOS K.003
K.OOS K.OOS
K.OOS 1
K.003
K.OOS K.003
K.OOS
K.003
K.OOS K.003
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
23P
K.003
K.003
K.003
K.003
K.003
K.003
24P
39390 OA
E NOR IN
•ML SMPL
UG/L
K.003
IK. 003
:<.003
K.003
<.003
K.003
K.003
K.003
K. 003
K.003
K.003
K.003
K.003
K.003
IK. 003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
25P
39460 0» S0027 OA
CLR^NZLF ENOOS II
WML *>M>». HWL SMPL
UG/L UG/L
K.01 K.OOS
K.01
K.01
K.01
K.Ql
K.01
K.01
K.01
K.01
K.01
K.01
K.01
K.01 !
K.01
K.Ol
: .01
: .01
: .01 :
: .01
: .01
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
-K.OOS
K.OOS
IK. COS
K.OOS
K.OOS
K.OOS
.K.OOS
K.OOS
K.OOS
K.OOS
•K.OOS
t .01 K.OOS
t .01 K.OOS
?6P 270
S0028 OA
NlTflOFEN
WML SMPL
UG/L
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.005
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.005
K.OOS
K.OOS
K.OOS
»K. 035
K.OOS
K.005
280
V DRINKING WATER STUDY - * I SCONS IN
•0
•0
*0
•0
t 6S«0
: 8S»0
:10S»D
:12S»T
»14S«r>
J16S*D
:22S»0
«24S»0
I26S»0
:?«S*0
J30S»D
J 325*0
:34S*D
:36S*0
: 395*0
:40S*D
:42S*D
:44S*0
:46S*0
1495*9
!50S*0
t52S«D
•*n
•*0

-------
EPA-CRL
1975
SAMPLE
LOG NO.
'4806
14808
14810
14812
14814
14816
U822
14824
14826
14828
14830
14832
U834
14836
14839
14840
14842
14844
14846
U848
U850
14852

.WS.OWOI
S002* OA
245-TUO
WNL SMPL

K
K
: <
: <
:<
K
:<
: <
: <
t <
t <
: <
K
:<
t <
:<
: <
: <
K
K
K
K


UG/L
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
• 0 1
• 0 1
.01
• 01
.01
.01
.01
.01
.01
.01
.01
.01
29*
PEGION
S0030 OA
PflOLAN
WHL SMPL
UG/L
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
30P


S0031 OA S0026
*BULAN OEMP
OA

NHL SMPL wHL SMPL

t
5
*
•
:
:
•
*
•
t
•
t
i
i
t
t
t
:
:
i
i
i
i
t
*
•

V DRINKING
'JO/L UG/L
<.01 Kl
<.01 : 1
<.0l Kl
<.01 • :<1
<.01 Kl
<.01 :<1
<.01 : 12
<.01 :<1
<.01 Kl
^•01 * 1
K • 0 1 t ^ 1
<.01 Kl
<.Q1 Kl
<*01 t A
<.01 Kl
<.01 (2
<.0l Kl
<.01 Kl
< . 0 1 K 1
<.0l : l
<.01 :2
<.01 : 1
31P 32P
WATER STUDY -

t
1
:
i
:
t
•
t
:
t
i
t
i
t
>
•
•
•
•
t
•
•
:
t
t
•
•

39808 OA 39570 OA

TEDIO* DlAZINON
S0016 OA
OYFQNftTE
*E
*E
•ML SM^L WHL SMPL *HL SMPL *E

<
<
<
<
<
<
<
<
<






<
<
<
<
<
<
<

UG/L LG'L
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
< 1 t
<1 t
4 1 *
<1 !
^ 1 *
^ 1 *
4 \ *
^ 1 *
<1 t
<1 t
<1 t
<1 t
 34P
I'G/L
<1
<1
<1
52S*£
•*E
**E

