EPA
United States
Environmental Protection
Agency
Solid Waste and
Emergency Response
(5305W)
EPA530-D-99-001C
November 1999
www.epa.gov/osw
Screening Level
Ecological Risk
Assessment Protocol
For Hazardous Waste
Combustion Facilities
Volume Three
Appendices B-H
Peer Review Draft
IWSROSSAIfNUE
Printed on paper that contains at least 30 percent postconsumer fiber
-------
APPENDIX B
ESTIMATING MEDIA CONCENTRATION EQUATIONS AND VARIABLE VALUES
Screening Level Ecological Risk Assessment Protocol
August 1999
-------
Screening Level Ecological Risk Assessment Protocol
Appendix B: Estimating Media Concentration Equations August 1999
APPENDIX B
TABLE OF CONTENTS
TABLE PAGE
SOIL INGESTION EQUATIONS
B-l-1 SOIL CONCENTRATION DUE TO DEPOSITION B-l
B-l-2 COPC SOIL LOSS CONSTANT DUE TO ALL PROCESSES B-10
B-l-3 COPC LOSS CONSTANT DUE TO SOIL EROSION B-14
B-l-4 COPC LOSS CONSTANT DUE TO RUNOFF B-20
B-l-5 COPC LOSS CONSTANT DUE TO LEACHING B-25
B-l-6 COPC LOSS CONSTANT DUE TO VOLATILIZATION B-31
SURFACE WATER AND SEDIMENT EQUATIONS
B-2-1 TOTAL COPC LOAD TO WATER BODY B-37
B-2-2 DEPOSITION TO WATER BODY B-41
B-2-3 DIFFUSION LOAD TO WATER BODY B-44
B-2-4 IMPERVIOUS RUNOFF LOAD TO WATER BODY B-48
B-2-5 PERVIOUS RUNOFF LOAD TO WATER BODY B-51
B-2-6 EROSION LOAD TO WATER BODY B-56
B-2-7 UNIVERSAL SOIL LOSS EQUATION (USLE) B-62
B-2-8 SEDIMENT DELIVERY RATIO B-67
B-2-9 TOTAL WATER BODY CONCENTRATION B-71
B-2-10 FRACTION IN WATER COLUMN AND BENTfflC SEDIMENT B-75
B-2-11 OVERALL TOTAL WATER BODY DISSIPATION RATE CONSTANT B-80
B-2-12 WATER COLUMN VOLATILIZATION LOSS RATE CONSTANT B-82
B-2-13 OVERALL COPC TRANSFER RATE COEFFICIENT B-86
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering B-i
-------
Screening Level Ecological Risk Assessment Protocol
Appendix B; Estimating Media Concentration Equations August 1999
APPENDIX B
TABLE OF CONTENTS
TABLE PAGE
B-2-14 LIQUID-PHASE TRANSFER COEFFICIENT B-90
B-2-15 GAS-PHASE TRANSFER COEFFICIENT B-95
B-2-16 BENTfflC BURIAL RATE CONSTANT B-99
B-2-17 TOTAL WATER COLUMN CONCENTRATION B-104
B-2-18 DISSOLVED PHASE WATER CONCENTRATION B-108
B-2-19 COPC CONCENTRATION IN BED SEDIMENT B-lll
TERRESTRIAL PLANT EQUATIONS
B-3-1 PLANT CONCENTRATION DUE TO DIRECT DEPOSITION B-l 15
B-3-2 PLANT CONCENTRATION DUE TO AIR-TO-PLANT TRANSFER B-125
B-3-3 PLANT CONCENTRATION DUE TO ROOT UPTAKE B-130
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering B-ii
-------
Screening Level Ecological Risk Assessment Protocol
Appendix B; Estimating Media Concentration Equations
August 1999
Pa
P»
e
a
A
A,
b
BD
BCFr
BS
Bs
Bv
c
C
Cd
Chv
Cs
Cyp
Cyv
Cywv
APPENDK B
LIST OF VARIABLES AND PARAMETERS
Empirical constant (unitless)
Dimensionless viscous sublayer thickness (unitless)
Viscosity of air (g/cm-s)
Viscosity of water corresponding to water temperature (g/cm-s)
Density of air (g/cm3 or g/m3)
Density of water corresponding to water temperature (g/cm3)
Temperature correction factor (unitless)
Bed sediment porosity (L volume/L sediment)—unitless
Soil volumetric water content (mL water/cm3 soil)
Empirical intercept coefficient (unitless)
Surface area of contaminated area (m2)
Impervious watershed area receiving COPC deposition (m2)
Total watershed area receiving COPC deposition (m2)
Water body surface area (m2)
Empirical slope coefficient (unitless)
Soil bulk density (g soil/cm3 soil)
Plant-soil biotransfer factor (mg COPC/kg DW plant)/(mg COPC/kg
soil)—unitless
Benthic solids concentration (g sediment/cm3 sediment)
Soil bioavailability factor (unitless)
Air-to-plant biotransfer factor (mg COPC/kg DW plant)/(mg COPC/kg
air)—unitless
Junge constant = l.TxlO"4 (arm-cm)
USLE cover management factor (unitless)
Drag coefficient (unitless)
Dissolved phase water concentration (mg COPC/L water)
Unitized hourly air concentration from vapor phase (ng-s/g-m3)
Unitized hourly air concentration from particle phase (ug-s/g-m3)
COPC concentration in soil (mg COPC/kg soil)
COPC concentration in bed sediment (mg COPC/kg sediment)
Total COPC concentration in water column (mg COPC/L water column)
Total water body COPC concentration including water column and bed sediment
(g COPC/m3 water body) or (mg/L)
Unitized yearly average air concentration from particle phase (ug-s/g-m3)
Unitized yearly average air concentration from vapor phase (ug-s/g-m3)
Unitized yearly average air concentration from vapor phase (over water body or
watershed) (ug-s/g-m3)
Diffusivity of COPC in air (cm2/s)
Depth of upper benthic sediment layer (m)
U.S. EPA Region 6
Multimedia Planning and Permitting Division
Center for Combustion Science and Engineering
U.S. EPA
Office of Solid Waste
B-iii
-------
Screening Level Ecological Risk Assessment Protocol
Appendix B; Estimating Media Concentration Equations
August 1999
Ds
dwc
Dw
Dydp
Dytwp
Dywp
Dywv
Dywwv
ER
Ev
/*.
Fd
Fw
Jwc
H
I
k
K
Kds
kp
ks
kse
ksg
ksl
ksr
ksv
Deposition term (mg COPC/kg soil-yr)
Depth of water column (m)
Diffusivity of COPC in water (cm2/s)
Unitized yearly average dry deposition from particle phase (s/m2-yr)
Unitized yearly average total (wet and dry) deposition from particle phase (over
water body or watershed) (s/m2-yr)
Unitized yearly average wet deposition from particle phase (s/m2-yr)
Unitized yearly average wet deposition from vapor phase (s/m2-yr)
Unitized yearly average wet deposition from vapor phase (over water body or
watershed) (s/m2-yr)
Total water body depth (m)
Soil enrichment ratio (unitless)
Average annual evapotranspiration (cm/yr)
Fraction of total water body COPC concentration in benthic sediment (unitless)
Fraction of diet that is soil (unitless)
Fraction of COPC wet deposition that adheres to plant surfaces (unitless)
Fraction of total water body COPC concentration in the water column (unitless)
Fraction of COPC air concentration in vapor phase (unitless)
Henry's Law constant (atm-m3/mol)
Average annual irrigation (cm/yr)
Von Karman's constant (unitless)
USLE erodibility factor (ton/acre)
Benthic burial rate constant (yr"1)
Bed sediment/sediment pore water partition coefficient
(cm3 water/g bottom sediment or L water/kg bottom sediment)
Soil-water partition coefficient (cm3 water/g soil)
Suspended sediment-surface water partition coefficient
(L water/kg suspended sediment)
Gas phase transfer coefficient (m/yr)
Liquid phase transfer coefficient (m/yr)
Soil organic carbon-water partition coefficient (mL water/g soil)
Octanol-water partition coefficient
(mg COPC/L octanol)/(mg COPC/L octanol)—unitless
Plant surface loss coefficient (yr !)
COPC soil loss constant due to all processes (yrn)
COPC loss constant due to soil erosion (yr"1)
COPC loss constant due to biotic and abiotic degradation (yr !)
COPC loss constant due to leaching (yrn)
COPC loss constant due to surface runoff (yr :)
COPC loss constant due to volatilization (yr"1)
Water column volatilization rate constant (yr l)
Overall COPC transfer rate coefficient (m/yr)
Overall total water body dissipation rate constant (yr *)
U.S. EPA Region 6
Multimedia Planning and Permitting Division
Center for Combustion Science and Engineering
U.S. EPA
Office of Solid Waste
B-iv
-------
Screening Level Ecological Risk Assessment Protocol
Appendix B; Estimating Media Concentration Equations August 1999
LDEP = Total (wet and dry) particle phase and wet vapor phase COPC direct deposition
load to water body (g/yr)
LKf = Vapor phase COPC diffusion (dry deposition) load to water body (g/yr)
LE = Soil erosion load (g/yr)
LR = Runoff load from pervious surfaces (g/yr)
LKI = Runoff load from impervious surfaces (g/yr)
LT = Total COPC load to the water body (including deposition, runoff, and erosion)
(g/yr)
LS = USLE length-slope factor (unitless)
OCsed = Fraction of organic carbon in bottom sediment (unitless)
p °L - Liquid phase vapor pressure of chemical (atm)
p °s = Solid phase vapor pressure of chemical (atm)
P = Average annual precipitation (cm/yr)
PF = USLE supporting practice factor (unitless)
Pd = Plant concentration due to direct deposition (mg COPC/kg DW)
Pr = Plant concentration due to root uptake (mg COPC/kg DW)
Pv = Plant concentration due to air-to-plant transfer (|ig COPC/g DW plant tissue or
mg COPC/kg DW plant tissue)
Q = COPC-specific emission rate (g/s)
r — Interception fraction—the fraction of material in rain intercepted by vegetation
and initially retained (unitless)
R = Universal gas constant (atm-m3/mol-K)
RO = Average annual surface runoff from pervious areas (cm/yr)
RF = USLE rainfall (or erosivity) factor (yr'1)
Rp = Interception fraction of the edible portion of plant (unitless)
SD = Sediment delivery ratio (unitless)
ASf = Entropy of fusion [ASf/R = 6.79 (unitless)]
SF = Slope factor (mg/kg-day)'1
ST = Whitby's average surface area of particulates (aerosols)
= 3.5x10"6 cnrVcm3 air for background plus local sources
= l.lxlO"5 cnrYcm3 air for urban sources
Ta = Ambient air temperature (K)
Tj = Tune period at the beginning of combustion (yr)
T2 = Length of exposure duration (yr)
tD = Time period over which deposition occurs (or time period of combustion) (yr)
Tm = Melting point of chemical (K)
Tp = Length of plant exposure to deposition per harvest of edible portion of plant (yr)
TSS = Total suspended solids concentration (mg/L)
Twk = Water body temperature (K)
t1/2 = Half-time of COPC (days)
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering B-v
-------
Screening Level Ecological Risk Assessment Protocol
Appendix B; Estimating Media Concentration Equations
August 1999
Current velocity (m/s)
Dry deposition velocity (cm/s)
Average volumetric flow rate through water body (mVyr)
Average annual wind speed (m/s)
Unit soil loss (kg/m2-yr)
Dry harvest yield = 1.22xlOH kg DW, calculated from the 1993 U.S. average
wet weight Yh of 1.35xlOn kg (USDA 1994b) and a conversion factor of 0.9
(Fries 1994)
Harvest yield of fth crop (kg DW)
Yield or standing crop biomass of the edible portion of the plant (productivity) (kg
DW/m2)
Vdv
Vfx
W
xe
Yh
Yht
Yp
0.01
10'6
10-6
0.31536
365
907.18
0.1
0.001
100
1000
4047
IxlO3
3.1536xl07
Soil mixing zone depth (cm)
Units conversion factor
Units conversion factor
Units conversion factor
Units conversion factor
Units conversion factor
Units conversion factor
Units conversion factor
Units conversion factor
Units conversion factor
Units conversion factor
Units conversion factor
Units conversion factor
Units conversion factor
(kg cm2/mg-m2)
(kg/mg)
(m-g-s/cm-ug-yr)
(days/yr)
(kg/ton)
(g-kg/cm2-m2)
(kg-crrrVmg-m2)
(mg-cm2/kg-cm2)
(mg/g)
(m2/acre)
(g/kg)
(s/yr)
U.S. EPA Region 6
Multimedia Planning and Permitting Division
Center for Combustion Science and Engineering
U.S. EPA
Office of Solid Waste
B-vi
-------
1H
I
FH
oa
u
j
n
g
z
o
NN
&
g
w
Q
O Sa
H Z
W O
& S
a 5
Z P
o a
BW
M
z ^
w
u
z
o
u
^
%
vH
&
£
"8
s
9
CA
C3
U
«
U
8
•s
w
o
1
KJ
^
T3
§
CO
W
73
O.
t^H
O
e
o
'55
D,
T3
£•>
^3
T3
C
oj
ts
5
ption
ail resulting from
C5 o
S
§
i
u
eo
is ^
ll
it
S c1
•S •§
eo.S
2 e
o —
sed to calculate th
nite depth (the soi
3 <£
co ca
u o
•s >^
cd •—
•" C
en O
5 "^
•S 1
C O
.2 &
a g
!•-
W JD
rj
P 2
Ju
2
a
1
.2
•5
;§
1
ca
'3
S
CO
e«
• •«
S>
1
S
e
3
eo
C
o
s
u
J3
§
•a
period of combus
the time
ts
o
•o
u
cur at the
g
2
is assumed
_
"1
c
OPC concentratio
U
o
ff
53
>
fS
"ca
3
C
a
VI
r"
.2?
'£
u
J3
H
.2
£
CO
U
2
a
1
0
"o
J
2
o
CO
*n
Q.
e
o
u
CO
4> "es
3 'C
gj jj
> a
Js
3
00 ?
™.2
T-^ pH
>"'!
ll
h x
imed to be a conse
ult of potential mi
S c«
CO in
25
•2 «,
ef A
fe ^^^
•S B
1!
§ ^
^
ss :§>
* "3>
S g
O (D
^ ^^
§a
•« J
1 «
«§ S
too 12
C t«
2 a
3 -*^
g 05
a ^
ositionofCOPCs
ices may result in i
stimate Cs.
ex c2 o
«j Tj Ui
"^ as -0
<2 "S 3
-••HOp
8. H ><
, y*^.
C^
-------
z
o
H
H^
t»
O
a,
S
Q
0£
HS
3 W O gs
i 2~ P"^ CM
« o <« o
w z P <^
S Sg |
2S 5 J &
H go
l~
u
z
o
^^
0
r—
/-
ft
r™
r— t """-
"'"'k
CQ
s
If II
g 2 >>T3
" *s 3 ^J
S ^ 8 ^>
E jg *o
\ kT* ^^
" "• 00 'So
J? *O T1 1> S
•C ?H HH S -^»
a S ,» Eu
< S ^ -03
•X oo c c
9 O\ § T!
S (d C!
< « c £^ 8
' * ° S -u
?-s a -s
k, ^ « s go
? "85 5-S
1 X is ce G >>
*
0 C
^ IE £ a
5 g s ? a
1-4 C4-N '1— 7^
CL C IS S- E
>— •*. *^ /^i oo ^^ •"
f | S| ||
Q ^~
H
+
" fc^ ^1
§ 1 S
> -a te o
f t {} j
n ^^ s
' S e -
S ^ rV B ra •—
1 , { s ill
S" ^J ^ % c £ %
+$ f m o « S, U
i- "^ ?"
1 ^ -2 CJ Cb
. e3 cd ..
BB -c s
11 11
^ V ^ =3
m in £ 8
00 — O ^ 3
O C3 O O "e3
IS
ft o
II « „ 1 *
c^^ « &
K, S^ K, a _S
Q <3 Q § n.
p^C K. ,«••< — i- W 1)
^ S N* ,S n3
&C, ' ~^g^ ~'%
" 5n
I j *•
CTl ^
r ^ 1-
Q ' — ' !§
I
| 2 K> £
1 " 8
1 ^
o )
U
1
K
u C L.
&> —
^ u
o
2 S
>>
^_. u
tc -• «
Q^ 4) g
*Si o* &-i
S f fa
a x -o -x ^, •—
§ 0 g g,|
1 ^ c T3 .5^3
15 S 12
•i 11 II
_o .2 ? S <
o o — j£
.2 &3 |
§ f -2 f •§
5. Hi 3
N SS " '§ £
II? 1
I5S I
1 111 1
1 i£ §
Ert nj fc^
° o °
BB S|
§ 1 ^
II si
s. s. '« ^
^ * 3 3
Q Q &-S
oo rs 3 ?5
Ov O O 0 °
d c> o S3 g
J oo
%BC
1§,
11 - ii E S d
Cf^ ll§
K S ffi - i^u
•; •; «3 JJ A^ 13
Q Q Q ^ °°-i
•v* X *^H
^ £- " "2 X •-
c1 "o "= *« c7 "«
111 111
*3 S w 3 - '^
Sj ^ "O ^ f^* ^
£ & J o < S"
i
i
,&
Description
Z
T
£
HI
w
. ""fc?V
^
>-«i
*§,%
S
.? '] •?"£•!
t&ff
y$i,-
if-
-------
sa
$
Z
o
HH
H
53
O
OH
g
8f
Z P
O O
H W
^ J
gS
S^
u
u
z
o
u
o
CO
&
£
4)
1
JS
p
e
s
%
—
s
99
2
C "~*
p 'O 4> §
i i! 1 1
•^ u c •*-• 't?
•ti n. o t* >
O5 eft 5h 4)
O i c^ C
57 ,t3 -£> 0 §
-a « *- 0 g
* "S § a -S
o ?1 9 S
e« O o a-s. 'j,
S Cu _c ^* "^ -^
o O M S § -o
J3 r) ce O O
*3 W ai rt ^ u
Varies (calculated - Table B-1-1)
Consistent with U.S. EPA (1994a; 1998), U.S. EPA OSW recommends incorporating
the Cs equation.
Uncertainties associated with this variable include the following:
(1) Five of the variables in the equation for Ds (Q, Cyv, Dywv, Dywp and Dydp) are
measured or modeled variables. The direction and magnitude of any uncertainty
Uncertainties associated with these variables will probably be different at each fi
(2) Based on the narrow recommended ranges, uncertainties associated with Vdv, F,
small.
(3) Values for Z, vary by about one order of magnitude. Uncertainty is greatly redui
are tilled or untilled.
eo
^ ^»
8 i
eo
S
p
c
*-*
c
_o
c
u
Q
Q
00 £
o :s
Q* "^
W a
co .52
H c
"^ o
1 *
u 1
8-S
100
U.S. EPA (1990a) specified that this period of time can be represented by 30, 60 , or 1
recommends that facilities use the conservative value of 100 years unless site-specific
indicating that this assumption is unreasonable.
^
^
II
"w to
O 3
Q. .0
4> p
2 'o
>- .2
> <3
0 ft
•o 5J
_o £
ft ^
u ^
H o
Q
.2 NSs
c
a
%
§
u
Cfl
J
"Q
on
ci
m
u
2
Varies (calculated - Table B-1-2)
This variable is COPC- and site-specific, and is calculated by using the equation in Ta
the sum of all COPC removal processes.
Uncertainties associated with this variable are discussed in Table B-1-2.
_
'IH
3
O
u
3
•o
1
c
o
«
VI
O
_^
'S o
^ c/5
u s
OH U
O g
U ft
42
•f^L^
s/^jfi.^
1
V 5'"" ;
^s''",^'.
f'Sy
i-\t
fife
i^
^
S
^^1^
aS
•>iii$
s
^s
i
^
1
fl
I
^^^9
I
1
ras™
o
•Sb
1
"e
|
^
o
'«
u
c
o
u
"5
D
o
5
n
-------
ffl
3
M
§
1
*
t;
O
C5
a>
JS
«
Tu
ts
>
S
"oa
H
JU
JO
&
>
en
'•s
rH
•S
>
f
•a
S
S
°o
g
en
a
O
s
Varies (site-speciflc)
This variable is COPC- and site-specific (see Chapters 2 and 3). Uncerta
specific.
•s
1
c
_o
°lo
en
's
U
cj
C!
*o
U
o.
en
U
D_,
MH
O
U
O)
Js 5 "-
.0 a, o
2 u —•
g 00 5
> C0
05 *^ u
•g 2 c
*£• 2 K
* £ o
fe ; w
O *•* *r*
*** S §
StS D-
0 8 S
•5 00 0
? Rt «
Mft >V ^
OO ,?L* •«
c rS
1 I §
2 •=> i
5 "O 5
-2 § =5
" en U
•S -S3
•s §• :«»
s 5 -a
lor 20
Z, should be computed for two depth intervals. U.S. EPA OSW recommi
Soil Depth (cm)
Untilled 1
Tilled 20
The following uncertainty is associated with this variable:
(1) For soluble COPCs, leaching might lead to movement to below soil
This uncertainty may overestimate Cs.
(2) Deposition to hard surfaces may result in dust residues that have ne
other residues. This uncertainty may underestimate Cs.
U
•S
ex
-8
g
S
oo
c
'*:
'E
"5
00
N"
=
•a -S"!
s 1C
S 1-8 Sa
**-sli
0 CX3 _§ ^ 2
•S *-• "ob u -.i
g 2 "> £ 2
° tn - W 2
00 t^i U_i -^ C
.S S o oo cd .2
•2 £ § g D a
g o 5 2 C. "g
5. U 5 ^"e 0
0 00 > J3 E U
•n c <^ e o ^
=3 U E
"» u "3 -a • t->
0 g a 5 „ «
5 8,^3 a 2 "o
•« 8 "° e IN g,
0 tx « g -' «r
2 < -S § o .S
S X. S K Q "
1.5
This variable is affected by the soil structure, such as looseness or compa
clay content of the soil (Hillel 1980), as summarized in U.S. EPA (1990a
originally cited in Hoffman and Baes (1979). U.S. EPA (1994c) recomm
a mean value for loam soil that was obtained from Carsel, Parrish, Jones,
g/cm3 also represents the midpoint of the "relatively narrow range" for &
The following uncertainty is associated with this variable:
(1) The recommended range of BD values may not accurately represeni
4
>,
*cn
C
U
•o
~5
XI
'3
C/3
Q
S
-------
85
S
1
H
O
Cu
Q
O 3J
H Z
Z p
o a
C w
5d
01 Q
W)
I
H
Z
u
Z
o
u
SO
I
13
O
e
I
&
^3
IS
o
_u
flj
CS
c £ %
•- is « 3, * *»
TJ t£ "n D, S """
.i •- u °"s '« S~J
i 1 i 1 i £ 1 s §
li fill IfHI
ST lili
0 to 1 (see Appendix A-2)
variable is COPC-specific and should be determined from the COPC tables in Appendix A-
:nted in U.S. EPA (1993), RTI (1992), and NC DEHNR (1997) based on the work of Bidler
EPA(1994c).
Following uncertainty is associated with this variable:
It is based on the assumption of a default ST value for background plus local sources, rathe
urban sources. If a specific site is located in an urban area, the use of the latter ST value mi
Specifically, the ST value for urban sources is about one order of magnitude greater than th
local sources, and it would result in a lower calculated Fv value; however, the Fv value is li
percent lower.
According to Bidleman (1988), the equation used to calculate Fv assumes that the variable
constant for all chemicals. However, the value of c depends on the chemical (sorbate) mol
surface concentration for monolayer coverage, and the difference between the heat of deso:
the particle surface and the heat of vaporization of the liquid-phase sorbate. To the extent i
COPC-specific conditions may cause the value of c to vary, uncertainty is introduced if a c
of c is used to calculate Fv.
e« •
^ n,3 P S S
CA
_«
"S
3
§
'i
i
c
c
o
u
.tl
CO
U
O u
U a
g_, r^
0 D.
II
CO >
£ .£
hT
^
rJ^"
S
"rj--^
;'^W
•
w
i
HiHi
H
iHi
i*f
liii i
mm
^
W I
g|
Bji
1
so
a
i
•s
1
DO
o
ed
<4— I
C
_0
£3
^
c
o
u
cc
"5
VO
§
0
3 3
C ^ g o
|-g f |
Hi !
*«" ^ U y
3
EPA (1994c) recommended the use of 3 cm/s for the dry deposition velocity, based on med
:ity for HNO3 from an unspecified U.S. EPA database of dry deposition velocities for HNO.
>3 was considered the most similar to the COPCs recommended for consideration. The valu
y organic COPC with a low Henry's Law Constant.
following uncertainty is associated with this variable:
HNO3 may not adequately represent specific COPCs with high Henry's Law Constant valu
of a single value may under- or overestimate estimated soil concentration.
n 3 g § « ^
D > S 3 S S
1
u
.*?
o
1
c
o
32
o
0.
U
•o
Q
I
OQ
-------
O
t-^
H
CQ
g
O a?
W O
Z p
o o»
u
I
0
en
^
^^
CM
VO
DC
^"^
• u
o
73
en
"2 0
g 'S
- 0
U flj
C 0-
•«- B3
O i
£< *53
« g
"S
ea _cs
C^ >
81
.2 -5
_U 'g
S j*
CQ rt
a'§
S i
"s
60
•a
00
a.
S
y average air
from vapor ph£
o .2
>, -g
N §
"*2 O
•s §
^
o
•s
C
u
u
C
m
te
D.
U
u
^co,
00
_c
T3
O
E
c
_0
'2
B,
? =3
"3 -!a
o >>
S5
e
« 1
> o
o
73
en
"e H
es S
C a.
*o V
o o
Cfl *CA
4> g
"w
-a J3
C -O
^ >
O 2
U S
00 .fl
•S "S
•S-5
"C 4)
en o
S i
r-i'
1
y average wet
m vapor phase
§•§
>. c
"S -B
N 'S
II
1
$
•^
_c
'•§
u
C
^
S
D.
U
1>
CO
00
C
1
o
E
e
o
"2
8,
/— Cfl
•8 =3
^3 .il
1 1
Su
« .s
?»• S3
o
Cfl
"9 o
g S
«"!
u o
cfl '09
3 g
«
•g J3
^1
O -2
U -S
en j^
u -g
33 ^
*r** U
9 •*-*
ro cS
.^ o
S CO
S,
tsi'
1
u
y average dry
m particle phas
0 *
>> c
•o .2
N "Z
1 8.
p-S
a.
^
U
C
1
u
u
f>
u
D.
x;
U
o
u
en
00
1
O
E
e
o
'2
u
a
— > CO
•8 =3
•s .s
1 1
^ "8
cu C
1 1
^ s
o
•o
05
"i "
g s
u u
en" '5
t> 0
'53
"O ~*
* 'i
DH ^
O -2
U •£
« j—
0 ">
ll
•g a
> •-*
2 o
sa
^>
M1
I
I -a
^ ex
V U
n
§ a
- 1
0 "*"
>> c
•° -S
N '5J
5 o
3 73
|
-------
w
«
<
H
1
i
I
81
Z P
o o>
S w
RA
o
*
r*.
&
S
I8
O
0
CO
z
o
s
en
O
U
i
Q
REFERENCES AN
p^
S
•
S
en
en
U
J?
^
S
J3
g
M
»
o -3 -°
" U T3
.2 •£ S
C- T3 '5
C C en
IS KJ **^
"en (.T -tf
§ 1 s
8 § E
0 g 3
c o o
§ " •§
^ fc «
1 Is
"-""a S
tj e
JJ g "8
? E c
-S fe S
a«2 s
> c t->
SI *
5 s g
a^|
^ § 3
« C R"
u 5 S
E 0 60
3 0 S
«2 o S
en (N s
K! iS n
TZ V
--i 3 a
h, » «2
— a o
0 « J3
g - H
Ja 5 .
o-.2P«J
8,8-8
KJ ig o
> ed M
C 3 «
•H O ^
lit
S E 4
5 fraction of air concentr
n the chemical (sorbate)
vaporization of the liqui
•S ° *S
•*•• en °
" "§ «»
— 1 _c
^'
CQ
!
0 1 o
a, |a,
S
a
I
JU
I
en
C
O
u
u
u
I
-------
TABLE B-1-1
SOIL CONCENTRATION DUE TO DEPOSITION
(SOIL EQUATIONS)
ral Soils." Journal of Contaminant Hydrology. Vol. :
3
3
(Page 8 of 9)
sel, R.F., R.S. Parrish, R.L. Jones, J.L. Hansen, and R.L. Lamb. 1988. "Characterizing the Uncertainty of Pesticide Leaching in Agrk
Pages 11-24.
£3
U
This reference is cited by U.S. EPA (1994b) as the source for a mean soil bulk density value of 1.5 g/cm3 for loam soil.
lei, D. 1980. Fundamentals of Soil Physics. Academic Press, Inc. New York.
*^*
a
seness or compaction of the soil, depending on the
o
_o
This document is cited by U.S. EPA (1990a) for the statement that dry soil bulk density, BD, is affected by the soil structure, such as
water and clay content of the soil.
Radionuclides. ORNL/NOREG/TM-882.
^
. EPA. 1 990a. Interim Final Methodology for Assessing Health Risks Associated with Indirect Exposure to Combustor Emissions. Er
Research and Development. EPA 600-90-003. January.
1/1
3
:curs (time period for combustion ), tD, be
8 .
n ™
This document is a reference source for the equation in Table B-1-1, and it recommends that (1) the time period over which depositk
represented by periods of 30, 60, and 100 years, and (2) undocumented values for soil mixing zone depth, Z,, for tilled and untilled si
•king Group Recommendations. Office of Solid
1
. EPA. 1 993. Addendum to the Methodology for Assessing Health Risks Associated with Indirect Exposure to Combustor Emissions .
Waste. Office of Research and Development. Washington, D.C. September 24.
c^
£3
fraction of COPC air concentration in vapor phase) ii
M
§
This document is a reference for the equation in Table B-1-1. It recommends using a deposition term, Ds, and COPC-specific F, val
the Cs equation.
Attachment C, Draft Exposure Assessment Guidanc
I .
. EPA 1994a. Revised Draft Guidance for Performing Screening Level Risk Analyses at Combustion Facilities Burning Hazardous Wa
for RCRA Hazardous Waste Combustion Facilities. Office of Emergency and Remedial Response. Office of Solid Waste. April 15,
V*
£>
-------
TABLE B-1-1
z,
0
e
r*
L, CONCENTRATION DUE TO DEPOSl
(SOIL EQUATIONS)
^•"^
N^
0
CO
y bulk density
•8
1
"3
OS
u
T3
01
Wume ///: Site-Specific Assessment Procedures. Re
M»
1994b. Estimating Exposure to Dioxin-Like Compounds.
EPA/600/6-88/005Cc.
^ u
•< c
a. 3
« ->
co
D
se. Office of
1
u
o:
"(3
1
aj
«
"O
>.
fj
e
&
fe
w
(4M
O
O
u
£
o
S
5^1
1
&3
a
Analyses at Combustion Facilities Burning Hazardo,
IS
I994c. Draft Guidance for Performing Screening Level Ri.
Waste. December 14.
. -o
< ;g
a M
CO
D
CO
,^
is
o"§
§ I
u
_~ o
O -o
CO U
•o c
g §
tfl
(_< 4)
§«
o 8
s H
2 ~
6 c
£ 2
S c
II
sf
tl
£> 00
•o .S
C4-4 >
0 C8
asition velocity for HNO3 from a U.S. EPA database
alue should be applicable to any organic compound h
following:
& > „
alue for dry deposition velocity is based on median dry de
lered the most similar to the constituents covered and the
mendation was not cited. This document recommends thi
.. 'x £
2 c R
tS 8 g
3
|
x*
tj
CO
•o
c
CO
O
^
1
o
£)
o
z
X
<§
to
.^
^1
oo u
00 >
2 g
N_^ .O
_Q Iti
fi 3!
5 o
5 »
U
§(M
0
c o
g
u
lous Waste Combustion Facilitites." External Peer R
b
1998. "Human Health Risk Assessment Protocol for Hazi
30-D-98-001A. July.
in
< <
s&
CO
D
n
-------
"Z
U
J=
o
o
3
"a
u
S
.c
Description
)PCs from soil by several mechanisms.
lo information is available regarding the application of t
0 *
•s s
1 1
1 2
VN {£
*** S
| M) *
1||
1 ~ "1
IS t) 15
_•* 5} ^"»
Gn T3 ^*
«" 1 1
le&
8 | |
25 a) oo
- 2 ^
fl) ^ Cfl Crt
.c >
•s P s -a
«" -a "a •£
S S > 5
_ra ,S 0 <£
3 u UZ _^
! ! II
o o r ) n
'•= - Q. ™
« c Si —
3 •= O "
a- g (j £
.22 o
r^ C ' — *
t~* ^ ^^
1
1 «»
w J3
1!
