EPA-600/2-77-023V
February  1977
Environmental Protection Technology Series
                 INDUSTRIAL PR

-------
                RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have  been grouped  into five series. These five  broad
categories were established to facilitate further development and application of
environmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The five series are:

     1.    Environmental Health Effects Research
     2.    Environmental Protection Technology
     3.    Ecological Research
     4.    Environmental Monitoring
     5.    Socioeconomic Environmental Studies

This report  has been  assigned  to the ENVIRONMENTAL PROTECTION
TECHNOLOGY series. This series describes research performed to develop and
demonstrate  instrumentation, equipment, and methodology to repair or prevent
environmental degradation from point and non-point sources of pollution. This
work provides the new  or improved technology required for the control  and
treatment of pollution sources to meet environmental quality standards.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.

-------
                                            EPA-600/2-77-023V
                                            February 1977
           INDUSTRIAL PROCESS PROFILES

              FOR ENVIRONMENTAL USE

                    CHAPTER 22

THE PHOSPHATE ROCK AND BASIC FERTILIZERS INDUSTRY
                        by

P. E. Muehlberg, J. T. Reding, and B, P. Shepherd
                   Dow Chemical
              Freeport, Texas  77541

       Terry Parsons and Glynda E. Wilkins
                Radian Corporation
               Austin, Texas  78766
             Contract No. 68-02-1319
                 Project Officer
                 Alfred B. Craig
     Metals and Inorganic Chemicals Branch
  Industrial Environmental Research Laboratory
               Cincinnati, Ohio  45268
   INDUSTRIAL ENVIRONMENTAL RESEARCH LABORATORY
       OFFICE OF RESEARCH AND DEVELOPMENT
      U.S. ENVIRONMENTAL PROTECTION AGENCY
             CINCINNATI, OHIO  45268

-------
                                 DISCLAIMER
       This report has been reviewed by the Industrial Environmental Research
Laboratory - Cincinnati, U.S. Environmental Protection Agency, and approved
for publication.  Approval does not signify that the contents necessarily
reflect the views and policies of the U.S. Environmental Protection Agency,
nor does mention of trade names or commercial products constitute endorsement
or recommendation for use.

-------
                              TABLE  OF CONTENTS
                                 CHAPTER 22
                                                                       Page
INDUSTRY DESCRIPTION	     1
    Raw Materials	     3
    Products	     4
    Companies	     4
    Envi ronmental Impact	     5
    Bibl iography	     6

INDUSTRY ANALYSIS	     7
PROCESS DESCRIPTIONS	     8
    Phosphate Rock Processing	    10
       Process No. 1.  Mining.	    12
       Process No. 2.  Beneficiation	    14
       Process No. 3.  Crushing/Grinding/Screening	    16
       Process No. 4.  NSP Process	    19
       Process No. 5.  Wet Acid Process	    21
       Process No. 6.  TSP Process	    24
       Process No. 7.  Sulfuric Acid  Manufacture	    26
       Process No. 8.  Phosphate Rock Calcination	    28
    Ammonia Synthesis	    29
       Process No. 9.  Air Separation	    31
       Process No. 10.  Ammonia Feedstock Purification	    33
       Process No. 11.  Hydrogen Purification	    35
       Process No. 12.  Cryogenic Purification	    36
       Process No. 13.  Partial Oxidation	    38
       Process No. 14.  Steam Reforming	    41
       Process No. 15.  Hydrogen Combustion	    44
       Process No. 16.  Ammonia Synthesis	    45
    Production of Ammonium Sulfate,  Ammonium Nitrate and Urea	    47
       Process No. 17.  HNOa  Formation	    49
       Process No. 18.  NH^NOa Formation	    52

-------
TABLE OF CONTENTS (Continued)
                                                                     Page
       Process No.  19.  Urea Formation	   55
       Process No.  20.  Urea Finishing	   57
       Process No.  21.  Ammonium Sulfate Formation	   59
    Production of Potassium Nitrate and Liquid Chlorine	   61
Process No.  22
Process No.  23
Process No.  24
Process No
                   25.
                   KCL-HN03 Reaction	  63
                   Crystallization/Stripping/Fractionation	  65
                   KN03 Drying	  67
                   NaO^-Cli; Fractionation	  68
   Process No. 26. HN03 Formation/Absorption	  70
Production of Ammonium Phosphates and Nitric Phosphate	  71
   Process No. 27. Neutralization/Granulation/Drying	  73
   Process No. 28. Digestion/Granulation/Drying	  75
Production of Mixed Fertilizers	  77
   Process No. 29. Dissolution	  79
   Process No. 30. Ammoniation/Granulation/Drying	  81
   Process No. 31. Dissolution/Slurrying	  83
   Process No. 32. Bulk Blending	  85
Elemental Phosphorus and Furnace Acid Segment	  87
Production of Elemental Phosphorus and Furnace Acid	  83
   Process No. 33. Furnace Charge Preparation	  90
                   Electric Furnace Process	  92
                   Off-Gas Combustion	  94
                   Phosphorus Recovery	  96
                   Phosphorus Combustion	  98
                   P205 Recovery	  100
   Process No. 39. Absorption/Purification	  ]Q1
Production of Sodium Phosphates and Calcium Phosphates	  ]Q3
   Process No. 40. Neutralization/Filtration	  105
   Process No. 41. Crystallization/Drying	  107
   Process No. 42. Calcination	  109
   Process No. 43. Fusion	  Ill
   Process No. 44. CaO-H3P04  Reaction	  112
   Process No. 45. Calcium Phosphate Drying	  114
       Process No.
       Process No.
       Process No.
       Process No,
       Process No.
            34.
            35.
            36.
            37.
            38.

-------
TABLE OF CONTENTS (Continued)

                                                                    Pcuje
APPENDIX A -  Raw Materials	    115

APPENDIX B -  Product List	    121

APPENDIX C -  Company/Product Lists 	    125

APPENDIX D -  Fertilizer Industry Bibliography	    1g7

 Directory,  Fertilizer Plants in the United States

-------
                              LIST OF FIGURES

                                 CHAPTER 22


Figure                                                              Page

  1        Chemical  Tree - Phosphate Rock and Basic
          Fertilizer Materials Industry. .  . 	    9

  2       Phosphate Rock Processing  	   11

  3       Ammonia Synthesis	30

  4       Ammonium Sulfate, Ammonium Nitrate and Urea	48

  5       Potassium Nitrate and Liquid Chlorine	62

  6       Ammonium Phosphates and Nitric Phosphate 	   72

  7       Mixed Fertilizers	78

  8       Elemental Phosphorus and Furnace Acid  	   89

  9       Sodium Phosphates and Calcium Phosphates 	  104
                                   VI

-------
                           LIST OF TABLES



                             CHAPTER 22




Table                                                            Page



 A-l    Representative Analyses of Commercial  Phosphate Rocks.    119



 C-l    Producers of Ammonia (Anhydrous and Aqua)	    126



 C-2    Producers of Ammonium Nitrate	    131



 C-3    Producers of Ammonium Phosphates 	    134



 C-4    Producers of Ammonium Sulfate	    137



 C-5    Producers of Bulk-Blended Mixed Fertilizers	    138



 C-6    Producers of Calcium Phosphates	    139



 C-7    Producers of Chlorine, Liquid	    141



 C-8    Producers of Defluorinated Phosphate Rock	    142



 C-9    Producers of Ferrophosphorous	    143



 C-10   Producers of Fluorosilicic (Hydrofluosilicic Acid) .  .    144



 C-ll   Producers of Granular Mixed Fertilizers  	    146



 C-l2   Producers of Gypsum	    147



 C-13   Producers of Liquid Mixed Fertilizers	    148



 C-14   Producers of Liquid Suspensions	    149



 C-15   Producers of Marketable Phosphate Rock 	    150



 C-l6   Producers of Nitric Acid	    153



 C-17   Producers of Nitric Phosphate	    158



 C-18   Producers of Phosphoric Acids, Ortho 	    159



 C-19   Producers of Phosphoric Acids, Super 	    163



 C-20   Producers of Phosphorous, Elemental	    165
                                VII

-------
 LIST OF TABLES (Continued)

Table                                                           Page
 C-21   Producers of Phosphorous,  Pentoxide  	     166
 C-22   Producers of Potassium Nitrate	     167
 C-23   Producers of Slag	     168
 C-24   Producers of Sodium Orthophosphates  and  Polyphosphates    169
 C-25   Producers of Sulfuric Acid	     174
 C-26   Producers of Superphosphate, Normal  	     181
 C-27   Producers of Superphosphate, Triple  	     183
 C-28   Producers of Urea	     184
                                   VI 11

-------
                             ACKNOWLEDGEMENTS
This catalog entry was prepared for EPA by Dow Chemical U.S.A., Texas
Division, Freeport, Texas, under Contract No. 68-02-1329, Task 8.  P. E.
Muehlberg, J. T. Reding and B. P. Shepherd were the authors of this report.

Helpful review cormients from Denzel A. Brown were received and incorporated
into this chapter.

-------
                     PHOSPHATE ROCK AND BASIC FERTILIZER
                             MATERIALS INDUSTRY


INDUSTRY DESCRIPTION

     The companies populating the industry produce primarily large-tonnage
quantities of both finished fertilizers and the basic intermediates for
fertilizers.  Companies and processes which produce end products derived
from phosphate rock having uses other than as fertilizers are included in
the industry.  Historically, most non-fertilizer production occurs in an
industry segment that is distinguished by a group of products which are
derived from the electric furnace process for the production of elemental
phosphorous:  Included are furnace acid and the inorganic phosphates pro-
duced from furnace acid.  This segment has been entitled "Elemental
Phosphorous and Furnace Acid Segment" and is described in further detail
in a separate segment description.

     Primary raw materials used by the industry are:

          .  phosphate rock

          .  nitrogen from air

          .  hydrogen from hydrogen containing materials,
             especially natural gas

          .  sulfur

     These raw materials are upgraded and combined with secondary raw materials
from the potash products industry to produce 30 to 40 end products.

     To facilitate description, the 45 processes used by the industry have
been divided into eight operations:

          1) Phosphate Rock Processing

          2) Ammonia Synthesis

          3) Production of Ammonium Sulfate, Ammonium Nitrate and Urea

          4) Production of Potassium Nitrate and Liquid Chlorine

          5) Production of Ammonium Phosphate and Nitric Phosphate

          6) Production of Mixed  Fertilizers

          7) Production of Elemental Phosphorous and Furnace Acid

          8) Production of Sodium Phosphates and Calcium Phosphates

-------
Each of these groups of technologically related processes  is  diagrammed on
a separate flowsheet.  The processes indicated on a given  flowsheet convert
a small group of input materials to a group of technologically related end
products, intermediate products, by products and/or waste  materials.   Details
concerning the conversion of raw materials to finished products are given
under "Industry Analysis" and in individual Process Descriptions.

     Industry functions are conducted in an estimated six  thousand to seven
thousand separate facilities.  These facilities are unevenly  dispersed through-
out forty eight states.  More than 97 percent of these installations  are
blending plants for mixed fertilizers.  Their geographic locations follow
approximately the distribution pattern of the acreage of cultivated land.

     The installations producing the more basic fertilizer intermediates, such
as superphosphates, wet-process phosphoric acid, or ammonia,  are,  for economic
reasons situated near phosphate rock mines or near low-cost supplies  of hydro-
carbons or other hydrogen-containing materials.

     The size of a single facility varies from an estimated half-dozen full-
or part-time employees working in a mixed-fertilizer bulk-blending plant
up to a level of between one thousand and fifteen hundred people employed
in an integrated facility mining and processing phosphate rock as well as
producing ammonium phosphates and urea from captively produced ammonia;  In
the former example, the equipment involved might be valued at as little as
one or two hundred thousand dollars.  The total fixed investment in the latter
case may be several hundred million dollars.

     Total employment in the industry during 1973 is estimated between fifty
and sixty-five thousand persons.

     The combined dry-basis weight of all end products leaving the industry
during 1974 is estimated to be between 55 and 65 million metric tons.  This
total net tonnage was produced from approximately 125 million metric tons
of crude phosphate rock plus the total hydrocarbon equivalent of more than
 1.5 billion cubic meters of  natural gas  and about seven million metric tons
of  purchased  potash materials.  The fertilizer  industry consumed approxi-
mately 17.6 million metric tons of  sulfuric acid during 1974, or about 56
percent  of the total  U.S.  consumption  of sulfuric acid for all purposes.

     The industry  in  general has experienced an  annual growth rate of
 slightly greater than  3.5  percent  since  1970.   Forecasts of  its growth
 rate to  1980  are between  three  and  five  percent per year.  These rates
 do  not apply  to  the  Elemental  Phosphorus and  Furnace  Acid Segment.   The
 segment  has  been  shrinking since  1970.   The decline  is predicted to
 continue in  the  near future.

      It  is believed that all  industry companies use  purchased  power.
 Possible exceptions are milti-industry facilities  of some large corpora-
 tions  such as Allied Chemical  Corporation or the Monsanto Company, where
 on-site  power may  be generated.   The  phosphorus furnaces  of  Tennessee
 Valley Authority,  which used TVA-generated power,  are now  inoperative.

-------
Raw Materials

     The large-tonnage primary raw materials  of the industry are:

     •Phosphate rock deposits, owned by industry companies.
     •Air, as the nitrogen source for ammonia.
     •Hydrogen-containing materials, such as  electrolysis-cell  hydrogen,
      natural gas and naphtha.  These may be  either captive  or  purchased.
     .Sulfur, as the source of sulfuric acid.   This is  purchased from
      outside the industry.
     .Other primary raw materials include lime  and soda ash.

     Secondary raw materials include:

     .Potash materials, usually potassium chloride.  Normally purchased.
     .Sulfuric acid, purchased to augment captive production.
     .Iron - for use in the Electric Furnace  Process.

     Phosphate rock deposits represent by far the largest tonnage of raw
material.  Deposits occur in three distinct areas:

     •Florida-North Carolina, accounting for about 70 percent of current
      domestic output.  This area generally contains the lowest grade
      rock deposits, but produces the highest grade of beneficiated
      rock.
     •Tennessee, has the smallest output of the three areas  and produces
      the lowest grade of beneficiated rock.
     •Western states (Idaho, Montana, Utah, and Wyoming).  The grade of
      the deposits is highest in this area.  The rock needs  little
      beneficiation.

     More than 95% of the crude phosphate rock produced is mined by open-
pit methods.  Reclamation of worked-over land and necessity of maintaining
sludge ponds for slimes disposal are the two  largest continuing
environmental problems.

     Natural gas and other light hydrocarbons such as  naphtha are by far
the major source of hydrogen for ammonia production, estimated to account
for about 90 percent of the ammonia produced.  Electrolysis  hydrogen,
stripped coke-oven gas, and off-gas from cracking processes  account for the
remainder.  No environmental problems result  from transportation or storage
of hydrogen feed streams.

     Natural gas, potash, and sulfur are materials which are in some
instances purchased, and in other cases produced captively by large multi-
industry companies.  The operations of International Minerals and Chemical
Corporation, Lone Star Gas Company, Arkansas  Louisiana Gas Company, Texas-
gulf, and Freeport Minerals Company are examples of vertically integrated
production.  In most cases, however, these raw materials are purchased.

     Sulfuric acid is the only raw material having any notable toxicity
or other potentially harmful  properties.

     A complete list of  industry raw materials is  included in Appendix A.

-------
Products

     The industry produces 30 to  40  end products.   Several  of these,  such  as
phosphoric acid, and the phosphates  of calcium, sodium and ammonia,
include more than one distinct compound.

     Four by-products are generated:  gypsum, furnace slag, fluorosilicic
acid, and liquid chlorine.

     The distribution, estimated  here, of the approximately sixty
million metric tons of end products  leaving the industry in 1974 was:

     •Domestically consumed end-use  fertilizers - 73%
     •Exports, chiefly phosphate  rock           - 23%
     •Non-fertilizer use                        -  4%

     The latter category includes:
     •Detergents
     •Elemental phosphorus for compounds produced by other industries
     •Beverages, foods, animal feed additives
     •Rust preventatives
     •Ferro-phosphorus for the steel industry.

     Less than five percent of the by-product gypsum is beneficially used
as a soil conditioner and in manufacture of wallboard.   Furnace slag is
sold for road and railway ballast.  Fluorosilicic acid  is mainly used in
fluoridlzing municipal water supplies.

     A complete list of products and by-products may be found in Appendix B.


 Companies

      All of the companies conducting at least  one operation  in the
 industry belong to one or the other of three groups:

      •Companies (or individuals) who conduct only a blending process to
       produce a mixed fertilizer material  ready for application to the
       soil.  This group numbers between four thousand  and six thousand
       small companies, each employing an estimated three to  ten persons.
       Their processes are dry bulk-blending, granulation, liquid-mixing,
       and liquid suspension mixing.  Frequently, the individual companies
       are members of cooperatives.

      •Companies who produce the intermediate materials for the first
       group, and who may also themselves produce the identical end-of-
       the-line products in competition with the first  group.  About 110
       companies are represented in this group.  They vary in size from
       100 to more than 2000 employees (estimated) and  may actually
       be divisions or subsidiary companies of much larger, multi-industry
       organizations.  Several cooperatives are included.  Operations of
       this group usually produce several basic end-products.

-------
     .Companies which use the Electric Furnace Process to manufacture
     products for non-fertilizer end uses.  These companies may also
     produce intermediate materials for fertilizers or fertilizers.

     Approximately seventy five percent of the combined  tonnage of end
products leaving the industry results from material  processed by the
eleven companies listed below in the estimated order of  decreasing tonnage
produced:

     International  Minerals and Chemical  Corporation
     The Williams Company (Agrico)
     Mobil Oil  Company  (Mobile  Chemical  Company)
     Monsanto Company (Monsanto Agricultural  Products Company)
     Esmark, Incorporated (Swift Chemical  Company)
     Texasgulf Incorporated
     Brewster Phosphates
     W. R. Grace & Company
     J. R. Simplot Company
     Stauffer Chemical  Company
     United States Steel Corporation (USS Agri-Chemicals)

     A more nearly complete list of industry companies is given in
Appendix C.


Environmental Impact

     Seven environment-related problems continue to be of concern  to the industry:

     •Reclamation of worked-over land in open-pit mining of phosphate
      rock.
     •Disposal  of slimes from wet process beneficiation  of phosphate
      rock.  Micron-size slime particles require years to settle in
      tailings ponds.  Pond dikes are subject to breakage.  Damages of
      thirty million dollars are claimed from one such breakage.  More
      than forty-two thousand acres are occupied by slime ponds.
     •Disposal  of gypsum waste from wet-process acid operations.  Waste
      piles frequently attain heights of 30 meters.
     •Fluorine-containing emissions from operations producing super-
      phosphates, wet-process acid, and defluorinated rock.
     •NOX content of tail gases from nitric acid absorbers.
     •SOX content of tail gases from sulfuric acid plants.
     •Treatment of "phossy water" discharged from elemental phosphorus
      recovery in electric furnace operations.

     Progress toward satisfactory solutions of these problems has been
reported in the literature.  The industry has spent more than 100 million
dollars to date in these problem areas.

-------
Bibliography

Chemical Economics Handbook, McCaleb, K.  E.(ed.).   Menlo Park, Stanford
Research Institute.

Directory of Fertilizer Manufacturers in the United States, Bulletin Y-87,
Hargett, N. (ed.).  Muscle Shoals, National  Fertilizer Development
Center, Tennessee Valley Authority, January 1975.

Hargett, N.  Personal communication.  July 1975.

Slack, A. V.  Fertilizers.  In:  Kirk-Othmer Encyclopedia of Chemical
Technology, 2nd Edition.  Standen, A. (ed.).  New York, Interscience
Publishers, 1966.  9_:25-150.

Slack, A. V.  Personal communication.  July 1975.

Stowasser, W. F.  Phosphate Rock.   In:  Minerals Yearbook, 1972.  Shreck,
A. E.  (ed.).  Washington, U. S. Dept. Interior, Bur. Mines, 1974.
1:1027-1041.

Stowasser, W. F.  Personal communication.  July 1975.

Van Wazer, J. R.  Phosphorus and the Phosphides.  In:  Kirk-Othmer
Encyclopedia of Chemical Technology, 2nd Edition.   Standen, A.  (ed.).
New York,  Interscience Publishers,  1968.  1_5:291.

Wang,  K-L., B. W. Klein and A. F. Powell.  Economic Significance  of the
Florida  Phosphate Industry.  Washington, U. S. Dept. of Interior, Bur.
Mines.   1974.  51 p.

-------
INDUSTRY ANALYSIS

     The fertilizer industry is generally competitive and operations  are
standardized.  Data and information on processes  are therefore  believed
to be representative of operating plants.  In some instances,  information
on emissions or utilities is not available.

     Figure 1 is a chemical  tree which has been included to provide an
overview of the material flow for the entire industry.

     Figures 2 through 9 present the flow of materials through  the 45
processes used in the entire industry.  Figures 8 and 9 are devoted to
processes used in the Elemental Phosphorous  and Furnace Acid Segment of
the industry.  Each figure is a flowsheet for a group of technically re-
lated processes (termed operations) by means of which a few input materials
are converted to end-products, intermediate products, by-products and/or
waste materials.  The flow of intermediate products from one operation to
another is indicated by numbered circles keyed to Figure Numbers.

     A brief description of input materials and products for each operation
precedes its flow sheet.  The process descriptions for the processes appearing
on the flow sheet follow it.

     The interior of each of the rectangular "process blocks"  appearing on
the flow sheets represents at least one, and usually several,  of the sequen-
tial, real processes of the operations depicted by the flow sheet.  In the
ensuing context, the word "process" refers to what occurs inside the process
block.

     A number and title have been placed within each of the process blocks.
These identifying symbols are used in the process descriptions  immediately
following each figure.

     Flag symbols at the upper right-hand corner of the process block indi-
cate the nature of the waste streams, if any, discharged from the process.
A circle is used for atmospheric emissions, a triangle for liquid wastes,
and a rhombus for solid wastes.  The flags do not differentiate between
inadvertent  (fugitive) and designed wastes.

     A verbal process description has been written to characterize each
process further, to relate it to other processes, and to quantify its
operating parameters.  A sample process description format is illustrated
following the chemical tree.

-------
                    Sample Process Description Format


PHOSPHATE ROCK AND BASIC FERTILIZER MATERIALS              PROCESS NO.  1


                                 Mining

1.  Function - A brief description of Process 1, entitled "Mining," is
    given here.

2.  Input Materials - All materials entering the process are identified
    here and quantified in metric units per metric ton of the principal
    end product produced in the operation.

3.  Operating Parameters - Listed here is available information on
    pertinent operating variables and general operating conditions, such
    as temperature, pressure, flow rates, catalysts, if any, and
    equipment size.

4-  Utilities - Identified and quantified in metric units per metric ton
    of principal end product.

5.  Waste Streams - Liquid wastes, solid wastes, and emissions to the
    atmosphere are identified here and quantified in metric units per
    metric ton of principal end products.

6.  EPA Source Classification Code - Given here if one exists.

 7.  References  _  Information  sources  are  listed here  using  the  format
    prescribed by the EPA style manual, "Interim Specifications for
    OR & M Grant, Contract and In-House Reports."

-------
Q-

(J
a_

•O
 C
 "0


 01
4->

2.

 f

a:
                                                                                                                                    +J
                                                                                                                                    1_
                                                                                                                                    €1
                                                                                                                                    o
                                                                                                                                    Q.
                                                                                                                                     I-
                                                                                                                                     o
                                                                                                                                     11
                                                                                                                                    "O
                                                                                                                                         -a
                                                                                                                                          o
                                                                                                                                     ai
                                                                                                                                     x
 E

T3
                                                                                                                                          fTJ
                                                                                                                                         JZ
                                                                                                                                          a.
                                                                                                                                          CO
                                                                                                                                          o
                                                                                                                                         x:
                                                                                                                                          Q.
                                                                                                                                     i_   OJ
                                                                                                                                     QJ   4->
                                                                                                                                    <4-   ro

                                                                                                                                    -a   Q.

                                                                                                                                     X   O
                                                                                                                                    •r-   XT
                                                                                                                                     E   a.
                                                                                                                                     S-
                                                                                                                                     cn
                                                                                                                                         c
                                                                                                                                         o
                                                                                                                                          CL
                                                                                                                                          c:
                                                                                                                                                    01
                                                                                                                                                    u
                                                                                                                                                    o
                                                                                                                                                    S-
                                                                                                                                                    o.
                                                                                                                                                    
-------
                           PHOSPHATE ROCK PROCESSING
     The processes in this operation include the mining of phosphate  rock
and its conversion to super phosphates,  wet process  phosphoric  acid  and
defluorinated phosphate rock.   Gypsum and fluorosilicic acid are by-products.
Sulfuric acid production from sulfur is  described because sulfuric acid  is
used in the wet process for phosphoric acid manufacture and in  other  processes
in this operation.  Environmentally-related problems associated with  open-pit
mining, slimes disposal, waste gypsum, emissions of  fluorine compounds,  and
sulfur oxide emissions are associated with this operation.
                                       10

-------
11

-------
PHOSPHATE ROCK PROCESSING                                   PROCESS  NO.  1
                                 Mining

1.  Function - The process (See Figure 2)  recovers phosphate rock ore
    (phosphate rock matrix) from subsurface deposits of phosphate rock.
    Mining methods employed are of the open-pit type in most (estimated
    greater than 95 percent) of the operations, but include several
    underground mines in Idaho and Wyoming.

    In the open-pit operations of Florida and North Carolina, the mined
    rock is deposited by draglines into an excavated sump, disintegrated
    hydraulically by streams from high-pressure jets, and conveyed as
    a slurry to the beneficiation plant (Process 2, Figure 2).  In some
    operations, principally in the Western states, the mined ore needs no
    beneficiation.  In these cases, it is forwarded to the crushing and
    grinding equipment of Process 3 (Figure 2).

    The open-pit type of mining process is characterized by the enormous
    quantities of overburden removed and by the large quantities of water
    used to transport the disintegrated rock to the beneficiation plant.

    Principal essential equipment consists of  large, specially constructed,
    electrically-powered draglines, and large  centrifugal pumps.

2.  Input Materials - The phosphate rock deposit  (matrix) plus the over-
    burden constitute the input materials  to the  process.  The phosphate
    rock matrix is nodular fluoraapatite [CaF2»3Ca3(PO^)2] together with
    gangue of blue clay and silica sand.

    Per metric  ton of marketable  rock-plus-concentrates,  typical
    quantities  are:

    •Overburden removed:               4  to  6  metric tons
    •Phosphate  rock matrix  recovered:  3  to  4  metric tons

3.  Operating  Parameters  -  For a  typical  open-pit operation  in  Florida:

    •Average  overburden  thickness:  7  m.
    •Matrix  thickness:   0.5 to 16 m,  averaging 5  m.
    •Average   P205  content  of matrix:  ~14%.
    •Surface  area mined  per year:  -1  km2.
    •Overburden removed  per year:  ~1  x  107  m3.
    •Matrix mined per year:   ~6 x 106  m3.
    •Dragline parameters:
        ~30 m3  bucket.
        2500 total installed kW, supplied  from  7200 v,  3-phase line.
        90-m boom length.
        2100 metric tons total machine weight.
                                     12

-------
    •Water pressure at hydraulic nozzles:   15 kg/cm2.
    •Solids concentration in transport slurry:   -35%.

4.  Utilities - Per metric ton of marketable rock-plus-concentrates:

    •8 to 20 kWh of electrical energy,
    •6 to 8 m3 of water total, of which 1  to 2 m3  is make-up.

5.  Waste Streams

    Four to 6 metric tons of overburden are  removed per marketable  ton
    of rock-plus-concentrates.   This  is temporarily placed  in  piles,  and
    ultimately deposited in mined areas.
    Atmospheric emissions:  Fugitive particulate rock  emissions  (dust)
    from dragline operation during dry periods is  surmised.   No
    quantitative information is  available.

6.  EPA Source Classification Code

    3-05-019-03     Transfer/Storage
    3-05-019-04     Open Storage

7.  References

    Deputy, R., International Minerals and Chemical  Corporation.   Private
    Communication.  July 1975.

    Faith, W. L., D. B. Keyes, and R.  L. Clark.  Industrial  Chemicals,
    3rd Edition.  New York, John Wiley & Sons, 1965.   p.  605-606.

    Shreve, R. N.  Chemical Process Industries, 3rd Edition.   New York,
    McGraw-Hill, 1967.  p. 265-270.

    Stowasser, W. F.  Phosphate Rock.  In:  Minerals  Yearbook 1972,
    Shreck, A. E. (ed.).  Washington, U. S.  Department of the Interior,
    Bur. Mines, 1974.  1:1027-1041.

    Stowasser, W. F.  Private Communication.  June 1975.

    Wang, K-L., B. W. Klein, and A. F. Powell.  Economic  Significance
    of  the Florida Phosphate Industry, Information Circular 8653.
    Washington, U. S. Bur. Mines, 1974.  51  p.
                                       13

-------
PHOSPHATE ROCK PROCESSING                                    PROCESS  NO.  2


                              Beneficiation

1.  Function - The process (See Figure 2)  separates and recovers  the
    high-grade portion of phosphate rock from the phosphate rock  matrix
    (phosphate rock plus gangue) received  from Process 1.   The matrix
    may be received in the form of relatively dry, large lumps.  In
    this case, the beneficiation process usually includes  the following
    steps and equipment.

    •Wet crushing and grinding in hammermills.
    •Wet size separation in log-washers, vibrating-screens, hydroclones,
     and Evans hydrosizers.
    •Draining on dewatering screens.
    •Drying in rotary dryers.

    If the matrix is received as a water slurry (majority of cases), the
    beneficiation process usually includes the following steps and
    equipment:

    •Wet grinding and sizing in equipment as outlined above.
    •Two-step froth-flotation process.
    •Draining on dewatering screens.
    •Drying in rotary dryers.

    The product of the beneficiation process, usually consisting  of
    several size ranges, may be marketed or in integrated operations
    may be forwarded to Processes 4, 5, 6, or 8, Figure 2; Process 28,
    Figure 6; or to Process 33, Figure 8.

2.  Input Materials - Mined matrix per metric ton of marketable rock
    concentrates:

    •In Florida/North Carolina:  3 to 4 metric tons, received  in form
     of 30 to 40% slurry.
    •In Tennessee:  1.6 to 1.9 metric tons.
    •In Western states:   1.2 to 1.3 metric tons.

3.  Operating Parameters  - All  process steps  are conducted at  atmospheric
    pressure and ambient  temperatures.

    Usual size  ranges of  the three fractions  of concentrates produced
    in Florida:

    •14-mesh to 18 mm (land  pebble)
    •35-mesh to 14-mesh
    •150-mesh  to 35-mesh
                                       14

-------
    Average PaOs content of composite marketable  phosphate  rock
    products:

    •Florida-North Carolina:  32.2%
    •Tennessee:   26.1%
    •Western states:   28.4%

    Flotation agents  and conditioning additives are used  in both  stages
    of froth flotation steps.   They are usually amines  and  tall oil.

    Product is dried  to approximately 1% residual moisture.

4.  Utilities -  Based on one metric ton of  composite marketable
    phosphate rock products:

    •Water:  30 m3, of which 5 m3  is make-up.
    •Electrical  energy:  estimated at 20 to 30 kWh.
    •Fuel Oil (for dryers):  4 to  6 kg.

5.  Waste Streams -  Based  on  one  metric ton of composite marketable
    phosphate rock products:

    •Sands:  Varies from ~0.1  metric ton in Western states  operations
     to ~1.0 metric ton  in  Florida.  These are 14- to  150-mesh size
     and are used for filling  mined-out areas  and for dike  construction.

    •Slimes:  ~1.0 metric ton  (dry-basis),  consisting of  micron-size
     clay particles suspended  in a slurry of -5%  concentration.
     Approximately 80% of water is reclaimed from slurry  in settling
     ponds.  Residual, thickened slurry containing  -20% solids is
     indefinitely ponded  and  requires  up to 15 years to  settle.

    •Particulate atmospheric emissions  from rotary dryers are surmised.
     No quantifying information is available.

6.  EPA Source Classification  Code  - None  exists.

    3-05-019-01      Drying

7.  References

    Faith, W. L., D.  B. Keyes, and R.  L. Clark.   Industrial Chemicals,
    3rd Edition.  New York, John Wiley  & Sons, 1965.  p.  605-606.

    Shreve, R. N.  Chemical Process Industries, 3rd Edition.  New York,
    McGraw-Hill, 1967.  p.  265-270.

    Stowasser, W. F.   Phosphate Rock.    In:   Minerals Yearbook 1972,
    Shreck, A. E. (ed.).  Washington,  U. S. Dept.  Interior, Bur.  Mines,
    1974.   1:1027-1041.
                                      15

-------
Stowasser, W, F,  Private Communication.   June 1975.

Wang, K-L., B. W. Klein, and A.  F.  Powell.  Economic  Significance
of the Florida Phosphate Industry,  Information Circular 8653.
Washington, U. S. Bur. Mines, 1974.   51  p.
                                 16

-------
 PHOSPHATE  ROCK PROCESSING                                   PROCESS  NO. 3


                      Crushing,  Grinding,  Screening

1.   Function - The process  (See  Figure 2)  reduces  the  size  of  lumps  of
    mined phosphate rock matrix  to the size requirement  of  various down-
    stream processes.   Benefication  is  neither  intended  nor
    accomplished.   The process is confined chiefly to  the phosphate  rock
    operations of the  Western states,  where the rock deposits  are of
    marketable grade.   The  process is  also applicable  to already segregated
    ores of lower quality than are usually marketable.

    The process is usually  operated wet,  but may occasionally  be operated
    dry.

    Process steps usually include the  following equipment:

    •Roll crusher (usually  operated dry)
    •Wet or dry hammer mills
    •Wet or dry shaking screens
    •Dewatering screens
    •Direct-fired rotary dryer

    Product of the process  if high grade  is either marketed or,  if  in a
    multi-product operation, may be forwarded to Process 4,  5, 6, or 8,
    Figure 2; Process  28, Figure 6; or Process  33, Figure 8.

    If the product grade is lower than usually  marketable for  super-
    phosphate production, it is  transferred only to Process 33.

2.   Input Material^ -  Phosphate  rock,  as  mined: essentially one metric
    ton per metric ton of marketable grade phosphate rock.

3.   Operating Parameters -  Process is  conducted at atmospheric pressure
    and ambient temperatures.

    Typical P205 content of high-grade rock is  28  to 32%.

4.   Utilities - Quantities  are based on one metric ton  marketable
    rock:

    •Make-up water:  <1 m3  (estimated)
    •Fuel Oil:  4 to 6 kg if wet-ground;
                <2 kg  if dry-ground
    •Electrical energy:  10 to 20 kWh  (estimated)

5.   Waste Streams - Sediments depositing  onto bottom of  water-
    reclaiming ponds (surmised,  if process is operated wet):   <10  kg per
    metric ton of high-grade rock.
                                       17

-------
    Participate atmospheric emissions if  process  is  operated  dry:   no
    availaole quantifying information.   Estimated at <10 kg per
    metric ton of high-grade rock.

6.  EPA Source Classification Code

    3-05-019-01     Drying

7.  References

    Shreve, R. N.  Chemical Process Industries,  3rd  Edition.   New York,
    McGraw-Hill, 1967.   p. 265-270.

    Stowasser, W. F.  Phosphate Rock.  In:   Minerals Yearbook 1972,
    Shreck, A. E. (ed.).  Washington, U.  S. Dept. Interior, Bur.  Mines,
    1974.  1:1027-1041.

    Stowasser, W. F.  Private Communication.  June 1975.

    Wang, K-L., B. W. Klein, and A. F. Powell.  Economic  Significance of
    the Florida Phosphate Industry, Information Circular  8653.  Washington,
    U. S. Bur. Mines, 1974.  51 p.
                                        18

-------
PHOSPHATE ROCK PROCESSING                                   PROCESS NO. 4


                               NSP Process

1.  Function - The process (See Figure 2) converts marketable-grade
    phosphate rock or phosphate rock concentrates into normal super-
    phosphate (NSP) by reaction with sulfuric acid:  CaF2*3Ca3(POij2 +
    7H2SCK + 3H20 -»• SCaMPOJa'HaO + 2HF + 7CaS04
    The normal superphosphate produced is then either marketed for
    direct end use as fertilizer or used in making blended fertilizer
    in Process 32, Figure 7,

    The process includes the following sequential steps and equipment:

    •Dry grinding jaw crusher, ball-mills or Raymond® mills.
    •Mixing ground rock with sulfuric acid and water in cone mixers and
     pug-mills.
    •"Denning," or reaction of the acid-rock paste in specially con-
     structed "dens" or reaction chambers.
    •Slicing the "denned" product into transportable lumps.
    •Curing the lump product in storage piles.
    •Grinding the cured product in tube mills.

 2.  Input Materials - Based on one metric ton of normal  superphosphate
    produced:

    •Pulverized phosphate rock (-34% P205):  600 to 610 kg.
    • Sulfuric Acid (100% HaSO,, basis):  350 to 360 kg
    •Water:  -0.2 m3.

 3.  Operating Parmaters

    •Process is conducted at atmospheric pressure.
    •Highest temperatures attained in process are estimated to be
     80 to 100°C in cone mixer and pug-mill, and 100 to 120°C in den.
    •Quantity of water used is varied to produce a substantially dry
     end-product.
    •Particle size of pulverized rock is usually 50 to 95% minus 200-mesh.
    •Residence time of acid-rock paste in pug-mill is -2 minutes and  ~1
     hour  in den.
    •Necessary curing time  in storage pile  is 8 to 10 weeks.
    •Usually no attempt  is made to beneficially recover the HF and SiF^
     evolved as gases from  the den.  Off -gases from den are absorbed  in
     water in a scrubber tower, and scrubber effluent discharged into bed


 ^'  Utilities - Based on one metric ton of normal superphosphate
    produced:
                                        19

-------
    •Electrical  energy:   0.2 to 0.4 kWh.
    •Scrubber water:   estimated here at 0.5 to 1.5 m3.

5.  Waste Streams - Participate atmospheric emissions of ~200-mesh
    phosphate rock from grinding equipment is surmised.   No quantifying
    information is available.  Quantity estimated at  <1  kg  per
    metric ton of normal superphosphate produced.

    Effluent scrubber water, containing both HF and H2SiF6  is run into
    beds of limestone to precipitate CaF2.  The latter is considered here
    to be solid waste.  Quantities involved, per metric ton of normal
    superphosphate, are estimated to be:

    •Scrubber water:  0.5 to 1.5 m3.
    •Total fluorine recovered in limestone bed:  8 to 10 kg.
    Information was not available on the efficiency of scrubbers  in
    removing gaseous contaminants.

6.  EPA Source Classification Code

    3-01-028-01     Grind-dry
    3-01-028-02     Main stack

7.  References

    Faith, W. L., D. B. Keyes, and R. L. Clark.  Industrial Chemicals,
    3rd Edition.  New York, John Wiley & Sons, 1965.  p. 194-195.

    Shreve, R. N.  Chemical Process Industries, 3rd Edition.  New York,
    McGraw-Hill, 1967.  p. 270-271.

    Slack, A. V.  Fertilizers.  In:  Kirk-Othmer Encyclopedia of Chemical
    Technology, 2nd Edition.  Standen, A. (ed.).  New York, Interscience
    Publishers, 1966.  £: 100-106.

    Wang, K-L., B. W. Klein, and A. F. Powell.  Economic Significance of
    the Florida Phosphate Industry, Information Circular 8653.  Washington,
    U. S. Bur. Mines.,  1974.  p. 46.
                                        20

-------
PHOSPHATE ROCK AND BASIC FERTILIZER MATERIALS               PROCESS NO.  5
                            Wet-Acid Process

1.  Function - The process (See Figure 2) produces ortho-phosphoric
    acid (H3POit) by digesting phosphate rock or phosphate rock concen
    trates from Process 2 or 3, with sulfuric acid from Process 7:
                           O., + 20H20 •* GHaPO,*  + 10CaSOi»«2H20 + 2HF.
    The phosphoric acid produced may be transferred to either Process 6,
    Figure 2; Process 27 or 28, Figure 6; or to Process 40 or 44, Figure 9,

    At least two variations of the basic process embodying the above
    reaction are commercial:  The hemihydrate process and the dihydrate
    process.  The latter is the one considered here.

    The process includes the following essential steps and major
    equipment:

    •Dry-grinding the input phosphate rock in hammer mills.
    •Reaction (digestion or dissolution) of the ground phosphate rock
     with sulfuric acid in carbon-lined, closed reaction tanks.
    •Filtration of the resulting slurry on a specially designed, contin-
     uous, til ting-pan filter to remove gypsum crystals.
    •Concentration of clear phosphoric acid to marketable strength in
     vacuum evaporators.
    •Recovery (optional) of the fluorine values of the input rock as
     H2SiF6 in off-gas scrubbing equipment.

    The process embodies many recycle flows and equipment not mentioned
    in the above over-simplified summary.

    If beneficially recovered, both the gypsum and the fluorosilicic
    acid formed in the process are industry by-products.

2.  Input Materials -  Based  on  one  metric  ton  of  75% ortho phosphoric
    acid produced:

    •Phosphate rock (-32% P205):  1.76 metric tons
    •Sulfuric acid (-93% H2S04):  1.53 metric tons

3.  Operating Parameters

    •Most steps are conducted at atmospheric pressure.  Vacuum
     evaporators operate at -0.1 to 0.2 kg/cm2 absolute pressure.
    •Highest temperature attained is ~135°C (in H2S04 dilution tank).
     Temperatures in most other equipment are between 40 and 80°C.
    •Phosphate rock is ground to 100% minus 40-mesh.
                                     21

-------
    •Approximately 25% of total  fluorine  values  entering  with  rock
     leaves process with gypsum, 12% in product  acid.   The  remainder
     may be recovered.
    •If fluorine values are not  beneficially recovered, off-gases from
     digestion are absorbed in Ca(OH)2  scrubber.   CaO  is  added as make-
     up, estimated to be 180 kg  per metric ton of  75%  phosphoric acid
     produced.

4-  Utilities -Based  on  one metric  ton of  75% ortho phosphoric acid
    produced:

    •Steam at 3 kg/cm2 pressure:  0.8 metric tons
    •Steam at 10 kg/cm2 pressure:  25 kg
    •Cooling water:  ~75 m3 (once-through basis)
    •Process water:  3.8 to 4.0  m3
    •Electrical energy:  -50 kWh

5.  Waste Streams -  Referred to one metric ton  of 75% ortho phosphoric
    acid produced:

    • Partiallates of phosphate rock discharged  to  atmosphere from
     hammermills  (surmised):  Estimated at <5 kg.
    •Gypsum:  2.5 metric tons (contains -0.5% F).   This is  discharged,
     along with 1.1 m3 of spent process water,  into ponds or onto waste
     piles.  A small fraction may be sold for soil conditioning.
    •Fluorine:  ~40 kg.
     Fluorine values are discharged in form of CaFa, along  with -160 kg
     of Ca(OH)2,  slurried in 35 m3 of water.
    •Size of a single  installation may vary from 200 to 1500 metric tons
     per day of 75% phosphoric acid.

6.  EPA Source Classification Code

    3-01-016-01     Reactor-uncontrolled
    3-01-016-02     Gypsum pond
    3-01-016-03     Condenser-uncontrol1ed

7.  References

    Faith,  W.  L.,  D.  B.  Keyes,  and  R. L. Clark.   Industrial Chemicals,
    3rd Edition.   New York, John Wiley & Sons, 1965.   p. 603-605.

    Haddeland, G.  E.   Wet  Phosphoric Acid  Process.  Process Economics
    Program Report 8B.   Menlo Park, Stanford Research  Institute, 1974.
    p.  43-75.

    Shreve, R. N.   Chemical Process Industries, 3rd Edition.  New
    York, McGraw-Hill,  1967.  p.  273-274.
                                     22

-------
Slack, A, V.  Fertilizers.   In:  Kirk-Othmer Encyclopedia of Chemical
Technology, 2nd Edition.  Standen, A.  (ed.).  New York, Interscience
Publishers, 1966.  9;86-100.

Wang, K-L., B. W. Klein, and A, F. Powell.  Economic Significance of
the Florida Phosphate Industry, Information Circular 8653.  Washington,
U. S. Bur. Mines, 1974.  51 p.
                                  23

-------
PHOSPHATE ROCK PROCESSING                                   PROCESS NO.  6


                               TSP Process

1.   Function - The process (See Figure 2)  produces triple superphosphate
    (TSP) by reacting either phosphate rock concentrates or high-grade
    phosphate rock from Process 2 or 3, with phosphoric acid from
    Process 5:  CaF2«3Ca3(P04)2 + 14H3PO.,  -*• lOCaHjPOjz + 2HF.

    The conversion represented by the above reaction is conducted com-
    mercially by either of two processes.   One uses a process almost
    identical with that for the production of normal superphosphate (See
    Process 4).  The other employs a combined acidification-granulation
    technique.  The latter process is described here.

    The process employs the following steps and equipment:

    •Pulverizing the phosphate rock in ball-mills.
    •Pre-heating the phosphoric acid,
    •Reacting the rock with acid in a revolving cylindrical reactor;
     the acid is injected into the burden of recycled fines and input
     fine rock.  Steam is also injected.  Granulation occurs in the
     reaction cylinder.
    •Cooling  the reactor product in a rotary cooler.
    •"Curing" the cooled product in storage pile.

    Usually  no attempt is made to beneficially recover the fluorine
    values evolved as gases from the reactor.

    The  product is either marketed for direct use as a fertilizer or
    is transferred to Process  30 or 32, Figure 7.

 2.  Input Materials  - Based on one metric  ton of  triple  superphosphate:

    •Pulverized phosphate rock (-34% P205):  420  to 440  kg.
    •Phosphoric Acid (53% P205):  490  to  510 kg.

 3.  Operating Parameters

    •Process is conducted at  atmospheric  pressure.
    •Estimated maximum temperatures  are 60°C  in acid preheater  and 100°C
      in  granulator/reactor  drum.
    •Particle size  of input rock is  70% minus  200-mesh.
    •Necessary curing time  in storage  pile is  10  to 20 days.
    •Typical installation  produces  500 to 900 metric tons of product
      per day.
    •Limestone bed  is used  to treat scrubber effluent.
                                      24

-------
4.  Utilities - Referred to one metric ton of triple superphosphate:

    •Water to reactor off-gas scrubber:  Estimated at 0.5 to 1.5 m3.
    •Steam to granulator reactor:  40 to 50 kg.
    •Electrical energy:  40 to 45 kWh.

5.  Waste Streams

    •Particulates of phosphate rock to atmosphere from grinding equipment
     are surmised.  Quantity estimated to be <5  kg per metric ton
     of triple superphosphate.

    •0.5 to 1.5 m3 of scrubber water per metric  ton of triple super-
     phosphate.  This flow is discharged into limestone bed, where an
     estimated 10 to 12 kg of fluorine per metric ton of triple super-
     phosphate is precipitated as CaF2.

6.  EPA Source Classification Code

    3-01-029-02     Granular

7.  References

    Faith, W. L., D. B. Keyes, and R. L. Clark.   Industrial Chemicals,
    3rd Edition.  New York, John Wiley & Sons, 1965.  p. 195-196.

    Shreve, R. N.  Chemical Process Industries,  3rd Edition.  New York,
    McGraw-Hill, 1967.  p. 272-273.

    Slack, A. V.  Fertilizers.   In:  Kirk-Othmer Encyclopedia of
    Chemical Technology, 2nd Edition.  Standen,  A. (ed.).  New York,
    Interscience Publishers, 1966.  9^:106-109.

    Wang, K-L., B. W. Klein, and A. F. Powell.  Economic Significance of
    the Florida Phosphate Industry, Information Circular 8653.
    Washington, U. S. Bur. Mines, 1974.  p. 47.
                                     25

-------
 PHOSPHATE  ROCK  PROCESSING                                 PROCESS NO. 7


                        Sulfuric  Acid  Manufacture

1.   Function - This process (See  Figure 2)  produces  sulfuric  acid  (H2SOO
    from sulfur, air,  and water by oxidation  of the  sulfur  in air
    followed by absorption of sulfur trioxide (S03)  into wet  sulfuric
    acid (H2SOiJ.   The H2SOi» produced  goes  to:

    •Sales (Figure 2)
    •Normal superphosphate processing  (Process  4,  Figure 2)
    •The wet-acid process (Process 5,  Figure  2)
    •Ammonium sulfate  formation (Process 21,  Figure  4)
    •Ammonium phosphate or nitric phosphate processing  (Processes  27  and 28,
     Figure 6)
    •Ammoniation/granulation/drying (Process  30, Figure 7)

    Molten sulfur from the Frasch mining process (or from hydrocarbons
    using the Claus process) is filtered and  then burned in  dry,  com-
    pressed air.  The  resulting combustion  gases containing  12 percent
    sulfur dioxide (S02) are cooled, mixed  with more air, and fed  to a
    four-stage catalyst converter.  As the  gas  passes through the  first
    catalyst bed, some of the S02 is converted  to S03 in an  exothermic
    reaction.  The gas is then cooled and passed through the second
    catalyst bed where more S02 is converted  to S03.  The gas is  then
    cooled and may be  passed through an absorber countercurrent to 984-
    percent H2SO.».  Most of the S03 is absorbed into the H2S04.  The
    unabsorbed gas goes to the third catalyst bed where most of the
    remaining S02 is converted to SCh.  The gas is then cooled, goes to
    the fourth catalyst bed, is recooled, and then passes through
    another absorber where SOs is absorbed  into 98+ percent H2SOi*.

    Sulfuric acid manufacture has been described in more detail in
    another  chapter.

 2.  Input Materials

    •Sulfur - 0.33 metric tons per metric ton sulfuric acid product
    •Air - 8,000 cubic meters per metric ton H2S04
    •Water - 0.2 cubic meters per metric ton H2S04

 3.  Operating Parameters  (for 900-metric ton per day plant)

    •Molten  sulfur storage  - 20 meters diameter x 10 meters high.
    •Storage  temperature -  140°C.
    •Sulfur  filter - Steam  jacketed;  vertical  pressure  leaf type.
    •Air  drying  tower  -  10  meters  high x 5 meters diameter,  lined with
     acidproof  brick.
    •Air  blower  -  1500  kW.
    •Sulfur  burner - 5 meters diameter x 13 meters  long, lined with
     insulating  and fire  brick.
                                     26

-------
                                                                 con.
    •Temperature of exiting gases  from sulfur burner -  1120°C.
    •Converter - 11 meters diameter x  10 meters  tall.
    •Converter catalyst - oxides of vanadium, potassium,  and  sili
    •Conversion of S02 to SOs  in converter.
       First stage  - 68 percent
       Second stage - 88 percent
       Third stage  - 98+ percent
       Fourth stage - 99.5 percent
    •Converter temperature.
       First stage  - 425°C to 600°C
       Second stage - 460°C to 515°C
       Third stage  - 440°C to 470°C
       Fourth stage - 440°C to 445°C
    •Interstage absorber - 10 meters tall x  5 meters diameter,  lined with
     acidproof brick.
    •Final absorber - 10 meters tall x 4.5 meters diameter,  lined  with
     acidproof brick.

4.  Utilities

    •Cooling water - 35 to 45 cubic meters per metric ton sulfuric acid.
    •Electrical energy - 10 kWh per metric ton sulfuric acid.
    •Filter acid - 0.1 kg per metric ton sulfuric acid.
    •Steam production - 0.5 to 0.8 metric tons of 28 kg/cm2  steam
     produced per metric ton sulfuric acid and 0.4 to 0.6 metric tons of
     5 to 6 kg/cm2 steam produced  per metric ton sulfuric acid.

5.  Waste Streams - Tail gas from  H2SOn. plants is approximately 2  metric
    tons per metric ton H2SO
-------
 PHOSPHATE  ROCK PROCESSING                                 PROCESS  NO. 8
                       Phosphate Rock Calcination

1-  Function - This process (See Figure 2)  blends  phosphate rock con-
    centrate from Process  2 or  3 with phosphoric acid,  silica,  and  caustic
    soda or sodium chloride, pugs the blend to a thick  slurry,  dries
    the slurry, agglomerates the dried slurry  to a 1  cm x  20 mesh
    material, and defluorinates the material  in rotary  kilns or fluid-
    bed reactors.  The defluorinated product is used  as an animal or
    poultry feed supplement after being ground.

2.  Input Materials

    •Either beneficiated phosphate rock concentrate or  unbeneficiated
     high-grade phosphate rock - 0.6 to 0.8 metric tons.
    •Phosphoric acid - 0 to 0.1 metric tons.
    •Silica - 0.2 to 0.4 metric tons.
    •Sodium hydroxide - no information available.
    •Sodium chloride - no information available.

3.  Operating Parameters

    •Initial fluorine content in phosphate rock concentrate -3.5 percent.
    •Final fluorine content in defluorinated material <0.2 percent.
    •Kiln or fluid-bed reactor temperature is 1400 to 1540°C.

4-  Utilities

    •Electrical energy - 20 kWh per metric ton defluorinated rock.
    •Fuel for drying and defluorinating - 2 x 106  kcal  per metric ton
     defluorinated rock.

5.  Waste Streams -Effluent gases contain  fluorine primarily as
    hydrogen fluoride and  to a  lesser extent as silicon tetrafluoride.
    The fluorine may be recovered to  produce fluorine chemicals.  The
    amount of  fluorine in  the gases  is approximately 0.03 metric tons
    per metric  ton defluorinated  rock.  No quantitative information on
    the amount  released to  the  atmosphere  is available.

