;PA-660/2-74-057
JUNE 1974
Environmental Protection Technology Series
for
-of
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and
Monitoring, Environmental Protection Agency, have
been grouped into five series. These five broad
categories were established to facilitate further
development and application of environmental
technology. Elimination of traditional grouping
was consciously planned to foster technology
transfer and a maximum interface in related
fields. The five series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
H. Environmental Monitoring
5. Socioeconomic Environmental Studies
This report has been assigned to the ENVIRONMENTAL
PROTECTION TECHNOLOGY series. This series
describes research performed to develop and
demonstrate instrumentation, equipment and
methodology to repair or prevent environment**!
degradation from point and .non-point sources of
pollution. This work provides the new or improved
technology required for the control and treatment
of pollution sources to meet environmental quality
standards.
EPA REVIEW NOTICE
This report has "been reviewed by the Office of Research and
Development, EPA, and approved for publication. Approval
does not signify that the contents necessarily reflect the
views and policies of the Environmental Protection Agency,
nor does mention of trade names or commercial products
constitute endorsement or recommendation for use.
-------
EPA-660/2-7^-057
June 197^
SOIL MODIFICATION FOR DENITRIFICATION
AND PHOSPHATE REDUCTION OF FEEDLOT WASTE
By
A. E. Erickson
B. G. Ellis
J. M. Tiedje
A. R. Wolcott
C. M. Hansen
F. R. Peabody
E. C. Miller
J. W. Thomas
Michigan State University
East Lansing, Michigan
Project 130UO FYK
Program Element 1BB039
Project Officer
Lynn R. Shuyler
Environmental Protection Agency
Robert S. Kerr Environmental Research Laboratory
Ada, Oklahoma 7U820
Prepared for
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
WASHINGTON, D.C. 20h60
URRAPY
.- vnjr;
For sale by the Supeiiutendent of Documents* U.S. Government Printing Office
Washington, D.C. 20402 - Price $1.60
-------
ABSTRACT
The efficiency of pilot-size Barriered Landscape Water Renovation Systems
(BLWRS) to renovate flushed livestock waste was studied. The BLWRS is a
modified permeable soil that has an aerobic zone for the filtering and
oxidation of the waste and an anaerobic zone to which an energy source is
added to create an environment for denitrification.
Two pairs of BLWRS 0.008 ha. in size were constructed using a polyvinyl barrier
to create the anaerobic zone and contain the effluent. Flush waste from swine
or dairy cattle were applied on each pair of BLWRS. The waste effluents and
BLWRS soil were periodically analyzed for nutrients, oxygen demand and pathogens,
At manure loading rates of up to 122 t/ha. swine waste and 93 t/ha. of dairy
waste, the BLWRS had an efficiency of 80% and 97% for nitrogen renovation,
greater than 99% for phosphate and 93% for carbon. The oxygen demand dropped
50- to 100-fold. Under normal operating conditions, the pathogenic indicator
organisms did not appear in the effluent.
The BLWRS has been shown to be an efficient system for renovating large
quantities of livestock waste and should be tested on a commercial scale with
continuous monitori-.ig.
This report was submitted in fulfillment of Project Number 13040FYK by the Crop
and Soil Sciences Department of Michigan State University under the partial
sponsorship of the Environmental Protection Agency. Work was completed as of
December 31, 1972.
ii
-------
CONTENTS
Page
Abstract i:i
List of Figures iv
List of Tables v
Acknowledgments
Sections
I Conclusions ^
I,1! Recommendations 3
/HI Introduction ^
IV Materials and Methods "
V Methods of Analysis 19
Sampling Procedures -*-"
Chemical Procedures ^0
Physical Procedures 33
Biological Procedures 34
VI Experimental 36
Soil Characteristics 36
Operation 36
Nutrients in Waste and Effluent 43
Changes in the Soil 87
Microbiological Analysis °^
Soil Environmental Studies ^~
VIII References 118
iii
-------
FIGURES
No. Page
1 Schematic Cross-Sections of BLWRS 7
2 Drawings for the 3LWRS Pit Liners which were Constructed 11
of 30 mil Polyvinyl Sheeting according to Alternate B.
3 Soil Moisture Characteristic of BLWRS Soil 13
4 View into Effluent Catchbasin showing Drain from BLWRS, 15
Water Overflow for Anerobic Zone Control and Tipping
Bucket for the measurement of Effluent ,
5 Mechanism for spraying Waste on the BLWRS consisting of a 16
Track on which the Drive Mechanism is Mounted, the Boom ^
and the Spray Nozzels \
6 Overall Views of each of the BLWRS 17
7 Location of Energy Sources and Effluent Catchments in each 18
pair of BLWRS
8 Phosphate Absorbtlon Isotherms for BLWRS Soils 38
9 Chart Showing the Operation of the BLWRS 39
iv
-------
TABLES
No. Page
1 Mechanical Composition of BLWRS Soils 12
2 Chemical Characteristics of the Original BLWRS Soils 37
3 Summary of days of operation and waste loading on the Swine 40
and Dairy BLWRS from the start of the experiment through
December 1972
4 Water budget for Swine BLWRS, Summer 1972 42
5 Nutrient, BOD and COD concentrations in wastes applied to 44
BLWRS. Nutrients expressed in ppm
6 Nutrient, BOD and COD concencentrations in BLWRS effluents 48
expressed in ppm
7 Amounts of nutrients applied in wastes to the BLWRS 64
expressed in grams
8 Amounts of nutrients in the effluents from BLWRS 68
expressed in grams
9 Summary of the average nutrient concentration in BLWRS 82
wastes and effluents - December 1972
10 Summary of total nutrients in BLWRS wastes and effluents 83
through December 1972
11 Percent total solids in waste that was applied to the BLWRS 84
12 Total carbon in effluent and waste from BLWRS in ppm 85
13 Chemical composition of North Swine BLWRS soil, October 20, 88
1971, in ppm
14 Chemical analysis of soil samples taken from Swine BLWRS, 90
November 1, 1972, in ppm. Two samples taken, one from
the North and one from the South BLWRS.
15 Numbers of anerobes and denitrifiers found in North Swine 95
BLWRS soil collected in November 1972
16 Populations of pathogen indicators found in North Swine BLWRS 97
soil collected in November 1972.
17 Microbiological determinations of the waste applied to the 99
BLWRS
v
-------
18 Mlcrobial composition of waste and effluent under normal 100
operating conditions
19 Microbial composition of the effluent from the east end 101
of the North Swine BLWRS
20 Microbial composition of effluent from Swine BLWRS when system 109
was overloaded
21 Air and soil temperatures on BLWRS - degrees centigrade 111
'22 Oxidation - reduction potential measurements made in the 112
Swine BLWRS during the Summer of 1972 in millivolts
23 Average oxygen diffusion rates on the BLWRS at several depths 114
and on various dates in 1972
24 Percent oxygen and carbon dioxide at various depths in the 116
Swine BLWRS for a period during the Summer of 1972
vi
-------
ACKNOWLEDGEMENTS
The contributions of all the many technicians and students who faithfully
contributed to the construction, operation and analytical work is gratefully
acknowledged. Special mention should be made to Mark Schrag who had primary
responsibility for the construction and operation of the project for the
first 15 months, to Mrs. Elizabeth Shields who was responsible for the analyses,
and to Dave Ott, Loren Mosier and Dave Lederbuhr who made major contributions.
vii
-------
-------
SECTION I
CONCLUSIONS
The BLWRS constructed, operated and studied in this project was very successful
in renovating large quantities of livestock waste.
It was possible to apply between 9 to 18 mm of flush waste per day to BLWRS
soils if they were rested one third of the time for the recovery of infiltration
capacity. This amounted to swine waste applications of 122 t/ha. over 17 months
and 93 t/ha. over 15 months for dairy waste. The physical characteristics of
the soil govern the application rates.
The BLWRS aerobic environment was conducive to the oxidation of carbon (93% loss)
and conversion of organic nitrogen and ammonia to nitrate nitrogen.
The BLWRS anaerobic environment with energy source was efficient in denitrifying
the waste, reducing 176 kgr of nitrogen in waste on the Dairy BLWRS to 5.4 kgr
in the effluent for a 97% renovation and 10 to 12 ppm nitrate in the effluent.
The Swine BLWRS which were overloaded on several occasions had 386 kgr nitrogen
added and were 80% efficient at renovations.
Phosphate renovation by the BLWRS soil was 99+% efficient. Once the soil
becomes loaded with phosphate, a phosphate adsorption bed will need to be placed
at the effluent end of the BLWRS, but to date the precipitation of phosphate as
dicalcium phosphate at the surface and soil adsorption of the dilute phosphate
leaching down have been very efficient. Under the present loading, the BLWRS
soils will probably continue to function without leaks for 10 to 20 seasons.
1
-------
Under normal operating conditions the BLWRS effluents did not have pathogenic
indicators.
The reduction in BODc and COD was 50- to 100-fold.
-------
SECTION II
RECOMMENDATIONS
It is recommended that commercial size BLWRS be constructed and monitored to
test the principle on a larger scale under farmer operation.
It is also recommended that the existing pilot BLWRS continue to operate in
order to study the phosphate absorption, nitrification and denitrification,
and recovery after overloading. These studies should include additions of
tagged nitrogen, the addition of additional quantities of phosphate to one
of the BLWRS to test the phosphate model, and work on a final phosphate
absorber.
BLWRS should also be considered and tested as a means of renovating municipal
effluents and sewage.
-------
SECTION III
INTRODUCTION
Today almost everyone is aware of the enormity of the animal and human waste
problem and the necessity of finding an efficient, inexpensive way to remove
BOD, nitrogen and phosphate from waste water and return the water free from
pollutants to the natural aquifers. Disposal of liquid wastes on the surface
of the soil is an easy method of disposal, and studies of this method at
Pennsylvania State University (8) have demonstrated that the adsorptive and
filtering action of soil can be an effective and inexpensive way to renovate
waste water. In this method, the quantity of waste must be limited so as not
to overload the soil system. An overloaded system will cause nitrogen and
phosphate to leach below the root zone and contaminate the subsurface water.
For this method to be most effective, the nitrogen and phosphate must be fixed
by the soil, by the native vegetation, or by crop plants which are marketed.
Because of the limitations on plant removal in any one season, large land areas
are required. The expense of land and its management, as well as land avail-
ability in many places, has forced the intensive spreading of waste on limited
acreages with the possible pollution of water resource. There is need for a
method of renovation which will be more efficient and not require such large
areas of land and yet not be as expensive as conventional sewage treatment and
disposal.
The problem of nitrogen in animal waste originates with the large quantities of
nitrogen that comes from the atmosphere and is fixed naturally or fixed
artificially to form fertilizers. This nitrogen is accumulated in crops and
harvested. The harvested crops are fed to livestock but a large portion of the
4
-------
accumulated nitrogen is left as waste in the feedlot. This nitrogenous waste
is difficult to handle because of its bulk and often cannot economically
compete with commercial fertilizer in crop production.
If nitrogenous waste are spread on forest or unharvested areas, quantities of
nitrogen are recovered by the vegetation and stabilized into humus. There is a
definite limit to the amount of nitrogen that can be recovered and stabilized
on a given area in a season; therefore, extensive spreading of the waste is
required. Once the nitrogen is stabilized, a change in the environment can
cause the release of the stabilized nitrogen back into the environment. The
best solution to the problem is denitrification of the waste which releases
the nitrogen gas back to the atmosphere leaving the ecosystem in balance.
Phosphate and carbonaceous material are likewise accumulated in feedlots as
wastes. The disposal of this carbon can best be accomplished by oxidation which
returns the carbon dioxide to the atmosphere. Phosphate can be removed from
the waste by fixation of precipitation with calcium, aluminum or iron.
DenitrifIcation, organic matter decomposition, and phosphate fixation are all
soil reactions. Whether or not they occur and the completeness and rate of
these reactions all depend on the soil environment. Any one soil will probably
not have the capacity to do all of these processes well and at the same time.
Natural soils are either aerobic or anerobic and the distance that leaching
waste water travels in the biologically active part of the soil is short.
However, by an inexpensive modification of the permeable soil, it has been
possible to form a series of soil environments through which waste waters can
pass and in which these reactions proceed at a rapid rate. These modified soils
5
-------
may go a long way toward renovating liquid feedlot wastes and returning the
water, low in nitrogen, organic matter, and phosphate to the soil water aquifer.
The modified soil, called a Barriered Landscape Water Renovation System (BLWRS),
is diagrammed in Figure 1. It consists of a mound of soil underlain by an
impervious water bari'ier. The barrier extends beyond the mound out under the
soil at the edges. On the top of the mound is placed a thin bed of limestone
and/or slag. The waste water is spread on the top of the mound. As the water
percolates down, the organic particles are filtered out and remain on the
surface to decompose by oxidation. The filter bed removes the major portion
of the phosphate. The soluble organics and other ions move into the aerobic
soil zone where the ammonium ions are held on the exchange complex of the soil
until they are nitrified to nitrate. Most of the soluble organic matter is
oxidized in the highly active aerobic soil. All the nitrogen is converted to
nitrate. The downward movement of the nitrified water is stopped by the water
barrier and forced to move laterally through the anerobic soil perched on the
barrier. In this zone, the nitrate is denitrified to nitrogen gas and evolved
into the atmosphere if there is sufficient energy available. The renovated
water then moves off the edges of the barrier into the deeper soil layers to
the water table. The depth and dimensions of the barrier and the height of the
mound depend on the soil texture. The BLWRS is designed to give the aerobic
and anerobic soil zone lengths which, coupled with waste water application
rates, give sufficient time to accomplish phosphate adsorption, nitrification,
and denitrification. If more energy is needed for denitrification, molasses
can be added in the anerobic zone, but other cheaper organic materials could
also be used. The system is applicable to all permeable medium to coarse
textured soils.
6
-------
SCHEMATIC CROSS SECTION OF BLWRS
la
Effluent
Waste added here
Phosphate absorber
Supplemental Energy Source
Original Soil surface
Effluent
Moisture barrier
-40-60 ft.
lb
BLWRS
BARRIERED LANDSCAPE WATER RENOVATION SYSTEM
(complete system)
WATER BARRIER
WASTE FROM BARN
JL
v XT "'
/I
r
BT-
X*^ i i
AEROBIC
NO,
P04
1
| j ANAEROBIC
s
Figure 1. Schematic cross sections of BLWRS.
-------
The BLWRS method has the advantage that the barriered landscape can be
engineered to a particular waste and a particular soil. It is relatively
inexpensive to construct and would require a minimum of maintenance. It
requires a much smaller area than is needed for the irrigation spreading
systems and removes large amounts of the nitrogen, carbon, and most of the
phosphate from a local environment.
The removal of phosphorus must be accomplished by precipitation or adsorption.
Passing effluent through soil will effectively remove phosphorus, but the
acreage necessary to denitrify the nitrogen component of waste materials is
much less than that necessary to remove phosphorus. Thus, the system might
overload with phosphorus without an additional method to remove phosphorus.
This, theoretically, could best be accomplished with either iron or aluminum
compounds. Laboratory studies have demonstrated the usefulness of limestone
and slag for the removal of phosphate from the waste water systems.
Several small BLWRS were tested in the summer of 1969. One hundred ppm of
nitrate has been continuously reduced to less than one ppm in the effluent
water with small amounts of molasses added as an energy source. The spreading
rate was 2.3 cm/day on a permeable soil.
In 1970 a larger BLWRS was tested using anerobic swine waste as a waste
material (5). In three months of operation using an average of 1.9 cm waste
per day the BLWRS removed over 99% of the nitrogen and phosphate. This
amounted to the removal of over a ton of nitrogen in the three months.
-------
SECTION IV
MATERIALS AND METHODS
CONSTRUCTION
Four BLWRS were established in the spring of 1971. One pair was located
adjacent to the Swine Research Facility and the other pair adjacent to the Dairy
Research Facility at Michigan State University. The BLWRS at the Swine Research
Facility uses the waste material from a slatted floor, flush type, eighty-sow
barn and the effluent is collected and reused for flushing. At the Dairy
Facility the waste comes from a tank which collects the waste flushed from the
holding pen floor at the milking parlor. Because this waste has some coarse
material that is difficult to spread with our spreading system, the material is
sieved and only the fine material is spread on the BLWRS while the coarse
material is spread on the land with a vacuum wagon. At the Dairy it would also
be possible to spread milkhouse waste. Two BLWRS were constructed at each site
so that if one BLWRS would slow down it could be rested and the other used to
accept the waste.
The BLWRS are 10.7 meters wide, 15.25 met.ers long, and 1.2 meters high in the
aerobic zone which projects above the original soil surface and extends 0.6
meters below the surface for the anaerobic zone. The barrier was made of 30
mil polyvinyl sheeting which was turned up at the edges and sealed in the
corners to form a complete basin as shown in Figure 2. The alternative B was
used because of ease of fabrication.
At both sites, 60 cm of soil was excavated with a bulldozer. The bottoms were
leveled and shaped for the collection at the ends. The barrier was installed.
9
-------
Ten-cm, perforated, plastic drain tile were placed at each end. These were
attached to 10-cm rigid plastic drain pipe which were sealed to the barrier
and lead into the catchments. The BLWRS liners were then filled with fine
sand (Table 1 and Figure 3) and shaped to the desired grade (Figure Ib). The
fill sand at the Dairy BLWRS was taken from an adjacent hill. The fill sand
for the Swine BLWRS was purchased and transported in because the sand on an
adjacent hill was not available for aesthetic reasons. A 15 cm layer of
surface soil was used to cover each BLWRS.
The effluent from each drain was measured by a one-liter tipping-bucket and
counted electrically (Figure 4). Effluent was sampled at these drains for
analysis. After the ::irst several months, overflow devices were placed on
each drain tile so that the anaerobic zone could be maintained and adjusted
on the BLWRS when no waste was being applied. The excess effluent accumulated
in the bottom of the catchbasin and was pumped to a tank and recycled into the
flush tanks so that the water was continuously recycled. At times when there
was excess effluent it: was allowed to waste on the adjacent: field. All of the
effluent at the dairy barn was released on an adjacent field.
The flushed manure at both sites was pumped into a 6000-liter underground tank.
Each of these tanks were stirred to keep the solids suspended. It was from
these tanks that the samples of wastewater were taken after each new addition
of waste. The waste was automatically sprayed on the top of the BLWRS with
automatic booms each equipped with three spray nozzels (Figure 5). One of
each pair of BLWRS could be sprayed at any one time. Adjustable time clocks
that could be set for minute minimum intervals were used to start the boom and
spraying. The boom would make one traverse across the BLWRS and stop. It took
10
-------
15.2 CM-Dio.
30.5 CM
15.2 M
TOP VIEW
10.7 M
END VIEW
2.7 M
15.2 M
\Q3M
SIDE VIEW
BLWRS-PIT LINER
Figure 2. Drawings for the BLWRS, pit liners which were constructed of 30 mil
polyvinyl sheeting according to alternate B.
11
-------
CO
(-J
M
O
CO
CO
c^
c*
rJ
M
Pn
o
§
H
H
CO
o
1
O
O
J
2
Cj
M
J2
<]
5
s
,1
0)
^_i
^~i
JD
CO
H
>>
CO
i |
u
4J
,|
H
co
T3
C
CO
CO
rH
CO
^J
O
H
£
P-H
s
C_)
o
)->
< < o
r-' CN CN
iH
O\ in rH
CN m in
r-l 00
r*« i-t o>
O\ CN CN
f*- cri in
co -3- st
o m <
rH T-H rH
CN -ct ro
4J .
C oo -d- co
MH pq 0)
o M a
CO CO 3 >, cfl
C MH co M MH
k_J Lj O - j t i
ri ^H ^LJ «rt H
S 3 3 to 3
CO CO CO Q CO
H
CN
CO
l~~
rH
VO
O
oo
m
in
-vt
oo
o
CO
OO
CN
VD
O
CT\
*
O
01
o
Cfl
4-1
i-l
CO
,£
3
CO
12
-------
_ o
H
O
CO
o
H
U
CO
H
M
0)
O
0)
rt
s
a
3
4-1
CO
H
8
H
O
Cfl
en
cu
M
00
H
WO-319V1 02H 3A08V 1H9I3H
13
-------
200 seconds for the boom to traverse the BLWRS and 45 liters of waste was
sprayed on each traverse.
Figure 6 shows overall views of each of the BLWRS installations. The energy
source for feeding the denitrifying microbes was placed 3.66 meters from the
end of each BLWRS (Figure 7). Every BLWRS had one 1.9-cm perforated aluminum
conduit placed along the bottom at one end. This could be used, to inject
molasses into the anerobic zone at one side of each of the BLWRS. On the
opposite end of one of each pair of BLWRS a 10-cm trench was dug and 1 part
of corn was mixed with 5 parts of excavated soil and the trench was refilled.
One end of one of each pair of BLWRS had no energy source and was used as a
control or could be used in the future for the installation of a different
energy source.
The surface of the Swine BLWRS was seeded to rye when it was started. This
did not catch and the surfaces became sealed. The surface was then rototilled
in September to increase infiltration and reseeded. The second year an
attempt to establish quack grass by spreading stolons was attempted. None of
these were entirely successful, but eventually a mixture of volunteer weeds
covered the BLWRS and this is persisting quite well. In contrast, the surface
soil on the Dairy BLWRS contained a lot of weed stolons and seed and rapidly
produced a very good cover on the BLWRS. The sides and surroundings of the
BLWRS were sodded using Bluegrass sod. The experience with the Swine BLWRS
suggests that some time be allowed for the establishment of the vegetative
cover before full-scale operation begins. A quack grass or mixed natural
cover would be satisfactory. A good vegetative cover is essential for the
maintenance of good infiltration.
14
-------
Figure t. View into effluent catchbasin showing
drain from BLWRS water overflow for
anerobic zone control and tipping
bucket for the measurement of effluent,
15
-------
'Figure 5. Mechanism for spraying waste on the BLWRS
consisting of a track on which the drive
mechanism is mounted, the boom and the
spray nozzels.
16
-------
Swine BLWRS
Dairy BLWRS
Figure 6. Overall views of each of the BLWRS,
17
-------
M
drain
.66 n»
. 5»-l
15.25m.
-Side view of BLWRS-
M* molasses energy source
C = corn energy source
E "effluent catchment
D * drain
Us.
66m.
drain
M
M
Swine BLWRS
M
Dairy BLWRS
Figure 7. Location of energy sources and effluent catchments in each
pair of BLWRS.
18
-------
SECTION V
METHODS OF ANALYSIS
SAMPLING PROCEDURES
Samples of waste and effluent were taken for analysis twice a week and the
amount of waste applied and effluent drained were measured each day. The
time of the samplings were numbered consecutively throughout the period of
the operation.
Waste samples were taken in 250-ml polyethylene bottles from the sampling part
on the boom. The amount of waste applied was calculated from the number of
passes of boom per day and the application rate that was checked periodically.
These values were checked against the waste level in the holding tank.
Effluent samples were taken in one-liter polyethylene bottles at the tipping
buckets at each drain tile. The amount of effluent drained each day was
calculated from the number of tips of the bucket and the particular bucket
calibration.
Soil water sample extraction in the unsaturated zone was attempted by using
ceramic suction lysimeters. The fact that there was phosphate absorbtion by
the ceramic cups and there was a possibility that the interior of each cup
might have biological activity which could distort the quantities of nitrogen
extracted during the extraction process caused the abandonment of this
procedure. Subsequent soil water samples were taken from the saturated zone
by taking sample from a 2.5-cm aluminum well after first draining the well
and then sampling.
19
-------
Soil samples were taken with a 2.5-cm stab auger in the surface 30 cm and then
a 2.5-cm aluminum conduit pipe was used to extract the soil samples. In the
wet and saturated zones a negative pressure was placed on the conduit to keep
the sample in the tube.
Microbiological samples were taken in 125-ml sterilized glass bottles that
were protected by aluminum foil wrappers.
All samples were taicen immediately from the field and stored at 2 ° C. It was
the practice to begin the nitrate and biological determinations on the same
day as sampled to minimize any distortions caused by further biological
activity.
CHEMICAL PROCEDURES
The chemical analyses were done with standard methods or modifications of
these as follows:
Soil pH
Reagents: 1. Standard buffer solutions of pH A.00, 7.00 and 10.00
Procedure: Place 10 grams of soil in a 50-ml plastic beaker and add
10 ml of distilled water. Stir intermittently for 20
minutes and read pH with a glass electrode and a pH
meter (either Sargent direct drive or Orion 801 was used).
Waste and water pH
Procedure: Read directly without dilution by the same procedure given
above.
20
-------
Total Carbon
Reagents: 1. Tin Metal Accelerator, Leco Co.
2. Iron Chip Accelerator, Leco Co.
3. Carbon Steel Standards, Leco Co. (0.074% to 0.862% C).
Procedure: Grind soil samples in a SPEX Industries ball grinder to
reduce the particle size. Weigh 50 to 100 mg of soil sample
(depending on the carbon content) into ceramic cups. Add
0.8 g of each accelerator and mix. Place the sample in the
furnace of Leco Carbon analyzer, ignite and read total carbon
from the instrument.
C03 in Soils (4 )
Reagents: n-Octyl AlcoholUse a reagent-grade product.
Potassium Hydroxide Solution (ca. 2M KOH)
Hydrochloric Acid Solution (ca. 2M HC1)
Phenolphthalein Indicator Dissolve 0.05 g of phenol-
phthalein in 50 ml of 95% ethanol and add 50 ml of water.
Hydrochloric Acid Solution (ca. 1M HC1)
Bromocresol Green Indicator Dissolve 0.1 g of bromocresol
green in 250 ml of ca.. 0.0006 M NaOH.
Standard Hydrochloric Acid 0.1 N.
Procedure: Weigh a sample of finely ground (100 mesh) soil (not more
than 8 g) containing up to 30 mg of inorganic C into an 8-oz
square bottle, add one drop of n-octyl alcohol, and stopper
the bottle with the assembly shown in the reference. A 5-ml
beaker containing 5 ml of 2 M KOH is attached to the glass
tube below the stopper by a rubber band so that the bottom
of the beaker is about 5 mm above the lower end of the tube.
21
-------
After stoppering the bottle with the assembly described,
remove 50 ml of air from the bottle via the needle-puncture
stopper with a 50-ml gas syringe. Then inject 20 ml of
2 M HC1 into the bottle via the needle-puncture stopper
with a hypodermic syringe and swirl the bottle gently for a
few seconds to mix the contents. After allowing the bottle
to stand at room temperature (20°- 25° C) for 16-24 hours,
transfer the contents of the beaker with deionized water to a
125-ml Erenmeyer flask marked to indicate a volume of 50 ml
and make the solution to the 50-ml mark by addition of
deionized water. Add 0.3 ml of phenolphthalein indicator
solution to the flask, titrate with 1M HC1 until the pink color
begins to fade and continue the titration with 0.1 N HC1 until
the phenolphthalein end-point (colorless) is reached. Then
add 0.8 ml of bromocresol green indicator solution and titrate
with standard 0.1 N HC1 to the bromocresol green end-point.
Calculate mg of inorganic carbon in the soil sample from
(S-C) x 1.2, where S=ml of standard 9.1 N HC1 required to
titrate from the phenolphthalein end-point to the bromocresol
gresn end-point and Oml of standard 0.1 N HC1 required for
this titration in a control analysis performed exactly as
described for the sample analysis but with no soil sample
added to the bottle.
Total Nitrogen in Soil and Waste Water (3 )
Reagents: 1. Sulfuric acid (112804), concentrated.
2. Sodium Hydroxide (NaOH), approximately ION: Place 4.2 kg
of NaOH in a heavy-walled 10-liter Pyrex flask, add 4 liters
22
-------
of water, and swirl the flask until the alkali is dissolved.
Cool and allow to stand for several days to settle out Na2C03,
siphon the clear supernatant liquid into a large Pyrex bottle
which contains about 1.5 liters of CC^-free water and is
marked to indicate a volume of 10 liters, and make the
solution to 10 liters by addition of CO^-free water. Mix
well and protect from entry of atmospheric COo-
3. Boric acid-indicator solution: Place 80 g of pure boric
acid (113603) in a 5-liter flask marked to indicate a volume of
4 liters, add about 3,800 ml of water, and heat and swirl the
flask until the £13603 is dissolved. Cool the solution and add
100 mis of methyl purple indicator (Fisher's) or add 2 drops
of indicator just prior to titration.
4. Potassium sulfate-catalyst mixture: Prepare an intimate
mixture of 100 g of K^SO^, 10 g of copper sulfate (CuSO^'SI^O)
and 1 g of Se. Powder the reagents separately before mixing,
and grind the mixture in a mortar to powder the cake which
forms during mixing.
5. Sulfuric (or hydrochloric acid (H2S04 of Hcl)» 0.0 N
standard.
Procedure: Place a sample containing about 1 mg of N in a dry micro-
Kjeldahl flask, add 2 ml of water, and after swirling the
flask for a few minutes, allow it to stand for 30 minutes.
Then add 1.1 g of l^SO^-catalyst mixture and 3 ml of
concentrated H_SO, and heat the flask cautiously on the
digestion stand. When the water has been removed and frothing
has ceased, increase the heat until the digest clears, and
23
-------
thereafter boil the mixture gently for 3 hours. Regulate the
heating during this boiling so that the H9SO, condenses about
one-i:hird of the way up the neck of the digestion flask.
After completion of digestion, allow the flask to cool and
add about 20 ml of water (slowly and with shaking). Then
swirl, the flask to bring any insoluble material into suspension.
Place 5 mis of boric acid indicator in a 50-ml Erlenmeyer
flask and place the flask under the condenser. Connect the
micro-Kjeldahl flask to the distillation unit, add 15 mis
of NctOH solution (reagent #2) and steam distill until 35 mis
of volume is collected. Remove the 50-ml flask, disconnect
the g:team and rinse the tip of the condenser into the flask
and titrate the ammonium present with 0.01 N acid from a
10-ml burette graduated at 0.01-ml intervals.
Extractable Ammonium
Reagents: 1. 2N KC1. Weigh 149.2 g KC1 into a one-liter volumetric
flask. Add distilled water to give one liter.
2. 0.1N NaOH. Weigh 4 g of NaOH pellets into a one-liter
volumetric flask. Add distilled water to give one liter.
3. Sulfuric (or hydrochloric acid) (H2SO^ or HC1), 0.01N
standard.
4. Boric acid-indicator solution: Place 80 g of pure boric
acid (H_BO,.) in a 5-liter flask marked to indicate a volume
of 4 liters, add about 3,800 ml of water, and heat and swirl
the flask until the H^BO,. is dissolved. Cool the solution
24
-------
and add 100 mis of methyl purple indicator (Fisher's) or add
2 drops of indicator just prior to titration.
Procedure: (A) Weigh 10 g of moist soil into a 125-ml Erlenmeyer flask,
add 50 ml of 2N KC1. Shake for 2 hours on a rotary shaker at
200 rpm. Filter through Whatman #42 filter paper. Pipette
10 mis of filtrate into Kjeldahl flask, attach to steam
distillation apparatus, add 10 mis of 0.1N NaOH and steam
distil the NH^ into 5 ml of boric acid-indicator solution.
Titrate to end-point with standard sulfuric acid.
(B) For waste water a 10-ml sample is used instead of the
extraction step.
Water Soluble Nitrate
Reagents: 1. Saturated calcium sulfate (CaSO»). Add slightly more
than 2 g CaSO^ per liter, shake thoroughly and allow to
equilibrate overnight before using.
2. Standard nitrate. Weight 7.216 g of KN03 (previously
dried for 24 hours at 105° C) into a one-liter volumetric
flask and add distilled water to give one liter. Working
standards of 1 to 50 ppm N are prepared by appropriate
dilution of this standard with the calcium sulfate solution.
Procedure: (A) Weigh 20 g of freshly sampled soil into a 125-ml
Erlenmeyer flask, add 50 mis of saturated calcium sulfate
solution. Shake for % hour on a rotary shaker at 200
rpm. Decant liquid into a 50-ml beaker and measure nitrate
content with a specific ion electrode. (Orion electrode
for nitrate in conjunction with an Orion 801 meter is
presently used in this laboratory).
25
-------
Standiirdize the electrode and meter each time .with known
standards covering the range of nitrate that is in the
samples being measured. Also recheck standards after each
few analyses.
Moisture determinations are carried out simultaneously
on the soils and the nitrate nitrogen values are reported on
a dry wt. basis.
(b) For waste in water the extraction step is omitted.
Nitrate Analysis for I-ow Concentrations (10 )
Reagents: 1. Bacteriods. Soybean nodules are collected, washed clean
with distilled t^O and blotted dry. Grind with cold mortar
and pestle with K-succinate buffer (5 ml per g of nodules).
Squeeze slurry through 4 layers of cheesecloth. Liquid
centrifuge at 5,000 X g for 5 minutes (Sorvall ROB rotor
0.25 r at 6.500 rpm). Discard the supernatant liquid.
Resuspend pellet in the same number of ml of buffer and
centrifuge again and discard supernatant liquid. Resuspend
pellet in the same number of ml of buffer and freeze.
2. Potassium succinate buffer. Add 800 ml of distilled
H20 to 11.809 g (0.1 M) of succinic acid. Adjust pH
value to 6.8 by cone. KOH solution. Make up to 1 liter.
Procedure: Add the following solutions in order: (a) 0.5 ml - 0.1 M K
succinate buffer at pH 6.8, (b) 0.5 ml - extract (diluted if
OD exceeds 0.4), (c) 0.1 ml - bacterial suspension. Always
1.1 ml
26
-------
apply bacterial suspension last. Incubate at 45° C for 30
minutes. Stop reaction by 2 ml of 1% sulfanilamide
3 N HC1 solution and develop color with 2 ml of 0.02%
NED solution. Allow color to develop for 30 minutes,
centrifuge for 30 minutes and read against reagent blank
at 540 my. Run standard solution with samples each time.
Nitrite in Soils and Water
Reagents: 1. 1% sulfanilamide in 3N HC1.
2. 0.02% NED solution.
Procedure: Pipette 0.5 ml of sample (either soil extract or waste
water) into a 10-ml test tube. Add 2 ml of 1% sulfanilamide
in 3N HC1 and 2 ml of 0.02% NED solution. Allow the color
to develop for 30 minutes and read against reagent blank at
540 my.
Extractable P
Reagents: 1. Extracting solution. Add 15 ml of 1.0 N NH^F and 25 ml
of 0.5 N HC1 and 460 ml of distilled water to prepare each
500 mis of extracting solution.
2. Ammonium molybdate-HCl-H-jBOo solution. Dissolve 100 g
(NH,)6Mo024'4H20 in 850 mis distilled water, filter and cool.
Add 1700 mis concentrated HC1 to 160 mis water, cool. Mix
the two solutions slowly and add 100 g of boric acid.
3. Reducing agent mixture. Mix 10 g l-amino-2-naphthol-4-
sulfonic acid with 20 g sodium sulfite and 584 g sodium
bisulfite, meta. Grind mixture to a fine powder with
mortar and pestle.
27
-------
4. Reducing solution. Dissolve 15.4 g of reagent no. 3 in
100 mis warm distilled water. Cool and filter.
5. Standard phosphate solution: Dilute 0.4393 g of oven-
dry KH2P04 to 1 liter in a volumetric flask with distilled
wate:r. Working standards are prepared by dilution of this
100 ppm P stock solution.
Procedure: Weigh 5 g of soil into a 125-ml Erlenmeyer and add 20 mis of
extracting solution (reagent no. 1). Shake on a rotary shaker
at 2:00 ppm for one minute, and filter the contents through
Whatman No. 2 or 42 filter paper. (1 g of acid-washed
activated charcoal is added if the filtrates are not clear).
Pipette a 5-ml aliquot of the filtrate into a 50-ml flask.
Adjust pH to 3.0 using 2, 4 dinitrophenol as an indicator. Add
2 mis of ammonium molybdate solution and about 40 mis distilled
water. Shake and add 2 mis of reducing solution and make to
volume with distilled water. Mix and after 10 minutes but
before 15 minutes measure the color photometrically using
660 my incident light.
Total Soil P
Reagents: 1. Sodium Carbonate
2. See Water soluble P.
Procedure: Mix 0.5 g of finely ground soil with 5 g of NaCO in a
platinum crucible. Heat gently with a meeker burner until
melted and then heat until the crucible turns cherry red.
Grasp the crucible with nicholchrome tongs and rotate to
produce a thin even distribution of the melt on the side of
28
-------
the crucible. Cool quickly by placing on a porcelain plate.
Dissolve the melt in hydorchloric acid and determine the
phosphorus content as outlined under methods of P in water.
Phosphorus in Waters ( 7)
Reagents: 2N H SO,: Place approximately 500 mis of distilled w,ater in
a one-liter volumetric flask. Add slowly 57 mis concentrated
t^SO^ and bring to volume with distilled water.
4N Na2C03: 53 gms Na2C03 are dissolved in a liter of distilled
water (Note: NaCH of NH^OH may also be used instead of Na2COo).
2,4 - dinitrophenol indocator; Dissolve 0.25 g in 100 mis
distilled water.
Sulfomolybdic Acid Solution; 25.0 g of c.p. ammonium molybdate,
(NH4)6MOyO '4H20 is dissolved in 200 ml of distilled water and
warmed to 60° C. Filter if the solution contains sediment. Add
to 475 ml distilled water in a 1-liter volumetric flask 275 ml
of concentrated H-SO^. Cool both solutions then add the
ammonium molybdate solution slowly to the H2SO solution.
Finally, dilute to volume.
Chlorostannous Acid Reductant; Dissolve 25 gm SnCl2'2H20
in 50 ml concentrated HC1 (warm if necessary). Dilute to
approximately 500 mis (with rapid stirring) with recently
boiled distilled water.
1. Place 25 mis of Standard Solution of 25 mis of centri-
fuged water sample in a 50-ml volumetric flask.
2. Add 2-4 drops of 2, 4-dinitrophenol indicator and adjust
29
-------
with 2N H2S04 or 4N Na2C03 until 1 drop of 4N Na2C03
produces a yellow color.
3. Add 2 ml sulfomolybdic acid solution and dilute nearly
to volume with distilled water. Mix thoroughly.
4. Add 0.2 ml of chlorostannous acid reductant and bring
to volume with distilled water. Mix thoroughly.
5. After 5 minutes but not later than 10 minutes read the
color photometrically with a 660 my filter.
Note: If the water solution is colored, prepare a blank
for each sample by following steps 1, 2, and 3.
Omit step 4. Use this to set the 0 level at 100% T.
Water Soluble Chloride
Reagents: 1. Saturated calcium sulfate (CaSO^). Add slightly more
than two g CaSO^ per liter, shake thoroughly and allow to
equilibrate overnight before using.
