-------
1C
1 1
~^£.
Q
1 1 1
LLJ
--f
S
h-H
a:
a:
1-1
oo
i
_J
O
o
_J
o
oo
^
o
re
h
2: o
«=c
si
O 4-
a: o
u_
LU
00 ID
LU 1
( «=C
1C
o 3:
O O O O
o o o o
«3" LO
o o o o
CM O
i CT>
O O O O
r
i CM CO
r- 0
O CO
^3 I*"**.
r
r***. r**--
0 O
o o
01 CO
o o
r-. LO
o o
o o
0 O
CM CM
CM CM
0 O
CO CO
CM CO
r^ co
co r«.
0 0
CO CO
o o
CO 00
0 0
CO O
CO CO
r-- i--
O 0
o o
r- r^.
o o
LO ^~
O O
o o
0 O
^- o
O LO
O CM
«=J- «*
CTi O
r-.
o
CM
o
CO
o
[^
CM
1^
0
o
r-*
o
CO
o
o
0
o
CO
LO
en
(_«
to
o
o
I--
o
CO
to
o
o
^1-
o
CO
o
o
o
r~-
o
CO
LO
CO
to
o
o
LO
0
1-^
to
o
o
^J-
o
CO
o
0
o
to
to
LO
r~-
LO
^j-
LO LO ^~
O O O
o o o
LO *3- «*
O O O
to to LO
to to to
o o o
o o o
CO CO CM
o o o
CO CO CO
o o o
O O 0
000
tO to CM
tO LO LO
O LO O
to r^-. o
LO LO tO
LO to r>»
0
0
CO
o
a>
u
"3
CL
fl 1
\D
o
Q.
i
3
u
r
r~
o
to
03
M-
03
-C
^^
,
cu
03
e.
x.
o
^_
Q.
Q.
03
4-
0
-P
E
1
CU
O
03
i
QL
in
'^
cu
1
-^
o
cu
to
c
o
03
(/) CU
4-> 4->
CU -C
to o
cu 03
i- CD
CLr
cu
i. 4-
o
i-
CU i
-§E
3 O
c o
cu
^: o
1 *->
-K
4J
^
CL
c
CM
o
*
*
161
-------
TABLE B24. SOME TRACE METAL CHARACTERISTICS OF LEACHATES FROM DAVIDSON SOIL
COLUMNS IRRIGATED WITH 0.025M A1C13 SOLUTIONS AT A pH VALUE OF 3.0
Pore
Space
Displace-
ments
r-jcn mi \
\jj\j in i j
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Al
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.5
2.8
3.8
0.5
20
40
58
65
100
160
210
230
255
310
345
470
510
510
530
530
530
Fe
0.6
0.16
0.32
0.4
0.3
0.4
0.85
1.3
1.7
1.3
2.3
2.4
4.8
30
120
250
460
730
950
1080
1400
1500
1650
1550
1700
1900
1900
1800
1800
1650
1650
1600
1500
1550
1500
1500
1500
1500
1400
1400
Cd
.02
.03
.03
.03
.03
.03
.025
.03
.03
.025
.025
.025
.025
.025
.025
.025
.03
.03
.03
.03
.03
.03
.03
.03
.03
.04
.04
.06
.06
.07
.08
.09
.08
.08
.03
.05
.06
.06
.07
.05
Co
0.15
0.15
0.15
0.15
0.15
0.15
0.18
0.18
0.18
0.18
0.18
0.18
0.38
0.78
1.35
2.15
2.75
3.5
3.7
3.5
3.5
3.8
3.3
3.0
2.7
2.7
2.6
2.6
2.4
2.2
2.0
1.8
1.6
1.3
__
1.1
1.0
0.9
0.75
0.65
Cr
.05
.05
.03
.05
T
T
T
T
.06
.06
.06
.06
.05
.05
.15
.03
.09
.09
.09
.09
.07
.07
.07
.07
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Cu
ppm
.2
.15
.15
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Mn
1
3
8
9
11
13
17
21
26
29
60
102
155
265
330
350
375
375
325
325
300
275
275
260
250
220
210
180
150
130
105
100
75
65
--
45
35
35
25
20
Ni
0.05
0.05
0.12
0.16
0.16
0.16
0.2
0.2
0.2
0.2
0.2
0.2
0.4
0.8
1.6
6
3.4
3.4
3,4
3.4
3.4
3 ,,4
3.4
3.2
3.6
3.4
3.45
2.7
2.6
2.3
2.3
2.1
1.9
1.9
1.9
1.9
1.0
0.9
0.9
0.8
Pb
.24
.24
.3
.16
.2
.16
.16
.2
.16
.35
.3
.16
.16
.18
.20
.25
.2
.16
.16
.2
.16
.16
.1
T
T
T
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Zn
.2
.15
.15
.2
.16
__
.15
.15
.15
.1
.1
.06
.06
.18
.22
.3
.45
.5
.65
.75
.75
.75
.75
.75
.82
.9
.9
.9
.9
.8
.8
.75
.65
.55
.75
.5
.4
.5
.3
.25
162
-------
TABLE B25. SOME TRACE METAL CHARACTERISTICS OF LEACHATES FROM DAVIDSON SOIL
COLUMNS IRRIGATED WITH 0.025M A1CK and FeCl? SOLUTIONS AT A pH
VALUE OF 3.0.
Pore
Space
Displace-
ments
yjcn trTl }
\ O JU Mil J
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
25
26
27
28
29
30
32
34
35
36
37
38
39
41
42
43
Al
0
0
23
--
300
420
530
610
645
680
680
750
725
750
800
860
840
840
840
840
840
825
775
775
750
800
750
775
775
750
750
750
725
725
700
725
680
645
645
Fe
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
23
100
190
295
420
500
600
640
650
870
900
900
900
970
970
1080
1080
1100
1060
1060
.2
.2
.2
.2
.2
.2
.2
.2
.3
.3
.3
.4
Cd
.10
0
0
.08
.15
.16
.15
.08
.24
.16
.16
.16
.16
.15
.24
.24
.24
.32
.54
.66
.74
.70
.80
.94
.92
.78
.70
.70
.68
.54
.60
.66
.60
.68
.58
.50
.52
.48
.44
Co
0.1
1.0
0.7
1.8
3.6
4.7
5.5
7.3
7.3
8.3
8.5
8.5
9.8
9.8
11.0
10.5
10.5
11.0
11.0
10.0
9.0
8.5
7.5
6.5
6.0
5.0
4.5
4.5
4.2
4.4
4.0
3.7
3.6
3.1
2.8
2.6
2.2
2.2
1.9
Cr
\j\i\\\-
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.18
0.4
0.7
1.1
1.3
1.4
1.5
1.6
1.9
2.0
2.3
2.2
2.3
2.3
2.4
2.5
2.5
2.7
2.8
2.8
Cu
.10
0
0
.08
.15
.15
.15
.08
.24
.16
.16
.16
.16
.15
.24
.24
.24
.32
.54
.66
.74
.70
.80
.94
.92
.78
.70
.70
.68
.54
.60
.66
.6
.68
.58
.5
.52
.48
.44
Mn
8
66
400
500
887
880
887
900
950
900
900
900
900
890
875
825
775
750
675
650
575
500
460
435
410
390
345
330
30
295
270
240
230
220
215
205
160
145
145
Ni
0
.1
.4
.7
.7
.5
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
Pb
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Zn
.10
.10
.18
.34
.36
.40
.42
.60
.62
.56
.58
.56
.54
.50
.44
.48
.44
.40
.40
.44
.48
.50
.50
.42
.48
.42
.40
.38
.38
.38
.38
.40
.40
.40
.58
.56
.32
.32
.36
163
-------
TABLE B26. SOME TRACE METAL CHARACTERISTICS OF LEACHATES FROM AVA SOIL
COLUMNS IRRIGATED WITH 0.025M Aid. and FeCl? SOLUTIONS AT A
VALUE OF 3.0. J *
pH
Pore
Space
Displace-
ments*
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
20
22
24
25
26
28
29
Al
0
0
0.6
0.7
1.0
3.0
14.0
42
83
145
166
184
217
230
356
306
390
420
420
410
510
510
550
550
550
Fe
2.1
15.6
52
200
420
740
840
900
920
920
1060
1160
1100
1100
1280
1260
1220
1240
1240
1400
1460
1510
1460
1460
1320
Cd
.04
.03
.03
.03
.04
.04
.04
.03
.03
.04
.03
.03
.04
.04
.04
.04
.04
.04
.04
.04
.03
.03
.03
.04
.03
Co
.1
.1
.2
.4
.5
.6
.5
.5
.5
.5
.4
.4
.4
.4
.3
.3
.3
.3
1.2
.2
.2
.2
.2
'.2
.2
Mn
-ppm-'
2
7
16
25
40
40
31
28
23
21
20
19
16
16
20
15
15
16
15
15
14
14
13
13
12
Ni
.16
.18
.22
.32
.46
.52
.58
.54
.52
.52
.46
.46
.46
.46
.46
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
Pb
0
.2
.4
.3
.3
.3
.4
.3
.4
.2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Zn
.14
.12
.20
.30
.54
.52
.56
.58
.56
.52
.53
.48
.42
.40
.34
.34
.34
.30
.30
.30
.30
.26
.24
.24
.22
The number represents a consecutive displacement of approximately half a
soil-column pore space or 300 to 400 ml of leachate.
Chromium and copper were not detected.
164
-------
Table B27 SOME TRACE METAL CHARACTERISTICS OF LEACHATES FROM KALKASKA SOIL
COLUMNS IRRIGATED WITH 0.025M AlClo AND FeC17 SOLUTIONS AT A pH
VALUE OF 3.0 c
Pore
Space
Displace-
ments*
1
2
3
4
5
6
7
8
9
10
Al
425
540
620
620
590
605
610
610
610
610
Fe
830
1140
1270
1340
1300
1540
1420
1440
1480
1410
Cd
0.10
0.10
0.07
0.06
0.03
0.03
0.03
0.03
0.03
0.03
Co
ppm
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
Mn
6.0
5.3
4.3
3.8
3.8
3.6
3.3
3.3
3.3
3.3
N1
0.8
0.8
0.8
0.7
0.4
0.4
0.4
0.4
0.4
0.4
Zn
3.3
2.2
1.4
0.9
0.7
0.5
0.4
0.3
0.2
0.2
* The number represents a consecutive displacement of approximately half a soil-
column pore space or 300 to 400 ml. of leachate.
Chromium, copper, and lead were not detected.
165
-------
TABLE B28. SOME TRACE METAL CHARACTERISTICS OF LEACHATES FROM MOHAVE SOIL
COLUMNS IRRIGATED WITH 0.025M Aid, and FeCl? SOLUTIONS AT A pH
VALUE OF 3.0. J *
Pore
Space
Displacements*
1
2
3
4
5
6
7
8
9
10
11
12
13
15
16
17
19
21
22
24
26
27
28
30
31
Al
0
0
0
0
3
32
115
200
250
292
356
365
425
475
500
525
475
475
500
500
530
575
570
575
610
Fe
0.7
0.2
1.5
120
1000
1000
1200
1300
1300
1300
1520
1550
1550
1520
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
Cd
0.04
0.03
0.03
0.03
0.04
0.03
0.03
0.04
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
Co
PF
0.1
0.1
0.2
1.1
2.1
2.2
2.2
2.0
1.8
1.6
1.5
1.3
1.1
0.9
0.8
0.8
0.7
0.6
0.5
0.5
0.4
0.3
0.3
0.3
0.3
Mn
0.2
3
45
175
225
210
190
165
125
115
100
80
70
50
38
30
25
21
17
11
6.5
5.3
4.8
4.8
4.3
Ni
0.1
0.1
0.1
0.5
1.0
1.3
1.3
1.3
1.1
1.1
1.0
0.8
0.8
0.7
0.7
0.6
0.5
0.5
0.5
0.5
0.4
0.3
0.3
0.3
0.3
Pb
0.1
0.3
0.3
0.4
0.3
0.4
0.5
0.6
0.7
0.7
0.5
0.6
0.5
0.5
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.3
0.2
0
0
Zn
0.06
0.07
0.06
0.12
0.18
0.17
0.22
0.19
0.16
0.19
0.20
0.16
0.16
0.17
0.11
0.14
0.10
0.10
0.09
0.08
0.08
0.09
0.13
0.07
0.07
The number represents a consecutive displacement of approximately half a
soil-column pore space or 300 to 400 ml of leachate.
