REGION V
JOINT FEDERAL/STATE
SURVEY OP ORGANPCS & INORGANICS
IN
SELECTED DRINKING MATER SUPPLIES
JUNE 1975
DRAFT
U.S. ENVIRONMENTAL PROTECTION AGENCY
230 South Dearborn Street
Chicago, Illinois 60604
-------
-------
ACKNOWLEDGEMENT
Region V wishes to acknowledge the cooperation H received
from each of the State and local agencies and Water Treatment Plant
officials without whose participation this study would have been
Impossible.
-------
TABLE OF CONTENTS
Page
I. Introduction 1
II. Summary of Results and Conclusions 3
1. Volatile Organic Compounds 3
2. Linear Regressions 10
3. Pesticides, PCB's and Phthalates 21
4. Non-Volatile Organic Compounds , 21
5. Inorganic Parameters 25
6. Economic Considerations 31
III. Significance 31
IV. Recommendations 34
V. Sample Collection, Analytical Procedures 4 Quality Assurance 35
T. Sampling Procedures 36
2. Volatile Organlcs 37
a) Analytical Procedures 37
b) Quality Assurance for Volatile Organlcs 40
3. Pesticides, PCB's and Phthalates 50
a) Introduction 50
b) Experimental Procedures 50
c) Quality Assurance .' 59
4. Non-Volatile Organic Compounds 64
a) Analytical Procedures 64
1) One Liter Water Grab Samples 64
11) Carbon Filtered Samples 65
5. Metals 68
a) Analytical Procedures & Quality Assurance 58
1) Flame Atomic Absorption 68
ii) Flameless Atomic Absorption 71
H
-------
TABLE OF CONTENTS (Cont'd)
6. Inorganic Parameters 75
a} Analytical Procedures 75
b) Quality Assurance 80
LIST OF FIGURES
I. Plot of CHCla vs. BrCHCla 16
II. Plot of BrCHCl2 vs. Br2CHCl 17
III. Plot of CHC13 vs. Total Chlorine Dosage (All Plants) 18
IV. °lot of CHC13 vs. Total Chlorine Dosage (River Plants) 19
V. Frequency Distribution for Ammonia In Finished Water 20
VI. Sampling Assembly for Volatile Organlcs 38
VII. Analytical Assembly for Volatile Organlcs 39
VIII. Gas Chromatogram of Volatile Organic Compounds 44
IX. Computer Printout for List A Pesticides 54
X. Gas Chromatogram of Pesticides Containing Phosphorous 55
XI. Computer Printout for List B Pesticides (SE-30/OV-210 Column) 56
XII. Computer Printout for List B Pesticides (OV-17/OV-210 Column) 57
XIII. Dual ColumnrDual Pen Recorder Tracing of Compounds 1n List B 58
XIV. Carbon Filter Assembly 65
LIST OF TABLES
I. Summary of Analytical Results 3
II. Analytical Results (Volatile Organlcs) 4
III. Volatile Organic Compound Concentration Ratios (10 highest) 8
IV. Water Supply System Information 12
V. Desticides, PCB's and Phthalates in Each Water Supply 22
VI. Drinking Water Standards for Inorganic Parameters 27
111
-------
LIST OF TABLES (Cont'd)
VII. Summary of Inorganic Parameter Drinking Water Results 28
Mil. Frequenty Distribution of the Finished Mater -
Results for Inorganic Parameters 29
IX. Percentage of Raw Water COD Values Exceeding the Mean
of 15 mg/1 Versus Chloroform Concentrations 30
X. Additions of Armenia and Phosphorus to Finished Waters 30
XI. Estimated Cost Data for the Region V Survey 32
XII. Gas Chromatograph Detector Response as a Function
of Purge Time In Arbitrary Units 42
XIII. ReproducibHlty of the Analytical Method (Volatile Organics) .... 42
XIV. Summary of Results for All Volatile Organic Reagent Blanks 45
XV. Analytical Results of All Volatile Organic Samples Collected
1n Duplicate 47
XVI. Results of Volatile Organic Results versus Time . , 49
XVII. Recovery Data for Samples Spiked with Pesticides 61
XVIII. Precision for Metals Based on Analysis of Duplicate
Samples by Flame Atomic Absorption Spectroscopy 69
XIX. Recovery Data for Samples Spiked with Metals by Fl.me AA 70
XX. Statistical Summary of Results from the Laboratory
Control Standards by Flame AA 70
XXI. Precision Based on the Analysis of Duplicates by F'ameless AA . . . . 72
XXII. Metal Concentration Ranges in Drinking Water 74
XXIII. Summary of Quality Assurance Data for Inorganic Parameters 81
iv
-------
INTRODUCTION
In response to public concern resulting from publicity about alleged toxic
organic compounds 1n the New Orleans, Louisiana and other municipal drinking
water supplies, Region V States asked for assistance 1n obtaining current data
concerning certain drinking water supplies 1n Region V. The study was designed
to provide frequency of occurrence and concentration values of volatile and
non-volatile organic compounds, selected pesticides, herbicides and fungicides,
polychlorlnated blphenyl mixtures, certain phthalate esters, metals and other
Inorganic parameters 1n drinking waters. Another Interest was to establish
baseline concentrations for those organic compounds of health concern or thought
to result from chlorlnatlon, and therefore to be widely distributed 1n our water
supplies. These compounds Include carbon tetrachlorlde (CC1J, chloroform (CHC13),
bromodlchloromethane (BrCHClp), dlbromochloromethane (B^CHCl), bromoform (Br^CH),
l,2-d1chloroethane (C1-CH2-CH2-C1), dichloromethane (CH2C12), aldrln, dieldrln
and DDT.
The 83 cities were selected jointly by both State and Federal personnel
to get a broad representation of Region V water supply systems. The study evalu-
ates organic pollution 1n drinking water supplies of most concern to State
agencies, provides appropriate background data for quality assurance purposes,
and complements the National Reconnaissance Survey In determining the concentra-
tions, sources, and potential danger of organic chemicals 1n drinking water.
A maximum number of parameters per sample were included to provide a com-
plete description of each water supply and to detect possible relationships
between the more traditional Inorganic parameters and the organic parameters of
current interest. In addition, since many expenses of the study, such as sampling
costs, report writing, instrument and otner fixed caoitol depreciations, trans-
portation, etc., remain constant, the most efficient study includes a maximum
number of parameter analyses per samoTe.
-------
It should be emphasized that this study occurred Curing winter months
when waters were cold, surface streams v-are generally at higher than normal
flows and contained considerable suspended solid materia s, agricultural and
gardening activities were at a minimum as were certain industrial activities.
Therefore, concentrations could vary substantially from values reported in this
iwnuscript for samples collected at different times of tie year.
1,2
Based on the data presented 1n Table I, It is cleir that chloroform,
bromodichloromethane, dibromochloromethane and bromoform are consistently higher
1n treated drinking water than in raw waters at most cities in the Region. The
loean concentrations however are quite low.
Table II is a listing of the analytical results f*om which the summary
data 1n Table I were calculated. All concentrations are in micrograms per
liter (ug/1). It is the practice of the Central Regional Laboratory to report
detection limits based on each day's quality assurance d»ta. Therefore, dif-
ferent detection limits are given for some parameters in Table II and other
places 1n this report.
Conclusions that may be reached from an examinati )n of the data in
Table II are as follows:
a. Clear raw water results in finished water that is relatively free of
chloroform and related halogenated compounds. Of the 25 supplies
having the lowest concentrations of chlorofonu, 12 obtain their
water from the Great Lakes, 8 from deep wells and only 5 from
surface sources.
b. There is a correlation between concentrations of chloroform, bromo-
dichloromethane, dibromochloromethane, and brxnofonn in the
finished water. It appears they result from :hlorination of precursors
in'the raw water. Since there is no pattern to their occurrence,
-------
II. SUMMARY OF RESULTS AND CONCLUSIONS
1. Volatile Organic Compounds
Table I is a summary of the analytical results.
_v .TABLED
_ SUMMARY.OF.ANALmCALJlESULTS (VOLATILE ORGANICS)
. ml croqraras_oer. liter -
Chemical
Formula & Name
C11CL3 -
Chloroform
CHBrO.2 - Bromodi-
chloromethane
CHBr2Cl - Dibro-
nochlorome thane
CHBf3 - Bromoform
CC14 - Carbon
Tetrachloride
CH2C12 - Methyl ene
chloride
C2H4C12 -1,2-
Dichloroethane
X of Samples
Giving Positive
Results
Finished
Water
95
78
60
14
34*
a
13
Raw
Water
27
5
2
0
lo
1
14
Mem
Concentration
(ug/1)
Finished
Water
20 pg/1
6 yg/1
1 pg/1
<1 yg/1
*2 yg/1
<1 yg/1
<1 yg/1
Raw
Water
<1.0
-------
TABLE II
ANALYTICAL RESULTS CYOLATILE ORGANICS)
Cmlcrogra^s per liter)
Raw F » Finished
City
SURFACE SOURCE
Cairo, 111.
Carlyle, 111.
Chicago, 111.'
Chester, 111.
Danville, 111.
Fa1rf1eld, 111.
Kankakee, 111.
Mt. Carmel, 111.
Newton, 111.
Quincy, 111.
R;,ck Island, 111.
-oyalton, 111.
, : reator, 111.
i Bedford, Ind.
Bloomlngton,, Ind.
Evansvllle, Ind.
Fort Wayne, Ind.
Gary, Ind.
Uaranond, Ind.
Indianapolis, Ind.
Kokorao, Ind.
' -fayette, Ind.
CMC 13 ~
R F
2
<1
<1
5
6
10
<1
<1
<1
<1
94
«
<]
5
<1
<1
4
<1
-<1
<1
14
48
7
182|
16
47
52
52
4
58
79
68
35
84
19
29
29
7
4
19
9 I 30
i
5
BPCHL12
R F
<1
<1
<1
<1
<1
3
<1
<1
<1
<1
11
11
20
3.4
17
6
16
10
15
5
13
8.3
<1 29
t
<]
-------
TABLE II
(Cont'd)
City
CHC13 BrCHCl2
R F R F
WACE SOURCE Ccontinued) l
Lbgansport, Ind.
Michigan City, Ind.
Mt. Vernon, Ind.
Muncle, Ind.
New Albany, Ind.
<1 , 7 | <1 1.2
j
<1 j 5 <1 4
i ;
i ;
<1 18 jlii
IMenorr.ii**, «-ch. | <1 | 42 • * * i i ' '
1 ! i ' >
1 | ! i i l 1 1
,'Wyandctte. **'ch. ! <1 14 <1 7 : <1 ' 1 1 <1 • 0.4 , <1
' ' : i 1 i
2.1 <1 <1 <1 !<2
i 1 1
l
: • ! • . i
Breckenridce, ^inn. ! <1 128 <1 15
i i !
<1 '<0.5 : <1 <2 4 ; 12 <1 <1
i ' ' i ! !
<1
1
<3
i
i
Crookston, Minn. <1 7 <1 0.8! <1 <0.2 <1 :
-------
TABLE II
(Cont'd)
^ City
SURFACE SOURCE Cconti
Granite Fa 11s, Minn.
International Falls,
"Minneapolis, M1nn.
Oslo, "Minn.
St. Cloud, M1nn.
St. Paul, M1nn.
Berea, Ohio
Bowling Green, Ohio
Cincinnati , Ohio
Cleveland, Ohio
Columbus, Oh to
Defiance, Ohio
East Liverpool , Ohio
Fremont, Ohio
Piqua, Ohio
Portsmouth, Ohio
Toledo, Ohio
Warren, Ohio
Green Bay, Wise.
Kenosha, Wise.
Manltowoc, Wise.
Marinette, Wise.
Milwaukee, Wise.
caci3
R P
nued
S
<1
<1
3
<1
4
<1
-------
TABLE II
(Cont'd)
City
SURfACE SOURCE CCon'
l)shkosh, Wise.
Two Rivers, Wise.
GROUND WATER SOURCE
Galesburg, 111.
Peorla, 111.
Morocco, Ind.
South Bend, Ind.
Jackson, Mich.
Kalamazoo, M1ch.
Lansing, Mich.
Mt. Pleasant, Mich.
Waterford Township
Mich.
Mankato, Minn.
Richfield, Minn.
Willmar, Minn.
Black River ralls,
Wise.
Eau Claire, Wise.
Mean
Median
CHC
R
1nue
6
1
4
<1
<1
<1
i
<1
<1
C12
F
< .5
< .5
1
<0.5
<0.5
<0.5
<'
<1
<1
<0.5
<0.5
<0.5
<1
<0.5
«
7
<}
<]
']
i
C2H
R
<]
<]
<]
3
<1
<1
<1
<1
4
<1
<]
<1
<1
<1
<]
^
<}
<]
4^2,
F
<]
<]
<1
<1
<1
<1
3
<1
<2
<1
<]
<1
<0.5
<0.5
<2
3
<}
<1
-------
TABLE HI
VOLATILE ORGANIC COMPOUND CONCENTRATION RA"IOS
_^ (10 HIGHEST..CONCENTRATIONS)
mlcrograros per liter
Fremont, Ohio
Bessemer Township,
Fairmount, Minn.
Chester, 111.
Dundee, Mich.
Bowling Green,
Ohio
Warren, Ohio
Breckenridge,
Minn.
Piqua, Ohio ,.
Bedford, Ind.
CHC13
366
312
200
182
170
160
138
128
102
84
BrCHClz
18
4
31
17
26
27
19
15
10
12
Br2CHCl
1.4
0
0.7
1.1
2
5
0.8
0
0.7
0.8
CHBr3
0 '
0
c
c
(1
0
0
1)
D
0.8
Ave.
Std. Dev.
BrCHCl2
CHC13
4.9*
1.2*
15.
9.3
15.
17.
14.
12.
10.
14
13.3
2.6
BrpCMCl
BrCHCle
8
0
2
6
8
19
4
0
7
7
6.1
5.5
*excluded from calculation of average and standard deviation. If all data
In Table II are used, both ratio percentages and the scatter increase as
the measurements approach the detection limit
-------
tt do«$ not appear that carbon tetracMorlde, methylene chloride or
1,2-dlchloroethane are produced by a chemical reaction within the treat-
ment process,
c. Using only the more accurate data (higher concentrations can be measured
more accurately than lower concentrations) for those cities having over
100 ug/1 of chloroform In their finished water, the concentration ratio
percentages (see Table Til of BrCHCl2 to CHC13 range from 1.2X to 17%.
The range for the BrCHC^/BrgCHCl ratios 1s 0 to 19*. A careful examina-
tion of these ratios suggests that the concentration of BrCHCl2 will be
approdmately 13S that of CHCl^ and the concentration of B^CHCl will be
about 6X that of BrCHCl2- This relatively constant ratio Indicates a
common precursor or group of precursors of the halogenated pollutants.
Since the ratios described above are much higher than the ratio of
bromine to chlorine 1n the chlorine used to purify the raw waters, we
conclude that bromlnatlon is much faster than chlorination and that the
halogen 1s acting as an electrophile rather than a nucleophile during
the chemical reaction producing the subject pollutants. The ratios
for Fremont, Ohio; Bessemer Township, Michigan and certain other cities
do not follow this general pattern but have an excess of chloroform.
We suggest that a source of chloroform 1s 'operative that differs from
that of most cities studied. At first we suspected an industrial
discharge but that conclusion 1s inconsistent with a zero chloroform
concentration for the raw water. Therefore, these supplies Ttay contain
a particularly reactive precursor for chloroform. Additional analytical
data will be required to identify any such precursor, to establish whether
or not these measured values are common throughout the year, and
-------
to suggest a .method of rejpoyal. It 1s suggested that check samples
6e collected to fertfy results that truly represent these water supplies.
The concentrations of bromlnated compounds are Mch relative to the
concentrations of chlorinated compounds for some cities. If this
pattern 1s repeated 1n check samples, and should i:he bromlnated com-
pounds be discovered to be of significance, the concentration of bromine
In the chlorine used for purification should be reduced.
d. The use of carbon treatment 1s not effective as was practiced by the
water treatment plants during the time of this study. (See Table IV)
We suspect that most of those cities presently us'ng carbon have chosen
to do so to reduce taste and odor problems and that the carbon 1s much
wore effective 1n removing those compounds causing the water to have
a taste and odor than 1t 1s In removing the halogonated methanes or
other organic compounds that react to form chloroform.
Table IV summarizes water supply systems Information. Data 1s reported as
It was obtained on field sheets at the time of sample collection. It can be noted
from this table that 1n addition to the characteristics of t!ie raw water, chloro-
form production also depends upon the amount of chlorine applied. Another Impor-
tant factor is the time of contact. For this study contact :ime must be considered
to be the entire elapsed time from chlorine application until sample analysis
0-5 days). Recent experiments with aliquots of southern Lace Michigan water that
were-treated with 2 r.g/1 of chlorine have shown chloroform production to be cut in
half when the allquots were again treated 1n one hour to remove all remaining
chlorine. Chlorine was allowed to react a number of days in the aliquots where
1t was not removed after one hour.
2. Linear Regressions
Figures I, II, III, and IV show the linear regression equations and asso-
ciated F ratios calculated from the measurements for chlcrofsr-i, bromodichl3rorr,ethane,
10
-------
d1bjrojDoch.lorojDettiane, and total dhJorlne dosage 1n rlyer water systems. Since
the F value at tRe 0,01 probability point ts 7, the null hypothesis of no rela-
tionship Is rejected and 1t 1s concluded that significant correlation does exist
^between the parameters plotted on Figures I, II, III, and IV.
Further research should be directed to determining the rates of reactions
of the parameters analyzed 1n this study with particular attention to the source
of raw water used 1n treatment.
-------
TABLE IV
HATER SUPPLY SYSTEM INFORMATION
1
City
j SURFACE SOURCE
;Ca1ro, 111 I
Carlyle, 111.
Chicago, 111.
Chester, 111.
Danville. 111.
Falrfleld, 111.
Kankakee, 111.
Mt. Carmel, 111.
Newton, 111.
Quincy, 111.
Rock Island, 111.
Royalton, 111.
Streater, 111.
Bedford, Ind.
Bloomington, Ind.
Evansvllle, Ind.
Fort Wayne, Ind.
Gary-Hcbart, Ind.
Hanmond, Ind.
Indianapolis, Ind.
-l.Kokomo, Ind.
1
CHC13
fua/1)
H
48
7
182
16
Source
Ohio River
Kaskaskla River
Lake Michigan
Mississippi R
Verm1ll1on R
47 [Little Uabash
52
52
4
58
79
68
35
84
Kankakee River
Uabash River
Deep Wells
Mississippi R
Ussissippi R
B1g Muddy River
Vermlll Ion River
ftiHe River
19 Monroe River
1
29
29
7
4
19
30
)h1o River
!t. Joseph River
Lake Michigan
Lake Michigan
Ihlte River
Mldcat Creek
Raw
Water
Charac-
eHstlcs
M/I
M/I
I
M/I
M/I
M/I-A
*
Activated
Carbon
Powdered
None
Powdered
None
None
None
A JAnthrccHe
•I Co«il
M/I . INone
Clear INone
M/I (Powdered
M/I
M/I
A/ 1
A
i
'owdered
tone
'owdered
tone
A None
1
M/I 1 *
M/I
I
I
M/I
f
lone
Powdered
Powdered
None
Clg Oose ^
(ppm)/
Detention
Time (hr)
Prior to
Sample
're- Post-
7,.0/6
7.3/7
1.2 j).l
7.2/ 2.4/
4 1
1.2/2
6.2/~2.5/
6.5 3.5
l.O/ 1.0
2.5
7. 1/ 4.0 /
29 21
1.7/37
4-20/ 1-3/
4 1.5
8-12/24
3.4/7
3.3/4
4.9/5
2.8/7
3.15/6
1.4/8 0.4/2
1.7/10
7.8/6
Powdered JB.4/2 2.2
i 1
Population
7,700
7.200
7.90C
50 ,.000
10,100
60,000
11 ,500
4,900
50,000
i
52,000
3,300
20,000
17,000
50,000
*
200 ,000
200,000
•127.CCO
700 ,000
53,300
12
-------
TABLE IV
(Continued}
: C1tv
.afayette, Ind.
Michigan City, Ind.
Mt. Vernon, Ind.
Muncle, Ind.
New Albany, Ind.
Terre Haute, Ind.
Whiting, Ind.
Logansport, Ind.
Bay City, Mich.
Bessemer Township,
Mich.
Cadillac, Mich.
Detroit, Mich.
Dundee, Mich.
Grand Rapids, Mich.
Menominee, Mich..
Mt. Clemens, Mich.
Sault St. Marie, Mich.
Wyandotte, Mich.
Breckenridge, Minn.
Crookston, Minn.
CHC13
(uq/1)
5
5
18
1
Source jt
1
Raw
Water
Charac-
Deep Wells I Clear
Lake Michigan 1
Ohio River
31 White River
41 I0h1o River
5
<>
7
17
312
47
5
170
24
42
10
27
14
128
7
Deep Wells
Lake Michigan
Eel River
Saginaw Bay
Black Rfver
Deep Wells
Detroit River
River Ra"1s1n
Lake Michigan
Lake Michigan
Lake St. Clair .
St. Mary's Rfver
Detroit River
Otter Tail Rfver
Red Lake River
I
M/I
M/I
M/I
Clear
Activated
Carbon
None
Powdered
Cl£ Oose i
(ppm)/
Detention
Time (hr)
Prior to
Sample
5re- Post-
.75/0.1
.9/ 0.3/7
19
1.5/6
Anthracite
Coal
None
Powdered
I (Powdered
A (None
I 1 Powdered
C Powdered
Clear SNone
M/I [Powdered
M/I [powdered
Clear
M/C
M/I
Clear
[None
None
Carbon
Filters
Hone
M/I Powdered
i
i
C
Clear
'tone
^one
4.5/3
3.9/9
10'5V'§{l
3.8/8+Ozone
2.0/6 1.5/2
3.2/ 0.03
2.4
5.31/0.
4.5/0.1
1.3/3 0.2/1
9/4
2.0/4
3.1/24
4.4/8 1
1.7/0.1
3.3/3
5.0/24
Population
50,000
40,000
7,000
87,000
41 ,000
78,000
7,054
19,000
75,000
Uooo
9,500
4,000,000
2,500
216,000
11,000
50,000
17,000
43,000
4,300
i
1.6/8 [ 9,:CO •
t ,
13
-------
TABLE IV
(Continued)
! C1tv
'Duluth, M1nn.
East Grand Forks,
Minn.
Fall-mount, M1nn.
Granite Falls.Mlnn.
International Falls
Minn.
Minneapolis, Minn.
Oslo, Minn.
St. Cloud, Minn
St. Paul , Minn.
Berea, Ohio
Bowling Green, Ohio
Cincinnati, Ohio
Cleveland, Ohio
Columbus, Ohio
Defiance, Ohio
East Liverpool, Ohi
Fremont, Ohio
P1qua, Ohio
Portsmouth,. Ohio
Toledo, Ohio
CHC13
UQ/1)
26
22
200
5
26
8
79
37
82
60
160
127
10
51
14
5
366
102
25
62
I
Source
Lake Superior
Red Lake River
Budd Lake
Minnesota River
Rainy River
Mississippi R
Red River
Mississippi R
Mississippi R
Rock River -
Coe Lake
Maumee River
Ohio River
Lake Erie
Scioto River
Maumee River
Ohio River
Sandusky Rtver
Swift Run River
Ohio River
Lake Erie
Raw
Water
Charac-
teristics
Clear
A
C
M/A
C
M/I
CCE
M/I
M/I
A
A/ 1
M/I
Clear
M/I
M/A
M/I
A
M/I
M/I
M/I
Activated
Carbon
None
None
None
None
None
Powdered
None
Powdered
Powdered
Powdered
Powdered
None
Powdered
Powdered
Carbon
Filtur
Powdered
(PPm)/
Detention
Time (hr)
Prior to
Sample
re- Post-
1.3/1
12.0/24
10. O/ 3.0/
6. 8
3.5/16
0.7/3
2.9/ 0.36/
19 12
1.2/12
1.3/4
7.0/12
3.65/1
4.5/6
3.3/6
4.3/4 4.3A
l.O/ 3.0/
1 0.5
2.3/7
4/5 3/2
1.39/1
Population
100,000
8,000
11,000
3,500
621 ,000
500
45,000
402,000
2.3,000
21 ,000
260,000
17,000
30,000
21 ,000
22,000
455,000
14
-------
TABLE IV
(Continued)
i C1tv
i
Warren, Ohio
Green Bay, Wise.
Kenosha, Wise.
flanltowoc, Wise.
Marinette, Wise.
Milwaukee, Wise.
Oshkosh, Wise.
Two Rivers, Wise.
GROUND WATER SOURCE
Galesburg, 111.
Peoria, 111.
Morocco, Ind.
South Bend, Ind.
Jackson, Mich.
Kalamazoo, Mich.
Lansing, M1ch.
Mt. Pleasant, Mich.
Waterford Township,
Mich.
i Mankato, Minn.
!
CHC13
(UQ/1 )
138
9
3
14
53
2
55
9
30
2
12
11
• <1
4
10
11
<1
10
i
Source
Raw
Water
Charac-
eHstlcs
Mosquito River
Lake Michigan
Lake Michigan
Lake Michigan
Green Bay
Lake Michigan
Lake Wlnnebago
Lake Michigan
Ranney Well
San Koty Wells
Deep Wells
Deep Wells
Deep Wells
Deep Wells
Deep Wells
9anny Wells
Deep Wells '
Deep Wells
T/0
Clear
Clear
Clear
M/I
»
Clear
CCE
Clear
Clear
Clear
Clear
Clear
Clear
Clear
Clear
Clear
Clear
Clear
i
Activated
Carbon
Powdered
Powdered
Powdered
None
Granular
Filter
None
Powdered
None
None
None
None
None
None
None
None
None
None
lone
tig Dose ""
(ppm)/
Detention
Time (hr)
Prior to
Sample
^re- Post-
5.0/ 0.5/
6 ' 0.1
0.94 .35/3
1.4/10
1.5/ 0.8/
6 4
1.2 0.8
2.39/ .84/
1.40£ .04£
1.4/24
1.59Z 1.71
1.33/0.2
2.3/1
4.5/10
0.75/0.1
2.5/27
2.5 2.3
2.0/3
Population
80,000
90,000
78,000
34,000
12,500
717,000
53,000
13,500
38,000
155,000
1,200
125,000
52,000
140,000
j
20,500 !
I
48,000 !
i i
3.5/5 | 35,000 I
i '.
$
-------
TABLE IV
(Continued)
C1tv
: Richfield, M1nn.
HWmar, M1nn.
Black River Falls,
Wise.
Eau Claire, H1sc.
M Municipal c
A Agriculture
I Industrial <
C- Color-produ<
T/0 Taste and o<
CCE Carbon chloi
1
CHC13
(ua/1 )
<1
2
6
50
fluents
runoff
iffluent
In* con
or*pro<
of orm t
Source
Deep Halls
Deep Hells
Hells
Deep Hells
affect the raw
j affects the raw
s affect the raw
>ounds.
icing compounds.
(tracts have bee
Raw 1
Hater
Charac-
*r1 sties
Clear
Clear
Clear
Clear
rater sour
water soi
water soi
detectec
.
Activated
Carbon
None
None
None
None
:e.
xe.
•ce.
»
CL Dose '
Ippm)/
Detention
Time (hr)
Prior to
Sample
Jre- Post-
1.0^1.5^
3.5/48
0.46/3
Population
47,500
15,000
3,200
47,000
t
1
ISA
-------
400
. MtoUKC 1
Plot of CHC13 vs. BrCHClaJn ug/1
Region V Organic Survey
300 r «•
/I
200r
100-
-------
705
60;
50-
Plot of 3rCHCl2 vs. Br2CHCl in ug/1
Itegfon V Organic Survey
BrCHCl2
ug/1
40
30
20
10
Br2CHCl
ug/1
17
-------
jg/l
4001
300..
FIGURE III
Plot of CHC1 (ug/1) vs. Total C12 Dosage (mg/1) for
ATI Water Treatment Facilities
200-1
100
Total C'9 Dosage
TC/1
13
-------
400 T
FIGURE IV
Plot of CHC1, (ug/1) vs. Total C12 Dosage
-------
Anvnonla Expressed as
mg Nitrogen per Liter
X "-•-
II II
o n
c c
•0 XJ
•o -a
<9
— • — 'OOOOOOOOOOOOOOOOOOO
1 I I ! 1 N I I ' M M ! i
X -». *^^ -^ X X X X X — . X
X
X XX X X
X X
X X
^•^ X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
—1
S3
m
z
0
1 cyi
I .
i
— (
0
z
i
§
s
>
z
—1
|2
C3
5
—1
pr
-------
3. Pesticides. PCB's and Phthalates
Table V 1s a listing of those cities where pesticides, PCB's and/or
phthalates were Identified. The other samples analyzed did not contain a detect-
able amount of any of the fifty pesticides Included 1n the survey. All analytical
results are Included 1n the appendix and from these we conclude that:
a. A large majority of the samples do not contain these types of compounds
1n concentration! that can be measured with the procedures used for
this study.
b. For this class of compounds, the most commonly found are dlethylhexyl-
phthalate, dleldrfn. DOT, treflan, aldHn and hexochlorobenzene. The
concentrations of all pesticide type compounds Identified to date
are low. The highest concentrations found were 63 nanograms per
liter (ng/1) for DOT, 11 ng/1 for dieldrln. 17 ug/1 for dlethyl-
hexlphthalate and 50 ng/1 for treflan. All positive results are
given In Table V.
c. Concentrations of PCB's in tnose samples from Lake Michigan and the
Ohio River were too low to detect.
4. Non-Volatile Organic Compounds
Finished water was passed through small carbon filters used for sample
collection at Mt. Vernon, Evansville and Indianapolis, Indiana. Raw water samples
were also collected at Mt. Vernon. Presently the water from Whiting, Indiana
and Mt. Carmel, Illinois are being sampled for carbon filter and extraction
analyses. All of the exposed filters have been extracted with hexane, chloroform
and methanol. Each of the extracts has been separated *n acidic, basic and
neutral fractions giving a total of nine concentrates per *
-------
<••*
I
a
2
s
•>
§
i
£
f
co
IV
i
3T
e Detect
%
r—
M
c
ft
*•
a
--
l&alesburg, in. i
1
*
n
*
^ X
s
s
-
1
ICarlyle. 111. 1
OD
-
•|
II
Ot
-
«tf
o
-J
t
1
s
*
JL
»
*
-
-«j
!
=
*
-i
!
1
*»
4
*
tan
t
t-J
i
I
I
1
*
••
a
*
1 Morocco, Ind. l
1 1
o
1
22
a
n
a
to
a
r
$
m
s
— i
ILogansport, Ind. 1
1
O*
J
1 Lafayette. Ind. l
] 1
-s
s
\
i
I
Ul
f\>
„
1
-
1
I
I
Jk
-
S
I
V*
j
— !
•v
r^-
S
X
^
I
Jk —
i
i
i
J
CD
1
O
3.
i
9^ OO
o
Diethylhexyl
Phthalate
1
Dieldrin
Tref Ian
3 Crf C3
M n
fl> 3"
(^ O
O
Q.
1
O
3
1—
Q.
3
O
ro r\j
^-00
3
V
JH»?|>-«OIHJ
eiuiit'j
a- S"
m
ICIDES - PO
oncentratio
LYCIILORIN
n is nana
•-3 ;>
Oi r-l
3 3
O —
-I X
n
— ' Z
O l/>
n
3
33 >
33 —1
-
-
-------
M
S
2
i
"n x
0»
1
1
Minneapolis,
Minn.
"n re
o*
i
i
Fafnnont, Hi
§
•
*^ X
__
§
i
i
i
a •
Ol
•n
O
•*
"n x
— *IN>
§§
0»
,
1
t
(
1
!
C
a-
a"
*
"t 3C
(
1
y 'uoisaooji
a
p
~n x
.
O
8
0«
1
1
,
,
Uyandotte, M
o
a-
*
^1 30
^^
§
j
i
i
i
i
rTc
Ul
i
JT
i
X 3
T
•>
Ml
..
"
O
I/I
§
36
0
2P
"**
Ul
3
«
x
JT
*
.
I
1
r*
O
*
X
o
ar
I
,
!
1
•>
a
o
x
n
ar
,
|
i
1
(
Bessewr Twp
Mich.
•
_
i
a
o>
X
n
3
n
3-
•^ — -
II
1
1
'
I
r
3C
*— <
I
MM
'
£
;
Streator, 11
CU
r
J,
Peoria, ill.
O
a*
~
_*
01 =
m r\9
0 C3
i
i
n
v;
0
3T .D
r* (-»
0. X
fO x
O
o
—4
0
rti"
S
a
— ^
(O
—
3
-^
3- -3 =
o x rj
M O
O 3"
fO O
-1
O
.
.-s
1 -1
1 —
3
<
X
O
f—
! i.
5^
n
i r\j PSJ
i yt i i
•^- C7 ^3
T 1.1Z
fc/» "^
O —
; "5
o
]~3
—
-^
i is- n
: 3"!
' -I 3
• a. a>
^
.-o
13
m
0 iC
a o
n —
(» 0
a *"n
c^ i/^
Bl 1
— • "^
o o
3 ^
<-.. 0
I/I «
3 0
ii XI
O 3
« 5
. ^^
a. .—
'3 =3
•C 2
i* =
^^ ^
— -<
<-r r-
T
i
2
—
"Zl
: '' ^
: 33 r^?
Oi ty^
I5
-n
.1
-n
j ~^
•o"
' S.
k|
i
I
"1
i
!
-------
o
r>
a>
tt
1
O
in
— *
^
v<
4k
""^
••*
— •
*-
O?
i
I
1
1
i
•*•
<
T
*n 3r
i
j
1
** '
1
IT
8
K
n
*
^1 X
i
j
i
i
^ -
n j
™
1
_
1
i
«•
Kenosha. Wise. 1
ii
i
«_• _<
c o
V» ffl
O ro
• a
1
1
I
t
I
24
o
1
§
o"
i
j
i
•
i
(
t
Portsmouth, '
Ohio 1
1
i
t
I
East Liverpool »
Ohio 1
i
o
j
]
]
1
1
1
(
i
'
Colunbus, Ohio »
1
i
i
i
i
•
C level and .Ohio >
i§
;
i
i
Cincinnati *
Ohio f
<••*
•XJ r\J
(-»
1
;
C3
fB
T
§
o"
ii
j
t
i
,
:
r»
8
a.
X
i
NJ
00
o*
(
1
1
'
j
<.U
n
n
a.
3E
5"
§
~~-
rt
O
T3 —
ar >e
r» r>
?>?
5£
« X
v<
I
s
0)
a.
•n
3
—i
i
n
a>
3
^.
o- o" zi
,t> x >->
3 * C3
M n
ro 3-
3 — •
n o
T
0
>
£L
n
="
o;
o
3
r-
3"
3L
O
3
ro
IN> IN}
• «
<9 ^k ^h
? ? -5
-i _. —
J ~
o
•3
n
— ^~*
O 3
aj
3
f3
^ _
OJ O
— —
~ .
*
•o
^1
o — <
§ 0
n —
n o
3 m
-«
a> i
f^
— • -3
O O
3 1—
^
— n
«/> r:
20
Z)
3 —
£ §
™ 1 ~H
O -r.
**
"?,
1 — ~
f"l
— z
r* i —
-1
t
•Q
«C
~
«'*;
5"^
*
.^
t
3
—
i
-------
Mt. Vernon Evansvll le
tr1-n-buty1 phosphate trl-n-butyl phosphate
butylphthalate butylphthalate
dloctyl phthal ate dloctyl adipatij
trlmethyl benzene methyl palmlnate
toluene farnesol-
n-octane and other homologs n-octane and other homologs
xylene xylene
ethyl benzene dlphenylether
methyl cyclohexane
Many more of these high boiling compounds are present, but further purification
(we are attempting to accomplish the preparation by high pressure liquid chroma-
tography techniques) will be necessary to Identify them. He have not yet
attempted to analyze the extracts for any low boiling compounds except for the
bis-2-chloroisopropyl and b1s-2-chloroethyl ethers. Neither of these compounds
gave a gas chromatographlc peak above the detection limit and therefore they
are not present to the extent they have been In Evansville samples analyzed
previously. In general, the current water samples from Evansville contain fewer
organic compounds than similar samples analyzed by the Region V laboratory and
Indiana State University-Evansville over the previous four years. This reduc-
tion in pollution is an expected product of the National Pallutant Discharge
Elimination System program and should reduce concern for E^ansville water.
5. Inorganic Parameters
All samples were analyzed for the following fourteen metals: silver,
arsenic, calcium, cadmium, chromium, copper, iron, potassijm, magnesium, man-
ganese, sodium, lead, selenium, and zinc. Concentrations (49 ug/1) of arsenic
were found at Kokomo, Indiana and prompted us to resample that plant. It was
subsequently found that Kokomo was using Wildcat Creek and severa"! deeo wells
as sources. The water from Wildcat Creek does not contain 3 measurable arcun:
of arsenic but watar from two of the 15 ieso wells ccntained up to 2CCO jg/1.
This is aooarently a very localized proc'em af'ect^ng cnly * -?w ^slls. .^f
treatment and slerc'ng the Kokcrrc *ater /.arks has bee" »bla to ^.a;-ta-r
-------
safe concentrations of arsenic 1n the finished drinking water. It is recommended
however that Kokomo analyze for the presence and quantity of arsenic in the
finished water at least once per month during periods when Wells 4* or *7 are
1n use.
The arithmetic mean values for all finished water parameter concentrations
are less than drinking water standards with the exception of phenolics (Table VI i
VII). Since the detection limit of the analytical method used to measure phenol
concentrations 1s greater than the recommended levels, we do not interpret the
measured mean phenolic concentration to be significantly higher than the recom-
mended values.
Table VIII 1s an abbreviated frequency distribution of the finished water
(8)
data and shows that the Water Quality Criteria recommendations were occasionally
exceeded. In addition, the table shows the mean value for each parameter is
generally larger than the median value which Indicates the data distribution
1s log normal rather than gaussian. This point 1s illustrated in Figure 1.
It can be concluded from the data in Table IX that a high chemical oxygen
demand (COO) 1n the raw water is necessary for a high chloroforn concentration
to result 1n the finished water. However, the converse is not always true as
some supplies had raw water COD'S of 30 mg/1 or higher but CHCU concentrations
of 40 ug/1 or less. These data suggests that chloroform results from a single
or small group of compounds. They also support the concept that we chloroform
precursor reduces potassium dichromate and that those supplies having a lew COD
need not be tested for chloroform.
26
-------
TABLE VI
DRINKING MATER STANDARDS FOR INORGANK PARAMETERS
PARAMETER
Ammonia - N
Alkalinity
Chloride
Chemical
Oxygen Demand
Cyanide
Dissolved
Solids
Fluoride
Mercury
Nitrate - N
Nitrite - N
pH
Phenol ics
Silica
Specific Cond.
Sulfate
Suspended Solid
Total Phosphoru
Total Kjeldahl
Nitrogen - N
UBLIC HEALTH
SERVICE (7)
250
0.01, 0.2b
500
0.8-1. 7C
0.0002
10
0.001
250
si
i
WATER QUALITY
CRITERIA (8)
0.5
250
0.2
1.4-2.4C
10
1
5-9
0.001
250
ENVIRONMENTAL PROTECTION
AGENCY (6)
0.2
1.4-2.4Cl
0.0002
10
a. Values expressed in mg/1 except pH units.
b. 0.01 mg/1 acceptable but 0.2 rcg/1 constitutes grounds for rejection
of the supply.
c. Exact limits are temperature dependant. See ref. 5-9.
-------
TABLE VII
SUMMARY OF INORGANIC PARAMETER DRINKING WATER RESULTS.8
RAW WATER
FINISHED WATER
PARAMETER
Ammonia - N
Alkalinity - CaCOa
Chloride
COO
Cyanide
Dissolved Solids
Fluoride
Mercury
Nitrate & Nitrite - N
Nitrite - N
pH, units
Phenol 1cs
S111ca
Specific Conductance,^
Sulfate
Suspended Solids
Total Phosphorus - P
Total Kjeldahl - N
Hardness - CaC03b
' MEAN
0.154
141
18
15
0.004
267
0.19
0.0001
1.44
0.017
7.6
0,003
7.9
426
44
33
0.11
0.68
192
STD. OEV.
0.114
83
17
12
0.003
142
0.18
0.0001
2.02
0.024
0.3
'0.002
6.4
202
39
64
0.12
0.57
105
»
MEAN
0.154
106
21
7
0.004
254-
0.87
0.0001
1.39
0.005
7.9
0.003
7.0
406
56
3
0.10
0.39
156
STO. DEV.
0.356
78
21
5
0.002
129
0.37
O.onoi
1.91
0.004
0.8
• o.nm
5.1
198
44
5
0.18
0.44
90
a. Expressed as mg/1, except pH (units) and specific conductance
(micro Siemens, us).
b. Obtained from metals section report.
28
-------
TABLE VIII
FREQUENCY DISTRIBUTIONS OF THE FINISHES WATER RESULTS FOR INORGANIC PARAMETERS
Parameter
Ammonia - N
Alkalinity - CaC03
Chloride
COO
Cyanide
Dissolved Solids
Fluoride
Mercury
Nitrate & N1tr1te-N
Nitrite - N
pH, units
Phenol 1cs
Silica
Specific Conductance
us
Sulfate
Suspended Solids
Total Phosphorus - P
Total Kjeldahl
Nitrogen - N
Hardness - CaCOs
Percent of Samples Less
Than Concentrations Shown
50
0.05
90
20
6
0.003
220
1.0
0.0001
<0.5
<0.005
8.0
£0.003
7
360
48
<2
<0.02
0.25
130
75
0.15
140
24
8
0.004
300
1.2
0.0002
2.0
4). 005
8.5
<0.003
9
500
76
3
0.10
0.50
180
90
0.4
230
36
12
0.006
420
1.2
0.0003
4.5
0.005
9.5
0.005
16
680
104
5
0.28
0.75
290
95
0.65
290
40
14
0.008
520
1.4
0.0003
5.5
0.005
9.5
0.006
18
860
152
7
0.4n
0.85
320
100
2.61
390
179
28
o.oi;>
700
2.2
0.000'
8.0
0.025
10.1
0.003
22
925
279
42
0.67
3.20
430
No. Exceeding
WQC Rec.
5
0
0
0
0
0
0
9
6
' 1
a. Expressed as mg/1 except pH (units) and specific corductance (ir.-cro Siemens,
b. Phenolics not considered due to method.
29
-------
TABLE IX
PERCENTAGE OF RAW WATER COD VALUES EXCEEDING THE
MEAN OF 15 mq/1 VERSUS CHCli CONCENTRATIONS
Number of Samples CHCl3(ug/l) tCOD 15 mg/1
40 20 20
12 40 42
13 60 77
4 80 75
2 100 100
1 120 100
3 140 100
1 160 100
1 180 100
4 180 100
Numberous drinking water plants add chemicals other than chlorine to the
water during the treatment process. Two commonly used chemicals are ammonia
and polyphosphate. Fluoride is also added to many supplies.
Twenty-one (21) supplies added arrmonia or ammonium ion to maintain
acceptable residual chlorine concentrations as chloramines. Nineteen (19) of
these supplies had ammonia - N concentrations above the median of 0.05 mg/1 for
finished water. The average increase of arrcnonia - N in finished versus raw
water was 0.195 mg/1 for these supplies compared to the overall average of
zero (0) increase for all supplies (Table X)
Thirteen (13) supplies added polyphospnate. Twelve (12) of these supplies
«ere 3>x ve the T.ecian finished water total ^-.G^nc-us concentration. Also the
overall average change 1n phosphorus fron ra* to ^livshed water was negative
0.01 mg/1. Howeve^, these 13 supplies averaged an increase of 0.168 mg/1.
TABLE X
ADDITIONS OF AWiQNlA AND PHOSPHORUS TO FINISHED VJATER
SUPPLY MEAN PHOSPHORUS, mg/i MEAN AMKOMIA - N.
Raw Finished Charge 3aw Flnisned Change
All supplies 0.11 0.10 O.C1 0.154 0.154 0
Added Ammonia 0/55 0.350 0.195
Added Phosphorus 0.125 0.293
30
-------
Most supplies add fluoride. This 1s evident from the median fluoride
concentration of 1.0 mg/1. However, 9 supplies apparently do not add fluoride.
Nine (9) supplies had pH values between 9.0 and 10.1. Of these supplies,
six (6) also had CHC13 concentrations greater than 50 ug/1. No additional rela-
tionships were found.
Suspended solids removal was 90 percent based on the mean raw and finished
water values. The highest suspended solids value for a finished water was 42 mg/1,
the second high was 13 mg/1, and all other values were 8 mg/1 or less. No positive
correlation exists between suspended solids and the presence of halogenated organic
compounds. However, COO removal averaged only 50 percent indicating that signi-
ficant amounts of organic materials remained In the filtered water. This sug-
gests that the turbidity standard (suspended solids is the cause of turbidity)
may not be sufficient to protect water supplies from halogenated organic compounds.
6. Economic Considerations
Table XI gives estimates of resources expended tc complete this survey.
All dollar estimates are based on the assumption that total expenses, including
all overhead, costs $40,000 per position and a year contains 260 working days.
III. SIGNIFICANCE
It 1s not surprising that trace amounts of various organic chemicals can
be detected in drinking water. With the sensitivity available in the gas
chromatograph/mass spectrometer-computer equipment it is probable that many
such compounds can be found in almost any facet of our environment that one
chooses to look. Absolute purity 1s only a theoretical term and is not attain-
able in drinking water.
Concentrations that are above a normal background and that do pose a
significant health risk should of course be reduced. There are currently not
enough data to fully understand either the normal background level or the health
significance of the organic compounds included in this study. However, with
31
-------
TABLE XT
ESTIMATED COST DATA FOR THE REGION V SURVEY
1. Number of Cities Sampled 83
2. Number of Samples collected Including duplicates for
Quality Assurance (QA) purposes 210
3. Number of Bottles collected 2,940
4. Number of Analyses per Sample • 94
5. Total Number of Analyses performed * 19,740
6. Total Number of Analyses reported 15,604
7. Total Number of QA measurements made 4,136
Resources Required
1.
2.
3.
4.
1.
2.
3.
1.
2.
3.
4.
Labor 3 $40,000/Yr. including Overhead Man-Days
Completion of Study Plan by Project Officers
and Administration Officials 6
Sample collection - One man day for preparation 30
and four man days for collection per State
Laboratory Analysis - One fourth of the total 289
CRL staff of 33 positions for 7 weeks
Preparation, typing and editing of final report 15
Supplies
Sampling bottles, caps, teflon liners, etc.
Organic solvents
Miscellaneous supplies
Cost Per Unit Total
Cost per City
Cost per Sample Including QA
Cost per Analysis " "
Cost per Reported Concentration Value
Cost
$ 920.00
4,620.00
44,400.00
2, 3CO.no
400.00
2,600.00
1,000.00
$ 56,240.00
$ 673.00
$ 263.00
J 2.85
$ 3.60
Does not include non-volatile and carbon filter analyses although
these are Included 1n the estimation of recuired resources.
32
-------
perhaps the' exception of chloroform, concentrations of or^anics analyzed in
these drinking waters should not be considered atypical. It 1s not likely that
they will be found to present a significant risk to health. Exposures to these
same compounds from ambient levels 1n other aspects of our environment (smoke,
air, food, medicines, etc.) can be expected to be much greater than that from
drinking water.
Chloroform, 1t appears, 1s affected by chlorine application. Concentra-
tions of chloroform 1n water supplies with a high chlor1n»» demand may exceed
0.1 milligram per liter (mg/1). However, even at the highest concentration
found (0.366 mg/1), chloroform should not be considered to present an Imminent
risk to health. There 1s no evidence that chloroform causes tumors In workers,
and the allowed occupational exposure to chloroform in a I'- is over 100 times that
from drinking water with 0.5 mg of chloroform per liter.
The possibility must be recognized, however that traces of micropollutants
in drinking water may Indeed contribute to the total exposure of persons to
environmental factors that contribute to carcinomas. An ad hoc Study Group of
EPA's independent Science Advisory Board in their May 1, 1975 report on the
health significance of drinking water chemicals, concluded that 1'some health
risk exists." A portion of the Study Group's summary follows:
"Based upon recent, reasonably extensive, water quality data for
many U.S. water supplies and on extremely limited data from
experimental carcinogenesls studies, the Study Group concludes
that there may be some cancer risk associated with consumption
of chloroform in drinking water. The level of risk, estimated
from consideration of the worst case and for the expected
cancer site for chloroform (the liver) might be extrapolated
to account for up to 40$ of the observed liver career incidence
rate. A more reasonable assumption, based upon c-.rrent water
quality data which show much lower levels than the worst case in
the majority of U. S. drinking water supplies, wot Id place the
risk of hepatic cancer much lower and possibly nil. Further,
it is emphasized that both the experimental carcinogenicity data
and the mathematical and biological extrapolation principles jsed
to arrive at the upper estimate of risk are extremely tenuous.
Epidemiologic studies do not, thus far, support the conclusion
of an increased risk of liver cancer; a'though hypothesisfomulating
33
-------
studies 1n southern Louisiana suggest the possibility of an
association with contaminated water and overall high cancer
Incidence. Critical definitive tests of this hypothesis have
not been conducted. Although some other organic contaminants
contained 1n the charge to the Study Group have carcinogenic
potential, the cancer risk to man Is Judged to be minor because
of their low concentration and/or Infrequent occurrences 1n
drinking water."
IN SUMMARY; The study's findings do raise questions about the quality of
drinking water and there Is a need for a better definition of the health rela-
tionships between these substances and man. At this point, though, there 1s
no evidence to Justify quantum changes 1n current water treatment practices.
For example* EPA's statement from last November holds true . . . "the benefits
of continued use of chlorine for the disinfection of drinking water far out-
weigh the possible health risks from chlorine-derived organic compounds." While
trace organic* 1n drinking water are an Important problem which deserves Investi-
gation, the situation today 1s not a crisis to be met with fear and precipitous
action.
IV. RECOMMENDATIONS
1. When wells contaminated with arsenic are used 1n Kokomo, the drinking
water should be monitored at least monthly to be certain that 1t
consistently meets drinking water standards. Appropriate precautions
should be taken before drilling any new wells 1n the area.
2. Since our results are based on Individual grab samples collected at
what may not be normal conditions, the data may not reflect the long
term quality of any given supply. Therefore, the finished water of
those 31 supplies showing higher chloroform concentrations above
33 ug/1 should be re-analyred for the volatile organic compounds and
selected metal and other Inorganic parameters. In addition, a complete
organic compound analysis should be completed on as many of these water
supplies as possible.
34
-------
3. An effoft should be made to Identify the precursors) that react with
chlorine and bromine to produce the pollutants found 1n the finished
water samples. As a first step, raw waters shoul1 be analyzed com-
pletely and halogenatlon studies completed on potential precursors.
The best treatment for these pollutants may be removal of a precursor
rather than removal of the organic compounds founi 1n the finished
water supplies. Raw water samples should be takei and analyzed com-
pletely at those cities having the highest chloroform concentrations.
4. In addition to treatment methods Involving carbon and ozone, aeration
should be looked at for removing volatile organic compounds.
5. The relationship of COD (or TOC) and CHC13 concentrations should be
further Investigated to Include raw water source comparisons and
other parameter correlations such as pH to act as Indicators for
volatile organics.
V. SAMPLE COLLECTION. ANALYTICAL PROCEDURES AND QUALITY ASSURANCE
In general, all samples were collected, preserved and analyzed according
(3)
to recommended EPA procedures . In cases where official procedures have not
been recommended or approved, such as for the volatile organic and carbon filter
methods or where superior analytical methods have been developed as for the COD,
standard methods 1n current use 1n Region V were employed. All of these methods,
with corresponding quality assurance data that will permit the reader to estimate
the quality of data on a parameter or group of parameters basis are described
later 1n this section.
-------
1. Sampling Procedures
Fourteen bottles of water were collected at each dty. These
bottles were divided according to sample preservative as described
below. In all cases the bottles were filled completely to avoid an
a1r-Uqu1d Interface. Raw water samples were collected just prior to
chlorlnatlon. Finished water samples were collected several hours
after chlorlnatlon depending on plant flow.
Bottle ' For Preservative
a) four one liter glass two bottles for Ice
bottles w/teflon lined raw water organlcs
caps and two bottles for
finished water
organlcs
b) two 500 ml high raw and finished
density polyethylene water - metals HNCh
bottles,
c) two 250 ml polyethylene raw and finished
bottles water-nutrients H2S04
d) two 250 ml polyethylene raw and finished water
bottles cyanides NAOH
e) two 250 ml polyethylene raw and finished water CuS04/H3P04
bottles phenolics
f) two 250 ml polyethylene raw and finished 1ce
bottles water
(pH, specific conductance,
alkalinity, etc.)
Since these types of bottles had been in use in the Region for some
time ynd were known to be clean, they were not washed prior to sample
collection. However, to insure that results due to bottle contamination
or some other contamination were not reported, the normal set of reagent
36
-------
blanks (preservative and distilled water 1n a sampling bottle) were
prepared dally by each sampling team and analyzed as the samples were
analyzed. No contamination problems associated with sampling were
detected.
The maximum holding times for the organic parameters are
unknown. Therefore, all organic samples were refrigerated upon
collection and either extracted or analyzed as quickly as possible
after sample collection; usually within forty eight hours but no
later than five days after sample collection. A laboratory standard
containing the seven volatile organlcs of Interest v»as analyzed dally
during the study and remained stable for four weeks. Although chlor-
inated hydrocarbon pesticides are stable, other pesticides are known
to degrade with time so only minimum concentration values can be mea-
sured for these parameters.
All Inorganic parameters were analyzed within those holding
times recommended for approval by Region V to the Methods Development
and Quality Assurance Research Laboratory, National Environmental
Research Center, Cincinnati, (Appendix I).
2. Volatile Organics
a) Analytical Procedures.
The procedure described below is a modification of methods
described by Kleopfer ' for air studies and by Bellar and
(1 2)
Lichtenberg for volatile organics in water/ ' We have used
the experimental apparatus and organic trap described by Kleopfer,
the water sampling method of Bellar and Li tchtenberg and have
37
-------
developed our own gas chromatographlc analytical techniques.
Quality Assurance data given at the end of this section shows
the procedure to give accurate results within the defined
experimental'scatter.
Ten milliters of sample are transferred to a mlcroware
centrifuge tube with a 14/20 ground glass Joint from a com-
pletely filled glass sampling bottle. The centrifuge tube
1s then placed on the debubbler apparatus held 1n place by
two springs as shown 1n Figure VI.
FIGURE H
Nitrogen Gas Source
Flow Control & RoUmeter
P- Rubber Serum Cap
Teflon
Stopcock
Sample
Centrifuge Tube
Teflon Stopcock
/
/ Quick Disconnect
5" x k" Stainless Steel
Gauge Needle
38
-------
The needle of a trap that has been cleaned by being heated
to 135°C and flushed while hot with nitrogen 1s Inserted into
the rubber septum. The stopcocks are opened permitting nitrogen
to flow through the debubbler. sample water and into the trap
where the organic compounds are adsorbed on the surface of the
Tenax. A nitrogen flow rate (Purge) of 80 ml/min for 8 minutes
1s sufficient to quantitatively transfer those volatile organics
studied 1n this project. The trap 1s then removed and attached
to the gas chromatograph - desorptlon oven system as shown 1n
Figure YJI
FIGURE VII
Stopcock (witch -A*}
Quick Oilconnect
SUintus Steel H* Tubing
126 t*«fl« Needle
\ -1
Copper or ;- Co«*Kttvity Oet Ktor
now Control I Polyethylene) ' *- Ci* ChraMtOfrapi
totMetcr '__ tttmtard Liquid Injector
Source
• He*Um Unit (H««tmq T«pe
AroMtf 12M GUit '>.
