EPA-454/B-94-025
   & EPA
               United States
               Environmental Protection
               Agency
                Office of Air Quality
                Planning and Standards
                Research Triangle Park, NC 27711
EPA-454/B-94-025
August 1994
               Air
A REVISED USER'S GUIDE TO
MESOPUFF II (V5.1)
                                                  ENVIRONMENTAL
                                                  V PROTECTION
                                                  I  AGENCY  '
                                                   DAtLAS, TEXAS

                                                   LIBRARY i

-------
                            EPA-454/B-94-025
A REVISED USER'S GUIDE TO
      MESOPUFF II (V5.1)
      U.S. Environmental Protection Agency
      Technical Support Division (MD-14)
  Research Triangle Park, North Carolina  27711

             National Park Service
             Air Quality Division
            Denver, Colorado 80225

            USDA Forest Service
               Air Program
          Fort Collins, Colorado 80526

         U.S. Fish and Wildlife Service
             Air Quality Branch
           Denver, Colorado 80225
               August 1994

-------

-------
                                     NOTICE

      The information in this document has been reviewed in its entirety by the U.S.
Environmental Protection Agency (EPA), and approved for publication as an EPA document.
Mention of trade names, products, or services does not convey, and should not be interpreted
as conveying official EPA approval, endorsement, or recommendation.

-------

-------
                                       PREFACE

       The Interagency Workgroup on Air Quality Modeling (IWAQM) was formed to
provide a focus for development of technically sound, regional air quality models for
regulatory assessments of pollutant source impacts on Federal Class I areas.  Meetings were
held with personnel from interested Federal agencies, viz,  the Environmental Protection
Agency, the U.S. Forest Service, the National Park Service, and the U.S. Fish and Wildlife
Service.  The purpose of these meetings was to review respective regional modeling
programs, to develop an organizational framework, and to formulate reasonable objectives and
plans that could  be presented to management for support and commitment.  The members
prepared a memorandum of understanding (MOU) that incorporated the goals and objectives
of the workgroup and obtained signatures of management officials in each participating
agency.  Although no States are signatories, their participation in IWAQM functions is
explicitly noted in the MOU.

       This User's Guide is the third document published by the IWAQM in an effort to
provide the sponsoring agencies and other interested parties information on appropriate "off-
the-shelf methods for estimating long range transport impacts of air pollutants on Federal
Class I areas and impacts on regional visibility.  The IWAQM members anticipate issuing
additional publications related to progress toward meeting the IWAQM goals and objectives,
the results of model evaluation studies, proposed and final recommendations on modeling
systems for regulatory applications, and other topics related to specific objectives in the
MOU.
                                          11

-------

-------
                              ACKNOWLEDGEMENTS

      The user's guide for the original version of MESOPUFF n was developed under a
contract to Environmental Research & Technology, Inc. funded by the U.S. Environmental
Protection Agency. The original user's guide was written by Joseph Scire, Frederick
Lurmann, Arthur Bass, and Steven Hanna (EPA Document EPA-600/8-84-013). Much of this
revised user's guide has been adapted directly from the earlier edition.

      The portions of this document relating to the meteorological preprocessing programs
were adapted from the CALMET model user's guide by Joseph Scire, Elizabeth Insley, and
Robert Yamartino.  CALMET was developed under a contract to Sigma Research  Corporation
funded by the California Air Resources Board.
                                        111

-------

-------
                               TABLE OF CONTENTS
Acknowledgements
List of Figures
List of Tables

1.     Introduction	  1-1
      1.1    Background  	  1-1
      12    MESOPUFF H Modeling Package	  1-2
      13    Major Features of MESOPUFF H	  1-4
      1.4    Summary of Required Input Data  	  1-7
      1.5    Computer Requirements	  1-9

2.     READ56/READ62 Upper Air Data Preprocessors	  2-1

3.     PXTRACT Precipitation Data Extract Program  	3-1

4.     PMERGE Precipitation Data Preprocessor	4-1

5.     MESOPAC H Meteorological Preprocessor	5-1
      5.1    Technical Description	•	  5-1
             5.1.1  Wind Fields 	5-1
             5.12  Surface Friction Velocity  	5-6
             5.13  Monin-Obukhov Length	 5-10
             5.1.4  Mixed Layer Height	 5-11
             5.1.5  Convective Velocity Scale	 5-12
             5.1.6  Atmospheric Stability Class  	 5-12
             5.1.7  Precipitation Data  	 5-15
      5.2    MESOPAC n User's Instructions	 5-15
      53    Sample MESOPAC II Inputs and Outputs	 5-16

6.     MESOPUFF H Dispersion Model		.6-1
      6.1    Technical Description	:	6-1
             6.1.1  Bask Gaussian Puff Equations	  6-1
             6.1.2  Grid Systems  	  6-7
             6.13  Plume Rise	  6-9
             6.1.4  Puff Trajectory Function	 6-10
             6.1.5  Dry Deposition - Three-Layer Model	 6-13
             6.1.6  Chemical Transformations  	 6-19
             6.1.7  Wet Removal	,	•., 6-21
             6.1.8  Puff Sampling Function	 6-22
             6.1.9  Urban Plumes	.:	 6-25
      6.2    MESOPUFF II User's Instructions  	 6-25
      63    Sample MESOPUFF n Inputs and Outputs	 6-29
                                       IV

-------
                       TABLE OF CONTENTS - CONTINUED
7.     MESOFILE H Postprocessor	 7-1
      7.1    Subroutine DEFN 	 7-4
      12    Subroutine FIND	 7-5
      73    Subroutine SEEK	 7-7
      7.4    Subroutine AVRG	 7-8
      7.5    Subroutine ADD1  	 7-11
      7.6    Subroutine ADD2  	 7-12
      7.7    Subroutine STAT	 7-13
      7.8    Sample Card Inputs for Some Useful MESOFILE n Applications	 7-23
      7.9    MESOFILE H Parameter File	 7-24
      7.10   MESOFILE n Run Control Parameter Descriptions	 7-24

8.     References	 8-1
Appendix A:  TD-6200 Series NCDC Upper Air Data Format Description
Appendix B:  TD-3240 Precipitation Data Format Description
Appendix C:  Sample MESOPAC n Input and Output Files
Appendix D:  Sample MESOPUFF n Input and Output Files
Appendix E:  Sample MESOFILE n Input and Output Files

-------
                                  LIST OF FIGURES



1-1    MESOPUFF H (V5.1) modeling package  	 1-3



1-2    Schematic representation of puff superposition approach  	 1-5



5-1    How diagram for MESOPAC H 	5-2




5-2    Card image input setup for MESOPAC H	 5-19



6-1    Flow diagram for MESOPUFF H 	 6-2



6-2    Sample meteorological, computational, and sampling grids  	 6-8



6-3    Calculation of the trajectory of a puff centerpoint	 6-11



6-4    Bilinear interpolation of wind components	 6-14




6-5    Optional three layer system used in MESOPUFF n	 6-18




6-6    Input deck setup for MESOPUFF n	 6-31



7-1    Schematic illustration of the averaging process 	 7-10



7-2    Sample of statistical output	 7-15



7-3    Grid subsets used in statistical calculations  	 7-18



7-4    Flow chart of subroutine STAT	 7-19
                                       VI

-------

-------
                               LIST OF TABLES




1-1    Major Features of MESOPUFF H	 1-6



2-1    READ56/READ62 Input and Output Files	2-2




2-2    READ56/READ62 Control File Inputs	2-4



2-3    Sample READ56/READ62 Control Ffle (READ56.INP, READ62.INP)	2-6



2-4    READ56/READ62 Output Ffle Format (UPn.DAT)  	2-7



2-5    Sample READ62 Output List File	 2-10



2-6    Sample READ62 Output Data Ffle	 2-11



2-7    Edited Upper Air Data Set Ready for Input to MESOPAC H	 2-12



3-1    PXTRACT Input and Output Files	3-3



3-2    Sample PXTRACT Control File (PXTRACT.INP)	3-4



3-3    PXTRACT Control File Inputs (PXTRACT.INP)	 3-5



3-4    Sample PXTRACT Output List Ffle (PXTRACT.LST)	 3-7




3-5    Sample PXTRACT Output Precipitation Data Ffle (040001.DAT)  	3-8




4-1    PMERGE Input and Output Files	4-3



4-2    PMERGE Control Ffle Inputs (PMERGE.INP)  	4-4



4-3    Sample PMERGE Control Ffle (PMERGEJNP)	4-7



4-4    Sample PMERGE Output List Ffle (PMERGE.LST)  	4-8



5-1    Options for Lower and Upper Wind Fields	5-4



5-2    Solar Radiation Reduction Factor 0	 5-7



5-3    Daytime Solar Insolation Classification Scheme	 5-13



5-4    Stability Classification Criteria	 5-14



5-5    Sample Parameter Ffle (PARAMS.PAC) for MESOPAC H  	 5-17




5-6    MESOPAC H Input and Output Files	 5-18




5-7    MESOPAC H Inputs	 5-20





                                   vii

-------
                          LIST OF TABLES - CONCLUDED


5-8   Variables in the Binary MESOPAC n Output File  	 5-32

5-9   Sample MESOPAC H Input File	 5-34

6-1   Puff Growth Rate Coefficients a,, by, a,, b, 	 6-5

6-2   Vertical Diffusivity (K,), and Puff Growth Rate Coefficient (a,,)	 6-6

6-3   Summertime SO2 Canopy Resistances (s/m) as a Function of Land  	 6-16
      Type and Stability Class

6-4   Default Values of the Scavenging Coefficient, A. (s'1)	 6-23

6-5   Conversion of Reported Precipitation Type/Intensity to Precipitation Codes  	 6-24

6-6   Sample Parameter File (PARAMS.PUF) for MESOPUFF H  	 6-27

6-7   MESOPUFF n Input and Output Files	 6-28

6-8   Format of Optional Hourly Ozone Input Data	 6-30

6-9   MESOPUFF H Inputs	 6-32

6-10  Variables in the MESOPUFF II Output Concentration File  	 6-47

6-11  Sample Input File to MESOPUFF II	 6-49

7-1   MESOFTLE H Input and Output Files  	 7-2

7-2   MESOFILE II Card-Image Inputs and Subroutine Identifiers	 7-3

7-3   Statistical Measures Calculated by Subroutine STAT	 7-16

7-4   Sample Parameter File (PARAMS.FTL) for MESOFILE H	 7-25

7-5   MESOFILE H Inputs			 7-26
                                      Vlll

-------
                                 1.0 INTRODUCTION

1.1     Background

       The development of the MESOPUFF n modeling system was sponsored by the U.S.
Environmental Protection Agency (EPA) in the early 1980s.  The purpose of the model
development effort was to provide a modeling package which could be used in regulatory studies
to assess the impact of sulfur oxides and nitrogen oxides emitted from major point and area
sources over source-receptor transport distances of tens to hundreds of kilometers. Therefore,
the model was designed to include effects important on the mesoscale such as spatial and
temporal variability in winds, dispersion, chemical transformation, wet removal, and dry
deposition.

       The modeling system was documented in two reports: a model formulation document
(Scire et al., 1984a) and an user's guide  (Scire et al., 1984b).  However, since the original model
was released, a number of changes and enhancements have been made to the modeling system.
Some of these modifications were made in order to accommodate changes in the format of the
meteorological data products provided by the National Climatic Data Center (NCDC). Other
changes, such as the addition of a flexible memory management system, the ability to output and
store wet and dry flux predictions, and the addition of an option to  allow continuation runs of
the model were made to make the model easier to use and more flexible. Some technical
improvements, such as the adjustment of the friction velocity to account for differences in
surface roughness between a grid cell and an observational station measuring wind speed, were
made in the revised code. In addition, range checks of variables and limits were added to
prevent computational problems,  and all known coding errors were  corrected.

       The revised modeling system contains the original set of programs, including the
MESOPUFF II model along with the processor programs READ56, MESOPAC II, and
MESOFILE II. In addition, several new programs have been added, including the upper air
preprocessor (READ62) and the  precipitation data preprocessors PXTRACT and PMERGE.
These new programs have been adapted from the CALPUFF/CALMET modeling package
(Scire et al., 1990) for use with MESOPUFF II.

       This document is a revised version of the MESOPUFF II user's guide which describes
the current configuration of the MESOPUFF II modeling system (Version 5.1). Much of the
text is taken from the original document, although several new chapters have been added and
other sections revised.
                                          1-1

-------
1.2     MESOPUFF II Modeling Package

       The MESOPUFF n model is one element of an integrated modeling package. This
modeling package, illustrated in Figure 1-1, also contains components for preprocessing of
meteorological data (READ56, READ62, PXTRACT, PMERGE, MESOPAC H) and
postprocessing of predicted concentration and wet/dry deposition fluxes (MESOFILE II).  Each
component of the MESOPUFF n modeling package is briefly described below.

       READ56 and READ62 are preprocessor programs that read and process the twice-daily
upper air wind and temperature sounding data available from the National Climatic Data
Center (NCDC) for selected stations. READ56 extracts the data required by the MESOPAC II
program from a TDF5600-formatted NCDC tape^and READ62 extracts the data from the more
recent NCDC data format (TD6201). READ56/READ62 scan the upper air data for
completeness; warning messages are printed to flag missing or incomplete soundings.  A file of
processed sounding data is created in a format convenient for possible editing by the user. This
file is subsequently input  into the MESOPAC II program.

       PXTRACT is a preprocessor which extracts precipitation data for stations and time
periods of interest from a fixed length, formatted precipitation data file in NCDC TD3240
format.

       PMERGE reads, processes and reformats the precipitation data files created by the
PXTRACT program. The output file is a formatted file, which can be directly input into the
MESOPAC II model, containing the precipitation data sorted by hour rather than station.
PMERGE resolves "accumulation periods" and flags suspicious or missing data.

       MESOPAC II is the meteorological processor program that computes the time and space
interpolated fields of meteorological variables (e.g., transport winds, mixing height) required by
MESOPUFF II to describe mesoscale transport and dispersion processes.  MESOPAC II reads
the upper air  data files created by READ56 or READ62, files of standard-formatted NCDC
hourly surface meteorological data (CD 144), and preprocessed precipitation data (optional). A
single output file containing the gridded meteorological fields is produced which serves as an
input file to MESOPUFF II.

       MESOPUFF II is  a Gaussian, variable-trajectory, puff superposition model designed to
account for the spatial and  temporal variations in transport, diffusion, chemical transformation
and removal mechanisms encountered on regional scales.  With the puff superposition approach,
                                          1-2

-------
   MTXAC7
   Cane rot
                main
              rrvciptticioa
Figure 1-1. MESOPUFF U (V5.1) Modeling Package.

              (a) Meteorological Components
(Continued)
                                           1-3

-------
                             MESOfOFF II
                               :ont;ol
                              ?arai*ttr
                               Inputs
 A
[  Hourly    \
I  Mtttor.    I
\  Varlaftl.i  I'
dourly Oion«
MiasurtMnts
                                                                                        -i (Optional)
                                                                  HESOPOFF II
                                                                  DISPERSION
                                                                     MODEL
                             HESOflLE II
                            Fo*tproc**sor
                               Pcoqram
              j(Optional)
                                              Cone«ntr*tlOB
                                                and Flui
                                                 Tablti
Figure 1-1.     MESOPUFF H (V5.1) Modeling Package.  (Concluded)
                (b) Dispersion and Postprocessing Components
                                                 1-4

-------
a continuous plume is modeled as a series of discrete puffs (Figure 1-2).  Each puff is
transported independently of other puffs. A puff is subject to growth by diffusion, chemical
transformations, wet removal by precipitation, and dry deposition at the surface.  Up to five
pollutants may be modeled simultaneously.

       MESOFILEII is a postprocessing program that operates on the concentration and
wet/dry flux files produced by MESOPUFFIL  The postprocessing functions available with
MESOFILE II include flexible time averaging of gridded or non-gridded (discrete) receptor
concentrations and fluxes, line printer contour plots of concentration and flux fields, statistical
analysis of point-by-point or bulk differences between concentration/flux fields, and summing
and scaling capabilities.

1.3    Major Features of MESOPUFF U

       Table 1-1 outlines the most important features of MESOPUFF II and its processor
programs. MESOPAC II supplements twice-daily rawinsonde data with hourly surface data to
construct wind fields at two levels. The greater temporal and spatial resolution of the surface
data allows improved treatment of plume transport.  Wind fields are constructed at two user-
selected levels:  a lower level to represent boundary layer flow and an upper level to represent
flow above the boundary layer.

       In addition to the wind field module, MESOPAC II has a boundary layer module which
computes'from routinely-available data micrometeorological variables which describe the
structure of the boundary layer (i.e., surface friction velocity, u., convective velocity scale, w,,
Monin-Obukhov length, L, and boundary layer height, zf).  These variables are computed by
MESOPAC II from surface meteorological  data and surface characteristics (i.e., land use,
roughness length) provided by the user for each grid point.

       MESOPUFF II accommodates up to five pollutants:  sulfur dioxide (SO2), sulfate SO4",
nitrogen oxides (NOX = NO + NO2), nitric acid (HNO3), and nitrate NO3\ Chemical
transformation rate expressions developed from the results of photochemical model simulations
over a wide range of environmental conditions are used to parameterize chemical processes.
The  rate expressions include effects for the gas phase oxidation of SO2 and NOr  The
HNO3/NH3/NH4NO3 chemical equilibrium  relationship is also incorporated into the model.
                                           1-5

-------
Figure 1-2.  Schematic representation of puff superposition approach.
                                            1-6

-------
                             Table  1-1

                 Major Features of MESOPUFF II
Uses hourly surface meteorological data, twice-daily upper air rawinsonde
soundings, and hourly precipitation observations.

Wind fields constructed for two layers (within boundary layer, above boundary layer).

Boundary layer structure parameterized in terms of micrometeorological
variables u., w., z,, L,

Up to five species (e.g., SO^ SO4", NOW HNO3, NO3").

Space-  and time-varying chemical transformations.

Space-  and time-varying dry deposition with a resistance model.

Space and time-varying wet removal.

Efficient puff sampling function.

Concentrations, wet fluxes, and dry fluxes predicted.

Flexible memory management system.

Model  restart/continuation option.
                                1-7

-------
       The dry deposition of pollutants is treated in MESOPUFF II with a resistance model.
The pollutant flux is proportional to the inverse of a sum of resistances to pollutant transfer
through the atmosphere to the surface.  The resistances depend on the characteristics of the
pollutant, the underlying surface, and atmospheric conditions.  MESOPUFF II contains options
for the commonly used source depletion model of dry deposition (i.e., pollutant is removed from
the entire depth of the puff) or a more realistic surface depletion treatment (i.e., material is
removed only from the surface layer) with a 3-layer submodule.

       Precipitation scavenging can be the dominant pollutant removal mechanism during
precipitation periods.  MESOPUFF n contains a scavenging ratio formulation for wet removal.
The scavenging ratio depends on both the type and rate of precipitation, and the characteristics
of the pollutant.

       MESOPUFF II uses an unique method to evaluate and sum the contributions of
individual puffs to the total concentration. The model uses an integrated form of the puff
sampling function that eliminates the problem of insufficient puff overlap commonly
encountered with puff superposition models.  This development allows continuous plumes to be
accurately simulated with fewer puffs, thereby saving computational time and reducing computer
storage requirements.

       Among the most significant new enhancements to MESOPUFF II are the addition of
options to store wet and dry fluxes, the ability to conduct continuation runs of previous
simulations, and the use of a flexible memory management system which allows a global
redimensioning of all of the major arrays by making simple changes to a parameter file.

1.4    Summary of Required Input Data

       The required input data for MESOPUFF II and its preprocessors may be classified into'
four types: (1) run control parameters, (2) meteorological data, (3) surface classification (land
use) data, and (4) source and emissions data. If available, hourly ozone measurements may also
be input to the model.  The values of the run control parameters for each program are selected
by the user to define a run.  For example, the starting date and length of a  run, the technical
options used, and control of input/output  options are all determined by values of the run control
parameters chosen by the user.

       The meteorological data inputs required by MESOPAC II are twice-daily upper air
soundings and hourly surface meteorological observations.  Hourly precipitation measurements
are an optional input,  which are necessary if the model is to be used to simulate wet removal.
                                           1-8

-------
The program is designed to use standard-formatted meteorological files available from NCDC.
The upper air soundings are routinely obtained twice a day at 00 GMT (7 pm EST) and 12
GMT (7 am EST). The READ56 and READ62 programs extract the following information for
each sounding level:

              •     pressure
              •     height
              •     temperature
              •     wind direction
              •     wind speed.

The required format for upper air data is the Tape Deck Format 5600 series (TDF5600) for
READ56 or the more recent format TD6201 for READ62, both in fixed record length format

       The hourly surface meteorological data for MESOPAC II consists of the following
information:

              •     cloud cover
              •     ceiling height
              •     precipitation type
              •     wind speed
              •     wind direction
              •     surface pressure
              •     temperature
              •     relative  humidity

The required format for the hourly surface observations is Card Deck 144 (CD 144).

       The CD 144 formatted surface observations do not contain hourly precipitation amounts.
However, hourly precipitation  data are available at many stations in NCDC Tape Deck 3240
(TD-3240) format. The PXTRACT and PMERGE programs preprocess the precipitation data
into the input format required by MESOPAC II.

       The third type of required input data is a classification of the typical surface
characteristics in each grid square. Although the user may optionally specify detailed
information such as roughness length and canopy resistances, these data may not always be
available. Therefore, the program requires only that land use categories be input for each  grid
cell. These data may be obtained from land use maps or digitized land use inventories available
                                          1-9

-------
on tape such as the National Land Use and Land Cover Inventory (Page, 1980). Pre-selected
surface roughness lengths and canopy resistances associated with each land use category are
then internally assigned to the grid cells.  The land use categories and default values of
associated surface roughness and canopy resistance are listed in Table 6-3.

       MESOPUFF n models emissions from both point and area sources. The following
information is required for each point source:

              •     source location (x,y in grid units)
              •     stack height
              •     stack diameter
              •     exit velocity
              •     stack gas temperature
              •     emission rate for each pollutant.

The area source option is primarily intended to allow modeling of the large number of small
point and non-point sources within urban areas as one or more sources with an effective height
and initial vertical and horizontal puff size specified by the user.  The following information is
required for each area source:

              •     location (x,y in grid units)
              •     effective height
              •     initial puff size (ay az)
              •     emission rate for each pollutant.

1.5    Computer Requirements

       The memory management scheme used in MESOPAC II and MESOPUFF II is designed
to allow the maximum array dimensions in the model to be easily adjusted to match the
requirements of a particular application.  An external parameter file contains the maximum
array size for all of the major arrays. A re-sizing of the  program can be  accomplished by
modifying the appropriate variables in the parameter file.

       Therefore, the memory required by the models will be determined by the particular
application. The storage and computational requirements of the model are also highly
application specific. For most practical applications, a minimum computer configuration would
include a 486 PC, with 4 MB memory, hard disk capacity of 300-500 MB, and a tape backup
unit. An annual model simulation can be broken into smaller (e.g., monthly) runs, which would

                                           1-10

-------
reduce the disk storage requirements. However, the tradeoff is that swapping of files between
tape and disk is increased, and the numbers of runs and files to be managed is greater.

       As an example of the computer requirements of the modeling system, a recent
application with the following characteristics:

MESOPAC II

       -12 monthly runs
       - 9 surface stations
       - 3 upper air stations
       - 32 precipitation stations
       - 51 x 51 meteorological grid

required:

       - Memory:    0.7 Mb
       - CPU time:   ~ 2.5 hours/month (486/33 MHz)
       - Input files:   ~ 1 Mb/month (meteorological data)
       - Output file:  ~ 78 Mb/month (gridded meteorological file)
                    < 1 Mb/month (other files)

and the MESOPUFF II simulations, consisting of:

MESOPUFF n

       - single source
       - 51 x 51 meteorological grid
       - 41 x 41 sampling grid
       - maximum dimension of puff arrays (MXPUFF) = 10,000
       - puff release rate - 16 puffs/hour
       - puff sampling rate - 2  samples/hour
       - 5 species
       - 26 hourly ozone stations
                                         1-11

-------
required:

       - Memory:    1.2 Mb
       - CPU time:  ~ 6 hours/month (486/33 MHz)
       - Input files:  ~ 78 Mb/month - meteorological data (see above)
                    < 1 Mb/month - other files
       - Outputs:    ~ 5 Mb/species/month
                    ~ 75 Mb/month total for 5 species and concentrations, wet fluxes and dry
                           fluxes.

       The disk storage requirements can be significantly reduced in some applications by using
a longer basic averaging time, and reducing or eliminating the sampling grid size (i.e., using non-
gridded receptors only).
                                          1-12

-------
               2.0 READ56/READ62 UPPER AIR DATA PREPROCESSORS

       READ56 and READ62 are preprocessing programs which extract and process upper air
wind and temperature data from standard NCDC data formats into a form required by the
MESOPAC n meteorological model.  READ56 operates on the older TD-5600 data format.
Although this format is not currently used by NCDC, some historical data sets may contain data
in this format. READ62 processes data in the current TD-6201 format.  A description of the
TD-6201 format available from NCDC is  contained in Attachment 2A.  Both programs require
that the NCDC upper air data be in fixed record length format

       Although the upper air input formats are different, the user inputs to READ56 and
READ62 are identical as is the processed output file. In the user input file, the user selects the
starting and ending dates of the data to be extracted and the top pressure level Also selected
are processing options determining how missing data are treated.  The programs will flag or
eliminate sounding levels with missing data.

       If the user selects the option to flag (rather than eliminate) levels with missing data, the
data field of the missing variables is indicated with a series of nines.  If the option to eliminate
levels with missing data is chosen, only sounding levels with all non-missing values will be
included in the output data file.

       A. formatted file of pressure, height, temperature, wind speed and wind direction at each
sounding level is created by READ56/READ62 for possible editing by the user and subsequent
input  into the meteorological models. Before running MESOPAC II the user must edit the
formatted file to either eliminate pressure levels with missing variables or replace the missing
parameters with appropriate values.  This may be done with a separate preprocessor program
(not provided), or it may be done manually.  However, the user is cautioned that the use of
soundings with significant gaps due to missing data may lead to poor modeling results. In
particular, adequate vertical resolution of the morning temperature structure near the surface is
especially important to the meteorological model in predicting daytime mixing heights.

       Two input files are required by the preprocessor: a user input control file and the
NCDC upper air data file.  Two  output files are produced:  a list file summarizing the user
options selected and missing soundings encountered, and the processed data file in MESOPAC
II format.  Table 2-1 contains a listing of  the input and output files for READ56 and READ62.
                                          2-1

-------
                                       Table 2-1
                        READ56/READ62 Input and Output Files
(a)
READ56
Unit
5
6
8
File Nflm£
READ56.INP
READ56.LST
TDF56.DAT
Type
Input
Output
Input
Format
Formatted
Formatted
Formatted
Description
Control file containing user inputs
List file (line printer output file)
Upper air data in NCDC TD-5600
          UP.DAT*
                    Output
Formatted
fixed record length format
Output file containing processed upper
air data in format required by
MESOPAC H
(b) READ62
IJnif • Fil^ Nflm^
5 READ62.INP
6 READ62.LST
8 TD6201.DAT

Type
Input
Output
Input

Foimat
Formatted
Formatted
Formatted

Description
Control file containing user
List file (line printer output


inputs
file)
Upper air data in NCDC TD-62D1
          UP.DAT*
                    Output
Formatted
fixed record length format
Output file containing processed upper
aif data in format required by
MESOPAC H
       Should be renamed UP1.DAT (for upper air station #1), UP2.DAT (for station #2), etc for
       input into the MESOPAC II model.
                                           2-2

-------
       The READ56/READ62 control file consists of two lines of data entered in FORTRAN
free format A description of each input variable is shown in Table 2-2.  A sample input file is
shown in Table 2-3. Table 2-4 describes the format of the output file produced by
READ56/READ62. The output list file is shown in Table 2-5.  In  the list file, the user inputs
are printed as well as a summary of the soundings processed. Informational messages indicating
problems in the data set are written in the summary.  Table 2-6 shows the data set as output by
READ62. The informational messages seen in the list file are also written in the data file.
These messages must be removed and all missing soundings and missing parameters within a
level must be filled in with appropriate data before the upper air data set is ready for input to
MESOPAC n.  Missing soundings should be replaced with soundings for the same time period
from a representative substitute station.  Missing parameters for a given level may be
interpolated from the surrounding levels. Each data set must be processed on a case-by-case
basis, with careful consideration given on how to deal with missing  data.  Table 2-7 shows the
sample data set after editing  by the user is complete and the upper air data is ready to be input
to MESOPAC n. It should be noted that all missing value indicators have been replaced with
interpolated values, and the missing 12Z sounding has been inserted in the appropriate position
in the file.  (In this case, data from a nearby station were used to replace the missing sounding).
Note that the station ID of the substitute data has been modified to match that of the original
station with missing data.
                                          2-3

-------
                                  Table 2-2
                      READ56/READ62 Control FUe Inputs
RECORD L Starting and ending date/hour, top pressure level to extract
Columns
*
*
*
*
*
*
*
Type
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL
Variable
ffiYR
EBDAY
IBHR
IEYR
IEDAY
IEHR
PSTOP
Description
Starting year of data to extract (two digits).
Starting Julian day.
Starting hour (00 or 12 GMT).
Ending year of data to extract (two digits).
Ending Julian day.
Ending hour (00 or 12 GMT).







Top pressure level (mb) for which data is extracted
(possible values are 850 mb, 700 mb, or 500 mb). The
output file will contain data from the surface to the
"PSTOF-mb pressure level
* Entered in FORTRAN free format
                                     2-4

-------
                                    Table 2-2 - Concluded
                            READ56/READ62 Control File Inputs
RECORD 2.  Missing data control variables.
            Type          Variable     Description
            LOGICAL     LHT        Height field control variable. If LHT = T, a sounding level is
                                      eliminated if the height field is missing.  If LHT = F, the
                                      sounding level is included in the output file but the height field
                                      is flagged with a "-999.9," if missing.
            LOGICAL     LTEMP     Temperature field control variable. If LTEMP = T, a
                                      sounding level is eliminated if the temperature field is missing.
                                      If LTEMP = F, the sounding level is included in the output file
                                      but the temperature field is flagged with a "999.9", if missing.
            LOGICAL     LWD       Wind direction field control variable.  If LWD « T, a sounding
                                      level is eliminated if the wind direction field is missing.  If
                                      LWD  =  F, the sounding level is included in the output file but
                                      the wind direction field is flagged with a "999", if missing.
            LOGICAL     LWS        Wind speed field control variable.  If LWS = T, a sounding
                                      level is eliminated if the wind speed field is missing.  If LWS =
                                      F, the sounding level is included in the output file but the wind
                                      speed field is flagged with a "999", if  missing.
* Entered in FORTRAN free format
                                             2-5

-------
                                         Table 2-3

             Sample READ56/READ62 Control File (READ56JNP, READ62.INP)
83 001 00  83 365 12  500.      --  Beg. yr, day, hr (GMT), End. yr, day, hr. top pressure level
.TRUE., .FALSE.,  .FASLE., .FALSE.  -- Eliminate level if height, temp., wind direction, wind speed missing ?
                                              2-6

-------
                                       Table 2-4

                          READ56/READ62 Output File Format
                                      (UPnJMT)
HEADER RECORD 1.
 Columns   Format
HEADER RECORD 2.

 Column*;   Format

    6      LI
    11


    16

    21
LI


LI

LI
             Variable    Description
2-6
7-11
12-16
17-21
22-26
27-31
32-36
V
15
15
15
15
15
15
F5.0

ffiYR
IBDAY
IBHR
IEYR
IEDAY
IEHR
PSTOP

Starting year of data in the file (two digits).
Starting Julian day.
Starting hour (GMT).
Ending year (two digits).
Ending Julian day.
Ending hour (GMT).
Top pressure level (mb) (possible values are 850 mb, 700 mb,
or 500 mb).
Variable    Description

LHT       Sounding level eliminated if height missing? (T=yes, F=no)


LTEMP    Sounding level eliminated if temperature missing?


LWD       Sounding level eliminated if wind direction missing?

LWS       Sounding level eliminated if wind speed missing?
                                          2-7

-------
                                         Table 2-4

                     READ56/READ62 Output File Format - Continued
                                        (UPnJ)AT)
DATA HEADER RECORD - For each 00 or 12 GMT sounding, a one-record data header is used
foUowed by "N" records of data. Each record contains up to four sounding levels.

           Format*    Variable      Description

           14         ITPDK       Label identifying data format of original data (e.g., 5600 or
                                    6201 for NCDC data or 9999 for non-NCDC data).
     4-7
    13-17
           15
NOSTA
Station ID number.
23-30 412
36-37 12
69-70 12
IOBTM(4)
LVL
P
                                      Year, month, day, and hour (GMT) of data.

                                      Total number of levels in the original sounding.

                                      Number of levels extracted from the original sounding and
                                      stored below.
* Record format is (3x, i4, 5x, 15, 5x, 4i2, 5x, i2, t69, i2)
                                             2-8

-------
                                       Table 2-4

                          READ56/READ62 Output Fik Format
                                       (UPnJ)AT)
DATA RECORDS
£°!UfffflS
4-9
11-15
17-21
23-25
27-29
33-38
40-44
46-50
52-54
56-58
62-67.
69-73
75-79
81-83
85-87
91-%
98-102
- . 104-108
110-112
114-116
(Up to four
Format*
F6.1
F5.0
F5.1
13
13
F6.1
F5.0
F5.1
13
13
F6.1
F5.0
F5.1
13
13
F6.1
F5.0
F5.1
13
D
levels per record)
Variable
PRES
HEIGHT
TEMP
DIR
WS
PRES
HEIGHT
TEMP
DIR
WS
PRES
HEIGHT
TEMP
DIR
WS
PRES
HEIGHT
TEMP
DIR
WS

Description
Pressure (mb)
Height above sea level (m)
Temperature (deg. K)
Wind direction (degrees)
Wind speed (m/s)
Pressure (mb)
Height above sea level (m)
Temperature (deg. K)
Wind direction (degrees)
Wind speed (m/s)
Pressure (mb)
Height above sea level (m)
Temperature (deg. K)
Wind direction (degrees)
Wind speed (m/s)
Pressure (mb)
. Height above sea level (m)
Temperature (deg. K)
Wind direction (degrees)
Wind speed (m/s)
* Record format is (4(3x,f6.1, 7',£5.0, V',£5.1,V',i3,7'43))
                                          2-9

-------
                                 Table 2-5
                   Sample READ62 Output List File
                   REA062   VERSION 4.0      LEVEL 901130
STARTING DATE:                ENDING DATE:

               YEAR  *   83                  YEAR =   83
         JULIAN DAY  *     1            JULIAN DAY *    3
               HOUR  «     0  (GMT)            HOUR -   12  (GMT)
PRESSURE LEVELS EXTRACTED:

                    SURFACE TO   500. MB


DATA LEVEL ELIMINATED  IF  HEIGHT MISSING ?         T

DATA LEVEL ELIMINATED  IF  TEMPERATURE MISSING ?    F

DATA LEVEL ELIMINATED  IF  WIND DIRECTION MISSING ? F

DATA LEVEL ELIMINATED  IF  WIND SPEED MISSING ?     F


THE FOLLOWING SOUNDINGS HAVE BEEN PROCESSED:

      YEAR   MONTH  DAY   JULIAN DAY   HOUR (GMT)   NO.  LEVELS EXTRACTED

       83
       83
       83
       83
->->->MISSING/DUPLICATE SOUNDING
       83      1       3         3         12                 19
           TOP OF SOUNDING LISTED ABOVE IS BELOW THE  500.0-MB LEVEL
1
1
1
1
1
1
2
3
1
1
2
3
0
12
0
0
19
30
17
29
                                    2-10

-------
                                                  Table 2-6

                                    Sample READ62 Output Data Fife
                            (Before Editing and Substitution of Missing Data)
    83    1     0
     T    f     f
   6201      93739
   1024.0/   4./2
    950.O/ 618./Z
    820.0/1819./2:
    750.0/2543./2;
    550.0/4981./Z
   6201      93739
   1025.2/
    950.07 625.72;
    866.0/1373.72;
    761.0/2419./2;
    700.0/3092./2;
    649.0/3693./2I
    600.074307./2<
    516.0/5470.72!
   6201      93739
   1024.07   4.72;
    950.07 614./2;
    813.0/1882.72;
    650.0/3677./2I
    500.0/5707./2!
 ->->->MISSlNG/DUI
   6201      93739
   1017.0/   4./2:
    950.0/ S59./2;
    892.0/1069./2;
    850.0/1464. /2:
    750.072476.72;
    672.0/3352.721
    600.0/4238./2I
    500.0/S639./258.6/2387  34
   6201      93739     83  1  312
TOP OF SOUNDING BELOU  500.0-MB  LEVEL
   1018.47   4./273.6/290/   1    1000.07  151
    934.07 699./271.6/ 3/  11
    816.0/1779./272.3/2987   9
    750.0/2452.7271.1/2627  17
    571.0/4572./2S8.3/247/  30
83 3
f
83 1
1.8/3607
>.7/2017
1.572517
12
1 0
1
6
13
>. 57999/999
'.272557
83 1
1.2/2857
'.6/3227
1.672627
i. 0/2597
I.8/254/
1.3/2507
i. 8/246/
'.1/2617
83 1
1.071507
..3/2657
I.3/266/
>.6/260/
..6/266/
29
112
1
4
6
22
30
35
37
43
2 0
1
6
16
29
35
500.
47
1014.
943.
814.
700.
532.
51
1015.
933.
850.
750.
685.
631.
584.
500.
07 84./2T8.47 437
07 679.7280.3/2097
0/1878./274.0/252/
0/3099./273.5/264/
075232.7257.272597

07 86./277.8/300/
07 7T2./277.2/294/
071523.7277.3/253/
0/2537.7275.5/2577
0/3265.7271. 7/2S3/
0/3914./267.0/2497
0/4517./265. 1/2497
0/5708./256.7/260/
1
6
14
22
33

3
3
8
23
32
37
36
45
47
1017.07 60.7278.171507
914.
800.
600.

07 928./278.0/276/
0/2013./277.7/266/
0/4306./266.9/261/

1
8
17
29

19
1000.07 198./277.8/ 847
900.0/1063./278.7/233/
800.0/2018./276.9/2547
650.0/3688.7999.9/2677
500.0/5698./256.0/2607
30
1000.0/ 207.7277.3/304/
900.0/1064./274.6/271/
800.0/2015./276.3/258/
738.0/2667./274.9/255/
671.0/3429./270.4/251/
616.0/4102.7266.4/246/
568.0/4733.7264.8/2S3/

17
1000.0/ 197.7277.8/1517
900.0/1054.7277.9/278/
750.0/2536./275.0/273/
576.0/4625. /265.S/264/


1
8
16
23
38

5
4
16
26
34
38
37


1
8
20
31


984
850
791
600


968
883
777
719
650
610
550


967
850
700
550


.O/ 330
.0/1529
.0/2110
.0/4314


.O/ 472
.0/1217
.0/2251
.0/2877
.0/3680
.0/4178
.0/4982


.O/ 470
.0/1519
.0/3089
.0/4982



.7277.1/1157
.7276
.7278
.7999


.7278
./273
./275
./273
./268
.7266
./262


-6/243/
.8/25S/

2
10
17
.9/999/999


.0/314/
.1/266/
.7/262/
.9/2S3/
.4/250/
.1/244/
.9/2S6/


.7277.3/2567
.7277
./272
./262

.5/2T2/
.1/272/
.6/2667



5
5
19
29
35
38
38


3
14
24
31

.ICATE SOUNDING
83 1
I.47 207
i.57 36/
'.7/308/
'.6/264/
I.7/240/
I.8/258/
>.2/264/
3 0
2
5
4
6
14
18
29
52
1000.
919.
877.
812.
700.
665.
598.
07 142./277.9/ 467
07 828./275.2/360/
0/1208./278.8/279/
0/1835. /275.1/258/
073027.7270.872457
0/3434./268.5/260/
0/4263. /264.0/26V
3
5
4
7
15
19
30
29
969.07 399./277.1/ 477
900.07 997./276.3T332/
867.0/1302./278.3/272/
800.0/1955. /274.9/246/
693.073107./270.6/25V
650.0/3613./267.6/262/
586.0/4420.7265.2/259/

5
4
5
8
16
21
32

953
895
855
754
688
633
550

.O/ 534
.0/1042

.7276
.7276
.0/1416./277
.0/2433
.073165
.0/3821
.0/4911
.7273
.7272
./266
./262

.6/ 367
.6/316/
-7/26S/
.9/2407
.0/2527
.4/264/
.6/2S2/

5
4
6
14
17
22
27
  51
901.O/ 987
800.0/1937,
700.0/2998.
555.0/4786
7274.7/ 14/  5
./273.9/3S4/ 11
,7271.772807 10
V268.3/267/ 18
./256.3/2S2/ 32
      19

991.07 224./2T5.2/  177  8
900.0/ 996./2T3.9/354/ 11
781.0/2129./270.9/265/ 14
650.0/3577./264.7/255/ 21
550.0/4854./256.1/253/ 33
950.O/ 564./2T2.7/ 12/ 10
850.0/1453./271.1/337/  9
757.0/2378./271.4/262/ 17
600.0/4194.7260.8/240/ 27
                                                     2-11

-------
                                                  Table 2-7

                      Edited Upper Air Data Set Ready for Input to MESOPAC II
 83    1    0   83    3   12 500.
  T    F    f    F
6201     93739     83 1 1 0
1024.O/   4./278.8/360/  1
 950.0/ 618./279.7/201/  6
 820.0/1819./273.5/251/ 13
 750.0/2543./276.5/256/ 19
 550.0/4981./259.2/2S5/ 29
6201     93739     83 1 112
1025.2/   4./27S.2/285/  1
 950.O/ 625./2T7.6/322/  4
 866.0/1373./272.6/2627  6
 761.0/2419./276.0/259/ 22
 700.0/3092./272.8/254/ 30
 649.0/3693./268.3/250/ 35
 600.0/4307./265.8/246/ 37
 516.0/5470./259.1/261/ 43
6201     93739     83 1 2 0
1024.0/   4./278.0/150/  1
 950.0/ 614./276.3/265/  6
 813.0/18a2./278.3/266/ 16
 650.0/3677./269.6/260/ 29
 500.0/5707./256.6/266/ 35
6201     93739     83 1 212
1023.O/   4./277.2/240/  1
 950.O/ 609./278.2/ 69/  1
 800.0/2006./277.0/270/ 14
 659.0/3557./269.5/265/ 21
 599.0/4305./265.0/245/ 21
6201     93739     83 1 3 0
1017.0/   4./2T8.4/ 20/  2
 950.O/ 559./276.S/ 36/  5
 892.0/1069./277.7/308/  4
 850.0/1464./2T7.6/264/  6
 750.0/2476./273.7/240/ 14
 672.0/3352./268.8/2S8/ 18
 600.0/4238./264.2/264/ 29
 500.0/5639./258.6/23S/ 34
6201     93739     83  1 312
1018.4/   4./273.6/290/  1
 934.O/ 699./271.6/  3/ 11
 816.0/1779./2T2.3/298/  9
 750.0/2452./271.1/262/ 17
 571.0/4572./258.3/247/ 30
   47
1014.O/  84.
 943.0/ 679.
 814.0/1878.
 700.0/3099.
 532.0/5232.
   51
1015.O/  86.
 933.0/ 772.
 850.0/1523.
 750.0/2537.
 685.0/3265.
 631.0/3914.
 584.0/4517.
 500.0/5708.
   47
1017.0/  60.
 914.O/ 928.
 800.0/2013.
 600.0/4306.

   54
1016.O/  60.
 900.0/1049.
 784.0/2169.
 650.0/3666.
 550.0/4965.
   52
1000.O/ 142.
 919.O/ 828.
 877.0/1208,
 812.0/1835,
 700.0/3027,
 665.0/3434,
 598.0/4263

   51
1000.0/ 151./274.7/ 14/  5
 901.O/ 987./2T3.9/354/ 11
 800.0/1937./271.7/280/ 10
 700.0/2998./268.3/267/ 18
 555.0/4786./256.3/252/ 32
/2T8.4/ 43/  1
/280.3/209/  6
/274.0/252/ 14
/2T3.5/264/ 22
/2S7.2/259/ 33

7277.8/300/  3
/2T7.2/294/  3
/2T7.3/253/  8
/2T5.5/257/ 23
/271.7/253/ 32
7267.0/249/ 37
/265.1/249/ 36
7256.7/260/ 45

7278.1/150/  1
7278.0/276/  8
72T7.7/266/ 17
7266.9/261/ 29
/2T8.3/232/  1
7276.1/231/  3
V276.6/267/ 15
7Z68.9/264/ 20
7261.9/236/ 29

72T7.9/ 46/  3
7275.2/360/  5
7278.8/2T9/  4
7275.1/258/  7
7270.8/245/ 15
7268.5/260/ 19
7264.0/264/ 30
       19
1000.0/ 198./277.8/ 84/   1
 900.0/1063./278.7/233/   8
 800.0/2018./276.9/254/  16
 650.0/3688./269.1/267/  23
 500.0/5698./256.0/260/  38
       30
1000.0/ 207./277.3/304/   5
 900.0/1064./274.6/271/   4
 800.0/2015./276.3/2S8/  16
 738.0/2667./274.9/255/  26
 671.0/3429./270.4/25V  34
 616.0/4102./266.4/246/  38
 568.0/4733./264.8/253/  37

       17
1000.0/ 197./277.8/15V   1
 900.0/1054./277.9/278/   8
 750.0/2536./275.0/273/  20
 576.0/4625./265.5/264/  31
       19
1000.O/ 190.
 897.0/1075.
 750.0/2527.
 641.0/3775.
 500.0/5692.
       29
 969.0/ 399.
 900.0/ 997.
 867.0/1302.
 800.0/1955.
 693.0/3107,
 650.0/3613,
 586.0/4420

       20
 991.O/ 224./2T5.2/ 17/  8
 900.0/ 996./2T3.9/354/ 11
 781.0/2129./270.9/265/ 14
 650.0/3577./264.7/255/ 21
 550.0/4854./256.1/253/ 33
/278.0/103/  1
/275.9/230/  3
/274.6/26V 15
7265.1/262/ 18
/2S8.4/244/ 36

7277.I/ 47/  5
/276.3/332/  4
7278.3/2T2/  5
7274.9/246/  8
/276.6/251/ 16
7267.6/262/ 21
7265.2/2S9/ 32
                  984.O/ 330./277.1/115/  2
                  850.0/1529./276.6/243/ 10
                  791.0/2110./278.8/255/ 17
                  600.0/4314./264.4/255/ 23
                  968.O/ 472.
                  883.0/1217.
                  777.0/2251.
                  719.0/2877.
                  650.0/3680.
                  610.0/4178.
                  550.0/4982.
           /278.0/314/  5
           /273.1/266/  5
           /27S.7/262/ 19
           /2T3.9/253/ 29
           /268.4/250/ 35
           7266.1/244/ 38
           7262.9/2S6/ 38
                  967.0/ 470./277.3/256/  3
                  850.0/1519./277.5/272/ 14
                  700.0/3089./272.1/272/ 24
                  550.0/4982./262.6/266/ 31
970.0/ 439./2T8.9/ 85/  1
850.0/1512./278.2/260/  8
700.0/3079./271.4/266/ 18
600.0/4292./265.1/247/ 21
953.O/ S34./276.6/ 36/  5
895.0/1042./276.6/316/  4
855.0/1416./2T7.7/265/  6
754.0/2433./273.9/240/ 14
688.0/3165./272.0/252/ 17
633.0/3821./266.4/264/ 22
550.0/4911./262.6/252/ 27
                                               950.O/ 564./2T2.7/ 12/ 10
                                               850.0/1453./271.1/337/  9
                                               757.0/2378./271.4/262/ 17
                                               600.0/4194./260.8/240/ 27
                                               500.0/5565./253.1/259/ 39
                                                    2-12

-------
              3.0 EXTRACT PRECIPITATION DATA EXTRACT PROGRAM

       PXTRACT is a preprocessor program which extracts precipitation data for stations and
time periods of interest from a formatted precipitation data file in NCDC TD-3240 format. The
TD-3240 data used by PXTRACT must be in fixed record length format (as opposed to the
variable record length format, which is also available from NCDC). The hourly TD-3240
precipitation data usually comes in large blocks of data sorted by station.  For example, a typical
TD-3240 file may contain data from over 100 precipitation stations in blocks of time of 30 years
or more. Modeling applications require the data sorted by time rather than station, and usually
involve limited spatial domains of tens of kilometers or less and time periods from less than one
year up to 5 years. PXTRACT allows data for a particular model run  to be extracted from the
larger data file and creates a set of station files that are used as input files by the second-stage
precipitation preprocessor, PMERGE (see Section 4).

       If wet removal is not to be considered by the MESOPUFF II dispersion model, no
precipitation processing needs to be done.  PXTRACT (and PMERGE) are required only if wet
removal is to be considered in the modeling application.  In addition, the user has the option of
creating a  free-formatted precipitation data file that can be read directly by MESOPAC II.  This
option eliminates the need to run the precipitation preprocessing programs for short
MESOPAC II runs (e.g., screening runs) for which the input data can easily be input manually.

       The input files used by PXTRACT include a control file (PXTRACT.INP) containing
user inputs, and a data file (TD3240.DAT) containing the NCDC  data in fixed record length
TD-3240 format. The precipitation data for stations selected by the user are extracted from the
TD3240.DAT file and stored in separate output files (one file per station) called xxxxxx.DAT,
where xxxxxx is the station identification code. PXTRACT also creates an output list file
(PXTRACT.LST) which contains the user options and summarizes the station data extracted.
Table 3-1 contains a summary of PXTRACTs input and output files.

       The PXTRACT control file contains the user-specified variables which determine the
method used to extract precipitation data from the input data file (i.e., by state, by station, or  all
stations), the appropriate state or station codes, and the time period to be extracted.  A sample
PXTRACT control file is shown in Table 3-2. The format and contents of the file are described
in Table 3-3.

       The PXTRACT output list file (PXTRACT.LST) contains a listing of the control file
inputs and options. It also summarizes the station data extracted  from the input TD-3240 data
file, including the starting and  ending date of the data for each station and the number of data
                                          3-1

-------
records found. A sample output list file is shown in Table 3-4. The PXTRACT output data
files consist of precipitation data in TD-3240 format for the time period selected by the user.
Each output data file contains the data for one station. A sample output file is shown in
Table 3-5.

       A description of the NCDC hourly precipitation TD-3240 digital files is reproduced in
Attachment 3-A at the end of this section. Both variable length record and fixed length record
formats are described. However, the precipitation data preprocessors, PXTRACT and
PMERGE, require the fixed record length format of 42 characters per record (See Appendix A
of the TD-3240 data description).
                                          3-2

-------
                                         Table 3-1
                             PXTRACT Input and Output Files
Unit   File Name                        Type      Format

  1     PXTRACT.INP                   Input      Formatted


  2     TD3240.DAT                     Input      Formatted



  6     PXTRACT.LST                   Output    Formatted


  7     idLDAT                         Output    Formatted
       (idl is the 6-digit station code for
       station #1, e.g., 040001)


  8     id2.DAT                         Output    Formatted
       (id2 is the 6-digit station code for
       station #2, e.g., 040002)
Description

Control file containing user
inputs.

Precipitation data in NCDC
TD-3240 fixed record  length
format.

List file (line printer output
file).

Precipitation data (in
TD-3240) format for station #1
for the time period selected by
the user.

Precipitation data (in
TD-3240) format for station #2
for the time period selected by
the user.
       (Up to 200 new precipitation data files are allowed by PXTRACT).
                                            3-3

-------
                                              Table 3-2

                         Sample PXTRACT Control File (PXTRACTJNP)
2                       -Selection code, ICODE(l«by state, 2-by station, 3»all stations)
5                       - Number of states (ICODE-1) or stations (ICODE-2) to extract
040001                   - State or station code -(16)
040002
040003
040004
040005
80 01 01 01 SO 01 02 24      - Starting yr, month, day, hour (01-24), ending yr, month, day, hour (01-24) - (8(12,1*))
                                                  3-4

-------
                                          Table 3-3

                       EXTRACT Control File Inputs (PXTRACTJNP)
RECORD 1.  Data selection code.


       Columns      Variable

          *         ICODE
Integer
Description

Selection code:
                                                                     extract all stations
                                                                     within state or states
                                                                     requested.

                                                                     input a list of station
                                                                     codes of stations to
                                                                     extract.

                                                                     extract all stations in
                                                                     the input file with data
                                                                     for the time period of
                                                                     interest.
RECORD 2.  Number of state or station codes. (This record is include only if ICODE = 1 or 2)
                      3 -
                    Variable

          *         N
Type

Integer
Description

If ICODE = 1:
       Number of state codes to
       follow.

If ICODE * 2:
       Number of station codes to
       follow.
    * Entered in FORTRAN free format
                                             3-5

-------
                                   Table 3-3 (Concluded)
                       EXTRACT Control File Inputs (PXTRACTJNP)
RECORD 3, 4, _ 2+N State or station codes of data to be extracted (Each record has the following format)
         1-6
Format
16
Variable        Description
IDAT          IfICODE=l:
                      State code (two digits).
               If ICODE=2:
                      Station code (six digits)
                      consisting of state code (two
                      digits) followed by station ID
                      (four digits).
NEXT RECORD. Starting/ending dates and time
       Columns
          1-2
Format
12
4-5
J-8
10-11
13-14
16-17
19-20
22-23
12
12
12
12
12
12
12
Variable        Description
IBYR          Beginning year of data to process (two
               digits).
IBMO         Beginning month.
IBDAY        Beginning day.
IBHR          Beginning hour (01-24 LST).
IEYR          Ending year of data to process (two
               digits).
IEMO         Ending month.
IEDAY        Ending day.
IEHR          Ending hour (01-24 LST).
    * Record format is (8(i2,lx))
                                             3-6

-------
                              Table 3-4

       Sample EXTRACT Output List File (PXTRACTJLST)
                       PXTRACT OUTPUT SUMNA8T
                 VERSION:  1.0      LEVEL:  901130
RUNTIME CALL MO.:        1   DATE: 11/29/90  TIME: 16:03:51.65


 Data Requested by Station  10

 Period to Extract:    1/ 1/80   1:00  to   V 2/80  24:00


 Requested Precipitation Station ID Numbers -- (sorted):

   No.   ID            No.     ID            Mo.    ID            No.    ID

    1  040001           3   040003          4   040004           5   040005
    2  040002
 Station     Starting   Ending     No. of
   Code       Date      Date      Records

 040001       V 1/80   1/12/80      7
 040002       V 1/80   1/12/80      8
 040003       V 1/80   1/12/80      7
 040004       V 1/80   1/12/80      6
 040005      12/31/79   1/ 3/80      4
RUNTIME CALL  NO.:        2   DATE:  11/29/90   TIME:  16:03:53.24
DELTA TIME:       1.59 (SEC)
                                  3-7

-------
                   Table 3-5

Sample EXTRACT Output Precipitation Data File (040001J>AT)
  HPD04000100HPCPHI19800100010010100 00002
  HPD04000100HPCPHI19800100010010200 00002
  HPD04000100HPCPHI19800100010010300 00004
  HPD04000100HPCPHI19800100020010700 00000
  HPD04000100HPCPHI19800100030011300 OOOOOM
  HPD04000100HPCPHI19800100120010400 OOOOOM
  HPD04000100HPCPHI19800100120010500 00000
                      3-8

-------
                 4.0 PMERGE PREOPITATION DATA PREPROCESSOR

       PMERGE reads, processes and reformats the precipitation data files created by the
PXTRACT program, and creates either a formatted file for input into MESOPAC II or an
unformatted data file to be used in subsequent merging.  The output file (PRECDP.DAT)
contains the precipitation data sorted by hour, as required by MESOPAC n, rather than by
station. The program can also read an existing unformatted output file and add stations to it,
creating a new output file.  PMERGE also resolves "accumulation periods" and flags missing or
suspicious data.