6.  EPA Classification Code - None exists.

7.  References

    Payne,  J.  H.  Chapter  17.   In:   Phosphorus and Its  Compounds.  Van
    Wazer,  J.  R.  (ed.).   New York,  Interscience Publishers,  Inc. 1961.
    2:1090-1092.

    Wang, K. L.,  B. W. Klein, and  A. F.  Powell.  Economic  Significance of
    the  Florida Phosphate Industry.   Information  Circular 8653,  Bureau  of
    Mines,  Washington,  U.  S.  Government  Printing  Office,  1974.   p. 47.
                                     28

-------
                              AMMONIA SYNTHESIS
     The processes in this operation are those which  are  used for the
synthesis of ammonia.  Ammonia is produced from ammonia synthesis gas
consisting of 75% hydrogen and 25% nitrogen on a mole basis.   Nitrogen
is obtained from air by liquefaction and distillation or  by combustion
of hydrogen to remove oxygen.   Hydrogen may be obtained by several  alter-
nate methods.  These methods include purification of  hydrogen rich streams
derived from other processes (coke oven gas, refinery off-gas or electro-
lytic hydrogen) and synthesis  from hydrocarbons.  The most common methods
of producing hydrogen for ammonia synthesis are by partial  oxidation of
hydrocarbons followed by shift conversion or by steam reforming of
hydrocarbons.

     Several methods of obtaining ammonia synthesis gas are described  in
the following process descriptions.  In general a given ammonia production
facility will have avail able.only one or two of the possible hydrogen
producing feedstocks and will  obtain hydrogen by the  most economic method
available.  The bulk of hydrogen production comes from methane or other
light hydrocarbons.

     Carbon Dioxide is produced and may be vented or used for urea pro-
duction.
                                      29

-------
EltCtrfdty
                                                                        Feedstock
                                                                       purification.
                                                           Hydrogen
                                                         purification,.
                                                                                     Steam
                                                                                   reforming ,.
  Cryogenic
purification! 0
                                                                NaOH	,     .
                                                          Condensate—i 1
                                                                                                       Vent  Fig. 4
                                    Figure 3.  AMMONIA SYNTHESIS
                                                          30

-------
AMMONIA SYNTHESIS                                           PROCESS NO. 9
                             Air Separation

 1.  Function - This process (See Figure 3) separates air into its
    components.  The two primary products are nitrogen (N2) and oxygen
    (Oz).  The separation  is accomplished by compressing, cooling,
    purifying, and distilling the air.  Nitrogen product goes to:

    •Cryogenic purification (Process 12, Figure 3)
    •Partial oxidation  (Process 13, Figure 3)

    Oxygen product goes to:

    •Partial oxidation  (Process 13, Figure 3)

    Air  is compressed and  then cooled by a series of heat exchangers with
    water, freon, and exiting cold nitrogen and oxygen products.  Moisture,
    hydrocarbons, and carbon dioxide are removed at several places between
    the  cooling  steps by passing the air through water-oil separators,
    alumina driers, C02 adsorbers, and hydrocarbon filters.  Nitrogen and
    oxygen are then separated from each other in a two-section distillation
    column.  The cooling value in each product stream is recovered by using
    it to cool  entering air feed to the process-

 2.  Input Materials

    •Air - 2000  cubic meters per metric ton NH3.

 3.  Operating Parameters

    •Air pressure after compression - 175 kg/cm2.
    •Temperature of air entering high pressure section of distillation
      column - 100°K.
    •Pressure in high pressure section of distillation column -
      7 kg/cm2.
    •Temperature inside low pressure section of distillation column -
      80  to 90°K.
    •Pressure in low pressure section of distillation column - 1.6 to
      2 kg/cm2.

 4.  Utilities

    •Electrical  energy  - 300 kWh per metric ton NH3.
    •Cooling water - 15 cubic meters per metric ton NH3.

 5-  Waste Streams - None exists.

 6.  EPA  Classification  Code - None exists.
                                    31

-------
7.  References

    Latimer, R. E.  Distillation of Air,  Chemical  Engineering Progress,
    63:35-59, February 1967.

    Saxton, 0. C., M. P. Kramer, D. L. Robertson, M. A. Fortune,
    N. E. Leggett, and R. G. Capell.   Data Base for the Industrial
    Energy Study of the Industrial Chemicals Group.  Dept. of Commerce,
    Washington.  Publication No. PB-237-845.   September 1974.  242 p.
                                    32

-------
AMMONIA SYNTHESIS                                           PROCESS NO. 10


                       Ammonia Feedstock Purification

1.  Function - This process (See Figure 3) removes sulfur compounds from
    natural gas or naptha so that these materials can be used as feed-
    stock in the production of ammonia.  The purified feedstock materials
    are fed to partial oxidation (Process 13) or steam reforming
    (Process 14).

    Natural gas, the dominant feedstock for ammonia, is desulfurized by
    passing the gas over activated carbon or zinc oxide adsorbents.
    Activated carbon can be used at ambient temperature while the gas
    must be preheated to above 350°C for efficient adsorption by zinc
    oxide.  Activated carbon is regenerated by steam stripping whereas
    zinc oxide must be replaced when it reaches 15 weight percent sulfur.

    Naphtha requires hydrodesulfurization.  Hydrogen and vaporized
    naphtha are mixed and heated to 320°C.  The mixture is then passed
    over a cobalt-molybdenum catalyst where the sulfur compounds are
    converted to hydrogen sulfide.  The gas is then passed over a sulfur
    adsorbent such as iron or zinc oxide.

2.  Input Materials

    •600 to 800 cubic meters natural gas per metric ton ammonia or 0.8
     cubic meters naphtha per metric ton ammonia.
    •Adsorbent - up to 0.2 kg zinc oxide per metric ton ammonia or 0.05 kg
     activated carbon per metric ton ammonia.

3.  Operating Parameters

    •Sulfur content of natural gas
       Before desulfurization - usually below 65 ppm.
       After desulfurization  - below 0.2 ppm.
    •Desulfurization drums containing zinc oxide - 2.5 meters diameter x
     3.5 meters tall containing 16 nr of zinc oxide catalyst for plant
     producing 1500 metric tons ammonia per day.
    •Temperature
       400°C for zinc oxide adsorbent.
       Ambient for activated carbon adsorbent.
    •Pressure - 30 to 40 kg/cm2
    •Two-month life for zinc oxide adsorbent.
    •1 m3 activated carbon adsorbent treats 100,000 to 200,000 m3 gas.
    •Steam for carbon regeneration - 0.8 to 1.6 metric tons per m3 carbon.
    •Greater than 2-year life expectancy of activated carbon.

4.  Utilities

    •Fuel for preheating natural gas in case of zinc oxide adsorbent -
     100,000 kcal per metric ton ammonia.
                                     33

-------
    •Steam for activated carbon regeneration -  0.005 to 0.01  metric
     tons per metric ton ammonia.

5.  Waste Streams

    •Zinc oxide adsorbent containing 15 percent sulfur is  discarded.   It
     can amount to Q.0002 metric tons per metric ton ammonia  produced.

    •Condensate from activated carbon regeneration may be  discarded.   It
     amounts to 0.005 to 0.01  cubic meters per  metric ton  ammonia and
     contains sulfur compounds.

6.  EPA Classification Code - None exists.

7.  References

    Faith, W. L., D. B. Keyes, and R. L. Clark.  Industrial  Chemicals,
    3rd Edition.  New York, John Wiley & Sons,  Inc. 1965.   p. 443.

    Green R. V.  Chapter 5.  In:  Riegel's Handbook of Industrial
    Chemistry, 7th Edition,  Kent, J. A. (ed.).  New York, Van Nostrand
    Reinhold Company, 1974.  p. 78-84.

    Muller, R. G.  Ammonia.  Report No. 44, Process Economics Program.
    Stanford Research Institute, Menlo Park, California.  November 1968.
    235 p.
                                      34

-------
AMMONIA SYNTHESIS                                          PROCESS NO.
                         Hydrogen Purification

 1.  Function - This process  (See Figure 3) receives electrolytic hydrogen
    as a  by-product from sodium chloride brine electrolysis and removes
    impurities so  that  the hydrogen can be used to form ammonia synthesis
    gas in Process 15.

    The hydrogen from brine  electrolysis contains minor amounts of
    carbon dioxide and  chlorine.  These are washed out by passing the
    hydrogen countercurrent  to a recirculating dilute caustic solution
    in a  packed tower.  Hydrogen leaving the column is saturated with
    water vapor.

 2.  Input Materials

    •2500 cubic meters  wet hydrogen per metric ton ammonia  (2300 cubic
     meters dry hydrogen).
    •1 kg sodium hydroxide (10% basis) per metric ton ammonia.

 3.  Operating Parameters

    •Impurity content of hydrogen from chlorine cells is less than
      100  ppm  (dry  basis).
    •Washing temperature - 30°C.
    •Pressure - 1.5 kg/cm2

 4.  Utilities - Negligible

 5.  Haste Streams  - Scrubbing  solution is discarded.  It amounts to  1  kg
    per metric ton ammonia and contains sodium hydroxide, sodium carbonate,
    sodium hypochlorite, and sodium chloride.

 6.  EPA Classification  Code  -  None exists.

 7.  References

    Green, R. V. Chapter 5.  In:  Riegel's Handbook of Industrial
    Chemistry, 7th Edition.  Kent, J. A.  (ed.).  New York,  Van Nostrand
    Reinhold Company, 1974.  p. 87.

    Pauling, L.  General Chemistry, 2nd Edition. San Francisco, W. H.
    Freeman and Company, 1953.  p. 268-269.

    Yen,  Y. C.  Chlorine, Supplement  A.   Report No. 61A, Process
    Economics Program.  Stanford Research Institute, Menlo  Park,
    California.  May  1974.   p. 74-75.
                                       35

-------
AMMONIA SYNTHESIS                                          PROCESS NO.  12


                         Cryogenic Purification

1.  Function - This process (See Figure 3) removes impurities from
    hydrogen rich gases (refinery off-gas or coke-oven gas) and mixes
    nitrogen with the purified hydrogen.  The resulting ammonia
    synthesis gas goes to ammonia synthesis, Process 16.

    Refinery off-gases usually contain 75 to 95 mol percent hydrogen.
    Hydrogen sulfide and carbon dioxide are removed by caustic scrubbing.
    Then the gas is dried over activated alumina to a dew point of -70°C.
    It is then cooled, separated from liquefied hydrocarbons, and
    scrubbed with liquid nitrogen (which has been obtained by compressing,
    cooling, and expanding nitrogen from air separation, Process 9) to
    remove any remaining hydrocarbons plus carbon monoxide.  The over-
    head from the scrubbing column consists of 90 mol percent hydrogen
    and 10 mol percent nitrogen.  Additional gaseous nitrogen is added
    to give a 75 to 25 mol ratio.  As much as possible, the cooling value
    present in all streams is used to cool incoming streams.  Separated
    hydrocarbons including the bottoms from the scrubber are used as fuel.

    Coke-oven gases usually contain 55 to 60 mol percent hydrogen after
    by-product coke-oven chemicals (ammonia, light oils, naphthalene) are
    removed.  Further purification processes are similar to those
    described for the refinery off-gases.

 2.  Input Materials

    •2050 to  2800 cubic meters cracker off-gas per metric  ton ammonia or
      3500 cubic  meters coke-oven gas  per metric ton ammonia.
     •700 cubic meters nitrogen per metric ton ammonia.
     •10  kg  sodium hydroxide  (10% basis) per metric  ton  ammonia.

 3.  Operating Parameters

    •Nitrogen scrubber pressure  -  15  to 30  kg/cm2.
     •Nitrogen scrubber temperature -  185°C.
     •Synthesis gas  purity  -  10 ppm oxygenated compounds and  150 to  200
      ppm  of inerts  in  the  form of  argon  plus methane.
     •Nitrogen liquefaction conditions:
        Compressed  to  200  kg/cm2.
        Cooled with  cooling water.
        Expanded  to  30 kg/cm2.
     •Typical  bottoms  composition from nitrogen  scrubber:
        5-10 mol  percent  hydrogen.
        30-60 mol percent  nitrogen.
        0-15 mol  percent carbon monoxide.
        10-60 mol percent  methane.
                                       36

-------
    •Nitrogen scrubber - 0.6 meters inner diameter x 9 meters tall  for
     plant producing 90 metric tons ammonia per day.
4.  Utilities

    •Electricity - 200 kWh per metric ton ammonia.
    •Cooling water - 35 cubic meters per metric ton ammonia.

5.  Waste Streams

    •The dilute caustic scrubbing solution is discarded.  It contains
     sodium carbonate, sodium hydroxide, and sodium sulfide and is
     estimated to be 10 kg per metric ton ammonia.
    •The bottoms stream from the nitrogen scrubbing column is vaporized
     and used as fuel.  It amounts to 100 to 200 cubic meters per metric
     ton ammonia and contains methane, nitrogen, carbon monoxide, and
     hydrogen.

6.  EPA Classification Code - None

7.  References

    Arnold, J. H., and W. T. Dixon.  From By-Product Hydrogen to
    Anhydrous Ammonia.  Petroleum Processing.  _]_!_:62-66, January 1956.

    Baker, D. F.  Low-Temperature Processes.  Chem. Eng. Progr.  51:399-
    402, September 1955.

    Bardin, J. S., and D. W. Beery.  Producing Ammonia Synthesis Gas.
    Petroleum Refiner.  32:99-102, February 1953.
                                      37

-------
AMMONIA SYNTHESIS                                         PROCESS NO. 13


                            Partial Oxidation

 ^  Function - This process (See Figure 3) receives purified natural gas
    or naphtha from feedstock purification (Process 10) along with oxygen
    insufficient for complete combustion and steam.  Carbon monoxide
    and hydrogen form and are sent to a shift converter where an impure
    hydrogen stream is formed.  This stream is purified and mixed with
    nitrogen to form ammonia synthesis gas which is forwarded to ammonia
    synthesis, Process 16.

    A preheated mixture of hydrocarbon feed and steam mixes with a
    preheated oxygen stream (from air separation, Process 9) in a
    reactor.  The oxygen  burns with a portion of the feed in an
    exothermic flame front.  Unreacted hydrocarbon then reacts with  the
    water  and carbon dioxide in endothermic reactions to produce hydrogen
    and carbon monoxide.  The exiting gas stream is cooled and passed
    through a catalytic shift converter where water reacts with carbon
    monoxide to form carbon dioxide and hydrogen.  Cooling of the con-
    verter exiting stream allows water to condense and then carbon dioxide
    is removed by absorption  into an absorbing solution such as
    ethanolamine or potassium carbonate.  (Regeneration of the absorbing
    solution produces  carbon dioxide rich gas which is vented or sent
    to Process 19, Figure 4).  the  fairly pure 96  percent hydrogen
    stream is then further purified by scrubbing with  liquid nitrogen
    (which has been obtained by compressing, cooling, and expanding
    nitrogen from air  separation, Process 9).  The overhead from the
    nitrogen scrubbing column is approximately 95 mol  percent hydrogen
    and  5  mol percent  nitrogen.  Gaseous nitrogen  is added to this
    stream to give a 75 mol percent hydrogen composition.  The bottoms
    from the nitrogen  scrubber are used as fuel.

 2.  Input  Materials

    •0.8 cubic meters  naphtha per metric ton ammonia or 600 to 800  cubic
     meters natural gas per metric  ton ammonia.
    •500 cubic meters  oxygen  per metric ton ammonia.
    •3 cubic meters water per metric  ton ammonia.
    •750 cubic meters  nitrogen per metric  ton ammonia.
     •0.1  kg partial oxidation catalyst per metric  ton  ammonia.
     •0.1  kg  low  temperature  shift  catalyst  per metric  ton ammonia.
     •0.3  kg  potassium  carbonate absorbent  per metric ton ammonia.

 3.  Operating  Parameters

     •Partial  oxidation reactor  (with  catalyst)
        Feed  temperature - 550°C;  outlet  tempeature - 870°C.
                                       38

-------
       Pressure -  20 kg/cm2.
       Equipment - 4 meters  diameter  x  15 meters  tall  containing  two
       beds 3 meters deep of nickel  oxide  catalyst of 30m3 volume each
       for 700 metric tons ammonia per  day  plant.
    •Shift converter
       Temperature - 250 to  300°C.
       Pressure -  16 kg/cm2.
       Equipment - 2 meters  diameter  x  12 meters  tall  containing  two
       3 meter-deep beds of  catalyst, of 7m3  volume each  for  a 700-metric
       tons-ammonia per day  plant,
    •Liquid nitrogen scrubber
       0.6 meters  inner diameter x 9  meters tall  for plant producing  100
       metric tons ammonia per day.

    •Partial oxidation reactor (without catalyst)
       Pressure -  up to 100  kg/cm2.
       Temperature - 1400°C.

4.  Utilities

    .Naphtha fuel  - 700,000  kcal per  metric ton ammonia.
    •Cooling water - 150 cubic meters per metric  ton ammonia.
    •Steam - 0.3 metric tons per metric ton ammonia.
    •Electricity - 200 kWh per metric ton  ammonia.

5.  Waste Streams

    •The bottoms stream from the nitrogen  scrubbing column is  vaporized
     and used as fuel.  It amounts  to 100  cubic meters per metric ton
     ammonia and contains methane,  nitrogen,  carbon monoxide,  and
     hydrogen.

    •Carbon dioxide rich gas may be  vented  from the potassium  carbonate
     solution regenerator.  This stream amounts to 1.2 metric  tons
     carbon dioxide per metric ton  ammonia.

    •Waste water amounting to 0.1 cubic meters per metric ton  ammonia
     may be released from the carbonate solution regenerator.

6.  EPA Classification Code

    3-01-003-01     Regenerator Exit

7.  References

    Bardin, J. S., and D. W. Beery.   Producing Ammonia Synthesis Gas.
    Petroleum Refiner.  32^:99-102,  February 1953.

    Green,  R. V.   Chapter 5.   In:  Riegel's Handbook of  Industrial
    Chemistry, 7th  Edition.   Kent, J. A. (ed.).   New York, Van Nostrand
    Reinhold Company,  1974.   p. 86-89,
                                    39

-------
Haddeland, G. E.  Hydrogen,   Report No.  32A,  Process  Economics
Program.  Stanford Research  Institute, Menlo  Park,  California.
December 1973.  397 p.

Muller, R. G.  Ammonia.   Report No. 44,  Process  Economics  Program.
Stanford Research Institute, Menlo Park, California.   November  1968.
237 p.
                                 40

-------
AMMONIA SYNTHESIS                                         PROCESS NO. 14


                             Steam Reforming

1.  Function - This process (See Figure 3) receives purified natural gas
    or naphtha from feedstock purification (Process 10) along with air
    and steam.  Reforming and shift reactions result in the formation
    of impure ammonia synthesis gas which is purified and sent to ammonia
    synthesis, Process 16.

    Desulfurized natural gas is preheated to 540°C and fed with steam
    (at a 4 to 1 steam to gas weight ratio) to a tubular furnace.  The
    mixed gases pass over a nickel reforming catalyst located inside gas-
    heated furnace tubes.  Approximately 75 percent of the methane is
    converted to hydrogen and carbon oxides by reforming and shift
    reactions.  The hot gas still contains some methane.  It is mixed
    with preheated air and after combustion occurs, the hot gas proceeds
    through a bed of nickel reforming catalyst.  The hot (975°C) exiting
    gas is cooled below 370°C and passed over an iron catalyst and then
    a copper-zinc catalyst at 220°C where carbon monoxide is shifted to
    carbon dioxide.  The shifted gas is passed through an absorbing
    solution where C02 is removed.  The C02 is stripped from the absorbing
    solution and is vented or forwarded to Process 19, Figure 4.
    The small amount of remaining carbon oxides are converted to methane
    in a methanator by passing the gas over a nickel catalyst.  The gas
    then consists essentially of nitrogen and hydrogen in a 1 to 3 mol
    ratio.

    Naphtha is processed similarly to natural gas except that a different
    reformer catalyst may be used.

2.  Input Materials

    •600 to 800 cubic meters natural gas per metric ton ammonia or 0.8
     cubic meters naphtha.
    •850 to 1000 cubic meters air per metric ton ammonia.
    •0.7 to 1.0 cubic meters water per metric ton ammonia.
    •0.1 kg reforming catalyst per metric ton ammonia.
    •0.1 kg shift catalyst per metric ton ammonia.
    •0.3 kg potassium carbonate per metric ton ammonia.
    •0.02 kg methanation catalyst per metric ton ammonia.

3.  Operating Parameters (Plant capacity - 1500 metric  tons ammonia per day)

    •Primary reforming step
       Temperature
         Inlet - 540°C
         Outlet  - 815°C
       Pressure  - 28 to 35 kg/cm2.
                                     41

-------
      Equipment - 420-1.8 cm outer diameter x 1.5 cm inner diameter x
      13 meter tubes filled with 48 m3 of catalyst.
    •Secondary reforming step
      Temperature
        Inlet  - 815°C
        Outlet - 975°C
      Pressure - 28 to 35 kg/cm2.
      Equipment
        Top section    - 2 meters diameter x 3 meters tall
        Bottom section - 3 meters diameter x 7 meters tall
        37 m3 of catalyst
    •Shift conversion step
      Temperature
        Inlet first stage - 360°C
        Outlet first stage - 430°C
        Inlet second stage - 220°C
        Outlet second stage - 225°C
      Pressure - 28 to 35 kg/cm2
      Equipment
        First stage - 4 meters diameter x 10 meters tall
        Second stage - 4 meters diameter x 11 meters tall
    •C02 absorber
      Temperature
        Inlet - 120°C
        Outlet - 110°C
      Pressure - 28 to 35 kg/cm2
      Equipment
        Top section    - 2.5 meters diameter x 35 meters tall
        Bottom section - 4 meters diameter x 30 meters tall
        Absorbing  solution - monoethanolamine or sulfinol or
        activated  potassium carbonate.
    •Carbonate solution regenerator
      Temperature  - 115°C
      Pressure - 2 kg/cm2
      Equipment
        Top section    - 3.5 meters diameter x 19 meters tall
        Bottom section - 2 meters diameter x 9 meters tall
    •Methanator
      Temperature  - 315°C
      Pressure - 25 to 35  kg/cm2
      Equipment  -  2 meters diameter x 7 meters tall containing  12 m3  of
      methanation  catalyst  (NiO  on A1203)

4.  Utilities

    •Electrical energy  -  50  kWh  per metric  ton  ammonia.
    •Fuel  primarily for reformers  and  steam generation  (steam  is used
     in  Process  16  in  addition  to  this process) -  3.3 x  10e  kcal  per
     metric ton ammonia.
    •Cooling  water  -  60 cubic meters  per metric ton  ammonia.
                                    42

-------
5.   Waste Streams

    •Stack gases from the primary reformer may contain criteria pollutants
     (NOX and CO).  No quantitative data are available.

    •Carbon dioxide rich gas may be vented from the carbonate solution
     regenerator.  This stream amounts to 1.2 metric tons carbon dioxide
     per metric ton ammonia, 0.001 metric tons hydrogen per metric ton
     ammonia, 0.025 metric tons water per metric ton ammonia with traces
     of argon, methane, nitrogen, and carbon monoxide.

    •Waste water amounting to 0.1 cubic meter per metric ton ammonia may
     be released from the carbonate solution regenerator.

6.   EPA Classification Code

    3-01-003-01     Regenerator Exit

7.   References

    Faith, W. L., D. B. Keyes, and R. L. Clark.  Industrial Chemicals,
    3rd Edition.  New York, John Wiley & Sons, Inc., 1965.  p.  77.

    Green, R. V.  Chapter 5.  Riegel's Handbook of Industrial Chemistry,
    7th Edition.  Kent, J. A. (ed.).  New York, Van Nostrand Reinhold
    Company, 1974.  p. 84-90.

    Muller, R. G.  Ammonia.  Report No. 44, Process Economics Program.
    Stanford Research Institute, Menlo Park, California.  November 1968.
    235 p.
                                      43

-------
AMMONIA SYNTHESIS                                         PROCESS  NO.  15
                           Hydrogen  Combustion

1.  Function - This process (See Figure 3)  receives  purified  hydrogen
    from Process 11 and burns a portion of  it in  air to  produce  a
    gaseous mixture of hydrogen, nitrogen,  and  water.  Water  and a
    small amount of carbon dioxide are removed  from  the  gas before  it  is
    forwarded to ammonia synthesis,  Process 16.

    Sufficient preheated air is combined with preheated  hydrogen so that
    the combustion products contain  nitrogen and  hydrogen in  a  1 to 3
    ratio.  The heat of combustion is used  to generate steam  and pre-
    heat the feed gases.  The combustion products are further cooled by
    quenching with water.  This is followed by separation of  condensed
    water in a knock-out drum and scrubbing of the gases with dilute
    caustic to remove the small amount of carbon  dioxide brought in with
    the combustion air.

2.  Input Materials

    •2500 cubic meters wet hydrogen  per metric ton ammonia (2300 cubic
     meters dry hydrogen).
    •850 cubic meters air per metric ton ammonia.
    •1 kg sodium hydroxide (10% basis) per metric ton ammonia.

3.  Operating Parameters

    •Pressure - 1.1 kg/cm2
    •Temperature - ambient after scrubbing the combustion products with
     water.

4.  Utilities

    •Steam generation -  1 metric ton per metric ton ammonia.

5.  Waste Streams  - Scrubbing  solution  is discarded.  It amounts to
    1  kg  per metric ton  ammonia.  It contains sodium hydroxide  and
    sodium carbonate.

6.  EPA  Classification  Code  -  None  exists.

7.  References

    Green, R. V.   Chapter 5.   In:   RiegeVs  Handbook of  Industrial
    Chemistry,  7th Edition.   Kent,  J.  A. (ed.).  New York, Van
    Nostrand  Reinhold  Company,  1974.   p. 87.
                                       44

-------
AMMONIA SYNTHESIS                                         PROCESS NO. 16


                            Ammonia Synthesis

 1.  Function - This process (See Figure 3) receives purified ammonia
    synthesis gas from Processes 12, 13, 14,  or 15, compresses it,
    reacts nitrogen with hydrogen to form ammonia, and recovers the
    ammonia.  Either anhydrous ammonia or aqua ammonia can be sold or
    sent  to a number of processes in Figures 4, 6 , or 7.

    Synthesis gas, a mixture of hydrogen and nitrogen at a 3 to 1 mol
    ratio,  is compressed  in a reciprocating or centrifugal compressor to
    150 to 360 kg/cm2 pressure.  It is mixed with recycle synthesis gas
    from  the synthesis converter and refrigerated.  Ammonia in the
    recycle gas  condenses  and scrubs out any synthesis catalyst poisons
    in  the fresh gas.  The condensed ammonia is separated and the gas
    is  further compressed  and heated before passing over an iron oxide
    synthesis catalyst.  The gas exiting the synthesis converter is
    cooled to recover ammonia condensate.  Part of the gas is purged to
    prevent buildup of  inerts while the majority  is combined with
    fresh compressed synthesis gas  and recycled through the process.
    The purged gas is used as fuel.  The liquid ammonia is sent to a
    cryogenic storage tank and then loaded on barges, ships, or tank
    cars  for transport to  terminals.

 2.  Input Materials - 2750  cubic meters ammonia synthesis gas per metric
    ton ammonia.

 3.  Operating Parameters  (1500 metric tons ammonia per day plant)

    •Synthesis pressure -  usually 150 to 360 kg/cm2.
    •Synthesis temperature - usually 400 to 525°C.
    •Synthesis compressor  - 26,000  kW, 4 stage compressor.
    •Refrigeration, compressor - 7800 kW, 2 stage compressor.
    •Synthesis converter  - 2 meters diameter x 22 meters tall; 2
      catalyst beds with internal heat exchanger.
    •Ammonia storage temperature -  minus 33°C.
    •Ammonia storage pressure - atmospheric.

 4.  Utilities

    •Electrical  energy  -  20 kWh per metric ton ammonia for large plant
      using  steam reformed  synthesis gas.
    •Fuel for steam generation - total for steam  reforming and ammonia
      synthesis - 3.3 x  106 kcal per metric ton ammonia.
     •Cooling water - 90 cubic meters per metric  ton ammonia.

 5.  Waste Streams  - Purge gas from  the  reacted synthesis gas stream  is
    0.1 metric tons per metric ton  ammonia gas products.   It consists
                                      45

-------
    of methane, nitrogen,  hydrogen,  argon,  and  ammonia.   It  is  used  as
    fuel.  The ammonia lost is approximately 0.0025 metric tons per
    metric ton ammonia produced,

6.  EPA Classification Code

    3-01-002-01     Purge  gas
    3-01-002-02     Storage/loading

7.  References

    Green, R. V.  Chapter  5.  In:   Riegel's Handbook of Industrial
    Chemistry, 7th Edition.  Kent, J,  A.  (ed,).  New York, Van
    Nostrand Reinhold Company, 1974.  p.  90-94.

    Muller, R. G.  Ammonia.  Report No. 44, Process Economics Program.
    Stanford Research Institute, Menlo Park, California.  November 1968.
    235  p.
                                     46

-------
                       PRODUCTION OF AMMONIUM SULFATE,
                          AMMONIUM NITRATE AND UREA
     The processes in this operation are those in which  sulfuric acid,
nitric acid or carbon dioxide are combined with ammonia  to produce compounds
which are used as fertilizer components.

     The process for production of nitric acid from ammonia is  included in
this operation.  Nitrogen oxide emissions from this process constitute  one
of the environmental problems of the industry.
                                       47

-------
          Air
  Cooling H»0-
F1g.  16
          Hea
     Additive
                                                  Ammonium sulfate
                                                      formation
                    NH.NO,
                  formation
                            18
Fig.  7
                                                                                                Sales
                                                                                             rig.
                                     Figure  4.  AMMONIUM SULFATE, AMMONIUM NITRATE AND UREA

                                                     48

-------
PRODUCTION OF AMMONIUM SULFATE.  AMMONIUM NITRATE AND UREA   PROCESS NO.  17


                             HN03 Formation

 1 .  Function - This process (see Figure 4) oxidizes ammonia from Process 16,
    (Figure 3) with air to form nitric oxide.  The nitric oxide is further
    oxidized with air to nitrogen dioxide which is absorbed into water.  The
    resulting nitric acid solution goes either to sales or as input material
    in the production of ammonium nitrate (Process 18), potassium nitrate
    (Process 22, Figure 5), ammonium phosphates (Process 27, Figure 6) or
    nitric phosphate (Process 28, Figure 6).

    The nitric acid process can be conducted at atmospheric pressure or
    at pressures up to 9 kg/cm2.  The process is similar in either case.
    Liquid ammonia is vaporized, mixed with preheated air, and introduced
    into  a reactor containing a catalyst bed.  Nitric oxide and water are
    formed in an exothermic reaction and the nitric oxide-air-water vapor
    mixture  (about 10% nitric oxide) is conducted through heat exchangers
    where air feed to the process  is preheated, steam is generated, and
    feed  ammonia is vaporized.  The cooled gaseous mixture is then fed
    along with air to an absorption tower.  Water and 40 to 50% nitric
    acid  streams flow countercurrent to the air and nitric oxide stream
    and absorb nitrogen dioxide which is being formed in an exothermic
    reaction between air and nitric oxide.  External water cooling of
    the absorption tower is used since  low temperature favors nitrogen
    dioxide formation.  The bottoms from the tower is 45 to 65 percent
    nitric acid.  The overhead  tail gas is mainly nitrogen.  In the case
    of plants operated above atmospheric pressure, the tail gas can be
    heated by the hot gaseous reactor products and then run through a
    turbine to generate power.

    All concentrations of nitric acid may be shipped in stainless  steel
    drums or stainless steel tank trucks or cars.

 2.  Input Materials

    a.  Atmospheric pressure plant

        •0.15 metric  tons ammonia per metric ton 50% nitric acid.
        •40 mg platinum catalyst per metric ton 50% nitric acid.
        •0.5 cubic meters process water per metric ton 50% nitric  acid.
        •1750 cubic meters air  per metric ton 50% nitric acid.

    b.  Pressure plant  (8 kg/cm2)

        •0.175 metric  tons ammonia per  metric ton 60% nitric acid.
        •100 to 200 mg platinum catalyst per metric ton  60% nitric acid.
        •0.4 cubic meters process water per metric ton 60% nitric  acid.
         •2100 cubic meters air  per metric ton 60% nitric acid.

-------
3.  Operating Parameters

    a.  Atmospheric pressure plant

        •Temperature in reactor - 800°C.
        •Feed to converter - 9.5 to 11% ammonia.
        •Product strength - 45 to 52% nitric acid.
        •Catalyst - 10% rhodium, 90% platinum alloy gauze made of 0.008cm
         diameter wire with 30 meshes to the cm.
        •Bubble cap absorption tower operates at 10 to 40°C temperature.

    b.  Pressure plant

        •Temperature in reactor - 900°C.
        •Pressure in plant - 8 kg/cm2
        •Feed to converter - 10% ammonia.
        •Product strength - 57 to 65% nitric acid.
        •Catalyst is same as for atmospheric pressure plant.
        •Absorption tower temperature is same as for atmospheric
         pressure plant.

4.  Utilities

    a.  Atmospheric pressure plant

        •Electrical energy - 50 kWh per metric ton 50% nitric acid.
        •Steam generation - 0.5 metric ton per metric ton 50% nitric acid.
        •Cooling water - 55 cubic meters per metric ton 50% nitric acid.

    b.  Pressure plant

        •Electrical energy - 10 to 250 kWh per metric ton 60% nitric acid.
        •Steam generation - 0.5 to .75 metric tons per metric ton 60%
         nitric acid.
        •Cooling water - 75 to  125 cubic meters per metric  ton 60%
         nitric acid.

5.  Waste  Streams - Tail gas leaving the absorption tower from a pressure
    plant  is  passed through an  entrainment separator before being heated
    by  hot reactor products.  This heated gas may then be passed through
    a catalytic reduction unit  before being  expanded in a turbine.   If
    this is done, nitrogen oxide  emissions will be approximately 1.7 kg
    per metric  ton of  60% nitric  acid.   If there is no catalytic reduction
    unit,  nitrogen oxide emissions will  be approximately 16 kg per metric
    ton of 60%  nitric  acid.

6.  EPA Classification  Code

    3-01-013-01     Ammonia Oxidation Old
    3-01-013-02    Ammonia Oxidation New
                                    50

-------
3-01-013-05     Uncontrolled
3-01-013-06     w/Catyl/Combuster

References

Faith, W. L., D, B. Keyes, and R. L, Clark.   Industrial  Chemicals,
3rd Edition.  New York, John Wiley & Sons, Inc., 1965.   p.  534-540.

Green, R. V.  Chapter 5.  In:  Riegel's Handbook of Industrial
Chemistry, 7th Edition.  New York, Van Nostrand Reinhold Company,
1974.  p. 94-100.

Heller, A. N., S. T. Cuffe, and D. R. Goodwin.   Chapter  38.   In:
Air Pollution, 2nd Edition.  Stern, A. C. (ed.).  New York,  Academic
Press, 1968.  3_: 203-208.

Shreve, R. N.  Chemical Process Industries,  3rd Edition.  New York,
McGraw-Hill Book Company, 1967.  p. 316-321.
                                 51

-------
PRODUCTION OF AMMONIUM SULFATE, AMMONIUM NITRATE AND UREA     PROCESS NO 18


                           NH^NOs  Formation

1.   Function - This process (See Figure 4)  produces ammonium nitrate
    prills,  crystals,  and granules by reacting  anhydrous  ammonia  with
    60 percent nitric  acid and removing water from the  reaction product.
    Ammonium nitrate is sold or used in mixed fertilizers (Figure 7).

    In a typical  prilling process, ammonia  vapor and nitric acid  react
    in a neutralizing  vessel under agitation.  The heat of reaction
    causes water to boil  out of the solution and the solution is  further
    concentrated by vacuum evaporation.  The resulting  95 percent
    ammonium nitrate solution is sprayed in the top of  a  prilling tower.
    Air rising through the tower solidifies the falling ammonium  nitrate
    into prills.   The  prills are screened,  dried further, dusted  with
    clay to minimize caking tendencies, and screened before storing in
    a dehumidified building.  The product is sold in multi-wall  bags
    or in bulk.  The bags must contain at least one layer of plastic or
    asphalt-impregnated paper to keep moisture  from the ammonium  nitrate.

    A variation of the typical prilling process is the  Stengel process
    where the ammonia  and nitric acid reactants are preheated before
    feeding to a packed, tubular reactor.  A mixture of ammonium  nitrate
    and water leaves the reactor and passes through a cyclone separator.
    Molten ammonium nitrate flows out the bottom of the separator and
    can be solidified in a prilling tower.   The resulting prills  do not
    require drying.  Alternately, the molten ammonium nitrate from the
    cyclone separator can be solidified on a cooled conveyor belt and
    the resulting sheet ground or flaked into desired sizes.

    A third process is the continuous vacuum crystallization process.
    Ammonia gas is introduced below the surface of 60 percent nitric
    acid and the reaction products charged to vacuum evaporators.  The
    resulting solution goes to vacuum crystal!izers.  The slurry product
    from crystal!izers is centrifuged and dried in a rotary dryer.

    Sometimes calcium carbonate, ammonium sulfate, or ammonium phosphate
    is mixed with ammonium nitrate to reduce the explosion hazard of
    the ammonium nitrate.

2.  Input Materials

    •0.22 metric tons ammonia per metric ton ammonium nitrate.
    •1.35 metric tons nitric  acid  (60%  concentration) per metric ton
      ammonium  nitrate.
    •0.02 to  0.03 metric  tons clay  per  metric ton  ammonium  nitrate.
                                     52

-------
3.  Operating Parameters

    •Product moisture - below 0.5%.
    •Plant sizes - 25,000 to 400,000 metric tons capacity per year.
    •Typical prilling process.
       •Neutralization vessel
          Temperature - ~130°C
          Exiting solution concentration - 85%
       •Vacuum evaporator
          Temperature - 125 to 140°C
          Exiting solution concentration - 95%
       •Prilling tower
          Height - 60 meters
          Exiting prill concentration - 95%
       •Dryers
          Final moisture content - 0.2%
    •The Stengel process
       •Ammonia preheat temperature - 145°C
       •Nitric acid perheat temperature - 165°C
       •Temperature of exiting reactor products - 205°C
       •Moisture content of reactor products - 0.2%
    •The continuous vacuum crystallization process
       •Solution concentration leaving neutralizer - 60%
       •Solution concentration leaving vacuum evaporators - 75 to 80%
       •Vacuum crystallizers
          Temperature - 35°C
          Pressure - 0.035 kg/cm2
       •Water content in crystals from centrifuging - 1 to 2%
       •Water content in crystals after drying - 0.05%
       •Highest temperature of crystals in dryer - 60 to 65°C
    •Product particle size - 95%: -6 mesh  +16 mesh.

4.  Utilities

    •Electricity - 50 kWh per metric ton ammonium nitrate.
    •Steam - 3 metric tons per metric ton ammonium nitrate.
    •Cooling water - 15 to 70 cubic meters per metric ton ammonium
     nitrate.

5.  Waste Streams - Emissions occur in neutralization and drying.  By
    keeping the neutralization process on the acidic side, losses of
    ammonia and nitrogen oxides are kept at a miniumum.  Water scrubbers
    are used in most cases to recover ammonia and ammonium nitrate dust
    entrained in vent gases from the neutralization tanks, the prilling
    tower, the dryers, and from other sources.  The scrub water is
    returned to process.  Total fines lost can be kept to less than
    0.01 metric tons per metric ton ammonium nitrate.

6.  EPA Classification Code - None  exists.
                                      53

-------
7.  References

    Faith, W. L., D.  B. Keyes, and R.  L.  Clark.   Industrial  Chemicals,
    3rd Edition.  New York, John Wiley & Sons, Inc., 1965.   p.  89-94.

    Green, R. V.  Chapter 5,  In:  Riegel's Handbook of Industrial
    Chemistry, 7th Edition,  Kent, J.  A.  (ed.).   New York,  Van  Nostrand
    Reinhold Company, 1974.  p. 100-101.

    Heller, A. N., S. T, Cuffe, and D. R. Goodwin.  Chapter 38.  In:
    Air Pollution, 2nd Edition.  Stern, A, C. (ed.).  New York,
    Academic Press, 1968.  3_: 231-234.

    Slack. A. V   Fertilizers.  In:  Kirk-Othmer Encyclopedia of
    Chemical Technology, 2nd Edition.   Standen,  A, (ed.).  New York,
    John Wiley & Sons, Inc., 1966.  9:59-65.
                                      54

-------
PRODUCTION OF AMMONIUM SULFATE,  AMMONIUM NITRATE AND UREA    PROCESS NO.  19


                             Urea Formation

1.  Function - This process (See Figure 4) combines ammonia and carbon
    dioxide under high pressure and elevated temperature to form
    ammonium carbamate.  The carbamate is simultaneously dehydrated
    to form urea and water.  The effluent from the urea reactor is an
    aqueous solution containing urea and unconverted ammonium carbamate.
    Heating decomposes the carbamate and a resulting gaseous mixture of
    ammonia, carbon dioxide, and water vapor is separated from a urea-
    water solution.  The urea-water solution goes to urea finishing,
    Process 20.  The gaseous mixture is usually condensed or absorbed
    into water and recycled to the reactor.  In older plants, the
    gaseous mixture may be utilized to produce ammonium nitrate or
    sulfate fertilizers.

    Equipment often employed in urea formation is as follows:

    • A reactor into which aqueous carbamate solution is recycled, excess
     ammonia and carbon dioxide are fed.
    •A high-pressure separator where liquids and gases from the reactor
     are separated.
    •One or several steam-heated decomposers (or gas-swept strippers)
     where more gas-liquid separation occurs.
    •Several absorbers where gases from the decomposers and gas
     separator are absorbed into an aqueous stream that is recycled to
     the reactor.
    •An ammonia condenser that condenses and recycles to the reactor any
     ammonia gas that  is not absorbed into the recycled aqueous stream.

    There is considerable difference in the carbamate solution recycle
    system from one plant to another.

2.  Input Materials

    a.  Once-through process (old plants)

        •1.2 to 1.8 metric tons ammonia per metric ton urea.
        •1.0 to 1.5 metric tons carbon dioxide  per metric  ton urea.

    b.  Conventional recycle process

        •0.57 metric tons ammonia per metric ton urea.
        •0.76 metric tons carbon dioxide  per metric  ton urea.

3.  Operating  Parameters

    a.  Once-through process (used  only in old  plants)
                                     55

-------
        •Reactor temperature  -  175  to  190°C.
        •Reactor pressure - 200 kg/cm2.
        •Carbamate decomposer pressure -  2  kg/cm2.
        •Products - 85 to 90  weight percent aqueous  urea  solution.
                  - gaseous NH3,  C02,  H20 mixture.

        Conventional  recycle  process
2
                     2
        •Reactor temperature - 185°C
        •Reactor pressure - 200 kg/cm
        •First stage decomposer pressure -  15  to  100 kg/cm
        •Third (final) stage decomposer pressure - below atmospheric
        •Product - 70 to 75 weight percent  aqueous urea solution.

4.  Utilities

    •Electrical energy - 110 to 190 kWh per metric ton urea (assuming
     electric-driven compressor).
    •Steam - 0.5 to 2 metric tons  per metric ton  urea.
    •Cooling water - 60 to 130 cubic  meters per metric ton  urea.

5.  Waste Streams - Condensate obtained by  condensing the gases  from
    the final decomposer is usually stripped of ammonia and discarded.
    The discarded condensate contains traces of ammonia.

6.  EPA Classification Code - None exists.

7.  References

    Faith, W. L., D. B. Keyes, and R. L. Clark.   Industrial Chemicals,
    3rd Edition.  New York, John Wiley & Sons, Inc., 1965.   p.  790-795.

    Green, R. V.  Chapter 5.  In:   Reigel's Handbook of Industrial
    Chemistry, 7th Edition.  Kent, J. A. (ed.).   New York,  Van
    Nostrand Reinhold Company, 1974.   p. 104-111.

    Mavrovic, I.  Urea and Urea Derivatives.  In:  Kirk-Othmer
    Encyclopedia of Chemical Technology, 2nd Edition, Standen,  A.  (ed.)
    New York, John Wiley & Sons, Inc., 1970.  21_: 37-51 .

    Slack, A. V.  Fertilizers.  In:  Kirk-Othmer  Encyclopedia of
    Chemical Technology, 2nd Edition.  Standen,  A. (ed.).  New  York,
    John Wiley & Sons, Inc., 1966.  9: 68-72.

    Slack. A. V.  Fertilizers.  In:  Kirk-Othmer  Encyclopedia of
    Chemical Technology, 2nd Edition.  Standen,  A. (ed.).  New  York,
    John Wiley & Sons, Inc., 1971.  Supp1ementary:343-351 .
                                     56

-------
PRODUCTION OF AMMONIUM SULFATE,  AMMONIUM NITRATE AND UREA     PROCESS NO.  20


                             Urea Finishing

1.  Function - This process (See Figure 4) produces urea prills from the
    aqueous urea solution forwarded from urea formation, Process 19.
    The urea prills are sold or used in making mixed fertilizers
    (Figure 7).

    Two different routes are used to reduce the urea solution to a
    molten state:  evaporation and crystallization with crystal remelt.
    The resulting molten urea is solidified into small spherical
    particles called prills.

    Evaporation can be conducted under vacuum, under reduced pressure
    with the addition of hot air as a drying agent, or by a process of
    atmospheric air-sweep evaporation.  In all cases, the urea solution
    is steam heated.

    A higher purity product results if the crystallization process is
    used.  Crystals form in a vacuum crystal!izer and the crystal slurry
    is sent to a continuous pusher type centrifuge.  The urea crystals
    are separated from the mother liquor by centrifuging, washed with
    water, and dried.  The mother liquor is recycled to the crystallizer.
    The urea crystals are elevated to the top of the prilling tower
    and melted in a steam-heated crystal melter.

    Molten urea from either process route is sprayed down a tower counter-
    current to a stream of ambient temperature air.  Spherical urea
    particles fall to the bottom of the prilling tower and are conveyed
    to a bulk storage or to bagging.  Four-ply or six-ply polyethylene-
    coated paper bags are used in the bagging process.  Prills may be
    coated with or may contain an anticaking agent.

2.  Input Materials - 1.1 to 1.45 metric tons urea-water solution per
    metric ton urea prills.

3.  Operating Parameters

    •Vacuum crystallizer.
       Pressure - 0.08 kg/cm2
       Temperature - 60°C
    •Evaporation temperature - ~140°C (air swept evaporator).
    •Prilling tower - 50 meters tall.
    •Product using evaporation - 1.5 mm diameter prills containing 0.3
     weight percent water and 0.7 weight percent biuret.
    •Product using crystallization - 1.5 mm diameter prills containing
     0.2 weight percent water and 0.3 weight percent biuret.
                                     57

-------
4.  Utilities

    •Electrical energy - 5 kWh per metric ton urea.
    •Steam - 0 to 0.5 metric tons per metric ton urea.
    •Cooling water - 10 cubic meters per metric ton  urea.

5.  Waste Streams

    •Water vapor from vacuum crystallizer or vacuum  evaporators is
     condensed and discarded.  It contains trace impurities (ammonia).
    •Vapors from crystal drying may contain trace pollutants.
    •Water vapor from air-swept evaporators contains trace impurities
     (ammonia).

6.  EPA Classification Code - None exists.

7.  References

    Mavrovic,  I.  Urea and Urea Derivatives.  In:  Kirk-Othmer
    Encyclopedia of Chemical Technology,  2nd Edition.  Standen, A. (ed.),
    New York,  John Wiley & Sons, Inc., 1970.  21_:51-52.

    Slack, A.  V.  Fertilizers.  In:  Kirk-Othmer Encyclopedia of
    Chemical Technology, 2nd Edition.  Standen, A. (ed.).  New York,
    John Wiley & Sons,  Inc., 1971.  Supplement:351-352.
                                     58

-------
PRODUCTION OF AMMONIUM SULFATE,  AMMONIUM NITRATE  AND UREA     PROCESS NO.  21


                       Ammonium Sulfate Formation

1.  Function - This process (See Figure 4)  produces ammonium sulfate
    crystals by reacting ammonia and sulfuric acid, crystallizing the
    resulting reaction product, and separating the crystals from water.
    The product can be sold or used in mixed and  blended fertilizer
    manufacturing operations (Figure 7).

    Anhydrous ammonia is dissolved in water and fed along with a stream
    of sulfuric acid to a reactor.  The resulting solution of ammonium
    sulfate is maintained at a pH of 3.5.  It is  pumped into double-
    effect crystal!izers where water is evaporated under vacuum.
    Ammonium sulfate crystals form and grow until they are heavy
    enough to settle to the bottom of the crystal!izer.  A slurry con-
    taining the crystals is discharged into centrifuges where the
    crystals are spun dry, rinsed with water, and discharged onto a
    belt conveyor which carries the product to storage.  The crystals
    are packaged in multiwall paper bags or sold in bulk.

    Much ammonium sulfate is produced as a by-product of coke manu-
    facture in the steel industry and of caprolactam manufacture
    in the synthetic fiber industry.

2.  Input Materials

    •0.26 metric tons ammonia per metric ton ammonium sulfate.
    •0.77 metric tons sulfuric acid (100% concentration) per metric
     ton ammonium sulfate.

3.  Operating Parameters

    •Ammonia solution concentration - 18 to 26% solution
    •Slurry from crystal!izers -  55 to 60% by volume crystals.
    •Crystal size
       Standard - 70%; -16 mesh,  +60 mesh
       Large crystal - 80%; -10 mesh, +20 mesh
       Granular - over 90%; -6 mesh, +16 mesh

4.  Utilities

    •Electrical energy - 30 kWh per metric ton ammonium  sulfate.
    •Water - 1 cubic meter per metric ton.

5.  Waste Streams - Water vapor (1 metric ton per metric ton of  product)
    is condensed and discarded.

6.  EPA Classification Code - None exists.
                                      59

-------
7.  References

    Faith, W.  L.,  D.  B,  Keyes,  and  R.  L,  Clark.   Industrial  Chemicals,
    3rd Edition.   New York,  John Wiley &  Sons,  Inc.,  1965.   p.  95-100.

    Slack, A.  V.   Fertilizers.   In:   Kirk-Othmer  Encyclopedia of
    Chemical Technology, 2nd Edition.   Standen, A.  (ed.).   New  York,
    John Wiley &  Sons, Inc., 1966.   9:65-68.
                                      60

-------
                        PRODUCTION  OF  POTASSIUM  NITRATE
                             AND  LIQUID  CHLORINE


     In this operation  potassium  chloride  and  nitric  acid  and  their  reaction
products are combined in a series of processes to yield  potassium  nitrate
as a product for fertilizer blending and liquid  chlorine as  a  by-product.
                                        61

-------
O
_J
3C
O
s
O
o.

-------
PRODUCTION OF POTASSIUM NITRATE AND LIQUID CHLORINE             PROCESS NO.  22


                             KC1-HN03 Reaction

 1.  Function - This process (See Figure 5) receives potassium chloride
     (KC1), 65% nitric acid (HN03), and 81% HN03.  It produces a
     potassium nitrate (KN03)/HN03 solution that is forwarded to
     crystallization/stripping/fractionation, Process 23.   The process
     also produces a liquefied gas mixture that is forwarded to nitrogen
     tetroxide-chlorine fractionation, Process 25.

     Potassium chloride from storage is dissolved in cool  65% HN03 in a
     glass-lined vessel, and the solution fed to an agitated reaction
     tank along with some recycle 65% HN03 from HN03-formation absorption,
     Process 26, and crystallization/stripping/fractionation, Process 23.
     A reaction forms chlorine, KN03, nitrosyl chloride (NOC1) and water.
     Liquids from the reaction tank go to a muriate reaction column
     along with more recycled 65% HN03 where the reaction continues.
     Bottoms from this column consisting of a KN03/HN03 solution go to
     Process 23,  Overhead from the muriate reaction column joins with
     vapors from the reaction tank plus a recycle gas stream from  N20it-Cl2
     fractionation, Process 25, and the combined vapors go to a gas
     reaction column.  This column also is fed with recycled 81% HN03
     from Process 23.  A reaction between NOC1 and HN03 forms nitrogen
     tetroxide  (N2OiJ, more chlorine, and water in this column.  Bottoms
     from the column are returned to the muriate reaction column.  The
     overhead stream consisting of C12, NOC1, nitryl chloride (N02C1),
     bromine chloride  (BrCl), and nitrogen tetroxide is liquefied by
     refrigeration and sent to Process 25.  The BrCl comes from impurities
     in  the KC1 feed, and the N02C1 comes from side reactions.

 2.  Input Materials  (per metric ton 95.4% purity  KN03)

     •1.01 metric tons fresh 65% HN03.
     •0.74 metric tons KC1.
     •2  to 5 metric  tons recycle 65% HN03.
     •1  to 3 metric  tons recycle 81% HN03.

 3.  Operating  Parameters

     •Pressure  - 2.5  kg/cm2.
     •Temperature range - 5°C  to 130°C.
     •Muriate reaction column  - 1.5 meters diameter x 12 meters tall with
       titanium  cladding.
     •Gas reaction column - 1.5 meters diameter x  6 meters tall with
       glass  lining.

 4.  Utilities
      •Electrical  energy (primarily  for  refrigeration)  -  50  kWh  per metric
       ton 95.4% purity KN03.
                                        63

-------
    •Cooling water - 30 cubic meters per metric ton 95.4% purity KN03
    •Steam - 1  metric ton per metric ton 95.4% purity KN03.