The trap 1s placed 1n the desorptlon oven w1ti switch "A" (see
Figure 3) 1n the off position and left for 2 ninutes while
thermal equilibrium Is being established. The syringe needle
on the trap penetrates the GC Injection septum as the trap is
placed In the desorption oven. At the end of the 2 minute
period, switch "A" 1s opened and the sample Is carried into
39-
-------
the GC column where a standard chromatographic analysis 1s
completed, Quantitative data are obtained by comparing the
recorder response of standard solutions to the response of
unknowns. Operating conditions of the chromatograph and
detector are as foil cms: oven temperature - 30°C for 3 m1n.
and then raised to 200°C at a rate of 20°C/m1n; Injector
temperature - 200°C; detector oven temperature - 80n°C;
nitrogen carrier gas flow rate - 40 ml/m1n; detector reducing
gas (Hg) flow rate - 80 ml/m1n; desorptlon gas (^J flow
rate - 40 ml/m1n; column - 6' x 1/8" aluminum packed with
10% by weight FFAP on 60/80 Mesh Anakrom. A typical gas
chromatogram of a laboratory quality assurance control
standard is shown later.
b) 'Quality Assurance for Volatile Organics
Before any samples were analyzed for the presence of
halogenated volatile organics, extensive analytical quality
control data was collected to optimize the analytical con-
ditions and to determine the reproducibility of the method.
Table XII lists the. responses given by the seven halogenated
organics Included In this study as a function of purge time.
The purge gas flow rate was maintained at 80 ml/m1n during
investigation of the flow tine. Preliminary work indicated
that longer purging times were required if the purge rate is
lowered. The data summarized in TableXIT indicates that,
with a purging rate of 80 ml/min, a purge time of 8 min.
1s optimum for the seven compounds of interest.
40
-------
Table XIII summarizes the data obtained for a standard
mixture which was analyzed five different times (three
different traps were used to trap the volatiles). The
relative standard deviation is larger for methylene chloride
and carbon tetrachloride because of time limitations peak
heights Instead of peak areas were used for quantification
check. Since methylene chloride and carbon tetrachloride
give broader and more poorly resolved peaks than the other
compounds investigated, a larger amount of scatter was
observed when the peak height was used for quantification
check.
41
-------
TABLE XIP
Gas Chromatograph Detector
Response As A Function Of Purge Time
In Arbitrary Units
RESPONSES
Purging Time
4 m1n.
6 mln.
8 min.
10 min.
CH2C12
2370
2170
2370
2110
CC14
1090
1340
1150
880
CHC13
2240
2560
3260
2820
C2H2C12
5570
6140
9150
7740
C^BrCH
3970
4030
5500
4610
ClBr2CH
8000
8770
12030
9660
Br3CH
4350
5690
7870
7920
TABLE XIII
Reproducibility Of The Analytical Method
(Arbitrary Units Of Detector Response)
Compound
CH2C12
CC14
CHC13
C2H2Cl2
Cl2BrCH
C1Br2CH
Br3CH
Concentration
ug/i
49
59
55
54
73
*5
107
Run
11
2880
1860
2880
7360
4740
0050
6590
Run
12
2370
1150
3260
9150
5500
12030
7870
Run
13
2690
1470
3070
8060
5180
11140
7420
Run
#4
2110
770
3330
9280
4360
11340
78801
Run
15
2430
1380
3230
9730
6270
12540
7170
Average
2500
1320
3160
8720
5310
11520
7380
Relative
Std. Deviation
i
12*
30*
6S
112
nr.
10*
8%
-------
Analytical quality control employed during analysis consisted
of routinely: 1) analyzing blank traps, 2) analyzing standards, 3) con-
firming the highest concentrations (10%) qualitatively on the mass-
spectrometer and 4) collecting and analyzing 101 of the samples in
duplicate.
Blanks were analyzed at random throughout each day of the study.
A blank consisted of carrying out the complete analytical procedure
but leaving out the 10 ml of sample. Table X1VT summarizes the data
obtained for the blanks. It should be pointed out that the highest
blank values were obtained on two days when methylene chloride, carbon
tetrachloride and chloroform were being used as solvents in another
part of the laboratory and illustrates the sensitivity and extreme
care that must be used when performing these analyses. Figure VIII
shows the gas chromatogram of a typical blank.
Standards, made by dissolving approximately seven wl of a mix-
ture containing stoichiometric amounts of the seven halogenated organics
in 300 ml of water followed by diluting an aliquot of this to give a
final concentration in the 10 to 50 vg/1 range for each compound, were
analyzed at least three times a day (morning, noon and afternoon). The
average response factors were then used to calculate the concentration
of the samples. Fresh standards were made at least every 48 hours.
F1g .VIII also shows examples of chromatograms for a standard solution.
Even though the Coulson conductivity detector employed is
specific and warrants a high degree of confidence, over 10* of the
samples giving positive results were qualitatively confirmed using
gas chromatography - mass spectroscopy.
43
-------
FIGURE VUI
Gas Chromatogram of Volatile Organic Compounds
vt
*J
f»
c
•e
41
v*
I
ai
u
o
Concentrat
on
52. 48 41 64 76 95 (ug/1)
Glassware, Instrument and reagent blank
I
4
1
5
6 7
Minutes
1
8
1
9
1 1
10 11
-------
TALLE XIV
Summary of Results Obtained for All Reagent
Blanks Analyzed During the Study
j Range Fourc:
Compound j w2/l
CH2C12
CC14
CHC13
C2H2C12
Cl26rCH
C1Br2CH
Br3CH
0-3
0-5
0-7
< 1
< 0.5
< 0.5
< 0.5
Average
u
-------
As an overall quality control check, approximately 131 of the
cH1e$ were sampled 1n duplicate. The analytical results for the dupli-
cate samples are summarized 1n Table XV and defines for the reader
the precision of the total sample collection and analytical procedures
employed.
Fourteen samples were stored 1n a refrigerator after being
analyzed. A month later 1t was decided to re-analyze the samples.
The results are given 1n Table XVI.. Only the data for CHC13, and
CHC^Br are reported. The other five compounds of Interest were below
detection limits. Since there was originally no Intention of re-
analyzing the samples, they were not tightly stoppered nor were they
filled completely to the top (approximately 30 ml were removed when
the samples were first analyzed). This we believe 1s responsible for
the lower CHC13 values obtained at the latter date 1n those samples
containing higher chloroform concentrations. However, the data in
Table agrees in sufficient detail to augment the other AQC data
and to increase the credibility and the validity of the reported
sample concentrations. The data also Indicate that refrigerated
samples can probably be preserved for over a month prior to analysis.
46
-------
TABLE -'V
Analytical Results ( ug.'l) of All Samples Collected
In Duplicate
Peorla, 111. Raw I
Raw II
Fin I
Fin II
Mt. Vernon, Raw I
Ind. Raw II
Fin I
Fin II
Gary, Ind. Raw I
Raw II
Fin I
Fin II
Detroit, Mich. Raw I
Raw II
Fin I
Fin II
Menominee > Raw I
Mich. Raw II
Fin I
Fin II
Minneapolis , Raw I
Minn. Raw II
Fin I
Fin II
Duluth, Minn. Raw I
Raw II
Fin I
Fin II
Cleveland, Ohio Raw I
Raw II
Fin I
Fin II
MeCl2
<1
< .5
< .5
<1
4
<1
<1
2
< .5
< .5
< .5
< .5
< .5
< .5
ecu
CHC13
<1 ' <1
-------
TABLE XV (Cont'd)
PortsWorth, ... Raw I
Ohio Raw n
F1n I
Fin I!
Black River Raw I
Falls, Wise. Raw n
Fin I
F1n II
Green Bay Raw I
Wise. ' Raw II
Fin I
F1n II
MtClz
2
<1
3
3
<.5
< .5
<1
<1
Sample
<1
<1
<1
CC14
2
2
1
1
4
<2
8
<2
Lost du
3
<1
O
CHC13
2
6
29
21
3
<1
8
4
•ing Ana
1
10
9
C^OrCjtU
2
2
*1
<-!
<1
<2
<1
<}
lysis
<1
<1
<3
Cl2BrCH
<.2
<.2
15
14
<.5
<.5
<.5
<.5
<.5
11
3
C10r2CH
<.2
<.2
5
4
<.5
<.5
<,5
<.5
^.5
2
<1
Br3
<.;
<.;
.1
j
<.!
<.!
<.!
<.'
<.m
-------
TABLE XVt
VOLATILE ORGANIC CONCENTRATIONS VERSES TIME
Sample #
14313
14309
14297
14325
14289
14321
14293
14337
14853
14366
14345
14410
14317
14329
14825
14374
14301
CHCh
Analyzed On
2/20/75 3/26/75
37
2
10
22
7
36
3.5
1C
It!
9
7 ! 9.4
82 73
1
26 23
3 2.5
8
26
366
128
79
2
5
200
20
17
205
101
53
4
<:12B>CH
Analyzed On
2/20/75 3/26/75
4
9
0.8
0.3
6
0.3
4
3
18
15
6
4 <1
130 ! 31
6
8
0.7
0.4
5.4
0.9
5
2.2
19
9.6
5
1.3
16
i
-------
3. Pesticides. PCB's and Phthalates.
t) Introduction
Tht procedure used 1s based on "Methods for Organic
Ptstlddes 1n Water and Wastewater," 1971, EPA publication
from NERC - Cincinnati.' ' The procedure differs from the
NERC's 1n that 1t has been expanded to Include 47 pesti-
cides, 5 PCB mixtures and 2 phthalate esters. Also, the
gas chromatograph analysis step has been automated.
b) Experimental Procedures
The samples are received 1n glass quart bottles with
teflon lined screw caps and are transferred into clean two
liter separatory funnels. The first portion of the extract-
Ing solvent 1s used to rinse out the sample bottle and then
1s added to the separatory funnel. The samples are extracted
twice with 100 ml of 15S (v/v) ethylether /hexane, then
once with hexane, dried over N82S04, and concentrated to about
5 ml in a Kuderna-Oanish concentrator. The volume is reduced
to less than 4 ml using a stream of dry filtered air, diluted
to exactly 4 ml, and split into two 2 ml portions (I and II).
Portion (I) 1s spiked with phorate (2 ug), placed in a
2 »1 vial fitted with a screw cap, and analyzed for phosphorus-
containing compounds. The analysis is performed on a Perkin-
Elmer model 900 gas chromatograph using a flame-photometric
(phosphorous mode) detector. This instrument is equipped with
50-
-------
an automatic sampler (adjusted for 10 ul Injection) and a
PEP 1 G.C. data reduction system. A 6' x 1/4" glass column
packed with 14X SE-30 and 6X OV-210 on 80/100 mesh gas chrom
Q Is used for the original analysis and a 6' x M4" column
i
packed with 1.95X OV-17 and 1.51 0V 210 on gas chrom Q 30/ino
rtesh 1s used for confirmation. The gas chromatociraph con-
ditions are as follows: Inlet temperature - 25()°C, detector
temperature -. 240°C, oven programmed from 200°C 1:0 265°C at
4°/ra1n, carrier gas - N£ at 60 ml/min.
Portion (II) Is placed on a column of Florisll (18 g.
obtained from NERC, RTP, slurry packed with hexaie) with 1/2"
of Na2S04 at the top and bottom of the florisil.
Two fractions are collected; the first is eljted with
200 ml of 6X ethyl ether in hexane, and the second with
200 ml of SOX ethyl ether in hexane. Each fraction is con-
centrated to less than 2 ml in the same manner as that used
for the extract, diluted to 2.0 ml with hexane, spiked with
Dieldrin (50% ether fraction) or Aldrin (6% ether fraction)
and placed in a 2 ml vial with a septum cap for GC analysis.
Each fraction from the Florisil column is analyzed using
a Perkin-Elmer 3920 gas chromatograph equipped vn'th a two-
column injector splitter, automatic sampler with 10 pi syringe,
-51-
-------
two columns each leading to an electron capture detector,
and a PEP-1 data reduction system. The columns are both
6' x 1/4" glass. One 1s packed with 41 SE-30 and 61 OV-210
and the other with 1.951 OV-17 and 1.51 OV-210 on 80-100
ffltsh gas - chrom Q. The oven 1s maintained at 205°; the
carrier gas 1s 51 methane in argon for both columns.
A measured aliquot of each sample from the 61 ether
fraction which 1s thought to contain PCB's, as shown from
Its chromatogram, 1s removed from the vial and placed onto
a column of deactivated silicic acid (6 g, Bio-Rad Laboratories,
2.01 water content) which has been packed and washed with
60 ml hexane. The first fraction is eluted with hexane
(45 ml) and the second with 150ml of a mixture of 80% methylene
chloride, 19* hexane, and It acetonltrlle . Each fraction is
concentrated to less than 2 ml as previously described, diluted
with hexane to 2.0 ml, spiked with Dieldrin, and placed in a
vial for GC analysis. These fractions are analyzed for PCB's
and pesticides on the Perkin-Elmer model 3920 dual-column
electron capture system describe:! above.
An overall flow diagram of the analysis scheme is shown
below with typical chromatograms and computer printouts for
list A & B compounds.
-52-
-------
SAMPLE
Portion I
Fraction I
Extract 3X with ethyl ether/hexane
divide into Portions I and U
Portion II
Chromatograph
with Florlsll
Fraction II
Perform GC Analysis
for Phosphorous
Compounds - List A
Analyze for
List B Compounds
Aliquot I
Aliquot II
^Krotna tograph
with Silicic Acid
List 0, E
GC Analysis for
List 0 Compounds
Analysis for
List C Compou
GC Analysis for
List E Compounds
LIST
Phosphorous^
Dyfonate
Ethion
Dursban
Olazinon
Ronnel
Methyl Parathion
Ethyl Parathion
EPN
Malathion
Phencapton
DEF
Phosalone
Azinphos methyl
Azinphos ethyl
Carbcphenothion
Coun-.aphos
Fraction I
01-n-butyl phthalate
D1-(2-ethythexyl)
phthalate
Endosulfan I & II
Nltrofen
Dilan
2,4-0: Isopropyl
ester
OCPA
Oieldrin
Endrin
Chlorobenzilate
2,4,5-T: Isooctyl
ester
Tetradifon
Aliquot II of
Fraction II
Treflan
Lindane
Hexachlorobenzene
Isodrin
Gamma Chlordane
Beta-BHC
Aldrin
Zytron
Heptachlor Epoxide
0,P - ODE
W~- DDE
GT - ODD
- 000
- DOT
PT - DOT
ffTrex
Methoxychlor
Al
Aroclor 1221
Aroclor 1242
Aroclor 1248
Aroclor 1254
Aroclor 1260
Huxachloro-
benzene
Aldrin
Pi^ DOE
Mfrex
• —
Treflan
Lindane
Beta BHC
Zytron
Isodrin
Heptachlor
Epoxide
Garwa CMorda
OP DDE
OP" ODD
PT ODD
DT DDT
PT DOT
Rethoxychlcr
•53-
-------
IX.
COMPUTER PRINTOUT FOR LIST A COMPOUNDS
TMKESHOLUS IfcOO 200 ( • UAR B7S
INST
ME1H0D
42 , FILE
19, 3t
TIME
3.41
4.27
4.60
5.39
5.71
6.63
7.64
8.12
8.55
9.03
9.87
11.31
11.92
13.67
13.98
16.91
18.52
19.76
20. 11
21 .04
22.35
25.64 .
AREA
7.6124
4.466*
5*956*
.1156
.2465
9.5539
2.8457
5.3657
3.5236
.0847
6.4339
3.1529
.1847
9.3273
4.7611
1.0771
6.6851
13*0163
9.5878
4.8905
I . 32KO
20.4416
RRT
.341*
. 427 *
.460*
.539*
.571*
.663*
.764*
.812*
.855*
.903*
.987*
.131*
.192*
.367*
.39ft*
.691*
1.852*
1 .976*
2*01 i *
2.104*
2.235*
2.564*
HF
.7500*
•98KO*
.7655*
.0000*
.0000*
.0539*
' .0070*
.0421 *
.4420*
.0000*
.94bO*
.9172*
1 .0000*
.6342*
1 .1502,
1 .0363*
1 .0375*
2.5H69*
,7152*
1 .3901 *
1 .0000*
I.9fll5*
C
10.0000.
7.7300*
7.9U6b,
.2025*
.431ft,
• 17.6360*
5.0190*
9.7940*
8.9000*
•14B4,
10* 64ft£«
5.0650*
.3235*
10.360ft*
9.5920*
1 .9551*
' 12.14fcO*
5B.9776*
12.0100*
1 1 .9074*
2.3260*
70*9440*
H
D
U
t
!
i<
D
M
M
i
F.
0
i
£
P
F
A
K
A
;
C
NAME
HkitmAlE bl
01 A/. IrtvM: j_
: M
D UK SB AN: »"
ME1HYL HArtATHI MM
MALAIHION:!
i
ETHYL
OEF:
i? F IhTL:
Area * Area under respective peak.
RRT'» Relative retention time as compared to a standard retention
time entered previously in the computer.
RF * Detector response factor (sensitivity factor) based on previously
Injected primary standard solutions;
/
C • Calculated concentration using RF of named compound.
Name « Name of standard having same retention time as unknown.
-54-
-------
< •:.]..
r-.l
. -r
1 ' '"~"i"""j"- "j•*•:!:• | •:. -\\ ".".' \ ~v | : ::• ] :. •: '.' |'
*.—i. .."".~T_.t" . i _. i. .*",.. ... TTT
oc or ••• ;.os---'. --co • *!•_... ot:.:; --no-. -- . ;co -_---j •_•_oo»\
~ -8.0 ftvfofiatel'" !-"-
"
rba n — : rr-.:-::
.. * !• .1 .*.•• *^ _*. —- . *. „
j 1 4 .
• i * • » * i i > " ^^—£^ —.—
,_ •• —» ' < - t—-• r—-—•< > {——" •— -1 -'• — •-—•f~— i~l_ ~"t—m—tn— •-—j
".,. ' ;~~'" . ~"*~~~~|~~—r i . ~ i - i~~" ' ~yr^"~_~' 'r'~~"'~~'! 't/>'~ TtT^rrl
O
C
30
-i—rj-
>^-ii_ • . _. ^^_ > ^_.^^_«.. i „ ^
*-* *—;n~~o — ~ i
>. ' ~ *~
, —=— "' - •— • - ... gQ '/nJTTi ^SKCJ" "t--'3t?Y\L; ! ~'~. .—H—t
' • •" - - »• -QC ;~ -c» —;•—roj'— o?.——--, ~O
-------
FIGURE XI
» •
COMPUTER PRINTOUT FROM THE SE-30/OV-210 GC COLUMN
OF LIST B COMPOUNDS
300
100
n;.iE
*.M
a.i«
C.^6 '
A . 0^
4.90
6.C»K '.
6.92
7.67
9.93
1 1 • b*
13.16 •
1 4'. 40
15.42
17.83
19. H9
PO.K5
25.54
33. 13
.0653'
b.497ii
.0605
. 1 407
.4.701 1
'9.2758
.21 19
7.2752
7.027fi
5.S230
6.5840
20.2240
I 1 .1398
3.1784
1 .2404
6. '471 6
14*2963 '<
.0734 ;
»
Kri 1
. ;< sn *
.366,
.445,
.534,
.6*6,
.901 ,
• Oil,
.195,
.3.07,
.400,
.619,
• &06,
• *93,
» . 3 1 9 ,
3.U08,
5.15V,
KF
1 .0000,
- .3091,
.0000,
.0000,
.001)0,
.0000*
• 00(JO*
.0326*
.050?*
.0449*
. .0534,
•2*02*
.0476,
1. 0000,
1 .0000,
. 199K,
1 .2344,
I .0000,
•Ob38,
C
• 01 3t<,
.361 4*
.05*3*
.0299,
1 .0000,
.0450,
.0504,
.OTb*,
.0556,
.0746,
1 .200:?*
.1 124,
. 67 60 *
.2638,
.2750,
- "j
.01 56,
1
NAXiE
t
2, 4-UIH:
i
i
ALOiUN Sro:
i
UCpft :
EN 00 I:
DIKLDitlNi
KNOKl.M:
tNOO II AND
NL 'IK OPEN:
!
I
'S. 4, 5-'l 10:
DEHP: O
I
ETKAUIKSN: <.
CHL
-t6-
-------
FIGURE XII
COMPUTER PRINTOUT F30M OV-17/OV-210 COLUMN
OF LIST B COMPOUNDS
THKE1SHCLOS 300
t3TS
* MtllKCO
1>3
* FILE
19
TlilE
l.Ifi
1.P3
2.2*
2.74
3.i*7
3.6K
£.34
S.ftl
7.02
«.43
9.?9
10.07
11.39
12.09
14. ?0
1 6.03
20. 12
27.80
AKEA '
.0000
* 8.9494
•2oT5
• 1H4?
X . 37 47
12.5740
1 1 .673*
1 I '. 60 1 9
9 . 629 I
10. POO 9
14.3046
43.5532
4. £9 20
1 5.f,793
6.93HH
25.4771
2 1 . H5?9 1
25.347*
Rnl
.106*
.1 6^>*
.206*
' .24^;,
.296*
.333*
.392*
.525*
.633*
• 7 ft.j*
.r40.
.911*
• 031 * *
.09-1,
.P.faS*
.451 *
• F2t*
2.51 6*
«F
1 .OOOO*
.?6V3*
1 .OOCO*
I .0»"»00*
1 .COvO*
^ ,a«/07 *
.i)40^.
.0443*
.04<>5*
.Ob36*
• f:6GV*
•C36«*
1 .JOOO*
.1 474,
1 .OODO*
•063P*
2.1375,
.0547*
3:
•0000* !
• ^^77, ;-,
I -OOO'i* *U
? • 7 (i -f e f "if
• ft 57 'c , '.u
«l»6lc* ?.
f M S i v:
;i J :
L-/.' t.s-:
-
>. I I A.^'J Nil,
'<•
i
>* ol
-57-
-------
-------
c) Quality Assurance For Pesticide Analysis
In order to insure validity of the analytical results,
extensive analytical quality control was performed on each
step In the analytical scheme. Ten percent of the samples
were collected 1n duplicates for AQC purposes.
In the laboratory, samples were analyzed 1n groups. A
"blank" and a "spike" were analyzed with each group to provide
analytical quality control for that group. The "blanks"
and "spikes" were prepared using distilled water. The "spike"
contained a mixture of the 47 pesticides included In this
study. The concentrations of the various compounds in the
spike were in the 0 to 5 ug/1 range for the phosphate pesticides
and 20 to 200 ng/1 range for the chlorinated pesticides. A
total of ten sets of "blanks" and "spikes" were analyzed. All
the AQC samples were treated in the identical manner as the
real samples were treated.
In order to evaluate the automatic gss chromatographic
system, standards were chromatographed at: least every tenth
sample. This was used to monitor any change in the retention
time and/or in the response factor for ee.ch pesticide. If
changes were noted, the system was recal'brated and the samples
re-analyzed.
-59-
-------
Recovery data for the "spikes" are summarized in Table XVII
and relates to the reader the precision on a parameter
by parameter basis. None of the blanks Indicated the
presence of pesticides above the detection limits. A normal
percentage of the samples collected 1n duplicate gave Iden-
tical results within' the precision given in Table XX. The
only serious problem is the high recovery values for phthalates
which probably Indicates contamination. We have reported
unconnected phthalate concentrations with quality assurance
Information to permit the reported data to be evaluated
by the user and urge each data user to use the phthalate
results with appropriate caution.
-60-
-------
TALLE
Recov i • ry Data
Ten Or More Sar. . n 'es Spiked With Pesticides
COMPOUND
Diazlnon
Dyfonate
Ronnel
Dursban
Methyl parathion
Malathlon
Ethyl parathion
DEF
Ethion
1 Carbophenathion
Phencapton
JEPN
Methyl azinphos
Phosalone
Ethyl azinophos
Coumaphos
2»4D,isoprcpyl-
ester
Di-N-butyl-
phthalate
pg/1 Acded
C.O
6.0
14.0 •
4.0
Average 1
Recovery
0,,
81
?3
100
8.0 ; -a
8.0 ' G.c;
8.0 ' 93
4.0 ' 111
8.0 100
8.0 92
2.0
10.0
60.0
10.0
10.0
• 60.0
280
20CO
107
92
61
89
86
95
36
73
Standard Deviation I
of I Recovery
33
38
33
30
34
28
35
33
41
32
36
34
34
36
37
25
13
58
— Ol—
-------
TABLE XVII* (Cont'd)
COMPOUND
DCPA
Endo I
Dleldrtn
Endrin
Chi orobenzi late
Endo II I
Nitroflen J
2.4,-5-T-
isooctyl ester
01 Ian
DEHP
Tetrad if on
Treflan
Hexachloro-
benzene
Llndane
B BHC
Aldrin
Zytron
Isodrin
Heptachlor
Epoxide
Gamma
Chlordane
yg/1 Added
48
60
48
64
80
80 I
80 J
240
200
3200
120
24-.4S
12-22
20
56-400
20-40
80-98
23
20-24
20-24
Average I ^
Recovery
70
90
78
. 66
52
62
89
56
289
102
98
61
70
74
76
. 75
82
78
103
Standard Deviation
of X Recovery
50
97
42
45
36
i
65
67
47
200
130
20
20
28
33
28
22
29
42 !
i
i
19
-62-
-------
TABLE XVII (Cont'd)
COMPOUND
0-P DDE
P-P DDE
0-P DOD
0-P DDT
P-P ODD
P-P DDT
Ml rex
Methoxychlor
vg/1 Added
60
60
'60
60
60
60
40
200
Average 2
Recovery *
86
86
ICQ
93
TOO
101
77
97
Standard Deviation
of X Recovery
14
21
11
13
12
22
39
17
* Calculated as follows:
Average % Recovery = Original sample concentration +• Spike - OSC
Spike
We choose to use this cc. .-,-,cr; because the equation recommended by
EPA makes the data appear to be of a higher quality than they really
are.
-63-
-------
Since the adsorption and desorption efficiency on
carbon 1s not known for most organic compounds, quanti-
tative data can not be obtained and therefore only
approximate flow rates need to be obtained. These are
easily obtained by using a large (2-5 1) graduated
cylinder and stopwatch dally during the sampling period.
Using a small stream of water, the sample volume per
week is usually between two and four thousand liters
for clean waters that do not significantly reduce
the flow by depositing foreign material in the filter.
The efficiency of adsorption is known to decrease as
the flow Increases thus a greatly Increased flow rate
may actually reduce the total quantity of material ad-
sorbed by the carbon. Carbon from the exposed filters
is transferred to a soxhlet and extracted for 24 hours
with hexane, 24 hours with chloroform and 24 hours with
methanol. Each extract Is then divided into an acidic
basic and neutral fraction by standard techniques using
5% HC1, 5X NaOH and the organic solvent used to extract
the solvent or toluene 1n the case of the methanol ex-
tract. The nine resulting extracts are dried over an-
hydrous sodium sulfate and concentrated to approximately
two milliters before a gas chromatographic and mass
spectrometric analysis is attempted. Experience to date
-6&-
-------
shows that the separations described above are usually
adequate for all except the neutral chloroform fraction,
which contains more compounds than can be separated using
gas chromatography. High pressure liquid chromatcqraphy
i
techniques for further purification of this fraction are
being investigated. Compounds identified to diite are
shown below. Of significant interest is that bis-2-chloro-
ethyl and isopropyl ethers are below detection limits in
these samples.
Mt. Vernon,
Indiana
Evansville,
Indiana
tri-n-butyl phosphate
butyl phthalate
dioctyl phthalate
tri methy!benzene
toluene
ethyl benzene
xylene
methyl cyclohexane
other hydrocarbons
tri-n-butyl phosphate
butyl phthalate
dioctyl phthalate
Farnesol
n-octane
methyl palmitate
xylene
di-phenyl ethtjr
other hydroca-bons
-67-
-------
5. Metals.
a) Analytical Procedures
1) Flame Atomic-Absorption
Procedure
Standard flame atomic absorption procedures were
used for the determination of calcium, chromium, copper,
Iron, magnesium, manganese, potassium, sodium, and zinc (3).
The reported results were obtained by direct aspiration
of water samples preserved with 0.5X concentrated nitric
add. Thus the listed values represent metal concentra-
tions that were dissolved by the acid preservation, and
these will be equal to or lower than total metal concen-
trations as defined by the US EPA analytical procedures (3).
Analytical Quality Control
The accuracy and precision of the analytical
measurements were assessed by the use of duplicate samples,
spike recoveries, and Intralaboratory control standards.
Data supporting the validity of the reported results and
that are pertinent to this study are listed in Tables XVIII
XIX ^and XX. - ...The listings are self-explanatory and show
that the determinations were performed with good accuracy
and precision.
-68-
-------
TABLE XVIII
Precision Based On Analysis of Duplicate Samples by Flame AA
Element
Ca Calcium
Cr Chromium
Cu Copper
Fe Iron
K Potassium
Mg Magnesium
Mn Manganese
Na Sodium
Zn Z1nc
Hardness (Ca & Mg)
Cone. Range (ppm)
9.0 - 100.0
* •
0.005-0.030
0.020-0.200
0.5 - 3.0
3.0 - 50.0
0.005-0.800
1.5 - 20.0
0.005-0.200
38 - 433
NO. Of
Determinations
44
14
20
44
44
20
44
14
44
Std. Dev. of
01 ff. (ppm)
0.36
0.003
0.007
0.04
0.16
0.009
0.27
0.003
1.1
* Insufficient data
-69-
-------
Recovery Data For Spiked Samples Based On Flame AA
Element
Ca Calcium
Cr Chromium
Cu Copper
Fe Iron
K Potassium
Mg Magnesium
Mn Manganese
Na Sodium
Zn Zinc
Cone. Added
(Ppm)
10.0
0.25
0.25
0.25
1.0
10.0
0.25
10.0
0.25
I Recovery
(Ave.)
99
100
100
101
101
99
95
98
101
NO. Of
Determinations
4
4
6
3
4
4
3
4
6
TABLE
Statistical Summary of Results From the Laboratory Control Standards by Flame AA
Element
Ca Calcium
Cr Chromium
Cu Copper
Fe Iron
K Potassium
Mg Magnesium
Mn Manganese
Na Sodium
Zn Z1nc
Cone. Mean
(ppm)
39.9
0.494
0.530
1.442
1.5
8.5
0.507
14.2
0.759
Std. Oev.
(ppm)
0..50
0.014
0.019
0.061
0.11
0.14
0.015
0.47
0.024
Rel. Std.
Oev. , S
1.2
2.9
3.6
4.2
7.3
1.6
2.9
3.3
3.1
NO. Of
Determinations
33
15
11
12
33
34
12
38
11
-70-
-------
11) Flameless Atomic Absorption
Procedure
Flameless atomic absorption procedures were used
for the determination of arsenic, cadmium, lead, selemium,
and silver. The Perkln-Elmer HGA-2000 was utilized for
this purpose. This unit was mounted on a double-beam
atomic absorption spectrophotometer equipped with a deuterium
background corrector and interfaced to A strip chart re-
corder. The technique of standard additions was applied
exclusively for sample analysis. At le-ist 3 working standards
and a reagent blank were prepared just Drior to use from
commercial atomic absorption standard concentrates using
quality water and high purity acids. The instrumental
setup was optimized for the appropriate working range of
the element to be determined, and standards were checked
for linearity prior to use. Appropriate volumes (10-50
of sample and standard were injected and analyzed by pre-
viously established operating conditions. Linear working
curves (peak height vs. concentration) were extrapolated
graphically to zero absorbance for sample concentration
results. Samples outside the linear range were diluted.
In addition, acidities were closely controlled, since it
has been established in this laboratory that for certain
-71-
-------
metals, I.e. arsenic, selemlum, signal response Is a
function of acid type and concentration.
Analytical Quality Control
Table XXI lists appropriate precision data based on the
analysis of duplicate samples. These results are consistent
with precision and accuracy ranges previously established
for this method. Data on recoveries and laboratory control
standards were not collected. The use of standard additions
provides points on the analytical working curve that are
1n effect a measure of recovery.
TABLE XXI
Precision Based on the Analysis of Duplicates by Flameless AA
Element
Ag Silver
As Arsenic
Cd Cadmium
Pb Lead
Se Selemium
Cone. Range
(ppb)
*
1 - 10
0.2 - 0.7
2-25
Std. Oev. of
Offf. (ppb)
0.8
0.07
0.8
No. of
Determinations
10
6
12
* Insufficient Data
i
-72-
-------
B. Results and Discussion
Table XXII summarizes the ranges of metals found in the
water supplies covered by this study. The results reflect
the conformance of the finished drinking waters to the
proposed maximum allowable concentrations (6). One water
supply approaches the maximum suggested contamination level
for arsenic, and subsequent analytical data Indicated that
this particular source was being polluted by supplemental
water originating from deep wells. In order to circumvent
potential problems, the mixing ratios of these two supplies
should be closely controlled or the use of the wells should
be discontinued , or the efficiency of the treatment plant
arsenic removal should be greatly increased.
-73-
-------
TABLE XXII
Metal Concentration Ranges
In Drinking Water
I Concentration Range
Element
Ag Silver
As Arsenic
Ca Calcium
i
Raw Water
<0. 0002-0. 0003
<0.001 - 0.010
5.2 - 135.0
Cd Cadmium <0. 0002-0. 01 2
Cr Chromium
Cu Copper
Fe Iron
X Potassium
Mg Magnesium
Mn Manganese
Na Sod i urn
Pb Lead
Se Selemium
Zn Zinc
Hardness, (Ca, Mg)
cO. 005-0. 01 7
<0. 005-0. 20
<0. 02-3. 30
0.5-7.4
1.8-62.0
<0.005-C.76
1.1-77.0
<0. 002-0. 03C
<0.005
<0. 005-0. 21
20-492
Finished Water
mg/1
<0. 0002- 0.0003
<0.001 - 0.050
4.9 - 108.0
<0. 0002-0. 0004
<0.005 - 0.006
<0.005 - 0.20
<0.02 - 1.10
0.5 - 7.7
0.8 - 49.0
cO. 005 - 0.35
1.0-91.0
<0.002 - 0.020
i
<0.005
-------
6. Inorganic Parameters
a) Analytical Procedures
1) Ammonia - Technlcon Co. method no. 15^-71 VI was modified
to analyze samples In the range 0-1 mg/1 'Hj-fi. ~'-.e method in-
volves a hypochlorUe oxidation of an ammonia - phenol reaction
product using nltroprusside as a catalyst. The complexing reagent
and wash solutions were modified by the addition of 7.6 ml/1 of
10% NaOH and 1 ml/1 of concentrated sulfuric acid, respectively,
to compensate for the nutrient preservative.
11) Alkalinity - Unaltered samples were titrated using an
automatic Fisher Titralyzer to an electrcmetrically determined
end-point of pH 4.5.
Hi) Chloride - Technicon Co. method no. 9n-70 w was modified
to analyze samples in.the range 0-200 mg/1 chloride by the addi-
tion of a twenty-five *old dilution loop. The method involves
the stoichiometric liberation of thiocyanate ic- -rom mercuric
thiocyanate to form soluble but unionized me^c-Hc chloride.
The free thiocyanate reacts with ferric ;on tc form ferric
thitcyanate proportional to the origina ;.iloride concentration.
iv) Chemical Oxygen Demand (COO) -"he Centra1 Reg-'ona1
Laboratory semi-automated micro method "/as used to ana^ze the
drinking water samples for COO. T'JO and ore-ha^ ml o£ samole,
3.5 ml o* sulfuric acid - silver su'^ate solution JPC 2.5 -'. of
potassium d'chromate solution are addec to 'n x l°r ~r- so^csili-
cate screw-top test tubes. The tubes ere sea'ec! .vth a teflon
-75-
-------
Untd cap and then heated In an oven at 150°C for 2 hours.
The amount of Cr(lll) produced by the oxidation of the
sample is proportional to the COO of the sample. The
appearance of Cr(III) 1s measured at 600 nm with Technicon
AA II equipment at 40 samples per hour. The method is
described 1n detail 1n Appendix II, which is a manuscript
that will appear 1n the July, 1975, issue of Analytical
Chemistry.
v) Cyanide - Technicon method no. 315-74W for cyanide
analysis was modified to Improve sensitivity to lnn ug/1
full scale. The improvement was accomplished by addition
of a large diameter 13-turn coil to the manifold just be-
fore the colorimeter. The method involves an ultra-violet
digestion and distillation from acidic solution to separate
the cyanide from the sample matrix. Cyanide is converted
to cyanogen chloride by reaction with chloramine-T which
subsequently reacts with pyridine and barbituric acid to
give a red colored complex.
vi) Dissolved and Suspended Solids - The CRL Ticro
technique was used to' analyze the drinking water samnles for
the residue parameters. Ten ml of sample were filtered
through a tared nuclepore filter and the residue weighed
to the nearest microgram to determine suspended solids. One
hundred microliters of filtrate was evaoorated on 12 TW
aluminum pans and the residue weighed to the Dearest micro-
-76-
-------
gram to determine dissolved solids. A manuscript, submitted
for publication, describing the methods 1n detail is attached
as Appendix III.
vll) Fluoride - The EPA electrode metho'd ('fa-iual of Methods
for Chemical Analysis of Water and Wastes , p. 65, 1974) for
fluoride was used without modification.
v111) Mercury - The CRL automated method was used for mercury
analysis. The method consists of a persulfate oxidation followed
by reduction with stannous chloride using hydroxylamine hydro-
chloride to reduce any residual chlorine present. The mercury
1s detected by passing it through a 22 cm cell mounted in a
dual-wavelength spectrophotometer. A manuscript, submitted
for publication, describing the method is atta:hed as Appendix
IV.
1x) Nitrate plus Nitrite - Technicon Co. method no. 100 -
70 W was modified by the addition of a 5 fold dilution loop
to analyze samples 1n the range of 0 - 5 mg/k N03 •*• NC^-N.
In addition, the ammonium chloride buffer and wash solutions
were modified by adding 11.5 ml/I of 10S NaOH and 1 ml/I o*
concentrated sulfuric acid, respectively, to compensate *or
the nutrient preservative.. Nitrate plus nitrite is determined
by reducing the nitrate to nitrite with a copper-cadmium column.
The nitrite ion then reacts with sulfaniianrd.: at a low pH to
form a diazo compound. This compound then couches .vith '1-1-
naph-thylethylene diamine dihydrochlori^e to "orm ^ radd;s -
purple azo dye which is analyzed at 529 ran.
-77-
-------
x) Nitrite - Techrilcon method no. 102-70 x was used without
modification to analyze samples for nitrite. The analytical
method 1s the same as fdr nitrate plus nitrite except that the
copper-cadlum column 1s deleted.
x1) pH - the pH of the drinking water samples was measured
with a pH meter equipped with a combination glass-reference
electrode.
x11) Phenol1cs - Technlcon method no. 127 - 71 W for analysis
of phenollcs was modified for samples 1n the range 0-200 mg/1.
The method Involves the distillation of phenollcs and the sub-
sequent reaction of the distillate with alkaline ferrlcyanlde
and 4 - amlnoantlpyrene to form a red complex which 1s measured
at 505 nm.
xi1i) S1Hca - Technicon Co. method no. 105 71 W was modified
by cutting the sample volume 1n half to analyze samples for
silica 1n the range 0-20 mg/1. This procedure for the deter-
mination of soluble silicates 1s based on the reduction of a
sllicomolybdate complex In acidic solution to "molybdenum blue"
by ascorbic acid.
x1v) Specific Conductance - The specific conductivities were
measured with a Radiometer COM3 conductivity meter. The meter
1s essentially an ohmmeter, calibrated in reciprocal ohms. A
built-in oscillator applies an ac voltage of suitable frequency
to the electrodes to avoid false readings from the polarization
of the solution.
-78-
-------
xv) Sulfate - Technlccn Co. method no. 11R - 71 W was used
for sulfate analyses. The sample containing sulfate is passed
through a cation-exchange column to remove interferences and
then reacted with barium chloride and methyl thymol blue. Barium
chloride and methylthymol blue are added in equal molar amounts
so the excess methylthymol blue corresponds to the sulfate con-
centration.
xv1) Total Phosphorus and Kjeldahl Nitrogen - The CRL methods
were used for the analysis of TP and TKN. Ten ml of samole were
mixed with 2 ml of the solution described in sections 6.2 and 6.3
of the 1974 EPA Methods Manual for TKN.^ The solution was
evaporated and then digested at 370°C for 1/2 hour. The dlgestate
was cooled and then diluted to 10 ml with distilled water. The
resulting solution was analyzed for phosphorus by Technicon Co.
method no. 155 - 71 W modified as follows: Five grams per liter
of sodium chloride was added to the manifold water line to com-
plex the mercury catalyst and avoid its reduction. Nitrogen
was analyzed as ammonia by the method described in paragranh 1.
In addition, a five-fold dilution loop with i!5 ml of 10 N NaCK
per liter was used for both methods. The sanpler wash solutior
consisted of 35 ml of concentrated sulfuric acid per liter. A
manuscript describing these methods in detai is being prepared.
-79-
-------
Quality Assurance Procedures for Inorganic Parameters.
The accuracy and precision of the analytical data were assessed
by the use of dally Instrument calibration and the analyses of duplicate
samples and Intralaboratory quality control standards. The precision
and detection limit data 1n Table XXIUshow that all of the methods
used (with the exception of phenoUcs) are much more sensitive than
necessary when compared to the drinking water quality standards (Table XXIIl).
SUMMARY
The Region V Drinking Water Study has satisfied most of the goals
of the project. It has provided the most complete 11st of parameter
concentration values yet reported for so large a group of water supplies.
These values were from samples collected approximately two months after
. (6)
the Safe Drinking Water Act became law and therefore they can be used
as baseline concentrations from which the effects of the Act can be
measured. The study clearly supports the conclusion drawn by Bellar &
2
Uchtenberg that the chlorlnatlon water treatment process produces
chloroform 1n finished drinking waters. It also provides experimental
evidence of the absence of most pesticides 1n our drinking water sup-
plies and where these compounds are present the concentrations are very
low. It showed that the waters at Evansville, Indiana are not now as
contaminated as they were a few years ago. Because we expect these
results to be used for a long period of time and to be rigorously
evaluated, we have made available a very limited number of copies of
all data. Appendix V is a complete listing of the field sheets as
they were received and Appendix VI is a complete set of analytical
results. Generally these appendices will not accompany this report.
-80-
-------
TABU XXIII
SUMMARY OF QUALITY ASSURANCE DATA
FOR INORGANIC PARAMETERS*
PARAMETER
Ammonia • N
Alkalinity - CaCO,
Chloride
Chemical Oxygen Demand
Cyanide
Dissolved Solids
Fluoride
Mercury
Nitrate 6 Nitrite - N
Nitrite - N
pH
Phenol 1cs
Silica
Specific Conductance
Sulfate
Suspended Solids
Total Phosphorus - P
Total Kjeldahl Nitrogen - N
PRECISION0
0.0061
0.9
1.0
1.4
0.0010
19.8
0.025
0.00005
0.019
0.0007
0.04
0.0003
0.07
2.3
1.0
1.7
0.006
0.037
CCTECTION LIMIT0
0.010
10
2
3
0.002
40
0.1
0.0001
0.03
0.005
0.1
0.002
0.1
5
3
2
0.02
Q05
a. Expressed as mg/1, except pH (units) and specific conductance
(micro Siemens, ys).
b. Precision was determined from the estimated standard deviations of
twenty-two duplicate samples for each parameter. T est»
/ Xl A^*
' N
A
2N
c. Detection limits were calculated as two times the standard deviation
of the blank results.
-81-
-------
REFERENCES
1. Thomas A. Bellar and James J. Uchtenberg, "The Determination of
Volatile Organic Compounds at theug/1 Level in Water by Gas
Chromatography", EPA-670/4-74-009, November, 1974, National
Environmental Research Center, Office of Research and Development,
Cincinnati, Ohio 45268.
2. Thomas A. Bellar, James J. Uchtenberg, and Robert C. Kroner,
"The Occurrence of Organohalldes 1n Chlorinated Drinkinq Waters"
EPA-670/4-74-008.
3. "Manual of Methods for Chemical Analysis of Water and Wastes"
EPA-625/6-74-003 (1974).
4. Robert Kleopfer, US-EPA, Region VII, I!5 Funston Road, Kansas City,
Missouri 66115, Private Communications.
5. "Methods for Organic Pesticides in Water and Wastewater",
Environmental Protection Agency, National Environmental Research
Center, Cincinnati, Ohio 45268.
6. (a) "Safe Drinking Water Act", Public Law 93-523, 93rd Congress,
S. 433, December 16, 1974; (b) Primary Drinking Water Proposed
Interim Standards, Federal Register, 40 CFR Part 141, No. 51,
March 14, 1975.
7. "Public Health Service Drinking Water Standards - Revised 1962"
U.S. Department of Health, Education and Welfare - Public Health Service.
8. "Water Quality Criteria - 1972" EPA-R3-73-033 (March 1971)
82
-------
APPENDIX I
-------
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
CENTRAL REGL'.AL LABORATORY
SUBJECT: Preservation and Holding Times fo» Nutrient
and Demand Parameters
FROM: Dr. Mark Carter, Chief
Inorganic Section, CRL
TO: Dwlcht Ballinger, Director
MOQARL
THROUGH: BHIy Falrless, Chief, Chemistry Branch, CRL
Thomas E. Yeates, 21 rector, CRL
David A. Payne, Chief, Quality Assurance Branch, CRL
DATE: October 9, 1974
The recommended sample holding times to be appearing 1n the next edition
of "Methods for Chemical Analysis of Water and Wastes," for some nutrient
and demand parameters, have caused great concern 1n Region V. The
Surveillance and Analysis Division has been preserving surface and waste-
waters vilth 1 ml H?S04/1 of sample for ammonia, nitrate plus nitrite,
total Kjeldahl nitrogen (TKN), total phosphorus, chemical oxygen demand
(COO), and total organic carbon (TOC) parameters since early 1973. All
samples to be analyzed for the above parameters are shipped via ground
transportation to the Central Regional Laboratory (CRL) 1n Chicago while
«a1pte1ned.at.arr.b1entit«nperature. In only a few cases have samples been
analyzed within the 24 fiour holding time you are recommending for the
above parameters. Typically, the holding times for sulfurlc add pre-
served samples have ranged from several days to approximately one month
from the time of sample collection.
The CRt has been actively Investigating the preservation of samples since
January of this year. Although our results are preliminary we feel com-
pelled to release the data now before critically Important administrative
decisions are being made. Our conclusions and recommendations which
follow are based on the sample types studied. All the data we have col-
lected are Included 1n Attachment A.
Conclusions:
1) On the basis of our work, and data 1n the literature
(Howe and Holley, 1969; Charplot, 1969; Jenkins, 1965)
we find no support for your recommended 24 hour holding
time for ammonia, nitrate plus nitrite, Kjeldahl nitrogen,
total phosphorus, and total organic carbon.
2) The recormended holding time for TOC (24 hours) 1s Incon-
sistent with the 7 day holding time for chemical oxygen
demand. Since the COD method Inherently takes Into
account the oxidation state of a waste, any sample Insta-
bility will be reflected 1n the COO before the TOC. In
CPA F«m 13234 nu.. 4.71)
-------
- 2 -
addition, on the basis of our experimental results the
recomnended holding time of 7 days for COO measurement
1s unnecessarily stringent.
3) The recommendation of one holding time for eich para-
meter for-all sample typts 1s unnecessarily cautious.
Howe and Hoiley (1969) have shown that the greatest
cause of sample Instability 1s biological activity.
Our work has verified this observation. The data In
Attachment A shows a tremendous difference In stability
between samples of high biological activity (raw sewage)
and low activity (clean surface water).
Intern Recommendations For Holding Times
In all cases, the samples are assumed to be stored at room temperature.
As of yet, we have not found 2 ml/1(sulfurlc acid / sample)to be any
more effective than 1 ml/1 so the latter procedure Is also assumed.
1) Ammonia - At least one week for raw sewage and one month
for surface waters and Industrial wastes lov 1n biologi-
cal activity.
2) Nitrate plus Nitrite - At least one month for all sample
types.
3) Total Kjeldahl Nitrogen - At least one month for raw
sewage. For organic nitrogen follow ammonia recommenda-
tions.
4) Total and Dissolved Phosphorus - Up to two months for all
sample types.
5) COO/TOC - At least two weeks for raw sewage.
These holding times are based on preliminary data and are subject to modi-
fication pending the completion of one more study. However, they are sup-
ported by data from the literature and are much longer than yours. Vie
request that you make available to us any analytical data or literature
references that support your recommendations and hence contradict our
results. We believe our preliminary data are accurate and that our
Intern recommendations outlined above should be accepted 1n Region V
pending further work. He would be most happy to have your Input Into
our one remaining preservation study and hope to discuss this matter
with members of the Quality Assurance evaluation teem during the visit
to the CRL on October 15.
-------
Mark Carter, Ph.D.
-------
APPENDIX II
-------
Central Regional Laboratory
Environmental Protection Agency
Chicago, Illinois 60609
MICRO SEMI-AUTOMATED ANALYSIS OF SURFACE AND WASTEWATERS
FOR CHEMICAL OXYGEN DEMAND
PRELIMINARY
SUBJECT TO REVISION
Andrea M. Jlrka and Mark J. Carter
+Author to whom correspondence should be addressed.
-------
BRIEF
A micro stml-automated spectrophotometrlc method for determining the
chemical oxygen demand of surface and wastewaters 1s described and
compared to the standard method.
ABSTRACT
A micro sample digestion technique for the determination of chemical
oxygen demand (COO) 1s described. An automated spectrophotometrlc
measurement of the appearance of chromium (III) after sample digestion
completes the method. Adequate sensitivity at 600 run 1s achieved by
using a 50 mm flowed! to measure COO values 1n the range 3-900 mg/1.
The send-automated method 1s compared to the standard method with
respect to precision, accuracy, ease of analysis and comparability of
data.
-------
- 2 -
INTRODUCTION
The oxidation of organic and Inorganic wastes 1n a receiv-
ing water depletes the dissolved oxygen supply, which can have
a profound effect on aquatic Hfe (1). A meaningful determina-
tion of the natural oxygen demand of wastewaters has been a
problem since the previous century. The biochemical oxygen
demand (BOO) test was developed to measure the nat.ural oxygen
demand of wastes under laboratory conditions siml'ar to those
found In receiving waters (2-4). The advantage o? the BOD test
1$ that It 1s a good Indicator of the blo-degradtaility of a
waste. The major disadvantages of the BOD test are the long
time required for analysis, the poor precision and the Indeter-
minable accuracy of the method (4,5).
In order to substantially reduce the time required to esti-
mate the ultimate oxygen demand of a wastewater, the chemical
oxygen demand (COO) test was developed (6). The addition of
silver sulfate (7, 8) and mercuric sulfate (9) to the acidic
dlchromate digestion solution, increased the readability of the
COD test (10, 11). However, since chemical oxidation does not
differentiate between biologically stable and unstable wastes, a
correlation between COO and 800 values must be developed for
each sample type (12). •
Stenger and Van Hall reported a very rapid method for measur-
ing the total organic carbon (TCC) content of vater samples, which •
-------
. 3 .
•
can be related to oxygen demand (13). However, the advantage
t
1n being able to rapidly determine TOC values 1$ offset by the
high Initial equipment cost. In addition, the Informational
content of the TOC analysis 1s less useful than that gained
from the BOO or COD methods (14). The TOC test does not dif-
ferentiate between compounds with the same number of carbon
atoms, but which are In different stages of oxidation and hence
have different oxygen demanding potentials. Since the COO and
BOO tests measure the amount of oxygen required to stabilize
waste samples, their values Inherently reflect the original
oxidation state of the chemical pollutants.
•
The standard COO test (4) 1s widely used because 1t pro-
vides a good balance between the value of the Information gained
and the speed of analysis when compared to the BOD and TOC tests
•
(12). However, the standard method for determining COO has
limitations which are not inherent 1n the concept of the test.
The bacx-titration of dichromate after sample digestion is an
Insensitive method of detection. This lack of method sensitiv-
ity has been partially alleviated by using two different concen-
trations of dichromate and a relatively large sample volume. In
addition, the consumption of large quantities of expensive rea-
gents, the extensive bench space requirement of the COO hot plates
which limits the number of analyses that can be performed in a
day, and the difficulty of disposing of large quantities of highly
acidic mercury, silver and chromium wastes, are serious problems
for most industrial laboratories (15).
-------
- 4 -
Recently, there has been considerable Interest in simpli-
fying the rather tedious standard COO method (16-19). Unfortun-
ately, procedures using a much shortened digestion period or
lower digestion temperatures produce results equivalent to those
obtained by the standard method only for very readily oxidized
wastewaters (20-22).
Bloor (23) and Johnson (24) determined the organic content
of biological materials using dichrotnate as an oxi lant and then
measuring the excess dichrcmata spectrophotometricilly. This
procedure eliminated the tedious detection procedure of the stand-
•
ard method. The spectrophototretric procedure has !>een applied to
the analysis of water samples in which the COD was determined by
measuring the appearance of Cr (III) after rtanual digestion (25-27).
Several COO methods which use a spectropnotorcstric means of
detection and automated sample digestion have also been reported.
Sample digestion was accomplished using a continuous digester (28,
29) or high temperature bath (30-32). However, Tift and Cain
reported data which show that these automated procedures do not
produce results equivalent to the standard method for all sample
types (33). The incomparability of data was attributed to Incom-
plete sample oxidation caused by the short digestion times in the
automated methods. In addition, the higher concentration of sul-
furlc acid used in most autcmarad systa^s requires a smaller
amount of mercuric sulfate be used to avoid its precipitation in
-------
. 5 •
the sample lines and flowcell. The lesser amount of mercuric
sulfate caused chloride to be more of an Interference 1n these
automated methods than 1n the standard method.
The method reported here combines the advantages of the
reliability of the standard digestion procedure (4), with the
superior sensitivity and precision of an automated procedure
based on the spectrophotometrlc measurement of Cr (III) (27).
Use of the resultant micro semi-automated COO method has
Increased the productivity of this laboratory three-fold and
reduced the consumption of very expensive reagents and the
quantities of wastes twenty-fold.
EXPERIMENTAL
Apparatus. Samples were digested 1n Corning -«9949 16x100
m screwcap (cap #9998) culture tubes. Spectrophotometrlc measure-
ments were made with the apparatus shewn schematically in Figure 1.
The automated system was fabricated using Technicon Corporation
AutoAnalyzer II equipment consisting of a Sampler IV, Pump III,
Colorimeter II, Recorder II, and single channel Digital Printer.
The colorimeter was used in the direct mode and equipped with 500
nm Interferencs filters and 50 irm flowcells. The Standard Calibrra-
tlon control was set at 228 to attain 1000 mc/1 CCO full scale on
the recorder. A glass capillary was used as a samole probe. The
sampler was operated at 40 jamoles/hr *ith a 3:1, sample to wash
ratio.
-------
- 6 -
Wastewater samples with participate matter were blended
with a Teckmar Model SOT homogenUer before taking an aliquot
for analysis. An adjustable 0-5 ml Oxford pipette with dis-
posable polypropylene tips was used for allquotlng samples and
addition of reagents.
Reagents. Unless otherwise noted, all chemicals were ACS
reagent grade. All reagent water was de-Ionized and distilled.
