•;PA-660/2-74-057
JUNE 1974
                           Environmental  Protection  Technology Series
                              for
                                     -of

-------
             RESEARCH REPORTING SERIES
Research reports of the  Office  of  Research  and
Monitoring,   Environmental Protection Agency, have
been grouped  into five series.  These   five  broad
categories  were established to facilitate  further
development   and  application   of   environmental
technology.    Elimination  of traditional grouping
was  consciously  planned  to  foster    technology
transfer   and  a  maximum  interface   in   related
fields.  The  five series are:

   1.  Environmental Health Effects Research
   2.  Environmental Protection Technology
   3.  Ecological Research
   H.  Environmental Monitoring
   5.  Socioeconomic Environmental Studies

This report has  been assigned to the ENVIRONMENTAL
PROTECTION    TECHNOLOGY   series.    This    series
describes   research   performed  to  develop  and
demonstrate    instrumentation,    equipment    and
methodology   to   repair  or  prevent environment**!
degradation from point and  .non-point   sources  of
pollution.  This work provides the new  or improved
technology  required for the control and treatment
of pollution  sources to meet environmental  quality
standards.
                   EPA REVIEW NOTICE
This report has "been reviewed by the Office of Research and
Development, EPA, and approved for publication. Approval
does not signify that the contents necessarily reflect the
views and policies of the Environmental Protection Agency,
nor does mention of trade names or commercial products
constitute endorsement or recommendation for use.

-------
                                                EPA-660/2-7^-057
                                                June 197^
     SOIL  MODIFICATION FOR DENITRIFICATION

    AND PHOSPHATE REDUCTION OF FEEDLOT WASTE
                         By

                  A. E. Erickson
                    B. G. Ellis
                   J. M. Tiedje
                   A. R. Wolcott
                   C. M. Hansen
                   F. R. Peabody
                   E. C. Miller
                   J. W. Thomas

             Michigan State University
           East  Lansing, Michigan
                 Project 130UO FYK
              Program Element 1BB039
                  Project Officer

                  Lynn R. Shuyler
         Environmental Protection Agency
Robert S. Kerr  Environmental Research  Laboratory
                Ada,  Oklahoma 7U820
                   Prepared for

       OFFICE  OF RESEARCH AND DEVELOPMENT
      U.S. ENVIRONMENTAL PROTECTION AGENCY
             WASHINGTON, D.C. 20h60
              URRAPY
                         „.- vnjr;
    For sale by the Supeiiutendent of Documents* U.S. Government Printing Office
               Washington, D.C. 20402 - Price $1.60

-------
                                   ABSTRACT









The efficiency of pilot-size Barriered Landscape Water Renovation Systems




(BLWRS) to renovate flushed livestock waste was studied.   The BLWRS is a




modified permeable soil that has an aerobic zone for the  filtering and




oxidation of the waste and an anaerobic zone to which an  energy source is




added to create an environment for denitrification.









Two pairs of BLWRS 0.008 ha. in size were constructed using a polyvinyl barrier




to create the anaerobic zone and contain the effluent.  Flush waste from swine




or dairy cattle were applied on each pair of BLWRS.   The  waste effluents and




BLWRS soil were periodically analyzed for nutrients, oxygen demand and pathogens,









At manure loading rates of up to 122 t/ha. swine waste and 93 t/ha. of dairy




waste, the BLWRS had an efficiency of 80% and 97% for nitrogen renovation,




greater than 99% for phosphate and 93% for carbon.  The oxygen demand dropped




50- to 100-fold.  Under normal operating conditions, the pathogenic indicator




organisms did not appear in the effluent.









The BLWRS has been shown to be an efficient system for renovating large




quantities of livestock waste and should be tested on a commercial scale with




continuous monitori-.ig.









This report was submitted in fulfillment of Project Number 13040FYK by the Crop




and Soil Sciences Department of Michigan State University under the partial




sponsorship of the Environmental Protection Agency.  Work was completed  as of




December 31, 1972.




                                      ii

-------
                                    CONTENTS




                                                                  Page




  Abstract                                                         i:i




  List of Figures                                                 iv




  List of Tables                                                  v




  Acknowledgments




  Sections
  I       Conclusions                                              ^




  I,1!     Recommendations                                          3




/HI    Introduction                                             ^




  IV     Materials and Methods                                    "




  V      Methods of Analysis                                      19




         Sampling Procedures                                      -*-"




         Chemical Procedures                                      ^0




         Physical Procedures                                      33




         Biological Procedures                                    34




  VI     Experimental                                             36




         Soil Characteristics                                     36




         Operation                                                36




         Nutrients in Waste and Effluent                          43




         Changes in the Soil                                      87




         Microbiological Analysis                                 °^





         Soil Environmental Studies                                ^~




 VIII    References                                               118
                                       iii

-------
                                  FIGURES

No.                                                                   Page

1  Schematic Cross-Sections of BLWRS                                  7

2  Drawings for the 3LWRS  Pit Liners which were Constructed          11
     of 30 mil Polyvinyl Sheeting according to Alternate B.

3  Soil Moisture Characteristic of BLWRS Soil                         13

4  View into Effluent Catchbasin showing Drain from BLWRS,            15
     Water Overflow for Anerobic Zone Control and Tipping
     Bucket for the measurement of Effluent                             ,

5  Mechanism for spraying Waste on the BLWRS consisting of a          16
     Track on which the Drive Mechanism is Mounted, the Boom               ^
     and the Spray Nozzels                                                 \

6  Overall Views of each of the BLWRS                                 17

7  Location of Energy Sources and Effluent Catchments in each         18
     pair of BLWRS

8  Phosphate Absorbtlon Isotherms for BLWRS Soils                     38

9  Chart Showing the Operation of the BLWRS                           39
                                     iv

-------
                                    TABLES

 No.                                                                    Page

 1  Mechanical Composition of BLWRS Soils                              12

 2  Chemical Characteristics of the Original BLWRS Soils               37

 3  Summary of days of operation and waste loading on the Swine        40
      and Dairy BLWRS from the start of the experiment through
      December 1972

 4  Water budget for Swine BLWRS,  Summer 1972                          42

 5  Nutrient, BOD and COD concentrations in wastes applied to          44
      BLWRS.  Nutrients expressed in ppm

 6  Nutrient, BOD and COD concencentrations in BLWRS effluents         48
      expressed in ppm

 7  Amounts of nutrients applied in wastes to the BLWRS                64
      expressed in grams

 8  Amounts of nutrients in the effluents from BLWRS                   68
      expressed in grams

 9  Summary of the average nutrient concentration in BLWRS             82
      wastes and effluents - December 1972

10  Summary of total nutrients in BLWRS wastes and effluents           83
      through December 1972

11  Percent total solids in waste that was applied to the BLWRS        84

12  Total carbon in effluent and waste from BLWRS in ppm               85

13  Chemical composition of North Swine BLWRS soil, October 20,        88
      1971, in ppm

14  Chemical analysis of soil samples taken from Swine BLWRS,          90
      November 1, 1972, in ppm.  Two samples taken, one from
      the North and one from the South BLWRS.

15  Numbers of anerobes and denitrifiers found in North Swine          95
      BLWRS soil collected in November 1972

16  Populations of pathogen indicators found in North Swine BLWRS      97
      soil collected in November 1972.

17  Microbiological determinations of the waste applied to the         99
      BLWRS
                                       v

-------
18  Mlcrobial composition of waste and effluent under normal          100
      operating conditions

19  Microbial composition of the effluent from the east end           101
      of the North Swine BLWRS

20  Microbial composition of effluent from Swine BLWRS when system    109
      was overloaded

21  Air and soil temperatures on BLWRS - degrees centigrade           111

'22  Oxidation - reduction potential measurements made in the          112
      Swine BLWRS during the Summer of 1972 in millivolts

23  Average oxygen diffusion rates on the BLWRS at several depths     114
      and on various dates in 1972

24  Percent oxygen and carbon dioxide at various depths in the        116
      Swine BLWRS for a period during the Summer of 1972
                                     vi

-------
                               ACKNOWLEDGEMENTS









The contributions of all the many technicians and students who faithfully




contributed to the construction, operation and analytical work is gratefully




acknowledged.  Special mention should be made to Mark Schrag who had primary




responsibility for the construction and operation of the project for the




first 15 months, to Mrs. Elizabeth Shields who was responsible for the analyses,




and to Dave Ott, Loren Mosier and Dave Lederbuhr who made major contributions.
                                     vii

-------

-------
                                   SECTION  I




                                  CONCLUSIONS









 The BLWRS  constructed,  operated and studied in  this  project was very  successful




•in renovating large  quantities  of livestock waste.









 It was  possible  to apply  between 9 to  18 mm of  flush waste per day  to BLWRS




 soils  if they were rested one  third of the time for  the  recovery  of infiltration




 capacity.   This  amounted  to  swine waste applications of  122 t/ha. over  17 months




 and 93  t/ha.  over 15 months  for dairy  waste.  The physical characteristics of




 the soil govern  the  application rates.









 The BLWRS  aerobic environment was conducive to  the oxidation  of carbon  (93%  loss)




 and conversion of organic nitrogen and ammonia  to nitrate nitrogen.









 The BLWRS  anaerobic  environment with energy source was efficient  in denitrifying




 the waste,  reducing  176 kgr  of  nitrogen in waste on  the  Dairy BLWRS to  5.4 kgr




 in the  effluent  for  a 97% renovation and 10 to  12 ppm nitrate in  the  effluent.




 The Swine  BLWRS  which were overloaded  on several occasions had 386  kgr  nitrogen




 added  and  were 80% efficient at renovations.









 Phosphate  renovation by the  BLWRS soil was 99+% efficient.  Once  the  soil




 becomes  loaded with  phosphate,  a phosphate adsorption bed will need to  be placed




 at the  effluent  end  of  the BLWRS,  but  to date the precipitation of  phosphate as




 dicalcium  phosphate  at  the surface and soil adsorption of the dilute  phosphate




 leaching down have been very efficient.  Under  the present loading, the BLWRS




 soils will probably  continue to function without leaks for 10 to  20 seasons.




                                       1

-------
Under normal operating conditions the BLWRS effluents did not have pathogenic




indicators.
The reduction in BODc and COD was 50- to 100-fold.

-------
                                  SECTION II




                                RECOMMENDATIONS









It is recommended that commercial size BLWRS be constructed and monitored to




test the principle on a larger scale under farmer operation.









It is also recommended that the existing pilot BLWRS continue to operate in




order to study the phosphate absorption, nitrification and denitrification,




and recovery after overloading.  These studies should include additions of




tagged nitrogen, the addition of additional quantities of phosphate to one




of the BLWRS to test the phosphate model, and work on a final phosphate




absorber.










BLWRS should also be considered and tested as a means of  renovating municipal




effluents and sewage.

-------
                                 SECTION III




                                 INTRODUCTION









Today almost everyone is aware of the enormity of the animal and human waste




problem and the necessity of finding an efficient, inexpensive way to remove




BOD, nitrogen and phosphate from waste water and return the water free from




pollutants to the natural aquifers.   Disposal of liquid wastes on the surface




of the soil is an easy method of disposal,  and studies of this method at




Pennsylvania State University (8) have demonstrated that the adsorptive and




filtering action of soil can be an effective and inexpensive way to renovate




waste water.  In this method, the quantity of waste must be limited so as not




to overload the soil system.  An overloaded system will cause nitrogen and




phosphate to leach below the root zone and contaminate the subsurface water.




For this method to be most effective, the nitrogen and phosphate must be fixed




by the soil, by the native vegetation, or by crop plants which are marketed.




Because of the limitations on plant removal in any one season, large land areas




are required.  The expense of land and its management, as well as land avail-




ability in many places, has forced the intensive spreading of waste on limited




acreages with the possible pollution of water resource.  There is need for a




method of renovation which will be more efficient and not require such large




areas of land and yet not be as expensive as conventional sewage treatment and




disposal.









The problem of nitrogen in animal waste originates with the large quantities of




nitrogen that comes from the atmosphere and is fixed naturally or fixed




artificially to form fertilizers.  This nitrogen is accumulated in crops and




harvested.  The harvested crops are fed to livestock but a large portion of the




                                       4

-------
accumulated nitrogen is left as waste in the feedlot.  This nitrogenous waste




is difficult to handle because of its bulk and often cannot economically




compete with commercial fertilizer in crop production.









If nitrogenous waste are spread on forest or unharvested areas, quantities of




nitrogen are recovered by the vegetation and stabilized into humus.  There is a




definite limit to the amount of nitrogen that can be recovered and stabilized




on a given area in a season; therefore, extensive spreading of the waste is




required.  Once the nitrogen is stabilized, a change in the environment can




cause the release of the stabilized nitrogen back into the environment.  The




best solution to the problem is denitrification of the waste which releases




the nitrogen gas back to the atmosphere leaving the ecosystem in balance.









Phosphate and carbonaceous material are likewise accumulated in feedlots as




wastes.  The disposal of this carbon can best be accomplished by oxidation which




returns the carbon dioxide to the atmosphere.  Phosphate can be removed from




the waste by fixation of precipitation with calcium, aluminum or iron.









DenitrifIcation, organic matter decomposition, and phosphate fixation are all




soil reactions.  Whether or not they occur and the completeness and rate of




these reactions all depend on the soil environment.  Any one soil will probably




not have the capacity to do all of these processes well and at the same time.




Natural soils are either aerobic or anerobic and the distance that leaching




waste water travels in the biologically active part of the soil is short.




However, by an inexpensive modification of the permeable soil, it has been




possible to form a series of soil environments through which waste waters can




pass and in which these reactions proceed at a rapid rate.  These modified soils




                                     5

-------
may go a long way toward renovating liquid feedlot wastes and returning the




water, low in nitrogen, organic matter, and phosphate to the soil water aquifer.









The modified soil, called a Barriered Landscape Water Renovation System (BLWRS),




is diagrammed in Figure 1.   It consists of a mound of soil underlain by an




impervious water bari'ier.  The barrier extends beyond the mound out under the




soil at the edges.  On the top of the mound is placed a thin bed of limestone




and/or slag.  The waste water is spread on the top of the mound.  As the water




percolates down, the organic particles are filtered out and remain on the




surface to decompose by oxidation.   The filter bed removes the major portion




of the phosphate.  The soluble organics and other ions move into the aerobic




soil zone where the ammonium ions are held on the exchange complex of the soil




until they are nitrified to nitrate.   Most of the soluble organic matter is




oxidized in the highly active aerobic soil.  All the nitrogen is converted to




nitrate.  The downward movement of the nitrified water is stopped by the water




barrier and forced to move laterally through the anerobic soil perched on the




barrier.  In this zone, the nitrate is denitrified to nitrogen gas and evolved




into the atmosphere if there is sufficient energy available.  The renovated




water then moves off the edges of the barrier into the deeper soil layers to




the water table.  The depth and dimensions of the barrier and the height of the




mound depend on the soil texture.  The BLWRS is designed to give the aerobic




and anerobic soil zone lengths which, coupled with waste water application




rates, give sufficient time to accomplish phosphate adsorption, nitrification,




and denitrification.  If more energy is needed for denitrification, molasses




can be added in the anerobic zone,  but other cheaper organic materials could




also be used.  The system is applicable to all permeable medium to coarse




textured soils.




                                      6

-------
                          SCHEMATIC CROSS SECTION OF BLWRS
la
        Effluent
                                                 Waste added here
                                                      Phosphate absorber
                                                             Supplemental Energy Source
                                                                       Original Soil surface
                                                                            Effluent
                                                           Moisture barrier
                                           -40-60 ft.
lb
                              BLWRS
                BARRIERED LANDSCAPE WATER RENOVATION SYSTEM
                              (complete system)
                               WATER BARRIER
                                            WASTE FROM BARN
                                           JL
v XT "'
/I
r
BT-
X*^ i i
AEROBIC
NO,
P04
1

| j ANAEROBIC

s


Figure 1.   Schematic cross  sections of BLWRS.

-------
The BLWRS method has the advantage that the barriered landscape can be




engineered to a particular waste and a particular soil.   It is relatively




inexpensive to construct and would require a minimum of  maintenance.  It




requires a much smaller area than is needed for the irrigation spreading




systems and removes large amounts of the nitrogen,  carbon,  and most of the




phosphate from a local environment.









The removal of phosphorus must be accomplished by precipitation or adsorption.




Passing effluent through soil will effectively remove phosphorus,  but the




acreage necessary to denitrify the nitrogen component of waste materials is




much less than that necessary to remove phosphorus.  Thus,  the system might




overload with phosphorus  without an additional method to remove phosphorus.




This, theoretically, could best be accomplished with either iron or aluminum




compounds.  Laboratory studies have demonstrated the usefulness of limestone




and slag for the removal of phosphate from the waste water systems.









Several small BLWRS were tested in the summer of 1969.  One hundred ppm of




nitrate has been continuously reduced to less than one ppm in the effluent




water with small amounts of molasses added as an energy  source.  The spreading




rate was 2.3 cm/day on a permeable soil.









In 1970 a larger BLWRS was tested using anerobic swine waste as a waste




material  (5).  In three months of operation using an average of 1.9 cm waste




per day the BLWRS removed over 99% of the nitrogen and phosphate.   This




amounted to the removal of over a ton of nitrogen in the three months.

-------
                                  SECTION IV




                            MATERIALS AND METHODS









CONSTRUCTION




Four BLWRS were established in the spring of 1971.  One pair was located




adjacent to the Swine Research Facility and the other pair adjacent to the Dairy




Research Facility at Michigan State University.  The BLWRS at the Swine Research




Facility uses the waste material from a slatted floor, flush type, eighty-sow




barn and the effluent is collected and reused for flushing.  At the Dairy




Facility the waste comes from a tank which collects the waste flushed from the




holding pen floor at the milking parlor.  Because this waste has some coarse




material that is difficult to spread with our spreading system, the material is




sieved and only the fine material is spread on the BLWRS while the coarse




material is spread on the land with a vacuum wagon.  At the Dairy it would also




be possible to spread milkhouse waste.  Two BLWRS were constructed at each site




so that if one BLWRS would slow down it could be rested and the other used to




accept the waste.









The BLWRS are 10.7 meters wide, 15.25 met.ers long, and 1.2 meters high in the




aerobic zone which projects above the original soil surface and extends 0.6




meters below the surface for the anaerobic zone.  The barrier was made of 30




mil polyvinyl sheeting which was turned up at the edges and sealed in the




corners to form a complete basin as shown in Figure 2.  The alternative B was




used because of ease of fabrication.










At both sites, 60 cm of soil was excavated with a bulldozer.  The bottoms were




leveled and shaped for the collection at the ends.  The barrier was installed.




                                       9

-------
 Ten-cm,  perforated,  plastic  drain  tile were placed  at each end.  These were




 attached to 10-cm rigid plastic  drain pipe which were sealed  to  the barrier




 and lead into  the catchments.  The BLWRS  liners were then filled with fine




 sand (Table 1  and Figure 3)  and  shaped to the  desired grade  (Figure Ib).  The




•fill sand at the  Dairy  BLWRS was taken from an adjacent hill.  The fill  sand




 for the  Swine  BLWRS  was purchased  and transported in because  the sand on an




 adjacent hill  was not available  for  aesthetic  reasons.  A 15  cm  layer of




 surface  soil was  used to cover each  BLWRS.









 The effluent from each  drain was measured by a one-liter tipping-bucket  and




 counted  electrically (Figure 4).   Effluent was sampled at these  drains for




 analysis.   After  the ::irst several months, overflow devices were placed  on




 each drain tile so that the  anaerobic zone could be maintained and adjusted




 on the BLWRS when no waste was being applied.  The  excess effluent accumulated




 in the bottom  of  the catchbasin  and  was pumped to a tank and  recycled into the




 flush tanks so that  the water was  continuously recycled.  At  times when  there




 was excess effluent  it:  was allowed to waste on the  adjacent:  field.  All  of the




 effluent at the dairy barn was released on an  adjacent field.









 The flushed manure at both sites was pumped into a  6000-liter underground tank.




 Each of  these  tanks  were stirred to  keep  the solids suspended.   It was from




 these tanks that  the samples of  wastewater were taken after  each new addition




 of waste.   The waste was automatically sprayed on the top of  the BLWRS with




 automatic booms each equipped with three  spray nozzels  (Figure 5).  One  of




 each pair of BLWRS could be  sprayed  at any one time.  Adjustable  time clocks




 that could be  set for minute minimum intervals were used to  start  the boom and




 spraying.   The boom would make one traverse across  the BLWRS  and stop.   It took




                                      10

-------
                                               15.2 CM-Dio.

                                           30.5 CM
                                15.2  M
                             TOP  VIEW
                                                     10.7 M
    END VIEW
                   2.7 M
                                15.2 M
\Q3M
                             SIDE VIEW
                BLWRS-PIT LINER
Figure 2.   Drawings  for the  BLWRS, pit liners which were constructed of 30 mil
           polyvinyl sheeting  according to alternate B.
                                    11

-------





CO
(-J
M
O
CO
CO
c^
c*
rJ
M
Pn
o
§
H
H
CO
o
1
O
O
J
2
Cj
M
J2
<]
5
s
•
,—1
0)
^_i
^~i
JD
CO
H












>>
CO
i— |
u
4J
,—|
•H
co
















T3
C
CO
CO









rH
CO
^J
O
H





£





P-H






s




C_)

o
)->










<• <• o
r-' CN CN
iH
O\ in rH
CN m in
r-l 00

r*« i-t o>
O\ CN CN
f*- cri in





co -3- st
• • •
o m <•
rH T-H rH





CN -ct ro
4J •• .
C oo -d- co
 MH pq 0)
o M a
CO CO 3 >, cfl
C MH co M MH
k_J Lj O - j t i
ri ^H ^LJ «rt H
S 3 3 to 3
CO CO CO Q CO
H
CN
CO
l~~
rH

VO
•
O
oo





m
in
-vt





oo
o
CO




OO
CN



VD
O
CT\
*
O

01
o
Cfl
4-1
i-l
CO
,£
3
CO
12

-------
                                 _ o
                                            •H
                                            O
                                            CO
                                             o
                                            •H
                                            •U
                                             CO
                                            •H
                                             M
                                             0)

                                             O
                                             0)

                                             rt

                                            •s

                                             a

                                             3
                                            4-1
                                             CO
                                            •H

                                             8
                                            •H
                                            O
                                            Cfl
                                            en

                                             cu
                                             M

                                             00
                                            •H
WO-319V1 02H 3A08V  1H9I3H
                       13

-------
200 seconds for the boom to traverse the BLWRS and 45 liters  of waste was




sprayed on each traverse.









Figure 6 shows overall views of each of the BLWRS installations.  The energy




source for feeding the denitrifying microbes was placed 3.66  meters from the




end of each BLWRS (Figure 7).   Every BLWRS had one 1.9-cm perforated aluminum




conduit placed along the bottom at one end.  This could be used, to inject




molasses into the anerobic zone at one side of each of the BLWRS.   On the




opposite end of one of each pair of BLWRS a 10-cm trench was  dug and 1 part




of corn was mixed with 5 parts of excavated soil and the trench was refilled.




One end of one of each pair of BLWRS had no energy source and was used as a




control or could be used in the future for the installation of a different




energy source.









The surface of the Swine BLWRS was seeded to rye when it was  started.  This




did not catch and the surfaces became sealed.  The surface was then rototilled




in September to increase infiltration and reseeded.  The second year an




attempt to establish quack grass by spreading stolons was attempted.  None of




these were entirely successful, but eventually a mixture of volunteer weeds




covered the BLWRS and this is persisting quite well.  In contrast, the surface




soil on the Dairy BLWRS contained a lot of weed stolons and seed and rapidly




produced a very good cover on the BLWRS.  The sides and surroundings of the




BLWRS were sodded using Bluegrass sod.  The experience with the Swine BLWRS




suggests that some time be allowed for the establishment of the vegetative




cover before full-scale operation begins.  A quack grass or mixed natural




cover would be satisfactory.  A good vegetative cover is essential for the




maintenance of good infiltration.




                                    14

-------
Figure t.  View into effluent catchbasin showing
           drain from BLWRS water overflow for
           anerobic zone control and tipping
           bucket for the measurement of effluent,
                    15

-------
'Figure 5.  Mechanism for spraying waste on the BLWRS
           consisting of a track on which the drive
           mechanism is mounted, the boom and the
           spray nozzels.
                    16

-------
                    Swine BLWRS
                    Dairy BLWRS
Figure 6.  Overall views of each of the BLWRS,




                           17

-------
                      M
      drain
.66 n»
                  . — 5»-l
                                   •15.25m.
                            -Side view of BLWRS-
      M* molasses energy source
      C = corn energy source
      E "effluent catchment
      D * drain
Us.
66m.
                                                    drain
                            M
                            M
            Swine  BLWRS
                                M
                                     Dairy  BLWRS
Figure 7.  Location of energy sources  and effluent catchments  in each
           pair  of BLWRS.
                                      18

-------
                                 SECTION V




                            METHODS OF ANALYSIS









SAMPLING PROCEDURES




Samples of waste and effluent were taken for analysis twice a week and the




amount of waste applied and effluent drained were measured each day.  The




time of the samplings were numbered consecutively throughout the period of




the operation.









Waste samples were taken in 250-ml polyethylene bottles from the sampling part




on the boom.  The amount of waste applied was calculated from the number of




passes of boom per day and the application rate that was checked periodically.




These values were checked against the waste level in the holding tank.









Effluent samples were taken in one-liter polyethylene bottles at the tipping




buckets at each drain tile.  The amount of effluent drained each day was




calculated from the number of tips of the bucket and the particular bucket




calibration.









Soil water sample extraction in the unsaturated zone was attempted by using




ceramic suction lysimeters.  The fact that there was phosphate absorbtion by




the ceramic cups and there was a possibility that the interior of each cup




might have biological activity which could distort the quantities of nitrogen




extracted during the extraction process caused the abandonment of this




procedure.  Subsequent soil water samples were taken from the saturated zone




by taking sample from a 2.5-cm aluminum well after first draining the well




and then sampling.




                                     19

-------
Soil samples were taken with a 2.5-cm stab auger in the surface 30 cm and then




a 2.5-cm aluminum conduit pipe was used to extract the soil samples.   In the




wet and saturated zones a negative pressure was placed on the conduit to keep




the sample in the tube.









Microbiological samples were taken in 125-ml sterilized glass bottles that




were protected by aluminum foil wrappers.









All samples were taicen immediately from the field and stored at 2 ° C.  It was




the practice to begin the nitrate and biological determinations on the same




day as sampled to minimize any distortions caused by further biological




activity.









CHEMICAL PROCEDURES




The chemical analyses were done with standard methods or modifications of




these as follows:




Soil pH




     Reagents:  1.  Standard buffer solutions of pH A.00, 7.00 and 10.00




     Procedure:     Place 10 grams of soil in a 50-ml plastic beaker and add




                    10 ml of distilled water.  Stir intermittently for 20




                    minutes and read pH with a glass electrode and a pH




                    meter (either Sargent direct drive or Orion 801 was used).




Waste and water pH




     Procedure:     Read directly without dilution by the same procedure given




                    above.
                                    20

-------
Total Carbon




     Reagents:   1.   Tin Metal Accelerator,  Leco Co.




                2.   Iron Chip Accelerator,  Leco Co.




                3.   Carbon Steel Standards, Leco Co.  (0.074% to 0.862% C).




     Procedure:  Grind soil samples in a SPEX Industries ball grinder to




                reduce the particle size.  Weigh 50  to 100 mg of soil sample




                (depending on the carbon content) into ceramic cups.  Add




                0.8 g of each accelerator and mix.   Place the sample in the




                furnace of Leco Carbon analyzer, ignite and read total carbon




                from the instrument.




C03 in Soils (4 )




     Reagents:   n-Octyl Alcohol—Use a reagent-grade product.




                Potassium Hydroxide Solution (ca. 2M KOH)




                Hydrochloric Acid Solution (ca. 2M HC1)




                Phenolphthalein Indicator — Dissolve 0.05 g of phenol-




                phthalein in 50 ml of 95% ethanol and add 50 ml of water.




                Hydrochloric Acid Solution — (ca. 1M HC1)




                Bromocresol Green Indicator — Dissolve 0.1 g of bromocresol




                green in 250 ml of ca.. 0.0006 M NaOH.




                Standard Hydrochloric Acid — 0.1 N.




     Procedure:  Weigh a sample of finely ground (100 mesh) soil (not more




                than 8 g) containing up to  30 mg of  inorganic C into an 8-oz




                square bottle, add one drop of n-octyl alcohol, and stopper




                the bottle with the assembly shown in the reference.  A 5-ml




                beaker containing 5 ml of 2 M KOH is attached to the glass




                tube below the stopper by a rubber band so that the bottom




                of  the beaker is about 5 mm above the lower end of the tube.




                                     21

-------
                After stoppering the bottle  with the  assembly described,




                remove 50 ml of air from the bottle via the  needle-puncture




                stopper with a 50-ml gas syringe.  Then inject 20 ml  of




                2 M HC1 into the bottle  via  the  needle-puncture stopper




                with a hypodermic syringe and swirl the bottle gently for a




                few seconds to mix the contents.   After allowing the  bottle




                to stand at room temperature (20°- 25° C) for 16-24  hours,




                transfer the contents of the beaker with deionized  water  to  a




                125-ml Erenmeyer flask marked to indicate a  volume  of 50  ml




                and make the solution to the 50-ml mark by addition of




                deionized water.   Add 0.3 ml of  phenolphthalein indicator




                solution to the flask, titrate with 1M HC1 until the  pink color




                begins to fade and continue  the  titration with 0.1  N  HC1  until




                the phenolphthalein end-point (colorless) is reached. Then




                add 0.8 ml of bromocresol green  indicator solution  and titrate




                with standard 0.1 N HC1  to the bromocresol green end-point.




                Calculate mg of inorganic carbon in the soil sample from




                (S-C) x 1.2, where S=ml  of standard 9.1 N HC1 required to




                titrate from the phenolphthalein end-point to the bromocresol




                gresn end-point and Oml of  standard  0.1 N HC1 required for




                this titration in a control  analysis  performed exactly as




                described for the sample analysis but with no soil  sample




                added to the bottle.




Total Nitrogen in Soil and Waste Water (3 )




     Reagents:  1.  Sulfuric acid (112804), concentrated.




                2.  Sodium Hydroxide (NaOH), approximately ION: Place 4.2 kg




                of NaOH in a heavy-walled 10-liter Pyrex flask, add 4 liters




                                     22

-------
           of water, and swirl the flask until the alkali is dissolved.




           Cool and allow to stand for several days to settle out Na2C03,




           siphon the clear supernatant liquid into a large Pyrex bottle




           which contains about 1.5 liters of CC^-free water and is




           marked to indicate a volume of 10 liters, and make the




           solution to 10 liters by addition of CO^-free water.   Mix




           well and protect from entry of atmospheric COo-




           3.  Boric acid-indicator solution:  Place 80 g of pure boric




           acid (113603) in a 5-liter flask marked to indicate a volume of




           4 liters, add about 3,800 ml of water, and heat and swirl the




           flask until the £13603 is dissolved.  Cool the solution and add




           100 mis of methyl purple indicator (Fisher's) or add 2 drops




           of indicator just prior to titration.




           4.  Potassium sulfate-catalyst mixture:  Prepare an intimate




           mixture of 100 g of K^SO^, 10 g of copper sulfate (CuSO^'SI^O)




           and 1 g of Se. Powder the reagents separately before mixing,




           and grind the mixture in a mortar to powder the cake which




           forms during mixing.




           5.  Sulfuric  (or hydrochloric acid (H2S04 of Hcl)» 0.0 N




           standard.




Procedure: Place a sample containing about 1 mg of N in a dry micro-




           Kjeldahl flask, add 2 ml of water, and after swirling the




           flask for a few minutes, allow it to stand for 30 minutes.




           Then add 1.1 g of l^SO^-catalyst mixture and 3 ml of




           concentrated H_SO, and heat the flask cautiously on the




           digestion stand.  When the water has been removed and frothing




           has ceased, increase the heat until the digest clears, and




                               23

-------
                thereafter boil the mixture gently for 3 hours.   Regulate the




                heating during this boiling so that the H9SO,  condenses about




                one-i:hird of the way up the neck of the digestion flask.









                After completion of digestion, allow the flask to cool and




                add about 20 ml of water (slowly and with shaking).   Then




                swirl, the flask to bring any insoluble material into suspension.









                Place 5 mis of boric acid indicator in a 50-ml Erlenmeyer




                flask and place the flask under the condenser.  Connect the




                micro-Kjeldahl flask to the distillation unit, add 15 mis




                of NctOH solution (reagent #2) and steam distill until 35 mis




                of volume is collected.  Remove the 50-ml flask, disconnect




                the g:team and rinse the tip of the condenser into the flask




                and titrate the ammonium present with 0.01 N acid from a




                10-ml burette graduated at 0.01-ml intervals.




Extractable Ammonium




     Reagents:   1.  2N KC1.  Weigh 149.2 g KC1 into a one-liter volumetric




                flask.  Add distilled water to give one liter.




                2.  0.1N NaOH.  Weigh 4 g of NaOH pellets into a one-liter




                volumetric flask.  Add distilled water to give one liter.




                3.  Sulfuric (or hydrochloric acid) (H2SO^ or HC1),  0.01N




                standard.




                4.  Boric acid-indicator solution:  Place 80 g of pure boric




                acid  (H_BO,.) in a 5-liter flask marked to indicate a volume




                of 4 liters, add about 3,800 ml of water, and heat and swirl




                the flask until the H^BO,. is dissolved.  Cool the solution




                                     24

-------
                and add 100 mis of methyl purple indicator (Fisher's) or add




                2 drops of indicator just prior to titration.




     Procedure: (A) Weigh 10 g of moist soil into a 125-ml Erlenmeyer flask,




                add 50 ml of 2N KC1.  Shake for 2 hours on a rotary shaker at




                200 rpm.  Filter through Whatman #42 filter paper.   Pipette




                10 mis of filtrate into Kjeldahl flask, attach to steam




                distillation apparatus, add 10 mis of 0.1N NaOH and steam




                distil the NH^ into 5 ml of boric acid-indicator solution.




                Titrate to end-point with standard sulfuric acid.




                (B) For waste water a 10-ml sample is used instead of the




                extraction step.




Water Soluble Nitrate




     Reagents:  1.  Saturated calcium sulfate (CaSO»).   Add slightly more




                than 2 g CaSO^ per liter, shake thoroughly and allow to




                equilibrate overnight before using.




                2.  Standard nitrate.  Weight 7.216 g of KN03 (previously




                dried for 24 hours at 105°  C) into a one-liter volumetric




                flask and add distilled water to give one liter.  Working




                standards of 1 to 50 ppm N are prepared by appropriate




                dilution of this standard with the calcium sulfate solution.




     Procedure: (A) Weigh 20 g of freshly sampled soil  into a 125-ml




                Erlenmeyer flask, add 50 mis of saturated calcium sulfate




                solution.  Shake for % hour on a rotary shaker at 200




                rpm.   Decant liquid into a 50-ml beaker and measure nitrate




                content with a specific ion electrode.   (Orion electrode




                for nitrate in conjunction with an Orion 801 meter is




                presently used in this laboratory).





                                     25

-------
                Standiirdize the electrode and meter each time .with known

                standards covering the range of nitrate that is in the

                samples being measured.   Also recheck standards after each

                few analyses.



                Moisture determinations are carried out simultaneously

                on the soils and the nitrate nitrogen values are reported on

                a dry wt. basis.

                (b) For waste in water the extraction step is omitted.

Nitrate Analysis for I-ow Concentrations  (10 )

     Reagents:  1.  Bacteriods.  Soybean nodules are collected, washed clean

                with distilled t^O and blotted dry.  Grind with cold mortar

                and pestle with K-succinate buffer (5 ml per g of nodules).

                Squeeze slurry through 4 layers of cheesecloth.  Liquid

                centrifuge at 5,000 X g for 5 minutes (Sorvall ROB rotor

                0.25 r at 6.500 rpm).  Discard the supernatant liquid.

                Resuspend pellet in the same number of ml of buffer and

                centrifuge again and discard supernatant liquid.  Resuspend

                pellet in the same number of ml of buffer and freeze.

                2.  Potassium succinate buffer.  Add 800 ml of distilled

                H20 to 11.809 g (0.1 M) of succinic acid.  Adjust pH

                value to 6.8 by cone. KOH solution.  Make up to 1 liter.

     Procedure: Add the following solutions in order:   (a) 0.5 ml - 0.1 M K

                succinate buffer at pH 6.8,  (b) 0.5 ml - extract  (diluted if

                OD exceeds 0.4),  (c) 0.1 ml - bacterial suspension.  Always
                                     1.1 ml
                                       26

-------
                apply bacterial suspension last.  Incubate at 45° C for 30




                minutes.  Stop reaction by 2 ml of 1% sulfanilamide




                3 N HC1 solution and develop color with 2 ml of 0.02%




                NED solution.  Allow color to develop for 30 minutes,




                centrifuge for 30 minutes and read against reagent blank




                at 540 my.  Run standard solution with samples each time.




Nitrite in Soils and Water




     Reagents:  1.  1% sulfanilamide in 3N HC1.




                2.  0.02% NED solution.




     Procedure: Pipette 0.5 ml of sample (either soil extract or waste




                water) into a 10-ml test tube.  Add 2 ml of 1% sulfanilamide




                in 3N HC1 and 2 ml of 0.02% NED solution.  Allow the color




                to develop for 30 minutes and read against reagent blank at




                540 my.




Extractable P




     Reagents:  1.  Extracting solution.  Add 15 ml of 1.0 N NH^F and 25 ml




                of 0.5 N HC1 and 460 ml of distilled water to prepare each




                500 mis of extracting solution.




                2.  Ammonium molybdate-HCl-H-jBOo solution.  Dissolve 100 g




                (NH,)6Mo024'4H20 in 850 mis distilled water, filter and cool.




                Add 1700 mis concentrated HC1 to 160 mis water, cool.  Mix




                the two solutions slowly and add 100 g of boric acid.




                3.  Reducing agent mixture.  Mix 10 g l-amino-2-naphthol-4-




                sulfonic acid with 20 g sodium sulfite and 584 g sodium




                bisulfite, meta.   Grind mixture to a fine powder with




                mortar and pestle.




                                     27

-------
                4.   Reducing  solution.   Dissolve  15.4  g  of  reagent  no.  3  in




                100 mis  warm  distilled water.   Cool  and  filter.




                5.   Standard  phosphate solution:  Dilute 0.4393  g of  oven-




                dry KH2P04 to 1  liter in a  volumetric  flask with distilled




                wate:r.   Working  standards are  prepared by dilution  of this




                100 ppm  P  stock  solution.




     Procedure:  Weigh 5  g  of  soil into a 125-ml Erlenmeyer  and add  20 mis of




                extracting solution (reagent no.  1).   Shake on a rotary shaker




                at  2:00 ppm for one minute,  and filter  the contents  through




                Whatman  No.  2 or 42 filter  paper.   (1  g  of  acid-washed




                activated  charcoal is added if the  filtrates  are not  clear).









                Pipette  a  5-ml aliquot of the  filtrate into a 50-ml flask.




                Adjust pH  to  3.0 using 2, 4 dinitrophenol as  an  indicator.  Add




                2 mis of ammonium molybdate solution and about 40 mis distilled




                water.   Shake and add 2  mis of reducing  solution and  make to




                volume with distilled water.   Mix and after 10 minutes but




                before 15  minutes measure the  color photometrically using




                660 my incident  light.




Total Soil P




     Reagents:   1.   Sodium Carbonate




                2.   See  Water soluble P.




     Procedure:  Mix 0.5  g  of finely ground  soil with 5 g of NaCO  in  a




                platinum crucible.  Heat gently with a meeker burner  until




                melted and then  heat until  the crucible  turns cherry  red.




