-------
Id
H
O
s
I— I
Q
O
CO
Q
O
CO
O
00
O
n
fo
28
-------
7J Fig. 3
Hercury
cell
electrolysis
uiapnragm
cell
electrolysis 42
:oo!1ng H,OT±
RefHg
Electr
©-*>-
Figs. 20,21
Spent H,SO, to 1 ^
other plant us* J ^
FIGURE 15. CHLORINE AND CAUSTIC SODA VIA ELECTROLYSIS
29
-------
4) F1g. 3
. 7,8
Leaching/
Clarifying ..
Cooling
Cooling HzO
Heat
Evaporation/
crystallization
Cooling H20;
H20-
Heat -
He
at — i
Drying
11
9
Evaporation/
crystallization.
Heat
1
Fusion/
grinding 4g
Heat-
Heat
Drying
Heat—^
H2SO,,
Fusion/
grinding
o salt ca
recovery
Fig. 7
FIGURE 16. BORAX, BORIC ACID AND COLEMANITE FROM EVAPORITES
Calcined
•^•fcolemanltel
30
-------
w
H
CO
§
w
Q
M
Pi
O
--
O
CO
CO
O
;=>
o
31
-------
w
H
CO
Q
13
M
w
PQ
O
Pn
CO
CO
O
PH
00
,—1
|
O
H
fn
32
-------
o
H
*r"
f—i
§
fe
CO
Q
O
CO
O
33
-------
c
o
*—
Hydrochloric
acid formation 59
1 SI
r
|
M
O
W
t-I
CN
rH
U
bO
O
J
»-i-4
U
Q
M
W
w
O
M
34
-------
H,0
3
Dissolution/
clarifying
Heat
Cooling water±~] (i
Evaporation/
:rystallization
Heat
Make-up CaCl2-
Electricity -
10
Drying
11
— i l
Electrolysis
58
Filtration
16
NaOH.l
BaClJ
.FeClJ
_j Bleed stream 1
j_to waste pondj
F1g. 15
FIGURE 21. SODIUM METAL VIA DOWNS CELL
35
-------
n
i i
«
*>
n
£
o
Ol
c
B
o
,r
m o
QJ M
n re
Evaporation/
:rystal!1zation
10
.__
r" -r i
tt n(J
«-• i-« «!
10 41 ro
n
IO
OJ
I?
«l <0
o
c
— o
gs
4-» N
IO •^>
J_ •—
O r—
CL IO
10 4->
> M
UJ >,
0
1
o z
O
C
o
o
W
O
PQ
Q
O
C/3
Q
w
Q
i— t
Q
O
Q
O
W
Q
O
hJ
ffi
CJ
CXI
CM
36
-------
Cooling H20;
Electricity
Na2CrOu
[ Electrolytic
I chlorate
| production 66
Cooling H20:
HaO.
Steam
to flares
I Bad,
Urea
A
Evaporation/
crystallization
in
Sodium chlorate
drying 67
FIGURE 23. SODIUM CHLORATE VIA ELECTROLYSIS
37
-------
Open pit mining
5
no—j
Froth
Flotation
15
^0
^ '
I Fsiurried solids
Fine CaCO,
Water
Heat
)»-*•
~L
l_to pona gr \i\ it; j ^
t 9 Heat -1 t
Calcination/
grinding ,
Calcination/
grinding
?
Ground
alkaline
clInker
Heat
IL
!
r
A
Leaching/
Clarifying
47
-4
Grour
6-
spodumene
V clInker /
Heat
Cooling
Heat
Moist
L10H-H,0
crystals
[Cone. H2SO,
Waste solids
[to pond or pile
1 ^
r
Digestion
63
Ca(OH)a
Leaching/
filtration/
evaporation
sat— i ,
r
Drying/
Calcination "\2
Cooling H20;
Rpfrig.-
Na,CO,-
fsiurried solid
|to pond or
Heat
Evaporation/
crystall ization
10
Hea
/Na2SO.
j mother
V liquor
Heat
Dry1 ng
11
FIGURE 24. LITHIUM VALUES FROM
SPODUMENE
38
1 '
t
Dryi ng
11
9
-------
BRINE AND EVAPORITE CHEMICALS PROCESS NO. 1
SCREENING/CHLORINATION
1. Function
This process (see Figure 3) accomplishes two objectives:
(1) removes floating debris from seawater prior to the
latter 's entry into intake pump suctions and seawater
pipelines; and (2) kills marine organisms present in
raw seawater, thereby preventing fouling of seawater
pumps and pipelines.
Trash screens are usually about 3-cm2 mesh of corro-
sion resisting alloy wire. Screens are either removable
or of self-cleaning "roller towel" type. Screens are
usually protected by a steel-bar grizzly. Chlorinating
equipment may be of standardized off-the-shelf design.
This process also includes seawater pumping. The
screened/chlorinated seawater is forwarded to Process 2.
2. Input Materials
Raw seawater - Quantities required in cubic meters per
metric ton of product assuming 3-3$ salinity and 100$
extractive efficiencies:
Mg(OH)2
Mg metal 800
Chlorine - Kilograms of C12 (average) per metric ton of:
Seawater 0.002
Mg(OH)2 0.6
Mg metal 1. 5
Operating Parameters
Prevailing near-shore salinity and temperature - Pepends
on exact location of intake.
Chlorination - Either by diffuse bubbling of chlorine gas
below the surface of seawater in flumes or by injection
into pipelines. Chlorination may be either continuous
or intermittent at 12-hour intervals and is usually
controlled to approximately 1 ppm residual Cla.
39
-------
i». Utilities
Electric energy consumption (for pumping seawater)
expressed in kWh per metric ton of product, assuming
same seawater conditions named in 2 above, and assuming
10-foot total head and 75$ overall efficiency of
pump-motor unit:
Mg(OH) 2 3 to 4
Mg metal 8 to 9
5. Waste Streams
Amount of C12 entering atmosphere is sufficient to
detect by smell in immediate vicinity.
Trash recovered from screens is incinerated or
buried.
6. EPA Source Classification Code
None established.
7. References
Mangum, D. C., B. P. Shepherd, and W. P. Mcllhenny.
Methods for Controlling Marine Fouling in Intake
Systems. U. S. Department of the Interior, Washington,
D. C. Office of Saline Water R & D Progress Report
No. 858. (PB 221 909). June 1973. 124 p.
Shepherd, B. P., P. G. LeGros, J. C. Williams, and
D. C. Mangum. Intake Systems for Desalting Plants.
U. S. Department of the Interior, Washington, D. C.
Office of Saline Water R & D Progress Report No. 678.
April 1971. 222 p.
White, G. C. Handbook of Chlorination. New York,
Van Nostrand Reinhold. 1972. 7^4 p.
40
-------
BRINES AND EVAPORITE CHEMICALS PROCESS NO. 2
BICARBONATE REMOVAL
1. Function
This process (see Figure 3) eliminates or substantially
reduces the concentration of bicarbonate ions plus sus-
pended solids contained in seawater from Process 1. It
also increases the level of purity of the Mg(OH)2 pre-
cipitated in Process 7, Figure 4.
Major equipment includes agitated flocculator, plus
settling ponds or thickening tanks.
This process may be bypassed if the Mg(OH)2 subsequent-
ly produced is used for production of magnesium metal.
2. Input Materials
Quantities of materials per metric ton of product
(typical):
For Mg(OH)g For Mg metal
"Sterile" seawater 3^0 m3 800 m3
Ca(OH)2, or 90 kg 220 kg
NaOH 97 kg 240 kg
3. Operating Parameters
The process is conducted at ambient temperatures. A
clarifying tank is typically about 160 meters (500 feet)
in diameter by 4 meters (12 feet) side wall depth for
a seawater flow of 80 cubic meters per minute (20,000
gpm) .
Additions of Ca(OH)2 or NaOH are typically controlled
to precipitate approximately 5% of the total magnesium
content, corresponding to pH values in the neighborhood
of 9-5.
4. Utilities
Approximately 5 kW for clarifier tank plus, typically,
50 kW for flocculator tank. Total electric power
expressed in kWh per metric ton of product:
Mg(OH)2 2 to 4
Mg metal 5 to 10
41
-------
5. Waste Streams
The sole waste stream is a slurry of CaC03 and clay
particles suspended in seawater, typically carrying
150 grams total suspended solids per liter. The waste
stream is innocuous. Depending upon conditions, it
may be:
•Diluted with seawater and discharged into the tidal
system.
•Neutralized with dilute HC1, the resulting neutral
solution then being discharged into tidewater.
•Discharged into diked ponds, where further thickening
occurs, qualifying the disposal as landfill operation.
6. EPA Source Classification Code
None established.
7. References
Schambra, W. P. The Dow Magnesium Process at Preeport,
Texas. Trans. Am. Inst. Chem. Eng. 4^:35-513 January
1945.
42
-------
BRINE AND EVAPORITE CHEMICALS PROCESS NO. 3
SOLUTION MINING
1. Function
This process (see Figure 3) obtains the desired mineral
in solution form at the surface, by dissolving the under-
ground mineral deposit with injected water. This process
applies to the recovery of sodium chloride from salt domes
and layered deposits at several locations and to the re-
covery of sylvinite at Moab, Utah.
Equipment consists essentially of high-pressure pumps and
piping. The latter, both for injection water and solu-
tion, is typically contained inside casing cemented into
both overburden and producing formation. Solution tub-
ing may be concentric with injection water tubing, or
be contained in separate well casing.
This process includes storage for both water and solution
and equipment for water treating. The NaCl brine is for-
warded to Process 3^, Figure 14, or Process 35, Figure 15.
2. Input Materials
In the case of solution mining salt domes for NaCl re-
covery, the total weight of solids dissolved from the
deposit Is only slightly greater than the weight of NaCl
produced.
Approximately 2.5 metric tons of sylvinite ore are dis-
solved per metric ton of KC1 produced.
3. Operating Parameters
Injection water temperatures vary seasonally between 0°
and 25°C. Recovered brine temperatures are as high as
35°C.
A typical salt "well" may produce between 250 and 1,000
metric tons per day of NaCl.
In sylvinite mining, between ^ and 12 cubic meters per
minute (1,000 to 3,000 gpm) is the typical flow from an
extraction well.
43
-------
4. Utilities
Water requirement in cubic meters per metric ton of
product:
NaCl 2.8 to 3.0
KC1 7.0 to 8.0
5. Waste Streams
Fragments of anhydrite, gypsum and sand are carried
in the brine from the solution cavity of a salt dome.
This is settled out in a pond or tank. Their ultimate
disposal is by landfill (abandonment in pond). This
waste is estimated at <0.5$ by weight of the NaCl in
the recovered brine.
Solid wastes of sand and clay particles are believed
to result from solution mining potash, but no quantit-
ative information is available.
6. EPA Source Classification Code
None established
7. References
Jackson, D. Solution Mining Pumps New Life into Cane
Creek Potash Mine. Eng./Min. J. 174:59-69. July 1973.
-------
BRINE AND EVAPORITE CHEMICALS PROCESS NO. 4
SHAFT MINING
1. Function
This process (see Figure 3) brings ore to the surface
from a relatively deep ore body using dry, mechanical
methods and without the necessity of removing the over-
burden. (Similar to classical concept of coal mining.)
This process usually involves sinking a central shaft.
Mining proceeds by "room-and-pillar", or similar methods,
employing various devices of attacking the ore in place:
drilling and blasting, use of "continuous mining" equip-
ment , etc .
Equipment is identical or similar to that used in under-
ground coal mining: rock drills, undercutters, front-
end loaders, roof-bolting equipment, belt conveyors, central
elevator, etc.
2. Input Materials
Subsurface ore deposits are the starting materials for this
process. The weight of ore removed per metric ton of end
product varies widely from mine to mine for any one material
Estimates of this ratio are:
Halite to crushed rock salt: <1.02:1
Sylvinite to granular KC1: 2.5:1 to 4:1
Langbeinite to K2SCU: 1.1 to 1.5:1
Trona to soda ash: l.if to 1.6
3. Operating Parameters
A typical scale of mining operations for a single mine in
terms of product output in thousands of metric tons per
year capacity:
Crushed rock salt: 800 to 1,500
KC1 plus K2S04: 500 to 1,000
Soda ash: 500 to 1,500
4. Utilities
Electric power is the chief form of energy used in under-
ground mining operations. Requirements are 1 to 20 kWh
per metric ton of any of the products mentioned in this
process description.
45
-------
5. Waste Streams
Mining operations are inherently dusty. Dust-laden
air in the underground galleries, frequently contain-
ing gaseous products of blasting, is carried by the
ventilating system and exhausted to the atmosphere
in undisclosed quantities and concentrations.
From a practical standpoint, there are no liquid emis-
sions from underground mining operations of evaporites.
Solid wastes associated with shaft mining processes
result directly from crushing, screening and sizing
processes and in this study are listed in the descrip-
tions of the latter.
6. EPA Source Classification Code
3-05-022-01 Mine-Grind/Dry
7. Preferences
First Symposium on Salt. Bersticker, A. C. (ed.).
Cleveland, Northern Ohio Geological Society, 1963.
661 p.
Harley, G. T., and G. E. Atwood. Langbeinite—Mining
and Processing. ind. Eng. Chem. 39: 43-47, January 1947.
Jacobs, J. J. Potassium Compounds. In: Kirk-Othmer
Encyclopedia of Chemical Technology, 2nd Edition.
Standen, A. (ed.). New York, John Wiley and Sons, Inc.,
1968. 16.: 369-^00.
Kellogg, H. H. Energy Efficiency in the Age of Scarcity.
Journal of Metals. 26: 25-29, June 1974.
Magraw, R. M. New Mexico Sylvinite. Ind. Eng. Chem.
_3_0: 861-871, August 1938.
Second Symposium on Salt. Raw, J. L. (ed.). Cleveland,
Northern Ohio Geological Society, 1966. 443 p.
Third Symposium on Salt. Raw, J. L. and L. Dellwig (ed.).
Cleveland, Northern Ohio Geological Society, 1970. 486 p.
Turrentine, J. W. Potash in North America. ACS Mono-
graph Series, No. 91. New York, Reinhold, 1943. 186 p.
von Perbandt, L. K. Salt Mining. In: Sodium Chloride.
ACS Monograph Series, No. 145. Kaufmann, D. W. (ed.).
New York, Reinhold, I960. p. 109-126.
46
-------
White, N. C., and C. A. Arend, Jr. Potash Production at
Carlsbad. Chem. Eng. Progr. 46: 523-531, October 1950.
47
-------
BRIIIE AND EVAPORITE CHEMICALS PROCESS NO. 5
OPEN-PIT MINING
1 . Function:
The process (see Figure 3) recovers ore from an orebody,
by removing the overburden, either prior to or during the
removal of the ore itself. This process is applicable to
the mining of kernite and colemanite.
Equipment employed includes power shovels, draglines,
front-end loaders, scrapers, bull dozers, dump trucks,
conveyor belts, blasting equipment and other excavating
and earth-moving machinery.
The process may include the steps of crushing, grinding,
and drying. The mined ore is forwarded to Process 6.
2. Input Materials
The unmined ore is the input material. Ratios of weight of
ore mined to weight of product recovered are estimated as
follows for the products involved in this process :
Kernite to BaOa contained in products: 4 to 5
Colemanite to calcined colemanite: 1.3 to 2.0
3. Operating Parameters
As an indication of the scale of specific open-pit
mining processes applied to kernite and colemanite,
typical mining capacities of a single operation are
given below in thousands of metric tons per year of
the stated material. These values have been inferred
from published information.
