-------
loduded only if NPSTA > 0
Induded only rf HDPT5 (9) - 1
Inducted only if IOPTS(«) - 1
_J I"***"! Millions (3) - 1
- 1
(6) Dcteak Oandt
Opooo«(OfTS)
Figure 5-2. Card image input setup for MESOPAC II.
5-19
-------
Table 5-7
MESOPAC II Inputs
INPUT GROUP 1 - RUN TITLE Format: (20A4)
Columns Type Variable
1-80 CHARACTER TITLE (20)
*4 ARRAY
Description
80-character title of run.
INPUT GROUP 2 - GENERAL
Columns
1-5
6-10
11-15
16-20
Type
INTEGER
INTEGER
INTEGER
INTEGER
RUN INFORMATION
Variable
NYR
IDYSTR
IHRMAX
NSSTA
Format: (715)
Description
Two digit year of run.
Starting Julian day
(also see Input Group 6, IOPTS (10)).
Number of hours in run.
Number of surface meteorological stations
21-25
26-30
31-35
INTEGER
INTEGER
INTEGER
NUSTA
IBTZ
NPSTA
(must be a mxss as defined in "PARAMS.PAC").
Number of rawinsonde stations
(must be z mxus as defined in "PARAMS.PAC").
Reference time zone
(5 - EST, 6 = CST, 7 = MST, 8 = PST).
Number of precipitation stations
(must be * mxps as defined in "PARAMS.PAC").
Set NPSTA=0 if precipitation data is not to be
processed.
INPUT GROUP 3 - GRID DATA Format: (2I5,F10.0)
Columns Type Variable
1-5 INTEGER IMAX
Description '
Number of grid
points in X (west-east) direction
6-10
11-20
INTEGER
REAL
JMAX
DGRID
(must be z mxnx as defined in "PARAMS.PAC").
Number of grid points in Y (south-north)
direction (must be £ mxny as defined in
"PARAMS.PAC").
Grid spacing (m).
5-20
-------
Table 5-7
MESOPAC II Inputs (Continued)
INPUT GROUP 4 - OUTPUT OPTIONS Format: (2L5,I5,L5,4I5)
(Vtlymns Type Variable
1-5 LOGICAL LSAVE
6-10
LOGICAL LPRINT
11-15
16-20
INTEGER IPRINF
LOGICAL LBD
21-25
26-30
31-35
36-40
INTEGER NDY1
INTEGER NHR1
INTEGER NDY2
INTEGER NHR2
Description
Disk/tape output control variable. If
LSAVE = T, meteorological fields are written to
a disk/tape file. If LSAVE = F, output is not
stored on disk/tape. (LSAVE should be T if
meteorological data is to be used to run
MESOPUFF II).
Printer output control variable. If LPRINT = T,
meteorological fields are printed every "IPRINF"
hours. If LPRINT = F, meteorological fields are
not printed.
Printing interval (in hours) of meteorological •
fields. Used only if LPRINT = T.
(IPRINF a I).
Control variable for printing of input
meteorological data and intermediate computed
parameters. If LBD = T, these data will be
printed for time periods specified by NDY1,
NHR1, NDY2, and NHR2. If LBD = F, these
data will not be printed. (Because this
information is not of general interest, LBD
should be F for most applications).
Julian day for which printing of input
meteorological data and intermediate computed
parameters begins. Used only if LBD = T.
Hour (00-23) for which printing of input
meteorological data and intermediate computed
parameters begins. Used only if LBD = T.
Julian day for which printing of input
meteorological data and intermediate computed
parameters ends. Used only if LBD = T.
Hour (00-23) for which printing of input
meteorological data and intermediate computed
parameters ends. Used only if LBD = T.
5-21
-------
Table 5-7
MESOPAC II Inputs (Continued)
INPUT GROUP 5 - LAND USE CATEGORIES AT EACH GRID POINT (see Table 6-3).
JMAX lines are required, each line with IMAX land use categories (corresponding
to X-coordinates 1 to IMAX). The first tine contains values for Y = JMAX, the
second line for Y = JMAX-1, etc.
Format: (20012)
Columns- Type Variable Description
1-400 INTEGER ILANDU (imax, jmax) Land use categories for each grid point.
ARRAY
Example: 3 4
1 2
Results in ILANDU (1,1) = 1, ILANDU (2,1) = 2
ILANDU (1,2) = 3, ILANDU (2£) = 4.
5-22
-------
Table 5-7
MESOPAC II Inputs (Continued)
INPUT GROUP 6 - DEFAULT OVERRIDE OPTIONS.
Columns Type Variable
1 INTEGER IOPTS(1)
ARRAY
ELEMENT
INTEGER
ARRAY
ELEMENT
INTEGER
ARRAY
ELEMENT
INTEGER
ARRAY
ELEMENT
IOPTS(2)
IOPTS(3)
IOPTS(4)
INTEGER
ARRAY
ELEMENT
IOPTS(5)
INTEGER
ARRAY
ELEMENT
IOPTS(6)
Format: (1011)
Description
Surface wind speed measurement height control
variable. IOPTS (1) is no longer active. The
height at which the surface wind speed was
measured is now input for each station on Input
Group 15.
von Karman constant control variable. If
IOPTS(2) = 1, the user must input a value of the
von Karman constant (see Input Group 8). If
IOPTS(2) = 0, a default value of 0.4 is used.
Control variable for input of friction velocity
constants (Y, A) in Equation 5-21. If IOPTS(3)
= 1, the user must input values for Y and A (see
Input Group 9). If IOPTS(3) = 0, the default
values Y = 4-7, A = 1100 are used.
Control variable for input of mixing height
constants (B, E, Az, d6/dz „„,, N) in Equations
(5-24) to (5-27). If IOPTS(4) = 1, the user must
input values for these constants (see Input Group
10). If IOPTS (4)=0, the following default values
are used; B = 1.41, E = 0.15, Az = 200 m,
m = 0.001eK/m, N = 2400.
Control variable for input of wind Geld variables
RADIUS, ILWF, IUWF. See Input Group 11 for
a description of these variables. If IOPTS (5) = 1,
the user must input values for these variables. If
IOPTS(5) = 0, the following defaults are used:
RADIUS = 99 grid units, ILWF = 2, IUWF = 4.
Control variable for surface roughness lengths. If
IOPTS(6) = 1, the user must input the roughness
length at each grid point (see Input Group 12).
If IOPTS(6) = 0, the roughness length is
determined from the land use category for each
grid point according to Table 6-3.
5-23
-------
Table 5-7
MESOPAC II Inputs (Continued)
INPUT GROUP 6 - DEFAULT OVERRIDE OPTIONS. (Continued) Format: (1011)
Type
INTEGER
ARRAY
ELEMENT
INTEGER
ARRAY
ELEMENT
Variable
IOPTS(7)
IOPTS(8)
INTEGER
ARRAY
ELEMENT
IOPTS(9)
10
INTEGER
ARRAY
ELEMENT
IOPTS(10)
Description
Option to adjust heat flux estimates using OOZ
sounding data and Equation 5-24. This option is
not currently active. IOPTS(7) should be 0.
Control variable for input of radiation reduction
factors due to cloud cover. If IOPTS(8) = 1, the
user must input eleven radiation reduction factors
corresponding to possible opaque sky cover of
0 to 10 tenths, (see Input Group 14). If
IOPTS(8) = 0, the following default reduction .
factors are used; 1.00, 0.91, 0.84, 0.79, 0.75, 0.72,
0.68, 0.62, 0.53, 0.41, 0.23.
Control variable for inputs of heat flux constants
of Equation 5-2 at each grid point. If IOPTS(9)
= 1 the user must input a value of RADC for
each grid point (see Input Group 15). If
IOPTS(9) = 0, a default value of RADC = 0.3 is
assigned to each grid point.
Option to begin run at point other than at
beginning of surface, upper air or precipitation
data files. IOPTS(10) must be 1 if the starting
date of the model run does not correspond to the
beginning of the meteorological files; otherwise,
IOPTS(10) must be 0.
5-24
-------
Table 5-7
MESOPAC II Inputs (Continued)
INPUT GROUP 7 • WIND SPEED MEASUREMENT HEIGHT (No longer used - see Input Group 15 for
input of measurement heights)
Format: (F10.0)
1-10
Type Variable Default
REAL ZM 10.0
Description
Surface height above ground (in meters) at which
wind speed measurements were made.
INPUT GROUP 8 - VON KARMAN CONSTANT (Optional - included only if IOPTS(2) = 1).
Format: (F10.0)
Columns Type Variable Default
1-10 REAL VK 0.4
Description
von Karman constant.
INPUT GROUP 9 - FRICTION VELOCITY CONSTANTS (Optional - included only if IOPTS(3) = 1).
Format: 2F10.0)
Columns Type Variable Default
1-10 REAL GAMMA 4.7
11-20 REAL CONSTA 1100.
Description
Constant y in friction velocity Equation 5-21.
Constant A in friction velocity Equation 5-21.
5-25
-------
Table 5-7
MESOPAC II Inputs (Continued)
INPUT GROUP 10 - MIXING HEIGHT CONSTANTS (Optional - included only if IOPTS(4) = 1).
Format: (5F10.0)
Columns Type Variable Default
1-10 REAL CONSTB 1.41
11-20 REAL CONSTE 0.15
21-30 REAL DELTZ 200.
31-40 REAL DPTMIN 0.001'
41-50 REAL CONSTN 2400.
Description
Constant B in neutral stability mixing height
Equation 5-26.
Constant E in convective mixing height Equations
5-24 and 5-25.
Depth of layer (m) above current convective
mixing height through which potential
temperature gradient 56/dz is calculated.
Minimum value of + (36/8z)("K/m) used in
Equations 5-24 and 5-25.
Constant N in stable (mechanical) mixing height
Equation 5-27.
5-26
-------
Table 5-7
MESOPAC II Inputs (Continued)
INPUT GROUP 11 - WIND FIELD VARIABLES (Optional - included only if IOPTS(5) = 1).
Format: (2I5.F10.0)
Type Variable Default Description
INTEGER ILWF 2 Code for lower-level wind field (see below).
INTEGER IUWF 4 Code for upper-level wind field (see below).
REAL RADIUS 99. Scan radius for wind field interpolation (in grid
units).
1-5
6-10
11-20
Wind Field Code (ILWF, IUWF)
1 - Surface winds (uses CD144 surface data only)
2 - Vertically-averaged winds through layer from ground to mixing height (uses CD 144 surface data and
rawinsonde data).
3 - Vfertically-averaged winds through layer from mixing height to 850 mb (uses rawinsonde data only).
4 - Vertically-averaged winds through layer from mixing height to 700 mb (uses rawinsonde data only).
5 - Vertically-averaged winds through layer from mixing height to 500 mb (uses rawinsonde data only).
6 . - 850 mb winds (uses rawinsonde data only).
7 - 700 mb winds (uses rawinsonde data only).
8 - 500 mb winds (uses rawinsonde data only).
5-27
-------
Table 5-7
MESOPAC II Inputs (Continued)
INPUT GROUP 12 • SURFACE ROUGHNESS LENGTHS (Optional - included only if IOPTS(6)
Format: (16F5.0)
1)
Column*}
1-80
Jus
REAL
ARRAY
Variable
ZO
Default Description
Surface roughness lengths (m). If IMAX < 16,
JMAX lines are required, each line with IMAX
ZO values (corresponding to X grid points 1 to
IMAX). Lines are in order of decreasing Y.
See example in description of Input Group 5. If
16 < IMAX < 32, 2 x JMAX lines are required.
(Each ZO (1,1) starts on a new line). If
IMAX > 32, 3 x JMAX or more lines are
required.
Default roughness lengths are determined by the land use category assigned to each grid point (in
Input Group 5) according to Table 6-3.
5-28
-------
Table 5-7
MESOPAC H Inputs (Continued)
INPUT GROUP 13 - RADIATION REDUCTION FACTORS (Optional - included only if IOPTS(8)
Format: (11F5.0)
1)
1-55
Type Variable
REAL BETA(ll)
ARRAY
Default
1.00, 0.91, 0.84
0.79, 0.75, 0.72
0.68, 0.62, 0.53
0.41, 023
Description
Radiation reduction factors due to presence of
clouds (see Equation 5-3). Eleven values
corresponding to opaque sky cover of 0-10 tenths.
INPUT GROUP 14 - HEAT FLUX CONSTANTS (Optional - included only if IOPTS(9) = 1)
Format: (16F5.0)
1-80
Type Variable Default
REAL RADC 03
ARRAY
Description
Heat flux land use constant, a, of Equation 5-2,
for each grid point. If IMAX < 16, JMAX lines
are required, each line with IMAX values
(corresponding to X grid points 1 to IMAX).
Lines are in order of decreasing Y. See example
in description of Input Group 5. If 16 < IMAX
s 32, 2 x JMAX lines are required. Each RADC
(1J) starts on a new line. If IMAX > 32,
3 x JMAX or more lines are required.
5-29
-------
Table 5-7
MESOPAC II Inputs (Continued)
INPUT GROUP
Columns
1-5
6-15
16-25
26-35
36-45
•*.
46-50
51-55
56-65
66-70
71-75
76-80
1,5 - SURFACE STATION DATA. 'NSSTA' cards - one for each CD144 surface station
Format:
Tas
INTEGER
ARRAY
ELEMENT
REAL
ARRAY
ELEMENT
REAL
ARRAY
ELEMENT
REAL
ARRAY
ELEMENT
REAL
ARRAY
ELEMENT
REAL
ARRAY
ELEMENT
INTEGER
ARRAY
ELEMENT
-
-
REAL
ARRAY
ELEMENT
REAL
ARRAY
ELEMENT
(15, 4F10.0, F5.0,
Variable
IDCD
XSCOOR
YSCOOR
SLAT
SLONG
SZONE
ISUNTT
-
-
ZMSURF
ZOSURF
15, 15x, 2F5.0)
Description
Surface station ID for CD144 data (5 digits).
X-coordinate of station (in grid units).
Y-coordinate of station (in grid units).
Station latitude (decimal degrees).
Station longitude (decimal degrees).
Station time zone (5 = EST, 6 = CST, 7 = MST,
8 = PST).
Logical unit number of CD 144 surface data.
No longer used - leave blank.
No longer used - leave blank.
Wind speed measurement height (m).
Surface roughness length (m) appropriate for surface
meteorological station site.
5-30
-------
Table 5-7
MESOPAC II Inputs (Concluded)
INPUT GROUP 16 - RAWINSONDE STATION DATA. 'NUSTA' cards - one for each rawinsonde station
Format: (15, 4F10.0, F5.0,15)
Type
Variable Description
1-5
6-15
16-25
26-35
36-45
46-50
51-55
INTEGER IDTD
ARRAY
ELEMENT
REAL
ARRAY
ELEMENT
REAL
ARRAY
ELEMENT
REAL
ARRAY
ELEMENT
REAL
ARRAY
ELEMENT
REAL
ARRAY
ELEMENT
Rawinsonde station identification number (5 digits).
XUCOOR X-coordinate of station (in grid units).
YUCOOR Y-coordinate of station (in grid units).
ULAT Station latitude (decimal degrees).
ULONG Station longitude (decimal degrees).
UZONE Station time zone (5 = EST, 6 = CST, 7 = MST, 8 =
PST).
INTEGER IUUNIT Local unit of processed upper air data.
ARRAY
ELEMENT
(READ56/READ62 output)
INPUT GROUP 17 - PRECIPITATION STATION DATA. 'NPSTA' cards - one for each precipitation
station. Format: (I6.2F10.0)
Columns Type
1-6
Variable Description
INTEGER IDP
ARRAY
ELEMENT
7-16
17-26
REAL
ARRAY
ELEMENT
REAL
ARRAY
ELEMENT
Precipitation station ID (6 digits).
XPCOOR X-coordinate of station (in grid units).
YPCOOR Y-coordinate of station (in grid units).
5-31
-------
Table 5-8
Variables in the Binary MESOPAC II Output File
HEADER
RECORD
1
1
1
1
1
1
1
1
1
1
1
1
2
2
RECORDS - First six records
VARIABLE
NYR
IDYSTR
IHRMAX
NSSTA
NUSTA
IMAX
JMAX
IBTZ
DLWF
IUWF
DGRID
VK
XSCOOR (nssta)
YSCOOR (nssta)
of output file.
TYPE
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL
REAL
REAL ARRAY
REAL ARRAY
DESCRIPTION
Starting year
Starting Julian day
Number of hours in run
Number of surface stations
Number of rawinsonde stations
Number of grid points in X direction
Number of grid points in Y direction
Reference time zone
Lower-level wind field code
Upper-level wind field code
Grid spacing (m)
von Karman constant
Surface station X coordinates (grid units)
Surface station Y coordinates (grid units)
3
3
4
5
6
XUCOOR (nusta)
YUCOOR (nusta)
REAL ARRAY
REAL ARRAY
ZO(imaxjmax) REAL ARRAY
NEARS (imaxjmax) INTEGER ARRAY
ELANDU (imaxjmax) INTEGER ARRAY
Upper air station X coordinates (grid
units)
Upper air station Y coordinates (grid
units)
Surface roughness lengths (m)
Station number of closest surface station
to each grid point
Land use categories (see Table 6-3)
*See Table 5-5 for complete description of variables.
5-32
-------
Table 5-8
Variables in the Binary MESOPAC II Output File (Concluded)
HOURLY RECORDS - Repeated for each hour (i) of run.
RECORD VARIABLE
10+i
12+i
13+i
14+i
14+i
14+i
14+i
14+i
DESCRIPTION
3+i
3+i
3+i
4+i
5+i
6+i
7+i
8+i
9+i
NYR
NJULDY
NHR
UL(imaxjmax)
VL(imaxJmax)
UUP(imaxjmax)
VUP(imaxJmax)
Zl(imaxjmax)
USTAR (unaxjmax)
^_S.^.^
INTEGER
INTEGER
INTEGER
REAL ARRAY
REAL ARRAY
REAL ARRAY
REAL ARRAY
REAL ARRAY
REAL ARRAY
Year
Julian day
Hour (00-23)
Lower-level u wind component (m/s)
Lower-level v wind component (m/s)
Upper-level u wind component (m/s)
Upper-level v wind component (m/s)
Mixing height (m)
Friction velocity (m/s)
WSTAR(imaxJmax)
CAPL(imaxjmax)
IPGT(imaxjmax)
PRECIP(imaxjmax)
AVRHO
TEMPK(nssta)
SRAD(nssta)
IRH(nssta)
IPCODE(nssta)
REAL ARRAY
REAL ARRAY
INTEGER ARRAY
REAL ARRAY
REAL
REAL ARRAY
REAL ARRAY
INTEGER ARRAY
Convective velocity scale (m/s)
Monin-Obukhov length (m)
PGT stability class
Hourly precipitation rate (mm/hr)
Average surface air density (kg/m3)
Air temperature*(K)
Total solar radiadon*(W/m2)
Relative humidity*(%)
INTEGER ARRAY Precipitation code*(see Table 6-5)
*At surface meteorological stations.
5-33
-------
Table 5-9
Sample MESOPAC II Input File
MESOPAC TEST CASE - 25 hr simulation skipping 1 day 1/2/86-1/3/86
86 2 25 4 1 5 2
20 20 10000.
T F 24 F 0 0 0 0
12 5 5 5 5 1 1 1 1 1 1 1 1 5 5 5 5 5 512
12 55555551111155555 512
12 55555551111155555 512
12 5 5 5 5 1 1 1 1 1 1 1 1 5 5 5 5 5 912
12 5 5 5 5 1 1 1 1 1 1 1 1 5 5 5 5 5 912
12 5 5 1 1 5 5 5 5 5121212 5566655
555115555 5121212 5566655
555111111155 51212 11111
5551111 11212 1 1
5551111 11212 1 1
1212 5555555511
5121212 55555511
51212 111111111
6666611
6666611
6666611
6666611
5511166
1212 111111111115511166
1212 666 11111111111 11
12 6 6 6 6 11111111111 11
1212 111 11111111111 11
1212 111 11111111111 11
1212 111 11111116611 11
121212 66666111116611111
0000000001
7.4
19.4
10.2
22.0
7.4
10001
10002
10003
10004
99901
80001
80002
7.4
12.5
10.5
15.7
29.4
23.8
10.5
10.5
18.9
28.07
27.95
29.08
28.18
28.07
82.53
81.80
82.27
82.05
82.53
11
12
13
14
15
10.
10.
10.
10.
0.1
0.1
0.1
0.1
5-34
-------
6.0 MESOPUFF H DISPERSION MODEL
Section 6.1 contains a description of the model algorithms. The user instructions are
presented in Section 6.2 and sample inputs and outputs are shown in Section 6-3.
6.1 Technical Description
A flow diagram of the MESOPUFF II dispersion model is shown in Figure 6-1. The
major loops (hour loop, puff loop, and sampling loop) are indicated. Individual modules
comprised of a subroutine or a group of subroutines perform the computational procedures
shown in the flow chart (e.g., puff advection, diffusion, chemistry, wet and dry removal, and puff
sampling). In the following subsections, each of the major algorithms of MESOPUFF II are
described.
6.1.1 Basic Gaussian Puff Equations
MESOPUFF n is a Gaussian variable-trajectory puff superposition model designed to
account for the spatial and temporal variation in advection, diffusion, transformation, and
removal mechanisms on regional scales. A continuous plume is simulated as a series of discrete
puffs. The trajectory of each puff is determined independently of preceding or succeeding puffs.
Each puff is subject to space- and time-varying wet removal, dry deposition, and chemical
transformation. The governing equation for a horizontally symmetric puff with a Gaussian
distribution is:
C(s)
g(s) exp
(6-1)
where,
C(s) is the ground-level concentration,
(6-2)
s
Q(s)
oy(s)
oz(s)
r(s)
Z;
He
is the distance travelled by the puff,
is the mass of pollutant in the puff,
is the standard deviation of the Gaussian distribution in the horizontal,
is the standard deviation of the Gaussian distribution in the vertical,
is the radial distance from the puff center,
is the mixed-layer height, and
is the effective height of the puff center.
6-1
-------
Read User Inputs, Read Meteorological Data Header Records
Write Header Record in Concentration and Flux Output Files
Read Gridded Wind Fields for Fust Hour
• Enter Hour Loop
* Read Meteorological Data (other than wind data) for Current Hour
* Read Gridded Wind Fields for Next Hour
* Initialize Concentration and Flux Arrays
• Enter Puff Loop
* If Puff is New, Initialize Puff, Compute Plume Rise
* Enter Sampling Loop
I
I • Advert Puff
I
Diffuse Puff (calculate new af at — move mass in three-layer model)
Perform Chemistry Calculations
Perform Wet Removal Calculations
Perform Dry Deposition Calculations
Sample Puff (calculate concentrations and fluxes at gridded
and non-gridded receptors)
| • End Sampling Loop
* End Puff Loop
* Compute Average Puff Concentrations (to use in next hour's chemistry calculations)
* Compute 'IAVG'-Hour Averaged Concentrations and Fluxes
* Write Concentrations and Fluxes to Disk and/or to List File (if end of averaging period)
* Purge Old Puffs Off Computation Grid (if number of puffs approaches limit)
End Hour Loop
Close Files, Terminate Run
Figure 6-1. Flow diagram for MESOPUFF II.
6-2
-------
The infinite series in Equation 6-2 converges rapidly for values of T = (ojz^2 < 0.6;
usually fewer than 3 or 4 terms are required for convergence. For T > 0.6, Equation 6-2 is
expressed in an equivalent from using a Fourier series that converges quickly for large values of
T (Schulman and Scire, 1980). The vertical term, g(s), reduces to the uniformly mixed limit of
1/Zj for GZ/Z, £ 1.6, In general, puffs within the daytime mixed-layer satisfy this criterion about
an hour or two after release. The user is permitted to specify an initial Gaussian vertical
distribution (Eq. 6-2) or an immediately uniform vertical distribution (g(s) = 1/zJ for newly
released puffs. MESOPUFF n allows the effect of dry deposition to be treated with the
conventional source depletion method or a more realistic surface depletion (3-layer) model.
These options are described in more detail in Section 6.1.5.
The dispersion parameters, oy and or are calculated for puff travel distances up to
100 kilometers with plume growth functions fitted to the curves of Turner (1970). These
functions are of the form:
o = a x'
(6-3)
where,
a,b
x
are stability-dependent coefficients, and
is the total distance travelled.
Equation 6-3 is valid, however, only if the stability class does not change during the puffs travel.
Stability class variations are allowed by using a virtual distance, x^ instead of x (Ludwig et al.,
1977). ^
W, =
(6-4)
w, - «.w, * 6
(6-5)
W*.
(6-6)
y
(6-7)
6-3
-------
where,
(°y)«» (°z)n a*6 the values of ar oz (m) at the previous time step, and
5x is the incremental distance travelled (m).
The values of a^ by, a^ and bz in Equations 6-4 through 6-7 are those for the current stability
class. Thus, x^ represents the distance the puff would have travelled to reach its size at time t-1
if current stability conditions were in effect throughout its travel. The incremental distance, fix,
is evaluated from the midpoint of the previous time step's trajectory to the midpoint of the
current trajectory. Table 6-1 contains the default values of the coefficients a^ br a^ and bz
stored in MESOPUFF H.
The time-dependent puff growth equation used for distances greater than 10 kilometers are
those given by Heffter (1965):
W, - KL, * °-5 •'
, • NH + ^r (6"9)
a = 0.5 K* (6-10)
where,
fit > is the incremental time (s),
t is the total age of the puff (s), and
K, is the vertical eddy diffusivity (m2/s).
The default values of Kj (and a^ are contained in Table 6-2. The option is provided in
MESOPUFF II for the user to override any of the default dispersion coefficient parameters,
including the crossover distance to time dependent growth (Equations 6-8 to 6-10).
MESOPUFF n allows three options for determining growth rates for puffs above the
boundary layer: (1) E stability rates, (2) F stability rates, or (3) boundary. layer stability rates.
The default instructions are to use the E stability growth curves for puffs^above the boundary
layer (see variable JSUP in MESOPUFF n inputs).
6-4
-------
Table 6-1
Puff Growth Rate Coefficients
bz
Stability Class
A
B
C
D
E
F
•y
0.36
0.25
0.19
0.13
0.096
0.063
by
0.9
0.9
0.9
0.9
0.9
0.9
a,
0.00023
0.058
0.11
0.57
0.85
0.77
bz
2.10
1.09
0.91
0.58
0.47
0.42
6-5
-------
Table 6-2
Vertical Diffusivity (K.) and Puff Growth Rate Coefficient (aj
Stability Class K^ (m2/s) a,,
A 50 5.0
B 30 3.873
C 15 2.739
D 7 1.871
E 3 1.225
F 1 0.707
6-6
-------
6.1.2 Grid Systems
A Cartesian coordinate reference frame is employed in MESOPAC II and
MESOPUFF n. Three nested grid systems are used: a meteorological grid, a computational
grid, and a sampling grid. The size of each grid is limited by the parameters, MXNX, MXNY,
defined in the "params.pac" and "params.puf files.
The meteorological grid is the system of grid points at which meteorological parameters
(wind components, mixing heights, etc.) are defined. The meteorological grid is determined by
inputs to MESOPAC II. It is the basic reference frame for ail spatial input data to both
MESOPAC n and MESOPUFF n (e.g., coordinates of meteorological stations, sources, and
non-gridded receptors). The southwest corner of the meteorological grid defines the point
fry) = (1.0, 1.0).
The computational grid determines the computational area for a MESOPUFF II run, i.e.,
puffs are adverted and tracked only while within the computational grid. When the center of a
puff is transported outside the bounds of the computational grid, this puff is eliminated in the
next sampling step. Thus, all sources and receptors must be located within the computational
grid. To avoid possible boundary effects, receptors should be located away from the edges of
the computational grid.
The sampling grid defines the set of gridded receptors. It must be equal to or a subset of
the computational grid. Its resolution is a multiple of the resolution of the computational (and
meteorological) grid. It should be noted that non-gridded (discrete) receptors are not limited to
be within the sampling grid; they may be placed anywhere within the computational grid.
Computational savings will be realized if the sampling grid is limited only to areas of interest.
The sampling grid may be eliminated entirely if sufficient coverage can be obtained with non-
gridded receptors (see variable LSGRID in MESOPUFF II inputs).
Figure 6-2 illustrates one possible arrangement for the three grids. The computational grid
is a 10 x 8 grid within the 11x9 meteorological grid. The sampling grid extends from
coordinates (3.0, 2.0) to (10.0, 7.0) and has a resolution twice that of the other grids. In this
example, the sampling grid size is 15 x 11.
6-7
-------
9.0
8.0
7.0
6.0
Y 5.0
4.0
3.0
2.0
1.0
Meteorological
f~Grid
i
Computational
Grid
^
Sampling
~Grid
'
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0
x
Figure 6-2. Sample meteorological, computational, and sampling grids.
6-8
-------
6.13 Plume Rise
The plume rise, Ah, of each puff is computed by the Briggs (1975) plume rise equations for
final rise. For unstable and neutral conditions when the puff center does not rise above the top
of the boundary layer, Ah is given by:
AA = 1.6 F"3 X?/um (6-11)
_
(3J) (14 F*) F * 55 m4fs3 (6.12)
(3.5) (34.49 F2*) F > 55 «4/53
where,
F is the initial stack plume buoyancy flux (m4/s3),
XF is the distance to final plume rise (m), and
um is the larger of boundary layer (lower level) wind speed (m/s) or 1.37 m/s.
The ambient temperature at the closest surface meteorological station to the source is used in
the computation of the buoyancy flux.
If the puff penetrates into the elevated stable layer above the boundary layer, the Briggs
(1975) partial penetration rise equation is used to provide a second estimate of plume rise. The
actual plume rise is taken as the minimum of the two plume rise estimates.
ii.u r Af i um //- 1
, , ,,n v°"J
[1.8 zl + 18.75 Fl(umS)]*
where,
Zb is the distance from the stack top, h,, to the top of the boundary layer, z;, and
S is the stability parameter (g/T)(89/az).
The lapse rate in the elevated inversion is assumed to be 0.02" K/m, which is consistent with
EPA recommendations for E stability. This yields a value of S of 6.93 x 10"* s"1.
6-9
-------
For stable conditions, Ah is given by:
t2,6F»l(uS)» u * 1.37 mis (6.u)
u<1.37m/s
During stable conditions, the potential temperate lapse rate is assumed to be 0.02° K/m
and 0.035° K/m for E and F stability, respectively. This produces values of S of 6.93 x 10"4 s'1
and 1.21 x 10"3 s"1, respectively.
6.1.4 Puff Trajectory Function
Puffs are advected during each sampling step according to a Lagrangian trajectory function.
The change in position of a puff center over a time interval At is:
t * A*
x(t+ Af) = x(t) + A* = «[*'; *(*'), yC')] dt1 (6-15)
t * Ar
Ay -
where, [x(t), y(t)] and [x(t + At), y(t + At)] are the puff center coordinates at the time t and t +
At, respectively; Ax, Ay are the incremental x and y distances travelled by the puff; and u, v are
the easterly and northerly components of the wind. The integrals in Equations (6-15) and (6-16)
are approximated by a two-step bilinear interpolation in space and time. The coordinates of a
puff center at time t + At are found by evaluating the vector average of two advection
increments. Figure 6-3 illustrates the advection algorithm. The first increment is evaluated by
assuming the wind components at [x(t), y(t)] are constant for the advection interval At. Thus,
*! = x(t) + (Ax), (6-17)
y, = XO * (Ay), ' (6-18)
(Ax), =«[n*(0,XO] A* (6-19)
(Ay), =vfc*(0,XO] Af (6-20)
6-10
-------
Figure 6-3. Calculation of the trajectory of a puff centerpoint.
6-11
-------
However, because the wind changes in both space and time, a second increment is calculated
using (xv yj as the beginning of the trajectory and the wind components for time t + At at (x1?
yt). Assuming these wind components are constant for a time interval At, the end point of this
increment becomes (x2, y2).
*2 - *, + (Ax), (6-21)
(6-22)
(A*)j - «[f + Af, xy yj A* (6-23)
•
(Ay), - v[f + An^.yJ A* (6-24)
Weighting each increment equally, the new puff position [x(t + At), y(t + At)] is the midpoint of
the line from [x(t), y(t)] to (x2, y2). Thus, the winds at two points in space and in time are used
to evaluate the trajectory of the puff.
x(t + Af) = x(t) + 0.5 (Ax)j + (A* (6-25)
y(t + At) = XO * 0.5 [(Ay), + (Ay),] (6-26)
The wind components u, v are defined only at the grid points at hourly intervals. The effective
wind components at the puff center at time t are obtained by the following bilinear interpolation
scheme: *
, Xfl] = *t
* ** « i+l * t 8 *X u i+l
, u
where,
Ji-T^Ar '.*'*«w (6-28)
= 1.0 - f2 (6-29)
6-12
-------
and tn, tn+1 are the times closest to time t at which the wind field is defined. The variables 6\v
8x2, fiyt, fiy2 are the fractional x and y distances (in grid units) from the four surrounding grid
points to the puff center as illustrated in Figure 6-4. The northerly wind component v[t, x(t),
y(t)] is computed in an identical manner.
6.1.5 Dry Deposition - Three-Layer Model
The rate at which pollutants are deposited on the surface depends upon many factors: the
characteristics of the pollutant, the underlying surface, and atmospheric conditions. The
variability of surface and atmospheric conditions in space and time can cause significant
variations in dry deposition rates. MESOPUFF II accounts for the spatial and temporal
variations of deposition rates by the use of a resistance model The deposition velocity, defined
as the ratio of the vertical pollutant flux at a reference height to the concentration at that
height, is expressed as the inverse of a sum of resistances to pollutant transfer through the
atmosphere to the surface.
vd = (ra + rt + reyl (6-30)
where,
vd is the deposition velocity (m/s),
r. is the aerodynamic resistance1 (s/m),
rt is the surface resistance1 (s/m), and
rc is the canopy resistance1 (s/m).
The aerodynamic resistance, ra, is given by Wesely and Hicks (1977) as:
ra = (*«.)-' [In(z,/z,)-<|rfl] (6-31)
5zJL 0 < zJL < 1
! * (6-32)
^exp [0.598 + 0.39 ln(-z,/I) - 0.090 (ln(-z,/L)}2] -1 < z./I < 0
1 It should be noted that MESOPUFF II uses MKS units. Therefore, resistances that are
commonly reported in s/cm must be converted to s/m for input to the model.
6-13
-------
(5x2
Figure 6-4. Bilinear interpolation of wind components.
6-14
-------
where,
z, is the reference height (10 meters),
z0 is the surface roughness length (m),
u. is the friction velocity (m/s),
i|rH is a function accounting for stability effects, and
k is the von Karman constant.expressed (Wesety and Hicks, 1977) as:
rf = (*«.)-' kB~l (6-33)
where B'1 is the surface transfer coefficient. For SO2, NOr and HNO3, kB"1 is assigned a default
value of 2.6. A constant value of r. for the SO4" and NO3' aerosols of 1000 s/m is assumed.
Table 6-3 contains the default canopy resistances for SO2 as a function of land use and
stability class for summertime conditions (Shieh et al., 1979). The roughness length associated
with each land use category is also presented. Based upon its high solubility and reactivity, rc
for HNO3 is assumed to be zero. The default canopy resistance for NQX is 1500 s/m. Uptake
of the SO4" and NO3" aerosols by plant stomata is less relevant; therefore, total resistance for
SO4" and NO3" is determined by ra and r, (i.e., rc = 0).
With knowledge of the concentration and the deposition velocity, the pollutant flux is
determined. MESOPUFF II has two options for treating the removal of pollutant from the puff.
The first option is the commonly used source depletion approximation. This method assumes
that material deposited is removed from the full depth of the puff. The change in mass is:
s *
Q(t + 1) - Q(t) exp —£- [ g(s'} ds1 (6-34)
A.c J
where, • . •
Q(t), Q(t+1) is the mass (g) of the pollutant in the puff at the beginning and end of the
time step,
s, s + As is the position of the puff at the beginning and. end of the time step, and
g(s) is the vertical term of the Gaussian puff equation as given by Equation 6-2. For a
puff uniformly mixed in the vertical, g(s) = 1/Zj. .
6-15
-------
Table 6-3
Summertime SO2 Canopy Resistances (s/m) as a Function of
Land Use Type and Stability Class
Category
1
2
3
4
5
6
7
8
9
V
10
11
12
Land Use Type
cropland and pasture
cropland, woodland, and grazing land
irrigated crops
grazed forest and woodland
ungrazed forest and woodland
subhumid grassland and semi-arid grazing land
open woodland grazed
desert shrubland
swamp
marshland
metropolitan city
lake or ocean
(m)
0.20
0.30
0.05
0.90
1.00
0.10
0.20
030
0.20
0.50
1.00
10U
AAC
100,
100.
100.
100.
100.
100.
100.
200.
50.
75.
1000.
0. .
D
300.
300.
300.
300.
300.
300.
300.
500.
75.
300.
1000.
0.
E
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
100.
1000.
1000.
0. „
F
0.
0.
0.
0.
0.
0.
0.
1000.
0.
0.
0.
0.
Source: Shieh, Wesely, and Hicks (1979).
6-16
-------
The source depletion model effectively enhances the rate of vertical diffusion of the
pollutant because mass removed at the surface is immediately replaced with material from
above. However, in the atmosphere, the rate of deposition can be limited (mostly during stable
conditions) by the rate of pollutant mass transfer through the boundary layer to the surface
layer. This overall boundary layer resistance is not included in the aerodynamic resistance. To
account for the effect of boundary layer mixing, MESOPUFF n has the option to treat puffs
that have become vertically well-mixed with a 3-layer model (see Figure 6-5). The surface layer
is a shallow layer (10 m) next to the ground that rapidly adjusts to changes in surface conditions.
Pollutants in the middle layer are uniformly mixed to the top of the current boundary layer.
The upper layer consists of pollutant material above the boundary layer dispersed upward during
previous turbulent activity. The pollutant flux into the surface layer is:
*** ' * (C- - <^/ft - *,) - v, C, (6-35)
where,
K is an overall boundary layer eddy diffusivity (m2/s),
Cm is the concentration in the middle layer, and
C, is the concentration at the top of the surface layer.
During stable conditions, K is given by Brest and Wyngaard (1978) as:
K = *, «. z, (6-36)
and during neutral or unstable conditions K is
%
K = Maximum /Jfcj u, zp fcj w, z,} (6-37)
The constants kt and k2 have default values of 0.01 and 0.1, respectively.
The term vd C, can be written as vd' Cm, where vd' is an effective deposition velocity
taking into account boundary layer mass transfer.
vj = ^ - (6-38)
* + MZ,-z,) .
In the 3-layer model, only material in the surface layer is available for deposition at the
surface. The effective deposition velocity, vd' is used in Equation 6-34 to evaluate the change in
pollutant mass in the puff due to dry deposition.
6-17
-------
'max
Nonturbulent Atmosphere
z; Mixed Layer
t
a Surface Layer
Figure 6-5. Optional three layer system used in MESOPUFF II.
6-18
-------
6.1.6 Chemical Transformations
The chemical processes modeled in MESOPUFF n are the conversion of sulfur dioxide
(SOj) to sulfate (SO4') and the conversion of nitrogen oxide (NO, = NO + NO2) to nitrate
aerosol (NO3"). The formation of nitrate aerosol involves both photochemical reactions and
chemical equilibrium considerations. NO, is oxidized largely photochemically to gaseous nitric
acid (HNO3) and organic nitrate (RONO2) such as peroxyacetylnitrate (PAN). In the presence
of ammonia, a chemical equilibrium is established between gaseous HNO3, gaseous NH3, and
the ammonium nitrate aerosol:
HN03 (g) + NH3 (g) - NHJfO, (aq) (6-39)
The equilibrium constant for this reaction is strongly dependent on relative humidity and
temperature (Stelson and Seinfeld, 1982). The organic nitrates formed from NO, are not
believed to form fine participate aerosols.