5.  Waste Streams - None exists.

6.  EPA Classification Code - None exists.

7.  References

    Haddeland,  G. E,  Potash Fertilizers.  Report No. 14, Process
    Economics Program.  Stanford Research Institute, Menlo Park,
    California.  September 1966.   188 p.

    Spealman, M. L.  New Route to Chlorine and Saltpeter.  Chemical
    Engineering.  72^:198-200, November 8, 1965.
                                         64

-------
PRODUCTION OF POTASSIUM NITRATE AND LIQUID CHLORINE           PROCESS NO. 23
                 Crystal 11zation/Stripping/Fractionation

1.   Function - This process (See Figure 5)  receives an  aqueous
    potassium nitrate (KN03)/nitric acid (HN03)  solution from KC1-HN03
    reaction, Process 22, and produces moist KN03  crystals that are
    forwarded to KN03 drying, Process 24.

    Three separation techniques are required to  remove  most of the water
    and HN03 from the KN03.  These techniques are distillation, vacuum
    crystallization, and centrifuging.

    The aqueous KNOs/HNOs solution from Process  22 goes to a water
    stripping column.  The bottoms from the column is a concentrated
    KN03/HN03 solution and it is fed to the first of three vacuum
    crystallizers.  The slurry bottoms from the  second and third
    crystal!izers are sent to a centrifuge'where moist KN03 crystals are
    separated from mother liquor.  The crystals  go to KN03 drying,
    Process 24.  Other streams produced in this  processing sequence are
    handled as follows.

    •The overhead water-rich stream from the water stripping column is
     forwarded to a water rectifier column.  An  81% HN03 stream from
     the vacuum crystallizers also enters the water rectifier column.
     The bottoms from this column is 65% nitric  acid which is used as
     feed to the KCl-HNOs reaction, Process 22.   The overhead is water
     vapor which is condensed in a barometric condenser and discarded.

    •The vapor from the vacuum crystal!izers is  condensed.  Its com-
     position is 81% HN03.  A portion of this stream is sent to the
     water rectifier column and the remainder is used in KC1-HN03
     reaction, Process 22.

    •Mother liquor from the centrifuge is recycled to the vacuum
     crystallizers.

    •The bottoms slurry from the first vacuum crystal!izer is recycled
     to the water stripper column.  This increases the KN03 concentration
     in the column and results in a stronger HN03 vapor from the vacuum
     crystallizers.  This high strength (81% HMOs) acid is needed in
     Process 22.

2.  Input Materials - 5 metric tons of KN03/HN03 solution per metric ton
    "of 95.4% purity KN03.

3.  Operating Parameters

    •Water stripping column
       •Pressure - Below  atmospheric.
                                     65

-------
       Temperature - Overhead  stream  is  below  100°C.
       Feed is approximately 20% KN03, 44% HN03,  36%  water  plus minor
       amounts of KC1,  NaCl, NaN03, MgCl2, HC1, and other metal nitrates.
    •Water rectifier column
       Pressure - below atmospheric,  probably  -0.1 kg/cm2.
       Temperature of overhead is approximately 40°C.
    •Vacuum crystallizers
       Temperature range - 35°C to 110°C.
       Pressure range - 0.05 to 0.5 kg/cm2
    •Centrifuge
       Basket size - 1  meter long.
    •Plant size - 57,000 metric tons  of  95.4%  purity  KN03  per year.

4.  Utilities

    •Steam - 2 metric tons per metric ton  of 95.4%  purity  KN03.
    •Electrical energy - 30 kWh per metric ton of 95.4% purity KN03.
    •Cooling water - 100 cubic meters per  metric  ton  of 95.4% purity  KN03.

5.  Waste Streams

    •Some vapors from the water rectifier  column  are  not condensed in  the
     barometric condenser.  These vapors are released to the atmosphere.
     They contain some HN03.

    •The overhead stream from  the water  rectifier column is condensed in
     a barometric condenser.  This water is discarded.  It amounts to
     approximately 0.5 cubic meters per  metric ton 95.4% purity KN03
     produced.  It contains some HN03.

6.  EPA Classification Code -  None exists.

7.  References

    Haddeland, G. D.  Potash Fertilizers.   Report No. 14,  Process
    Economics Program.  Stanford Research Institute,  Menlo Park,
    California, September  1966.  188 p.

    Spealman, M.  L.  New Route  to Chlorine and Saltpeter.   Chemical
    Engineering.   72_:198-200,  November 8,  1965.

-------
PRODUCTION OF POTASSIUM NITRATE AND LIQUID CHLORINE           PROCESS NO. 24


                               KN03 Drying

1.  Function - This process (See Figure 5) receives moist KN03 crystals
    from crystallization/stripping/fractionation, Process 23 and dries
    them.  The resulting granular or prilled product is used in producing
    blended fertilizers, Figure 7.

    A direct-fired or steam-heated rotary dryer is used to dry the KN03.
    An anticaking agent may be added to the dry, granular KN03 exiting
    the dryer.

    If a prilled product is desired, the dry, granular KN03 from the
    dryer is.remelted and sprayed down into a prilling tower counter-
    current to upward moving air.  The prills are removed from the bottom
    of the tower, cooled in a rotary cooler, and conveyed to storage.

2.  Input Materials - 1.02 metric tons moist KN03 per metric ton 95.4%
    purity potassium nitrate.

3.  Operating Parameters

    •Rotary direct-fired dryer - 2.5 meters diameter x 12 meters long
     with titanium cladding.
    •Temperature - 200°C.
    •Pressure - Atmospheric

4.  Utilities

    •Steam - 0.1 to 0.3 metric ton per metric ton 95.4% purity potassium
     nitrate.
    •Electrical energy - 2 kWh per metric ton 95.4% purity potassium
     nitrate.

5.  Waste Streams - Hot air from the rotary dryer contains nitrogen oxides
    from the moist potassium nitrate feed.  An estimate of the quantity
    is 0.02 metric tons per metric ton of 95.4% purity potassium nitrate
    produced.  Particulates are also present in the exiting air.

6.  EPA Classification Code - None exists.

7.  References

    Haddeland, G. E.  Potash Fertilizers.  Report No. 14, Process
    Economics Program.  Stanford Research Institute, Menlo Park,
    California, September 1966.  188 p.

    Spealman, M. L.  New Route to Chlorine and Saltpeter.  Chemical
    Engineering.  72:198-200, November 8, 1965.
                                  67

-------
PRODUCTION OF POTASSIUM NITRATE AND LIQUID CHLORINE           PROCESS  NO.  25


                         N20i>-Cl2_ Fractionation

1.  Function - This process (See Figure 5) receives a stream of
    liquefied mixed gases from KC1-HN03 reaction, Process 22, and
    separates it into liquid chlorine product, a mixed gas stream that
    is recycled to Process 22, and a liquid nitrogen tetroxide stream
    that  is forwarded to HN03 Formation/Absorption, Process 26.

    Liquefied mixed gases [chlorine (C12), nitrosylchloride (NOC1),
    nitryl chloride (N02C1), bromine chloride  (BrCl), and nitrogen
    tetroxide (N2001 are received from Process 22 and fed to a chlorine
    fractionating column.  Liquid, 99.5%  purity chlorine is the overhead
    product.  The bottoms stream is sent  to a  second fractionating
    column.  The overhead from the second column  is a mixture of NOC1,
    N02C1, N2(H, C12, and BrCl gases which is  recycled to Process 22.
    The bottoms  is 99.5% purity nitrogen  tetroxide.  It is forwarded  to
    Process  26.

 2.  Input Materials - 0.8 metric tons liquefied mixed gases per metric
    ton of 95.4% purity KN03.

 3.  Operating Parameters

    •Plant size  - 57,000 metric tons of 95.4%  purity KN03 per year.
    •Chlorine fractionating column.
        1  meter diameter x 8 meters tall with monel and tantalum cladding.
        Temperature  range  in column - minus 10°C  to 40°C.
        Pressure  - 2.5  kg/cm2.
        Chlorine  product - 0.35 metric  tons per metric  ton 95.4% purity
        KN03.
     •Nitrogen  tetroxide column.
        0.6 meters diameter  x  8 meters  tall with  347  stainless  steel
        cladding.
        Temperature  range in column -  0°C  to  40°C.
        Pressure  -  2.5 kg/cm2.

 4.  Utilities

     •Electrical  energy (primarily for refrigeration)  - 40 kWh per metric
      ton 95.4% purity KN03.
     •Cooling water  - 10 cubic meters  per metric ton  95.4% purity  KN03.
     •Steam - 0.1 metric ton per metric ton 95.4% purity KN03.

 5.  Waste Streams - A bleed off the nitrogen tetroxide fractionation
     column overhead stream is sent to a gas  scrubber.   Traces of  BrCl,
     C12, N204, NOC1, and N02C1 may be released to the atmosphere  from
     this scrubber.
                                   68

-------
6.  EPA Classification Code - None exists.

7.  References

    Haddeland,  G. E.   Potash Fertilizers.   Report No.  14,  Process
    Economics Program.  Stanford Research  Institute,  Menlo Park,
    California. September 1966.   188 p.

    Spealman, M. L.  New Route to Chlorine and Saltpeter.   Chemical
    Engineering.  72^:198-200, November 8,  1965.
                                  69

-------
PRODUCTION OF POTASSIUM NITRATE AND LIQUID CHLORINE           PROCESS NO.  26


                        HNO3-Formation/Absorption

1.  Function - This process (See Figure 5) receives liquid nitrogen
    tetroxide  (N200 from N20\-d2 fractionation, Process 25, and produces
    65% nitric acid which is used as feed to KC1-HN03 reaction,
    Process 22 .

    Liquid NaCU is combined with 55% HN03 and air in an agitated vessel
    to form more nitric acid.  Liquid from the mixing vessel goes to a
    series of  two absorption towers.  In the first  (primary), it passes
    countercurrent to a gaseous mixture of vapors from the mixing tank
    and from the other absorption tower.  In the second tower, the liquid
    passes countercurrent to air.  The liquid product from the second
    tower is 65% nitric acid.  The gaseous vapors exiting the absorption
    system are scrubbed with a water stream fed to  the top of the
    primary  tower, and then they are vented to the  atmosphere.

2.  Input Materials

    • 0.45 metric tons 99.5% purity N20i, per metric  ton 95.4% purity  KN03.
    •0.8  to  2  metric tons 55%  nitric acid per metric ton 95.4% purity
      KN03.
    •0.4  metric tons air per metric ton 95.4% purity KNOs.
    •0.1  to  0.3 metric tons water per metric ton 95.4% purity KN03.

3.  Operating  Parameters

    •Pressure  - 8  kg/cm2.
    •Temperature - ~40°C.

 4.  Utilities  - Electrical  energy  - 60  kWh  per metric  ton 95.4%  purity
    KN03.

 5.  Waste Streams  -  Vapors  from  the reaction-absorption  system are  vented
    to the atmosphere.   These  vapors  amount to 0.3 metric tons per  metric
    ton  95.4% purity KN03.   The  stream  is  primarily nitrogen,  but
    contains traces  of nitrogen  oxides.

 6.   EPA Classification Code -  None exists.

 7.  References

     Haddeland, G.  E.  Potash Fertilizers.   Report  No.  14,  Process
     Economics Program.   Stanford Research Institute, Menlo  Park,
     California.   September 1966.   188 p.

     Spealman, M.  L.   New Route to Chlorine and  Saltpeter.   Chemical
     Engineering.   72;198-200,  November  8, 1965.


                                    70

-------
             PRODUCTION OF AMMONIUM PHOSPHATES AND NITRIC PHOSPHATE
     The processes in this group combine phosphoric acid and in some cases
nitric or sulfuric acid with ammonia or with phosphate rock and ammonia to
produce four different ammonium phosphates and nitric phosphate.  These
materials are used in blending mixed fertilizers.
                                     71

-------
                                                                               O
                                                                               3Z
                                                                               O-
°\
 r
       S-CS-
       •UrtJO
r
 c  o
 O'>-
•I-+JOV
4->  fTD C
 ,	r-
 OJ  =3 >,
 CTC S-

O  i.
    0
                                                                               o
                                                                               s:

-------
PRODUCTION OF AMMONIUM PHOSPHATES AND NITRIC PHOSPHATE        PROCESS NO. 27


                    Neutralization/Granulation/Drying

1.  Function - This process (See Figure 6) reacts anhydrous ammonia with
    phosphoric acid or with phosphoric and sulfuric (or nitric) acid
    to obtain a slurry product.  The slurry is then granulated and dried.

    The neutralization reaction can be started in a preneutralizer tank
    and finished in a rotary drum granulator where ammonia is injected
    into the slurry bed.  Another arrangement is to allow the neutraliza-
    tion reaction to go to completion in a series of tanks before feeding
    the product slurry to a blunger.  A third arrangement is to feed
    phosphoric acid onto a bed of recycled product fines in a rotary
    drum granulator and to inject ammonia under the bed of fines.  In
    this third arrangement neutralization and granulation occur in the
    same piece of equipment.  Heat of ammoniation evaporates water in all
    of these arrangements.

    Product from the rotary drum or blunger granulator is fed to a dryer
    and then to screens.  Fines are recycled to the granulator, oversize
    is fed to a crusher and either recycled to the screens or to the
    granulator, and onsize material is conveyed to storage.

2.  Input Materials

    •Anhydrous ammonia - 0.14 metric tons per metric ton ammonium
     phosphate product or 0.23 metric tons per metric ton diammonium
     phosphate product or 0.13 to 0.3 metric tons per metric ton of
     ammonium phosphate sulfate or ammonium phosphate nitrate product
     depending on the product.
    •Phosphoric acid (75% acid basis) - 0.54 cubic meters per metric ton
     of ammonium or diammonium phosphate products or 0.1 to 0.54 cubic
     meters per metric ton of ammonium phosphate sulfate or ammonium
     phosphate nitrate product depending on the product.
    •Sulfuric acid (100% acid basis) - 0.03 to 0.25 cubic meters per
     metric ton of ammonium phosphate sulfate product depending on
     product.
    •Nitric acid (100% acid basis) - 0.1 to 0.4 cubic meters per metric
     ton of ammonium phosphate nitrate product depending on product.

3.  Operating Parameters

    •Temperature rises to 90 to 110°C in the preneutralizer, granulator,
     or ammoniation tank due to the heat of reaction.
    •Typical plant capacity - 10 to 40 metric tons per year of 18-46-0
     fertilizer (diammonium phosphate).
    •Recycle ratio of fines to fresh feed in the granulator ranges from
     less than 2:1 to more than 8:1.
                                     73

-------
    •Granulator size - 1.5 to 3.5 meters diameter x 2 to 8 meters long.
    •Product size - 6 to 20 mesh.

4.  Utilities

    •Electrical energy - 20 kWh per metric ton product.
    •Fuel for drying - 125,000 kcal per metric ton product.

5.  Waste Streams - Scrubbers are used to decrease ammonia emissions from
    the ammoniation tank and/or granulator.  Incoming phosphoric acid can
    be used as the scrubbing fluid.  No quantitative data on emissions
    are available.  A gross estimate is that 5 percent of the ammonia
    or from 0.005 to 0.01 metric ton ammonia per metric ton of product
    is emitted to the atmosphere.

6.  EPA Classification Code

    3-01-030-01     Dryer-Coolers
    3-01-030-02     Amoniat-Granulate

7.  References

    Slack, A. V.  Fertilizers.   In:  Kirk-Othmer Encyclopedia of
    Chemical Technology, 2nd Edition.  Standen, A.  (ed.).  New York,
    John Wiley &  Sons, Inc., 1966.  9^:125-132.

    Snow, R. H.   Size Reduction  and Size Enlargement.   In:  Chemical
    Engineers' Handbook, 5th Edition.  Perry, R. H., and C. H. Chi 1 ton
    (eds.).  New  York, McGraw-Hill Book Company, 1973.  p. 8-62  to  8-63.
                                       74

-------
PRODUCTION OF AMMONIUM PHOSPHATES AND NITRIC PHOSPHATE       PROCESS NO. 28


                      Digestion/Granulation/Drying

1.  Function - This process (See Figure 6)  dissolves phosphate  rock in
    nitric acid (or nitric acid plus sulfuric acid  and/or phosphoric
    acid), neutralizes the resulting slurry with anhydrous ammonia,
    granulates, and dries the product.

    Normally, rock acidulation is carried out in two or three vessels,
    followed by up to twelve tanks for ammoniation.  The ammoniated
    slurry is granulated in equipment such as pugmills, rotary  drums,
    and the spherodizer.  A rotary dryer is used to dry the slurry
    product.  Screening separates the granules into undersize fines
    which are returned to the granulator, oversize  material which is
    crushed and either recycled to the granulator or the screens, and
    onsize material which is conveyed to storage.

2.  Input Materials - (approximate)

    •Phosphate rock - 0.35 metric ton per metric ton nitric phosphate
     product.
    • Phosphoric acid (75% basis) - 0.12 cubic meters per metric  ton
     nitric phosphate product.
    •Nitric acid (100% basis) - 0.28 cubic meters per metric ton nitric
     phosphate product.
    •Sulfuric acid (100% basis) - 0 to 0.1 cubic meters per metric ton
     nitric phosphate product.
    •Anhydrous ammonia - 0.12 metric tons per metric ton nitric phosphate
     product.

3.  Operating Parameters

    •Acidulation tanks - temperature rises to 60°C.
    •Temperature rises to 90 to 110°C in the ammoniation tanks.
    •Recycle  ratio of fines  to  fresh feed  in  the granulator  ranges
     from less than 2:1 to more than 8:1.
    .Granulator size  - 1.5 to 3.5 meters diameter x 2 to 8 meters long
    •Product size - 6 to 20 mesh.
    •Fluorine-containing off-gases are scrubbed with water.

4.  Utilities

    •Electrical energy - 20 kWh per metric  ton nitric phosphate product.
    •Fuel for drying  - 125,000 kcal  per metric ton  nitric phosphate
     product.

5-  Waste Streams - Scrubbers are used to decrease  ammonia emissions
    from the ammoniation tanks and/or granulator.  Incoming nitric acid
    can be used as the scrubbing fluid.   A gross estimate of ammonia
    emissions is 0.001 to 0.01 metric tons per metric ton of nitric
    phosphate product.

                                      75

-------
    Effluent  scrubber water,  containing HF and HzSiFe  is  run  into beds
    of  limestone  to  precipitate CaF2.  The latter is considered to be
    solid waste.   Information was not  available on  the efficiency of
    scrubbers in  removing  gaseous contaminants.

6.  EPA Classification  Code - None  exists.

7.  References

    Slack,  A. V.   Fertilizers.   In:  Kirk-Othmer  Encyclopedia of  Chemical
    Technology, 2nd Edition.   Standen, A.  (ed.).   New York, John  Wiley &
    Sons,  Inc., 1966.   9_:132-135.

    Snow,  R.  H.  Size Reduction and Size Enlargement.   In:   Chemical
    Engineers' Handbook, 5th Edition.  Perry, R.  H., and  C.  H. Chilton
    (eds.).  New York,  McGraw-Hill  Book Company,  1973.  p.  8-62 to  8-63.
                                      76

-------
                   PRODUCTION OF MIXED FERTILIZERS
    The processes in this operation are often carried out in relatively
small  plants near the point of application of the fertilizer rather than
near raw materials.

     Intermediate materials produced by other segments of the industry
are dissolved and reacted or blended by mixing dry materials together to
produce mixed fertilizers of varying compositions to suit localized needs
                                      77

-------
                                                                                  Ammoniation/
                                                                                     illation/
                                                                                     ryinq   30
                                       Dissolution/
                                       Slurryinq   31
F1g.  5
                                                 Figure 7.  MIXED  FERTILIZERS


                                                             78

-------
 PRODUCTION OF MIXED  FERTILIZERS                          PROCESS NO. 29


                               Dissolution

1.  Function  - This process (See  Figure 7) forms  an ammoniating  solution
    by combining aqua ammonia,  anhydrous ammonia, ammonium  nitrate,
    and/or urea with water,  the  resulting solution goes to ammoniation/
    granulation/drying, Process 3D.   Additives containing secondary-
    and micronutrients may be included in the ammoniating solution.
    In some instances, anhydrous  ammonia is fed to Process  30 and
    Process 29 is by-passed.

2.  Input Materials

    Selected solutions:

    •Anhydrous ammonia -up to  0.15  cubic  meters  per metric ton  granular
     mixed fertilizer.
    •Ammonium nitrate -up  to 0.2 metric tons  per metric  ton  granular
     mixed fertilizer,
    •Urea -up  to  0.06 metric tons per metric  ton granular  mixed fertilizer.
    •Water-  up  to 0.06 cubic meters  per metric ton granular mixed fertilizer.

3.  Operating Parameters

    •Atmospheric pressure,
    •Typically 30 to 40 °C.
    •Solution vapor pressure -  0.05  to 7 kg/cm2 at 40°C.
    •Water content - 0.5 to 18  percent.
    •Solution crystallization temperature - from below minus 40°C  to  17°C.
    •Nitrogen content :37 to 53 percent.
    •Ratio of fixed N to free N - 0.3 to 3.0.
    •Typical  solution compositions:
       Anhydrous ammonia (11 to 49 percent)
       Ammonium nitrate (36 to  66 percent)
       Urea (up to 19 percent)
       Water (up to 18 percent)

4.  Utilities - Electrical  energy -  <0.1 kWh per metric ton granular
    mixed fertilizer.

5.  Waste Streams - None exists.

6.  EPA Specification Code - None exists.

7.  References

    Hardesty, J. Q., and L. B.  Hein.  Chapter 18.   In:  Riegel's Handbook
    of Industrial Chemistry, 7th Edition.  Kent, 0. A. (ed.).  New York,
    Van Nostrand Reinhold Company, 1974.  p. 559.
                                      79

-------
Slack, A. V.  Fertilizers.   In:   Kirk-Othmer Encyclopedia  of  Chemical
Technology, 2nd Edition.   Standen,  A.  (ed.).  New York,  John  Wiley &
Sons, Inc., 1966.  9:114-122.
                               80

-------
PRODUCTION OF MIXED FERTILIZERS                          PROCESS NO. 30
                     Ammoniation/Granulatjon/Drying

1.  Function - This process (See Figure 7)  first reacts  anhydrous
    ammonia or the ammoniating solution from Process 29  with  super-
    phosphate and possibly potash and/or ammonium sulfate or
    ammonium phosphate.   Sulfuric or phosphoric acid  is  also  included
    in the formulation to fix excess ammonia.  The solid reaction  product
    is screened to obtain a desirable size fraction and  the product  may
    be dried before conveying to storage.  Additives  containing  secondary
    and micronutrients may be included in these formulations.

    Ammoniation and granulation can be carried out in  the same vessel.
    However, the ammoniating solution and the acids are  often reacted  in
    a preneutralization tank.  Then the liquids and solid materials  are
    mixed in a granulation vessel which is usually a  twin-shaft  pugmill
    or a rotary drum.  Both ammonia and acid may be  sparged into the
    granulator under the solids.  The solids leaving  the granulator  are
    screened.  Fines are recycled to the granulator while oversize
    particles are crushed and either rescreened or recycled.   Properly
    sized product may be dried in rotary driers if it  requires drying.
    It is then cooled and conveyed to storage.

2.  Input Materials - (per metric ton granular mixed  fertilizer)

    •Ammoniating solution - up to 0.3 cubic meters

    •Anhydrous ammonia"- up to 0.1  cubic meters.

    •Super phosphate
       Normal - 0.15 to 0.45 metric tons-
       Triple - up to 0.35 metric tons.
    •Ammonium sulfate - up to 0.2 metric tons.
    •Diammonium phosphate - up to 0.15 metric tons.
    •Potassium chloride -up to 0.35 metric tons.
    •Sulfuric acid  (100% basis) - up to 0.04 cubic meters
    •Phosphoric acid  (75% H3POO- up to 0.15 cubic meters.

3.  Operating Parameters

    •Particle size  of superphosphate - preferably 40 to 80 mesh.
    •Temperature reaches 30  to  110°C either  in  the granulator or in the
     preneutralizer due to the  heat of reaction.
    •Granulator size  - 1.5 to 3.5 meters diameter x 2 to 8 meters long.
    •Granulator production capacity -  10 to  40 metric tons product per
     hour.
    •Granulator power requirement - 20 to  80 kW.
                                       81

-------
    •Retention time in granulator -  1  to 2  minutes.
    •Product size - 6 to 20 mesh.
    •Product moisture content -  <1 percent  for high-nitrogen  grades  and
     <3 percent for a low-nitrogen product,
    •Recycle ratio of fines to fresh slurry in the granulator ranges
     from 1:1 to 6:1.

4.  Utilities

    •Electrical energy - 20 kWh  per  metric  ton granular mixed fertilizer.
    •Fuel for drying - up to 100,000 kcal per metric ton granular mixed
     fertilizer.

5.  Waste Streams - Ammonia losses may occur from the granulator.   The
    use of incoming phosphoric acid  or sulfuric acid to scrub vapors
    from the granulator should eliminate most of this emission.   No quan-
    titative data are available.  A gross estimate is that from 0.001
    to 0.01 metric ton ammonia is emitted per metric ton granular
    mixed fertilizer product.

6.  EPA Classification Code - None exists.

7.  References

    Hardesty, J. Q., and L. B. Hein.  Chapter 18.  In:  RiegeVs
    Handbook of Industrial Chemistry, 7th Edition.  Kent, J.  A.  (ed.).
    New York, Van Nostrand Reinhold Company, 1974.  p. 558-565.

    Slack, A. V.  Fertilizers.  In:   Kirk-Othmer Encyclopedia of Chemical
    Technology, 2nd Edition.  Standen, A. (ed.).  New York, John Wiley &
    Sons, Inc., 1966.  9^:114-125.

    Snow, R. H.  Size Reduction and Size Enlargement.  In:  Chemical
    Engineers'  Handbook, 5th Edition.  Perry, R. H., and C. H. Chilton
    (eds.).   New York, McGraw-Hill  Book Company, 1973.  p. 8-62 to 8-63.
                                       82

-------
 PRODUCTION OF MIXED  FERTILIZERS                          PROCESS NO.  31
                          Pi ssolution/Siurryi ng

1.   Function - This process (See Figure 7)  forms  an  ammonium  phosphate
    solution containing other fertilizer materials.   The primary
    ingredients of the liquid product are ammonia and phosphoric  acid.
    Other materials often included are urea,  ammonium nitrate,  potash,
    polyphosphates, and superphosphoric acid.  Additives containing
    secondary and micronutrients may be included  in  these formulations.

    "Hot-mix" liquid fertilizer plants consist of storage tanks,  a
    reactor tank, and cooler.  Water, then  the other liquids,  and then
    batch weighed potash are fed into the reactor tank.   The  resulting
    solution is then cooled to remove the heat of reaction.

    "Cold-mix" plants consist only of storage tanks  and  a mix-weigh
    tank.  The phosphate is supplied as a neutral solution (mixture  of
    ammonium phosphates) often from "hot-mix"  plants.

    Slurry fertilizers containing more potash—as well as other salts
    in some formulations—than the liquid fertilizers are also made.
    The salts are carried in suspension as  finely divided crystals.   A
    suspending agent (usually attapulgite clay)  is used  to thicken  the
    suspension, reduce settling  and inhibit  crystal growth.

2.   Input Materials

    •Phosphoric acid
    •Ammonia
    •Urea
    •Ammonium nitrate
    •Potash
    •Polyphosphate
    •Superphosphoric acid
    •Water

    Varying amounts of the above ingredients  are  used to produce a  wide
    range of formulations.  Usually electric  furnace phosphoric acid
    is used because of its high purity.  If wet  process  phosphoric  acid
    is used, superphosphoric acid or a polyphosphate solution is
    included in the formulation to sequester  impurities  and hold them in
    solution.  Ten to forty percent of the  phosphate in  the formulation
    may be supplied by these additives.  However, polyphosphates are
    sometimes used as the sole source of phosphate in liquid  fertilizer
    formulations.

3.   Operating Parameters

    •1 to 3 percent attapulgite clay in slurry mixed fertilizer.
                                      83

-------
    •Typical  slurry mixed  fertilizers  -  15-15-15*  10-30-10,  20-20-0.
    •Crystallization temperature  of  liquid mixed fertilizers is usually
     below 0°C.
    •Typical  products from "hot-mix" plants  (feed  to  "cold mix" plants)
     8-24-0,  10-34-0, 11-37-0,  4-11-11.
    •Typical  "hot-mix" batch -  15 metric tons  in 45 minutes.
    •Typical  feeds to "cold-mix"  plants  - 10-34-0, 4-11-11,  nitrogen
     solution contain urea and  ammonium  nitrate.

4.  Utilities

    •Electrical  energy - less than 1  kWh per metric  ton liquid mixed
     fertilizer.
    •Cooling  water (hot mix plant) - 5 cubic meters  per metric ton of
     liquid mixed fertilizer.
    •Temperature - may reach 60 to 80°C  in "hot-mix"  plant.

5.  Waste Streams - Some ammonia  may be  released  in  the "hot-mix"
    method of making liquid mixed fertilizers.  No quantitative
    emissions data are available.

6.  EPA Classification Code - None exists.

7.  References

    Hardesty, 0. Q., and L. B.  Hein.  Chapter  18.   In:  Riegel's
    Handbook of Industrial Chemistry,  7th Edition.  Kent, J. A.  (ed.).
    New York, Van Nostrand Reinhold Company, 1974.  p. 565-566.

    Slack, A. V.  Fertilizers.   In:  Kirk-Othmer  Encyclopedia of
    Chemical  Technology, 2nd Edition.   Standen, A. (ed.).  New York,
    John Wiley & Sons, Inc., 1966.  9;135-140.
    A  long  established  practice of the industry is to designate the
    guaranteed minimum  plant-nutrient content of fertilizer materials
    by a  series  of  numerals  separated by  hyphens.  These refer
    respectively to the contained percentages of nitrogen, P205, and K20.
    Thus  12-20-10 designates a fertilizer containing 12% nitrogen, 20%
    P205  and 10% K20.
                                       84

-------
 PRODUCTION  OF  MIXED  FERTILIZERS                           PROCESS  NO.  32


                              Bulk Blending

1.   Function -  This process (See  Figure 7)  produces  a  large  number of
    fertilizer  blends by mixing various amounts  of basic  fertilizer
    materials.   Additives containing secondary and micronutrients  may
    also be included in the formulations.

    Granular raw materials are fed from storage  lines  to  a mixer  using
    screw feeders or belt conveyors.  The mixers are mainly  of the
    rotating-drum type, but other types such as  ribbon mixers, mixing
    screws, and gravity mixing towers are used.   After mixing, the blend
    is dropped  into hoppers, bins, or vehicles.

2.   Input Materials

    •Ammonium nitrate
    •Ammonium sulfate
    •Normal superphosphate
    •Triple superphosphate
    •Potassium chloride
    •Potassium sulfate
    •Urea
    •Ammonium phosphates (ammonium phosphate, diammonium  phosphate,
     ammonium phosphate nitrate,  ammonium phosphate sulfate).
    •Potassium nitrate

    Many combinations of the above materials can be used.

    Minor percentages (<1 percent) of magnesium, zinc, copper, molyb-
    denum, and boron salts can also be blended into the fertilizer
    blends.

3.  Operating Parameters

    •Raw material  size uniformity is important.   Particle size should be
     minus 6-, plus  16-mesh.
    •Storage, conveying, and mixing facilities vary widely and tend to be
     homemade.
    •Batch type mixing.
    •Usual batch size -  1 to 2 metric  tons.
    •Mixing time - 2 to  3 minutes.

4.  Utilities - Electrical energy -  <1 kWh per metric ton blended
    fertilizer.

5.  Waste Streams  -  Because the fertilizers contain moisture, there are
    no  dust emissions.
                                       85

-------
6.  EPA Classification Code - None exists.

7.  References

    Hardesty, 0. Q,, and L. B. Hein.   Chapter 18.   In:   Riegel's
    Handbook of Industrial Chemistry, 7th Edition.   Kent,  J.  A.  (ed.)
    New York, Van Nostrand Reinhold Company, 1974.   p.  565.

    Slack, A. V.  Fertilizers.  In:  Kirk-Othmer Encyclopedia of
    Chemical Technology, 2nd Edition.  Standen, A.  (ed.).   New York,
    John Wiley and Sons, Inc., 1966.   9:140-143.
                                      86

-------
                ELEMENTAL PHOSPHORUS AND FURNACE ACID SEGMENT
SEGMENT DESCRIPTION

     The companies competing in the segment produce a group of end
products derived from the electric furnace process for producing
elemental phosphorus.  The end-product group includes a considerable
tonnage of material whose end use is unrelated to fertilizers.
Estimated total production capacity of the segment in 1974 was between
1.5 and 2.5 million metric tons of P205 equivalent, including elemental
phosphorus.

     Companies in this segment include those that have used furnace
acid as a source of high grade phosphoric acid for the production of
sodium phosphates and calcium phosphates.  Use of these phosphates for
human consumption necessitates the use of a more purified form of
phosphoric acid than is directly available as industrial wet process
acid.  Production or purchase of furnace acid has historically been less
expensive than production and subsequent purification of wet process
acid.

     The ultimate primary raw material of the segment is phosphate rock
or phosphate rock concentrates from which gaseous elemental phosphorus
is directly obtained in the electric furnace process.  An advantage
of this process is that it is able to use low grade phosphate rock that
is unsuitable for the rest of the industry; however, operation of the
electric furnance results in the segment's relatively large consumption
of electrical energy.  Estimated electric power consumption capacity in
1974 for elemental phosphorus alone amounted to more than 700 MW.

     Eleven companies have enterprises inside the segment in approximately
30 facilities.  Most of the companies are large corporations producing
other  industry products outside the segment and also non-industry products,

     The segment experienced a negative growth rate during the past five
years  as a result of the limits imposed on the phosphate content of
detergents.  The decline has been accentuated recently by the impact
of energy  costs on electric furnace operations.  Some sources predict
the  early  disappearance of furnace acid, supplanted by purified wet-
process acid, with elemental phosphorus produced only for non-industry
consumption.

     Industry end products include elemental phosphorus, furnace acid,
sodium phosphates, calcium phosphates and ferro-phosphorus.   Furnace
slag is  a  by-product or a waste material  if no market exists.  All
segment  products are indicated on the industry end product list
appearing  in Appendix B.

     Segment operations are diagrammed on the final  two  flow  sheets,
Figures  8  and  9.
                                    87

-------
                   PRODUCTION OF ELEMENTAL PHOSPHORUS
                             AND FURNACE ACID
     The processes in this operation convert phosphate  rock  and iron
slugs to elemental phosphorus,  phosphorus pentoxide,  orthophosphoric
acid (furnace acid), superphosphoric acid and ferrophosphorus.

     Treatment and disposal of  water from phosphorus  recovery is one
of the major environmental concerns of the industry.

     This operation belongs to  the Elemental Phosphorus and  Furnace
Acid Segment of the industry.
                                 88

-------
                             Furnace
                             charge.
                           preparation 33
                            Electric
                             furnace
                             process  34
                                                                                  To Sales']
                                                                                  Landfill
                                                                                 {o Sales]
Cooling H2(^—1
        Air^l
 O      >^"   *\          fTn  boiler  or
/A    /        \           other  use
Off
combu
i
/ P20
CO,
\ N2
1
Cooling
Si02 "
-gas ^O Phosphorus ^ / rn/N-
stion recovery ^""
35 36 V
v_

r
Cuol iny H20 y
5/ \ / P205/ \ Phosphors

./ \^^./ Cooling^rn

' v ^^™™™""^*P1 recover>
H,0^ , r ^
HT AbjQrption/ \>
— Y 39
	 fcj rn. /N
}*• r
/ 1 	 [Flare
X

\
s
n

/( \
J ^
38



i «^ Tn vent or
                                                                            CO^  recovery
           Figure 8.  LLEMEtJTAL PHOSPHORUS AND FURNACE
                              ACID
                                              89

-------
PRODUCTION OF ELEMENTAL PHOSPHORUS AND FURNACE  ACID         PROCESS  NO.  33


                       Furnace Charge Preparation

1.  Function - This process (See Figure 8)  receives low grade rock
    and/or phosphate rock concentrates.  It produces prepared furnace
    charge for the electric furnace process, Process 34.

    Usually some agglomeration process is used  to obtain a furnace
    burden with adequate porosity so that gases can escape from the
    furnace.  Processes often used include sintering, nodulizing, or
    pelletizing plus calcining.

    Sintering involves mixing fine ore with coke or coal and burning on
    a moving grate under a strong draft.  Heat  from the burning coke or
    coal fuses the phosphatic material into a coherent mass.  This
    material is then crushed and screened with  undersized particles
    being returned for reprocessing.

    Nodulizing involves heating phosphate fines in a rotary kiln to
    incipient fusion.  The tumbling in the kiln causes  the material  to
    cohere and form spheroidal agglomerates.  Feed may be relatively dry
    or a wet slurry.  Techniques for mixing the feed include using pug
    mixers; crane-bucket mixing; pile  building, blending, and reclaiming;
    chaser mills; and layering on conveyor belts.  Processing includes
    rotary drying (dry kiln), cooling  of the kiln product (inclined grate
    cooler), crushing, and screening.  Mud rings which form on kiln walls
    near the discharge end are removed periodically with a boring bar.

    Pelletizing plus calcining begins  by blending phosphatic materials
    with water and binders and extruding the resulting  plastic material.
    Pellets are formed, dried, screened, and burned  in  a rotary  kiln just
    below the fusion temperature of the rock.  Equipment used for this
    process includes pug mills, pan mills, pelletizing  drums, rotary
    driers, screens, and rotary kilns.  Two of the best binding materials
    are phosphoric acid and  sulfuric  acid.

 2.  Input Materials -  10 to  13 metric  tons phosphatic materials  per
    metric  ton phosphorus.

 3.  Operating Parameters

    •Sintering
        •Moving grates  —15  meters  long.
    •Nodulizing
        •Kiln  - 40 to  120 meters  long  x 2.5 to  4  meters  diameter.
        •Kiln  rotation  -  1  to 3 revolutions per minute.
        •Temperature  -  1200 to 15QO°C.
        •Fuel  - carbon  monoxide from the electric furnace  plus  coal  or  oil.
                                      90

-------
    •Palletizing plus calcining
       •Pan mills - -4 meters diameter.
       •Pelletizing drums - 12 meters long  x  3.5 meters  diameter  with
        2 cm angle lifters.
       •Kiln temperature - ~1100-1200°C.
    •Preferred particle size for electric furnace -1/2 to 5 cm in diameter.

4.  Utilities

    •Fuel (includes CO from the furnace  which is often used as fuel) for
     drying and for burning - 3 x 106 to 8  x  106 kcal  per metric  ton
     elemental phosphorus.
    •Electrical energy - 50 kWh per metric  ton elemental  phosphorus.
    •Water - 0 to 2 metric tons per metric  ton elemental  phosphorus.

5.  Waste Streams - Combustion product gases  from dryers, the sintering
    grate, nodulizing kiln, and calcining kiln contain fluorine.   The
    amount of fluorine emitted is approximately 0.1  to 0.2 metric tons
    per metric ton elemental phosphorus  produced.  Combustion product
    gases contain other pollutants in addition to fluorine.

6.  EPA Classification Code - None exists.

7.  References

    Hurst, T. L.  Chapter 18.  In:  Phosphorus and Its Compounds,
    Van Wazer, J. R. (ed.).  New York, Interscience Publishers, Inc.,
    1961.  2:1163-1169.

    Van Wazer, J. R.  Phosphorus and the Phosphides.   In:  Kirk-Othmer
    Encyclopedia of Chemical Technology, 2nd  Edition.   Standen, A. (ed.).
    New York, Interscience Publishers, Inc.,  1968.   15:281-282.
                                        91

-------
PRODUCTION OF ELEMENTAL PHOSPHORUS AND FURNACE  ACID         PROCESS NO. 34


                        Electric Furnace Process

1.  Function - Essentially, the process (See Figure 8) generates gaseous,
    elemental phosphorus by the electrothermal  reduction of either
    phosphate rock from Process 3 or phosphate rock concentrates from
    Process 2, Figure 2.  Coke, added  to  the ground rock, is the direct
    reducing agent.  The chief product of the process is a high temperature,
    gaseous mixture of phosphorus and carbon monoxide, containing
    minor concentrations of other gaseous constituents and particulates.
    Ferro-phosphorus (almost always) and slag (invariably) are also
    produced.

    The gaseous product is forwarded to either Process  35 or 36.  Ferro-
    phosphorus is marketed as an industry end product, and the slag is
    either a waste material or, if marketed, an industry by-product.

    The process is conducted inside a specially designed, continuosly
    operated arc  furnace.  The gaseous product is continuously
    withdrawn.  The two solid products are both withdrawn intermittently
    from the furnace in the molten state.

    The use of this process will probably sharply decline in the near
    future.  The recent drastic cost  increase of electric power  has
    already given  an economic advantage to the wet process, the  alter-
    nate source of the phosphoric acid produced as the  principal down-
    stream indirect product of the electric furnace  process.

2.  Input Materials -  Referred to one metric ton of  liquid, elemental
    phosphorus:

    •Phosphatic furnace charge  (from  Process  33) —10  metric  tons.
    •Silica  (lumps of  silica rock) -  1.4 to 1.7 metric  tons.
    •Coke  (lumps)  - 1.4 to 1.6 metric  tons.
    •Iron  (slugs)  - ~100  to 200  kg.
    •Electrical energy (to furnace electrodes  only)  - 14,300 to  14,500 kWh.

3.  Operating  Parameters

    •Essentially  atmospheric pressure.
    •Maximum furnace  temperature —1600°C.
    •Furnaces  operate  with -300 volts between  electrodes,  use  3-phase
      power.
     •Typical  furnace  capacity  - 50,000 to  70,000  kW.
    •Approximate  physical  size of furnace  -17m  diameter x  17 m high,
      dome roof.
                                        92

-------
4.  Utilities - Referred to one metric ton of liquid elemental  phosphorus:

    •Motor power - -50 to 100 kWh.
    •Cooling water (once-through basis) - 500 to 1000 m3.

5.  Waste Streams - Referred to one metric ton of liquid elemental
    phosphorus:

    •Fugitive atmospheric emissions (surmised only) consisting  of dust-
     laden CO, escaping the furnace during charging operations  and from
     electrode ports - no quantifying information available; estimated
     at 
-------
 PRODUCTION OF ELEMENTAL PHOSPHORUS  AND  FURNACE ACID         PROCESS NO. 35


                            Off-Gas  Combustion

1.  Function - This process (See Figures)  burns  furnace  off-gas  from
    the electric furnace process,  Process  34, to  form  a gaseous mixture
    of P205/COa/and N2 which is sent to  absorption/purification,
    Process-39.—     /

    Furnace off-gas is approximately 90  mol percent CO, 7 mol  percent  P^,
    with the remainder being primarily silicon  tetrafluoride and  dust.
    The dust is removed usually by electrostatic  precipitators.
    The clean gases are then mixed with  air and the phosphorus is
    oxidized to P205 while the carbon monoxide  is oxidized to carbon
    dioxide.  The resulting gaseous mixture consisting primarily  of
    PzOs, C02, and N2 is cooled and forwarded to  Process  37.  Dust
    collected in the electrostatic precipitator is slurried with  water,
    dried, and sold as fertilizer.

2.  Input Materials

    • 800 cubic meters furnace off-gas per metric ton ^0^(100% H3P04).
    • 3100  to  4500 cubic meters air per metric ton H3P04 (100% H3POi,).

3.  Operating Parameters

    •Pressure -  1.5 kg/cm2.
    •Temperature - up to  2000°C.
    •Electrostatic precipitators  -  two-pass with 75,000 volts between
     electrodes.
    •Dust  collected amounts  to  0.05 metric tons  per metric  ton
     elemental  phosphorous  produced.  It contains  20  to 40% P205s  12 to
     16% K20, 6 to 16%  CaO,  18  to 30% Si02, 1  to 4% C, and  1  to  6%  F.

 4.  Utilities

     • Electrical  energy  -  3 kWh  per  metric  ton  H3POi> (100  %  H3POi»).
     •Cooling water -  300  cubic  meters per  metric ton  H3PO^  (100% H3PO,J.

 5.   Waste  Streams  -  Some  of the dust collected in  the electrostatic
     precipitator is  wasted.

 6.   EPA Classification  Code - None exists.

 7.   References

     Faith, U. L. D.  B.  Keyes, and R. L. Clark.   Industrial  Chemicals,
     3rd Edition.  New York, John Wiley  & Sons, Inc.,  1965.   p. 599-600.
                                        94

-------
Hardesty, J.  Q.,  and L.  B.  Hein.   Chapter 18.   In:   Riegel's
Handbook of Industrial  Chemistry,  7th Edition.   Kent,  J.  A.  (ed.).
New York, Van Nostrand  Reinhold Company,  1974.   p.  542.

Hurst, T. L.   Chapter 18.   In:   Phosphorus and  Its  Compounds.  Van
Wazer, J. R.  (ed.).   New York,  Interscience Publishers,  Inc.,  1961.
2H197-12D1.

Van Wazer, J. R.   Phosphorus and the Phosphides.   In:   Kirk-Othmer
Encyclopedia  of Chemical Technology, 2nd  Edition.   Standen,  A.  (ed.)
New York, Interscience  Publishers, Inc.,  1968.   15:284-286.
                                  95

-------
 PRODUCTION OF ELEMENTAL PHOSPHORUS  AND  FURNACE  ACID         PROCESS NO. 36
                          Phosphorus Recovery

1.  Function - This process (See Figure 8)  receives furnace off-gas
    from the electric furnace process, Process  34,  and separates phos-
    phorus in the gas from CO and N2.   The  phosphorus can be sold  or
    sent to phosphorus combustion, Process  52.   The CO/N2 gas is used
    as fuel or flared.

    Furnace off-gas is approximately 90 mol percent CO,  7 mol percent
    Pi*, with the remainder being primarily  silicon tetrafluoride
    and dust.  The dust is removed usually  by electrostatic
    precipitators and sometimes by impingement.  The clean gases  then
    enter a tower, usually flowing countercurrent to water spray.
    Phosphorus is condensed and runs into a sump along with any dust
    that was not previously removed.  The liquid phosphorus is pumped
    into storage tanks where the last traces of dust (mud) fall to the
    bottom.  Mud is filtered from phosphorus in some cases using
    porous tube filters or plate and frame-type filters.  Uncondensed
    CO/N2/Pi+ gas from the spray tower is used as fuel or flared.   Dust
    collected in the electrostatic precipitator is sprayed or slurried
    with water, dried, and sold as fertilizer.   Phosphorus is covered
    with water both in the sump pit below the condenser and in storage
    tanks.

2.  Input Materials - 2400 cubic meters furnace off-gas per metric ton
    elemental phosphorus.

3.  Operating Parameters

    •Furnace off-gas  temperature - 200 to 400°C.
    •Spray tower - 12 meters tall x 1.5 meters diameter.
    •Condensed phosphorus temperature - ~55°C.
    •Electrostatic precipitators - two-pass unit; with 48 steel tubes
      per unit and with a vertical steel wire in the center of each
      tube; 75,000 volts between wire and tube.
    •Dust  collected in electrostatic precipitator amounts to
      approximately 0.05 metric tons per metric ton elemental
      phosphorus produced.  It contains 20  to 40% P205, 12 to  16%  K20,
      6  to  16% CaO, 18 to 30% Si02,  1 to 4% C,  and 1 to 6% F.

4.  Utilities

    •Cooling water -  30 cubic meters  per metric ton elemental  phosphorus,
    •Electrical energy -  1 kWh per metric  ton  elemental  phosphorus.
                                      96

-------
5.   Waste Streams

    •Solids filtered or settled from liquid phosphorus are usually
     returned to the electric furnace, Process 34 .   In some cases,
     filtered solids are discarded.
    •Some of the dust collected in the electrostatic precipitator is
     wasted.
     The uncondensed CO/N2 gas is used as fuel or flared.   This stream
     amounts to 3 metric  tons per metric ton elemental phosphorus
     produced.   It contains 0.003 to 0.03 metric tons phosphorus per
     metric ton phosphorus produced.
    •Water used to condense phosphorus is recirculated until  it becomes
     saturated with fluosilicates from hydrolysis of silicon tetra-
     fluoride.   It also contains small amounts of phosphorus.
     Additives such as soda ash or lime are made to keep it from becoming
     too acidic.  In some cases, calcium phosphate and calcium fluosilicate
     which are formed by reaction of impurities in the water with
     additives may be removed by centrifuge or thickeners before the
     water is disposed of.

6.   EPA Classification Code - None exists.

7.   References

    Hurst, T. L.  Chapter 18.  In:  Phosphorus and Its Compounds.  Van
    Wazer, J. R. (ed.).  New York, Interscience Publishers, Inc., 1961.
    2:1194-1209.

    Van Wazer, J. R.  Phosphorus and the Phosphides.  In:  Kirk-Othmer
    Encyclopedia of Chemical Technology, 2nd Edition.  Standen, A. (ed.).
    New York, John Wiley & Sons, Inc., 1968.  l_5:285-286.
                                      97

-------
 PRODUCTION OF ELEMENTAL  PHOSPHORUS  AND  FURNACE  ACID         PROCESS NO. 37
                          Phosphorus  Combustion

1.   Function - This process  (See Figure  8)  oxidizes  phosphorus from
    phosphorus recovery,  Process 36,  to  form  phosphorus  pentoxide  (PaOs)
    plus nitrogen.   This  gaseous mixture is sent  to  absorption/purifica-
    tion (Process 39)  or  to  P205 recovery,  Process 38.

    Molten phosphorus  is  sprayed into a  combustion chamber with  air
    or air and steam.   Both  vertical  and horizontal  chambers  are used.
    The chamber is  cooled by running  water  down  its  exterior  surface  or
    it can be cooled by running phosphoric  acid  down the interior  walls
    of the chamber.  In the  latter case, the  phosphoric  acid  absorbs
    P205 as well  as heat. Gas leaving the  combustion chamber may  be
    cooled in a heat exchanger before forwarding  to  the  next  process.

    If the mixture  is  to be  forwarded to Process  38, it  is  necessary  that
    the phosphorus  combustion occur using dry air.

2.  Input Materials

    •0.33 metric tons  phosphorus per metric ton  H3P04 (100% H3P04).
    • 1500 to 2500 cubic meters air per metric ton H3P04  (100% H3POi»).
    • ~0 to  .05 metric tons steam per metric ton  HsPO,, (100% H3POJ.

3.  Operating Parameters

    •Temperature range in combustion chamber - 200 to 2000°C.
    •Combustion chamber - graphite blocks or stainless steel, 11 meters
     tall x 5 meters diameter.
    •Pressure - 1.5 kg/cm2.

4.  Utilities

    •Cooling water - 100 cubic meters per metric ton HsPO^.
    •Electrical energy - 3 kWh  per metric  ton HsPO^.

5.  Waste Streams  - None  exists.

6.  EPA Classification Code - None exists.

7.  References

    Hardesty,  J. Q., and  L. B.  Hein.  Chapter 18.   In:  Riegel's
    Handbook  of  Industrial Chemistry, 7th  Edition.   Kent, J. A. (ed.).
    New York,  Van  Nostrand Reinhold  Company, 1974.   p.  542-544.
                                       98

-------
Hurst, T. L.  Chapter 18.   In:   Phosphorus and Its Compounds.
Van Wazer, J. R. (ed.).   New York, Interscience Publishers,  Inc.,
1961.  2_: 1209-1213.

Shreve, R. N.  Chemical  Process Industries, 3rd Edition.   New York,
McGraw-Hill Book Company,  1967.  p.  279-281.

Van Wazer, J. R.  Phosphoric Acids and Phosphates.  In:   Kirk-Othmer
Encyclopedia of Chemical Technology, 2nd Edition.   New York, John
Wiley & Sons, Inc., 1968.   1^:257-261.
                                   99

-------
PRODUCTION OF ELEMENTAL PHOSPHORUS AND FURNACE  ACID         PROCESS NO.  38


                              P205 Recovery

1.  Function - This process (See Figure 8)  receives a  dry gaseous mixture
    consisting primarily of P20s and N2 from phosphorus  combustion
    (Process 37).   The P205 is separated from the other  components  of
    the gas and is sold.

    The gaseous mixture from Process 37 is  cooled in a large chamber
    called a "barn."  The chamber is cooled externally with air or  water.
    Within this chamber, rapid mixing with  cool gas causes condensation
    of P205.

2.  Input Materials - 1700 to 3000 cubic meters P205/N2  gas per metric
    ton P205.

3.  Operating Parameters

    •Temperature - below 200°C.
    •Pressure - slightly above atmospheric.

4-  Utilities - Cooling water - 200 metric  tons per metric ton P205.

5.  Waste Stream - Gases passing through the condensing  chamber are
    emitted to the atmosphere.  The gas is  primarily nitrogen,  it
    amounts to 1700 to 3000 cubic meters per metric ton P205 produced.
    It contains trace amounts of nitrogen oxides and P205.

6.  EPA Classification Code - None exists.

7.  References

    Van Wazer, J. R.  Phosphorus and Its Compounds.  New York, Inter-
    science Publishers, Inc., 1958.  1:268.

    Van Wazer, J. R.  Phosphorus Compounds.  In:   Kirk-Othmer
    Encyclopedia of Chemical Technology, 2nd Edition.  New York, John
    Wiley & Sons,  Inc., 1968.   1_5:313-314.
                                       100

-------
 PRODUCTION OF ELEMENTAL PHOSPHORUS  AND  FURNACE ACID         PROCESS NO. 39
                         Absorption/Purification

1.   Function - This process (See Figure 8)  receives  mixed  P205/C02/N2
    gases from off-gas combustion (Process  35)  or mixed P205/N2  gases
    from phosphorus combustion (Process 37) and produces superphosphoric
    acid or furnace acid by contacting the  gases  with water.