                Grasp the  crucible with  nicholchrome tongs  and  rotate to




                produce  a  thin even distribution  of the  melt  on the side  of




                                     28

-------
                the crucible.   Cool quickly by placing on a porcelain plate.




                Dissolve the melt in hydorchloric acid and determine the




                phosphorus content as outlined under methods of P in water.




Phosphorus in Waters ( 7)




     Reagents:  2N H SO,:  Place approximately 500 mis of distilled w,ater in




                a one-liter volumetric flask.  Add slowly 57 mis concentrated




                t^SO^ and bring to volume with distilled water.









                4N Na2C03:  53 gms Na2C03 are dissolved in a liter of distilled




                water (Note:  NaCH of NH^OH may also be used instead of Na2COo).




                2,4 - dinitrophenol indocator;  Dissolve 0.25 g in 100 mis




                distilled water.




                Sulfomolybdic Acid Solution;  25.0 g of c.p. ammonium molybdate,




                (NH4)6MOyO  '4H20 is dissolved in 200 ml of distilled water and




                warmed to 60°  C.  Filter if the solution contains sediment.   Add




                to 475 ml distilled water in a 1-liter volumetric flask 275 ml




                of concentrated H-SO^.  Cool both solutions — then add the




                ammonium molybdate solution slowly to the H2SO  solution.




                Finally, dilute to volume.




                Chlorostannous Acid Reductant;  Dissolve 25 gm SnCl2'2H20




                in 50 ml concentrated HC1 (warm if necessary).  Dilute to




                approximately 500 mis (with rapid stirring) with recently




                boiled distilled water.




                   1. Place 25 mis of Standard Solution of 25 mis of centri-




                      fuged water sample in a 50-ml volumetric flask.




                   2. Add 2-4 drops of 2, 4-dinitrophenol indicator and adjust




                                      29

-------
                      with 2N H2S04 or 4N Na2C03 until 1 drop of 4N Na2C03




                      produces a yellow color.




                   3. Add 2 ml sulfomolybdic acid solution and dilute nearly




                      to volume with distilled water.   Mix thoroughly.




                   4. Add 0.2 ml of chlorostannous acid reductant and bring




                      to volume with distilled water.   Mix thoroughly.




                   5.  After 5 minutes but not later than 10 minutes read the




                       color photometrically with a 660 my filter.




                   Note:  If the water solution is colored, prepare a blank




                          for each sample by following steps 1, 2, and 3.




                          Omit step 4.  Use this to set the 0 level at 100% T.




Water Soluble Chloride




     Reagents:  1.  Saturated calcium sulfate (CaSO^).  Add slightly more




                than two g CaSO^ per liter, shake thoroughly and allow to




                equilibrate overnight before using.




                2.  Standard Chloride.  Weigh 2.101 g of KC1 (Previously dried




                for 24 hours at 105° C) into a 1-liter volumetric flask and




                add distilled water to give 1-liter.  Working standards of




                1 to 100 ppm Cl are prepared by appropriate dilution of this




                standard with calcium sulfate solution.




     Procedure: Weigh 20 g of air dried soil into a 125-ml Erlenmeyer flask




                and add 50 mis of saturated calcium sulfate solution.  Shake




                for % hour on a rotary shaker at 200 rpm.  Decant liquid




                into a iU-ml beaker and measure chloride content with a




                specific ion electrode.  (Orion electrode for chloride in




                conjunction with Orion 801 meter is presently used in this




                laboratory).




                                      30

-------
                Standardize the electrode and meter each time with known




                standards covering the range of chloride that is  in the




                samples being measured.   Also recheck standards after each




                few analyses.




Chloride Content of Water Samples  ( 1 )




     Reagents:   1.   Chloride-free water:   If necessary glass distill.




                2.   Potassium chromate indicator:   Dissolve 50 g  l^CrO^ in




                a little distilled water.  Add silver nitrate solution until




                a definite red precipitate is formed.  Allow to stand 12 hr,




                filter and dilute filtrate to 1 liter with distilled water.




                3.   Standard silver nitrate solution; 0.0141 N:  Dissolve




                2.396 AgNO- in distilled water and dilute to 1 liter.




                Standardize against 0.014 N NaCl as described in procedure.




                4.   Standard sodium chloride solution, 0.0141 N:   Dissolve




                0.821 g of dried, reagent grade NaCl in redistilled water and




                dilute to 1 liter.  This solution contains 0.5 mg Cl per ml.




                Equipment:  8 each 250-ml Erlenmeyer flask




                            1 magnetic stirrer




                            1 25-ml burrett




     Procedure: 1.   Place 100 ml (or a suitable aliquot if Cl is  high) in a




                250-ml flask or 50 mis water extractable Cl from soil samples.




                2.   Adjust pH to 7.0 - 10.0.  Add 1.0 ml K2Cr04 indicator




                solution.  Titrate with standard silver nitrate solution to a




                pinkish-yellow endpoint.   This means of consistent endpoint




                detection are left to the individual analyst.




                3.   Standardize the silver nitrate solution and establish the




                reagent blank by the above methods.




                                      31

-------
                   Calculations:

     mg/1 Cl = (ml AgNO^ sample - ml AgNOj blank) x normality AgNQ-^ x 35,460
                                      ml sample

Amonium Acetate Ex^ractable Cations

     Reagents:  1.  Ammonium acetate extracting solution:  Dilute 114 ml of

                flacial acetic acid (99.5%) with water to a volume of approxi-

                mately 1 liter.  Then add 138 ml of concentrated ammonium

                hydroxide (NH/OH), and add water to obtain a volume of about

                1,980 ml.  Check the pH of the resulting; solution, add more

                NH^OH as needed to obtain a reaction of pH 7, and dilute the

                solution to a volume of 2 liters with water.

                2.  Standard Solutions:

                Calcium:  Dry CaC03 at 105° C.  Then weigh 2.497 g into a

                1-liter volumetric flask, add 200 mis distilled water and 75

                mis of 2 N HC1.  Agitate until dissolved then dilute to volume

                with distilled water.   Final solution = 1000 ppm Ca.

                Magnesium:  Clean magnesium ribbon with 0.1 N HC1 and wash with

                distilled water.  Dry at 105° C.  Weigh 1,000 g into a 1-liter

                volumetric flask, add 90 mis 2N HC1 and agitate until dissolved.

                Dilute to volume with distilled water.  Final solution =

                1000 ppm Mg.

                Potassium;  Dry KC1 at 105° C.  Then weigh 1.9066 into a

                1-liter volumetric flask.  Add 50 mis 2 TSIHCl and dilute to

                volume.  Final solution = 1000 ppm K.

                SodLum;  Dry NaCl at 105° C.  Then weigh 2.542 g into a 1-liter

                volumetric flask, add 50 mis of 2 N HC1 and dilute to volume

                with distilled water.   Final solution = 1000 ppm Na.

                                     32

-------
     Procedure:  (A) Weigh 5 g of soil into a 125-ml Erlenmeyer flask and add




                50 ml of ammonium acetate extracting solution.  Shake for one




                hour on a rotary shaker at 200 rpm, filter through Whatman




                No. 2 or equivalent paper, and determine Ca and Mg by compari-




                son with standards on an atomic adsorption spectrophotometer




                and Na and K by comparison with standards on a flamephotometer.




                 (B) In water samples the sample was read directly as above.









PHYSICAL PROCEDURES




The physical analyses were done with standard methods or modifications.




Mechanical composition - Hydrometer Method - Bouyoucos Procedure  (2 )




Weigh 100 g samples of coarse textured soils into clean dispersion cups.  Add




100 ml of calgon solution (50 g calgon/liter) and disperse 6 min for coarse




soils.  Transfer the suspensions to the special cylinders and fill with




distilled water to the proper mark with the hydrometer inserted.  Set the




cylinders on the laboratory bench and when they come to constant temperature,




record the temperature and mix.  Take hydrometer readings at 40 sec, 4 min and




2 hours.









Pass the suspension through a 300-mesh sieve to recover the sands.  Dry sand




and sieve with standard sieve on a standard shaker for 15 min.  Weigh each




sand fraction.




Bulk density




Undisturbed soil core samples 7.62 cm in diameter and 7.62 cm high were taken




with a Uland core sampler in ten replicates.  After the soil was trimmed to




volume, the sample was oven dried, weighed and the bulk density calculated.




                                     33

-------
Soil Water Characteristic




The soil was placed in a 4-cm diameter tube 1 m long consisting of 2-cm




long segments.  The ssoil was saturated with water and allowed to drain several




times.  When it had reached a maximum consolidation by this procedure, it was




saturated again by raising the watertable very slowly.  The column was allowed




to drain into a free-water surface maintained at the bottom.  When drainage




ceased, the column was sectioned and moisture contents determined by oven




drying.




Weather measurement




Weather measurements were made by standard rain gauges on each site and at an




official weather station less than 1.5 km away.  Soil temperatures were made




with thermistor therometers installed in each pair of BLWRS.




Aeration measurements




Oxygen diffusion rates were, made with 10 to 40 replications using




platinum microelectrcdes 4 mm long and 0.64 mm in diameter using the Erickson




Oxygen Diffusion Meter.  (9 )  Redox measurements were made in situ with similar




platinum electrodes that were platinized and installed permanently.  Measure-




ments were made with a Orion portable pH meter with millivolt scale.









Soil gas samples were extracted with long, 18-guage, hypodermic needles and




analyzed with a Carle gas chromatograph equiped with a molecular sieve column




and micro-thermistor detector.









BIOLOGICAL PROCEDURES




Total Coliforms




The coliform  tests were  run according to the procedures given in "Standard




Methods for the Examination of Water and Wastewater  (l ) using the multiple-




                                      34

-------
tube dilution technique with lauryl tryptose broth.  Suitable dilutions of




the samples were prepared and three portions in each of a decimal series of




dilutions were inoculated into the broth.  Tubes were incubated at 35°+ 0.5° C




for 48+3 hours.  Most probable number indices were calculated and reported




for these presumptive test results.




Fecal Coliforms




Transfers were made from all the tubes in the total coliform test that were




positive in 24 hours into E C Medium by using a sterile loop of at least




3-mm diameter.  The tubes were incubated in a water bath controlled to 44.5




±0.2° C for 24+ 2  hours. Fecal coliform densities were determined by the Most




Probable Number Method (1).




Streptococcal Group




Inasmuch as we were dealing with a known source of contamination and the




question of human fecal was not significant, only the Presumptive step in the




Standard Methods p'rocedure for Fecal Streptococci was used.  Three portions




from each of a series of suitable decimal dilutions were inoculated into azide




dextrose broth and incubated for 48+3 hours at 35°± 0.5° C and observed for




turbidity.  Indices were reported as the Most Probable Number.




Denitrifiers




The Denitrifiers were measures using the procedures of Flocht, D. D. and




H. Joseph. (6 )
                                      35

-------
                                 SECTION VI




                                EXPERIMENTAL




SOIL CHARACTERISTICS




The mechanical composition of the BLWRS soils is given in Table 1 (page 12).




The soils would be classified:   Swine surface, loamy sand; Swine subsurface,




fine sand; Dairy surface, very fine sandy loam; and Dairy subsurface,  loamy




very fine sand.  The soil moisture characteristic is given in Figure 3.  The




bulk density was 1.64 with 62% solid and 38% porespace.  These are quite




permeable soils and were ideal for the experiment.  The surface of the Dairy




BLWRS might be an exception in that this very fine sandy loam would not allow




the percolation of  25.4 mm of wastewater per day without slowing down




appreciably.  This soil operated better in the 17 mm per day range.









The chemical characteristics of the original BLWRS soils are given in Table 2.




The phosphate isotherms from which the absorbtion capacity is calculated are




shown in Figure 8.  It should be noted that the subsoils are calcareous and




that the surface soils do have some organic matter accumulation.




OPERATION




The Swine BLWRS was put into operation July 1, 1971, using the South BLWRS.




The Dairy BLWRS became operational late August, 1971.  Figure 9 summarizes the




operation until December, 1972.  Each line represents one of the four BLWRS.




The solid bars above the line represent the amount of waste applied each day.




The open bars represent the amount of precipitation each day.  The solid bars




directed below the line represent the amount of effluent draining from each




BLWRS each day.  The applied and drained figures are in millimeters of depth.




Because the area of application of waste was only on the top and amounted to




one-half the total area of the BLWRS, the waste application represents only




                                      36

-------











CO
rJ
rH
o

f?
pq
^
, i
PQ

s!
o
M
O
M

IH

fV|
O

CO
U
H
H
CO
5
W
H
c_>
i
0

j_3
2
o

H
}T{
O
cs

cu
rH
CO
H

















CU
O
Cfl

M
3
CO

CO
£
•H
cfl
p


cu
u
Cfl
M-t
M
3
to




cu
u
CO
m
Vi
3
CO
,0
3
CO

cu
CJ
•H
OT


0)
O
cfl
tl
3
co























O
o.
•
r^









in

vO









o

•
oo












o>
o
•
r-..

























EC
P.



O
O
00
•s
vO
CN






O
O
oo
**
CS
rH







o
O
O

O
H










O
O
00
o\







E
p.
p.

1

C!
O
F-Q
^4
cfl
U

rH
Cfl
4J
O
H

on
•
0 rH
CD P***
r—j
n
CM
iH






o c\
-j- o\
ro O
«>
i^






co
•
^^ o\
o -*

A
o
rH










m in
I^ CN
-3" vo







e
P.
&* r3
P.
1 P.

on i
o
C_) 53

CO •
Cfl 00
t-i
C O
O
£1 CO
M cfl
cfl
0 S3
••3" in *^ c^
rH ff\ en vo in o m
• • • • • • •
oncNOOoninrHoo>*
rH rH oo r^ on
o\

CN





-3" on r^
rH on CS f~- -J- CTl rH
onorHOOin
CN I-H rH in on
o\
«
CN








m o oo
on m rH m in m vo
• • • • • • •
cNr^on cumoocrioovo
I-- CN U 00 in rH rH
CO rH rH
H rH


rH
«H
0
CO
C
O 00
•H
+J O
rQ O
rJ rH
O •
CO fX,
BBS 42
P. P. p. cfl oO
P, P. a e

III O >,
PL, 4J
-*on^re 6SS_-H
woo P.S ex p, P. a o
SBSBr^i CX P< CX P< P< 3 Cfl
P. B P.
CO CO CO 1 1 1 1 -H Cfl
CO cfl cfl | X O

SSSBP-lOt^USShr^
37

-------
     SWINE BLWRS SUBSOIL
     LflNGMUIR  -P ISOTHERM
 2-
 0-
-1-
 -11357
          EQUILIBRIUM (P)
 2-
                                 H
 o-
-H
     SWINE  BLWRS TOPSOIL
     LRNGMUIR  P ISOTHERM
 -11357
          EQUILIBRIUM (P)
     DfllRY' BLWRS SUBSOIL
     LflNGMUIR P  ISOTHERM
     DfllRY  BLWRS  TOPSOIL
     LflNGMUIR P  ISOTHERM
             35
          EQUILIBRIUM (P)
          EQUILIBRIUM (P)
    Figure 8. Phosphate absorbtion isotherms for BLWRS soils.
                              38

-------
                                                    m
                                                    o

                                                    pi
                                                    o
                                                    •H
                                                    4J
                                                    td
                                                    M
                                                    (U
                                                    eu
                                                    o

                                                    OJ
                                                    tfl
                                                    00
                                                    c
                                                     CO
                                                     0)
                                                     n
                                                     3
                                                     GO
39

-------
 half  the  volume  of  either precipitation or  drainage.  The lowest line

 indicates when each sample was  taken  and  the number of each sample.  The

 BLWRS  effluents  and wastes were sampled twice a week.  The sample number and

 the sample  location were used throughout  the laboratory and are used in

 reporting the  results of the analyses.



 The goal  was to  apply as much waste as possible to each BLWRS but to avoid

 ponding on  the surface which would cause  anerobic surface conditions.



 The wastes were  usually applied on a  particular BLWRS until there was

 reductions  in  infiltration rates and  ponding.  Then the practice

 was to change  to the other BLWRS until the  first one had dried sufficient to

 return to it.  There were exceptions  to this procedure; for instance,  the

 Swine South flooded (overloaded) the  night  of July 30, 1971, because of a

 malfunctioning switch.  Also, beginning in  April, 1972, the Swine North was

 purposely loaded as hard and as long  as possible to determine what would

 happen and how it would recover.



 Table  3 summarizes  the waste loading  rates  for each of the BLWRS.

 Table 3.  SUMMARY OF CAYS OF OPERATION AND  WASTE LOADING ON THE  SWINE AND
          DAIRY  BLWRS FROM THE START  OF THE EXPERIMENT THROUGH DECEMBER 1972.

                            	Swine	  	Dairy	
                            North   South   Total  North   South   Total
 Waste applied  -  mm          4144    2640    6784    977    2117    3094

 Days  operated                288      148     376    120     232     352

Application rate             18.2    17.8    18.0    8.1     9.1      8.8
 mm/day
                                      40

-------
Operationwise In each pair of BLWRS one of the pair received about two-




thirds of the waste.  If three BLWRS had been available, two could have been




in operation all of the time with one resting, or if a large BLWRS could have




had a solid set system with three sections, two could have operated while one




rested.









There were 503 days and 450 days between the time of startup and project




completion for the Swine and Dairy BLWRS, respectively.  The large gap of




non operation was the three-month winter period in which it was not possible




to operate the BLWRS.  Two attempts were made to cover the Swine BLWRS with




an inexpensive plastic bubble but both failed due to adverse conditions of




temperature and wind.  Even though a space heater was tried, it was obvious




that a large amount of heat would be necessary to keep the BLWRS operational




all winter.









On the Dairy BLWRS, electric heat tapes and heating cables were used to allow




some winter operation on days when the temperatures were slightly below




freezing.  This was partially successful but energy expensive.  Also the heat




was not sufficient to keep the BLWRS soil warm enough to allow for biological




degradation of the waste and especially the denitrification reactions as will be




shown later.









During the summer season, the effluent lagged behind the amount of waste




applied causing some concern until evaporation was included in the calculation




as illustrated in Table 4.  At all times, the quantity of waste plus rainfall




was less than the quantity of effluent plus evaporation which gives a value




for potential output.  Considering that the vegetation on the top of the





                                      41

-------











.
CN
r^
O-i
1-1
1
CO
CO
frf
i-l
pq

w

M
£5
CO

/yj
O


H
W
O
0
p
w
H
ts


f
^J-

0)
2
cO
H











4->
3
0
CO

£*•»
iH
3
i—^
PJ
4J
£_j
O
&







rj
4-J
3
O
CO

0)
c
3
t— 3

r*
4-1
O
•Z




















f->
4-1
c
0
|  *Cf **Q CO CT»
r^» in fn oo r~« m
| rH CN CN H  0
pq !2 Prf H W W PM



01
4-1
CO
CO
[5

T)
Cfl
t~*,

cfl
Q)
CO
1
OJ
,^
4-1
M-l
O

m
rH
cfl
pCJ

^J
o

CX
o
^
0)
rC
4-1
rH
G
O
01
CO
3
CO
O
0)
,0
o
£g
4-1
4-1
K^ *H
_f>
0
rrj 4J
O)
•H QJ
> -H
•H rH
O CX
CX
cfl CO
42

-------
BLWRS and the grass on the slopes could wilt and go dormant when under stress,




it would then be possible to have less transpiration than the evaporation




from the water surface of the standard pan.




NURTIENTS IN WASTE AND EFFLUENT




The nutrient concentrations and quantities in the waste and effluents are




given in Tables 5, 6, 7 and 8 and summarized in Tables 9 and 10 in the text.




At no time was nitrite detected in the waste so it is not reported.  The




percent solids and total carbon in selected samples are given in Tables 11




and 12.









The amount of dry wastes applied to the Swine North and Dairy South BLWRS




amounts to 122 and 93 t/ha, respectively, with relatively little accumulation.









The amounts, of carbon applied had an average 294 ppm and 516 ppm on the




Swine and Dairy with an average in the effluent of 19 and 36 ppm or a reno-




vation of 93.5% and 93%.









The nitrogen concentration data in Table 9 shows that the organic and




ammonium nitrogen in the waste is oxidized and leaches from the BLWRS primari-




ly as nitrate nitrogen.   The concentration of nitrate in the effluent is




lowest in the side of the BLWRS_with the corn as an energy source (Swine NW,




Dairy NE).   It appears that not enough molasses was added to give sufficient




energy for the denitrifiers in any of the treatments.  The Swine SW which had




the highest average nitrate concentration did not have an energy source.  It




must be remembered that the Swine BLWRS were driven very hard and the nitrate




levels did not start to rise until the cool fall weather.  In fact, the Dairy




BLWRS usually had nitrate concentrations less than 10 ppm except during the




                                     43

-------
Table 5.  NUTRIENT, BOD AND £00 CONCENTRATIONS IN WASTES
          APPLIED TO BLWRS.  NUTRIENTS EXPRESSED IN PPM.
Swine Waste
ORIGMAL UATA FDR
SAMPLE
2
4
9
6
7
8
9
10
11
12
13
14
IS
16
l!
19
21
22
23
24
25
26
27
26
29
30
31
34
36
37
38
39
42
51
77
78
79
80
81
82
63
84
85
86
87
88
69
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
PM
7,30
7,80
7,^4
7,50
7,55
7,45
7,50
7,54
7,70
7,60
7,55
7,80
9,00
7,90
3,00
3,15
3,05
7.70
7,87
7,89
7,99
7,95
7,9.5
i,17
3,17
7,73
7.86
7,88
7,77
7,58
7,93
3,36
7,60
3,06
7,60
7,90
7,90
3,10
3,7«
3.74
3,75
3.49
3.54
3,29
7,82
3,22
3,14
3,03
7.72
7,81
7,93
3,09
3,01
3,01
7,9;
7,62
7,75
3,01
7,57
7,47
7,38
7,23
7,40
7.37
;,&6
7,41
7,52
7,60
0»3N
465,0
359,3
480,8
351,9
853, B
401,3
849,3
242,3
286,7
208,0
44C.4
482.6
451,4
414.3
47?, 5
511,3
413,4
372,9
389, 6
394,9
42S.1
502,1
532,1
518,9
556,9
621.9
593,2
613,4
500,4
593,1
740.6
797,6
769,8
718.5
909,9
550,7
596,6
649,0
120,3
514,8
747,9
623,9
627,1
494,5
607,8
526,6
486,0
635,1
506,8
522,6
511,1
475,8
405,2
490. e
469,4
506.8
528,2
542,1
623,3
650,1
504,7
519,6
464.0
410,6
554,9
554,9
553,1
48?, 9
SWINE EARN WASTES
NOJ
10.20
7, "9
13.90
14, 60
20,25
11,60
13,00
23.8fl
14,60
37.60
5.U6
4,57
5,82
6.19
8,26
6,45
5.08
3.B7
3,94
6,19
5.75
5.47
9.96
8.97
16,10
12,50
8.43
7.72
10.43
7,10
9,53
t2.2fl
12.6J
9.64
7.52
9.93
6.<1
6,3fl
6,27
6,30
3.14
4.24
4,21
3.62
4.22
8.26
3,99
4.57
6,<5
6,36
6.30
5.34
13.20
13,20
22.40
8,45
17,70
8.62
2.65
3.49
12. 60
5.U5
2 ,u3
t ."1
1,41
4,30
5.40
3,->3
NH4
353.9
336,2
334,8
333,4
330,6
344,5
369,6
339.0
365,3
356,6
378,0
428,6
4Q0.8
347,6
4Q9.7
43?, 0
391,1
353.5
356,9
341,7
349,3
428,6
432,0
427,8
548,5
559,4
911,3
493.6
423.6
479,3
610,0
604,1
575,2
635,1
329,3
165.7
116.5
408.4
473.7
441,6
216.0
293.0
413,8
210,1
275,3
6flfl,4
598.8
577,9
553.3
537,3
560,3
504,1
483,8
481,2
455,5
494,0
505,7
548,5
568,8
572,0
443,2
422,9
368,3
360.9
489,2
474,0
479,0
506,0
R04
55.50
21.80
21,80
45,60
44,10
67,70
44,80
38.60
63,00
48.40
70,80
21.80
21.20
32,10
36.80
19.30
18.80
19,90
19,90
14.90
14.10
14.40
12.80
11.50
14.10
17,32
1U.81
9.67
17.70
15.40
13.20
10.24
3.58
6.39
10.24
6.40
3.63
6|l2
14,13
4.17
3.63
4.17
3.36
6.69
5.83
12.48
7,67
14.69
14.40
14.11
15.86
6.69
18.38
10.69
10,49
20.02
18.70
10.23
8.17
15.28
20.02
37.11
34, 2U
1U.59
23.52
31,48
25,72
25.75
CL
175,8
lift, 6
148,1
111,1
13P,8
157,3
166,6
157,3
74,0
166,6
210,6
257,4
269,1
257,4
I6?, 2
210.6
257,4
245,7
234.Q
243,4
262,1
262,1
234,0
234,0
234,0
222,6
210,6
234,0
193,6
167,2
234,0
210,6
205,4
166,3
166,3
171,3
146,8
146,8
171,3
146,8
171,3
195,7
205,5
171,3
220,2
224,7
195,7
155,0
17B.9
202,7
190,8
190,8
1«8,8
18", 8
177,0
200,6
236,0
247,8
306,6
247,8
259,6
294,4
153,3
117,9
129,7
176,9
176,9
239,3
MA
98,0
88,0
85,0
76,2
78,8
88,8
84,2
76,2
62,2
50.0
112,5
116,8
105,0
101,1
92,5
96,2
82,5
78,8
78,8
68,6
96,0
98,5
130,0
145,0
127,5
145,0
145,0
150,0
152,5
145,0
145,0
157,5
150,0
120,0
116,2
105,2
101,5
99,7
102,2
101,2
106.2
116,8
106,2
98,5
97,2
94,5
92'2
86,2
98,8
96,2
96,2
82,5
86,2
80,0
82,5
80,0
112,5
113,7
136,2
153,8
102,5
95,0
90,0
97,5
116,2
123,2
131,«
135,0
CA
95,7
65t4
80.1
91,4
91,4
179 1
102,8
110,2
102,8
66,2
107,3
101,4
115,9
120(1
1°118
92,8
109,5
117,6
137,3
162,4
64,0
123,6
110,8
105,0
102,1
104,3
lle,7
70,7
119,6
100,7
80.3
82,4
64,2
77,6
75,6
38,6
43,3
33j9
39,0
34,5
33,5
45,3
41,4
64,5
64,7
56,5
5«j3
52,0
81,4
92,0
101,4
90,4
82,6
BD,3
72,6
87,1
119,1
107 8
119.5
144 6
150{2
198,4
209,7
134,5
152,6
1««,0
107,2
185,3
HG K
Z5.1
33.8
39.2
44.7
44.7
58,4
55,2
60.2
54,6
41,8
42.8
43.9
43.8
44.2
43,6
32.2
39. t
49.3
64.6
72,0
53.9
47.il
40.0
35.2
33,9
22.7
36.3
31.7
44.8
32.7
22. 3
30.2
28.6
30. 0
32,5
18.5
21.4
19.6
25,2
Z0.9
19. e
31. fi
Z7.Z
35.9
29. 2
Z9.9
30.6
32.3
21.7
20,6
20,8
19.0
43.0
38.6
35,5
47,6
55,0
49.6
49.6
55.6
62,4
109.6
83. 3 210,0
70.9 205,0
73. a 285,0
83.4 290,0
B8.3 305,0
79.2 312,5
BOD








1335,0
1264,5
1636,2



1366,3
1321,3

1220,0

1230, (1
1116,4
1056, T
924,9
1043,7
1200,4
1160,?
1115,9
1916, 8
1018,0
1497,0
14B9.9
1445,0
1222,0
1211,9
677,5
787,5
793,4
1002,9
885,0
915,0
672,0
687,0
730,4
1014,9
829,0
668,9
1255,5
1225,4
1091,2'
1270,8
1165,7
941,2
1374,3
1344,3
1463,6
1598,4
1479,fl
1615,6
1277,0
1247,9
1436,3
1161,9


1419,0


CUD





4676,0
2968,0
2438,0
2754,0
2244,0
2912,8



1.800,0
I93U.O
1940,0
943,7
1276,8
1383,2
1276,8
2128,0
1915,0
215B,6
2158,6
2940,0
34$7,0
3050,6
3471,6
160V, 9
3042,8
2437,2
212V, 9
203B.4
2336,8
21BZ.O
. 1666,4
2352,0
2244,8
1440,0
1618,4
1880,0
1200,0
2128,4
2091,6
174V,6
19,0,0
1974,0
1860,0
2402,4
2182,4
196U,0
1968,0
1944,0
164»,6
2860,0
3617,6
336V,6
.1914,4
2610,4
2558,4
3273,6
2624,4
2784,0
247»,2
2668,0

3642,0
                           44

-------
Table 5.(continued).
NUTRIENT, BOD AND COD CONCENTRATIONS IN WASTES
APPLIED TO BLWRS.  NUTRIENTS EXPRESSED IN PPM.
Swine Waste
ill
112
113
114
115
116
117
11«
119
120
121
122
123
124
12'
126
127
128
129
130
131
132
133
134
135
136
137
141
142
143
AuER
n y c™
0
r.6«
7.65
9.03
7.34
7.29
7.13
7,48
7.87
7,73
7,65
9,09
7,45
7.45
9,09
7.45
7,74
7,77
7.94
7,94
7,41
7,64
7,77
7,93
7,91
7.93
7,70
7,66
7,75
7,78
7. S3
AGs yAl
BG\I
514,0
511,4
571,8
582.5
446,3
489,1
543,7
550,6
513,9
420,5
296,5
446,3
474,9
489,1
548,7
448,7
550,6
5i3,e
420,4
421,2
495,7
760,9
524,0
571,8
549,1
491,0
495,7
483,2
397.7
394.5
382,8
-UES FJR
NQ3
15,50
10,60
9,70
5,50
2.90
4,00
4.20
4,70
5,3fl
2.70
2,40
4,00
3.40
3,70
3,40
4.60
5,10
4,10
4.00
7,40
1.70
1.60
1,60
1,79
l.Sfl
3,40
6,80
2,70
4.?0
"• O <*
o | £- J
54INE
N-<4
534,0
534, U
406,3
387,5
305.1
480,4
575,7
565,5
183,1
222,9
406,0
445,0
387,0
387,0
357,0
461.0
453,0
305,0
358,0
423,0
487,0
473,0
507,5
484,7
154,9
434.5
423,6
363,2
342,0
Tt-9 7
«O / , J
WASTE
P04
20.72
17. 4B
13.32
10.59
13,32
10.59
9,08
R.95
14.24
19.62
21,69
24.62
20.99
8 68
16 '.68
16.37
14.54
7.64
3.04
15.20
10.90
10.28
9,47
11.5*
9.47
9.87
10.07
7,34
6.79
5.37
Ml N
cu N
A f * 4 3
287,2 147,5 195,9
263,2 140.0 190,6
210,6 155,0 176,1
257,4 153,7 172,2
258,7 150,0 197,3
284 7 142,5 180,1
258 9 142,5 I61t8
284,7 135,0 159,2
258,9 131,8 160,5
257,4 131,8 178,7
233,0 127,5 168,8
257,4 150,0 150,9
233,0 155,0 171,3
258,9 142,5 126,6
258,9 147.5 186,3
258 9 148,2 177,1
258,9 153,7 134,9
232,4 130,0 112,6
232,4 119,5 78,6
322,9 116,2 104,3
252,7 127,3 137,1
243,4 125,7 104,3
225 5 129,2 95,3
182 3 119. B 89,0
14B.7 98,5 85,5
153^ 96,2 94 4
163,1 100,9 94,4
143,9 89,2 BV.O
153,5 91,5 85,5
153,5 95.5 101,5
A CA MG K
A w ^
1 111
.7 45
.1 275
80.3 305,0
76.3 300,0
62.0 320,0
62.3 325,0
66.0 320,0
59. B 310,0
57.5 300,0
59.5 280,0
6C.4 265,0
78.7 290,0
58,6 305,0
57,1 315,0
68.3 305,0
51.4 305,0
54,3 300,0
47.3 313,0
42.3 322,0
54.0 250,0
46.3 240,0
47.7 243,1
37.8 240,0
35.9 266,8
35.5 284,1
31.4 249,5
26.1 239,1
30.6 239,4
33.2 238,6
33.6 205,7
34.6 200,0
35.5 212,5
.1
1134,0
805,0
12*3.0
668,0
653,0
775,0
550,0
267,0
482,0
471,0
471,0
554,0
554,0
627,0
612,0

3162,0
3904,0
2976 ID
2952,0
2263.0
1846JO
217-5,0
260U, 0
2916,0
2235,0
1868. 0
2360,0
1862,0
1679,0
2156,0
1944,0
114Z.O
1422,0
1593,0

7,4 42J.5 1B.O zu».' i*-'* —•
                                 45

-------
Table 5 (continued).
NUTRIENT, BOD AND COD CONCENTRATION^ IN WASTES
APPLIED TO BLWRS.  NUTRIENTS EXPRESSED IN PPM.
ORIGINAL DATA F3*JD*IRY BARN HASTE
SAMPLE PH (H3i»l
10
15
16
17
19
20
21
22
23
24
26
27
28
89
30
33
34
35
37
38
39
47
48
49
51
77
78
79
«0
«1
S3
85
67
89
91
93
95
97
99
101
103
105
106
107
108
109
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
7,36
7,80
7,70
7,30
3,05
7,56
7,74
7,71
3,05
3,00
7,37
7.26
7,71
7,51
7.51
7.95
7.33
7.31
7.50
7,50
7,60
7,51
7,44
7,66
7,60
7,55
7,56
7,44
»,60
4.87
7.00
7,27
7.13
7. IB
7,10
7.20
7.2B
7,40
7.56
7,48
7,30
7.15
7,10
7,52
7,47
7,55
7,34
5,97
7,05
5,88
7, OB
4,70
5,78
7,43
7.52
7,51
7,50
7.4B
7,43
7.85
7,93
7,86
7.63
7.52
7.72
7.66
7.36
7.4B
417,13
296.;?
273.4
266. ii
253, L
243.D
15».'>
173,13
165,4
164,!>
275.1
354,4
393. .5
315. ii
385, ii
354,4
270, '5
223,1?
174, 1
182, 15
198,')
271. ii
363,'i
357,1
299,')
325,1)
373. ii
382,1)
579,,,
345,4
389.:'
355.!)
252. <>
235.;;
255.!)
41C.I!
460. B
533.!i
584.0
852.;',
813,;'
867,;.
908,1)
930.:!
911.11
838,(>
764,0
803.1!
748, ;i
745. ii
803,;?
64»,;i
956,!!
670,11
409. !i
61 3. <\
64Q.I)
7ig,:s
716,15
581, Ii
731,1)
724,1)
730, :»
740.0
752.,?
73S,')
733,1)
687, •;
N03
53.20
4.30
5.00
7,50
4.40
4.50
2.30
2.60
3,10
2.5fl
9.40
10.40
1C. 00
13.20
10.90
11.00
6.29
8.97
4.84
4.74
4.81
4.74
4.8fl
4.56
4.31
9.10
ll.7fl
5.25
3.10
6.52
5.3Q
4.5fl
9.6Q
3.9fl
8,4Q
12.80
36.00
25.10
2.3Q
6.8Q
13.50
10.00
7.9,)
20.20
27.90
7.80
53.20
38.80
23.4fl
9.00
6.60
4.8fl
7.60
7.50
7.60
6.9fl
7.50
7.30
5. HO
6,20
7.20
6,80
6.5fl
7.UO
7,?0
3.50
3.7fl
3.60
NH4
447.5
13B.4
205,9
221,9
205.9
194.1
179.7
135,8
129,9
132,5
289,4
335.8
292.0
305,4
296,2
256,5
199,9
271,6
113,9
120, «
110.1
192.5
203,1
234.2
78,1
230,0
82.3
147,5
448, a
159.3
141,1
116.0
194.5
211.7
246,4
328,2
392,4
523.9
528.1
730.8
692.3
724,3
771,4
774.1
784.8
739.9
630.6
663.6
681.0
695,3
67fl,3
590,9
562.4
501,2
154,8
301.1
562.4
62l,2
698.3
585,9
466,2
692,5
661,5
163.4
651. 0
649.0
627.1
621,2
P04
39,00
48.40
49,20
36,80
' 31,40
27 60
11.70
14.40
20.50
13.80
53.20
71.50
44,60
62.80
32.73
26,61
40,92
52.29
35.63
28,28
34.65
49 51
67.45
53.75
45.01
75.71
87.32
78.15
75. h
95,37
83.02
75.71
49,78
33,81
28,54
32.89
21.04
36,72
31.98
44,43
25.75
26.52
23.52
33,27
32.37
38.13
41.35
43.64
43,64
41.35
32,37
40.25
43.02
24.62
18.29
32.97
22.76
32. 56
35.83
20.64
19,96
22.40
25.77
22.04
22.94
24.46
20.73
13.86
cu
360 ,.9
222,3
210,6
210,6
167,2
210,6
163,8
163,8
12«,4
131,1
234,0
234,0
234,0
215,6
256,5
210,6
215,6
234. g
292.6
292.5
317.5
286.2
292.5
292. 5
297.0
146,8
122,3
12?, 3
146,8
146.8
97,9
146,8
122.3
131.2
131,2
178,9
295,0
295,0
330,4
330.4
354 ,g
273,0
330,1
353,7
318,3
382,9
406,9
406,9
374,5.
351,0
38R.3
308,3
336,2
310,6
318,4
299,6
313,7
301.4
310.6
388,2
310,6
310,6
310,6
284,7
284,7
351,1
325,7
346,4
NA
127,5
127,5
112,5
100,0
92,5
97,8
96,5
105,5
110,0
110,5
152,5
175,0
170,0
175,0
156,5
125,0
120,5
98,2
75,0
62,5
50.0
110.0
118,5
92.0
95,0
132,0
l34.0
l48,0
151.0
152,5
129.5
131,0
105,0
57.5
50iO
70.0
96,2
116,7
128,7
157.5
173,8
173.7
176,8
176,8
179,7
176,8
171,2
163,7
171,2
160.6
166.2
142.5
135,0
131,8
131,8
128,7
133,7
136,2
136.2
133,7
132,5
132,5
132,5
130,0
127,5
113,5
127,6
124,1
CA
107,9
107,9
110,1
103,8
b9 2
97 8
60,1
80,1
7B,fl
69|6
132,3
150,7
145 8
175.3
149 9
136 ;i
138 4
139,1
127 6
127,6
135,8
162,1
1V2.2
17612
175.5
141.6
150.5
158.9
150.5
158.9
159.7
152.5
140.1
1*5,8
138.8
138,8
124,3
150,0
147,9
199,4
192,8
201,9
200,6
206,9
213,7
204,9
264,0
202,4
205,7
193,3
203,2
193,3
182,7
174,8
17BJ7
177,4
148,0
ion, 6
1V7.4
141,6
161,9
134,7
146,1
189,3
118,9
165,4
160,1
139,4
MS K
38,2
38.2
44.6
48,6
35.4
49.0
41.0
32.5
30.6
28.9
57.4
S3. 9
39.7
53.8
40.6
34.5
59.0
62.5
6C.6
60,6
57.2
57,9
68.6
50.3
»1.9
47.7
49,1
48. B
*0»0
sc:»
49.1
49.7
43.6
48. B
46.6
59.2
55.4
65.0
62.6
78.0
6C.9
78.1 643,7
73.1 825,0
63.4 831,0
69.0 910,0
71.8 910,0
60.1 825,0
70.7 831,0
73.2 850,0
65.3 775,0
62.7 806,0
67.9 725,0
64.6 700,0
66.6 668,0
63.6 688,0
67.0 725,0
50.2 785,0
5l,6 86fl,o
6Q.4 863,0
47,6 863,0
48.6 845,0
52.0 870,0
53.7 640,0
57.3 830,0
54.4 H30,0
57. / 825,0
57.0 830,0
55.5 625.0
BOO