Kernite 1,000
Colemanite 150
lJ. Utilities
Most equipment is usually powered by self-contained
internal combustion prime-movers, consuming gasoline
or diesel fuel. Other units use compressed air. In
some cases electrical energy is used, supplied either
by trolleys or trailing cables. Total energy consump-
tion obviously varies over a wide range, depending on
type and depth of overburden and identity of the ore.
48
-------
5
Total consumption of energy in all forms is estimated
to vary from 2 to 20 kWh per metric ton of end products
involved.
It is conjectured that fresh water may be consumed for
dust abatement. Quantitative information is
unavailable.
Waste Stresms
Open pit mining is inherently a dusty process, producing
considerable quantities of particulate emissions from
the blasting, crushing and loading steps. Inadequate
quantitative information is available.
Particle size range of atmospheric emissions in kernite
mining is 0.5 to 20 microns. These dusts amount to an
estimated 4 to 5 kilograms per metric ton of B203
contained in the various forms of borate end-products.
EPA Source Classification Code
3-05-023-01
3-05-040-01
3-05-040-02
3-05-040-03
References
Chem. Wk. 109:
Mining/Processing
Open Pit-Blasting
Open Pit-Drilling
Open Pit-Cobbing
39-40, August 11, 1971.
Kellogg, H. H. Energy Efficiency of the Age of
Scarcity. Journal of Metals. 26: 25-29 June 1974.
Wang, K. P. Boron. In: Minerals Yearbook, 1971.
Schreck, A. E. (ed.). Washington, U. S. Bur. Mines,
U. S. Dept. of the Interior, 1973- 1:228.
Woodmansee, W. C. The Mineral Industry of California,
In: Minerals Yearbook, 1971. Schreck, A. E. (ed.).
Washington, U. S. Bur. Mines, U. S. Dept. of the
Interior, 1973. 2:139.
49
-------
BRINE AND EVAPORITE CHEMICALS PROCESS NO. 6
COARSE CRUSHING
1. Function
This process (see Figure 3) reduces the maximum size of
large lumps of ore to sizes permitting accommodation by
subsequent handling equipment such as stockpile conveyors,
storage hoppers or railcar and truck loading equipment.
This process may be required on only a portion of the
ore mined and in some operation is omitted entirely.
Equipment used includes any of several types of primary
crushers such as jaw crushers, cone crushers and roll
crushers. Screens and other size-separation equipment
may be included.
2. Input Materials
Coarser fractions of the mined ore: ^1 metric ton per
metric ton of product.
3. Operating Parameters
Capacities of crushing equipment employed vary as much
as several hundred metric tons per hour. Crushed
material output varies from 5-cm lumps to A- or 8- mesh.
Crushing equipment may be located both inside the mine
and at the surface.
4. Utilities
Input electrical energy varies with hardness of ore and
size-reduction ratio, between 0.5 and 5 kWh per metric
ton crushedproduct, corresponding to estimated electrical
energy inputs per metric ton of finished product as
follows:
NaCl (from rock salt) 1 to 2
KC1 (from sylvinite) 3 to 6
Calcined colemanite 2 to 3
Borax decahydrate
(from kernite) 1 to 2
Soda ash (from trona) 4 to 5
5. Waste Streams
Particulate atmospheric emissions almost invariably
accompany crushing and dry screening processes. No
50
-------
quantitative information is available on the materials
considered here.
Solid waste streams consisting of the gangue material
may be separated from the ore in amounts estimated
between 1% and 10% of the feed weight. The identity of
the gangue is listed below for some of the ores under
consideration.
Ore Usual gangue
Rock salt Anhydrite, sand, gypsum
Sylvinite Clay, anhydrite, sand
Colemanite Clay
Trona Shale
6. EPA Source Clas s if i c a t i o n Code
3-05-040-30 Primary Crusher
3-05-022-01 Mine-Grind/Dry
3-05-040-34 Screening
7. References
Lincoln, T. W., and A. L. Stern. Size Reduction and
Size Enlargement. In: Chemical Engineers' Handbook,
4th Edition. Perry, R. H., C. H. Chilton, and S. D.
Kirkpatrick (ed.). New York, McGraw-Hill, 1963.
p. 8.: 1-64.
Turrentine, J. W. Potash in North America. ACS
Monograph Series No. 91> New York, Reinhold, 1943.
186 p.
White, N. C., and C. A. Arend, Jr. Potash Production
at Carlsbad. Chem. Eng. Progr. 4_6:523-531,
October 1950.
51
-------
BRINE AND EVAPORITE CHEMICALS PROCESS NO. 7
SETTLING/FILTRATION
1. Function
This process (See Figure 4) obtains magnesium hydroxide
in the form of washed filter cake from various brines
and semi-processed liquors from Processes 1 and 2,
Figure 3.
Magnesium hydroxide is precipitated from the brine in
an agitated flocculator tank by the addition of lime,
dolime or caustic soda and then allowed to settle out
and thicken in settling tanks. The thickened sludge
is filtered and water-washed to yield a filter cake
containing approximately 35 weight percent magnesium
hydroxide. The filter cake is forwarded to Process 56,
Figure 20, or Processes 8, 10, or 12, Figure 4 .
2. Input Materials
These may be seawater or any other surface brine,
bitterns resulting from the solar evaporation of sea-
water, or natural underground brines (notably well
brines from various formations underlying the state
of Michigan). The magnesium content of these materials
varies from approximately 0.12% Mg in the case of sea-
water, through 0.8% Mg in some Michigan brines, to as
high as 1% in the case of seawater bitterns.
Typical quantities of input materials per metric ton
of magnesium hydroxide recovered:
Seawater 300 to 350 cubic meters
Seawater bitterns 5 to 7 cubic meters
*Ca(OH)2 or 1.3 metric tons
*NaOH 1.4 metric tons
*An excess of approximately 20% is required if the
Mg(OH)a is used to produce magnesium metal.
3. Operating Parameters
In the case of seawater, sizes of settling or thickening
tanks are typically 50 to 80 meters in diameter by 3
meters side wall depth, or may be square ponds approxi-
mately 150 meters on edge, equipped with several raker
52
-------
arms. One 60-meter diameter settling tank is required
to produce approximately 35 metric tons per day of
magnesium hydroxide.
4. Utilities
The major consumer of electrical energy in this process
is the agitator (circulating pump) in the flocculator
tank. This uses about 80% of the 13 kWh total per metric
ton of magnesium hydroxide in the case of seawater.
5. Waste Streams
The supernatant spent brine from the settling tanks and
the filtrate (identical in composition to the former)
are the two waste streams. Together, they amount to
between 300 to 350 cubic meters per metric ton of mag-
nesium hydroxide. These streams are usually neutralized
with waste HC1 prior to discharge. In the case of
seawater, the waste stream is discharged into tide
water. In the case of Michigan brines, the stream
of spent brine is used to beneficially recover sodium
and calcium chlorides or may be sent to injection wells.
6. EPA Source Classification Code
None established
7• References
Schambra, W. P. The Dow Magnesium Process at Freeport,
Texas. Trans. Am. Inst. Chem. Eng. 41:35-51, January
53
-------
BRINE AND EVAPORITE CHEMICALS PROCESS NO. 8
CARBONATION/FILTRATION
1. Function
*a. For magnesium chloride production (Figure 4) - To
form magnesium chloride solution from magnesium hydrox-
ide, calcium chloride and carbon dioxide. The process
includes the sequential steps of carbonation, thicken-
ing, filtration, displacement washing, and evaporation.
Equipment consists essentially of a carbonation tank,
thickeners, and filters (which may be of either the
continuous rotary or the Moore type), and evaporators.
The latter may be either steam-tube or vertical
falling-film evaporators.
b. For magnesium carbonate production (Figure 4) - To
f"orm either magnesium carbonate crystals [MgCo3-3H20]
or basic magnesium carbonate [5MgO*4C02'6H20] from a
magnesium hydroxide slurry and carbon dioxide. Essen-
tial equipment includes a carbonating tank, and thick-
ening and filtration equipment. The latter may be either
Moore filters or continuous rotary vacuum filters.
c. For Searles Lake brine (lower level) (Figure 8) - To
form and to recover sodium bicarbonate from lower level
brine of Searles Lake. Addition of carbon dioxide con-
verts the sodium carbonate in solution to sodium bi-
carbonate. The sodium bicarbonate precipitates from
solution and is removed by filtration.
The mechanism of carbonation (acidification in general)
shifts the borax equilibrium from the soluble metaborate
form to the crystallizable tetraborate form, resulting
in an increased yield of borax. Sodium bicarbonate
can be separated from the borax due to the metastability
of borax at the lower supersaturations occurring in car-
bonation towers.
The process consists of sequential steps of carbonation,
settling, filtration, and displacement washing.
Essential equipment consists of a series of carbonating
towers, settling tanks, and continuous rotary filters.
d. For production of soda ash by the Solvay Process (Figure
14)- to form and to remove sodium bicarbonate from a
* Separate industry operations employing the process are
identified with a specific lower case letter which is
retained as an identifier in each element of this process
description.
54
-------
sodium chloride brine saturated with ammonia.
Addition of carbon dioxide causes sodium bicarbon-
ate to precipitate from solution, with the formation
of ammonium chloride in solution.
The process includes the steps of carbon dioxide
compression, carbonation, filtration, and displace-
ment washing.
Major equipment employed consists of:
•Centrifugal compressors for compressing stack
gas and recycled carbon dioxide.
•Several carbonating towers in series ("Solvay
Towers").
•Coolers for removing heat of reaction released
in the carbonating towers. These are either
tube-and-shell exchangers, submerged pipe
coils, or water-sprayed pipe banks.
•Filtration equipment, either rotary vacuum
filters or centrifuges.
2. Input Materials
a. Washed magnesium hydroxide, calcium chloride solution,
and carbon dioxide (flue gas or lime-kiln stack gas)
are fed to the process in the quantities listed, as
metric tons per metric ton of MgCl2 product, assuming
100% recovery efficiencies.'
Mg(OH)2 0.61
OcLOJ-2""""""""™™• — — — — — — _]_ t J_ Q
C02 0 . 46
(equivalent to 250 cubic meters
of free, 100$ C02)
b. Washed magnesium hydroxide and carbon dioxide (flue
gas or lime kiln stack gas) are fed to the process in
the quantities listed, as metric tons per metric ton
of MgC03»anh. product, assuming 100$ recovery efficien-
cies :
Mg(OH)2 0.7
C02 0 . 5
(equivalent to 280 cubic meters
of free, 100$ C02)
c. Raw brine from the lower structure and carbon dioxide
(flue gas, plus recycled calciner gas) are fed to the
process in the estimated quantities shown per ton of
soda ash produced:
55
-------
Raw brine 20 cubic meters
Make-up C02 0.1 metric ton
(50 cubic meters of free, 100%
C02)
d. Ammonia-saturated sodium chloride brine and carbon
dioxide (flue gas plus lime kiln stack gas) are fed
to the process. The quantities of materials actually
consumed in the process (weight entering minus weight
leaving) per metric ton of soda ash produced are es-
timated as follows:
NaCl 1.1 metric tons
C02 0.5 metric ton
Total quantities of materials entering the process,
in metric tons per metric ton of soda ash produced
are estimated as follows :
NaCl 1.5 metric tons
NH3 0.5 metric ton
C02 1.2 metric tons
The numbers given above indicate the considerable
quantities of materials that are required to be
recycled.
3. Operating Parameters
a. The process is conducted at atmospheric temperatures
and pressures. Flue gas is required at a typical
gage pressure of about one kg/cm2.
b. Process is conducted at atmospheric temperatures and
pressures. Flue gas or lime kiln stack gas is re-
quired at gage pressure of about 1 kg/cm2.
c. Process operates at atmospheric temperature and atmo-
pheric pressure, except for the flue gas (12?0 C02)
and recycled carbon dioxide from calciners (about
7570 C02) which is required at approximately 3 kg/cm2
gage pressure.
Carbonating towers are approximately 7 meters in
diameter x 21 meters high. Six towers are required
to produce approximately 180 metric tons per day of
soda ash. Three primary towers intake 12% C02 and
three secondary towers intake 75% C02. Towers are
operated as fully-flooded bubble towers. Dorr thick-
ening tanks and rotary vacuum drum filters are used.
56
-------
d. Maximum temperature of carbonation Is controlled
to 28°C, and pressures at the top of carbonating
towers are slightly greater than atmospheric.
Towers are 28 meters high and are operated as
liquid-filled bubble towers} in series-connected
pairs. Strong C02 (73 to 77%), recycled from cal-
ciners, enters the bottom of secondary towers.
Lime kiln stack gas (37 to 42% C02) enters the middle
of the secondary towers and also the base of the
primary towers. Nitrogen, containing 3 to 7% C02,
is collected from the top of both towers and recycled
to the ammonia absorption system. Carbon dioxide
gas pressures of 3.2 kg/cm2 are required.
Conversion of sodium chloride approximates T5% per
pass. The presence of about 80% more ammonia than
is stoichlometric is required In the feed.
Utilities
a. Total electric power requirement is estimated to be
90 to 100 kWh per metric ton of MgCl2, most of which
is used for carbon dioxide (flue gas) compression.
Fresh water for displacement washing of calcium
carbonate filter cake Is estimated at 1.1 cubic
meter per metric ton of magnesium chloride.
b. Total electric power requirement is estimated to be
100 to 120 kWh per metric ton of magnesium carbonate,
most of which is consumed in flue gas compression.
Fresh water for displacement washing of magnesium
carbonate filter cake is estimated at 0.8 cubic
meter per metric ton of magnesium carbonate.
A heat source, usually low pressure steam, is needed
to heat to boiling the slurry of MgC03»3H20 prior to
its filtration in the case of basic magnesium carbon-
ate production. This is estimated to be between
500,000 and 600,000 kcal per metric ton of basic
magnesium carbonate.
c. Total electric power requirement is estimated to be
100 to 120 kWh per metric ton of soda ash produced,
most of which is consumed in compression of C02-bear-
ing gases.
57
-------
Fresh water required for displacement washing of
bicarbonate filter cake is estimated at 0.1 cubic
meter per metric ton of soda ash. Cooling water
is required to remove 350,000 to 450,000 kcal per
metric ton of soda ash produced.
d. Total electric energy requirement is estimated to
be 150 kWh per metric ton of soda ash, most of which
is consumed in compressing C02-bearing gases.
Fresh water required for displacement washing of
bicarbonate filter cake is inferred from published
information to be between 0.05 and 0.15 cubic meter
per metric ton of soda ash.
5- Waste Streams
a. Carbon dioxide is vented to the atmosphere from the
carbonating tanks (Figure 4).
An undisclosed fraction of the spent wash water from
the filters is wasted to the main spent brine system
for eventual Injection to the brine source formation.
Principal dissolved constituent is magnesium chloride.
Sole solid waste is calcium carbonate filter cake.
Depending on economics, this is used to produce lime
and carbon dioxide, or is slurried in water and ponded,
eventually becoming landfill. This amounts to approx-
imately 0.05 metric tons of solids per metric ton of
magnesium chloride.
b. Carbon dioxide is vented to the atmosphere from the
carbonating tanks (Figure 4).
Filtrate from the magnesium carbonate filters is the
sole liquid waste stream. This quantity is estimated
to be 6 to 10 cubic meters per metric ton of magnesium
carbonate.
c. Carbon dioxide from the top of secondary absorber-
towers constitutes the sole atmospheric emission
(Figure 8).
There are no solid wastes emitted.
There are no liquid waste streams. Clears from
thickening tanks and filtrate from bicarbonate filters
are forwarded to Process 10 for borax recovery; spent
wash water is recycled to carbonating towers.