    Mixed gases from Process 35  or 37 pass  through an absorption tower
    (hydrator) countercurrent to sprayed  water.  Vapors from  the
    hydrator pass to equipment which separates  entrained acid mist
    from the C02/N2 tail gas.  Equipment  used can include:

    •Electrostatic precipitator
    •Scrubbing tower.
    •Cyclone
    •Glass-wool filter

    The acid from the hydrator and clean-up system is combined and
    purified.  Arsenic and lead are removed by treatment with hydrogen
    sulfide.  The addition of finely powdered silica removes  hydrofluoric
    acid.  Excess silica, arsenic trisulfide, and other suspended
    solids are removed by passing the acid  through a sand filter.  The
    concentration of furnace acid produced  (usually 85%) depends on the
    amount of water used in the hydrator  and clean-up system.

    Superphosphoric acid is made by contacting  the mixed gases from
    Process 35 or 37 with phosphoric acid in the  hydrator rather than
    contacting them with water.   Superphosphoric  acid is 72 to 83%
    P205, corresponding to 100 to 112% H3P04.

2.   Input Materials

    •1250 to 2300 cubic meters P205/N2 gas  from phosphous combustion
     per metric ton HsPO^ (100% H3P(K) or
    •3500 cubic meters P205/C02/N2 gas from off-gas combustion per
     metric ton H3POi» (100% H3P(K).
    •0.17 to 0.3 cubic meters water per metric ton H3P04 (100% H3P04).
    •~0.1 cubic meters hydrogen sulfide per metric ton H3POit  (100%
     HsPOO.
    •-0.001 metric tons silica per metric ton H3P04 (100% H3POJ.

3.   Operating Parameters (for 100 metric  tons of 100% H3POit per day plant)

    •Hydrator - 3 meters diameter x 11 meters tall with walls that are
     acid-proof, hard-burned shale and stiff-mud brick plus a 11.4 cm
     thick carbon brick lining.
                                      101

-------
    •18 spray nozzles  to spray water into  hydrator.
    •Electrostatic precipitator with 100 carbon  tubes,  25  cm  in
     diameter, and 4 meters long with a stainless  steel  wire  down  the
     center of each tube.

4.  Utilities

    •Electrical energy - 5 kWh per metric  ton HsPCU  (100%  H3POJ.
    •Cooling water - 60 cubic meters per metric  ton  H3POu  (100%  H3P04).

5.  Waste Streams

    •Tail gases amounting to 3500 to 5000  cubic  meters  per metric  ton
     H3POi, produced are emitted to the atmosphere.  This gas  contains
     P205 amounting to 0.1 to 1.5 kg per metric  ton  H3POi*  (100%)
     produced.   This gas also contains nitrogen  oxides  amounting to
     .05 kg per metric ton H3POit produced.  Most of  the gas is nitrogen
     or nitrogen plus carbon dioxide.
    •Some HzS may be emitted from the purification process.  This
     amounts to less than 0.01 kg per metric ton H3POi,  produced.
    •Sand from the sand filter is periodically discarded.   It contains
     arsenic trisulfide silica, and other solids removed from the
     acid product.

6.  EPA Classification Code - None exists.

7.  References

    Faith, W.  L., D. B. Keyes, R. L. Clark.  Industrial Chemicals, 3rd
    Edition.   New York, John Wiley & Sons, Inc., 1965.   p. 599-608.

    Hardesty,  J. Q., ahd L. B. Hein.  Chapter 18.  In:   Riegel's
    Handbook of Industrial Chemistry, 7th Edition.  Kent,  J.  A.  (ed.).
    New York,  Van Nostrand Reinhold Company, 1974.  p.  542-544.

    Heller, A. N., S. T.  Cuffe, and D.  R.  Goodwin.  Chapter 38.   In:
    Air Pollution, 2nd  Edition.  Stern, A. C. (ed.).  New York,
    Academic  Press, 1968.  3_:200-201.

    Hurst, T.  L.  Chapter  18.   In:  Phosphorus and Its Compounds.
    Van Wazer, J. R.  (ed.).   New York,  Interscience Publishers, Inc.,
    1961.  2^1209-1213.

    Van Wazer, J. R.  Phosphoric Acids  and Phosphates.   In:  Kirk-Othmer
    Encyclopedia  of Chemical  Technology,  2nd Edition.  New York, John
    Wiley  &  Sons,  Inc.,  1968.   15.: 257-261.
                                       102

-------
                      PRODUCTION OF SODIUM PHOSPHATES
                          AND CALCIUM PHOSPHATES
     The processes in this operation combine phosphoric  acid  with  soda
ash to produce sodium phosphates and with lime (or limestone)  to produce
calcium phosphates.

     This operation belongs to the Elemental Phosphorous and  Furnace Acid
Segment of the industry.
                                     103

-------
         NaOH
                Neutralization/
                  filtration
                             40
                         Sodium
                        phosphate
                        solution
    Cooling H203
          Heat-

«— .

Cooling H20=T|
O Heat— i L '
S t If
Crystallization/
drying

r
Fusion
43
Cooling H2Ct
       Hea
                                               vitreous
                                                sodium
                                               hosphates
Cooling H2ffe—"•
CaO - H3POu
reaction
44
i
r
           Heat
                                    To  Sales
                                   Figure 9.  SODIUM PHOSPHATES AND CALCIUM PHOSPHATES
                                                     104

-------
PRODUCTION OF SODIUM PHOSPHATES AND CALCIUM PHOSPHATES      PROCESS NO. 40


                        Neutralization/Filtration

1.   Function  -  This process (See Figure 9}  produces sodium phosphate
    solutions which are forwarded to  crystallization/drying (Process 41 )
    or fusion (Process  43).

    Sodium carbonate (Na2C03) solution and  phosphoric acid (H3P04) from
    Figure 2  or 8 are fed to a mixing tank.  A slight excess of Na2C03
    over the  theoretical amount required to form disodium orthophosphate
    (Na2HPOi,) is added  and the solution is  boiled with steam until all
    carbon dioxide is driven off.  The resulting disodium phosphate
    solution  is filtered.  White mud, consisting of silica plus iron and
    aluminum  phosphates remains on the filters.  This mud is either dis-
    charged to waste or is utilized as a fertilizer material.   The
    Na2HP04 solution is processed in  different ways according to the
    desired product.

    •Monosodium orthophosphate (NaH2P04) product - The solution is
     diluted  with H3P04 to give a composition corresponding to NaH2P0lt
     and then forwarded to Process 41.
    •Na2HPOi»  product - The solution is forwarded to Process 41 .
    • Trisodium orthophosphate (NasPOiJ product - The solution is mixed
     with sodium hydroxide to give a  composition corresponding to
     Na3PO
-------
    •Sodium hydroxide (50% basis)
       0.22 metric tons per metric ton NasPOit-^HaO.

3.  Operating Parameters

    •Plant capacities - 30,000 to  70,000 metric tons  per year.
    •Temperature in mixer approximately 100°C.
    •Temperature during filtration - 85 to 100°C.
    •Rotating leaf pressure filter.

4.  Utilities

    •Electrical energy - <1 kWh per metric ton  product.
    •Steam - 10,000 kcal per metric ton product.

5.  Waste Streams

    •White mud from filtration consisting primarily of silica plus
     aluminum and iron phosphates  may be wasted.  This mud may be as
     high as 0.1 metric ton per metric ton of product.

    •Carbon dioxide in the vapor coming from the mixing tank is released
     to the atmosphere.  It is estimated to range from 0.12 to 0.17
     metric tons per metric ton of product for  the products listed
     under input materials.

6.  EPA Classification Code - None  exists.

7.  References

    Faith, W. L., D. B. Keyes, and R. L. Clark,  Industrial Chemicals,
    3rd Edition.  New York.  John Wiley & Sons, Inc., 1965.  p. 699-706.

    Van Wazer, J. R.  Phosphoric Acids and Phosphates.  In:  Kirk-Othmer
    Encyclopedia of Chemical Technology, 2nd Edition.  New York, John
    Wiley & Sons, Inc., 1968.  ]_5:262-266.
                                     106

-------
PRODUCTION OF SODIUM PHOSPHATES AND CALCIUM PHOSPHATES      PROCESS NO. 41
                         Crystallization/Drying

1.   Function - This process (See Figure 9)  receives filtered sodium
    phosphate solutions from Process 40 and either crystallizes,
    or crystallizes and dries the orthosphosphate.   The sodium
    orthophosphates can be sold or calcined in Process 42 to form
    sodium polyphosphates.

    Disodium orthophosphate solution is cooled in a crystal!izer to
    yield Na2HPOi»»12H20.  The crystals are  centrifuged and packaged in
    moisture proof containers while the mother liquor is returned to
    the neutralization tank of Process 40.   The crystals may be dried
    to yield Na2HP0^2H20 or Na2HP04.

    Solution corresponding to the composition of monosodium ortho-
    phosphate is evaporated to yield crystals of NaH2P04«H20.
    Dessicating the hydrate at ambient temperature results in the
    formation of NaH2POt.

    Solution corresponding to the composition of trisodium orthophosphate
    is passed into batch-type vacuum crystallizers.  Crystals of NaaPOu*
    12H20 form and separate in a settler.  Liquor is concentrated in a
    double-effect evaporator and returned to the neutralization tank of
    Process 40.  Settled NasPOit'lZH^O crystals are separated from
    remaining liquor on rotary vacuum filters, dried in rotary driers
    below 70°C, screened, and packaged.

    Mixed solutions of mono- and disodium orthophosphates may be spray
    dried before forwarding to calcination, Process 42.

2.   Input Materials (selected products)

    •Mono sodium orthophosphate solution.
       2 metric tons solution per metric ton NaH2P04«H20 or
       2.5 metric tons solution per metric ton Na2H2P207(sodium acid
       pyrophosphate).
    •Disodium orthophosphate solution.
       1.3 metric tons solution per metric ton Na2HP04»12H20 or
       3.5 metric tons solution per metric ton Na^PzO?  (tetra sodium
       pyrophosphate).
    •Trisodium orthophosphate solution.
       1.5 metric tons solution per metric ton Na3P0.4-12H20.
    •Sodium orthophosphate solution  (mixed).
       2 metric tons solution per metric ton NasPsOio  (sodium tripoly-
       phosphate).

3.  Operating Parameters  - No information available.
                                       107

-------
4.  Utilities

    •Electrical  energy - <1  kWh per metric  ton product.
    •Cooling water - 0 to 3  metric tons per metric  ton product  depend-
     ing on product.
    •Steam for drying and evaporation - 0 to 2 metric tons  per  metric
     ton product depending on product.
    •Fuel for spray drying - 1  x 106 kcal per metric ton Na5P3Oi0.

5.  Waste Streams - Combustion gases may contain particulates.   No
    quantitative data are available.

6.  EPA Classification Code - None exists.

7.  References

    Faith, W. L., D. B. Keyes, and R. L. Clark.  Industrial Chemicals,
    3rd Edition.  New York, John Wiley & Sons, Inc., 1965.   p.  699-706.

    Hurst, T. L.  Chapter 18.  In:  Phosphorous and Its Compounds.
    Van Wazer, J. R. (ed.).   New York, Interscience Publishers, Inc.,
    1961.  2:1213-1220.

    Van Wazer, J. R.  Phosphoric Acids and Phosphates.  In:  Kirk-Othmer
    Encyclopedia of Chemical Technology, 2nd Edition.  New York, John
    Wiley & Sons, Inc., 1968.  15:262-266.
                                      108

-------
PRODUCTION OF SODIUM PHOSPHATES AND CALCIUM PHOSPHATES      PROCESS NO. 42


                               Calcination

1.   Function - This process (See Figure 9) receives sodium phosphate
    solution from Process 40 or dry sodium phosphates from Process 41
    and heats the input material,  usually in a rotary kiln, to form a
    variety of sodium polyphosphate products.   Grinding of products may
    be required before bagging or bulk shipping.

    Sodium phosphate solutions from Process 40 can be sprayed into a
    rotary continuous kiln where drying, molecular dehydration,  con-
    version to polyphosphate,  annealing, and cooling take place.

    Alternately dried sodium phosphates from Process 41 can be used as
    kiln feed.

    Annealing is necessary in both schemes to prevent products from
    reverting to different forms.

    Products and raw materials include but are not limited to the
    following:

    •Sodium acid pyrophosphate (Na2H2P207) from monosodium phosphate
     (NaH2POO.
    •Tetrasodium pyrophosphate (Na^O?) from di sodium phosphate
    •Sodium tripolyphosphate (Na5P3Oio) from mixed mono- and disodium
     phosphate solution.

2.  Input Materials

    •1.1 metric tons NaHaPOi* (anhydrous) per metric ton Na2H2P207 product.
    • 2.7 metric tons Na2HPO.)«12H20 per metric ton NaltP207or
     3.5 metric tons disodium phosphate solution per metric ton NaltP207.
    •2 metric tons mixed mono- and disodium phosphate solution per
     metric ton NasPsOi 0.

3.  Operating Parameters

    •Na2H2P207 from NaH2P04.
       225 to 250°C for 6 to 12 hours.
    •Na^PzO? from Na2HP04«12H20.
       300 to 900°C.
    •Na5P3Oio from mixed NaH2P04 and Naj-HPO^ solution.
       Solution composition - 1 mole NaH2PO<, to 2 moles Na2HPOi,.

4.  Utilities

    •Electrical energy  - 1 to 10  kWh per metric ton product.
                                      109

-------
    •Fuel  - 300,000 to 2,500,000  kcal  per metric  ton  product depending
     on product.
    •Cooling water - up to 10 cubic meters  water  per  metric ton  product.

5.   Waste Streams - Combustion gases  from kilns may contain sulfur
    oxides and nitrogen oxides.  No  quantitative  data are available.

6.   EPA Classification Code - None exists.

7.   References

    Faith, W. L., D. B. Keyes, and R.  L.  Clark.   Industrial Chemicals,
    3rd Edition.   New York, John  Wiley &  Sons,  Inc.,  1965.  p.  699-706.

    Hurst, T. L.   Chapter 18.  In:  Phosphorous and Its Compounds.
    Van Wazer, J. R. (ed.).  New  York, Interscience Publishers,  Inc.,
    1961.  2; 1213-1220.

    Van Vlazer, J. R.  Phosphoric  Acids and  Phosphates.   In:   Kirk-Othmer
    Encyclopedia of Chemical Technology,  2nd Edition.  New York, John
    Wiley & Sons, Inc., 1968.  U:262-266.
                                      110

-------
 PRODUCTION OF SODIUM PHOSPHATES AND CALCIUM PHOSPHATES      PROCESS NO. 43


                                 Fusion

1.   Function  -  This process (See  Figure 9)  produces  vitreous phosphates
    from sodium phosphate solutions  from Process  40,

    Sodium orthophosphate solution is  fed into one  end  of a rectangular
    furnace,  where moisture is driven  out.   A  solid  mass  forms  which
    melts to  a  viscous  liquid. The  liquid  fills  the main body  of the
    furnace and runs out the other end of the  furnace in  a steady stream.

    The melt  running out of the furnace is  chilled  on water-cooled rolls
    or on a water-cooled metal belt.   The product may be  ground.   The
    furnace is  directly heated by oil  or gas flames.

2.   Input Materials

    •Mixed mono-and disodium phosphate solution.
       2 metric tons solution per metric ton vitreous sodium phosphate.

3.   Operating Parameters

    •4.5 meters wide x  9 meters long x 1.5  meters high  furnace  with
     frozen layer of melt below liquid level.
    •Melt depth - 12 to 25 cm.
    •Product composition - 63 to  66 percent P205, 0.1 to  0.4 percent  H20,
     remainder Na20.
    •Melt temperature - 700 to 1000°C.

4.   Utilities

    •Fuel for heating - 2 x 106 kcal per metric ton vitreous phosphate.
    •Cooling water - 10 cubic meters per metric ton vitreous phosphate.
    •Electrical energy - 5 kWh per metric ton  vitreous  phosphate.

 5.   Waste Streams - Combustion gases may contain pollutants.   No
    quantitative data are  available.

 6.   EPA Classification Code - None exists.

 7.   References

    Hurst, T. L.  Chapter 18.  In:  Phosphorous and  Its Compunds.
    Van Wazer, J. R. (ed.).   New York, Interscience Publishers,  Inc.,
    1961.  .2:1213-1220.

    Van Wazer, J. R.  Phosphoric Acids & PHosphates.  In:  Kirk-Othmer
    Encyclopedia of Chemical  Technology, 2nd Edition.  New York,
    John Wiley & Sons, Inc.,  1968.  J5; 262-266.
                                   Ill

-------
 PRODUCTION OF SODIUM PHOSPHATES AND CALCIUM PHOSPHATES      PROCESS NO. 44


                           CaO-HaPOt, Reaction

1.   Function  -  This process (See  Figure 9)  forms  a  variety of  calcium
    phosphate slurries  from lime  and  phosphoric acid.   The slurries  are
    forwarded to calcium phosphate drying,  Process  45.

    •Monocalcium phosphate monohydrate [CaH^POOa-HzO] is formed
     by mixing  H3P04 (75% concentration) with  hydrated  lime in a
     Stedman  pan mixer.  Steam, from  the heat  of  reaction, escapes
     from the pasty mass.

    •Anhydrous  monocalcium phosphate  [CaHlt(POit)2] is formed when
     quicklime is treated with H3POn  in a batch mixer.   Several percent
     aluminum phosphate or an even smaller amount of a  potassium and
     sodium phosphate mixture is  included in the  mix.   After heat treat-
     ment, these additives form protective coatings on  the surface of
     the CaMPOivh crystals.
    •Dicalcium phosphate dihydrate (CaHP04»2H20) is formed by mixing a
     dilute lime slurry with dilute (30 to 40%) H3P04 and dissipating
     the heat of reaction.  A Stedman pan may be used.

    •Tricalcium phosphate is prepared by adding H3P04 to lime slurry.

2-  Input Materials

    • CaHlt(POi»)2«H20 product.
       H3PO^(75% concentration) - 1.05 metric tons per metric ton product.
       Ca(OH)2  (100% basis) - 0.3 metric tons per metric ton product.
    •CaHjPOiJa product.
       H3POi,(75% concentration) - 1.2 metric tons per metric ton product.
       CaO - 0.25 metric tons per metric ton product.
       Aluminum phosphate additive - 0 to 0.02 metric tons per metric ton
       product.
       Potassium - sodium phosphate additive - 0 to  0.01 metric tons per
       metric ton product.
    •CaHP04»2H20 product
       H3P04  (35% concentration) - 1.65 metric tons  per metric ton  product.
       Ca(OH)2  (100% basis) - 0.43 metric tons per metric ton product.
    •Tricalcium phosphate product.
       HsPOi*  (75% concentration) - 0.8 metric  tons per metric ton product.
       Ca(OH)2  (100% basis) - 0.7 metric  tons  per metric  ton product.

 3.  Operating Parameters

     • CaHifCPOil)2«H20  product.
       Temperature  in  mixer ~120°C.
                                   112

-------
              a product.
       Temperature in mixer -140°C.
    • CaHP(K-2H20
       Temperature ~25°C.
    •Tricalcium phosphate.
       CaO:P205 mole ratio  is ~3:1.

4.  Utilities

    •Electrical energy - <1 kWh per metric ton calcium phosphate product.
    •Cooling water - 0 to 20 cubic meters per metric ton calcium
     phosphate product.

5.  Waste Streams - None exists.

6.  EPA Classification Code - None exists.

7.  References

    Hurst, T. L.  Chapter 18.  In:  Phosphorous and Its Compounds.
    Van Mazer, J. R. (ed.).  New York, Interscience Publishers, Inc.,
    1961.  21:1213-1220.

    Van Wazer, J. R.  Phosphoric Acids and Phosphates.  In:  Kirk-Othmer
    Encyclopedia of Chemical Technology, 2nd Edition.  New York, John
    Wiley & Sons, Inc., 1968.  1_5:262-266.
                                  113

-------
 PRODUCTION OF SODIUM PHOSPHATES AND CALCIUM PHOSPHATES      PROCESS NO. 45
                        Calcium  Phosphate Drying

1.   Function - This process  (See Figure 9) dries various calcium
    phosphate slurries  from  Process  44.  The dry products are ground and
    bagged or shipped in bulk.
    • Monocalcium phosphate monohydrate  [CaH^PO^h'HaO] thick slurry
     is usually dried in a vacuum  dryer.
    •Anhydrous monocalcium phosphate  [CaHil(POlt)2]  is  heat treated to
     change the protective coatings  (formed  by  aluminum phosphate or
     potassium plus sodium phosphate) from orthophosphates to poly-
     phosphates.
    •Dicalcium phosphate dihydrate (CaHPO^HzO) must be dried  in a tube
     dryer or kiln mill  if powdered  limestone is the  source of  calcium
     in the compound.  If quicklime  is  used  as  the calcium source, no
     drying is necessary.
    •Tricalcium phosphate slurry is  filtered and dried.

2.  Input Materials

    • 1.2 metric tons CaH^PO^h-HiO  slurry per  metric ton CaHlt(P0lt)2«H20
     product.
    • 1 metric ton CaH^POOa Per metric ton  CaHlt(P0li)2 product.
    •1 metric ton CaHP(K«2H20 per  metric ton CaHP04«2H20 product  if
     quicklime is the calcium source.
    •1.2 metric tons tricalcium phosphate slurry per  metric ton tricalcium
     phosphate product.

3.  Operating Parameters - No data available.

4.  Utilities

    •Electrical energy - 5 kWh per metric ton  product.
    •Fuel for heat - 0 to 200,000 kcal  per metric  ton product.

5.  Waste Streams - Combustion gases may contain pollutants.  No
    quantitative information is available.

6.  EPA Classification Code - None exists.

7.  References

    Hurst, T. L.  Chapter 18.  In:  Phosphorous and Its  Compounds.   Van
    Wazer, 0. R. (ed.).  New York, Interscience Publishers,  Inc., 1961.
    2: 121 3-1 220.

    Van Wazer,  J. R.  Phosphoric Acids and Phosphates.  In:   Kirk-Othmer
    Encyclopedia of  Chemical Technology, 2nd Edition.  New York,  John
    Wiley &  Sons,  Inc.,  1968.  l_5:262-266.
                                   114

-------
 APPENDIX A



RAW MATERIALS
    115

-------
Raw Material  List - Composition and Occurrence  Information

1.  Air

    •Air contains 0 to 4% water vapor depending on  temperature  and
     humidity.   Concentrations in ppm of the ten most prevalent elements
     or compounds in dry air are as follows:
N2
02
Ar
C02
Ne
He
CHi,
Kr
H2
N20
- 781
- 209
- 9
-
-
_
-
-
-
-
,000
,000
,300
330
18
5
1.5
1.1
0.5
0.5
    •Air is used as a source of nitrogen in most ammonia plants.

2.  Ammonium compounds (by-products from steel  industry)

      Ammonium sulfate
      Ammonia liquor
        Grade A, 29.4% NH3
        Grade B, 25% NH3
        Grade C, 15 to 25% NH3
      Di- and monoammonium phosphate

3.  Coke-Oven Gas

    •A typical composition in mol percent of coke-oven gas which has
     been stripped of nitrogen, light oils, and naphthalene is as
     follows:

       H2    - 57%
       CPU   - 29%
       Other -  4%

    •Coke-oven gas provides H2 for some ammonia plants.

4.  Electrolytic Hydrogen  (from chlorine cells)

    .Concentrations are  in mol percent.
       H2     - 92%
       H20    -  8%
       Others - <0.05%
                                      116

-------
     •Electrolytic H2  is  the H2 source in some ammonia plants.
 5.   Iron
     •Scrap  iron  of varying composition.
     •Iron is used in  making ferrophosphorus, a co-product in electric
      furnace phosphorus  plants.
 6.   Lime
      High-calcium lime  (90 weight percent calcium oxide).
      Lime  is the source  of calcium  in calcium phosphate  plants.
 7.   Naphtha
     •Typically CH2.i  to  CH2.2 with  a molecular weight of 135 to 156.
     •Naphtha is  the source of H2 for some ammonia plants.
 8.   Natural Gas
     •Concentration ranges in mol percent for most natural gases are as
      follows:
        0.4  to  3  N2
        86  to 95  CHi,
        3 to 8  C2H6
        0.6  to  3  C3H8
        0 to 1  C02
        Others  total below 1%
     •Natural gas is the  source of H2 for most ammonia plants.
 9.   Potassium  Chloride
     •Weight percent K20  - 60 to  62.5.
     •Bulk density  (metric tons/m3)  - 0.93 to 1.3.
     •Potassium chloride  is used  in  mixed fertilizers and in making
      potassium nitrate.
10.   Potassium  Sulfate
     •Weight percent K20  - 54
     •Bulk  density  (metric tons/m3)  - 0.94 to 1.65.
     •Potassium sulfate  is used in mixed fertilizers.
11.   Phosphate  Rock Deposits
     •Representative ranges of components  in commercial phosphate  rocks
      in weight percent  are as follows:
                                      117

-------
     •Phosphate rock is the source of phosphorus  for  the  fertilizer
      industry.

12.   Refinery Off-Gas

     •Concentration ranges in mol  percent of components  in  refinery  off-
      gas are typically as follows:

        H2   - 75 to 95
        CHi*  - 1 to 10
        C2H6 - 1 to 6
        C3H8 - 1 to 5
        (Vs - 0.4 to 2
        C5's - 0.2 to 0.8
        Others total - below 1

     •Refinery off-gas can be used as the source  of H2 in ammonia plants.

13.   Soda Ash

     •Commercial grade 99 weight percent Na2C03 is used.
     •Soda ash is the source of sodium in sodium  phosphate and sodium
      polyphosphate plants.

14.   Sulfur

     •Sulfur from the Frasch process is the usual raw material for making
      sulfuric acid.  Sulfur purity is usually 99.0 to 99.9 weight
      percent  pure.  Oil or cabonaceous material  is typically 0.15% or
      less.  Ash is typically 0.1% or less.  H2SO.j is typically 0.05%.
     •Sulfur is used to make sulfuric acid, principally for producing
      normal superphosphate and wet-process phosphoric acid.

15.   Sulfuric  Acid

     •The usual concentration is 93 to 98 weight percent.
     •Sulfuric acid  is used to make normal superphosphate and wet-process
      phosphoric acid.
     •By-product acid seldom is used because of the possible adverse
      effects  of impurities on the phosphoric acid process.
                                    118

-------









oo'
:*:
CJ
O
C£

LU
i
— i
H-
i—
1 1 1
1 1 1
o:
fX
LU
a:

r- !
1
«SC

LU
OQ
«J
•4-*

-a
c
rO

C
O
•r-
+J
fO
O
o
—1



«»
to cu
CU r— CU
•(-> J3 -0
fO .Q rO
-4-> CU S-
oo ro Q. cn
"CI
•o •!- -a ^=
CLI S- C cn
•4-> O ro -r-
•r- i— _l ^1
C LJ_
Z3

O
t
CM

r-
CD
,_
CD



LO
•
O


o

*3*


r_
o
o


r-.
co


10

CM

r-.
00
cn

•~
LO
^


*=*;
O
0

<£>
*$•

LO
CD
CO



CU
** "O
(U rO
r- S-

fi
CU CU
a. o
ra
-a c
c. s-
rO 3
_J U-



O
•
CM

CO
CD
^.
CD



CO
•
O


CO

CM

LO
O
O
CD


00
CO


r—
.
O

co
cn
•
O
CM
r-'
~"
co
o
o
CM
.
O
LO

ro
LO
co






» CU
^£ ~a
O ro
0 S-
s- cn

•o ^=
S- en
rO '*~
n: J=.



o
•
r-%

**
CD
r—
O



CO
•
o


^J-
•
,^

LO
o
o
CD


r—
CM


O

CD

00
cn
cn
t
CM
CO
^
1

•^
CD
LO
,
00
CM

O
oo
CM






** "O
\S £"
CJ 0
O Q.
S-
, cu
-a -4->
s- to
fO fO
1T^ 5



*d"
•
•~

CO
CD
CM
CD



CM
•
O


0

CM


r*-
O
CD


00
co


,^,
•
o

cn
LO
LO
•
CM
CM
,— '

CM
O
CD
CM
.
cn
^-

CO





««
^. CU
o -o
CU O rO
CJ S- S-
t/) cn
in c
cu 5 .c
C O cn
E S- T-
CU 03 -E
1—


LO
•
CM

•*
O
CO
CD



CO
.
o


CM

i^







CM
CM


,-j.
.
O

l£>
LO
CM
CM
•
IO
O
o
1

IO
o
-
,
cn
CM

CM
i —
CM



CU
-o

-^ S-
o cn
O
s- cu
o
E ro
2 E
0 S-
S- 3
OQ q-



LO
•
CM

"3-
O
LO
CD



00

l-~


, —
•
CM


CM
0
CD


<3-
CO


^
.
, 	

LO
CO

CD
O
r-'


CM
O
o

UD
^j-

CM
CM
CO

^2
u
tO O
0) S-
•t-J
ro rO CU
4-> *r- "CJ
00 S- ro
O $-
E JE CD
s- a.
cu to ^:
-P o cn
in *"" «r*
cu a. .E
3


LO
*
CO

o
<-
LO
< —



O

LO


0

^>







oo
,_!


cn

,__

CM
0

^"
cn
LO


^
•—
CO

CO
CM

O
cn

_^
u
o
S-

ro
•r- CU
s- -a
O ra
-E S-
Q. cn
1/5
0 3
-E 0
Q. r—












































to

o
t 	
rO
s_
cu

cu
in
o
l*-
CJ
o
o
o


4J
re

"O
cu
•r-
t-
Q


*
119

-------
 APPENDIX B



PRODUCT LIST
   121

-------
Product List - Products

Ammonia
  Anhydrous - NH3
  Aqua - NH3 - water solution

Ammonium nitrate - NHitN03

Ammonium phosphates
  Diammonium - (NHit)2HPOit
  Monoanmonium - (NHif)H2POit

Ammonium phosphate nitrate - contains higher N to P ratio than
diammonium phosphate.

Ammonium phosphate sulfate - contains higher N to P ratio than
diammonium phosphate.

Ammonium sulfate - (NHi»)2S04

Bulk-blended mixed fertilizers - contain N, P, and K.

Calcium phosphates
  Dicalcium - CaHP(V2H20 or CaHPO^
  Monocalcium - CaH^CPOOa-HzO or CaHjPO^h
  Tricalcium - Mol ratio  of CaO to P205 ~3 to 1.

*Chlorine  (liquid) - C12

Defluorinated phosphate rock - usually contains -30 weight percent P205,
<0.2 weight percent  F.

Ferrophosphorus - typically 25 weight percent P, 60 to 70 weight percent
Fe, others  5 to 15 weight percent.

*Fluorosilicic acid  -  H2SiF6, crude 20 to  25 weight percent aqueous
solution.

Granular mixed fertilizers - contain N, P, and  K

*Gypsum -  CaSO.»»2H20

Liquid mixed  fertilizers - contain N, P, and  K
    Industry  by-products.
                                     122

-------
Liquid suspension - contain N, P, and K

Marketable phosphate rock - average of 31.4 weight percent
  Concentrates
  High-grade crushed
  Land pebble

Nitric acid - usually 52 to 67 weight percent HN03

Nitric phosphate - contains N, P, and K

Phosphoric acids
  Ortho
    Furnace process - usually 75 to 85 weight percent HaPCK
    Wet process - usually 75 to 85 weight percent HsP(K
  Super - usually 75 weight percent P205 which corresponds to 105 weight
  percent
Phosphorus (liquid white) - Pi*

Phosphorus pentoxide - P205

Potassium nitrate - typically 95 weight percent KNOs

*Slag — 40 weight percent Si02, -50 weight percent CaO, -10 weight
percent other oxides.

Sodium orthophosphates
  Ortho  disodium - NazHPOi*
  Ortho monosodium - NaH2POu
  Ortho tri sodium - Na3P04
  Viteous sodium - 63-66 weight percent P20s; 34-37 weight percent Na20.

Sodium poly  (pyro) phosphates
  Sodium acid pyro - NaaHaPzO?
  Tetra sodium pyro - Nai*P20?
  Sodium tri poly -
 Sulfuric acid - usually 93 to 98 weight percent H2SOit

 Superphosphates
  Normal -  -30 weight  percent CaMPOOa; 10% CaHPOi*; 45% CaSO^;  15%
  other or  18-20 weight percent
  Triple -   46 weight  percent

 Urea - NH2CONH2
                                    123

-------
                                 APPENDIX C*

                            COMPANY/PRODUCT LISTS
* Companies producing each of the products shown in Appendix B, either for
  sale  or  captive  use,  are listed under the product name.  Various forms
  of the same  products  are listed under the generic product name in cases
  where information  sources make no distinction between the product forms
  produced.
                                      125

-------













CO
1C
z
'
i
cr
^£

a
|^
^£

00
ID
O
o:
o
z
*•— x
^
1— 1
-z.
G?
^-*
?»~
fl£

LJ-
o

OO
O£
1 1 1
o
— •*
_J
o
a:
a.


•
i—
i
o

UJ
_j
CO
I—























CO
\ff
J-

O (0
C -t-> t/»
O (O
•i- i_ -O
4-> QJ c
i
_J t- 4J
O i-
u



3
^C ~^ ^^ «\ ^^
_l O _l (U 1—1
«U_  >-
CO ^> -4-^ ^C CO ^C •»— P^ QJ "^ cf
c« c_i CM _J >z+-> ox:
fo &-
O"3 S-C E"3OO fO E S- r— O 00 QJ QJOO QJ
00 QJ-M OOJ= 00 -O CO QJtOE-r-S- >l3 D1
SC O-3 -r- tO SC C -r- CCQJC1- QJCD S-
OJOJ OO QJE QJQJ O QJ >,OS-3QJ -C3 O
ZCL. 3TCO CDCD ZCQ CJ t!3 1— QU_|— 1— O«C CO














0)
§
c

>
c

c


o











-o
-r- T3
00 -I—
.a x x oo
3 QJ CD -Q
CO ,— r- 3
x CL a. x co
• QJ E E QJ
• Q- i — O O i — *
> S- Q-O O G. • "O
O -r- O E X E O--r-
C O CJ OCQJCOS-00
i— i CJQJi — QJO-OJ3
E CO CD Q- en Q-O 3
T .^- QJ+J . O QJS-OS-QJOQJ S-.-o"
CO Q J— Q- O 3 • CTl-t->O4->CT>O-t->"OOT-
E OQJ O- • ~O • > O-r- T-O (O-OCOO
QJ • • t- ^^ > o Q j> *»^ ^. ^^* c ^^ t- 00 4-* O •""* <~^
^: Q.OO 4-> -O -r- • i- S- -r-Q 4-> QJ 4->(OOOOC 3
tJ i-E QJ' — -1-0000- Q ••r-ajcr>rC-r-CJ3S- QJECO
OQ3 CXfO E OO • O Z r— O C Z OJ-cnnS
OO O-C i_ fOi — i — -OOC i — S--i- CO-t-JEOO"
O 003 C (13 S- -fO E E "— i fO -i- •*-> i — QJQJCQJS-T-
CO • fO 4-^ CO &~ QJ 4-^ S- QJ QJ c^ > "'"• O 4-* 4-* •""* c~ 4^ i- O
4-> E>> Xi — >>3'Oco3 .^:.c ^ocz:s-3 QJ3 O4-)334JOOO • O O n3(O4->O Z E •— '
3 -Cr— I— O r— O T3 r— C O4->CC04->O3:OO-OC «3
"O O *O •»— C 3 CL. C 3 *— t C i- 00 (O "O C to O CO •*
O -i- CS- (DO i— i O QJ4->34->t— O-CQJr— S-O-r-OX
S— ^O tJ ^3 O^ ^J *^~ ^J »r~* C ""^3 QJ "TID ^^ fO £ +-^ S^ fO ^3 ^s ^f^ tJ QJ
Ow QJ QJ *^™ ^t *r~ ^ <^~ ^_ t., QJ ^. Q y^ fQ ^ QJ c. ^ -)-* |— **
-------












en
HI
21

1

*— -•*
<.
1
o
co
r>
o
a:
o
is-
le
z:
«f
^— ^

<:
i — i
z.
0
2:
«c
LJ_
o

CO
rv
LU
O
=3
O
o
Oi
D-


•*""*»
•o
cu
3
C
•^
•P
C
O
o
*•— -*


r~~
1
O

LU
— 1
CQ
*,•!—
r-$ i-
fft .__ xJ .«•—»»
ro »^~ «^^ •- *
3 O CU CO
C (O E C
CO. O
gf, njm +J

o to
•i- .p
C 4-> 00
o i
_J H- -P
0 -r-
0











CU
E
to
c
>)
c
ro
a.


o















CO CO
cu cu
0 0
CU CU
c c
• |_- *|—
S- S-
O 0
x: ^:
O 0




OO LDLO OOr— LOt— LOOOr--!^ O OO 001^ 
><
*£ i— i "CO | — eC O
"CO XX CQ C 0) D- eC5:
C ^£ h- XI— " "Z. O i— X "•Z.'f. CJ
O 1— x >i cu cos-i— cni— >— i " "
4J •> X " >• "1 — +J CT>«>-T- ra — 1 c: C -ro
CTCU 1 — -t-3 3«ro -r-i•!- "CJOOO1 03 O -t-> S-COC -PCUra
•r-C «O «Ci- rO OC'S: ••-»-> CLT-O S- r— •!-
r-cu coo. cuoo CO cu 3co
S-S^ rod) r-g+J co CDTT) -P-PrO -P -P Q-E CL<" E U-i-
CU2 ECU i — 3U (DTD-r-S-COCU S- 3 EE CnECU i — i-3
-Pro 3S- CUfO-r- -aOCOrOr— O O rO'r- -r-cUl- ro O)O
CO_I OUi- CQCO> OQUJU-ZO U- CO 1— Q CQSZO Q- rc_l
c o
o c
•r— I — I ~O
^•"^ • *r""
ro O « • CO
•r- O • X3 JD
U O -i- 3
O CO <_J CO .CO
CO rO J3 CO CL O
CO CD «O 3 -P 3 C **
. e£ CO -O U O i— i
CLoBcO" •!— 3i-«O
S_. S_-p.- .CO -OCDQ. " C_5
OCO.i — 3 D. O'- Q.J3 O S- «
o E Q-'f- ocuooo s-3 >s- -O-PO
CDi-OEQ OC Oco -i-Q_ cotJcOC
coxro 33 co i— i o Q E 3-r-
•PCJCJ^^Z-rOco " O CU • 13 M •
C U •coc!34->- « T- « ••!-.. i: E c -P
CUE-i£O'CU-PE «J • Q- Q.CJ E S-OOt_> Ol >— i >, Q.
>Cui-^:.rOT3t/) O-r-i— ( .G O -C i— i i — tJCco Q
OU_l_rOCO-POO4->S_O3 OCO Q-O C Q- o3 03 S- S- .
CO E-C'C C3.3J-"d COCO 3 i— i CO - S_ >,rDa>OCO
CUrOCOr3O«S-CU-PD-C i — -r- CO O- OCUCU3 OJ-P'-DCO
i — >JC Q_ CO CU Q H3 t— < -t-COl— I l_-P^X:i_O-P i — CO I— i •!-
rO'r-CO-O. EE ZO OcoZ!'tJ3coS-Q-3n3r- r— CU S -P
•r--P CE3CUOCO COt3 T- Q- 3CU +J1-3 r03CUcoCU
oro-oocu-ax:-Puorac -P 5: 1— s- • -o >r- .cotnu >• -z. cu^:
S- S- C E -C UcO'1-COO.fO C COOECCCOra T- + r— -P
CUCUOrOC_5"Ora-Pro • — O -P Q; o CU •— IT- Q..i_ c CU3C
§Q-E-'- HH «p- 1 — coD.1 — g g^oH-, .c -O'TJarcn cu4-^co>>
D.rOQ5 CQ UJ ro UjC r— S-U-OO S-Z3O 
-------

























CO
1C
Z!

1

<"
cr
0
z.

to
ID
O
Q£
a
>•
_i-
"Z
^C
"^-^

- —
§ CO
O ro
•r- S. -0
4J CU C
i

O -r-
o
^_^










CD

rO
C

>-

ra
a.
gIS
Q
0
















i^
CD

A
^g~
(0
C

ra

ro
to

>
•r~
O

Q. •
S- CO


c~
• O

3) f"™
.E 

E 3
3 O
C •<-
•i- S-




























*t ID
f— C7>
f—










X
1 	 N^*
O

CO •>
c s-
O) O
s- >•>
CD t-
ixi Q-











,
-a

CO

• 3
o co
o

CO •
to o




























CT» O
in vo
i— CO






oo to
s: 2:

n **
ro >>
r-— ^J
3 T-
O 0
cn
-










.
Q.
S-
o
<_>

»
^
ri)
^
O

E 01CJ3 C •!-

|__
^C ^
OJ
S- CO
CO -i-
co rO
'i— *^
to

»— §
S-
ro "
4-> ^
00 ro
Q.
Ol -r-
c z
o

Q.
CL
•i—
CO
CO
•1 —
CO
CO
•r—
s:




























^o
co
CM








X


A
^O
C
o

3
ro
OJ
CO










•
^
• ^
0 •

n *r—
• d
o
' O •
Q. CO
c • c
O E CU
cj> ji f-
.E O
r— O O
•r- S-
O r- +J
•r- 0)
r— .O Q.
••- o

O





























O
CO
CO










^^
1

«i
O)

•r-
^_
3

0
CO

0
3
-a
o
S-
o.

f-»«
ro
S-
3

f**
3
0

S-
o^
• ^c
o
o o

o c
4J (0
C CO
rO C
CO O
C 'SL
O
z:




























0 00
LO OJ








X
I—

*l
NX* ^
o CD
•r-
n >
s- c.
O T-
>> rO
S- r—
a. o.









•
^
•P*
Q

g~
O) •
cn >
o •«-
S- Q

•r- CO
•z. c

a. a> ro

O -^ O-
0 0



















































a.
o
o

• o
-a -i-
•r~ 4<^
• CO CO
O..Q T3
E • C
3 Q. fO
Ol S-
r- O .
O O co
i- E
4-> . CU
Q) E *~
f\ QJ ( •)
x:
•— 0 S-
ro O)
4J S- -V
c a> o
s- x: cu 2*. o
c a> ora o ^
0) ^. •<-
cc o z
i

••- O
o :c
o
o
C CO ro
a. c
E •»-> O
o ra E
r- "o.
•i- ra
O ro T-
N -i- C
c c s-
c o o
co OJ E **-
r— D. E ••-
r— fO i—
CU E ro
O O  >> •
c .a >>
•r- T3 **- C
S- CU O T3 ra
O CO CU Q.


O _l «* O 0




CO O CO WD
CM LO C\J CO








X
^—

et "O C_)
^g S
QJ r> *
»> *r— "X3 f^t
IO > S- O
E C O S-
O -i- 4- J^
CJ ro C 4^
ro r~ ro fO
i— n. 3: _i

•M5 ~o
r~ *r—
ra co
•i- J3
0 3
CU co
Q.
to «

o<9 O
o
i— C
ro • O
0 E T-
•r- CU CT>
E • x: cu
CU > O C£ •
C~ »|— ^
O Q i— E •>-
O ro S- O
S- • -4-> QJ
• 4-> CO C -C C
•O 0 E 0) 4J S_
••- O  3 Q)
co r- x: -i- o -i->
J3 UJ O CJ tO to
3 0 CU
CO O2
































o
*^-
<^~




^
	 1

n
co
CU
r.—
S-
ro
c~
CJ

CU
\s
fO
_J







•
>
•r—
Q

•
(/)
eg
s
.C"
0

r—
ro
s-
3
. -M
CLr—
S- 3
O 0
O •!-
C cn
•r~ ^C
,—
o










t/)
r^
r—
CU
o

CU
c:
• r-
S-
0
r—
C"
CJ




O"\ r—
^J"
r*-







C£
rv^1 3;
0

ri \S
"O O
C T-
ro S

4J C
^ c
O (U
r\ ^







•
0
CJ

•
£
CU
£"
o

0
• 1—
• l^_
o. •<-
s- • o
O > to
O -r- 0_
Q
+-> CO
r— . Q.
rO E •>-
3 0) r-
C ^ i—
C CJ -r-
CU J=
n. Q-

-------






















en
:c
z

i

^
cr
^
i-

s
C£









O
••-> ll
re o cu to
3 
cn o
i — CNJ




a>
0 rt>

C -M 10
O ro
•r- &. "O
•<-> cu c
fB O. ra
O O
O >!
O -r-
CJ











cu
£
rO
c
>,
c
ra
a.
g
CJ












co x


* «
O) ra
o c
•r- CU
$- -a
4-> ra
ra CO
O) ra
ea a.












,
o

E
3 .
O) >
r— •?— •
O Q >
S- T-
+•> i- Q
O CU
a. N to
•r- O
tO r— -i—
Q--f- +J
•r- 4-J tO
r— J- rO
t— CU r—
•r- U_ O_
_£=
a.
ra
cn
 CNJ
•sf CX3






a;


^^ «K
"^ (^
(^
«« CU
E r"
3 CU
•r- HE
1 * .
ra 4->
Z 00













•r- O
Q C
i— i
, .
(_) E "
C S •
t— ' J= to
« . 35
• > . j=
4-> •!- 4-> O
tO Q tO
3 3T3
•o • -a i—
C f~ C ^3
i— i aJ i— i jz
-c o
o. cu
Q- a:
























LD
«d-








I—

•«
\/
y^
rO
O-
S_

O)
a

-a
in

3
to

i.
.
^_)
C
1— <

ra

CU
. I—
o
O tO
fO
rO 3Z
to
a: TJ
c
•a ro
c
fO P-
_y
E 0
Q
01
















'







r— O
CTi O
r— r^-




t— H


CU i— i
3
cr ••

/^ n-"
3 •—
Q CU
+->
4-» rO
tO O
ro O
UJ Q-



B
0
c
1—4

A
10
•M >
O •!-
3 Q
O

O. CU
. s:
tO O CJ
•i- O
C T3
g O rO

-D
























P-.
C\J
i—








i^
i— t

»*
C
o
4->
•i—
O





•
-o

in
.a
3
to

"
O
o

VI
e'
0 -C

r—
O >•
CU
^*N Ll^^
r— S
r— ro
v
CO




CU S_
+-> CU
(O +->
S rO
T3 S
0) C
to 10
fO 10 ra
5 ro 5
en
>i >^
S- r- S-
CU rO CU
C i- C
•r- 3 -r-
ii ^ ^ ii
cu ca cu
ocz s-



00 CO
r— CNJ
f—






^J"




1— 1
CO

c
o **
to rO
•r~ r~~
"O 3
rO O
s: cn
ro
S- to
O ra
U_ D-
-a
to
3

^
^^^
-^

•i- O
tO 3
fl +J
3 C
to cu
« ^.
*
0
o o
CJ
E . r-
ji -^ o
0 Q
-o
C 0 S-
i- -M -0
^ t- cr
CU O ro
JT 4->
CJ CO


























uo un
co tn
CO ^*





X


»>
>,

*r^ T^
0 O

ro ra
X E
CU T-
r— _l








•— ~. o
ro ••-
C • Z
ra -a o -a
•r— »r— ^— ^ -r*
C jQ • J3
i— ( 3 O 3
— ' VI O in

• n r— " •
O • T- . 4->
cj o o a. a.
CJ i- OJ
r— X) O Q •
-,- •— S_ CJ 0
O ••- ro • C
O "O C c/) i— i
•a c o E
S- O ro 5- CU O
fO CJ ^~^ ^^ _^* (J
-a o co to cj cu
c E -r- c
4-> J= CU
CO 1— h-
























i__ ^^ f—
CT) LO CTt
r— r—




	 1
n

r- 0
X fl3
r- 0 -

** CO fO
C (D
o a) z:
+-> I—
3 CO t-
O 3 O
3: s: a.




.
> •
•r- O
Q C
>>' — '
to +->
S- -r- •
CU S- f—
. p 0 -
C r— -t-> ro
i— ' O 3 C
a. cc i_
^ cu
• T3 >,-*->
£ « r^ M
^: to ro
CJ CJ S- to
O C CU S
cu cn 10 o
C ^ (/)
C O CU rO
CU C S-
1— C S-
QJ OJ
r- H-
























CNJ in
CO CO
CO



^
_i
cu

•Z. r—
•r~
« >
C C
O O
4-* t/y
cn-o
C i —
> c
o o
_l Q


















a.
s_
o
CJ
£>!
ro CJ
^.
cu -a
Q. ro
•l~" i-
t— 1—
129

-------














en





"5*
cr
 £
3 O O) CO
c re E c
CO. O
^C <"O oo 4-*
0 O
^

to
en

c:
O)
>
o
1
cu
y
o
o



co LO co o 10
CM «d- r~- in 
O re

C -4-> CO
o to
•r- S. T3
•+J CU C
fQ Q- ^J
o o
O >)
,^ *4— 4-*
O ••-
O
*^^




CU
E

C
>,
c
re
d
°












—1 
•r— •> -r— O L-
r— re re y~- *^-
CL cu E cu re
o s- a> .E i—
00

Q.
S-
o
o
T3 T- •
•r- E E * >
to S- S3 Q-'i-
-a o J= s- Q
3 <4- C_) O
CO •!- <_> «
i — T3 CO
« re E r- r—
• o re cu re
o a» o
o o oo E
i- xi  S-
o •»"• cu "O co en
o co o T- T- «a;
re r— co -a
S- r— E r— J3 CU CO
CU -4J O O 3 +J CO
i — ) E E
i— rs ZD

to
en

E
ai
>
0
i
CD
j»;
O
o



«^-
«D










1—


A
re
>

c**
CU



































i— ai
O"> LO
i — r—







«i
O

C3
S-  0

CU "
C— 5 E
r—
r— CU
LU ^


O
E
i— i
A
CO
0)
O
3
•o
O
s-
O-

5
cu
i
















CM
CO









r^j

re
s:

c
re
0
3

4^
'cu
o

cu
c~
•r—
i-
0
r—
JC
0



CO
CM








CO
C
re

»\
re
•t->
• r—
c~
O

5









>

Q

.
CO
£2
cD
^r
c_>











































CO
CO
•r~
C
re
CL
c_>
CO
p:
re
•r~
P—
^«
• i^
3
CU
.E
I—
















O O

co co




et

CtL -
*f. OJ
i —
t* t—
a> -r-
r— >
r— C
•r- O

CU T3
c~- r—
•4-j re
^> E
i— 0
OQ O



to
c\
3
to
*1
o

S
c~
CJ

o
o
• 1 —
t-
cn
















O
o
CM

LD







re

o
\—
























130

-------



CO
o
z.
J-
"T"
z.

\

LU
p—
r—
»— i
Z.
§
Z.
o
SL
s
^£

u_
O

CO
C£
LU
O
o
o
o:
Q.

•
CM
1
C_5

LU
— J
CO
^c
I —

















CO
i
ce.






o
>} *r~
i— -l-> S-
CO -i- •M'—
3 O CO 00
C CO E =
CO. O

0*O

OJ
C +J
o  CD C
CO Q. CO
0 O
0 >,
	 | If— 4_>
o ••-
o





oo CM r-> LO
VO CO CM O
r— CM i—





1
u_
«a:

>- CO CO
^^ ,__ *» 5^
o s-

C co E fO

CO C -r- CO
i— CO CO E
O Q. CJ3 O















CO
E
c

>
c
A9
o


o













•
o
c
1 — 1 •
>
•> -r-
Q
CO
E E
-C CO 4->
o i— a. o
0 CO 0
c O.-P -o
CO t. CU i — •!—
O *"* CO E
W1 O S- CO
4-> tO 3 E
 CO
• 3 E X r— >
O ^3 CO CO 3 CO
C O J= I— O
t-< S- O -r- E
O- E S- CO
« "O O CD O
>, S- CO ••-  C
•r- O
E 00
E E
CO CO
re OQ



















>
•r— •
Q O
CJ
r—
CO S-
i-  13 ^3
4-^ 3»
n~" O
Z3 Gu
o
L» -C
CD U
^^ ^o
D-
<£









**O ^O '
00 CO *
r— r







CO

p;*^
t_ *

•\ c
S- 0

E 53
>> s-
1— Lt_









X
CU
^~
Q.
§x
CO
C-3 i—
Q.
cu 6
CD C_>
0
-M C
. ^ CD

E S-
i— < CO -M
O>.r-
»> o ^^
. o
) ' E -4->
to "3 E
E (& CO
I-H-C: s-
C_J 1 1
U-
o









.0 r—
X) *d-
— r—



_,.
1— 1

^
CU

o 3

m
«v
to CO
r— S*-
E i-
3 CO
— r-






X
CO
r~«
Q. X

O r—
0 Q-
E
E 0
CO O












































•









CO r— LT>

^_






^~ *^
**g ^^ f^
f n
«t «l
CO ** CO
C CO T-
C -I-5 S—
CO OO +•>
>5 3 •—

-E i? 0
o  3 .
S- CO
o
-t-> cnc_)
•r- O
2: s-
4->
CO -r-
E ^•"^
•r-
r- CO
0 4->

CO co

5 ^
S_ S-
O CO
Z H-


to

CO
4->
CO
r-
-I-)
to
fO
0
o
00 Q-
CO S_
4-> - O
co • C_>
-!-> 0
00 O E
S- CU
CO • CD
-t-J E O
E CO S-
>— i -C -4->

0 Z

CO O CO
J- 0 ••-
•— 3 E
0 §
O i—
o
c_>









^~ ro
LO r*^.
r— i —



,_,.
	 J

rd tn
^y c
o

QJ U">
U C
•i— *r—
S- r—
•t-> S-
CO CO
CO 4->
CQ CO














•
Q.
S-
0
• o
o
i—l 4->
E
CO >
O i —
•i- O
i- 00
CO
£T ,^
<£ co
0 0
C O)

E E
o o
C_J O









^)
«3-
^0






f)
XX

•s
QJ
O
C
0)
S-
^
CO
	 1




E O
O E
•i— i— i
+j
ro r
•r~ •
0 0
o o
to
to o3

O) O
> a.