917,6
817,0



,
1267J7
1229,2
1149,7
1386,5
1379,2
1399,2

69712
587J5
677,0
'29,0
1768 5
1256,0
1327,9
1081,7
1970,5
2360(0
2o89,0
11»«,0
2436,4
2043,8
1524,8
1311,7
1477,2
1287,4
1626,3
1835,9
2277,2
2841,9
9166,2
2896,4
2862,9
2773,1

























cuo

i
t
1420,0
1420,0
1550.0

1489,6
I
1382,2
1170,4
2553.6
3066,8
3136,0
4508,0
3576,8
2640,4
2524,6
1976,0
1768,2
1802,3
2088,
3026,
3702.
3962.
3657,
3769,
476i,
4704, .
l2«B!o
5568.0
4324,0
4166.4
2721,6
2726.0
3690,0
2842,0
3499,2
4397,6
4680.0
5622,4
5952,0
6336,0
5236,0
5336,0
























                             46

-------
 Table 5  (continued).   NUTRIENT, BOD AND COD CONCENTRATIONS IN WASTES
                         APPLIED TO BLWRS.   NUTRIENTS EXPRESSED IN PPM.
                               Dairy Waste


 1,3  7U<   7.1.J   4.1,  .77,3  23.76  283,6 131,« »ft  «•• «',;'„
 134  7,31   701,2   3.90  |6fl.l  56.21  Z»> u 1           48<4 8Q9)0
 135  7.3V   664,8   3.63  563.2  22.1U  |Ol,« i        I   ^^ m
 J8  ,:S:   n::?   S:3  SI:7.  S:??  ^:$ i.!.i m;3  «.
»VER»QE VAUUES F3* DMRt  W»STE                        „
             *  42^4   38% 245S 12^7 6U6.3  55,5  8X7.6
                                    47

-------
Table 6.  NUTRIENT, BOD AND COD CONCENTRATIONS IN
          BLWRS EFFLUENTS EXPRESSED IN PPM.
ORIGINAL UAT«, F3^i S-UNE BA<*
A
SAMPLE
J
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
46
47
48
49
50
51
52
66
68
69
70
71
72
73
74
75
76.
77
" 78
79
8n
81
82
63
84
85
86
87
88
PH
7.22
7,28
7.48
7,28
7,32
7.60
7,70
7,70
3,15
7,65
7,35
7,50
7,30
7,56
7,90
7,56
7,18
7.21
7,68
7,56
7,23
7.12
7.06
7.91
7,97
7,70
7.4U
7,72
7,30
7,37
7,26
7,16
7,83
7,81
7,43
7.70
7.34
7.73
7.4J
7,44
7.50
7.45
7.55
7,45
7.52
7.50
7,96
3.15
7,47
7.6d
7.18
7.16
3,11
7,33
7,37
7,32
7.53
7,28
7. on
7.41
7.09
5,99
'7,15
7.16
7,62
7,35
7.32
QR3 >ll
0.9
2.5
1.5
1.9
1.8
2.i)
1.4
3.8
1.9
1.2
1.5
2.4
1.9
a. 8
0.2
U.2
J.3
U.4
0.3
1.7
0.7
1.4
1.4
0.3
3.7
0.1
0.?
3.C
J.6
0.5
0.3
O.C
C.C
5,2
0.3
C.3
G.O
0.9
1.1
3.6
u.6
J.4
0.5
0.7
1.3
« ,7
a.a
B.3
C.9
0.6
0.7
0.4
0.9
0,0
0.4
0.9
0.0
0.5

0 ,7
0.5
1.2
0.1
3.3
1.6
1.2
5.2
•"03
14.4
12. '
5.1
2.4
1.7
3.1
0.7
0.9
1.3
2. _
2.6
3.3
6.4
54.4
134.1
214.9
198.6
1«0.6
225.9
256.5
258.1
214.4
237.1
128.-
159.4
161.9
174.1
152.6
139.7
137.6
143.6
150.7
153.4
154.4
134.7
U3.9
116.
146.7
133.7
94.3
126.5
126.5
Id. 2
U9.1
1X1.7
119.7
91.2
9C.4
87.2
78.2
85.4
66.2-
70.3
J1.4.
7*2.2
69.2
,67.-
79.3
11 1 • 4
96 .8
9C.7
124.6
147.5
127.8
1 ?0 <1
162.2
125. .
- -NE-- Swi-ne-Bf f Jnieirts
"4 EFFLUENT
N02
O.U
u.J
O.U
0. 4
0,1
0 i J
Q.u
0. J
a.o
O.o
0.3
0. J
ii ,2
0.3
0.9
1.9
1.4
1.5
1.3
0. J
3,(j
1.9
1.5
J.5
0.3
1.2
1 •'•>
1,9
2,2
2.3
1.6
1.5
1.3
0,9
0.3
l.i.
1.3
1.5
1.4
1.6
1.1
1.2
1.1
1.2
1.2
3. J
2,6

3*,7
3.9
0.4
0.4
0.4
d.4
0.4
0.4
0.5
0.7
3 • u
0.8
1.1
2.2
4.6
9.7
14.4
13.5
18,9
NH4
0.7
11.1
0.3

ii!o
0.2
0.2
0.2
0.2
0«1
0.1
0.5
0.4

flil
T .5
1.0
0.7
0.3
0.7
n.7
1 <5
1.7
B.9

iio
a.'

ills
1.2
1.2
2.6
2.5
2.6
2. a
1C. 9
13. U
14.8
25.5
19.9
19.7
19.9
19.5
2". 3
22-5
4q .2
51. *
13.7
11.9
12.6
12.8
13.7
9.4
4.5
8.6
7.3
7.9
16.2
1 9 • 3
*1«°
2fl.O
34.4
5f;.5
6n.b
88.2
lt.6.0
112. U
P04
0,0 9
U.J 9
O.U' U
U.b 5
0. J19
0.0 5
6.C34
U.U31
0.022
U.li'8
o . u20
O.G3U
O.u23
d . u3u
o.i,23
a . c 5 o
0 .1.23
0. U3J
O.o23
o « o5a
0.033
a.^ia
u.021
0.407
J.020
o.aOo
a . oo j
0. J05
Q . j 0 0
o . o a .<
C.uO?
0 « 2 0 8
j , j 0 3
O.u09
0. 309
0. jOO
U.C21
U > u4l
a • ui3
0 . J '' 7
0 , w 0
Q.O a
a . u 5
ft . u6J
U, »36
C . 1,39
C. J31
Q.ulO
O.G25
O.iilO
o . jia
t.uia
U .024
0 . U18
0 > Ii3fl
U.U18
O.u28
g. J2fi
G • t^ 4 4
5.138
0 . i! •* 7"
U.U33
O.C1«
D.U12
0.0 9
0 . u21
a. j3i
CL NA
7.4 7,5
9.2 5,5
5.5 3,2
5.5 3.3
5.6 4,_
26.2 9.3
26.2 10,2
29.0 11,8
37,4 18,4
41,2 19,3
53.2 17,5
74,9 20.3
117.9 21,4
147.0 22, .,
170.4 24, j
182,6 45, u
178, fl 76,5
175.7 a7,j
170.4 104. u
172.3 106,3
172.3 105, j
172.3 99, J
170.4 99, j
149.8 69,2
132.9 76,5
151.6 83. y
151.0 04,,,
155.4 96,.
162.9 102,,
155.4 92,5
155,4 104,3
164,7 93, u
185.3 103,:
182,5 97, ^
164.4 77, c
169.1 92,0
176.7 89.6
192.9 92.6
196,7 105.^
125.4 68.7
169.2 90.,,
169.2 90,j
159.6 BB.7
173.0 96.0
154,4 95...
174,2 B6,2
149.3 B3.S
100.3 50. J
95.9 47,5
86.1 43,0
92.1) 44, 8
ea.i 41,2
82,2 40,5
84.2 43,3
84.2 43,3
68.1 46.5
84.2 44, ^
93.9 56.5
137. ,, 75, >
146.8 75.3
164.4 78.2
164,4 79,6
135,1 B4.1
129,2 96. j
146.8 93,5
l6o,5 93,5
177.9 98.1,
tA
52.4
55.5
46.8
54.4
62.1
82.5
82.4
95.4
102.7
108.5
112.4
115.7
137.5
256.0
283.5
3BR.3
531.8
521.8
371.7
379.3
333.8
323.4
347.6
236.5
24-5.9
236.5

2,6
2,4
5,0
6,5
V,0
COD
38.3
21.2
31,8
10.6
15.3
10.2
26.5
33.1
39.5
46.1
30.8
43.1
55,8
25.8
26.6
26.6
26.6
31.9
42.6
37.2
31.9
77.1
64.6
06.9
40.1
47.8
4i .1
57.9
52.0
43.4
63.7
74.2
64.9
59.6
45.6
70.7
65.3
68,2
70.7
37,3
49.9
48.8
51.0
61.0
57.9
50.4
40.5
34.9
34.9
29.7
29.4
29.4
29.4
47.6
14.9
34.7
44.6
44.1
53.7
33.6
47.6

7o!o
64.5.
89,6
lll.fi
124.8

-------
Table 6  (continued).
                                     NUTRIENT, BOD AND COD  CONCENTRATIONS IN
                                     BLWRS EFFLUENTS  EXPRESSED  IN PPM.
 89
 90
 91
 92
 93
 94
 95
 97
 98
 99
100
101
102
1Q3
104
105
106
107
109
109
110
111
112
US
114
115
116
117
118
119
120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 141
 142
 143
 144
7,23
7,01
7,OS
7,11
7.07
7,06
7.29
7.27
7,51
6,94
7.4S
7.27
7.24
7,11
7.33
7,3u
7,41
7.4V
7,09
6.94
6.96
7,71
7.03
7,09
5.9S
7,22
7.13
7.27
4.97
7.C7
7,0/
 5.98
 7.3S
 7.3B
 7.31
 7,38
 7,39
 7.42
 7.10
 7,42
 7,41
 7.2'J
 7.2C
 7.U1
 7 ,66
 7,83
 7.5H
 7.14
 7,21
 7.3*
 7.17
 7, 111
  5.6S
?.8
?.8
3.3
2.3
2.6
1.7
3.2
0.6
                  112.7
                  111 4
                     1
                     :
               :
              t*l
               :
               1
               i
              U 5
              o7
               '
              IP
        i
         ?  :
         77
        B5-J
        234.5
        1-jA A
          -I
        2748
                   3661
                      '
                   3499
                      :
                •
                '
               C  5
                   2P45
                    4669
                    £Z'l
                    57916
                    173!4
               15.6
               12.4
                J::
                5:;
  hii
  41  U
  J5i
  a::
  1C9.0
  1HA  i
  U6|
   97  3
   ll'.l
                71
                55*2
                ll'.2
                37
                ' :?
                            10
                            Si
                  1
                 a'l
                 B 9
                 si'
                 33
                 3.1
AVERAGE  v*Lubs
    ORG1    N03
      1.1 1S9.32
               u9  1V6.6
   NE Swine Effluents

114.0   O.C27 174.6 103,7 27e.7
1U9.0   0.-4Q 1/0.7 106,2 2b5.3
113.0   0,0 7 176.5 110,0 2B4.1
124.U   u.vi 7 183.1 10«.7 2*5.»
lln 0   O.J 9 181.2 110,5 2B6.9
                                       65.6
                                       ev.a
                                   0  0
                                            186.9  100  0  2B2.4  70,6
                                 IS
 1*3.0
 iJt:1.
                         S S8:  iS:J «5:l;          :
                         3:S  -:^ -- --  «:|
                         0.-J21  189.5 107.5 204. Q  59,6
                          :;13  IS:! SI;! St»:l  JS:
                               SW
S!:5
  158,0
  1V2 0
  173 S
         1J«  0
         151  0
                          .
                         O.'j47 222.1 121.8  400. 0
                         0.^46 213.4 131.9  407.5
                         O.u53 217.2 U5.0  43^.4
                         0.027 234 5 137.5  442.1

                         1:1 " r,'.:; J";s  :;5:;
                         0.^24 263. 0 133.,  505.4
                         0  J2B 265.1 131.9  446.6
                         0.02a 279.6 l«.=  473.9

                                        -
         1"?  0   «.«?2 298.2 142,2 413.6
         a   :   S:S ffi:J S!;S «';:;
         'K:!   ::!B 38:: 8tf 13:!
          91  0   B.U17 300.3 ISO. 3 301,.^
          s'   0  c  D  27812 150.4 366.6
          43 1  O.U43  266.3 145.7 30c.3
          36.9  b   14  253.9 141.1 J62. 4
          35.9  0.042  244.7 137.3 3»C.l
          29.6  O.ul4  22B.7 l3u.C 367.5'
                               '7!:!
       62.8
       77.4
       63.9
       59,6
       61,8

       U:9.  209.3
       68.6  1VB.7
       82,1  2Z8.1
       88.9  212.5

       JS:  234;
       74,3  200.0
                                                             :
                                                         i«:
                                 65.1  172.5
                                 61.3  161.5
                                 64.0167,4
                                 61,9  171,5
                                 60.3  165.9
                                             8.1
                                            1..Z
                                             5.2
                                             5.0
                                             5.1
                                             5.1
                                             ».»
                                             5.7
                                             5.5
                                             3.5
                                             3.9
                                             5,2
                                             .5.1
                            ?.Q
                       32.8  (J.L28 187.1  1Z9.J 472.6   58.8 162,8
                                              2 ^
                                              3*. 8
                                               ,4
                                              6.3
                                             9/.3
                                              4,3
                                              S 7
                                                                            IS
                                                                              .
                                                                             8.5
                                                               3.3
                                                               2.7
                                                               2.6
                                                               1.3
                                                               '.6
                          79.9
                          94.0
                          L01.6
                          69.4
                          68.6
                          68.9
                          77.8
                          76.5
                          85.7
                          112.3
                          111.8
                          90.4
                          113.2
                          84.3
                          106.9
                          134.4
                           99.9
                          105 *
                                                   107,3

                                                   16,4.6

                                                   13319

                                                    86J3
                                                   114.0
                                                   172. •»
                                                   113.1
                                                   111.7
                                                   179.8
                                                   256, a
                                                   160.0
                                                   116.6
                                                    97.2
                                                    84.9
                                                   103.8
                                                    73.5
                                                    64.2
                                                    68.6
                                                    58.3
                                                    28.5
                                                    47.4
                                                    59.7

                                                    SBJS
                                                    58.5
       N32
      15.56
 NH4
54.?6
 304    CL    NA-    CA    HU
j.1,21  173,6  93.2 409.9  30,7
                                                 K
                                                171.7
                                             49

-------
Table 6 (continued).
NUTRIENT, BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN PPM.
OR|0
INAU DATA F0*l
SAHPCE PH
7 4,89
8 4 On
9
10
11
12
13
14
15
16
17
IB
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
46
47
48
49
50
51
52
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
» , - w
7,20
7,00
7,10
M»
7,19
7.30
7,30
7,45
4,90
4,90
6,95
7,12
4,91
4,73
4,78
7,06
4.79
7,29
4,70
4,75
4.94
7,62
7,22
7,32
7,14
7,61
7,53
7,36
7,13
6,99
7,49
7,30
7,27
7,06
7.99
7,61
7,23
7.31
7,48
7.45
7.59
7,52
7,59
7.60
7.11
7,27
7.29
7.10
7,44
7,10
7,09
7.19
7,23
.96
,89
,02
.9*
,98
,87
,69
7,39
7»15
7,04
7,29
4,99
ORS^i
19,6
2Q
• 7
2,2
2,3
2,9
4,9
3,5
0.8
5,1
1,2
2,0
1,2
1.0
1,9
28,9
14,0
1.5
1,7
3.2
2,7
5,7
4,9
4.7
7,9
1,2
0,8
0,8
3,7
2,0
2,7
5,4
2,8
1,3
l.l
1,5
0,2
2,1
2,1
2,6
2,4
1,3
1,3
1.0
2,9
1,3
7.1
7,7
8,1
10,3
5,6
3,0
2,4
2,8
2,8
5,6
6,7
9,5
7,6
7,8
Ill2
3,5
2,0
6,3
4,6
4,0
3,4
3,2
NW Swine Effluent
S'INE BARN EFFLUENT
NQ3
12,5
3 A
,2
0,6
0,8
1.3
2,9
1.3
2,0
1.8
1.7
3.5
2.7
2.0
11,5
47,6
83.3
89.2
5.4
2.0
7.7
5.6
5.6
4,3
65.4
68.2
71.0
68.5
52.6
49,8
44.5
53.4
84.7
83,6
116,0
111.8
103.9
107.8
135.1
76.9
80.1
84,1
69.8
69.8
73.6
127.7
25,2
28.3
76.7
78.0
54.6
50.2
47.4
63,3
33.9
30,7
23.2
39,6
29,0
31,4
39.6
51.1
60.5
587.0
60.0
39,9
5.7
6.4
N02
0,6
0,1
0,0
0,1
0,0
0,0
0,0
0.4
0,1
0,1
0,0
0,0
0,1
0,4
0,2
0,5
0.1
0,0
0.1
0.0
0,0
0,0
0,1
0,1
0.1
0.2
2,2
4,1
0,1
0,4
0,2
0,1
0,1
0,1
0,2
0,4
0,5
0,4
0,3
3,9
0,2
0,3
0.2
2,1
0,1
1.0
0,6
0,8
0,2
0.3
0,5
0,3
0,3
0,1
0,4
6,2
2,5
3,5
1,4
2,5
0,6
0,6
0,0
0,2
0.1
0,0
0.0
NH4
4.1
P04 CU NA CA HG
0,010 14,8 5.5 131.0 39.2
7.3 0,040 9,2 5|2 13$;o 35.'5
6,1 0,030 5,5 56 132,0 36 6
9,0 0,060 4,6 5,7 133,1 36 6
9,6 0 040 28,1 5,'8 ISl.'l 35 5
11.5 0,010 46,3 6,0 132,4 35,6
6.6 0,020 11,2 5,5 132!? 37 4
8,7 0,020 16,9 9,8 132,4 34,8
9,1 0,020 18,7 5,5 135.7 36,6
10. 4 0,050 18,7 5j3 136,8 37 2
9.9 0,010 26,2 9,2 136. B 35 9
8.9 0,020 29,9 5,2 134.7 38 1
9.8 0,020 35,6 9,7 135.7 38 6
9.8 0,030 74,9 9,7 135.4 38 9
11.3 0,030 99,2 9,8 135.8 37,8
11.6 0,030 128,2 5,4 138.8 38 6
lfl.9 0,030 143,2 5,7 136.8 39,8
lfl.3 0.020 136,7 5,2 138.5 35,8
lfl.9 0,020 146,0 5,2 136,8 36,0
12, « 0,020 144,2 5,8 136.9 38 9
11,8 0.009 146,0 6,0 145,5 63,3
14.3 0,010 146,0 10,0 154.5 84,4
15.5 0,005 149,8 48,0 166.8 64,2
8,0 0,016 131,1 47,5 396.2 77 8
7.4 0,020 129,2 90,0 197.4 78,0
7,4 n.nn.t 130,3 . « « «,•» - I"';:
7.3
5.1
7.9
6.8
9.3
13.3
17.1
16.5
13.8
15,6
14.8
12.8
11.3
H,»
10. 1
9.2
9.0
9.0
lfl.9
13.3
13.3
13.9
9.6
13.9
6.8
8,6
7.9
9.0
5.8
7.7
lfl.1
16,0
14.1
21.2
16.4
18,1
19,1
22.7
ll:l
24.2
- » --- *»*•!«. 3^f« *O
-------
             Table 6  (continued).
NUTRIENT, BOD  AND COD  CONCENTRATIONS IN
BLWRS  EFFLUENTS EXPRESSED IN PPM.
91
92
93
94
95
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
142
143
144
7,0»
4,94
J.84
4,84
7.04
7,56
7.49
7,03
7,51
7154
7,24
*|93
7,42
7,26
7j42
7,24
7,07
4,91
4,94
7.39
7.18
7,13
7,00
7,16
7,09
7.19
7.33
7.49
7.04
4.95
7,67
7.50
7.09
7,11
7.01
7.92
4.89
7,37
7.26
7,00
7,09
4.98
7,71
7,68
7,09
7,33
7,06
7,07
7,00
7.00
9,1
3,4
2,8
2.8
3,0
o,<
3,6
3,0
I,9
s,i
4,3
3J6
«,7
S,6
3,0
5,8
3,6
4,2
4,1
9,2
4.2
3.2
2.5
2,9
4,1
3,4
2,9
1,9
2,2
2,2
1,4
i,:
0,7
0,9
o,:
0,9
1.7
0,5
0,5
1,2
1.2
3.8
0,5
0,2
0,3
0,9
0,9
*,8
0.6
0.9
18.7
2,5
2.2
4,0
5,2
3,6
7,2
6,9
17.5
29,6
T24.6
25,1
18,9
24,0
21.1
21.7
13.7
19,4
8,8
18.8
4.8
28.3
9,9
32,7
79.4
25.7
53.5
55.3
60.5
93.6
132.1
122.7
125.1
127.2
132.4
142.4
157.3
183.0
158.5
169,1
158.5
160,4
173,5
205.3
360.2
476.2
474.3
149.9
234.6
177.5
o.i
o.o
0,0
0.0
0,1
0,0
0,2
0,1
4,9
1.3
0,9
4|6
0,2
I,4
o!2
1,0
0,1
0.9
0.2
0,3
0.3
0.7
1,5
17.8
15.3
10.0
21.8
5,9
5.9
5.9
7,0
25.4
41,2
21,0
31,4
21,9
12,9
19,7
12,4
6,2
10,8
7,3
6.2
3,6
3,3
4,7
4,6
3.5
5.3
4.8
NW Swine Effluent
34,9 0,027 177M 112JO 369,1
38,0 0,016 186,0 119 0 381.0
36.8 0,034 187,9 116.5 390.4
38.1 0,034 186,9 119,0 342.2
57,5 0,028 187,9 95 0 336.5
36,1 0,064 183,1 8BJ7 192,7
43,2 0.040 185,0 91 2 273.1
46,0 0,020 182,2 91,2 331,3
47,9 0.03H 184,0 92,5 327.9
58,9
81.8
62.1
55.9
59.0
68.2
63,7
63.5
66.1
59.7
68.8
63.8
63.2
75.1
87.3
86.3
86.8
9Q. 2
81.5
97.3
88.3
99.6
112.0
uo.o
119.0
134.0
106.0
85.7
93,7
87.0
80.4
82.0
81.7
84.4
78.6
80.9
76.6
72,5
67,6
62,8
65,7
0,030
0,329
0,018
0,021
0,023
0.002
0,012
0,031
0,317
0,326
0.030
0,030
0,027
0.939
0,059
0.018
0,014
0.011
0.011
0.017
0,020
0,017
0,011
0,014
0.317
0,011
0,011
0,009
0,009
0,017
0,546
0,019
0,014
0.048
0,022
0,032
0,014
0,048
0,014
0,042
0,035
178,4
185,0
172,3
167,9
163,1
166,9
171,6
168,8
181,9
178,0
181,9
189,5
176,0
181,6
190,7
215,4
165,7
209,2
207,1
213,3
215,4
221,6
225,7
223,6
225,7
229,9
223,6
219,5
229,9
215,3
216,9
248,1
249,5
249,5
254,3
244,7
244,7
239,9
218,3
215,9
223,1
107 0
135.0
100,0
nojo
105.0
107,5
107,5
105JO
113,1
116,2
113,1
105,0
107,5
116,2
110(6
110,6
118,8
118,8
113,1
116,2
123,7
123,7
123,0
133,7
130,0
128,7
125,0
116,2
129 0
118,6
192 4
I22:i
131 6
126,8
13l)l
124,5
128,0
123J8
117,9
119.8
122,1
359,8
107,1
183.4
186.5
329.4
331.4
346.4
347.1
344.0
357.3
201.2
362.4
364.0
347.3
329.1
404.9
392.2
381.8
406.5
374.0
254.6
299.1
403.4
463.2
539.6
503.1
469.2
520.5
488.4
304.8
404.2
441.6
501.8
4B5.1
364.5
331.9
349.4
346.0
296.6
2*4.0
310.1
93 3
92 2
90,0
91,3
98,5
100,8
107,5
98,1
90 3
99,6
78 7
89 1
83,3
86,7
93,4
91,7
118,1
110,1
88,5
86,3
85,6
89,9
89,2
73,5
116,8
112,1
113,8
112,3
107,4
118,5
91,4
119,3
92,8
94,7
87,6
98,6
94.2
100,0
90,9
97 8
133J7
108,1
93.9
97j2
93,1
91.5
80,8
7l|*
68,6
68,0

















100, a
111,2
106.2
131.2
125,0
118,7
153,1
156,2
143,7
156,2
131.2
87,5
131,2
111,0
89,2
101,7
113,3
115,4
119,2
119,2
125,1
121,0
122,8
111,5
109,0
137:2
228,1
300,7
393,8
265,5
146,3
191,2
133,5
163,4
140,1
65 3
149,3
81,9














18.6
14,0
12,8
13,4
2,9
4,7
13,1
13,4
13.6
19,3
14,2
14,7
10,8
8.4

16,5
fl!4

4,3




415J8
416,8
416,5
541,3
388,8
1816,4
333.2
187,2
184,4
175,7
113,2
267,8
175,0
192,0
452.2
225.4






_ i
99i2

74.4

113.5
99.2
147.6
172.2
46.6
97.2
172.9
110.0
97.2
87.4
94.4
75.5
68.6
59.'2
66.6
63.1
38;o
61,6
69,7
',0
1
i

AVERAGE VALUES Fa*; SW|NE EFFLUENT
   ORG*   N03    N32    KH4    f>04    C
     3,5  72,97   6,76  38,34  0.022 158
                                    ,7
   NA   CA    Mli     K

  80,5 328,6  83,8  25,7
                                          51

-------
 Table 6  (continued).
NUTRIENT, BOD  AND COD CONCENTRATIONS  IN
BLWRS EFFLUENTS  EXPRESSED IN PPM.
                      SE Swine Effluent
DATA F33I S'INE BARN EFFLUENT
ipie
i
2
3
4
9
6
7
8
9
to
11
12
13
16
IB
1»
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
46
47
48
49
50
51
52
53
56
57
60
61
62
63
64
65
66
68
69
70
71
72
73
74
75
76
PH
7,30
7,35
7,50
7,39
7,80
7,28
7,30
7,36
7.75
7,50
7,75
7,80
7.80
7,35
7.30
7.35
7,72
7,65
7,43
7,04
7,35
7,45
7.75
7,57
7.27
7,27
7,89
7.55
7,28
7,03
7,70
7,45
7,18
7,19
7,02
7,88
7,41
7,44
MS
7,1*
7,61
7,28
7,40
7,45
7,55
7,52
7,35
7.40
7,45
7,55
7.55
7,68
7,73
7,52
7,33
7,44
7.07
7,10
7,86
7,77
7,37
7,17
6,99
7,03
7,49
4,89
7,0V
ORSfi
1,1
2,«
0,1
0,1
2,<
2,8
2,1
1,6
C.4
1,3
1,3
2.5
0,3
0,5
1.7
1.9
1.2
1,2
1,5
0,2
1,2
0.7
0.8
0,5
0,0
1,7
0,3
0.?
0,2
0,1
0,3
0,3
0,3
0,2
0.2
0,6
0,2
0,2
0,4
o,«
o,»
0,8
0.6
0,9
o,?
0,3
0,5
0.4
0,3
0,1
0,1
0,2
0,7
3,2
3,2
4,1
4.3
4,7
u
2,7
<,7
1,1
*,1
3.2
4.4
3,4
NQ3
1.0
2,8
3,8
7,5
7,3
13,3
24,8
67,0
65,8
69.6
105.5
99.4
85,7
71.4
40,4
27,8
31.8
46,5
44.3
85,0
75,4
123.6
146,9
156.0
216,8
236,2
158.9
2P5.6
226,3
193.3
187.5
180.1
135.0
223.6
170.7
175,4
236.0
294.7
186.6
208.2
2)8.4
189.1
188,7
164,1
144.1
229.2
141,4
215.4
194.0
197.0
204.2
174.6
194.4
215.1
200.1
196,6
191.0
164.1
173.0
150. !>
117.;'
97. (1
122,0
97, '1
75. 'i
96, (1
105,6
N02
0,1
0,1
0,2
0,4
0,1
0,1
1,3
1,5
3.9
6.5
5.8
8.5
3.6
3.3
1,8
1.4
1,2
1,2
1.5
2,0
0,6
0.7
0,0
0.0
o.o
2.5
1.2
c.«
O.'
0,7
0.8
1.0
1.2
1,2
O,'
1.0
1,0
0.8
1.1
I,5
2,1
2.2
2.3
2.9
0.8
5.1
0.0
1.8
1.8
2,4
2,5
2,8
19,4
37,7
29,6
23,0
40.1
23.0
28,4
16,6
15,3
7.4
0,4
1,1
0.4
0,4
0.5
NH4
0.1
0,1
0.1
0.1
0.1
0,1
0,2
0.2
0.3
0>2
0,2
0,1
0.2
0,3
1.2
1.2
Q.8
0>5
0.5
0,7
0,1
0.5
1,0
1.7
o.o
2.4
1.0
8.7
0,5
0.5
0,3
0,7
0.7
1.2
0.2
0.3
1,1
1,3
1.5
1,5
1,1
2,1
1.7
1,9
0.6
1,9
1,1
0«9
1,5
0,6
0,5
0,9
0,6
1,3
1,5
1,5
1,7
1,1
1,7
0,6
0,9
1,*
0,7
1,6
0,2
1.3
0,4
P04
0,012
0,025
0,017
0,024
0,024
0,040
0,020
0,010
0,021
0.013
0,017
0,011
0,014
0,014
0,020
0.030
0,010
0,020
0.020
0,030
0,030
0,020
0,020
0,020
0,030
0,026
0,005
0,00!
0,167
0,017
0,003
0,009
0,016
0,005
0,008
0,016
0,014
0,020
0,027
0,027
0,030
0,065
0,042
0,000
0,010
0,018
0,018
0,020
0,020
0,040
0,016
0,010
0,012
0,007
0,047
0,090
0,020
0,058
0,060
5,0*0
0,007
0,005
0,021
0,040
0,040
0,012
0,009
CL
5,9
11,1
24,1
46,3
48,1
66,6
88,8
138,8
144,3
144,3
151,6
195,4
197,3
104,8
138,5
138,5
139,5
142,3
155,4
161,0
168,5
168,5
149,8
146,0
134,8
119,8
117,9
114,1
110,5
110,5
112,3
114,2
104,8
110,4
110,4
108,3
113,1
115,9
121,6
125,4
133,0
129,2
133,0
134,9
117,8
140,1
129,2
114,4
110,6
104,3
105,5
101,6
93,9
135,1
119,4
121,4
121,4
125,7
122,3
65,6
95,9
80,2
94,0
94,0
86,1
90,0
99,8
NA. CA
5J9 62.5
6?8 67,4
ars 70,2
8^3 72,5
10,0 72.2
12,8 76.6
12,6 86.4
19,9 88.5
13,8 93.6
16,3 96,0
19,6 95.5
29,5 97.7
26,4 97.5
29,3 102.0
36,5 134.7
36,5 170-5
39,5 162.5
45,0 203.6
50,5 239.5
79,3 320,7
70,5 34Q.9
82,6 301.4
88,8 292,4
91,8 266.7
102<0 292,4
102.0 371,7
86,0 297,3
82,: ces.s
85 5 291,5
84 0 289.5
94 5 345,5
93.0 327,6
83.0 345.5
93,0 370.0
92 8 373,4
81.0 34Q.O
86tO 432.2
81,0 389,7
83.0 371.0
63TO 402.6
88,7 373.4
95 7 3B9.2
99 5 368.0
82,5 360.8
75,0 325.5
65,0 315.1
76,2 277.1
73,1 255,8
68,8 262,2
76,2 306.1
79,4 330.7
67,5 315.2
71,2 26Q.6
76,2 312.8
66,9 315.2
67,5 315.2
72,5 355.3
73,6 358.4
7o,g 336.6
46j2 2V4.Z
47.2 2S4.8
45,0 254,8
49 0 266,9
47,0 254.8
44,8 221,5
50JO 270.6
52,0 265,7
WO
25,4
26,6
28,3
28,6
3Z;s
45,2
43,7
48,3
46,0
52,2
49,9
51,8
52,0
55,6
60,6
58,2
58,2
66,6
75,3
75,3
77l2
79,0
92,0
81,6
92,0
89,0
82;9
30,0
80,3
81 2
90,3
63,5
86 4
66,1
83 5
85 8
95J
98,9
77,8
93 0
88,5
97,2
91,0
85,8
73,2
79,8
72,7
73,5
75,0
78,9
97,5
75,0
71,9
86,2
76,2
65,3
90,6
92,6
83,6
64 3
56,0
54,9
56 9
55 8
55 4
62,0
62l2
K BOO
4.4
'!z
6.0


9,2
5,6
7.8



2.6
2,4

2,4
2.2
1,9
2,3
2.5

5.9
5.5
a. 4
4,7
7.2
3,0
3,0
z!<
4.6
33
33
23
33
« «
3 4
36
« 6
3)3
3.8
1,4
16
l|7
*.7
l|3
1.3
5,6
2,3
i.a
0.9
1.0
o.a
1.6
1.3
2,0
2,7
2,5

3,6
41,5
140,0
124,?
269,2
238,9
265,2
307,4
436,2
296,0
COO
22,0
33,0
44.0
33 0
40|9
39.4
42. a
42.4
93.0
98.3
30.6
35.7
93,0
59.2
49.3
32.2
32.3
42.6
37,2
93.2
62.9
93.2
58.9
47.1
06.1
29.4
80 7
12.6
93,2
54 0
64.1
31 2
26. '9
36,0
42 3
34 8
93 8
27 1
43 7
36! 7
44.0
39 4
31 1
3l|2
22.4
49.9
43.7
32.5
17.2
30.0
32.0
41.0
51.7
42. a
38,1
47.6

82.4
86. fl
443,2
333,6
446,4
441.0
442,8
539.0
992,0
34;, a
                               52

-------
      Table 6 (continued).
NUTRIENT,  BOD AND COD CONCENTRATIONS  IN
BLWRS  EFFLUENTS  EXPRESSED IN PPM.