58
-------
d. Approximately 0.05 kg of gaseous ammonia per metric
ton of soda ash enters the atmosphere during transfer
of sodium bicarbonate filter cake to Process 12 (Figure
14).
There are no liquid or solid waste streams.
6. EPA Source Classification Code
a. None established
b. None established
c. 3-01-021-02 Handling
d. 3-01-021-02 Handling
7. References
a. Boeglin, A. F., and T. P. Whaley. Magnesium
Compounds. In: Kirk-Othmer Encyclopedia of
Chemical Technology, 2nd Edition. New York, John
Wiley & Sons, Inc., 1967. l_2:708-736.
b. Havighorst, C. R., and S. L. Swift. Magnesia
Extraction from Seawater. Chem. Eng. New York.
7_2:84-86, September 2, 1965.
Schambra, W. P. The Dow Magnesium Process at
Freeport, Texas. Frans. Amer. Inst. Chem. Eng.
£1:35-51, January 19^5.
Schreve, R. N. Chemical Process Industries, 3rd
Edition. New York, McGraw Hill, 1967. 183-185.
c. Bixler, G. H., and D. L. Sawyer. Boron Chemicals
from Searles Lake Brines. Ind. Eng. Chem.
£2:322-333, March 1965.
Hightower, J. V. New Carbonation Technique - More
Natural Soda Ash. Chem. Eng. 5_8_:l62-l63, May 1951.
Mies,.!!. P. Boron Compounds (Oxides, Borates).
In: Kirk-Othmer Encyclopedia, of Chemical Technology,
2nd Edition. Standen, A. (ed.). New York, John
Wiley 8- Sons, Inc., 1964. 3_:6o8-652.
Plant Expansion at Trona Boosts Soda Ash and Borax
Capacity. Chem. Eng. 56_:102-103, April 19^9.
59
-------
Deutsch, Z. G., C. C. Brumbaugh, and F. H. Rockwell.
Alkali and Chlorine Industry. In: Kirk-Othmer
Encyclopedia of Chemical Technology, 2nd Edition.
Standen, A. (ed.). New York, John Wiley & Sons, Inc.,
1963. l.:668-758.
Shreve, R. N. Chemical Process Industries,
Edition. New York, McGraw-Hi-1, 1967. 227-231.
60
-------
BRINE AND EVAPORITE CHEMICALS PROCESS NO. 9
SOLIDIFICATION
1. Function
The process yields some solid form of the desired
material from solution:
*a. Magnesium chloride in the form of 50% flake and
anhydrous poMer from nominally 'JU% magnesium
chloride liquor.(See Figure h).
b. 78% calcium chloride_flake from 78% calcium chloride
liquor. (See Figure gT).
c. Calcium chloride in the forms of 78% flake, 78%
pellets and anhydrous flake from Michigan brines
(See Figure 11).
d. Sodium hydroxide in the forms of flake, beads and
_drurnrned~solldrfrom 73% sodium hydroxide solution?
(See Figure 15 )i
e. Magnesium chloride in the form of electrolysis
cell feed (See~~Flgure 20).
The following sequential steps are included in the
process:
a. Evaporation (30% to 50$ MgCl2)
Flaking
Drying (if anhydrous form is desired)
Packaging (in bags)
b. Flaking
Packaging (In bags)
c. Flaking
Drying (if anhydrous form Is desired)
Packaging (in bags)
d. Evaporation (to molten 99.5% solid), or
Flaking (to 99% flakes), or
Pelletizing
Packaging (In drums)
* Separate industry operations employing the process are
identified with a specific lower case letter which is
retained as an identifier in each element of this
process description.
61
-------
e. Flaking
Drying
Major equipment generally consists of the following:
a,b,c: Steam-heated "boil-down" kettles
a,b,c,d,e: Water-cooled flaking rolls
a,c,e: Shelf dryer or fluidized-bed dryer
d: Flash-type, tube evaporators;
gas-fired furnaces; "shot-towers"
a,b,c: Standardized drumming equipment for
single-trip drums
2. Input Materials
a. Concentration of feed liquor may vary between 20%
and 30% magnesium chloride. Quantity required, in
cubic meters per metric ton of product:
For 50% flake: 2 to 2.5
For anhydrous flake: 4 to 5
b. Quantity of 7%% CaCl2 feed liquor per metric
ton of 78% flake is approximately 0.6 cubic meter.
c. Quantity of 78% CaCl2 feed liquor in cubic
meters per metric ton of product:
For 78% CaCl2 flake: approximately 0.6
For anhydrous flake: approximately 0.7
d. Quantity of 73% sodium hydroxide solution required
per metric ton of any one of the three solid forms
(drummed solid, flake or beads) is approximately
0.8 cubic meter.
e. Quantity of 50% magnesium chloride liquor required
per metric ton of magnesium metal produced is
6 cubic meters.
3. Operating Parameters
a. Process operates at atmospheric pressure. Temperature
of boiling 50% MgCl2 liquor in boil-down kettles is
in the range of 155°C to 175°C (46% to 50% MgCl2).
A typical size for a flaking roll is 1 meter diameter
x 1.25 meters long, water-cooled internally.
b,c. Process operates at atmospheric pressure. Tem-
perature range of the boiling nominally 78% CaCl2
liquor in open boil-down kettles is l87°C to 195°C.
6,2
-------
d. Process operates at various temperatures and
pressures. Typical are:
•120°C and slightly greater than atmospheric
pressure for 73% NaOH entering gas-fired tube
furnaces.
•480°C and approximately 370 mm. Hg absolute
pressure for NaOH stream inside tube furnaces.
•500°C and 150 mm. Hg absolute pressure for molten
anhydrous NaOH inside vacuum flash tank.
•400°C arid atmospheric pressure for molten anhydrous
NaOH entering "shot tower", or flowing to flaker
roll.
e. Process operates at atmospheric pressure. Typical
temperatures are:
•155°C to 175°C in boil-down kettles and 1?5°C for
flaking-roll feed.
•l80°C to 250°C temperature range of air to shelf
driers or spray dryers.
4. Utilities
Utilities consumed by each of the applications of
Process 9 are shown in Table 1.
5. Waste Streams
a. MaCl crystals precipitated during the concentration
step amount to approximately 20 kg MaCl per metric
ton of 50$ MgCl2 flake produced. The NaCl crystals
are removed in filter presses, slurried in water,
and are eventually injected into the producing
formation.
If anhydrous MgCl2 flake is produced, entailing
further drying of the 50% flake in an atmosphere
of HC1, atmospheric emissions of gaseous HC1 usually
result. No quantitative information is available.
Detectable quantities of MgCl2 particles and HC1
vapor constitute an atmospheric emission from boil-
down kettles and flaking rolls.
b,c. Atmospheric emissions of HC1 vapor are possible
at flaking-roll temperature resulting from catalyzed
decomposition of CaClz. No quantitative information
is available.
63
-------
c*
w
o
o
K
PH
fx^
o
o
t-H
EH
O
H
I "]
PH
P_l
^*
CO
O
H
PH
O£
£>
>H
pq
Q
fVi|
1
O
O
co
w
M
9n
M
rH
M
g
.
H
(U
H
,0
cd
EH
tfl
r*H
£_,
cd
cd
O
PH
hO
a r< •
•H cu a
H -P •
O cd 3
o Is o
o
to
OJ
H
" -P
TJ -p
0) 0)
d) r^
^H
0 0
bO Tj ?H
2 I 0)
H ,*
'65. -H cd
O O H
CO ,Q CH
LTN
H
1
CO
rH
cd
0 t>j
•H faO
rH ?H ^"1
-p
cd
O CD
^ cd
CO rH
t- >
1 — ' ^j
^
o
VD
rH
1
o
CO
0
^rj-
rH
1
o
[- —
0)
a
o
^
o
o
O
LT\
1
O
o
o
-^
H
cd
-p
CO
a
bO
s
CU
64
-------
d. No waste streams or emissions
e. Detectable amounts of undivulged quantities of
HC1, MgCl2 particles and MgO particles are present
in the exhaust air stream from MgCl2 dryers of any
type, whether spray dryers, shelf dryers, or fluidized-
bed dryers.
Detectable amounts of MgCl2 particles and HC1 vapor-
constitute an atmospheric emission from boil-down
kettles and MgCl2 flakers.
A bleed stream from the recycled liquor from the
scrubber towers of MgCl2 dryers of any type con-
stitutes a liquid waste. The main flow of scrubber
tower effluent is recycled to Process 58, but the
bleed-stream is neutralized with NaOH and is either
discharged into tidewater, or sent to injection
wells. Composition of the bleed-stream is typically
2% HC1 and 3% MgCl2 in aqueous solution. Its quantity
is in the range of 10 to 20 liters per metric ton of
Mg metal produced.
6. EPA Source Classification Code
a,b,c,d,e: None established
7. References
a. Boeglin, A. F. and T. P. Whaley. Magnesium
Compounds. In: Kirk-Othmer Encyclopedia of
Chemical Technology, 2nd Edition. New York, John
Wiley & Sons, Inc., 196?. 12_:?08-736.
b,c,d. Deutsch, Z. G., C. C. Brumbaug, and F. H.
Rockwell. Alkali and Chlorine Industry. In:
Kirk-Othmer Encyclopedia of Chemical Technology,
2nd Edition, Standen, A. (ed.). New York, John
Wiley & Sons, Inc., 1963. .1:668-758.
e. Schambra, W. P. The Dow Magne'sium Process at
Freeport, Texas. Trans. Am. Inst. Ch. Eng.
41:35-51, January 1945.
65
-------
BRINE AND EVAPORITE CHEMICALS PROCESS NO. 10
EVAPORATION/CRYSTALLIZATION
1. Function
Essentially, the process creates at least two physically
separable phases from a single Input material, for example,
the formation of sodium chloride crystals plus mother
liquor from sodium chloride brine. The separation and
recovery of the phases may occur in another process, or
be effected in subsequent steps of this process. If
separation is accomplished in this process, then any or
all of the following steps may be included;
Evaporation
Crystallization
Dissolution
Filtration
Centrifuging
Displacement washing
Decantation washing
Thickening
Exchange cooling and heating
Evaporative cooling
Drying (of filter cakes on filter drum)
Chemical reaction
The process steps named may be arranged in any sequence
and may occur several times. Many internal recycle flows
may be required.
Generally the fundamental process steps are evaporation
and crystallization, occurring almost always in the order
named.
In the present context, the process may involve many
separate flows of both input materials and intermediate
products. Also, two of the input materials may chemically
react; for example, magnesium hydroxide with sulfuric
acid in the production of Epsom salt.
The process may include any of the following equipment:
Horizontal steam-tube evaporators
Vertical-tube evaporators
Falling-film evaporators
Boll-down kettles
Direct-fired evaporators
66
-------
Submerged combustion evaporators
Vacuum crystallizers
Crystallizing pans
Moore filters
Vacuum drum filters
Belt filters
Pressure filters
Centrifuges
Thickener tanks
Dissolving tanks
Vacuum coolers
Heat exchangers
Table 2 lists the specific functions of the various
applications of Process 10.
2. Input Materials
Table 3 lists the compositions of the input materials,
and the quantity of each consumed per metric ton of
principal end-product, for each of the applications of
Process 10.
3. Operating Parameters
*a. 'Neutralization of Mg(OH)2 conducted at atmospheric
temperature and pressure.
•Evaporation of MgSCu liquor commences at 105°C in
multi-effect evaporators and crystallization of
MgSO««7H20 at 50°-60°C (estimated) in vacuum
crystallizers.
•Equipment sized for 100-200 metric tons per day.
b. 'Evaporation of NaCl brine in multi-effect basket-type
evaporators commences at about 110°-120°C and crystal-
lization is at 600 to 700 mm. Hg vacuum.
•Equipment sized for about 200-250 metric tons NaCl per
day; evaporators are about 3 to 4 meters diameter by
about 12 to 13 meters high.
c. 'Process generally conducted at atmospheric pressure.
•Low temperature (estimated 10°C) required if process
involves separation of Na2SOu«10H20 crystals.
•Actual crystallization paths employed are not dis-
closed.
d. »0pen boil-down kettles operate at atmospheric pressure
and inside a temperature range of 155°C to 175°C for
46 to 50% MgCl2 liquor.
Separate industry operations employing the process are
identified with a specific lower case letter which is
retained as an identifier in each element of this
process description.
67
-------
o
H
CO
CO
W
0
O
PS
PH
[ XL)
O
03
J3r
0
M
EH
0
H
^
PH
PH
«^
CO
D
0
M
p-j
5J
£>
pr_t
o
EH
0
H
EH
p
[~'j
p ,
•
CM
OJ
H
•3
EH
• n
r^
0)
en
£j
CQ
-P ,y
a JH
CU 03
a a
ft 5
•H JH
jj
o1
w
1
-P
JH
0)
!>
• r*
CO
M
Q
ai
-p
r£J
0)
-P
o3
-P
•H
bO
03
^
T^
0)
a
•H
h-H1
• •
a
0
pr|
08
1
CJ
JH
-P
H
•H
^H
CM
^•^-
w
o
W>
s
• •
en
cu
a
0
r^3
O
t_l
PH
tn
H
03
-p
en
^>
£_i
o
•P
H
oi
(fl
s
en
(&
en
en a b£
(U > 'H
O O CH
0 A3
JH m a
PH O
,=r
a
o
tn -H
tn -p
0) 03
0 0
0 •!-
PM "p
P
03
•
cti
•K
>>
JH
a oj
3 -P
3 o
0 JH
£* JEj
3
• r» jj
tn o
JH 03
0 !>
•P
Cti •-
JH en
0 JH
ft CU
03 N
!> -H en
CU H JH
H 0)
0) o3 -p
ft -P H
-P X JH
J"
O
CO
CM
S3
, — -
O
r 1
£yj
t-
J-
O
1
^
CJ
r^
r^
-P
1 «
• -1.-^ 1_|
-p CO (U
^H O ^>5
CU A3 JH
>• O 'c!
1
-P H CU
0 03 -P
0) en H
«H -^, -H
^-H t3t C^H
CU
i • a
'-p ft 2
H 03 O
P > 03
S cu |>
-P
H
o3
en
•-
(H
03
H
0
tn
^
cu
T)
JH
0
en
H
OJ
-P
en
r*}
J_^
O
| 1
rH
03
en
Tl) • — ^^
CU rH
D 0
•H 03
cu * —
ITv
*
£}
.^
en
JH
CU
N
•H
i — I tl
H O
03 -H
•P -P
1 03
x a
§ °
rj r^
O -H
03
> H
03
J>J jj
H -p
A3 O
03 03
A3 CH
O
JH 0
fl | £]
TO rH
-P U
3 .
tn CM
O
X CO
cu
H ••
ft cjD
a <*{
O
a *
rH
aJ "
JH 03
CU ^
CU CM
CO O
r^j
SH
03
n
" tn
tn H
H o3
o3 -p
-P en
en >j
>> JH
JH CJ
O
J O
o co
1
cu
-p
Q
r-*
o
•H
JH
oi O
H 3
TJ CM rj OH
«l
rH CVI
vo
•
o
bp-H
f^Lt \ 1
ro
Jj
0
a
5 J>j
O 03
13 a
i
rH S3
•H O
O -H
A3 -p
a JH
cu cu
O 0
>> •"
rH en
A3 CU
oi H
A3 -P
O -P
JH CU
C
JH
0)
-p
-P
•H
A3
CM
rH
O
CiO
^>|
•^j^
O
oo
T3
a
o3 tn
H
" o3
JH -P
O CO
rj ^
O1 JH
•H O
rH
rH
oi O
H aJ
o S2-;
jjp
4 J
TS?, tn
VQ ta3
rH CVI
M3
•
r^J
0)
f>
•H
-P
03
JH
CD
ft
O
S3
•H
cu
A3
t*
tn
JH
O
-P
03
JH
O "
ft en
03 JH
> 0)
0) tsl
•H
-P H
0 H
CU o3
CH -p
<+H tn
cu *?>->
1 JH
cu o
H
ft a
•H 3
-p 3
H 0
3 o3
S r>
tn tn
cu 3
H O
JH -H
o3 JH
CU 03
CO >
H •"
CU CU
> (3
CU -H
H JH
1 P
CU CU
ft A*!
ft 03
JH
O
0
CJ4
•H
" rH
CU
S3 CU
•H -P
JH -H
A3 CU
^
i — ! JH
O 73
rc] ,c3
O 0
•H -H
JH JH
1 1
JH -rl
W r^
H CvJ
C-
•
CU
TO
tn
** r^t
en S
JH o3 o3
0) O +3
-P ?!