Digestion solution was prepared by adding 10.216 g of
K2Cr207 (dried at 105° C), 167 ml of cone H2S04 arid 33.3 g of
HgS04 to 500 ml of water and. diluting the cooled solution to
1 1.
Catalyst solution was prepared by dissolving 22 g of Ag2S04
1n a 9-1 b bottle of cone HgSO.;.
Sampler wash solution was 502 sulfuric acid by volume.
A stock potassium add phthalate solution, equivalent to
10 g/1 COO, was prepared by dissolving 8.500 g of a dried portion
of NBS standard reference material 84 h 1n water and diluting to
1 1. Working standards of 25, 50, 75, 100, 250. 500 and 750 mg/1
COO were prepared by diluting 2.5, 5, 7.5, 10, 211, 50 and 75 ml
of stock solution to 1 1, respectively.
Procedures. It was necessary to wash all culture tubes and
screw caps with 202 H2S04 before their first use to prevent random
contamination.
Digestion was carried out by placing 2.5 ml of sample and 1.5
art of digestion solution in * culture tube. Three and one half ml
-------
- 7 -
of catalyst solution were added carefully down the side of the
culture tube so that the-add formed a layer on the bottom.
The tube was capped tightly and then shaken to mix the layers.
Two blanks and a set of standards were prepared 1n the same
manner and analyzed with each sample set.
All samples, blanks and standards were heated 1n an oven
at 150° C, which 1s the observed reflux temperature of 50* sul-
furlc add. After two hours the tubes were removed from the
oven, cooled, and placed 1n the Sampler IV tray.
The analytical manifold and reagents were set up as Indi-
cated 1n Figure 1. Two digested blanks were analyzed at the
beginning of each sample set to zero the baseline. A raid-scale
standard was used to calibrate the recorder and printer (34).
Standards were rerun periodically during the course of an ana-
lysis run to assure that the system remained 1n calibration.
The COD val^e of unknown samples was obtained by direct print-
out. A typical recorder trace for standards is shown in Figure 2.
RESULTS AND DISCUSSION
Sample Digestion. It has been shown that COD procedures
using a shortened digestion period and/or a reduced digestion
temperature do not attain the same degree of sample oxidation as
the standard method (20-22, 33). Any alternate test procedure
used to analyze wastewaters for CCO must produce results equiva-
lent to or better than the current standard method (35). There-
fore, to insure data comparability the temperature and length of
-------
- 8 -
.sample digestion and concentration of reagents usec 1n the
standard method were adopted for use 1n the semi-automated
procedure described here (4).
Since the micro colorlraetrlc detection technique required
only 2 ml of digested sample the quantities of sample and rea-
gents used were reduced twenty-fold In comparison 1:0 the
standard method (4, 11). Use of the standard COO digestion
apparatus was eliminated and Instead all samples, blanks and
standards were digested In small screw-cap culture tubes. The
potential for sample contamination from large glass surfaces
was consequently reduced.
Screw caps with phenolic rssin liners were fojnd to be
unacceptable since they were attacked by the digestion solution
giving erroneously high CCO values. Teflon-lined caps greatly
reduced this problem especially if each cap -.vas used cnly once.
Any sarrple tube which leaked, is evidencad by a black residue
on the outside of the tube, was discarded.
Uniform addition of reagents and improved precision was
achieved by dissolving all chenicals in one of twci solutions.
The catalyst solution was prepared by the standard method (4).
The oxidizing solution v/as prepared by combining potassium
dlchrotnate with mercuric sulfate and making the solution o N
with sulfuric acid to solubilizs the mercury silt. However,
the mercuric sulfaze .-/as not ccr:ple:2'y scl'js'e in the cooled,
combined reaction mixture. The hei^. of :r.e samolar :robe
-------
- 9 -
was carefully adjusted so as to avoid aspirating the precipitate.
Otherwise, aspiration of the particulate matter caused severe
btMlfne noise.
SptctrophotOHMtHc Analysis. The COO of wtstewater jaaples
has been determined spectrophotonetrlcally, after digestion, by
measuring the decrease 1n Cr (VI) concentration at 352 (32) or
440 nm (19). Alternatively, the Increase 1n Cr (III) concentra-
tlonhas been measured at 600 (27) or 650 nm (25). All of these
authors found the spectrophotometric procedure to be easier to
perform than the manual titration.
Holov and Zalelko showed that better sensitivity could be
achieved by measuring the decrease in Cr (VI) concentration than
the increase in Cr (III) concentration (28). However, the preci-
sion of., a method based on measuring the decrease in Cr (VI) absorb-
ance is very dependent on the reproducibility of reagent addition.
This problem was avoided and adequate sensitivity achieved by
measuring the appearance of Cr (III) at 6CO rm, using a 50 mm
flowcell, and the scale expansion capability of the Technicon
colorimeter.
In order to increase the sensitivity of the standard method,
two different concentrations of oxidizing reagent are ccrrmonly
used. These correspond to tv:o levels of CCD Teasurement, 5-50
jng/1 and 5C-3CO "9/T (.1). .''oore and talker found that the
working rang* of the "cw level r.odification was limited by the
diminished oxidation rozantial of the digestion solution after
505 of the cjicr,rc(r.at3 *as consumed (36).
-------
- 10 -
Due to the adequate sensitivity of the spectrophotometHc
serai-automated method, only one set of reagent concentrations
was necessary to cover both levels of the standard method. In
order to test the linearity of the serai-automated meithod,
standards between 500 and 1000 rag/1 COO were analyzed 1n Incre-
ments of 25 mg/1. Potassium hydrogen phthalate was chosen for
use as a standard because of Us stability in solution and Us
complete oxidation under the conditions of the COO test (4).
The results, presented in Figure 3, show the colorinetrlc method
to.be linear up to 900 mg/1 COO.
Due to the use of 502 sulfuric acid, the original automated
manifold was constructed with acidflex tubing. However, the
system exhibited very poor hydra!ic characteristics. This problem
was alev.iated by replacing the acidflex tubes with tygon pump
and transmission tubing. The recorder trace in Figure 2 was
undamped. The entire system was cleaned for about 1/2 hour before
first use with 50* sulfuric acid to prevent severe baseline drift
due to Teachable organic matter. Also 1:1 dilution loco was added
to the system to reduce the viscosity cf the sample stream so that
proper debubbling occurred in the flcwcell.
Precision, Acc'jr^cy i?j Detection Licrit. Since it was dif-
ficult to correct the semi-autc-ated results for r.he srrall baseline
drift, the working -atacfion 1-ir.it was defined as l:he mean bias of
the blank plus ;wo standard deviations. Eleven bl
-------
-11 -
'obtained was 1 mg/1 with a standard deviation of 0.8 mg/1 COD.
These values were used to define the detection limit at 3 mg/1
COD. This number compares quite favorably with the detection
11ra1t of 5 mg/1 COD reported by Moore and Walker for the low
level standard COD method (36).
The relative precision of both modifications of the stand-
ard and the semi-automated COD methods was determined by perform-
ing replicate analyzes on four wastewater samples. Since the
standard and semi-automated determinations were performed at
different times, two similar sets of water samples were chosen
so that the relative standard deviations could be meaningfully
compared. The relative standard deviations of both methods for
low COD concentrations, as shown in Table I, compare very closely.
However,- the precision of the semi-automated method at high COD
concentrations was approximately seven times better than the
standard method,
Adelman pointed out that one of the factors contributing to
the poor precision of the standard method was the potential loss
of volatile components of the wastewater samples (30). This can
be caused by the heat generated by the mixing of the sample with
the concentrated acid prior to reflux or during the reflux step.
This problem was eliminated in the semi-automated procedure by
avoiding mixing the samole and acid layers until the t'jbe is
capped and the fact that sample digestion occurs in a completely
closed systsm.
-------
-12-
The authors found that the ability to take a representative
aliquot of a nonhonogeneous sample was the limiting component of
analysis variability regardless of method. Precision data for
the standard COO method determined from 1 n ter-labors to-y analyses
of standard-lllce solutions must be regarded only as a lower limit
(5, 37).
The accuracy of the semi-automated method was determined by
measuring the recovery of standard addition of potassium hydrogen
phthalate to several types of water samples! The mean recovery
from 14 water and wastewater samples, shown 1n Table II, was 101*
with a standard deviation of 42.
Comparison of Semi-Automated end Standard Methods. A variety of
surface and wastewater samples were analyzed by both the standard
and semi-automated COO methods to determine the comparability of
data. These samples Included raw and treated sewage, industrial,
chemical and food process wastes. Results comparing the two methods
are shown 1n Table III. Initially the largest discrepancies between
methods occurred 1n samples which contained large quantities of
particulate matter, e.g., raw sewage. Homogenizing samples of
this type greatly improved the comparability of the data. Within
the standard deviation of the mean ratio of results, no significant
bias 1n COO values exists between methods.
In addition, several pure organic compounds wtre analyzed to
determine if the secri-autcsated method achieved a nore complete
-------
- 13 -
•
digestion than the standard method. The experimental results
and calculated maximum theoretical COD values are shown in
Table IV. The semi-automated values were slightly higher than
the standard method results Indicating that the former method
achieved a more complete sample digestion. The difference
could also be due to the fact that no volatile material can
excape from the sealed tubes during oxidation 1n the semi-auto-
mated method, while in the standard method, volatile material
nay escape before sample oxidation 1s complete.
Interferences. One of the major problems encountered 1n
other automated COD methods 1s the Inability of the techniques
•
to compensate for the positive interference caused by the oxida-
tion of chloride present in wastewater samples (28-32). The
standard procedure for eliminating the chloride Interference 1s
the addition of mercuric sulfate to form a complex and prevent
Its oxidation (4, 9). Experiments performed by this laboratory
Indicate that no interference results up to 2000 mg/1 chloride
when the standard procedure is used (9).
In other automated techniques, the high acid concentration
reduces the solubility of HgS04 so that the quantity of Hg(II)
1n solution is not sufficient to complex the same amount of
chloride as in the standard method (23-32).
In the semi-automated COO method, the ratio of HgS04 to
sample volume is identical to the standard method. Standards of
SCO mg/1 CCD were spiked with varying amounts of chloride in
-------
- 14 -
order to determine the limiting concentration at which the inter-
ference was significant. The results* shown in Figure 4, indi-
cate that chloride does not Interfere below 1000 mg/1. Above
this concentration, some precipitation occurs when the dilution
water combines with the sample stream 1n the automated system,
which results In a noisy recorder trace. If it is necessary to
routinely analyze samples containing between 1000 and 2000 mg/1
chloride, the dilution loop can be removed. Air spikes will then
appear at the beginning and end of each sample peak, due to
Improper debubbling, but the results are not affected.
Any chemical species remaining after sample digestion, which
absorb at 600 nra, cause a positive Interference in the semi-auto-
mated method. Since almost all organic matter is digested by the
COD technique the possible interference from organic compounds
was not considered (6, 8, 36).
The presence of Cr (III) in a water sample gives an apparent
COD of 1.39 times the concentration of chromium. Also, a potential
Interference from iron was investigated by spiking standards of
500 mg/1 COO with increasing amounts of ferric iron. The results,
presented in Figure 5, show no apparent COO belcw 5 g/1 Fe. The
positive bias caused by high concentrations of interfering sub-
stances is routinely eliminated by diluting samples pr-icr to
analysis or correcting the reported CCO values frcm independent
determinations of chrcraiun, iron and chloride.
-------
- 15 -
' 'ACKNOWLEDGEMENT
The authors would like to thank B. J. Fair!ess and
D. A. Payne for their helpful coranents during the course of
this work and their critical review of the manuscript.
.The mention of trade names or commercial products does
not constitute endorsement or recommendation for use by the
Central Regional Laboratory or the Environmental Protection
Agency.
-------
REFEREHCES
(1) "Water Quality Criteria," Federal Water Pollution Control
Administration, Washington, 0. C. , 1968, pp 32-5.
(2) E, B. Phelps, "Stream Sanitation," John Wiley and Sons,
New York, N. Y., 1944, pp 65-6.
(3) E. 0. Therlault, Public Health Bulletin No. 17-1, U.S.
Public Health Service, Washington. 0. C., 1927.
(4) "Standard Methods for the Examination of Water and Waste-
water," 13th ed., American Public Health Association,
New York, N. Y., 1971, % 489.
(5) 0. G. BalUnger and R. 0. Ushka, 0_. Water Pollut. Contr.
Fed., 3£, 470 (1962).
(6) W. A. Moore, R. C. Kroner and C. C. Ruchhoft, Anal. Chem.,
21, 953 (1949).
•
(7) M. M. Muers, J.. Soc. Chem. Ind.. 55_, 71T (1936).
(8) W. A. Moore, F. J. Ludzack and C. C. Ruchhoft, Anal. Chem.,
23, 1297 (1951).
(9) R. A. Dobbs and R. T. Williams, Anal. Che*., 35, 1064 (1963),
(10) "Water and Atmospheric Analysis," Annual Book of Standards,
Part 23, American Society for Testing and Materials,
Philadelphia, Penn., 1973.
(11) "Methods for Chemical Analysis of Water and Wastes,"
Environmental Protection Agency, Cincinnati, Ohio, 1971,
pp 17-23.
-------
- 17 -
(12) "Handbook for Monitoring Industrial Wastewater,"
t
Environmental Protection Agency, Wash., D. C., 1973.
(13) V. A. Stenger and C.E. Van Hall, Anal. Chem., 39., 206
(1967).
(14) C. Gelsler, J. F. Andrews and G. Schlerjott, Water and
Wastes Eng., n., 26 (1974).
(15) R. B. Dean, R. T. Williams and R. H. Wise, Environ. Scl.
Techno! » 5., 1044 (1971).
(16) A. F. Westerhold, The Digester, 22, 4 (1965).
(17) Ibid.. 22, 18 (1965).
(18) J. S. JeHs, Water and Wastes Eng.. 4, 89 (1967).
•
(19) T. K. Wu, Michigan Department of Natural Resources Laboratory,
Lansing, Michigan, private coimiunlcatlon, 1974.
(20) J. M. Foulds and J. V. Lunsford, Water and Sewage Works. 115,
112 (1968).
(21) W. N. Wells, Water and Sewage Works. 117. 123 (1970).
(22) L. E. Shriver and J. C. Young, J. Water PoTlut. Contr. Fed.,
44, 2140 (1972).
(23) W. R. Bloor, J, B1cl. Chem., 77, 53 (1928).
(24) M. J. Johnson. J. B1ol. Chem.. 181, 707 (1949).
(25) R. R. McNary, M. H. Dougherty and R. W. Wolford, Sewage and
'Industrial Wastes. 29, 894 (1957).
(26) N. Chaudhuri, S. N1yog1, A. Qe and A. Basu, £. Water Pollut.
. Fed.. £5, 537 (1973).
-------
- 18 -
(27) A. F. Gaudy and M. Ramanithan, _J. Water Pollm:. Contr. Fed..
36, 1479 (1964).
(28) A. H. Molof and N. S. Zaleiko, 19th Purdue Industrial Waste
Conference, Lafayette, Ind., May, 1964
(29) J. H. Ickes, E. A. Gray, N. S. Zaleiko and M. H. Adelman in
"Automation in Analytical Chemistry, Technicon Symposia
1967," Mediad Inc., Tarrytown, N. Y., 1968.
(30) M. H. Adelman, 18th Pittsburgh Conference on Analytical
Chemistry and Applied Spectroscopy, Pittsburgh, Pennsylvania,
March, 1967.
(31) M. H. Adelman in "Automation in Analytical Chemistry,
Technicon Symposia 1965," Mediad Inc., Tarrytov/n, N. Y.,
1966.
(32) "Industrial Method No. 137-71W," Technicon Instruments Corp.,
Tarrytown. N. Y., 1973.
(33) E. C. Tifft and B. E.'.Caln in "Automation in Analytical
Chemistry, Technicon Symposia 1972," Mediad Inc., Tarrytown,
M. Y., 1973.
(34) "Technicon Operation Manual," Technicon Instruments Corp.,
Tarrytown, N. Y., 1973.
(35) Federal Register. 38. 28759 (1973).
(36) W. A. Moore and W. W. Walker, Anal. Chan.. 28, 167 (1956).
(37) J. A. Winter, "Metnod Research Study 3, Demand Analyses,''
Environmental Protection Agency, Cincinnati, Ohio, 1971.
-------
TABLE I, COMPARISON OF THE PRECISION OF THE SEMI-AUTOMATED
AND STANDARD CHEMICAL OXYGEN DEMAND (.ETHODS
MANUAL
UTOKATED
•
1PLE NO,
1
2
3
4
No, OF
DETNS,
11
10
U
10
'" Ic
MEAN .
40
230
26
270
ion/ , h
RANGE
4
90
4
12
Ki/L
STD, DEV,
LI
28,0
1,3
4,6
Rf&S?
DEV/ X
3,5
12,2
5,0
1,7
-------
' • \
TABLE II, RECOVERhES OF POTASSIUM HYDROGEN PKTHALATE ADDED
TO VfoTER SAMPLES WITH $EMI-AuTO,WED METHOD
M3/T
SAMPLE SOURCE SAMPLE IflP ADDED SAMPLE +KHP RECOVERY^
•
ORGAWCS INDUSTRY 13 200 217 102
RAW SEWAGE 164 200 370 103
RIVER HATER 31-100 122 91
HARBOR WATER 16 200 224 '
INDUSTRIAL COOLING 65 200 262 99
WATER
RIVER WATER 15 100 116 101
RIVER HATER 28 ' 100 124 96
CHANNEL WATER 52 100 '152 100
.NEAR DREDGING
INDUSTRIAL DISCHARGE 30 100 131 101
INDUSTRIAL DISCHARGE 16 100 116 100
TREATED SEWAGE 40 100 ' 144 104
RECEIVING WATER 25 100 127 102
OF- SEWAGE
TREATED SB^AGE 14 100 124 110
STEEL MILL EFFLUENT 14 100. 112 98
STANDARD DEVIATION
-------
TABLE III, CAPARISON OF SEMI-ALTTCMATUD AID STANDARD
CHEMICAL OXYGCN DEMAND I-ETUODS
SAMPLE SOURCE
RAW SEWAGE
PAPER MILL cooL.it s
SmRm WASTE
TREATED SEKAGE
PRIMARY TREATED
«SEWAGE
BOILER BLOVSCV/N
POTTERY SHOP WASTE
CREEK DOWN-STREAM
^FROM POTTERY SHOP
folMARY TREATED
PAPIERGMILL WASTE
RAWSB-(AGE
TREATED SE^GE
TREATED SSNAGS
TREATED SB-JAGE
CRGANIC CMSMICAL
PLAm-V.'-STE
STEEL MILL V.^STH
• t 1. . *•«.*•.<• - f» p* • •
rrnoiL
STANDARD METHOD
(S)
120
39
270
50
63
180
110
91
SO
150
170
36
27
21
270
SEMI-AJTOMTED
MEHOD (AT
121
16
273
51
51 .
133
155
99
87
151
161
35
27
22
2o
S/A
XJOO
99,8
81, 8
98.9
98,0
123 .V
>).'!
89,7
91,9
103','1
97,0
103,7
302',9
300,0
95,5
93,2
3CCO 9220 l:-5,
£2,2
?D :r/j,\T::N . 5-2
RESULT REJECTS FC?. CALCJLATICN CF f^.N ATD ^-A.ND^ :r/!.;Tic.N,
-------
TABLE IV* COMPARISON OF CHEMCAI. OXYGEN DEMAND
, HETK)DS ON ORGANIC lOKPOUNDS
COMPOUND
SODIUM ACETATE
ACETONE
ETHANOL
DEXTROSE
Lconl, MS/I •
THEORETICAL
238
470
221
J97
107
150
127
490
98
64
197
223
239
244
i
STANDARD toco SEMI -/AUTOMATE
(S) METHOD (AJ
.230
450
200
170
100
130
120
470
90
60
190
"5
64
250
240
462
207
180
IB
139
128
496
98
62
202
•<3
77
242
D S/A
X100
95:,8
97','4
96,6
94',4
83,8
93','5
93,8
94V8
91,8
96,8
94,1
— A
83',1A
103,3
95,0
3,5
OXALIC ACID
SODIUM CITRATE
GLUTAMIC ACID
GLYCINE
BENZDIC ACID
PmiDINE
3-PlCOLINE
TETKAHYDROFURAN
MEAN
STANDARD DEVIATION
RESULTS REJECTED PCS CALCULATION OF raw AND STAND^.=U) EEVJATICN,
-------
TITLES FOR FIGURES,
FIGURE 1, AUTOMATED SYSTEM FOR CHEMICAL OXYGEN DEMWD, NUMBERS IN
PARENTHESES CORRESPOND TO THE FLOW RATE OF THE PUMPTUBES
IN ML/MIN, NUMBERS ADJACENT TO GLASS COILS AND FITTINGS
ARE TECHNICON CORP, PART NUMBERS, •
FIGURE 2, RECORDER TRACE FOR CHEMICAL OXYGEN DEMAND OF POTASSIUM
HYDROGEN PHTHALATE STANDARDS ANALYZED IN EXPLICATE,
FIGURE 3, CALIBRATION CURVE FOR AUTOMATED CHEMICAL OXYGEN DEMAND,
EACH POINT IS THE AVERAGE OF DUPLICATE DCTERMmTICNS,
FIGURE 4, PLOT OF APPARENT CHEMICAL OXYGEN DEMAND CAUSED BY THE
OXIDATION OF CHLORIDE, &TA DETERMINE) BY ADDING THE
INDICATED AMOUNTS OF CHLORIDE TO A SCO MG/L COD POTASSIUM
HYDROGEN PHTHALATE STANDARD,
FIGURE 5, PLOT OF APPARENT CHEMICAL OXYGEN EET-WND CAUSED BY THE
ABSORBANCE AT 600 W FROM FERRIC IRON IN SOLUTION, DATA
DETERMINED BY ADDING THE INDICATED AMOUNTS OF IRON TO A
500 MS/L COD POTASSIUM HYDROGEN PHTHALATE ij
-------
1
n
w
•o
- o
— u
s-
« I
V)
o "i
- 0
ac
UJ
a
a
-------
t
Ill
o 6 ff"
* '[COD]
-------
-------
K>
[COD] ,m£/l
2>
£2 e
_ I
£i
00 C3
-------
Central Regional Laboratory
Environmental Protection Agency
Chicago, Illinois 60609
MICRO SEMI-AUTOMATED ANALYSIS OF SURFACE AND WASTEWATERS
FOR CHEMICAL OXYGEN DEMAND
PRELIM! MARY
SUBJECT TO REVISION
*
Andrea M. Jlrka and Mark J. Carter
*Author to whom correspondence should be addressed.
-------
-1
BRIEF
A alcro semi-automated spectrophotometrlc method for determining the
chemical oxygen demand of surface and wastewaters 1s described and
compared to tht standard method.
ABSTRACT
A »1cro sample digestion technique for the determination of chemical
oxygen demand (COO) 1s described. An automated spectrophotometric
measurement of the appearance of chromium (III) after sample digestion
completes the method. Adequate sensitivity at 600 ran 1s achieved by
using a 50 mm flowcell to measure COO values 1n the range 3-900 mg/1.
The semi-automated method is compared to the standard method with
respect to precision, accuracy, ease of analysis and comparability of
data.
-------
- 2 -
INTRODUCTION
The oxidation of organic and inorganic wastes in a receiv-
ing water depletes the dissolved oxygen supply, whi:h can have
a profound effect on aquatic life (1). A meaningful determina-
tion of the natural oxygen demand of wastewaters has been a
problem since the previous century. The biochemical oxygen
demand (BOO) test was developed to measure the natural oxygen
demand of wastes under laboratory conditions similar to those
found in receiving waters (2-4). The advantage of the BOD test
1s that it is a good indicator of the bio-degradcbility of a
waste. The major disadvantages of the BOO test am the long
time required for analysis, the poor precision and the indeter-
minable accuracy of the method (4,5).
In order to substantially reduce the time required to esti-
mate the ultimate oxygen demand of a wastewater, tie chemical
oxygen demand (COD) test was developed (6). The addition of
silver sulfate (7, 8) and mercuric sulfate (9) to the acidic
dlchromate digestion solution, increased the real lability of the
COD test (10, 11). However, since chemical oxidation does not
differentiate between biologically stable and unstable wastes, a
correlation between COO and BCD values must be developed for
each sample type (12). -
Stenger and '/an Hall reported a very rapid method for measur-
ing the total organic carbon (TCC) content of wat;r sarroles, which
-------
. 3 -
•
can be related to oxygen demand (13). However, the advantage
In being able to rapidly determine TOC values 1s offset by the
high Initial equipment cost. In addition, the Informational
content of the TOC analysis 1s less useful than that gained
from the 800 or COO methods (14). The TOC test does not dif-
ferentiate between compounds with the same number of carbon
atoms, but which are In different stages of oxidation and hence
have different oxygen demanding potentials. Since the COO and
BOD tests measure the amount of oxygen required to stabilize
waste sample's, their values Inherently reflect the original
oxidation state of the chemical poll-joints.
•
The standard COD test (4) 1s widely used because 1t pro-
vides a good balance between the value of the Information gained
and the speed of analysis when compared to the 800 and TOC tests
m
(12). However, the standard method for determining COD has
limitations which are not Inherent 1n the concept of the test.
The back-titration of dlchromate after sample digestion is an
Insensitive method of detection. This lack of method sensitiv-
ity has been partially alleviated by using two different concen-
trations of dichromate and a relatively large sample volume. In
addition, the consumption of large quantities of expensive rea-
gents, the extensive bench space requirement of the CCO hot plates
which limits the number of analyses that can be performed 1n a
day, and the difficulty of disposing of large quantities of highly
acidic mercury, silver and chromium wastes, are serious problems
for most industrial Isboratorias (15).
-------
- 4 -
Recently, there has been considerable Interest 1n simpli-
fying the rather tedious standard COO method (16-19), Unfortun-
ately, procedures using a much shortened digestion period or
lower digestion temperatures produce results equivalent to those
obtained by the standard method only for very readily oxidized
wastewaters (20-22).
Bloor (23) and Johnson (24) determined the organic content
of biological materials using dichrcmate as an oxidant and then
measuring the excess dichrcmate spectrophototnetrically. This
procedure eliminated the tedious detection procedure of the stand-
*
ard method. The spectrophotcr.etric procedure has been applied to
the analysis of water samples in which the COO was determined by
measuring the appearance of Cr (III) after manual digestion (25-27)
Several COO methods which use a spectrophotometric means of
detection and automated sample digestion have also been reported.
Sample digestion was accomplished using a continuous digester (28,
29) or high temperature bath (30-32). However, Tift and Cain
reported data which shew that these automated procedures do not
produce results equivalent to the standard method for all sample
types (33). The ^comparability of data was attributed to incom-
plete sample oxidation caused by the snort digestion times in the
automated methods. In addition, the higher cor.cenrration of sul-
furlc acid used in most automated systems requires a smaller
amount of mercuric sulfata 36 used to avoid its precipitation in
-------
. 5 -
the sample lines and flowed!. The lesser amount of mercuric
sulfate caused chloride to be more of an Interference 1n these
automated methods than 1n the standard method.
The method reported here combines the advantages of the
reliability of the standard digestion procedure (4), with the
superior sensitivity and precision of an automated procedure
based on the spectrophotometrlc measurement of Cr (III) (27).
Use of the resultant micro semi-automated COO method has
Increased the productivity of this laboratory three-fold and
reduced the consumption of very expensive reagents and the
quantities of wastes twenty-fold.
EXPERIMENTAL
Apparatus. Samples were digested 1n Coming ?9949 16x100
mn screwcap (cap 19998) culture tubes. Spectrophotometrlc measure-
ments were made with the apparatus shewn schematically 1n Figure 1,
The automated system was fabricated using Technicon Corporation
AutoAnalyzer II equipment consisting of a Sampler IV, Pump III,
Colorimeter II, Recorder II, and single channel Digital Printer.
The colorimeter was used In the direct mode and equipped with 600
nra Interference filters and 50 mm flowcells. The Standard Calibrra-
tlon control was set at 228 to attain 1000 mg/1 CCO full scale on
the recorder. A glass capillary was used as a sample probe. The
sampler was operated at 40 samples/hr with a 3:1, sample to wash
ratio.
-------
- 6 -
Wastewater samples with parti :ulate natter were blended
with a Teckir-ar Model SOT homogenize before taking «.n aliquot
for analysis. An adjustable 0-5 ml Oxford pipette with dis-
posable polypropylene tips was used for allquoting samples and
addition of reagents.
Reagents. Unless otherwise noted, all chemicals were ACS
reagent grade. All reagent water was de-ionized and distilled.
Digestion solution was prepared by adding 10.215 g of
K2Cr207 (dried at 1C5° C), 1S7 ml of ccnc H2S04 an-i 33.3 g of
HgS04 to 500 ;nl of water and. diluting the cooled solution to
1 1.
Catalyst solution was preparei by dissolving 22 g of Ag2S04
1n a 9-lb bottle of cone H^i? .
Sampler wash solution «as 5C« sulfuric acid by volume.
A stock potassium
-------
- 7 -
of catalyst solution were added carefully down the side of the
culture tube so that the acid formed a layer on the bottom.
The tube was capped tightly and then shaken to mix the layers.
Two blanks and a set of standards were prepared 1n the same
manner and analyzed with each sample set.
All samples, blanks and standards were heated 1n an oven
at 150° C, which 1s the observed reflux temperature of 50- sul-
furlc add. After two hours the tubes were removed from the
oven, cooled, and placed in the Sampler IV tray.
The analytical manifold and reagents were set up as Indi-
cated 1n Figure 1. Two digested blanks were analyzed at the
beginning of each sample set to zero the baseline. A mid-scale
standard was used to calibrate the recorder and printer (34).
Standards were rerun periodically during the course of an ana-
lysis run to assure that the system remained in calibration.
The COD value of unknown samples was obtained by direct print-
out. A typical recorder trace for standards 1s shown in Figure 2.
RESULTS AND DISCUSSION
Sample Digestion. It has been shown that COD procedures
using a shortened digestion period and/or a reduced digestion
temperature do not attain the same degree of sample oxidation as
the standard .-nethod (20-22, 33). Any alternate test procedure
used to analyze -vastswaters *cr COD must produce results equiva-
lent to or bettar than :he cur-ent standard met.iod (35). There-
fore, to insure data ccncarability the temperature and length of
-------
- 8 -
.sample digestion and concentration of reagents used in the
standard method were adopted for use in the semi-automated
procedure described here (4).
Since the micro colorimetric detection technique required
only 2 ml of digested sample the quantities of sample and rea-
gents used were reduced twenty-fold in comparison to the
standard method (4, 11). Use of the standard COO digestion
apparatus was eliminated and instead all samples, blanks and
standards were digested in small screw-cap culture tubes. The
potential for sample ccnta.Tination from large glass surfaces
was consequently reduced.
Screw caps with phenolic resin liners were found to be
unacceptable since they were -itiscked by the digestion solution
giving erroneously high CCD values. Teflon-lined caps greatly
reduced this problen especially if each can -.-.as u:;ed cr.ly once.
Any sample tube which lacked, is evidenced by a black residue
on the outside of the tube, v/as discarded.
Uniform addition of reagents and ircoroved precision was
achieved by dissolving r.ll chemicals -in cne of two solutions.
The catalyst solution was prepared by tne standard method (4).
The oxidizing solution was prepared by chaining :ctissium
dlchrcmate with merfjr-c sulfate and -naking the solution 5 N
with sulfjr-'c 3c:c to sclubilize :r.e lerrjry salt. However,
the mercuric sulrV.a -.as net cc-o'^ta"/ lol^cle in t.-.e cooled,
combined raacvcn v.;:jr-2. 7%.e r.i'r^.t of the scalar orobe
-------
. 9 -
f
was carefully-adjusted so as to avoid aspirating the precipitate.
Otherwise, aspiration of the participate matter caused severe
baseline noise.
Sp€$troohotometr1c Analysis. The COO of wastewater samples
has been determined spectrophotometHcally, after digestion, by
measuring the decrease 1n Cr (VI) concentration at 352 (32) or
440 noi (19). Alternatively, the Increase 1n Cr (III) concentra-
tlonhas been measured at 600 (27) or 650 nm (25). All of these
authors found the spectrophotometrlc procedure to be easier to
perform than the manual tltratlon.
Molov and Zalelko showed that better sensitivity could be
achieved by measuring the decrease 1n Cr (VI) concentration than
the Increase In Cr (III) concentration (23). However, the preci-
sion of ..a method based on measuring the decrease 1n Cr (VI) absorb-
ance 1s very dependent on the reproducebillty of reagent addition.
This problem was avoided and adequate sensitivity achieved by
measuring the appearance of Cr (III) at 6C3 rrn, using a 50 ran
flowcell, and the scala expansion capability of the Technicon
colorimeter.
In order to increase the sensitivity of the standard method,
two different concentrations of oxidizing reagent are ccrrnonly
used. These correspond to tv/o levels of CCD msasurenent, 5-50
nig/1 and 50-oCO -g/1 (11). ,'taore and 'Jalker found that t:ie
working range of the lew Isvel modification was limited by the
diminished oxidation pocaniial of the digestion solution after
5C2 of the iichrcmata was consumed (35).
-------
- 10 -
Due to the adequate sensitivity of the spectrophotometric
semi-automated method, only one set of reagent concentrations
was necessary to cover both levels of the standard method. In
order to test the linearity of the semi-automated method,
standards between 500 and 1000 mg/1 COO were analyzed in incre-
ments of 25 mg/1. " Potassium hydrogen phthalate was chosen for
use as a standard because of its stability in solution and its
complete oxidation under the conditions of the COD te;t (4).
The results, presented in Figure 3, show the colorime-ric method
to be linear up to 900 mg/1 CCO.
Due to the use of 5C« sulfuric acid, the original automated
manifold was constructed with scidflex tubing. However, the
system exhibited very poor hydra"ic character-sties. This problem
was aleviatsd by replacing the scidflax tubes with ty;on au~p
and transmission tubing. The reorder trace in Figure 2 was
undamped. The entirs system was cleaned for about I/' hour before
first use with 50* selfuric acid to prevent severs baseline drift
due to Teachable organic :iittar. Also 1:1 dil-j-ion locc was added
to the system to reduC3 tra viscosity of the sample 3 :r*~~. so that
proper debubbling ccc-jrred in the flcwcsll.
Precision, -"cc-riry *"d "st^ct'CT '."In-'*:. Siics "it vas dif-
ficult to ccrrsct the ca--i-aiJt:rit2C -ssults -:r -.he .:rz.'.' baselin
drift, the working iatection lirrit ^as define: ^c the ~=in bias cf
the blank plus t:,-o tr.anc:-;! leviafions. l~.*-'=r, ilan.< i-.-.-1*s
were analyzed to ieta-mine ths daracticn l:'.7,it. T>,£ "£:n /alje
-------
-11-
'obtained was 1 mg/1 with a standard deviation of 0.8 mg/1 COD.
These values were used to define the detection Hm1t at 3 mg/1
COO. This number compares quite favorably with the detection
limit of 5 mg/1 COO reported by Moore and Walker for the low
level standard COD method (36).
The relative precision of both modifications of the stand-
ard and the semi-automated COD methods was determined by perform-
ing replicate analyzes on four wastewater samples. Since the
standard and serai-automated determinations were performed at
different times, two similar sets of water samples were chosen
so that the relative standard deviations could be meaningfully
compared. The relative standard deviations of both methods for
low COD concentrations, as shown in Table I, compare very closely.
However, the precision of the semi-automated method at high COO
concentrations was approximately seven times better than the
standard method.
Adelman pointed out that one of the factors contributing to
the poor precision of the standard method was the potential loss
of volatile components of the wastewater samples (30). This can
be caused by the heat generated by the mixing of the sample with
the concentrated acid prior to reflux or during the reflux stap.
This problem was eliminated in the semi-automated procedure by
avoiding mixing the sample and acid layers until the tube is
capped and the fact that sample digestion occurs in a ccrnoletely
closed systam.
-------
- 12 -
The authors found that the ability to take a representative
aliquot of a nonhomogeneous sample was the limiting component of
analysis variability regardless of method. Precision data for
the standard COO method determined from Inter-laboratory analyses
of standard-!1ke solutions must be regarded only as a lower limit
(5, 37).
The accuracy of the semi-automated method was determined by
measuring the recovery of standard addition of potassium hydrogen
phthalate to several types of water samples. The mean recovery
from 14 water and wastewater samples, shown 1n "able II, was 101 *
with a standard deviation of 41.
Comparison of Seni-Automated and Standard Methods. A variety of
surface and wastewater samples were analyzed by both the standard
and serai-automated COO cethods to determine the comparability of
data. These samples included raw and treated sewage, industrial,
chemical and food procass wastes. Results comparing the two methods
are shown 1n Table III. Initially the largest discrepancies between
methods occurred in samples which contained la-ge quantities of
particulars matter, e.g., raw sewage. Homogenizing samples of
this type greatly improved the comparability of the data. Within
the standard deviation of the mean ratio of results, no significant
bias 1n CCO values exists between methods.
In addition, several pure organic cctnpcur;cs were analyzed to
determine if the semi-autcna:ad Tathcd achieved a rr.crs cc^olete
-------
• 13 -
digestion than the standard method. The experimental results
and calculated maximum theoretical COD values are shown In
Table IV. Tht semi-automated values were slightly higher than
the standard method results Indicating that the former method
achieved a more complete sample digestion. The difference
could also be due to the fact that no volatile material can
excape from the sealed tubes during oxidation 1n the semi-auto-
mated method, while 1n the standard method, volatile material
nay escape before sample oxidation is complete.
Interferences. One of the major problems encountered 1n
other automated COO methods 1s the Inability of the techniques
•
to compensate for the positive Interference caused by the oxida-
tion of chloride present in wastewater samples (28-32). The
standard procedure for eliminating the chloride interference 1s
the addition of mercuric sulfate to form a complex and prevent
Its oxidation (4, 9). Experiments performed by this laboratory
Indicate that no interference results up to 2000 mg/1 chloride
when the standard procedure is used (9).
In other automated techniques, the high acid concentration
reduces the solubility of HgS04 so that the quantity of Hg(II)
1n solution is not sufficient to complex the same amount of
chloride as in the standard method (23-32).
In the se-ni-automated COO method, the ratio of HgSC4 to
sampl- volume is identical to the standard method. Standards of
500 mg/1 CCD *ere spiked *ith varying amounts of chloride in
-------
- 14 -
order to determine the limiting concentration at which the inter-
ference was significant. The results, shown 1n Figure 4, indi-
cate that chloride does not Interfere below 1000 mg/1. Above
this concentration, some precipitation occurs when the dilution
water combines with the sample stream 1n the automated system,
which results 1n a noisy recorder trace. If 1t 1s necessary to
routinely analyze samples containing between 1000 and 2000 mg/1
chloride, the dilution loop can be removed. A1r spikes will then
appear at the beginning and end of each sample peak, due to
Improper debubbling, but the results are not affected.
Any chemical species remaining after sample digestion, which
absorb at 600 nm, cause a positive interference in the semi-auto-
mated method. Since almost all organic matter is digested by the
COO technique the possible interference from organic compounds
was not considered (5, 3, 36).
The presence of Cr (III) in a water sample gives an apparent
COD of 1.39 times the concentration of chrcniun. Also, a potential
Interference from iron was investigated by spikir.c standards of
500 mg/1 COO with increasing amounts of ferric iron. The results,
presented 1n Figure 5, show no apparent COO below 5 g/1 Fe. The
positive bias caused by high concentrations of inisrfering sub-
stances is routinely eliminated by diluting sa.r.pl ;s ?r:cr to
analysis cr correcting the reported CCD values fr:m independent
determinations of chromium, iron and chloride.
-------
- 15 -
• ACKNOWLEDGEMENT
The authors would like to thank B. J. Fair!ess and
D. A. Payne for their helpful comments during the course of
this work and their critical review of the manuscript.
The mention of trade names or commercial products does
not constitute endorsement or recommendation for use by the
Central Regional Laboratory or the Environmental Protection
Agency.
-------
- 16 -
REFERENCES
(1) "Water Quality Criteria," Federal Water Pollution Control
Administration, Washington, 0. C. .1968, pp 32-5.
(2) E. B. Phelps, "Stream Sanitation," John Wiley and Sons,
New York, N. Y., 1944, pp 65-6.
(3) E. J. Therlault, Public Health Bulletin No. 1/3, U.S.
Public Health Service, Washington, 0. C., 1927.
(4) "Standard Methods for the Examination of Water- and Waste-
water," 13th ed., American Public Health Association,
New York, N. Y., 1971, 3 489.
(5) D. G. Ballinger and R. J. Lishka, £. Water Pollut. Contr.
fed., 34_, 470 (1962).
(6) W. A. Moore, R. C. Kroner and C. C. Ruchhoft, Anal. Chem.,
•21,, 953 (1949).
(7) M. M. Muers, J. Soc. Chem. Ind.. 5j[, 71T (193(5).
(8) W, A. Moore, F. J. Ludzack and C. C. Ruchhoft, Anal. Chem..
23, 1297 (1951).
(9) R. A. Dobbs and R. T. Williams, Anal. Chem.. _35_, 1064 (1963)
(10) "Water and Atmospheric Analysis," Annual Book of Standards,
Part 23, American Society for Testing and Materials,
Philadelphia, Penn., 1973.
(11) "Methods for Chemical Analysis of Water and Wastes,"
Environmental Protection Agency, Cincinnati, 3hio, 1971,
pp 17-23.
-------
- 17 -
(12) "Handbook for Monitoring Industrial Wastewater,"
Environmental Protection Agency, Wash., D. C.t 1973.
(13) V. A. Stenger and C.E. Van Hall, Anal. Chem.. 39_, 206
(1967).
(14) C. Gelsler, J. F. Andrews and G. Schlerjott, Water and
Wastes Eng., lj_, 26 (1974).
(15) R. B. Dean, R. T. Williams and R. H. Wise, Environ. Sci.
Techno!. 5_, 1044 (1971).
(16) A. F. Westerhold, The Digestor. 22, 4 (1965).
(17) Ibid.. 22,, 18 (1965).
(18) J. S. JeHs, Water and Pastes Eng., 4_, 89 (1967).
•
(19) T. K. Wu, Michigan Department of Natural Resources Laboratory,
Lansing, Michigan, private communication, 1974.
(20) J. M. Foulds and J. V. Lunsford, Water and Sewage Works, 115.
112 (1968).
(21) W. N. Wells, Water and Sewage Works. 117, 123 (1970).
(22) L. E. Shriver and J. C. Young, J_. Water Pollut. Ccntr. Fed.,
44, 2140 (1972).
(23) W. R. Bloor. J. Bid. Chem., 77_, 53 (1928).
(24) M. J. Johnson, J. Biol. Chem.. 181. 707 (1949).
(25) R. R. McNary, M. H. Dougherty and R. W. Wolford, Sewage and
Industrial Wastes. 29_, 894 (1957).
(26) N. Chaudhuri, S. Niyogi, A. De and A. 3asu. £. Water Pollut.
' Contr. Fed., 45, 537 (1973).
-------
- 18 -
(27) A. F. Gaudy and M. Ramanathan, J. Water Pollut. Contr. Fed.,
36, 1479 (1964).
(28) A. H. Molof and N. S. Zalelko. 19th Purdue Industrial Waste
Conference, Lafayette, Ind., May, 1964
(29) J. H. Ickes, E. A. Gray, N. S. Zaleiko and M. H. Adelman in
"Automation fn Analytical Chemistry, Technicon Symposia
1967," Mediad Inc., Tarrytown, N. Y., 1968.
(30) M. H. Adelman, 18th Pittsburgh Conference on Analytical
Chemistry and Applied Spectroscopy, Pittsburgh, Pennsylvania,
March, 1967.
(31) M. H. Adelman in "Automation in Analytical Chein'stry,
Technicon Symposia 1965," Mediad Inc., Tarrytown, N. Y.,
1966.
(32) "Industrial Method No. 137-71W," Technicon Instruments Corp.,
Tarrytown, N. Y., 1973.
(33) E. C. Tifft and 8. E.'.Cain in "Automation in Analytical
Chemistry, Technicon Symposia 1972," Mediad Inc., Tarrytown,
H. Y., 1973.
r*
(34) "Technicon Operation Manual," Technicon Instruments Corp.,
Tarrytown, N. Y., 1973.
(35) Federal Register, 23, 28759 (1973).
(36) W. A. .Vcore and H. W. Walker, Anal. Ciem.. 23, I«i7 (1956).
(37) J. A. Winter, "Method Research Study 3, Oesand Ara?yses,"
Envlrcrmental Protection Agency, Cincinnati, Ohio, 1971.
-------
TABLE I, COMPARISON OF THE PRECISION OF THE SEMI-AVOWED
AND STANDARD CHEMICAL UMTGEN HEMAND IETHODS
MANUAL
i-
•
1PLE to,
1
2
3
4
to, OF
DETNS,
11
10
11
10
|(
MEAN .
40
230
26
270
ion / , ^
RANGE
n
90
4
12
V5/L
SroV DEV','
LI
28,0
1,3
W
REL,':
DEV,
3,5
12,2
5',0
1,7
-------
TABLE II, RECOVERIES OF POTASSIUM HYDROGEN PKTHALATE ADDED
TO MffER SAMPLES WITH SEMI-AUTOMATED f's
SAMPLE SOURCE
•
ORGANICS INDUSTO
EFFLUENT
RAW SEWAGE
HARBORWATER
INDUSTRIAL COOLING
ff UKR
RIVER tt
TNEAR DREDGING
INDUSTRIAL DISCHARGE
INDUSTRIAL DISCHARGE
TREATED SEWAGE
RECEIVING WATER
OF-SEKAGE
TREATED SB^AGE
STEEL MILL EFFLUENT
fen)], MS/I
SAMPLE
13
W
31
16
65
15
28
52
^f\
30
16
40
25
14
WiP ADDED
200
200 '
. 100
200
200
100
4
100
100
IfW
ILJU
100
100
100
103
SAMPLE -HOP
217
370
122
224 "
262
116
124
152
116
144
127
124
RECOVERY,%
102
103
91
104
99
301
96
100
100
104
102
no
100.
112
STANDARD DEVIATION
-------
TABLE III, Cbf-PAftiSQN or SEMI-AUTCT-'ATI-D Ate STANDARD
CHEMICAL OXYGCN CEMVND
frnnT;
fvcMtrv oi iv-T"' 'dcrt: c;"rn c1'"*'"'
V _ ..V^A— I — • I I • ."— IW M-.WW «^..«J
STANDARD KETHOD SEMI-AJTOVATED S/A
SAMPLE SOURCE (S; HETJCD (AT X 300
RAW SB-AGE 420 421 99,8
PAPER MILL coou'ns 39 46 84,8
STKLMILL WASTE 270 ... 273 98.9
TREATED SEWAGE 50 51 98,0
PRIMARY TREATED 63 51 !2.:-rt
SEWAGE
BOILER BLBVSCUN 180 1S3 '.?>, •
POTTERY SHOP WASTE 140 155 89,7
CREEK DOWNSTREAM 94 . 99 94,9
FROM POTTERY SHOP ..
FfclMARY TREATED 90 87 103,4
SEWAGE
PAPER MILL WASTE 450 454 ' 97,0
RAWSB^AGE 170 164 103',7
TREATED SE-&GE 35 35 102,9
TREATED SS-^GE 27 27 IQO',0
TREATED SEKAGE 21 22 95,5
CRGANIC CH^HCAL 270
^PLAf^T WASTE
STEEL HILL v^sn EG
»/T,r^^f •. t
A RESULT SEJE:TED per. CALCULATICN CF ,'-^;j A?S r-fcx^ :-/-;T"-
-------
TABLE IV. COMPARISON OF &EMICAL OXYGEN DEMAND
. METHODS ON ORGANIC COMPOUNDS
COMPOUND
SODIUM ACETATE
ACETONE
EIHANOL
DEXTROSE
• *••••••
THEORETICAL
238
170
221
197
107
150
127
190
98
W
197
223
239
211
i
faro. i«/i
•
STANDARD J-!ETHOD SEwr-Ai/rawED S/A
(S) MEFHOD (ATXIOO
.230
150
200
170
100
130
120
170
SO
60
190
<5
61
250
210
162
207
180
113
139
128
196
98
62
202
<3
77
212
95:,8
97,1
96,6
91,1
88V8
93,5
93,8
91.8
91,8
96,8
91,1
• A
83,1A
i03,3
95,0
3,5
ACID
SODIUM CITRATE
GLUTAMIC ACID
GLYCINE
BENZOIC ACID
PYRIDINE
5-PlCOLINE
TEIRAHYDROFURAN
MEAN
STANDARD DEVIATION
A .....
RESULTS REJECTED PCS CALCULATION CF MEAN AND STANDA-ID :EVIATICN,
-------
TITLES FOR FIGURES,
FIGURE L AUTOMATED SYSTEM FOR CHEMICAL OXYGEN DEMAND, NUMBERS IN
PARENTHESES CORRESPOND TO THE FLOW RATE OF THE PUMPTUBES
IN ML/MIN, NUMBERS ADJACENT TO GLASS COILS AND FITTINGS
ARE TECHNICON CORP, PART NUMBERS, •
FIGURE 2, RECORDER TRACE FOR CHEMICAL OXYGEN DEMAND OF POTASSIUM
HYDROGEN PHTHALATE STANDARDS ANALYZED IN DUPLICATE,
FIGURE 3, CALIBRATION CURVE FOR AUTOMATED CHEMICAL OXYGEN DEMAND,
EACH POINT IS THE AVERAGE OF DUPLICATE DETERMINATIONS«
FIGURE 4, PLOT OF APPARENT CHEMICAL OXYGEN DEMAND CAUSED BY THE
OXIDATION f>F CHLORIDE, DATA DETERMINED BY ADDING THE
INDICATED AMOUNTS OF CHLORIDE TO A 500 MG/L COD POTASSIUM
HYDROGEN PHTHALATE STANDARD,
FIGURE 5, PLOT OF APPARENT CHEMICAL OXYGEN DG-VAND CAUSED BY THE
ABSORBANCE AT 600 NM FRCM FERRIC IRON IN SOLUTION, DATA
DETERMINED BY ADDING THE INDICATED AM3UNTS OF IRON TO A
500 MS/L COD POTASSIUM HYDROGEN PHTHALATE STANDARD,
-------
•
^
L*
P*
v
i
£
g
aa
5
§'
«£
1
M
(O
a
f
1
b
0
**
1
V)
0
*""*
9
*
j
4
^
1
1
<
O
i
*£
^tf
55
d
o
» ^4
• u
* w
j a.
u u
1 O
a oc
1
,-g
3 M
-5
•
•
^«
o
?
0
V)
-o
c
•
••
„
5
e
^
cc
n
CC
0
r
»«•
o
1
r>
»
w
«
^
^*
"I
— i O
1
n
i
^c
-------
oX 9
[coo].«o/i
PI 8
i
-------
AISOR8MI, O.D.
a
-------
C3
cn
[coo] ,mg/i
en
CD
£2 c
, i
3 -*
oro e
1*0
-------
APPENDIX III
-------
AN AUTOMATED METHOD TOR THE DETERMINATION OF
TOTAL AND INORGANIC MERCURY IN WATER AND WASTEWATER SAMPLES
' BY
ABBAS A. EL-AWADY*. ROBERT B. MILLER AND MARK J. CARTER
U.S. Environmental Protection Agency
Central Regional Laboratory
1819 W. Pershing Road
Chicago, Illinois 60609
*Author to whom correspondence should be addressed; on leave (1974-1975)
from Western Illinois University, Macomb, Illinois, 61155.
-------
ABSTRACT
An automated method for the determination of total as well as
inorganic and organic mercury by the cold vapor method is given. The
method is suitable for the analysis of samples in a variety of environ-
mental water matrices. A detection limit of 0.05 ug/1 is obtained by
the use of a highly sensitive spectrometer. The method is suitable
for the analysis of samples with mercury concentrations in the range
0.05 - -6 ug/1 and a COD less than 700 mg/1. The use of potassium per-
sulfate, potassium permanganate, potassium dichromate and mixtures of
these salts as oxidizing agents for the digestion step is discussed,
and a study of sample preservation '.s given. Twenty samples and/or
standards per hour can be analyzed asing this method.
-------
INTRODUCTION
In recent years a number of methods have been Introduced for
1-10
the determination of mercury 1n a variety of matrices. The most
wldaly used method utilizes a flameless atomic absorption technique
10
first Introduced by Hatch and Ott. Most of these are time consuming,
K. K. S. PHlay, C. C. Thomas, Jr., J. A. Sondel, and C. M. Hyche;
Anal. Chem.. 43, 1419 (1971). ,
2V. I. Muscat, T. J. Vickers, A. Andren; ibid.. 44, 218 (1972).
3E. W. Bretthauer, A. A. Moghissi, S. S. Snyder, and N. W. Mathews;
1b1d.. 46, 445 (1974).
it
J. J. Bisogni, Jr. and A. Wm. Lawrence; Env. S£. Tech., 8, 851 (1974).
5C. T. Elly; J_. Water Pol. Cont. Fed.. 45, 940 (1973).
R. F. Overman; Anal. Chem. 43, 616 (1971).
7T. J. Rohm, H. C. Nipper, and W. C. Purdy; Ibid.. 44. 869 (1972).
Y J. Issaq and W. L. ZieHnski, Jr. ibid.. 46, 1436 (1974).
9W. F. Fitzgerald, W. 8. Lyons, and C. D. Hunt, ibid.. 46, 1882 (1974).
10W. R. Hatch and W. L. Ott, Ibid., 40, 2085 (1968).
however, and do not allow for the analysis of a large number of samples,
such as Is generally encountered by environmental laboratories. The
solution to this problem has been to move in the direction of establishing
automated procedures, which will allow either continuous monitoring or
the analysis of reasonable numbers of samples per day. This increase
-------
in the sample analysis rate should be done without affecting either
the sensitivity or the accuracy of the procedure.
Recently a number of automated methods for the determina-
tion of mercury have appeared 1n print. These methods are highly suit-
able for the analysis of clean water samples and other samples with a
UB. W. Bailey and F. C. Lo; Anal. Chem. 43, 1525 (1971).
12
T. B. Bennett, Jr., W. H. McDaniel, and R. N. Hemphill; Advances
1n Automated Analysis, 1972 Technicon International Congress, Vol. 8;
Mediad Incorp., Tarrytown, N.Y.
P. D. Kluckner, "Investigation of an Automated Method for the Deter-
mination of Total Mercury in Water and Wastewater" a report to the
Chemistry Laboratory Water Resources Service, 3650 Wesbrook Crescent,
Vancouver, British Columbia, Canada (1973).
very low content of oxidizable materials. However, for samples with a
high content of particulate matter as well as for those with high con-
centrations of oxidizable impurities, the suitability of these methods
1s questionable. An automated method that addresses itself to these
questions is presented in this paper. The comparability of the des-
cribed method has been checked against the manual method presently
m
accepted by EPA and has been found suitable for the analysis of mercury
In all types of water samples Including those samples with a high content
of particulate matter and oxidizable impurities.
"Methods For Chemical Analysis of Water and Wastewat.er', EPA Publication
No. EPA-625/6-74-C03, U.S. Environmental Protection Agency, Office of
Technology Transfer, Washington, O.C., 20460, pp. 118
-------
EXPERIMENTAL
Apparatus. All glassware used In this work was boroslHcate
glass. Standard mercury solutions were prepared 1n volumetric flasks
with glass stoppers. All glassware was first washed with water, soaked
for two hours 1n a IX potassium permanganate solution, soaked for an
additional two hours 1n a 1:1 mixture of concentrated nitric and sul-
fuMc adds, and then washed with doubly deionized water. The glass-
ware was then baked for 3-4 hours at 400°C. It was found that for
subsequent use of the same glassware, a rinse with cone. KNO^ followed
by several rinses with doubly deionized water was sufficient. No traces
N of mercury were observed 1n these flasks. All domestic and industrial
waste samples were stored 1n high density polyethylene, 1-liter screw-
cap bottles with polyethylene lined caps and preserved to give a final
concentration of 0.52 HNC^. Liquid transfers for dilution purposes
were made with Eppendorf pipets of 0.1, 0.25, 0.5, and 1 ml capacity.