77
78.
79
68
61
62
63
84
86
87
91
94
95
96
97
96
99
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
142
143
144

»,96
4,94
7,04
4,94
7,35
7,15
7,33
7.18
7,79
7,48
7,14
7.01
7.47
7.45
7,44
7,71
7,04
7,11
7,16
7,47
7,52
7.60
7.6J
7,24
4,87
4.94
7.27
7,13
7,05
4,90
7,18
7, Id
7,29
7,30
7 37
7,01
4.94
7.50
7,67
7.54
7,19
7.49
7.36
7,05
7.31
7,20
7,23
7,24
7.03
7,72
7,63
7,63
7,57
7.47
7,42
7.26
6.95

o.o
0,6
4.Z
3)l
3,7
4,4
1,8
1,4
1,2
2,5
0,6
1,7
0,6
0,6
0.0
1.1
0,0
3,8
1,»
0»
02
1,'
0,4
0,9
1,6
0,9
0,4
1.1
1.7
0,6
2,*
2.6
3.1
0,6
0.6
0,9
0,8
0,4
0.4
0*4
0.5
0.8
0.6
0,6
0,5
1,4
1,3
0,3
2,3
1,1
0,3
4.5
10.0
0,9
1,3
1.1
0.5

78,0
92,0
81,4
81.1
72.0
63,4
83,8
106.5
107.9
100.0
128.6
127.4
117.5
167.0
168.6
226.0
139,9
159.4
123,5
141,9
188.1
95,5
164.6
128,3
117.2
171.1
176.6
85.5
227.2
224.5
243.2
161.4
200.0
264,5
239,2
244,8
239.9
268.0
160.0
170.0
158.2
159.3
158.8
156.7
152.4
107.5
171.0
266.4
134.1
154.8
169.9
333.0
429.9
354.6
154,7
177.5
168.0

1,1
8.9
2,2
1.2
1,1
1.0
0.9
l.U
0,9
0.2
1.4
2,1
2.9
1.5
1.3
0.9
0.8
0,8
0.7
1.8
0,4
0,2
0.4
2.3
2,0
2,2
2,5
1,1
2,0
I,9
1,8
I,5
1,1
I,4
3,5
3,0
3,5
1.7
1,3
4,9
1,1
2,9
1.4
3.3
Oil
0.3
0,1
0,4
0,4
3,4
0,4
0.4
1,8
1,5
1,1
0.1
0,7
SE
1,1
0.6
0.2
0.2
0.2
0.2
o.o
0>2
0.3
0>2
o.«
1.3
1.1
1.3
1.1
0-9
1.2
1.2
I.9
1.2
1,"
2.1
3.Z
1.5
1.1
1.1
2,0
2,3
4,1
3,6
3,9
4.4
1.1
0.4
0.6
1.1
0.3
Q.2
0,7
3«1
1.9
1.9
2'9
2.0
1.4
1.2
2.3
2.3
1.3
1.7
1.1
1.5
0.5
1.6
2,»
1.6
1.7
Swine Effluent
0,008 84,2
0,013 82,2
0,013 80,3
0,026 78,3
0,020 88,1
0,018 78,3
0,036 101,8
0,009 93,9
0.009 105,7
0,013 107,6
0,034 114,5
0,019 128,4
0.022 126,5
0,012 118,9
0,038 126,5
0,049 145,4
0,035 102.9
0,018 169,0
0,023 156,7
0,027 157,5
0,016 162,2
0,007 157,5
0,021 166,9
0,021 165,0
0,020 183,8
0,017 179,9
0,024 172,3
0,030 212,5
0,008 170,4
0,018 168,5
0,011 167,7
0,027 167,7
0,027 165,7
0,024 178,1
0,022 173,9
0.024 163,6
0,011 167,7
0,017 180.2
0,017 169,8
0*011 184,3
0,018 161,5
0.013 186,4
0,011 205,0
0.011 196,7
0<013 200,9
0,002 191,9
0,038 196,6
0.014 248,1
0,017 196,7
0,012 201.5
0.017 196.7
0,042 206.3
0,049 215,9
0,060 203,9
0.007 201,5
0.014 196,7
0,009 199,1
S2.0 283.0
49,0 242,6
45,5 235.2
4415 213.5
66,5 196.5
86,5 177.6
98,0 350.0
96,0 297.8
57,5 274.7
58,5 204. 8
67,5 267.2
76(2 208.1
60,0 220.9
48,8 231,8
51,2 230.3
58,8 279.7
60(0 277.0
90,0 35(5.7
77,5 269.9
82.5 338,3
90|0 303.2
87,5 319.1
87.5 339,8
113,"1 339,8
95,0 379.3
97,5 405.0
97,5 394.8
95,0 374.2
97,5 379.3
105,0 379.3
105 0 401.2
97.5 433.1
10S;0 428,1
105 0 455.1
105 0 453.0
98,8 424.8
100,0 233.9
105(0 304.7
102,5 364.5
100(0 606*9
96,2 531.7
98(7 553.3
110,0 417.0
97,5 459.4
102(5 488.4
100,7 399.9
107,3 412.1
109,5 313.4
119,1 313.4
105,1 345.3
108,0 320.0
109,0 309.5
117,6 357,6
108,8 355.5
106.2 364.5
104,4 317.4
104(4 322.6
61,4
56,3
51,8
53,4
53,0
50,8
61,6
56,1
56,7
59,4
60,4
63,9
61,2
58,2
63,8
66,8
67,7
82,9
65,8
73,9
71 1
75 0
7l|5
71,3
6515
73,1
70,0
65,7
73 1
74 0
75>
103,9
101,3
108,5
103,3
100,4
98,7
108,0
98,4
93i5
100,6
92,3
94,5
90,5
87,2
117,9
90,9
98,2
99,6
94,8
93,4
91,9
95,2
89,5
90,6
I
81,2
86,6
































15,6
21,3
21,9
22,5
24,4
21,9
18,8
41,3
26,3
21,3
50,0
32,5
31,3
25,4
33,3
56,7
50,6
28,9
32,7
J6i3
41,7
40,4
62,8
42,0
34,0
442,8
408,6
171,2
197,9
81,6
75,5
44,8
47,8
12,8
32,5
5,0
10,7
19,0
3,8
3,0
2.4
2,7
2,6
1,6
3.1




































793,6
744,0
392,0
439,2
240,0
133,3
141,0
110.0
99,6
24,3
55.4
49,2
58.3
62,4
66,9
97.1
51,5
49,2
39,6
43,7
46,0
38,1
50.6





3M

3«.7

2«.B

31J7

44.2
44,2
53.4
48.6
59.2
75.0
145.0
136.0
66.0
118.0
63.7
172.0
208.0
208.0


179.0
64,2



             SJlNE EFFLuENT
ORIH   "NQ3    N3«    NH4    P04    CL    NA   CA    MB
  1,4 150,63   6,70   l.H  0,022 135,2  74,3  297,9  74J7
                                      53

-------
Table 6 (continued).
NUTRIENT, BOD AND COD ODNCENTRATIONS  IN
BLWRS EFFLUENTS EXPRESSED IN 'JPPM.
SW Swine Effluent
ORIGINAL DATA F0*l S'INE BARN EFFLUENT
0
SAMPLE
1
2
3
4
9
6
7
8
9
10
11
12
13
16
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
39
36
37
38
39
40
41
42
43
44
46
47
48
49
90
51
52
93
56
97
60
61
62
63
64
69
66
68
69
70
71
72
73
74
79
76

PH
7.30
7,00
7,49
7,15
7.24
7,10
7.10
7,18
7,20
7.40
7|5o
7,55
7,90
7,80
7,30
7I20
7,40
7.66
7,69
7,27
7,46
7,73
7 79
7l32
7,14
7.20
7,73
7,28
7,31
5.97
7.68
7.52
7.30
7.21
5.95
7.41
7.43
7,45
7.11
7.14
7.50
7,21
7,50
7,55
7,56
7,58
7.66
7 70
7,70
7 65
7 55
7|5e
7,60
7,20
7,40
7,31
7,43
7,60
7,82
7.86
7.32
7.67
7.23
7.13
7,78
7,27
7,22

ORB^I
1.1
1.2
0.1
0,8
1,7
1,8
2.1
0,4
0,6
I,7
2|5
z,*
0,5
10.8
I,7
i|s
2,2
12
i|z
1.0
1,2
OJ7
0.5
1,0
1.0
0.8
4,5
0,1
0.1
0,1
5.6
0,2
0.2
0,7
0.2
0.4
0,2
0,2
0.4
0 ,6
0,6
0.6
0.4
0,2
1,4
2.0
0.7
4|4
4,4
0.1
0,2
02
o|e
z,6
2,1
2,3
«!•
2,8
0,0
0,2
0,4
0,4
0,4
0,9
0,0
Oil
0,0

N03
7,0
8.3
10.9
37.5
41.5
39.0
44.5
56.0
83,3
63.9
95.8
104.7
72,4
56.5
50,7
37.3
32,3
35.8
34,5
59.2
52,2
79.9
106,6
142.1
231,9
291.1
192,0
292.0
346.6
297.6
289.1
254.5
336.3
326.1
245.1
274, i
321.?
361.7
259,3
269.0
314.4
212.6
168.7
212. {i
246,9
19fl.<
292. ti
331, C
231, (i
242,1
237. (I
267. !i
279, (I
287. J!
298.1)
294, !i
277.11
259. !i
250,11
245,!i
230.9
241. V
254 .!>
208.7
244.11
292.1!
2A3.
0|4
0,6
*!2
8.6
9,8
8,5
8,9
9,3
15,1
8,0
8.1
7,7
0.7
0.8
0,8
0,8
0,8

NH4
0.0
0,0
o.o
o.o
o.o
0.2
0>2
0.2
o.o
O.2
0.2
0.2
0.1
1.7
1.2
0)5
0.5
0,5
0,5
0.3
0|2
0.2
o|e
o.a
o.o
1.2
1.0
0.2
0*1
0.1
0.1
0.1
Q.3
0*2
0,2
0,2
1.1
0.7
0.2
0.2
0.6
0.8
o.o
0.2
0.2
0.2
0.2
03
Ol*
o.i
0.4
o.i
o.o
o!s
0.2
0.5
0.2
0.2
0,4
0.0
0.4
0>6
fl.8
0.5
0.2
0.2
o.o

P04
0,014
0,017
0,020
0,019
0,018
0,010
0.000
0,005
0,029
0.018
0,052
0,022
0,017
0,015
0,002
0,005
0,030
0,020
0,020
0,020
0,020
0,040
0,050
0,010
0,030
0,010
0,013
0.003
0,003
0,1)17
0.009
0.009
0.064
0.024
0.018
0.014
0.020
0.010
0.038
0.038
0,016
0,021
0.027

0,007
0,002
0.010
0,015
0,015
0.020
0,019
0,032
0.023
0,066
0,028
0,020
0,010
0,015
0,072
0.063
0.029
0,010
0,016
0.024
O.OOP
0,028
0,1114

CL
7,4
8,3
32,7
84,5
72,2
83,3
596,2
144,4
144,4
157,3
161,0
157,3
114,2
119,8
161,0
131,1
131,1
134,8
132,6
134,8
104,8
125,4
147,9
149,8
149.8
132,9
147,9
149,8
149,8
146,0
144,2
147,9
142,3
142.3
142.3
144,4
144,4
149,2
146,3
152,0
157,8
157,8
146,4
126,4
144,4
110,2
129,2
99.1
99,1
105,7
110,7
122,6
125,3
129,2
129,2
133,1
115,5
119,4
122,3
107,7
109,6
111.6
113,5
97,9
117,4
121,4
125,3

NA CA
5,2 96.9
6,9 96|6
5,5 58.5
7,5 57.7
8,2 69.3
10,4 69,9
11,5 83.2
13,2 88.3
22,1 89.0
28,2 90.0
3C.1 90,5
34,4 95.5
38 2 110.0
42,2 132.4
41,5 156.2
4l|5 182.7
43 8 171.3
45 5 194,8
48,5 162,8
56,0 238.6
49,'o 178.6
58 0 191,8
75,0 185.1
84 0 273.3
99 0 351.9
103,0 304.1
93,0 414.6
96,0 394.5
96,0 415.3
101,0 421.8
101,0 424.3
103,0 446.7
98,4 494.4
101,0 442.4
102,0 49C.2
98,0 471.2
100,0 465.9
95.0 445.0
96,4 430.5
91,0 363.9
107,0 5.43.8
97,0 459.8
95,8 477.4
80,0 413.5
97,5 308.2
71,2 296.2
SO 6 331.4
65 0 261.3
65 0 261.3
67 2 298,2
65 0 340.4
75,6 380.7
71 9 351.5
6lj9 393.7
61,9 415.1
73.1 382.0
65,6 331.9
65,6 359,0
68,1 400.4
55,0 331.9
58,1 296.9
60,5 317*8
55,3 315.7
56,2 300'D
96,0 296.8
56,0 3l4.0
58,0 326.1

MQ K
21,2
22,0
39,9
34,1
42,1
42,0
44j2
48,4
48,5
46,1
43,6
49 9
49,0
51,1
51,8
53,8
52,8
57,6
60,3
61,8
52,8
64,6
72,4
79,8
96,9
98,6
98,2
99,6
1D3,7
109,0
109.0
109,4
111.4
110,9
111,3
111,3
111.6
106,0
99,2
93,3
107,5
103,7
105,5
93,7
110,5
97,3
104,8
96 2
96,2
101,9
e«,2
103,9
98,7
98,0
103,0
98,5
80,3
84,5
92,9
73,0
65,1
6816
68,1
69»7
68,9
71,0
75,8

BOD
3,6
3.9
?•?


1,5
1.5
5.0



M
1,5

2,1
2,6
1,7
S«!
2,2

4,0
3.1
3,5
2,4
2,3
2,1
2,5
1.2
2.7
2.5
2.6
1.1
1.4
1.4
1.7
1.6
1.6
1,6
2.1
1.3
1.7
1.4
1.6
1,9
:i,e
2.0
1,8
1,5
1,0
X«2
0,9
0,9
1,0
1.6
1,5
1,8
1,2
i;i
1.4
1*1
1.3
0.6
P. 7
0.6
0,6
0,4
1.1

COD
16.5
22,0
27,5
49,6
45.4
27,8
31.9
56,3
30.6
42,4
i
20>
33,1
15-1
24.6
25.8
25.6
36,7
41,9
41,9
36,7
42.6
47.9
41,1
15.4
39,2
75,3
63.1
43.9
47.4
36.8
41,7
53.7
47.4
33.1
26,7
31.3
45.6
39.5
32.6
47.2
47.6
33.2
29.1
32.5
36.7
35.6
89.5
27.3
12.0
32.0
37.1
37.1
23,6
28,6
28,6
26.1
32.1
45.5
29.9
34.7
34.7
56.8
39.4
19.6
47.6.
44,6
                         54

-------
Table 6 (continued).
NUTRIENT, BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN PPM.
                    SW Swine Effluent
77
78
79
60
81
82
63
64
66
67
91
94
99
96
97
98
99
102
103
104
109
106
107
108
109
110
111
112
us
114
119
116
117
118
J19
120
121
122
123
124
129
126
t27
128
129
130
131
132
133
»34
139
136
137
138
141
142
143
144
AVERAQE
7,27
7,61
7.21
7.00
7.60
7.19
7.14
7,0V
7,82
7,34
7,10
7.04
7.39
7,36
7,22
7,97
6,92
7,31
7.09
7.48
7.49
7.69
7.43
7,19
6,86
6,90
7,35
7,12
7,24
6,92
7,16
7,19
7.24
7,18
7,11
7,18
6,86
7,50
7.39
7,62
7,11
7,25
6,93
6,95
7,3V
7,4V
7,04
7.31
6,98
7,76
7.98
7.61
7,72
7,47
7,22
7,23
7.07
6,90
VALUES F
0,1
0.
1.
1,
1,
1,
0.3
0,1
0,1
0,9
0*0
1,7
0,9
0,6
2,3
0,0
0,0
1,7
1,7
0.9
0.4
0,6
0,4
0,2
1.1
1,3
0,6
0,4
1,1
0,7
0,9
1,1
0,9
1.3
0,0
0,8
1,1
1,9
0,1
0,1
7,8
4,7
1,3
1.9
0,9

l',l
0,5
1,4
0,3
0,9
2.6
0.8
0,6
0,9
0,9
0,5
0,5
231,9
219,6
209.5
220,0
194.5
187.2
241,0
246.7
190,9
262.1
273.1
285.8
999.9
441.2
401.6
449.0
220.7
301.4
277.9
296.2
292.6
182.6
338.2
227.7
188.1
213.4
242.0
106.6
249.8
231,1
242.2
163.1
118.8
245.7
242,4
251.5
279,9
315.9
235.2
250,8
247.6
262.1
268.2
290.1
318,8
246,4
239.1
248,0
224,5
218,2
206,0
S92.7
478.1
478,1
140,2
162.8
299.4
219,5
0,8
0,9
0,9
1,0
1,0
1,1
4,3
1.4
1.5
7,2
?,0
1,6
1.9
1,6
3,4
4,7
4.2
5,9
4,6
5.3
3,fl
6,8
2.3
3,8
3.8
11.4
11,4
2,3
9.9
3.8
6,0
W.I
10*6
19,5
7.0
7.0
0,1
o.i
o.i
7,0
7,0
6.9
16,5
15.2
12,4
13.1
8,6
6,9
5.0
5.0
5,0
5.0
4,5
4,0
4,0
3.4
3.6
3.6
0,1
0,1
0.4
o.i
o.i
o.i
o.i
0.2
Oa
o.o
fl.5
0.3
0*6
Q.6
1.1

0.6
0.5
0.0
O.Q
0.4
0.6
0.4
0.4
0.4
0.6
1.3
0.9
1.3
1.7
1.4
2.C
Q.3
2.2
1.9
0.6
0.3
0.3
1.5
2,0
2,7
2,5
2,6
0.1
2,7
2,0
1,6
0.1
2,7
2.0
1.6
2.8
2.5
2.5
2.0
2.7
2.9
2,8
0,028 129,2
0,025 123,3
O.C20 129,2
0,008 140,9
0,014 148,8
0,006 142,9
0,006 152,7
0,036 154,6
,0,033 152,7
0,031 172,2
0,016 170.7
0,009 188,8
0,013 181,2
0,018 190,7
0,012 198,2
0.032 207.7
O.C38 205,7
0,031 209,6
0,021 197.3
0.021 207,5
0,023 163,1
0,014 168,8
0,016 172,6
0,016 169,7
0,026 170,4
0.005 168,5
0,015 164,6
Q.005 166,5
0,024 151,7
0,024 153,5
3,018 164,8
5,011 171,"
0.009 171,9
0,008 171.9
0*011 178,1
0,013 190.5
0.006 198,8
3,001 215,4
3,008 234.0
0.011 236,1
0,013 240,2
0,011 252,6
0,009 256,8
0,009 248,5
0,009 260,9
0, 007 252,7
0,017 304,2
0,009 238,7
0.02? 225,5
0,012 223,1
0,038 232,7
0.021 225.5
3,042 225,5
3,042 232,7
0,025 215,9
0,028 211,1
0,048 213,5
9,026 223,1
61,0
58,0
59,5
67,0
50,0
• 46,0
57,0
52,0
53,0
55,0
92i5
102,5
95,0
87,5
95,0
105,0
107,5
117,5
112,5
1*0,5
113.1
110 i 6
105tQ
110,6
118,8
107,5
107,5
100,0
105,0
105,0
102,2
100,0
107.5
102,2
105.0
105jO
105,0
112,5
117,5
116,2
113,7
123,7
125,0
1ZC.O
122,5
123,5
125 0
122,0
125 7
123 5
125,0
125.0
122,0
121,3
lie, e
126,4
122,7
126,4
305.8 75,2
301.2 70,3
295.4 69,0
328.2 81»6
342.7 43,4
388.1 67,6
441,1 90,6
438.3 86,7
377.8 79,3
400*5 87,9
402*8 93,6
388.4 98,5
448.8 93,1
455.4 99,6
519.6 104,3
494.7 112,9
437.3 104,3
368.8 91,9
367.8 88,0
387.5 92.4
412.2 86,2
399.3 88,3
434.3 89,0
413.4 87,8
444.9 113,3
401.2 71,4
426.6 76,0
418.9 93,8
398.3 71|6
418.9 68,8
40C-0 63,5
43^.1 100,2
433.1 102|0
443.2 103,3
456.8 101,7
475.7 103,9
321.0 117,9
200.2 104,6
480.5 95,8
722.0 127,5
644.1 107,5
603.3 90,9
689.8 88,7
636.1 77.4
613.8 87 0
611.2 81,4
432.4 107,7
347.4 bl 5
326.6 79,5
309.5 73 6
318.7 71,8
335.2 76.5
385.4 68,8
33J.2 92,4
306,9 69,7
273,8 65,5
314. V 68,0
321.3 69,0
































48,8
34,4
36,3
4858
50,0
63,8
75,0
75,6
93,5
97,5
107,5
78,8
llOjO
112^5
101j7
101,3
114,8
113,6
113^4
123;9
121,6
129,5
127,8
126,7
129,5
132)8
1,4
1,6
0,9
0,8
1,2
1,2
1,4
1,4
2,2
2,7
2,8
1,7
1,2
2,1
1,8
1,9
1,9
1,5
1,3
i.7














2,5
1,8
,
1,4
0,7
0,5
1,5
1.7
1,3
1,3
0,2
0,1
0,6

0\6
0,3
1,2
1 . 0
7.9





29,8
24,8
39,2
34,1
28,8
28,5
37,6
40,0
39,8
24.3
36.6
39,3
38.9
38.7
47,8
42.8
46,8
44,3
34.7
48.6
96.0
38.1
46,0







34,7



31,7
74,7
68.8
59,0
v
43,7
64,2
50,0
63 1
34JO
47)2
51,9
53|9
44 2
53*9
38.8
19 0
37 9
44.8





3*1 SJlNE EFFLUENT
ORQ1 NQ3
i
,1 226,74

N32
7,37
NH4
0,71 0
P04 CL NA CA MS K
.012 161
,3 81,9 J49
,0 82
,9 119,7



                          55

-------
Table 6 (continued).
NUTRIENT, BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED TN PPM.
OftlQHAL DATA
rjR
NE Dairy Effluent
DAIRY EFFLUENT
SAMPLE PH OR31l N03 N02 NH« P04 CL NA CA HQ K 800
i! Si I'i1 "is i:l 8: §:*« &$ *!*»*:» 5''9 *•«
: , '•! S- 5 i 1:1 »K K W 1'»:5 itf :
11 Illllllil 1
: :S 'i;5 ". : ! i S:!8 8:? W SW 55;? '? :
: ; } '! : ::J 5:58 5:5 3;! JSS:? a:: J:
11 740 05 24 33 0 9 0 024 7,8 47 133,6 32,2 16.6
i : i ::; ::s ws w tf aw S;t s;s
« ,'tl l'\ I'l «;S « • • i' ' • " «'•' 2" .!•!
is i; ,:i ; ; J:? ws ::: % |||:| B:| . ;
5J 5:S 5:5 8:S 5:5 i:l 5:58 , : : : : :
K !•!"; J-5 !!:S !:! i:! !;!" 15:5 »:• "5:5 «;? :
; ;;s ,5 1 : s:i ::ss 3:! ::: K:t S:: :
PH sij >>i ill lii !ig i;i $ Si s;; :
is 11 ;1 ii: s!? i:S Sit si: Sii ai: §
| ig |!S jii : i its i:S sii 2|i 8i! iSI Si
Ifl6 7 40 05 43 00 13 4 0 003 62,2 U 2 431.5 113,5
iS? I'll 05 26 00 U 8 0 025 54,2 12 2 442.7 113,8 _.J
ill 494 OS 26 00 U 3 0 031 69,5 11,2 4Z9,1 111,2 709.0
JSI 1*84 53 68 g 1 Ifl 3 0 023 67,0 12,5 393.0 97,2
ill 692 50 97 01 S 2 0 029 67,0 12 5 453,9 144,5
[{I 700 05 6,7 33 e 3 0 033 67,0 12t5 407.5 94,3
Hz 6*91 04 46 00 8,3 0,021 68,9 Ilj2 3B4.4 81,3
JJI 7 16 04 11 7 00 1^5 0 039 61,8 12^ 453.9 100,5
IS s'.iS o',4 nil l\l '',; o'.on «,; 1^5 ne.. ,i,4
115 *.74 n.4 4.1 0.1 6.7 0,021 63,2 11,2 352,2 74,6
*A^
116
* A»*
117
lie
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
» « '
$.33
* t
7.18
6.80
7,45
4,89
4,98
7,62
7,58
7,13
7,08
4,96
7,01
7,01
7,56
7,34
4,97
. 7,06
4.86
7.57
7,73
7.52
7.57
?,23
• V
o.
3 2.3
0.3 1.8
0,4 2.0
0,3 5.0
0.2 3.1
0,2 6.9
2,6 11,2
2,4 5,1
1,2 6,1
3,3 7.8
1.9 7.7
3,3 6,5
3,3 6,|
2,0 6.0
2,8 7,!i
3,0 7,:i
1,7 5.9
1,4 5.->
2,8 5,4
3,6 5,2
3,6 9.1
2,4 7,9
3,5 3,7
0,0 6,3
0,0 3,1
0.1 6.3
0,1 5.5
0.1 5,5
1.1 4.6
1,5 3,8
0,1 6,8
0,1 4,9
0,7 6,9
0,2 4,9
0,2 7.9
0.2 7,9
0,0 8,8
0,1 9,3
0,1 8,9
q.i 9,0
0,7 4,5
0,1 13.0
0,1 15,2
1,1 13,3
0,3 19,0
0,1 13.4
0,022
0,024
0,028
0,022
0,020
0,018
0,021
0,024
0,017
0,022
0,017
0,011
0,011
0,013
0,012
0,017
0,017
0,014
0,027
0,032
0,038
0,014
0,035
78,7
78,7
78,7
82,8
84,9
95,3
111,8
113,9
116,0
116,0
101,5
116,0
116,0
116,0
116,1
110,5
117,9
101,7
101,7
109,0
110,8
112,6
103,5
8,0
11,2
11,2
10,0
11,2
11.0
12,0
12,0
13,0
T2,0
14,0
13,0
13,0
13,0
12,8
13 9
93 4
15,2
14,3
16t7
20.4
21,2
19t9
426.
4
338.1
322.9
353.4
335.5
309.8
362.0
345.5
4?9.3
401,3
363,7
1?4,4
154,4
204,2
136,4
287.6
143.5
244,4
282.1
?36.9
271.2
366,4
369.4
98,7
99,0 4,8
88,3 5,0
97J5 5,5 112,0
95,7 6,3 103,0
102,6 6,0 43,3
88,9 6,0 38,7
94,7 6,3 6,8
75 1 6,5 6,1
70,9 6,5 18,7
73 7 6,3 17.7
79,5 7,5
79,5 9,1
88.7 8,0
94,1 7,3
93,5 7,4
9iS,5 7,2
71,9 8,0
97,6 8,6
109,5 9,0
100,6 9,4
115,5 10,3
100,1 10,7
COD
64,6
52,6
49,3
54,6
46,8
465.9
446.7
408,0
4?6.7
243,4
146,7
64,7
79,4
79.4
93.1
127,9
?4.5
142,8
114.1
198,4
272.8
343,0
439,2
249,6
333,7
517.0
575.0
595,2
796,8
1458,0
1632.0
1555.2
2516,4
2008,0
1428,0
1380.0
1444,0
I
71410
1
292 10
297^0

694.0
297,0
297,0
123,0
243,0
97.2
197,0
100,0
194,0
145,0
188.0
259,0
171.0
192,0
83,3
3*0-0
380.0
555.0
473-0
I97./1
                            56

-------
Table 6 (continued).
NUTRIENT, BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN PPM.

141 7.0« 4.4 3.8
142 7,29 3,9 5.6
143 4,72 4,2 1.9
144 S,8« 3,6 9.6
•VESA3E VALUES FfUl D»IPY £F
ORQ^ NQ3 N32 K
2,1 10,53 1,77 4

0
0
0
0
FLyE
H4U
,62

,2 15
.1 16
.1 24
.1 19
NT
?04
0,024
NE
,6
.3
.«
.6

C
61
Dairy Effluent
0
0
0
0

l
.3
.071
.042
,008
.020

NA
11,
107,1
110.8
117,9
125,9

CA
9 292,
19,9
20,7
20.8
22,3

»a
3 60,
321.3
296,7
356.0
331,3

K
6 «,
101,2
95,9
10«,3
102,1


0
llil
11,2
13.9
12,6



14*6





                           57

-------
Table 6 (continued).
NUTRIENT, BOD AND  COD  CONCfi'NTKA'i'lOHS -N
BLWRS EFFLUENTS EXPRESSED IN PPM,
OH1QUW. DATA FJR OAlHY EFFLUENT
*
SAMPLE
29
30
31
32
34
35
48
49
30
32
65
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
66
87
88
95
too
101
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

PH
7.24
J.22
7.94
/I5J
7,3*
7. 98
7,60
j',79
7,80
7.85
7.53
1.02
3,03
7,53
7,63
7,52
7,36
7>
7,49
7*3B
7.76
7,72
7.39
7,22
7,69
7.41
7,36
7,32
7,56
7.71
7,33
7,52
7,71
7,87
7.64
7,77
7,32
7.42
7,04
7.11
7.48
7. 00
7,08
6.82
6.81
4.64
7j21
7,06
7,46
7. IS
7.00
7,86
7,43
7,69
7,17
7,14
7 U
7.48
7,59
7.70
7,19
7.4B
7.. 06
7,86
7.92
7.63
7,64

OR3M1
2.4
1.0
1,9
i!»
0,0
0.2
I.*
1.5
1,0
1.2
0.7
0.2
0,2
0.3
0,4
0,6
0,4
o,«
0,2
02
0.2
1.1
1.&
2.5
2,9
1,"
1.2
1.6
1.6
1.2
2,0
1.8
0.1
U.I
0.2
1,9
1,5
1.7
1.9
3,4
2.2
0.3
0,7
1.6
2.4
2.5
2.2
1.3
2.1
. 2,0
1.6
1,2
1,0
z|4
1.4
0.9
1,3
1.6
1.7
2,0
4,1
2,5
2,2
1.6
1.9
1,4
4,1

NO 3
4.5
4.4
3.3
2.8
3.5
8.1
10,9
13.1
11.3
28.4
6.9
6.4
5.5
1.2
3,9
4.6
4,0
6.4
4.8
5.4
5.0
4,4
3.3
3.1
2.6
2,0
1.9
2,4
2,2
2,4
5,4
2,7
0.7
0.3
1,8
1,4
0,9
1,3
4 ,4
6,4
5,1
2,8
7.1
4.5
2.0
6.4
2.4
1.9
3.4
2.5
4.6
7.6
4.0
7.8
9.2
9,4
10.1
15.1
18,5
15>,2
1(1.6
221.2
17.9
26,1
31.1
63,i
10V.3

N02
0,2
0,1
0.1
0,1
0,0
0.2
0.2
0.1
o.i
o.o
1,1
1,1
0.7
0,6
0.7
0,0
0.0
0.0
0,0
0,0
0,0
0.0
0.0
0.1
0.1
0,1
0,1
0,1
0.2
0,3
0.4
0.7
0,1
0,1
0,1
0.0
0.0
0,0
0,1
O.o
0,0
0,0
0,0
o.o
0,1
0.0
0,0
0,0
. 0.1
o.o
0,1
0,1
0,1
0,1
0,1
0.1
0.1
0.1
0,1
0,1
0,1
0.1
0.2
0<2
0.2
0,2
0,2
NW Dairy Effluent

NH4
0.9
o.o
o.o
0,0
0,0
0,0
o,a
0,0
0,6
0,6
0.1
0.6
0,0
1,1
0,9
0,7
0.6
0,9
0.2
0.4
0,2
o.o
o.o
0,0
0,0
0.0
o«<»
0,0
0,0
o.o
o.o
0,0
0.9
0.6
0.5
0,4
0.7
0,4
0.6
0,6
0,5
1.3
1.1
0.9
0.5
0,8
0.2
0,1
o,J
0.5
0,0
o.o
0,7
0.0
0.»
0.7
0,1
fl.O
5,3
0.2
o.i
0.2
0>7
0,2
0,6
i.J
0.8

P04 CL
0,007 5,6
0,010 5,6
0.000 0,0
O.UOO 0,0
0,000 0,0
0,000 22, &
0,033 3, a
0,049 3,8
0,045 5,7
0,066 5,7
0,012 9,8
0,010 4,9
0,010 4,9
0,1)12 7,8
0,027 5,9
0,021 5,9
0,011 5,9
0,021 5,9
0,016 5,9
0,038 7,8
0,020 7,8
0,023 7,8
O.C28 7,8
0,044 7,6
0,038 7,8
0.030 7.8
0,040 5,9
0,027 7,8
0,056 9, «
0,021 17.6
0,033 19,6
0.054 23,5
0,009 25, 5
0,326 24,5
0,009 15,1
0.014 22,6
0,028 19, 6
0,028 16,9
0,017 3.1
0,026 28,7
0,018 28,7
0,024 28.7
0,000 31,6
O.U18 35,6
0,030 42,4
0,018 47, fe
0,021 45,6
0,022 47,6
0,027 51,6
0,022 58,0
0,018 64,2
0,021 82, H
0,017 93,2
0.017 84,9
0,322 101,5
0,017 107,1'
0,017 101, 1>
0.013 101. 5
0,017 103,5
0,022 95.5
0,019 97.4
0,032 99,2
0<059 90,8
0,312 83,5
0.032 85.3
0.049 105,5
0,05Q 127.1

NA CA
7,5 105.9
4.5 89.1
45 81.6
5,0 87,0
4,5 103,0
9,0 197. 4
5,5 9d,0
7,0 »6,0
9,0 0,0
0,6 127, /
5.0 82,4
9,3 71.4
40 71.4
4,3 73.5
4,0 73.9
3,8 79,0
4,5 79,0
4J3 70.6
3,8 69,9
4,0 69,9
90 82,4
5,5 88,2
5.0 81.1
5,5 81.1
6,0 86. 6
6,0 109, Q
6,0 135.3
6,0 135.0
6.0 122.1
6,3 132,1
7tO 143.6
6,3 126.0
2,5 141.9
3,8 122.7
5,0 123.9
9,4 142.7
8,0 125.0
6,0 141,2
10,0 164 ,1
10,0 131.7
7,2 173.3
7,2 157.4
9,4 160. i
10,0 164.6
8,0 295.1
5,0 1V0.7
9,4 197.8
9,4 21?. 2
10,0 219,4
11,2 205.0
7,0 198,9
9,0 195,7
9,0 220.9
10,0 295.9
10,0 307.1
10,0 302. 1
9.0 135.2
10.5 136.4
10,0 218,3
9tfl 129.2
9,4 198.1
10,9 162.9
13,7 267.2
16,2 167.9
20,5 194.0
25,9 205.4
JO, 4 248.4

HQ
38,8
23,4
23,5
23,8
26,5
56,0
20,6
21,7
0,0
28,4
15,7
13,1
13,9
15,4
14,6
16,6
17,5
I'l4
15,4
15,4
18,3
19,3
20,9
22,1
Z4,8
?4,8
26. *
28,6
26,5
30,1
30,1
31,4
32,6
30,2
31,3
36,6
34,2
31 ,8
33,5
32,4
34,6
33,6
34,6
35,1
54,2
47,2
42,7
49 0
49,5
51,1
56,1
77,7
51,6
53,9
50,4
57,3
36,6
56.9
54,4
56,!'
98,?
98,
-------
           Table  6 (continued).  NUTRIENT, BOD AND COD CONCENTRATIONS  IN
                                   BLWRS  EFFLUENTS  EXPRESSED IN
                                 NW Dairy Effluent
  „.  7iM     i,.  i£.s    5-1    j:$  •;•;• i5<°8:;  il\l  *":« a:?
  141  7,17     (1,8   51.0    0.2    0,'  Utu^  *     44«  ^    66f3   a(i
  1«  7.71     2,2   55.2    0.2    J.»  J.04J M7,i  ^ g  ^s^ ^^
  J8  ;:'•     ':'  li':J    5:1    !S  S:S2a2fl5.9  ^.
AVERAGE VALUES FS^D*«RY EFFLUENT                 CA    M0
                                            59

-------
Table 6 (continued).
NUTRIENT, BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN PPM.
                      Dairy Effluent
ORIOHAL DATA rj« DAIRY EFFLUENT
s
SAMPLE
1
4
10
H
12
IS
14
15
16
17
16.
19
20
21
22
24
25
26
SO
31
34
35
36
37
38
39
40
41
43
44
45
46
47
48
49
90
•1
52
55
61
63
64
65
66
66
69
TO
71
72
73
74
75
76
77
re
79
80
61
63
64
65
86
17
66
• 9
•0

• PH
6,99
6,70
TV. 00
7.35
r.so
7,60
7,59
7.50
7.50
7.30
7.30
7.40
7.90
7.97
7.73
7.40
S.OO
$.01
7.87
8.06
S.04
9,10
7,59
7,69
7,27
7.9B
7,51
7,36
7.16
7,76
7,31
7,36
7,40
7,40
7.42
7.50
7.46
7,49

7I34
7,04
6,93
5,97
ft, 97
7,36
7,73
7.38
7,45
7.81
7,81
7.61
7,02
7,02
7,18
7,14
7,09
4,94
7,44
7,19
»,97
ft, 98
7,01
7,9*
7! 15
7,19
7,52
7.67

OR01I
1,4
2.1

3)o

2,4
3,5
3,0
2,5
3,5
J.7
3,4
1,4
0,8
2,7
3,0
3,4
1.9
1.5
2.9
2.7
2.0
1.9
3,7
3,6
M
4,0
3,3
4,5
«.9
2.1
2.6
2,3
S.2
M

','l
2,4
0,3

4,7
9,0
*.'
s.e

j,V
3,4
4,5
1,'
S.3
3,6
2,4
3,7

1?2
2,9
1.0
3.5
M
20
07
2,5

3J5
3,t


NO 3
60.0
40,5
3.3
3.1
5,2
3.5
8.6
7,8
4.4
3,2
3.2
2.0
3.3
3.1
2.4
3,7
4,9
7. a
5, a
4,3
7,3
7.;s
4, a
4,7
7.6
9.2
10, S
12, «»
11.6
7,1,
7,3
7.7
14,6
8.1
6.r
8.1
11,$
13, r
19.2
,1
,4
.*
,t
.1
.6
.5
.5
7.5
7,4
5,3
5.3
4,4
4.3
2,7 ,
2,7
1.7
2,0
2,3
2.8
3,9
5,4
5.3
5.0
6,6
3.1
0.6


N02
1.1
0,1
0,1
0,0
0,2
0,2
0,3
0,4
0,3
0,3
0,3
0,2
0,3
0,2
0,2
0,2
0,2
0,0
0,3
0.2
0,2
0,3
0,3
0,2
0,3
0,2
0,3
0,3
0,5
0,4
0,4
0,3
0,2
0.2
0,1
0,1
0,1
0,2
0,7
1,7
1,3
1,1
1,6
1.2
0,8
1,0
1.3
1,1
0,1
0,1
0,1
0,0
0,0
0,0
0,0
0,0
0,0
0,1
0 1 *
u • 1
0,0
0,1
0,1
0,1
0,0
0,1
0.1

NH4
.
0.0
0,5
0,4
0,2
0,2
0.3
0.5
0.5
0,6
0,6
1,0
1.0
0,8
0,3
0,7
0.7
0.8
0.6
0,6
0.3
0.3
0.5
°'3

fl|9
1,5
0.9
1.3
1,9
1,7
0,9
0,9
0,9
1,1
1,5
1,1
1,3
0,4
0,6
1,1
1,3
1,1
0.9

oU
0,6
0,7
1,0
0,6
0,4
0,4
1,5

flj4
0,9
0,4
0.4
o!6
0,6
1,0
0,1
1,3
O.J
I,6
2.1

P04
0,027
0,029
0,000
0,240
0,030
0,005
0,010
0,080
0,050
0,020
0,030
0,010
0,010
0,020
0,020
0,030
0,020
0,020
0,018
0,008
0,008
0,009
0.010
0.010
0,010
0,009
0,009
0,009
9,310
0,018
0,029
0,018
0,021
0,018
0,022
0,031
0,030
0,030
0,041
0,005
0,066
0,036
0,007
0,033
0,020
0,025
0,005
0,013
0,016
0,021
0,024
0,018
0,012
0,013
0,028
0,023
0,023
0,026
0,0(9
0,606
0,021
0,009
0,006
0,021
0,028
0,034
0.034

CL
12,0
14,8

7!4
7,4
9,3
9,3
,6
,3
,5
,3
,3
13,1
11,2
14,9
16,7
19,6
16,9
20,5
20,6
18,7
9,4
16.9
16,9
18,7
27,6
30,4
37,1
36,1
45,6
45,6
47,5
47,5
49,4
47,5
45,6
47,5
53,4
55,5
47,0
37,2
45,0
37,2
41,1
36,7
39,2
45,0
43,1
41,1
45,0
42,0
43,1
45,0
45,0
41,1
39,2
37,2
37,2
35,2
47,0
43,1
54,8
54,8
70,5
72,4
73,5
7«.3

NA CA
4,0 66.0
4,5 M,0
5,0 89,2
5,2 92,0
9,5 67,5
9,4 92,9
9,0 95,6
9,0 96,0
4,9 98.4
4,6 99,9
«,4 123,7
4,0 144,9
4, 103.0
4, 125,9
4t 194,4
4, 169,2
4, 144,9
9,0 144,6
9,5 1«,9
9,4 110,0
9,2 131,8
4,5 146,0
6,0 163,6
6,0 226,4
6,8 178,2
6.4 226.4
8,6 212,7
8,0 242,6
7,0 204,3
19,0 187,8
8,0 202.8
10,0 167,2
10,5 167,2
10.0 189,9
Ilj5 176,5
88 178,2
9,0 142.7
9,4 141,9
7,5 140,8
9,3 179,2
13,1 1*3,7
8 1 166,3
8,7 1J6.1
7.9 170,3
8,1 160,6
7,3 149,0
8,5 150,7
7,0 141,7
7,5 139,2
7,0 134,2
7,7 124,9
8,8 121,2
9,0 123,4
9,7 157,6
10,7 112,0
12,5 131,3
10,7 115.4
11,0 113,6
12,3 131,6
13.7 166,6
18.0 143,2
13,5 155,1
13 5 196,9
14,5 168,0
19,5 145,1
17 0 1>8,3
15.'0 162.0

NO
32,0
31,8
30,8
33,5
36,0
35,5
37,5
36,6
38,9
39,5
41,6
42,7
45,4
49,2
49,3
49,8
50,8
51,2
49,9
51,9
52,9
43,8
55,2
59,2
61,4
59,2
60,3
66,0
51,6
47 3
49 2
40 2
40,5
45 6
39 6
42 3
41,4
4.3,2
45 5
36 1
32 5
34 9
32 2
34,0
31 ,'9
30,1
34,1
32,3
31,2
32,0
28,0
27,0
27,8
33,7
30,4
32,0
30,1
32,9
30,9
34 1
32,6
36,0
34,2
40,4
40,2
40 5
41.9

K BOO
' i

1.0

1,0
1,0
1,0
1,0
1,0
1,0
1,0
2,5
4,9
68,4
7,1
6.6
11.1
11.7
12,3
15,5
22,4
4,1
19,0
21,4
24,7
25,3
21,7
23,5
11,5
12.1
10,9
12,7
16,0
7,2
8.4
10,1
6,3
7,8
3.1
2.5
3.9
9,5
4.0
4.9
1.2
1,8
2.5
2.5
3,5
4,9
4,1
4,3
9,6
5,5
6,4
5,6
6,4
3,6
jl

i!
5,
13,
J:
6.