Transformation rate expressions were developed for use in MESOPUFF II by statistically
analyzing hourly transformation rates produced by a photochemical box model. The model
employed the RHC/NO,/SO, chemical mechanisms of Atkinson et al. (1982). Plume SO,/NOX
dispersing into background air containing ozone and reactive hydrocarbons (RHC) was
simulated over a wide range of conditions representing different solar radiation intensities,
temperatures, dispersion conditions, background ozone and RHC levels, plume NO,
concentrations and emissions times. The following equations represent curve fits to the hourly
(daytime), conversion rates predicted by the photochemical model:
36 K0-53 [03]a71 5'1-29 + 3 x ID'8 RH4 (6-40)
Jtj = 1206 [Cy1-3 5'W1 [NO,]-*-" (6-41)
t, = 1261 [03]IM S~IM pVOJ-°-12 (6-42)
where,
k, is the SO2 to SO4" transformation rate (percent per hour),
k2 is the NO, to HNO3 + PAN transformation rate (percent per hour),
k3 is the NO, to HNO3 (only) transformation rate (percent per hour),
R is the total solar radiation (Kw/m2),
[O3] is the background ozone concentration (ppm),
S is a stability index ranging from 2 to 6 (PGT class A and B=2, C=3, D=4, E=5,
F=6),
6-19
-------
RH is the relative humidity (percent), and
[NOJ is the NOX concentration (ppm).
An empirically determined aqueous phase SO2 conversion term (3 x 10~* RH4) is included in the
SO2 to SO4" transformation equation. The aqueous phase term has a minimum value of 0.2%
per hour. Constant transformation rates of 0.2 and 2% per hour for SO2 and NOP respectively,
are used as default values for nighttime periods.
The model provides three options for the specification of background ozone
concentrations: (1) hourly ozone data from a network of stations may be input; (2) a single
background ozone concentration may be specified, or, (3) the default value of 80 ppb may be
used. The background ammonia concentration required for the HNO3/NH3/NH4NO3
equilibrium calculation may be specified by the user or the default value of 10 ppb is used.
The parameterized NOX oxidation rate depends on the NOX concentration. In situations
where puffs overlap, it would be incorrect to calculate NOX oxidation rate based solely on the
puff NOX concentration. Similarly, the nitrate equilibrium should not assume that all the
ambient NH3 is available for one puff. Therefore, the total (local average) SO4", NO,, TNO3
(total nitrate = HNO3 + NO3") concentrations due to all puffs and the available ammonia (total
ammonia minus sulfate) are computed. First, the average puff concentration, C, within ± 1.5 oy
and ± 1.5 oz of the puff center is calculated for each puff. For an elevated Gaussian
puff, C (assuming no ground reflection) is:
v
7, 0.38 Q
S
-------
hourly transformation rates for kx, k2, and k3 (three arrays of 24 values each), or the following
alternative rate expressions for the SO2 oxidation rate.
Gillani et at (1981):
*j = 0.03 R h [O3] (6-45)
where h is the plume depth (m) taken as the minimum of 3 or or Zj, R is solar radiation
(kw/m2).
Henry and Hidy (1982) - (based on St. Louis data):
*! - 34. [03] . (6-46)
Henry and Hidy (1981) - (based on Los Angeles data):
^ = 85. [03] (6-47)
6.1.7 Wet Removal
Numerous studies (e.g., Slinn et aL 1978, Scott 1978, 1981) have shown that precipitation
scavenging in an efficient removal mechanism, especially for paniculate pollutants such as SO4".
During precipitation events, wet removal can easily dominate dry deposition in pollutant
removal. MESOPUFF II uses the following simple parameterization of wet removal processes:
Q(t + 1) = Q(t) exp[ -A Af] (6-48)
where,
Q(t), Q(t + 1) is the mass (g) of pollutant in the puff at the beginning and end of the
time step,
A is the scavenging ratio (s"1), and
At is the time step (s).
Maul (1980) expresses A as:
A = A, */*, (6-49)
6-21
-------
where,
R is the rainfall rate (mm/hr),
RI is a reference rainfall rate of 1 mm/hr, and
X is a scavenging coefficient (s"1).
Table 6-4 contains the default values of the scavenging coefficient used in MESOPUFF II. The
rainfall rate used in Equation 6-49 is that observed at the closest station to the puff center.
A precipitation code determined from the surface (CD 144) observations of precipitation
type/intensity is used to determine if the value of X for liquid or frozen precipitation is most
appropriate. Precipitation observations are converted to precipitation codes as shown in
Table 6-5. The liquid precipitation values of X are used for precipitation codes 1-18; the frozen
precipitation values are used for codes 19-45.
6.1.8 Puff Sampling Function
MESOPUFF n simulates a continuous plume with a series of discrete puffs. The total
concentration is calculated by summing the contributions of each nearby puff (within 3 oy of the
receptor). The contribution of a single puff integrated over the distance of puff travel, As,
during the sampling step is:
* * t
~Ks J
exp
; 2*
2
-------
Table 6-4
Default Values of the Scavenging Coefficient, 1 (s'1)
Pollutant Liquid Precipitation Frozen Precipitation
SO2 3 x 10s 0.0
SO/ 1 x 10-4 3 x Iff5
NO, 0.0 0.0
HNO3 6 x Iff5 0.0
NO3- IxlO"4 SxHT*
6-23
-------
Table 6-5
Conversion of Reported Precipitation Type/Intensity to Precipitation Codes
Liquid Precipitation
Precipitation Type
Code
1
2
3
4
. 5
6
7
8
9
10
11
12
13
14
15
16.
17
18
* Inter
Rain
Rain
Rain
Rain Showers
Rain Showers
Rain Showers
Freezing Rain
Freezing Rain
Freezing Rain
Not Used
Not Used
Not Used
Drizzle
Drizzle
Drizzle
Freezing
Drizzle
Freezing
Drizzle
Freezing
Drizzle
isity not currently repor
Intensity
Light
Moderate
Heavy
Light
Moderate
Heavy
Light
Moderate
Heavy
Light
Moderate
Heavy
Light
Moderate
Heavy
ted for ice cryst;
Frozen Precipitation
Precipitation Type
Code
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
als, hail and small
Snow
Snow
Snow
Snow Pellets
Snow Pellets
Snow Pellets
Not Used
Ice Crystals
Not Used
Snow Showers
Snow Showers
Snow Showers
Not Used
Not Used
Not Used
Snow Grains
Snow Grains
Snow Grains
Ice Pellets
Ice Pellets
Ice Pellets
• Not Used
Hail
Not Used
Not Used
Small Hail
Not Used
hail.
Intensity
Light
Moderate
Heavy
Light
Moderate
Heavy
»
Light
Moderate
Heavy
Light
Moderate
Heavy
Light
Moderate
Heavy
*
- '
-
»
-
6-24
-------
a =(Ax2 + Ay'J/oJ (6-54)
, - xr) + Ay (y, - yr)]/ o2. (6-55)
where,
Qo'Qo & lhe pollutant mass (g) in the puff at the beginning and end of the time step.
(x,, yt) are the receptor coordinates (m),
fo, yt) are the puff coordinates (m) at the beginning of the sampling step, and
Ax,Ay are the incremental x and y distances travelled by the puff during the sampling
step.
The exponential variation of Q due to removal and chemical transformation processes is
expressed with a linear function over the sampling interval. The puff trajectory segment is
assumed to be a straight line. More details of the sampling function derivation are contained in
Scire et al. (1984).
6.1.9 Urban Plumes
v
Emissions of SO2 and NOX and their transformation to paniculate sulfate and nitrate within
and downwind of urban regions can significantly influence regional scale air quality.
MESOPUFF II offers the capability to model the large number of stationary and mobile sources
within an urban area as one or more area sources. It is assumed that the emission distribution
can be adequately represented by a Gaussian (puff-type) distribution. User-specified initial size
parameters (Oy, oz) and source height are required. The urban emissions may be partitioned
according to effective source height and modeled as a number of area sources. Section 6.2
contains more information on the data requirements of area sources.
6.2 MESOPUFF II User's Instructions
MESOPUFF II is a variable-trajectory, puff superposition model designed to account for
the spatial and temporal variations in transport, diffusion, chemical transformations, and
removal mechanisms encountered on regional scales. Continuous plumes are modeled as a
series of discrete puffs. Each puff is transported independently of other puffs, and is subject to
growth by diffusion, chemical transformation, wet removal by precipitation, and dry deposition at
6-25
-------
the surface. MESOPUFF H will model up to five pollutants (SO2, SO4", NO,, HNO3, NO3')
simultaneously.
One of the modifications made to the current version of MESOPUFF II is the use of a
memory management system which makes it much easier to resize the major arrays within the
code to accommodate a particular system's memory limitations. Arrays dealing with the number
of puffs, grid cells, discrete receptors, point and area sources, surface and upper air
meteorological stations, and ozone monitoring stations are dimensional throughout the code
with parameter statements. The declarations of the values of the parameters are stored in a file
called TARAMS.PUP. This file is automatically inserted into any MESOPUFF II subroutine
or function requiring one of its parameters via FORTRAN 'include' statements. Then, a global
redimensioning of all the model arrays dealing with the maximum number of puffs, for example,
can be accomplished simply by modifying the PARAMS.PUF file and recompiling the program.
A sample parameter file is shown in Table 6-6. The parameter file sets the array
dimensions, which are the maximum values of the variables. The actual values for a particular
run are set within the user input control file (PUFF.INP), and can be less than the maximum
value set in the parameter file.
Table 6-7 summarizes the input and output files used by MESOPUFF IL Note that the
logical units for the input control file and output list file are declared in the parameter file
(PARAMS.PUF). The other unit number variables are declared in BLOCK DATA.
The* chemical transformation module (see Section 6.1.6) contains an option to use hourly
ozone monitoring data to help determine transformation rates. If this option is used, data for
up to "MXOZ" ozone stations is read from the OZONE.DAT file. Table 6-8 shows the ozone
data input format.
MESOPUFF n has been modified to allow the program to be executed in a series of runs.
This continuation or restart option is convenient in permitting large simulations to be broken up
into a series of manageable smaller runs. At the end of the first MESOPUFF II run, all the
variables needed to continue the run are dumped to a file called RESTART.DAT. The user
must rename this file to PREVIOUS.DAT. The second run then reads this file and continues
the simulation. The second run may produce a RESTART.DAT file for a subsequent
continuation run as well. The use of the restart option is controlled by the input variables
ICONT (Input Group 2) and IRES (Input Group 6).
6-26
-------
Table 6-6
Sample Parameter File (PARAMS.PUF) for MESOPUFF II
c . .—
c — PARAMETER statements MESOPUFF II
c - - • -
c
c — Specify parameters
parameter(mxpuff=10000)
parameter(nxnx*100,mxny* 100)
parameter(«xrec=1000)
parameter(nxpts*1000,mxarss200)
parameter (mxss»100,mxus=20)
parameter(mxoz*50)
parameter (io5*5, ie>6=6)
c
c — Computed parameters
parameter(mxcetl*mxnx*mxny)
parameter (maxpf5*5*mxpuff,maxpf6=6*mxpuff)
c
C — GENERAL PARAMETER definitions:
c MXPUFF - Maxinun nunber active puffs on the grid
c MXNX • Maximum number of grid cells in the X direction
c MXNT • Maximum number of grid cells in the Y direction
c MXREC - Maximum number of non-gridded (discrete) receptors
c MXPTS - Maximum nunber of point sources
c MXARS - Maximum number of area sources
c MXSS - Maximum nunber of surface meteorological stations
c MXUS - Maximum number of upper air stations
c MXOZ - Maximum number of ozone stations
c
c — FORTRAN I/O unit numbers:
c 105 - Control file (PUFF.IMP) - input - formatted
c 106 - List file (PUFF.LST) - output - formatted
c
6-27
-------
Table 6-7
MESOPUFF II Input and Output Files
Unit*
105
IN8
INOZ10
IO6
IOUT20
IOUT22
*
IOUT24
Filft Name Type
PUFFJNP INPUT
PACOUTDAT INPUT
PREVIOUS.DAT INPUT
OZONE.DAT INPUT
PUFFJLST
OUTPUT
PUFFOUTDAT OUTPUT
FLUXWET.DAT OUTPUT
FLUXDRY.DAT OUTPUT
RESTARTDAT OUTPUT
Format
FORMATTED
UNFORMATTED
UNFORMATTED
FORMATTED
FORMATTED
UNFORMATTED
UNFORMATTED
UNFORMATTED
UNFORMATTED
Description
MESOPUFF H control file.
Meteorological data file
produced by MESOPAC II.
A "restart" file produced by a
previous run of MESOPUFF
II, which allows a run to be
continued. (Optional-Read
only if ICONT = 1).
File containing hourly ozone
concentrations. (Optional--
Read only if MO3=1).
List file (line printer output
file).
Output file containing
gridded and non-gridded
concentrations.
Output file containing
gridded and non-gridded wet
fluxes.
Output file containing
gridded and non-gridded dry
fluxes.
• A "restart" file produced by
the current MESOPUFF II
run to allow the run to be
continued in a future
MESOPUFF II run.
(Created only if IRES=1).
IO5 and IO6 are specified in the parameter file (PARAMS.PUF). The other unit number variables
are declared in BLOCK DATA.
6-28
-------
Figure 6-6 shows the required setup of the card-image inputs for MESOPUFF II. A
complete description of all the run control variables used in MESOPUFF II are contained in
Table 6-9. Section 6.3 contains a set of sample test case input and output.
The MESOPUFF II output concentration file and wet/dry flux files each consist of two
header records followed by up to two records per hour containing concentration or flux data.
The structure of the wet and dry flux files is identical to the concentration file. Table 6-10
contains a listing of the variables in each record of the output concentration and wet/dry flux
files. The two header records contain a number of technical option control parameters and
other run control inputs. One or two records per hour follow the header records. Two records
are written each hour if concentrations or fluxes are predicted at both gridded and non-gridded
receptors. If only one type of receptor is used, only one record per hour is written. The units
of the flux fields stored in the output files are g/m2/s. The concentrations are expressed in g/m3
in the output file.
6.3 Sample MESOPUFF U Inputs and Outputs
Table 6-11 contains a control file for a MESOPUFF II run. This is a 24-hour run which
uses meteorological data from a 20 x 20 grid. Concentrations of SO2 are predicted on a 14 x 14
sampling grid and at 14 non-gridded receptors. The output list file generated by MESOPUFF II
using the inputs from Table 6-11 is presented in Attachment 6-A.
6-29
-------
Table 6-8
Format of Optional Hourly Ozone Input Data
Columns
Type
Variable
Description
1-8
(412)
9-68
(50F4.0)
INTEGER
IDATE (4)
Year, Month, Day, Hour
REAL ARRAY OZPPB (MXOZ) Ozone concentrations (ppb) at up to
MXOZ stations. A '999.' signifies
missing data.
MXOZ is a parameter defined in "params.puf.
6-30
-------
(11|.0tn»f0r»0ip»»«in«»
Connwn
Included only .1 NREC > 0
Included only if NAHtAS > 0
Included only if NPTS > 0
_____ Included only it IOPTS (61 • 1
Included omv >' IOITS (SI > 1
Included only i< (OPTS (4)» 1
,_ Included onty i« IQfTS 131' 1
Inaudrt ««
-------
Table 6-9
MESOPUFF H INPUTS
INPUT GROUP 1 - TITLE
Columns Type
1-80
CHARACTER
*4 ARRAY
Format: (20A4)
Variable
TITLE (20)
Description
80-character title
INPUT GROUP 2 . GENERAL
Columns Type
1-5 INTEGER
6-10 INTEGER
11-15 INTEGER
16-20 INTEGER
21-25 INTEGER
26-30
31-35
36-40
RUN INFORMATION Format: (915)
Variable Description
NSYR
NSDAY
NSHR
NADVTS
NPTS
INTEGER
INTEGER
INTEGER
Two-digit year of run.
Starting Julian day.
Starting hour (00-23).
Number of hours in run.
41-45
INTEGER
Number of point sources (NPTS * MXPTS as
defined in "params.puf).
NAREAS Number of area sources (NAREAS <; MXARS as
defined in "params.puf).
NREC Number of non-gridded receptors
(NREC * MXREC as defined in "params.puf).
NSPEC Number of chemical species to model
(NSPEC = 1^3 or 5). NSPEC = 1 for SO2;
NSPEC = 2 for SO* SO/, NSPEC = 3 for SO2,
SO/, NOW NSPEC = 5 for SO* SO/, NO,,
HN03, N03.
ICONT Continuation run? (0 = no, 1 = yes).
6-32
-------
Table 6-9
MESOPUFF II INPUTS - Continued
Columns
1-5
6-10
11-15
16-20
Type
INTEGER
INTEGER
INTEGER
LOGICAL
Variable
IAVG
NPUF
NSAMAD
LVSAMP
INPUT GROUP 3 - COMPUTATIONAL VARIABLES Format: (315, L5, F5.L, L5, F5.0)
Description
Concentration averaging time (hours).
Puff release rate (puffs/hour) for each source.
Minimum sampling rate (samples/hour).
Control variable for variable sampling rate option. If
LVSAMP = T, the sampling rate, NSAM, will be
increased at higher wind speeds according to the
following equation: NSAM = maximum (NSAMAD,
WS/WSAMP + 1) where WS is the wind speed
(m/s), and WSAMP is a user input reference wind
speed (see below). If LVSAMP = F, the sampling
rate is not varied with wind speed.
Reference wind speed used in variable sampling rate
option. Used only if LVSAMP = T. See description
of LVSAMP.
Control variable for concentration computations at
sampling grid points. If LSGRID = T, concentrations
are calculated at sampling grid points. (Parameters
defining sampling grid are contained in Input Group
4). If LSGRID = F, concentrations are not calculated
at sampling grid points. This option allows significant
savings of computation time if only concentrations at
non-gridded receptors are of interest.
21-25
26-30
REAL
LOGICAL
WSAMP
LSGRID
31-35
REAL
AGEMIN Minimum age of puffs to be sampled (in seconds).
Puffs released at a time AGEMIN are not sampled.
This option is intended to eliminate near-field
concentration spikes at receptors located very close to
sources. In general, AGEMIN should not be larger
than 3600 s.
6-33
-------
Table 6-9
MESOPUFF n INPUTS - Continued
INPUT GROUP 4 - GRID INFORMATION
Type Variable
INTEGER IASTAR
1-5
6-10
11-15
INTEGER IASTOP
INTEGER JASTAR
16-20
21-25
26-30
31-35
36-40
INTEGER JASTOP
INTEGER ISASTR
INTEGER ISASTP
INTEGER JSASTR
INTEGER JSASTP
(See Section 6.L2 for description of the
meteorological, computational, and sampling grids).
Format (915)
Description
Element number of the meteorological grid defining
the beginning of the computation grid in the
X-direction. (1 £ IASTAR & IMAX, where IMAX is
the meteorological grid size in the X-direction defined
in the MESOPAC n run).
Element number of the meteorological grid defining
the end of the computation grid in the X-direction.
(IASTAR * IASTOP & IMAX).
Element number of the meteorological grid defining
the beginning of the computational grid in the
Y-direction. (1 * JASTAR * JMAX, where JMAX is
the meteorological grid size in the Y-direction defined
in the MESOPAC II run).
Element number of the meteorological grid defining
the end of the computation grid in the Y-direction.
(JASTAR & JASTOP * JMAX).
Element number of the meteorological grid defining
the beginning of the sampling grid in the X-direction.
(IASTAR * ISASTR & IASTOP).
Element number of the meteorological grid defining
the end of the sampling grid in the X-direction.
(ISASTR * ISASTP s IASTOP).
Element number of the meteorological grid defining
the beginning of the sampling grid in the Y-direction.
(JASTAR <: JSASTR * JASTOP).
Element number of the meteorological grid defining
the end of the sampling grid in the Y-direction.
(JSASTR & JSASTP a JASTOP).
41-45
INTEGER MESHDN Sampling grid spacing factor. Sampling grid spacing is
DGRID/MESHDN, where DGRID is the
meteorological grid spacing (m) defined in the
MESOPAC II run. NOTE: The sampling grid must
be defined as not to exceed a maximum size of
MXNXbyMXNY.
6-34
-------
Table 6-9
MESOPUFF H INPUTS - Continued
INPUT GROUP S - TECHNICAL OPTIONS Format: (5L5)
Columns Type Variable Description
1-5
LOGICAL
LGAUSS
6-10
11-15
16-20
21-25
LOGICAL
LOGICAL
LCHEM
LDRY
LOGICAL LWET
LOGICAL L3VL
Vertical concentration distribution option. If
LGAUSS = T, a Gaussian vertical concentration
distribution with reflection terms (Equation 6-2) is
assumed for each puff. If LGAUSS = F, fumigated
puffs immediately assume a uniform vertical
concentration distribution.
Chemical transformation option. If LCHEM = T,
chemical transformation processes are modeled. If
LCHEM = F, chemical processes are not modeled.
Dry deposition option. If LDRY = T, dry deposition
is modeled. If LDRY = F, dry deposition is not
modeled.
Wet removal option. If LWET = T, wet removal is
modeled. If LWET = F, wet removal is not modeled.
Three vertical layer option. L3VL = T, the 3-vertical
layer model described in Section 6.1.5 is used for puffs
that have become uniformly mixed in the vertical. If
L3VL = F, the single layer model is assumed.
NOTE: L3VL may be T with LGAUSS = T or F;
however, if LGAUSS = T the 3-layer treatment does
not begin until the puffs have become uniformly mixed
through the boundary layer.
6-35
-------
Table 6-9
MESOPUFF II INPUTS - Continued
INPUT GROUP 6 - OUTPUT OPTIONS
Columns Type Variable
1-5 LOGICAL LSAVE
6-10 LOGICAL LPRINT
11-15 LOGICAL IPRINF
16-20 LOGICAL LDB
21-25 INTEGER NN1
26-30 INTEGER NN2
31-35 LOGICAL LWETG
Format (2L5,15, L5, 215, 6L5, 215)
Description
Disk/tape output control variable. If
LSAVE = T, concentrations are written to
disk/tape file. If LSAVE * F, concentration
output is not stored on tape/disk.
Printer output control variable. If
LPRINT = T, concentrations are printed every
"IPRINP hour. If LPRINT = F, concentrations
are not printed.
Printing interval (in hours) of concentrations. Used
only if LPRINT = T. IPRINF must be equal to or
an even multiple of IAVG.
Control variable for printing of computed puff data
(puff height, Oy, oz, location, transformation rate,
deposition velocity, wet removal rate, etc.). If LDB
= T, these data will be printed for time steps NN1
to NN2. If LDB = F, this information will not be
printed. This option will produce a large quantity
of printout, and, for most applications should be F.
Time step at which printing of intermediate
computed puff data begins. Used only if LDB =
T, (1 i NN1 s NADVTS).
Time step at which printing of intermediate
computed puff data ends. Used only if
LDB = T. (NN1 s NN2 s NADVTS.)
Wet flux control variable for gridded receptors. If
LWETG = T, wet fluxes at the gridded receptors
are internally saved for printing or storage on disk
or tape. If LWETG = F, the wet fluxes at the
gridded receptors are not saved. (LWETG should
be T only if LWET and LSGRID are also T.)
6-36
-------
Table 6-7
MESOPUFF H INPUTS - Continued
INPUT GROUP 6 - OUTPUT OPTIONS - continued
Columns Type
35-60 LOGICAL
Variable
LWETNG
41-45 LOGICAL
LDRYG
46-50 LOGICAL
LDRYNG
51-55 LOGICAL
LSAVEF
56-60 LOGICAL
LPRFLX
61-65 INTEGER
66-70 INTEGER
IRES
IINT
Description
Wet flux control variable for non-gridded receptors.
If LWETNG = T, wet fluxes at the non-gridded
receptors are internally saved for printing or
storage on disk or tape. If LWETNG = F, the wet
fluxes at the non-gridded receptors are not saved.
(LWETNG should be T only if LWET is T and
NREC > 0).
Dry flux control variable for gridded receptors. If
LDRYG = T, dry fluxes at the gridded receptors
are internally saved for printing or storage on disk
or tape. If LDRYG = F, the dry fluxes at the
gridded receptors are not saved. (LDRYG should
be T only if LDRY and LSGRID are also T.)
Dry flux control variable for non-gridded receptors. If
LDRYNG = T, dry fluxes at the non-gridded receptors
are internally saved for printing or storage on disk or
tape. If LDRYNG = F, the dry fluxes at the non-
gridded receptors are not saved. (LDRYNG should be
T only if LDRY is T and NREC > 0).
Disk/tape output control variable for fluxes. If
LSAVEF = T, the wet and dry fluxes specified by
LWETG, LWETNG, LDRYG, and LDRYNG are
written to disk or tape. If LSAVEF = F, the fluxes are
not stored on disk or tape.
Printer output control variable for fluxes. If LPRFLX
= T, the wet and dry fluxes specified by LWETG,
LWETNG, LDRYG, and LDRYNG are printed every
'IPRINF hours. If LPRFLX = F, the fluxes are not
printed.
Save results for restart option (1 = save, 0 = do not
save).
Frequency (in hours) of restart (save results every
"IINT hours). If IINT is left blank, IINT defaults to
NADVTS, which will save the restart file only at the
end of the run. Used only if IRES = 1.
6-37
-------
Table 6-9
MESOPUFF II INPUTS - Continued
INPUT GROUP 7 - DEFAULT OVERRIDE OPTIONS
Columns Type Variable
1 INTEGER ARRAY IOPTS(1)
ELEMENT
INTEGER ARRAY
ELEMENT
IOPTS(2)
INTEGER ARRAY
ELEMENT
IOPTS(3)
INTEGER ARRAY
ELEMENT
IOPTS(4)
INTEGER ARRAY
ELEMENT
INTEGER ARRAY
ELEMENT
IOPTS(5)
IOPTS(6)
Format: (611)
Description
Control variable for input of dispersion
parameters. If IOPTS(1) - 1, the user must
input values of the following parameters
related to dispersion; a,, by, a,, ba a^ T^
JSUP (see Section 6.1.1 for definitions). If
IOPTS(1) * 0, the default values for the
parameters are used.
Control variable for input of vertical
diffusivity constants. Used only if
L3VL = T. If IOPTS(2) = 1, the user must
input values for the constants k,, k2 of
Equations (6-36)-(6-37). If
IOPTS(2) = 0, the default values of
kj - 0.01 and k2 = 0.10 are used.
Control variable for input of SO2 canopy
resistances. Used only if LDRY = T. If
IOPTS(3) = 1, the user must input SO2
canopy resistances (rc) for the stability/land
use categories in Table
6-3. If IOPTS(3) = 0, the default values
contained in the table are used.
Control variable for input of other dry
deposition parameters. Used only if LDRY
= T. If IOPTS(4) = 1, the user must input
values for rc (NO,), r, (gases), and r,
(particles) (see Input Group 11). If OPTS(4)
= 0, the default values of these parameters
are used.
Control variable for inputs of wet removal
parameters. Used only if LWET = T. If
IOPTS(5) = 1, the user must input values for
X (see Table 6-4). If IOPTS(5) = 0, the
default values contained in the table are used.
Control variable for input of chemical
transformation method flags and other
chemical variables. See Input Group 13 for a
complete description of the inputs. If
IOPTS(6) = 1, the user must input values of
these parameters. If IOPTS(6) = 0, the
default values are used.
6-38
-------
Table 6-9
MESOPUFF II INPUTS • Continued
INPUT GROUP 8 - DISPERSION PARAMETERS
Type Variable Default
REAL ARRAY AY(6) *
REAL ARRAY BY(6) *
REAL ARRAY AZ(6) *
REAL ARRAY BZ(6) *
REAL ARRAY AZT(6) *
1-60
1-60
1-60
1-60
1-60
1-10
11-20
REAL
INTEGER
TMDEP 10,000
JSUP
(Optional - included only if IOPTS(1) = 1).
Six input records required.
Format (5(6F10.5/), F10.0,110)
Description
Array of horizontal dispersion coefficients,
a^ in Equation 6-4 for stability classes A-F,
respectively.
Array of horizontal dispersion coefficients,
by, in Equation 6-4 for stability classes A-F,
respectively.
Array of vertical dispersion coefficients, a^
in Equation 6-5 for stability classes A-F,
respectively.
Array of vertical dispersion coefficients, bn
in Equation 6-5 for stability classes A-F,
respectively.
Array of time-dependent vertical dispersion
coefficients, a^ in Equation 6-9, for stability
classes A-F, respectively.
Distance (in meters) beyond which the time
dependent Equations (6-8) - (6-9) are used
to determine or or
Stability class used to determine growth
rates for puffs above the boundary layer.
JSUP = 5 for E stability rates, JSUP = 6
for F stability rates, JSUP = 0 for boundary.
layer stability rates.
* See Tables 6-1 and 6-2 for default values.
6-39
-------
Table 6-9
MESOPUFF H INPUTS - Continued
INPUT GROUP 9 - VERTICAL DIFFUSWITY CONSTANTS
Columns
1-10
Type
REAL
Variable
CON1K
Default
0.01
(Optional - included only if
IOPTS(2) = 1) Format: (2F103)
Description
Vertical disp
ersion constant, k,, for
stable conditions (Equation 6-36).
11-20 REAL CON2K 0.10 Vertical dispersion constant, It* for
convective conditions (Equation 6-37).
INPUT GROUP 10 - SO2 CANOPY RESISTANCES (Optional - included only if IOPTS(3) = 1).
Twelve input records are required.
Format: (4F10.2)
Columns Type Variable Default Description
1-40 REAL ARRAY RCSO2(12,4) ** SO2 canopy resistances, rCT (SOJ, in
s/m.* Four values on each record for
stability classes (1) A-C, (2) D, (3) E,
and (4) F. Twelve records are
required, for land use categories 1-12.
Entered in order of increasing
numerical land use category.
* Note: Resistance units are s/m, not s/cm.
** See Table 6-3 for default values.
6-40
-------
Table 6-9
MESOPUFF H INPUTS - Continued
INPUT
ffolymti
1-10
11-20
21-30
31-40
41-50
51-60
INPUT
GROUP 11 - OTHER DRY DEPOSITION CONSTANTS (Optional - included only if
IOPTS(4) - 1).
Format: (6F102)
s Iyj2£
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL
REAL
Variable
RCNOX(l)
RCNOX(2)
RCNOX(3)
RCNOX(4)
RSGCON
RSPART
Default Description
130.
500.
1500.
1500.
2.6
1000.
GROUP 12 - WET REMOVAL PARAMETERS
NO, canopy resistance (s/m)* for
stability classes A-C.
NO, canopy resistance (s/m) for stability
class D.
NO, canopy resistance (s/m) for stability
class E.
NO, canopy resistance (s/m) for stability
class F.
Surface resistance constant for gases
(SO* NO,, HN03).
Surface resistance (s/m) for participates
SO/, NO3 .
(Optional - included only if IOPTS(5) = 1).
Column^ Type Variable
1-50 REAL ARRAY WA(1-5,1)
ELEMENTS
1-50 REAL ARRAY WA(l-5,2)
ELEMENTS
Input is on two records.
Format: (5F10.2/5F10.2)
Default Description
Values of A. Equation 6-49 for liquid
precipitation for pollutants 1-5,
respectively, (SO^ SO/, NO,, HNO3,
NO,').
Values of A. in Equation 6-49 for frozen
precipitation for pollutants 1-5,
respectively.
* Note: Resistance units are s/m, not s/cm.
** See Table 6-4 for default values.
6-41
-------
Table 6-9
MESOPUFF H INPUTS - Continued
INPUT GROUP 13 - CHEMICAL PARAMETERS
Columns Typq
1-5 INTEGER
Variable
MSOX
6-10 INTEGER
11-15 INTEGER
16-20 REAL
21-25 REAL
*
26-30 REAL ARRAY
ELEMENT
31-35 REAL ARRAY
ELEMENT
36-40 REAL ARRAY
ELEMENT
MNOX
M03
CO3B
(Optional - included only if
IOPTS(6) = 1)
Format (315, 2F5.L. 3F5.2)
Default Description
80
CTNH3
RNITE(l)
RNITE(2)
RNITE(3)
10
0.2
2.0
2.0
SO, transformation method flag.
0 * no transformation, 1 - user
specified, 2 = ERT theoretical equation,
3 = Gillani equation, 4 = Henry equation
for SL Louis, 5 = Henry equation for Los
Angeles (see Section 6.1.6).
NO, transformation method flag.
0 = no transformation, 1 = user
specified, 2 = ERT theoretical equation
(see Section 6.1.6).
O3 hourly input option. If MO3 = 1,
hourly ozone values are required at
"NOZONE" stations. IF MO3 = 0, a
default ozone value (CO3B) is assumed.
Default background ozone concentration
(ppb). CO3B is used if MO3 = 0 or if
MO3 = 1 and hourly values are missing.
Background ammonia concentration
(ppb).
Nighttime SO2 loss rate (%/hour).
Nighttime NOX loss rate (%/hour).
Nighttime HNO3 formation rate
(%/hour).
6-42
-------
Table 6-9
MESOPUFF H INPUTS - Continued
INPUT GROUP 13 - Continued
The following two recorcds are included only if MSOX = 1.
IXBC
REAL ARRAY
ELEMENT
Variable
RUSER (1-16,1)
Descriotion
1-80
(16F5.2)
1-40
(8F5.2)
The following four records are included only if MNOX = 1.
User-supplied hourly SO2 loss rates (%/hour)
for hours 1-16.
REAL ARRAY
ELEMENT
RUSER (17-24,1)
User-supplied hourly SO2 loss rates (%/hour)
for hours 17-24.
Columns Type
1-80
(16F5.0)
1-40
(8F5.0)
1-80
(16F5.0)
1-40
(16F5.0)
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
Variable
RUSER (1-16,2)
RUSER (17-24,2)
RUSER (1-163)
RUSER (17-243)
The following record is included only if MO3 = 1.
Columns Type Variable
1-5 INTEGER NOZONE
(15)
Description
User-supplied hourly NOX loss rates (%/hour)
for hours 1-16.
User-supplied hourly NOX loss rates (%/hour)
for hours 17-24.
User-supplied hourly total NO3 formation rates
(%/hour) for hours 1-16.
User-supplied hourly total NO3" formation rates
(%/hour) for hours 17-24.
Description
Number of hourly ozone stations. NOZONE
MXOZ as defined in "params.puf*.
The following 'NOZONE' records are included only if MO3 = 1.
XO3
1-5 REAL ARRAY
(F5.2) ELEMENT
6-10 REAL ARRAY
(F5.2) ELEMENT
YO3
X-coordinate of ozone station (in
meteorological grid units).
Y-coordinate of ozone station (in
meteorological grid units).
6-43
-------
Table 6-9
MESOPUFFII INPUTS - Continued
INPUT GROUP 14 - POINT SOURCE DATA. NPTS records required- one for each point source.
Format: (2F52, F5.1, 2F5.2, F5.1, 5F10.2)
1-5
6-10
11-15
16-20
21-25
26-30
31-80
Type
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL
REAL
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
Variable Description
XSTAK X-coordinate of point source (in
meteorological grid units).
YSTAK Y-coordinate of point source (in
meteorological grid units).
HTSTAK Stack height (m).
D Stack diameter (m).
W Exit velocity (m/s).
TSTAK Stack gas temperature (°K).
EMIS(l-S) Emission rate (g/s) for pollutants 1-5
SO/, NOW HNO3, NO3'). Leave field blank
for secondary pollutants (HNO3, NO3) with
zero emission rates.
6-44
-------
Table 6-9
MESOPUFF II INPUTS - Continued
INPUT GROUP 15 - AREA SOURCE DATA. NAREAS records required - one for each area source.
Format: (2F5.1, F5.1, 2F5.0, 5F10.2)
Column.
1-5
6-10
11-15
16-20
21-25
26-75
THE
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL ARRAY
Variable
XAR
YAR
HTAR
SIGYAR
SIGZAR
EMISAR(l-5)
Description
X-coordinate of area source center (in
meteorological grid units).
Y-coordinate of area source center (in
meteorological units).
Effective height of area source (m).
Initial oy (m) of area source emissions.
Initial at (m) of area source emissions.
Emission rate (g/s) of pollutants 1-5 (SOj, SO/,
ELEMENTS
NOB HNO3, NCV). Leave field blank for
secondary pollutants with zero emission rates.
6-45
-------
Table 6-9
MESOPUFF H INPUTS - Concluded
INPUT GROUP 16 - NON-GRIDDED RECEPTOR COORDINATES.
NREC records are required
one for each non-gridded
receptor.
Format: (2F103)
Columns
1-10
11-20
1m.
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
Variable
* XREC
YREC
Description
X-coordinate of non-gridded receptor (in
meteorological grid units).
Y-coordinate of non-gridded receptor (in
meteorological grid units).
6-46
-------
Table 6-10
Variables in the MESOPUFF II Output Concentration and Flux Files
ffiADER
Reco
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
* See run
RECORD • The first
rd. Type
REAL
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
REAL
LOGICAL
INTEGER
LOGICAL
LOGICAL
control inputs for a comp
record of the
VARIABLE
VERSION
LEVEL
NSYR
NSDAY
NSHR
NADVTS
IAVG
NPUF
NSAMAD
IELMET
JELMET
DGRID
IASTAR
IASTOP
JASTAR
JASTOP
ISASTR
ISASTP
JSASTR
JSASTP
MESHDN
NPTS
NAREAS
NREC
IPRINF
LGAUSS
LCHEM
LDRY
LWET
LPRINT
L3VL
LVSAMP
WSAMP
LSGRID
NSPEC
LWETG
LWETNG
output file
Description*
MESOPUFF n version number
MESOPUFF n level number
Starting year
Starting Julian day
Starting hour (00-23)
Number of hours in run
Averaging time (hours)
Puff release rate (puffs/hour)
Minimum sampling rate (samples/hour)
Number of met. grid points (X direction)
Number of met. grid points (Y direction)
Grid spacing (m)
Start of computational grid (X direction)
End of computational grid (X direction)
Start of computational grid (Y direction)
End of computational grid (Y direction)
Start of sampling grid (X direction)
End of sampling grid (X direction)
Start of sampling grid (Y direction)
End of sampling grid (Y direction)
Sampling grid spacing factor
Number of point sources
Number of area sources
Number of non-gridded receptors
Printing interval
Vertical cone, distribution option
Chemical transformation control variable
Dry deposition control variable
Wet removal control variable
Printer output control variable for concentrations
Three.vertical layer control variable
Variable sampling rate control variable
Reference wind speed for LVSAMP option
Gridded receptor control variable
Number of chemical species modeled
Wet flux control variable for gridded receptors
Wet flux control variable for non-gridded receptors
lete description of variables.
6-47
-------
Table 6-10
Variables in the MESOPUFF II Output Concentration and Flux Files - Continued
HEADER RECORD - The first record of the output file - continued
Record Type Variable Description
1 LOGICAL LDRYG Dry flux control variable for gridded
LOGICAL
LOGICAL
LDRYNG
LPRFLX
receptors
Dry flux control variable for non-gridded
receptors
Printer output control variable for fluxes
HEADER RECORD - The second record of the output file
2** REAL ARRAY XREC(NREC)
2*« REAL ARRAY YREC(NREC)
X coordinates of non-gridded receptors
Y coordinates of non-gridded receptors
HOURLY RECORDS - Repeated for each hour (i) of run
2+i* INTEGER ARRAY IDPOL(4)
2+i*
3+i*
3+i*
REAL ARRAY
REAL ARRAY
ROUT2
INTEGER ARRAY IDPOL(4)
RINl(NREC)
Year, Julian day.ending hour, and
pollutant number.
Gridded receptor concentrations (g/m3)
or wet/dry fluxes (g/mz/s).
Year, Julian day, ending hour, and
pollutant number.
Non-gridded receptor concentrations
(g/m3) or wet/dry fluxes (g/m2/s).
* Written only if LSGRID = T
** Written only if NREC > 0.
*** (IXJX) is the sampling grid size.
6-48
-------
Table 6-11
Sample Input File to MESOPUFF II
MESOPUFF II
86 002
1 4
1 20
T T
T F
100000
0.36
0.90
0.00023
2.10
5.0
10000.
TEST CASE
0 24
2 T
1 20
T T
24 F
0.25
0.90
0.058
1.09
3.873
5
- 24 hr simulation 1/2/86
2 0
2. T
4 17
f
0 0
0.19
0.90
0.11
0.91
2.739
14 1
900.