Instrumentation. The Instruments used consisted of:
1. Spectre Products Mercury Analyzer Model HG-2
2. Perkin-Elmer Model 56 multi-range chart recorder
3. Harmonically smoothed voltage stabilizer
4. Technlcon Auto-Analyzer Unit consisting of:
a. Sampler IV
b. Proportioning Pump III
c. Heating bath with heating coil (20 ft. long
and 2.4 mm internal diameter).
-------
5. Gas-Liquid Separator
6. A rotameter to measure the rate of air. flow irc the gas-
liquid separator.
t
7. High speed blender for sample homogenization
The operating principle of the mercury analyzer is based upon
o
balancing the intensity of the mercury line at 2537 A fron a hollow
cathode lamp "A" against the intensity of one or more lines from a
reference hollow cathode lamp "B" in the same wavelength region as
observed by a single detector. Lamp "A" is a pulsed mercury hollow
cathode lamp, and lamp "8" is a pulsed iron hollow cathode lamp. The
two lamp sources are pulsed 180° out of phase above a sustaining base
current in a square wave mode. The instrument is balanced with the
absorption cell swept free of any residual mercury. In the absence
of any interfering substance, any observed absorption is solely due
to mercury. The net intensity due to mercury absorption is directly
obtained from the output of a phase sensitive, lock-in amplifier. The
instrument is equiped with an automatic gain control to t.he lock-in
amplifier, so that compensation for the background or extraneous ab-
sorption is accomplished automatically. In addition, a 10X scale
expansion is provided for the analysis of samples containing low con-
centration levels of mercury.
It was found necessary to modify the absorption cell supplied
with the instrument. The main modifications were: 1. To decrease the
internal diameter by a factor of two; 2. To position th<» inlet and
exit tubes as close as possible to the quartz windows so as to decrease
-------
the dead air space 1n the vicinity of the window. In order to compensate
for the factor of four decrease 1n signal strength caused by these modi-
fications, 1t was necessary to Increase the gain (voltage) on the photo-
multiplier tube, The present cell's dimensions are: 22 cm long, 7 mm
Internal diameter, and 11 mm external diameter. The cell is constructed
completely from quartz.
The chart recorder is equiped with a variable input voltage,
allowing several scale expansions. The recorder was operated at its
lowest chart speed of 5 mm/min.
Reagents. All chemicals used are analytical reagent qrade or
better. The water used was doubly deionized. The reagents and their
concentrations are as follows:
1. Concentrated sulfuric acid; obtained from Baker and desig-
nated a$ "suitable for Hg determination".
2. lOt stannous chloride solution; prepared in a solution
10t1nHCl.
3. IX potassium permanganate solution; a fresh stock solution
was prepared every three weeks.
4. 2t potassium dichromate solution.
5. 31 hydroxylamine hydrochloride; prepared in a solution
3% In sodium chloride.
6. At potassium persulfate; this solution was prepared fresh
weekly.
7. Con. nitric acid.
8. A tank of purified nitrogen.
9. Mercury stock solutions; 1 mg/ml («1000 mg/1) of either
mercuric chloride or methyl mercuric chloride.
10. Mercury standard solutions. Mercury standard solutions
in the range 0.05 - 6.0 ug/1 were prepared by proper
dilutions of a 100 wg/1 stock solution prepared from
-------
solution 9 above. All standards were prepared in a
solution 0.52 in HN03 and °-05- ^n
-------
agent, both the hydroxylamine and permanganate or dichromate reagent
lines are disconnected, and the reagents Introduced 1n the order
HgSO^ SnCU, and ^^a* Aftcr a stablc baseline 1s obtained, standards
In the range 0.05 - 6.0 ug/1 Hg are placed 1n a sample tube (prerlnsed
with the same solutions), and transferred to the sampler. For all
samples judged to be high In mercury I.e. 0.5 - 6 ug/1, only standards
1n that range are used. For low level mercury determination I.e. less
than 0.5 ug/1, standards 1n the range 0.05 - 0.5 ug/1 are used, and
the mercury analyzer 1s set at Us 10X scale expansion. In addition,
a recorder scale expansion (a factor of 2) is used for runs with mercury
concentrations 1n the range 0.2 - 3 ug/1. Samples to be analyzed are
then placed in the sampler while the standards are running. Standards
were prepared fresh dally from the stock solution and analyzed by the
system before and after each run 1n order to provide a calibration curve
and to check for the stability of the standards during the analysis
period. In some, experiments the same standards were run over a period
of two to four weeks to check for the effectiveness of the preservatives
used (0.05X HN03 and 0.05S I^C^O;). Both mercuric chloride and methyl
mercuric chloride standards were used to check for the recovery of or-
ganomercury compounds.
All sampling was done using a 20/hour sample cam with 2:1 wash-
sample ratio. For recovery studies, arbitrarily selected samples were
spiked with the equivalent of 0.3 ug/1 Hg for samples with less than
1 ug/1 Hg, and with 2-3 ug/1 Hg for samples containing 1-4 ug/1 Hg.
-------
8
*
All staples containing high concentrations of paniculate matter
were first homogenized using a Techmar Co. high speed homogenlzer model
SOT. In addition, samples were stirred before and during sampling.
After the analyses are completed, all lines with the exception of
the sulfurlc add line are placed In a It HNOj solution until all reaqents
are completely flushed out. This Is followed by placing the sulfurlc
add line 1n the wash. All the lines are then flushed for 10 rain, with
32 NHjjOH'HCl to remove any build-up of manganese codes. This 1s then
followed by flushing the system with IX HN03 for a period of 20-30 min.
The above flushing Includes all colls In and outside the high temperature
bath. For all experiments, using I^S^ or K2Cr2°7 as oxidizing agents,
the system was flushed with a IS HN03 solution for 20-30 min.
-------
SYSTEM DEVELOPMENT
During the early stages 1n the development of the system,
several studies were undertaken to optimize the analysis conditions.
These studies included mechanical, electrical, as well as chemical
modifications.
Modifications in the Mercury Analyzer. It was observed
that the absorption cell provided by the manufacturer was inadequate
for our4 purposes. The position of the inlet and outlet tubes was
too far from the quartz windows leaving a dead air space. This re-
sulted 'in the retention of mercury in the cell and slowed the response
time. The response time could not be sufficiently improved by varying
the flow rate of the nitrogen carrier gas. In addition, the volume
of the cell was too large, requiring a much longer sampling period.
In the present cell these problems were corrected as described in
the experimental section. As a result of these modifications, we
observed an increase in the sensitivity of the system, a decrease
1n the background level, and a decrease in the time required for the
maximum absorption to take place.
Air or Nitrogen flow rate. Table I gives the relationship
between the scale reading on the recorder and the flow rate of air
used for aspiration, for mercury concentrations of 0.5, 1, 2, 3 and
4 vg/1. Inspection of Table I shows that the scale reading increases
with the increase of the flow rate of air up to a maximum. The max-
imum is reached at a flow rate of 20-25 cm-Vmin. Above 30 cm3/min,
-------
10
however, the scale reading of the recorder decreases. The variations
in the scale reading are more significant at higher mercury levels.
It should be noted here that the results will vary from one system to
another. The flow rates of the other reagents will, of course, change
the molar concentrations of mercury in the solution to be aspirated
and hence, the response of the mercury analyzer.
It should be mentioned here, however, that the total area
under the peak of a given mercury concentration remained virtually
constant up to 30 cnr/min of air. Peak separation, however, decreases
with the decrease 1n air flow.
Preservation of Samples and Standards. It has been recognized
for a number of years " * that aqueous solutions of mercury compounds
lose their strength on storage. This result was observed for samples
15A. E. Ballard and C. 0. H. Thornton; Ind. Eng. Chem. 13, 893 (1949).
US. SMmomura, Y. Nishihara and Y. Tanase; Jap. Anal., 17, 1148 (1968)
and 18, 1072 (1969).
stored in glass as well as polyethylene vessels. Although the mechanism
for the loss of mercury 1s currently unknown, several interpretations
have been given. The absorption of mercury on th<» surface of the con-
tainer 1s perhaps the most common of these Interpretations. The amount
of mercury lost from aqueous solutions decreases, however, when the
sample 1s. stored in acid solution. " Feldman showed that mercury
R. V. Coyne and J. A. Collins, Anal. Chem. 44, '093 (1972).
C. Feldman; Ibid., 46, 99 (1974).
-------
11
standards preserved In a solution 52 HN03 + 0.052 K2Cr207 will maintain
their mercury concentrations over a period of 10 days.
In an attempt to establish the stability of the standard mercury
solutions, as well as that of mercury 1n environmental samples, several
j
solutions were prepared and analyzed over a one month period. Table II
gives data collected on samples prepared in deionlzed water, surface
water containing industrial waste, sewage treatment plant (STP) effluent
and STP Influent. Three different sets of solutions were prepared for
a given sample type: unpreserved, 0.5X HNOj preserved,and 0.5% HNO-j -
0.05X I^C^Oy preserved solutions. Both polyethylene and glass bottles
were used for the unpreserved samples. All other samples were prepared
1n polyethylene bottles. The mercury content of all samples was first
analyzed. Each sample was then spiked with a known amount of Hgd2»
and the total mercury present was determined within 10 minutes of sample
preparation. The volume of the samples was measured using a graduated
cylinder,and hence a difference of 2-3% between the mercury found at
zero time and the sum (Hg present and Hg added) is not significant.
Table II shows that unpreserved standards (samples prepared in
delonized water) lost 20t of their strength within 10 minutes of prepar-
ation and 60* over a 10 day period. Standards prepared in 0.5S HN03
lost 6X and 3W of their strength over a 10 minutes and a 10 day period
respectively. The use of sulfuric acid Instead of nitric acid as a pre-
servative did not significantly alter the results, although sulfuric acid
preserved standards were generally 3-55 higher. This could be attributed
to the presence of trace amounts of Hg in sulfuric acid. Increasing the
-------
acid concentration up to 6* resulted in a mercury loss of 202 over a in
day period. The preservation of standards in a solution containing 0.5'/
HN03 + 0.05* K2Cr20;, however, resulted in no significant mercury loss
over a four week period. Similar results were obtained for standards
stored 1n borosllicate glass, with a slight increeise in stability over
polyethylene bottle stored solutions.
Further Inspection of table II shows that all environmental
samples studied maintained their mercury content over a one month period
when preserved in either 0.5* HN03 or 0.5* HN03 - 0.05* K2Cr207. Although
unpreserved solutions of the same samples exhibit Hg loss, they do so at
a much slower rate than that for standards prepared in deionized water.
The rate of loss decreased with the Increase In particulate matter in
the sample. The stability of these samples, could, thus be attributed
to the preferential .adsorption of Hg on the partlculate matter. The
stability of samples preserved in 0.5* HN03 - 0.05X <2Cr2°7» however,
was Independent of the partlculate matter content. The stability of
samples preserved in 0.5* HN03 alone, showed a dependence on the parti-
culate matter. The absence of particulate matter will result in lower
stability. It is thus suggested that all sample> should be preserved
In 0.5* HN03 - 0.05S K2O207.
Of particular interest is the comparison of the data for unpre-
served samples over a 24 hour period. Here we observe that deionized
water samples lost 30* of their strength, while environmental samples
lost up to 10* of their strength over the same period. This result
bears very heavily on the method of sampling. It is suggested that
-------
13
grab samples are collected followed by immediate preservation with 0.52
HMO? - 0.051 K2Cr207 solution. This 1s preferred over, say, a 24 hour
non-acidified compos it sampling method. Any loss of mercury due to
surface adsorption in a grab sampling method should be recovered upon
the addition of the preservative. Thus it was observed that if a mix-
ture of 0.51 HNO^ - 0.051 <2Cr2°7 was added to a neutral aqueous solution
of HgCl2 (2 wg/1) which had been left standing for 24 hours, all the Hg
was recovered within 20 minutes. In addition, a comparison (table II)
of the Hg concentration 1n the samples prior to the addition of the
spike (HgClj), shows that the n1tr1c-dichromate values are significantly
higher than nitric alone, which in turn are higher than the unpreserved
samples. The difference is attributable to the redissolution of Hg
adsorbed on the surface of the flask, since the reagents did not show any
measurable Hg contamination.
Comparison of Organic and Inorganic Standards. Methyl mercuric
chloride and mercuric chloride produced the same standard graphs over
the range 0.05 * 6.0 vg/1 Hg. All data in the range 0.05 - 0.5 vg/1
were run on the 10X scale of the mercury monitor and IX scale expansion
for the chart recorder. All data in the range 0.5 - 5.0 yg/1 Hg were
run on the IX scale of the mercury monitor and at the 2X scale expansion
of the chart recorder. Two types of standard graphs were attempted.
The first 1s a plot of the percent absorption due to mercury versus the
mercury concentration; the second is the absorbance (optical density)
versus the mercury concentration. Both graphs gave very good straight
lines, and the results (for real samples) calculated from both graphs
are indistinguishable, At concentrations of mercury of 10 yg/1 or above,
however, the 5 absorption graphs are generally non-linear.
-------
14
RESULTS AND DISCUSS IOf IS
Figures III and IV give typical chart recordings of measurements
made on standard solutions. Recorder plots of 0.5, 1.0, 2.0, 3.0 and
4.0 yg/1 Hg (F1g. Ill) were obtained on the IX scale of the mercury
Monitor and scale expansion of 2X on the chart recorder. Attempts to
vary the damping of the instrument (without significantly affecting
the response of the monitor) were unsuccessful in decreasing the base-
line noise. The present chart recordings are donu at a damping control
of 10 sec. Figure IV gives the plots of mercury concentrations of
0.05, 0.1, 0.2, 0.3, and 0.4 yg/l, all done on the 10X scale of the
mercury monitor, and a IX scale of the chart recorder. Here again
attempts to decrease the noise level of the baseline beyond what is
given were unsuccessful. The detection limit of the method (defined
as the concentration that gives a signal that is twice the level of
the baseline noise) on the range 0-0.6 ug/1 is 0.05 yg/1. The de-
tection limit could be decreased beyond the 0.05 yg/1 level to perhaps
0.02 ug/1 if an Integrator is coupled with the chart recorder, which
would average the baseline noise and hence increase the sensitivity
of the procedure. Inspection of Figures III and IV shows that the
wash sample ratio of 2:1 is sufficient for our system with a complete
return to the baseline between samples. The shape of the peaks is
quite characteristic at all levels of mercury, and with a one minute
sampling time, a steady state concentration of mercury is reached in
-------
15
the absorption cell. This was established by sampling for an extended
period of time and observing that the percent absorption attained is
the same. The reproducibility of the results (precision of the method)
was established by replicate analyses of the same sample. Table III
gives the standard deviations and the coefficients of variations (per-
cent relative standard deviation) at various levels of mercury. Data
for the manual method are also given as a reference. These data were
obtained from standards run during the same day as well as over an
extended time period. Reproducibility data for real samoles were
generally within the standard deviation of the standards (for samples
with small amounts of partlculate matter when run on the same day).
Reproducibility data for samples run on different days, however, were
within 2-3 standard deviations of the standards. This could be attri-
buted to sample deterioration, preferential adsorption of mercury on
partlculate matter, or day to day changes in the elasticity of pump
tubing. Samples with considerable amounts of particulate matter were
sampled representatively by homogenization using a high speed blender.
The reproducibility of these samples was within 2-3 standard deviations
of the standards.
Since mercury 1n water can exist as organic mercury, it was
necessary to establish the completeness of the digestion procedure,
as well as the effectiveness of the various chemicals involved in the
break-down of organic mercury compounds to ionic mercury. This is
necessary since SnClo will not reduce organic mercury under the exper-
imental condition given. It should be mentioned here that it was not
-------
necessary to use potassium permanganate nor potassium persulfate for
samples containing inorganic mercury only. In addition, the temperature
of the reaction need not be above room temperature.
Standards containing methyl mercuric chloride, however, required
high temperature (100°C) and the presence of persulfate. Potassium
permanganate alone gave less than 301 recovery of the mercury present.
Potassium persulfate alone was sufficient to recover all the mercury
present. Variation of the concentration of l^S^Og between 0.5 - 5£ did
not alter the results obtained for methyl mercur c chloride. Since
the variation of the flow rites of reagents and/or the total volume of
solution 1n the reduction step affects the final value obtained for the
percent absorption on the chart recorder at a given concentration, all
data were obtained relative to mercuric chloride standards. Table IV
gives recovery data for methyl mercuric chloride using various reagent
combinations. The methyl mercuric chloride standard solution used
(obtained from Alpha Inorganic) was found to contain 115 HgCl2- This
was established by treating a 100 yg/1 sample of CH3HgCl with SnCl2
and observing an absorbance level 15 of the expected absorbance.
The variation of the concentrations of the various reagents,
however, affected the data obtained for real sairples. It was thus
observed that there is a direct correlation between the chemical
oxygen demand (COD) and the amount of persulfatj and/or'permanganate
required to completely oxidize all organic mercery present. The COD
19
of a sample is defined as "the quantity of oxygen required to oxidize
19 W. A. Moore, F. J. Ludzack, and C. C. Ruchhoft. Anal. Chem. 23, 1297
(1951)
-------
17
organic and Inorganic matter in a waste sample." This definition is
based on acidic dichromate oxidation at the reflux temperature of a
-2
501 H2$04 solution with a Ag2S04 catalyst. Since both S208 and Mn04
arc excellent oxidizing agents, all organic matter oxidized by dichromate
should also be oxidized by persulfate or permanganate and hence the
correlation between the COO of the sample and the concentration of
these reagents. It was thus observed that the suggested concentrations
of 0.5t KMn04 and 0.5X ^£$203 by Bennett et. al . , are insufficient
for most samples treated 1n this laboratory. In the present system,
a 4X K^OS (F1g> *) 1s sufficient to treat samples with a COD of up
to 700 mg/1, Attempts to increase the concentrations of these reagents
were judged inadequate for our purposes, because an increase in KMn04
concentration would require a large increase in the hydroxylamine
needed to reduce excess MnO^". Increasing the persulfate concentration
by the use of up to 155 (NH^SgOg solutions, resulted in the formation
of high levels of ozone after the digestion step, and hence, a need
for a high concentration of SnCl2. Since over 90S of water and waste-
water samples that come to this laboratory have a COO value of less
than 500 mg/1, it was decided that a It KMn04 and/or 42 K2S20g solutions
are sufficient. Samples with much higher COO levels (above 700 mq/1)
should therefore be diluted. It was also observed that spiked samples
with high COO levels gave a mercury concentration lower than the spike.
Here methyl mercuric chloride should be used as the spike.
Table V gives a comparison between the automated method and
the manual method for river, lake, sewage, and industrial samples. Data
-------
18
were Included for experiments performed using persulfate alone, persulfate-
d1chromate, and persulfate-permanganate as digestion solutions. Table VI
gives recovery data of spiked real samples using the above solutions.
Inspection of the two tables shows that there is no significant difference
in the values obtained for the same sample by the various methods studied,
and that potassium persulfate 1s sufficient as a digestion reagent. Per-
haps the main purpose for permanganate in these experiments 1s Us five
electron oxidation property as compared to the two electron step for per-
sulfate. The electrode potential for the S2<>82~/S042~ couple is 2.03 V
while for the MnO^/Mn2* couple 1s 1.60, and here it appears that apart
from kinetic effects, the persulfate on a thermodynamic basis is a better
oxidizing agent. The fact that the use of MnO^" .ilone results in a maximum
of 3W recovery of CH^HgCl eliminates the value oF MnO^~ for the analysis
of organic mercury compounds.
20
It was eluded to by Kopp, et al. , that the use of MnO^ might
20
0. F. Kopp, M. C. Longbottom and L. B. Lobring; AWA; 64, 20(1972).
be required for the oxidation of some interferences such as l^S. Since
persulfate is a strong oxidizing agent, it appears that the permanganate
will not be required for this purpose. In addit on, it was observed
that sulfide concentrations as high as 20 mg/1 (as NazS) do not interfere
with the recovery of inorganic mercury added to distilled water. This
result was obtained in experiments using persulf.ite, persul fate-pennanganat*
-------
19
and persulfate-dfchromate combinations as digestion solutions. At higher
sulffde ion concentrations, however, negative interferences were observed
In experiments using persulfate alone. In experiments using persulfate-
permanganate or persulfate-dichromate, a positive interference was ob-
served. Other common Ions encountered, such as chloride, did not inter-
fere 1n concentrations of up to 5000 mq Cl"/l in all three digestion
solutions. Residual chlorine results in a positive interference, when
the K2S2°8 manifold is used. For these samples, a solution 32 in
NH^H'HCl-NaCl 1s to be added to the sample stream immediately after
the digestion step at the rate of 0.3 ml/mfn. CuSffy did not interfere
fn concentrations of up to 1 g/1. Ethyl alcohol, methyl alcohol, glycerol,
chloroform, and carbon tetrachloride did not interfere when added in
concentrations as high as 0.5S. Major interferences were observed,
however, from benzene and toluene. A maximum tolerance of SOOyq/l was
obtained for these compounds. The above illustrates that the use of
I^SgOs as the sole oxidizing reagent in the digestion step is sufficient.
The elimination of KMn04 results in a stable base line and removes inter-
ferences caused by the precipitation of manganese oxides in the tubes.
In addition, high backgrounds generally observed in Hg determinations
using KMn04 are eliminated.
The present method is suitable for the separate determination
of inorganic and organic mercury. For this purpose, the inorganic mercury
1s determined by the removal of all reagents except for the Snd2 solution
?•*•
used for the reduction of Hg6 . The temperature of the system is maintained
at room temperature, and the inorganic mercury concentration is read off
-------
20
a calibration curve made of known concentrations of HgCl? run under
the sane conditions. Inorganic mercury as determined by this method
Is defined as all mercury compounds that are reduced to elemental
mercury by SnCl2 without predlgestlon of the sample. The total mercury
In the system Is then determined, using the normal digestion and re-
duction steps and read off a calibration curve done under the same
conditions. The difference between total and incrqanlc mercury Is
the amount of organic mercury In the samples. Table VII gives the
date for Inorganic and organic mercury content of real as well as
artificial mixtures. No attempts were made to analyze for organic
mercury Independently.
-------
ACKNOWLEDGMENT
The authors arc grcatful for the help received from many
of the personnel of the U.S. Environmental Protection Agency,
Region V, Central Regional Laboratory.
The mention of trade names or commercial products does
•
not constitute endorsement nor recommendation for use by the
Environmental Protection Agency.
-------
TABLE I
Variation of Scale Reading with Rate of Alt- Flow
Flow Rate*
cm3/m1rt
0
10
15 •
17
19
22
24
25
31
37
b
Scale Reading
0.5
10.8
12.5
13.0
13.0
12.0
10.0
9.0
1.0
22.0
24.0
26.0
25.0
i
23.0
20.0
19.0
2.0
32.5
41.0
42.0
44.0
40.0
35.0
32.0
3.0
48.0
58.0
58.5
63
60
55
50
4.0 pg/1
25.0
59.0
69.0 j
72.5
76
i
77
77
75
70
60
*Flow rates are those of the air used for aspiration (inly.
Full scale 100 division at SOX absorption.
-------
I/I
01
CO
wo
Ol
-^ 01
en en i-
X 3 Cl. j
Preservative
Ol
1
m
CM"
oo
o
o
CO
o
8
LO
CO
LO
CM
10
CM
00
CM
8
<•*>
0
o
o
01
Ol
01
"o
Q.
Ol
o
CM
LO
m
oo
CM
c
CM
§
CM
f>
CM
O
m
CM
S
CM
§
CM
Lrt
C*
CM
8
m
§
O
2
in
6
S
CM
m
en
c\j
m
O
r>
g
*
m
en
en
CM
71
cn
CM
CM
O
m
O
m
.0
o
m
8
m
§
0
?
£
.K
o
o
o
1
n
o:
o
o
e ionized
ater
2>
CM
8
CM
n
ft
in
n
o
CM
M
CM
r>
CM
X)
CM
O
CO
CM
8
CM
§
O
^"*,
t/l
r*~
CT
C
O
hlZ
l_
Ol
44
01
u
fc.
3
P
LO
S
•—
c
00
LO
o
CM
0
CM
CM
S
CM
s
CM
m
00
CM
8
CM
&
O
I
41
4-1
Ol
o
a.
ontainlng I None
Mi/
X.
M
^
CM
00
IM
30
CM
$
CM
g
CM
CM
00
CM
O
00
CM
8
CM
3
0
2
tf>
o
w
(n
«
ro
cr-
r«
30
I-.
M
n
m
n
M
V
m
S
ro
LO
CM
O
—
LO
O
o
1
rn
O
LO
C)
ndus trial
aster
a
en
—
S
CM
O
CM
S
CM
O
CM
£
CM
S
CM
p*.
CM
LO
CSI
CM
O
cr>
Oi
o
Ol
o-
£
s
^
—
1M
CO
—
en
—
8
CM
Lf>
CM
r*>
CM
LO
CM
LO
CM
O
CM
tNJ
0
reaUnent . Hone (polyethylene)
a
CM
£
CM
LO
CM
O
CM
O
o
r-i
O
I
*o
"a>
CM
00
CM
£
(M
CO
CM
tO
00
CM
CM
n
CM
£
CM
a
CM
CM
0
O
f\
Co
o
CD
i
r»
g
0
c
Ol
4-1 3
C •—
•— >*-
M *
O
CM
•n
0
m
S
m
^
">
M
n
LO
ro
LO
en
so
m
5
CM
n
CM
—
in
"8
CJl
Ol
c
0
oV
n
CM
00
CO
5;
CM
0
^
r—
n
LO
m
o
CM
CO
00
C1)
m
o
CM
O
CM
r—
None (polyethylene)
V?
£
«n
S
c->
s
CO
*
M
0
n
en
m
m
LO
en
8
CM
SO
i—
•H
..n
LO
*
0
•>.
S
Hi
3
n->
C
LO
m
\o
to
en
n
LO
LO
en
LO
LO
m
8
CM
LO
LO
•—
t\
u
o
CD
f
2
z
co
01
o>
TJ Ol
-------
TABLE III
REPROOUCIBILITY
Hg. Level
wg/1
0.05a
0.1 Oa
0.20*
0,30a
0.40*
0.60a
0.25b
0.50b
0.75b
1.0b
2.0b
3.0b
4.0b
6.0b
Automated
Standard6
Deviation
0.005
0.007
0.01
0.008
0.02
0.04
0.04
0.04
0.04
0.04
0.09
0.08
0.2
0.48
Relative Std.
Deviation X
10 X
7
5
3
5
4
17
7
5
4
5
3
5
8
Manual
Standard0
Deviation
0. 063
3.083
0.13
Relative Std.
Deviation *
28. Q
8.0
4.0
Standards run using 10X expansion of the Hg monitor (automated system).
"Standards run using IX scale of the Hg monitor and 2X expansion of the
recorder (automated system only).
C8ased on 10 or more replicates.
-------
TABLE V
COMPARISON OF AUTOMATED AND MANUAL METHODS
(wg/1 Hg)
Sample Type
Reagent blank
Reagent blank
Well
Stream
Industrial Intake
" efflu.
II W H
M II W
M N H
It H H
MUM
M M H
U M H
M M H
II II H
Raw Sewage
N II
N II
II N
II H
II II
II II
II H
II M
II II
II II
II II
II II
II II
N H
M U
STP Effluentt
STP Effluent
n H
II N
II H
n n
n n
II H
II H
II II
II II
COO
m
-
<3
90
9
24
26
9
72
120
38
215
179
1480*
4
278
479
521
441
567
292
329
244
554
380
407
441
-
434
447
281
29
237
301
94
225
244
29
448
199
218
Automated [
« *2S2°8
0.07
<0.05
0.11
0.52
0.15
<0.05
0.05
0.15
0.10
0.19
0.23
1.81
0.28
0.20
0.21
0.55
0.30
0.10
0.22
1.17
0.43
1.50
0.54
0.76
0.18
0.10
0.33
0.64
0.24
0.30
0.30
« K?S?08
IT, KMnOfl
<0.05
0.16
<0.05
»0.05
0.45
0.20
0.13
0.15
1.96
0.11
0.85
0.30
0.18
0.21
0.42
0.10
0.23
0.95
O.A3
1.30
0.18
0.11
0.23
43 K2S2Oo |
2". K?Cr207 <
0.07
0.13
i
i
0.16
0.26
0.62
0.18 |
0.24 ! 0.27
; 0.30
0.68
0.39
0.32
i
Manual
<0.2
<0.2
0.8
<0.2
<0.2
<0.2
0.5
<0.2
<0.2
<0.2
0.2
<0.2
2.4
<0.2
0.2
0.2
1.0
0.4
0.2
0.2
• 0.7
0.3
<0.2
0.3
1.0
0.3
1.7
0.5
0.6
0.9
<0.2
<0.2
0.3
0.7
0.3
0.2
0.3
0.2
0.6
0.4
0.3
*Sample diluted by a factor of three before analysis.
Sewage treatment plant effluent.
-------
TABLE IV
Recovery of Known Amounts of Methyl Mercuric Chloride
by KMn04, K^r^y, and K2S2°8 OxCation Procedures.(a
CH3HgCl, Addtd
ug/1
0.5
1.0
2.0
3.0
4.0
Thtrwl , .
Dtconiposltlon*0'
X
17.4
20.0
18.0
23.8
24.2
IX KHn04
I
2% *2Cp2°7
X
27.3 ; 45.5
25.0 40.0
23.4
29.7
31.5
35.9
39.2
40.6
45 K2S208(c)
2
100.1
100.5
98.5
103
98.0
(*)Based on HgClj standards.
(b)No oxidizing agent added, all other reagents are used, however.
(C)sim1lar results are obtained using IS KMn04 - 4X K2$208 *nd
2X KCrO - 45
-------
TABLE VI
RECOVERY OF MERCURY FROM SPIKED SAMPLES
Sample Type
Reagent blank
Cooling water
Industrial Effluent
n N MM
H H N H
N H n H
II II II tt
II II H N
U H H •
H H UN
Raw Sewage
U II
H N
H H
N n
II H
STP Effluent
n n
n n
II N
COD
—
30
123
13
26
120
278
252
.
23
261
168
120
_
448
597
40
94
218
199
wg/1 Hg
In Sample
-------
i
V*
%
»4
r*
O
rt-
O>
ft
re
a
re
o
-1 -1
_». _..
I!! IT
o
Oi At
a a
T> -0
•^J o
cn o
o — •
cn O
O 0
0 p
ro vo
-•o cn
O ro
• •
-•4 — •
CO O
•^
SO
cn
cn cn
J
-*•
jjj
n
0^
•?
a
T5
^•^
re
o
§
o
&
ro
S
o
CD
O
CO
•
Ctl
^^
^O
•^
o
00
3 3 i? £ £ S |
2m m «/> u» v» re* re
£ £
c e «0 <0 «0 uo <£>
a a
C* !•*
— • o o o
O vO vO Co
ro fs> ro
So^
Si
A cn ro f\>
SO cn O
O O O
— • — • O
g g S
j" f* r0 r^
O% -^ •£** O
-*j \o vo ro
CO CO CO
• • •
cn ^ cn
— A O
^+
O CD vQ
-*. OL —
3
03 CD n:
re to
?
re
10 3*
o
Q.U3
Cl« tof
re 3
a. -••
r>
re o
iQ
CX 3
a. —
2.°
-«t«£5 3
r* O
re -n -i
-i o o
c 01
u> 3 3
TO O. -^«
-•• o
3
l
(/> -n — «
•a o o
-•• C rf
7C 3 Q<
-* Q_ — •
3
L^f ^p» ^|^
re
-s
^^
O 0
1 O
0 O
& <
3 re
n *<
o "
o» n
3 0
n ro
70
m
n
O
TO
m
O
TI
O
CD
o
i
m
o
-c
-------
-------
01
c|c
o
0)
ac ex
T
U
°
u
I
2
O
CM
OLT
00
H-
loJ
C3
CJ3 C3
c»
6
oo
01
CO
CD
CVI
CO
00
CD
Ol
-------
FIGURE 3. RECORDER PLOT WITH STAHDARD SOLUTIONS OF MERC!
-------
0.30-cfg/l
0.20^g/l
O.IO^g/l
0.05.<
-------
APPENDIX IV
-------
Environmental Protection Agency
Central Regional Laboratory
1819 West PersMng Road
Chicago, Illinois 60609
MICRO METHODS FOR THE DETERMINATION OF
NON-FIITRABIE AND FILTRABLE RESIDUES
J. Carter, Madellene T. Huston and Oliver J. Logsdon II
April 18, 1975
-------
ABSTRACT
Rapid, micro methods for the determination of non-fHtrable
and fUtrable residues are reported. Non-flltrable residue analysis
of wastewaters 1s accomplished using up to 10 ml of sample for a de-
tection limit of 1 mg/1. Using the suggested sample sizes, all filtra-
tion work 1s completed within ttn minutes. FUtrable residues are
determined on a 100 ul sample which 1s dried at 180°C for one-half hour.
Thirty samples can be analyzed for both residue parameters in less
than three hours. Both micro methods were shown to produce results
comparable to the standard methods with better precision.
-1-
-------
The determination of non-f1ltrable and filtrable residues
are among the oldest determinations 1n water analysis. While old,
residue analyses remain Important 1n assessing the quality of waste ,
surface and potable waters. At least one residue parameter 1s
Included 1n a 11st of significant parameters for assessing the quality
of effluents from ea
-------
of a Cahn micro balance 1n a drying oven at 105°C. Unfortunately,
this drying technique is not applicable to the 180°C filtrable re-
sidue procedure because the maximum operating temperature of the weighing
chamber 1s 11QOC.
A substantial amount of work has been performed on improving
the standard Gooch crucible-asbestos mat procedure for the deter-
io-i«»
mination of non-filtrable residues. Chanln et al., have Iden-
tified the major difficulties with the asbestos mat technique as
being due to variations 1n asbestos quality, preparation of non-
uniform mats, mat disturbance during handling, and a slow filtration
10
rate. Degen and Nussberger found that the mat must be carefully
washed, before taring and after sample filtration, to avoid erroneous
u
results.
10 u
Chanln et al., and Nusbaum simultaneously reported similar
non-filtrable residue methods using glass fiber filters which greatly
reduced problems with mat preparation. Engelbrecht and McKlnney
used the membrane filter for non-filtrable residue analysis but re-
ported a slow filtration rate for some samples. Harada et al., also
noted this problem using glass fiber filters and reported a procedure
utilizing a combination filter mat consisting of both coarse asbestos
and a glass fiber disk.
Smith and Greenberg compared and evaluated five of the non-
filtrable residue methods in common use, including the standard
procedure. Three glass fiber filtration techniques were compa
to an asbestos mat and a membrane filter method. They found no
-3-
-------
statistically significant bias or different coefficients of variation
between the five methods. However, none of the procedures studied
combines speedy filtration with ease of filter media preparation.
The problem of a slow filtration rate becomes serious when a large
volume of sample must be filtered for flltrable residue analysis.
A fast, efficient and accurate method for determining non-f1ltrable
residues that combines • minimum of filter handling with rapid
filtration 1s reported 1n this paper. A rapid method for deter-
mining flltrable residues using only 100 ul of sample 1s also reported.
-4-
-------
METHODS
Apparatus^ All weighings were performed on a Mettler ME22 electronic
mlcrobalance equipped with BE22 control and BA25 digital display units
and & Nuclear Products Co. 500 uC Po 210 Ionizing source. All of the
filters evaluated are listed In Table I. The Nuclepore 25 mm diameter
0.4 urn standard polycarbonate membrane filter was chosen for routine
use. Sample filtration was performed with a Mill 1 pore thirty-place
membrane sampling manifold using 15 x 125 mm culture tubes to receive
*
the filtrate. Liquid transfers for non-f1ltrable residue analysis
were performed with a 1-5 ml or 5-10 ml Oxford Laboratories Macro-Set
plpet with disposable tips. A 100 ul Eppendorf pipet with disposable
tips was used for liquid transfers for filtrable residue determinations.
Cahn 12 mm diameter aluminum pans were used as evaporating dishes for
filtrable residue analysis. Coors 03 12-place spot plates were used
to hold the aluminum pans. Two control standards for filtrable residue
analysis were prepared with Nad to be 400 and 500 mg/1. Non-uniform
samples were homogenized with a Tekmar model SOT.
Non-rFntrable Residue. Weigh the Nuclepore filters to the nearest
mlcrogram directly out of the box. Pass the filters about 1 inch over
the Po 210 ionizing source 1n the weighing chamber to reduce the
electrostatic charge. Place the weighed filters in numbered 60 rnm
aluminum weighing dishes until they are to be used. Wash and dry t'he
sample wells and filter supports of the sampling manifold. Load the
filtrate receiving rack with 15 x 125 mm culture tubes and assemble the
manifold as per Millipore Co. Instructions. Place the filters on the
-5-
-------
manifold by first dipping each filter 1n distilled «ater so they
adhere to the support. Homogenize all non-uniform samples. Choose
a volume of a surface or wastewater to filter so that no more than
2.0 mg of residue will remain. Discard any sample which does not
filter 1n ten minutes and re-fliter a smaller sample volume. Gener-
ally, volumes filtered are 10 ml for a surface water or wastewater
effluent (up to a concentration of 200 mg/1), and 1 ml for grossly
polluted samples (up to a concentration of 2000 mg/1). In addition,
analyze one sample 1n duplicate and the two flltrahle residue control
standards (also used as blank filters) per set of samples. When
filtration 1s complete, disassemble the sampling manifold, remove
the filtrate receiving rack and reassemble the manifold. Wash each
filter with two 5 ml portions of distilled water. Remove the filters
from the sampling manifold, return them to the numbered aluminum
weighing dishes and place In an oven at 103-105°C for 1/2 hr. Remove
from the oven at one time only the number of filters that can be
weighed before the aluminum pans cool. The final non-f1ltrable residue
values are corrected for the change 1n blank filter weights. The cause
for a blank of more than 0.01 mg should be investigated before reporting
the results.
Flltrable Residue. Heigh the Cahn 12 mm diameter aluminum pans to
the nearest mlcrogram and place on a numbered Coors spot plate. Trans-
fer one hundred ul of each sample to the residue jishes with an
Eppendorf plpet. Analyze the A and 8 control standards just like t^e
real samples. Carry two blank pans tnrough the drying and weighing
process. Correct final flltrable res'due values for the change in
blank pan weights. The cause for a b.ank of more thar 0.003 rcg should
-6-
-------
be Investigated before reporting the results,
RESULTS AND DISCUSSION
Non-Flltrable Residue Method Development. The primary considerations
In developing a new non-flltrable residue method were the ease of
filter media handling and a rapid filtration rate. Harada et al.,
solved the filtration rate problem by using a media that was difficult
to prepare. Most Investigators have found qlass fiber and membrane
filters easy to use but of limited loading capacity) especially the
latter ones. One proposed solution to this problem 1s to use larae
11
diameter filters.
The authors decided the best solution to the media handling and fil-
tration problem was to use glass fiber or membrane filters with a
small enough water sample volume that would pass through the media
quickly. Initial experiments with grossly polluted wastewaters, using
25 mm glass and membrane filters, showed that no more than 10 and 5 ml,
respectively, could be filtered in less than 10 minutes. For monitoring
stream and wastewaters the method must be capable of measuring down to
5 mg/1. This means that residues of 0.05rag (using ln ml samples) must
be determined accurately. Since micro balances measuring to the nearest
0.0001 mg are available, the real limitation of the method is the stabil-
ity of the filters.
-------
Filter Stability. The two major causes of filter instability are
weight loss due to wash-out or "media migration" during filtering16 l8
and the volatilization of filter material during the drying process.
The bias Introduced by "media migration" during sample filtration
can be eliminated by pre-wash1ng the filter.* However, this In-
volves an extra step 1n the analytical procedure. The thermal
Instability problem exists mainly with the membrane-type filters and
19
has only been resolved by drying 1n a desiccator. However, this
procedure 1s more time consuming and could result In a positive bias
when compared to the 105°C drying method.
When filtering small volumes, and hence weighing s:nal1 amounts of
residue, an undetected weight loss from a filter cm significantly
bias the results. Ten filters were evaluated for their stability
upon filtering 10 ml of water and drying at 105°C ror 1/2 hour. The
results in Table I show the weight losses for threij binderless glass
fiber filters (Reeve-Angel 934 AH, Gelman type £ and Millipore AP4^)
two glass fiber filters with an acrylic resin binder (Milllnore AP15
and AP20) and five different membrane-type filters (Nudepore,
Millipore MF, Gelman TCM, MllUpore HATF, Gelman AH1200).
-3-
-------
TABLE.I
WEIGHT CHANGES FOR TEST FILTERS (In Milligrams)8
Mean Weight
before
Mean weight
after
Mean weight
change
Std. dev. of
weight changes
Reeve-Angel Gelman
934 AH : Type E
25.38
25.27
-0.118
0.026
36.69
36.59
-0.106
0.020
Hi 1H pore
AP40
34.30
34.19
-0.117
0.023
Nuclepore
4.303
4.301
-0.003
0.002
Mlllipore
AP20
34.45
34.33
-0.121
0.012
MNHpor
MF
29.22
28.89
-0.328
0.013
•
Mean weight
before
Mean weight
after
Mean weight
change
Std. dev. of
weight changes
Gelman
TCM
14.25
14.13
-0.120
0.008
Mil li pore
APIS
46.62
46.51
-0.107
0.013
Mllllpore
HATF
28.44
28.16
-0.286
0.016
i
Gelman
AN! 200
27.85
27.67
-0.175
0.006
a These values are based on ten replicate experiments with each type of filter.
The filters were pre-weighed, exposed to a in ml deionized water filtration,
dried at 105°C for one-half hour and re-weighed.
-------
The mean weight loss and the standard deviation cr weight loss based
on ten replicates were very similar for the three binderless glass
filters." The weight loss, 1f unaccounted for, would bias the results
by an average of 11 t 5 mg/1 at the 952 confidence level. While the
mean weight loss for the blndered and unhindered 'Miters was similar
the standard deviation of the weight loss for the former has half
that for the latter filters. These experimental results confirmed
the visual observation that the blndered filters were structurally
sounder and sloughed off less filter material during handling. Except
for the Nuclepore filter, the membrane filters exhibited either a
larger mean or standard deviation of weight loss than the glass filters.
The Nuclepore filters showed the smallest mean ami standard deviation
of weight loss of all the filters tested.
Table II shows weight loss results from filters which were pre-washed
three times with 10 ml of de-ionized distilled water and dried before
filtering the test 10 ml aliquot of water. Prewashlng the glass fiber
filters substantially reduced the mean and standard deviation of weight
loss. Prewashlng the cellulose membrane filters substantially reduced
their weight loss during filtration.
Further experiments were performed to determine the cause of weight
loss during the filtration-drying process. Samples of the filters listea
in Table I were dried at 1C5°C for 1/2 hour. The Muclepore and all of
.10-
-------
TABLE II
WEIGHT CHANGES FOR PRE-WASHED TEST FILTERS (In Milligrams)a
Mean weight
change
'Std. dev. of
weight changes
Mil lipore
APIS
-0.012
0.004
Mlllipore
AP20
-0.012
0.011
Mlllipore
AP40
-0.031
0.007
Mill ipore
MF
-O.nia
0.013
Gelman j
TCM i
1
-0.015
0.019
i
a These values are based on ten replicate experiments with each type of filter.
The filters were pre-washed three times with in ml of water, dried at 105°C
for one-half hour and pre-welghed. They then were exposed to a in ml water
filtration, dried at 1C5°C-for one-half hour and re-weighed.
-------
glass fiber filters were stable to 0.002 mg. The other membrane filters
showed substantial weight losses which were less than the total weight
losses from the filtering and drying process, "herefore, the glass
filter* lose weight only during the filtering process whereas the cellu-
lose membrane filters lose weight during both the filtering and drying
process. This conclusion was verified by experiments which showed that
the cellulose membrane filters continued to lose weight during the drying
process even after they were thoroughly washed.
As a results of the above experiments the Nuclepore and the Ml Hi pore
AP20 hindered glass filter were chosen to evaluate the micro technique.
A drying time of 30 minutes was shown to be adequate for both filter
types by re-drying a set of partlculate laden filters for 24 hours
without any addition weight loss. Due to the low heat capacity of the
filters, they could be weighed directly from the oven without cooling
In a desiccator.
The relative humidity during the course of this work was always below
30% and although a desiccator was not used no filter weight gain from
hygroscopic effects was observed. Tierney and Conner showed that at
100% relative humidity clean glass fiber filters will gain about 5*, 1n
" •
weight.19 They also showed weight gains up to 805 for particulate-
laden glass filters at 1005 relative humidity. However, at relative
humidities below 555 the weight gain of three different samples was
less than 15. A weight gain of only 0.2** has bten reported for
20
Nuclepore filters immersed 1n water for 24 hours. This property.
combined with the low tare weight of the
-12-
-------
filter were the deciding factors 1n choosing the Nuclepore filter
for routine use. If cost 1s a serious consideration, then pre-washed
glass fiber filters can also be substituted. Whichever filter 1s
used, 1t 1s desirable to maintain the relative humidity below 50*
during the weighing process. It was also determined to be necessary
to keep a Po 210 alpha Ionizing source in the balance weighing
chamber to eliminate an electrostatic charge build-up on the Nuclepore f1l
Non-flltrable Residue Methods Comparison. The data in Table III compare
2 7
results using the micro method and the standard method. ' The ratio
of the micro (using the Nuclepore filter) to the standard method results
1s 1.04 ± 0.37 which 1s not significantly different from one (T-test,
a * 0.05). Smith and Greenberg also reported no statistically significant
bals 1n results determined using the standard method with membrane and
glass filters. However, their results from the membrane filters were
slightly greater than the glass filters,
For the micro method, the ratio of results using Nuclepore and MUlipore
AP20 filters is 1.07 * 0.11, which is not significantly different from
one (T-test 0 » 0.05). However, the results from the Nuclepore filters
are slightly greater than from the glass filters. Cranston and Suckley
reported that both Nuclepore and gUss filters quantitatively retained
2 um beads, whereas the retention of 1 -m beads was 93 and 267', respec-
18
tively. Therefore, filtering the same volume o* a wastewats*- througn
Nuclepore and glass filters of the same diameter snould produce higner
results for the former filter. The magnitude of the dif-'erence would
depend on the particle size distribution of the samples.
-13-
-------
TABLE III
COMPARISON OF MICRO AND STANDARD METHODS FOR THE
DETERMINATION OF NON-FILTRABLE RESIDUE3
Sample Type
Cooling Water
Industrial Eff.
Industrial Eff.
Starch Waste
Well Water
Surface Water
Raw Sewage
Raw Sewage
Treated Sewage
Raw Sewage
Treated Sewage
Refinery Eff.
River Water
Well Water
Refinery Waste
Raw Sewage
Surface Water
Steel Eff.
Food Eff.
Steel Eff.
Steel Waste
Treated Sewage
Treated Sewage
Micro Method
Nuclepore
4,4
7,7
2.2
7,6
14,15
192,186
195.204
98,102
156,157
39,43
23,20
20,21
22.24
20,22
339,322
14
907,910
20
11
13
12
Micro Method
Mllllpore AP20
<2,4
72,74
2,3
9,10
9,9
13,15
179,183
199,202
94,96
146,151
39,41
21,21
21,19
23,17
22.19
327,320
13,13
890.860
19.19
Q
ii
9
9
Standard Method
<5
72
<5
12
<5
15
190
18*
106
162
320
9
880
15
16
7
7
a All results are expressed in mg/1. Values separated by a comma
are results from duplicate determinations.
-14-
-------
A paper Industry report presented data to show that using the standard
method, the larger the volume filtered, the higher the determined
21
non-f11trable residue concentration. Obviously, the larger the
volume of water filtered, the greater the amount of residue collected
and the more difficult 1t would be to thoroughly wash the filter.
Cranston and Buckley found that a rinse of 25 ml of deionized water
was not sufficient to remove trapped Inorganic salts from a 25 mm
u
glass fiber filter after filtering sea water. In addition, if
enough residue was collected to act as a pre-fliter, higher results
would be determined for larger volumes filtered.
Several samples were analyzed in triplicate by the micro method using
three different sample volumes. The results in Table IV show that,
using the micro technique, there is no universal increase in non-
flltrable residue results with increasing sample volume. The largest
volume filtered corresponds to no more than 3 mo of residue on a 25 mm
filter with a maximum filtration time of 10 minutes. No problem was
encountered washing the filters. The results reported in tne paper
industry report correspond to a 10 mg residue on a 21 mm fliter with
filtration times over 2 hours. Obviously, the pacer -'ncustry f'te-s
could not be washed properly. In order to assure proper washing of
the residue, sample volumes are chosen so that the maximum filtration
time is 10 minutes. This corresponds to a maximum of 2-3 mg residue
depending on the clogging characteristics of the samcle. Any fil-er
that becomes clogged must be discarded to avoid erroneous results such
as those reported in the paper industry report.21
-15-
-------
Initial work to dtflnt the precision of tht method revealed poor
duplication of results for samples with non-unlfjrm particulate
matter. Thereafter, all samples with non-unlfonn partlculate matter
were homogenized with a Tekmar SOT blender. In Drder to show that
the process of homogen1zat1on does not alter the non-f11trab1e re-
sidue concentration, a raw sewage sample was analyzed ten times
before and after blending. The results (blended, 279.0 ± 4.8 mg/1;
unblended, 280.0 t 8.0 mg/1) show that the mean results are not
affected but the precision 1s Improved by blending the samples.
The precision of the micro method on the variety of sample types
studied 1s 3 mg/1 below 50 mg/1 non-flltrable residue and 9 mg/1
above 50 mg/1 at the 95S confidence level. The average coefficient
of variation for all samples 1s 4.W. Smith and Greenberg reported
a coefficient of variation of 4.2* using the standard method.
The absolute detection 11«1t of the method 1s 0.01 mg (37). This
corresponds to 1 mg/1 for a 10 ml sample volume.
Flltrable Residue Method Development. The method of Allen and Sacon
was evaluated for use 1n combination with the micro non-f11trab1e
9
residue method described previously. Their method used 50 ul of
sample dried at 105°C for 15 minutes and the residue was weighed to
0.0001 mg with results reported to the nearest 1 mg/1. Initial ex-
periments showed that the extra significant figure gained-by weighing
-16-
-------
TABLE IV
CONCENTRATION OF NON-FILTRABLE RESIDUE
VERSES VOLUME OF SAMPLE
Non-Flltrable Residue. mg/la
Sample Volume, ml
Sewage I
Swage II
5
74
141
10
72
139
20
73
142
a Determined using Mm 1 pore AP20 glass fiber filters. All
filters were washed twice with 5 ml of water.
-17-
-------
to 0.0001 mg was at the expense of several minutes extra weighing
time per sample. Therefore, a 100 ul sample size was chosen, the
residue weighed to 0.001 mg and the results reported to the nearest
10 mg/1. With this sample size, a ten-fold advantage of sample
size to evaporating dish weight exists for the micro over the standard
method.
Howard showed that the figure for total dissolved solids, based
on the weight of residue after drying at 180°C, is close to the
sum of the determined constltutents for most natural waters.6
Therefore, the drying and weighing procedure of Allen and Bacon
was modified to accommodate a 180°C drying procedure. Advantage
was taken of the very large difference 1n heat capacities of the
aluminum pans and the supporting porcelain spot plate to simplify
the weighing process. After drying for 30 minutes (found to be
sufficient), the spot plates are removed from the oven. As each
aluminum pan 1s weighed, the remaining ones are kept hot by the
spot plate for up to ten minutes. This technique eliminates the
need for a desiccator.
Comparison of FUtrable Residue Methods. The micro and standard
filtrable residue methods were compared on a variety of samole
types (Table V). The mean ratio of micro to standard method resjIts,
0.99 ±0.18 at the 95* confidence level, 1s not significantly
different from one (T-test. * * 0.05).
-18-
-------
TABLE V
COMPARISON OF MICRO AND STANDARD METHODS
FOR THE DETERMINATION OF FILTRABLE RESIDUE
FUtrable Residue, mg/1
Sample Type
Refinery waste
Refinery effluent
Well water
River water
Refinery effluent
River water
Refinery effluent
Steel mill effluent
Steel mill waste
Treated Sewage
Lake Water
Lake water
Food process waste
Well water
Starch waste
Industrial waste
Industrial effluent
Lake water
Raw sewage
Treated sewage
Treated sewage
Micro*
620,590
1930,1940
720,710
370,390
830,820
500,520
910,930
670,680
510,510
880,820
230,240
240,240
1530,1530
350,330
800,790
370,350
860,850
250,250
1250,1240
520,520
630,630
Raw sewage j 510,500
I
Standard
635
1930
640
395
820
495
870
670
600
800
270
260
H80
370
710
310
970
250
1210
Spec. Cond., us
970
3370
1120
580
H10
800
1460
1050
780
1230
385
370
2 "'50
610
nan
510
1570
410
2070
590 850
580
580
1070
320
i
a Values separated by a comma are results from duplicate determinations,
-19-
-------
The precision of the micro method was determined from the paired results
in Table V to be 26 mg/1, at the 95% confidence level. At a mean result
of 705 mg/1, this corresponds to a coefficient of variation of 2*.
"Standard Methods" quotes a coefficient of variation of 5% for the macro
2
method. The absolute detection limit, based on three times the standard
deviation of thirty-two blank values, 1s 0.0021 m<|. This corresponds
to a detection limit of 21 ag/1 using a 100 ul sample volume.
There is no method of assessing the accuracy of filtrable residue
determinations on real samples. Howard and Sokolof* showed that the
loss of some chloride and nitrate are unavoidable 1* the determination
of filtrable residues. However, the A and B control standards were
used to evaluate day-to-day bias in results. cor ten determinations
on different days the values of the A and B standards were 506* 19 and
411 ± 13 mg/1, respectively. Specific conductance values were also used to
assess the consistency of filtrable residue measurements. The ratio
of residue to conductivity results 1n Table V is 0.62 ± 0.08 at the
955 confidence level. This ratio corresponds ve'-y closely to that
reported by Rainwater and Thatcher, for comparatively dilute solutions.
For solutions with dissolved salt concentrations exceeding 2000 to
3000 mg/1 or with substantial concentrations of dissolved silica and
organic matter, the ratio may be much higher, -or waters high in
acidity or alkalinity the ratio can be .nucu 'ower t^an 0.62. The
cause of a filtrable residue to conductivity -atio o^ts'je of ^.62 : ?.'
should be investigated before any results are "gpcrtec.
-------
ACKNOWLEDGEMENTS
Credlts
We thank Or. Billy Falrless, Chief, Chemistry Branch,-Central
Regional Laboratory, for his critical evaluation of alternative
flltrable residue drying procedures.
Authors
Mark J. Carter, Madeliene T. Huston and Oliver J. Logsdon II
are chief, chemical technician and chemist, respectively, of
the Inorganic Section, Central Regional Laboratory, Environmental
Protection Agency, Chicago, Illinois.
The mention of trade names or commeHcal products does not constitute
endorsement or recommendation for use by the Central Regional Laboratory,
or the Environmental Protection Agency.
-21-
-------
REFERENCES
1. "Handbook for Monitoring Industrial Wastewater", U.S. Environmental
Protection Agency, Washington, O.C. (1973).