Chromium and copper were not detected.
166
-------
TABLE B29. SOME TRACE METAL CHARACTERISTICS OF LEACHATES FROM MOLOKAI SOIL
COLUMNS IRRIGATED WITH 0.025M A1C1, and Fed. SOLUTIONS AT A pH
VALUE OF 3.0.
Pore
Space
Displace-
ment*
1
2
3
4
5
6
7
9
10
11
12
13
14
15
16
17
20
22
23
24
25
27
28
29
Al
0
0
0
0
0
0
7
140
240
375
400
460
515
530
530
575
680
680
700
775
775
725
740
775
Fe
0
5
0
0.5
0.3
0.2
0.1
0.8
0.7
0.3
0.6
0.7
0.7
0.4
0.3
0.2
0.9
8.5
31
75
120
220
240
Cd
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
03
03
05
06
07
75
18
40
66
64
62
55
50
46
46
42
38
38
36
38
38
37
38
37
Co
0.04
0.06
0.08
0.19
0.32
0.70
2.00
10.8
16.1
17.7
18.9
18.9
20.5
22.0
22.0
22.6
24.8
25.3
26.4
26.4
26.4
26.4
23.1
23.1
Cr
0.2
0.2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.28
0.66
0.58
i
Cu
0.12
0.12
0.12
0.10
0
0
0
0
0.26
0.36
0.44
0.50
0.58
0.62
0.64
0.72
0.90
1.76
2.44
3.10
3.42
4.16
5.90
6.60
frnntim
Mn
2
2
14
54
270
860
1220
1320
1400
1100
1050
1020
1010
1020
1030
1000
960
980
900
885
860
795
810
790
iorl nn r
Ni
0.1
0.2
0.3
0.4
0.5
1.4
7.4
25
34
32
32
29
28
28
28
29
29
28
28
29
29
29
34
33
i -\7C\\
In
0
0
0
0
0
0
2
9
13
11
12
10
11
10
11
10
10
11
10
9
9
8
8
8
.2
.1
.1
.1
.1
.3
.4
.2
.2
.8
.9
.8
*The number represents a consecutive displacement of approximately half a soil
column pore space or 300 to 400 ml of leachate.
Lead was not detected in these effluents.
167
-------
TABLE B29 (continued)
Pore
Space
Displace-
ments*
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
Al
725
725
680
725
665
700
665
665
665
680
680
680
680
665
625
645
645
625
645
625
625
625
625
645
Fe
270
320
375
445
470
515
555
630
710
800
940
970
970
940
940
950
1000
1050
1050
1050
1060
1060
1060
1060
Cd
0.34
0.30
0.31
0.28
0.27
0.26
0.24
0.18
0.16
0.16
0.13
0.11
0.11
0.11
0.07
0.06
0.07
0.06
0.06
0.07
0.06
0.06
0.05
0.05
Co
23.1
22.0
22.0
22.0
20.0
18.2
16.1
20.5
13.8
11.0
8.8
8.8
8.8
8.3
8.3
9.6
8.4
7.8
7.8
7.8
6.0
6.0
4.8
4.8
Cr
0.66
0.68
0.84
1.04
1.10
1.10
1.20
1.20
1.40
1.50
1.6
1.8
1.8
1.7
1.6
1.65
1.7
1.7
1.7
1.7
1.6
1.7
1.8
1.7
Cu
ppm
6.6
7.3
7.7
8.4
8.1
7.9
7.7
7.7
6.6
5.9
6.2
4.7
5.7
5.7
5.5
5.8
5.2
5.1
5.4
4.7
3.8
3.4
3.8
4.0
Mn
735
675
605
590
550
500
495
455
400
310
295
300
280
270
270
270
265
250
250
245
210
200
190
180
Ni
32
29
29
29
28
28
25
24
19
17
15
15
15
15
15
14
13
13
14
13
12
11
10
9
Zn
8.6
8.6
8.6
8.4
7.9
8.1
7.5
6.4
5.3
5.0
4.8
4.6
4.2
4.4
4.4
3.8
3.4
3.6
3.6
2.7
2.5
2.5
2.5
2.7
*
The number represents a consecutive displacement of approximately half a soil
column pore space or 300 to 400 ml of leachate.
Lead was not detected in these effluents.
168
-------
TABLE B30. SOME TRACE METAL CHARACTERISTICS OF LEACHATES FROM NICHOLSON SOIL
COLUMNS IRRIGATED WITH 0.025M A1C1- and FeCl? SOLUTIONS AT A pH
VALUE OF 3.0
Pore
Space
Displace-
ments*
1
2
4
5
6
7
8
9
10
11
12
13
14
16
17
18
20
22
24
25
26
27
28
29
30
Al
0
0
0
2
3
8
10
16
44
125
120
160
160
242
318
318
365
412
445
464
464
480
516
516
516
Fe
0.2
0.2
12
104
136
230
300
340
500
780
830
830
1000
1200
1380
1360
1340
1320
1380
1340
1380
1380
1360
1380
1380
Cd
0.02
0.04
0.05
0.05
0.08
0.05
0.05
0.04
0.04
0.04
0.05
0.05
0.05
0.05
0.05
0.05
0.04
0.04
0.04
0.03
0.04
0.04
0.04
0.05
0.04
Co
0.1
0.1
0.8
1.9
2.1
2.3
3.6
4.3
4.7
4.4
3.9
3.6
2.8
2.2
2.0
1.8
1.8
1.4
1.3
1.3
1.3
1.3
1.2
1.1
1.1
Mn
4
7
43
71
82
95
128
137
148
122
114
102
85
85
62
66
60
48
48
48
50
45
40
38
38
Ni
0.28
0.34
0.68
1.04
1.06
1.16
1.42
1.70
1.76
1.74
1.56
1.52
1.24
1.24
1.00
0.90
0.90
0.75
0.70
0.74
0.74
0.70
0.74
0.68
0.68
Pb
0
0
0.5
0.5
0.4
0.4
0.3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Zn
0.28
0.25
0.42
0.65
0.70
0.90
1.05
1.40
1.48
1.50
1.56
1.36
1.16
1.16
0.94
0.86
0.86
0.75
0.65
0.65
0.70
0.70
0.60
0.55
0.55
*The number represents a consecutive displacement of approximately half a soil
column pore space or 300 to 400 ml of leachate.
Copper and chromium were not detected.
169
-------
TABLE B31. SOME TRACE METAL CHARACTERISTICS OF LEACHATES FROM WAGRAM SOIL
COLUMNS IRRIGATED WITH 0.025M A1CU and FeCl9 SOLUTIONS AT A pH
VALUE OF 3.0. J c
Pore
Space
Displace-
ments*
1
2
3
4
5
6
7
8
9
10
Al
480
604
604
604
635
635
635
635
635
635
Fe
1010
1160
1160
1160
1400
1540
1580
1520
1540
1540
Cd
0.07
0.05
0.04
0.03
0.03
0.03
0.03
0.03
0.03
0.03
Co
0.30
0.30
0.30
0.15
0.15
0.15
0.15
0.15
0.15
0.15
Cu
ppm
0.20
0.08
0
0
0
0
0
0
0
0
Mn
17.5
10.0
4.2
4.0
4.0
3.6
3.6
3.6
3.6
3.6
Ni
1.1
0.6
0.5
0.2
0.2
0.2
0.2
0.2
0.2
0.2
Pb
0.5
0.3
0.2
0
0
0
0
0
0
0
Zn
0.6
0.3
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
*
The number represents a consecutive displacement of approximately half a
soil-column pore space or 300 to 400 ml of leachate.
Chromium was not detected in the effluent.
170
-------
APPENDIX C
ADDITIONAL DATA ON THE RETENTION AND MOVEMENT
OF SELECTED METALS IN SEVERAL SOILS
The data in Figures Cl, C2, and C3 on retention of selected metals from
municipal landfill leachate by Davidson clay were collected by sectioning the
soil columns at the completion of a leaching study and extracting the soil
with 0.1 M^ HC1 as described on page 24 and pages 67 to 73. The municipal
landfill leachate used in the leaching study was spiked with single elements
as described on page 15.
Figures C4 through C7 show the relative concentrations (concentration in
soil column effluent/input concentration) of selected metals in several
soils after varying periods of leaching with spiked municipal landfill
leachate.
Table Cl contains the results of some preliminary study of the effect of
solution flow rate on attenuation. In this study, flow rate was adjusted by
manipulating the hydraulic head and by packing one soil column to a slighty
higher density. A more extensive examination of the effect of flow rate
(pages 87 and 88) was conducted later when peristaltic pumps were available
for more closely controlling the rate at which solutions were applied to the
soil columns.
171
-------
As
10
Figure Cl.
10
Soil Depths - cm
Migration profile of As, Be, and Cd in Davidson clay
after passing through 13, 20, and 20 pore volume dis-
placements of leachate, respectively.
172
-------
Q.
Q.
O
.c
o
Q.
Q.
S-
(U
Q.
Q.
0
0
E
Q.
Q.
1
-o
(O
-------
200
E 160
Q.
7" 100
I 60
; 20
oo
0
100
80
£
& 60
I 4°
M 20
0
Se
Zn
345678
Soil Depth - cm
10
Figure C3. Migration profile of Se and Zn in Davidson clay
after passing through 17 and 19 pore volume dis-
placements of leachate, respectively.
174
-------
o
o
1
c:
o
Concentratl
-P
Q.
C
h <
C
o
1
(O
-P
u
E
O
.p
Q.
4_>
O
l.Or
O.b
0.6
0.4
0.2
0
1.0
0.8
0.6
0.4
0.2
0
1.0
0.8
0.6
0.4
0.2
0
Fanno c.
12 displacements
Kalkaska s.
9 displacements
Mohave s.l.
16 displacements
Anthony s.l.
20 displacements
Ava s.c.l.
12 displacements
Davidson c.
13 displacements
As Be Cd Cr Cu Pb Se Zn As Be Cd Cr Cu Pb Se Zn
TRACE METALS
Figure C4. Migration of trace metals through different soils after a
given number of pore volume displacements as shown by the
ratio of effluent metal concentration to influent metal
concentration (C/C0').
175
-------
i.o-
.8
.6
.4
.2
0
Mohave (Ca) c.l.
20 p.v. displacements
o
i
+j
ro
13
O
l.C
.8
.6
.4
OJ
u
c
0
C_3
-M
Z3
Q.
c:
H 4
O
I
-(->
ro
S_
fJ
0)
o
a
f ^
.2
0
1.0
.8
.6
.4
Figure C5.
Nicholson si.c.1.
20 p.v. displacements
Wagram 1.s.
11 p.v. displacements
As Bd Cd Cr Cu Pb Se Zn
Trace Metals
Migration of trace metals through different
soils after a given number of pore volume dis-
placements (PVU) as related to effluent metal
concentration/influent metal concentration
(C/CQ).
176
-------
0)
4)
O
ia
o
to
a.
O)
O
Q.
18
16
14
12
10
8
6
4
2
16
14
10
8
6
4
Arsenic
123689
Cadmium
1.
2.
3.
Wagram l.s.
Ava si.c.l.
Kalkaska s.
123489
Chromium
4.
5.
6.
SOILS
Davidson c.
Nicholson si.c.l
Fanno c.
7. Mohave s.l.
8. Mohave (Ca) c.l
9. Anthony s.l.
Figure C6. The movement of As, Be, Cd, and Cr in landfill leachate through
various soils as related to pore space displacements to achieve
C/CQ = 0.80, 0.25, 0.25, and 0.35, respectively.
177
-------
i-
0)
jQ
E
Z3
z.
1
(/I
1 %
+*
c
OJ
o
(O
Q.
I/)
o
O)
o
tQ
CL
oo
O)
s-
0
Q.
10
8
6
4
2
14
12
10
8
6
4
2
Copper
Selenium
8 9
Lead
1 2
1. Wagram 1.s.
2. Ava si.c.l.
3. Kalkaska s.
4.