       Accumulation periods are intervals during which only the total amount of precipitation is
known. The time history of precipitation within the accumulation period is not available.  For
example, it may be known that within a six-hour accumulation period,  a total of a half inch of
precipitation fell, but information on the hourly precipitation rates within the period is
unavailable. PMERGE resolves accumulation periods such as this by assuming a constant
precipitation rate during the accumulation period. For modeling purposes, this assumption is
suitable as long as the accumulation time period is short (e.g., a few hours). However, for
longer accumulation periods, the use of the poorly time-resolved precipitation data is not
recommended. PMERGE will eliminate and flag as missing any accumulation periods longer
than a user-define maximum length.

       PMERGE provides an option to "pack" the precipitation data in the unformatted output
in order to reduce the size of the file. A "zero packing" method is used to pack the precipitation
data. Because many of the precipitation values are zero, strings of zeros are replaced with a
coded integer identifying the number of consecutive zeros that are being represented. For
example, the following record with data from 20 stations requires 20 unpacked words:

              0.0, 0.0, 0.0, 0.0, 0.0, 1.2, 3.5, 0.0, 0.0, 0.0,
              0.0, 0.0, 0.0, 0.7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

       These data in packed form would be represented in six words:

              -5., 1.2, 3.5,-6., 0.7,-6.

where five zero values are replaced by -5., six zero values are replaced by -6., etc. With many
stations and a high frequency of zeros, very high packing ratios can be obtained with this simple
method.  All of the packing  and unpacking operations are performed internally by PMERGE
and are transparent to the user.  The header records of the data file contain information
                                          4-1

-------
flagging the file as a packed or unpacked file.  If the user selects the unpacked format, each
precipitation value is assigned one full word. The packing option is only available when writing
unformatted output.

       The input files used by PMERGE include a control file (PMERGE.INP), an optional
unformatted data file (PBIN.DAT) created in a previous run of PMERGE, and up to 150
TD-3240 precipitation station files (e.g., as created by PXTRACT). The output files consists of
a list file and a new data file with the data for all stations sorted by hour.  This new data file
may be formatted as required by MESOPAC II or unformatted if it is an intermediate file which
will be merged with additional data in a subsequent PMERGE run. Table 4-1 lists the name,
type, format, and contents of PMERGE's input and output data files.

       The PMERGE control file (PMERGE.INP) contains the user-specified input variables
indicating the number of stations to be processed, a flag indicating if data is to be added to an
existing, unformatted data file, the maximum length of an accumulation period, packing options,
station data, and time zone data.  PMERGE allows data from different time zones to be merged
by time-shifting the data to a user-specified  base time zone.  The format and contents of the
control file are described in Table 4-2.

       Sample PMERGE control files are shown in Table 4-3. Sample 1 shows an input file to
merge data from 10 precipitation stations into one unformatted output file. The unformatted
output file can then be renamed from PRECIP.DAT to PBIN.DAT by the user and then a
control file as shown in Sample 2 can be used to merge data from 9 more precipitation stations
to the 10 already processed. The combination of station data in multiple runs of PMERGE is
sometimes necessary because the number of files which can be opened at one time is Limited
under some operationing systems (e.g., DOS). The output file from Sample 2 is a formatted file
containing data from 19 precipitation stations. This formatted file can be directly input to
MESOPAC n.

       The PMERGE output list file (PMERGE.LST) contains a Listing of the control file
inputs and options.  It also summarizes the  number of valid and invalid hours for each station
including information on the  number of hours with zero or non-zero precipitation rates and the
number of accumulation period hours.  Additional statistics provide information by station on
the frequency and type of missing data in the file (i.e., data flagged as missing in the original
data file, data which is part of an excessively long accumulation period, or data missing from the
input files before (after) the first (last) valid record. A sample output  file is shown in  Table 4-4.
                                          4-2

-------
                                      Table 4-1
                          PMERGE Input and Output Files
Unit
3
4
5
6
7
PBINJDAT
PRECIP.DAT
PMERGE.INP
PMERGE.LST
User input file name
Type
Input
Output
Input
Output
Input
Format
Unformatted
Formatted or
Unformatted
Formatted
Formatted
Formatted
Description
Existing PMERGE data file to which
stations are to be added (used only if

Output data file created by
PMERGE (a formatted
PRECIP.DAT is an input file to
MESOPAC H.
Control file containing user inputs.
List file (line printer output file).
Precipitation data (in TD-3240)
8    User input file name
                          format for station #1. (Output file of
                          PXTRACT.)

Input      Formatted        Precipitation data (in TD-3240 format
                          for station #2. (Output file of
                          PXTRACT.)
     (Up to 150 new precipitation data files are allowed by PMERGE although this may be limited by
     the number of files an operating system will allow open at one time. Multiple runs of PMERGE
     may be necessary).
                                         4-3

-------
                                        Table 4-2
                       PMERGE Control File Inputs (PMERGEJNP)
RECORD 1. General run information.
         1-4
         5-8
         9-12
        13-16
        17-20
        21-24
Format*
14

14



14
14
14
14
Variable        Description

NFF           Number of formatted NCDC precip.
               data files to be processed (up to 150).
NBF           Flag indicating if data is to be added to
               an existing unformatted precip. data file
               (0=no, l=yes).
MAXAP        Maximum allowed length of an
               accumulation period (hours).  It is
               recommended that MAXAP be set to
               12 hours or less.
IOTZ          Time zone of output data (5=EST,
               6=CST, 7=MST, 8=PST).

IOFORM       Format of output data file (1=binary,
               2=formatted)

IOPACK       Flag indicating if output data are to be
               packed (0=no, l=yes). Used only if
               IOFORM=1.
    * Record format is (6i4)
                                            4-4

-------
                                   Table 4-2 (Continued)

                        PMERGE Control File Inputs (PMERGEJNP)
RECORD 2,3, _ 1+NFF.      File names and time zone for each station (Each record has, {hy- following
                            format)


       <^o|jnqnfi      Format*             Variable       Description

         1-10        A10                 CFFILES      Name of file containing formatted
                                                      precipitation data (TD-3240 format)
                                                      (PXTRACT output file). First six digits
                                                      .of file name must contain station code
                                                      (SSim), where SS is the two digit state
                                                      code, and nil is the station ID).

        12-13       12                  ISTZ          Tune zone of station (5=EST, 6=CST,
                                                      7=MST,8=PST).
   * Record format is (alO, Ix, i2)
NEXT RECORD. (Necessary only if NBF= 1, i.e., reading data from a binary input file).

       Columns      Format             Variable       Description

         1-4        i4                 NBSTN        Number of stations requested from
                                                      binary input file (-999 = use all stations
                                                      in binary file).
NEXT RECORDS.     (Necessary only if NBF= 1 and NBSTN * -999, one record for each binary station
                     requested, Le., NBSTN lines).

       ("!olmnTifi      Format              Variable       Description

         1-5        L5                   IBSTN         6-digit station ids requested from binary
                                                      input file (1 station id per record)
                                             4-5

-------
                                  Table 4-2 (Concluded)
                       EMERGE Control File Inputs (PMERGEJNP)
LAST RECORD. Starting/ending dates and times.
       Columns
         1-2
Format*
12
4-5
7-8
10-11
13-14
16-17
19-20
22-23
12
12
12
12
12
12
12
Variable        Description
IBYR          Beginning year of data to process (two
               digits).
IBMO          Beginning month.
IBpAY         Beginning day.
IBHR          Beginning hour (01-24 LST).
IEYR          Ending year of data to process (two
               digits).
IEMO          Ending month.
IEDAY         Ending day.
IEHR          Ending hour (01-24 LST).
    * Record format is (8(i2,lx))
                                            4-6

-------
                                           Table 4-3

                   Sample PMERGE Control File (PMERGEJNP)
                                            Sample 1
  10   0   12   5   1   1  --# stns.bin file?.HIM accu* per.time zone,iofornK1=bin.2=frat),p8ck<0=no,1=yes)-<6I4>
080616.dat 5
080845.dat 5
081654.dat 5
083186.dat 5
084091.dat 5
084570.dat 5
084797.dat 5
085663.dat 5
08S89S.dat 5
086323.dat 5
88 01  01  01 88 01 31 24 -Start yr, Booth, day, hr<01-24), end yr, month, day, hr<01-24)         - (8C12.1X))
                                            Sample 2
   9   1  12   5   2   0  —# stns.bin file?,max accept per.time zone,iofomKl=bin,2-fmt),pack(0»no,1»yes)-<6I4)
086657.dat  5
086988.dat  5
087293.dat  5
0878S9.dat  5
088780.dat  5
089010.dat  5
089184.dat  5
089219.dat  5
08952S.dat  5
-999
88 01  01 01 88 01 31 24 -Start yr, month, day. hr<01-24>, end yr.  month, day. hr<01-24>
--  (8(12,1X»
                                              4-7

-------
                             Table 4-4
       Sample PMERGE Output List Fife (PMERGE.LST)
                        PMERGE OUTPUT SUMMARY
                 VERSION:   1.2      LEVEL:  921022
RUNTIME CALL NO.:
1   DATE: 05/11/95   TIME: 12:11:23.54
Formatted TD3240 Precipitation
         Input Files

         080616.dat
         080845.dat
         081654.dat
         083186.dat
         084091.dat
         084570.dat
         084797.dat
         085663.dat
         085895.dat
         086323.dat
               iM Zone
                  5
                  5
                  5
                  5
                  5
                  5
                  5
                  5
                  5
                  5
Period to Extract (in time zone 5):    V 1/88   1:00  to   1/31/88  24:00
PMERGE Stations  in Output File:
   No.    ID            No.    ID
    1   080616
    2   080845
    3   081654
                   No.
       ID
                                       No.
                                              ID
4   083186
5   084091
6   084570
' 7   084797
 8   085663
 9   085895
10   086323
                                 4-8

-------
                           Table 4-4

Sample PMERGE Output List File (PMERGEJLST) - Concluded
Summary of Data
from Formatted TD3240 Precipitation Files:
Valid Hours:
Station
IDs

080616
080845
081654
083186
084091
084570
084797
085663
085895
086323
Zero


707
723
648
8
732
712
725
709
652
620
Nonzero


21
21
10
0
12
32
19
35
22
28
ACCUR
Period

0
0
0
0
0
0
0
0
0
0
Total
Valid
Hours
728
744
658
8
744
744
744
744
674
648
X
Valid
Hours
97.8
100.0
88.4
1.1
100.0
100.0
100.0
100.0
90.6
87.1
                      Invalid Hours:
         IDs

        080616
        080845
        081654
        083186
        084091
        084570
        084797
        085663
        085895
        086323
Missing

    0
    0
    86
   736
    0
    0
    0
    0
    0
    96
ACCUM
Period
   16
    0
    0
    0
    0
    0
    0
    0
   70
    0
Missing Data
Before
Valid










First
Record
0
0
0
0
0
0
0
0
0
0
Missing Data
After Last
Valid Record
0
0
0
0
0
0
0
0
0
0
Total
Invalid
Hours
16
0
86
736
0
0
0
0
70
96
X
Invalid
Hours
2.2
0.0
11.6
98.9
0.0
0.0
0.0
0.0
9.4
12.9
       RUNTIME CALL NO.:       2  DATE: 05/11/93  TIME: 12:11:26.29
       DELTA TIME:       2.75 (SEC)
                              4-9

-------

-------
                 5.0  MESOPAC H METEOROLOGICAL PREPROCESSOR

       MESOPAC n  is a meteorological preprocessor which develops the gridded fields of
winds, mixing heights,  surface friction velocities, Monin-Obukhov lengths, and other
meteorological variables required to drive the MESOPUFF n model. This chapter provides an
overview of the technical formulation of MESOPAC n, user's instructions defining the input
parameters and model options, and sample input and output files.

5.1     Technical Description

       A brief description of the technical aspects of the meteorological preprocessor,
MESOPAC n, is contained in the following subsections. The objective is to provide a concise
summary of the basic model equations to aid the user in the selection of model options and
inputs. A full description of the scientific  and operational bases for the model algorithms is
contained in Development of the MESOPUFF II Dispersion Model (Scire et al., 1984).

       A flow diagram showing the major time loops (day, hour loops) and the sequence of
operations within the main program is displayed in Figure 5-1.  Most of the computations are
performed within single-purpose subroutines (e.g., to calculate stability class, heat flux, friction
velocity, etc.) which each contain loops over grid cells. A gridded surface wind field,
representing 10 m height winds, is computed at the top  of the hour loop after the meteorological
data input operations. Near the end of the hour loop, the lower and upper layer wind fields
used for plume transport, are computed.  The reading and gridding of hourly precipitation data
are performed as an option in the model,  if wet removal is to be considered in the
MESOPUFF II simulations.

       5.1.1 Wind Fields

       MESOPAC II  constructs hourly wind fields at each grid point at two user-selected
vertical levels:  a lower level wind field representing boundary layer flow, and an upper level
wind field representing flow above the boundary layer.  The lower level winds are used to advect
puffs within the mixed layer and to  determine the plume rise of newly released puffs. The
upper level winds are used to advect puffs above the boundary layer. At each time step, the
appropriate wind field for advection of a puff is determined by comparison of the height of the
puff center with the spatially  and temporally varying mixing height.  If the puff center is above
(below) the mixing height at the closest grid point, the entire puff is advected with the upper
(lower) level wind.
                                           5-1

-------
      Read User Inputs

      Write Header Records in Meteorological Output File

      Read Starting Set of Upper Air Data (00 and 12 GMT for first day)

      	      •    Eater Day Loop
      I
      |            *   ' Compute Sunrise, Sunset Tunes, Solar Elevation Angles for each Hour of Day

                     	        •    Eater Hour Loop

                                *    Read Hourly Surface Data

                                *    Convert Surface Data to Proper Units, Calculate Precipitation Codes

                                *    If Hour - 00 GMT, Read Next 12 GMT Sounding,
                                     If Hour - 12 GMT, Read Next 00 GMT Sounding,

                                •    Calculate Surface Wind Field at Each Grid Point

                                *    Calculate Stability Class at Each Grid Point

                                *    Calculate w'6' at Each Grid Point

                                *    Calculate u. at Each' Grid Point

                                *    Calculate z, at Each Grid Point

                                *    Calculate L at Each Grid Point

                                *    Calculate w. at Each  Grid Point

                                •    Calculate Lower Level Wind Field at Each  Grid Point

                                *    .Calculate Upper Level Wind Field at Each Grid Point

                                *    If using precipitation data,      .
                                     Read Hourly Precipitation Data
                                     Compute gridded precipitation field

                                •    Write Computed Meteorological Data to Output File

                  	        *    End Hour Loop

      	     End Day Loop

      Close Files, Terminate Run
Figure 5-1.  Flow diagram for MESOPAC II.
                                                         5-2

-------
       Considerable flexibility is allowed in choosing the most appropriate level or vertically-
averaged layer for each wind field. Table 5-1 contains the available options. The default
instructions are to use the winds averaged through the mixed-layer for the lower level wind field,
and the wind averaged from the top of the mixed layer through the 700 mb level (- 3000 m) for
the upper level wind field.  However, if desired, the user may select other levels to determine
the wind fields (e.g., surface and 850 mb levels).  The model may be made effectively a single
level wind field model by specifying the lower and upper wind fields to be the same.

       The mixed layer averaged winds are calculated from twice-daily rawinsonde data from
upper air stations and hourly surface data from the typically much denser network of surface
stations. Layer-averaged wind speed and wind direction computed from the rawinsonde data
are used to adjust the observed hourly surface winds in the computation of the gridded wind
fields.  The following five step  procedure, adapted from Draxler (1979), is used to determine the
mixed-layer wind at each given point:

       (1)    A representative rawinsonde sounding (00 or 12 GMT) is selected based upon
              the stability class at the nearest surface station to the grid  point and the time of
              day. Neutral/unstable and stable  conditions are assumed to be represented by
              the 00 GMT and 12 GMT soundings, respectively.

       (2)    Using the sounding selected in Step (1), vertically averaged u (easterly) and v
              (northerly) wind components are computed through the layer from the surface to
              the grid point mixing height.

       (3)    The ratio,  R, of the layer-averaged wind speed to the surface wind  speed at the
              rawinsonde station, and the angular difference in wind direction, A 6, between the
              layer averaged and surface winds are calculated.

       (4)    The hourly surface wind data are  used to calculate spatially interpolated surface
              wind components (us, vs) at each grid point.  Data from all surface stations within
              a user-specified 'scan-radius' of the grid point are used to compute (us, vs)
              according to:
                                            5-3

-------
                                           Table 5-1
                          Options for Lower and Upper Wind Fields
       Option

       Vertically Averaged Winds

               Surface to mixing ht1
               Mixing ht to 850 mb
               Mixing ht to 700 mb2
               Mixing ht to 500 mb

       Single Level Winds

               Surface
               850mb
               700mb
               500mb
Meteorological Data
Surface, Rawinsonde
Rawinsonde
Rawinsonde
Rawinsonde
Surface
Rawinsonde
Rawinsonde
Rawinsonde
1 Default lower-level wind field
2 Default upper-level wind field
                                               5-4

-------
                                         E—
                                         *-*  2
where,
       u,, vt   are the easterly and northerly components of the surface wind at grid point (i, j),
       Uk, vk  are the easterly and northerly components of the surface wind at surface
                     station k,
       r,      is the distance from the surface station to grid point (i, j), and,
       a,     is an alignment weighting factor a, =  1*0.5 (sin $|, and
       4>,     is the angle between the observed wind direction and the line from the surface
              station to the grid point.

              For equal values of rs, alignment weighting causes winds at a station directly
              upwind or downwind of a grid point to be weighted twice as heavily as winds for
              a station at right angles to the grid point.

       (5)    The mixed-layer averaged wind at the grid point is calculated by multiplying the
              surface wind speed at the grid point computed in Step (4) by the wind speed
              ratio, R,  at the nearest rawinsonde site.  Similarly, the surface wind direction is
              adjusted  by the wind direction factor,  A 6.

       The surface wind components (u$, vs) in Step  (4) must be computed each hour regardless
of the user's choice of wind fields for advection because the surface winds are also required in
the calculation of atmospheric stability and the micrometeorological parameters described in
Sections 5.1.2  through 5.1.6.

       Vertically averaged winds from the mixing height to the-850 mb, 700 mb or 500 mb levels
are computed in the following manner.  The 00 GMT and 12 GMT winds at each rawinsonde
station are first interpolated in time, and then vertically averaged through the layer from the
grid point mixing height to the appropriate level (e.g., 700 mb). The winds at grid point (i, j)
are obtained by Equation 5-1, with the summation over rawinsonde stations instead  of surface
stations. Only rawinsonde stations within a 'scan-radius' of the grid point are considered. The
                                            5-5

-------
mixing height must be lower than the pressure level which defines the top of the layer;
otherwise, an error message is printed and execution of the program is terminated.

       If one of the single-level upper air wind fields (850 mb, 700 mb, or 500 mb) is chosen,
only the wind data at the selected level is used to construct  the wind field.  For example, the 850
mb wind at each grid point is calculated by interpolating in time the 850 mb winds at each
rawinsonde station, and then applying Equation 5-1 with the summation over the rawinsonde
stations.

       5.1.2   Surface Friction Velocity

       The surface friction velocity, u., can be computed from routinely available meteorological
data if the surface roughness characteristics are known.  First, the sensible heat flux is calculated
from an estimate of net radiation. Then u. is determined from wind speed, surface roughness
and heat flux.

       The sensible heat flux, H, is estimated during daylight hours by the following equations
(Maul 1980):

                                H = a R  + H0                                         (5-2)

                               R = 950 p sin v                                        (5-3)
        •te
                              Ha = 2.4 C  - 25.5                                        (5-4)

where,
       H     is the sensible heat flux (W/m2),
       H0     is the heat flux in the absence of incoming solar radiation (W/m2),
       a      is a land use constant, (~ 0.3),
       R     is the incoming solar radiation (W/m2),
       P      is a radiation reduction factor- due to the presence of clouds,
       v      is the solar elevation angle, and
       C     is the opaque cloud cover (in tenths).

Table 5-2 contains default values for the solar radiation  reduction factor (P) due to  the presence
of clouds. The values of p are adapted from those used by Maul (1980).
                                            5-6

-------
                              Table 5-2

                Solar Radiation Reduction Factor
Cloud Cover (Tenths')                  ji

        0                             1.00
        1                             0.91
        2                             0.84
        3                             0.79,
        4                             0.75
        5                             0.72
        6                             0.68
        7                             0.62
        8                             0.53
        9                             0.41
      10                             0.23
                                 5-7

-------
       The sine of the solar elevation angle, sin v, is given by:
                  sin v  = sin <|> sin Kd + cos  cos Kd cos HA                            (5-5)

                           HA = (Ti/12) (t  - EJ - X                                     (5-6)

                     12. +  0.12357 sin (D)  - 0.004289 cos (D)
               Em  =                                                                     (5-7)
                "       +  0.153809 sin (2/>) + 0.060783 cos <2D)

                       D  = ()  + 0.019938 sin (2I>) - 0.00162 cos (2D)                      '

where,
        is the latitude (radians),
       X is the longitude (radians),
       d is the Julian day, and
       T is the time of day (hours GMT).

       With the above estimate of H, the surface friction velocity, u., can be estimated during
unstable conditions by the method described by Wang and Chen (1980):

                      u. = u. (1 +aln[l  +b QJQ0}}                               (5-11)

                                        *«„
                                fi. = - = -                                        (5-12)
                                         - 4
                                                                                       (5-14)
                                                                                       (5-15)
                                             5-8

-------
                       0.128  + 0.005 In (zjzj  zjzm * 0.01
                       0.107                    zJzm>Q.01
                          b  = 1.95 + 32.6 (zJzm)QM                                  (5-17)

where,
       k      is the von Kannan constant (0.4),
       Cp     is the specific heat of air at constant pressure
                     (996 m2/(s2 deg)),
       u,     is the surface friction velocity (m/s),

       Q0    is the product  w'8'  (°Km/s),

       u,,,    is the wind speed (m/s) measured at height z^ (m),
       z0     is the surface roughness length (m), and
       p      is the density of air (kg/m3).

During stable conditions, u. is determined by the following method (Venkatram 1980a):

                                     "
                                                                                     (5-18)
                                                                                     (5-19)
                                                                                     ^     ;
                           C = 1 -- i-   C ^  0                                  (5-20)

where y and A are constants with default values of 4.7 and 1100, respectively, and CDN is the
neutral drag coefficient.
revised 6/94                            '         5-9

-------
                             Adjustment for Surface Roughness

       MESOPAC n requires that a site-specific wind speed measurement height and surface
roughness length be specified for each surface station. The effect of the differences in surface
roughness between the surface station (typically an airport) and each grid cell is incorporated
into the calculations of the friction velocity and Monin-Obukhov length. As noted by Walcek et
ai (1986) and Pleim et aL (1984), adjustment of the surface friction velocity for differences in
surface roughness between the grid point and the site at which the wind observations are made
is preferable to either assuming a constant wind speed or constant friction velocity over areas of
different roughness. Therefore, MESOPAC n has been modified to use the following three-step
procedure to adjust the friction velocity at each grid point for site-specific surface roughness
characteristics:

       (1)     The friction velocity, un, is first computed using the wind speed observation and
              surface roughness at the airport surface station, and the equations  described
              above;

       (2)     The wind speed at the top of the surface layer (approximately one  tenth the
              boundary layer height), is computed using the  airport surface roughness and u.^

       (3)     The wind speed at the top of the surface layer, which is less sensitive to changes
              in surface roughness than the lower anemometer height wind, is then used to
              compute the friction velocity at the grid point using the grid point-specific surface
              roughness length.

       5.1.3   Monin-Obukhov Length

       The Monin-Obukhov length, L, is defined as:

                                       «3T
                                L * -- '-?-                                        (5-22)
                                      g * 
-------
       5.1.4   Mixed Layer Height

       During daylight hours, solar radiation reaching the ground produces a positive (upward)
flux of sensible heat which causes the growth of a well-mixed adiabatic layer. If the hourly
variation of H is known, the mixed layer height, zif at time T +  1 can be estimated from z; at
time t in a stepwise manner (Maul 1980).

                                                    "                             (5.24)
                                                                                   (5-25)


where,
       ilfj     is the potential temperature lapse rate in the layer above Zj,
       At     is the time step (3600 s),
       E      is a constant (-0.15), and,
       A 6     is the temperature discontinuity at the top of the mixed layer.

The lapse rate, ijrlf is determined through a layer Az meters above the previous hour's convective
mixing height For daytime hours up to 23 GMT, the morning (12 GMT) sounding at the
nearest rawinsonde station is used to calculate i|rr  After 23 GMT, the evening (00 GMT)
sounding is used.  To avoid computational problems, t|rlt is not allowed to be less than a
minimum value of 0.001 °K/m.

       The neutral (shear produced) boundary layer height is given by Venkatram (1980b) as:

                                *. • -r~;                                        (5-26)
where,
       f      is the Coriolis parameter,
       B      is a constant (
-------
       In the stable boundary layer, mechanical turbulence production determines the vertical
extent of dispersion.  Venkatram (1980a) provides the following empirical relationship to
estimate z, during stable conditions.

                                  Z, = N u?          -                                (5-27)

where N is a constant with a default value of 2400.

       The predicted mixing height is restricted by MESOPAC n to a minimum value of 10
meters and a maximum value of 2500 meters.

       5.15  Convective Velocity Scale

       During convective conditions, turbulence is generated primarily by the sensible heat flux
originating from the ground. The appropriate velocity scale during these conditions is the
convective velocity, w..
       The convective velocity can be calculated directly from its definition, since Q0 and Zj are
known from Equations 5-14 and 5-24, respectively.

       5.1.6   Atmospheric Stability Class

       The stability class at each grid point is estimated according to the Turner (1964) method
using the solar radiation and reported cloud data at the nearest surface station and the
interpolated surface wind speed at the grid point. A radiation index, RI, is computed based
upon the value of the solar elevation angle at the nearest surface station (Table 5-3 (a)).  The
radiation index is an indication of potential solar radiation and varies from a value of 1 for
v z 15° to 4 for v > 60°.  The effects of cloud cover in reducing radiation is included in the
daytime insolation class, 1C, computed from RI,  opaque cloud cover, and ceiling height
observations at the nearest surface station (Table 5-3 (b)).  The daytime stability class is then
determined from 1C and the surface wind speed at the grid point according to Table 5-4.
Nighttime stability is determined by surface wind speed and opaque cloud cover. Overcast
conditions (10/10 cloud cover) result in neutral (D) stability for both day and night.
revised 6/94                           •         5-12

-------
                                           Table 5-3

                        Daytime Solar Insolation Classification Scheme
       (a)     Radiation Index as a Function of Solar Elevation Angle

               Solar Elevation
                 Angle, v                           Radiation Index. RI
               0°     <  v     s 15°                         1
               15°     <  v     s 35°                         2
               35°     <  v     s 60°                      .3
               60°     <  v                                  4
       (b)     Calculation of Daytime Solar Insolation Class
                                                                  Daytime
       Cloud Cover, CC               Ceiling HT. CH (ft)            Insolation Class. 1C

       CC * 5/10                           -                             RI

       5/10 < CC < 10/10                      CH < 7,000               RI-2*
                                     7,000   a  CH < 16,000         .      RI-1*
                                     16,000  s  CH                       RI

       CC = 10/10                             CH < 7,000   .            0
                                     7,000   i  CH < 16,000               RI-2'
                                     16,000  *  CH                        RI-1'
'1C is not allowed to be reduced to less than one
   (only exception is with CC = 10/10, CH < 7,000 ft).

                                              5-13

-------
           Table 5-4





Stability Classification Criteria
Surface
wind speed
(knots)
si
2
3
4
5
6
7
8
9 v
10
11
*12
Pavtime Insolation Class. 1C
Strong
(4)
A
A
A
A
A
B
B
B
B
C
C
C
Moderate
(3)
A
B
B
B
B
B
B
C
C
C
C
D
Slight
(2)
B
B
B
C
C
C
C
C
C
D
D
D
Weak
(1)
C
C
C
D
D
D
D
D
D
D
D
D
Overcast
(0)
D
D
D
D
D
D
D
D
D
D
D
D
Nighttime
5/10-9/10 < 5/10
Cloud Cloud
F
F
F
E
E
E
D
D
D
D
D
D
F
F
F
F
F
F
E
E
E
E
D
D
              5-14

-------
       5.1.7   Precipitation Data

       MESOPAC n has the option to produce a gridded field of hourly precipitation rates for
use in modeling wet removal processes.  Precipitation data need not be provided to MESOPAC
H if wet removal is not to be modeled in MESOPUFF II.

       MESOPAC n uses a nearest station technique to grid the precipitation data. At each
grid point, the precipitation  rate is taken as the value at the nearest precipitation station. If the
precipitation data for a particular hour is missing from the nearest station, the next nearest
station with valid data is used.

       The wet deposition algorithm in MESOPUFF n also needs information on the type of
precipitation (e.g., liquid or  frozen precipitation). This information is derived from the
precipitation type code on the CD 144 surface meteorological data records. The precipitation
type for a particular grid cell is taken from the nearest surface meteorological station to the grid
point.

5.2     MESOPAC El User's Instructions

       MESOPAC n is the  meteorological preprocessor program that computes time and space
interpolated fields of meteorological variables required by MESOPUFF II. The meteorological
data inputs required by MESOPAC II are the upper air data files created by READ56 or
READ62 (see Section 2), hourly surface meteorological  observations, and optional hourly
precipitation data processed by the PXTRACT and PMERGE programs. MESOPAC  II,
READ56, READ62, PXTRACT and PMERGE are designed to use standard-formatted
meteorological files available from NCDC. The required format for the surface observations is
Card Deck 144 (CD 144). The surface observations must be at hourly intervals. Because CD 144
surface data do not include  hourly precipitation amounts, MESOPAC II reads a separate data
file containing hourly precipitation data.

       MESOPAC II has been modified to use a memory management system which allows the
size of the arrays within the code to be easily .resized by the user. Arrays dealing with the
numbers of meteorological grid cells, surface stations, upper air stations, and precipitation
stations are dimensioned throughout the code with parameter statements.  The declaration  of
the values of the parameters are stored in a filed called  TARAMS.PAC".  This file is
automatically inserted into any MESOPAC II subroutines or functions requiring one of its
parameters via FORTRAN  'include' statements.  Thus, a global redimensioning of all of the
model  arrays dealing with the number of grid cells, for example, can be accomplished simply by
modifying the  PARAMS.PAC file and recompiling the program.
                                          5-15

-------
       A sample parameter file is shown in Table 5-5. The parameter file sets the array
dimensions, which are the maximum values of the variables (i.e., number of grid cells, number of
meteorological stations, etc.), allowed in a run. The actual value of the variables for a particular
run is set within the user input file (the control file), and can be less than the maximum value
set by the parameter file.

       The input and output files used by MESOPACII are shown in Table 5-6.  Because data
from each surface and upper air station is stored in a separate file, the number of input files
varies. The naming convention of the surface data is CDn.DAT, where n ranges from 1 through
NSSTA (See Input Group 2).  The upper air files are named UPn.DAT, where n is 1 through
NUSTA.

       The user specifies the logical unit number associated with each surface and upper air
meteorological data file. Care should be taken to ensure that the unit number assigned to these
files does not conflict with any of the other input or output files.  All of the precipitation data is
stored in a single file (PRECIP.DAT).

       Figure 5-2 shows the required setup of the card image inputs for MESOPAC II. The
input format consists of 17 input groups.  The first 6 input groups are mandatory,  followed by 8
optional input groups. The last 3 groups define the meteorological stations [surface and upper
air (mandatory), precipitation (optional)]. Table 5-7 contains a complete description of all the
run control variables used in MESOPAC II.

       The MESOPAC n output meteorological file consists of 6 header records  followed by a
set of 12 data records for each hour. Table 5-8 contains a description of the variables in each
record. The header records contain the date and length of the run, grid size and spacing, land
use categories and surface roughness lengths at each grid point, as well as other information
required by MESOPUFF n. Each set of 12 hourly data records contains all the gridded and
non-gridded meteorological data needed by MESOPUFF  II.

5.3    Sample  MESOPAC II Inputs and Outputs

       Table 5-9 contains a sample MESOPAC II input file for a 25 hour run starting on
January 2, 1986. Hourly surface observations from four stations, twice daily upper air data from
one station, and precipitation measurements from two locations are used as the meteorological
input data. Land use classifications for each of the 20 x 20 grid cells are included in the input
control file.

       The accompanying sample MESOPAC II list file is presented in Attachment 5-A.
                                          5-16

-------
                            Table 5-5

  Sample Parameter File (PARAMSJAC) for MESOPAC H
c-
c
c
c
— PARAHETER statements

--- Specify parameters
MESOPAC II


      paramet er (mxnx* 100, mxny* 100 )
      parameter(mxss=100,mxus*20,mxps-100)
c
c —  Computed parameters
      parameter(mxcel l*mxnx*mxny)
c
c —  GENERAL PARAMETER definitions:
c         NXNX -  Naxinun number of cells in the X direction
c         MXNY -  Maximum number of cells in the T direction
c         MXSS -  Maximum number of surface meteorological stations
c         MXUS -  Maximum number of upper air stations
c         MXPS -  Maximum number of precipitation stations
c
                              5-17

-------
                                      Table 5-6
                          MESOPAC II Input and Output Files
Unit
IN5
-------
                                                                                           loduded only if NPSTA > 0
                                                                            	Induded only rf HDPT5 (9) - 1



                                                                            Inducted only if IOPTS(«) - 1
                                                     _J	I"***"! Millions (3) - 1
                                                                          - 1
                              (6) Dcteak Oandt
                                Opooo«(OfTS)
Figure 5-2.  Card image input setup for MESOPAC II.
                                                   5-19

-------
                                       Table 5-7
                                  MESOPAC II Inputs
INPUT GROUP 1 - RUN TITLE   Format: (20A4)

Columns      Type          Variable

1-80          CHARACTER  TITLE (20)
             *4 ARRAY
                                  Description

                                  80-character title of run.
INPUT GROUP 2 - GENERAL
Columns
1-5
6-10
11-15
16-20
Type
INTEGER
INTEGER
INTEGER
INTEGER
RUN INFORMATION
Variable
NYR
IDYSTR
IHRMAX
NSSTA
Format: (715)
Description
Two digit year of run.
Starting Julian day
(also see Input Group 6, IOPTS (10)).
Number of hours in run.
Number of surface meteorological stations
21-25


26-30


31-35
INTEGER


INTEGER


INTEGER
NUSTA


IBTZ


NPSTA
(must be a mxss as defined in "PARAMS.PAC").

Number of rawinsonde stations
(must be z mxus as defined in "PARAMS.PAC").

Reference time zone
(5 - EST, 6 = CST, 7 = MST, 8 = PST).

Number of precipitation stations
(must be * mxps as defined in "PARAMS.PAC").
Set NPSTA=0 if precipitation data is not to be
processed.
INPUT GROUP 3 - GRID DATA Format: (2I5,F10.0)
Columns Type Variable
1-5 INTEGER IMAX

Description '
Number of grid


points in X (west-east) direction
6-10
 11-20
INTEGER
REAL
JMAX
DGRID
(must be z mxnx as defined in "PARAMS.PAC").

Number of grid points in Y (south-north)
direction (must be  £ mxny as defined in
"PARAMS.PAC").

Grid spacing (m).
                                          5-20

-------
                                          Table 5-7

                              MESOPAC II Inputs (Continued)
INPUT GROUP 4 - OUTPUT OPTIONS   Format:  (2L5,I5,L5,4I5)
(Vtlymns       Type           Variable

1-5           LOGICAL      LSAVE
6-10
LOGICAL      LPRINT
11-15
16-20
INTEGER      IPRINF
LOGICAL      LBD
21-25
26-30
31-35
36-40
INTEGER      NDY1
INTEGER      NHR1
INTEGER      NDY2
INTEGER      NHR2
Description

Disk/tape output control variable. If
LSAVE =  T, meteorological fields are written to
a disk/tape file.  If LSAVE  = F, output is not
stored on disk/tape.  (LSAVE should be T if
meteorological data is to be used to run
MESOPUFF II).

Printer output control variable.  If LPRINT = T,
meteorological fields  are printed every "IPRINF"
hours.  If LPRINT = F, meteorological fields are
not printed.

Printing interval (in hours) of meteorological   •
fields. Used only if LPRINT = T.
(IPRINF a I).

Control variable for printing of input
meteorological data and intermediate computed
parameters. If LBD  =  T, these data will be
printed for time periods specified by NDY1,
NHR1, NDY2, and NHR2.  If LBD  = F, these
data will not be printed. (Because this
information is not of  general interest, LBD
should be F for most applications).

Julian day for which printing of input
meteorological data and intermediate computed
parameters begins. Used only if LBD = T.

Hour (00-23) for which printing of input
meteorological data and intermediate computed
parameters begins. Used only if LBD = T.

Julian day for which printing of input
meteorological data and intermediate computed
parameters ends. Used only if LBD = T.

Hour (00-23) for which printing of input
meteorological data and intermediate computed
parameters ends. Used only if LBD = T.
                                             5-21

-------
                                       Table 5-7

                            MESOPAC II Inputs (Continued)
INPUT GROUP 5 - LAND USE CATEGORIES AT EACH GRID POINT (see Table 6-3).
                    JMAX lines are required, each line with IMAX land use categories (corresponding
                    to X-coordinates 1 to IMAX).  The first tine contains values for Y = JMAX, the
                    second line for Y = JMAX-1, etc.
                    Format:  (20012)


Columns-      Type          Variable                    Description

1-400         INTEGER     ILANDU (imax, jmax)         Land use categories for each grid point.
             ARRAY
Example:      3  4
             1  2
             Results in ILANDU (1,1) = 1, ILANDU (2,1) = 2
                      ILANDU (1,2) = 3, ILANDU (2£) = 4.
                                          5-22

-------
                                         Table 5-7

                              MESOPAC II Inputs (Continued)
INPUT GROUP 6 - DEFAULT OVERRIDE OPTIONS.

Columns       Type          Variable

1             INTEGER     IOPTS(1)
              ARRAY
              ELEMENT
              INTEGER
              ARRAY
              ELEMENT
              INTEGER
              ARRAY
              ELEMENT
              INTEGER
              ARRAY
              ELEMENT
IOPTS(2)
IOPTS(3)
IOPTS(4)
              INTEGER
              ARRAY
              ELEMENT
IOPTS(5)
              INTEGER
              ARRAY
              ELEMENT
IOPTS(6)
Format: (1011)

Description

Surface wind speed measurement height control
variable. IOPTS (1) is no longer active. The
height at which the surface wind speed was
measured is now input for each station on Input
Group 15.

von Karman constant control variable. If
IOPTS(2) = 1, the user must input a value of the
von Karman constant (see Input Group 8). If
IOPTS(2) = 0, a default value of 0.4 is used.

Control variable for input of friction velocity
constants (Y, A) in Equation 5-21. If IOPTS(3)
= 1, the user must input values for Y and A (see
Input Group 9).  If IOPTS(3)  = 0, the default
values Y = 4-7, A = 1100 are used.

Control variable for input of mixing height
constants (B, E, Az, d6/dz „„,, N) in Equations
(5-24) to (5-27).  If IOPTS(4)  = 1, the user must
input values for these constants (see Input Group
10). If IOPTS (4)=0, the following default values
are  used; B = 1.41, E = 0.15, Az = 200 m,
      m = 0.001eK/m, N = 2400.
Control variable for input of wind Geld variables
RADIUS, ILWF, IUWF. See Input Group 11 for
a description of these variables.  If IOPTS (5) = 1,
the user must input values for these variables.  If
IOPTS(5) = 0, the following defaults are used:
RADIUS = 99 grid units, ILWF = 2, IUWF = 4.

Control variable for surface roughness lengths.  If
IOPTS(6) = 1, the user must input the roughness
length at each grid point (see Input Group 12).
If IOPTS(6) = 0, the roughness length is
determined from the land use category for each
grid point according to Table 6-3.
                                            5-23

-------
                                          Table 5-7

                              MESOPAC II Inputs (Continued)
INPUT GROUP 6 - DEFAULT OVERRIDE OPTIONS. (Continued)    Format: (1011)
              Type

              INTEGER
              ARRAY
              ELEMENT

              INTEGER
              ARRAY
              ELEMENT
               Variable

               IOPTS(7)



               IOPTS(8)
              INTEGER
              ARRAY
              ELEMENT
               IOPTS(9)
10
INTEGER
ARRAY
ELEMENT
IOPTS(10)
Description

Option to adjust heat flux estimates using OOZ
sounding data and Equation 5-24. This option is
not currently active. IOPTS(7) should be 0.

Control variable for input of radiation reduction
factors due to cloud cover. If IOPTS(8) = 1, the
user must input eleven radiation reduction factors
corresponding to possible opaque sky cover of
0 to 10 tenths,  (see Input Group 14).  If
IOPTS(8) =  0,  the following default reduction  .
factors are used; 1.00, 0.91, 0.84, 0.79, 0.75, 0.72,
0.68, 0.62, 0.53,  0.41, 0.23.

Control variable for inputs of heat flux constants
of Equation 5-2 at each grid point. If IOPTS(9)
= 1 the user must input a value of RADC for
each grid point  (see Input Group 15).  If
IOPTS(9) =  0,  a default value of RADC = 0.3 is
assigned to each grid point.

Option to begin run at point other than at
beginning of surface,  upper air or precipitation
data files.  IOPTS(10) must be 1 if the starting
date of the model run does not correspond to the
beginning of the meteorological files; otherwise,
IOPTS(10) must be 0.
                                             5-24

-------
                                        Table 5-7

                             MESOPAC II Inputs (Continued)
INPUT GROUP 7 • WIND SPEED MEASUREMENT HEIGHT  (No longer used - see Input Group 15 for
                                                      input of measurement heights)
                                                      Format: (F10.0)
1-10
             Type    Variable      Default

             REAL  ZM          10.0
Description

Surface height above ground (in meters) at which
wind speed measurements were made.
INPUT GROUP 8 - VON KARMAN CONSTANT (Optional - included only if IOPTS(2) = 1).
                 Format: (F10.0)
Columns      Type    Variable      Default

1-10          REAL  VK          0.4
                                                Description

                                                von Karman constant.
INPUT GROUP 9 - FRICTION VELOCITY CONSTANTS (Optional - included only if IOPTS(3) = 1).
                 Format: 2F10.0)
Columns      Type    Variable      Default

1-10          REAL  GAMMA     4.7

11-20         REAL  CONSTA     1100.
                                                Description

                                                Constant y in friction velocity Equation 5-21.

                                                Constant A in friction velocity Equation 5-21.
                                          5-25

-------
                                         Table 5-7

                              MESOPAC II Inputs (Continued)
INPUT GROUP 10 - MIXING HEIGHT CONSTANTS (Optional - included only if IOPTS(4) = 1).
                 Format: (5F10.0)
Columns       Type   Variable       Default

1-10           REAL  CONSTB      1.41


11-20          REAL  CONSTE      0.15


21-30          REAL  DELTZ       200.



31-40          REAL  DPTMIN      0.001'


41-50          REAL  CONSTN      2400.
Description

Constant B in neutral stability mixing height
Equation 5-26.

Constant E in convective mixing height Equations
5-24 and 5-25.

Depth of layer (m) above current convective
mixing height through which potential
temperature gradient 56/dz is calculated.

Minimum value of + (36/8z)("K/m) used in
Equations 5-24 and 5-25.

Constant N in stable (mechanical) mixing height
Equation 5-27.
                                            5-26

-------
                                           Table 5-7

                               MESOPAC II Inputs (Continued)
INPUT GROUP 11 - WIND FIELD VARIABLES (Optional - included only if IOPTS(5) = 1).
                   Format:  (2I5.F10.0)

              Type           Variable       Default  Description

              INTEGER      ILWF         2       Code for lower-level wind field (see below).

              INTEGER      IUWF         4       Code for upper-level wind field (see below).

              REAL          RADIUS      99.      Scan radius for wind field interpolation (in grid
                                                    units).
1-5

6-10

11-20
Wind Field Code (ILWF, IUWF)

1   -   Surface winds (uses CD144 surface data only)

2   -   Vertically-averaged winds through layer from ground to mixing height (uses CD 144 surface data and
       rawinsonde data).

3   -   Vfertically-averaged winds through layer from mixing height to 850 mb (uses rawinsonde data only).

4   -   Vertically-averaged winds through layer from mixing height to 700 mb (uses rawinsonde data only).

5   -   Vertically-averaged winds through layer from mixing height to 500 mb (uses rawinsonde data only).

6  . -   850 mb winds (uses rawinsonde data only).

7   -   700 mb winds (uses rawinsonde data only).

8   -   500 mb winds (uses rawinsonde data only).
                                              5-27

-------
                                         Table 5-7

                             MESOPAC II Inputs (Continued)
INPUT GROUP 12 • SURFACE ROUGHNESS LENGTHS (Optional - included only if IOPTS(6)
                  Format: (16F5.0)
                                                                      1)
Column*}

1-80
Jus

REAL
ARRAY
Variable

ZO
Default  Description
        Surface roughness lengths (m).  If IMAX < 16,
        JMAX lines are required, each line with IMAX
        ZO values (corresponding to X grid points 1 to
        IMAX).  Lines are in order of decreasing Y.
        See example in description of Input Group 5.  If
        16 < IMAX < 32, 2 x JMAX lines are required.
        (Each ZO (1,1) starts on a new  line). If
        IMAX > 32, 3 x JMAX or more lines are
        required.
       Default roughness lengths are determined by the land use category assigned to each grid point (in
       Input Group 5) according to Table 6-3.
                                            5-28

-------
                                         Table 5-7

                              MESOPAC H Inputs (Continued)
INPUT GROUP 13 - RADIATION REDUCTION FACTORS (Optional - included only if IOPTS(8)
                  Format: (11F5.0)
                                                                                      1)
1-55
             Type   Variable

             REAL  BETA(ll)
             ARRAY
Default

1.00, 0.91, 0.84
0.79, 0.75, 0.72
0.68, 0.62, 0.53
0.41, 023
                                                 Description
Radiation reduction factors due to presence of
clouds (see Equation 5-3). Eleven values
corresponding to opaque sky cover of 0-10 tenths.
INPUT GROUP 14 - HEAT FLUX CONSTANTS (Optional - included only if IOPTS(9) = 1)
                  Format: (16F5.0)
1-80
              Type   Variable       Default

              REAL  RADC        03
              ARRAY
              Description

              Heat flux land use constant, a, of Equation 5-2,
              for each grid point.  If IMAX < 16, JMAX lines
              are required, each line with IMAX values
              (corresponding to X grid points 1 to IMAX).
              Lines are in order of decreasing Y.  See example
              in description of Input Group 5. If 16 < IMAX
              s 32, 2 x JMAX lines are required.  Each RADC
              (1J) starts on a new line. If IMAX > 32,
              3 x JMAX or more lines are required.
                                            5-29

-------
          Table 5-7



MESOPAC II Inputs (Continued)
INPUT GROUP

Columns
1-5
6-15
16-25
26-35
36-45
•*.
46-50
51-55
56-65
66-70
71-75
76-80
1,5 - SURFACE STATION DATA. 'NSSTA' cards - one for each CD144 surface station
Format:
Tas
INTEGER
ARRAY
ELEMENT
REAL
ARRAY
ELEMENT
REAL
ARRAY
ELEMENT
REAL
ARRAY
ELEMENT
REAL
ARRAY
ELEMENT
REAL
ARRAY
ELEMENT
INTEGER
ARRAY
ELEMENT
-
-
REAL
ARRAY
ELEMENT
REAL
ARRAY
ELEMENT
(15, 4F10.0, F5.0,
Variable
IDCD
XSCOOR
YSCOOR
SLAT
SLONG
SZONE
ISUNTT
-
-
ZMSURF
ZOSURF
15, 15x, 2F5.0)
Description
Surface station ID for CD144 data (5 digits).
X-coordinate of station (in grid units).
Y-coordinate of station (in grid units).
Station latitude (decimal degrees).
Station longitude (decimal degrees).
Station time zone (5 = EST, 6 = CST, 7 = MST,
8 = PST).
Logical unit number of CD 144 surface data.
No longer used - leave blank.
No longer used - leave blank.
Wind speed measurement height (m).
Surface roughness length (m) appropriate for surface
meteorological station site.
             5-30

-------
                                      Table 5-7

                            MESOPAC II Inputs (Concluded)
INPUT GROUP 16 - RAWINSONDE STATION DATA. 'NUSTA' cards - one for each rawinsonde station
                 Format: (15, 4F10.0, F5.0,15)
             Type
              Variable      Description
1-5
6-15
16-25
26-35
36-45
46-50
51-55
INTEGER      IDTD
ARRAY
ELEMENT
REAL
ARRAY
ELEMENT

REAL
ARRAY
ELEMENT

REAL
ARRAY
ELEMENT

REAL
ARRAY
ELEMENT

REAL
ARRAY
ELEMENT
             Rawinsonde station identification number (5 digits).



XUCOOR     X-coordinate of station (in grid units).



YUCOOR     Y-coordinate of station (in grid units).



ULAT        Station latitude (decimal degrees).



ULONG      Station longitude (decimal degrees).
UZONE     Station time zone (5 = EST, 6 = CST, 7 = MST, 8 =
            PST).
INTEGER      IUUNIT      Local unit of processed upper air data.
             ARRAY
             ELEMENT
                          (READ56/READ62 output)
INPUT GROUP 17 - PRECIPITATION STATION DATA. 'NPSTA' cards - one for each precipitation
                 station.   Format:  (I6.2F10.0)
Columns      Type

1-6
              Variable      Description
INTEGER      IDP
ARRAY
ELEMENT
7-16
17-26
REAL
ARRAY
ELEMENT

REAL
ARRAY
ELEMENT
             Precipitation station ID (6 digits).



XPCOOR     X-coordinate of station (in grid units).



YPCOOR     Y-coordinate of station (in grid units).
                                         5-31

-------
                                       Table 5-8

                     Variables in the Binary MESOPAC II Output File
HEADER
RECORD
1
1
1
1
1
1
1
1
1
1
1
1
2
2
RECORDS - First six records
VARIABLE
NYR
IDYSTR
IHRMAX
NSSTA
NUSTA
IMAX
JMAX
IBTZ
DLWF
IUWF
DGRID
VK
XSCOOR (nssta)
YSCOOR (nssta)
of output file.
TYPE
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL
REAL
REAL ARRAY
REAL ARRAY

DESCRIPTION
Starting year
Starting Julian day
Number of hours in run
Number of surface stations
Number of rawinsonde stations
Number of grid points in X direction
Number of grid points in Y direction
Reference time zone
Lower-level wind field code
Upper-level wind field code
Grid spacing (m)
von Karman constant














Surface station X coordinates (grid units)
Surface station Y coordinates (grid units)
3

3


4

5

6
XUCOOR (nusta)

YUCOOR (nusta)
REAL ARRAY

REAL ARRAY
ZO(imaxjmax)        REAL ARRAY

NEARS (imaxjmax)    INTEGER ARRAY

ELANDU (imaxjmax)  INTEGER ARRAY
Upper air station X coordinates (grid
       units)
Upper air station Y coordinates (grid
       units)

Surface roughness lengths (m)

Station number of closest surface station
       to each grid point
Land use categories (see Table 6-3)
*See Table 5-5 for complete description of variables.
                                          5-32

-------
                                      Table 5-8

               Variables in the Binary MESOPAC II Output File (Concluded)
HOURLY RECORDS - Repeated for each hour (i) of run.

RECORD     VARIABLE
10+i
12+i

13+i

14+i
14+i
14+i
14+i

14+i
                                                     DESCRIPTION
3+i
3+i
3+i
4+i
5+i
6+i
7+i
8+i
9+i
NYR
NJULDY
NHR
UL(imaxjmax)
VL(imaxJmax)
UUP(imaxjmax)
VUP(imaxJmax)
Zl(imaxjmax)
USTAR (unaxjmax)
^_S.^.^
INTEGER
INTEGER
INTEGER
REAL ARRAY
REAL ARRAY
REAL ARRAY
REAL ARRAY
REAL ARRAY
REAL ARRAY
Year
Julian day
Hour (00-23)
Lower-level u wind component (m/s)
Lower-level v wind component (m/s)
Upper-level u wind component (m/s)
Upper-level v wind component (m/s)
Mixing height (m)
Friction velocity (m/s)
WSTAR(imaxJmax)
CAPL(imaxjmax)

IPGT(imaxjmax)

PRECIP(imaxjmax)

AVRHO
TEMPK(nssta)
SRAD(nssta)
IRH(nssta)

IPCODE(nssta)
REAL ARRAY
REAL ARRAY

INTEGER ARRAY

REAL ARRAY

REAL
REAL ARRAY
REAL ARRAY
INTEGER ARRAY
Convective velocity scale (m/s)
Monin-Obukhov length (m)

PGT stability class

Hourly precipitation rate (mm/hr)

Average surface air density (kg/m3)
Air temperature*(K)
Total solar radiadon*(W/m2)
Relative humidity*(%)
                                 INTEGER ARRAY    Precipitation code*(see Table 6-5)
*At surface meteorological stations.
                                         5-33

-------
                          Table 5-9

             Sample MESOPAC II Input File
MESOPAC TEST CASE - 25 hr simulation skipping 1 day 1/2/86-1/3/86
   86   2   25    4    1    5    2
   20   20    10000.
    T   F   24    F    0    0    0   0
12 5 5 5 5  1 1 1 1 1 1 1 1 5 5 5 5 5 512
12 55555551111155555 512
12 55555551111155555 512
12 5 5 5 5  1 1 1 1 1 1 1 1 5 5 5 5 5 912
12 5 5 5 5  1 1 1 1 1 1 1 1 5 5 5 5 5 912
12 5 5 1 1  5 5 5 5 5121212 5566655
 555115555 5121212 5566655
 555111111155 51212 11111
 5551111  11212 1 1
 5551111  11212 1 1
1212 5555555511
 5121212 55555511
 51212 111111111
                          6666611
                          6666611
                          6666611
                          6666611
                          5511166
1212 111111111115511166
1212 666   11111111111   11
12 6 6 6 6   11111111111   11
1212 111   11111111111   11
1212 111   11111111111   11
1212 111   11111116611   11
121212 66666111116611111
0000000001
            7.4
           19.4
           10.2
           22.0
            7.4
10001
10002
10003
10004
99901
80001
80002
            7.4
           12.5
10.5
15.7
29.4
23.8
10.5
10.5
18.9
28.07
27.95
29.08
28.18
28.07
82.53
81.80
82.27
82.05
82.53
11
12
13
14
15
10.
10.
10.
10.
0.1
0.1
0.1
0.1
                             5-34

-------
                        6.0 MESOPUFF H DISPERSION MODEL

       Section 6.1 contains a description of the model algorithms.  The user instructions are
presented in Section 6.2 and sample inputs and outputs are shown in Section 6-3.