4 17
F F
0.13
0.90
0.57
0.58
1.871
0
1
F F
0.096
0.90
0.85
0.47
1.225
F F
0.063
0.90
0.77
0.42
0.707
14.1711.0499.06 3.0514.54349.8 10.00
10.2519.7215.24 4.2156.21819.8 400.00
Class I area receptors
6.53
6.53
6.53
6.57
6.70
6.80
6.87
6.74
6.61
6.40
6.15
5.90
5.65
15.50
17.57
17.77
17.98
18.19
18.40
18.62
18.83
19.06
19.34
19.34
19.34
19.34
19.34
11.00
6-49
-------
-------
7.0 MESOFILE H POSTPROCESSOR
MESOFILE II is a postprocessing program that operates on the output concentration
and wet and diy flux files produced by MESOPUFF n. It consists of a set of modular
subroutines that the user explicitly invokes by card image inputs to construct the desired
sequence of postprocessing operations. The modular nature of MESOFILE II provides
powerful flexibility. It is possible to perform a wide variety of postprocessing operations in a
sequence specifically designed to meet the user's particular needs. These features of modularity
and flexibility, however, require a greater degree of user interface than a simple "black box1*
postprocessing program. The MESOFILE II card inputs required for the most common
applications of the program are presented as examples in Section 7.8.
The following system channels are required for MESOFILE II: Logical Unit 5 for card-
image inputs, Logical Unit 6 for line printer outputs, and Logical Unit 25 for MESOFILE n
disk output. Logical Unit 25 is a direct*access "scratch" file used to store MESOFILE n results
for subsequent analysis and/or plotting. Additional channels, defined by the user, are required
for input of MESOPUFF n concentration files (see inputs to subroutine FIND). Table 7-1
summarizes the input and output files used by MESOFILE n.
The main program of MESOFILE n reads the user's card inputs and calls the
appropriate subroutines. There are seven subroutines available to perform a variety of
postprocessing functions. Other second-level subroutines, transparent to the user, are invoked
as appropriate by the user-called subroutines. Table 7-2 contains a description of the basic form
of the card inputs to MESOFILE II, as well as a list of the subroutines and their functions that
are available to the user. Each subroutine requested by the user (with subroutine identifier
cards) is called, in order, as it appears in the inputs. There are, however, some restrictions on1
the order in which subroutines may be called. For example, the pollutant of interest must be
specified before the concentration data can be located; therefore, the subroutine identified in
Table 7-2 as belonging to calling order Group A must precede those in Group B. Likewise,
because data must be located before they can be processed, the subroutines in Group B must be
called before the subroutines in Group C. At the end of the run, subroutine DECODE is
automatically called as part of the normal termination of MESOFILE II. DECODE gives a
useful summary of all the subroutines called, the values of the input parameters, the
input/output options, and the locations (record numbers) of the MESOFILE II disk output (on
FILE25.DAT) for this MESOFILE H run.
7-1
-------
Table 7-1
MESOFILE II Input and Output Files
Unit*
5
*
Fjle_NjUBe.
FTT.F.TNP
INFTLE1.DAT
INFILE2J5AT
Type
INPUT
INPUT
Format
FORMATTED
UNFORMATTED
Description
MESOFILE II control file.
Output files produced by
MESOPUFF II, Le.,
25
INFILE12.DAT
FTLE25.DAT
FILEXST
INPUT/
OUTPUT
OUTPUT
DIRECT ACCESS
FORMATTED
concentrations, wet fluxes or
dry fluxes.
A scratch file produced by
MESOFILE H. It can be
accessed as input in the
current or a subsequent
MESOFILE H run.
List file (line printer output
file)
Value is specified by user in the control file inputs.
7-2
-------
Table 7-2
MESOFTLE II Card-Image Inputs and Subroutine Identifiers
MESOFILE II CARD INPUTS
TITLE CARD
Up to 64 characters (columns 1-64) (followed by one set of cards as specified below for
each subroutine requested by the user)
SUBROUTINE IDENTIFIER CARD
Contains 4-letter subroutine identifier (in Columns 1-4)
NAMELIST INPUT CARD #1
Read by the subroutine called
NAMELIST INPUT CARD #2
Read by the line printer plotting routine (needed only if line printer plots are produced and
contour levels other than the default contour levels are used).
SUBROUTINE
IDENTIFIER
CALLING
ORDER SUBROUTINE FUNCTION (see detailed
GROUP subroutine descriptions - Sections 7.1 - 7.7)
• DEFN
• FIND
• SEEK
• AVRG
• ADD1
• ADD2
• STAT
A
B
B
C
C
C
C
Defines Pollutant, Grid Size, and Routes Output
Locates First Order Model Output
Locates Higher Order MESOFILE II Output
Averages Arrays
Sums Arrays within one runstream
Sums Arrays from two runstreams
Calculates Statistics
7-3
-------
As indicated in Table 7-2, following a title card and the subroutine identifier card is the
NAMELIST card containing the necessary input data. In FORTRAN NAMELIST formatted
inputs, the first character of each input record must be a blank, followed by an & and the
NAMELIST name. The input data, separated by commas, must appear between the
NAMELIST name and an &END. All the NAMELIST names in MESOFILE II are either
"SAME" (in subroutines called by the user via subroutine identifier cards) or "DIFP (in the line
printer plotting subroutines).
The following sections contain a detailed description of the functions, the required
inputs, and the output options of each MESOFILE II subroutine. Annotated sample inputs
follow each subroutine description to demonstrate each of the options available to the user.
Sample inputs for the most common applications of MESOFILE II are presented in Section 7.8.
7.1 Subroutine DEFN
Subroutine DEFN allows the user to specify for a particular MESOFILE II run:
• the number of cells in the sampling grid,
• the pollutant of interest (SO2, SO/, NO,, HNO3, NO3"), and whether
concentrations, wet fluxes, or dry fluxes are processed,
• receptor type processed in this run (gridded or non-gridded receptors), and
• the starting record of the disk output on the MESOFILE II file (FILE25.DAT).
Although a MESOPUFF n run may generate concentration and wet/dry flux data for up
to five pollutants, only one type of output, for one pollutant (default = SO2 concentration) is
processed at a time by MESOFILE II. The array size, IMAX * JMAX, must be the same as the
sampling grid size specified in the MESOPUFF II model run used to generate the concentration
or flux data.
All MESOFILE n disk output (concentration fields, difference fields, etc.) is written to
the MESOFILE II output file FTLE25.DAT. Each output field requires one record of disk
space on FILE25.DAT. The user must specify the record where the disk output is to start for a
particular MESOFILE II run. The first output array is written at this record; the second output
array is written at the next record, etc. Each time an array is written to disk, the disk file
pointer is incremented by one. A particular MESOFILE II run, for example, may write n
concentration arrays on Records 1 through n; the user may wish to save this output, and, on a
subsequent MESOFILE II run, the output may be directed to begin at record n+1.
7-4
-------
The starting record number for MESOFILE II disk output is not supplied with a default
value; this helps prevent accidental overwriting of previously stored data. The user must specify
this parameter if the MESOFILE II run is to generate any disk output. The concentration array
size and pollutant are used in block data; subroutine DEFN must therefore be called only if:
• any disk output is generated in the MESOFILE II run,
• the concentration array size is different from the default 26 x 26, or
• the pollutant of interest is not SO2.
A description of the card inputs to each MESOFILE II subroutine is contained in
Section 7.9. The following are sample card inputs.
• Sample Input-Example 1A
TITLE CARD
DEFN
&SAME IMAX=40rTMAX=40,IOUT= l.&END
• Sample Input-Example IB
TITLE CARD
DEFN
&SAME IPOL=2,IOUT=20,&END
The call to subroutine DEFN in Example 1A sets the concentration array size to 40 x 40. The
disk file output pointer, IOUT, is given a value of 1. Any disk output that may be generated in
the MESOFILE H run, therefore, will start on Record 1 of FILE25.DAT. In Example IB,
SOJ is specified as the pollutant of interest. The disk output of this MESOFILE II run will
begin on Record 20. The concentration array size is assumed (by default) to be 26 x 26.
7.2 Subroutine FIND
Subroutine FIND performs the following operations:
• reads user inputs to identify the model output to be located:
starting hour, day, and year of data
number of concentration or flux fields
logical unit of concentration or flux data;
7-5
-------
• reads the header record of the new concentration or flux file;
• finds the proper position in the file corresponding to the starting hour; and
• defines the requested set of concentration/flux arrays as runstream number n,
where n = 1 (first call of FIND/SEEK), n - 2 (second call of FIND/SEEK), etc.
Each call to subroutine FIND defines a runstream (Le., one or a group of concentration
or flux fields) that can be accessed by other MESOFILE n subroutines. A runstream number is
a sequential internal reference number associated with a group of arrays located by subroutine
FIND or SEEK and is used to identify these arrays in other MESOFILE H subroutines. FIND
is one of two runstream defining subroutines (subroutine SEEK is the other). The first set of
concentration/flux fields located by FIND (or seek) is referred to as Runstream 1, the second
set of fields defines Runstream 2, etc.
The user specifies the FORTRAN Logical Unit number of each MESOPUFF H
concentration or flux input file. The file associated with the first call to FIND must be named
"INFILEr. Subsequent calls to FIND define files named INFILE2, INFILE3, etc. (up to 10
files are allowed). It is the user's responsibility to rename the MESOPUFF II output
concentration or flux files to the appropriate file name for MESOFILE II (i.e., INFILEn.DAT).
In selecting unit numbers for the concentration or flux files, it should be noted that the
MESOFILE n input control file (MESOFILE.INP) is associated with unit 5, the output list file
(MESOFILE.LST) with unit 6, and the direct-access scratch file (FILE25.DAT) with unit 25.
Because subroutine FIND is used to locate the output of any previously run model, it
must be called before an attempt is made to process these data with any of the MESOFILE II
data processing subroutines. Before any MESOFILE II data processing subroutines of
MESOFILE II are called, subroutines FIND and SEEK must be used to locate all the model
output. The following are sample card inputs.
• Sample Input-Example 2
TITLE CARD
FIND
&SAME IYEAR=78,IDAY= 165,IHOUR=1,IGRIDS=24,NUNIT= 10.&END
FIND
&SAME IYEAR=78,IDAY= 165,IHOUR= 1,IGRIDS= 120,NUNTT= ll.&END
FIND
&SAME IYEAR=78,IDAY= 165,IHOUR= 1,IGRIDS= 120,NUNTT= 12,&END
7-6
-------
In example 2, the concentration data referenced by Logical Unit 10 is a MESOPUFFII
run starting at Hour 0, Day 165, Year 1978. Because the model outputs concentration arrays at
the conclusion of a time step, the first concentration array recorded is for Hour 1 on Day 165.
The sample input above specifies Runstream 1 as consisting of 24 hourly concentration arrays,
starting at Hour 1, Day 165 and ending at Hour 0, Day 166. The second call to subroutine
FIND defines runstream 2 as the set of concentration arrays output from Logical Unit 11
starting at Hour 1, Day 165, through Hour 0, Day 170. Runstream Number 3 is specified as the
output from the Logical Unit 12 for the same 120-hour time period.
7.3 Subroutine SEEK
Each set of data to be accessed by the data processing subroutines of MESOFILE II
must be located and assigned a runstream ntfmber. The concentration data, output directly by
the models to disk, are referred to as "first" order data fields and are located by calls to
subroutine FIND. MESOFILE II, however, has the ability to process first order data and
output the resultant fields (e.g., averaged concentration fields, summed concentration fields, or
several types of concentration difference fields), to FILE25.DAT for storage and further
processing. These derived fields, which have undergone at least one level of MESOFILE n
processing, are referred to as "higher" order data fields. The user wishing to reference higher
order data must supply the location (FILE25.DAT record number) of the data to MESOFILE II
by a call to subroutine SEEK.
Subroutine SEEK performs the following operations:
v
• reads user inputs to identify the MESOFILE II output of interest:
NSTART and
NSTOP and
• defines the requested set of data fields as runstream number n, where n = 1
(first call of FIND/SEEK), n = 2 (second call of FIND/SEEK), etc.
t
The card input requirements of subroutine SEEK and other MESOFILE II subroutines are
described in Section 7.9. The following are sample card inputs.
• Sample Input—Example 3
TITLE CARD
FIND
&SAME IYEAR=78,IDAY= 166,IHOUR= 1,IGRIDS=24,NUNTT= 10.&END
SEEK
7-7
-------
&SAME NSTART= 12,NSTOP= 12,&END
SEEK
&SAME NSTART= 10,NSTOP=23,&END
As in the previous example, Runstream Number 1 is defined as a set of 24 hourly, first
order concentration arrays. Runstreams 2 and 3, however, are composed of higher order data
fields. The second runstream consists of a single data field (record 12 on FTLE25.DAT),
whereas Runstream 3 is defined to be the 14 data arrays contained in records 10 through 23.
7.4 Subroutine AVRG
Subroutine AVRG calculates time averages of first order or higher order concentration
or flux data. This subroutine performs the following operations:
• initializes NAMELIST SAME parameters to default values,
• reads user inputs,
• calculates number of arrays in the runstream specified by the user and
determines a repetition factor, IREPF,
• for each array in the runstream, reads array and if requested, prints the input
array and sums arrays,
• after AVETM arrays have been read and summed, divides by AVETM to obtain
average, and performs linear scaling calculation, and
•* if requested, writes averaged array to FILE25.DAT, writes averaged array on line
printer, and plots averaged array.
The user has the option of printing, plotting, or writing the averaged arrays to
FILE25.DAT. The user specifies the runstream number of the data set to be averaged and the
averaging frequency (in terms of arrays), so that the appropriate block averages will be
computed. A background concentration factor or a concentration multiplicative scaling factor
may be included in the calculations as well. Each averaged array may be adjusted by the form:
CAD1 = a * C
The location of all MESOFILE U output (FILE25.DAT) is controlled by the IOUT
variable of subroutine DEFN. The first output grid is written on record IOUT of FILE25.DAT,
the next grid is written on record IOUT + 1, etc. The user specifies the location where the disk
7-8
-------
output is to start; the disk file pointer is incremented each time a grid is written to disk. The
following are sample card inputs.
• Sample Input-Example 4
TITLE CARD
DEFN
&SAME IOUT=50,&END
FIND
&SAME IYEAR=78,IDAY= 167,IHOUR=0,IGRIDS= 12,NUNTT= 10.&END
SEEK.
&SAME NSTART=1,NSTOP=30,&END
' AVRG
&SAME IRUN= 1AVETM=3,DISK= 1,PLOT= 1,NEWV= 1,APE= 1,
IHIGH=1,&END
&DIFFN=5,THR=-1.E-10,0.1E-6,1-E-6,10.E-6,100.E-6,20*0.0,&END
AVRG
&SAME IRUN=2,AVETM=30,PRINT=0,DISK= 1,PLOT= 1,IHIGH= 1,&END
AVRG
&SAME IRUN=2,AVETM= 10,PRINT=0,DISK= 1,PLOT= 1,IHIGH= 1,&END
The call to subroutine DEFN sets the disk output pointer IOUT to 50. The averaged
concentration arrays written to disk, therefore, will occupy records 50 through 50 + n on
FILE25.DAT, where n is the number of arrays output to disk. Subroutine FIND is called to
define a 12-array runstream consisting of hourly concentration fields, as illustrated schematically
in Figure 7-1. Runstream Number 2 is defined as the higher order data on records 1-30 of
FILE25.DAT. The first call to subroutine AVRG averages the data defined by Runstream 1
into four 3-hour averaged arrays. The maximum output available to the user is requested. The
hourly concentration input fields and the averaged fields are printed. The averaged fields are
also plotted (with user input contour levels) and written to disk (on records 50-53). The highest
3-hour averaged values in each field are printed (IHIGH= 1). The second call to subroutine
AVRG results in one 30-array average from the data in Runstream 2. Only two output options
are invoked: line printer plots and disk output. The disk output is routed to Record 54 because
the previous AVRG call put arrays into Records 50 to 53. The contour levels of the line printer
plot will be the same as in the previous AVRG call; when new contour levels are defined (as in
the first AVRG call), the plotting routine will continue to use them until other contour levels
are redefined in a DIFF NAMELIST (see Section 7.9). All the parameters in NAMELIST
SAME that have default values are reset to their default values each time the subroutine is
called. The third AVRG call uses Runstream Number 2 data to calculate three 10-array
7-9
-------
Runstream
Number
(00. 167. 79}
(01.167. 78)
(02. 767. 78)
(03. 167. 78)
(04,167.78)
(OS. 167. 78)
(06. 167. 78)
7.78)
(08. 167. 78)
(09. 167. 78)
(10.167.78)
(11.167.78)
t-\tst Average Call
-*• [ 3 Hr. Average
I 3 Hr. Average |
[ 3 Hr. Average
| 3 Hr. Average
(HH.OOO.YY) . (Hour. Day, Year)
Ruratream
Number
2
F3e2S
1-30
(
i
I
k — -irt
Ruiistfuffi
Number
2
Records
1-30
Third Average Call
IP-Array Average j
10-Array Average
10-Array Average
Figure 7-1. Schematic illustration of the averaging process.
7-10
-------
averages. The output options are the same as with the second AVRG call, and the disk output
is stored on Records 55 to 57 of FILE25.DAT.
7.5 Subroutine ADD1
Subroutines ADD1 is used to sum all the arrays in a runstream to yield a single summed
put array. That is,
c,*
where (C^y is the (i,j) element of the summed array, and (C) is the (i,j) element of the k*
array consisting of N arrays (k = 1...N). The output options include an echo of the input arrays,
line printer gridded output, line printer plots, and disk output and are the same as those in
subroutine AVRG. The adjustment factors a and b for the summed concentration field are also
available. Each call to subroutine ADD1 will initialize the output arrays to zero before
sequentially adding the concentration arrays of the specified runstream to it, unless the INTT
variable is set to zero in the ADD1 input NAMELIST. With INTT = 0, a cumulative sum can
be calculated with successive ADD1 calls.
v
The following are sample card inputs.
• Sample Input-Example 5
TITLE CARD
DEFN
&SAME IOUT=50,&END
SEEK
&SAME NSTART= 1,NSTOP=6,&END.
SEEK
&SAME NSTART=20.NSTOP=22.&END
ADD1
&SAME IRUN= 1,DISK= 1,&END
ADD1
&SAME IRUN=2,INIT=0,DISK=1,&END
7-11
-------
The call to subroutine DEFN requests that the disk output of this MESOFTLE II run
begin at record 50 on FTLE25.DAT. Two runstreams are defined: a six array runstream
(Number 1) and a three array runstream (Number 2). The first call to ADD1 sums the data in
Runstream Number 1 (Records 1 to 6) and prints the result on the line printer and Record 50.
The second ADD1 call, because INTT = 0, adds the array in Runstream Number 2 to the
summed array calculated in the first ADD1 call, and the result is also written on disk
(Record 51) and on the line printer.
7.6 Subroutine ADD2
Subroutine ADD2 calculates the sum of arrays in two runstreams. That is,
D! = A; + ** (7-3)
where the summation extends over all k = 1...N arrays in runstreams A and B, and D is the
resultant runstream. Two runstreams numbers must therefore be supplied to subroutine ADD2
as input, and both runstreams must contain the same number of concentration arrays. The
other NAMELJST inputs are the same as the subroutine ADD1 inputs. The following are
sample card inputs.
• Sample Input-Example 6
TITLE CARD
DEFN
&SAME IOUT=50,&END
FIND
&SAME IYEAR=78,IDAY= 165,IHOUR= 1,IGRIDS=6,NUNIT= 10.&END
FIND
&SAME IYEAR=78,IDAY= 165,IHOUR= 1,IGRIDS=6,NUNIT= ll.&END
ADD2
&SAME IRUN1 - 1,IRUN2=2,DISK= 1,PLOT=. 1,&END
The call to subroutine DEFN requests that disk output start on record 50 of
FILE25.DAT. Six output arrays of two MESOPUFF II runs are defined as Runstreams 1 and 2
with the calls to subroutine FIND. The arrays of each runstream are added together, printed,
written to disk, and plotted with the default contour levels. The summing process of the two 6-
array runstreams results in an output runstream of 6 arrays.
7-12
-------
7.7 Subroutine STAT
Subroutine STAT is designed to produce quantitative as well as qualitative measures of
the point-by-point and bulk differences between two gridded concentration or flux fields—a
"base" field and a "test" or "perturbed" field. The base concentration fields are reference fields
resulting from a particular model run specified by the user. The test concentration fields can be
any other model output generated with some test parameter of the model varied; for example,
the emission inventory, deposition velocity, decay rate, time step, or even the mesoscale model
used, may be varied and the results defined as the test concentration fields.
When the user has defined a base case and test case concentration field or flux (or set of
fields), line printer plots or gridded tables of the following fields may be produced:
• the base field, identified as BF,
• the test field, identified as TF,
• the difference field, identified as DF = CB - Cp
C.-CT
• the fractional difference field identified as FDF = —-—-, and
C -C
the weighted difference field identified as WDF = —-—-
where CB is the base field concentration at a particular grid point, C,. is the test field
concentration at that point, and CB is defined below.
The fractional difference field, FDF, can be calculated only for grid points with nonzero
base field concentrations, but because the FDF is most meaningful in comparing base case and
test case plumes which overlap exactly or nearly exactly, the FDF is calculated only for those
points in the intersection of the two plumes (that is CB = 0 and Cp = 0)
7-13
-------
The WDF is the difference field weighted by the average base plume concentration (CB).
(7-4)
v '
A
where N includes only those points in the base field plume (defined as the set of points in the
base field with nonzero concentrations).
In addition to line printer plots of the DF, PDF, and WDF, subroutine STAT has the
ability to write these fields to the MESOFILE II direct access disk output file (FILE25.DAT).
Variation of some test parameters can substantially change the nature of the
concentration or flux distribution in the base and test plumes. The nature of these differences
in turn determines which of the difference field representations is appropriate for a particular
analysis. The FDF field is useful 'in determining the relative spatial location of the base and test
plumes and differences in the distributions, and should be used when the effect of the input
parameter does not change the gross spatial distribution of the plume. The WDF allows the
differences in concentration to be weighted by a constant factor.
Subroutine STAT also generates a set of quantitative (statistical) measures of the
differences in the base case and test case concentration fields. Whereas the graphical output is
optional, the statistical output is always produced. Figure 7-2 is a sample of the statistical
output. The statistics calculated and the subsets of the grid over which the calculations are
performed are contained in Table 7-3 and Figure 7-3. Clearly, the most meaningful statistic for
a given base case-test comparison depends heavily on the nature of the test parameter varied
and must be determined by the user.
Figure 7-4 is a flow chart of subroutine STAT. The input variables are defined in
Section 7.9. It is assumed that the statistics for multi-array runstreams are to be calculated on
an array-by-array basis; the variable BYQNE, therefore, has a default value of 1. It is possible,
however, to logically concatenate successive arrays in a particular runstream by specifying
BYONE = 0. For example, consider base case and test case runstreams consisting of three 24-
hour averages. If BYONE = 1, array-by-array statistics (i.e., 3 sets of statistics, one set for each
24-hour averaged array) will be produced; BYONE = 0 will result in only one set of statistics
over the entire 72-hour period. . ' ._ ,
7-14
-------
THE FOLLOWING RECORDS MERE USED A3 TH£ BASE FIELD!
FIRST RECORD * «fc LAST M6COHO = 46
THE FOLLOW I NU RECORDS NEHE USED AS THE PERTURBED FIELOt
FIRST RECORD = 51 (.A3! HECORO * 51
3TAII3TIC3 FOR THE St I OF ALL GMIO POINTSI
AVERAGE BASE FIELD VALUE (AVEH) a O.IS6XE-06
AVEHAGE PERTURBED FIELD VALUE (AVEf*) = O.I6300E-0*
AVEHAGE DEVIATION (AD) s -0.fct647E-Od
AVEHAGE ABSOLUIE DEVIATION (AAO) * 0.52767E-07
MAXIMUM LOCAL DEVIATION (XMLO) * 0.
-------
Table 7-3
Statistical Measures Calculated by Subroutine STAT
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Mean base plume concentration, CB
Mean test (perturbed) plume concentration, Cj
Mean base field concentration
Mean test field concentration
Average deviation, CB-C|.
Average absolute deviation, CB-CV
Maximum local deviation, MAX (CB-Cr)
Maximum base field value, MAX (CB)
Maximum test field value, MAX (Cj.)
Difference of maxima, MAX (CB) - MAX (Q)
Fractional difference of maxima,
MAX (C,) - MAX (Cj)
Correlation coefficient,
Variable
Name
AVEBO
AVEPO
AVEB
AVEP
AD
ADI
ADO
AAD
AAD1
AADO
XMLD
XMBF
XMPF
DLM
FDLM
RBA
Grid Points
Included
BP
TP
BF
TF
BFTF
BTU
BTI
BFTF
BTU
BTI
BFTF
BF
TF
DFTF
BFTF
BTU
((P. - (C.)*} (5 -
7-16
-------
Table 7-3
Statistical Measures Calculated by Subroutine STAT (Concluded)
Variable
Name
Grid Points
Included
13. Average fractional deviation,
C,-CT
AFDO
BTI
14. Average absolute fractional deviation
C,-CT
AAFDO
BTI
15. Maximum absolute fractional deviation,
XMLFDO BTI
MAX
16. Fractional deviation of the means
FDM
- BP
7-17
XT- TP
-------
-------
INITIALIZE NAMELIST 'SAME' PARAMETERS TO DEFAULT VALUES
READ USER INPUTS
CHECK THAT THE NUMBER OF ARRAYS IN
RUNSTREAM JND1 IS THE SAME AS THE
NUMBER OF ARRAYS IN RUNSTREAM IND2
NO
IS
BYONE EQUA
TO 17
BREAK THE USER DEFINED RUNSTREAMS
INTO SETS OF ONE-ARRAY RUNSTREAMS
READ AN INPUT ARRAY FROM THE BASE CASE
RUNSTREAM. IF REQUESTED (APS= 1). PRINT
THE INPUT ARRAY.
Figure 7-4. Flow chart of subroutine STAT.
7-19
-------
NO
IS
BYONEEQUAL
T01?
YES
FROM THE SUMMED QUANTITIES, CALCULATE
AND PRINT THE COMPLETE SET OF STATISTICS
NO
FROM THE SUMMED QUANTITIES, CALCULATE
AND PRINT THE COMPLETE SET OF STATISTICS
I
RETURN
Figure 7-4. Flow chart of subroutine STAT. (Continued)
7-20
-------
0
READ AN INPUT ARRAY FROM THE PERTURBED (TEST) CASE RUNSTREAM.
IF REQUESTED (APE - 1 ). PRINT THE INPUT ARRAY.
CALCULATE THE DIFFERENCE FIELD
IF REQUESTED.
WRITE THE DIFFERENCE FIELD TO THE LINE PRINTER
WRITE THE DIFFERENCE FIELD TO DISK (FILE 251
PLOT THE DIFFERENCE FIELD
I
COMPUTE THE PARTIAL SUMS FOR THE DIFFERENCE
HELD STATISTICS
1
CALCULATE THE FRACTIONAL DIFFERENCE FIELD
IF REQUESTED.
WRITE THE FRACTIONAL DIFFERENCE FIELD TO THE UNE PRINTER
WRITE THE FRACTIONAL DIFFERENCE FIELD TO DISK (FILE 25)
PLOT THE FRACTIONAL DIFFERENCE FIELD
1
COMPUTE THE PARTIAL SUMS FOR THE FRACTIONAL
DIFFERENCE FIELD STATISTICS
IF THE WEIGHTED DIFFERENCE FIELD IS TO BE
PRINTED. PLOTTED. OR WRITTEN TO DISK. CALCULATE
THE WEIGHTED OIFFER0ICE FIELD
IF REQUESTED.
WRITE THE WEIGHTED DIFFERENCE FIELD ON THE UNE PRINTER
WRITE THE WEIGHTED DIFFERENCE FIELD TO DISK (FILE 25)
PLOTTHE WEIGHTED DIFFERENCE FIELD
Figure 7-4. Flow chart of subroutine STAT. (Concluded)
7-21
-------
It is possible to write DF, PDF, or WDF to the MESOFILE II direct access disk output
file (FILE25.DAT), although only one of these fields can be written on a particular call to
STAT.
The following are sample card inputs.
• Sample Input-Example 7
TITLE CARD
DEFN
&SAME IOUT=50,&END
SEEK
&SAME NSTART=9,NSTOP=12,&END
SEEK
&SAME NSTART= 19,NSTOP=22,&END
SEEK
&SAME NSTART=28,NSTOP=32,&END
STAT
&SAME IND1 = 1,IND2 - 2,DISKD - 1,PLOTD - 1.NEWVD = 1,&END
&DIFFTHR=-100.E-6,-5.E-6,-l.E-6,-.5E-6,-l.E-15,0,l.E-15,
.5E-6,1.E-6,5.E-6,15*0.0,N= 10.&END
STAT
&SAME IND1 = 1,IND2=3,DISKD= 1,PLOTD=1,&END
v
In this example, the call to subroutine DEFN requests that the disk output of this MESOFILE
II run start at Record 50 of FILE25.DAT. Three runstreams are defined by calls to subroutines
SEEK, each consisting of four arrays. The first call to STAT results in four sets of statistics;
each array of Runstream 1 is compared to the corresponding array of Runstream 2. The fields
associated with the runstream identified with IND1 are defined to be the base case fields; IND2
and IND3 define the test case fields. The difference fields are plotted with the user-specified
contour levels in the DIFF NAMELIST, and they are written to FILE25.DAT (on Records 50 to
53). The second call to STAT will produce statistics comparing .the arrays in Runstream 1 (base
case) to the arrays in Runstream 3 (test case). The difference fields are plotted with the same
contour levels as in the previous STAT call; when new contour levels are defined (in the DIFF
NAMELIST), they become the "default" contour levels for subsequent calls to the plotting
routine. The difference fields are written to FILE25.DAT on Records 54 to 57.
7-22
-------
7.8 Sample Card Inputs for Some Useful MESOFILE II Applications
• Calculate 24-hour SO2 averages from hourly output of two model runs; write
results on disk, including peak 24-hour values for each averaging time.
TITLE CARD
DEFN
&SAME IOUT= l.&END
FIND
&SAME IYEAR=78,IDAY= 165,IHOUR= 1,IGRIDS= 120,NUNTT= 10,&END
FIND
&SAME IYEAR=78,IDAY= 165,fflOUR= 1,IGRIDS=120,NUNTT= ll.&END
AVRG
&SAME IRUN= 1,AVETM=24,DISK= 1,IHIGH=l.&END
AVRG
&SAME IRUN=2,AVETM=24,DISK= 1,IHIGH= 1,&END
• Perform statistical analysis of the 24-hour average concentrations calculated for
two model runs in example above.
TITLE CARD
SEEK
&SAME NSTART=1,NSTOP=5,&END
SEEK
&SAME NSTART=6,NSTOP= 10,&END
STAT
&SAME IND1 - 1,IND2=2,&END
• Calculate and plot sums of the hourly SO2 output of two model runs (useful for
runs made with different subsets of the entire source inventory; the resulting
horizontal sum is a superposition of the concentration fields reflecting the effects
of the sources modeled in two runs).
TITLE CARD
DEFN
&SAME IOUT=11,&END
FIND
&SAME IYEAR=78.IDAY= 165.IHOUR= UGRIDS=24.NUNIT= 10.&END
7-23
-------
FIND
&SAME IYEAR=78,IDAY= 165,IHOUR= 1,IGRIDS=24,NUNTT= 11,&END
ADD2
&SAME IRUN1 = 1,IRUN2=2,PRINT=0,PLOT= l.&END
7.9 MESOFILE H Parameter File
MESOFILE n uses the same memory management system as MESOPAC II and
MESOPUFF n, which is based on the use of an external parameter file. Arrays dealing with
the number of sampling grid cells and non-gridded receptors are dimensioned throughout the
code with parameter statements. The declarations of the values of the parameters are stored in
a file called "PARAMS.FIL". This file is automatically inserted into any MESOFILE n
subroutine or function requiring one of its parameters via FORTRAN "include" statements. In
this way, a global redimensioning of all the model arrays dealing with grid cells or non-gridded
receptors can be accomplished simply by modifying the PARAMS.FIL file and recompiling the
program.
A sample parameter file is shown in Table 7-4. The parameter file sets the array
dimensions, which are the maximum values of the variables. The actual values for a particular
run are set in the user inputs and cah be less than the maximum value set in the parameter file.
The parameter file also sets the logical unit numbers for the input control file (FILE.INP) and
the output list file (FTJLE.LST). The unit numbers for the concentration and flux MESOPUFF
II output Jiles are read in from the control file. The logical unit number of the direct-access
scratch file (FILE25.DAT) is set to 25 internally within the program.
7.10 MESOFILE II Run Control Parameter Descriptions
A complete description of the run control inputs to each MESOFILE II subroutine is
contained in Table 7-5.
7-24
-------
Table 7-4
Sample Parameter File (PARAMSJ1L) for MESOFTLE II
c -.—........--..--.
c — PARAMETER statements MESOFRE II
c—..... . .
c
c — Specify parameters
parameter(mxnxBlOO,mxny*100)
parameter(raxrecalOOO)
parameter(io5*5,106-6)
c
c — Computed parameters
parameter
-------
Table 7-5
MESOFILE II Inputs
Card Inputs to Subroutine DEFN
SUBROUTINE DEFN
NAMELIST TITLE - SAME
Parameter Type
IPOL INTEGER
Concentration or flux species code as defined
below.
IPOL Species
Default
1
V
IRTYPE INTEGER
IMAX INTEGER
JMAX INTEGER
IOUT INTEGER
NREC INTEGER
1 SO2 concentration
2 SO/ concentration
5 NO, concentration
4 HNOj concentration
5 NO3" concentration
6 Wet SO2 flux
7 Wet SO4" flux
8 Wet NO, flux
9 Wet HNO3 flux
10 Wet NO,' flux
11 Dry SO2 flux
12 Dry SO/ flux
13 Dry NOX flux
14 Dry HNO3 flux
15 Dry NO3 flux
Receptor type (IRYTPE=1 for gridded receptors,
IRTYPE =2 for non-gridded receptors).
Number of elements of the concentration array in
the X direction.
Number of elements of the concentration array in
the Y direction.
Record number of FTLE25.DAT at which
MESOFILE II disk output is to start.
Number of non-gridded receptors.
1
26
26
.
0
7-26
-------
Table 7-5
MESOFILE n Inputs (Continued)
Card Inputs to Subroutine FIND
SUBROUTINE FIND
NAMELIST TITLE - SAME
Parameter Type
IHOUR INTEGER
IDAY
IYEAR
IGRIDS
NUNIT
INTEGER
INTEGER
INTEGER
INTEGER
Definition
Ending hour of the first concentration or flux array
of interest
Day number of the first concentration or flux array
of interest
Year of the first concentration or flux array of
interest.
Number of concentration or flux arrays.
Logical unit number of concentration or flux data.
Default
The file associated with the first call to FIND must be named INFILE1.DAT, the second call with
INFHJE2.DAT, etc Up to 12 first-order files (INF1LE1.DAT through INFILE12.DAT), may be processed
in a single run of MESOFILE II.
7-27
-------
Table 7-5
MESOFILE II Inputs (Continued)
Card Inputs to Subroutine SEEK
SUBROUTINE SEEK
NAMEL1ST TITLE - SAME
Parameter Type Definition Default
NSTART INTEGER Starting disk record number on FILE25.DAT of
the output of interest.
NSTOP INTEGER Ending disk record number on FILE25.DAT of the
output of interest
7-28
-------
Table 7-5
MESOFILE II Inputs (Continued)
Card Inputs to Subroutine AVRG
SUBROUTINE AVRG
NAMELIST TITLE - SAME
Parflmf^g- Type
IRUN INTEGER
AVETM INTEGER
PRINT INTEGER
EFORM
INTEGER
DISK
PLOT
NEWV
INTEGER
INTEGER
INTEGER
IHIGH
INTEGER
Runstream number.
Averaging time (in terms of number of arrays).
Line printer output control variable. If
PRINT = 1, averaged concentration or flux arrays
are printed. If PRINT = 0, averaged concentration
or flux arrays are not printed.
Format control variable for line printer output. If
IFORM=1, non-gridded receptor concentrations or
fluxes are printed in ¥122 format. If IFORM=2,
non-gridded receptor data are printed in 1PE12.4
format.
Disk output control variable. If DISK = 1, average
concentration or flux arrays are written on disk. If
DISK = 0 averaged arrays are not written on disk.
Line printer plotting control variable. If
PLOT = 1, plots are produced. If PLOT
plots are not produced.
0,
Plotter contour values control variable. If NEWV
= 1, user inputs contour values (if NEWV = 1,
user must include a DIFF NAMELIST card with
the appropriate contour information). If
NEWV = 0, use default contour values.
Variable controlling printing of highest value in the
gridded or non-gridded concentration or flux field
after averaging and scaling operations. If
IHIGH = 1, the high value will be printed. If
IHIGH = 0, the high value will not be computed.
Default
7-29
-------
Table 7-5
MESOFILE n Inputs (Continued)
Card Inputs to Subroutine AVRG (Continued)
SUBROUTINE AVRG
NAMELIST TITLE - SAME
P^jy^tetifj Type
APE INTEGER
a,b
REAL
NEWMES
INTEGER
ISCHEK
INTEGER
Definition Default
Controls echo of input (unaveraged) fields. If 0
APE » 1, input fields are printed; If APE = 0,
input fields are not printed.
Adjustment factors for the averaged concentration a=l.
or flux field b=0.
a = multiplicative factor,
b .
C
additive factor, of the form,
a*C + b
Control variable for label on output plots and
derived printed fields (Le., those controlled by
PLOT and PRINT input variables). If NEWMES
= 1, a user-supplied label (up to 70 characters) is
printed with each plot or output field. This label
must be included in the input file as a separate line
immediately after the "SAME" NAMELIST (Le.,
before the 'DIFF" NAMELIST, if it is present). If
NEWMES = 0, the following default label is used:
"CONCENTRATIONS (G/M»*3)".
Variable controlling internal checking of species
codes. If ISCHEK = 1, the species code of every
input field is required to be the same and match
TPOL" specified in subroutine DEFN. If
ISCHEK = 0, this species code checking feature is
disabled (e..g, to allow summing of flux fields of
different pollutants such as SO2 and SO,).
7-30
-------
Table 7-5
MESOFILE II Inputs (Continued)
Card Inputs to the Printer Plotting Routine
NAMELIST TITLE - DIFF
(included only for line printer plots with user input contour levels)
Parameter Type flefinitjon Default
N INTEGER Number of contour levels (must be s 25) 9
THR(25) REAL Contour values* -1.0 x Iff10
ARRAY 0.1 x 10*
0.5x10*
1.0 x 10*
2.0 x Iff6
5.0 x
10.0 x
25.0 x Iff*
50.0x10*
*The first element of THR should be less than the minimum value of the field being plotted.
7-31
-------
Table 7-5
MESOFTLE II Inputs (Continued)
Card Inputs to Subroutine ADD1
SUBROUTINE ADD1
NAMELIST TITLE - SAME
Parameter Type
IRUN INTEGER
INTT INTEGER
PRINT
IFORM
INTEGER
INTEGER
DISK
PLOT
NEWV
INTEGER
INTEGER
INTEGER
IHIGH
INTEGER
Default
Runstrcam number.
Determines whether the summing array is
initialized to zero. If IN IT * 1, array initialized to
zero. If INTT = 0, array is not initialized.
Line printer output control variable. If
PRINT - 1, summed array is printed. If .
PRINT - 0, summed array is not printed.
Format variable for line printer output. If
IFORM = 1, non-gridded receptor concentrations
or fluxes are printed in F122 format. If
IFORM -2, non-gridded receptor data are printed
in 1PE12.4 format.
Disk output control variable. If DISK = 1,
summed array is written on disk; If DISK = 0,
summed array is not written on disk.
0
Line printer plotting control variable. If
PLOT = 1, plots are produced; If PLOT
are not produced.
0, plots
Plotter contour values control variable. If
NEWV = 1, user input contour values (if NEWV
= 1, user must include a DIFF NAMELIST card
with the appropriate contour information); If
NEWV = 0, use default contour values.