H A3 M
•H O S3
CH o3 -H
ft fl
3 ^ rM
2 tn o
o cu -H
oi (aO A3
!> 3 -p
r-*^ 'H *^
JH JH tn
03 -P ^
•P S3 fl
O CU 03
JH U -P
tn
JH
0
&
•H
H
JH
CU
c~]
-P
O
a
T^
a tn
03 H
oi
•> -P
tn tn
H >>
" O3 JH
in « -p o
rH X en
o3 cti t>s O
-P JH JH CM
tn O a W
r*J A3 "
JH --f m
O 0) O O
'O CQ O
rH 3 CM rx|
O JH 03 03
on _j- UT\VD
•H
(~!
O
•H
r"]
3
^
cu
4_)
0)
cu
to
03
o
VH
CU
O
rH
O
•H
4-1
•H
U
CU
cx
TO
CO
A3 •
4-1 0
•H O
S -H
4-1
T3 D.
CU -H
•H >H
U-l O
•H TO
4-1 CU
C ""O
cu
T3 TO
•H TO
CU
cu o
>H O
cx
CO
en TO
CU -H
O A3
O 4-1
a,
-------
0
H
CO
CO
W
O
o
K
PH
0
CO
S3
0
M
EH
^J
O
M
t-P
P^
PD
^*
CO
£3
o
H
&H
0
S3
0
H
EH
O
5
[V,
•
^ — •
r^j
oj
ft S
•rH ?-(
0
O1
w
S
o
prt
» .
cn
0)
o
pi
O
PH
tn
tn p ho
CD is -H
O O *H
O .C
PH 0
a
o
tn -H
tn -p
a) cd
0 Cl
O -H
P
cc
tn
IH
^ 0)
rH -P
O H
O -H
i #%
^H ^H
0) 0)
N !>
•H -H
H H
cd
4_3 • r>
I co
CD
• c
h£) (L)
•H ,M
^ O
CU f^
« -P
£H
O
P*
a1
•H
H
,£H
o
•H
f-l
1
3
JH
O
pq
£_j
o
p!
C -H
cd H
1
** ?H
X a>
05 ,£3
C i i •>
0 0
P 3
X
r^H, eg
p £H
£H O
0 FQ
H CM
CO
^H
L
* r\
tn
£H • "
4) £H
N S
•H 3
H H
H 0
cd o
-p
1 S
X 0
1 -H CO
ft ft CD
Ct3 £H ti£)
£> o d
QJ CO GJ
T3 rC
-f-3 OJ O
o X
*M O
4-H rQ 4^
0 JH 03
1 cd 0
%
0)
d QJ
O H
•H O
-P >j
tn a
3 OJ
"a
O CH
} ^
n^ O
0)
Ci)
_n
pi
-P
1
1 1
fn
Ci)
^>
H
U
cd
^
1
CM
H
cd
u
CD
0)
M (H
1 -H
y] r^j
H a
cd cd
-P
K"} ^ ?-t
fn O O
o pi pi
a1 a1
H -H -H
U H H
cd
J2J CM CM
i — i i — 1
*d o o
d) cd cd
•H O O
^00
a CM co
t> oo c—
H CM 00
H
H
*
.,— j
. rs
•
CO
ft
cd
>
Q)
S
CD
0
40
CO
0)
jj
-p
1
-p
CD
>
.^
fl
rj
! 1
CH
^H
OJ
H
H
0
0
ffi
o
S3
fes.
ON
"
K
O
cd
^
tss.
O
L/>
H
H
•
rM
3
•H
^M
I
hO
S
•H
H
H
cd
CM
rrj
QJ
SH
•H
C)_j
1
cd
hQ
W
O
1 cd
M £5
}T"j
a on
0 f-
*-M ^H
O
0 -^
cd
^ ^ ^
tj^ p_j jl-l
0 (D C
ir\ o O
r^J {ft
S H
cd cd
-p
" tn
ffi ^s
O ^H
cd o
J£H
H
V5- O
co cd
c-- ^
CM ro
tn
i ^
0 H
O tH
cd -H
i> ^
-p
• OJ
tn o
ft
cd ^
> tn
0) JH
OJ t-0
P -H
HJ H
" -p
-P cn
^H r-*}
CD JH
I> O
0
CT1
•H
H
t-~ cd
-3- O
CM
cd CD
pi
£j
^ £H
0 0
•A
o
CNJ
w
H O
• ^
r*^ ^
O CD
J--H
PQ !H
cd fij
^ pi
H
H
rH
^H
•H
, )
-p
-p
CD
tn
tn
• «•• CD
w fl
f-i O
CD H
-P 0
H 0
ft-l r^J
1 >i
^
jj • ^
CO CO
C/3 ,M
d) £4
y_j Cd
ft -P
w
cd
K*^
rj
U
rci
0>
•H
r^
rjj
PH
pi
r,
O
CM
LTN
•
[\
O
J-
pq
cd
S
CM
69
-------
o
rH
CO
CO
pELJ]
O
0
PM
O
CO
s
o
H
E-J
<
O
H
h— 1
PM
PH
CO
J^3
o
M
PtH
O
S5
0
H
EH
O
*2i
£3
P*H
•
s~**
nj
0)
£j
d
•H
p
£4
O
O
—
OJ
CU
H
cd
EH
f,
• M
T^
*D
CO
2
CO
0) n5
£3 3
PH CD
•H JH
f£)
• •
e
0
J_l
PL,
• •
03
0)
0
jj
r^J
o
^
p |
en
rH
cu
tsl
•H
Tj i — 1
CU H
p cd
cd p
P en
•H t>i
bO r-H
cs5 O
^ 3 •
cu 3 en
d o cu
•H cd hp
H ** C
£H " -H
CO
tJxj ^
a cu
cd >
rH
(50 O
£J
•H ^
> en
o d
en cd
en p
•H
tJ bO
f^
"cu 'g
p cu
cd .*•*!
P CJ
•H -H
bD rd
< -P
•ti"
CU
c~|
JH 0
O cd
cu
en rH
i — ]
cd T^
p d
en cd
>>
o ^•
^- a>
H -H
O ^H
r*
en
•d
p T^
en d
!» cd
0 •>
J- O
O ^
CO CT1
CM -H
t^4 1 — 1
p CM
en H
•H 0
O bD
s s
-. . y^ >
H CM
OQ
H
•
d
en
*H
cu
C-3
en -H
^ (U H
O ,0 H
P ^ cd
d +D -p
H | CO
4-1 • ^>>
d -jp y^
0^0
^"l
VH *^ ^
•H en a
W cu cd
bfl J>
*" ^
?-H *H *
flj SH CO
-P P PH
H d Cd
•H (L) t>
CH O OJ
-P
*H
£l
•H
O
,0
bo
£3
cd
H
P
H
cd
en
1
ts
0
* —
eu
P
en
cd
;*
O
cd
f^H
*• — ^
ro
r>
en
cu
O
1 rH
• a
Pi o
Cd £H
r* ^
cu |>3 en
^3 cu
en faO
H - 2
H en
o
o
CM
cd
tt
a\
H
.
PH
. fl
•
CO
p^
cd
>
cu
U)
r^j
•H
N
•H en
H OJ
cd P
P H
en -H
>>CH
CJ s^
p
* £j
0 0
cd cd
cu
d
•H
Sn
H
0
^
*
Cl_j
'H
IH
fi
cu
d
•H
rQ
O
cd
rrj
01
a
•H
CH
cu
rH
^
H
rO
O
H
CM
.
CJ1
J>^
H
cd en
p cu
O H
t. | .JLjJ
PH P
•• .^
P
0) ?
0 0
PH '"d
•H 1
a1 'H
cu o
(£)
c~]
O d
p cu
cd Pt
FQ O
SH
O
r\
ro
O *
O W
iN O
•H -H
i-^ t—1
SH
OJ
_[ i
^
en
H
cd
p
en
l>5
rH
H
O
•H
I-P
OJ
OJ
,
^_,
en
•« d
• OJ PH
o en
cd d bO
t> d
• " P N]
en -H
H >> M
•H cd H
o S cd
o p
en en
S ^H K^
w O JH
CU P O
p cd
o cu
p cd cd
"H £> CU
>S CU ,d
H
o
en
rj
Q
CU
c^
cd
r(-j
s
70
-------
o
H
CO
CO
W
O
o
e
0
CO
£5
o
H
EH
O
M
1-3
PH
^
CO
O
H
fa
O
S25
O
M
0
*3
pT^
•
s-->
rO
QJ
Tj
H
o
a
o
u
OJ
0)
H
cd
EH
. rt
r^j
0)
to
to
-p M
8
ft §
•H Vt
0<
W
**
a
0
fa
* .
to
0)
0
p
T3
^
p !
fl
•H •*
cd co
H H
4) -H
0 O
£-1 c>
o
p4 f3 1 — 1
co cd
GJ ^(
••-PC
-p to cd
c a
0) X!
a -p -
ft -H Vi
•H ? 01
2 -P
O1 CO H Jn
4) ,£> -H CJ
Jj CJ-) Cj_j
c~j 1 1 (Q
o & • a
-p -p o cd
cd cd cd ^H
« ,0 > -p
1
*
to
H
cd
•p
CO
r*3
£_j
o |xl
O
4) cd
C3 r**I
•H
T3 •&§.
O O
H LT\
0)
3
-P
X
•rH
a
H
cd
-p
to
j>j
?-.
no
O
M
cd
1
H
cd
tt
to
to p br
0) ? -H
CJ O <+H
o fi
ti to c
Oi O
a
0
tO -H
W -p
a) cd
o o
O -r-
fC "p
£>
cd
OJ
OJ
•
(0
H
cd
CJ
•H
-P
c
0)
TJ
•H
r-
-p
c
0)
S
•H O
3 -3
OJ _„
f* "to
o r
4J
cd O
pq -p
M
cd
r*
Q)
TJ
^
J^,
O
^ — s
" w
nd PM
g
-p
CO •"
to
-P Q)
•H -p
> H
•H
to -P
CO
bO
fi
•H
fl
^_l
p
-P
08
W
M
£H ?H
•H OJ
£-f 4O
O g
10
SP^
-H O
O *VH
3 ^H
0) 0)
?H 1
4)
o .0
4)
-P •"
H 4)
•H -p
'fi
§ccJ
CO W)
H
H
0) bO
0 -
1 •>
to C
•H O
CQ CJ
>j
H-P
o a
S-( 0
-P 3
O H
OJ i
S fn
-P
CO H
•H 0
o cd
S f=5
^ — ^ ^ — ^
H CM
PO
CVJ
•
*>
• r\
CO
1 .. co
1 H O
0) od O
•H S ll
rH O ^i
!tf
G -P W)
CJ H P
•H VI
•" Vl -H
ft -P -P
od H C
^ OJ OJ
OJ ,d Q_)
CO
O
H
0
cd
H
bO
O
O
VD
1
O
o
J_l
o
£J
a1
•H
^i
0)
-p
0
s — X
en
cu
£j
+>
1 •
• O
0)
a
>> cd
rQ '
cd to
rO PH
O ai
K (^j
^ — v
rH
_^J-
CM
•
Jf
0)
•H
H
cd
-p
>=
o
a
0
•H
-p
p
,—|
0
CO
M
O
cd
^
•&S.
O
LP\
— v
CM
.„
to
>> bO
•H bD ^ fn
-P P 0 0)
o (-M a
Cd *H T3 ?Q
< 1 j_) ). "i u^
C cd
D O d> r— )
-p bO ,Q
cd ^1 -H cd
• rl -P Cn O
•< ^ s ft
P_J
o
•^
c^
•H
H
J-
o
CQ
C\J
*H
(- ")
•^^
0
CM
CO TlJ fTJ
H G (Li
cd cd H
-P 0
tO " J>i
r% ' CJ
fn 4)
0 ^ JH
CO O
O fn
O +J O
r\j p— | |3
•H Cd CT1
t-3 W -H
- — H
4) J- SH
•H O OJ
^_( ^J r~J
r^J CM | 1
C cd 0
-3"
OJ
•
w
J-
o
(N
I
o
.
CO
p_,
cd
71
-------
o
H
CQ
W
r>
O
Oi
f-r(
o
CO
[25
o
H
^*
O
M
ft
PH
2
S
o
fyj
£
8
CO
. "|
^?
HH
p-j
W
p^
^j
S
B
M
OO
H
,0
oi
EH
CO
•H
cu
-p
0}
a
_jj •»
jj
P
G
•H
rl
O
I
co
IH
cd
cu
K
^
Pi -P
o
•d pi
CU T3
i 2
P w
CO P
£J "•— '
0
O HH
o
•P S3
H O
r.
£ s
G
O
•H
-P
•rH
•d ca
2 0
3 p
*3 o
•rH
rH CU
CU -P
II
X
O
rH
P
P
3
G
0
CO -rH
CQ -p
cu a)
0 CJ
0 -H
?H rH
PH P
P
id
-d
cu
-p
0
•H
•P
CO
W
*~ ^
O ''"^
CMO
W CM
• t-
J- •
O •*
CQ O
bpCQ
• ""o^-S s
G CM v^
0 W •
-p t— a •
V
a o o •
CQ p!
ir\ M oo o
O — -OH
"H oj oo
• •
0)
r^
0)
CJ
cu
•p
H CM
f( j ^rj J-
0 0
•-^ tap CM
w s w
o
M O t— CM
SLA t- W
x-^* *• — * x— v
rH OJ OO
03
-K
rjj
0
-P
£|
•H
•P
CO
ptj
f S,
H
CJ
0)
^
•8
G
•rH
o;
vtl
o
-p
•
a
OJ
o
H
-p
1
^
ctt
( — 1
o
CQ H
r ^
cu f$
rH C7\
O O\
•
o
rH
?
rjr*
cu
£4
cu
-p
0}
>
CO
CO
CU
CJ
O
f-,
Pi
rrj •
CU g
-P
OJ p!
B CJ
•H
+3 LA
CO 1
W on
^ — >»
-d"
0
CQ
fc4
% ^
c"
o
•p
a'
co
j-
^^.
o
•d W H
CU II
•P H -p
cd H C
g oi cu
-P -H rH -P
pi +J CU G
p< co P- O
G WOO
•H
CO CU
•d -p cu
•H «H -P
H G -H
O 3 CU CU H
CQ X 4! -p rj
05 -H -rl CO
H rl G C C
0} 4J O -H fn
-P co cu oi a)
O ed H AJ CJ
EH
•
CJ
•d
'&
cu
Vi
SH
CU
-P
Oj
CQ
CO
CU
O
O
• fSj
fd
cu G
•P O
cd -p
a
•H
•p a
CO
W H
CM
H
O
S
vn
J-
^
• X~N
• O
0 O<
•rl
LA H
..