+J 3
co -a
a> •

o
o •
C_> LL.








.
LO 00 CO CM
«* r— -CO
E i —



^
2;
*" D
^* r.
^C cn
-35 	 1

S ** *~>
o -i-1 to *
4_) E E CO
oo O -i- U
J3 Q- -t-> CO
f"i $_ E
•r- 3 CO CO










.
+->
Q.
cu
Q

to
• CU
-t-> 4->

Q -a
cu
00 >^
E CU
33 -M
C_3 1—1

. S-
•»-> CO
oo E
3 >-)
T3 r—

1— 1 Q_





'




,
LO CO tO
Ch • OO
E i —




(_j
-^

X

 ^_> cj)
CO +-> E
C -i- ••-
CO E E

'co -^ ^
^: Q 3












a.
^
0
O S-
E O
1 — 1
• to
s- E
CO CO
•r- O O <_3
CV c" C_J
1— < ^~
CD ^O CO
•p- « S-
CQ a> co 3

i- 3 CO r—
•f- to CI3 o
•t- Q. • S-
T3 "O Q: CD
S_ 0 «t
co O

131

-------







o
z

1

LU
— i
z
§
U-
o
OO
a:
LU
CJ
•^
o
0
a;
o.

^_^
-o
0)
3
C
•r-
C
0
o
^— ^

CNJ
1
o

LU
1
02
^C
t—
J_

O (O
•r~ | *
c 4-> in
o re
•r- i_ -O
4J CD C
to a. (d
o o
O >i
_J M- 4->
O T-
o












Ql
(S
c

>.

10
CL
g
o
















^j- co re LD co o LO LOLOLOO OLO r~^ COLDLO r^o ^oo
r— (Nl • CO I~» LO CO LO CTl 00 LO LO LO 1--. CVI LO CO f~~ LO LOLO
CO C. r— *& T— i — «d" r— CO CvJ i — i —



CO
CO
"T" »r—
CO O_JeCO SI —1 «(aoo cue" 	 i I — •(-> •< o _J 	 i ^.n •'X
S- S-CU COCCL) CJ1QJJCU. -i- -P "O U_ OO Oil —
3 CD CD * CL) fl3 r~~ "O '^^ fO ** C-3 c" 03 « *r~ O
-Q £  to +-> o o -r- co ja-prao. aio 3 o-r-o. oc 4->E S- N fO i — E >>C fO+J
•r- CUrOOCL)O(O rcOfOCU OJIO CL) i — 3(O S-CU O)4->
a. CQ o Q n: — is: oozcoi— i^>- ca LU_JI— o-^i CQLU
•r- O
Q CJ
> CO
00-1— -l->

Cl) • 3
j= Q- • -a
• O i- 00 O

•t— >\ c_> 33 p o
Q -P -C . <_J
!— . O r— >
*> fO 4-* E " <^ > to •' — • •
• •r-Q. -CDr— T3S--1- S- QEO
O O CL) O -C *T3 *r- O Q • 3 CD C_J
OCUO U O S- OOC_> >4-> C-C
O. • 3 £3 «T-I— CDOE
• COCO 4-> C o3 -I-) -3- -Q3 CD3-
00 E Q.CU r— OCOEO O OOO)>
§TJCU CL)CnE3 O CU • C_> • •«- S--i-i — -r-
C4-> QO3O o^ZQ-COS- 4->M-oQ
Q.JZ (T3.0O i- C T- CO.OS--E CD -i-T-S-
S-O O>> CO 4->-i-S- (OO OECL)'<: • ZO4->S-
o -coo o •<- E en cDCT-cjcD^EO o- (ocucu
CJi— 4->i— i -r- "Z. 3«C i— i Q. -COOO CQ-CUD_D-N
•r- 00 • 4-> T— S- Q-i — O O 4-> i— i S- CD •!-
i — O3CO4-> CD 00 -M^ioOCDr— 4->4->(T3 »C_)OQ- Q-'i-
O <+- C i— 3 4J O S-00 COrCCO -i-CUCOO E S-T--r-4->
i — H- i 3 "O C C CU-i— Q.-I- i — J^d-fOC rOCCDi — i — S-
M-3 OC >> T- tons CD-r-oo-r-O COO S-Q:<_>T--r-lJL.
3 cu •— « o-i-o o -i- i j= x:
CD T: i-ti^: —isrs: s: ZZQ.Q.
132

-------































fry
o
j-
z
1

1 1 1

^£
^p
1—


5;
13
i— i
^^
O
u_
o
to
C£
LU
O
Q
O
C£
0


-o
CD
3
C
•r~
4->
C
o
o


oo
i
o
LU
	 1
QQ
<
1—










10

J-

%
C£









"(0 -i- -!->
3 O O) 10
c * E c:
CO. O
^f fo c" i
0 0
*~~^

 O> C
ITJ Q. «o
0 O
0 >,
_j t|_ +j
O -r-
O







•,
C?
It)
Q.
O



















•















^
^_ . _ „ ._— -^^ _.
c\j fi o"i !•*•* r*-». ^j
^_ * r~ •* ^^*




r^t

~£ «r — ^ ^«
bir £i ~"~ ,— ^i ^f
*^ ^* — . -^ - j
*» ^ir t/i »» ^""^
C "CT O 7j . K^ ^
 ^
^ -IP zi i^* ^ ^5H ^ — ^. t/)
(1 /v1 • _.-_ M r- g— ^"^
•i- • sE 0) 3c ro 0 ^

Qi tO r3 tO CO l~



C
O)
en
0
S-
•r-

^_
res
r—
O
to
E
0
S-
t)-.

-a
CO
res
0)
1-1


CO *«O
f*^*. CO
r—






^£
t-H

n
r—
0 S
'Z.
»v
fO -M
_l 0-



•
C
1 '
•
• r—
"O —
•r- -M
co res

3 5-
4->
« 4-> C
. Q-l — '
S- Q •
O CO
O • E
co  -C
co o res
•r— i-
> S~
QJ
1
en
o
s-
-(-)
• p—
•z.

S-
'o
to

E
0
s_
<+-
"tu
OJ
CO
ro
0)
•—
4J
5-
rC
Q.


*xl" r^
f^ ^J"
t\J








C3^
f~^ r^
y^
« (C
C 3
•r~ O™
g-E
•-3 1—




.
^E

S^
•o
• 3C
Q. O
S- O.
Q
O vi
ns
i. i—
OJ -M
r— C]^
>>
'



























LO ^— r— i — r^ r*^. r—
LO O^ O^ O^ ^" CM CT^




0
JF"

-
— 1 >> CJ> 21 ^
^^ 4->
•r- | — »» ^ «N
** C_3 13 O CT> C
> C O C
00 0 0 C£S LU > 3C

.
CL •
O C
fd
c E • > co •!-

O c~ S~ ^*> C) r^
M— CJ O O CO 3
r— -O CO -O -r-

C_3 res O) ro S- O ro
QJ O d. O Q- o
<+- C 4-> •!- f= O
O O CO E C • O
-0 O) O) E <-J •
O res cu o O f~ co 
O o -t-> i s- <_> E .C
ro -i— -l-> res O
i — i_ . -t-J S- T- CD'i—
•i-OI-OtOCn ZS-r—O
O -r- •>-  > \ —



























o
•=}•
«cj~
rC










ro
•«->
O
t—
























133

-------









LlJ
1—

U-
— 1
~^
oo

• M
LU
t—

L.
!3
4-*
X
•r-
E

>k
^~
J^>
t/1
i


o
i— 4J S_
re ••- 4->
3 O <1J CO
c g E c
C Ou O
CJ O
l~
'



LO
r—




^,
Q)
^~ 1 *
O to
•r- 4->
C •*->  O) C
re Q. re
o o
O ^i
_J M- 4->
O -r-
u









a>
s
S3
c

>
c
 a)
*X3 C3 C/l
C J= i-
o re re
o a: s:
-o
JS-^
5) J3
3
•« CO
g-
6 •
0 0-
s-
co O
-l-> O
O
3 CU
. -o •<->
O- O re
S- S- J=
o a_ o.
O CO
r— O

-i-> s- a.
CO 3

~o r™~ re
C 3 C
•— i U O
•f— »p~
i. S- 4->
 c^
X O
•r- S-
E U-

^i"O
•— (U
4-> CO
 — i
O S- •>
Q- O S- "
+-> re CD
>,«£«=
CU 0) CO -r-
C J- -I- r—
•i- -M OJ 3
a. oo tn _i





























D-
Q





O LO
t— LO
 CO






	 1
1 1

«\
1 ^^
I 1 [ *
•r—
« CJ
^
O 4~}
4-> C
s- re
re •—
CQ D_



X























































Q.
S-
0




















CO
ai
s_
-^
) ^
o_ a. x






CM LO CO
CO LO CM
r— CO CM







_J
u_
_l
u_ •> o

* re
CO rn »
i— C
0 C «r-

U CU O-
•r- S- O

















co
CU
S-
3
4->
X

E

T3
c
re

O-
g





0
LO





•=C
1 — 1

•>
c

CO

-o

s:

4->
5-
0
u_












4->
O
3
•a
o
s_
o.
1
>,
J3

C
CU
>
0

QJ
sx
0
o





CO
CM









i— l
2JT

*
C
r^.
0
(^
J_
re
CU
a
















CO
a>
s_
3
4->
a. x
eC -r-


-o -a
c c
re re

CL. CL.
Q Q





r-^ WD
r^- co











P^
—J et
U_
«i
•» re
re c
O- 
1— 3C








CO Q-
••- 00
CO 1—
CU •(->
-o re -c
3 -C 4->
r- 4-> -i-
0 3
c •
»— i t. a>
>>•—
^ JD
. co re
D- C CU
=t o o^
2! 4-> E
re
-o o jz
c: o u
re o s-
»> QJ
0. LO 4->
Q r— -r-





CTl
CO










1
U_

rt
~3-
O

s-
re
CO




O) <->








CO
> CO CU
•r- CO -4->
Q re re

• cr> Q.

o3 o o
. -C Q J=
O O 1 D-
c JT
i— i C •«-> S-
O) T- O)
C T3 E •*->
0) i- oo co
•O O 5
S- CQ (U
O S-
CQ ca
CL
X E
at o
r— O
p>
E OJ
0 •*->
o re
c"
CU 0-
4-> CO
• fO O
O J= J=
C 0.0-
1— I CO
0 >>

. a. .,-
+J CJ
CO S
3 O -M
~O 4-^ C
c s- re
• — * re i —
CQ a.
u_
<_>
B
V)
£
QJ
<^~
0

oS

CO
r—
re
s-
01
c
• ^
^g"

-o
S-
re
JIZ
i—
CU
•o
• 1 —
CO
• • o
"O > 3
•r- »r— •  co e
C 3d)
>— 1 • "O ^~*
> c o
. S_ t-i
> Z
o E re
O1O S- U-
c
UJ
re
u_

•
-o
•r*
• CO
CX_Q
S- 13
O tfl
CJ)
*
• r— *
Q.O
f~i ^^
•r- i — i
CO
CO t/")
-r- OO
CO ) — i
CO ^*-~
•r—
z: i—
CO
4-> ct:
CO l— i
i- U_
•r—
Ll_













•
o
C_ J •
>
^_ .,—
o r^
-t->
O r—
^T* QJ
QJ
T3 4->
S-. 00
O
U_
co
4->
O •
3 O
"O *""
O i— i
t_
r\ «\
S-
(J CD
•r" >
S- •!-
. i~i rr"
O f~
o.
3
O
S-
ens

•
CO
F^
0)
• ,cr
o o
C_5
,—
c o. oios re
1 	 1 (/)•!—
O CQ
*> _c
t- o t—

•cC
.
3
134

-------




LU

^y.
LU

...
t/1


1 1 1

^f
^J
H—

2?

• #•
j.
o


*T"

J-
i.
j-
o
__
CM
J-
-T"
2T

'
CO
uu
I —

"T*

co

T"
r\

_-
— ^

.^,
o
1
u_
o
oo
o:
LU
^— *
~
o
f\




m
~s


i %
c

^^

oo

C_)

UJ
1

4f
[










I/)
NX
S.
fO

d)
cc






































o
3 O CU tO
C (0 E C
CO. O

o o
•-'






0.

^ — %
CU
c -P
o ro
>r_ [ *
C -P l/l
O ro
•r- S_ -0
•P CU C
(OQ.ro
O O
O >i

O 'I-
o









O)

r3
C

^
f
fO
Q.

^











ft
CL
(0
CS

s_
(U
+J
ro
3

0)
S-
 CU >>
o-o •<
LO (O C
S- O
O cn-P
•P
x> o
Q. CU O
3 CU O
M— ^
-a o
CU l|_ O
O O ^1"
3
•0 • ro
O i-
s- >, c

to
to c a.
ro O 
CU
•f—
c
c
0
CO
















-P
O

T3
O
• S-
-P O
C 1
fO >,
r— JD
CL
E

ro >
•r- O
i-
CU CU
•4-) ^
(O O
E 0


oo
CM











^^
o

»l
rO
C
rO
-P
C
O
U-





















to en
CU CU
S- S-
3 3

X X

E E

>^ >}
r— i—
4_) _J_>
f/) 
Q_
^^
O


<& crv
oo LO











i— i O
2Z ' — '

•» **
c en
O en
•P O
C r—
CU •—
S_ CU
L_||_ ^/




*
o
0



Q.
00
H-

_c
4->
•r-
•3.

{/)
(D
en t/>
E (D
ro s-
JC 3
U -P
S- X
CU v-
•»-> E
c:
•r- >,
r—
• **> -| ^
a. to
eC O
a s:


oo oo o
CM CM LD
LT> ^~




_J
U-

*i
X tO
r— CD
C et
«••- O
3 S-
CU Q- •>
•r- 00 Q.
> O
E CU S-
•r- -P _E
rO -i- -P
Q! 3 —1


•a
to
• r"i >
"03 -r-
•i- to Q
to































P^
CM
rv'









X
1—

•%
ro
C
0)
-a
^
S-
(O
S-
0
Q.
E
CU
+->

(0

C
O

>^
t—
t~*
•r—
IS)
to
O
CL
to
. f\ -f—
Q_ to
^t fO
^r ^*j


CM
oo











^^
0

•^
T3
S-
0
4-
E
ra
in



T3

CO
•^












O
1
0
CM
1
to
i—

»>
a.
^^
z:

*i
o_ a.
^C *t
Q Q


UO 00
^t" r^
CM CM








Q
_1 1— I
U_
**
" O
>-j r—
S- r—
i- CU
CU -P
-Q ra
r— O
3 O
2: Q-







^5 ^0 • • Q ^^i *\ fQ ^> {/^ •
.c
o

00

to
r—
(O
t-
cu
c
• ^-
z:

O r—
c -
>— 1 -P
ro
» C
O J-
u a>
•r- -P
CU C
ZE i— i
c
o
•r~
<4_>
ro
s_
0)
a.
o
r—
(O
S—
rs
-M
^~
Z3
U
J-
CT>
c^








•
Q. •
S- O
O 0
0
to
i— ro
CU CD
CU
-P S-
OO ra
-P
s- oo
to CU
•r- C
ra O
s£ — 1

•
• a.
•a s-
•i- o
to o
.a
3 •
to E
•> -E a.
• CJ S-
o o
C -i- O
i— i Q.
r*i i— •
* «r- »f—
J^ t/> O
ro to
Q.-I- r-
•r- tO •!-
^J^ t/) i^
•r- O
s: 2:

•
>
>p_
Q
•
* >
m *r—
O Q
0
• 3
£ ^- *
93 o o
up^: ^f~ QJ
0 Q.
to O
r— O -P
XI Q. fO
O CO
z: c
o
s:
to o S^.
E O o
CU O
^: cu
o -P E
ro 3
• .C CU

to to o
3 0 S-
C f^ (D
i— i Q_
o

^"^ (O (T3
c -a -P
ro H-. c
C JZ T3
O -P T-
3E 1- u
O U
ZT O
H3 • ~^J
tO O •!-
t_j S-
" E O
. . 0 •—
Q_ E  C_5 C£ O •
>
• i — CI i — -r-

CU -P CU -P
c" cl c~ c; ^
O O) -P 
•r-
a

.
E
CU

0 0
o
-a
-P E
O rO
• r™
O Q_ i/)
0 E r-
•r- ro
S- 00 S-
CU CU
-P • E
to cm -r-
-**! ^*
O
CU "-3
135

-------




1 1 1

J^.
LL.
i

•"^


1 1 1
h—
Od
*"'"
^-^

• M

__
r\
<>j
TJ


*T"
7~
^"^


J-
0
Q.
W
"T"
— L.
^~
**•— *

1

1 1
t
I—
Q_
CO
O
Q_
_.
™-
^-^

^.
ss
^>
^<
"^

LJL.
O

CO
QC
UJ
*••*
•^
O
O
Q-
Q_


^~"*
*•"*


^
*ti
S










CO CO
CU CU

(O CO
i- i-
4J •»->
•r™ •r—
E E

CU CU

fO (O
j= .E
0- Q.
CO CO
O 0
-E .E
CX CL

E E
3 3
•r- •!—
C. E
O O

Je
^?




	 fy .
*"_! i r^
3 o eg o
C (O E E
E Q. O
00
C-




CM CO
CO «3







CU

pr •__
•r— .(->
E •*-> CO
O CO
•p- S- "O
4-> CU E
(O Q. ro
0 0
O^,
•^
j q_ ^J
O*^-
•H—
^/^




ef
t— i

A ^
E 2
O
CO •>
•I- 3*.
-o o
CO T-
CU
4J E
S- E
O CU
11 XX















C
S


^,
ft
0
§
U
U













rO
•r-
E •
1— TCJ
o ••-
M- CO
•p* .^^
P— 3
rO CO
o

fi ^
O O
o
o .
O E •
^5 ^j*
^P- O Q
O
E O
•O O .E
S- S- -U
(O > S-
"O CU O
E .E
CO O
co

CO
CU

CO
S-
+J

E

CU

rO
C"
CL
CO
O
CL

E

•p-
c~
O









CT>











O
"O
E
O

c~
o

rv*






























CU
•4-)
ro
.E
Q.
CO
O
.E
CL
^.^
Q. D_ i —
 -P-
CO CO i —
O 0 0
s: z: co






co en cr>
i — LO LO





i —

ct
A
^> **
4J CO
1— O "cO
O
" cu ^:
fO ^£ CO
E CO
(D 	 | CU
^3 p~
CO -M O
CO i — CO
CO ro 3
Q. CO SI











.
>
5 •?

CD 1-
E O
•p- -E
E 4->
•r- 3
• s: <
o
E CU
. CO i —
CU S- (O
J= CU >
<_3 N
•p- CU
i- p- CU
cu -p- co
<+-•»-> CO
<4- S- CU
3 CU E
ro U. E
•»-> CU
CO I—























O-

o






o
o
CNJ











o
•z.
A
CO
S-
o

3




















,
Q
. fw^
O rO
E S-
1— I 3
-M
<+- i—
p- 3
3 U
CO tl
CO CD
X .
P—

t/)
O
s:






o
LO











O
CO
o

o

•z.






•t
,
CL

O

ro

S- CD
o j^:
<4- C_>

p— "O
CO E
O CO
4- E
O O

• S-
O CO
O O

p- S- .
•p- CU -O
O -r- -i-
i — CO

O 'o 3
•p- O CO
E

CO
CU

3

X
•p-


• *t
CO
CU
T3
CO

CD
S-
cu

^_3
o


. .
O-

Q






CM CM











CU -=C
O *
i. E
CU r-
^ CU
cj in








•
o
E
HH

• **
. > CO
CL-P- S-
S- O CU
0 ' 0
CJ " 3
CO "O
i— i— 0
CU ro 5-
CU O O-
4-> T-
cS cu
CO .E CT
CU O 0
-M 1 S-
co -P- 4->
CO CD^

cu co n
•M CO •—
'E ro
^> >
































js











'fO O)
•^ r—
^— "^3
O) E
CL co
E •£=
(-i 0


•
-o
•p- •
co -o

3 CO
CO -Q
3
^ CO
CU
p~ *•
CO O
>• o

r— • p—
CO CO
•p- O
S- -P-
CU E
S-g
o
4- S-
O CD

CU
1 —
•p-
E
O p—
CO ro
13 •»->
p- O
03 1—
E
0
Q












•
T3
•r—
CO
-Q
CO 3
CU CO
•p-
E «

ro
.E
Q.
CO
O
-E
CL
E
3
•p-
E
O
E
E
ro
O
E
O
E

ii

o_
cC
2!

*<
OJ
CO

CL
co
O
c~
Q.
E
3
•p-
E
O
E
(O
•P-
~°
n

CL
'— '
eO "O iZ .
CO O 1 CO
S- « S- . D_
CU X> CLT3 CU 1
NT- -P- -E -Z. ID
•P- O 4-> O 4->
P- CO E fO 4- CU
•p- ro cox:
+J O +-> U -P- •*->
S- -r- S- -p- E
CU S- O S- -O O E
4- O CL O O) -P- -P-
.E E -E -(->-(->
CU CL-P- CL CO O CO
+-> CO CO O 3 4->
CO O +J O -P- TJ E
.E -E CO -E T5 O ro
CL CL O CL E S- p-
co E -P- CL CL
O 4- CD
-E O CU E CO CU CU
O- -E -p- ro -E -(-)
1 E H- 4J -(-> CO
E O ro CO .E
CU -i- -P- S- E CL
CD •»-> • E CD -P- CO
O ro T3 O M O
S_ -p- T- £ .p- CU -E
-P E U E ' — NO.
•r— O ro ra 'P~ 'P-
C E •*-> •— E
E 0 >, S- ro 3
~o to *p~ -Q cu T- T-
•r- S- 4- (J E
i — a> 3 cu cu o
O -E 4- T3 -O CL E
co 4-> i — ro CU co E
, 	 „ 3 E X CO
CD _. CO -p- +->
E , »> E to ~o
•p- s- "2" j= -p-
S- E 0 V i^ 4-> 3
3 0 ^-10 ' CT
^^ "TU _| Q-. C/) *t~"
O >, E ^f 1 +J •—
CO P"~ to ,-v-. ^^" E
4- 4-> "-1 ro CU
3 E T3r~,4- P- CD
E -i- -P- O CL S-
ro O O CU ro
E  ro -t-> co S- i —
CO CU Ol
CO S- O .E TD JZ o
-t-5 O -p- CL ro -l-> -l->
E S- co S- O
ro >,-4-5 O CD P—
p- P— T- .E CU p-
Q. CD E CLI — S- to
E ro ro E
CD'p- co E i- co
E CO 3 3 
•p- i — -P- > CO >,
o -a ex c: cu T- E
3 CU O CO r— CO
-O co -a E E
O ro -P- E CU CO
S- .O. O CO S- -P- CU
O- CO T- 3 -E _E
•• — - "O 4-^ •*-* | '
>, •" CJ O
S_ O -r- CU ro E „,<
rO CM S- XJ 4- O
E CL. O to 3 S- „
•p- -E S- E 4- CO
S- O CL CD re CU
CL4-> CO £ TD CO
OS- CU co
S- -Z. -1Z. OJ OX) CU
O CL tsi co 3 o
4— 4— •!— i — i — O
O 4- r— to O S-
E O -P- X CL
3 CO •+-> CO LU
O O E S- 4-> co
-E -P- O CU E 3
CO -I-5 -P- 4- to . O
CO •*-> i — E -r-
CU S- ra CO Q. E i-
S_ -t- -i- 3 
E O CU co O
cO -P- E CL CU CJ >>
+->>-)£ >5-E -Ct
rO 4- to 4-> 4-> =
D rO CO CO
> CU CO 4- .V CU
-E T- O &- S-
• • JE •»-> XI ro 3
LlJ -i— * 4-^ >•) E 4-*
1— -P- 	 > E CU X
O 3 -Q 4- ro 0£ ••-
Z-^~-~-' 02:= E
136

-------














J-
o
^
•*•
z
1

LU
i

cc.










o
r- *J SI
3 O 0) to
C ro E C
CO. O
< So "*"*

~

^— t _^
o H3
•r— | *
C 4-> l/>
O ,
1 (j 1»
^J '4— -T-*
O 'I-
V"^
^""'












CD
E
03
C

>,
C
03
Q.
§
O












f ^ 4-) | '
O O O
333
-O -OT3
0 O 0
i- S- S-
a. Q.O.
CU QJ CD
E E E
S- S- S-
Q- Q-Q-




CTl r«. r— CO
r— CM CTir--





LU X
* x^
•!-> S
5_ ».  o
to +-> C J-
S- CO -r-J=

O) O i — (O
oo ^r. Q — i




.•o
to
• .a
T3 3
•i— CO
• to
O .<"> »•
S- 3 •
O to O
o o
•> C
E • • 0
S.f—
CD
o r— o -c a> >
C OO 0 0£ -r-
(— i J_ Q
4-> . r— C
. a_ S +-> a> s-
co x: c -c cu
S (O ~O 3 tO Q
o c a> o oo 3 o
(O •tri'o o °
•»-> -r- O C
r— on: T-
 ) ^
o o
3 3
™tU T3
o o
S- S-
Q. Q.
CU CU
E E
S- i-
Q- Q-




r— i— LO CM
r— •— CO





Q O
x x 2: i— i
1— •—
• -  S- r—
CCO r-

(O 3 4-> (O
t& tii (^ o
Q- CQ CO D_



.
•r^
Q
to
CO "f"
CU C
0 S-
. -r- 0
> > • M_
•r- S- > -r-
Q 0) •!- r-
OO Q 03

CO oQ
E • E M-
OJ to T3 CD O
e~ 40 4^ • c~
0 0 _l OO •
3 <_> O
03 O CO 4-> C
S- S- E 0 "3 •—
3 D. tD^- -i-
-r- . 0 E-^
O to >,OO S- S-
V- "O -r- • C T3
CT> c i— a: -i- E
^C t— H fO J5T fQ
3 • 4->
O"~D 00








CD
CO
o
O
*^^
>•>
fO
^y




oo vo
CM






O
C O
o
E •>
-£_£=
•r- 'OJ






O
C
• t— 1
•o
'r~ *^
CO CO
^3 i_
3 CD
CO O
3
•o
O
0 S-
O Q.

. j^
S > 0)
f~ *|— Q
CJ Q i-
C O -r-
S- -P
CU O OJ
f~ r-^
C^ r™-
03
^



















r--.







0}
O
1—

































137

-------
o
o
CO
a:
UJ
X
Q
LU
Q
CO
CQ
U_
O
a:
a
§
a.
LO

O
00
                       O
                       0)
                       CO
O

XJ
c
O)

HI
                       •M
                       (O
                       U
                       OJ
                       O)
                       (U
                       oo
                                                        133

-------




I/O
UJ
L ....
P"~
•a:

CL
oo
o
Q_
s:
i — i
0
1
^C
0

u_
o

c/o
rv
UJ
O

Q
O

Q.


•
vo
1
0

UJ
_J
co
^£
1—


























CO
i.
ro
O
>^ »t—
r— 4-> i.
3 O ID to
C ro E C
CO. 0
^ fl3m 4->
0 O
•3-














*— *•»
CD
C ~k-^
O ro
•i— +J
C 4-> CO
O (0
•r- S_ T3
•P CD C
,
_J >*-•!->
O •»-
O
^-^


CQ
z:

rt
s_
O CD
IE +•>  >^
3-
o
a_
a:
ro
0

i-
o












QJ
E
ra
c

>,
c
ro
Q.


<-J











o
CM
~T~
CM

j-
O
Q.
^r"
ro
O

|

CD

ra

CD a.
4-> CO
ro O
.C .c
Q. Q.
CO
0 E

CL *^
o
^3 fl3
•r- O
O •!-
r- Q
• -Q C T3
C •!- -I- O
CDCO. JD
"a C O) ro
i— ro CD CD
 CD •— '
•a T- . c
•r- Q O -i- •
E 0 -tJ 4->
ro i — ro CO
CI ro -ii r— 3
ro J- ro CD "O
>, 3 -O CD c
0 -t-> O *-.
y-r-. \,/ f—
C 3 ro -O
ro O C E c
(J •!- ro -P ro
•r- J_ E <" •—
i- ai -P ro E
CD «C co LU C
fl3 E ro ro
O ^ UJ U.





















O


ft
C

f—
o.
0







.
Q_
S-
O
c, ^
•
T3 •
•f— ^

CD ro
E c
C S-
ra CD
U- •!->
C
•— •


















o
s:

_i «
U_ CO
'f—
« 3
CD O
•r~ t
C
C
O 4->
CQ (/)














CO
C
0
•r—
4_> •
ro >
S- -i-
O) • Q
CL 0
O C •
I— I CO
r— £
ro •* 35
S- -i-> ^:
3-00
-f-> O
r- s- .
3 -^ -t->
O O CO
•r- C 3
t- T- "O
C7)i — C
CC 1 	 *-H
ro
z:

















o
s:

«t
>- 4J
•Z. CD

^ a>
r— -O
CD C
E o
C s-
ro ro
O 0










•
0
o

.
00
(_) £T
C 95
»— | C"
O
Cl
• •
O -!->
CJ CO
3
r- -a

ID >' . M
T3 -r- 0
C Q O O
a> -t->
z: • o c
CO -t-> ra
i- 95 ro C
ro S^ co O
3t o c s:
•o o
uj z:


















K£
1 — I

A
4_>
s_
o

c
0)
>
ro
Q









•
>
• *r~
-a a
• •! —
Q. co ro
S- J2 -O
0 3 T-
O CO i_
O
E • •—
3 Q_U_

•— 0 H-
o o o
S-
4-> • i—
CD E ro
r\ cD -f-5
J= C
i— <_} CD
(C T3
^> ^_ 'r-
C CD 0
-o o o
•r- O

O
O















*~O
py

*\
cn
t.
^
j*t
CO
Q.
•r—
r—
r—
•r—
.C
D-







•
T3
•r—
CO
J3
3
CO

• n
O •
C 0
l-H 0

n •
1— C
(— QJ
CD J=
S- 0
S-
QJ S—
^F* CD
1 *^
C ro
O CO
CO
•a •
ro
O "~D
•r—
Qi













	 1
1 — 1

A
CO
+->
-C ^
oil—

CD '
1C. CD
^-.
O i—
CD T—
rO >
0 -C
•r- CO
-c: ro
<-) "Z.



















•
>
• •!—
0 Q

,
• £
^z G^
QJ ^™*
J= 0
C_)
.
&- -t-^
CD co
4- 3
M- -0
3 C

-I-)
C^)
















(N
^^
J-
O
Q.
^_^
j-
~T~
ro
C_)

S-
o

o
Csl
nr
•
CSJ
X 	 s
J-
o
a_
• — x
j-
rn
ro
<_)

I

O)
4^
ra

Q.
CO
0
JC
Q.

E

•r—
O

ro
O
O
O


o
s:

f
4-)
0)

CD
-a
c:
o
i_
ra
o










•
0
( 3

•
co
f3
CD
c^
o

•
I *
co
3
T3
C
• t— H
O
0 0

o c
+J ro
C CO
ro C
CO O
c z:
0
z:
139

-------











CO
LU
(—

0.
co
O
DC
Q-

2£
— !*
I— t
O
— I
s
1 1
o
CO
Q£
LLj
O
13
Q
O
o;
CL.


•^"**
"O

i-
DC.
U
i— -P $1
(O -r- 4-J. — .
3 O (U to
C 10 E C
CO. 0
^f (O *^ -f-^
(J 0
O)
O  to
O "3
•r- S- -O
4-> CU C
(O Q. fl3
U O
O >i
_J (J^_ ^J
0 T-
0
^-ta^












0
^
o t—
i.
ja 
Q. ^ 4J
•1— •!— (O
r— > JC
r— JC O.
•r- tO tO
JC (T3 O
Q- -Z. JC
ca.
e







(U
e

c

>.
c
(O
a.
fjjj
o










3
U
(C
TD O
•r- "r**
CO O
3
tO O
. •> to
O • (O
CO -Q
1— I O -r-

*» • •
§• > *
O 'i- i JC O O
c (0 o JC
O CO • O.
(/) (- 4-*
T3 • O) to £
J-I-M- 3 3
(O *4- T3 -r-
JC . 3 C U
O *~3 — ' r—
•r- •»-> (O
a: co o











— J
ro **
o z to
4-> _l O -4->
co 01 o>
u, >i -M 3 S
O ±>  Q. O
•a •<- en
O •»-> C r— tO
•»-> C O r— O
(0 J_ T- -r-
O r— (0 JC JC
(O Q- O Q. O
O

O
0
'^3
fO
s- -o
• «r-
i — O tO
O 0 JD
E . jj?
1 01 •

(U 
a. >oi • r— •£••>—
to T-IO -t->< — 33 O Q
O Q IO 01 0) JC «_)
JC •— 3 i- 0
QJ, • Ol ~O t- • E
S3 c OJ I- 6 35
o • i— i ^ oj 33 jc
3 . JC Q O 1 -*C JC U
•r- OOlOOC O CO
r— I— I C 4-> O C 01 S_4->
us aj-'--t-)fO'O -aioi
O C-OECtoS-V— ^3
•i- a>j-co
-------















(M


(
Q
H— 1
:s
Or
t—t
_l
0t
uu
z
»— i
Qi
O
_J
I
0
u_
o
oo
o:
UJ
o
Q
O
a:
a.
r^
i
0
LU
«J
CQ
«j;
h-

























to
J*
t.
)
•r~
S-
(O
00
CO
O)
o
a)
c
-o
o
>)•!-
>— 4-> S-
(0 •!--(->. 	
3 O  4J
0 0
•r—
O
(O
O
•f—
S-
4-*
•r—
C
w

c: -»J
O ID
•1- +J
C -IJ  ai c
,
_J 4— -4->
O -r-
o

o
a.
t=
o
_s_







QJ
m
«w

>
C
(O
o


«_)










**—
ai
+->
(O
S-
•!->
•r-
C
E •
3 -M
•i- O
00 3
CO \J
IO O
+J z.
o o.
D. 1
>,
<+- 2
o
ro
$_












.
o
o

,
E
S
JC
o

CT>

3
J3
CO
.*:
o
>
141

-------
o
o
Ul
Q_
OO
O
a
UJ
o
13
oo
oc
a
o
&.
CL.
00

o
CD
                  fc
            >> o
        I— 4J >r-
        —*
        c  to  a> m
        c  a. E c
        
               c -M
               o  to
            O n3
           ••- s--o
           •M a> c
            j
           _) M- +J
               O -r-
                  O
                               O
                               C
                               03
                                           V)
                                           a>
 s_
 Q.
00

 (U
                                                    (^   O)  i-        03
                            •r-  l/l  i—  O M-    J=
                            Q  (O   O O O    O
                               I—   i-
                              •  CD  •!->••—    i—
                             E  3        s_
                          . j= a     j= c     3
                         O O   I   i— O OJ   • •!->
                         C    -C   «3     T3  Q-i—
                        •—i  C 4->  -»->S-'i-S-3
                             oj -i-   c  a> o  o  o
                         C-OE   O)-^oo-»~
                         o;  t. &  tD  o o     i-
                        •O  O      -i-  O     C  CD
                         t. 03       o a:    ••- <:
                         o          o        r-
                        CQ         O        O
                                                                                       O
                                                                                        V
                                                                                       o
                                                                                        CM
                                                                                       Q_
                                                                                       O
                                                                                       CO
                                                                                        t
                                                                                        c:

                                                                                        (O
                                                                                        o
                                                                                        o
                                                                                        03
                                                                                        3
                                                                    142

-------
            o
            CL
            co
            O
            OJ
            O
            to
                                                                                      in
                                                                                      J-
                                                                                      01
*
00
rD
o
o:
o

o.
(/>
O

Q_
O
Qi
ce:
o

00
C£
LU
O

o
o
 I
O
QQ
            o
            3
           -o
            £
            o
            o
            I/)
            (O

           -a
            0)
            o
            3
           T3
            O

            Q.

            O)
o

•M
            OJ
            r—
            J3
            eo
            to 
               3
            ^ S-
            •i- O
               JZ
            to Q.
            S- CO
            


                                                                          O
                                                                          +J

                                                                          LO

                                                                           ft
                                                                          0)
                                                                                      C
                                                                                      
                                                                                     ^Z
                                                                                      CT

                                                                                      QJ


                                                                                     ir>
                                                                                     e\j
                                                                  143

-------



10
U-
fr~
CM
IT
1
H- 1
O
*£
O
0
>— 1
_J
1 — 1
00
0
u.
o
a:
a
^_
ROSILICIC (H
o
_j
u.
o

oo
o:
LU
O
— ?
o
0
Q£
Q-


•
O
^—
1
o

LU
_J
CO
^c
1—











i-
ro
OL




O
i— -P £
fO T- 4-»' 	
3 O ,
O -r-
U












f^j
P—
rO
C

>
C
ro
O.
Q
0













•r-

O
>- _l
C 00
o
-a -P
C tO
O ro
_J LU


to

fO

(U
z:

•O
c
O ro
C
t-i o •
c in
• o >— • E
O c • 33
O 1-1 > «J=
•i- • O
• * f") O
So c
-P . ra
-C to CD  a»
i— i— i cu s- E
0) -o > a; o to -P
0) .P 3 
(O •— Q.QT3 -P 3 r— jC
•— 3 E>>s- s_r-a.w
•P ro fOi — O rOOOrO
eC Q_ 1— OO DQO'-DZ









to Q.
-P 3
O O
3 S-
• "O CD
> 0
•i- J-
Q a. 10

• CJ ^
to •(— . x:
E Q. S- o O
33 t- • o o
-C O 0 -C . i—
o o • c CL o og ra
> i— i to c s-
. . -r- O 1— I O> 3
+-> E Q «jc o -P
to 35 S- CL -P ra i —
3 JZ • CL)  Dl «
jc a; s- TO
•> •> -P i— 3 O
 1. 1 — xi o
3 0 O -r- C 5
0 C 3 > ra r-
•i- <1) t/) -P 0)
S- t. 4-» -P S- CD
O> O S- S- ro CD
E f^- o ra a. -r-
«5 LU LU n: co a;



,
Q. >
&M 'r~
0 Q
CJ
Q. •
S- to

33 m co 33
JC C -C
0 O • O

oB 4 ^ 33 r*~
ra -C ro
to s- c_> t.
r-0) 3
rO 0. o3 -P
$- 0 • •—
CU > E 3
C r— ••- 3O
•r— tO O C T-
z: s- ••- *-
32 E O>

- i — J3 r —
•P 3 C eC S-
»o o -i— a>
E -i- rO S- to
S- i. 01 OJ •<-

o
s_
OJ
Q.

CT)
•f—
0)
3

LO
CM

O
4->

O
CM
*
144

-------











*
1 1
u«»
oo
a:

*

o
HH
,f
^
0
K^
o
1— 1
_J
00
0
__J
1
•—J
1 1
LJLu
o
a:
Q
^^_
^^
^
^"•^"
O
HH
O
h*H
_J
> 1
oo
o
Q£
O
13
i
«j
LL.

u_
o
oo
a:
LU
o
0
0
ce
a.


^^*
•o
CD
3
C
>r~
40
c
o
0
*"""•"''
o
r~~
0
LU
— i
CO
>••-
r- 4-> i.
(O •!— 4O<-«.
3 o a> co
c ro E c
CD- O
< rtjm 40
o o
r—













 ro -i- o
> T- J= 4J S-
O) i— f— r— O>
i — o a> ro •!—
O "O O- OQ Q.








l
c
ro
a
o








>
0
CO
a>
o
•r—
>. .
s- -a
a> -r-
> • CO CO
1- 4-> J3
Q Q- -O CO 3
0) C OJ CO
« Q ro • T-
o c ••
o • co o ro
c_> co 40 a. o
E 0 0) E  x: -o o co r— o
O) CO C O 3 E -i- •"-
c J- >-i TJ ro 3 J-
ro ro c c .c en
i 3C •.- HH ^- 0)<
V r- V SZ
i^ 0 Q- 1—
CD
JC
1 %
T1^
4->
CT> O
C C
i- CO
3 T-
T3
4->
jx: -1-
o
o •
s- co
CL)
a> co
4-> ro
ro o
-C
CL >, co
CO C S-
o ro a>
£ E ^
Q. 4->
c o
C 1-1
O 4->
E
•a • CD
••- CO O
OS- 5-
ro at CD
N CL
O T-
•1-1 — 4-^
s- T- s:
3 40 CfJ
fi r
*^— ^. °F^
r- 0) CD
3 C|_ 3
CO
a> un
t|^ 4_> , 	
o ro
^ 0
CO. 4->
O CO
•r- O LO
40 J=
U O. «
ro CD
-o • u_
CL> C >,
^: ro •— 4->
4-> c C
*-^ O OJ
>, CO U
X3 CO CD S-
CD C O)
-O O •!- CL
CD O 40
O i- CO 4->
3 a.-!- J=
T3 r— CO
O 40 -^
J- CD r—  CL.
•i- CL >
i — co o -i-1
•i- O -Q C
(n -c ro CD
O CL o
3 CD i-
i— M- -C CD
t|- 0 H- CL
O
S- CL) 40
-a s- • -c:
>, 3 -O 01
:n 40 CD •!-
01. CD
ro ai S
.. q_ >
U-l 3 O LO
1— C O OJ
o ro a>
z E s- •«
145

-------
o
o
t/o
a:
a
UJ
X
o

CO
Q
O
a:
a.
CO



                  4-

                   O
                   0)
                   a>
                   CO
                   O
                   •*->
                   o
                   ai
                   at
                   01
                   oo
                                                            146

-------
o
 o)

CM
-4->  (O
 u  Q-
 3  >>
"O  OT
 O
 S- +J
 a. > s-
-O  re
O
00
 », re
 en o
    u
 CD  o
 o
 3  >>
•
oo
a:
UJ
o

Q
O
Qi
Q.
CM



O
CQ
«=C
 O. (/)

 >> 0>
r—  O
f-  3
 S- T3
 re  o
   s-
 00  Q.
 0>
 U  (U
 O)  (^
 C  O)
O <*-
03 O
                  O i—
                  o
                  f (U
                  a. u
                  w c
                  o -i-
                  JC 00
                  CX
                     in
                  oo J.
                  bO O)
                  a» u
                  O 3
                  o -o
                  L. O
                  O. V-
                   i  a.
                     o
                 v- re
                  o
                     o
                   T-
                  t. i.
                  O) O
                  O -C
                  3 Q.
                 a. a.
                                                          147

-------
o
o

 I

co
Q
LU
X
CO
a:
a
o
OO
CQ
                 o
o
O)
in
O

•o
c
cu

O)
                 (O
                 O
                 0)
                 
-------
Q
O
O
O
HH
C/)
Q-
co
Q
i—i

cr
OO
C£.
UJ
O

Q
O
 O

 UJ
 —I
 CO
 •=C
O
(U
CO

00
                   +J

                   <4-
                   O
C
OJ
OJ
                   fO
                   o
                   O)
                   cu
                   1/1
                                                             149

-------








IT>
O
o.

1
r~
-y
itff.
UJ
C_3
cc
UJ
Q-
.
H*
CD
i ^
LU
• •
.X
^~
oo

LL.
O
LU
to
«£
a:
LU
>
cC

i

2^
c_>
0
a:
LU
!*
n:
Q-
00
0
^_
o.
UJ
_J
CO
«c
1—
LU
v/
^^
o^
^t
^
U-
o
oo
OtL
LU
o
ZD
o
o
a:
a.


*
LT;
r-"
O

LU
_J
CO

J3
J3
0)
a.

TJ
c
re
u
>>••-
•— 4? i-
re •!—+-> '-x
3 U O) CO
c re E c
CO. O
< «Jm +J
0 0
—
TJ
c

o re
•i- 4->
C 4-> CO
o re
•f- S- -O
4-> 0) C
re a. re
o o
0 >,
_m_ +>
O -r-
O

3

O

O»
"O

•r—
JZ
«*
CO
0)
4J
03
4J
C










cu

re
c

>,
re
a.


O








3
T3
o
j_
Q.
O)
1-
 O
U CO C
(O »O •— <
a. a>
re i— •
O CO
4-> O)
en i- *t—
C rtJ S-
•r- Q. +->
CO CO
CO 3
0) • -0
o -o c
o a> i— i
i- -o
Q. C (C
10 "O
co O-  c
CO O) LU
a> JD

0. >, O
0) 
(J

Z3
T3
O. O
S- $-
O CL.
0
r—
• - C7>
o» c
^~ "^
T3
>» C
J3 ••-
S-
O) 0>
CO
O T3
r— C
O (O

>> - •
> «
C 1- 4-
•r- T3 CU
E 4->
r. to
0 CU S
O D1 CU
S- ra S-
a» j- co
c o
CU 4-> •!->
H- oo re




00 0
00 O CO
10 oj oo
oo









_,_, £
U- U_
*l
— — c
o >> o
o cu to
S- 1— •!-
CU "TU i-
c re s-
cu s- re
H- CO CD















^
.
\J
CO C
> co cu i— i
•r- CO +J
o re re c
i— jz re
. CT> O. O
E 3 CO -r-
35 o o s-
• JZ O JZ CU
O/ 5 I fN f~"
V— i I u_ c
C g*- ^J
t-H C -t-> i.
CU -i- CU O
CT™1 CT -1-- ^ f 1
W fcg ^"^ LJ
CU i. OO CO C
•O O S •r-
$- CO CU E
Ol ?S
w u
CO CO O
r_
re
o c
•4-> O

C -M
O '!-
tO TO
-»J T3
re re
c_
E O
0<+-

41 ^
CO -i-
•4-J C_3
O
3 S_
-o cu
o >
CL'r—
OO
-l->
O) O
3E •*->




re o o
• o in
C 00 LO







_J
[ 1

A
_,^_J
Ll_ -r— U
0
*4 A
2 S- c
o cu o
^ * ^> ^0
s- •— ^->
n3 -r- ra
CQ CO 3=











*
"O
to
r\


to
«i

o
o

o 5
C^-
m^^.
^— I O
* -M
_^d i^-
V -r-
n3 ^
E CO
UJ
•
Q.
i_
O
0
1

"a; si
cu en
4-> <
oo
oo
CO OO
cu ro
4-> .
re JZ O
4-> +J C
OO •<- i— i
2
CTl T3 "
c a) . co
•i- 4J > i —
CO •!—  o JZ
Q. 00 t|_ o




!







	 i
\ i
n
O)
•Q
(O
CU
s:
^_3
S_
o
u_



.
>

Q

A
Q
C_3
^f

Q
C£
*

O 
0 -P
fO
 JC
r- Q.
 Jz:
c o_
^C" I %
3E. +-*
4-> 0
S- Q.
O CU
O. O)
O) S-
0) Lu
&-
U-
                             0*
                                       0
                                 O
                                       O
                                              C
                                          o
                                          C_)
                              0
                              3 CO
O
S-
CO
C
                                 O    E  co  S-
                              CJ S-    CU r—  O)
                             •i- D-  • JZ  re  O.
                              S-    O t_>  S- O
                              O r— <_)     CD
                           CO
                                 C3
150

-------



1S>

CJ
Q.

| —

Ir)
O
Li 1
Q.
.
re
i — t
LU,


,.
B

CO
u_
o
LU

^<
Q£
LU
•Hi
1
1
LU
I—
31
Q.
O

Q_

UJ
	 |
CO

f—
LU

OL
^
U_
O

OO
QL
LU
0
Q
o

O.

•o
> 0
r- 4-> -r-
(O -r- S-
3 O 4->
C m 4J
0

'ttJ
C 4-*
O  00
O t3
•r- S- XJ
+-> OJ C
CO CL fO
u o
O >!
_Ht- -M
O 1-
O













i
C
^^
c
a.
§
o











S- , 4->
<0 W 1 -r-
0) O jf »—
r~~ ^^ (fp*
CJ> T3 U
o2S CTI (T3
*O *_- *4—
C*o
f—

,jf7T >^ *O
o i— "43 -^
 O CD
P CTH4- C
5^ c co •!-
"-•r- C71 01

ty D-'i- >
S- CO i—
flj 01 *o
tt) C t-
i— -r- 0
0 i>i -Z.



t*~~*
•

c
^3
**J

to
c
•r—
-4J
*y
flj
OL
0

(T<
^
^J
4->



.
*~
^f
^t
,
a
-M «!— '
fO C7> O
C I-H "
^ -p- CD
O T3 •> C
O C OJv-
S- -i- C S-
S- -1-0.
O1 fl C71 !S OO
C "O
•r- M— 08 >~,IO
>> S- S-X>
i. 0 -CO
"Or— en • >•<-> o
c:  Oli —
CO CO rO»r- *r— C 'I—
1— S- -Z. 4-> -r- g
S- O O- C
O • •(->-(-) 03 -i-VD
4- LU OO (O O ST"—





fOO3(O(O_i
— J 01 s: —i h-cr> i— cu_
U_ C U_ C «r-
	 l-l- 	 1 •> »•!— ^t-r,
"U- S- U- C •> fO S- (O O-"O
OQ-n3 01 T-O- T-OOC
X> "OO " > r — J3 OO J3 (O
C (O CO "I— O E E (U r—
CO r~ ^ r^ r— • f~ 3 CO 3 4-5 Q}
P— co O*} CO ^~ O ^~ XJ r— • *r~ ^
S-O-r-03 T- OO O^fO
000:000 z o oo o 3: _i
Xi
01
_a
3 ^>
CO 4->
r^
• S- -r-
XJ O U
O T- O OJ >
o . co . . a. -i-
O-JD .Jr oo Q
01 0 CO •£ oZS ro
• {^ f^^ C" C| • (Q S— •
O O • O 3 O-0- O O U
O O- »> O) S- oS -I- r— C
0) C O • •«- . i — O.E-U-t— i
 i— i O OO CO OO 01 OJ >
fO J^ " O1 O CO XJ 4-^ • QJ O *""** O CO
f" f** >-j C ^ • !3 C CD E c" O Cl)
Q. COC-r-OES- .I-H O-OJOS- •! — E
co-ococoojo o ^: -Mcoco-r-
oo-co-T- _c-c oo r— (_> s- (j E 4-> s:
-CO Q- E SI ' — OO- 4J CO tUtUOJC
Q- o T- co oc +Ji-j^i — ^:cuc
OICOOOOi— O 4->co CQJOLUOX3O
X3 CTIi — OJ T--C CCO O)J>iO 'r-X>
s-oooE>— -ao- coc xioo: o-r-
cOr— O-iiicO-r-O COO T-O OCL)
2r—ccs-jDs cs: ore oco
oaiocoaio o o o
rci^_i3ESs: 2: o a.
151

-------


o
CM
Q-

r^
UJ
o
I , 1
LLJ
CL.
t _
r~~
5

UJ
-*

*^r
*
XV"*
o/
1 1
U-l
o
UJ
o
c?
UJ
^J
^t

1
,-
CJ
o
01
UJ
1 —
1C
CL.
o
1C
CL.
i i I
UJ
^J
DO
^t
r~
I-«
o:
u.
o
UJ
0
o
0
Gd
CL.