"I
S
P
1
a
j5
Q
jj
A
a
jt
^
s
V f'
.''•'."' ."/'"'•;-
•' "''''--''X
-: : c ' .'>,
k
13
0
u
•§
1 .
CO
O
— .
"5 °^
« «
*— ' Q
CL o
P s
U c.
•*
e9 5 ^
SO\ ft,
^ E W
3 **— ^^ .£3
*— ^« * ^^
? ^ V3 on
= § P .g
« .» *
Varies (see Appendix A-:
-specific and should be determined from the COPC tabl
)EHNR (1997). However, no reference or source is pro
e COPC-specific; however, all ksg values are presented
hese assumptions is not addressed.
.nty is associated with this variable:
alues for ksg are empirically determined from field stud
;se values to the site-specific conditions associated with
g«iS 1 !
w "^ 5 S ~* D^ O
"" -rt ^ »O yj w *J3
2 € JT r^ "1 & -§
ca S H * DH -^
*5 « -2 O &
> S- ^ JD" "o U ca
UII g s
"k
o
o
IS
o
3 g
•o .2
§1
S 2
g g1
o -a
wj o
en -^j
— .2
U §
s?
5
-------
CC
a
u
1
«?
Wd
TABLE B-:
g CO'
H Z
a S
D a
CONSTANT D
(SOIL EQUAT
^•s
^r
•s
M
1
b
CO
o
co
U
a,
O
U
§
1
1
fib
X
wt
w
U
I
I
» =3
2|
^"1
2'l *
71 S 'S
11 !
O (_ ca
C- ° "§ «
< S S 5
o< 2 o
M S o. S
»? J5 0 |
>— \ -« *i -rt
^ S 3 t8
j2 U co (U
•is N w jn
•*• l-i 0)
? -2 « -g
•g SJ g 3
55 ^S ^
1 «§ Is
§-g = t
E =3-1
• 3 ->. 5
CO M J> tt
1 «£ S t>
*— ' ^ rti cj
PQ S -^§
0
ite-specific, and is further discussed in Table
. EPA OSW recommends that the default vah
y from the site.
this variable include the following:
ion in Table B-1-3 has not been identified.
ices may result in dust residues that have neg
in comparison to that of other residues. This
45 <» s -s ts <§ ^
| D 1 -g g. | f
T p •§ "g S -g |
O o M " x! « S
gc| 1 111
sgi i |ii
ill i ii-s
2 Q o <= u ft -S
i u » | S Q "5
2 £ ^ 8
2 ^ 2 = -^-r
H § fe ^ - SS
"k
^--i
"S
CO
2
u
3
T3
C
a
to
c
0
o
CO
CO
O
0 §
a, "z
0 Q
U u
1
ll
•3 2
« N— '
"^ ^3
c cu w»
w S c
M M-J .M
C - X
IS !
T3 tS
8 P 1 v;
§S ^ 5
S 2 o
,§ £• & a
2 g o |
ZX "3 to
Ki lo O
. H u "
^ O VH O
^ M S •§
T y « §
oa z -2- I,
J3 "§ g I
3§ .2 S
H£? J t
? .a S B- =3-1
« c •" o J2 t:
S lit 11
Varies (calculated - Tabl
ite-specific, and is calculated by using the eqi
this equation is consistent with U.S. EPA (19
ero but does not explain the basis of this assu
this variable include the following:
ion in Table B-1-4 has not been identified.
ices may result in dust residues that have neg!
in comparison to that of other residues. This
.
J S I II
H ^ & 5 t
? -a | 1 =6-1
*« a 2 S .^ C
• o -1 « S K
1 isi i§
Varies (calculated - Tabl
ite-specific, and is calculated by using the eqi
this equation is consistent with U.S. EPA (19
les are zero but does not explain the basis of 1
this variable include the following:
ion in Table B-1-5 has not been identified.
ices may result in dust residues that have neg
in comparison to that of other residues. This
en i <** A .5 *i £ er co -3
18 3 ~Z -n ° -o -c
gii i ill
8*3 8 1S5
.2 § ^ S g g %
£ S 1 S § -a s
.C D eB *i eo o
•S 8* * .a s frS
Sif i "Q'
!3 fe °^ H ^ T
c .0 •- " •"> — N
M **- ^— ^ •— * ^— ' ^— '
*U|
>>
00
_c
la
S
^H
2
o
3
TJ
^
S
CO
C
O
o
CO
CO
O
i
o
u
3
n
-------
«?
*H
ffl
U
J
oa
s
CO
W
a
u
O
g
w o
gl
CONST
(SOILE
o
CO
O
U
^
•s
OS
^^
1
OS
*"
i
—-i
'S,
1
S
Q
ty
S
1
^H
»
o»
I
i
3
U
I
1
VO
«
03
IB
E2
_c
c
o
the equati
00
3
T3
a
n4
is calculi
•§
ca
0
1
*53
•g
C3
U
en
jD
1
.2
^
ob
'?
1
Jude the
u
U
1
>
W5
i
ated with
•3
o
CO
a
V)
.22
•a
a>
£•
1
i
00
.c
'Z
"i
[3
c
o
a.
*o
•w
W
1-1
CO
-
o
3
•3
U
S
.1-1
o
>
CD
1
3
rs
«
•a
c
2
"3
CO
£
8-
E
co
U
y
hard surf i
2
c
_S
•s
Q
s
a;
"f
a
_e
u
u
c
3
&
C
is uncertai
u
S
other res:
•s
M
5
2
1
1
_C
«i
!S
fe
1
*s
'w
2
u
3
1
GO
C
8
V3
_o
U
Q.
O
u
1-
S
S
"c3
1
1
-------
«s
I—I
ffl
3
»
$
O3
ALL PROCESSE
LOSS CONSTANT DUE TO ,
(SOIL EQUATIONS)
J
0
co
u
Bu
O
u
1
(Page 4 of 4)
REFERENCES AND DISCUSS!
&
1
*n
rte Combustion Units.
*e Risk Assessments for Hazardous Wa.
s
to
Protocol for Performing Indirect Expo,
NCDEHNR
[^
ON
O\
0^
C
K
n
u
2
identified. This document is also cited as
c
; has bee
CO
e
>urce for these equatio
w
CO
1
VO
1-H
DQ
13
S
I/I
n
•*
en
CO
o
1
_C
reference documents for the equations
is one of the
*-i
C
«
£
3
O
.£
v:
$
oss resulting from erosion ( fcre) is zero because
1
ta
S
rid using the assumptii
nd (2) one of the sources that recomme
ed
COPC-specific degradation rates (ksg)
! onto the site and away from the site.
(4_ QU
o S
£"8
g S
ca "5
t- f-
.0 -o
"— o
flj *-*
0 CS
t! c
3 '3
o E
3- 5
O "c
-c §
*^ o
__ u_
O o
MJ. Office of Health and Environmental
o
"i
I
k.
0
s
-a
1
o
S
|
g Health Risks Associated with Indirec
-003. November 10.
.5 w
idendum to the Methodology for Assesi
arch and Development. EPA-600-AP-1
view Draft At
iffice of Rese
i) O
!>•
**n
fi c
ON U
ON £
C
0
1
00
•8
1
S'
o
c
:s resulting from erosion ( kse), surface
CO
CO
source for the assumptions regarding lo
ca
3
1
"o
Cfl
*-*
c
o
3
O
o
"O
w
1
tachment C, Draft Exposure Assessment
>er 14.
*•* JJ
•< E
^ s
S u
1°
^ «
•j Burning Hazardous
. Office of Solid Wasi
f /?wA: Analyses at Combustion Facilitie
of Emergency and Remedial Response
S 8
Guidance for Performing Screening Le
ous Waste Combustion Facilities. Offi
evised Draft >
CRA Hazard
as a;
. i*
-° <£
•t ^
ON NNJ
2 C
.5
< 1
(X r^
w °
cw
D
es that recommend using the assumption that the
0
o
CO
1
tM
r\
nt is also cited as one c
compounds.
Tables B-1-4 and B-1-5. This documei
gradation (ksg) is "NA" or zero for all
£ -8
reference documents for the equations
kse) is zero and the loss resulting from
is one of the
•om erosion (
•" BO
B .B
3 —
O 3
O co
•U 0
.^ CO
£ 3
Region 6 and U.S. EPA OSW. Volumes 1-3.
<
S
ffl
c/i
D
nal Peer Review Draft
i Waste Combustion Facilitites." Exter
CO
3
Risk Assessment Protocol for Hazardc
1*
0 3
K '-
g <
Ig
I '
^^ cc
" ON
06 O
O\ i
ON O
V*.
< ^
&«
t/3
D
m
-------
!
P
Ill I
•1-8-S 3
c -2 o o
o 2 "3 •«
<->| I <
-• a.« pi
~n -s ^ y
ts s
a
• "S
•8
c
o
I
5
?
•s
l
. §
^) «
^ 'i
| §
S
E E
t-3
.S S
S .s
u -C
-
fi -
H
X O,
E-S
11
2 S
&C cd
s :§>
S "3>
"i S
u u
.y s
XI •"
o
s
M .
¥>. S>
—
£ « ».
f|5
BO E B
I 81
ca iS «>
u K irt
rf2«
- :^ 'S
° g. S
V- W- O
.o JJ S
CD
s
I
q
OQ
I
ss
< -a
00 0
o\ -3
11
W T3
Q g
II
/-N O
00 t_
s °
EPA (1994b), U.S.
med for kse is zero
value a
W -o
U
•£
u
3
constan
COPC lo
erosion
on
onve
Un
-------
»
s
n
$
i
£
1
a
C
s
ts
a
"E
<5
o
_u
es
•c
CO
**"
° §
"t« "S
8 |
g g
||
•i e
Varies (calculated - Table B-2-7)
This variable is site-specific and is calculated by using the equation in Table B-2-7.
The following uncertainty is associated with this variable:
(1) All of the equation variables are site-specific. Use of default values rather than site-specific vi
these variables will result in unit soil loss (X,) estimates that are under- or overestimated to so:
default values, Xe estimates can vary over a range of less than two orders of magnitude.
is,
(S
c
S
CO
CO
O
^
"3
CO
-tn
P
^
X
§3 u
JQ ^
I | <§•*
° S -u «
13 '« 13 _o
cd C ^* -^"
.O U — T3
« 8 g g
<3 a, E «
s " 13 1>
£ >> « •£
Varies (calculated - Table B-2-8)
This value is site-specific and is calculated by using the equation in Table B-2-8.
Uncertainties associated with this variable include the following:
(1) The recommended default values for the empirical intercept coefficient, a, are average values
of sediment yields from various watersheds. Therefore, those default values may not accurate
watershed conditions. As a result, use of these default values may under- or overestimate SD.
(2) The recommended default value for the empirical slope coefficient, b, is based on a review of
various watersheds. This single default value may not accurately represent site-specific water
result, use of this default value may under- or overestimate SD.
I
•s
1
_o
*ji
i_
b
>
~0
"O
c
1
•3
u
CO
Q
CO
S -o
"^s
-------
z
o
o
«
o
w
IT- W
gs
fi ^
H§
5§
^S
^
o
u
<*>
i
l
*
^
«
5
e
£
a.
•c
u
GQ
CW
Q
1
at
>
a o
x E - -S
Jrt **« CS ^~
"o ^o 5 o .
•o S » -g c
§ .S S 1 -2
5 •s i .f 1
*ils I
S =s <2 •£ 'S
c ^ ^ M
o "5b — e e
"-H ^ en "•*
C O "* JJ u
!! I ! i
•8? S-3 "
a o ° Ts §
o 2 -o g S
» ±: o .y g
^ oo c§ ^*
5 o -° -n S
<*- <*H ^_" — ' >-.
o o E 1
VI ° O\ 5 00s ^ ?
^ So C X 00 < C
C ^ S ^-* rrl 1^
di ri . " ^^^ " O
variable is affected by the soil structure, such as loosi
ent of the soil (Hillel 1980), as summarized in U.S. El
Baes (1979). U.S. EPA (1994) recommends a default
taken from Carsel, Parrish, Jones, Hansen, and Lamb
itively narrow range" for BD of 1.2 to 1.7 g/cm3 (U.S.
following uncertainty is associated with this variable:
The recommended range of soil dry bulk density val
"> a ?
G
•o
j^
1
'o
(^
ss
00
_c
J_; *x
f 1
eo 73
"E a u
S *S g
tS r^l '""
0> 3 w
VH CO 1>
eo S "
« „ -o
j II
S 3 £>
18 ~ C
J3 "° 'S
"S ~ C
en f\ O
_ .« O
•S .2P c
p "eo 5
g g.g
Is > H
"o *j 3
_ .. X) ca T3
* S 2 -'0
b « So"
o 'C o 3 53
-• > E ~ -s
? S 05 X
EPA OSW recommends the following values for this
Soil Depth (cm)
Untilled 1
Tilled 20
following uncertainty is associated with this variable:
For soluble COPCs, leaching might lead to mov<
This uncertainty may overestimate kse.
Deposition to hard surfaces may result in dust re
with in-situ materials), in comparison to that of (
o? £ ^ cs
u
0.
o
•o
o
B
g
Ofi
c
"E
'o
NT
(
"^
X
1
1
•S
X
•s
o
•o
3 s
s 1
c £
o S
DJ .£3
CXd O
-------
TABLE B-1-3
mj
K
H
hJ
HH
O
S ^
P z
ONSTANT DUE T
(SOIL EQUATIO
U
CO
50
O
.J
^H
U
Q«
0
U
y^^
SO
CM
O
^
CU
ec
si
V
3
1
a
1
|
£•
i
o>
2
^«
*C
^
CO
1
ca
§
u
U
X)
S3
'S
Q.
T3
'E
U
x:
CO
CO
•g
R)
_E
'cfl
ji
g
o
>
«?
di
0.2
r and on soil structun
a
ca
s
_o
3
ca
1
a
o
1
1
•o
o
3
1
CO
I
CO
T3
g
i
o
M
^
l>3
o
0-
S
t/j
D
53
>
5
•8
e
c
U
T3
XI
g
U
ntative watershed soi:
U
U
ca
C+-I
e
a
00
_c
'%
•o
g
.i>
1
2
"u
«n
^
%
RJ
6-
c^
o
o
en
?
w
>>
T3
g
CO
&
g
*^s
o
Si
S3
g
u
Xj
(+H
o
S
his value is the midpc
F
1
'ea
>
3
«§
•a
«j
CA
C8
•fe
| the use of 0.2 mL/ci
J2
'1
£3
«j
.*"
'53
I
CA
•a
c
03
<— >
U
00
CS
1M
.^
f*
g
«
•a
•S
1
a,
CO
1
S
<£
?>
*H
(1993) (no source or
?
i
"g
s
CO
CA
>^
e
1
The following uncei
S
&
•o
1
£
E
U
S
f
«
o
I
co"
1
^
_8
§
— *
S
U
(C
itely reflect site-spec!
S
y
i
&
en
J
"ta
>
JS
(1) The default 6
U
3
1
>
•8
H\
d on the limited rangi
S
a
A
1
8
CO
CO
cd
2
•o
1 overestimate
,0
I
c
8
IM
£
ed
>
^
o
1
E
3
"3
>
'S
C/5
*»
CD
-------
TABLE B-1-3
Z
O
N*N
8
COPC LOSS CONSTANT DUE TO SOIL EK
(SOIL EQUATIONS)
©
w>
£
REFERENCES AND DISCUSSION
g in Agricultural Soils." Journal of Contaminant Hydrology. Vol
c
., R.S. Parish, R.L. Jones, J.L. Hansen, and R.L. Lamb. 1988. "Characterizing the Uncertainty of Pesticide Lez
ages 11-24.
u_ a.
oi .
CO
=
u
I
document is cited by U.S. EPA (1994) as the source for a mean soil bulk density, BD, value of 1.5 g/cm3 for lot
_«
|S
1980. Fundamentals of Soil Physics. Academic Press, Inc. New York.
Q
"3
• M
ffi
u
oo
C
•3
1
•O
1
•s
1
t5
1
u
s
CO
CO
o
1
a
1
CO
a"
3
3
document is cited by U.S. EPA (1990) for the statement that dry soil bulk density, BD, is affected by the soil st:
r and clay content of the soil.
«
-------
TABLE B-1-3
OIL EROSION
)SS CONSTANT DUE TO S
(SOIL EQUATIONS)
^
J
^
PH
O
U
Attachment C, Draft Exposure Assessment Guidance J
ng Hazardous Wastes.
(Page 6 of 6)
'lyses at Combustion Facilities Burni
c
s
"5
•s
«s
"S
3*
•si
S <
s ^
% -z
On "^*
.?«
g£
<&.§
•C i
Guidancefor
t Waste Combu
% =
S -§
^ ^
-J s
. s
^J- 0
ON 3;
ON ~
- s
. as
< NJ
>
|
1
s.
1
RJ
^
SS u
^ Z
i 5
re to Dioxi
I8/005CC.
•noting Exposu
. EPA/600/6-8
•5 U
tSci
ca S
•? 2
O\ 00
ON C
— 15
«
£1
W
CO
D
U.S. EPA (1993).
for tilled and untilled soil, as cited in
N"
J3
1
U
00
_c
"x
"E
'8
CO
£
1
•3
the source of \
«
•?i
u
E
a
0
o
•o
V,
'£.
s Wastes. Attachment C, Draft Exposure Assessment
ite. December 14.
3 M
:fies Burning Hazardo
se. Office of Solid Wi
/ /?wfc Analyses at Combustion Facili
of Emergency and Remedial Respon
S 8
3 £
^0
'i J
g -5
£|
g>£
•3 s
S o
11
£ "1
k. 0
u
« S
'-> ^
II
ised Draft Guii
RA Hazardous
§ G
as as
1>*
JD <£>
^ ^J
ON O
ON C
~" -S
a
^1
U
EO
S
taken from Carsel, Parrish, Jones, Hansen, and Lamb
Cfl
lue for loam soil that i
EPA (1993).
5 g soil/cm3 soil, based on a mean va
'.2 mL water/cm3 soil, based on U.S.
• 0
•8*8
i s
H
ii
!j
i &
'8 13
a default s
lumetric w
commends (1)
default soil vol
S «
*-> '•"^
C =>
ca "S
£"
g <
S o
3 O
K 00
' ON
06 Q
Ox f~*>
ON °
— ' i/-)
. <
< S:
& w
w
CO
S
2
CQ
-------
p*
I
s
pa
s
ONSTA
IL
Q>
X
C
O
05
S
g
o
u
..
«
s
o
1
••a
h th
on
es associated
pti
Uncertain
I
o
.s
§
I
§
3
CT
ls
di
in
igi
O
as
as
I
N*
1
U
T3
1
o
u 5
1
I
§
a
3
C
C
O
OS
-------
o
z
g
o
^
1—(
«
aa
ss
M
a>
M
So
U
S
U
§
1
I
§
•S3
a.
a
2
a
•c
C3
>
— U
CS 3 1?
U o *F?
P^S X! co ^3
to >> p o
PQ" "P l-« ,
u S *y ^3 !r5
S 'P 2*
o u « •S S
> ^ t. -2
•C o £> o 5
^ 3C fli **^ ^^
c *^ > ^3 C
§ - ^ W O
V) gj ^N "O t)
mi ii
CC C S 60 IH ra
^ -a g •- 0 >
0.2
This variable depends on the available water and on soil structure; i
be estimated as the midpoint between a soil's field capacity and wil
of 0.2 mL/cm3 as a default value. This value is the midpoint of the
which is recommended by U.S. EPA (1993) (no source or reference
EPA(1994b).
The following uncertainty is associated with this variable:
(1) The default &„, values may not accurately reflect site-specific
overestimated to a small extent, based on the limited range of
"s
|
c
n
Q
U
fe
03
0
tl
U
p
o
'3
CO
£
< s
s a,-
S "s-3
S 'S S
nft eo ^
a " •-
>< * u
eo ^^ .«
B US >»
CB 5 a
JS "° P
"3 — &
to Xl B
P 'eo'S
i ^S
u go
~" u a
% > en
lor 20
U.S. EPA OSW recommends the following values for this variable:
Soil Depth (cm)
Untilled 1
Tilled 20
The following uncertainty is associated with this variable:
(1) For soluble COPCs, leaching might lead to movement to belo\
uncertainty may overestimate ksr.
(2) Deposition to hard surfaces may result in dust residues that ha
in-situ materials), in comparison to that of other residues. Thi
o
•s
a.
•8
u
1
QO
c
"5
"5
'o
CO
N"
*"i*
1 1
3* -
< cs
^ y
.1— O
t/5 ^
^0 W
O Ctf 3
« ^ J
'SO 3
c O
Varies (see Appe
This variable is COPC-specific and should be determined from the
The following uncertainty is associated with this variable:
(1) Uncertainties associated with this parameter will be limited if
ap
«?""
c
_u
s
t)
1
'•g
&,
Ul
U
f
'8
CO
"^J
^
03
-------
"o S
c .
-3 S o
O > . <
i
p
OS
u
J5 -I
I ?
> g
Cfl 4)
£ "°
5 !
'* "Sj
•8 "3
•2 -S
CQ
rs
O*
ce
1
T3 13 BJ ,g "
t1
-------
TABLE B-1-4
COPC LOSS CONSTANT DUE TO RUNOFF
(SOIL EQUATIONS)
(Page 4 of 5)
REFERENCES AND DISCUSSION
Itural Soils." Journalof Contaminant Hydrology. Vol
3
U
'&
.F., R.S. Parrish, R.L. Jones, J.L. Hansen, and R.L. Lamb. 1988. "Characterizing the Uncertainty of Pesticide Leaching in Ai
'ages 11 -24.
a- &.
I"05
55
U
document is cited by U.S. EPA (1994) as the source of a mean soil bulk density, BD, value of 1.5 g/cm3 for loam soil.
t/;
1
i
><
1
|
•i
1
1
J.J., D.W. Miller, F. Van der Leeden, and F.L. Troise. 1973. Water Atlas of the United States. Water Information Center,
>,
1)
CS
U
U
O
off, R. This reference provides maps with isolines of
^ interflow, and ground water recharge. Because these
te surface runoff.
C > TO
!:§.§
*~J rt 05
document is cited by U.S. EPA (1993), U.S. EPA (1994c), and NC DEHNR (1997) as a reference to calculate average annus
lal average surface water runoff, which is defined as all flow contributions to surface water bodies, including direct runoff, sh
ss are total contributions, and not only surface runoff, U.S. EPA (1994c) recommends that they be reduced by 50 percent to e
•1 3 2
£ i 5
1980. Fundamentals of Soil Physics. Academic Press, Inc. New York.
Q
"o
"* *
£
oseness or compaction of the soil, depending on the
Cfl
CS
document is cited by U.S. EPA (1990) for the statement that dry soil bulk density, BD, is affected by the soil structure, such
r and clay content of the soil.
« o
£ 1
e ofRadionuclides. ORNL/NUREG/TM-882.
1
i*.*
P.O., and C.F. Baes. 1979. A Statistical Analysis of Selected Parameters for Predicting Food Chain Transport and Interna
c
ta
"o
document presents a soil bulk density, BD, range of 0.83 to 1.84.
vi
S
j
nj
H^
^2
^IR. 1997. NC DEHNR Protocol for Performing Indirect Exposure Risk Assessments for Hazardous Waste Combustion Uni
*—<
E
U
Q
u
|
3
CO
1
CO
CO
£
*~s
la
s
cr
u
CO
le
£
"e3
C
"op
*C
o
document is one of the source documents that cites the use of the equation in Table B-1-4; however, this document is not the
document also recommends the following:
VD CO
II
eden, and Troise 1973) or site-specific procedures,
the use of the CNE
3<8
J- u
• Estimation of annual current runoff, RO (cm/yr), by using the Water Atlas of the United States (Geraghty, Miller, Van d<
such as using the U.S. Soil Conservation Service curve number equation (CNE) (U.S. EPA [1985]) is cited as an examp]
Default value of 0.2 mL/cm3 for soil volumetric water content (
-------
TABLE B-1-4
RUNOFF
O
IS CONSTANT DUE T
§
U
a.
0
rj
w
(SOIL EQUATIONS)
^^,
«/>
%
V)
9)
S
^^
ooseness or compaction of the soil, depending on the water and clay content
5fi
d by the soil structure, such a
1
Cfl
•^
§
;£
;nt presents the statement that dry soil bulk densit
y**
3
•§-'
T3 o
CO «5
H
Combustor Emissions. External Review Draft. Office of Research and
0
iated with Indirect Exposure I
o
1
•^
Jj
t;
S
•«
••*
Addendum to the Methodology for Assessing Hei
t. Washington, D.C. November.
. c
ro cj
o\ £
2 t
< >
cu w
W Q
:nt recommends the following:
ij
D
8
T3
CO
JC
y soils) (the original source of, or reference for, these values is not identified;
calculate average annual runoff
£ 0
7 g./cm3
dy soils) to 0.3 (heavy loam/c
;r Leeden, and Troise 1973) t
s j 1
N- ti3>
> Qu >-
"R o °
0 1 R ~
S° "S
°l •s -a *
'relatively narrow range" for soil dry bulk density
ange of soil volumetric water content, 0^ values
ange (2 to 280,000 mL/g) of Kd, values for inorga
; of the Water Atlas of the United States (Geraght
- *• >- s
< < < ID
• • • •
ires. External Review Draft. Office of Research and Development.
•a
ite-specific Assessment Proce
to
1
s
1
Bn
. Estimating Exposure to Dioxin-Like Compound
D.C. EPA/600/6-88/005Cc. June.
tS _-
£ I
as oo
— < a
- _c
< "I
cu .5
M ^
LJ.S. EPA (1993).
e
led and untilled soil as cited i
1
NT
IN
J=
R-
-S
nt presents a range of values for soil mixing zone
u
3
8
"O
c»
g
r Burning Hazardous Wastes. Attachment C, Draft Exposure Assessment
Office of Solid Waste. December 14.
.§ 0
lalyses at Combustion Facilit
gency and Remedial Responsi
^ |
"S 1
5*8
I s s
3 g"a
"- B
« TS -y
« u J
*5 60 (3
K es C
*^ *•!
„> *
-------
g?
E
in
S3
U
J
pa
g
o
z
3
u
§2
SH
h this equa
ated
0 0
•o " B
3 § s
P ^
JSS
§3
W5S
CO
S
cripti
ties as
Des
.
a S '"
2
8
CO
c
0-
I
1
CD
1
O
L...—
N"
£ 8
u
•§
u s a « :
•c
w
JS
a
O «
u ^a
s.
¥
5
S
OS
*H
i
5
S
u
s
R 3 2
?« S3
u ^ u
•s °3 S-
| Ili
| £ &K.2
1 .§ 1 -d S
«
.2 u - X
* u S1 s -0
-------
«
u
J
3
1
•~
,P
et
5
*5S
u
1
«
o ~ u
\o o u ^L
j 1 |5
£ I" 13"
1 :- ^ 2
w o «j rt
1) > ^H
" i o .
cf .. SB
"° S S
2 S s* ^
^T a * §
S3 II
^ -^
•~! «i o a.
0 to 100 (site-specific)
s based on information, presented in I
Shor 1984). The 69 selected cities an
States.
th this variable:
:al average annual irrigation informati
ition) may not accurately reflect site-s;
wn degree.
is variable is site-specific. This range i
;cted cities (Baes, Sharp, Sjoreen, and
ated throughout the continental United
i following uncertainty is associated wi
To the extent that site-specific or loc
based on the closest comparable loot
under- or overestimated to an unkno
us I e
•§
s
§
1
's
"ca
B
C
ca
o
on
CO
1
"-
ta 8 M a -o
p; ^, ^ P In
8g1| H
•a 2 8 I s §
3 jx ^ O jy ^
rt o W cfl t*- £•!
§^ 8-g -§2
§ •§ g- 2 J? -8
u S .S3 Ik. J3 c
g) . <« o ]S 3
53 o o ^ 3 ^5
gg a) en e* cd >»
p -2 .1 1 |E
o\ te " u M t;
o> *a ^ c — «4i
•^ _ u ca G *
J3 ^3 cfl O ii
etJ ^> S « "S3
§ ^ € TJ « S
M tT 13 U S 15
W 5 g -8 ^ «
Q B S .« B 4?
r \ fCf g "™" ^**
*E3 *""* 8 fi M$ S T3
N.^ . - •*_! C **J Q
•g ON °° ^ JL> §7;
/? *S ** CJ *!3 ^ ^
CM i— * .M ^^ CO 00 *r?
PJ ^ S3 w ^ (0 X
• o y .« w u CL
«». -s o> > a i •?
p
°
sa
g
3
8
<2
3
1
c
e
ca
o
OB
C3
>
O
& "c5 w
pi -3 §
J- u °
J3 s 3 •%
»l Ii
•^-* ,C CO
a Z o o
u B -s "
co ^ Q w>
£ £ £ £
*"• O ^ C
- S ™ •£
o~ "S o S
^ "S w *^
^ S c °
< ^ .2 o
m D ^ '
. -° C fe
wo e •§
=> S -s S
c- r? C ^
35 to 100 (site-specific)
is based on infonnation, presented ii
are not identified; however, they apj
'ith this variable:
ical average annual evapotranspiratio]
ific conditions. As a result, ksl may
is variable is site-specific. This range
selected cities. The 69 selected cities
ited States.
i following uncertainty is associated w
To the extent that site-specific or lo
may not accurately reflect site-speci
degree.
£ SD £ e
•?>
0
1
E.
CO
c
a
!
s
~a
c
c
C3
O
ec
aj
<
hf
-------
1
; :•-
''
«*jj
&
_
o*
"C
u
1
V
i
m
o
,w *~ «
:§ ~ -a o
e« 'o P '
^ eo W t-«
c •*> 1? •»
iu !> S e -^
1815 -
*^ "^ 0> '.£ ^
c °- i * 3
ai-^ O "^*
— vi o ^ -3
*P rj **- jy 4^
^" ,^H ^
1) J-H W *> O
js u ao o 43
*^ > c ^ 2;
-oo^*^ -
1 x * s g
g _. o S .2
•
• ° "« ° ^ *s
N 2 S | X | |
d g 1 H ?• §
*-• •« ^ ^^ . . i> -a
£ H ^^ _
P
^
o
t
'o
^
<&-
u
00 _«^
.S o
'i *°
1-, CB
5 "
JJ 2
&0 rj
e -a
00 Q.
c p
2 S
3 "
S .S
•" ' ,
J£ o
1 |
.5 =3
p u
3 3
O 00
(S S
u oft
? 5
ii _o _§
r^ "« bb x> S
« 1 1 S 1
" 1 1 I •§
EPA OSW recommends the following values for 1
Soil Depth (cm)
Untilled 1
Tilled 20
;rtainties associated with this variable include the f
For soluble COPCs, leaching might lead to movei
depth. This uncertainty may overestimate ksl.
Deposition to hard surfaces may result in dust res
residues. This uncertainty may underestimate ksl
c/i cj
D D 3 S
p
3
,c
•o
-------
•?
»-(
PQ
H
J
ffl
g
Z
NN
B
U
•«
w
J
B?
si
QS
H 3
3&
5w
% J
fc a
o o
U &
Tf
o
u
OJ
1
5
3
P
—
&
*c
V
en
u
a
CU
s
CS
SS
>
J1
" B
e S * £
co e c
i_ "p. o a,
m eu fli
I " S o
•^ >% CO en
CU =3 ^> "3
•£ g ^; "s
§ :§>j 3
00 O 00 OO
.5 en ^ "1
•3 CO • ^
e £ — £
U 'i i ^S
&S °
•S " g § •
=§' s 1 > 1
S3 &J-
•So |H^
'S'S-S^"
INSS
•3 a ^ ^ *j.
« -3 X) ^
S-< o g S
§ • " 3 -5
" S~3 ^ °°
sa^l^
«« s c -S ™. "£
S a, •?. 2 ^
S « -a § -:
^oi g^-o
^il§
8.l!3?
c 'C S T S^
s g§^ S |
| e ^<£ 2
I ? S 1 1
0 « M CO fe
"S^^ S,
J3 § •-> S ^
4_d *£* «__>' 5? "77
^=^•§1
.— o g^ ~ ^
u s Cr o 13
igss.8
^515
.2 •» OQ fe "R
„ u ^3 £ 2
3 ~ S u S
CO So
'S ° i "^ £•
> o I *• ?
« - S S B
.5S 7S **^ W
£ § 5 g a
H o 2C c •£
_U
JD
.2
1
en
s
^
'?
1
.2
en
CO
v>
incertainties
^^
00
_B
,O
1
1
=
o
1
1
_0
CM
'G
0.
&
>.
1
•8
.j
T^a
"3
.£>
1
ej~i
O
&
|
•a
1
1
H
N.*'
"s
u
"ob
>>
en
C
D
•a
^
3
f.