6.1    Technical Description

       A flow diagram of the MESOPUFF II dispersion model is shown in Figure 6-1. The
major loops (hour loop, puff loop, and sampling loop) are indicated.  Individual modules
comprised of a subroutine or a group of subroutines perform the computational procedures
shown in the  flow chart (e.g., puff advection, diffusion, chemistry, wet and dry removal, and puff
sampling).  In the following subsections, each of the major algorithms of MESOPUFF II are
described.
       6.1.1   Basic Gaussian Puff Equations

       MESOPUFF n is a Gaussian variable-trajectory puff superposition model designed to
account for the spatial and temporal variation in advection, diffusion, transformation, and
removal mechanisms on regional scales.  A continuous plume is simulated as a series of discrete
puffs. The trajectory of each puff is determined independently of preceding or succeeding puffs.
Each puff is subject to space- and time-varying wet removal, dry deposition, and chemical
transformation. The governing equation for a horizontally symmetric puff with a Gaussian
distribution is:
                     C(s)
                             g(s) exp
(6-1)
where,
       C(s)   is the ground-level concentration,
                                                                                    (6-2)
s
Q(s)
oy(s)
oz(s)
r(s)
Z;
He
              is the distance travelled by the puff,
              is the mass of pollutant in the puff,
              is the standard deviation of the Gaussian distribution in the horizontal,
              is the standard deviation of the Gaussian distribution in the vertical,
              is the radial distance from the puff center,
              is the mixed-layer height, and
              is the effective height of the puff center.
                                           6-1

-------
      Read User Inputs, Read Meteorological Data Header Records

      Write Header Record in Concentration and Flux Output Files

      Read Gridded Wind Fields for Fust Hour

      	     •    Enter Hour Loop

                 *    Read Meteorological Data (other than wind data) for Current Hour

                 *    Read Gridded Wind Fields for Next Hour

                 *    Initialize Concentration and Flux Arrays

                  	        •    Enter Puff Loop

                                *    If Puff is New, Initialize Puff, Compute Plume Rise

                                	       *        Enter Sampling Loop
                                I
                                I             •        Advert Puff
                                I
Diffuse Puff (calculate new af at — move mass in three-layer model)

Perform Chemistry Calculations

Perform Wet Removal Calculations

Perform Dry Deposition Calculations

Sample Puff (calculate concentrations and fluxes at gridded
and non-gridded receptors)
                  |              	     •        End Sampling Loop

                  	        *    End Puff Loop

                  *    Compute Average Puff Concentrations (to use in next hour's chemistry calculations)

                  *    Compute 'IAVG'-Hour Averaged Concentrations and Fluxes

                  *    Write Concentrations and Fluxes to Disk and/or to List File (if end of averaging period)

                  *    Purge Old  Puffs Off Computation Grid (if number of puffs approaches limit)

      	     End Hour Loop

      Close Files, Terminate Run
Figure 6-1.  Flow diagram for MESOPUFF II.
                                                        6-2

-------
     The infinite series in Equation 6-2 converges rapidly for values of T =  (ojz^2 < 0.6;
usually fewer than 3 or 4 terms are required for convergence.  For T > 0.6,  Equation 6-2 is
expressed in an equivalent from using a Fourier series that converges quickly for large values of
T (Schulman and Scire, 1980).  The vertical term, g(s), reduces to the uniformly mixed limit of
1/Zj for GZ/Z, £ 1.6,  In general, puffs within the daytime mixed-layer satisfy this criterion about
an hour or two after release. The user is permitted to specify an initial Gaussian vertical
distribution (Eq. 6-2) or an immediately uniform vertical distribution (g(s) = 1/zJ for newly
released puffs.  MESOPUFF n allows the effect of dry deposition to be treated with the
conventional source depletion method or a more realistic surface depletion (3-layer) model.
These options are described in more detail in Section 6.1.5.

     The dispersion parameters, oy and or are calculated for puff travel distances up to
100 kilometers with plume growth functions fitted to the curves of Turner (1970). These
functions are of the form:
                                  o = a x'
                                                                        (6-3)
where,
     a,b
     x
are stability-dependent coefficients, and
is the total distance travelled.
Equation 6-3 is valid, however, only if the stability class does not change during the puffs travel.
Stability class variations are allowed by using a virtual distance, x^ instead of x (Ludwig et al.,
1977).  ^
                            W,  =
                                                                        (6-4)
                            w, - «.w, * 6
                                                                        (6-5)
                                           W*.
                                                                                      (6-6)
                                        y
                                                                                      (6-7)
                                            6-3

-------
where,
     (°y)«» (°z)n a*6 the values of ar oz (m) at the previous time step, and
     5x is the incremental distance travelled (m).

The values of a^ by, a^ and bz in Equations 6-4 through 6-7 are those for the current stability
class. Thus, x^ represents the distance the puff would have travelled to reach its size at time t-1
if current stability conditions were in effect throughout its travel.  The incremental distance, fix,
is evaluated from the midpoint of the previous  time step's trajectory to the midpoint of the
current trajectory.  Table 6-1 contains the default values of the coefficients a^ br a^ and bz
stored in MESOPUFF H.

     The time-dependent puff growth equation used for distances greater than 10 kilometers are
those given by Heffter (1965):
                            W, - KL, * °-5 •'

                               , • NH +  ^r                                      (6"9)
                               a  = 0.5  K*                                       (6-10)
where,
     fit >     is the incremental time (s),
     t        is the total age of the puff (s), and
     K,       is the vertical eddy diffusivity (m2/s).

The default values of Kj (and a^ are contained in Table 6-2. The option is provided in
MESOPUFF II for the user to override any of the default dispersion coefficient parameters,
including the crossover distance to time dependent growth (Equations 6-8 to 6-10).

     MESOPUFF n allows three options for determining growth rates for puffs above the
boundary layer:  (1) E stability rates, (2) F stability rates, or (3) boundary. layer stability rates.
The default instructions are to use the E stability growth curves for puffs^above the boundary
layer (see variable JSUP in MESOPUFF n inputs).
                                            6-4

-------
Table 6-1
Puff Growth Rate Coefficients
                       bz
Stability Class
A
B
C
D
E
F
•y
0.36
0.25
0.19
0.13
0.096
0.063
by
0.9
0.9
0.9
0.9
0.9
0.9
a,
0.00023
0.058
0.11
0.57
0.85
0.77
bz
2.10
1.09
0.91
0.58
0.47
0.42
   6-5

-------
                                Table 6-2
       Vertical Diffusivity (K.) and Puff Growth Rate Coefficient (aj
Stability Class                   K^ (m2/s)                         a,,
      A                            50                            5.0
      B                            30                           3.873
      C                            15                           2.739
      D                            7                            1.871
      E                            3                            1.225
      F                            1                            0.707
                                    6-6

-------
     6.1.2     Grid Systems

     A Cartesian coordinate reference frame is employed in MESOPAC II and
MESOPUFF n. Three nested grid systems are used:  a meteorological grid, a computational
grid, and a sampling grid. The size of each grid is limited by the parameters, MXNX, MXNY,
defined in the "params.pac" and "params.puf files.

     The meteorological grid is the system of grid points at which meteorological parameters
(wind components, mixing heights, etc.) are defined. The meteorological grid is determined by
inputs to MESOPAC II. It is the basic reference frame for ail spatial input data to both
MESOPAC n and MESOPUFF n (e.g., coordinates of meteorological stations, sources, and
non-gridded receptors). The southwest corner of the meteorological grid defines the point
fry) = (1.0, 1.0).

     The computational grid determines the computational area for a MESOPUFF II run, i.e.,
puffs are adverted and tracked only while within the computational grid.  When the center of a
puff is transported outside the bounds of the computational grid, this puff is eliminated in the
next sampling step. Thus, all sources and receptors must be located within the computational
grid.  To avoid possible boundary effects, receptors should be located away from the edges of
the computational grid.

     The sampling grid defines the set of gridded receptors. It must be equal to or a subset of
the computational grid. Its resolution is a multiple of the resolution  of the computational (and
meteorological) grid.  It should be noted  that non-gridded (discrete)  receptors are not limited to
be within the sampling grid; they may be  placed anywhere within the computational grid.
Computational savings will be realized if  the sampling grid is limited only to areas of interest.
The sampling grid may be eliminated entirely if sufficient coverage can be obtained with non-
gridded receptors (see variable LSGRID  in MESOPUFF II inputs).

     Figure 6-2 illustrates one possible arrangement for the three grids. The computational grid
is a 10 x 8 grid within the 11x9 meteorological grid.  The sampling grid extends from
coordinates (3.0, 2.0) to (10.0, 7.0) and has a resolution twice that of the other grids.  In this
example, the sampling grid size is 15 x 11.
                                           6-7

-------
9.0
8.0
7.0
6.0
Y 5.0
4.0
3.0
2.0
1.0
Meteorological
f~Grid































































i
Computational
Grid






































































^
Sampling
~Grid

'




















































                1.0   2.0    3.0    4.0    5.0    6.0    7.0    8.0    9.0    10.0     11.0
                                                   x
Figure 6-2.    Sample meteorological, computational, and sampling grids.
                                            6-8

-------
     6.13     Plume Rise

     The plume rise, Ah, of each puff is computed by the Briggs (1975) plume rise equations for
final rise.  For unstable and neutral conditions when the puff center does not rise above the top
of the boundary layer, Ah is given by:

                            AA = 1.6 F"3 X?/um                                    (6-11)
                      _
(3J) (14 F*)      F * 55 m4fs3                           (6.12)
(3.5) (34.49 F2*)    F > 55 «4/53
where,
     F        is the initial stack plume buoyancy flux (m4/s3),
     XF       is the distance to final plume rise (m), and
     um       is the larger of boundary layer (lower level) wind speed (m/s) or 1.37 m/s.

The ambient temperature at the closest surface meteorological station to the source is used in
the computation of the buoyancy flux.

     If the puff penetrates into the elevated stable layer above the boundary layer, the Briggs
(1975) partial penetration rise equation is used to provide a second estimate of plume rise. The
actual plume rise is taken as the minimum of the two plume rise estimates.
                                 ii.u r   Af i um                                    //- 1
                                 ,    ,                ,,n                          v°"J
                                 [1.8 zl + 18.75 Fl(umS)]*

where,
     Zb        is the distance from the stack top, h,, to the top of the boundary layer, z;, and
     S        is the stability parameter (g/T)(89/az).

The lapse rate in the elevated inversion is assumed to be 0.02" K/m, which is consistent with
EPA recommendations for E stability.  This yields a value of S of 6.93 x 10"* s"1.
                                           6-9

-------
     For stable conditions, Ah is given by:
                            t2,6F»l(uS)» u * 1.37 mis                              (6.u)
                                           u<1.37m/s
     During stable conditions, the potential temperate lapse rate is assumed to be 0.02° K/m
and 0.035° K/m for E and F stability, respectively. This produces values of S of 6.93 x 10"4 s'1
and 1.21 x 10"3 s"1, respectively.

     6.1.4     Puff Trajectory Function

     Puffs are advected during each sampling step according to a Lagrangian trajectory function.
The change in position of a puff center over a time interval At is:
                                     t * A*
               x(t+ Af) =  x(t) + A* =      «[*'; *(*'), yC')] dt1                       (6-15)
                                      t * Ar
                                 Ay -
where, [x(t), y(t)] and [x(t + At), y(t + At)] are the puff center coordinates at the time t and t +
At, respectively; Ax, Ay are the incremental x and y distances travelled by the puff; and u, v are
the easterly and northerly components of the wind.  The integrals in Equations (6-15) and (6-16)
are approximated by a two-step bilinear interpolation in space and time.  The coordinates of a
puff center at time t + At are found by evaluating the vector average of two advection
increments. Figure 6-3 illustrates the advection algorithm.  The first increment is evaluated by
assuming the wind components at [x(t), y(t)] are constant for the advection interval At.  Thus,

                               *!  = x(t)  + (Ax),                                        (6-17)

                               y,  = XO  * (Ay),              '                          (6-18)

                           (Ax), =«[n*(0,XO] A*                                    (6-19)

                           (Ay), =vfc*(0,XO] Af                                    (6-20)
                                            6-10

-------
Figure 6-3.    Calculation of the trajectory of a puff centerpoint.
                                              6-11

-------
However, because the wind changes in both space and time, a second increment is calculated
using (xv yj as the beginning of the trajectory and the wind components for time t + At at (x1?
yt). Assuming these wind components are constant for a time interval At, the end point of this
increment becomes  (x2, y2).

                               *2 - *, + (Ax),                                        (6-21)

                                                                                    (6-22)

                          (A*)j - «[f +  Af, xy yj A*                                  (6-23)
    •
                          (Ay), - v[f +  An^.yJ A*                                  (6-24)

Weighting each increment equally, the new puff position [x(t +  At), y(t + At)] is the midpoint of
the line from [x(t), y(t)] to (x2, y2). Thus, the winds at two points in space and in time are used
to evaluate the trajectory of the puff.

                     x(t + Af) = x(t) +  0.5 (Ax)j  + (A*                               (6-25)
                     y(t + At) = XO  * 0.5 [(Ay),  + (Ay),]                              (6-26)

The wind components u, v are defined only at the grid points at hourly intervals. The effective
wind components at the puff center at time t are obtained by the following bilinear interpolation
scheme: *
             , Xfl] = *t
                      *  **  «    i+l   * t 8   *X  u     i+l
                             , u
where,
                        Ji-T^Ar     '.*'*«w                                (6-28)
                                   = 1.0 - f2                                        (6-29)
                                           6-12

-------
and tn, tn+1 are the times closest to time t at which the wind field is defined. The variables 6\v
8x2, fiyt, fiy2 are the fractional x and y distances (in grid units) from the four surrounding grid
points to the puff center as illustrated in Figure 6-4. The northerly wind component v[t, x(t),
y(t)] is computed in an identical manner.

     6.1.5     Dry Deposition - Three-Layer Model

     The rate at which pollutants are deposited on the surface depends upon many factors:  the
characteristics of the pollutant, the underlying surface, and atmospheric conditions.  The
variability of surface and atmospheric conditions in space and time can cause significant
variations in dry deposition rates. MESOPUFF II accounts for the spatial and temporal
variations of deposition rates by the use of a resistance model  The deposition velocity, defined
as the ratio of the vertical pollutant flux at a reference height to the concentration at that
height, is expressed as the inverse of a sum of resistances to pollutant transfer through the
atmosphere to the surface.

                             vd = (ra + rt + reyl                                     (6-30)

where,
     vd       is the deposition velocity (m/s),
     r.        is the aerodynamic resistance1 (s/m),
     rt        is the surface resistance1 (s/m), and
     rc        is the canopy resistance1 (s/m).

     The aerodynamic resistance, ra, is given by Wesely and Hicks (1977) as:

                         ra = (*«.)-' [In(z,/z,)-<|rfl]                                 (6-31)

           5zJL                                             0 < zJL  <  1
        !                                                          *                 (6-32)
        ^exp  [0.598  + 0.39  ln(-z,/I) - 0.090 (ln(-z,/L)}2]    -1 < z./I  <  0
1    It should be noted that MESOPUFF II uses MKS units.  Therefore, resistances that are
     commonly reported in s/cm must be converted to s/m for input to the model.
                                           6-13

-------
                                                                (5x2
Figure 6-4.    Bilinear interpolation of wind components.
                                            6-14

-------
where,
     z,        is the reference height (10 meters),
     z0        is the surface roughness length (m),
     u.        is the friction velocity (m/s),
     i|rH      is a function accounting for stability effects, and
     k        is the von Karman constant.expressed (Wesety and Hicks, 1977) as:

                              rf = (*«.)-' kB~l                                      (6-33)

where B'1 is the surface transfer coefficient. For SO2, NOr and HNO3, kB"1 is assigned a default
value of 2.6.  A constant value of r. for the SO4" and NO3' aerosols of 1000 s/m is assumed.

     Table 6-3 contains the default canopy resistances for SO2 as a function of land use and
stability class for summertime conditions (Shieh et al., 1979). The roughness length associated
with each land use category is also presented. Based upon its high solubility and reactivity, rc
for HNO3 is assumed to be zero. The default canopy resistance for NQX is 1500 s/m.  Uptake
of the SO4" and NO3" aerosols by plant stomata is less relevant; therefore, total resistance for
SO4" and NO3" is determined by ra and r, (i.e., rc =  0).

     With knowledge of the concentration and the deposition velocity, the pollutant flux is
determined.  MESOPUFF II has two options for treating the removal of pollutant from the puff.
The  first option is the commonly used source depletion approximation.  This method assumes
that  material deposited is removed from the full depth of the puff. The change in mass is:
                                            s *
                  Q(t +  1) - Q(t) exp —£-   [  g(s'} ds1                          (6-34)
                                        A.c    J
where,                                                      •        .       •
     Q(t), Q(t+1) is the mass (g) of the pollutant in the puff at the beginning and end of the
              time step,
     s, s + As is the position of the puff at the beginning and. end of the time step, and
     g(s) is the vertical term of the Gaussian puff equation as given by Equation 6-2.  For a
              puff uniformly mixed in the vertical, g(s) = 1/Zj.                   .
                                           6-15

-------
                                      Table 6-3

              Summertime SO2 Canopy Resistances (s/m) as a Function of
                           Land Use Type and Stability Class
Category
1
2
3
4
5
6
7
8
9
V
10
11
12
Land Use Type
cropland and pasture
cropland, woodland, and grazing land
irrigated crops
grazed forest and woodland
ungrazed forest and woodland
subhumid grassland and semi-arid grazing land
open woodland grazed
desert shrubland
swamp
marshland
metropolitan city
lake or ocean
(m)
0.20
0.30
0.05
0.90
1.00
0.10
0.20
030
0.20
0.50
1.00
10U
AAC
100,
100.
100.
100.
100.
100.
100.
200.
50.
75.
1000.
0. .
D
300.
300.
300.
300.
300.
300.
300.
500.
75.
300.
1000.
0.
E
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
100.
1000.
1000.
0. „
F
0.
0.
0.
0.
0.
0.
0.
1000.
0.
0.
0.
0.
Source: Shieh, Wesely, and Hicks (1979).
                                         6-16

-------
     The source depletion model effectively enhances the rate of vertical diffusion of the
pollutant because mass removed at the surface is immediately replaced with material from
above. However, in the atmosphere, the rate of deposition can be limited (mostly during stable
conditions) by the rate of pollutant mass transfer through the boundary layer to the surface
layer. This overall boundary layer resistance is not included in the aerodynamic resistance. To
account for the effect of boundary layer mixing, MESOPUFF n has the option to treat puffs
that have become vertically well-mixed with a 3-layer model (see Figure 6-5). The surface layer
is a shallow layer (10 m) next to the ground that rapidly adjusts to changes in surface conditions.
Pollutants in the middle layer are uniformly mixed to the top of the current boundary layer.
The upper layer consists of pollutant material above the boundary layer dispersed upward during
previous turbulent activity.  The pollutant flux  into the surface layer is:

                     ***  '  * (C-  - <^/ft  -  *,) -  v, C,                              (6-35)

where,
     K        is an overall boundary layer eddy diffusivity (m2/s),
     Cm       is the concentration in the middle layer, and
     C,       is the concentration at the top of the surface layer.

     During stable conditions, K is given  by Brest and Wyngaard (1978) as:

                                 K = *, «. z,                                         (6-36)

and during neutral or unstable conditions K is
        %
                       K = Maximum /Jfcj  u, zp fcj w, z,}                                (6-37)

The constants kt and k2 have default values of 0.01 and 0.1, respectively.

     The term vd C, can be written as vd' Cm, where vd' is an effective deposition velocity
taking into account boundary layer mass  transfer.

                             vj = 	^	          -                           (6-38)
                                  * +  MZ,-z,)    .

     In the 3-layer model, only material in the surface layer is available for deposition at the
surface. The effective deposition velocity, vd' is used in Equation 6-34 to evaluate the change in
pollutant mass in the puff due to dry deposition.
                                           6-17

-------
       'max
                                                         Nonturbulent Atmosphere
                                                                    z;   Mixed Layer

                                                                          t
                                                                          a  Surface Layer
Figure 6-5.    Optional three layer system used in MESOPUFF II.





                                        6-18

-------
     6.1.6    Chemical Transformations

     The chemical processes modeled in MESOPUFF n are the conversion of sulfur dioxide
(SOj) to sulfate (SO4') and the conversion of nitrogen oxide (NO, = NO + NO2) to nitrate
aerosol (NO3").  The formation of nitrate aerosol involves both photochemical reactions and
chemical equilibrium considerations.  NO, is oxidized largely photochemically to gaseous nitric
acid (HNO3) and organic nitrate (RONO2) such as peroxyacetylnitrate (PAN).  In the presence
of ammonia, a chemical equilibrium is established between gaseous HNO3, gaseous NH3, and
the ammonium nitrate aerosol:
                     HN03 (g) + NH3 (g)  - NHJfO, (aq)                             (6-39)

The equilibrium constant for this reaction is strongly dependent on relative humidity and
temperature (Stelson and Seinfeld, 1982). The organic nitrates formed from NO, are not
believed to form fine participate aerosols.

     Transformation rate expressions were developed for use in MESOPUFF II by statistically
analyzing hourly transformation rates produced by a photochemical box model. The model
employed the RHC/NO,/SO, chemical mechanisms of Atkinson et al. (1982).  Plume SO,/NOX
dispersing into background air containing ozone and reactive hydrocarbons  (RHC) was
simulated over a wide range of conditions representing different solar radiation intensities,
temperatures, dispersion conditions, background ozone and  RHC levels, plume NO,
concentrations and emissions times. The following equations represent curve fits to the hourly
(daytime), conversion rates predicted by the photochemical model:
                      36 K0-53 [03]a71 5'1-29 + 3 x ID'8 RH4                         (6-40)

                       Jtj = 1206 [Cy1-3 5'W1 [NO,]-*-"                               (6-41)

                      t, = 1261 [03]IM S~IM pVOJ-°-12                              (6-42)
where,
     k,       is the SO2 to SO4" transformation rate (percent per hour),
     k2       is the NO, to HNO3 + PAN transformation rate (percent per hour),
     k3       is the NO, to HNO3 (only) transformation rate (percent per hour),
     R       is the total solar radiation (Kw/m2),
     [O3]     is the background ozone concentration (ppm),
     S       is a stability index ranging from 2 to 6 (PGT class A and B=2, C=3, D=4, E=5,
                F=6),

                                         6-19

-------
     RH      is the relative humidity (percent), and
     [NOJ    is the NOX concentration (ppm).

An empirically determined aqueous phase SO2 conversion term (3 x 10~* RH4) is included in the
SO2 to SO4" transformation equation. The aqueous phase term has a minimum value of 0.2%
per hour.  Constant transformation rates of 0.2 and 2% per hour  for SO2 and NOP respectively,
are used as default values for nighttime periods.

     The model provides three options for the specification of background ozone
concentrations: (1) hourly ozone data from a network of stations may be input; (2) a single
background ozone concentration may be specified, or, (3) the default value of 80 ppb may be
used. The background ammonia concentration required for the HNO3/NH3/NH4NO3
equilibrium calculation may be specified by the user or the default value of 10 ppb is used.

     The parameterized NOX oxidation rate depends on  the NOX  concentration.  In situations
where puffs overlap, it would be incorrect to calculate NOX oxidation rate based solely on the
puff NOX concentration.  Similarly, the nitrate equilibrium should not assume that all the
ambient NH3 is available for one puff.  Therefore, the total (local average) SO4", NO,, TNO3
(total nitrate = HNO3 + NO3") concentrations due to all puffs and the available ammonia (total
ammonia minus sulfate) are computed.  First, the average puff concentration, C, within ± 1.5 oy
and  ±  1.5 oz of the puff center is calculated for each puff.  For an elevated Gaussian
puff,  C (assuming no ground reflection) is:
        v

                             7,      0.38 Q
                                S
                                         
-------
hourly transformation rates for kx, k2, and k3 (three arrays of 24 values each), or the following
alternative rate expressions for the SO2 oxidation rate.

     Gillani et at (1981):

                             *j = 0.03 R h [O3]                                      (6-45)

where h is the plume depth (m) taken as the minimum of 3 or or Zj, R is solar radiation
(kw/m2).

     Henry and Hidy (1982) - (based on St. Louis data):

                                *! - 34. [03]  .                                      (6-46)


     Henry and Hidy (1981) - (based on Los Angeles data):

                                ^ = 85. [03]                                         (6-47)


     6.1.7     Wet Removal

     Numerous studies (e.g., Slinn et aL 1978, Scott 1978, 1981) have shown that precipitation
scavenging in an efficient removal mechanism, especially for paniculate pollutants such as SO4".
During precipitation events, wet removal can easily dominate dry deposition in pollutant
removal.  MESOPUFF II uses the following simple parameterization of wet removal processes:

                         Q(t + 1)  =  Q(t) exp[ -A Af]                                 (6-48)

where,
     Q(t), Q(t +  1) is the mass (g) of pollutant in the puff at the beginning and end of the
              time step,
     A is the scavenging ratio (s"1), and
     At is the time step (s).

Maul (1980) expresses A as:

                               A = A,  */*,                                         (6-49)
                                           6-21

-------
where,
     R        is the rainfall rate (mm/hr),
     RI       is a reference rainfall rate of 1 mm/hr, and
     X        is a scavenging coefficient (s"1).

Table 6-4 contains the default values of the scavenging coefficient used in MESOPUFF II. The
rainfall rate used in Equation 6-49 is that observed at the closest station to the puff center.

     A precipitation code determined from the surface (CD 144) observations of precipitation
type/intensity is used to determine if the value of X for liquid or frozen precipitation is most
appropriate.  Precipitation observations are converted to precipitation codes as shown in
Table 6-5.  The liquid precipitation values of X are used for precipitation codes 1-18; the frozen
precipitation values are used for codes 19-45.

     6.1.8     Puff Sampling Function

     MESOPUFF n simulates a continuous plume with a series of discrete puffs. The total
concentration is calculated by summing the contributions of each nearby puff (within 3 oy of the
receptor).  The contribution of a single puff integrated over the distance of puff travel, As,
during the  sampling step is:
    * * t
~Ks  J
                                             exp
      ;    2*
                                                  2 
-------
                               Table 6-4





          Default Values of the Scavenging Coefficient, 1 (s'1)
Pollutant                   Liquid Precipitation              Frozen Precipitation



  SO2                          3 x 10s                            0.0



  SO/                          1 x 10-4                          3 x Iff5



  NO,                            0.0                             0.0



 HNO3                         6 x Iff5                            0.0



  NO3-                          IxlO"4                          SxHT*
                                 6-23

-------
                                Table 6-5



Conversion of Reported Precipitation Type/Intensity to Precipitation Codes
Liquid Precipitation
Precipitation Type
Code
1
2
3
4
. 5
6
7
8
9
10
11
12
13
14
15
16.
17
18







* Inter
Rain
Rain
Rain
Rain Showers
Rain Showers
Rain Showers
Freezing Rain
Freezing Rain
Freezing Rain
Not Used
Not Used
Not Used
Drizzle
Drizzle
Drizzle
Freezing
Drizzle
Freezing
Drizzle
Freezing
Drizzle







isity not currently repor
Intensity
Light
Moderate
Heavy
Light
Moderate
Heavy
Light
Moderate
Heavy
Light
Moderate
Heavy
Light
Moderate
Heavy







ted for ice cryst;
Frozen Precipitation
Precipitation Type
Code
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
als, hail and small
Snow
Snow
Snow
Snow Pellets
Snow Pellets
Snow Pellets
Not Used
Ice Crystals
Not Used
Snow Showers
Snow Showers
Snow Showers
Not Used
Not Used
Not Used
Snow Grains
Snow Grains
Snow Grains
Ice Pellets
Ice Pellets
Ice Pellets
• Not Used
Hail
Not Used
Not Used
Small Hail
Not Used
hail.
Intensity
Light
Moderate
Heavy
Light
Moderate
Heavy
»
Light
Moderate
Heavy
Light
Moderate
Heavy
Light
Moderate
Heavy
*
- '
-
»
-

                                   6-24

-------
                            a  =(Ax2 + Ay'J/oJ                                    (6-54)


                               , - xr) + Ay (y, - yr)]/ o2.                              (6-55)
where,
     Qo'Qo    & lhe pollutant mass (g) in the puff at the beginning and end of the time step.
     (x,, yt)    are the receptor coordinates (m),
     fo, yt)    are the puff coordinates (m) at the beginning of the sampling step, and
     Ax,Ay    are the incremental x and y distances travelled by the puff during the sampling
                 step.

The exponential variation of Q due to removal and chemical transformation processes is
expressed with a linear function over the sampling interval. The puff trajectory segment is
assumed to be a straight line. More details of the sampling function derivation are contained in
Scire et al. (1984).

     6.1.9     Urban Plumes
         v
     Emissions of SO2 and NOX and their transformation to paniculate sulfate and nitrate within
and downwind of urban regions can significantly influence regional scale  air quality.
MESOPUFF II offers the capability to model the large number of stationary and mobile sources
within an urban area as one or more area sources.  It is assumed that the emission  distribution
can be adequately represented by a Gaussian (puff-type) distribution.  User-specified initial size
parameters (Oy, oz)  and source height are required. The urban emissions may be partitioned
according to effective source height and modeled as a number of area sources.  Section  6.2
contains more information on the data requirements of area sources.

6.2  MESOPUFF II User's Instructions

     MESOPUFF II is a variable-trajectory, puff superposition model designed to account for
the spatial and temporal variations in transport,  diffusion, chemical transformations, and
removal mechanisms encountered on regional scales.  Continuous plumes are modeled as  a
series of discrete puffs. Each puff is  transported independently of other  puffs, and is subject to
growth by diffusion, chemical transformation, wet removal by precipitation, and dry deposition at

                                           6-25

-------
the surface. MESOPUFF H will model up to five pollutants (SO2, SO4", NO,, HNO3, NO3')
simultaneously.

     One of the modifications made to the current version of MESOPUFF II is the use of a
memory management system which makes it much easier to resize the major arrays within the
code to accommodate a particular system's memory limitations. Arrays dealing with the number
of puffs, grid cells, discrete receptors, point and area sources, surface and upper air
meteorological stations, and ozone monitoring stations are dimensional throughout the code
with parameter statements.  The declarations of the values of the parameters are stored in a file
called TARAMS.PUP. This file is automatically inserted into any MESOPUFF II subroutine
or function requiring one of its parameters via FORTRAN 'include' statements. Then, a global
redimensioning of all the model arrays dealing with the maximum number of puffs, for example,
can be accomplished simply by modifying the PARAMS.PUF file  and recompiling the program.

     A sample parameter file is shown in Table 6-6. The parameter file sets the array
dimensions, which are the maximum values of the variables. The actual values for a particular
run are set within the user input control file (PUFF.INP), and can be less than the maximum
value set in the parameter file.

     Table 6-7 summarizes the input and output files used by MESOPUFF IL  Note that the
logical units for the input control file and output list file are declared in the parameter file
(PARAMS.PUF). The other unit number variables are declared in BLOCK DATA.

     The* chemical transformation module (see Section 6.1.6) contains an option to use hourly
ozone monitoring data  to help determine transformation rates. If this option is used, data for
up to "MXOZ" ozone stations is read from the OZONE.DAT file. Table 6-8 shows the ozone
data input format.

     MESOPUFF n has been modified  to allow the program to be executed in a series of runs.
This continuation or restart option is convenient in permitting large simulations to be broken up
into a series of manageable smaller runs. At the end of the first MESOPUFF II run, all the
variables needed to continue the run are dumped to a file called RESTART.DAT. The user
must rename this file to PREVIOUS.DAT.  The second run then reads this file and continues
the simulation. The second run may produce a RESTART.DAT  file for a subsequent
continuation run as well. The use of the restart option is controlled by the input variables
ICONT (Input Group 2) and IRES (Input Group 6).
                                         6-26

-------
                            Table 6-6

 Sample Parameter File (PARAMS.PUF) for MESOPUFF II
c	.	.—	
c — PARAMETER statements                                 MESOPUFF II
c	-			-	•	-	
c
c — Specify parameters
      parameter(mxpuff=10000)
      parameter(nxnx*100,mxny* 100)
      parameter(«xrec=1000)
      parameter(nxpts*1000,mxarss200)
      parameter (mxss»100,mxus=20)
      parameter(mxoz*50)
      parameter (io5*5, ie>6=6)
c
c — Computed parameters
      parameter(mxcetl*mxnx*mxny)
      parameter (maxpf5*5*mxpuff,maxpf6=6*mxpuff)
c
C — GENERAL PARAMETER definitions:
c        MXPUFF - Maxinun nunber active puffs on the grid
c          MXNX • Maximum number of grid cells in the X direction
c          MXNT • Maximum number of grid cells in the Y direction
c         MXREC - Maximum number of non-gridded (discrete) receptors
c         MXPTS - Maximum nunber of point sources
c         MXARS - Maximum number of area sources
c          MXSS - Maximum nunber of surface meteorological stations
c          MXUS - Maximum number of upper air stations
c          MXOZ - Maximum number of ozone stations
c
c — FORTRAN I/O unit numbers:
c           105 - Control file (PUFF.IMP)   - input  - formatted
c           106 - List file (PUFF.LST)       - output - formatted
c
                                6-27

-------
                                     Table 6-7
                        MESOPUFF II Input and Output Files
Unit*

105

IN8
INOZ10



IO6


IOUT20



IOUT22
       *


IOUT24
Filft Name         Type

PUFFJNP         INPUT

PACOUTDAT     INPUT


PREVIOUS.DAT   INPUT
OZONE.DAT      INPUT
PUFFJLST
OUTPUT
PUFFOUTDAT    OUTPUT
FLUXWET.DAT   OUTPUT
FLUXDRY.DAT   OUTPUT
             RESTARTDAT    OUTPUT
             Format

             FORMATTED

             UNFORMATTED


             UNFORMATTED
             FORMATTED
FORMATTED
             UNFORMATTED
             UNFORMATTED
             UNFORMATTED
                              UNFORMATTED
 Description

 MESOPUFF H control file.

 Meteorological data file
 produced by MESOPAC II.

 A "restart" file produced by a
 previous run of MESOPUFF
 II, which allows a run to be
 continued.  (Optional-Read
 only if ICONT = 1).

 File containing hourly ozone
 concentrations. (Optional--
 Read only if MO3=1).

 List file (line printer output
 file).

 Output file containing
 gridded and non-gridded
 concentrations.

 Output file containing
 gridded and non-gridded wet
 fluxes.

 Output file containing
 gridded and non-gridded dry
 fluxes.

• A "restart" file produced by
 the current MESOPUFF II
 run to allow the run to be
 continued  in a future
 MESOPUFF II run.
 (Created only if IRES=1).
     IO5 and IO6 are specified in the parameter file (PARAMS.PUF).  The other unit number variables
     are declared in BLOCK DATA.
                                        6-28

-------
     Figure 6-6 shows the required setup of the card-image inputs for MESOPUFF II.  A
complete description of all the run control variables used in MESOPUFF II are contained in
Table 6-9.  Section 6.3 contains a set of sample test case input and output.

     The MESOPUFF II output concentration file and wet/dry flux files each consist of two
header records followed by up to two records per hour containing concentration or flux data.
The structure of the wet and dry flux files is identical to the concentration file. Table 6-10
contains a listing of the variables in each record of the output concentration and wet/dry flux
files.  The two header records contain a number of technical option control parameters and
other run control inputs.  One or two records per hour follow the header records. Two records
are written each hour if concentrations or fluxes are predicted at both gridded and non-gridded
receptors.  If only one type of receptor is used, only one record per hour is written. The units
of the flux fields stored in the output files are g/m2/s. The concentrations are expressed in g/m3
in the output file.

6.3  Sample MESOPUFF U Inputs and Outputs

     Table 6-11 contains a control file for a MESOPUFF II run.  This is a 24-hour run which
uses meteorological data from a 20 x 20 grid.  Concentrations of SO2 are predicted on a 14 x 14
sampling grid and at  14 non-gridded receptors. The output list file generated by MESOPUFF II
using the inputs from Table 6-11 is presented in Attachment 6-A.
                                          6-29

-------
                                      Table 6-8

                      Format of Optional Hourly Ozone Input Data
Columns
Type
Variable
Description
1-8
(412)

9-68
(50F4.0)
INTEGER
IDATE (4)
Year, Month, Day, Hour
REAL ARRAY     OZPPB (MXOZ)     Ozone concentrations (ppb) at up to
                                     MXOZ stations. A '999.' signifies
                                     missing data.
     MXOZ is a parameter defined in "params.puf.
                                         6-30

-------
                                               (11|.0tn»f0r»0ip»»«in«»
                                                    Connwn
                                                                                                       Included only .1 NREC > 0
                                                                                                  Included only if NAHtAS > 0
                                                                                             Included only if NPTS > 0
                                                                            _____ Included only it IOPTS (61 • 1
                                                                                  Included omv >' IOITS (SI > 1
                                                                              Included only i< (OPTS (4)» 1
                                                                       ,_ Included onty i« IQfTS 131' 1
                                                                      Inaudrt ««
-------
                                    Table 6-9
                              MESOPUFF H INPUTS
INPUT GROUP 1 - TITLE
Columns     Type
1-80
CHARACTER
*4 ARRAY
Format: (20A4)
     Variable
     TITLE (20)
Description
80-character title
INPUT GROUP 2 . GENERAL
Columns     Type
1-5          INTEGER
6-10         INTEGER
11-15        INTEGER
16-20        INTEGER
21-25        INTEGER
26-30
31-35
36-40
            RUN INFORMATION   Format: (915)
                Variable       Description
                NSYR
                NSDAY
                NSHR
                NADVTS
                NPTS
INTEGER
INTEGER
INTEGER
                  Two-digit year of run.
                  Starting Julian day.
                  Starting hour (00-23).
                  Number of hours in run.
41-45
INTEGER
                  Number of point sources (NPTS * MXPTS as
                  defined in "params.puf).
     NAREAS      Number of area sources (NAREAS <; MXARS as
                  defined in "params.puf).
     NREC        Number of non-gridded receptors
                  (NREC * MXREC as defined in "params.puf).
     NSPEC       Number of chemical species to model
                  (NSPEC = 1^3 or 5).  NSPEC = 1 for SO2;
                  NSPEC = 2 for SO* SO/, NSPEC = 3 for SO2,
                  SO/, NOW NSPEC = 5 for SO* SO/, NO,,
                  HN03, N03.
     ICONT       Continuation run? (0 = no, 1 = yes).
                                       6-32

-------
                                         Table 6-9

                            MESOPUFF II INPUTS - Continued
Columns
1-5
6-10
11-15
16-20
Type
INTEGER
INTEGER
INTEGER
LOGICAL
Variable
IAVG
NPUF
NSAMAD
LVSAMP
INPUT GROUP 3 - COMPUTATIONAL VARIABLES   Format: (315, L5, F5.L, L5, F5.0)

                                            Description

                                            Concentration averaging time (hours).

                                            Puff release rate (puffs/hour) for each source.

                                            Minimum sampling rate (samples/hour).

                                            Control variable for variable sampling rate option.  If
                                            LVSAMP = T, the sampling rate, NSAM, will be
                                            increased at higher wind speeds according to the
                                            following equation: NSAM = maximum (NSAMAD,
                                            WS/WSAMP + 1) where WS is the wind speed
                                            (m/s), and WSAMP is a user input reference wind
                                            speed (see below). If LVSAMP = F, the sampling
                                            rate is not varied with wind speed.

                                            Reference wind speed used in variable sampling rate
                                            option.  Used only if LVSAMP = T.  See description
                                            of LVSAMP.

                                            Control variable for concentration computations at
                                            sampling grid points.  If LSGRID = T, concentrations
                                            are calculated at sampling grid points. (Parameters
                                            defining sampling grid are contained in Input Group
                                            4). If LSGRID =  F, concentrations are not calculated
                                            at sampling grid points. This option allows significant
                                            savings of computation time if only concentrations at
                                            non-gridded receptors are of interest.
21-25
26-30
REAL
LOGICAL
WSAMP
LSGRID
31-35
              REAL
                AGEMIN       Minimum age of puffs to be sampled (in seconds).
                               Puffs released at a time AGEMIN are not sampled.
                               This option is intended to eliminate near-field
                               concentration spikes at receptors located very close to
                               sources.  In general, AGEMIN should not be larger
                               than 3600 s.
                                            6-33

-------
                                       Table 6-9
                          MESOPUFF n INPUTS - Continued
INPUT GROUP 4 - GRID INFORMATION
Type           Variable

INTEGER      IASTAR
1-5
6-10
11-15
INTEGER      IASTOP
INTEGER      JASTAR
16-20
21-25
26-30
31-35
36-40
INTEGER      JASTOP
INTEGER      ISASTR
INTEGER      ISASTP
INTEGER      JSASTR
INTEGER      JSASTP
(See Section 6.L2 for description of the
meteorological, computational, and sampling grids).
Format  (915)

 Description

 Element number of the meteorological grid defining
 the beginning of the computation grid in the
 X-direction. (1 £ IASTAR & IMAX, where IMAX is
 the meteorological grid size in the  X-direction defined
 in the MESOPAC n run).

 Element number of the meteorological grid defining
 the end of the computation grid in the X-direction.
 (IASTAR * IASTOP & IMAX).

 Element number of the meteorological grid defining
 the beginning of the computational grid in the
 Y-direction. (1 * JASTAR * JMAX, where JMAX is
 the meteorological grid size in the  Y-direction defined
 in the MESOPAC II run).

 Element number of the meteorological grid defining
 the end of the computation grid in the Y-direction.
 (JASTAR & JASTOP * JMAX).

 Element number of the meteorological grid defining
 the beginning of the sampling grid in the X-direction.
 (IASTAR * ISASTR & IASTOP).

 Element number of the meteorological grid defining
 the end of the sampling grid in the X-direction.
 (ISASTR * ISASTP  s IASTOP).

 Element number of the meteorological grid defining
 the beginning of the sampling grid in the Y-direction.
 (JASTAR <: JSASTR * JASTOP).

 Element number of the meteorological grid defining
 the end of the sampling grid in the Y-direction.
 (JSASTR & JSASTP a JASTOP).
41-45
INTEGER      MESHDN     Sampling grid spacing factor. Sampling grid spacing is
                             DGRID/MESHDN, where DGRID is the
                             meteorological grid spacing (m) defined in the
                             MESOPAC II run. NOTE: The sampling grid must
                             be defined as not to exceed a maximum size of
                             MXNXbyMXNY.
                                          6-34

-------
                                       Table 6-9
                           MESOPUFF H INPUTS - Continued
INPUT GROUP S - TECHNICAL OPTIONS   Format: (5L5)

Columns      Type           Variable       Description
1-5
LOGICAL
LGAUSS
6-10
11-15
16-20
21-25
LOGICAL
LOGICAL
LCHEM
LDRY
LOGICAL      LWET
LOGICAL      L3VL
Vertical concentration distribution option. If
LGAUSS = T, a Gaussian vertical concentration
distribution with reflection terms (Equation 6-2) is
assumed for each puff. If LGAUSS = F, fumigated
puffs immediately assume a uniform vertical
concentration distribution.

Chemical transformation option. If LCHEM = T,
chemical transformation processes are modeled. If
LCHEM = F, chemical processes are not modeled.

Dry deposition option.  If LDRY = T, dry deposition
is modeled.  If LDRY = F, dry deposition is not
modeled.

Wet removal option. If LWET = T, wet removal is
modeled.  If LWET = F, wet removal is not modeled.

Three vertical layer option. L3VL = T, the  3-vertical
layer model described in Section 6.1.5 is used for puffs
that have become uniformly mixed in the vertical.  If
L3VL =  F, the single layer model is assumed.
NOTE: L3VL may be T with LGAUSS  = T or F;
however, if LGAUSS = T the 3-layer treatment does
not begin until the puffs have become uniformly mixed
through the boundary layer.
                                          6-35

-------
                                         Table 6-9
                            MESOPUFF II INPUTS - Continued
INPUT GROUP 6 - OUTPUT OPTIONS

Columns   Type          Variable

1-5       LOGICAL     LSAVE
6-10      LOGICAL     LPRINT
11-15     LOGICAL     IPRINF
16-20     LOGICAL      LDB
21-25     INTEGER      NN1
26-30     INTEGER     NN2
31-35     LOGICAL      LWETG
Format (2L5,15, L5, 215, 6L5, 215)

Description

Disk/tape output control variable. If
LSAVE =  T, concentrations are written to
disk/tape file. If LSAVE * F, concentration
output is not stored on tape/disk.

Printer output control variable.  If
LPRINT = T, concentrations are printed every
"IPRINP hour. If LPRINT = F, concentrations
are not printed.

Printing interval (in hours) of concentrations. Used
only if LPRINT = T.  IPRINF must be equal to or
an even multiple of IAVG.

Control variable for printing of computed puff data
(puff height, Oy, oz, location, transformation rate,
deposition  velocity, wet removal rate, etc.).  If LDB
= T, these data will be printed for time steps NN1
to NN2. If LDB = F, this information will not be
printed. This option will produce a large quantity
of printout, and, for most applications should be F.

Time step at which printing of intermediate
computed puff data begins.  Used only if LDB =
T, (1 i NN1 s NADVTS).

Time step  at which printing of intermediate
computed puff data ends. Used only if
LDB =  T. (NN1 s NN2 s NADVTS.)

Wet flux control variable for gridded receptors.  If
LWETG = T, wet fluxes at the gridded receptors
are internally saved for printing or storage on disk
or tape. If LWETG  = F, the wet fluxes at the
gridded receptors are  not saved.  (LWETG should
be T only if LWET and LSGRID are also T.)
                                            6-36

-------
                                    Table 6-7

                       MESOPUFF H INPUTS - Continued
INPUT GROUP 6 - OUTPUT OPTIONS - continued
Columns   Type

35-60      LOGICAL
Variable

LWETNG
41-45      LOGICAL
LDRYG
46-50      LOGICAL
LDRYNG
51-55      LOGICAL
LSAVEF
56-60      LOGICAL
LPRFLX
61-65      INTEGER


66-70      INTEGER
IRES


IINT
Description

Wet flux control variable for non-gridded receptors.
If LWETNG = T, wet fluxes at the non-gridded
receptors are internally saved for printing or
storage on  disk or tape.  If LWETNG = F, the wet
fluxes at the non-gridded receptors are not saved.
(LWETNG should be T only if LWET is T and
NREC  > 0).

Dry flux control variable for gridded receptors. If
LDRYG = T, dry fluxes at the gridded receptors
are internally saved for printing or storage on disk
or tape. If LDRYG = F, the dry fluxes at the
gridded receptors are not saved.  (LDRYG should
be T only if LDRY and LSGRID are also T.)

Dry flux control variable for non-gridded receptors. If
LDRYNG  = T, dry fluxes at the non-gridded receptors
are internally saved for printing or storage on disk or
tape. If LDRYNG = F, the dry fluxes at the non-
gridded receptors are not saved.  (LDRYNG should be
T only if LDRY is T and NREC > 0).

Disk/tape output control variable for fluxes. If
LSAVEF = T, the wet and dry fluxes specified by
LWETG, LWETNG, LDRYG, and LDRYNG are
written  to disk or tape. If LSAVEF =  F, the fluxes are
not stored on disk or tape.

Printer  output control variable for fluxes. If LPRFLX
= T, the wet and dry fluxes specified by LWETG,
LWETNG, LDRYG, and LDRYNG are printed every
'IPRINF hours. If LPRFLX = F, the  fluxes are not
printed.

Save results for restart option (1 = save, 0 = do not
save).

Frequency (in hours) of restart (save results every
"IINT hours). If IINT is left blank, IINT defaults to
NADVTS, which will save the restart file only at the
end of the run. Used only if IRES = 1.
                                          6-37

-------
                                         Table 6-9

                            MESOPUFF II INPUTS - Continued
INPUT GROUP 7 - DEFAULT OVERRIDE OPTIONS

Columns       Type                   Variable

1             INTEGER ARRAY      IOPTS(1)
              ELEMENT
              INTEGER ARRAY
              ELEMENT
IOPTS(2)
              INTEGER ARRAY
              ELEMENT
IOPTS(3)
              INTEGER ARRAY
              ELEMENT
IOPTS(4)
              INTEGER ARRAY
              ELEMENT
              INTEGER ARRAY
              ELEMENT
IOPTS(5)
IOPTS(6)
Format: (611)

 Description

 Control variable for input of dispersion
 parameters. If IOPTS(1) - 1, the user must
 input values of the following parameters
 related to dispersion; a,, by, a,, ba a^ T^
 JSUP (see Section 6.1.1 for definitions). If
 IOPTS(1)  * 0, the default values for the
 parameters are used.

 Control variable for input of vertical
 diffusivity constants.  Used only if
 L3VL = T. If IOPTS(2) = 1, the user must
 input values for the constants k,, k2 of
 Equations (6-36)-(6-37). If
 IOPTS(2)  = 0, the default values of
 kj - 0.01 and k2 = 0.10 are used.

 Control variable for input of SO2 canopy
 resistances. Used only if LDRY = T. If
 IOPTS(3)  = 1, the user must input SO2
 canopy resistances (rc) for the stability/land
 use categories in Table
 6-3.  If IOPTS(3) = 0, the default values
 contained in the table are used.

 Control variable for input of other dry
 deposition parameters.  Used only if LDRY
 = T.  If IOPTS(4) = 1, the user must input
 values for  rc (NO,), r, (gases), and r,
 (particles) (see Input Group 11). If OPTS(4)
 = 0, the default values of these parameters
 are used.

 Control variable for inputs of wet removal
 parameters. Used only if LWET =  T. If
 IOPTS(5)  =  1, the user must input values for
 X (see Table 6-4). If IOPTS(5)  = 0, the
 default values contained in the table are used.

 Control variable for input of chemical
 transformation method flags and other
 chemical variables.  See Input Group 13 for a
 complete description of the inputs.  If
 IOPTS(6) =  1, the user must input values of
 these parameters. If IOPTS(6) = 0, the
 default values are used.
                                            6-38

-------
                                           Table 6-9
                             MESOPUFF II INPUTS • Continued
 INPUT GROUP 8 - DISPERSION PARAMETERS
Type               Variable     Default

REAL ARRAY     AY(6)       *



REAL ARRAY     BY(6)       *



REAL ARRAY     AZ(6)       *



REAL ARRAY     BZ(6)       *



REAL ARRAY     AZT(6)      *
 1-60
 1-60
 1-60
 1-60
 1-60
 1-10
 11-20
REAL
INTEGER
TMDEP    10,000
JSUP
(Optional - included only if IOPTS(1) = 1).
Six input records required.
Format (5(6F10.5/), F10.0,110)

   Description

   Array of horizontal dispersion coefficients,
   a^ in Equation 6-4 for stability classes A-F,
   respectively.

   Array of horizontal dispersion coefficients,
   by, in Equation 6-4 for stability classes A-F,
   respectively.

   Array of vertical dispersion coefficients, a^
   in Equation 6-5 for stability classes A-F,
   respectively.

   Array of vertical dispersion coefficients, bn
   in Equation 6-5 for stability classes A-F,
   respectively.

   Array of time-dependent vertical dispersion
   coefficients, a^ in Equation 6-9, for stability
   classes A-F, respectively.

   Distance (in meters) beyond which the time
   dependent Equations (6-8) - (6-9)  are used
   to determine or or

   Stability class used to determine growth
   rates for puffs above the boundary layer.
   JSUP = 5 for E stability rates, JSUP = 6
   for F stability rates, JSUP  = 0 for boundary.
   layer stability rates.
* See Tables 6-1 and 6-2 for default values.
                                             6-39

-------
                                         Table 6-9

                            MESOPUFF H INPUTS - Continued
INPUT GROUP 9 - VERTICAL DIFFUSWITY CONSTANTS

Columns
1-10

Type
REAL

Variable
CON1K

Default
0.01
(Optional - included only if
IOPTS(2) = 1) Format: (2F103)
Description
Vertical disp

ersion constant, k,, for
                                                         stable conditions (Equation 6-36).

 11-20        REAL             CON2K         0.10       Vertical dispersion constant, It* for
                                                         convective conditions (Equation 6-37).
 INPUT GROUP 10 - SO2 CANOPY RESISTANCES      (Optional - included only if IOPTS(3) = 1).
                                                   Twelve input records are required.
                                                   Format:  (4F10.2)

 Columns     Type               Variable        Default    Description

 1-40         REAL ARRAY      RCSO2(12,4)    **        SO2 canopy resistances, rCT (SOJ, in
                                                         s/m.*  Four values on each record for
                                                         stability classes (1) A-C, (2) D, (3) E,
                                                         and (4) F. Twelve records are
                                                         required, for land use categories 1-12.
                                                         Entered in order of increasing
                                                         numerical land use category.
* Note: Resistance units are s/m, not s/cm.
** See Table 6-3 for default values.
                                            6-40

-------
                                           Table 6-9

                             MESOPUFF H INPUTS - Continued
INPUT
ffolymti
1-10
11-20
21-30
31-40
41-50
51-60
INPUT
GROUP 11 - OTHER DRY DEPOSITION CONSTANTS (Optional - included only if
IOPTS(4) - 1).
Format: (6F102)
s Iyj2£
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL
REAL
Variable
RCNOX(l)
RCNOX(2)
RCNOX(3)
RCNOX(4)
RSGCON
RSPART
Default Description
130.
500.
1500.
1500.
2.6
1000.
GROUP 12 - WET REMOVAL PARAMETERS
NO, canopy resistance (s/m)* for
stability classes A-C.
NO, canopy resistance (s/m) for stability
class D.
NO, canopy resistance (s/m) for stability
class E.
NO, canopy resistance (s/m) for stability
class F.
Surface resistance constant for gases
(SO* NO,, HN03).
Surface resistance (s/m) for participates
SO/, NO3 .
(Optional - included only if IOPTS(5) = 1).
 Column^    Type               Variable

 1-50        REAL ARRAY     WA(1-5,1)
             ELEMENTS
 1-50        REAL ARRAY     WA(l-5,2)
             ELEMENTS
     Input is on two records.
     Format: (5F10.2/5F10.2)

Default     Description
           Values of A. Equation 6-49 for liquid
           precipitation for pollutants 1-5,
           respectively, (SO^ SO/, NO,, HNO3,
           NO,').
           Values of A. in Equation 6-49 for frozen
           precipitation for pollutants 1-5,
           respectively.
* Note: Resistance units are s/m, not s/cm.
** See Table 6-4 for default values.
                                             6-41

-------
                                       Table 6-9

                           MESOPUFF H INPUTS - Continued
INPUT GROUP 13 - CHEMICAL PARAMETERS
Columns    Typq

1-5         INTEGER
Variable

MSOX
6-10         INTEGER
11-15        INTEGER
16-20        REAL
21-25        REAL
       *

26-30        REAL ARRAY
            ELEMENT

31-35        REAL ARRAY
            ELEMENT

36-40        REAL ARRAY
            ELEMENT
MNOX
M03
CO3B
      (Optional - included only if
      IOPTS(6) = 1)
      Format  (315, 2F5.L. 3F5.2)

Default    Description
80
CTNH3
RNITE(l)
RNITE(2)
RNITE(3)
10
0.2
2.0
2.0
SO, transformation method flag.
0 * no transformation, 1 - user
specified, 2 = ERT theoretical equation,
3 = Gillani equation, 4 = Henry equation
for SL Louis, 5 = Henry equation for Los
Angeles (see Section 6.1.6).