2. Standard Chloride. Weigh 2.101 g of KC1 (Previously dried
for 24 hours at 105° C) into a 1-liter volumetric flask and
add distilled water to give 1-liter. Working standards of
1 to 100 ppm Cl are prepared by appropriate dilution of this
standard with calcium sulfate solution.
Procedure: Weigh 20 g of air dried soil into a 125-ml Erlenmeyer flask
and add 50 mis of saturated calcium sulfate solution. Shake
for % hour on a rotary shaker at 200 rpm. Decant liquid
into a iU-ml beaker and measure chloride content with a
specific ion electrode. (Orion electrode for chloride in
conjunction with Orion 801 meter is presently used in this
laboratory).
30
-------
Standardize the electrode and meter each time with known
standards covering the range of chloride that is in the
samples being measured. Also recheck standards after each
few analyses.
Chloride Content of Water Samples ( 1 )
Reagents: 1. Chloride-free water: If necessary glass distill.
2. Potassium chromate indicator: Dissolve 50 g l^CrO^ in
a little distilled water. Add silver nitrate solution until
a definite red precipitate is formed. Allow to stand 12 hr,
filter and dilute filtrate to 1 liter with distilled water.
3. Standard silver nitrate solution; 0.0141 N: Dissolve
2.396 AgNO- in distilled water and dilute to 1 liter.
Standardize against 0.014 N NaCl as described in procedure.
4. Standard sodium chloride solution, 0.0141 N: Dissolve
0.821 g of dried, reagent grade NaCl in redistilled water and
dilute to 1 liter. This solution contains 0.5 mg Cl per ml.
Equipment: 8 each 250-ml Erlenmeyer flask
1 magnetic stirrer
1 25-ml burrett
Procedure: 1. Place 100 ml (or a suitable aliquot if Cl is high) in a
250-ml flask or 50 mis water extractable Cl from soil samples.
2. Adjust pH to 7.0 - 10.0. Add 1.0 ml K2Cr04 indicator
solution. Titrate with standard silver nitrate solution to a
pinkish-yellow endpoint. This means of consistent endpoint
detection are left to the individual analyst.
3. Standardize the silver nitrate solution and establish the
reagent blank by the above methods.
31
-------
Calculations:
mg/1 Cl = (ml AgNO^ sample - ml AgNOj blank) x normality AgNQ-^ x 35,460
ml sample
Amonium Acetate Ex^ractable Cations
Reagents: 1. Ammonium acetate extracting solution: Dilute 114 ml of
flacial acetic acid (99.5%) with water to a volume of approxi-
mately 1 liter. Then add 138 ml of concentrated ammonium
hydroxide (NH/OH), and add water to obtain a volume of about
1,980 ml. Check the pH of the resulting; solution, add more
NH^OH as needed to obtain a reaction of pH 7, and dilute the
solution to a volume of 2 liters with water.
2. Standard Solutions:
Calcium: Dry CaC03 at 105° C. Then weigh 2.497 g into a
1-liter volumetric flask, add 200 mis distilled water and 75
mis of 2 N HC1. Agitate until dissolved then dilute to volume
with distilled water. Final solution = 1000 ppm Ca.
Magnesium: Clean magnesium ribbon with 0.1 N HC1 and wash with
distilled water. Dry at 105° C. Weigh 1,000 g into a 1-liter
volumetric flask, add 90 mis 2N HC1 and agitate until dissolved.
Dilute to volume with distilled water. Final solution =
1000 ppm Mg.
Potassium; Dry KC1 at 105° C. Then weigh 1.9066 into a
1-liter volumetric flask. Add 50 mis 2 TSIHCl and dilute to
volume. Final solution = 1000 ppm K.
SodLum; Dry NaCl at 105° C. Then weigh 2.542 g into a 1-liter
volumetric flask, add 50 mis of 2 N HC1 and dilute to volume
with distilled water. Final solution = 1000 ppm Na.
32
-------
Procedure: (A) Weigh 5 g of soil into a 125-ml Erlenmeyer flask and add
50 ml of ammonium acetate extracting solution. Shake for one
hour on a rotary shaker at 200 rpm, filter through Whatman
No. 2 or equivalent paper, and determine Ca and Mg by compari-
son with standards on an atomic adsorption spectrophotometer
and Na and K by comparison with standards on a flamephotometer.
(B) In water samples the sample was read directly as above.
PHYSICAL PROCEDURES
The physical analyses were done with standard methods or modifications.
Mechanical composition - Hydrometer Method - Bouyoucos Procedure (2 )
Weigh 100 g samples of coarse textured soils into clean dispersion cups. Add
100 ml of calgon solution (50 g calgon/liter) and disperse 6 min for coarse
soils. Transfer the suspensions to the special cylinders and fill with
distilled water to the proper mark with the hydrometer inserted. Set the
cylinders on the laboratory bench and when they come to constant temperature,
record the temperature and mix. Take hydrometer readings at 40 sec, 4 min and
2 hours.
Pass the suspension through a 300-mesh sieve to recover the sands. Dry sand
and sieve with standard sieve on a standard shaker for 15 min. Weigh each
sand fraction.
Bulk density
Undisturbed soil core samples 7.62 cm in diameter and 7.62 cm high were taken
with a Uland core sampler in ten replicates. After the soil was trimmed to
volume, the sample was oven dried, weighed and the bulk density calculated.
33
-------
Soil Water Characteristic
The soil was placed in a 4-cm diameter tube 1 m long consisting of 2-cm
long segments. The ssoil was saturated with water and allowed to drain several
times. When it had reached a maximum consolidation by this procedure, it was
saturated again by raising the watertable very slowly. The column was allowed
to drain into a free-water surface maintained at the bottom. When drainage
ceased, the column was sectioned and moisture contents determined by oven
drying.
Weather measurement
Weather measurements were made by standard rain gauges on each site and at an
official weather station less than 1.5 km away. Soil temperatures were made
with thermistor therometers installed in each pair of BLWRS.
Aeration measurements
Oxygen diffusion rates were, made with 10 to 40 replications using
platinum microelectrcdes 4 mm long and 0.64 mm in diameter using the Erickson
Oxygen Diffusion Meter. (9 ) Redox measurements were made in situ with similar
platinum electrodes that were platinized and installed permanently. Measure-
ments were made with a Orion portable pH meter with millivolt scale.
Soil gas samples were extracted with long, 18-guage, hypodermic needles and
analyzed with a Carle gas chromatograph equiped with a molecular sieve column
and micro-thermistor detector.
BIOLOGICAL PROCEDURES
Total Coliforms
The coliform tests were run according to the procedures given in "Standard
Methods for the Examination of Water and Wastewater (l ) using the multiple-
34
-------
tube dilution technique with lauryl tryptose broth. Suitable dilutions of
the samples were prepared and three portions in each of a decimal series of
dilutions were inoculated into the broth. Tubes were incubated at 35°+ 0.5° C
for 48+3 hours. Most probable number indices were calculated and reported
for these presumptive test results.
Fecal Coliforms
Transfers were made from all the tubes in the total coliform test that were
positive in 24 hours into E C Medium by using a sterile loop of at least
3-mm diameter. The tubes were incubated in a water bath controlled to 44.5
±0.2° C for 24+ 2 hours. Fecal coliform densities were determined by the Most
Probable Number Method (1).
Streptococcal Group
Inasmuch as we were dealing with a known source of contamination and the
question of human fecal was not significant, only the Presumptive step in the
Standard Methods p'rocedure for Fecal Streptococci was used. Three portions
from each of a series of suitable decimal dilutions were inoculated into azide
dextrose broth and incubated for 48+3 hours at 35°± 0.5° C and observed for
turbidity. Indices were reported as the Most Probable Number.
Denitrifiers
The Denitrifiers were measures using the procedures of Flocht, D. D. and
H. Joseph. (6 )
35
-------
SECTION VI
EXPERIMENTAL
SOIL CHARACTERISTICS
The mechanical composition of the BLWRS soils is given in Table 1 (page 12).
The soils would be classified: Swine surface, loamy sand; Swine subsurface,
fine sand; Dairy surface, very fine sandy loam; and Dairy subsurface, loamy
very fine sand. The soil moisture characteristic is given in Figure 3. The
bulk density was 1.64 with 62% solid and 38% porespace. These are quite
permeable soils and were ideal for the experiment. The surface of the Dairy
BLWRS might be an exception in that this very fine sandy loam would not allow
the percolation of 25.4 mm of wastewater per day without slowing down
appreciably. This soil operated better in the 17 mm per day range.
The chemical characteristics of the original BLWRS soils are given in Table 2.
The phosphate isotherms from which the absorbtion capacity is calculated are
shown in Figure 8. It should be noted that the subsoils are calcareous and
that the surface soils do have some organic matter accumulation.
OPERATION
The Swine BLWRS was put into operation July 1, 1971, using the South BLWRS.
The Dairy BLWRS became operational late August, 1971. Figure 9 summarizes the
operation until December, 1972. Each line represents one of the four BLWRS.
The solid bars above the line represent the amount of waste applied each day.
The open bars represent the amount of precipitation each day. The solid bars
directed below the line represent the amount of effluent draining from each
BLWRS each day. The applied and drained figures are in millimeters of depth.
Because the area of application of waste was only on the top and amounted to
one-half the total area of the BLWRS, the waste application represents only
36
-------
CO
rJ
rH
o
f?
pq
^
, i
PQ
s!
o
M
O
M
IH
fV|
O
CO
U
H
H
CO
5
W
H
c_>
i
0
j_3
2
o
H
}T{
O
cs
cu
rH
CO
H
CU
O
Cfl
M
3
CO
CO
£
H
cfl
p
cu
u
Cfl
M-t
M
3
to
cu
u
CO
m
Vi
3
CO
,0
3
CO
cu
CJ
H
OT
0)
O
cfl
tl
3
co
O
o.
r^
in
vO
o
oo
o>
o
r-..
EC
P.
O
O
00
s
vO
CN
O
O
oo
**
CS
rH
o
O
O
O
H
O
O
00
o\
E
p.
p.
1
C!
O
F-Q
^4
cfl
U
rH
Cfl
4J
O
H
on
0 rH
CD P***
rj
n
CM
iH
o c\
-j- o\
ro O
«>
i^
co
^^ o\
o -*
A
o
rH
m in
I^ CN
-3" vo
e
P.
&* r3
P.
1 P.
on i
o
C_) 53
CO
Cfl 00
t-i
C O
O
£1 CO
M cfl
cfl
0 S3
3" in *^ c^
rH ff\ en vo in o m
oncNOOoninrHoo>*
rH rH oo r^ on
o\
CN
-3" on r^
rH on CS f~- -J- CTl rH
onorHOOin
CN I-H rH in on
o\
«
CN
m o oo
on m rH m in m vo
cNr^on cumoocrioovo
I-- CN U 00 in rH rH
CO rH rH
H rH
rH
«H
0
CO
C
O 00
H
+J O
rQ O
rJ rH
O
CO fX,
BBS 42
P. P. p. cfl oO
P, P. a e
III O >,
PL, 4J
-*on^re 6SS_-H
woo P.S ex p, P. a o
SBSBr^i CX P< CX P< P< 3 Cfl
P. B P.
CO CO CO 1 1 1 1 -H Cfl
CO cfl cfl | X O
SSSBP-lOt^USShr^
37
-------
SWINE BLWRS SUBSOIL
LflNGMUIR -P ISOTHERM
2-
0-
-1-
-11357
EQUILIBRIUM (P)
2-
H
o-
-H
SWINE BLWRS TOPSOIL
LRNGMUIR P ISOTHERM
-11357
EQUILIBRIUM (P)
DfllRY' BLWRS SUBSOIL
LflNGMUIR P ISOTHERM
DfllRY BLWRS TOPSOIL
LflNGMUIR P ISOTHERM
35
EQUILIBRIUM (P)
EQUILIBRIUM (P)
Figure 8. Phosphate absorbtion isotherms for BLWRS soils.
38
-------
m
o
pi
o
H
4J
td
M
(U
eu
o
OJ
tfl
00
c
CO
0)
n
3
GO
39
-------
half the volume of either precipitation or drainage. The lowest line
indicates when each sample was taken and the number of each sample. The
BLWRS effluents and wastes were sampled twice a week. The sample number and
the sample location were used throughout the laboratory and are used in
reporting the results of the analyses.
The goal was to apply as much waste as possible to each BLWRS but to avoid
ponding on the surface which would cause anerobic surface conditions.
The wastes were usually applied on a particular BLWRS until there was
reductions in infiltration rates and ponding. Then the practice
was to change to the other BLWRS until the first one had dried sufficient to
return to it. There were exceptions to this procedure; for instance, the
Swine South flooded (overloaded) the night of July 30, 1971, because of a
malfunctioning switch. Also, beginning in April, 1972, the Swine North was
purposely loaded as hard and as long as possible to determine what would
happen and how it would recover.
Table 3 summarizes the waste loading rates for each of the BLWRS.
Table 3. SUMMARY OF CAYS OF OPERATION AND WASTE LOADING ON THE SWINE AND
DAIRY BLWRS FROM THE START OF THE EXPERIMENT THROUGH DECEMBER 1972.
Swine Dairy
North South Total North South Total
Waste applied - mm 4144 2640 6784 977 2117 3094
Days operated 288 148 376 120 232 352
Application rate 18.2 17.8 18.0 8.1 9.1 8.8
mm/day
40
-------
Operationwise In each pair of BLWRS one of the pair received about two-
thirds of the waste. If three BLWRS had been available, two could have been
in operation all of the time with one resting, or if a large BLWRS could have
had a solid set system with three sections, two could have operated while one
rested.
There were 503 days and 450 days between the time of startup and project
completion for the Swine and Dairy BLWRS, respectively. The large gap of
non operation was the three-month winter period in which it was not possible
to operate the BLWRS. Two attempts were made to cover the Swine BLWRS with
an inexpensive plastic bubble but both failed due to adverse conditions of
temperature and wind. Even though a space heater was tried, it was obvious
that a large amount of heat would be necessary to keep the BLWRS operational
all winter.
On the Dairy BLWRS, electric heat tapes and heating cables were used to allow
some winter operation on days when the temperatures were slightly below
freezing. This was partially successful but energy expensive. Also the heat
was not sufficient to keep the BLWRS soil warm enough to allow for biological
degradation of the waste and especially the denitrification reactions as will be
shown later.
During the summer season, the effluent lagged behind the amount of waste
applied causing some concern until evaporation was included in the calculation
as illustrated in Table 4. At all times, the quantity of waste plus rainfall
was less than the quantity of effluent plus evaporation which gives a value
for potential output. Considering that the vegetation on the top of the
41
-------
.
CN
r^
O-i
1-1
1
CO
CO
frf
i-l
pq
w
M
£5
CO
/yj
O
H
W
O
0
p
w
H
ts
f
^J-
0)
2
cO
H
4->
3
0
CO
£*»
iH
3
i^
PJ
4J
£_j
O
&
rj
4-J
3
O
CO
0)
c
3
t 3
r*
4-1
O
Z
f->
4-1
c
0
| *Cf **Q CO CT»
r^» in fn oo r~« m
| rH CN CN H 0
pq !2 Prf H W W PM
01
4-1
CO
CO
[5
T)
Cfl
t~*,
cfl
Q)
CO
1
OJ
,^
4-1
M-l
O
m
rH
cfl
pCJ
^J
o
CX
o
^
0)
rC
4-1
rH
G
O
01
CO
3
CO
O
0)
,0
o
£g
4-1
4-1
K^ *H
_f>
0
rrj 4J
O)
H QJ
> -H
H rH
O CX
CX
cfl CO
42
-------
BLWRS and the grass on the slopes could wilt and go dormant when under stress,
it would then be possible to have less transpiration than the evaporation
from the water surface of the standard pan.
NURTIENTS IN WASTE AND EFFLUENT
The nutrient concentrations and quantities in the waste and effluents are
given in Tables 5, 6, 7 and 8 and summarized in Tables 9 and 10 in the text.
At no time was nitrite detected in the waste so it is not reported. The
percent solids and total carbon in selected samples are given in Tables 11
and 12.
The amount of dry wastes applied to the Swine North and Dairy South BLWRS
amounts to 122 and 93 t/ha, respectively, with relatively little accumulation.
The amounts, of carbon applied had an average 294 ppm and 516 ppm on the
Swine and Dairy with an average in the effluent of 19 and 36 ppm or a reno-
vation of 93.5% and 93%.
The nitrogen concentration data in Table 9 shows that the organic and
ammonium nitrogen in the waste is oxidized and leaches from the BLWRS primari-
ly as nitrate nitrogen. The concentration of nitrate in the effluent is
lowest in the side of the BLWRS_with the corn as an energy source (Swine NW,
Dairy NE). It appears that not enough molasses was added to give sufficient
energy for the denitrifiers in any of the treatments. The Swine SW which had
the highest average nitrate concentration did not have an energy source. It
must be remembered that the Swine BLWRS were driven very hard and the nitrate
levels did not start to rise until the cool fall weather. In fact, the Dairy
BLWRS usually had nitrate concentrations less than 10 ppm except during the
43
-------
Table 5. NUTRIENT, BOD AND £00 CONCENTRATIONS IN WASTES
APPLIED TO BLWRS. NUTRIENTS EXPRESSED IN PPM.
Swine Waste
ORIGMAL UATA FDR
SAMPLE
2
4
9
6
7
8
9
10
11
12
13
14
IS
16
l!
19
21
22
23
24
25
26
27
26
29
30
31
34
36
37
38
39
42
51
77
78
79
80
81
82
63
84
85
86
87
88
69
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
PM
7,30
7,80
7,^4
7,50
7,55
7,45
7,50
7,54
7,70
7,60
7,55
7,80
9,00
7,90
3,00
3,15
3,05
7.70
7,87
7,89
7,99
7,95
7,9.5
i,17
3,17
7,73
7.86
7,88
7,77
7,58
7,93
3,36
7,60
3,06
7,60
7,90
7,90
3,10
3,7«
3.74
3,75
3.49
3.54
3,29
7,82
3,22
3,14
3,03
7.72
7,81
7,93
3,09
3,01
3,01
7,9;
7,62
7,75
3,01
7,57
7,47
7,38
7,23
7,40
7.37
;,&6
7,41
7,52
7,60
0»3N
465,0
359,3
480,8
351,9
853, B
401,3
849,3
242,3
286,7
208,0
44C.4
482.6
451,4
414.3
47?, 5
511,3
413,4
372,9
389, 6
394,9
42S.1
502,1
532,1
518,9
556,9
621.9
593,2
613,4
500,4
593,1
740.6
797,6
769,8
718.5
909,9
550,7
596,6
649,0
120,3
514,8
747,9
623,9
627,1
494,5
607,8
526,6
486,0
635,1
506,8
522,6
511,1
475,8
405,2
490. e
469,4
506.8
528,2
542,1
623,3
650,1
504,7
519,6
464.0
410,6
554,9
554,9
553,1
48?, 9
SWINE EARN WASTES
NOJ
10.20
7, "9
13.90
14, 60
20,25
11,60
13,00
23.8fl
14,60
37.60
5.U6
4,57
5,82
6.19
8,26
6,45
5.08
3.B7
3,94
6,19
5.75
5.47
9.96
8.97
16,10
12,50
8.43
7.72
10.43
7,10
9,53
t2.2fl
12.6J
9.64
7.52
9.93
6.<1
6,3fl
6,27
6,30
3.14
4.24
4,21
3.62
4.22
8.26
3,99
4.57
6,<5
6,36
6.30
5.34
13.20
13,20
22.40
8,45
17,70
8.62
2.65
3.49
12. 60
5.U5
2 ,u3
t ."1
1,41
4,30
5.40
3,->3
NH4
353.9
336,2
334,8
333,4
330,6
344,5
369,6
339.0
365,3
356,6
378,0
428,6
4Q0.8
347,6
4Q9.7
43?, 0
391,1
353.5
356,9
341,7
349,3
428,6
432,0
427,8
548,5
559,4
911,3
493.6
423.6
479,3
610,0
604,1
575,2
635,1
329,3
165.7
116.5
408.4
473.7
441,6
216.0
293.0
413,8
210,1
275,3
6flfl,4
598.8
577,9
553.3
537,3
560,3
504,1
483,8
481,2
455,5
494,0
505,7
548,5
568,8
572,0
443,2
422,9
368,3
360.9
489,2
474,0
479,0
506,0
R04
55.50
21.80
21,80
45,60
44,10
67,70
44,80
38.60
63,00
48.40
70,80
21.80
21.20
32,10
36.80
19.30
18.80
19,90
19,90
14.90
14.10
14.40
12.80
11.50
14.10
17,32
1U.81
9.67
17.70
15.40
13.20
10.24
3.58
6.39
10.24
6.40
3.63
6|l2
14,13
4.17
3.63
4.17
3.36
6.69
5.83
12.48
7,67
14.69
14.40
14.11
15.86
6.69
18.38
10.69
10,49
20.02
18.70
10.23
8.17
15.28
20.02
37.11
34, 2U
1U.59
23.52
31,48
25,72
25.75
CL
175,8
lift, 6
148,1
111,1
13P,8
157,3
166,6
157,3
74,0
166,6
210,6
257,4
269,1
257,4
I6?, 2
210.6
257,4
245,7
234.Q
243,4
262,1
262,1
234,0
234,0
234,0
222,6
210,6
234,0
193,6
167,2
234,0
210,6
205,4
166,3
166,3
171,3
146,8
146,8
171,3
146,8
171,3
195,7
205,5
171,3
220,2
224,7
195,7
155,0
17B.9
202,7
190,8
190,8
1«8,8
18", 8
177,0
200,6
236,0
247,8
306,6
247,8
259,6
294,4
153,3
117,9
129,7
176,9
176,9
239,3
MA
98,0
88,0
85,0
76,2
78,8
88,8
84,2
76,2
62,2
50.0
112,5
116,8
105,0
101,1
92,5
96,2
82,5
78,8
78,8
68,6
96,0
98,5
130,0
145,0
127,5
145,0
145,0
150,0
152,5
145,0
145,0
157,5
150,0
120,0
116,2
105,2
101,5
99,7
102,2
101,2
106.2
116,8
106,2
98,5
97,2
94,5
92'2
86,2
98,8
96,2
96,2
82,5
86,2
80,0
82,5
80,0
112,5
113,7
136,2
153,8
102,5
95,0
90,0
97,5
116,2
123,2
131,«
135,0
CA
95,7
65t4
80.1
91,4
91,4
179 1
102,8
110,2
102,8
66,2
107,3
101,4
115,9
120(1
1°118
92,8
109,5
117,6
137,3
162,4
64,0
123,6
110,8
105,0
102,1
104,3
lle,7
70,7
119,6
100,7
80.3
82,4
64,2
77,6
75,6
38,6
43,3
33j9
39,0
34,5
33,5
45,3
41,4
64,5
64,7
56,5
5«j3
52,0
81,4
92,0
101,4
90,4
82,6
BD,3
72,6
87,1
119,1
107 8
119.5
144 6
150{2
198,4
209,7
134,5
152,6
1««,0
107,2
185,3
HG K
Z5.1
33.8
39.2
44.7
44.7
58,4
55,2
60.2
54,6
41,8
42.8
43.9
43.8
44.2
43,6
32.2
39. t
49.3
64.6
72,0
53.9
47.il
40.0
35.2
33,9
22.7
36.3
31.7
44.8
32.7
22. 3
30.2
28.6
30. 0
32,5
18.5
21.4
19.6
25,2
Z0.9
19. e
31. fi
Z7.Z
35.9
29. 2
Z9.9
30.6
32.3
21.7
20,6
20,8
19.0
43.0
38.6
35,5
47,6
55,0
49.6
49.6
55.6
62,4
109.6
83. 3 210,0
70.9 205,0
73. a 285,0
83.4 290,0
B8.3 305,0
79.2 312,5
BOD
1335,0
1264,5
1636,2
1366,3
1321,3
1220,0
1230, (1
1116,4
1056, T
924,9
1043,7
1200,4
1160,?
1115,9
1916, 8
1018,0
1497,0
14B9.9
1445,0
1222,0
1211,9
677,5
787,5
793,4
1002,9
885,0
915,0
672,0
687,0
730,4
1014,9
829,0
668,9
1255,5
1225,4
1091,2'
1270,8
1165,7
941,2
1374,3
1344,3
1463,6
1598,4
1479,fl
1615,6
1277,0
1247,9
1436,3
1161,9
1419,0
CUD
4676,0
2968,0
2438,0
2754,0
2244,0
2912,8
1.800,0
I93U.O
1940,0
943,7
1276,8
1383,2
1276,8
2128,0
1915,0
215B,6
2158,6
2940,0
34$7,0
3050,6
3471,6
160V, 9
3042,8
2437,2
212V, 9
203B.4
2336,8
21BZ.O
. 1666,4
2352,0
2244,8
1440,0
1618,4
1880,0
1200,0
2128,4
2091,6
174V,6
19,0,0
1974,0
1860,0
2402,4
2182,4
196U,0
1968,0
1944,0
164»,6
2860,0
3617,6
336V,6
.1914,4
2610,4
2558,4
3273,6
2624,4
2784,0
247»,2
2668,0
3642,0
44
-------
Table 5.(continued).
NUTRIENT, BOD AND COD CONCENTRATIONS IN WASTES
APPLIED TO BLWRS. NUTRIENTS EXPRESSED IN PPM.
Swine Waste
ill
112
113
114
115
116
117
11«
119
120
121
122
123
124
12'
126
127
128
129
130
131
132
133
134
135
136
137
141
142
143
AuER
n y c
0
r.6«
7.65
9.03
7.34
7.29
7.13
7,48
7.87
7,73
7,65
9,09
7,45
7.45
9,09
7.45
7,74
7,77
7.94
7,94
7,41
7,64
7,77
7,93
7,91
7.93
7,70
7,66
7,75
7,78
7. S3
AGs yAl
BG\I
514,0
511,4
571,8
582.5
446,3
489,1
543,7
550,6
513,9
420,5
296,5
446,3
474,9
489,1
548,7
448,7
550,6
5i3,e
420,4
421,2
495,7
760,9
524,0
571,8
549,1
491,0
495,7
483,2
397.7
394.5
382,8
-UES FJR
NQ3
15,50
10,60
9,70
5,50
2.90
4,00
4.20
4,70
5,3fl
2.70
2,40
4,00
3.40
3,70
3,40
4.60
5,10
4,10
4.00
7,40
1.70
1.60
1,60
1,79
l.Sfl
3,40
6,80
2,70
4.?0
" O <*
o | £- J
54INE
N-<4
534,0
534, U
406,3
387,5
305.1
480,4
575,7
565,5
183,1
222,9
406,0
445,0
387,0
387,0
357,0
461.0
453,0
305,0
358,0
423,0
487,0
473,0
507,5
484,7
154,9
434.5
423,6
363,2
342,0
Tt-9 7
«O / , J
WASTE
P04
20.72
17. 4B
13.32
10.59
13,32
10.59
9,08
R.95
14.24
19.62
21,69
24.62
20.99
8 68
16 '.68
16.37
14.54
7.64
3.04
15.20
10.90
10.28
9,47
11.5*
9.47
9.87
10.07
7,34
6.79
5.37
Ml N
cu N
A f * 4 3
287,2 147,5 195,9
263,2 140.0 190,6
210,6 155,0 176,1
257,4 153,7 172,2
258,7 150,0 197,3
284 7 142,5 180,1
258 9 142,5 I61t8
284,7 135,0 159,2
258,9 131,8 160,5
257,4 131,8 178,7
233,0 127,5 168,8
257,4 150,0 150,9
233,0 155,0 171,3
258,9 142,5 126,6
258,9 147.5 186,3
258 9 148,2 177,1
258,9 153,7 134,9
232,4 130,0 112,6
232,4 119,5 78,6
322,9 116,2 104,3
252,7 127,3 137,1
243,4 125,7 104,3
225 5 129,2 95,3
182 3 119. B 89,0
14B.7 98,5 85,5
153^ 96,2 94 4
163,1 100,9 94,4
143,9 89,2 BV.O
153,5 91,5 85,5
153,5 95.5 101,5
A CA MG K
A w ^
1 111
.7 45
.1 275
80.3 305,0
76.3 300,0
62.0 320,0
62.3 325,0
66.0 320,0
59. B 310,0
57.5 300,0
59.5 280,0
6C.4 265,0
78.7 290,0
58,6 305,0
57,1 315,0
68.3 305,0
51.4 305,0
54,3 300,0
47.3 313,0
42.3 322,0
54.0 250,0
46.3 240,0
47.7 243,1
37.8 240,0
35.9 266,8
35.5 284,1
31.4 249,5
26.1 239,1
30.6 239,4
33.2 238,6
33.6 205,7
34.6 200,0
35.5 212,5
.1
1134,0
805,0
12*3.0
668,0
653,0
775,0
550,0
267,0
482,0
471,0
471,0
554,0
554,0
627,0
612,0
3162,0
3904,0
2976 ID
2952,0
2263.0
1846JO
217-5,0
260U, 0
2916,0
2235,0
1868. 0
2360,0
1862,0
1679,0
2156,0
1944,0
114Z.O
1422,0
1593,0
7,4 42J.5 1B.O zu».' i*-'*
45
-------
Table 5 (continued).
NUTRIENT, BOD AND COD CONCENTRATION^ IN WASTES
APPLIED TO BLWRS. NUTRIENTS EXPRESSED IN PPM.
ORIGINAL DATA F3*JD*IRY BARN HASTE
SAMPLE PH (H3i»l
10
15
16
17
19
20
21
22
23
24
26
27
28
89
30
33
34
35
37
38
39
47
48
49
51
77
78
79
«0
«1
S3
85
67
89
91
93
95
97
99
101
103
105
106
107
108
109
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
7,36
7,80
7,70
7,30
3,05
7,56
7,74
7,71
3,05
3,00
7,37
7.26
7,71
7,51
7.51
7.95
7.33
7.31
7.50
7,50
7,60
7,51
7,44
7,66
7,60
7,55
7,56
7,44
»,60
4.87
7.00
7,27
7.13
7. IB
7,10
7.20
7.2B
7,40
7.56
7,48
7,30
7.15
7,10
7,52
7,47
7,55
7,34
5,97
7,05
5,88
7, OB
4,70
5,78
7,43
7.52
7,51
7,50
7.4B
7,43
7.85
7,93
7,86
7.63
7.52
7.72
7.66
7.36
7.4B
417,13
296.;?
273.4
266. ii
253, L
243.D
15».'>
173,13
165,4
164,!>
275.1
354,4
393. .5
315. ii
385, ii
354,4
270, '5
223,1?
174, 1
182, 15
198,')
271. ii
363,'i
357,1
299,')
325,1)
373. ii
382,1)
579,,,
345,4
389.:'
355.!)
252. <>
235.;;
255.!)
41C.I!
460. B
533.!i
584.0
852.;',
813,;'
867,;.
908,1)
930.:!
911.11
838,(>
764,0
803.1!
748, ;i
745. ii
803,;?
64»,;i
956,!!
670,11
409. !i
61 3. <\
64Q.I)
7ig,:s
716,15
581, Ii
731,1)
724,1)
730, :»
740.0
752.,?
73S,')
733,1)
687, ;
N03
53.20
4.30
5.00
7,50
4.40
4.50
2.30
2.60
3,10
2.5fl
9.40
10.40
1C. 00
13.20
10.90
11.00
6.29
8.97
4.84
4.74
4.81
4.74
4.8fl
4.56
4.31
9.10
ll.7fl
5.25
3.10
6.52
5.3Q
4.5fl
9.6Q
3.9fl
8,4Q
12.80
36.00
25.10
2.3Q
6.8Q
13.50
10.00
7.9,)
20.20
27.90
7.80
53.20
38.80
23.4fl
9.00
6.60
4.8fl
7.60
7.50
7.60
6.9fl
7.50
7.30
5. HO
6,20
7.20
6,80
6.5fl
7.UO
7,?0
3.50
3.7fl
3.60
NH4
447.5
13B.4
205,9
221,9
205.9
194.1
179.7
135,8
129,9
132,5
289,4
335.8
292.0
305,4
296,2
256,5
199,9
271,6
113,9
120, «
110.1
192.5
203,1
234.2
78,1
230,0
82.3
147,5
448, a
159.3
141,1
116.0
194.5
211.7
246,4
328,2
392,4
523.9
528.1
730.8
692.3
724,3
771,4
774.1
784.8
739.9
630.6
663.6
681.0
695,3
67fl,3
590,9
562.4
501,2
154,8
301.1
562.4
62l,2
698.3
585,9
466,2
692,5
661,5
163.4
651. 0
649.0
627.1
621,2
P04
39,00
48.40
49,20
36,80
' 31,40
27 60
11.70
14.40
20.50
13.80
53.20
71.50
44,60
62.80
32.73
26,61
40,92
52.29
35.63
28,28
34.65
49 51
67.45
53.75
45.01
75.71
87.32
78.15
75. h
95,37
83.02
75.71
49,78
33,81
28,54
32.89
21.04
36,72
31.98
44,43
25.75
26.52
23.52
33,27
32.37
38.13
41.35
43.64
43,64
41.35
32,37
40.25
43.02
24.62
18.29
32.97
22.76
32. 56
35.83
20.64
19,96
22.40
25.77
22.04
22.94
24.46
20.73
13.86
cu
360 ,.9
222,3
210,6
210,6
167,2
210,6
163,8
163,8
12«,4
131,1
234,0
234,0
234,0
215,6
256,5
210,6
215,6
234. g
292.6
292.5
317.5
286.2
292.5
292. 5
297.0
146,8
122,3
12?, 3
146,8
146.8
97,9
146,8
122.3
131.2
131,2
178,9
295,0
295,0
330,4
330.4
354 ,g
273,0
330,1
353,7
318,3
382,9
406,9
406,9
374,5.
351,0
38R.3
308,3
336,2
310,6
318,4
299,6
313,7
301.4
310.6
388,2
310,6
310,6
310,6
284,7
284,7
351,1
325,7
346,4
NA
127,5
127,5
112,5
100,0
92,5
97,8
96,5
105,5
110,0
110,5
152,5
175,0
170,0
175,0
156,5
125,0
120,5
98,2
75,0
62,5
50.0
110.0
118,5
92.0
95,0
132,0
l34.0
l48,0
151.0
152,5
129.5
131,0
105,0
57.5
50iO
70.0
96,2
116,7
128,7
157.5
173,8
173.7
176,8
176,8
179,7
176,8
171,2
163,7
171,2
160.6
166.2
142.5
135,0
131,8
131,8
128,7
133,7
136,2
136.2
133,7
132,5
132,5
132,5
130,0
127,5
113,5
127,6
124,1
CA
107,9
107,9
110,1
103,8
b9 2
97 8
60,1
80,1
7B,fl
69|6
132,3
150,7
145 8
175.3
149 9
136 ;i
138 4
139,1
127 6
127,6
135,8
162,1
1V2.2
17612
175.5
141.6
150.5
158.9
150.5
158.9
159.7
152.5
140.1
1*5,8
138.8
138,8
124,3
150,0
147,9
199,4
192,8
201,9
200,6
206,9
213,7
204,9
264,0
202,4
205,7
193,3
203,2
193,3
182,7
174,8
17BJ7
177,4
148,0
ion, 6
1V7.4
141,6
161,9
134,7
146,1
189,3
118,9
165,4
160,1
139,4
MS K
38,2
38.2
44.6
48,6
35.4
49.0
41.0
32.5
30.6
28.9
57.4
S3. 9
39.7
53.8
40.6
34.5
59.0
62.5
6C.6
60,6
57.2
57,9
68.6
50.3
»1.9
47.7
49,1
48. B
*0»0
sc:»
49.1
49.7
43.6
48. B
46.6
59.2
55.4
65.0
62.6
78.0
6C.9
78.1 643,7
73.1 825,0
63.4 831,0
69.0 910,0
71.8 910,0
60.1 825,0
70.7 831,0
73.2 850,0
65.3 775,0
62.7 806,0
67.9 725,0
64.6 700,0
66.6 668,0
63.6 688,0
67.0 725,0
50.2 785,0
5l,6 86fl,o
6Q.4 863,0
47,6 863,0
48.6 845,0
52.0 870,0
53.7 640,0
57.3 830,0
54.4 H30,0
57. / 825,0
57.0 830,0
55.5 625.0
BOO
917,6
817,0
,
1267J7
1229,2
1149,7
1386,5
1379,2
1399,2
69712
587J5
677,0
'29,0
1768 5
1256,0
1327,9
1081,7
1970,5
2360(0
2o89,0
11»«,0
2436,4
2043,8
1524,8
1311,7
1477,2
1287,4
1626,3
1835,9
2277,2
2841,9
9166,2
2896,4
2862,9
2773,1
cuo
i
t
1420,0
1420,0
1550.0
1489,6
I
1382,2
1170,4
2553.6
3066,8
3136,0
4508,0
3576,8
2640,4
2524,6
1976,0
1768,2
1802,3
2088,
3026,
3702.
3962.
3657,
3769,
476i,
4704, .
l2«B!o
5568.0
4324,0
4166.4
2721,6
2726.0
3690,0
2842,0
3499,2
4397,6
4680.0
5622,4
5952,0
6336,0
5236,0
5336,0
46
-------
Table 5 (continued). NUTRIENT, BOD AND COD CONCENTRATIONS IN WASTES
APPLIED TO BLWRS. NUTRIENTS EXPRESSED IN PPM.
Dairy Waste
1,3 7U< 7.1.J 4.1, .77,3 23.76 283,6 131,« »ft « «',;'
134 7,31 701,2 3.90 |6fl.l 56.21 Z»> u 1 48<4 8Q9)0
135 7.3V 664,8 3.63 563.2 22.1U |Ol,« i I ^^ m
J8 ,:S: n::? S:3 SI:7. S:?? ^:$ i.!.i m;3 «.
»VER»QE VAUUES F3* DMRt W»STE
* 42^4 38% 245S 12^7 6U6.3 55,5 8X7.6
47
-------
Table 6. NUTRIENT, BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN PPM.
ORIGINAL UAT«, F3^i S-UNE BA<*
A
SAMPLE
J
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
46
47
48
49
50
51
52
66
68
69
70
71
72
73
74
75
76.
77
" 78
79
8n
81
82
63
84
85
86
87
88
PH
7.22
7,28
7.48
7,28
7,32
7.60
7,70
7,70
3,15
7,65
7,35
7,50
7,30
7,56
7,90
7,56
7,18
7.21
7,68
7,56
7,23
7.12
7.06
7.91
7,97
7,70
7.4U
7,72
7,30
7,37
7,26
7,16
7,83
7,81
7,43
7.70
7.34
7.73
7.4J
7,44
7.50
7.45
7.55
7,45
7.52
7.50
7,96
3.15
7,47
7.6d
7.18
7.16
3,11
7,33
7,37
7,32
7.53
7,28
7. on
7.41
7.09
5,99
'7,15
7.16
7,62
7,35
7.32
QR3 >ll
0.9
2.5
1.5
1.9
1.8
2.i)
1.4
3.8
1.9
1.2
1.5
2.4
1.9
a. 8
0.2
U.2
J.3
U.4
0.3
1.7
0.7
1.4
1.4
0.3
3.7
0.1
0.?