G
cu
•P CM i — 1
-P H 0
•H O a}
P JprZ!
CM t^.
O O •
MOO O
Jy
•
•d
1
0)
rH E
cu o
O -p VH
•H cd G
$H {I 1 CO -rl
+3 CU -H
CU CQ JH ^3 CU
SCO -P r>
0) >, -H .
•H o G G P cu
,G o cd -H cd H
0 SH 8 -P ,0
•H PL, CO -H 03
O rH G -P H
P O O G -H
co • CH -H cd cd
CQ P pi >
cu -p
a a *H H •
•H CU pi H CO CO
H rH O1 Cd CQ -H
O -rH CU -P CU
rH Pi rH CQ O G
P( CJ* r>> O O
p4 CU CO ^H >H -H
< JH -H 0 PH -P
t — .
O
CM
}T]
^ — . LPv ^ — ^ x —
co . j- ro
O ^ O O
^ O O -— • CQ 0
CM CM -± H CM CM
^ -H pq o cd cd
pq ,-q CM« K &
^
•* — ^
a a a a a a
pi PS PS pi PJ pi
o a o a o o
O O LfN f — OJ ^O
O O OO H H H
O\ O\
i — |
JH
CU
ft
ft
pi
CU
G
•rH
rl
,0 o
oooooooo
CU --OOOOOOOIAOJ
^ g O O O O O GO **
i-)pHHVO HUAt— H
H OJ OJ ^ OJ
CO •> H H 1
0) --^ II
H H 1 1 1 1 1 r-
?H CU J- co O
CU CU S=H }s^ [ "| CJ CQ O PQ PQ
CQ H
•
CU
k-i
QJ
4-1
CU
H
CU
CO
cfl
a
j_,
0)
o
r- 1
O
•H
UH
•rl C
O O
CU -H
p. 4-*
co a.
•H
CO >H
o
x: H
r-H 0)
a. -H
8 -H
4-1
CO C
c 01
O T3
•H -H
+J
CO C
J-i CO
CU
P. Cfl
O co
P>s T)
rl 0)
4-1 C
CO -H
3 cfl
T3 4-1
(3 Oi
•H in
CU CO
•P -H
CO
M 43
CO O
CU 43
Crt 3
-J<
72
-------
o
H
CO
CO
W
O
O
PH
PH
o
CO
o
HH
EH
0
M
| i
PH
PH
CO
0
H
PH
3
£>
O
EH
CO
i-}
CC
W
|
B
S
M
.
x- — *
rrj
0)
d
•H
-p
d
O
o
on
CD
H
Id
EH
CO
AH
^
cd
a
Cl3
PH
nd
CD
£^
£_J
CD
CH
d
•H
CD
H
cd
W
H
•rH
JL(
0)
-p
cd
a
-p
P
•H
^
O
sj
^
rH
-
rd O
-P -S-
O PH J-
3 CM rH O rH
cd O CO O
co }^ {yj csi cd
O o cd S
ffi H CM *s«.
cd • ••%«.[—
S c\J on t— H
0
W -H
CO .p
0) cd
o o
O -H
JH r—
p
cd
•
CM
iy^
O
O
r^j
d
cd
^!
• ^ CD
o
^ — ^
CO
O
CO
K
—
• n
•
a
jj
O
LT\
•
CO
rH
0
rj HT
CJ* O
•H co J- CO
rH O O CM
PH CO Cd
PH CO CM g;
•H PH W
-p ^.^.5
CO Ch t— C\J
•
ctD
nj
CD
-P
cd
a
•H
-P
cn
W
CM
H
O
O CD
rM
•fes. cd
cc H
t — ^H
^_^
. r\
•
a
•
;3
o
\£)
•
H
rH
O
cd
tj"^.
.. LT\
?H *
0 H
rj
CJ1 ^
•H rH
rH CD
-P
CM Cd
H a
O -H
cd ^
0 O
rH
LA PH
on cd
•
C"1,
o
•H
^
-p
CD
a
o
•H
C"{
O
•H
O
-P
cn
CD
-p
cd
j~
•H
X -P
8 §
PH O
PH g
^
O
CO
CM
cfl
r^i
V
• t^
W
fl
O
.p
•
a
on
•
CM
cn
H
cd
4_3
W
J>5
rH
a
o
CM
ffi
O
H
•
j-
O
CO
CNl
cd
^
•
•H
CM
O '-»
co W
rH O
cd -~^
^3 SH
cd
a o
-p
W
cn JH
CD O
0 -H
O l-i ^
rH PH rH
PH CD
h >
W 3 O
•H O O
^3 0 CD
EH 0 rn
CM
rH
O
cd ' ^
O j
•H rH
•P CD
Pi -P
H cd
o a
cn -H
X
CM O
rH Sn
0 PH
cd PH
O Cd
•
•r^)
rH W
rH O
0) 0)
O S
1
bD"fe^.
w on
t—
o
-p <+-H
•H
CO
CD |>>
•H H
rH d •
PH O tl
pt el)
cd d o
o 3
CQ -H TJ
Cfl -P O
CD Cd ?H
0 JH PH
O CD
JH PH cn
PL, 0 -H
, — ,
CD
CD cd
AJ rH
cd H
g
cd
r" '
PH M
^ • . v ^
•rH
^ X -P
o d t,-!
-P !H CD O
d PH p) LA
0) PH H
^ cd CH •
rH CH X
<4H " CD •• O
^H • — ~ — ^ ^H
CD >5 t?5. 5n >> PH
H '&5- LA CD H PH
H d OA H CO d cd
HO O O
CD II PH 1
o co a m
I H W H O H W
CM H O O OHO
H CD cd cd 0) CD cd
U ° ^ ^ P ° ^
•
rM
73
-------
o
rH
CO
CO
W
O
O
K
PH
P-H
o
CO
a
o
EH
^
C_>
M
1-3
PH
PH
«aj
CO
£D
O
M
P^
^
^
o
EH
CO
^~3
<3*
1
n
•5JJ
p_f
iZD
PH
S
H
^
njj
0
pi
G
•H
P
G
O
0
* '
00
0
H
XS
a
EH
to
r*H
to
cd
0
OH
U5
•H
to
cd 0
f P
cd
H a
cd -H
o p
•H 05
P 0
0
to to
O 05
0 O
r] J^
EH O
x — s. ^ — N
rH CXJ
^H
0 x—
ft -p
o
•d pi
0 rd
S 0
3 to
to p
G * — •"
O
o a
P O"
cd
a
^ * s V
O O
CM CM
• " Ji4 Ju4
to
G LA LT\
o . .^ .
P r~ • t--
0 a 0
• J- • jj-
a rn PI rn
CM O CM
O cd cd
CO f?n O\ if^
• s ^ *
H rH
* — -. f — *
rH CXI
p
G
•H
G
rH 0
O -H
•<"~2 i ~)
cd -H
S -d 05
§o
ft
a
H 0
cd a
•rl
£H 0
0 p
-p cd
cd a
*^H *rH
X
o
p
p
cd
. .
s — x 5^
0 0 r-
CM pi O
p~i O* J"
0 -rt PH
IH H CM
03
O rH O
J- O J-i^.
pq mo
CM " CM OO
cd to cd
£H i — 1 r1*! "
cd X
0 p 0 O
'd 05 ^ ^H
pi >> pi ft
Jn rH to ft
O O O Cd
H CXI
G
O
05 -rl
05 p
0 cd
o o
0 -r-
PH 'p
P
cd
.
H
O5
•H
05
cd
rQ
rH
cd
0
•H
P
0
to
0
CD
C"|
EH
s~^
rH
^-^
00
0
pq
00
pr|
^ —
* *\
to
G
O
P
•
a
VO
Lf\
•
H
— *
H
•>
— ^
tn
0
G
•H
0 O
o G
o 5
PH 3
^~^-
J"
O
CO
CM
w
^
» r.
tn
G
o
p
•
a
MD
O
— ^
H
•d
G
cd
r.
H
0
05 CO
i — 1 Ov
cd
P >>
tn H
!>> H
to cd
o G
•H
H a
CJ O
bad Cj
H
,
G
/ — •*
J-
o
CO
Nd
• — -•
. r\
to
s
o
•
a
0\
o
-• N
cxj
„ — .
j-
o
.. CO
0 bO
p S
•H CXI
G •
•H J-
0 O
,£> C/3
faQ CM
G W
! [ ^^
O
p ON
H
cd "d
05 -
1 P
> 05
O 0
CXI
0
P
cd
to
0
ft
0
P
rH
O
T)
0 O
P o
cd 0
a o
•H H
tn
.
a
^
o
t—
CXI
. .
to
O
pi oo
0* O
•H O
H CM
cd
O
o ^
CM CXI
cd oo
j^j
•
• X
"HH O
•H £H
to ft
3 ft
a. cd
.
PH
0
H
cd
£>
^
o
o
,0
T)
G
cd
^ V
H
cd
P
0
a
cd
^ ^
• f\
,
a
^
O
ro
•
CO
0
G
•H
£_j
o
rH
O
cd
•
•H
£_i
tS
.
DH
D3
-P
r^
o
CO
o
•H
to
0
^
0
•H
XJ
O
•H
O
p
CO
, — .
to
•H
05
cd
£5
H H •
O O XJ
•rl -H G
rH rH Cd
^^f ^ N ^
. C\
G •"
O G G
POO
4-) -O
*
s • * ^ — ^
r_ a a H
t— O
oo VD oo -H
o o o —
— * * — f — .
rH CXI OO
rrj
G
cd
O -
tn
" rH
M Cd
H -P
cd to
-P r"»
tn !H
>5 O
0 O
CM H
oo K o
O • W
O M
CM O >^.
•H -H O
i-H1 ^ ro
H CXI 00
.
JH
•
0
•P
cd
a
•H
•P
05
0
O)
05
O
to
O
. — >
-j-
-• — »
rH
CJ
•H
^
s ^
* ^
•
a
j^j
0
ir\
1
H
. — v
_a-
r<
0
-P
cd
-4-
74
-------
o
H
co
o
o
05
Et<
O
o
EH
O
M
( "i
P*
%
8
O
M
§
S
g
CO
M
S
EH
.
T»
«
3
rH
U
C
O
o
oo
0)
H
rO
a
&H
CO
•a
•H
cu
•p
rrt
CO
a
•p
3
P
a
•H
to
o
•r-
cd
S
CO
Kd
JH
S
fl)
K
. — L
to -P
cu o
ft 2
*d o
i P
3 «* f
10
o o
0
C
-p -p
•H
•P o
CO JH
^5 4^>
a?
o o •
•p -p a
. . 3
s e o
O\ (S\ \f\
• • 1
O O H
H oj on
„
CO
H
cd *d
-P 13
co cd
H *
cu cd
C t5 M
•H CU
•d vt -p
o o cd
M LTN ^
f • ' N , v
H oj on
*
CO
cu
-p
cd
g
•H
+3
CO
0
•ti
CU CO
-P CO
cd O
a £H
•H C23
43
CO ^ — -
W C\J
^ — ^
H
cd
M
cd
' " i*"*!
CO
a
o •«
-p •
S
0 3
CJ
LfN
O ir\
• 1
rH OJ
CO
rt
3
H
M
•d Jn
cu cu
CO -p
££
x~^ s — *
i-i CM
*
•p
CO CO
•p -p
g §
o o
cd 2
O 0
•H -H
to to
-P -P
CU CU
•H -H
0 0
•H -H
0 0
-P -P
CO CO
X— >. *•"**• • — ^
to to to
pq w pg
cd cd co
5-5-5-
a a
0 0
-p -p
a a a
LT\ rH PJ
VD W 0
• •
o o on
rH OJ 00
•d
§
„
CO
60
« C
OJ -H
r< C
ffl ^
'd -p
•H to
•2 a cu
a1 o -P
•H >-< Cd
|J H tS
X *- •* N y— --.
rH OJ 00
•
r^
3
CU
o
c
o a
cd o
& rH
—• 0
cd
* (^
a —
P3 b0
0 »
on oj
i i
OJ H
H OJ
ro
O
H
on
•• cd J-
-p S o
d fn
CU H O
H bO fn
r^«j
cu
-p
cd
•3
-p
CO
W
,
on
00
O
rH
CJ
cd
[25
- —
tt>
on
i
CM
on
I
a
rH
CJ
to
H O rH
cd CH co
O cd O
a cu a
cu to 53
to P to
^~ ^
on
^d
cu
"cd
s
•H
•P
to
p£)
"w
O
•H
"
> r*
a
rj
O
ON
"^d
.. cu
to -P
O cd
•H -p
rH CO
CU
O
•H W
i-3 O
•rH
CU t-3
•d
to O
0 rH
.
^
,_J
R
O
§
o
•H
•P
(D
nd ^
CU O
trt ,-j
E O
•H »H
-P O
to -P
W CO
, ^
CO
^^ O
m f_j
O o-J
O -H
3 a
CJ LTN
ir\ •
H H
H CM
-a
to §
O « •>
0*00
•H C/3 CO
H CM
-------
e. 'Pressure - Generally, all process steps are conducted
close to atmospheric pressure.
•Temperatures -
1) KC1 brine, containing KBr, is made by dissolving
KC1 crystals; it leaves the process at 95° to
105°C (estimated) and is recycled to the process
at 105° to 110°C (estimated).
2) Burkeite liquor, containing Li values, is made
from burkeite crystals; it exits from and re-
cycles to the process within an estimated
temperature range of 75° to 90°C.
3) KC1 is crystallized from KCl-Na2Bi+07 liquor
(burkeite mother liquor) at 38°C.
4) Borax pentahydrate is crystallized at 24°C;
seeding required.
5) Mixtures of burkeite, Na2C03, NaCl, and NaLi2P(\
are crystallized from a mixture of raw brine plus
mother liquor within an estimated range of 115°
to 125°C. Na2SOi+»10H20 crystals are removed at
22°C, mixed with NaCl brine, and recrystallized
as Na2SOi+-anh. at 17°C.
6) Na2C03-10H20 crystallized at 5°C.
Na2C03-H20 crystallized at 90° to 95°C (estimated).
f. Process conducted at atmospheric pressure and at a
temperature of 20°C to crystallize and filter off
borax decahydrate.
g. Atmospheric pressure; estimated temperature range is
50° to 60°C.
h. Atmospheric pressure; estimated temperature is l85°C
for 78% CaCl2.
i. Atmospheric pressure; estimated temperature of 110°C.
J. 'Process conducted in multiple-effect evaporators and
in boil-down kettles.
•Temperature range is 60° to l85°C.
76
-------
k. "Operating conditions:
For evaporating to 50% NaOH—
60° to 170°C temperature range and pressure range
of 660 mm. Hg vacuum to 2 kg/cm2 absolute pressure;
liquor cooled to 20°C for final NaCl crystalliza-
tion.
For salt extraction by liquid ammonia—
60°C and 28 kg/cm2.
For evaporating to 73% NaOH—
132°C and 700 mm. Hg vacuum.
For producing anhydrous NaOH in tube furnace—
Most severe conditions are 330°C; atmospheric
pressure,
•Ammonia makeup required for final NaCl removal by
liquid ammonia extraction process is estimated at
2 kg NH3 per metric ton of 100$ NaOH.
1. ^Vacuum-cooled; approximately 65°C for crystal-
lizing borax pentahydrate; 35° to 50°C (estimated)
for crystallizing borax decahydrate.
m. Atmospheric pressure; estimated temperature range for
crystallizing H3B03 is 25° to 35°C.
n. Atmospheric pressure; 25°C is optimum temperature for
crystallizing K2SOk.
o. 'Range of pressures from initially atmospheric down to
700 mm. Hg vacuum; temperatures from 90°C (estimated)
initial down to 60°C final.