1
§
^
r^i
<
M
1
CU
S
<
J
V)
B4J
1
00
*!
u
a
4>
"o
*|^
B
_O
^M
cS
&.
u
^
1
CN
<
X
-a
!
_B
en
CU
1
detennined from the COPC
CU
JO
•3
s
o
•i?
•a
o
C
B
O-
GA
§
U
en
CU
1
C
s
1
his variable:
r«
£
•a
u
2
'3
o
en
en
CO
mcertainty is
;_>
00
_B
_0
1
CU
<
X
"3
s
3"
<*H
•o
u
1
Jj
'?
t*
o
H
)_i
CO
G.
en
£
,£
'£
•a
ties associate
B
'3
1
D
-------
pa
<
H
o
z
I
•<
s
8g
si
Q H
H 3
^ ^
l»
Is
U &
05
S
J
O
u
Page 5 of 6
AND DISCUSSION
ough
Released Radionuc
u
ng Transpo
meters
840R21
e -
i
g
g
ew and Analysis o
Contract No. DEAC05
Rev
984.
Ene
•§ i
oo £
J -a
average an
on
precip
ge
B
o
JS
-
O
en
—
'l_<
"E
,0
"So
•rt
*— i
<*H
O
U
_s
"re
>
>»
*en
1
Ai
1
"o
CO
§
re
1
CJ
0
§
CO
I
CO
CC
^p*
S
o\
<
a.
ca
00
3
>>
x>
•s
CJ
CJ
• ~
B
OJ
C
S
CJ
"3
V.
'~
E-
£
£
£
co
§
ob
B
2
en
re
1
t^
u
B
tO
U
1
u
s
re
3
c
, and F.L. Troise. 1973. Water Atlas of the United St
B
U
•s
J3
^H
•8
1
(•^
CL
uT
_CO
S
£
Q
^-»
>-n
~
>>
*ob
S
CJ
o
ng average annual runoff, RO. This document provides maps with
ng direct runoff, shallow interflow, and ground water recharge.
to be reduced by 50 percent to estimate average annual surface runol
•ence for calculati
er bodies, includi
es that they need
^ g I
*-" 41 Q-
08 re ^
tn eg c3>
01 3 C
.e s ^r
«^ o >
ON •= OH
C § «
oi .2 oo
il^f
sH
^8I
"§c §
M = €
s? M s
^- en »
fit
< «= 0
S3 -8 §
• 2 "e
w 2 g
D 1 1
xi s
m ^ o
S its i
- §=§
< 2 B
fe 8 8
"|!
D g °
^ a a
JD oo re
| S |
'3 « §
.52 re o
3 ^
B S CJ
cj 5 ^
p re D
§11
•§ g S
en .5 CS
'-" 'TT CJ
J3 O CO
H .2 03
this document.
"8
1
a
CA
i
o
o
B
en
re
4=
£
u
CO
D
s
»— 1
0
CO
oo
CD
f^H
o
'S
en
CO
en
B
CO
en
S
C.
—
icume
-y
V)
x:
H
•a
£
u
i
CO
1
CO
GO
a
D-
co
1
o
<
c^
U
I
e?
c?
s~^
S*
_Co
"3
1
-1
1
o
oo
ON
1—1
Q
S
^3
X
itructure, such as looseness or compaction of the soil, depending on
VJ
'o
en
CO
A
>>
J3
•8
S
sa
re
en
§
>i
*c«
1
J»i
1
*o
CO
£>
•o
ffl
^
S
re
"en
-I
1
s
^ '5?
o, g
B) >
.22 ^
— *o
c — .
81
3 b
•3 §
^. S
S «
H -S
•? and Internal Dose of Radionuclides. ORNL/NUREG/TM-882.
1
1
c
1
•5
cal Analysis of Selected Parameters for Predicting Foe
_cn
C
CO
•^
o\
?±
0\
en
CO
re
CQ
X
U
C
re
0
l—
c
1
<•*-
o
I
•*
00
0
CO
00
6
•s
CO
B°
2
§
>^
"co
1
^
*3
£
'o
CO
EC
CO
C
1)
CO
s
"c
>cuine]
-~
&
•™
H
6
B
re
•-»
!>i
!
C
.g
1
1
su
1
I
trforming Indirect Exposure Risk Assessments for Haza
<£.
^
I
fc
Cs
1
DEHNR
%
t— °
§
DJ
z
a:
u
Q
U
z
o
en
13
1
3
CJ
O
•s
en
g
B
_o
cB
3
O1
U
en
£
t^
O
U
1
o
en
1
"op
'£
O
1
0
en
«
wever, the docurr
.§
H S
o
C
'o
8.
CO
4>
'so
O
I
U
CO
2
•3
B
re
g
"8
J
b,
CO
•a W
B Z
.5 u
t-!
JB s-
s o
S J5
^S
-a^s
£ o
United States (Ge
ed as an example
ce runoff, flO (cm/yr), by using the Water Atlas of the
Soil Conservation Service CNE; U.S. EPA 1985 is cit
•S w
L? S
^-i U
§ -I
§00
C
a's
S a
11
"S ".
C «
o 2
— 3
s-s
•§ 2
u S,
•
o\
ts
n
-------
•P
l-H
«
s
tt
$
*
•o
u
u
43
CS
B
•a
"g
P
8 u
6 1
I I
3
0 §
J"S
W —
?• CM
U
Q
C
o
1
IS
sn
CO
|
£
(^
O
t— 1
r--"
g
«— »
£
Census. 1987. Statistical Abstract of the United Sta
u
.£:
I«
o
2
I
CO
C/j
D
"8
;~S
1
o
B
a
TO
CO
CU
'o
O\
VO
S
-1
y— S
1
u
00
£3
B
i
*Q
CO
CO
co"
tu
nation for 69 selected cit
lisa source of average annual precipitation (P) infon
1
3
o
CO
IS
landGroundwfiter. Part I (Revised 1985). Environmental Research
u
£
g
_c
CO
1
C
5
1
r Toxic and Conventional
Water Quality Assessment: A Screening Procedure fo
aliens, Georgia. EPA/600/6-85/002a. September.
•^
wi
g? £
—* 2
2.1
a. -5
m ,3
c/j
D
E to estimate site-specific average annual surface runoff.
z
0
4>
o
':>
1>
in
B
0
1
U
CO
B
O
U
1
oo
D
1
t>
>
x>
•a
u
'cj
CO
1
3
CJ
v:
IS
'or Emissions. Environmental Criteria and Assessment Office. Office
CO
1
a
o
s
S
1
Associated with Indirect
'nterim Final Methodology for Assessing Health Risks
id Development. EPA 600-90-003. January.
— ' C
• CO
0 __,
£•§
— CO
u
to
< (S
CL K
W -g
ori
D
innual evapotranspiration. This document identifies Baes, Sharp,
wv>
O
g>
i>
>
03 C3
f^ -a
•o E
§ £
c e
.2 '«
2) average annual irrigat
he original sources of thi
presents ranges of (1) average annual precipitation, (
hor (1984) and U.S. Bureau of the Census (1987) as t
B ™
ja -a
§ §
8 B
•O U
co S
Is -2,
E- o?
*Msfor Emissions. External Review Draft. Office of Research and
c
a
0
^>
i:
2
1
g.
t3
1
'isks Associated with Indi
Addendum to the Methodology for Assessing Health R
Washington, D.C. November.
f> B
a\ «
Ov P
'~H Cl.
< "§
s|
00
3
oh
_o
1
D
*£•
«
-o
i
S
1
i>
1
"3
ble B-1 -5; this document
E2
B
§
1
u
£
I
CO
U
B
1
S
g
£
a
u
.G
t^*
O
CD
g
M
E
Q
3
0
IS
0; the original source or reference for these values is not identified.
—*
'1
&
^^
^^
g
0
"^
|>
^«-^
(very sandy soils) to 0.3
PCs
'1.2 to 1.7 g/cm3
ige of soil volumetric water content, 6^ values of 0.1
ige (2 to 280,000 mL/g) of tfrf, values for inorganic CO
latively narrow range" for soil dry bulk density, BD, of
b c »
22=-
< < <
* • •
ition is not identified.
TO
jj
g"
W
Ic
*tt
O
g
•a
n Table B-1 -5. Theorigii
is one of the reference source documents for equation i
'B
u
E
D
O
O
T3
1
? Hazardous Wastes. Attachment C, Draft Exposure Assessment
3f Solid Waste. December 14.
sr u
•I 8
II
CM
S U
'*3 en
S §
U D.
Q SO
s^
•2 .2
Risk Analyses at Combusi
of Emergency and Remed
e view Draft Guidance for Performing Screening Level
CRA Hazardous Waste Combustion Facilities. Office i
a; as
. j.
S^
2 1
< ^
tn *
t, 0,*, value of 0.2 mL/cm
en, and Lamb (1988).
recommends (1) a default soil volumetric water conten
n value for loam soil from Carsel, Parrish, Jones, Hansi
w CO
B U
U B
1-
8 §
» "8
M QJ
g s§
H x>
-------
ve
i—i
CQ
U
_)
pa
g
z
o
S
N
3
Sg
w <
§1
a
H
5 j
So
•5 S
o
u
c«
O
U
!
cription
S c
* «
I o
•£ «
S! I
g *
•«•
"S i
IB
C co
•C S
g E
do C
•S 53
'5 '3
8 £
I!
•U
n S
§> I
E '§
t|
es
ii
is
E>
S g1
s:s
& E
« "a
•S 'a
eo S
la
3 «-i
§2
=2 "
=S 2
» C8
13 x
U CS
M '**'
•a e
c o
3 *J5
•S ^
'C -3
?
19
2*
o 4-
•«
oo E «
S M E
111
".!!
U -O
&l I
USE
s .1 c
"° 's c
. c. f\
O ° C
tt, Q 3
CD
I
N
O
T-H
X
m
N
&
<
X)
2
Vari
•8
u
A
2
1
1
u
C
'8
&
I
05
O
1
I
CO
S
fi
*
1
cd
1
o
3
•a
c
a
COPC loss c
volatilization
ari
rtainty
3
00
c
1
S
u
'o
I
I
C
o
as
i
h
«s I
il
1 §
•s|
P c
i-*
I II
o
3 S
00 S
c "a
•a >
S O
£>£
* 3
•a u
u n,
U
ass
, esti
CO
variable,
the actual
ate
Values for thi
overestim
-------
BQ
CQ
i
i
s
1
!
yj
"B
P
*
-3
*5
A
S
es
•c
es
S 1
rt *3
!_. £
ftb o
I? •
«s*
*^ p
3 O
-^i U
T) e
c •••*
c"
— o
"S —
S 2
.e =3
lor 20
ommends the following values for this variable:
Depth (cm)
1
20
rtainty is associated with this variable:
OPCs, leaching might lead to movement to below 1 or 20 cm i
This uncertainty may overestimate ksv.
hard surfaces may result in dust residues that have negligible
ics. This uncertainty may underestimate ksv.
8 1 of S 1
1 _|, | iff!
w lip | £'SQo
*5 S <—. ^^
E
u
1
•o
c
s
]x
'§
'5
N*
c
i
t3
s
L e«
^ 03
X "O
c ^2
a g
9- -a
< S
.S P
Varies (see Appendix A-2)
PC-specific and should be determined from the COPC tables i
rtainty is associated with this variable:
associated with this parameter will be limited if Kd, values at
O g g S1
U a -a <
cc S C X
i | 11
B g O S,
1 1 J=^
.52 "u ^
00
^^
Q
c
o
"o
s
§
1
.5
S
D.
Ul
ea
"5
3"
8.205 x 10 !
ainties associated with this parameter.
tl
o
3
I
U
1
-3
£:
1
i
"w
O
c«
00
"3
>
"H
^
s^i
ce G S
E -a 5
,! 01 « -g
oo -2 ° .y o
ON B C M-( "^
r^ .2 'S s
"8 "§ t3 .SP S
o t5 ^* ^ ^
I* fll O ^ |
*j o S "^
S o ^ E -g
jv 3 'e H u
298
-specific. U.S. EPA (1990) recommended an ambient air tern
rtainty is associated with this variable:
that site-specific or local values for the variable are not availa
resent site-specific conditions. The uncertainty associated wit!
thin the temperature range at a single location is expected to I
sociated with choosing a single ambient temperature to repres
.•S 5 =• fr'S 3
O9 £*
-------
z
o
M
H
•<
N
NM
J
NN
H
5
NN
O ^
£*
^ S ° «
*i H H *
« gS *
1 £& ft
S S3 I
H go
S 52-
0
U
en
j
g
O
U
I
IB
5
1
§
2
"3
c
5?
H
—
3
«
•E
>
^
S
s^^ s"
•C ^H TJ £"<
w ^.j H jj y
w ^ T— • „.-*-» cd
s g r s 2 «
« =3 « 1 § c
S S3 « ^ § £
§2 ill - §
«n g^Sg" o «
^ •2£§S8 S |
S ^ £ § « . "g §
•g is "8 -o "g m S n-,
"•Recoup X o
^Ili^i 1 I
*£! >s?^ S 2
•g 2 * ^1 o .1 "8
§SS-s22 « -8
llo-Sl2 1 1
1] 8^^ I'S § I g
o 5* ^ J! J Q g> 8|
l-sSs'S05 I as
-2'g^g«t§ S s ^
"Sl|l^ ! So
g!<^l§ a £
**p
•§)
>>
Wl
c
u
•a
"3
XI
'o
t/5
Q
03
.
O^™^
00
ON
s_^
s
£
"S
18
f
ON
O
en
S
S3
•o
§
o
fc>
e3
— o
D3 a,
C .^*
t*; _, ^
<4 TS S
S -a
* §
u c
1 1
w 8
s ^
<4-l *-*
2 '?
8 >>
3 S
_g _>
CO *C
"S ^
g £
S c
i -s
u u
£ i
s g,
S= -8
Q. ••"
w g
CO U
p p
*^J
•&)
>>
'co
C
•8
o
[o
s
en
•a
•3
W2
R"§
•2 s | £|
| -8 1 tl
r o *3 CO 3
* > go
2-a 8 S
9 >
">
en
Sg
5
a
Q
CO
-------
so
PQ
H
O
NN
H
N
3
P
I®
P o
PS
H O
03 C£
O
u
U
g
U
1
£
i
"3
S
e
o
2
e
a
_o>
1
CO
^_,
c
o
."f"
c
1
CO
C3
•o
u
„, can be estimat
t
i
1
fS M
® =8
CO
C
o
•o
c
I
u
JD
C3
a
•o
. 'p
•g S
IH *
>VH *—•
'c M
•o '"
o "ca
X! >
e co
atershed soil cai
fault value. Thi
*•§
g ««•
*i CO
ca co
c "i-
u c
CO 3
13
« N
5 £
C 0>
•53 CO
&S
a>|
2.3
? g
11
iis variable depends on the a1
stween a soil's field capacity
owever, U.S. EPA OSW reco
P
•° K
o
c
^~^
CO
Ox
^^
**~s
1
co
:ommended by I
J.S. EPA (1994)
t-i j3
it I
o —
^.1
11
^"c
s ^
SI
11
s~* ^
oa ^
1 <§
1 the range of 0. 1 (very sandy
lurce or reference is provided
•8 §
s variable:
•2
.C
•o
e3
"§
GO
Z
VI
>»
C
'3
c
3
ff
1
S
U
^
JJ
I
_g
> *r
accurate!
lall exten
« e
O co
c «
>> 0
) The default 0M values mi
under- or overestimated t
~
1
0
1
tH
O
to
*U|
o
1
1
00
,
-------
fc
o
B
<
a
g
s
5
>l
06
£s
1 <
9 rj
«5
H H
Z j
•< **
H O
en en
Z ~
0
U
en
Tf\
I
£
O
u
1
f6)
DISCUSS
o p
«n Z
VI
1— 1
t*-l
o
§
o"
This document is cited by U.S. EPA (1994) as the source of a mean soil bulk density vali
1, D. 1980. Fundamentals of Soil Physics. Academic Press, Inc. New, New York.
_o
£
in Transport and Internal Dose of Radionuclides. ORNL/NUREG/TM-882.
ing Food Cha\
nan, P.O., and C.F. Baes. 1979. A Statistical Analysis of Selected Parameters for Predict
S
o
K
This document presents a soil bulk density, BD, range of 0.83 to 1.84.
es", In: Pollutants in a Multimedia Environment. Yoram Cohen, Ed. Plenum
i waste faciliti
ig S. T. and Falco, J. W. 1986. "Estimation of multimedia exposures related to hazardous
Publishing Corp. New York.
S
£
CO
cs
i
a
2
>"
2
_0>
O)
z
1
1
r, R.W. and D.T. Gardiner. 1998. In: Soils in Our Environment. J.U. Miller, Ed. Prentice
—
1
is Waste Combustion Units. January.
1
I
<£>
lEHNR. 1997. NC DEHNR Protocol for Performing Indirect Exposure Risk Assessments
O
u
:r, the original source of this equation is not identified. This document also
%
1
vo
CO
This document is one of the source documents that cites the use of the equation in Table 1
recommends the following:
: values are not identified.
sources of these values are not identified.
-------
TABLE B-1-6
JZATION
M
N"H
H
3
O s-
t--^. tC
*- z
C LOSS CONSTANT DUE TO
(SOIL EQUATIO]
1
•O
U
«
£3
U
(Page 6 of 6)
10 source or reference for this value is id
I
%
• An average annual wind speed of 3.9 m/s; ho1
star Emissions. External Review Draft. Office of Research and
-o
1
g
^)
3
ilth Risks Associated with Indirect Expos,
1
_g>
1993. Addendum to the Methodology for Assess
slopment. Washington, D.C. November.
< >
&Q
CO
D
:nce for this equation is not identified.
<£*
S
1
'oo
"g
ie equation in Table B-1-6; however, the
•s
£
%
document is one of the reference source documen
ex:
fS
document also presents the following:
&C
Ic
ic COPCs
i
I
&
09
U
i a range (2 to 280,000 mL/g) of Kd, valu
BD,ofl.2tol.7g/cm3
a £
J3 'S
•2 fi
oo «
COPC-specific Jfrf, values that were used to e
• a "relatively narrow range" for soil dry bulk d
g Hazardous Waste. Attachment C, Draft Exposure Assessment
of Solid Waste. December 14.
•| 8
1*5
*°
*3
«5 u
•;* «>
"S n,
g Level Risk Analyses at Combustion Fa<
Office of Emergency and Remedial Res
•S ^
63
S 5
u n
1 994. Revised Draft Guidance for Performing S
lance for RCRA Hazardous Waste Combustion Fat
< '=;
o- r^
w ^
C/3
D
s taken from Carsel, Parrish, Jones, Hansen, and Lamb (1988).
"^
CS
£
^
CO
1
i
o
J3
la
>
B
ed
1
IS
e
o
1
S
<*t "
1
"1
f?
w
4>
•1
document recommends a default soil density, BD,
C/J
H
rdous Wastes. Attachment C, Draft Exposure Assessment Guidance for
8
:§
S1
5
s
BQ
Risk Analyses at Combustion Facilities
1
•3*
60 —i
1994b. Draft Guidance for Performing Screenin
A Hazardous Waste Combustion Facilities. April
< t^
^
CO
3
Review Draft. U.S. EPA Region 6 and U.S. EPA OSW. Volumes 1-3.
S
(S
1
u
s
zardous Waste Combustion Facilitites."
K
£
1998. "Human Health Risk Assessment Protocol
530-D-98-001A. July.
< <
§«
C/2
D
Emissions ." Internal Review Draft. Environmental Criteria and
c
Combusi
g
dated with Multiple Exposure Pathways
1
-5
ft
•«
In Press. "Methodology for Assessing Health Ris
ssment Office. ORD. Cincinnati, Ohio.
< %
2 2
w <
C/3
S
-------
IS
Uu ^^
SB
a
B3
O H
y g
^ a
c
o
s
13
«g
a
00
3 c
a. -e
i 1
b «2
a
-1
'
.2
•o M
S
-2 g»
-
•5
1
s
§
§
-
O o
cd (D S -a
-------
»
3
a
§2
« o»
« M
IS
-<; 6d
^^ C2
si
Q w
5
•o
S
.2
U
O
VI
S
£
o
•S
>-.
'a
u
C
'1
r^"
i
C*^
m
u
3
«? £
2 -s «•
ea ,- «
Varies (calculated - Table
ing the equation in Table B-2-3.
s variable include the following:
ssociated with the variables in the equatiot
pecific and may be significant in some cas
"23 a f
3 * S &
% « -S -a
1 1 |«
! 1 !|
2 « » -.-
« S -3 I
•£2 "S •" r^
« e g O
i "3 4j c>3
> c « °>
» 8
I5S
1
S
'S'-o
o o
*!2 ri
wi •*-*
3, S
5- S
W S
5
y o
CL, X
O -o
U §
u —
cs c
0.-S
0 I
n. 8
« &
> -o
^
.
O)
£
"?
1
"«
Q
O
M
CO
Rt
O
en
O
5
^*
"3
u
•M
*? g
N &
pa c
Varies (calculated - Table
ing the equation in Table B-2-4.
s variable include the following:
ssociated with the variables in this equatio
site-specific.
s -a a t>
3 * S S
* £ 1 «'
1 1 |l
1 | if
0 CO 0 SS
.2 S 5 Q
J8 8 'S |"
^ *s •** >
2 c S 5
'S 'S •! £>
g -g 2 Q
.* o
P 5 S
4
cf>
g
O
'S
u
o,
£
«i
^«
T3
CO
O
— ' &
<~~ O
^r o
O ed
C tS
= 5
OH c«
^
•o
5 •"
t g
•> o S
•a £,-
o pfT3
« S £
'u 0*8
n, c °
o S
•o as
M 1« U
f^» i 42
« ^ ^
o no
3 o S
f 5 ?i
aa '" c a
Varies (calculated - Table
ing the equation in Table B-2-5.
s variable include the following:
ssociated with the variables in the equatior
ay be significant in some cases.
ith the remaining variable in the equation i
irrow ranges of probable values for these v
,)•
35 -a a a fe a ^3™
3 -S » B ? c ^
^ « -a i ^ I r
~ -5 c S -g r; g
1 | l«lll
•i 1 § "8 1 1 1
•S '§ § ?• 8 8 1
O « g> fl> 'Jl _O
.2 § 5 .« e ^ g
3 | 2 | 1 I 1
« c S 3 E c
•g -a S r«f = -c '-g
> C 2 U D &. CD
« o
2 c '-* ^~
F D 0 Ci
4
Cft
1
>
S3
o.
1
(C
•o
a
o
"~ Vi
<4_ U
^ ^
c
-------
TABLE B-2-1
PC LOAD TO WATER BODY
ER AND SEDIMENT EQUATIONS)
(Page 3 of 4)
TOTAL CO
URFACE WAT
£
1
i
i
Of
u
«»
a
o>
3
1
>
*o
*
N
05
u
3
a
Varies (calculated - T
culated by using the equation in Table B-2-6.
This variable is cal
iated with this variable include the following:
Uncertainties assoc
<* i
^ 1
t, C
X -£P
Cfl
£ ^-s
4> O J3
eo •*-* as
* 11
^ 8 1
•a & v
o 55 s
ES ^13
'5 o?
U B (M
& § s
VJ5 OT «
T VO 3
^ ro U
1 CN 2
« CQ 5
ja ™ S
* -S OB
g -go
^ H S
•S c -g
§ 'i I
•s .2 o
ncertainties associated with the variables in the equ
te-specific and may be significant in some cases.
associated with the remaining variables in the equa
ause of the narrow range of probable values for the:
scedures (Kd,).
(1) Most of the u
and Cs, are si
(2) Uncertainties
primarily bee
estimation pri
1
•s
c
_o
'c*
g
u
'o
VI
3
-------
l-H
*?
A
TABLE
Z
0
TO WATER BODY
EDIMENT EQUATI
Q M
<: Q
o z
J •<
U tt
O H
U •<
TOTAL
(SURFACE W
of 4)
ID DISCUSSION
•* $
« •<
ec o;
« w
fe g
to*
U
r^
s
fn
22. Number 4. Pages 361
o
3
"3
>^
00
o
"5
c
•«
tal Science and Tec
i
§
•is
s
•§
CQ
u
I
ce
oo
O\
g
5
u
oi
B,
H
c
C3
E
£
m
O
rt
CD
-------
o
NH
H
si
S w
O) H
^5 r^
M
g
1
CO
i
I
C
03
CO
_U
t3
1
a.
•o
£
he average load to the water
g>
e th<
equation inc
2
ppr
te
he
lt i
I-
1-
>»
I
S
"3
i
1
c
3
O ef
H 5
O- «
It
IS
1
00
cS
£•§
•*-» ^
"S aj
I §
c 2
O 1)
•i s
11
>> °
I i?
oo o
S 53
3 a
>-. u
II
P T3
£ O
•a -o
JJ O
| |
CO ^
3 S
^ "?
V >
54
53 S 5
S u U
^ ^ 3
•-S -.- (LI
C3 C —
— (ii cd
3 " j*
O U ?
a
11
dd
ii ii
si
^ ' —
ft
Total (wet and dry) particle-pha
and wet vapor phase direct
deposition load to water body
-4s
t
A
-------
CQ
<
H
"8
I
£
I
1
D
§
^
Is
i
—
i
«
JU
.0
1
CO
**
J2
">
1
oj
CO
CO
CO
8
c
Varies (site-specific)
is COPC- and site-specific (see Chapters 2 and 3). Uncertail
II
11
09 I
*pi w
P -a
-s,
1
t-i
J
CO
CO
1
u
'§
0.
U
8
O)
4)
3 en £* "8
'caoca'"" -S j= H CJ s
> fe •£ s c •§>£ £ en
c£ g s « 8 '§ S P u
C 0 £ o V <~
« .0 S r»» w> v. S u § 1 g ? J
•£ g °* *£ ^ cj '*^ .t2 ^
^ i-iUM." ^J *r5 £" *"
'ow "S'-^^^
*3 t-i ^ 3 ^ •?* Q ,2 •*-* c
u g^e-e ?-P^*>o
tt uo°P;r ^ora^ts
a. httSS SSo be only a few percent lower.
ing to Bidleman (1988), the equation used to calculate /-"„ ass
ant for all chemicals; however, the value of c depends on the
concentration for monolayer coverage, and the difference be
surface and the heat of vaporization of the liquid-phase sorb
conditions may cause the value of c to vary, uncertainty is ii
late Ff.
1 1 ll 111 111 111
en Ji
'^3 rj ^*\ ^*"s
P Z> C G/
CO
CO
T3
1
1
I
c
8
'3
U
O u
M M
"s -S.
n fa
.2 8.
"o ra
8
^
en
o
pl
f
U
u
o
en
00
.s
1
§
Varies (modeled)
is COPC- and site-specific, and is determined by air dispers:
associated with this variable are site-specific.
.2 8
11
GO Q
*^ gj
P P
fe
•a
|
tj co
? _C
o •§.
eo t,
o3 o.
is >
_>> g
•o .2 o
S -a "S
'•S o o
at!
I
Q
en
JJ
Cu
5
U
u
00
c
1
§
Varies (modeled)
is COPC- and site-specific, and is determined by air dispers:
associated with this variable are site-specific.
Q) en
11
en g
*p c
H D
i
g
-i
O (D
3 S
2
00 O .£•*
*-* _§
£ •§ oS
•g 1 I
51 1
§ •§* "flT
"•S ^ CO
lit
1
1:5
_o
2
cs
'i
>
cfi
i
"^
1
Varies (modeled)
is COPC- and site-specific (see Chapter 4). Uncertainties ai
O .
11
efl i
*g3 fl^
P 'S
*g
g
4)
J
en
t
^
1
^
CQ
-------
«s
O.'
H
E
_o
^
S
vrj
^
r^
vs
8,
rt
O.
I
1
>.
to
i
a
ad
M
1
00
^
tt
eg
J2
c
S
.§
1
fe
1
TS
§
_i^
•5
•S
w
§
_S
1
^
^
Q
k.
r-^
r~
o\
pa
u
cT
00
c
3
<—»
^^
3
cs
"— »
jj
1
1
rwrc JJisA: Assessments for Hazardous Waste Combust
1
til
«J
1
C
1
?
I for Performi
i
g
£
S
1
Q
g
r~
Ov
Ov
BJ
z
w
a
u
1 to calculate Fv values for all organics other than
00
00
o\
I-H
N_^
C
T5
5
!-•
i are generally entirely in the particulate phase
"a
I
CS
J3
en
a
C8
CO
document also recommends by using the equations it
i recommendation for dioxins. Finally, this documen
09
fi
H
tN
CS
CQ
c
i
for the equatii
8
§
M
1
o
£
u
1-1
CS
en
*j
U
3
s>
o
T3
en
1
£
8
g,
•g
C
Cfl
1
the document
£
1
1
/-N
£
Q
&
Q
Q
Sd
\_^
c/:
><
C
^
.S
«
1
0*
o
o
^
.1
M
S
^
1
«
1
"a
u
u
.0
2
1
X
I
&
apor phase. The document does not state whether Fv
>
S
•S
_c
^
1
o
u
assumed to b
M
i
J3
>i
3
«3
U
«S C^
OO
•o °°
8^
g c
u S3
o E
M -^
' > -o
fe-'B
Attachment C, Draft Exposure Assessment
Wastes.
1
1
?l Risk Analyses at Combustion Facilities Burning Hi
1
^i
S
$
1
¥
'.for Performi
i
«
•«
J
*3i
51
q
ts
^
-2
s
«u
(^
"^
•*
ON
Ov
•<
OH
gj
no
D
2
1
8
Q
«
lolid Was
;e of Emergency and Remedial Response. Office of S
t^
S
o
8
^*
"C
£
v*
te Combustiol
1
fra
1
g
!§
•<«
^«
1
a;
«s,
'ii
S
1
J
m 0.27 to 1. Fv values for organics other than
£
o
I
la
£
en
«
. This document also presents values for organic CO]
A
1
"8
u
i
«i
tu
Q
U
a.
§
Q
g
: 100 percent in the particulate phase and
JD
0
"8
c
3
M
CO
S3
•o
§
on the assumption that these COPCs are nonvolatile
•a
g
CO
XI
O
o
i
ganic COPCs
1
g
<2
i i
l-a
*•" §.
a ™*
c >
8 £
u 5
S..B
e c
i §
3 u
8 &
•o o
-------
QQ
ga
Is
5a
^1
g§
^ 03
A
a.
O H
1 H
S U
OS
o
Co" 0
8 "tS
1 -S
!i "3
^ to
'S ^
to 3
3 O
*"I n
to ca
c3 S
g S
"6 «
7 —
C o
O
••-" W
?i
.. Ill
.S 8 .3 S
> 03 i? SP
O J, .^ ^
<2 'E a *
6 « § *"
•8 ^?1
•3 -o <£ B
1 § J
I * i_ O
a s S ^ is
1 If -ij
g- 0 § «
1 111"
Sa 'S "ca S ^
Ss) 3 o •£ S ^ r;l5
•rt* U ^ r^ **
•^ J3 U £J 3
^ *? ^3 *G >
i ii*^
1 1 1 i ?
i 111
,2 o ^ ^ ?
JS 1 I !•§
i Hi!
3 = § ^ C
•-" O ••« ^^
O *S rt *i* "O
I ° i* i: -
« g .22 j3 3
Si ^ -G ra 15
0 ^ H > o
J3 """"^ iT^
H C' Ci
S
^ .ti
oo CX
- 00
°l
bT.|
o w
M ^
•" H
1 2
§ 1 3
**^ eo o
fe. SC u
•2 ^ -3
S V) 3
w oo -5
Sj< .*N
«3 c 'S
«3 O (-
pH J) CO
"3 US CO
?
o
X
q
i-H
'
1
o
!< |
P >,
•
fe «
^^ 3!
g • . t ^
i ^ tc
i 1, • e-
rjj ^^ ^5 (j
^ 1
0?