3.C
J.6
0.5
0.3
O.C
C.C
5,2
0.3
C.3
G.O
0.9
1.1
3.6
u.6
J.4
0.5
0.7
1.3
« ,7
a.a
B.3
C.9
0.6
0.7
0.4
0.9
0,0
0.4
0.9
0.0
0.5
0 ,7
0.5
1.2
0.1
3.3
1.6
1.2
5.2
"03
14.4
12. '
5.1
2.4
1.7
3.1
0.7
0.9
1.3
2. _
2.6
3.3
6.4
54.4
134.1
214.9
198.6
1«0.6
225.9
256.5
258.1
214.4
237.1
128.-
159.4
161.9
174.1
152.6
139.7
137.6
143.6
150.7
153.4
154.4
134.7
U3.9
116.
146.7
133.7
94.3
126.5
126.5
Id. 2
U9.1
1X1.7
119.7
91.2
9C.4
87.2
78.2
85.4
66.2-
70.3
J1.4.
7*2.2
69.2
,67.-
79.3
11 1 4
96 .8
9C.7
124.6
147.5
127.8
1 ?0 <1
162.2
125. .
- -NE-- Swi-ne-Bf f Jnieirts
"4 EFFLUENT
N02
O.U
u.J
O.U
0. 4
0,1
0 i J
Q.u
0. J
a.o
O.o
0.3
0. J
ii ,2
0.3
0.9
1.9
1.4
1.5
1.3
0. J
3,(j
1.9
1.5
J.5
0.3
1.2
1 '>
1,9
2,2
2.3
1.6
1.5
1.3
0,9
0.3
l.i.
1.3
1.5
1.4
1.6
1.1
1.2
1.1
1.2
1.2
3. J
2,6
3*,7
3.9
0.4
0.4
0.4
d.4
0.4
0.4
0.5
0.7
3 u
0.8
1.1
2.2
4.6
9.7
14.4
13.5
18,9
NH4
0.7
11.1
0.3
ii!o
0.2
0.2
0.2
0.2
0«1
0.1
0.5
0.4
flil
T .5
1.0
0.7
0.3
0.7
n.7
1 <5
1.7
B.9
iio
a.'
ills
1.2
1.2
2.6
2.5
2.6
2. a
1C. 9
13. U
14.8
25.5
19.9
19.7
19.9
19.5
2". 3
22-5
4q .2
51. *
13.7
11.9
12.6
12.8
13.7
9.4
4.5
8.6
7.3
7.9
16.2
1 9 3
*1«°
2fl.O
34.4
5f;.5
6n.b
88.2
lt.6.0
112. U
P04
0,0 9
U.J 9
O.U' U
U.b 5
0. J19
0.0 5
6.C34
U.U31
0.022
U.li'8
o . u20
O.G3U
O.u23
d . u3u
o.i,23
a . c 5 o
0 .1.23
0. U3J
O.o23
o « o5a
0.033
a.^ia
u.021
0.407
J.020
o.aOo
a . oo j
0. J05
Q . j 0 0
o . o a .<
C.uO?
0 « 2 0 8
j , j 0 3
O.u09
0. 309
0. jOO
U.C21
U > u4l
a ui3
0 . J '' 7
0 , w 0
Q.O a
a . u 5
ft . u6J
U, »36
C . 1,39
C. J31
Q.ulO
O.G25
O.iilO
o . jia
t.uia
U .024
0 . U18
0 > Ii3fl
U.U18
O.u28
g. J2fi
G t^ 4 4
5.138
0 . i! * 7"
U.U33
O.C1«
D.U12
0.0 9
0 . u21
a. j3i
CL NA
7.4 7,5
9.2 5,5
5.5 3,2
5.5 3.3
5.6 4,_
26.2 9.3
26.2 10,2
29.0 11,8
37,4 18,4
41,2 19,3
53.2 17,5
74,9 20.3
117.9 21,4
147.0 22, .,
170.4 24, j
182,6 45, u
178, fl 76,5
175.7 a7,j
170.4 104. u
172.3 106,3
172.3 105, j
172.3 99, J
170.4 99, j
149.8 69,2
132.9 76,5
151.6 83. y
151.0 04,,,
155.4 96,.
162.9 102,,
155.4 92,5
155,4 104,3
164,7 93, u
185.3 103,:
182,5 97, ^
164.4 77, c
169.1 92,0
176.7 89.6
192.9 92.6
196,7 105.^
125.4 68.7
169.2 90.,,
169.2 90,j
159.6 BB.7
173.0 96.0
154,4 95...
174,2 B6,2
149.3 B3.S
100.3 50. J
95.9 47,5
86.1 43,0
92.1) 44, 8
ea.i 41,2
82,2 40,5
84.2 43,3
84.2 43,3
68.1 46.5
84.2 44, ^
93.9 56.5
137. ,, 75, >
146.8 75.3
164.4 78.2
164,4 79,6
135,1 B4.1
129,2 96. j
146.8 93,5
l6o,5 93,5
177.9 98.1,
tA
52.4
55.5
46.8
54.4
62.1
82.5
82.4
95.4
102.7
108.5
112.4
115.7
137.5
256.0
283.5
3BR.3
531.8
521.8
371.7
379.3
333.8
323.4
347.6
236.5
24-5.9
236.5
2,6
2,4
5,0
6,5
V,0
COD
38.3
21.2
31,8
10.6
15.3
10.2
26.5
33.1
39.5
46.1
30.8
43.1
55,8
25.8
26.6
26.6
26.6
31.9
42.6
37.2
31.9
77.1
64.6
06.9
40.1
47.8
4i .1
57.9
52.0
43.4
63.7
74.2
64.9
59.6
45.6
70.7
65.3
68,2
70.7
37,3
49.9
48.8
51.0
61.0
57.9
50.4
40.5
34.9
34.9
29.7
29.4
29.4
29.4
47.6
14.9
34.7
44.6
44.1
53.7
33.6
47.6
7o!o
64.5.
89,6
lll.fi
124.8
-------
Table 6 (continued).
NUTRIENT, BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN PPM.
89
90
91
92
93
94
95
97
98
99
100
101
102
1Q3
104
105
106
107
109
109
110
111
112
US
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
141
142
143
144
7,23
7,01
7,OS
7,11
7.07
7,06
7.29
7.27
7,51
6,94
7.4S
7.27
7.24
7,11
7.33
7,3u
7,41
7.4V
7,09
6.94
6.96
7,71
7.03
7,09
5.9S
7,22
7.13
7.27
4.97
7.C7
7,0/
5.98
7.3S
7.3B
7.31
7,38
7,39
7.42
7.10
7,42
7,41
7.2'J
7.2C
7.U1
7 ,66
7,83
7.5H
7.14
7,21
7.3*
7.17
7, 111
5.6S
?.8
?.8
3.3
2.3
2.6
1.7
3.2
0.6
112.7
111 4
1
:
:
t*l
:
1
i
U 5
o7
'
IP
i
? :
77
B5-J
234.5
1-jA A
-I
2748
3661
'
3499
:
'
C 5
2P45
4669
£Z'l
57916
173!4
15.6
12.4
J::
5:;
hii
41 U
J5i
a::
1C9.0
1HA i
U6|
97 3
ll'.l
71
55*2
ll'.2
37
' :?
10
Si
1
a'l
B 9
si'
33
3.1
AVERAGE v*Lubs
ORG1 N03
1.1 1S9.32
u9 1V6.6
NE Swine Effluents
114.0 O.C27 174.6 103,7 27e.7
1U9.0 0.-4Q 1/0.7 106,2 2b5.3
113.0 0,0 7 176.5 110,0 2B4.1
124.U u.vi 7 183.1 10«.7 2*5.»
lln 0 O.J 9 181.2 110,5 2B6.9
65.6
ev.a
0 0
186.9 100 0 2B2.4 70,6
IS
1*3.0
iJt:1.
S S8: iS:J «5:l; :
3:S -:^ -- -- «:|
0.-J21 189.5 107.5 204. Q 59,6
:;13 IS:! SI;! St»:l JS:
SW
S!:5
158,0
1V2 0
173 S
1J« 0
151 0
.
O.'j47 222.1 121.8 400. 0
0.^46 213.4 131.9 407.5
O.u53 217.2 U5.0 43^.4
0.027 234 5 137.5 442.1
1:1 " r,'.:; J";s :;5:;
0.^24 263. 0 133., 505.4
0 J2B 265.1 131.9 446.6
0.02a 279.6 l«.= 473.9
-
1"? 0 «.«?2 298.2 142,2 413.6
a : S:S ffi:J S!;S «';:;
'K:! ::!B 38:: 8tf 13:!
91 0 B.U17 300.3 ISO. 3 301,.^
s' 0 c D 27812 150.4 366.6
43 1 O.U43 266.3 145.7 30c.3
36.9 b 14 253.9 141.1 J62. 4
35.9 0.042 244.7 137.3 3»C.l
29.6 O.ul4 22B.7 l3u.C 367.5'
'7!:!
62.8
77.4
63.9
59,6
61,8
U:9. 209.3
68.6 1VB.7
82,1 2Z8.1
88.9 212.5
JS: 234;
74,3 200.0
:
i«:
65.1 172.5
61.3 161.5
64.0167,4
61,9 171,5
60.3 165.9
8.1
1..Z
5.2
5.0
5.1
5.1
».»
5.7
5.5
3.5
3.9
5,2
.5.1
?.Q
32.8 (J.L28 187.1 1Z9.J 472.6 58.8 162,8
2 ^
3*. 8
,4
6.3
9/.3
4,3
S 7
IS
.
8.5
3.3
2.7
2.6
1.3
'.6
79.9
94.0
L01.6
69.4
68.6
68.9
77.8
76.5
85.7
112.3
111.8
90.4
113.2
84.3
106.9
134.4
99.9
105 *
107,3
16,4.6
13319
86J3
114.0
172. »
113.1
111.7
179.8
256, a
160.0
116.6
97.2
84.9
103.8
73.5
64.2
68.6
58.3
28.5
47.4
59.7
SBJS
58.5
N32
15.56
NH4
54.?6
304 CL NA- CA HU
j.1,21 173,6 93.2 409.9 30,7
K
171.7
49
-------
Table 6 (continued).
NUTRIENT, BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN PPM.
OR|0
INAU DATA F0*l
SAHPCE PH
7 4,89
8 4 On
9
10
11
12
13
14
15
16
17
IB
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
46
47
48
49
50
51
52
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
» , - w
7,20
7,00
7,10
M»
7,19
7.30
7,30
7,45
4,90
4,90
6,95
7,12
4,91
4,73
4,78
7,06
4.79
7,29
4,70
4,75
4.94
7,62
7,22
7,32
7,14
7,61
7,53
7,36
7,13
6,99
7,49
7,30
7,27
7,06
7.99
7,61
7,23
7.31
7,48
7.45
7.59
7,52
7,59
7.60
7.11
7,27
7.29
7.10
7,44
7,10
7,09
7.19
7,23
.96
,89
,02
.9*
,98
,87
,69
7,39
7»15
7,04
7,29
4,99
ORS^i
19,6
2Q
7
2,2
2,3
2,9
4,9
3,5
0.8
5,1
1,2
2,0
1,2
1.0
1,9
28,9
14,0
1.5
1,7
3.2
2,7
5,7
4,9
4.7
7,9
1,2
0,8
0,8
3,7
2,0
2,7
5,4
2,8
1,3
l.l
1,5
0,2
2,1
2,1
2,6
2,4
1,3
1,3
1.0
2,9
1,3
7.1
7,7
8,1
10,3
5,6
3,0
2,4
2,8
2,8
5,6
6,7
9,5
7,6
7,8
Ill2
3,5
2,0
6,3
4,6
4,0
3,4
3,2
NW Swine Effluent
S'INE BARN EFFLUENT
NQ3
12,5
3 A
,2
0,6
0,8
1.3
2,9
1.3
2,0
1.8
1.7
3.5
2.7
2.0
11,5
47,6
83.3
89.2
5.4
2.0
7.7
5.6
5.6
4,3
65.4
68.2
71.0
68.5
52.6
49,8
44.5
53.4
84.7
83,6
116,0
111.8
103.9
107.8
135.1
76.9
80.1
84,1
69.8
69.8
73.6
127.7
25,2
28.3
76.7
78.0
54.6
50.2
47.4
63,3
33.9
30,7
23.2
39,6
29,0
31,4
39.6
51.1
60.5
587.0
60.0
39,9
5.7
6.4
N02
0,6
0,1
0,0
0,1
0,0
0,0
0,0
0.4
0,1
0,1
0,0
0,0
0,1
0,4
0,2
0,5
0.1
0,0
0.1
0.0
0,0
0,0
0,1
0,1
0.1
0.2
2,2
4,1
0,1
0,4
0,2
0,1
0,1
0,1
0,2
0,4
0,5
0,4
0,3
3,9
0,2
0,3
0.2
2,1
0,1
1.0
0,6
0,8
0,2
0.3
0,5
0,3
0,3
0,1
0,4
6,2
2,5
3,5
1,4
2,5
0,6
0,6
0,0
0,2
0.1
0,0
0.0
NH4
4.1
P04 CU NA CA HG
0,010 14,8 5.5 131.0 39.2
7.3 0,040 9,2 5|2 13$;o 35.'5
6,1 0,030 5,5 56 132,0 36 6
9,0 0,060 4,6 5,7 133,1 36 6
9,6 0 040 28,1 5,'8 ISl.'l 35 5
11.5 0,010 46,3 6,0 132,4 35,6
6.6 0,020 11,2 5,5 132!? 37 4
8,7 0,020 16,9 9,8 132,4 34,8
9,1 0,020 18,7 5,5 135.7 36,6
10. 4 0,050 18,7 5j3 136,8 37 2
9.9 0,010 26,2 9,2 136. B 35 9
8.9 0,020 29,9 5,2 134.7 38 1
9.8 0,020 35,6 9,7 135.7 38 6
9.8 0,030 74,9 9,7 135.4 38 9
11.3 0,030 99,2 9,8 135.8 37,8
11.6 0,030 128,2 5,4 138.8 38 6
lfl.9 0,030 143,2 5,7 136.8 39,8
lfl.3 0.020 136,7 5,2 138.5 35,8
lfl.9 0,020 146,0 5,2 136,8 36,0
12, « 0,020 144,2 5,8 136.9 38 9
11,8 0.009 146,0 6,0 145,5 63,3
14.3 0,010 146,0 10,0 154.5 84,4
15.5 0,005 149,8 48,0 166.8 64,2
8,0 0,016 131,1 47,5 396.2 77 8
7.4 0,020 129,2 90,0 197.4 78,0
7,4 n.nn.t 130,3 . « « «,» - I"';:
7.3
5.1
7.9
6.8
9.3
13.3
17.1
16.5
13.8
15,6
14.8
12.8
11.3
H,»
10. 1
9.2
9.0
9.0
lfl.9
13.3
13.3
13.9
9.6
13.9
6.8
8,6
7.9
9.0
5.8
7.7
lfl.1
16,0
14.1
21.2
16.4
18,1
19,1
22.7
ll:l
24.2
- » --- *»*!«. 3^f« *O
-------
Table 6 (continued).
NUTRIENT, BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN PPM.
91
92
93
94
95
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
142
143
144
7,0»
4,94
J.84
4,84
7.04
7,56
7.49
7,03
7,51
7154
7,24
*|93
7,42
7,26
7j42
7,24
7,07
4,91
4,94
7.39
7.18
7,13
7,00
7,16
7,09
7.19
7.33
7.49
7.04
4.95
7,67
7.50
7.09
7,11
7.01
7.92
4.89
7,37
7.26
7,00
7,09
4.98
7,71
7,68
7,09
7,33
7,06
7,07
7,00
7.00
9,1
3,4
2,8
2.8
3,0
o,<
3,6
3,0
I,9
s,i
4,3
3J6
«,7
S,6
3,0
5,8
3,6
4,2
4,1
9,2
4.2
3.2
2.5
2,9
4,1
3,4
2,9
1,9
2,2
2,2
1,4
i,:
0,7
0,9
o,:
0,9
1.7
0,5
0,5
1,2
1.2
3.8
0,5
0,2
0,3
0,9
0,9
*,8
0.6
0.9
18.7
2,5
2.2
4,0
5,2
3,6
7,2
6,9
17.5
29,6
T24.6
25,1
18,9
24,0
21.1
21.7
13.7
19,4
8,8
18.8
4.8
28.3
9,9
32,7
79.4
25.7
53.5
55.3
60.5
93.6
132.1
122.7
125.1
127.2
132.4
142.4
157.3
183.0
158.5
169,1
158.5
160,4
173,5
205.3
360.2
476.2
474.3
149.9
234.6
177.5
o.i
o.o
0,0
0.0
0,1
0,0
0,2
0,1
4,9
1.3
0,9
4|6
0,2
I,4
o!2
1,0
0,1
0.9
0.2
0,3
0.3
0.7
1,5
17.8
15.3
10.0
21.8
5,9
5.9
5.9
7,0
25.4
41,2
21,0
31,4
21,9
12,9
19,7
12,4
6,2
10,8
7,3
6.2
3,6
3,3
4,7
4,6
3.5
5.3
4.8
NW Swine Effluent
34,9 0,027 177M 112JO 369,1
38,0 0,016 186,0 119 0 381.0
36.8 0,034 187,9 116.5 390.4
38.1 0,034 186,9 119,0 342.2
57,5 0,028 187,9 95 0 336.5
36,1 0,064 183,1 8BJ7 192,7
43,2 0.040 185,0 91 2 273.1
46,0 0,020 182,2 91,2 331,3
47,9 0.03H 184,0 92,5 327.9
58,9
81.8
62.1
55.9
59.0
68.2
63,7
63.5
66.1
59.7
68.8
63.8
63.2
75.1
87.3
86.3
86.8
9Q. 2
81.5
97.3
88.3
99.6
112.0
uo.o
119.0
134.0
106.0
85.7
93,7
87.0
80.4
82.0
81.7
84.4
78.6
80.9
76.6
72,5
67,6
62,8
65,7
0,030
0,329
0,018
0,021
0,023
0.002
0,012
0,031
0,317
0,326
0.030
0,030
0,027
0.939
0,059
0.018
0,014
0.011
0.011
0.017
0,020
0,017
0,011
0,014
0.317
0,011
0,011
0,009
0,009
0,017
0,546
0,019
0,014
0.048
0,022
0,032
0,014
0,048
0,014
0,042
0,035
178,4
185,0
172,3
167,9
163,1
166,9
171,6
168,8
181,9
178,0
181,9
189,5
176,0
181,6
190,7
215,4
165,7
209,2
207,1
213,3
215,4
221,6
225,7
223,6
225,7
229,9
223,6
219,5
229,9
215,3
216,9
248,1
249,5
249,5
254,3
244,7
244,7
239,9
218,3
215,9
223,1
107 0
135.0
100,0
nojo
105.0
107,5
107,5
105JO
113,1
116,2
113,1
105,0
107,5
116,2
110(6
110,6
118,8
118,8
113,1
116,2
123,7
123,7
123,0
133,7
130,0
128,7
125,0
116,2
129 0
118,6
192 4
I22:i
131 6
126,8
13l)l
124,5
128,0
123J8
117,9
119.8
122,1
359,8
107,1
183.4
186.5
329.4
331.4
346.4
347.1
344.0
357.3
201.2
362.4
364.0
347.3
329.1
404.9
392.2
381.8
406.5
374.0
254.6
299.1
403.4
463.2
539.6
503.1
469.2
520.5
488.4
304.8
404.2
441.6
501.8
4B5.1
364.5
331.9
349.4
346.0
296.6
2*4.0
310.1
93 3
92 2
90,0
91,3
98,5
100,8
107,5
98,1
90 3
99,6
78 7
89 1
83,3
86,7
93,4
91,7
118,1
110,1
88,5
86,3
85,6
89,9
89,2
73,5
116,8
112,1
113,8
112,3
107,4
118,5
91,4
119,3
92,8
94,7
87,6
98,6
94.2
100,0
90,9
97 8
133J7
108,1
93.9
97j2
93,1
91.5
80,8
7l|*
68,6
68,0
100, a
111,2
106.2
131.2
125,0
118,7
153,1
156,2
143,7
156,2
131.2
87,5
131,2
111,0
89,2
101,7
113,3
115,4
119,2
119,2
125,1
121,0
122,8
111,5
109,0
137:2
228,1
300,7
393,8
265,5
146,3
191,2
133,5
163,4
140,1
65 3
149,3
81,9
18.6
14,0
12,8
13,4
2,9
4,7
13,1
13,4
13.6
19,3
14,2
14,7
10,8
8.4
16,5
fl!4
4,3
415J8
416,8
416,5
541,3
388,8
1816,4
333.2
187,2
184,4
175,7
113,2
267,8
175,0
192,0
452.2
225.4
_ i
99i2
74.4
113.5
99.2
147.6
172.2
46.6
97.2
172.9
110.0
97.2
87.4
94.4
75.5
68.6
59.'2
66.6
63.1
38;o
61,6
69,7
',0
1
i
AVERAGE VALUES Fa*; SW|NE EFFLUENT
ORG* N03 N32 KH4 f>04 C
3,5 72,97 6,76 38,34 0.022 158
,7
NA CA Mli K
80,5 328,6 83,8 25,7
51
-------
Table 6 (continued).
NUTRIENT, BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN PPM.
SE Swine Effluent
DATA F33I S'INE BARN EFFLUENT
ipie
i
2
3
4
9
6
7
8
9
to
11
12
13
16
IB
1»
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
46
47
48
49
50
51
52
53
56
57
60
61
62
63
64
65
66
68
69
70
71
72
73
74
75
76
PH
7,30
7,35
7,50
7,39
7,80
7,28
7,30
7,36
7.75
7,50
7,75
7,80
7.80
7,35
7.30
7.35
7,72
7,65
7,43
7,04
7,35
7,45
7.75
7,57
7.27
7,27
7,89
7.55
7,28
7,03
7,70
7,45
7,18
7,19
7,02
7,88
7,41
7,44
MS
7,1*
7,61
7,28
7,40
7,45
7,55
7,52
7,35
7.40
7,45
7,55
7.55
7,68
7,73
7,52
7,33
7,44
7.07
7,10
7,86
7,77
7,37
7,17
6,99
7,03
7,49
4,89
7,0V
ORSfi
1,1
2,«
0,1
0,1
2,<
2,8
2,1
1,6
C.4
1,3
1,3
2.5
0,3
0,5
1.7
1.9
1.2
1,2
1,5
0,2
1,2
0.7
0.8
0,5
0,0
1,7
0,3
0.?
0,2
0,1
0,3
0,3
0,3
0,2
0.2
0,6
0,2
0,2
0,4
o,«
o,»
0,8
0.6
0,9
o,?
0,3
0,5
0.4
0,3
0,1
0,1
0,2
0,7
3,2
3,2
4,1
4.3
4,7
u
2,7
<,7
1,1
*,1
3.2
4.4
3,4
NQ3
1.0
2,8
3,8
7,5
7,3
13,3
24,8
67,0
65,8
69.6
105.5
99.4
85,7
71.4
40,4
27,8
31.8
46,5
44.3
85,0
75,4
123.6
146,9
156.0
216,8
236,2
158.9
2P5.6
226,3
193.3
187.5
180.1
135.0
223.6
170.7
175,4
236.0
294.7
186.6
208.2
2)8.4
189.1
188,7
164,1
144.1
229.2
141,4
215.4
194.0
197.0
204.2
174.6
194.4
215.1
200.1
196,6
191.0
164.1
173.0
150. !>
117.;'
97. (1
122,0
97, '1
75. 'i
96, (1
105,6
N02
0,1
0,1
0,2
0,4
0,1
0,1
1,3
1,5
3.9
6.5
5.8
8.5
3.6
3.3
1,8
1.4
1,2
1,2
1.5
2,0
0,6
0.7
0,0
0.0
o.o
2.5
1.2
c.«
O.'
0,7
0.8
1.0
1.2
1,2
O,'
1.0
1,0
0.8
1.1
I,5
2,1
2.2
2.3
2.9
0.8
5.1
0.0
1.8
1.8
2,4
2,5
2,8
19,4
37,7
29,6
23,0
40.1
23.0
28,4
16,6
15,3
7.4
0,4
1,1
0.4
0,4
0.5
NH4
0.1
0,1
0.1
0.1
0.1
0,1
0,2
0.2
0.3
0>2
0,2
0,1
0.2
0,3
1.2
1.2
Q.8
0>5
0.5
0,7
0,1
0.5
1,0
1.7
o.o
2.4
1.0
8.7
0,5
0.5
0,3
0,7
0.7
1.2
0.2
0.3
1,1
1,3
1.5
1,5
1,1
2,1
1.7
1,9
0.6
1,9
1,1
0«9
1,5
0,6
0,5
0,9
0,6
1,3
1,5
1,5
1,7
1,1
1,7
0,6
0,9
1,*
0,7
1,6
0,2
1.3
0,4
P04
0,012
0,025
0,017
0,024
0,024
0,040
0,020
0,010
0,021
0.013
0,017
0,011
0,014
0,014
0,020
0.030
0,010
0,020
0.020
0,030
0,030
0,020
0,020
0,020
0,030
0,026
0,005
0,00!
0,167
0,017
0,003
0,009
0,016
0,005
0,008
0,016
0,014
0,020
0,027
0,027
0,030
0,065
0,042
0,000
0,010
0,018
0,018
0,020
0,020
0,040
0,016
0,010
0,012
0,007
0,047
0,090
0,020
0,058
0,060
5,0*0
0,007
0,005
0,021
0,040
0,040
0,012
0,009
CL
5,9
11,1
24,1
46,3
48,1
66,6
88,8
138,8
144,3
144,3
151,6
195,4
197,3
104,8
138,5
138,5
139,5
142,3
155,4
161,0
168,5
168,5
149,8
146,0
134,8
119,8
117,9
114,1
110,5
110,5
112,3
114,2
104,8
110,4
110,4
108,3
113,1
115,9
121,6
125,4
133,0
129,2
133,0
134,9
117,8
140,1
129,2
114,4
110,6
104,3
105,5
101,6
93,9
135,1
119,4
121,4
121,4
125,7
122,3
65,6
95,9
80,2
94,0
94,0
86,1
90,0
99,8
NA. CA
5J9 62.5
6?8 67,4
ars 70,2
8^3 72,5
10,0 72.2
12,8 76.6
12,6 86.4
19,9 88.5
13,8 93.6
16,3 96,0
19,6 95.5
29,5 97.7
26,4 97.5
29,3 102.0
36,5 134.7
36,5 170-5
39,5 162.5
45,0 203.6
50,5 239.5
79,3 320,7
70,5 34Q.9
82,6 301.4
88,8 292,4
91,8 266.7
102<0 292,4
102.0 371,7
86,0 297,3
82,: ces.s
85 5 291,5
84 0 289.5
94 5 345,5
93.0 327,6
83.0 345.5
93,0 370.0
92 8 373,4
81.0 34Q.O
86tO 432.2
81,0 389,7
83.0 371.0
63TO 402.6
88,7 373.4
95 7 3B9.2
99 5 368.0
82,5 360.8
75,0 325.5
65,0 315.1
76,2 277.1
73,1 255,8
68,8 262,2
76,2 306.1
79,4 330.7
67,5 315.2
71,2 26Q.6
76,2 312.8
66,9 315.2
67,5 315.2
72,5 355.3
73,6 358.4
7o,g 336.6
46j2 2V4.Z
47.2 2S4.8
45,0 254,8
49 0 266,9
47,0 254.8
44,8 221,5
50JO 270.6
52,0 265,7
WO
25,4
26,6
28,3
28,6
3Z;s
45,2
43,7
48,3
46,0
52,2
49,9
51,8
52,0
55,6
60,6
58,2
58,2
66,6
75,3
75,3
77l2
79,0
92,0
81,6
92,0
89,0
82;9
30,0
80,3
81 2
90,3
63,5
86 4
66,1
83 5
85 8
95J
98,9
77,8
93 0
88,5
97,2
91,0
85,8
73,2
79,8
72,7
73,5
75,0
78,9
97,5
75,0
71,9
86,2
76,2
65,3
90,6
92,6
83,6
64 3
56,0
54,9
56 9
55 8
55 4
62,0
62l2
K BOO
4.4
'!z
6.0
9,2
5,6
7.8
2.6
2,4
2,4
2.2
1,9
2,3
2.5
5.9
5.5
a. 4
4,7
7.2
3,0
3,0
z!<
4.6
33
33
23
33
« «
3 4
36
« 6
3)3
3.8
1,4
16
l|7
*.7
l|3
1.3
5,6
2,3
i.a
0.9
1.0
o.a
1.6
1.3
2,0
2,7
2,5
3,6
41,5
140,0
124,?
269,2
238,9
265,2
307,4
436,2
296,0
COO
22,0
33,0
44.0
33 0
40|9
39.4
42. a
42.4
93.0
98.3
30.6
35.7
93,0
59.2
49.3
32.2
32.3
42.6
37,2
93.2
62.9
93.2
58.9
47.1
06.1
29.4
80 7
12.6
93,2
54 0
64.1
31 2
26. '9
36,0
42 3
34 8
93 8
27 1
43 7
36! 7
44.0
39 4
31 1
3l|2
22.4
49.9
43.7
32.5
17.2
30.0
32.0
41.0
51.7
42. a
38,1
47.6
82.4
86. fl
443,2
333,6
446,4
441.0
442,8
539.0
992,0
34;, a
52
-------
Table 6 (continued).
NUTRIENT, BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN PPM.
77
78.
79
68
61
62
63
84
86
87
91
94
95
96
97
96
99
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
142
143
144
»,96
4,94
7,04
4,94
7,35
7,15
7,33
7.18
7,79
7,48
7,14
7.01
7.47
7.45
7,44
7,71
7,04
7,11
7,16
7,47
7,52
7.60
7.6J
7,24
4,87
4.94
7.27
7,13
7,05
4,90
7,18
7, Id
7,29
7,30
7 37
7,01
4.94
7.50
7,67
7.54
7,19
7.49
7.36
7,05
7.31
7,20
7,23
7,24
7.03
7,72
7,63
7,63
7,57
7.47
7,42
7.26
6.95
o.o
0,6
4.Z
3)l
3,7
4,4
1,8
1,4
1,2
2,5
0,6
1,7
0,6
0,6
0.0
1.1
0,0
3,8
1,»
0»
02
1,'
0,4
0,9
1,6
0,9
0,4
1.1
1.7
0,6
2,*
2.6
3.1
0,6
0.6
0,9
0,8
0,4
0.4
0*4
0.5
0.8
0.6
0,6
0,5
1,4
1,3
0,3
2,3
1,1
0,3
4.5
10.0
0,9
1,3
1.1
0.5
78,0
92,0
81,4
81.1
72.0
63,4
83,8
106.5
107.9
100.0
128.6
127.4
117.5
167.0
168.6
226.0
139,9
159.4
123,5
141,9
188.1
95,5
164.6
128,3
117.2
171.1
176.6
85.5
227.2
224.5
243.2
161.4
200.0
264,5
239,2
244,8
239.9
268.0
160.0
170.0
158.2
159.3
158.8
156.7
152.4
107.5
171.0
266.4
134.1
154.8
169.9
333.0
429.9
354.6
154,7
177.5
168.0
1,1
8.9
2,2
1.2
1,1
1.0
0.9
l.U
0,9
0.2
1.4
2,1
2.9
1.5
1.3
0.9
0.8
0,8
0.7
1.8
0,4
0,2
0.4
2.3
2,0
2,2
2,5
1,1
2,0
I,9
1,8
I,5
1,1
I,4
3,5
3,0
3,5
1.7
1,3
4,9
1,1
2,9
1.4
3.3
Oil
0.3
0,1
0,4
0,4
3,4
0,4
0.4
1,8
1,5
1,1
0.1
0,7
SE
1,1
0.6
0.2
0.2
0.2
0.2
o.o
0>2
0.3
0>2
o.«
1.3
1.1
1.3
1.1
0-9
1.2
1.2
I.9
1.2
1,"
2.1
3.Z
1.5
1.1
1.1
2,0
2,3
4,1
3,6
3,9
4.4
1.1
0.4
0.6
1.1
0.3
Q.2
0,7
3«1
1.9
1.9
2'9
2.0
1.4
1.2
2.3
2.3
1.3
1.7
1.1
1.5
0.5
1.6
2,»
1.6
1.7
Swine Effluent
0,008 84,2
0,013 82,2
0,013 80,3
0,026 78,3
0,020 88,1
0,018 78,3
0,036 101,8
0,009 93,9
0.009 105,7
0,013 107,6
0,034 114,5
0,019 128,4
0.022 126,5
0,012 118,9
0,038 126,5
0,049 145,4
0,035 102.9
0,018 169,0
0,023 156,7
0,027 157,5
0,016 162,2
0,007 157,5
0,021 166,9
0,021 165,0
0,020 183,8
0,017 179,9
0,024 172,3
0,030 212,5
0,008 170,4
0,018 168,5
0,011 167,7
0,027 167,7
0,027 165,7
0,024 178,1
0,022 173,9
0.024 163,6
0,011 167,7
0,017 180.2
0,017 169,8
0*011 184,3
0,018 161,5
0.013 186,4
0,011 205,0
0.011 196,7
0<013 200,9
0,002 191,9
0,038 196,6
0.014 248,1
0,017 196,7
0,012 201.5
0.017 196.7
0,042 206.3
0,049 215,9
0,060 203,9
0.007 201,5
0.014 196,7
0,009 199,1
S2.0 283.0
49,0 242,6
45,5 235.2
4415 213.5
66,5 196.5
86,5 177.6
98,0 350.0
96,0 297.8
57,5 274.7
58,5 204. 8
67,5 267.2
76(2 208.1
60,0 220.9
48,8 231,8
51,2 230.3
58,8 279.7
60(0 277.0
90,0 35(5.7
77,5 269.9
82.5 338,3
90|0 303.2
87,5 319.1
87.5 339,8
113,"1 339,8
95,0 379.3
97,5 405.0
97,5 394.8
95,0 374.2
97,5 379.3
105,0 379.3
105 0 401.2
97.5 433.1
10S;0 428,1
105 0 455.1
105 0 453.0
98,8 424.8
100,0 233.9
105(0 304.7
102,5 364.5
100(0 606*9
96,2 531.7
98(7 553.3
110,0 417.0
97,5 459.4
102(5 488.4
100,7 399.9
107,3 412.1
109,5 313.4
119,1 313.4
105,1 345.3
108,0 320.0
109,0 309.5
117,6 357,6
108,8 355.5
106.2 364.5
104,4 317.4
104(4 322.6
61,4
56,3
51,8
53,4
53,0
50,8
61,6
56,1
56,7
59,4
60,4
63,9
61,2
58,2
63,8
66,8
67,7
82,9
65,8
73,9
71 1
75 0
7l|5
71,3
6515
73,1
70,0
65,7
73 1
74 0
75>
103,9
101,3
108,5
103,3
100,4
98,7
108,0
98,4
93i5
100,6
92,3
94,5
90,5
87,2
117,9
90,9
98,2
99,6
94,8
93,4
91,9
95,2
89,5
90,6
I
81,2
86,6
15,6
21,3
21,9
22,5
24,4
21,9
18,8
41,3
26,3
21,3
50,0
32,5
31,3
25,4
33,3
56,7
50,6
28,9
32,7
J6i3
41,7
40,4
62,8
42,0
34,0
442,8
408,6
171,2
197,9
81,6
75,5
44,8
47,8
12,8
32,5
5,0
10,7
19,0
3,8
3,0
2.4
2,7
2,6
1,6
3.1
793,6
744,0
392,0
439,2
240,0
133,3
141,0
110.0
99,6
24,3
55.4
49,2
58.3
62,4
66,9
97.1
51,5
49,2
39,6
43,7
46,0
38,1
50.6
3M
3«.7
2«.B
31J7
44.2
44,2
53.4
48.6
59.2
75.0
145.0
136.0
66.0
118.0
63.7
172.0
208.0
208.0
179.0
64,2
SJlNE EFFLuENT
ORIH "NQ3 N3« NH4 P04 CL NA CA MB
1,4 150,63 6,70 l.H 0,022 135,2 74,3 297,9 74J7
53
-------
Table 6 (continued).
NUTRIENT, BOD AND COD ODNCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN 'JPPM.
SW Swine Effluent
ORIGINAL DATA F0*l S'INE BARN EFFLUENT
0
SAMPLE
1
2
3
4
9
6
7
8
9
10
11
12
13
16
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
39
36
37
38
39
40
41
42
43
44
46
47
48
49
90
51
52
93
56
97
60
61
62
63
64
69
66
68
69
70
71
72
73
74
79
76
PH
7.30
7,00
7,49
7,15
7.24
7,10
7.10
7,18
7,20
7.40
7|5o
7,55
7,90
7,80
7,30
7I20
7,40
7.66
7,69
7,27
7,46
7,73
7 79
7l32
7,14
7.20
7,73
7,28
7,31
5.97
7.68
7.52
7.30
7.21
5.95
7.41
7.43
7,45
7.11
7.14
7.50
7,21
7,50
7,55
7,56
7,58
7.66
7 70
7,70
7 65
7 55
7|5e
7,60
7,20
7,40
7,31
7,43
7,60
7,82
7.86
7.32
7.67
7.23
7.13
7,78
7,27
7,22
ORB^I
1.1
1.2
0.1
0,8
1,7
1,8
2.1
0,4
0,6
I,7
2|5
z,*
0,5
10.8
I,7
i|s
2,2
12
i|z
1.0
1,2
OJ7
0.5
1,0
1.0
0.8
4,5
0,1
0.1
0,1
5.6
0,2
0.2
0,7
0.2
0.4
0,2
0,2
0.4
0 ,6
0,6
0.6
0.4
0,2
1,4
2.0
0.7
4|4
4,4
0.1
0,2
02
o|e
z,6
2,1
2,3
«!
2,8
0,0
0,2
0,4
0,4
0,4
0,9
0,0
Oil
0,0
N03
7,0
8.3
10.9
37.5
41.5
39.0
44.5
56.0
83,3
63.9
95.8
104.7
72,4
56.5
50,7
37.3
32,3
35.8
34,5
59.2
52,2
79.9
106,6
142.1
231,9
291.1
192,0
292.0
346.6
297.6
289.1
254.5
336.3
326.1
245.1
274, i
321.?