Variable controlling printing of highest value in the
gridded or non-gridded concentration or flux field
after summing and scaling operations. If
IHIGH = 1, the high value will be printed. If
IHIGH = 0, the high value will not be computed.
7-32
-------
Table 7-5
MESOFILE II Inputs (Continued)
Card Inputs to Subroutine ADD1 (Continued)
SUBROUTINE ADD1
NAMELIST TITLE - SAME
Parameter Type
APE INTEGER
a,b
REAL
NEWMES
INTEGER
ISCHEK
INTEGER
Controls echo of input fields. If APE = 1, input
fields are printed. If APE = 0, input fields are not
•printed.
Adjustment factors for the summed concentration
field,
a 3 multiplicative factor,
b* additive factor, of the form,
a * C + b
Control variable for label on output plots and
derived printed fields (le., those controlled by
PLOT and PRINT input variables). If
NEWMES = 1, a user-supplied label (up to 70
characters) is printed with each plot or output field.
This label must be included in the input file as a
separate line immediately after the "SAME"
NAMELIST (Le., before the "DIFF NAMELIST,
if it is present). If NEWMES = 0, the following
default label is used: "CONCENTRATIONS
(G/M**3)".
Variable controlling internal checking of species
codes. If ISCHEK = 1, the species code of every
input field is required to be the same and match
"IPOL" specified in subroutine DEFN. If
ISCHEK = 0, this species code checking feature is
disabled (e.g., to allow summing of flux fields of
different pollutants such as SO2 and SO4").
Default
0
a = 1.
b = 0.
0
7-33
-------
Table 7-5
MESOFILE n Inputs (Continued)
Card Inputs to Subroutine ADD2
SUBROUTINE ADP2
NAMEL1ST TITLE - SAME
Parameter Type
IRUNl INTEGER
IRUN2 INTEGER
PRINT INTEGER
IFORM
INTEGER
DISK
PLOT „
NEWV
INTEGER
INTEGER
INTEGER
APE
IHIGH
INTEGER
INTEGER
Runstream Number 1.
Runstream Number 2.
Line printer output control variable. If
PRINT » 1, summed arrays are printed; If
PRINT * 0, arrays are printed; If PRINT = 0,
summed arrays are not printed.
Format variable for line printer output If
IFORM = 1, non-gridded receptor concentrations
are printed in F122 format. If IFORM=2, non-
gridded receptor concentrations are printed in
1PE12.4 format
Disk output control variable. If DISK = 1,
summed arrays are written on disk. If DISK = 0,
summed arrays are not written on disk.
Line printer plotting control variable. If plot = 1,
plots are produced. If plot = 0, plots are not
produced.
In NEWV = 1, user inputs contour values (if
NEWV = 1, user must include a DIFF
NAMELJST card with the appropriate contour
information). If NEWV = 0, use default contour
values.
Controls echo of input fields. If APE = 1, input
fields are printed. If APE = 0, input fields are not
printed.
Variable controlling printing of highest value in the
gridded or non-gridded concentration or flux field
after summing and scaling operations. If
IHIGH - 1, the high value will be printed. If
IHIGH = 0, the high value will not be computed.
Default
7-34
-------
Table 7-5
MESOFILE H Inputs (Continued)
Card Inputs to Subroutine ADD2 (Continued)
SUBROUTINE ADD2
NAMELIST TITLE - SAME
Parflmffyr Type
a,b REAL
NEWMES
INTEGER
ISCHEK
INTEGER
Definition
Adjustment factors for the summed concentration
fields,
a * multiplicative factor
b » additive factor of the form,
C^ - a*C + b
Control variable for label on output plots and
derived printed fields (Le., those controlled by
PLOT and PRINT input variables). If NEWMES
« 1, a user-supplied label (up to 70 characters) is
printed with each plot or output field. This label
must be included in the input file as a separate line
immediately after the "SAME" NAMELIST (Le.,
before the "DIFP NAMELIST, if it is present). If
NEWMES * 0, the following default label is used:
"CONCENTRATIONS (G/M**3)".
Variable controlling internal checking of species
codes. If ISCHEK - 1, the species code of every
input field is required to be the same and match
"IPOL" specified in subroutine DEFN. If ISCHEK
= 0, this species code checking feature is disabled
(e.g^ to allow summing of flux fields of different
pollutants such as SO2 and SO4").
Default
a = 1.
b = 0.
7-35
-------
Table 7-5
MESOFTLE II Inputs (Continued)
Card Inputs to Subroutine STAT
SUBROUTINE STAT*
NAMELIST TITLE - SAME
Pajamf.fpr Type
IND1 INTEGER
IND2 INTEGER
BYONE INTEGER
PRINTD
DISKD
PLOTD
INTEGER
INTEGER
INTEGER
Default
Base case ninstream number.
Perturbed (test) case runstream number.
Determines whether multi-array runstreams are to
be treated as one concatenated data set (producing
one set of statistics) or as a group of one-array
runstreams (producing a set of statistics for each
array pair). If BYONE = 1, array by-array
statistics calculated; If BYONE = 0, collective
statistics calculated.
Line printer output control variable for the
difference fields. If PRINTD = 1, difference fields
are printed; If PRINTD = 0, difference fields are
not printed.
Disk output control variable for the output fields.
If DISKD - 1, difference fields are written on
disk; If DISKD = 0, difference fields are not
written on disk.
Line printer plotting control variable for the
difference fields. If PLOTD = 1, plots are
produced; If PLOTD = 0, plots are not produced.
* SUBROUTINE STAT is designed to compute statistics from gridded fields of data only, non-gridded data
cannot be analyzed with this routine.
7-36
-------
Table 7-5
MESOFILE H Inputs (Continued)
SUBROUTINE
NAMELIST IT
Eaomelej
NEWVD
PRINTF
DISKF
PLOTF
NEWVF
PRINTW
DISKW
PLOTW
NEWVW
APE
Card
STAT
liacs
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
Inputs to Subroutine STAT (Continued)
Definition
Plotter contour values control variable. If
NEWVD » 1, user inputs contour values (if
NEWVD - 1, user must include a DOT7
NAMELIST card with the appropriate contour
information). In NEWVD - 0, use default
contour values.
Same as PRINTD, except for the fractional
difference fields.
Same as DISKD, except for the fractional
difference fields.
Same as PLOTD, except for the fractional
difference fields.
Same as NEWVD, except for the fractional
difference fields.
Same as PRINTD, except for the weighted
difference fields.
Same as DISKD, except for the weighted difference
fields.
Same as PLOTD, except for the weighted
difference fields.
Same as NEWVD, except for the weighted
difference fields.
Controls echo of input fields. If APE = 1, input
Default
0
0
0
0
0
0
0
0
0
0
fields are printed. If APE = 0, input fields are not
printed.
7-31
-------
Table 7-5
MESOFILEII Inputs (Concluded)
Card Inputs to Subroutine STAT (Concluded)
SUBROUTINE STAT
NAMELIST TITLE - SAME
Paramffpr Type
NEWMES INTEGER
ISCHEK
INTEGER
Definition
Control variable for label on output plots and
derived printed fields (Le., those controlled by
PLOT .and PRINT input variables). If
NEWMES • 1, a user-supplied label (up to 70
characters) is printed with each plot or output field.
This label must be included in the input file as a
separate line immediately after the "SAME"
NAMELIST (Le., before the "DIFF NAMELIST,
if it is present). If NEWMES = 0, the following
default label is used: "CONCENTRATIONS
(G/M**3)".
Variable controlling internal checking of species
codes. If ISCHEK » 1, the species code of every
input field is required to be the same and match
"IPOL" specified in subroutine DEFN. If
ISCHEK = 0, this species code checking feature is
disabled (e.g^ to allow summing of flux fields of
different pollutants such as SO2 and SO4").
Default
0
7-38
-------
8.0 REFERENCES
Atkinson, R., A.C. Lloyd and L. Winges, 1982: A new chemical mechanism for
hydrocarbon/NOj/SC^ photo oxidations suitable for inclusion in the atmospheric simulation
models. Atmos. Environ., 16, 1341.
Briggs, G-A-, 1975: Plume rise predictions. Lectures on Air Pollution and Environmental Impact
Analyses. American Meteorological Society, Boston, MA, pp. 59-111.
Brost, RA. and J.C. Wyngaard, 1978: A model study of the stably stratified planetary boundary
layer. /. Atmos. Sci, 35, 1427-1440.
Draxler, R.R., 1979: Modeling the results of two recent mesoscale dispersion experiments. Atmos.
Environ., 13, 1523-1533.
Gillani, N.V., S. Kohli and W.E. Wilson, 1981: Gas-to-partide conversion of sulfur in power plant
plumes: I. Parameterization of the gas phase conversion rates for dry, moderately polluted
ambient conditions. Atmos. Environ., 15, 2293-2313.
Hefter, J.L., 1965: The variations of horizontal diffusion parameters with time for travel periods
of one hour or longer. /. Appl MeteoroL, 4, 153-156.
Henry, R.C. and G.M. Hidy, 1981: Discussion of multivariate analysis of particulate sulfate and
other air quality variables. Part I. Annual data from Los Angeles and New York. Atmos.
Environ., 15, 424.
Henry, R.C. and G.M. Hidy, 1982: Multivariate analysis of particulate sulfate and other air quality
variables by principle components H. Salt Lake City, Utah and St. Louis, Missouri. Atmos.
Environ., 16, 929-943.
Ludwig, F.L., L.S. Gasidrek and R.E. Ruff, 1977: Simplification of a Gaussian puff model for real-
time minicomputer use. Atmos. Environ., 11, 431-436.
Maul, P.R., 1980: Atmospheric transport of sulfur compound pollutants. Central Electricity
Generating Bureau MDD/SSD/80/0026/R, Nottingham, England.
Page, S.H., 1980: National land and land cover inventory. U.S. Environmental Protection Agency,
Research Triangle Park, NC.
Pleim, J., A. Venkatram and R. Yamartino, 1984: ADOM/TADAP model development program.
Volume 4. The dry deposition module. Ontario Ministry of the Environment, Rexdale,
Ontario, Canada.
revised 6/94 • 8-1
-------
Schulman, L.L. and J.S. Scire, 1980: Buoyant Line and Point Source (BLP) dispersion model user's
guide. Document P-7304B, Environmental Research & Technology, Inc., Concord, MA.
Scire, J.S., E.M. Insley and RJ. Yamartino, 1990: Model formulation and user's guide for the
CALMET meteorological model California Air Resources Board, Sacramento, CA
Scire, J.S., F.Lunnann, A Bass and S.R. Hanna, 1984a: Development of the MESOPUFF n
dispersion model EPA-600/3-84-057, U.S. Environmental Protection Agency, Research
Triangle Park, NC
Scire, J.S., RLurmann, A. Bass and S.Hanna, 1984b: User's guide to the MESOPUFF II model and
related processor programs. EPA-600/8-84-013, U.S. Environmental Protection Agency,
Research Triangle Park, NC.
Scott, B.C., 1978: Parameterization of sulfate removal by precipitation. J.AppL MeteoroL, 17,1375-
1389.
Scott, B.C., 1981: Sulfate washout ratios in winter storms. 7. AppL MeteoroL, 20, 619-625.
Sheih, C.M., MX. Wesely and B.B. Hicks, 1979: Estimated dry deposition velocities of sulfur over
the eastern United States and surrounding regions. Atmos. Environ., 13 (10), 1361-1368.
Slinn, W.G., L. Hasse, B. Hicks, A. Hogan, D. Lai, P. Liss, K. Munnich, G. Sehmel and O. Vittori,
1978: Some aspects of the transfer of atmospheric trace constituents past the air-sea
interface. Atmos. Environ., 12, 2055-2087.
Stelson, A.W. and J.H. Seinfeld, 1982: Relative humidity and temperature dependence of the
ammonium nitrate dissociation constant Atmos. Environ., 16, 983-992.
Turner, D.B., 1964: A diffusion model for an urban area. /. Applied MeteoroL, 3, 83-91.
Turner, D.B., 1970: Workbook of Atmospheric Dispersion Estimates. U.S. Dept. of H.E.W., Public
Health Service, Pub. 999-AP-26, 88 pp.
Venkatram, A., 1980a: Estimating the Monin-Obukhov length in the stable boundary layer for
dispersion calculations. Boundary Layer MeteoroL, 19, 481-485.
Venkatram, A., I980b: Estimation of turbulence velocity scales in the stable and the unstable
boundary layer for dispersion applications. In Eleventh NA TO-CCSMInternational Technical
Meeting on Air Pollution Modeling and its Application, pp 54-56.
Walcek, CJ., RA. Brest, J.S. Chang and M.L. Wesely, 1986: SOj, sulfur, and HNO3 deposition
velocities computed using regional land use and meteorological data. Atmos. Environ., 20,
949-964.
8-2
-------
Wang, I.T. and P.C. Chen, 1980: Estimations of heat and momentum fluxes near the ground. Proc.
2nd Joint Conf. on Applications of Air Poll Meteorology, New Orleans, LA, March 24-27, pp
764-769.
Wesely, ML, and B.B. Hicks, 1977: Some factors that affect the deposition rates of sulfur dioxide
and similar gases on vegetation. /. Air Pott. Control Assoc., 27, 1110-1116.
8-3
-------
-------
APPENDIX A
TD-6200 SERIES
NCDC UPPER AIR DATA FORMAT DESCRIPTION
-------
-------
TD-6200 SERIES
NCDC UPPER AIR
DIGITAL FILES
\
noaa
NATIONAL OCEANIC AND
ATMOSPHERIC ADMINISTRATION
ENVIRONMENTAL DATA AND
INFORMATION SERVICE
NATIONAL CLIMATIC CENTER
ASH6VILLE, N.C.
A-l
-------
NCDC UPPER AIR
DIGITAL FILES
TD-6200 SERIES
Prepared by
National Climatic Data Center
Federal Building
Asheville, North Carolina
May 1986
This document was prepared by the U.S. Department of Commerce, National
Oceanic and Atmospheric Administration, National Environmental Satellite Data
and Information Service, National Climatic Data Center, Asheville, North
Carolina.
This document is designed to provide general information on the content,
origin, format, integrity and the availability of this data file.
Errors found in this document should be brought to the attention of the
Data Base Administrator, NCDC.
A-2
-------
INTRODUCTION
SOURCE
The Upper Air Observations in this digital data file include stations
operated by the National Weather Service, U.S. Navy, and certain South American
stations whose data receive quality control at the National Climatic Data
Center (NCDC). Additional Upper Air Observations from the Global Tele-
Communications Systems (GTS), and the U.S. Air Force are also included in this
digital file but are not quality controlled by NCDC.
A list of these files are:
TD-6201 U.S. Rawinsonde observations 1946-Present.
(Includes U.S. Navy observations, U.S. Air Force,
National Meteorological Center (NMC), and South
American cooperative observations. Derived from TD-
' 5600.)
TD-6202 Northern Hemisphere GTS observations 1963-1970, and
Southern Hemisphere 1966-1970. (These data were
extracted from NMC Operations ARchive and processed
into TD-5683.)
TD-6203 Global GTS observations 1971-1979.
(These data are a composite of NOAA's National
Meteorological Center (NMC) and U.S. Air Force Global
Weather Center (GWC). Derived from TD-5681.)
TD-6210 Marine Upper Air 1946-To Date.
*,
These data were collected from sources listed below:
1. CD-5A5, CD-645 that were converted-to TD-5600 data set,
2. TD-5600 Marine Area (ships) that were converted to TD-6201/2.
3. TD-6201 Marine Area (ships) to date.
4. NMC Upper Air Marine (ships) 1973-to date.
5. Data from TD-6203, TD-5681 and GWC were not used in this data
set.
These data are currently on three (3)-tapes with the period record:
TAPE #1 1946 THRU 1969
TAPE #2 1970 THRU 1979
TAPE #3 1980 THRU 1987
The sort is by 10 degree square, year, month, day, hour within the
above tape periods. Additional periods will be added as updates,
starting with 1988 from sources 3 and 4 above, when received.
Duplicates were removed giving priority listed above (1,2,3,4). QC
flags are 0-9 for non NMC data, for NMC data they are A-Z.
A-3
-------
Background Information TD-6201
TD-6201: PERIOD:
National Weather Service Jan. 1946 - Current
U.S. Air Force Jan. 1946 - Dec. 1970
U.S. Navy July 1949 - Current
The information contained in TD-6201 includes pressure surface, height of
the pressure surface, temperature, relative humidity, wind direction and speed.
Beginning with Jan 1981, the elapsed time since release of the sonde is
included. The pressure levels included fall into three categories:
1. Mandatory levels — Levels required by the WHO for transmission in
parts A and C of a coded RAWIND report.
2. Standard levels — Levels used for internal processing by the NCDC,
but not generally reported in a coded message.
3. Significant levels — Levels required to adequately describe a
sounding, as transmitted in parts B and D of a coded message.
The number of mandatory and standard levels has increased over time.
Table 1 lists the levels that are expected for a given period of record.
Significant levels were not generally included in the earlier periods.
Significant levels are included for most stations only after July 1952.
Levels below the surface were generated for the period January 1, 1981
through February 28, 1986. However, these levels only contain unknown values
(•99991) for all data elements. Beginning March 1, 1986 this practice was
stopped.
v
The actual time of releases from Jan. 1946 through May 1957 were usually
03, 09, 15, 21 GMT, 16, 17 - 15Z and 20, 21, 22, 23 - 21Z. Beginning June 1957
the scheduled time of release is used instead of the actual hour. The time of
observations were changed from 03, 09, 15, 21 GMT to 00, 06, 12, and 18 GMT.
Observations outside the plus or minus one-hour tolerance were reported as
actual time, GMT. Stations scheduled to record only one observation daily are
allowed a six-hour tolerance.
Relative humidities were computed with respect to ice from Jan. 1946
through Sept. 1948 and to water after that. Beginning Oct. 1948 relative
humidity was computed over a water surface whenever the dry bulb was below
freezing.
Observing practice for wind measurements varied from current practice.
from Jan. 1946 to June 1949, wind directions were observed on a 16-point
compass. These directions were converted to degrees before inclusion in
TD-6201.
A-4
-------
Surface
TABLE 1
Mandatory and Standard Levels TD-6201
1/A6-6/49 7/49-12/55 1/56-6/57 7/57-12/60
1/61-Present
1000
950
900
850
800
750
700
650
600
550
500
450
400
350
300
250
200
'175
150
125
100 -
80
70
60
50
40
30
25
20
15
10
. 7
5
4
3
2
1.5
\
' *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
.*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A-5
-------
Background Information TD-6202
TD-6202: PERIOD:
National Meteorological Center (NMC)
Northern Hemisphere Sept. 1963 - Dec. 1970
Southern Hemisphere June 1966 - Dec. 1970.
These data were assimilated from normal International communication
channels and no detailed quality control measures were employed when converting
to TD-5683. The observations, therefore, were subject to the usual errors
inherent in such a collection.
The U/A observations contain all available mandatory and significant
levels transmitted under International agreement. The period of record may
vary from station to station, the general collection began Sept. 1963 and
continued through Dec. 1970 (Northern Hemisphere). Stations in the Southern
Hemisphere are usually not available until mid 1966 or later through Dec. 1970*
Relative humidities are derived statistically for RH's not reported
originally.
Background Information TD-6203
TD-6203: . PERIOD:
National Meteorological Center (NMC) July 1971 - Dec. 1978
Air Force Global Weather Center (AFGWC) July 1971 - Dec. 1978
These U/A observations are a collection of data built by the National
Climatfc Data Center (NCDC). These data were received from NMC and AFGWC.
NCDC converted these two data sources separately into TD-5681. Then these data
sources were combined giving priority to the NMC source.
A-6
-------
Areal coverage is worldwide.
The digital file contains: Station Identification (land and ships),
Latitude and Longitude of location, date/time, and elements:
LEVEL QUALITY INDICATOR - results by level.
TIME - elapsed time since release.
PRESSURE - by level in kilopascals.
HEIGHT - by level in geopotential meters*
TEMPERATURE - by level in degrees Celsius.
RELATIVE HUMIDITY - by level in degrees Celsius.
WIND - Direction and speed by level.
QUALITY CONTROL FLAGS - by level for time, pressure, height, temperature,
relative humidity, wind, and type of level.
A-7
-------
SPECIAL NOTES
QUALITY
U.S. data processed by the NCDC are subjected to extensive quality control
procedures. Suspect data are returned to a verifier for manual correction.
GTS data are subjected to various degrees of automated quality control by the
receiving agency. NCDC accepts the data as correct during the reformatting
procedure. Therefore, the user must be prepared to perform his own quality
checks on GTS data. (The primary function of NMC and.AFGWC is to produce
forecasts, not to provide an archive data base.)
When corrections are made to a level, that level will appear in the record
twice. The first occurrence of the level will be the original observed values,
with a level quality indicator of "2" or "4". The corrected data will appear
in the second occurrence of the level, with quality indicator of "6".
USE OF THE MANUAL
This manual was designed so that reference to other reference material
should be unnecessary. However, additional information may be obtained by
writing or calling:
National Climatic Data Center E/CC42
ATTN: USER Services Branch
Federal Building
Asheville, North Carolina 28801-2696
Telephone inquiries may be directed to:
Commercial 704 259-0682
FTS 672-0682
Read carefully, the general tape notations, and coding practices.
A-8
-------
TAPE FORMAT
MANUAL AND TAPE NOTATIONS
1. FILE (NCDC Variable Length Storage Structure)
A. Physical Characteristics
Data in this file are retained in chronological order by station.
Although library tapes are normally maintained as described below, different
characteristics including fixed length records can be furnished on request.
Additional charges may be accrued for special processing.
2. RECORD
A. Physical Characteristics
Each logical record contains one station's Upper Air (U/A)
Observation (Rawinsonde, Radiosonde, or Pibal) for each specific Upper Air
Sounding (normally 2 each day). The record consists of a control word, an
identification portion, and a data portion. The control word is used by the
computer operating system for record length determination. For many systems
this control word is transparent to the "users" program. The identification
portion identifies the observing station, latitude, longitude, day and time (of
release), and the number of repeating groups to follow. The data portion
contains the U/A meteorological values and the quality control flag fields for
each level. The data portion repeats for each level in the observation. The
maximum number of levels is 200. This number was chosen so that observations
containing oner-minute wind data may be recorded in this format.
Record length
Blocked
Media
Density
Parity
Label
File
Variable with maximum of 7232 characters
12000 characters maximum
ASCII 9 Track
6250 BPI
Odd
ANSI Standard Labeled
1 File per tape
A-9
-------
B. FORMAT (VARIABLE RECORD)
1. The first five fields constitute the ID PORTION, and occur at
the beginning of each record. The next ten fields of the record contain the
DATA PORTION. .The DATA PORTION is repeated for each level in the observation.
The maximum number of levels is 200.
Each logical record is of variable length with a maximum of
7232 characters. Each logical record contains a station's complete Upper Air
Observation for a specific release time. The form of a record is:
ID PORTION (32 characters) Fixed length
TAPE
FIELI
STATION
ID
XXXXXXXX
LAT
XXXX
LAT
CODE
X
LONG
XXXXX
LONG
CODE
X
DATE/TIME
XXXXXXXXXX
NUMBER
VALUES
XXX
001 002 003 004 005 006 007
)
DATA PORTION (36 Characters) repeated Number-Values Times
LVL-QLTY
INDCTR
X
TIME
XXXX
PRESSURE
XXXXX
HEIGHT
XXXXXX
TEMP
XXXX
RH
XXX
WIND
DIR
XXX
WIND
SPD
XXX
QUALITY
FLAGS
XXXXXX
TYPE OF
LEVEL
X
TAPE 008
FIELD
009 010
Oil
012 013 014
015
016
017
RH
XXX
WIND
DIR
XXX
WIND
SPD
XXX
QUALITY
FLAGS
XXXXXX
TYPE OF
LEVEL
X
TAPE 1998
FIELD
1999
2000
2001
2002
A-10
-------
TAPE FIEL'D
TAPE
RECORD POSITION
ELEMENT DESCRIPTION
001
002
003
004
005
006
007
001-008
009-012
013
014-018
019
020-029
030-032
STATION IDENTIFICATION
LATITUDE
LATITUDE CODE N/S
LONGITUDE
LONGITUDE CODE E/W
DATE AND TIME (YR/MO/DY/HR)
NUMBER OF DATA PORTION GROUPS
THAT FOLLOW
008
009
010
Oil
012
013
014
015
016
017
(1958-1972)
(1973-1987)
(1988-2002)
033
034-037
038-042
043-048
049-052
053-055
056-058
059-061
062-067
068
(7125-7160)
(7161-7196)
(7197-7232)
LEVEL QUALITY INDICATOR
TIME (ELAPSED TIME SINCE RELEASE)
PRESSURE
HEIGHT
TEMPERATURE
RELATIVE HUMIDITY
WIND DIRECTION
WIND SPEED
FLAG FIELD (QUALITY FLAGS)
TYPE OF LEVEL
DATA GROUPS IN THE SAME FORM AS TAPE FIELDS
008-017. REPEATED AS MANY TIMES AS NEEDED
TO COMPLETE ONE UPPER AIR OBSERVATION. A
MAXIMUM OF 200 LEVELS ARE POSSIBLE.
A-ll
-------
The following COBOL and FORTRAN statements are to be used as guidelines only.
NCDC recognizes the fact that many different types of equipment are used in
processing these data. It is impossible to cover all the idiosyncrasies of
every system.
Typical ANSI COBOL Data Description.
This ANSI Standard COBOL Data Description is expected to work on most
systems.
FD UA-DATA
LABEL RECORDS ARE STANDARD
RECORDING MODE D
BLOCK CONTAINS 12000 CHARACTERS.
01 UA-RECORD.
02 STATION-NUMBER
02 LATITUDE.
03 LATITUDE-HUM
03 LATITUDE-ALPH
02 LONGITUDE.
03 LONGITUDE-NUM
03 LONGITUDE-ALPH
02 DATE-TIME.
03 YEAR
03 MONTH
03 DAIS
03 HOUR
02 NUMBER-OF-LEVELS
02 LEVEL-RECORD
OCCURS 1 to 200 TIMES
03 QUALITY-INDICATOR
03 ELAPSED-TIME
03 PRESSURE
03 HEIGHT
03 TEMPERATURE
03 RELATIVE-HUMIDITY
03 WIND-DIRECTION
03 WIND-SPEED
03 FLAGS.
04 TIME-FLAG
04 PRESSURE-FLAG
04 HEIGHT-FLAG
04 TEMPERATURE-FLAG
04 R-H-FLAG
04 WIND-FLAG
04 TYPE-OF-LEVEL
PICTURE X(8).
PICTURE 9999.
PICTURE X.
PICTURE 99999.
PICTURE X.
PICTURE 9(4).
PICTURE 99.
PICTURE 99.
PICTURE 99.
PICTURE 999.
DEPENDING ON NUMBER-OF-LEVELS.
PICTURE X.
PICTURE 999V9.
PICTURE 999V99.
PICTURE S99999
SIGN LEADING SEPARATE.
PICTURE S99V9 .
SIGN LEADING SEPARATE.
PICTURE 999.
PICTURE 999.
PICTURE 999.
PICTURE X.
PICTURE X.
PICTURE X. . '
PICTURE X.
PICTURE X.
PICTURE X.
PICTURE X.
A-12
-------
FORTRAN 77 Example 1.
This description is for those systems that can handle variable blocked
records normally.
IMPLICIT INTEGER (A-Z)
OPEN (10.FILE - 'FILENAME',ACCESS - 'SEQUENTIAL', STATUS - 'OLD',
+ RFORM - 'VB',MREL - '1230',TYPE - 'ANSI', BLOCK - '12000')
C LAST line of OPEN statement is SPERRY UNIQUE
CHARACTER*8 STNID
CHARACTER*! LATA,LONA,QIND(200),TIMEF(200),PRESSF(200),
+ HGTF(200),TEMPF(200),RHF(200),WINDF(200),TTPLEV(200)
REAL*4 LAT,LON,ETIME(200),PRESS(200),HGT(200),TEMP(200)
DIMENSION ETIMEC200),PRESS(200),HGT(200),
+ TEMP(200),RH(200),WD(200),WS(200)
READ (10,20,END-999) STNID,LAT,LATA,LON,LONA,YEAR,
•»• MONTH,DAY,HOUR,NUMLEV,(QIND(J),ETIME(J),
+ PRZSSC J) ,HGT( J) ,TEMP( J) ,RH( J) ,WD( J),WS( J) ,
+ TIMEFCJ),PRESSF(J),HGTF(J),TEMPF(J),RHF(J),
+ WINDF(J),TYPLEV(J),J-1,NUMLEV)
20 FORMAT (A8,F4.0,A1,F5.0,A1,14,3(12),13,200(A1,F4.1,F5.2,
+ F6.0,F4.1,3(I3),7A1))
IBM JCL NOTES.
v
(1) For ASCII Variable specify:
LREC - 7236
RECFM - DB
OPTCODE - Q
(2) For EBCDIC Variable specify:
LRECL - 7236
RECFM - VB
A-13
-------
FORTRAN 77 Example 2.
This description is for those systems that can't handle variable blocked
records normally.
$ MOUNT/FOREIGN/BLOCKSIZE-12000 MT: tapename TAPE: ! THIS IS VAX
! UNIQUE
PROGRAM TAPEREAD
IMPLICIT INTEGER (A-Z)
• • • * •
OPENC1.FILE-TAPE:'.ACCESS-1 SEQUENTIAL1,FORM-FORMATTED1,
+ STATUS-'OLD'.READONLY)
CHARACTER BUFFER* 12000 I TOUR MACHINE MUST SUPPORT
CHARACTER *8 STNID ! CHARACTER VARIABLES THIS LARGE
CHARACTER*! LATAfLONA,QIND(200),TIMEF(200),PRESSF(200),
+ HGTF(200),TEMPF(200),RHF(200),WINDF(200),TYPLEV(200)
REAL*4 LAT,LON,ETIME(200),PRESS(200),HGT(200),TEMP(200)
DIMENSION ETIMEC200),PRESS(200),HGT(200),TEMP(200),RH(200),
+ WD(200),WS(200)
• • • • •
NBYTES-0
5 NBEG-1
READ(1,101,END-99)BUFFER IREAD IN PHYSICAL RECORD (BLOCK)
10 NBEG-NBEG+NBYTES
READ(BU,FFER(NBEG:NBEG+3,102)NBYTES IREAD THE CONTROL WORD
JF( NBYTES.EQ.O )GO TO 5
READ( BUFFERC NBEG+4: NBEG+NBYTES-1), 103 ) STNID, LAT, LATA, LON, LONA .YEAR,
+ MONTH,DAY,HOUR,NUMLEV,(QIND(J),ETIME(J),PRESS
-------
TAPE
TAPE RECORD ELEMENT
FIELD POSITION NAME CODE DEFINITIONS AND REMARKS
001 1-8 STATION- STATION IDENTIFICATION— For U.S. controlled and
ID cooperative stations, the WBAN number (TD-6201).
For stations received through GTS, the WMO number
(TD-6202). TD-6203 has general WMO numbers but
some are WBAN numbers* This field may contain
alphabetic characters for ships and remote sensed
observations. Numeric station numbers are right
justified and zero filled, while alphanumeric
station indentifiers are left Justified and -blank
filled. If unknown, this field contains
"99999999". If the station identification is
unknown, both latitude and longitude must be
present.
002 9-12 LATITUDE LATITUDE—The station latitude in degrees and
minutes. When unknown, this field contains
"9999". Latitude will not normally appear for
land stations.
003 13 LATITUDE LATITUDE CODE— CODE used to indicate the
CODE Northern (N) or Southern (S) latitudes.
004 14-18 LONGITUDE LONGITUDE—The station longitude in degrees and
minutes. When unknown, this field contains
"99999". Longitude will not normally appear for
land stations.
005 19 LONGITUDE LONGITUDE CODE—CODE used to indicate Longitudes
CODE East (E) .or West (W).
006 20-29 DATE-TIME DATE/TIME—The scheduled time of the observation,
as defined by WMO. The format of date/time is
YYYYMMDDHH, i.e., year, month, day, hour. This
field may never be unknown.
20-23 YEAR YEAR-This is the Year of record. Range of values
are 1946-current year processed.
24-25 MONTH MONTH-This is the Month of record. Range of value
are 01 to 12.
A-15
-------
TAPE
FIELD
TAPE
RECORD
POSITION
ELEMENT
NAME
26-27
DAY
CODE DEFINITIONS AND REMARKS
OAY-This is the Day of record, Range of values are
01 to 31.
28-29
HOUR
HOUR-This is the Hour of record. Range of value
are 00 to 23. Hour is GMT. Normal scheduled
observation times are 00 and 12 GMT. For selected
periods and areas observations may have been taken
at other times, especially 06 and 18 GMT.
007 30-32 NUMBER- NUMBER-OF-REPEATING-GROUPS—This number represents
REPEAT- the number of data levels found in the current
GROUPS observation, including edited levels. Range of
values are 001-200. Two hundred is the maximum
number of levels.
008
33
LEVEL- LEVEL-QUALITY-INDICATOR—Denotes the results of
QUALITY- any quality controls applied to this level. Range
INDCTR is as follows:
0 Original values are correct.
1 Original values are missing.
2 Original values doubtful, a corrected level
follows.
3 Original values doubtful, uncorrected.
4 Original values in error, a corrected level
follows.
5 Original values in error, uncorrected.
6 Corrected level.
9 Level not checked.
A-Z Indicators supplied by NMC.
(A-G, blank) Automatic via computer system.
A Passed vertical consistency check with
tight limits.
B Failed vertical consistency check and has
not been recomputed.
C Failed vertical consistency check and was
recomputed.
D Failed vertical consistency check with
tight limits and passed with loose limits.
E (Not assigned)
F Has been checked but did not pass vertical
consistency check with loose limits.
G (Not assigned)
blank (Not specified)
A-16
-------
TAPE
TAPE RECORD ELEMENT
FIELD POSITION NAME
CODE DEFINITIONS AND REMARKS
008 continued
(H-P, $) Manual via Human Intervention
H Hold value for next analysis run
I (Same as A)
J (Same as B)
K (Same as C)
L (Same as D)
M (Same as E)
N (Same as F)
0 (Same as G)
P Purge from analysis run
009 34-37 TIME- TIME-The elapsed time since the release of the
SINCE- sounding in minutes and tenths. If the elapsed
RELEASE time is not known, this field contains "9999".
Range is 0001 through 9999. Available only for
U.S. quality controlled stations beginning Jan.
1981.
010 38-42 PRESSURE- PRESSURE-Atmospheric pressure at the current level
AT-LEVEL in kilopascals and hundredths. If unknown, this
field contains "99999". (TD6201 only - Subsurface
levels were generated from Jan. 1, 1981 through
Feb. 28, 1986. The values were always unknown.
This practice was stopped Mar. 1, 1986.)
Oil 43-48 HEIGHT- HEIGHT-Geopotential height of the current level
AT-LEVEL in whole meters. If unknown, this field contains
"-99999". Range of values are -99999 through
99999.
012
49-52
TEMPERATURE
AT-LEVEL
TEMPERATURE-The free air temperature at the
current level in degrees and tenths Celsius. If
unknown, this field contains "-999". Range of
values -999 through 999.
013 53-55 RELATIVE- RELATIVE-HUMIDITY-The relative humidity at the
HUMIDITY current level in whole percent. If unknown, this
AT-LEVEL field contains "999". In TD-6202, relative
humidities are derived statistically for RH's not
reported originally.
A-17
-------
TAPE
FIELD
TAPE
RECORD
POSITION
ELEMENT
NAME
CODE DEFINITIONS AND REMARKS
014 56-58 WIND- WIND-DIRECTION-Direction of the wind at the
DIRECTION current'level in whole degrees (nearest five
AT-LEVEL degrees for observations received through GTS)«
If unknown, this field contains "999".
015 59-61 WIND-SPEED WIND-SPEED-Speed of the wind in whole meters per
AT-LEVEL second. If unknown/ this field contains "999".
016 62-67 QUALITY- QUALITY-FLAG-FIELD—This field contains the
FLAGS results of any quality control procedures,
identifying each individual element found in error
(see table below).
QUALITY CONTROL FLAG
0 Element is correct
1 Element is doubtful
2 Element is in error
3 Replacement value
4 Assumed or estimated value
9 Element not checked
A-Z Indicators supplied by NMC
(A-G, blank) Automatic via computer system.
A Passed vertical consistency check with
tight limits.
B Failed vertical consistency check and has
not been recomputed.
C Failed vertical consistency check and was
recomputed.
D Failed vertical consistency check with
tight limits and passed with loose limits.
E (Not assigned)
F Has been checked but did not pass vertical
consistency check with loose limits.
G (Not assigned)
blank (Not specified)
(H-P, $) Manual via Human Intervention
H Hold value for next analysis run
I (Same as A)
J (Same as B)
K (Same as C)
L (Same as D)
M (Same as E)
N (Same as F)
0 (Same as G)
P Purge from analysis run
A-18
-------
TAPE
TAPE RECORD
FIELD POSITION NAME
CODE DEFINITIONS AND REMARKS
62
TIME-QF
Time Quality Flag
PRESSURE-QF Pressure Quality Flag
64
HEIGHT-QF Height Quality Flag
65
TEMPERATURE- Temperature Quality Flag
OF
66
RELATIVE- Relative Humidity Quality Flag
HUMIDITY-QF
67
WIND-QF
Wind Quality Flag
017
68
TYPE-OF TYPE OF LEVEL FLAG—See Table below.
0 Surface
1 Mandatory
2 Significant
3 Generated
4 Tropopause
5 Maximum wind
9 Other/unspecified
NOTE: TD-6201 through December 1975 will contain
Type of Level Flags 0, 1, and 9 only. The
significant flag is not present.
A-19
-------
-------
APPENDIX B
TD-3240 PRECIPITATION
DATA FORMAT DESCRIPTION
-------
-------
TD-3240
HOURLY PRECIPITATION
RAINFALL MEASURING INSTRUMENTS
Q
*
\
\
I*
noaa
NATIONAL OCEANIC AND
ATMOSPHERIC ADMINISTRATION
i'J A i_ r
AMD I
NATIONAL CLIMATIC DATA CENTER
ASHEVILLE, N C
B-l
-------
HOURLY PRECIPITATION DATA
TD-3240
Prepared by
National Climatic Data Center
Federal Building
Asheville, North Carolina
JUNE 1990
This document was prepared by the U.S. Department of Commerce, National Oceanic
and Atmospheric Administration, National Environmental Satellite Data and
Information Service, National Climatic Data Center, Asheville, North Carolina.
This document is designed to provide general information on the content, origin,
format, integrity and the availability of this data file.
Errors found in this document should be brought to the attention of the Data Base
Administrator, NCDC.
B-2
-------
INDRCDDCnCN
HISTCKJf AND DATA. SCGRCE
The observations in this Hourly Precipitation Data File were taken by
observers at principle (primary) stations, secondary stations, and cooperative
observer stations operated by the National Weather Service (NWS), and the
Federal Aviation Agency (FAA).
Approximately 5500 stations have recorded precipitation data through the
period of this digital file. Initially from August 1984 to September 1951,
data were keyed on punched cards by the regional Weather Records Processing
Centers. Then the task was transferred to the National Climatic Data Center
(NCDC) in Asheville, NC. The hourly precipitation data file was transferred
from punched cards to magnetic tape (TD-9657) during the late 1960s. This
data file was then converted to the element file structure during 1984.
Several recording (weighing) rain gauge instruments were used in measuring
hourly precipitation, but by September 1963 many Fischer Porter precipitation
gauge instruments with automated readout, recorded on paper tape, were phased
in. By early 1965, about 200 of these were in operation and they became the
primary recording instrument. Currently, there are approximately 2000 Fischer
Porter gauges in operation. The universal Rain gauge is the other primary
instrument used to create this data file. It has an automated readout
recorded on paper charts. Station and dates of conmissioning of weighing rain
gauges are in the Station History listings available at the NCDC in Asheville,
NC.
The data in this file are a combination of original observations of hourly and
daily amntmiatfad precipitation. Precipitation values are checked and edited
as necessary on an automated and manual edit.
Data before 1984 were converted from existing digital files (TD-9747) to the
element structure format. These (historical) data were processed through a
gross value check only. Beginning January 1984, the hourly precipitation data
were processed through a completely revised system, which produces the element
structure database file. Data are subjected to new computer editing
procedures reducing the manual handling of the data.