2. "Standard Methods for the Examination of Water and Wastewater",
13th Ed.. Amer. Pub. Health Assn.. New York, N.Y. (1971).
3. "Official and Tentative Methods". Assoc. Official Agr. Chem.,
pp. 35-6 (1916).
4. Mason, W. P., "Examination of Water", 3rd ed., Wiley, pp. 22-4
(1908).
5. Dole, R.B., U.S. Geol. Survey, Water Supply Paper 236, pp. 13-15,
30-1 (1909).
6. Howard. C.S., "Determination of Total Dissolved Solids 1n Water
Analysis", Ind. Eng. Chea., 5_, 4 (1933).
7. "Manual of Methods for Chemical Analysis of Water and Wastes",
U.S. Environmental Protection Agency, Wash., C.C. (1974).
8. Federal Register. 38, 38759 (1973).
9. Allen, H.E. and Bacon, C.W., "Rapid Determination of Filtrable
Residue 1n Natural Waters", J. Amer. Water Works Assoc.. 61,
355 (1969). ~~
10. Chanln. G.. et al., "Use of Glass Fiber Filter Medium 1n the
Suspended Solids Determination". This Journal. 30., 1062 (1958).
11. Nusbaum, I., "New Method for Suspended Solids' , This Journal.
30, 1067 (1958).
12. Engelbrecht, R.S., and McKlnney, R.E., "Membrane Filter Method
Applied to Activated Sludge Suspended So^'ds Determinations",
This Journal, 28_, 1321 (1956).
13. Harada, H.M., et al., "Modified Filtration Method for Suspended
Solids Analysis", This Journal. 45_, 1853 (1973).
14. Degen, J. and Nussberger, F.E., "Notes of the Deterninaticn of
Suspended Solids", This Journa1. 23, 2:~ "35';v.
15. Smith, A.I. and Greenberg, A.E., "Evaluation 3* '-'et^cds for
Determining Suspended Solids 1n Wastewater," 'his ,'curnal.
35, 940 (1963).
-22-
-------
16. Cranston, R.E. and Buckley, O.E., "The Application and Performance
of Mlcrofliters 1n Analyses of Suspended Particulate Matter", un-
published manuscript, Bedford Institute of Oceanography, Dartmouth,
Nova Scotia, Canada (1972).
17. Jenkins, 0., "Analyses of Estuarlne Waters", This Journal, 39,
159 (1967).
18. Wlnneberger, J. H., et al., "Membrane Filter Weight Determinations",
This Journal. 35., 807 (1963)
19. Tlerney, G.P. and Conntr, W.O., Amer. Inc. Hygiene Assn. J., 28
363 (1967).
20. "Specifications and Physical Properties", Nuclepore Corporation
(1973).
21. "A Preliminary Review of Analytical Methods for the Ceterm1nat1on
of Suspended Solids 1n Paper Industry Effluents for Compliance
with EPA - NPOES Permit Terms", National Council of the Paper
Industry for Air and Stream Improvement, Inc., New York, N.Y. (1975)
22. Sokoloff, V.P., "Water of Crystallization in Total Solids of
Water Analysis", Ind. Eng. Chem., 5., 336 (1933).
23. Rainwater, F. H. and Thatcher, I. L., "Methods for Collection
and Analyses of Water Samples", Geological Survey Water Supply
Paper 1454, Washington, O.C., p, 83 (I960).
-23-
-------
APPENDIX V
-------
CHLS 05APR OSN*CNCRLS.RGD.IL.OW04 ON TS0009 04/19/75 0£VC
•STUDY DESCRIPTION
STATTYPE SMPLDAY ATLA8BY OUEDATE ACCOUNT-NUMBE1
77777777 03FE875 05FE875 OJMAY75
- ILLINOIS
•SAMPLE DESCRIPTIONS
STATTYPE DEEP T M NO tNOOATE TIME PRLU
NPAR NLOC
96 7;
>»REGIOr
LA8IDNUM
14045
14046
14047
14046
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
U067
14068
U069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14C81
U082
14083
U084
14085
14086
14087
14088
U089
14090
U091
14092
> AOENCYIO UNLOCKEY ST
1 77
4 V DRINKING WATER STU
STORETID COLLDAY Tl*E
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
-------
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
>»14045
»>14046
>»14047
>»14Q48
»>14049
>»14050
>»14051
>»14052
>»14053
>»14054
>»14055
>»14056
>»14057
>»14058
>»14Q60
>»14062
>»14063'
>»14Q64
>»14065
>»14Q66
>»14067
>»14068
>»14069
>»14Q70
>»14071
>»14072
>»14Q73
»>1*074
>»14Q75
I <~
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
HN03 REAGENT BLANK
H2SO*- REAGENT BLANK.
NAOH REAGENT BLANK
CUS04/H3P04 REAGENT BLANK
OPEW
CAIRO RAW WATER SERIES A —
CAIRO RAW WATER SERIES B
CAIRO FINISHED WATER SERIES A
CAIRO FINISHED WATER SERIES d
CHESTER RAW WATER SERIES A —
CHESTER RAW WATER SERIES B
CHESTER FINISHED WATER SERIES
CHESTER FINISHED WATER SERIES
CHESTER RAW WATER SERIES ft
CHESTER RAW WATER SERIES a
CHESTER FINISHED WATER SERIES
CHESTER FINISHED WATER SE-?iEi»
QUINCY RAW WATER SERIES A
QUINCY RAW WATER SERIES 9
QUINCY FINISHED WATER SERIES A
QUINCY FINISHED WATER SERIES B
CARLYLE RAW WATER SERIES ft
CARLYLE RAW WATER SERIES 3
CARLYLE FINISHED «ATER SERIES A
CAPLYLE FINISHED WATER SE-IES B
ROYALTON RAW WATER SERIES A
ROYALTON RAW WATER SERIES 3
ROYALTON FINISHED «ATE^ SERIES 4
ROYALTON FINISHED -A7EH SERIES E
FAIRFIELO RAW WATER SERIES A —
PAW WATER SERIES 3
0 } _S
A
B
A
B
-------
2.
3.
4.
5,
6.
7
t
9
0
1
2
3
V
J
s
T
J
I
.
I
i
i
>»14Q76 >
>»14Q77 >
>»140?a >
>»14079 >
>»14Q80 >
>»14081 >
>»14Q82 >
>»14083 >
>»14084 >
>»14085 >
>»14Q86 >
>»14087 >
>»14088 >
>»14089 >
>»14090 >
>»U091 >
>»14092 >
>»14093 >
>»14Q94 >
>»14095 >
>»14096 >
»>14Q97 >
>»14Q98 >
»>14099 >
>»14100 >
»>U102 >
>»U103 >
>»14105 >
>»14106 >
>»14107 >
>»14108 >
>»14L10 >
» > 1 4 11 2 >
>»14U6 >
> FAIRFIELO FINISHED WATER SERIES A
> FAIRFIELD FINISHED WATER SERIES 8 _. . _ _ _
> MT.CAHMEL RAW WATER SERIES A -— 3 £ ' ^ ^ NJ °7.^f B V
> MT.CARMEL RAW WATER SERIES B
> MT.CARMEL FINISHED WATER SERIES A
> MT.CAHMEL FINISHED WATER SERIES B
» NEWTON RAf WATEU SF«IES A , . -„,- 3^ 5"^ ^ ^^' * n
> NEWTON RAW WATER SERIES 8
> NEWTON FINISHED WATER SERIES A
> NEWTON FINISHED WATER SERIES 9 -
> DANVILLE RAW WATER SERIES A UO . O^ tO $ 1 . 3 1 ^
> DANVILLE RAM MATER SERIES B
> DANVILLE FINISHED MATER SCRIES A
> DANVILLE FINISHED MATER SERIES B
> PFDPIA RAW WATC» SF-RTFS A - UQ M:3 K) <5 PEORIA RAW WATEfl SERIES B i~- •--
> PEORIA FINISHED WATER SERIES A
> PEORIA FINISHED WATER SERIES 8
> PEORIA HAW WATER SERIES A
> PEORIA RAW WATER SERIES 8
> PEOPIA FINISHED WATER SERIES A
> PEORIA FINISHED WATER SERIES 8 , . -, n K\ a Q 3 -
> ROCK ISLAND RAW WATER SERIES A 4 1 • 3 u ^ \
> ROCK ISLAND AAW WATER SERIES B
> ROCK ISLAND FINISHED rfATER SERIES A
> ROCK ISLAND FINISHED WATER SERIES B
> STRFATftH RAW WATFH 5PRIFS A • O \ 0 "? M ^ » ' ^
> STREATOR RAW WATER SERIES B ,,.-,--
> STPEATOR FINISHED WATER SERIES A
> STREATOR FINISHED WATER SE«IES B <_,<._,
> KANKAKEE RAW WATEfl SERIES A — . . .... M \ % O « ^ 0 ' v '
> KANKAKEE RAW *ATER SERIES B
> KANKAKEE FINISHED WATER SERIES A
> KANKAKEE FINISHED WATE« SERIES B
> HN03 REAGENT BLANK
> H2S04 REAGENT BLANK
> NAOH REAGENT BLANK
> CUS04/H3P04 'REAGENT BLANK „ _ . c
** ri A i c~ CQI t on DAW w A TrR ctrDfrc n ., .,,—. -.— .-^ ^ V ,O « ^S n *^
> GALESBURG ^AW WATER SERIES 8
> GALESBUBG FINISHED WiTjs SESIES •
> GALES8URG FINISHED **AT£R SERIES ?
-------
liPA-CRL
1975
SAMPLE
LOG NO.
U050
U052
14054
14056
14058
14062
14064
14066
14068
14070
14072
14074
14076
14078
14080
14082
14084
14086
14088
14090
14092
14094
14096
14098
14100
14102
14104
14106
U108
14114
14116
.IL.OW04
S0003 OA
TREFLAN
«HL SMPL
UG/L
:<0.002
:<0.302
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:0.028
:0;050
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:0.010
:<0.002
:<0.002
:<0.002
1°
REGION
S0001 OA
HC9ENZ
WHL SMPL
UG/L
:0.010
:<0.002
:<0.002
:<0.002
:
-------
•Pft-CRL
1975
; AMPLE
.00 NO.
k050
k052
>054
.056
k056
.062
.064
.066
.068
k070
k073
k074
k076
k078
.080
.082
.084
.086
.088
.090
.092
.094
.096
.098
.100
.102
.104
.106
.108
kl 14
.116
39430 OA
ISOOHIN
WHL SMPL
UG/L
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO'.OC3
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
8P
REGION
39420 OA
HCHLR-EP
WHL SMPL
UG/L
xO.002 :
xO.002 :
x 0 . 0 0 2
XO.002 :
XO.002 :
XO.002 :
XO.002 :
XO.002 :
xO.002 t
XO.002 :
XO.002 :
xO.002 :
xO.002 :
XO.002 :
xO.002 :
XO.002 :
xO.002 :
XO.002 :
XO.002 !
XO.002 :
x 0.0 02
XO.002 :
XO.002 :
xO.002 :
xO.002 :
xO.002 :
xO.002 :
XO.002 :
xO.002 :
xO.002 :
XO.002 :
9P
V DRINKING
S0006 OA
CHLOROAG
WHL SMPL
UG/L
<0.002
<0.002
<0.002
0.004
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
10P
S0007 OA
DOE OP
WHL SMPL
UG/L
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
:0.008
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
t<0.003
xO.003
xO.003
xO.003
xO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
IIP
S0008 OA
DOE P?
WHL SMf*L
UG/L
XO.003
XO.003
XO.003
XO.003
XO.003
xfl.003
XO.003
XO.003
XO.003
XO.003
X0.003
XO.003
XO.003
XO.003
XO.003
XQ.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
12P
S0009 OA
ODD OP
*HL SMPL
UG/L
XO.003
xO.003
XO.003
XQ.C03
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
xC.003
xO.003
xO.003
XO.003
xO.003
x 0 . 0 0 3
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XC.003
13P
S0010 OA
DOT OP
WHL SMPL
UG/L
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
X0.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
xO.003
xO.003
XO.003
XO.003
14P
: 6S
• o c
• ™ J
: 105
: 125
: 145
: 18?
:20S
:22S
:24S
:26S
:28S
:30S
:32S
: 34S
:365
s 33S
:40S
; 42S
:44S
:46S
:48S
:50S
:52S
:54S
:56S
J 5«iS
:60S
:62S
:64S
:70S
:72S
»
WATER STUDY - ILLINOIS •
-------
cPA-CRL
1975
SAMPLE
LOG NO.
14050
14052
14054
14056
14058
14062
14064
14066
14068
14070
14073
14074
14076
14078
14080
14082
14084
14086
U088
14090
14092
14094
14096
14098
14100
14102
U104
14106
14108
14114
14116
.IL.OW04
SOOll OA
000 PP
WML SMPL
UG/L
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
:<0.003
15P
HEGION
S0012 OA S0013 OA
DOT PP CARBPHTH
WHL SMPL WHL SMPL
UG/L UG/L
tO. 006 K0.003
:<0.003 K0.003
:0.068 K0.003
:<0.003 :<0.003
:<0.003 :<0.003
:<0.003 :<0.003
:<0.003 :<0.003
t<0.003 K0.003
K0.003 :<0.003
:<0.003 :<0.003
:<0.003 :<0.003
:<0.003 t<0.003
:<0.003 :<0.003
:<0.003 :<0.003
:<0.003 :<0.003
:<0.003 :<0.003
:<0.003 K0.003
K0.003 K0.003
:<0».003 t<0.003
:<0.003 :<0.003
:<0.003 :<0.003
:<0.003 :<0.003
:<0.003 :<0.003
:<0.003 :<0.003
:0.012 :<0.003
:<0.003 :<0.003
:<0.003 :<0.003
i<0.003 :<0.003
:<0.003 t<0.003
:<0.003 :<0.003
:<0.003 :<0.003
16P 17P
S0014 OA 39440 OA S0020 OA S0021 OA
MIRE* MThXYCC* 2.4-QtIP DN9P
WHL SMPL WHL SC>H. WHL SMPL WHL SMPL
UG/L UG/L UG/L UG/L
K0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
K0.005 :<0.01
:<0.005 :<0.01
K0.005 :<0.01
:<0.005 :<0.01
t<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
t<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 KO.Ol
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
:<0.005 :<0.01
<.02 :<1 * 6-
<.02
<.02
i
<.02
<.02
<.02
<.C2
<.02 :
<.02 i
<.02
<.02
<.02 :
<.02 !
<.02 !
<.02 :
<.02 :
<.02
<.02 :
<.02
<.02
<.02
<.02 !
<.02
<.02
<.02
<.02
<.02
<.02
<.02
<1 : -T
: 1:V
<1 : 12'
: 14<
• < 1 : 1 8 «
<1 :20:
<1 :22.
<1 :2*
<1 :26
><1 :29
<1 : 30'
,<1 :32
<1 :3*
<1 :36
<1 :3«
<1 :4Q
<1 :42
-------
EPA-CRL
1975
SAMPLE
LOG NO.
14050
14052
14056
14062
14064
14066
14068
14070
14073
14074
14076
U078
14080
14082
14084
14086
14088
14090
U092
14094
14096
14098
14100
U102
14104
14106
14108
14114
14116
39770 OA
OCPA
WHL SMPL
UG/L
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
•31O
S0023 04
ENOOS I
WHL SMPL
UG/L
<.005
<.005
<.OOS
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
K.OOS
P3P
39380 OA
OIELORIN
WHL SMPL
UG/L
.004
<.003
,007
<.003
<.003
<.003
<*003
<.003
<.003
<.003
<.003
.011
.006
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
.004
<.003
K.003
24P
&&' — —
.IL.OW04 PEOION V OP-INKING WATE3
39390 OA 39460 OA
ENQRIN CLR°NZLT
WHL SMPL WHL SMPL
UG/L UG/L
<.003 <.01
<.003 <.01
<.003 <.01
<.003 <.01
<.003 <.01
<.003 <.01
<.003 <.01
<.003 <.01
<.003 K.01
<.003 K.Oi
<.003 K.01
<.003 <.01
<.003 <.01
<.003 <.01
<.003 <.0l
<.003 <.01
<.003 <.01
<.003 <.0l
<.003 <.01
<.003 <.01
<.003 <.01
<.003 <.01
<.003 <.01
* f\ rt •} s f\ \
<«003 <.01
* f\ f\ t S A 1
< • 003 < • 0 1
< . 0 0 .3 < . 0 1
-------
EPA-CRL
1975
SAMPLE
1.06 NO.
14050
14052
14054
U056
14062
14064
14066
14068
14070
140*3
14074
14.076
14078
14080
14082
14084
14086
14088
14090
14092
14094-
1*096
14098
1*100
14102
14104
1*106
1*108
14114
14116
,IL.O*04
S0029 OA
245-T:IO
V«HL SMPL
UQ/L
S0030 OA S0031 OA
PROLAN 8ULAN
WHL SMPL WML SMPL
UO/L UO/L
S0026 OA 39808 OA
OEHP TE3IO*
WML SMPL WML SMPL
JQ/L UO/L
<
<
<
<
<
<
K.Ol
K.Ol
t<.01
K.Ol
K.Ol
K.Ol
<
<
29P
REGION
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
30P 31P
V DRINKING WATER
K.Ol
K.Ol
K.Ol
K.Ol
31P
:3
•
•
:3
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl '
K.O:
K.Cl
K.Ol
K.Ol
Kl K.Ol
Kl K.Ol
t < 1 K.Ol-
32P 33P
STUDY - ILLINOIS
39570 OA
OIAZINON
»»HL SMPL
UO/L
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
:<1
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
34P
S0016 OA
OYfONaTE
SHPL
UO/L
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
:
-------
FPA-CRL
1975
SAMPLE
t_OG NO.
14050
14052
14054
U056
14062
14064
14066
14068
14070
14073
1*074
14076
14078
14080
14082
14084
1*086
14088
14090
14092
14094
14C96
14098
14100
14102
14104
U106
14108
141U
14116
.IL.DW04
S0017 OA S0032 OA 39600 OA 39530 OA 39540 OA
RONNEL DU«SBAN MPARATHN MALATHN PARATHN,
4HL SMPL '4HL SMPL »HL SMPL '-HL SMPL WHL SM»L
UG/L UG/L UG/L UG/L UG/L
• ...1 « * 1 • < 1 Kl
Kl Kl Kl • * \ ' * 1 «<1
• <1 :<1 KI • < * *^4
.-i »^1 !<1 *<1
:
-------
14052"
14054
14062
U064
14066
14088
14090
14092
14094
14114
»
Kl
«
" -
'<
<
co*-rPL S0018 04 5003* OA 39580 OA
-**i* PHrNCAPT EPN GUTHION
; Es.
$0035 OA S0036 0
;
*
VML SMPL MHL
UG/L UG/L
Kl Kl
Kl Kl
!<1 Kl
14116 Kl Kl — w 47P 43"
.tL.0-04 REllON^IN^^^
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
46P
STUOY -
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
47P
ILLINOIS
S0037 OA
COUMAFOS
*HL SMPL
UG/L
<5
39488 OA
AROCLOR
1221
UG/L
K0.3
:<0.3
:<0.3
:<0.3
:<0.3
:<0.3
:<0.3
KQ.3
K0.3
K0.3
K0.3
K0.3
K0.3
: < 0 . 3
:o.3
: 6S
: *S
:10S
:12S
: las
:20S
J22S
:2^S
:26S
»29S
:30S
:32S
:34f
:36S
:38S
<5
t<5
K0.3
K0.3
:<0.3
:<0.3
K0.3
:<0.3
K0.3
K0.3
:<0.3
K0.3
K 0 . 3
K0.3
K0.3
K0.3
49P
:42S
:44!:
:46<
:495
:50:
J525
:54'
J56
:«5ai
:60'
:62'
:64
:70
t72
-------
ePA.CRL «.i. 0. 3,500 0. ,,«».. ..«..» "0*7 0. S003, 0, SOO^O*
1975
SAMPLE
LOG NO.
1*050
1*051
1*052
1*053
1*054
14055
14056
14057
14058
14062
14063
U064
14065
14066
14067
14068
1*069
14070
1*071
1*072
1*07*
1*075
14076
1*077
1*078
1*079
1*080
1*081
14082
1*083
1*08*
1*085
1*036
1*087
14088
14089
14090
14091
1*092
1*093
1*09*
14095
1*096
14097
14098
14099
1*100
1*101
1*102
1*103
1*104
1*105
U106
1*107
14108
U109
1411*
AROCLOR
12*2
UG/L
:<0.3
t
«
:<0.3
:
:<0.3
i
:<0.3
»
:<0.3
:<0.3
t
:<0.3
t
:<0.3
•
•
:<0.3
•
•
:<0.3
:
:<0.3
:<0.3
:
:
K0.3
•
•
:<0.3
:
:<0.3
:
:<0.3
•
•
:<0.3
j
• :<0.3
t
!<0.3
:
: . 3
• *• i • * • j
• r C.
'
: < 1 . 5 : 1
•
TOT VOLA
UG/L
s s 6
:2 : T-
: ' °
: 14 : «'
: : 1 0 '
:5 :ll'
: :12
:182 :13'
j : 1*'
: U8
:<2 :19'
: :20-
i58 tar
: J22
:<1 =23
: :2*
:*q :25
: :26
:<1 :27
:69 ;23
: :30
: 1 0 : 3 1
: :32
:*7 :33
: :3*
: :35
: :36
:52 :37
:38
:<1 :39
t :40
:4 >4i
: :*2
:6 :43
: :44
:16 :^5
• • 4ft
; • ** o
:<1 :-»7
: : 4fl
:2 «*9
: ' :50
• <\ : 5 1
« S 1 • -* *
: : 52
: 1 .6 553
• : 54
:9* :55
: :56
:79 :S7
• • S o.
« • J
f ^ 1 ' •% Q
J < I < 3 ^
• J A il
I » O v
I« a • 4k *i
35 . e i
, . i 9
; • TC
•
-------
14115
U116
U117
•IL.OHO
:
:<0.3
t
50P
4 REGION
i
t<0.3
t
SIP
t
K0.3
1 '
52P
V OPINKING WATEH
t
K0.4
t
53P
STUDY -
:
-------
EPA-CRL
1975
SAMPLE
LOG NO.
14051
'4053
055
»* w *f
14057
14063
14065
14067
14069
14071
14072
14075
14077
14079
14081
14093
14095
14087
14089
14091
14093
U095
14097
14099
14101
14103
14105
U107
14109
14115
141 17
± ^ & • *
.IL.DW04
S0056 OA SOOfcO OA
C2H4CL2 CHCL28R
TOT VOL TOT VOL
UG/L UG/L -
t <1 :<0.2
t
-------
EPA-CRL
1975
SAMPLE
LOO NO.
14050
1 ' *^9
1 7C •
C A
1 J*
14059
14062
14064
14066
& V -' W^*
14068
14070
14072
14074
14076
14078
14080
1 A.ftft?
1 * '• 9C
14084
14086
U088
14090
14092
14094
14096
14098
U100
U102
14104
U106
14108
14110
14114
14116
.IL.DW04
01067 MM
NICKEL
NI.TOT
UG/L
.
'
:
64P
REGION
00916 MW
CALCIUM
CAfTQT
MG/L
134.2
141.4
138.5
143.4
151.6
135.7
154.0
168.9
150.5
150.5
128.3
123.4
151.9
137.3
162.5
149.9
155.7
145.2
191.5
191.0
192.7
191.4
152.1
!46.3
172.1
161,7
167.2
129.2
!<1
145.5
151.8
65P
00927 MW
MGNSIUM
MG.TOT
MG/L
Ill.l
110.6
114.7
:0.8
:21.6
U4.9
123.3
:23.3
18.3
17.0
17.0
17.2
116.7
116.0
124.8
124.0
121.8
122.0
149.2 •
149.4
149.0
:49.3
:17.7
:17.2
134.3
134.5
124.3
111.6
t<0.1
119.4
:20.1
66P
V DRINKING WATER
00929 MM 00937 MM
SODIUM PTSSIU*
NA.TOT KtTOT
MG/L MG/L
110.8 :2.2
110.7 " "
113.1
U6.2
112.0
111.8
113.1
113.5
120.6
120.9
U7.4
117.9
17.1
17.7
17.1
17.4
13.7
13.7
121.3
120.8
120.2
119.3
19.1
18*5
110.3
ill.l
16.5
"130.5
KO.l
16.0
15.1
67P
STUDY -
ii.a
13.0
:2.9
:2.4
:2.3
:2.0
12.2
13.5
13.5
13,6
13.6
12.3
:2.2
10.5
10.5
11.2
11.3
11.7
11.9
U.7
12.0
11.7
:1.7
U.6
H.9
U.8
11.7
KO.l
tl.4
11.2
68P
ILLINOIS
01034 MW 01042 Mv*
CHPOMIUM COPPER
CR«TOT CU»TOT
UG/L UG/L
:<5 :5
» ^ C * Q
i 0 J
:56S»J
:58S»J
:60S*J
:62S»J
164S*J
166S»J
170S»J
• *f ^ c A i
I 725*J
»*J
**J
-------
EPA-CRL
1975
SAMPLE
LOG NO.
14050
)'-052
/54
U059
14062
14064
14066
U068
14070
14072
14074
14076
14078
14080
14082
14084
14086
14088
14090
14092
14094
14096
14098
14100
14102
14104
14106
14108
14110 .
14114
14116
01045 M*
IRON
>E»TOT
UG/L
:1790
:<20
:2310
:40
:440
:<20
:450
:90
:82
:<20
:1350
:<20
:1870
:130
:2810
:<20
:290
j _
:<20
:135
:<20
:135
:<20
:140
:28
:130
:130
:740
:38
:<20
:1600
:85
TIP
01055 MW
MANGNESE
MNtTOT
UG/L
:240
:<5
:260
:<5
:160
:<5
1130
:17
:65
rfl
:240
:20
:190
J25
:320
:<5
:24
k ^ f
1
ARSENIC
AStTOT
UG/L
• 1
• 2
i « i
* x i
»rt
9
• < 1
• * i
s < 1
* * i
f «• 1
i * i
• *
• I
t < \
• * i
• i
i 1
»^ i
< 1
:5
i f \
1*1
»• A
1 u
» rf 1
I < 1
t A
* 4
t * \
1*1
• 1
• i
t <1
• ^ A
t f \
I < I
, f \
I < 1
• * 1
• < I
t * 1
1*1
• * \
' < 1
• < 1
• * 1
• f \
• * 1
» t \
1*1
• 1
i 1
t f \
1*1
t f \
1*1
f t \
• * 1
• < 1
• ^ *
74P
STUDY -
K 01051 M*
LEAD
PBtTOT
US/L
• i •»
• i J
;2
* w
t i e
• i j
: 3
: 4
J<2
• •»
• w
:2
• fc
:*2
• ^ fc
t ^
• O
17
: <2
• ^ *•
: 1 1
• i j
j 2
* b
• 4
S 2
* w
t 4
12
t <2
• ^ fc
: 3
• J
: <2
• ^ t.
: 2
• fc-
t ?
• C
:2
:2
• w
:5
:3
: <2
i <2
* ^ fc
i <2
:2
75P
ILLINOIS
i 01027 M*
CADMIUM
COtTOT
UG/L
: 0 .4
:<0.2
« 1 .1
:<0.2
:<0.2
:<0.2
:<0.2
i<0.2
:<0.2
i<0.2
SO. 3
:<0.2
: 0.4
: <0.2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
:*0.2
: < 0 . 2
:<0.2
: 0.3
:0.3
: < 0 . 2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
76P
01077 MW
SILVEO
AGtTOT
UG/L
:<0.2
t<0.2
:<0.2
:<0.2
:<0.2
: < 0 . 2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
J<0.2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
i<0.2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
:<0.2
t<0.2
:<0.2
:<0.2
77P
»K
•K
•K
*K
: 6S*<
: 8S»*
S 10S«K
:15S»K
:19S»K
:20S*K
:22S*K
:24S*K
:26S«K
J23S»K
:30S»K
!32S*K
:34S*K
:36S*K
:3«S*K
540S*K
:42S«K
J44$*K
J46S»K
:43S*K
:50S*K
:52S»K
:54S*K
:56S*<
:58S»<
:60S*K
:62S»K
:64S«K
:66S»K
I70S*K
:72S*K
• •K
«*K
K
-------
EPA-CRL 01147 MW 01007 MW
1975 SELENIUM BADIUM
SAMPLE SE»TOT BAtTOT
LOG NO. UG/L UG/L
14050 :<5 : : t
52 :<5 :
UOS4 :<5 :
U059 :<5 :
14062 :<5 :
14064 :<5 t
14066 t<5 t
14068 :<5 l
14070 :<5 t
14072 :<5 i
U074 :<5 J
14076 :<5 :
U078 :<5 :
14080 :<5 :
14082 :<5 :
14084 :<5 :
U086 :<5 i
14088 :<5
14090 :<5
14092 :<5
14094 :<5
14Q96 :<5
UC98 :<5
U100 :<5
14102 :<5
14104 :<5
14106 :<5
14108 :<5
14110 :<5
14114 :<5
: i
• •
• •
• •
• I
3
I
I
t
1
1
: t
« A
* I
I I
t I
i I
\ I !
! / J J
> • •
te m
' I
lit
I I I
! ! J
• • •
• • •
: : :
j t J
: t i
its
* * . t
• •
14116 :<5 : j *
78P 79P 80P 81P
•IL.OW04 REGION v DRINKING WATE* STUDY -
«L
•L
• i
W
• 1
k.
: : 6S*L
,,
,
,
,
,
1
1
t
{
!
:
•
.
9
,
*
•
•
*
J
•
•
•
•
•
J •
(t
•
t j
: i
: BS»L
:1DS»L
:15S*L
:18S»L
:20S*L
:22S*L
: 34S*L
• <• ^ w W
»26S»L
»28S«L
:30S*L
. :32S*L
• 14.C •!
•O*o wl_
:36S«L
:33S«L
I40S*L
: 4?S*L
• ^ t. w L.
:44S«L
:46S»L
:4«S*L
:50S«L
:52S*L
: 54S*L
• »f — * ^»
:56S«L
: sfls^L
« j \j ^j ^
J60S«L
:62S»L
• <>4^*l
• w ^ J L,
:66S»L
:70S*L
t ; : S72S*L
«2P 83P 84P ««L
ILLINOIS «*L
-------
EPA-CRL
1975
SAMPLE
LOO NO.
U050
14052
. 54
U056
1 ».062
14064
14066
14068
U070
14072
14074
14076
14078
14080
14082
14084
14086
14088
14090
14092
14094
14096
14098
UlOO
14102
14104
U106
14108
14114
14116
.IL.OW04
00530 tM
RESIDUE
TOT NFLT
MO/L
1 146
i <3
U62
: <3
: 19
1 <3
144
14
til
13
1153
13
1274
: <3
13
1 <3
110
l<3
14
t<3
HA.
i <3
16
:<3
: is
16
t3l
i 13
14
:<2
85P
PEGION
70300 IM
PESIOUE
OISS-180
C MO/L
1150
U90
1200
1180
1200
1180
1290
1290 •
t£20
1200
1160
1230
1210
1240
1310
1310
:290
1280
1490
1420
1480
1480
1225
1200
1370
1350
1400
1250
1280
1310
86P
00095 IM
CNOUCTVY
AT 25C
MICROMHO
1310
1369
1376
1341
1471
1356
1494
1578
1466
1456
1323
:369
1412
1441
1508
1505
1459
1468
1837
1842
:842
1843
1396
1454
1627
1638
t59S
1433
14S3
1461
87P
00945 U
SULFATE
S04
MO/L
til
:6S
148
:49
132
142
146
196
1150
1149
160
191
146
168
138
136
140
»57
155
157
1ST
:57
J 18
:58
175
175
1 101
1103
122
tl9
88P
t 00940 In
CHLOPIOE
CL
MO/L
116
119
l 17
:23
120
:24
123
126
119
122
133
135
117
121
»7
19
U4
U8
127
t29
:25
128
1 12
1 16
• 21
• 24
US
121
17
1 10
89P
00956 IM
SILICA
SI02
MO/L
16.8 :
17.3 :
:8.3 :
17.7 s
:9.5 :
:8.5 :
16.0 1
15.4 i
11.6 * l
11.3 l
16.2 t
15.4 1
17.0 1
:6.7 :
:15.9
:15.9 i
17.6 l
i?.6 1
? 18,0 1
:18.3
U7.8
:18.2 :
: 1 0 . 0 :
:9.0 :
J4.8 :
:5.2 :
19.4 ;
17.2 i
118.2 i
* \ O A t
• 4 " * v *
90°
00410 I
T ALK
CAC03
MO/L
68
72
107
63
175
92
162
144
45
31
32
30
120
106
213
201
142
115
368
364
364
354
152
134
197
187
166
49
204
201
91P
M • *
•t-
»>.
•t-
1 6S*S
: 95*'
: lOS*"1
5 12S4**
: 18S*V
:20S«»
522S*'
1 24S*>
126S«'
128S«:
i 30S*I
S32S*'
: 34S*;
:36S»i
:33S»'
:40S»'
142S*
: 445*
I46S»
!48S»
:50S»
:52S»
: 5<»S»
:56S°
: 58S*
1605*
:62S*
: 64S*
I70S*
: 72S*
• •
V OPINKINQ WATEP STUDY - ILLINOIS »»
-------
EPA-CRL
1975
SAMPLE
LOG NO.
14045
' -»50
i j52
14054 .
14056
14062
14064
14066
14068
U070
14072
14074
14076
14078
14080
U082
U084
14086
uree
U090
14092
14094
14096
14*98
14.100
U102
14104
U106
14104
14111
14112
14113
14114 *
14116
.IL.DW04
00403 IM
LAB
PM
su
•
•
17.4
17.8
17.5
HO. 1
17.8
19.4
17.9
lT.5
17.9
18.0
17.0
16.9
17.6
17.4
17.5
17.5
17.9
17.2
17.4
17.3
17.4
17.2
17.7
17.6
18.0
17.8
17.7
19.0
t
•
•
•
•
:7.4
17.3
92*
REGION
00951 IM 32730 IM
FLUORIDE PHENOLS
F, TOTAL
MG/L UO/L
1 l<3
tO. 16 i<3
tl.2 t<3
10.21 15
10.83 14
10.18 16
tl.O t6
tO. 20 13
tO. 77 t3
tl.3 t7
tl.2 16
10.46 18
10.52 14
10.18 14
10.42 13
10.17 t<3
tO. 60 :<3
10.17 13
:0.52 13
10.20 t<3
tl.O i<3
10.20 i<3 .
tl.l l<3
10.17 113
10.84 14
10.27 l<3
10.76 l<3
tO. 17 t<3
tO. 97 t<3
t t
• •
• •
i i<3
10.15 K3
10.90 t<3
93P 94P
00720 I*
CYANIDE
CN
MG/L
K0.002
10.007
tO. 002
tO. 005
10.003
tO. 004
tO. 003
10.003
10.003
10.002
MO. 002
10. 010
tO. 003
10. 005
:
-------
rPA-CRL
1975
SAMPLE
LOG NO.
14045
U«50
1 >2
14054
U056
14062
14064
U066
U068
14070
14072
14074
14076
14078
14080
14082
14084
14086
U088
14090
14092
14094
14096
U098
14100
14102
U104
14106
14108
14110
Ulll
UH4
U116
.IL.OW04
00665 IN
PMOS-T
P-*ET
MG/L
:<0.02
:0.24
tO. 04
:0.45
:0.58
tO. 19
tO. 19
tO. 12
K0.02
t<0.02
K0.02
:0.33
:0. 02
tO. 38
:<0.02
:0.11
:<0.02
:0.12
t<0.02
:<0.02
:0.02
;<0.02
t<0.02
:0.15
:0.03
:0.15
:0.12
:0.08
to. 02
t
:<0.02
:0.13
:0.02
99P
REGION
003*0 IN
coo
HI LEVEL
MG/L
t<3
:22
18
!40
t9
128
t!2
119 .
t6
t9
t7
t43
t6
t37
:a
:<3
:<3
:13
IS
17
t<3
:9
t6
:22
:13
:T
:«
:19
:*
t
:<3
:4
:<3
100P
t
t
t
•
•
•
•
t
t
i
t
i
t
t
t
t
*
*
•
•
t
•
*
t
»
:
t
t
•
•
•
•
t
•
•
•
•
:
t
t
t
t
«
•
00680 IN 71900 IN
T ORG C MERCURY
C HGfTOTAL
MG/L UO/L
t
10.2
to. 2
to. 2
to.i
10.1
10.3
r
-------
CRI s 05APQ DSN«CNCRLS.RGD.IN.DWO* ON 150009 o*/ia/7&
•STUDY DESCRIPTION———— ——
ST4TTYPE SMPLDAY ATLA88Y OUEOATE ACCOUNT-NUMBED
777T7777 03FEB75 05FF875 03««AY7S
- INDIANA
•SAMPLE DESCRIPTIONS
STATTyPE DEEP T M NO ENQOATE TIME oqLll
NPftR NL06
94 90
>RE6ION
LARIDNUM
U118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
U129
14130
14131
14132
14133
U134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
U148
14149
l'*150
U151
14152
U153
14154
U155
U156
1*157
U158
14159
U160
U161
14162
14163
14164
141$5
14166
AGENCYID UNLOCKEV ST
77
v DRINKING WATER STU
STORETIO COLUOAV TIME
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
-------
U167
U168
14169
14170
' '71
. .73
14173
14174
14175
14176
14177
1417S
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
U194
14195
14196
14197
14.196
14199
U200
U201
14202
14203
14204
14205
14206
14207
>»14120
>»14122
>»14123
>»14124
>»14!25
»>14126
»>14127
>»14128
>»14129
>»14130
>»14\32
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
HN03 REAGENT BLANK
H2S04 REAGENT BLANK
NAOM REAGENT BLANK
CUS04/H3P04 REAGENT BLANK
OPFri 750203
MT VErtNON RAW WAT£* SERIES A
MT VERNON RAM WATER SERIES 8
MT VERNON FINISHED *ATER SERIES A
MT VERNON FINISHED *ATER SERIES 8
MT VERNON RAW WATE» SERIES A
MT VERNON RAW WATER SERIES 8
MT VERNON FINISHED WATER SERIES 4
MT VERNON FINISHED WATER SERIES 9
EVANSVILLE RAW WATER SERIES A —
:S d
O ) A AM
(i ~). 5 S
• * -3 v\^
-------
>14133
>U135
> 37
•>i -i38
•>14147
•>14i48
•>14149
•>14150
•M4152
•>14153
•>14154
•>14155
•>14156
•>U157
•>14158
•>14159
•>14160
•>14162
•>14163
•>14164
•>14165
•>14166
•>14167
•>14168
•>14169
->14170
•>14172
•>14173
•>14174
•>1417S
•>14176
•>U177
•>14178
•>14179
•>14180
•>14183
•>14195
EVANSVILLc FINISHED WATER SERIES A
EVANSVILLE FINISHED WATER SEKIES B
NEW ALBANY RAM WATER SERIES A
NEW ALBANY RAW WATER SERIES B
NEW ALBANY FINISHED WATER SERIES A
NEW ALBANY FINISHED WATER SEMES B
BEDFORD RAW WATER SERIES A
BEDFORD PAW WATER SERIES 9
BEDFORD FINISHED WATEP SERIES A
BEDFORD FINISHED WATER SERIES B
TERRE HAUTE RAW WATER SERIES A
TERRE HAUTE P-AW WATER SCRIES B
TERRC HAUTE FINISHED WATER SCRIES A
TERRC HAUTE FINISHED WATER SCRIES 8
INDIANAPOLIS RAW WATER SERIES A
INDIANAPOLIS PAW WATER SCRIES B
INDIANAPOLIS FINISHED WATER SERIES A
INDIANAPOLIS FINISHED WATER SERIES B
KOKOMO RAW WATER SERIES A
KOKOMO RAW WATER SERIES B
KOKOMO FINISHED WATER SERIES A
KOKOMO FINISHED WA-TER SERIES a
LOGANSPORT RAW WATER SERIES A
LOGANSPORT RAW WATER SERIES B
LOGANSPORT FINISHED WATER SERIES A
LOGANSPORT FINISHED WATER SE«IES B
FOPT WAYNE RAW WATER SERIES A
FORT WAYNE RAW WATER SERIES 8
FORT WAYNE FINISHED WATER SERIES A
FORT WAYNE FINISHED WATER SERIES 8
MICHIGAN CITY RAW WATER SERIES A
MICHIGAN CITY RAW WATER SERIES B
MICHIGAN CITY FINISHED WATER SERIES A
MICHIGAN CITY FINISHED WATER SERIES B
GARY RAW WATER SERIES A
GARY RAW WATER SCRIES B
GARY FINISHED WATER SERIES A
GARY FINISHED WATER SERIES B
GARY SAW WATEP. SERIES A
GARY RAW WATER SERIES B
GARY FINISHED *AT£R SERIES A
GA3Y FINISHED WATER SERIES 3
HAMMOND RAW WATER SERIES A —
HAMMOND RAW WATER SERIES B
HAMMOND FINISHED WATER SERIES A
HAMMOND FINISHED WATER SCRIES B
HN03 REAGENT BLANK
H2S04 REAGENT BLANK
NAOH REAGENT BLANK
H3P04 REAGENT BLANK
OP€M 750203
SOUTH BEMO PA« WATER SERIES A —
SOUTH SEND OAW WATER SERIES fl
SOUTH BENO FINISHED WATER SERIES A
SOUTH 3ENO FINISHED WATER SERIES -3
"UNCIE PAW WATER SERIES A .
3i;,s
3 c).
40 ."50
^\ ,
.5" 4
. 34
MO.U
-------
4189
4190
4191
4. 1 O9
^ 1 TC
4193
4
4i95
4196
4197
4198
4199
4200
4201
4202
4203
4204
~ C V ^
420S
4206
4207
»
»
»>
> %
J 9
»
»
»
»
»
»
»
»
»
»
»
»
»
»
»
. MUNCIE RAW WATER SERIES B
MUNCIE FINISHED WATER SERIES A
MUNCIE FINISHED WATER SERIES B • -
MOROCCO RAW WATER SERIES B
MOROCCO FINISHED WATER SERIES A
MOROCCO FINISHED WATER SERIES B . i ~ -, C" lOl ft L> ,
LAFAYETTE RAW WATER SERIES A • ' H <-> * •*• ^ "^
LAFAYETTE RAW WATER SERIES 8
LAFAYETTE FINISHED WATER SERIES A
LAFAYETTE FINISHED WATER SERIES B -j A , .. . \ c /
BLOOMIN9TON RAW WATER SERIES A ^ "| , \ 0 NJ OU
BLOOMINOTON RAW WATER SERIES 1
BLOOMINOTON FINISHED WATER SERIES A
BLOOMINOTON FINISHED WATER SERIES I • ,. , .. , , .. „
WHITING RAW WATER SERIES 8
WHITING FINISHED WATER SERIES A
WHITING FINISHED WATER SERIES B
-------
EPA-C&L
1975
SAMPLE
LOG NO.
14123
14125
14127
14129
14133
14135
14137
14139
14141
14143
14145
14147
14149
U150
U152
14153
14156
14157
U159
U161
14163
14165
14167
U169
14171
14173
14175
14177
14184
14186
14188
14190
U192
14194
14196
14198
14200
14202
14204
U206
.IN. 0*04
S0003 OA
TREFLAN
WH
XO
KO
KO
KO
KO
xO
KO
KO
KO
xO
XO
XO
XO
xO
xO
xO
KO
KO
:<0
KO
:<0
xO
xO
XO
XO
KO
:<0
xO
KO
xO
xO
xO
xO
XO
xO
xfl
xO
KO
xO
xO
L; SMPL
UG/L
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
IP
PEGION
soooi OA
HCBENZ
WHL SMPL
UG/L
xO.002 :
xO.002 :
xO.002 :
xO.002 :
XO.002 :
xO.002 t
XO.002 (
xO.002 i
xO.002 :
xO.002 :
xO.002 :
xO.002 :
xO.002 :
:0.010 :
xO.002 :
xO.002 :
K0.002 :
K0.002 :
xO.002 :
xO.002 :
xO.002 :
xO.002 :
xO.002 :
xO,002 :
xO.002 :
xO.002 :
xO.002 :
t<0,002 :
xO.002 «
xO.002 :
K0.002 :
xO.002 :
xO.002 :
XO.002 :
xO.002 :
XO.002 :
XO.002 :
XO.002 :
xO.002 :
xO.002 :
2P
v DRINKING
39782 OA
LINDANE
MHL SMPL
UG/L
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.602
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.00?
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
3P
S0002 OA
88HC
WML SMPL
UG/L
KO.OOS
XO.OOS
KO.OOS
KO.OOS
KO.OOS
K0.002
K0.002
K0.002
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
XO.002
XO.002
KO.OOS
K0.002
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
XO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
'xO.OOS
XO.OOS
xO.OOS
xO.OOS
XO.OOS
xO.OOS
XO.OOS
KO.OOS
KO.OOS
KO.OOS
K0.002
4P
S0004 OA
OICLONt
WHL SMHL
UG/L
KO.Ol :
KO.Ol :
KO.Ol :
KO.Ol :
KO.Ol s
KO.Ol !
KO.Ol 1
KO.Ol :
KO.Ol t
KO.Ol :
xO.Ol :
KO.Ol t
KO.Ol :
KO.Ol :
KO.Ol :
KO.Ol :
KO.Ol :
KO.Ol :
KO.Ol :
xO.Ol :
KO.Ol :
KO.Ol
xO.Ol :
xO.Ol :
XO.Ol :
xO.Ol :
xO.Ol :
xO.Ol :
xO.Ol :
xO.Ol :
XO.Ol :
: <0 .01 :
xO.Ol :
xo.Ol :
xO.Ol :
xO.Ol :
xO.Ol :
XO.O! :
XO.Ol :
xO.Ol :
SP
39
330 OA
S0005 OA
ALO^IN ZYTPON
«H
<0
P
MH
xO
xO
xo
XO
xO
xO
XO
KO
XO
xO
xO
XO
xO
XO
xo
:<0
xo
xO
:<0
KO
:<0
xO
:<0
xO
:<0
xo
xo
xO
xo
xO
xO
xO
xO
: o .
xo
xO
xO
XO
xO
:<0
L SMPL
UG/L
.02 :
.02 :
.02
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 i
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02 :
.02
.02 :
0»A
»»a
••A
-------
rPA-CRL
1975
SAMPLE
LOG NO.
14123
14125
14127
14129
14133
14135
14137
14139
14141
14143
14145
14147
14149
14150
14152
14153
14156
14157
14159
14161
U163
U165
14167
14169
14171
14173
14175
U177
14194
14196
14188
U190
14192
U194
U196
14198
14200
14202
14204
U206
.IN. 0*04
•
•
*
•
•
t
t
1
t
!
1
:
:
:
:
:
t
i
:
•
•
t
•
i
:
t
*
•
t
»
•
i
•
•
i
t
t
:
:
•
•
t
•
•
:
*
•
:
:
«
39430 OA
ISOO«IN
WHL SMPL
UG/L
<0.003
<0.003
<0,003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.002
<0.002
s*m
: »s*«
nos*^
1 12S*R
1 16 2flS*R
^os*?
:32S*B
t 33S**;!
:35S*R
J36S*8
t 39S«M
»40S»
: 42s»y
:44S»9
t 4#>S*fl
• 4AS*H
:50S*3
:52S*-->
:54S*n
i 56S*>1
:5flS*R
1 ftOS*9
1 475*8
: 495*.)
: 71S«M
:73S«8
:75?«q
:77S*p
: 79S»s
t 31 S*8
I93S*B
:85S*9
I87S*«
J«I9S**
*•%
••8
-------
FPA-CRL
1975
SAMPLE
LOG NO.
14123
U125
14127
U129
14133
14135
U137
14139
14141
14143
14145
14147
14149
14150
1*151
14152
14153
14156
U157
14159
1*161
14163
14165
14167
14169
14171
14173
14175
14177
14184
14186
14188
14190
14192
14194
14196
14198
14200
U202
14204
14206
•TN.DW04
i
•
•
:
t
:
S0011 OA
000 PP
WML SMPL
UG/L
<0.003
<0.003
<0.003
<0.003
<0.003
XO.003
l
i
*
•
<0.003
<0.003
<0.003
XO.003
:
•
*
•
•
:
:
•
•
•
•
:
:
•
•
:
•
•
:
f
•
•
t»
i
i
<
t
t
t
•
•
•
•
•
•
•
•
•
•
i
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
XO.003
t
•
•
t
<0.003
<0.003
<0.003
15P
REGION
S0012 OA
DOT PP
WHL SMPL
UO/L
XO.003
xO.003
XO.003
XO.003
XO.003
xO.003
10.014
xO.003
xO.003
XO.003
:<0.003
xd.003
xO.003
:0.006
:
:0.032
xO.003
10.016
xO.003
to. 020
xO.003
r<0.003
xO.003
XO.003
XO.003
XO.003
XO.003
10.010
xO.003
10.006
:0. 006
tO. 006
XO.003
:<0.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
xO.003
16P
S0013 OA
CARBPHTH
WHL SMPL
UG/L
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
xO.003
«0.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
:
xO.003
XO.003
XO.003
XO.003
XO.003
xO.003
xO.003
xO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
17P
SOO
MI
VHL
14 OA
'EX
SMPL
UG/L
XO.
xo.
XO.
XO.
XO.
XO.
XO.
XO.
XO.
1 <0.
t<0.
XO.
XO.
XO.
t
XO.
XO.
XO.
XO.
XO.
XO.
xO.
XO.
XO.
XO.
xo.
XO.
XO.
XO.
XO.
XO.
xO.
xO.
xO.
XO.
xO.
xO.
xo.
xO.
XO.
XO.
005
005
005
005
005
003
003
003
003
003
005
005
005
003
003
005
003
OOS
005
005
005
005
005
005
005
005
005
OOS
OOS
005
005
005
005
OOS
005
005
005
005
005
005
18P
V DRINKING WATE3 STUDY
39490 OA S0020 OA S0021 OA
MTHXYCLR 2.
WHL SMt»L «M
UG/L
XO.Ol XI)
XO.Ol X.
XO.Ol X,.
XO.Ol X,
XO.Ol X<>
xO.Ol x,,
xO.Ol X,,
xO.Ol x,,
xO.Ol x,,
xO.Ol x,,
XO.Ol :<„
XO.Ol
xO.Ol
xO.Ol
:
xO.Ol
XO.Ol
XO.Ol
XO.Ol
xO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
xO.Ol
XO.Ol
xO.Ol
xO.Ol
XO.Ol
XO.Ol
XO.Ol
XO.Ol
xO.Ol
<„
<„
«)
<„
<..
<„
<„
*C
1*S*C
18S«C
20S*C
J22S«C
:
•
•
:
•
*
•
•
•
•
•
t
:
•
t
•
•
•
•
:
:
•
:
•
•
*
•
•
•
•
:
:
;
•
:
•
:
:
:
:
•
•
:
- INDIANA
24S«C
26S»C
2SS»C
30S»C
32«s»C
33S«C
34S»C
35S»C
36S»C
39S«C
40S*C
*2S«C
44S»C
4*S»C
<*&s»c
50S»C
S2S»C
54S»C
56S*C
58S«C
60S»C
67S»C
69S»C
71S«C
735«C
7SS»C
77?«C
7<»S«C
i»lS»C
"SS^C
*55»C
87S»C
•39S«C
•«c
••C
-------
EPA-CRL 39770 OA
1975 OCPA
SAMPLE «HL SMPL
LOG NO. UG/L
14123 K.003
14125 K.003
14127 K.003
U129 <.003
U133 <.003
U135 <.003
14137 <.003
14139 <.003
14141 <.003
14143 <.003
14145 <.003
14147 <.003
14149 <.003
14151 <.003
U153 K.003
14157 K.003
14159 K.003
U161 K.003
U163 K.003
14165
14167
U169
U171
14173
U17S
U177
14184
14186
U18i
14190
14192
1*194
14196
14198
14200
U202
U204
<.003
<.003
<.003
<.003
<.003
<.003
<*00)
<.003
<.003
<.003
<.003
<.003
<.003
<.ooi
<.003
<.003
<.003
K.003
14206 K.003
22«>
.IN. o*Q4 REGION
S0023 OA
ENOOS I
WHL SMPL
UO/L
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
23P
39380 OA
OIELORIN
WHL SMPL
UG/L
: .003
K.003
K.003
K.003
K.003
1.006
K.003
1,008
t.006
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
1.007
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
:.007
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
2*P
39390 OA
ENDRIN
WHL SMPL
UG/L
K.003
K.003
K.003
K.003
K.003
! .003
1 .003
1 .003
1 .003
1 .003
K.003
K.003
K.003
K.003
K.003
K.003
K.003 '
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.001
K.003
K.003
K.003
K.003
250
39460 OA
CLRttNZLT
WHL SMPL
UG/L
K.01
K.01
K.01
K.Ol
K.01
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
:<.01
K.Ol
2fto
S0027 OA S0026 OA
ENOOS II NIT90FEN
*HL SMPL WHL SMPL
UG/L UO/L
K.005 K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.OOS
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.OOS
<.005
<.OOS
<.005
<.OOS
<.005
<.005
<.005
<.005
<.005
<.005
<.005
K.005
270 ;>flp
V DRINKING WATER STUDY - INDIANA
*0
*D
*D
»n
: 6S»0
: hS*0
:10S*0
:12S*D
:16S*0
«16S*0
S20S*0
I22S»0
124S*Q
:26S*0
:28S*D
:30S*0
:3?S*o
:34S»0
: 36^*0
:40S*0
:42S*0
:44S»D
:46S*l>
:*«S»o
:50S*n
:52S*0
:5-»S»0
:56S*0
:5*S*0
:60?*0
:67S*0
:69S*r>
:7is*0
:7iS*0
:75S*0
: 775*0
:79S*0
:81S*0
:«i3S»0
:85S
-------
PPA-CRL
1975
SAMPLE
LOG NO.
U123
U125
14127
1 •» 4 fc *
U129
U133
U135
14137
14139
14141
14143
14145
14147
14149
14151
14153
14155
U157
14159
UUl
141*3
14165
14167
14169
14171
U173
14175
14177
14184
U186
1*188
14190
14192
14194
U196
14198
14200
14202
14204
14206
.TN.D*
S0029 OA
24S-THO
«HL SMPL
UG/L
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
•
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
29 P
04 BEtilC
S0030 OA
PROLAN
WHL SMPL
UG/L
K.OI
K.OI
K.OI
K.OI
_ _ j* t
: < .0 1
• ^ rt \
i < . 0 i
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
t
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
K.OI
30P
)N V DrfIN*
S0031 OA
8ULAN
WHL SMPL
UG/L
K.OI
K.OI
• * f\ \
K.OI
K.OI
i < 01
• ^ • 'J 4
t 35P
*E
•E
»e
«»P
: ^S«E
: «S*t"
tlOS*^
: 12Q%*E
: 1^S*£
• \ Q C 4S C
l i ^5*6.
• o r c •c
5 cuj^r.
:22S»E
:24S»P
t26S*E
t28S«E
:30S»E
:32S*E
:34S*E
:36S*E
:38S*E
* i rt C i±C
J 405*t
:42S»E
S44S«E
I*6S»E
:4«)S«E
:SOS«E
:52S*E
:54S*E
:56S*E
!58S*E
:60S*F
:*>7S*E
I69S»E
:71S*E
:73S*E
:7«SS»E
:77S»E
:79S*E
: -Jl S*E
:35»E
: ^5S*E
: 37S«E
:59S»E
**E
**E
-------
FPA-CRL
1975
SAMPLE
LOO NO.