361.7
259,3
269.0
314.4
212.6
168.7
212. {i
246,9
19fl.<
292. ti
331, C
231, (i
242,1
237. (I
267. !i
279, (I
287. J!
298.1)
294, !i
277.11
259. !i
250,11
245,!i
230.9
241. V
254 .!>
208.7
244.11
292.1!
2A3.
0|4
0,6
*!2
8.6
9,8
8,5
8,9
9,3
15,1
8,0
8.1
7,7
0.7
0.8
0,8
0,8
0,8
NH4
0.0
0,0
o.o
o.o
o.o
0.2
0>2
0.2
o.o
O.2
0.2
0.2
0.1
1.7
1.2
0)5
0.5
0,5
0,5
0.3
0|2
0.2
o|e
o.a
o.o
1.2
1.0
0.2
0*1
0.1
0.1
0.1
Q.3
0*2
0,2
0,2
1.1
0.7
0.2
0.2
0.6
0.8
o.o
0.2
0.2
0.2
0.2
03
Ol*
o.i
0.4
o.i
o.o
o!s
0.2
0.5
0.2
0.2
0,4
0.0
0.4
0>6
fl.8
0.5
0.2
0.2
o.o
P04
0,014
0,017
0,020
0,019
0,018
0,010
0.000
0,005
0,029
0.018
0,052
0,022
0,017
0,015
0,002
0,005
0,030
0,020
0,020
0,020
0,020
0,040
0,050
0,010
0,030
0,010
0,013
0.003
0,003
0,1)17
0.009
0.009
0.064
0.024
0.018
0.014
0.020
0.010
0.038
0.038
0,016
0,021
0.027
0,007
0,002
0.010
0,015
0,015
0.020
0,019
0,032
0.023
0,066
0,028
0,020
0,010
0,015
0,072
0.063
0.029
0,010
0,016
0.024
O.OOP
0,028
0,1114
CL
7,4
8,3
32,7
84,5
72,2
83,3
596,2
144,4
144,4
157,3
161,0
157,3
114,2
119,8
161,0
131,1
131,1
134,8
132,6
134,8
104,8
125,4
147,9
149,8
149.8
132,9
147,9
149,8
149,8
146,0
144,2
147,9
142,3
142.3
142.3
144,4
144,4
149,2
146,3
152,0
157,8
157,8
146,4
126,4
144,4
110,2
129,2
99.1
99,1
105,7
110,7
122,6
125,3
129,2
129,2
133,1
115,5
119,4
122,3
107,7
109,6
111.6
113,5
97,9
117,4
121,4
125,3
NA CA
5,2 96.9
6,9 96|6
5,5 58.5
7,5 57.7
8,2 69.3
10,4 69,9
11,5 83.2
13,2 88.3
22,1 89.0
28,2 90.0
3C.1 90,5
34,4 95.5
38 2 110.0
42,2 132.4
41,5 156.2
4l|5 182.7
43 8 171.3
45 5 194,8
48,5 162,8
56,0 238.6
49,'o 178.6
58 0 191,8
75,0 185.1
84 0 273.3
99 0 351.9
103,0 304.1
93,0 414.6
96,0 394.5
96,0 415.3
101,0 421.8
101,0 424.3
103,0 446.7
98,4 494.4
101,0 442.4
102,0 49C.2
98,0 471.2
100,0 465.9
95.0 445.0
96,4 430.5
91,0 363.9
107,0 5.43.8
97,0 459.8
95,8 477.4
80,0 413.5
97,5 308.2
71,2 296.2
SO 6 331.4
65 0 261.3
65 0 261.3
67 2 298,2
65 0 340.4
75,6 380.7
71 9 351.5
6lj9 393.7
61,9 415.1
73.1 382.0
65,6 331.9
65,6 359,0
68,1 400.4
55,0 331.9
58,1 296.9
60,5 317*8
55,3 315.7
56,2 300'D
96,0 296.8
56,0 3l4.0
58,0 326.1
MQ K
21,2
22,0
39,9
34,1
42,1
42,0
44j2
48,4
48,5
46,1
43,6
49 9
49,0
51,1
51,8
53,8
52,8
57,6
60,3
61,8
52,8
64,6
72,4
79,8
96,9
98,6
98,2
99,6
1D3,7
109,0
109.0
109,4
111.4
110,9
111,3
111,3
111.6
106,0
99,2
93,3
107,5
103,7
105,5
93,7
110,5
97,3
104,8
96 2
96,2
101,9
e«,2
103,9
98,7
98,0
103,0
98,5
80,3
84,5
92,9
73,0
65,1
6816
68,1
69»7
68,9
71,0
75,8
BOD
3,6
3.9
??
1,5
1.5
5.0
M
1,5
2,1
2,6
1,7
S«!
2,2
4,0
3.1
3,5
2,4
2,3
2,1
2,5
1.2
2.7
2.5
2.6
1.1
1.4
1.4
1.7
1.6
1.6
1,6
2.1
1.3
1.7
1.4
1.6
1,9
:i,e
2.0
1,8
1,5
1,0
X«2
0,9
0,9
1,0
1.6
1,5
1,8
1,2
i;i
1.4
1*1
1.3
0.6
P. 7
0.6
0,6
0,4
1.1
COD
16.5
22,0
27,5
49,6
45.4
27,8
31.9
56,3
30.6
42,4
i
20>
33,1
15-1
24.6
25.8
25.6
36,7
41,9
41,9
36,7
42.6
47.9
41,1
15.4
39,2
75,3
63.1
43.9
47.4
36.8
41,7
53.7
47.4
33.1
26,7
31.3
45.6
39.5
32.6
47.2
47.6
33.2
29.1
32.5
36.7
35.6
89.5
27.3
12.0
32.0
37.1
37.1
23,6
28,6
28,6
26.1
32.1
45.5
29.9
34.7
34.7
56.8
39.4
19.6
47.6.
44,6
54
-------
Table 6 (continued).
NUTRIENT, BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN PPM.
SW Swine Effluent
77
78
79
60
81
82
63
64
66
67
91
94
99
96
97
98
99
102
103
104
109
106
107
108
109
110
111
112
us
114
119
116
117
118
J19
120
121
122
123
124
129
126
t27
128
129
130
131
132
133
»34
139
136
137
138
141
142
143
144
AVERAQE
7,27
7,61
7.21
7.00
7.60
7.19
7.14
7,0V
7,82
7,34
7,10
7.04
7.39
7,36
7,22
7,97
6,92
7,31
7.09
7.48
7.49
7.69
7.43
7,19
6,86
6,90
7,35
7,12
7,24
6,92
7,16
7,19
7.24
7,18
7,11
7,18
6,86
7,50
7.39
7,62
7,11
7,25
6,93
6,95
7,3V
7,4V
7,04
7.31
6,98
7,76
7.98
7.61
7,72
7,47
7,22
7,23
7.07
6,90
VALUES F
0,1
0.
1.
1,
1,
1,
0.3
0,1
0,1
0,9
0*0
1,7
0,9
0,6
2,3
0,0
0,0
1,7
1,7
0.9
0.4
0,6
0,4
0,2
1.1
1,3
0,6
0,4
1,1
0,7
0,9
1,1
0,9
1.3
0,0
0,8
1,1
1,9
0,1
0,1
7,8
4,7
1,3
1.9
0,9
l',l
0,5
1,4
0,3
0,9
2.6
0.8
0,6
0,9
0,9
0,5
0,5
231,9
219,6
209.5
220,0
194.5
187.2
241,0
246.7
190,9
262.1
273.1
285.8
999.9
441.2
401.6
449.0
220.7
301.4
277.9
296.2
292.6
182.6
338.2
227.7
188.1
213.4
242.0
106.6
249.8
231,1
242.2
163.1
118.8
245.7
242,4
251.5
279,9
315.9
235.2
250,8
247.6
262.1
268.2
290.1
318,8
246,4
239.1
248,0
224,5
218,2
206,0
S92.7
478.1
478,1
140,2
162.8
299.4
219,5
0,8
0,9
0,9
1,0
1,0
1,1
4,3
1.4
1.5
7,2
?,0
1,6
1.9
1,6
3,4
4,7
4.2
5,9
4,6
5.3
3,fl
6,8
2.3
3,8
3.8
11.4
11,4
2,3
9.9
3.8
6,0
W.I
10*6
19,5
7.0
7.0
0,1
o.i
o.i
7,0
7,0
6.9
16,5
15.2
12,4
13.1
8,6
6,9
5.0
5.0
5,0
5.0
4,5
4,0
4,0
3.4
3.6
3.6
0,1
0,1
0.4
o.i
o.i
o.i
o.i
0.2
Oa
o.o
fl.5
0.3
0*6
Q.6
1.1
0.6
0.5
0.0
O.Q
0.4
0.6
0.4
0.4
0.4
0.6
1.3
0.9
1.3
1.7
1.4
2.C
Q.3
2.2
1.9
0.6
0.3
0.3
1.5
2,0
2,7
2,5
2,6
0.1
2,7
2,0
1,6
0.1
2,7
2.0
1.6
2.8
2.5
2.5
2.0
2.7
2.9
2,8
0,028 129,2
0,025 123,3
O.C20 129,2
0,008 140,9
0,014 148,8
0,006 142,9
0,006 152,7
0,036 154,6
,0,033 152,7
0,031 172,2
0,016 170.7
0,009 188,8
0,013 181,2
0,018 190,7
0,012 198,2
0.032 207.7
O.C38 205,7
0,031 209,6
0,021 197.3
0.021 207,5
0,023 163,1
0,014 168,8
0,016 172,6
0,016 169,7
0,026 170,4
0.005 168,5
0,015 164,6
Q.005 166,5
0,024 151,7
0,024 153,5
3,018 164,8
5,011 171,"
0.009 171,9
0,008 171.9
0*011 178,1
0,013 190.5
0.006 198,8
3,001 215,4
3,008 234.0
0.011 236,1
0,013 240,2
0,011 252,6
0,009 256,8
0,009 248,5
0,009 260,9
0, 007 252,7
0,017 304,2
0,009 238,7
0.02? 225,5
0,012 223,1
0,038 232,7
0.021 225.5
3,042 225,5
3,042 232,7
0,025 215,9
0,028 211,1
0,048 213,5
9,026 223,1
61,0
58,0
59,5
67,0
50,0
46,0
57,0
52,0
53,0
55,0
92i5
102,5
95,0
87,5
95,0
105,0
107,5
117,5
112,5
1*0,5
113.1
110 i 6
105tQ
110,6
118,8
107,5
107,5
100,0
105,0
105,0
102,2
100,0
107.5
102,2
105.0
105jO
105,0
112,5
117,5
116,2
113,7
123,7
125,0
1ZC.O
122,5
123,5
125 0
122,0
125 7
123 5
125,0
125.0
122,0
121,3
lie, e
126,4
122,7
126,4
305.8 75,2
301.2 70,3
295.4 69,0
328.2 81»6
342.7 43,4
388.1 67,6
441,1 90,6
438.3 86,7
377.8 79,3
400*5 87,9
402*8 93,6
388.4 98,5
448.8 93,1
455.4 99,6
519.6 104,3
494.7 112,9
437.3 104,3
368.8 91,9
367.8 88,0
387.5 92.4
412.2 86,2
399.3 88,3
434.3 89,0
413.4 87,8
444.9 113,3
401.2 71,4
426.6 76,0
418.9 93,8
398.3 71|6
418.9 68,8
40C-0 63,5
43^.1 100,2
433.1 102|0
443.2 103,3
456.8 101,7
475.7 103,9
321.0 117,9
200.2 104,6
480.5 95,8
722.0 127,5
644.1 107,5
603.3 90,9
689.8 88,7
636.1 77.4
613.8 87 0
611.2 81,4
432.4 107,7
347.4 bl 5
326.6 79,5
309.5 73 6
318.7 71,8
335.2 76.5
385.4 68,8
33J.2 92,4
306,9 69,7
273,8 65,5
314. V 68,0
321.3 69,0
48,8
34,4
36,3
4858
50,0
63,8
75,0
75,6
93,5
97,5
107,5
78,8
llOjO
112^5
101j7
101,3
114,8
113,6
113^4
123;9
121,6
129,5
127,8
126,7
129,5
132)8
1,4
1,6
0,9
0,8
1,2
1,2
1,4
1,4
2,2
2,7
2,8
1,7
1,2
2,1
1,8
1,9
1,9
1,5
1,3
i.7
2,5
1,8
,
1,4
0,7
0,5
1,5
1.7
1,3
1,3
0,2
0,1
0,6
0\6
0,3
1,2
1 . 0
7.9
29,8
24,8
39,2
34,1
28,8
28,5
37,6
40,0
39,8
24.3
36.6
39,3
38.9
38.7
47,8
42.8
46,8
44,3
34.7
48.6
96.0
38.1
46,0
34,7
31,7
74,7
68.8
59,0
v
43,7
64,2
50,0
63 1
34JO
47)2
51,9
53|9
44 2
53*9
38.8
19 0
37 9
44.8
3*1 SJlNE EFFLUENT
ORQ1 NQ3
i
,1 226,74
N32
7,37
NH4
0,71 0
P04 CL NA CA MS K
.012 161
,3 81,9 J49
,0 82
,9 119,7
55
-------
Table 6 (continued).
NUTRIENT, BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED TN PPM.
OftlQHAL DATA
rjR
NE Dairy Effluent
DAIRY EFFLUENT
SAMPLE PH OR31l N03 N02 NH« P04 CL NA CA HQ K 800
i! Si I'i1 "is i:l 8: §:*« &$ *!*»*:» 5''9 *«
: , '! S- 5 i 1:1 »K K W 1'»:5 itf :
11 Illllllil 1
: :S 'i;5 ". : ! i S:!8 8:? W SW 55;? '? :
: ; } '! : ::J 5:58 5:5 3;! JSS:? a:: J:
11 740 05 24 33 0 9 0 024 7,8 47 133,6 32,2 16.6
i : i ::; ::s ws w tf aw S;t s;s
« ,'tl l'\ I'l «;S « i' ' " «'' 2" .!!
is i; ,:i ; ; J:? ws ::: % |||:| B:| . ;
5J 5:S 5:5 8:S 5:5 i:l 5:58 , : : : : :
K !!"; J-5 !!:S !:! i:! !;!" 15:5 »: "5:5 «;? :
; ;;s ,5 1 : s:i ::ss 3:! ::: K:t S:: :
PH sij >>i ill lii !ig i;i $ Si s;; :
is 11 ;1 ii: s!? i:S Sit si: Sii ai: §
| ig |!S jii : i its i:S sii 2|i 8i! iSI Si
Ifl6 7 40 05 43 00 13 4 0 003 62,2 U 2 431.5 113,5
iS? I'll 05 26 00 U 8 0 025 54,2 12 2 442.7 113,8 _.J
ill 494 OS 26 00 U 3 0 031 69,5 11,2 4Z9,1 111,2 709.0
JSI 1*84 53 68 g 1 Ifl 3 0 023 67,0 12,5 393.0 97,2
ill 692 50 97 01 S 2 0 029 67,0 12 5 453,9 144,5
[{I 700 05 6,7 33 e 3 0 033 67,0 12t5 407.5 94,3
Hz 6*91 04 46 00 8,3 0,021 68,9 Ilj2 3B4.4 81,3
JJI 7 16 04 11 7 00 1^5 0 039 61,8 12^ 453.9 100,5
IS s'.iS o',4 nil l\l '',; o'.on «,; 1^5 ne.. ,i,4
115 *.74 n.4 4.1 0.1 6.7 0,021 63,2 11,2 352,2 74,6
*A^
116
* A»*
117
lie
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
» « '
$.33
* t
7.18
6.80
7,45
4,89
4,98
7,62
7,58
7,13
7,08
4,96
7,01
7,01
7,56
7,34
4,97
. 7,06
4.86
7.57
7,73
7.52
7.57
?,23
V
o.
3 2.3
0.3 1.8
0,4 2.0
0,3 5.0
0.2 3.1
0,2 6.9
2,6 11,2
2,4 5,1
1,2 6,1
3,3 7.8
1.9 7.7
3,3 6,5
3,3 6,|
2,0 6.0
2,8 7,!i
3,0 7,:i
1,7 5.9
1,4 5.->
2,8 5,4
3,6 5,2
3,6 9.1
2,4 7,9
3,5 3,7
0,0 6,3
0,0 3,1
0.1 6.3
0,1 5.5
0.1 5,5
1.1 4.6
1,5 3,8
0,1 6,8
0,1 4,9
0,7 6,9
0,2 4,9
0,2 7.9
0.2 7,9
0,0 8,8
0,1 9,3
0,1 8,9
q.i 9,0
0,7 4,5
0,1 13.0
0,1 15,2
1,1 13,3
0,3 19,0
0,1 13.4
0,022
0,024
0,028
0,022
0,020
0,018
0,021
0,024
0,017
0,022
0,017
0,011
0,011
0,013
0,012
0,017
0,017
0,014
0,027
0,032
0,038
0,014
0,035
78,7
78,7
78,7
82,8
84,9
95,3
111,8
113,9
116,0
116,0
101,5
116,0
116,0
116,0
116,1
110,5
117,9
101,7
101,7
109,0
110,8
112,6
103,5
8,0
11,2
11,2
10,0
11,2
11.0
12,0
12,0
13,0
T2,0
14,0
13,0
13,0
13,0
12,8
13 9
93 4
15,2
14,3
16t7
20.4
21,2
19t9
426.
4
338.1
322.9
353.4
335.5
309.8
362.0
345.5
4?9.3
401,3
363,7
1?4,4
154,4
204,2
136,4
287.6
143.5
244,4
282.1
?36.9
271.2
366,4
369.4
98,7
99,0 4,8
88,3 5,0
97J5 5,5 112,0
95,7 6,3 103,0
102,6 6,0 43,3
88,9 6,0 38,7
94,7 6,3 6,8
75 1 6,5 6,1
70,9 6,5 18,7
73 7 6,3 17.7
79,5 7,5
79,5 9,1
88.7 8,0
94,1 7,3
93,5 7,4
9iS,5 7,2
71,9 8,0
97,6 8,6
109,5 9,0
100,6 9,4
115,5 10,3
100,1 10,7
COD
64,6
52,6
49,3
54,6
46,8
465.9
446.7
408,0
4?6.7
243,4
146,7
64,7
79,4
79.4
93.1
127,9
?4.5
142,8
114.1
198,4
272.8
343,0
439,2
249,6
333,7
517.0
575.0
595,2
796,8
1458,0
1632.0
1555.2
2516,4
2008,0
1428,0
1380.0
1444,0
I
71410
1
292 10
297^0
694.0
297,0
297,0
123,0
243,0
97.2
197,0
100,0
194,0
145,0
188.0
259,0
171.0
192,0
83,3
3*0-0
380.0
555.0
473-0
I97./1
56
-------
Table 6 (continued).
NUTRIENT, BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN PPM.
141 7.0« 4.4 3.8
142 7,29 3,9 5.6
143 4,72 4,2 1.9
144 S,8« 3,6 9.6
VESA3E VALUES FfUl D»IPY £F
ORQ^ NQ3 N32 K
2,1 10,53 1,77 4
0
0
0
0
FLyE
H4U
,62
,2 15
.1 16
.1 24
.1 19
NT
?04
0,024
NE
,6
.3
.«
.6
C
61
Dairy Effluent
0
0
0
0
l
.3
.071
.042
,008
.020
NA
11,
107,1
110.8
117,9
125,9
CA
9 292,
19,9
20,7
20.8
22,3
»a
3 60,
321.3
296,7
356.0
331,3
K
6 «,
101,2
95,9
10«,3
102,1
0
llil
11,2
13.9
12,6
14*6
57
-------
Table 6 (continued).
NUTRIENT, BOD AND COD CONCfi'NTKA'i'lOHS -N
BLWRS EFFLUENTS EXPRESSED IN PPM,
OH1QUW. DATA FJR OAlHY EFFLUENT
*
SAMPLE
29
30
31
32
34
35
48
49
30
32
65
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
66
87
88
95
too
101
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
PH
7.24
J.22
7.94
/I5J
7,3*
7. 98
7,60
j',79
7,80
7.85
7.53
1.02
3,03
7,53
7,63
7,52
7,36
7>
7,49
7*3B
7.76
7,72
7.39
7,22
7,69
7.41
7,36
7,32
7,56
7.71
7,33
7,52
7,71
7,87
7.64
7,77
7,32
7.42
7,04
7.11
7.48
7. 00
7,08
6.82
6.81
4.64
7j21
7,06
7,46
7. IS
7.00
7,86
7,43
7,69
7,17
7,14
7 U
7.48
7,59
7.70
7,19
7.4B
7.. 06
7,86
7.92
7.63
7,64
OR3M1
2.4
1.0
1,9
i!»
0,0
0.2
I.*
1.5
1,0
1.2
0.7
0.2
0,2
0.3
0,4
0,6
0,4
o,«
0,2
02
0.2
1.1
1.&
2.5
2,9
1,"
1.2
1.6
1.6
1.2
2,0
1.8
0.1
U.I
0.2
1,9
1,5
1.7
1.9
3,4
2.2
0.3
0,7
1.6
2.4
2.5
2.2
1.3
2.1
. 2,0
1.6
1,2
1,0
z|4
1.4
0.9
1,3
1.6
1.7
2,0
4,1
2,5
2,2
1.6
1.9
1,4
4,1
NO 3
4.5
4.4
3.3
2.8
3.5
8.1
10,9
13.1
11.3
28.4
6.9
6.4
5.5
1.2
3,9
4.6
4,0
6.4
4.8
5.4
5.0
4,4
3.3
3.1
2.6
2,0
1.9
2,4
2,2
2,4
5,4
2,7
0.7
0.3
1,8
1,4
0,9
1,3
4 ,4
6,4
5,1
2,8
7.1
4.5
2.0
6.4
2.4
1.9
3.4
2.5
4.6
7.6
4.0
7.8
9.2
9,4
10.1
15.1
18,5
15>,2
1(1.6
221.2
17.9
26,1
31.1
63,i
10V.3
N02
0,2
0,1
0.1
0,1
0,0
0.2
0.2
0.1
o.i
o.o
1,1
1,1
0.7
0,6
0.7
0,0
0.0
0.0
0,0
0,0
0,0
0.0
0.0
0.1
0.1
0,1
0,1
0,1
0.2
0,3
0.4
0.7
0,1
0,1
0,1
0.0
0.0
0,0
0,1
O.o
0,0
0,0
0,0
o.o
0,1
0.0
0,0
0,0
. 0.1
o.o
0,1
0,1
0,1
0,1
0,1
0.1
0.1
0.1
0,1
0,1
0,1
0.1
0.2
0<2
0.2
0,2
0,2
NW Dairy Effluent
NH4
0.9
o.o
o.o
0,0
0,0
0,0
o,a
0,0
0,6
0,6
0.1
0.6
0,0
1,1
0,9
0,7
0.6
0,9
0.2
0.4
0,2
o.o
o.o
0,0
0,0
0.0
o«<»
0,0
0,0
o.o
o.o
0,0
0.9
0.6
0.5
0,4
0.7
0,4
0.6
0,6
0,5
1.3
1.1
0.9
0.5
0,8
0.2
0,1
o,J
0.5
0,0
o.o
0,7
0.0
0.»
0.7
0,1
fl.O
5,3
0.2
o.i
0.2
0>7
0,2
0,6
i.J
0.8
P04 CL
0,007 5,6
0,010 5,6
0.000 0,0
O.UOO 0,0
0,000 0,0
0,000 22, &
0,033 3, a
0,049 3,8
0,045 5,7
0,066 5,7
0,012 9,8
0,010 4,9
0,010 4,9
0,1)12 7,8
0,027 5,9
0,021 5,9
0,011 5,9
0,021 5,9
0,016 5,9
0,038 7,8
0,020 7,8
0,023 7,8
O.C28 7,8
0,044 7,6
0,038 7,8
0.030 7.8
0,040 5,9
0,027 7,8
0,056 9, «
0,021 17.6
0,033 19,6
0.054 23,5
0,009 25, 5
0,326 24,5
0,009 15,1
0.014 22,6
0,028 19, 6
0,028 16,9
0,017 3.1
0,026 28,7
0,018 28,7
0,024 28.7
0,000 31,6
O.U18 35,6
0,030 42,4
0,018 47, fe
0,021 45,6
0,022 47,6
0,027 51,6
0,022 58,0
0,018 64,2
0,021 82, H
0,017 93,2
0.017 84,9
0,322 101,5
0,017 107,1'
0,017 101, 1>
0.013 101. 5
0,017 103,5
0,022 95.5
0,019 97.4
0,032 99,2
0<059 90,8
0,312 83,5
0.032 85.3
0.049 105,5
0,05Q 127.1
NA CA
7,5 105.9
4.5 89.1
45 81.6
5,0 87,0
4,5 103,0
9,0 197. 4
5,5 9d,0
7,0 »6,0
9,0 0,0
0,6 127, /
5.0 82,4
9,3 71.4
40 71.4
4,3 73.5
4,0 73.9
3,8 79,0
4,5 79,0
4J3 70.6
3,8 69,9
4,0 69,9
90 82,4
5,5 88,2
5.0 81.1
5,5 81.1
6,0 86. 6
6,0 109, Q
6,0 135.3
6,0 135.0
6.0 122.1
6,3 132,1
7tO 143.6
6,3 126.0
2,5 141.9
3,8 122.7
5,0 123.9
9,4 142.7
8,0 125.0
6,0 141,2
10,0 164 ,1
10,0 131.7
7,2 173.3
7,2 157.4
9,4 160. i
10,0 164.6
8,0 295.1
5,0 1V0.7
9,4 197.8
9,4 21?. 2
10,0 219,4
11,2 205.0
7,0 198,9
9,0 195,7
9,0 220.9
10,0 295.9
10,0 307.1
10,0 302. 1
9.0 135.2
10.5 136.4
10,0 218,3
9tfl 129.2
9,4 198.1
10,9 162.9
13,7 267.2
16,2 167.9
20,5 194.0
25,9 205.4
JO, 4 248.4
HQ
38,8
23,4
23,5
23,8
26,5
56,0
20,6
21,7
0,0
28,4
15,7
13,1
13,9
15,4
14,6
16,6
17,5
I'l4
15,4
15,4
18,3
19,3
20,9
22,1
Z4,8
?4,8
26. *
28,6
26,5
30,1
30,1
31,4
32,6
30,2
31,3
36,6
34,2
31 ,8
33,5
32,4
34,6
33,6
34,6
35,1
54,2
47,2
42,7
49 0
49,5
51,1
56,1
77,7
51,6
53,9
50,4
57,3
36,6
56.9
54,4
56,!'
98,?
98,
-------
Table 6 (continued). NUTRIENT, BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN
NW Dairy Effluent
. 7iM i,. i£.s 5-1 j:$ ;; i5<°8:; il\l *":« a:?
141 7,17 (1,8 51.0 0.2 0,' Utu^ * 44« ^ 66f3 a(i
1« 7.71 2,2 55.2 0.2 J.» J.04J M7,i ^ g ^s^ ^^
J8 ;:' ':' li':J 5:1 !S S:S2a2fl5.9 ^.
AVERAGE VALUES FS^D*«RY EFFLUENT CA M0
59
-------
Table 6 (continued).
NUTRIENT, BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN PPM.
Dairy Effluent
ORIOHAL DATA rj« DAIRY EFFLUENT
s
SAMPLE
1
4
10
H
12
IS
14
15
16
17
16.
19
20
21
22
24
25
26
SO
31
34
35
36
37
38
39
40
41
43
44
45
46
47
48
49
90
1
52
55
61
63
64
65
66
66
69
TO
71
72
73
74
75
76
77
re
79
80
61
63
64
65
86
17
66
9
0
PH
6,99
6,70
TV. 00
7.35
r.so
7,60
7,59
7.50
7.50
7.30
7.30
7.40
7.90
7.97
7.73
7.40
S.OO
$.01
7.87
8.06
S.04
9,10
7,59
7,69
7,27
7.9B
7,51
7,36
7.16
7,76
7,31
7,36
7,40
7,40
7.42
7.50
7.46
7,49
7I34
7,04
6,93
5,97
ft, 97
7,36
7,73
7.38
7,45
7.81
7,81
7.61
7,02
7,02
7,18
7,14
7,09
4,94
7,44
7,19
»,97
ft, 98
7,01
7,9*
7! 15
7,19
7,52
7.67
OR01I
1,4
2.1
3)o
2,4
3,5
3,0
2,5
3,5
J.7
3,4
1,4
0,8
2,7
3,0
3,4
1.9
1.5
2.9
2.7
2.0
1.9
3,7
3,6
M
4,0
3,3
4,5
«.9
2.1
2.6
2,3
S.2
M
','l
2,4
0,3
4,7
9,0
*.'
s.e
j,V
3,4
4,5
1,'
S.3
3,6
2,4
3,7
1?2
2,9
1.0
3.5
M
20
07
2,5
3J5
3,t
NO 3
60.0
40,5
3.3
3.1
5,2
3.5
8.6
7,8
4.4
3,2
3.2
2.0
3.3
3.1
2.4
3,7
4,9
7. a
5, a
4,3
7,3
7.;s
4, a
4,7
7.6
9.2
10, S
12, «»
11.6
7,1,
7,3
7.7
14,6
8.1
6.r
8.1
11,$
13, r
19.2
,1
,4
.*
,t
.1
.6
.5
.5
7.5
7,4
5,3
5.3
4,4
4.3
2,7 ,
2,7
1.7
2,0
2,3
2.8
3,9
5,4
5.3
5.0
6,6
3.1
0.6
N02
1.1
0,1
0,1
0,0
0,2
0,2
0,3
0,4
0,3
0,3
0,3
0,2
0,3
0,2
0,2
0,2
0,2
0,0
0,3
0.2
0,2
0,3
0,3
0,2
0,3
0,2
0,3
0,3
0,5
0,4
0,4
0,3
0,2
0.2
0,1
0,1
0,1
0,2
0,7
1,7
1,3
1,1
1,6
1.2
0,8
1,0
1.3
1,1
0,1
0,1
0,1
0,0
0,0
0,0
0,0
0,0
0,0
0,1
0 1 *
u 1
0,0
0,1
0,1
0,1
0,0
0,1
0.1
NH4
.
0.0
0,5
0,4
0,2
0,2
0.3
0.5
0.5
0,6
0,6
1,0
1.0
0,8
0,3
0,7
0.7
0.8
0.6
0,6
0.3
0.3
0.5
°'3
fl|9
1,5
0.9
1.3
1,9
1,7
0,9
0,9
0,9
1,1
1,5
1,1
1,3
0,4
0,6
1,1
1,3
1,1
0.9
oU
0,6
0,7
1,0
0,6
0,4
0,4
1,5
flj4
0,9
0,4
0.4
o!6
0,6
1,0
0,1
1,3
O.J
I,6
2.1
P04
0,027
0,029
0,000
0,240
0,030
0,005
0,010
0,080
0,050
0,020
0,030
0,010
0,010
0,020
0,020
0,030
0,020
0,020
0,018
0,008
0,008
0,009
0.010
0.010
0,010
0,009
0,009
0,009
9,310
0,018
0,029
0,018
0,021
0,018
0,022
0,031
0,030
0,030
0,041
0,005
0,066
0,036
0,007
0,033
0,020
0,025
0,005
0,013
0,016
0,021
0,024
0,018
0,012
0,013
0,028
0,023
0,023
0,026
0,0(9
0,606
0,021
0,009
0,006
0,021
0,028
0,034
0.034
CL
12,0
14,8
7!4
7,4
9,3
9,3
,6
,3
,5
,3
,3
13,1
11,2
14,9
16,7
19,6
16,9
20,5
20,6
18,7
9,4
16.9
16,9
18,7
27,6
30,4
37,1
36,1
45,6
45,6
47,5
47,5
49,4
47,5
45,6
47,5
53,4
55,5
47,0
37,2
45,0
37,2
41,1
36,7
39,2
45,0
43,1
41,1
45,0
42,0
43,1
45,0
45,0
41,1
39,2
37,2
37,2
35,2
47,0
43,1
54,8
54,8
70,5
72,4
73,5
7«.3
NA CA
4,0 66.0
4,5 M,0
5,0 89,2
5,2 92,0
9,5 67,5
9,4 92,9
9,0 95,6
9,0 96,0
4,9 98.4
4,6 99,9
«,4 123,7
4,0 144,9
4, 103.0
4, 125,9
4t 194,4
4, 169,2
4, 144,9
9,0 144,6
9,5 1«,9
9,4 110,0
9,2 131,8
4,5 146,0
6,0 163,6
6,0 226,4
6,8 178,2
6.4 226.4
8,6 212,7
8,0 242,6
7,0 204,3
19,0 187,8
8,0 202.8
10,0 167,2
10,5 167,2
10.0 189,9
Ilj5 176,5
88 178,2
9,0 142.7
9,4 141,9
7,5 140,8
9,3 179,2
13,1 1*3,7
8 1 166,3
8,7 1J6.1
7.9 170,3
8,1 160,6
7,3 149,0
8,5 150,7
7,0 141,7
7,5 139,2
7,0 134,2
7,7 124,9
8,8 121,2
9,0 123,4
9,7 157,6
10,7 112,0
12,5 131,3
10,7 115.4
11,0 113,6
12,3 131,6
13.7 166,6
18.0 143,2
13,5 155,1
13 5 196,9
14,5 168,0
19,5 145,1
17 0 1>8,3
15.'0 162.0
NO
32,0
31,8
30,8
33,5
36,0
35,5
37,5
36,6
38,9
39,5
41,6
42,7
45,4
49,2
49,3
49,8
50,8
51,2
49,9
51,9
52,9
43,8
55,2
59,2
61,4
59,2
60,3
66,0
51,6
47 3
49 2
40 2
40,5
45 6
39 6
42 3
41,4
4.3,2
45 5
36 1
32 5
34 9
32 2
34,0
31 ,'9
30,1
34,1
32,3
31,2
32,0
28,0
27,0
27,8
33,7
30,4
32,0
30,1
32,9
30,9
34 1
32,6
36,0
34,2
40,4
40,2
40 5
41.9
K BOO
' i
1.0
1,0
1,0
1,0
1,0
1,0
1,0
1,0
2,5
4,9
68,4
7,1
6.6
11.1
11.7
12,3
15,5
22,4
4,1
19,0
21,4
24,7
25,3
21,7
23,5
11,5
12.1
10,9
12,7
16,0
7,2
8.4
10,1
6,3
7,8
3.1
2.5
3.9
9,5
4.0
4.9
1.2
1,8
2.5
2.5
3,5
4,9
4,1
4,3
9,6
5,5
6,4
5,6
6,4
3,6
jl
i!
5,
13,
J:
6.
COO
77.0
77,0
63.6
59.6
72J8
66,2
53,0
85.5
85,5
80,1
70,8
78.8
90.4
65,1
95,8
101.6
117,1
122.4
136.8
147,3
143,0
93.2
136,2
154,2
127,8
137,2
144,1
112,3
100,0
96.4
63.2
83,2
76,7
78.0
73.2
81. 6
78.2
73,2
62,0
61,5
61.9
76,6
54>
50.6
54.8
64,5
66,6
58.6
64.0
53,9
66,6
44,6
54,6
64,5
68.6
63.4
48,0
52,3
5o|o
49.6
59,8
77,8
57,6
89,3
79.9
60
-------
Table 6 (continued).
NUTRIENT BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN PPM.
SE Dairy Effluent
91
92
93
94
5
96
97
96
99
103
10*
105
106
107
108
109
110
111'
112
113
114
115'
116
117
116
119
120
121
122
123
124
125
126
127
126
129
130
131
132
133
134
135
136
137
138
141
1*2
143
144
AVERAGE
7, or
6,98
6>
6,94
r.09
7.10
7,23
7,71
6,86
6,97
7,68
7 55
7.22
7,32
7,02
6>
6,68
6.64
6.67
7,03
6,55
6.66
6,54
7.04
6,84
7,12
7.10
6.62
6.93
7.1«
7.41
6,9!>
7.00
6.7«
7,01
7.61
7,41
6.92
7.1»
6,87
7 79
7 69
7 61
7 50
7.21
7.26
7.35
6 75
6.74
VALUES r
3,«
3,0
30
« 5
53
*,*
55
s,«
0,9
4,8
3,9
»,9
2,6
2,6
2,8
3,0
3,2
3,3
3,3
3,5
2,0
3,1
3,5
2,8
1,4
2,7
2,5
3,6
90
0»
55
5,1
1,1
51
I,9
1,7
I,6
25
*\*
C|f -. - ,
6.3
6,9
5J5
7.5
6,2
10.2
8.5
5.3
2.4
0,5
4.6
6,7
1,4
1.6
1,7
5,0
6.2
6.0
4,5
6,6
6,7
2.4
1,6
4,4
2,6
2.4
2,9
5,9
9,0
2.6
9,3
5.1
6,4
6,4
7.2
12.2
9.5
17.4
21.0
13,9
19.3
25.0
124.6
82.6
105.2
38,9
83,1
73,3
70.1
0,2
0,1
o!?
0,1
0.1
0,1
0,1
0,1
0,1
0,1
0,1
0,2
o.o
o.o
0,0
0,2
0.1
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,1
0,0
0,1
0,1
0,1
0,1
0,0
0,1
0,1
0,1
0,1
0,1
0,1
01
o!i
0,1
« 1
0,2
0,2
02
0.3
0.2
0.3
0,3
0,3
1.2
1,2
lj3
1,'
18
1.7
2.1
2,1
2,1
2.9
1.6
2,1
2,2
3,0
2,8
2,3
2,1
3«1
2.8
1.1
3,4
3,4
3,6
3,9
4,0
3.3
3,3
4,i
3.3
3,3
2,5
3,8
3,S
3,9
4,1
3,0
3,7
3,2
3,6
35
2,8
3,6
3.6
3.6
4,2
3,3
4,1
4,4
4,2
0,027
0,009
0,009
0,003
0,028
0,023
0,032
0,023
0,043
-0,015
0,027
0.016
0,017
0,031
0,031
0,008
0,023
0,036
0,024
0,027
0,053
0,036
0,027
0,028
0,029
0,024
0,027
0,030
0,028
0,024
0,022
0,017
0,021!