•Na2S added for corrosion control. Surfactants used
to prevent foaming.
p. Essentially atmospheric pressure; temperature of
evaporation is maintained constant at approximately
100°C.
q. Usual pressure range from 2 kg/cm2 gage down to 680
mm. Hg vacuum, corresponding to temperature range of
about 135°C down to 55°C.
r. 'Atmospheric pressure; estimated temperature range of
evaporation is 110° to 120°C if boildown kettles are
used.
•Crystallization temperature must bo maintained above
95°C to prevent formation of LiCl«H20 crystals.
s. Atmospheric pressure; estimated evaporating tempera-
ture - 110° to 115°C; crystallization probably at
room temperature.
77
-------
t. Atmospheric pressure; estimated evaporating tempera-
ture 110° to 115°C; crystallization probably at room
temperature .
u. Atmospheric pressure; evaporating temperature is
probably less than 100°C to prevent decomposition
of Fe3Br8«l6H20.
v. -Temperature range in double-effect evaporators is
probably 60° to 120°C, corresponding to approximately
0.2 to 1.5 kg/cm2 absolute pressure.
•Temperature of NaClOs crystallization is estimated
at 40° to 60°C.
w. 'Pressure range of triple effect-evaporation probably
commences at 1 to 2 kg/cm2 gage and finishes at 650
to 700 mm. Hg vacuum, corresponding to estimated
boiling temperatures initially near 160°C and finally
near 60°C.
•Final temperature of crystallization of LiOH«H20 is
probably in the range of 30° to 40°C.
•Recrystallization of LiOH»H20 is necessary.
•NaOH mother liquor is recycled within the process for
lithium recovery.
x. -Atmospheric pressure; precipitation, filtration,
and washing of Li2C03 is conducted close to 100°C.
•Mother liquor is chilled close to 0°C for separation
of Na2S04 •10H20 crystals. Latter are subsequently
redissolved for crystallization of Na2SOi+ in tempera-
ture range of 110° to 115°C, probably in submerged
combustion evaporators.
Utilities
Utilities consumed by various applications of Process 10
are shown in Table 4.
Waste Streams
Table 5 lists the identity and estimated quantity of the
principal waste streams associated with the various
applications of Process 10.
6. EPA Source Classification Code
a. through z: None established
78
-------
o
H
to
to
W
u
o
«
PL.
(in
O
to
S
o
H
EH
<;
o
H
,_q
PH
PH
<;
to
P
O
H
1
23
H
p\
KyH.
S
&J
to
[3
o
o
to
W
M
EH
H
iJ
M
EH
b
.
-=r
cu
rH
•3
EH
03
" rM
03 rH
rH CT3
cu 8
& CU
•P rH
0
fn
O
rH
0)
-P
^
03
CU 03
d 03
H CD
cd o
> 0
fn
T3 PH
CU
-P
cd 0
e •
•H d
-P O
03
W rH
bO
d rH
•H CU 0
H -P •
O cA 3
O > 0
O
LA
CM
I
OO
(— | •* — •*
cd CD
-poo
Cd ., SH
cu ^ d
W 0
to 03
o ^-
rH
O
Lf\
m-—
0
1 CO
CU
0 -P
LT\ 0!
CM ^
H
cd
O r>>
•H bO
>H rH .C
4J CD is
0 C ^!
CD CD
H
W
O
LT\
1
O
CM
O
•H
rH "
•P HH
cu o
0
" a
SH O
cu -p
fJn
O
CM
W
t—
J-
O
W
hO
S
tl
O
03 -H
CO p
cu cd
0 0
O -r
£ 'f
g
•
CTj
*
w
cu
d
rH
cd
!>
CO
QJ CU SH
•H 0) CO 0
4-1 i-l iH •
•H 00 O 3
iH ru 03 O
•H Td
4-1 J2 U|
t-3 C 4J
0 -rH 0
S 4J
03 Td
cu c C m
.p 0) O M
cd P, -H • o)
0 OJ 4-1 C 4-1
•H Td CO O CO
4J r4 -H 3
CO T3 00 4-i
0) 0) CU CO W
^H P *-l CO
CO -H C O CU
03 3 -H a CJ
o cr eg o
rH QJ 4H > !H
O M O CU p,
ur\
CM
1
O
H
0
O
LA'--
0
1 CD
CD
O .p
O CO
CM •—*
O
O
H
1
O
LA
J-
o
to
CM
W
•
O
CO
CD
^
H
cd
>
•d
0)
-p
cd
0
•H
-P
03
W
•
H
•H
a
o
0
VO '-^
0
1 CD
0)
0 -p
O CO
-3" - — •
O
J-
1
O
CM
rH
0
d
a1
•H
rH
CM
rH
O
bO
S
•&«.
\D
~3
•
T)
03
CD
-P
cd
0
•H
-P
ra
(D
CO
CO
o
rH
o
o
o
H
1
O
C\J
0
o
LA
rH '—
0
1 CO
CD
0 -p
O CO
on •—-
o
0
CM
1
O
ro
•K
*
^
CD -P
bO 0
cd d
rH "d
CD O
> %
< P<
^
•
CU
0
cd
CD |>5
-P f <*H
to • O
CO rd
• r4 CD -P
CO O {> CD '-^
(D +^ O C bO
-P 0 0— fl
cd I) cu -H
0 -^ SH • rH
•H CU MO
-p CO -H O
03 f-, rH ?H y
CU O cd 'HH
O co
LA -— •
0
LA
rH
1
o
LA,
m
o
PH
0~l
w
•
tiD
V4
0)
4-1
4-J
cu
, — t
0)
CO
CO
CJ
M
cu
s
o
rH
CJ
•H
4H
•H C
0 0
0) -H
P. 4-1
03 P,
•H
CO M
o
f. CO
4-1 01
•H Td
£
CO
Td CO
cu cu
•H 0
4H O
•H !~i
4-1 P.
e,
CU CO
Td -H
•H <_.;
4-1
cu
(-1 4H
CO O
CO 4-1
CO C
CU 01
a 6
o cu
M rH
a, cu
CU J2
^ a
4J CO
01
00
c c
•H -H
>,
0 r4
tH CU
P, -H
0 4H
CU -H
4-1
CO C
q cu
o Td
•H -H
4-1
cfl C
M CO
0)
P, CO
O CO
>, T)
t-J QJ
4-1 C
CO -H
3 co
Td 4-1
C 0)
•H S-i
CU CO
4-1 -r-t
CO
M J=
CO CJ
fX -H
CU Hg
c/5 iS
-K
CU
4->
C
ru
CO
cu
rJ
p,
01
)H
QJ
M
CO
^ .
CU
_c
4-J
CO
CO
C
O
•H
4-J
M
O
P.
O
VH
PL,
CU
0
CD
CO
OJ
J2
4-1
C
•H
0)
4-1
CJ
3
Td
o
S-H
p.
rH
cd
3
Td
•H
>
•H
Td
C
•H
CU
13
4J
4H
O
CU
4J
•H
co
O
p,
d
0
o
cfl
4H
O
C
o
4-1
CJ
•H
JH
4-1
0)
0
VH
0)
PH
-y
,
C
o
•H
4-1
CD
IH
CU
a
O
CU
r-*
4J
UH
O
C
o
•H
4J
O
3
Td
0
rH
P.
rH
CO
4-1
O
4-1
11
X
4-1
C
•H
79
-------
O
H
CO
CO
W
O
0
E
fe
0
rn
s
o
H
EH
<
O
H
iJ
PL,
PL,
«3
CO
tn
0
M
§
>
K
M
A
s
5T
5
CO
J2J
o
0
CO
W
M
EH
M
J
M
P-)
^
^_^
•d
cu
3
fl
•rH
-P
fl
O
O
-^r
cu
H
f-\
•3
C_i
CH
to
-^
CO ?H
^t CtJ
H
O
bO
fl ^H •
•H cu a
H -P •
O cd 3
o ? a
o
CO
cu
-p
0
•H
-p
to
CU
O)
to
o
V,
0
o
OJ
1
o
rH
H . ^
-P * cu
cd ° o
CU W rH
W ^
co O
O CO
r — ! — *
o
o
LT\
H
| £~
CO
O CU
0 -P
O CO
J v^^ s
rH
cd
S >>
•H bD
M ^ fl
-p cu ts
0 C X
cu cu
r-j
W
O
•H
^H ••
-P «H
cu o
a
a
JH O
CU -P
PH
if\
1
OJ
cu
M
cd
H
CM
CM
H
U
cd
o
T5«.
OO
r-
C
O
W -H
CO -p
cu cd
0 0
O -r
ffi "p
p
cd
•
fl
•
0 1
cu a
H O M
W 0 -H
cd
f-,
• O •
CO <4H -p
CU CO
p ^> ^
H H fl
cd cu o
•H O
T) fl
CU CJ bO
-p d
cd >> -H
a bo to
•r) f-l tO
4J CU 0)
CO fl !H
W
co cd cd
WOO
O
_3-
H
1
O
t—
o
o
VD
CM
t — *
| rt
CO
O CU
0 -P
on to
, i ^_^»
o
o
H
1
O
vo
cu
M
cd
H
«H
CM
H
O
CO
o
*
c~{
pj
<
•
•i~D
•
rH fl
H fl
cd cd
CU CO
a -rH
R
CO Tf
to cu
cd o
p" W
W Td O
cu o cd
-P *H f=5
cd P^
a -^
•H W -H
-P O H
to cd O
W f=5 CO
ir\
H
1
O
H
O
0
O
on
- — *
I £*
CO
O CU
0 -p
O CO
CM ^
0
ir\
H
1
o
o
H
W
O
cd
!zs
Tj
•H
rH
O
CO
•
^
bO
fl
•H
3
to
to
cd
f
cu to
-p -H
cd 0
a -p ^
•HOW
•P 3 LT\
W T3 .
OJ O r^
rH O
w PM j-
to PQ
O H CM
>H H cd
C5 cd S
0
vo
1
o
on
o
o
cO'-^
£3
1 CO
CU
o -P
O tO
_3'^-'
O
CM
1
O
rH
O
0) O)
-p -H
cd
a -P
•H 0
-P 3
to -r) to
CU O rH
fn cd
to Pi +J
CO tO
O H >,
fn H Jn
O Cd O
O
o
H
1
O
LT\
O
0
VD
rH '~~-
E
1 Cu
CU
0 -P
O CO
OO •—'
O
VD
1
O
OO
CO
O
PP
CO
W
•
a
CO
CD
-p
cd
a
•H
-p
tfl
cu
CO
CO
o
rH
C5
O
O
H
1
O
LTN
0
O
VD
rH ' — ^
1 cd
0)
O -p
O tO
CO -— '
o
CO
1
o
-3-
JT
o
CO
CM
W
,
fl
CO
cd
O S
Ul ^
+
o
s — -
bD
fl
•H
H
O
O
0
80
-------
o
H
CO
CO
w
8
PH
pj^
0
CO
0
M
EH
0
H
i-q
PL,
PL,
CO
O
H
§
^>
£5
M
Q
s
§
5
CO
s
0
o
CO
P3
M
EH
M
i_3
M
£j
c
•H
-P
a
o
u
J^"
CD
rH
£>
&
M
« -X
CO !H
^ CD
CD a
r^ CD
•P IH
O
O
CD
-p
cd
• •>
CO
CD
r— i
cd
£>
TJ
1
•rH
-P
en
W
bO
•H CD 8
H -P •
O (S 3
O ? CJ
0
O
^3"
1
LA
CM
i — 1 ' — •
-P cd CD
cd o o
W Pi
cn o
o w
O
O
00
1
o
o
LA
H
cd
a
•H !>s
-P CD $
o C J4
CD CD
^
o
•H
£_l . .
•P ^H
CD O
S
O
rH 0
CD -P
PH
o
VD
1
O
00
^
w
cd
cd
o
CO
C
O
W -H
CD 03
0 0
O -H
VH rH
PH P.
p.
a)
.
p
o
rjj
W
CD
C3
•3
en
to bO
cd C
-P H
C O
CD O
§{J
•H a
2 (U
a1 bD
0) 0)
X1 — .
g
w
Cd
W O
CD -H
cn .p
cn o
O CD
r( H
C5 CD
CD
rjj
o
o
o
o
CM
— ,
| g
CO
O CD
0 -P
O en
1 s, rf.
CM
I
CM
0
cn
H
cd
•P
tn
r*3
^
O
H
cd
[^
,
cn
£_j
CD
<*H
en
C
cd
fn
-p
0)
H
cd cn
-P Pi
O p
P< Pi
^
^
en
^
^
0
en
CD
CD >
& o
CO ,^
co cd
CD
C
o
o
0
o
CM
1 £3
CD
O (U
O -P
O CO
[ I v ^
CM
1
CM
0
cn
rH
co1
-p
en
>s
O
H
cd
^
.
-P
-P
0
0)
H CD
W H
o
cd
• -P
0) ^i en
-P O PH
a ft |5
•H ^ PH
-P O
en CH ^
CD CD
en hO en
en ^ c
O CD cd
^H d £H
O CD -P
0)
fl
O
B!
o
0
vo
i — ) ' "
g
i c0
CD
0 -p
O en
00 —
CM
1
CM
O
cn
H
cd
-p
en
£>3
£_|
0
^
pq
cd
^5
.
Jj
CD
-p
cd
a
•H
-P
en
0)
en
cn
0
O
0
V£>
1
0
oo
o
0
CO ^
0
1 CD
0)
O -P
O en
.~f —
0
1
0
o
H
CJ
cd
.
r^
CD
•P
cd
0
•H
-P
tn
0)
cn
tn
0
£_(
O
o
IA
H
1
O
o
H
0
o
o
oo
^ —
| £q
cd
O CD
o -p
o tn
CM v--
O
VD
rH
1
O
OO
HTJ
0
-H
! ~|
B
*j
81
-------
o
H
CO
CO
W
O
O
E
[in
O
CO
o
M
EH
CJ
H
PH
to
0
M
(Y*.
g
^
M
O
&J
g
CO
o
o
CO
W
M
EH
M
i_q
M
EH
T3
0)
tJ
3
rH
O
O
0
•^
01
1 — 1
f
rt
EH
CO
*" j-**^
CO J-«
JH (0
U £3
^ 53
S I;
o
JH H J^ >
O -H -H
CH fn f> ^5 -P
O -H u " ai
•P S r< 1 -P fo U fn
tnbDa'SoWoo a)
S cu H a P< 2 a) c ^ ti fn
+J CO H ^3 -H H -H 5-i
•H CM -H 0 CD -H >4 S -H
tOHDH -PX?H-C!pH
cacS'o'o S^°S i S 8
bO
C ^ •
•H
-------
o
rH
CO
W
u
0
K
PL,
Pn
O
CO
^
o
H
EH
<5j
O
H
HH
PH
g
r£)
JlD
O
M
^J
t**
•S.
o
e
p
M
1
pr~]
PH
rr\
J|?
2
PM
P^
CO
pfl
EH
3
£
•
in
CU
•8
EH
O
C
O co
•H ,M
4^ fn
•H Cd
w £j
0 cD
PH FH
W
•H
fi
°8
,R
nd -H R
cu |s cu
cu 3
rH Id rH
,0 cu «H
C Vi
HP -H CU
R jo
cu B -p TJ
-P O C CD
4-> O 3 -P
•rH HO
cu cu R (3
4J k -H -H
R t "* crj CU
H CO a rH
C
O
-p
• CH
S o
J^j
cu
PH
o
CM
»T$
p—
•
J-
o
w
1?