"\jj*
~^
™ \
3
C
*Tj
**^
k»
O
CJ
V— X
Lrt
"T
r
O

UJ
g









CO
m\^
s^.
US
i
CsL


































>>•"
r- •»-> S-
3 U CU CO
c re E c
CO. O
^C *XJ *** +^
o o
^-«
"•-^


.
re
•
c






,^-»
cu
c- 4-J
o re
•r- •»->
C 4-> CO
o re
•r- SL. -0
•U CU C
re a. re
o o
o >,
_l <4_ 4.)
O -r-
o







cu
E
re
c

^»
c
re
o.
ci
Q
O












1—
^

*
c
o
CO
•r*
i-
s_
re
CO



o
o

cu
4-3
re
~c
CL
O
CO
j>z
0-

c
•r*~
re
•4-*
c
3
O
2C

>}
O
o
o -a
+J i— • CU
re CL cu
T3 -i- S- <*-
cu u o
> cu o o
O 4-> -t->
E re o
53 E s: c
s- £ cu
CU T3
CO T3 S-
•r- re -3
S- O) J2
•n* CD C t-
0 1 -i- CU
o j= z: >
t- CD 0

CU J= 10 CU
-O CD -C
re t- -P

CD > f CO
1 O •»-> CU
2 o j»:
O C 4-^ t3
_i 3 re -M




0 0
LO O
LO IO
1 — -










o
|_~4
^^
•> 1— 1
re
-o
c >,
o re
O CD





•
^.
•r-
Q

•


. -C
O CJ
o
T3
•P C
o re
r™ •
CL CO
E •—
•r- re
CO S-
cu
. c
Qi -i-
s:
^>
CO
-M 3
re o
•r-
CO >
CU CU •
u s- re
re CL-O
c c
S- co O
3 -l- 0

4_> ^_>
{/) J^ (Q
3 re
s- CL-O
o cu

CL O re
CO r— T-
O r— 0

fi ( * '[
re cu
CO O C
•M O OJ
•r- D. JO























































4->
re

^3
CU
CO
CO
cu
0
o
S-
CL
CO
•r-

-* >-
0 3E
O

QJ
f^~ i4_
it! , -r—
1- ^-> cu re
•3, C M- C
re 3 cu s-
S- O CU CU
CJ CJ _l >



>
• r-
O

CD
c
•I—
C
•r—
• ^~
O
O tD
C
• re

cD £-
J= CU
O N

S- r^
CU -r-
<+- •>->
<4- S-
3 CU
CO
cu
o
re
c
CO S-
•i- 3
CD —1
*r~* « ^>
C--»l— "
•r- S- CO
£ QJ O ^~"
E •«-» «3
>> E o
CU 3 XJ J=
i — co cu co
i — — ca-
re CL CU
> r— -r- r-
re J= o
>> C CO CO
CU 0 3
i— co j* z:
o re o
O CU O -M
3: co D: re




o o o
LO r— i—






Q
i— t
•> ^
cu z
1— t— «

re •> cu
> c cu
•r- S-
>, i— 0
co .*:
r— C JO
o re o
o i- c
3S LJ_ iKi




>^
•P
•^
S-
O
J=
4-)
3


>^
CU

r-^
re
^>

cu
cu
CO
CO
cu
c
c
cu
H-





























O
o

CM









CJ
rz*

ft
re
S-
o
S-
3











B
>
•r—
Q

. i—
o re
C S-
l— I 3

4- r—
r- 3
3 0
CD-r-
CO i-

co cu
•r" <~
JC 4->
-P O
•i- -C ci-
3 S 0
• • q_
> O i—
o re
• f*
••-> s-
3 S-
re -c o
cm-
CO i—
•r- 3 CU
CO i—
CU jQ
"O 4-> «r~
rO 1- CO
cu o c
s: Q. o
CU Q.
. CU CO
•»-> S- CU
U_ U- S-




o
o
00
^~






_J
u.
ft
cu
-0
re
cu


+J
$_
o
U-




.
• ^
CL-I-
i- <^*
o
0 «
CO

cu re
cu o
4-> T-

cu
CO .C
CU CJ
-l-> 1
re •!-
+-> s-
CO CD
-o
cu co







c
o
c"
CO

>«J
-t->
•r-
U
re
CL
re
u

r—
IO
•4-J
O






















































o
o
CM
ViO





I 1
_^ ^^
u. u_
»_1 «
\X [ 1 \X
S- CU
re " cu
0. 0 S-

CU 4->
CD CU CU
c e c.





























o
O
O
•*
LO
**








t~~
re

o
t—

re r^ >-,


























re cn-t-> co
X <£ -r- rD
cu c
1— ID
i- re re
CZ> O- Q-



B
-a

CO
jo
CO 3
CU CO
• r—
C~ «t
re •
a. o
E CJ
O
o •

CO CU
E -d
re cj
•r-
r— O
I— CJ

3 il
CD
CO 
-------













*
o
o
— 1
CtL
^—
h— 1
U.
o
I/O
C£
LLJ
O
O
o:
Q_


VO
1
O
LU
CQ
^C
1 —





























to
$_
i







o
i— 4-> &I

3 O (L) CO
C (O E C
C 0- 0
rf 
0 0
^



O)
C 4-5
O <0
C £ 10
O ,
_J «4_ 4->
O i-
U
"""












CD
{S
<0
C

^]
c
(0
a.


o

























LO CO CT> CO CO
LO CO IO CM CO
r—




X

«_l
-^ U.

o^ e /r< r\
P**- V- to Li.
Z O r-
O O •*
« i- O r— i—
C QJ (O OS r—

aj to c c*_ 5
i— >> a> 3 oj
o o a. oa z







•
O
c
|_H

#i
.
(/)
§•
>.
j^~ «|—
0 • Q
Q-
-o s- •
c o co
03 O E
QJ
CO • -C
4-5 E C— 3
• o 33
O 3 -C •
c -a o 4->
1— 1 O CO
s- -a 3
>,O-  TJ
S'i- C
L. i — i— t
4?£ 5














00 00








i^
»y\
LLJ
E <0

•f— fO
oj E
CD O








,
>
•r—
Q

E
3 •
 4->
r— Q.
O 0)
S- Q
4->
O) r-
O. (O
c
to 3

X i—
OJ 3
1— 0
•r-
C i-
O CTi
•r— ^C
C
*"-^















CO O
CM O





r-^
z
** ^D
\^ ^g"
o
O —
**
S- r-
CQ ra
•a -r-
c c
3 C
CQ :r















.
0
o .
>

•r- Q
E

C fO
re s_

0 4->
r-^
C 3
fO U
U -r-
•^* i~
i— o^
CU «I
s














i^ LO oo
CM LO CO




3

*i
-a
c x

r— M
V^ ^t **
1-1 ^
O O O
i — CO
r- C >,
3 CQ CQ



>
•r-
Q

CO
<_)

4->
CO >
ro T-

D-
^
-o
C O
(O O

• 0
co o E
E • CL)
QJ ^ f^ C~
f" OJ t- ^ ^
O T3 O
2 o a>
• O CO
4_> r^ CU CD
to co c
3 O) OJ (O
"O f" C r—
C O CO OJ
i— i ro <— O
Q. CU














un r~^ o
LO CM r—
i— co








CQ
Zf 1
\mJ
S- O V)

O •!-
s- c z
4-> CU
• -i— C7) fO

C S- -r-
*— ( (O 4-* r~~
O^ *r- O
•> O Z S-
• O (O
4-> C 4-> O
co ro c
3 4-> 0 -C
~o 4-> E -t-"
c ro 93 s-
i— i _c s- o
o u_ z:
u_














co
CM





^^
1 — 1
«s
CU
IJ
3
CU
S-
i_
H-






X
CU

Q.


0 •
CL
C S-
CU 0
mo
0
1- CO
4-> fO
•i- CD

CO
OJ QJ
4-5 4-5
3 CO
(O 4->
:c oo

CU r—
1- CO
i- 4->
O) CO
t— «
o
0














en LO co
LO «3" CO







>- «a:

CD
OJ * OJ
C > 3 r-
CU CD 3



-^
CO
J2

CO

n »
• -o
Q-T-
S- tO
O T3
0 3 •
CO Q.
OJ S-
4-5 "0
ro • O
4-5 O
CO O C
i- OJ
OJ • CD
+J E O

i— i c" -M
O T-
o z:
•o c

S- O •!-
0 >,J3

O 3
0 r-
0



CU
CO
3
QJ
Q.
(O
o




CO O
OJ LO





^*
—1
CQ •*
^y C
o
OJ CD
(J C
tl r^
4-5 S-
(0 QJ












.
o.
i_
o
• 0
o
C CO

c-
C~ QJ
fO >
O r—
•r- O
s- oo
OJ
E ' —
^t fO
•r—
0 0
O S-
C CU


00














O C\J
LO 00
CO







oo x


CU 4->
0 C
C 0
OJ E
S- 3
2 fO
_1 CQ


c o
o c
•r— 1 — 1
4->
ro "
•r- •
o o
0 0
CO
CO o3
e£
CO •
• S- 4->
CO 3 Q.
E O QJ
QJ E= t^^i
^: S

CO
E Q^ E
C ^D cD
ro -C
U- 4-5 O
c~
CU O S-
> D- O)
>n~ E
4-530
ro -0 4-5
S- CO
QJ • ro
O-t-i i—
o uj
o •















. — .
OO
0
rx:
cb
o
•~
to
ro

4-J
o
ro
Q.
ro
U
ro
o
1C
4j
c
CU
0
i.
cu
CL.

4*5
C"
CD
•r—
QJ
s

^v.
CO

o
•4-5

00
in

^>
1—
r-^
CQ
3
to
~"^
4.
153

-------





































^
•n
a
t— 4
O
••T"
^4.
(_J
>— *
a:
i
^_
t— *
y
Lu
O

co
a:
i^i
o
Q
O
rv
o


^.^^
^
ni
u^
3
C
^_>
C
Q
0

ifi
\LJ
1
(J

LU
_J
ff}
e£
[__







CO
J*
i-
rt3

23
cc.











V
-£T:
•a •!- +->'->
3 o ai co
C (O E C
CO. O
< rOm 4->
00
  ,
_l tl_ ••->
O T-
o





























i-^. <*• en oo «=f ir> •—
r>. <£> o r— i— en •>
•x S _i C
C t— " •> i— i O
"S. ro « co .*:
O •>•!- 4-> J- •> O
4J CU J_ C OJ (0 -r-
to cn o o T- o a:
.a e •<-> a. > cu
JQ (O 0 3 C -0
•r- S_ -r- 3 O CU f—
CD O > Q — 1 00 O










0)
E
(O
c

£
ro
a.
E
CJ
















•
•«->
a.
ai
o

to
O)
4J +J 4J
Q. ra Q-
0) •!- 01
Q -o a
a>
• « E to o
tO -M C $- CJ
So. CD a>
OJ 4J <"i \/
x: a c -r- re
CJ <— i U_ "O
to o
• O S- CU ^
•»-> -r- a> r—
CO +-> E -r- C
3 to >> •»-> (0
•a ra r- x E
C r— O CU -P
•— • CL Q- 1 — to
ra
LU













































•a
•r-
to
JD
3
to
n
J
C
1— 1

A
to
•(-»
o
3
T3
0
O.

•
S
-C
o

c:
fO
E
43
to
ra
LU


c:
O)
E
C
s-
O)
>
o
CD
.
OO

ra

s-
o
t>-

-o
0)
+->
ro
S-
0)
Q.
O




Lf>
CT>





•ZZ


9t
-M
J_
O
Q.
to
CD
C
•r-
i^





*
>
•r-
Q •
00
^
t ,
O ZD
C_3
ai
C J=
ro •!->
4i^
to o
rO «4- -(->
UJ C
•a  C
to ro I-
to i- a>
cu cu >
C Q. O
C O CD
0)
1—































CTl
LT5








x:
ft
ro
to
to
CL>
-o
O





•
"O
to
jQ
3
to

• «*
O •
o o
CJ
to
ro to
CD 4->
O
r- 3
(O T3
i- O
3 S-
•»-> a.
ro
Z O
to
O ra
to CL
ro
CX. r—
LU
i— •
LU
S-
0
N
*|_
•r-
i ^
T~*
C S-
•r- 0)
ti|a
CU
to c
3 O
S- •£>
O 3
4- r- .
O CU
4-> CO S-
•r- 3
C C -!->
3 CU O
Ol ro
i— 0 <+-
i— S- 3
ro +-> C
E T- ro
CO C E



.
r-. ro
r-- •
c






X
%*-
ft
"4J
ra -(->
C •<-
cu E
'aj •(-
Z O









•
a
c
I-H

r>
t.
cu
> •
•i- O
a: c
V — 1
Ol
•r~ *>
ca cu
s-
S- 3
CU +J
•r- tO
C ro
'r- Q.
T3 -a
s- o
ro O
CD CD




























O
If)
,__



CJ
Z

m
C
O
^
O)
c
• P-
E
•r-
3







Q_
3
O
i.
CD

.
to
g
. .tr
O o
0
oB ro O.
s_ s_
CU 3 O
(_> -4-" CJ
ro •—
S- 3 r-
CD O 'i-
•i- O
. s_
az om-
CC r—
3
S CD




























Lf)
UO
CM




00
^.

«t
O)
t.
3
jQ
to
+J
+->
•r—
CL
B
>

Q
.
to
S
.E
• O
>
•r- >>
Q -U
r—
" ro
• T-
O 0
O CU
a.
• oo
to
E "^3
CD E
x: ro
o

r— 4J
•r- tO
O 3
T3
M- C
r— 1— i
3
CD


































































.
O
c
h—4

to
CU

3

LT> r— O
r~-





	 I

a.
cu
Q
to
+J
o
3
T3
o
S-
Q_

>>-M
•»-> Q.
i— CU
(0 Q
•r~
O tO
cu E
Q_ CU
oo •»->
to
°B >,
OO
to
O) •
C •(->
•i— tO
4-> 3
ra T3
O C
CJ 1-1






























CT1 •=!•
LO VO
OO




O
<: ^
o
»i
« ro
to c
CU (O
r— •!—
3 tO
O -r-
S- 3
CU O
3: _i















•
-t->
a.
cu
Q
to
cj

+j
cu
x:
•4->
>,
CO


                                                       O

                                                       :n
                                                       o
                                                       o
                                                       to
                                                       rO

                                                       >>
                                                       -P
                                                       •r"
                                                       O
                                                       rO
                                                       Q.
                                                       ro
                                                       O
                                                       a>
                                                       o
                                                       S-
                                                       a>
                                                       Q.
                                                        a>

                                                        5

                                                       r~-
                                                       10

                                                        o
                                                       +j

                                                       Cd
                                                       tn

                                                        >>
                                                        ro
                                                        3
                                                        co
154

-------
4-> 4J


































Q
f— <
*-~ *

to

1
o

LlJ
_J
CQ
^C
1 —





to
S.
 S-
(C T- 4->*—»
3 O (U to
C (Q £ C
CO. 0
irf fO co 4-*
0 0
c c
E E
S- S-
QJ OJ
o o
CD CD
OO CO
_^ _|

S- S_
0 O
M- M-
•o -o
QJ (U
S- I.
QJ Q,)
CX 0.
o o



.
re «a-
• r—
C i—




o>
C 4->
O *O
•r" 4-J
E 4-> 10
o re
•r- i_ -0
4-> QJ c
re Q. ,
_1 M- 4-»
O T-
u
•*~~s












QJ
g£
TO
C

>*J
c
<0
ex
5-
o

















CO
**/ ^
„>
QJ »
O ~U
C S-
O) O
S- <4-
2-0
re re
l fy"






A
to

c u
to E
r— 1— I
O.
to
O) Ol
O r—
C 3
to u
C S-
"O ,

c
E TD

^^
• re
00 S-

re
-P
oo

T3
(U

•r—
C
Z3

1 [
O

4->
C
0)
c
0)
o
CO
oo
_^

S-
o
4-
-o
(U
s_
(U
Q.
O




CO

pw










y.
|—
•1
0)
c

•~













,
>
•r—
O

Ol
0
re
o-
i/i
o
s-


























O^
o
p»-






1
K-4

ft
to
Ol

^
O)
to
s-
re















,
o
o

c
o
O5
O
<4_>
•f"-
z

to
•r—
O
c
•f—
^-•
^•K
!_-«

















































CL
S-

o

.
pz
w
t~
O

00

E
3
C
•r—
E

r—
<:

S-
OJ
to
•r-
re
^






















LO r*.
^t* ^N








0

•



C*
O

^~
fl3
s-
^3
4->
r—
3
O
C
01


s-
Q}
to
•r—
re

























O i — LO O LO CO i —
LO *d" *i" r— *d" (*^* ^"
l— CO r—


>
3E
•t
O)
X r—
CO h- i—
2! '•-
<: « > x
CD « 3 to K—
X >> O C
-cr u_ T- re 4-> 4->
re "(_) CQ i- E
E " to re o
E re E o s- s E
> E t- N ^3 2 fO
fO fO QJ CO QJ QJ QJ
OO t— ^ >- O Z CQ












. ,
• O. >
~O S- • T—
•r- 0 > Q •
tO O 'I- >
-Q Q «T-
• 3 • • -a
O to E Q- • O
o a; s- to • o
•>JE: o E D- to
to • o o 93 j- • E
re o f~ o E Q)
CD E -i- • O O O) -E
i— i o- E ^= o
s_ o. S3 • r— o o
re *"t- -E 4-> T- s-
4-) ^* CO C-5 to f"~) p— 4-*
oo re to 3 -i- QJ
O_*r~ >^"O r~ ^^ l*\
tu -r- co re E -i- o
E 7^ to ^ h— i .0 y
O T- O O
— 1 3E 3t 3E






















CO CD
LO LO
CVJ OvJ







NX
cC

O _l

re "
S- 0)
O E
Q -r-

i — 3
UJ 	 1

0
o

to
o
3
-o
0
s-
D-

^—
re
S-
3
4->
p—
3
O
•r~
S-
01
• ^c
o
0 O

O E
4_> n3
C (/)
fO C
c/) o
c z:
0
3EI






















Lfi Q^ ^J^
co o LO
C\J i —







_i
Li-

re _i ^.
i— U_ O
o
o «\ ».
re re s-
tO Q. O
E E >)
QJ re s-
Q- 1— O-











•
>
O T-
<_) Q

to E
a> 01
r— CH
•r- 0
i l r
X 4->
QJ -r-
H~ • ~y
o
O C Q. OJ
-M i— * s_ a>
c o ^^
rtJ •• c_5 o
to E t-

o s- ai x:
y +J fV (_)
•i- 1
2H Z


























m
0
2:
3T
^
O
O
1 —

to
re
>>
4->
O
re
CL
re
o
(^1
o

in

•P
0)
u
S-
ai
ex

4->
JhZ
CD
•r—
QJ
S

r*^
to

o
4->

C\J
LO

>^
r—
i —
re
3
1/1
— )
*
155

-------




































0
*—*
o
 £!
(O T- 4->- — •
3 O O) (/>
c ro E c
CO. O
«C  4->
0 O
.(->

E

S-
O)
o

co
•
13
S-
o
^
O)
(O
S-

Q.
+J
c
E
c
^
O)
o
CD
GO
•
=
s_
o
•o
O)
n)
&.
0)
CL
































,























































































































00



•
O to
in
i— C



a>

o re
•r- -M
C 4-> CO
o to
•r- i. -0
•U OJ c
ro a. re
0 O
O >i
O -r-
0



^


n
I/)
QJ i— i
Z 3
10 n
4= o
O 0
O> ro
-NX ^_
to ro
-J CO












a>

10
c

>,
c
(0
a
§
o













I/I
E
a>
CO CO 4->
C -l-> 10
0 C >,
•<- ro CO
> • -4-> r-
"*"" > ^
Q -i- S- cn
Q O) +-> S-
Q. c a)
10 c o a> c:
Si- E ' ' '
OJ co C
§j^ >*j
ai -Q co
QJ 4-> > C
i— 3E CO O T3 O
>tD O> -r-
I- I- CO •»-» 4->
3 O) • lO tO
. 4J -U >,tO t. l-



.
ns

C



-J


A
CT>

3
(/)
S-
(U
r—
•r—
JC
0

























Q-r— CO On O) OJ
i. 3 a> C • a. a.
O O -g" CU j^> O ^3
O -r- O C
S- C UJ
C OVr-

o










r—
^J-









^—









^
^_

M
(!)

+->
UJ



















•
>
•r-
O
S—


•
-!->
00















,
0
c






1£)
CO









^^
_j
A
s-
03
CO

~
^«
•r-
a.
•»J
S-
ai


o
JC
o

a:
(/I
c:
u]
-C
0
c
o
o
•1—
j:
C£.



.
CO (O

i— C






Z 0
y* **~f

A A
^j C5
C T—
OJ i—
ca CD
O> n3
C 0
•r- O
Q- a.





.
u

1— H

n
to
•t-^ ^
(J •!-

T3
0

rt 35
• f^*
(0 O 0
•r- O
c -a
O 4-> C
JO tO
r~.
Q. co
E •—
's co J-
(O O)
Q. • C
QC •!-

CO T5




O^ to oo r**^« ^7^ *d* ^^* oo
O OOCMr^ LOi— i—CVJ
f— f_ 1— ^—



 •> O OL
« TJ u -o x: ro "
C ro *r— C O CD ^ ro
o 2:20 ^2:_c3
c +->c:-c ro-t-> r^ro
•r- S-CO ES- Q-E
i — o fJJ -i- T- O O ro
<_} 1 1 xx ry 	 i r> r-^ | —






(O
•r- •
• C • 0
-o s- -a '-- c
•i- o -i- o i-< -a
CO M- CO -i- -r-
O »r— c\ c" • «\ CO
3 r— 3 O T3 I— .O

O CO -l-> CO
** rt • <^i fQ
. C|_ . O 3 E •>
O O O O CO S-
CJ <_J OJ O
• i — « • 4-> O
. O • -i- • 4-> C
• E O E • O Q- O-i— i J_
o 33 33 > s_ ai a>
C^ r~ r— r~ (f— "^3 Q f^l • -^
C-3 *^~ C. 5 r*^ t. (_-> cO "X
i — O (O • E O. O
•r-OJ CO -OCco33$-Q-
CUt-i_4-> roi-33oc_3CO
>>^ ro > J- 4-> 4-> J= ro
i— 2 TJ O> O COCOCJrOi-r—
i — 03 C -C •,- S_QJ4->
cvzroo  i-i — «f
00 CO t— 1— 1—








f)
o
•z.
^~
_L_
o
o
1 —

CO
ro
>,
4J
•r—
u
ro
CL
ro
u
m
O

Ht
4->
C
OJ
o
S-
OJ
CL

4->
-£^
cr>
•i —
OJ
S

r .
CO
o
-«->

CM
tn
>,
1—
f—
fD
13
(/)
-*«
156

-------



























*
o
1— I
CJ

1 — 1
ry
L_
F*~
HH
z
u_
o
OO
a;
UJ
to
O
O
a;
Q.

-o
O)
c
4J
c
o
o
10
r—
O
Li l
L-LJ
— I
CO
•=C
J—






V)
\x
^•b
i-
rt5
«V>
g
ac







>» 0
f i % >rM.
-^
c  -4-*
O
--^

O (O
•1— -(->
C 4-> tO
O 03
•r- i. -o
-i_> a; c

u o
0 >,
_J <+- 4->
O -r-
U
^— ^






at
c
>i
03
* O.
O






•t-J
C
0)
e
>v
cu
>
o
CD
oo
rs
s_
o
n-
-o
0)
•*->
T3
(U
ex
o




•— r» o
^- r^ o
•~ •"




	 i
 Jk£
•> O) o
(0 -r- S_
a; i— > (/)
(O C -O Or- r—
O ro S_ S- O) 03
O •!- OJ O
M- C C •»-> -r-
O O CO Z3 OO E
.0 • QJ 3)
. i. (J •»->>, tO J=
o ns c n3 JQ  -l->|
00 -0 03 v-
r- i_ . « O) •»-> i.
•i- 00 CT)
O -r- -r- (O O) 03 , 4-> S_ T3
C •— J3 P'«— CL) OJOO
O O 3 C C Q.-M 00
•£0 ./,.£=> 0.^^
=3 =3 rs





















i— co co
tn r~~ co


O
y

« >J= O
+-> 03
•r- 4J •
0 ID O
s_
i— •> 4J
03 03 C
+J > OJ
to ai c_)
>> £=
S- 
u
3
•o
o
CL.
C
O)
en
O
4->
•r"
2*

Z
^-»























r-^ r^
i~~ r-«-





00 >-
Z --3
*» «i
en c
S- O
3 to
X} S-
CO O)
-^ -o
o c
•r- CU
> :n




-o
•p—
to
jQ
CO 3
QJ CO
•r—
.. c «
O 03 •
O O. O
E CJ
i5d
^= to a>
o E -c
03 O
cr)'r-
1- i— O
3 r— O
X3 -r- -r-
to 3C S-
-4^ en
O CD ct
•r- ^:
> 1—






















0
in
00
ft
00




o
















                                                     o
                                                     o
                                                      o
                                                      (O
                                                      a.
                                                      c:
                                                      01
                                                      o

                                                      (1)
                                                      ex
                                                      O)
                                                      o
                                                     •<->

                                                     c\j
157

-------
<:

z:
o
<_>

 i

UJ


ra
-C
Q.
(/)
o
x:
a.

u
•r—
t.
 S-
 O)
 o
 3
"O
 o

 ex

 c
 o

 OJ
 fO

•r—
 (O
 >
 fO

 CO
                    i-
                    o
                                                                      153

-------







o
r-
Od
O


Q
HH
O
^*.
0
a:
o
— i*.
Q.
00
O
Q.

LL.
O
00
o:
1 1 1
o
Q
O
OL.
Q.


•
CO
^~
i
o

LLJ
	 |
CQ
^C
h—






















to
 <~>
3 O O) CO
C re E C
CO. O

0*0 **
f—~
• —






 CD a) a;
3 333





o sr o CM
^3 f"'~ P"^ co
CM CO CM r—





c -t->
o nj
•1— +->
C 4-> l/>
o re
•r™ S— "O
4-> OJ C
rOQ.ro
0 0
0 >,
	 1 q_ 40
O T-
0




_l
_J
«=C •
Q 01 0)
*» I — i i — i—
S- r- r—
E re '> '5J
•r- c x: s-
1) o re re
CTJ C.} ~P* y


•












E
(O
c

^^
c
fO
Q.
£

O











-a

to

3

«\
cL
> u
•r- O •
Q O O-
S-
E  a
S +J "o *"*
r— a. 3d)
O OJ • "O ~t~*
• £_ f^ C^r O ^
C3.-M s- s- x:
s- cu •— o Q- a.
o ex. re c_3 c/^
O S- r- 0

. (o -(_> +J t_ o
E X i — to 3
w CD 3 3 •LJ i"™
x: i— o -o r— re
O -r- C 3 C
C S- >-H U O
•O O CD ••- -r-

•r- c ai CT> re
r— ^"^ *^ e^ ^y
i— CU
*^ 0^






a> at
3 3





r--.r-.Lf)
CM CM





_,
u.
• _J
+J I— 1
>r_ A
o s-
a. o
>, re
(U 
a. oo


















•
> t/>
•r- to
o re
• en

§3 o
• e" ^^
O O 1
c x:
r- 1 C +->
CU -r-
c -o E
CD S— CO
-a o
s- ca
o
03


cu
o
re
c
OJ tt> CD d) CD 3 CU
33 333 U- 3





LO LO ^3- LO CM VD O
i — CO IO CT< 00 CM **
co r^ i— LO CM «d- i Ell«>S z^<
U_4-> >>•!- « "O E
•i — •» re "o 4-> cu re
"O tooca re aiU'to
04-> "oc OJCUS-O)
S-re OO) s- 5-3:3: o
rer- -r-s- o rereco c:
rf\ r\ ~^ t n 1 1 QJ i ^^ ~~i






B
Q,
S-
X 0
0) o
O- •
X E to

i — LJ cD •<— -i—
Q. x: ~o • •  I/)T-OS-3 > ••>
cjreozsxjocoto T- o •
x: 3 i— < cj> a o o
CD D- to to • « O
-LJ (/) p— t/) " *r- • • (/^
• re o re - E • Q.O E •— •
o x: x: s- . 33 +-> o.^ cu re E
CQ.o_a>ox:i/>'r-i— < x: s-cu

O>>T-t-. TDtOOO 3 CO
"X:4->2: >C-r-00 0- T-

•4-> O"O>CU i/13E'CT3i/) S-
to3 S-S-lOT3-r- D- 3 +->O
3O+->recucc2:i— s- «-o s-o.
•O4->cx:toore CODEC ocu
C5-rei — COi — •!-> O£ O CU i— < Q.CU
i— i re r— cu o E  i— • x: cus-
CQ O- CJjO C S- U_ O O CU U_
U_ C. ro T- z; J_
0 UJ LL. U_ U_ U_















- — .
j-
O
Q_
on
•^|—

o
0
r—
C/)
03

•r-
0
re
a.
o

j-
o
Q.
en
or

_i_>
cr
ai

OJ
Q.

4->
x:
en
OJ


LO
00
O
+J

LO
r^

>,

r_
re
3

ZD

*
159

-------




















*
o
1C
t—
o


vt
^J
I"H
^3
^t

o
h^
O
-i—
o.
00
o
O-
u.
0
oo
a:
ni
0
^~
^J
o
o£
ex


**T^
~o
cu
us
c
'-p
c
o
o
/•Y"1
OC
'
1
O

LLJ
QO
<£.
\r~
<£
Of










0
i— -p £


o ,
_J t|_ 4J
O •<-
o










a>
S

c

^,
c
s

0










(U
"S
to "O
 a; x ojcuaicDcDaitDajaj cu CD  ^^ f" ^^ ^~ r~~ CM




fr-H

«
X 00 O O «C CD
j— HI SE co SE: <_> i—
3E -3 r-
* * z •» nz <^ ** ** i — i o 'r—
^•o— J-ro co cD-p'-oxiS'-. xz>
_i «C r— u_ a» i— "O—i ai:zo i— i— c
§*P 4-^ *— I " "^" •* r^1 rO •* •* O
OJtO "O i— i rO«co
•>rdt|_ S3cn s_a> »i — ^_> -a >,ca o en co c s-
rOCC Ororo O> i— a) ig » COCC +->O rO ••— QJ
CL CD S -P2O 4Ji-3C>> 3OJ-enCi— ,_;5q_
E >— O fc- 1— co s- ro CL S- s_ cnS-reccDi — i — •0*4-
ro CD S- ra-i-ro rOXIOJCDrO 3raCDOS-OJ rood)
i_ ac CQ co JE: ex. o o Q u_ CD «a: o ^ _i i— ^ a CD --3

C»- >i
s- ^
Oj
r " '
O ro
•1 —
CO <_)
. O CD
O "O '"~ CL
to CL o •>— -P co
•P 3 • CO CO
O • O • CLX1 n3 "O
3OS- CO O S- 3 >— C
•OC C3-' E CJOCOD-rO
O i— « CL > gj <_)
i. i- -i- x: cu^-or-
O-« tOOQ CJ -PE-ErO
t-EO • > • x: CD S- •!-
•i->..x: . .-r- -P CL^-O-E'
t-'»-OOCJOE OQ to COOOCO 35>
•OQiCCJOcD.o 3 Oi- Ex:-r-
o x: i— ii— x: CL co -o x:4J.a)oQ
CCLcna8ra>OS-«3 C Q_ CD E -^ O
H-ttOT-»l-E OEi- • H- i Q-OjO l_.
^3 QO QJ ^^ 13 ^3 *f^ t_5 ^U ^3 CD ^3 n^ • -^^ i/)
«x: I-O-PX:CLX:X: oo x: r- o s- "C o E
L. O. i- 3 rO r— O CLr— C_3 D- -P (OrOtDT-CDOJ
0) aj+Ji.3.,-.,- co oc -o +J s. j^ co r— x:
•r->'r-tOCDOQJtOOr— O -Pro t— iCdJO-CLUO
ccocro-»--PtO'r-x: ceo cu.*:o3
•r- T-CL-S-T-T-r— XJD- rOC XI-OODCCO
T3-T3"OQi-Pl-cOT-O COO -P-i-O
fcz3S-o«a;T3coxi2: cs: s-oac
>-r- O O O O
c3cDcD3e3is:z: s: zo
                                                     O
                                                     Q_
                                                     o
                                                     o
                                                      ro
                                                      U
                                                      ro
                                                      CL
                                                      ro
                                                      O
                                                     O
                                                     Q.
                                                      C
                                                      OJ
                                                      o
                                                      S-
                                                      QJ
                                                      CL
                                                      cn

                                                      CU
                                                     LO
                                                     CO
                                                     LO



                                                      >,



                                                      ra


                                                      CO
160

-------

















*
^p
1—
Qi
0

*
1/1
Q
K-t
O
^
£ ^
1— (
o:
o
re
Q.
CO
O
X
CL

u.
O
CO
O£
1 1 1
ULJ
1"">
Q
O
Q:
(X


*— •.
"X3
QJ
3
C
•r—
C
o
o

00

1
o

UJ
t
GO
tgf^
t—
to
J_
 C
(O Q. (O
O O
O >!

O -i-
o
**-s














OJ

%
c

>.
c
s
s



















•p
u




CM
CM






_l
LU

**
to
01
c
'£
^^
10

0)

•r"
x:
™J[







.
>
•r-
*™t

ro
TJ
•r-
S_
o

I_4,B

J*J 	
0
,_

C
V
TJ

U
o
^5











4-> 4~> +->
 OJ
*Tt ~Z ™Z
-* ^» -*



o o ^r
OJ r—











X
^C r~*
0 »d
* ^3
Q. C "
O OJ 4J
J- T3 QJ

+_> CO r—
ro ro O
i r\ i™5



•
_>
Q

a>
u

>
• S-
> QJ
•r- OO
Q
13
• c
tO (O
c:
 3
s -gi
C 30.
t- . -P
OJ CLr— •

to o o to
CU O •>- 3
SB S- -0
c en c

f—
O







•I-3 -4-J
tu ai
-» "a?
jfc _&



LT> cr>
r~~











_l

C O) to
C r*\ ^,
0) O
Q- Of







4J
O>
_3-



OJ
00
OJ










(~$
1— 1

o
^'^
r-**
o>
^
rO
O
O
Q-












•
>
•r-
O

•


o o
0
-o
-P C
O ro
r— •
CL tO
E f

£> j_
QJ
• c
a: -r-
^r
•
O





ooooooou
cccccccc
•P -P <^ C_ t_ t- <- C^ <_ C^
QJCU33333333




r^.COC\JOP^CMOJCM^i-O
r~~ r~~




_j
i . .
^D 	 I
** ^t
r. {/^ ^£
>, -M a. I— 
X -p- CD •»(— *=C r—
^— c^j ....... I -i-" OJ C. 3 •» •» fO
K^ CL) >•"" •* 2 ^J ^3
•* QJ *j^ f i QJ ^ ^^ 4~^ -^
^J LNX n •rp~ r~™ ">O ClO ^0 ^O
C ro O O > r— C IS
^^ i J C71 C^ W^ *^~ C3 t— ^
"C? n3 rtl *r^ ^> P QJ ^~ ^^
tO •+-* O O t- JTT ^* > 4-* O
t^,— .^.^ t, (/j (j, — -3 t/)
rO rO-C-C O 10 •»- -r- O 3
f\L (/) c_J C_5 ^y p^ fy* <^) (./^ jgr









.
>
*•- >,
Q •«->
•p—
c^ s-
C 0

C • -P
•r™ > ^
-Z: Q <
o -o >,
C . O)
S33 i—
$- x: ro
x: aj o >
O N
•r- . QJ
l_ i — 4_> QJ
OJ «r- CO CO
t(- -P 3 CO
<4- i- T3 O>
3 O) C C

•P (U
CO (—







4_>
0)




0
to













^

A
ro

O
S-
3



















.
>
•r—
Q
B f__
O ro
C S-
•— i 3

t- •—
r— 3
3 0
OVr-

fl3 C7^
v ^g^
01
(—















































ro

C
s_
o
<4-

r^
ro
CJ
<4-
0
o
CJ

^~
• p.
o

c
Q
•»~
c














o














O CO
s- to
ro OJ
O -P
(O
S- • -P

•r— *i—
i — t/) T3

O ^3 4->
CJ (/) *r~
C








4-J 4_>
QJ QJ
3E IS



CO <*O
r— CM
r- C\J









I
U.

A
_l QJ
(TJ
« CD
5 s^*
o
•p -p
S- J-
ro O












.
>
•i—
Q

f,
CO

ro
O
•r—
§
JC
CJ

•r-
s_

,
-P
• i —
t_)
ro
Q.
ro
O
	

j-
O
CL.
CO
—r—
I
-P
£Z
O)
o
S-
OJ
Q-

-p
JZ
en
•i —
a>
2

uo
oo
o
-p
LO
f*^

^w
i—
, —
ro
3
I/)
— i
*
161

-------
                        
o


C£
O

  «»
>£
       •— 4-»  S-
        (0 .r- 4->^—i
        3  O  O> to
        C  <0  E C
        CO.    O
       «C  «Cm   +J
           O O
                 OJ
              C 4-»

             •25
           C 4-> to
           O  ro
          f  i. -O
          4J  0) C

           J
                 O
                        s
                           cr>
                                  o o
                                  o in
                                  in co
           o
           o
           ro
                        «
                        E rO
                        •— C
                        (U O>
                        3: CD
                                  (U
 > _i
 C U-
 o
 to   •
T3  OJ
r—  O
 ra  S.
 C  OJ
 O -r-
o a.
                                             ,   -^
                         OJ o 3
                        r— U.
                        •— < OJ
                         ro    .C
 s-
 a>
                                                                                                                              o
                                                                                                                              CL.
                                                                                                                              o
                                                                                                                              o
                                                                                                                              CO
                                                                                                                              03
                                                                                                                              CU
                                                                                                                              to
                                                                                                                              O
                                                                                                                               J-

                                                                                                                              O
                                                                                                                              Q_
                                                                                                                               OJ
                                                                                                                               o
                                                                                                                               S-
                                                                                                                               OJ
                                                                                                                               Q.
                                                                                                                               cr>

                                                                                                                               O)
                                                                                                                               S

                                                                                                                              tn
                                                                                                                              oo

                                                                                                                               o
                                                                                                                              4->

                                                                                                                              LO
                                                                                                                              r^

                                                                                                                               >i
                                                                                                                               to

                                                                                                                               CO
                                                                162

-------























•*
LU
0-
Z3
oo

I f\
VJ
o
*""*
o
o
ac
S
0.
oo
o
^U
^*

LJL.
O
CO
O£
LiJ
O
§
Qt
D-
*
O
LU
_J
CO

CO
3

£
O

•^3
CU
en

O)
£
3
to
^J
o>


O
^>'r~
(O -i— 4-> '— ^
3 O O) V)
C 
C •!-> CO
O (O
f- S- "O
-M CU C
(O Q. (O
O O
O >i

O T—
o









O)

(5
c

>1
c
to
o.
g
o

















•f— CO

CU
r— t—
3 • O
CU -t-1
i — CLoO
O CU

Q-4-> i—

O O. to S-
CO 3 C
• tO +-> -r-
Sx r- z:
O) 3

O -r- S-
C S- (O
•o o cn-c

i— 13 D-
r— C

1 *
QJ
3




•
to co
C i —








_i
Lu
_l
1 1 «l
B >1
CO CO
1 	 ,
o c
0 0)
zr CD








,
"X3 •
•r- > •
CO T- O

3 1— 1

to •>

• S -t->
C 0 3
I-H -a
> c
• S- H-l
> CU
s- co -a
at c c
co o re
C O r—
o E
o C

u_

i— T3
r— C
O fO (O
•r- C
i- O •
O -r- 0)
J= CO O
Q. (0 C
CO O O)
O 0 S-
Q. to
s- -o _i
at a>
Q. O «
3 3 4J
CO T3 O)
0 S-
•« S- 0)
ai o.4->
o s- -^


Q

.
c:
_£
Q-O
3
O •
• CD CO
a. 3
s. • -o
O E C
O CU ' — i
_c
C— 3 C-5
^"
u_





>>

4->
C
a>
S-
3
O

•!->
O
C
a>
cu ••-
O 4-^
,
r—
CU
1 >
a> •!-
S- 4-> •
Q. CO
co (o 0)
•^ o ^-*
<0
•r- CU D.
O CO to
<0 3 O

• ** TD Qr
E c E E E E
3rtJ-O3 4- 3 33
3 CU 3 4- 3 33
OTJOJO ro O OO
4_  +-> > to > > >
.(_>, 	 j-^+J 4!? ^j" 4J~+J
CU *r— (T3 CU CU CU CU CU
3-OE3 3 3 33





^D **ct" CD O^ CO OO
^VJ ^~~ LO VO C\J ^^"
C\J i —



1 	
	 1 — t
1 1

>>
to Q +J
en i— " x -r-
Q C 1—0
i .-.-I h— i «r~ «
U_ S- 0 « CU
« CT1 OO r— C ro
QJ CTl Q) Q,) 	 i
•i- o cu -4-> -a
C r- ••- O CO i—
O CU e~ O 1O to
QQ ^ 3 D- Q. 00

£
0
0 >
• *r— *
-O Q >

35 CO • Q. CO (O • Q
^* c"* OS— i*"> *^ >
o o o o 3 T- •!- en
•r- o co s- Q c:
08 •!-> CU „ 0 -r-
(0 4J E "•— • C
COS- rO3Q.Lu E •!-
>— CU JC CU S- c:E'
ZS- D-CD-MOtOCDS-
3 o jC c i— -c: cu
CO4-> J^i — OCUQ-COON
— i— to fO "O E ' — "p~
-l->3 T3 +J J_ -r- T- «O S- i —
(OO HHCCUOOOS-OJ'i-
C-r- CUJl^O O)4_4->
S-S- -C-OOO -C4-S-
cucn 4->-i-o o;T-3Cu
4Jet S-Oin SfOU-
C O O -4->
H-I Z O "-3 OO
                                                   o
                                                   Q_
                                                   O
                                                   o
                                                    CO
                                                    to
                                                    o
                                                    (O
                                                    a.
                                                    03
                                                    o
                                                    o
                                                    D-
                                                    OJ
                                                    O


                                                    O)
                                                    Q.
                                                    a;


                                                    tn
                                                    o
163

-------



























O£
UJ
0.
to
M
oo
a
i— i
o
SPHORIC
o
a.
U.
o
CO
f^f
I^U
UJ
o
o
ac
a.

^^
•o
9)
3
C
•r-
4J
0
CJ

Ol
r~
O
kl^
m J
2







to
^£
s.
re
s
a:










>>
r—
r— TJ
o re c
•r- c re
s_ o
o •<- «
JC W) T3
a. re c
10 U O
O O E
JZ OJS
Q. U
i- ID 'I-
a> a) o:
Q. U
3 3 « •
w» "o o s
O CD O
.« i- re OQ
a; a. u
0 -r- S_
«O 10 JC O)
C T> O >
J. i- r—
3 O 4-» -r-
u_ re re oo
o
^~.-«
^> ~
r— +•> i-
(O .r- 4->«— -
3 O tt) 
0 0
v-*

^^
(V
C 4->
o to
•r- 4J
C +•> «rt
O re
•r- J- -O
•*-> <1> C
re Q- 5
_l 4- 4->
O -t-
u




* •
10 re
• •
c c




H-
^^ 2-
^
_j <_j «
"-> S
» 0
"•O CO
o c
O> O i-
re E a>
UJ= >
•r- O r—
j— >r— «r-
O Q£ CO








a>
E
C

«^
s
to
a.
§
o



















>
•r^
a
g
j=
o
•
+•>
w
3
•o
C
t— <












E

3
(U U
u re
re >
c -*•*
S. -M
3 i
^ ^
+^
•r-
t-
O
^~
•M
3
•i >
•r™
>^ Q
a?
^ o "re
re c s-
:> i— » 3
4.)
 3 O
10 OVr-
0) 10 S-
c re CD
C X «C
ai 
                                                 o
164

-------





Q.
_J
LU
^i
LU
LU
„
CO
o
0
n:
Q.
CO
0

o.

LL,
O

CO
CC
LU
5S
8
QC
CL.
ci
CM

u
LU
	 1
CQ

^«







to
L.
re
i
Qi

O
i— 4-> il
(O -r- 4J. — .
3 O O) CO
C (O E C
C CL O
3*0
^









O CO
*"~ JH






-— .
O)
c: +J
o re
•r- 4->
C 4-> CO
o re
•r- i. -O
4J CU C
re CL re
O 0
O >i
— 1 <+- 4J
o •<-
o






Q


1 «t
ii o

A r™
O) Ol
0 +->
$- re
CD O
•^ O
0. D-













c
re
c:
^^
•o
c
re
ex











^
>

Q.
8 1
CLO
CO 3
O O •
.C S- 4J
Q- • CJ3 CO
1 Q- 3
21- • TJ
O E c
4-> o 53 •— i
0 -C
O) 0 0
Lu C









LO '"•
>—










1^
_J 1—
1 1

« <0
co •*"
S 1
•^ o
z °






*
o
o

•
t/)


5 5
A ^ *
Mobil Oil Corp.
Mobil Chem. Co.
Phosphorus Di'
Monsanto Co.
Monsanto Indust









O
o







a
i— i

«*
to
en
c
»i—
5-
CL
co
re
-o
o
co






















































.
CL
i.
O
O
E
CD
Occidental Petrol



































.
-a
•r—
CO
J3
3
CO
^
Q.
s-
o
0
JC
0
s_
cu
o
o
n:





























CL
s_
o
C_)
to
o

+J
CO
re
r—
CU

-o
c
re

Hooker Chems.
subsid.









IT)
LO











'z^
h-

A
re
•r-
.£>
E
3
'o


-M
r—
re
0
CU
CL
co

"U
c
re

re
o
•r-
Electrochem
Chems. Div.









i— 00
«d- co







•^r
h-
h-
-si

C **
to 2
CO O
re CD
O)
i— i.
D- CD
s: co














^
• *r—
O Q
0
-C O
o
 CO
•4- 3
*4— "O
3 C
+J
CO









r— CO r—
CM CVI i —
LO




— 1
Ll 	 1
eC
•*
CO •>
O1 CO
E i—
•r- re
i- 0
CL.C i—
co co re
4J
CO) O
O i— I—
Q. O
s- to
re 3
t— Si









>}
4-^
•r—
i.
O
3

Tennessee Valley





























to
•r—
CO
re

j-
Q-

re

c
o

0)
i-

NOTE: Capacities
165

-------



IO
0
CM
Q.
1
LU
i— • i
X
0
h-

LU
Q.
A
CO
•^^
O
ac
O
D-
CO
O
a.

u.
0
CO
OL
LU
O
a
o
(V*
UB.
a.
•
CM
1
O
LU
_l
CO
<
1—

















00
j^£
i_
(D
§
0£





O
>>T-
i— 4J S-
,0 •.- 4->^->
3 o ai 01
c 
o  01
O (O
•t- S- T3
*-> i
_l M- •!-»
0-r-
o











CD
E
.
c*
(O
o
CJ








>-
z «(
« o. •
01 Z
i— "h—
^  «— "
t. O1 «r-  s-
01 &- -C 0
as S- 01 s-
•i- o ,
S- 4->
O i—
o 
•a -i- a.
•r- 4-> CO
• 01 01
Q.^3 (O -O
S- 3 i— C
O O1 O. (T3
O
«\ *n •_
r* ^^ ^^
e • c «3
3 D- rtJ O >
O J_ •,- . ••- >
r— O • E • O "O •*""
O CJ 01 95 > O Q
i- E .C >r-
4-> • 35 O Q • E "—
O) E -C O E 2) U«O
Q-cDo (-•alx: c s-
.C • 4J 01 J= O 1—13
•— o i- -o o E o •«->
re  r— 3
ca>o.aijjoa>i/> 3u
«) ^ O 3 f- 3 OD'^
"OO3IOO M-T3 OOi.
•f- O 3 C (O Ol
O 3C fl3 1-1 X  CO
O CO I—
166

-------
                  10
                  §
                  Q£
O
               U
         (O -r- +J^~»
         3 O O)  W)
         C (O E  C
         CD.     O
        
§—i
CO
O
CL
to
ct:
o
o
o:
o.
       0)
    C 4J
    O «
   •i- -»J
 C -l-> (/>
 O  (O
•i-  S- TJ
4->  0) C
 ic  Q. J
_!*»-•»->]
    O -r-
       O
                           P
                           3
eg
 I
o
CQ

-------
                 (U
                 o

                 c

                 3   •
                4-  cn
                 O)  on
                CO
                    4->
                    0)
                 Q-E
                    0)
CO

U_
O


cc
Q
s
a.
CO
e\»
 i
o
03
                 03
                 no <4-
                    O
                 CO
                 (C r—

                 f/> TO

                 O) OJ
                 O O
                 3 C
                -o ••-
                 O I/)
                 5-
                 CL 
                 O T3
                 rO C
                 C rO
                 S-
                 3 O
                 »t-  O
                 O f
                     a.
                 00  CO
                 s.  o
                 01 -C
                 u  a.
                 a  o

                 1!
                 a.  o
                                                                                                               00
                                                                                                               0)
                                                                                                              T3

                                                                                                               X
                                                                                                               O

                                                                                                               i-
                                                                                                               a>
o
 (
                                                                                                               tM
                                                                                                              o
 0)
 o
 S-
 CL)
 Q.
 CD
•r-
 d)
                                                                                                              E
                                                                                                              (U
                                                                                                              O

                                                                                                              (U
                                                                                                              a.
                                                                                                              _CT)

                                                                                                              a>


                                                                                                              o
                                                                                                              IT)
                                                                163

-------














CO
LiJ
i 	
p—
rx
CO
o
a.
_i
o
a.
0
•~
^
CO
LxJ
0_
co
0-
0
:c
i —
C£
O

r>
Q
O
CO
O
CO
a;
o
a
o
a_
CM
i
o
LU
_J
CO
 S-
3 O CD to
C ro E C
CO. O
^ (Om 4-»
0 0

O»

to
JC O)
o. ai 4->
CO -M (O
O (0 -C
.c: x: Q.
Q. O. to
ro to O
•U O -C
a; -C a.
EQ.ro
CO rO i-
X. •»-> +J
OJ O) 
O ro
•i- *->
C 4-> VI
O >
O •!-
^





f"H
QC
O
tf.
E









0)
c

>.

Q


CM}




















.
a.
i.
o
0 •
>
• .p-
£ CT^
vP
f .
O co
c:
x a)
CU -C
to o
to
LU





CU
^>
CU ro
4-* e"
ra Q-
.c to
a. o
CO -d
O Q.

0. E
E 'f-
3 -0
O 0
•r- O
Q S











•-3
Z
4-»
OJ
S-

__
t— 1
,
g
^:
Q.O
3
O •
S- 4J
. O to
O. 3
i. .-0
C5 F™ CZ
o 05 •— i
-C
o o
2E
CD a>
4_) O) -M to
rO 4-^ CD ro r— CU
<~ ro 4^ c~ ro 4-^
O..C CU ro Q- 4-> (O
CO CL4J X: CO to JZ.
^3 ^0 ^t3 C^ ^3 CD ^^ f^
^^~ ^5 ^^ ^^ ^C *^^ i— V) CU
fX c^ Q^ Q f*> rt3 O O 4-*
O Q- CO .C O -£= JZfO
S- rO O Q. S- Q.-O D-.C
>>-PJC>^>^^C>^Q.
C* QJ CLr™~ Q O CO r^ (/)
E  -r- Q.
rOJE4J4J-O 3 S-4-> £
O -r- TD 3
•I- •!- -t- -I- i_ tO O "I" O
OOOOQJ^OO-r-
CO CO CO CO 1— t— ECOQ


ro ra
r— CO
C7> VO




.^
3:
"CO
0)
c£ o
c
C 0)
0) i-
cu 3
S- ro
0 _l



























cu
4-> OJ
ro 4~*
t~ ro
Q.J3 0)
OJ (^ CL-M
+J O (/) ftS
CO C" O ^IT
.C Q.X: Q.
r^ Q o to
to S- ro O
O >>4-> -C
x: Q. CD Q.
a. E re
HCJ *O S-
£ -i- X 4->
•r— rO f~ 4-^
T3
0 •!- -r- -r-
O O O 0
S CO CO CO










































                                                    o
                                                     CM
                                                    a.
                                                     j-
                                                    res
                                                    O
                                                     CM

                                                    O_
                                                     CM

                                                     (O
                                                     J-

                                                    O
                                                    O.
                                                     CO

                                                     ro
                                                    O
                                                    a.
                                                     CM
                                                    n:
                                                     m
                                                    o
                                                    a.
                                                    :c
169

-------
CO



















.V
f
//•»
w /
111
t 1 J
[
^~
ff
^.
Q_
t/)
O
IE
Q_
^
^J
o
Q.
Q
 JC (O JC (O 4->
 Q.JC ai ro
jc co « co cu co Q.-P jc
Q.OO1>> -t->OtoroQ-
coj=-PS- o> ro -c: o -C to
o Q.  x: QLX: o. o
J=O^= ro Q. o Q. CO JT
Q. S- Q.-O JC CO S- (O O Q.
>>>)co c 0.0 >5-i->j: >,
i — CL O ro to -C CL o> Q-i —
o x: o O- E "5 o
CL E CL O) JZ -OrOS-O-
•i-3 -M Q. £ -i- X +-> T-
i--<-E-O 3 $- E*1- +J
o -i- TJ 3 -a
E co -a >,-•- 0 E E E E
3»-r—
r-.M»S-
(O f- 4->- 	
3 O CU CO
C 
O (O
•r- -!->
C •(-> CO
O (O
•r- i- -O
•M ai c
rOQ.ro
0 0
O >i
_J 4- +J
O -r-
O
^_^






















a>

ro
C

>.
C
ID
a.

O























*•— *
•o
0)
3
c

+J
c
o
o


•
Q.
S-
o
o

o
if
at co
_1 > _„
ra fO
JC 4J
Q. CO
co • >> ai
O d) i- 4->
JC 4-> O ro
Q. ro J=
o -c -a Q.
S_ Q. C CO
>, CO ra O
Q. O -C
JE: a) Q.
E Q--i->
3 ro E
•i- E S- 3
T3 3 -O -r-
O -i- >iT3
to -o j=: o
ro O O CO
s- co o o
-M ••- c: c
cu s- o o
i-i- ES:







<
CL.
«s
Q.
ro
o
S-
a;
4->
ro
a>
s_
(O
3
ro
f—
ai
Q

























,
o
c
1— 1
A
o
o
•r—
O)
T3
0) >,
/ii ni j^i *—



 O)
ro •»->
.C ro
Q.JC
CO Q.
o co
-c: o
Q.JC
Q.
E
3 E
•r- 3
T3 ••-
O "O
CO O
O CO
C -r-
0 S_
S r-











O
s:
«v
CO
•r-
O
_l

.
4->
OO
















•
>
•r—
• Q
U
C •
1— < CO
*» ^3
-p ^:
-o o
o
s- •
m 4->
O CO
C 3
••- -o
i— C
r— 1— l
ro
M^ MX
4-> 4-»
(O ro
x: _c
O. CL QJ
CO CO +J
O O ro
-C JC JZ
Q. Q, Q.
rO  O
a> a> jc
E E Q-
rO ro ro
X X 4->
a> a) a>
-C -c E

E E E
333

•o -o -5
O O O
OO OO OO










eC
a.
•* i — t
 O
CO O
•r- 2
S- -^
S- 0
o o
s: a:


»

^
•I—
0

^
o
c

rt
•
O
• o
TD
•r- CO
CO 4->
J2 0
3 =3
• CO X5
O O
C •> i-
1—1 . Q.
Q.
" S- S-
. o a>
o o E
0 3
C CO
oB O C
CD O
_* r- 0
O ra
S- 0
(U
•SL
, CO >>
r— 0 r-^
O JC O
Q. Q. Q.
•r— -r-
S- E S-
•4-> 3 -l->
•r-
E -0 E
303
•i— CO -I—
-o •«- -o
O S- O
OO 1— OO




ro ra
LO LT>
»* *f





^3
•-D
z: zc
o
n
^-> •>
O) T3
S- i—
Ol ro
•P C
S- S-
ro Ol
C_5 U_














•
>
•r—
Q
.
•> >
• -r-
O Q
• <_>
CL co
S- - 3
O E S-
O Q) o
JC JC
r— O O.
•r- CO
0.— 0
•i— JC
r--0 Q.
•r- O
xis:
0
z:
CD (13 OJ C
4-> JC 4J> n
(OQ.ro
JC CO JC

3

»l
Q. O Q. 01
CO JC CO -t-
J
O Q. O (O
JC JC -£

Q. E Q- Q-
>5 3 >> C
o
r- C .— 0
O -i- O JC
Q- E Q- C

si r- r £
4-> ro -M :


5.