This data file is unique when compared to the other NCDC Element Files. No
corrected or edited data are available in this data file. The data are
classified as original data.
Areal coverage includes the Waited States, Puerto "Rico, Virgin Islands, and
U.S. protectorates located in the Pacific.
The--hourly digital -file contain: record type, station identification, dares,
units of measurement indicator, data flags, and element type.
Hourly Precipitation Data: Hourly precipitation including the daily total.
These are the only data in this file.
B-3
-------
FGRPOSE OF mre MftNCRL
This manual was designed so that reference to other reference material should
be unnecessary- Inventories, station listings, or any additional information
may be obtained if necessary by writing or calling:
National Climatic Data Center E/CC42
ATTN: User Services Branch
Federal Building
Asheville, North Carolina 28801-2696
Telephone inquiries may be directed to:
Commercial 704 259-0682
PIS 672-0682
Bead carefully the "Manual and Tape Notations" and "Code Definitions and
Remarks" sections.
SPECIAL NOTES
1. QCmNTTIY-DATA CCMPACTION
It stands to reason that for most hours the non-occurrence of precipitation is
prevalent. Therefore-, in order to save space in the digital file, there are
entries only for:
1. The first day and hour of each month were observations were taken
even if no precipitation occurred during that month.
2. Hours ,with precipitation > zero.
3. vBeginning and ending hours of missing periods.
4. Beginning and ending hours of accumulating periods.
5. Beginning and ending periods of deleted data.
6. First and last day of each month where the required charts or forms
never were received or processed at NCDC.
B-4
-------
TAPE PORMKT
MBNOAL AND TAPE NQEMUCNS
1. FILE (NCDC Variable Length Storage Structure)
A. Physical Characteristics
Data in this set are retained in chronological order by station.
B. COBOL OR FORERAN Data Description
The following statements nay be used to read a logical record in COBOL or
FORTRAN for variable length.
(1) Typical ANSI COBOL
FD INDAIA
LABEL RECORDS ARE STANDARD
RECORD MODE D
BLOCK CONTAINS 12000 OiARACTERS
DATA RECORD IS DATA-RECORD
01 DATA RECORD
02 RECORD TYPE PIC X(3)
02 STATION-ID PIC X(S)
02 ELEMENT-TYPE PIC X(4)
02 ELEMENT-UNITS PIC XX
02 YEAR PIC 9(4)
02 MONTH PIC 99
02 DAY PIC 9(4)
02 NUMBER-VALUES PIC 9(3)
02 DAILY-ENTRY
OCCURS 1 TO 100 TIMES DEPENDING ON NUMBER-VALUES
04 BOOR PIC 9(4)
04 DATA-VALUE PIC 9(6)
04 FIAG-1 PIC X
04 FIAG-2 PIC X
B-5
-------
(2) Typical FORERAN 77
DEFINE FILE 10 (ANSI, VB, 1230, 12000)
CHARACTERS RECTYP
CHARACTER*8 S1N1D
CHARACTER*4 ELMTYP
C3ffiRACTER*2 EUNITS
CHARACTER*! FIAG1, FLAG2
DIMENSION IVALUE( 100) , FLAGl(lOO) , FLAG2(100) , IHR(IOO)
READ (10,20,END=999) RECTO*, STNID, EEMTYP, EUNTTS, IYEAR, IM3N,
IDAY, NUMVAL, ( (IHR(J) , IVALUE(J) , FLAGl(J) , FIAG2(J)),
J=1,NDMVAL)
20 FORMAT (A3, 'AS, A4, A2, 14, 12, 14, 13, 100(14, 16, 2A) )
NOTE: If you do not have B3OBMI 77, you can read the character
abowe into isteg&c vsorxables.
' C. IBM JCL NOTES
(1) For ASCH Variable specify:
LRECL - = 1234
RECSM = DB
OPTOXE - Q
(2) For EBCDIC Variable specify:
LHECL - 1234
RECFM = VB
2. RECORD
A. Physical Characteristics
Each logical record contains one day of one station's occurrences of
precipitation. The record consists of a control word and identification
portion, and a data portion. The control word is used by the computer
operating system for record length determination. The identification
portion identifies the observing station, year, month, day, and record
element units code. The data portion contains the hour, precipitation
occurrence and measurement flags. The data portion is repeated for as
many values as occur in the given time interval.
NCDC Library Tapes are structured as follows:
Record Length
Blocked
Media
Density
Parity
Label
File
Variable with maximum of 1230 characters
12000 characters
ASCII 9 Track
6250 BPI
Odd
ANSI Standard Labeled
1 File per cape
B-6
-------
B. FORMAT (VARIABLE RECORD)
The first eight tape fields, the ID PORTION of the record, describe the
characteristics of the entire record. The DATA PORTION of the record
contains information about each element value reported. This portion is
repeated for as many values as occur in the daily record of hourly values
plus the daily total.
Each logical record is of variable length with a maximum of 1230
characters. Each logical record contains a station's data for a specific
meteorological element over a one-day interval. The form of a record is:
ID PORTION (30 characters) Fixed length
TAPE
FIELD
RBC
TYP
XXX
001
STATION
ID
xxxxxxxx
002
ELEM
TYPE
xxxx
003
DMT
XX
004
YEAR
XXXX
005
MDN
XX
006
DAY
XXXX
007
NO.
VAL
XXX
008
DATA PORTION (12 Character Data Portion repeats the number
of t"jjva«s indicated by the rigt-a value stored
in Tape Field 008)
TAPE
K i m r>
HFMN
XXXX
009
DATA
ELEM
VALUE
xxxxxx
010
FL
1
X
on
FL
2
X
012
HRMN
XXXX
013
DATA
ELEM
VALUE
XXXXXX
014
FL
1
X
015
FL
2
X
016
TAPE
FIELD
HFMN
XXXX
105
DATA
ELEM
VALUE
XXXXXX
106
FL
1
X
107
FL
2
X
108
B-7
-------
'.LAMS
TAPE FTPTI? P.E)ntTtO POSITION FrrMFWT D|gjLXLFJ.'I.CK
001 001-003 RECORD TYPE
002 004-011 STATION ID
003 012-015 METEOROLOGICAL ELEMENT TYPE
004 016-017 MET. ELEMENT MEASUREMENT UNITS
005 018-021 YEAR
006 022-023 MONTH
007 024-027 DAY (Right justified zero filled)
008 028-030 NCMBER OF DATA GROUPS THAT FOLLOW
009 031-034 HDOR (left justified zero filled)
010 035-040 VALUE OF METH2ROLO3ICAL ELEMENT
Oil 041 MEASUREMENT FLAG 1
012 042 QUALITY FLAG 2
(013-016) (043-054) DATA GROUPS IN THE SAME FORM AS
(017-020) (055-066) TAPE FIELDS 009-012. REPEATED
(021-024) (067-078) AS MANY TIMES AS NEEDED TO
CONTAIN ONE DAY OF HOURLY VALUES
(105-108) (319-330)
B-8
-------
TAPE
TAPE
001
1-3
Record-Type
Hie type of data stored in this
record. Value is "HPD".
002
4-11
Station-ID
This 8-character station identifier
is assigned by the National Climatic
Data Center. See State Code Table.
4-5
State-Code
CODE as indicated. Range of
value is 01 to 48, 66, 67, and 91.
STATE CODE TABLE
28 New Jersey
29 New Mexico
30 New York
31 North Carolina
32 North Dakota
33 Ohio
34 Oklahoma
35 Oregon
36 Pennsylvania
37 Rhode Island
38 South Carolina
39 South Dakota
40 Tennessee
41 Texas
42 Utah
43 Vermont
44 Virginia
45 Washington
46 West Virginia
47 Wisconsin
48 Wyoming
49 Not Used
(1st Order Only)
50 Alaska
51 Hawaii
66 Puerto Rico
67 Virgin Islands
91 Pacific Islands
01
02 Arizona
03 Arkansas
04 California
05 Colorado
06 Connecticut
07 Delaware
08 Florida
09 Georgia
10 Idaho
11 Illinois
12 Indiana
13 Iowa
14 Kansas
15 Kentucky
16 Louisiana
17 Maine
18 Maryland
19 Massachusetts
20 Michigan
21 Minnesota
22 Mississippi
23 Missouri
24 Montana
25 Nebraska
26 -Nevada
27 New Hampshire
6-9
Cooperative
Network Index
Cooperative Network Index Number
assigned by NCDC. (Station List:)
Range 0001 thru 9999.
B-9
-------
TAPE
TKPE
ELEMENT
NAME
AND REMAINS
Cooperative
Network
Division Number
Cooperative Network Division Number.
The division number will always be
00 in this HPD data set.
003
12-15
Element-Type
The type of data element stored in
this record. Range of values is
below.
HPCP Hourly precipitation data.
This is the only data type
reported. (Includes the daily
total.)
004
16-17
Element-Units
The units and decimal position of
the data value for this record.
Range of values is listed below.
HI Hundredths of inches. Data
stored and observed to the sam
accuracy.
HT Data stored as hundredths of
inches, but is observed to
tenths only. (Primarily
Fischer Porter)
IT Same description as HT.
005
18-21
Year
This is the year of record. Range
of values is generally from 1948-
current year processed. (Few
stations begin earlier.)
006
22-23
Msnth
Month of record.
01-12. '
Range of value is
007
24-27
Day
Day of record. Range of value 0001-
0031. Days are right justified zero
fined.
B-10
-------
TAPE
FIELD
TAPE
RECORD
POSITION
ELEMENT
NAME
CODE DEFINITIONS AND REMARKS
008
28-30 Number-
Reported-Values
This denotes the actual number of
values. Range of values is 2 to 100.
NOTE: A record may contain fewer or
more data values than you might
expect. A daily record of hourly
values may contain as few as 2 data
values or as many as 100 data .values.
If a particular data value was not
taken, there is no entry for it.
Missing values are reported as
missing. See Flag 1 definitions.
009
31-34
Time-Of-Value
This contains the ending time of the
precipitation 0100-2500. The hour is
left justified, zero filled. Hour
2500 contains the daily total, and it
will always be the" last value of a
record. Midnight = 2400. Local
Standard Time in use.
010
35-40
DATA-VALUE
The actual precipitation data value.
The data value portion is a six-digit
integer. Units and decimal position,
if appropriate, are indicated in the
ELEMENT-UNITS field described in Tape
Field 004. Range = 000000-099999.
000000 will be used only on the first
hour of each month unless there is
precipitation during that hour, in
which case the measured value will be
provided. On other days during the
month without precipitation, no entry
will be made. 099999 indicates that
the DATA-VALUE is unknown.
B-ll
-------
TAPE
TSPE
RECCED
posrcicN
ELEMENT
NAME
CCOB DEFPimCMS AND REMARKS
Oil
41
FLftGl
The Data Measurement Flag.
FLAG1 Table (Measurement Flag)
A Accumulated period and amount.
An accumulated period indicates
that the precipitation amount is
correct, but the exact beginning
and ending tiroes are only known
to the extent that the
precipitation occurred sometime
within the accumulation period.
Begin accumulation data value in
Tape Field 010 will always be
099999. The examples below do
not represent the actual data
format. They are used to
illustrate the use of data
measurement Flag 1.
Example 1: 01 0100099999Ab 01
ISOOOOOOAb. (Precipitation on
the 1st day of a month was
ary» ttmi 1 frt-frf ff tjin 0100 through
1500 hours. Total accumulation
was .80 inch of precipitation.)
Example 2: 03 0500099999Ab 03 2500
099999Ib 04 18 00000018 OAb.
(Accumulation of precipitation
began on day 03 at 0500 hours.
Day 03 daily total was incomplete
ffrre to the arirstjmti a-£lj-)cj period
continuing into the next day. On
day 04 at 1800 hours, the
accumulation period ended. The
total accumulation was 1.80
inches of precipitation.)
B-12
-------
TAPE
TAPE
RECCED
ELEMENT
Oil (continued)
Example 3: (Month 02) 03
0100099999aB 03 2500099999Ib 04
0800000180B 04 2500000180Ib.
(Accumulation of precipitation
began on (Month 02) , day 03 at
0100 hours. Day 03 of (Month 02)
daily total was incomplete due to
the accumulating period
continuing into the next month.
On (Month 03) day 01 at 0100
hours the accumulation continues.
On (Month 03) day 04 at 0800
hours, the accumulation period
ended with 1.80 inches
precipitation being recorded.
The daily total on the 4th was
considered incomplete. )
D Deleted Flag. (Beginning and
ending of a deleted period.) A
deleted value indicates that the
original data were received, but
were unreadable or clearly
recognized as noise.
I Incomplete Flag. This flag
occurs only in the daily total.
M Missing Flag. (Beginning and
ending of a -missing period.) A
missing flag indicates that the
data were not received. This
flag appears on the first and
last day of each month for which
data were not received or not
pro
by NO3C.
Prior, to 1984 a missing period
was recorded as " OOOOOM" at the
beginning and ending hours. If
precipitation occurred during the
last hour of the missing period,
the second M appears with a non-
zero value.
Beginning in 1984 the beginning
and ending hours of the rnissing
period are recorded as "099999M".
B-13
-------
TAPE
K i H n
Oil (cont
T2VPE
KJUUUtOJ
POSJ.TJ.Qff
inued)
ELEMENT
NAME
CODE DEFIN3
b (blank)
HQNS AND REMARKS
no Flag
needed.
012
42
FIAG2
This flag not used at this time.
The field will always be blank.
EXAMPLES OF K3W FUGS ARE USED
This precipitation accumulation from list month day 02 to 2nd month day 04.
MuiLh.
01
02
Day
0002
0001
0004
Hoar Data Value
0500 000030bb
1000 099999Ab Accumulation begins
2500 000030333 Incomplete daily total
0100 099999Ab Accumulation continues
2500 099999333 Incomplete daily total
1400 000390Ab Accumulation ends
2500 000390333 Daily total
Accumulated precipitation for r monthly only.
01 0002
099999Ab Accumulation begins
099999Ib Incomplete daily total
00032QAb At ,* •* jiwla*"inn ends
1000
2500
0031 2400
2500 000320333 Incomplete daily total
Accumulated, deleted, and missing precipitation data through months 01 and 02.
01
02
02
0001
0002
0001
0028
0100
1100
2500
0100
1400
1500
2500
1300
1400
2400
2500
OOOOOObb First
099999Ab
d of the month
begins
099999333 Incomplete daily total
099999Ab Accumulation continues
00063 OAb Accumulation ends
099999Db Deleted data begins
000630333 Incomplete daily total
099999Db Deleted data ends
099999Mb Missing data
099999Mb Missing data
099999333 ' Incomplete daily total
Required precipitation charts or forms were never received at NCEC.
01 0001 0100 099999Mb Missing data
2500 099999Mb
0031 0100 099999Mb
2500 099999Mb
02 0001 0100 099999Mb
B-14
-------
2500 099999Mb
0028 0100 099999Mb
2500 099999Mb
NOTE: blank
B-15
-------
SAMPLE RHJUWJ
(As seen from a tape dump)
(column 1 2 3'4 5 6
scale) 123456789012345678901234567890123456789012345678901234567890
(data) 0058HPD17001100HPCEHri9810400060020400000012bb2500000012bb
(The symbol 'b1 denotes a blank)
DCMP
1-4
5-7
8-15
16-19
20-21
22-25
26-27
28-31
32-34
35-38
39-44
45
46
47-50
51-36
57
53
•KJUUUMJ
POCaJL'JL'JLCN
1-3
4-11
12-15
16-17
18-21
• 22-23
24-37
28-30
31-34
35-40
41
42
43-46
47-52
53
54
0058
HPD
17001100
HPCP
HE
1981
04
0006
002
0400
000012
b
b
2500
000012
b
b
Record control word used by the
operating system. (Contains the
total number of characters in the
record - not available to user
programs.)
RECORD-TYPE
STATION-ID for state 17, station
0011, DI7 00
ELEMENT—TYPE
ELEMENT-UNITS
YEAR
ttCNTH
DAY OF THE MONTH (Day 06 right
justified)
NuM-VALUES;
follow
two data entries to
TIME-OF-VALDES X
(Precip from 03:01 to 04:00) X
DATA-VALUE.
FIAG-1
FIAG-2
TIME-OF-VALUE (daily total)
DATA-VALUE
FLAG-1
FLAG-2
X FIRST
X DATA
X ENTRY
X
X
X
X
X SECOND
X DATA
X ENTRY
X
X
In this case, hours midnight-0300 and 0400-2400 resorted no precipitation.
B-16
-------
APPENDIX A
FIXED DATA. S'lMJClUKE (TD-3240)
Definitions and general information abovrt Hourly Precipitation data are
contained in the basic documentation used to describe the format of variable
length records..
1. File (NCDC Fixed Length (User Services))
A. Physical Characteristics
Data in this file are retained in chronological order by station.
B. COBOL or FORERAN Data Descriptions
The following statements nay be used to read a logical record in COBOL
or FORERAN for fixed length.
(1) Typical ANSI COBOL
FD INDATA
LABEL RECORDS ARE STANDARD
RECORD KDDE F
BLOCK CONTAINS 6300 CHARACTERS
DATA RECORD IS DATA-RECORD
01 DATA-RECORD
02 KECCOTHTYPE PIC X(3)
02 STATION-ID PIC X(8)
02 ELEMENT-TYPE PIC X(4)
02 ELEMENT-ONUS PIC XX
02 YEAR PIC 9(4)
02 MDNTH PIC 99
02 DAY PIC 9(4)
02 NUMBER-VALUES PIC 9(3)
02 HOUR PIC 9(4)
02 DATA-VALUE PIC 9(6)
02 FLAG-1 PIC X
02 FIAG-2 PIC X
B-17
-------
(2) Typical FORTRAN 77 Data and File Description
DEFINE FILE 10 {ANSI, FB, 42,6300)
CHARACTERS RECTYP
CHARACTER*8 STNID
CHARACTER*4 ELMTYP
CHARACTER*2 EUNITS
CHARACTER*! FLAG1, FUG2
READ (10, 20, END-999) RECTYP, STNID, ELMTYP, EUNITS, IYEAR, IMON,
IDAY, NUMVAL, IHR, IVALUE, FLAG1, FLAG2
20 FORMAT (A3, AS, A4, A2, 14, 12, 14, 13, 14, 16, 2A1)
NOTE: If you do not have FORTRAN 77, you can read the character
data described above Into Integer variables.
1. RECORD
A. Physical Characteristics
Each logical record contains one station's specific occurrence for a one
hour time interval. The record consists of an identification portion, and
a data portion. The identification portion identifies the observing
station, element codes, year, month, and day. The data portion contains one
hourly time interval data value and flags. The data portion is not
repeated.
Fixed,Length (User Services) Tapes are structured as follows:
Data Length
Blocked
Media
Parity
Label
File
Density
FIXED 42 characters
6300 characters
ASCII or EBCDIC Modes - 9 Track
Odd
ANSI standard label'ed (ASCII only) or unlabeled
1 file per tape
800, 1600, or 6250 BPI
B-18
-------
TOPE
TOPE FEEOD RHULHU PTfiTTTCH VTftmfP
001 001-003 RBJ-JPD TYPE
002 004-011 ' STATION ID
003 012-015 METH3ROLOGICAL ELEMENT TYPE
004 016-017 MET. ELEMENT MEASUREMENT GNUS
005 018-021 YEAR
006 022-023 MCNIH
007 024-027 DAY (Right justified zero filled)
008 028-030 NCMBER OF DATA (SOUPS TfffiT POLLCW
009 031-034 HDOR (Left justified zero filled)
010 035-040 VALUE OF METEOROLOGICAL ELEMENT
Oil 041 MEASUREMENT FLAG 1
012 042 QUALITY FLAG 2
B-19
-------
B. FORMAT (FIXED RECORD)
1. The first eight tape fields, the ID PORTION of the record, describe
the characteristics of the entire record. The DATA PORTION of the
record contains information about each element value reported, this
portion contains only one hourly occurrence.
Each logical record is fixed with 42 characters. Each logical record
contains a station's hourly time interval for the specified day. The
form of a record is:
ID PORTION (30 characters) Fixed Length
TAPE
FIELD
REG
•jYp
XXX
001
STATION
ID
xxxxxxxx
002
ELEM
TYPE
xxxx
003
UMT
XX
004
*EAR
XXXX
005.
»EN
XX
006
DAY
XXXX
007
NO.
VAL
XXX
008
DATA PORTION (12 Character Data Portion occurs only 1 time
as indicated in Field 008)
TAPE
FIELD
HRMN(
XXXX
105
DATA
ELEM
VALUE
xxxxxx
106
FL
1
X
107
FL
2
X
108
B-20
-------
FIXED
SAMPLE
(As seai trim a tap* dump)
blank
(column 123456
scale) 123456789012345678901234567890123456789012345678901234567890
(data) HPD17001100HPCPHI19810400060010400000012bb
(The symbol
O3EEMN
1-3
4-11
12-15
16-17
18-21
22-23
24-27
28-30
31-34
V
35-40
41
42
'b' denotes
• IfTw | r1 Jf 1 ^^
HPD
17001100
HPCP
HI
1981
04
0006
001
q400
000012
b
b
a blank)
WHUTW
KEMUMa
KEODRD-TXPE
SranCN-ID for state 17, station 0011, DIV 00
ELEMENT-T5CPE
ELEMENT-aNTTS
YEAR
MCNTH (April)
DAY OF THE JENIH (Day 06 right justified)
NCM-V&IDES; One data entry follows
TIME-OF-VAIDES
(Precip from 03:01 to 04:00)
DATA-VAIDE
FLAG-1
FLAG-2
B-21
-------
-------
APPENDIX C
SAMPLE MESOPAC H INPUT AND OUTPUT FILES
-------
-------
SAMPLE MESOPAC H INPUT FILE (PACJNP)
C-l
-------
NESOPAC TEST CASE - 25 hr simulation skipping 1 day 1/2/88-1/3/88
88 2 25 6 3 5 19
22 22 10000.
TT24FOOOO
1511611 912121212 1101010101212121212
11111111 11212 1 1 1 111101112121212
1111 111111111111 111111112121212
111111 1101010 51111119 9111112121212
5 1 1 1 110 1 1 1 1 1 1 1 1 9 9 11212121212
551111111991199 9111212121212
11 5 5 1 1 11010 1999999 1111212121212
111111 1 510101010 19999 911111212121212
11 5 510 51010101010 9999 911111212121212
12 5 510 51010101010 999 91111111212121212
12 5 5 5 51010101010 9999 611111212121212
121212 5 51010101010 9 9 91111111212121212
1212121212 51010 99 99 91111121212121212
1212121212 55999 99 11111121212121212
121212121212 5599 99 11112121212121212
121212121212 5599 911 112121212121212
12121212121212 559 915 912121212121212
1212121212121212 59 99 91212121212121212
121212121212 5 512 9 912121212121212121212
12121212121212 5 512121212121212121212121212
12121212121212121212121212121212121212121212
12121212121212121212121212121212121212121212
0000000001
12835
12836
12839
12842
12843
12844
72201
72203
72210
080616
080845
081654
083186
084091
084570
084797
085663
085895
086323
086657
086988
087293
087859
088780
089010
089184
089219
089525
0.3
1.4
16.0
-6.1
14.7
17.7
1*6
17.7
-4.7
11.8
17.8
9.8
0.3
14.0
1.4
-0.1
16.0
3.1
13.6
6.0
14.5
12.8
16.1
10.6
14.1
5.7
14.4
17.7
19.3 26.58 81.87 5. 11
-3.2 24.55 81.75 5. 12
10.7 25.80 80.30 5. 13
34.8 27.97 82.53 5. 14
31.2 27.65 80.42 5. 15
20.4 26.68 80.12 5. 16
-3.4 24.53 81.73 5. 17
20.3 26.67 80.12 5. 18
31.5 27.68 82.38 5. 19
20.6
17.0
21.2
19.4
7.3
-3.2
35.2
10.7
22.1
16.6
21.5
12.1
23.8
25.2
10.1
10.3
24.9
31.0
20.5
6.1 0.1
7.0 0.1
7.0 0.1
6.7 0.1
6.7 0.1
6.7 0.1
C-2
-------
SAMPLE MESOPAC II OUTPUT FILE (PACLST)
C-3
-------
-------
RUNTIME CALL NO.: 1 DATE: 06/15/93 TIME: 12:32:26.06
MESOPAC VERSION 2.40 LEVEL 930430
MESOPAC TEST CASE - 25 hr simulation skipping 1 day 1/2/88-1/3/88
YEAR OF RUN (NYR) » 88
JULIAN DAY OF START OF RUN (IDYSTR) * 2
NUMBER OF HOURS IN RUN (IHRMAX) * 25
NUMBER OF SURFACE STATIONS (NSSTA) * 6
NUMBER OF RAUINSONOE STATIONS (NUSTA) « 3
NUMBER OF PRECIPITATION STATIONS (NPSTA) > 19
BASE TIME ZONE (IBTZ) « 5 (E.S.T.)
GRID INFORMATION:
GRID SIZE IN X (VEST-EAST) DIRECTION (IMAX) » 22
GRID SIZE IN Y (SOUTH-NORTH) DIRECTION (JMAX) » 22
GRID SPACINC (DGXID) > 10000.0 (M)
OUTPUT OPTIONS:
GENERATED METEOROLOGICAL FIELDS OUTPUT TO TAPE ? (LSAVE) ' T
METEOROLOGICAL FIELDS PRINTED ? (LPRINT) * T
PRINT FREQUENCY (IPRINF) » 24 (HOURS)
INPUT MET. DATA I INTERMEDIATE COMPUTED PARAMETERS PRINTED ? (LOB) » F
TIME PERIOD FOR WHICH INPUT MET. DATA t INTERMEDIATE PARAMETERS PRINTED (NOY1,NHR1,NOY2,NHR2) > DAY 0 HR 0 TO DAY 0 HR 0
MESOPAC VERSION 2.40 LEVEL 930430
DEFAULT OVERRIDE OPTIONS (0*NO,1*YES)
USER INPUT SURFACE WIND SPEED MEASUREMENT HT (ZM) IOPTSO) * 0
USER INPUT VON (CARMAN CONSTANT (VK) IOPTS(2) * 0
USER INPUT FRICTION VELOCITY CONSTANTS (GAMMA,CONSTA) IOPTS(3) * 0
USER INPUT MIXING HT CONSTANTS (CONSTB,CONSTE,DELTZ,OPTM1N.CONSTN) IOPTS(4) = 0
USER INPUT WIND FIELD VARIABLES (RADIUS,ILUF.IUUF) IOPTS(S) = 0
USER INPUT SURFACE ROUGHNESS LENGTHS (ZO) AT EACH GRID POINT IOPTS(6) * 0
HEAT FLUX CORRECTED USING MIXING HT DATA ? IOPTS(7) » 0
USER INPUT FACTORS (BETA) FOR RADIATION REDUCTION DUE TO CLOU) COVER IOPTS(8) * 0
USER INPUT LAND USE HEAT FLUX CONSTANTS (RADC) IOPTS(9) > 0
RUN NOT STARTING AT BEGINNING OF SURFACE AND UPPER AIR DATA FILES ? IOPTS(10) * 1
SURFACE WIND SPEED MEASUREMENT HEIGHT (ZM) * 10.0 (M)
VON KARMAN CONSTANT (VK) * 0.400
FRICTION VELOCITY CONSTANTS:
GAMMA * 4.7
CONSTA > 1100.0
MIXING HEIGHT CONSTANTS:
NEUTRAL STABILITY MIXING HT CONSTANT (CONSTB) = 1.41
CONVECTIVE MIXING HT CONSTANT (CONSTE) * 0.15
DEPTH OF LAYER THROUGH WHICH POTENTIAL TEMP. GRADIENT IS CALCULATED (DELTZ) =• 200.0 (M)
MINIMUM STABLE POTENTIAL TEMP. GRADIENT (DPTMIN) = 0.0010 (DEC K/M)
STABLE MECHANICAL MIXING HT CONSTANT (CONSTN) = 2400.0
WIND FIELD VARIABLES:
SCAN RADIUS (RADIUS) = 99.0 (GRID UNITS)
C-4
-------
CODE FOR LOWER-LEVEL WIND FIELD (ILWF) s 2 (SEE BELOW)
CODE FOR UPPER-LEVEL WIND FIELD (IUUF) « 4 (SEE BELOW)
WIND FIELD CODE (ILUF,IUUF)
1 - SURFACE WINDS (CD144 DATA)
2 - WINDS AVERAGED THROUGH LAYER FROM GROUND TO MIXING HT (C014A.TDF5600 DATA)
3 - WINDS AVERAGED THROUGH LAYER FROM MIXING NT TO 850 MB (TDF5600 DATA)
4 - WINDS AVERAGED THROUGH LAYER FROM MIXING HT TO 700 MB (TOF5600 DATA)
5 - WINDS AVERAGED THROUGH LAYER FROM NIXING HT TO 500 MB (TDFS600 DATA)
6 • 850 MB WINDS (TDF5600 DATA)
7 - 700 MB WINDS (TOFS600 DATA)
8 - 500 MB WINDS (TDF5600 DATA)
REDUCTION FACTORS OF SOLAR RADIATION DUE TO CLOUD COVER:
CLOUD COVER (TENTHS) 0 1 2 3 4 5 6 7.8 9 10
BETA 1.000 0.910 0.840 0.790 0.750 0.720 0.680 0.620 0.530 0.410 0.230
MESOPAC VERSION 2.40 LEVEL 930430
LAND USE CATEGORIES FOR EACH GRID POINT
Multiply all values by 10 *• 0
22 I
21 I
20 I
I
19 I
I
18 I
I
17 I
I
16 I
I
15 I
I
14 I
I
13 I
I
12 I
I
11 I
10 I
9 :
8 I
7 I
6 I
5 1
1
1
11
+
11
+
5
+
5
+
11
+
11
+
11
*
12
+
12
+
12
12
12
12
12
12
12
5
1
11
+
11
+
1
+
5
+
5
»
11
+
5
+
5
+
5
+
12
+
12
12
12
12
12
12
1
1
1
+
11
+
" 1
+
1
+
5
+
11
+
5
+
5
»
5
+
12
+
12
12
12
12
12
12
1
1
1
•»
1
+
1
#
1
+
1
+
1
+
10
*
10
+
5
+
5
12
12
12
12
12
12
6
1
1
+
10
•»•
1
+
1
+
1
*
5
+
5
+
5
+
5
*
5
+
12
12
+
12
12
12
12
1
1
1
+
10
»
10
*
1
*
1
+
10
+
10
+
10
+
10
+
10
5
5
12
12
12
12
1
1
1
+
10
+
1
+
1
*
10
•
10
+
10
•V
10
*
10
»
10
10
5
+
5
5
12
12
9
1
1
+
5
+
1
+
1
+
10
+
10
+
10
*
10
»
10
+
10
10
9
5
5
5
12
12
1
1
•»
1
*
1
•»
1
»
1
*
10
+
10
•*
10
+
10
+
10
+
9
9
9
9
5
5
12
12
1
+
1
+
1
+
9
+
9
+
1
+
10
»
10
»
10
»
10
9
9
9
9
9
9
12
12
1
+
1
*
1
»
9
»
9
+
9
*
9
+
9
*
9
»
9
9
9
9
9
9
9
12
1
1
+
1
*
1
+
1
*
9
+
9
•*
9
*
9
*
9
+
9
9
9
9
9
9
9
1
1
1
+
1
»
1
+
1
»
9
+
9
+
9
*
9
+
9
+
9
9
9
9
1
1
9
10
1
1
*
1
+
1
+
9
*
9
+
9
*
9
*
9
*
9
*
9
9
1
1
1
5
9
10
1
1
>
9
+
9
+
9
#
9
*
9
+
9
*
11
+
6
+
11
11
11
11
1
9
+
12
10
11
11
+
9
+
9
+
9
+
1
+
11
*
11
*
11
*
11
+
11
11
11
12
12
12
12
10
10
11
+
11
»
1
+
11
+
11
*
11
+
11
+
11
+
11
*
11
12
12
+
12
12
+
12
+
12
12
11
11
»
11
+
12
+
12
+
12
+
12
+
12
»
12
+
12
+
12
12
12
12
12
12
12
12
12
12
+
12
+
12
+
12
»
12
+
12
+
12
*
12
+
12
+
12
12
12
12
12
12
*
12
12
12
12
*
12
+
12
+
12
+
12
*
12
*
12
*
12
4-
12
+
12
12
12
12
12
12
+
12
12 12
12 12
12 12
» +
12 12
* *
12 12
» +
12 12
* +
12 12
+ +
12 12
* +
12 12
+ *•
12 12
* *
12 12
* +
12 12
12 12
12 12
12 12
12 12
12 12
12 12
C-5
-------
4 12
3 12
2 12
1 12
• 1
12 12
12 12
12 12
12 12
2 3
12 12 12
12 12 12
12 12 12
12 12 12
SURFACE ROUGHNESS LENGTH (N)
Multiply all values by 10 "
22 I 200 1000 200 200
21 I 200
20 I 1000
19 I 1000
18 I 1000
17 I 1000
16 I 1000
15 I 1000
14 I 1000
13 I 0
12 I 0
11 I 0
10 I 0
9 I 0
8 I 0
7 1 0
6 I 0
5 I 0
I +
4 I 0
I +
3 I 0
I +
2 I 0
200
1000
1000
200
1000
1000
1&00
1000
1000
1000
0
0
0
0
0
0
0
+
0
+ ~
0
+
0
200
200
1000
200
200
1000
1000
1000
1000
1000
0
0
0
0
0
0
0
*
0
+
0
+
0
200
200
200
200
200
200
200
SOO
500
1000
1000
0
0
0
0
0
0
+
0
+
0
+
0
5
12
5 12
5 5
12 12 12
12 12 12
AT EACH GRID
-3
100 200
200
200
SOO
200
200
200
1000
1000
1000
1000
1000
0
0
0
0
0
0
+
0
*
0
+
0
200
200
500
500
200
200
SOO
SOO
500
500
SOO
1000
1000
0
0
0
0
+
0
+
0
+
0
999
12 12 12
12 12 12
12 12 12
10 11
POINT
200
200
200
500
200
200
SOO
500
500
500
SOO
SOO
SOO
1000
1000
1000
0
0
+
1000
*
0
+
0
12 12 12
12 12 12
12 12 12
12 12 12
12 12 12
12 12 12
12 12 12
12 12 12
12 12 12
12 12 12
12 12 12
12 12 12
12 13 14 15 16 17 18 19 20 21
HESOPAC VERSION 2.40 LEVEL 930430
200
200
200
1000
200
200
500
500
500
500
500
500
500
200
1000
1000
1000
0
+
1000
*
1000
+
0
0
200
200
200
200
200
200
500
500
500
500
500
200
200
200
200
1000
1000
+
0
+
1000
+
0
0
0
200
200
200
200
200
200
500
500
500
500
200
200
200
200
200
200
*
200
+
0
+
0
0
0
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
+
200
+
0
*
0
0
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
»
200
+
0
+
0
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
+
0
+
0
+
0
500
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
1000
200
+
0
+
0
+
0
12
12
12
12
22
500
200
200
200
200
200
200
200
200
1000
100
1000
1000
1000
1000
200
200
0
•f
0
+
0
+
0
SOO
1000
1000
200
200
200
200
1000
1000
1000
1000
1000
1000
1000
0
0
0
0
•f
0
+
0
+
0
SOO
500
1000
1000
200
1000
1000.
1000
1000
1000
1000
1000
0
0
0
0
0
0
+
0
+
0
•*•
0
0
1000
1000
1000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
+
0
+
0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
+ +
0 0
+ +
0 0
0 0
C-6
-------
I
1 I
SURFACE
0
1
ooooooooooooooooooo
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ROUGHNESS LENGTH (M) AT EACH GRID POINT
Multiply all
22 I
1
21 I
1
20 I
I
19 t
I
18 I
I
17 I
I
16 I
I
15 I
I
14 I
I
13 1
I
12 I
I
11 I
I
10 I
I
9 I
I
8 I
I
7 I
I
6 t
I
5 I
I
4 I
t
3 I
I
2 I
I
1 1
I
0
*
0
+
0
*
0
+
0
+
0
*
0
*
0
+
0
+
0
+
0
+
0
+
0
*
0
+
0
*
0
+
0
t
0
+
0
+
0
+
0
•f
0
*
values by 10 ** -3
0
+
0
*
0
*
0
+
0
+
0
*
0
*
0
+
0
*
0
•».
0
+
0
«•*
0
+
0
+
0
+
0
+
0
+
0
+
0
+
0
+
0
+
0
-*•
21 22
HESOPAC VERSION 2.40 LEVEL 930430
C-7
-------
LAND USE HEAT FLUX CONSTANTS (RADC) AT EACH GRID POINT
Multiply all values by 10 ** -4
22 I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
I+ + + + + + + + + ***********
21 I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
I+* + + + + + + + + »* + * + + + »» +
20 I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
I+* + **»**» + **» + + + »* + +
19 1 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
I» + + + » + + + »» + » + + + » + + + *
18 I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
I+» + + »» + ***» + *» + + + + * +
17 I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
I+ + + ** + + * + + *»* + + + + + * +
16 I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
I + * ** + + + **»*» + *»* + »** +
IS I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000, 3000 3000 3000 3000 3000 3000 3000 3000
I+» + + * + * + + + + + + + + + + + + +
1* I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
I*» + + » + »* + »* + + *» + *»* +
13 I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
I» + + + + + + + »» + + » + + + + » + +
12 I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
I+ + + + + + + + + + + + + + + + + + + +
11 I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
I+ + + *» + * + + * + » + * + + + * + +
10 1 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
I+» + * + » + + + + * + + + + + + * + +
9 I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
1+ + + + * + + + + ** + + + + + + + * +
8 I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
I » v+ + + + * + + + + *** + + + » + + +
7 I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
I+ + + + + + * + -f* + + * + + 'f + + *-*>
6 I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
I+ + + + + + » + + + + + + + + + + » + +
5 I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
j+ + -f + + + + + + + + * + + + + + + + -f
4 I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
I+ + + + + + ** + + + + * + + + + * + -*>
3 I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
I+ + + + » + + + + + *» + ** + + » + +
2 I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
I+ + + + + + + + + + + +'+ + + + + + + +
1 I 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
I+ + + + + + + + + + + + + + + + + + + +
1 2 3 4 5 6 7 3 9 10 11 12 13 U 15 16 17 18 19 20
LAND USE HEAT FLUX CONSTANTS (RAOC) AT EACH GRID POINT
Multiply all values by 10 ** -4
22 I 3000 3000
I + +
21 I 3000 3000
I + +
20 I 3000 3000
C-8
-------
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
3000
3000
*
3000
3000
3000
3000
3000
3000
*
3000
3000
3000
3000
*
3000
3000
3000
3000
3000
3000
3000
+
*
3000
3000
*
3000
3000
3000
3000
3000
3000
*
3000
3000
3000
3000
+
3000
3000
3000
3000
JOOO
3000
3000
•*•
21
22
HESOPAC
VERSION 2.40 LEVEL 930430
•••••«•«••««••«•«•>••••«•«««««
SURFACE METEOROLOGICAL STATIONS
STATION C0144 ID
GRID COORDINATES LATITUDE LONGITUDE TIME ZONE
X T (DEGREES) (DEGREES) LOGICAL
(GRID UNITS) (GRID UNITS) UNIT
1
2
3
4
5
6
12835
12836
12839
12842
12843
12844
0.30
1.40
16.00
-6.10
14.70
17.70
19.30
-3.20
10.70
34.80
31.20
20.40
26.580
24.550
25.800
27.970
27.650
26.680
81.870
81.750
80.300
82.530
80.420
80.120
5.
5.
5.
5.
5.
5.
11
12
13
14
15
16
Anon.
Ht.
(m)
6.10
7.00
7.00
6.70
6.70
6.70
Surface
Roughness
-------
STATION STATION 10
GRID COORDINATES LATITUDE LONGITUDE
X Y (DEGREES) (DEGREES)
(GRID UNITS) (GRID UNITS)
TIME ZONE
LOGICAL
UNIT
72201
72203
72210
1.60
17.70
-4.70
-3.40
20.30
31.50
24.530
26.670
27.680
81.730
80.120
82.380
5.