5.
6.
14
12
10
8
6
4
2
16
14
12
10
8
6
4
2
SOILS
Davidson c.
Nicholson si .c.l.
Fanno c.
Zinc
7. Mohave s.l.
8. Mohave (Ca) c.l,
9. Anthony s.l.
Figure C7. The movement of Cu, Pb, Se, and Zn in landfill leachate through
various soils as related to pore space displacements to achieve
C/CQ = 0.08, 0.32, 0.02, and 0.09, respectively
178
-------
*
oo
Lul
1
<
OL
0
_J
u_
~-yr
*£..
0
i i
1
=>
__J
O
oo
o
3
|
r~
i
ef.
>-
<
O
>"
I
_1
t l
oo
z.
o
oo
^J
o
:n
0
h 1
Z
KH
,
<
Q
«£_
«a:
z
LU
(
ct
,
0
LU
I
CO
eC
CQ
d
O
to
o
.c
o
z.
^-) C «
ns O)
<\
4-^
(J
(0
CD -t-5
^ £^
- M- O
100
E
a
a
A
^ ^
T '
d
cu
« 3
O r
d 4-
O C M-
C_> T- LU
CD -(->
+J d «
(O CD CD
r- 3 E
3 r 3
E q- r-
3 H- O
O LU >
\
4->
u
(O
CD -I-1
E d
r- M- O
100
<
OJ
U.
i
E
to
>,
to
TD
P-M
=C
CD
U.
r
E
to
:>>
ns
T3
O
OOOOOOOOOOOOi
c\j«^-LniiJtooor~.CMcotoi oo
OCDOCMi OOCvJr i r CMO
t
r
oooLntnLnLoOLnLnooo
^-CM^-OOCMp COtOOOOCMLnt^.
ootoo^-r^-i tj3cncMOO>=i-r^o
i i i CMCMCMOOOO"3-^d-LO
i *d-ir>cMu3i cr>ror~.iOLnOLn
i i CMCMOOOO«3-Lnt-OOi CMOO
i r i i
i.
CD
(->
»
r
4-*
J=
C7>
r
to
to
o
tJ
-a
0)
-^
0
fO
Q.
to
(O
CO
d
E
^
o
o
en
c
o
E
o
CM
CM
X
s_
CD
4->
CD
E
to
r~
-a
E
o
=t
o
p d
E
CD 3
S_ r
CD O
3 U
to d
d ra
E -C
3 -!->
"o >,
0 4->
i >
r- d
O CD
oo -a
*
179
-------
APPENDIX D
BEHAVIOR OF NATURAL MUNICIPAL SOLID WASTE LANDFILL LEACHATES IN 11 DIFFERENT
SOILS
This appendix represents an extension of the research concerned with
natural municipal solid-waste landfill leachates as discussed under the head-
ing, "Preliminary Leaching for Background Evaluation of Solubility of Soil
Contaminants," beginning on page 28. It reports results of research under-
taken on a U.S. EPA Grant, R-803988-1, relating to migration of constituents
of municipal solid waste leachates through soils as influenced by limestone
liners.
The objectives of the research reported here are to: (a) show charac-
teristics of three strictly municipal solid-waste landfill leachates as
influenced by age and characteristics of landfill environment, (b) evaluate
the effects of passing natural municipal leachates through representative
soils of the U.S. on the retention and release of constituents of the leach-
ate as well as soil, (c) relate probable attenuation of natural leachate con-
stituents to specific soil parameters, and (d) study the effect of soil and
leachate temperature on retention of natural leachate constituents by soil.
Characteristics of Municipal Solid Haste Landfill Leachates
The mass of information on characteristics of municipal solid waste
landfill leachates clearly establishes that the composition varies widely
from location to location, Garland and Mosher (1975)*. Since our research
efforts had centered around only one source of municipal leachate, we thought
it best to establish other sources and to study further an actual city source.
Because of its microbiological nature, the landfill system is dynamic and
therefore always subject to change depending on the specific conditions of
the solid waste environment, regardless of slight changes in the nature of
the municipal solid waste that generates the leachate. This is illustrated
by data appearing in Tables Dl, D2 and D3. The solid waste used to generate
leachates I and II (Dl, D2) was the same (see Table 6, p. 17, main text) and
is considered to be nationally representative. Because of the difference in
construction material of the landfill confinement units (one of concrete and
the other of steel), and the tendency for breakdown of the epoxy sealer on
the inside of the concrete, leachates I and II are different in composition.
Leachate I in the concrete generator has a higher pH value (pH 6.4 vs. 5.4),
less salts, lower TOC, and lower concentrations of heavy metals than
Garland, G.A. and D.C. Mosher. 1975. Leachate effects from improper land
disposal. Waste Age 6:42-48.
180
-------
leachate II in the more confined steel tank. Reaction between the acid
generated in the solution and the concrete walls through small fissures in
the epoxy, and the opportunity for some exchange of gases through the con-
crete walls, are believed to be primarily responsible for these differences.
For the most part, leachate II was used for the liner research.
One of the most prominent characteristics of the leachate constituents
is their general decline in concentration with time. Small amounts of heavy
metals were present in the leachate early in the age of the landfill but
disappeared in the soluble phase again. The total organic carbon (TOC) also
declined rapidly with time. Elements such as P, Si, and Mn remain relatively
constant throughout the first few years. On the other hand, the leachate
from an old city dump (Table D3)where infiltration loss and contact with the
soil occurred contained low levels of a wide variety of heavy metals. It is
not clear whether these metals originate from the soil or the solid waste or
both since the leachate was withdrawn from an established well, made through
the solid waste refuse to within 6-10 inches of the disposal site bottom.
Retention of Leachate Constituents by Soils
To evaluate soil as a medium for retention of critical constituents of
municipal landfill leachates, studies were undertaken using columns of soils
perfused with natural or unspiked leachates. The 11 soils and leachate II
are the same as reported earlier in the text as are the methods of experi-
mentation. Specific characteristics of the 11 soils in the columns, such as
pore volume, total surface, and porosity, are reported in Table 1 on page 9.
Our attention with natural leachate II was centered on the fate of
soluble iron and total organic carbon (TOC) when passed through soil, since
these consitutents have been shown to be significantly correlated with heavy
metal attenuation, and since soluble iron is one of the significant contami-
nation problems from strictly municipal landfills. Iron was found to be
retained by the soil to an extent far greater than organic carbon, Table D5.
Breakthrough concentrations of Fe (C/C0 = 0.7 and 0.9) were reached at ^ 1
to 23 and 5 to 25 pore volume displacements, respectively. TOC reached
breakthrough concentrations during the first or second pore volume displace-
ment. The soil, thus, has little or no influence in preventing soluble
organic carbon compounds from migrating. This can pose a serious threat to
underground water quality, both with respect to migration of organic and
chelated inorganic constituents and to odor and taste. Even the small
amounts of TOC retained by the soil were flushed out in the first increment
of water used to evaluate retention of constituents against simulated leach-
ing by rainfall action. Iron, on the other hand, resisted flushing or leach-
ing by water, i.e., it remained associated with the soil once it was attenu-
ated, except for the small amount chelated, Table D5 and Figure 1.
The importance of particle size distribution (sand, silt, clay) on Fe
attenuation is illustrated in Table D6. The smaller the particle size the
greater the amount of Fe retained per unit weight of 'soil. Yet the very
sandy soils, Wagram loamy sand and Kalkaska sand, retained more Fe per unit
of surface area than other soils except Molokai clay. Davidson and Molokai
181
-------
clays are most highly endowed with hydrous oxides of Fe. More and more
evidence is accumulating to support the contention that the soil hydroxy
oxides of Fe are a potent factor in attenuation of metals (including soluble
Fe).
Iron Attenuation as a Function of Soil Parameters
To better understand those soil parameters most likely to relate to metal
or Fe attenuation of natural municipal leachates, single and multiple variable
regression analyses were undertaken using the Fe migration data through 11
soils, Table 07. Clay appears most prominent as the soil attenuation factor
both in single and cross products regression analyses.
Correlations between Fe attenuation and total soil content of other
metals, Co, Cr, Free FeO, Mn, Ni, and Zn were also evident, Table D7. Ex-
changeable cations appeared as a strong soil interaction constituent in the
multiple variable regression analysis. This is not surprising since ex-
changeable cations are closely related to and indeed are a part of the soluble
salt or "ION" factor of leachates that relate to attenuation.
Caution must be exercised when the statistical data obtained are used as
a basis for projections or assumptions about attenuation. First of all, the
reliability of any given statistic from this experiment is minimal since only
eleven runs were made. Secondly, it must be kept in mind that the regression
analysis can be applied only to the attenuation of iron with the leachate as
given. Although certain of the variables considered might have a similar re-
lation to the attenuation of other metals, under other leachate conditions,
this cannot always be assumed to be the case. Thirdly, the correlation coef-
ficients and r2 values cannot be interpreted strictly on the basis of magni-
tude. This is because of the complex interaction and possible masking effects
of one component of the soil-leachate system on another. For example, the
effect of an important exchangeable cation in the soil might be either
masked or accentuated by a mass action effect determined by the leachate
composition.
For example, the correlation of percentage total Zn in the soil has a
value of 0.90 with attenuation. This is higher than that of clay (0.80 or
FeO (0.71). But percentage Zn also has a correlation of 0.59 with clay and
0.84 with FeO. Similar results occur for Mn, Co, Ni, and Cr. All have a
high correlation with attenuation, but are also highly correlated to clay and
FeO content. In contrast, Cu has a correlation of only 0.30 with attenua-
tion, 0.12 with clay, and 0.42 with FeO. It would therefore seem to be
incorrect to assume that Zn and Cr are more important factors than clay with
respect to attenuation, even though the resulting correlations are higher.
The values for exchangeable Zn, Cr, etc., are included in the figures used
for total element. Since the amount of exchangeable Zn, etc., will be partly
determined by the clay and FeO content, it is probable that the high correla-
tions obtained are due to a similar dependence on clay content and not to any
direct effect on attenuation. In a similar way, the low correlations ob-
tained for some of the exchangeable cations, particularly Ca, may be mislead-
ing because of a mass action effect due to the extremely strong leachate that
was used. The same type of complications occur when the correlations of the
182
-------
cross-product terms are analyzed.
In a multiple variable regression equation, the cross-product terms
would represent some type of interaction or interdependence between two vari-
ables. Only those cross-product terms with a correlation above 0.75 were
considered. When these cross products are considered as variables, a few of
the single variables are seen to occur more frequently as components of cross-
product terms, which have correlations higher than any of the single vari-
ables: clay occurs eight times, exchangeable cations eight times, and FeO
ten times and electrical conductivity eight times. Silt occurs only three
times. The occurrence of a given variable in several cross products with
variables that appear only sporadically would seem to indicate that that var-
iable is a common factor in describing the data. Note again the relation of
clay with Mn, Co, Zn, Ni, and Cr. These metals all had a high correlation
when taken individually, and they all have a high correlation when taken with
the common variable clay. Note also that Cu, which only had a correlation of
0.30 by itself, appears in the cross product clay*Cu, which has a correlation
of 0.76. It can again be seen that clay is the determining factor. Since
the exchange capacity is directly related to clay content, it is probable
that the appearance of exchangeable cations in significant cross-product
relations reflects to a great degree the influence of clay content. FeO
occurs in ten important cross products and must also be considered as an
important variable since it is not determined by the amount of clay present.
Silt, occurring three times, is a factor of minor, though significant im-
portance. Electrical conductivity must also be considered since it occurs in
eight significant cross products. Considering the prominence of clay, FeO,
silt, Exch. capacity, and electrical conductivity in cross products, it is
not surprising that these factors were also prominent in the best regression
equations, e.g.
cn(clay*EC) + a2(clay*silt) + a3(clay*Exch. Capacity) + K
with r2 = .990
Yi(FeO*Exch. capacity) + Y2(E.C.) + K3
with r2 = .910
Significant Observations
Correlation of individual metals to Fe attenuation is greater than that
of the total, e.g., Zn, Mg, Mn, etc. vs. total metal content, or Exch. Na,
Exch. Ca, etc. vs. Exchange Capacity.