COO
77.0
77,0
63.6
59.6
72J8
66,2
53,0
85.5
85,5
80,1
70,8
78.8
90.4
65,1
95,8
101.6
117,1
122.4
136.8
147,3
143,0
93.2
136,2
154,2
127,8
137,2
144,1
112,3
100,0
96.4
63.2
83,2
76,7
78.0
73.2
81. 6
78.2
73,2
62,0
61,5
61.9
76,6

54>
50.6
54.8
64,5
66,6
58.6
64.0
53,9
66,6
44,6
54,6
64,5
68.6
63.4
48,0
52,3
5o|o
49.6
59,8
77,8
57,6
89,3
79.9
                           60

-------
Table 6 (continued).
NUTRIENT BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN PPM.
SE Dairy Effluent
91
92
93
94
•5
96
97
96
99
103
10*
105
106
107
108
109
110
111'
112
113
114
115'
116
117
116
119
120
121
122
123
124
125
126
127
126
129
130
131
132
133
134
135
136
137
138
141
1*2
143
144
AVERAGE
7, or
6,98
6>
6,94
r.09
7.10
7,23
7,71
6,86
6,97
7,68
7 55
7.22
7,32
7,02
6>
6,68
6.64
6.67
7,03
6,55
6.66
6,54
7.04
6,84
7,12
7.10
6.62
6.93
7.1«
7.41
6,9!>
7.00
6.7«
7,01
7.61
7,41
6.92
7.1»
6,87
7 79
7 69
7 61
7 50
7.21
7.26
7.35
6 75
6.74
VALUES r
3,«
3,0
30
« 5
53

*,*
55
s,«
0,9
4,8
3,9
»,9
2,6
2,6
2,8
3,0
3,2
3,3
3,3
3,5
2,0
3,1
3,5
2,8
1,4
2,7
2,5
3,6
90
0»
55
5,1
1,1
51
I,9
1,7
I,6
25
*\*
C|f -.— - ,
6.3
6,9
5J5
7.5
6,2
10.2
8.5
5.3
2.4
0,5
4.6
6,7
1,4
1.6
1,7
5,0
6.2
6.0
4,5
6,6
6,7
2.4
1,6
4,4
2,6
2.4
2,9
5,9
9,0
2.6
9,3
5.1
6,4
6,4
7.2
12.2
9.5
17.4
21.0
13,9
19.3
25.0
124.6
82.6
105.2
38,9
83,1
73,3
70.1
0,2
0,1
o!?
0,1
0.1
0,1
0,1
0,1
0,1
0,1
0,1
0,2
o.o
o.o
0,0
0,2
0.1
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,1
0,0
0,1
0,1
0,1
0,1
0,0
0,1
0,1
0,1
0,1
0,1
0,1
01
o!i
0,1
« 1
0,2
0,2
02
0.3
0.2
0.3
0,3
0,3
1.2
1,2
lj3
1,'
18
1.7
2.1
2,1
2,1
2.9
1.6
2,1
2,2
3,0
2,8
2,3
2,1
3«1
2.8
1.1
3,4
3,4
3,6
3,9
4,0
3.3
3,3
4,i
3.3
3,3
2,5
3,8
3,S
3,9
4,1
3,0
3,7
3,2
3,6
35
2,8
3,6
3.6
3.6
4,2
3,3
4,1
4,4
4,2
0,027
0,009
0,009
0,003
0,028
0,023
0,032
0,023
0,043
-0,015
0,027
0.016
0,017
0,031
0,031
0,008
0,023
0,036
0,024
0,027
0,053
0,036
0,027
0,028
0,029
0,024
0,027
0,030
0,028
0,024
0,022
0,017
0,021!
0,024
0,024
0,024
0,027
0,043
0,012
0,017
0,027
0,017
0,056
0,063
0,042
0,078
0,000
0,028
0,042
72.5
66,7
76,3
70,8
74,6
71,7
76,5'
73,6
83,1
73,2
72,6
74,5
77 3
79 2
77 8
86,1
86,1
91,9
91,9
98,0
84,3
90,1
99,3
97,3
101,5
97,3
103,5
103,5
107,6
116,0
118,0
128,4
14&.0
153.2
155,3
151,2
144,2
132,9
153,5
159,8
163,4
178,0
239,7
190,7
214,3
219,7
228,8
253,9
365,9
3*1 DMRY EFFLUENT
ORQS NQ3
3
,0 11,86

N32
0.48
KH4
1,70 0
»04 Cl NA
,025 70
,8 20,
CA
2 172,
17T9 1*9,8
22,5 150,9
21 2 158,2
22,5 132,2
21,0 138,4
17.5 138,0
19,0 155.1
22,5 1*2,6
17,5 151,8
20 0 153,9
25 0 146,5
29JO 167,3
21,2 172.0
2lt2 172,7
23 1 164,7
31J2 170,4
29*7 102,0
25,0 177,6
23,1 210,1
27,5 169,3
29,7 216,1
27,5 195,2
29,0 219.4
29,7 233.9
31,2 530,3
31,2 207,4
31,2 238.7
32,0 208.2
34,5 160,1
37,0 217.2
39,5 267,6
39,5 267,6
46,7 3J.3,*
47,0 195.3
46,5 158,8
46,5 153,2
44,5 156,9
46J6 215.7
44*9 172,8
46,8 309,9
5l|l 216,9
54J4 238L,1
74!9 266,3
61J8 2*4,4
64 2 256,4
64 4 259,1
6BI4 265,8
66,9 263,1
73,7 279,4

Ma K
4 46^6 »,
3913
44 1
41 7
39 9
39 8
39 6
45,7
53,2
*1,9
44,3
37 9
43,6
49,7
46,9
45 7
40 2
45,7
53,6
41,1
40,*
38,4
39,9
97,7
57,0
57,1
93,8
99,4
68,6
71,8
61,1
97,0
57,0
?7 ,t
61,7
65,2
62,7
69,2
68 8
64 5
66 6
63,6
65,5
83,3
65 2
69 4
67,4
70 6
72 1
77,4


4






















18,5
10,4
10,3
11,0
10,3
10,6
10,8
10,8
10,7
11,9
11,3
14.0
10,8
10,3
11,2
9,4
11,0
9,0
9,2
11,1
9,7
10,3
10,4
11,6
11,3
12,0



67 92,4
6,8 64.3
61 78.4
6,5 96.4
5,6 82,6
5,6 67.8
6,6 81.3
7,6 71.4
8,4 e».»
2,5 11»,0
72 92.3
119.2
123,6
143. •
1440
127.0
111.0
147.0

122.0
i
12*0

17J.O
I
1W.O
1*7.0
J9?0
/ OfJQ

ftl
IOC.O
tWM-
f+5.6
i6e.e
*«.fc
'!'•£
I1JL7













                           61

-------
Table 6 (continued).
NUTRIENT BOD AND COD CONCENTRATIONS IN
BLWRS EFFLUENTS EXPRESSED IN PPM.
                   SW Dairy Effluent
9R1QIMAU UATA r;
T
SAMPLE
• i
4
10
11
12
13
14
15
16
17
16
19
20
21
22
24
23
26
30
31
34
35
36
37
38
19
j 7
40
41
43
44
45
46
47
43
49
50
51
52
61
63
64
65
66
63
69
70
71
72
73
74
75
76
77
78
79
60
81
62
3J
64
85
66
67
6B
89
90
91

PH
7,00
5.80
7,30
7,5b
7,38
7.63
3.05
7,70
7.9!>
7,40
7,41.
7,40
7.92
3.11
7,9J>
7,43
7,82
3,02
3,20
3,1V
3.30
7.95
7.90
7.3S
7.36
* r9
* , • '
7,7V
7.41
7,?e
7,82
7.46
7.4i>
7,50
7,55
7.50
7.52
7.62
7.62
7,51
7.D5
7.U2
7. CO
7.88
3.18
7,95
7,2(1
7.42
7,13
7.P2
7.7B
7,'J6
7.U2
7.?6
7,13
7.CV
4.90
7,61
7.0«
7, ft*
7.«3
7.12
7.7/
7,33
7,27
7,2*
7,13
7,fl7

IR JAIRY EFFLUENT

ORB .11
1.
1.
1.
2.
5.
2.
?.
1.
3.
'i.
2.
2.
J.
1.
1.
j.
?.
2.
'.
2.
1.
1.
2.
2.
3.
I
* .
3.
2.
4.
2.
2.
?.
2.
?.
2.
T
•J •
3.
?.
2.
•>.
7.
4,
7.
2.
1.
?.
4.
?.
1.
4.
2.
3.
1.
1.
2.
1,
4.
2.
1:
2.
1.
0.
',
J.
4.
2.
4
5
R
7
1
0
2
3
C
7
5
7
C
5
9
4
5
7
2
2
9
2
9
0
2
4
T
1
2
3
3
2
3
6
1
6
7
5
7
B
n
9
7
3
3
2
&
7
1
3
3
6
s
0
4
G
4
6
9
2
0
9
4
9
1
0
3
a

f'G3
48.4
28.5
2.2
2..
7.
4.1
1C. 5
24.2
16.8
11.1
8.2
5.7
6.4
5.4
4.2
?,5
2.9
4.2
5,0
3.4
6.5
4.5
3.0
3.1
5.5
6. 7
9.6
11.1
18.6
39.0
20.3
20.3
25.2
20.5
19.8
17.0
15.8
75.6
11,4
9.5
10.2
fl.5
6.
4.2
b.l
6.7
4.6
5.0
4.4
5.5
6.
u.,,29
•j.i,23
U.,26
u,o32
u, j27
U'j4j
J.u5f;
J.'j2l
U.«l"
0. jZl
O.J3V
O.U-'4
1) , o -5 1
U«u27

CL
14.8
14,8
6.5
5.6
7.4
7.5
7,9
13.1
11.2
9.7
9.3
9.3
9.4
8.4
9,4
11.2
9.4
11.2
9.4
11.?
5.6
5.6
7.5
7.5
9.4
1 A 1
A V . *
18.0
22.8
38.0
55.1
58.9
65.6
45,6
60.8
68.4
62.7
66.5
72.4
86.1
78.3
78.3
62.6
62.6
858.7
51.4
52.8
1-1.9
58.7
66.6
60.7
5?. H
59.7
52. B '
35.2
45. j
48.9
50.9
611.7
6,j.i>
60.7
66.6
7(1.5
74.4
78.4
75.4
77.3
77.3

NA
4,3
4.5
5,0
5,u
5.0
5.5
4.8
4.5
4,2
3,8
3.7
4.4
4,2
4,2
4.3
4.1
4.1
3,3
4.4
4.2
4,2
4.7
4,3
4.2
4.5
4 1
^ t *•
6.1
5,5
5.u
5.5
7.0
6.3
5.5
Id. 5
8(J
8,1
P,5
11,2
10.6
•l.u
10.6
8,5
9-.
1 \J
7.5
7.2
',2
0,6
3. J
ia. j
7.2
7.2
8. "5
9,0
8,3
9.7
IS. 5
l?.o
14. J
16..1
17. „
18,.:
11.5
21.5
22. «
*7.5
25,1,
28.7
*
CA
77.0
Bo .0
88.0
86.5
»2.5
9;,. 5
9;'.2
9(..B
V3.0
95.5
93. U
123.0
101.6
110. &
123. 9
155.1
13U.8
50.3
85. u
66.2
76.9
101.6
142.2
136.2
2*2.2
17 7
j. f i. . '
IBu .7
165.8
161.0
163.7
1!»7.9
157.1
132.6
144.7
147.2
132.3
138.9
•143.0
174.4
172.7
171.1
143.7
160. 8
133.3
118.8
11^.3
117,7
129.3
133.6
115.4
115.4
114. V
112.0
93.6
114.7
109.3
116. 8
197.3
175.4
174.6
1B3.6
179.2
1B8.V
146. 0
162. B
IBu.l
165.7

1Q
37,0
42,5
41,5
38,0
35,6
36,2
38,3
38,8
38,9
40,8
4?,2
32,2
32,6
34.2
35,6
41,8
41,2
39,3
40,3
41,5
43,5
Z5.8
46,4
46,0
45,3
A*3 b
^ J | V
48,3
43,6
40,6
42,0
38,1
37,1
31,2
33,4
34,5
34.4
33.6
32.7
35,9
35,9
35,9
31.9
31.9
23.7
25,6
26, B
27.4
30.2
32.2
27,7
27,3
28,2
32.2
26,9
32.3
33,0
37,7
40,0
4n,4
44,2
48,0
42,2
44,1
42.5
43,4
4^,1
40.8
HOD


o;s
0.5
0.5
C.5
0.5
0,5
0.5
(3.5
9.5


2.4
4.3
6.1
».6
5.6
3 7
cou
5S..S
54.0
42,4
13.0
46.3
132.4
46.3
56. a
59.2
49.3
51.5
51.5
64.6
53.4
#9.2
58.5
S5.5
Bb.l
94.7
                           62

-------
Table 6 (continued).  NUTRIENT BOD AND COD CONCENTRATIONS IN
                      BLWRS EFFLUENTS EXPRESSED IN PPM.
92
93
94
95
96
97
98
99
103
104
105
106
107
1Q8
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
123
129
130
131
132
133
134
135
136
137
133
141
142
143
144
AyE^A
7,06
5,95
7.01
7.20
7,18
7.11
7,94
i,97
5.93
7,91
7.7<*
7.27
7,24
7,03
5,913
5,96
7.4/
7.06
7.21
5,63
5.7*
5.44
7,0ft
5,92
7.32
7,06
5. 90
i.li
7,33
7,«7
7,29
7.10
5,94
7,19
7,74
7,72
7,19
7.40
5.99
7.63
7.92
7,16
7.10
7.40
7.51
7.18
5.9.J
5.79
GE vALJfc
ORG>1 f'
2.7 20
?.s
3.9
4.9
^.4
1.6
3.1
<:.•'
2.1
3.4
1.7
2.3
3. :
2.6
3.8
3.3
3.1
1.7
1 .1
1.9
7 ,f.
-.9
3.0
3.1
3.6
3.;
'i.c
^.7
?.o
3."
'.3
2.4
1.9
1.3
1.4
?.B
3.6
2.5
1.4
2.5
2.2
3.3
?.4
2.U
w.9
1.9
2.3
1.7
1.6
S F"H i U
03 N
,U2 0
4.1
2.9
3.6
3.1
9.2
6.3
a.
3.
1.6
1.9
4.9
1.4
1.4
1.4
4.5
5e
.5
5.6
3.
6.4
4.8
2 .5
1.5
4 .6
2.5
3.5
4.7
9.2
18.5
7.4
3.4
9.2
10.5
14.6
11.2
11.7
75. 1
44.9
64. J
30.6
61.5
94.8
138.
21 ;i.2
253.8
92.
1*1.0
144.7
14C, .2
A I LJ V C F t"
ft 1 r Y tr "
32 ^
.43 1.
C.4
0.2
0.4 '
0.1
C.I
0.2
U.I
0.1
O,1
U.O
0.1
0.1
3,t)
0, J
0.1
t) • V
a.-.
U.I
0.*'
0,1
0 • *'
J.2
0,2
0,2
O.F
0.0
t.2
1.5
0.1
0.5
0.3
u.Z
C.'
O.?
0.1
0.7
O.T
0.1
0.1
0.1
0.1
0,1
0,1
O.Z
0.1
0,1
u,£
_ T
C . J
Leu
IT- T
:7 u
SW
fl.5
O.9
3,6
'.9
1.3
1.1
1.3
4 5
It3
2O
• '
o.J.
1.3
2.1
1.9
3.0
2.8
7 .3
t , **
1.9
3.0
2.2
2.0
9 B
c . w
2.0
4 4
4 .^
I.4
3.6
1.6
n.o
D.O
2.0
1.7
2.7
2.3
3.0
2.0
3.5
2.*
2.6
2.0
1.7
1.7
2.3
2.2
5 A
• °
2.8
2.U
2,7
2.8
t S
j » °
'04 - .
Dairy Effluent
(1,0 9 79.2 3b,, 158.2
O.J 3 79.2 32.5 163.7
J.U 3 83.1 JO, 5 141,2
C.ull 85.9 3c.>; 1.49. a
n.jlS 89.7 2C. J 155.1
U.D26 90.6 22,5 16-3.9
U.U29 89,7 23,0 1*3.9
u u 4 94.4 23. j 17.'.1
U f 0 ^ * •
;, < 47 87.3
U • w * ' w'»
O.j47 67.3
J.ul4 83.0
I1.U14 83.9
1,028 39,6
U.J41 87,3
O.u23 93.8
U,i;23 86.3
j..33 93. a
u..,31 97.6
•j.122 39.9
U.U30 89.9
j.,,27 101.5
:j.i)78 101.5
0,u3a 101,5
5.^24 101.5
0,o27 103.5
g,u2B 1Q3.5
O.u30 107,7
Q.J28 122.2
U.J22 126,4
l. .1,24 142.9
O.J22 161.5
U.i22 163.6
Q.J24 176.11
0,^22 19U.5
0.017 200.9
O.jlJ! 19Q.9
0,019 192.8
U.&12 219.1
(. ,J27 178.0
C.117 221.6
1,.U35 254.3
U.u"4 259.7
. 056 26*> . 1
I))o5£. 292,4
U.jl4 267. U
0,u28 265,1
O.u42 303.9
O.jl4 337.6

31, J 197.6
31. J 137.6
31.2 171.2
33,7 185.6
35.7 187.2
31,2 182.3
35. j 1S9.3
3o.2 183.3
3.5,7 213.1
29.7 181.3
36,3 2Uj.2
37,5 212.2
36,2 IbC.'"
39.3 209.1
4u,L 217,0
4u.u 221.8
42,5 202.6
4C,. 185.9
41, C 113.9
44, 'j 339.3
47.8 207.2
51.0 288.5
34,3 3(M.i
57. „ 291.4
54,. 195.3
63,. 136.9
63,5 200.3
39,1 182.7
5H.1 182.7
7t,,l 1V4.U
63.2 224.7
71.9 294.5
89.2 256.4
92,8 312. d
97,6 -332.7
109. 5 384.4
104,8 360.4
99,4 311.4
1(17.2 319.8
113.1 337.1

n NA CA ^l«
.J25 91.1 26.3 l6d
43,1
47,3
44,3
42,8
43,2
47,9
46,3
43,6
43.1
43,1
43.4
46,7
46,7
45,9
3H.1
40,0
41,0
40,6
57.4
54,7
40,0
49,13
49.4
51.5
40,0
49.2
48,5
61,5
55.5
57,3
59.5
60, 0
55.3
61,3
62.2
62,2
62,2
7C.9
71.5
75.5
t>2.2
81,1
86,8
37.3
36,1
81,7
b3,3
90,2

H



'
8,8
8.5
8.0
9.4
8.8
9.0
9,3
9.3
9.5
10,0
10.0
11.3
10.3
9,2
-10,1
9.2
8.5
7.2
B.7
9.2
8.7
8,7
8.7
8.5
9.0
9,9



.
5,0
6,1
1 ,*
7.0
ii.3


22,7
22.7
6,3
6.3
2.4
1.9
2.9
3.9
4.3
4,4
1.6
1.7
1,0
3.0
,5
1.3
1.6
1.6





133.0
154,0
137,0 •
176.0
I
02.9
99.2
94.2
104.0
148.0
123.0
93*. 4
102.0
77.7
S3. 9
80.0
B/.4
72.9
70.8
80.0
73.5
64.2
78.4
63.1
38.0
61.6
66.7
54.3


.4 45,3 9.7
                            63

-------
                 Table  7.  AMOUNTS  OF NUTRIENTS APPLIED IN WASTES
                            TO THE BLWRS  EXPRESSED IN GRAMS.
                                  Swine Waste
SWINE  3ARNS,
                       Nt-4
                                   NA
                                  0.9
                                                 CA
                                                       M(i
                                                                    BOD
                                                                            CUD
      KS :
       is: j
          ;
          ':



    si

    88
    s
            i
               10,54
               83,3?
       i   '•
       5 ffi:
2194 5
            :
            ISM
            ga:
           13:5
           IK:?
           »?:
      i::J
         :
       S:  1
         1
       !
          5
1 !:?



J ; !
55 S
:i:ii

 13,02
             2403  4




                 :
-sis

 74^1



 g S
J'.K:5
llili

 9^.4
             3;

             2704.1

            ;
          :
                       S :
  sill

  34.64
  Sit
    •  509.4 24V,3
    .  775.0 379,0
501,1  581,2 Z«4,3
751,3  1515.2 494,1
530,7  647.9 34/,9
£40,3  926,1 S03.9
380,5  628,8 334,0
                                         JM.O
                                              '

                                                448.1
 ,i   !

  B83,8
  i:  i




                                       !
                        S
                                              9/.S
        s

        25.2  13B.<
                                  ail!

                                       4876, t
                                       2968,0
                                     i  2438,0
                                1335,0  27^4,11
                                1264,5  2344,0
                                1636,2  2912, B
1366,3
1321,3

1220.0
     i
1230,0
1116,4
10S6.7
 924,9
1043,7
1280,4
1160,2
1115,9
1018,0
1497,0
1489,9
1445,0
1222,0
1211,9
  877,5
  787,5
  793,4
1002,9
  885,0
  915,0
  872,0
  887,0
  730,4
 1014,9
  829,,0
  888,9
1800, 0
l'30,(l
1940,"
 943,7
1276,M
1383,2
1276,8
2128,0
1915,11
2158, M
2158, H
2940, U
3497,11
3050, «
1609, v
3042, »
2437,2
2129, V
2038,4
2336, W
2182, U
1686,4
2352, U
2244, 8
1440, 0
1618,4
1880,0
1200, «
2128,4
 2091,6
 1749,6
 1920, U
                                             14BOJ9
                                             10B9.5
                                             IV*?.4
                                            :
     ,       ,
 1255,5  1974,1)
 1225,4  IBdfl.U
 1D»1,Z  2402,4
 1270,8  21B2,*'
 1165 ,,7  1960,0
  941,2  1968,0
 1374,,3  1944,0
 1344,3  1645,6
 1463,6  2868,0
 1598,4  4617,6
 1479,0  3369,6
 1615,6  3914,4
 1277,8  2610,4
 1247,9  2598.4
 1436,3  3?73,6
 1181.9  2624,4
         2784, U
         24/5, i.
         2668,1)
                                             1
                                             143213  1419,0
                      fiS:J
                                                    1,509,5
                                                     407,4
                                                            J642.U
                                                            3162,0
                                              64

-------
    Table  7,(continued).
AMOUNTS OF NUTRIENTS APPLIED IN WASTES
TO THE BLWRS EXPRESSED  IN GRAMS.

112
113
11*
115
116
117
118
119
120
121
122
123
124
125
126
127
128
12»
130
131
132
133
134
135
136
137
141
142

1920,6
1607,4
1414,0
109V, 7
1B50.6
1350,6
1365,6
1117,4
1272,7
664,2
1650,4
44V, 9
616,8
550,3
844,2
945,2
988,3
774,9
1317,3
1088,7
963,9
935,1
1234,6
903,3
911,9
395,1
731,6
967,7

35', Ti
25,77
17,43
S.52
13,4?
13,33
12,4?
14,08
11*59
3,63
13,93
3,11
4,16
4,17
7,03
»,33
',64
7,34
1J.66
2*43
2,94
2,62
3,82
3.31
i.25
7.20
4,97
19,30

1801,0
1121,2
1227,7
6S6.U
1620.2
1412.1
15S2.7
4S6.5
956.8
622.4
1546.3
356.0
435.1
437.8
706,7
833.4
717.0
658.6
1124,0
696,8
87fl,2
829.9
10^9.8
2B5.0
799,3
346.3
668.2
838,9

58.95
36,76
33.55
29,75
35.72
22.27
23.78
37.34
84,22
33,25
B5.55
19.31
9,76
20,46
25,10
26,75
18,43
5.59
40.39
15.50
18.91
15,49
25,95
17.42
18.16
8,23
13.50
16.66
Swine
8»7.7
581,2
815.6
581,6
9*0,3
635.0
756.6
687.9
1105.1
357,2
894.6
214,3
291.1
317.5
396.8
476.2
546.2
427.5
858.0
361.6
447,8
36b,7
409.9
273.6
282,4
134,4
264.8
376,6
Waste
472.2
427,7
487, n
337,3
<80.6
349,5
358,7
350.2
565,8
195,5
521,2
142,6
160,2
18Q.9
?27,2
282,8
305,6
219,8
308,8
182.1
231,2
211,3
269,4
181,2
177,0
82,5
164,1
224,4
642,8
485,9
545.6
443,6
607,4
396,*
423.0
426,5
767,1
258,8
524.4
157,6
142, i
228.5
271,5
248,2
264,7
144,6
277,2
196,2
191,9
155,8
200,1
157.3
173,7
77,2
163,7
209,7
i37,l
171,1
19/,4
14B.4
201,7
141,0
150,1
160.5
337,8
89, b
19B.4
62,8
5/.B
66,6
Tl,->
77,0
126,9
85,2
126.8
54.1
66,0
5B.1
70 ,6
4B.O
56,3
27,1
61,8
84, »
1011,8
803,0
10*9,7
719,5
1045,5
735,9
744,0
757,3
1244,8
467,6
10V4.6
2bQ,5
342,9
367,9
479,8
5V2,4
507,7
441,5
646,0
343,4
472,4
464,6
561,0
439,9
44D,4
195,1
378,4
490,6







11.14,0
805,0
1223,0
0,0

I
668,0
653,0
775,0
550,0
2B7.0
482,0
471,0
471,0
554,0
554,0
627,0
612,0




3904.0





0,0
2976, U
2952,0
2263,0
I
1846^0
2173,0
2600,0
2916,0
2235.0
1888,0
2360.0
1862,0
1679,0
2156,0
1944,0
1142,0
1422,0
l5«3,0


SUMS MOM  SWINE 3ARMS, E
 TOTAL AMOUNT OF NUTRIENTS IN
TOTAL 3"GM
2,096773*003
TOTAL C.I
8,397243*004
TOTAL NOS
3,116044*003
TOTAL N*
4,431158*004
TOTAL NH4
1,732981*005
TOTAL CA
4,399374*004
TOTAL PP4
7,519224*003
TOTAL Ml.
.1,634692*004
TOTAL K
2,604420*004
                                   65

-------
Table 7.(continued).
AMOUNTS OF NUTRIENTS APPLIED IN WASTES
TO THE BLWRS EXPRESSED IN GRAMS.
                        Dairy Waste
DAIRY
SAMPLE
15
16
17
19
20
21
22
23
24
26
27
28
29
30
33
34
35
37
38
39
+7
48
49
51
77
78
79
81
83
85
87
89
91
93
95
97
99
101
103
105
106
107
109
109
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
3ARNS, '
OHliN
1049,0
1034,9
41,4
398,6
457,2
286,9
423,7
302,4
458,9
670,6
647,9
970,9
577,0
709,0
269,6
1143,8
862,7
319,4
445,6
363,6
39V, 9
886,1
652,9
488,1
1230,4
1724,1
2173,4
2091,6
2353,9
1211,2
1531,5
1513,5
1547,7
2488,0
2703,8
2423,5
3542,2
1245,1
3123,1
2133,6
1290,1
2806,4
3665,5
1457,1
1327.4
3283.7
175V, Q
2133,4
155V, 7
1791,7
586,3
1780,4
1088,0
263.5,0
982,5
2468,1
659,1
653,9
896,6
HO* t9
1343,4
173V, 5
1383,8
1963.4
1051,6
1264,1
1146,7
1576.7
SA-^LE J
NiOS
15", 17
13,93
1,16
i,9S
3,47
4.2J
4,34
5,67
4,97
22.91
19,01
24,39
24,13
19,95
3,37
24,60
33,82
3,85
11,55
3,79
S.99
11,70
3,34
7,02
34.45
53.15
29,81
39,49
32.10
15'. 33
53, 1«
25^10
53,87
77.52
211.22
114,01
13,93
J.94
51,8?
24,63
11,21
*3.9<
175.5:
13,5:
92.4!.
153. (,•'
55'. 0'
251.7')
12.8.!
13,2)
4.6>
19.95
23.2}
?9.6?
11. 5J
2 5', 3 7
5'. 34
4.97
3.65
ID. 42
11, 9^
14.45
13.23
9.30
5.2J
4.62
4.70
3.77
NM
4B8.3
779.4
34.4
324,2
365,2
328.5
331.0
237.5
369.6
705.5
613.9
711,8
558,4
541,5
195,2
«45.2
1024.0
208,2
294.5
2U1.3
283.5
495.1
428.2
127.1
870.6
373.8
837.5
964.8
854,6
395.2
1178.0
1362.3
1492.3
1987.7
2302.3
2379,7
3198.4
1067.8
2657.3
1782.1
3095.0
2335.4
48H0.9
1285.5
1095.6
2712.9
1600.8
19B9.7
1 3ul. 6
1630.6
344.9
1331.8
411.3
1292.5
862.2
21b8 ,6
642.3
653.7
571.8
10&1.6
1216.9
3H4.1
1197.6
17?4.6
897.3
1142.8
944.0
1259.4
P34
170.75
186.24
5,71
49,45
51.92
21.39
35,10
37,48
38.50
129.69
130.72
108.72
114.32
59.34
20.25
173.02
197.14
65.14
68,94
63.35
72.90
164.43
98,27
73.26
286.59
377.11
443,73
577,61
502.31
257.93
301.49
217.57
172.85
199.20
123.45
166, 83
193.69
64,92
98.34
65.25
33,39
100.37
201.32
66.25
71.84
178,41
102.5^
118,33
62.36
111.37
26.38
65.42
48.60
141.52
34.39
111.41
32.96
73.20
?4.4«
34,34
47,41
51,31
42,20
65.00
?9 , 66
?5.5Q
42.12

CL
784,3
797.2
32,7
294.8
396,2
299,5
399,3
231,1
365.7
570,5
427,9
570.5
394.2
469,0
160.2
911.6
882.3
535.0
71-S.O
580.5
421.4
713.0
543.0
756,6
555,7
559.7
694.6
889.1
592.7
500.1
740.7
844.0
794.4
1083.2
1730.7
1339.9
2Q01.0
482.7
1356.7
671,6
468,6
1067.1
1979.8
665.3
707,0
1663,5
880.2
1004.6
754.0
1Q71.5
2C6.2
82-3,4
846.1
1286,1
480,9
1Q4/.4
28^.7
436.5
3«i.O
476.2
571.5
66V, 3
523,8
933.0
466,0
63/,3
463,6
663,3
NA
449,8
425,8
15,5
145,7
184.0
176.4
257,2
201 ,1
308,3
371,8
320.0
414,4
320,0
286,1
95,1
509,5
370,2
137,1
152,4
91,4
162.0
288,9
168.2
154.6
499,7
608,7
040,3
923.6
784.3
446.3
635,9
370,0
302.8
424,0
564,4
539.2
779,5
230.1
667.1
427.4
251.0
533,4
1117,6
307.2
297,5
669.2
402.4
459,6
322,7
393,2
82.6
350.2
350.2
552,4
?05.0
473,3
125,3
150,3
162.5
203,1
243,8
305,6
234.6
301.6
182.6
22H.3
215.5
302.9
CA
38Q, 7
416,6
16,1
140,5
184,0
146,4
195,3
142,6
194,2
322,6
275,5
.455,4
3Z0.5
274,1
103,6
585,2
524,4
233.3
311.1
246,3
238,7
468,5
325,8
285,7
536,0
683,2
654 , u
962,4
967,2
519.5
846,9
609,5
64fl,6
640,6
729,3
681,4
695,6
291.3
740.0
496, B
296.1
624.2
1329.1
396.0
458.7
827,4
483. J
553.2
394,6
533,4
112.0
464,5
474,9
761,9
226,9
349,6
181.6
199,2
198,6
206,9
266,8
445,0
216,7
439,5
229,1
249,1
221,4
423,4
MB
134,8
166,6
/,s
55,7
73,4
56,7
79,2
59,9
80,6
139, y
98,9
96,8
9B.4
74,6
26.2
24V,>
239.6
110.8
147,7
104,6
89,3
16/.2
9Z.O
84,5
1B0.6
223.0
277.1
306,9
297,4
169,3
*64,1
314,0
294,3
352,5
329,0
299,3
J7B.5
114.0
310,$
19*. Z
103,6
*51,6
S53.5
124.7
13V. Z
Z8V.O
17Z.1
186. V
121,8
18/.4
39.6
17/.0
1AB.7
287,6
77.0
17V. 3
59,6
53,9
5V. 6
7V. 7
96,6
134,7
100,1
153,3
81,6
10*. 1
9*. V
131,6
K







































20 75", 9
11/1,1
2907, Q
5699,5
1901,1
1433,,4
33V7.2
19V8.1
2217,8
1965,1
2U00.6
4*9,3
18*8,2
18*8,2
3112,1
1203,4
*V
1420 ',0
1420, U
1550,0

1469,6
1382, *
1170,4
2553,6
3Q85.8
3136,0
4509, U
3576,8
2840,4
2524,8
1976, U
1768, Z
1802,3
2088, V
3025,1
3702,4
3962,7
3657,6
3769.6
4761,6
4704. U
5568, U
4324, U
4166,4
2721,6
2726, U
3696,0
*842. 0
3499,2
4397,6
4660,0
5622.4
5952.0
6336. U
9236,0
93.56,0


























                         66

-------
         Table 7  (continued).  AMOUNTS  OF NUTRIENTS APPLIED IN WASTES
                                   TO THE  BLWRS EXPRESSED IN GRAMS.
                                      Dairy Waste
 135  125V,7    S.,62 1036,1  40.66  480,1  243,4.  304.3  BV.Q 1488,3
 136  1677.7    3,0» 1323.8  60.51  695.8  318,9  430,0  139.6 2023,6
 137  1222.2    9,3*  923.5  36.37  500,9  241,2  315,1  84,3 l**6,9


SUMS  F*on  DAIRY JARNS.  u

 TOTAL  AHOUNT Of NUTRIENTS  IN SMPLE
          TOTAL
        9.B44920»00«

         TOTAL CU
        5,022228*00*
   TOTAL  NQ3
2.020073*003

 TOTAL NA
2,527587*00*
   TOTAL NH4
7,550990*004


 TOTAL CA
3,0921)79*004
   TOTAL P0«
8,444084*003

 TOTAL *<«
1,132919*004
      TOTAL K
5,937711*00*
                                             67

-------
     Table 8.   AMOUNTS  OF NUTRIENTS IN THE  EFFLUENTS
                 FROM BLWRS EXPRESSED IN GRAMS.
                        NE  Swine  Effluents
3ARNS. CA(.:i'L»rFD D*TA
A
S»1PLE
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
40
41
44
4*
47
4!
49
50
51
52
66
69
70
71
72
73
74
74
77
79
89
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

0RGN
53.9
7.1
6.6
3.7
2.7
1.7
l».9
1.3
1.5
1.0
3.4
3.5
2.4
3.4
0.5
ft. 6
0.3
9.0
0.0
n.n
o.c
o.c
0.6
1.1
f .1
r.2
C.7
0.1
P. 5
0.4
0.5
5.5
1.0
G.P
P. 4
1.1
0.3
3.5
0.6
1.3
5.1
?.l
0.3
0.4
0.7
0.2
0.9
0.2
5.3
ltQt
1.31
0.8
2.3
1.9
0.4
n.7
6.4
1.7
I.0
2.5
3.7
4.5
2.3
O.fl
0.5
1.6

N35
?5?.7
2*.J
9.4
3.4
4.1
0.'
1.0
1.1
2.6
1.7
«.7
I?.)
15«.?
3M.3
5/2.2
3 J.'i . 5
1)5.3
0.2
"-. ^
1.2
l.t
r.7
245.?
» if . 7
'16.7
127.4
it-.*
25.3
127.3
15?. 1
?2f .4
!>?.<
17P.«
3P.7
55.?
?17.4
>f .?
»*.'
34.?
1 31 . :
?."
25.7
5.'. 5
56.1
77.3
2C.1
S4.7
25.1
23. *
?3?.4
455 . i
1)1.7
331.'
i 57,1
5 >!? . 4
'31.7
i 7«. 3
'SI1.?
«7.'
nj.s
HP. 7
1>7.«
U7.5
3?. 5
29.5
Sri.S

N02
0.2
0.1
0.1
0.1
O.J
0.0
O.i)
0.0
O.J
3.3
0.3
0.3
0.7
2.4
5.J
2.4
0.9
3.0
0.0
a.c
0.0
o.u
l.C
i.s
1.5
1.1
0.5
0.4
2.1
1.9
1.9
1.1
1.9
1.1
l.C
1.9
0.9
l.C
0.9
1.3
0.1
C.9
1.4
2.8
0.4
0.2
• 0.4
0.1
0.1
2.4
4.0
0.9
4.9
3.4
17.3
?1.6
^7.4
39.7
6.9
14.1
16.6
16.8
17.8
4.1
3.9
7.8

MH4
1.7
1.7
1.3
0.0
u.2
0.2
0.2
0.1
u.i
O.U
0.7
0.3
1.0
0.2
1.4
1.7
0.4
0.0
0.3
0.0
0.0
0.0
1.7
1.3
1.3
0.5
0.1
0.2
1.1
1.3
5.6
4.1
ifl.c
19.8
11.6
33.8
15.1
19.3
15. S
23.7
1.1
3.0
4.6
'.J
11.7
6.1
•1.7
3.'J
2.5
57.7
77.. J
21'. 7
11'). 4
54.5
1b<>.4
I3r.^
<5!.7
l!>4.7
41.1
1 0 7 . U
14r..«!
3J2.4
12'. 3
3--.U
29.4
5>..0

P04
Sl-l^O
3.000
0.017
0. 036
0.007
0.0*3
O.U35
0.034
C.OiO
a. 013
0.043
0.07!8
3. 0*5
3.0?1
0.133
3.033
0.018
C.0"0
O.UCO
O.OCC
O.UCO
c.oco
0.013
* 233
c!oC4
O.Of'2
c.aci
O.CCO
0.003
C.C(.'9
C.019
0.013
c.o5ft
0.010
0.034
O.OuO
c.ooo
0.005
C.049
5.038
G.001
O.OU3
O.C10
C.U07
C.016
o.one
O.C?2
0.013
0.006
C.l"0
0.176
0.010
0.114
0.0*2
C.Q'.B
e.or?
C.G76
c.on
0.011
fl.0?4
0.0C3
C.OP8
0.0'j7
O.OT3
0.008
O.OJ8

Cl
194.5
26.9
19.0
11.3
35.1
33.1
32.4
24.6
53.2
35.3
106.3
221.7
418.4
436.2
486.0
297.6
103.1
U.I
0.4
1.0
0,8
C.5
287.8
217.4
191.6
111.0
37.4
Z9.5
139.9
175.7
385.9
234.7
235.2
153.4
73.4
291.0
128.6
149.7
134.6
162.8
4.0
28.5
36.9
61.6
84.0
38-. 7
75.6
29.?
33.3
334.8
555.3
154.?
695.4
26C.1
50ft. °
•>87.P
58?. 3
?34.?
65.?
357.7
?27.«
?0fc.8
18?. 0
54.4
49.7
94.0

NA
116.3
15.7
11.4
8.1
12.5
12.9
13.2
12.1
24.9
11.6
23.4
40.2
62.o
61.4
1?2.5
137.3
51.0
0.1
0.2
0.6
0.5
0.3
133. C
125 . 1
105. *9
61.5
23.1
18.5
83.3
118.5
205. 2
109.9
112.9
81.9
40.2
154,6
68.4
83.2
75.4
100.2
2.0
14.2
18.3
30.8
40 .9
19.4
37.3
14.9
16.0
in. 3
304.0
79.1
33C.a
125.9
335.7
233.9
372.8
136.4
35.9
93.7
141.8
l?e.9
108.1
33.1
29.6
50.8

CA
1173.?
229.0
137.7
125.7
110.5
134.0
136.5
67.5
143.?
74.6
164.3
258.5
7i«,7
731.5
1033. B
8ti5.t
306.1
C.3
C.B
1.9
1.6
l.C
49?. S
39?. o
3£7.4
174.6
61.1
54.4
264.?
426.3
619.6
444.4
351.4
?45-5
128.7
56n. j
241.7
221.9
197. J
255.5
6.2
56.3
65. a
11'. 3
151.3
7'. 6
13?.?
51.0
54 .4
(S4>1.<>
•55.<.1
261.7
115t.R
591 .(•
143", ft
78r.7
1?35.3
470. 7
8«.*
?5i.r
381.5
33?. 9
?84.i
8*.l
73.3
14J.4

HG
526.3
95.4
75.?
45.5
53.?
48.7
51.4
34.7
71.4
38.4
88.?
117.3
165.1
?12.5
274.?
163.1
64.9
0.1
0.?
0.5
0.?
0.3
160.?
134. T
110.7
62.?
2?. 5
15, P
84.8
136.9
181.3
110.?
38.7
67.9
34.7
139.5
60.7
65.9
55.0
86.6
1.6
11.7
15.3
27.3
35.6
16.9
30.9
9.5
14. 9
179.7
247.5
an.?
313.9
121.6
?72."
158.5
267.0
93. IS
24.8
59.3
92. P
7 A.?
66,4
21. It
19.1
35.0
                                                                             COD
                                                                         '    M.B
                                                                             10.6
                                                                             15.3
                                                                      2.4    TO.2
                                                                      J.5    '6.5
                                                                      3.3    33.1
                                                                      6.0    39.5
                                                                      6.6    46.1
                                                                             30.8
                                                                      8.7    43.1
                                                                      8.8    2S.8
                                                                      5.5    25.8
                                                                             '6.6
                                                                             ?6.6
                                                                             ?6.6
                                                                      2.5    31.9
                                                                      O.a    42.6
                                                                      1.6    17.2
                                                                      2.2    31.9
                                                                      3.0    77.1
                                                                      2.5    44.6
                                                                      2.2    06.9
                                                                      1.1    4n.l
                                                                      1.3    47.8
                                                                      2.2    42.1
                                                                      5.8    57.9
                                                                      1.7    52.0
                                                                      2.7    43.4
                                                                      3.7    «3.7
                                                                      4.2    59.6
                                                                      3.3    45.6
                                                                      2.7    *6.2
                                                                      2.3    7(1.7
                                                                      2.3    37.3
                                                                      1.2    49.9
                                                                      2.3    48.8
                                                                      2.9    51.0
                                                                      1.5    61.0
                                                                      3.4    "7.9
                                                                      1.6    50.4
                                                                      1.2    34.9
                                                                      1.0    34.9
                                                                      1.2    '9.7
                                                                      1.0    ?9.4
                                                                      1.0    ?V-.4
                                                                      0.8    ?9.4
                                                                      0.7    14.9
                                                                      0.7    34.7
                                                                      0.9    44.1
                                                                      1.1    53.7
                                                                      2.4    33.6
                                                                      1.4    47.6
                                                                      3.7    61.1
                                                                      2.6    70.0
                                                                      2.4    64.5
                                                                      5.0    19.6
                                                                      6.5   111.8
                                                                      9.0   1?4.8
                                                                      8.1    79.9
                                                                     10.2    04.0
                                                                      "3,2   1P1.6
                                                                      5.0    69.4
                                                                      5.1    68.6
                                                                      6.6    68.9
                                                                      4.3    77.8
                                68

-------
Table 8  (continued).  AMOUNTS  OF NUTRIENTS  IN THE EFFLUENTS
                         FROM BLWRS EXPRESSED  IN GRAMS.
                        NE  Swine Effluents
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

115
117
118
119
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
141
142
SIMS
0.1
3.4
6.2
7.7
5.7
4.0
1.4
9.1
5.5
1.9
1.6
3.1
1.8
5.6
0 .5
0.6
0 .">
o.s
1.3
0.1
0.5
O.B
0.2
0.2
0.0
2.8
1.2
0.1
0.0
0.3
0.0
0.1
0.1
0.2
0.1
0.1
0.1
0.1
0.6
0.1
0.3
0.4
0" A
2K»
11".?
14-'. 7
15-.7
15?. 4
127.4
35.4
15*. 3
35E.?
?9«.J
S3". 4
5?.?
136.4
333.1
? I? . 3
1J7.7
151.5
7)7.7
523.?
44.?
144,9
339.9
346.?
1031.3
521.4
74P.4
955.9
*>}f . *>
27.5
748. 5
5, 5
14". 2
1<4.1
J 94.. '>
39^.5
J5f .2
HP>.4
*41 .9
10214.2
7)1.1
9P ,'
144.=!