-------
gPA-CRL
1975
SAMPLE
LOG NO.
14806
14808
14810
14812
14814
14816
14822
14A24
14826
14828
14830
14832
14834
148 36
14839
14840
14842
14844
14846
14848
14850
14852
..rfS.DWOI
S0017 OA
RONNEL
WHL SMPL
UG/L
Kl
Kl
Kl
_ •
: <1
- •
:<1
Kl
Kl
Kl
'Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
36P
L REGION
S0032 OA
9URS8AN
WHL SMPL
UG/L
Kl
4.^1
! <1
Kl
• * i
I < 1
• * \
l < l
: <1
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
37P
39600 OA
MPARATHN
WHL SMPL
UG/L
Kl
• t\
• 530 OA
MALATHN
WHL SMPL
UG/L
_ «
K 1
1 < 1
• ^ »
» + l
I < X
Kl
* ^ ft
Kl
, f \
* < l
• * i
5 < 1
Kl
Kl '
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
_ _ \
\  i
• < 1
Kl
• ^ *
• <1
• ^ i
Kl
Kl
Kl
• ^ A
1 <1
• * 1
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
t * 1
• * i
Kl
Kl
Kl
40P
S0033 OA
OEF
WHL SMPL
UG/L
t <1
• ^ *
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl '
Kl
Kl
Kl
Kl
Kl
Kl
t < 1
• ^ •
Kl
Kl
Kl
41P
39398 OA
ETHION
WHL SMPL
Uti/L
: 
-------
FPA-CRL SOOld OA S0034 OA 39580 OA S0035 OA S0036 UA S0037 OA 39488
1975 PMENCAPT £PN OUTHION PHOSALON AZlNFOSt COUMAFOS A^OCLO
SAMPLE *HL SMPL WHL SMPL »IHL SMPL *HL SMPL *HL SM-L *HL SM»L 1221
LOG NO. UG/L UG/L UG/L Ufl/L UG/L UG/L «JG/L
14806
14808
14810
14812
14814
14816
14822
14824
14826
14828
14830
14832
14834
14836
14839
14840
14842
14844
14646
14848
14850
14852
<1 «1 i<5 t<5
<1 .'<5
<1 t<5 :<0.3
<1 J<1 J<5 J<0.3

-------
gPA-CRL
1975
SAMPLE
LOG NO.
14806
14808
14809
14810
14811
14812
14813
1*81*
1*815
1*816
1*817
1*822
14823
1482*
14825
14826
14827
14828
14829
14830
14831
14832
14833
1*83*
1*835
14836
1*837
14839
1*8*0
148*1
148*2
148*3
148**
14845
14846
14847
14848
14849
14850
14851
14852
14853
39496 OA
AROCLOR
12*2
UG/L
xO.3
xO.3
XO.3
:
xO.3
:
XO.3
t
XO.3
*
XO.3
t
XO.3
•
xO.3
•
XO.3
t
XO.3
:
xO.3
•
XO.3
t
XO.3
•
XO.3
XO.3
t
X0*3
*
XO.3
*
:<0.3
•
XO.3
{
XO.3
!
xO.3
•
50P
- . r. rr ft T
39500 OA
AROCLOR
12*8
UG/L
xO.3
xO.3
J
:<0.3
j
«0.3
xO.3
|
xO.3
•
xD.3
xO.3
•
XO.3
XO.3
xO.3
•
xO.3
t
xO.3
•
XO.3
xO.3
xO.3
•
XO.3
:
xO.3
j<0.3
t
XO.3
i
xO.3
t
xO.3
t
51P
nti u rvQTM
3950* OA
AROCLOR
125*
Ufl/L
XO.3
XO.3
•
»
XO.3
•
•
xO.3
J
•
xO.3
1
XO.3
1
XO.3
1
XO.3
j
XO.3
•
XO.3
•
i<0.3
•
XO.3
•
XO.3
t
XO.3
j
XO.3
XO.3
t
XO.3
1
XO.3
t
xO.3
{
XO.3
•
XO.3
•
XO.3
•
52P
KtNG MATE
39S08 OA
AROCLOR
1260
'JG/L
XO.*
X0.4
t
X0.4
1
X0.4
t
X0.4
t
XO.*
t
K0.3
1
xO.3
t
xO.3
t
xO.3
1
xO.3
j
xO.3
I
xO.3
:
XO.3
j
xO.3
xO.3
t
t<0.3
l
XO.3
t
XQ.3
•
*
K0.3
•
*
xO.3
l
xO.3
•
53P
* STUDY -
S0047 OA S0039 OA
METHE CL CCL*
TOT VOL TOT VOL
UG/L U9/L
t i
! 1
:7 '2
: '•
XO.5 *
xl '-8
: >
XO.5 t<2
t l
xl «<2
t »
XO.5 «1
1
XO.5 S3
: '
XO.5 57
: *
XO.5 s<2
l «
XO.5 '-I
l *
XO.5 »<1
I '•
XO.5 «10
:
XO.5 !<2
:
t
xl <1
i
XO.5 3
XO.5 '•8S»H
J • fc • » W •
,55 t29S*H
»30S»H
<1 t31S»H
t ->pC*H
• JC. J "
14 :33S»M
t 34S*H
\l :35S»H
j :36S»H
J9 t37S»4
j t^«»S*H
i :40S*M
,10 »4lS*H
, I42S*H
t-
:50S*>-
il2 :51S*-
, 5*525*'
f • ^ CK **
:3 S535-'
e t o • ^
Sor"
««