O) »
o
!*f
ii ^
J5 *s
ca x> c
up '^
3 O 3
« X S"
E § «
c^ S -S
W &* 8^
If I
1 -B §
"E rs »
So g
>• E i
. t | -o *
J>? U J^
If j
5 1 1
s | 5
II !
i « 1
> js x:
O ~ 05
M 'S S
Ii I
^ 11 t
s ^3 & u
t O ft H
O C"* 3 *j
3 ^ e
^j W (^
K >• *-g
!S "R -£i
^ £ S S 55
1 4 4 S 1
§ ^ J1 „! jr
|ls> §§ |
8 "«3 S &
** 1> G< M
1 Sf-S " t
"^ *^--. o " ^ ^T"3
2 5 •—• \5^- do *°^ bo
S *^3 ^ >. ffi ^ **
I1 Ill JJ 1
u ra c v. o
e3 ~3 % S "S
So u ca u
"ca ^ & ^
I- 0 « —
O — tn O t*-
fe ^5
-------
1
»
H
1
1
o
"
§
c«
I
•o
u
CO
«
>
Q
I
C
"o
s
I
6
1
a
'o
O
te-specific)
3). Uncerta
Varies
Chapters 2
(3
SO
> s
c
o
U
Q
O
CM
8
O)
1
i
8
*n
1
1
1
e
'
S 1
.tS S "O
S 1 §
g .§ 1 1 o
a s o S **
I I a 8.*
s -S s 5 o
oa ss * <*• °
e—*»— _'c3eO3
fsS^l tll-lgl
JS
o,
•s ft
o c
'Z* ^
21
MH CJ
odeled
Varie
. 3
b o
O
a
_c
.15 ft
ca ^
2 I
±>| "B
S § "S
c >
O u
o S3
n
-------
05
3
»
S
•S
§
1
1
i
0
*n
u
s
Q
jU
IS
ea
>
•S %
* g
** ra
^3 a>
w o
a »
ea «
>-. o
II
t; a
8 *
n ja
s tS
o !£
•£ "1
1 1
5*
OJ Cfl
•w •% I
r*
KJ
1
8
«2
^— 1
kn
9
c«
>»
"8
.0
LH
U
•5
^
j£
^
bl
-1? e
u .is
•a —
& a
3 0
>> 3
s!
^ t!
1 s!
^ ^ s
a C g;
0 0
* 1?
•S c S
S '» "S
3 IS
^ -2 1 i>
*? y s s?
^ o -fi
•i ° -s &
1 1 SJ
! I 11
Varies (sei
variable is COPC-specific, and should be determined
following uncertainty is associated with this variable:
Values for this variable, estimated by using the parai
overestimate the actual COPC-specific values. As a
degree.
2
u
ac
as
V)
F^
X
i
r^
ao
X
i
"a
1
ca
n
a
eft
g
8
a
eo
"ra
v:
U
>
"5
D
05
o
*s —
o- —
e/l
OJ fe
"B °
•s %
1 1
1 !
o c
X! 0
^3 eft
•s g,
J fi
"e3 ^>
> 13
^ 2
1 8
•8 g
1 1
"3 1
1 1
ao o —
85 5
Gft 01
variable is site-specific. U.S. EPA OSW recommend
•mation, consistent with U.S. EPA (1993 and 1994).
following uncertainty is associated with this variable:
To the extent that the default water body temperatun
conditions, LDy will be under- or overestimated.
i«S a ~
£ .5 S c
^
u
1
s
D.
O
>-»
•8
s>
kH
«J
•2
^
*
tJ
-------
«?
*"?
oa
3
BQ
$
DIFFUSION LOAD TO WATER BODY
1
0
RFACE WATER AND SEDIMENT EQUAT
D
Q
G
*
^
o
£
<2
N— '
REFERENCES AND DISCUSSION
£
ff}
\o
Science and Technology. Volume 22. Number 4. Pages 3i
*^3
•§
J
1
CO
'S
.1
Bxposure Risk Assessments for Hazardous Waste Combusl
1
n Bidleman (1988) to calculate F, values for all organics other
CO
C
1°
1
1
00
_c
"co
3
CO
TJ
g
t-l
g
"cs
i
•o
CO
en
ts
n
u
1
c
ion*. External Review Draft. Office of Solid Waste and Office
5
Risks Associated with Indirect Exposure to Combustor En\
it
*2
11
u
00
c
!3
hH
GO
5
£
"8
c
1
303 K) for water body temperature, 7^. No source was id
S
X
m
oo
dous Wastes. Attachment C, Draft Exposure Assessment
id Waste. December 14.
S "3
^7 c/1
Level Risk Analyses at Combustion Facilities Burning Ha
Office of Emergency and Remedial Response. Office of !
f 2
11
2. u
o «
•e identified for this value. This document is a reference soura
a
CO
xly temperature (298 K); however, no references or source
£
S
1
En
ocesse
g
ca
s
u
•S
* <§
00
00
U-,'
H
o
a
§1
II
u t?
« "
.2 O
c fe
I s
§1
•o -o
2 c
SI
4?u
^°-
It
* >
« >
u
o
O
m
o
U
o
O
+1 co
en
c\
Q I!
c
u
•u
•S .§
I 3
ti
^a
*>
^i
Si
11
-•§
erence
oa
•o -S
u s
"
c §
u 'S
| §
I «
•§ o
-------
05
H
G
•s
1— 1
0)
&
£
>-,
•o
o
£>
s
03
4>
•*-*
g
_>»
o
£
.^3
•a
T3
U
>>
U
>
o
u
CA
£
O
C
,£«
o
J3
1
•a
u
J2
Description
s surfaces in the waters
3
o
.1
i
-S
>-,
T3
1
s
1
lates the average runoff load to the •
3
O
~a
u
c
o
«
3
Sf
Cft
ri
S
00
B
'£
_0
1
ated with this equation include the
't>
o
CA
03
C«
.2
'c
'3
I
c
D
*o
3
O
•o
B
03
<4-i en
0 0
o £2
en £3
» §
t) M
•£ -3
O
g J2
It
O Tl
3 ^
. c §
,y * oo
S e ^
O *^H O
QJ "O C8
g- S -°
f 03 fe
.S o«2
s — < -a
W5 **
8 •« *
•2J e
_ f "* 5
^ o •&
~O i£ I-,
§'§ 1
tf s
1^1
^ rr, .^^
Sal C
a. 0 00
S i- 03
^11
cs § 2
€1-8
>.B S
fically those associated
ather than an ST value f
ban sources is about on
y a few percent lower.
'3 1 '3 'a
U 09 . O
8*8.8.8
§ § § S
•a co -a x
= S 1 a
ffj§ «* 3
W «5 W eft
•a 3 J3 "•
•S -5 ** o
•SHI
60 B 03 >
U 3 0 . »
S 2 C •*•
as OO "fi u
icertainties associated with the varii
assumes a default ST value for back,
due may be more appropriate. Spei
er calculated Fv value; however, thi
kfl •" kW •>
3 B > %
u o t* £
*'%?^
•8 §-S-S
•*-» w cd ±i
w fl, — •* —
1 E§ x S
^ t~^ -t-) 1H
> X ^
^< O)
^^ ' — '
B
^*\ •«-*
VI S
00 ^,
°' S
II §
tC'S
v§
.•§ 8,
S
o oo
2 K
0 S
0 *=•
'C tS
3 S1
8 in
B "^
S §
cS A
-, =. oo
^ ««, a
*O o
• B ^
. . § «1
j^ °°
a, o 03
S^ SB
«. en o
Q* * "8
^ * K
a S
CO ^
*^™N *O O9
« S E
eo p »2
jT- r »* a «s
^ Eg
T s^
1- S ££
Is? ^^«^ cS £•?
i^ ' *-• o
Q ||
• Jj, CA C
c i It
^ li
3 *&
G ^ *« E 4~>
O + * _ «
1 1 ^ Is
« I "Is
Q4 £ ?8
y S £
', 1 Si
^ a § -2
1 — ' S •§ >
d==i
« 911
11 0 -go
5 u S -S
^ t 11
£ ca o
t — ^ *M
<£ M *p
S* I §
. > «i CL
^ o S
"^ «a
^1
II
5s
. ^J
*S 12
p
MX
iis
0 " ft
Ot B U 03
e c js j=
=S 0 **. ^
•0 •*• * 0
5 1 o %
5 ^1 x
£ ^It
S -B *J .0
u « B t:
=3 3 S 5
I JJ S ea
C "33 *^ >
U g d, >
Q « U
S S < 5
e> £>
^
II
^5^s
1
03
CS
CO
C
.2
03
s
sr
PQ
><
•3
§
ft
ft
<
3
0
f
:ontinue to be modeled
-—I
"O
1
CO
>>
3
1
^^
t
O
-o
I
~s
•3
1
•3
^
u
*s
'S
a
cc
CO
O
"o
(D
OH
«
&o
c
1
"B
o
"cd
o
s
C^
<
-------
w
aa
K 05
I
(2
I
g
I
u
1
Runo
surfa
_
"
a
pecific
Varies
5
c
1
S
&,
5
mode
ned by air disp
eter
•g d
i s
cJ o
!!
in co
« 2
si
C A
ca «
variable is CO
iated with this
•,
U
O
u
O)
g T3
C f3
> 0
i
8
..
.2
1
. u
Too'*-'-
ssllSfB'g
u
s>
u
1
^
6
c
'3
i
*
c
o
'
c
£ 8
ca
'§
1
s? s
•S S 53
Iti
S
Q"
TJ
U
I
&
a.
CO
od
on
ed
ele
pers
od
Varie
.2 -S
1
I
u
<£
u
3
site-specific
Varie
peci
and si
CO
ble
ON
•*
n
2 §
* :i
*O O
JM I)
£ -3
£ U
« cu
* O
S u
O M>
II
O* 4*
E oJ
-------
«*
^x
VO
m
Cn
&
(2
^*
fc
43
1
i^
3
S
fc
1
Is
k.
1
f
-&
£
3
O
O
•o
C/5
^
H
(9
cn
U
U
o
"O
w
S
>.
"3
c
E
CA
C
1
commendation for d
Ui
ccj
+^
CO
g,
|
£
ument do
u
•s
u
•s
lH*
5
>•
I
HH
c£~
Q
g
Q
Q
r \
\^
CL,
^-^
C
"x
Q
•3
c
cd
JZ
"
1
t-H
£
fcT
whether
loes not state
.se. The document d
n
x:
D.
S
r-*
ff
>
V
.c
C3
>>
be entire!
S
•2
|
CO
CO
C3
en
43
U
43
^^
C*
1
E
t2
t^H
n-
4)
U
O
^ 0?
II oo
tC 2
^-^- 'N*-'
Wastes. Attachment C, Draft Exposure Assessment
ste. December 14.
&a
1
I
f
i
yn Facilities
lalyses at Combusth
^
•^
4<»a
CV
«?
•»*»
S
V
^
00
.s
5
u
S
3
f
•&
«
i
;t
•s,
1
.a
"«
J
t
Q
•«
^>
•Q
^.
^
oc
^t
a.
Os
<
d.
W
W5
D
C3
^
"2
8
t*H
o
8
1
i
i
^
"3
1
1
>>
S>
4>
£
tu
"8
u
u
s
0
to
-Si
•£*
1
c
•2
1
-c
o
o
Si
to
1
3
1
s
£
rS
S
Oi
X.
<£,
^j
U
1
^
6
•*
C4
PQ
a>
IB
tion in Ta
CO
s-
u
4^
4-»
tH
<2
§
0
CO
U
0
S,
£
rt%
!:
IB
&
^
c
u
E
D
O
O
•a
V.
'r£
H
CQ
-------
S
CP
s
BQ
2
«T
> S
Q O
0 H
«5
gg
SB
£z
og
PERVIOUS RUNOFF LOAD T
(SURFACE WATER AND SEDEV
(Page 1 of 5)
CA
Description
vater body from pervious soil surfaces in the wate
load to the \
ic average runoff
•S
en
U
cd
~3
o
"a
u
g
§
5"
CO
p
00
.5
"o
include the i
c
_o
1
•s
'?
•O
U
ca
associ
.2
"ra
u
o
c
D
| 1
"S 0 'S
O 1C u
1 1 1
tS A "O
•s .5 s
O « *2.
cx 0 E
i 1 1
*j co r;
S § §
en 4* *n
0 > u
is O en
s* *• s
" 0 •&
?**. ' -(-T
U J5 g
*S "O £;
S s x
S 3 U
U >> S
u ca ca
2 S 6
o o w
c oo ca
j? § S
E .2 "S
eo rt-j •*•*
o *3 2
- >; .§
^ "S *
-o o 2
8 i I
1 & ?
I I 1
+2 -^ 3
111
•s s >.
nnual surface runoff information is not available, <
restimated to an unknown degree.
ues may not accurately represent site-specific soil
: site-specific or local conditions; therefore, LR me
i the equation in Table B-1-1.
ca is •= o S>
u > S 8 g
oo o r. c ..
Ca Ul ^) O r^
J5 O .tS n ^j
> i e ^j:
si a) a! fli "i3
•a •§ "° « -g
g § =£ 3-0
^ o = . H u
S t - 8 g 3
a S>-s 800 g
ts s M o c K
tisi i 2
uilSs
.t; en £; 3, % u
5 S 1 1 ! 1
x: „ ^ c * S
- 2 g <" rJ t!
g I 2^ S
*S CO g (/> "^ S
S § g §
—« ts tn r)-
en
U
"3
o
0)
o
"3
XI
1
o
•3
.s
ca
4-*
en
U
T3
S
•g
i
t3
u
1
^-i O.
i s
1
§ I
C) • £ £
05 ^ £ o
1 3* 1 "i
1 ®* If
fi E i ^ s
^ f| S d
—i u U
^ a g • +
e * I f
, ea x ?!
^ r2 .f !
*r g| „« d
O £• | ^ ^
i^ 3 u " "
" E .S *£• 1
*-f 1 i. 4s ^
Ta «
.> e
S S
il
|f
IH IO
1?
l"f
oi °°
C 00
— c: c
1 II
g ca
" Ho
s n
& & &
CO
o
o
"ca
!H
•3
en
ea
n
_0
ea
3
CO
X
throughout Appendi
d methyl mercury should continue to be modeled
, divalent an
en
U
"I
4=
u
c:
'§
CX
«
CO
. S-
u
CX
c«
C
"§
o
"ra
o
^
W1
CO
-------
in
«s
aa
3
ea
QW
>» r \
7)
S
ts
&
£
u
1
S
•3
S
*C
*>
c
3
2
•1
cs
>
•
i
1
8
•xi£pss|>
In
IP
1
•
•
•
•
•
1
•
•
H
&£g8SAS
•
•
1 S
i
1
CO
8
•S
g
CO
t
1
*
•o
a
o
S
o
e
5
a-
Kj
a* A
O 'S t. O
oo m cs . o •p
2 % E -8 a g
" 1 'S a d X
« 3 o ~ *
£ & a *3
JTl r- g rrl ^j tn
g gp &Z g g
Q § £ U S "
U $ h= u -2 «
g S 8 -g § <
•g S ?* S "•§ g
g | i eo E §
S? 5 'S g 0 S
Illff 11
r1. .5 ~ t fc o
Varies (site-speciflc)
ific. According to U.S. EPA (1993), U.S. EPA (
i be estimated by using the Water Atlas of the U:
). According to NC DEHNR, (1997), more deta
loff, such as those based on the U.S. Soil Conse:
as an example of such a procedure.
y is associated with this variable:
ite-specific or local average annual surface runo:
ay not accurately represent site-specific or local
an unknown degree.
oscng-q -a »co
gSt^SSS .5 -s*3""
^fc2g'3 | Jo's
£§8 .s
111!! f Ill
S^-JOOn — PKI-
>-aSsS 2 HOC
CB 3 T3 3 . ~*
•a c « 0 to «J ^
jS g J3ls jS c
t
!*-
4-<
o
C
8
.s
en
"3
•s
1
i>
DC
ea
S
<
O
0!
6
C
'5
u
fi.
en
«i
S
'en
c3
variable
en
5
^
Varies (site-speciflc)
ific (see Chapter 4). Uncertainties associated wi
8
£•
s variable is site-
1
w
oo
C
'>
'S
(4
•sl
•si
u o.
1 -s
^u
« (X
S8
^
^
u
C
o<
o
"«
Jd
variable
c«
S
•s
Varies (site-specific)
ific (see Chapter 4). Uncertainties associated wi
8
&
s variable is site-
?
"s
cs g
o .2
a .|
•a o
5 I
CO -Q
^ u
g 0-
* 0
. u
o oo
11
cx ^
C
o Jo
1? e
O K
*- le
O *S
fc'5 o
^^ ^^ *r^
i QJ \J
T e3 «
« 8 ?
u — < ^j
•£ o 'S
^° §
C C *
— TO 0
c -c 3
2 ob •§
^ ial
i-N CT CX >
I (LJ
-------
. o
g
2
I
ON _-
"
l"!l
I
.3 T3
•S M
3 1
> &
•g 5
«
ss
E
w
I
is
ten
ed
i
3
o
1 .
o
oc
owing uncertainty
ge
commended
ons.
The
con
Th
( 1 )
S
S
I
O
CO
A
~ s £
i | g «
-«»
2
nd
y a
se
vy
sist
m
(h
•S
'%
T8
rtainty is as
owing u
The
I
CO
u
i
3
"3
o
&0
If
Appendix A-2
Va
ab
This variable is COPC-specific and shou
The following uncertainty is associated
» «
•S B
-C §
I I
-2?
u
ec
1
S
o
u
o
u
I
I
ft,
u
'S
o
CO
§
B
O
-------
Q O
PC
tf
v>
«
g
g
si
3§
st
g
le
a
en
AND DISCUSSION
I
u<
-caching in Agricultural Soils." Journal of Contaminant Hydrology.
I—*
ncertainty of Pesticide
D
1
g>
;a
o
=
00
§
.6
J
J
si
•o
g
§
CO
c
a
J
i-J
CO
O
1
J •*
(A
Cfl
S
u
ion Center. Port Washington, New York.
»
f
w
u
o
g average annual runoff, RO. Specifically, this reference provides maps
ies, including direct runoff, shallow interflow, and ground water recharge.
be reduced to estimate surface runoff. U.S. EPA (1994) recommends a
c -o «
reference for calculati
>ns to surface water bo
notes that they need tc
w S3 '"^
3|£
P'fi C,
§; g<
r-. o a.
A (1994), and NC DEHNR (
which is defined as all flow
t only surface runoff, U.S. E
ent is cited by U.S. EPA (1993), U.S. EP
s of annual average surface water runoff,
;se volumes are total contributions and no
F 50 percent.
E g j« o
3 .S -5 c
o "o S .2
~° •" S "
- £ S .§
S "i ra a
; Pres, Inc. New York.
Fundamentals of Soil Physics. Academu
o
03
O
*—
Q
"u
—
ffi
ture, such as looseness or compaction of the soil, depending on the water
o
"o
CO
£
i
ca
CO
i"
^
'K
atement that dry soil bulk de
ent is cited by U.S. EPA (1990) for the st
itent of the soil.
i 8
" ^
O K3
"° "I
to u
11
and Internal Dose ofRadionuclides . ORNL/NUREG/TM-882.
?•
> Food Gftain Transpoi
Predicting
s of Selected Parameters for
nd C.F. Baes. 1979. A Statistical Analysi
ca
6
U.'
c"
CS
1
<*4
o
ac
eofO.83tol.84g/cm3.
ent presents a soil bulk density, BD, rang
|
O
0
•o
Sft
S
i
i
>—i
«2
1
1
1
tu
1
§
1
s
ntsfor Ha:
Indirect Exposure Assessme
97. NC DEHNR Protocol for Performing
OS
f*S
M-<
W
Q
U
o
CO
13
4_»
1
1
-a
ca
g
cS
1
ca
S
<*4
O
U
1
o
CO
"cB
C
'5b
S
1
I
K
1
3
o
-2-5. However, the do
in Table B
cites the use of the equation i
ent is one of the source documented that i
s the following:
E -g
3 S
o 2
c E
"° E
.2 o
f g
ghty, Miller, Van der Leeden, and Troise 1973) or site-specific procedure!
ftheCNE
ca o
the United States (Ger
an example of the use i
I?- «=
* CB
11
•< "o
te .2
'0 (cm/yr), by using the Wati
vice CNE; U.S. EPA (1985)
volumetric content (6^)
Estimation of average annual runoff, R
such as the U.S. Soil Conservation Ser
A default value of 0.2 cm'/cm3 for soil
md Ground Water - Part I (Revised - 1985) . Environmental Research
Ni
/ Pollutants in Surface
1
1
5
Procedures for Toxic and Ct
September.
Water Quality Assessment: A Screening
Athens, Georgia. EPA/600/6-85/002a.
wi >,
oo ^*
£ 2
g
21
U "
CO
D
-------
in
CJ
CO
1
<
•§
03
(d
1
3
1
u
c
Combustor Emissions. Environr
g
/-* s>
in £
CM S
O g
(Page 5
Wt Risks Associated with Indirect Ex,
Z .
* £
ao 2
•S g
5 1
«) ^
S m
^8
im Final Methodology fo
velopment. EPA 600-90
so
5"
O cd
CT\ —
=* -g
§
<* Cfl
0- "
pq os
e water and
j:
e
o
00
c
•3
c
w
o.
f
*s
:tion of the s<
&
^\
I structure, such as loosened or c<
•g
I
£
ily soil bulk density, BD, is affected
kfl
o
td
c
u
ed
M
U
•S
&
s~^
ON
N—^
2
V5 CO
S u
'S £
<•»> u_
documen
content o
2 &
H "o
slid Waste and
t/2
CM
Q
U
y
o
en
C
O
«
Recommend
ex
s
rH
ombustor Emissions. Working C
O
o
1
S
h Risks Associated with Indirect Exp<
September 24.
w r \
S H
ft Q
S> e
•| B
% 00
^j C
11
mdum: Methodology for
:h and Development. Wz
=§ i
^ %
• i
m oi
o> u.
2 °
u
o
< s
So
"o
CO
<4_>
o
co
00
cd
Ui
cfl
w
T3
0 .
£ o
2 oo
O cd
0 1-
ument also re
vided for this
8 S
-o a
CO W
80,000 mL/g) of Rvalues. Thi
lowever, no source or reference i
ts ~
•2 2"
•I
§> s-
nly) Kds values used to develop a rar
soils) to 0.3 cmVcm3 (heavy loam/cl
S-S"
Is
&f
.1 ^
a""s
1C o
a source of COPC-speci
contentC^,,) of 0.1 cm3/
CA ^
•^
value of 1 .5 g/cm ', based on a mean
on U.S. EPA (1993).
£"3
eo 52
§^
•o -
sS E
J|
1 "
commends (1) a default i
content, #„,, value of 0.2
w i_
*- OJ
documeni
metric wa
tK 3
SI
VI
-------
3
«
$
z
g
« H
« H
Bfi
O W
H t»
P
en
c
1
u
1
§
Cfl
g
water body from i
1
s
•o
c3
O
i
CO
s
t5
"3
_u
"3
o
c
o
a
1
Cfl
g
an
c
'g
_0
tion include the fo
s
3
O"
U
CO
£
J=
^
"£
1
C3
"u
O
VI
CO
cs
CO
u
c
'3
1
"3
8
3
0)
•S
s
CO
O
1
>.
W
D
1
CO
U
_3
"a
^
u
3
O
I
•s
«l
&
2
>
c
. u
c &
S3 t«
0 0
£ u
« g
S g
'3 <0
u -^
It
T3 -C
§ 6.
<•?"
" S
^i
t C
x-f
.s^
§Q
^^
si
>>8
s g-
« "
"S §
& &
J s
ed with the variab
remaining variabli
dures (Kd,).
.2^8
3 « g
g 5 S.
w -t3 e
eS ^ *^
S ^ .2
.§ 13 3
S 1 E
111
8 % -o
c " u
= s i
^ £S
•^ -J3 ea
"SSI
*J (U i
n ° =
° C 0
S P ^
S S
u
13
CO
>
o
u
X
*1
js
"3
*(
T3
§
cs
— >
o «
<=> 8
o g<
S
Q Q 1
QQ eq •£
00
_c
«o "r**9 "^ •^*s-
I*3 S s "^
^ ^ -3 ~
• + £ °
G J -
g o o g, f
IK S^ .S
1 S 8| >
•>, & °° w
q 16 °' ^
co E g • +
"S * 1 «
^^ a >. s s
^ r° * *
^ %* £
£«* ja" «S
_ rt kj i-J
Nj >> S ** *"*J
^ 3 ? it ,.
Q " 'I
H- M j> ^
II ca «
b] -SO
> -^
^ S 2
« -5
•8 1
*i 09
^ eo
^1
CS S
s*
s 2
11
"s3 4.
> N
-^ oo
"a T1
5 *
t^
S Tl
M ^ °°
c oE ^
1 = §
? -a ~°
S s u
C O wi
S P <8
& £. -°
S >> -a
P to
o = c
1 fe-i
& C tl
c eg
s s &
fo a, Id
09
r \
S
O
U
•a
"i
'>
•3
_P
CO
eo
cr>
§
'i
1
it Appendix B
=
I
3
•s
!
.8
B
u
1
8
•o
i
>>
o
s
">,
J3
(D
ilues, divalent and
2
41
u
«2
'§
i-
__
'o
ID
&
1
.2
3
_CJ
"3
u
S3
c;
<
-------
ve
09
W
g
z
J
Q ^
00*
0 W
U Z
^< EM
|
<
O
o
M
as
D
J»
J
S
a
s
£
•g
C
a
a
**
iH
V^*wB X
IP
:ff
^ ^5^-
•.- -^^i
Ki
*)^
,"^l4f\-
y ^i.'"
&'~J',£$£
kP*^
&d?j$:t
fll'I^
*S"^
*1S&
•^11
IS
i
ii
m
9
mm
m
'mM
i Us
HI
IS
»
11
• B
B*
in
HI
is <
ii
S '
111
!_,
•a
1
c
c
1
aj
*C
tj
o
S 4J
8. I
O5 *"
•53 ° j=
c *H £P
111
I S g.
(rt c3 ^
2 ~t-t &
en cs J>
w «c ^
J3 - ^
> ^ *-
•M - "3
Varies (calculated - Table B-2-7)
s calculated by using the equation in Table B-2-7.
iated with this variable:
(see Table B-2-7) are site-specific. Use of defaul
; variables, will result in estimates of unit soil loss
e. The range of X, calculated on the basis of defa
(0.6 to 36.3 kg/m2-yr).
•o S J2 S OB ~o
X CO *S ?• ?t^ 3
S fa £t *S V 3
" CO CO T3 *-5
tT 2 § o g §i
'3 -^ c ^ ° £
O. 'S .2 O O ""
&> 4> S c* T3 q3
'a § " S 1 1
CO *•* ^> O H
'„ M 5 "". -s S
3 '3 "tt u O °
•^
^ a £.
fe
i
en
«
^O
I-»
"5
OT
'c
5
X"
o
'B
I
0>
"ec
D
J>
(d
Varies (site-speciflc)
Chapter 4). Uncertainties associated with this vari
^
8
42-
o
«s
"K
o
D.
w
1
09
.3
_o
!3
2
1
Gfl
g
„
e
.s
'S
o
*-«
C3
§
» C
•o o
^:s
2 o
u a.
^^ ^
? o
S cu
H U
^
<
6
C
'D
CQ
*->
'(/]
0>
Sa
ro
_0
cs
Varies (site-speciflc)
Chapter 4). Uncertainties associated with this vari
^
u
C
'u
a.
CO
1
*M
.W
O
XI
CS
1
CA
IE
c*
£
&> o
'£!
"^ O
xl o
CA ^
^ U
C8 £
§ U
o oo
'> c
u< >
W •-«
S °
« SJ
^
8. .
^0 «
*~g _f^ ^7*
•S 1 s
"B. g fa"
E > o
•ill
^ S "S
S *• Tf
.2 g c
o S cs
IS ,t« B!
^> C
n M 0
S 2 S
— 0 S
Varies (calculated - Table B-2-8)
alculated by using the equation in Table B-2-8.
:iated with this variable:
alues for the variables a and b (empirical intercep
s average values, based on a review of sediment yi
it accurately represent site-specific watershed com
ver estimation of LP
o g > S c °
en CA *-> cq :"' t,f
g .2 'ft "u S g
•>. t3 > en *O
O j2^ -rj ft> c
1*3 C! *^ t>33
f O g •< •§ _O
B 3 £ S «S ^J
'3 M R -2 -S S
2 S g 8 ~ .S
2n S U iTi W c
•a = p g P S
^ CO
2 .s ^^
P H ^
09
CA
'S
_o
ed
1
•o
c
g
1
to
Q
to
n
-------
CQ
W
CQ
$
o £>
S o*
« w
a z
K W
-' '?**". S o
J" § 1 2 •§" <2
. _ t« 5 **-"' C3 U.
Ito3
Inorganic COPCs: 1
Organic COPCs: 3
COPC enrichment occurs because lighter soil particles erode more than heavier sc
of organic COPCs which is a function of organic carbon content of sorbing media
eroded material than in-situ soil (U.S. EPA 1993). In the absence of site-specific
a default value of 3 for organic COPCs and 1 for inorganic COPCs. This is consi
guidance (1993), which recommends a range of 1 to 5 and a value of 3 as a "reasc
range has been used for organic matter, phosphorus, and other soil-bound COPCs
no sources or references were provided for this range. ER is generally higher in s
loamy soils (U.S. EPA 1993).
The following uncertainty is associated with this variable:
(1) The default ER value may not accurately reflect site-specific conditions; the
underestimated to an unknown, but relatively small, extent.
i
s
.0
cQ
•**
O
S
o
'§
^^
'o
t/3
g
*s
(3
.2
CS
§rS
si
&'£ .
n, -5 o
"* !3
T "S '3
viS.
" 8 I
U — ' J5
S S ^
W t3 fli
^1 §
.5 «n ^
Varies (calculated - Table B-1-1)
This value is COPC-and site-specific and should be calculated using the equation
Cs in watersheds, the maximum or average of air parameter values at receptor grii
watershed may be used (see Chapter 4). Uncertainties associated with this variab!
eo
1
'o
CO
C
.0
2
1
o
c
o
o
U
O.
0
U
3
o
U
r» -o
•^ ca
•3 B
c c3
g. a
<& 1
c «
Varies (see Appendix A-2)
This variable is COPC-specific and should be determined from the COPC tables i
The following uncertainty is associated with this variable:
(1) Uncertainties associated with this parameter will be limited if Kd, values an
Appendix A-2.
-2°
'c
'S
S
U
c
o
"B
1
Q.
'S
l(
'5
00
3"
oo
>o
CQ
-------
§
1
O
vo
pa
<
^
ft
s
i
s
3
t
3
JD
O
en
«
8 a ;«
s ^ §
£ «f a »
8^-S i
g^'i1
O! CO S H
able:
u
H
o
c
va
8
198
. U.
il fr
"
Carsel, P
ely narr
ociated with this v
f soil dry bulk den
o
la
ted
inty
o
9
.s
_o
I
u
£
ge
ommended
The rec
conditi
"
soi
mi
ated with thi
nty
e
o
u
s
'S
o
•5
u
o
CO
"2 •«
p >
pecific
I,
g
T3
Ji
on the
aria
flec
sed
99
iate
ot
&„ values may no
fau
in
de
oll
Th
OV
iri
CQ
oo
t
§
o
o
-------
vo
*?
tt
s
«
$
s*\
%
0
NH
H
> 3
O P
EROSION LOAD TO WATER BO
(SURFACE WATER AND SEDIMENT EQ
(Page 5 of 6)
REFERENCES AND DISCUSSION
in Agricultural Soils." Journal of Contaminant Hydrology.
.5
IS
.F., R.S. Parrish, R.L. Jones, J.L. Hansen, and R.L. Lamb. 1988. "Characterizing the Uncertainty of Pesticide
ume2. Pages 11-24.
oi "3
"o
»
S3
U
i document is the source for a mean soil bulk density of 1.5 cm3 for loam soil.
1
1980. Fundamentals of Soil Phys ics. Academic Press, Inc. New York.
Q
s
—
ffi
such as looseness or compaction of the soil, depending on the
structure,
i document is cited by U.S. EPA (1990) for the statement that dry soil bulk density, BD, is affected by the soil
sr and clay content of the soil.
II
malDose ofRadionuclides. ORNL/NUREG/TM-882.
n and Inte
P.O., and C.F. Baes. 1979. A Statistical Analysis of Selected Parameters for Predicting Food Chain Transpoi
c
ca
1
o
E
i document presents a soil bulk density, BD, range of 0.83 to 1.84 g/cm3.
s
>,
1
&a
1
mbustion
••JR. 1 997. NC DEHNR Protocol for Performing Indirect Exposure Risk Assessments for Hazardous Waste Co
a
w
Q
U
water content.
\
1
document is cited as one of the sources for the range of BD and Kd, values, and the default value for the volui
W2
1
ns. Environmental Criteria and Assessment Office. Office of
tr Emissio
. 1 990. Interim Final Methodology for Assessing Health Risks Associated with Indirect Exposure to Combush
;arch and Development. EPA 600-90-003. January.
•^ CO
^ 3
w °*
c/i
3
oseness or compaction of the soil, depending on the water and
JO
M
a
1
V3
document cites Hillel (1980) for the statement that dry soil bulk density, BD, is affected by the soil structure,
content of the soil.
'£ S
H "3
ssions. External Review Draft. Office of Research and
ustor Emii
1993. Addendum to the Methodology for Assessing Health Risks Associated with Indirect Exposure to Comb
elopment. Washington, D.C. November 1993.
l&
tn
H>
jsed for organic matter, phosphorous, and other soil-based
ecause lighter soil particles erode more than heavier soil
e, concentrations of organic COPCs, which are a function of the
SB!