CH
O
r*> CU
4J _p
•H CO
-P oJ
i*
CO
{ •>
CO
cd
£^
ty_j
0
£-
1 "V
•H
±>
(U
M
W
CU
1 1
•H
H
O
rH
V
CJ.
1 rH
R O
S cd
u o
* 08
^
O rH
P1 O
o< cd
'rH
bO
^i R
-H
O Vi
X!
O
C
O
OJ -H
CO -p
cu cd
o o
O -H
In rH
PH P
P-
od
^J-
•
cd
•s
o
QJ
?H 0
•p -p
CO R
•H
13
cu rd
CU CU ?H
H bO CU
10 cd "cd
?H ,Q |J
O 0 CU
C CO T3
•H -H -H
S ^a .p
H
o
cd
^
Tj1
cu
R
•H
«H
cu
CO
(H
cu
-p
•rt
rH
o
H
V
^
CM
, — 4
1 0
R cd
O 0
o
9\
f-l CM
O H
3 o
a* bO
•H g
rH
M 2
CU -H
•P 'H CJ
o cd +>
S -P Cd H
4^ Cd > O
CO CU CO
!H CM
^3 Cl H CL)
jp 0 C
O O bD O
pq -P S R
j-
O
W1
CO
R
O
4^
. •
a H 0
O
o cd o
H cn CM
1 W 1 rH
LT\ R LT\ U
• O • W)
o -P o S
H CJ
!-<
O
a
r^ ^H
,M CU
h -^
P 4^
H -H
CO JO
CU CM
rH R rH
O -H O
cd ft bp
fe jo S
» — * ' — .
H CVJ
vo
«
o
-P
cd
cu
O
O
43
CU
g 3
P1 4J
43 H
cu cd
K CO
CM
rH
O
bO
s
Is^.
VO
m
R
O
-P
•
a
on
•
o
1 rH
CM O
• cd
o a
X—-
r?
p
H
CO
H
U
cd
a
\o
•
Til
13
QJ
C
m
3
4->
• cu cu
cu m x
-P 03
cd S 1 1
a 9
•H CU CO
4^ -M 0)
CO 4i rH
CU CO Jn
cd
co cu cu
CO 4-> CO
O CO
r-l Cd O
0 tS 4>
9K
^
cy JP
bO o
cd 3
cu o
^ 5n
<; ft
•
a
.
p1
o
t—
1
cn
R
•H
rH
u
cd
CH
o
,
q
J3
rH
t—
•
CU
R0^
•H ^
JH o3
3 a
tl 0)
cn >a
cu H ^
-p R 0
crj O rH
a r
4^ CU O
co faO
CU JH CO
Cd Tj
CO JH O
CO 0 -H
O CO JH
rH -H CU
O Q Pi
0
CM
JTJ
en
•
r>
O
PP
CM
cd
&
*
E^j
•
2
o
LCN
CU
1
LPi
H
^,
O
o1
•H • — •
H -
cu
fn R
CU -H
^ fH
O
a^
X 0)
cd Pt
in CO
PQ
GO
•
<+H
• CO
U H
CO
rrj cu
R CO
cd
O
•3" -P
O
CQ id
CM CU
cd R
S ^
^_) +J
O OJ
CO
§
OJ
f^j
^JJ
OT
0)
W
S
0
|
|
1
I
1
%
bfl
}_i
(L)
4-J
CU
rH
QJ
Uj
ca
a
QJ
o
;_, |
CJ
•tH
U-4
•H
O
QJ
P^
CO
cd
^
p
•H
^
nd
0)
•H
14H
•H
C
a)
T)
•H
QJ
"^
cd
co
w
OJ
CJ
0
V-l
CX
u
^ ^
1 1
bO
C
•H
6
r-l
p ,
e
QJ
CO
C
o
•H
4J
cd
V-l
QJ
p
o
'**
)-l
'/)
3
-a
a
•H
cu
1 1
cd
i-i
n:
a
CO
•K
•
C
O
H
4J
a
•H
^H
CJ
CO
QJ
T3
CO
CO
CD
CJ
O
>-)
p"
CO
•H
-C
4-1
'-H
O
4-J
£
QJ
E
QJ
r— 1
U
^
CJ
ct!
CJ
r^
•H
J^
QJ
•H
U-i
•H
4-1
C
QJ
13
•H
fi
cd
C/3
03
T3
O
C!
•H
cd
4-1
QJ
V-,
CO
•H
,j^
U
, -H
S
C
CU
W
QJ
P.
CU
QJ
^
cd
K
QJ'
4-J
W
cd
C
o
•H
p
S-l
O
CX
o
^_j
p.
CJ
e
cd
CO
CJ
f.
P
C
•H
cn
a
3
TJ
O
V-i
P.
t— 1
cC
3
T3
'p.
-rH
T3
r;
•H
OJ
5
U-l
0
QJ
J-J
•rH
CO
o
fX
B
o
o
crj
LU-j
O
C
0
4_1
CJ
•H
J_i
1 i
QJ
e
01
PH
4;
-X
C
0
•H
4-J
TO
CD
P-
0
01
J3
M^
0
rj
O
•H
4-1
CJ
3
"XJ
0
JH
P-
i — I
cd
4-»
O
4J
CJ
rr~.
4-1
C
•H
83
-------
o
H
CO
CO
W
O
0
CM
Pn
o
CO
O
M
E-j
O
H
!_3
P-i
PH
CO
O
H
%
s
5
E
c5
[£H
H
S
CO
w
CO
a
pq
ff.
E-j
CO
pq
£_i
CO
o
-p
r^
CU
cd
o
CQ
•H
Q
G
o
-p
• • •
S ^H
o
cu
PH
CM
H
0
cd
o
%s».
OO
t—
Cj _j
o
>> 0)
-p -p
'H en
-P o3
d t?
cd
£
cu
-p
en
cd
VH
0
>-
-p
•H
-P
cu
t-
H
O
cd
CO
G
O
-P
•
a
H
o
V
£_,
o
CO
H
cd
-p
en
!H
o ^-~
JH
H M
O P
cd H
S en
G "\
O O -H] ON
,G CH
CO 1
G
O
CO -H
CO -P
cu cd
0 CJ
O T-
PH 'f
p
ce!
,c!
\ en
td p H -P
cu ,0 TJ H en
-P -H H • G |x|
cu -p cd >1 cu
p. en cd id G
CO -H CO rH CU O >3
P"TJ CU^H^'Hcd
co >> a H -p e
H CU 3 • O 0
COGNG cn,GcOCUCU
•H O -H ? CO G CO "-3 W3
CO O cd cd -H G Jn
cu G G TJ -H cd
bC O CU ^ CU co fi,
^j-HHG 4^-HCOOO
cd-po^i cd -H-pco
fi -H -H a ,
^ G 0 H
-P ^ O 03 rH
C "U -p S cd
•P -H To -r^
cd o J- ni • o o
0 ft 0 ^, S G -H
O W) CQ CH
O O cu CM en Vo C^H cu
CM g bo cd cu • -H G
en
o 1 cu
en a H -cJ
•H O O CU
T3 ^H -rl CO
0 -p G
CU -rl ^ CU
^ 0 cd ^
1) ft G
^J Is Js en
O
CM O O o ^
•H ^ S *SI O
J- J-
1 1 IOO
I i i en CQ
CM CM
W W
H
O
cd
£3
G •
o g
-p •
p
• o
8
OO
1 1 1 rH
II 1 • 1
o
V OJ
CM
•• rH
SH O
O bD
(UPS
G CT1
•H -H '65.
£H i — 1 U^\
rQ rH
C\l
rH rH 1
O O
cd bD J'
1 1 1 S S H
1 1 1
' — ' — ^
H OJ
U\ \Q \Q 03
H H H H
. • • •
M rH S G
o
.„ +3
Cfl
3 cu
CU H
SH 0
-p t>>
CO O
(U
CU !n
CO Vi
cd o
^2 P
a1
0 -H
^ *--)
1
1
1
1
,
1
ON
H
•
o
•
LTN
OO
w
-------
o
rH
CQ
CO
W
O
0
K
PH
O
CO
O
H
EH
«aj
o
M
)."]
PH
5,
CO
O
M
>
s
0
rvt
O
a
H
EH
* — i
CO
1
w
PH
t~i
CO
M
tH
CO
^
•
"T?
0)
jj
c
•H
-P
a
o
o
LT\
H
"3
EH
JH
O
C
O
•H
-P
•H
CO
O
CO
•H
Q
c
O
-p
•
g
JH
CD
PH
^
-p
•H
-P
as
£
(—1
O O
CO
CO
CO
CD
a
o
JH
PH
CO
r^J
J_j
cd
QJ
JH
•
cu
-p
cd
•rH
-P
CO
cu
CO
cn
O
JH
• •
CIH
O
CO
O
CJ>
CM
cd
cu
-p
CO
aS
CD
-P
CO
rt
^
CJH
O
£»J
•p
•H
-P
a
cu
*d
H
en
JH
CD
-P
•H
H
O
H
V
. .
£3
CD
CD
JH
-P
en
T(
CD
CD
H
pq
* * 1
bfl
,r_n O\
*H 1 """ '
1
o
o
•H
-P
aJ
a
•H
H
P
P
ai
•
ft
CO
0
•H
-P
•rH
JH
O 3
-P ft
g
rd *H
0
JH 0
•rH H
CT* p^
0 H
JH O
cn
g
ro 0
0 bO
-p 3
CO ft
a
o
•H
-p
rH
O
en
CO
O
0
S3
^^-
CU
ro
o
-p
• Tli
0 0
-P JH
cd -H
•H &
-P 0
en JH
0
£3
CO 3
CO 0
0 JH
JH -P
C5 CO
H
O
cd
CO
JH
0
-P
•H
H
O
H
V
a
o
•H
-P
0 rH
3 O
0 en
JH
-P rH
en O
1 05
0
0 •&«.
i — 1 MD
PP OJ
rH
OJ
•
o*
eo
0
•H
-p
•rH
r^
ft
•H
0
rH
rj
H
O
cn
0
bO
1
§
o
CH -P CH
•H CO
•H CM
1>^S o
rH
£ • 0
0 ^d o
CD JH
r^j (/] C[_|
0 2
-p CO
0 00 .p
CD O rH
ft 0 p
cn CM en
0 -H 0
CO hH1 JH
H
O
•H
h3
•H
p
c^ ^
•H 4^
i — 1 ^
H
^H PH
0
c
•H
rrj
0
M
CU
OJ
•
en
en
cn
0
o
O
ft
(H
O
-P
cd
^
H
rH
a)
CO
M
ai
H
cd
-p
o
-p
bO
LA
V
j_,
0
-P
H
•H
CIH
M
O
0
bO
H
CO
—
rH
OJ
OJ
•
-p
rH
pe 0
O t>
a • o
C 0 0 0
p -H -P JH
G P 0 0
O £> -H -p
•H -P
•P t>i co TJ en
•H rH 0 rH g -H
,MCO-—o3pcO-P0
o3a300co cvla30
o pq pin K W — -
. —
(M
en
cn
0
o
O
JH 0
ft -P
03
•S 0
0 -H
+^ -P
cd en
rO 0
rH cn
H cn
cd o
CO O
JH SH
pq pq
o3 o3
^ tz
CM
^
PQ
uo
r^H
hD
LT> ^4
•
O H
V V
CO
rH CM
ftO
0 -H
SH P" O CO
O O rrj
PH 'rl -H
aj JH - — - cn ••
i> 0 c 0 d
^ 0 SH 0
0 ft -H SH
C en w • -H
•H o en H
S 0 -H O g
0 -P 0 cn o
SH 03 0 0 SH
pq ^_- M CH
^ V , v
H C\J
CM
OJ
*
r^
85
-------
o
H
CO
CO
W
O
O
PH
pTL
O
CO
a
o
M
EH
<^
o
M
P-i
S!
CO
8
H
s
0
E
0
M
E-t
J
W
1
CH
t^
CO
1
4$*
ES
-—- s
•0
JU
ls
H
O
$3
O
O
LTN
0)
H
vi
E~~*
s-i
o
S3 W
O ^
•H 5-,
-P a)
•H i
CO 53
a*
CO
•H
P
(3 (3
^y "^ y
^ ^> Jj
H
S3 S3 (3
000
•H TH
-P 'O H 0)
c8 H
w ro
x— ^ ^ — ^
H CM
c " •
5 S3 «
O O -H
CO
cn
CM
S3
O
CQ -H
W -P
1) 0)
O O
O -H
A
0)
•
£>
OJ CQ
O 0
CQ
CO
y*
H
V
•a
•H «
J_l ro
0) O
-p tN
od K
0
tj •• O
0> (U -P
Td Jn
-------
7 • References
Process
Applic.
a Boer-:lJn, A. P., arid T. I-1. VJhaley. flo^nes i urn
Compounds . In: K Irk-Otbrnor Krio.ye | oped i 'j of
ChemJ caJ Technology , 2nd Kd i t i on , 'Jl^nden , A .
(ed.). Hew York, J nlx'psc i once Pub I I shops , IhoY.
l£:Tr^.
b VerPlank, W. F,. , and P. F. Heizor. ,,'aH in
California. Calif. Dept. of Hat' 1. Her;., bl d. ) . Mew York Jnter-
science Publishers, 1964. 3:621-650.
87
-------
Plant Expansion at Trona Boosts Soda Ash and
Borax Capacity. Chem. Eng. 5_6>: 102-103 , April 1949.
Robertson, G. R. Expansion of the Trona Enterprise.
Ind. Eng. Chem. 3^:133-137, February 1942.
Shreve, R. N. Chemical Process Industries, 3rd
Edition. Now York, McGraw-Hill, 196?. 905 p.
Teeple, J. E. The Industrial Development of
3earl.es Lake Brine. ACC Monograph "cries, No. 19,
New York, Reirihold, 1929. 182 p.
Turrentine, J. W. Potash in North America. ACC
Monograph Series, Mo. 91- New York, Reinhold, 1943.
186 p.
Woodmansee, W. C. The Mineral Industry of California.
In: Minerals Yearbook 1971, Schreck, A. E. (ed.).
Washington, U . S. Dept . of Interior, Bur. of Mines,
1973- ^
Bixler, G. H., and D. L. Sawyer. Boron Chemicals
from Searles Lake Brines. Ind. Eng. Chem.
49.:322-333, March 1957-
Hightower, J. V. Mew Carbonation Technique - More
Natural Coda Ash. Chem. Erig . 5^:162-163, Ma.y 1951.
Mum ford, R. W. Potassium Chloride from the brine
of Cearles Lake. Ind. Eng. Chem. 3^:872-877,
August 1938.
Nies, N. P. Boron Compounds (Oxides, Borates).
In: KIrk-Othmer Encyclopedia of Chemical Tech-
nology, 2nd Edition, Standen, A. ( ed . ) . New York,
Interscience Publishers, 1964. 3_:621-650.
Plant Expansion at Trona Boosts Soda Ash and Borax
Capacity. Chem. Eng. 5^:102-103, April 1949.
Shreve, R. N. Chemical Process Industries, 3rd
Edition. New York, McGraw-Hill, 196?. 905 P-
Turrentirio, J. W. Potash in North America. ACC
Monograph) Ceries, No. 91. New York, Heinhold, 1943.
186 p.
Woodmansee, W. C. The Mineral Industry of California.
In: Minerals Yearbook 1971, Cchreck, A. E. ( ed . ) .
Washington, (J . S. Dept. of Interior, Bur. of Mines,
1973. "2:119-168.