NO, transformation method flag.
0 = no transformation, 1 = user
specified, 2 = ERT theoretical equation
(see Section 6.1.6).

O3 hourly input option.  If MO3 = 1,
hourly ozone values are required at
"NOZONE" stations. IF MO3 = 0, a
default ozone value (CO3B) is assumed.

Default background ozone concentration
(ppb).  CO3B is used if MO3 = 0 or if
MO3 = 1 and hourly values are missing.

Background ammonia concentration
(ppb).

Nighttime SO2 loss rate (%/hour).
                       Nighttime NOX loss rate (%/hour).


                       Nighttime HNO3 formation rate
                       (%/hour).
                                          6-42

-------
                                       Table 6-9

                           MESOPUFF H INPUTS - Continued
INPUT GROUP 13 - Continued

The following two recorcds are included only if MSOX = 1.
           IXBC
           REAL ARRAY
           ELEMENT
                            Variable

                            RUSER (1-16,1)
                                                Descriotion
1-80
(16F5.2)

1-40
(8F5.2)

The following four records are included only if MNOX = 1.
User-supplied hourly SO2 loss rates (%/hour)
for hours 1-16.
           REAL ARRAY
           ELEMENT
                            RUSER (17-24,1)
User-supplied hourly SO2 loss rates (%/hour)
for hours 17-24.
Columns    Type
1-80
(16F5.0)

1-40
(8F5.0)

1-80
(16F5.0)

1-40
(16F5.0)
           REAL ARRAY
           ELEMENT

           REAL ARRAY
           ELEMENT

           REAL ARRAY
           ELEMENT

           REAL ARRAY
           ELEMENT
                            Variable

                            RUSER (1-16,2)


                            RUSER (17-24,2)


                            RUSER (1-163)


                            RUSER (17-243)
The following record is included only if MO3 = 1.

Columns    Type             Variable

1-5        INTEGER        NOZONE
(15)
Description

User-supplied hourly NOX loss rates (%/hour)
for hours 1-16.

User-supplied hourly NOX loss rates (%/hour)
for hours 17-24.

User-supplied hourly total NO3 formation rates
(%/hour) for hours 1-16.

User-supplied hourly total NO3" formation rates
(%/hour) for hours 17-24.
                                                Description

                                                Number of hourly ozone stations.  NOZONE
                                                MXOZ as defined in "params.puf*.
The following 'NOZONE' records are included only if MO3 = 1.

                            XO3
1-5         REAL ARRAY
(F5.2)      ELEMENT

6-10        REAL ARRAY
(F5.2)      ELEMENT
                            YO3
                                                X-coordinate of ozone station (in
                                                meteorological grid units).

                                                Y-coordinate of ozone station (in
                                                meteorological grid units).
                                          6-43

-------
                                      Table 6-9
                          MESOPUFFII INPUTS - Continued
INPUT GROUP 14 - POINT SOURCE DATA.   NPTS records required- one for each point source.
                                        Format: (2F52, F5.1, 2F5.2, F5.1, 5F10.2)
1-5

6-10

11-15

16-20
21-25
26-30

31-80
Type
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL
REAL
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
Variable       Description
XSTAK       X-coordinate of point source (in
              meteorological grid units).
YSTAK       Y-coordinate of point source (in
              meteorological grid units).
HTSTAK      Stack height (m).

D             Stack diameter  (m).
W            Exit velocity (m/s).
TSTAK       Stack gas temperature (°K).

EMIS(l-S)     Emission rate (g/s) for pollutants 1-5
              SO/, NOW HNO3, NO3').  Leave field blank
              for secondary pollutants (HNO3, NO3) with
              zero emission rates.
                                         6-44

-------
                          Table 6-9
             MESOPUFF II INPUTS - Continued
INPUT GROUP 15 - AREA SOURCE DATA. NAREAS records required - one for each area source.
Format: (2F5.1, F5.1, 2F5.0, 5F10.2)
Column.
1-5
6-10
11-15
16-20
21-25
26-75
THE
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL ARRAY
ELEMENT
REAL ARRAY
Variable
XAR
YAR
HTAR
SIGYAR
SIGZAR
EMISAR(l-5)
Description
X-coordinate of area source center (in
meteorological grid units).
Y-coordinate of area source center (in
meteorological units).
Effective height of area source (m).
Initial oy (m) of area source emissions.
Initial at (m) of area source emissions.
Emission rate (g/s) of pollutants 1-5 (SOj, SO/,
ELEMENTS
NOB HNO3, NCV).  Leave field blank for
secondary pollutants with zero emission rates.
                            6-45

-------
                                     Table 6-9

                         MESOPUFF H INPUTS - Concluded
INPUT GROUP 16 - NON-GRIDDED RECEPTOR COORDINATES.
                                              NREC records are required
                                              one for each non-gridded
                                              receptor.
                                              Format: (2F103)
Columns

1-10

11-20
1m.
REAL ARRAY
ELEMENT

REAL ARRAY
ELEMENT
  Variable

*  XREC


  YREC
Description

X-coordinate of non-gridded receptor (in
meteorological grid units).

Y-coordinate of non-gridded receptor (in
meteorological grid units).
                                        6-46

-------
                          Table 6-10
Variables in the MESOPUFF II Output Concentration and Flux Files
ffiADER
Reco
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
* See run
RECORD • The first
rd. Type
REAL
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
REAL
LOGICAL
INTEGER
LOGICAL
LOGICAL
control inputs for a comp
record of the
VARIABLE
VERSION
LEVEL
NSYR
NSDAY
NSHR
NADVTS
IAVG
NPUF
NSAMAD
IELMET
JELMET
DGRID
IASTAR
IASTOP
JASTAR
JASTOP
ISASTR
ISASTP
JSASTR
JSASTP
MESHDN
NPTS
NAREAS
NREC
IPRINF
LGAUSS
LCHEM
LDRY
LWET
LPRINT
L3VL
LVSAMP
WSAMP
LSGRID
NSPEC
LWETG
LWETNG
output file
Description*
MESOPUFF n version number
MESOPUFF n level number
Starting year
Starting Julian day
Starting hour (00-23)
Number of hours in run
Averaging time (hours)
Puff release rate (puffs/hour)
Minimum sampling rate (samples/hour)
Number of met. grid points (X direction)
Number of met. grid points (Y direction)
Grid spacing (m)
Start of computational grid (X direction)
End of computational grid (X direction)
Start of computational grid (Y direction)
End of computational grid (Y direction)
Start of sampling grid (X direction)
End of sampling grid (X direction)
Start of sampling grid (Y direction)
End of sampling grid (Y direction)
Sampling grid spacing factor
Number of point sources
Number of area sources
Number of non-gridded receptors
Printing interval
Vertical cone, distribution option
Chemical transformation control variable
Dry deposition control variable
Wet removal control variable
Printer output control variable for concentrations
Three.vertical layer control variable
Variable sampling rate control variable
Reference wind speed for LVSAMP option
Gridded receptor control variable
Number of chemical species modeled
Wet flux control variable for gridded receptors
Wet flux control variable for non-gridded receptors
lete description of variables.
                             6-47

-------
                                     Table 6-10
     Variables in the MESOPUFF II Output Concentration and Flux Files - Continued
HEADER RECORD - The first record of the output file - continued
Record    Type                  Variable              Description
1         LOGICAL             LDRYG              Dry flux control variable for gridded
          LOGICAL
          LOGICAL
                     LDRYNG
                     LPRFLX
                    receptors
                    Dry flux control variable for non-gridded
                    receptors
                    Printer output control variable for fluxes
HEADER RECORD - The second record of the output file
2**        REAL ARRAY         XREC(NREC)
2*«        REAL ARRAY         YREC(NREC)
                                         X coordinates of non-gridded receptors
                                         Y coordinates of non-gridded receptors
HOURLY RECORDS - Repeated for each hour (i) of run
2+i*      INTEGER ARRAY     IDPOL(4)
2+i*
3+i*
3+i*
REAL ARRAY
REAL ARRAY
ROUT2
INTEGER ARRAY     IDPOL(4)
RINl(NREC)
Year, Julian day.ending hour, and
pollutant number.
Gridded receptor concentrations (g/m3)
or wet/dry fluxes (g/mz/s).
Year, Julian day, ending hour, and
pollutant number.
Non-gridded receptor concentrations
(g/m3) or wet/dry fluxes (g/m2/s).
*   Written only if LSGRID = T
**  Written only if NREC > 0.
*** (IXJX) is the sampling grid size.
                                        6-48

-------
                        Table 6-11

           Sample Input File to MESOPUFF II
MESOPUFF II
86 002
1 4
1 20
T T
T F
100000
0.36
0.90
0.00023
2.10
5.0
10000.
TEST CASE
0 24
2 T
1 20
T T
24 F

0.25
0.90
0.058
1.09
3.873
5
- 24 hr simulation 1/2/86
2 0
2. T
4 17
f
0 0

0.19
0.90
0.11
0.91
2.739

14 1
900.
4 17

F F

0.13
0.90
0.57
0.58
1.871

0

1

F F

0.096
0.90
0.85
0.47
1.225





F F

0.063
0.90
0.77
0.42
0.707

14.1711.0499.06 3.0514.54349.8     10.00
10.2519.7215.24 4.2156.21819.8    400.00
                             Class I area receptors
6.53
6.53
6.53
6.57
6.70
6.80
6.87
6.74
6.61
6.40
6.15
5.90
5.65
15.50
17.57
17.77
17.98
18.19
18.40
18.62
18.83
19.06
19.34
19.34
19.34
19.34
19.34
11.00
                           6-49

-------

-------
                          7.0 MESOFILE H POSTPROCESSOR

       MESOFILE II is a postprocessing program that operates on the output concentration
and wet and diy flux files produced by MESOPUFF n. It consists of a set of modular
subroutines that the user explicitly invokes by card image inputs to construct the desired
sequence of postprocessing operations. The modular nature of MESOFILE II provides
powerful flexibility.  It is possible to perform a wide variety of postprocessing operations in a
sequence specifically designed to meet the user's particular needs.  These features of modularity
and flexibility, however, require a greater degree of user interface than a simple "black box1*
postprocessing program. The MESOFILE II card inputs required for the most common
applications of the program are presented as examples in Section 7.8.

       The following system channels are required for MESOFILE II:  Logical Unit 5 for card-
image inputs, Logical Unit 6 for line printer outputs, and Logical Unit 25 for MESOFILE n
disk output. Logical Unit 25 is a direct*access "scratch" file used to store MESOFILE n results
for subsequent analysis and/or plotting.  Additional channels, defined by the user, are required
for input of MESOPUFF n concentration files (see inputs to subroutine FIND).  Table 7-1
summarizes the input and output files used by MESOFILE n.

       The main program of MESOFILE n reads the user's card inputs and calls the
appropriate subroutines. There are seven subroutines available to perform a variety of
postprocessing functions.  Other second-level subroutines, transparent to the user, are invoked
as appropriate by the user-called subroutines. Table 7-2 contains a description of the basic form
of the card inputs to MESOFILE II, as well as a list of the subroutines and their functions that
are available to the user.  Each subroutine requested by the user (with subroutine identifier
cards) is called, in order, as it appears in the inputs.  There are, however, some restrictions on1
the order in which subroutines  may be called. For example, the pollutant of interest must be
specified before the concentration data can be located; therefore, the subroutine identified in
Table 7-2 as belonging to calling order Group A must precede those in Group B.  Likewise,
because data must be located before they can be processed, the subroutines in Group B must be
called before the subroutines in Group C. At the  end of the run, subroutine DECODE is
automatically called as part of the normal termination of MESOFILE II.  DECODE gives a
useful summary of all the subroutines called, the values of the input parameters, the
input/output options, and the locations (record numbers) of the MESOFILE II disk output (on
FILE25.DAT) for this MESOFILE H run.
                                          7-1

-------
                                       Table 7-1
                         MESOFILE II Input and Output Files
Unit*
5
*
Fjle_NjUBe.
FTT.F.TNP
INFTLE1.DAT
INFILE2J5AT
Type
INPUT
INPUT
Format
FORMATTED
UNFORMATTED
Description
MESOFILE II control file.
Output files produced by
MESOPUFF II, Le.,
25
INFILE12.DAT

FTLE25.DAT
              FILEXST
INPUT/
OUTPUT
                  OUTPUT
DIRECT ACCESS
              FORMATTED
concentrations, wet fluxes or
dry fluxes.


A scratch file produced by
MESOFILE H. It can be
accessed as input in the
current or a subsequent
MESOFILE H run.

List file (line printer output
file)
       Value is specified by user in the control file inputs.
                                          7-2

-------
                                        Table 7-2
                MESOFTLE II Card-Image Inputs and Subroutine Identifiers
MESOFILE II CARD INPUTS
              TITLE CARD

              Up to 64 characters (columns 1-64) (followed by one set of cards as specified below for
              each subroutine requested by the user)

              SUBROUTINE IDENTIFIER CARD

              Contains 4-letter subroutine identifier (in Columns 1-4)

              NAMELIST INPUT CARD  #1

              Read by the subroutine called

              NAMELIST INPUT CARD  #2

              Read by the line printer plotting routine (needed only if line printer plots are produced and
              contour levels other than the default contour levels are used).
SUBROUTINE
IDENTIFIER
CALLING
ORDER       SUBROUTINE FUNCTION (see detailed
GROUP       subroutine descriptions - Sections 7.1 - 7.7)
• DEFN
• FIND
• SEEK
• AVRG
• ADD1
• ADD2
• STAT
A
B
B
C
C
C
C
Defines Pollutant, Grid Size, and Routes Output
Locates First Order Model Output
Locates Higher Order MESOFILE II Output
Averages Arrays
Sums Arrays within one runstream
Sums Arrays from two runstreams
Calculates Statistics
                                           7-3

-------
       As indicated in Table 7-2, following a title card and the subroutine identifier card is the
NAMELIST card containing the necessary input data. In FORTRAN NAMELIST formatted
inputs, the first character of each input record must be a blank, followed by an & and the
NAMELIST name.  The input data, separated by commas, must appear between the
NAMELIST name and an &END.  All the NAMELIST names in MESOFILE II are either
"SAME" (in subroutines called by the user via subroutine identifier cards) or "DIFP (in the line
printer plotting subroutines).

       The following sections contain a detailed description of the functions, the required
inputs, and the output options of each MESOFILE II subroutine. Annotated sample inputs
follow each subroutine description to demonstrate each of the options available to the user.
Sample inputs for the most common applications of MESOFILE II are presented in Section 7.8.

7.1    Subroutine DEFN

       Subroutine DEFN allows the user to specify for a particular MESOFILE II run:

       •      the number of cells in the sampling grid,
       •      the pollutant of interest (SO2, SO/, NO,, HNO3, NO3"), and whether
              concentrations, wet fluxes,  or dry fluxes are processed,
       •      receptor type processed in this run (gridded or non-gridded receptors), and
       •      the starting record of the disk output on the MESOFILE II file (FILE25.DAT).

       Although a MESOPUFF n run may generate concentration and wet/dry flux data for up
to five pollutants, only one type of output, for one pollutant (default = SO2 concentration) is
processed at a time  by MESOFILE II. The array size, IMAX * JMAX, must be the same as the
sampling grid size specified in the MESOPUFF II model run used to generate the concentration
or flux data.

       All MESOFILE n disk output (concentration fields, difference fields, etc.) is written to
the MESOFILE II output file FTLE25.DAT. Each output field requires one record of disk
space on FILE25.DAT. The user must specify the record where the disk output is to start for a
particular MESOFILE II run. The first output array is written at this record; the second output
array is written at the next record, etc.  Each time an array is written to disk, the disk file
pointer is incremented by one. A particular MESOFILE II run, for example, may write n
concentration arrays on Records 1 through n; the user may wish to save this output, and, on a
subsequent MESOFILE II run, the output may be directed to begin at record n+1.
                                          7-4

-------
       The starting record number for MESOFILE II disk output is not supplied with a default
value; this helps prevent accidental overwriting of previously stored data. The user must specify
this parameter if the MESOFILE II run is to generate any disk output.  The concentration array
size and pollutant are used in block data; subroutine DEFN must therefore be called only  if:

       •     any disk output is generated in the MESOFILE II run,
       •     the concentration array size is different from the default 26 x 26, or
       •     the pollutant of interest is not SO2.

       A description of the card inputs to each MESOFILE II subroutine is contained in
Section 7.9. The following are sample card inputs.

       •     Sample Input-Example 1A
             TITLE CARD
             DEFN
              &SAME IMAX=40rTMAX=40,IOUT= l.&END

       •     Sample Input-Example IB
             TITLE CARD
             DEFN
              &SAME IPOL=2,IOUT=20,&END


The call to subroutine DEFN in Example 1A sets the concentration array size to 40 x 40. The
disk file output pointer, IOUT, is given a value of 1.  Any disk output that may be generated in
the MESOFILE H run, therefore, will start  on Record 1 of FILE25.DAT.  In Example IB,
 SOJ  is specified as the pollutant of interest.  The disk output of this MESOFILE II run will
begin on Record 20. The concentration array size is assumed (by default) to be 26 x 26.

7.2    Subroutine FIND

       Subroutine FIND performs the following operations:

       •     reads user inputs to identify the model output to be located:
                    starting hour, day, and year of data
                    number of concentration or flux fields
                    logical unit of concentration or flux data;
                                         7-5

-------
       •     reads the header record of the new concentration or flux file;
       •     finds the proper position in the file corresponding to the starting hour; and
       •     defines the requested set of concentration/flux arrays as runstream number n,
             where n =  1 (first call of FIND/SEEK), n - 2 (second call of FIND/SEEK), etc.

       Each call to subroutine FIND defines a runstream (Le., one or a group of concentration
or flux fields) that can be accessed by other MESOFILE n subroutines. A runstream number is
a sequential internal reference number associated with a group of arrays located by subroutine
FIND or SEEK and is used to identify these arrays in other MESOFILE H subroutines.  FIND
is one of two runstream defining subroutines (subroutine SEEK is the other).  The first set of
concentration/flux fields located by FIND (or seek) is referred to as Runstream  1, the second
set of fields defines Runstream 2,  etc.

       The user specifies the FORTRAN Logical Unit number of  each MESOPUFF H
concentration or flux input file. The file associated with the first call to FIND must be named
"INFILEr. Subsequent calls to FIND define files named INFILE2, INFILE3, etc. (up to 10
files are allowed).  It is the user's  responsibility to rename the MESOPUFF II output
concentration or flux files to the appropriate file name for MESOFILE II (i.e., INFILEn.DAT).
In selecting unit numbers for the concentration or flux files, it should be noted that the
MESOFILE n input control file (MESOFILE.INP) is associated with unit 5, the output list file
(MESOFILE.LST) with unit 6, and the direct-access scratch file (FILE25.DAT) with unit 25.

       Because subroutine FIND  is used to locate the output of any previously run model, it
must be called before an attempt is made to process these data with any of the MESOFILE II
data processing subroutines.  Before any MESOFILE  II data processing subroutines of
MESOFILE II are called, subroutines FIND and SEEK must be used to locate all the model
output.  The following are sample card inputs.

       •     Sample Input-Example 2
             TITLE CARD
             FIND
              &SAME IYEAR=78,IDAY= 165,IHOUR=1,IGRIDS=24,NUNIT= 10.&END
             FIND
              &SAME IYEAR=78,IDAY= 165,IHOUR= 1,IGRIDS= 120,NUNTT= ll.&END
             FIND
              &SAME IYEAR=78,IDAY= 165,IHOUR= 1,IGRIDS= 120,NUNTT= 12,&END
                                         7-6

-------
       In example 2, the concentration data referenced by Logical Unit 10 is a MESOPUFFII
run starting at Hour 0, Day 165, Year 1978. Because the model outputs concentration arrays at
the conclusion of a time step, the first concentration array recorded is for Hour 1 on Day 165.
The sample input above specifies Runstream 1 as consisting of 24 hourly concentration arrays,
starting at Hour 1, Day 165 and ending at Hour 0, Day 166. The second call to subroutine
FIND defines runstream  2 as the set of concentration arrays output from Logical Unit 11
starting at Hour 1, Day 165, through Hour 0, Day 170.  Runstream Number 3 is specified as the
output from the Logical Unit 12 for the same 120-hour time period.

7.3    Subroutine SEEK

       Each set of data to be accessed by the data processing subroutines of MESOFILE II
must be located and assigned a runstream ntfmber. The concentration data, output directly by
the models to disk, are referred to as "first" order data fields and are located by calls to
subroutine FIND.  MESOFILE II, however, has the ability to process first order data and
output the resultant fields (e.g., averaged concentration fields, summed concentration fields, or
several types of concentration difference fields), to FILE25.DAT for storage and further
processing. These derived fields, which have undergone at least one level of MESOFILE n
processing, are referred to as "higher" order data fields. The user wishing to reference higher
order data must supply the location (FILE25.DAT record number) of the data to MESOFILE II
by a call to subroutine SEEK.

       Subroutine SEEK performs the following operations:
        v

       •      reads user inputs to identify the MESOFILE II output of interest:
                   NSTART and
                   NSTOP and
       •      defines the requested set of data fields as runstream number n, where n = 1
             (first call of FIND/SEEK), n = 2 (second call of FIND/SEEK), etc.
                                       t
The card input requirements of subroutine SEEK and other MESOFILE II subroutines are
described in Section 7.9.  The following are sample card inputs.

       •      Sample Input—Example 3
             TITLE CARD
             FIND
              &SAME  IYEAR=78,IDAY= 166,IHOUR= 1,IGRIDS=24,NUNTT= 10.&END
             SEEK
                                          7-7

-------
              &SAME NSTART= 12,NSTOP= 12,&END
             SEEK
              &SAME NSTART= 10,NSTOP=23,&END

       As in the previous example, Runstream Number 1 is defined as a set of 24 hourly, first
order concentration arrays.  Runstreams 2 and 3, however, are composed of higher order data
fields.  The second runstream consists of a single data field (record 12 on FTLE25.DAT),
whereas Runstream 3 is defined to be the 14 data arrays contained in records 10 through 23.

7.4    Subroutine AVRG

       Subroutine AVRG calculates time averages of first order or higher order concentration
or flux data. This subroutine performs the following operations:

       •     initializes NAMELIST SAME parameters to default values,
       •     reads user inputs,
       •     calculates number of arrays in the runstream specified by the user and
             determines a repetition factor, IREPF,
       •     for each array in the  runstream, reads array and if requested, prints the input
             array and sums arrays,
       •     after AVETM arrays have been read and summed, divides by AVETM to obtain
             average, and performs linear scaling calculation, and
       •*    if requested, writes averaged array to FILE25.DAT, writes averaged array on line
             printer, and plots averaged array.

       The user has the option of printing, plotting, or writing the averaged arrays to
FILE25.DAT.  The user specifies the runstream number of the data set to be  averaged and the
averaging frequency (in terms  of arrays), so that the appropriate block  averages will be
computed.  A background concentration factor or a concentration multiplicative scaling factor
may be included in the calculations as well.  Each averaged array may be adjusted by  the form:
                                   CAD1 = a * C
       The location of all MESOFILE U output (FILE25.DAT) is controlled by the IOUT
variable of subroutine DEFN. The first output grid is written on record IOUT of FILE25.DAT,
the next grid is written on record IOUT  + 1, etc. The user specifies the location where the disk
                                          7-8

-------
output is to start; the disk file pointer is incremented each time a grid is written to disk.  The
following are sample card inputs.

      •     Sample Input-Example 4
             TITLE CARD
             DEFN
             &SAME IOUT=50,&END
             FIND
             &SAME IYEAR=78,IDAY= 167,IHOUR=0,IGRIDS= 12,NUNTT= 10.&END
             SEEK.
             &SAME NSTART=1,NSTOP=30,&END
          '  AVRG
             &SAME IRUN= 1AVETM=3,DISK= 1,PLOT= 1,NEWV= 1,APE= 1,
                      IHIGH=1,&END
             &DIFFN=5,THR=-1.E-10,0.1E-6,1-E-6,10.E-6,100.E-6,20*0.0,&END
             AVRG
             &SAME IRUN=2,AVETM=30,PRINT=0,DISK= 1,PLOT= 1,IHIGH= 1,&END
             AVRG
             &SAME IRUN=2,AVETM= 10,PRINT=0,DISK= 1,PLOT= 1,IHIGH= 1,&END

      The call to subroutine DEFN sets the disk output pointer IOUT to 50. The averaged
concentration arrays written to disk, therefore, will occupy records 50 through 50 + n on
FILE25.DAT, where n is the number of arrays output to disk. Subroutine FIND is called to
define a 12-array runstream consisting of hourly concentration fields, as illustrated schematically
in Figure 7-1. Runstream Number 2 is defined as the higher order data on records 1-30 of
FILE25.DAT. The first call to subroutine AVRG averages the data defined by Runstream 1
into four 3-hour  averaged arrays. The maximum output available to the user is requested.  The
hourly concentration input fields and the  averaged fields are printed. The averaged fields are
also plotted (with user input contour levels) and written to disk (on records 50-53). The highest
3-hour averaged  values in each field are printed (IHIGH= 1).  The second call to subroutine
AVRG results in one 30-array average from  the data in Runstream 2.  Only two output options
are invoked: line printer plots and disk output.  The disk output is routed to Record 54 because
the previous AVRG call put arrays into Records 50 to 53.  The contour levels of the line printer
plot will be the same as in the previous AVRG call; when new contour levels are defined (as in
the first  AVRG call), the plotting routine will continue  to use them until other contour levels
are redefined in  a DIFF NAMELIST (see Section 7.9). All the parameters in NAMELIST
SAME that have default values are reset to their default values each time the subroutine is
called. The third AVRG call uses Runstream Number  2 data to calculate three 10-array
                                        7-9

-------
Runstream
 Number
                              (00. 167. 79}
                              (01.167. 78)
                              (02. 767. 78)
                              (03. 167. 78)
                              (04,167.78)
                              (OS. 167. 78)
                              (06. 167. 78)
                                   7.78)
                             (08. 167. 78)
                              (09. 167. 78)
                              (10.167.78)
                             (11.167.78)
                                                                  t-\tst Average Call
                                                 -*•  [    3 Hr. Average
                                                       I    3 Hr. Average     |
                                                      [    3 Hr. Average
                                                      |    3 Hr. Average
                             (HH.OOO.YY) . (Hour. Day, Year)
Ruratream
Number
2
F3e2S
1-30
(
i
I

k — -irt


           Ruiistfuffi
            Number
               2
                    Records
                      1-30
                                                                 Third Average Call
                                                                    IP-Array Average   j
10-Array Average
                                                                     10-Array Average
Figure 7-1.     Schematic illustration of the averaging process.
                                                    7-10

-------
averages. The output options are the same as with the second AVRG call, and the disk output
is stored on Records 55 to 57 of FILE25.DAT.

7.5    Subroutine ADD1

      Subroutines ADD1 is used to sum all the arrays in a runstream to yield a single summed
put array. That is,
                                              c,*
where (C^y is the (i,j) element of the summed array, and  (C)  is the (i,j) element of the k*
array consisting of N arrays (k =  1...N). The output options include an echo of the input arrays,
line printer gridded output, line  printer plots, and disk output and are the same as those in
subroutine AVRG. The adjustment factors a and b for the summed concentration field are also
available. Each call to subroutine ADD1 will initialize the output arrays to zero before
sequentially adding the concentration arrays of the specified runstream to it, unless the INTT
variable is set to zero in the ADD1 input NAMELIST. With INTT = 0, a cumulative sum can
be calculated with successive ADD1 calls.
        v
       The following are sample card inputs.

       •      Sample Input-Example 5
             TITLE CARD
             DEFN
             &SAME IOUT=50,&END
             SEEK
             &SAME NSTART= 1,NSTOP=6,&END.
             SEEK
             &SAME NSTART=20.NSTOP=22.&END
             ADD1
             &SAME IRUN= 1,DISK= 1,&END
             ADD1
             &SAME IRUN=2,INIT=0,DISK=1,&END
                                       7-11

-------
      The call to subroutine DEFN requests that the disk output of this MESOFTLE II run
begin at record 50 on FTLE25.DAT. Two runstreams are defined:  a six array runstream
(Number 1) and a three array runstream (Number 2). The first call to ADD1 sums the data in
Runstream Number 1 (Records 1 to 6) and prints the result on the line printer and Record 50.
The second ADD1 call, because INTT = 0, adds the array in Runstream Number 2 to the
summed array calculated in the first ADD1 call, and the result is also written on disk
(Record 51) and on the line printer.

7.6    Subroutine ADD2

      Subroutine ADD2 calculates the sum of arrays in two runstreams.  That is,

                                   D! = A;  + **                              (7-3)
where the summation extends over all k = 1...N arrays in runstreams A and B, and D is the
resultant runstream. Two runstreams numbers must therefore be supplied to subroutine ADD2
as input, and both runstreams must contain the same number of concentration arrays. The
other NAMELJST inputs are the same as the subroutine ADD1 inputs. The following are
sample card inputs.

       •      Sample Input-Example 6
             TITLE CARD
             DEFN
              &SAME IOUT=50,&END
             FIND
              &SAME IYEAR=78,IDAY= 165,IHOUR= 1,IGRIDS=6,NUNIT= 10.&END
             FIND
              &SAME IYEAR=78,IDAY= 165,IHOUR= 1,IGRIDS=6,NUNIT= ll.&END
             ADD2
              &SAME IRUN1 - 1,IRUN2=2,DISK= 1,PLOT=. 1,&END

       The call to subroutine DEFN requests that disk output start on record 50 of
FILE25.DAT. Six output arrays of two MESOPUFF II runs are defined as Runstreams  1 and 2
with the calls to subroutine FIND. The arrays of each runstream are added together, printed,
written to disk, and plotted with the default contour levels. The summing process of the two 6-
array runstreams results in an output runstream of 6 arrays.
                                        7-12

-------
7.7    Subroutine STAT

       Subroutine STAT is designed to produce quantitative as well as qualitative measures of
the point-by-point and bulk differences between two gridded concentration or flux fields—a
"base" field and a "test" or "perturbed" field. The base concentration fields are reference fields
resulting from a particular model run specified by the user. The test concentration fields can be
any other model output generated with some test parameter of the model varied; for example,
the emission inventory, deposition velocity, decay rate, time step, or even the mesoscale model
used, may be varied and the results defined as the test concentration fields.

       When the user has defined a base case and test case concentration field or flux (or set of
fields), line printer plots or gridded tables of the following fields may be produced:

       •      the base field, identified as BF,
       •      the test field, identified as TF,
       •      the difference field, identified as DF = CB - Cp

                                                              C.-CT
       •      the fractional difference field identified as FDF =   —-—-,  and
                                                              C -C
              the weighted difference field identified as WDF =   —-—-
where CB is the base field concentration at a particular grid point, C,. is the test field
concentration at that point, and CB is defined below.

       The fractional difference field, FDF, can be calculated only for grid points with nonzero
base field concentrations, but because the FDF is most meaningful in comparing base case and
test case plumes which overlap exactly or nearly exactly, the FDF is calculated only for those
points in the intersection of the two plumes (that is CB = 0 and Cp = 0)
                                           7-13

-------
       The WDF is the difference field weighted by the average base plume concentration (CB).
                                                                                    (7-4)
                                                                                    v   '
                                               A
where N includes only those points in the base field plume (defined as the set of points in the
base field with nonzero concentrations).

       In addition to line printer plots of the DF, PDF, and WDF, subroutine STAT has the
ability to write these fields to the MESOFILE II direct access disk output file (FILE25.DAT).

       Variation of some test parameters can substantially change the nature of the
concentration or flux distribution in the base and test plumes. The nature of these differences
in turn determines which of the difference field representations is appropriate for a particular
analysis. The FDF field is useful 'in determining the relative spatial location of the base and test
plumes and differences in the distributions, and should be used when the effect of the input
parameter does not change the gross spatial distribution of the plume. The WDF allows the
differences in concentration to be weighted by a constant factor.

       Subroutine STAT also generates a set of quantitative (statistical) measures of the
differences in the base case and test case concentration fields. Whereas the graphical output is
optional, the statistical output is always produced.  Figure 7-2 is a sample  of the statistical
output.  The statistics calculated and the subsets of the grid over which the calculations are
performed are contained in Table 7-3 and Figure 7-3.  Clearly, the most meaningful statistic for
a given base  case-test comparison depends heavily on the nature of the test parameter varied
and must be determined by the user.

       Figure 7-4 is a flow chart of subroutine STAT. The input variables are defined in
Section 7.9.  It is assumed that the statistics for multi-array runstreams are to be calculated  on
an array-by-array basis;  the variable BYQNE, therefore, has a default value of 1.  It is possible,
however, to logically concatenate successive arrays in a particular runstream by specifying
BYONE = 0. For example, consider base case and test case runstreams consisting of three 24-
hour averages.  If BYONE = 1, array-by-array statistics (i.e., 3 sets of statistics,  one set for  each
24-hour averaged array) will be produced; BYONE = 0 will result in only one set of statistics
over the entire 72-hour  period.                       .    '    ._    ,  	
                                           7-14

-------
THE FOLLOWING  RECORDS MERE USED A3 TH£ BASE FIELD!
FIRST RECORD *    «fc     LAST  M6COHO =    46

THE FOLLOW I NU  RECORDS NEHE USED AS THE PERTURBED FIELOt
FIRST RECORD =    51     (.A3!  HECORO *    51
3TAII3TIC3 FOR  THE  St I  OF  ALL  GMIO POINTSI


AVERAGE BASE FIELD  VALUE  (AVEH)  a  O.IS6XE-06
AVEHAGE PERTURBED FIELD VALUE  (AVEf*)  =  O.I6300E-0*
AVEHAGE DEVIATION  (AD)  s  -0.fct647E-Od
AVEHAGE ABSOLUIE DEVIATION (AAO)  *  0.52767E-07
MAXIMUM LOCAL DEVIATION (XMLO)  *   0.
-------
                               Table 7-3
           Statistical Measures Calculated by Subroutine STAT
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Mean base plume concentration, CB
Mean test (perturbed) plume concentration, Cj
Mean base field concentration
Mean test field concentration
Average deviation, CB-C|.
Average absolute deviation, CB-CV
Maximum local deviation, MAX (CB-Cr)
Maximum base field value, MAX (CB)
Maximum test field value, MAX (Cj.)
Difference of maxima, MAX (CB) - MAX (Q)
Fractional difference of maxima,
MAX (C,) - MAX (Cj)
Correlation coefficient,
Variable
Name
AVEBO
AVEPO
AVEB
AVEP
AD
ADI
ADO
AAD
AAD1
AADO
XMLD
XMBF
XMPF
DLM
FDLM
RBA
Grid Points
Included
BP
TP
BF
TF
BFTF
BTU
BTI
BFTF
BTU
BTI
BFTF
BF
TF
DFTF
BFTF
BTU
((P. - (C.)*} (5 -
                                 7-16

-------
                                         Table 7-3
              Statistical Measures Calculated by Subroutine STAT (Concluded)
                                                              Variable
                                                              Name
              Grid Points
              Included
13.     Average fractional deviation,
         C,-CT
AFDO
              BTI
14.     Average absolute fractional deviation
         C,-CT
AAFDO
              BTI
15.     Maximum absolute fractional deviation,
XMLFDO      BTI
        MAX
16.     Fractional deviation of the means
FDM
                   - BP
                                           7-17
                                                                             XT- TP

-------
              
-------
              INITIALIZE NAMELIST 'SAME' PARAMETERS TO DEFAULT VALUES
                                READ USER INPUTS
                        CHECK THAT THE NUMBER OF ARRAYS IN
                        RUNSTREAM JND1 IS THE SAME AS THE
                        NUMBER OF ARRAYS IN RUNSTREAM IND2
                            NO
     IS
BYONE EQUA
   TO 17
                        BREAK THE USER DEFINED RUNSTREAMS
                        INTO SETS OF ONE-ARRAY RUNSTREAMS
                      READ AN INPUT ARRAY FROM THE BASE CASE
                      RUNSTREAM. IF REQUESTED (APS= 1). PRINT
                      THE INPUT ARRAY.
Figure 7-4.   Flow chart of subroutine STAT.
                                    7-19

-------
                          NO
     IS
BYONEEQUAL
   T01?
                                           YES
                        FROM THE SUMMED QUANTITIES, CALCULATE

                        AND PRINT THE COMPLETE SET OF STATISTICS
                                           NO
                        FROM THE SUMMED QUANTITIES, CALCULATE

                        AND PRINT THE COMPLETE SET OF STATISTICS
                                         I
                                      RETURN
Figure 7-4.  Flow chart of subroutine STAT. (Continued)
                                     7-20

-------
                                                  0
READ AN INPUT ARRAY FROM THE PERTURBED (TEST) CASE RUNSTREAM.
IF REQUESTED (APE - 1 ). PRINT THE INPUT ARRAY.


CALCULATE THE DIFFERENCE FIELD


IF REQUESTED.
WRITE THE DIFFERENCE FIELD TO THE LINE PRINTER
WRITE THE DIFFERENCE FIELD TO DISK (FILE 251
PLOT THE DIFFERENCE FIELD
I

COMPUTE THE PARTIAL SUMS FOR THE DIFFERENCE
HELD STATISTICS
1

CALCULATE THE FRACTIONAL DIFFERENCE FIELD
                         IF REQUESTED.
                            WRITE THE FRACTIONAL DIFFERENCE FIELD TO THE UNE PRINTER
                            WRITE THE FRACTIONAL DIFFERENCE FIELD TO DISK (FILE 25)
                            PLOT THE FRACTIONAL DIFFERENCE FIELD
1

COMPUTE THE PARTIAL SUMS FOR THE FRACTIONAL
DIFFERENCE FIELD STATISTICS
                              IF THE WEIGHTED DIFFERENCE FIELD IS TO BE
                              PRINTED. PLOTTED. OR WRITTEN TO DISK. CALCULATE
                              THE WEIGHTED OIFFER0ICE FIELD
                         IF REQUESTED.
                             WRITE THE WEIGHTED DIFFERENCE FIELD ON THE UNE PRINTER
                             WRITE THE WEIGHTED DIFFERENCE FIELD TO DISK (FILE 25)
                             PLOTTHE WEIGHTED DIFFERENCE FIELD
Figure 7-4.     Flow chart of subroutine STAT.  (Concluded)
                                             7-21

-------
      It is possible to write DF, PDF, or WDF to the MESOFILE II direct access disk output
file (FILE25.DAT), although only one of these fields can be written on a particular call to
STAT.

      The following are sample card inputs.

      •     Sample Input-Example 7
             TITLE CARD
             DEFN
             &SAME IOUT=50,&END
             SEEK
             &SAME NSTART=9,NSTOP=12,&END
             SEEK
             &SAME NSTART= 19,NSTOP=22,&END
             SEEK
             &SAME NSTART=28,NSTOP=32,&END
             STAT
             &SAME IND1 = 1,IND2 - 2,DISKD - 1,PLOTD - 1.NEWVD = 1,&END
             &DIFFTHR=-100.E-6,-5.E-6,-l.E-6,-.5E-6,-l.E-15,0,l.E-15,
             .5E-6,1.E-6,5.E-6,15*0.0,N= 10.&END
             STAT
             &SAME IND1 = 1,IND2=3,DISKD= 1,PLOTD=1,&END
        v
In this example, the call to subroutine DEFN requests that the disk output of this MESOFILE
II run start at Record 50 of FILE25.DAT.  Three runstreams are defined by calls to subroutines
SEEK, each consisting of four arrays. The first call to STAT results in four sets of statistics;
each array of Runstream 1 is compared to the corresponding array of Runstream 2. The fields
associated  with the runstream identified with IND1 are defined to be the base case fields; IND2
and IND3  define the test case fields. The difference fields are plotted with the user-specified
contour  levels in the DIFF NAMELIST, and they are written to FILE25.DAT (on Records 50 to
53).  The second call to STAT will produce statistics comparing .the arrays in Runstream 1 (base
case) to  the arrays in Runstream 3 (test case).  The difference fields are plotted with the same
contour  levels as in the previous STAT call; when new contour levels are defined (in the DIFF
NAMELIST), they become the "default" contour levels for subsequent calls to the plotting
routine.  The difference fields are written to FILE25.DAT on Records 54 to 57.
                                        7-22

-------
7.8    Sample Card Inputs for Some Useful MESOFILE II Applications

      •     Calculate 24-hour SO2 averages from hourly output of two model runs; write
            results on disk, including peak 24-hour values for each averaging time.

            TITLE CARD
            DEFN
            &SAME IOUT= l.&END
            FIND
            &SAME IYEAR=78,IDAY= 165,IHOUR= 1,IGRIDS= 120,NUNTT= 10,&END
            FIND
            &SAME IYEAR=78,IDAY= 165,fflOUR= 1,IGRIDS=120,NUNTT= ll.&END
            AVRG
            &SAME IRUN= 1,AVETM=24,DISK= 1,IHIGH=l.&END
            AVRG
            &SAME IRUN=2,AVETM=24,DISK= 1,IHIGH= 1,&END

      •     Perform statistical analysis of the 24-hour average concentrations calculated for
            two model runs in example above.

            TITLE CARD
            SEEK
            &SAME NSTART=1,NSTOP=5,&END
            SEEK
            &SAME NSTART=6,NSTOP= 10,&END
            STAT
            &SAME IND1 - 1,IND2=2,&END

      •     Calculate and plot sums of the hourly SO2 output of two model runs (useful for
            runs made with different subsets of the entire source inventory; the resulting
            horizontal sum is a superposition of the concentration fields reflecting the effects
            of the sources modeled in two runs).

            TITLE CARD
            DEFN
            &SAME IOUT=11,&END
            FIND
            &SAME IYEAR=78.IDAY= 165.IHOUR= UGRIDS=24.NUNIT= 10.&END
                                    7-23

-------
             FIND
             &SAME IYEAR=78,IDAY= 165,IHOUR= 1,IGRIDS=24,NUNTT= 11,&END
             ADD2
             &SAME IRUN1 = 1,IRUN2=2,PRINT=0,PLOT= l.&END

7.9    MESOFILE H Parameter File

      MESOFILE n uses the same memory management system as MESOPAC II and
MESOPUFF n, which is based on the use of an external parameter file. Arrays dealing with
the number of sampling grid cells and non-gridded receptors are dimensioned throughout the
code with parameter statements. The declarations of the values of the parameters are stored in
a file called "PARAMS.FIL".  This file is automatically inserted into any MESOFILE n
subroutine or function requiring one of its parameters via FORTRAN "include" statements.  In
this way, a global redimensioning of all the model arrays dealing with grid cells or non-gridded
receptors can be accomplished simply by modifying the PARAMS.FIL file and recompiling the
program.

      A sample parameter file is shown in Table 7-4.  The parameter file sets the array
dimensions, which are the maximum values of the variables. The actual values for a particular
run are set in the user inputs and  cah be less than the maximum value set in the parameter file.
The parameter file also sets the logical unit numbers for the input control file (FILE.INP) and
the output list file (FTJLE.LST).  The unit numbers for the concentration and flux MESOPUFF
II output Jiles are read in from the control file. The logical unit number of the direct-access
scratch file (FILE25.DAT) is set to 25 internally within the program.

7.10   MESOFILE II Run Control Parameter Descriptions

      A complete description of the run control inputs to each MESOFILE II subroutine is
contained in Table 7-5.
                                        7-24

-------
                            Table 7-4

  Sample Parameter File (PARAMSJ1L) for MESOFTLE II
c	-.—........--..--.			
c — PARAMETER statements                                MESOFRE  II
c—.....	.	.	
c
c — Specify parameters
      parameter(mxnxBlOO,mxny*100)
      parameter(raxrecalOOO)
      parameter(io5*5,106-6)
c
c — Computed parameters
      parameter
-------
                                     Table 7-5

                                MESOFILE II Inputs
                            Card Inputs to Subroutine DEFN
SUBROUTINE DEFN

NAMELIST TITLE - SAME

Parameter      Type

IPOL          INTEGER
Concentration or flux species code as defined
below.

IPOL  Species
Default

  1










V




IRTYPE INTEGER

IMAX INTEGER

JMAX INTEGER

IOUT INTEGER

NREC INTEGER
1 SO2 concentration
2 SO/ concentration
5 NO, concentration
4 HNOj concentration
5 NO3" concentration
6 Wet SO2 flux
7 Wet SO4" flux
8 Wet NO, flux
9 Wet HNO3 flux
10 Wet NO,' flux
11 Dry SO2 flux
12 Dry SO/ flux
13 Dry NOX flux
14 Dry HNO3 flux
15 Dry NO3 flux
Receptor type (IRYTPE=1 for gridded receptors,
IRTYPE =2 for non-gridded receptors).
Number of elements of the concentration array in
the X direction.
Number of elements of the concentration array in
the Y direction.
Record number of FTLE25.DAT at which
MESOFILE II disk output is to start.
Number of non-gridded receptors.















1

26

26

.

0
                                        7-26

-------
                                         Table 7-5
                             MESOFILE n Inputs (Continued)
                                Card Inputs to Subroutine FIND
 SUBROUTINE FIND
 NAMELIST TITLE - SAME
 Parameter       Type
 IHOUR         INTEGER
IDAY
IYEAR
IGRIDS
NUNIT
INTEGER
INTEGER
INTEGER
INTEGER
                 Definition
Ending hour of the first concentration or flux array
of interest
Day number of the first concentration or flux array
of interest
Year of the first concentration or flux array of
interest.
Number of concentration or flux arrays.
Logical unit number of concentration or flux data.
Default
The file associated with the first call to FIND must be named INFILE1.DAT, the second call with
INFHJE2.DAT, etc  Up to 12 first-order files (INF1LE1.DAT through INFILE12.DAT), may be processed
in a single run of MESOFILE II.
                                            7-27

-------
                                     Table 7-5
                          MESOFILE II Inputs (Continued)
                            Card Inputs to Subroutine SEEK

SUBROUTINE SEEK
NAMEL1ST TITLE - SAME
Parameter       Type                           Definition                     Default
NSTART        INTEGER      Starting disk record number on FILE25.DAT of
                             the output of interest.
NSTOP         INTEGER      Ending disk record number on FILE25.DAT of the
                             output of interest
                                        7-28

-------
                                         Table 7-5

                             MESOFILE II Inputs (Continued)
                               Card Inputs to Subroutine AVRG
SUBROUTINE AVRG

NAMELIST TITLE - SAME

Parflmf^g-       Type

IRUN           INTEGER

AVETM        INTEGER

PRINT          INTEGER
EFORM
INTEGER
DISK
PLOT
NEWV
INTEGER
INTEGER
INTEGER
IHIGH
INTEGER
Runstream number.

Averaging time (in terms of number of arrays).

Line printer output control variable. If
PRINT = 1, averaged concentration or flux arrays
are printed. If PRINT = 0, averaged concentration
or flux arrays are not printed.

Format control variable for line printer output. If
IFORM=1, non-gridded receptor concentrations or
fluxes are printed in ¥122 format.  If IFORM=2,
non-gridded receptor data are printed in 1PE12.4
format.

Disk output control variable. If DISK = 1, average
concentration or flux arrays are written on disk.  If
DISK = 0 averaged arrays are  not written on disk.
Line printer plotting control variable.  If
PLOT = 1, plots are produced.  If PLOT
plots are not produced.
                                                                      0,
Plotter contour values control variable. If NEWV
= 1, user inputs contour values (if NEWV = 1,
user must include a DIFF NAMELIST card with
the  appropriate contour information). If
NEWV = 0, use default contour values.

Variable controlling printing of highest value in the
gridded or non-gridded  concentration or flux field
after averaging and scaling operations.  If
IHIGH = 1, the high value will be printed.  If
IHIGH = 0, the high value will not be computed.
                                                                 Default
                                           7-29

-------
                                         Table 7-5

                             MESOFILE n Inputs (Continued)
                          Card Inputs to Subroutine AVRG (Continued)
SUBROUTINE AVRG

NAMELIST TITLE - SAME

P^jy^tetifj       Type

APE            INTEGER
a,b
REAL
NEWMES
INTEGER
ISCHEK
INTEGER
                  Definition                        Default

Controls echo of input (unaveraged) fields. If             0
APE » 1, input fields are printed; If APE = 0,
input fields are not printed.

Adjustment factors for the averaged concentration        a=l.
or flux field                                         b=0.
a = multiplicative factor,
b .
C
                                    additive factor, of the form,
                                       a*C + b
Control variable for label on output plots and
derived printed fields (Le., those controlled by
PLOT and PRINT input variables).  If NEWMES
=  1, a user-supplied label (up to 70 characters) is
printed with each plot or output field.  This label
must be included in the input file as a separate line
immediately after the "SAME" NAMELIST (Le.,
before the 'DIFF" NAMELIST, if it is  present). If
NEWMES = 0, the following default label is used:
"CONCENTRATIONS (G/M»*3)".

Variable controlling internal checking of species
codes.  If ISCHEK  = 1, the species code of every
input field is required to be the same and match
TPOL" specified in subroutine DEFN.  If
ISCHEK = 0, this species code checking feature is
disabled (e..g, to allow summing of flux fields of
different pollutants such as SO2 and SO,).
                                            7-30

-------
                                          Table 7-5

                              MESOFILE II Inputs (Continued)
                            Card Inputs to the Printer Plotting Routine


 NAMELIST TITLE - DIFF

 (included only for line printer plots with user input contour levels)
 Parameter       Type                              flefinitjon                       Default

 N              INTEGER       Number of contour levels (must be s 25)                 9

 THR(25)        REAL          Contour values*                                   -1.0 x Iff10
                 ARRAY                                                          0.1 x 10*
                                                                                  0.5x10*
                                                                                  1.0 x 10*
                                                                                  2.0 x Iff6
                                                                                  5.0 x
                                                                                 10.0 x
                                                                                 25.0 x Iff*
                                                                                 50.0x10*
*The first element of THR should be less than the minimum value of the field being plotted.
                                            7-31

-------
                                        Table 7-5

                            MESOFTLE II Inputs (Continued)
                               Card Inputs to Subroutine ADD1
SUBROUTINE ADD1

NAMELIST TITLE - SAME

Parameter       Type

IRUN           INTEGER

INTT            INTEGER
PRINT
IFORM
INTEGER
INTEGER
DISK
PLOT
NEWV
INTEGER
INTEGER
INTEGER
IHIGH
INTEGER
                                                                 Default
Runstrcam number.

Determines whether the summing array is
initialized to zero.  If IN IT * 1, array initialized to
zero. If INTT = 0, array is not initialized.

Line printer output control variable.  If
PRINT - 1, summed array is printed. If .
PRINT - 0, summed array is not printed.

Format variable for line printer output. If
IFORM = 1, non-gridded receptor concentrations
or fluxes are printed in F122 format. If
IFORM -2, non-gridded receptor data are printed
in 1PE12.4 format.

Disk output control variable. If DISK = 1,
summed array is written on disk; If DISK = 0,
summed array is not written on disk.
0
Line printer plotting control variable.  If
PLOT = 1, plots are produced; If PLOT
are not produced.
                                                                     0, plots
Plotter contour values control variable. If
NEWV = 1, user input contour values (if NEWV
= 1, user must include a DIFF NAMELIST card
with the appropriate contour information); If
NEWV = 0, use default contour values.

Variable controlling printing of highest value in the
gridded or non-gridded concentration or flux field
after summing and scaling operations.  If
IHIGH = 1, the high value will be printed. If
IHIGH = 0, the high value will not be computed.
                                           7-32

-------
                                         Table 7-5

                             MESOFILE II Inputs (Continued)
                          Card Inputs to Subroutine ADD1 (Continued)
SUBROUTINE ADD1

NAMELIST TITLE - SAME

Parameter       Type

APE            INTEGER
a,b
REAL
NEWMES
INTEGER
ISCHEK
INTEGER
 Controls echo of input fields.  If APE = 1, input
 fields are printed. If APE = 0, input fields are not
•printed.

 Adjustment factors for the summed concentration
 field,
 a 3 multiplicative factor,
 b* additive factor, of the form,
       a * C + b
 Control variable for label on output plots and
 derived printed fields (le., those controlled by
 PLOT and PRINT input variables). If
 NEWMES = 1, a user-supplied label (up to 70
 characters) is printed with each plot or output field.
 This label must be included in the input file as a
 separate line immediately after the "SAME"
 NAMELIST (Le., before the "DIFF NAMELIST,
 if it is present). If NEWMES = 0, the following
 default label is used: "CONCENTRATIONS
 (G/M**3)".

 Variable controlling internal checking of species
 codes. If ISCHEK = 1, the species code of every
 input field is required to be the same and match
 "IPOL" specified in subroutine DEFN. If
 ISCHEK = 0, this species code checking feature is
 disabled (e.g., to allow summing of flux fields of
 different pollutants such as SO2 and SO4").
                                                                 Default

                                                                    0
a = 1.
b = 0.
  0
                                           7-33

-------
                                        Table 7-5
                            MESOFILE n Inputs (Continued)
                              Card Inputs to Subroutine ADD2
SUBROUTINE ADP2

NAMEL1ST TITLE - SAME

Parameter       Type

IRUNl          INTEGER

IRUN2          INTEGER

PRINT          INTEGER
IFORM
INTEGER
DISK
PLOT  „
NEWV
INTEGER
INTEGER
INTEGER
APE
IHIGH
INTEGER
INTEGER
Runstream Number 1.

Runstream Number 2.

Line printer output control variable. If
PRINT » 1, summed arrays are printed; If
PRINT * 0, arrays are printed; If PRINT = 0,
summed arrays are not printed.