2.8
18.5
?3.9
?3.2
?1.7
25.3
5.2
•"7.2
41.2
?7.9
99.5
21.2
146.7
171.9
1'il .1
'1.4
66.3
73.5
151.7
11.0
32. Q
94.Q
98.7
162.4
55.1
^4 .6
7.0
10.4
0.2
2.7
O.G
0.4
0.2
10.3
0.8
12.5
?2.8
12.2
10.1
4.C
1.7
1.6

17,7
14U.5
?75.2
38. a
179.2
126.9
44. H
?9j.2
306.3
283.0
206.9
36. «
?C6.9
259.4
146. -5
143.4
lfl^.3
127. J
?49.9
19.9
49.1
?57.2
155.2
329. <<
16J.9
255. 7
312.1
208.3
8.1
246.1
1.4
59.8
36.3
86.2
86.3
7v;,5
112.1
50.3
68.4
43.4
16.9
27.3

Q.001
0.003
0.110
3.074
o.oco
3.014
O.OC7
0.043
0.021
0.006
3.003
3.004
0 «i)^2
3.0^3
0.036
1.041
0.8'9
3.S143
O.J40
3.003
3.011
a. 048
3.034
3.152
0.033
0.050
O.C44
O.C47
Q.Ul'2
Q.U46
Q.OOO
0.01)9
Q.U08
Q.038
Q.011
0.015
0 «0?8
0.0«9
0 .0?6
3.0-1
3.0:8
0.013

41.3
301.3
416.1
492.2
270.5
186.7
61.3
384.7
426.3
454.9
328.0
52.9
393.3
363.2
202.4
191.6
133.6
164.2
346. ft
37.6
118.4
451.6
397.7
726.4
444.3
624.6
775.5
585.7
26.5
812.1
6.7
212.0
130.3
406.1
453.9
430.9
783.3
•566.1
466.6
296.0
125.9
199.6

?1.4
154.3
21Z.6
276.0
176.4
125.9
37.1
213.2
245.5
259.9
193.1
31.4
172.7
273.7
125.2
135.1
92.6
132.0
2T3.3
22.0
59.9
224.7
197.6
356.5
211.9
349.0
377.1
299.2
13.5
•»u5.7
3.1
1H9.9
65.6
202.2
239.6
233.0
423.5
20G.3
261. "2
166.1
74.2
114.1

6C.6
433.7
614. o
711.9
433.1
201.0
63. u
414.0
615.6
673.4
529.4
84.4
529.6
546.9
37a,9
345,1
255.1
325.3
653. 8
71.7
227.6
760.8
296.5
777.0
623.7
1047.2
1723.9
111S.2
29.5
312 .i
9.7
307,3
233.:
"24 .a
536.0
571.3
1037. *
495.3
671.. 3
423.5
2465.7
439.4

15.0
110.8
156.2
162.5
101.1
73.8
21.4
121.0
135.8
141.1
104.2
18.1
01. 2
124.5
58.2
66.8
40.0
45.1
91.4
13.8
39.9
139.9
114.0
205.0
110.7
185.7
19(1.1
141.9
6.7
2S8.0
1.5
46.9
27.?
96.3
134.2
ion.«
183.3
84.3
11B.6
74.9
34.4
52.6




















30.4
89.5
388.6
318.8
613.5
298.0
436.1
495.7
377.1
16.3
498.7
3.7
136.7
82.2
236.8
285.3
260.1
4R5.7
222.0
310.1
£07.5
94.6
144.9

5.1
5.9
5.7
5.5
3.5
3.9
5.2
3.1













4.2
2.1
3.8
0.4
6.3
97.3
44.3
15.7
b.5
4.3
5.4
5.3
7.7
3.3
2.7
2.6
1.3
7.8




76.5
85.7
112.3
111.8
90.4
113.2
M.3
136.9
1*4.4
99.9
105. 8





107.3

163.6
133.9

96.3
132.8
113.1
111.7
179.8
256.8
160.0
116.6
97.2
84.9
1?3.8
73.5
64 .2
68.6
58.3
?8.5
47.4
59.7

58.5
56.5

   TOTAL 3R^      TOTAL M03       TOTAL N02      TOTAL NH .        TOTAL P04
 2.07621'UCO?   2.5^4613*004    2.218C81»003    9.391276*003    3.454815*600

  TOTAL :.l       TOTAL NA       TOTAL CA        TOTAL MG          TOTAL K
 2.7'5829:>-:04   1.452056*904    5.978896*004    1.268C90»004    6.516212*003
                              69

-------
        Table 8 (continued).
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
                             NW  Swine Effluents
SWINE 3*RNS,  CAi:UL»TED D*TA
B
SAMPLE
8
9
10
11
12
13
14
15
1«
17
18
19
20
21
22
23
24
30
31
32
33
34
39
36
J7
38
J9
40
41
42
43
44
46
47
48
49
90
91
92
• 9
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
89
86
87
88
89
90
91
92
93
94
99

ONGN
78,6
11,8
7,2
9,8
6,8
4t7
2,4
6,9
2,0
It5
1,8
2,1
9,0
66,9
31,9
2»S
0,7
10,6
1,«
0,7
0,4
0,5
0,2
0,8
2,4
9,0
2,0
1,9
2.1
0(6
2,3
2,2
1,8
ll*
1,2
0,6
0,6
1,3
0,8
0,6
1,3
9,5
B,6
2,1
2,0
0,7
0,9
0,8
17, i
11,4
32,4
U,2
10,3
9,6
4,8
4,4
2,4
7,8
2,1
0,9
0,3
2,9
0,4
0,1
0,1
0,4

N
5*.
3,
2,
2.
4.
1,
5.
2,
2.
2,
4,
«,
5i.
110,
UP.
no.
2,
57.
50.
56,
52.
7.
5,
I*.
23.
15B,
151,
232,
15*.
310.
U5.
137.
«»,
58,
".
54.
«o.
52.
»2,
2,
4.
5B.
»B,
20.
53,
13.
21,
9.
»,
5»,
134,
50,
«i,
53.
59,
111.
221,
111,
20,
1.
C,
ID,
0,
0.
0,
0,

33 H02
9 2.7
3 0.1
5 0.3
» 0.0
0 0.1
8 o.Q
7 1.1
4 0.2
» 0.1
» 0.0
2 0.0
3 0.1
2 1.0
4 0.4
' t.,o
2 0.2
* 0.0
< 0.2
5 0.1
2 0.2
» 1.1
J 0.6
5 0.0
) 0.1
) 0.1
' 0.2
» 0,1
r 0.2
J 0.2
» 1.1
• 0.5
' 0.4
I 0,2
' 1.9
' 0.2
) 0.2
9 0.1
| 0.9
' 0.1
0.1
» 0,1
) 0.6
I 0.2
» 0.1
! 0.3
' 0,1
0.1
) 0.0
1.1
10.4
8.6
6,1
2.1
2,2
0.6
1.0
0.0
0.4
0,1
0.0
0.0
0.1
0.0
0,0
0.0
0.0

NH4
196.6
32.8
28.5
19.0
16.1
8.8
25,2
12.4
17.6
7.5
13.8
20.0
26.5
26,2
26.4
14.2
4.5
10,7
«.7
5.9
3.4
0.7
0.9
2.3
4,1
24.0
27.0
2«,8
10,0
46,7
15,8
13.1
7.2
5,7
9.3
4.5
*,2
4.0
7.1
1.1
2,2
9.4
8.1
5.3
5.8
2.5
2.6
2,4
18.0
13.0
34.?
27,9
IB, 7
10.1
19.9
30.3
7,?
38,4
16.1
6,7
2,6
19,5
5.0
1.3
1,4
8,7

: P04
1.077
0.161
0,190
0,079
0.014
0.027
0.058
0.027
0,085
0,008
0,031
0,041
0,081
0.07Q
O.U68
0,039
0,009
0.021
0,024
fr,002
0,007
0.002
0,000
o.cao
0,004
0.016
0.022
0.024
0,028
0,030
0,021
0,061
0,033
0,027
o.ooo
0,001
0.001
0,022
0.032
o.ooo
0.006
0.011
0,018
0,007
0,013
0,005
0.005
0,004
0.072
0.047
0.048
0.035
0.016
0.003
0,013
0.005
0,002
0,024
0,015
0,007
O.U04
0,015
0,002
0,001
0.001
O.V04

CL
247.8
29.6
14,7
55,5
64,7
15.0
48,8
25,6
31,7
19,9
46.4
72,8
203,3
230.1
292.3
186.5
60,1
175.1
152.0
102,3
61,1
19,0
15.2
44,1
64.2
254,5
239,9
242,4
166,3
403,6
150,5
156.6
99.5
55,6
123,0
69.5
79,9
61.3
101.3
13,4
28.4
114.2
136.0
60.6
105,1
46,5
57,4
44,3
426.3
282,2
546,0
295.8
230.9
158,6
201.3
288,7
74.7
307,9
96.4
44.9
23.2
99.3
24,4
6,5
6,9
28.3

HA
140,1
30.1
18,1
11,5
8,4
7.4
16,8
7,5
9,0
4,0
8,1
11.7
15.5
13.5
12.3
7,4
2.3
63,9
58.8
42,8
24.4
8.1
6.7
19,2
26,7
13fl,5
123,1
123,2
84,0
209,4
74.9
84,0
50,2
30,4
65.2
34,7
43,0
34.8
50.6
5. a
12,4
50.2
61,1
27.9
46,4
21.1
24.9
20,2
196,6
120,8
272, B
194,6
135,2
102,3
123,4
163,4
39,4
182,8
56,9
27.8
11.*
62.7
15,1
4.0
4.2
14,4

CA
J595,3
"709,3
422,1
299,3
184,9
1/7,9
3B3,3
IBS, 5
241,9
1«40
208,6
2/7J5
367,5
314,9
316,5
1/8,2
60I9
4/5,9
242,3
129,7
»1 '
60,2
67,8
1*3,7
166,1
596,9
492,7
626,7
493,5
7/3,4
2/74
383,6
1/7,9
145.4
2B5.2
194,4
193,1
114 6
145,5
28,3
49,0
210,6
294,5
111,6
162,9
Bftjs
101,9
/9,0
926,2
691,7
1320,4
723,2
444,6
395.9
507,0
822,6
197,3
6/6,0
1B9.9
96,2
43,6
206,7
90,0
13,4
12,6
90,6

MB K
996,2
196,7
11611
70,2
49,7
90,1
100,8
90,0
63,1
27 3
99 1
/8 9
105,6
B7,7
BB 0
91 8
isja
103.9
91 8
64 1
*»!«
14 0
12jl
46,2
43,8
101,6
145 3
194 6
116,4
263,0
»S 3
94 6
95 7
34 3
71 3
49^
91,6
47 3
95 4
7 «
13 5
98 4
68,7
40,6
93 9
24 0
29)3
23,3
267,0
1B3,7
3/2,1
221,3
148,5
109,4
105,0
1B2,5
•»7,1
190,3
48,4
22j3
10,3
92,2
12,1
3,1
9,4
14.8

BOD
100.0


360,0
438,0
>
268,3
413,9
520,8

566,0
729JO
603,9
518,0
457)9

359,0
282, a
259,0
277,7
735,7
929,1
656,0
B07.5
743.0
64815
535 0
57« 9
449,2
47i)9
328,3
263)5
218,3
199,3
179,2
186,tt
156,5
177,9
146,9
185,5
45 5
34 0
7l)9
60,9
24 1 3
8.2
15 6
42)e
184,4
962,1
721,2
937,0
505,5
723.5
452,8
236,5
311,3
162,9
284,1
429)9
418, a
137,2
228.1
300,7
454, a
269.5

'COD
233.2
360.4
455, a
306.0
408,0
•1.0
397,2
526,4
698.0
739 2
616,0
915.2
638,0
532.0
425.6
319.2
212)8
430.6
315.6
425.6
420, a
631.2
728.0
990,7
822 4
1236)9
819,2
876,9
624.0
873,6
693.6
544.9
249.6
2*8.6
208.0
173J4
193.0
193.8
223,5
4*8,2
199.2
248.0
196.0
196.8
•
98,0
1*8.0
t
64.5
124,0
322.4
735,0
1049,2
1104,0
761,6
1363.0
750.0
545,6
558.6
194,4
3*4,0
376)0
799,0
419, a
416.8
416,5
541.3
388.8
                                    70

-------
   Tab
 If
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
11!
114
115
116
117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 12?
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 142
IP c: f continued)
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
NW Swine Effluents
aid 0 , 9
1,0 2,3
0,6 1,9
1,» 14,5
Oi* 5.2
1,5 36,Q
0,5 3,2
1,1 4,2
0,8 »,J
2,4 I?, 2
2,9 10,9
0,« 1,»
Z,3 10,4
it K 1 <
0,5 1 « l
2,1 7,5
1,1 l.Z
°<* H
1,1 *»3
i,? u,/
2,0 IB,*
0,1 0 „ S
0,3 4.S
0,3 8,5
oj/ I*, «
0,6 2ft, 2
0,4 56,1
S,6 75.2
0,3 3D. a
0,6 36,3
0.? <3.2
1,1 13,'
0 . 1 R , 1
a,? ?ri,3
0,1 «,»
0,0 6,2
145,»
0.6 121.0
oil 23.0
0,0 SI, 4
0.« 443,1
1,0 435,3
0,B 4J7.1
2,1 1,1?.;
• B
TOTAL 3«6M
4,S6639!j«i!02
TJT»L S.!
1,219259*004
0>9
0.0
0.0
4.1
0.2
9.3
0.6
0.1
0.3
0.2
0.5
0.0
0,5
On
* u
0.1
0.1
0,1
0.6
7.5
7.5
0,3
1.9
0,9
1.9
1.7
1.9
•» K K
16 ',5
14,0
IS. 2
2.0
0.7
7.5
2,1
0.2
9.9
5.5
0.8
1.1
4.0
4.8
3.9
2.6

0,2 Q.OOO
11.9 0.011
12.0 0.005
40.1 0.032
10,4 fl.005
28,6 0.010
7.9 0.002
12,6 0.005
13,0 0.005
55,6 0,002
31,8 0.006
7.4 0.004
35.5 0.009
7.2 n.U03
27,8
16.4
9.0
32.3
36.7
42,0
2.6
8.1
12.9
31.2
24.7
27.3
65.5
44.0
79,5
43,7
9.9
4.4
35,8
14,6
3.0
75.3
61.7
11.2
23.5
99,7
78,0
62.2
50.6

0,012
0,008
0,004
0.017
0,025
0.009
o.ooo
o.ooi
0.002
0,005
0,006
0.005
0,007
0,006
0.011
0,004
0,001
o.ooo
0,003
0,003
0.002
0.017
0.011
0.006
0.007
0,039
0,014
0.041
0,010

TOTAL NOS
6,489148*003
TOTAL NA
5,868156*003

1
2
1.0 0.'
51,1 25,2
47,5 23.8
154,0 77.4
31,4 18,8
64,7 47,2
21,8 12,6
37,7 24,7
36,0 23,2
136,1 87,6
85,7 53,7
19.6 12,2
97,6 60,7
21.4 13,9
73.3
48,7
24.9
78,0
80,1
104,8
4.9
18,7
32,8
68,4
60,3
60.6
13B.1
89,5
150,8
75,0
20,9
11.2
87,9
36,2
8,0
227,9
188,2
33,1
76,1
301.4
249,2
205,9
163,3

45,6
27,0
15,2
49,9
46,3
53,8
3,9
10,6
17,9
37,3
34,6
33,8
79,6
53,3
66,8
42,0
11.7
5,9
47.8
19,9
7,1
112,1
99,3
16,8
39,2
153,4
130,4
106,3
88,2

TOTAL N02
,930192*002
TOTAL CA
,974998*004
14
rt A
146.3 1816,4
,1 U . w
75,4 29,7
06,4 23,6
274,4 75,6
63,3 17,5
47,4 27,5
23,2 11,3
41,9 18,7
72,7 19,1
2/0.2 76,1
172,9 45,8
40,3 13,7
1B4,6 99,1
42,9 10,6
»1,1 " "
93,1
91,5
149,2
148,2
1*6,9
11,6
44,2
•S4
120,0
/1,3
818,3
24A <3
IBS, 3
360,5
164,2
43,9
26,6
186,8
91,2
14,9
405,6
3/8,5
64,4
109,1
408,9
335,8
2V7,0
221,9

a* ,o
22,0
12,7
48,3
40,9
36,8
3,3
10,2
17.8
44,5
53,2
25,0
/3,0
47,1
63,3
28,6
9,2
4,8
48,2
15,3
3,6
122,8
81,6
12,5
29,1
114,7
V3.2
69,4
93,3

TOTAL NH4
2,319940*003
TOTAL MG
7,947147*003
3,0
10,0
16.8
42.1
35,0
32.5
93,7
62.5
96,0
51,0
12.4
4.5
50,2
10,6
i.i
94.4
85.5
15.3
39.7
146,9
12/.4
103,9
91,9

191,2 333,2
133,5 1»7.2
163,4 184.4
140,1 175.7
65,3 113.2
149,3 267,8
81.9 175,0
192,0
452.2
225.4
18,6
14.0
12.8
1J.4
2,9
4,7
13.1
13,4
13.6
19,3
14,2
14.7
10,8
6,4
0,0
16.5
»,4
0,0
4,3

99.t
74.4
113.5
99.2
147.6
172,2
48.8
97.2
172.9
110,0
97.2
«7,4
94.4
75.5
*8.6
59.2
68,6
63.1
38,0
61.6
69.7
9.0

TOTAL. P04
3,278297*000
TOTAL K
1,451686*004
                                            71

-------
       Table  8  (continued).
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
                            SE Swine Effluents
SHINE jARNS,  c*U;Ut*TED
c
SAMPLE
1
2
3
4
5
6
7
8
9
10
11
12
13
16
19
20
21
22
23
24
29
26
27
29
30
31
32
33
34
39
36
37
38
39
40
41
42
43
44
46
47
48
49
90
91
92
93
96
97
60
61
62
63
64
69
66
69
H
72
73
74
79
76
78
79

OHGN
1.4
4,6
Ot3
0,4
i[9
4,6
4,5
2,7
0,6
1,8
0,8
0,8
0,1
0,0
0,0
0,0
0,0
0,1
OiO
4,1
111
It7
0,9
3,7
0,6
oto
0,0
0)0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,1
0,0
0,1
0,1
ojo
0,3
0,1
0,1
0,1
01
0[2
0,0
0,0
0,1
0,1
0,4
0,0
0,1
4,0
0,7
2l4
>:?
0,8
1,0
*|4
1,2
Oi<
0,9
3,6

N33
1.3
5.4
7.5
21,3
9.1
21. 3
<1.2
111,2
1)7. S
»5,3
i?.2
33,5
29,3
0,3
0,1
0,4
o.o
i.$
i.»
2 S3, 9
2)3,3
3)5,3
271, J
515,9
2?e,2
0,3
5.1
1,«
1.'
1,«
0.5
5,7
3.1
2,'
l.i
1.3
25. «
8.1
I*. '
13. «
ID.J
51.0
35.'
SB.'
14,0
32 5
126,2
23,4
7.3
45!, 1
1.9.2
2B. 3
1.7
6.7
179,2
25.3
36.5
51.1
51.3
J8.3
44,5
56.'
26,3
11. »
129.3
74.7

NQ?
0.1
0.2
0.3
1.1
0.1
0.1
2.2
2.5
6.4
8.9
3.7
2.8
1.2
0.0
0.0
0.0
0.3
D.I
D.O
2,1
l.l
9.0
3,0
(5.4
;>.2
'J.6
3.0
D.O
D.O
D.O
D.O
D.O
D.O
D.O
D.O
11,0
11.2
0.1
11.2
11.2
(1.1
(1.9
0.2
..5
.0
.3
.2
1.3
.1
.8
.9
*,0
C.3
c.e
37.7
3.6
V.5
H.3
•',o
11.3
0.5
11.3
II. 1
11,1
:..3
;>.o

NH4
0,1
0.1
0.1
0.3
0.1
0.1
0,3
0.3
0.4
0,2
0.1
0.0
0.1
0.0
0,0
0.0
O.J
0,0
a.u
0.2
0,8
2.0
2,9
5.2
1.9
0.0
0.0
0.0
0.0
0.0
0.0
o,u
0,0
o,u
o.u
0.0
0.2
o.l
0,1
0,2
o.i
0,6
0.2
0.6
n.i
o.l
1.0
0,1
0.0
0,2
0.1
0.2
O.U
0.1
1.6
0.2
0.4
i°:i
0,5
0,7
U,2
0,3
0,0
0,9
0,2

POA
0,015
0,048
0,033
0.0«7
O.U29
0.066
0,033
0,017
0,034
O.U18
0.011
0.004
0,005
0,000
o.ooo
o.uoo
0,000
c.ooi
o.coi
0.105
0.033
0,042
0,035
0,057
0.009
0*000
0,004
o.ooo
o.ooo
0,000
o.ooo
0,000
0,000
o.ooo
o.ooo
0,000
0.004
0.001
0.002
0,005
0.002
0,000
0.002
0.005
0,002
0,003
0.013
0,005
0.001
0,003
o.uoi
0,001
0,000
0.002
0.019
0,009
0,006
0,004
O.UC5
0,016
0,018
0.040
0,003
0,001
0,018
O.U12

Cl
6,8
21, 4
47.3
129,3
50,4
109,3
147.4
230.3
236,5
198,7
96,6
51.6
53.2
0,4
0,5
1,7
0.1
5,2
3.5
589.5
276.7
311,2
253.9
261,7
216.9
0,5
2.5
0.8
1.1
0.9
0.5
2,8
2,0
1.8
0.7
0.7
16.5
4.9
10.0
9.1
7.1
42.0
29.3
40.3
12.8
17.2
H.9
12,4
4.0
27.4
9.3
17,7
1,0
4,2
113.9
19.7
49.2
??:§
71.2
43.0
64,9
24.4
11,3
119.6
73,7

Na
6,8
13,1
16.7
23.2
12,1
21,0
20,9
25.7
22,6
25,2
12, *
8,5
8,9
0,1
0,1
0,5
0,0
1,7
1.6
246,7
135,6
184,5
159,7
222,8
158,1
0,3
1,9
0,6
1,0
0,7
C,4
2,4
1,7
1,3
0,5
0.5
11.3
3,2
6,7
6,8
4,8
25,7
18,7
24, 5
7,»
11,0
44.8
9,1
3.0
18,2
7,0
10,0
0,6
2,3
68,0
11.6
26.5
n\l
37,1
21.3
33,8
13,6
5,9
68,9
41,8

Ca
>7,8
130,2
138,0
21)2,6
07,7
1*6,1
143,4
146,8
133,4
142.2
t>o',a
«<4
33,0
0,4
0,7
2,0
0,2
8,0
7iO
11*2,7
4V4,9
607,5
403,9
811,8
546,7
111
6,6
2,0
3,5
2f5
1,6
9,5
6,7
5,6
27
2!4
30,5
15 7
28,2
27 5
20,8
11B 4
81,0
V0,6
*7 4
i8!6
1/0,6
46,4
12.6
85,0
".7
41,1
2?7
10,8
3,13,4
S6,3
1*9.0
1 J8,7
241,'l
202,1
116,5
167,0
/3,5
30,0
341,0
215,9

Mg K
31,6
»1,4
55,6
79 9
i9,8
'4,2
72,5
»0,1

-------
Table 8 (continued).
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
                    SE Swine Effluents
80
Bl
B2
as
84
B6
B7
91
94
95
96
96
102
103
10*
105
107
108
109
110
111
112
113
11*
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
153
134
135
136
137
138
142
SU1S 0?,
1|6
0,4
0,4
0|2
Ot6
0,2
0.0
o',2
0*2
• 5
o',2
0,8
0,5
1|2
3J4
0,0
0,0
»ii
0,6
0,7
Oil
0,1
0*5
0,4
1,8
0,9
08
0,2
01
0,4
0,6
0|6
0,3
0,2
0,3
0,3
0,1
0,1
0 ,0
0,2
0,1
0,1
0,4
0,0
0,1
Ot9
BtO
U,l
0,0
c
41.5
7,»
6.2
9.6
42,5
17, »
0.6
36,4
11,5
»«.»
58. 1
167. S
I?,*
76.0
560. »
26.9
3,'
lfi|5
48.7
121,1
40.2
7.4
59. >
169,5
167, 2
60,1
51 5
68. i
41.3
1J6.4
1J9.3
339.2
120,4
>9.<
J9.6
55.2
27.4
31.6
*,*
14. »
',3
38,6
24,6
1.5
46.4
66,9
J«l,5
53.3
3,4

0.6
0.1
0.1
0.1
0.4
0.1
0.0
0.4
0.2
2:3
0.5
0.7
0,1
0.*
7.1
0.1
0.0
0.3
0.7
1.6
0.6
0.1
0.5
1.4
1.2
0.5
0.3
0.4
0.6
1.3
2.9
2.6
1.0
2.9
0.7
1,0
0,2
0.7
0.0
0.0
0.0
0.1
0.1
0,0
0.1
0.1
1.5
0.2
0.0

TOTAL ORGN
C

c
9,29353«»001
TOTAL =.l
8,B47l68»Ofl3
0.1
0.0
b.O
0.0
0.1
0,1
0.0
o.i
0,1
OB
o.*
0.6
0,1
I,2
<.6
0.?.
u.l
0.2
0,4
0.8
0.5
0.2
1.1
2.7
2.7'
I.5
0.3
0,1
0,1
0,5
0.3
0.3
0.5
I.8
1.2
0.6
0.5
0.4
0.1
0.2
0,1
0.8
0.2
0.0
0.3
0.3
0.4
0.2
0.1

TOTAL NO 3
0,013
O.onz
0,002
0,004
0,004
0,001
0.000
0,010
0,002
0,018
0,01)4
Q.036
0,002
0,014
0.107
0,002
0,000
0.003
0,007
0.012
0,005
0,003
0,002
0,1)14
0,008
0,009
O.U07
Q.006
0.004
0.010
0,009
0.025
0.013
0,006
0,011
0.005
0,002
0.002
0,001
0,000
0,002
0.005
0.003
o.ooo
0,005
0,008
0,039
0,009
0,000

40.4
9.7
7,6
11.7
37,5
17.4
0,7
32.6
11.6
101.2
37,8
107.9
20.6
96.4
622.5
23,2
3.8
23.7
67,0
127,3
39,3
18,5
44.9
127.2
115.3
55.6
42,6
46.1
30.4
71,1
139,7
268,4
127.8
107.8
101.7
64,6
35.4
39.6
13.0
26,6
10.4
82,6
36.1
1.7
53.7
41,4
171.4
29.0
«,7

22,9
9,6
8,4
11,3
38,3
9,5
0,4
19,2
*,»
48 0
15,5
43,7
11,0
«7,7
326.1
12,9
2.0
16,3
34,6
69,0
22.2
8,3
25,7
79,3
72.2
32,3
27.0
27,2
18,4
42,9
83,3
156,4
77,1
58,5
60,6
34,2
19,0
19,6
6,6
13,9
5,7
36,4
21,9
0,9
29,5
21.9
93,4
15,5
2,5

TOTAL NO 2
9.127602*003
TOTAL NA
4,
513071*003
i, 864907
»002
TOTAL CA
1,804789
*004
110,0
*1|7
17,3
40,3
118,8
45,3
1.8
76,0
18,8
1/6,7
73.7
207,7
42,8
166.0
1337.2
43,4
7!7
48,9
148,3
206,5
B9.9
32,6
100,0
206.4
2/5,7
145,1
110 2
117,8
/8 7
184,6
1*4,8
433,9
2/4,3
334J9
334,9
1»1.9
/2JO
V2,5
41,5
35,3
16157»003
197,9
81,6
7S.5
44,8
47,8
12, »
32,5
5,0
10,7
19 0
3,8
2,4
2,6
1,*
3,1






,
34 U

34.7

4,0 24.8
'.'
4.3 31.7
9.8
20.3 41 8
32,6 44.2
14,1 5,5,4
24.1 48,6
16,5 59,2
7,4 75,0
0,6 145,0
6,5 136,0
2,0 66,0
3.5 118,0
1.8 63,7
18.9 172,0
9,3 208,0
0,2 114,0
8,V 48,7
7,3
34.1
5.7
1.5

TOTAL PO4
1,534400*000
TOTAL K
3,215001*002
439,2
24Q.O
133,3
141.0
110,0
99,6
24.3
55.4
49.2
58 3
*2,«
*M
49,2
39.6
43.7
•8.0
50.6
-i.o
•1.0
"1.0
-1.0
•1.0
*«.!
.1.0
34.7
-1.0
74.8
.1,0
31.7
-1.0
44.2
44.2
53.4
"8.6
59.2
75.0
145.0
136.0
A6.0
118,0
63.7
172,0
208,0
208,0
8.0
-1.0
179 '.0
64.2
-t.O





                          73

-------
         Table  8 (continued).
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
                              SW Swine Effluents
SHINE 3ARNS.  CAi:UL»TED  DATA
0
SAMPLE
1
2
3






10
11
12
13
18
19
23
24
25
26
27
28
29
30
31
32
33
36
37
39
40
42
43
44
46
47
48
49
90
91
92
93
96
97
60
61
62
63
64
65
66
69
70
71
72
73
75
77
78
79
60
61
62
63
64
66
»4

OHGN
1,1
Il9
0,2
3,3
2,6
4.7
9s2
111
1,1
2l7
2,0
1.1
0,4
0,0
0,0
0,0
4.1
0',9
1,1
1|7
3,0
1.7
oja
0,0
0,0
0,0
0.0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
o;.2
0,3
0,0
0,4
3.2
0,0
0.0
0,0
0.0
ojo
0,0
0,1
0.4
0.3
0,0
0.2
0,4
0.4
0,4
0,0
0,0
OfQ
It*
0,6
0,1
0,4
0,0
0,0
0,0
0,3


7
L3
21
as
i2
131
11!!
178
143
97
76
44
51
0
0
c
131
132
*19
233
736
576
322
1
7
1
0
0
2
0
U
8
16
16
8
«0
30
30
9
20
1S7
22
7
12
2
3
4
6
S9
30
32
112
2S6
222
91
78
38
3(1
22?
144
24
44
7
79
JO
48

N33
,2
.3
.3
.1
.«
.0
.5
.3
.*
.9
.'
.5
.5
.1
.9
.1
,7
.3
.9
.*
.7
t f
,i
.3
.7
.9
.7
.9
,3
.9
,s
,»
,4
.2
.»
.2
.3
.1
.7
.«
.4
.1
.«
.«
.2
.1
,7
.3
.7
.3
.9
,2
.2
.9
,3
.3
,3
:5
.5
.3
,9
.9
.3
,1
.'

N02
0.1
0.1
5,8
9,6
1.8
2.5
0.6
e.o
8.7
8.4
5.1
4.2
1.5
0.0
0.0
0.0
0.8
0.4
0,0
0.0
0.0
C.5
2.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.0
0.1
0.1
0.1
0.0
0.1
0.4
0.0
o.o
o.u
0.0
0.1
0.2
0.2
1.3
1.1
1.1
4.0
S.4
0.6
0.3
0.3
0.1
1'3
0.9
0.7
0.1
0.3
0.1
0,4
0.4
0.3

NH4
0.0
0.0
0,0
0.0
0.0
0.5
0.*
0,6
U.O
0.3
0.1
6.1
0.1
0,0
0.0
0,0
Q.6
0,2
1.7
l!"
o.a
2.3
1.7
0.0
0.0
u.o
o.o
0.0
0.0
fl.O
o.o
0.0
0,0
o.i
u.o
0,0
0.3
o.o
0.0
u.o
0.2
u.o
u.o
U.O
o.a
0.0
O.J
o.o
o.o
O.I)
0,0
0,2
0,7
0.7
0,2
0.1
0.0
0.1
a,5
0.1
0,b
0.0
u.o
0,1
O.U
0.1

P04
0,014
0.027
0.039
0,078
0,027
0.026
o.ooo
0,016
0,050
0,028
0.042
0.009
0,012
o.ooo
0.000
o.ooo
0.07Q
0.051
0.133
0,016
O.U'l
0,020
0.0?2
0.000
0,000
0,000
o.ooo
0,000
0,030
o.ooo
0.002
0,001
o.ooi
0.002
0.031
0.189
0.001
0,000
O.UftO
o.uoi
0,011
0.002
O.U91
0.001
0.000
o.uoi
o.ooo
0,000
0,001
0.092
0.008
0.014
0.011
O.U14
0,010
0,009
0,005
8,039
,0
-------
   Table 8  (continued).
            AMOUNTS  OF NUTRIENTS IN THE  EFFLUENTS
            FROM BLWRS EXPRESSED IN GRAMS.  "
95
96
97
102
103
10*
105
106
107
108
109
110
111
112
113
11*
115
116
117
118
120
121
122
123
12*
125
126
127
126
129
130
131
132
133
13*
135
136
137
138
142
1,6 J
1,3
*,1
0,5
li!
If*
S»«
Of 0
0,0
Oil
0*7
It*
Ot2
Oil
0(6
llO
°1«
0,8
•*?
"A
0,5
Ot5
2,9
Ofl
Oil
13,8
V.3
1^-J
0,6
0|2
1,3
Ot2
Il3
4i1
0>'
If1
7i
If
1.
01
        915.7
        243.3
        4S8.3
          8.7
        111.4
        12P.4
        240.)
          SB. 3
          25.?
3.3
5.8
8.*

l-5
0.3
0.1
1.7
2,6
12.9
 3.2
         2J9.J

         4V?
          i'.3
         15B.7
         15C.3
         130.0
         723.*
         247.2
         329.7
         435.0
         316.2
         2J5.1
           SB. 5
          1*1-5
          ZJ0.3
           75. 5
          492.7
          717.)
                           SW  Swine  Effluents
      U.O
B«0.*
817.2
 77.5
 A1,
 S 5
 10  7
  2.7
 18.9
 1C. 9
 11.3
 17-*
 14.6

  w
   r D
      TOTAL
0    1.173051.002

      TOTAL C.|
0    1,771781.00*
                 -
                 !:•»
                 0,033
                 -5
                 '••••"
3  :
   :
   .0
   :
 ,1 :
                                       '•
       is
                          Si?
                         S:l
                         nis
                                  •
                                " S
                                     Si:
                                     sr?
                                      "•''
                                      E3
12 2    1.*

                   .
                  «:"
                  S:S
                  ::
1.6
0.5
a.*
5.8
4.4
5.7
8.3
4.4
4,3
1,3
                   0.006
                   O.U05

                   O.B»
                   fl.U"
                   0.027
 107.5
     :
     :
     •
  i:
  2  •
  206.0
   96.5
                             ,
                              s

                                            23
                                            6Z<0
                           :  :
            ,

             0
            •

                                       .
                                    503 7  27B
                                        J4§1
                                    <  ^^^

                                  711,8 173,3
              0,062  	
              5,074  396.4
              S.072  397.7
              0.013  IOC.5
                 ^
         366 1
         ooo

         V,:!
                                                  K;S
 21,0
 21.5
 2V.1
 24.2
146,0
 70.0
 99.4
164,4
192.0
110.1
 24,0
 40.8
 91.7
 32.2
 27V.4
 250.2
 256.5
 394.0
 362.9
 213.7
 221.4
  60.3
                                                     1.2
                                                     2.1
                                                     I.8
                                                     I,*
                                                     1,*
                                                     1.7
                                                  38,9
                                                  38.7
                                                  47.8
                                                  44.3
                                                  34.7
                                                  48,6
                                                  96.0
                                                  38,1
                                                  46.0
 1.8
I
 1,4
 0,7
 0,5
 1,5
 1,7
 1,3
 1.3
 0,2
 0,1
 0,6
 0,2
 0,6
 0,3
  1,2
  1.0
  7,9
                                                                             34.7
                                                             74; 7
                                                             68.8
                                                             59,0
                                                             •1.0
                                                             43.7
                                                             64.2
                                                             50.0
                                                             63.1
                                                             34,0
                                                             47.2
                                                             51.9
                                                             53,9
                                                              44,2
                                                              53.9
                                                              38,8
                                                              19,0
                                                              37,9
                                                              44,8
                                    TOTAL NH4
                                 #,114457*001

                                  TUTAL VG
                                                          TOTAL P"4
                                                      1,939725*001)

                                                         TOTAL K
                                                      3,393116*004
                                      75

-------
       Table 8  (continued).
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
                           NE Dairy Effluents
DAIRY  3ARNS. CAL:UL»TFD DATA
SAMPLE
30
31
34
35
48
49
50
52
76
77
78
79
80
81
82
S3
84
85
86
87
88
100
101
107
110
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
157
138
141
142
SUMS o-"