0,024
0,024
0,024
0,027
0,043
0,012
0,017
0,027
0,017
0,056
0,063
0,042
0,078
0,000
0,028
0,042
72.5
66,7
76,3
70,8
74,6
71,7
76,5'
73,6
83,1
73,2
72,6
74,5
77 3
79 2
77 8
86,1
86,1
91,9
91,9
98,0
84,3
90,1
99,3
97,3
101,5
97,3
103,5
103,5
107,6
116,0
118,0
128,4
14&.0
153.2
155,3
151,2
144,2
132,9
153,5
159,8
163,4
178,0
239,7
190,7
214,3
219,7
228,8
253,9
365,9
3*1 DMRY EFFLUENT
ORQS NQ3
3
,0 11,86
N32
0.48
KH4
1,70 0
»04 Cl NA
,025 70
,8 20,
CA
2 172,
17T9 1*9,8
22,5 150,9
21 2 158,2
22,5 132,2
21,0 138,4
17.5 138,0
19,0 155.1
22,5 1*2,6
17,5 151,8
20 0 153,9
25 0 146,5
29JO 167,3
21,2 172.0
2lt2 172,7
23 1 164,7
31J2 170,4
29*7 102,0
25,0 177,6
23,1 210,1
27,5 169,3
29,7 216,1
27,5 195,2
29,0 219.4
29,7 233.9
31,2 530,3
31,2 207,4
31,2 238.7
32,0 208.2
34,5 160,1
37,0 217.2
39,5 267,6
39,5 267,6
46,7 3J.3,*
47,0 195.3
46,5 158,8
46,5 153,2
44,5 156,9
46J6 215.7
44*9 172,8
46,8 309,9
5l|l 216,9
54J4 238L,1
74!9 266,3
61J8 2*4,4
64 2 256,4
64 4 259,1
6BI4 265,8
66,9 263,1
73,7 279,4
Ma K
4 46^6 »,
3913
44 1
41 7
39 9
39 8
39 6
45,7
53,2
*1,9
44,3
37 9
43,6
49,7
46,9
45 7
40 2
45,7
53,6
41,1
40,*
38,4
39,9
97,7
57,0
57,1
93,8
99,4
68,6
71,8
61,1
97,0
57,0
?7 ,t
61,7
65,2
62,7
69,2
68 8
64 5
66 6
63,6
65,5
83,3
65 2
69 4
67,4
70 6
72 1
77,4
4
18,5
10,4
10,3
11,0
10,3
10,6
10,8
10,8
10,7
11,9
11,3
14.0
10,8
10,3
11,2
9,4
11,0
9,0
9,2
11,1
9,7
10,3
10,4
11,6
11,3
12,0
67 92,4
6,8 64.3
61 78.4
6,5 96.4
5,6 82,6
5,6 67.8
6,6 81.3
7,6 71.4
8,4 e».»
2,5 11»,0
72 92.3
119.2
123,6
143.
1440
127.0
111.0
147.0
122.0
i
12*0
17J.O
I
1W.O
1*7.0
J9?0
/ OfJQ
ftl
IOC.O
tWM-
f+5.6
i6e.e
*«.fc
'!'£
I1JL7
61
-------
Table 6 (continued).
NUTRIENT BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN PPM.
SW Dairy Effluent
9R1QIMAU UATA r;
T
SAMPLE
i
4
10
11
12
13
14
15
16
17
16
19
20
21
22
24
23
26
30
31
34
35
36
37
38
19
j 7
40
41
43
44
45
46
47
43
49
50
51
52
61
63
64
65
66
63
69
70
71
72
73
74
75
76
77
78
79
60
81
62
3J
64
85
66
67
6B
89
90
91
PH
7,00
5.80
7,30
7,5b
7,38
7.63
3.05
7,70
7.9!>
7,40
7,41.
7,40
7.92
3.11
7,9J>
7,43
7,82
3,02
3,20
3,1V
3.30
7.95
7.90
7.3S
7.36
* r9
* , '
7,7V
7.41
7,?e
7,82
7.46
7.4i>
7,50
7,55
7.50
7.52
7.62
7.62
7,51
7.D5
7.U2
7. CO
7.88
3.18
7,95
7,2(1
7.42
7,13
7.P2
7.7B
7,'J6
7.U2
7.?6
7,13
7.CV
4.90
7,61
7.0«
7, ft*
7.«3
7.12
7.7/
7,33
7,27
7,2*
7,13
7,fl7
IR JAIRY EFFLUENT
ORB .11
1.
1.
1.
2.
5.
2.
?.
1.
3.
'i.
2.
2.
J.
1.
1.
j.
?.
2.
'.
2.
1.
1.
2.
2.
3.
I
* .
3.
2.
4.
2.
2.
?.
2.
?.
2.
T
J
3.
?.
2.
>.
7.
4,
7.
2.
1.
?.
4.
?.
1.
4.
2.
3.
1.
1.
2.
1,
4.
2.
1:
2.
1.
0.
',
J.
4.
2.
4
5
R
7
1
0
2
3
C
7
5
7
C
5
9
4
5
7
2
2
9
2
9
0
2
4
T
1
2
3
3
2
3
6
1
6
7
5
7
B
n
9
7
3
3
2
&
7
1
3
3
6
s
0
4
G
4
6
9
2
0
9
4
9
1
0
3
a
f'G3
48.4
28.5
2.2
2..
7.
4.1
1C. 5
24.2
16.8
11.1
8.2
5.7
6.4
5.4
4.2
?,5
2.9
4.2
5,0
3.4
6.5
4.5
3.0
3.1
5.5
6. 7
9.6
11.1
18.6
39.0
20.3
20.3
25.2
20.5
19.8
17.0
15.8
75.6
11,4
9.5
10.2
fl.5
6.
4.2
b.l
6.7
4.6
5.0
4.4
5.5
6.
u.,,29
j.i,23
U.,26
u,o32
u, j27
U'j4j
J.u5f;
J.'j2l
U.«l"
0. jZl
O.J3V
O.U-'4
1) , o -5 1
U«u27
CL
14.8
14,8
6.5
5.6
7.4
7.5
7,9
13.1
11.2
9.7
9.3
9.3
9.4
8.4
9,4
11.2
9.4
11.2
9.4
11.?
5.6
5.6
7.5
7.5
9.4
1 A 1
A V . *
18.0
22.8
38.0
55.1
58.9
65.6
45,6
60.8
68.4
62.7
66.5
72.4
86.1
78.3
78.3
62.6
62.6
858.7
51.4
52.8
1-1.9
58.7
66.6
60.7
5?. H
59.7
52. B '
35.2
45. j
48.9
50.9
611.7
6,j.i>
60.7
66.6
7(1.5
74.4
78.4
75.4
77.3
77.3
NA
4,3
4.5
5,0
5,u
5.0
5.5
4.8
4.5
4,2
3,8
3.7
4.4
4,2
4,2
4.3
4.1
4.1
3,3
4.4
4.2
4,2
4.7
4,3
4.2
4.5
4 1
^ t *
6.1
5,5
5.u
5.5
7.0
6.3
5.5
Id. 5
8(J
8,1
P,5
11,2
10.6
l.u
10.6
8,5
9-.
1 \J
7.5
7.2
',2
0,6
3. J
ia. j
7.2
7.2
8. "5
9,0
8,3
9.7
IS. 5
l?.o
14. J
16..1
17.
18,.:
11.5
21.5
22. «
*7.5
25,1,
28.7
*
CA
77.0
Bo .0
88.0
86.5
»2.5
9;,. 5
9;'.2
9(..B
V3.0
95.5
93. U
123.0
101.6
110. &
123. 9
155.1
13U.8
50.3
85. u
66.2
76.9
101.6
142.2
136.2
2*2.2
17 7
j. f i. . '
IBu .7
165.8
161.0
163.7
1!»7.9
157.1
132.6
144.7
147.2
132.3
138.9
143.0
174.4
172.7
171.1
143.7
160. 8
133.3
118.8
11^.3
117,7
129.3
133.6
115.4
115.4
114. V
112.0
93.6
114.7
109.3
116. 8
197.3
175.4
174.6
1B3.6
179.2
1B8.V
146. 0
162. B
IBu.l
165.7
1Q
37,0
42,5
41,5
38,0
35,6
36,2
38,3
38,8
38,9
40,8
4?,2
32,2
32,6
34.2
35,6
41,8
41,2
39,3
40,3
41,5
43,5
Z5.8
46,4
46,0
45,3
A*3 b
^ J | V
48,3
43,6
40,6
42,0
38,1
37,1
31,2
33,4
34,5
34.4
33.6
32.7
35,9
35,9
35,9
31.9
31.9
23.7
25,6
26, B
27.4
30.2
32.2
27,7
27,3
28,2
32.2
26,9
32.3
33,0
37,7
40,0
4n,4
44,2
48,0
42,2
44,1
42.5
43,4
4^,1
40.8
HOD
o;s
0.5
0.5
C.5
0.5
0,5
0.5
(3.5
9.5
2.4
4.3
6.1
».6
5.6
3 7
cou
5S..S
54.0
42,4
13.0
46.3
132.4
46.3
56. a
59.2
49.3
51.5
51.5
64.6
53.4
#9.2
58.5
S5.5
Bb.l
94.7
62
-------
Table 6 (continued). NUTRIENT BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN PPM.
92
93
94
95
96
97
98
99
103
104
105
106
107
1Q8
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
123
129
130
131
132
133
134
135
136
137
133
141
142
143
144
AyE^A
7,06
5,95
7.01
7.20
7,18
7.11
7,94
i,97
5.93
7,91
7.7<*
7.27
7,24
7,03
5,913
5,96
7.4/
7.06
7.21
5,63
5.7*
5.44
7,0ft
5,92
7.32
7,06
5. 90
i.li
7,33
7,«7
7,29
7.10
5,94
7,19
7,74
7,72
7,19
7.40
5.99
7.63
7.92
7,16
7.10
7.40
7.51
7.18
5.9.J
5.79
GE vALJfc
ORG>1 f'
2.7 20
?.s
3.9
4.9
^.4
1.6
3.1
<:.'
2.1
3.4
1.7
2.3
3. :
2.6
3.8
3.3
3.1
1.7
1 .1
1.9
7 ,f.
-.9
3.0
3.1
3.6
3.;
'i.c
^.7
?.o
3."
'.3
2.4
1.9
1.3
1.4
?.B
3.6
2.5
1.4
2.5
2.2
3.3
?.4
2.U
w.9
1.9
2.3
1.7
1.6
S F"H i U
03 N
,U2 0
4.1
2.9
3.6
3.1
9.2
6.3
a.
3.
1.6
1.9
4.9
1.4
1.4
1.4
4.5
5e
.5
5.6
3.
6.4
4.8
2 .5
1.5
4 .6
2.5
3.5
4.7
9.2
18.5
7.4
3.4
9.2
10.5
14.6
11.2
11.7
75. 1
44.9
64. J
30.6
61.5
94.8
138.
21 ;i.2
253.8
92.
1*1.0
144.7
14C, .2
A I LJ V C F t"
ft 1 r Y tr "
32 ^
.43 1.
C.4
0.2
0.4 '
0.1
C.I
0.2
U.I
0.1
O,1
U.O
0.1
0.1
3,t)
0, J
0.1
t) V
a.-.
U.I
0.*'
0,1
0 *'
J.2
0,2
0,2
O.F
0.0
t.2
1.5
0.1
0.5
0.3
u.Z
C.'
O.?
0.1
0.7
O.T
0.1
0.1
0.1
0.1
0,1
0,1
O.Z
0.1
0,1
u,£
_ T
C . J
Leu
IT- T
:7 u
SW
fl.5
O.9
3,6
'.9
1.3
1.1
1.3
4 5
It3
2O
'
o.J.
1.3
2.1
1.9
3.0
2.8
7 .3
t , **
1.9
3.0
2.2
2.0
9 B
c . w
2.0
4 4
4 .^
I.4
3.6
1.6
n.o
D.O
2.0
1.7
2.7
2.3
3.0
2.0
3.5
2.*
2.6
2.0
1.7
1.7
2.3
2.2
5 A
°
2.8
2.U
2,7
2.8
t S
j » °
'04 - .
Dairy Effluent
(1,0 9 79.2 3b,, 158.2
O.J 3 79.2 32.5 163.7
J.U 3 83.1 JO, 5 141,2
C.ull 85.9 3c.>; 1.49. a
n.jlS 89.7 2C. J 155.1
U.D26 90.6 22,5 16-3.9
U.U29 89,7 23,0 1*3.9
u u 4 94.4 23. j 17.'.1
U f 0 ^ *
;, < 47 87.3
U w * ' w'»
O.j47 67.3
J.ul4 83.0
I1.U14 83.9
1,028 39,6
U.J41 87,3
O.u23 93.8
U,i;23 86.3
j..33 93. a
u..,31 97.6
j.122 39.9
U.U30 89.9
j.,,27 101.5
:j.i)78 101.5
0,u3a 101,5
5.^24 101.5
0,o27 103.5
g,u2B 1Q3.5
O.u30 107,7
Q.J28 122.2
U.J22 126,4
l. .1,24 142.9
O.J22 161.5
U.i22 163.6
Q.J24 176.11
0,^22 19U.5
0.017 200.9
O.jlJ! 19Q.9
0,019 192.8
U.&12 219.1
(. ,J27 178.0
C.117 221.6
1,.U35 254.3
U.u"4 259.7
. 056 26*> . 1
I))o5£. 292,4
U.jl4 267. U
0,u28 265,1
O.u42 303.9
O.jl4 337.6
31, J 197.6
31. J 137.6
31.2 171.2
33,7 185.6
35.7 187.2
31,2 182.3
35. j 1S9.3
3o.2 183.3
3.5,7 213.1
29.7 181.3
36,3 2Uj.2
37,5 212.2
36,2 IbC.'"
39.3 209.1
4u,L 217,0
4u.u 221.8
42,5 202.6
4C,. 185.9
41, C 113.9
44, 'j 339.3
47.8 207.2
51.0 288.5
34,3 3(M.i
57. 291.4
54,. 195.3
63,. 136.9
63,5 200.3
39,1 182.7
5H.1 182.7
7t,,l 1V4.U
63.2 224.7
71.9 294.5
89.2 256.4
92,8 312. d
97,6 -332.7
109. 5 384.4
104,8 360.4
99,4 311.4
1(17.2 319.8
113.1 337.1
n NA CA ^l«
.J25 91.1 26.3 l6d
43,1
47,3
44,3
42,8
43,2
47,9
46,3
43,6
43.1
43,1
43.4
46,7
46,7
45,9
3H.1
40,0
41,0
40,6
57.4
54,7
40,0
49,13
49.4
51.5
40,0
49.2
48,5
61,5
55.5
57,3
59.5
60, 0
55.3
61,3
62.2
62,2
62,2
7C.9
71.5
75.5
t>2.2
81,1
86,8
37.3
36,1
81,7
b3,3
90,2
H
'
8,8
8.5
8.0
9.4
8.8
9.0
9,3
9.3
9.5
10,0
10.0
11.3
10.3
9,2
-10,1
9.2
8.5
7.2
B.7
9.2
8.7
8,7
8.7
8.5
9.0
9,9
.
5,0
6,1
1 ,*
7.0
ii.3
22,7
22.7
6,3
6.3
2.4
1.9
2.9
3.9
4.3
4,4
1.6
1.7
1,0
3.0
,5
1.3
1.6
1.6
133.0
154,0
137,0
176.0
I
02.9
99.2
94.2
104.0
148.0
123.0
93*. 4
102.0
77.7
S3. 9
80.0
B/.4
72.9
70.8
80.0
73.5
64.2
78.4
63.1
38.0
61.6
66.7
54.3
.4 45,3 9.7
63
-------
Table 7. AMOUNTS OF NUTRIENTS APPLIED IN WASTES
TO THE BLWRS EXPRESSED IN GRAMS.
Swine Waste
SWINE 3ARNS,
Nt-4
NA
0.9
CA
M(i
BOD
CUD
KS :
is: j
;
':
si
88
s
i
10,54
83,3?
i '
5 ffi:
2194 5
:
ISM
ga:
13:5
IK:?
»?:
i::J
:
S: 1
1
!
5
1 !:?
J ; !
55 S
:i:ii
13,02
2403 4
:
-sis
74^1
g S
J'.K:5
llili
9^.4
3;
2704.1
;
:
S :
sill
34.64
Sit
509.4 24V,3
. 775.0 379,0
501,1 581,2 Z«4,3
751,3 1515.2 494,1
530,7 647.9 34/,9
£40,3 926,1 S03.9
380,5 628,8 334,0
JM.O
'
448.1
,i !
B83,8
i: i
!
S
9/.S
s
25.2 13B.<
ail!
4876, t
2968,0
i 2438,0
1335,0 27^4,11
1264,5 2344,0
1636,2 2912, B
1366,3
1321,3
1220.0
i
1230,0
1116,4
10S6.7
924,9
1043,7
1280,4
1160,2
1115,9
1018,0
1497,0
1489,9
1445,0
1222,0
1211,9
877,5
787,5
793,4
1002,9
885,0
915,0
872,0
887,0
730,4
1014,9
829,,0
888,9
1800, 0
l'30,(l
1940,"
943,7
1276,M
1383,2
1276,8
2128,0
1915,11
2158, M
2158, H
2940, U
3497,11
3050, «
1609, v
3042, »
2437,2
2129, V
2038,4
2336, W
2182, U
1686,4
2352, U
2244, 8
1440, 0
1618,4
1880,0
1200, «
2128,4
2091,6
1749,6
1920, U
14BOJ9
10B9.5
IV*?.4
:
, ,
1255,5 1974,1)
1225,4 IBdfl.U
1D»1,Z 2402,4
1270,8 21B2,*'
1165 ,,7 1960,0
941,2 1968,0
1374,,3 1944,0
1344,3 1645,6
1463,6 2868,0
1598,4 4617,6
1479,0 3369,6
1615,6 3914,4
1277,8 2610,4
1247,9 2598.4
1436,3 3?73,6
1181.9 2624,4
2784, U
24/5, i.
2668,1)
1
143213 1419,0
fiS:J
1,509,5
407,4
J642.U
3162,0
64
-------
Table 7,(continued).
AMOUNTS OF NUTRIENTS APPLIED IN WASTES
TO THE BLWRS EXPRESSED IN GRAMS.
112
113
11*
115
116
117
118
119
120
121
122
123
124
125
126
127
128
12»
130
131
132
133
134
135
136
137
141
142
1920,6
1607,4
1414,0
109V, 7
1B50.6
1350,6
1365,6
1117,4
1272,7
664,2
1650,4
44V, 9
616,8
550,3
844,2
945,2
988,3
774,9
1317,3
1088,7
963,9
935,1
1234,6
903,3
911,9
395,1
731,6
967,7
35', Ti
25,77
17,43
S.52
13,4?
13,33
12,4?
14,08
11*59
3,63
13,93
3,11
4,16
4,17
7,03
»,33
',64
7,34
1J.66
2*43
2,94
2,62
3,82
3.31
i.25
7.20
4,97
19,30
1801,0
1121,2
1227,7
6S6.U
1620.2
1412.1
15S2.7
4S6.5
956.8
622.4
1546.3
356.0
435.1
437.8
706,7
833.4
717.0
658.6
1124,0
696,8
87fl,2
829.9
10^9.8
2B5.0
799,3
346.3
668.2
838,9
58.95
36,76
33.55
29,75
35.72
22.27
23.78
37.34
84,22
33,25
B5.55
19.31
9,76
20,46
25,10
26,75
18,43
5.59
40.39
15.50
18.91
15,49
25,95
17.42
18.16
8,23
13.50
16.66
Swine
8»7.7
581,2
815.6
581,6
9*0,3
635.0
756.6
687.9
1105.1
357,2
894.6
214,3
291.1
317.5
396.8
476.2
546.2
427.5
858.0
361.6
447,8
36b,7
409.9
273.6
282,4
134,4
264.8
376,6
Waste
472.2
427,7
487, n
337,3
<80.6
349,5
358,7
350.2
565,8
195,5
521,2
142,6
160,2
18Q.9
?27,2
282,8
305,6
219,8
308,8
182.1
231,2
211,3
269,4
181,2
177,0
82,5
164,1
224,4
642,8
485,9
545.6
443,6
607,4
396,*
423.0
426,5
767,1
258,8
524.4
157,6
142, i
228.5
271,5
248,2
264,7
144,6
277,2
196,2
191,9
155,8
200,1
157.3
173,7
77,2
163,7
209,7
i37,l
171,1
19/,4
14B.4
201,7
141,0
150,1
160.5
337,8
89, b
19B.4
62,8
5/.B
66,6
Tl,->
77,0
126,9
85,2
126.8
54.1
66,0
5B.1
70 ,6
4B.O
56,3
27,1
61,8
84, »
1011,8
803,0
10*9,7
719,5
1045,5
735,9
744,0
757,3
1244,8
467,6
10V4.6
2bQ,5
342,9
367,9
479,8
5V2,4
507,7
441,5
646,0
343,4
472,4
464,6
561,0
439,9
44D,4
195,1
378,4
490,6
11.14,0
805,0
1223,0
0,0
I
668,0
653,0
775,0
550,0
2B7.0
482,0
471,0
471,0
554,0
554,0
627,0
612,0
3904.0
0,0
2976, U
2952,0
2263,0
I
1846^0
2173,0
2600,0
2916,0
2235.0
1888,0
2360.0
1862,0
1679,0
2156,0
1944,0
1142,0
1422,0
l5«3,0
SUMS MOM SWINE 3ARMS, E
TOTAL AMOUNT OF NUTRIENTS IN
TOTAL 3"GM
2,096773*003
TOTAL C.I
8,397243*004
TOTAL NOS
3,116044*003
TOTAL N*
4,431158*004
TOTAL NH4
1,732981*005
TOTAL CA
4,399374*004
TOTAL PP4
7,519224*003
TOTAL Ml.
.1,634692*004
TOTAL K
2,604420*004
65
-------
Table 7.(continued).
AMOUNTS OF NUTRIENTS APPLIED IN WASTES
TO THE BLWRS EXPRESSED IN GRAMS.
Dairy Waste
DAIRY
SAMPLE
15
16
17
19
20
21
22
23
24
26
27
28
29
30
33
34
35
37
38
39
+7
48
49
51
77
78
79
81
83
85
87
89
91
93
95
97
99
101
103
105
106
107
109
109
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
3ARNS, '
OHliN
1049,0
1034,9
41,4
398,6
457,2
286,9
423,7
302,4
458,9
670,6
647,9
970,9
577,0
709,0
269,6
1143,8
862,7
319,4
445,6
363,6
39V, 9
886,1
652,9
488,1
1230,4
1724,1
2173,4
2091,6
2353,9
1211,2
1531,5
1513,5
1547,7
2488,0
2703,8
2423,5
3542,2
1245,1
3123,1
2133,6
1290,1
2806,4
3665,5
1457,1
1327.4
3283.7
175V, Q
2133,4
155V, 7
1791,7
586,3
1780,4
1088,0
263.5,0
982,5
2468,1
659,1
653,9
896,6
HO* t9
1343,4
173V, 5
1383,8
1963.4
1051,6
1264,1
1146,7
1576.7
SA-^LE J
NiOS
15", 17
13,93
1,16
i,9S
3,47
4.2J
4,34
5,67
4,97
22.91
19,01
24,39
24,13
19,95
3,37
24,60
33,82
3,85
11,55
3,79
S.99
11,70
3,34
7,02
34.45
53.15
29,81
39,49
32.10
15'. 33
53, 1«
25^10
53,87
77.52
211.22
114,01
13,93
J.94
51,8?
24,63
11,21
*3.9<
175.5:
13,5:
92.4!.
153. (,'
55'. 0'
251.7')
12.8.!
13,2)
4.6>
19.95
23.2}
?9.6?
11. 5J
2 5', 3 7
5'. 34
4.97
3.65
ID. 42
11, 9^
14.45
13.23
9.30
5.2J
4.62
4.70
3.77
NM
4B8.3
779.4
34.4
324,2
365,2
328.5
331.0
237.5
369.6
705.5
613.9
711,8
558,4
541,5
195,2
«45.2
1024.0
208,2
294.5
2U1.3
283.5
495.1
428.2
127.1
870.6
373.8
837.5
964.8
854,6
395.2
1178.0
1362.3
1492.3
1987.7
2302.3
2379,7
3198.4
1067.8
2657.3
1782.1
3095.0
2335.4
48H0.9
1285.5
1095.6
2712.9
1600.8
19B9.7
1 3ul. 6
1630.6
344.9
1331.8
411.3
1292.5
862.2
21b8 ,6
642.3
653.7
571.8
10&1.6
1216.9
3H4.1
1197.6
17?4.6
897.3
1142.8
944.0
1259.4
P34
170.75
186.24
5,71
49,45
51.92
21.39
35,10
37,48
38.50
129.69
130.72
108.72
114.32
59.34
20.25
173.02
197.14
65.14
68,94
63.35
72.90
164.43
98,27
73.26
286.59
377.11
443,73
577,61
502.31
257.93
301.49
217.57
172.85
199.20
123.45
166, 83
193.69
64,92
98.34
65.25
33,39
100.37
201.32
66.25
71.84
178,41
102.5^
118,33
62.36
111.37
26.38
65.42
48.60
141.52
34.39
111.41
32.96
73.20
?4.4«
34,34
47,41
51,31
42,20
65.00
?9 , 66
?5.5Q
42.12
CL
784,3
797.2
32,7
294.8
396,2
299,5
399,3
231,1
365.7
570,5
427,9
570.5
394.2
469,0
160.2
911.6
882.3
535.0
71-S.O
580.5
421.4
713.0
543.0
756,6
555,7
559.7
694.6
889.1
592.7
500.1
740.7
844.0
794.4
1083.2
1730.7
1339.9
2Q01.0
482.7
1356.7
671,6
468,6
1067.1
1979.8
665.3
707,0
1663,5
880.2
1004.6
754.0
1Q71.5
2C6.2
82-3,4
846.1
1286,1
480,9
1Q4/.4
28^.7
436.5
3«i.O
476.2
571.5
66V, 3
523,8
933.0
466,0
63/,3
463,6
663,3
NA
449,8
425,8
15,5
145,7
184.0
176.4
257,2
201 ,1
308,3
371,8
320.0
414,4
320,0
286,1
95,1
509,5
370,2
137,1
152,4
91,4
162.0
288,9
168.2
154.6
499,7
608,7
040,3
923.6
784.3
446.3
635,9
370,0
302.8
424,0
564,4
539.2
779,5
230.1
667.1
427.4
251.0
533,4
1117,6
307.2
297,5
669.2
402.4
459,6
322,7
393,2
82.6
350.2
350.2
552,4
?05.0
473,3
125,3
150,3
162.5
203,1
243,8
305,6
234.6
301.6
182.6
22H.3
215.5
302.9
CA
38Q, 7
416,6
16,1
140,5
184,0
146,4
195,3
142,6
194,2
322,6
275,5
.455,4
3Z0.5
274,1
103,6
585,2
524,4
233.3
311.1
246,3
238,7
468,5
325,8
285,7
536,0
683,2
654 , u
962,4
967,2
519.5
846,9
609,5
64fl,6
640,6
729,3
681,4
695,6
291.3
740.0
496, B
296.1
624.2
1329.1
396.0
458.7
827,4
483. J
553.2
394,6
533,4
112.0
464,5
474,9
761,9
226,9
349,6
181.6
199,2
198,6
206,9
266,8
445,0
216,7
439,5
229,1
249,1
221,4
423,4
MB
134,8
166,6
/,s
55,7
73,4
56,7
79,2
59,9
80,6
139, y
98,9
96,8
9B.4
74,6
26.2
24V,>
239.6
110.8
147,7
104,6
89,3
16/.2
9Z.O
84,5
1B0.6
223.0
277.1
306,9
297,4
169,3
*64,1
314,0
294,3
352,5
329,0
299,3
J7B.5
114.0
310,$
19*. Z
103,6
*51,6
S53.5
124.7
13V. Z
Z8V.O
17Z.1
186. V
121,8
18/.4
39.6
17/.0
1AB.7
287,6
77.0
17V. 3
59,6
53,9
5V. 6
7V. 7
96,6
134,7
100,1
153,3
81,6
10*. 1
9*. V
131,6
K
20 75", 9
11/1,1
2907, Q
5699,5
1901,1
1433,,4
33V7.2
19V8.1
2217,8
1965,1
2U00.6
4*9,3
18*8,2
18*8,2
3112,1
1203,4
*V
1420 ',0
1420, U
1550,0
1469,6
1382, *
1170,4
2553,6
3Q85.8
3136,0
4509, U
3576,8
2840,4
2524,8
1976, U
1768, Z
1802,3
2088, V
3025,1
3702,4
3962,7
3657,6
3769.6
4761,6
4704. U
5568, U
4324, U
4166,4
2721,6
2726, U
3696,0
*842. 0
3499,2
4397,6
4660,0
5622.4
5952.0
6336. U
9236,0
93.56,0
66
-------
Table 7 (continued). AMOUNTS OF NUTRIENTS APPLIED IN WASTES
TO THE BLWRS EXPRESSED IN GRAMS.
Dairy Waste
135 125V,7 S.,62 1036,1 40.66 480,1 243,4. 304.3 BV.Q 1488,3
136 1677.7 3,0» 1323.8 60.51 695.8 318,9 430,0 139.6 2023,6
137 1222.2 9,3* 923.5 36.37 500,9 241,2 315,1 84,3 l**6,9
SUMS F*on DAIRY JARNS. u
TOTAL AHOUNT Of NUTRIENTS IN SMPLE
TOTAL
9.B44920»00«
TOTAL CU
5,022228*00*
TOTAL NQ3
2.020073*003
TOTAL NA
2,527587*00*
TOTAL NH4
7,550990*004
TOTAL CA
3,0921)79*004
TOTAL P0«
8,444084*003
TOTAL *<«
1,132919*004
TOTAL K
5,937711*00*
67
-------
Table 8. AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
NE Swine Effluents
3ARNS. CA(.:i'L»rFD D*TA
A
S»1PLE
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
40
41
44
4*
47
4!
49
50
51
52
66
69
70
71
72
73
74
74
77
79
89
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
0RGN
53.9
7.1
6.6
3.7
2.7
1.7
l».9
1.3
1.5
1.0
3.4
3.5
2.4
3.4
0.5
ft. 6
0.3
9.0
0.0
n.n
o.c
o.c
0.6
1.1
f .1
r.2
C.7
0.1
P. 5
0.4
0.5
5.5
1.0
G.P
P. 4
1.1
0.3
3.5
0.6
1.3
5.1
?.l
0.3
0.4
0.7
0.2
0.9
0.2
5.3
ltQt
1.31
0.8
2.3
1.9
0.4
n.7
6.4
1.7
I.0
2.5
3.7
4.5
2.3
O.fl
0.5
1.6
N35
?5?.7
2*.J
9.4
3.4
4.1
0.'
1.0
1.1
2.6
1.7
«.7
I?.)
15«.?
3M.3
5/2.2
3 J.'i . 5
1)5.3
0.2
"-. ^
1.2
l.t
r.7
245.?
» if . 7
'16.7
127.4
it-.*
25.3
127.3
15?. 1
?2f .4
!>?.<
17P.«
3P.7
55.?
?17.4
>f .?
»*.'
34.?
1 31 . :
?."
25.7
5.'. 5
56.1
77.3
2C.1
S4.7
25.1
23. *
?3?.4
455 . i
1)1.7
331.'
i 57,1
5 >!? . 4
'31.7
i 7«. 3
'SI1.?
«7.'
nj.s
HP. 7
1>7.«
U7.5
3?. 5
29.5
Sri.S
N02
0.2
0.1
0.1
0.1
O.J
0.0
O.i)
0.0
O.J
3.3
0.3
0.3
0.7
2.4
5.J
2.4
0.9
3.0
0.0
a.c
0.0
o.u
l.C
i.s
1.5
1.1
0.5
0.4
2.1
1.9
1.9
1.1
1.9
1.1
l.C
1.9
0.9
l.C
0.9
1.3
0.1
C.9
1.4
2.8
0.4
0.2
0.4
0.1
0.1
2.4
4.0
0.9
4.9
3.4
17.3
?1.6
^7.4
39.7
6.9
14.1
16.6
16.8
17.8
4.1
3.9
7.8
MH4
1.7
1.7
1.3
0.0
u.2
0.2
0.2
0.1
u.i
O.U
0.7
0.3
1.0
0.2
1.4
1.7
0.4
0.0
0.3
0.0
0.0
0.0
1.7
1.3
1.3
0.5
0.1
0.2
1.1
1.3
5.6
4.1
ifl.c
19.8
11.6
33.8
15.1
19.3
15. S
23.7
1.1
3.0
4.6
'.J
11.7
6.1
1.7
3.'J
2.5
57.7
77.. J
21'. 7
11'). 4
54.5
1b<>.4
I3r.^
<5!.7
l!>4.7
41.1
1 0 7 . U
14r..«!
3J2.4
12'. 3
3--.U
29.4
5>..0
P04
Sl-l^O
3.000
0.017
0. 036
0.007
0.0*3
O.U35
0.034
C.OiO
a. 013
0.043
0.07!8
3. 0*5
3.0?1
0.133
3.033
0.018
C.0"0
O.UCO
O.OCC
O.UCO
c.oco
0.013
* 233
c!oC4
O.Of'2
c.aci
O.CCO
0.003
C.C(.'9
C.019
0.013
c.o5ft
0.010
0.034
O.OuO
c.ooo
0.005
C.049
5.038
G.001
O.OU3
O.C10
C.U07
C.016
o.one
O.C?2
0.013
0.006
C.l"0
0.176
0.010
0.114
0.0*2
C.Q'.B
e.or?
C.G76
c.on
0.011
fl.0?4
0.0C3
C.OP8
0.0'j7
O.OT3
0.008
O.OJ8
Cl
194.5
26.9
19.0
11.3
35.1
33.1
32.4
24.6
53.2
35.3
106.3
221.7
418.4
436.2
486.0
297.6
103.1
U.I
0.4
1.0
0,8
C.5
287.8
217.4
191.6
111.0
37.4
Z9.5
139.9
175.7
385.9
234.7
235.2
153.4
73.4
291.0
128.6
149.7
134.6
162.8
4.0
28.5
36.9
61.6
84.0
38-. 7
75.6
29.?
33.3
334.8
555.3
154.?
695.4
26C.1
50ft. °
>87.P
58?. 3
?34.?
65.?
357.7
?27.«
?0fc.8
18?. 0
54.4
49.7
94.0
NA
116.3
15.7
11.4
8.1
12.5
12.9
13.2
12.1
24.9
11.6
23.4
40.2
62.o
61.4
1?2.5
137.3
51.0
0.1
0.2
0.6
0.5
0.3
133. C
125 . 1
105. *9
61.5
23.1
18.5
83.3
118.5
205. 2
109.9
112.9
81.9
40.2
154,6
68.4
83.2
75.4
100.2
2.0
14.2
18.3
30.8
40 .9
19.4
37.3
14.9
16.0
in. 3
304.0
79.1
33C.a
125.9
335.7
233.9
372.8
136.4
35.9
93.7
141.8
l?e.9
108.1
33.1
29.6
50.8
CA
1173.?
229.0
137.7
125.7
110.5
134.0
136.5
67.5
143.?
74.6
164.3
258.5
7i«,7
731.5
1033. B
8ti5.t
306.1
C.3
C.B
1.9
1.6
l.C
49?. S
39?. o
3£7.4
174.6
61.1
54.4
264.?
426.3
619.6
444.4
351.4
?45-5
128.7
56n. j
241.7
221.9
197. J
255.5
6.2
56.3
65. a
11'. 3
151.3
7'. 6
13?.?
51.0
54 .4
(S4>1.<>
55.<.1
261.7
115t.R
591 .(
143", ft
78r.7
1?35.3
470. 7
8«.*
?5i.r
381.5
33?. 9
?84.i
8*.l
73.3
14J.4
HG
526.3
95.4
75.?
45.5
53.?
48.7
51.4
34.7
71.4
38.4
88.?
117.3
165.1
?12.5
274.?
163.1
64.9
0.1
0.?
0.5
0.?
0.3
160.?
134. T
110.7
62.?
2?. 5
15, P
84.8
136.9
181.3
110.?
38.7
67.9
34.7
139.5
60.7
65.9
55.0
86.6
1.6
11.7
15.3
27.3
35.6
16.9
30.9
9.5
14. 9
179.7
247.5
an.?
313.9
121.6
?72."
158.5
267.0
93. IS
24.8
59.3
92. P
7 A.?
66,4
21. It
19.1
35.0
COD
' M.B
10.6
15.3
2.4 TO.2
J.5 '6.5
3.3 33.1
6.0 39.5
6.6 46.1
30.8
8.7 43.1
8.8 2S.8
5.5 25.8
'6.6
?6.6
?6.6
2.5 31.9
O.a 42.6
1.6 17.2
2.2 31.9
3.0 77.1
2.5 44.6
2.2 06.9
1.1 4n.l
1.3 47.8
2.2 42.1
5.8 57.9
1.7 52.0
2.7 43.4
3.7 «3.7
4.2 59.6
3.3 45.6
2.7 *6.2
2.3 7(1.7
2.3 37.3
1.2 49.9
2.3 48.8
2.9 51.0
1.5 61.0
3.4 "7.9
1.6 50.4
1.2 34.9
1.0 34.9
1.2 '9.7
1.0 ?9.4
1.0 ?V-.4
0.8 ?9.4
0.7 14.9
0.7 34.7
0.9 44.1
1.1 53.7
2.4 33.6
1.4 47.6
3.7 61.1
2.6 70.0
2.4 64.5
5.0 19.6
6.5 111.8
9.0 1?4.8
8.1 79.9
10.2 04.0
"3,2 1P1.6
5.0 69.4
5.1 68.6
6.6 68.9
4.3 77.8
68
-------
Table 8 (continued). AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
NE Swine Effluents
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
115
117
118
119
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
141
142
SIMS
0.1
3.4
6.2
7.7
5.7
4.0
1.4
9.1
5.5
1.9
1.6
3.1
1.8
5.6
0 .5
0.6
0 .">
o.s
1.3
0.1
0.5
O.B
0.2
0.2
0.0
2.8
1.2
0.1
0.0
0.3
0.0
0.1
0.1
0.2
0.1
0.1
0.1
0.1
0.6
0.1
0.3
0.4
0" A
2K»
11".?
14-'. 7
15-.7
15?. 4
127.4
35.4
15*. 3
35E.?
?9«.J
S3". 4
5?.?
136.4
333.1
? I? . 3
1J7.7
151.5
7)7.7
523.?
44.?
144,9
339.9
346.?
1031.3
521.4
74P.4
955.9
*>}f . *>
27.5
748. 5
5, 5
14". 2
1<4.1
J 94.. '>
39^.5
J5f .2
HP>.4
*41 .9
10214.2
7)1.1
9P ,'
144.=!