Ill
£ ° H
document is the source of the recommended range of COPC enrichment ratio, ER, values. This range, 1 to 5,
'Cs. This document recommends a value of 3 as a "reasonable first estimate," and states that COPC enrichmer
cles. Lighter soil particles have higher surface-area-to-volume ratios and are higher in organic matter content.
nic carbon content of sorbing media, are expected to be higher in eroded material than in in-situ soil.
-------
vo
«?
«
3
n
<
H
w
Z
O
H
>N •<
5 P
So-
tt H
tf H
8 Z
K a
)SION LOAD TO WA1
WATER AND SEDIM
S u
gs
§
D
CO,
"8
3
'?
2
n.
en
u
u
C
S
u
u
£
o
&
if
"o
co
S*
"o
g
_o
>>
>
a
M
\-s
m
O
m
(Page 6 of 6)
cm3 (very gravelly soils) to 0
J
o"
CM
o
EA
U
j3
>
3
>O
S
s
e
8
Uc
4J
to
£
o
•fi
U
E
|
"3
CO
tfcH
O
U
< 2
JJ»
1C
C^l
s
g
•<
Rj
C
S
a
|
•3
t
Q
U
*^
§ -
J 2
., (M
y ^
^i ^
.4 8
1 ^
^ GA
§1
ll
§Q
t>0
SB'S
^8
gs
a 0
KJ .
c, O
_^ CO
O CO
s «>
£ oi
K "3
O «2!
Combust!
nd Remed
H a
S "
11
s |
•< E
'.ening Level Risk
'ities. Office of E
u
•o
a
/~N
N
N^^
•o
C
3
^-^
CXI
oo
ON
***•
"I
J3
•o
e
ca
C5
g
c
eo"
U
>™i
J3
CO
'S
a.
~o
CO
H
U
1
?
09
o
i
u
J3
"c3
>
n a mean '
o
T3
* ^
"pS
S 0
-S? —
^^
Si
°^
1!
>r> -a
•S, a
i; a
Q ft;
13 •*
U -O
T3 .
C3 «
Z o
^|
BJ ^
GO
D
3 §
If
•3 §
I!
is
I-£
II
O 3
•81
VO
09
-------
x^N
S
1
1
H ^
, |1 -
O o
eo C
WO... o
co 00 U
0 "". -S 00
<•?* g -s
CO OB — c
,2 .S ,g S
•S "* ° c
£!* 1
•S •§ -8 §
e " 2 g
.2-2 I
*g «^J .,-, w
I 8 § o
" » -S -S
•a S g s
Jiff 1
a 'B x '•"
•1 > S g
Cfl fcH
a £ -s £
U <«- -S 0
, cfl S -
; the result is used in the soil
.nd watershed-specific value
i). Uncertainties associated '
il loss, X,, that are under- or
w ?a g
j a 2 -
S^< 1
^' SP a, (•->
§ § 1 ™ 2
1 III 1
| S-SS 1
0 5 1 1 •!
•s 1 §> 1
co cs <; o
•3 g g« s
gl™ 1
I-S
Pi 1
•H 3 ^-N 0
oo 13 gr «
-1 5 § |
= 13 o &
^1 3 i
T3 53 •= -3
111 o
vj ? oo o
s -S < 3
s 8 "s p
? tti O
ill 1
g e s "
g 'S I &
* 8. S. i
s "a 1
cs -a i— i •"
Sis §
0 C D w
— • J-4 s^/ ^J
"s « g 1
s-sl i
5 -2 j >
c« T-n *>-. C
CJ J= 00 O
tJ 3 < § U
§ g i S
« - I °
§1
1
^
£
•
LC^^^^g
^^^^,
K
11
llf^'llsP
1 1
Hi
i
1
$*
*
^
^
"S
p
x"
^
"53 Ti
3 ii
c «
BO ^
ca K R
fll U
0) _C W
oo — a
H §
go ^
18 us s>
^2 I
s | s?3
2| K I
^~, *H ~ ' H
"O O- •••'
S -8 -aS
(J^ U 4~i U
w g i a
CO 6 CO 0
PS "S 5?
•^ O CO
5! Jl
£ =e § g
* "G^ II
C 59 Xv g -0
S3
*O5
0
t-l
u
^
^
s
c
;*
EIJ
02
It.
05
s
«
-------
pa
H
I
if
0*2
UU fvad
W3 •<
on p
00
j a
J i-3
SS
K on
?
M
«
1
§
1
Oft
S
D
at
I
>
1
u
1
b
1
,2*
^2
IB
1
u
tu
J
en
O 'O
— o S; g
3 -^ 5=7 5-
H eS S B
'C g Q a
< J3 ^ u
f|ll
1 Ic's
Q^ i O O
Q -a g '3
to § | |
b T3 0 £
s— ' U *-i £*
8% 5j Cu
«3 S o
c e ""
1 S o &
a .a -a s
imends the use of current j
specific values for this var
), was based on a soil orga
Vhelan 1989), and chosen
" "O ^J"
iP H5 •-< ca
This value is site-specific. U.S. EPA OSW i
1997; U.S. EPA 1985) in determining water!
default value of 0.36, as cited in U.S. EPA (
Strenge, Buck, Hoopes, Brockhaus, Walter, i
variable:
CO
1
CO
CO
03
CO
C
1
C
3
BO
C
|
S
1
1
3
o
ed
0
1
C
k"
a
&
Is
"S
'alues for the USLE soil er
^
u
(1) The determination and use of site-spec
b
i
•o
c
3
U
J2
0
x"
of
CO
'o
CO
4-«
3
3
e, use of this value may ca
VH
*§
represent site-specific conditions. The
overestimated.
VI
u
2
8
s>
, *^
I x1
ryT co"
3 S
2 ?
O co
U 'S
"? 3
'alues for the USLE length
e, use of this value may ca
^ |M
" <2
S Si
(1) The determination and use of site-spec
represent site-specific conditions. The:
overestimated.
a
vo
CQ
-------
o .t5
ft> i—i CS
; a 3
'Q c
! r% O
E CO
§
Cfi
a
s
i
8
- s ^
u
3
1 8.1
cc
•<
p
CO
^
H
«*5
«
on
cc 55
t
2
s
CQ
OS
w
>
I
1
•3 H 2
•8b
I
I
s
CO
DO
C
8
I
en
S
on
-------
*?
CQ
CQ
/^
3
z
S— '
Z
VERSAL SOIL LOSS EQUATIC
(SOIL EQUATIONS)
•H
z
z
(Page 4 of 5)
REFERENCES AND DISCUSSIO
ental Pollutant Assessment System (MEPAS) Application
i. December.
timedia Environm
hland, Washingtol
, M.B. Walter, and G. Whelan. 1989. Mult
'.meters. Pacific Northwest Laboratory. Ric
ppo, J.G. Jr., D.L. Strenge, J.W. Buck, B.L. Hoopes, R.D. Brockhaus
Guidance: Volume 2 -Guidelines for Evaluating MEPAS Input Para
2
Q
value of 0.36, based on a soil organic matter content of
erodibility factor
3
1
o
•o
i
8
09
8
g
1
1
This document is cited by U.S. EPA 1994 and NC DEHNR 1997 as
1 percent.
c
CS
e Combustion Uni
sure Risk Assessments for Hazardous Wast
DEHNR. 1997. NC DEHNR Protocol for Performing Indirect Expo
U
z
This document recommends the following:
ientative of a whole watershed, not just an agricultural field.
of 0. 1 to be repres
§
1
I
u
"O
cfl
T3
§
t-l
O
CQ
2
• A USLE erodibility factor, K, value of 0.36 ton/acre
• A USLE length-slope factor, LS, value of 1.5 (unitless)
A range of USLE cover management factor, C, values of 0
• A USLE supporting practice factor, P, value of 1
rsal Soil Loss Equation (RUSLE). Agricultural Research
the Revised Unive
r: A Guide to Conservation Planning With
. Department of Agriculture. 1997. Predicting Soil Erosion by Wate,
Service, Agriculture Handbook Number 703. January.
CO
D
CO*
f
a
O
1
S
o
I
i
1
1
face and Ground
**•
e
1
|
u
1
L
. EPA. 1985. Water Quality Assessment: A Screening Procedure foi
EPA/600/6-85/002a.
GO
3
lid Waste. Washington, D.C. April.
.EPA. 1988. Superfund Exposure Assessment Manual. Office of Sol
CO
D
of 1.5. This value reflects a variety of possible distance and
ilope factor value
the reference source for the USLE length-!
tershed, not just an agricultural field.
This document is cited by U.S. EPA 1994 and NC DEHNR 1997 as
slope conditions and was chosen to be representative of a whole wa
Working Group Recommendations. Office of Solid Waste
>ustor Emissions.
Associated with Indirect Exposure to Coml
mber 24.
EPA. 1993a. Addendum: Methodology for Assessing Health Risks .
and Office of Research and Development. Washington, D.C. Septe:
GO
ID
en
3
i
o
e
CS
CO
CO
u
I
1
2
i
1
a
55
C
C3
1
W
I
•o
§
average annual USLE rainfall factors, RF,
This document cites Wischmeier and Smith (1978) as the source of
United States to greater than 300 for the southeast.
This document also recommends the following:
ntrol measures
and agricultural crops
ssumed absence of any erosion or runoff co:
• A USLE cover management factor, C, of 0.1 for both grass
A USLE supporting practice factor, P, of 1, based on the a
52
a
-------
t^
*?
CQ
S
tt
g
ION (USLE)
'ect Exposure to Combustion Emissions. Office of Health and Environmental
H /— * «
5 » ^
Sg 5
g§ s -l
W H «n •«
CQ •< e Si
co 3 «n .S
® O* S, |
j 5 £ •* -
B id * 4 s
£3 ||
S52' « 5
< 1 §
co SB
* *2
W .s 8
> g en
e ss>
55 ^ Q*
U
Review Draft Addendum to the Methodology for A
Office of Research and Development. EPA-600-A
x> +J
en c
ON oa
gl<
CO
D
i is influenced by vegetative cover and cropping practices, such as planting
;s greater than 0.1 but less than 0.2 are appropriate for agricultural row crops,
R X
ily reflects how erosu
alues for 0.1 to 1; vah
3 >
S O
'C «n
ft o
u" a
e
u 2
0 «»
-2 S
•a % S
^ a .2
nt discusses the USLE cover management factor. 1
rather than up and down slope. This document disc
if 1 is appropriate for sites mostly devoid of vegetat
0) ~ "
Eo .
ft §
I'll
~° x -
o- K w
2s"?
^ o c
H ca ca
•.ardous Wastes. Office of Emergency and Remedial Response. Office of Soli
K
Facilities Burning Hi
§
1
1
0
U
«
i
Guidance for Performing Screening Level Risk Ana
mber 14.
. S
•
-------
?
g
•^
*~"^
o S
5 W
tt! ^F
h*( ^L<
>< S
TABLE B-2-8
[MENT DELIVER
LTER AND SEDIM
(Page 1 of 4)
5
L£ ^
05 H
U
i
3
. e
J=! Q S
i ^ 2
'S d o"
•o -S n
«* 53 S
- > 3
S a g
H I g-
«i 13 E
ill
£ -C >
t> M
«j o "5
^ A .rt
M {£ 4>
§ « "° Q
S«3 — ^
0 g> .
1 1 a i
J3 oo J5 >>
fli (-H *-"
en u " u
2 U . >
'>» b 1 -8
C ° "" e
Q) i feS u
.I -8 a g
•o e S ^3
u a „ o
c ™ >. S w
•2 ^ ™ 2 "S
S en E 'S j-
3 0 en > x
S Hif
S >
a | | 1 "S 8
1 ||ll
X S en 2 is*
3 S < 0 S
JJ o . -a u
"- C to o 3
U cs C en ~-
H s -B ^ >
. 2 =3 .2 3
1 > § s «2
| bo « -o 1 -8
i3 a *j ° . S2
0 'S g -g •* S
« = ^ | S o
** (4^ j? $ *^ §5
«§ i § « s !-
0 , ** T! fi — S
.3 4> fY, Ci O <-i
2 1 § | o §
&* C •«-> fli o ^
0 -= C *J -5 en
> f- so ^ -^!
«a *^ a 2> a «
2 3 « "S c
| g. a ^ •& .0
1^1 1"! |
U ._. ID S U u
•S £ -a 3 -a js
en 73 T3 g -O S2
U O 4> g U I)
5 .2 c S c |
3 O O 2
"S
T3
1
•3
-------
M
3
n
s
z
o
W
~ s
|I
£ a
iJ 5C
W Q
Q z
H •<
z 05
S 3
S H
S «!
CC
U
0
oa,
S3
3
^
"S
5
*
|
S
Q
cu
s
flj
-E
W
<
f*
a
vi
£>
_c
73
U
"o
CO
ed
Cd ^^
w ca
* I
"2 73
** flj
* j=
2 2
s s
1 0
§«
•5
01 !4-c
73 0
! i
- .S c
<•« rS 0
P< C 'o co
5 ° S^
VD U 8 •-
s .i a §
c _ ><«•
8 >
1
.w
•O
§
0
s
ni
d* 03
f O
.•§ "S 'S
05 J3 B
00 S2 a
•— S co
« n w
1 l|
i^ ^
'£ »
H C
CO
S
•3
'e
s
S
'S
8
4>»
OH
JJ
.1
"c3
u
"ft
w
a
u
0 S «
s If
=3 8-1
S « ^
CO .t! SO
co w -a
3 ti U
Hi
&i rt
§ s 1
T3 >> U
8^^
£ S S %
O\ "*"* 3 C«
2 S § S
v- 3 g «
oj "32s
S > o S:
* o B W
33 M >, S
3 & & °
S S3 S g
g Sl»
S -3 "O
73 3 a ft
C co *• 3
S « *J >,
^ 5 3 c?
1 ^12
Ox «r ^3 u
-H « U J
1 lJ>
1 o Igl
c | §1!
2 > g-E^J
S .2 £i .
_. . _* ,-. _C! fli GO *^5
»— * Ox ^ c^ \o ^ *^ *i *o O
«N - -. -H o ^ 5 -S^g
"d n) ^ 3
•S * o S -
1 1 111
.1 S *i ! 2
B S § g § <
S 8 -52 | S co
0 ^ °> ^ 2 1 §
S * e T3 S .2 <<
"o2 05 s •§ -Slf^S
VI " s. "^ 3 -H £=•23^'^'
j;i 7 1 1 Iil|
'SSsSl i 1 i Hit
* * i ||«i
- S ? F 8 S-S
i> 3 •"
Ills
6
C£H
'§
a.
CO
.•S
"55
ja
Cfl
XJ
J3
^ 1
1 1
ft .2
«1 o
u O
3 S
j", CO
r» CO
g U
1 1
1
X-iv
^J-
I
o
v2-
u
G
variable is site-
O9
P
C4
g
1
U
BO
_C
">
U
g
C3
§
•o c
U O
•c -S
CO .«
« 0
H a,
"^ qj
^ -0
*j
•^
oo
^
00
-------
§
I-H
H
H
op
PQ
2
Q
3 %
Qz
ce
?
a
a
b
s
3:
{§
§
'a.
•e
at
•c
>
t/5
•8 .„
5 2
1 §
8 .2 >
-C O U-.
030
•3 — ^
J« ea g
& > U
• .2 '>
Si a
r s-g
e 3 is
o u J2
S J3 n,
•> E-1 E
r_ . o
o g ^
_C !3 O
0 * C
b o ,-
J? "0 S
u ca S
S e ~
0.125
mpirical constant based on the n
with the -(1/8) power of the drai
NC DEHNR (1997). U.S. EPA
" >»e
§ "B S
cited in U.S. EPA (1993), this variable is
; sediment delivery ratios vary approxima
sistent with U.S. EPA (1994a and 1994b)
75).
as rt S ON
< 5 8 c-
en
en
_O
'S
1
"3
£
g
u
ex
Jf
"ce
'S.
g
variable:
.w
IS
5
?
1
|
KJ
C/5
i
3
00
C
1
cS
_c
^
u
en
en 3
O ,±£
1 1
E «
O en
CO
"O co
1-2
c "3
« S
.i 8 -
'i. 03 »
o " o
S a -
u * 2
> o £"
" £ >
ca cj ^5
coefficient, fc, value is based on
not accurately represent site-spe
mate the watershed sediment de
U ^* ^n
c. S S
o a s
The recommended default empirical si
watersheds. This single default value i
of this default value may under- or ove
^•^
"
-C
VO
ffl
-------
00
«?
oa
a
V
I
REFERENCES AND DISCUSSION
i
CO
1
'rming Indirect Exposure Risk Assessments for Hazardous Waste Combustion
DEHNR Protocol for Perfo
O
^•i
S
u
Q
O
Z
: coefficient, b, values. This document cites U.S. EPA (1993) as
^-\
source documents for the empirical intercept coefficient, a, and empkical sk
ited as one of the reference
Formation.
0 c
Cfl • —
""* C/5
» documeni
source of il
£J
ons. External Review Draft. Office of Research and
8
• Assessing Health Risks Associated with Indirect Exposure to Combustor Emi
ium to the Methodology for
shington, D.C. November.
§ >
^3 ^
^ £
• D
i 1
— _o
< s
wi
S
coefficient, fc, values. This document cites Vanoni (1975) as its
o.
"a*
"3
•0
«
1
o
S
_c
"3
o
u
u
•S
&
e»
C
u
1
u
1
1
ited as one of the reference
.on.
u -s
K g
'^* &
i documeni
•ce of infor
H °
w. Attachment C, Draft Exposure Assessment Guidance for
«
'creening Level Risk Analyses at Combustor Facilities Burning Hazardous Wa
s. April 15.
Guidance for Performing S
Waste Combustion Facilitie
f §
Jt c>
Q|
^ 1
££
~* ^
w ^
wi
3
coefficient, fc, values. This document does not identify Vanoni
o
CL
source documents for the empirical intercept coefficient, a, and empkical sloj
ited as one of the reference
e of its information.
0 0
2 3
r. o
C w
II
§1
"2
H C-
7M51 Wasfe*. Attachment C, Draft Exposure Assessment
IVaste. December 14.
"2 -a
arming Screening Level Risk Analyses at Combustion Facilities Burning Haza
stion Facilities. Office of Emergency and Remedial Response. Office of Soli
id Draft Guidance for Perfi
\ Hazardous Waste Combu.
•S eg
^j »v>
i}
< "I
t/i
^3
>pe coefficient, b, values. This document cites U.S. EPA (19931
^^
*W
source documents for the empirical intercept coefficient, a, and the empirical
ited as one of the reference
o
W5
• •M
document
S
information.
c«
<+-<
le source o
•5
merican Society of Civil Engineers. New York, New York. Pages 460-463.
mentation Engineering . Ai
1
03
1
'S
o
>.
a, and empkical slope coefficient, b, values. Based on various
the -(1/8) power of the drainage ratio.
(!!§
the source of the equation in Table B-2-8 and the empirical intercept coefficie
:s document concludes that the sediment delivery ratios vary approximately wi
ited by U.S. EPA (1993) as
yields from watersheds, thi
5 %
01 U
— c
document
ies of sedir
.2 -a
& i
-------
a\
*?
A
3
pa
£
g
*2
O H
Z H
a z
U W
§£
O R
UW
>%
l§
2 ^
IB
i
il
p
03
CU U
1 1>
o
u
u
•3
00
s
§
I
I
*
i
£ o
s 1
o
a
in
te
S =3
•s i-1
-
» -^
^
+
•S*
U
3
T3
g
§
•a
I
cm
V3
a
00
e
3
M
1
I
1
en
_e
"3
•o
o
!>
u
o
fa.
c
u
calculated fo
body concentration
o
PC
« -3
g .«
PC
LT.
ed
I »
9 •-)
-------
«
s
•s
§
1
,3
*g
p
33
O
•e
s
1
£
>"
a? 4-1
C T3
•2|
1-8
I*
« S
S 3
o Q I
o. fe r \
W lg W
Varies (slte-speclflc)
variable is site-specific and should be an annual average.
following uncertainty is associated with this variable:
Use of default average volumetric flow rate ( VfJ information may not accurately represent site-
especially for those water bodies for which flow rate information is not readily available. There
values may contribute to the under- or overestimation of total water body COPC concentration,
1 e e
l_i
>^
^
u
13
1M
>
£
0
C
° ^>
'S •§
I-8
J «3
"o la
*" ^
o _
Q£ -^
« SP
M
< n
^
>>
•§
X)
»H
H > c
* I
"§ i IG-*
M >><2 O £
<0 O C ^ 3
•i £ S g 1
*.2 ? -e E
0 to 1 (calculated - Table B-2-10)
variable is COPC- and site-specific, and is calculated by using the equation in Table B-2-10.
following uncertainty is associated with this variable:
The default values for the variables in the equation in Table B-2-10 may not accurately represei
- specific conditions. However, the range of several variables— including dbs, CBS, and 6b— is re
Other variables, such as d^ and dz, can be reasonably estimated on the basis of generally avails
The largest degree of uncertainty may be introduced by the default medium-specific organic cai
content values. Because OC content values may vary widely in different locations in the same i
using default values may result in insignificant uncertainty in specific cases.
.2 u
s s e
CO
CO
1 1 2 1
±j -a £ "8 i
Varies (calculated - Table B-2-11)
variable is COPC- and site-specific, and is calculated by using the equation in Table B-2-11.
following uncertainty is associated with this variable:
All of the variables in the equation in Table B-2-11 are site-specific; therefore, the use of defau
of these variables will contribute to the under- or overestimation of Cmat The degree of uncerti
the variable k,, is expected to be under one order of magnitude and is associated largely with the
soil loss, X,, values for the variables fm, k,, and/,,, are dependent on medium-specific estimates i
Because OC content can vary widely for different locations in the same medium, uncertainty as
three may be significant in specific instances.
.2 o
s £ e
'H
>»
rj
CU
O
U
?•* <2
•a S
g S
»D co
S3 §
1 -
* a
"2 c
S o.
l't
£ '1
0 =3
J
-------
CQ
S
CO
z
o
H
C£
H
Z
U
O
u
*
§
n
WATER
TOTAL
o
CH
g
a
H
H
z
AND SEDIM
1
<
£
RFACE
P
;Page3of4)
•;
s
a
0.
1
Q
_0>
•§
CB
e3
u
a t
•3 s
g g>
1 1
^ CX
O — •
VH 03
o "C
1 a-
« 1
« 1 •
S e o
u o -s
> CO -2
ca a J2
_H Rt '^H
S o ca
cs u >
g * "
1 ll
2 3 ""
s ^ a
"8 2-a
2" s •« "
C 3 t> 3
Varies (site-speci
variable is site-specific (see Chapter 4). The value selected is ass
:rtainties associated with this variable are site-specific and expect
>ther resources from which water body surface areas can be meas
.52 o ^
e sl
o5 Is
OO ui 0)
"Elll
^"0 §
0
c3
u
Ul
ce
T3
O
X
CJ
*J-
^
^
ii
2
^
i?
0 g
& " =5
O 22 a
CB-.SU
C U -
III
1^1
^ o u
O *i CJ
1 1 "
& g a.
|l"
C '3 °
>. I •§
CJ CO CO >
e M •" *
Varies (site-speci
variable is site-specific and should be an average annual value.
following uncertainty is associated with this variable:
Use of default depth of water column, d^, values may not accur;
those water bodies for which depth of water column information
d^. values may contribute to the under-or overestimation of total
05 a)
1 P" £
u^~
3* e3 >>
E 111
~1 g
c
E
3
8
£
f
t_!_ 4
o
x;
n.
D
t?
U
2 -g
21 1
W Z? v —
^ ^ E 1 2
* ^C "S LI ^
S a - » "
S. W b to H
>% ^^ o ^ «
•Pi I!
Iff li
n e S u 3
•2 | 8 3|
J "S J> g .c
4i aj ^ Q, .5
wj -22 o aT ^
fe o - >» o
^ ^ff U u e
CO ^ ^ ^* M
= 1 s ^.
I 1 -i 1 8
0.03
variable is site-specific. The value selected is assumed to represi
f recommends a default upper benthic sediment depth of 0.03 m
INR (1997) guidance. This range was cited by U.S. EPA (1993);
Following uncertainty is associated with this variable:
Use of default depth of upper benthic layer, dhs, values may not i
conditions. However, based on the narrow recommended range,
•2 w W ° --.
P O Q S C-
E
g
E
•3
u
GA
U
*S
C
1
a.
a.
3
WH
O
•5 k>
S, w
u >•>
D ~
•^
ro
C|-
m
-------
T!
IS
U
3 %
8> o i
c w a
es (4- C^
•" O
£ (U C
.c o »>
S £ S
S-o |
§ - §
II 1
c § ^ a.
0 5 «3 63
f 1 & <§>
S o — •" J3
rS ° D
"S ft c Li"
^ M 0 1 ~
&* n § -° a
1 § O 53 g
5 ~S M a J
3 t 2 » «
CJ\
fS
CQ
eq
g
^^
TOTAL WATER BODY CONCENTRATION
RFACE WATER AND SEDIMENT EQUATIONS
D
!£•
(Page 4 of 4)
REFERENCES AND DISCUSSION
^3 o
TWeRM Assessments for Hazardous Waste Combustion Uni
ments for the default depth of upper benthic layer value The def
r the range of values for the depth of the upper benthic lay™
^2^
- s*2 s §
S* O C ai
•**• t! *^ "^ W
1 § | | o:
•~ «g g | -S
fc o o 54
<&, -s Z ^>*
1 ° « .£ ij
S o a ^ e
i iijt
§ •" •< O
§ 1" ll
> g £
""••*;
alue is the midpoint of an acceptable range. Th
^
for the default depth of the upper benthic layer value The defau
the range of values for the depth of the upper benthic layer.
f «§
g •*:
!|
•o S
8|
O tfc*
V u
0 0
p a
£ g
ne of the re
1993) as its
0 >_,
« <
1"
"o t/3
.2 D
c
-------
s
ec
H
Z
g
w
Q W
S W
O <3
U otf
a: w
^5
1^
£ w
5^
§g
NH p
£^
I i
"8
—
«
o
*
60
C
1
I
|
'a
er
u
u
g
co T3
•7 u
o
.S S
•".&•§
^ 8 "8
T § S
•S 8 *
.
-o
_• u
u
c
a s a
1- O C
O 'O ™ r" £•
-g
_rj 3
Is •"
"§
CB
| | I
jse -q
^ XI O
1
w
5
•^f
"
2
ec
_c
"«
•B
O
fc-
u
u
"3
•o
a
5 13
> *L
11
S81
i
^ S
00
ffi
3 &
^ E
U u
EI
§ >
"3 ^
ed O
O w
2 3
a!
il
"5 °=
o u
5 5
S .c
.S .S
c c
o o
m
>> o
11
S3 >
2 g
o «
C i3
.2 c
u H
—
1
_
'S
3
8
>> u
"8S
II
« o
o c
— o
C i3 C
ecu
•—op
o o ~
g g -a
.^ O o
MH CJ on
-------
i
4
,P
§
53
1
X
0
Cj
"a
g ^
TD £ W
4> CQ tC
III
1 o 5
8 S«
"« i E
^* Ui ^
•*. u ^3
. t3 C
•73 e B
tN 0 3 0
< |P
1 III
g § 3 o
a > s -s
< g .2 !s
d « -tS T3
'» t: "S 8
— "8-5
^^ ro r^ O ^
Varies (see Appendix A-2
variable is COPC-specific and should be determined from the COPC t
Following uncertainty is associated with this variable:
The Kdm values in Appendix A-2 are based on default OC contents f<
default values may not accurately reflect site- and water body-specifi
actual Kdw values. Uncertainty associated with this variable will be i
estimates are used to calculate Kd^,.
05 «i
'£ £ C"
H H C
!
S
R)
O
o
O
Bog <— > °
SJJ ft
S * ^ *•
!
'0 en & "to
lu IS
a. B. » Co
•g.S's 8, a
* <-> g 30
S K c S §
i^-i ii
•2§S o £
5 o .g ta t-1
2 to 300
variable is site-specific. U.S. EPA OSW recommends the use of site-
:sentative of long-term average annual values for the water body of cor
by NC DEHNR (1997), U.S. EPA (1993a), and U.S. EPA (1993b) in 1
Following uncertainty is associated with this variable:
Limitation on measured data used for determining a water body speci
accurately reflect site- and water body-specific conditions long term.
under-or overestimation of fm.
1 a I 5
H 2 '3 H
i
E
Cfl
12
1
•o
f c
S .2
3 is
£ c
13 o
£ °
H o
g
$8
*"^|p
1
,,'^J
lit
,tj***tf
Vt*^t>
?%
M^
I
^^o
i
i
^'^
i
S
1
I
$
g
1
g
o
c
o
u
VI
"B
*^
- 1
v2 ^3
*l
1
&rf I
Sl^
g 8 S
2 »
o ~ "n
5 S o
55 > -°
a s fe
Varies (site-specific)
variable is site-specific and should be an average annual value.
Following uncertainty is associated with this variable:
Use of default depth of water column, dm, values may not accurately
those water bodies for which depth of water column information is ui
dvc values may contribute to the under- or overestimation of total wat
J a -
H H C-
E
c
E
o
55
Q
•S
Q
^
-------
CO
H
WJ
'S
S
0>
S
1
:', s;
J
P
|
n.
g
S
A
1
*•
•3 53 T3
1 1 1
> 2 P
tj* •S'i
*j jO _§ 8
-1 1 1
O O go
d < o i
® CJ 'S u
o, c/j n. ~
•S3 o °
e .5* "3 -55
O _. *j CB
P ™ C ^
13 "o u •£
O5 „ £H
1 « £"8
g 50 "« .5
-O 5 « P
^^ TO Jr K
O M 3 "^
§*H 2 o
« ^1 |l
8 -Sl ||
e cs -g M ><
as UL U O
variable is site-specific. U.S. EPA OSW recommend
stent with U.S. EPA (1994) and NC DEHNR (1997) ;
ference was cited for this range.
bllowing uncertainty is associated with this variable:
Use of default depth of upper benthic layer, dbs, valu
conditions. However, any uncertainly introduced is
range.
.228 o
£§a s £
e
c
u
g
•3
0
en
£
S
.8
g
3
0
•S b.
Q, U
Q ^S
•^
u
•3
IH "Q
S e
ca oo M
"^ ^ "^ .C
o Q^'l
rt ^3 3 Q^
3 S "o ta
_o *> o .2
"g -^ o o
° sj *5 e«
o ^— ' ca vj
*^ CO ^ .
•g ^ o S
« -g 5 -a
3 .2 di ^
£ '* ° '•§
c ^, "S u
0 § 0. 0
"C B "O 3
3 u u -a
ff 5 s 1
•2 'is aj
o "O r! Ir
**^ V fli U 7S
11 -2 1 1
*^ *^ 5 S jiS
* (U O Tl
a J3 M « "c
1 ~ S '^.«
S2 t» "<3 M
^_, -S s ^ u
» eo .2 J= -°
Varies
variable is site-specific. U.S. EPA OSW recommend
depth, consistent with NC DEHNR (1997):
dt = d^ + d^
bllowing uncertainty is associated with this variable:
Calculation of this variable combines the concentrati
summed. Because most of the total water body dept
uncertainties associated with dwc are not expected to
variable, dt, are also not expected to be significant.
.2 •§" o
£.8 iS £
s
f
•8
i
•£>
u
&
~a
o
H
•a"
X
0
^•^ 4) *i
S I II
ON en t^ *"?
C^- ^ . ^
< g | =
WO *5
co "3 "§ o
5 .2 8 «
•5 S e J
'? "« '52
z, > u £
C *-• D< W
11 ^2
'So "So
C 73 ^7
° "S bi a>
Or- « C
— 0 ^3
"° g 1 5
1 2 •« -
l! o '55 C
±; _e u ^ o
3 £ o e -a
jt ^ c o a.
^ ca » c
® ^ g S 2 |
" sla &a
variable is site-specific. U.S. EPA OSW recommend
i that this value should be reasonable for most applica
U.S. EPA (1993b and 1994) and NC DEHNR (1997]
bllowing uncertainty is associated with this variable:
The recommended default value may not accurately
the variable/^ may be under- or overestimated; the
based on the narrow recommended range.
.2 o E u ^
H to o c"* ^^
S
"g J 5
o 5 ob
f
e
_o
1
u
o
o
12
"o
VI
O
'^
•g
u
ra
S
PQ
-------
o
CQ
CQ
H
in
%
Tt
I
£
CO
§
1
S
a
§
i
i
a
o
2
•C
>
•S
O
s
"73
«
00
>>
«
C)
0
+j
o
D.