Format variable for line printer output If
IFORM = 1, non-gridded receptor concentrations
are printed in F122 format. If IFORM=2, non-
gridded receptor concentrations are printed in
1PE12.4 format

Disk output control variable. If DISK = 1,
summed arrays are written on disk.  If DISK  =  0,
summed arrays are not written on disk.

Line printer plotting control variable. If plot  =  1,
plots are produced. If plot  = 0, plots are not
produced.

In NEWV =  1, user inputs  contour values (if
NEWV  = 1, user must include a DIFF
NAMELJST card with the appropriate contour
information).  If NEWV =  0, use default contour
values.

Controls echo of input fields.  If APE  = 1, input
fields are printed.  If APE = 0, input fields are  not
printed.

Variable controlling printing of highest value in  the
gridded or non-gridded  concentration or flux field
after summing and scaling operations.  If
IHIGH  -  1,  the high value will be printed. If
IHIGH  = 0,  the high value will not be computed.
                                                                Default
                                           7-34

-------
                                         Table 7-5

                             MESOFILE H Inputs (Continued)
                          Card Inputs to Subroutine ADD2 (Continued)
SUBROUTINE ADD2

NAMELIST TITLE - SAME

Parflmffyr       Type

a,b             REAL
NEWMES
INTEGER
ISCHEK
INTEGER
                  Definition

Adjustment factors for the summed concentration
fields,
a * multiplicative factor
b » additive factor of the form,
C^ - a*C + b

Control variable for label on output plots and
derived printed fields (Le., those controlled by
PLOT and PRINT input variables). If NEWMES
« 1, a user-supplied label (up to 70 characters) is
printed with each plot or output field. This label
must be included in the input file as a separate line
immediately after the "SAME" NAMELIST (Le.,
before the "DIFP NAMELIST, if it is present). If
NEWMES * 0, the following default label is used:
"CONCENTRATIONS  (G/M**3)".

Variable controlling internal checking of species
codes. If ISCHEK - 1, the species code of every
input field is required to be the same and match
"IPOL" specified in subroutine DEFN.  If ISCHEK
= 0, this species code checking feature is disabled
(e.g^ to allow summing of flux fields of different
pollutants such as SO2 and SO4").
                                                                 Default

                                                                  a = 1.
                                                                  b = 0.
                                           7-35

-------
                                         Table 7-5
                             MESOFTLE II Inputs (Continued)
                                Card Inputs to Subroutine STAT
 SUBROUTINE STAT*

 NAMELIST TITLE - SAME

 Pajamf.fpr       Type

 IND1           INTEGER

 IND2           INTEGER

 BYONE         INTEGER
 PRINTD
 DISKD
 PLOTD
INTEGER
INTEGER
INTEGER
                                                                 Default
Base case ninstream number.

Perturbed (test) case runstream number.

Determines whether multi-array runstreams are to
be treated as one concatenated data set (producing
one set of statistics) or as a group of one-array
runstreams (producing a set of statistics for each
array pair).  If BYONE = 1, array by-array
statistics calculated; If BYONE = 0, collective
statistics calculated.

Line printer output control variable for the
difference fields. If PRINTD = 1, difference fields
are printed; If PRINTD = 0, difference fields are
not printed.

Disk output control variable for the output fields.
If DISKD - 1, difference fields are written on
disk; If DISKD = 0, difference fields are not
written on disk.

Line printer plotting control variable for the
difference fields. If PLOTD = 1, plots are
produced; If PLOTD = 0, plots are not produced.
* SUBROUTINE STAT is designed to compute statistics from gridded fields of data only, non-gridded data
cannot be analyzed with this routine.
                                            7-36

-------
            Table 7-5

MESOFILE H Inputs (Continued)

SUBROUTINE
NAMELIST IT
Eaomelej
NEWVD
PRINTF
DISKF
PLOTF
NEWVF
PRINTW
DISKW
PLOTW
NEWVW
APE
Card
STAT
liacs
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
Inputs to Subroutine STAT (Continued)
Definition
Plotter contour values control variable. If
NEWVD » 1, user inputs contour values (if
NEWVD - 1, user must include a DOT7
NAMELIST card with the appropriate contour
information). In NEWVD - 0, use default
contour values.
Same as PRINTD, except for the fractional
difference fields.
Same as DISKD, except for the fractional
difference fields.
Same as PLOTD, except for the fractional
difference fields.
Same as NEWVD, except for the fractional
difference fields.
Same as PRINTD, except for the weighted
difference fields.
Same as DISKD, except for the weighted difference
fields.
Same as PLOTD, except for the weighted
difference fields.
Same as NEWVD, except for the weighted
difference fields.
Controls echo of input fields. If APE = 1, input

Default
0
0
0
0
0
0
0
0
0
0
   fields are printed.  If APE = 0, input fields are not
   printed.
              7-31

-------
                                        Table 7-5
                            MESOFILEII Inputs (Concluded)
                         Card Inputs to Subroutine STAT (Concluded)
SUBROUTINE STAT

NAMELIST TITLE - SAME

Paramffpr       Type

NEWMES       INTEGER
ISCHEK
INTEGER
                  Definition

Control variable for label on output plots and
derived printed fields (Le., those controlled by
PLOT .and PRINT input variables). If
NEWMES • 1, a user-supplied label (up to 70
characters) is printed with each plot or output field.
This label must be included in the input file as a
separate line immediately after the "SAME"
NAMELIST (Le., before the "DIFF NAMELIST,
if it is present). If NEWMES = 0, the following
default label is used: "CONCENTRATIONS
(G/M**3)".

Variable controlling internal checking of species
codes. If ISCHEK » 1, the species code of every
input field is required to be the same and match
"IPOL" specified in subroutine DEFN.  If
ISCHEK = 0, this species code checking feature is
disabled (e.g^ to allow summing of flux fields of
different pollutants such as SO2 and SO4").
                                                                 Default

                                                                   0
                                           7-38

-------
                                   8.0 REFERENCES
Atkinson,  R.,  A.C.  Lloyd  and  L.  Winges,  1982:   A  new chemical  mechanism  for
       hydrocarbon/NOj/SC^ photo oxidations suitable for inclusion in the atmospheric simulation
       models. Atmos. Environ., 16, 1341.

Briggs, G-A-, 1975: Plume rise predictions. Lectures on Air Pollution and Environmental Impact
       Analyses.  American Meteorological Society, Boston, MA, pp. 59-111.

Brost, RA. and J.C. Wyngaard,  1978: A model study of the stably stratified planetary boundary
       layer.  /. Atmos. Sci, 35,  1427-1440.

Draxler, R.R., 1979: Modeling the results of two recent mesoscale dispersion experiments. Atmos.
       Environ., 13, 1523-1533.

Gillani, N.V., S. Kohli and W.E. Wilson, 1981:  Gas-to-partide conversion of sulfur in power plant
       plumes: I. Parameterization of the gas phase conversion rates for dry, moderately polluted
       ambient conditions. Atmos.  Environ., 15, 2293-2313.

Hefter, J.L., 1965:  The variations of horizontal diffusion parameters with time for travel periods
       of one hour or longer. /. Appl MeteoroL, 4, 153-156.

Henry, R.C. and G.M. Hidy, 1981:  Discussion of multivariate analysis of particulate sulfate and
       other air quality variables. Part I. Annual  data from Los Angeles and New York. Atmos.
       Environ., 15, 424.

Henry, R.C. and G.M. Hidy, 1982: Multivariate analysis of particulate sulfate and other air quality
       variables by principle components H. Salt Lake City, Utah and St. Louis, Missouri. Atmos.
       Environ., 16, 929-943.

Ludwig, F.L., L.S. Gasidrek and R.E. Ruff, 1977: Simplification of a Gaussian puff model for real-
       time minicomputer use. Atmos. Environ., 11, 431-436.

Maul, P.R., 1980:  Atmospheric transport of sulfur compound  pollutants.  Central Electricity
       Generating Bureau MDD/SSD/80/0026/R, Nottingham, England.

Page, S.H., 1980: National land and land cover inventory. U.S. Environmental Protection Agency,
       Research Triangle Park, NC.

Pleim, J., A. Venkatram and R. Yamartino, 1984: ADOM/TADAP model development  program.
       Volume 4.  The dry deposition module. Ontario Ministry of the Environment,  Rexdale,
       Ontario, Canada.
revised 6/94                          •         8-1

-------
Schulman, L.L. and J.S. Scire, 1980: Buoyant Line and Point Source (BLP) dispersion model user's
       guide.  Document P-7304B, Environmental Research & Technology, Inc., Concord, MA.

Scire, J.S., E.M. Insley and RJ. Yamartino, 1990:  Model formulation and user's guide for the
       CALMET meteorological model California Air Resources Board, Sacramento, CA

Scire, J.S., F.Lunnann, A Bass and S.R. Hanna, 1984a:  Development of the MESOPUFF n
       dispersion model  EPA-600/3-84-057, U.S.  Environmental Protection Agency, Research
       Triangle Park, NC

Scire, J.S., RLurmann, A. Bass and S.Hanna, 1984b: User's guide to the MESOPUFF II model and
       related processor programs. EPA-600/8-84-013, U.S.  Environmental Protection Agency,
       Research Triangle Park, NC.

Scott, B.C., 1978: Parameterization of sulfate removal by precipitation. J.AppL MeteoroL, 17,1375-
       1389.

Scott, B.C., 1981: Sulfate washout ratios in winter storms. 7. AppL MeteoroL, 20, 619-625.

Sheih, C.M., MX. Wesely and B.B. Hicks, 1979: Estimated dry deposition velocities of sulfur over
       the eastern United States and surrounding regions. Atmos. Environ., 13 (10), 1361-1368.

Slinn, W.G., L. Hasse, B. Hicks, A. Hogan, D. Lai, P. Liss, K. Munnich, G. Sehmel and O. Vittori,
       1978:   Some aspects of the transfer of atmospheric trace constituents  past the air-sea
       interface. Atmos. Environ., 12, 2055-2087.

Stelson, A.W.  and J.H. Seinfeld, 1982:   Relative humidity and temperature dependence of the
       ammonium nitrate dissociation constant Atmos. Environ., 16, 983-992.

Turner, D.B., 1964:  A  diffusion model for an urban area. /. Applied MeteoroL, 3, 83-91.

Turner, D.B., 1970:  Workbook of Atmospheric Dispersion Estimates.  U.S. Dept. of H.E.W., Public
       Health Service,  Pub. 999-AP-26, 88 pp.

Venkatram, A., 1980a:   Estimating the Monin-Obukhov length in the stable boundary layer for
       dispersion calculations. Boundary Layer MeteoroL, 19, 481-485.

Venkatram, A.,  I980b:  Estimation of  turbulence velocity scales in  the stable  and the unstable
       boundary layer for dispersion applications. In Eleventh NA TO-CCSMInternational Technical
       Meeting on Air Pollution Modeling and its Application, pp 54-56.

Walcek, CJ., RA. Brest, J.S. Chang and M.L.  Wesely, 1986:  SOj, sulfur, and HNO3 deposition
       velocities computed using regional land use and meteorological data. Atmos. Environ., 20,
       949-964.
                                           8-2

-------
Wang, I.T. and P.C. Chen, 1980: Estimations of heat and momentum fluxes near the ground. Proc.
       2nd Joint Conf. on Applications of Air Poll Meteorology, New Orleans, LA, March 24-27, pp
       764-769.

Wesely, ML, and B.B. Hicks, 1977: Some factors that affect the deposition rates of sulfur dioxide
       and similar gases on vegetation. /. Air Pott. Control Assoc., 27, 1110-1116.
                                           8-3

-------

-------
              APPENDIX A





             TD-6200 SERIES





NCDC UPPER AIR DATA FORMAT DESCRIPTION

-------

-------
TD-6200 SERIES
NCDC UPPER AIR
  DIGITAL FILES
           \
 noaa
NATIONAL OCEANIC AND
ATMOSPHERIC ADMINISTRATION
ENVIRONMENTAL DATA AND
INFORMATION SERVICE
NATIONAL CLIMATIC CENTER
ASH6VILLE, N.C.
              A-l

-------
                                NCDC UPPER AIR
                                 DIGITAL FILES
                                TD-6200 SERIES
                                  Prepared by
                         National Climatic Data Center
                               Federal Building
                           Asheville, North Carolina
                                   May 1986
     This document was prepared by the U.S. Department of Commerce, National
Oceanic and Atmospheric Administration, National Environmental Satellite Data
and Information Service, National Climatic Data Center, Asheville, North
Carolina.

     This document is designed to provide general information on the content,
origin, format, integrity and the availability of this data file.

     Errors found in this document should be brought to the attention of the
Data Base Administrator, NCDC.
                                  A-2

-------
                                  INTRODUCTION

SOURCE

     The Upper Air Observations in this digital data file include stations
operated by the National Weather Service, U.S. Navy, and certain South American
stations whose data receive quality control at the National Climatic Data
Center (NCDC).  Additional Upper Air Observations from the Global Tele-
Communications Systems (GTS), and the U.S. Air Force are also included in this
digital file but are not quality controlled by NCDC.

     A list of these files are:

          TD-6201   U.S. Rawinsonde observations 1946-Present.
                         (Includes U.S. Navy observations, U.S. Air Force,
                         National Meteorological Center (NMC), and South
                         American cooperative observations.  Derived from TD-
                      '   5600.)

          TD-6202   Northern Hemisphere GTS observations 1963-1970, and
                         Southern Hemisphere 1966-1970.  (These data were
                         extracted from NMC Operations ARchive and processed
                         into TD-5683.)

          TD-6203   Global GTS observations 1971-1979.
                         (These data are a composite of NOAA's National
                         Meteorological Center (NMC) and U.S. Air Force Global
                         Weather Center (GWC).  Derived from TD-5681.)

          TD-6210   Marine Upper Air 1946-To Date.
      *,
          These data were collected from sources listed below:

          1.  CD-5A5, CD-645 that were converted-to TD-5600 data set,
          2.  TD-5600 Marine Area (ships) that were converted to TD-6201/2.
          3.  TD-6201 Marine Area (ships) to date.
          4.  NMC Upper Air Marine (ships) 1973-to date.
          5.  Data from TD-6203, TD-5681 and GWC were not used in this data
              set.

          These data are currently on three (3)-tapes with the period record:

              TAPE #1 1946 THRU 1969
              TAPE #2 1970 THRU 1979
              TAPE #3 1980 THRU 1987

          The sort is by 10 degree square, year, month, day, hour within the
          above tape periods.  Additional periods will be added as updates,
          starting with 1988 from sources 3 and 4 above, when received.

          Duplicates were removed giving priority listed above (1,2,3,4).  QC
          flags are 0-9 for non NMC data, for NMC data they are A-Z.
                                    A-3

-------
Background Information TD-6201

               TD-6201:                      PERIOD:
          National Weather Service       Jan. 1946 -  Current
          U.S. Air Force                 Jan. 1946 -  Dec. 1970
          U.S. Navy                      July 1949 -  Current

     The information contained in TD-6201 includes pressure surface, height of
the pressure surface, temperature, relative humidity, wind direction and speed.
Beginning with Jan 1981, the elapsed time since release of the sonde is
included.  The pressure levels included fall into three categories:

     1.  Mandatory levels — Levels required by the WHO for transmission in
parts A and C of a coded RAWIND report.

     2.  Standard levels — Levels used for internal  processing by the NCDC,
but not generally reported in a coded message.

     3.  Significant levels — Levels required to adequately describe a
sounding, as transmitted in parts B and D of a coded  message.

     The number of mandatory and standard levels has  increased over time.
Table 1 lists the levels that are expected for a given period of record.
Significant levels were not generally included in the earlier periods.
Significant levels are included for most stations only after July 1952.

     Levels below the surface were generated for the  period January 1, 1981
through February 28, 1986.  However, these levels only contain unknown values
(•99991) for all data elements.  Beginning March 1, 1986 this practice was
stopped.
       v

     The actual time of releases from Jan. 1946 through May 1957 were usually
03, 09, 15, 21 GMT, 16, 17 - 15Z and 20, 21, 22, 23 - 21Z.  Beginning June 1957
the scheduled time of release is used instead of the  actual hour.  The time of
observations were changed from 03, 09, 15, 21 GMT to  00, 06, 12, and 18 GMT.
Observations outside the plus or minus one-hour tolerance were reported as
actual time, GMT.  Stations scheduled to record only one observation daily are
allowed a six-hour tolerance.

     Relative humidities were computed with respect to ice from Jan. 1946
through Sept. 1948 and to water after that.  Beginning Oct. 1948 relative
humidity was computed over a water surface whenever the dry bulb was below
freezing.

     Observing practice for wind measurements varied from current practice.
from Jan. 1946 to June 1949, wind directions were observed on a  16-point
compass.  These directions were converted to degrees  before inclusion in
TD-6201.
                                      A-4

-------
Surface
                         TABLE 1




          Mandatory and Standard Levels TD-6201




1/A6-6/49    7/49-12/55    1/56-6/57    7/57-12/60
1/61-Present
1000
950
900
850
800
750
700
650
600
550
500
450
400
350
300
250
200
'175
150
125
100 -
80
70
60
50
40
30
25
20
15
10
. 7
5
4
3
2
1.5
\
' *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*

*

*







*
*
*
*
*
*
*
*
*
*
.*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*

*
*
*
*
*
*
*
*







*
*
*
*
*
*
*
*
*
*
*
*
*
*
it
*
*

*
*
*
*

*
*
*
*
*
*
*
*


*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*


*
*
*
*
*.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
                                      A-5

-------
Background Information TD-6202

               TD-6202:                      PERIOD:
          National Meteorological Center (NMC)
          Northern Hemisphere            Sept. 1963 - Dec. 1970
          Southern Hemisphere            June 1966  - Dec. 1970.

     These data were assimilated from normal International communication
channels and no detailed quality control measures were employed when converting
to TD-5683.  The observations, therefore, were subject to the usual errors
inherent in such a collection.

     The U/A observations contain all available mandatory and significant
levels transmitted under International agreement.  The period of record may
vary from station to station, the general collection began Sept. 1963 and
continued through Dec. 1970 (Northern Hemisphere).  Stations in the Southern
Hemisphere are usually not available until mid 1966 or later through Dec. 1970*

     Relative humidities are derived statistically for RH's not reported
originally.
Background Information TD-6203

               TD-6203:                  .                        PERIOD:
          National Meteorological Center (NMC)            July 1971 - Dec. 1978
          Air Force Global Weather Center (AFGWC)         July 1971 - Dec. 1978

     These U/A observations are a collection of data built by the National
Climatfc Data Center (NCDC).  These data were received from NMC and AFGWC.
NCDC converted these two data sources separately into TD-5681.  Then these data
sources were combined giving priority to the NMC source.
                                      A-6

-------
Areal coverage is worldwide.

     The digital file contains:  Station Identification (land and ships),
Latitude and Longitude of location, date/time, and elements:
LEVEL QUALITY INDICATOR - results by level.

TIME - elapsed time since release.

PRESSURE - by level in kilopascals.

HEIGHT - by level in geopotential meters*

TEMPERATURE - by level in degrees Celsius.

RELATIVE HUMIDITY - by level in degrees Celsius.

WIND - Direction and speed by level.

QUALITY CONTROL FLAGS - by level for time, pressure, height, temperature,
                        relative humidity, wind, and type of level.
                                     A-7

-------
                                 SPECIAL NOTES

QUALITY

     U.S. data processed by the NCDC are subjected to extensive quality control
procedures.  Suspect data are returned to a verifier for manual correction.
GTS data are subjected to various degrees of automated quality control by the
receiving agency.  NCDC accepts the data as correct during the reformatting
procedure.  Therefore, the user must be prepared to perform his own quality
checks on GTS data.  (The primary function of NMC and.AFGWC is to produce
forecasts, not to provide an archive data base.)

     When corrections are made to a level, that level will appear in the record
twice.  The first occurrence of the level will be the original observed values,
with a level quality indicator of "2" or "4".  The corrected data will appear
in the second occurrence of the level, with quality indicator of "6".


USE OF THE MANUAL

     This manual was designed so that reference to other reference material
should be unnecessary.  However, additional information may be obtained by
writing or calling:

                    National Climatic Data Center E/CC42
                    ATTN:  USER Services Branch
                    Federal Building
                    Asheville, North Carolina  28801-2696

                    Telephone inquiries may be directed to:

                    Commercial 704 259-0682
                    FTS 672-0682

     Read carefully, the general tape notations, and coding practices.
                                      A-8

-------
                                  TAPE FORMAT

MANUAL AND TAPE NOTATIONS

     1.  FILE  (NCDC Variable Length Storage Structure)

          A.   Physical Characteristics

               Data in this  file  are retained in chronological order by station.
Although library  tapes are  normally maintained as described below, different
characteristics including fixed  length records can be furnished on request.
Additional charges may be accrued for special processing.

     2.  RECORD

          A.   Physical Characteristics

               Each logical  record contains one station's Upper Air (U/A)
Observation (Rawinsonde, Radiosonde, or Pibal) for each specific Upper Air
Sounding (normally 2 each day).  The record consists of a control word, an
identification portion, and a data portion.  The control word is used by the
computer operating system for record length determination.  For many systems
this control word is transparent to the "users" program.  The identification
portion identifies the observing station, latitude, longitude, day and time (of
release), and  the number of repeating groups to follow.  The data portion
contains the U/A meteorological  values and the quality control flag fields for
each level.  The data portion repeats for each level in the observation.  The
maximum number of levels is 200.  This number was chosen so that observations
containing oner-minute wind  data may be recorded in this format.
              Record length
              Blocked
              Media
              Density
              Parity
              Label
              File
Variable with maximum of 7232 characters
12000 characters maximum
ASCII 9 Track
6250 BPI
Odd
ANSI Standard Labeled
1 File per tape
                                     A-9

-------
          B.  FORMAT (VARIABLE RECORD)

              1.  The first five fields constitute the ID PORTION, and occur at
the beginning of each record.  The next ten fields of the record contain the
DATA PORTION.  .The DATA PORTION is repeated for each level in the observation.
The maximum number of levels is 200.

                  Each logical record is of variable length with a maximum of
7232 characters.  Each logical record contains a station's complete Upper Air
Observation for a specific release time.  The form of a record is:

              ID PORTION (32 characters) Fixed length
TAPE
FIELI
STATION
ID
XXXXXXXX
LAT
XXXX
LAT
CODE
X
LONG
XXXXX
LONG
CODE
X
DATE/TIME
XXXXXXXXXX
NUMBER
VALUES
XXX
001 002 003 004 005 006 007
)
              DATA PORTION (36 Characters) repeated Number-Values Times
LVL-QLTY
INDCTR
X
TIME
XXXX
PRESSURE
XXXXX
HEIGHT
XXXXXX
TEMP
XXXX
RH
XXX
WIND
DIR
XXX
WIND
SPD
XXX
QUALITY
FLAGS
XXXXXX
TYPE OF
LEVEL
X
TAPE   008
FIELD
   009    010
           Oil
         012   013  014
                 015
016
017
RH
XXX
WIND
DIR
XXX
WIND
SPD
XXX
QUALITY
FLAGS
XXXXXX
TYPE OF
LEVEL
X
TAPE  1998
FIELD
1999
2000
2001
2002
                                      A-10

-------
TAPE FIEL'D
     TAPE
RECORD POSITION
ELEMENT DESCRIPTION
001
002
003
004
005
006
007
001-008
009-012
013
014-018
019
020-029
030-032
STATION IDENTIFICATION
LATITUDE
LATITUDE CODE N/S
LONGITUDE
LONGITUDE CODE E/W
DATE AND TIME (YR/MO/DY/HR)
NUMBER OF DATA PORTION GROUPS






THAT FOLLOW
 008
 009
 010
 Oil
 012
 013
 014
 015
 016
 017

(1958-1972)
(1973-1987)
(1988-2002)
     033
   034-037
   038-042
   043-048
   049-052
   053-055
   056-058
   059-061
   062-067
     068

 (7125-7160)
 (7161-7196)
 (7197-7232)
LEVEL QUALITY INDICATOR
TIME (ELAPSED TIME SINCE RELEASE)
PRESSURE
HEIGHT
TEMPERATURE
RELATIVE HUMIDITY
WIND DIRECTION
WIND SPEED
FLAG FIELD (QUALITY FLAGS)
TYPE OF LEVEL

DATA GROUPS IN THE SAME FORM AS TAPE FIELDS
008-017.  REPEATED AS MANY TIMES AS NEEDED
TO COMPLETE ONE UPPER AIR OBSERVATION.  A
MAXIMUM OF 200 LEVELS ARE POSSIBLE.
                                      A-ll

-------
The following COBOL and FORTRAN statements are to be used as guidelines only.
NCDC recognizes the fact that many different types of equipment are used in
processing these data.  It is impossible to cover all the idiosyncrasies of
every system.

     Typical ANSI COBOL Data Description.

          This ANSI Standard COBOL Data Description is expected to work on most
     systems.

          FD   UA-DATA
               LABEL RECORDS ARE STANDARD
               RECORDING MODE D
               BLOCK CONTAINS 12000 CHARACTERS.
          01   UA-RECORD.
               02   STATION-NUMBER
               02   LATITUDE.
                    03   LATITUDE-HUM
                    03   LATITUDE-ALPH
               02   LONGITUDE.
                    03   LONGITUDE-NUM
                    03   LONGITUDE-ALPH
               02   DATE-TIME.
                    03   YEAR
                    03   MONTH
                    03   DAIS
                    03   HOUR
               02   NUMBER-OF-LEVELS
               02   LEVEL-RECORD
                         OCCURS 1 to 200 TIMES
                    03   QUALITY-INDICATOR
                    03   ELAPSED-TIME
                    03   PRESSURE
                    03   HEIGHT
                     03   TEMPERATURE

                     03   RELATIVE-HUMIDITY
                     03   WIND-DIRECTION
                     03   WIND-SPEED
                     03   FLAGS.
                         04   TIME-FLAG
                         04   PRESSURE-FLAG
                         04   HEIGHT-FLAG
                         04   TEMPERATURE-FLAG
                         04   R-H-FLAG
                         04   WIND-FLAG
                         04   TYPE-OF-LEVEL
 PICTURE X(8).

 PICTURE 9999.
 PICTURE X.

 PICTURE 99999.
 PICTURE X.

 PICTURE 9(4).
 PICTURE 99.
 PICTURE 99.
 PICTURE 99.
 PICTURE 999.

DEPENDING ON NUMBER-OF-LEVELS.
 PICTURE X.
 PICTURE 999V9.
 PICTURE 999V99.
 PICTURE S99999
 SIGN LEADING SEPARATE.
 PICTURE S99V9  .
 SIGN LEADING SEPARATE.
 PICTURE 999.
 PICTURE 999.
 PICTURE 999.

 PICTURE X.
 PICTURE X.
 PICTURE X. .                '
 PICTURE X.
 PICTURE X.
 PICTURE X.
 PICTURE X.
                                          A-12

-------
FORTRAN 77 Example 1.

     This description is for those systems that can handle variable blocked
records normally.

           IMPLICIT INTEGER (A-Z)

           OPEN (10.FILE - 'FILENAME',ACCESS - 'SEQUENTIAL', STATUS - 'OLD',
          +   RFORM - 'VB',MREL - '1230',TYPE - 'ANSI', BLOCK - '12000')
     C        LAST line of OPEN statement is SPERRY UNIQUE

           CHARACTER*8 STNID
           CHARACTER*! LATA,LONA,QIND(200),TIMEF(200),PRESSF(200),
          +            HGTF(200),TEMPF(200),RHF(200),WINDF(200),TTPLEV(200)

           REAL*4 LAT,LON,ETIME(200),PRESS(200),HGT(200),TEMP(200)

           DIMENSION ETIMEC200),PRESS(200),HGT(200),
          +          TEMP(200),RH(200),WD(200),WS(200)

           READ (10,20,END-999) STNID,LAT,LATA,LON,LONA,YEAR,
          •»•           MONTH,DAY,HOUR,NUMLEV,(QIND(J),ETIME(J),
          +           PRZSSC J) ,HGT( J) ,TEMP( J) ,RH( J) ,WD( J),WS( J) ,
          +           TIMEFCJ),PRESSF(J),HGTF(J),TEMPF(J),RHF(J),
          +           WINDF(J),TYPLEV(J),J-1,NUMLEV)

     20    FORMAT (A8,F4.0,A1,F5.0,A1,14,3(12),13,200(A1,F4.1,F5.2,
          +        F6.0,F4.1,3(I3),7A1))

IBM JCL NOTES.
           v

        (1)  For ASCII Variable specify:
             LREC    - 7236
             RECFM   - DB
             OPTCODE - Q

        (2)  For EBCDIC Variable specify:
             LRECL   - 7236
             RECFM   - VB
                                         A-13

-------
FORTRAN 77 Example 2.

     This description is for those systems that can't handle variable blocked
records normally.

     $ MOUNT/FOREIGN/BLOCKSIZE-12000 MT:  tapename TAPE:  !  THIS IS VAX
     	                                                !  UNIQUE

          PROGRAM TAPEREAD
          IMPLICIT INTEGER (A-Z)
          • • • * •
          OPENC1.FILE-TAPE:'.ACCESS-1 SEQUENTIAL1,FORM-FORMATTED1,
         +       STATUS-'OLD'.READONLY)

          CHARACTER BUFFER* 12000             I TOUR MACHINE MUST SUPPORT
          CHARACTER *8 STNID                 ! CHARACTER VARIABLES THIS LARGE
          CHARACTER*! LATAfLONA,QIND(200),TIMEF(200),PRESSF(200),
         +            HGTF(200),TEMPF(200),RHF(200),WINDF(200),TYPLEV(200)

          REAL*4 LAT,LON,ETIME(200),PRESS(200),HGT(200),TEMP(200)

          DIMENSION ETIMEC200),PRESS(200),HGT(200),TEMP(200),RH(200),
         +          WD(200),WS(200)
          • • • • •
          NBYTES-0
    5     NBEG-1
          READ(1,101,END-99)BUFFER             IREAD IN PHYSICAL RECORD (BLOCK)
   10     NBEG-NBEG+NBYTES
          READ(BU,FFER(NBEG:NBEG+3,102)NBYTES   IREAD THE CONTROL WORD
          JF( NBYTES.EQ.O )GO TO 5
          READ( BUFFERC NBEG+4: NBEG+NBYTES-1), 103 ) STNID, LAT, LATA, LON, LONA .YEAR,
         +     MONTH,DAY,HOUR,NUMLEV,(QIND(J),ETIME(J),PRESS
-------
        TAPE
TAPE    RECORD     ELEMENT
FIELD   POSITION   NAME	CODE DEFINITIONS AND REMARKS	

001       1-8      STATION-      STATION  IDENTIFICATION— For U.S. controlled and
                   ID            cooperative stations,  the WBAN number (TD-6201).
                                 For stations  received  through GTS, the WMO number
                                 (TD-6202).   TD-6203 has general WMO numbers but
                                 some are WBAN numbers*  This field may contain
                                 alphabetic  characters  for ships and remote sensed
                                 observations. Numeric station numbers are right
                                 justified and zero filled, while alphanumeric
                                 station  indentifiers are left Justified and -blank
                                 filled.  If unknown, this field contains
                                 "99999999".  If the station identification is
                                 unknown, both latitude and longitude must be
                                 present.


002      9-12      LATITUDE      LATITUDE—The station  latitude in degrees and
                                 minutes. When unknown, this field contains
                                 "9999".  Latitude will not normally appear for
                                 land stations.
003        13      LATITUDE     LATITUDE  CODE— CODE used  to indicate  the
                   CODE         Northern  (N)  or Southern (S) latitudes.


004      14-18     LONGITUDE    LONGITUDE—The  station longitude in degrees and
                                minutes.  When  unknown, this field contains
                                "99999".  Longitude will not normally  appear for
                                land  stations.
005        19      LONGITUDE    LONGITUDE  CODE—CODE used to indicate Longitudes
                   CODE         East  (E) .or West  (W).


006      20-29     DATE-TIME    DATE/TIME—The  scheduled time of the observation,
                                as  defined by WMO.  The format of date/time  is
                                YYYYMMDDHH, i.e., year, month, day, hour.  This
                                field may  never be unknown.
         20-23     YEAR        YEAR-This  is  the Year  of  record.  Range  of  values
                                are  1946-current year  processed.


         24-25     MONTH        MONTH-This  is  the Month of record.  Range of  value
                                are  01  to  12.
                                        A-15

-------
TAPE
FIELD
 TAPE
 RECORD
POSITION
ELEMENT
NAME
         26-27
            DAY
CODE DEFINITIONS AND REMARKS
             OAY-This is the Day of record,  Range of values are
             01 to 31.
         28-29
            HOUR
             HOUR-This is the Hour of record.   Range of value
             are 00 to 23.  Hour is GMT.   Normal scheduled
             observation times are 00 and 12 GMT.   For selected
             periods and areas observations may have been taken
             at other times, especially 06 and 18 GMT.
007      30-32      NUMBER-      NUMBER-OF-REPEATING-GROUPS—This number represents
                    REPEAT-      the number of data levels found in the current
                    GROUPS       observation, including edited levels.  Range of
                                 values are 001-200.  Two hundred is the maximum
                                 number of levels.
008
 33
LEVEL-       LEVEL-QUALITY-INDICATOR—Denotes the results of
QUALITY-     any quality controls applied to this level.  Range
INDCTR       is as follows:
              0    Original values are correct.
              1    Original values are missing.
              2    Original values doubtful, a corrected level
                   follows.
              3    Original values doubtful, uncorrected.
              4    Original values in error, a corrected level
                   follows.
              5    Original values in error, uncorrected.
              6    Corrected level.
              9    Level not checked.
              A-Z  Indicators supplied by NMC.
             (A-G, blank)  Automatic via computer system.
              A      Passed vertical consistency check with
                     tight limits.
              B      Failed vertical consistency check and has
                     not been recomputed.
              C      Failed vertical consistency check and was
                     recomputed.
              D      Failed vertical consistency check with
                     tight limits and passed with loose limits.
              E      (Not assigned)
              F      Has been checked but did not pass vertical
                     consistency check with loose limits.
              G      (Not assigned)
              blank  (Not specified)
                                        A-16

-------
         TAPE
TAPE     RECORD     ELEMENT
FIELD   POSITION    NAME
                        CODE DEFINITIONS AND REMARKS
008 continued
                       (H-P,  $)   Manual via Human Intervention
                         H       Hold value for next analysis run
                         I       (Same as A)
                         J       (Same as B)
                         K       (Same as C)
                         L       (Same as D)
                         M       (Same as E)
                         N       (Same as F)
                         0       (Same as G)
                         P       Purge from analysis run
009      34-37      TIME-        TIME-The elapsed time since the release of the
                    SINCE-       sounding in minutes and tenths.  If the elapsed
                    RELEASE      time is not known, this field contains "9999".
                                 Range is 0001 through 9999.  Available only for
                                 U.S. quality controlled stations beginning Jan.
                                 1981.


010      38-42      PRESSURE-    PRESSURE-Atmospheric pressure at the current level
                    AT-LEVEL     in kilopascals and hundredths.  If unknown, this
                                 field contains "99999".  (TD6201 only - Subsurface
                                 levels were generated from Jan. 1, 1981 through
                                 Feb. 28, 1986.  The values were always unknown.
                                 This practice was stopped Mar. 1, 1986.)


Oil      43-48      HEIGHT-      HEIGHT-Geopotential height of the current level
                    AT-LEVEL     in whole meters.  If unknown, this field contains
                                 "-99999".  Range of values are -99999 through
                                 99999.
012
49-52
TEMPERATURE
AT-LEVEL
TEMPERATURE-The free air temperature at the
current level in degrees and tenths Celsius.  If
unknown, this field contains "-999".  Range of
values -999 through 999.
013      53-55      RELATIVE-    RELATIVE-HUMIDITY-The relative humidity at the
                    HUMIDITY     current level in whole percent.  If unknown, this
                    AT-LEVEL     field contains "999".  In TD-6202, relative
                                 humidities are derived statistically for RH's not
                                 reported originally.
                                      A-17

-------
TAPE
FIELD
 TAPE
 RECORD
POSITION
ELEMENT
NAME
CODE DEFINITIONS AND REMARKS
014      56-58      WIND-         WIND-DIRECTION-Direction of the  wind  at  the
                    DIRECTION    current'level  in  whole degrees (nearest  five
                    AT-LEVEL      degrees for  observations received  through  GTS)«
                                  If unknown,  this  field contains  "999".


015      59-61      WIND-SPEED   WIND-SPEED-Speed  of the wind in  whole meters per
                    AT-LEVEL      second.  If  unknown/ this  field  contains "999".


016      62-67      QUALITY-      QUALITY-FLAG-FIELD—This field contains  the
                    FLAGS         results of any quality control procedures,
                                  identifying  each  individual element found in error
                                  (see table below).

                                  QUALITY CONTROL FLAG
                                  0     Element  is  correct
                                  1     Element  is  doubtful
                                  2     Element  is  in error
                                  3     Replacement value
                                  4     Assumed  or  estimated value
                                  9     Element  not checked
                                  A-Z   Indicators  supplied  by NMC
                                 (A-G, blank)  Automatic via computer system.
                                   A      Passed vertical consistency check with
                                          tight  limits.
                                   B      Failed vertical consistency check and has
                                          not  been  recomputed.
                                   C      Failed vertical consistency check and was
                                          recomputed.
                                   D      Failed vertical consistency check with
                                          tight  limits and passed  with loose limits.
                                   E      (Not assigned)
                                   F      Has  been  checked but did not pass vertical
                                          consistency check  with loose limits.
                                   G      (Not assigned)
                                   blank  (Not specified)
                                 (H-P, $)  Manual via Human  Intervention
                                   H       Hold  value for next analysis run
                                   I       (Same as A)
                                   J       (Same as B)
                                   K       (Same as C)
                                   L       (Same as D)
                                   M       (Same as E)
                                   N       (Same as F)
                                   0       (Same as G)
                                   P       Purge from analysis run
                                        A-18

-------
         TAPE
TAPE     RECORD
FIELD   POSITION    NAME
                        CODE DEFINITIONS AND REMARKS
         62
           TIME-QF
             Time Quality Flag
                    PRESSURE-QF  Pressure Quality Flag
         64
           HEIGHT-QF    Height Quality Flag
         65
           TEMPERATURE- Temperature Quality Flag
           OF
         66
           RELATIVE-    Relative Humidity Quality Flag
           HUMIDITY-QF
         67
           WIND-QF
             Wind Quality Flag
017
68
TYPE-OF      TYPE OF LEVEL FLAG—See Table below.

             0    Surface
             1    Mandatory
             2    Significant
             3    Generated
             4    Tropopause
             5    Maximum wind
             9    Other/unspecified

             NOTE:  TD-6201 through December 1975 will contain
                    Type of Level Flags 0, 1, and 9 only.  The
                    significant flag is not present.
                                       A-19

-------

-------
       APPENDIX B





  TD-3240 PRECIPITATION





DATA FORMAT DESCRIPTION

-------

-------
           TD-3240
  HOURLY PRECIPITATION
      RAINFALL MEASURING INSTRUMENTS
            Q
            *


            \
                 \
                  I*
noaa
NATIONAL OCEANIC AND
ATMOSPHERIC ADMINISTRATION
i'J A i_ r
AMD I
NATIONAL CLIMATIC DATA CENTER
ASHEVILLE, N C
               B-l

-------
                          HOURLY PRECIPITATION DATA

                                   TD-3240
                                  Prepared  by
                        National  Climatic  Data Center
                               Federal Building
                          Asheville,  North Carolina
                                  JUNE  1990
This document was prepared by the U.S. Department of Commerce, National Oceanic
and  Atmospheric  Administration,  National  Environmental  Satellite  Data  and
Information Service, National Climatic Data Center, Asheville, North Carolina.

This document is designed  to provide general information on the content, origin,
format, integrity and the availability of this data file.

Errors found in this document should be brought to the attention of the Data Base
Administrator, NCDC.
                                     B-2

-------
                                 INDRCDDCnCN

HISTCKJf AND DATA. SCGRCE

The  observations  in  this  Hourly  Precipitation Data File  were  taken  by
observers at principle  (primary) stations, secondary stations, and cooperative
observer  stations operated  by the  National Weather  Service (NWS),  and the
Federal Aviation Agency (FAA).

Approximately  5500  stations  have  recorded  precipitation  data through the
period of this  digital file.   Initially from August  1984  to September  1951,
data were keyed on  punched  cards by the regional Weather Records Processing
Centers.   Then the task was  transferred to  the National Climatic Data Center
(NCDC) in Asheville, NC.  The hourly precipitation  data file was transferred
from  punched cards  to  magnetic tape (TD-9657)  during the late  1960s.   This
data file was then converted to the element file structure during 1984.

Several  recording  (weighing)  rain gauge instruments  were used  in measuring
hourly precipitation, but  by September  1963  many Fischer Porter precipitation
gauge instruments with  automated readout, recorded on  paper tape, were phased
in.   By early 1965, about 200 of  these were  in operation and they became the
primary recording instrument.  Currently, there are approximately 2000 Fischer
Porter gauges  in operation.   The universal  Rain gauge is the  other primary
instrument  used to create  this  data  file.    It  has  an automated readout
recorded on paper charts.  Station and dates of conmissioning of weighing rain
gauges are in the Station History listings available at the NCDC in Asheville,
NC.

The data in this file are a combination of original observations of hourly and
daily amntmiatfad precipitation.   Precipitation values are checked and edited
as necessary on  an automated and manual edit.

Data before  1984 were converted from existing digital files (TD-9747) to the
element  structure  format.   These  (historical)  data were processed  through a
gross value check only.  Beginning January 1984, the hourly precipitation data
were processed through  a completely  revised  system, which produces the element
structure  database  file.    Data  are  subjected  to  new  computer  editing
procedures reducing the manual handling of the data.

This  data file  is unique when compared to the other NCDC  Element  Files.  No
corrected  or edited data are available in  this data file.   The  data are
classified as original  data.

Areal coverage  includes the  Waited  States,  Puerto  "Rico, Virgin  Islands, and
U.S. protectorates located in the Pacific.

The--hourly digital -file contain:   record type,  station identification, dares,
units of measurement indicator, data flags,  and element type.

Hourly Precipitation Data:   Hourly  precipitation including the  daily total.
These are the only data in this file.
                                      B-3

-------
FGRPOSE OF mre MftNCRL

This manual was  designed so that reference to other reference material should
be unnecessary-   Inventories,  station listings,  or any additional information
may be obtained if necessary by writing or calling:

                    National Climatic Data Center E/CC42
                    ATTN:  User Services Branch
                    Federal Building
                    Asheville, North Carolina  28801-2696

                    Telephone inquiries may be directed to:

                    Commercial  704 259-0682
                    PIS  672-0682

Bead  carefully the  "Manual and Tape  Notations"  and  "Code Definitions  and
Remarks" sections.

SPECIAL NOTES

1.  QCmNTTIY-DATA CCMPACTION

It stands to reason that for most hours the non-occurrence of precipitation is
prevalent.  Therefore-, in order to save space in  the digital file,  there are
entries only for:

     1.  The first day and hour of  each  month were observations were taken
         even if  no precipitation occurred during that month.

     2.  Hours ,with precipitation > zero.

     3.  vBeginning and ending hours of missing periods.

     4.  Beginning and ending hours of accumulating periods.

     5.  Beginning and ending periods of deleted data.

     6.  First and last day of each month where the required charts or forms
         never were received or processed at NCDC.
                                       B-4

-------
                                 TAPE PORMKT


MBNOAL AND TAPE NQEMUCNS

1.  FILE (NCDC Variable Length Storage Structure)

    A.  Physical Characteristics

        Data in this set are retained in chronological order by station.

    B.  COBOL OR FORERAN Data Description

The following statements nay  be used to  read a  logical record  in COBOL or
FORTRAN for variable length.

        (1)  Typical ANSI COBOL

             FD   INDAIA
                  LABEL RECORDS ARE STANDARD
                  RECORD MODE D
                  BLOCK CONTAINS 12000 OiARACTERS
                  DATA RECORD IS DATA-RECORD

             01   DATA RECORD
                  02 RECORD TYPE              PIC X(3)
                  02 STATION-ID               PIC X(S)
                  02 ELEMENT-TYPE             PIC X(4)
                  02 ELEMENT-UNITS            PIC XX
                  02 YEAR                     PIC 9(4)
                  02 MONTH                    PIC 99
                  02 DAY                      PIC 9(4)
                  02 NUMBER-VALUES            PIC 9(3)
                  02 DAILY-ENTRY
                  OCCURS 1 TO 100 TIMES DEPENDING ON NUMBER-VALUES
                     04 BOOR                  PIC 9(4)
                     04 DATA-VALUE            PIC 9(6)
                     04 FIAG-1                PIC X
                     04 FIAG-2                PIC X
                                       B-5

-------
        (2)   Typical FORERAN 77

             DEFINE FILE 10 (ANSI, VB, 1230, 12000)
             CHARACTERS RECTYP
             CHARACTER*8 S1N1D
             CHARACTER*4 ELMTYP
             C3ffiRACTER*2 EUNITS
             CHARACTER*! FIAG1, FLAG2
             DIMENSION IVALUE( 100) , FLAGl(lOO) ,  FLAG2(100) ,  IHR(IOO)

             READ (10,20,END=999) RECTO*, STNID, EEMTYP, EUNTTS,  IYEAR, IM3N,
             IDAY,   NUMVAL,    ( (IHR(J) ,   IVALUE(J) ,   FLAGl(J) ,   FIAG2(J)),
             J=1,NDMVAL)

             20 FORMAT (A3, 'AS, A4, A2, 14,  12,  14,  13,  100(14, 16, 2A) )
             NOTE:  If you do not have B3OBMI 77, you can read the character
                                   abowe into isteg&c vsorxables.
  '  C.  IBM JCL NOTES

        (1)  For ASCH Variable specify:

             LRECL -  = 1234
             RECSM   = DB
             OPTOXE - Q

        (2)  For EBCDIC Variable specify:

             LHECL - 1234
             RECFM = VB

2.  RECORD

    A.  Physical Characteristics

    Each  logical record  contains one  day  of one  station's occurrences of
    precipitation.  The record consists of a  control word and identification
    portion,  and a data portion.   The control word is used by  the computer
    operating  system  for  record  length determination.   The  identification
    portion  identifies the  observing station, year, month,  day,  and record
    element  units code.   The data portion  contains the  hour,  precipitation
    occurrence  and measurement flags.   The data  portion is repeated for as
    many values as occur in the given time interval.

                NCDC Library Tapes are structured as follows:
                  Record Length
                  Blocked
                  Media
                  Density
                  Parity
                  Label
                  File
Variable with maximum of 1230 characters
12000 characters
ASCII 9 Track
6250 BPI
Odd
ANSI Standard Labeled
1 File per cape
                                      B-6

-------
    B.  FORMAT  (VARIABLE RECORD)

    The  first eight tape  fields,  the ID PORTION of  the record, describe the
    characteristics  of the  entire record.   The DATA PORTION  of  the record
    contains  information  about each element value reported.   This portion  is
    repeated  for as  many  values as occur in the daily record of hourly values
    plus the  daily total.

    Each  logical record  is  of  variable  length  with  a maximum of  1230
    characters.   Each  logical record contains a station's data  for a specific
    meteorological element over a one-day interval.   The form of a record is:
                       ID PORTION  (30 characters) Fixed length
TAPE
FIELD
RBC
TYP
XXX
001
STATION
ID
xxxxxxxx
002
ELEM
TYPE
xxxx
003
DMT
XX
004
YEAR
XXXX
005
MDN
XX
006
DAY
XXXX
007
NO.
VAL
XXX
008
                    DATA PORTION  (12 Character Data Portion repeats the number
                                 of t"jjva«s indicated by the  rigt-a value stored
                                 in Tape Field 008)
TAPE
K i m r>

HFMN

XXXX
009
DATA
ELEM
VALUE
xxxxxx
010

FL
1
X
on

FL
2
X
012

HRMN

XXXX
013
DATA
ELEM
VALUE
XXXXXX
014

FL
1
X
015

FL
2
X
016
TAPE
FIELD

HFMN

XXXX
105
DATA
ELEM
VALUE
XXXXXX
106

FL
1
X
107

FL
2
X
108
                                      B-7

-------
                          '.LAMS
TAPE FTPTI?	P.E)ntTtO POSITION	FrrMFWT D|gjLXLFJ.'I.CK

 001                     001-003               RECORD TYPE
 002                     004-011               STATION ID
 003                     012-015               METEOROLOGICAL ELEMENT TYPE
 004                     016-017               MET. ELEMENT MEASUREMENT UNITS
 005                     018-021               YEAR
 006                     022-023               MONTH
 007                     024-027               DAY (Right justified zero filled)
 008                     028-030               NCMBER OF DATA GROUPS THAT FOLLOW

 009                     031-034               HDOR (left justified zero filled)
 010                     035-040               VALUE  OF METH2ROLO3ICAL ELEMENT
 Oil                     041                  MEASUREMENT FLAG 1
 012                     042                  QUALITY FLAG 2

 (013-016)               (043-054)              DATA GROUPS IN THE SAME FORM AS
 (017-020)               (055-066)              TAPE FIELDS 009-012.  REPEATED
 (021-024)               (067-078)              AS  MANY   TIMES  AS   NEEDED  TO
                                              CONTAIN ONE DAY OF HOURLY VALUES

 (105-108)               (319-330)
                                      B-8

-------
            TAPE
TAPE
 001
1-3
Record-Type
Hie  type  of  data  stored  in  this
record.  Value is "HPD".
 002
4-11
Station-ID
This 8-character station identifier
is assigned by the National Climatic
Data Center.  See State Code Table.
            4-5
           State-Code
                         CODE  as indicated.   Range of
                   value is 01 to 48, 66, 67, and 91.

                            STATE CODE TABLE
                                                28 New Jersey
                                                29 New Mexico
                                                30 New York
                                                31 North Carolina
                                                32 North Dakota
                                                33 Ohio
                                                34 Oklahoma
                                                35 Oregon
                                                36 Pennsylvania
                                                37 Rhode Island
                                                38 South Carolina
                                                39 South Dakota
                                                40 Tennessee
                                                41 Texas
                                                42 Utah
                                                43 Vermont
                                                44 Virginia
                                                45 Washington
                                                46 West Virginia
                                                47 Wisconsin
                                                48 Wyoming
                                                49 Not Used
                                                (1st Order Only)
                                                50 Alaska
                                                51 Hawaii
                                                66 Puerto Rico
                                                67 Virgin Islands
                                                91 Pacific Islands
                                          01
                                          02 Arizona
                                          03 Arkansas
                                          04 California
                                          05 Colorado
                                          06 Connecticut
                                          07 Delaware
                                          08 Florida
                                          09 Georgia
                                          10 Idaho
                                          11 Illinois
                                          12 Indiana
                                          13 Iowa
                                          14 Kansas
                                          15 Kentucky
                                          16 Louisiana
                                          17 Maine
                                          18 Maryland
                                          19 Massachusetts
                                          20 Michigan
                                          21 Minnesota
                                          22 Mississippi
                                          23 Missouri
                                          24 Montana
                                          25 Nebraska
                                          26 -Nevada
                                          27 New Hampshire
            6-9
           Cooperative
           Network Index
                   Cooperative Network Index Number
                   assigned by NCDC.    (Station  List:)
                   Range 0001 thru 9999.
                                      B-9

-------
            TAPE
TKPE
           ELEMENT
            NAME
                                                          AND REMAINS
                       Cooperative
                       Network
                       Division Number
                             Cooperative Network Division Number.
                             The division number will always be
                             00 in this HPD data set.
003
12-15
Element-Type
The type  of data element  stored in
this  record.    Range  of values  is
       below.
                                          HPCP Hourly   precipitation  data.
                                               This  is  the  only  data type
                                               reported.   (Includes the daily
                                               total.)
004
16-17
Element-Units
The units and  decimal position  of
the  data  value  for  this  record.
Range of values is listed below.

HI    Hundredths  of  inches.    Data
      stored and observed to the sam
      accuracy.

HT    Data stored as hundredths  of
      inches,  but  is  observed  to
      tenths  only.      (Primarily
      Fischer Porter)

IT    Same description as HT.
005
18-21
Year
This is  the year of  record.   Range
of  values is  generally  from  1948-
current  year   processed.     (Few
stations begin earlier.)
006
22-23
Msnth
Month of record.
01-12.   '
Range of value is
007
24-27
Day
Day of record.  Range of value 0001-
0031.  Days are right justified zero
fined.
                                       B-10

-------
TAPE
FIELD
  TAPE
 RECORD
POSITION
ELEMENT
 NAME
CODE DEFINITIONS AND REMARKS
008
  28-30      Number-
             Reported-Values
                   This denotes the actual number of
                   values.  Range of values  is 2 to 100.

                   NOTE:  A record may contain fewer or
                   more  data  values  than  you  might
                   expect.   A  daily record  of hourly
                   values may contain as  few as 2 data
                   values or as  many as 100 data .values.
                   If a  particular data  value  was  not
                   taken,  there  is  no  entry  for  it.
                   Missing   values  are  reported   as
                   missing.  See Flag 1 definitions.
009
  31-34
Time-Of-Value
This contains the ending time of the
precipitation 0100-2500. The hour is
left justified,  zero filled.   Hour
2500 contains the daily  total, and it
will always  be  the" last value  of a
record.   Midnight  =  2400.    Local
Standard Time in use.
010
  35-40
DATA-VALUE
The actual precipitation data value.
The data value portion  is a six-digit
integer.  Units and decimal position,
if appropriate, are indicated in the
ELEMENT-UNITS field described  in Tape
Field 004.   Range  =  000000-099999.
000000 will  be used  only on the first
hour of each month unless  there is
precipitation  during  that  hour,  in
which case the measured value will be
provided.  On  other days  during the
month without precipitation, no entry
will be made.  099999 indicates that
the DATA-VALUE is unknown.
                                    B-ll

-------
TAPE
  TSPE
 RECCED
posrcicN
ELEMENT
 NAME
                                          CCOB DEFPimCMS AND REMARKS
Oil
  41
FLftGl
The Data Measurement Flag.

FLAG1 Table (Measurement Flag)

A  Accumulated  period  and  amount.
   An  accumulated period indicates
   that the precipitation amount is
   correct, but  the  exact beginning
   and ending  tiroes  are  only known
   to   the   extent   that   the
   precipitation  occurred  sometime
   within  the accumulation  period.
   Begin accumulation data value in
   Tape  Field 010  will  always  be
   099999.   The  examples below do
   not  represent  the  actual  data
   format.     They   are  used   to
   illustrate   the   use  of  data
   measurement Flag 1.

Example  1:    01 0100099999Ab  01
   ISOOOOOOAb.     (Precipitation  on
   the  1st  day of  a  month  was
   ary» ttmi 1 frt-frf   ff tjin   0100  through
   1500 hours.    Total  accumulation
   was .80 inch of precipitation.)