2.8
18.5
?3.9
?3.2
?1.7
25.3
5.2
"7.2
41.2
?7.9
99.5
21.2
146.7
171.9
1'il .1
'1.4
66.3
73.5
151.7
11.0
32. Q
94.Q
98.7
162.4
55.1
^4 .6
7.0
10.4
0.2
2.7
O.G
0.4
0.2
10.3
0.8
12.5
?2.8
12.2
10.1
4.C
1.7
1.6
17,7
14U.5
?75.2
38. a
179.2
126.9
44. H
?9j.2
306.3
283.0
206.9
36. «
?C6.9
259.4
146. -5
143.4
lfl^.3
127. J
?49.9
19.9
49.1
?57.2
155.2
329. <<
16J.9
255. 7
312.1
208.3
8.1
246.1
1.4
59.8
36.3
86.2
86.3
7v;,5
112.1
50.3
68.4
43.4
16.9
27.3
Q.001
0.003
0.110
3.074
o.oco
3.014
O.OC7
0.043
0.021
0.006
3.003
3.004
0 «i)^2
3.0^3
0.036
1.041
0.8'9
3.S143
O.J40
3.003
3.011
a. 048
3.034
3.152
0.033
0.050
O.C44
O.C47
Q.Ul'2
Q.U46
Q.OOO
0.01)9
Q.U08
Q.038
Q.011
0.015
0 «0?8
0.0«9
0 .0?6
3.0-1
3.0:8
0.013
41.3
301.3
416.1
492.2
270.5
186.7
61.3
384.7
426.3
454.9
328.0
52.9
393.3
363.2
202.4
191.6
133.6
164.2
346. ft
37.6
118.4
451.6
397.7
726.4
444.3
624.6
775.5
585.7
26.5
812.1
6.7
212.0
130.3
406.1
453.9
430.9
783.3
566.1
466.6
296.0
125.9
199.6
?1.4
154.3
21Z.6
276.0
176.4
125.9
37.1
213.2
245.5
259.9
193.1
31.4
172.7
273.7
125.2
135.1
92.6
132.0
2T3.3
22.0
59.9
224.7
197.6
356.5
211.9
349.0
377.1
299.2
13.5
»u5.7
3.1
1H9.9
65.6
202.2
239.6
233.0
423.5
20G.3
261. "2
166.1
74.2
114.1
6C.6
433.7
614. o
711.9
433.1
201.0
63. u
414.0
615.6
673.4
529.4
84.4
529.6
546.9
37a,9
345,1
255.1
325.3
653. 8
71.7
227.6
760.8
296.5
777.0
623.7
1047.2
1723.9
111S.2
29.5
312 .i
9.7
307,3
233.:
"24 .a
536.0
571.3
1037. *
495.3
671.. 3
423.5
2465.7
439.4
15.0
110.8
156.2
162.5
101.1
73.8
21.4
121.0
135.8
141.1
104.2
18.1
01. 2
124.5
58.2
66.8
40.0
45.1
91.4
13.8
39.9
139.9
114.0
205.0
110.7
185.7
19(1.1
141.9
6.7
2S8.0
1.5
46.9
27.?
96.3
134.2
ion.«
183.3
84.3
11B.6
74.9
34.4
52.6
30.4
89.5
388.6
318.8
613.5
298.0
436.1
495.7
377.1
16.3
498.7
3.7
136.7
82.2
236.8
285.3
260.1
4R5.7
222.0
310.1
£07.5
94.6
144.9
5.1
5.9
5.7
5.5
3.5
3.9
5.2
3.1
4.2
2.1
3.8
0.4
6.3
97.3
44.3
15.7
b.5
4.3
5.4
5.3
7.7
3.3
2.7
2.6
1.3
7.8
76.5
85.7
112.3
111.8
90.4
113.2
M.3
136.9
1*4.4
99.9
105. 8
107.3
163.6
133.9
96.3
132.8
113.1
111.7
179.8
256.8
160.0
116.6
97.2
84.9
1?3.8
73.5
64 .2
68.6
58.3
?8.5
47.4
59.7
58.5
56.5
TOTAL 3R^ TOTAL M03 TOTAL N02 TOTAL NH . TOTAL P04
2.07621'UCO? 2.5^4613*004 2.218C81»003 9.391276*003 3.454815*600
TOTAL :.l TOTAL NA TOTAL CA TOTAL MG TOTAL K
2.7'5829:>-:04 1.452056*904 5.978896*004 1.268C90»004 6.516212*003
69
-------
Table 8 (continued).
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
NW Swine Effluents
SWINE 3*RNS, CAi:UL»TED D*TA
B
SAMPLE
8
9
10
11
12
13
14
15
1«
17
18
19
20
21
22
23
24
30
31
32
33
34
39
36
J7
38
J9
40
41
42
43
44
46
47
48
49
90
91
92
9
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
89
86
87
88
89
90
91
92
93
94
99
ONGN
78,6
11,8
7,2
9,8
6,8
4t7
2,4
6,9
2,0
It5
1,8
2,1
9,0
66,9
31,9
2»S
0,7
10,6
1,«
0,7
0,4
0,5
0,2
0,8
2,4
9,0
2,0
1,9
2.1
0(6
2,3
2,2
1,8
ll*
1,2
0,6
0,6
1,3
0,8
0,6
1,3
9,5
B,6
2,1
2,0
0,7
0,9
0,8
17, i
11,4
32,4
U,2
10,3
9,6
4,8
4,4
2,4
7,8
2,1
0,9
0,3
2,9
0,4
0,1
0,1
0,4
N
5*.
3,
2,
2.
4.
1,
5.
2,
2.
2,
4,
«,
5i.
110,
UP.
no.
2,
57.
50.
56,
52.
7.
5,
I*.
23.
15B,
151,
232,
15*.
310.
U5.
137.
«»,
58,
".
54.
«o.
52.
»2,
2,
4.
5B.
»B,
20.
53,
13.
21,
9.
»,
5»,
134,
50,
«i,
53.
59,
111.
221,
111,
20,
1.
C,
ID,
0,
0.
0,
0,
33 H02
9 2.7
3 0.1
5 0.3
» 0.0
0 0.1
8 o.Q
7 1.1
4 0.2
» 0.1
» 0.0
2 0.0
3 0.1
2 1.0
4 0.4
' t.,o
2 0.2
* 0.0
< 0.2
5 0.1
2 0.2
» 1.1
J 0.6
5 0.0
) 0.1
) 0.1
' 0.2
» 0,1
r 0.2
J 0.2
» 1.1
0.5
' 0.4
I 0,2
' 1.9
' 0.2
) 0.2
9 0.1
| 0.9
' 0.1
0.1
» 0,1
) 0.6
I 0.2
» 0.1
! 0.3
' 0,1
0.1
) 0.0
1.1
10.4
8.6
6,1
2.1
2,2
0.6
1.0
0.0
0.4
0,1
0.0
0.0
0.1
0.0
0,0
0.0
0.0
NH4
196.6
32.8
28.5
19.0
16.1
8.8
25,2
12.4
17.6
7.5
13.8
20.0
26.5
26,2
26.4
14.2
4.5
10,7
«.7
5.9
3.4
0.7
0.9
2.3
4,1
24.0
27.0
2«,8
10,0
46,7
15,8
13.1
7.2
5,7
9.3
4.5
*,2
4.0
7.1
1.1
2,2
9.4
8.1
5.3
5.8
2.5
2.6
2,4
18.0
13.0
34.?
27,9
IB, 7
10.1
19.9
30.3
7,?
38,4
16.1
6,7
2,6
19,5
5.0
1.3
1,4
8,7
: P04
1.077
0.161
0,190
0,079
0.014
0.027
0.058
0.027
0,085
0,008
0,031
0,041
0,081
0.07Q
O.U68
0,039
0,009
0.021
0,024
fr,002
0,007
0.002
0,000
o.cao
0,004
0.016
0.022
0.024
0,028
0,030
0,021
0,061
0,033
0,027
o.ooo
0,001
0.001
0,022
0.032
o.ooo
0.006
0.011
0,018
0,007
0,013
0,005
0.005
0,004
0.072
0.047
0.048
0.035
0.016
0.003
0,013
0.005
0,002
0,024
0,015
0,007
O.U04
0,015
0,002
0,001
0.001
O.V04
CL
247.8
29.6
14,7
55,5
64,7
15.0
48,8
25,6
31,7
19,9
46.4
72,8
203,3
230.1
292.3
186.5
60,1
175.1
152.0
102,3
61,1
19,0
15.2
44,1
64.2
254,5
239,9
242,4
166,3
403,6
150,5
156.6
99.5
55,6
123,0
69.5
79,9
61.3
101.3
13,4
28.4
114.2
136.0
60.6
105,1
46,5
57,4
44,3
426.3
282,2
546,0
295.8
230.9
158,6
201.3
288,7
74.7
307,9
96.4
44.9
23.2
99.3
24,4
6,5
6,9
28.3
HA
140,1
30.1
18,1
11,5
8,4
7.4
16,8
7,5
9,0
4,0
8,1
11.7
15.5
13.5
12.3
7,4
2.3
63,9
58.8
42,8
24.4
8.1
6.7
19,2
26,7
13fl,5
123,1
123,2
84,0
209,4
74.9
84,0
50,2
30,4
65.2
34,7
43,0
34.8
50.6
5. a
12,4
50.2
61,1
27.9
46,4
21.1
24.9
20,2
196,6
120,8
272, B
194,6
135,2
102,3
123,4
163,4
39,4
182,8
56,9
27.8
11.*
62.7
15,1
4.0
4.2
14,4
CA
J595,3
"709,3
422,1
299,3
184,9
1/7,9
3B3,3
IBS, 5
241,9
1«40
208,6
2/7J5
367,5
314,9
316,5
1/8,2
60I9
4/5,9
242,3
129,7
»1 '
60,2
67,8
1*3,7
166,1
596,9
492,7
626,7
493,5
7/3,4
2/74
383,6
1/7,9
145.4
2B5.2
194,4
193,1
114 6
145,5
28,3
49,0
210,6
294,5
111,6
162,9
Bftjs
101,9
/9,0
926,2
691,7
1320,4
723,2
444,6
395.9
507,0
822,6
197,3
6/6,0
1B9.9
96,2
43,6
206,7
90,0
13,4
12,6
90,6
MB K
996,2
196,7
11611
70,2
49,7
90,1
100,8
90,0
63,1
27 3
99 1
/8 9
105,6
B7,7
BB 0
91 8
isja
103.9
91 8
64 1
*»!«
14 0
12jl
46,2
43,8
101,6
145 3
194 6
116,4
263,0
»S 3
94 6
95 7
34 3
71 3
49^
91,6
47 3
95 4
7 «
13 5
98 4
68,7
40,6
93 9
24 0
29)3
23,3
267,0
1B3,7
3/2,1
221,3
148,5
109,4
105,0
1B2,5
»7,1
190,3
48,4
22j3
10,3
92,2
12,1
3,1
9,4
14.8
BOD
100.0
360,0
438,0
>
268,3
413,9
520,8
566,0
729JO
603,9
518,0
457)9
359,0
282, a
259,0
277,7
735,7
929,1
656,0
B07.5
743.0
64815
535 0
57« 9
449,2
47i)9
328,3
263)5
218,3
199,3
179,2
186,tt
156,5
177,9
146,9
185,5
45 5
34 0
7l)9
60,9
24 1 3
8.2
15 6
42)e
184,4
962,1
721,2
937,0
505,5
723.5
452,8
236,5
311,3
162,9
284,1
429)9
418, a
137,2
228.1
300,7
454, a
269.5
'COD
233.2
360.4
455, a
306.0
408,0
1.0
397,2
526,4
698.0
739 2
616,0
915.2
638,0
532.0
425.6
319.2
212)8
430.6
315.6
425.6
420, a
631.2
728.0
990,7
822 4
1236)9
819,2
876,9
624.0
873,6
693.6
544.9
249.6
2*8.6
208.0
173J4
193.0
193.8
223,5
4*8,2
199.2
248.0
196.0
196.8
98,0
1*8.0
t
64.5
124,0
322.4
735,0
1049,2
1104,0
761,6
1363.0
750.0
545,6
558.6
194,4
3*4,0
376)0
799,0
419, a
416.8
416,5
541.3
388.8
70
-------
Tab
If
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
11!
114
115
116
117
118
119
120
121
122
123
124
125
126
12?
128
129
130
131
132
133
134
135
136
137
138
142
IP c: f continued)
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
NW Swine Effluents
aid 0 , 9
1,0 2,3
0,6 1,9
1,» 14,5
Oi* 5.2
1,5 36,Q
0,5 3,2
1,1 4,2
0,8 »,J
2,4 I?, 2
2,9 10,9
0,« 1,»
Z,3 10,4
it K 1 <
0,5 1 « l
2,1 7,5
1,1 l.Z
°<* H
1,1 *»3
i,? u,/
2,0 IB,*
0,1 0 S
0,3 4.S
0,3 8,5
oj/ I*, «
0,6 2ft, 2
0,4 56,1
S,6 75.2
0,3 3D. a
0,6 36,3
0.? <3.2
1,1 13,'
0 . 1 R , 1
a,? ?ri,3
0,1 «,»
0,0 6,2
145,»
0.6 121.0
oil 23.0
0,0 SI, 4
0.« 443,1
1,0 435,3
0,B 4J7.1
2,1 1,1?.;
B
TOTAL 3«6M
4,S6639!j«i!02
TJT»L S.!
1,219259*004
0>9
0.0
0.0
4.1
0.2
9.3
0.6
0.1
0.3
0.2
0.5
0.0
0,5
On
* u
0.1
0.1
0,1
0.6
7.5
7.5
0,3
1.9
0,9
1.9
1.7
1.9
» K K
16 ',5
14,0
IS. 2
2.0
0.7
7.5
2,1
0.2
9.9
5.5
0.8
1.1
4.0
4.8
3.9
2.6
0,2 Q.OOO
11.9 0.011
12.0 0.005
40.1 0.032
10,4 fl.005
28,6 0.010
7.9 0.002
12,6 0.005
13,0 0.005
55,6 0,002
31,8 0.006
7.4 0.004
35.5 0.009
7.2 n.U03
27,8
16.4
9.0
32.3
36.7
42,0
2.6
8.1
12.9
31.2
24.7
27.3
65.5
44.0
79,5
43,7
9.9
4.4
35,8
14,6
3.0
75.3
61.7
11.2
23.5
99,7
78,0
62.2
50.6
0,012
0,008
0,004
0.017
0,025
0.009
o.ooo
o.ooi
0.002
0,005
0,006
0.005
0,007
0,006
0.011
0,004
0,001
o.ooo
0,003
0,003
0.002
0.017
0.011
0.006
0.007
0,039
0,014
0.041
0,010
TOTAL NOS
6,489148*003
TOTAL NA
5,868156*003
1
2
1.0 0.'
51,1 25,2
47,5 23.8
154,0 77.4
31,4 18,8
64,7 47,2
21,8 12,6
37,7 24,7
36,0 23,2
136,1 87,6
85,7 53,7
19.6 12,2
97,6 60,7
21.4 13,9
73.3
48,7
24.9
78,0
80,1
104,8
4.9
18,7
32,8
68,4
60,3
60.6
13B.1
89,5
150,8
75,0
20,9
11.2
87,9
36,2
8,0
227,9
188,2
33,1
76,1
301.4
249,2
205,9
163,3
45,6
27,0
15,2
49,9
46,3
53,8
3,9
10,6
17,9
37,3
34,6
33,8
79,6
53,3
66,8
42,0
11.7
5,9
47.8
19,9
7,1
112,1
99,3
16,8
39,2
153,4
130,4
106,3
88,2
TOTAL N02
,930192*002
TOTAL CA
,974998*004
14
rt A
146.3 1816,4
,1 U . w
75,4 29,7
06,4 23,6
274,4 75,6
63,3 17,5
47,4 27,5
23,2 11,3
41,9 18,7
72,7 19,1
2/0.2 76,1
172,9 45,8
40,3 13,7
1B4,6 99,1
42,9 10,6
»1,1 " "
93,1
91,5
149,2
148,2
1*6,9
11,6
44,2
S4
120,0
/1,3
818,3
24A <3
IBS, 3
360,5
164,2
43,9
26,6
186,8
91,2
14,9
405,6
3/8,5
64,4
109,1
408,9
335,8
2V7,0
221,9
a* ,o
22,0
12,7
48,3
40,9
36,8
3,3
10,2
17.8
44,5
53,2
25,0
/3,0
47,1
63,3
28,6
9,2
4,8
48,2
15,3
3,6
122,8
81,6
12,5
29,1
114,7
V3.2
69,4
93,3
TOTAL NH4
2,319940*003
TOTAL MG
7,947147*003
3,0
10,0
16.8
42.1
35,0
32.5
93,7
62.5
96,0
51,0
12.4
4.5
50,2
10,6
i.i
94.4
85.5
15.3
39.7
146,9
12/.4
103,9
91,9
191,2 333,2
133,5 1»7.2
163,4 184.4
140,1 175.7
65,3 113.2
149,3 267,8
81.9 175,0
192,0
452.2
225.4
18,6
14.0
12.8
1J.4
2,9
4,7
13.1
13,4
13.6
19,3
14,2
14.7
10,8
6,4
0,0
16.5
»,4
0,0
4,3
99.t
74.4
113.5
99.2
147.6
172,2
48.8
97.2
172.9
110,0
97.2
«7,4
94.4
75.5
*8.6
59.2
68,6
63.1
38,0
61.6
69.7
9.0
TOTAL. P04
3,278297*000
TOTAL K
1,451686*004
71
-------
Table 8 (continued).
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
SE Swine Effluents
SHINE jARNS, c*U;Ut*TED
c
SAMPLE
1
2
3
4
5
6
7
8
9
10
11
12
13
16
19
20
21
22
23
24
29
26
27
29
30
31
32
33
34
39
36
37
38
39
40
41
42
43
44
46
47
48
49
90
91
92
93
96
97
60
61
62
63
64
69
66
69
H
72
73
74
79
76
78
79
OHGN
1.4
4,6
Ot3
0,4
i[9
4,6
4,5
2,7
0,6
1,8
0,8
0,8
0,1
0,0
0,0
0,0
0,0
0,1
OiO
4,1
111
It7
0,9
3,7
0,6
oto
0,0
0)0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,1
0,0
0,1
0,1
ojo
0,3
0,1
0,1
0,1
01
0[2
0,0
0,0
0,1
0,1
0,4
0,0
0,1
4,0
0,7
2l4
>:?
0,8
1,0
*|4
1,2
Oi<
0,9
3,6
N33
1.3
5.4
7.5
21,3
9.1
21. 3
<1.2
111,2
1)7. S
»5,3
i?.2
33,5
29,3
0,3
0,1
0,4
o.o
i.$
i.»
2 S3, 9
2)3,3
3)5,3
271, J
515,9
2?e,2
0,3
5.1
1,«
1.'
1,«
0.5
5,7
3.1
2,'
l.i
1.3
25. «
8.1
I*. '
13. «
ID.J
51.0
35.'
SB.'
14,0
32 5
126,2
23,4
7.3
45!, 1
1.9.2
2B. 3
1.7
6.7
179,2
25.3
36.5
51.1
51.3
J8.3
44,5
56.'
26,3
11. »
129.3
74.7
NQ?
0.1
0.2
0.3
1.1
0.1
0.1
2.2
2.5
6.4
8.9
3.7
2.8
1.2
0.0
0.0
0.0
0.3
D.I
D.O
2,1
l.l
9.0
3,0
(5.4
;>.2
'J.6
3.0
D.O
D.O
D.O
D.O
D.O
D.O
D.O
D.O
11,0
11.2
0.1
11.2
11.2
(1.1
(1.9
0.2
..5
.0
.3
.2
1.3
.1
.8
.9
*,0
C.3
c.e
37.7
3.6
V.5
H.3
',o
11.3
0.5
11.3
II. 1
11,1
:..3
;>.o
NH4
0,1
0.1
0.1
0.3
0.1
0.1
0,3
0.3
0.4
0,2
0.1
0.0
0.1
0.0
0,0
0.0
O.J
0,0
a.u
0.2
0,8
2.0
2,9
5.2
1.9
0.0
0.0
0.0
0.0
0.0
0.0
o,u
0,0
o,u
o.u
0.0
0.2
o.l
0,1
0,2
o.i
0,6
0.2
0.6
n.i
o.l
1.0
0,1
0.0
0,2
0.1
0.2
O.U
0.1
1.6
0.2
0.4
i°:i
0,5
0,7
U,2
0,3
0,0
0,9
0,2
POA
0,015
0,048
0,033
0.0«7
O.U29
0.066
0,033
0,017
0,034
O.U18
0.011
0.004
0,005
0,000
o.ooo
o.uoo
0,000
c.ooi
o.coi
0.105
0.033
0,042
0,035
0,057
0.009
0*000
0,004
o.ooo
o.ooo
0,000
o.ooo
0,000
0,000
o.ooo
o.ooo
0,000
0.004
0.001
0.002
0,005
0.002
0,000
0.002
0.005
0,002
0,003
0.013
0,005
0.001
0,003
o.uoi
0,001
0,000
0.002
0.019
0,009
0,006
0,004
O.UC5
0,016
0,018
0.040
0,003
0,001
0,018
O.U12
Cl
6,8
21, 4
47.3
129,3
50,4
109,3
147.4
230.3
236,5
198,7
96,6
51.6
53.2
0,4
0,5
1,7
0.1
5,2
3.5
589.5
276.7
311,2
253.9
261,7
216.9
0,5
2.5
0.8
1.1
0.9
0.5
2,8
2,0
1.8
0.7
0.7
16.5
4.9
10.0
9.1
7.1
42.0
29.3
40.3
12.8
17.2
H.9
12,4
4.0
27.4
9.3
17,7
1,0
4,2
113.9
19.7
49.2
??:§
71.2
43.0
64,9
24.4
11,3
119.6
73,7
Na
6,8
13,1
16.7
23.2
12,1
21,0
20,9
25.7
22,6
25,2
12, *
8,5
8,9
0,1
0,1
0,5
0,0
1,7
1.6
246,7
135,6
184,5
159,7
222,8
158,1
0,3
1,9
0,6
1,0
0,7
C,4
2,4
1,7
1,3
0,5
0.5
11.3
3,2
6,7
6,8
4,8
25,7
18,7
24, 5
7,»
11,0
44.8
9,1
3.0
18,2
7,0
10,0
0,6
2,3
68,0
11.6
26.5
n\l
37,1
21.3
33,8
13,6
5,9
68,9
41,8
Ca
>7,8
130,2
138,0
21)2,6
07,7
1*6,1
143,4
146,8
133,4
142.2
t>o',a
«<4
33,0
0,4
0,7
2,0
0,2
8,0
7iO
11*2,7
4V4,9
607,5
403,9
811,8
546,7
111
6,6
2,0
3,5
2f5
1,6
9,5
6,7
5,6
27
2!4
30,5
15 7
28,2
27 5
20,8
11B 4
81,0
V0,6
*7 4
i8!6
1/0,6
46,4
12.6
85,0
".7
41,1
2?7
10,8
3,13,4
S6,3
1*9.0
1 J8,7
241,'l
202,1
116,5
167,0
/3,5
30,0
341,0
215,9
Mg K
31,6
»1,4
55,6
79 9
i9,8
'4,2
72,5
»0,1
-------
Table 8 (continued).
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
SE Swine Effluents
80
Bl
B2
as
84
B6
B7
91
94
95
96
96
102
103
10*
105
107
108
109
110
111
112
113
11*
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
153
134
135
136
137
138
142
SU1S 0?,
1|6
0,4
0,4
0|2
Ot6
0,2
0.0
o',2
0*2
5
o',2
0,8
0,5
1|2
3J4
0,0
0,0
»ii
0,6
0,7
Oil
0,1
0*5
0,4
1,8
0,9
08
0,2
01
0,4
0,6
0|6
0,3
0,2
0,3
0,3
0,1
0,1
0 ,0
0,2
0,1
0,1
0,4
0,0
0,1
Ot9
BtO
U,l
0,0
c
41.5
7,»
6.2
9.6
42,5
17, »
0.6
36,4
11,5
»«.»
58. 1
167. S
I?,*
76.0
560. »
26.9
3,'
lfi|5
48.7
121,1
40.2
7.4
59. >
169,5
167, 2
60,1
51 5
68. i
41.3
1J6.4
1J9.3
339.2
120,4
>9.<
J9.6
55.2
27.4
31.6
*,*
14. »
',3
38,6
24,6
1.5
46.4
66,9
J«l,5
53.3
3,4
0.6
0.1
0.1
0.1
0.4
0.1
0.0
0.4
0.2
2:3
0.5
0.7
0,1
0.*
7.1
0.1
0.0
0.3
0.7
1.6
0.6
0.1
0.5
1.4
1.2
0.5
0.3
0.4
0.6
1.3
2.9
2.6
1.0
2.9
0.7
1,0
0,2
0.7
0.0
0.0
0.0
0.1
0.1
0,0
0.1
0.1
1.5
0.2
0.0
TOTAL ORGN
C
c
9,29353«»001
TOTAL =.l
8,B47l68»Ofl3
0.1
0.0
b.O
0.0
0.1
0,1
0.0
o.i
0,1
OB
o.*
0.6
0,1
I,2
<.6
0.?.
u.l
0.2
0,4
0.8
0.5
0.2
1.1
2.7
2.7'
I.5
0.3
0,1
0,1
0,5
0.3
0.3
0.5
I.8
1.2
0.6
0.5
0.4
0.1
0.2
0,1
0.8
0.2
0.0
0.3
0.3
0.4
0.2
0.1
TOTAL NO 3
0,013
O.onz
0,002
0,004
0,004
0,001
0.000
0,010
0,002
0,018
0,01)4
Q.036
0,002
0,014
0.107
0,002
0,000
0.003
0,007
0.012
0,005
0,003
0,002
0,1)14
0,008
0,009
O.U07
Q.006
0.004
0.010
0,009
0.025
0.013
0,006
0,011
0.005
0,002
0.002
0,001
0,000
0,002
0.005
0.003
o.ooo
0,005
0,008
0,039
0,009
0,000
40.4
9.7
7,6
11.7
37,5
17.4
0,7
32.6
11.6
101.2
37,8
107.9
20.6
96.4
622.5
23,2
3.8
23.7
67,0
127,3
39,3
18,5
44.9
127.2
115.3
55.6
42,6
46.1
30.4
71,1
139,7
268,4
127.8
107.8
101.7
64,6
35.4
39.6
13.0
26,6
10.4
82,6
36.1
1.7
53.7
41,4
171.4
29.0
«,7
22,9
9,6
8,4
11,3
38,3
9,5
0,4
19,2
*,»
48 0
15,5
43,7
11,0
«7,7
326.1
12,9
2.0
16,3
34,6
69,0
22.2
8,3
25,7
79,3
72.2
32,3
27.0
27,2
18,4
42,9
83,3
156,4
77,1
58,5
60,6
34,2
19,0
19,6
6,6
13,9
5,7
36,4
21,9
0,9
29,5
21.9
93,4
15,5
2,5
TOTAL NO 2
9.127602*003
TOTAL NA
4,
513071*003
i, 864907
»002
TOTAL CA
1,804789
*004
110,0
*1|7
17,3
40,3
118,8
45,3
1.8
76,0
18,8
1/6,7
73.7
207,7
42,8
166.0
1337.2
43,4
7!7
48,9
148,3
206,5
B9.9
32,6
100,0
206.4
2/5,7
145,1
110 2
117,8
/8 7
184,6
1*4,8
433,9
2/4,3
334J9
334,9
1»1.9
/2JO
V2,5
41,5
35,3
16157»003
197,9
81,6
7S.5
44,8
47,8
12, »
32,5
5,0
10,7
19 0
3,8
2,4
2,6
1,*
3,1
,
34 U
34.7
4,0 24.8
'.'
4.3 31.7
9.8
20.3 41 8
32,6 44.2
14,1 5,5,4
24.1 48,6
16,5 59,2
7,4 75,0
0,6 145,0
6,5 136,0
2,0 66,0
3.5 118,0
1.8 63,7
18.9 172,0
9,3 208,0
0,2 114,0
8,V 48,7
7,3
34.1
5.7
1.5
TOTAL PO4
1,534400*000
TOTAL K
3,215001*002
439,2
24Q.O
133,3
141.0
110,0
99,6
24.3
55.4
49.2
58 3
*2,«
*M
49,2
39.6
43.7
8.0
50.6
-i.o
1.0
"1.0
-1.0
1.0
*«.!
.1.0
34.7
-1.0
74.8
.1,0
31.7
-1.0
44.2
44.2
53.4
"8.6
59.2
75.0
145.0
136.0
A6.0
118,0
63.7
172,0
208,0
208,0
8.0
-1.0
179 '.0
64.2
-t.O
73
-------
Table 8 (continued).
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
SW Swine Effluents
SHINE 3ARNS. CAi:UL»TED DATA
0
SAMPLE
1
2
3
10
11
12
13
18
19
23
24
25
26
27
28
29
30
31
32
33
36
37
39
40
42
43
44
46
47
48
49
90
91
92
93
96
97
60
61
62
63
64
65
66
69
70
71
72
73
75
77
78
79
60
61
62
63
64
66
»4
OHGN
1,1
Il9
0,2
3,3
2,6
4.7
9s2
111
1,1
2l7
2,0
1.1
0,4
0,0
0,0
0,0
4.1
0',9
1,1
1|7
3,0
1.7
oja
0,0
0,0
0,0
0.0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
o;.2
0,3
0,0
0,4
3.2
0,0
0.0
0,0
0.0
ojo
0,0
0,1
0.4
0.3
0,0
0.2
0,4
0.4
0,4
0,0
0,0
OfQ
It*
0,6
0,1
0,4
0,0
0,0
0,0
0,3
7
L3
21
as
i2
131
11!!
178
143
97
76
44
51
0
0
c
131
132
*19
233
736
576
322
1
7
1
0
0
2
0
U
8
16
16
8
«0
30
30
9
20
1S7
22
7
12
2
3
4
6
S9
30
32
112
2S6
222
91
78
38
3(1
22?
144
24
44
7
79
JO
48
N33
,2
.3
.3
.1
.«
.0
.5
.3
.*
.9
.'
.5
.5
.1
.9
.1
,7
.3
.9
.*
.7
t f
,i
.3
.7
.9
.7
.9
,3
.9
,s
,»
,4
.2
.»
.2
.3
.1
.7
.«
.4
.1
.«
.«
.2
.1
,7
.3
.7
.3
.9
,2
.2
.9
,3
.3
,3
:5
.5
.3
,9
.9
.3
,1
.'
N02
0.1
0.1
5,8
9,6
1.8
2.5
0.6
e.o
8.7
8.4
5.1
4.2
1.5
0.0
0.0
0.0
0.8
0.4
0,0
0.0
0.0
C.5
2.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.0
0.1
0.1
0.1
0.0
0.1
0.4
0.0
o.o
o.u
0.0
0.1
0.2
0.2
1.3
1.1
1.1
4.0
S.4
0.6
0.3
0.3
0.1
1'3
0.9
0.7
0.1
0.3
0.1
0,4
0.4
0.3
NH4
0.0
0.0
0,0
0.0
0.0
0.5
0.*
0,6
U.O
0.3
0.1
6.1
0.1
0,0
0.0
0,0
Q.6
0,2
1.7
l!"
o.a
2.3
1.7
0.0
0.0
u.o
o.o
0.0
0.0
fl.O
o.o
0.0
0,0
o.i
u.o
0,0
0.3
o.o
0.0
u.o
0.2
u.o
u.o
U.O
o.a
0.0
O.J
o.o
o.o
O.I)
0,0
0,2
0,7
0.7
0,2
0.1
0.0
0.1
a,5
0.1
0,b
0.0
u.o
0,1
O.U
0.1
P04
0,014
0.027
0.039
0,078
0,027
0.026
o.ooo
0,016
0,050
0,028
0.042
0.009
0,012
o.ooo
0.000
o.ooo
0.07Q
0.051
0.133
0,016
O.U'l
0,020
0.0?2
0.000
0,000
0,000
o.ooo
0,000
0,030
o.ooo
0.002
0,001
o.ooi
0.002
0.031
0.189
0.001
0,000
O.UftO
o.uoi
0,011
0.002
O.U91
0.001
0.000
o.uoi
o.ooo
0,000
0,001
0.092
0.008
0.014
0.011
O.U14
0,010
0,009
0,005
8,039
,01
0,005
0.002
0.001
0.000
O.U12
O.UU9
O.OU2
Cl
7.6
13,4
63.0
345,0
108.5
215.7
148Q.O
460.9
249,0
240.7
128.9
66,9
81.0
0.2
0.1
0,2
364.8
161.4
305,1
246.0
456.5
263.0
248.5
0,5
3.3
0,9
0.3
0,4
1,2
0.4
6.6
4.9
8.2
12.0
6.7
23.9
17.7
17.4
5,9
8.8
71.8
9.6
3.5
5.7
1.0
1.4
2,0
2.8
16.5
13.8
14. 4
53.3
122.9
99.8
42.8
37.7
21,2
191.7
138.5
92,6
1«, 5
34.2
5,0
50.0
40.0
32.0
Na
5,4
10,5
10,6
30.6
12.3
26,9
28,5
42,1
38.1
43.2
24,1
14,6
27,1
0,1
0,0
0,1
170,6
74,6
154,7
138,0
301.7
203,6
156,2
0,3
2,2
0,6
0.2
0,3
o.a
0,3
4,3
2,9
5,6
7.4
4,4
15,1
11.9
11.3
3,7
5.7
«7,1
6.1
2.0
3.5
0.6
0.7
1,0
1.6
9.4
7,6
7,4
28,2
66.6
48,6
24,6
17,4
10,0
9Q.2
63.8
44,0
6,2
ll.o
1,9
16,8
13,9
17,4
Ca
98
91
112
235
104
181
2fl6
281
193
137
/2
40
/B
0
0
0
621
246
381
448
10'2
76(1
6*6
1
9
2
1
1
4
1
19
11
28
35
21
7B
37
46
15
23
189
il
10
17
2
4
6
8
47
41
44
144
390
2/7
131
*7
90
468
316
215
42
V2
14
141
V9
65
.3
,1
,7
,6
,1
,0
.5
,9
|5
,7
Is
,6
.0
,2
,1
.3
,8
.8
.8
,9
.4
0
.6
I*
,2
,7
,1
.3
(0
,3
.3
,7
.3
.1
,9
,1
Is
.9
.1
.1
.3
,2
,7
,6
,8
,2
.5
.2
.5
,4
.5
.3
.1
.6
,2
,5
il
,3
,8
IA
,7
,9
.5
,8
,1
,9
Hg
21,9
35,4
68,4
139,2
63,3
108,8
109,7
194.5
83,6
70,6
35|l
19,5
34.7
0,1
0.0
0.1
183.8
83,1
149 3
131,1
295,3
1*5 I
165,0
0,4
2,3
0,7
0,2
0,3
1,0
0,3
4,5
3,0
5,6
79
4,8
17.7
13.5
15,4
4.8
8,5
69,7
9,3
2,7
«|B
0.8
i.o
lj7
2,1
11,5
9,8
9,8
31,6
75,6
39,9
30,5
22,1
12,3
10.9,3
74,0
53,6
5,4
21.0
'
3.0
28,0
20,8
"|7
BOD
3,6
3,9
5.0
1,5
1.5
5.0
iio
1,5
2,1
2,6
4,0
3,1
3.5
24
fc ,
2,3
2.1
2,5
1,2
2,7
2,5
1,«
1 4
A i^
1,6
1,6
2,1
1,3
1,7
1,4
1,6
1.9
1,8
2,0
1,8
1.5
1,0
1,3
0,9
0,9
1.0
1,6
1,5
1,8
1,2
1,1
1,1
1,3
0,6
0,7
0,6
0,4
1,4
1,6
0,9
OM
1 °
1,2
1,2
1.4
1,4
2.2
1,7
COD
36.5
22.0
27,5
49,6
45 4
*y t +
27.8
31.9
58,3
30,6
42.4
20.4
33.1
24.6
25.8
41,9
36,7
42.6
47 9
41*1
A « *
15.4
39,2
75|3
63,1
63.9
47.4
53.7
*7 4
?8|7
31.3
39.5
32.6
'7.2
47.8
33.2
29,1
32.5
38.7
35.6
29.5
27.3
12.0
32.0
37.1
37.1
23,8
28,6
2b,6
28.1
32.1
?9.9
34,7
34.7
58.8
39.4
47.6
29,8
?4,8
39 2
M 1
" , 1
?8.8
?8.5
37.6
40,0
39. a
.3
74
-------
Table 8 (continued).
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS. "
95
96
97
102
103
10*
105
106
107
108
109
110
111
112
113
11*
115
116
117
118
120
121
122
123
12*
125
126
127
126
129
130
131
132
133
13*
135
136
137
138
142
1,6 J
1,3
*,1
0,5
li!
If*
S»«
Of 0
0,0
Oil
0*7
It*
Ot2
Oil
0(6
llO
°1«
0,8
*?
"A
0,5
Ot5
2,9
Ofl
Oil
13,8
V.3
1^-J
0,6
0|2
1,3
Ot2
Il3
4i1
0>'
If1
7i
If
1.
01
915.7
243.3
4S8.3
8.7
111.4
12P.4
240.)
SB. 3
25.?
3.3
5.8
8.*
l-5
0.3
0.1
1.7
2,6
12.9
3.2
2J9.J
4V?
i'.3
15B.7
15C.3
130.0
723.*
247.2
329.7
435.0
316.2
2J5.1
SB. 5
1*1-5
ZJ0.3
75. 5
492.7
717.)
SW Swine Effluents
U.O
B«0.*
817.2
77.5
A1,
S 5
10 7
2.7
18.9
1C. 9
11.3
17-*
14.6
w
r D
TOTAL
0 1.173051.002
TOTAL C.|
0 1,771781.00*
-
!:»
0,033
-5
'"
3 :
:
.0
:
,1 :
'
is
Si?
S:l
nis
" S
Si:
sr?
"''
E3
12 2 1.*
.
«:"
S:S
::
1.6
0.5
a.*
5.8
4.4
5.7
8.3
4.4
4,3
1,3
0.006
O.U05
O.B»
fl.U"
0.027
107.5
:
:
i:
2
206.0
96.5
,
s
23
6Z<0
: :
,
0
.
503 7 27B
J4§1
< ^^^
711,8 173,3
0,062
5,074 396.4
S.072 397.7
0.013 IOC.5
^
366 1
ooo
V,:!
K;S
21,0
21.5
2V.1
24.2
146,0
70.0
99.4
164,4
192.0
110.1
24,0
40.8
91.7
32.2
27V.4
250.2
256.5
394.0
362.9
213.7
221.4
60.3
1.2
2.1
I.8
I,*
1,*
1.7
38,9
38.7
47.8
44.3
34.7
48,6
96.0
38,1
46.0
1.8
I
1,4
0,7
0,5
1,5
1,7
1,3
1.3
0,2
0,1
0,6
0,2
0,6
0,3
1,2
1.0
7,9
34.7
74; 7
68.8
59,0
1.0
43.7
64.2
50.0
63.1
34,0
47.2
51.9
53,9
44,2
53.9
38,8
19,0
37,9
44,8
TOTAL NH4
#,114457*001
TUTAL VG
TOTAL P"4
1,939725*001)
TOTAL K
3,393116*004
75
-------
Table 8 (continued).