-------
FPA-CRL
1975
SAMPLE
LOG NO.
U809
Uflll
14813
14815
14«17
14823
14825
14827
14*29
14831
14833
14835
14*37
14841
14843
14845
14847
14849
14851
U953

.WS.DM01
S0056 OA
C2H4CL2
TOT VOL
UG/L
:3
Kl
J<1
t
-------
FPA*CRL
1975
SAMPLE
LOG NO.
14801
4806
14808
14«10
14812
14814
14816
14822
14824
14826
14828
U830
14832
14834
14836
14838
14P40
14842
14844
14846
14848
14850
14852


C091b Mrf
CALCIUM
CA.TOT
MG/L
:<0.1
:14.3
:18.2
:9.2
:9.3
:9.0
:8.9
:33.8
J33.8
142.0
142.0
:33.6
:32.1
:33.6
:33.2
:34.6
:33.8
:34.3
:33.7
:33.3
132.4
:34.4
:34.1
64P
REGION
00927 MM
MGNSIUM
MGtTOT
HG/L
:0.1
!A.3
15.3
13.9
S3. 9
:3.8
:3.8
:10.7
110.7
122.3
»22.5
tll.d
ilO.3
110.7
:10.6
:10.7
:10.6
:10.7
:10.6
s 11.6
til. 7
:il.O
:10.7
65P
00929 MM 00937 MM
SODIUM PTSSIUM
NA»TOT K.TOT
MG/L MG/L
KO.l :<0.l
:3.2 :l.O
:3.0 M.O
:5,0 :3.0
:21.0 :3.2
:5.4 :3.0
:20.7
>4.3
:4.3
t6.3
16.5
14.4
14.4
14.5
S4.Q
:4.4
:4.2
14.2
14.3
:4.3
19.5
tS.4 :
:4.5 :
3.2
1.1
1.2
1.9
.9

\Z
.2
.2
.1
.1
.1
.2
.2
.2
.2
.2
66P 67P
01034 HM 01042 MM
CHROMIUM COPPER
C«»tTOT CUtTOT
UG/L UG/L
i<5 :<5
: <5 :<5
:<5 :<5
t <5 : 7
s<5 :<5
:<5 :9
t<5 t<5
i<5 :<5
l<5 i<5
t<5 HO
l<5 *<5
»2t
I<20
:
-------
fPA-CP-L
1975
CAMPLE
LOG NO.
'»flO 1
4*06
14808
14910
U812
14814
14816
14822
14824
14826
14828
14830
14832
14834
14836
14838
14840
14842
14844
14446
14848
14850
14852

.wS.OwOl
OlOS* M*
MANGNESE
MN»TOT
UG/L
t<5
: <5
: <5
:40
:35
J30
J30
:5
i  xl
x?> : <1
x5 : <1
17 Jl
X5 t<2
74P
01027 ••'^ 01077 MW
CADMIUM SILVE*
CO«TOT AG«TOT
UG/L Ufi/L
«0.2
:<0.2
:<0.2
«<0.2
:<0.2
:<0.2
:<0.2
t<0.2
t<0.2
i<0.2
><0.2
K0.2
:<0.2
:<0.2
]<0.2
:<0.2
:<0.2
X0.2
X0.2
X0.2
X0.2
l  :10S*K
:<5 :12S*K
:<5 J14S*K
XS U6S«K
X5 «22S«K
X5 I24S*K
X5 ' «26S*K
X5 I28S*K
»<5 :30S»K
: <5 !32S*x
X5 :34S*K
s <5 t36S*K
:<5 J3«S*K,
X5 *.40S»K
x5 :42S«K
X5 J44S»K
:<5 <46S*K
:
-------
FPA-CRL
1975
SAMPLE
LOQ NO.
806