Example 2:  03 0500099999Ab  03 2500
   099999Ib     04   18 00000018 OAb.
   (Accumulation  of  precipitation
   began  on day  03  at  0500 hours.
   Day 03 daily total was incomplete
   ffrre  to  the arirstjmti a-£lj-)cj period
   continuing into the next day.  On
   day   04  at   1800  hours,   the
   accumulation  period  ended.   The
   total   accumulation  was  1.80
   inches of precipitation.)
                                       B-12

-------
TAPE
 TAPE
RECCED
ELEMENT
Oil (continued)
                              Example   3:      (Month   02)    03
                                 0100099999aB  03 2500099999Ib  04
                                 0800000180B     04  2500000180Ib.
                                 (Accumulation   of  precipitation
                                 began  on (Month  02) ,  day 03  at
                                 0100 hours.  Day 03 of (Month 02)
                                 daily total was incomplete due to
                                 the   accumulating   period
                                 continuing  into the next  month.
                                 On  (Month  03)  day 01  at  0100
                                 hours the accumulation continues.
                                 On  (Month  03)  day 04  at  0800
                                 hours,  the  accumulation  period
                                 ended   with    1.80   inches
                                 precipitation  being   recorded.
                                 The daily  total  on the 4th  was
                                 considered incomplete. )

                              D  Deleted  Flag.    (Beginning   and
                                 ending of  a deleted period.)  A
                                 deleted value indicates  that the
                                 original data were received,  but
                                 were   unreadable  or   clearly
                                 recognized as noise.
                                         I  Incomplete  Flag.     This  flag
                                            occurs only in the daily total.

                                         M  Missing  Flag.    (Beginning  and
                                            ending of  a -missing period.)   A
                                            missing flag  indicates  that the
                                            data  were  not received.    This
                                            flag  appears   on  the first  and
                                            last day of each month for which
                                            data  were  not received  or  not
                                 pro

                                                      by NO3C.
                                            Prior, to  1984 a  missing period
                                            was recorded as " OOOOOM" at the
                                            beginning and ending  hours.   If
                                            precipitation occurred during the
                                            last hour of the missing period,
                                            the second M appears with a non-
                                            zero value.

                                            Beginning in  1984  the beginning
                                            and ending hours  of the rnissing
                                            period are recorded  as "099999M".
                                     B-13

-------
TAPE
K i H n
Oil (cont
T2VPE
KJUUUtOJ
POSJ.TJ.Qff
inued)
ELEMENT
NAME

CODE DEFIN3
b (blank)
HQNS AND REMARKS
no Flag
needed.
012
            42
FIAG2
                                          This  flag  not used  at  this time.
                                          The field will always be blank.
EXAMPLES OF K3W FUGS ARE USED

This precipitation accumulation from list month day 02 to 2nd month day 04.
         MuiLh.

         01


         02
                      Day

                      0002


                      0001

                      0004
          Hoar      Data Value

          0500      000030bb
          1000      099999Ab  Accumulation begins
          2500      000030333  Incomplete daily total
          0100      099999Ab  Accumulation continues
          2500      099999333  Incomplete daily total
          1400      000390Ab  Accumulation ends
          2500      000390333  Daily total
Accumulated precipitation for r monthly only.

         01           0002
                                           099999Ab  Accumulation begins
                                           099999Ib  Incomplete daily total
                                           00032QAb  At ,* •* jiwla*"inn ends
                                 1000
                                 2500
                      0031       2400
                                 2500      000320333  Incomplete daily total

Accumulated, deleted, and missing precipitation data through months 01 and 02.

         01
         02
         02
                      0001
                      0002

                      0001
                      0028
          0100
          1100
          2500
          0100
          1400
          1500
          2500
          1300
          1400
          2400
          2500
                                            OOOOOObb  First
                                            099999Ab
d of the month
  begins
                                           099999333  Incomplete daily total
                                           099999Ab  Accumulation continues
                                           00063 OAb  Accumulation ends
                                           099999Db  Deleted data begins
                                           000630333  Incomplete daily total
                                           099999Db  Deleted data ends
                                           099999Mb  Missing data
                                           099999Mb  Missing data
                                           099999333 ' Incomplete daily total
Required precipitation charts  or forms  were never received at NCEC.

         01            0001       0100       099999Mb  Missing data
                                  2500       099999Mb
                       0031       0100       099999Mb
                                  2500       099999Mb
         02            0001       0100       099999Mb
                                       B-14

-------
                                 2500      099999Mb
                      0028       0100      099999Mb
                                 2500      099999Mb
NOTE:  blank
                                      B-15

-------
                                SAMPLE RHJUWJ
                          (As seen from a tape dump)
(column             1         2          3'4         5          6
 scale)    123456789012345678901234567890123456789012345678901234567890

(data)     0058HPD17001100HPCEHri9810400060020400000012bb2500000012bb

(The symbol  'b1 denotes a blank)
DCMP
1-4
5-7

8-15


16-19

20-21

22-25

26-27

28-31


32-34


35-38


39-44

45

46

47-50

51-36

57

53
 •KJUUUMJ
POCaJL'JL'JLCN
  1-3

  4-11


  12-15

  16-17

  18-21

 • 22-23

  24-37


  28-30


  31-34


  35-40

  41

  42

  43-46

  47-52

  53

  54
               0058
HPD

17001100


HPCP

HE

1981

04

0006


002


0400


000012

b

b

2500

000012

b

b
Record  control   word  used  by  the
operating  system.      (Contains  the
total  number  of  characters  in  the
record  -  not   available   to  user
programs.)

RECORD-TYPE

STATION-ID  for   state   17,  station
0011, DI7 00

ELEMENT—TYPE

ELEMENT-UNITS

YEAR

ttCNTH

DAY  OF   THE  MONTH   (Day  06  right
justified)
NuM-VALUES;
follow
two   data  entries  to
TIME-OF-VALDES                X
(Precip from 03:01 to 04:00)  X
DATA-VALUE.

FIAG-1

FIAG-2

TIME-OF-VALUE  (daily total)

DATA-VALUE

FLAG-1

FLAG-2
                X FIRST
                X DATA
                X ENTRY
                X
                X

                X
                X
                X SECOND
                X DATA
                X ENTRY
                X
                X
 In this  case,  hours midnight-0300 and 0400-2400  resorted no precipitation.

                                       B-16

-------
                                  APPENDIX A
                        FIXED DATA. S'lMJClUKE (TD-3240)


Definitions  and  general  information  abovrt Hourly Precipitation data are
contained in the basic documentation used to describe  the format of variable
length records..

1.  File (NCDC Fixed Length  (User Services))

    A.  Physical Characteristics

        Data in this file are retained in chronological order by station.

    B.  COBOL or FORERAN Data Descriptions

        The following statements nay be used to read a logical record in COBOL
        or FORERAN for fixed length.

        (1)   Typical ANSI COBOL

             FD   INDATA
                  LABEL RECORDS ARE STANDARD
                  RECORD KDDE F
                  BLOCK CONTAINS 6300 CHARACTERS
                  DATA RECORD IS DATA-RECORD

             01   DATA-RECORD
                  02 KECCOTHTYPE              PIC X(3)
                  02 STATION-ID               PIC X(8)
                  02 ELEMENT-TYPE             PIC X(4)
                  02 ELEMENT-ONUS            PIC XX
                  02 YEAR                     PIC 9(4)
                  02 MDNTH                    PIC 99
                  02 DAY                      PIC 9(4)
                  02 NUMBER-VALUES            PIC 9(3)
                  02 HOUR                     PIC 9(4)
                  02 DATA-VALUE               PIC 9(6)
                  02 FLAG-1                   PIC X
                  02 FIAG-2                   PIC X
                                      B-17

-------
        (2)   Typical  FORTRAN 77 Data and File Description

             DEFINE FILE 10 {ANSI, FB,  42,6300)
             CHARACTERS RECTYP
             CHARACTER*8 STNID
             CHARACTER*4 ELMTYP
             CHARACTER*2 EUNITS
             CHARACTER*! FLAG1, FUG2

             READ (10,  20,  END-999)  RECTYP, STNID, ELMTYP,  EUNITS, IYEAR, IMON,
             IDAY,  NUMVAL,  IHR, IVALUE, FLAG1, FLAG2

             20 FORMAT (A3, AS, A4,  A2, 14,  12,  14,  13,  14,  16,  2A1)


             NOTE:   If you do not have  FORTRAN 77,  you  can  read the  character
                    data described above Into Integer variables.


1.   RECORD

    A.   Physical Characteristics

    Each logical record  contains  one station's specific occurrence  for a one
    hour time interval.  The record consists of an identification portion, and
    a data  portion.    The identification  portion   identifies  the  observing
    station, element  codes, year, month, and day.   The data portion contains one
    hourly  time interval  data value  and flags.    The data portion   is  not
    repeated.

         Fixed,Length (User Services) Tapes are structured as follows:
             Data Length
             Blocked
             Media
             Parity
             Label
             File
             Density
FIXED 42 characters
6300 characters
ASCII or EBCDIC Modes - 9 Track
Odd
ANSI standard label'ed (ASCII only)  or unlabeled
1 file per tape
800, 1600, or 6250 BPI
                                     B-18

-------
                         TOPE
TOPE FEEOD	RHULHU PTfiTTTCH	VTftmfP

 001                    001-003              RBJ-JPD TYPE
 002                    004-011         '     STATION ID
 003                    012-015              METH3ROLOGICAL ELEMENT TYPE
 004                    016-017              MET.  ELEMENT MEASUREMENT GNUS
 005                    018-021              YEAR
 006                    022-023              MCNIH
 007                    024-027              DAY (Right justified zero  filled)
 008                    028-030              NCMBER OF DATA (SOUPS TfffiT POLLCW

 009                    031-034              HDOR (Left justified zero  filled)
 010                    035-040              VALUE OF METEOROLOGICAL ELEMENT
 Oil                    041                  MEASUREMENT FLAG 1
 012                    042                  QUALITY FLAG 2
                                     B-19

-------
    B.  FORMAT (FIXED RECORD)

    1.  The first  eight tape fields,  the ID PORTION of the record,  describe
        the characteristics  of the  entire record.    The DATA PORTION  of the
        record contains  information about each element value reported,   this
        portion contains only one hourly occurrence.

        Each logical record  is fixed with 42 characters.   Each logical record
        contains a station's hourly  time  interval for the  specified day.  The
        form of a record is:
                       ID PORTION (30 characters)  Fixed Length
TAPE
FIELD
REG
•jYp
XXX
001
STATION
ID
xxxxxxxx
002
ELEM
TYPE
xxxx
003
UMT
XX
004
*EAR
XXXX
005.
»EN
XX
006
DAY
XXXX
007
NO.
VAL
XXX
008
                    DATA PORTION (12 Character Data Portion occurs only 1 time
                                 as indicated in Field 008)
TAPE
FIELD

HRMN(

XXXX
105
DATA
ELEM
VALUE
xxxxxx
106

FL
1
X
107

FL
2
X
108
                                      B-20

-------
                                FIXED
                            SAMPLE
                      (As seai trim a tap* dump)
blank
(column 123456
scale) 123456789012345678901234567890123456789012345678901234567890
(data) HPD17001100HPCPHI19810400060010400000012bb
(The symbol
O3EEMN
1-3
4-11
12-15
16-17
18-21
22-23
24-27
28-30
31-34
V
35-40
41
42
'b' denotes
• IfTw | r1 Jf 1 ^^
HPD
17001100
HPCP
HI
1981
04
0006
001
q400
000012
b
b
a blank)
WHUTW
KEMUMa
KEODRD-TXPE
SranCN-ID for state 17, station 0011, DIV 00
ELEMENT-T5CPE
ELEMENT-aNTTS
YEAR
MCNTH (April)
DAY OF THE JENIH (Day 06 right justified)
NCM-V&IDES; One data entry follows
TIME-OF-VAIDES
(Precip from 03:01 to 04:00)
DATA-VAIDE
FLAG-1
FLAG-2
                                  B-21

-------

-------
              APPENDIX C





SAMPLE MESOPAC H INPUT AND OUTPUT FILES

-------

-------
SAMPLE MESOPAC H INPUT FILE (PACJNP)
                C-l

-------
NESOPAC TEST CASE - 25 hr simulation skipping 1 day 1/2/88-1/3/88
   88    2   25    6    3    5   19
   22   22    10000.
    TT24FOOOO
 1511611 912121212 1101010101212121212
 11111111 11212 1 1 1 111101112121212
1111 111111111111 111111112121212
111111 1101010 51111119 9111112121212
 5 1 1 1 110 1 1 1 1 1 1 1 1 9 9 11212121212
 551111111991199 9111212121212
11 5 5 1 1 11010 1999999 1111212121212
111111 1 510101010 19999 911111212121212
11 5 510 51010101010 9999 911111212121212
12 5 510 51010101010 999 91111111212121212
12 5 5 5 51010101010 9999 611111212121212
121212 5 51010101010 9 9 91111111212121212
1212121212 51010 99 99 91111121212121212
1212121212 55999 99 11111121212121212
121212121212 5599 99 11112121212121212
121212121212 5599 911 112121212121212
12121212121212 559 915 912121212121212
1212121212121212 59 99 91212121212121212
121212121212 5 512 9 912121212121212121212
12121212121212 5 512121212121212121212121212
12121212121212121212121212121212121212121212
12121212121212121212121212121212121212121212
0000000001
12835
12836
12839
12842
12843
12844
72201
72203
72210
080616
080845
081654
083186
084091
084570
084797
085663
085895
086323
086657
086988
087293
087859
088780
089010
089184
089219
089525
0.3
1.4
16.0
-6.1
14.7
17.7
1*6
17.7
-4.7
11.8
17.8
9.8
0.3
14.0
1.4
-0.1
16.0
3.1
13.6
6.0
14.5
12.8
16.1
10.6
14.1
5.7
14.4
17.7
19.3 26.58 81.87 5. 11
-3.2 24.55 81.75 5. 12
10.7 25.80 80.30 5. 13
34.8 27.97 82.53 5. 14
31.2 27.65 80.42 5. 15
20.4 26.68 80.12 5. 16
-3.4 24.53 81.73 5. 17
20.3 26.67 80.12 5. 18
31.5 27.68 82.38 5. 19
20.6
17.0
21.2
19.4
7.3
-3.2
35.2
10.7
22.1
16.6
21.5
12.1
23.8
25.2
10.1
10.3
24.9
31.0
20.5
6.1 0.1
7.0 0.1
7.0 0.1
6.7 0.1
6.7 0.1
6.7 0.1






















                                                           C-2

-------
SAMPLE MESOPAC II OUTPUT FILE (PACLST)
                C-3

-------

-------
RUNTIME CALL NO.:        1   DATE: 06/15/93   TIME: 12:32:26.06

                                               MESOPAC    VERSION   2.40    LEVEL 930430
MESOPAC TEST CASE - 25 hr simulation skipping 1 day  1/2/88-1/3/88

YEAR OF RUN (NYR) » 88
JULIAN DAY OF START OF RUN (IDYSTR) *   2
NUMBER OF HOURS IN RUN (IHRMAX) *  25
NUMBER OF SURFACE STATIONS (NSSTA) *    6
NUMBER OF RAUINSONOE STATIONS (NUSTA) «    3
NUMBER OF PRECIPITATION STATIONS (NPSTA) >   19
BASE TIME ZONE (IBTZ) «  5 (E.S.T.)

GRID INFORMATION:

    GRID SIZE IN X (VEST-EAST) DIRECTION (IMAX) »  22
    GRID SIZE IN Y (SOUTH-NORTH) DIRECTION (JMAX) »  22
    GRID SPACINC (DGXID) >    10000.0 (M)

OUTPUT OPTIONS:

    GENERATED METEOROLOGICAL FIELDS OUTPUT TO TAPE ? (LSAVE) ' T
    METEOROLOGICAL FIELDS PRINTED ? (LPRINT) * T
    PRINT FREQUENCY (IPRINF) »   24 (HOURS)
    INPUT MET. DATA I INTERMEDIATE COMPUTED PARAMETERS PRINTED ? (LOB) » F
    TIME PERIOD FOR WHICH INPUT MET. DATA t INTERMEDIATE PARAMETERS PRINTED (NOY1,NHR1,NOY2,NHR2) > DAY   0  HR   0  TO DAY    0  HR  0

                                               MESOPAC    VERSION  2.40   LEVEL 930430


DEFAULT OVERRIDE OPTIONS (0*NO,1*YES)
    USER INPUT SURFACE WIND SPEED MEASUREMENT HT (ZM) IOPTSO) * 0
    USER INPUT VON (CARMAN CONSTANT (VK) IOPTS(2) * 0
    USER INPUT FRICTION VELOCITY CONSTANTS (GAMMA,CONSTA) IOPTS(3) * 0
    USER INPUT MIXING HT CONSTANTS (CONSTB,CONSTE,DELTZ,OPTM1N.CONSTN) IOPTS(4) = 0
    USER INPUT WIND FIELD VARIABLES (RADIUS,ILUF.IUUF) IOPTS(S) = 0
    USER INPUT SURFACE ROUGHNESS LENGTHS (ZO) AT EACH GRID POINT  IOPTS(6) * 0
    HEAT FLUX CORRECTED USING MIXING HT DATA ? IOPTS(7) » 0
    USER INPUT FACTORS (BETA) FOR RADIATION REDUCTION DUE TO CLOU) COVER  IOPTS(8) * 0
    USER INPUT LAND USE HEAT FLUX CONSTANTS (RADC) IOPTS(9) > 0
    RUN NOT STARTING AT BEGINNING OF SURFACE AND UPPER AIR DATA FILES ? IOPTS(10) * 1

SURFACE WIND SPEED MEASUREMENT HEIGHT (ZM) *  10.0 (M)

VON KARMAN CONSTANT (VK) * 0.400

FRICTION VELOCITY CONSTANTS:
    GAMMA *    4.7
    CONSTA > 1100.0

MIXING HEIGHT CONSTANTS:
    NEUTRAL STABILITY MIXING HT CONSTANT (CONSTB) =   1.41
    CONVECTIVE MIXING HT CONSTANT (CONSTE) *   0.15
    DEPTH OF LAYER THROUGH WHICH POTENTIAL TEMP. GRADIENT IS CALCULATED (DELTZ) =•  200.0  (M)
    MINIMUM STABLE POTENTIAL TEMP. GRADIENT (DPTMIN) =  0.0010 (DEC K/M)
    STABLE MECHANICAL MIXING HT CONSTANT (CONSTN) =  2400.0

WIND FIELD VARIABLES:
    SCAN RADIUS (RADIUS) =   99.0 (GRID UNITS)
                                                          C-4

-------
    CODE FOR LOWER-LEVEL WIND FIELD (ILWF) s  2 (SEE BELOW)
    CODE FOR UPPER-LEVEL WIND FIELD (IUUF) «  4 (SEE BELOW)

         WIND FIELD CODE (ILUF,IUUF)

                    1  -  SURFACE WINDS (CD144 DATA)
                    2  -  WINDS AVERAGED THROUGH LAYER FROM GROUND TO MIXING HT (C014A.TDF5600 DATA)
                    3  -  WINDS AVERAGED THROUGH LAYER FROM MIXING NT TO 850 MB (TDF5600 DATA)
                    4  -  WINDS AVERAGED THROUGH LAYER FROM MIXING HT TO 700 MB (TOF5600 DATA)
                    5  -  WINDS AVERAGED THROUGH LAYER FROM NIXING HT TO 500 MB (TDFS600 DATA)
                    6  •  850 MB WINDS (TDF5600 DATA)
                    7  -  700 MB WINDS (TOFS600 DATA)
                    8  -  500 MB WINDS (TDF5600 DATA)

REDUCTION FACTORS OF SOLAR RADIATION DUE TO CLOUD COVER:
    CLOUD COVER (TENTHS)    0      1      2      3      4      5      6      7.8      9     10
    BETA                  1.000  0.910  0.840  0.790  0.750  0.720  0.680  0.620  0.530  0.410  0.230

                                               MESOPAC    VERSION  2.40   LEVEL 930430
LAND USE CATEGORIES FOR EACH GRID POINT

Multiply all values by 10 *•   0
22 I
21 I
20 I
I
19 I
I
18 I
I
17 I
I
16 I
I
15 I
I
14 I
I
13 I
I
12 I
I
11 I
10 I
9 :
8 I
7 I
6 I
5 1
1
1
11
+
11
+
5
+
5
+
11
+
11
+
11
*
12
+
12
+
12
12
12
12
12
12
12
5
1
11
+
11
+
1
+
5
+
5
»
11
+
5
+
5
+
5
+
12
+
12
12
12
12
12
12
1
1
1
+
11
+
" 1
+
1
+
5
+
11
+
5
+
5
»
5
+
12
+
12
12
12
12
12
12
1
1
1
•»
1
+
1
#
1
+
1
+
1
+
10
*
10
+
5
+
5
12
12
12
12
12
12
6
1
1
+
10
•»•
1
+
1
+
1
*
5
+
5
+
5
+
5
*
5
+
12
12
+
12
12
12
12
1
1
1
+
10
»
10
*
1
*
1
+
10
+
10
+
10
+
10
+
10
5
5
12
12
12
12
1
1
1
+
10
+
1
+
1
*
10
•
10
+
10
•V
10
*
10
»
10
10
5
+
5
5
12
12
9
1
1
+
5
+
1
+
1
+
10
+
10
+
10
*
10
»
10
+
10
10
9
5
5
5
12
12
1
1
•»
1
*
1
•»
1
»
1
*
10
+
10
•*
10
+
10
+
10
+
9
9
9
9
5
5
12
12
1
+
1
+
1
+
9
+
9
+
1
+
10
»
10
»
10
»
10
9
9
9
9
9
9
12
12
1
+
1
*
1
»
9
»
9
+
9
*
9
+
9
*
9
»
9
9
9
9
9
9
9
12
1
1
+
1
*
1
+
1
*
9
+
9
•*
9
*
9
*
9
+
9
9
9
9
9
9
9
1
1
1
+
1
»
1
+
1
»
9
+
9
+
9
*
9
+
9
+
9
9
9
9
1
1
9
10
1
1
*
1
+
1
+
9
*
9
+
9
*
9
*
9
*
9
*
9
9
1
1
1
5
9
10
1
1
>
9
+
9
+
9
#
9
*
9
+
9
*
11
+
6
+
11
11
11
11
1
9
+
12
10
11
11
+
9
+
9
+
9
+
1
+
11
*
11
*
11
*
11
+
11
11
11
12
12
12
12
10
10
11
+
11
»
1
+
11
+
11
*
11
+
11
+
11
+
11
*
11
12
12
+
12
12
+
12
+
12
12
11
11
»
11
+
12
+
12
+
12
+
12
+
12
»
12
+
12
+
12
12
12
12
12
12
12
12
12
12
+
12
+
12
+
12
»
12
+
12
+
12
*
12
+
12
+
12
12
12
12
12
12
*
12
12
12
12
*
12
+
12
+
12
+
12
*
12
*
12
*
12
4-
12
+
12
12
12
12
12
12
+
12
12 12
12 12
12 12
» +
12 12
* *
12 12
» +
12 12
* +
12 12
+ +
12 12
* +
12 12
+ *•
12 12
* *
12 12
* +
12 12
12 12
12 12
12 12
12 12
12 12
12 12
                                                          C-5

-------
4 12
3 12
2 12
1 12

• 1
12 12
12 12
12 12
12 12

2 3
12 12 12
12 12 12
12 12 12
12 12 12






SURFACE ROUGHNESS LENGTH (N)
Multiply all values by 10 "
22 I 200 1000 200 200
21 I 200
20 I 1000
19 I 1000
18 I 1000
17 I 1000
16 I 1000
15 I 1000
14 I 1000
13 I 0
12 I 0
11 I 0
10 I 0
9 I 0
8 I 0
7 1 0
6 I 0
5 I 0
I +
4 I 0
I +
3 I 0
I +
2 I 0
200
1000
1000
200
1000
1000
1&00
1000
1000
1000
0
0
0
0
0
0
0
+
0
+ ~
0
+
0
200
200
1000
200
200
1000
1000
1000
1000
1000
0
0
0
0
0
0
0
*
0
+
0
+
0
200
200
200
200
200
200
200
SOO
500
1000
1000
0
0
0
0
0
0
+
0
+
0
+
0
5
12
5 12
5 5
12 12 12
12 12 12






AT EACH GRID
-3
100 200
200
200
SOO
200
200
200
1000
1000
1000
1000
1000
0
0
0
0
0
0
+
0
*
0
+
0
200
200
500
500
200
200
SOO
SOO
500
500
SOO
1000
1000
0
0
0
0
+
0
+
0
+
0
999
12 12 12
12 12 12
12 12 12

10 11
POINT
200
200
200
500
200
200
SOO
500
500
500
SOO
SOO
SOO
1000
1000
1000
0
0
+
1000
*
0
+
0

12 12 12
12 12 12
12 12 12
12 12 12


12 12 12
12 12 12
12 12 12
12 12 12


12 12 12
12 12 12
12 12 12
12 12 12


12 13 14 15 16 17 18 19 20 21
HESOPAC VERSION 2.40 LEVEL 930430
200
200
200
1000
200
200
500
500
500
500
500
500
500
200
1000
1000
1000
0
+
1000
*
1000
+
0
0
200
200
200
200
200
200
500
500
500
500
500
200
200
200
200
1000
1000
+
0
+
1000
+
0
0
0
200
200
200
200
200
200
500
500
500
500
200
200
200
200
200
200
*
200
+
0
+
0
0
0
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
+
200
+
0
*
0
0
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
»
200
+
0
+
0
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
+
0
+
0
+
0
500
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
1000
200
+
0
+
0
+
0
12
12
12
12

22
500
200
200
200
200
200
200
200
200
1000
100
1000
1000
1000
1000
200
200
0
•f
0
+
0
+
0

SOO
1000
1000
200
200
200
200
1000
1000
1000
1000
1000
1000
1000
0
0
0
0
•f
0
+
0
+
0

SOO
500
1000
1000
200
1000
1000.
1000
1000
1000
1000
1000
0
0
0
0
0
0
+
0
+
0
•*•
0

0
1000
1000
1000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
+
0
+
0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
+ +
0 0
+ +
0 0
0 0
C-6

-------
I
1 I


SURFACE
0

1
ooooooooooooooooooo

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ROUGHNESS LENGTH (M) AT EACH GRID POINT
Multiply all
22 I
1
21 I
1
20 I
I
19 t
I
18 I
I
17 I
I
16 I
I
15 I
I
14 I
I
13 1
I
12 I
I
11 I
I
10 I
I
9 I
I
8 I
I
7 I
I
6 t
I
5 I
I
4 I
t
3 I
I
2 I
I
1 1
I
0
*
0
+
0
*
0
+
0
+
0
*
0
*
0
+
0
+
0
+
0
+
0
+
0
*
0
+
0
*
0
+
0
t
0
+
0
+
0
+
0
•f
0
*
values by 10 ** -3
0
+
0
*
0
*
0
+
0
+
0
*
0
*
0
+
0
*
0
•».
0
+
0
«•*
0
+
0
+
0
+
0
+
0
+
0
+
0
+
0
+
0
+
0
-*•
21    22





                                         HESOPAC    VERSION  2.40   LEVEL 930430
                                                   C-7

-------
LAND USE HEAT FLUX CONSTANTS (RADC) AT EACH GRID POINT

Multiply all values by 10 **  -4

22 I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   I+     +     +     +     +     +     +     +     +      ***********
21 I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   I+*     +     +     +     +     +     +     +      +     »*     +      *     +     +     +     »»     +
20 I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   I+*     +     **»**»      +     **»      +     +     +     »*     +     +
19 1 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   I»     +     +     +     »     +     +     +     »»     +     »     +      +     +     »     +     +     +     *
18 I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   I+»     +     +     »»     +     ***»     +     *»     +     +     +     +     *     +
17 I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   I+     +     +     **     +     +     *     +      +     *»*      +     +     +     +     +     *     +
16 I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   I    +     *     **     +     +     +     **»*»     +      *»*     +     »**   +
IS I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000,  3000   3000  3000  3000  3000  3000  3000  3000
   I+»     +     +     *     +     *     +     +      +     +     +     +      +     +     +     +     +     +     +
1* I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   I*»     +     +     »     +     »*     +      »*     +     +      *»     +     *»*     +
13 I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   I»     +     +     +     +     +     +     +     »»     +     +     »      +     +     +     +     »     +     +
12 I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   I+     +     +     +     +     +     +     +     +      +     +     +     +      +     +     +     +     +     +     +
11 I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   I+     +     +     *»     +     *     +     +      *     +     »     +      *     +     +     +     *     +     +
10 1 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   I+»     +     *     +     »     +     +     +      +     *     +     +      +     +     +     +     *     +     +
 9 I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   1+     +     +     +     *     +     +     +     +      **     +     +      +     +     +     +     +     *     +
 8 I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   I    »   v+     +     +     +     *     +     +     +      +     ***      +     +     +     »     +     +     +
 7 I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   I+     +     +     +     +     +     *     +     -f*     +     +     *      +     +     'f     +     +     *-*>
 6 I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   I+     +     +     +     +     +     »     +     +      +     +     +     +      +     +     +     +     »     +     +
 5 I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   j+     +     -f     +     +     +     +     +     +      +     +     *     +      +     +     +     +     +     +     -f
 4 I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   I+     +     +     +     +     +     **     +      +     +     +     *      +     +     +     +     *     +     -*>
 3 I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   I+     +     +     +     »     +     +     +     +      +     *»     +      **     +     +     »     +     +
 2 I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   I+     +     +     +     +     +     +     +     +      +     +     +'+      +     +     +     +     +     +     +
 1 I 3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000  3000   3000  3000  3000  3000  3000  3000  3000
   I+     +     +     +     +     +     +     +     +      +     +     +     +      +     +     +     +     +     +     +

        1     2     3     4     5     6     7     3     9    10    11    12     13     U    15    16    17    18    19    20

LAND USE HEAT  FLUX CONSTANTS (RAOC) AT EACH GRID POINT

Multiply all values by 10 **  -4

22 I 3000  3000
   I    +     +
21 I 3000  3000
   I    +     +
20 I 3000  3000

                                                           C-8

-------
19
18

17
16
15
14
13
12

11
10
9
8

7
6
5
4
3
2
1
3000
3000
*
3000
3000
3000
3000
3000
3000
*
3000
3000
3000
3000
*
3000
3000
3000
3000
3000
3000
3000
+
*
3000
3000
*
3000
3000
3000
3000
3000
3000
*
3000
3000
3000
3000
+
3000
3000
3000
3000
JOOO
3000
3000
•*•
       21
22
                                               HESOPAC
                                             VERSION  2.40   LEVEL 930430
                                            •••••«•«••««••«•«•>••••«•«««««
SURFACE METEOROLOGICAL STATIONS
STATION   C0144 ID
           GRID COORDINATES         LATITUDE    LONGITUDE   TIME ZONE
            X             T         (DEGREES)   (DEGREES)                LOGICAL
       (GRID UNITS)   (GRID UNITS)                                        UNIT
1
2
3
4
5
6
12835
12836
12839
12842
12843
12844
0.30
1.40
16.00
-6.10
14.70
17.70
19.30
-3.20
10.70
34.80
31.20
20.40
26.580
24.550
25.800
27.970
27.650
26.680
81.870
81.750
80.300
82.530
80.420
80.120
5.
5.
5.
5.
5.
5.
11
12
13
14
15
16
Anon.
Ht.
(m)
6.10
7.00
7.00
6.70
6.70
6.70
Surface
Roughness

-------
STATION   STATION 10
    GRID COORDINATES         LATITUDE    LONGITUDE
     X             Y         (DEGREES)   (DEGREES)
(GRID UNITS)  (GRID UNITS)
                                                                            TIME  ZONE
                                                LOGICAL
                                                 UNIT
            72201
            72203
            72210
    1.60
   17.70
   -4.70
-3.40
20.30
31.50
24.530
26.670
27.680
81.730
80.120
82.380
5.
5.
5.
17
18
19
PRECIPITATION STATIONS
STATION   TD3240 10
    GRID COORDINATES
     X             Y
(GRID UNITS)  (GRID UNITS)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
80616
80845
81654
83186
84091
84570
84797
85663
85895
86323
86657
OAOtUt
OOTOO
87293
87859
88780
89010
89184
89219
39525
11.80
17.80
9.80
0.30
14.00
1.40
-0.10
16.00
8.10
13.60
6.00
14.50
12.80
16.10
10.60
14.10
5.70
14.40
17.70
20.60
17.00
21.20
19.40
7.30
-3.20
35.20
10.70
22.10
16.60
21.50
12.10
23.80
25.20
10.10
10.30
24.90
31.00
20.50
HEADER RECORDS FROM UPPER AIR DATA FILE:    1
 ISYRU *           88  IBJULU *            1  IBHRU
 IEYRU =•           88  IEJULU *          366  IEHRU
 PTOP»  '   500.000
 LHT =  "F  LTEHP =  F  LWD -  F  tUS *  f
                                           0
                                          12
HEADER RECORDS FROM UPPER AIR DATA FILE:    2
 IBYRU =           38  IBJULU *            1  IBHRU
 IEYRU =•           38  IEJULU *          366  IEHRU
 PTOP =    . 500.000          .
 LHT .»  F  tTEMP *' f  LUD »" F '\WS »  F'
                                           0
                                          12
HEADER RECORDS FROM UPPER AIR DATA FILE:
 IBYRU =           38  IBJULU *
 IEYRU =           38  IEJULU *
 PTOP =     500.000
 LHT =  F  LTENP =  F  LUO =  F  LUS
    1  IBHRU
  366  IEHRU
                                           0
                                          12
                                               HESOPAC    VERSION   2.40    LEVEL 930430
                                                          C-10

-------
STATION NUMBER OF CLOSEST SURFACE MET. STATION TO EACH GRID POINT

Multiply all values by 10 *•  -1
22 I
I
21 I
I
20 I
I
19 I
I
18 I
I
17 I
I
16 I
I
15 I
I
14 I
I
13 I
I
12 I
I
11 I
I
10 I
I
9 I
I
8 I
I
7 I
I
6 I
I
S I
I
4 I
I
3 I
I
2 I
t
1 I
I


10

10

10

10

10

10

10

10

10

10

10

10

10

10

20

20

20

20

20

20

20
+
20
-*
1

10

10

10

10

10

10

10

10

10

10

10

10

10

10

20

20

20

20

20

20

20
+
20
.*
2

10

10

10

10

10

10

10

10

10

10

10

10

10

10

20

20

20

20

20

20

20
+
20
," * '
3

10

10

10

10

10

10

10

10

10

10

10

10

10

10

20

20

20

20

20

20

20
+
20
.-*
4
10

10

10

10

10

10

10

10

10

10

10

10

10

30

30

20

20

20

20

20

20
+
20
. *
5
10

10

10

10

10

10

10

10

10

10

10

30

30

30

30

30

20

20

20

20

20
+
20
*
6
10

10

10

10

10

10

10

10

10

10

30

30

30

30

30

30

30

20

20

20

20
+
20
'*
7
10

10

10

10

10

10

10

10

30

30

30

30

30

30

30

30

30

30

20

2O

20
*
20
*
8
60

60

60

10

10

10

30

30

30

30

30

30

30

30

30

30

30

30

30

20

20
+
20
*
9
60

60

60

60

60

60

30

30

30

30

30

30

30

30

30

30

30

30

30

30

20
+
20
*
10
60

60

60

60

60

60

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30
+
20
*
11
60

60

60

60

60

60

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30
+
30
*
12
60

60

60

60

60

60

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30
*
30
*
13
MESOPAC
60

60

60

60

60

60

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30
+
30
*
14
60

60

60

60

60

60

60

30

30

30

30

30

30

30

30

30

30

30

30

30

30
+
30
*
15
60

60

60

60

60

60

60

30

30

30

30

30

30

30

30

30

30

30

30

30

30
4-
30
*
16
VERSION 2
60

60

60

60

60

60

60

30

30

30

30

30

30

30

30

30

30

30

30

30

30
+
30
*
17
.40
60

60

60

60

60

60

60

30

30

30

30

30

30

30

30

30

30

30

30

30

30
»
30
*
18
60

60

60

60

60

60

60

30

30

30

30

30

30

30

30

30

30

30

30

30

30
+
30
*
19
LEVEL
60

60

60

60

60

60

60

60

30

30

30

30

30

30

30

30

30

30

30

30

30
+
30
*
20
60

60

60

60

60

60

60

60

30

30

30

30

30

30

30

30

30

30

30

30

30
*
30
*
21
930430
60

60

60

60

60

60

60

60

30

30

30

30

30

30

30

30

30

30

30

30

30
*
30
*
22
•»*•«•««««»»• ««««.«« ««««««« «««««•«•»•«««««
STATION NUMBER OF CLOSEST UPPER AIR STATION TO EACH GRID POINT
Multiply all values by 10 •*  -1

22  1 30  30  30  30  20  20  20  20  20  20  20  20  20  20  20  20  20  20  20  20  20  20
    I»*   +   +   +   +   +   +   +   »   +   *   +   »   +   »   +   »   +   »   +   »

                                                         C-ll

-------
21 I 30
20 I 30
19 I 30
18 I 30
17 1 30
16 I 30
15 I 30
K I 10
13 I 10
12 I 10
11 I 10
10 I 10
9 I 10
8 I 10
7 I 10
6 I 10
5 I 10
4 I 10
3 I 10
2 I 10
1 I 10

30 30 30
30 30 20
30 30 20
30 20 20
30 20 20
20 20 20
20 20 20
20 20 20
10 20 20
10 10 10
10 10 10
10 10 10
10 10 10
10 10 10
10 10 10
10 10 10
10 10 10
10 10 10
10 10 10
10 10 10
10 10 10

20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10
10
10
10
10
10

20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10
10
10
10
10

20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10
10
10
10
10

1234567
HEADER RECORDS F90M PRECIPITATION
NUMBER OF PRECIPITATION STATIONS
STATION STATION
NUMBER ID
1 30616
2 30845
3 31654
4 33186
5 34091
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10
10
10
10

20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10
10
10

20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10
10
10

8 9 10
DATA FILE
« 19
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10
10

11
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10

12
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10

13
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10

14
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10

15
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10

16
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10

17
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10

18
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10

19
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10

20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20

21 22
C-12

-------
6
7
8
9
10
11
12
13
14
15
16
17
18
19

84570
84797
85663
85895
86323
86657
86988
87293
87859
88780
89010
89184
89219
89525
NESOPAC VERSION 2.40 LEVEL 930430
STATION NUMBER OF CLOSEST PRECIPITATION STATION TO EACH GRID POINT

Multiply all values by 10 •*   0

22 I  4   4  11  11  11  11   9   9   9   3   3   1  13  13  13   19   19  19  19  19  19  19
   I**********************
21 I  4   4  11  11  11  11   11   9331   1   1   1  19   19   19  19  19  19  19  19
   I+   +   +   +   +   *******   +   +   **»   +   **»*
20 I  4   4   4  11  11  11   11   933   1   1   1   1  19   19   19  19  19  19  19  19
   I+   +   +   +   +   *   +   »   +   »   +   +   +   **»    +   +   +   +   +   »
19 I  4   4   4  11  11  11   11   3   3   3   1   1   1  10  10   19   19  19  19  19  19  19
   t+   +   »   +   +   +   +   +   »   +   +   +   +   +   +   *»*   +   **   +
18 I  4   4   4   4  11  11   11   3   3   1   1  10  10  10  10   2    2   2   2   2   2   2
   I»   +   +   +   +   +   *   +   +   »   +   +   +   +   +   +    *   +   +   +   +   +
17 I  4   4   4   4  11  11   11   3   3   10  10  10  10  10  10   2    2   2   2   2   2   2
   I  +   + „ +   +   +   +   4.*   +   +   *   +   +   +   +   +    +   +   +   +   **
16 I  4   4   4   4  11  11   11   3   10   10  10  10  10  10  10   2    2   2   2   2   2   2
   1+   +   +   +   *   +   *   +   +   +   *   +   *   +   +   +    *   +   +   +   *   +
15 I  4   4   4   4   4  11   15   15   10   10  10  10  10  10  10   2    2   2   2   2   2   2

14 I  4   4   4   4  15  15   15   15   15   15  10  10  12  12  12   12    2   2   2   2   2   2

13 I  4   4   4  15  15  15   15   15   15   15  IS  12  12  12  12   12    8   8   8   2   2   2
   I+   +   +   +   +   +   +   +   +   +   +   +   +   +   +   +    +   +   +   +   +   +
12 I  4   4  15  15  15  15   15   15   15   15  15  15  12  12  12   8    8   8   8   8   8   8
   I+   +   +   +   +   +   +   +   #   +   +   +   +   +   *****   +   *   +
11 I  4   4  15  15  15  15   15   15   15   15  IS  15  16  16   8   8    8   8   8   8   8   8
   1+   +   +   *   +   +   +   +   +   *   +   +   +   +   +   +    +   +   +   +   +   +
10 I  4  15  15  15  15  15   15   15   15   15  15  15  16  16  16   8    8   8   8   8   8   8

 9 I  15  15  15  15  15  15   15   15   15   15  15  15  16  16  16   8    8   8   8   8   8   8

 8 I  15  15  15  15  15  15   15   15   15   15  15   5   5   5   5   5    3   8   8   8   8   8
   I»*   +   +   »   +   +   +   *»   +   +   +   +   *   +    +   **»*   +
 7 I  15  15  15  15  15  15   15   15   15   15   5   5   5   5   5   5    5   5   8   888
   1+   +   +   +   +   +   +   *   +   **   +   +   *   +   +    +   +   +   +   +   +
 6 I  6   6  15  15  15  15   15   15   15   15   5   5   5   5   5   5    5   5   5   588
   I+   +   +   +   +   +   +   +   +   +   +   +   +   +   +   +    +   +   +   +   +   +
 51666  15  15  15   15   15   15   5555555555   558
   I+   +   +   +   +   +   +   +   »»»»   +   *»   +    +   +   +   +   +   +
 4166666  15   15   15   55555   5   55555   555



                                                            C-13

-------
3 I
I
2 I
I
1 I
I



1


2 3


4 5


6
15

7
5

8
5
5

9
5
5
5

10
5
5
5

11
5
S
S

12
5
S
S

13
MESOPAC
PGT
5
5
5

14
S
5
S

15
5
5
5

16
VERSION 2
5
5
5

17
.40
STABILITY CUSS
Multiply
22 1
I
21 I
I
20 I
I
19 I
I
18 I
I
17 I
I
16 I
I
15 I
I
14 I
I
13 I
I
12 I
I
11 I
I
10 I
I
9 I
I
8 I
I
7 I
I
6 I
I
5 I
I
4 I
1
3 I
I
2 I
I
1 I
I
50

50

50

50

50

50

50

50

50

50

50

50

50

50

40

40

40

40

40

40

40
+
40

all value* by
50 50

50 50

50 50

50 50

50 50

50 50

50 50

50 50

50 50

SO 50

50 50

50 50

50 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40
+ »
40 40

SO 50

50 50

50 50

50 SO

50 50

50 50

50 50

50 SO

50 SO

50 SO

SO 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

10 **
50

50

50

50

50

50

50

50

50

40

40

40

40

40

40

40
*
40

40

40

40
+
40

40

-1
50

50

50

50

50

50

SO

SO

40

40

40

40

40

40

40

40
+
40

40

40
+
40
+
40

40


50

50

50

50

50

50

50

40

40

40

40

40

40

40

40

40
»
40

40

40

40
>
40

40


50

50

50

SO

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40
+
40

40
»

50

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40


40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40


40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40


40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40


40

40

40

40

40

40

40

40

40

40

40

40

40

40

.40

40

40

40

40

40

40

40


40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40
+
40


40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40


40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

5
5
5

18
5
5
S

19
LEVEL
ywr

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

5
5
S

20
S 5
5 S
S S

21 22
930430
: 88 "or

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40
+

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40
+
itfi: 1 (fry: 2 Julian day: 2 hour: 23

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40

40 40
+ +
C-14

-------
      1   2   3   4   5   6   7   3   9  10  11  12  13  M  15  16  17  18   19  20  21  22

METEOROLOGICAL DATA AT SURFACE STATIONS • YR:B8  JULIAN OAT:   2  HR:23
 STATION   PREC.      TEMP    SOLAR RAO.   REL. HUN10ITT   CLOUD COVER    PRECIP. CODE

     1                292.6       0.0            90              60
     2                293.7       0.0            97             10             0
     3                296.5       0.0            02              90
     4                292.6       0.0            84             10             0
     5                292.0       0.0            97              6             0
     6                295.9       0.0            79              60

                                               HESOPAC    VERSION  2.40  LEVEL 930430
SURFACE KINEMATIC HEAT FLUX 
-------
2 I 125  125  125  125  125  125  125  125   125  125  327  327 327  327  327  327  327  327  327  327  327 327
1
1 I 125
J
1
125

2
125

3
125

4
125

5
125

6
125

7
125 125

8 9
125

10
MESOPAC
125 327

11 12
327

13
VERSION 2.
SURFACE FRICTION VELOCITY (M/S)
Multiply
22 I 287

21 I 279

20 I 459

19 I 459

18 I 463

17 I 472
I +
16 I 485

15 I 500

14 I 513

13 I 77
I *
12 I 82

11 I 87

10 I 90

9 I 92

8 I 95

7 I 97

6 I 100

5 I 103

4 I 106

3 I 111
I *
2 I 115
I *
1 I 119
I *
all valuM
478

282

464

462

281

478

490

505

519

532
+>.
544

52

53

54

54

55

56

57

58

60

61

63

294

286

282

470

287

296

498

512

526

538

550

53

54

54

55

55

56

57

58

60

61

62

by 10 *•
300

294

290

292

297

305

315

326

432

443

557

566

54

55

55

55

56

57

58

59

61

62

101

302

300

394

308

316

325

533

545

556

566

574

55

55

55

56

56

57

58

59

60

61

-3
316

313

312

408

414

328

336

442

451

461

469

458

567

569

56

56

56

57

57

58

60

61


325

324

325

424

334

340

445

453

463

471

462

467

469

576

575

575

55

55

582

58

59

60


336 50

337 340

339 345

543 358

348 362

354 367

458 356

466 460

456 468

464 474

471 481

477 486

478 386

376 384

582 381

580 377

578 582

55 580

581 56

585 583

58 57

58 57


52

53

362

365

367

369

367

372

479

485

491

497

393

391

387

383

378

375

374
*
56
»
56

57


53 56

55 402

382 406

383 404

383 400

382 396

379 389

382 390

387 395

393 402

399 407

403 411

402 410

399 407

394 401

388 393

383 387

378 381

375 376
+ +
56 55

56 55

56 55


407

431

433

428

419

411

399

399

403

408

415

419

418

413

407

398

390

384

56

55

55

54

327

14
40
327

15
LEVEL
327

16
327

17
327

18
327

19
327

20
327 327

21 22
930430
ywr: 88. Month:

541

464

464

454

440

425

408

406

408

414

421

424

424

419

411

403

605

387

56

55

55

54


576

495

495

481

460

439

423

411

412

634

130

647

646

640

631

406

397

57

56

55

54

54


609

762

763

506

479

453

433

633

632

638

644

648

647

641

60

59

58

56

55

55

54

53


628

658

784

762

493

690

662

639

634

638

643

647

61

61

60

58

57

56

55

54

54

53

1 day:

72

784

787

768

70

66

63

61

60

60

60

61

60

60

59

58

57

56

55

54

54

53

2

71

74

75

73

70

66

63

61

60

59

60

60

60

59

58

58

57

56

55

54

53

53

Julian

69

72

73

71

69

66

63

61

60

59

59

59

59

59

58

57

56

56

55

54

53

53

day: 2 hour: 23

66 64

69 67

70 68

69 67

67 66

65 64

63 62

61 60

60 59

59 59

59 59

59 58

59 58

58 58

58 57

57 57

56 56

56 55

55 55

54 54

53 53

53 53

      1     2     3    4     5    6    7    8    9   10   11   12   13   14   15    16    17    18   19   20   21   22





                                                        C-16

-------
                                               MESOPAC    VERSION  2.40   LEVEL 930430
MIXIN
Hulti
22 I
I
21-1
I
20 I
I
19 I
I
18 I
I
17 I
1
16 I
I
15 I
I
14 I
I
13 I
I
12 I
I
11 I
I
10 I
I
9 I
I
8 I
I
7 I
I
6 t
I
5 I
I
4 I
1
3 I
I
2 I
I
1 I
I
G HEIGHT (H)
ply all value* by
370 793 383
354
746
746
757
779
810
848
883
51
57
61
65
+
67
70
72
75
79
S3
»
88
+
93
+
99
*
359
757
754
357
793
824
862
897
930
964
29
29
30
30
31
32
33
34
*
35
*
36
+
38
+
368
359
773
370
386
845
880
915
948
979
29
30
30
31
31
32
33
34
»
35
+
36
+
37
+
10 •*
394
383
375
379
388
405
424
447
682
707
997
1022
30
31
31
31
32
33
34
»
35
»
36
+
37
*
0
77
399
394
594
411
426
445
933
967
994
1022
1043
31
31
31
32
32
32
33
+
34
+
35
+
37
+
426
420
418
625
640
451
467
705
728
751
771
745
1024
1030
32
32
32
32
33
+
34
+
35
+
36
+
445
443
445
662
463
477
713
733
756
777
753
766
771
1049
1046
1046
31
31
1065
+
33
+
34
+
35
+
467
469
475
960
493
505
743
764
739
758
776
790
792
553
1065
1059
1056
31
1062
»
1075
*
33
+
34
+
27
476
487
515
523
533
510
750
768
784
800
814
575
570
564
556
1065
1059
31
+
1068
+
33
+
33
»
28
29
523
530
534
538
535
545
795
811
827
840
592
587
577
568
558
551
549
*
32
+
32
*
32
+
30
31
567
569
569
567
560
566
577
592
605
613
611
605
594
581
568
558
551
+
32
+
31
+
31
+
y«ar:
32
612
620
616
608
599
583
585
596
611
624
633
631
622
609
592
577
564
553
*
31
+
31
+
31
+
: 88 Month:
623 956
679
684
673
651
631
60S
60S
613
626
642
650
648
637
622
603
585
570
31
• >
31
»
31
•
30
+
758
758
735
699
664
626
620
626
640
655
664
661
650
633
613
1130
577
32
*
31
+
31
+
30
+
1 day
1048
835
835
801
749
697
660
633
635
1212
112
1248
1245
1228
1202
620
600
32
31
•*•
31
>
30
+
30
•»
: 2 Julian day: 2 hour
1140 1194 46 45
1595
1599
863
796
731
684
1208
1205
1222
1242
1252
1248
1232
35
34
33
32
31
+
31
+
30
+
30
+
1282
1665
1595
831
1376
1292
1225
1212
1222
1238
1248
36
36
35
34
33
32
31
+
30
*
30
*
29
+
1665
1676
1616
45
41
38
36
35
35
36
36
36
35
35
34
33
32
31
+
30
•*•
30
>
29
+
48
49
47
44
41
38
36
35
35
35
35
35
35
34
33
32
32
31
+
30
+.
30
+
29
+
*****!
: 23
43
46
47
46
43
40
38
36
35
35
35
35
35
34
34
33
32
31
31
*
30
>
30
*
29
+
        12345





NIXING HEIGHT (H)





Multiply all values by 10 **   0





22 I   41    39
6     7     8     9    10    11     12    13    14    15    16    17    18    19    20





                                  year:  88 month:  1 day:  2 Julian day:   2 hour: 23
                                                          C-17

-------
21
20
19
18
17
16
15

14
13
12
11
10
9
8
7
6
5
4
3
2
1

44
45
44
42
40
38
36
+
35
34
34
34
34
34
33
33
32
31
31
30
30
29
*
41
43
42
41
39
37
36
*
35
34
34
34
34
33
33
32
32
'SI
31
30
30
29
*
       21    22

                                               MESOPAC    VEISIOH  2.40   LEVEL 930430
MONIN-OBUKHOV LENGTH (H)                                                year: 88 month:  1 day:  2 Julian day:   2 hour: 23

Multiply all values by 10 •*  -1

22 I  908  2512   951   988   112  1097  1164  1240    28    29    31    34  1820  3224  3646  4075  4338    56    55    52

21 I  856   873   902   951  1006  1077  1157  1246  1274    31    34  1778  2045  2364  2694  6381  4767  6756    60    56
   I********************
20 I 2315  2363   872   927   988  1071  1164  1267  1310  1444  1607  1812  2062  2364  2694  6400  6756  6814    61    58

19 I 2318  2349  2430   939  1710  1831  1977  3244  1412  1466  1615  1795  2018  2271  2546  2814  6381  6493    58    56

                                                          C-18

-------
18 I 2362 867 908 969 1045 1889 122S 1331 1441 1482 1615 1762 1931 2125 2327 2527 2674
17 I 2454 2514 963 1026 1097 1184 1274 1375 1479 1497 1607 1729 1854 1983 2116 2253 5238
16 1 2584 2646 2733 1090 1164 1239 2179 2304 1394 1485 1579 1668 1750 1835 1966 2062 4816
15 1 2746 2810 2885 1171 3122 2148 2262 2390 2332 1524 1603 1676 17S1 1809 1860 4406 4487
14 I 2898 2963 3042 2057 3272 2241 2357 2289 2409 2520 1644 1717 1784 1835 1869 4390 4422
13 I 66 3108 3189 2158 3396 2336 2444 2365 2475 2588 1701 1776 1835 1886 4422 4471 4471
12 I 75 3258 3326 3409 3523 2422 2343 2442 2543 2657 1751 1826 1895 1947 185 4568 4552
11 I 83 30 31 3522 3623 2310 2398 2498 2600 2715 1784 1860 1929 1982 4601 4617 4601
10 I 89 31 32 32 33 3532 2420 2509 1636 1701 1776 1852 1921 1973 4585 4601 41
9 I 94 32 32 33 33 3562 3650 1555 1619 1684 1751 1818 1878 1929 4503 4519 40
8 I 98 33 33 33 34 34 3635 3725 1595 1644 1709 1767 1818 1860 4374 40 39
7 I 103 33 34 34 34 34 3635 3695 1563 1611 1660 1701 1742 1784 1809 38 38
6 I 109 34 35 35 35 35 33 3680 3724 1571 1611 1644 1676 4028 1734 36 36
5 1 116 36 36 36 35 35 34 34 3694 1548 1571 1595 1619 1644 35 35 35
4 I 125 37 37 37 37 36 3724 3709 34 1540 1548 1556 34 34 34 34 33
3 I 134 39 39 39 38 38 37 3769 3739 3534343333333332
2 1 145 *41 41 41 40 39 38 37 36 35 34 33 33 33 32 32 32
1 1 156 43 43 42 42 41 39 38 36 35 34 33 32 32 32 31 31


HONIM-08UKHOV LENGTH (M) year: 88 month: 1 day: 2 Julian d
Multiply all values by 10 •* -1
22 I 48 45
I * +
21 I 53 49
1 * *
20 I 54 51
I + +
19 1 53 50
1 + +
18 I 50 48
1 * *
17 1 46 45
I + *
16 I 43 42
1 * +
15 I 40 40
I + +
54 53 52
48 48 47
43 43 43
40 40 41
39 39 39
39 39 39
40 39 39
40 39 39
40 39 38
40 38 38
38 38 37
37 36 36
36 35 35
35 34 34
33 33 33
32 32 32
32 31 31
SI 31 31