S
0.6
variable is site-specific. U.S. EPA OSW recommends a default bed sedime
CQ
^^
en
ON
^
§1
D^
c
•J
C3
«°
i
m3 and a solid density (p,) value of 2.65 kg/L, calculated by using the folio'
"So
0bs = 1 -BS/ps
is consistent with other U.S. EPA (1993b and 1994) guidance.
1
following uncertainty is associated with this variable:
a
•o
w c
J3 cd
c o
• £rt ^^
•o '3
1 g
__ CO
^ a
"O u
§^*
Ji*
Co "^
05 «J
~ 3
efl r>
u u
2 B
ea "t?
"C
> O
0 "^
.B ^
Calculation of this variable combines the uncertainties associated with the
calculation. To the extent that the recommended default values of BS and
o
•6
cd
1
C
fe
1
'I
I
•3
g
u
0
s
fc
j
&
"w
§
a.
1
•3
c/3
T3
U
O?
Varies (see Appendix A-2)
-------
o
1-H
«
tt
K
3
PQ
•<
H
H
Z
a
5 /-"v
B &
s§
S g
B<
3 s
H R
z w
W H
« Z
0 g
Z S
^5
z 3
S w
3 Q
J Z
O <<
Was
tf W
a H
H <
$*
& W
Z U
NN ^
§§
S p
H So
rj -'
S
'ERENCES AND DISCUSSION
a*
$
1
ba
ssessments for Hazardous Waste Combustion Unit
.. 1997. NC DEHNR Protocol for Performing Indirect Exposure Risk A
K
§
W
Q
U
Z
en
CB
T3
«J
'o
lent is also
sediment, respectively. This docurr
1
53
sumed OC values of 0.075 and 0.04 for surface wal
ocument is cited as one of the sources of the range of Kd, values and ass
•o
CO
f
H
I a
£'!l
:al water bo
is documen
yer. Thede
:e of the equation for calculating tot
alue for bed sediment porosity. Th
ue for depth of the upper benthic la;
Hi
a-Sl
:e of information. This document is also cited as tl
as one of the reference source documents for the d
one of the reference source documents for the defi
the sources of TSS. This document cites U.S. EPA (1993b) as its sourc
No source of this equation was identified. This document is also cited
PA ( 1 993b) as its source of information. This document is also cited as
^- - rrj
O -C
1993b) as its source of information for the range oi
t bed sediment concentration.
is the midpoint of an acceptable range. This document cites U.S. EPA (
tent is also cited as one of the reference source documents for the defaul
0 fc
3 3
CJ
« O
> -o
earch and
ternal Review Draft. Office of Res
£
&5
'ated with Indirect Exposure to Combustor Emissic
993a. Addendum to the Methodology for Assessing Health Risks Associ
3pment. Washington, D.C. November 1993.
_
o
<: Z
^ o
CU Q
nl ""^
PU
t/3
Z>
& 53
fe S 1 I
*- a o ^
1 H £ § § ,
I ss § '1 1 5
^•Sff.SS
sediment, respectively. The generic
value; however, OC is medium-spe
Y 7.5 and 4, because the OC values
ent porosity ( 6bs); no source of this
range was identified. Finally, this
10 to 20 be specified in streams an
•o ,a * a .a -g
g S K =5 •£ o
s 0 S U S
i_ o 2 "> "-1 -a
« D, 13 TI 0 ^
iumed OC values of 0.075 and 0.04 for surface wat
follows: Kd,j = Koc * OC,. Koc is a chemical-s
d,,, values were estimated by multiplying the Kd, v
iment also presents the equation for calculating be*
nthic solids concentration (BS); no original source
to 10 be specified for parks and lakes, and a TSS \
ocument is cited as one of the sources of the range of Kd, values and ass
jting partition coefficients (soil, surface water, and bed sediments) is as
, values was based on an assumed OC value of 0.01 for soil. Kd^, and K
diment are 7.5 and 4 times greater than the OC value for soil. This doci
led. This document was also cited as the source for the range of the be
mends that, in the absence of site-specific information, a TSS value of 1
-o — 13 o sr c
-1 1 * -S § 1
f 13 <4- c £ H
H o o « .2 "
a
w
I
of Solid W
» Group Recommendations. Office
1
with Indirect Exposure to Combustor Emissions. )
993b. Addendum: Methodology for Assessing Health Risks Associated
of Research and Development. Washington, D.C. September 24.
— o
O
.S. EPA (1994) as the source of the
he depth of the upper benthic layer
P s
"S"3
!&
This document is also cited by NC DEHNR (1997;
fault bed sediment concentration value, and the rar
ocument is cited by NC DEHNR (1997) as the source of the TTS value.
:nt porosity value and the equation used to calculate the variable, the de:
•o £
& .£
"2 "O
f u
H to
4
f Guidance.
nent C, Draft Exposure Assessment
•5
5
•3
Combustor Facilities Burning Hazardous Wastes.
994. Draft Guidance for Performing Screening Level Risk Analyses at i
Hazardous Waste Combustion Facilities. April 15.
•<
<5
n U
Si °<
W
CO
D
&
IS
ibrmation. '
.S. EPA (1993b) as its source of ini
D
CO
£
'3
It value for bed sediment porosity. This document
ocument is cited as one of the reference source documents for the defau
"O
CO
2
H
C4
'£ 8
SB
H
« h
alue is the midpoint of an acceptab
iment is also cited as one of the reft
*• 5
a o
i "°
<2 2
o ?
t value for depth of the upper benthic layer. The d
values for the depth of the upper benthic layer. Tl
icnt is also cited as one of the reference source documents for the defaul
tent cites U.S. EPA (1993b) as its source of information for the range of
icnts for the default benthic solids concentration.
SEE
333
U U O
o o o
•O T3 -O
0\
t-
-------
H
Z
H
GO
I
09
3
§1
CQ <:
^ 04
II
(I
OS
o
-------
^H
|
n
TABLE
N
Z
<
H
VI
Z ^
O &
u o
z ex
o w
li
g o
Q Ed
WATER BODY
WATER AND S
LL TOTAL
(SURFACE
F**4
OS
Ed
o
BO
1
•2*
.§
o
1
"C
M
«
Q
S
a
i2
u
0 'K
0 3 L)
•S u "oB O
U ° § 0 £ £
•B P3 "3 3 •=•
.s « ^ •§ g s>
^ O V- "S QJ ^
o e .ts • .c
c co 53 f; •s *
!D i- — ° S '*
,o o u y >
• <*• c oo c -o
2 S | § 8 a
' 3 -»-< J-t r . W
S 1 g| o|
4i *•* .O fli *4-« Ofi
3 i 2 3 S £,
.s 2 ll II
Varies (calculated - Table B-2-13)
ariable is COPC- and site-specific, and is calculated by using the equation i
ated with this variable include the following:
All of the variables in Table B-2-13 are site-specific. Therefore, the use o
variables could contribute to the under- or overestimation of kv.
The degree of uncertainty associated with the variables dt and TSS is expe<
information necessary to estimate these variables is generally available or
narrow.
Values for the variable k, and Airfw are dependent on medium-specific estii
content can vary widely for different locations in the same medium, uncer
variables may be significant in specific instances.
> *r?
.2 o
s eft ^^. ^*. ^*.
_
k
u
2
c
o
•a
a
N
i§
ca
O
c
3
"o —
o c
53 -5
« c
•> o
!> o
•W
C "o
« .> ,J g
I'^i rii
M ft J-J *" 2;
fl|| ||
S g JJ
ca . u 2 ^ •£
O 'o T? x c u .S
« el 5° 21
«> o "3 -o -a hs o
•g V -S -g ^ 8 2,
H ^ jj | o g- c
.S a5So'5 e8R
Varies (calculated - Table B-2-10)
ariable is COPC- and site-specific, and is calculated by using the equation :
tainties associated with this variable include the following:
The default variable values recommended for use in the equation in Table
site-specific water body conditions. However, the range of several variabi
relatively narrow; therefore, the degree of uncertainty associated with thes
small. Other variables, such as d^ and dt, can be reasonably estimated on
information.
The largest degree of uncertainty may be introduced by the default mediur
content values are often not readily available and can vary widely for diffe
Therefore, the degree of uncertainty may be significant in specific instanci
> g
•2 c ^ /-,
H S C- CJ-
CA
J-
•a
3
O
u
>, u
o '-S
XI C
U »Q
fe ^
ra c
l|
^ ca ^
e i: c
o c o
'S U P
o <-> .5
ca P *u
r1- O 0
B. o S
^
u
"3 °
o ,
l> O u, J3
4-1 *-l t" >
'S3 S "- f
c. ^ S A
I S p°S
e ca -o
1 !| §
rt . 3 O ^
s iSlls
« 1 1 ^ 1 1
1 1 J ^ | ^"
§-H u « j; o ca
„ T3 " & H -3
.s a- s o a s
Varies (calculated - Table B-2-16)
ariable is COPC- and site-specific, and is calculated by using the equation :
tainties associated with this variable include the following:
All of the variables in Table B-2-16 are site-specific. Therefore, the use o
values, for any or all of these variables, will contribute to the under- or ovi
The degree of uncertainty associated with each of these variables is as foil
magnitude at most, (2) BS, dbr Vfff TSS, and Aw— limited because of the ni
variables or because resources to estimate variable values are generally av
site-specific and degree of uncertainty unknown.
> lg
.2 o
P 5 B &
— .
k
^_,
1
s
o
u
o
03
13
3
.O
0
IS
n
•*
00
n
-------
«
TH
. >
A» s a
ca ca
<*« t-i u
O o 2j
egg
O 00 -t-j
'I -2 p
> > 3
0 u S
t" co o
° CQ
-&S*
If
e
<3 U
CO
s s s «•
C u cd u
8 S g g
S § s I
? 'B o S
« S e 'u
'S c
.
S
•o
"3
g
S
S
'1 £
'S
•c
u
I
any or all
c ?
o S
s .s -S
(9 T3 *J
° u S
^ 6 S
S ° a
•S « ao
'l> S to
— "O o
a. a js
inim
depe
i
f
e
s
be
ar
ble
to
d
m
ab
lt v
ted
Kd
ari
ati
de
expec
s Kv an
ing from volati
refore, the use
t, and TSS are
or the variable
ciated with the
« <0
1 a
S S "8
•J3 •—l rj
"^ ™ "^
•o ja I
O -~ tf "3
O ^
= u
u <*« 55 £•
J3 O S ,
-------
JH
i
CQ
J
CQ
H
Z
EN
ECONS
TIONS)
•< ^
pjj o*
M H
0 Z
J H
Z g
H §
•< c«
as
j 5
NN -<
N VOLAT
WATER
COLUMI
iURFACE
i
£
1
i
i.
tt9
s
o
a
1
K3 'o • ">
1 1 1 0 | J
" «J ^ *S U S
up o ,±3 o «o >
•"tS .5 }3 3 w i4_, ^
" « ^<2So
P o >*N u * to ™
£53 g •« .E % •§
jB £5 o £ € E
-2 • •§ 2 "S E a
•§ •§ rt. S '§ :| u
2 u» "a «3 ?* e "
i ' 1) C £X fl "• •£!
CS "• *C "S O 3 U ^
i || 1 i "^ s :|
^ '•! "B ^ 1 S> -S o
Varies (calculated - Table B-2-13)
variable is COPC- and site-specific, and is calculated by using the equation
rtainties associated with this variable include the following:
All of the variables in Table B-2-13— except R, the universal gas constant,
Therefore, the use of default values, for any or all these variables, could co
Kv.
The degree of uncertainty associated with the variables H and Twk is expect
well-established, and average water body temperature, Twk, will likely vary
The uncertainty associated with the variables KL and KG is attributable larg
content. Because OC content values can vary widely for different location
values may generate significant uncertainty in specific instances. Finally, 1
unknown; therefore, the degree of associated uncertainty is also unknown.
•- " ^ ^ /->
fS ;§ S S S
t
&
2
t_
1
1
^j
Eh
i- -—
*^ IM
U **-*
o 8
fef
^%
«3 ta -f<
Varies (site-speciflc)
variable is site-specific and should be an average annual value.
following uncertainty is associated with this variable:
Use of default values for depth of water column, d^., may not accurately r<
those water bodies for which depth of water column information is unavail
d^. values may contribute to the under- or overestimation of total water hot
degree of under- or overestimation is not expected to be significant.
'£ ° —
H S C
£
c
|
1
53
ta
o
x
s.
JT
Q
u
"^
15 °Q
-•§« i
•s Z >. >-
?g •g'S
>-" S -D "°
Is II
8-g a I
O ea |B o
"ft ^ 0 *
0 OS 0, o
J3 *S
0.03
variable is site-specific. U.S. EPA OSW recommends a default upper-bentl
1 on the center of this range cited by U.S. EPA (1993b). This is consistent v
?)•
"ollowing uncertainty is associated with this variable:
Use of default values for depth of upper benthic layer, dbs, may not accurat
conditions. However, any uncertainty introduced is expected to be limited,
W U O\ -v
"3 ^ O\ S- >—*
J3 (3 S fC £2
H jo C- H C-
£
0
E
1
GA
U
1
1
53
a.
o.
3
o
"5 !-.
n. u
0 >>
D —
"^
-------
PQ
S
PQ
H
Z
GQ w
W H
||
II
3z
P«
*o '5
8«* P-
05 f
tf5 C 4)
u O *S
3 "J3 w
^1^
te ° o
e .a s
£ it5 5
c y *-"
j |||
Varies (see Appendix A-2)
variable is COPC-specific and should be determined from the COPC tables in Append
bllowing uncertainty is associated with this variable:
The values contained in Appendix A-2 for Kd^, are calculated on the basis of default
soil. Kd^ values based on default values may not accurately reflect site-and water bo
under- or overestimate actual Kdm values. Uncertainty associated with this variable \
medium-specific OC estimates are used to calculate Kdm.
.2 u ^
S
8
1
1-
° S
E "5
'"5 £
EC O
•a R
w
•o c
c o
CL .^
c« "C
3 a
c/2 a,
4
IB
| 0 I
% o
S 2P 45 S 5
3 E ^ o -O
1 o •§ 5 'S
> — < C cs c
T3 'S 3 > 0
u O ^ >-^ o
S " c ^ u
a § !§ 73
H >-< o "O oo
& V *S W F*-
2 to 300
variable is site-specific. U.S. EPA OSW recommends the use of site- and waterbody (
sentative of long-term average annual values for the water body of concern (see Chapl
by NC DEHNR (1997), U.S. EPA (1993a), and U.S. EPA (1993b) in the absense of si
bllowing uncertainty is associated with this variable:
Limitation on measured data used for determining a water body specific total suspend
accurately reflect site- and water body-specific conditions long term. Therefore, the
under-or overestimation of /„..
111 1
1
•o
g
"8
QJ
"2 c
g.2
cin ^
3 *"*
M C
*«3 o
o §
H S
CO
S
{fH
t-viiivS
'-'S^w
-'> ^Yi^*
^ w
-,4i^
-s«a%?
*^»
*lsjfn
n
M
^^^^c^
•
S 11
•
1 * 11
^H
i
!
2
<«
c
'eo
U
C
o
o
•2
"S
"-1
^
5
-------
N
^H
'i£
,
.c
«
0>
_3
CQ
>
^
••t
U
j;
jommendations. Office of Solid Waste
1
Q,
3
O
0
$
3
•s
1
=
a
g
for Assessing Health Risks Associated with Indirect Exposure to Combustor Em,
tit. Washington, D.C. September 24.
ndum: Methodology
arch and Developmel
u u
^J en
-w t>
^£
J-, 0
r^ u
ON o
ON ic
«— • U-.
o
< T3
& c
W M
yer (d,,,). This document is also cited by
_e«
U
1
1
1-1
O>4
3
U
«M
O
1
•Q
>94) and NC DEHNR (1997) as the source of the range and default value for the <
7SS value.
ited by U.S. EPA (IS
) as the source of the
o r~
.2 |
|g
3 fc
U X
^g
W5 '"'
1^
Exposure Assessment Guidance for
t
Q
U"
c
^M
u
g
•W*
"
S
E^
^
^
ning Screening Level Risk Analysis at Combustion Facility Burning Hazardous V
ycility. April 15.
juidancefor Perforn
Waste Combustion Ft
%- s
!•§
*** ^
^ s
ON ,«
ON a;
" S
il
5 midpoint of an acceptable range. This
.22
u
_s
"a
>
3
S
^M
T3
U
S
^
R4
:rence source documents for the default value of the depth of the upper benthic li
source of information.
ited as one of the refi
i.EPA(1993b)asits
o VJ
-^ 3
*J en
C U
u "
E o
If
•o S
•2 3
£ 0
H T3
U
t/5
c/i
w
-------
«
w
J
PQ
&
ripti
s in s
en w
i. S 8
•n .3 £>
S -a c
ill
H E
h
d
rt
e
tan
ted
^ 1 1 o
T3
g
O
.«
(4-1
K*
<£>
w
'ao
X
1
r
60
T3
Ul
.O
_M
"3
u
"3
u
u
s
8
u
o
to
DC
2
2
I
K
O ~
U =
II
6 8
CB
I
-------
LJ ^
NM ^J
V
I
1
S
•3
s
§
1,
1
a
•S
•S
Varies (calculated - Table B-2-14)
Ui
•£"
!
1
y—
**-
8
<§
cfl
a
w
a
o,
12
's
a-
J
is variable is COPC- and site-specific, and is calculated by using the equation in Table B-2-14.
j*
P
certainties associated with this variable include the following:
e
5
u
m*
'o
3
U 14- K
30 0 S
111 1 8 1 .8
Minimal or insignificant uncertainty is assumed to be associated with six variables — Dw u, dff pa pw, i
rtv— either because of narrow recommended ranges for these variables or because information to estim
variable values is generally available.
No original sources were identified for the equations used to derive recommended values or specific
recommended values for variables Cd, k, and At. Therefore, the degree and direction of any uncertain!
associated with these variables are unknown.
Uncertainties associated with the variable W are site-specific.
Varies (calculated - Table B-2-15)
is variable is COPC- and site-specific, and is calculated by using the equation in Table B-2-15.
certainties associated with this variable include the following:
of the variables in Table B-2- 1 5, with the exception of k, are site-specific. Therefore, the use of default
tier than site-specific values, for any or all of these variables, will contribute to the under- or overestimati
. The degree of uncertainty associated with each of these variables is as follows:
Minimal or insignificant uncertainty is assumed to be associated with the variables £)„, //„, and pa, bee
these variables have been extensively studied, and equation procedures are well-established.
No original sources were identified for equations used to derive recommended values or specific
recommended values for variables C^ k, and dv Therefore, the degree and direction of any uncertainti
unknown.
Uncertainties associated with the variable W are site-specific and cannot be readily estimated.
O 52- C- P D < 2 !* C Ci C-
^
-C»
'c
u
'5
S
o
o
u
<§
c
u
&
ca
a.
«
«
O
s*? t<
n
-------
fl
09
3
pa
,
o
1
1
I
•s
w
s
a
o
3
1
eg
>
?-s
h -a
4) c
•o _c
3 "S
>. o
03 ii
E -a
. u
^ ^ 1
< < .1
S x «
t3 -3 SJ
C e u
0 u >
& ft 0
ft n, u<
< < 0
.S e i
^ -^ S
o 2 "2
1 J §
S .ts o
u §•?
« ft "cfl
Varies (see Appendix A-
-specific and should be determined from the C(
inty is associated with this variable:
ariable, estimated by using the parameters and
actual COPC-specific values. As a result, K, n
u 5 > o
fe S -2 S
8 a ~ 1
CO 3 OS
60 * .S
JJ .S g a d
•§ ? S S 2
1 -2 3 £ ff
CO •~-H ^> o *ri
> c2
2 ta
§ E ^
£""* i* *w
"o
.5
«»»
E
g
la
•g
§
en
a
0
u
3
S
C/i
';>%
1
K
aj
8.205 x Iff5
ties associated with this parameter.
.a
c
a
o
G
4)
S
U
S
^
"o
«*l
1
1
S
3
I
8
S
OB
"«
Cfl
I*
U
>
'E
as
&
a
0 £
"5 -o
U C
u cs
ft
CO ^J
B -a
'" C
g S
i s
? ft
u j? S .
s •* H o
-30 >» S
5 c^ "K 5-
> — S So
*~* *M ea co
"3 « *^ "O
3 e s j:
15 SI
.2 S | .1
«2 5 «
298
ecific. U.S. EPA OSW recommends the use of
lable; this is consistent with U.S. EPA (1993a;
inty is associated with this variable:
t the default Water body temperature value doe
nditions, Kv, will be under- or overestimated to
?! 1 1 8
u ca v *_» ej
'S o C o .t2
« c s >< 8
— ce ao So,
£'a S 0 «
•S § S -S >?
i « = £ "s
> S £ H -0
.2 S o
£• ^ •« ^
H .S H C.
^
2
s
2
u
ft
!
CJ
>>
•o
o
X!
Lri
M
^
•*
f>f
u
«3
"o
u
9-
tfi
£
'53
1
? s
o Z~- £
s •* o
! S 1
li s
*2 ** 5
Hi • • R)
•S -o u
co J5 3
S§ 1
1.026
ecific. U.S. EPA OSW recommends the use of
lable; this is consistent with U.S. EPA (1993a;
inty is associated with this variable:
sources of this variable and the recommended
?! 1 1
S 2 8 »
'So e K
» c 3 S
•"CO (90 &
o — c 3
1 § '* 0
1 •« = ^
> i £
.20 u
ea s s
%
_u
"S
s
s
c2
f*
.0
o
(J
o
1--
2
2
-------
PQ
3
Page (4 of 4)
REFERENCES AND DISCUSSION
Working Group Recommendations. Office of Solid Waste
tn
9r Emission,
ssociated with Indirect Exposure to Combusti
mber 24.
•
:§ «
3 °
_ 73
X> G
f^ cd
O\ r.
OS o
" S
-^ u
^ en
OH «J
se values.
£
entified for 1
1 and the value 0 of 1 .026. No source was id
0
O
S
smmends the Tvk value of 298 K (298 K =
CJ
£
c
u
s
3
8
•a
en
J3
E_-
Wastes . Attachment C, Draft Exposure Assessment
d Waste. December 14.
§=3
ng Hazardo
Office of S
Risk Analyses at Combustion Facilities Bumi
ffice of Emergency and Remedial Response.
1°
^s
Draft Guidance for Performing Screening
CRA Hazardous Waste Combustion Facility
I?
••• Q
* "S.
ft\
(V
•s
Tf ^J
I g
2 •§
. T3
•< "5
S r?
ument apparently cites U.S. EPA (1993a) as its source of
u
£
73
CA
1
c-
w
(S
•S
1
a
1
3
N_S
1
1
ited as the reference source for water body 1
u
••"
-------
TT
1
tt
g
£^
ljT
H O
SS
^^ ^T,
UID-PHASE TRANSFER COEFFIC]
CE WATER AND SEDIMENT EQU
(Page 1 of 5)
°*S
2 s
Q
Description
phase for a flowing or quiescent system.
33
.9T
i
1
Cfl
1
C
c3
1
•2
c
o
u
*s
u
s
u
-C
Cfl
U
"5
"3
"3
u
c
o
ta
3
8*
•22
H
eb
c
1
s
u
1
"o
c
o
'«
V3
IS
1
T3
associal
VI
c>
~c.
C
o
^
o
a
o
JB
H
1
'3 G g 2
tJ 'C o "S
SIN
53 '** g* £
'r-' ^ » 'O
| « -S
^ Q 1
CO ^ 2
cj. 3
c? S
§ • ^— - s
| s ^ ^ g.
S "Q m o
w ? i ^ 1
o . . -5;
1
^ i E
n ^ ^ •§
^ a" a* £
^T^ g
o >>
& a
g
«q g
t? 1
^^ "3
=3
k" &
T3
•5s
03
1
G
CO
1
gS
g -S 8
> c "
"C ^ M a3
[3 5" s "a
E S 1 !
S "ii e u
01 e &> *
OC 5 3 Dl
C 0 u "O
'i S S3 '3
1 "1 1 S
k. k- b O
° b S
-------
r?
«
s
aa
<;
H
HASE TRANSFER COEFFICIEIS
ATER AND SEDIMENT EQUAT]
Sw
D U
o*^
2S
3
05
Page 2 of 5
1
det
sh
u
n
1
iated with
nty
owing unc
j 8
Thi
Ap
The
(1)
i!
fic
pec
aint
_o
,0
ed with th
lle
thi
-------
«
w
aa
H
II ?
o
3
00
_o
"o
00
c
>>
T3
—
*3
U
s
U
3
a <"
1 1
«
•§
1
1
o
O i—i
us ^
".S
•a £
ec «
1'!
11
> .so
09 *CO
i I
.00
5
H
§^
o
"cs
I
e
s
o
U
•o
CO
CO
1
I
£
£
S
^
• o\
d~
D OS
11
'21
(3 O*\
IT.
> £>
-s
.
1
i"
Th
3.9
ab
ated with
variable value
CA t^,
| 2
I I
•a
u
•o
_c
3
C
00
s
Q
-------
ca
PQ
H
1
i
S
a
e
1
«§
Q
—
«9
*S
S
? "^
w §
CO W
£ §-
i!
to *o
1 8
8 -o
ll
> *""
™ CO
c ^
1 i
11
1 <" o
SSl
r, « §1
1 "Hi
C 0 J= .C
«-» •*-• *3
C u •«
u o 1>
^ 3* ^a
j2 u CA
13 J= g
> *•• eo
. CA ^
1||
2 'S' i
cd •*-•
co o P
1 ^ "
U.S. EPA OSW recomr
(1994), both of which ci
1 atm). There is no sigr
"s
"oh
2
00
C
•3
e
1 u
8 2
^ 5
t2 &
o E
*~^
CO Jj
co '3
Q £
^
u
•s
ca >^
ST '^
2 S
IA 3
^ §
U S
'5 §|
•S '"
2 §
* CO
O U
— ^
O £
.O t™"*
If
/? g
™ M
- is
ii
co C
"§ §
O "O
11
^ to
ii a
l.§
.2 §"
•S u
3
CA -^ '
•o ta «J
p > S
«> to ta
U.S. EPA OSW recomm
source of this value. Thi
associated with this vari
"S
u
"So
00
•5
c
&4
CA
U
i i
s §
s? &
c5 1
"o —
."M ^
c 5
u —
Q 2
^
o
CA
"a
S
^ %
C\ co
N.^ t J3
§ 1
U
^ 5
.C co
.ts M
^ 05
"e O
4> "•§
S2 '5
1 1
ea 3
_3 >>
"g §
>
•2 u
2 | 1
« .. £
•£ — *
CA ^ C
c '3 c
« P 3
| .2 •-
8*1
O X! c3
*-• S >
^ i _o
CO T3 3
O S 2
-i- 2 S
S 8 >
PQ CA CA
S '"" *S
£> O
«J c u
a eo '& £
-2 a 'g |
^ 1 .81
> is s §
S * «
•3
"2
S
ca
CA
C
o
o
CA
§
£
.J
>
*
s
CA
C
o
ta
M
c2
u
'S
OH
CO
•s
e
u
XI
o
3
"3
"3
'S
•a
CO
•5
•s
u
-t S
o
CA
•o
C
U
s
I
^E i?
CO OV
0 2
«|
co'
. D
This value is site-specifi
available; consistent wit
CO
CO
"
"S
3
fc
JS
3
3
CO
CO
U
eo
H5
CO
c
0 »
"1 «
E o
5 -s
-r
u
- ^
S ••>
»l
d- §
•5 g
Sea
0
0 §>
•£ §
_S M
x u
!a u
> t^
If
C- —
•^ "o
s«
^ 00
» 2 2
5 «»
A .t- CO
8 M
«J !3
to C
*co §
O t3
« "2
5 §
^ CO
IS
^§ u
_co §^
•S «>
3
CO i£^ •
T3 ta S
« c« ta
U.S. EPA OSW recomm
source of this value. Thi
associated with this vari
CO
"(Jo
O
ca
4_> O
CO *-
% 00
8 a
i
t*l
CJ\
n
-------
^»
1H
I
r?
CQ
ffl
source of information regarding pa, pw and //w; and
is cited as one of the s(
(l)Weast(1979)asits
This document
document cites
0
i
•o
C3
_M
"5
emistry and Physics. 60th ed. CRC Press, Inc. Clev
CRC Handbook of Ch,
Ov
U
to
ed
spectively.
2
o
X
®
f-<
•o
§
1-H
2"
X
fS
•s
S
2
.2
•o
§
=1
^
(4_)
0
8
1
u
"o
This document
-------
C/)
CO
gg
ii
z g
H &
p
ii
04
00
e
_o
I
t>
u
I
03
§•
u
J3
X
i
•
I
a
1
O
00
I
s
I
o
u
o
c
o
•o
c
l
g
•«
•o
u
•o
c
u
E
o x"
^ »-l
s °
jo "a
XI >
S T3
II
u I
II
«§
0
1 2 ri ?
-
« "S q " OJ JJ
O ^ e3 -^
llll
ill i
f£M
S 8
-
g -a
. 1 s
— on X '^J ^
"-* ,_., *-• i> n
o I ^ c c
'i c ° f S
g. § I g 5
s *£. ^, a ~J
o
X
«n
en
*
o
0
o
n
I
~~
a
ex
e
o
!>
u
L«
u
u
oa
u
s
o
u
-S
Gas-pha
-------
vj
n
H
ii
gs
ig
o w
^N ^^
z Q
&
£
&3 W
03 H
IS
S w
%
1
US
•6S
1
g
a
"S
> T;
w -t; -5 o y
fll S » »H O
u * > oo S
w S a .S a
ii 3 w >^
Eg $ -s -a
~- § o" g S
2 « S -s a
•g •" 13 o g
la ^3 0 3
S * 5 *u 2
3 * a " •£
11 11
3.9
onsistent with U.S. EPA (1990), U.S. EPA OSW recommends a defa
garding the references and methods used to determine a site-specific
le following uncertainty is associated with this variable:
To the extent that site-specific or local values for this variable ari
represent site-specific conditions. The uncertainty associated wii
range of windspeeds at a single location may be more significant
single windspeed to represent all locations.
U 22 P
i
•o
oL
en
•:-
•a
3
C
C
eg
u
00
ed
<
k
^
o
0-
02
^
J3
^J
1
BQ
C
O
i
0.4
lis value is a constant. U.S. EPA OSW recommends the use of this
ic following uncertainty is associated with this variable:
) The original source of this variable is unknown.
F F C-
CO
1
3
1
CO
C
o
u
CO
*Vj
a
e
sa
c
o
^
0
£
CO
C
_0
M
S
1
u
CJ
"?
•^
"to
C
U
JS
=
ca
£
J
o
CA
4
lis value is site-specific. U.S. EPA OSW recommends the use of thi:
'ailable, consistent with U.S. EPA (1994).
ic following uncertainty is associated with this variable:
) The original source of this variable is unknown.
r^ at e™ ' >^^
CO
CO
'S
3
i?
15
to
3
O
O
CA
">
CA
O
"c
.2 ">
S c
E o
5 S
-x-
-------
pa
Ed
CO
H
ii
OH 5J,
y a
fa H
o a
u g
si
fa C/5
Ed Ed
03 H
?
I
1
,,
jl
s
•a
t
^
Q
«
3
>
1
^— '
p^
Z
r-fl
Q
U
Z
5
*fe
•^
"S
o
CA
C
« ^
.« 52
S E
oo T"
1.81 x 1O4
recommends the use of this value, based on Weast (19
es at standard conditions (20 °C or 298 K and 1 atm, 01
ncertainty is associated with this variable:
iity of air may vary with temperature.
H f I
< 3 o «
« g 2 *
«j -2 u
Ss s s
Cft
E
Uj
cd
*0
>^
.ti
o
u
w
>
i
2
IS
p"
o\
^*
^^
&,
E
W
Q
U
Z
"5
"5
• *- s •-
si I 1
< Q. § 2
p s 15 P
si | ^
D > t* ^>
"s
^>
a
a
o
:£
c
u
Q
*
C
"x "
Q) tV-i
IS "o
1 §•
d^ J
U 13
E ^
t^ *"*
S . ^
cd
"3 ?
.a s
E -S
0 c
•C 3
° »
•a rj
c PL
~ O
g u
'» "o -3
a- t SI
• r i '> C
^2 51
Varies (see Appendix
uld be determined from the CO
with this variable:
not accurately represent the be!
)f uncertainty is expected to be i
o -a >< w
"e "o Ho
•s | » -v
CO
CM
O
.id
cs
_g
£_)
o
U
C^H
O
^
>
'«
to
5
cf
*$$£*•%
';?i^t^
,%|V$JS;^
/*p^' ;2"v*r J
«^4 ^"v^
^'^o^'
^^ ^W-
<%&$,*$.