Correlation of cross products (variable interactions) was often signifi-
cantly higher than for the single variables, e.g. clay (.80), E.C. (.67)
vs. clay*EC (.87).
Even though the individual metals improved the regression equation and
showed a higher correlation when used individually, a better regression
equation was obtained using more easily measured parameters (such as clay,
EC, Exch. Capacity).
183
-------
The best equation using individual metal contents in the soils is as
follows:
cti(Exch. cations* Ni) + a2(clay* Cu) + a3(Mn) + kx
with r2 = .987
adjusted r2 = .982
F = 184 (significant above 99.9% level)
3i(clay*E.C.) + g2(clay* silt) + 33(clay* Exch. Capacity) + k2
giving an r2 = .990
adjusted r2 = .986
F = 228 (significant above 99.9% level)
.'. it appears that even though the more easily measured, general parameters
show a lower individual correlation than specific metals or exchangeable
cations in the soil, when they are combined in a regression equation they are
just as effective in predicting Fe attenuation.
In conclusion, clay and FeO are the most important soil constituents for
iron attenuation. Since they are not variables in the leachate makeup, they
should also be highly significant under other conditions; and since they are
also the source of exchange sites, this should hold true for other metals.
The effects of the exchange complex are not as simple. High correlation can
be seen in a number of cross products which contain MEQ (meq/mg soil) as a
variable. But the amount of this correlation which is merely a manifestation
of the effect of clay content cannot be determined by these data. More exper-
iments are needed in which the total strength and chemical makeup of the
leachate are evaluated as variables instead of constants, before these deter-
minations can be made.
Influence of Soil and Leachate Temperature on Pollutant Attenuation
Leachate I (2/1/74 to 4/1/74) was passed through columns of the 11 dif-
ferent soils at two temperature levels 15 and 30 C using the same technique
as described in this test earlier. Migration data appear in Tables D8 to D18
and D19 to D29.
During the first 15 pore volume displacements, the concentration of
salts in the effluent from the soil columns was lower than that in the influ-
ent landfill leachate. These lower levels of elements, however, were not suf-
ficient to offset all of those added from the landfill leachate and leave a
balance attributable to the soil itself as expected from values of the deion-
ized water alone. Acid soils (such as Ava si.c.l. and Kalkaska s.) retained
the more common soluble soil ions (such as Ca, Mg, K, Na) more readily than
near neutral and slightly alkaline soils. Wagram l.s. is an exception, since
its mineral composition is primarily quartz. Zinc, Fe, Cu, Mn, and certain
other heavy metal attenuation is highly correlated with the abundance of clay
in the soils. Iron was strongly retained by the two soils highest in "free
iron", namely, Davidson c. and Molokai c. Nickel, on the other hand, was
184
-------
solubilized and mobilized from Molokai c. at both the 30- and 15-C Teachings
by landfill leachate reactions. Similarly, Cu appeared in the effluent from
Ava si.c.l. and Anthony s.l. columns. Cobalt was found in measurable amounts
in Molokai c., Mohave (Ca) c.l. (30C), and Davidson c. (15C). Other examples
of soil contribution to specific metals in effluents from soils leached with
natural municipal leachate may be cited from data appearing in Tables 8-29,
although Co does not appear in appreciable quantities from deionized water
Teachings. Quantity variation in column effluent characteristics, also, is a
function of soil composition more than influent leachate variations. pH of
the soil does not seem to appear prominently as a soil variable influencing
trace metal mobility, however. For example, Ava and Anthony have pH values
of 4.5 and 7.8, respectively, yet both soils have Cu identified in their
column effluent. No doubt, indigenous mineral characteristics of the individ-
ual soil play an important role in determining what element will become more
mobile upon infiltration with natural municipal leachate.
Migration rate under anaerobic soil conditions did not appear tempera-
ture dependent between 15 and 30 C. Reactions between the aqueous leachate
constituents and the soil, therefore, would appear to occur rapidly under the
conditions of pore volume displacement at a rate of 0.5 PVD/day. The re-
search contradicted our earlier anticipation that either chemical or biologi-
cal activity or both may be influenced somewhat by temperature. This re-
search, at least, failed to confirm our early suspicions despite careful
attention to the maintenance of the soil columns' temperature to ± 1 C of
that designated.
185
-------
o
*t
0)
1
oo
"
i O
I I
1 1
1 1 1
CM
OO
0
oo
00
CM
CM
CM
CM
CM
0
CM
S.
cu
_Q
II
t/>
UJ
UJ
CJ
^
.c
o
res
a>
<0
a»
c
o
C
0)
+J
1/1
+J
01
(O
M
V)
O
CU
TJ
00 £«' ^f
^"" «-!
t
13
VI
C
o
M
C
c
o
3 S-
C (U
(U -M
-M (O
4J 2
-------
oo
o
§
«=c
oo
o
<£.
z.
I O
2:
o
LU 00
2: o
O =3
CO
OJOJCMi i i i OOOOOOOOi i OO
0) O
o o o
"O "O "O ~O "O ~O "O "O "O ~O "O "O "O "O ~O ~O
o o o
.r~Ir~~l-O-OT3 "OTD'OTS
C_3 O O O -Q JD -Q
LOr^LOLOOCOO^Oi^OOOOOO^±r «3"Or O
OOO. COCOCMCMCMCMi CVJCMCMCMCMCMCMCMr COCMCMCMCM
Q.
O. CMCMCMi r CMr i COr i i r r COr LOi LOr CM
CTiooouncxDLOoor-^cncMCMi OOILOLO^ c c c: c
i
oooooooooooooooooooocoo
ooOLOLnoOLnoomoocor-^unoooooo
CTiCT>CT>OCT>OOcy>CT»CT>CMCMi r i CMCMi i CO
r i i CM i
*±cooooLnOLnooi£>u->LooOi ooooo
r^cnocMOr r coLnc\Joor^r^cTiO(T>cT>Or-r i
&\ oOLnocor ooLOLnooootnooooooco
OOCMOLOOLOOOOOOOOOCOCOOOLnOOOO
(O VO
O i-^ I r I I I CM I I I r I I i I I I i I i CM
ooooooooooooooooooooo
o
JZ CM
O E E
LUEOCOCOCOCOCOCOCOCOCOCOCOCOrOCOCMCMCMCMCMCMCM
C*^ ^O V,Q iQ Ifj ^_Q i^Q
CO CO
CT> O
CM CM
i o
CTlOOOvJCTlCMCMCMi i
C\J
CM CM CM CM i
187
-------
CO
(0 at
CO O
OOOOLOOOO
COCOrxLOi CMCM^-CMr i r- LOrx^f-COCMCM
Ixj O O O O O O O 'O O O O O O O O O O O
O TD -O T3 ^
z jo jo jo jo jo
COCOr CMLOOLOLOCOLOLOLOrxrx|x.|x.LOLO
Z: r- r-r-i Or OOCDOOOOOOOOO
CU O O O * O i' «* i rxCMi CMOOi i i CO
Oi CO rx ^~ ^~ ^~ ^j* co co ^^ ^* ^* ^~ ^^ rx rx rx LO
^a T3 TD ^ ^
JO JO JO JO JO
OT3T3TDT3T3T3T3T3T3T3T3T3
C_J o t~i o f~i t~) o n o o «^ i*^ o f^
COLOCMCOLOLOLOrxLOLOLO^CMLOlO
O_ CMCOCMr-COCMCMCMCOCOCOCMCOCMCMCOCMlM
'Z. "O"O"O"O7O"O"OT3"O"O"O"O"O"O"OT3"D"O
z. i ccccccccccccccc
LOOOOOO-sfOOOOOOLOLOCTiOLOO
COCMi CTvOOOOOOOOLOCM^-i COCM«d-
CMCMCMi CMCMi CMCMi r r ri i i i
OOOCMLOCOrxLOCOLOOOLO«5j-LOCOLO
re LOLOLorxLOLOiOLOLOLorxrxLocorxLOCO
z
COOCOi i COOCMCO LO* OOO«^LOLOi LO
COCO*3-CMLO«a-«3-COCOCOCMCMCMi r r CMCM
LOOLOCMCOCOOLOLOOOCOCOCMCOLOCT>r
(O LocoLorxLO^LOcocorxra-LOLocMcocMi co
O OOOOOO«d-«3-LOCMLOLOOOOOOO
o cnoorxoocoi cocncM^-LOr ^j-Locni ooo
CM CM
CU
OOOOrxLOLOLOi CM«3-OOOCT>|x,LOLOOOCQ
CMCMCMCMCMCMCOCOCOCOCMCMii ri i r-
o
o
«si-'i-^i-«3-^i-«d-<-«a-«^-«a-^-Lo«*«*«^-^-cM
CLJ LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO VO LO LO
un LO
rx rx
to
LO
LOLOLOLOLorxLo rxrxrx,rxix.
x^ "»^ LO rx rx px r*«» fx, r^% rx. ^^ rx, rx r*x rx rx rx px
CM r x^ r oo rx o> rx rx rx CM r x^ n rx ^ LO CM
x».x^CMCMCMCMCMCMf CMx^~^,OOCMi CMCMCvJ
i i i CM'Sl'LOLOrxCOCTli r CM CO LO LO rx 00
CU LO
J= O
o
O II
fj ^
'I *
E LO
r
O
CU II
JO JO
(O D.
O »
CU LO
4J O
CU .
-o o
CU II
I O
o
*
"O LO
CU O
3 O
-o n
o
c .LO
feinO
CO*
o oo
+j o' 'i
<->
i. II .<"
o u-
«" "° .
JO O ^
(O c
o
r- CU
i SILO
o «o
(O «o
CU x^. II
j= en _
LO
4-> T3 CO
E CO II
CU O
JO 4-> LO
(O CU C3
4-> E O
o
CU C O
u o
CU - II
T3 4->
Q. £1
i in >
CU JO LO
JO tO O
I O O
a -M c
jo
-------
00
O-
II
o
II
z
<
I
u.
to
UJ
o
a;
OO ii
O
oo .
IUO
o O O O OO O O O O O O O O O O O O O O 0)
- - - - - _ - _ OOO
fO .Q
P Q-
o
OOLOLOLOO O> «>
f--tOCMCMCMr-r i ii i i i ii i . i r r . . r r-i i 4->LD
O OOOOOO.Q-aja-a-a.a.a.£l.a-a.a.a-a-a.a.a-a-a-a.aO
o
Ol
.G II
^» * "^3 ~^D ~O "^3 "T^5 T3 "l«J "^3 ~^O ~IU ~C5 "^3 *^D ~C5 ^O
t_) ^VJ C^ c^a c j ^^ c 3 f^°j ^^ CZ5 C3 t']? t^^,? ^^| f^ ^^ ^^ f^ O {"} Q ^^ f*j f^ f^ f^ f^ ^^3 ^D
o
o cum
O OOOOOOOOOOOOOOOOOOOOOOOOOOO ts> O
E O
CLLDOLDOOO -o
CX ^-«l-CVJCMC>Ji r r i ip ii r ri i i i i r r-r r r i r Oil
- - _c
oo co c\j co co co co co co co co co co co co co co co co c\i co co co co co co co co c .
o o
r- O
CD co to o^ ^D oo o^ m co o oo oo ON r^ CM CM to CM cvi c\i CM CM CM CM CM CM CM -f^ .