. 0

Q
ORGN
0.3
0.4
0.4
0.0
1.8
1.0
1.5
1.9
5.9
0.1
0.1
5.7
10.4
3.2
3.7
6.2
8.2
5.fl
12.3
5.7
1.1
0.0
0.2
0.0
0.0
0.0
0.0
0.2
0.0
0.0
0.1
0.1
0.1
3.0
2.0
1.2
3.4
1.4
1.0
1.5
0.5
1.5
0.4
3.2
1.6
2.1
2.4
3.2
3.2
1.5
1.4
1.5
Q
TOTAL
H03
'' 8^5
18.9
14.3
5P.5
25.5
31.5
27.)
59.7
S.2
30.5
23.5
2*. 5
5.1
10.1
9.5
39.5
7.1
11. »
3.3
O.i
0.1
1.7
0.3
b.3
C.3
0.1
1.?
C.I
0.3
1.1
c.?
5.3
I?.?
4.3
6.3
6.1
5.7
1.9
i.j
1.5
3.J
1.3
10.3
6.5
4 , )
3.5
7.?
9.5
1.5
1.2
2.1

N02 NH4
0.1 O.I'
0.1 C.O
0.0 0.0
0.0 0.0
0.6 0.9
0,3 0,6
1.0 0.7
1.9 2.1
5.4 3.7
0.5 1.3
1.8 2.5
1.8 2.0
1.2 5.3
1.2 0.9
0.1 1.4
1.8 1.3
1.6 3.6 .
0.0 2.1
1.7 11.9
0.9 9.9
S.O 2.3
O.U 1.2
0.0 5.3
0.0 0.0
0.0 0.0
a.o o.a
0.0 0.2
0.0 3.?
O.U 0.1
0.0 0,1
G.C 1.1
0.0 1.7
0.8 3.5
1.7 4.3
0.1 5.7
0.1 5.u
0.7 7.1
0.2 3.6
0.0 2.3
0.1 3.7
0.0 2.3
0.0 *.'•
3. a 1.2
0;i 16.5
3.8 5.0
0.1 0.9
0.0 1U.1
1.0 11.8
0.3 26.1
0.0 "5.9
0.0 5.1
0,0 6.3

F04
0.003
0.018
0.001
o.ono
0.0?9
o.ooo
o.ono
0.011
0.089
U.009
0.030
0.044
0.030
0.024
0.001
0.003
0.011
0.003
0.023
0.021
a. 306
0.002
0.077
o.uoo
o.ooo
o.ooo
0.001
0.011
0.001
0.000
0.005
0.006
0.014
fl.024
0.020
0.018
0.023
U.013
U. 003
0.005
0.003
0.006
0.002
0.031
0.016
o.o?o
O.U?1
0,034
0,919
O.U15
q ,0?.5
0.016

DPGY TOTAL N03
1.206290*002
TOTAL
C.I
2.59662J'GO)
5.629027*002 2
TOTAL NA

6,327?93»002 1
CL
4.5
3.4
3.0
3.4
26.3
17.3
16.3
12.3
54.2
6.8
27.3
32.5
41.6
15.8
15.3
30.7
6?. 3
41.0
99.8
44.5
14.6
5.3
21.8
0.1
0.0
0.1
1.5
4C.4
2.7
1.0
17.4
25.8
73.4
128.8
96.0
119.5
120.1
75.0
33.5
53.9
30.8
60.0
15.6
216.8
112.7
77.1
72.5
97.8
355. 1
45,8
34.8
42.5

TOTAL
KA
2.2
1.4
2.2
2.0
14.1
9.3
e.e
3.6
34,3
4.5
17.0
13.8
14.2
5.6
5.8
8.6
16.9
10.5
18.0
7.0
2.2
0.5
3.0
0.0
0.0
o.o
0.3
4.1
0.4
0.1
2.1
3.4
8.5
13.8
10.1
13.4
12.4
10.3
3.8
6.0
3.4
6.6
2.0
171.8
16.9
10,8
11.1
18.0
29.2
8.U
6.5
7.9

N02 •
,854470*001
TOTAL CA

,199577*004
$5.7
33,9
54.0
49,?
449.7
341,0
251.2
142.1
803,3
107,7
33«,7
347,3
416,7
148,6
190,4
317.4
655,6
411.6
685.6
351,5
96,*
37,9
157,6
0.5
3.3
0.5
8, -5
21S.9
11.5
4.0
74,3
101.9
238.8
416.8
291.1
473.3
415.5
263.3
44,6
71,7
54.2
70.5
40.5
263,9
270,0
213,7
157.3
?39 .4
504,8
103.?
104,4
114,6

15,8
12,4
19,5
14,8
110,2
63,4
70,8
47,8
190,9
29,7
95,0
98,6
105,8
41,2
44,6
74,6
140,5
93.4
170,5
d5,8
27,0
9,9
41.5
0,1
0.1
0,1
1.8
50,7
3,4
1,1
20.5
29,1
79,1
102,4
71,4
77,4
73,4
54.5
23, 0
36,9
23.5
48,7
13,2
177,5
79,7
73,9
72, 8
88,8
159,1
44,3.
J2.9
J6 ,e

X



























0.2
0.1
1.2
1.9
4.6
6.9
5.3
6.7
6.7
4,6
2.2
4.2
2.1
3. 8
1.0
13.2
o.9
6.5
6.0
b.3
14.1
4.7
3.6
4.3

TOTAL NH4
2,495152*002
TOTAL
HG
3, 307040*003
₯•4
3)2
5.0
1.5
276.0
306,0
298.5
316.3
103.5
131.2
154.8
188.3
224.7
247.6
280.0
310.0
393.3
380.5
577. »
1374.4
1449.3
1495.8
1323.6







112.0
103.0
43.3
38.7
6.0
6.1
18.7
17.7







340.0
380.0
355.0
473,0
197.0
144.0


TOTAL P04
#D6
52|6
54.6
46.8
4A&.9
446,7
400.0
426.7
114.1
198.4
272.8
343.0
439.2
249.6
3?3.7
517.0
575.0
595.2
796.8
14-58.0
16^2.0
2516.4
2008.0
13"0.0


297,0



694,0
297.0
297.0
123.0
243.0
97.2
197.0
100.0
194.0
145.0
1«8.0
259.0
171.0
192.0
S3. 3









B,1610ttO-001

TOTAL K

1,473570*002
                                   76

-------
Table 8 (continued).  AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
                      FROM BLWRS EXPRESSED IN GRAMS.
NW Dairy Effluents
DAIBT
B
SAMPLE
29
30
31
32
35
48
49
50
92
77
re
79
80
81
82
83
84
85
86
87
88
95
100
181
109
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
141
142
SylS
V

JARNS, CALJULATED

OKQN
0,7
0,4
0,6
0,6
0,0
2,*
l!2
°t!
0,8
0,1
0,9
1.2
2,0
0,7
Ol5
0,5
lj.0
0.7
0,6
0,8
0-5
0,0
0,0
8,0
0,0
0,0
0.1
0,2
0.4
0,0
0,0
0,0
0,4
0,1
0,6
0',5
1,*
0.9
fl-,5
0,3
0.*
»«3
0.3
0,4
1,1
1.2
2,1
1,9.
2,3
5,5
1,3
0..3
2,8
Oft R

N33
1.*
1.9
1.3
1.1
2.»
16, »
IB.S
18.5
IB.*
i:t
i-.;
0.4
o.s
0.9
1.*
1.3
1.2
2.2
0,9
0.3
0,3
S.<
0.3
0,1
0.2
0.1
1.3
0.3
0.3
0,1
o.s
!:!
':''
5.'
5.1
W
X
1.4
9,»
9,3
35.7
3»,7
133.3
H5.0
117.3
16.3
71,3

TOTAL 3«ov
E 4,»7448»»001
B l]5i
>5049»'o03
DATA

H02
0.8
8.0
0.0
0.0
0.1
0,3
0.1
0.1
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.1
8.1
0.1
0.2
0.2
0.0
0.0
* * c
0.0
o.o
o.o
0.0
o.c
o.o
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.1
0.1
0.0
0.0
o.o
0.0
0.0
o.o
0.1
0.2
C.2
0.3
0.2
0.1
0.1
C.3



NH4
0.3
0.0
a, a
0.0
0,0
1.2
0.6
0.5
0.4
0.1
0.3
o.o
0,0
3.0
0.0
0.3
0.0
0.0
0.0
o.u
0.0
0.1
3.0
0.1
o.o
0.0
c.o
0.0
0.1
0.0
0.0
0.0
0,1
o.o
0.0
o.*
o.o
0,5
0.*
o.o
0.0
0.9
o.u
o.o
0,1
0.*
0.2
0.6
2,1
1.1
0.9
0.2
1.0



P04
fl.002
0.004
fl.UOO
0,000
o.ooo
0.050
0.0*1
0.0*3
0.0*3
0.006
fl.020
0.020
0.036
0.009
0*008
0.017
0.016
0.024
o.oii
0,01*
Q.016
0,001
0.002
C,""2
o.ooo
o.ooo
0.001
0.002
Q.003
o.ooo
o.ooo
c.ooo
0,004
0.001
0.010
0.009
0.010
0.014
0,009
0.004
0.003
0.003
fl.003
0.002
fl.014
0,032
0.016
0.033
O.OHQ
0,068
0.0*0
0.014
0.057

TOTAL N03
8.77fl846»002 3
TOTAL NA
4.419843*002 4


CL
1.7
2.3
0.0
0.0
6.8
5.8
3.1
5.*
3,7
2,3
6,7
5.6
6.3
1.9
2.1
2.5
4.7
4.2
9.1
8.1
7.0
1.6
1.8
3.3
0.0
0.3
1.7
2.9
7,6
0.7
0.9
0.9
11.3
*.2
39.2
47.6
50.9
64.7
58.0
26.3
23.7
17.3
13,7
8.5
42.3
49.8
114.2
86.8
172.8
171.7
121). 9
48.9
189.3

TOTAL
,099296-


NA
2,3
l.a
1,*
2.0
1,5
8.4
5,8
4,»
0.*
1.5
4.7
3.6
4,4
1,4
1.6
2.5
3.6
2.6
3,2
2,9
1.9
0.2
0,3
1.1
0,0
o.i
0,5
0,6
O.H
0,1
0.2
0.2
2.2
5,3
«,6
6.0
6.4
5,«
2,3
2.5
1.7
1.3
O.B
4.6
7.5
22.1
20.8
*2.*
«1.1
30.3
13.1
57.7

N02
»000
TOTAL CA
,680033*003

f»* MB
CA f*»
32,1 ii,8
36,1 9,5
24,8 7,1
35,2 9,6
47.8 17.0
136,8 31.3
79,4 17,9
0,0 0,0
82,7 18,4
24,6 5,5
75,6 16,5
98,5 15,1
65,5 17,9
21,0 9,9
28.9 6.6
97,1 11.0
91,2 17,3
93.0 H>5
68,1 19,5
99,0 12,4
37,5 9,3
8,9 2,0
9,1 2,2
27.3 6.9
0,1 0,0
1,5 0.3
7,7 1,6
20,5 3,8
30,4 7,9
3,1 0,7
4.1 0,9
3.8 0,9
«0,0 10,0
12,9 3,7
»2.7 36.8
112,7 26,3
177.2 32,3
1V5.9 32,2
162,8 30,9
35.0 14,7
3119 13,3
36.4 9.1
18,6 8,2
13,7 5,1
69,4 24,9
146,4 32,5
229,5 04,8
1*7,3 62,0
336,3 102,3
335,6 07,3
206,7 97,4
BO, 3 22,6
324,9 69,3

TOTAL NH4
1,349024*001
TOT»L KG
1,236007*003

K
b',3
0,1
0.9
1,3
1.2
1.3
1.2
0,6
0.6
0.3
0,3
0.2
0,9
1.2
2.9
1.9
3.2
2, a
2.0
0.7
2,7


BOD
10,1
e,»
10,9
11,6
2.3
2,1
1,»
2.1
1,«
1,6
H
1,2
0,6
1.0
1,9
1.7
0,3
o.s
1,3
1.9
6,S
283,2
12.2
10,0
8.9
5,3
5,3
3, a
1,3
3,7
1.'
i.7
1,5
1.0
0.7
1.7
1,7
0,6
o.v
1.5
1,1
1.1


000
63.7
86.1
117.0
79.8
136,2
45,8
27,4
25 4
32 5
19,8
76.8
24,5
34,1
24.5
?8,5
J3.5
20.0
19.8
29.9
34.0
?4.0
102,1
186.4
50.2
117,0
99,2
•9,4
79,3
297.0
297.0
49.2
38,8
?9,6
40.0
43,7
58 3
37,6
37.7
39.2
34,5
«.5
34.0
19,0
33.1

TOTAL P04
0,726014-001
TOTAL K
3.07*093*001
                             77

-------
            Table  8  (continued).
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
                                 SE Dairy Effluents
MU.1  BARNS, CAt:uU»TED D»TA
s
SAMPLE
11
12
13
14
15
16
17
18
19
20
21
22
24
25
26
30
31
34
35
36
37
38
39
40
41
43
44
45
46
47
48
49
50
51
52
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
103' •
104
105
106
107
108
109

ORGN
0.10
0.02
0.0 1
0.02
0.05
0.12
0.02
0.04
0.01
0.01
0.02
0.04
0.02
0.02
0,02
0.61
0.61
0.50
0.33
0.50
1.40
2.40
2.60
0.22
2.00
6.22
7.13
1.51
1.65
l.Ol
-j. BO
2. 4fl
3.90
2.01
1.11
14.72
0.76
1.68
3.90
1.40
2.60
2.60
1.05
1.24
0.22
1.00
0.25
0.30
0.02
0.20
0.72
1.01
0.50
0.92
2.03
0.80
0.60
0,70
0,30
0.01
0,70
0.40
0.30
O.Ol
O.Ul
0.14

N33
0,10
0.03
0.0 1
0.0 5
0.1 3
O.?l
0.0 2
O.D 3
0.51
ft.C 3
0.1 7
C.34
0.03
0.53
0.16
2.00
i.co
1.33
1.21
1.31
1.72
5.00
5.93
o.so
7. SO
16.10
1C. 30
5.JO
4.?2
6.30
9.53
4.30
6.74
7.J3
6.1,3
17.31
l.?3
3.50
2.34
2.14
1.70
2.35
1.70
3.30
1.53
1.93
0.53
O.JO
C.Jl
0.10
1.33
2.34
D.50
1.54
?.«0
3. «2
1.^0
l.«0
0. J3
C.31
0.30
U»l
w.32
0.32
O.CO
0.10

no;:
0.01
O.Ol
O.OL
0.00
0.31
0.02
0.00
O.Oo
0.01
0,00
3.00
0.30
0,00
O.JO
3,00
0.10
0,35
0.03
0.05
0.10
0.10
0,20
0,10
0,01
0,20
0,64
0,64
3,31
0,,28
0,10
0..20
0..10
0 ,10
0,10
0,10
0,12
0.01
0,03
0,05
0 .10
0.10
0.10
0.00
0.02
0.03
0.03
0.00
0.00
0.00
0.01
0.04
0.05
0.04
0.02
0.04
0.03
0.01
0.02
0.01
0.00
0.02
0.02
0.00
3.00
0.00
0.01

'4114
0.0
3.0
0,0
0,0
0.0
0.0
0.0
Ci.O
o.u
0,0
u.o
0,0
0.0
o.u
c.o
0.?
8.1
C.I
C.I
0.1
0,2
c.e
0.5
0,1
a.b
1,8
2.9
1.?
0.5
0.4
l.U
0.6
1.2
U.7
0.6
6.1
1.4
0.6
1.0
0.6
t.3
0.5
0.7
0.4
n.3
o.c
0.1
ti.o
o.c
I>.1
0.2
0.4
0.2
0.4
0.7
C.6
C.4
0.(
0.7
li.D
0.3
0."
O.b
o.c
u.r
0.1

P04
0.005
0.000
0.000
o.ooo
0.001
0.002
0.000
o.oco
o.ooo
o.oco
0.000
o.ooo
o.ooo
0.030
o.ooo
0.807
0.002
0.001
0.001
O.OC3
O.OC4
0.007
0.006
O.Ofll
0.1)05
0.014
0.026
0.020
0.012
0.009
0.0?1
0.013
0.026
0.019
0.013
O.U47
0.006
0.037
O.U?8
0.033
0.019
0.008
O.OC3
0.013
0.003
3.002
0.002
0.002
9.000
0.001
0.006
O.OQ3
0.031
0.001
0.011
0.009
0.007
O.OC6
0.006
o.ooo
0.005
o.oni
o.ono
0.300
0.000
•0.000

01.
0.1
0.0
0.0
0.0
0.1
0.4
C.I
0.1
0.0
0.1
0.2
0.2
0.1
0.1
0.1
7.9
4.4
3.3
1.5
4.6
6.2
12.3
17.5
1.7
22.6
50.0
66.1
32.1
30.6
20.5
56.2
28.0
38.0
30.8
23.5
378.1
20.5
54.1
47.0
52.8
27.4
29.5
20.0
26.3
15.8
21.2
5.6
6.?
0.3
2.8
15.3
23.3
12.3
14.5
2P.4
26. fl
16.1
t'.l
11.6
0.1
13.7
6. a
1.2
1.1
0.0
1.9

MA
0.1
0.0
0.0
0.0
0.1
0.2
0.0
0.0
0.0
0.0
0.1
0.1
0.0
0.0
o.o
2.1
1.2
0.9
0.7
1.6
2.2
4.4
4.1
0.5
4.9
9.7
21.7
5.6
6.4
4.5
11.8
6.e
7.3
5.8
4.1
35.6
4.4
14.1
15.0
15.2
8.1
10.3
5.8
11.0
3.9
5.2
1.2
1.3
0.1
0.6
3.7
7.6
3.4
4.6
6.0
6.5
3.2
5.9
2.4
0.0
4.7
2.3
0.3
0.3
0.0
0.7

, CA
1,9
0,5
0.4
0,5
1,5
4.7
0,6
1,3
0,4
0,9
2.7
2.1
1,5
0.9
1.1
51.2
23,6
23,4
23.5
44.4
03.1
116. A
143.6
11.9
147.8
283,0
272.2
142,6
107.5
72.1
223,0
104,1
14B.3
92,5
62,5
4bB,?
6?. 7
147.3
157.7
163.9
b3,5
110.2
70.9
87.5
44.8
60.7
15.0
12.3
O.R
6.C
29,7
Sl.l
25.6
27.1
S?,7
51,6
i?. 7
37,1
21,1
0,3
27,5
15.1
2.6
?.5
0,1
3.9

Mr.
0,7
0,2
0,1
0,2
0,6
1.9
0,2
0,4
0,1
0,4
1,1
0,7
0,4
0,3
0.4
19,3
11,1
9,4
7,1
15,0
*1,7
40,2
37,5
3,4
•SO, 2
/1, 5
68,6
44,6
25,9
17,5
53,7
23,3
35,2
26,8
19,0
110.0
15.4
40,0
38,4
42,7
23,9
25.9
14,5
19,9
10,4
13,2
3,2
3,4
0,2
1,5
7,5
14,9
6,7
B.l
15,2
H,9
9.6
13,8
5.H
0,1
7,1
4,0
0,7
O,/
0,0
0.9
. BOD
1.0
1.0
1.0
1.0
1.0
1.0.
1.0
1.0
2,,5
4,9
68,4
7.1
6,6
11,1
11,7
12.3
15.5
22,4
4.1
19,0
21,4
24,7
25,3
21.7
23. 5
11.5
12.1
10.9
12.7
16,0
7.2
8.4
10.1
6.3
7.8
5.8
5.5
6.4
5.8
6.4
3.6
4.5
3.0
6.6
2.8
3.0
13.3
7.8
4.9
a.*
6.7
6.8
6,1
8.5
5,8
5.6
6.6
7.6
tt.4
2.5
7,2


144.0
127.0
con
59.6
72.8
«6.2
53.0
P5.5
"5.5
PO.l
70,8
70.8
90.4
85.1
95.8
101.8
117.1
122.4
1?6.8
147.3
143.0
93,2
136.2
154.2
1?7.8
137.2
144.1
112.3
100.0
"6.4
•3.2
P3.2
76.7
78.0
73.2
"1.6
78.2
73.2
44.6
*4 , 6
64.5
«8.6
63.4
48.0
"52.3
61.1
•iO.O
49.6
••9.8
77.8
57.6
<<9.3
79.9
92.4
'4.5
78,4
98.4
"2.6
' *7 ,8
*1.3
'1.4
B8.9
119.0
02,3
115,2
143J6


                                        78

-------
  Table  8 (continued).
                      AMOUNTS OF NUTRIENTS IN THE  EFFLUENTS
                      FROM  BLWRS EXPRESSED IN GRAMS.
                           SE  Dairy Effluents
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
 136
 137
 138
 141
 142
SUMS
0.14
0.01
0 . 11
0 . 30
O.HO
0.6Q
0.50
0.20
0.20
0.20
0.50
1.00
1.64
0 , 61
1.32
1.60
O.SO
0,23
 0.20
 0.40
 0.15
 0.53
 0.62
 2.05
 2.51
 1.10
 3.44
 0.10
 1.61
 1.20
 1.53
 C.10
 G.?l
 0.10
 0.53
 2-50
 G.*0
 C.40
 C.U
 C.'O
 O.?0
 0.43
 l.*0
 4.JO
 0 , ? 0
 4.32
 2.34
 1.10
 1.33
 0. 33
 2.10
 0.40
 l.?3
 13.34
 f.'5
 15.50
 ?4.«>3
136.30
  3.31
 J?.S2
 3C.10
 5C.30
  TOTAL ORG'l
1.13217?»00>

 TOTAL CJ
3,430613*003
9.00
0.00
0.00
0 .DO
0.01
0.00
0.00
0.00
0.00
0,01
0,01'
0.02
0.04
0.02
0.02
0.10
0.04
0.02
0,00
0.02
0.00
0.01
0.10
0 .10
0 .In
u . -fc y
0.15
C.22
O.Ol
C ,30
0.20
0.2l
0.1
U.I
Ci.O
U.I
1.0
U.9
c.v
0.3
0.3
C.3
C.5
1.?
1.6
l.L
1.1
1.7
1.1)
n.6
0.3
0.5
0.2
0.3
2.0
2.1
2.3
3.5
4.8
0.1
3 9
2.5
2.5
o.oui
0.001
0.000
O.OT2
0.015
0.009
0.005
O.OG2
0.002
0.002
0.004
0.009
0.013
0.007
0.010
0.008
0.006
0.004
0.002
O.OIM
0.001
0.005
0.008
0.010
O.OP2
0.017
0,061
0.1102
0.039
0.060
Q.OCO
3.6
3.2
1.3
7.1
23.8
22.4
18.9
7.6
7.7
7.5
15.3
31.4
51.0
36.0
51. C
58.8
40.5
24,6
11.4
24.3
5.9
14.0
101.2
94.9
131.0
175.4
263.1
6.9
1OO ,7
170. n
139.8
          0.9
          0.3
          2.2
          8.4
          6.8
          5.0
          2.3
          2.4
          2.4
          4,6
          9.7
          16.4
          11.5
          17.1
          18.1
          13.0
           7,6
           3.4
           7.5
           l.b
           4.9
          29.6
          27.8
          41.0
          53,6
          82.2
           2.2
          •^9.8
          49.8
          41.8
            TOTAL  NOZ
         7.127240+UO?

          TOTAL f-'A
   TOTAL  N02
6.175971+000

 TOTAL CA
7.1«>9402*003
 7.6
 6.1
 2.9
15,3
61.1
48.4
43.5
 1.9
 1.8
 0,6
 3,3
10,9
 9.9
11.4
1«,2
40.4
16, C
35,4
63.1
75,9
67,5
115.*
122.6
U7,*
31."
11.6
24.6
6.4
22,7
113.0
184,0
173.6
235, ft
314,3
«.9
23*. 9
200,4
162.4
4,4
4.3
4,2
8,8
20.8
44.0
19,0
24,6
26.1
16.0
9.9
4.*
10,1
2,7
7,2
42.5
39,5
51,0
64,5
91,4
2.4
64,7
52,1
43,1
   TOTAL  NH4
7.460698*001

 TOTAL MG
l.B98974*003
111.0
147.0

122.0

124.0

173.0

163.0
297.0
297.0
 9J.4
              o.a
              0.8
              0.8
              1.6
              3,1
              5.0
              3,3
              4.6
              4.9
              3.3
              1.8
              1.0
              1.7
              0,4
              1.2
              6.2
               6.5
               7.2
               V.I
              12.2
               0.4
               9.6
               8.0
               7.1
             TOTAL P04
         8.817555-001

             TOTA1 K
         1,240543*002
               7? .7
               B3.9
               BO. 7
               87.4
               72.9
               72.0
               80.2
               73.5
               64.2
                                      79

-------
       Table 8  (continued).
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
                            SW Dairy Effluents
DAIRY 3*RNs, CAL:UL»TED DATA
AMPLE
11
12
13
14
15
16
17
18
19
20
21
22
24
25
26
30
31
34
35
36
37
38
39
40
41
43
44
45
46
47
48
49
50
51
52
76
77
76
79
80
81
62
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
103
1Q4
105
106
107
109
110
OHGN
0,10
0,10
0,01
0,02
0,01
0,20
0,02
0,03
0,02
0,04
0,04
0,05
0,02
0,03
0,03
0,70
0,40
0,21
Otl2
0,54
0,60
1,90
2,40
0,20
1,81
7,80
4,40
2,02
2,50
2,20
2t80
0,82
3,40
2,30
0,44
14,0
0,82
3,90
5,13
3,70
6,30
4,30
1.80
2,01
1,01
0,95
0,15
0,41
0,20
1,00
l,4n
1,60
0,90
1,40
2,60
0,7<>
1,5°
1,50
0,60
0,00
1,00
0,40
0,10
0,20
0,10
0|4Q
N03
0,1
0,
0.
0.
o,
o.
o,
0.
0.
o.
o,
0.
0.
o.
0.
1.
0.
0.
0.
0.
0.
3.
•».
0.
9.
33.
72.
19.
21.
21.
2f>,
6.
15.
10.
4.
25.
2.
I?.
H,
17,
f,
12.
7.
1C.
?.
3.
0,
c,
o.
0,
1,
2,
o.
1.
2,
3.
3,
5,
0.
0.
1.
u,
u,
0,
a,
c,
i
0
I
5
9
I
1
a
i
i
i
0
3
I
3
6
7
4
S
9
2
6
5
2
9
3
1
3
5
5
5
3
1
1
6
i
5
7
2
3
9
)
4
5
4
t
•
i1
r
V
n
)'
;i
n
;»
,»
j
}
)
I
9
3
t
1
S
NO 2
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0,3
o.o
0.1
0.0
0.0
0.0
0,0
0.0
0.1
U.I
0,0
0,3
0.8
0.8
0.4
0,4
0.1
0.1
3.1
0.2
0.1
0.0
1.0
0.1
0."
1.0
l.fl
2.1
2.0
1,4
1.6
0.6
1.1
0.2
0.2
0.0
0.1
0.1
3.2
0,0
0,1
0,1
0.1
0,1
0.1
0.0
0.0
0,0
0,0
0.0
0,3
0,0
0,0
HH4
0,0
0,0
0.0
o.o
0.0
o.o
0,0
0,0
0.0
0.0
o.o
o.o
0,0
0,0
0.0
0.1
0.1
0.0
0.0
0.0
0.0
0,1
u ,0
0.0
0.2
1.9
1.0
0,8
0.5
0.5
0.3
0.1
0.2
3.1
0.0
5.2
0.2
0.4
0,5
0.3
0.2
0,3
0.7
0.4
0,2
0,2
0,1
0.3
0.1
0.0
0.3
0.3
0.2
0.2
0,7
0.5
0.5
0,8
0,4
0,0
0.4
0,2
0,0
0.1
0.1
0,3
P04
o.uoi
o.uoo
O.UOO
0,000
0,001
0,001
0,000
0,000
0,002
0,003
0,000
a.ooi
0,000
0,000
0,001
0,005
0.001
Q.003
0,000
0,000
0,001
0,1)10
0.011
0.901
O.U17
0,029
3.054
0.010
0,035
0,033
3,047
3,036
3,010
0,006
0,003
0.112
0,007
1.079
0.058
0.069
0,044
o.«4o
0.031
0,0*0
0.007
0.012
3,002
0,005
3,003
0,007
0,013
0,005
0,001
0,001
3,008
0,006
0,013
Q.UIB
0,001
3,001
0,027
O.U02
o.uoo
Q.U02
o.uoi
0,003
CL
U.2
0.1
0.1
0,1
0,3
0,6
0,1
0.1
0.1
0,1
0,2
0,2
0,2
0,1
0,2
2,8
2,1
0.6
0.6
1.4
2,2
5,5
11.2
1.2
18.9
69.0
102.9
55,3
69.0
39.0
78.7
21.8
56.5
42.4
11.7
235.3
26,2
95,7
113.7
129,7
69,3
89,9
47,6
60.1
23.4
48.1
8.1
10,3
6,1
16,6
38,2
46,6
18.1
23.4
65,7
38,2
45.5
56.3
26,3
1.2
49.3
14,1
1.6
6.3
2.6
9.8
HA
0,1
0,1
0,0
0,0
0,1
0,2
o.o
0,1
o.o
0,1
0.1
0,1
0,1
0,0
0,1
1,3
0,8
0,5
0,5
0,8
1,2
2,6
2,"
0,5
4,6
9,1
10,3
6,6
6,6
4.7
13,6
2,5
7,2
5,4
l.B
34,1
4,5
22,6
24,5
27,8
16,3
20,7
12,8
16,8
6,3
12,6
2,3
2,9
2,2
5,4
14,2
17,7
7,4
8,6
22,9
8,5
11. ->
14,5
7,0
0,4
17,5
5,3
0,6
2,4
1,0
4,1
•*•
1,0
0,7
0,9
2,1
5,1
0,8
1,3
1,1
I,5
2\6
3,1
2,3
1|4
0,8
25,5
12,4
8,6
10,0
26,6
40,5
1/1,3
118,6
11,6
137,3
2*2,5
305,5
148,2
165,2
113,5
187,3
46,9
119,1
88 ,6
23,
460,4
35,6
268, c
289,3
289,7
161,7
233,0
137,9
172,9
64,5
122,2
20 ',5
19,5
13,0
38,7
81,9
V3,4
38,5
39,7
114,6
66,0
83,3
V6,6
47 4
2,1
89,0
29,0
3,5
13,2
5,3
20,9
MG
1,1
0,4
0,3
0,4
0,9
2,1
0,3
0,6
03
0,5
o|a
0,'»
0,6
0,5
0,6
12,1
7,7
4,9
2,5
8,7
13,7
26,6
31,'
3.1
36,1
/3,3
78,4
35,8
39,0
26,7
43,2
11,0
31,0
21,4
5,3
113,0
16,0
/3.1
81,6
87,5
SI, 3
S9,2
31,8
43,8
16,9
28.8
«!a
5,6
3,5
9,7
20,2
25,4
10,8
12,5
32,7
18,4
24 ,0
29,1
12, ,2
0,6
24,3
7,4
0,9
3,3
1,1
4.6
TO 58°. o
0,5 46,3
0,5 132.4
0,5 46.3
0,5 56.8
0,5 59.2
0,5 49.3
0,5 51,5
51,5
64.6
2,4 53,4
4,5 69,2
6,1 5b,5
5,6 85,5
5,8 85,1
5,7 94.7












































»,0
6,1
10,6
7,0 133,0
1?7,0
176.0
                                   80

-------
Table 8 (continued).
AMOUNTS OF NUTRIENTS IN THE EFFLUENTS
FROM BLWRS EXPRESSED IN GRAMS.
SW Dairy Effluents
ill
112
113
114
* A^
115
116
117
118
119
120
121
122
123
194
&c ^
125
126
127
128
129
130
131
132
133
134
135
136
137
138
141
142
SylS 07
T
T
0,1 0 0.4
0,00 0.3
OlO 0 0.3
2,00 3,7
1,90 1.5
It7 0 0.7
0,7 0 1.1
0 .0 0 0,0
0(90 1,1
1,2 0 1,9
2,1 0 7,3
2,50 23.2
0,71 l.S
2,61 9,3
2,21 8,5
1,6 0 8.9
0,60 6,9
0,6 0 5,1
0,7 0 3,3
1,0 0 - 6.3
0,30 5.1
It9 2 37,3
2.70 32, i
3,1 4' 37.9
3tl 4 147.3
4,2 4 248.3
3,4 4 35>«.3
1,40 34t. i
It7 0 34.S
2,2 1 135,4
T
TOTAL JRGM
1,503265,002
TOTAL C.|
6,9970lB»C03
0.0
0.0
0.0
0.0
O.a
0.1
0-.0
0.0
0.2
o.a
0.2
1.9
0.0
0.6
0.3
0.2
0.1
0.1
0.0
0.2
0*0
0.2
0.1
0.2
0.2
0.3
0.2
0.2
0.1
0.1

0,1
0,0
0.0
1.5
1.8
0,9
1.0
0,0
0.2
0,3
0,0
U.8
0.4
1.9
2,5
2,0
1.4
U.9
0.9
0.7
0.3
2.8
1.8
2.5
3.7
3.9
9.5
4.1
1,9
2.5

0,002
0>000
Q.UOO
0,023
0,018
0,013
0,1)07
0,000
0.008
0,012
0,024
O.U35
0,005
0.027
Q.02Q
0,019
0.011
0.010
0.004
0,003
Q,U02
0,016
pj.029
I), 024
0.055
fl.079
0.094
3,081
0,013
0.027

TOTAL NOS
2.33208(1*003 2
TOTAL NA
2.206893*003 1
7.0
1,4
0,1
68,5
66.2
47,4
24.2
0.1
31,2
42,8
86, 0
153.5
27,0
157,9
150,0
138,7
82,7
67.4
51,7
51,6
21,8
298,3
189.8
316,5
396,4
468.3
446.9
424.7
245,6
253.1

2,5
0,*
o.o
26,6
23,6
18,3
9,5
0,0
12.6
16.5
32,7
55,3
10,1
56,3
50,6
48,3
26,3
28,9
16,3
16,0
6,6
95,4
67.4
102,7
139,1
167,3
164,5
159.0
96,4
94,9

TOTAL N02
,427210*001
TOTAL CA
,182578*004
16,0
2,6
0,1
161,8
117,8
97,9
31,8
0,1
61,1
?6,9
90,9
426,4
43,6
318,7
2»2,5
247,1
*1,7
'2,0
31,6
49,4
20,6
264,1
239,6
420,7
399,8
564,0
56Q.7
538,3
331,5
297,3

3J1
0,6
0,0
41.7
26,1
22,9
11,8
0,0
14,8
20,3
J8,7
77,3
11,7
63,3
35,2
30,9
26,0
28,1
16,0
16,8
7,0
96,5
76,2
107,9
128,2
146,2
146,3
126,8
/9,2
78,0

TOTAL NH4
7,66B499»fl01
TOTAL MG
3,060210*003




2.1
2,4
3.9
7,0
11,3
1.9
10.2
b,6
8,5
4,7
5,2
2,6
2,5
1,1
12,6
9,1
10,3
13,6
16.6
14,7
12.7
6,0
8,1






22,7
22,7
6,3
6,3
2,4
1,9
2,9
3,9
4,3
4,4
1,6
1,7
1,6
3,0
0,5
1,3
1,6
1,6




C2.9

99, z
94.2
104.0
148,0
123,0
93.4
102.0
77.7
83,9
^O.O
87.4
72.9
70.6
80.0
73.5
64,2
76.4
63.1
38.0
61.6
66,7
54.3



TOTAL P04
1.637768*000
TOTAL K
1,967451*002
                            81

-------









Jg,
H
S3
O
M •
H CM
S ON
PH rH
^
H Pi
U W

o §
U W
0
H W
^ O
W
M 1

FH CO
P H

W
W P

•^3 p^
jyj pr_i
W W

4-l 52
cd MH
t£ W

•
in
CM




OO
CO
oo




^
00
CM
CO




in
•
O
OO




r^
,
00
in
H




CM
O
O




CO
•
oo
CO



OO
•
VD



ON
•
CM
r-s

^
^t
r-s




CM
.
in
CO
rH




CM
O
O




rH
,
rH




r-s.
•
VD



VD
•
O
in
rH
.
CM




^2:
CO


82

-------





.
CM
^
rH

W
W
w
o
w
Q

5S
O
O
s

H
S3
S
J
Pn
M

g
*
g




CM
O
•^




CO
Z




Z
00
£.)
O











1
1
o in
VO vO
i eg
i

i
i
co l^
00 CM
1 rH rH
1

1

|
o oo
•vj cr\
1 4H Z
S  CM
•O- O rH
000









& w ts
Z co co




in
^i-
rH




CM
rH
m





CO
00
CO
rH



CT\
CN
CO




f*
m
vO



o
rH
O
o


vO
•
rH
rH





a\
o




vO
CM
VO


rH
CO
o








rH
cd
4-1
0
H

m
^>f rH
o"* co
m




CO CO
rH CO
rH





CTi O
O CM
CO rH



CO VO
m o
CM




CN vO
O CM
in



oo
o
CO O
oo o


m in
CM
in
Is*1* C5



o
CO
o
o"



vO
o in
CM O



CM
"^ rH
oo o
O"\




1 i
c
0)
>> V 3
Ll 4J rH W
•H CO MH Z

O 13 W

CO
O
O





CM
rH






r^-
^.




-vl-
O





oo
rH




CTi
O
O
O


rH
O
o



•*d"
o
0
o



oo
oo
o



«^-
o
o









^g
^



CO
o
o





CM
rH






r^

-------
          Table 11.   PERCENT TOTAL SOLIDS IN WASTE THAT WAS
                     APPLIED TO THE BLWRS.
Date
July 1971
Augus t
September
October
November
December
March 1972
April
May
June
July
Augus t
September
October
November
Swine Waste
0.22
0.36
0.33
0.24
0.31


0.24
0.28
0.29
0.28
0.30
0.33
0.33
0.30
Dairy Waste

0.26
0.23
0.315
0.395
0.385
0.44
0.45
0.49
0.48
0.58
0.64
0.50
0.49
0.53
Average
0.30
0.44
                                84

-------
r~~
CO
rH
a
PL,
PL.
M vO
CO
CO rH
nJ
PQ
a m
O fl
e
M
H
sg
J5 CO
rH
Q
5
H
S ro
g rH
J
E
PM
W
S3 CM
M CO
rH
a
0
U rH
CO
si -1
<;
H
o
H
O
co
CM rH
rH
CO
, 1
i^n
,0
cci
H
M
0)
rg
a
3
2

CU
rH
&
§
n)
C/3
VO CM -vf OO O
rH V +H
MHiJ<^'x— 'HJ*— ' tfl 4H
W pq PQ is w
4-1 4J 4-1 W
O'rCWCO.CWCQCU >,
C-wcooiwcdaic! w
•H >-i W £5 3 W & -H -H
& o o s cd
V3 2 CO W Q



vO vO 00 O O
CM rH CM rH O
st

oo oo 
-------
winter when denitrification slows.









Phosphate concentrations on all BLWRS was at the 0.02 ppm level which is the




natural leachate from these soils.  The phsophate absorption capacity of the




soil is removing all the soluble phosphate from the system.









The recycling of the effluent at the Swine Barns for reflushing is causing a




buildup of NaCl.  This is dispersing the organics on the surface of the




Swine BLWRS and reducing the infiltration rates.









Calcium and magnesium are leaching from the BLWRS soils but these are not




polluting.









The amounts of nutrients added in waste and drained from the BLWRS are




summarized in Table 10.  The total nitrogen added in waste was 386 kg and 176




kg for the Swine and Dairy BLWRS with effluents containing 76 and 5.4 kg for




a renovation efficiency of 80% and 97%.  The corn energy source excelled the




others in renovation efficiency.  The average rate of nitrogen applied in the




wastes amounted to 23.8 t/ha. for the Swine and 10.8 t/ha. for the Dairy BLWRS




during their operation to December 1972.









Phosphate renovation efficiencies for the Swine BLWRS was 99.9% and for the




Dairy BLWRS 99.4%.  Actually, eventually the BLWRS sill reach their absorptive




capacities but until then they are extremely efficient at removing phosphate.