§.
rv- t
$?t£$y'' t"^
^*%*^1^
^^s
I
ii
jj i ^i
•
II
i ^ i ii
s^ 11
i
^
•&
2
o
<2
c
0
'S
u
c
o
V)
'S
^
K
S
n
-------
m
^H
ri
«
S
«
S
f
*H
GAS-PHASE TRANSFER COEFFICIENT
RFACE WATER AND SEDIMENT EQUATIO
(Page 4 of 4)
S
$£<
REFERENCES AND DISCUSSION
i
c
CO
*-»
£
1
Exposure Risk Assessments for Hazardous Waste Combustion
1 for Performing Indirect 1
NC DEHNR Protoco
DEHNR. 1997.
U
z
(4-1
o
O
a
o
CO
CO
CO
CO
oT
t~
o\
1
£
>w
CO
4>
'o
U
U
O
T>
CO
1
>>
"u
>
'§
U
, ft, 4, and //„ values of 1.2 x Itf3, 0.4, 4, and 1.81 E-04, respi
rce of information for k and Af
sources of the variables pt
.S. EPA (1993a) as its soui
is cited as one of the
: paw&jua, and(2)U
This document
information foi
ns. Working Group Recommendations. Office of Solid Waste,
Ci
isks Associated with Indirect Exposure to Combustion Emissit
September 24.
'gyfor Assessing Health R
ment. Washington, D.C.
ddendum: Methodolo
Research and Develop
^£
ca o
CO 4>
Ox o
2 £
. o
< T3
o, s
w
tyj
D
7rf) value of 0.001 1, (2) the recommended von Karman's constani
hese variable values are not identified.
w —
1997) as the source of (1) the recommended drag coefficient (
us sublayer thickness ( A.^ value of 4. The original sources of
(1994) and NC DEHNR (
ended dimensionless visco
is cited by U.S. EPA
, and (3) the recommi
This document
(A:) value of 0.4
ms. External Review Draft. Office of Solid Waste, and Office
.s
Risks Associated with Indirect Exposure to Combustor Emissi
10.
logy for Assessing Health
hington, D.C. November
ddendum to Methodo
j Development. Was
, EPA. 1993b. A
of Research am
C/3
b
onstant (K), and (3) a value of 4 for the dimensionless viscous
U
coefficient (Cd) variable, (2) a value of 0.4 for von Karman's
riable values are not identified.
lue of 0.0011 for the drag
; original sources of the va
recommends (1) a va
ess (AJ variable. Th<
This document
sublayer thickn
'ous Wastes . Attachment C, Draft Exposure Assessment
Waste. December 14.
^s T:
Level Risk Analyses at Combustion Facilities Burning Hazar
Office of Emergency and Remedial Response. Office of Soli
for Performing Screening
te Combustion Facilities.
vised Draft Guidance
CRA Hazardous Was
EPA. 1994. Re
Guidance for R
CO
3
lively. This document cites (1) Weast (1979) as its source of
U
8.
en
a
S
W
1— 1
00
i-H
•o
5
•*
•*
o
to"
x^
fvj -O
? i
J!
s J
i|
•J§
•tf 0
sources of the variables pa
S. EPA (1993a) as its sour
is cited as one of the
^and//a, and(2)U.
This document
information for
s the source of#, pw, and//,, variables of 1.2 x 103, 1, and 1.69 x
C3
;d. CRC Pres, Inc. Cleveland, Ohio. This document is cited ;
mistry and Physics. 60th e
RC Handbook of Che
ly.
(J U
oj -5
t CJ
<* 8.
•— ' (73
. U
U 1
jS
tft
A
U
-------
/-^.
21
o
^§
z s
^ O1
co W
§s
s SI ~
2 ii °
S "S a
g < g M
H p g ""
pa a
O H
M
w u
pa •<
^5
PM
co,
8
S |
3 "O EX
O C te
5 « 0
2 to" •"£
c^
*J P-H >»
3 <& _g 3
II *
° 3 £
T3 §, ™
S | g
>•» &o
§1 §
rP T3 flj
Sol «
3 S > •§
•g o o .5
" O .S B°
•^ cs W S
"s ~rf 'S S
c • ^ •! f 1
I 1 1 a 1 1
S 7> «> .a 8 o
S 8 § S 2 |
a o -1 JS s J5
P"* •»- CO ^s tn ijj
"S ^ W S W*
c ,±j *c o S
o> 3 S u 2
^ ,c« > ^ ^
CM C
c o <«•« ^ t*_
,0 «i o trt O
S o •§ § w
§ « S o "I
•a .j; r ^ g >
"g o *> ^ E£
to M g "g ,O "fi
§ •— .e -a «> 3
3 | P •§ S, ?
M V . Q jS"
en S tj en S3 £S
O O tp< en 5 *S
1 ^ "8 1- "8 2
1 « ?*ll s
i 1 •
>fc C *j-- O
S '5 T o S §•
•<-i 5 « J5 3 2?
| 1 |||| |
cS C ^_, pi 1 on f-
3 "S ^" S ^ flj i-J
-fcrf -^ Q ^? *Q
D *H "Q
co Q tn
•C S "T^ ^*
H ^ ^~s W
^^
\o
b
i-H
-
S
^
"Q
•
S
<
^
b-
g '
3 ^
I Q
-J
•^
1
•^
CO
•^
•
•^
i
>•
1
§
1
Q
_0>
S3
^J
^
if
s\v/»
^
-'"*;l^>
;'*"4?r
5 l'^w^
s?,'*^' ^^.
';'-'^'?
? '^^
*
^j/^/^
'*X#S
,$»J3j>
t~'
'.<• •»/-
^'^^
^:
^V^j;
S
4^^
Ml
H
8
HWK
«3 S
J= 0
2 I
s .2
3 O ^
13 v
> Is *
— -o 2
"3 e _
i2 "
U a O
•~ "S D,
O
5 "s '"*
• S §
y (U
i i *i\
£ fe "°
•S eo* ^ 5
£ C w *
§01 _ n S^
_ _ _
•o 'S x "C *S
4j 3 *J S 0
C9 S 3 C 2
3~ ° ;; « o .•§
•S — -a 's S
•s 2 ^ i oo
! 1 i JH
« Jg S* C3 ,i\ L*
U S > o 4> S
•C C. » " js °
1 1 ^ ° H
s
i
EH i^
m ^
i *
P
i
i
•
^s
^s
k
c
2
CO
g
8
2
a
^
.5
3
IS
^
m
^
s 3 * ^ •§
•S S e b u
o -a o ° f
1 1 1§,
"" o 5 so
S3 il
o i1 1 .1 1 "s
1 1 III!
I 1 ~
H r-i ^^
u
i
^
CO
-2
*o
t/5
•^
5
x"
n
-------
so
fH
«
CO W
g H
O Z
u a
3 W 2
pi He
pa
H
j
<
|
pa
u
BB
BQ <
i
a.
4>
JS
•5
a
a
1
°
2
•g
«a
>
u
1C
'o
u
&
0>
*O9
S
Varies (site-speciflc)
variable is site-specific (see Chapter 4). Uncertainties associated with this variable ;
CO
p
CJ
£
oo
c
'>
'u
B
1
on
S c
es .O
. . "en
•";; <~j
1 §•
H -o
^
« __
a U c
U ^ K O
b c3 (fl *r^
S 1 « » i |
u "° K (i *" "
3 CO 3 O p^ O
H Jc S 3 ^ S
•s e" 3 ^ § i
C Q es .M u ^
11! |I'
^p ^^ wi «v ^ aj
Jj H 3 g> -y
Varies (calculated - Table B-2-8)
variable is site-specific and is calculated by using the equation in Table B-2-8.
atainties associated with this variable include the following:
The default values for empirical intercept coefficient, a, recommended for use in th
average values based on various studies of sediment yields from various watershed.'
may not accurately represent site-specific watershed conditions. As a result, use of
contribute to under- or overestimation of the benthic burial rate constant, kb.
The default value for empirical slope coefficient, b, recommended for use in in the
on a review of sediment yields from various watersheds. This single default value i
site-specific water shed conditions. As a result, use of this default value may contri
ofkb.
_eo g
S D C- Ci
CO
CO
JO
1
3
1
1"
"u
c:
u
1
00
CO
^H-
•^fp.
'1$:' '&)
8f
'!-£>;':'
'^f%
ii^
if
<>iM
£.'S§
1
i
i
Pi
p
m
IP
*• — *
" 'I S?
> cd
S - >•
^=§•1
_§ i £ u
-^ o
0 U- KJ «
4-1 O (•* It
B ^"^ ^
^ § 3 "Si
s '« i §
ill 1 5
i) u o S
ts > fc-
co o O S
tf >H S 0
Varies (site-speciflc)
variable is site-specific and should be an annual average value.
following uncertainty is associated with this variable:
Use of default average volumetric flow rate, Vfx, values may not accurately represei
conditions. Therefore, the use of such default values may contribute to the under- c
it is expected that the uncertainty associated with this variable will be limited, becai
photographs, and gauging station measurements— from which average volumetric fl
can be estimated— are generally available.
•a "a ^
00
ob
^
1
c
_o
CO
O
>
^
u
en
'E
^
^
L^ LH t*"^.
t^
"s
^
a
£
" >>
1?
J2 w
O ca
o _
2 g"
SJ S
< •£
*
-------
* e
M H
« K
a d
V)
'S
<*>
&
£
o
m
-------
CO
Z
O
CO
Z
O
U
2I
09
s
09
g
CO
p
2 <
2*
0Q Cd
CO
t^-
»^
I
1
o
u
e
_o
2
A
•e
^
S
0
tt>
J=
O
IH
*$
S o\
u d
£<
Sg2
0 .
w
t*-l .
o 3
ffl
•8*
c e
S S
E «
"g 'a
S5
rs
u 00
•? g
i 2
o, 2
IP
F^ r^
It
•s§^
« —•
i OSW recommends
>y U.S. EPA (1993a;
.
00
0 §
S.2
33 ^3
; is site-sp
center of
— a
•§£
| §
H J3
with this variable:
1
a
•3
o
en
g
«J
'|>
ig uncerta:
c
'»
_o
1
a
0 .4? £
,J5 •* ;r
!G „_ P
'3 0 fc
o — 2
o, g e
^ .2 u
3^ ^ "S
» .i 's
•*_> +3 *
C cfl HI
S u 35
s § g
S. o 8
*> IH .O
X ^^
•3 S .S
1 « 1
1 S "i
S _c -°
« * o
o o **
S * -a
>, 5 fl
CO 3 O
E £ g.
a is S*
•*f c °
^. 8 -2
S x «
ti-S
111
1 g .2
or depth of upper be
:, use of this default '
ty associated with th:
§11 1
J= ^R *"
1 SS S3
> 0 o
— > =c e
"3 H s
<2 « 'S
* o s a
l!!|
g •=> > |
C Ui O P
!7 o i S
J8 a o §
P ^ K JJ
S™*'
E
c
u
•5
u
CA
u
s
1
«>
-------
09
W
J
S5
$
1
C«
I
in 9
o g
in gr-
aii <
9 »
|
*
•a
§
c
S
s
i
ts .
ssociatei
mber 24
ring Health Risks A
ington, D.C. Septe
ndum: Methodology for Assest
arch and Development. Wash
93a. Adde,
ce of Rese
2 £
. o
< -a
W §
•S
a.
u
•a
-o
u
1
g
o
o
a
•o
«s
u
00
2
1
^-N
C-
T3
A
U
1
to
«J
"8
•o
§
g
o
g
•o
§
&
1
1
P?
O
3
1
CO
e
1
>^
"S
u
o
g
SO
1
co
S3
•JC DEHNR (1997)
*-<
1
f
ON
^~s
2S .
u g
co 73
u «3
•— x
ument is c
benthic la
U I*
o u
•o o,
CO &
•S 3
S'o
•a
.c
CJ i
S
CO
U
«
<+-
Q
8
£
o
«
ctf
(5
&
_o
">
S
cd
S
£
to
1
£5
^
1
s^
^
I>1
1
o
S
1
&5
ci"
•***
8
1
>5
•s
i
"§
1
1
••^
43
ssessing Health Ris
dum to the Methodology for A.
shington, D.C. November.
St CO
1^
^ c'
-o g
m E
o\ o,
o\ _o
^ 73
&Q
u
_3
73
0 >
«6?
8"S
1 §
S -B
0 !S
M i3
* c
•d 8
u c
tn o
•3 °
o ce
&T3
en ^2
i> £
% .a
'u *fi
S s
B.JJ
1^
I'S
g s-
° «
c -o
1 a
"3 ^
u eo
II
^ C
u o
a §
^•i
* £
E g
3 t~-
•g «s
£ <»
•3 t3
3 C
&8
•2 1
*O o
o S
^ i-.
I 8
?l
c u
11
* 2
g,H
§ S
U C3
CO -r"<
-------
CQ
S
CQ
I
1
IS
o
I
s
o
u
•s
<**
o
u
•f
u
tO
I
•i
I
u
•o
"8
•s
I 8
r i w
« o
II
u
•o
e
3
f ts
oo <
§ =
•§ S
fe. ?
I
ta
c
e
s s
fcN Cfl
1 *
b 2
I
u
3 S
s
J
-------
CO
Z Z
00
H H
r-
TABLE B-2
^H
01
H
Z
H
U
Z
0
r i
. COLUMN <
S
w
H
Ed
CO
fitf
^
?
»
fe
p
^ u
^, ^^H
O 5s
H p
CO
1
£
5
§
35
f
»
jp^
W
|| Variable
0 to 1 (calculated - Table B-2-10)
Gfl
V3
"E
9
>>
1
U
CS
"S
o
Q
C
o
o
tS
p-
o
M
variable is COPC- and site-specific, and is calculated by using the equation in Table B-
cn
O
a
•^
u
.£
B
_O
^rt
^
C
C
following uncertainty is associated with this variable:
o
. g , "8 8 o o
1RUT3 U t3 tS O C »»
U kri fll -4— » fl\ ^ •-** ^
•yo*2*-* '^cLS^-rtE
%cao
hSiS'So coc«,2o<»
l^is^ g-jsgs
§. sr^^s S< §.-&>.S >>§^^i3-£
'!-ll>^ iJfffisf
il||ll Sjll^i
Unlit s iSlill
The default variable values recommended for use in Table B-2-10 may not accurately r
body conditions. However, the ranges of several variables — including dbs, and 6bs - is
the uncertainty is expected to be relatively small. Other variables, such as d^. and df, c
the basis of generally available information. The largest degree of uncertainty may be
medium specific OC content values. OC content values are often not readily available
different locations in the same medium. Therefore, default values may not adequately
conditions.
Varies (calculated - Table B-2-9)
variable is COPC- and site-specific, and is calculated by using the equation in Table B-
following uncertainty is associated with this variable:
The default variable values recommended for use in the equation in Table B-2-9 may r
-specific water body conditions. The degree of uncertainty associated with variables I
to be limited either because the probable ranges for variables are narrow or informatioi
is generally available. Uncertainty associated with/w is largely the result of water bod
content values, and may be significant in specific instances. Uncertainties associated >
water body (L,) and overall total water body COPC dissipation rate constant (&„,) may
instances because of the summation of many variable-specific uncertainties.
^ •- u /-.
iJ
E
n
a li
<"> "O -5
8|1
t-s.-g
X) C .0
n .2 -o
U .3 c
IS"
1
"3 o 5
£ g|
H o o
s
-------
f-j *-*
22
h a
Zr-r-l
^^
r>-
TABLE B-2
o s
U M
: COLUMN
RAND SED
a H
g H
H ^
^
^
1
i
o
H
1
45
i
i
la
u
J
^"*
1
CO
.2 "o
•S u
5 ob
8 «
^*
"8 -s
o u
•a >
TO 5}
s i
c E
Q< ~
CO £
i u
'co o
0 S
u 2
o S
IH g
iy not accurate
nder- or overe
f default values for depth of water column, dm, mi
fore, use of default values may contribute to the u
ll
s
CO
U
3
'i
>
Cfl
*r*
bO
.£
1
s
ta
E
fO
c
u
Cfl
1
be limited, be<
tainty associated with this variable is expected to
ally available.
E §
3 Sb
E
B
E
3
1
0
Cd
S
"8
"s,
Q
,
1
o
j=
o
11
£ ^
c Cu
ro W
O .
o ^
CfeH H^
° j-
n, 'g
o ^
73 E
c
CO
s
CO
CO
B
'S
3
S>
j
U
1
U
"o
1
'
.•§
*to
c
u
S
&
Ui
O
ta
§
«j
§
E
i
0
IS
scommended default value for depth of upper benl
c
1
£
i
d1
<*•*
0
g
_o
«
.1
CO
>
0
c3
fe
T3
B
3
U
J3
0
ay contribute t
conditions. Therefore, use of this default value m
t
|
B
U
f
o
CO
g
S
Jj
T3
U
•^
E
i
o
i
a,
variable is ex
ver, the degree of uncertainty associated with this
imended range.
i?
E
u
E
•3
U
u
2
*^
J5
S.
o.
3
*S
D.
Q
U
^
,
-------
f»
1H
N
CQ
S
BQ
•<
H
1
ENTRATI
ER COLUMN CONC]
TOTAL WAT
/— s
rf\
^/2
g
^^
r EQUAT]
PER AND SEDIMEN1
(SURFACE WA'
§
(Page 4 of 4)
2RENCES AND DISCUSS!
b
>>
3
1
jj
'5
i
1
'aste Combust
ssessments for Hazardous W
NC DEHNR Protocol for Performing Indirect Exposure Risk A
f~^
ON
ON
~^
oi
z
E
a
Q
U
2
S
1
CO
M
C3
/— N
R
m
icument cites U.S. EPA (199:
is cited as one of the sources of the range of db, values. This dc
c
..1
^J
•s
w
&
g
1
i
en
g
I
is cited by U.S. EPA (1994) and NC DEHNR (1997) as one of
c
CO
3
g
•3
&:
I
Asians. External Review Draft. Office of Research and
i.
to Combusto
iated with Indirect Exposure
ddendum to the Methodology for Assessing Health Risks Assoc
Washington, D.C. November.
•^
£ 1
ON £
ON Q.
~™ O
. "3
<>
n u
t-U .n.
W "
W3
S
iter column, cannot be precisely specified. However, the
ca
£
librium with i
he portion of the bed in equil
states that the upper benthic sediment depth, dbs, representing t
5 that values from 0.01 to 0.05 meter would be appropriate.
= 1
o w
E «
3 "ti
O ID
•O £
C/3 3
£ °
H -a
•.. Attachment C, Draft Exposure Assessment Guidance for
HJ
1
g Hazardous
Combustor Facilities Burnin
•aft Guidance for Performing Screening Level Risk Analyses at
us Waste Combustion Facility. April 15.
Q|
rH S
o\ e
ON EC
^ i
IS
WJ
a
ended value is the midpoint of an acceptable range. This
and db! is expected to be minimal either because informatil
;iated with the variables /^ and Cwo/ is largely associated
ium, use of default medium-specific values can result in
E jj 5 "g
[•IS
nil
^ a .c e
32 D. a
depth of upper benthic layer
of uncertainty associated wil
for a variable (dj,,) is narrow
iry widely in different locatio
is cited as one of the reference sources for the default value for
U.S. EPA (1993a) as the source of its information. The degree
hese variables is generally available (d^) or the probable range
default OC content values. Because OC content is known to va
:rtainty in some instances.
S S M o g
c -a E u §
n u z! M ^
3 •" « 3 e
8 S g a g
•§ £ 5 -s (H
W P CJ f ' —
•« ti "is c
e 8 o -s £?
H -o
-------
l
00
FH
?
s •§
15
c u
o s
0 73
E3 >
S |
1 S
•g O
ra Q
>
i"
"3 c
si
I8
Is
en O
sS
.- - 00
D "o « o
o O « -a
"
•a
c
Si
'•8
00
c
S
s
o
03
M
C
E -3
I
c
u
1
•a
I
C
O
u
c
o
o
a.
-a
>
o
I
0
-------
00
oa
H
P^ LJ
Is
|l
O H
o a
u ^
*s ^
o
M
V
Ml
es
s
1
1
e
j^
**rf
»
0
.2
1
A
C
, 0 —
O -^ fli C *j
.•S S3 J3 « C
E F c S
1 O -^ o *J j£»
3 § 2118
r^. .TO "S crt *r^ C CO
Varies (calculated - Table B-2-17)
variable is COPC- and site-specific, and is calculated by using the equation in Table B-2-1'
following uncertainty is associated with this variable:
All of the variables in Table B-2-17 are COPC- and site-specific. Therefore, the use of def
specific values, for any or all of these variables, will contribute to the under- or overestimal
The degree of uncertainty associated with the variables dm and dh, is expected to be minimi
for estimating a variable (d^) is generally available or because the probable range for a vai
uncertainty associated with the variables fm and Cwtol is associated with estimates of OC co
values can vary widely for different locations in the same medium, using default OC value
uncertainty in specific cases.
-2 o
£ P B
oo
c
c
o
•a
S
c
o
8 c
CU
0 -Q
U o
"cd <5
o $s
s
i
0
O5 .-^
S ^
PQ o
"o -S
CO M
-o «
O ^
^•4 *n
1 1
S2 ^^
I
-------
*
/— N
DISSOLVED PHASE WATER CONCENTRATION
(SURFACE WATER AND SEDIMENT EQUATIONS
(Page 3 of 3)
>>
3
>-»
jj
REFERENCES AND DISCUSSION
NC DEHNR Protocol for Performing Indirect Exposure Risk Assessments for Hazardous Waste Combustion Uni
DEHNR 1997. .
U
z
) as its sources of information regarding TSS, and
J3
f"J
$
y
m
o\
o\
is cited as one of the sources for Kd, values and a default TSS value of 10. This document cites (1) U.S. EPA (1
as its source regarding Kd,.
This document
(2) RTI (1992)
ng Group Recommendations. Office of Solid
3
1
§'
.0
ddendum to the Methodology for Assessing Health Risks Associated with Indirect Exposure to Combustor Emiss,
ce of Research and Development. Washington, D.C. September 24.
^ £
s 0
1 "§
Cv a
~" s
<• t«
CO
OH 4
W &
CO
D
lie of 0.075 for surface water. The generic
ecific value; however, OCis medium-specific.
Kd, values by 7.5, because the OC value for
s source of the recommended TSS value.
•a g- o -s
> _i •£ x
&•§ t?~
E -S Rr
"l-a^
E|J-H CX 1— <
o -a C-
is cited by U.S. EPA (1994) and NC DEHNR (1997) as one of the sources of the range ofKd, value and the assu
Iculating partition coefficients (soil, surface water, and bed sediments) is as follows: Kdv = Kxj * OC,. Kx is a
'd, values was based on an assumed OC value of 0.01 for soil. Therefore, the Kdm values were estimated by mull
> 7.5 tunes greater than the OC value for soil. This document is also cited by U.S. EPA (1994) and NC DEHNR
This document
equation for ca
The range of A
surface water if
view Draft. Office of Research and
u
rv!
External 1
ddendum: Methodology for Assessing Health Risks Associated with Indirect Exposure to Combustor Emissions.
November.
EPA. 1993b. A
Development.
yi
b
le of 0.075 for surface water. The generic
Ecific. The range of Kd, values was based on an
ir surface water is 7.5 times greater than the OC
•a S"2
™ A a
8Ji .
•o ^ d
•o o u 3
1 SO 5
is cited by U.S. EPA (1994) and NC DEHNR (1997) as one of the sources of the range ofA^, value and the assui
Iculating partition coefficients is as follows: Kdv = Kxj * OC,. Kx is a chemical-specific value; however, OC is
ilue of 0.01 for soil. Therefore, the Kdm values were estimated by multiplying the Kd, values by 7.5, because the
Fhis document is also cited by U.S. EPA (1994) and NC DEHNR (1997) as the source of the recommended TSS i
This document
equation for cal
assumed OC va
value for soil. '
f C, Draft Exposure Assessment Guidance for
s
.«
1
"5
aft Guidance for Performing Screening Level Risk Analyses at Combustion Facilities Burning Hazardous Waste.
us Waste Combustion Facilities. April 15.
EPA. 1994. Dn
RCRA Hazardo
CO
b
is cited as one of the sources of the range of Kd, values, citing RTI (1992) as its source of information.
This document
-------
II
CQ
H
O vi
^ z
»5«5
V
6C
a
U U
O S
O"' P5
P
Descripti
I
u
§
1
1
K
o
u
g>
I
O"
u
u
c
H U
ari
y
le
"Si
u
"c3
T3
ra
I
«
,
db
ng their
uation
f
Jb
13
3
8
B
_O
1
!§
^ P
o ^
u S
•8
O"
o b op to
i^ ro cj a) „
ra > -a 3 u
CJ i_ -_, "^ O
o S c« 5 c
s°Ii I
2 * £ § c
. o C o •=
s O '5
5 3 —
f a 1 S i
i-S-cn 8
*^ en d\ w
8X3 1 5
CO
I
u
al<
lat
abl
nd
th t
pecific
and
is associated with th
ed
the
the
PQ
PC-
rtai
CO
un
s.
m
t
y
c
le i
ing
ow
'
3
SB
.2 u
0 CL,
C8 O
£ u
-------
as
S
05
S
H4 rT>
05 W
o b
td Z
S H
§
Bj 4
£g
sl
§*
Ug
<:
£
o
o
§
1
1
e
12
§
Q
ja
S
•i
£
. * 1
S S si -3 «
a &•§ 13 I
c g I § 8
e S « c
35 M JG ** •»-
a •". S ^ s,
a-vl ^ ^3 •£?
u ~ oo > -j
f*j ca :> X *ii
C i 2 IS ^ JB
••* n .- 2 IS -2
s> § JS ^ S 1 -n
o\ -r- 7? a c .3 a
Varies (calculated - Table B-2-
variable is COPC- and site-specific, and is calculated by using the equal
following uncertainty is associated with this variable:
The default variable values recommended for use in the equation in Tal
-specific water body conditions. The degree of uncertainty associated i
to be limited either because the probable ranges for these variables are i
estimates is generally available.
Uncertainty associated with fm is largely the result of uncertainty assoc
be significant in specific instances. Uncertainties associated with the v;
because of the summation of many variable-specific uncertainties.
2 £ P ff
H H C- Ci
1
s
B
sil
±. g "
Tg "1^
•S S -0
i- .2 -o
" « i
co v-,
S c S
_ u £
« g _a
o o "o
H o o
a
tf
O >. «
co & a>
T3 .S S
§ s s
"* " -w
. _. J? 05
"SJ W M
c= o .S
1 §£
•a o .«
j< e S*
«S | _c
«s | "S e
< 15 2 g
x > « c
=3 S i 'S
c o S 2P
S. c u 'K
» S -S S
^ O *-• J3
ff O .S Sr>
•S O «> §
« r, c E
5 3 -2 S
x> ta -s a
Varies (see Appendix A-2)
variable is COPC-specific, and should be determined from the COPC ta
following uncertainty is associated with this variable:
The default range (8 to 2,100,000 L/kg) of Kdbs values are based on def;
Because medium-specific OC content may vary widely at different loc<
associated with Kdbl values calculated by using default OC content vah
s a e
I
2
O •*-*
CL C
IT §
II
T3 0
ai o
| c
c .2
O *3
e '€
=§ a
M h
•o "
U B
« s
•*?
3
t- 2
S S-
3 .S
"3 ^ '«
> a jfj
££ S §
•25 | §
%£ I"8
•S Cu c u
g W 3 o
>«<« s g1
«£D -a ^
VO ^ *J U
S c g 5
£ .2 8 .-
o i 2 g
>> 3 0, >
•s? a" P U
S u "-1 ?
§QD >% O
c u K
S" ? S u .
e o s u ft
S S O k4 U
e o o eo 3
E t2 5 o S
0.4 to 0.8
Default: 0.6
variable is site-specific. U.S. EPAOSW recommends a default bed sedi
:m3 and a solids density [/oj value of 2.65 kg/L), calculated by using the
eb, = i -BS /p,
is consistent with other U.S. EPA (1993b and 1994) guidance.
following uncertainty is associated with this variable:
To the extent that the recommended default values of BS and p, do not
body-specific conditions, 6bs will be under- or overestimated to some d
expected to be minimal, based on the narrow range of recommended va
.2 -Si .2 o
•3 ^ -2 Ja CT-
H — H H C-
s
11
J
>>
"55
o
S
c.
1
e
•5
u
V)
T3
U
CO
9?
-------
ea
s
ea
1
,„ r •
2
c
a
8
73
0,
i
1
ia *s
•? M 4)
^•2 "
ctf p « ui
ON O ^
2 c' !5 S
e£ 1 §s
W g o J
eo S S >.
• C O •£>
2 1 I'S
1 1 II
.2 «§ SB
S a
C T3 > U
O O 4>
q " § .g
0.5 to 1.5
Default: 1.0
, U.S. EPA OSW recommends a default value of 1
tie reasonable for most applications. No reference
S. EPA (1993b and 1994) guidance.
associated with this variable:
ault value for BS may not accurately represent site
Csed may be under- or overestimated to a limited
o ~ -; «; « 4J .
til * III
1 3 •! | § S 13
'5 "3 "S c »s "O
.» > 1 § E o §
S ^0 "S 6 *^ S
111 1 ill
.2^0 o
^ 1 -i P £
s
"So
c
.2
1
K
U
I
^
"o
.a
c
u
CQ
§
O
01 "°
H jr jj
> g« ^
^ 1> .--
3 ce cd
ea '^ >
t3 C .>»
W "5 "3
55 jjj C3
| g §
"S 1 «>
D *Q ^
S 0 y
4> " ^
(g « <*H
j- O cc
u J3 *^
^ V," C
«i S '-O
c O K
Varies (site-specific)
associated with this variable:
es may not accurately reflect site-specific conditio:
inder- or overestimation of the variable Csed. How
sources allowing reasonable water body-specific e
o K s ~ K
Ctv* "3 O
>\ ™ & o
'8 S > * 3
D. "3 •« ^ o
1 i 1 1 I
00 *O C C
JB c u- o "g
3 '? ° 1
1 | It*
•- ° ^
e
e
g
*3
o
o
1
^
o
OH
Q
,
T3
c« ^— •- S?
cs r*- -°
JD O\ o
— ^ p^ -Q
y OH "5
i ? 1 s.
* SC 5 X
.. rjl ta O
|Q S"
1 ^ II1
^ 1 "S '^
/-*. *L) O
1 1 =1
t< •§ §
CJ FT! ^ fl^
1 ' fS ^3
"O ^ 05 "S
4J "^ r-
0.03
. U.S. EPA recommends a default upper-benthic si
ted by U.S. EPA (1993b). This is consistent with
associated with this variable:
;s may not accurately reflect site-specific conditioi
- or overestimation of the variable Cscd. However,
TOW recommended range of default values.
.a 3 -2 js s a
So >? "a -g «
o .2 o i2^ *-* o
CB «Js 3 13 .S2 2
•^ o ao *o H _5
S S -2 "8 =§ — "
_ea C g u •g 13
j» J *£
S § S £
£
1
g
•3
0
5
c
JD
O,
3
C
S, &
Q —
^
-------
B
W
J
B
2
X
fe
DISCUSSION
REFERENCES AND
zardous Waste Combustion Units. January.
DEHNR. 1997. NC DEHNR Protocol for Performing Indirect Exposure Risk Assessments for Ha.
U
z
993a; 1993b) as its source of
t value is the midpoint of an
lyer. This document is also cited as
_H *-H fc«
ro 3 ~^
liment porosity ( 6bs). This document cites U.S. EPA 1
t value for depth of the upper benthic layer. The defa
the range of values for the depth of the upper benthic
This document is cited as one of the reference source documents for the default value for bed sed
infonnation. This document is also cited as one of the reference source documents for the defaul
acceptable range. This document cites U.S. EPA (1993a; 1993b) as its source of information for
one of the reference source documents for the default benthic solids concentration ( BS).
•raft. Office of Research and
u
Exposure to Combustor Emissions. External Review
. EPA. 1993a. Addendum to the Methodology for Assessing Health Risks Associated with Indirect
Development. Washington, D.C. November 1993.
cr>
S
ir sediment. The generic equation for
1 is medium-specific. The range of
OC value for sediment is four times
lis equation was identified. This
<£
range of Kd, values and an assumed OC value of 0.04
This document is cited by U.S. EPA (1994) and NC DEHNR (1997) as one of the sources of the
y u
•43
'x * OC,. Kx is a chemical-specific value; however, O
imated by multiplying the Kd, values by 4, because th
alculating bed sediment porosity ( 6bs). No source of
source of this range was identified.
calculating partition coefficients (soil, surface water, and bed sediments) is as follows: Kdu = K
Kd, values was based on an assumed OC value of 0.01 for soil. Therefore, the Kdb, value was est
greater than the OC value for soil. This document is also cited as the source of the equation for c
document was also cited as the source for the range of the benthic solids concentration (BS). No
mendations. Office of Solid Waste
e
>sure to Combustor Emissions. Working Group Recoi
EPA. 1993b. Addendum: Methodology for Assessing Health Risks Associated with Indirect Expc
and Office of Research and Development. Washington, D.C. September 24.