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
NE Dairy Effluents
DAIRY 3ARNS. CAL:UL»TFD DATA
SAMPLE
30
31
34
35
48
49
50
52
76
77
78
79
80
81
82
S3
84
85
86
87
88
100
101
107
110
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
157
138
141
142
SUMS o-"
. 0
Q
ORGN
0.3
0.4
0.4
0.0
1.8
1.0
1.5
1.9
5.9
0.1
0.1
5.7
10.4
3.2
3.7
6.2
8.2
5.fl
12.3
5.7
1.1
0.0
0.2
0.0
0.0
0.0
0.0
0.2
0.0
0.0
0.1
0.1
0.1
3.0
2.0
1.2
3.4
1.4
1.0
1.5
0.5
1.5
0.4
3.2
1.6
2.1
2.4
3.2
3.2
1.5
1.4
1.5
Q
TOTAL
H03
'' 8^5
18.9
14.3
5P.5
25.5
31.5
27.)
59.7
S.2
30.5
23.5
2*. 5
5.1
10.1
9.5
39.5
7.1
11. »
3.3
O.i
0.1
1.7
0.3
b.3
C.3
0.1
1.?
C.I
0.3
1.1
c.?
5.3
I?.?
4.3
6.3
6.1
5.7
1.9
i.j
1.5
3.J
1.3
10.3
6.5
4 , )
3.5
7.?
9.5
1.5
1.2
2.1
N02 NH4
0.1 O.I'
0.1 C.O
0.0 0.0
0.0 0.0
0.6 0.9
0,3 0,6
1.0 0.7
1.9 2.1
5.4 3.7
0.5 1.3
1.8 2.5
1.8 2.0
1.2 5.3
1.2 0.9
0.1 1.4
1.8 1.3
1.6 3.6 .
0.0 2.1
1.7 11.9
0.9 9.9
S.O 2.3
O.U 1.2
0.0 5.3
0.0 0.0
0.0 0.0
a.o o.a
0.0 0.2
0.0 3.?
O.U 0.1
0.0 0,1
G.C 1.1
0.0 1.7
0.8 3.5
1.7 4.3
0.1 5.7
0.1 5.u
0.7 7.1
0.2 3.6
0.0 2.3
0.1 3.7
0.0 2.3
0.0 *.'
3. a 1.2
0;i 16.5
3.8 5.0
0.1 0.9
0.0 1U.1
1.0 11.8
0.3 26.1
0.0 "5.9
0.0 5.1
0,0 6.3
F04
0.003
0.018
0.001
o.ono
0.0?9
o.ooo
o.ono
0.011
0.089
U.009
0.030
0.044
0.030
0.024
0.001
0.003
0.011
0.003
0.023
0.021
a. 306
0.002
0.077
o.uoo
o.ooo
o.ooo
0.001
0.011
0.001
0.000
0.005
0.006
0.014
fl.024
0.020
0.018
0.023
U.013
U. 003
0.005
0.003
0.006
0.002
0.031
0.016
o.o?o
O.U?1
0,034
0,919
O.U15
q ,0?.5
0.016
DPGY TOTAL N03
1.206290*002
TOTAL
C.I
2.59662J'GO)
5.629027*002 2
TOTAL NA
6,327?93»002 1
CL
4.5
3.4
3.0
3.4
26.3
17.3
16.3
12.3
54.2
6.8
27.3
32.5
41.6
15.8
15.3
30.7
6?. 3
41.0
99.8
44.5
14.6
5.3
21.8
0.1
0.0
0.1
1.5
4C.4
2.7
1.0
17.4
25.8
73.4
128.8
96.0
119.5
120.1
75.0
33.5
53.9
30.8
60.0
15.6
216.8
112.7
77.1
72.5
97.8
355. 1
45,8
34.8
42.5
TOTAL
KA
2.2
1.4
2.2
2.0
14.1
9.3
e.e
3.6
34,3
4.5
17.0
13.8
14.2
5.6
5.8
8.6
16.9
10.5
18.0
7.0
2.2
0.5
3.0
0.0
0.0
o.o
0.3
4.1
0.4
0.1
2.1
3.4
8.5
13.8
10.1
13.4
12.4
10.3
3.8
6.0
3.4
6.6
2.0
171.8
16.9
10,8
11.1
18.0
29.2
8.U
6.5
7.9
N02
,854470*001
TOTAL CA
,199577*004
$5.7
33,9
54.0
49,?
449.7
341,0
251.2
142.1
803,3
107,7
33«,7
347,3
416,7
148,6
190,4
317.4
655,6
411.6
685.6
351,5
96,*
37,9
157,6
0.5
3.3
0.5
8, -5
21S.9
11.5
4.0
74,3
101.9
238.8
416.8
291.1
473.3
415.5
263.3
44,6
71,7
54.2
70.5
40.5
263,9
270,0
213,7
157.3
?39 .4
504,8
103.?
104,4
114,6
15,8
12,4
19,5
14,8
110,2
63,4
70,8
47,8
190,9
29,7
95,0
98,6
105,8
41,2
44,6
74,6
140,5
93.4
170,5
d5,8
27,0
9,9
41.5
0,1
0.1
0,1
1.8
50,7
3,4
1,1
20.5
29,1
79,1
102,4
71,4
77,4
73,4
54.5
23, 0
36,9
23.5
48,7
13,2
177,5
79,7
73,9
72, 8
88,8
159,1
44,3.
J2.9
J6 ,e
X
0.2
0.1
1.2
1.9
4.6
6.9
5.3
6.7
6.7
4,6
2.2
4.2
2.1
3. 8
1.0
13.2
o.9
6.5
6.0
b.3
14.1
4.7
3.6
4.3
TOTAL NH4
2,495152*002
TOTAL
HG
3, 307040*003
₯4
3)2
5.0
1.5
276.0
306,0
298.5
316.3
103.5
131.2
154.8
188.3
224.7
247.6
280.0
310.0
393.3
380.5
577. »
1374.4
1449.3
1495.8
1323.6
112.0
103.0
43.3
38.7
6.0
6.1
18.7
17.7
340.0
380.0
355.0
473,0
197.0
144.0
TOTAL P04
#D6
52|6
54.6
46.8
4A&.9
446,7
400.0
426.7
114.1
198.4
272.8
343.0
439.2
249.6
3?3.7
517.0
575.0
595.2
796.8
14-58.0
16^2.0
2516.4
2008.0
13"0.0
297,0
694,0
297.0
297.0
123.0
243.0
97.2
197.0
100.0
194.0
145.0
1«8.0
259.0
171.0
192.0
S3. 3
B,1610ttO-001
TOTAL K
1,473570*002
76
-------
Table 8 (continued). AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
NW Dairy Effluents
DAIBT
B
SAMPLE
29
30
31
32
35
48
49
50
92
77
re
79
80
81
82
83
84
85
86
87
88
95
100
181
109
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
141
142
SylS
V
JARNS, CALJULATED
OKQN
0,7
0,4
0,6
0,6
0,0
2,*
l!2
°t!
0,8
0,1
0,9
1.2
2,0
0,7
Ol5
0,5
lj.0
0.7
0,6
0,8
0-5
0,0
0,0
8,0
0,0
0,0
0.1
0,2
0.4
0,0
0,0
0,0
0,4
0,1
0,6
0',5
1,*
0.9
fl-,5
0,3
0.*
»«3
0.3
0,4
1,1
1.2
2,1
1,9.
2,3
5,5
1,3
0..3
2,8
Oft R
N33
1.*
1.9
1.3
1.1
2.»
16, »
IB.S
18.5
IB.*
i:t
i-.;
0.4
o.s
0.9
1.*
1.3
1.2
2.2
0,9
0.3
0,3
S.<
0.3
0,1
0.2
0.1
1.3
0.3
0.3
0,1
o.s
!:!
':''
5.'
5.1
W
X
1.4
9,»
9,3
35.7
3»,7
133.3
H5.0
117.3
16.3
71,3
TOTAL 3«ov
E 4,»7448»»001
B l]5i
>5049»'o03
DATA
H02
0.8
8.0
0.0
0.0
0.1
0,3
0.1
0.1
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.1
8.1
0.1
0.2
0.2
0.0
0.0
* * c
0.0
o.o
o.o
0.0
o.c
o.o
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.1
0.1
0.0
0.0
o.o
0.0
0.0
o.o
0.1
0.2
C.2
0.3
0.2
0.1
0.1
C.3
NH4
0.3
0.0
a, a
0.0
0,0
1.2
0.6
0.5
0.4
0.1
0.3
o.o
0,0
3.0
0.0
0.3
0.0
0.0
0.0
o.u
0.0
0.1
3.0
0.1
o.o
0.0
c.o
0.0
0.1
0.0
0.0
0.0
0,1
o.o
0.0
o.*
o.o
0,5
0.*
o.o
0.0
0.9
o.u
o.o
0,1
0.*
0.2
0.6
2,1
1.1
0.9
0.2
1.0
P04
fl.002
0.004
fl.UOO
0,000
o.ooo
0.050
0.0*1
0.0*3
0.0*3
0.006
fl.020
0.020
0.036
0.009
0*008
0.017
0.016
0.024
o.oii
0,01*
Q.016
0,001
0.002
C,""2
o.ooo
o.ooo
0.001
0.002
Q.003
o.ooo
o.ooo
c.ooo
0,004
0.001
0.010
0.009
0.010
0.014
0,009
0.004
0.003
0.003
fl.003
0.002
fl.014
0,032
0.016
0.033
O.OHQ
0,068
0.0*0
0.014
0.057
TOTAL N03
8.77fl846»002 3
TOTAL NA
4.419843*002 4
CL
1.7
2.3
0.0
0.0
6.8
5.8
3.1
5.*
3,7
2,3
6,7
5.6
6.3
1.9
2.1
2.5
4.7
4.2
9.1
8.1
7.0
1.6
1.8
3.3
0.0
0.3
1.7
2.9
7,6
0.7
0.9
0.9
11.3
*.2
39.2
47.6
50.9
64.7
58.0
26.3
23.7
17.3
13,7
8.5
42.3
49.8
114.2
86.8
172.8
171.7
121). 9
48.9
189.3
TOTAL
,099296-
NA
2,3
l.a
1,*
2.0
1,5
8.4
5,8
4,»
0.*
1.5
4.7
3.6
4,4
1,4
1.6
2.5
3.6
2.6
3,2
2,9
1.9
0.2
0,3
1.1
0,0
o.i
0,5
0,6
O.H
0,1
0.2
0.2
2.2
5,3
«,6
6.0
6.4
5,«
2,3
2.5
1.7
1.3
O.B
4.6
7.5
22.1
20.8
*2.*
«1.1
30.3
13.1
57.7
N02
»000
TOTAL CA
,680033*003
f»* MB
CA f*»
32,1 ii,8
36,1 9,5
24,8 7,1
35,2 9,6
47.8 17.0
136,8 31.3
79,4 17,9
0,0 0,0
82,7 18,4
24,6 5,5
75,6 16,5
98,5 15,1
65,5 17,9
21,0 9,9
28.9 6.6
97,1 11.0
91,2 17,3
93.0 H>5
68,1 19,5
99,0 12,4
37,5 9,3
8,9 2,0
9,1 2,2
27.3 6.9
0,1 0,0
1,5 0.3
7,7 1,6
20,5 3,8
30,4 7,9
3,1 0,7
4.1 0,9
3.8 0,9
«0,0 10,0
12,9 3,7
»2.7 36.8
112,7 26,3
177.2 32,3
1V5.9 32,2
162,8 30,9
35.0 14,7
3119 13,3
36.4 9.1
18,6 8,2
13,7 5,1
69,4 24,9
146,4 32,5
229,5 04,8
1*7,3 62,0
336,3 102,3
335,6 07,3
206,7 97,4
BO, 3 22,6
324,9 69,3
TOTAL NH4
1,349024*001
TOT»L KG
1,236007*003
K
b',3
0,1
0.9
1,3
1.2
1.3
1.2
0,6
0.6
0.3
0,3
0.2
0,9
1.2
2.9
1.9
3.2
2, a
2.0
0.7
2,7
BOD
10,1
e,»
10,9
11,6
2.3
2,1
1,»
2.1
1,«
1,6
H
1,2
0,6
1.0
1,9
1.7
0,3
o.s
1,3
1.9
6,S
283,2
12.2
10,0
8.9
5,3
5,3
3, a
1,3
3,7
1.'
i.7
1,5
1.0
0.7
1.7
1,7
0,6
o.v
1.5
1,1
1.1
000
63.7
86.1
117.0
79.8
136,2
45,8
27,4
25 4
32 5
19,8
76.8
24,5
34,1
24.5
?8,5
J3.5
20.0
19.8
29.9
34.0
?4.0
102,1
186.4
50.2
117,0
99,2
9,4
79,3
297.0
297.0
49.2
38,8
?9,6
40.0
43,7
58 3
37,6
37.7
39.2
34,5
«.5
34.0
19,0
33.1
TOTAL P04
0,726014-001
TOTAL K
3.07*093*001
77
-------
Table 8 (continued).
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
SE Dairy Effluents
MU.1 BARNS, CAt:uU»TED D»TA
s
SAMPLE
11
12
13
14
15
16
17
18
19
20
21
22
24
25
26
30
31
34
35
36
37
38
39
40
41
43
44
45
46
47
48
49
50
51
52
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
103'
104
105
106
107
108
109
ORGN
0.10
0.02
0.0 1
0.02
0.05
0.12
0.02
0.04
0.01
0.01
0.02
0.04
0.02
0.02
0,02
0.61
0.61
0.50
0.33
0.50
1.40
2.40
2.60
0.22
2.00
6.22
7.13
1.51
1.65
l.Ol
-j. BO
2. 4fl
3.90
2.01
1.11
14.72
0.76
1.68
3.90
1.40
2.60
2.60
1.05
1.24
0.22
1.00
0.25
0.30
0.02
0.20
0.72
1.01
0.50
0.92
2.03
0.80
0.60
0,70
0,30
0.01
0,70
0.40
0.30
O.Ol
O.Ul
0.14
N33
0,10
0.03
0.0 1
0.0 5
0.1 3
O.?l
0.0 2
O.D 3
0.51
ft.C 3
0.1 7
C.34
0.03
0.53
0.16
2.00
i.co
1.33
1.21
1.31
1.72
5.00
5.93
o.so
7. SO
16.10
1C. 30
5.JO
4.?2
6.30
9.53
4.30
6.74
7.J3
6.1,3
17.31
l.?3
3.50
2.34
2.14
1.70
2.35
1.70
3.30
1.53
1.93
0.53
O.JO
C.Jl
0.10
1.33
2.34
D.50
1.54
?.«0
3. «2
1.^0
l.«0
0. J3
C.31
0.30
U»l
w.32
0.32
O.CO
0.10
no;:
0.01
O.Ol
O.OL
0.00
0.31
0.02
0.00
O.Oo
0.01
0,00
3.00
0.30
0,00
O.JO
3,00
0.10
0,35
0.03
0.05
0.10
0.10
0,20
0,10
0,01
0,20
0,64
0,64
3,31
0,,28
0,10
0..20
0..10
0 ,10
0,10
0,10
0,12
0.01
0,03
0,05
0 .10
0.10
0.10
0.00
0.02
0.03
0.03
0.00
0.00
0.00
0.01
0.04
0.05
0.04
0.02
0.04
0.03
0.01
0.02
0.01
0.00
0.02
0.02
0.00
3.00
0.00
0.01
'4114
0.0
3.0
0,0
0,0
0.0
0.0
0.0
Ci.O
o.u
0,0
u.o
0,0
0.0
o.u
c.o
0.?
8.1
C.I
C.I
0.1
0,2
c.e
0.5
0,1
a.b
1,8
2.9
1.?
0.5
0.4
l.U
0.6
1.2
U.7
0.6
6.1
1.4
0.6
1.0
0.6
t.3
0.5
0.7
0.4
n.3
o.c
0.1
ti.o
o.c
I>.1
0.2
0.4
0.2
0.4
0.7
C.6
C.4
0.(
0.7
li.D
0.3
0."
O.b
o.c
u.r
0.1
P04
0.005
0.000
0.000
o.ooo
0.001
0.002
0.000
o.oco
o.ooo
o.oco
0.000
o.ooo
o.ooo
0.030
o.ooo
0.807
0.002
0.001
0.001
O.OC3
O.OC4
0.007
0.006
O.Ofll
0.1)05
0.014
0.026
0.020
0.012
0.009
0.0?1
0.013
0.026
0.019
0.013
O.U47
0.006
0.037
O.U?8
0.033
0.019
0.008
O.OC3
0.013
0.003
3.002
0.002
0.002
9.000
0.001
0.006
O.OQ3
0.031
0.001
0.011
0.009
0.007
O.OC6
0.006
o.ooo
0.005
o.oni
o.ono
0.300
0.000
0.000
01.
0.1
0.0
0.0
0.0
0.1
0.4
C.I
0.1
0.0
0.1
0.2
0.2
0.1
0.1
0.1
7.9
4.4
3.3
1.5
4.6
6.2
12.3
17.5
1.7
22.6
50.0
66.1
32.1
30.6
20.5
56.2
28.0
38.0
30.8
23.5
378.1
20.5
54.1
47.0
52.8
27.4
29.5
20.0
26.3
15.8
21.2
5.6
6.?
0.3
2.8
15.3
23.3
12.3
14.5
2P.4
26. fl
16.1
t'.l
11.6
0.1
13.7
6. a
1.2
1.1
0.0
1.9
MA
0.1
0.0
0.0
0.0
0.1
0.2
0.0
0.0
0.0
0.0
0.1
0.1
0.0
0.0
o.o
2.1
1.2
0.9
0.7
1.6
2.2
4.4
4.1
0.5
4.9
9.7
21.7
5.6
6.4
4.5
11.8
6.e
7.3
5.8
4.1
35.6
4.4
14.1
15.0
15.2
8.1
10.3
5.8
11.0
3.9
5.2
1.2
1.3
0.1
0.6
3.7
7.6
3.4
4.6
6.0
6.5
3.2
5.9
2.4
0.0
4.7
2.3
0.3
0.3
0.0
0.7
, CA
1,9
0,5
0.4
0,5
1,5
4.7
0,6
1,3
0,4
0,9
2.7
2.1
1,5
0.9
1.1
51.2
23,6
23,4
23.5
44.4
03.1
116. A
143.6
11.9
147.8
283,0
272.2
142,6
107.5
72.1
223,0
104,1
14B.3
92,5
62,5
4bB,?
6?. 7
147.3
157.7
163.9
b3,5
110.2
70.9
87.5
44.8
60.7
15.0
12.3
O.R
6.C
29,7
Sl.l
25.6
27.1
S?,7
51,6
i?. 7
37,1
21,1
0,3
27,5
15.1
2.6
?.5
0,1
3.9
Mr.
0,7
0,2
0,1
0,2
0,6
1.9
0,2
0,4
0,1
0,4
1,1
0,7
0,4
0,3
0.4
19,3
11,1
9,4
7,1
15,0
*1,7
40,2
37,5
3,4
SO, 2
/1, 5
68,6
44,6
25,9
17,5
53,7
23,3
35,2
26,8
19,0
110.0
15.4
40,0
38,4
42,7
23,9
25.9
14,5
19,9
10,4
13,2
3,2
3,4
0,2
1,5
7,5
14,9
6,7
B.l
15,2
H,9
9.6
13,8
5.H
0,1
7,1
4,0
0,7
O,/
0,0
0.9
. BOD
1.0
1.0
1.0
1.0
1.0
1.0.
1.0
1.0
2,,5
4,9
68,4
7.1
6,6
11,1
11,7
12.3
15.5
22,4
4.1
19,0
21,4
24,7
25,3
21.7
23. 5
11.5
12.1
10.9
12.7
16,0
7.2
8.4
10.1
6.3
7.8
5.8
5.5
6.4
5.8
6.4
3.6
4.5
3.0
6.6
2.8
3.0
13.3
7.8
4.9
a.*
6.7
6.8
6,1
8.5
5,8
5.6
6.6
7.6
tt.4
2.5
7,2
144.0
127.0
con
59.6
72.8
«6.2
53.0
P5.5
"5.5
PO.l
70,8
70.8
90.4
85.1
95.8
101.8
117.1
122.4
1?6.8
147.3
143.0
93,2
136.2
154.2
1?7.8
137.2
144.1
112.3
100.0
"6.4
3.2
P3.2
76.7
78.0
73.2
"1.6
78.2
73.2
44.6
*4 , 6
64.5
«8.6
63.4
48.0
"52.3
61.1
iO.O
49.6
9.8
77.8
57.6
<<9.3
79.9
92.4
'4.5
78,4
98.4
"2.6
' *7 ,8
*1.3
'1.4
B8.9
119.0
02,3
115,2
143J6
78
-------
Table 8 (continued).
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
SE Dairy Effluents
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
141
142
SUMS
0.14
0.01
0 . 11
0 . 30
O.HO
0.6Q
0.50
0.20
0.20
0.20
0.50
1.00
1.64
0 , 61
1.32
1.60
O.SO
0,23
0.20
0.40
0.15
0.53
0.62
2.05
2.51
1.10
3.44
0.10
1.61
1.20
1.53
C.10
G.?l
0.10
0.53
2-50
G.*0
C.40
C.U
C.'O
O.?0
0.43
l.*0
4.JO
0 , ? 0
4.32
2.34
1.10
1.33
0. 33
2.10
0.40
l.?3
13.34
f.'5
15.50
?4.«>3
136.30
3.31
J?.S2
3C.10
5C.30
TOTAL ORG'l
1.13217?»00>
TOTAL CJ
3,430613*003
9.00
0.00
0.00
0 .DO
0.01
0.00
0.00
0.00
0.00
0,01
0,01'
0.02
0.04
0.02
0.02
0.10
0.04
0.02
0,00
0.02
0.00
0.01
0.10
0 .10
0 .In
u . -fc y
0.15
C.22
O.Ol
C ,30
0.20
0.2l
0.1
U.I
Ci.O
U.I
1.0
U.9
c.v
0.3
0.3
C.3
C.5
1.?
1.6
l.L
1.1
1.7
1.1)
n.6
0.3
0.5
0.2
0.3
2.0
2.1
2.3
3.5
4.8
0.1
3 9
2.5
2.5
o.oui
0.001
0.000
O.OT2
0.015
0.009
0.005
O.OG2
0.002
0.002
0.004
0.009
0.013
0.007
0.010
0.008
0.006
0.004
0.002
O.OIM
0.001
0.005
0.008
0.010
O.OP2
0.017
0,061
0.1102
0.039
0.060
Q.OCO
3.6
3.2
1.3
7.1
23.8
22.4
18.9
7.6
7.7
7.5
15.3
31.4
51.0
36.0
51. C
58.8
40.5
24,6
11.4
24.3
5.9
14.0
101.2
94.9
131.0
175.4
263.1
6.9
1OO ,7
170. n
139.8
0.9
0.3
2.2
8.4
6.8
5.0
2.3
2.4
2.4
4,6
9.7
16.4
11.5
17.1
18.1
13.0
7,6
3.4
7.5
l.b
4.9
29.6
27.8
41.0
53,6
82.2
2.2
^9.8
49.8
41.8
TOTAL NOZ
7.127240+UO?
TOTAL f-'A
TOTAL N02
6.175971+000
TOTAL CA
7.1«>9402*003
7.6
6.1
2.9
15,3
61.1
48.4
43.5
1.9
1.8
0,6
3,3
10,9
9.9
11.4
1«,2
40.4
16, C
35,4
63.1
75,9
67,5
115.*
122.6
U7,*
31."
11.6
24.6
6.4
22,7
113.0
184,0
173.6
235, ft
314,3
«.9
23*. 9
200,4
162.4
4,4
4.3
4,2
8,8
20.8
44.0
19,0
24,6
26.1
16.0
9.9
4.*
10,1
2,7
7,2
42.5
39,5
51,0
64,5
91,4
2.4
64,7
52,1
43,1
TOTAL NH4
7.460698*001
TOTAL MG
l.B98974*003
111.0
147.0
122.0
124.0
173.0
163.0
297.0
297.0
9J.4
o.a
0.8
0.8
1.6
3,1
5.0
3,3
4.6
4.9
3.3
1.8
1.0
1.7
0,4
1.2
6.2
6.5
7.2
V.I
12.2
0.4
9.6
8.0
7.1
TOTAL P04
8.817555-001
TOTA1 K
1,240543*002
7? .7
B3.9
BO. 7
87.4
72.9
72.0
80.2
73.5
64.2
79
-------
Table 8 (continued).
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
SW Dairy Effluents
DAIRY 3*RNs, CAL:UL»TED DATA
AMPLE
11
12
13
14
15
16
17
18
19
20
21
22
24
25
26
30
31
34
35
36
37
38
39
40
41
43
44
45
46
47
48
49
50
51
52
76
77
76
79
80
81
62
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
103
1Q4
105
106
107
109
110
OHGN
0,10
0,10
0,01
0,02
0,01
0,20
0,02
0,03
0,02
0,04
0,04
0,05
0,02
0,03
0,03
0,70
0,40
0,21
Otl2
0,54
0,60
1,90
2,40
0,20
1,81
7,80
4,40
2,02
2,50
2,20
2t80
0,82
3,40
2,30
0,44
14,0
0,82
3,90
5,13
3,70
6,30
4,30
1.80
2,01
1,01
0,95
0,15
0,41
0,20
1,00
l,4n
1,60
0,90
1,40
2,60
0,7<>
1,5°
1,50
0,60
0,00
1,00
0,40
0,10
0,20
0,10
0|4Q
N03
0,1
0,
0.
0.
o,
o.
o,
0.
0.
o.
o,
0.
0.
o.
0.
1.
0.
0.
0.
0.
0.
3.
».
0.
9.
33.
72.
19.
21.
21.
2f>,
6.
15.
10.
4.
25.
2.
I?.
H,
17,
f,
12.
7.
1C.
?.
3.
0,
c,
o.
0,
1,
2,
o.
1.
2,
3.
3,
5,
0.
0.
1.
u,
u,
0,
a,
c,
i
0
I
5
9
I
1
a
i
i
i
0
3
I
3
6
7
4
S
9
2
6
5
2
9
3
1
3
5
5
5
3
1
1
6
i
5
7
2
3
9
)
4
5
4
t
i1
r
V
n
)'
;i
n
;»
,»
j
}
)
I
9
3
t
1
S
NO 2
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0,3
o.o
0.1
0.0
0.0
0.0
0,0
0.0
0.1
U.I
0,0
0,3
0.8
0.8
0.4
0,4
0.1
0.1
3.1
0.2
0.1
0.0
1.0
0.1
0."
1.0
l.fl
2.1
2.0
1,4
1.6
0.6
1.1
0.2
0.2
0.0
0.1
0.1
3.2
0,0
0,1
0,1
0.1
0,1
0.1
0.0
0.0
0,0
0,0
0.0
0,3
0,0
0,0
HH4
0,0
0,0
0.0
o.o
0.0
o.o
0,0
0,0
0.0
0.0
o.o
o.o
0,0
0,0
0.0
0.1
0.1
0.0
0.0
0.0
0.0
0,1
u ,0
0.0
0.2
1.9
1.0
0,8
0.5
0.5
0.3
0.1
0.2
3.1
0.0
5.2
0.2
0.4
0,5
0.3
0.2
0,3
0.7
0.4
0,2
0,2
0,1
0.3
0.1
0.0
0.3
0.3
0.2
0.2
0,7
0.5
0.5
0,8
0,4
0,0
0.4
0,2
0,0
0.1
0.1
0,3
P04
o.uoi
o.uoo
O.UOO
0,000
0,001
0,001
0,000
0,000
0,002
0,003
0,000
a.ooi
0,000
0,000
0,001
0,005
0.001
Q.003
0,000
0,000
0,001
0,1)10
0.011
0.901
O.U17
0,029
3.054
0.010
0,035
0,033
3,047
3,036
3,010
0,006
0,003
0.112
0,007
1.079
0.058
0.069
0,044
o.«4o
0.031
0,0*0
0.007
0.012
3,002
0,005
3,003
0,007
0,013
0,005
0,001
0,001
3,008
0,006
0,013
Q.UIB
0,001
3,001
0,027
O.U02
o.uoo
Q.U02
o.uoi
0,003
CL
U.2
0.1
0.1
0,1
0,3
0,6
0,1
0.1
0.1
0,1
0,2
0,2
0,2
0,1
0,2
2,8
2,1
0.6
0.6
1.4
2,2
5,5
11.2
1.2
18.9
69.0
102.9
55,3
69.0
39.0
78.7
21.8
56.5
42.4
11.7
235.3
26,2
95,7
113.7
129,7
69,3
89,9
47,6
60.1
23.4
48.1
8.1
10,3
6,1
16,6
38,2
46,6
18.1
23.4
65,7
38,2
45.5
56.3
26,3
1.2
49.3
14,1
1.6
6.3
2.6
9.8
HA
0,1
0,1
0,0
0,0
0,1
0,2
o.o
0,1
o.o
0,1
0.1
0,1
0,1
0,0
0,1
1,3
0,8
0,5
0,5
0,8
1,2
2,6
2,"
0,5
4,6
9,1
10,3
6,6
6,6
4.7
13,6
2,5
7,2
5,4
l.B
34,1
4,5
22,6
24,5
27,8
16,3
20,7
12,8
16,8
6,3
12,6
2,3
2,9
2,2
5,4
14,2
17,7
7,4
8,6
22,9
8,5
11. ->
14,5
7,0
0,4
17,5
5,3
0,6
2,4
1,0
4,1
*
1,0
0,7
0,9
2,1
5,1
0,8
1,3
1,1
I,5
2\6
3,1
2,3
1|4
0,8
25,5
12,4
8,6
10,0
26,6
40,5
1/1,3
118,6
11,6
137,3
2*2,5
305,5
148,2
165,2
113,5
187,3
46,9
119,1
88 ,6
23,
460,4
35,6
268, c
289,3
289,7
161,7
233,0
137,9
172,9
64,5
122,2
20 ',5
19,5
13,0
38,7
81,9
V3,4
38,5
39,7
114,6
66,0
83,3
V6,6
47 4
2,1
89,0
29,0
3,5
13,2
5,3
20,9
MG
1,1
0,4
0,3
0,4
0,9
2,1
0,3
0,6
03
0,5
o|a
0,'»
0,6
0,5
0,6
12,1
7,7
4,9
2,5
8,7
13,7
26,6
31,'
3.1
36,1
/3,3
78,4
35,8
39,0
26,7
43,2
11,0
31,0
21,4
5,3
113,0
16,0
/3.1
81,6
87,5
SI, 3
S9,2
31,8
43,8
16,9
28.8
«!a
5,6
3,5
9,7
20,2
25,4
10,8
12,5
32,7
18,4
24 ,0
29,1
12, ,2
0,6
24,3
7,4
0,9
3,3
1,1
4.6
TO 58°. o
0,5 46,3
0,5 132.4
0,5 46.3
0,5 56.8
0,5 59.2
0,5 49.3
0,5 51,5
51,5
64.6
2,4 53,4
4,5 69,2
6,1 5b,5
5,6 85,5
5,8 85,1
5,7 94.7
»,0
6,1
10,6
7,0 133,0
1?7,0
176.0
80
-------
Table 8 (continued).
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
SW Dairy Effluents
ill
112
113
114
* A^
115
116
117
118
119
120
121
122
123
194
&c ^
125
126
127
128
129
130
131
132
133
134
135
136
137
138
141
142
SylS 07
T
T
0,1 0 0.4
0,00 0.3
OlO 0 0.3
2,00 3,7
1,90 1.5
It7 0 0.7
0,7 0 1.1
0 .0 0 0,0
0(90 1,1
1,2 0 1,9
2,1 0 7,3
2,50 23.2
0,71 l.S
2,61 9,3
2,21 8,5
1,6 0 8.9
0,60 6,9
0,6 0 5,1
0,7 0 3,3
1,0 0 - 6.3
0,30 5.1
It9 2 37,3
2.70 32, i
3,1 4' 37.9
3tl 4 147.3
4,2 4 248.3
3,4 4 35>«.3
1,40 34t. i
It7 0 34.S
2,2 1 135,4
T
TOTAL JRGM
1,503265,002
TOTAL C.|
6,9970lB»C03
0.0
0.0
0.0
0.0
O.a
0.1
0-.0
0.0
0.2
o.a
0.2
1.9
0.0
0.6
0.3
0.2
0.1
0.1
0.0
0.2
0*0
0.2
0.1
0.2
0.2
0.3
0.2
0.2
0.1
0.1
0,1
0,0
0.0
1.5
1.8
0,9
1.0
0,0
0.2
0,3
0,0
U.8
0.4
1.9
2,5
2,0
1.4
U.9
0.9
0.7
0.3
2.8
1.8
2.5
3.7
3.9
9.5
4.1
1,9
2.5
0,002
0>000
Q.UOO
0,023
0,018
0,013
0,1)07
0,000
0.008
0,012
0,024
O.U35
0,005
0.027
Q.02Q
0,019
0.011
0.010
0.004
0,003
Q,U02
0,016
pj.029
I), 024
0.055
fl.079
0.094
3,081
0,013
0.027
TOTAL NOS
2.33208(1*003 2
TOTAL NA
2.206893*003 1
7.0
1,4
0,1
68,5
66.2
47,4
24.2
0.1
31,2
42,8
86, 0
153.5
27,0
157,9
150,0
138,7
82,7
67.4
51,7
51,6
21,8
298,3
189.8
316,5
396,4
468.3
446.9
424.7
245,6
253.1
2,5
0,*
o.o
26,6
23,6
18,3
9,5
0,0
12.6
16.5
32,7
55,3
10,1
56,3
50,6
48,3
26,3
28,9
16,3
16,0
6,6
95,4
67.4
102,7
139,1
167,3
164,5
159.0
96,4
94,9
TOTAL N02
,427210*001
TOTAL CA
,182578*004
16,0
2,6
0,1
161,8
117,8
97,9
31,8
0,1
61,1
?6,9
90,9
426,4
43,6
318,7
2»2,5
247,1
*1,7
'2,0
31,6
49,4
20,6
264,1
239,6
420,7
399,8
564,0
56Q.7
538,3
331,5
297,3
3J1
0,6
0,0
41.7
26,1
22,9
11,8
0,0
14,8
20,3
J8,7
77,3
11,7
63,3
35,2
30,9
26,0
28,1
16,0
16,8
7,0
96,5
76,2
107,9
128,2
146,2
146,3
126,8
/9,2
78,0
TOTAL NH4
7,66B499»fl01
TOTAL MG
3,060210*003
2.1
2,4
3.9
7,0
11,3
1.9
10.2
b,6
8,5
4,7
5,2
2,6
2,5
1,1
12,6
9,1
10,3
13,6
16.6
14,7
12.7
6,0
8,1
22,7
22,7
6,3
6,3
2,4
1,9
2,9
3,9
4,3
4,4
1,6
1,7
1,6
3,0
0,5
1,3
1,6
1,6
C2.9
99, z
94.2
104.0
148,0
123,0
93.4
102.0
77.7
83,9
^O.O
87.4
72.9
70.6
80.0
73.5
64,2
76.4
63.1
38.0
61.6
66,7
54.3
TOTAL P04
1.637768*000
TOTAL K
1,967451*002
81
-------
Jg,
H
S3
O
M
H CM
S ON
PH rH
^
H Pi
U W
o §
U W
0
H W
^ O
W
M 1
FH CO
P H
W
W P
^3 p^
jyj pr_i
W W
4-l 52
cd MH
t£ W
in
CM
OO
CO
oo
^
00
CM
CO
in
O
OO
r^
,
00
in
H
CM
O
O
CO
oo
CO
OO
VD
ON
CM
r-s
^
^t
r-s
CM
.
in
CO
rH
CM
O
O
rH
,
rH
r-s.
VD
VD
O
in
rH
.
CM
^2:
CO
82
-------
.
CM
^
rH
W
W
w
o
w
Q
5S
O
O
s
H
S3
S
J
Pn
M
g
*
g
CM
O
^
CO
Z
Z
00
£.)
O
1
1
o in
VO vO
i eg
i
i
i
co l^
00 CM
1 rH rH
1
1
|
o oo
vj cr\
1 4H Z
S CM
O- O rH
000
& w ts
Z co co
in
^i-
rH
CM
rH
m
CO
00
CO
rH
CT\
CN
CO
f*
m
vO
o
rH
O
o
vO
rH
rH
a\
o
vO
CM
VO
rH
CO
o
rH
cd
4-1
0
H
m
^>f rH
o"* co
m
CO CO
rH CO
rH
CTi O
O CM
CO rH
CO VO
m o
CM
CN vO
O CM
in
oo
o
CO O
oo o
m in
CM
in
Is*1* C5
o
CO
o
o"
vO
o in
CM O
CM
"^ rH
oo o
O"\
1 i
c
0)
>> V 3
Ll 4J rH W
H CO MH Z
O 13 W
CO
O
O
CM
rH
r^-
^.
-vl-
O
oo
rH
CTi
O
O
O
rH
O
o
*d"
o
0
o
oo
oo
o
«^-
o
o
^g
^
CO
o
o
CM
rH
r^
-------
Table 11. PERCENT TOTAL SOLIDS IN WASTE THAT WAS
APPLIED TO THE BLWRS.
Date
July 1971
Augus t
September
October
November
December
March 1972
April
May
June
July
Augus t
September
October
November
Swine Waste
0.22
0.36
0.33
0.24
0.31
0.24
0.28
0.29
0.28
0.30
0.33
0.33
0.30
Dairy Waste
0.26
0.23
0.315
0.395
0.385
0.44
0.45
0.49
0.48
0.58
0.64
0.50
0.49
0.53
Average
0.30
0.44
84
-------
r~~
CO
rH
a
PL,
PL.
M vO
CO
CO rH
nJ
PQ
a m
O fl
e
M
H
sg
J5 CO
rH
Q
5
H
S ro
g rH
J
E
PM
W
S3 CM
M CO
rH
a
0
U rH
CO
si -1
<;
H
o
H
O
co
CM rH
rH
CO
, 1
i^n
,0
cci
H
M
0)
rg
a
3
2
CU
rH
&
§
n)
C/3
VO CM -vf OO O
rH V +H
MHiJ<^'x 'HJ* ' tfl 4H
W pq PQ is w
4-1 4J 4-1 W
O'rCWCO.CWCQCU >,
C-wcooiwcdaic! w
H >-i W £5 3 W & -H -H
& o o s cd
V3 2 CO W Q
vO vO 00 O O
CM rH CM rH O
st
oo oo
-------
winter when denitrification slows.