5.
5.
17
18
19
PRECIPITATION STATIONS
STATION TD3240 10
GRID COORDINATES
X Y
(GRID UNITS) (GRID UNITS)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
80616
80845
81654
83186
84091
84570
84797
85663
85895
86323
86657
OAOtUt
OOTOO
87293
87859
88780
89010
89184
89219
39525
11.80
17.80
9.80
0.30
14.00
1.40
-0.10
16.00
8.10
13.60
6.00
14.50
12.80
16.10
10.60
14.10
5.70
14.40
17.70
20.60
17.00
21.20
19.40
7.30
-3.20
35.20
10.70
22.10
16.60
21.50
12.10
23.80
25.20
10.10
10.30
24.90
31.00
20.50
HEADER RECORDS FROM UPPER AIR DATA FILE: 1
ISYRU * 88 IBJULU * 1 IBHRU
IEYRU =• 88 IEJULU * 366 IEHRU
PTOP» ' 500.000
LHT = "F LTEHP = F LWD - F tUS * f
0
12
HEADER RECORDS FROM UPPER AIR DATA FILE: 2
IBYRU = 38 IBJULU * 1 IBHRU
IEYRU =• 38 IEJULU * 366 IEHRU
PTOP = . 500.000 .
LHT .» F tTEMP *' f LUD »" F '\WS » F'
0
12
HEADER RECORDS FROM UPPER AIR DATA FILE:
IBYRU = 38 IBJULU *
IEYRU = 38 IEJULU *
PTOP = 500.000
LHT = F LTENP = F LUO = F LUS
1 IBHRU
366 IEHRU
0
12
HESOPAC VERSION 2.40 LEVEL 930430
C-10
-------
STATION NUMBER OF CLOSEST SURFACE MET. STATION TO EACH GRID POINT
Multiply all values by 10 *• -1
22 I
I
21 I
I
20 I
I
19 I
I
18 I
I
17 I
I
16 I
I
15 I
I
14 I
I
13 I
I
12 I
I
11 I
I
10 I
I
9 I
I
8 I
I
7 I
I
6 I
I
S I
I
4 I
I
3 I
I
2 I
t
1 I
I
10
10
10
10
10
10
10
10
10
10
10
10
10
10
20
20
20
20
20
20
20
+
20
-*
1
10
10
10
10
10
10
10
10
10
10
10
10
10
10
20
20
20
20
20
20
20
+
20
.*
2
10
10
10
10
10
10
10
10
10
10
10
10
10
10
20
20
20
20
20
20
20
+
20
," * '
3
10
10
10
10
10
10
10
10
10
10
10
10
10
10
20
20
20
20
20
20
20
+
20
.-*
4
10
10
10
10
10
10
10
10
10
10
10
10
10
30
30
20
20
20
20
20
20
+
20
. *
5
10
10
10
10
10
10
10
10
10
10
10
30
30
30
30
30
20
20
20
20
20
+
20
*
6
10
10
10
10
10
10
10
10
10
10
30
30
30
30
30
30
30
20
20
20
20
+
20
'*
7
10
10
10
10
10
10
10
10
30
30
30
30
30
30
30
30
30
30
20
2O
20
*
20
*
8
60
60
60
10
10
10
30
30
30
30
30
30
30
30
30
30
30
30
30
20
20
+
20
*
9
60
60
60
60
60
60
30
30
30
30
30
30
30
30
30
30
30
30
30
30
20
+
20
*
10
60
60
60
60
60
60
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
+
20
*
11
60
60
60
60
60
60
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
+
30
*
12
60
60
60
60
60
60
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
*
30
*
13
MESOPAC
60
60
60
60
60
60
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
+
30
*
14
60
60
60
60
60
60
60
30
30
30
30
30
30
30
30
30
30
30
30
30
30
+
30
*
15
60
60
60
60
60
60
60
30
30
30
30
30
30
30
30
30
30
30
30
30
30
4-
30
*
16
VERSION 2
60
60
60
60
60
60
60
30
30
30
30
30
30
30
30
30
30
30
30
30
30
+
30
*
17
.40
60
60
60
60
60
60
60
30
30
30
30
30
30
30
30
30
30
30
30
30
30
»
30
*
18
60
60
60
60
60
60
60
30
30
30
30
30
30
30
30
30
30
30
30
30
30
+
30
*
19
LEVEL
60
60
60
60
60
60
60
60
30
30
30
30
30
30
30
30
30
30
30
30
30
+
30
*
20
60
60
60
60
60
60
60
60
30
30
30
30
30
30
30
30
30
30
30
30
30
*
30
*
21
930430
60
60
60
60
60
60
60
60
30
30
30
30
30
30
30
30
30
30
30
30
30
*
30
*
22
•»*•«•««««»»• ««««.«« ««««««« «««««•«•»•«««««
STATION NUMBER OF CLOSEST UPPER AIR STATION TO EACH GRID POINT
Multiply all values by 10 •* -1
22 1 30 30 30 30 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
I»* + + + + + + + » + * + » + » + » + » + »
C-ll
-------
21 I 30
20 I 30
19 I 30
18 I 30
17 1 30
16 I 30
15 I 30
K I 10
13 I 10
12 I 10
11 I 10
10 I 10
9 I 10
8 I 10
7 I 10
6 I 10
5 I 10
4 I 10
3 I 10
2 I 10
1 I 10
30 30 30
30 30 20
30 30 20
30 20 20
30 20 20
20 20 20
20 20 20
20 20 20
10 20 20
10 10 10
10 10 10
10 10 10
10 10 10
10 10 10
10 10 10
10 10 10
10 10 10
10 10 10
10 10 10
10 10 10
10 10 10
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10
10
10
10
10
10
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10
10
10
10
10
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10
10
10
10
10
1234567
HEADER RECORDS F90M PRECIPITATION
NUMBER OF PRECIPITATION STATIONS
STATION STATION
NUMBER ID
1 30616
2 30845
3 31654
4 33186
5 34091
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10
10
10
10
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10
10
10
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10
10
10
8 9 10
DATA FILE
« 19
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10
10
11
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10
12
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10
13
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
14
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
15
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
16
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
17
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
18
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
19
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
21 22
C-12
-------
6
7
8
9
10
11
12
13
14
15
16
17
18
19
84570
84797
85663
85895
86323
86657
86988
87293
87859
88780
89010
89184
89219
89525
NESOPAC VERSION 2.40 LEVEL 930430
STATION NUMBER OF CLOSEST PRECIPITATION STATION TO EACH GRID POINT
Multiply all values by 10 •* 0
22 I 4 4 11 11 11 11 9 9 9 3 3 1 13 13 13 19 19 19 19 19 19 19
I**********************
21 I 4 4 11 11 11 11 11 9331 1 1 1 19 19 19 19 19 19 19 19
I+ + + + + ******* + + **» + **»*
20 I 4 4 4 11 11 11 11 933 1 1 1 1 19 19 19 19 19 19 19 19
I+ + + + + * + » + » + + + **» + + + + + »
19 I 4 4 4 11 11 11 11 3 3 3 1 1 1 10 10 19 19 19 19 19 19 19
t+ + » + + + + + » + + + + + + *»* + ** +
18 I 4 4 4 4 11 11 11 3 3 1 1 10 10 10 10 2 2 2 2 2 2 2
I» + + + + + * + + » + + + + + + * + + + + +
17 I 4 4 4 4 11 11 11 3 3 10 10 10 10 10 10 2 2 2 2 2 2 2
I + + „ + + + + 4.* + + * + + + + + + + + + **
16 I 4 4 4 4 11 11 11 3 10 10 10 10 10 10 10 2 2 2 2 2 2 2
1+ + + + * + * + + + * + * + + + * + + + * +
15 I 4 4 4 4 4 11 15 15 10 10 10 10 10 10 10 2 2 2 2 2 2 2
14 I 4 4 4 4 15 15 15 15 15 15 10 10 12 12 12 12 2 2 2 2 2 2
13 I 4 4 4 15 15 15 15 15 15 15 IS 12 12 12 12 12 8 8 8 2 2 2
I+ + + + + + + + + + + + + + + + + + + + + +
12 I 4 4 15 15 15 15 15 15 15 15 15 15 12 12 12 8 8 8 8 8 8 8
I+ + + + + + + + # + + + + + ***** + * +
11 I 4 4 15 15 15 15 15 15 15 15 IS 15 16 16 8 8 8 8 8 8 8 8
1+ + + * + + + + + * + + + + + + + + + + + +
10 I 4 15 15 15 15 15 15 15 15 15 15 15 16 16 16 8 8 8 8 8 8 8
9 I 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 8 8 8 8 8 8 8
8 I 15 15 15 15 15 15 15 15 15 15 15 5 5 5 5 5 3 8 8 8 8 8
I»* + + » + + + *» + + + + * + + **»* +
7 I 15 15 15 15 15 15 15 15 15 15 5 5 5 5 5 5 5 5 8 888
1+ + + + + + + * + ** + + * + + + + + + + +
6 I 6 6 15 15 15 15 15 15 15 15 5 5 5 5 5 5 5 5 5 588
I+ + + + + + + + + + + + + + + + + + + + + +
51666 15 15 15 15 15 15 5555555555 558
I+ + + + + + + + »»»» + *» + + + + + + +
4166666 15 15 15 55555 5 55555 555
C-13
-------
3 I
I
2 I
I
1 I
I
1
2 3
4 5
6
15
7
5
8
5
5
9
5
5
5
10
5
5
5
11
5
S
S
12
5
S
S
13
MESOPAC
PGT
5
5
5
14
S
5
S
15
5
5
5
16
VERSION 2
5
5
5
17
.40
STABILITY CUSS
Multiply
22 1
I
21 I
I
20 I
I
19 I
I
18 I
I
17 I
I
16 I
I
15 I
I
14 I
I
13 I
I
12 I
I
11 I
I
10 I
I
9 I
I
8 I
I
7 I
I
6 I
I
5 I
I
4 I
1
3 I
I
2 I
I
1 I
I
50
50
50
50
50
50
50
50
50
50
50
50
50
50
40
40
40
40
40
40
40
+
40
all value* by
50 50
50 50
50 50
50 50
50 50
50 50
50 50
50 50
50 50
SO 50
50 50
50 50
50 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
+ »
40 40
SO 50
50 50
50 50
50 SO
50 50
50 50
50 50
50 SO
50 SO
50 SO
SO 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
10 **
50
50
50
50
50
50
50
50
50
40
40
40
40
40
40
40
*
40
40
40
40
+
40
40
-1
50
50
50
50
50
50
SO
SO
40
40
40
40
40
40
40
40
+
40
40
40
+
40
+
40
40
50
50
50
50
50
50
50
40
40
40
40
40
40
40
40
40
»
40
40
40
40
>
40
40
50
50
50
SO
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
+
40
40
»
50
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
.40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
+
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
5
5
5
18
5
5
S
19
LEVEL
ywr
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
5
5
S
20
S 5
5 S
S S
21 22
930430
: 88 "or
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
+
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
+
itfi: 1 (fry: 2 Julian day: 2 hour: 23
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
40 40
+ +
C-14
-------
1 2 3 4 5 6 7 3 9 10 11 12 13 M 15 16 17 18 19 20 21 22
METEOROLOGICAL DATA AT SURFACE STATIONS • YR:B8 JULIAN OAT: 2 HR:23
STATION PREC. TEMP SOLAR RAO. REL. HUN10ITT CLOUD COVER PRECIP. CODE
1 292.6 0.0 90 60
2 293.7 0.0 97 10 0
3 296.5 0.0 02 90
4 292.6 0.0 84 10 0
5 292.0 0.0 97 6 0
6 295.9 0.0 79 60
HESOPAC VERSION 2.40 LEVEL 930430
SURFACE KINEMATIC HEAT FLUX
-------
2 I 125 125 125 125 125 125 125 125 125 125 327 327 327 327 327 327 327 327 327 327 327 327
1
1 I 125
J
1
125
2
125
3
125
4
125
5
125
6
125
7
125 125
8 9
125
10
MESOPAC
125 327
11 12
327
13
VERSION 2.
SURFACE FRICTION VELOCITY (M/S)
Multiply
22 I 287
21 I 279
20 I 459
19 I 459
18 I 463
17 I 472
I +
16 I 485
15 I 500
14 I 513
13 I 77
I *
12 I 82
11 I 87
10 I 90
9 I 92
8 I 95
7 I 97
6 I 100
5 I 103
4 I 106
3 I 111
I *
2 I 115
I *
1 I 119
I *
all valuM
478
282
464
462
281
478
490
505
519
532
+>.
544
52
53
54
54
55
56
57
58
60
61
63
294
286
282
470
287
296
498
512
526
538
550
53
54
54
55
55
56
57
58
60
61
62
by 10 *•
300
294
290
292
297
305
315
326
432
443
557
566
54
55
55
55
56
57
58
59
61
62
101
302
300
394
308
316
325
533
545
556
566
574
55
55
55
56
56
57
58
59
60
61
-3
316
313
312
408
414
328
336
442
451
461
469
458
567
569
56
56
56
57
57
58
60
61
325
324
325
424
334
340
445
453
463
471
462
467
469
576
575
575
55
55
582
58
59
60
336 50
337 340
339 345
543 358
348 362
354 367
458 356
466 460
456 468
464 474
471 481
477 486
478 386
376 384
582 381
580 377
578 582
55 580
581 56
585 583
58 57
58 57
52
53
362
365
367
369
367
372
479
485
491
497
393
391
387
383
378
375
374
*
56
»
56
57
53 56
55 402
382 406
383 404
383 400
382 396
379 389
382 390
387 395
393 402
399 407
403 411
402 410
399 407
394 401
388 393
383 387
378 381
375 376
+ +
56 55
56 55
56 55
407
431
433
428
419
411
399
399
403
408
415
419
418
413
407
398
390
384
56
55
55
54
327
14
40
327
15
LEVEL
327
16
327
17
327
18
327
19
327
20
327 327
21 22
930430
ywr: 88. Month:
541
464
464
454
440
425
408
406
408
414
421
424
424
419
411
403
605
387
56
55
55
54
576
495
495
481
460
439
423
411
412
634
130
647
646
640
631
406
397
57
56
55
54
54
609
762
763
506
479
453
433
633
632
638
644
648
647
641
60
59
58
56
55
55
54
53
628
658
784
762
493
690
662
639
634
638
643
647
61
61
60
58
57
56
55
54
54
53
1 day:
72
784
787
768
70
66
63
61
60
60
60
61
60
60
59
58
57
56
55
54
54
53
2
71
74
75
73
70
66
63
61
60
59
60
60
60
59
58
58
57
56
55
54
53
53
Julian
69
72
73
71
69
66
63
61
60
59
59
59
59
59
58
57
56
56
55
54
53
53
day: 2 hour: 23
66 64
69 67
70 68
69 67
67 66
65 64
63 62
61 60
60 59
59 59
59 59
59 58
59 58
58 58
58 57
57 57
56 56
56 55
55 55
54 54
53 53
53 53
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
C-16
-------
MESOPAC VERSION 2.40 LEVEL 930430
MIXIN
Hulti
22 I
I
21-1
I
20 I
I
19 I
I
18 I
I
17 I
1
16 I
I
15 I
I
14 I
I
13 I
I
12 I
I
11 I
I
10 I
I
9 I
I
8 I
I
7 I
I
6 t
I
5 I
I
4 I
1
3 I
I
2 I
I
1 I
I
G HEIGHT (H)
ply all value* by
370 793 383
354
746
746
757
779
810
848
883
51
57
61
65
+
67
70
72
75
79
S3
»
88
+
93
+
99
*
359
757
754
357
793
824
862
897
930
964
29
29
30
30
31
32
33
34
*
35
*
36
+
38
+
368
359
773
370
386
845
880
915
948
979
29
30
30
31
31
32
33
34
»
35
+
36
+
37
+
10 •*
394
383
375
379
388
405
424
447
682
707
997
1022
30
31
31
31
32
33
34
»
35
»
36
+
37
*
0
77
399
394
594
411
426
445
933
967
994
1022
1043
31
31
31
32
32
32
33
+
34
+
35
+
37
+
426
420
418
625
640
451
467
705
728
751
771
745
1024
1030
32
32
32
32
33
+
34
+
35
+
36
+
445
443
445
662
463
477
713
733
756
777
753
766
771
1049
1046
1046
31
31
1065
+
33
+
34
+
35
+
467
469
475
960
493
505
743
764
739
758
776
790
792
553
1065
1059
1056
31
1062
»
1075
*
33
+
34
+
27
476
487
515
523
533
510
750
768
784
800
814
575
570
564
556
1065
1059
31
+
1068
+
33
+
33
»
28
29
523
530
534
538
535
545
795
811
827
840
592
587
577
568
558
551
549
*
32
+
32
*
32
+
30
31
567
569
569
567
560
566
577
592
605
613
611
605
594
581
568
558
551
+
32
+
31
+
31
+
y«ar:
32
612
620
616
608
599
583
585
596
611
624
633
631
622
609
592
577
564
553
*
31
+
31
+
31
+
: 88 Month:
623 956
679
684
673
651
631
60S
60S
613
626
642
650
648
637
622
603
585
570
31
• >
31
»
31
•
30
+
758
758
735
699
664
626
620
626
640
655
664
661
650
633
613
1130
577
32
*
31
+
31
+
30
+
1 day
1048
835
835
801
749
697
660
633
635
1212
112
1248
1245
1228
1202
620
600
32
31
•*•
31
>
30
+
30
•»
: 2 Julian day: 2 hour
1140 1194 46 45
1595
1599
863
796
731
684
1208
1205
1222
1242
1252
1248
1232
35
34
33
32
31
+
31
+
30
+
30
+
1282
1665
1595
831
1376
1292
1225
1212
1222
1238
1248
36
36
35
34
33
32
31
+
30
*
30
*
29
+
1665
1676
1616
45
41
38
36
35
35
36
36
36
35
35
34
33
32
31
+
30
•*•
30
>
29
+
48
49
47
44
41
38
36
35
35
35
35
35
35
34
33
32
32
31
+
30
+.
30
+
29
+
*****!
: 23
43
46
47
46
43
40
38
36
35
35
35
35
35
34
34
33
32
31
31
*
30
>
30
*
29
+
12345
NIXING HEIGHT (H)
Multiply all values by 10 ** 0
22 I 41 39
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
year: 88 month: 1 day: 2 Julian day: 2 hour: 23
C-17
-------
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
44
45
44
42
40
38
36
+
35
34
34
34
34
34
33
33
32
31
31
30
30
29
*
41
43
42
41
39
37
36
*
35
34
34
34
34
33
33
32
32
'SI
31
30
30
29
*
21 22
MESOPAC VEISIOH 2.40 LEVEL 930430
MONIN-OBUKHOV LENGTH (H) year: 88 month: 1 day: 2 Julian day: 2 hour: 23
Multiply all values by 10 •* -1
22 I 908 2512 951 988 112 1097 1164 1240 28 29 31 34 1820 3224 3646 4075 4338 56 55 52
21 I 856 873 902 951 1006 1077 1157 1246 1274 31 34 1778 2045 2364 2694 6381 4767 6756 60 56
I********************
20 I 2315 2363 872 927 988 1071 1164 1267 1310 1444 1607 1812 2062 2364 2694 6400 6756 6814 61 58
19 I 2318 2349 2430 939 1710 1831 1977 3244 1412 1466 1615 1795 2018 2271 2546 2814 6381 6493 58 56
C-18
-------
18 I 2362 867 908 969 1045 1889 122S 1331 1441 1482 1615 1762 1931 2125 2327 2527 2674
17 I 2454 2514 963 1026 1097 1184 1274 1375 1479 1497 1607 1729 1854 1983 2116 2253 5238
16 1 2584 2646 2733 1090 1164 1239 2179 2304 1394 1485 1579 1668 1750 1835 1966 2062 4816
15 1 2746 2810 2885 1171 3122 2148 2262 2390 2332 1524 1603 1676 17S1 1809 1860 4406 4487
14 I 2898 2963 3042 2057 3272 2241 2357 2289 2409 2520 1644 1717 1784 1835 1869 4390 4422
13 I 66 3108 3189 2158 3396 2336 2444 2365 2475 2588 1701 1776 1835 1886 4422 4471 4471
12 I 75 3258 3326 3409 3523 2422 2343 2442 2543 2657 1751 1826 1895 1947 185 4568 4552
11 I 83 30 31 3522 3623 2310 2398 2498 2600 2715 1784 1860 1929 1982 4601 4617 4601
10 I 89 31 32 32 33 3532 2420 2509 1636 1701 1776 1852 1921 1973 4585 4601 41
9 I 94 32 32 33 33 3562 3650 1555 1619 1684 1751 1818 1878 1929 4503 4519 40
8 I 98 33 33 33 34 34 3635 3725 1595 1644 1709 1767 1818 1860 4374 40 39
7 I 103 33 34 34 34 34 3635 3695 1563 1611 1660 1701 1742 1784 1809 38 38
6 I 109 34 35 35 35 35 33 3680 3724 1571 1611 1644 1676 4028 1734 36 36
5 1 116 36 36 36 35 35 34 34 3694 1548 1571 1595 1619 1644 35 35 35
4 I 125 37 37 37 37 36 3724 3709 34 1540 1548 1556 34 34 34 34 33
3 I 134 39 39 39 38 38 37 3769 3739 3534343333333332
2 1 145 *41 41 41 40 39 38 37 36 35 34 33 33 33 32 32 32
1 1 156 43 43 42 42 41 39 38 36 35 34 33 32 32 32 31 31
HONIM-08UKHOV LENGTH (M) year: 88 month: 1 day: 2 Julian d
Multiply all values by 10 •* -1
22 I 48 45
I * +
21 I 53 49
1 * *
20 I 54 51
I + +
19 1 53 50
1 + +
18 I 50 48
1 * *
17 1 46 45
I + *
16 I 43 42
1 * +
15 I 40 40
I + +
54 53 52
48 48 47
43 43 43
40 40 41
39 39 39
39 39 39
40 39 39
40 39 39
40 39 38
40 38 38
38 38 37
37 36 36
36 35 35
35 34 34
33 33 33
32 32 32
32 31 31
SI 31 31
Wig 7O
lay: 2 hour; 23
C-19
-------
14
13
12
11
10
9
8
7
6
5
4
3
2
1
39
+
38
»
38
38
38
37
*
37
36
*
35
*
34
*
33
32
T
31
'+
31
+
39
*
38
*
38
38
37
37
+
36
35
*
35
+
34
+
33
32
31
*
31
*
21 22
MESOPAC VERSION 2.40 LEVEL 930430
CONVECTIVE VELOCITY SCALE (M/S) year: 88 Booth: 1 day: 2 Julian day: 2 hour: 23
GRID NOT PRINTED -- all values zero
• MESOPAC VERSION 2.40 LEVEL 930430
LOWER LEVEL WIND U-FIELO (M/S) . year: 88 Month: 1 day: 2 Julian day: 2 hour: 23
Multiply all values by 10 •* -2
22 I 403 406 411 419 408 411 413 416 418 422 428 439 454 474 499 524 539 541 536 525 513 503
I .- - -
21 I 392 395 402 411 405 410 415 420* 426 433 444 459 478 502 527 549 562 563 556 544 530 518
I - -
20 I 385 389 396 396 404 411 418 425 433 441 452 466 484 505 529 550 563 566 560 551 539 527
I
19 I 384 389 397 399 407 415 424 431 439 448 458 470 485 502 521 539 551 555 552 545 536 527
I
18 I 389 394 396 404 413 422 430 438 446 454 463 473 484 496 510 523 533 538 538 534 528 522
I ^ ^
171399 405 405 412 421 430 438 446 454 461 469. 47f 485 493 501 511 518 523 525 523 521 517
I - -
16 I 413 410 416 423 431 440 448 455 463 470 476 483 489 494 499 506 511 514 516 516 515 513
I
15 ! 428 424 430 436 443 451 458 466 473 479 486 492 497 501 505 509 512 513 514 514 513 512
C-20
-------
u
13
12
11
10
9
8
7
6
5
4
3
2
1
339 439 444 450 456 463 469 476 483 489 496 502 507 512 515 518 519 519 518 516 515 513
350 355 458 463 469 475 481 487 493 499 506 512 518 523 526 528 528 526 524 521 518 515
359 364 370 377 482 486 492 497 502 508 514 520 526 531 535 536 535 533 529 526 522 518
367 372 377 383 391 498 502 506 510 515 521 526 531 535 539 540 539 536 533 529 525 521
372 376 381 387 393 400 408 513 516 520 523 528 532 535 538 539 538 536 533 529 525 522
375 379 383 388 394 400 407 415 521 523 525 528 531 533 535 536 535 534 531 528 524 521
376 380 383 388 393 398 405 412 419 427 528 529 530 531 532 532 532 530 528 525 523 520
377 379 383 386 390 395 401 407 414 421 428 531 530 530 529 529 528 527 525 523 521 518
376 378 381 384 387 392 396 402 407 414 420 425 431 530 528 527 526 525 523 521 519 517
375 377 379 381 384 387 391 396 401 406 411 417 422 426 528 526 525 523 521 520 518 516
373 374 376 378 380 383 386 390 394 399 404 409 413 417 420 423 525 523 521 519 517 515
371 372 373 374 376 378 381 385 388 393 398 402 406 409 412 415 417 523 521 518 516 514
369 370 370 371 373 375 377 380 384 388 392 396 399 402 405 408 410 412 414 518 516 514
367 367 368 369 370 371 374 377 380 384 387 391 394 396 399 401 404 406 408 409 516 514
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
MESOPAC VERSION 2.40 LEVEL 930430
LOWER LEVEL WIND V-FIELD (M/S)
Multiply all values by 10 ** -2
yew: 88 Month: 1 day: 2 Julian day: 2 hour: 23
22 1
21
20
19
18
17
16
15
14
13
12
9
12
14
14
13
11
8
7
5J
56
61
6
10
12
13
11
8
247
258
267
54
59
2
6
9
9
237
246
256
267
276
282
56
5
+
0
242
244
+
2Sfr
259
269
279
287
293
52
272".
+
264
258
261
+
267
275
284
293
300
305
308
289
+
283
279
282
•+ •
287
293
301
308
315.
319
322
309
+
304
302
305
*
309
314
320
325
331
335
337
331
' +
329
329
331
-f
333
336
339
343
347
351
353
355
+
356
357
358
+
358
358
359
361
136V
367
370
380.
+
386
388
387
+
385
381
379
379
380
383
386
407
*
421
423
419
+
412
405
398
395
395
398
402
439
»
461
461
454
+
442
428
417
410
409
411
416
475
»
505
504
492
+
473
452
434
423
420
423
427
515
+
553
550
532
+
505
475
450
434
428
431
436
558
+
598
596
573
»
538
499
466
444
435
436
442
598
*
636
637
610
+
568
521
481
454
441
439
444
621
+
659
661
634
+
589
538
494
462
445
441
443
625
+
662
666
642
+
599
549
503
469
449
442
442
614
+
648
655
635
+
598
552
509
474
452
442
439
593
•f
624
635
618
+
587
548
509
477
455
443
438
569
+
596
609
597
+
571
539
506
477
456
443
436
545
+•
569
582
574
*
554
527
500
475
456
443
435
C-21
-------
11
10
9
8
7
6
5
4
3
2
1
--- -**** + ******* + *»** +
67 65 62 58 53 322 337 353 370 388 404 419 431 440 446 448 446 U3 439 436 433 430
*****************
77 74 71 67 62 56 49 346 364 382 399 415 428 438 444 446 445 441 437 432 428 425
• ************* + »
89 87 83 79 74 67 59 51 351 369 387 404 418 429 435 438 438 435 430 426 422 418
--•-»-••****»*********
104 102 99 94 88 81 73 64 54 44 370 387 402 413 420 424 425 424 421 417 413 410
..************
122 120 117 113 106 99 90 80 69 58 48 365 380 391 400 406 409 409 408 406 403 401
........***********
142 141 139 134 128 119 110 99 87 76 65 55 45 368 378 385 390 392 393 392 391 390
*******
165 165 163 159 152 143 132 121 108 96 84 71 60 51 355 364 370 374 377 378 378 378
*******
190 191 189 185 178 168 157 145 131 118 102 87 75 64 56 50 350 356 360 363 365 366
******
215 217 216 211 204 194 182 169 154 135 118 103 89 78 69 61 55 338 344 348 352 354
*****
239 242 241 236 229 218 206 190 171 151 134 117 ' 103 91 81 72 65 59 54 334 338 342
* * *
261 264 263 258 250 240 224 205 185 166 147 131 116 103 92 82 75 68 62 58 326 330
*
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
NESOPAC VERSION 2.40 LEVEL 930430
UPPER LEVEL WIND U-FIELD (N/S) yew: 88 Month: 1 day: 2 Julian day: 2 hour: 23
Multiply all valua* by 10 ** -2
22 281 282 282 283 283 283 283 282 281 279 278 276 275 274 273 272 272 272 272 273 273 274
21 283 284 285 285 285 285 284 283 282 280 278 277 275 274 273 272 272 272 272 272 273 274
20 287 287 288 288 288 287 286 285 283 281 279 277 276 274 273 272 272 272 272 272 273 274
19 291 290 291 291 290 289 288 286 285 283 280 278 276 275 273 272 272 272 272 272 273 274
18 295 294 294 294 293 292 290 289 286 284 282 279 277 276 274 273 272 272 272 273 273 274
17 300 299 298 297 296 295 293 291 289 286 284 281 279 277 275 274 273 273 273 273 274 275
16 306 304 303 301 300 299 296 294 291 289 286 283 280 278 277 275 274 274 274 274 275 275
15 312 310 308 306 304 302 300 297 295 291 288 285 283 280 278 277 276 275 275 275 275 276
14 318 316 314 311 309 307 304 301 298 295 291 288 285 283 281 279 278 277 276 276 277 277
13 325 323 320 317 315 312 309 306 302 299 295 292 288 286 283 281 280 279 278 278 278 279
12 333 330 327 324 321 318 314 311 307 303 299 295 292 289 286 284 283 281 280 280 280 280
11 341 338 335 331 328 324 320 316 312 308 304 300 296 293 290 288 286 284 283 282 282 282
10 349 346 342 339 335 330 326 322 318 313 309 305 301 297 294 291 289 287 286 285 264 284
9 357 354 351 347 342 338 333 329 324 319 314 310 306 302 298 295 293 291 289 288 287 286
C-22
-------
8 365
7 373
6 381
5 388
4 394
3 400
2 404
1 408
1
362
370
378
385
392
398
403
407
2
359
367
375
382
389
395
401
405
3
355
363
371
379
386
392
398
402
4
350
358
366
374
381
388
394
399
5
346 340
353 348
361 356
369 363
376 371
383 378
389 384
395 390
6 7
335
343
350
357
365
372
378
384
8
330
337
344
3S1
359
366
372
378
9
325
332
339
346
353
359
366
372
10
NESOPAC
UPPER LEVEL WIND V- FIELD
Multiply
22 I 547
21 I 548
20 I 550
19 I 551
18 I 552
17 I 552
16 I 551
15 I 549
U I 547
13 I 543
I *
12 I 539
11 I 535
10 1 529
9 I 524
8 I 518
7 I 512
I +
6 I 506
all values
554
555
556
557
557
557
556
554
552
548
544
539
534
528
521
515
+
509
562
563
564
564
564
563
562
560
557
554
549
5U
539
532
526
519
+
512
(H/S)
by 10 ••
571
572
573
573
572
571
569
567
563
560
555
550
544
538
531
524
+
517
582
583
583
583
582
580
578
575
571
567
562
557
551
544
537
530
+
523
320
327
333
340
347
353
360
365
11
316
322
328
334
341
347
354
359
12
311
317
323
329
335
342
348
353
13
VERSION 2.
307
312
318
324
330
336
342
348
14
40
303
308
314
319
325
331
337
342
15
LEVEL
300
305
310
315
321
326
332
337
16
297
302
307
312
317
322
327
332
17
295
299
304
308
313
318
323
328
18
293
297
301
305
310
315
320
324
19
291
295
299
303
307
312
316
321
20
290 289
294 292
297 296
301 299
305 303
309 307
313 311
318 315
21 22
930430
year: 88 aontti:
-2
594 607
595 607
594 607
594 606
592 604
590 601
587 598
584 594
580 590
575 585
570 579
564 573
558 566
551 559
544 552
537 544
» +
529 536
621
621
620
618
616
613
699
605
600
595
589
582
575
568
560
»
552
+
544
634
634
633
631
628
625
621
616
611
605
599
592
585
577
569
»
561
#
552
647
647
646
644
641
637
633
628
622
616
610
602
595
587
578
570
+
561
659
659
658
655
652
649
644
639
633
627
620
613
605
596
588
579
*
570
670
669
668
666
663
659
655
650
644
637
630
622
614
606
597
588
+
579
678
678
677
675
672
669
664
659
653
646
639
632
623
615
606
597
+
588
685
685
684
683
680
677
672
667
661
655
648
640
632
623
615
606
•f-
597
690
690
690
688
686
683
679
674
668
662
655
647
639
631
622
614
+
605
693
693
693
692
690
687
683
679
673
667
660
653
646
638
629
+
621
612
694
695
695
694
692
690
686
682
677
671
665
658
651
643
635
627
618
1 day:
694
695
695
695
693
691
688
684
680
674
668
662
655
648
640
632
624
2
693
694
694
694
693
691
689
685
681
676
671
665
658
651
644
637
629
Julian day: 2 hour: 23
691
692
693
692
691
690
688
685
682
677
672
667
661
654
648
640
633
688 685
689 686
690 687
690 687
689 686
688 685
686 683
683 681
680 678
677 675
673 672
668 668
663 663
657 658
650 652
643 646
636 639
C-23
-------
5 I 500
4 I 495
3 I 490
2 I 486
1 I 483
1
502 506
497 500
492 494
487 490
484 486
2 3
PRECIPITATION RATE
Multiply
22 I 0
21 I 0
20 I 0
19 I 0
I +
18 I 0
I +
17 I 0
16 I 0
15 I 0
14 I 0
13 I 0
12 I 0
11 I 0
10 I 0
9 I 0
8 I 0
7 I 0
6 I 1524
I +
5 I 1524
I +
4 I 1524
I »
3 I 1524
all values
0
0
0
0
0
0
*0
0
0
0
0
0
0
0
0
0
1524
+
510
504
498
493
488
4
515 522
509 514
502 508
497 502
492 497
5 6
528
521
514
508
502
7
536
528
521
514
508
8
544 553
536 545
529 537
522 529
SIS 523
9 10
MESOPAC
562
553
545
537
530
11
571
562
554
546
538
12
VERSION
579
571
562
554
547
13
588 596 603 610
579 587 595 601
571 579 586 593
562 570 578 585
555 563 570 577
14 15 16 17
616
608
600
592
584
18
621 626 629 633
613 618 622 626
60S 611 615 619
598 603 608 612
590 596 601 606
19 20 21 22
2.40 LEVEL 930430
(MN/HR)
by
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
+
1524 1524
*
>
1524 1524
+
»
1524 1524
10 *• -3
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
+ +
0 0
+ »
1524 1524
+ +
1524 1524
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
+
0
+
1524
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
*
0
+
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
+
0
+
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
+
0
*
0
+
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
+
0
+
0
+
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
*
0
»
0
year: 88 Booth:
000
000
000
000
000
000
000
000
000
000
000
0.00
000
000
000
000
* + »
000
» + +
000
+ + +
000
1 day:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
+
0
+
0
•f
0
2 Julian day: 2 hour:
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
+ + + +
0000
+ + » +
0000
+ + * +
0000
23
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
»
0
•*•
0
+
0
C-24
-------
2
1
1524 1524 1524 1524 1524 1524 1524 00000
1524 1524 1524 1524 1524 1524 1524 1524 0000
0000
0000
0 0 0 Q
0 0 0 0
1 2 3 4 5
PRECIPITATION RATE (MM/HR)
Multiply all values by 10 ** -3
9 10 11 12 13 14 15 16 17 18 19 20
ytar: 88 Month: 1 day: 2 Julian day: 2 hour; 23
22 I
I
21 I
I
20 I
I
19 I
I
18 I
I
17 I
I
16 I
I
15 I
I
14 I
I
13 I
I
12 I
I
11 I
I
10 I
I
9 I
I
8 I
I
7 I
I
6 I
I
5 I
I
4 I
I
3 I
I
2 I
I
1 I
I
0
+
0
+
0
*
0
+
0
+
0
*•
0
+
0
+
0
+
0
>
0
*
0
*
0
+
0
*
0
+
0
+
0
+
0
+
0
+
0
*
0
+
0
*
0
*
0
+
0
»
0
*
0
+
0
«•
0
*
0
+
0
+
0
«•
0
V *
0
+
0
+
0
*
0
+
0
+
0
+
0
+
0
+
0
*
0
•*>
0
*
21 22
RUNTIME CALL NO.: 2 DATE: 06/15/93
DELTA TIME: 63.33 (SEC)
TIME: 12:33:29.39
C-25
-------
APPENDIX D
SAMPLE MESOPUFF H INPUT AND OUTPUT FILES
-------
-------
SAMPLE MESOPUFF H INPUT FILE (PUFFJNP)
D-l
-------
HESVUFF II TEST CASE - 24 hr limitation 1/2/88. utct hrly clone
88 002
1 4
1 22
T T
Tf
1
100001
0.36
0.90
0.00023
2.10
5.0
10000.