. .ana
U810
14812
14814
U816
14822
14824
14826
1482*
14830
14832
14834
14834
14838
14840
14842
I 4844
i ^ w ™ ~
14846
14848
14850
1485?
-*s»o*o:
00530 IM
"ESIOUE
TOT NFLT
MQ/L
t<2

t<2
l<2
:3
:5
:<2
!<2
i<2
i»
I<2
13
t<2
12
:<2
:2
:<2
:<2
:<2
:<2
:<2
:2
:<2
T a i3
To*'
i PEGION
70300 IM
WESIOUE
DISS-180
c MO/L
180
• A A
1 **0
170
1100
170
190
:170
1170
1210
1250
1150
« ISO
1190
H90
1210
1190
1200
:140
1150
124Q
1200
:200
79P
V DAINKI
00095 IM
CNOUCTVY
AT 25C
MICftOMHO
1164
. \ fcO
I I O~
1125
:1H4
! 120
1 182
1274
1283
1402
1417
1282
1282
1277
1286
1278
1280
1277
:282
1280
1315
J^ rt **
292
1265
80P
NG MATE*
00945 II
SULFATE
S04
MQ/L
I. ^
13
1 <3
{* A
10
19
• f\
1 **•
• O
• **
• 1 Q
1 19
126
• *t A
I 20
140
120
a*
(1 A
I'
tl»
. • g\
11'
121
117
<\ n
IB
117
142
t 31
1 C 1
126
81P
STUDY -
* 00940 IM
CHLOPIUt
CL
MQ/L
] 1 A
• 1 v
:o
8
: Q
« y
S9
:9
: 10
* A V
: Q
* y
:lo
111
• A A
113
19
110
19
• 7
110
1 9
:ll
til
: 10
• AW
• t *y
1 12
112
1 12
:12
82P
WISCONSIN
OOV56 IM
SILICA
SI02
MC-/L
:22.n
1 ? 1 0
• t * • *
t 8.0
18.7
17.9
!«.7
: 1.1
t 1.5
I 7.9
18.0
1 l.l
: 1.6
! 1 . 1
1.6
: 1.1
:!.&
;1.9
:l.l
. ? \
> C . i
10.6
!0.5
:1.5
P3P

1 00410 IM
T ALK
C4C03
MG/L
:3«>
:55

:?8
:S9
:28
:^6
:10S
1Q4
1180
1153
1107
1100
JlOft
1100
no*
:103
:iOf>
:101
110«>
188
1107
:100
4*P

*L
*L
•L
•L
: ft«*L
: 8S»L

.' IOS«L
:12S»L
: US*L
:16S*L
:22S«L
124S*L'
126S*L
128S«L
:30S«L
132S»L
:34S*L
:36S»L
:38S*L
:40S*L
:42S»L
!44S*L
146S»L
148S<»L
150S«L
:S2S«L
**L
**i
u
	 L

-------
EPA-CRL
1975
SAMPLE
LOG NO.
•4*01
4802
14806
14808
14*10
14812
14814
14816
14822
14824
U8Z6
14828
14830
U832
1*834
UP36
14838
U840
14842
14844
14846
14848
14850
1 A AK9
1 4^5c
.WS.D401
00665 IN
PHOS-T
P-*ET
MG/L
t
K0.02
tO. 10
tO. 11
JO. 08
iO. 08
tO. 08
tO. 08
10. 03
K0.02
tO. 02
t<0.02
K0.02
K0.02
:<0.02
K0.02
i<0.02
K0.02
K0.02
K0.02
K0.02
K0.02
K0.02
! <0 ft?
* % v 9 v t
92P
REGION
00340 IN 00680 IN 71900 IN
COO T ORG C MERCURY
MI LEVEL C HOiTOTAL
MG/L MO/L UO/L
• • ^ A \