U123
14125
14127
14133
14135
14137
14139
U141
14143
14145
14147
14149
14151
14153
14155
14157
14159
U161
U163
14165
14167
14169
U171
14173
14175
14177
14184
14186
14188
14190
14192
14194
14196
U198
14200
14202
14204
14206
.IN.DW04
S0017 OA
RONNEL
«HL SMPL
UG/L
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
36P
S0032 OA
OURSBAN
WML SMPL
UO/L
Kl
Kl
Kl
Kl
•
» <1
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
:<1
Kl
»
: <1
: <1
Kl
37P
REGION V D*INK1
39600 OA
MPARATH-M
MHL SMPL
UO/L
^ \
\ < \
, - •
: < 1
Kl
Kl
» 4 \
K 1
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
1 <1
Kl
Kl
Kl
Kl
Kl
» <1
Kl
Kl
Kl
Kl
:<1
Kl
. * \
K 1
• * i
! < 1
Kl
38P
;NO WATER
3<*530 OA
MALATMN
«HL SMPL
UG/L
. 4 \
1*1
• * 1
• < 1
: < 1
Kl
! < 1
• ^ 1
: < 1
Kl
Kl
_ - *
Kl
Kl
Kl
t <1
• * \
K 1
Kl
>^ •
< 1
Kl
Kl
- - *
1 <1
Kl
J^ \
< 1
1 <1
. , i
t < 1
• - i
K 1
: A ••**
, f\ . < i • < i
Z<1 1^4 »^1
• < 1 K 1 K 1
• ^ 4 • *
1^1 • < 1 K 1
l<| «^l • ^ »
! * \ K 1 S < 1
• ^ i * *
: *
• f \ \<\ 5 < 1
»<1 »^i ••»*
Kl Kl Kl
1 <1 Kl Kl
1 % £ ' *
» rfi : <1 • <1
5 < I «^i •-**
Kl KI :<1
Kl Kl Kl
• * \ ! < 1 J < 1
• <\ »^i •"»*
• ^ 1 * < 1 5 < 1
j^l «^i •-•*
• rf 1 ' < 1 t < 1
5
-------
EPA-CRL
1975
SAMPLE
LOG NO.
14123
U125
14127
14129
1*133
14135
14137
14139
14141
14143
14145
14147
14149
14150
1*151
14153
14155
14156
U157
14159
U161
U163
U165
14167
U169
14171
14173
14175
14177
14184
14186
U188
14190
14192
U194
U196
14198
14200
14202
14204
14206
.IN.DW04
S0018 OA S0034 OA 39910 OA
PHENCAPT EPN GUTMION
WHL SMPL WHL SMPL NHL SMPL
UG/L UG/L UG/L
:<1 :<1 : <5
:<1 : K0.3
K!J K0.3
K'i :<0.3
:<«.» :<0.3
! : : :<0.3
: :<0.3
: :<0.3
: K0.3
: :.3
: : K0.3
K!) i :<0.3
: :<1..1
:60S*G
«<>7S«G
!6<*S*G
:71S»G
:73S»G
:75S«G
:77S*G
:795»G
: -115*G
: 83S*R
SftSS*^
:87S*«
:rt9S»R
••f,
*«G
-------
?PA-CRL
1975
SAMPLE
LOG NO.
14123
14124
U125
14126
14127
U128
14129
14130
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14U6
14147
14148
14149
14150
14152
14153
14154
14156
14157
14158
14159
14160
14161
14162
14163
14164
U165
U166
U167
Ulf>8
U169
14170
14171
U172
14173
U174
U175
14176
U177
14178
14194
.4185
14196
14187
Uldd
39496 OA
AROCLOR
1242
UG/L
:<0.3
t
X0.3
:
:<0.3
t
:<0.3
t
K0.3
l
K0.3
t
:<0.3
t
XO.3
t
:<0.3
i
XO.3
t
XO.3
•
xO.3
:
xO.3
:<0.3
xO.3
t<0.3
t
K0.3
K0.3
1
l<0.3
t
:<0.3
•
:<0.3
!
xO.3
j
XO.3
•
•
xo,3
j
xO.3
•
•
:<0.3
•
•
xo.3
•
:<0.3
•
•
:<0.3
•
:<0.3
:<0.3
39500 OA
AROCLOR
1248
UO/L
t<0.3
(
:<0.3
t
:<0.3
t
l<0.3
1
»<0.3
t
XO.3
1
t<0.3
t
XO.3
:
i<0.3
t
:<0.3
i
!<0.3
t
t<0.3
t
XO.3
:<0.3
XO.3
XO.3
t
l<0.3
K0.3
t
XO.3
t
K0.3
t
!<0.3
t
:<0.3
t
l<0.3
:
:<0.3
:
: OA S0038 OA *H
MET«C CL CCL4 CHCL3 »M
TOT VOL TOT VOL TOT VOLA »H
UG/L UG/L U1/L *M
:4
•
t
XI
:
xo.5
1
12
l
XO.5
l
XO.5
:
11.3
t
XO.5
t
XO.5
:
XO.5
•
XO.5
:
XO.5
1
:2
XO.5
•
XO.5
XO.5
•
xo.s
t
XO.5
'
xi
:
xo.s
•
•
XO.5
t
xo.«
•
•
xo.s
:
XO.5
•
•
XO.S
:
xo.5
t
xO.5
•
xo.5
:
: <0.5
:
! i 03"—
2 :3 : 7S*M
! ! HS*H
2.4 :20 i OS*'*
t J10S»H
<2 x? :11S»H
: M2S»i
2 »15 M3S»M
t M6S*H
<1 129 M7S*H
» U8S«H
1 :3 I19S«H
t !20S*H
1.6 $41 :21S»H
t :22S»H
<1 :5 :21S»H
l :24S*H
2 S84 :25S*H
J :26S»H
<1 14 J27S»H
» J2RS»H
<1 :~ . --« -
4
<
<1 :
'•
<\ i
<1 :
i
<0.5 :
<1 J
l
<1 i
l
<0.5 !
0.9
<1
<0.5
<1
1
<1
1
<1
1
<1
<1
S ^^b-H
:30S«H
<1 :31S*H
: 3?S*H
19 !33S*M
a<;«u
XI :5^c;»M
: >.'iOS*1-i
:4 :*,i<5*w
• :^7^«wi
x? :*,«S»H
5 j i,g!;«^
Ml :70S*-
: ; ? i c o u.
-------
14189
U190
14191
141*1
1419S
14194
1419S
14196
14197.
14198
U199
14200
14201
14202
14203
14204
14205
14206
14207
.IN. 0*04
1
» wp^
! 87S*H
« A A e ALJ
• Wo 5> WH
• a A C AkJ
• 395*H
:<»OS*H
**H
**H
-------
EPA-CRL
1975
SAMPLE
LOG NO.
14124
14126
14128
14130
14134
14136
14138
14140
14142
14144
14146
1414S
14150
14152
14154
U156
14158
14160
14162
14164
14166
14168
14170
14172
14174
14176
14178
14185
14187
14189
14191
14193
I4l«5
14197
14199
14201
14203
U205
14207
.IN.OW04
S0056 OA
C2H4CL2
TOT VOL
UG/L
:<2
Kl
:<2
Kl
:<2
:2
K2
s<2
Kl
slS
Kl
S3
S<1
:<4
Kl
:1
Kl
:4
S21
:<2
s<2
:<2
s<2
:<4
s<2
S<2
:<2
S<1
S<1
12
«<1
Kl
Kl
<2
Kl
Kl
Kl
:
:<2
S7P
REGION
S0040 OA
CHCL2BR
TOT VOL
UG/L
KO.S
tQ
:<0.5
:o
112
:fl.4
slS
s<0.5
S12
KO.S
15
KO.S
S6
s<0.5
sll
KO.S
:1.2
KO.S
SO, 7
KO.S
14
S<0.5
sS
KO.S
:5
KO.S
s<0.5
KO.S
S3. 4
s<0.5
S17
KO.S
S10
s<0.5
Sl
KO.S
:5
KO.S
KO.S
58P
S0041 OA S0042 OA
CHCLBR2
TOT VOL
U9/L
KO.S
:1.S
KO.S
:1
ll.7 •
K0.2
:1.4
K0.5
10.8
KO.S
16
KO.S
10. 5
KO.S
Sl.4
KO.S
KO.l
K.5
SO. 4
KO.S
:1
K0.5
:1
KO.S
:1
KO.S
KO.S
:<0.5
S3
KO.S
ll
KO.S
13
KO.S
SO. 3
KO.S
:O.S
KO.S
KO.S
59P
V DRINKING 4ATEP-
CMB*3
TOT VOL
UG/L
KO.S
: 1.6
:<0.5
tn.3
Sl
s<0.2
Sl
i<0.5
10.8
S<0.5
13
KO.S
10.6
KO.S
SO. 3
K0.5
KO.l
KO.S
Sl
:<0.5
s<0.5
KO.S
KO.S
KO.S
KO.S
KO.S
KO.S
K0.5
S2
K0.5
KO.S
KO.J
SO. 3
KO.S
SO. 6
KO.S
s<0.3
KO.S
S i
: i
: i
: i
: i
« »
* i
• '
* i
: :
: i
t i
t !
S 1
! :
i :
1 S
l t
I S
1 S
1 S
1 S
t s
! !
! S
! t
; :
i :
! t
1 S
! t
1
i :
1*
•
: :
i t
t •
i :
: :
i i
t t
t i
I S
t s s
: i s
: : s
: : :
: : :
: : :
: : s
61P 62P 63
STUDY - INDIANA
•I
•1
•I
»I
: 7S*1
t <»«:»1
:11SM
J 135*1
si7<;*i
: 135*1
t2\S*I
S23SM
J25S*I
S 275*1
S29S*I
S31S*!
S33S*I
t35S*I
t37S*I
:39?M
:*1S*I
:4lS*I
t*5S*I
!47S*I
:*9S*I
:51S»I
:53S*I
:55<5*r
:575*1
:59S*I
:MS»I
S68S*!
S70S»I
J72S*1
J74S*I
S76S*I
1785*1
SJ»OS*!
:32S*I
:«4S*!
:9«>s*I
S88S*I
: ^ftS*I
P **i
**I
-------
EPA-CRL
1975
SAMPLE
LOG NO.
14118
U119
14120
14123
1412*
14125
14126
14133
14135
14137
14139
14141
14143
14145
14147
14149
14151
14153
14155
14157
U159
U161
1*163
14165
14167
14169
14171
14173
14175
14177
14179
14180
14194
14186
1*188
U190
14192
14194
14196
14198
14200
14202
U204
U206
00916 MM
CALCIUM
CA.TOT
M«5/L
!<1
:<1
:<1
128.0
129.4
130.0
130.2
131.0
:32.8
:27.2
. 141.9
146.4
198.5
:86.4
:69.7
:68.5
171.0
181.6
:80.9
179.9
160.7
123.0
135.5
135.4
:35.7
:34.a
136.1
134.8
136.3
134.7
Kl
Kl
163.6
165.9
167.2
169.6
157.1
130.0
166. a
179.1
til.4
115.4
138.0
134.9
*.4.P
0)927 MW
MSNSIUM
<4G«TOT
MG/L
m - A 1
KO.l
• * A 1
* <0 • 1
. _ » *
KO.l
ia.6
18.6
18.2
18.1
ta.4
110.1
18.7
112.9
113.1
130.5
127.2
124.3
123.8
120.9
12*. 2
121.1
120.7
115.9
13.2
111.2
111.2
111.3
ill.O
* * • 1
111.3
Ill.O
111.3
U0.9
KO.l
KO.l
126.2
126.0
128.1
127.7
116.9
18.6
120.2
126.2
14.9
15.2
:ll.*
110.9
6SP
00929 MM
SODIUM
NA.TOT
MG/L
• * A 1
• *'» . 1
•
STUDY -
0103* "« OiiO*2 MM
CHROMIUM COPPED
C9»TQT CU»TOT
LIG/L CG/L
:<5 K'>
i<5 i<5
: <5 i < 5
• • •-•
KS 1C7
i<5 1*5
i<5 »*5
i<5 «^5
f ^ C 1 4 ' S
* ^3 * -*
:<5 i<;5
• s l <: 5
• j • • •*
• * * ! < C 5
• ^ J • * ^
• <<; :;>5
• x j • '- -*
: <5 '. *5
* ^ j *~
Id l?7
:9S»J
:?1S*J
:73S*J
:?55»o
:77S»J
:79S»J
HIS'J
M3S*J
:85S*o
:87«"»J
M9S*J
**J
A A 1
INDIAN* "J
-------
PPA-CP-L
1975
SAMPLE
LOO NO.
14118
U119
U120
14123
U124
14125
4 ^ » •• K*
14126
14133
» ~ • w J
14135
U137
14139
14141
U143
14145
14147
U149
U151
14153
14155
U157
1 A 1 CO
14159
14161
• , « f ^
14163
14165
1416,7
14169
14171
U173
U175
U177
14179
14180
14184
14186
14188
14190
U192
14194
14196
U198
14200
14202
14204
14206
.IN.OM04
01055 MM
MANONgSE
MN,TOT
UO/L
t<5
l<5
J<5
:330
:300
120
:18
:<5
1470
:<5
>120
K5
:280
:19
'.33
:<5
:28
:9
:39
U9
• 4)
t ^ 1
:<5
• «S
i<5
»7
:<5
i<5
:<5
i<5
114
: 14
• 4 ~
:<5
! «§
* ^ J
K5
:<5
t<5
i<5
K5
112
!<5
:<5
!<5
:<5
t<5
K5
t<5
:5
:<5
:31
:<5
:<5
:<5
K5
i<5
72P
01002 MM
ASSENIC
AStTOT
UO/L
Kl
Kl
Kl
18
<6
Kl
Kl
Kl
19
Kl
15
Kl
Kl
Kl
:l
Kl
;1
ISO
12
Kl
•>6
Kl
t 1
Kl
:1
Kl
Kl
Kl
ll
Kl
Kl
Kl
<8
:2
:1
:1
Kl
Kl
:2
H3
Kl
Kl
:1
!<1
73P
V DRINKING KATEO
01051 MI
LEAD
PB«TOT
UO/L
l<2
:<2
14.
125
S32
:5
«5
13
H5
l<2
17
t<2
l<2
J<2
16
l<2
12
:<2
i<2
l<2
(3
t<2
13
J20
13
t<2
:3
:<2
:3
:2
«2
K2
i<2
«2
:<2
:<2
:<2
:<2
:<2
13
t<2
J<2
:4
: 4
74P
STUDY -
" 01027 ««
CADMIUM
CO»TOT
UO/L
10.5
K0.2
t<0.2
10.5
SO. 7
:0.4
to. 3
K0.2
10. 5
K0.2
K0.2
K0.2
K0.2
K0.2
:0.4
:<0.2
K0.2
K0.2
K0.2
K0.2
K0.2
K0.2
K0.2
:<0.2
:<0.2
K0.2
K0.2
K0.2
K0.2
K0.2
:0.8
»0, 4
K0.2
K0.2
K0.2
K0.2
:<0.2
:<0.2
K0.2
K0.2
K0.2
K0.2
K0.2
:<0.2
75P
INDIANA
i 01077 M*
SILVER
AG.TQT
UO/L
K0.2
:<0.2
t<0.2
K0.2
• ^ n o
5 <0 .2
K0.2
K0.2
t<0.2
K0.2
K0.2
K0.2
K0.2
K0.2
K0.2
t <0 .2
K0.2
t<0.2
K0.2
K0.2
K0.2
K0.2
:<0.?
:<0.2
K0.2
:<0.2
K0.2
K0.2
K0.2
K0.2
s<0.2
K0.2
K0.2
:<0.2
K0.2
K 0 . 2
:<0.2
:<0.2
: < 0 . 1
:<0.2
:<0.2
K0.2
:<0.2
:<0.2
:<0.2
76P
I 01147 MW »K
SELENIUM •*
SP:.TOT »K
UO/L »K
l<5 I 1S*K
J<5 t 2S*K
t<5 : 3S«»<
:S*K
t<5 «20S»K
t<5 t22S*K
:<5 I24S*K
K5 t?6S*K
:<5 !28S»K
• - C •11C«w'
• >S*<
:<5 :71S»K
:<5 :73S*K
: <5 s 75S*<
: :77S»K
: <^ : 79S*-v
t ^ C * ^ t ^ ^ ^>
s < s : 3 1 s •,<
:
-------
FPA-CRL
1975
SAMPLE
LOG NO.
14123
1*12*
14125
14126
14133 .
14135
14137
14139
14141
14143
14145
14147
14149
14151
14153
1 4155
1 * 4 -J ^
U157
14159
14161
14163
14165
1*167
1*169
1*171
1*173
14175
14177
14184
14186
14188
14190
14192
14194
14196
1*198
14200
1*202
1*20*
00530 IM
RESIDUE
TOT NFLT
MG/L
1181
1181
:2
:2
• ^ O
2 .
. i J y
i i -i
• 1 J
82p
INDIANA
C0«56 II
SILICA
SI02
MG/L
:<>.5
:i>.5
: <» . 3
1
-------
FPA-CRL
1975
SAMPLE
LOG NO.
14118
U119
U120
14121
14123
U124
14125
U126
U133
14135
14137
14139
14141
UU3
14145
14147
14149
14151
U153
U155
14157
U159
14161
U163
14165
14167
14169
14171
14173
14175
: 14177
U179
14180
14184
14186
14188
14190
14192
14194
14196
14198
14200
14202
14204
14206
00403 IM
LAB
PH
su
•
t
t
t7.4
t7.3
>6.5
16.5
t7.7
t7.2
t7.1
t7.3
t7.6
t7,5
t8.0
t7.5
t7.9
t7.5
J7.5
t7.7
t7.6
t7.7
t9.1
:7.9
:7.3
f7.9
t7.9
t7.9
t7.9
J7.8
t7.5
t
•
*
S7.8
:7.9
:7.7
t7.6
:7.5
t7.9
t8.0
t7.6
t7.4
:7.3
t7.8
t7.2
flSP
00951 IM
FLUORIDE
F, TOTAL
MG/L
f
•
•
•
t
: 0 . 1 3
tO. 13
10.78
10.86
tO. 93
tO. 14
10.56
tO. 14
12.1
tO. 16
tO. 12
tO. 19
to. 76
tO. 16
tl.O
10.20
tO. 99
10.18
tO. 83
SO. 13
tO. 22
tO. 12
tO. 82
tO. 12
tO. 83
tO. 14
tO. 19
•
•
t
S0.15
SO. 87
tO. 19
tl.O
SO. 17
tfl.93
tO. 23
ll. 1
t<0.10
tO. 80
t 0. 16
tO. 13
86P
.IN. 0*04 REGION v D^INK
32730 In
PHENOLS
UG/L
: 7
! ft
• o
:3
t
:5
t7
t<3
:<3
16
:3
S4
ts
tO
13
t<3
sio
t5
t7
13
14
t5
.'6
t5
t5
S3
t<3
s5
t<3
IS
13
18
tS
t7
t<3
t<3
:4
14
s<3
t<3
S3
t7
:3
s<3
, i A
• 1 4
:5
87P
IMG MATER
00720 IM
CYANIDE
CN
MG/L
t<0.002
t 0. 010
!<0.002
t n.002
tO. 006
tO. 006
10.003
K0.002
10.003
10.010
tO. 003
10.003
10. 003
tO. 005
tO. 003
tO. 003
10.010
tO. 004
10. 00ft
10.003
tO. 004
tO. 004
tO. 004
tO. 006
10.002
tO. 004
K0.002
X0.002
s<0.002
10.005
K0.002
10.005
tO. 008
:0. 002
:<0.002
10.003
sO. 004
iO. 003
tO. 00 3
10.002
tO. 005
s<0.002
tO. 002
. n n i c
• .' . V 1 J
SO. 003
88?
STUDY -
00630 IN
N02<»N03
N-TOT4L
MG/L
S<0.03
:<0.03
s<0.03
t 1.04
SO. 99
tO. 99
tO. 99
tO. 98
tl. 13
U.10
12.49
S2.60
t2.53
S3. 94
S4.8«>
S4.44
t9.03
16.53
14.91
14.80
13.45
S3. 31
SO. 23
SO. 22
so.ie
SO. 16
tO. 17
tO. If)
tO. 23
tO. 16
t<0.03
X0.03
s<0.03
s<0.03
t3.13
S3. 24
tO. 06
to.i?
10.07
SO. 66
tO. 25
0.23
0 . ??
"•* • C C.
0.21
39P
JNOUNA
00610 IN
NH3-N
TOTAL
MG/L
K0.010
K0.010
:<0.010
•
SO. 155
SO. 153
M0.010
K0.010
SO. Oil
SO. 153
s<0.010
SO. 064
0.012
0.281
<0.010
0.178
0.293
0.090
0.012
0.124
0.687
0.190
0.273
0.075
0.145
0.014
0.148
0.011
0.153
0.068
0.357
<0.010
<0.010
0.107
0.015
0.102
0.016
0 .209
0.014
0.325
0.142
0 .026
<0.010
0.231
0.375
9ft n
" **
00625 IN
TOT KJEL
N
MO/L
t<0.05
s<0.05
:<0.05
j
si. 25
11.22
10.61
10.66
tO. 72
tl.47
tO. 71
tl.59
iO. 80
tl.io
tO. 7*i
tO. 77
tO. 64
tO. 6*
10.23
tO. 88
SI. 15
11.51
to. 5*
t 0.24
SO. 2?
50.16
SO. 23
SO. 16
SO. 24
to.?o
tO. 45
J<0.05
K0.05
to. 11
:<0.05
to. so
50.20
• 0.^1
SO, 11
SO. 42
50.29
ft A ^ A
S 0, 14
!<0.05
to. *i
:n.4V
Q 1 P
71*^
•M
• M
• M
•M
s IS*1-
t 2<^*>*
! 3S»M
s fcS*^
S 6S»M
s 7S«'-t
s 8S*w
t 9S*v
t!6S»*
tlflS*"
t20S»M
t22S»M
t24S»"
!26S»v
s?8S«^
S305i»v
S325»v
s 34S»"
536?*^
S3«S*M
s *OS*M
S42S**
S 44S«w
S46S* •(
!4!JS»*
SSOS*^
S52S»-
S54S»M
S56S*^
t53S«M
t60«»«M
t62S««
t63S»M
$67S»M
S69S«M
STIS*^
s 73?«M
* 7 R ^ o \A
• ' J 3 v M
:77S*M
S7VS*"
sais*-
• tl ^S C A *J
• H 35 •*
:ass*«
S875««
:89S»M
• «M
tt A vJ
ir W \f
-------
EPA-CRL
1975
SAMPLE
LOG NO.
14118
14119
14120
14123
U124
U125
14126
U133
U135
U137
14139
14141
14143
14145
14147
141*9
14151
14153
U1S5
14157
14159
14161
14163
14165
14167
14169
14171
U173
14175
1*177
14179
14180
1*16*
1*186
1*188
1*190
1*192
1*194
1*196
14198
U200
U202 .
14204
14206
.IN.OWO*
00665 IN
PHOS-T
P-nET
MG/L
t<0.02
:<0.02
t<0.02
tO. 28
10.27
tO. 03
10.02
tO. 02
tO. 47
tO. 36
tO. 31
tO. 03
tO. 02
K0.02
tO. 15
10.03
10.08
K0.02
10.07
t<0.02
tO. 16
t<0.02
t<0.02
t<0.02
tO. 02
10.02
tO. 03
tO. 03
10.02
10.02
10.02
K0.02
tO. 03
tO. 03.
10.09
tO. 05
tO. 06
to. 01
K0.02
:<0.02
t<0.02
t<0.02
tO. 02
t<0.02
92P
REGION
00340 IN 00680 IN 71900 IN
COO T 0*6 C MERCURY
HI LEVEL C HGtTOTAL
MG/L MG/L UG/L
:<3 t t<0.1
t<3 t KO.l
t<3 t KO.l
t25 t tO. 3
'.22
t*
t5
i<3
135
15
130
no
t*
t<3
H3
:7
no
13
116
18
t32
• a
t5
t<3
t3
l<3
16
t<3
i<3
13
t<3
to.2
10.3
10.3
10.2
tO.l
KO.l
KO.l
KO.l
KO.l
KO.l
tO.l
10.2
10.1
tO.l
in. 3
tO.2
10.1
10.2
10.1
tO. 3
:0.1
KO.l
10.1
KO.l
KO.l
tn.3
KO.l
t<3 t 10.1
t<3 t to. 2
t<3 t :0.2
1 10 t tO.l
:5 t t o.l
:6 t KO.l
:S t 10.2
t* t to. 2
t<3 : :0.3
t3 t :<0.1
t<3 t :P.2
:10 t :<0.1
:9 t :0.2
93P 9*P 95P
00900 IN
TOT HArtO
CAC03
MG/L
t<3
t<3
t<3
t!05
t!09
1109
1109
>112
113*
110*
H58
1170
1372
t32f»
t27*
1269
:263
1303
1289
1285
1217
171
1135
U35
1136
:132
1137
1132
1137
1132
l<3
t<3
t267
t272
1283
1288
1212
tllO
t250
1305
:*9
160
ti42y
t!32
96P
OOfrlS IN »N
N02-N *M
TOTAL *N
I»G/L *N
: t t 1S«N
•
•
•
•
:0.028
:<0.005
t<0.005
K0.005
K0.005
10.007
K0.005
tO. 060
:<0.005
tO. 015
:<0.005
tO. 043
K0.005
10.0*0
K0.005
:0.017
K0.005
t<0.005
10.026
10.008
K0.005
:0.006
K0.005
10.007
K0.005
10.023
KO^OOS
1
•
K0.005
t<0.005
:0.026
t<0.005
K0.005
Ktl.005
K0.005
t<0.005
tO. 009
K0.005
:0.010
:
-------
CRLS 05APR DSN«CNCRLS,RGD.MC.DW01 ON TS0009 04/19/75
•STUDY DESCRIPTION —— —
STATTY»»E SMPLDAY ATLA8BY DUEDATE ACCOUNT-NUMBER
77777777 C3FE875 05FE975 03MAY75
- MICHIQftN
•SAMPLE DESCRIPTIONS
STATTYPE DEEP T M NO £NOO*TE TIME PPLU
NPAR NLOf
94 71
>»REG^
LABIONUM
14208
U209
14210
14211
14212
14213
U214
U215
14216
14217
14218
14219
14220
14221
14222
14223
U224
U225
U226
U227
14228
14229
U230
14231
14232
U233
14234
14235
U236
U237
14238
14239
U240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
U?51
U252
U253
14254
14255
14256
1 AGFNCYIO UNLOCKEY ST
r 77
4 V DRINKING *ATEP STU
STORETID COLLDAY TIME
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
7<50?03
750203
750203
750203
750203
750203
-------
U257
U2S8
U2S9
l'-SO
I ,1
14262
14263
14264
14265
14266
1*267
14268
U269
14270
14271
14272
14273
14274
14275
14276
14782
U783
U784
U785
U786
14.787
14788
14789
>»14208
>»14209
>»14212
>»14213
>»1421*
>»14215
>»14216
>»14217
>»1*218
>»14219
>»14220
>»14221
»>14222
>»14223
»>14225
>»14226
>»14227
>»14223
>»14229
>»14230
>»14231
>»14232
>»14233
>»14234
»>1423S
750203
750203
750203
750203
750203
750203
750203
750203
750203
. 750203
750203
750203
750203
. 750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
HN03 REAGENT BLANK
H2S04 REAGENT BLANK
NAOH REAGENT BLANK
H3PO*- REAGENT BLANK
OPEN
DUNDEE RAM MATER SERIES A . - .
DUNDEE RAM MATER SCRIES 9
DUNDEE FINISHED MATER SERIES A
DUNDEE FINISHED MATER SERIES a
DETROIT RAM MATER SERIES A _
DETROIT RAM MATER SERIES 8
DETROIT FINISHED WATER SERIES A
DETROIT FINISHED MATER SERIES 8
DETROIT RAW W4TER SERIES a
DETROIT RAM MATER SERIES 9
DETROIT FINISHED MATER SERIES A
DETROIT FINISHED *ATgR S£RIC» 8
MT. CLEMENS »AM MATER SCRIES A -
MT. CLEMENS. RAM MATER SERIES d
MT. CLEMENS FINISHED WATER SERIES A
MT. CLEMENS FINISHED MATER SE»iES 9
JACKSON RAM MATER SERIES A -
JACKSON RAM MATER SERIES 3
JACKSON FINISHED MATE? SERIES A
JACKSON FINISHED «ATER SERIES 3
KALAMAZOO "AM *AT£R SERIES A --
3A» MATER SERIES 3
4 |.S* d 23-3*6 u)
0 . o S" u)
KALAMAZOO FINISHED MATER SERIES A
-------
»14236
»14237
»14238
»14239
»14242
»14243
»14244
»14245
»14246
»14247
»14248
»14249
»>14250
»>14251
»>14252
•>14253
•>14254
•>14255
>>14256
•>14,257
•>14258
•>i4259
•>14260
•>14262
•>14263
•>14264
•>14265
•>14266
>14267
>14268
>14269
>14270
>14271
>14272
>14273
>1*274
>14783
>1478S
>14787
>14788
KALAMAZOO FINISHED WATER SERIES 8
LANSING RAW WATER SERIES A.
LANSING RAW WATER SERIES B
LANSING FINISHED WATER SERIES'A
LANSING FINISHED WATER SERIES 8
GRAND RAPIDS RAW WATER SERIES A
0RAND RAPIDS RAW WATER SERIES 8
GRAND RAPIDS FINISHED
SERIES A
GRAND RAPIDS FINISHED WATER SERIES 8
MT.PLEASANT RAW WATER SERIES a
MT.PLEASANT FINISHED WATER SERIES A
MT.PLEASANT FINISHED WATER SERIES B _
CADILLAC RAW WATER SERIES A •
CADILLAC RAW WATER SERIES 8
CADILLAC riNlSHED WATER SERIES A
CADILLAC FINISHED WATER SERIES 3
SAULT STE.MARIE RAW WATER SERIES A
SAULT STE.MARIE RAW WATER SERIES 8
SAULT STE.MARIE FINISHED WATER SERIES A
SAULT STE .M_AR_IEF INI SHED WATER SERIES B
WATERFORcQJwNSllTP^RAW WATER SERIES A
WATERFORO TcJwTTSTTTP RAW. WATER SERIES 8
WATERFORD TOWNSHIP FINISHED WATER SERIES A
WATERFORD TOWNSHIP FINISHED WATER SE«IES B
MENOMINEE PAW WATER SERIES A ———
MENOMINEE RAW WATER SERIES a
MENOMINEE FINISHED WATER SERIES A
MENOMINEE FINISHED WATER SERIES B
MENOMINEE «A« WATER SERIES A
MENOMINEE RAW WATER SERIES B
MENOMINEE FINISHED WATER SERIES A
MENOMINEE FINISHED WATER SERIES B
HN03 REAGENT BLANK
H2S04 REAGENT BLANK
NAOH REAGENT BLANK
H3P04 REAGENT BLANK
aiSSE««ER TOWNSHIP RAW WATER SERIES A
8ISSEMER TOWNSHIP RAW WATER SERIES B
8ISSEMER TOWNSHIP FINISHED WATER SERIES A
fllSSEME* TOWNSHIP FINISHED WATER SERIES 8
BAY CITY RAW WATER SERIES A -
BAY CITY RAW 'OTEd SERIES B
3»H ^J
S "/ M £ (o -4 O K
.3 UNl %4.4(,v
91 .^ o
.37 I
3.
BAY CITY FINISHED WATER SERIES 4
BAY CITY FINISHED WATER SERIES B
WYANOOTTE RAW WATER SERIES A —
WYANOOTTE RAW WATER SERIES 3
WYAMDOTTE FINISHED *ATER SERIES A
WYANDOTTE FINISHED WATER SERIES B
SAMPLE/PARAMETER DATA-
0 3,Sa
* 3 - \ o v\)
-------
FPA-CRL
1975
SAMPLE
LOG NO.
14213
14215
14217
14219
14221
14223
14225
14227
14229
U231
14233
14235
14237
14239
14241
14244
14245
14247
U249
14251
14253
14255
U257
U259
14261
14263
14265
14267
14273
U275
14782
14784
14786
14788
."I. 0*01
•
:
•
•
•
•
•
!
t
I
•
•
S0003 OA
TREFLAN
WHL SMPL
UG/L
0.007
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
xO.002
:
•
•
t
•
•
•
•
•
t
:
:
:
•
•
•
•
•
•
s
:
•
•
:
•
•
•
•
0.003
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
xO.002
•
•
•
•
!
<0.002
<0.002
<0.002
IP
REGION
S0001 OA
HC6ENZ
WHL SMPL
UO/L
XO.002
XO.002
XO.002
xO.002
XO.002
XO.002
xO.002
xO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
xO.002
XO.002
xO.002
XO.002
xO.002
xO.002
XO.002
XO.002
xO.002
xO.002
XO.002
XO.002
XO.002
XO.002
2P
39782 OA
LINOANE
WML
SMPL
UO/L
:<0.
xO.
xO.
xO.
XO.
XO.
XO.
XO.
XO.
xo.
XO.
XO.
XO.
XO.
XO.
XO.
XO.
XO.
XO,
XO.
XO.
XO.
XO.
xo.
xo.
XO.
xo.
XO.
xo.
XO.
xo.
XO.
XO.
xo.
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
002
3P
S0002 OA
88HC
WHL
SMPL
UG/L
: <0.
xO.
xO.
: S»A
>29S*A
?30*?*A
:32S*A
' 34S»A
:37S«A
:3£S*A
:40S*A
»42S*4
S44S*A
:46S»A
:4P$*A
:50S»A
:=>2S»A
: 54S»A
:56S«A
:58S»A
:60S«A
:66S*A
!68S»A
t70S»A
:72S«A
:74S*A
:76S«A
••A
-------
EPA-CRL
1975
SAHPLE
LOG NO.
U213
U215
U?17
U219
14221
14223
14225
U227
14229
14231
14233
U235
14237
14239
U241
14245
14247
14249
14251
14253
14255
14257
14259
14261
14263
U265
14267
14273
14275
U782
14784
14786
14788
39430 OA
ISOO«IN
WHL SHPL
UO/L
XO.003
XO.003
XO.003
X0.003
XO.003
Xfl.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
X 0.003
xO.003
XO.003
xO.003
XO.003
11.0
XO.002
K0.002
xO.002
xO.002
xO.002
xO.002
xO.003
XO.002
xO.003
xO.003
xO.003
XO.003
XO.003
XO.003
BP
REGION
39420 OA
HCMLR-EP
WHL SHPL
UG/L
xO.002
xO.002
XO.002
XO.002
XO.002
xO.002
XO.002
xO.002
xO.002
xO.002
xO.002
xO.002
xO.002
xO.002
xO.002
XO.002
xO.002
XO.002
xO.002
XO.002
XO.003
xO.003
xO.003
XO.003
xO.003
xO.002
XO.002
xO.002
xO.002
xO.002
XO.002
xO.002
xO.002
9P
S0006 OA S0007 OA
CHLOROAO DOC OP
MHL SHPL *HL
UO/L
XO.002
XO.002
XO.002
xO.002
XO.002
XO.002
XO.002
XO.002
xO.002
XO.002
XO.002
XO.002
XO.002
xO.002
xO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.003
xO.003
XO.003
XO.003
XO.003
xO.002
!<0.002
XO.002
XO.002
xO.002
XO.002
xO.002
XO.002
IOP
V DRINKING WATER
SHPL
UO/L
xO.
xO.
i <0 .
x 0 .
XO.
XO.
XO.
XO.
XO •
t <0*.
XO .
I <0 •
! <0 .
: <0.
x 0 .
• < 0 .
X 0 .
xO .
I <0.
: <0.
t <0.
: <0.
! <0.
xO .
XO ,
: <0 .
xO •
! <0 .
x 0 .
l <0.
I <0 .
xO.
xO •
1
STUDY
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
003
IP
- MI
S0008 OA
DOC PP
WML SMPL
UO/L
XO.003
J < 0 . 0 0 .1
XO.003
:<0.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
12°
CHIG4N
S0009 OA
000 OP
«HL SMPL
UG/L
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
:
-------
£PA-C*L
1975
SAMPLE
LOO NO.
4213
14215
14217
14219
14221
14223
14225
14227
14229
14231
14233
14235
U237
14239
14241
14244
14245
14247
14249
14251
U253
14255
U257
U259
U261
14263
14265
14267
14273
14275
14782
14784
14786
14788
S0011 OA
DOO PP
WHL SMPL
UG/L
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
t< 0.003
K0.003
K0.003
K0.003
t
K0.003
10.006
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
:<0.003
K0.003
K0.003
K0.003
ISP
S0012 OA
DOT PP
WHL SMPL
UG/L
tO. 004
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
j
tO. 004
K0.003
KO.OOS
K0.003
K0.003
:<0.003
K0.003
K0.003
K0.003
:<0.003
K0.003
K0.003
K0.003
K0.003
t<0.003
K0.003
K0.003
K0.003
16P
S0013 OA
CAQBPHTH
WHL SMPL
U8/L
t<0.003
K0.003
:<0.003
K0.003
:<0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
:
K0.003
K0.003
K0.003
KO.OOS
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
K0.003
17P
S0014 OA
^IRCX
WHL SMPL
UO/L
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
J
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
K0.003
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
ISP
39480 OA
MTHXYCL*
WHL S*PL
UG/L
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
t
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
19P
S0020 OA
2.4-OtIP
WHL SMPL
UG/L
K.O?
:<,02
: < .0?
: <.02
' <.02
: <.02
:<.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.Q2
:<.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
K.02
20°
S0021 OA
nwqp
WHL SMPL
UG/L
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
21P
.^I.DViOl &E6IO.N V DRINKING HATE* STUfTv' - MICHIGAN
-" *
•C
*C
*c
•C
: *S*C
t as*c
:10S*C
:12S*C
: I45»c
:16S*C
: ias*c
:20S*C
:22S«C
t24S«C
t26S»C
:2BS*C
t30S*C
:32S»C
!34S*C
:37S»C
t 3*S»C
S40S»C
I42S*C
I44S»C
I46S*C
:4^S*C
:50S»C
tS2S«C
t54S»C
:56S«C
^SS^C
:60S«C
t66S«C
t 68S«C
t70S*C
t72S»C
t74S»C
: 7bS*C
••C
**c
-------
EDA-C&L 39770 0* S0023 OA 39380 OA 3*390 OA 39*60 OA S0027 OA S0028 04 *D
1975 OCPA ENOOS I DIELDRIN ENQRIN CLP^NZtT E*DOS 11 N!T*OFEN *0
SAMPLE »HL SMPL «HL SMPL *HL SMPL *HI SHPL *HL SMHL *HL SMPL «HL SMPL »o
LOG NO. UG/L UG/L UG/L UG/L UG/L UG/L Uo/L »0
4213
*4215
14217
U219
14221
U223
14225
14227
14229
14231
14233
14235
14237
U239
14241
14244
14245
14247
14249
U251
U253
14255
U257
14259
14261
U263
14265
14267
14273
14275
14782
14784
14786
U788
<.0fl3
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.ooi
<.003
<.003
<.003
<,003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
«.003
<.003
<.003
<.003
<.003
<.003
<.005
<.005
<.005
<.005
<.005
<,005
<.005
<.005
<.OC5
<.005
<.005
<.005
<.005
<.OOS
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<,005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.OOS
<.005
<.005
<,005
<.003 K.005
.005
<.003
<.003
<.003
<.003
<.003
<.003*
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.OQ3
<.003
<.003
<.003
<.003
<*003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003 t<.01
<.003 :<.01
<.003 :<.01
<.003 K.01
< .003 :<.01
< .003 :<.01
<.003 :<.01
<.003 K.01
<.003 :<.01
<.003 :<.01
<.003 :<.01
<.003 :<.01
< .003 : <.P1
< . 0 0 3 : < . 0 1
<.003 :<.01
<.003 :<.01
<.003 :<*01
<.003 :<.01
<.003 »<.01
<.003 S<,01
<.003 :<.01
<.003 '• < . 0 1
<.003 :<.01
<.003 K.01
<.003 »<.01
<.003 K.Ql
<.003 K.01
<.003 K.01
<.003 K.01
<.031 K.01
<.003 K.01
<.003 K.01
<.003 K.01
<.003 K.01
<.005 K.005 : 65*0
<.005
< .005
<.005
<.005
<«005
<.005
<.005
<*OOS
<.005
<.005
<.005
<.005
<-005
<.005
.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005 : ^«i«o
<.005 :10S»0
<.005 :l2S»n
<.005 :l4S»o
<.005 :16S»0
<.005 :18S»0
<,005 :20S»n
<.OOS t22S*D
<.005 I24S*0
<,005 t26S*0
<.005 :28S»0
<.005 :30S«D
<.005 :32S*0
<.005 :34S»0
<.005 :37S«0
<,005 :3B5»D
<,005 140S»0
<.005 !42S»0
<,005 J44S»n
<.005 J46S*0
<.005 :»«S*0
<.005 :50S»o
<.005 :52S*0
<.005 :5*S*o
<.00b :56S*0
<.005 :5^?*0
<,005 :60S*o
<.005 J ,005 :66S»0
<.005 1 ,005 1685*0
<.005 « .005 J70S«0
<.005 J ,005 J72S«0
<.005 8 .005 174S*D
<.005 K.005 :7bS*D
22? 23P 24P 25P 26P 27P 23<» *»o
.MI. 0*01 REGION v DRINKING WATER STUDY - MICHIGAN »»i
-------
EPA-CRL
1975
SAMPLE
LOG NO.
4213
i4215
14217
U219
U221
U223
U225
14227
14229
14231
14233
14235
14237
14239
14241
14244
14245
14247
142*9
U251
14253
U255
14256
14257
14259
14261
14243
U265
14267
U273
U275
U782
14784
14786
14738
.Ml.OwOl
S0029 OA
245-HIO
*HL SMPL
UO/L
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
•
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
:<.0l
K.Ol
29P
PEGION
S0030 OA S0031 OA S0026 OA 39808 Oft
PMOLAN BULAN OClP TCDIQN
WML SM«»L WML SMPL NHL SMPL WHL SM»»L
UG/L UG/L UG/L UG/L
K.Ol K.Ol Kl
K.Ol :4.01 :<1
K.Ol K.Ol Kl
K.Ol K.Ol t <1
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol »2.5
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol K.Ol «1
K.Ol K.Ol Kl
K.Ol K.Ol Kl
K.Ol
K.Ol
•
K.Ol
:<.01
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
:<.01
K.Ol
<.01 Kl
<.0l Kl
:
<.01 Kl
<.01 Kl
<.01 Kl
<.01 :<1
<.01 Kl
<.01 Kl
<.01 U
<.01 Kl
<.01 11
<.01 :i
<.01 :i ,
<.01 :<1
<.01
<.01 :
.01 :
.01 :
.01 :
.01 :
.01 :
.01 :
<.01 t
<.01 :
<.01 :
<.0l !
<.01 :
<.01 t
<.oi :
<.01 :
<.01 :
<.01 :
<.01 :
<.01 :
<.01 :
<.01 :
•
•
<.01 :
<.01 :
<.01 :
<.01 :
<.01 :
<.01 :
<.01 i
<.01 :
<.01 :
<«01 :
<.01 :
<.01 :
30P 31P 32P 33P
V DRINKING «ATE« STUDY •* MICHIGAN
39570 OA
DIAZINON
4HL SMPL
UG/L
<1
<1
<1
< 1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
34P
SOOlb OA
OYFONATE
*HL SMPL
UG/L
:<1
:<1
:<1
:S«P
: 1*S«E
:20S«£
!22S«E
:24S»E
:2*S«E
:28S»E
:30S»E
:32S»E
:345»E
:37S»fi
:3^S»F
t40S»E
!42S«£
!44S»E
!4«bS«P
•^es*^
; fco<;»F
:50S»E
:5as»E
:54S»E:
:56S*E
:S«S»£
:6ftS»E
»66S*E
t68S»E
»70S«E
:72S»E
:74S«E
:7i?»E
• or
««c
-------
FPA-CRL
1975
SAMPLE
LOG NO.
4213
14215
14217
14219
14221
14223
1*225
U227
14229
14231
14233
U235
14237
14239
U241
U244
14245
14247
14249
U251
U255
14256 .
U257
14259
U261
14263
14265
14267
14273
14275
14782
14784
14786
14788
.Ml.DwOl
S0017 OA
RONNEL
*HL SMPL
UG/L
s < 1
: <1
: <
! <
: <
K
K
1 <
> <1
Kl
Kl
Kl
t <1
Kl
Kl
Kl
Kl
Kl
Kl
Kl
: <1
: <1
t <1
Kl
: <1
t22S*F
<1 >24S*r
<1 I26S*F
<1 :30S«F
<1 :32S*F
<1 :34S*F
< 1 ! 37S*F
<1 S3fS°F
<1 :40S*F
<1 !42S*F
<1 !4i3S*':'
< 1 ! *9S*F
< 1 1 50S*F
<1 :52^*F
<1 :54«»f
<1 :56S«F
<1 «58S*F
<1 :6fr5*F
<1 Kl :68S*F
<1 Kl J70S»F
<1 Kl I72S*F
<1 Kl J7»S»F
<1 Kl :74S*F
40P *1P 42P »«F
REGION v DHINKING WATEP STUDY - MICHIGAN »»F
-------
FPA-CRL
197$
SAMPLE
LOO NO.
•4213
i4215
U217
U219
U221
14223
U22S
14227
14229
14231
14233
14235
U237
14239
14241
14244
14245
14247
14249
14251
14255
14256
14257
14259
U261
U263
U265
14267
14273
14275
14782
14784
14786
14788
.Ml. DM01
S0018 OA S0034 OA
PHENCAPT £PN
*HL SMPL WHL SMPL
UO/L UO/L
Kl 5 <1
Kl Kl
:<1 :<1
:< 1 Kl
:<1 :<1
:<1 Kl
Kl Kl
Kl Kl
Kl Kl
Kl Kl
Kl Kl
: <1 Kl
Kl I<1
:<1 : <1
:<1 :<1
:<1 Kl
: <1 :<1
Kl Kl
Kl Kl
Kl Kl
Kl Kl
:<1 :
-------
C-PA-CRL
"1975
«AMPLE
LOG NO.
14213
4214
U21S
14216
U217
14218
U219
14220
14221
1*222
U223
14224
U225
14226
U227
U228
U229
14230
14231
14232
14233
14234
U23S
14236
14237
14238
14239
U240
14241
14242
14244
14245
14246
14247
U248
14249
U250
U2S1
14252
14253
14254
U255
14256
H257
U258
U259
U260
U261
14262
U263
1426*
U265
U266
i267
i4268
U273
U274
39496 OA
AROCLOR
1242
UG/L
:<0.3
i
!<0.3
:
:<0.3
:
:<0.3
t
><0.3
t
X0.3
I
xo.3
:
xo.3
:
XO.3
:
xO.3
t
XO.3
*
:<0.3
:
xo.3
:
xo.3
:
xo.3
;
*
xo.3
:
xo.3
:
xo.3
:
XO.3
:
xO.3
e
XO.3
t
XO.3
:
xo.3
:
xo.3
:
XO.3
5
XO.3
«
X0.03
i
X0.03
:
39500 OA
IROCLOR
12*8
UG/L
t<0.3
;
xO.3
;
xO.3
t
xO.3
:
xO.3
:
xO.3
:
xO.3
•
xO.3
:
xO.3
:
XO.3
:
xO.3
:
xO.3
:
xO.3
*
xO.3
:
xO.3
:
*
xO.3
:
XO.3
•
xO.3
:
xO.3
:
xO.3
:
xO.3
t
xO.3
:
xO.3
:
x 0 . 3
•
XO.3
;
xO.3
:
t<0.3
:
xO.3
:
39504 OA
AHOCLOR
1254
UQ/L
xO.3
•
xO.3
;
xO.3
:
xO.3
t
XO.3
t
XO.3
S
xO.3
t
xO.3
:
XO.3
:
XO.3
:
XO.3
:
xO.3
:
XO.3
*
XO.3
:
XO.3
:
:
XO.3
:
XO.3
:
XO.3
:
xO.3
:
xo.3
s
XO.3
:
XO.3
:
xO.3
:
xO.3
:
xO.3
•
XO.3
:
XO.3
:
XO.3
;
39S08 OA S0047 OA 50039 OA S0018 OA «H
A«OCLOH MET^E CL CCL4 CMCL3 *H
1260 TOT VOL TOT VOL TOT VOL* *H
UG/L UG/L U3/L 0'3/L *H
X0,4
1
XO .4
;
X0.4
:
I<0.4
I
X0.4
I
X0.4
I
X0.4
j
X 0 . 4
•
: <0 .4
j
X0.4
:
X0.4
j
X0.4
:
X0.4
:
X0.4
:
X0.4
:
:
: <0 .4
t
: -i
; 44S°^
47 :<»5?*-
: 4^<;»»
<1 :47S*H
:4^5«H
27 :49S»H
:SOS»-t
< 1 : si ^»-"
; 5 p i; » _,
< 1 : 53S°-<
: 5 » t-*"->
<2 JSSS*-'
5 56'S*H
• 2 :57S«k"
: 5 j 5 o H
ty :505«H
• /ijr; si**.
5* J615J*"
• /s n « « _
f : 6 7 '3 » -
-------
14275
14276
14782
14783
14784
4785
14786
14787
14788
14789
.Ml. 0*01
:<0.3
•
s<0.3
:
:<0.3
:
»<0.3
:
<0.3 I
t
0.3 t
:
<0.3 :
:
<0.3 :
:
:<0.3 :<0.3 t
t t t
SOP SIP
RCOION v OAINKINO
<0.3 t<0.4
<0.3
<0.3
<0.3
<0.3
<0.4
<0.4
<0.4
<0.4
5tP 53P
WATER STUOY -
I 1
t<»5 s<,b
i :
:<0.«i :<0*6 12.1 U4
S4P 55P 56P
MICHIGAN
I68S»H
! 69S*H
170S»H
: 7is»H
j ?2S*H
• 7?S»H
: 74 s*1-1
j ?c;s«H
• 7^ S«H
:77S«H
**H
•*M
-------
ePA-c*L
1975
SAMPLE
LOG NO.
'4214
.4216
14218
U220
U222
14224
14226
14228
14230
14232
14234
14236
14,?38
14240
14242
14244
14246
14246
14250
14252
14254
1425,6
14256
14260
14262
14264
14266
14268
14274
14276
14783
14785
14737
14789
.MI.DWOI
$0056 04
C2H4CL2
TOT VOL
UG/L
t<1
:<1
:<1
:<1
:3
:<2
:26
s<2
:9S»i
S71S»1
»73S»I
:75S«I
:77S»I
61P 62P 63P ••!
V DRINKING HATE* STUDY - MlCMlGiN **I
-------
EPA-CRL
1975
SAMPLE
LOG NO.
14208
14214
14216
14218
14220
14222
14224
14226
14228
U230
14232
14234
14236
14238
14240
14242
14244
1*2*6
14248
1*250
1*252
1*25*
1*256
14258
U260
U262
1*26*
14266
14268
U269
14274
14276
14783
14785
14787
14789
.Ml. 0401
00916 Mm
CALCIUM
CA.TOT
MG/L
!<1
:58.9
:35.4
:20.9
122.2
122.1
123.6
133.5
136.0
M35
M08
M30
189.8
Ml*
M6.7
:30.6
136.9
196.*
182.9
:33.9
1*3.8
M3.4
M3. 7
162.4
129.3
:33.4
127.9
132.5
126.6
Kl
M4. 3
140.6
:27.1
126.0
120.-)
133.7
64 P
REGION
00927 M*
MGNSIUM
MG.TOT
MG/L
KO.l
M5. 7
12.0
17.0
17.1
17.4
16.9
17.3
17.6
131.7
135.7
131.8
132.1
131.8
M3.*
Ml. 8
M1.8
125.5
125.3
19.5
Ml. 7
12.9
12.9
125.0
:9.2
M3. 2
M3.2
M3.2
M3.2
KO.l
13.7
!*.!
19.3
17.0
17.4
17.5
65P
00929 M«
SODIUM
NA.TOT
MO/L
KO.l
17.4
127.8
:4.1
13.5
13.6
13.3
13.9
16.0
125.0
1*5.9
121.9
12*. 0
18.3
M7.9
15.2
15.*
M7.1
M6.5
13.9
17.5
M.I
M.O
123.*
19.8
13.7
13.9
13.5
!*.!
KO.l
12.2
131.6
16.1
16.6
13.5
l*.5
66P
V DRINKING MATE?
00937 MN 0103* "* 010*2 M>
PTSSIUM CMPOMIU* COPPER
K.TOT CR.TOT CUtTOT
MO/L UG/L UG/L
i <0 . 1 * "c * •""•
13.0
:2.t)
M.O
: 0.8
10.9
10.8
M.I
M.3
12.5
13.6
12.2
12.7
12.*
12.0
M.4
M.*
M.5
M.5
10.7
M.2
to. 6
10.6
M.3
10.7
M.2
M.2
M.2
M.3
KO.l
in. 7
10.9
M.I
M.I
:n.9
10.8
67P
STUDY -
. «3 « '•s
l<5 Ml
i<5 :
. - tr • 1 7
1 f\
# ^ C v
K20
1648
K2C
• ^ A
: 3*
: <20
•17^
« i f '
!—•)**
*o
:37S»J
139S»J
»*1S»J
t*3S»J
i*5S*j
:47S»J
149S* J
:51S»J
• C 1 C » '
• ^ J > ^ w
» xc, c * i
• J J Jl \J
• c 7 c* i
• T ' 3 0
• CU<« 1
• f * - sj
: ttl ^« i
• D A » *J
i«»2S»J
167S»J
169S»J
• T 1 C • i
J 7 I T** J
• *T ^ C A >
: 73S*J
! 7^^>» 1
• • t J O
• 7 y c A ,
• I f 3 w « 1
J
**J
J
-------
eP4-C«L
1975
SAMPLE
LOG NO.
i 4?ng
A w b V w
14214
14216
14218
14220
14222
14224
14226
14228
14230
14232
14234
U236
14238
14240
14242
14244
14246
14248
14250
14252
14254
14256
14258
14260
14262
14264
14266
U268
14269
14274
U276
14783
14785
14787
14789
.Ml. 0*01
01055 MW
MANGNESE
MN.TOT
UG/L
i<5
146
:<5
:•<
*•<
-------
FPA-CRL
1975
SAMPLE
t_OG NO.
lx.914
14C I*
14216
14218
14220
14222
14224
14226
14228
14290
14232
U234
14236
14238
14240
14242
14244
14246
14248
14250
14252
14254
14256
14258
14260
14262
14264
14266
14268
U274
14276
14783
14785
14787
14789
.Ml.OfO
00530 IM
RESIDUE
TOT NFLT
M9/L
:67
:7
:<5
:<5
:7
t<5
i<5
i<5
t<5
t<5
t<5
:6
:<5
:<5
:6
'j<5
:<5
:<5
:<5
:<5
:2
:2
:13
:8
:<2
. _ "5
: <2
:<2
t<2
112
t<2
12
i<2
:7
:<2
70300 IM
RESIDUE
OISS-180
C MO/L
1350
• 34LA
I cOU
1130
• 1 9 A
: Ic J
:120
:140
1170
1180
1470
1690
1520
1535
1480
1130
1200
:210
:470
1460
1160
1265
150
150
1370
1360
1180
• 91 fl
• civ
:205
:171
180
1240
1190
1200
1170
1160
00095 IN
CNDUCTVY
AT 2SC
MICROMHO
1516
:404
1214
• 215
:212
1214
1217
1246
1842
11022
li!3
t808
1687
1301
1302
1326
1702
1708
:307
1377
1104
• 1 A9
I 1 WC
1625
1625
1282
:29B
:279
1298
1114
1390
1291
1261
1214
199^
CCn
*«a
7Bp 7*t* ow
1 REGION V DRINKING «UTER
00945 If
SULFATE
SO*
MO/L
164
184
11*
:17
114
115
115
123
1124
1150
179
«**
165
161
124
:31
:94
:94
:17
126
l<3
:<3
11*
»17
U9
:43
:19
:*4
16
till
121
:33
115
i 18
• 49
HIP
w 4
STUDY -
4 00940 I*
CHLORIDE
CL
MG/L
123
t 9T
• C f
:7
:9
:8
18
19
114
144
173
145
154
19
t!8
til
113
:35
:37
:10
118
t<2
12
132
135
17
:ll
18
til
12
17
116
117
18
til
82P
MICHIGAN
OOV56 I»
SILICA
SI02
MO/L
16.5
16. 1
: l.b
; 2 * G
: 1 .6
52.0
11.6
12.4
114.7
114.7
112.9
113.9
til. 4
19.0
:1.8
:2.1
:9.b
:9.7
18.2
:7.4
:2.4
:3.1
:18.2
:17.3
:4.7
:5.1
:4.5
:5.1
:14.0
:5.0
i<0.2
to. e
l l.b
:2.2
83P
.__.-_--
4 Q0410
T AL«
CAC03
MG/L
1146
144
• ^ C
1 75
16°
• TC
• 75
:70
175
163
1269
1288
1286
1294
1299
143
illl
J112
1234
:222
1120
1136
!43
140
:274
:263
:113
!84
• 1 1 4
* 1 1 J
;«5
-.40
:68
llOO
166
179
172
*4
..