2 2
16
12.7 38.5
12.3 35.3
5.2 40.1
5.4 41.7
5.9 43.3
2.5 59.8
3.3 62.5
14.1 16.0
16.7 15.3
17.8 13.9
14. S 12.0
17.4 10.0
15.7 8.4
15.1 20.7
16.8 20.7
-0.6 19.9
15.5 9.0
2.5
2.5
4.0
5.0
5.5
6.5
6.5
8.0
7.5
9.0
8.0
7.0
8.5
0 24 1 0 13 5
2 T 2. T 900.
1 22 4 19 4 19
T T T
0.25 0.19 0.13
0.90 0.90 0.90
0.058 0.11 0.57
1.09 0.91 0.58
3.873 2.739 1.871
5
1 80 10 0.2 2.0 2.0
50. 6.1 14.9 434. 100.0
13.5 ClM* 1
12.0
12.0
11.0
9.5
9.0
7.5
8.0
» 6.5
6.0
5.75
4.0
3.5
0
2
0.096 0.06)
0.90 0.90
0.85 0.77
0.47 0.42
1.225 0.707
50.0 150.0
•rt« rtccptori
D-2
-------
PARTIAL LISTING OF SAMPLE MESOPUFF H OUTPUT FILE (PUFF.LST)
D-3
-------
RUNTIME CAll MO.: 1 DATES 06/15/93 TIMS! 12:33:59.54
HESOPUFF VERSION 5.10 LEVEL 930530
HESOPUFF II TEST CASE - 24 hr iliutitfon 1/2/88. utM hrly eten*
GENERAL RUN INFORMATION:
YEAR OF RUN (NSTR) " 88
JULIAN DAT OF START OF RUN (NSOAY) « 2
HOUR OF START OF RUN (NSHR) " 0
LENGTH OF RUN (NAOVTS) • 24 (HOURS)
NUMBER OF POINT SOURCES (NPTS) • 1
NUMBER OF AREA (URBAN) SOURCES (NAREAS) • 0
NUMBER OF NONGRIDOEO RECEPTORS (NREC) " 13
NUMBER OF POLLUTANT SPECIES (NSPEC) « 5
Continuation Run 7 (ICONT) • 0
COMPUTATIONAL VARIABLES:
CONCENTRATION AVERAGING TIME (IAVG) • 1 (HOUR(S))
PUFF RELEASE RATE (NPUF) • * (PUFFS/HOUR)
MINIMUM SAMPIIHQ RATC (NtAMAD) • 2 (SAMPLES/HOUR)
SAMPLING RATE VARIED UITH WIND SPEED T (LVSAMP) - T
SAMPLING RATE WIND SPEED INTERVAL (WSAMP) • 2.00 (M/S)
CONCENTRATIONS CALCULATED AT SAMPLING GRID POINTS T (UGRID) • T
PUFFS YOUNGER THAN "AGENIN" SECONDS ARE NOT SAMPLED (AGENIN) • 900. (SECONDS)
GRID INFORMATION:
BEGINNING OF COMPUTATIONAL GRID IN X-DIRECTION (1ASTAR) * 1
END OF COMPUTATIONAL GRID IN X-OIRECTION (IASTOP) « 22
BEGINNING OF COMPUTATIONAL GRID IN Y-OIRECTION (JASTAR) « 1
END OF COMPUTATIONAL GRID IN Y-OIRECTION (JASTOP) « 22
BEGINNING OF SAMPLING GRID IN X-DIRECTION (ISASTR) - 4
END OF SAMPLING GRID IN X-DIRECTION (ISASTP) • 19
BEGINNING OF SAMPLING GRID IN Y-DIRECTION (JSASTR) - 4
END Of SAMPLING GRID IN Y-DIRECTION (JSASTP) • 19
SAMPLING GRID SPACING FACTOR (MESHDN) - 2
V
TECHNICAL OPTIONS:
GAUSSIAN VERTICAL CONCENTRATION DISTRIBUTION 1
-------
DRY FLUXES AT NONGRIOOEO RECEPTORS COMPUTED T (LORYNG) • T
WET AND DRY FLUXES STORED ON TAPE ? (ISAVEF) - T
WET AND DRV FLUXES MINTED 7 (LPRFLX) • T
Restart flit seved 1 • 0
USER INPUT CHEMICAL TRANSFORMATION VARIABLES (IOPTS<6)> • 1
SIGY. SICZ VARIABLES:
AY - 0.36000 0.25000 0.19000 0.13000 0.09600 0.06300
BY - 0.90000 0.90000 0.90000 0.90000 0.90000 0.90000
AZ • 0.00023 0.05800 0.11000 0.57000 0.85000 0.77000
BZ - 2.10000 1.09000 0.91000 0.58000 0.47000 O.<2000
AZT (IN M) • 5.00000 3.87300 2.73900 1.87100 1.22500 0.70700
TMDEP • 10000. (M)
STABILITY CLASS USED IN SIGY. SIGZ CALCULATIONS FOR PUFFS ABOVE BOUNDARY LAYER (JSUP) •
(0 > BOUNDARY LAYER STABILITY CLASS, 5 • E STABILITY. 6 - F STABILITY)
VERTICAL OIFFUSIVITY CONSTANTS:
CON1K « 0.010 (M"2/S)
CONZr • 0.100 (M**2/S)
LAND USE CATEGORY S02 CANOPY RESISTANCE (S/H)
1
2
3
4
5
6 »
7
8
9
10
It
12
DRY DEPOSITION CONSTANTS:
CANOPY RESISTANCE FOR NOX IN S/H (RCNOX) « 130.00 (A.B.C) 500.00 (D) 1500.00 (E) 1500.00 (F)
SURFACE RESISTANCE CONSTANT FOR GASES (RSGCON) • 2.60
SURFACE RESISTANCE FOR PARTICLES (RSPART) • 1000.00 (S/M)
UET REMOVAL CONSTANTS:
502 SO* NOX HMOS N03
UA (LIQUID PRECtP.) 3.00E-05 1.00E-04 O.OOE»00 6.00E-05 1.00E-04
UA (FROZEN PRECIP.) O.OOE»00 3.00E-05 O.OOE+00 O.OOE«00 3.00E-05
WHERE 0/00 « £XP(-UA • (P/PO) * DT)
00 IS POLLUTANT MASS IN PUFF AT TIME T
0 IS POLLUTANT MASS IN PUFF AT TIME T * DT
A.i.C
100.00
100.00
100.00
100.00
100.00
100.00
100.00
200.00
50.00
75.00
1000.00
0.00
D
300.00
300.00
300.00
300.00
300.00
300.00
300.00
500.00
75.00
300.00
1000.00
0.00
E
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
100.00
1000.00
1000.00
0.00
F
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1000.00
0.00
0.00
0.00
0.00
D-5
-------
M IS THE UET REMOVAL CONSTANT (1/S)
f IS THE PRECIPITATION RATE (MM/MR)
PO IS A REFERENCE PRECIPITATION RATE OF 1 MM/HR
OT IS THE SAMPLING INTERVAL
CHEMICAL TRANSFORMATION VARIABLES:
SOX TRANSFORMATION METHOD FLAC (MSOX) « 2
0 - NO TRANSFORMATION
1 - USER SPECIFIED
2 - ERT THEORETICAL EQUATION
3 - GILLANI EQUATION
4 - HENRY EQUATION FOR ST. LOUIS
5 • HENRT EQUATION FOR LOS ANGELES
NOX TRANSFORMATION METHOD FLAG (MNOX) • 2
0 - NO TRANSFORMATION
1 - USER SPECIFIED
2 - ERT THEORETICAL EQUATION
OZONE INPUT METHOD FLAG (MOJ) « 1
0 • DEFAULT OZONE VALUE USED
1 • HOURLY OZONE VALUES READ
DEFAULT BACKGROUND OZONE
-------
HOHGRIDDEO RECEPTOR LOCATIONS
RECEPTOR X (GRID UNITS) T (GRID UNITS)
1
2
3
4
5
6
7
8
9
10
11
12
13
2.500
2.500
4.000
5.000
5.500
6.500
6.500
8.000
7.500
9.000
8.000
7.000
8.500
13.500
12.000
12.000
11.000
9.500
9.000
7.500
8.000
6.500
6.000
5.750
4.000
3.500
MESOPUFF VERSION 5.10 LEVEL 930530
INFORMATION READ FROM METEOROLOGICAL DATA FILE!
YEAR OF METEOROLOGICAL DATA • 88
METEOROLOGICAL DATA 8EGIHS OH JULIAN OAT 2
NUMBER OF HOURS OF METEOROLOGICAL DATA • 25
METEOROLOGICAL GRID SIZE IN X (UEST-EAfT) DIRECTION • 22
METEOROLOGICAL GRID SIZE IH T (SOUTH-NORTH) DIRECTION - 22
METEOROLOGICAL GRID SPACING • 10000.0 (M)
BASE TIME ZONE • 5
-------
Multiply at I values by 10 ** -2
22
21
20
19
18
17
16
15
U
13
12
11
10
9
8
7
6
5
4
3
2
1
20
20
100
100
100
100
100
100
too
0
0
0
0
0
0
0
0
0
0
0
0
0
+
1
100
20
100
100
20
100
100
too
100
100
100
0
0
0
0
0
0
0
0
0
0
»
2
20
20
20
100
20
20
100
100
100
100
100
0
0
0
0
0
0
0
. »
0
0
+
3
20
20
20
20
20
20
20
20
SO
SO
100
100
0
0
0
0
0
0
0
0
0
*
4
10
20
20
50
20
20
20
100
100
100
100
100
0
0
0
0
0
0
0
0
0
»
5
20
20
20
50
50
20
20
50
50
50
SO
SO
100
100
0
0
0
0
0
0
0
6
20
20
20
50
20
20
SO
50
SO
50
50
SO
50
100
100
100
0
0
100
0
0
0
7
20
20
20
100
20
20
SO
50
50
50
so,
SO
SO
20
100
100
100
0
100
100
0
0
8
0
20
20
20
20
20
20
SO
50
50
SO
SO
20
20
20
20
100
100
0
100
0
0
0
0
20
20
20
20
20
20
50
50
SO
50
20
20
20
20
20
20
20
0
0
0
9 10
HESOPUFF
0
0
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
0
0
0
+
11
0
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
0
0
0
•
12
VERSION
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
0
0
0
0
*
13
S.
50
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
100
20
0
0
0
0
*
U
10
50
20
?o
20
20
20
20
20
20
100
10
100
100
100
100
20
20
0
0
0
0
0
»
15
LEVEL
50
100
100
20
20
20
20
100
100
100
100
100
100
100
0
0
0
0
0
0
0
»
SO
SO
100
100
20
100
100
100
100
100
100
100
0
0
0
0
0
0
0
0
0
4
16 17
930530
0
100
100
100
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
+
18
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Q
0
+
19
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
+
20
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
+
21
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
22
STATION NUMBER OF CLOSEST SURFACE MET. STATION TO EACH OHIO POINT
Multiply all values by 10 •• -2
22 I 100 100 100 100 100 100 100 100 600 600 600 600 600 600 600 600 600 600 600 600 600 600
l*» + + + »«»»»»» + »*» + »« + » +
21 I 100 100 100 100 100 100 100 100 600 600 600 600 600 600 600 600 600 600 600 600 600 600
D-8
-------
20
19
18
17
16
15
14
13
12
11
10
9
a
7
6
5
4
3
2
1
100
too
100
too
100
100
100
too
100
100
too
100
200
200
200
200
200
200
200
200
100
too
100
too
too
too
too
100
too
100
100
100
200
200
200
200
200
200
200
200
too
100
100
100
too
too
too
100
100
too
too
too
200
200
200
200
200
200
200
2.00
too
too
100
100
100
100
100
100
100
100
100
100
200
200
200
200
200
200
200
200
100
100
too
too
100
too
100
100
100
too
too
300
300
200
200
200
200
200
200
200
too
too
too
too
100
too
100
too
100
300
300
300
300
300
200
200
200
200
200
200
100
too
100
100
too
too
100
100
300
300
300
300
300
300
300
200
200
200
200
200
100
100
100
too
100
100
300
300
300
300
300
300
300
300
300
300
200
200
200
200
600
too
too
100
300
300
300
300
300
300
300
300
300
300
300
300
300
200
200
200
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
200
200
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
200
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600 600
600 600
600 600
600 600
600 600
600 600
300 300
300 300
300 300
300 300
300 300
300 300
300 300
300 300
300 300
300 300
300 300
300 300
300 300
300 300
1
LAND USE
Multiply
22 1 10
21
20
19
1 10
1 110
1 4
1 110
18 1 50
2
3
CATEGORIES
all values
SO 10
10
110
4
110
10
10
to
4
110
10
4
FOR
by
to
10
10
4
10
10
5
EACH
10 ••
60
10
10
4
100
10
6
GRID
-1
10
10
10
4
too
*
too
7
POINT
10
10
10
4
100
*
10
8
90
10
10
4
SO
»
10
9 10 11 12 13 14 IS
NESOPUFF VERSION S.10 LEVEL
120
10
10
4
10
4
10
120
120
10
10
»
10
120
120
10
10
4
10
120
10
10
10
*
10
10
10
10
10
*
10
too
10
10
10
4
10
100
10
10
90
4
90
16 17
930530
100
110
110
*
90
4
90
too
100
110
110
4
10
18
120
110
110
110
4
120
19
120
120
120
120
4
120
20
120
120
120
120
4
120
21 22
120 120
120 120
120 120
120 120
4 4
120 120
D-9
-------
17
16
15
H
13
12
11
10
9
a
7
6
S
4
3
SO SO
110 SO
110 110
110 SO
120 SO
120 50
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
10 10
SO 10
110 10
SO 100
SO 100
50 50
120 50
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
10 10
10 10
SO 100
SO 100
SO 100
SO 100
50 100
120 SO
120 50
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
10 10
100 100
100 100
100 100
100 100
100 100
100 100
100 100
SO 90
SO 50
SO 50
120 50
120 120
50 SO
120 SO
120 120
120 120
10 90
10 90
100 10
100 100
100 100
100 100
100 100
90 90
90 90
90 90
90 90
50 90
50 90
120 90
50 120
120 120
120 120
90
90
90
90
90
90
90
90
90
90
90
90
90
90
120
120
120
10
90
90
90
90
90
90
90
90
90
90
90
90
90
120
120
120
10
90
90
90
90
90
90
90
90
90
10
10
90
120
120
120
120
90 90
90 90
90 90
90 90
90 110
90 60
90 110
90 110
10 110
10 110
10 10
50 90
90 120
120 120
120 120
120 120
120 120
90 110
10 110
110 110
110 110
110 110
110 110
110 110
110 120
110 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
1 2
V
STATION NUMBER Of CLOSEST OZONE MEASUREMENT
Multiply ill values by 10 *• 0
22 16 16 16 16 16 16 16 14 U 14
21
20
19
18
17
16
15
16 16
16 16
16 16
16 16
16 16
4 *
16 16
4 4
16 16
16 16 16
16 16 16
16 16 16
16 16 16
16 16 16
16 16 16
» 4 +
16 16 16
16 16
16 16
16 16
16 16
16 16
16 11
* *
16 11
14 U 14
U U H
U U 14
U U H
11 11 11
+ 4 4
11 11 11
HESOPU
11 12 13
FF VERSION 5.
STATION TO EACH
14 14 14 14
U 14
H U
14 U
14 U
* 4
11 11
14 14
14 14
14 14
14 8
4 4
8 8
GRID
14
14
14
14
8
*
8
14 15 16 17
10 LEVEL 930530
POINT
15 15 15 15
15
IS
15
8
4
9
IS 15 IS
15 15 15
IS 15 15
8 8 IS
899
444
9 10 10
IS 15
15 15
15 15
15 15
15 15
9 10
10 10
4 4
10 10
18
15
15
15
IS
15
10
10
4
10
19 20 21 22
D-10
-------
H
13
12
11
10
9
8
7
6
5
t
3
2
1
1 * *
1 1& 16
1 16 16
1 16 16
I 16 16
1 16 16
1 16 16
1 16 16
1 16 16
1 16 11
1 16 13
I 13 13
1 13 13
1 13 13
f 13 13
CROUNO-LEVEl
Multiply all
31
30
39
28
27
26
25
2«
23
22
21
1 0
1 0
1 0
1 0
I 0
1 0
1 0
1 0
/ 0
1 0
1 1
16 16
16 16
16 16
16 16
16 11
16 11
11 11
11 11
13 13
13 13
13 13
13 13
13 13
13 13
16 11
16 11
11 11
11 11
11 11
11 11
11 11
11 13
13 13
13 13
13 13
13 13
13 13
13 13
11 11 11
11 11 11
11 11 11
11 11 11
11 11 11
11 11 11
11 11 13
13 13 13
13 13 13
13 13 13
13 13 13
13 13 13
13 13 13
13 13 13
11
11
11
11
11
11
13
13
13
13
13
13
13
13
10
11 11 11 11
11 11 11 11
11 11 11 11
11 11 11 11
It 11 11 11
11 13 13 13
13 13 13 13
13 13 13 13
13 13 13 13
13 13 13 13
13 13 13 13
13 13 13 13
13 13 13 13
13 13 13 13
11 12 13 U
11 9 10
11 11 10
11 It 12
11 12 12
13 12 12
13 13 12
13 13 13
13 13 13
13 13 13
13 13 13
13 13 13
13 13 13
13 . 13 13
13 13 13
15 16 17
HCSOPUFF VERSION 5.10
502 CONCENTRATIONS (G/H**
values
o-o
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 2
by 10 ••
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
2 2
-8
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
2 2
3) AT
0
0
0
0
0
0
0
0
0
0
+
2
SAMPLING GRID
000
000
000
000
000
000
000
000
000
0 1 1
» + +
356
POINTS
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 1
* *
8 9
10
10
10
12
12
12
12
13
13
13
13
13
13
13
18
10
10
10
12
12
12
12
12
13
13
13
13
13
13
19
» » »
10 10 10
10 10 10
10 10 10
12 12 12
12 12 12
12 12 12
12 12 12
12 12 12
12 12 12
13 12 12
13 13 12
13 13 13
13 13 13
13 13 13
20 21 22
lEVEt 730530
year
0
0
0
0
0
0
0
0
0
»
9
: 88
0
0
0
0
0
0
0
0
0
+
8
nonth: 1 day: 2 Julian day: 2 hour: 12
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
+ »» + »» + » +
410000000
0
0
0
0
0
0
0
0
0
0
+
0
D-ll
-------
20
19
18
17
16
IS
14
13
12
11
10
9
8
7
6
5
4
3
2
1
cot
Nul
31
30
29
28
27
26
1
I
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
t
1
1
1
1
1
1
I
1
1
I
XJN
Iti
1
1
1
1
1
1
1
1
1
r
i
i
8
16
24
27
24
19
13
5
3
1
0
0
0
0
0
0
0
0
1
0-LE
ply
0
0
0
0
0
0
4
14
28
39
40
32
20
11
3
1
0
0
0
0
0
0
0
o s
21
42
59
59
43
24
10
1
0
0
0
0
0
0
0
0
27
56
82
83
58
29
10
1
0
0
0
0
0
0
0
0
30 31 32 34 39 47 57 66 75 87 106 132 142 86 12 0 0 0 0 0
67 71 70 68 69 73 79 85 90 94 102 119 159 219 142 11 0000
102 112 111 103 93 87 85 85 85 84 84 88 98 139 253 158 3 0 0 0
107 123 124 113 96 81 71 64 59 52 46 43 44 S3 112 259 109 0 0 0
76 90 93 84 69 53 41 30 23 16 11 8 6 5 9 82 279 21 00
36 43 44 39 31 21 U 8 4 2 1 0 0 0 0 0 101 310 0 0
12 13 13 11 8 5 3 1 000000 0 0 5 326 39 0
00000000000000000000
00000000000000000000
0000000000000000000
00000000000000000000
00000000000000000000
VSL S02 CONCENTRATIONS (G/N**3) AT SAMPLING GRID POINTS ynr: 88 month: 1 day: 2 Julian day: 2 hour: 12
•II value* by 10 *• -8
00000
0
0
0
0
4
0
4
0
0
0
0
0
4
0
0
0
0
4
0
4
0 0
0 0
0 0
0 0
4 4
0 0
4 4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
25
D-12
-------
25 1
1
24 1
r
23 1
t
22 1
1
21 1
1
20 1
1
19 1
18 1
17 1
16 1
1
IS 1
U 1
1
13 1
t
12 1
1
11 I
1
10 I
1
9 1
1
8 1
1
7 1
1
6 1
1
S 1
I
* 1
1
3 1
1
2 1
1
1 I
r
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
26
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
27
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
28
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
29
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
30
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
31
HESOPUFF VERSION 5.10 LEVEL 930S30
GROUND-LEVEL StX COMCEMTRATIONS
-------
31 1
Mt
?H 1
97 1
26 1
25 1
«|
Ml
20 1
18 t
17 1
16 I
15 1
14 1
13 t
12 1
11 1
10 t
9 !
8 I
7 t
6 1
5 1
4 1
1 1
2 I
i
0
0
0
2
13
20
22
20
16
12
8
S
3
1
0
0
0
0
0
0
0
0
0
0
4
22
31
32
26
17
10
5
2
1
0
0
0
0
0
0
0
0
4
0
0
0
6
33
47
47
34
19
8
3
,. 1
0
0
0
0
0
0
0
0
0
0
0
0
7
44
65
65
46
23
8
2
0
0
0
0
0
0
0
0
0
0
0
0
0
7
52
79
83
59
28
9
2
0
0
0
0
0
0
0
0
0
0
*
0
0
0
7
54
86
94
69
33
10
2
0
0
0
0
0
0
0
0
0
0
0
0
0
7
S3
84
94
71
34
10
2
0
0
0
0
0
0
0
0
0
0
0
0
0
8
50
76
84
63
30
a
i
0
0
0
0
0
0
0
0
0
0
0
0
0
10
49
67
70
51
23
6
1
0
0
0
0
0
0
0
0
0
0
0
0
0
14
51
61
58
38
16
4
0
0
0
0
0
0
0
0
0
0
0
*
0
0
0
17
54
58
49
28
10
2
0
0
0
0
0
0
0
0
0
0
0
4-
0
0
0
21
57
57
43
21
6
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
25
59
56
39
15
3
0
0
0
0
0
0
0
0
0
0
0
0
*
0
0
0
29
61
55
34
11
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
33
65
S3
30
7
1
0
0
0
0
0
0
0
0
0
0
0
0
*
0
0
0
*30
73
54
27
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
g
0
0
17
94
59
27
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
125
81
31
3
0
0
0
0
0
0
0
0
0
0
0
0
0
4.
0
0
0
0
79
141
63
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
86
141
45
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
58
148
53
3
0
0
0
0
0
0
0
0
0
0
0
0 0
p o
0 0
0 0
0 0
0 0
0 0
11 0
161 0
167 20
0 141
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D-14
-------
1
GROU
Mult
31
30
29
'28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
1 2
NO-LEVEL 8
Ipty all v
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
X CONCENTRATIONS
-------
1
5 1
1
4 I
I
3 1
1
2 1
1
1 1
1
0
0
0
0
0
26
0
0
0
0
0
27
0
0
0
0
0
28
0
0
0
0
0
29
0
0
0
0
0
30
0
0
0
0
0
31
HESOPUFF VERSION 5.10 LEVEL 930530
GftOUND-lEVEl HOX tOWXHTRATIOm <0/K*«3> AT
Multiply »U values
31 1
30 1
29 I
28 1
27 1
26 1
25 1
24 t
23 1
22 1
21 1
20 1
19 1
18 1
17 1
16 1
I
15 1
14 1
13 1
12 1
0
0
0
0
0
0
0
0
0
0
1
4
11
21
31
35
32
25
18
12
0
0
0
0
0
0
0
0
0
o.
2
6
19
37
52
54
42
27
15
a
0
0
0
0
0
0
0
0
0
0
2
9
28
56
80
81
58
32
14
5
by 10 ••
0
0
0
0
0
0
0
0
0
0
2
12
36
76
112
11$
81
40
14
4
0
0
0
0
0
0
0
0
0
2
13
41
91
141
149
107
51
16
3
-8
0
0
0
0
0
0
0
0
0
2
12
42
97
157
174
128
62
19
4
0
0
0
0
0
0
0
0
0
2
13
42
96
156
177
134
64
19
3
0
0
0
0
0
0
0
0
0
3
IS
45
92
142
160
121
57
16
3
SAMPttra GRID POINT*
0
0
0
0
0
0
0
0
0
4
20
52
93
128
135
99
45
12
2
0
0
0
0
0
0
0
0
1
6
27
63
99
119
113
76
31
7
1
0
0
0
0
0
0
0
0
1
9
35
77
108
116
98
57
20
4
0
0
0
0
0
0
0
1
11
44
90
118
119
89
42
11
2
0
0
0
0
0
0
0
1
12
53
103
125
121
84
32
6
1
0
y«»r: 88 pool
0
0
0
0
0
0
1
12
63
120
132
121
76
23
3
0
0
0
0
0
0
0
0
0
11
75
149
143
119
67
»
16
1
0
0
0
0
0
0
0
0
0
6
73
192
170
124
62
11
1
0
0
thi 1
0
0
0
0
0
0
0
0
0
0
1
43
212
234
140
63
a
0
0
0
1 d*yi 2 Julian dsy:
0
0
0
0
0
0
0
0
0
0
0
8
129
329
208
78
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
18
214
382
169
13
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
16
237
391
124
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
163
419
152
a
0
: 2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
31
463
484
0
hour:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
t
0
0
58
415
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4-
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
»
0
0
0
0
D-16
-------
I
11 1
1
10 I
1
9 1
1
8 1
I
7 1
1
6 1
4 1
1
3 1
1
2 1
1
1 1
1
GROUND
Hultlp
31 1
1
30 1
1
29 1
28 1
1
27 1
1
26 1
1
25 1
1
24 1
1
23 1
1
22 1
21 1
20 1
1
19 1
1
18 I
1
17 1
1
7
4
2
1
0
0
0
0
0
1
ly
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
4
2
1
0
0
0
0
0
0
2
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00000000
00000000
00000000
00000000
00000000
0000000
00
00000000
00000000
im NOX CONCENTRATIONS
-------
16 1
IS 1
U 1
13 1
12 1
11 1
10 1
6 1
S 1
4 1
3 t
2 1
1 1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
«
0
0
0
0
0
0
0
0
0
0
0
0
0
*
26 27 28 29 30 31
MESOPUFF VERSION 5.10 LEVEL 930530
GROUND-LEVEL HN03 CONCENTRATIONS (C/M**3) AT SAMPLING GRID POINTS
V
Multiply «lt values by 10 •* -9
yaars 88 month: 1 day: 2 Julian day: 2 hour: 12
31 1
30 1
29 1
1
28 I
27 1
26 1
1
25 1
1
24 1
23 1
I
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
. 0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
+
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4-
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
D-18
-------
1
26 1
1
25 1
1
24 1
I
23 1
1
22 1
21 1
1
20 1
19 1
1
18 1
1
17 1
1
16 1
1
15 I
1
14 1
13 1
1
12 f
1
11 1
1
10 I
1
9 I
1
8 1
1
7 I
1
6 1
I
5 1
1
4 1
• 1
3 I
1
2 1
1
1 1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
• *
0
0
0
26
0
0
0
0
0
0
0
0
0
0
0
0
0
. 0
0
0
0
0
0
0
0
0
0
*
0
0
0
27
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
V 0
0
0
0
.*
0
0
0
28
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
0
0
29
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
4
0
0
0
30
0
0
0
0
0
0
0
0
0
0
0
0
0
0 .
0
0
0
0
0
0
0
0
o
»
0
0
0
31
MESOPUFF VERSION S.10 LEVEL 930530
GROUND-LEVEL N03 CONCENTRATIONS (G/H"3) AT SAMPLING GRID POINTS
year: 80 month: t day: 2 Julian day: 2 hour: 12
D-19
-------
22 1 0
21 f 1
20 1 5
19 1 IS
18 1 29
17 1 43
16 1 50
IS t 47
14 1 39
13 1 29
12 I 20
11 I 13
10 i r
9 1 3
8 I 1
7 1 0
6 1 0
5 1 0
4 ! 0
3 1 0
2 1 0
1 1 0
0 0
9 12
24 36
48 72
68 101
71 101
58 74
39 42
23 19
12 7
6 3
3 1
1 0
0 0
0 0
0 0
0 0
0 0
0 0
0 » 0
0 0
0
15
45
94
136
137
96
48
18
5
1
0
0
0
0
0
0
0
0
0
0
0
15
so
108
164
170
120
57
18
4
0
0
0
0
0
0
0
0
0
0
0
00011111
15 15 17 22 28 35 43 51
SO 49 52 58 67 77 86 96
112 107 102 101 104 108 110 110
ITS 168 150 133 122 115 109 102
188 184 162 134 111 94 82 70
136 136 119 94 71 S3 39 27
65 64 55 41 28 18 10 5
20 19 16 11 6 3 1 1
43211000
00000000
00000000
* *
0
00000000
00000000
00000000
00000000
00000000
00000000
1000
11 8 4 0
56 56 44 22
107 115 119 107
112 115 118 125
94 90 91 87
56 46 43 41
17 11 75
2100
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0
0
4
56
137
0
0
0
7
76
92 121
40
4
0
0
0
0
0
0
0
0
0
0
0
0
0
55
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
67
100
30
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
35
85
28
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
69
64
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
29
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1
1
CROUW-lf
Multiply
31 I 0
30 t 0
29 I 0
28 1 0
27 1 0
iVl'l MN03 COHCCNTDAT10MS (G/MV3) AT SAMPUHQ CftlD POINT*
alt value* by 10 ** -9
00000
0 0
: °. •>
0 0
+ *
0 0
0
0
0
0
0
0
0
*
0
0
0
0
0
14 15 16 17
year: 88 month:
18
1 day:
19
2
20
Julian
21
day:
22
2
23
hour:
Z« 25
12
D-20
-------
Multiply ill values by 10 •• -11
31 I
30 1
29 1
28 1
26 1
2« 1
22 1
20 1
19 1
18 1
17 1
16 I
15 1
U I
13 1
12 1
11 1
10 1
9 1
8 1
7 I
5 I
4 1
3 1
0
0
0
0
0
0
0
15
42
84
128
154
154
136
111
84
57
33
15
6
2
0
0
0
0
0
0
0
0
0
1
24
69
139
201
221
191
139
89
51
29
15
6
2
0
0
0
0
0
0
0
0
0
0
1
34
101
206
300
315
248
153
v7*
33
13
5
2
0
0
0
0
0
0
0
0
0
0
0
0
41
127
272
410
435
328
179
75
22
6
2
0
0
0
0
0
0
0
0
0
0
0
0
0
43
141
319
509
567
433
224
79
19
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
42
142
336
568
673
537
278
92
19
2
0
0
0
0
0
0
0
0
0
0
0
0
0
1
42
140
327
568
705
585
306
98
18
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
47
145
308
515
648
549
286
88
15
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
59
157
296
452
553
461
232
66
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
75
180
298
410
472
370
169
43
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
93
204
306
395
424
297
117
24
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
112
227
311
387
391
236
74
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
134
253
311
368
347
175
41
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
9O
143
276
312
343
290
IIS
18
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
124
273
313
325
238
70
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
67
212
289
309
205
44
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
17
101
215
258
161
26
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
20
95
160
83
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
13
S3
39
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
9
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0
0 0
0 0
0 0
On
0 0
0 0
On
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
D-21
-------
00000000
*
GROWD-lEVEl M03 CONCENTRATIONS (G/M**3) AT SANPttNO CHID POINTS
yrart M month: 1 day: 2 Julian day: 2 hour: 12
Multiply •(( vatuw by 10 •• -11
31 1
30 1
29 1
28 1
27 1
26 1
25 I
23 1
22 1
21 1
20 1
19 I
18 1
17 1
16 1
15 1
U 1
1
13 1
I
12 1
1
11 1
1
10 1
1
9 1
1
8 1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 ,
0
0
0
0
0
#
0
•f
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
0
0
*
0
*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
*
0
*
0
4-
a
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
0
0
0
*
0
D-22
-------
7
6
S
4
3
2
1
0
0
0000
0000
00000
00000
00000
00000
00000
0
0
0
0
0
0
0
26 27 28 29 30 31
GROUND-LEVEL S02 CONCENTRATION «8/M"3)
RECEPTOR CONCENTRATION RECEPTOR
1
S
9
13
GROUND-LEVEL
2.6267E-09
2.5897E-08
O.OOOOE+00
O.OOOOE+00
S04 CONCENTRATION
2
6
10
<6/M"3)
RECEPTOR CONCENTRATION RECEPTOR
1
S
9
13
GROUND-LEVEL
2.1679E-09
2.1371E-08
O.OOOOE+00
O.OOOOE+00
HOX CONCENTRATION
2
6
10
(0/M*«3)
RECEPTOR CONCENTRATION RECEPTOR
1
5
9
13
GROUND -LEVEL
3.2952E-09
3.5583E-08
O.OOOOE+00
O.OOOOE+00
HNO3 CONCENTRATION
2
6
10
RECEPTOR CONCENTRATION RECEPTOR
1
5
9
13
GROUND -LEVEL
4.7902E-10
4.7275E-09
O.OOOOE+00
O.OOOOE+00
N03 CONCENTRATION
2
6
10
RECEPTOR CONCENTRATION RECEPTOR
1
5
9
13
1.3718E-11
2.2207E-10
O.OOOOE+00
O.OOOOE+00
2
6
10
AT
NONGRIDOED
CONCENTRATION
5
1
0
AT
.90S6E-08
.29426-09
.OOOOE+00
MONGRIDOED
CONCENTRATION
5
1
0
AT
.0650E-08
.0382E-09
.OOOOE+00
NONGRIDOEO
CONCENTRATION
7
1
0
AT
.2394E-08
.8464E-09
.OOOOE+00
NONGRIDDED
CONCENTRATION
1
2
0
AT
.2704E-08
.1196E-10
.OOOOE+00
NONGRIOOEO
CONCENTRATION
3
1
0
.6S23E-10
.SOSOE-11
.OOOOE+00
RECEPTORS
RECEPTOR
3
7
11
RECEPTORS
RECEPTOR
3
7
11
RECEPTORS
RECEPTOR
3
7
11
RECEPTORS
RECEPTOR
3
7
11
RECEPTORS
RECEPTOR
3
7
11
YEAR: 88 MONTH:
CONCENTRATION
2.3974E-07
O.OOOOE+00
O.OOOOE+00
YEAR: 88 MONTH:
CONCENTRATION
1.9569E-07
O.OOOOE+00
O.OOOOE+00
YEAR: 88 MONTR:
CONCENTRATION
3.1425E-07
O.OOOOE+00
O.OOOOE+00
YEAR: 88 HONTH:
CONCENTRATION
4.3410E-08
O.OOOOE+00
O.OOOOE+00
YEAR: 88 MONTH:
CONCENTRATION
1.2830E-09
O.OOOOE+00
O.OOOOE+00
1 DAY:
RECEPTOR
4
8
12
1 DAY:
RECEPTOR
4
8
12
1 DAY:
RECEPTOR
4
8
12
1 DAY:
RECEPTOR
4
a
12
1 DAYt
RECEPTOR
4
8
12
2 HOUR: 12
CONCENTRATION
4.29S1E-07
O.OOOOE+00
O.OOOOE+00
2 HOUR: 12
CONCENTRATION
3.4460E-07
O.OOOOE+00
O.OOOOE+00
2 HOUR: 12
CONCENTRATION
5.8497E-07
O.OOOOE+00
O.OOOOE+00
2 HOUR: 12
CONCENTRATION
7.4206E-08
O.OOOOE+00
O.OOOOE+00
2 HOUR: 12
CONCENTRATION
2.4799E-09
O.OOOOE+00
O.OOOOE+00
HESOPUrF VERSION S.10 LEVEL 930S30
D-23
-------
VET S02 FLUX AT SAMPLING GRID POINTS years 88 month: 1 day: 2 Julian day: 2 hour: tZ
GRID NOT PRINTED -- ill values zero
MESOPUFF VERSION 5.10 LEVEL 930530
WET SO* FLUX
-------
20
19
18
17
16
IS
14
13
12
11
10
9
8
7
6
5
4
3
2
1
OR'
Mul
31
30
29
28
27
26
1
1
1
1
1
1
1
1
1
1
t
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
r
it
i
i
i
i
i
i
i
i
i
i
i
i
3
7
14
20
22
19
14
3
2
1
0.
0
0
0
0
0
0
0
1
502
Iply
0
0
0
0
0
0
4
12
24
33
34
26
16
2
1
0
0
0
0
0
0
0
0
0
18
36
SI
SO
36
19
1
0
0
0
0
0
0
0
0
«• 0
FtUX (G/M*
all values
0 0
0
0
0
0
4
0
0
0
0
0
0
24
49
70
69
47
22
0
0
0
0
0
0
0
0
0
0
27
57
83
83
56
25
0
0
0
0
0
0
0
0
0
0
27 24 20 17 16 18
57 49 38 29 25 25
84 71 52 37 29 27
84 71 51 36 27 22
57 48 35 25 17 13
25 22 14 11 7 4
111000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
•2/S) AT SAMPLING GRID POINTS
by 10 *• -10
000
0
0
0
0
0
»
0
0
0
0
4
0
0
0
0
0
0
10 12 19 37 45 28 6 0 0 0 0 0 0
20 24 37 76 122 139 84 12 0 0 0 0 0
26 29 41 74 111 155 216 142 11 0000
27 28 40 64 82 96 138 255 159 3 0 0 0
20 19 24 35 41 44 53 112 263 lit 0 0 0
3 1 1 0 0 0 0 0 0 104 319 0 0
0000000005 334 12 0
00000000000 28 0
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
000000000000
0000000000000
0000000000000
0000000000000
0000000000000
12 13 14 15 16 17 18 19 20 21 22 23 24
year: 88 month: 1 day: 2 Julian day: 2 hour: 12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
25
D-25
-------
25
24
23
22
21
20
19
18
17
16
15
U
13
12
11
10
9
8
7
6
5
^
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
26
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0"
0
0
0
0
27
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
28
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
29
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
30
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
31
HCSOPUFF VERSION 5.10 LEVEL 930530
DRY SO* FLUX AT SWUNG GRID POINTS
Multiply •(( values by 10 ** -It
year: 88 Month: 1 day: 2 Julian day: 2 hour: 12
D-26
-------
31 1
30 1
29 1
Ml
1
27 1
26 1
Ki
i
«•
i
23 I
22 f
21 1
20 1
19 I
18 1
17 1
16 1
«e *
Ij I
14 1
I
f
13 1
12 1
It 1
10 1
9 1
8 1
1
7 1
I
I
6 !
5 1
4 1
3 1
1
2 1
1
0
0
0
4
0
0
0
0
1
4
2
7
13
19
22
15
11
7
4
2
1
0
0
0
0
0
0
*
0
4
0
0
0
4
0
0
0
0
4
1
4
4
4
11
22
31
32
3*
CO
17
9
4
5
2'
1
0
4
0
4
0
0
0
0
0
4
0
4
0
0
0
4
0
0
4
0
0
4
i
4
6
4
16
33
47
47
19
8
4
3
' 1
4
0
0
0
4
0
0
0
0
0
4
0
4
0
0
0
0
0
4
4
0
0
4
i
4
7
4
21
4
44
64
+
65
4
t*
46
4
23
0
4
2
0
0
0
4
0
4
0
0
0
0
0
+
0
4
0
0
0
4
0
0
4
0
4
4
0
4
0
4
1
4
7
4
23
4
51
4
79
4
82
4
4
28
9
4
2
0
0
0
4
0
4
0
0
0
0
4
0
4
0
+
0
0
0
4
0
0
4
0
4
4
0
4
0
4
1
4
7
4
24
4
54
4
85
4
93
4
68
4
33
10
4
2
4
0
0
0
4
0
*
0
0
0
0
4
0
+
0
*
0
4
0
4-
0
0
4
0
4
0
4
0
4
• 4
0
+
0
4
i
4
7
4
23
4
52
4
83
4
93
4
70
4
33
4
10
4
2
4
0
0
4
0
4
0
4
0
4
0
4
0
0
4
0
•
0
4
0
4
0
4
0
•4
0
4
0
4
0
4
0
•4
4
0
4
0
4
2
4
8
4
24
4
49
4
75
4
83
4
4
29
4
8
4
i
4
0
0
4
0
4
0
4
0
4
0
4
0
0
4
0
+
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
4
0
4
0
4
2
4
10
4
27
4
49
4
66
4
70
4
50
4
23
4
6
4
i
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
4
0
+
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
3
4
14
4
32
4
50
4
60
4
57
4
38
4
16
4
4
4
0
4
0
4
0
4
0
+
0
4
0
0
4
0
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
*
4
0
4>
0
4
4
4
17
4
38
4
S3
4
58
4
49
4
4
10
4
2
4
0
4
0
4
0
4
0
4
0
4
0
0
0
0
0
*
0
0
4
0
0
4^
4
0
4>
0
+
4>
4^
0
4
i
4
5
4
21
4
43
4
56
4
57
4
43
4
94
21
4
6
1
+
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
0
4
0
4
0
0
4
0
4
+
0
4/
0
4
6
4
25
4
49
4
59
+
56
4
39
4
4
3
0
4
0
0
4
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
0
0
4,
4
0
0
4
+
0
0
6
4
29
4
55
60
54
4
34
4
1
0
0
0
4
0
4
0
0
4
0
0
0
4
0
4
0
4
0
4
0
0
0
4,
4
0
0
4
4
0
0
5
4
32
4
65
64
53
4
29
4
i
0
4
0
0
0
4
0
4
0
4
0
0
0
0
4
0
*
0
»
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
2
4
29
4
79
4
72
4
54
4
27
4
4
0
0
4
0
4
0
4
0
4
0
4
0
+
0
0
4
0
4
0
4
0
0
+
0
0
0
4^
0
0
4
0
0
0
4
17
83
93
4
58
4
26
4
0
0
4
0
0
4
0
4
0
4
0
4
0
0
0
4
0
4
0
0
*
0
0
0
4,
0
0
+
0
0
0
3
49
124
80
4
31
0
0
4
0
0
0
4
0
4
0
4
0
0
4
0
4
0
0
0
»
0
0
0
4
0
0
0
+
4
0
4
0
4
0
4
0
4
7
4
78
4
139
4
62
4
4
0
0
4
0
0
0
4
0
4
0
4
0
4
0
4
0
4
0
0
0
0
0
0
4.
0
0
4
0
0
0
4
0
0
4
6
85
4
140
4
tt
64
0
0
4
0
0
0
4
0
4
0
0
0
0
4
0
0
0
0
0
0
4.
0
0
0
0
0
0
0
0
2
4
57
tZT
14*
S3
3
0
0
0
0
4
0
0
0
4
0
4
0
0
0
0
0
0
4.
4,
0
4.
0
4.
0
4,
0
0
0
0
0
0
0
1 «
1 1
159
4.