K3
K3
t3
:9
;6
t6
J5
K3
:<3
117
til
t5
13
• A
• *
tS
t3
13
:3
t3
tio
14
:fl
I 6
i * V. I
I
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
93P 94P 95P
00900 IN
TOT HA*0
CAC03
MG/L
» 1 i
• * •* .
t
t62
t67
539
t30
138
t38
1128
t!28
t!97
t!97
t!29
H23
U2«
:127
U30
:12P
tl30
U21
:131
t!29
t!31
t!29
96P
00615 IN
NOa-N
TOTAL
M3/L
t j
• «
» •
KO.OOS i
i 0.010 t
:0.006 :
K0.005 t
:0.00*> t
KO.OOS t
KO.OOS t
KO.OOS t
tO. 010 t
KO.OOS t
KO.OOS :
KO.OOS :
KO.OOS t
KO.OOS :
KO.OOS
KO.OOS i
KO.OOS i
KO.OOS :
tO. 005 I
KO.OOS t
: 0.008
KO.OOS :
97P 98P
V DRINKING WATER STUDY - WISCONSIN
•N
»N
*N
•N
t 1S*N
t 2S*N
• b w ™
t 6S*N
:O C Akl
B5*N
tlOS*N
t!2S*M
t 14S*N
t!6S«N
t22S*N
t24S«N
t26S*N
t28S*N
t30S»N
t32S*N
t34S*N
t36S»N
t 38S*N
:/ A C A fti
40S*N
t42S»N
:44S»N
I46S*N
:48S»N
:SOS*N
i52S*N
••N
•»N

-------
        00403
1<>75
SAMPLE
1.06 NO.
VAO?
\ O ' &
4803
14304
14806
14808
14*10
14812
14814
14816
14822
14824
14826
14828
14330
14332
14834
14836
14?38
14840
14842
14844
148*6
14848
14350
14852
Lid
PM
SO
•
»
•
*
:6.4
:7.9
:6.3
:7.4
:6.3
t7.4
:7.9
t7.3
:8.2
t7.4
-.8.0
t7.5
t7.9
t7.5
ta.o
t7.6
t7.9
t7.6
t7.8
t7.1
t7.9
t7.4
00951 I* 32730 IM
FLUOHIOE  PHENOLS
                   Hd/L
:0.10
tO.13
to. 12
tl.4
tO.13
tl.4
to.12
tO. 84
*M°
tl.O
10.13
to.86
tO.12
           UG/L
                         t<3
                   .
                 11.12
                 si. 2
                 S9.ll
                         :<3
                         '<3
                         s<3
                          :<3
                          »<3
                          :<3
                 JO. 12    :<3
          :<3
          :<3
          t<3
          »<3
          s<3
00720 IM
r Y ANT np
I* •*'* I WC
CN
v^
Mfl/L
•
•
t<0.002
•
•
tO. 003
tO. 002
tO. 003
• O - QOA
« V . W W *J
tO .002
tO. 006
tO. 003
tO. 002
tO. 003
tO. 005
t<0.002
tO. 002
: 0.-003
tO. 002
t<0.002
t 0.002
t<0.002
t<0.002
t<0.002
to. 003
tO. 003
tO. 003
88P
STUOY - 4
00630 IN
M02VNQ3
N-TQTAU
MG/L
t<0.03
•
•
•
t2.3l
: 1.00
tO. 4*
:0.4«?
tO. 47
iO. 49
tO. 23
tO. 22
tO. 24
tO. 20
tO. 22
tO. 22
tO. 22
tO. 23
tO. 22
tO. 23
tO. 22
tO. 22
tO. 10
to. 11
tO. 26
tO. 23
89P
ISCONSIN
00610 IN
Ni-3-N
TOTAL
MG/L
t<0.010
•
•
•
:<0.010
:0.126
tO. 023
:0.02b
tO. 024
tO. 023
tO. Oil
tO. 043
tO. 050
tO. 146
KO.OIO
t<0.010
tn.024
t <0.010
t<0.010
t<0.010
t<0.010
t<0.0!0
tO, 014
to. on
tO. 047
:0. 203
90P

00625 IN
TOT KJEL
N
MG/L
t < 0 . 0 5
*
*
: 0 . 0 3
:o.2?
*. 0.24
50.2*
tO. 23
tO. 20
A 4k % ^
tO. 13
tO. 15
tO. 77
tO .53
t<0.05
t<0.05
t 0 . 0 6
t<0.05
t<0.05
K0.05
tO. 10
t <0.05
1 0 . 2 1
t<0.05
tO. 27
tO. 27
91P

                                                                         • M
                                                    t 2
                                                                       45*^
                                                                      26S
 ;.;•     =7.1     .».»•    ««»      :j-j;j   ;j;ji    ;;;;;   ,,.z,    w
H3SO     a.o     ••«•»    ><\      :«-JJ5    5 „    -.o.zo«   '.0.37    .S2S-«
>*•*     :7-j»   >uiw   • °STP   -"-SeJ     w      «-      «'      :::
.-S.O-01    PE9IOH V ORtNKINS_«TE9_STUOY_-_;|tSCONSI>._	M

-------