Phosphate concentrations on all BLWRS was at the 0.02 ppm level which is the
natural leachate from these soils. The phsophate absorption capacity of the
soil is removing all the soluble phosphate from the system.
The recycling of the effluent at the Swine Barns for reflushing is causing a
buildup of NaCl. This is dispersing the organics on the surface of the
Swine BLWRS and reducing the infiltration rates.
Calcium and magnesium are leaching from the BLWRS soils but these are not
polluting.
The amounts of nutrients added in waste and drained from the BLWRS are
summarized in Table 10. The total nitrogen added in waste was 386 kg and 176
kg for the Swine and Dairy BLWRS with effluents containing 76 and 5.4 kg for
a renovation efficiency of 80% and 97%. The corn energy source excelled the
others in renovation efficiency. The average rate of nitrogen applied in the
wastes amounted to 23.8 t/ha. for the Swine and 10.8 t/ha. for the Dairy BLWRS
during their operation to December 1972.
Phosphate renovation efficiencies for the Swine BLWRS was 99.9% and for the
Dairy BLWRS 99.4%. Actually, eventually the BLWRS sill reach their absorptive
capacities but until then they are extremely efficient at removing phosphate.
Part of this is due to the fact that even though the wastes have phosphate
concentrations of 18 and 38 ppm these are reduced to 5 to 7 ppm by the preci-
pitation of dicalcium phosphate. This precipitate accumulates in the surface
86
-------
soil. The remaining soluble phosphate is absorbed on the soil. The average
rate of phosphate application was 461 and 510 kg/ha.
The BOD5 and COD analyses are reported in Tables 5,6,7 and 8, pages 44 to 81.
The swine waste had an average BOD concentration of 1131 mg/1 and an average
COD of 2328 mg/1 while the dairy waste was 1637 mg/1 and 3356. The average
BODc and COD values of the effluents from the corn energy source of all the
BLWRS was 290 mg/1 and 433 mg/1 while the other sides of the BLWRS had
average BOD of 18.9 mg/1 and COD of 78.3 mg/1. This indicates that too
much energy was available in the corn source and a less reactive organic
source would be preferred. If the corn effluents are excluded, the 6005 anc^
COD renovation of the BLWRS were 98.6% and 97.3% which is very good.
CHANGES IN THE SOIL
The original chemical analysis of the soil is reported in Table 2, page 37.
Subsequent analyses were made on samples collected October 20, 1971, and
November 1, 1972, all reported in Tables 13 and 14.
Nitrate nitrogen shows a depletion in the surface soil over the amount that
was originally there although the second sampling shows the content building
up in the surface soils. At all depths below the surface soil there is an
increase in nitrate which should be expected in these aerobic soils that have
been heavily loaded with nitrogenous waste.
Ammonium nitrogen had a slight increase in the 0-5 cm depths but a depletion
in the rest of the profile down to the anaerobic zones where in the North
Swine and South Dairy there was an increase in ammonium. These were the
heavily driven BLWRS of each pair.
87
-------
PH
PH
O
-------
4-1
to
5
s
PM
P* rH
U
S3
) !
« 4-1
rH CO
t-~ cfl
C* W
rH
O
CM
P3
W
Mil
+
O CO
E-l
psi to
Of A f ) fl 1
uj w vy
a 13 -H S
c d
Pt W cfl
O bO
!-j
!a o
o
H to
H cfl 4J
(H CO
co !a cfl
o w
&
0
c_>
^
c_)
%
r-T f/\
H-J UJ
BO)
C«t2
O
a
*
x-v Cfl
n co
0)
3 la
C w
H CO
4J Cfl
d H
O
o
\^
CO
i~H
(1)
CO rH
rH PH
8 §
H CO
O O O O O O
oo oo co in oo o
CN CM CO CO rH
o o o o o o
O -d- oo c^ co oo
rH rH CO rH r~i 1^1 Ui wi m
CO rH O in CM CM
CO «* CO O CM tH
rH CTv iH CJ\ rH O
rH CM CM CM rH rH rH
a- 1 i i i i i
cu o co ^o crv cN in
Q rH rH
O 0 O 0 0
O OO i£> OO *
t 1 rH CO CN CN
m vo ^o o
co
-------
- pel
w
O
§
H
-d-
O
PL.
w
ca
cd
4-1
O
H
60
M
0)
C
£ cS
£*
M
O
2
CO
rt
cd
co
o
CO
rt
ex
a)
o- in
CM OS
CO
CO rH rH
CM
ooooooooooooooooo
ooooooooooooooooo
OOOOOOOOOOOOOOOOO
ooooooooooooooooo
CS
rH r-l
00
oo oo
^J-
oo
iH tH o- in
in m vo o
m
co IT)
oor^ror-- roi inmr^
-------
33
co
4J
C
O
O
s
H
O
IX,
en
cc
PM
u
O
H
W)
H-l
M
0) CO
C CO
CO
3
O
CO
CO
cfl
CO
o
S3
CO
CO
CX
(1)
n
<- CN VD 00 VO CN
o-
00
IN cs|
co
ooooooooooooooooo
oooooooooooooo
o o o
COiHOOiHi-lrHfOOiHrHiHiHCNCNrHOO
OOOOOOOOOOOOOOOOO
ooooooooooooooooo
rHOOLOCVJr-HrH
CO
OO 00 OO 00
>_i)-iM .J-i . -M!-iS-ii-i
M )-l
iHCMCMrHCNi-H
r r r : : o CN
o
i i i
T-H CN
-------
CM pj
f- J5
<3\ ^
H pq
(*! o
W CO
o
> M
eg |xi
£l
tig
3^
Qg
s S
O O
PH £*i
a a
a H
^J *5Tl
H g
co fn
W
tJ M
n. ^j
S o
en >
hJ M
H 2
o ^
CO H
P-t CO
O W
1-3
CO Oj
CO ^
tH CO
ll
52
o S
H PLI
S PL,
4-1
c
8
CM in -* CM ^H r-l
CQ
n)
OOCOCS THiHiHiHrHi-HiHiHiH
CO CO
OOOOOOOOOOOOOOOOO
ooooooooooooooooo
i-HiHiHi-liHHHiHi-IHrHHrH
OOOOOOOOOOOOOOOOO
C8 OOOOOOOOOOOOOOOOO
JS iHOp «
ts o
n
H 1/1
fj r-Nininoi^-r^^fvovOOOvooii/iocM
01 CNCNrHfO r-lTHiHiHrHiH iHiHrH
f\
rH
M
O
Z
18 c-jcNior^ oo vroooooooom oooooo
co . . . . M M M.«.
OiOOCNt-HHOHf--OOOOCMHOOO
CO Oi
Cfl
f
o co
z
cq
01
* = = o JH Jf CM Jf" ro jf< si- Jf in Jf «
&
c
o
92
-------
CO
T3
3
c
C
O
o
§
H
O
PL,
CO
cd
O
H
60
H to
Q
n)
S
(X
£
co
cn
CO
i-H r-H r-H i-l rH
OOOOOOOOOOOOOOOOO
ooooooooooooooooo
rOCNvOiH>*OOvOirirHONiH«*OO-3-eNrH
-------
Organic nitrogen increased in the 0-2 cm depth but decreased in the rest of
the surface soil compared to what was originally there. There was an increase
in organic nitrogen at greater depths. This increase amounted to a four-fold
increase in several samples in the South Dairy.
Althoughthe accumulation of organic matter was only visable to a depth of
2 or 3 cm, there seemed to be an accumulation of carbon throughout the Swine
BLWRS and a depletion of carbonate in the Dairy BLWRS. There should be more
studies partitioning the organic and carbonate carbon in these soils.
The phosphate profiles that are developed in these soils are very interesting.
Phosphate contents of the 0-5 cm soil is in excess of the maximum phosphate
absorption indicating a precipitation of phosphate probably as dicalcium
phosphate in these surface soils. This would be accomplished by the calcium
in the waste or in the soil. Immediately below the zone of precipitation
there is a zone of absorption on the soil complex which is saturated. This
occurs 5 to 20 cm deep depending on which profile is considered. Below the
zone of absorption the phosphate content is at the phosphate content of the
original soil. These data are being used to develop a model of phosphate
movement in soils.
MICROBIOLOGICAL ANALYSIS
Following the last application of waste in November of 1972 to the BLWRS at
the North Swine site, soil cores were taken and analyzed for the population of
total anaerobes, denitrifiers, coliforms, fecal coliforms and fecal strep-
tococci. Data in Table 15 shows that the largest populations of both anaerobes
and denitrifiers were in the surface soil, while the lowest populations were
in the samples from the three anaerobic sites. It is probable that both
94
-------
w
£7^
H
!3
CO
*T*
3
0
a
^jj
M
Q
g
g
*
CO CN
m l~
W C7\
H iH
PK
H ftf
PtH M
H Q
S B
W ^
Q 0
Q
cd
43
4J
CO
0
CO
rl
a
cd
60
^
o a
o o
V-i -i-l
0 4-1
H cd
G rH
j3
M-l £3
o 3
o
e o
o cd
H
4-1 01
cd 4J
i-H -H
3 ^
a 4J
0 -H
FM C
cd
OI
c
0
N
a
H
42
0
01
cd
C
cd
e
0
<4_l
13
0)
4_)
a
01
i-i
i-H
O
O
CO
01
I-l
g.
cd
CO
42
95
-------
nitrification and denitrification were extensive at the surface, but within
roicroenvironments wheie favorable conditions for each process were prevalent.
The importance of such microenvironments is easily visualized if one considers
the likelihood of oxygen gradients within aggregates or near surfaces of
particles, the availability of organic residue, and the fact that denitrifi-
cation is commonly a iricroaerophilic process. Though the denitrifier popula-
tion was one to two orders of magnitude lower in the anaerobic zone, it does
not mean that denitrification was not important in these zones. The deni-
trifier biomass was sufficient enough to carry out significant denitrification,
providing nitrate and available organic materials were present. Also, the
denitrifier population was not assayed in the soils on the slopes at the
particular sites where additional organic matter was added; the populations
could have been much higher in these locations. The denitrifiers appeared to
represent an important, but not major, percentage of the total anaerobic
population.
It was also noted that in the surface soil the population of organisms that
reduced nitrate only as far as nitrite exceeded those that denitrified the
jiitrate to nitrogen gas. This may explain the higher levels of nitrite found
in the effluent waters during the later periods of operation.
The population of pathogenic indicator organisms determined in the same soil
samples is shown in Table 16. It can be readily seen that even in the surface
soil the populations have dropped several orders of magnitude below those of
the added waste. In all samples, except the surface soil, the coliform
population was similar to that found for native soil coliforms present prior
to the first waste application. If one considers the high volume of waste
96
-------
rJ
M
O
CO
CO
^
r-J
PQ
w
1
CO
pr]
fi_|
Pn
o
g
a
1 1
p\
s
£3
g
CO
O
H
QJ
M
S C^
| | |-^
O*N
£5 1 |
w
o w
ffi PQ
E~* §
O
Pn a
O
a
CO H
O fl
M W
H H
< U
1 pq
^H . n
P>-l rJ
o o
PL, U
.
^o
rH
01
rH
CO
H
H
U
0
O
H O
cfl O
CJ 4J
cu ex
PM 0)
^1
4J
b CD
rH
H
o
CD
>J en
o
d MH
CU -H
t> 1 1
o o
o
M
r 1
o cd
0 U
H 0)
-. fe
e
CO
H
pj
cfl
&C
r-l
O en
O 6
M C
CJ 0
1 1 1 1
5T *H
rH
O
U
f-j
4-1
ex
Ol
T)
*X3
c
cfl
01
H
CO
01
rH
ex
e
CO
CO
r-
O
rH
X
01
VO
vO
O
, 1
t^
.
rH
J^^
O
rH
X
**o
.
rH
CO
CU
4-1
CO
Cfl
T3
Ol
H
, |
ex
ex
cO
C
M
O O O O
if) O <3" O
O csl ro
r> *
CO ON
CT\
CO -^ »
rQ &H V-l r-l
0) 0) O)
rH 4-1 4-1 4-1
H c c a
o o) cu 01
en u o u
0 0
o -*
ro CN
r*
CTv
co CO
V V
o o
O , 4-1
rH -H
O) C
13 > 00
01 -H CO
H 4-1 g
rH O
ex cu 4H
ex ex o
cfl en
Ol r-l
rH V-l O)
Cfl T3
H « r-l
rJ r-J O
CU 0)
4-1 4-1 d
cfl cfl cfl
e _ s
CU 0) B^S rH
4-J fl ^t M
Cfl O rH CO
cfl N cu
IS T3 C3
0 d
4-1 -H CO CU
O ,£) ,O
o in
rH S-l rH T3
6 CU rH
C! - 3
O Cfl CO O
o rH ;?
rH g
^,O - Cfl
co r-t in cu
S 4-1 -3
CO t^~ rH
H t3 CO
d cu " >
co 4-i m
M CJ . f!
IH (U OO O
O rH rH -H
rH 4J
CU O CU cfl
V-l CJ M rH
CO CU 3
CD ;s ex
co cu o
cu rH co ex
3 CXrH
rH 6 -H CU
CO CO O ,C
> CO CO 4-1
co ,n u
97
-------
applied and the filtering action of the soil which should retain most of the
waste microorganisms at the surface, it is apparent that these pathogenic
indicator organisms do not survive very long in this soil system. The drastic
decline in the fecal coliforms indicates either that their survival in soil
was minimal or that they are still present but have lost their ability to
ferment lactose at 45° C after prolonged exposure to the soil environment.
The coliform composition of the swine and dairy waste added is shown in
Table 17 and summarized in Table 18. The fecal coliforms comprised one-half
of the total coliforms in the swine waste and about 40 percent in the dairy
waste. There were more fecal streptococci relative to the coliforms in the
dairy waste than in the swine waste. Most important, however, is the
-tremendous reduction in population of all indicator organisms in the BLWRS
effluent water as shown in Table 19. The limited survivability and the filter-
ing action of the soil appear to have prevented transport and contamination
of the effluent water with these three indicator organisms. We must point
out, however, that under overloaded (spring) or winter conditions, the indica-
tor organisms did apipear in the effluent water as shown in Table 20. Direct
contamination of the; effluent water by the runoff over the soil surface did
occur on several occasions when the system was purposely being overloaded in
order to establish the operating limits. Thus, we cannot be certain whether
or not any of the contamination that occurred was via movement through the
soil. It is apparent, however, that even when large populations of coliforms
and fecal streptococci were found in the effluent, fecal coliforms were absent.
As mentioned in relation to the discussion of Table 16, this could be due
either to a loss of the ability of coliforms to ferment lactose at 45° C and/or
to the growth of the coliforms (but not the fecal coliforms) in the terminal
98
-------
.
1
w
e
o
H
g
§
H
H
CO
^3
IS
u
W
H
Pn
O
CO
JZ
0
I-H
£_|
^
2
M
§
H
P
d
O
H
C3
0
M
Q
s
H
a
*
01
CO
H
4J
o.
4-1
rH
O
O)
P*
H
Q
C_5
i-H
cfl
O
iS
0)
1 1
CO
CO
£2
01
e
H
^
CO
a
H
O
4-1
H
Q
U
M
01
g
c
CD
i
ft
CO
CO
oo oo r*^ r^** r^*» r^
o o o o o o
rH rH rH rH rH rH
*v* "v* k/t W *«* M
f*i i"« rS fN r^ rN
10 t-H
-------
CO
S3
a
M
H
H
Q
8
O
55
M
r_j
S
S
w
PH
o
rH
a
1
25
g
Q
g
g
w
t>
153
PH
M
|
S
1
PH
O
S5
O
hH
H
M
CO
0
&
s
8
d
<;
M
pq
§
CJ
t)
rS
oo
iH
CU
rH
,£1
cfl
H
^^
S3
§5
O
rH
e
o
o
rH
~"*^
CO
S
CO
H
a
cfl
(X
M
0
H
a
o
o
o
o
4J
a
cu
n
Is* 1^-
0 0
rH rH
0 O
X 0 X 0
4J CN rH
co ro t-^
rH
CO
O
01
PH
H
rH
O
o
iH
Cfl
CJ
cu
PH
6
o
MH
H
rH
o
O
CO
CU
rH
8-
cfl
CO
\o r~-
r^ vo
O O
rH rH
X ro x n
V V
OO rH
O rH
r~ vo
0 0
rH rH
o o
X o X in
rH
>c oo
rH CM
cu cu
4-J 4-1
H -H
CO CO
cu >>
a f-i
T3 'H T3 -H
CU ? CU cfl
T3 CO T3 T3
T3 -0
cfl 0 cfl E
O 0
01 r-l CU r-l
4J M-l 4J M-l
CO CO
Cfl 4-1 Cfl 4J
s a s c
cu cu
2 = h 3
C rH r-l rH
H >4H >H >4H
& 4H cfl M-I
CO W Q W
TJ
CU
T3
cfl
O
rH
)_l
CU
>
O
60
c
H
>
0
rH
t
0
111
a
cu
4-1
4-J
H
C3
§
CO
cu
rH
P.
5
CO
4-1
G
cu
s
rH
MH
<4-<
CU
4J
P.
CU
fj
X
cu
T3
nl
u^
4J
CJ
CU
rH
iH
o
fj
CO
CU
rH
g*
CO
CO
f J
rH
cd
<4H
O
CO
cu co
60 T3
cfl O
r-l -H
cu
< a
cfl
100
-------
Table 19. MICROBIAL COMPOSITION OF THE EFFLUENT FROM THE
EAST END OF THE NORTH SWINE BLWRS.
Sample
Number
8
10
12
14
18
20
22
24
26
28
30
32
34
38
40
42
44
46
48
50
52
78
80
82
84
86
88
90
92
94
98
100
102
104
106
108
110
112
114
118
120
122
124
126
130
134
136
Organisms/100
Coliform
2,400
23
39
43
21
240
240
240
7
43
240
2,400
24,000
110,000
1,100
43,000
70,000
93,000
75,000
240,000
9,300
150
240
700
240
430
2,400
240
700
430
240
93
3
93
240
240
43
240
240
240
240
460
9,500
0
1,200
240
3
ml (MPN)
Fecal
Coli
3
3
4
3
3
3
3
3
3
3
3
3
3
9
3
4
3
3
3
3
3
3.10
4
3
93
93
2,300
36
3
0
9
443
3
3
4
4
9
15
9
3
3
3
3
3
3
3
3
Fecal
Streptococci
0
4
23
15
3
7
23
3
43
24
240
240
4,600
23
23
240
23
93
23
23
23
9
23
430
2,400
2,400
2,300
93,000
2,400
4,300
240
430
43
3,900
430
43
43
93
23
93
23
240
210
93
93
43
23
101
-------
Table 19 (continued). MICROBIAL COMPOSITION OF THE EFFLUENT FROM
THE WEST END OF THE NORTH SWINE BLWRS.
Sample
Number
8
10
12
14
18
20
22
24
26
28
30
32
34
38
40
42
44
46
48
50
52
78
80
82
84
86
88
90
92
94
98
100
102
104
106
108
110
112
114
118
120
122
124
126
130
134
136
Organisms /100 ml
Coliform
11,000
11,000,000,000
15,000
46,000
230
75
240
200,000
240,000
15,000
150
210
750
2,000
460
240,000
430,000
1,100,000
240,000
46,000
24,000
1,500
43,000
43,000
230,000
24,000
1,500
93,000
23,000
4,300
2
150
3
3
9
23
15
4
3
93
43
23
93
240
240
23
23
(MPN)
Fecal
Coli
43
7,500
75
930
3
3
3
15
4
3
3
30
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
0
0
3
3
3
3
4
3
4
3
3
3
3
3
3
3
3
3
Fecal
Streptococci
24,000
24,000,000
24,000
1,500
75
240
93
240
23
230
230
3
90
93
240
11,000
4,300
4,600
1,100
240
240
930
4,300
9,300
1,500
2,400
2,300
700
2,100
1,500
240
430
930
43
24
24
430
240
430
2,400
240
1,100
930
43
23
93
93
102
-------
Table 19 (continued). MICROBIAL COMPOSITION OF THE EFFLUENT FROM
THE EAST END OF THE SOUTH SWINE BLWRS .
Sample
Number
3
4
6
8
10
12
20
22
24
26
28
30
32
40
42
44
46
48
50
52
78
80
82
84
86
94
96
98
102
104
106
108
110
112
114
118
122
124
126
130
134
Organisms/100 ml
Colif orm
43
21
1,100
200,000
24,000
2,400
3,900
43,000
93
43
240
23
200
23
93
40
240
93
43
43
70
43
43
3
23
9
210
93
43
430
23
23
23
7
93
93
93
240
43
240
4
(MPN)
Fecal
Coli
3
3
3
75
23
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
0
3
0
3
3
3
460
3
4
3
3
3
3
3
3
3
3
3
Fecal
Streptococci
240
23
43
39
23
240
240
3,900
43
23
43
64
43
23
23
23
23
23
93
23
240
240
240
93
240
43
240
240
9,300
930
9
43
230,000
43
39
43
23
93
23
93
23
103
-------
Table 19 (continued). MICROBIAL COMPOSITION OF THE EFFLUENT FROM
THE WEST END OF THE SOUTH SWINE BLWRS.
Sample
Number
2
3
6
8
10
12
20
22
24
26
28
30
32
40
42
44
46
48
50
52
78
80
82
84
86
94
96
98
102
104
106
108
110
112
114
118
120
122
124
126
130
134
136
Organisms /100
Coliform
460,000
1,100
43
21,000,000
7,500
150
240
75
75
23
43
39
93
7
240
1,100
240
93
460
430
15
43
43
23
23
43
44
75
240
240
11
93
23
240
930
93
93
93
93
93
43
240
23
ml (MPN)
Fecal
Coli
3
9
43
46,000
4
4
3
3
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
0
4
3
3
3
3
3
3
23
3
3
3
3
3
3
3
3
3
Fecal
Streptococci
23
23
120
240,000,000
23
15
150
93
23
9
23
23
23
23
23
23
23
23
23
23
23
43
93
2,400
230
240
93
430
930
15,000
23
23
4
110
23
43
240
23
93
4
3
23
23
104
-------
Table 19 (continued).
MICROBIAL COMPOSITION OF THE EFFLUENT FROM
THE EAST END OF THE NORTH DAIRY BLWRS .
Sample
Number
30
32
48
50
52
78
80
82
84
86
88
100
106
108
110
112
114
118
120
122
124
126
130
134
136
Organisms/100 ml
Coliform
4
23
93
9
23
23
430
93
23
93
3
3
3
3
3
3
3
3
3
4
3
3
23
15
9
(MPN)
Fecal
Coli
3
3
3
3
3
3
3
3
3
3
0
0
3
3
3
3
3
3
3
3
3
3
3
3
3
Fecal
Streptococci
4
43
93
23
23
7
3
43
23
150
23
23
4
9
23
23
7
4
6
23
23
4
23
3
3
105
-------
Table 19 (continued). MICROBIAL COMPOSITION OF THE EFFLUENT FROM
THE WEST END OF THE NORTH DAIRY BLWRS.
Sample
Number
30
32
48
50
52
78
80
82
84
86
88
100
106
108
110
112
114
118
120
122
124
126
130
134
136
Organisms/ 100 ml
Coliform
75
93
2,400
4,600
390
93
93
150
93
0
3
150
3
3
3
4
3
150
15
9
15
9
3
4
6
(MPN)
Fecal
Coli
3
3
3
3
3
3
3
3
3
3
0
4
3
4
3
3
3
3
3
3
3
3
3
3
3
Fecal
Streptococci
43
93
43,000
9,300
4.30
930
430
24,000
2,400
4,300
930
240
240
23
43
23
2
21
93
1,100
150
23
4
23
1,100
106
-------
Table 19 (continued). MICROBIAL COMPOSITION OF THE EFFLUENT FROM
THE EAST END OF THE SOUTH DAIRY BLWRS.
Sample
Number
4
6
10
12
14
18
20
22
24
26
30
104
106
108
110
112
114
118
120
122
124
126
130
134
136
Organisms/ 100 ml
Coliform
21
43
15
20
11
9
9
4
3
9
3
9
3
3
3
4
3
3
3
4
3
23
23.60
23
9
(MPN)
Fecal
Coli
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
3
3
3
3
3
3
3
3
3
Fecal
Streptococci
3
9
5
43
7
3
3
4
7
23
23
23
9
23
43
23
40
23
9
23
43
3
3
2
23
107
-------
Table 19 (continued). MICROBIAL COMPOSITION OF THE EFFLUENT FROM
THE WEST END OF THE SOUTH DAIRY BLWRS.
Sample
Number
4
6
10
12
14
18
20
22
24
26
30
34
40
44
46
48
50
52
78
80
82
84
86
88
90
92
94
96
98
104
106
108
110
112
118
120
121
122
124
126
128
134
Organisms/ 100 ml
Coliform
21
150
43
3
43
4
3
3
3
4
23
93
9
3
3
3
3
3
43
9
0
9
23
3
3
3
0
0
3
3
3
3
3
4
0
3
3
3
3
3
0
3
(MPN)
Fecal
Coli
3
3
3
3
3
3
3
3
3
3
3
3
0
0
0
3
3
3
3
3
3
3
3
0
0
0
0
0
0
3
3
3
3
4
0
3
3
3
3
3
6,666
0
Fecal
Streptococci
3
23
4
23
23
3
9
23
23
23
23
430
23
9
3
23
9
14
3
3
43
7
9
3
9
93
43
240
23
240
23
23
23
240
240
23
23
93
23
23
66,600
3
108
-------
"
s
1
(_J
S
w
S
o
CO
^J
^
2
Cfl
^H
CO
S5
i
°3
p3
^e
j 1
PQ
W
1
s
1
s
r^
P*
W
PH
O
z
o
M
H
M
Cfl
O
ft^
Jjt4
£^
CJ
s!
M
PQ
0
&
CJ
g
o
CO £ CO
TJ 1 1 1 1
CU <3 <3 PQ PQ
T3
T3 4-1 4J 4J 4J
n) d c c c
cu cu cu cu
cu 3 P 3 3
4-1 rH rH rH rH
CO 14-1 M-l 14-1 <4H
Cfl MH MH <4-l 14-1
!? M M M M
oo
rH
c
Cfl
r-3
1
O
CO
o
£
cu
d
'!j
**
*O
cu
^J
cfl
e
o
o
4-1
H
cu
rl
CO
II
PQ
ft
*o
0)
"C ,
T3 CO
Cfl rH
C CU
0 C
£> 3
M "-)
cfl
0 I
o oo
C rH
42 rH
4-1 -H
15 <*
cu
a «
H 60
ca C
H
II to
P.
<1 (0
cfl
109
-------
portions of the system. The former explanation is supported by the fact that
the fecal streptococci were also present in the effluent (assuming that they,
like the fecal coliforms, would be less likely to proliferate in the effluent).
The latter explanation is supported by the fact that the side with the organic
matter contained more coliforms in the effluent than the side without.
The BOD analysis suggested that the corn-containing side was leaking available
organic matter which could have supported growth of coliforms.
SOIL ENVIRONMENTAL STUDIES
The soil environmental studies included soil temperature, oxygen diffusion
rate, oxidation-reduction potentials and soil gas analyses. The amount of
data collected from these studies is so voluminous that only parts of the data
are reported for the purpose of illustrating the influence of the environment
of the BLWRS on the performance of the BLWRS in the renovation of waste.
Soil temperatures reported in Table 21 show that by November 1 the soil
temperatures in the anaerobic zone reached 10° C or lower. At the same time
the concentration of nitrate in the effluents increased greatly probably due
to the reduced efficiency of the denitrifiers at this temperature and below.
This reduction in denitrification capacity is a reason for not attempting to
overrate the BLWRS during cold weather even if spreading and infiltration of
wastewater could be achieved.
Oxidation-reduction potential measurements for part of the summer of 1972 are
shown in Table 22. During the early part of the spring and summer the North
BLWRS had been loaded very heavily with waste. This caused the surface soil
down to 30 cm to have some negative redox potentials. This could cause
denitrification in (:his portion of the BLWRS. In contrast,the South BLWRS
110
-------
w
«
o
M
H
£5
W
U
C/l
w
M
pq
o
w
o
1
C/J
|J
pq
a
0
C/l
H
f-H
W
r^
W
H
M
0
M
rH
CM
0)
r-H
§
H
rH
H
o
CO
c
'H
co
JS
4-1
a
0)
T3
O1 >£>
vo m o
oo oo cn
m * m oo
oo cn
CM
i CM m o oo CM
CMCMCMCMCMCNCNCNCN
I I I I I I I
oo CN a\ m rH os rH
CN rH rH CN CM
I I I I I I I
ON O O O rH rH CM
rHrHrHrHt-HrH
001
O
C/3
CQ
M
H
cd
Q
rH rH i-H rH
CN rH i-H rH rH
a> CM CT\
CN CN rH
f~» CM m rH rH CM
CMCMCMCMCMCMCMCMCN
I
vT
I
OO
I I I I I I I I I
U-)OOOCNO><-rHONrH
rHCMCMrHrHCN CN
I I I I I I I I I
a\CT\O\OOOrHrHCN
111
-------
w
a
H
M c/3
H
W rJ
Q O
Cfl rJ
w
§ £2
W M
PH
(3 CM
Crt I~-
|j rH
rT[
. "I £)
3
H PH
H W
H t3
O tn
PM
O H
H
H O
CJ ^
1 j ^_j
0 rt
SB
1 en
£3 s
O rJ
M M
H
g r^
«
4J LO
3 ---
o r^
u:
oo
CM
^^
vO
, |
oo
in oo
erf CM
[S *"^
i-J r*^
m
t~*,
^J
^
O LO
23 **^"
r^
00
CM
VO
0)
4-1
cd
Q
0 0
rH 00
CM rH
O O
en <
rH rH
O O
vo 00
rH rH
LO oo
03 rH
rH CM
O LO O
CA rH O>
O 0 O
O r^ CM
CM rH
O O 0
vo vo vo
1
O O O
O f» rH
rH | rH
3
M
cu LO
-------
was less heavily loaded and had positive redox potentials until the water table
and anaerobic zone was reached at 150 cm deep. Even though the North BLWRS
had negative potentials at depths to 30 cm,there was an aerobic zone between
the surface and the deep anaerobic zone at the bottom. This zone might be
considered to be a zone for the oxidation of reduced substances in percolating
water but the fact that there was considerable ammonium nitrogen in the effluent
at this time indicates that it was not sufficient to oxidize or there was not
sufficient time to convert ammonium to nitrate.
Some oxygen diffusion rate data is presented in Table 23 to illustrate how
these rates changed with time and varied over the surface and at depth in the
BLWRS depending on the waste loading schedule and rates. When oxygen diffu-
sion rates are above 35 they are adequate for aerobic respiration of plant
roots and microbes. In the BLWRS soils the oxygen diffusion rates often
increased with depth which is not normal for the usual static soil systems
but is due to the large amount of organic matter and biological activity in
the surface and the fact that the soil surface is often saturated for periods
during waste loading.
The differences in oxygen diffusion rates on the Swine North July 5 and 6 are
due to the fact that this BLWRS had been loaded for a week up to the 5th
and then in one day the BLWRS drained sufficiently to go from an oxygen
deficit to a condition of sufficient oxygen.
The data reported for July 21 shows that there is variation from place to
place on the top of the BLWRS during loading with some areas deficient and
some sufficient depending on micro relief. This data also shows that the
113
-------
CO
e
CM
W
Q
^
6;
M
CO
52
CO
p4
^
I-J
PQ
W
Ed
H
53
0
CO
geM
2 tr>
rH
*T-
053
Wt J
p^
CO
p CO
ULf TV1
pti H
M
M
P
M
W Q
^ 53
^J ^
4
CO
CM
01
r-H
§
H
e
a
I
4-1
a
0)
«
in
r )
(^
m
«
"*»
o
in
CM
vo m o v3- o-
CO in VO CM CM
CM -* oo co rv,
co in st CM CM
CM vo o sf in
CO <3" CO CM CM
rH
m vo CM
r~> pv. t^.
J3 J3 J3
4J 4J 4J
Lj Lj l_i
WWW
O O 0
53 55 53
Q) Q) QJ
a a c
H -H -H
&"4 **
t> »>
CO CO CO
vO
m
CM
CM
4J
3
O
tfl
0
114
-------
Swine North which had been loaded very heavily was generally deficient over
the surface in contrast to the Dairy South which had a lesser loading rate.
Soil gas composition in the Swine BLWRS at various depths during the period
of time are given in Table 24. The most interesting observation is the fact
that gaseous composition of the BLWRS soils change so rapidly after the
application of waste commences or ceases. The extremely low values of oxygen
concentration and high values of carbon dioxide that are developed with waste
application are usually not encountered in normal soils.
Prior to the time period reported the North Swine BLWRS had been loaded
heavily for two weeks and during the period continued with alternate
three days resting and three days loading. The South BLWRS had just the
opposite cycle. The North BLWRS had extremely low oxygen concentration,
1.4% being the lowest, and high carbon dioxide concentrations, 18.5% being
the highest. This was due to the heavy loading prior to this period. Even
during the three-day rest periods there was only minor recovery. After the
application ceased on August 1 the North BLWRS did almost recover within the
next four days. The South BLWRS, in contrast, had not been heavily loaded and
did not have the residue of waste at the surface nor was it as wet. The
oxygen and carbon dioxide concentrations on this BLWRS responded to the
three-day application and three-day rest periods very rapidly and almost
recovered to a normal condition during the rest period. The concentrations
never reached the extremes of those on the heavily loaded BLWRS.
This environmental data can help explain some of the problems that develop
when the BLWRS are overloaded and how these are related to less efficient
115
-------
1
PQ
w
1
g
H
2
H
co
B
PH
M
CO
!=)
O
M
3 -
> CM
I-.
33
U (14
0 0
X P4
O W
rH £
Q S
£3
a w
pq pq
3 F**4
p K
i|
o o
£2
S3
U
C^ rt.
|
OO CM r-. vD
<} oo oo &\
m o i*» o
m -^ m rH
si* *sf co N in >a-
CN rH rH rH rH
oo
O CO O\ CO 1 si" o
C^ t _i o\ vO Is""* C^
O~>
CM CM CM CM r-H rH
vo co oo sr co
O
O"\ vTt CN O^ i 1
CM co m m vo
ST rH 00 vo m in st
rH
oo I-H CM o m P"-
CO rH CT>
116
-------
renovation of the waste. It seems reasonable that shorter cycles of three
days to a week would be best to maintain the aerobic zone for maximum
decomposition of the organic matter and oxidation of nitrogen to the nitrate
form. Actually, observations of the conditions on the surface of the BLWRS
such as the ponding on the surface that persists for a long period after the
application ceases is a good visual means of determining when the application
rate should be reduced or the BLWRS allowed to rest.
117
-------
SECTION VIII
REFERENCES
1. American Public Health Association. 1971. "Standard Methods for the
Examination of Water and Wastewater". New York.
2. Bouyoucos, G. J. 1951. A recalibration of the hydrometer method.
Agron. Jour. 43:434-438.
3. Bremmer, J. M. 1965. Total Nitrogen. Chapter 83 in Methods of Analysis.
Agronomy No. 9, part 2. Chemical and Microbiological Properties.
American Society of Agronomy.
4. Bundy, L. G. and J. M. Bremmer. 1972. A simple titrimetric method for
determination of inorganic carbon in soils. Soil Sci. Soc. Amer. Proc.
36:273-275.
5. Erickson, A. E. , J. M. Tiedje, B. G. Ellis and C. M. Hansen. 1971. A
Barriered Landscape Water Renovations System for removing phosphate and
nitrogen from liquid feedlot waste. Proceedings of the International
Symposium on Livestock Wastes. Am. Soc. Agr. Eng. Pub. pp. 232-234.
6. Flocht, D. D. and H. Joseph. 1973. An improved method for the
enumeration of denitrifying bacteria. Soil Sci. Proc., 37:698-699.
7. Jackson, M. L. 1956. Soil Chemical Analysis. University of Wisconsin.
p. 141-144.
8. Kardos, L. T. 1967. Waste water renovation by the land - a living
filter. Agriculture and the Quality of Our Environment, AAAS Pub.
85:241-250.
9. Lemon, E. R. and A. E. Erickson. 1952. The measurement of oxygen diffusion
in the soil with a platinum microelectrode. Soil Sci. Soc. Amer. Proc.
16(2):160-163.
10. Lowe, R. H. and J. L. Hamilton. 1967. Rapid method for determination of
nitrate in plant and soil extracts. J. Agr. Food Chem. 15:359:361.
118
-------
SELECTED WATER
RESOURCES ABSTRACTS
INPUT TRANSACTION FORM
rt No.
w
SOIL MODIFICATION FOR DENITRIFICATION AND PHOSPHATE
REDUCTION OF FEEDLOT WASTE
Erickson, A. E., et al.
Crop and Soil Sciences Department
Michigan State University
East Lansing, Michigan 48824
5. Atporf Dm
5, } ';Tfartni.,f, Organ.B
Report fto.
13040 FYK
13040 FYK
Type f Repa and
Period C
n.
Agency
Environmental Protection Agency report number, EPA-660/2-7^-057 > June
The efficiency of pilot-size Barriered Landscape Water Renovation Systems (BLWRS)
to renovate flushed livestock waste was studied. The BLWRS is a modified permeable
soil that has an aerobic zone for the filtering and oxidation of the waste and an
anaerobic zone to which an energy source is added to create an environment for
denitrification.
Two pairs of BLWRS 0.008 ha. in size were constructed using a polyvinyl barrier to
create the anaerobic zone and contain the effluent. Flush waste from swine or
dairy cattle were applied on each pair of BLWRS. The waste effluents and BLWRS
soil were periodically analyzed for nutrients, oxygen demand and pathogens.
At manure loading rates of up to 122 t/ha. swine waste and 93 t/ha. of dairy
waste, the BLWRS had an efficiency of 80% and 97% for nitrogen renovation, greater
than 991 for phosphate and 93% for carbon. The oxygen demand dropped 50- to 100-
fold. Under normal operating conditions, the pathogenic indicator organisms did not
appear in the effluent.
The BLWRS has been shown to be an efficient system for renovating large quantities
of livestock waste and should be tested on a commerical scale with continuous
,, monitoring. ' ~ ~~~~ ""
17a TfeM.riptot £>
Hogs, Dairy industries, Denitrification, Aerobic treatment, Anaerobic conditions,
Soil treatment, Waste treatment
Barriered landscape water renovation systems, Organic matter decomposition,
Phosphate fixation
05D
Send To:
WATER RESOURCES SCIENTIFIC INFORMATION CENTER
US DEPARTMENTOF THE INTERIOR
WASHINGTON D C 2O24O
U S GOVERNMENT PRINTING OFFICE: 1974 546319 444
-------
------- |