5

E E E -0
3 3 3 C
D
•r- -i- •!- CO
"O T3 -O -r

O O O S-
00 OO OO t-




rO ro
0 r—
LT> CTi





O
S

cC .
CD -4-)
cu
** i~~
ro O)
4-> T3
CO C
3 O
CD S-
3 rO
«=C O










O

.
CO
E
Ol
JC
o

•
•*->
CO
3
•a
c
. i — i
o
CJ O
4->
0 C
4-> ra
C CO
(O C
CO O
C S
o
z:










o
CD
f>
CX
t/l
ro
r^
O
OJ
Q_
j-
ro
z:

t^
o
OJ
a.
C4
3C

-------



to






















*
OO
LJLJ
1 —
in
Q.
00
O
:r
CL.
**~
— t
O
Q_
0
00
UJ
1 —
s
D.
oo
O
2c
Q_
o
-I—
1 —
ex
o

->
— >
h— 1
Q
O
oo

i j
o

oo
Qi
LU
O

Q
O
o:
Q-


^~^
•o
CD
3
C
•r-
4-J
C
o
C— J
**-•'

^t"
C\J
f
C~J

LU

CQ
*^c
1 —









CO
^,N^
S-

jz .c ro
CL O.JC
>•> >> CL
r— r- CO
O O O
f^ pH__ ^""^
•i- -r- CL
!~ 1-

^
f §15
•1- •!- O
T3 ~O CO
O O V-
OO 00 Q

o
i— 4-> £
(O -r- 4->^~~
3 O CL> to
c 
0 O


«3 ro
•3- oo
r- l£>





OJ
c 4->
o ro
•f— 4_>
C 4-> CO
o ro
•T- i. -a
4-> CD E
rod.ro
O O
0 >>
	 1 M- +J
O T-
0






•a:
0

«t ^H
o x: z:
•z. o
ro •>
« OJ C
>>OQ O
C 4->
s- en c
ro c cu
0) O S-
















CL>
E
ro
c












s~ •*
•o
CD
3

>»J *r"*
c
fO
Q.

Q
O




4**
C
0
o
«^-«

•
o
o

I o







4->
E
ro
CO
c
o
s:












a>
4->
ro
JC
a.
CO
o

4-> CL
ro
i- e
•o 3
>>•>-

•r- 0
0
-o c
E O









































































QJ
4_) CL)
ro 4->
C~ (Q
CLX:
to CL
O CO
JC O

O CL
s- ro
>)4->
Q. CD
E
•o ro
•r- X
O CD


E E
•r- T—
T3 T3
O O


































































OJ
E
•r—
r«
r—
ro

CD CO
4"^ ^)
CD ro s-
4-> JC O
ro Q.
CD JZ CO ••
4-J CL O CL)
ro co jc 4->
jc oo.ro
CL JC o JC
CO CL S_ CL
O >> >-> CO
JC j— Q. O
CL O JC
ro CL E CL
4J -1-3
CD a> J- -r- E
E r— 4-> T3 3
J3 O T-
E 3 E v> -a
3 i— 3 ro o
•r- o T- s- co
T3 CO -O 4-> M-
O E O CD S-
00 -i- 00 h- h-



ro
CO
to

































































































































,
CL
i-
0
o

E
3
cu
r—~
O

4Jt
CD
Q-

r—
ro
4>>
C
CD
•o

O
(J
0








ff.
CL>
4->
ro
c*
CL
CO
O
-C
CL
>^
r—
O
CL
•r—
S-
4->

E
• r—
~O
0
oo



ro
CNJ
oo











X
t—

to
ro

f—
ro
o




r.

CL >)
C i \
O i —
o ro

"O co O
•r- O Cl)
CO •!- CL
-Cl +J OO
3 CO
co ro oS
f..
«Q- r —
ro
o o?S O
S- •«-
O • E "
<_3 to O) >

• cD o o
E -E O
33 o s- •
.E • 4-> CO
C_) i- "O O E
cu -i— cu 93
S- .*: to i — _E
CD O -Q LU O
^03
o ni to
o
:n




CO
CO 3
3 0
0 S-
1- TD
T3 >>
>, CU * -E
JE 4-J CD E
E ro 4-> ro
ro *£Z ro
O f"~ *^
•> CO CL CL)
CL) O CO 4->
4-> JC O «
ro CL.E .E
-C fO CL CL CL)
CL4-> >, CO C
CO CD i— O •«-
o E o x: r-
^z ro CL Q-i—
Q. x •<- ro
CO CD S- CO E 4->
3 E -E 4-> 3 3 CO
03 0 •- >,
S- ••- E E S- "0 S_
•O T3 3 3 -O O U
>, O -r- •!- >, co
^r co -a T3 ^z -r- -a
E T- O O E S- C
ro Q oo oo ro i — ro



ro

cr>





	
t—t
^
CD
r—
^~
• r-
>
<"
0
CO
S-
}
c~
C
ro

"
CD
4-)
ro
-E CU
CL C
CO •!-
0 •—
J^" r—
DL n3
4_>
E co











*1
CD CD
4-> 4->
ro ro
c" r~
CL CL
l/J CO
O O
C" C~
CL CL

E E -I
3 CO 3





















D
p
ro
•r- 3-r- S-
3 >,-o o -a TD
•r- S-
-0 (J
O
co -o
•r- C
Q ro

















	 i
t— 4
„
4-9
CL>

r—
0






t
>.
• r—
f — ^

to
CD
U

>
£_
O)
OO

OS

to
4«3
O
3
-a
o
i_
Q-

O- •
i- 4->
o to
0 3
-a
c; E
•i— t— i
P—
O
O S- 0 >,
CO T3 CO -E
O >> 0 0
E -E E
O E O
C
0
s: ro 2: E











































































o
O
m
^~

_^
2!^

• ^
o

-------
























CO
LU
!_„„
j—
m
CL
GO
O
j^
I*
>-
— J
O
CL

O
GO
UJ
i
r^
CL
GO
O
^c
CL
O
zc
£~
0

^-
t—H
Q
O
GO
u_
o

CO
OL
UJ
O
Q
O
Q.


-o
cu
3
C
>'r-
r— 4J S-
IO T- 4-».»-^.
3 CJ  CO
o to
f- S> "O
4J CU C
rOD.ro
U O
O >^
	 f i^. -4_>
O T-
CJ













O)
E?
c
>)

ra
a.

0














0)
4-> (U
ro 4->
JC ro

CO O.
O VI
J= 0
O.JZ
0 0.
t- 10

Q. 0)
E
-o «3
•i- X
(J QJ
rO ^

E E
3 3
•a -o
0 0
CO CO








































-o
a>
3

•i—
4J
C
o
o


Q.
S_
O
o

c
r—
o










a>
4->

c~
CL
CO
O

CL
ro
+->
(U


E
T3
O
CO
























































CO
3
O
S-
« -a
cu >,
*» -4-^ ,C*
a> ro c
4-> -O JC ro
0) ro Ol CL
4-> JC 4-> W "
rO CL fO O CU CU
JZ CO S- JC 4-> 4->
D. O X» CL ro ra
to JZ >, O J= ^:
O CLJC S_ a. CU Q.
jc >, >, co c co
CLI— -O CL O -r- O
rO O C JC "i— JC
S- CL (O E Q--O i— CL 
4-> -r- 3 CU 
OJS-tO'r-coE-t-J4JEro
4J4->3TD33(OC03J-
O O O -i- C >,••- -O
EE^-COS--0-r-S_T3>>
33-oro-oos-oox:
T3T3jC4->^T-i— TD-r- C
OOC
^
1—
0
CL
•r—
S- CO
4-> 3
0
E S-
3 T3
•a jc
o c
CO ro





(0
ID
CO










^j

A
0
CD
ro
O
_fm
0















>
• »r"
O f~^
o

• §
S JC
jr o
o
S- 4-J
0) CO
M- 3
C)- -O
3 C

O)
CO 4-J
3 >
^> *"
JC O
C 3
 Q. CL E
a> 3 co
E E E ••- 3
33-00
E 'r- -r- O S-
3 T3 T3 CO T3
-a co co c jc
O -r- T- O C
CO Q Q 2: ro












_J
»—*
»
(/I
JC
CD
ai
ac

0
CD
ro
O
t~*
O



































a> cu £
4J 4-> 3
fO rO ^Z
JC JC -i-
CL CL E
CO CO 3
O O r—
j= J=. ro
CL CL
0 0 E
S- S- 3

CL Q. CO
CO
-a c ro
•i- O 4J
0 S- O
ro T- CL

E E E
333
-o -o -o
O O O
CO CO CO































































cu

rO

CL
CO
O
JC
CL
(O

cu
E
•r**
cu s-
4-> 4->
ro
jc e
Q. 3
O "5
JC O
CLCO




























































*
CU
4*J
ro

CL
CO
O
JC
CL
O
i.
>^
CL

E
3
•r- CO
•0 3
O O
CO S_
(O "O
i^
CU C
H- ro
























































CO
3
O
s- -o
•a cu

JC ro
c c
ra •!-
S-
. ^ o
at cu i—
ijt t •» f~
ro ro O
JC JC
CL CLoS
CO CO
O 0 CU
JC JC 4->
Q. CL ro
S-
E E ~a
3 3 >>
•1- •!- JC
-o -a ro
O O 0
I/) (O QJ
•,- T- T3
S- S- O
I— I— -a

































































































o
0
rr>
CL
"*!
S.\

*
CD
O*
Q-
j-
ra
*z.

• ft
o
CM
CL
CM
^n
CM
ra
'Z.
..
0
CL
ro
ra
• A
J-
o
CL
CM
31
ro


'a
o
CL

CM
ro
•2Z.
*
172

-------
























•K
CO
LU
t
t—
*^C
Q_
CO
O
f\

^-
— -J
o
Q.
Q

eC
CO
LU
^p
n:
Q-
GO
0
Q.
O
•f-
/v*
UL
O
2:
H- 4
0
GO

LL.
0

CO
Q.
UJ
^
~~
Q
o

(X


-Q

s_



oe.










o

.— +> si
ro -t- -P .-^i
3 O CD CO
C fC E E
CO, O

0 O





01
+•*

•r—
I.
£














01

c
>.
c
a
8
o














^^^

XJ
CD
3

. ^
C
o
o

^
o
o

§
vt/
™r
u
CU

(4.
3
ra
+J
GO









*
CU
•p
ra
*""
a.
«/)
0
JC
Q.
rO
•P
CU
E

§
•r"
•o
o
CO

























































CU
•p
ro
JC ••
Q- CU
CO -P
O ro
JC JC
Q. Q.
>, to
•— O
0 JC



















Q- Q.-O
• r—
CU i- E
•— -P 3
r/"^ «p—
3 ETJ
r— 3 O
O »r- CO
CO TD -i-
C O S-
•r- GO 1—




rj
00













































CU
•p
rO
C
•r—
i.
o
r—
JC
o




























































«\
CU
J^
(O

Q.
t/1
O
JC




















CO
3
O
s-
"O

JC
c
ro «
O)

CU ro
-P JC
rO Q-
JC (/I
Q. 0
V) JC
0 Q.
Q.XJ JC

e

*n"
0

•r—
S-
(—












o

,
CO C JC
•r- O C
Q 2! ro












O
CU
-p
ro
CZ3
to
3
O
£_
*v *v *^J
a; >
+-> -P ^
fO fO d
JC JC ro
Q. CD-
CO CO " "
o o a) a>
JC JC -P -P
Q. Q- ro ro
O O JC JC
S- S- Q. Q-
>5 >, CO 
Q- Q- O O CU
JC JC -P
-O E Q-Q.ro
•^3 t-
U >
O O O •!-•!- JC
E i- to S- T3 "O ro
3 "O ro "O O O O
•r- >i S- >> CO CO CU
•O JC -P JC -I- -r- -O
O C CU C i. I- O
GO ro H- ro 1— H- T3




rO
C
r~
r—

r—













c/l
3
O

S-
ro


14-
O

^i .
-P i —
•r- f~
co a>
c 5
CU
•O 00
ro
C
o to
CU
CD-P
C rO
-5 Q-
c. to
CU O
Q-JC
CU Q.
,
>, CU
r- JC
- CU -P
-o o
2 CU
>, ro
S- E
> C
ro
>> 0
CU
JC CO
•P CU
• r"-
CU 4->
O -i-
i— • C r~
rO CU -r- -i-
•P -P 01 O
JC O ro ro

































3
O
GO
































































Q. CU
l/l > -p
O •!- CO
jc -p o
Q. ro E
>> r-
i — CU •>
0 S- S-
Q. CU
•>- CU JC

•p t-
O 3

E "P H —
3
"O !C "O
O ro CU
CO CU O
E 3
0 0) O
M- S- S-
ro Q-
,
ra C r—
0 O "0
p^ ^-
ra JD o si
z: -p







































o
c5*
m
Q_
ra
Z

*
o
a.
ra
z
• M
f^
O
a.
CM
31
CM
rO
z


"
o
Q-
m
ro
• •*
jj-
0
Q.
CM
~r
rO

• «
^
0
a.

CM
rO
Z

*
173

-------
















•K

H-H
O

•r- CO
C 4->
o 10 -a
•r- J- C
•p CD ft3
« Q.
0 O >•
O -P
O 0













flj
P
s
c
>,

1
g







-o
cu
-o -a
C 01
(O 1/1
CL 0
X i—
O) O
O) Ol

tO to
E E
• •» »»
fOfOfOfOWfOrOfCrOfCrCra fCfOQJ
UJLxJI^LULULjJLULUL±JLUUJLLJ 1 1 i 1 1 i f 1 1 1 1 i 1 1 i MI lit 1 1 i


m rrt rvi r» r» rvi i**^ r*s^ rt m r-» rt\
r*^« CT* r*^ ^t" ^~ r>* oo ^* LO oo csi c\j co "^t* csj r— LO o LO cvj


_J

>
3 to" > 3 z Z
^ 3: -r- T) -=C t— i -

O>>-_J O i — rT^ "~Jo3S *§"c:
flJO •> « C "+->O •> r— 31- C O ni c— t_ •!—
4->o:oo«O'(-)a)QiS-i — 3 o « N «i — mcaai
i- r— en'— oo ^3 »jD -M 4-> re c s. c: DC
OOC£O>+JNC:I/,
Q
CO
o
•r—
•(->
CO
re
> O o_ >
•r- O -r-
• Q oC Q
Jo. -o
t- • -r- .
O co E co co
O E to E E
QJ CI O) CD
• x: re .C ^:
S<_> >,0 0
0
CJ «P C "P 'r-
to re co c
T3 3 o 3 re
•r- C i! C 1-
f""~ »-H QJ 1— * C3

 O
O
3 O)
• -o -P
Q- o re
s- s- .C
O Cu Q.
O CO
t— O
• re -c
-p i- a.
CO 3
3 +-> •—
"o i — re
C 3 C
t— * o o
• f— «l^.
o) CD re
•^ ^C Z?
o>
QQ






















J-
O
to
CM
•^~
_J«

0
o
I —
CO
re
CO
Ol
•p—
•p
•r—
0
re
Q.
re
(j

j-
o
oo
CM
T-

4J
C
O)
{j

l-i

-P
a>
•r—
O)
OO

O
4->
CO
CTl

*
174

-------



























*
Q
i — i
0
o;
u.
oo
i i
LJw.
O
OO
ce.
LU

CO
""^
Q
O
OC
Q-


^-^^
-Q
3
C

+J
c
o
0
if)
CM
1


LU
—1
OO
1—





CO
•jf
ro
«





U
"« T- 4->-->
3 O CU CO
C (0 £ C
C CL 0

**• So **




^•"^
CU
c •»•>
O rO
•r- 4->
C -t-> CO
O i
_1 4- 4->
O •»—
o















CU
r—
c»

>*

TJ
a
5
o














rO
4->
c
CU
i
UJ



oo










CU
CU
CL
ro
CO
CU
JZ
o

















.
> CO
•r- CO
Q rO
• S O
O JZ Q
C U 1
C +->
• CU •!-
E TJ E
CU S- CO
TD O
S- CD
o
CO








ro
4J
C
CU

UJ



LO

^J-







U_
«\
0
a.
>>
cu
c
Q.




































ro
4-J
C
CU

UJ



CO
CO









	 1
iT
o
4J
ro
S-
4J
CO




































ro ra
C C
CU CU

UJ UJ



LO LO
*3- LO
LO «*







_J
U-
U- +•*
•r—
4-> C
S- ra
rO i —
ca a.







X
CU

'o.
x E

i— O
a.

o  CO
ro O
0 0-0-
C CO
1-1 O >>
-C +->
. D- -i-
+J O
co 5
3 O -P
-O 4J C
C i- lO
>—
O
o














.
o
c
»— 1
^
,
o
o •
CU T-
0 Q
*r—
> C
V. (0
CU •r-
OO X3
E
CO 3
CU r-
•r- O
+-> O
•r-
O



































CO


ro
4^
CU
3E

08

•
CO
1

o

c
eri ca
£

JC
s_
o
^z.

-o
CU
CO
o
13
CU
XJ
ro
E
i % i > _i_^ J ^ _^j i ^ i > [ ^ i ^ i J^
C C C C C C C CCC
CU CU CU CU CUCU CD CU CU CU
1 g 1 I rfS S CSSS
UJ UJ UJ UJ 1 1 1 UJ UJ UJ Lul UJ



oooooor^. LOOO c\j OO^LO
f— Lp ^-« ^\J ^^* tO CO f •• tf^ 0*1
i — OO •* i —








sr< DC s: x  SI «
•>4->CUCO S- « CUCUC
COE+JCU toco O ococu
3 3 r- 3 -OS- i- D-C>
CDC3C: OirC 4-> S-CU
3OOCU rOCU CU rO3i—
^ y y D- CQ oo o i m (_j


u
o c
C • l-H


*» *r~ B
• (^^ _
5f^
** ^^^
• CO Q«
en o cu
CO 0 CO
. •!- T- S-
> 0. C S- > 3
••- S- T- CU S- 0 +->
Q O <4- CL CU E Q-
o cu O- co co cu cu
• rv* • O • ^ "*•* t~*i
CO C Q.O O S- i—
§• CU r— i_ COCUCU4-> •
O D>*r- O "O >— '3 COt3 CLCO
J=C_>OOO«O co CUE
O S- -O«-CU4->QCU
4J CD ^^ ^^ C '^^ E f"" CU ^ CO
CO.C ro-r- QJOS- E'
3 O rO CU y CO f" 3 3 CU -t-^
Q.-O T-2 3<-J-l->co-o.c:co
3CXJ3CCOS- -p-CO O3
Oi— irOEO3Q-roOCU • O "O
CJ3 -r- i — E Q-O i — -t-> Q. CO i— i
r— O 0 >, CU 
CO
-(-> JD
CO XI
rO 'P™
LU C3
















































^ 	 ^
j-
O
OO
CsJ
OC
5^
O
o
CO
ro
CO
CU
•M
O
ro
CL
ro
1 — '


O
OO
c^

-A-
t t
"*~^
*-
CU
«
*-
cu
O-

^"^
•^
Ol
cu
s
00
01
o
•T-^
oo
01
*

175

-------












1















.£
Q
t— *
O

1 1
_j

oo
LL.
O
OO
LU
O
"•^
0
§
O-
^^^^
-o
OJ
c:

-Jj
c
o
o
LO
CM
CJ
LU
CO
1*







oo
i-
(O
§
a:






o
r— 4-> SI
fO •!- 4->-— ~
3 0 0) 00
C 
O IO
•r™ 4->
C 4J 00
o ro
•i- I- -0
4J QJ C
to CL to
u o
O ^i
o •»-
o
^-^










0)
£
c
>
c
a
0
















to ro
c c
CU QJ
5 cD
LU LU




to 01
CT> to
CM r-




-J-
o
z c
(U
• co
c
CU J=
t3 4->
C J-
•r- O
—1 Z





,_^
.
1 %
o
u

CL

CO
i
o
CO
I-H















LU LU CD




CM LO
00 r-
^«





•"3
«i— <
S-
O) r
fO V-
S O
O. CL
CU 2
CU CU
O Z







•
Q.
QJ
Q
> 00
4J Q 4J
CO • •!-
r*^i 00 "O
co x: C
E o cu
-C T3 C
CJ C >-i
ro
0 S.
•r- CO O)
C CU E
CDQ r—
S- O
O Q-




>^
t~*
1
^5
C
•S
00
c
o
.«
(O
I *
c
CU
g
LU




UD
OO
^—






oo
ra
c
CU
^~
rO
CD









O >
C •!-
I-H Q
A *
• CO
co cD
"O O
c
s- s~
QJ 3
J= -P
O •—
••- 3
a. o
1 '!-
QJ {.
l — CT
cn«i
ro
LU


CU
CO
3

CU
.^
[ »
CL
ro
U
..
JO
c
CU
g
LU




LO






^H
Z
CU
4J
CO
CU
o
o
Q£

•
"^
CO
3
CO
f
o
c
1 — 1
00*
4^
U
3
-o
0
^
• Q-
O
O •
^ S
ra -C •
•o o >
O T-
i^ C Q
rO
c e "-<
(0 -P a.
E CO Q
•P (0
CO UJ
ro
LU












"TO
C
CU
I
LU




£







A
O
CO
CL.

f—
LU












•
CL
S-
•o
<:
o
CO
rO
CL.
r~
LU







































CL
S-
O
o
.
CO
g
JZ.
o
00
s-
cu
c
-o
S-
ro
£1
'cu
en
c
LU












fO fO fO fO ^O
c c c c c:
QJ QJ CU QJ QJ
g g g g g
LU LU LU LU LU



^
^~ CNJ 03 n3 r**1* LD to
vo co • • cvj LO ^d-
co c c



^ _i
CO ^~^
« « z:
QJ >,
U_ r— _J ••- _l > C
•i- u_ <_> «a: o
co oo « -M •> j«: co
r- CU ~S. QJ C i— C
Or— O E ro O •!-
O t. S- f— 4-> S- i—
•r— ro ro ro O O *f
Z CO 03 <_) Q Z 3








-o
•r- •
oo -a
•o > 3 oo
OO Q 3
XI "00
3 • •
CO CO O «
** ^0 o
• -E U O
O 0 C
C T-
• i- i— C J=
> QJ ro i— t O
$- 00 C
QJ C 0 " 4->
co o ••- ^»: <+-
C 0 4-> S- -r-
O ro ro 3:
o z e oo
CO
LU












rO ro
C C
OJ QJ

LU LU




^J- O
VO 00
r— r—





	 1
U_
r-;) »
Z >,
rO
\x
S- C
rO QJ
3 QJ
CU S-
z: CD











O
C
1— 1

CL
S- 4->
O CO
0 • 3
• -r- C
CJ 00 C
SCO
r—
QJ -C e
co cj E
oo ro
LU Lu.
























j-
O
oo
csl
31
^Q
O
o
00
fO

00
QJ

. i
•r—
(J
CL
ro
O
J-
O
OO
CM
n:
c:
fi
S-
QJ
CL
1 %
cn
CU
00
Ch
o
OO
cr»

*
176

-------






















*
Q
I — t
O
o
t — t
— 1
u_
_J
oo
u_
0
OO
a:
1 1 1
o
Q
O

Q.


^-^.
-O
QJ
3
C
•i~-

f—
o
o


LO
CVJ
o

LU
CQ
cc






to
NX
i-
§
o:




u
r- 4-> jl
3 O O> m
C (O E C
CO. O

c 4->  CO C
It} O *O
Oy-l
v-J
0 >,
_J M- 4->
O '«—
o










O)
£
to
C

^
C
10
0.


o


















(O
4->
C
Q)
S
LU



•(J-
UD
<•



»— *

«
c
01
•n-
T3
S

40
i.
O
u.







t
TJ
•r~
* to
Q. _O
S— 3
O to
O

jf~. ,
0.0

*(— 1 — [
 a:
DL E — J  
> o •
•r- 30
("t "^ C
O i— i
• » S-
o • a. «
0 O S-
o o ai

r— • S- "r—
re E • o o;
i- O) U .C
cu jc c a. en
C C_3 >™H (/) *r"
•r- O CQ
S- iTa. i-
40 O <1> QJ
i. Q- -i- • •!-
o a> c co c
O- O> T- -r-
d) S- T3 • T3
co u_ $- :i> $_
S- « (O
U_ CD CD








c

i
LU



00







2 S
1
«3 •
'CTI S

O 0
CU
CD
13
CU
o
0
CD

to

cc ccc cc c
C^ fl^ Q^ (U GJ CL) ttJ OJ
i§ sii si s
UJ LU LU LU LU UJ LU LU


,
CD ^O fO LT) *^~ t^» ^1" LO LO CD
r%* CO • ^J* tD CsJ VD LO O OO
r*** c ^-* cr> co




0 _l 1-1
co «a; u. s
a.
—ico "S a> -~D JT res
U-OS CZr— Z Oi— —1
4-> o ro 31—1
5 cu c s-oocc >>cn •>
O i— -r- O)4->OO QJ«3 CO
4-^ i» ^~ E r* 4-* I/) r— O 3
S_ fO Q- i — (O4-»-t— Q-6O Q.
(OJ=O H5S-OT3 OfC CO
OQ(_>«-3 Q.CDOLU OO- D



"0 -0
10 
4-> O O O > S- •!-
to tOC O T3'"~O Q
E 3 -r- CU C Q 0
QJ ~o NJ • O H3 ^ >
• f" c E (O f • " >r"
OO i— i >, • QJ i — CnCOE OO
O QJ Q-.C D- C O QJ • O
r— ~ C 00 S~ C-3 '^" ^ ^^ f^ to
oSfO S-i-O «OC3OS--3
s- aicooai_i-i-o OES-
0)3 4-> O OJ 3E to -i- O 
'G
Q.
CJ
* — '
j-
0
1/1
tN
^:

4->
C
QJ
O
i.
Q)
CX

4->
x:
CT,
•r-
CD
a
00
CTl

O
40

r*">
CT\
*
177

-------

























Q
H»H
O
^t
O
t— H
OL
— k
__J
LL.
_j
OO
u.
o

OO
Qc
LU
O
— J
o
QC
Q_


•"""^
"O
(1)
c
•r—
4"~
C
o
o
to
CM

1

LU
— J
CO
^c
t—





I/)
t-
IO
i
a:





o
*(C f- -t->^->
3 (J CD CO
c re E c
CD. O

O  oo
O re
•r— &- T3
4-> j
o ••-

«-„,-<












O)

s
c

•i?
IO
a.
§
o



















c c c c cc cc
(1) OJ OJ OJ OJ OJ CU QJ
§E E E E E E E
^_  CO IO CT» i— «d" OLD
LO C\J 00 O (T» U3 F*^  „ .. .,_ | —
*O O -(^ •* O CU 3 "r^
1. •*->•*-> -4-1 3 O >
O •• O> (1) OO" i ai
O c S- en oo 3 s_
O C^ 3 i^ • >^
r^ > > (O (U 3 -4-^ (O
LU 
+J S- -r-
0 O Q
3 • 0
•o o -
o o •
i. E o
a_ . 95 o
CO *C
i — E O •
as OJ co >
i- j= oo E ••-
3 O So
i— • S- 0 -M
3 +J CU . C
o co i— o cu
•r- 3 r- ^ C E
i- T3 'r- in t— > CT
O) C -M • 3 •!-
O -i- -r- C •
OOO Q Q (— < ^E
+J +J to 3
O C C r— . • 3 -r-
C CO CO C E • C |Q

CO O O -r- -C T-
c z: z: •*-> o _i i—
o }
E

c
CU
E
0)
LU



01
CD
,»




Z
»t
-o
c
CD
CO

C
• r*
O.







,
•a
• CO
O..Q
S- 3
O CO
o
ft
E •
OJ S-
• <— O

•I- J-
Q 4->
QJ E
• « x:
Q-4-> i— O
c CO re
O +J S-
5 S -S
c s- -o o
a; o T- o
o^ ^y (_) T"
1 U
z o










fO T3 ^D
c c c
cu cu CD
E E E
CD CD CD
LU LU LU



i — ID LO
cn ro o
VO CM

_i
LL.

*t
X CO
H~ cn
*> *r- C_J
x s-
OJ Q. «
> O
C QJ S-
re -r- +->

SI 3 _l



(
-a
•r~
CO
XI >
3 •!-
CO Q

« re
• *o
O •!-
0 S-
c o
• o •—
cl 'en11"
x: CD M-
CJ i^* O •
>
r— C i— •!-
re t- re Q
C J= C C
"O 3 "O QJ
•r- O T- -(->
O O CD
0 03














C E C C C
CD CD CD CD CD
^ ci c p: p:
CD QJ CD CD CD
iii ( 1 1 in iii iii



CM O CM  r~~
co r^ co o CM
«d" CM CM i —

0
o
ec <
Q -"O — 1
» +-> « 4J
•> a> +•> o s-
re s- T- s_ o
£3 ^3 ^ ^^ f~i
QJ E -^^ QJ
fC 4-* -M r— O)
c/) »^ S^. 13 S—
n3 fO O rt3 -C
Q. QQ S: Q. 00


,
>

Q

CO
OJ
0
• «r—
> >
•r- S-
Q OJ
oo

CO o3
cD co
f~ ^J
C— 5 CJ
•— -a
re o
3 D-
O-r— .
S- 3 4->

-------




























Q
O
^*-
0
^^
5r
j™
^~
— j
GO
U.
O
GO
CXL
LU
=>
f"~^
^y
o



.
rtl
Si
zz

*^
"v^

O

uf>


1
^—

LJ_J
03
^^
r—





CO
tyf
s_
*o
S
01





o
r— 4-> £
ro i- •»->« — •
3 O O) to
C re E C
CD- O
^C A3 f** 4"^
0 0
r—
CL)
C 4J
O fO
•r- 4->
C 4J CO
O ro
•F— S*. "O
•4-J CU C
rO O. CO
o o
0 >,
_J <4- •*->
o ••-
0












cu
E
to
c:

>^
c
to
CL
pr
O










,




















en
o
r^






^
o
«s
rO

r—
3
1—





.
"O
•r~
to
JO
3
to

A
•
O
o

CT>
C
• •!—
Q- C
S- O
o -c
O IB
z:
-t-> i
r~* *^
ro J-
^ ro
C N
CU
O.











1 i
^-^
c
QJ
§
LU




CM
CO



3t

*v
^>
•r-

^
s-
1-
M-
CU
O




X3
•r-
CO
-O
3
co

A
•
O
c
»-H

• A
Q-S-
i- ro
0 CU
Or-
O
CU 3
C^2J
•o
O C
Q S-
1 CU
00 4->
CL CO
r— CU
._g^*
Q.




















CO
VD






>-
,
C
0
•M
S_
cu
>
•r-
C£

































CU
O
»~~
0

cu
.0

ro
E
i ^
•^*
C
GJ
OJ
LU




CO
UD




_J
i
cu cu s_
T3 0. I.
ro ro CU
r— " 00 /^
•r- CU r-
JC J= 3
Q-0 S

















•
O
0
00
ro
rO •
re o
o
•a
C 1-
(O CU
4_)
1^
o o
CU 0£.
o
JO
4->
3
O

4^
3
a.
3
O
_1_ \
+*
c
cu

LU




O
OO
^,




Q
1—1
O
r—
O)
-»->
ro
0
O
Q-










•
>
•r"
Q

e
£
• OJ
0 J=
0 0
-!-> -0

r"~ rO
Q.
E •—
•r- ro
GO J-
cu
• c~
a: ••-
•
o











t \
•f-*
c
cu

LU




CM
OO






5
^
JC
C
c
ro
>
ro






T3
C
ra

cu
•4->
ro
jz:
Q.
CO
o
f~
Q-

to
CU •
4-> O

4->
GO S-
0)
C M
J- -i-
CU r—

+-> 4J
O CU












rO
+•*
C
CU

LU




CTi
LO
r^



X
H-

>,
• p-
O
oo
ro
X
CU
1—








* 	 N
ro
C •
ro XJ
•r— *r—
"O OO
C JD
1— 1 3
•> 	 00

• n
o •
o o
o

•r— r—
O •<-
o
T3
i- O
ro O

C J~
4->













C C C C C
O O   CM CM r—


eC X
_J 1—

X •> X C_5 •>
t— cu i— j=
CD "4->
rO O ^- CU O
cu o en
T3 C H" C J=
ro O •!- 4->
00 -P >> E S-
ro rO 
•r—
Q

CD
C
•r™
C •
•i- >

O O
CJ "O
c •
• fO P
o5 t- JT"
JZ CU O
o N
•r— *
S- r— 4->
cu T- to
4- 4J 3

3 CU C
4->
GO











ra ro ro <0
C C C C
CU CU O) CU
S 33 S 03
LU LU LU LU




o i— o r-~
Lf) CD r--. CM
CM i— CM CM
ft


X
1—

. __.. ^^
«% OJ •+-* Nl
c >> cu c
O O J= -i-
E s: u -M
fc C i-
ra CU ra ro
1C — 1 2EI IE
































                                                     o
                                                     1/1
                                                      o
                                                      o
                                                      CL)
                                                      (J
                                                      (O
                                                      CL
                                                      (O
                                                      o
                                                       J-
                                                      o
                                                      CO
                                                       CM
                                                      c
                                                      cu
                                                      u

                                                      cu
                                                      a.

                                                      4J
                                                      JC
                                                      cn

                                                      CU


                                                      oo
                                                      cr>
179

-------






















*
Q
»_4
O

o
C£.
U.

3
U.
o
GO
o

a
o
C£
a.


1

E
^ %
C
O
o


Lrt
CM
O

UJ
_J
CO
>
C 4-> CO
o re
•r- S- -O
•P CO C

0 O
0 >,
	 1 14- -P
O 'f-
0











CO
E
5^
E
re
ex
§
o










•a
CO
o

CO
•°
>*>
e.
E EECEEEC E
CO QJ CO CO CO QJ QJ fl^ flJ
E Ei EE E £ £ E £ E
35 cD cD 33 5D 33 05 cu co
LI i U4 1 1 1 jjj 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




CO re !*••• ^" r~ ViD LO UD Kj" LO C^O VO re *J3 d"
CM • CM »OCT1CO«=1-CM> E_JCOELO > ^ _l
Z-P o u."Oo>-« co«n:u,
••- -P (a •*->«:•> s- >>o o
" O C7> «>COCnCOtJC_).>^ O-P "'Z.
1- O1 «i— O -i— r— • •> •> O 'r-OOO»>
o re e -p+JE-r-Ere1*- -P s_j-co
i- X i— 1_ i_ r- > r— E S- •— >,•!- CO E
13 co *r™ re o T" co co co o re re re *r~ o
 D-  O "O
> E • > 01 E •<-
•r- i, • Q.-I— S_ 1— I CO
a o E s- o co JQ
Q.-POO« 'co're $-• re"
•r-i-CO COO .Q.-OS-Q.O Q.
oore<*-E -P-I- > -i-coeo i-
O i— O O fE -i-ECONO O
.1— Q_jQ CO QCOja-r-O- O
o re co • &• co XT n 01 3 r— E
c i- "o ^J o re co o * o co »r— co cD •
•— '3«i— EOO +J| i- -PEx: E
if-i^'£'ar— &.••£>'£! ll-t^"co-I^0 5
r-3re--r-COTDOOCT) JEZOU_r-O O
3 O O CO O •<- -r- < C_) O r— O
CTIT- E' — COT3 >, fc. -i- -r- -P
 CD CD
X *^C "^" ^ ^ *?*• C_? I/) *r* "^ ~^ fMw ^£ <0 CO ^C '^
co E c E re a> j= i-
!—=>=> 3 >3I(— 3


























r—
re
o
1—





























                                                   J-
                                                  o
                                                  o
                                                  o
                                                  CO

                                                  re
                                                  01
                                                  cu
                                                  o
                                                  re
                                                  a.
                                                  re
                                                  o
                                                  o
                                                  co
                                                  c
                                                  CO
                                                  o

                                                  CO
                                                  ex
                                                  en


                                                  OJ



                                                  CO
                                                  en
130

-------






o
«M
°~


LU
*•-'
DC
LuJ
Q*.
,
L ~
5
LU
3
O
CM
0
00
|
O
"^


LU
i
r~*-
^L
0.
GO
0
Q.
oe.
LU
0.
t/>
u_
0
oo
Q£
LU
S^
— '
O
O
Ql
C^_

^
LjO
CM

1
^-J

LU
— 1
CO

^tf
s-
(O
1











O
r— •»-> S-
ro •*•- -^ ^"^
3 O (L> 
C ro E C
CO. 0
5*o
^*™««
o>
C •»->
o to
•i- +J
C -I-3 <"
O ro
•r- S- "O
4-> 





















. .
ro ro
C C


x
t-

•*
v/
s.
—1 ro
*» fO
(O ^^
E 0)
O> ro
COO










0>

r3
C

>
C
ro
O

C
o










O
C
I-H

A
fl)
^
•r- •
••-» Q.
ro i-
&. O

u>
o -a
o o
o o
u_
to
$- 4->
V C
£" i— •
ro ex.
u_
c
ro ro
I °
ro •<-
.Q i-
ro O)
r-" c
•n «£










































c
0
•I —
to
«r—
>
•r-
Q

r_
rt3
O
•r—
§
• C"
0 O
c
l— l C
(!)
C "O
(!) S-
"O O
S- CO
O
CO












O
1
to
CM
1
0


.
. . o
c c: r—





—I «C
eC I-H CD
^>
M A
" S- (L>
J«i O •(-
i— 4-> S-
O ro +•)
t|- OJ r—
S- S- 3
O +-> O
Z 00 2!











.
Q.
s-
o
o

CO C
ro OJ
i— O1
o> o
3 S_
O +->
^73 *r~
I "Z.
LC~
•(-» ro
i i

r—
o
o





















O O CM CM O
O O CO CO O
i — CM i — CM CM



_J 0
 ^C
-J E C _l >
U- ro O et
" D1 to »>J^
S C OJ C .—
O 'r- t— ro O
•4-> E S- -C «4-
S_ C ro +-> S-
ro -i- J= O O
CO CO o O Z



c
o
•r"
4^
ro
s_
O)
a.
o

>
o
o

CO
r—
ro
0
•F—
O OJ
C -C
I-H O

J*T4-
s- •<-
ro 3
E <"
to
LU





















co vo o
vo  o
r— CM

ro
'a>
S- O
O Z
QJ
o «
c
•> O _J
J= 4J U.
ro C7)
C C »
C -r- ro
ro E CL
ro -r- (O
00 3 1—







to

O
3
"0
O
t-
CL.

O
•r—
s_
• o
o .c
c a.
t— < CO
o
•>.c
i- CL.
OJ
C 00
-a •
s- rs
ro
CD





















CO CO
co co
r- r—






^j^
CD

CD CD
•. QJ
o -o
>> i-
•— O
O 0



















•
u
c

A
+J
to
s
-a

'o
CD
CO
*f
ro C
r-~ *r~
D. 0
^
i«i "O
1 0
a_ s-
i a.
Z o_
OJ O
S-
ro Ol

CD JD
CO ra
tu a.
^: ro
1— u


. .
ra ro
C C



O
GO
~r"
•* CO
c
0 -
•)-> CO
to 3
QJ o
t— E
i- 3
ro i—
J=. O
0 O




Q.
3
O
S-


t/)
!_-.
ra
o
•t—
E

rO i—
i- 3
CD O
. jl
o: CTI

•
3£

OJ
i_>
^~*
ra
c-
Q.
to
0
Q.
S-
Q.
^
to

r—
ro

^2
O
C


^
ro co
CO
C i—


1 — 1

Z
1— CO
•i —
i — i * i —
s: a> o
i— Q.
«r— ro
c -i- c:
•r- > ro
p— .C -r-
CL CO 13
O ro C
•-D Z i— i



CD
>
«r—
+J
ro
S_
01
Q.
o
o
o

^•j
ra
a» .
S- 0
3 C
ca i— i

C c
ra o
U_ -r-

ro ro
C T-
ro O
•r- O
"O CO
c to
•-, 
ro C
CO 1. O
i — QJ ••-
ro Q. CO
i- O •!-
OJ >

•r- ra Q
3 2
r— 4-> O

•*— ' 3 C
rO O •!-
E -i- ro
OJ Dl
+J «C
C
1 — t





















CO CO CO CO
CO CO CO CO
r— r— r— r—


O
X O GO
t— GO
I •%
^^ •> ^ U^
x: QJ s-
' 4-> i — 3
(D i- i — -O
O O T- C
C 3 > ro
a> co +->
c ^_) ^_J ^
O S- S- ra
i — O ra CL
U_ U_ 3C OO































181

-------

o
CM
cv

1 —

UJ
c_>
o:
1 1 1
Q-
1—
:r
LU
3
O
CVJ

O
1—
00


1
cc
o
z


1
Si
Q.
oo
o
a.
a:
LxJ
^
00
U-
0
a:
LU
o
o
§
a.


•o
CU
c
•f
4-*
o
*— ^
*»— • *
tjp
CV1

1
o

U-J
OQ
K-
co
s-
ra
pn
QL)
a:







o
>>•?—
f™~ 4-* S«

CD rO
•r- •*->
^Z 4~^ CO
O ro
i- i- -O
roQ.ro
O O
O >,
_l «*--(->
O T-
^^


















o
o
CM










«i
O
i «C





flj
c
fO
C
>
ffl
c
- <










•
>
•r-
• O
a.
o E
o 55

• o
i«
o t-
3
08 •*->
E'S
3 O

•i- ^

3 
s: cu ro
•>r— •!—
« O) r— _E _J
CO i— -i- Q.U-
O T3 E CU «
E c o -a cu
•r- O CO ro O
r— +J O ^ 0)
rO O ro .E -r-
CQ (_> 'O Q- D-


TD
•r~
CO
XI
3
to
A
•
a.
S-
o
•
E
Q.-E
1. C_J O
O O
o cu
cu
CU CD E
CU U CU
CD 2: -C
0 1 0

1 S- O
S- CD U
CU rO

















E



t-
«i
X CU
1 — -^

«_J
-o
cu
-P S-
•i- O
—1 Z







• •
^
CD C S-
1-4 CU
S- Li-
re "
•P j«: t—
OO ro ro
a. s-
CU .r- CU
O i-

















co LO ^r o oo
r— ^~







^>
^^
0>< CU>-
O. E * CU *
o o to a. E
S- E C rO O
(O T- 4-> J= O
_1 o: «aC CJ _J



T3
to
X)
. 3
Q. CO
S-
O " O
CJ • E
O t-t
E 0
3
g> . . o
r- E 0 0
O CU • O
•4-> CJ -I- O E
CU r^ g"" clj
Q. i — ro x:
ro E 3 • O
i— 4-» S- CD O
ro E CU O +->
•!-> CU 4J X3 to
C T3 CO E S- ro
CU *r~ CU O CU CU
•O 0 3 E •*-> -E
•p- o x: to +J
U -i- O O

















ro O
0
E i—








<

ro "
E ro
E E
rO O
> 0
ro ro
00 1—




E
ro >
CU Q
4->
ro Dl
x; E
Q. . -r-
tO O E
0 0 -r-
Q. i —
rO "O
CO CJ E
O) • -i- ro
+•> O E
rO CJ CU S—
-i-> f- fli
00 S- O N
CU •!-
E N S- r—
S- T- CU •!-
CU r— <4_ 4->
x: -r- i*_ s_
4-> 4-> 3 CU
0 CU •»-*




"^3 ™^3
CU CD
to to
o o
o o

a> 01

2: 2:




• * •
• • •
C C C







^g^l
"]— )_
o
to i — z:
XJ ^ "
E > ro
i— to ro
O ro E
o •z. o




•r—
01
O
3
CO
«\
•
O
o
•
E

-C
• C-5
O
E t—
t— i ro
S_
o a>
u -o
(0 CU
CU

















0
O
•*
LO








ro
+J
O
t-























182

-------









4/>
O
CM
Q_

1—
*z.
LU
CJ
O^
LU
Q_
1—
CD
i i
LU
"3.
i?

1
LU
	 |
Q.
i — i
C£
! —

0
LU
1 —
^C
1C
Q,
CO
O
zc
Q.
o:
LU
Q.
ZZ>
CO
1 1
o

CO
C£L
LU
C— ?
ZD
0
O
Qi
Q.


"
CM
1
C_5

LU
_J
CO
^C
1 —















GO

J^
ro
ps
Sj
o:

































o
p— •»-> $1
ro T- +•><—•
3 U QJ GO
C ro E C
CO. O
O O
r—
* — '



"3- CM
10 CO





t~-~<.
(U
C 4J
O  CO
O ro
•r- S- TD
•U 0 C
ro Q- ro
0 O
O >,
O •<-
- j




— 1
LL~ i
U_
n
4-> «
C >>
•r- +J
O T-
D. O

a? "c
C ro
•r* r—
Q. CL.













QJ

C

>,
C;

a

s
*j
















X
QJ

CL


O
QJ
> 4->
•r- ro
o • _c
GO O *"*
r— GO C GO
ro ro i— i O
Or— -C
"r— rj} ** CL,
§3 GO
O QJ >,
• .C Q -r- 4J
O O 1 S- -r-
C JC •*-» O
I— I C -M 00
O> •!- 3 4->
C -O E T3 C
OJ S- CO C rO
T3 O 1-1 r—
s- ca a.
o u_
CO U




s-
o
-p
o
ro


E
(O
OJ
S-
4~)
t/>

^
0
_J




LO CO
CM r—









—1
U_
	 1
1 ' »!
*i ro
oo ca
'o c
O QJ
•r- S-
"Z. CD












•
• o
> c
Q
f\
(/> 
p— • QJ
rO •!-
O S.
•r- -4-5
§GO
3
O JC T3
C O C
I-H I~H
>
•< s- -a
> QJ C
S- GO ro
QJ C i—
GO O E
C C_3 ^
O ro
O U_

























^
lo













	 i
LJ_
ro
E

I —











GO
4->
O
3
O
S-
a.

o

• SM
o o
C JC
I-H CL
00
" O

QJ a.
•r—
C •
•r- CO
"O •
t_ ^^
(0
CD
































































•
o
o

08

QJ
O
fO
1_
CD
.
a:

•
3
4->
+J

C
•r-
fO
&_
+J1

CL)
C
O

(/)

r"—
3
O
•r-
s-
cn
^t



.=
c
o


(O

GO
0)
O
3
-a
o
i.
f»

o
GO
r—
(O




,_
CT>












O
^
•i —
O.
O
f~D














































00
QJ
4-)
fO
, C"
a.
GO
O
^:
Q.




O
CM








co
2:

A
03
C3
D^
ro
GO
ro
Q_











•
Du
S-
• O
Q-0
i_
O E
0 3
QJ

E O
S t-
, t^ -(->
0 QJ
a.
•r~
Q.r—
a. ro
•r- -I-)
00 C
GO 0)
•r- -O
GO >r-
00 O
•r- U
s: o




















































T3
• r~
GO
r"t
3
00

•
0
o

.
£
OJ
Jbl
CJl

r~~
ro
-P
C
QJ
-o
•P—
O
O
o


JC
0
-§ E
3
4- -r-
0 C
O
QJ E
c E
O ro

« OJ
GO O
C 3 QJ
•r- "O -I-3
ro O ro
s- s- .c
4-> Q. Q.
GO
O >, O
2 ro JC
r- E Q-




O r— O1 CM VO O
«*• i — i — CO LO
f\
«3~


r-
— 1 Z3
l_l_
«
*> ^*i
00 Q +->
CD __l i— < T-
C Ll_ O
•r™ *• f ^
Q. >, r- ^ r-
CO ^- i — ro « ro
QJ QJ -M S- O
4-> J3 ro +-> o 1 —
•p- i— 0 r- S_
-C 3 O ro 3








.
>

r^ >
• r—
ro • /"^i
p >
S- Q C
O - •!-
r— . O C

QJ SI >
4- • JC i— -r-
O O O ro T3 Q
C_3 O C
r— "O -i— ro O i —
ro -MCE C ro
4-> O ro QJ t- I-H S-
C • r— JC QJ 3
CD oa.oootsi«4->

• r— (r~ f^ ^_ , 	 ( ^
O S-COS-OJ'r-3CJ
O QJ QJ M- +J tT).^-
O 4-> . C 4- S- GO S-
GO o; «r- 3 QJ ra CD

O • •(-> QJ



-o

ro

ro
QJ

ro

a.
GO
o

0

cr
3

C
O
ro
•
QJ -t-J
O C
3 0)
-a E
0 S.
S- -r-
Q- 3
CT
00 QJ
C QJ
i — ro
O. GO

QJ CD

QJ +-)
-C
4-> C

<4- "~
O QJ
^->
QJ ro
E -C
O CL
CO GO
O
JC
• CL
-P S-
-C QJ
en o.
•r- 3
QJ 00
2
OJ
oo r—
GO Q.
O -i—
i. i.
cn-i-J

i- 00
O ro

QJ i —
S- QJ
ro 2

oo oo
QJ ro
•r-
4-> 00
•i- .(->
O O
rO 3
Q.T3
rO O
O S-
Q.