[M »L
*L
•L
•L
l 7S»L
J 9S*L
. i i e*i
• i i ' ^-
:13S«L
• i 5S»L
* * -J •* *—
S17S»L
119S*L
121S-L
t23S*L
I25S*L
I27S*L
I29S*L
t31S*L
!33S»L
135S*L
:37S*L
139S*L
141S»L
143S«L
145S»L
147S*L
14-aS*L
• C 1 C •!
I "JlS^L
153S»L
J55S"L
:57S*»L
:59S»L
:61S»L
:67S*L
:69S*L
!71S»L
l73S»L
I75S*L
177S»L
Pjfc At
**L
••L
-------
FPA-CRL
1975
SAMPLE
LOG NO.
14209
U210
14214
U216
U216
U220
U222
14224
142*26
U228
14230
U232
14234
14236
14238
14240
14242
14244
14246
14248
U250
14252
14254
14256
14258
U260
14262
14264
1*266
14268
14270
14271
14274
14276
14783
14785
14787
14789
.Ml. 0*01
00403 IM
LAB
PM
su
:
t
17.8
19.7
18.0
17.6
18.0
t7.7
17.9
t7.4
t7.7
t7.5
t7.8
t7.9
t7.7
19.4
18.1
18.1
17. SI
17.7
18.1
t7.9
57.5
t7.0
:7.7
:7.8
t7.8
t7.2
1 7.y
17.7
1
1
16.9
t7.2
17.9
18.4
17.9
17.5
85P
REGION
00951 IM 32730 IM
FLUORIDE PHENOLS
F, TOTAL
MG/L UG/L
: i
* •
in. 19 15
tl.l t3
tO. 10 t<3
10.92 t<3
tO. 11 l<3
tO. 90 l<3
to. 11 :<3
ll. 0 :<3
tO.24 i<3
JO. 26 t<3
:0.13 :<3
tO. 94 t<3
t0.4l :<3
10.40 !<3
10.13 l<3
tl.O !<3
tl..l t<3
tl.l t<3
K0.10 :<3
K0.10 l<3
K0.10 i<3
tl.l i<3
tft.52 i<3
10.44 :<3
tO. 12 :3
U. 3 :<3
to. 13 14
tl.3 l<3
t :
i t
K0.10 J5
10.14 i<3
10.13 t<3
tl.2 l<3
to. 11 i<3
U.3 K3
86P 87P
00720
IM 00630 IN
CYANIDE N02MY03
CN
MG/L
t
10.002
10.004
10.005
K0.002
K0.002
t<0.002
tO. 002
16.003
10.003
10.007
tO. 004
tO. 004
10.003
10.008
10.004
K0.002
tO. 003
tO. 002
tO. 004
K0.002
tO. 006
10.003
10.003
10.003
10.004
t 0.004
tO. 004
tO. 003
K0.002
l
K0.002
10.004
10.004
10.003
10.006
tO. 003
ift.003
88?
V DRINKING MATE1* STUDY -
N-TOT*L
MG/L
K0.03
l
13.00
14.10
10.36
tO. 28
iO. 28
tO. 27
tO. 29
10.38
K0.03
K0.03
tO. 84
tO. 63
K0.03
10.04
10.40
10.40
10. 31
10.30
K0.03
K0.03
tO. 28
tO. 29
K0.03
tO. 13
tO. 16
tO. 16
10.14
!0. 14
K0.03
!
10.17
tO. 20
tO. 25
10. ?6
tO. 23
10.30
89P
MICHIGAN
00610 IN
NM3-N
TOTAL
MG/L
K0.010 l
: i
:0.228 t
: 0.0*2 t
K0.010 t
K0.010 t
K0.010 i
K0.010 t
10.011 1
K0.010 t
10.179 1
t<0.010 t
:0.156 t
10.055 i
10.277 t
10.213 1
tO. 34 t
:<0.010 t
tO. 080 t
K0.010 t
10.115 t
10.022 l
10.040
10.013 t
10.218 t
10.159 t
:0.027 t
tO. 013 t
10.035 t
t 0 . 0 1 3 t
K0.010 t
l t
tO. 107 t
10.030 i
50.020 t
10.025 t
50.022 l
:0.021 1
90P
00625 IN
TOT KJEL
N
Mfi/L
<0 .05 5
l
1.20 l
0.33 i
0.15 l
o»w
••M
-------
EPA-CRL
1975
SAMPLE
LOG NO.
1*208
1*209
1*21*
1*216
1*218
14220
14222
14224
14226
14228
14230
14232
14234
14236
14238
142*0
1*2*2
1*244
14246
14248
1*250
U2S2
1425*
1*256
1*258
1*260
1*262
1*26*
1*266
14268
14269
14270
14274
1*276
1*783
1*785
1*787
1*789
.MI. 0*01
00665 IN
PMOS-T
P-wET
MG/L
•
:<0.02
10.18
sO.l*
X0.02
:0.02
K0.02
X0.02
K0.02
tO. 11
tO. 02
tO. 02
K0.02
tO. 38
:<0.02
10.10
10.02
10.01
10.4*
tO. 39
10.03
: 1.10
10.02
10.02
:0.05
:0.06
xO.02
X0.02
10.03
xO.02
t
xO.02
10.02
xO.02
10.02
10.02
10.05
XO.02
92°
REGION
00340 IN
coo
HI LEVEL
MG/L
t
:<3
125
ill
16
t5
13
13
tlO
t<3
Ul
l<3
t7
t<3
14
1*
13
!<3
16
19
113
i*
1 10
17
13
t*
116
14
118
ia
t
i <3
138
113
19
:5
J5
15
93P
00680 IN
T one c
c
MG/L
:
:
:
!
:
:
t
i •
i
t
i
t
i
t
s
i
t
:
:
i
:
:
:
:
5
i
*
*
*
*
i
t
t
i
:
:
:
:
:
:
9*P
71900 IN
MEHCURV
HGt TOTAL
UG/L
xO. 1
•
:<0.
: <0.
:<0.
xn.
t <0.
1 < 0 .
1^0.
XO.
xO.
10.1
XO.
xO.
10.1
10.1
xo.i
xo.i
KO.l
KO.l
xO.l
XO.I
10.2
• ^ 0 • 1
• ^ 0 • 1
10.1
• ^ 0 • 1
* ^ 0 • I
* ^ 0 • 1
XO.I
XO.I
1
10.2
10. I
: n. 1
10.4
: 1.2
: 0. 1
9S?
00900 IN
TOT HAHU
CAC03
MG/L
i <3
:
:212
:7
181
:85
186
:87
til*
1121
1468
1417
J457
1356
:*17
:97
:125
: 1*1
13*6
:3U
1123
1159
:*5
:*6
:2So
: 1 1 1
:138
:12*
1136
1122
X3
i
:51
: H«
: 106
:Q*
:83
: 1 1*
9«,o
00615 IN »V
NC2-N «\
TOTAL *M
H<5/L *N
*
:
:O.OM
: ".COS
: 0.005
:»
:^9S»>,
: 71S»»i
• 73c^^^
: 75Sa\
: 7 7 s tt '<
97P 98P ••*,
V DRINKING «*ATE«^STUDY - MC-
-------
CHLS 05APP DSN»CNCPLS.«GD.»«N.DW01 ON TS0009 0*/19/7b "EV01 T
•STUDY DESCRIPTION——
ST4TTYPE SMPLDAY ATLA8BY OUEOATE ACCOUNT-NUMBED
77777777 03FEB75 OSFE875 03«<«AV75
• MINNESOTA
•SAMPLE DESCRIPTIONS
STATTyPE DEEP T M NO tNOOdTE TIME
NPAR NLOG
94 77
>»REGION
LA8IDNUM
1*277
14278
1*279
1*280
U281
1*282
1*283
1*28*
1*285
1*286
1*287
1*288
14289
1*290
1*291
1*292
1*293
1*294
1*295
14296
1*297
1*298
1*299
1*300
1*301
1*302
1*303
1*30*
1*305
1*306
1*307
1*308
1*309
1*310
1*311
1*312
1*313
U31*
U315
1*316
1*317
1*318
1*319
1020
1*321
1*322
1023
143?*
U325
AGCNCYIO UNLOCKCY ST
77
V DRINKING *ATE» STU
STORETID COUOAY TIME
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750?03
7S0203
750^03
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
-------
1*324
1.327
1*32S
1*329
1*330
1*331
1*332
1*333
1*33*
1*335
1*336
1*337
1.336
1*339
1*3*0
1*3*1
1*3*2
1*3*3
1*3**
1*3*5
1*3*6
1*3*7
i*3*a
1.3*9
1*350
1*351
1.3*2
1*353
»>!»277
>»1*278
>» 1*274
>»l*290
»>1*Z«5
>»U29*
>»l*295
»>l*31l
>»1*312
>»l»303
750213
750213
750213
750111
740213
7502)1
750211
750243
75020T3
750203
7502C3
750203
750213
750213
750213
750213
750213
750203
750203
750233
7502)3
750213
750203
750213
750213
1N03 4£*j
-2S3* ȣi
r.a»uL
>j ; J . j J?"
K\
'.co ^ -H l i r u\.'
«47C* SC-i'ff 4
i *
5£>I-S
o '• -
•-4
!t» 9
4lT£-< SCRIES
-------
>»1»306
>»i43or
»>IA30I
>»1439»
>»14319
>»>14329
>»143Z3
>»14324
>»1O30
>»14333
>»>14334
>»I4335
>»1»33I
»>l»340
»>l*34{
»»14343
»»l»345
>»1434»
>»14347
>»14351
>»143S3
F4ULS
•ILL^AW
S£*t!S
ST.
ST.CLOUO
ST.CLOOO
1T.CLOWO
MtCKINOIOM
sc*:is s
»A« «*TC» SC»IIS A
.ATf« IC*|C1
SC«ICS
««IfS I '
^^-03 w,1
^^•10 v\J
^u.">rw
CM-
rtsi$-t3
SOUS 4
EAST
EAST
EAST (JMA-.O
EAST 3MANO '0»
n»tt» *
««TE» iE»ii» »
•AT|« IC*tl> I
OSLO »A« »ATE9 $E»IIS I
OSLO ri<4t$MC3
-------
FPA-CrtL
"1975
SAMPLE
LOG NO.
1' ""eg
1 3*
14296
U288
U290
U292
14294
U296
U298
U300
U302
U304
U306
14308
U310
14312
U314
U316
14318
14320
U322
U324
14326
14328
U330
14332
U334
U336
U338
14340
14342
14344
U350
U3S2
."N.OW01
S0003 OA
TPEFLAN
WHL SMPL
UG/L
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.032
K0.002
K0.002
K0.002
IP
PEGION
S0001 OA
HC8ENZ
WHL SMPL
UO/L
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
10.006
:0.006
K0.002
:0.006
K0.002
K0.002
K0.002
K0.002
:<0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
2P
39782 OA
LlNDANt
*h
KO
:<0
:<0
:<0
:<0
:<0
KO
KO
KO
KO
KO
KO
KO
KO
:<0
:<0
:<0
KO
KO
KO
:<0
:<0
KO
:<0
:<0
:<0
KO
:<0
KO
KO
:<0
:<0
KO
:<0
v OA INK ING '«
L SMPL
UG/L
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.00*2
.002
.002
.002
.002
3P
S0002 OA
BBHC
WHL SMPL
UG/L
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
K0.002
K0.002
4P
SOOQ4 On
OlCLONt
«HL SMPL
UG/L
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
K0.002
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
KO.Ol
:<0;0l
KO.Ol
KO.Ol
KO.Ol
KO.Ol
5P
39330 OA
A
itfH
: cO
: cO
: <0
: (0
: (0
KO
cO
<0
cO
<0
<0
<0
KO
KO
:0.
:<0
:<0
:<0
KO
:<0
:<0
:<0
KO
KO
:<0
:<0
:<0
:<0
KO
:<0
KO
: <0
:<0
:<0
LO^IN
L SMPL
UG/L
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
OOb
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
.002
*>?
S0005 OA «A
z
WH
KO
KO
:<0
:<0
KO
:<0
KO
KO
KO
KO
KO
KO
KO
KO
KO
KO
:<0
KO
KO
:<0
KO
:<0
KO
KO
KO
: OS»A
:fc2S»\
:6<»s*4
: 66S*A
* ^ o 5 **
• T ^ S * A
: 76S*i
•»A
ATE* STUOX - MINNESOTA •».*
-------
1975
SAMPLE
LOO NO.
"82
t 84
14286
U286
14290
14292
14294
14296
14298
14300
14302
14304
14306
14308
14310
14312
14314
14316
14316
14320
14322
14324
14326
14328
14330
14332
14334
14336
U338
14340
14342
U344
143SO
14352
.MN.OwOl
39430 OA 39420 OA S0006 OA S0007 OA S0009 OA SOOO? OA S0010 OA *8
ISOO*IN MCHLR-EP CMLO«OAO DOE OP ODE P>* DOO OP DOT OP »H
WML SMPL MHL SMPL tfHL SMf
UG/L
tO. 003
: <0.003
xO.003
xO.003
xO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
xO.003
xO.003
XO.003
XO.003
XO.003
XO.003
xO.002
xO.002
xO.002
xO.002
xO.002
XO.002
XO.002
xO.002
IP
SEGION
U6/L
XO.002
xO.002
XC.002
xO.002
xO.002
xO.002
xO.002
XO.002
xO.002
XO.002
XO.002
X0,002
XO.002
XO.002
XO.002
xO.002
XO.002
XO.002
XO.002
XO.002
XO.002
xO.002
XO.002
XO.002
XO.002
xO.002
xO.002
xO.002
XO.002
xO.002
xO.002
xO.002
XO.002
xO.002
9P
V D*INK
U6/L
XO.002
XO.002
XO.002
:<0.002
xO.002
XO.002
XO.002
xO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
xO.002
XO.002
K0.002
XO.002
xO.002
XO.002
XO.002
xO.002
xO.002
xO.002
xO.002
XO.002
xO.002
xO.002
xO.002
XO.002
xO.002
10P
ING WATER
'L *ML SMPL dHL 5*^
U6/L
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.OOS
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.OOS
XO.OOS
XO.OOS
XO.OOS
XO.OOS
XO.OOS
XO.OOS
XO.OOS
UP
STUDY -
UG/L
XO.003
XO.003
XO.003
XO.003
XO.003
XO.Q03
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
xo.oi
12°
MINNESOTA
L tfHL SMPL 4ML SMPL •»
UG/L
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
x.0.003
xO.003
XO.003
XO.003
XO.003
xO.003
XO.003
xO.003
xO.003
xO.003
XO.003
XO.003
xO.002
XO.002
XO.002
X0.002
XO.002
XO.002
XO.002
XO.002
13P
UG/L
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
X0.093
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
14P
•9
: 6S*4
i AS*A
: ios«3
: 125*5!
: 14S*3
: 16S««
:18S«H
*20S«a
:22S*a
1 24S*ft
«26S«8
I28S«8
I30S«R
J32S»«5
:34S»R
1 3bS*H
t 38S*B
S40S»3
t 42S*<)
»44S»9
I46S*B
:48S*R
:SOS*s
•• 52S*^
I54§*q
:S6S*8
t 5«S»q
tbOS*8
1 £25*o
16*5*3
1 66S*>j
I6BS**
I 74<|*«4
l74S*f>
• •b
**B
-------
FPA-CRL
1975
SAMPLE
LOG NO.
4282
14284
14296
14288
14290
14292
14294
14296
14298
14300
14302
14304
14306
14308
14310
14312
14314
14316
14318
14320
U322
14324
U326
14328
14330
14332
14334
14336
14338
14340
14342
14344
14350
14352
.MN.OW01
SOOll OA S0012 OA S0013 OA S0014 OA 39480 OA
ooo PP DOT PP CARBPHTH MIREX MTHXYCL*
•ML SMPL WHL SMPL WHL SMPL WHL SMPL WHL SMPL
UO/L UG/L UO/L UO/L U9/L
KO.OOS KO.OOS K0.003 KO.OOS KO.OIO
KO.OOS K0.003 KO.OOS KO.OOS KO.OIO
K0.003 KO.OOS KO.OOS KO.OOS KO.OIO
K0.003 :<0.003 KO.OOS KO.OOS :<0.01
KO.OOS KO.OOS KO.OOS KO.OOS KO.Ol
KO.OOS K0.003 K0.003 KO.OOS KO.Ol
KO.OOS KO.OOS KO.OOS KO.OOS KO.Ol
KO.OOS KO.OOS KO.OOS KO.OOS KO.Ol
KO.OOS KO.OOS KO.OOS KO.OOS KO.Ol
KO.OOS KO.OOS KO.OOS KO.OOS KO.Ol
KO.OOS :<0.003 KO.OOS KO.OOS KO.Ol
KO.OOS ixO.003 K0.003 KO.OOS KO.Ol
K0.003 xO.003 KO.OOS KO.OOS KO.Ol
KO.OOS KO.OOS KO.OOS KO.OOS KO.Ol
K0.003 iO.008 KO.OOS KO.OOS KO.Ol
K0.003 K0.003 KO.OOS KO.OOS KO.Ol
KO.OOS KO.OOS KO.OOS KO.OOS KO.Ol
xO.003 XO.003 XO.003 KO.OOS KO.Ol
K0.003 KO.OOS XO.003 KO.OOS KO.Ol
K0.003 K0.003 K0.003 KO.OOS KO.Ol
XO.003 KO.OOS KO.OOS KO.OOS KO.Ol
KO.OOS KO.OOS XO.003 xO.005 KO.Ol
XO.003 XO.OOS KO.OOS KO.OOS KO.Ol
.XO.003 XO.OOS XO.OOS KO.OOS KO.Ol
XO.003 xO.003 XO.OOS KO.OOS XQ.Ol
XO.OOS xO.003 KO.OOS KO.OOS xO.Ol
XO.003 KO.OOS XO.OOS KO.OOS KO.Ol
XO.OOS KO.OOS KO.OOS KO.OOS KO.Ol
XO.OOS KO.OOS KO.OOS KO.OOS KO.Ol
XO.003 KO.OOS XO.OOS KO.OOS KO.Ol
XO.OOS KO.OOS XO.OOS KO.OOS KO.Ol
XO.003 KO.OOS KO.OOS KO.OOS KO.Ol
XO.OOS KO.OOS XO.OOS XO.003 XO.Ol
xO.003 KO.OOS XO.OOS xO.003 KO.Ol
IS9 16P 17P 18P 19P
REGION V CHINKING MATER STUDY • MINNESOTA
SOC20 Oft
,> ,.. -,•} : jo
UNI. SMPL
'JG/L
•J.02
c .0'
c.C2
c.02
.*;?
.02
.02
.02
.02
< .0?
<.02
<.02
<.o?
<.02
<.02
<.02
<.02
<.02
<.02
<.02
<.02
<.02
<.02
<.02
<.02
<.02
<.0 1
<.01
<.01
<*01
< .0 1
<*01
2 'IP
s? 021 04 »r
'"^ \ -4 3 o '
rfi-U S^L »
•jG/L »•
< 1 : *.t» •
< 1 : *> '
< I : '.<"•'»
< 1 : '. f <•«•'
< I : - s * :
< 1 : 1 *^ » ~
< 1 : . c * :
< 1 ' -' .' S ° "
4AS*C
!<1 !?OS«C
<1 :?«2^»C
<1 :5*S»C
<1 :56S*C
l
-------
EPA-C&L
1975
S»MPLE
LOG NO.
U282
1428*
1*286
14288
1*290
U292
14294
14296
1*298
1*300
1*302
14304
14306
14308
14310
U312
1431*
14316
1*318
1*320
1*322
1*33*
U326
14328
U330
14332
14334
14336
14338
14340
14342
14344
.MN.DW01
39770 OA
OCPA
WML SMPL
UG/L
:<.003
:<.003
:<.003
:<.003
:<.003
:<.003
K.003
K.003
K.003
:<.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.OOJ
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
22^
REGION
S0023 OA
ENDOS I
WML SMPL
UG/L
<.005
<.005
:<.005
:<.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
K.005
23P
39380 OA 39390 OA
DtELOftlN ENDWIN
WML SMPL JML SMPL
UO/L UO/L
K.003 K.003
K.003
K.003
K.003
K.003
K.003
: .003
I .003
> .003
I .003
t .003
I ,003
I .003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
<.003
<.003
<.00.1
<.003
<.003
<.003
<.003
<.003
<,003
<.003
4.003
<.001
<.001
<.003
<.003
<.003
<*003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
<.003
K.003 K.003
K.003 K.003
K.003 K.003
2*P 25P
39460 0« S0027 OA S0026 CA
CLP^NZLT ENOOS 11 SIT^O^F*
WML SMHL *HL SMPL w*L SMPL
UO/L UO/L UG/L
K.01
K . 0 1
K.Ol
K.01
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
<.005
< .005
<.005
<.005
<.005
< .005
<.005
<.005
<.005
<.OOS
<.OOS
<.005
<.005
<.OOS
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.OOS
<.005
<.005
<.005
<.00b
<.005
<.005
<.005
<.005
<.005
<.OQ5
<.005
.005
.005
.005
.005
.005
.005
<.005
«.005
<.005
<.005
<.005
<.005
<.005
<,005
<.005
<.005
<.005
<.005
<.005
<.005
<.00b
<.005
<.005
<.00b
<.005
<.005 K.005
2*»P 27P 28P
V OfllNKINO WATER STUDY - MINNESOTA
*0
• 0
•0
*n
: ^S»P
: *S«0
UOS«C
J12S*0
: 1*5*0
:16S»0
: IdS*')
s20S»0
:22S*^
«24S«D
126S«0
:28S»0
«30S»t:
:32S*0
:1*S*0
:36S«0
:3ftS*D
: «»OS»o
:*2S»0
:44S»o
:46S»0
:*HS«n
:SOS*0
:52S*o
:54S*o
:56S*o
:5«S*0
: 605*0
:62S*0
tb*S*D
:66S«0
:6ftS-»0
•«n
• •n
-------
EPA-CRL
1975
SAMPLE
LOG NO.
142182
14284
14286
14288
14290
14292
14294
14296
14298
14300
14302
14304
14306
14308
14310
1*312
14314
14316
14318
14320
14322
14324
14326
14328
14330
14332
U334
14336
14338
14340
14342
14344
.MN.DW01
S0029 OA
245-TUO
MHL SMPL
UG/L
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
29"
KEGION
S0030 OA
PROLAN
XML SMPL
UG/L
K.Ol
K.Ol
KiOl
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
30P
S0031 OA S0024 OA
BULAN
uHL SMPI
UG/L
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol ,
K.Ol
K.Ol
K.Ol
K.Ol
<.01
<.01
<.01
<.01
<.01
<.01
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
31P
V OHINKING tUTEP.
OEMP
. *HL SMPL
UG/L
Kl
Kl
I*
Kl
Kl
Kl
Kl
Kl
11
Kl
Kl
Kl
Kl
Kl
12
Kl
Kl
Kl
«<1 .
tl
<2
:l
Kl
Kl
Kl
:2
Kl
Kl
:l
Kl
itO
:2
32*
39*08 OA
TEnio*
»HL S**L
UG/L
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
33°
39570 OA
DIAZINON
•IbL SMPL
UG/L
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
:<1
:<1
Kl
Kl
Kl
Kl
Kl
Kl
34P
S0016 OA
TVFONATE
*ML SMPL
0«>/L
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
: <1
Kl
Kl
Kl
Kl
Kl
Kl
T5P
*r
• F
• c
*c
: •»$•?•
: &S*E
:10S«E
: 12S»iE
: 1*5»E
: lftSȣ
t 1«S»E
«20S«E
«22S»€
»24S»E
J2*S»€
:2«»S*E
t30S»E
:32Sȣ
rSftS*-7
:36>»t
: 3«S*r
:4CS»E
:42S«?
I44S«£
»46S»?
:4*S*E
:S05»E
:S2S»E
:5*S«E
: S6S»E
:5^Sȣ
:60S«E
:62S*E
t64S*E
:66S»E
i*flS»E
•«E
STUDY - MINNESOTA **£
-------
1975
SAMPLE
LOG NO.
50017 OA S0032 OA
P.QNNEL QU4S6AN
SMPL teHL SMPL
UO/L UG/L
39600 OA 39530 OA 39540 04 S0033 OA 39394 OA
MPAOATMN MALATHN
SMPL »HL SMPL
UO/L UO/L
£THION
•F
•F
UO/L
SMPL
UG/L
Ovi/L
14282
i4284
U2S6
U288
U290
14292
14294
14296
14298
14300
14302
14394
14336
14308
14310
14312
14314
14316
14318
14320
U322
14324
14326
14328
14330
14332
14334
14336
14338
14340
14342
14344
.MN.OWOl
Ml Ml I
t < 1 <1 :
Ml <1 :
Ml <1 :
Ml < 1 :
Ml <1 1
Ml
Ml :5»F
< 1 . 3 ', MS*F
< 1 : 1 j><»r
< 1 ! 1 2S*F
< 1 ! 1 *S*F
< 1 * I 6S*F
< 1 : 1 ^s»c
<1 :20S*r
<1 :22S*F
<1 s24S*F
<1 !26S*F
<1 :2*(S»r
<1 :30S»F
<1 :32S*F
<1 :34S*F
< 1 : 36S*F
<\ » 1 Q C » C*
i * O ™ J ™
< 1 : 40S*F
<1 S42S*F
< 1 I 44S*F
<1 !46S*F
<1 :*3S*F
<1 tS05»*F
<1 • C 9 C 4k f
* * j fc 3 •
<1 :54«5*F
60S*F
-------
F.PA-CRL
1975
SAMPLE
L0« NO.
4282
.4284
U286
14288
14290
U292
14294
U296
14298
14300
14302
14304
14306
14308
14310
14312
14314
14316
14318
14320
U322
14324
14326
14328
U330
14332
14334
U336
U338
14340
14342
14344
14350
14352
.MN.OM01
S0018 OA
PHENCAPT
WHL SMPL
UG/L
Kl
Kl
Kl
Kl
t <1
Kl
Kl
Kl
Klp
Kl*
Kl
Kl
Kl
Kl
t <1
Kl
t <1
Kl
Kl
Kl
Kl
Kl
Kl
Kl
t <1
Kl
: <1
Kl
Kl
Kl
1 «1
Kl
:
t
43"
REGION
$0034 OA
E?N
WHL SMPL
UG/L
J <1
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
1
t
46P
S0036 OA
AZlNFOSt
WHL SMr>L
UG/L
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
t
1
47P
1.0037 OA
COUMAFOS
«»HL SMPL
UG/L
: <:5
: <:5
: «:5
:«:5
t«:5
J«:5
t <:5
J<:5
s <:5
s <:5
»<:5
t «rb
:<:5
:<5
t«:5
«-:5
J -:5
J-tS
I'tS
l
-------
EPA-CRL
19T5
SAMPLE
LOG NO.
14282
4283
14284
U28S
14286
14287
14288
14289
14290
U291
14292
14293
14294
U295
1429*6
U297
14298
U299
14300
14301
1*302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
U314
U315
14316
14317
14318
14319
14320
14321
1*322
14323
14324
14325
14326
14327
14328
14329
14330
U331
14332
14333
14334
4335
14336
14337
14338
39*96 OA 39500 QA 3950* OA 39508 OA S0047 OA S0039 OA S0038 OA *H
AROCLOR AROCLOR AROCLO« AROCLOR METHE CL CCL* CHCL3 •*
12*2 12*8 125* 1260 TOT VOL TOT VOL TOT VOU •*
UG/L UG/L UO/L UG/L UG/L UG/L UG/L *H
KO.S K0.3 K0.3 XO.* : : « i 6S«H
. , , . *
xO.3
*
X0.3
:
s<0.3
•
K0.3
t
K0.3
:
X0.3
•
xO.3
:
xO.3
•
•
xO.3
:
xO.3
•
XO.3
:
XO.3
t
XO.3
{
xO.3
l
KO.S
1
KO'.S
t
KO.S
t
K0.3
t
XO.3
!
XO.3
t
XO.3
t
KO.S
1
xO.3
l
xO.3
!
K0.3
t
:<0.3
i
KO.S
1
KO.J
s
K0.3
t
•
XO.3
:
xO.3
t
KO.S
:
i
t
•
•
:
•
•
:
:
•
•
t
:
t
:
t
•
•
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
> .
• •* v • •* - — •
- •
K0.3 :<0.4 i >
t • t *n ^ tin
S • »^U.J '4W
xO.3 xO.4 : i
i i t < ft <\ :
S • »^W.J *^fc
KO.S XO.4 t 1
(t • ^ n e tft
* l *% U • 9 • 3
K0.3 XO.4 ' t :
1 t !• t^nc *^3
I 1 < U . ~> «>c
KO.S xO.4 t :
i • 1 <0 .S I < 1
i t »^V.J *^*
KO.S XO.4 1 t
« : K0.5 t<2
KO.S XO.4 t t
• • 19
KO.S K0.4 1 i
t I I < 0 » S 1 4
KO.S t
' 5
:<0.3 :
i S
: <0.3 :
: t
XO.3 i
t t
xO.3 l
i i
txO.S s
i :
: <0.3 :
t :
XO.3 :
: :
xO.3
:
xO.3
s
xO.3
:
xO.3
• -^ V • -* - '
<0.4 i s
i < i : 12
• ™ * • * "fc
<0.4 : :
KO.S : <2
• ^ \/ * j • ^ fc
<0.4 ! :
• ^ A C • S
* :
i • f r\ a • A
1 « * u . O • ^J
: <0.4 : :
i XO.5 xl
: <0.4 : :
> • t n ^ • 7
i • ^ \j . ^ t j
:<0.4 : :
! • < n t\ ' i
i • ^ V • J * J
: <0.
• • % I • % C
t <0 . 4 t '
: XO .S :25S»H
J I26S*H
«S I27S»H
: i2**i*H
:5 :29S*H
• • tn ^ n
«37 I37S»H
tl ^ • C4fckJ
• JP »wn
Xl I39S*H
: t40S*H
:12« :4lS*n
• • A OC A LJ
• • •• C -5 w **
: l :»3S»H
• • A. L. C 4ft .J
• • •» •» 3 'r rl
:7 :45S«H
: :463*M
tl !47S«H
• • A a C * -j
• • %*j r* WH
122 !49S»H
:• c rt 'i n w
* ^ fl 3 w ri
• i * E; i c»-<
• J »T>l^wn
• • 5* "3 C 0 kJ
« • 3e J WH
:79 ;53S*N
« • C A ^ m »_.
• • O* iw>-
xl :55S»-«
* • C JL C o ^
2 • DO ^ w H
:<1 :57S-»H
* 1 ^ R ^ *M
• • j ~ ^ ~
t rf- 1 • Q **A C • kd
• * 4 •^*»3W'1*
! * eC •^•H
: 26 : -SI S*H
• • te. 3 C -A L.
. * £ £ :* •*«
-------
14339
14340
14341
14342
14343
4344
14345
14350
U352
.MN.OtfOl
1
KO
1
J<0
t
KO
!
:<0
KO
t
.3 :<0.3
.3
• 3
<0.3
<0.3
.3 :<0.3
.3 :<0.3
SOP 51P
t
1
1
<0
KO
1
t
:
*
•
:
PEOION V DRINKING
<0
<0
<0
.3
.3
.3
.3
.3
52P
HATER
1
K0.4
1
:<0.4
*
:<0.4
t
:<0.4
K0.4
53P
STUDY -
t
1
t
t
:
:
:
:
s
<0.5 »<2
:
<1 :20
i
<0.5 :3
i
<1 :25
t
i
54P 55P
120
1
128
:
: 1
t
:26
t
:
56?
:63S»H
I64S*H
:65S*H
166S«H
»67S*H
:
-------
FPA-CHL
1975
SAMPLE
LOG NO.
U283
4285
14287
14289
U291
14293
14295
U297
U299
14301
14303
14305
14307
14309
14311
14313
U315
14317
14319
14321
14323
14325
14327
14329
U331
U333
14335
14337
U339
143*1
14343
14345
.MN.DxOl
S0056 OA
C2H4CL2
TOT VOL
UG/L
Kl
:<1
:<1
Kl
:<1
:<5
KO.S
Kl
:<3
t<5
Kl
KO.S
Kl
KO.S
Kl
Kl
Kl
:<3
Kl
Kl
KO.S
Kl
:<2
:<5
KO.S
:<0.5
Kl
Kl
Kl
Kl
KO.S
Kl
57"
REGION
S0040 OA
CHCL2QR
TOT. VOL
UG/L
KO.S
K0.5
Kl
KO.S
Kl
:6
KO.S
:9
Kl
131
Kl
:Q.S
KO.S
K0.2
Kl
:*
K0.5
tlS
Kl
10. 8
KO.S
:0.»
Kl
:5.0
:<0.5
:<0.5
Kl
:0.3
Kl
13
KO.S
13
S8P
S0041 OA S0042 OA
CHCL8R2 CH**3
TOT VOL
UO/L
KO.S
:<0.2
K0.5
K0.2
KO.S
:<0.2
KO.S
12
KO.S
tO. 7
KO.S
K0.2
KO.S
K0.2
KO.S
K0.2
KO.S
KO.S
KO.S
K0.2
KO.S
:<0.2
KO.S
K0.2
:<0.5
KO.S
KO.S
K0.5
KO.S
KO.S
KO.S
KO.S
59P
V DRINKING WATER
TOT VOL
UG/L
KO.S » »
:<0.5 s «
:<0.5 «
•:<0.5 : :
:<0.5 s '
:<0.5 : *
KO.S : »
KO.S » '
KO.S 1 *
KO.S 1 >
KO.S < »
KO.S > :
Kl : :
KO.S 5 »
KO.S ' :
KO.S 1 :
Kl : »
i<2 » :
KO.S : <
KO.S > <
KO.S I >
KO.S > *
KO.S : «
KO.S : »
KO.S : •
KO.S »
KO.S * •
Kl : :
Kl t <
Kl 1 <
KO.S I I
Kl 1 1
«o» *ip *i
STUDY - MINNESOTA
•I
•I
•I
A f
•I
J s 7S*I
_ m rt C Jk T
t J 95*1
: : 1 !$•!
• 1 ^ t A ?
: : 135*I
• • \ C C 4fc T
: s 155*1
J J17S*I
1 U9SM
• • *9 t C A T
> I 2 1 5.* I
I :23S«I
i :25S»I
i »27S«I
t :29S«I
: »31S*I
: s33S*I
i :35S*I
: :. 175*1
I J39S*I
: :41S*1
: :43S*I
k • A. • C A 9
1 »45S*l
1 »47S*1
t :40$*I
i :51S*I
t :53S*I
': :55S*I
: :S7S*1
: :59S*i
t :61S*I
: I63S*I
« »65S*I
1 *67$*I
t I69S*I
!P 63P •*!
**I
1
-------
EPA-CaL
1975
SAMPLE
LOG NO.
14277
.4282
14284
14286
14288
14290
14292
14294
14296
14298
14300
14302
14304
14306
14308
14310
14312
14314
14316
14318
14320
14322
14324
14326 -
14328
14330
14332
14334
14336
14338
14340
14342
14344
14346
.MN.DM01
00916 M«
CALCIUM
CAtTOT
MG/L
:<0.1
140.8
116.3
140.8
H6.5
142.4
120.5
1102
144.5
151.4
124.0
195.0
177.5
196.0
197.2
147.7
122.0
143.1
:18.6
145.2
144.3
145.3
125.6
152.9
118.7
162.6
US. I
15.2
14.9
112.5
112.
-------
EPA*CP-L
1975
SAMPLE
LOG NO.
14277
4*82
• ^ *r " ••
14244
14286
* t ^ a 0
14288
14290
14292
14294
14296
1*298
14300
14302
14304
14306
1*308
14310
14312
14314
14316
14318
14320
14322
14324
14326
14328
14330
14332
14334
1 *116
1 • J JO
14338
14340
14342
1434*
14346
.MN.D'Ol
01055 MN
MAMGNESE
MN.TOT
UG/L
MS
t*5
MS
132
t ^C
S <5
128
MS
r
1320
MS
1180
MS
1120
MS
:95
:70
:72
:6
126
MS
ue
:30
:20
MS
:36
:5
»10*
:<5
:6
MS
MS
MS
16
MS
MS
71P
REGION
01092 MW
ZINC
ZN.TOT
UG/L
MS
:19
MS
no
• **
I O
1120
MS
17
118
111
It
19
MS
MS
MS
18
MS
113
MS
114
MS
MS
MS
17
MS
17
MS
MS
MS
191
1170
191
1170
MS
72P
Q1002 H«
ARSENIC
AS. TOT
UG/L
Ml
Ml
Ml
Ml
! <1
* ^ 4
11
Ml
Ml
Ml
13
11
14
11
14
Ml
11
Ml
13
Ml
11
11
11
Ml
:2
tl
Ml
Ml
Ml
Ml
Ml
Ml
Ml
Ml
Ml
73P
v OHINKING *ATE»
01051 M«
LEAD
P8.TOT
UO/L
:<2
2<2
Mt
:<2
: <2
:3
:3
t<2
Mt
IS
13
Mt
Mt
Mt
Mt
Mt
Mt
Mt
Mt
Mt
Mt
M2
t<2
13
l<2
Mt
M2
Mt
Mt
Mt
Mt
Mt
Mt
13
74»
l 01027 H«
CADMIUM
CO. TOT
UG/L
MO. 2
MO. 2
MO. 2
MO.?
MO. 2
MO. 2
MO. 2
MO. 2
MO.t
MO. 2
MO.t
MO.t
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
7SP
l 01077 MW
SILVER
AG.TOT
UG/L
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
10.3
10.3
10.3
10.3
to. *t
10.3
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO.?
MO. I
MO. 2
MO. 2
MO.?
MO. 2
MO. 2
MO. 2
MO. •?
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
MO. 2
:0.7
76P
01147 Mri
SELENIUM
SE.TOT
UG/L
MS
MS
MS
M5
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
77P
SrUDY - MlNNESOT*
*<
•K
•*
•K
1 1S*K
S 6S*K
1 8S*K
: 10S**
U2S«K
U4S*K
I16S»K
1 14S*K
14 A tf A ^
tos**
I22S*K
!24S«K
I26S»X
I28S»K
I30S*K
!3
-------
EPA-CRL
1«TS
SAMPLE
LOG NO.
14282
14284
14?86
& ^ *m W **
14288
14290
14292
14294
14296
14298
A " *• ~ "
14300
14302
14304
14306
14308
14310
14312
14314
14316
14318
14320
14322
14324
14326
14328
14330
U332
1 4334
4 ^ J w ~
14336
14338
14340
14342
14344
.HN.DW01
00530 IM
RESIDUE
TOT NFLT
MG/L
:2
J<2
:4
!<2
:<2
:<2
i<2
!<2
t<2
i<2
15
i<2
:74
142
12
:<2
113
i<2
16
:5
:9
:2
:6
:<2
:<2
:<2
: <2
i<2
13
t3
14
13
78»»
REGION
70300 IM
RESIDUE
OISS-180
C MG/L
:220
1110
:200
:140
1260
5170
1660
1360
1440
1330
1860
T690
1490
1520
1270
1200
:360
1230
(270
1280
1230
:160
:360
1250
1330
:130
:40
HO
170
1100
ISO
145
79P
00095 IH
CNDUCTVY
AT 25C
MICROMHO
1354
1205
:338
:202
1352
1222
1910
1496
1585
1425
11070
I860
1720
1815
1404
1234
1487
1293
(355
1367
1348
1182
1496
1364
1525
1198
154
192
1105
1104
1103
1104
80P
V DRINKING WATER
00945 I
SULFATE
S04
MG/L
112
123
til
123
112
17
1162
1162
158
163
1244
I27t
142
162
123
135
126
120
(14
125
113
:17
18
:<3
:17
128
i<3
114
t<3
t<3
Ml
i<3
81P
STUDY -
M Q0940 I*
CHLORIOK
CL
Mfi/L
16
:9
17
= 11
110
:9
125
130
128
138
123
128
U6
(16
117
U8
117
124
(14
(3
(2
15
13
12
14
14
t<2
12
i<2
i<2
J<2
14
82P
MINNESOTA
00956 IM
SILICA
SI02
MG/L
112.9
19.8
112.9
19.8
15.5
11.9
117.1
19.4
126.1
115.8
130.0
116.0
124.0
122.0
112.9
110.2
U7.4
19.6
(9.4
17.3
19.1
17.7
:6.3
:0.6
:17.4
:9.1
:2.5
15.0
11.3
13.2
12.7
13.2
83P
004io IM
T ALK
CAC03
MG/L
1158
157
lisa
157
1 15*
164
1323
131
I 1H4
182
:314
1126
1394
1381
1176
165
1234
1100
(175
(156
1168
152
1220
:154
1256
149
119
U5
144
139
144
139
84P
•L
•L
•L
»L
1 6S»L
1 8S»L
110S*L
U2S»L
1 14S*L
I16S*L
118S»L
120S«L
122S«L
124S»L
126S»L
128S»L
130S*L
!325*L
134S*L
136S*L
138S»L
140S*L
142S»L
(44S*L
(46S»L
148S*L
150S-L
152S«L
154S»L
1565>»L
158S*L
160S»L
1625»L
I64S«L
166S*L
16«S*L
**L
**L
— L
-------
EPA-CO-L
1975
e AMDi C
^•n~UC
LOG NO.
14278
14279
1*280
14282
14284
14286
14288
14290
14292
14294
14296
14298
14300
14302
14304
14306
14308
14310
14312
1*31*
14316
14318
14320
14322
1*324
U326
14328
14330
14332
14334
14336
U338
14340
1*342
14344
1*347
U348
.MN.OwO
00403 IM
LAB
PH
su
•
•
•
•
57.7
57.6
57.7
S7.6
17.6
J8.1
17.4
t7.1
t7.5
59.4
57.8
58.7
S7.3
S7.3
S7.6
18.8
t7.8
:8.3
t7.7
57.2
57.6
59.4
S7.7
59.2
t7.6
58.8
t7.2
t6.7
t7.3
t7.0
t7.2
S7.0
s
•
AQ 3
00951 IM
FLUORIDE
F. TOTAL
MG/L
:
•
•
•
k A 11
t 0. 12
11. 1
to. 11
tl.2
10.12
_ • ••
1 1 .2
tO. 25
* 1 4
1 1 .2
t».37
t % "y
1 1 .2
tO. 26
. * *\
51.3
tO. 31
tl.l
10.14
II A
1*0
10.17
tO. 96
tO. 12
tO. 91
tO. 12
tl.2
. fn « c
t 0. 15
tQ. 89
tO. 20
tl.5
K0.10
10.92
t<0.10
tl.l
:j ft 1 A
<0. 1 0
tl.l
•
t
rtfeP
32730 IM
PHENOLS
UG/L
•
t <3
t * ^
• *3
t<3
t<3
t<3
t<3
i * i
i * *
l<3
t *\
1 * J
t<3
I <1
I ^ J
t<3
1 <1
* ^ J
t<3
t<3
t<3
1*1
I < j
t<3
t<3
t<3
t<3
• ^ 1
J < 3
t<3
• 1 •»
• * J
to
to
to
iO
IO
to
to
» tl
» < J
s<3
t
•
87P
Bar^ —
1 PEGION V DRINKING MATER
00720 IM 00630 IN
CYANIDE N02«.NOJ
CN N-TOTAL
MG/L
{
t <0 .002
1 0 . 003
* w • w v -J
tO. 003
s<0.002
tO. 003
10.003
I 0 » 004
* w • w v ^
10.005
t 0.003
sO.004
t 0.006
10.005
5 0 .004
50.002
10.003
tO. 003
t 0.003
• V • w W «7
10.002
tO. 003
:<0.002
10.006
: o . 00?
• VI . W V C
SO. 004
t 0 .002
tO. 004
K0.002
tO. 002
:<0.002
10.003
10.003
10.002
i n .003
• W 1 W W J
tO. 002
j Q .002
• V • V v k
88P
STUDY -
MG/L
K0.03
t
•
50.41
SO. 40
iO. 40
tO. 39
tO. 57
tO. 37
tO. 46
tO. 59
iO. 90
tO. 89
tO. 41
tO. 41
i<0.03
t<0.03
tO. 34
50.30
tO. 14
tO. 16
tO. 03
5<0.03
t 0.0^
to.o*
to. is
tO. 14
:<0.03
:<0.03
SO.OQ
tO. 08
tO. 25
tO. 25
S0.2A
SO. 27
:<0.03
99P
MINNESOTA
00610 IN
NH3-N
TOTAL
MG/L
s<0.010
:
t
50. IBS
50.649
80. H5
50.6*7
50.100
50.297
tO. 441
K0.010
tO. 339
50. BIS
tO. 966
51.50
51.73
52.61
$ 0 . 1 1 7
SO. 122
10.322
SO. 010
50.034
10.292
50.062
50.382
50.219
50.123
50.273
50.374
s<0.010
:0.1«2
s
-------
EPA-CRL
1975
SAMPLE
LOG NO.
.4277
14278
14282
14284
14286
14288
14290
14292
14294
U296
14298
14300
14302
14304
14306
14308
14310
14312
14314
14316
U318
14320
14322
1*324
14326
14328
14330
14332
14334
14336
14338
14340
14342
14344
14346
14347
00665 II*
PHOS-f
P-wET
MG/L
•
K0.02
tO. 0«
K0.02
tO. 08
tO. 02
tO. 06
tO. 03
10.03
t<0.02
tO. 18
tO. 14
tO. 23
tO. 26
tO. 17
tO. 19
tO. 09
10.29
tO. 20
tO. 67
tO. 05
10.06
tO. 03
tO. 35
tO. 11
tO. 04
K0.02
KO.U2
10.02
10.02
tO. 02
tO. 03
tO. 03
tO. 04
•
:<0.02
1 00340 IN 0
COD T
HI LEVEL
MG/L
t J
t<3 5
:18 :
if '
t!7
t ] 0
t«'3
. • «•
t . 3
t»>
K3
• *m
t.!9
t 12
: 33
H6
• 1 A
t 10
t 7
116
IB
120
tlZ
130
• 4 A
1 28
m K A
1 30
t24
:29
:26
:3
:6
20
.44
: 14
:3
16
:6
:5
!
•
: <3
ft •* O
0680 IN 71900 I
ORG C MERCURY
CUR. TQTA
^w . i *J i ^
MA /i UO/L
14(9/1,, W V>
KO.l
9 4 ft 1
* * V • 1
! A 1
* v * 1
KO.l
10.1
• V • •
KO.l
1 0.1
10.1
KO.l
KO.l
KO.l
to .1
• V V •
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
i *(\ \
I * v . 1
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
t<0.1
» ^ w » »
KO.l
KO.l
j
QAO
L CAC03
MG/L
:<3
:
: 159
t76
:159
:76
tl66
t82
1322
1141
1263
t!23
t492
t218
t4lO
:430
t!89
190
t237
illl
:177
:174
t!77
t72
t223
t!27
1265
174
:20
t20
143
144
144
143
t<3
t
961
IN 00615 IN
*0 N02-N
TOTAL
MG/L
t «
t
0.009 :
<0.005 :
0.010 :
<0.005 t
0.005 >
0.005 t
:0.008 >
;<0.005 t
10.006 <
tO. 006 :
10.009 :
:0.007 :
:<0.005 t
: 0.006 :
tO.005 t
K0.005 I
tO. 007 «
K0.005 <
tO.005 :
:<0.005 t
tO. 006 >
tO. 008 i
:O.OOS t
K0.005 !
K0.005 '•
:0.014 t
K0.005 s
K0.005 <
K0.005 t
K0.005 1
:<0.005 i
:<0.005 :
: t
t :
a 97P 9
*N
*N
«N
»N
t 1S«N
t 2S*N
t 6S»N
t flS»N
1 10S*N
t!2S*N
t 14S»N
tl6S*N
t 1«S*N
I20S*N
t22S*N
*» * ft i± « t
t 24S*N
:26S*N
t 28S*''i
t30S*N
t 3?S*N
t 34S*N
:36S*N
t38S*N
J40S«M
t42«>»N
t44S»N
JJL A. C. A JL4
46S*N
t 4AS*N
t50S»H
t52S*N
t54S*N
t56S*N
t58S»N
• t60S»N
t* *«C AK|
625*N
I64S*N
t66S»N
t 68S*N
t 7 0 S * >*i
• ^1 *"* • fcl
t 7 I s*N
gp »*HJ
OOP 9J" Tr^~ * •+•
.MN.O-OI «"i^.i.;:i^is."I2.!ISI.:--™---
-------
COLS 05APR OSN«CNCRlS.RGD.OH.OW04 ON TS0009 OWW/75 »EV01 T
•STUDY DESCRIPTION —
STATTYPE SMPLOAY ATLA8BY UUEDATE ACCOUNT-NU««BE9
T7777777 03FE875 05FE«*75 03MAY75
- OHIO
•SAMPLE oESc^iPTIONS —
STATTYPE DEEP T M NO ENQDATE TIME PPLU
M04R NLO'3
9<» 69
»>>REGION
LA9IDNUM
14354
14355
14356
14357
14356
14359
14360
14361
14362
14363
14364
U365
14366
U367
14368
U369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
U344
14385
U386
U387
14388
143*9
14390
14391
U392
14393
14394
U395
U396
U397
14398
1O99
14400
14401
U*02
A6ENCYID UNLOCKEY ST
77
V DRINKING rfftTEP STU
STORETID qOLLOAY TIME
t50203
750203
750203
750203
•T50203
750Z03
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
7S0203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
-------
l**o*
1**06
1*407
14401
14410
1441)
14415
l**l«
1**1T
i»*i*
>»;*)5*
»> 1*355
»>U35*
>»l»3JT
>»1*35»
»»'.*3»3
»»l*3Sl
>»l»3*3
>»1*34»
>»1*364
>»L*34«
»>l»370
»>1»3TT
»>1*37^
»>1*379
»»1*381
T50Z03
7502)3
TS02C3
750213
T10HJ
T»OI03
T50103
T50113
T90H3
750203
750203
750203
750203
750203
750203
OP's
»•« «4T*4 SERIES 4
1.4 I
«»»«£•, 44« ^ATE» SC'TES 4
*4« .4T§» SCKIES •
»O»TS-OUT- *4« ««rc>i scries 4
aO«T$-40uTrt •;xiSnC9 «4*£i» SERIES 4
•oars'OvT-i ri*ts*ca »t~i» SERIES 4
-------
>»1OM
>»144tl
>»14»03
»tou» «« «»ee«» 'iftifco »«rt» seam •
» ratrtONT «4« «»TC» UH(!S *
Hj»0»
-S**»\.t/»*tH«ttl3 2*^4-
H 0 .J3 I N ^ u • ' L
MK\1N.' t*'1'
Ml-HONi ^^'3^
0^ \.ii r^ ^^
-------
EPA-CRL
1975
SAMPLE
LOG NO.
14359
14361
14363
U365
U367
14369
14371
14373
14375
14377
14379
14381
143*3
14385
14387
14389
14391
14393
14395
14397
U399
14401
14403
14405
14407
14409
14415
14417
.QH.DW04
50003 OA
TPEFUN
*HL SMPL
UG/L
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
IP
REGION
:
*
:
:
:
i
i
i
SOOOl OA
HC8ENZ
«HL SMPL
UG/L
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
K0.002
l
<0.002
K0.002
]
:
•
•
:
*
t
t
i
t
t
t
t
i
•
*
:
i
V
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
2P
39782 OA
LINOANE
WHL SMPL
UG/L
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
3P
S0002 OA
8BHC
WHL SMPL
UG/L
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
4P
S0004 UA
OICLONE
*HL SMr*L
UG/L
K0.01
K0.01
K0.01
K0.01
KO.ni
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
K0.01
5P
39330 OA
ALORIN
WHL SMPL
UG/L
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
t<0.002
K0.002
KO.Q02
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
K0.002
6P
S0005 OA
ZVTSON
:
*
*
*
*
t
t
t
4H
<0
<0
<0
<0
<0
<0
<0
<0
KO
I
J
1
1
s
:
:
t
I
:
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
KO
t
t
i
:
:
t
*
:
<0
<0
<0
<0
<0
<0
<0
<0
L SMPL
UG/L
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
• 02
.02
.02
.02
,02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02
7P
DRINKING MATER STUDY - OHIO
•A
•A
*A
•A
: 6S»A
I 8S*A
: IOS«A
:i2S*i
: 1*5*4
: i»»s*4
t 1&S«A
«20S*A
J22S*4
J24S*A
126S*A
S2%S*A
J30S»A
:32S*A
:34c»A
: 3bS*- a
:3flS»A
I40S*A
1425*4
:44S»A
I46S»A
!48S*A
J50S*A
:52S*A
:54S*A
:56S*4
:62S»A
:64S*A
»*A
**A
-------
EPA-CRL 39430 OA
1975
SAMPLE
LOG NO.