Wig 7O
lay: 2 hour; 23
C-19

-------
14

13

12
11
10
9

8
7

6

5

4
3
2

1

39
+
38
»
38
38
38
37
*
37
36
*
35
*
34
*
33
32
T
31
'+
31
+
39
*
38
*
38
38
37
37
+
36
35
*
35
+
34
+
33
32
31
*
31
*
       21    22

                                               MESOPAC    VERSION  2.40   LEVEL 930430
CONVECTIVE VELOCITY SCALE (M/S)                                         year:  88 Booth:  1 day:  2 Julian day:   2 hour:  23

GRID NOT PRINTED -- all values zero

                                            •   MESOPAC    VERSION  2.40   LEVEL 930430


LOWER LEVEL WIND U-FIELO (M/S)                                    .      year:  88 Month:  1 day:  2 Julian day:   2 hour:  23

Multiply all values by 10 •*  -2

22 I 403  406  411  419  408  411  413  416  418  422  428  439  454  474  499  524  539  541  536  525  513  503
   I	  .-    -    -	
21 I 392  395  402  411  405  410  415  420* 426  433  444  459  478  502  527  549  562  563  556  544  530  518
   I	-    -
20 I 385  389  396  396  404  411  418  425  433  441  452  466  484  505  529  550  563  566  560  551  539  527
   I	
19 I 384  389  397  399  407  415  424  431  439  448  458  470  485  502  521  539  551  555  552  545  536  527
   I	
18 I 389  394  396  404  413  422  430  438  446  454  463  473  484  496  510  523  533  538  538  534  528  522
   I	   ^	^	
171399  405  405  412  421  430  438  446  454  461  469. 47f  485  493  501  511  518  523  525  523  521  517
   I   -    -	
16 I 413  410  416  423  431  440  448  455  463  470  476  483  489  494  499  506  511  514  516  516  515  513
   I	
15 ! 428  424  430  436  443  451  458  466  473  479  486  492  497  501  505  509  512  513  514  514  513  512

                                                          C-20

-------
u




13




12




11




10




 9




 8




 7




 6




 5




 4




 3




 2




 1
339  439  444  450  456  463  469  476  483  489  496  502  507  512  515  518  519  519  518  516  515  513





350  355  458  463  469  475  481  487  493  499  506  512  518  523  526  528  528  526  524  521  518  515





359  364  370  377  482  486  492  497  502  508  514  520  526  531  535  536  535  533  529  526  522  518





367  372  377  383  391  498  502  506  510  515  521  526  531  535  539  540  539  536  533  529  525  521





372  376  381  387  393  400  408  513  516  520  523  528  532  535  538  539  538  536  533  529  525  522





375  379  383  388  394  400  407  415  521  523  525  528  531  533  535  536  535  534  531  528  524  521





376  380  383  388  393  398  405  412  419  427  528  529  530  531  532  532  532  530  528  525  523  520





377  379  383  386  390  395  401  407  414  421  428  531  530  530  529  529  528  527  525  523  521  518





376  378  381  384  387  392  396  402  407  414  420  425  431  530  528  527  526  525  523  521  519  517





375  377  379  381  384  387  391  396  401  406  411  417  422  426  528  526  525  523  521  520  518  516





373  374  376  378  380  383  386  390  394  399  404  409  413  417  420  423  525  523  521  519  517  515





371  372  373  374  376  378  381  385  388  393  398  402  406  409  412  415  417  523  521  518  516  514





369  370  370  371  373  375  377  380  384  388  392  396  399  402  405  408  410  412  414  518  516  514





367  367  368  369  370  371  374  377  380  384  387  391  394  396  399  401  404  406  408  409  516  514








  1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16   17   18   19   20   21   22





                                          MESOPAC    VERSION  2.40   LEVEL 930430
LOWER LEVEL WIND V-FIELD (M/S)




Multiply all values by 10 **  -2
                                                                   yew:  88 Month:  1 day:   2 Julian day:   2 hour: 23
22 1
21
20
19
18
17
16
15
14
13
12
9
12
14
14
13
11
8
7
5J
56
61
6
10
12
13
11
8
247
258
267
54
59
2
6
9
9
237
246
256
267
276
282
56
5
+
0
242
244
+
2Sfr
259
269
279
287
293
52
272".
+
264
258
261
+
267
275
284
293
300
305
308
289
+
283
279
282
•+ •
287
293
301
308
315.
319
322
309
+
304
302
305
*
309
314
320
325
331
335
337
331
' +
329
329
331
-f
333
336
339
343
347
351
353
355
+
356
357
358
+
358
358
359
361
136V
367
370
380.
+
386
388
387
+
385
381
379
379
380
383
386
407
*
421
423
419
+
412
405
398
395
395
398
402
439
»
461
461
454
+
442
428
417
410
409
411
416
475
»
505
504
492
+
473
452
434
423
420
423
427
515
+
553
550
532
+
505
475
450
434
428
431
436
558
+
598
596
573
»
538
499
466
444
435
436
442
598
*
636
637
610
+
568
521
481
454
441
439
444
621
+
659
661
634
+
589
538
494
462
445
441
443
625
+
662
666
642
+
599
549
503
469
449
442
442
614
+
648
655
635
+
598
552
509
474
452
442
439
593
•f
624
635
618
+
587
548
509
477
455
443
438
569
+
596
609
597
+
571
539
506
477
456
443
436
545
+•
569
582
574
*
554
527
500
475
456
443
435
                                                          C-21

-------
11

10

 9

 8

 7

 6

 5

 4

 3

 2

 1
  ---     -****    +    *******    +    *»**    +
 67   65   62   58    53  322  337  353  370  388  404  419  431  440  446  448  446  U3  439  436  433  430
                            *****************
 77   74   71   67    62   56   49  346  364  382  399  415  428  438  444  446  445  441  437  432  428  425
                                 •    *************    +    »
 89   87   83   79    74   67   59   51  351  369  387  404  418  429  435  438  438  435  430  426  422  418
  --•-»-••****»*********
104  102   99   94    88   81   73   64   54   44  370  387  402  413  420  424  425  424  421  417  413  410
                                           ..************
122  120  117   113   106   99   90   80   69   58   48  365  380  391  400  406  409  409  408  406  403  401
                  ........***********
142  141  139   134   128  119  110   99   87   76   65   55   45  368  378  385   390  392  393  392  391  390
                                                                    *******
165  165  163   159   152  143  132  121  108   96   84   71   60   51  355  364 370  374  377  378  378  378
                                                                         *******
190  191  189   185   178  168  157  145  131  118  102   87   75   64   56   50  350  356  360  363  365  366
                                                                                    ******
215  217  216  211   204  194  182  169  154  135  118  103   89   78   69   61    55   338  344  348  352  354
                                                                                        *****
239  242  241  236   229  218  206  190  171  151  134  117 ' 103   91   81   72    65    59    54  334  338  342
                                                                                                   *    *    *
261  264  263  258   250   240  224  205  185  166  147  131  116  103   92   82    75    68   62   58  326  330
                                                                                                                  *
       1    2    3    4     5     6    7    8    9   10   11   12   13   14    15    16    17   18   19   20   21   22

                                                NESOPAC    VERSION  2.40   LEVEL 930430
UPPER LEVEL WIND U-FIELD  (N/S)                                          yew: 88 Month:   1  day:  2 Julian day:   2 hour: 23

Multiply all valua* by 10 **  -2

22   281  282  282  283  283  283  283  282  281  279  278  276  275  274  273  272   272 272  272  273  273  274

21   283  284  285  285  285  285  284  283  282  280  278  277  275  274  273  272   272 272  272  272  273  274

20   287  287  288  288  288  287  286  285  283  281  279  277  276  274  273  272   272 272  272  272  273  274

19   291  290  291  291  290  289  288  286  285  283  280  278  276  275  273  272   272 272  272  272  273  274

18   295  294  294  294  293  292  290  289  286  284  282  279  277  276  274  273   272 272  272  273  273  274

17   300  299  298  297  296  295  293  291  289  286  284  281  279  277  275  274   273 273  273  273  274  275

16   306  304  303  301  300  299  296  294  291  289  286  283  280  278  277  275   274 274  274  274  275  275

15   312  310  308  306  304  302  300  297  295  291  288  285  283  280  278  277   276 275  275  275  275  276

14   318  316  314  311  309  307  304  301  298  295  291  288  285  283  281  279   278 277  276  276  277  277

13   325  323  320  317  315  312  309  306  302  299  295  292  288  286  283  281   280 279  278  278  278  279

12   333  330  327  324  321  318  314  311  307  303  299  295  292  289  286  284   283 281  280  280  280  280

11   341  338  335  331  328  324  320  316  312  308  304  300  296  293  290  288   286 284  283  282  282  282

10   349  346  342  339  335  330  326  322  318  313  309  305  301  297  294  291   289 287  286  285  264  284

 9   357  354  351  347  342  338  333  329  324  319  314  310  306  302  298  295   293 291  289  288  287  286

                                                           C-22

-------
8 365
7 373
6 381
5 388
4 394
3 400
2 404
1 408
1
362
370
378
385
392
398
403
407
2
359
367
375
382
389
395
401
405
3
355
363
371
379
386
392
398
402
4
350
358
366
374
381
388
394
399
5
346 340
353 348
361 356
369 363
376 371
383 378
389 384
395 390
6 7
335
343
350
357
365
372
378
384
8
330
337
344
3S1
359
366
372
378
9
325
332
339
346
353
359
366
372
10
NESOPAC
UPPER LEVEL WIND V- FIELD
Multiply
22 I 547

21 I 548

20 I 550

19 I 551

18 I 552

17 I 552

16 I 551

15 I 549

U I 547

13 I 543
I *
12 I 539

11 I 535

10 1 529

9 I 524

8 I 518

7 I 512
I +
6 I 506
all values
554

555

556

557

557

557

556

554

552

548

544

539

534

528

521

515
+
509
562

563

564

564

564

563

562

560

557

554

549

5U

539

532

526

519
+
512
(H/S)
by 10 ••
571

572

573

573

572

571

569

567

563

560

555

550

544

538

531

524
+
517
582

583

583

583

582

580

578

575

571

567

562

557

551

544

537

530
+
523
320
327
333
340
347
353
360
365
11
316
322
328
334
341
347
354
359
12
311
317
323
329
335
342
348
353
13
VERSION 2.
307
312
318
324
330
336
342
348
14
40
303
308
314
319
325
331
337
342
15
LEVEL
300
305
310
315
321
326
332
337
16
297
302
307
312
317
322
327
332
17
295
299
304
308
313
318
323
328
18
293
297
301
305
310
315
320
324
19
291
295
299
303
307
312
316
321
20
290 289
294 292
297 296
301 299
305 303
309 307
313 311
318 315
21 22
930430
year: 88 aontti:
-2
594 607

595 607

594 607

594 606

592 604

590 601

587 598

584 594

580 590

575 585

570 579

564 573

558 566

551 559

544 552

537 544
» +
529 536

621

621

620

618

616

613

699

605

600

595

589

582

575

568

560
»
552
+
544

634

634

633

631

628

625

621

616

611

605

599

592

585

577

569
»
561
#
552

647

647

646

644

641

637

633

628

622

616

610

602

595

587

578

570
+
561

659

659

658

655

652

649

644

639

633

627

620

613

605

596

588

579
*
570

670

669

668

666

663

659

655

650

644

637

630

622

614

606

597

588
+
579

678

678

677

675

672

669

664

659

653

646

639

632

623

615

606

597
+
588

685

685

684

683

680

677

672

667

661

655

648

640

632

623

615

606
•f-
597

690

690

690

688

686

683

679

674

668

662

655

647

639

631

622

614
+
605

693

693

693

692

690

687

683

679

673

667

660

653

646

638

629
+
621

612

694

695

695

694

692

690

686

682

677

671

665

658

651

643

635

627

618
1 day:

694

695

695

695

693

691

688

684

680

674

668

662

655

648

640

632

624
2

693

694

694

694

693

691

689

685

681

676

671

665

658

651

644

637

629
Julian day: 2 hour: 23

691

692

693

692

691

690

688

685

682

677

672

667

661

654

648

640

633

688 685

689 686

690 687

690 687

689 686

688 685

686 683

683 681

680 678

677 675

673 672

668 668

663 663

657 658

650 652

643 646

636 639
C-23

-------
5 I 500

4 I 495

3 I 490

2 I 486

1 I 483

1

502 506

497 500

492 494

487 490

484 486

2 3

PRECIPITATION RATE
Multiply
22 I 0

21 I 0

20 I 0

19 I 0
I +
18 I 0
I +
17 I 0

16 I 0

15 I 0

14 I 0

13 I 0

12 I 0

11 I 0

10 I 0

9 I 0

8 I 0

7 I 0

6 I 1524
I +
5 I 1524
I +
4 I 1524
I »
3 I 1524
all values
0

0

0

0

0

0

*0

0

0

0

0

0

0

0

0

0

1524
+
510

504

498

493

488

4

515 522

509 514

502 508

497 502

492 497

5 6

528

521

514

508

502

7

536

528

521

514

508

8

544 553

536 545

529 537

522 529

SIS 523

9 10
MESOPAC
562

553

545

537

530

11
571

562

554

546

538

12
VERSION
579

571

562

554

547

13
588 596 603 610

579 587 595 601

571 579 586 593

562 570 578 585

555 563 570 577

14 15 16 17
616

608

600

592

584

18
621 626 629 633

613 618 622 626

60S 611 615 619

598 603 608 612

590 596 601 606

19 20 21 22











2.40 LEVEL 930430
(MN/HR)
by
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
+
1524 1524
*
>
1524 1524
+
»
1524 1524
10 *• -3
0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0
+ +
0 0
+ »
1524 1524
+ +
1524 1524

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
*
0
+
0
+
1524

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
*
0
*
0
+
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
*
0
+
0
+
0

0

0

0



0

0

0

0

0

0

0

0

0

0

0

0

0
+
0
*
0
+
0

0

0

0



0

0

0

0

0

0

0

0

0

0

0

0

0
+
0
+
0
+
0

0

0

0



0

0

0

0

0

0

0

0

0

0

0

0

0
*
0
*
0
»
0
year: 88 Booth:

000

000

000



000

000

000

000

000

000

000

000

0.00

000

000

000

000
* + »
000
» + +
000
+ + +
000
1 day:

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
+
0
+
0
•f
0
2 Julian day: 2 hour:

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000
+ + + +
0000
+ + » +
0000
+ + * +
0000
23

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
»
0
•*•
0
+
0
C-24

-------
2
1

1524 1524 1524 1524 1524 1524 1524 00000
1524 1524 1524 1524 1524 1524 1524 1524 0000

0000
0000

0 0 0 Q
0 0 0 0

        1     2     3     4     5

PRECIPITATION RATE (MM/HR)

Multiply all values by 10 **  -3
                                                       9    10    11    12    13    14    15    16    17    18    19    20

                                                                       ytar: 88 Month:  1 day:  2 Julian day:   2 hour;  23
22 I
I
21 I
I
20 I
I
19 I
I
18 I
I
17 I
I
16 I
I
15 I
I
14 I
I
13 I
I
12 I
I
11 I
I
10 I
I
9 I
I
8 I
I
7 I
I
6 I
I
5 I
I
4 I
I
3 I
I
2 I
I
1 I
I
0
+
0
+
0
*
0
+
0
+
0
*•
0
+
0
+
0
+
0
>
0
*
0
*
0
+
0
*
0
+
0
+
0
+
0
+
0
+
0
*
0
+
0
*
0
*
0
+
0
»
0
*
0
+
0
«•
0
*
0
+
0
+
0
«•
0
V *
0
+
0
+
0
*
0
+
0
+
0
+
0
+
0
+
0
*
0
•*>
0
*
       21    22
RUNTIME CALL NO.:        2   DATE:  06/15/93
DELTA TIME:      63.33 (SEC)
                                              TIME: 12:33:29.39
                                                        C-25

-------
              APPENDIX D





SAMPLE MESOPUFF H INPUT AND OUTPUT FILES

-------

-------
SAMPLE MESOPUFF H INPUT FILE (PUFFJNP)
                 D-l

-------
HESVUFF II TEST CASE  - 24 hr limitation 1/2/88. utct hrly clone
88 002
1 4
1 22
T T
Tf
1
100001
0.36
0.90
0.00023
2.10
5.0
10000.
2 2
16
12.7 38.5
12.3 35.3
5.2 40.1
5.4 41.7
5.9 43.3
2.5 59.8
3.3 62.5
14.1 16.0
16.7 15.3
17.8 13.9
14. S 12.0
17.4 10.0
15.7 8.4
15.1 20.7
16.8 20.7
-0.6 19.9
15.5 9.0
2.5
2.5
4.0
5.0
5.5
6.5
6.5
8.0
7.5
9.0
8.0
7.0
8.5
0 24 1 0 13 5
2 T 2. T 900.
1 22 4 19 4 19
T T T

0.25 0.19 0.13
0.90 0.90 0.90
0.058 0.11 0.57
1.09 0.91 0.58
3.873 2.739 1.871
5
1 80 10 0.2 2.0 2.0

















50. 6.1 14.9 434. 100.0
13.5 ClM* 1
12.0
12.0
11.0
9.5
9.0
7.5
8.0
» 6.5
6.0
5.75
4.0
3.5
0

2


0.096 0.06)
0.90 0.90
0.85 0.77
0.47 0.42
1.225 0.707



















50.0 150.0
•rt« rtccptori












                                                              D-2

-------
PARTIAL LISTING OF SAMPLE MESOPUFF H OUTPUT FILE (PUFF.LST)
                           D-3

-------
RUNTIME CAll  MO.:         1   DATES  06/15/93   TIMS!  12:33:59.54

                                               HESOPUFF   VERSION  5.10   LEVEL  930530


HESOPUFF II  TEST CASE -  24  hr  iliutitfon 1/2/88.  utM hrly eten*

GENERAL RUN  INFORMATION:

    YEAR OF  RUN (NSTR) " 88
    JULIAN DAT  OF  START  OF  RUN (NSOAY)  «   2
    HOUR OF  START  OF RUN (NSHR) "  0
    LENGTH OF RUN  (NAOVTS)  •   24 (HOURS)
    NUMBER OF POINT SOURCES (NPTS) •  1
    NUMBER OF AREA (URBAN)  SOURCES (NAREAS) •  0
    NUMBER OF NONGRIDOEO RECEPTORS (NREC) "  13
    NUMBER OF POLLUTANT  SPECIES (NSPEC) «  5
    Continuation Run 7 (ICONT) •  0

COMPUTATIONAL VARIABLES:

    CONCENTRATION  AVERAGING TIME (IAVG) •    1 (HOUR(S))
    PUFF RELEASE RATE (NPUF) •   * (PUFFS/HOUR)
    MINIMUM SAMPIIHQ RATC (NtAMAD) •  2 (SAMPLES/HOUR)
    SAMPLING RATE  VARIED UITH WIND SPEED T (LVSAMP) - T
    SAMPLING RATE  WIND SPEED INTERVAL (WSAMP) •  2.00 (M/S)
    CONCENTRATIONS CALCULATED AT SAMPLING GRID POINTS T (UGRID) • T
    PUFFS YOUNGER  THAN "AGENIN" SECONDS ARE NOT SAMPLED (AGENIN) •   900. (SECONDS)

GRID INFORMATION:

    BEGINNING OF COMPUTATIONAL GRID IN X-DIRECTION (1ASTAR) *  1
    END OF COMPUTATIONAL GRID  IN X-OIRECTION (IASTOP) « 22
    BEGINNING OF COMPUTATIONAL GRID IN Y-OIRECTION (JASTAR) «  1
    END OF COMPUTATIONAL GRID  IN Y-OIRECTION (JASTOP) « 22
    BEGINNING OF SAMPLING GRID IN X-DIRECTION (ISASTR) -  4
    END OF SAMPLING GRID IN X-DIRECTION (ISASTP) • 19
    BEGINNING OF SAMPLING GRID IN Y-DIRECTION (JSASTR) -  4
    END Of SAMPLING GRID IN Y-DIRECTION (JSASTP) • 19
    SAMPLING GRID SPACING FACTOR (MESHDN)  -  2
              V
TECHNICAL OPTIONS:

    GAUSSIAN VERTICAL CONCENTRATION DISTRIBUTION 1 
-------
    DRY FLUXES AT NONGRIOOEO RECEPTORS COMPUTED T (LORYNG) • T
    WET AND DRY FLUXES STORED ON TAPE ? (ISAVEF) - T
    WET AND DRV FLUXES MINTED 7 (LPRFLX) • T
    Restart flit seved 1  •               0
    USER INPUT CHEMICAL TRANSFORMATION VARIABLES (IOPTS<6)> •   1

SIGY. SICZ VARIABLES:
    AY -            0.36000   0.25000   0.19000   0.13000   0.09600   0.06300
    BY -            0.90000   0.90000   0.90000   0.90000   0.90000   0.90000
    AZ •            0.00023   0.05800   0.11000   0.57000   0.85000   0.77000
    BZ -            2.10000   1.09000   0.91000   0.58000   0.47000   O.<2000
    AZT (IN M) •    5.00000   3.87300   2.73900   1.87100   1.22500   0.70700
    TMDEP •     10000. (M)
    STABILITY CLASS USED IN SIGY. SIGZ CALCULATIONS FOR PUFFS ABOVE BOUNDARY LAYER (JSUP) •
         (0 > BOUNDARY LAYER STABILITY CLASS, 5 • E STABILITY. 6 - F STABILITY)

VERTICAL OIFFUSIVITY CONSTANTS:
    CON1K «      0.010 (M"2/S)
    CONZr •      0.100 (M**2/S)

LAND USE CATEGORY   S02 CANOPY RESISTANCE (S/H)

        1
        2
        3
        4
        5
        6     »
        7
        8
        9
       10
       It
       12

DRY DEPOSITION CONSTANTS:
    CANOPY RESISTANCE  FOR NOX IN S/H (RCNOX) «  130.00  (A.B.C)   500.00 (D)   1500.00 (E)   1500.00  (F)
    SURFACE RESISTANCE CONSTANT FOR GASES (RSGCON) •    2.60
    SURFACE RESISTANCE FOR PARTICLES (RSPART) • 1000.00 (S/M)

UET REMOVAL CONSTANTS:
                              502       SO*       NOX       HMOS      N03
    UA (LIQUID PRECtP.)      3.00E-05   1.00E-04  O.OOE»00  6.00E-05   1.00E-04
    UA (FROZEN PRECIP.)      O.OOE»00   3.00E-05  O.OOE+00  O.OOE«00  3.00E-05

    WHERE 0/00 « £XP(-UA • (P/PO) * DT)
          00  IS POLLUTANT MASS  IN PUFF  AT TIME T
          0 IS POLLUTANT MASS IN PUFF AT TIME T * DT
A.i.C
100.00
100.00
100.00
100.00
100.00
100.00
100.00
200.00
50.00
75.00
1000.00
0.00
D
300.00
300.00
300.00
300.00
300.00
300.00
300.00
500.00
75.00
300.00
1000.00
0.00
E
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
100.00
1000.00
1000.00
0.00
F
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1000.00
0.00
0.00
0.00
0.00
                                                                D-5

-------
          M IS THE UET  REMOVAL  CONSTANT  (1/S)
          f IS THE PRECIPITATION RATE  (MM/MR)
          PO IS A REFERENCE  PRECIPITATION RATE  OF 1  MM/HR
          OT IS THE SAMPLING INTERVAL

CHEMICAL TRANSFORMATION  VARIABLES:
    SOX TRANSFORMATION METHOD FLAC  (MSOX) «  2
        0 - NO TRANSFORMATION
        1 - USER SPECIFIED
        2 - ERT THEORETICAL  EQUATION
        3 - GILLANI EQUATION
        4 - HENRY EQUATION FOR ST.  LOUIS
        5 • HENRT EQUATION FOR LOS  ANGELES
    NOX TRANSFORMATION METHOD FLAG  (MNOX) •  2
        0 - NO TRANSFORMATION
        1 - USER SPECIFIED
        2 - ERT THEORETICAL  EQUATION
    OZONE INPUT METHOD FLAG (MOJ) «  1
        0 • DEFAULT OZONE VALUE USED
        1 • HOURLY OZONE VALUES READ
    DEFAULT BACKGROUND OZONE 
-------
     HOHGRIDDEO RECEPTOR LOCATIONS
RECEPTOR    X (GRID UNITS)     T  (GRID UNITS)
1
2
3
4
5
6
7
8
9
10
11
12
13

2.500
2.500
4.000
5.000
5.500
6.500
6.500
8.000
7.500
9.000
8.000
7.000
8.500

13.500
12.000
12.000
11.000
9.500
9.000
7.500
8.000
6.500
6.000
5.750
4.000
3.500
MESOPUFF VERSION 5.10 LEVEL 930530
INFORMATION READ FROM METEOROLOGICAL DATA  FILE!

    YEAR OF METEOROLOGICAL DATA • 88
    METEOROLOGICAL DATA 8EGIHS OH JULIAN OAT   2
    NUMBER OF HOURS OF METEOROLOGICAL  DATA •   25

    METEOROLOGICAL GRID SIZE IN X (UEST-EAfT)  DIRECTION • 22
    METEOROLOGICAL GRID SIZE IH T (SOUTH-NORTH)  DIRECTION - 22
    METEOROLOGICAL GRID SPACING •   10000.0 (M)
    BASE TIME ZONE • 5 
-------
Multiply at I  values by 10 **   -2
22
21
20
19
18
17
16
15
U
13
12
11
10
9
8
7
6
5
4
3
2
1
20
20
100
100
100
100
100
100
too
0
0
0
0
0
0
0
0
0
0
0
0
0
+
1
100
20
100
100
20
100
100
too
100
100
100
0
0
0
0
0
0
0
0
0


0
»
2
20
20
20
100
20
20
100
100
100
100
100
0
0
0
0
0
0
0
. »
0


0
+
3
20
20
20
20
20
20
20
20
SO
SO
100
100
0
0
0
0
0
0
0
0


0
*
4
10
20
20
50
20
20
20
100
100
100
100
100
0
0
0
0
0
0
0
0


0
»
5
20
20
20
50
50
20
20
50
50
50
SO
SO
100
100
0
0
0
0
0
0


0

6
20
20
20
50
20
20
SO
50
SO
50
50
SO
50
100
100
100
0
0
100
0
0
0

7
20
20
20
100
20
20
SO
50
50
50
so,
SO
SO
20
100
100
100
0
100
100
0
0

8
0
20
20
20
20
20
20
SO
50
50
SO
SO
20
20
20
20
100
100
0
100
0
0

0
0
20
20
20
20
20
20
50
50
SO
50
20
20
20
20
20
20
20
0
0
0

9 10
HESOPUFF
0
0
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
0
0
0
+
11
0
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
0
0
0
•
12
VERSION
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
0
0
0
0
*
13
S.
50
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
100
20
0
0
0
0
*
U
10
50
20
?o
20
20
20
20
20
20
100
10
100
100
100
100
20
20
0
0
0
0
0
»
15
LEVEL
50
100
100
20
20
20
20
100
100
100
100
100
100
100
0


0
0
0
0
0
0
»
SO
SO
100
100
20
100
100
100
100
100
100
100
0
0
0


0
0
0
0
0
0
4
16 17
930530
0
100
100
100
0
0
0
0
0
0


0
0


0


0
0
0
0
0
0
+
18
0
0
0
0
0
0
0
0
0
0


0
0


0


0
0
0
0
Q
0
+
19
0
0
0
0
0
0
0
0
0
0


0
0


0


0
0
0
0
0
0
+
20
0
0
0
0
0
0
0
0
0
0


0
0


0
0
0
0
0
0
0
0
+
21
0
0
0
0
0
0
0
0
0
0


0
0


0
0
0
0
0
0
0
0
*
22
 STATION NUMBER OF CLOSEST SURFACE MET. STATION  TO EACH OHIO POINT

 Multiply all values by  10 ••   -2

 22 I  100   100  100  100 100   100   100   100  600 600 600  600  600  600 600  600  600  600  600  600   600   600
    l*»    +    +   +    »«»»»»»     +    »*»    +    »«     +     »     +
 21 I  100   100  100  100 100   100   100   100  600 600 600  600  600  600 600  600  600  600  600  600   600   600
                                                                 D-8

-------
20
19
18
17
16
15
14
13
12
11
10
9
a
7
6
5
4
3
2
1
100
too
100
too
100
100
100
too
100
100
too
100
200
200
200
200
200
200
200
200
100
too
100
too
too
too
too
100
too
100
100
100
200
200
200
200
200
200
200
200
too
100
100
100
too
too
too
100
100
too
too
too
200
200
200
200
200
200
200
2.00
too
too
100
100
100
100
100
100
100
100
100
100
200
200
200
200
200
200
200
200
100
100
too
too
100
too
100
100
100
too
too
300
300
200
200
200
200
200
200
200
too
too
too
too
100
too
100
too
100
300
300
300
300
300
200
200
200
200
200
200
100
too
100
100
too
too
100
100
300
300
300
300
300
300
300
200
200
200
200
200
100
100
100
too
100
100
300
300
300
300
300
300
300
300
300
300
200
200
200
200
600
too
too
100
300
300
300
300
300
300
300
300
300
300
300
300
300
200
200
200
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
200
200
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
200
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600
600
600
600
600
600
300
300
300
300
300
300
300
300
300
300
300
300
300
300
600 600
600 600
600 600
600 600
600 600
600 600
300 300
300 300
300 300
300 300
300 300
300 300
300 300
300 300
300 300
300 300
300 300
300 300
300 300
300 300

1
LAND USE
Multiply
22 1 10
21
20
19
1 10
1 110
1 4
1 110
18 1 50
2
3
CATEGORIES
all values
SO 10
10
110
4
110
10
10
to
4
110
10
4
FOR
by
to
10
10
4
10
10
5
EACH
10 ••
60
10
10
4
100
10
6
GRID
-1
10
10
10
4
too
*
too
7
POINT
10
10
10
4
100
*
10
8
90
10
10
4
SO
»
10
9 10 11 12 13 14 IS
NESOPUFF VERSION S.10 LEVEL
120
10
10
4
10
4
10
120
120
10
10
»
10
120
120
10
10
4
10
120
10
10
10
*
10
10
10
10
10
*
10
too
10
10
10
4
10
100
10
10
90
4
90
16 17
930530
100
110
110
*
90
4
90
too
100
110
110
4
10
18
120
110
110
110
4
120
19
120
120
120
120
4
120
20
120
120
120
120
4
120
21 22
120 120
120 120
120 120
120 120
4 4
120 120
D-9

-------
17
16
15
H
13
12
11
10
9
a
7
6
S
4
3
SO SO
110 SO
110 110
110 SO
120 SO
120 50
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
10 10
SO 10
110 10
SO 100
SO 100
50 50
120 50
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
10 10
10 10
SO 100
SO 100
SO 100
SO 100
50 100
120 SO
120 50
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
10 10
100 100
100 100
100 100
100 100
100 100
100 100
100 100
SO 90
SO 50
SO 50
120 50
120 120
50 SO
120 SO
120 120
120 120
10 90
10 90
100 10
100 100
100 100
100 100
100 100
90 90
90 90
90 90
90 90
50 90
50 90
120 90
50 120
120 120
120 120
90
90
90
90
90
90
90
90
90
90
90
90
90
90
120
120
120
10
90
90
90
90
90
90
90
90
90
90
90
90
90
120
120
120
10
90
90
90
90
90
90
90
90
90
10
10
90
120
120
120
120
90 90
90 90
90 90
90 90
90 110
90 60
90 110
90 110
10 110
10 110
10 10
50 90
90 120
120 120
120 120
120 120
120 120
90 110
10 110
110 110
110 110
110 110
110 110
110 110
110 120
110 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120 120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120
120 120 120 120

1 2






V
STATION NUMBER Of CLOSEST OZONE MEASUREMENT
Multiply ill values by 10 *• 0
22 16 16 16 16 16 16 16 14 U 14
21
20
19
18
17
16
15
16 16
16 16
16 16
16 16
16 16
4 *
16 16
4 4
16 16
16 16 16
16 16 16
16 16 16
16 16 16
16 16 16
16 16 16
» 4 +
16 16 16
16 16
16 16
16 16
16 16
16 16
16 11
* *
16 11
14 U 14
U U H
U U 14
U U H


11 11 11
+ 4 4
11 11 11

HESOPU
11 12 13
FF VERSION 5.
STATION TO EACH
14 14 14 14
U 14
H U
14 U
14 U



* 4
11 11
14 14
14 14
14 14
14 8



4 4
8 8
GRID
14
14
14
14
8



*
8
14 15 16 17
10 LEVEL 930530
POINT
15 15 15 15
15
IS
15
8



4
9
IS 15 IS
15 15 15
IS 15 15
8 8 IS
899

444
9 10 10
IS 15
15 15
15 15
15 15
15 15
9 10
10 10
4 4
10 10
18
15
15
15
IS
15
10
10
4
10
19 20 21 22

D-10

-------

H

13

12

11

10

9

8

7

6

5

t

3

2

1


1 * *
1 1& 16

1 16 16

1 16 16

I 16 16

1 16 16

1 16 16

1 16 16

1 16 16

1 16 11

1 16 13

I 13 13

1 13 13

1 13 13

f 13 13


CROUNO-LEVEl
Multiply all
31
30
39
28
27
26
25
2«
23
22

21
1 0
1 0
1 0
1 0
I 0
1 0
1 0
1 0
/ 0
1 0

1 1

16 16

16 16

16 16

16 16

16 11

16 11

11 11

11 11

13 13

13 13

13 13

13 13

13 13

13 13



16 11

16 11

11 11

11 11

11 11

11 11

11 11

11 13

13 13

13 13

13 13

13 13

13 13

13 13



11 11 11

11 11 11

11 11 11

11 11 11

11 11 11

11 11 11

11 11 13

13 13 13

13 13 13

13 13 13

13 13 13

13 13 13

13 13 13

13 13 13


11

11

11

11

11

11

13

13

13

13

13

13

13

13
10

11 11 11 11

11 11 11 11

11 11 11 11

11 11 11 11

It 11 11 11

11 13 13 13

13 13 13 13

13 13 13 13

13 13 13 13

13 13 13 13

13 13 13 13

13 13 13 13

13 13 13 13

13 13 13 13
11 12 13 U

11 9 10

11 11 10

11 It 12

11 12 12

13 12 12

13 13 12

13 13 13

13 13 13

13 13 13

13 13 13

13 13 13

13 13 13

13 . 13 13

13 13 13
15 16 17
HCSOPUFF VERSION 5.10
502 CONCENTRATIONS (G/H**
values
o-o
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

1 2
by 10 ••
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

2 2
-8
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

2 2
3) AT

0
0
0
0
0
0
0
0
0
0
+
2
SAMPLING GRID

000
000
000
000
000
000
000
000
000
0 1 1
» + +
356
POINTS

0 0
0 0
0 0
0 0
0 0
0 0
0 0

0 0
1 1
* *
8 9

10

10

10

12

12

12

12

13

13

13

13

13

13

13
18

10

10

10

12

12

12

12

12

13

13

13

13

13

13
19
» » »
10 10 10

10 10 10

10 10 10

12 12 12

12 12 12

12 12 12

12 12 12

12 12 12

12 12 12

13 12 12

13 13 12

13 13 13

13 13 13

13 13 13
20 21 22





























lEVEt 730530
year

0
0
0
0
0
0
0

0
0
»
9
: 88

0
0
0
0
0
0
0

0
0
+
8
nonth: 1 day: 2 Julian day: 2 hour: 12

000000000
000000000
000000000
000000000
000000000
000000000
000000000

000000000
000000000
+ »» + »» + » +
410000000


0
0
0
0
0
0
0
0
0
0
+
0
D-ll

-------
20
19
18
17
16
IS
14
13
12
11
10
9
8
7
6
5
4
3
2
1
cot
Nul
31
30
29
28
27
26
1
I
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
t
1
1
1
1
1
1
I
1
1
I
XJN
Iti
1
1
1
1
1
1
1
1
1
r
i
i


8
16
24
27
24
19
13


5
3
1
0
0
0
0
0
0
0
0

1
0-LE
ply
0
0
0
0
0
0
4


14
28
39
40
32
20
11


3
1


0
0
0
0
0
0
0
o s




21
42
59
59
43
24
10


1
0


0


0
0
0
0
0
0




27
56
82
83
58
29
10


1
0


0


0
0
0
0
0
0




30 31 32 34 39 47 57 66 75 87 106 132 142 86 12 0 0 0 0 0
67 71 70 68 69 73 79 85 90 94 102 119 159 219 142 11 0000
102 112 111 103 93 87 85 85 85 84 84 88 98 139 253 158 3 0 0 0
107 123 124 113 96 81 71 64 59 52 46 43 44 S3 112 259 109 0 0 0
76 90 93 84 69 53 41 30 23 16 11 8 6 5 9 82 279 21 00
36 43 44 39 31 21 U 8 4 2 1 0 0 0 0 0 101 310 0 0
12 13 13 11 8 5 3 1 000000 0 0 5 326 39 0


00000000000000000000
00000000000000000000





0000000000000000000




00000000000000000000


00000000000000000000




VSL S02 CONCENTRATIONS (G/N**3) AT SAMPLING GRID POINTS ynr: 88 month: 1 day: 2 Julian day: 2 hour: 12
•II value* by 10 *• -8
00000
0
0
0
0
4
0
4
0
0
0
0
0
4
0
0
0
0
4
0
4
0 0
0 0
0 0
0 0
4 4
0 0
4 4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

25
D-12

-------
25 1
1
24 1
r
23 1
t
22 1
1
21 1
1
20 1
1
19 1
18 1
17 1
16 1
1
IS 1
U 1
1
13 1
t
12 1
1
11 I
1
10 I
1
9 1
1
8 1
1
7 1
1
6 1
1
S 1
I
* 1
1
3 1
1
2 1
1
1 I
r


0

0

0

0

0

0

0
0
0
0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

26

0

0

0

0

0

0

0
0
0
0

0


0

0

0

0

0

0

0

0

0

0

0

0

0

27

0

0

0

0

0

0

0
0
0
0

0


0

0

0

0

0

0

0

0

0

0

0

0

0

28

0

0

0

0

0

0

0
0
0
0

0


0

0

0

0

0

0

0

0

0

0

0

0

0

29

0

0

0

0

0

0

0
0
0
0

0


0

0

0

0

0

0

0

0

0

0

0

0

0

30

0

0

0

0

0

0

0
0
0
0

0


0

0

0

0

0

0

0

0

0

0

0

0

0

31
HESOPUFF VERSION 5.10 LEVEL 930S30
GROUND-LEVEL StX  COMCEMTRATIONS 
-------
31 1
Mt



?H 1

97 1

26 1
25 1
«|



Ml



20 1


18 t
17 1
16 I
15 1
14 1
13 t
12 1
11 1
10 t
9 !
8 I
7 t
6 1
5 1
4 1
1 1
2 I
i
0








0
0








2


13
20
22
20
16
12
8
S
3
1
0
0
0
0
0
0
0
0








0
0








4


22
31
32
26
17
10
5
2
1
0
0
0
0
0
0
0
0
4
0








0
0








6


33
47
47
34
19
8
3
,. 1
0
0
0
0
0
0
0
0
0
0








0
0








7


44
65
65
46
23
8
2
0
0
0
0
0
0
0
0
0
0
0








0
0








7


52
79
83
59
28
9
2
0
0
0
0
0
0
0
0
0
0
*
0








0
0








7


54
86
94
69
33
10
2
0
0
0
0
0
0
0
0
0
0
0








0
0








7


S3
84
94
71
34
10
2
0
0
0
0
0
0
0
0
0
0
0








0
0








8


50
76
84
63
30
a
i
0
0
0
0
0
0
0
0
0
0
0








0
0








10


49
67
70
51
23
6
1
0
0
0
0
0
0
0
0
0
0
0








0
0








14


51
61
58
38
16
4
0
0
0
0
0
0
0
0
0
0
0
*
0








0
0








17


54
58
49
28
10
2
0
0
0
0
0
0
0
0
0
0
0
4-
0








0
0








21


57
57
43
21
6
1
0
0
0
0
0
0
0
0
0
0
0
0








0
0








25


59
56
39
15
3
0
0
0
0
0
0
0
0
0
0
0
0
*
0








0
0








29


61
55
34
11
1
0
0
0
0
0
0
0
0
0
0
0
0
0








0
0








33


65
S3
30
7
1
0
0
0
0
0
0
0
0
0
0
0
0
*
0








0
0








*30


73
54
27
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
g







0
0








17


94
59
27
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0








0
0








3


125
81
31
3
0
0
0
0
0
0
0
0
0
0
0
0
0
4.
0








0
0








0


79
141
63
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0








0
0








0


6
86
141
45
0
0
0
0
0
0
0
0
0
0
0
0
0
0








0
0








0


0
2
58
148
53
3
0
0
0
0
0
0
0
0
0
0
0
0 0








p o
0 0








0 0


0 0
0 0
0 0
11 0
161 0
167 20
0 141
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0








0
0








0


0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0








0
0








0


0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D-14

-------
1
GROU
Mult
31
30
29
'28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6


1 2
NO-LEVEL 8
Ipty all v
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0








X CONCENTRATIONS 
-------
1
5 1
1
4 I
I
3 1
1
2 1
1
1 1
1
0
0
0
0
0
26
0
0
0
0
0
27
0
0
0
0
0
28
0
0
0
0
0
29
0
0
0
0
0
30
0
0
0
0
0
31
HESOPUFF VERSION 5.10 LEVEL 930530
GftOUND-lEVEl HOX tOWXHTRATIOm <0/K*«3> AT
Multiply »U values
31 1
30 1
29 I
28 1
27 1
26 1
25 1
24 t
23 1
22 1
21 1
20 1
19 1
18 1
17 1
16 1
I
15 1
14 1
13 1
12 1
0
0
0
0
0
0
0
0
0
0
1
4
11
21
31
35

32
25
18
12
0
0
0
0
0
0
0
0
0
o.
2
6
19
37
52
54

42
27
15
a
0
0
0
0
0
0
0
0
0
0
2
9
28
56
80
81

58
32
14
5
by 10 ••
0
0
0
0
0
0
0
0
0
0
2
12
36
76
112
11$

81
40
14
4
0

0
0
0
0
0
0
0
0
2
13
41
91
141
149

107
51
16
3
-8
0

0
0
0
0
0
0
0
0
2
12
42
97
157
174

128
62
19
4

0

0
0
0
0
0
0
0
0
2
13
42
96
156
177

134
64
19
3

0

0
0
0
0
0
0
0
0
3
IS
45
92
142
160

121
57
16
3
SAMPttra GRID POINT*

0

0
0
0
0
0
0
0
0
4
20
52
93
128
135

99
45
12
2

0

0
0
0
0
0
0
0
1
6
27
63
99
119
113

76
31
7
1

0

0
0
0
0
0
0
0
1
9
35
77
108
116
98

57
20
4
0

0
0
0
0



0
0
1
11
44
90
118
119
89

42
11
2
0

0
0
0
0



0
0
1
12
53
103
125
121
84

32
6
1
0
y«»r: 88 pool

0
0
0
0



0
0
1
12
63
120
132
121
76

23
3
0
0

0
0
0
0



0
0
0
11
75
149
143
119
67
»
16
1
0
0

0
0
0
0



0
0
0
6
73
192
170
124
62

11
1
0
0
thi 1

0
0
0
0
0
0
0
0
0
0
1
43
212
234
140
63

a
0
0
0
1 d*yi 2 Julian dsy:

0
0
0
0
0
0
0
0
0
0
0
8
129
329
208
78

7
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
18
214
382
169

13
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
16
237
391

124
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
163

419
152
a
0
: 2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

31
463
484
0
hour:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
t
0
0
58
415
12

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4-
0
0
0
0


0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
»
0
0
0
0
D-16

-------
I
11 1
1
10 I
1
9 1
1
8 1
I
7 1
1
6 1
4 1
1
3 1
1
2 1
1
1 1
1
GROUND
Hultlp
31 1
1
30 1
1
29 1
28 1
1
27 1
1
26 1
1
25 1
1
24 1
1
23 1
1
22 1
21 1
20 1
1
19 1
1
18 I
1
17 1
1
7
4
2
1
0
0




0
0
0

1
ly
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
4
2
1
0
0
0




0
0
0


2
1
0
0
0
0




0
0
0


1
0
0
0
0






0
0
0


0
0
0
0
0


0


0
0
0


00000000
00000000
00000000
00000000
00000000



0000000

00


00000000
00000000


im NOX CONCENTRATIONS 
-------
16 1
IS 1
U 1
13 1
12 1
11 1
10 1






6 1
S 1
4 1
3 t
2 1
1 1
1
0
0
0
0
0
0
0






0
0
0
0
0
0
4
0
0
0
0
0
0
0






0
0
0
0
0
0
4
0
0
0
0
0
0
0






0
0
0
0
0
0
4
0
0
0
0
0
0
0






0
0
0
0
0
0
4
0
0
0
0
0
0
0






0
0
0
0
0
0
«
0
0
0
0
0
0
0






0
0
0
0
0
0
*
      26  27   28   29   30   31
                                             MESOPUFF   VERSION 5.10   LEVEL 930530
GROUND-LEVEL  HN03 CONCENTRATIONS (C/M**3) AT SAMPLING GRID POINTS
             V
Multiply «lt  values by 10 •*  -9
yaars 88 month:   1 day:  2 Julian day:   2 hour: 12
31 1
30 1
29 1
1
28 I
27 1
26 1
1
25 1
1
24 1
23 1
I
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
. 0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
+
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4-
0
0
0
4
0
0
0
0
0
0
4
0
0
0
4
0
0
0
0
0
0
4
                                                              D-18

-------
1
26 1
1
25 1
1
24 1
I
23 1
1
22 1
21 1
1
20 1
19 1
1
18 1
1
17 1
1
16 1
1
15 I
1
14 1
13 1
1
12 f
1
11 1
1
10 I
1
9 I
1
8 1
1
7 I
1
6 1
I
5 1
1
4 1
• 1
3 I
1
2 1
1
1 1
1



0

0

0

0

0
0

0
0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0
• *
0

0

0

26


0

0

0

0

0
0

0
0

0

0

0

0

0
. 0

0

0

0

0

0

0

0

0

0
*
0

0

0

27


0

0

0

0

0
0

0
0

0

0

0

0

0
0

0

0

0

0

0

V 0

0

0

0
.*
0

0

0

28


0

0

0

0

0
0

0
0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0
*
0

0

0

29


0

0

0

0

0
0

0
0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

.0
4
0

0

0

30


0

0

0

0

0
0

0
0

0

0

0

0

0
0 .