Q. CMi i i CSJi i CMCOCMi i i i i i i i i i i i i i i i Q.O
O II
OOOOOOOOOOOOOOOOOOOOOOOOOOO to
"~ co o> i i - : . , ____ _ . _ ..
o
o «
- O) O
OOOOOOOOOOOOOOOOOOOOOOOOOOO ES-
~ ~ *~ oor-^j-^-Lnu> onau
n3
OOOOOOlOtOOOOOOOOOOOOOOOOOOOO
i i i «3-<3-«J-COCOCOCOCOCMi i i i r i CMi i CM
OOOOOOOOOOOOOOOOLOOLOOOLOOOOOO O-i- "
03 co i i i or-~vo^or^r>-ocT>cr>r^oococoLOLnCOr--CO
o
CMr i i ^-ii i r r i ii r r i i J34JLO
o
to -(-> E O
o unOLOrOLnOLnooooooooLnootDLOiiicocMi o
^E OJCO
»-> o
CU - II
-a -t->
o. c
o o
I C/l «
co -Q tn
_f"} (ft tTj
un un to '~
c f^* f*^ LO ^^ ^o ^o ^-.o ^D MP ^o t^ ^Q {& ^o ^-Q ^^ Lf^ Lp r^^ f*^, r*^ f^^ r*^ i (^ C3
_+-> ^.^^'s^C\JCSJi CMCMOJCVJCVJCMi C\JOJC\|'x-s.'^^i COC\JCOC\JC\JCM TD-P_C
fl3 (O O O r CVJ "*v^ "^s^. ^s^ ^^, *^sx ^^^ **x^, 'Xs**.s>x. "^^ ">^. *>^ "^s^ O r C\l ""^vs. "**x. "^N. "*>s. "--^ "^x^ ""^ JD (X5
^S) *"** n~ ^~ r~~ r r r C\J C\J CO *s^ LO VJD V4D f1^ T^* CO O^ r~^ ^ ^ r*~ C\J CO LO VO r*1* CO
a>
un
189
-------
TABLE D3. SOME CHEMICAL CHARACTERISTICS OF LEACHATES FROM A
MUNICIPAL SOLID WASTE LANDFILL, TUCSON, ARIZONA:
RUTHAUFF ROAD LANDFILL III.
Element
Cd
Ni
Fe
Cr
Cu
Zn
Pb
Mn
Mg
Ca
Na
K
pH
EC-mmhos/cm
Salts
TOC
Sample A
ppm
0.02
0.08
8
0.1
0.2
0.3
0.5
34
85
730
193
41
6.2
1.9
1210
250
Sample B
ppm
0.02
0.08
9
0.1
0.2
0.2
0.5
32
85
730
193
40
6.2
1.9
1220
250
Sampled by L.G. Wilson, 10/1/76.
190
-------
(O O)
O OJ CO
CO
o
o
Q.
cu
o
(O
I 3
cu
O (O
re >
3 <
O -
to (O
-o -*
r- O
(O O
o
c
o
(O
^:
o
o
J=
o
i- 03
CO
O
CU
O >
o
O)
(O
.C
o
o
s-
O)
Q.
X
(U
(U
CU
LO
o
o
OJ
(O
s-
O)
4->
(O
O)
N
C
o
cu
-a
T3
a>
CO
3
cu
cu
o
o
01
191
-------
00
_J
II
o
LU
a:
LU
LU
O
s
O 3
< O
I LU
M
3: z
a. o
I-H I-H
O LU
I-H Q
z.
=3 Z
I __ ^j
Z O
O I-
O oo
eu -z.
u_ o
o z
LU
Z I
2£
z"o:
LU II
|_ UJ
uj o:
LU O
r- <
LO
O
oo
to
r^
(O
-u
o
cr
£
i
I
C
o
s_
"
4J
o
(J
o
*"
o
c
to
cu
u_
ct-
-o
cu
o
(O
cu
10
3
'o
>
cu
o
O-
i.
0
i.
CU "O
+j eu
(0 CO
3C Z3
cu
fO *
x: TJ
u cu
(O-O
CU "O
1
to
3
CO
LO
^^
r**i
o
co
LO
,
10
p*^
en
<*
r*.
CM
CM
m
co
CM
r-
CM
f^.
r*.
U3
!
«
u
>rl
CO
to
>
eC
iv.
CO
CO
p^
en
CM
CTl
CM
^
CM
CM
LO
C*
f^
CM
O
,
co
o
co
LO
LO
CO
t
CO
>0
CO
to
o
o
00
^J
CO
CO
CM
co
en
LO
f"^.
CM
CM
00
en
""
co
CM
<
,_
0
,3.
CM
00
CM
CM
,
U
Jo
,2
Q
£
CM
en
en
CO
V£>
CM
en
CO
LO
00
0
o
00
en
pw
00
0
CO
o
o
CM
CM
r**
CO
r""
r-
CO
t |
>» 1
£ *f
rO
JT
O
OsJ
CM
en
CO
LO
00
o
o
00
CM
"~
LO
»
O
CM
10
CM
C
o
*O -r-
o
r~
z
en
LO
§
00
CM
O
r?
LO
|~
r_
r
CM
LO
O
LO
*
0
0
co
CM
IO
O
(J
o
c
*O
U-
rs.
00
"~
i
CJ
VD
co
en
CM
LO
"it
r
CM
CM
r
CM
r"
CM
O
r
co
I
B
IO
§2
fO
J=
Q
£
LO
CM
"~
CM
en
CO
CM
«s-
r
co
0
i-s.
t*
CM
CM
II
CM
r~
CM
LO
CM
O
CO
^-*t
r0
O
Vta-n*
cu r-
> .
*XJ O
J=
Q
£
CM
CM
r~
0
LO
CM
CM
CO
en
CO
r~
00
co
en
10
CO
r
CO
,
*~
«3-
CO
LO
LO
,
r
«
CO
>>
O
»->
£Z
<
O)
3
|
-P
rO
£_
-Q
O
CO
4.)
C
I
c
cu
Q.
X
IV
cu
o
T>
C
cu
cu
-C
(O
i.
cu
(O
T3
CU
N
r*
C
O
Ql
T3
r~
2
XJ
cu
CO
3
CU
3
c
3
"o
o
1~
r-
o
CO
CU
1
*
r
2"
O
o
**^v
o
192
-------
TABLE D6. ATTENUATION OF IRON IN NATURAL MUNICIPAL LANDFILL LEACHATE PASSED
THROUGH 11 SOILS AS RELATED TO UNIT WEIGHT AND SURFACE AREA.
Soil
Wagram 1 .s.
Ava si .c.l .
Kalkaska s.
Davidson c.
Molokai c.
Chalmers si. c.l .
Nicholson si .c.
Fanno c.
Mohave s.l .
Mohave (Ca) c.l.
Anthony s.l .
Total mg
251
680
289
922
1671
889
1024
899
470
1061
383
Fe Attenuated*
mg per g soil
0.555
1.874
0.726
2.597
4.803
2.428
2.868
2.450
1.090
2.962
0.859
2
yg per m
surface area
69
30
82
51
71
19
24
20
28
21
43
mg Fe attenuated = mg Fe added - mg Fe in leachate effluent - mg Fe in one
pore volume of influent.
193
-------
TABLE D7. SINGLE VARIABLE REGRESSION ANALYSIS OF IRON ATTENUATION AS A
FUNCTION OF SOIL PARAMETERS WHEN NATURAL MUNICIPAL SOLID WASTE
LANDFILL LEACHATE WAS PASSED THROUGH 11 SOILS AND SUMMARY OF
SIGNIFICANT CROSS PRODUCT TERMS RESULTING FROM REGRESSION ANALYSIS
OF THE INTERACTION OF THE VARIABLES
Single Variable Regression
Analysis
Variable
Clay, %
Silt, %
FeO,%
Exch.Cations,meq/100g
Elec. Cond. ,mmho/cm
Mn, %
Co, %
Zn, %
Ni, %
Cu, I
Cr, %
Exch. Na, meq/100 g
Exch. K, meq/100 g
Exch. Ca, meq/100 g
Exch. Mg, meq/100 g
% Exch. Na
% Exch. K
% Exch. Ca
% Exch. Mg
H ion cone.
Correlation ^
Coefficient r
.80
.34
.71
.47
.67
.71
.79
.90
.83
.30
.84
.27
.40
.41
.60
-.44
-.30
.15
.44
.48
.64
.12
.50
.22
.44
.51
.63
.82
.69
.09
.70
.08
.16
.17
.36'
.20
.09
.02
.19
.23
Regression Analysis of Variable
Interactions
Correlation ?
Cross Products Coefficient r
Exch. Cations* Ni
Exch. Cations* Co
Exch. Mg*FeO
Clay* Zn
Exch. Cations* Cr
pH* Zn
Clay* Ni
Exch. Cations * FeO
Clay * EC
Silt * Cr
Exch. Cations * Zn
Exch. Cations* (Mn+Co+Zn
+Ni+Cu+Cr)
Exch. Mg * EC
% Exch. Mg * Clay
Silt * Ni
Exch. Cations * EC
pH * Cr
pH * Ni
.93
.93
.92
.92
.91
.91
.88
.88
.87
.87
.87
.87
.87
.87
.86
.85
.85
.85
.86
.86
.85
.85
.83
.83
.77
.77
.76
.76
.76
.76
.76
.76
.74
.72
.72
.72
Indicates possible cross products in a regression equation and possible
interactions. Over 119 such cross products were tested. Only those cross
products that provided an improved correlation are reported. Cross pro-
ducts with a correlation below 0.85 were not reported.
**T_he leachate II composition used for calculation of above data:
pH EC TC TOC Ca Mg Na K Cd CO Fe Mn Ni Zn
5.4 8.8 7225 7007 621 116 320 641 .05 .46 753 9.8 .40. 7.6
194
-------
jj
0
0
oo
t
i t
h-
_
SF*
^£
0
'
1
o
^
s
o
0£
Lu
1
LU
»
_J
I '
LU
LU
1 .
1 '
O
oo
LU
oo
1
^
^£
Q
LU
O
Ijj
LU
oo
00
Q
LU
1
CQ
<
c
M
^
3
CJ
CU
LU
<
r"
o
r
c/")
00
31
21
cn
2:
(O
0
(O
^y
NX
o;
O) 3
s-
o o
Q- >
cu cu
1 > 2
3 »^ 3
E (->
3 (0 O
O i >
CM LO Lf) LO O O O
00 O O O
O CM CO LO 0* 00 00
CM CM CM ** r- r r
CM O O O O O O
CM OO «3 O LO CT> CT»
r vo r*^ vo CT»
LO O O O O O O
oo
LO CM OO OO OO 00 CM
r^ oo oo co CM oo o
r i i i OO OO CM
f--» r~~ r CM CM f*-» oo
r
r^ oo 10 r-« CM i oo
oo O cr> r>^ vo i*~- oo
CM i r . r i
O 00 CO <£> LO CM CO
r ^" ^J" ^i" ^" LO *3~
LO i CM OO i i CM
IQ i CM i CT1 OO
r r«^ |»^
O r- LO *3- VO * OO
r^ CM oo oo oo o cr>
r i
o co «d- oo LO o r~~
O l^» CM CO CO CT* CO
oo oo *d- oo oo oo oo
CM CT> LO i VD CT> i
CM CM CM OO
O CM O OO LO IO CO
*sj" VO i LO ^.O CTi CT*
^ LO O OO 1C CO CT>
-a
cu
3
-a
0
-C
-p
cu
^c
*->
J2
T3
CU
4-5
0
cu
4_>
0)
-o
+_>
o
c:
cu
S-
ai
^
a.
-o
c~
fO
"
'z-
^
0
o
o
»
-o
0
195
-------
o
o
o
oo
£
t 1
UJ
<:
o
UJ
~*
i
|
h-
z
1
t i
Q
LU
rn
o
LlJ
_J
s:
o
;>_
<
^
i
oo
y"
o
o;
u_
h-
UJ
i
i ,
UL.
U_
LU
u_
o
oo
oo
_j
z.
ef-
Q
UJ
O
UJ
J
UJ
oo
^
Q
LU
CO
£
c
M
3
O
CU
LJ~
<-~
00
1
oo
en
^r*
fd
O
cc
2:
^
i
0) 3
o 'o
Q. >
CU CU
1 > E
3-1-3
E -Mr-
3 (O O
0 r- >
IDLDOOOOOOOOOOO
CO OO to
COLOLOinCMVO^CMlOr-VOI^LO
OOOOOCMCO*d"OCT>tOLO^
U3OOOOOOOOOOOO
CM i r-
oo^^^c^^^^^^^^,
i r r ro o> cr»
LO LO LO o o ^ LO LO LO r** ^j* co CNJ
oooooou^vocooocoooo^Lorx.