14359
14361
14363
14365
14367
14369
14371
14373
14375
14377
14379
14381
143S3
14385
14387
14389
14391
14393
14395
14397
14399
14401
14403
14405
14407
14409
14415
14417
.OM.DW04
IS
MH
:<0
XO
xO
xO
xO
XO
XO
:<0
XO
xO
XO
XO
xO
:<0
xO
:<0
xO
xO
xO
xO
XO
XO
XO
XO
XO
xO
XO
xO
OD*tN
L SMPL
UG/L
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
• 003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
ftp
REGION
t
t
:
i
:
t
t
39420 OA
HCHLR-EP
«HL SMPL
UG/L
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
xO.002
t
t
<0.002
<0.002
XO.002
t
t
t
:
t
*
t
t
:
t
t
:
:
*
:
i
:
V
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
9P
t
t
i
t
:
t
i
t
t
i
i
t
i
i
!
t
i
j
j
t
:
:
:
t
:
t
*
j
DRINKING
S0006 OA
CHLORDAI3
«HL SMPL
U6/L
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
10P
S0007 OA
ODE OP
WrtL SMPL
UG/L
XO.003 t
XO.003 :
XO.003 :
xO.003 :
xO.003 :
XO.003 :
XO.003 t
XO.003 1
XO.003 t
xO.003 t
XO.003 <
xO.003 >
XO.003 s
XO.003 :
xO.003 :
XO.003 J
XO.003 >
XO.003 :
XO.003 :
XO.003 t
XO.003 :
XO.003 t
XO.003 :
xO.003 :
XO.003 t
XO.003 :
xO.003 :
XO.003 :
UP
SOOOft 04
ooe p"
dHL S-M°L
UG/L
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
12P
S0009 OA
ODD OP
WHL SMPL
UG/L
XO.003
XO.003
XO.003
xO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
xO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
13P
S0010 OA
DOT OP
*ML SMPL
UG/L
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
14P
»8
•B
• *
*R
t 6S*P
t 85*8
: ios*?
j 12S*M
:14S*R
U6S*8
t IbS**
t20S*B
t22S*S
>24S*H
«2»>S*B
t 2dS*R
«30S*9
• 32S*3
• 34S*H
:365*s
t 38S*M
I40S»«
I42S*B
»44S*B
:46S*Q
:46S»8
: 50S*S
t52S»«
: 54$»q
»56S»8
: b?S*-3
: 6<*S*i3
*«g
WATER STUDY - OHIO »«R
-------
FPA-CRL
1975
SAMPLE
LOG NO.
14359
14361
14363
14365
14367
14369
14371
14373
14375
U377
14379
14381
14383
14385
14387
14389
14391
14392
14393
U39S
14397
U399
14401
14403
14407
14409
14415
14417
.OH.OW04
S0011 OA
000 PP
•IHL SMPL
UG/L
KO.OOS
K0.003
K0.003
KO.OOS
K0.003
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
:
-------
PPA-CHL
1975
SAMPLE
LOG NO.
U359
U361
14363
U365
14367
14369
14371
14373
U375*
14377
14379
14381
14383
14385
14387
14389
14391
14392
14393
14395
14397
14399
14401
14403
14405
14407
14409
14415
14417
.OM.OW04
39770 OA
OCPA
WML SMPL
UG/L
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
22P
REGION
S0023 OA 39380 OA
ENOO- ! OIELOHIN
wML SMPL WML SMPL
UG/L UG/L
K.005 K.003
K.005 K.003
K.005 K.003
K.005 K.003
K.005 K.003
K.005 K.003
K.005 : .003
K.005 .003
K.005 .003
K.005 .003
K.OOS .003
K.005 .003
K.005 .003
K.005 <.003
K.005 .003
K.005 <.003
: .005 .004
i .005 <.003
t .005 <.003
t .005 <«003
t .005 <,003
: .005 <.003
: .005 <.003
K.005 .009
K.005 <.003
K.005 <.003
K.005 <.003
K.OOS <*003
K.OOS <.003
23P 24P
V DRINKING WATCH
39390 OA 39460 OA
ENOHIN CLP-^NZLT
WML SMPL WML SM^-
Ufl/L UG/L
K.003 K.01
K.003 .01
K.003 .01
:<.003 .01
: .003 .01
: .003 .01
t .003 .01
: .003 .01
> .003 .01
I .003 .01
t .003 .01
» .003 <.01
: .003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.C1
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
K.003 <.01
25P 26P
STUDY - OHIO
50027 OA
PNDOS 11
,,M!_ >Wr>l,
uG/L
<.005
<.005
<.905
<.005
<.005
<.005
<.005
<.OOS
<.005
<.005
<.005
<.005
<.005
<,005
<.OOS
<.005
<.OOS
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
<.005
K.005
K.OOS
K.OOS
27P
S0028 (
NIT90FI
rfHL S*
UG/L
K.OOS
K.OOS
K.005
K.OOS
K.OOS
K.O'JS
K.OOS
K.005
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
: .005
: .005
: .005
: .005
: .005
i .005
K.OOS
K.OOS
K.OOS
K.005
K.OOS
K.OOS
28P
34 »0
EN *0
DL »0
•0
: 6S»D
s frS»0
: 10S*D
:12S«0
:i4S«n
»16S*D
:18S*C
«20S*D
»22S*D
I24S*D
»26S*0
I28S*0
»30S*0
:32S*D
:34S«D
:36S«0
J38S*0
»39S*0
540S»D
I42S«0'
J 445*0
J46S*0
:48S*0
' :505»0
:52S*0
:54S*D
:56S*0
:62S*D
:6»S*0
•»0
•»n
— — o
-------
F'PA-CP-L
"1975
SAMPLE
LOG NO.
14359
14361
14363
14365
14367
14369
14371
14373
14375
14377
14379
14381
14383
14385
14387
14389
14391
14392
14393
14395
14397
14399
14401
14403
14405
14407
14409
14415
14417
.OH. 0*104
S002V OA
245-TUO
WML SMPL
UG/L
t 4 • 0 1
* K 9 0 1
t ^ • 0 1
K.Ol
K.Ol
» < « 0 1
! < . 0 1
K.Ol
K.Ol
K.Ol
S0030 OA
P30LAN
WHL SMPL
UG/L
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
S0031 OA
BULAN
«HL SMPL
UG/L
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol K.Ol
K.Ol
K.Ol
K.Ol K.Ol K.Ol
K.Ol K.Ol K.Ol
K.Ol
K.Ol !
<.oi
K.Ol K.Ol K.Ol
K.Ol K.Ol K.Ol
K.Ol K.Ol K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
29P
REGION
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
<*01
<«01
<»01
^•01
^ • 0 1
^•01
^•01
^ » 0 1
K 9 0 1
^•01
*t v 0 1
K.Ol K.Ol
K.Ol
30P
K.Ol
31P
S0024 OA 39808 OA 3*570 OA
OEHP TEOION CIAZINON
WNL SMPL WHL SM^L hHL SMPL
UG/L UG/L UG/L
Kl
12
11
Kl
Kl
Kl
Kl
11
11
Kl
Kl
Kl
Kl
Kl
12
117
Kl
Kl
Kl
Kl
Kl
<»0l
<.01
<.0l
<«01
<«01
<*01
<»01
<*01
<.01
<«01
^ • 0 1
^.01
<.0l
<.01
<«01
<«01
<.01
<.01
<.01
<»01
<»01
Kl K.Ol
14 K.Ol
Kl K.Ol
Kl K.Ol
Kl K.Ol
Kl K.Ol
14 K.Ol
12 K.Ol
«1.
4 i
«1
<1
<:1
«:1
<1
<:1
<1
4>
•'•I
<:1
«:1
<:1
tf \
k m
•:1
•cl
•cl
cl
cl
cl
cl
32P 33P 34P
S0016 OA
DYFONATE
WHL SMPL
UG/L
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
•
*
Kl
*<1
Kl
Kl
I<1
Kl
Kl
Kl
Kl
Kl
Kl
35P
•E
•E
•E
•e
t ftS»^
1 8S*€
UOS»E
U2S»E
: 16S*E
:18S*E
: ?OS*E
»22S*E
»24S«E
*26S*E
«23S»E
:30S*E
:32S«E
t 34S*E
:36S*E
! 3flS*£
i39S*C
I40S*E
1 42S*E
:44S*E
J 46S*E
:4ftS*€
:50S»E
:52S»E
t54^*E
:56S+£
:62S*E
:64S*E
••E
V DRINKING WATER STUDY - OHIO »•£
-------
EPA-C*L
1975
SAMPLE
LOG NO.
14359
14361
14363
14365
14367
14369
14371
14373
14375
14377
14379
14381
14383
14385
14387
U389
14391
14393
14395
14397
14399
14401
14403
14405
14407
14409
14415
14417
.OM.DW04
S0017 OA
RONNEL
WML SMPL
UG/L
: <1
1 <1
: <1
: <1
t <1
Kl
Kl
Kl
Kl
Kl
I <1
: <1
Kl
J <1
: <1
:<1
t <1
Kl
Kl
Kl
Kl
Kl
1 <\
Kl
Kl
: <1
i <1
• <1
36P
REGION
S0032 OA
OURSBAN
WML SMPL
UO/L
Kl J
Kl J
Kl i
:<1 :
:<1 :
Kl :
K! :
:<1 :
Kl !
Kl :
Kl t
Kl 1
Kl 1
* 4 \ •
* ^ • *
Kl J
Kl t
Kl I
Kl f
1 <1 1
Kl :
Kl t
Kl :
Kl t
KI :
Kl :
Kl t
Kl
5 <1 I
37P
V DRINKING
39600 OA
MPARATMN
WML SMPL
UO/L
<1 1
<1 I
<1 5
<1 '•
<1 t
<1 :
<1 J
<1 :
<1 <
<1 >
<1 t
<1 t
<1 >
<1 t
<1 <
<1 :
<1 :
<1 I
<1 1
<1 i
<1 :
<1 !
<1 1
-------
EOA-CRL
1975
S&MPLE
LOG NO.
14359
14361
14363
14365
14367
14369
14371
14373
14375
14377
14379
14381
14383
14385
14387
14389
U391
14393
14395
14397
14399
14401
14403
14405
14407
14409
14415
14417
.OH.OW04
S0018 OA
PHENCAPT
«HL SMPL
UG/L
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
43P
REGION
S0034 OA
EPN
WHL SMPL
UG/L
_ •
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
- _ •
Kl
(41
Kl
Kl
Ki
Kl
Kl
Kl
_ •
Ki
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
44P
39580 OA
OUTHION
WHL SMPL
UG/L
• fH
I *^
KS
J<5
:<5
• ^c
• <;>
• ^c
I <5
K5
• *K
1 <5
KS
KS
KS
»^m
o
KS
KS
KS
KS
• *e
* o
• «i&
KS
KS
• «•
K9
KS
KS
KS
KS
KS
KS
KS
• ^K
• o
45P
V DRINKING HATER
S003S OA
PHOSALON
WHL SMPL
UG/L
Kl
• ^ I
Kl
• - 1
• <1
• ^ 1
Kl
•
-------
39496 OA 39500 OA 39504 OA 39508 OA S0047 0* SOOJ9 OA S0038 OA
1975
SAMPLE
LOG NO.
14359
14360
U361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
U374
U375
14376
14377
14378
14379
14340
14381
14382
14383
14384
14385
14386
U387
\4388
14389
14390
U391
14392
U393
U394
U395
14396
14397
143^8
U399
14400
144Q1
14402
14403
1440*
144Q5
14406
14407
14408
14409
14410
14415
1441ft
14417
U418
AROCLOR
1242
UO/L
:<0.3
I
:<0.3
*
:<0.3
t
K0.3
t
t<0.3
t
l<0.3
:
:<0.3
:
:<0.3
:
:<0.3
:
:<0.3
j
:<0.3
:
:<0.3
i
K0.3
:
:<0.3
:
K0.3
t
K0.3
!
:<0.3
;
:<0.3
:
:<0.3
;
:<0.3
:
:<0.3
*
:<0.3
t
:<0.3
;
:<0.3
•
:<0.3
:
:<0.3
:
J<0.3
i
:<0.3
:
51?
AHOCLOR
. ?<»8
UG/L
:<0.3
:
:<0.3
:
:<0.3
:
:<0.3
:
i<0.3
t
:<0.3
t
:<0.3
:
:<0.3
*
!<0.3 .
:
l<0.3
l
K0.3
i
t<0.3
:
:<0.3
:
:<0.3
i
:<0.3
t
:<0.3
:
:<0.3
t
:<0.3
:
:<0.3
:
:<0.3
:
:<0.3
:
:<0.3
;
:<0.3
*
:<0.3
:
:<0.3
t
s<0.3
*
:<0.3
•
:<0.3
;
51P
AROCLOR
1254
UG/L
:<0.3
:
:<0.3
:
:<0.3
:
K0.3
t
K0.3
t
K0.3
t
K0.3
i
K0.3
j
:<0.3
t
t<0.3
J
t<0.3
t
K0.3
t
K0.3
:
:<0.3
:
:<0.3
t
:<0.3
:
:<0.3
*
:<0.3
:
:<0.3
:
:<0.3
;
J<0.3
:
:<0.3
i
:<0.3
:
:<0.3
:
:<0.3
*
K0.3
:
:<0.3
•
K0.3
•
52P
A»OCLOR
1260
UG/L
:<0.4
t
: < 0 * 4
;
K0.4
*
: <0»-4
i
l<0.4
t
r<0.4
i
:<0.4
i
K0.4
;
:<0.4
t
1<0.4
I
K0.4
t
:<0,4
*
:<0.4
:
t<0.4
t
K0.4
1
K0.4
1
:<0.4
:
:<0.4
*
:<0.4
:
:<0.4
*
:<0.4
:
: <0.4
:
:<0.4
;
:<0.4
:
: <0.4
t
:<0.4
:
:<0,4
:
:<0.4
:
53P
METME CL
TOT VOL
UO/L
]
:64«»M
: *>SS«M
• «H
-------
pOA-cRL
"1975
SAMPLE
LOG NO.
14360
U362
14364
14366
14368
14370
14372
14374
14376
14378
14380
14382
14384
14386
14388
14390
14392
14394
14396
14398
14400
14402
14404
14406
14408
14410
14416
14418
S0056 OA S0040 OA
C2H4CL2 CHCL28R
TOT VOL TOT VOL
UG/L UG/L
,<0.5 »<0.5
• • A.
:<1 *6
. + rf t
:<1 »*»
• t A
:<1 l4
:<1 :<0.2
- • 1 Q
:<1 •**
i
-------
EPA-CRL
1975
SAMPLE
LOG NO.
14354
14360
\4362
14364
14366
U368
14370
1*372
14374
14376
14378
14360
14382
14384
14386
14388
14390
14392
14394
14396
14398
14400
14402
14404
14406
144C8
14410
14411
14416
14418
.OM.DrtO
00916 M«
CALCIUM
CA.tOT
MG/L
:<1
:31.5
:32.4
:32.1
:31.6
:20.8
133.5
131.6
143.4
140.4
145*6
>22.3
J27.7
121.4
:27.4
:24.3
:33.1
-.44.9
:29.0
179.4
:64.a
:43.2
:17.4
:62.7
:34.o
:45.7
:52.9
:<1
149.4
141.2
64P
4 REGION
00927 MW
MQNSIUM
M^«TOT
MG/L
» _ n •
:
-------
EPA-CRL
197S
SAMPLE
LOG NO.
14354
14360
14362
14364
14366
14368
14370
14372
14374
14376
14378
14380
14382
14384
14386
14388
14390
14392
14394
14396
14398
14400
14402
14404
1*406
14408
14410
14411
14416
14418
.OH. 0*04
01055 M*
MANQNESE
MN.TOT
UO/L
KS
16
t<5
:9
:7
126
:<5
1470
t!3
152
t<5
1460
1<5
:470
:<5
:250
:<5
146
i<5
129
15
119
16
155
:8
1110
:<5
:<5
:130
t32
7l*»
REGION
01092 «t
ZINC
ZN.TOT
UQ/L
:<5
:
:<5
t<5
t<5
l<5
l<5
:<5
l<5
KS
KS
l<5
t<5
:<5
t<5
K5
1<5
l<5
K5
KS
i<5
i<«5
t<5
:<5
:<5
1<5
l<5
:<5
77P
STUDY - OHIO
*<
««
•K
•K
1 1S»K
1 7S»K
1 *»S««
tllS-K
1135«K
115S«K
U7S«K
119S-K
121S«K
123S«K
125S»K
127S«K
129S»K
131S*K
133S«K
135S«K
137S»K
139S«K
14lS»K
143S*K
I4SS*K
147S«K
14QS«K
151S»K
153S»K
155S*K
:57S*K
15BS»K
163S»K
165S»K
•«K
••K
-------
FPA^CPL
1975
SAMPLE
LOG NO.
14360
14362
14364
14366
14368
14370
14372
14374
14376
14378
14380
14382
14384
14386
14388
14390
14392
14394
14396
14398
14400
14402
14404
14406
14408
14410
14416
14418
.OH.OW04
00530 IM
RESIDUE
TOT NFLT
Mfi XL
13
i<2
13
i<2
:3
t<2
117
t<2
1203
18
1165
t<2
1165
12
179
:<2
:68
i<2
123
:<2
:53
:<2
H27
:5
133
l<2
134
l<2
7dP
REGION
-'0300 IM
"ESIDUE
niss-i«jo
C M0/L
1160
1 190
l 170
1150
: 170
1 >30
1 200
1230
t?65
1280
1120
1170
>145
1140
:15»
1190
l 290
1230
1 t4D
1350
1?70
1180
l 380
I 340
1 240
1 290
! 390
: t80
79P
00095 IM
CNDUCTVY
AT 25C
MICROMHO
1282
1278
:270
1277
1254
1308
1350
1397
1391
1364
1236
1266
1233
1265
1249
1307
1441
1374
1642
1506
1376
:257
1510
:488
1392
1520
1780
1845
SOP
00945 I"
SULFATE
SO*
M«XL
120
126
120
127
131
156
182
189
153
180
149
154
153
155
155 .
169
142
143
1103
1113
141
139
179
1109
154
181
170
182
81P
l 00940 IM
CHLORIDE
CL
MG/L
119
118
:16
:19
:20
:25
129
133
118
121
112
113
113
U5
113
121
119
125
132
136
125
124
:26
131
124
139
:142
1179
82°
00956 IM
SILICA
SI02
MGXL
!<0.?
K0.2
:<0.2
:<0.2
:<0.2
10.6
:6.3
15.4
16.4
16.3
16.2
16.4
16.4
16.6
16.6
:
n*>
1*5
:*7
130
150
195
142
129
«35
«29
136
:38
:40
:141
:«5
U71
J61
S97
:31
1122
149
178
1100
179
t42
84P
V DRINKING *ATER STUDY - OHIO
•L
*L
»L
•L
1 7S«L
1 9S*L
111S*L
113S»L
: 15S»L
U7S»L
U9S»L
121S*L
123S*L
I25S»L
I27S»L
129S»L
I31S«L
133S*L
13SS*L
137S*L
139S»L
:*IS*L
143S»L
»*5S»L
«47S«L
:49S»L
151S»L
153S»L
155S*L
157S»L
163S»L
165S*L
**L
»*L
L
-------
EPA-CRL
1975
SAMPLE
LOG NO.
14355
14356
14357
14360
14362
14364
14366
14368
14370
14372
14374
14376
14378
14380
14382
14384
14386
14388
U390
14392
14394
14396
14398
14400
14402
14404
14406
14408
14410
14412
14413
14414
14416
14418
.OH.DW04
00403 IM
LAB
PH
su
•
*
:
:
:7.8
:7.7
:7.8
t7.7
t7.4
t7.7
17.2
19.4
t7.7
t9.7
tT.O
t8.4
:7.0
:8.3
t7.2
t8.2
t7.7
:7.9
t7.8
:8.5
:7.8
:8.9
t7.7
t8.5
t7.7
19.0
t
t
:
:7.8
:9.0
85?
REGION
00951 IM
FLUORIDE
F. TOTAL
M6/L
t
:
•
•
to. 13
:0.13
tO. 16
10.13
tO. 13
ll. 0
10.18
tl.3
tQ.21
tO. 98
tO. 13
tO. 96
to. 13
tO. 96
tO. 13
tO. 13
tO. 20
tO. 19
to. 26
tO. 74
to. 18
tl.l
tO. 22
tl.O
to. 21
to. 96
t
t
:o.l8
tO. 74
86P
32730 IM
PHENOLS
UO/L
•
•
t
t<3
t<3
t<3
t<3
t<3
:4
:3
16
IO
»6
15
t*3
t<3
t<3
t<3
t<3
t<3
'14
t<3
:3
t<3
:3
t<3
t5
t<3
t6
t<3
1
• ^ ^
to
tS
:3
87P
V DRINKING WATER
00720 IM 00630 1*
CYANIDE NO?*NOJ
CN N-TOTAL
MO/L MO/L
« t «A - 0^
•
t<0.002
t
tO. 004
tO. 005
tO. 003
tO. 003
10.005
K0.002
10.020
tO. 012
10.005
10.005
tO. 010
10.003
tO. 008
tO. 005
tO. 008
10.004
tO. 004
tO. 003
t
tO. 007
10.007
10.004
iO. 009
tO. 009
tO. 006
tO. 006
t
tO. 004
tO. 010
10. 010
88P
STUDY -
• •• w v » *r
•
•
•
iO. 26
tO. 25
tO. 25
iO. 25
tO. 27
tO. 28
11.07
tO. 25
15.31
14.62
tO. 93
tl.37
tO. 90
tO. 92
tl.Ol
tl.OO
t3.46
13.3*
t5.25
t5.17
13.61
t2.72
t7.15
t7.28
16.82
15.30
<0.03
1.11
l.lfl
89P
OHIO
00610 IN
NH3-N
TOTAL
M-3/L
:<0.010
•
•
:0.013
:<0.010
:0.012
:<0.010
tO. 044
tO. 019
10.293
tO. 231
tO. 224
tO. 102
tO. 123
tO. 032
tO. 161
:0.030
J0.047
:<0.010
tO. 157
tO. 020
tO. 424
:0.121
tO. 157
tO. 024
tO. 275
tO. 018
tO. 186
tO. 022
t<0.010
I
tO. 201
iO. 040
90P
00625 IN
TOT KJEL
N
MQ/L
:<0.05
•
*
•
tO. 32
tO. 15
tO. 25
:<0.05
tO. 64
to. 22
to. 80
tO. 37
12.16
tO. 60
tO. 69
to. 14
tO. 76
tO. 13
tO. 39
tO. 08
tl.16
tO. 24
tl.33
tO. 65
tl.03
tO. 2*
tl.43
tO. 48
t2.09
10.42
K0.05
I
tO.<»7
tO. 25
91P
• u
»M
*M
«M
t 2S*H
t 3S**
t 4*i*M
• ^ *9 ^
: TS«M
: OS*"
tllS»"
t!3S»M
t!5S*M
t!7S«*
I19S«M
t21S«"
t23S*"
I25S*M
t27S»M
t 29S*H
t31S«M
t33S*^
t35S»M
t37S»»«
t39S»"
t4lS*M
t43S«^
t45S*»*
t47S*^
:49S»M
t51S»M
t53S»«
t55S»M
t57S*M
t5QS*M
1 6 0 S • M
t6lS»M
t63S*M
t65S»M
• »M
^ ^ vi
-------
EPA-CRL
1975
SAMPLE
LOG NO.
U354
U355
U360
U362
U364
U366
14368
U370
14372
14174
U376
14378
14380
14382
14384
14386
14388
14390.
14392
14394
14396
U398
14400
14402
14404
14406
14408
14410
14411
14412
14416
14418
.OH.OW04
00665 IN
PHOS-T
P-*ET
MG/L
t
10.31
tO.03
10.02
10.04
K0.02
10.04
K0.02
tO. 15
tO. 19
10.39
10.07
10.20
K0.02
10.21
K0.02
10.14
K0.02
JO. 17
10.23
10.29
10.26
10.26
10.19
:0.36
10.10
10.35
10.14
•
•
K0.02
10.33
10.65
92°
REGION
00340 IN 00680 IN
COO T ORG C
HI LEVEL C
MG/L MG/L
l t
15 t
• A t
1 >J t
IS J
_ «* *
1 7 t
:S :
* *i A *
120 1
: 10 »
118 1
17 t
144 t
t!2 1
:26 1
14 |
l?9 l
15 t
118 t
13 t
125 t
»7 1
t22 :
1 7 t
119 t
18 1
133 l
s f) i
:43
17 1
i i
:<3 t
t24 t
19 1
93P 94P
V DRINKING MATER
71900 IN
*£RCURy
HO. TOTAL
UG/L
« < ft \
» « v • 1
t
I * 1
• ^ V • i
KO.l
KO.l
KO.l
to.l
10.2
1", I
10.4
10.2
to. 3
10. 2
10.3
10.1
KO.l
10.1
• ,} 1
> ') . J
10.1
10.3
10.2
• n ">
• IJ . C
KO.l
KO.l
>— *\ \
<0. 1
KO.l
K0,l
95P
00900 IN
TOT MA*0
CHC03
M3/L
t<3
l 106
111?
• * A *-
till
1110
177
l 108
1113
rlM
1161
1117
183
195
178
194
191
U13
S19C
:120
J285
: 193
• • f »7
1152
167
1222
1117
• 4 » f
:167
1147
I < "\
• ^ J
*
t
U74
1154
96P
00615 IN
NOP-N
TOTAL
MO/L
<
j j
K0.005 1
K0.005 1
K0.005
KO.OOS
KO.OOS
KO.OOS
10.023
tO. 021
10.150
10.017
tO. 012
KO.OOS
10.016
10.005
10.014
K0.005
10.060
KO.OOS
tO. 049
10.010
10.050
10.007
10.059
10,009
10.072
KO.OOS
: i
10.032
KO.OOS t
97P <
STUDY - OHIO
•N
•N
• N
•N
J 1S»M
t 2S*N
1 7S»S
t 9'5»N
H1S»N
:13S*N
H5S«\
!17S»*J
: 19S»N
t21S*N
t23S«N
!25S»N
127S»N
:29S«N
131S»N
133S«N
!35S»N
t37S»N
t39S»N
I41S»N
J43S»N
145S*N
147S*N
149S*N
151S»N
:53S«N
155S*N
157S*N
t58S*N
J59S*N
163S«N
t6SS*N
)gp *«N
Jfe 4fc fe.1
**N
-------
COLS 05APR OSN«CNCRLS.ROD.*S.0*01 ON TS0009 04/l«/7i>
. .... ....STUDY DESCRIPTION
•NPAR NLOO AQENCYIO IJNLOCKEY STATTYPE SMPLOAY ATLAflflY OUEDATE ACCOUNT-NUMBER
94 53 77777777 03FCB75 05FEB75 0"MAY75
>»REGION V DRINKING WATER STUDY - WISCONSIN
•SAMPLE DESCRIPTIONS— —
STATTyPE DEEP T H NO liNQOATE TIME
L48IDNUM
U801
U892
U«03
U804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
U841
U842
14843
1*844
14845
14846
14847
148*8
14849
STORETID COLLOAY TIME
750203
750203
750203
750203
750203
750203
7S0203
750203
750203
750Z03
750203
T50203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
750203
7'i0203
7H0203
7«i0203
75J0203
7S0203
7S0203
7S0203
7«50203
750203
7SO?03
750203
750203
750203
750203
750203
750203
750203
750203
7S0203
750203
750203
750203
750203
750203
750203
-------
1.951
14*53
>»l*105
»»t4«2fl
»> 14 o'. >
> > > '
>»i -M 41
»> 14 J»J
» >; * r 4 »
» > J4J«^
>»14;150
3 CON) ;>/
ni OH
»JPO»
OP»N
e»u cu*t"e •»>• '«»TI« series *
— 4 ^
e«u
3L«
81. *C*
se«ies
•**«
$£4l»S d
SE»t!i 9
«
9
t« cwsse
UA CCOSSE •»-
L* c»osse
U* C»OSSE
SC»I£S
5 »
a
Mll>»UKEE
SERIES 9
«4T*a SERIES
v4NtTO»OC
««T£B SE'lES A
i£«I£S 1
«*T£<» S£fil£$ t
*4T£<» SE^IICS
5E«I£S
«4« >
• "b S
-------
>»1*853 » KENOSHA FINISHED rfATER SERIES d
..... —-———SAHPLE/PARAMETEH DATA-
-------
P°A-CRL
1975
SAMPLE
LOG NO.
14*06
14808
U810
14912
14*14
14816
14822
14824
14A26
14628
14830
14832
14834
14836
14839
14840
U842
14644
14846
14648
14850
U852
.WS.OM01
S0003 OA
TREFLAN
*HL SMPL
U6/L
:<0.002
:<0.002
:<0.002
:<0.002
K0.002
!<0.002
K0.002
:<0«002
t<0.002
K0.602
K0.002
:<0.002
K0.002
:<0.002
t<0.002
xO.002
:<0.002
:<0.002
t<0.002
:<0.002
:<0.002
K0.002
IP
REGION
t
•
:
•
•
:
•
*
:
t
t
t
SOOOl OA
HCBENZ
WML S*PL
UG/L
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
XO.002
t
*
J
•
•
:
t
:
t
:
:
•
•
t
*
*
•
V
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
2P
t
t
•
•
t
!
t
t
1
t
t
1
1
39782 OA
LINOANC
WHL SHPL
UG/L
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
:<0.002
>
:
:
i
t
»
t
I
t
09INKING
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
3P
S0002 OA
BBHC
WML SMPL
UG/L
KO.OOS
XO.OOS
:<0.005
:<0.005
XO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
l<0*005
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
KO.OOS
4P
t
1
:
t
1
1
:
1
t
1
t
t
1
I
t
t
1
t
t
:
:
:
S0004 OA
OICLONE
rfHL SM*L
UG/L
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
5P
39330 OA
ALO«IN
WHL SHPL
UG/L
K0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
:<0.002
K0.002
K0.002
K0.002
K0.002
K0.002
X0.002
K0.002
K0.002
:<0.002
K0.002
K0.002
K0.002
:<0.002
K0.002
K0.002
AP
SOOOS OA
2YTRON
WHL SMPL
UG/L
K0.02
K0.02
K0.02
:<0.02
K0.02
K0.02
J<0.02
K0.02
K0.02
K0.02
K0.02
K0.02
K0.02
K0.02
K0.02
t<0.02
K0.02
K0.02
K0.02
J<0.02
J<0.02
K0.02
7P
*AT£«» STUDY - WISCONSIN
*A
•A
•A
•A
: 6S»A
I ««S*A
:10S»A
»12S«A
:14S*A
U6S*A
J22S*A
:2*S*A
>2*S*A
:28S*A
«30S»A
t32S«A
I34S*A
:36S«A
I39S«A
:40S*A
:42S»A
:44S*A
I46S»A
«4^S*A
:50S*A
:52S»A
••A
**A
-------
f-PA-CRL
1975
SAMPLE
LOG NO.
14A06
U808
UP10
14812
14814
14816
14822
14824
14826
14828
14830
14832
14834
14836
14*39
14840
14842
14844
148*6
148*8
14850
14852
.WS.OMOl
t
:
•
:
:
*
:
:
i
t
t
t
:
i
t
t
:
;
I
I
:
*
39430 OA
isooaiN
^^i ^£UQl
W™^ 3^^\p
U3/L
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
<0.003
a?
REGION
39420 OA
H;HL»-EP
SML SMPL
UG/L
XO.002
XO.002
XO.002
:<0.002
XO.002
xO.002
xO.002
xO.002
xO.002
XO.002
xO.002
xO.002
XO.002
XO.002
XO.Q02
xO.002
xO.002
xO.002
XO.002
xO.002
xO.002
XO.002
9P
S0006 OA
CHLORQAO
WHL SMPL
UG/L
XO.002
XO.002
xO.002
XO.002
xO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
xO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
XO.002
xO.002
10P
S0007 OA
DDE OP
*HL SMPL
UQ/L
X0.003
X0.003
X0.003
X0.003
X0.003
X0.003
xO.003
X0.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
IIP
S0004 01
DOE PP
WHL SMf*l.
UG/L
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
XO.003
12P
S0009 OA
ODO OP
:
•
•
«
•
:
i
*
t
:
:
t
tfri
<0
<0
<0
<0
<0
<0
<0
<0
<0
XO
t
i
:
:
:
:
;
:
t
t
*
*
*
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
L SHPL
US/L
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
.003
IIP
S0010 OA
DOT OP
WHL SMPL
UG/L
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.003
XO.Q03
XO.003
XO.003
140
•8
*P
*•?
*B
: 6S*R
: 9S*q
: 10S»3
i IJJS*^
; 14S**
: 16S*a
:22S»«
:24S*B
J26S»P
t2HS*<^
«30S»fl
:32S»«?
:34S*R
:36S*B
: 3QS*B
: 40 5*8
:42S*C>
; 44S«a
:46S*B
t4RS*R
:50S*^
:5?S»R
• «q
V DRINKING MATER STUDY - WISCONSIN »«q
-------
PPA-C"L
1975
SAMPLE
1.03 NO.
14806
14808
* ^ * " w
1AS10
14*12
14814
U816
14822
14824
U826
U828
U830
14832
14834
14836
14839
14A40
14842
14844
14846
14848
14850
14852
.WS.OWOl
SOoll OA
000 PP
«H\ SMPL
UO/L
XO.003
xO.003
xO.003
K0.003
XO.003
XO.003
XO.003
XO.003
XO.003
K0.003
XO.003
XO.003
:*0.003
XO.003
K0.003
XO.003
K0.003
K0.003
K0.003
J<0.003
XO.003
K0.003
ISP
OEOION
S0012 OA
30 T PP
WHL SMPL
UO/L
XO.003
XO.003
xO.003
XO.003
xO.003
xO.003
XO.003
XO.003
xO.003
xO.003
XO.003
XO.003
xO.003
XO.003
XO.003
xO.003
XO.003
XO.003
XO.003
XO.003
XO.003
xO.003
16P
S0013 OA
CARBPHTM
WHL SMPL
UQ/L
XO.003
XO.003
xO.003
xO.003
K0.003
xO.003
xO.003
xO.003
XO.003
xO.003
XO.003
xO.003
XO.003
xO.003
xO.003
xO.003
xO.003
K0.003
K0.003
XO.003
xO.003
K0.003
17P
V DRINKING WATER
S0014 OA
MIP.EX
*HL SMPL
UO/L
xO.005
xO.005
xO.005
XO.005
XO.005
xO.005
t<0.005
XO.005
K0.005
XO.005
XO.005
XO.005
XO.005
XO.005
XO.005
XO.005
XO.005
X0.005
XO.005
K0.005
K0.005
XO.005
18P
STUDY - W
394^0 OA
MTHXVCLH
*HL SMPL
ur,/L
K0.01
X0.01
S0020 OA
?|4-0»IP
«HL SMPL
v'O/L
<.oi
<.01
At
X0.01 « • v i
K0.01 <.01
K0.01 <.01
xO .0 1 ' " 1
X0.01
K0.01
xo.oi
xo.oi
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
XO.OI
xO.Ol
XO.OI
19P
ISCONSIN
«• • OS»C
«52S*C
••c
A A f*
- ~\.
— C
-------
PPA-CRL
1975
SAMPLE
LOG NO.
14*06
44«06
U810
14812
14814
14916
14822
14824
14826
14828
14830
14832
14834
14836
14839
14840
14842
14944
14846
14848
14850
14652
.WS.DM01
39770 OA
OCPA
WML SMPL
UG/L
K.003
K.003
K.003
K.003
K.OOJ
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
: K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
22P
REGION
S0023 OA
ENDOS I
WML SMPL
UG/L
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
39380 OA
OIELDRIN
«ML SMPL
UG/L
<.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
K.OOS K.003
K.OOS K.OOS
K.OOS 1
K.003
K.OOS K.003
K.OOS
K.003
K.OOS K.003
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
23P
K.003
K.003
K.003
K.003
K.003
K.003
24P
39390 OA
E NOR IN
•ML SMPL
UG/L
K.003
IK. 003
:<.003
K.003
<.003
K.003
K.003
K.003
K. 003
K.003
K.003
K.003
K.003
K.003
IK. 003
K.003
K.003
K.003
K.003
K.003
K.003
K.003
25P
39460 0» S0027 OA
CLR^NZLF ENOOS II
WML *>M>». HWL SMPL
UG/L UG/L
K.01 K.OOS
K.01
K.01
K.01
K.Ql
K.01
K.01
K.01
K.01
K.01
K.01
K.01
K.01 !
K.01
K.Ol
: .01
: .01
: .01 :
: .01
: .01
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
-K.OOS
K.OOS
IK. COS
K.OOS
K.OOS
K.OOS
.K.OOS
K.OOS
K.OOS
K.OOS
•K.OOS
t .01 K.OOS
t .01 K.OOS
?6P 270
S0028 OA
NlTflOFEN
WML SMPL
UG/L
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.005
K.OOS
K.OOS
K.OOS
K.OOS
K.OOS
K.005
K.OOS
K.OOS
K.OOS
»K. 035
K.OOS
K.005
280
V DRINKING WATER STUDY - * I SCONS IN
•0
•0
*0
•0
t 6S«0
: 8S»0
:10S»D
:12S»T
»14S«r>
J16S*D
:22S»0
«24S»0
I26S»0
:?«S*0
J30S»D
J 325*0
:34S*D
:36S*0
: 395*0
:40S*D
:42S*D
:44S*0
:46S*0
1495*9
!50S*0
t52S«D
•*n
•*0
-------
EPA-CRL
1975
SAMPLE
LOG NO.
'4806
14808
14810
14812
14814
14816
U822
14824
14826
14828
14830
14832
U834
14836
14839
14840
14842
14844
14846
U848
U850
14852
.WS.OWOI
S002* OA
245-TUO
WNL SMPL
K
K
: <
: <
:<
K
:<
: <
: <
t <
t <
: <
K
:<
t <
:<
: <
: <
K
K
K
K
UG/L
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
• 0 1
• 0 1
.01
• 01
.01
.01
.01
.01
.01
.01
.01
.01
29*
PEGION
S0030 OA
PflOLAN
WHL SMPL
UG/L
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
K.Ol
30P
S0031 OA S0026
*BULAN OEMP
OA
NHL SMPL wHL SMPL
t
5
*
•
:
:
•
*
•
t
•
t
i
i
t
t
t
:
:
i
i
i
i
t
*
•
V DRINKING
'JO/L UG/L
<.01 Kl
<.01 : 1
<.0l Kl
<.01 • :<1
<.01 Kl
<.01 :<1
<.01 : 12
<.01 :<1
<.01 Kl
^•01 * 1
K • 0 1 t ^ 1
<.01 Kl
<.Q1 Kl
<*01 t A
<.01 Kl
<.01 (2
<.0l Kl
<.01 Kl
< . 0 1 K 1
<.0l : l
<.01 :2
<.01 : 1
31P 32P
WATER STUDY -
t
1
:
i
:
t
•
t
:
t
i
t
i
t
>
•
•
•
•
t
•
•
:
t
t
•
•
39808 OA 39570 OA
TEDIO* DlAZINON
S0016 OA
OYFQNftTE
*E
*E
•ML SM^L WHL SMPL *HL SMPL *E
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
UG/L LG'L
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
< 1 t
<1 t
4 1 *
<1 !
^ 1 *
^ 1 *
4 \ *
^ 1 *
<1 t
<1 t
<1 t
<1 t
34P
I'G/L
<1
<1
<1
52S*£
•*E
**E
-------
gPA-CRL
1975
SAMPLE
LOG NO.
14806
14808
14810
14812
14814
14816
14822
14A24
14826
14828
14830
14832
14834
148 36
14839
14840
14842
14844
14846
14848
14850
14852
..rfS.DWOI
S0017 OA
RONNEL
WHL SMPL
UG/L
Kl
Kl
Kl
_ •
: <1
- •
:<1
Kl
Kl
Kl
'Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
36P
L REGION
S0032 OA
9URS8AN
WHL SMPL
UG/L
Kl
4.^1
! <1
Kl
• * i
I < 1
• * \
l < l
: <1
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
37P
39600 OA
MPARATHN
WHL SMPL
UG/L
Kl
• t\
• 530 OA
MALATHN
WHL SMPL
UG/L
_ «
K 1
1 < 1
• ^ »
» + l
I < X
Kl
* ^ ft
Kl
, f \
* < l
• * i
5 < 1
Kl
Kl '
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
_ _ \
\ i
• < 1
Kl
• ^ *
• <1
• ^ i
Kl
Kl
Kl
• ^ A
1 <1
• * 1
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
t * 1
• * i
Kl
Kl
Kl
40P
S0033 OA
OEF
WHL SMPL
UG/L
t <1
• ^ *
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl
Kl '
Kl
Kl
Kl
Kl
Kl
Kl
t < 1
• ^ •
Kl
Kl
Kl
41P
39398 OA
ETHION
WHL SMPL
Uti/L
:
-------
FPA-CRL SOOld OA S0034 OA 39580 OA S0035 OA S0036 UA S0037 OA 39488
1975 PMENCAPT £PN OUTHION PHOSALON AZlNFOSt COUMAFOS A^OCLO
SAMPLE *HL SMPL WHL SMPL »IHL SMPL *HL SMPL *HL SM-L *HL SM»L 1221
LOG NO. UG/L UG/L UG/L Ufl/L UG/L UG/L «JG/L
14806
14808
14810
14812
14814
14816
14822
14824
14826
14828
14830
14832
14834
14836
14839
14840
14842
14844
14646
14848
14850
14852
<1 «1 i<5 t<5
<1 .'<5
<1 t<5 :<0.3
<1 J<1 J<5 J<0.3
-------
gPA-CRL
1975
SAMPLE
LOG NO.
14806
14808
14809
14810
14811
14812
14813
1*81*
1*815
1*816
1*817
1*822
14823
1482*
14825
14826
14827
14828
14829
14830
14831
14832
14833
1*83*
1*835
14836
1*837
14839
1*8*0
148*1
148*2
148*3
148**
14845
14846
14847
14848
14849
14850
14851
14852
14853
39496 OA
AROCLOR
12*2
UG/L
xO.3
xO.3
XO.3
:
xO.3
:
XO.3
t
XO.3
*
XO.3
t
XO.3
•
xO.3
•
XO.3
t
XO.3
:
xO.3
•
XO.3
t
XO.3
•
XO.3
XO.3
t
X0*3
*
XO.3
*
:<0.3
•
XO.3
{
XO.3
!
xO.3
•
50P
- . r. rr ft T
39500 OA
AROCLOR
12*8
UG/L
xO.3
xO.3
J
:<0.3
j
«0.3
xO.3
|
xO.3
•
xD.3
xO.3
•
XO.3
XO.3
xO.3
•
xO.3
t
xO.3
•
XO.3
xO.3
xO.3
•
XO.3
:
xO.3
j<0.3
t
XO.3
i
xO.3
t
xO.3
t
51P
nti u rvQTM
3950* OA
AROCLOR
125*
Ufl/L
XO.3
XO.3
•
»
XO.3
•
•
xO.3
J
•
xO.3
1
XO.3
1
XO.3
1
XO.3
j
XO.3
•
XO.3
•
i<0.3
•
XO.3
•
XO.3
t
XO.3
j
XO.3
XO.3
t
XO.3
1
XO.3
t
xO.3
{
XO.3
•
XO.3
•
XO.3
•
52P
KtNG MATE
39S08 OA
AROCLOR
1260
'JG/L
XO.*
X0.4
t
X0.4
1
X0.4
t
X0.4
t
XO.*
t
K0.3
1
xO.3
t
xO.3
t
xO.3
1
xO.3
j
xO.3
I
xO.3
:
XO.3
j
xO.3
xO.3
t
t<0.3
l
XO.3
t
XQ.3
•
*
K0.3
•
*
xO.3
l
xO.3
•
53P
* STUDY -
S0047 OA S0039 OA
METHE CL CCL*
TOT VOL TOT VOL
UG/L U9/L
t i
! 1
:7 '2
: '•
XO.5 *
xl '-8
: >
XO.5 t<2
t l
xl «<2
t »
XO.5 «1
1
XO.5 S3
: '
XO.5 57
: *
XO.5 s<2
l «
XO.5 '-I
l *
XO.5 »<1
I '•
XO.5 «10
:
XO.5 !<2
:
t
xl <1
i
XO.5 3
XO.5 '•8S»H
J • fc • » W •
,55 t29S*H
»30S»H
<1 t31S»H
t ->pC*H
• JC. J "
14 :33S»M
t 34S*H
\l :35S»H
j :36S»H
J9 t37S»4
j t^«»S*H
i :40S*M
,10 »4lS*H
, I42S*H
t-
:50S*>-
il2 :51S*-
, 5*525*'
f • ^ CK **
:3 S535-'
e t o • ^
Sor"
««
-------
FPA-CRL
1975
SAMPLE
LOG NO.
U809
Uflll
14813
14815
14«17
14823
14825
14827
14*29
14831
14833
14835
14*37
14841
14843
14845
14847
14849
14851
U953
.WS.DM01
S0056 OA
C2H4CL2
TOT VOL
UG/L
:3
Kl
J<1
t
-------
FPA*CRL
1975
SAMPLE
LOG NO.
14801
4806
14808
14«10
14812
14814
14816
14822
14824
14826
14828
U830
14832
14834
14836
14838
14P40
14842
14844
14846
14848
14850
14852
C091b Mrf
CALCIUM
CA.TOT
MG/L
:<0.1
:14.3
:18.2
:9.2
:9.3
:9.0
:8.9
:33.8
J33.8
142.0
142.0
:33.6
:32.1
:33.6
:33.2
:34.6
:33.8
:34.3
:33.7
:33.3
132.4
:34.4
:34.1
64P
REGION
00927 MM
MGNSIUM
MGtTOT
HG/L
:0.1
!A.3
15.3
13.9
S3. 9
:3.8
:3.8
:10.7
110.7
122.3
»22.5
tll.d
ilO.3
110.7
:10.6
:10.7
:10.6
:10.7
:10.6
s 11.6
til. 7
:il.O
:10.7
65P
00929 MM 00937 MM
SODIUM PTSSIUM
NA»TOT K.TOT
MG/L MG/L
KO.l :<0.l
:3.2 :l.O
:3.0 M.O
:5,0 :3.0
:21.0 :3.2
:5.4 :3.0
:20.7
>4.3
:4.3
t6.3
16.5
14.4
14.4
14.5
S4.Q
:4.4
:4.2
14.2
14.3
:4.3
19.5
tS.4 :
:4.5 :
3.2
1.1
1.2
1.9
.9
\Z
.2
.2
.1
.1
.1
.2
.2
.2
.2
.2
66P 67P
01034 HM 01042 MM
CHROMIUM COPPER
C«»tTOT CUtTOT
UG/L UG/L
i<5 :<5
: <5 :<5
:<5 :<5
t <5 : 7
s<5 :<5
:<5 :9
t<5 t<5
i<5 :<5
l<5 i<5
t<5 HO
l<5 *<5
»2t
I<20
:
-------
fPA-CP-L
1975
CAMPLE
LOG NO.
'»flO 1
4*06
14808
14910
U812
14814
14816
14822
14824
14826
14828
14830
14832
14834
14836
14838
14840
14842
14844
14446
14848
14850
14852
.wS.OwOl
OlOS* M*
MANGNESE
MN»TOT
UG/L
t<5
: <5
: <5
:40
:35
J30
J30
:5
i xl
x?> : <1
x5 : <1
17 Jl
X5 t<2
74P
01027 ••'^ 01077 MW
CADMIUM SILVE*
CO«TOT AG«TOT
UG/L Ufi/L
«0.2
:<0.2
:<0.2
«<0.2
:<0.2
:<0.2
:<0.2
t<0.2
t<0.2
i<0.2
><0.2
K0.2
:<0.2
:<0.2
]<0.2
:<0.2
:<0.2
X0.2
X0.2
X0.2
X0.2
l :10S*K
:<5 :12S*K
:<5 J14S*K
XS U6S«K
X5 «22S«K
X5 I24S*K
X5 ' «26S*K
X5 I28S*K
»<5 :30S»K
: <5 !32S*x
X5 :34S*K
s <5 t36S*K
:<5 J3«S*K,
X5 *.40S»K
x5 :42S«K
X5 J44S»K
:<5 <46S*K
:
-------
FPA-CRL
1975
SAMPLE
LOQ NO.
806
. .ana
U810
14812
14814
U816
14822
14824
14826
1482*
14830
14832
14834
14834
14838
14840
14842
I 4844
i ^ w ™ ~
14846
14848
14850
1485?
-*s»o*o:
00530 IM
"ESIOUE
TOT NFLT
MQ/L
t<2
t<2
l<2
:3
:5
:<2
!<2
i<2
i»
I<2
13
t<2
12
:<2
:2
:<2
:<2
:<2
:<2
:<2
:2
:<2
T a i3
To*'
i PEGION
70300 IM
WESIOUE
DISS-180
c MO/L
180
• A A
1 **0
170
1100
170
190
:170
1170
1210
1250
1150
« ISO
1190
H90
1210
1190
1200
:140
1150
124Q
1200
:200
79P
V DAINKI
00095 IM
CNOUCTVY
AT 25C
MICftOMHO
1164
. \ fcO
I I O~
1125
:1H4
! 120
1 182
1274
1283
1402
1417
1282
1282
1277
1286
1278
1280
1277
:282
1280
1315
J^ rt **
292
1265
80P
NG MATE*
00945 II
SULFATE
S04
MQ/L
I. ^
13
1 <3
{* A
10
19
• f\
1 **•
• O
• **
• 1 Q
1 19
126
• *t A
I 20
140
120
a*
(1 A
I'
tl»
. • g\
11'
121
117
<\ n
IB
117
142
t 31
1 C 1
126
81P
STUDY -
* 00940 IM
CHLOPIUt
CL
MQ/L
] 1 A
• 1 v
:o
8
: Q
« y
S9
:9
: 10
* A V
: Q
* y
:lo
111
• A A
113
19
110
19
• 7
110
1 9
:ll
til
: 10
• AW
• t *y
1 12
112
1 12
:12
82P
WISCONSIN
OOV56 IM
SILICA
SI02
MC-/L
:22.n
1 ? 1 0
• t * • *
t 8.0
18.7
17.9
!«.7
: 1.1
t 1.5
I 7.9
18.0
1 l.l
: 1.6
! 1 . 1
1.6
: 1.1
:!.&
;1.9
:l.l
. ? \
> C . i
10.6
!0.5
:1.5
P3P
1 00410 IM
T ALK
C4C03
MG/L
:3«>
:55
:?8
:S9
:28
:^6
:10S
1Q4
1180
1153
1107
1100
JlOft
1100
no*
:103
:iOf>
:101
110«>
188
1107
:100
4*P
*L
*L
•L
•L
: ft«*L
: 8S»L
.' IOS«L
:12S»L
: US*L
:16S*L
:22S«L
124S*L'
126S*L
128S«L
:30S«L
132S»L
:34S*L
:36S»L
:38S*L
:40S*L
:42S»L
!44S*L
146S»L
148S<»L
150S«L
:S2S«L
**L
**i
u
L
-------
EPA-CRL
1975
SAMPLE
LOG NO.
•4*01
4802
14806
14808
14*10
14812
14814
14816
14822
14824
U8Z6
14828
14830
U832
1*834
UP36
14838
U840
14842
14844
14846
14848
14850
1 A AK9
1 4^5c
.WS.D401
00665 IN
PHOS-T
P-*ET
MG/L
t
K0.02
tO. 10
tO. 11
JO. 08
iO. 08
tO. 08
tO. 08
10. 03
K0.02
tO. 02
t<0.02
K0.02
K0.02
:<0.02
K0.02
i<0.02
K0.02
K0.02
K0.02
K0.02
K0.02
K0.02
! <0 ft?
* % v 9 v t
92P
REGION
00340 IN 00680 IN 71900 IN
COO T ORG C MERCURY
MI LEVEL C HOiTOTAL
MG/L MO/L UO/L
• • ^ A \
K3
K3
t3
:9
;6
t6
J5
K3
:<3
117
til
t5
13
• A
• *
tS
t3
13
:3
t3
tio
14
:fl
I 6
i * V. I
I
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
KO.l
93P 94P 95P
00900 IN
TOT HA*0
CAC03
MG/L
» 1 i
• * •* .
t
t62
t67
539
t30
138
t38
1128
t!28
t!97
t!97
t!29
H23
U2«
:127
U30
:12P
tl30
U21
:131
t!29
t!31
t!29
96P
00615 IN
NOa-N
TOTAL
M3/L
t j
• «
» •
KO.OOS i
i 0.010 t
:0.006 :
K0.005 t
:0.00*> t
KO.OOS t
KO.OOS t
KO.OOS t
tO. 010 t
KO.OOS t
KO.OOS :
KO.OOS :
KO.OOS t
KO.OOS :
KO.OOS
KO.OOS i
KO.OOS i
KO.OOS :
tO. 005 I
KO.OOS t
: 0.008
KO.OOS :
97P 98P
V DRINKING WATER STUDY - WISCONSIN
•N
»N
*N
•N
t 1S*N
t 2S*N
• b w ™
t 6S*N
:O C Akl
B5*N
tlOS*N
t!2S*M
t 14S*N
t!6S«N
t22S*N
t24S«N
t26S*N
t28S*N
t30S»N
t32S*N
t34S*N
t36S»N
t 38S*N
:/ A C A fti
40S*N
t42S»N
:44S»N
I46S*N
:48S»N
:SOS*N
i52S*N
••N
•»N
-------
00403
1<>75
SAMPLE
1.06 NO.
VAO?
\ O ' &
4803
14304
14806
14808
14*10
14812
14814
14816
14822
14824
14826
14828
14330
14332
14834
14836
14?38
14840
14842
14844
148*6
14848
14350
14852
Lid
PM
SO
•
»
•
*
:6.4
:7.9
:6.3
:7.4
:6.3
t7.4
:7.9
t7.3
:8.2
t7.4
-.8.0
t7.5
t7.9
t7.5
ta.o
t7.6
t7.9
t7.6
t7.8
t7.1
t7.9
t7.4
00951 I* 32730 IM
FLUOHIOE PHENOLS
Hd/L
:0.10
tO.13
to. 12
tl.4
tO.13
tl.4
to.12
tO. 84
*M°
tl.O
10.13
to.86
tO.12
UG/L
t<3
.
11.12
si. 2
S9.ll
:<3
'<3
s<3
:<3
»<3
:<3
JO. 12 :<3
:<3
:<3
t<3
»<3
s<3
00720 IM
r Y ANT np
I* •*'* I WC
CN
v^
Mfl/L
•
•
t<0.002
•
•
tO. 003
tO. 002
tO. 003
• O - QOA
« V . W W *J
tO .002
tO. 006
tO. 003
tO. 002
tO. 003
tO. 005
t<0.002
tO. 002
: 0.-003
tO. 002
t<0.002
t 0.002
t<0.002
t<0.002
t<0.002
to. 003
tO. 003
tO. 003
88P
STUOY - 4
00630 IN
M02VNQ3
N-TQTAU
MG/L
t<0.03
•
•
•
t2.3l
: 1.00
tO. 4*
:0.4«?
tO. 47
iO. 49
tO. 23
tO. 22
tO. 24
tO. 20
tO. 22
tO. 22
tO. 22
tO. 23
tO. 22
tO. 23
tO. 22
tO. 22
tO. 10
to. 11
tO. 26
tO. 23
89P
ISCONSIN
00610 IN
Ni-3-N
TOTAL
MG/L
t<0.010
•
•
•
:<0.010
:0.126
tO. 023
:0.02b
tO. 024
tO. 023
tO. Oil
tO. 043
tO. 050
tO. 146
KO.OIO
t<0.010
tn.024
t <0.010
t<0.010
t<0.010
t<0.010
t<0.0!0
tO, 014
to. on
tO. 047
:0. 203
90P
00625 IN
TOT KJEL
N
MG/L
t < 0 . 0 5
*
*
: 0 . 0 3
:o.2?
*. 0.24
50.2*
tO. 23
tO. 20
A 4k % ^
tO. 13
tO. 15
tO. 77
tO .53
t<0.05
t<0.05
t 0 . 0 6
t<0.05
t<0.05
K0.05
tO. 10
t <0.05
1 0 . 2 1
t<0.05
tO. 27
tO. 27
91P
• M
t 2
45*^
26S
;.;• =7.1 .».»• ««» :j-j;j ;j;ji ;;;;; ,,.z, w
H3SO a.o ••«•» ><\ :«-JJ5 5 „ -.o.zo« '.0.37 .S2S-«
>*•* :7-j» >uiw • °STP -"-SeJ w «- «' :::
.-S.O-01 PE9IOH V ORtNKINS_«TE9_STUOY_-_;|tSCONSI>._ M
------- |