0

0

0

0

0

0

0

0

o
»
0

0

0

31
MESOPUFF VERSION S.10 LEVEL 930530
GROUND-LEVEL N03  CONCENTRATIONS  (G/H"3) AT SAMPLING GRID POINTS
year: 80 month:   t day:  2 Julian day:    2 hour: 12
                                                             D-19

-------
22 1 0
21 f 1
20 1 5
19 1 IS
18 1 29
17 1 43
16 1 50
IS t 47
14 1 39
13 1 29
12 I 20
11 I 13
10 i r
9 1 3
8 I 1
7 1 0
6 1 0
5 1 0
4 ! 0
3 1 0
2 1 0
1 1 0
0 0


9 12
24 36
48 72
68 101
71 101
58 74
39 42
23 19
12 7
6 3
3 1
1 0
0 0
0 0
0 0
0 0
0 0
0 0
0 » 0
0 0
0


15
45
94
136
137
96
48
18
5
1
0
0
0
0
0
0
0
0
0
0
0


15
so
108
164
170
120
57
18
4
0
0
0
0
0
0
0
0
0
0
0
00011111


15 15 17 22 28 35 43 51
SO 49 52 58 67 77 86 96
112 107 102 101 104 108 110 110
ITS 168 150 133 122 115 109 102
188 184 162 134 111 94 82 70
136 136 119 94 71 S3 39 27
65 64 55 41 28 18 10 5
20 19 16 11 6 3 1 1
43211000
00000000



00000000
* *
0

00000000
00000000


00000000
00000000
00000000
00000000
1000
11 8 4 0
56 56 44 22
107 115 119 107
112 115 118 125
94 90 91 87
56 46 43 41
17 11 75
2100
0000
0000
0000




0000


0000
0000
0000
0000
0000
0000
0
0
4
56
137
0
0
0
7
76
92 121
40
4
0
0
0
0


0
0
0
0
0
0
0
0
0
55
4
0
0
0
0


0
0
0
0
0
0
0
0
0
0
0
0
0
5
67
100
30
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
35
85
28
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
69
64
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
29
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1
1
CROUW-lf
Multiply
31 I 0
30 t 0
29 I 0
28 1 0
27 1 0




iVl'l MN03 COHCCNTDAT10MS (G/MV3) AT SAMPUHQ CftlD POINT*
alt value* by 10 ** -9
00000
0 0
: °. •>
0 0
+ *
0 0
0
0
0
0
0
0
0
*
0
0
0
0
0
14 15 16 17
year: 88 month:
18
1 day:
19
2
20
Julian
21
day:
22
2
23
hour:
Z« 25
12
D-20

-------
Multiply ill values by 10 ••  -11
31 I
30 1
29 1
28 1


26 1


2« 1


22 1


20 1
19 1
18 1
17 1
16 I
15 1
U I
13 1
12 1
11 1
10 1
9 1
8 1
7 I


5 I
4 1
3 1
0
0
0
0


0


0


0


15
42
84
128
154
154
136
111
84
57
33
15
6
2


0
0
0
0
0
0
0


0


0


1


24
69
139
201
221
191
139
89
51
29
15
6
2
0


0
0
0
0
0
0
0


0


0


1


34
101
206
300
315
248
153
v7*
33
13
5
2
0
0


0
0
0
0
0
0
0


0


0


0


41
127
272
410
435
328
179
75
22
6
2
0
0
0


0
0
0
0
0
0
0


0


0


0


43
141
319
509
567
433
224
79
19
3
0
0
0
0


0
0
0
0
0
0
0


0


0


0


42
142
336
568
673
537
278
92
19
2
0
0
0
0


0
0
0
0
0
0
0


0


0


1


42
140
327
568
705
585
306
98
18
0
0
0
0
0


0
0
0
0
0
0
0


0


0


1


47
145
308
515
648
549
286
88
15
0
0
0
0
0


0
0
0
0
0
0
0


0


0


1


59
157
296
452
553
461
232
66
10
0
0
0
0
0


0
0
0
0
0
0
0


0


0


2


75
180
298
410
472
370
169
43
5
0
0
0
0
0


0
0
0
0
0
0
0


0


0


2


93
204
306
395
424
297
117
24
2
0
0
0
0
0


0
0
0
0
0
0
0


0


0


3


112
227
311
387
391
236
74
12
0
0
0
0
0
0


0
0
0
0
0
0
0


0


0


3


134
253
311
368
347
175
41
5
0
0
0
0
0
0


0
0
0
0
0
0
0


0


0


2
9O

143
276
312
343
290
IIS
18
1
0
0
0
0
0
0


0
0
0
0
0
0
0


0


0


0


124
273
313
325
238
70
7
0
0
0
0
0
0
0


0
0
0
0
0
0
0


0


0


0


67
212
289
309
205
44
3
0
0
0
0
0
0
0


0
0
0
0
0
0
0


0


0


0


17
101
215
258
161
26
1
0
0
0
0
0
0
0


0
0
0
0
0
0
0


0


0


0


1
20
95
160
83
9
0
0
0
0
0
0
0
0


0
0
0
0
0
0
0


0


0


0


0
1
13
S3
39
2
0
0
0
0
0
0
0
0


0
0
0
0
0
0
0


0


0


0


0
0
0
4
9
1
0
0
0
0
0
0
0
0


0
0
0
0
0
0
0


0


0


0


0
0
0
0
0
0
0
0
0
0
0
0
0
0


0
0
0
0
0
0
0


0


0


0


0
0
0
0
0
0
0
0
0
0
0
0
0
0


0
0
0
0
0
0
0


0


0


0


0
0
0
0
0
0
0
0
0
0
0
0
0
0


0
0
0
0 0
0 0
0 0
0 0


0 0
On

0 0


0 0
On

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0


0 0
0 0
0 0
                                                          D-21

-------













00000000
*



GROWD-lEVEl M03  CONCENTRATIONS (G/M**3) AT  SANPttNO CHID POINTS
yrart M month:  1 day:  2 Julian day:   2 hour:  12
Multiply •(( vatuw by 10  •• -11
31 1
30 1
29 1
28 1
27 1
26 1
25 I


23 1
22 1
21 1
20 1
19 I
18 1
17 1
16 1
15 1
U 1
1
13 1
I
12 1
1
11 1
1
10 1
1
9 1
1
8 1
1
0
0
0
0
0
0
0


0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
0
0
0
0
0
0
0


0
0
0
0
0
0
0 ,
0
0
0
0
0
#
0
•f
0
0
4
0
0
0
0
0
0
0
0


0
0
0
0
0
0
0
0
0
0
0
0
*
0
0
0
*
0
*
0
0
0
0
0
0
0


0
0
0
0
0
0
0
0
0
0
*
0
*
0
*
0
4-
a
0
0
0
0
0
0
0
0
0


0
0
0
0
0
0
0
0
0
0
0
*
0
0
0
0
0
0
0
0
0
0
0
0


0
0
0
0
0
0
0
0
0
0
0
*
0
0
0
0
*
0
                                                            D-22

-------
7
6
S
4
3
2
1

0
0
0000
0000
00000
00000
00000
00000
00000


0
0
0
0
0
0
0

26 27 28 29 30 31
GROUND-LEVEL S02 CONCENTRATION «8/M"3)
RECEPTOR CONCENTRATION RECEPTOR



1
S
9
13
GROUND-LEVEL
2.6267E-09
2.5897E-08
O.OOOOE+00
O.OOOOE+00
S04 CONCENTRATION
2
6
10

<6/M"3)
RECEPTOR CONCENTRATION RECEPTOR



1
S
9
13
GROUND-LEVEL
2.1679E-09
2.1371E-08
O.OOOOE+00
O.OOOOE+00
HOX CONCENTRATION
2
6
10

(0/M*«3)
RECEPTOR CONCENTRATION RECEPTOR



1
5
9
13
GROUND -LEVEL
3.2952E-09
3.5583E-08
O.OOOOE+00
O.OOOOE+00
HNO3 CONCENTRATION
2
6
10


RECEPTOR CONCENTRATION RECEPTOR




1
5
9
13
GROUND -LEVEL
4.7902E-10
4.7275E-09
O.OOOOE+00
O.OOOOE+00
N03 CONCENTRATION
2
6
10


RECEPTOR CONCENTRATION RECEPTOR




1
5
9
13
1.3718E-11
2.2207E-10
O.OOOOE+00
O.OOOOE+00
2
6
10








AT







NONGRIDOED
CONCENTRATION
5
1
0

AT
.90S6E-08
.29426-09
.OOOOE+00

MONGRIDOED
CONCENTRATION
5
1
0

AT
.0650E-08
.0382E-09
.OOOOE+00

NONGRIDOEO
CONCENTRATION
7
1
0

AT
.2394E-08
.8464E-09
.OOOOE+00

NONGRIDDED
CONCENTRATION
1
2
0

AT
.2704E-08
.1196E-10
.OOOOE+00

NONGRIOOEO
CONCENTRATION
3
1
0

.6S23E-10
.SOSOE-11
.OOOOE+00








RECEPTORS
RECEPTOR
3
7
11

RECEPTORS
RECEPTOR
3
7
11

RECEPTORS
RECEPTOR
3
7
11

RECEPTORS
RECEPTOR
3
7
11

RECEPTORS
RECEPTOR
3
7
11








YEAR: 88 MONTH:
CONCENTRATION
2.3974E-07
O.OOOOE+00
O.OOOOE+00

YEAR: 88 MONTH:
CONCENTRATION
1.9569E-07
O.OOOOE+00
O.OOOOE+00

YEAR: 88 MONTR:
CONCENTRATION
3.1425E-07
O.OOOOE+00
O.OOOOE+00

YEAR: 88 HONTH:
CONCENTRATION
4.3410E-08
O.OOOOE+00
O.OOOOE+00

YEAR: 88 MONTH:
CONCENTRATION
1.2830E-09
O.OOOOE+00
O.OOOOE+00








1 DAY:
RECEPTOR
4
8
12

1 DAY:
RECEPTOR
4
8
12

1 DAY:
RECEPTOR
4
8
12

1 DAY:
RECEPTOR
4
a
12

1 DAYt
RECEPTOR
4
8
12








2 HOUR: 12
CONCENTRATION
4.29S1E-07
O.OOOOE+00
O.OOOOE+00

2 HOUR: 12
CONCENTRATION
3.4460E-07
O.OOOOE+00
O.OOOOE+00

2 HOUR: 12
CONCENTRATION
5.8497E-07
O.OOOOE+00
O.OOOOE+00

2 HOUR: 12
CONCENTRATION
7.4206E-08
O.OOOOE+00
O.OOOOE+00

2 HOUR: 12
CONCENTRATION
2.4799E-09
O.OOOOE+00
O.OOOOE+00

HESOPUrF   VERSION S.10  LEVEL 930S30
              D-23

-------
VET S02  FLUX   AT SAMPLING GRID POINTS                       years  88 month:   1 day:  2 Julian day:    2 hour:  tZ





GRID NOT  PRINTED -- ill values zero





                                             MESOPUFF   VERSION 5.10   LEVEL 930530
WET SO* FLUX 
-------
20
19
18
17
16
IS
14
13
12
11
10
9
8
7
6
5
4
3
2
1
OR'
Mul
31
30
29
28
27
26
1
1
1
1
1
1
1
1
1
1
t
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
r
it
i
i
i
i
i
i
i
i
i
i
i
i
3
7
14
20
22
19
14




3
2
1
0.
0
0
0
0
0
0
0

1
502
Iply
0
0
0
0
0
0
4
12
24
33
34
26
16




2
1
0
0
0
0
0
0
0
0
0




18
36
SI
SO
36
19




1
0
0
0
0
0


0
0
0
«• 0


FtUX (G/M*
all values
0 0
0
0
0
0
4
0
0
0
0
0
0


24
49
70
69
47
22




0
0
0
0
0
0


0
0
0
0




27
57
83
83
56
25




0
0
0
0
0
0


0
0
0
0




27 24 20 17 16 18
57 49 38 29 25 25
84 71 52 37 29 27
84 71 51 36 27 22
57 48 35 25 17 13
25 22 14 11 7 4


111000
000000
000000
000000
000000
000000
000000


000000
000000
000000
000000


•2/S) AT SAMPLING GRID POINTS
by 10 *• -10
000
0
0
0
0
0
»
0
0
0
0
4
0
0
0
0
0
0
10 12 19 37 45 28 6 0 0 0 0 0 0
20 24 37 76 122 139 84 12 0 0 0 0 0
26 29 41 74 111 155 216 142 11 0000
27 28 40 64 82 96 138 255 159 3 0 0 0
20 19 24 35 41 44 53 112 263 lit 0 0 0


3 1 1 0 0 0 0 0 0 104 319 0 0
0000000005 334 12 0
00000000000 28 0
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000

000000000000
0000000000000
0000000000000
0000000000000
0000000000000

12 13 14 15 16 17 18 19 20 21 22 23 24
year: 88 month: 1 day: 2 Julian day: 2 hour: 12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0

25
D-25

-------
25
24
23
22
21
20
19
18
17
16
15
U
13
12
11
10
9
8
7
6
5
^
3
2
1


0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

26
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0"
0
0
0
0

27
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

28
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

29
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

30
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

31
HCSOPUFF VERSION 5.10 LEVEL 930530
DRY SO*  FLUX   AT SWUNG GRID POINTS





Multiply •(( values by 10 ** -It
year: 88 Month:   1 day:  2 Julian day:   2 hour: 12
                                                             D-26

-------
31 1
30 1
29 1
Ml
1
27 1
26 1
Ki
i
«•
i
23 I
22 f
21 1
20 1
19 I
18 1
17 1
16 1
«e *
Ij I
14 1
I
f
13 1
12 1
It 1
10 1
9 1
8 1
1
7 1
I
I
6 !
5 1
4 1
3 1
1
2 1
1
0
0
0


4
0
0




0
0
1
4
2
7
13
19
22


15
11
7
4
2
1
0
0
0
0
0
0
*
0
4
0
0
0


4
0
0




0
0
4
1
4
4
4
11
22
31
32
3*
CO
17
9
4
5
2'
1
0
4
0
4
0
0
0
0
0
4
0
4
0
0
0


4
0
0
4



0
0
4
i
4
6
4
16
33
47
47


19
8
4
3
' 1
4
0
0
0
4
0
0
0
0
0
4
0
4
0
0
0


0
0
4

4

0
0
4
i
4
7
4
21
4
44
64
+
65
4
t*
46
4
23
0
4
2
0
0
0
4
0
4
0
0
0
0
0
+
0
4
0
0
0


4
0
0
4
0
4

4
0
4
0
4
1
4
7
4
23
4
51
4
79
4
82
4

4
28
9
4
2
0
0
0
4
0
4
0
0
0
0
4
0
4
0
+
0
0
0


4
0
0
4
0
4

4
0
4
0
4
1
4
7
4
24
4
54
4
85
4
93
4
68
4
33
10
4
2
4
0
0
0
4
0
*
0
0
0
0
4
0
+
0
*
0
4
0
4-
0

0
4
0
4
0
4
0
4

• 4
0
+
0
4
i
4
7
4
23
4
52
4
83
4
93
4
70
4
33
4
10
4
2
4
0
0
4
0
4
0
4
0
4
0
4
0
0
4
0
•
0
4
0
4
0
4
0
•4
0
4
0
4
0
4
0
•4

4
0
4
0
4
2
4
8
4
24
4
49
4
75
4
83
4

4
29
4
8
4
i
4
0
0
4
0
4
0
4
0
4
0
4
0
0
4
0
+
0
0
4
0
4
0
4

0
4
0
4
0
4
0
4

4
0
4
0
4
2
4
10
4
27
4
49
4
66
4
70
4
50
4
23
4
6
4
i
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
4
0
+
0
4

0
4
0
4
0
4
0
4
0
4
0
4
0
4
3
4
14
4
32
4
50
4
60
4
57
4
38
4
16
4
4
4
0
4
0
4
0
4
0
+
0
4
0
0
4
0
0
4
0
4
0
0
4
0
4
0


4
0
4
0
4
0
*
4
0
4>
0
4
4
4
17
4
38
4
S3
4
58
4
49
4

4
10
4
2
4
0
4
0
4
0
4
0
4
0
4
0
0
0
0
0
*
0
0
4
0
0
4^


4
0
4>
0
+

4>

4^
0
4
i
4
5
4
21
4
43
4
56
4
57
4
43
4
94
21
4
6
1
+
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
0
4
0


4
0
0
4
0
4

+
0
4/
0
4
6
4
25
4
49
4
59
+
56
4
39
4

4
3
0
4
0
0
4
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
0
0
4,


4
0
0
4

+

0
0
6
4
29
4
55
60
54
4
34
4

1
0
0
0
4
0
4
0
0
4
0
0
0
4
0
4
0
4
0
4
0
0
0
4,


4
0
0
4

4

0
0
5
4
32
4
65
64
53
4
29
4

i
0
4
0
0
0
4
0
4
0
4
0
0
0
0
4
0
*
0
»
0
4
0
4
0


4
0
0
4
0
4

0
4
0
4
2
4
29
4
79
4
72
4
54
4
27
4

4
0
0
4
0
4
0
4
0
4
0
4
0
+
0
0
4
0
4
0
4
0
0
+
0
0
0
4^


0
0


4

0
0
0
4
17
83
93
4
58
4
26
4

0
0
4
0
0
4
0
4
0
4
0
4
0
0
0
4
0
4
0
0
*
0
0
0
4,


0
0


+

0
0
0
3
49
124
80
4
31


0
0
4
0
0
0
4
0
4
0
4
0
0
4
0
4
0
0
0
»
0
0
0


4
0
0

0
+

4
0
4
0
4
0
4
0
4
7
4
78
4
139
4
62
4

4
0
0
4
0
0
0
4
0
4
0
4
0
4
0
4
0
4
0
0
0
0
0
0
4.


0
0


4

0
0
0
4
0
0
4
6
85
4
140
4
tt
64
0
0
4
0
0
0
4
0
4
0
0
0
0
4
0
0
0
0
0
0
4.


0
0




0
0
0
0
0
0
2
4
57
tZT
14*
S3
3
0
0
0
0
4
0
0
0
4
0
4
0
0
0
0
0
0
4.

4,
0
4.
0



4.
0
4,
0
0
0
0
0
0
0
1 «
1 1
159
4.
166
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4.

4,
0
4.
0



4,
0
4,
0
0
0
0
0
0
0


0
4,
20
141
4.
0
0
0
0
0
0
0
0
0
0
0
0
0
4.


0
4,
0




0
4^
0
0
0
0
0
0
0


0
4,
0
0
4.
0
0
0
0
0
0
0
0
0
4
0
0
0
0
4.


0
4,
0




0
4,
0
0
0
0
0
0
0


0
4.
0
0
0
0
0
0
0
0
0
0
0
4
0
D-27

-------
 1 I
   I
                                             9   10   11    12    13   14   15   16   17   18   19   20   21   22   23   24   25
DRY S04   HIM (G/M**2/S) AT SAMPLING  GRID POINTS
Multiply •!( values by 10 •• -11
year; 88 nonth:   1  day:  2 Julian day:   2 hour:  12
31 1
30 1
29 1
28 1
27 r
26 I
25 1
2« 1
23 1
22 1
21 1
20 1
19 1
18 1
17 1
16 1
15 I
U 1
13 1
12 1
11 I
1
10 1
1
9 1
1
8 1
7 1
1
6 1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
»
0
4
0
4
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
»
0
4
0
4
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
0
4
0
                                                              D-28

-------
1
5 !
1
4 1
1
3 1
1
2 1
1 1
1

0
0
0
0
0

26
0
0
0
0
0

27
0
0
0
0
0

28
OUT NOX riUX  AT SAHPtlNO CHID MINTS
by 10 ** -11



0
0
0
0
0
0
0
1
16
76
231
.478
682
670
456
221
79
*
20



0
.0
0
0
0
0
0
0
15
80
250
536
782
777
525
240
76
16



0
0
0
0
0
0
0
1
13
74
237
512
755
761
517
233
*
69
13





0
0
0
0
0
0
1
11
65
202
423
615
624
429
194
53
9





0
0
0
0
0
0
1
11
53
162
316*
442
446
311
HO
39
6







0
0
0
0
0
1
11
50
134
238
311
308
213
>4
24
3







0
0
0
0
0
1
13
55
13.1
206
244
227
148
60
14
1







.0
0
0
0
0
2
16
67
148
'208
223
187
107
37
7
1







0
0
0
0
0
2
20
82
170
223
224
168
80
21
3
0







0
0
0
0
0
2
23
100
• w
236
228
158
61
12
1
*•
0
y«i







0
0
0
0
0
1
24
119
226
248
227
144
44
6
0
0
w« 81
0
0
0
0
0
0
0
0
0
0
20
141
281
270
224
126
30
2
0
0
I >«ntht '
0 0
0
0
0
0
0
0
0
0
0
11
137
362
319
232
115
20
1
0
0
0
0
0
0
0
0
0
0
0
2
80
401
441
263
118
15
0
0
0
1 days 2 Julian day: 2
00000
0
0
0
0
0
0
0
0
0
0
16
243
622
392
147
13
0
0
0
0
0
0
0
0
0
0
0
0
0
0
34
40«
72S
320
25
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
31
452
744
236
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


9
311
799
290
15
0
0
0
0
0
0
0
0
0
0
0
0
0


0
0
59
8S4
924
0
hours
0
0
0
0
0
0
0
0
0
0
0
0
0


0
0
0
0
112
806
12
0
0
0
0
0
0
0
0
0
0
0
0
0


0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


0
0
0
0
0
*
0
D-29

-------
11 1 27 16 9 *





















210000000000000000000



000000000000000000000







00000000000000 0 0

0000000000000
* *
0000000000 000





                                                 10   11   12   13   H    IS   16   17   18   19   20   21   22   23   24   25
DRY NOX  FLUX  (G/M**2/S> AT SAMPLING GRID POINTS
yaar: 88 nonthi   1 day:  2 Jut Iin day:   2 hour:  12
Multiply all values by 10 •* -11
31 1
I
30 1
1
29 1
1
28 I
1
27 1
1
26 1
1
25 1
1
24 1
1
23 -1
. 1
22 1
1
21 1
20 1
I
19 1
1
18 1
1
17 1
1
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
*
0
4
0
4
0
0
*
0
*
0
4
0
4
0
4
0
4
0
4
0
4
0
*»
0
4
0
4
0
4
0 .
4
0
4
0
0
4
0
4'
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4 "
0
4
0
0
4
0
4- '
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4 .
o •
4
0
4
0
0
4
0 .
4 " •
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
4
o •
4~
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
'• 4
0
4
0
4
0
0
4
0
4
0
4
0
4
                                                             D-30

-------
16 1
I
IS I
U I
1
13 1
1
12 I
I
11 t
I
10 1
1
9 1
a i
7 1
1
6 1
1
S 1
I
« 1
3 1
1
2 1
1
1 1
our
Hull
31 1
1
30 1
1
29 1
1
28 1
27 1
I
26 1
1
25 t
1
24 1
1
23 1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

26
HN03
iply
0
0
0
0
0
0
0
0
*
0
»
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

27
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

28
FLUX 
-------
22 I 0
21 1 8
20 1 33
19 1 92
18 I 180
17 1 258
16 1 277
15 1 234
14 1 159
13 1 88
12 1 41
11 1 16
10 I 6
9 r 2
8 1 1
7 I 0
6 1 0
5 1 0
* I 0
3 1 0
2 1 0
1 1 0
1 »
1
DRY HM03
Multiply
31 1 0
30 1 0
29 1 0
28 1 0
1 4
27 1 0
1
13
54
154
301
421
431
333
206
102
40
13
4
1
0
0
0
0
0
0
0
0

2
17
76
220
440
617
614
445
244
105
34
9
2
0
0
0
0
0
0
0
v 0
0

2 3
FlOX 
-------
1
26 1
25 1
1
2* 1
23 1
1
22 1
1
21 1
1
20 1
1
19 1
1
18 1
1
17 1
1
16 1
IS 1
1
U 1
1
13 1
1
12 1
1
11 1
1
10 1
9 1
1
8 1
1
1
6 1
1
5 t
1
* t
1
3 1
1
2 I
1
1 1
I



0
0

0
0

0

0

0

0





0
0

0

0

0

0

0
0

0


0

0

0

0

0

0

26


0
0

0
0

0

0

0

0





0
0

0

0

0

0

0
0




0

0

0

0

0

0

27


0
0

0
0

0

0

0

0





0
0

0

0

0

0

0
0




0

0

0

0

0

0

28


0
0

0
0

0

0

0

0





0
0

0

0

0

0

0
0




0

0

0

0

0

0

29


0
0

0
0

0

0

0

0





0
0

0

0

0

0

0
0




0

0

0

0

0

0

30


0
0

0
0

0

0

0

0





0
0

0

0

0

0

0
0




0

0

0

0

0

0

31
MESOPUFF VERSION 5.10 LEVEL 930530
DRY H03  FLUX (G/M**2/S) AT  SAMPLING GRID POINTS
year: 88 month:  1 day:  2 Jutlsn day:   2 hour: 12
                                                             D-33

-------
Multiply •!! v«tu*« by 10 •• -U
31 1
30 1
9O f



27 1


25 1
5t t



22 1


20 1
19 1
18 1
17 1
16 1
IS 1
H 1
13 I
12 t
11 t
10 t
9 1
S 1
7 1
6 t
5 1
4 t
3 1
0
0




0


0




0


15
41
83
123
U1
132
107
78
54
34
19
9
3
1
0
0
0
0
0
0




0


0




1


24
69
136
193
202
164
110
64
33
17
8
3
1
0
0
0
0
0
0
0




0


0




1


34
100
202
286
288
212
120
55
V
21
8
3
1
0
0
0
0
0
0
0
0




0


0




0


41
126
264
383
387
273
137
51
14
3
1
0
0
0
0
0
0
0
0
0




0


0




0


43
138
303
458
478
339
1«2
53
11
1
0
0
0
0
0
0
0
0
0
0




0


0




0


42
138
310
487
528
384
183
56
11
1
0
0
0
0
0
0
0
0
0
0




0


0




1


42
136
297
466
515
382
182
54
9
0
0
0
0
0
0
0
0
0

0




0


0




t


47
141
281
415
451
334
156
45
7
0
0
0
0
0
0
0
0
0

0




0


0




1


60
156
276
365
372
264
118
30
4
0
0
0
0
0
0
0
0
0

0




0


0




2


76
180
282
333
307
199
79
18
2
0
0
0
0
0
0
0
0
0

0




0


0




2


94
205
291
315
262
149
51
9
1
0
0
0
0
0
0
0
0
0

0




0


0




3


114
229
296
299
228
110
29
4
0
0
0
0
0
0
0
0
0
0

0




0


0




3


136
256
297
279
195
78
16
2
0
0
0
0
0
0
0
0
0
0
0
0




0


0




2


146
280
300
256
158
50
7
0
0
0
0
0
0
0
0
0
0
0
0
0




0


0




0


126
279
303
244
129
30
3
0
0
0
0
0
0
0
0
0
0
0
0
0




0


0




0


69
217
285
244
119
21
1
0
0
0
0
0
0
0
0
0
0
0
0
0




0


0




0


17
104
219
227
114
15
0
0
0
0
0
0
0
0
0
0
0
0
0
0




0


0




0


1
21
99
174
105
11
0
0
0
0
0
0
0
0
0
0
0
0
0
0




0


0




0


0
1
13
65
84
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0




0


0




0


0
0
0
4
19
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0




0


0




0


0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0




0


0




0


0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0




0


0




0


0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0




0


0




0


0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0




0


0




0


0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
                                                         D-3A

-------

1


I

0




0















000000


Q

Q


       1    2    3    4    5   6    7    8    9   10   11    12   13   U   15   16   17   18   19   20   21    22   23   24   25





DRY N03  FlUX  AT SAHPUNO GRID POINTS                       year: 88 Month:   1  (toy:  2 Jutlm day:   2 hour: 12




Multiply  •(( vatu«« by 10 •• -14
31 1
30 1
29 1
28 1
27 I
26 1
25 1
24 I
23 1
22 I
21 1
20 I
19 1
18 1
17 1
16 I
15 1
1
14 I
1
13 1
1
12 1
I
11 1
1
10 1
1
9 I
1
8 1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
4
0
t
0
4
0
4
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
»
0
»
0
4
0
•
0
*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
•
0
»
0
+
0
•
0
4
0
»
0
4
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
                                                              D-35

-------
7
6
5
«
3
2


UET
0
0
0
0
0
0



26
S02
0
0
0
0
0
0



27
FLUX
RECEPTOR



1
5
9
13
UET
S04
0.
0.
0.
0.
Flux
RECEPTOR



1
5
9
13
UET
HOX
0.
0.
0.
0.
FLUX
RECEPTOR




WET
1
5
9
13
HN03
0 0
0 0
0 0
0 0
0 0
0 0



28 29
{0/M«2/S>
FLUX
OOOOE+00
OOOOE«00
ooooE+oo
OOOOE+00

FlUX
O.OOOOE+00
O.OOOOE*00
O.OOOOE+00
0 0
0 0
0 0
0 0
0 0
0 0



30 31
AT NONGRIOOEO
RECEPTOR
2
6
10

AT NONGRIOOEO
RECEPTOR
2
6
10

AT NONGRIDOEO
RECEPTOR
2
6
10








RECEPTORS
FLUX
O.OOOOE«00
O.OOOOE+00
O.OOOOE+00

RECEPTORS
FlUX
0.0000€»00
O.OOOOE+OO
O.OOOOE+00

RECEPTORS
FlUX
O.OOOOE+00
O.OOOOE«00
o. ooooc+oo
o.qpooE+oo
FlUX
RECEPTOR




WET
1
5
9
13
N03
(G/M++2/S)
FlUX
O.OOOOE+00
O.OOOOE+OO
O.OOOOE+00
AT NONGRIDOEO
RECEPTOR
2
6
10
RECEPTORS
FLUX
O.OOOOE*00
O.OOOOE«00
O.OOOOE*00
O.OOOOE+00
FlUX
RECEPTOR




1
5
9
13
(G/M"2./S)
FlUX
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
AT NONCRIOOED
RECEPTOR
2
6
10
RECEPTORS
FlUX
O.OOOOE«00
O.OOOOE'OO
0.00006+00
O.OOOOE+00
                                                       TEAR! 88 MONTH:  1  DATs  2  HOUR: 12
RECEPTOR
3
7
11
FlUX
O.OOOOE+00
O.OOOOE»00
O.OOOOE»00
TEAR: 88 MONTH: 1 OAT: 2
RECEPTOR
3
7
11
FLUX
O.OOOOE*00
O.OOOOE+00
O.OOOOE+00
TEAR: 88 MONTH! 1 OAT: 2
RECEPTOR
3
7
11
FlUX
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
TEAR: 88 MONTH: 1 DAT: 2
RECEPTOR
3
7
11
FlUX
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
TEAR: 88 MONTH: 1 DATi 2
RECEPTOR
3
7
11
FLUX
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
RECEPTOR
^
8
12
HOUR: 12
RECEPTOR
<
8
12
HOUR: 12
RECEPTOR
*
8
12
HOUR: 12
RECEPTOR
«
8
12
HOUR: 12
RECEPTOR
4
8
12
FLUX
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00

FlUX
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00

FlUX
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00

FlUX
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00

FLUX
O.OOOOE+00
O.OOOOE+00
O.OOOOE+00
DRY S02  FlUX  (G/M**2/S) AT NOHGRIDDED RECEPTORS






RECEPTOR       FlUX           RECEPTOR       FlUX
TEAR:  88  MONTH:   1  DAT:  2  HOUR: 12





   RECEPTOR       FlUX           RECEPTOR
                                                                                                      FlUX
                                                              D-36

-------
1
5
9
13
2.2593E-11
1. 97168-10
0.0000€«00
O.OOOOE'OO
2
6
10

4.138«E-10
6.8601E-12
O.OOOOE*OO

3
T
11

2.0118E-09
O.OOOOE»00
0.00001*00

4
8
12

3.5559E-09
O.OOOOE'OO
O.OOOOE«00

ORT S0(  FLUX (C/M**2/$) AT NONGRIDOED RECEPTORS
                                                        TEAR:  88  MONTH:  1  OATi  2  HOUR: 12
RECEPTOR
1
5
9
13
riux
2.1S44E-12
2.1045E-11
O.OOOOE«00
O.OOOOE»00
RECEPTOR
2
6
to

FLUX
4.7074E-11
1.0310E-12
O.OOOOE+00

RECEPTOR
3
7
11

FLUX
1.9312E-10
o.ooooc+oo
o.ooooe*oo

RECEPTOR
«
8
12

FLUX
3.«167E-10
O.OOOOE+00
O.OOOOE»00

ORT HOX  FLUX (G/M**2/S) AT NONGRIOOEO RECEPTORS
                                                        TEAR: 88  MONTH:   1  DAY:  2  HOUR: 12
RECEPTOR
1
5
9
13
FLUX
2.2073E-11
2.0217E-10
O.OOOOE+00
O.OOOOE»00
RECEPTOR
2
6
10

FLUX
3.477K-10
6.K21E-12
O.OOOOE*00

RECEPTOR
3
r
11

FLUX
2.0194C-09
O.OOOOE*00
o.ooooe+oo

RECEPTOR
4
8
12

FLUX
3.5804E-09
0.0000€*00
O.OOOOE»00

ORT HNO3 FLUX (6/H**2/S) AT  MONCRIDOEO RECEPTORS
                                                        TEAR: 88  MONTH.   1  OAT:  2  HOUR: 12
RECEPTOR
1
5
9
13
FLUX
3.1181E-11
2.7*011-10
O.OOOOE*00
O.OOOOE+00
RECEPTOR
2
«
10

FLUX
3.S782E-10
1.2200E-11
O.OOOOE+00

RECEPTOR
3
7
11

FLUX
2.5824E-09
O.OOOOE*00
O.OOOOE»00

RECEPTOR
4
a
12

FLUX
4.4524E-09
O.OOOOEMM
0.0000€'00

ORT N03  FLUX   AT NONCRIOOEO RECEPTORS
                                                        TEAR? 88  MONTH:   1  OAT!  2  HOUR: 12
RECEPTOR
1
5
9
13
FLUX
1.3732E-14
1.3868E-13
O.OOOOE«00
O.OOOOE»00
RECEPTOR
2
6
10

FLUX
3.3581E-13
6.3909E-15
O.OOOOE+00

RECEPTOR
3
r
11

FLUX
1.2271E-12
O.OOOOE«00
O.OOOOE*00

RECEPTOR
4
8
12

FLUX
2.1187E-12
O.OOOOE'OO
O.OOOOE»00

                                                               D-37

-------

-------
              APPENDIX E
                       *

SAMPLE MESOFILE H INPUT AND OUTPUT FILES

-------

-------
SAMPLE MESOFILE H INPUT FILE (FILEJNP)
                 E-l

-------
Citcultt* 24 -hr *v*r«g« S02 concentration* tod ftux«« «od plot
 (SAME IPOL'1.  IRTYPE-1.  IHAX-31, JHAX-31. IOUT-1,  UNO
FIND
 (SAME IYEAR'88.  IDAY'2,  IHOUR'I, I MIDI* 24. MMIT-10. UNO
AVRG
 tSAHE IMM'1.  AVETN'24,  PHINT-1, A-1.0. i-0.. PIOT.1. OISK-1,
       NEUV-0.  APE*0, NEUNES>0, ISCNEK'O, IHICN't,  UNO
OCfH
 tSAME IPOL'6.  IRTTPE'1,  IMAX-31. JMAX.J1, IOUT'2.  UNO
F1MO
 (SAME ITEAR-aa.  IOAY'2,  IHO««1, IGRIOS* 2«. NUNIT-11, (END
AVXQ
 (SAME IRUN'2.  AVETN>24.  PRINT-1. A-1.0. l«0., PlOT-1. OISK-1.
       NEUV»1.  APC-0. NEUMES>1, ISCHEK-0, INICH-1.  UNO
Vtt Deposition Huxe* <8/«**2/»)
 tOIFF N>6, TM»»-1.E-10.1.0e-11,1.0E-10,1.0E-9,5.0E-9.1.0E-8. UNO
DEFN
 (SAME IPOL-11, IRTYPE-1, IMAX«31. JHAX«3».  IOUT«3, UMO
FIND
 (SANE IYEAR*88,  IOAT-2,  IHOUR'1. ICRIOS* 24. NIMIT-12. (END
AVR6
 (SAME IRUNO. AVETH'24,  PRINT*!. A-1.0, I'D., PtOT-t. OISK-1,
       NEWV-1, APE'O, NEUME$«1, ISCHCK«0. 1MIGH«1, UNO
Dry Dcpoiltlon Fluxet 
 to IFF H-4. THR«-1.0E-10,1.0E-10.1.0E-9.1.0E-8.5.0E-a.1.0C-7. UNO
                                                                  E-2

-------
SAMPLE MESOFILE II OUTPUT FILE (FILE.LST)
                  E-3

-------
RUNTIME CALL NO.:
                         1   DATE:  06/15/93   TIMES 12:36:50.36
                                               VERSION NUMBER   2.3
                                                  LEVEL 930530

                                                    HESOflLE II
DATA READ FROM MESOPUFF OUTPUT FILE •- UNIT)   10  RUNSTREANt   1
    VERSON»  5.1  LEVEL'930530  NSTR-88   NSOAY-  2  NSHR. 0  NAOVTS-   24  IAVO-    1  NPUF»  4  NSAMAO*  2  IELMET>22  JELMET«22
    DC* ID-  10000.0  IASTAR- 1  IASTW-22  JASTAR- 1  JASTOP-22  ISASTR« 4  1SASTP-19  JSASTR- 4  JSASTP-19  MESHON- 2  NPTS«   1
    NAREAS-   0  NREC'  13  IPRINF-  12   ICAUSS-T  LCHEM-T  LDRT-T  LUET-T  LPRINT-T  L3Vl«T  LVSAMP-T  USAMP.   2.00  LSGRIO'T
    NSPEC- 5
    LUETC'T  LUETNC'T  IORTG-T  LDRYNG*T  LPRHX-T
    XREO 2.50  2.50  4.00  5.00  5.50   6.50   6.50  8.00  7.50  9.00  8.00  7.00  6.50
    YRE013.SO 12.00 12.00 11.00  9.50   9.00   7.50  8.00  6.50  6.00  5.75  4.00  3.50
CONCENTRATIONS 
87
+
256
*
345
4
583
*
797
«
881
•»





0
0
0
0
0
7
34
+
64
+
57
•*
134
4
313
+
370
•f
674
»
917
»
0




0
0
0
0
0
2
20
+
62
+
88
4
115
'»
14$
*
293
+
445
+
812
4-
                                                                E-4

-------
14 1
1
13 1
1
12 1
1
11 1
f
10 1
1
9 1
1
8 I
1
7 1
1
6 1
5 I
1
4 1
1
3 1
1
2 1
f
1 1
I

65

88

115

131

124

95

58

28

11
4

1

0

0

0

1
68

96

133

137

149

108

61

26


2

0

0

0

0


69

101

146

180

173

122

64

25


2

0

0

0

0


72

104

156

198

190

131

65

23


1

0

0

0

0


82

112

167

211

197

130

60

20


1

0

0

0

0


102

133

190

226

193

116

50

15


0

0

0

0

0


134

170

232

249

184

95

36

10


0

0

0

0

0


176

223

293

281

174

73

23

5

1
0

0

0

0

0


217

284

368

324

169

58

14

3

0
0

0

0

0

0


247

337

442

375

176

51

10

1

0
0

0

0

0

0

10
CONCENTRATIONS 
-------
1











12 1
11 I








6 1
$ 1
< I
3 1
2 1
1 1
1












35?
797








0
0
0
0
0
0
•












1136
580








0
0
0
0
0
0
•












1*7* 000
S3 131 0 0








0000
0000
0000
0000
0000
0000
+ » » »

00000










00000
00000








00000
00000
00000
00000
00000
00000
» » » » »
       21     22    23    24    25    26    27    28    29    30    31
HIGHEST GRtDOEO VAIUE  for  (yr,d«y,hour) . (88,  3, 0)  PeUuttnt:   1    -  (  21.  13>   MAX. VAIUE -
1.5315E-06
•OOOOOOOOOOOOWJOOOOOOOOOOOOOOCKMOOCmOOOOOOOOOOOOOOOOOWMOOOOOO*
•0
MOOO
* 111000
*    11100
•       1100
*         1100
•           1100
•             1100
•               1100
•                 1100
•                   1100
*                     1100
•                       1100
                                                                E-6

-------
*                         11000                              *
•1                          11»0                             *
•Oil                11         100                           •
* 001              1221111      110                          •
•   01             22 222211      100  0                     •
*    01            11     2211      1100100                   •
*     01             22     2211     11 110                  •
•      0             11       2211        1                  *
*                      22       221        0                 •
•       1              112        21       10                •
•       0                122       211       1                •
*        1                112       221                      •
•        01                 122      21                     •
•         0                  112       21     0               *
*                              122      211  10              •
*                               112  2222221111              *
*         0                       12 333332222               •
*    000001                        12223  33 11              •
•000011111              11111111111111  233  210              •
•1111                11122222222222222   223 321              *
*                    222                1U3332              •
•                    1122               22 22210             •
*                      11222222222222    2221011             *
•                        11111111111122221111 00             •
•                                    11111000                •
•1           11111111111111111111111111110                   •
•0111111111110000000000000000000000000000                    •
* 00000000000                                                •
•ooooooowoooooooooooootroooooooooooooooooooooooooooooooooooooo*
CONCENTRATIONS (G/M**3)
VALUE
0
1
2
3
4
5
6
7
8
RANGE
-1
1
5
1
2
5
1
2
5
.OOOOOE-10
.OOOOOE-07
.OOOOOE-07
.OOOOOE-06
.OOOOOE-06
.OOOOOE-06
.OOOOOE-05
.50000E-OJ
.OOOOOE-05
IE
IE
IE
IE
IE
IE
IE
IE
IE
X
X
X
X
X
X
X
X
X
IT
IT
IT
IT
IT
LT
IT
IT

1
5
1
2
5
1
2
5

.OOOOOE-07
.OOOOOE-07
.OOOOOE-06
.OOOOOE-M
.OOOOOE-06
.OOOOOE-05
.JOOOOE-OS
.OOOOOE-05

                                                                           PLOT NUMBER:
DATA READ FROH MESOPUFF OUTPUT FILE -- UNIT:  11  RUNSTREAM:   2
    VERSON*  5.1  LEVEL'930530  MSTR-M  NSOAY*  2  NSHR- 0  NAOVTS*   2*  IAVG«    1  NPUF*  4  NSAHAO*  2  IELHET-22  JELHET*22
    OGRID'  10000.0  IA5TAR- 1  IASTOP-22  JASTAR- 1  JASTOP-22  ISASTR* 4  ISASTP«19  JSASTR' <  JSASTP«19  MESHON* 2  MPTS'    1
                                                                E-7

-------
    MAREAS-   0  MREO  13  IPRIMF.   12   LCAUSS-T  LCHEH-T  IDRT-T  LUET'T  IPRINT-T  13VI»T  IVSAMP-T  USAHP-
    MSPEC- 1
    LUETG-T  lUETNG'T  IOHYG-T   LDRYNG'T  IPRM.X-T
    XREC- 2.50  2.50  4.00  5.00 5.50  6.50  6.50  8.00  7.50  9.00  8.00  7.00  8.50
    mc-13.50 12.00 12.00 11.00 9.50  9.00  7.50  8.00  6.50  6.00  5.75  4.00  3.50
                                         2.00  ISGRID'T
Wet Deposition FtuxM (g/M**2/()
Multiply •((  value* by 10 •» -12
year: 88 Julian day:   3 Ending hour:  0  Pollutant:  6
31 I


29 1


27 I
26 1
25 1
24 1
23 1
22 1
21 1
20 1
19 1
18 1
17 1
16 1
15 I
1
K 1
1
13 1
1
12 I
1
11 1
1
10 1
1
9 1
1
8 1
1



0


0
0
4
22
76
206
420
686
903
947
777
493
239
•
88
4
24
+
2
4
0
+
0
•f
0
*
0
+



0


0
0
6
31
107
270
522
813
1025
1031
812
488
220
4
75
+
n
»
i
+•
0
•
0
*
0
*
0
+



0


0
i
9
46
149
350
636
930
1109
1061
791
448
189
4
58
4
11
4
0
4
0
4
0
4
0
4
0
4



0


0
1
14
66
203
452
766
1039
1155
1034
721
381
149
4
42
4
7
4
0
4
0
4
0
4
0
•
0
4



0


0
2
22
94
276
581
914
1147
1176
967
619
298
105
4
25
4
4
4
0
4
0
4
0
*
0
4
0
4



0


0
4
29
131
371
738
1086
1260
1179
877
500
212
64
»
14
•f
1
4
0
»
0
4
0
4
0
»
0
+



0


0
4
37
169
483
923
1281
1376
1170
771
381
139
37
»
6
4
0
4
0
4
0
4
0
4
0
4
0
4



0


0
3
42
208
60S
1137
1494
1490
1141
651
271
81
18
4
2
4
0
4
0
4
0
4
0
4
0
4
0
4



0


0
3
41
234
730
1381
1734
1597
1087
528
176
41
6
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4



0


0
0
34
233
830
1650
2020
1701
1010
404
107
19
2
4
0
4
0
4
0
_4
0
4
0
4
0
4
0
4



0


0
0
19
190
841
1909
2391
1843
925
296
55
6
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0


0


0
0
5
116
695
2023
2896
2132
870
203
29
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4



0


0
0
0
39
405
1731
3378
2810
985
153
to
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4



0


0
0
0
3
136
982
3115
3805
1679
268
16
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4



0


0
0
0
0
11
301
1802
3887
2811
938
290
24
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4



0


0
0
0
0
0
29
542
2345
2822
1681
1229
301
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4



0


0
0
0
0
0
0
62
556
934
1190
1770
1910
300
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4



0


0
0
0
0
0
0
0
26
90
1024
1595
1857
2022
4
58
4
0
4
0
4
0
4
0
4
0
4
0
4
0


0


0
0
0
0
0
0
0
0
0
155
239
130
772
4
234
4
0
4
0
4
0
4
0
4
0
4
0
+
0


0


0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
4
0
+
0
+.
0
4
0
4
0
4
0
4
                                                                 E-8

-------
7 1
1
6 1
1
5 1
1
t 1
1
3 t
1
2 1
1
1 1
1

0
4
0
4
0
4
0
4
0
4
0
4
0
4
1
Uet Depotltli
Multiply all
31 1
I
30 t
1
29 1
1
28 1
27 1
I
26 1
1
25 1
1
24 1
1
23 1
1
22 1
1
21 1
1
20 1
1
19 t
1
18 1
1
17 1
1
16 1
1
IS 1
1
H I
r
13 1
i
12 1
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4>
0
4
0
4
0
4
0
•f
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
2
0
4
0
4
0
4
0
4
0
4
0
4
0
4
3
0
4
0
4
0
4
0
4
0
4
0
4
0
4
«
m Muxc* (g/«r»*
values
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
V
4
0
4
0
4
0
4
0
»
0
4
0
4
0
4
0
4
0
4
0
br
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
10 ••
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
S
2/0
-12
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
6


0
4
0
4
0
4
0
*
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
r


0
4
0
4
0
4
0
+
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
8


0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
9


0
4
0
4
0
4
0
+
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0
4
0
4
0
4
0
4
0
4
0
4
0
4
10


0
4
0
4
0
4
0
*
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
0000000000
4444444444
0000000000
4444444444
0000000000
4444444444
0000000000
4444444444
0000000000
444444444. 4
0000000000
4444444444
0000000000
4444444444
11 12 13 U IS 16 17 18 19 20
year: 88 Julian day: 3 Ending hour: 0 Pollutant: 6

•
0
4
0
4
0
4
0
*
0
+
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
E-9

-------
11
10












3
2
1

0
0












0
0
0

0
0












0
0
0

0
0












0
0
0

0000
0000







0000



0000
0000
0000
0000

0000
0000












0000
0000
0000

       21     22     23    2*    25    24    27    28    29    30    31
HIGHEST CRIDOEO  VALUE  for  (yr.dcy.hour) - (88,  J. 0)  Pollutant!  6  (1.J) • (  15.  20)   MAX. VALUE •   3.88o7E-09
•        000000000000
•     00011111111111100
•00000111    1*1111111110000
•11111    11122222222211111
•     1111222         2211100
*  1112222              222110
•11222           222222222 21100
•22           2223333333332 22110
•           22333         322221100
•         2233             33322211
         233                  32 110
•      223                     322210
•    2233                       3   t
•  2233             333333
•  33       3333333322222233     2 1100
•        33322222222      2233   322211
*  333333222            22  22    33 2
•  222222           22221122  3       1
*                 22111110112 23      2
*              22211 1110 0012 2      1
•            22111  1000    112 3   21
•         22211  1110       011223  3 2
                                                               E-10

-------
*      222111  11000         000223 3
•222222111   1100               12232
•111111    1100                 00112 2
*     1111100                     11121
*  11100000                       00000
•11000
•00
*                                                             •
*                                                             •
*(WOOOOOOOOOOOOO<)0()0000000000000000000000000000000000000000000*
W«t Deposition Fluxes  1  1ASTOP-22  JASTAR" 1  JAJTOP-22  ISAITR" 4  fSASTP»19  JSASTR» *  JSASTP-19  HESNDN' 2  NPTS«    1
    HABEAS-   0  NREC'  13  IPRINF"  12  LGAUSS'T  LCHEM-T LDRT«T  LUET'T  LPRINT'T  L3Vl«T  LVSAHP-T  USAMP.   2.00  LSGRID'T
    MSPEC« 5
    LUETG'T  LUETNC-T  LDRYG'T  LDRTNC'T  LPRFLX'T
    XREC- 2.SO  2.50  4.00  5.00  5.SO  6.50  6.SO  8.00  7.50  9.00  8.00  7.00  8.50
    YREC-13.SO 12.00 12.00 11.00  9.SO  9.00  7.SO  8.00  6.50  6.00  5.75  4.00  3.50
Dry Deposition Fluxes (g/M**2/«)                                        ye»r: 88 Julian day:   3 Ending hour:  0  Pollutant:  11

Multiply all values by 10 •• -11
31 1
1
30 1
1
V) \
4
+
9
•
18
2
4
7
+
15
1
+
4
+
12
1
•»
3
4
8
0
«
1
+
5
0
4
1
4
3
0
4
0
4
1
0
4
0
4
1
0
4
0
4
0
0
4
0
4
0
0
4
0
4
0
0
4
0
4
0
0
4
0
4
0
0
4
0
4
0
0
4
0
4
0
0
4
0
4
0
0
4
0
4
0
0
4
0
4
0
0
4
0
4
0
0
+
0
4-
0
                                                                E-ll

-------
1
28 I
27 I
3A 1
I
25 I
24 t
23 1
22 1
21 I
20 1
19 1
18 1
17 I
16 1
IS I
U I
13 1
12 1
11 1
10 1
9 1
8 1
7 t

6 1
5 1
4 I
3 1
2 1
1 I
1
33
51
T>

90
too
102
103
106
112
114
106
87
64
46
39
43
S3
59
56
43
26
11

5
2
0
0
0
0
*
30
52
78

103
120
128
131
136
.143
146
136
111
79
54
44
49
61
70
65
47
26
19

*
i
0
0
0
0
«•
26
SO
Ml

113
138
152
157
163
171
175
164
134
96
64
51
56
70
79
73
50
26


3
1
0
0
0
0
+
21
44
TO

118
152
173
180
184
191
195
184
154
111
76
62
69
83
89
78
50
24


2
0
0
0
0
0
4
15
36


117
159
187
197
197
199
202
193
165
123
89
80
93
107
105
82
49
21


1
0
0
0
0
0
+
9
26


108
158
193
206
203
196
193
186
163
127
101
IDS
133
152
140
98
53
21


1
0
0
0
0
0
*
5
17
tf

92
148
192
211
204
187
173
162
146
123
112
134
191
237
217
143
70
25


1
0
0
0
0
0
*
3
9


69
127
181
211
207
181
151
130
119
113
120
167
271
375
351
214
95
31


1
0
0
0
0
0
*
1
4


45
99
162
207
213
185
141
104
91
98
124
195
355
544
506
276
104
29


1
0
0
0
0
0
+
0
1


24
67
134
197
221
198
149
96
69
76
115
208
412
678
621
297
92
20


0
0
0
0
0
0
«
0
0


10
38
100
176
225
217
170
112
63
54
92
203
435
744
671
286
73
12


0
0
0
0
0
0
»
0
0


3
17
62
142
218
238
198
144
82
43
64
184
443
740
637
251
59
8


0
0
0
0
0
0
»
0
0


0
5
32
100
191
248
237
188
131
61
47
157
459
719
551
202
45
5


0
0
0
0
0
0
«
0
0


0
1
13
65
163
252
310
293
246
158
66
128
471
777
525
174
35
3


0
0
0
0
'0
0
*
0
0


0
0
5
45
155
264
403
500
484
402
176
108
450
934
568
158
29
1


0
0
0
0
0
0
+
0
0


0
0
4
28
125
251
381
599
647
611
393
116
381
1063
589
154
29
0


0
0
0
0
0
0
*
0
0


0
1
6
24
70
202
318
493
682
723
647
227
292
1178
622
134
29
0


0
0
0
0
0
0
+
0
0
0

0
1
8
31
SO
97
287
359
572
774
833
561
219
1123
653
155
21
0


0
0
0
0
0
0
+
0
0
Q

0
0
6
32
61
55
137
320
369
652
901
1013
268
1053
690
17Z
6
0


0
0
0
0
0
0
+
0
0
Q

0
0
2
19
58
82
108
140
295
446
767
1074
900
632
747
177
0
0


0
0
0
0
0
0
+
10
      11
            12
                  13    14
                              15    16
                                          17
                                                18
                                                      19    20
 E-12

-------
Dry Deposition Flux** (g/m**2/s)





Multiply all values by 10 ** -11
year: 88 Julian day:   3 Ending hour:   0  Pollutant: It
31 1
30 1
9O 1







25 1
2« 1
23 1
22 1
21 1
20 1
19 1
in i

17 1
1*4 I

15 1


13 1
12 1
11 1
10 1
9 1
8 1
7 I
1
6 1
1
5 1
1
« 1
1
0
0








0
0
0
3
20
60
118
9AV

156
5*7

502


1SU
4U
378
17
0
0
0
4
0
4
0
4
0
*
0
0








0
0
0
0
1
6
22


2(3


127


t
1361
1028
162
0
0
0
0
4
0
4
0
t
0
t
0
0








0
0
0
0
0
0
0
f

3
9_t

31


2<
162
25
0
0
0
0
4
0
4
0
4
0
4
0
0








0
0
0
0
0
0
0


0


0


0
0
13
0
0
0
0
4
0
*
0
*
0
t
0
0








0
0
0
0
0
0
0


0


0


0
0
0
0
0
0
0
4
0
4
0
4
0
*
0
0








0
0
0
0
0
0
0


0


0


0
0
0
0
0
0
0
*
0
4
0
4
0
»
0
0








0
0
0
0
0
0
0


0


0


0
0
0
0
0
0
0
»
0
4
0
*
0
4
0
0








0
0
0
0
0
0
0


0


0


0
0
0
0
0
0
0
4
0
4
0
4
0
4
0
0








0
0
0
0
0
0
0


0


0


0
0
0
0
0
0
0
4
0
4
0
4
0
4
0
0








0
0
0
0
0
0
0


0


0


0
0
0
0
0
0
0
4
0
4
0
4
0
4
0
0








0
0
0
0
0
0
0


0


0


0
0
0
0
0
0
0
4
0
4
0
4
0
4
                                                             E-13

-------
3
2
1

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

       21    22    23    24    25    26    27    28   29    30    31
HIGHEST CHIMED VALUE for (yr.day.hour) • (88.  3,  0)  PoltottotJ 11   •  (  21.  13)   MAX. VALUE
                                          1.SU4E-08
ft****************.********.****.*******************************
•0000000000000000000000000000000000000000000000000000000000000*
•
•000
*11100
• 11000
* 11100
• 11000
• 1110
• 100
* 1100
• 1100
• 1111111111 11
• 1222222222211 00
•12 2211 1100
•2 22111 1100
* 2221 110
* 2111 1000000000000
• 22211 1111111111110
* 22111 10
* 222111 10
* 222111 1
* 222
* 11 0
* 2211111 10
* 222221 1
* 2 2
•2 22122 1
•12 11 1122 21
• 12 1122 20
• 122 v 11 10
* 11222 11 2 1
• 11122 2211 12 2
• 11 2211111 1 1
• 2222211 22222 2
• 1 22 333332
• 2 222 32
• 33 3
• 1 2222222 223 1
* 2 3333333 23 2
2222222 221 0
• 2 21 11
• 122 22211100
• 112 222222222222110000
• 12222 222222222211111111111110
• 111121111111111 10000
• 1 11111111111110
* 1110000000000000
• 11111111111111000
•1111100000000000000
*
•
•
•
«
•
*
•
•
•
•
*
•
•
*
•
•
•
•
•
*
•
•
•
*
•
•
•
*
*
*
*
*
•
•
•
*
•
*
*
•
•
*
*
*
•
*
*
E-14

-------
 •ooooo
 *(XKXXXX)0000(X)000000000000000(XX)000000(XXKXX>000000000000000000*
 Dry Dcpo*lt1on Flint* (o/m**2/f)
 VALUE                     RANGE
   o     -t.oooooe-io  IE  x  IT    l.oooooc-10
   1      1.00000E-10  IE  X  II    1.00000E-09
   2      1.00000E-09  1C  X  U    1.00000E-08
   3      1.00000E-08  IE  X  U    S.OOOOOE-OB
   «      S.OOOOOE-08  LE  X  IT    1.000006-07
   5      1.00000E-07  IE  X
                                                          PLOT NUMBERS
 CaleuUt* 24-hr ivcrigc SO2 concentration* end ftuxe* «nd ptot
 ROUTINE CALLED
      DEFN
  POLLUTANT
  $02 CONC.
     ARRAT SIZE     STARTING RECOM) OF DISK OUTPUT     RECEPTOR TYPE     NO. NG RECEPTORS
      31 X  31                       1                    GRIMED                 0
 ROUTINE CALLED  DEFINES RUNSTREAH NO.     LOGICAL UNIT    TR/OAT/HR
      FIND                1                      10       M/  2/ 1
                                                                      NO.  GRIDS
.ROUTINE CALLED
      AVRG
AVERAGING TIME
       24
PRINTER OUTPUT
      YES
DISK OUTPUT
YES (  1-  1)
PLOT
YES
CONTOUR LEVELS
   DEFAULT
INPUT FIELDS PRINTED
          HO
 RUNSTREAN NO.
       1
OROE*
FIRST
                             i.oooooe*oo
                                              O.OOOOOE*00
                           tFORM
                             2
                     NEUMES
                        0
                 ISCHEK
                    0
                     IHIGN
                       1
 ROUTINE CALLED
      DEFN
  POLLUTANT
UET S02 FLUX
     ARRAT SIZE     STARTING RECORD OF DISK OUTPUT     RECEPTOR TYPE     NO. NG RECEPTORS
      31 X  31                       2                    GRIDOEO                13
                                                                 E-15

-------
ROUTINE CAIUD  DEFINES RUNSTREAM NO.    LOGICAL UNIT    YR/DAT/MR   NO. GRIDS
     FIND               2                      11       M/  V 1       24
ROUTINE CALLED  AVERAGING  TIME    PRINTER OUTPUT   DISK OUTPUT     PLOT   CONTOUR LEVELS   INPUT FIELDS PRINTED
     AVRG               24'             TES        YES <  2-  2)   YES       USERS                   NO

RUNSTREAM NO.    ORDER            A               •           IfORM      NEUHES      ISCMEK     IMIGH
      2         FIRST       1.00000EMW       O.OOOOOE'OO       2            1           0         1
ROUTINE CALLED     POLLUTANT           ARRAY SIZE     STARTING RECORD OF DISK OUTPUT     RECEPTOR TYPE     HO. NG RECEPTORS
     DEFH        DRY S02 FLUX           31  X  31                       3                    GRIDDED                 13
ROUTINE CALLED  DEFINES RUNSTREAM HO.     LOGICAL UNIT    YR/OAY/HR   NO.  GRIDS
     FIND                3                      12       88/  2/  1       2«
ROUTINE CALLED   AVERAGING TIME   PRINTER OUTPUT   DISK OUTPUT     PLOT   CONTOUR  LEVELS   INPUT  FIELDS PRINTED
     AVRG               24              YES        YES (  3-  3)    YES       USERS                   NO

RUNSTREAM NO.    ORDER           A                •          IFORM      NEUHES      ISCHEK     (HIGH
      3          FIRST      1.00000E«00      O.OOOOOE'OO       2101
RUNTIME CALL NO.:        2.  DATE: 06/15/73   TIME: 12:36:34.21
DELTA TIME:       3.85 (SEC)
                                                                E-16

-------
                                     TECHNICAL REPORT DATA
                  (Please read Instructions on  reverse before completing)
1. REPORT NO.
   EPA-454/B-94-025
                                   3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE

   A  Revised User's Guide to MESOPUFF II (V5.1)
                                   5. REPORT DATE
                                      August 1994
                                                               6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
   Joseph S. Scire and Elizabeth M.
   Sigma Research Corporation	
             Insley
                                   8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS

   Sigma Research Corporation
   196 Baker Avenue
   Concord, MA   01742
                                    10. PROGRAM ELEMENT NO.
                                   11. CONTRACT/GRANT NO.
12. SPONSORING AGENCY NAME AND ADDRESS
   U.S.  Environmental Protection Agency
   Office of Air  Quality Planning and
      Standards, TSD
   Research Triangle Park,  NC  27711
                                   13. TYPE OF REPORT AND PERIOD COVERED
                                       Final Report
                                   14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT

     This document is a revised version of the MESOPUFF II user's guide which describes
the current configuration of the MESOPUFF II modeling system  (Version 5.1).   Much  of
the text is taken from the  original document, although several new chapters  have been
added  and other  sections revised.  The revised modeling system contains the  original
set of programs,  along with several new programs which includes the upper air
preprocessor  (READ62) and the precipitation data preprocessors PXTRACT and PMERGE.
17.
                                    KEY WORDS AND DOCUMENT ANALYSIS
                 DESCRIPTORS
                   b. IDENTIFIERS/OPEN ENDED TERMS
                                                                                c. COSATI
                                                                                Field/Group
   Air Pollution
   Meteorology
   Air Quality Dispersion Model
   Visibility
   Aerosols
                      New Source Review
                      Air Pollution Control
18. DISTRIBUTION STATEMENT

   Release Unlimited
                   19. SECURITY CLASS (Report)
                       Unclassified
21. NO. OF PAGES
   296
                                              20. SECURITY CLASS (Page)
                                                  Unclassified
                                                     22. PRICE
EPA Fora 2220-1 (Rev. 4-77)
PREVIOUS EDITION  IS OBSOLETE

-------

-------