-------
g Havighorst, C. R. New Process Separates Borates
from Ore by Extraction. Chem. Eng. (New York).
7_0:228-232, November 11, 1963.
Woodmansee, W. C. The Mineral Industry of
California. In: Minerals Yearbook 1971, Schreck,
A. E. (ed.). Washington, U. S. Dept. of Interior,
Bur. of Mines, 1973- 2:119-168.
h Hadzeriga, P. Some Aspects of the Physical
Chemistry of Potash Recovery by Solar Evapora-
tion of Brines. Trans. Soc. Min. Eng. 229 :l69-
17^, June 1964.
I Faith, W. L., D. B. Keyes, and R. L. Clark.
Industrial Chemicals, 3rd Edition. New York,
John Wiley and Sons, 1965- ^52 p.
j VerPlarik, W. E., and R. F. Heizer. Salt in
California. Calif. Dept. of Nat' 1 . Re:;., biv.
of Mines, Bulletin 175, San Francisco, 195^.
168 p.
k Deutsch, Z. G., C. C. Brumbaugh, and F. H. Rockwell
Alkali and Chlorine Industry. In: KIrk-Othmer
Encyclopedia of Chemical Technology, Standen, A.
(ed.). New York, Interscience Publishers, 1963.
1:671-702, 7^0-756.
1 Bixler, G. H., and D. L. Sawyer. Boron Chemicals
from Searles Lake Brines. Ind. Eng. Chem. 4_9_:
322-333, March 1957. '
Mies, M. P. Boron Compound;; (0/Jdo;;, liorato;;).
In: Klr-k-Othmer Encyclopedia of Chemical Tech-
nology, 2nd Edition, Standen, A. (ed . ) . Mow York,
Intor;;oi erico Puh'J l:;ber-:;, \()(>]\ . 3:621-6^0.
rn R;Jxler, f j . If., and D. L. Sawyer. Boron Chemical;;
from Searles Lake Brines. I rid. Enp. Chem.
49_:322-333, March 3957-
Nies, N. P. Boron Compounds (Oxides, Borates).
In: Kirk-Othmer Encyclopedia of Chemical Tech-
nology, 2nd Edition, Standen, A. (ed.). New York,
Interscience Publishers, 1964. 3_:621-650.
n Harley, G. T., and G. E. Atwood. Langbeinite,
Mining and Processing. Ind. Eng. Chem. 39:43-48 ,
January 1947.
89
-------
n Jacobs, J. J. Potassium Compounds. In: Kirk-
Othmer Encyclopedia of Chemical Technology,
2nd Edition, Standen, A. (ed.). New York,
Ihterscience Publishers, 1968. l6_:371-397-
Potassium Chloride and Potassium Sulfate. Chem.
Eng. 57*168-171, January 1950.
Shreve, R. N. Chemical Process Industries,
3rd Edition. New York, McGraw-Hill, 1967.
905 P-
Turrent Lne, J. W. Potash in North America. ACS
Monograph Series, No. 91- New York, RoLnhold, 19]I3.
186 p.
White, N. C., and C. A. Arond, Jr. i'ot;K;h
Product'3 on at Card :;bad . Cbern. Kng. Progr.
16:5^3-530, October 1950.
o,p Rau, E. Sodium Compounds (Carbonates). In:
Kirk-Othmer Encyclopedia of Chemical Technology,
2nd Edition, Standen, A. (ed. ) . New York, Inter-
science Publishers, 1969. 1_8_: 458-468 .
q Lemke, C. H. Sodium. In: Kirk-Othmer Encyclo-
pedia of Chemical Technology, 2nd Edition,
Standen, A. (ed.). New York, Interscience Pub-
lishers, 1969. lS_:432-457.
Sittig, M. Sodium Its Manufacture, Proper-tier;,
and User;. ACS Monograph Series, No. 133-
Mew York, Roinho'ld, 1956. p. 33-
r Bach, R. 0., C. W. Karri ionr;ki, and h. I',. K1 I o;;t;j
-------
u Jacobs, J. J. Potassium Compounds. In: Kirk-
Othmer Encyclopedia of Chemical Technology,
2nd Edition, Standen, A. (ed.). New York, Inter-
science Publishers, 1968. l6_:371-397.
v Clapper, T. W.,and W. A. Gale. Chloric Acid
and Chlorates. In: Kirk-Othmer Encylopedia
of Chemical Technology, Standen, A. (ed.).
Now York, Interscience Publishers, 1%^I.
5:50-59.
Chreve, R. N. Chemical Process Industrie;;, 'jf'd
Edition. New York, McGraw-Hill, 196?. 900 p.
w,x Bach, R. D., C. W. Karnienski, and R. B. Ellestad.
Lithium and Lithium Compounds. In: Kirk-Othmer
Encyclopedia of Chemical Technology, 2nd Edition,
Standen, A. (ed.). New York, Interscience Pub-
lishers, 1967. 1^:530-5^6.
Luckenback, W. F. Lithium (Annual Review, 1967).
Eng./Min. J. 168:152, February 1967-
91
-------
BRINE AND EVAPORITE CHEMICALS PROCESS NO. 11
DRYING
1. Function
The process removes, almost always by evaporation,
at least a portion of the water contained in the input
material, thereby yielding a product of lower total
water content. "Drying" generally involves only the
removal of "free" water, as opposed to the intended
function of "Drying/Calcination" (Process 12), which
generally alters the input composition in additional
ways, including the removal of combined water.
Input materials may be liquids or solids, but the
product is always a solid. The product of the drying
process is usually the end product of the operation,
but in some cases may be an intermediate product,
transferred to a subsequent process.
The process may occasionally include the following
additional steps:
Grinding
Cooling
Screening
The specific type of equipment used in drying processes
depends both on economics and on the chemical and
physical nature of the substances involved. The equip-
ment types in general use in the various applications
of Process 11, described below, include:
Rotary - direct fired
- externally heated
- steam-coil heated
- cocurrent
- countercurrent
- double-cone (batch)
Shelf
Tray
Pan
Tunnel
Spray
Pluidized bed
Belt
Hot-air drying cycle on continuous filters
92
-------
Most of the types of dryers mentioned above may be
operated in continuous, intermittent-continuous, or
batch modes, and are represented in a wide range of
production capacities. Double-cone and tray dryers
are usually for small outputs and are usually
operated batchwise.
The specific funtion and type of dryer used in each of
the applications of Process 11 are listed in Table 6.
Rotary coolers are usually used for cooling the dried
product, although water-jacketted trough-and-screw
coolers are sometimes employed.
2. Input Materials
The identity and estimated quantity of the respective
input materials fed to the various applications of
Process 11 are listed in Table 6.
3. Operating Parameters
Operating temperatures are listed in Table 7.
4. Utilities
Quantities of heat and electrical energy consumed are
listed in Table 7.
5. Waste Streams
All types of solids-drying equipment, when producing
dry bulk solids, invariably release particulate matter
to the atmosphere as a fugitive emission. Most
frequently, fine particles of the substance being dried
are carried suspended in the exhaust air issuing from
the dryer. Even when little or no air is used as the
direct heating agent, as is the case with a steam-coil
dryer or a double-cone dryer, dusts arise in the
discharging and the immediately subsequent handling of
the dried product.
Generally, direct-fired rotary dryers generate the
highest absolute quantity of particulate matter per
unit of product. Conversely, indirectly heated dryers,
represented by steam-tube or double-cone rotating types,
usually produce the smallest amount of dust per unit of
product.
93
-------
H
H
CO
CO
O
o
pt
pr]
O
CO
o
H
EH
<£,
0
H
t—1
p t
^
O
CO
-*>
j.
FQ
(L*
a
5
to
£j
o
H f4 4^
dJ -H
•H • *~
rH id a *P
CU > CO H
rH 03
P -P rS
O X CU
CE; cu p
to
a;
cj
id
o
PH
O
CM
W to
t— H
• cd
J- p
O to
CO >M
is CJ
S a bd
0 0 -Hi j-
^3 Ca.
CO ^1
to «
to o
CD -H
0 H
O P
IH P
PH <
03
,.
•X
to
to
o
IH
O
CU
K
-p
•d cu
cu p
rH 0
CU -rl
y — -.
o
rH IN
cu K
-P '^^ VD
rH O •
•H CM O CM
Vt M • O
LTN on oo o
O • • -=!•
CM CV1 co O •
W O -P O
on o o M
en •• *^f • LP\
O 5 O
cd ,Q
rH -P rH
CU O
^H O ' — •" CO
""a P
r> . O
£>j rH ^H ^j
cd cu cu id
M r"3 t^i CJ
P^ rH Vt ?-H
CO !d id PH
- •
O N
CM O
w u
on -*
V 0
O hp O
O rH S CM
bp 0 K
S ITNVD
, , — ^
H CM
_3-
XI
rd
0)
p
o3
0
•H
P
to
W
*
rH >>
cd Tj
^ -. -
- — -
CU VO rH
!d O O
pj • cd
rH H S
a
o *d
« -p 1)
-p a
to -H/ -H
•H O CH
O • 0)
S rH r4
^
0)
j^i
•H
In
1
PI
O
0)
^H
•H
•d
. rs
\>i
rH
cd
-P
O
rH
O
^
(D
jj
^_(
O
Lf\
O
rrj
cu
p
ct3
•rH
P
to
{V]
. .
H
U «
S ?H
r^j
id ^-^
0) ^-^
C! VD H
•H O CJ
CIH • cd
a> H 3
o id
" P 0)
-P G
CO -c)- -H
•H O «H
O • CU
S H rH
. ^
J^j
. 13
&-4 QJ
4-J C
en -H
3 cd
13 4-J
C 0)
•H M
QJ CO
4-1 -rl
cd
JH 4^
Cfl U
fX -H
CU J3
c/^ 3*
•K
94
-------
H
r-H
CO
CO
w
0
0
K
P-i
0
CQ
S
0
H
EH
0
H
^
p_j
pLi
d a t)
0> CD 3
4^ CO JH 'd
Cd 3 0> O
S ft !M
4J P
4^ G to ^_
3 3 G CH
ft O O O
C £3 4^
H <
•
g
-P
G
0)
Q
p.
•H
3
a
W
<4_|
O
CD
p
J>
£H
tn
cu
CJ
'd
O
JH
CD
•P
cj
•H
-p
tn
CD
CO
tn
O
in
O
•p
CO >5
•H £-1
O *d
0
H CD
(U .. . >
J> CO H -H '--
•H H 4> W
-P cd O o 42
y -H -p CD O
0) fn ft 3
Pi CD LT\ in 'd
to 4^ o CD o
CD cd • ?H JH
K 0 r-H^ ft
-d
CD
^
•H
^H
1
P
a
cu
•H
nd
r*
K*i
^_j
cd
4-1
O
«
j-
J- O
o co
.H CQ G M
O O -H
£ fe
t—
CD
to •
in o
CD -H
0 H
0 ft
fc ft
P-i cd
60
0)
4^>
cd
^
•rl
^J
to
CD
in
cn
0
c5
^
f^i
TJ
•^ ^
H
. » •
H H
O
w o
+3
-p
in LT\ ^~*^
•H O H
0 • 0
S H W
-d
CD
«_,
•H
^H
1
4^
a
CD
•rH
TJ
r>
r*^
cd
-P
0
, — 1
o
W
ON
c|
CD
4^
cd
e
•H
•P
tn
CD
cn
in
O
£_,
0
S
rH
•d
j-
O rH
CD •
CM H
cd
s o -^
-p J-
4J O
in LT\ CD
•H 0 CM
O • cd
F. r-t &
-d
CD
^_,
•H
C)_t
1
4J
O
CD
fn
•H
rCJ
»N
t-*i
c_)
cd
4^
o
^
o
01
CsJ
cd
&H
o\
•H
CD
4^
cd
c4
•H
-P
W
CD
tn
cn
O
0
\Q
•• O
r— ( • ' ^
0 H .H
cd 0
S O cd
4} Z5
-p
cn J- >j
•H 0 Jj
O • TJ
2 H —
1
o
-p
0
K
CD
£_i CL(
O r*i
4J
^
r*s ^H
CD ^*
4"1 3
O O
K H
H
O
cd
^
H
H
.(-^
CD
4->
cd
s
•H
4^
tn
CD
in
tn
O
O
,
• • m
•* O
O 0
PL, CM
Cd -H
^ 1 "]
CM • — '
•H
i-3 OO
rH
•p
cn o
•H 4^
o
S ON
H
•H
0
'XJ CJ
CD 1
to g
O CD t>3
H CD Sn
O 4J cd
cn cn +3
•rH 0
a H
£S Q rd
cd CD
CD ft -P
Pu o cd
>, fn CD
EH ft ^!
^-
O
P-t
13
CM
•H
t-3
oo
H
M
OJ
4-1
cd
d
•H
[ 1
cn
CD
cn
cn
O
C5
m
O rH
O •
CM H
•H • — •
V— 1 O CO
42 o
-P 0
CO LT\ CM
•H O -H
0 • J
S H ~~<
* ^
rr-<
(D
CO
o
H
O
to
T~5
0
pj
p>j
^
m
o
o
CM
•H
i-3
OO
H
c3
W
(D
, — |
cd
•d
0)
cn
•H
H
f^
fi
. .
ro CO
O H
O •
JTI , — |
W
fe; o
i ^
cn CJN
•H O
O •
cn
fn
CD
r*i
^J
r^J
rH
CD
r*>
rH
cd
to
ro
O
O
£f
cd
H
d
^— -^
ro
O
o
CD
S
r*^
J^
n^i
95
-------
rH
H
CO
w
O
O
Pn
fin
O
CO
O
M
EH
O
H
§
fS
O
CO
1
w
E"*
*3n
S
EH
1
H
P
&
&
a
t-H
EH
O
1
•
•f — "
t3
0)
•3
B
•H
-P
CJ
0
O
cu
rH
o3
EH
W
t^
_j
c<
S
PH
M
OJ
p!
H
crj
rd
CU
CO
•H
H
rj
(S
G
H G O
cd -H -P
•rH _^—
CD CD a o
-P to pi
Cd P$ rH rH
S
CO -H
•H fn
O T3
a ^o
00)
CD •• • !> ^-v
!> CO H -H •
•H H -P 10
-p crj O CJ -p
0 -H -P CU 0
0) JH ft 2
ft OJ ^f CO rd
co +3 o cu o
(L) crj • K JH
cc a >-H - — ft
K*} r-*}
rH crj
P rH
•H -P
CO
CO rH
O O
ft
•" rH rH
r>a crj crj
crj -P -P
rH O O
EH fn W
^ — . — .
H OJ
en
0)
c
rC
O
p_
O
.
O O
j- j-
pq pq
rsl CN
crj cd
^ j^j
^ — ^ ^— ^
H OJ
S G bfll VD
O O -H rH
CO H
CO
w c
QJ T-
CJ r-
O P
£ e
0
i.
.
O)
JL)
|j
CO -P
•p w
cd -H
S °
•3 a
-p
CU 0 -p
rH G
CO rH 0>
CO 0) -P
O CH G
rH C!0
O MO
J>j
rrj - — .
^-^ i — 1
O
o •
P3 rH H ^
1 1 ^ S S
-P CO -p
to in o w in
•H O CQ -HO
O • en O •
S H W S rH
. «N
d)
P^
p>3
-P >>
rd rH
0) -p
CO
o s
H H
O rQ r>5
CO Cd rH
•H rQ Cd
rd O -P
G 5n 0
D ft K
m
O
W H
m O
W «
VO t—
rH H
ft &
0)
$_i
jj
+J
CO
•H
O
a
rd
0> -P
rH C
OJ -P