LU I
1 — Q-
O I

183

-------










CM
n:
Z
0
CJ
CM
:r
z
i
«5C
LU
o;
— J
u_
o

oo
a:
LU
o
rj
Q
0
QC.
Q_

00
C\J
1
o

LU
— 1
CQ
 ^
i — -t-> S-
10 .r- +J, 	
3 O CU to
C (O E C
CO. O
ff tQm +i
^00
r—
~

O)
C 4->
o to
•r— 4->
C +•> CO
O 13
•r- S- ^O
4-> CU C
(O O. cO
O O
O >
_J f- •»->
O T-
o













«*• co
LO CVJ






	 1
U-

A
>- to
3E " —
o
«• o
c ro
1C to
cu c
r- CU
o ex















c
<0
c
g
(J

















•
o
E
t—i

ft
,
CO


.E
(_}
T3
E
ra

to
•P
• o
O 3
C T3
H-< O
>,a_
ro 1
"X. $-
O>'r-
«:


T3
O)
CO
O
O
CU
JD
>>
ra



•*
to




3:
0

•t
+J
E

O
a.
x:
•p
3
O
oo















,
>
•^
Q

d co
1- E
o cD
O JC
<_)

cD -P
.E r—
CJ ra
•r—
•a o
cu cu
•r- Q.
i— oo

5












LO r^. CM r--
o CM co r*.
CM i— i— i—



-
CU E CU CU
CD O Z CD










,
>
•r~
a


.
CU -P
r— O. O
o a> o • • >
S- Q > > -i-
4-> T3 -r- •!- Q
cu i— T- a Q
Q- rtJ E
j_ <3 1— -co
co 3 c: ro E E
ro 4-> ro I- a) CD
X i— >» 3 • -C ^.
CU 3 O -P O CJ O
i—o •— c o
• r- E 3 *-H E t-
E S- <0 O CU 4->
O OI O T- E T3 CU
•i- e£ •>- t- CU S_ Q.
E S- CT-0 O
ID CU ef S- CO
E 0
•5 ca




































»O CM CO LO
CO CO i— LO
co



Z E
h- 0
to
•>-o
S- r—
CU ra
E E
>> 0
i— a





X
cu
1—
x a.
cu E
r— 0
Q.CJ

E
CJ O)
o>
E O
CU S_
01 -P
O -r-
S- Z
•p
. -i- CU
O Z i—
E r—
t— i ro ••-
CD >
« O E
• O 0
•P E CO
CO rO "O
3 -P i—
-O -P rO
E ra E
i— i _E O
CJ Q
U-
CJ
r— •







CO
z
0
"Z
-p
c »
O tO
E •<-
cu c:
S- 3
U- I—





X
cu
1 —
Q.


c_>
X
cu c
i— CU
CL 01
§0
J-
0 -P
c: z
cu
CD ra
o c
•P r^
•r- 0
Z S-
ra
-P O
c
o -E
E -P
cu s-
S- 0
u_ z





















•
•o
•r—
to
J3
3
to

n
•
Q.
S-
• 0
O-CJ
S-
o a>
0 -P
ra
oo -P
ra to
ca s-
a>
to -P
cu c
•P l-H
re
-P 0
oo -a
IO
r— S-
fO O
+j i—
to o
(O C_>
0
CJ












LO 1^ CM
«*• CM CO
r—






>- oo
3 <: ^
CIS
•* *\
ai •> cu
c: re o
E -P C
ai to cu
>, 3 i-
ai oi 3:
-E 3 (O
cj <: _i



c
o
•r-
+J
(O

O
o
T3 to
•i— to
W  E
• CD C
E o ra
a) i- LI_
-E -P
e_> -i- cu
z >
E •!-
O n3 -P
O -r- ro
>,JD S-
3 E CU












CT>
LO









tt.
<

^
ra
E
cu
r-~
OJ
^













.
o
£=
I-H

*l
i-
cu
>
cr
CT>
•r~
QQ
S-
cu
E
•r—
3 Q.-O
r— O
O O
0 0
s-
fO
CD












LO CO
a» CM







X
1—
X
"h-
ra
E «
CU -P
T3 T-
ra E
to E
ro T-
Q. Q





.
•o
•r-
to
JO
3
to
to
<& *»
X •
cu o
h— CJ

4_ .
0 E
CU
i — .E •
•i- U O
O O C
S- HH
C -P
rO CU "
O Q- CU
•r- i-
S- S- 3
cu cu +->
E -r- to
c£ E rt3
CD O.
• S- TJ
E Q- O
a> o
CD CD












ro to to
CM CO CO
r-—





O
«=t S
Z O
I— «
« ro
co E
to CU ro
•r— i — -r—
JE 3 tO
CL o-i-
E S- 3
CU CU O
s: ^:—i











CL
3
O
S^
CD

,
to
cu
• -E 4->
O O Q.
0 CU
i— Q
oB ra •
S^ O to
CU 3 E O
(J -P I— I -r-
ra r— -P
S- 3 to CU
CD O O) -E
•r- i— -P
• S~ 3 E
a; C7> o >,
<: s- to
cu
3 31
184

-------















ij
^*
O
CM
3C
LU
a:
ZD
u_
0
LU
O
Q
O

a.


r ~*
o
3
•^
C
o
0
OO
C\J
1
o
LU
— t
CO

O rO
•r" +-*
C 4-> t/1
O tO
•r- S- -0
•«-> OJ C
i
0 "i-






O>

fO
c
>1
rO
Q.
O












OO
f*"*






^c
CD
#i
IO
c
c
rO
>
rO
OO

•r™
Q
a. •
S_ t/)

O D
f"
• O

r—
.c ro
o s-
oo 5 .
>— O
§ 3°
c -r- to
•r- S- ro
3 5>tD
r— S-
0) +J
S- to CO
0) T-
to ro a;
•r— i^ C
ro O







r->-rooo if) CO LO LOI —
r^ c\i to ^^ r~- uo ^~ ^t*
r~~ r— r-—


_J
CO
s: x «> . r— "
t-^+J "3=5 S-J*
O-r- -MOO) ro O
O C T- J= •!-
to •> o •> > c_) S
C S- 0 E S- C 0)
O)OO 3 OT- ,tM ro >,(0 -* C
- CQ O-Q. 	 i "*s





> O

> Q
O- > -r-
TO S— •f* i~^ . c
•r- o o to aJ
WO E E -C
-Q « >  > -C
to E OQ O-r- OO
3) • o s- o •!-
• OS-'E •!—(/! rO'r—
O OECU 'Z. C S-O
»5 'o.O_c:"oQ.aj'I~ S"3
O-r— O O S- O) r- O-r—
n to o r— -MOO OOCL
ro to -1—4) s_ .c O T- -i—
O- -i— i — jQQ. CQJCT S-r—
•r- tO -r- O 0) -C -r- C CT)r—
^^ tO r~i ^^ /v f ^ -7— (|_ ^^ >r«
^0 1 r- J=






^
o o ro ro
LO LO r--.
c


1— 1
fy*
O •> Q
OQ  ro O
CQ OO LU Q-

O
1— H


to

O •!-
3 Q

O O O
E >— i D- OD
3 • • -C
d) > « ro O O
r— •!- • -r- 0
S- E O •«-> C
Q) QJ -C § r—
•r- E r-
Q.-1- r— 3 CO S-
•r- 4-> O rO OJ
r— S- JC Q. • C
•— a) o a: •<-

f fSoo-o







^~ oo ^d~ *f) c\i
LO i — to in «3-
CVI r—

_i _i
«t
* 0J
 >
jc •— c
« 3: CO ro O
C O OJ to
O C1J Z -O
+J ^r_ ,__
C 03 O -l-> rO
r^ -r- 3 0 O
o _i s: o- Q


*
TD • — • C

to T- +->

3 O T3 si r—
tO 	 T- O -
tO f~ 4J
" • JO -M ro
• O 3 3 C
o o to ea: s-
O OJ
• T- • -t-> OJ C
• E O Q- Q-i — >— i
o 93 s- a) i —
o s- o :> to •
•r-oj"occ/)cu33§3
• C S- •(—
jw: -c CD oi s-
CO 1— 1— 1— I—
185

-------















a:
o
o
CM
^P
^^
1
1 t 1
C£
LL.
0

CO
o;
LU
0
^_J
Q
O
o;
Q.

_
TJ
 £
3 O Q) to
C ro E C
CO. o
^C fO **> 4-)
0 0


0)
C 4J
O (O
••- 4J
C 4-> to
O rc
•i- J- -O
rOQ.ro
0 O
O >i
O -r-
U








O)
c
C
>,
ro
Q.
O












O> OO CO" — CM O O O
Lf) LOO CM *fr OO OO tD
co i— co co o

lf>
«=C
J
i-J
C£ "
 O)+JO>tO ro
C •> ±t C. OJ T3 +->
•i- "-1- OOJoJCr— O
i — roro i_OE 4->ro 1 —
Q. O) C O) i— >> C
O S-OJ JC r— QJ i— O
*~3 CO NX C_J 1 i 1 "T" m Q



*
Q.
S- U
0 C
CJ i— i
. fO
T3 -i- • • -O
tO 1- OJ O.vn- &>- (/)
J3 0 J= S- Q  3 OJ (/)
t— x» to -o T-
"fOC r— r— O C*
• O ro OJ ro 5- ra
o a> o o_ a. o
O t|- C +J -r- E <->
O O CO E C O
i- jo 33 oj o •
CL) • S-  i S- E -c:
CX O ro »r- 4-> ra O
S- D. r— S- . 4-> i- •!- T-
o T-CD-O cocnz r-o
O W O -r- -I- «£ r— O
ro i — to T3 >)•!-•!-
i-i — Ci — JO OJCOO) 3S-
O)4->OO3 4->CO>— CD
i— < 'r- O (/> T— Z3r— > c c fO jc:

















o
^— '

ra
o

0)
to

s-
3
c
>
4->
c:
"r~
o
•-3

•K
186

-------
            APPENDIX  D




FERTILIZER INDUSTRY  BIBLIOGRAPHY
                187

-------
                                      BIBLIOGRAPHIES
Number
1062
1085
1117
1137
1144
1164

1214
1283
1296
1392
1418
1433
1477
1004
1027
1120

1120A

1131
1156
1162
1180
1219
1249
1331
1346
1368

1428
1442
1469
1492
               Available from the Technical Library


                              Subject

                         I.  RAW MATERIALS
No. of
 Refs.
1001
1007
1019
1023
1030
1044
Open-Pit Mining of Phosphate Rock                        19
Phosphate Rock:  Mining and Beneficiation                90
Sulfur:  Ore Deposits and Extraction Processes           22
Fertilizer Raw Materials:  Sources of Information        16
Sulfur Extraction from Pyrites                            7
Bacteriological Digestion of Gypsum as a Source for      13
  Sulfur
Minor Elements in Phosphate Rock                         52
World-Wide Phosphate Reserves                            91
Organic Matter in Phosphate Rock                          9
Phosphate Rock - Florida                                 40
Substitution of Al or S for P in Apatites                18
Uranium in Phosphate Rock                                60
Potash Deposits                                          85

            II.  MANUFACTURING PROCESSES AND MATERIALS

Suspension Fertilizer                                   111
Bulk-Blending of Fertilizers                            106
Selected Bibliography on Fertilizers, with Source and   109
  Price
Fertilizers, Selected Periodical List with Source and    59
  Price
Plant Food Losses in Fertilizer Production               12
Spherodizing Fertilizers                                  7
Hydrogen by Electrolysis of Water                        72
Plant Production of NPK Fertilizers                       6
Manufacture of Calcium Carbonate from Calcium Nitrate     5
Fertilizer Granulation Processes                        160
Granulation of Lime and Limestone                        16
Fertilizers of Low Bulk Density                          10
Energy Requirements for the Production of N, P, and K    93
  Fertilizers
Quality Control in Fertilizer Manufacture               132
Use of Surfactants in Fertilizer Manufacture             40
History of Fertilizers:  Manufacture & Use               40
Publications on Safety in Production, Handling &         44
  Storage of Fertilizers

                    IIA.  Phosphorus Compounds

Amraoniated Phosphates - Manufacture, Patents & Use      284
Purification of Phosphoric Acid                         176
Reactions of Ammonia and PaOs                            41
Nitric Phosphates:  Manufacture and Use                 237
Acidulation of Phosphate Rock with HC1                   42
Treatment and Disposal of Phosphate Slimes               42
Period
           1959-1968
           1944-1968
           1954-1968
           Compiled 1967
           1962-1966
           1931-1969

           1924-1968
           Compiled 1975
           Compiled 1972
           1970-1973
           1938-1974
           1947-1974
           1967-1975
           1962-1970
           1958-1975
           Compiled 1974

           Compiled 1974

           1952-1968
           1959-1970
           1958-1973
           1960-1969 '
           1933-1970
           1951-1975
           Compiled 1972
           Compiled 1973
           Compiled 1973

           Compiled 1974
           1966-1974
           Compiled 1975
           Compiled 1976
           Compiled 1973
           1957-1972
           Compiled 1973
           1951-1975
           1957-1974
           1949-1974
                                           189

-------
Number
1045
1047
1055
1063
1067
1127
1145
1148
1157

1163

1170
1172
1178

1186
1193
1194
1215
1237
1240
1247
1254
1271
1280
1281

1282

1299
1361

1363
1374
1375
1379

1379 Suppl.

1384
1405
1410
1414
1427
1437
1438
1461
1470
1481
1493
                              Subject

              IIA.   Phosphorus Compounds (Continued)^
No. of
 Refs.
Solubility of Metal Complexes in Phosphoric Acid         13
Reaction of Phosphate Rock and Fluosilicate              17
Defluorination of Phosphate Rock                        118
Liquid Fertilizers Using Wet-Phosphoric Acid             41
Ammonium Polyphosphates                                 137
Ammonium Phosphate by the Reaction of HC1 and HaPOa       5
Potassium Hydroxide in Fertilizer Manufacture             8
Defluorination of Wet Phosphoric Acid                    37
The Manufacture of Wet-Process H3P04 from Igneous        20
  Apatite
The Production of H3POi, with the Process of Acidulation  28
  of Phosphate Rock with HC1
Phosphate Rock-Calcination                               59
Beneficiation of Phosphate Ores                         176
Sequestering Fe & Al Impurities in Phosphoric Acid       11
  and Ammoniated Phosphates
A Bibliography on Citrate-Insoluble P2P05                26
Gel Permeation Chromatography of Phosphorus Compounds     5
Ammonium Phosphate from Wet-Process Phosphoric Acid     111
Monoammonium Phosphate                                  154
Calcium Phosphates—Citrate Solubility                    5
Alternate Methods of Phosphorus Production               27
Urea Phosphate                                          120
Oxidation of Phosphorous Acid                            22
Manufacture of Sodium Tripolyphosphate                   36
DAP/TSP Comparison                                       19
Extraction of Uranium from Phosphate Rock and           119
  Phosphoric Acid
Treatment & Recovery of Waste Products (Fluorine and    144
  Gypsum) from Wet—Process Phosphate Acid Manufacture
Oxyapatites                                               7
Removal of Magnesium from Phosphate Rock and             14
  Phosphorus Compounds
Metal Ammonium Phosphates                                60
Solvent Extraction of Phosphoric Acid                    36
Superphosphoric Acid                                     50
Wet Process Phosphoric Acid:  Manufacturing             154
  Technology.  Production Economics.
Wet Process Phosphoric Acid:  Manufacturing              20
  Technology.  Production Economics.
Production of Elemental Phosphorus                      117
Phosphorous Acid and Its Compounds                        8
Urea-Ammonium Phosphate                                  38
Solubility Relationships in Metal-Phosphate  Systems      75
Manufacture of Triple Superphosphate                     69
Flotation Agents for Phosphates                         122
Antifoam Agents for Wet Phosphoric Acid Manufacture      15
Electrostatic Beneficiation of Phosphate Rock            13
Granulation of Phosphate Rock for Direct Application     20
Magnesium Phosphate Fertilizers:  Manufacture  & Use     150
Wet Process Phosphoric Acid Production:  Air/Water       35
  Pollution Rules, Regulations, Treatment Facilities
Period
           1957-1969
           1964-1970
           Compiled 1975
           1959-1970
           1952-1972
           1959-1965
           1955-1965
           1957-1974
           1955-1969

           1950-1969

           Compiled 1975
           1949-1975
           1954-1973

           1935-1969
           1966-1969
           1959-1975
           Compiled 1973
           1962-1970
           1948-1970
           1923-1975
           1909-1974
           1947-1973
           1960-1974
           1948-1974

           1961-1974

           1960-1971
           1962-1973

           Compiled 1973
           1959-1972
           1958-1971
           1967-1973

           Compiled 1976
            1938-
            1957-
            1960-
            1968-
            1949-
            1957-
            1957-
            1961-
            1961-
            1950
            1960
   -1973
   •1974
   -1975
   -1974
   -1974
   -1975
   -1974
   -1973
   -1974
   -1975
   -1975
                                          190

-------
                                                                   No.  of
Number                                    Subject                   Refs.

                                 IIB.   Potassium Compounds

1314        Manufacture of Potassium Sulfate from Potassium          14
              Chloride and Sulfuric Acid
1365        Potassium Hydroxide in Liquid Fertilizers                21
1373        Manufacture of Potassium Fertilizers                     83
1388        Potassium Chlorate Manufacture from Potassium Chloride    9
1474        Potassium Chloride from Carnallite                       19
1476        Mining and Beneficiation of Potash                       81

                                 IIC.   Nitrogen Compounds
              (See also 1019,  1023, 1067, 1127, 1159, 1194,  1317,  1363, 1410)

1052        Corrosion of Nitrogen Fertilizer Solutions              112
1053        Ammonia Production                                      288
1057        A Basic Booklist on Production of Ammonia, Ammonium      34
              Nitrate, Nitric  Acid and Urea
1074        Recovery of Plantinum from Ammonia-Oxidation Catalysts   10
1100        Ammonium Nitrate:   Hygroscopicity                        31
1104        Conditioning Urea                                         68
1111        Granulation from Melts:  Urea and Ammonium Nitrate       79
1115        Concentrated Nitric Acid Production Processes            77
1129        Production Processes for Potassium Nitrate               58
1161        Ammonium Nitrate-Ammonium Sulfate                        44
1167        Adding MgO to NHuNOa                                      7
1169        Electrolytic Hydrogen in Ammonia Production              22
1215        Monoammonium Phosphate                                  154
1239        Urea Solutions Production and Transportation              8
1247        Urea Phosphate                                          116
1262        Manufacture of Ammonium Nitrate Prills                   28
1286        Non-Agricultural Uses of Ammonia                        161
1301        Urea Prilling                                            32
1305        Urea Synthesis:  Physical, Chemical, and Thermodynamic   69
              Properties
1310        Urea-Calcium Nitrate:  Hygroscopicity                     6
1317        Manufacture of Ammonium Sulfate                          65
1322        Urea-Ammonium Nitrate Solutions                          23
1324        Urease and Urease  Activity                              839
1324 Suppl.  Urease and Urease  Activity Supplement                    67
1325        Sulfur Coated Urea - Production and Use                  55
1326        Corrosion of Urea  Solutions                              17
1333        Properties and Structure of Guanidine and Triuret        10
1337        Reactions of Ammonia and Sulfur Dioxide                  21
1338        Removal of C02 from Gas for Ammonia Synthesis            75
1339        Manufacture of Ammonium Sulfate from Sodium Sulfate      29
1345        Ureaform - Manufacture and Properties                   108
1347        Oxamide                                                  22
1348        CDU and FLORANID                                         14
1349        Urea-Z (Urea Acetaldehyde)                               12
1350        Miscellaneous Urea-Based Slow Release Fertilizer         20
1351        IBDU                                                     28
  Period
Compiled 1972

1957-1973
1968-1973
1907-1973
1959-1975
1965-1975
1958-1973
1951-1975
1947-1973

1956-1967
1958-1969
1957-1973
1926-1969
1963-1971
1950-1970
1921-1970
1958-1970
Compiled 1973
Compiled 1973
1964-1970
1923-1975
Compiled 1972
Compiled 1973
1956-1974
1950-1973 .

Compiled 1972
Compiled 1974
1907-1972
1900-1973
Compiled 1974
1947-1974
1964-1972
Compiled 1972
Compiled J972
Compiled 1975
Compiled 1973
Compiled 1973
Compiled 1973
Compiled 1973
Compiled 1973
Compiled 1973
Compiled 1973
                                           101

-------
                                                                   No.  of
Number                                    Subject                   Refs.

                           IIC.  Nitrogen Compounds (Continued)

1376        Calcium Cyanamide in Agriculture                         73
1378        Ammonium Thiosulfate                                     15
1391        Urea Production                                         237
1397        Ammonia and Fertilizers from Coal                       110
1409        Calcium Ammonium Nitrate                                 84
1412        Formamide Use in Fertilizers                              9
1425        Urea Manufacture—Hydrolysis                             17
1430        Urea Granulation                                         37
1444        Waste Water from Urea Plants                             13
1450        Compound Fertilizers Made With Urea                      80
1479        Chemical Nitrogen Fixation at Moderate Temperature &     91
              Pressure
1495        Ammonium Nitrate:  Crystal Structure & Phase             60
              Transformations
                                                                    Period
                                                                  1957-1972
                                                                  Compiled  1973
                                                                  1950-1973
                                                                  1957-1975
                                                                  1957-1974
                                                                  1950-1974
                                                                  1957-1974
                                                                  Compiled  1974
                                                                  1966-1974
                                                                  1962-1974
                                                                  Compiled  1975

                                                                  1960-1975
1040
1058
1167
1183
1184
1206
1232
1252
1378
 1011
 1012
 1015
 1241
 1252
 1303
 1325
1051
1075
1076
1080
1107
1158
1182
1221
1224
1266
1313
1318
                       IIP.  Micronutrients
                          (See also 1015)

Incorporation of Micronutrients into Solid Fertilizers    64
Addition of Micronutrients to Liquid Fertilizers         88
Adding MgO to NHqN03                                      7
Fluorides in Fertilizers                                 22
Fluorine in Plants:  Analytical Methods                   7
Mercury in Plants and Soils                             115
Manufacture of Boron Fertilizer                          17
Zinc Coatings on Granular Fertilizer                     11
Ammonium Thiosulfate                                     15

                          HE.  Coatings
                          (See also 1104)

Coatings for Slow-Release Fertilizers                   128
Coatings to Prevent Caking                               48
Coatings as Carriers for Micronutrients                   7
Urea-Formaldehyde as a Fertilizer Coating Agent           9
Zinc Coatings on Granular Fertilizer                     11
Coatings for Dust Control in Granulated Fertilizers      16
Sulfur Coated Urea-Production and Use                    55

                    IIF.  Plants and Equipment
                   (See also 1052, 1075, and 1076)

Maintenance for Production Plants                        29
Materials of Construction in Urea Plants                 18
Nitric Acid:  Materials of Construction                  16
Pilot Plants                                             40
Corrosion in Manufacture of Fertilizer Chemicals         26
Conveyors                                                81
Chemical Plant Start-Up                                  20
Pumps for Suspension                                     23
Cooling Towers:  Design and Performance                 154
Corrosion and Water Treatment                            46
Quality Control in the Chemical Plant                    52
The Oslo-"Krystal" Crystallizer                           8
1960-1973
1958-1973
1958-1970
1950-1969
1953-1966
Compiled 1970
1956-1970
1959-1970
Compiled 1973
Compiled 19^2
1964-1970
1965-1969
1959-1970
1959-1970
Compiled 1972
1947-1974
1964-1970
1960-1970
1958-1967
1964-1969
1965-1969
1965-1971
1953-1970
1962-1970
1961-1970
Compiled 1971
1956-1972
Compiled 1972
                                               192

-------
                                                                   No.  of
Number                                    Subj ect                   Ref s.

                             IIG.  Sulfur and Sulfur Compounds

1043        Recovery of Sulfur, Ammonium Sulfate, and Sulfuric       42
              Acid from Gypsum
1164        Bacteriological Digestion of Gypsum as a Source for      13
              Sulfur
1225        Reactions of S02 and Magnesium Oxide                     44
1226        Physical Properties of MgS03                             28
1230        Corrosion by Magnesium Sulfite                            2
1236        Sulfur-Containing Fertilizers                           281
1250        Technology of Sulfuric Acid Manufacture-Contact Process 282
1260        Sulfur/Sulfuric Acid:  Production, Consumption and       59
              Marketing in U. S.
1311        Market Potential for Gypsum                               8
1317        Manufacture of Ammonium Sulfate                         205
1317 Suppl. Manufacture of Ammonium Sulfate                          65
1372        Uses of Gypsum and Sodium Sulfate                        58
1423        Sulfuric Acid Manufacturing Technology                   35
1424        Prilling Sulfur                                          18
1449        Granulation of Gypsum                                    12
1497        Oxidation of Ammonium Sulfite                            17

                          III.  APPLICATION METHODS AND EQUIPMENT

1025        Injection Application of Anydrous Ammonia                19
1082        Foliar Application of Fertilizers                       144
1090        Aerial Application of Pesticides                         67
1110        Pop-Up Fertilizers                                       13
1207        Foliar Application of Ammonium Nitrate Fertilizer        29
1243        Fertilizer Placement for Potatoes (Row vs. Broadcast)    28
1244        Fertilizer Placement for Tomatoes (Row vs. Broadcast)    13
1246        Foliar Application of Fertilizer on Jute                  4
1287        Nonuniform Application of Fertilizers (Causes,           34
              Corrections, Effects)
1288        Fertilizer Application Equipment  (General, Solid,       222
              Aerial, Liquid)
1315        Foliar Application of Phosphates                         44
1319        N Fertilizer Applied in Irrigation Water                 37
1446        Band vs. Broadcast Placement of Phosphate Fertilizer     35
              for Maize, Sorghum, and Soybeans

                              IV.  STORAGE AND TRANSPORTATION

1009        Ammonia Pipeline                                         36
1010        Storage of Fertilizers                                   86
1014        Phosphoric Acid:  Storage, Transportation, Corrosion,    78
1050        Liquid Fertilizer Storage and Transportation             41
1060        Transportation and Handling of Molten Sulfur             18
1105        Storage and Transportation of Urea                       13
1158A       Conveying Fertilizer Bags                                14
1175        Fertilizer Ships and Shipping                            37
1220        Fertilizer Bags and Bagging                              37
1239        Urea Solutions Production and Transportation              8
  Period



Compiled 1972

1931-1969

1948-1970
Compiled 1970
1952-1959
1960-1973
1950-1971
1970-1975

Compiled 1972
1947-1972
Compiled 1974
Compiled 1973
1970-1974
Compiled 1974
1965-1975
1963-1975
1957-1968
1953-1970
1960-1973
1966-1969
Compiled 1970
Compiled 1971
Compiled 1971
1959-1970
1962-1973

1960-1971

1953-1972
1934-1974
1956-1974
1967-1970
Compiled 1973
Compiled 1974
Compiled 1973
1959-1974
1961-1973
Compiled 1971
Compiled 1973
1961-1973
1964-1970
                                             193

-------
Number
Subject
                                       V.   POLLUTION
No. of
 Refs.
1013        Air Pollution:   Nitrogen Oxides - Toxicity & Control     61
1028        Scrubber for Chemical Plants                             41
1042        Pollution from Fertilizer Manufacturing Plants           72
1061        Effects of Atmospheric Fluorides on Plants and Animals  169
1081        Nitrate Toxicity                                        105
1088        Effect of Elemental Phosphorus, P205,  Fluoride, and      49
              Particulate Matter on Fish and Marine Life
1118        Recovery of Ammonia from Waste Gases                     17
1123        Neutralization of Sulfuric and Chromic Acid Wastes       27
1171        Environmental Pollution Sources                          33
1173        Incineration of Sludges                                  34
1206        Mercury in Plants and Soils                             115
1208        Mercury in Aquatic Environment                           96
1225        Magnesium Oxide Used in Sulfur Dioxide Scrubbing         44
              (Excluding Dolomite)
1233A       Wet Scrubbing - Dust                                    318
1233B       Wet Scrubbing - Sulfur Dioxide                          281
1294        Effects of Air Pollution on Lichens and Bryophytes       33
1307        Damage to Vegetation in the Copper Basin in Tennessee    19
1337        Reactions of Ammonia and Sulfur Dioxide                  21
1340        Recovery of Fluorine from Phosphate Plant Stack Gases    46
1356        Potassium Carbonate Method for Removal of H2S from Gases 28
1364        Thermal Pollution Research  .                             90
1367        Cadmium Pollution                                        62
1389        Heavy Metals in Sewage Sludge and Organic Waste          62
1407        Nickel in Plants, Soils, and Surface Water               90
1411        Phosphorus Removal from Waste Water                     160
1416        Sulfur Dioxide Effects on Plants and Animals            169
1419        Dechlorination of Water                                   7
1439        Selected References on Refuse Incineration              111
1443        Ammonia Removal from Waste Waters                        83
1444        Waste Water from Urea Plants                             13
1454        Effects of Acrolein in Aquatic Ecosystems                17
1455        Published Reports of U.S. Government Sponsored Research  31
              on Topics Relating to Agriculture and the Environment
1480        Flue Gas Desulfurization by Fluidized-Bed Combustion     34
1488        Nitrate Leaching                                        170
1493        Wet Process Phosphoric Acid Production:  Air/Water       35
              Pollution Rules, Regulations, Treatment Facilities

                                      VI.  MARKETING

1031        Marketing Fertilizers                                   208
1078        Merchant Credit in the Fertilizer Industry               13
1114        Experiences in Fertilizer Market Development             42
1195        Fertilizer Economics  (Nine Selected Bibliographies)
                      - Books on Fertilizer Economics  (TVA TL)       22
                      - Costs of Producing Fertilizers               90
                      - Costs of Marketing Fertilizer                38
                      - Inventory Control                             3
                      - Costs of Transporting Fertilizers            24
                      - Pricing Practices  in the Fertilizer.Industry 90
                      - Supply-Demand Studies                       206
                      - Governmental Policies and Regulations of     45
                          the Fertilizer Industry
                      - Farmers' Attitudes Towards Fertilizer Use    19
//I
y/2
in
#8
(Rev.)
(Rev.)
(Rev.)
(Rev.)
(Rev.)
Period
                                    1966-1970
                                    1967-1970
                                    1964-1970
                                    1950-1974
                                    1939-1968
                                    1958-1972

                                    1936-1962
                                    1949-1967
                                    1967-1969
                                    1959-1969
                                    Compiled 1970
                                    1927-1970
                                    1948-1970

                                    1930-1970
                                    1930-1970
                                    1940-1974
                                    Compiled 1972J
                                    Compiled 19721
                                    Compiled 1973!
                                    1958-1973
                                    1970-1973
                                    Compiled 1973
                                    1961-1973
                                    1959-1974
                                    1967-1974
                                    1967-1974
                                    Compiled 1974
                                    1969-1974
                                    1966-1974
                                    1966-1974
                                    1959-1971
                                    1972-1974

                                    1969-1975
                                    1971-1975
                                    1960-1975
                                    Compiled  197
                                    1963-1969
                                    1955-1969

                                    Compiled  197
                                    1965-1972
                                    1965-1974
                                    1965-1972
                                    Compiled  197
                                    1965-1974
                                    1970-1974
                                    1966-1974

                                    1954-1972
                                               194

-------
Number
                              Subj ec t

                    VI.   MARKETING (Continued)
1366        Fertilizer Demand Analysis
1382        Books on Marketing (Found in MSTL)
1490        Fertilizer Dealer Services

                                  VII.  ORGANIC MATERIALS

1091        Humates - Humic Acid - Fluvic Acid
1092        Bone for Fertilizer and Animal Feed
1093        Guano as Fertilizer
1098        Compost (Fertilizers and Soil Amendments) from Town
              Refuse
1108        Milorganite
1205        Leather as Fertilizer
1223        Organic Fertilizers
1238        Bark as Soil Amendment
1265        Effect of Crop Residue on Soil Fertility and Crop
              Yields
1272        Fish and Fish Meal as Fertilizers
1304        Paper Mill Waste as Fertilizer Soil Amendment
1327        Ammelide and Ammeline:  Analysis and Manufacture
1389        Heavy Metals in Sewage Sludge and Organic Waste
1429        Peat (Formation, Transformation, and Chemical
              Composition)

                                     VIII.  PESTICIDES
No. of
 Refs.
                                                         15
                                                         47
                                                         85
                                                         99
                                                         39
                                                         52
                                                        300

                                                         13
                                                         17
                                                         22
                                                         38
                                                        105

                                                         35
                                                         13
                                                         17
                                                         62
                                                         43
Period
           Compiled 1973
           Compiled 1973
           1958-1976
           1959-1969
           1951-1975
           Compiled 1975
           1958-1973

           1928-1963
           Compiled 1975
           1954-1970
           1959-1970
           1960-1970

           1950-1971
           1962-1972
           1937-1971
           1961-1973
           Compiled 1974
1056
1090
1097
1130

1203
1242
1278
1295
1491
1032
1189
1191

1257
1265

1279

1289
1370
1371
1380
Pesticide Manufacture and Use:  A Basic Booklist         33
Aerial Application of Pesticides                         67
Herbicides and Pesticides in Liquid Fertilizers          99
Pre-Emergence Herbicides in Relation to Temperature and  20
  Moisture
Insecticides-Herbicides, Sugar Industry in South America 37
Movement of Herbicides and Pesticides                    70
Pesticides in Granular Fertilizers                       32
Soybean Cyst Nematodes                                   64
Economic Impact of Pesticide Bans                        53

                       IX.  PLANT NUTRITION

Cation Exchange Capacity of Plant Roots                  23
Effect of Soil Profile Properties on Plant Response      28
Effect of Moisture Supply in Soil on Crop Response to    51
  Fertilizer
Fertilizer Trials in High pH Soils                       85
Effect of Crop Residue on Soil Fertility and Crop       105
  Yields
Plant Analysis as a Guide for Fertilizer                101
  Recommendations
Agricultural Chemicals and Food Quality                  29
Influence of Roots on Nutrient Uptake                   144
The Application of Growth Regulators to Plants           70
Effects of Soil Temperature on Nutrient Uptake and      166
  Plant Growth
                                    195
           1955-1971
           1960-1973
           Compiled 197!i
           1951-1967

           1967-1970
           1960-1970
           Compiled 1972
           1962-1972
           1971-1976
            1947-1969
            1965-1970
            1965-1970

            Compiled 1971
            1960-1970

            1953-1971

            Selected Refs.
            1969-1973
            Compiled 1973
            1960-1973

-------
Number
1001
1021
1022
1023
1033
1035
1067
1069
1070
1087
1103
1122
1146
1154

1202

1207
1210
1325
1329
1330
*1406
1409
1422
1448
1458
1462
1496
 1037
 1046
 1067
 1101
 1109
 1109  Suppl,
 1188
 1190

 1211
 1255
 1396

 1410
 1417
 1463
 1467
 1468
 1478

 1481
 1487
                              Subject

                          IXA.  Nitrogen
No. of
 Ref s.
Ammoniated Phosphates - Manufacture, Patents & Use      284
Use of Anhydrous and Aqueous Ammonia                    167
Biuret in Fertilizers and Feeds                         226
Nitric Phosphates:   Manufacture and Use                 237
Nitrogen Nutrition of Mycorrhizal Fungi                  14
Nitrate Reductase Activity in Higher Plants              14
Ammonium Polyphosphates                                 137
Foliar Application of Urea on Non-Cereal Crops           48
Use of Urea Solutions on Cereal Crops                    29
Urea-Formaldehyde Fertilizer:;,  Agronomic Aspects         85
Use of Fluid Nitrogen Fertilizers                       106
Ammonium Thiocyanate in Agriculture                      15
Nitrogen Mineralization                                  16
Comparison of Urea and Ammonium Nitrate for  .            34
  Effectiveness as Nitrogen Fertilizer
Relative Effectiveness of N03-Nitrogen and NHtt-Nitrogen  57
  on Crops other than Paddy
Foliar Application of Ammonium Nitrate Fertilizer        29
Urea Transformations in Waterlogged Soils                19
Sulfur Coated Urea - Production and Use                  55
Urea Hydrolysis Under Field Conditions                   77
Glycoluril as a Slow-Release Fertilizer                   8
Ammonium Bicarbonate as Fertilizer                       22
Calcium Ammonium Nitrate                                 84
Azotobacter Cultures as Fertilizer                       28
Effects of Hydrazine on Plants and Soil Microorganisms   11
Use of Ammonium Chloride as a Fertilizer                 34
Nitrogen Fertilizers for Rice                           122
Ammonium Sulfate in Plants & Soils                       81

                  IXB.  Phosphorus and Potassium

Basic Slag                                              132
Agronomic Effects of Potassium Pyrophosphates            12
Ammonium Polyphosphates                                 137
Potassium Phosphate Fertilizers                          84
Phosphate Rock as Fertilizer                             99
Phosphate Rock as Fertilizer                             28
Potassium-Magnesium Relationships in Plant Nutrition     25
Effect of Time of Application of Potassium Fertilizers   22
  on Plant Response
Crop Response to Polyphosphate Fertilizers               29
Agronomic Effects of Calcium Metaphosphates              30
Agricultural Uses of Flue Dust from Portland Cement      59
  Manufacture
Urea-Ammonium Phosphate                                  38
Comparative Studies of Potassium Fertilizers             28
Phosphorus-Zinc Interactions                             84
Utilization of Phosphogypsum                             68
Use of Rhenania Phosphate                                27
Phosphorus Nutrition of Alfalfa, Blue Grass Clover,     332
  Orchard Grass, Reed Canary Grass, & Rye Grass
Magnesium Phosphate Fertilizers:  Manufacture & Use     150
Bacterial Phosphate Fertilizers                          62
Period
           Compiled 1973
           1951-1975
           Compiled 1975
           1951-1975
           1952-1969
           1951-1967
           1952-1972
           1958-1968
           1958-1967
           1958-1968
           1951-1973
           1946-1965
           1927-1965
           1957-1970

           1960-1970

           Compiled 1970
           1945-1970
           1947-1974
           1962-1974
           Compiled 1972
           1948-1970
           1957-1974
           Compiled 19/4
           1947-1966
           1957-1974
           1972-1975
           1965-1975
           Compiled 1975
           Compiled'1972
           1952-1972
           1936-1971
           1934-1970
           Compiled 1974
           1965-1970
           1965-1971

           1958-1970
           Compiled 1971
           1907-1973

           1960-1975
           1968-1973
           1968-1974
           1963-1975
           1953-1974
           1950-1974

           1950-1975
           1962-1976
                                            196

-------
                                                                   No.  of
Number                                    Subject                   Refs.

                                       IXC.  Sulfur

1026        Agronomic Effects of Sulfur                              57
1112        Agricultural Use of Gypsum                               A3
1122        Ammonium Thiocyanate in Agriculture                      15
1496        Ammonium Sulfate in Plants & Soils                       81

                         IXP.  Other Secondary and Minor Elements

1041        Crop Response to Micronutrients                         285
1079        Magnesium in Agriculture                                117
1083        Iron in Plant Nutrition                                 114
1177        Zinc Nutrition of Sugar Beets                            46
1181        Chromium Nutrition of Plants and Animals                 88
1185        Effects of Root-Absorbed Fluorides on Plants             36
1188        Potassium-Magnesium Relationships in Plant Nutrition     25
1231        Boron Deficiency and Toxicity                           112
1256        Manganese in Plant Nutrition                            197
1267        Agronomic Use of Fritted Trace Elements                  28
1270        Agricultural Use of Limestone                            26
1334        Agronomic Effects of Fluorine in Fertilizers             15
1360        Fluorine Reactions in Soils and F Uptake by Plants       29
1386        Arsenic in Fertilizers, Soils, and Plant Nutrition       50
1387        Cobalt in Plant Nutrition     __                          103
1404        Magnesium Oxide in Fertilizers and Feed                  25
1456        Selected References on Secondary and Trace Elements in   98
              Agriculture
1463        Phosphorus-Zinc Interactions                             84
1465        Carbon Dioxide as Fertilizer                             39

                      IXE.  Effects of Time and Method of Application

1082        Foliar Application of Fertilizers                       144
1110        Pop-Up Fertilizers                                       13
1152        Leaf Damage from Liquid Fertilizer                       20
1179        Winter Application of Fertilizers                        28
1187        Residual Effects of Fertilizers and Manures on           47
              Subsequent Crops
1190        Effect of Time of Application of Potassium Fertilizers   22
              on Plant Response
1192        Effect of Fertilizer Placement on Crop Response to       86
              Fertilizer
1199        Crop Response to Blended vs. Compounded Fertilizers      15
1269        Effect of Fertilizers on Seed Germination                27
1319        N Fertilizer Applied in Irrigation Water                 37

                                   IXF.  Plant Analysis

1096        Plant Tissue Analysis                                    30
1279        Plant Analysis as a Guide for Fertilizer                101
              Recommendations
1393        Sample Preparation for Nitrate Analysis:  Effects of     12
              Drying
1399        Foliar Analysis of Pine                                  38
Period
1941-1967
1954-1967
1946-1965
1965-1975
1963-1970
1964-1970
1932-1971
1950-1969
1941-1970
1949-1969
1965-1970
1961-1970
Compiled 1971
Compiled 1971
1965-1971
Compiled 1972
Compiled 1973
1950-1973
1957-1973
1967-1973
1969-1973

1968-1974
1957-1974
1951-1970
1966-1969
1950-1969
1931-1971
1965-1970

1965-1971

1965-1970

Compiled 1970
1961-1971
1934-1974
1958-1968
1953-1971

1958-1973

1954-1974
                                           197

-------
                                                                   No.  of
Number                                    Subject                   Ref s.

                            X.   PLANT NUTRITION—SPECIFIC CROPS

1048        Effect of Fertilizer Nutrients on Nicotine Content  of     18
              Tobacco
1094        Fertilizers for Tea and Coffee                          107
1099        Boron:  Effect on Trees and Seedlings                   106
1121        Potassium Nutrition of Landscape Plants                  46
1132        Nitrogen Uptake by Coniferous Plants                     15
1138        Fertilizers for Pineapples                              101
1139        Fertilizers for Rice, Sugarcane, Bananas,  Corn,  Cotton  156
              and Sesame
1149        Forest Fertilization          .                           18
1177        Zinc Nutrition of Sugar Beets                            46
1196        The Effect of Fertilizers (N, P, K) on Fungal Diseases   46
              of Forest Trees
1197        The Nitrogen Cycle in Forest Ecosystems                 239
1198        Nutrition of Rice                                        72
1200        Foliar Analysis of Rubber Plant                          70
1201        Selected References on Pecan Culture                     82
1217        Micronutrient Nutrition of Wheat                         39
1218        Mineral Nutrition of Peas and Beans                      56
1222        Utilization of Phosphorus Applied to Alfalfa            124
1229        Fertilization of Sorghum                                 47
1234        Application of Micronutrients to Grasses                 25
1259        Fertilization of Tropical Pastures                      147
1268        Trace Element Fertilization in Pastures                 171
1273        Fertilizers for Bananas                                  79
1275        Winter Hardiness of Forage as Affected by Fertilizer     39
1284        Soil Analysis and Tomato Production                      17
1285        Foliar Applied Micronutrients for Tomatoes               10
1290        Slow-Release N & Nitrification Inhibitors in Rice       113
              Culture
1297        Nitrogen Fertilization of Soybeans                       49
1298        Nitrogen Fertilization of Alfalfa and Alfalfa-Grass      61
1300        Fertilizers for Coconuts                                 48
1316        Preparation of Tomato Seedlings                          47
1321        Citrus Horticulture in North and South America           79
1332        Grape Culture                                           119
1352        Nitrogen Nutrition of Cotton                            111
1354        Millet; Fertilization and Yield                          99
1381        Soybean Production  (Selected References)                 87
1420        Fertilizing Eucalyptus                                   20
1421        Fertilization of Pine Trees                             123
1445        Use of Sulfur-Coated Urea on Forage Plants               35
1451        Fertilizers for Strawberries                             57
1452        Fertilizers for Oil Palms                                65
1453        Fertilisers for Rubber Trees                             29
1472        Hops - Cultivation and Fertilization                     37
1473        Tall Fescue Fertilization                               103
1475        Mycorrhizal Effects on Nutrient Uptake by Plants        141
1483        American Holly  (Ilex opaca)                              40
1484        Franklinia alatamaha                                     14
1486        Rice Varieties Response to Phosphate Fertilization       54
  Period
1955-1965

1959-1970
1954-1969
Compiled 1972
1958-1966
1932-1970
1950-1970

1938-1966
1950-1969
1953-1969

1956-1969
1963-1970
1955-1970
Compiled 1970
1964-1970
1965-1970
Compiled 1970
1956-1970
1957-1971
1970-1971
Compiled 1971
1962-1971
1945-1971
1960-1970
1960-1970
1954-1972

1959-1971
1960-1972
1967-1971
1962-1972
Compiled 197,'
Compiled 197.'
1960-1972
Compiled 197
1968-1973
Compiled 197
Compiled 197
1970-1974
1967-1974
1967-1974
1967-1975
1960-1975
1960-1975
1945-1975
1951-1974
1943-1976
1972-1975
                                             198

-------
Number
                              Subject

                 XI.  SOIL-NUTRIENT RELATIONSHIPS
No. of
 Refs.
Period
1146
1210
1329
1385
1390
1394
1395
1431
1432
1434
1488
1489
Nitrogen Mineralization                                  16
Urea Transformations in Waterlogged Soils                19
Urea Transformations in Soil                             77
Soil Water Measurement                                  144
Denitrification                                         224
Nitrification Inhibitors                                178
Soil Nitrogen Analysis for Fertilizer Recommendations    62
Amorphous Matter in Soils (Particularly Tropical Soils)   48
Classification of Soils (Particularly Tropical Soils)    81
Tin in Soils                  ,                           37
Nitrate Leaching                                        170
Soil Water Movement                                     142
           1927-1965
           1945-1970
           1958-1973
           1965-1973
           1920-1973
           1968-1973
           1948-1973
           Compiled 1974
           Compiled 1974
           Compiled 1974
           1971-1975
           1970-1975
                                    XII.  ANIMAL FEEDS
1022
1064
1065
1095
1125
1216
1312
1358
1359
1404
1413
1072
1077
1084
1102

1106
1133
1134
1142
1151
1153
1165
1209
1212
1227
1228
1235
1253
Biuret in Fertilizers and Feeds                         225
Feed-Grade Phosphates Manufacture                        76
Feed-Grade Phosphates:  Evaluation of Use                90
Preparation of Animal Feed Supplements by Defluori-      24
  nation of Phosphate Rock—With Special Reference to
  Removal of Fe and A1203
Urea as a Feeding Stuff                                  46
Inorganic Preservation Additives for Corn and Silage     17
The Effect of Temperature and Humidity on Growth and     97
  Feed Conversion Efficiency of Poultry, Cattle and
  Service
Ammoniated Molasses as Animal Feed                       18
Wood and Wood Products for Cattle Feed                   32
Magnesium Oxide in Fertilizers and Feed                  25
Use of Slow-Release Nitrogen Compounds in Animal Feeds   15

                    XIII.  DEVELOPING COUNTRIES

Iran                                                     30
Pakistan                                                 59
Chile                                                    30
Agronomic and Economic Benefits of Fertilizer            37
  Application to Grain Crops in India
Bolivia                                                  56
Mexico                                                   44
India                                                    97
Agriculture in Indonesia                                 73
Fertilizer Marketing and Distribution in India           31
Brazil                                                  113
The Fertilizer Industry in the Republic of South Africa  17
Paraguay                                                 15
Trinidad and Tobago                                      40
Fertilizers:  Tropical Africa                            85
Philippines                                              62
Vietnam                                                  25
Establishing a Business in Pakistan                      15
           Compiled 1975
           1957-1975
           1957-1975
           1956-1965
           1961-1968
           1963-1970
           Compiled 1972
           1937-1973
           Compiled 1973
           1967-1973
           1965-1973
           Compiled  1968
           Compiled  1968
           Compiled  1968
           1955-1969

           Compiled  1969
           Compiled  1968
           Compiled  1968
           1949-1969
           1966-1969
           1955-1969
           1957-1969
           Compiled  1970
           Compiled  1970
           1962-1970
           1965-1973
           Compiled  1971
           Compiled  1971
                                           199

-------
Number

1261
1274
1277
1291
1292
1320
1328
1369

1377
1415
1435
1441
1447
1459
1471
1494

1323
1341

1383
1383 Suppl.
1400
1402

1403
1439

1006

1008
1066
1073
1086
1116
1126
1136
1141
1155
1166
1168
1204
1245
1248
1251

1258
1263
1264
Subject
XIII. DEVELOPING COUNTRIES (Continued)
Fertilizer Production and Technology in the U.S.S.R.
Fertilizer Production and Use in Guatemala
Morocco: Fertilization - Irrigation
Ghana
Taiwan (Publications in the MSTL)
Venezuela
Spain
Central America (Costa Rica, El Salvador, Guatemala,
Honduras and Nicaragua)
Romania
Geology of Niger
Colombia
The Republic of Zaire
Dominican Republic
Agriculture in New Guinea
Egypt - Fertilizer Industry and Use
Role of Agricultural Consultants
XIV. FUEL SOURCES AND PROCESSES
Coal Mine Strip Areas Reclamation
Current Biological and Ecological Studies Done in the
Vicinity of Deep or Strip Mines
Coal Gasification
Koppers-Totzek Articles and Patents
Liquefaction of Coal
Selected Processes for Removal and/or Recovery of S
Compounds from Fuel Gases
Methane Production from Organic Wastes
Selected References on Refuse Incineration
XV. MISCELLANEOUS
Phosphate Fire Retardants: Composition, Application,
and After Effects
Sub-Irrigation
Ammonia Cells
Erosion in Urban-Suburban Areas
No. of
Refs.

49
25
40
19
32
41
17
70

20
24
69
23
44
19
35
25

95
31

333
32
68
53

28
111

28

16
20
14
Manufacture of Hydrogen Fluoride from Fluorosilicic Acid 18
Reduction of Alumina
Manganese Deficient Areas of the World
Cavitation in Liquids
Manufacture of Formic Acid (Sodium Formate Process)
Alfalfa Cutting Management
Books about TVA
High Yielding Cereal Varieties
Geology of the Tennessee Valley Region
Bioelectricity
Gypsum Wallboard Manufacture
Food Preference and Their Nutritive Value for Wildlife
in the Tennessee Valley
Trout Farming
Magnesia-Base Sulfite Pulping
Metric System (Selected References)
32
72
28
12
91
16
162
62
40
44
33

16
108
19
                                  Period
                                  1969-1971
                                  1964-1971
                                  1960-1971
                                  1959-1972
                                  Compiled 1972
                                  Compiled 1975
                                  Compiled 1972
                                  Compiled 1973

                                  Compiled 1973
                                  1907-1973
                                  Compiled 1974
                                  Compiled 1975
                                  Compiled 1975
                                  1965-1974
                                  1967-1975
                                  1965-1975
95
31
333
32
68
53
28
111
1966-1975
Compiled 1973
1947-1973
1947-1973
1959-1974
1955-1974
1947-1973
1969-1974
                                  1961-1973

                                  1966-1970
                                  1961-1967
                                  1963-1968
                                  1961-1966
                                  1962-1968
                                  1933-1965
                                  1949-1966
                                  1935-1966
                                  1959-1969
                                  1952-1969
                                  1962-1969
                                  Compiled  197(
                                  1966-1970
                                  1960-1970
                                  Compiled  197

                                  1960-1970
                                  1907-1971
                                  Compiled  197
200

-------
                                                                   No.  of
Number                                    Subj ec t                   Refs.

                              XV.  MISCELLANEOUS (Continued)

1293        Impact Effects of Materials and Structures               56
1302        pH and/or S Content of Precipitation (Meteorology)       42
1306        Pumped Storage for Hydroelectric Power
1308        Selected References on the Activation of Clay with       32
              Acids and the Recovery of Aluminum
1309        Nitrogen Fixation in the Phyllosphere                    11
1335        Handling and Use of NH4N03 as an Explosive               40
1336        Selected References on Varied Applications of Spectral   39
              Analysis
1342        Cabomba                                                  19
1343        The Importance of Integrity in Leadership, Management    26
              and Supervision
1344        Nelumbo                                                 145
1353        Agricultural Policy in the United States                 21
1357        Pulse Polarography                                       19
1362        Preparation of Nonconducting Samples for SEM              8
1398        Electroless Plating                                      42
1401        Absorption of Nitrogen Oxides by Water and Nitric        21
              Acid Solutions
1408        Vaterite                                                 40
1426        Toxicity of Polyethylene                                 15
1436        Movement of Radionucleotides and Radionuclides into      63
              Food Chains
1440        Mollusks - Freshwater and Estuarine                     158
1440 Suppl. Mollusks - Freshwater and Estuarine                     122
1457        Effect of Climatic Change on Food Supply                 15
1460        Vertical Integration:  Applications in Various           30
              Industries
1464        Drifting Organisms in Streams                            44
1466        Elemental Phosphorus Poisoning                           39
1482        Lithium-Drifted Germanium Radiation Detectors           168
1485        Mathematical Methods for Gain Compensation in Nal        25
              Gamma-Ray Scintillation Spectra
Period
Compiled 1972
1916-1972
1928-1972
1940-1972

1956-1971
1970-1972
Compiled 1972

Compiled 1973
Compiled 1973

Compiled 1973
Compiled 1973
1960-1973
Compiled 1973
1969-1973
1920-1972

1924-1973
1967-1973
Compile'd 1975
Compiled
Compiled 197!
1973-1975
1965-1975

1965-1975
1957-1974
1971-1975
Compiled 1976
April 27, 1976
                                               201.

-------
                                  TECHNICAL REPORT DATA
                           (Please read Infractions on the reverse before completing)
 . REPORT NO.
  EPA-600/2-T7-023v
                             2.
                                                          3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
 Industrial Process Profiles for Environmental Use:
 Chapter 22.   The Phosphate Rock and Basic  Fertilizers
                Industry	
            5. REPORT DATE
               February 1977
            G. PERFORMING ORGANIZATION CODE
  AUTHOR(S)
 P.E.Muehlberg, J.T.Reding, & B.P.Shepherd  (Dow Chem.)
 Terry Parsons & Glynda E. Wilkins, Editors
                                                          8. PERFORMING ORGANIZATION REPORT NO.
0. PERFORMING ORGANIZATION NAME AND ADDRESS
 Radian Corporation
 8500 Shoal Creek Blvd., P.O. Box 991*8
 Austin, Texas  78766
             10. PROGRAM ELEMENT NO.
              1AB015
             11. CONTRACT/GRANT NO.
                                                           68-02-1319/Task
12. SPONSORING AGENCY NAME AND ADDRESS
 Industrial Environmental Research  Laboratory
 Office of Research and Development
 U.S.  ENVIRONMENTAL PROTECTION AGENCY
 Cincinnati, Ohio  1*5263
             13. TYPE OF REPORT AND PERIOD COVERED
              Initial:   8/75-11/76	
             14. SPONSORING AGENCY CODE

               EPA/600/12
15. SUPPLEMENTARY NOTES
 16. ABSTRACT
 The catalog was developed to  aid in defining the environmental  impacts of U.S. in-
 dustrial activity.  The phosphate rock and basic fertilizer materials industry
 produces primarily large-tonnage quantities of both finished  fertilizers and basic
 intermediates for fertilizers.   The industry includes companies and processes that
 produce end products  derived  from phosphate rock having uses  other than as fertili-
 zers.  The industry is discussed in eight operations:  phosphate rock processing;
 ammonia synthesis; production of ammonia sulfate, amonium  nitrate, and urea; produc-
 tion of potassium nitrate and liquid chlorine; production  of  ammonium phosphate and
 nitric phosphate; production  of mixed fertilizers; production of elemental phosphorus
 and furnace acid; and production of sodium phosphates and  calcium phosphates.  One
 segment of the industry is  distinguished as, and entitled, 'Elemental Phosphorus and
 Furnace Acid Segment.'  One chemical tree, eight process flow sheets, and U5 process
 descriptions characterize the industry.  For each process  description, available data
 is presented on input materials, operating parameters, utility requirements, and       j
 waste streams.  Related information, provided as appendices,  includes company, product;
 and raw material  data.                                                                   I
 17.
 a.
                                KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
 Pollution
 Industrial Processes
 Chemical Engineering
 Phosphate Deposits
 Fertilizers
b.IDENTIFIERS/OPEN ENDED TERMS C.  COSATI l-]Cld/Groi:|'
  Process Assessment
  Environmental Impact
  Basic Fertilizer
    Materials
13B
13H
07A
08G
02A
 18. DISTRIBUTION STATEMENT
                                              19. SECURITY CLASS ('/'Ins Report)
                                               Unclassified
               Release to Public
                           21. NO OF
                                208
20. SECURITY CLASS (Tint page)
  Unclassified
                           22. PRICE
 EPA Form 2220-1 (3-73)
                                             202

-------