^E C^ ^3 rlj ^Q ^^ ^ ^^ ^^ ^J* ^J* LO C\J LO
Q- C\J CVJ CM i r
CL
CO CM CM O r-" O> r-^ CO CM ^" CM *^ *^J"
^^ ^o LO ViO o^ Lp f1*^ r**^ c^^ [fy
(V^ ^J (^3 tO CO ^^ CM ^3 r^** O^ 00 ^M C^^
'sj' CO CM CM ^-O1 LO LO LO ^J" ^^ ^^ OO CO
CO O O CO i~ VO CM CO O ^h «^ CO CO
LO ^.O iJ" CM CO CO CTi O^ CO C7^ G^ C^ r *
1 1
r*>» ^j* 00 LO r"" ^^ oo ^>o r***^ ^o co ' " ^^
LOCOCJ>OCr>Cr>OOCTiCOOO
1 1 1
tOf-«OOlOOtO^O^t-tOOOO^-r-
OOOOCMOOCMOOOOOOCM
oo LO r^ CM O co r^» to oo r r^. oo LO
i CMCMOO'^LOtOtOI^-r*-
CO CO OO CO f^ CO ^" CTi LO LO ^ CO ^
r~^ f"^ to LO r " i CT^ CM ^^ CO ^^ C^ r^^ LO
£ ^^ r~~ CM ^d" P*^ CT^ OO to CO f~ OO i o to
r r- i CM CM CM CM
-o
O)
1 *
o
CU
-M
CU
-p
o
£T
CU
s_
CU
2
_Q
o.
T3
(O
««
*^~
2:
»»
0
n
o
(_}
T3
0
A
r
<
196
-------
0
O
£
LU
§
-
1
^*
03
CJ
03
^
nj
fS
CU 3
S- p-
o o
Q. ^*
<1) Q)
1 ^ £
Z3 »r~ 3
E -Pr-
3 (O O
CJ r >
i CM r^ ^t
IO LO CM CM
co co cn r^%
r i O O
P IO ^" C3
i r CM
O i
CM CO
r^ o i co
r^ co oo oo
p^ r*^ ^* **o
r
CM en «3- LO
11^3-10
U3 OO IO CM
P
^J- LO CM *3"
IO CO CM CM
LO CM «=J-
LO cn cn o
i i * r^ r**
CM r r i
CM CM ^3" LO
O CM LO 00
co r^ o co
r CM *3- LO
o
"*
oo
o
CO
CM
CO
IO
o
UD
CM
p
CO
r^-
r^
p_
p
0
o
CO
co
00
'O
f*N,
CO
O r CM O LO r
CO
3
-o
O
.c
i
CU
f-
T3
CU
1 *
0
CU
CU
-o
.,_)
o
c
CU
i-
O)
f^
1 t
a.
-a
c:
(O
t\
i
"^
i.
t ^
A
3
A
O
0
ft
-a
o
197
-------
0
o
o
oo
i
III
Mi
I
~T"
0
«c
LU
I
|
1 1
Q
LU
O
LU
^
0
z
o
C/)
o
1 1
<
Q
^*
o
Sf
^
LU
~^
1
I |
1 '
Ll_
LU
LL~
O
oo
ill
UJ
oo
J
CU CU
3-^3
E -P i
3 10 O
0 >
00 0 0 O
CM CO r
CO CM 00 00
O O O O
O r- r- O
o o
O r- r O
O O 00 CO
r-» co oo co
CO LO CO CM
CM O r *3-
r P-» LO
^^ *d" LO r*^
^~ ^* ^~ "^
en O CTl CO
LO r^ CO CM
<
CO CO CM CTi
CO CO CTl OO
^~ ^* CM r*^
oo r^
oo
CM ^J- Pv. CTl
r
CO CO LO i
r~- oo oo CM
i CM «3
0
o
CTl
0
o
r-~
oo
oo
00
P«s.
^"
CTi
t^t.
O
CO
^-
oo
oo
o
oo
CO
CO
CTl
o
o
o
00
o
-
CO
'-
CM
00
^t"
^-
00
CO
CO
co
10
oo
oo
^~
CM
CTl
oo
1
o o o o o o
r
O O i O r O
CM r-» "si- i <;t" o
CTl VO LO CM i i
r^ o o o o o
o
i r r- O C3 O
o oo LO LO o r~-
o oo o r^ co oo
CO CM CM CM CM CM
CM i LO i IO <4D
i <3- O CM CO CM
CO 1C ^ CM CM OO
i r-» oo CTI LO CM
^- ^|- ^- co oo co
UD 1X5 LO CTl OO i
ID ^- ^ sj- ^ LO
CM CTl CTl CM O * CO CVJ OO
LO LO CO LO i LO
oo co oo oo oo oo
r r^. r^ o LO i
LO >^- IJD r-» i^v co
«>J- Sf i * O <*
vo r^* ^~ CT» ^st~ LD
IO CO < CM "vh
-------
o
o
o
CO
UJ
<
o
2
Q
UJ
O
IS
o
o
o
cc
u.
Lu
U,
UJ
U_
O
(/)
UJ
oo
LU
_l
UJ
oo
CM
Q
CO
c
M
O)
O
oo
01
fO
O
(T3
a;
o o
Q- >
O)
I > E
i'-P -^
3 03 O
O < >
O
O1
ooooooomooooo
OOOOOO^OO-sfOOOOO
i *d- co 10 m CM CM i i i i i i
oo oo co i VO CM
«
OOOOOOCMCMCOCOCMi r CM
moocT>oo^-uncoOi o in o r-. i
r~i i CMCMCMi i i i i CMCMCM
^X5 *^t" CM CO *xt" OO LO CM i V£> CO *^t" CM O
Prr^-^-rOOOOOOCMCMCMCMCM
CM CM
lOCMr r-i r LOCT>Ol-DOr~.00
Oi ocnoocxDooooocnoicn
CM I r
CT>
cr>
CMrorooocMoooocooocoooro^-
cocTtLOi ior voor^noo
-a
ai
T3
o
-C
p
0)
-o
O)
o
(I)
OJ
-o
-t-J
o
sz
OJ
OJ
s
jQ
Q-
199
-------
UJ
:r
0
t 1 1
_i
ID
1
n:
i
i i
0
UJ
*T"
0
UJ
1
s:
^£
o
>-
_l
o
1
_J
I H
oo
C£
UJ
p
oc
o
o
Oi
1 1
1
z.
UJ
Uu
u_
UJ
u_
o
oo
1 1 1
oo
>~J
z
«^
a
1 1 1
I
0
UJ O
_l 0
UJ O
00 00
CO
Q
UJ
1
CO
?
M
C
s:
u_
J
I
oo
y*
*Gm
i
CO
^^
Ol
S
no
03
^^
CD
P^
CU 3
S_ r
0 O
a. >
CL) CD
i > E
3 T- 3
E +->.
3 no O
C_> i >
r-* O O
CO r r
000
O O CM
LO r- CM
O O 0
r- i r
O O LO
CO CO
^- CD O
,
L
Q.
Q.
CO i CM
CO O p
l^*- CT* ^
r
CM O O
i r f>.
r^ LO co
i CM VO
LO CM CM
CM ^ LO
O LO LO
*^~ t^ O
r ^
E
VO CO O
CO r-
o o o
CO CM CO
co co
o r-- oo
r «
r CO LO
O LO CM
O CO -st
r t r
CTl CM LO
co r*. LO
LO O CT>
^- LO r~.
CO CO CT>
CT> CO LO
i CM
^^ co to
CO CO *
r CO LO
000
LO LO O
CM i 00
CM CM
O O LO
CO CM C\»
O * LO
C3 r**» r^
CM i i
LO LO LO
LO O Cvl
CM r r
r f r
r^ CM en
LO «=! co
CM r^ LO
CM CM CvJ
CM CO CM
CO CO CD
l^-» LO O
LO LO CO
r CM OO
LO LO CT>
CO -sfr 10
CT> *S- CM
^" r^* r***«
i~> en CM
"O
0)
CO
3
£
(V
O.
3
CT
a>
CD
"^
**^
-°
(/)
+->
.g
>f_
i
CU
_Q
00
-P
CU
CU
3
o
CU
J3
S-
O)
-Q
Q_
o
(O
A
r
"Z.
A
s-
o
3
n
o
0
"- "
o
ft
r- --,
^f
200
-------
o
o
O
CO
te
LU
<
O
LU
_J
_J
i
i
LU
31
O
LU
^C
J
O
^*
1
> i
to
o
to
g
^J
1 1
=
§
I
5
u_
LU
LU
U_
O
CO
111
ULJ
CO
1
z
<
o
LU
O
LU
|
LU
CO
«^>
KT
_.
LU
DO
2
c
M
C
Z
>x
i
2. ^~
O 0
0. >
O) 0)
i > E
3-1-3
E -Pr-
3 fO O
O r ^
00 O O O O O
"
r ^* o\ o^ r^ in
i CM
r -ft ff CM CM O
vo m co co ^- vo
oo r>> oo r o> oo
o oo o o in CM
CM r- CM CM CO CO
CM CM in CSJ «* CM
CM «* «3-
P»« O> f^ r 00 CO
co o r^ in in in
in r^« CM o v7t en
o m in vo «* o
'
§!"> i CM 00 m
O% r ^ CT> 00
sf ^J- in CM vo o
r- r- O
CM CO CO
^- in «^ in <* ^-
i CM co «a- in
o oo CM oo vo in
O 00 CO ^ 00 f~
^ co in r>. en CM
r
o in
r- O r-
o o
co CM r->
CM CM r
* vo o
i r CM
cn co CM
vo oo m
en r>« co
CM CO 00
VO ^" CO
CO VO CO
CO O O
^- in *a-
r*. CM co
O O CM
cj> vo P*»
VO C3 <7>
00 O CO
f*** in r^»
CM CO CO
^" r r^
vo r*. oo
oo m o
co o vo
^^ *o en
r r r
O)
)
3
=
£
Q_
^
3
cr
O)
O)
-*=
^
jQ
0)
-P
O
QJ
T3
O
C
&.
cu
-Q
CL.
-g
(O
A
^
«_J
A
O
o
A
-o
CJ
A
*
201
-------
M
o
o
O
co
Ol
o
<
LU
O
LU
O
O
O
§
LU
OO
co
CD
ns
(O
LU
GO
O
LU
O
CU 3
O 'o
CL. >
CO
CMOCOCT>00
<-lOOOO*3-VO'vl-«3-
i CM CO CM CO CO
CO
-o
cu
>
3
-o
o
-C
cu
-Q
T3
O
0)
4->
CD
-a
(D
cu
JD
Q.
T3
c
ra
S-
o
3
0
o
o
-o
o
i Lf)i
202
-------
.
o
0
O
CO
I
"^
LU
o
LU
_J
ID
^
Z.
a;
1
1
H- 1
2!
Q
LU
3=
_
o
z.
<£.
co
1 i 1
UJ
Q
LU
CO
f^
M
z.
c
2:
cu
Lu
^»
O
r
CO
Z.
co
a:
z.
en
s:
fO
o
(O
Zi
*>*/
E
CU 3
S-
O O
Q- >
1 > E
3 T- 3
E -Mi
3 fO O
O r >
LO O O
r O O
O O O
CO LO CO
CM CM
O CM 00
oo «s- co
o cn o
CM r CM
CT> CM V£)
i r*. LO
*J* . LO CO
ID
cm *£) i^.
r^ o oo
|«w
LO r-~ o
r^ LO r~
CM CM CM
IO CO
O O O
CM r i
LO OO CM
LO
C7l
CM
LO
^~
^J-
r"~
r
LO
LO
t
O"»
co
LO
LO
o
o
(
^
CD
cn
r~"
CM
CO
0
00
^f"
LO
o%
Is"*".
r
CO
LO
0
CO
r
*sj"
O
r-
00
o
CO
LO
r
O
00
o
o
o
0
CM
,
**"
O
CM
UD
51-
00
O
~
CM
^^
CO
CM
^«
fs^
01
r
LO
co
o
CM
^
00
r
i
LO
O
o
LO
^~
o
LO
^
o
CM
CM
«cj-
CM
^~
1
O
*st"
LO
CO
r~"
fx^,
Ch
cn
CO
CO
CO
CM
O
r
o
CU
t/)
3
-a
o
4J
CU
£
CD
^
o
-a
cu
o
cu
cu
-a
4-}
o
c
cu
cu
JD
a.
-Q
c
fO
*»
i.