Part of this is due to the fact that even though the wastes have phosphate




concentrations of 18 and 38 ppm these are reduced to 5 to 7 ppm by the preci-




pitation of dicalcium phosphate.  This precipitate accumulates in the surface






                                     86

-------
soil.  The remaining soluble phosphate is absorbed on the soil.  The average




rate of phosphate application was 461 and 510 kg/ha.









The BOD5 and COD analyses are reported in Tables 5,6,7 and 8, pages 44 to 81.




The swine waste had an average BOD concentration of 1131 mg/1 and an average




COD of 2328 mg/1 while the dairy waste was 1637 mg/1 and 3356.  The average




BODc and COD values of the effluents from the corn energy source of all the




BLWRS was 290 mg/1 and 433 mg/1 while the other sides of the BLWRS had




average BOD  of 18.9 mg/1 and COD of 78.3 mg/1.  This indicates that too




much energy was available in the corn source and a less reactive organic




source  would be preferred.  If the corn effluents are excluded, the 6005 anc^




COD renovation of the BLWRS were 98.6% and 97.3% which is very good.




CHANGES IN THE SOIL




The original chemical analysis of the soil is reported in Table 2, page 37.




Subsequent analyses were made on samples collected October 20, 1971, and




November 1, 1972, all reported in Tables 13 and 14.









Nitrate nitrogen shows a depletion in the surface soil over the amount that




was originally there although the second sampling shows the content building




up in the surface soils.  At all depths below the surface soil there is an




increase in nitrate which should be expected in these aerobic soils that have




been heavily loaded with nitrogenous waste.









Ammonium nitrogen had a slight increase in the 0-5 cm depths but a depletion




in the rest of the profile down to the anaerobic zones where in the North




Swine and South Dairy there was an increase in ammonium.  These were the




heavily driven BLWRS of each pair.





                                     87

-------
PH
PH
O

-------
4-1
to
5
s
PM
P* rH
U
S3
) — !
« 4-1
rH CO
t-~ cfl
C* W
rH
O
CM
P3
W
Mil
+••
O CO
E-l 
psi to
Of A f ) fl 1
uj w vy
a 13 -H S
c d
Pt W cfl
O bO
!-j
!a o
o
H to
H cfl 4J
(H CO
co !a cfl
o w
&
0
c_>
^
c_)
%
r-T f/\
H-J UJ
BO)
C«t2
O
a
*
x-v Cfl
•n co
0)
3 la
C w
•H CO
4J Cfl
d H
O
o
\^
CO
i~H
(1)
CO rH
rH PH
•8 §
H CO
O O O O O O
oo oo co in oo o
CN CM CO CO rH



o o o o o o
O -d- oo c^ co oo
rH rH CO rH  r~i 1^1 Ui wi m
CO rH O in CM CM
CO «* CO O CM tH






rH CTv iH CJ\ rH O
rH CM CM CM  rH rH rH
a- 1 i i i i i
cu o co ^o crv cN in
Q rH rH
O 0 O 0 0
O OO i£> OO *
t 1 rH CO CN CN



m vo ^o o
co 
-------
 - pel
   w
   O
•§
H
                   -d-
                 O
                 PL.
                  w
                  ca
                  cd
                  4-1
                  O
                  H
                  60
                  M
 0)
 C


£  cS

£*
 M
 O
2
                  CO
                  rt
                cd
                   co
                 o
                  CO
                  rt
                  ex
                  a)
                                                                                    o- in
                               CM OS
                               CO
                                         CO rH rH
                                      CM
                               ooooooooooooooooo
                               ooooooooooooooooo
                               OOOOOOOOOOOOOOOOO
                               ooooooooooooooooo
                                   CS
                                                               rH r-l
                                                           00
                                                                      oo oo
                                                                                    ^J-
                                                                                    oo
                                                                      iH tH  o- in
                                                                      in m  vo o
                                                    m
                                                                  co  IT)
                                oor^ror--     roi— inmr^     
-------
  • 33
co
4J
 C
 O
 O
•s
H
                      O
                      IX,
                       en
                       cc
                      PM
                      u
                       O
                      H
                       W)
                   H-l
                   M
                   0)  CO
                   C  CO
                  CO
                   3
                   O
                  CO
                       CO
                       cfl
                        CO
                      o
                      S3
 CO
 CO
 CX
 (1)
n
               <-  CN  VD 00 VO  CN
               o-
                                                    00
                                         IN  cs|
                              co
                                     ooooooooooooooooo
                                                oooooooooooooo
                                     o  o  o
                                     COiHOOiHi-lrHfOOiHrHiHiHCNCNrHOO
                                     OOOOOOOOOOOOOOOOO
                                     ooooooooooooooooo
                                     rHOOLOCVJr-HrH
                              CO
                                             OO     00  OO                00

                                  >_i)-iM   .J-i    .   -M!-iS-ii-i   •
                                                                                      M  )-l
                                     iHCMCMrHCNi-H
               r  r  r   :  :  o CN
                                     o
                                          i    i   i
                                         T-H  CN 
-------
CM  pj
f-  J5
<3\  ^
H  pq
(*! o
W CO
o

  •> M
eg |xi


£l

tig

3^
Qg

s S
O O
PH £*i

a a
a H
^J *5Tl
H g
co fn
W
tJ M
n. ^j
S o
en   •>

hJ M
H 2
o ^
CO H

P-t CO
O W
   1-3
CO Oj

CO ^
tH CO


ll

52   •
o S
H PLI
S PL,
 4-1
 c
 8
                CM  in -* CM  ^H        r-l







    CQ
    n)

                OOCOCS            THiHiHiHrHi-HiHiHiH
                CO  CO




                OOOOOOOOOOOOOOOOO
                ooooooooooooooooo


                i-HiHiHi-liHHHiHi-IHrHHrH



                OOOOOOOOOOOOOOOOO
    C8           OOOOOOOOOOOOOOOOO
          JS    iHOp  «
ts o

n


H              1/1
                  •       •••••••••••••••

                fj     r-Nininoi^-r^^fvovOOOvooii/iocM
                01     CNCNrHfO     r-lTHiHiHrHiH    iHiHrH
                  f\
                rH
M
O
Z


   18            c-jcNior^     oo     vroooooooom    oooooo

          co      .   .   .   .  M   •  M	M.«.
                OiOOCNt-HHOHf--OOOOCMHOOO





    CO           Oi
    Cfl










     f
   o     co
    z





    cq



                01






   *                     =   =   o JH  Jf CM Jf" ro jf< si- Jf in Jf «
    &
                                                                                               c
                                                                                               o
                                                                 92

-------
CO
T3
 3
 c
 C
 O
 o
•§
H
                 O
                 PL,
                  CO
                  cd
                  O
                 H
                  60
              •H  to

              Q
                  n)

                 S
                  (X

                 £
                        co
                               cn
                        CO
                                                                         i-H r-H r-H  i-l rH
                               OOOOOOOOOOOOOOOOO
                               ooooooooooooooooo
                               rOCNvOiH>*OOvOirirHONiH«*OO-3-eNrH
-------
Organic nitrogen increased in the 0-2 cm depth but decreased in the rest of




the surface soil compared to what was originally there.   There was an increase




in organic nitrogen at greater depths.  This increase amounted to a four-fold




increase in several samples in the South Dairy.









Althoughthe accumulation of organic matter was only visable to a depth of




2 or 3 cm, there seemed to be an accumulation of carbon throughout the Swine




BLWRS and a depletion of carbonate in the Dairy BLWRS.   There should be more




studies partitioning the organic and carbonate carbon in these soils.









The phosphate profiles that are developed in these soils are very interesting.




Phosphate contents of the 0-5 cm soil is in excess of the maximum phosphate




absorption indicating a precipitation of phosphate probably as dicalcium




phosphate in these surface soils.  This would be accomplished by the calcium




in the waste or in the soil.  Immediately below the zone of precipitation




there is a zone of absorption on the soil complex which is saturated.  This




occurs 5 to 20 cm deep depending on which profile is considered.  Below the




zone of absorption the phosphate content is at the phosphate content of the




original soil.  These data are being used to develop a model of phosphate




movement in soils.




MICROBIOLOGICAL ANALYSIS




Following the last application of waste in November of 1972 to the BLWRS at




the North Swine site, soil cores were taken and analyzed for the population of




total anaerobes, denitrifiers, coliforms, fecal coliforms and fecal strep-




tococci.  Data in Table 15 shows that the largest populations of both anaerobes




and denitrifiers were in the surface soil, while the lowest populations were




in the samples from the three anaerobic sites.  It is probable that both




                                     94

-------










w
£7^
H
!3
CO

*T*
3
0
a

^jj
M
Q
g
g
*
CO CN
m l~—
W C7\
H iH
PK
H ftf
PtH M
H Q
S B
W ^
Q 0

Q


cd
43
4J
CO
0
CO
•rl
a
cd
60
^ •
o a
o o
V-i -i-l
0 4-1
•H cd
G rH
j3
M-l £3
o 3
o
e o
o cd
•H
4-1 01
cd 4J
i-H -H
3 ^
a 4J
0 -H
FM C


cd







































•
OI
c
0
N

a
•H
42
0
01
cd
C
cd

e
0

<4_l

13
0)
4_)
a
01
i-i
i-H
O
O

CO
01
I-l
g.

cd
CO


42
95

-------
nitrification and denitrification were extensive at the surface, but within




roicroenvironments wheie favorable conditions for each process were prevalent.




The importance of such microenvironments is easily visualized if one considers




the likelihood of oxygen gradients within aggregates or near surfaces of




particles, the availability of organic residue,  and the fact that denitrifi-




cation is commonly a iricroaerophilic process.   Though the denitrifier popula-




tion was one to two orders of magnitude lower in the anaerobic zone, it does




not mean that denitrification was not important in these zones.   The deni-




trifier biomass was sufficient enough to carry out significant denitrification,




providing nitrate and available organic materials were present.   Also, the




denitrifier population was not assayed in the soils on the slopes at the




particular sites where additional organic matter was added; the  populations




could have been much higher in these locations.   The denitrifiers appeared to




represent an important, but not major, percentage of the total anaerobic




population.









It was also noted that in the surface soil the population of organisms that




reduced nitrate only as far as nitrite exceeded those that denitrified the




jiitrate to nitrogen gas.  This may explain the higher levels of  nitrite found




in the effluent waters during the later periods of operation.









The population of pathogenic indicator organisms determined in the same soil




samples is shown in Table 16.  It can be readily seen that even in the surface




soil the populations have dropped several orders of magnitude below those of




the added waste.  In all samples, except the surface soil, the coliform




population was similar to that found for native soil coliforms present prior




to the first waste application.  If one considers the high volume of waste




                                        96

-------




rJ
M
O
CO

CO

^
r-J
PQ
w

1
CO

pr]
fi_|
Pn
o
g

a
1 	 1

p\
s
£3
g

CO

O
H

QJ
M

S C^
| 	 | |-^
O*N
£5 1 — |
w

o w
ffi PQ
E~* §

O
Pn a
O
a
CO H

O fl
M W
H H
•< U
1 pq
^H . n
P>-l rJ
o o
PL, U


.
^o
rH

01
rH

CO
H









•H
U
0
O
H O
cfl O
CJ 4J
cu ex
PM 0)
^1
4J
b CD
rH
•H
o
CD
>J en


o
d MH
CU -H
t> 1 — 1
o o
o
M
r 1
o cd
0 U
H 0)
— -. fe
e
CO
•H
pj
cfl
&C
r-l
O en
O 6
M C
CJ 0
1 1 1 1
5T *H
rH
O
U


















f-j
4-1
ex
Ol
T)

*X3
c
cfl

01

•H
CO

01
rH
ex
e
CO
CO



r-
O
rH

X

01
•
VO








vO
O
, — 1

t^

.
rH









J^^
O
rH

X

**o
.
rH






















CO
CU
4-1
CO
Cfl


T3
Ol
•H
, — |
ex
ex
cO

C
M




O O O O
if) O <3" O
O csl ro
r> *
CO ON
CT\














CO -^  »
rQ &H V-l r-l
0) 0) O)
rH 4-1 4-1 4-1
•H c c a
o o) cu 01
en u o u




0 0
o -*
ro CN
r*
CTv















co CO
V V













o o
O , 4-1
rH -H
O) C
13 > 00
01 -H CO
•H 4-1 g
rH O
ex cu 4H
ex ex o
cfl en
Ol r-l
rH V-l O)
Cfl T3
•H « r-l
rJ r-J O
CU 0)
4-1 4-1 d
cfl cfl cfl
e _ s

CU 0) B^S rH
4-J fl ^t M
Cfl O rH CO
cfl N cu
IS T3 C3
0 d
4-1 -H CO CU
O ,£) ,O
o in
rH S-l rH T3
6 CU rH
C! - 3
O Cfl CO O
o rH ;?
rH g
^,O - Cfl
co r-t in cu
S 4-1 -3
CO t^~ rH
•H t3 CO
d cu " >
co 4-i m
M CJ . f!
IH (U OO O
O rH rH -H
rH 4J
CU O CU cfl
V-l CJ M rH
CO CU 3
CD ;s ex
co cu o
cu rH co ex
3 CXrH
rH 6 -H CU
CO CO O ,C
> CO CO 4-1


co ,n u
97

-------
applied and the filtering action of the soil which should retain most of the




waste microorganisms at the surface, it is apparent that these pathogenic




indicator organisms do not survive very long in this soil system.  The drastic




decline in the fecal coliforms indicates either that their survival in soil




was minimal or that they are still present but have lost their ability to




ferment lactose at 45° C after prolonged exposure to the soil environment.









The coliform composition of the swine and dairy waste added is shown in




Table 17 and summarized in Table 18.  The fecal coliforms comprised one-half




of the total coliforms in the swine waste and about 40 percent in the dairy




waste.  There were more fecal streptococci relative to the coliforms in the




dairy waste than in the swine waste.  Most important, however, is the




-tremendous reduction in population of all indicator organisms in the BLWRS




effluent water as shown in Table 19.  The limited survivability and the filter-




ing action of the soil appear to have prevented transport and contamination




of the effluent water with these three indicator organisms.  We must point




out, however, that under overloaded  (spring) or winter conditions, the indica-




tor organisms did apipear in the effluent water as shown in Table 20.  Direct




contamination of the; effluent water by the runoff over the soil surface did




occur on several occasions when the system was purposely being overloaded in




order to establish the operating limits.  Thus, we cannot be certain whether




or not any of the contamination that occurred was via movement through the




soil.  It is apparent, however, that even when large populations of coliforms




and fecal streptococci were found in the effluent, fecal coliforms were absent.




As mentioned in relation to the discussion of Table 16, this could be due




either to a loss of the ability of  coliforms to ferment lactose  at 45° C and/or




to the growth of the  coliforms  (but not the fecal coliforms) in  the terminal




                                     98

-------

.
1


w
e
o
H
g
§

H
H
CO
^3
IS
u
W
H
Pn
O
CO
JZ
0
I-H
£_|
^
2
M
§
H
P
d
O
H
C3
0

M
Q
s
H
a
*

01
CO
H





4J
o.

4-1
rH
O
O)
P*



•H
Q
C_5

i-H
cfl
O
iS



0)
1 1
CO
CO
£2

01
e
•H
^
CO


a
H
O
4-1
•H
Q
U



M
01
•g
c

CD
i
ft

CO
CO
oo oo r*^ r^** r^*» r^
o o o o o o
rH rH rH rH rH rH
*v* "v* k/t W *«* M
f*i i"« rS fN r^ rN
10 t-H 
-------



CO
S3
a
M
H
H
Q
8
O
55
M
r_j
S
S
w
PH
o

rH
a
1
25

g
Q
g

g
w
t>
153
PH
M
|
S
1

PH
O
S5
O
hH
H
M
CO
0
&
s
8

d
<;
M
pq
§
CJ
t)
rS


•
oo
iH
CU
rH
,£1
cfl
H










^^
S3
§5
O

rH
e
o
o
rH
~"*^
CO
S
CO
•H
a
cfl
(X
M
0









•H
a
o
o
o
o
4J
a
cu
n



Is* 1^-
0 0
rH rH
0 O
X 0 X 0
4J CN rH
co ro t-^
rH
CO
O
01
PH








•H
rH
O
o
iH
Cfl
CJ
cu
PH





6
o
MH
•H
rH
o
O



















CO
CU
rH
8-
cfl
CO
\o r~-










r^ vo
O O
rH rH
X ro x n
V V
OO rH
• •
O rH





r~ vo
0 0
rH rH
o o
X o X in
rH
>c oo
• •
rH CM






cu cu
4-J 4-1
•H -H
CO CO

cu >>
a f-i
T3 'H T3 -H
CU ? CU cfl
T3 CO T3 T3
T3 -0
cfl 0 cfl E
O 0
01 r-l CU r-l
4J M-l 4J M-l
CO CO
Cfl 4-1 Cfl 4J
s a s c
cu cu
2 =• h 3
C rH r-l rH
•H >4H >H >4H
& 4H cfl M-I
CO W Q W
TJ
CU
T3
cfl
O
rH
)_l
CU
>
O
60
c
•H
>
0
rH
t
0
111

•a
cu
4-1
4-J
•H
C3
§

CO
cu
rH
P.
5
CO
4-1
G
cu
s
rH
MH
<4-<
CU
4J
P.
CU
fj
X
cu
T3
nl
u^
4J
CJ
CU
rH
iH
o
fj

CO
CU
rH
g*
CO
CO

f— J
rH
cd
<4H
O

CO •
cu co
60 T3
cfl O
r-l -H
 cu
< a

cfl
100

-------
Table 19.  MICROBIAL COMPOSITION OF THE EFFLUENT FROM THE
           EAST END OF THE NORTH SWINE BLWRS.
Sample
Number
8
10
12
14
18
20
22
24
26
28
30
32
34
38
40
42
44
46
48
50
52
78
80
82
84
86
88
90
92
94
98
100
102
104
106
108
110
112
114
118
120
122
124
126
130
134
136
Organisms/100
Coliform
2,400
23
39
43
21
240
240
240
7
43
240
2,400
24,000
110,000
1,100
43,000
70,000
93,000
75,000
240,000
9,300
150
240
700
240
430
2,400
240
700
430
240
93
3
93
240
240
43
240
240
240
240
460
9,500
0
1,200
240
3
ml (MPN)
Fecal
Coli
3
3
4
3
3
3
3
3
3
3
3
3
3
9
3
4
3
3
3
3
3
3.10
4
3
93
93
2,300
36
3
0
9
443
3
3
4
4
9
15
9
3
3
3
3
3
3
3
3
Fecal
Streptococci
0
4
23
15
3
7
23
3
43
24
240
240
4,600
23
23
240
23
93
23
23
23
9
23
430
2,400
2,400
2,300
93,000
2,400
4,300
240
430
43
3,900
430
43
43
93
23
93
23
240
210
93
93
43
23
                           101

-------
Table 19 (continued).   MICROBIAL COMPOSITION OF THE EFFLUENT FROM
                       THE WEST END OF THE NORTH SWINE BLWRS.
Sample
Number
8
10
12
14
18
20
22
24
26
28
30
32
34
38
40
42
44
46
48
50
52
78
80
82
84
86
88
90
92
94
98
100
102
104
106
108
110
112
114
118
120
122
124
126
130
134
136
Organisms /100 ml
Coliform
11,000
11,000,000,000
15,000
46,000
230
75
240
200,000
240,000
15,000
150
210
750
2,000
460
240,000
430,000
1,100,000
240,000
46,000
24,000
1,500
43,000
43,000
230,000
24,000
1,500
93,000
23,000
4,300
2
150
3
3
9
23
15
4
3
93
43
23
93
240
240
23
23
(MPN)
Fecal
Coli
43
7,500
75
930
3
3
3
15
4
3
3
30
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
0
0
3
3
3
3
4
3
4
3
3
3
3
3
3
3
3
3
Fecal
Streptococci
24,000
24,000,000
24,000
1,500
75
240
93
240
23
230
230
3
90
93
240
11,000
4,300
4,600
1,100
240
240
930
4,300
9,300
1,500
2,400
2,300
700
2,100
1,500
240
430
930
43
24
24
430
240
430
2,400
240
1,100
930
43
23
93
93
                                102

-------
Table 19 (continued).  MICROBIAL COMPOSITION OF THE EFFLUENT FROM
                       THE EAST END OF THE SOUTH SWINE BLWRS .
Sample
Number
3
4
6
8
10
12
20
22
24
26
28
30
32
40
42
44
46
48
50
52
78
80
82
84
86
94
96
98
102
104
106
108
110
112
114
118
122
124
126
130
134
Organisms/100 ml
Colif orm
43
21
1,100
200,000
24,000
2,400
3,900
43,000
93
43
240
23
200
23
93
40
240
93
43
43
70
43
43
3
23
9
210
93
43
430
23
23
23
7
93
93
93
240
43
240
4
(MPN)
Fecal
Coli
3
3
3
75
23
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
0
3
0
3
3
3
460
3
4
3
3
3
3
3
3
3
3
3
Fecal
Streptococci
240
23
43
39
23
240
240
3,900
43
23
43
64
43
23
23
23
23
23
93
23
240
240
240
93
240
43
240
240
9,300
930
9
43
230,000
43
39
43
23
93
23
93
23
                                 103

-------
Table 19 (continued).   MICROBIAL COMPOSITION OF THE EFFLUENT FROM
                       THE WEST END OF THE SOUTH SWINE BLWRS.
Sample
Number
2
3
6
8
10
12
20
22
24
26
28
30
32
40
42
44
46
48
50
52
78
80
82
84
86
94
96
98
102
104
106
108
110
112
114
118
120
122
124
126
130
134
136
Organisms /100
Coliform
460,000
1,100
43
21,000,000
7,500
150
240
75
75
23
43
39
93
7
240
1,100
240
93
460
430
15
43
43
23
23
43
44
75
240
240
11
93
23
240
930
93
93
93
93
93
43
240
23
ml (MPN)
Fecal
Coli
3
9
43
46,000
4
4
3
3
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
0
4
3
3
3
3
3
3
23
3
3
3
3
3
3
3
3
3
Fecal
Streptococci
23
23
120
240,000,000
23
15
150
93
23
9
23
23
23
23
23
23
23
23
23
23
23
43
93
2,400
230
240
93
430
930
15,000
23
23
4
110
23
43
240
23
93
4
3
23
23
                                 104

-------
Table 19 (continued).
MICROBIAL COMPOSITION OF THE EFFLUENT FROM
THE EAST END OF THE NORTH DAIRY BLWRS .
Sample
Number
30
32
48
50
52
78
80
82
84
86
88
100
106
108
110
112
114
118
120
122
124
126
130
134
136
Organisms/100 ml
Coliform
4
23
93
9
23
23
430
93
23
93
3
3
3
3
3
3
3
3
3
4
3
3
23
15
9
(MPN)
Fecal
Coli
3
3
3
3
3
3
3
3
3
3
0
0
3
3
3
3
3
3
3
3
3
3
3
3
3
Fecal
Streptococci
4
43
93
23
23
7
3
43
23
150
23
23
4
9
23
23
7
4
6
23
23
4
23
3
3
                                 105

-------
Table 19 (continued).  MICROBIAL COMPOSITION OF THE EFFLUENT FROM
                       THE WEST END OF THE NORTH DAIRY BLWRS.
Sample
Number
30
32
48
50
52
78
80
82
84
86
88
100
106
108
110
112
114
118
120
122
124
126
130
134
136
Organisms/ 100 ml
Coliform
75
93
2,400
4,600
390
93
93
150
93
0
3
150
3
3
3
4
3
150
15
9
15
9
3
4
6
(MPN)
Fecal
Coli
3
3
3
3
3
3
3
3
3
3
0
4
3
4
3
3
3
3
3
3
3
3
3
3
3
Fecal
Streptococci
43
93
43,000
9,300
4.30
930
430
24,000
2,400
4,300
930
240
240
23
43
23
2
21
93
1,100
150
23
4
23
1,100
                                 106

-------
Table 19 (continued).  MICROBIAL COMPOSITION OF THE EFFLUENT FROM
                       THE EAST END OF THE SOUTH DAIRY BLWRS.
Sample
Number
4
6
10
12
14
18
20
22
24
26
30
104
106
108
110
112
114
118
120
122
124
126
130
134
136
Organisms/ 100 ml
Coliform
21
43
15
20
11
9
9
4
3
9
3
9
3
3
3
4
3
3
3
4
3
23
23.60
23
9
(MPN)
Fecal
Coli
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
3
3
3
3
3
3
3
3
3
Fecal
Streptococci
3
9
5
43
7
3
3
4
7
23
23
23
9
23
43
23
40
23
9
23
43
3
3
2
23
                                 107

-------
Table 19 (continued).  MICROBIAL COMPOSITION OF THE EFFLUENT FROM
                       THE WEST END OF THE SOUTH DAIRY BLWRS.
Sample
Number
4
6
10
12
14
18
20
22
24
26
30
34
40
44
46
48
50
52
78
80
82
84
86
88
90
92
94
96
98
104
106
108
110
112
118
120
121
122
124
126
128
134
Organisms/ 100 ml
Coliform
21
150
43
3
43
4
3
3
3
4
23
93
9
3
3
3
3
3
43
9
0
9
23
3
3
3
0
0
3
3
3
3
3
4
0
3
3
3
3
3
0
3
(MPN)
Fecal
Coli
3
3
3
3
3
3
3
3
3
3
3
3
0
0
0
3
3
3
3
3
3
3
3
0
0
0
0
0
0
3
3
3
3
4
0
3
3
3
3
3
6,666
0
Fecal
Streptococci
3
23
4
23
23
3
9
23
23
23
23
430
23
9
3
23
9
14
3
3
43
7
9
3
9
93
43
240
23
240
23
23
23
240
240
23
23
93
23
23
66,600
3
                                 108

-------




"
s
1

(_J
S
w
S
o

CO
^J
^
2
Cfl
^H
CO
S5

i
°3
p3
•^e
j 1
PQ

W

1

s
1
s

r^
P*
W
PH
O

z
o
M
H
M
Cfl
O
ft^
Jjt4
£^
CJ

s!
M
PQ
0
&
CJ
g


•
o
 CO £ CO
TJ 1 1 1 1
CU <3 <3 PQ PQ
T3
T3 4-1 4J 4J 4J
n) d c c c
cu cu cu cu
cu 3 P 3 3
4-1 rH rH rH rH
CO 14-1 M-l 14-1 <4H
Cfl MH MH <4-l 14-1
!? M M M M






oo
rH

•
c
Cfl
r-3

1

O
CO
o


£
cu
d
'!j

• **
*O
cu

•^J
cfl
e
o
o
4-1
•H
cu
•rl
CO

II
PQ

• ft
*o
0)
"C ,
T3 CO
Cfl rH

C CU
0 C
£> 3
M "-)
cfl
0 I
o oo
C rH

42 rH
4-1 -H

15 <*
cu
•a «
•H 60
ca C
•H
II to
P.
<1 (0


cfl
109

-------
portions of the system.  The former explanation is supported by the fact that




the fecal streptococci were also present in the effluent (assuming that they,




like the fecal coliforms, would be less likely to proliferate in the effluent).




The latter explanation is supported by the fact that the side with the organic




matter contained more coliforms in the effluent than the side without.




The BOD analysis suggested that the corn-containing side was leaking available




organic matter which could have supported growth of coliforms.




SOIL ENVIRONMENTAL STUDIES




The soil environmental studies included soil temperature, oxygen diffusion




rate, oxidation-reduction potentials and soil gas analyses.   The amount of




data collected from these studies is so voluminous that only parts of the data




are reported for the purpose of illustrating the influence of the environment




of the BLWRS on the performance of the BLWRS in the renovation of waste.









Soil temperatures reported in Table 21 show that by November 1 the soil




temperatures in the anaerobic zone reached 10° C or lower.  At the same time




the concentration of nitrate in the effluents increased greatly probably due




to the reduced efficiency of the denitrifiers at this temperature and below.




This reduction in denitrification capacity is a reason for not attempting to




overrate the BLWRS during cold weather even if spreading and infiltration of




wastewater could be achieved.









Oxidation-reduction potential measurements for part of the summer of 1972 are




shown in Table 22.  During the early part of the spring and summer the North




BLWRS had been loaded very heavily with waste.  This caused the surface soil




down to 30 cm to have some negative redox potentials.  This could cause




denitrification in (:his portion of the BLWRS.  In contrast,the South BLWRS




                                      110

-------




w
«
o
M
H
£5
W
U
C/l
w
M
pq
o
w
o

1
C/J
|J
pq

a
0

C/l
H

f-H
W
r^
W
H
M
0
M


rH
CM
0)
r-H
•§
H









rH
•H
o
CO

c
'H
co
JS
4-1
a
0)
T3

 O1 >£>
vo m o
              oo oo  cn
m •* m oo
oo cn
                    CM
   i— CM m  o oo CM
CMCMCMCMCMCNCNCNCN

        I   I   I   I   I    I   I
       oo CN a\ m rH  os rH
       CN rH rH CN        CM
        I   I   I   I   I    I   I
       ON O O O rH  rH CM
                                            rHrHrHrHt-HrH
                                     001—
                               O


                               C/3
                               CQ
 M
•H
 cd
Q
                                     rH  rH i-H  rH
                                     CN  rH i-H  rH rH
                                     a>  CM CT\
                                     CN  CN rH
                                                   f~» CM  m rH rH CM
                                         CMCMCMCMCMCMCMCMCN
        I
       •vT
        I
       OO
                                          I   I    I   I   I   I   I    I   I
                                         U-)OOOCNO><-rHONrH
                                         rHCMCMrHrHCN        CN
                                          I   I    I   I   I   I   I    I   I
                                         a\CT\O\OOOrHrHCN
                                111

-------


w
a
H
M c/3
H
W rJ
Q O

Cfl rJ
w
§ £2
W M
PH
(3 CM
Crt I~-
|j rH
rT[
. "I £)
3
H PH
H W
H t3
O tn
PM
O H
H
H O
CJ ^
1 — j ^_j
0 rt
SB
1 en

£3 s
O rJ
M M
H

g r^
«
4J LO
3 ---
o r^
u:


oo
CM
^•^
vO






, — |
oo



in oo
erf CM
[S *"^
i-J r*^
m

t~*,
^J
^
O LO
23 **^"
r^



00
CM

VO



0)
4-1
cd
Q
0 0
rH 00
CM rH


O O
en <•
rH rH


O O
vo 00
rH rH




LO oo
03 rH
rH CM






O LO O
CA rH O>



O 0 O
O r^ CM
CM rH






O O 0
vo vo vo
1



O O O
O f» rH
rH | rH


3

•M
cu LO

-------
was less heavily loaded and had positive redox potentials until the water table




and anaerobic zone was reached at 150 cm deep.  Even though the North BLWRS




had negative potentials at depths to 30 cm,there was an aerobic zone between




the surface and the deep anaerobic zone at the bottom.  This zone might be




considered to be a zone for the oxidation of reduced substances in percolating




water but the fact that there was considerable ammonium nitrogen in the effluent




at this time indicates that it was not sufficient to oxidize or there was not




sufficient time to convert ammonium to nitrate.









Some oxygen diffusion rate data is presented in Table 23 to illustrate how




these rates changed with time and varied over the surface and at depth in the




BLWRS depending on the waste loading schedule and rates.  When oxygen diffu-




sion rates are above 35 they are adequate for aerobic respiration of plant




roots and microbes.  In the BLWRS soils the oxygen diffusion rates often




increased with depth which is not  normal for the usual static soil systems




but is due to the large amount of organic matter and biological activity in




the surface and the fact that the soil surface is often saturated for periods




during waste loading.









The differences in oxygen diffusion rates on the Swine North July 5 and 6 are




due to the fact that this BLWRS had been loaded for a week up to the 5th




and then in one day the BLWRS drained sufficiently to go from an oxygen




deficit to a condition of sufficient oxygen.










The data reported for July 21 shows that there is variation from place to




place on the top of the BLWRS during loading with some areas deficient and




some sufficient depending on micro relief.  This data also shows that the




                                     113

-------
CO
e
CM
W
Q
^
6;
M
CO
52
CO
p4
^
I-J
PQ

W
Ed
H
53
0
CO
geM
2 tr>
rH
*T-
053
Wt J
p^
CO
p CO
ULf TV1
pti H
M 
M
P
M
W Q
^ 53
^J ^
4
CO
CM
01
r-H
•§
H











e
a
I
4-1
a
0)
«





in
r— )




•
(^
m •
• «
"*•» •
o




in
•
CM

























vo m o v3- o-
CO in VO CM CM






CM -* oo co rv,
co in st CM CM






CM vo o sf in
CO <3" CO CM CM












rH
m vo CM
r~> pv. t^.
J3 J3 J3
4J 4J 4J
Lj Lj l_i
WWW
O O 0
53 55 53
Q) Q) QJ
a a c
•H -H -H
&"4 **
t> »>
CO CO CO
                vO
             m
                CM
                CM
             4J
             3
             O
             tfl
             0
114

-------
Swine North which had been loaded very heavily was generally deficient over




the surface in contrast to the Dairy South which had a lesser loading rate.









Soil gas composition in the Swine BLWRS at various depths during the period




of time are given in Table 24.  The most interesting observation is the fact




that gaseous composition of the BLWRS soils change so rapidly after the




application of waste commences or ceases.  The extremely low values of oxygen




concentration and high values of carbon dioxide that are developed with waste




application are  usually not encountered in normal soils.









Prior to the  time period reported the North Swine BLWRS had been loaded




heavily for two weeks and during the period continued with alternate




three days resting and three days loading.  The South BLWRS  had just  the




opposite cycle.  The North BLWRS had extremely low oxygen concentration,




1.4% being the lowest, and high carbon dioxide concentrations, 18.5% being




the highest.  This was due to the heavy loading prior to this period.  Even




during the three-day rest periods there was only minor recovery.  After the




application ceased on August 1 the North BLWRS did almost recover within the




next four days.  The South BLWRS, in contrast, had not been heavily loaded and




did not have the residue of waste at the surface nor was it as wet.  The




oxygen and carbon dioxide concentrations on this BLWRS responded to the




three-day application and three-day rest periods very rapidly and almost




recovered to a normal condition during the rest period.  The concentrations




never reached the extremes of those on the heavily loaded BLWRS.









This environmental data can help explain some of the problems that develop




when the BLWRS are overloaded and how these are related to less efficient




                                     115

-------

1
PQ
w
1
g
H
2
H
co
B
PH
M

CO
!=)
O
M
3 -
> CM
I-.
33
U (14
0 0
X P4
O W
rH £
Q S
£3
a w

pq pq
3 F**4
p K
i|
o o
£2
S3
U
C^ rt.
|
OO CM r-. vD
<}• oo oo &\



m o i*» o
m -^ m rH
si* *sf co N in >a-
CN rH rH rH rH
oo
O CO O\ CO 1 — •  si" o
C^ t _i o\ vO Is""* C^
 O~>
CM CM CM CM r-H rH
vo co oo sr co
O 
O"\ vTt CN O^ i — 1
CM co m m vo
ST rH 00  vo m in st
rH
oo I-H CM o m P"-
CO rH CT> 
116

-------
renovation of the waste.  It seems reasonable that shorter cycles of three




days to a week would be best to maintain the aerobic zone for maximum




decomposition of the organic matter and oxidation of nitrogen to the nitrate




form.  Actually, observations of the conditions on the surface of the BLWRS




such as the ponding on the surface that persists for a long period after the




application ceases is a good visual means of determining when the application




rate should be reduced or the BLWRS allowed to rest.
                                     117

-------
                                 SECTION VIII

                                  REFERENCES

 1.  American Public Health Association.   1971.   "Standard Methods for the
     Examination of Water and Wastewater".  New  York.

 2.  Bouyoucos,  G.  J.   1951.   A recalibration of the hydrometer method.
     Agron.  Jour.  43:434-438.

 3.  Bremmer, J. M.  1965.   Total Nitrogen.   Chapter 83 in Methods of Analysis.
     Agronomy No.  9, part 2.   Chemical and Microbiological Properties.
     American Society of Agronomy.

 4.  Bundy,  L. G.  and J.  M.  Bremmer.   1972.   A simple  titrimetric method  for
     determination of inorganic carbon in soils.   Soil Sci. Soc.  Amer.  Proc.
     36:273-275.

 5.  Erickson, A.  E. ,  J.  M.  Tiedje,  B.  G.  Ellis  and C. M.  Hansen.  1971.  A
     Barriered Landscape Water Renovations System for  removing phosphate and
     nitrogen from liquid feedlot waste.   Proceedings  of the International
     Symposium on Livestock Wastes.   Am.  Soc. Agr.  Eng. Pub. pp.  232-234.

 6.  Flocht, D.  D.  and H.  Joseph.  1973.   An  improved  method for the
     enumeration of denitrifying bacteria.  Soil Sci.  Proc., 37:698-699.

 7.  Jackson, M. L.  1956.   Soil Chemical Analysis. University of Wisconsin.
     p.  141-144.

 8.  Kardos, L.  T.   1967.   Waste water renovation by the land - a living
     filter.  Agriculture and the Quality of  Our Environment, AAAS Pub.
     85:241-250.

 9.  Lemon,  E. R.  and A.  E.  Erickson.   1952.   The measurement of oxygen diffusion
     in the  soil with a platinum microelectrode.   Soil Sci. Soc.  Amer.  Proc.
     16(2):160-163.

10.  Lowe, R. H. and J. L.  Hamilton.   1967.   Rapid method for determination of
     nitrate in plant and soil extracts.   J.  Agr. Food Chem. 15:359:361.
                                      118

-------
  SELECTED WATER
  RESOURCES ABSTRACTS

  INPUT TRANSACTION FORM
                                                   rt No.
w
     SOIL MODIFICATION FOR DENITRIFICATION AND PHOSPHATE
     REDUCTION OF FEEDLOT WASTE
     Erickson, A.  E.,  et al.
     Crop  and  Soil  Sciences Department
     Michigan  State University
     East  Lansing,  Michigan 48824
                                                                  5.  Atporf Dm
                                                                  5,  } ';Tfartni.,f, Organ.B
                                                                     Report fto.
                                                                    13040 FYK
  13040  FYK
   Type f Repa  and
   Period C
  n.
                                                        Agency
      Environmental Protection Agency report number, EPA-660/2-7^-057 > June
     The  efficiency of pilot-size Barriered Landscape Water Renovation Systems  (BLWRS)
     to renovate flushed livestock waste was studied.  The BLWRS is a modified permeable
     soil that has  an aerobic zone for the filtering and oxidation of the waste and an
     anaerobic zone to which an energy source is added to create an environment for
     denitrification.

     Two  pairs of BLWRS 0.008 ha. in size were constructed using a polyvinyl barrier to
     create  the anaerobic zone and contain the effluent.  Flush waste from swine or
     dairy cattle were applied on each pair of BLWRS.  The waste effluents and BLWRS
     soil were periodically analyzed for nutrients, oxygen demand and pathogens.  •

     At manure loading rates of up to 122 t/ha. swine waste and 93 t/ha. of dairy
     waste,  the BLWRS had an efficiency of 80% and 97% for nitrogen renovation, greater
     than 991  for phosphate and 93% for carbon.  The oxygen demand dropped 50- to 100-
     fold.   Under normal operating conditions, the pathogenic indicator organisms did not
     appear  in the  effluent.

     The  BLWRS has  been shown to be an efficient system for renovating large quantities
     of livestock waste and should be tested on a commerical scale with continuous
   ,,  monitoring.       '            ~  ~~~~                                               ""
   17a TfeM.riptot £>

     Hogs, Dairy industries, Denitrification, Aerobic treatment, Anaerobic conditions,
     Soil treatment,  Waste treatment
    Barriered landscape water renovation systems, Organic matter decomposition,
    Phosphate fixation
                         05D
                                                      Send To:
                                                      WATER RESOURCES SCIENTIFIC INFORMATION CENTER
                                                      US DEPARTMENTOF THE INTERIOR
                                                      WASHINGTON D C 2O24O
U S GOVERNMENT PRINTING OFFICE: 1974— 546—319 444

-------

-------