166
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4.
4,
0
4.
0
4,
0
4,
0
0
0
0
0
0
0
0
4,
20
141
4.
0
0
0
0
0
0
0
0
0
0
0
0
0
4.
0
4,
0
0
4^
0
0
0
0
0
0
0
0
4,
0
0
4.
0
0
0
0
0
0
0
0
0
4
0
0
0
0
4.
0
4,
0
0
4,
0
0
0
0
0
0
0
0
4.
0
0
0
0
0
0
0
0
0
0
0
4
0
D-27
-------
1 I
I
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
DRY S04 HIM (G/M**2/S) AT SAMPLING GRID POINTS
Multiply •!( values by 10 •• -11
year; 88 nonth: 1 day: 2 Julian day: 2 hour: 12
31 1
30 1
29 1
28 1
27 r
26 I
25 1
2« 1
23 1
22 1
21 1
20 1
19 1
18 1
17 1
16 1
15 I
U 1
13 1
12 1
11 I
1
10 1
1
9 1
1
8 1
7 1
1
6 1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
»
0
4
0
4
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
»
0
4
0
4
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
0
4
0
D-28
-------
1
5 !
1
4 1
1
3 1
1
2 1
1 1
1
0
0
0
0
0
26
0
0
0
0
0
27
0
0
0
0
0
28
OUT NOX riUX AT SAHPtlNO CHID MINTS
by 10 ** -11
0
0
0
0
0
0
0
1
16
76
231
.478
682
670
456
221
79
*
20
0
.0
0
0
0
0
0
0
15
80
250
536
782
777
525
240
76
16
0
0
0
0
0
0
0
1
13
74
237
512
755
761
517
233
*
69
13
0
0
0
0
0
0
1
11
65
202
423
615
624
429
194
53
9
0
0
0
0
0
0
1
11
53
162
316*
442
446
311
HO
39
6
0
0
0
0
0
1
11
50
134
238
311
308
213
>4
24
3
0
0
0
0
0
1
13
55
13.1
206
244
227
148
60
14
1
.0
0
0
0
0
2
16
67
148
'208
223
187
107
37
7
1
0
0
0
0
0
2
20
82
170
223
224
168
80
21
3
0
0
0
0
0
0
2
23
100
• w
236
228
158
61
12
1
*•
0
y«i
0
0
0
0
0
1
24
119
226
248
227
144
44
6
0
0
w« 81
0
0
0
0
0
0
0
0
0
0
20
141
281
270
224
126
30
2
0
0
I >«ntht '
0 0
0
0
0
0
0
0
0
0
0
11
137
362
319
232
115
20
1
0
0
0
0
0
0
0
0
0
0
0
2
80
401
441
263
118
15
0
0
0
1 days 2 Julian day: 2
00000
0
0
0
0
0
0
0
0
0
0
16
243
622
392
147
13
0
0
0
0
0
0
0
0
0
0
0
0
0
0
34
40«
72S
320
25
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
31
452
744
236
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9
311
799
290
15
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
59
8S4
924
0
hours
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
112
806
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
D-29
-------
11 1 27 16 9 *
210000000000000000000
000000000000000000000
00000000000000 0 0
0000000000000
* *
0000000000 000
10 11 12 13 H IS 16 17 18 19 20 21 22 23 24 25
DRY NOX FLUX (G/M**2/S> AT SAMPLING GRID POINTS
yaar: 88 nonthi 1 day: 2 Jut Iin day: 2 hour: 12
Multiply all values by 10 •* -11
31 1
I
30 1
1
29 1
1
28 I
1
27 1
1
26 1
1
25 1
1
24 1
1
23 -1
. 1
22 1
1
21 1
20 1
I
19 1
1
18 1
1
17 1
1
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
*
0
4
0
4
0
0
*
0
*
0
4
0
4
0
4
0
4
0
4
0
4
0
*»
0
4
0
4
0
4
0 .
4
0
4
0
0
4
0
4'
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4 "
0
4
0
0
4
0
4- '
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4 .
o •
4
0
4
0
0
4
0 .
4 " •
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
4
o •
4~
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
'• 4
0
4
0
4
0
0
4
0
4
0
4
0
4
D-30
-------
16 1
I
IS I
U I
1
13 1
1
12 I
I
11 t
I
10 1
1
9 1
a i
7 1
1
6 1
1
S 1
I
« 1
3 1
1
2 1
1
1 1
our
Hull
31 1
1
30 1
1
29 1
1
28 1
27 1
I
26 1
1
25 t
1
24 1
1
23 1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
26
HN03
iply
0
0
0
0
0
0
0
0
*
0
»
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
27
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
28
FLUX
-------
22 I 0
21 1 8
20 1 33
19 1 92
18 I 180
17 1 258
16 1 277
15 1 234
14 1 159
13 1 88
12 1 41
11 1 16
10 I 6
9 r 2
8 1 1
7 I 0
6 1 0
5 1 0
* I 0
3 1 0
2 1 0
1 1 0
1 »
1
DRY HM03
Multiply
31 1 0
30 1 0
29 1 0
28 1 0
1 4
27 1 0
1
13
54
154
301
421
431
333
206
102
40
13
4
1
0
0
0
0
0
0
0
0
2
17
76
220
440
617
614
445
244
105
34
9
2
0
0
0
0
0
0
0
v 0
0
2 3
FlOX
-------
1
26 1
25 1
1
2* 1
23 1
1
22 1
1
21 1
1
20 1
1
19 1
1
18 1
1
17 1
1
16 1
IS 1
1
U 1
1
13 1
1
12 1
1
11 1
1
10 1
9 1
1
8 1
1
1
6 1
1
5 t
1
* t
1
3 1
1
2 I
1
1 1
I
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
26
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
27
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
28
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
29
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
30
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
31
MESOPUFF VERSION 5.10 LEVEL 930530
DRY H03 FLUX (G/M**2/S) AT SAMPLING GRID POINTS
year: 88 month: 1 day: 2 Jutlsn day: 2 hour: 12
D-33
-------
Multiply •!! v«tu*« by 10 •• -U
31 1
30 1
9O f
27 1
25 1
5t t
22 1
20 1
19 1
18 1
17 1
16 1
IS 1
H 1
13 I
12 t
11 t
10 t
9 1
S 1
7 1
6 t
5 1
4 t
3 1
0
0
0
0
0
15
41
83
123
U1
132
107
78
54
34
19
9
3
1
0
0
0
0
0
0
0
0
1
24
69
136
193
202
164
110
64
33
17
8
3
1
0
0
0
0
0
0
0
0
0
1
34
100
202
286
288
212
120
55
V
21
8
3
1
0
0
0
0
0
0
0
0
0
0
0
41
126
264
383
387
273
137
51
14
3
1
0
0
0
0
0
0
0
0
0
0
0
0
43
138
303
458
478
339
1«2
53
11
1
0
0
0
0
0
0
0
0
0
0
0
0
0
42
138
310
487
528
384
183
56
11
1
0
0
0
0
0
0
0
0
0
0
0
0
1
42
136
297
466
515
382
182
54
9
0
0
0
0
0
0
0
0
0
0
0
0
t
47
141
281
415
451
334
156
45
7
0
0
0
0
0
0
0
0
0
0
0
0
1
60
156
276
365
372
264
118
30
4
0
0
0
0
0
0
0
0
0
0
0
0
2
76
180
282
333
307
199
79
18
2
0
0
0
0
0
0
0
0
0
0
0
0
2
94
205
291
315
262
149
51
9
1
0
0
0
0
0
0
0
0
0
0
0
0
3
114
229
296
299
228
110
29
4
0
0
0
0
0
0
0
0
0
0
0
0
0
3
136
256
297
279
195
78
16
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
146
280
300
256
158
50
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
126
279
303
244
129
30
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
69
217
285
244
119
21
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
17
104
219
227
114
15
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
21
99
174
105
11
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
13
65
84
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
19
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D-3A
-------
1
I
0
0
000000
Q
Q
1 2 3 4 5 6 7 8 9 10 11 12 13 U 15 16 17 18 19 20 21 22 23 24 25
DRY N03 FlUX AT SAHPUNO GRID POINTS year: 88 Month: 1 (toy: 2 Jutlm day: 2 hour: 12
Multiply •(( vatu«« by 10 •• -14
31 1
30 1
29 1
28 1
27 I
26 1
25 1
24 I
23 1
22 I
21 1
20 I
19 1
18 1
17 1
16 I
15 1
1
14 I
1
13 1
1
12 1
I
11 1
1
10 1
1
9 I
1
8 1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
4
0
t
0
4
0
4
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
»
0
»
0
4
0
•
0
*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
•
0
»
0
+
0
•
0
4
0
»
0
4
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
D-35
-------
7
6
5
«
3
2
UET
0
0
0
0
0
0
26
S02
0
0
0
0
0
0
27
FLUX
RECEPTOR
1
5
9
13
UET
S04
0.
0.
0.
0.
Flux
RECEPTOR
1
5
9
13
UET
HOX
0.
0.
0.
0.
FLUX
RECEPTOR
WET
1
5
9
13
HN03
0 0
0 0
0 0
0 0
0 0
0 0
28 29
{0/M«2/S>
FLUX
OOOOE+00
OOOOE«00
ooooE+oo
OOOOE+00
FlUX
O.OOOOE+00
O.OOOOE*00
O.OOOOE+00
0 0
0 0
0 0
0 0
0 0
0 0
30 31
AT NONGRIOOEO
RECEPTOR
2
6
10
AT NONGRIOOEO
RECEPTOR
2
6
10
AT NONGRIDOEO
RECEPTOR
2
6
10
RECEPTORS
FLUX
O.OOOOE«00
O.OOOOE+00
O.OOOOE+00
RECEPTORS
FlUX
0.0000€»00
O.OOOOE+OO
O.OOOOE+00
RECEPTORS
FlUX
O.OOOOE+00
O.OOOOE«00
o. ooooc+oo
o.qpooE+oo
FlUX
RECEPTOR
WET
1
5
9
13
N03
(G/M++2/S)
FlUX
O.OOOOE+00
O.OOOOE+OO
O.OOOOE+00
AT NONGRIDOEO
RECEPTOR
2
6
10
RECEPTORS
FLUX
O.OOOOE*00
O.OOOOE«00
O.OOOOE*00
O.OOOOE+00
FlUX
RECEPTOR
1
5
9
13
(G/M"2./S)
FlUX
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
AT NONCRIOOED
RECEPTOR
2
6
10
RECEPTORS
FlUX
O.OOOOE«00
O.OOOOE'OO
0.00006+00
O.OOOOE+00
TEAR! 88 MONTH: 1 DATs 2 HOUR: 12
RECEPTOR
3
7
11
FlUX
O.OOOOE+00
O.OOOOE»00
O.OOOOE»00
TEAR: 88 MONTH: 1 OAT: 2
RECEPTOR
3
7
11
FLUX
O.OOOOE*00
O.OOOOE+00
O.OOOOE+00
TEAR: 88 MONTH! 1 OAT: 2
RECEPTOR
3
7
11
FlUX
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
TEAR: 88 MONTH: 1 DAT: 2
RECEPTOR
3
7
11
FlUX
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
TEAR: 88 MONTH: 1 DATi 2
RECEPTOR
3
7
11
FLUX
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
RECEPTOR
^
8
12
HOUR: 12
RECEPTOR
<
8
12
HOUR: 12
RECEPTOR
*
8
12
HOUR: 12
RECEPTOR
«
8
12
HOUR: 12
RECEPTOR
4
8
12
FLUX
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
FlUX
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
FlUX
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
FlUX
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
FLUX
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
DRY S02 FlUX (G/M**2/S) AT NOHGRIDDED RECEPTORS
RECEPTOR FlUX RECEPTOR FlUX
TEAR: 88 MONTH: 1 DAT: 2 HOUR: 12
RECEPTOR FlUX RECEPTOR
FlUX
D-36
-------
1
5
9
13
2.2593E-11
1. 97168-10
0.0000€«00
O.OOOOE'OO
2
6
10
4.138«E-10
6.8601E-12
O.OOOOE*OO
3
T
11
2.0118E-09
O.OOOOE»00
0.00001*00
4
8
12
3.5559E-09
O.OOOOE'OO
O.OOOOE«00
ORT S0( FLUX (C/M**2/$) AT NONGRIDOED RECEPTORS
TEAR: 88 MONTH: 1 OATi 2 HOUR: 12
RECEPTOR
1
5
9
13
riux
2.1S44E-12
2.1045E-11
O.OOOOE«00
O.OOOOE»00
RECEPTOR
2
6
to
FLUX
4.7074E-11
1.0310E-12
O.OOOOE+00
RECEPTOR
3
7
11
FLUX
1.9312E-10
o.ooooc+oo
o.ooooe*oo
RECEPTOR
«
8
12
FLUX
3.«167E-10
O.OOOOE+00
O.OOOOE»00
ORT HOX FLUX (G/M**2/S) AT NONGRIOOEO RECEPTORS
TEAR: 88 MONTH: 1 DAY: 2 HOUR: 12
RECEPTOR
1
5
9
13
FLUX
2.2073E-11
2.0217E-10
O.OOOOE+00
O.OOOOE»00
RECEPTOR
2
6
10
FLUX
3.477K-10
6.K21E-12
O.OOOOE*00
RECEPTOR
3
r
11
FLUX
2.0194C-09
O.OOOOE*00
o.ooooe+oo
RECEPTOR
4
8
12
FLUX
3.5804E-09
0.0000€*00
O.OOOOE»00
ORT HNO3 FLUX (6/H**2/S) AT MONCRIDOEO RECEPTORS
TEAR: 88 MONTH. 1 OAT: 2 HOUR: 12
RECEPTOR
1
5
9
13
FLUX
3.1181E-11
2.7*011-10
O.OOOOE*00
O.OOOOE+00
RECEPTOR
2
«
10
FLUX
3.S782E-10
1.2200E-11
O.OOOOE+00
RECEPTOR
3
7
11
FLUX
2.5824E-09
O.OOOOE*00
O.OOOOE»00
RECEPTOR
4
a
12
FLUX
4.4524E-09
O.OOOOEMM
0.0000€'00
ORT N03 FLUX AT NONCRIOOEO RECEPTORS
TEAR? 88 MONTH: 1 OAT! 2 HOUR: 12
RECEPTOR
1
5
9
13
FLUX
1.3732E-14
1.3868E-13
O.OOOOE«00
O.OOOOE»00
RECEPTOR
2
6
10
FLUX
3.3581E-13
6.3909E-15
O.OOOOE+00
RECEPTOR
3
r
11
FLUX
1.2271E-12
O.OOOOE«00
O.OOOOE*00
RECEPTOR
4
8
12
FLUX
2.1187E-12
O.OOOOE'OO
O.OOOOE»00
D-37
-------
-------
APPENDIX E
*
SAMPLE MESOFILE H INPUT AND OUTPUT FILES
-------
-------
SAMPLE MESOFILE H INPUT FILE (FILEJNP)
E-l
-------
Citcultt* 24 -hr *v*r«g« S02 concentration* tod ftux«« «od plot
(SAME IPOL'1. IRTYPE-1. IHAX-31, JHAX-31. IOUT-1, UNO
FIND
(SAME IYEAR'88. IDAY'2, IHOUR'I, I MIDI* 24. MMIT-10. UNO
AVRG
tSAHE IMM'1. AVETN'24, PHINT-1, A-1.0. i-0.. PIOT.1. OISK-1,
NEUV-0. APE*0, NEUNES>0, ISCNEK'O, IHICN't, UNO
OCfH
tSAME IPOL'6. IRTTPE'1, IMAX-31. JMAX.J1, IOUT'2. UNO
F1MO
(SAME ITEAR-aa. IOAY'2, IHO««1, IGRIOS* 2«. NUNIT-11, (END
AVXQ
(SAME IRUN'2. AVETN>24. PRINT-1. A-1.0. l«0., PlOT-1. OISK-1.
NEUV»1. APC-0. NEUMES>1, ISCHEK-0, INICH-1. UNO
Vtt Deposition Huxe* <8/«**2/»)
tOIFF N>6, TM»»-1.E-10.1.0e-11,1.0E-10,1.0E-9,5.0E-9.1.0E-8. UNO
DEFN
(SAME IPOL-11, IRTYPE-1, IMAX«31. JHAX«3». IOUT«3, UMO
FIND
(SANE IYEAR*88, IOAT-2, IHOUR'1. ICRIOS* 24. NIMIT-12. (END
AVR6
(SAME IRUNO. AVETH'24, PRINT*!. A-1.0, I'D., PtOT-t. OISK-1,
NEWV-1, APE'O, NEUME$«1, ISCHCK«0. 1MIGH«1, UNO
Dry Dcpoiltlon Fluxet
to IFF H-4. THR«-1.0E-10,1.0E-10.1.0E-9.1.0E-8.5.0E-a.1.0C-7. UNO
E-2
-------
SAMPLE MESOFILE II OUTPUT FILE (FILE.LST)
E-3
-------
RUNTIME CALL NO.:
1 DATE: 06/15/93 TIMES 12:36:50.36
VERSION NUMBER 2.3
LEVEL 930530
HESOflLE II
DATA READ FROM MESOPUFF OUTPUT FILE •- UNIT) 10 RUNSTREANt 1
VERSON» 5.1 LEVEL'930530 NSTR-88 NSOAY- 2 NSHR. 0 NAOVTS- 24 IAVO- 1 NPUF» 4 NSAMAO* 2 IELMET>22 JELMET«22
DC* ID- 10000.0 IASTAR- 1 IASTW-22 JASTAR- 1 JASTOP-22 ISASTR« 4 1SASTP-19 JSASTR- 4 JSASTP-19 MESHON- 2 NPTS« 1
NAREAS- 0 NREC' 13 IPRINF- 12 ICAUSS-T LCHEM-T LDRT-T LUET-T LPRINT-T L3Vl«T LVSAMP-T USAMP. 2.00 LSGRIO'T
NSPEC- 5
LUETC'T LUETNC'T IORTG-T LDRYNG*T LPRHX-T
XREO 2.50 2.50 4.00 5.00 5.50 6.50 6.50 8.00 7.50 9.00 8.00 7.00 6.50
YRE013.SO 12.00 12.00 11.00 9.50 9.00 7.50 8.00 6.50 6.00 5.75 4.00 3.50
CONCENTRATIONS
87
+
256
*
345
4
583
*
797
«
881
•»
0
0
0
0
0
7
34
+
64
+
57
•*
134
4
313
+
370
•f
674
»
917
»
0
0
0
0
0
0
2
20
+
62
+
88
4
115
'»
14$
*
293
+
445
+
812
4-
E-4
-------
14 1
1
13 1
1
12 1
1
11 1
f
10 1
1
9 1
1
8 I
1
7 1
1
6 1
5 I
1
4 1
1
3 1
1
2 1
f
1 1
I
65
88
115
131
124
95
58
28
11
4
1
0
0
0
1
68
96
133
137
149
108
61
26
2
0
0
0
0
69
101
146
180
173
122
64
25
2
0
0
0
0
72
104
156
198
190
131
65
23
1
0
0
0
0
82
112
167
211
197
130
60
20
1
0
0
0
0
102
133
190
226
193
116
50
15
0
0
0
0
0
134
170
232
249
184
95
36
10
0
0
0
0
0
176
223
293
281
174
73
23
5
1
0
0
0
0
0
217
284
368
324
169
58
14
3
0
0
0
0
0
0
247
337
442
375
176
51
10
1
0
0
0
0
0
0
10
CONCENTRATIONS
-------
1
12 1
11 I
6 1
$ 1
< I
3 1
2 1
1 1
1
35?
797
0
0
0
0
0
0
•
1136
580
0
0
0
0
0
0
•
1*7* 000
S3 131 0 0
0000
0000
0000
0000
0000
0000
+ » » »
00000
00000
00000
00000
00000
00000
00000
00000
00000
» » » » »
21 22 23 24 25 26 27 28 29 30 31
HIGHEST GRtDOEO VAIUE for (yr,d«y,hour) . (88, 3, 0) PeUuttnt: 1 - ( 21. 13> MAX. VAIUE -
1.5315E-06
•OOOOOOOOOOOOWJOOOOOOOOOOOOOOCKMOOCmOOOOOOOOOOOOOOOOOWMOOOOOO*
•0
MOOO
* 111000
* 11100
• 1100
* 1100
• 1100
• 1100
• 1100
• 1100
• 1100
* 1100
• 1100
E-6
-------
* 11000 *
•1 11»0 *
•Oil 11 100 •
* 001 1221111 110 •
• 01 22 222211 100 0 •
* 01 11 2211 1100100 •
* 01 22 2211 11 110 •
• 0 11 2211 1 *
* 22 221 0 •
• 1 112 21 10 •
• 0 122 211 1 •
* 1 112 221 •
• 01 122 21 •
• 0 112 21 0 *
* 122 211 10 •
* 112 2222221111 *
* 0 12 333332222 •
* 000001 12223 33 11 •
•000011111 11111111111111 233 210 •
•1111 11122222222222222 223 321 *
* 222 1U3332 •
• 1122 22 22210 •
* 11222222222222 2221011 *
• 11111111111122221111 00 •
• 11111000 •
•1 11111111111111111111111111110 •
•0111111111110000000000000000000000000000 •
* 00000000000 •
•ooooooowoooooooooooootroooooooooooooooooooooooooooooooooooooo*
CONCENTRATIONS (G/M**3)
VALUE
0
1
2
3
4
5
6
7
8
RANGE
-1
1
5
1
2
5
1
2
5
.OOOOOE-10
.OOOOOE-07
.OOOOOE-07
.OOOOOE-06
.OOOOOE-06
.OOOOOE-06
.OOOOOE-05
.50000E-OJ
.OOOOOE-05
IE
IE
IE
IE
IE
IE
IE
IE
IE
X
X
X
X
X
X
X
X
X
IT
IT
IT
IT
IT
LT
IT
IT
1
5
1
2
5
1
2
5
.OOOOOE-07
.OOOOOE-07
.OOOOOE-06
.OOOOOE-M
.OOOOOE-06
.OOOOOE-05
.JOOOOE-OS
.OOOOOE-05
PLOT NUMBER:
DATA READ FROH MESOPUFF OUTPUT FILE -- UNIT: 11 RUNSTREAM: 2
VERSON* 5.1 LEVEL'930530 MSTR-M NSOAY* 2 NSHR- 0 NAOVTS* 2* IAVG« 1 NPUF* 4 NSAHAO* 2 IELHET-22 JELHET*22
OGRID' 10000.0 IA5TAR- 1 IASTOP-22 JASTAR- 1 JASTOP-22 ISASTR* 4 ISASTP«19 JSASTR' < JSASTP«19 MESHON* 2 MPTS' 1
E-7
-------
MAREAS- 0 MREO 13 IPRIMF. 12 LCAUSS-T LCHEH-T IDRT-T LUET'T IPRINT-T 13VI»T IVSAMP-T USAHP-
MSPEC- 1
LUETG-T lUETNG'T IOHYG-T LDRYNG'T IPRM.X-T
XREC- 2.50 2.50 4.00 5.00 5.50 6.50 6.50 8.00 7.50 9.00 8.00 7.00 8.50
mc-13.50 12.00 12.00 11.00 9.50 9.00 7.50 8.00 6.50 6.00 5.75 4.00 3.50
2.00 ISGRID'T
Wet Deposition FtuxM (g/M**2/()
Multiply •(( value* by 10 •» -12
year: 88 Julian day: 3 Ending hour: 0 Pollutant: 6
31 I
29 1
27 I
26 1
25 1
24 1
23 1
22 1
21 1
20 1
19 1
18 1
17 1
16 1
15 I
1
K 1
1
13 1
1
12 I
1
11 1
1
10 1
1
9 1
1
8 1
1
0
0
0
4
22
76
206
420
686
903
947
777
493
239
•
88
4
24
+
2
4
0
+
0
•f
0
*
0
+
0
0
0
6
31
107
270
522
813
1025
1031
812
488
220
4
75
+
n
»
i
+•
0
•
0
*
0
*
0
+
0
0
i
9
46
149
350
636
930
1109
1061
791
448
189
4
58
4
11
4
0
4
0
4
0
4
0
4
0
4
0
0
1
14
66
203
452
766
1039
1155
1034
721
381
149
4
42
4
7
4
0
4
0
4
0
4
0
•
0
4
0
0
2
22
94
276
581
914
1147
1176
967
619
298
105
4
25
4
4
4
0
4
0
4
0
*
0
4
0
4
0
0
4
29
131
371
738
1086
1260
1179
877
500
212
64
»
14
•f
1
4
0
»
0
4
0
4
0
»
0
+
0
0
4
37
169
483
923
1281
1376
1170
771
381
139
37
»
6
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
3
42
208
60S
1137
1494
1490
1141
651
271
81
18
4
2
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
3
41
234
730
1381
1734
1597
1087
528
176
41
6
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
0
34
233
830
1650
2020
1701
1010
404
107
19
2
4
0
4
0
4
0
_4
0
4
0
4
0
4
0
4
0
0
0
19
190
841
1909
2391
1843
925
296
55
6
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
0
0
5
116
695
2023
2896
2132
870
203
29
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
0
0
39
405
1731
3378
2810
985
153
to
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
0
0
3
136
982
3115
3805
1679
268
16
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
0
0
0
11
301
1802
3887
2811
938
290
24
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
0
0
0
0
29
542
2345
2822
1681
1229
301
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
0
0
0
0
0
62
556
934
1190
1770
1910
300
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
0
0
0
0
0
0
26
90
1024
1595
1857
2022
4
58
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
0
0
0
0
0
0
0
0
0
155
239
130
772
4
234
4
0
4
0
4
0
4
0
4
0
4
0
+
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
4
0
+
0
+.
0
4
0
4
0
4
0
4
E-8
-------
7 1
1
6 1
1
5 1
1
t 1
1
3 t
1
2 1
1
1 1
1
0
4
0
4
0
4
0
4
0
4
0
4
0
4
1
Uet Depotltli
Multiply all
31 1
I
30 t
1
29 1
1
28 1
27 1
I
26 1
1
25 1
1
24 1
1
23 1
1
22 1
1
21 1
1
20 1
1
19 t
1
18 1
1
17 1
1
16 1
1
IS 1
1
H I
r
13 1
i
12 1
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4>
0
4
0
4
0
4
0
•f
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
2
0
4
0
4
0
4
0
4
0
4
0
4
0
4
3
0
4
0
4
0
4
0
4
0
4
0
4
0
4
«
m Muxc* (g/«r»*
values
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
V
4
0
4
0
4
0
4
0
»
0
4
0
4
0
4
0
4
0
4
0
br
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
10 ••
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
S
2/0
-12
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
6
0
4
0
4
0
4
0
*
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
r
0
4
0
4
0
4
0
+
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
8
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
9
0
4
0
4
0
4
0
+
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
10
0
4
0
4
0
4
0
*
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0000000000
4444444444
0000000000
4444444444
0000000000
4444444444
0000000000
4444444444
0000000000
444444444. 4
0000000000
4444444444
0000000000
4444444444
11 12 13 U IS 16 17 18 19 20
year: 88 Julian day: 3 Ending hour: 0 Pollutant: 6
•
0
4
0
4
0
4
0
*
0
+
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
E-9
-------
11
10
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
21 22 23 2* 25 24 27 28 29 30 31
HIGHEST CRIDOEO VALUE for (yr.dcy.hour) - (88, J. 0) Pollutant! 6 (1.J) • ( 15. 20) MAX. VALUE • 3.88o7E-09
• 000000000000
• 00011111111111100
•00000111 1*1111111110000
•11111 11122222222211111
• 1111222 2211100
* 1112222 222110
•11222 222222222 21100
•22 2223333333332 22110
• 22333 322221100
• 2233 33322211
233 32 110
• 223 322210
• 2233 3 t
• 2233 333333
• 33 3333333322222233 2 1100
• 33322222222 2233 322211
* 333333222 22 22 33 2
• 222222 22221122 3 1
* 22111110112 23 2
* 22211 1110 0012 2 1
• 22111 1000 112 3 21
• 22211 1110 011223 3 2
E-10
-------
* 222111 11000 000223 3
•222222111 1100 12232
•111111 1100 00112 2
* 1111100 11121
* 11100000 00000
•11000
•00
* •
* •
*(WOOOOOOOOOOOOO<)0()0000000000000000000000000000000000000000000*
W«t Deposition Fluxes 1 1ASTOP-22 JASTAR" 1 JAJTOP-22 ISAITR" 4 fSASTP»19 JSASTR» * JSASTP-19 HESNDN' 2 NPTS« 1
HABEAS- 0 NREC' 13 IPRINF" 12 LGAUSS'T LCHEM-T LDRT«T LUET'T LPRINT'T L3Vl«T LVSAHP-T USAMP. 2.00 LSGRID'T
MSPEC« 5
LUETG'T LUETNC-T LDRYG'T LDRTNC'T LPRFLX'T
XREC- 2.SO 2.50 4.00 5.00 5.SO 6.50 6.SO 8.00 7.50 9.00 8.00 7.00 8.50
YREC-13.SO 12.00 12.00 11.00 9.SO 9.00 7.SO 8.00 6.50 6.00 5.75 4.00 3.50
Dry Deposition Fluxes (g/M**2/«) ye»r: 88 Julian day: 3 Ending hour: 0 Pollutant: 11
Multiply all values by 10 •• -11
31 1
1
30 1
1
V) \
4
+
9
•
18
2
4
7
+
15
1
+
4
+
12
1
•»
3
4
8
0
«
1
+
5
0
4
1
4
3
0
4
0
4
1
0
4
0
4
1
0
4
0
4
0
0
4
0
4
0
0
4
0
4
0
0
4
0
4
0
0
4
0
4
0
0
4
0
4
0
0
4
0
4
0
0
4
0
4
0
0
4
0
4
0
0
4
0
4
0
0
4
0
4
0
0
+
0
4-
0
E-ll
-------
1
28 I
27 I
3A 1
I
25 I
24 t
23 1
22 1
21 I
20 1
19 1
18 1
17 I
16 1
IS I
U I
13 1
12 1
11 1
10 1
9 1
8 1
7 t
6 1
5 1
4 I
3 1
2 1
1 I
1
33
51
T>
90
too
102
103
106
112
114
106
87
64
46
39
43
S3
59
56
43
26
11
5
2
0
0
0
0
*
30
52
78
103
120
128
131
136
.143
146
136
111
79
54
44
49
61
70
65
47
26
19
*
i
0
0
0
0
«•
26
SO
Ml
113
138
152
157
163
171
175
164
134
96
64
51
56
70
79
73
50
26
3
1
0
0
0
0
+
21
44
TO
118
152
173
180
184
191
195
184
154
111
76
62
69
83
89
78
50
24
2
0
0
0
0
0
4
15
36
117
159
187
197
197
199
202
193
165
123
89
80
93
107
105
82
49
21
1
0
0
0
0
0
+
9
26
108
158
193
206
203
196
193
186
163
127
101
IDS
133
152
140
98
53
21
1
0
0
0
0
0
*
5
17
tf
92
148
192
211
204
187
173
162
146
123
112
134
191
237
217
143
70
25
1
0
0
0
0
0
*
3
9
69
127
181
211
207
181
151
130
119
113
120
167
271
375
351
214
95
31
1
0
0
0
0
0
*
1
4
45
99
162
207
213
185
141
104
91
98
124
195
355
544
506
276
104
29
1
0
0
0
0
0
+
0
1
24
67
134
197
221
198
149
96
69
76
115
208
412
678
621
297
92
20
0
0
0
0
0
0
«
0
0
10
38
100
176
225
217
170
112
63
54
92
203
435
744
671
286
73
12
0
0
0
0
0
0
»
0
0
3
17
62
142
218
238
198
144
82
43
64
184
443
740
637
251
59
8
0
0
0
0
0
0
»
0
0
0
5
32
100
191
248
237
188
131
61
47
157
459
719
551
202
45
5
0
0
0
0
0
0
«
0
0
0
1
13
65
163
252
310
293
246
158
66
128
471
777
525
174
35
3
0
0
0
0
'0
0
*
0
0
0
0
5
45
155
264
403
500
484
402
176
108
450
934
568
158
29
1
0
0
0
0
0
0
+
0
0
0
0
4
28
125
251
381
599
647
611
393
116
381
1063
589
154
29
0
0
0
0
0
0
0
*
0
0
0
1
6
24
70
202
318
493
682
723
647
227
292
1178
622
134
29
0
0
0
0
0
0
0
+
0
0
0
0
1
8
31
SO
97
287
359
572
774
833
561
219
1123
653
155
21
0
0
0
0
0
0
0
+
0
0
Q
0
0
6
32
61
55
137
320
369
652
901
1013
268
1053
690
17Z
6
0
0
0
0
0
0
0
+
0
0
Q
0
0
2
19
58
82
108
140
295
446
767
1074
900
632
747
177
0
0
0
0
0
0
0
0
+
10
11
12
13 14
15 16
17
18
19 20
E-12
-------
Dry Deposition Flux** (g/m**2/s)
Multiply all values by 10 ** -11
year: 88 Julian day: 3 Ending hour: 0 Pollutant: It
31 1
30 1
9O 1
25 1
2« 1
23 1
22 1
21 1
20 1
19 1
in i
17 1
1*4 I
15 1
13 1
12 1
11 1
10 1
9 1
8 1
7 I
1
6 1
1
5 1
1
« 1
1
0
0
0
0
0
3
20
60
118
9AV
156
5*7
502
1SU
4U
378
17
0
0
0
4
0
4
0
4
0
*
0
0
0
0
0
0
1
6
22
2(3
127
t
1361
1028
162
0
0
0
0
4
0
4
0
t
0
t
0
0
0
0
0
0
0
0
0
f
3
9_t
31
2<
162
25
0
0
0
0
4
0
4
0
4
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
13
0
0
0
0
4
0
*
0
*
0
t
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
4
0
4
0
»
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
»
0
4
0
*
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
4
E-13
-------
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
21 22 23 24 25 26 27 28 29 30 31
HIGHEST CHIMED VALUE for (yr.day.hour) • (88. 3, 0) PoltottotJ 11 • ( 21. 13) MAX. VALUE
1.SU4E-08
ft****************.********.****.*******************************
•0000000000000000000000000000000000000000000000000000000000000*
•
•000
*11100
• 11000
* 11100
• 11000
• 1110
• 100
* 1100
• 1100
• 1111111111 11
• 1222222222211 00
•12 2211 1100
•2 22111 1100
* 2221 110
* 2111 1000000000000
• 22211 1111111111110
* 22111 10
* 222111 10
* 222111 1
* 222
* 11 0
* 2211111 10
* 222221 1
* 2 2
•2 22122 1
•12 11 1122 21
• 12 1122 20
• 122 v 11 10
* 11222 11 2 1
• 11122 2211 12 2
• 11 2211111 1 1
• 2222211 22222 2
• 1 22 333332
• 2 222 32
• 33 3
• 1 2222222 223 1
* 2 3333333 23 2
2222222 221 0
• 2 21 11
• 122 22211100
• 112 222222222222110000
• 12222 222222222211111111111110
• 111121111111111 10000
• 1 11111111111110
* 1110000000000000
• 11111111111111000
•1111100000000000000
*
•
•
•
«
•
*
•
•
•
•
*
•
•
*
•
•
•
•
•
*
•
•
•
*
•
•
•
*
*
*
*
*
•
•
•
*
•
*
*
•
•
*
*
*
•
*
*
E-14
-------
•ooooo
*(XKXXXX)0000(X)000000000000000(XX)000000(XXKXX>000000000000000000*
Dry Dcpo*lt1on Flint* (o/m**2/f)
VALUE RANGE
o -t.oooooe-io IE x IT l.oooooc-10
1 1.00000E-10 IE X II 1.00000E-09
2 1.00000E-09 1C X U 1.00000E-08
3 1.00000E-08 IE X U S.OOOOOE-OB
« S.OOOOOE-08 LE X IT 1.000006-07
5 1.00000E-07 IE X
PLOT NUMBERS
CaleuUt* 24-hr ivcrigc SO2 concentration* end ftuxe* «nd ptot
ROUTINE CALLED
DEFN
POLLUTANT
$02 CONC.
ARRAT SIZE STARTING RECOM) OF DISK OUTPUT RECEPTOR TYPE NO. NG RECEPTORS
31 X 31 1 GRIMED 0
ROUTINE CALLED DEFINES RUNSTREAH NO. LOGICAL UNIT TR/OAT/HR
FIND 1 10 M/ 2/ 1
NO. GRIDS
.ROUTINE CALLED
AVRG
AVERAGING TIME
24
PRINTER OUTPUT
YES
DISK OUTPUT
YES ( 1- 1)
PLOT
YES
CONTOUR LEVELS
DEFAULT
INPUT FIELDS PRINTED
HO
RUNSTREAN NO.
1
OROE*
FIRST
i.oooooe*oo
O.OOOOOE*00
tFORM
2
NEUMES
0
ISCHEK
0
IHIGN
1
ROUTINE CALLED
DEFN
POLLUTANT
UET S02 FLUX
ARRAT SIZE STARTING RECORD OF DISK OUTPUT RECEPTOR TYPE NO. NG RECEPTORS
31 X 31 2 GRIDOEO 13
E-15
-------
ROUTINE CAIUD DEFINES RUNSTREAM NO. LOGICAL UNIT YR/DAT/MR NO. GRIDS
FIND 2 11 M/ V 1 24
ROUTINE CALLED AVERAGING TIME PRINTER OUTPUT DISK OUTPUT PLOT CONTOUR LEVELS INPUT FIELDS PRINTED
AVRG 24' TES YES < 2- 2) YES USERS NO
RUNSTREAM NO. ORDER A • IfORM NEUHES ISCMEK IMIGH
2 FIRST 1.00000EMW O.OOOOOE'OO 2 1 0 1
ROUTINE CALLED POLLUTANT ARRAY SIZE STARTING RECORD OF DISK OUTPUT RECEPTOR TYPE HO. NG RECEPTORS
DEFH DRY S02 FLUX 31 X 31 3 GRIDDED 13
ROUTINE CALLED DEFINES RUNSTREAM HO. LOGICAL UNIT YR/OAY/HR NO. GRIDS
FIND 3 12 88/ 2/ 1 2«
ROUTINE CALLED AVERAGING TIME PRINTER OUTPUT DISK OUTPUT PLOT CONTOUR LEVELS INPUT FIELDS PRINTED
AVRG 24 YES YES ( 3- 3) YES USERS NO
RUNSTREAM NO. ORDER A • IFORM NEUHES ISCHEK (HIGH
3 FIRST 1.00000E«00 O.OOOOOE'OO 2101
RUNTIME CALL NO.: 2. DATE: 06/15/73 TIME: 12:36:34.21
DELTA TIME: 3.85 (SEC)
E-16
-------
TECHNICAL REPORT DATA
(Please read Instructions on reverse before completing)
1. REPORT NO.
EPA-454/B-94-025
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
A Revised User's Guide to MESOPUFF II (V5.1)
5. REPORT DATE
August 1994
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Joseph S. Scire and Elizabeth M.
Sigma Research Corporation
Insley
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Sigma Research Corporation
196 Baker Avenue
Concord, MA 01742
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
12. SPONSORING AGENCY NAME AND ADDRESS
U.S. Environmental Protection Agency
Office of Air Quality Planning and
Standards, TSD
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final Report
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
This document is a revised version of the MESOPUFF II user's guide which describes
the current configuration of the MESOPUFF II modeling system (Version 5.1). Much of
the text is taken from the original document, although several new chapters have been
added and other sections revised. The revised modeling system contains the original
set of programs, along with several new programs which includes the upper air
preprocessor (READ62) and the precipitation data preprocessors PXTRACT and PMERGE.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b. IDENTIFIERS/OPEN ENDED TERMS
c. COSATI
Field/Group
Air Pollution
Meteorology
Air Quality Dispersion Model
Visibility
Aerosols
New Source Review
Air Pollution Control
18. DISTRIBUTION STATEMENT
Release Unlimited
19. SECURITY CLASS (Report)
Unclassified
21. NO. OF PAGES
296
20. SECURITY CLASS (Page)
Unclassified
22. PRICE
EPA Fora 2220-1 (Rev. 4-77)
PREVIOUS EDITION IS OBSOLETE
-------
-------