C_5
»
^
o
A
o
o
A
a
o
-
<
203
-------
o
o
0
oo
H.
UJ
J~
-c
LU
_J
|
1
g
1
3
O
0
c3^
LU
1
s:
0
^-
a:
1
<_>
, .
ra
o
*->
LU
1
§
^^
o
1 1
L**~
t-~
LU
^
1 1
LU
LU
U_
O
CO
I 1 1
UUI
co
^~
i
p**
<;
Q
LU
H~
(_)
LU
_J
LU
CO
*
r^-
Q
i i_i
LJ-J
CO
f3-
c
rvi
c
o
0
u_
f ^
r~
GO
z:
1
CO
:r
^3^
o>
s:
fO
(O
^^
^.
i«i
CU
E
s-
o o
a. >
0) CU
i > E
3 *r~ 3
E 4->r-
3 ro O
|o ^ >
1 CM
CO i O
.
o o
i «3- co
O r CJ>
O O O
O O i
o
CM UO CO
CM co en
i r CM
r CM CM
CO i CM
LO CM t-^
c\j «=t- **
LO O O
^J- O <*
r~~ CM CM
LT> LO tO
co oo cn
CM CT> O
r ^t~ r*^
p LO CM
LO «d- r^
CM
co
CM
o
LO
o
o^
00
C7>
LO
^-
CM
LO
00
co
CM
CM
o
CO
1
o
r
ID
o
,«
o
r
o
CM
CD
to
o
CM
cn
CO
LO
CM
CM
o
to
o
to
CM
00
00
,_
r
LO
r
cn
CO
cn
O
LO
O
0
CM
0
LO
00
*5j"
^f-
^O
oo
r~-
OO
^t"
^j-
to
PS^
00
^J-
10
00
LO
r
CD
f
O
to
00
o
to
o
CO
CO
^~
4->
%
T3
00
1 *
O
CU
CU
T3
-P
c
CU
s_
cu
£
a.
o
c
ro
A
I
A
3
O
iT
o
f\
T3
O
r,
r
"^
204
-------
o
o
O
CO
O
LU
UJ
OJ O)
i > e
3 -r- 3
£ -Mr-
3 re o
o i >
M OOOOOOOOOO
OOOOCMOOOOO
CM r-^ r-^ O
Or- CM r-> CTl O LO r COCM
i CM CM CM
O O LO LO LO
i i r CMCMOOOOO
O O O O O O
oooooojuor^OLo
OJ 1^ r
u_
o
Q.
Q.
CO CMCVJt O>Oa>r-«^-r LO
co vo LO LO r*^
_O> CT»OOLOCOCOr r CTtO
COOOCT>'*CVlCMCOU3r
COCOCMCMi i r r p i
CM co co ro ro co
i CM CM CM
CM r~- ^" r CT> LO
i i CM CO CO <*
ooLomoococMcncoo
i CMCOCOCOCOCOCT>«*
i r- CM CM CO
TJ
O)
a.
r"
3
CT
a*
O)
JZ
-p
s-
o
(fl
0)
J3
(O
o
ai
*->
OJ
XJ
a
c
o
cu
O)
-Q
a.
c
(O
s-
o
o
o
-o
o
205
-------
o
0
LO
I
UJ
o
UJ
_J
_l
1
z
~r"
I
i <
0
UJ
a:
o
IS
\
Q
^^
oo
2:
o
d) CO
1 > fc
3 -i- 3
E 4-> i
3 (C O
O >
t
CM CM CM
O CO LO
CJ> O
CTV
O
CM O
CT> O LO
CM LO O
CO OO CM
LO «3 VD
~
oo cn oo
O 0» i
^" '
co oo r--
^ ^^ ^j*
LO en co
V£) CO CO
1 1
IQ LO CO
r^ oo co
LO r~N ^f
vo o> o
CM OO ^J"
i*-^
O l*x r
CO
O i «*
00 CO LO
CO
-o
QJ
CO
3
C
F
Q.
i
3
CT
O>
S-
o
4J
"^~
E
O)
[o
(0
-p
0
O)
-M
0)
-o
3
O
1
S-
o
o
0
«
-a
o
206
-------
o
o
LO
UJ
1
«C
0
*
u_
l_
^y
UJ
1
u_
u_
UJ
u_
0
oo
UJ
00
^~
1
=c
^
Q
UJ
0
UJ
1
UJ
oo
o
CM
Q
1 1 1
1
CQ
1
c
^"
3
0
CU
u_
5
0
r-
oo
co
3=
Z
CD
51
fO
O
(0
~^
***/
o
CU 3
S- i
O O
Q. >
CU CU
i > E
3 *r~ 3
E »-> i
3 (O O
0 i >
^ OO O^ LO ^~ ^D ^D
O r CM CO LO ^f LO
O «* ^O
o o o o ^- CM
O O 0
o o CM r-~ CT> r-^ "^ 10 i i oo r~~
r
LO r CO r r~. CT> i
i co oo r-. 10 co
i 1 r I 1
r-» LO o en en oo o
^3- LO LO ^- *d- «d- LO
en ^3- oo i 10 o co
CM CO OO CO O 00 00
i i r- i
r r*^ ^~ co oo «^* en
<* o co oo co oo en
^~
r- CM LO 01 o
oo r**** *-Q r**^ LO oo
CO CO CO CO CO CO
CM r CM «^~ <^ O LD
CM ^* LO vo r^* r^*
VO LO UO CM CJ^ *O 00
oo CM vo en r en ^3-
cn co co co o co
r CM CM CO OO
-o
CU
o
Q.
CU
^
r-
in
>>
(O
c~
(O
M-
o
-o
o
JZ
i
CU
JZ
J3
-o
CU
o
CU
CU
T3
0
E
CU
S-
O)
-Q
Q-
c
ns
A
IP
M
^
C_5
A
o
0
n
T3
O
207
-------
o
o
LO
r
LU
I
-
i
=c
Q
LU
h-
O
LU
i
LU
OO
r-I
0
1 1 I
UJ
OQ
s
C
M
E
2:
0)
1 1
r
r
0
r-
oo
z.
co
a:
z.
en
s:
10
o
fO
y
^
cu
£
CU 3
5- i
O O
Q- >
(U cy
I > e
3-1-3
E -Mr-
3 (TJ O
O r- >
ro o o o
co
*
i CM CM CM
LT) CM 00 00
CO CO
l~
CO CM CM O
co co cr> r*^
^- r-». 10 oo
co co co i
^O CO LO ^*
i r- ^>
CM i CM tD
i O O O
CM CM CM
r^ LO o CM
CM i LO LO
o LO a> oo
LO i CO
~ "
CM *J- CT» LO
^ ch oo oo
en LO en LO
CM OO 00
CM OO CO LO
CM CO
O CO r CM
CO OO 00 CTl
cx^
-------
o
o
LO
i
fee
UJ
1
r~
l^
O
UJ
i
__j
^j
cj^
OcC
^3
i
«£
Z
rn
I
3
a
UJ
a:
o
UJ
-1
<=£
O
z.
o
oo
Q
i i
5
j^~
O
a:
u_
l
z
UJ
^
u_
u_
UJ
u_
0
CO
UJ
>-
CU CU
3-^ E
E'£ r^
3 fO O
t_J l >
r O O i i
.
i LO LO LO r^
V.O CO ^^ r^*
O U> CM 00 O
00 00 OO CO
CM CO CO CO CO
LO CO CO «3"
CO Cn r t
i r-«
co co r-v r- ^c
CT> r CO IO LO
p^ CT^ ^O 00
CM CO CO
-o
cu
CO
3
-LJ
c
1
0.
r-
3
cr
cu
0)
-p
j_
o
to
+J
r"
E
r-
r -
CU
(O
o
cu
-p
cu
-o
n
c
o
cu
cu
cu
jQ
Q-
-o
re
«
z
3
o
A
S-
o
«v
-o
o
n
r
*
CU
o
to
s_
^}
II
1
*
*
209
-------
o
o
LO
I
£
LU
1
IE
O
LU
|
I
|
Hr
z
^
1
3
Q
i ij
3:
o
~
cu cu
i > E
3-1-3
E -P
3 (O O
CJ i >
000
1
_
O O CM
o
i CM LO
CM
^-f.
O O CO
LO
O O CM
O
o r cn
CO r- LO
to co co
«=** «3-
CM tO *
r~~ tO ^O
n"~ f~
i |-~ CO
CO * LO
r
CO to to
"sj- ^J" tO
CO ^" to
en co co
Is*. 1 O
o r^ o
i CO «*
r- r- CO
i CM
o CM en
r^x r*>« ^~
to r*^-
r
0
_
^~
o
CO
CM
r
O
CM
,_
co
o
en
en
CM
*
co
to
r
to
^~
CO
LO
CO
CO
CO
LO
^~
cn
to
p^*
CM
O
en
LO
0
^
LO
o
VO
LO
o
o
co
oo
3
-P
ca.
r
3
O"
a>
s-
o
l(_
I/)
+J
'E
f~«
cu
,_«
-Q
(O
-P
(O
O
CD
CU
-o
O
(-*.
' ^
CD
CU
D_
-o
r5
««
r
Z
«
s_
0
*l
-a
o
^
<
210
-------
LU
I
n:
O
^^
LU
1
I
1
h~
z.
zc
1
1 1
3
a
LU
O
5
i
i
»~4
OO
GO
Cd
LU
s:
_i
CO tt)
1 > j=
E "-J3 ^
3 (O O
O i >
r- O 0 O O O
r (^
, «
CO CM CO
i CO CT>
r ' r
O CM CO -=d- CO CM
O O CM f~- U3 «J-
r CM t r
CM oo in i en to
«3- co r~- o co i
r . r CM r r
CM cn co en i to
CM r^*. r^* r^*. f^*. cn
O O O CM O LD
to t~~
CM
CM cn r^ tn CM cn
r CM CO CO
co o ^~ to co r^
«^~ o to *^~ cn «^~
CM co un to co
CL)
CO
3
_!_,
E
Q.
r
3
CT
0)
O)
+J
S-
o
M-
r
r
CD
fj
rO
-P
O
QJ
+J
QJ
o
-a
c
o
QJ
_a
OJ
S-
OJ
5
JD
Q.
7Q
C
«3
r~
z.
S-
o
^
3
ft
O
-a
o
<
^
211
-------
CJ
o
LO
LU
CJ
Q
LU
O
O
O
oo
o
o
LU
LU
o
oo
LU
oo
CJ
LU
LU
CM
Q
___
CD
c
M
0)
1/1
co
Ol
S
(O
o
to
£3
O O
Q- >
I >
i £i
3 fO
O r-
Lf>
LO
V£> O
co
«d- co
CM CM
CM CM
CM CM
OO
CT> CO
1-^ CM
CM
CM
CO
CO
CM
CT>
CM
CM
LO
CO
CO
O
cn
CM
CO
CM
CM r*
01
OO
co
O1
CM
co
LO
CO
CM
CM
co
O
LT>
a
CU
C/)
*->
C
CU
QL
CT
CU
s-
o
CU
r
J2
fO
+J
a
ai
cu
-a
o
'cu
cu
cu
JD
Q-
T3
£=
-------
O
o
LO
1
<
UJ
1
o
^f
^u
UJ
_l
i
ZJ
I
z^
I
HH
2
O
UJ
X
o
«c
UJ
1
>-
-
<
§
a
LU
h
O
LU
^J
LU
CO
CO CU
i > E
3-r-3
E -> r-
3 (0 O
o « r>
CM O O LO
CM O O i
o « « ^
.3- CO CO f^
. « «
O O LO *1-
o i en LO
r ^
1
LO CM O1 VO
r^ oo CM
CM i CM CM
O\ CO CM -=f
r r
Lf> CM LO OO
U3 «>
pw. |HMB
<- r>. o CM
i f^ U3 LO
CM i
(r) r*« vo LO
O -i O <*>
CM CM CM i
CM 10 LO
LO f^ CO O
f~ l-~
*t r- 00 00
CM to r>-
CM CO
CM CT> VO LO
CM l~~
CM O» VO CM
^j- i LO CT>
CM UD CO
p~
CO
-p
r-.
E
r
r
+*
o
0)
+J
0)
T3
3:
0
I1"
CO
-d
CO
CO
S
JD
0.
T3
c
(O
«l
z
A
3
O
sT
o
A
o
0
-o
0
A
r~
<
213
-------
o
o
un
i
r^
LU
^
O
_
a
z.
55
UJ
§;
or
f^
3E
s:
§
1 ,
1 L
h-
Z.
LU
ID
1
U_
U_
LJ_
O
OO
LU
OO
|
Q
LU
1
O
LU
LU
OO
CM
Q
LU
_J
CQ
|
1
C
M
C
O)
Lu
!
O
I
OO
1
co
n:
z
co
03
O
03
^^
XX
^
0) 3
S- ^~
O O
Q- >
cu a>
i > E
^ T ^
E 4J r-
3 (O O
0 >
i o cn o
CM i i r
r O O O
co ^r CM co
O i CM UO
o o
1 1
PS. r r*^ ^~
CO CO CO CO
r r~~ r^ r
CO CM OO CM
i r- i un
LO PS. CM CO
co o cr>
r- CM r
CO IQ CM CM
r un un un
r"**
CO r- r i
^«o c3^ r*^ ^d~
en co oo co
r>«
O CO CO PS.
O1 O1 CTl CF»
i CM CO CO
CM cn un cr>
i un 10
VO CM fs* p^
OO CM *3" PS.
10 o un
CM CM
o
ai
3
c
CL'
g:
CL
3
Or
ai
4J
^
-o
-------
1
LU
I
F
*sr
*BU
o
u_
V
LU
""**
i
u_
LU
U_
O
CO
LU
CO
Z
a
LU
o
LU C_>
| O
LU in
CO r
CO
CM
Q
LU
00
<
c
M
c
0)
Lu
I
CJ
*r~
CO
z:
CO
3;
O*
SI
ns
O
03
sX
1
0) 3
L- r
0 O
a. >
Q) (U
3 T- 3
3 (0 'o
O r >
O O O 0 O
^ p^ p^
co in o co o
O O r i CO
o o o o r^
CO O CM
m ^i- co CM r
CM CM CM CM CM
r"--» in vo vn *n
i t i r r
^}- r CM r i
OO VD CM CM CO
r r CO =* in
in o CM 10
i i CM «* un
r r CM CO CO
I CTl O CD in
«3- ^- tn oo oo
U> 10 r-~ CT> CTl
in
O CM CO *d- O
1
co rv. oo cr> o
co o in m vn
r CM in
0
00
vo
CM
CO
CO
r
OJ
c^-
CS1
r~"
LO
r ~
O^
CM
O
CO
CT>
«=J-
r
ID
CO
CO
O
in
^t-
o
in
CO
^~-
f*+^
co
CO
CO
O
co
^J-
CTl
r^
O"l
r^
CM
VO
CTt
r
^_
^
O O O O
o in o m
o m 10 oo
o o o o
in ^* *n vo
CO VO CM
CM r r r
i oo cr> in
O r CT> r
CM r r
00 OO ^1- 00
CT» CT» CJ* CJ>
co m in o
in co CM CM
r CM CO
^* en co CT*
CM CM CO CO
cj* CJ* tn uD
CO O co r^
cO r^^. cj* CM
r r r CM
T3
3
C
-------
CO
o
LO
<
LU
§
CO
<:
LU
_l
1
=c
3C
1 4
2
Q
111
LJ-J
^
O
1
LU
1 i
LU
Lu
O
OO
LU
OO
>-
_l
eC
<
Q
LU
O
LU
_l
LU
OO
CD
CM
Q
1 1 1
1
co
<
c
r*vl
r-
Z.
c.
3
co
CU
Lu
co
^
CO
IE
z.
en
(0
o
CU CU
i > E
3-1-3
E +> i
3 (0 0
O i >
r i r i IQ
«...
o o . o
.
O i i o
o <£> m (^j CD
*
i CM O O
LO LO IQ O CO
CM CM CM ^- CM
. .
O O O O *J-
r CD
LO 1 CO i LO
co r~- CD co co
i i i CM
CM . r- ^t- «i-
00 LO
0 r r- 0 CD
CD l-x 10 Lf> «d"
CO O ^3- 10 CO
00 CD CM CM CO
CM CM CO i i
^ < CO OO CM
LO IO CO CO CO
LO O LO CO s3-
i ' CO VO IO
i i CO CO
o LO r-x >^- «j-
r- CM «i OO <£>
r- CO
O CM VO ^J- i
i^ co r^. CM CD
i ^1- CO VO
CM
LO
o
VD
LO
CO
CM
OO
o
co
CM
LO
LO
CO
«d-
'3-
VO
r>o
CO
<~o
CO
CO
CO
r
o
LO
CO
CD
U3
(^O
-o
CU
(/>
3
+J
c
CU
E
Q.
r
3
cr
CU
CU
^:
+J
s_
o
4
w
«->
r
CU
XJ
fO
-M
u
CU
4-*
CU
T3
-o
c
o
*^^
0?
X)
£
i
-Q
Q.
a
c
(O
A
s~
co
o
CO
«t
T3
CO
! ,
-------
APPENDIX E
PUBLICATIONS FROM RESEARCH CONTRACT 68-03-0208
Alesii, B.A. and W.H. Fuller. 1976. The mobility of three cyanide forms in
soils. In: Residual Management by Land Disposal. Proceedings of the
Hazardous Waste Research Symposium at the University of Arizona, Febru-
ary 2-4, 1976. EPA-600/9-76-015, July 1976. U.S. EPA Municipal Envir-
onmental Research Laboratory, Cincinnati, OH. 45268. 280 p.
Fuller, W.H. 1977. Movement of Selected Metals, Asbestos, and Cyanide in
Soil: Applications to Waste Disposal Problems. EPA-600/2-77-020, U.S.
EPA Municipal Environmental Research Laboratory, Cincinnati, OH 45268.
257 p.
Fuller, Wallace H. and Nic Korte. 1975. Attenuation mechanisms of pollut-
ants through soils. Im Gas and Leachate from Landfills: Formation,
Collection, and Treatment. Proceedings of a Symposium at Rutgers
University, March 25 and 26, 1975. EPA-600/9-76-004, March 1976. U.S.
EPA Municipal Environmental Research Laboratory, Cincinnati, OH 45268.
196 p.
Fuller, Wallace H. and Thomas C. Tucker. 1975. Land Utilization and Dis-
posal of Organic Wastes in Arid Regions. In: Soils for Management and
Utilization of Organic Waste and Wastewater. L.F. Elliott and F.J.
Stevenson (co-eds.). Soil Sci. Soc. Am. 1977. Madison, WI 53706.
pp. 274-289.
Fuller, W.H., Colleen McCarthy, B.A. Alesii, and Elvia Niebla. 1976. Liners
for disposal sites to retard migration of pollutants. JJK Residual
Management by Land Disposal. Proceedings of the Hazardous Waste
Research Symposium at the University of Arizona, February 2-4, 1976.
EPA-600/9-76-015, July 1976. U.S. EPA Municipal Environmental Research
Laboratory, Cincinnati, Ohio 45268. 280 p.
Fuller, W.H., N.E. Korte, E.E. Niebla, and B.A. Alesii. 1976. Contribution
of the soil to the migration of certain common and trace elements.
Soil Sci. 122(4):223-235.
Korte, N.E., E.E. Niebla, W.H. Fuller. 1976. The use of carbon dioxide to
sample and preserve natural leachates. J. Water Pollu. Control Fed.,
48(5):959-961.
217
-------
Korte, N.E., J.M. Skopp, E.E. Niebla, and W.H. Fuller. 1975. A baseline
study on trace metal elution from diverse soil types. Water, Air, Soil
Pollut.5:149-156.
Korte, N.E., J. Skopp, W.H. Fuller, E.E. Niebla, and B.A. Alesii. 1976.
Trace element movement in soils: Influence of soil physical and
chemical properties. Soil Sci. 121(6):350-359.
Korte, N.E., W.H. Fuller, E.E. Niebla, J. Skopp, and B.A. Alesii. 1976.
Trace element migration in soils: Desorption of attenuated ions and
efflects of solution flux. In: Residual Management by Land Disposal.
Proceedings of the Hazardous Waste Research Symposium at the University
of Arizona, February 2-4, 1976. EPA-600/9-76-015, July 1976. U.S. EPA
Municipal Environmental Research Laboratory, Cincinnati, Ohio 45268.
280 p.
Marion, G.M., D.M. Hendricks, G.R. Dutt, and W.H. Fuller. 1976. Aluminum
and silica solubility in soils. Soil Sci. 121(2):76-85.
Niebla, E.E., Nic Korte, B.A. Alesii, and W.H. Fuller. 1976. Effect of
municipal landfill leachate on mercury movement through soils. Water,
Air, and Soil Pollut. 3:399-401.
Skopp, J. and A.W. Warrick. 1974. A two-phase model for the miscible dis-
placement of reactive solutes in soils. Soil Sci. Soc. Am. Proc. 38:
545-550.
218
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1 REPORT NO.
EPA-600/2-78-158
3. RECIPIENT'S ACCESSI ON-NO.
4. TITLE AND SUBTITLE
INVESTIGATION OF LANDFILL LEACHATE POLLUTANT
ATTENUATION BY SOILS
5. REPORT DATE
August 1978 (Issuing Date)
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Wallace H. Fuller
8. PERFORMING ORGANIZATION REPORT NO.
9 PERFORMING ORGANIZATION NAME AND ADDRESS
Department of Soils, Water, and Engineering
University of Arizona
Tucson, Arizona 85721
10. PROGRAM ELEMENT NO.
1DC618
11. CONTRACT/GRANT NO.
68-03-0208
12. SPONSORING AGENCY NAME AND ADDRESS
Municipal Environmental Research Laboratory--Cin.,OH
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268
13. TYPE OF REPORT AND PERIOD COVERED
Final Report 12/72 to 7/75
14. SPONSORING AGENCY CODE
EPA/600/14
15. SUPPLEMENTARY NOTES
Project Officer: Mike H. Roulier (513) 684-7871
16. ABSTRACT
In this laboratory study using 11 soils from 7 major orders in the U.S., the
movement and retention of As, Be, Cd, CN, Cr, Cu, Hg, Ni, Pb, Se, V, and Zn when
carried by municipal solid waste (MSW) leachate through soils was influenced by the
individual properties of the elements, by the permeability of the soil, and by the
amounts of clay, lime, and hydrous iron oxides present in the soil. The movement
of iron was also studied; its movement and retention in soil were related most
strongly to the content of clay and hydrous iron oxides. Amounts of elements retain-
ed by soils against subsequent extraction with water and 0.1 N^ HC1 suggest a substan-
tial permanent retention capacity for soils. Total Organic Carbon (TOC) and Chemical
Oxygen Demand (COD) in MSW leachate were only slightly retained by soils. Due to
materials displaced from the soils, the COD of effluents from the soils was initially
30 to 50 times greater than the COD of the applied MSW leachate. Water removed
essentially all of the TOC retained by the soils during contact with leachate.
A simulation model for predicting solute concentration changes during leachate
flow through soils was developed and partially validated using data from the project.
A literature review was conducted during the first phase of the project and has
been published as Movement of Selected Metals, Asbestos, and Cyanide in Soils: Appli-
cation to Waste Disposal Problems (EPA-600/2-77-020, April 1977; NTIS PB266905/AS).
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COS AT I Field/Group
*Hazardous Materials
transport Properties
*Soil Chemistry
Attenuation
Contaminants
Arsenic
Beryllium
Cadmium
Copper
Chromium
Iron
Lead (Metal)
Mercury (Metal)
Selenium
Zinc
Industrial Wastes
Pollutant Migration
Groundwater Pollution
Municipal Solid Waste
Leachate
13B
18. DISTRIBUTION STATEMENT
RELEASE TO PUBLIC
19. SECURITY CLASS (ThisReport)
UNCLASSIFIED
21. NO. OF PAGES
239
20. SECURITY CLASS (Thispage)
UNCLASSIFIED
22. PRICE
EPA Form 2220-1 (9-73)
219
U. S. GOVERNMENT PRINTING OFFICE: 1978-757-140/1431 Region No. 5-11
-------