CO
S
U
i
«
!
0
J3
73
>
c
_o
83
1
U
!
en
T)
73
>ed sediment porosity value (6bs), the default benthic s
This document is cited by NC DEHNR (1997) and U.S. EPA (1994) as the source of the default I
range for depth of upper benthic layer (dbt) values.
posure Assessment Guidance for
t3
es Burning Hazardous Wastes. Attachment C, Draft 1
EPA. 1994. Draft Guidance for Performing Screening Level Risk Analyses at Combustor Faciliti
RCRA Hazardous Waste Combustion Facilities. April 15.
CO
S
as its source of information
lent cites U.S. EPA ( 1993a; 1993W
s- c
of 0.04 for sediment. This document cites RTI (1992
fault value for bed sediment porosity ( 6L). This docu
This document is cited as one of the sources of the range of Kd, values and an assumed OC value
regarding Kd, values. This document is cited as one of the reference source documents for the de
lit value is the midpoint of an
yer. This document is also cited as
.« «
t value for depth of upper benthic layer ( dbs). The def
the range of values for the depth of the upper benthic 1
as its source. This document is also cited as one of the reference source documents for the defaul
acceptable range. This document cites U.S. EPA (1993a; 1993b) as its source of information for I
one of the reference source documents for the default benthic solids concentration (BS).
-------
1
H
»M
«5
O
a s?
ft z
H 0
S §»
3 SH S
S 8§ 2
H a J
M w 0- 4>
PP Z "*
H 2 ^ S
i|
r"! £3
u w
Z H
O ~
U
H
BH
1 3
§ ^ O
O- X ^v
C 43 W
SH flj
° <§ •£
| £ ^
.c cs c
~ -a CB
£ °° 0
"*" ° i>
I | ^
8 o •» :5
tS £2 ^" rt
fa « *"* .S
CO {5 4) Q^
§ 0 3 C
CLi P3 eft *^j
O T3 •" 0°
u 1 * "° "S
X3 ^ 0) a> y
1 | i i 1
fc c "g y •"!
o o _ « ff
8 -i | -s I
s 1 1 s S
t ll 11
O _ " s*
§ 1 ll iL
1 1 11 ill
s -i •§ i * * .&
Q g, 00 § g ^(g M
•o '? ,S .S 8 « "o
& -2 o . js .53 oT ±;
| 2 * 1 -f ? 1 1
^j O ' O S5 «D Ct3 X
| I i|| i|5
BO S B.'oa. "Bo^
c ^3 s^^ S^G,
•B § .^ollaj J^"^1
u 2 'c-g'tB oi01
1 1 til IJhf
O, ^ k^ O (5j C> C
1 ^ s s 'E, ^ s 1
! l in ill
1 i |li If!
^* O5 ^t3 e/i ^^ "* S *T5
§ 1 II Is III
u -3 Is ^^ — "v J= J2 «
"S g '6-^'Jc1'1>o'3g
_S § ie§Jc°-2
^ S " "5 *C -H '-5 — 'a
13 B -aJSai^JS^-g
§ | 1 1 g 1 1 * 1
"ra ^ o ai "H. *-• o S 41
g, *g ^-Ccw-^t?^
o .S i-JHOTDHDr"1
.22 o ^^ ^ /^ ^^
S H ^CL $S S
|t
11 -B
| 1
s a1
•i*
i§
d II 2
*- 3> O
^ kTK u
^^** ^3 &*• c3
CO ,-Ck. =00 3
vj« ^ ra t^ T3
O
,
r " " i
g
^
i
ex
i
q
j±,
J^
'S (^
1 i
+
f
^Ju,
kT
O)
I
jc ra >.
<* S 'S
ft •*"* O e
S^ *® ^jj
1 SJ S w
a S J S
g "S E -i
q i £ §"
^ ^S *
^-s *5 2
o»e =3
I»X "*~^ >v
^33 s
* ^ »-i ^
" o 1 t!
1
£
£ ^
I
w
tl^
f
1
1
*«
d
oo
o,
5 §
^^
i
"ws — O
It f
Si 1
= •§ 1
l-^. o S ^J
.CT1 ut ra Q>
-. — W) O
!& |£ E
>> u
60 g U
II 1
ll 4
RJ T3 g
CO O
ll |
S £ g
"8 S I
C8 .2 -
11 f
W &, G
<-> a C
•- • .2 ^ &> E3
"£ s g g B
I! II |
S- a 52 ^
£ ^ 00 (S «
"^ « r~ ts "
^" § do •§
C "Q ^
^ o S ,,2
S Q J8 II " ^
S >> "s x-» o '3
S ^ — ^ ^ "
"^3 Ji o 5C 2 «
— t. ~t r? 0, 0, o
"S ^ o a K
E 2 | | f
% c -g U «
u 13 c u '-j
N< -^ U r/J ~T
V 3 cw s.^ ra
c ^ u M "
f. S & c u
O w) rt £^
fa £ < *H- <
ir>
BQ
-------
I
specific
Varies
i
GH "O
§
U
u
U
o<
O
U
O)
i
n
"
'
3
§
•
O o
U a
•s-E
IS.
.9
odeled
Varie
1
determined by air dispersion model
te-specific.
T3
O* JD
s-g
8 I
&£
1^
to J3
"Hi
"1
8""
PC-
iate
variable is
rtainties a
s-a
4)
-------
TABLE B-3-1
Z
O
M
H
HH
en
O
a, ^
Q Z
Bg
§|
M 9
TRATION DUE TO D
ESTRIAL PLANT EQ
(Page 3 of 10)
Z X
U b3
ZH
O ~
u
H
iz
2
i
>
£
S
p
J
"S,
•c
g
e
|
< ^
A. I-i
S 8
ttf
3 C3
0
S §
— "B,
"? M
£H O
4> J3
.2 eo
0.5
,5 , which is cons
f deposition that
£ S
§ 1
jy tfe
o -2
2 «
EPA OSW recommends the
'4b; 1995) in development of
t/5 §}
D C-
09
3
•S3
"c
—
IS
•3
U
i
c
•a
(J ^
S "B,
2 <«
a. ?
o c
u _o
'e O
£ O<
•8
1 f
1 "S
§S T3
ea u
Sb|
1 1
Wl ^*/
<4-H 15
O ^s
w ' — '
U en
im co
a
cd
n
CO
B
S
<*H
O . C
^ So « -S
i|IS
•rj * »-<
§ ^ » A?
^ c a c-
c " 3 ->;
a p « s>
o. S, g,;>
J B oo" "S
i,.¥s &
3 1 -S" S
nil
•2 -a oo to
&!ES
CJ .3 »Q
U
J
00
c -3 o
J2 <2 S
1^|
S|s
P^_ u 3
^S.i
*S *° e§
ex £? p
~> *. "s
-0 u
f ll
c 2 ±!
!§!
T\ "3 'i '§ 8
.So"" 5
05 o *S
llll 1
|l|| f
i. Sharp, Sjoreen, and Shor (1
'0) for other vegetation classe
xponential regression equatio
nd Yp (Baes, Sharp, Sjoreen,
ertainties associated with this
55 i^ io w o
ffl O § f§" 3
o
c
" -at
a :s "s
i ii
a l> E
O- *S &
° 'o 'u
•0 3 S1
« «§ 4
**" ^ *^
.52 S %
W5 i-H 4)
^ ^ CX
lin (1970) on the
Sjoreen, and Sho
not accurately re
Is • fr ^
EC -C ^^
a £ V) O
JZ "E, en o^
^."S | ^
fjij
The empirical relationship d
accurately represent all fora
The empirical constants dev
relationship developed by C
^ ^^
^ CN,
^
t-
n
-------
n
S
BQ
$
15
M
08
a,
RA
I
*
S3
§
1
*c
u
O
ce
•c
ee
Anions: 0.20
Cations and most Organics: 0.6
Cfl
1
"S
3
1 *
O O
ft °
*o 'C
*j 3
O ce
rj 03
JN "75
S °°
° u
.2 "^
2 i
ti, •£
_
*•
« 1 i , .* 1 * = „ 2
rSfrt.-r- eW?"On rt «J J3 O
Consistent with U.S. EPA (194b; 1995) in evaluating aboveground forage, U.S. EPA OSW recommends using tl
value of 0.2 for anions and 0.6 for cations and most organics. These values are the best available information, bi
on a review of the current scientific literature, with the following exception: U.S. EPA OSW recommends using
Fw value of 0.2 for the three organic COPC that ionize to anionic forms. These include (1) 4-chloroaniline, (2) i
nitrosodiphenylamine, and (3) n-nitrosodi-n-proplyamine (see Appendix A-2).
The values estimated by U.S. EPA (1994b; 1995) are based on information presented in Hoffman, Thiessen, Frai
and Blaylock (1992), which presented values for a parameter (r) termed the "interception fraction." These value
were based on a study in which soluble radionuclides and insoluble particles labeled with radionuclides were
deposited onto pasture grass (specifically a combination of fescues, clover, and old field vegitation) via simulate
rain. The parameter (r) is defined as "the fraction of material in rain intercepted by vegetation and initially retail
or, essentially, the product of Rp and Fw, as defined for use in this guidance:
r = Rp • Fw
The r values developed by Hoffman, Thiessen, Frank, and Blaylock (1992) were divided by an Rp value of 0.5 fi
forage (U.S. EPA 1994b). TheFw values developed by U.S. EPA (1994b) are 0.2 for anions and 0.6 for cations
insoluble particles. U.S. EPA (1994b; 1995) recommended using the Fw value calculated by using the r value fr
insoluble particles to represent organic compounds; however, no rationale for this recommendation is provided.
Uncertainties associated with this variable include the following:
(1) Values of r developed experimentally for pasture grass (specifically a combination of fescues, clover, and i
field vegitation) may not accurately represent all forage varieties specificto a site.
(2) Values of r assumed for most organic compounds, based on the behavior of insoluble polystryene
microspheres tagged with radionuclides, may not accurately represent the behavior of organic compounds
under site-specific conditions.
Varies (modeled)
This variable is COPC- and site-specific, and is determined by air dispersion modeling (see Chapter 3).
Uncertainties associated with this variable are site-specific.
&
CJ
1
« 8
| .S
I"
"-1 "t
Z n.
«J *•*
- 1
u •"
>-, e
•S-2.
N •;;
1 a
J^
1=1 T3
a.
S
Q
-------
09
W
ca
$
0
i— I
•s
in
1
£
1
§
33
a
"C
g
O
0>
3
•i
es
^
CO
•o
0
"3
U
~
^
£
a
18
U.S. EPA OSW recommends thefcp value of 18 recommended by U.S. EPA (1993; 1994b).
"ca
>
E *•"
8 ,2
S rt
'? c
ton
11
3 co
"cj c^
the midpoint of a possible range of values. U.S. EPA (1990) identified several processes— il
water removal, and growth dilution— that reduce the amount of contaminant that has been de
•
.
e
^5
0
CO
U
8
surface. The term kp is a measure of the amount of contaminant lost to these physical proce
EPA (1990) cited Miller and Hoffman (1983) for the following equation used to estimate kp
o
£
a
B
'i
a
1
CM
O
kp = (In 21 tl/2) • 365 days/yr
where:
t1/2 = half-time (days)
Miller and Hoffman (1983) report half-time values ranging from 2.8 to 34 days for a variety
^ t>
M- H
2 ,£>
rf 0
C\ co
ON O
— . CO
>^x CO
^ u
< 8
o- 8
U G.
herbaceous vegetation. These half-time values result in kp values of 7.44 to 90.36 yr '. U.S
recommend a kp value of 18, based on a generic 14-day half-time, corresponding to physica
c
1
g
K
•o
o
.§
14-day half-time is approximately the midpoint of the range (2.8 to 34 days) estimated by M
(1983).
Uncertainties associated with this variable include the following:
'3 R.
cd -3£
£3 CO
1-t ™
00 CO
-O lo
,_— ™
S S
'3 "
c -o
U g
(1) Calculation of kp does not consider chemical degradation processes. The addition of c
processes would decrease half-times and thereby increase kp values; plant concentratil
« =g
"*i t<-«
t °
u o
to -r"
C >.
o _g
• •H ^^
i 1
CO «_>
u C
increases. Therefore, use of a fcp value that does not consider chemical degradation pr
(2) The half-time values reported by Miller and Hoffman (1983) may not accurately repre
COPCs on plants.
•/•>
g
Sl
a
l .
(B
rG
'£
CO
U
(3) Based on this range (7.44 to 90.36), plant concentrations could range from about 1 .8 ti
times lower than the plant concentrations, based on a kp value of 18.
"k
C
"o
s
u
8
C/5
Cfl
U
•§
3
C
CO
£
.&
CQ
-------
«
w
oa
$
O
ve
4>
M
§
1
18
£3
§
1
1
a!
Q
_a>
3
OS
1.
<*-.
o
u
: values in the absenc
0.12
This variable is site-specific. U.S. EPA OSW recommends the use of these defauli
s
£
00
c
1
1997) recommended
essive grazing.
site-specific information. U.S. EPA (1990), U.S. EPA (1994b), and NC DEHNR (
a constant, based on the average periods between successive hay harvests and succ<
T3
0
I
(11
days) and the averagi
follows:
For forage, the average of the average period between successive hay harvests (60
between successive grazing (30 days) is used (that is, 45 days). Tp is calculated as
&
Tp = (60 days + 30 days)/ 2 -f 365 days/yr = 0. 12
|
cS
is
S
H
ulating the COPC co
These average periods are from Belcher and Travis (1989), and are used when calc
in cattle forage.
The following uncertainty is associated with this variable:
1
oo
J*
00
emains unchanged at
(1) Beyond the time frame of about 3 months for harvest cycles, if the kp value r
Tp values will have little effect on predicted COPC concentrations in plants.
£.
o
JD
s H
O <*H
5 f
g to
S, S
X H
U CQ
<-. JS *j
C K S
a u ra
"E a o,
<*- S ^
o .0 o
J3 5 C
*- c« C
00 0 -~
c n. tJ
•3-s a
£
£
«§
o
J3
"es
>
•o
in the average rounde
0.12
U.S. EPA OSW recommends using the value of 0.12. This default value is based c
CO
cn
4J
"S
9
!>
1
1 §
s£
s =
oo o
'« 's
^ 0>
-. ^
>> c
Q 8
y«s
i
nt parts (Taiz at al. 1
1 the range of 80 to 95 percent water content in herbaceous plants and nonwoody pla
The following uncertainty is associated with this variable:
?-.
*-~i
CO
3
'1
Tf\
it from plant varietiei
(1) The plant species considered in determining the default value may be differei
present at a site.
-------
H O
TH
f>
pa
H
j
PQ
g
a o
O ^
H fc
w 5
^
RATION
STRIAL ]
gfc
y
H
o1
iH
'S
r-
1
1
1
§
5B
a
g
09
Jf
B
s
1
e
"s
1
Q
00
.X
"o
CO
S
o
rv
8
u
00
B
•3
1
tfl
o
"O
"a3
£
I
"E.
U
Xj
CM
0
B
_O
•Jj
O
Q.
U
3
"O
^s
B
i
B
U
S
a
Cft
^D
^
^
j_.
C
Cfl
Cfl
§
CO
O
3
•a
cl
u
T3
CO
tN
6
o
u
3
"3
>
o
00
c
"53
3
CO
T5
B
S
EPA OSW recorr
CO
^
^-^
—•
.>
o
•o
s
&
B°
'S
T3
in consi
"8
B
C
"5
T3
en
,
"8
B
1
t3
•o
CO
ca
5>
i
OQ
_o
t2
8
Cfl
£
3
cd
1
ith the resulting
T3
i
£^
U
os
"a
E
CO
3
stion by an herbiv
&
B
B
1
1
view of
S:
a
B
o
"8
CO
cS
PQ
s
o\
l-H
js
[ ty]) (Chambei
iomass
^3
Q.
standing cro
.§•
3
1
D.
5
S
8
g
es
g
'il
eo
3
.C
•a
B
CO
u
a>
the most compl
§
"8
Cfi
^2
m
appears to bi
u
3
"0
CO
lable literature, thi
'S
a
a
his vari
*"^
X!
ssociated wi
a
CO
'B
following uncerta
Js
^
o
t>
1
B
cd
"S.
I
4^
<2
K:
1
x
E
O
g>
Is
; default value f
uj
00
B
|H
E
ered in deter
'S
1
CA
The plant specie:
^
^^j
yerestimate Yp.
o
8
•o
B
3
cd
CO
at a site.
actually present ;
IS
oa
-------
TABLE B-3-1
SITION
8.
&
T CONCENTRATION DUE TO DIRECT D
Z
2
tfi
(TERRESTRIAL PLANT EQUATION!
S
1H
•s
00
a
£
REFERENCES AND DISCUSSION
'ronmentally Released Radionuclides through Agriculture .
1
o
. 00
Q£
*.d
^ 2
U o
tfi
CO
ca
n
;s. Class-specific estimates of the empirical constant, y> were
n estimates of Rp and Yp.
z g
CA 3
.3 E
e x
lip developed by Chamberlain (1970) for other vegetation
ough several points, including average and theoretical ma
it proposed using the same empirical relations!
forcing an exponential regression equation thr
c ^
CO >>
o u
o g.
•a 2,
01 O
JS %
H T3
irt on Sensitivity and Uncertainty Analysis for the Terrestrial Food
Oak Ridge National Laboratory. Oak Ridge, Tennessee.
&§
of ;a
; RURA and Municipal Waste Combustion Projects: Final
, Office of Risk Analysis, Health and Safety Research Div
C.C.Travis. 1989. "Modeling Support for tht
" Interagency Agreement No. 1824-A020-A1,
•o -3
§"8
^!l
-i %
J U O
u
~s
03
eb
_e
*N
CS
i period between successive hay harvests and successive g:
t recommends Tp values based on the average
c
documei
c«
g
Tt
tH
S
oveml
Science and Technology. Volume 22. Pages 361-367. N
••«*
g
e
1
1
CO
U
O5
W
0>
U
'S
•a
CO
O
<
od
oo
o\
p-
H
c
ca
u
•o
S
IR (1997) as the source of the equations for calculating Fv.
t is cited by U.S. EPA (1994a) and NC DEHN
c
documei
V3
IS
00
t~
Q
£
•*
:tive Aerosols by Vegetation." Atmospheric Environment.
1970. "Interception and Retention of Radioac
U
<
c
'5
1
SI
J3
U
S~*.
£
V)
"»»>
= Empirical constant; range provided z
= Standing crop biomass (productivity
(£• x. -?•
ft: ^- >i
f Radioactive Contaminants Deposited on Pasture Grass by
o
|
992. "Quantification of the Interception and Initial Reten
:3313to3321.
I. Thiessen, M.L. Frank, and E.G. Blaylock. 1
n." Atmospheric Environment. Vol. 26A. 18
>; •—
<< ca
W «
- T3
Q*
[T — -t
tL, 3
s|
1
^
X
gamma-emitting radionuclides and insoluble particles tagged
d field vegetation, including fescue) via simulated rain. The
5 product of Rp and Fw, as defined by this guidance:
| 05
!•§ *
O rt ^
srmed "interception fraction," based on a study in which si
ture grass (specifically, a combination of fescues, clover, i
tercepted by vegetation and initially retained" or, essential
t developed values for a parameter (r) that it tf
mitting radionuclides were deposited onto pas
s defined as "the fraction of material in rain in
n ^ ""
I §-:
sis
O CS to
T3 bC C
C
IIS
H £ 0.
1
£
n
i.
r values obtained include the following:
*ca
c
u
_c
CJ
D.
X
U
for anions, U.S. EPA (1994a) used the highest geometric mean r
1
1
uble radionuclide iodide-131 [131I]); when calculating Rp '
ge of 0.006 to 0.3 for anions (based on the sol
(0.08) observed in the study.
C 4>
ca %
< 2
•
-------
CQ
H
J
CQ
z
o
b^
H
IECT DEPOSI
ATIONS)
CENTRATION DUE TO DII
ERRESTRIAL PLANT EQU
Sb
o
PLANT C
U.S. EPA (1994a) used the highest geometric mean r
CO
|
Ut
£
I
•a
>
£
eo
c
1
(Page 9 of 10)
luclide beryllium-7 [7Be]; when calcu
o
"S
on the soluble ri
1
cd
rf
c 2
O GO
'5 *
CS JC
U *3
*l
VO U
0 £
2 §
_ X)
~". o
o ^
<4- 00
0
•
micrometers, labeled with cerium- 141 [ l41Ce], [9SN]b,
janiline; n-nitrosodiphenylamine; and n-nitrosodi-n-
ers. However, no rationale for this selection was
JL *^
8-2 S
S-S I
_L cj
™*.e
ing in diameter fron
ze to anionic forms
ith a diameter of 3 i
polystyrene microspheres (IPM) rangi
ics (other than three organics that ioni
the geometric mean r value for IPM w
o g -q
1 §1
:o 0.37 for insoli
Rp values for o
. EPA (1994a) i
— oo co
8-S S3
o S ^
III
* ° x
i §1
3 j- C
1 * |
'StJ5<
0 S u
g£ ?
2 B '-
o i u
'5 -c -S
JJ S £ •»
s S - -a
oo -a o" o
..ccc
< a a, a<
•
le cation 7Be and the IPMs, r depends more on
egetation surface has become saturated, and (2) the
cationic species is consistent with a negative charge
_o > _
^|«
o £ «
M £ o
55 ••"<
•S c §
mount, whereas for
ved with the water t
; behavior of the ani
ction r is an inverse function of rain a
(1) the anionic 131I is essentially remo'
iurface. This discrepancy between the
ca <_, •"
* " c
e -S cs
lion, interceptio
also concluded
tie out on, the pi
S 2 §
i— i O «»
5 -s g
3
3 !*
J3 J3 T3
^ H «>
M . -S
0 53 O
«al
n C CS
<2 '3 ca
g §11
° C ^
W3 ca w w
S •& M g
•S g o "E.
! 1 1 -§
£ 1 "i B
H xi o o
Ith Physics. 45 (3): 731 to 744.
c
£
§'
posited on Vegetati
ental Half-Time for Radionuclides De
I
ion of the Envu-
13
c
X
W
<
m
oo
2
i
1
o
d
PH
•o
c
CO
^
U
i_T
J£
i
to calculate kp:
"8
V3
3
equation
<4H
O
; source
•S
W
C
u
3
O
O
•o
W5
1
a
u
^>
M
>.
c?
•o
m
vo
fn
1
?5
_c
d^
II
£
2
•*
•*
f-'
s
C2
g
r^
CO
>
.§<
o
cd
"3
•3
CJ
_g
•3
CA
U
1-1
CO
O
^3
"a
>
V
••B
"rt
JS
g
a
§
i
o
00
o>
>
CO
3
3
1
ntaminants on h
ays for a variety of co
2.8 to 34 d;
half-time values ranging from :
The study reports
90.36 yr1.
^
1
e
cd
•->
^
c
s
1
Combus
v
S
1
S
1
H
•ssmentsfor Hai
ct Exposure Risk Asse
ting Indirei
" DEHNR Protocol for Perforn
DEHNR. 1997. N(
U
z
in Terrestrial
Si
S
i.
<£,
1
•§
.
co^
„
1
w
«"
^
n
i
ON
i
CO
$
£
•o
s
"3
3
£
u
to calculat
the source of the equation used
This document is
a
o\
>o
in
1
o
t£
S
Redwood City,
mius Publishing Co.
|
1991. Plant Physiology. Benj
w
OD
"C
O
CU
T3
C
cd
J
t*J
cd
f2
ce. Office of
£
o
*^
g
M
ce
U
M
tn
•o
cd
1
5
"a
S
u
O
,=
U
1
i
2
s?
6
2
fi
s
th Indirect Expc
h Risks Associated wi
!&
li
•« ^
m Final Methodology for Asset
'elopment. EPA 600/6-90/003.
II
S^
OS o
"" cd
: CJ
<; co
$*
CO
5
1
CO
•o
g
s
03
P3
1
CO
1^
•8
c
3
•2
C
e
•8
g
>i
->
•s
u
•§
a
o.
CO
/-^
CO
«
O
X>
&
U
oo
_c
T3
e
i
"«
g
2
"3
'?.
estimate of Yp (
so states that the best
•a
.2
source documents for the equal
This is one of the
(1982).
mmental
.is
>
U
•O
§
•S
13
u
rc
"o
O
O
s
0
g
-2
'5j
trs
1
0
S
"i
1
a
1
«^
w
"H
1
1
>5
«
*s
sks Associated \
mber.
r Assessing Health Ri
30/AP-93/003. Novel
odologyfo
nt. EPA/61
•w Draft Addendum to the Meth
ce of Research and Developme
EPA. 1993. Revie
Assessment. Offi
CO
D
-------
ffl
s
CQ
$
-8
"11
••
« ^
•M
aw
-------
^ a
PQ
w
j
M
ss
m
£
t
?
1
1 |
•S 1
§ "
I I
nd uncertainty
o
J-
H
a -2"
O o w
e» a
ed
1
o
c
S
1
.
•
bove
ted
alu
r u
ate
ed
oci
te
describ
ed by
s
u
2
•o
o
c
o
1
a
-
^
u
o
It
*
e
0
fa,
O)
1
fi
0)
00
=2
".
.g
<-=> .n
10 •-
«= •
•§*
13 OO
j< r~
O O id
e
o
-
s
>>
I
u
•Z - o
3 ta *
0 * 4=
illl
HI
S 1 1
<« g -S
'
M a "
a Si S
& b
a s
!». u
||
a, a,
oo cs
t-
-------
«
s
BQ
g
pg
SO
£
V
1
S
1
D
§
«*
a
S
a
V
•S
•c
£
£
3
u
1
1
CO
IS
4S
"£
T3
1
8
CO
CO
ca
co
U
C
'3
Varies (site-speciflc)
ee Chapters 2 and 3). Uncerl
ca
O
*
1
?
1
1
g
8
.2
S d
Is
c3 u
.2 f
Si
•s,
s
tc!
1H
1
«J
CO
1
u
tc
"o
U
o.
U
0,
O
U
ex
H. £
co ' ca
CO l_ ~ .S
e o
£ Jf = c 1 % S
j lilsfli
s s?8fJa5
M- "S. o .2 g g n T
^> § ^^uuoujj
<: | ^"U5*s°
K § g tl -' § ° §
=3 • l§|-a-||-i
I i ijiSini
3" » ^-^SxigU^W
^ s .i>g>>".2n3£'S)
c "S 'SwTi'Ss'seC
•a ft S*-JJ^u°So
to -o ta«^5'=u-ti50
0 e •S*~'«'3SSed
*o 3 U-"oiu2Siu,
•S o «c— SE-CoSs
2 3> r&-«Og^S^gf2g
t; 8 -g ll^^li^l
1 1 1
f I 1 ^iillilil
& 1 Jo iso.Sf.'S^'-o^S
i ?
* -S BM5S'o§«8«e8t3o?OO.H3
I !
! I
PH 2 •CB(U'£3CQ^s
8 i -1^^1*1
.2 § .2SS'22g)J2«|s
CHC-v3Se5HraS
ja s ^"SasS^SSHu-s
1 1 llimilll.
^ g u?1^g<-S8S8C
2 8
"S 3 S S
en
1
• M
5
s
|
ctf
is
1
8
i^
"3
^
&
^3 o
U^^ w
vs
«*-! ^3
C CX
1 a
o 5
ca >
£ .S
h."
m
u
s.
ca
S
8
CA
S^f
.S
"o
•g
E
o
w
Varies (modeled)
nd is determined by air dispei
are site-specific.
ca q)
04=
S -S
PC- and site-speci
iated with this vai
S 8
U CO
.2 S
.2 S
JD -a
2 c
n
CO g
g5
"s
-2?
CO
eo
3.
§
S
is
C
§
o
u
'S «
>* ca
"C 43
S Q-
y >-.
>> 0
T3 O-
nl ca
N >
"5 E
'S S
3 eg
^
^
CQ
5
ca
_u
ca
_u
§
^3
u
ts
•o
8
* 8.-
•M ^- t*5
•o ? g
C 05 S
U u J2
o- 3 a.
^ 1*8
•S « S
CD .SS
_ 05 „ O
Varies (see Appendix C)
be determined from the table
include the following:
he algorithm used to estimate
epresent Bv for all forage spe
•o o £ u
3 3 o j?
2 2 » S
•C *r^ *^ (3
» a § 2
"3 !>• Jo g
! 1 i!
3 S -8 §
S. * IS1
,? "S «S e
a S «"§
O a -5s
U Z
-------
g
09
S
3
^
«M
1
a
S
•a
u
CO
o
CO
U
_3
'eB
>
3
1
2 -8
e .S
cs
o
•s
u
3
i
s
CO
=1
•3
. EPA OSW recommen
GO
CO
CO
•S
'e
3
1
U
U b
II
£ c
oo .2
'5 2
^ o
£? c
Q 8
~
&
13
'u
_N
< —
1
_«
"E.
D
S
•a
ca
t in herbaceous plants
1
1
c
range of 80 to 95 perce
0)
5
3
CO
'I
1
cd
Cfl
S
GO
following uncertainty i
S
S
£,
3
U
s
_u
i
1
"S.
1
1
1
•3
J5
?^
C3
O
3
rmining the default va
2
•8
e
1
'3
The plant species cor
present at a site.
1—4
ft}
U
1
O
c
U
in
•a
<-J
1
1
a
o
T3
U
(ft
a
X>
g
£
value but states that it
same
CO
2
i
"O
. EPA (1990) recomme
CO
»'
1
1
1
CQ
^_»
"^
^
1
to
1
3
"cd
?•
CO
end this
i
DEHNR(1997)recon
^
£"
2
\_^
1
co"
D
"8
T3
'5
CO
>
_,
oo
o\
^
Both documents cite
1
•o
U
O
C5
tandard conditions of 2<
CO
a
ted with this variable.
ssocial
03
t
s
B
re is no significant uno
A
Cl
f
'a
<**
0
^
'£
c
Q
0
-------
r<
S
•o
"ob
M
O
^j
*n
03
P
Js
"c3
U
Q
,.
ffl
'o
u
CO
CO
Os
OO
op
V>
OO
oo
CA
'I
<£
vd
t*
.0
2
•<3-
?N
J3
"o
i
o
Q
s;
1
tS
IS
c
c
su
c;
i,
5
Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992) below.
'3
ume/volume basis, to Bv on a mass/mass basis — see Bac
1
^
T3
U
«
5
1
05
ts
^
ca
O
1
ta
3
ST
u
£
thH
0
o
£
D
O
v:
U
,£
a:
Cfi
H
from Soils and Bioconcentration in Plant Leaves. " Bulletin of
§
nd M. Vighi. 1992. "Chlorinated Dioxins: Volatilizat
ca
Calamari
O
o
1
E
g
d
'5b
OO
ca
O
U
j.
i)
'i?
D
o
s
w
'o
o
CO
m
00
o
Tl-
O
Tt
CO
1
(2
00
-«•
Volume
&
cy
-ci
8
1
-13
1
1
s
"s
C
C
LJ
^
si
^
K
C
i;
"=r
1
late the air-to-plant biotransfer factor (Bv):
3
"ca
u
O
•a
u
CA
3
Q
Q
¥
Tt
m
?s"
i—*
00
1
1
.«».«
5 S a -a -e
o u o o c
> O BC 3 <
formed
JO
§
u
1
a
jo
00°
.S> ^ o
M "I 1 |
? -8 -8.B
00
ca
I
3
s S ^ |.
ce tiv — eo
•a g » g>
^ « 2 1
^ u .
Q > •§ •§
1^ ll
-1 -^ «* s
w- S rS3
11 il
lilla
jiff
tl -0 '—' M M
ll^?i
CL ^S !*«. •*•
1 &4 O\ *^ W
f 4 -• a 1
.a i .. sa a
0
1
!
£
1
Cental Science
1
1
o
u_
E-
32
m
-------
TABLE B-3-2
PS
(3
fe
O3
X
PLANT CONCENTRATION DUE TO AIR-TO-PLANT TRA]
(TERRESTRIAL PLANT EQUATIONS)
nes that the variable c (the Junge constant) is constant for
ncentration for monolayer coverage, and the difference
3 9
(Page 5 of 5)
Ference for the statement that the equation used to calculate the fraction of air concentration in vapor phase (Fv) ass
however, this reference notes that the value of c depends on the chemical (sorbate) molecular weight, the surface <
leat of desorption from the particle surface and the heat of vaporization of the liquid-phase sorbate.
pa
to
r»
Interim Final Methodology for Assessing Health Risks Associated with Indirect Exposure to Combustor Emissioi
nd Development. EPA -600-90-003. January.
^
O J3
85 |
< j
U "S
CO
3
t is a source of air density values.
c
u
3
"
C
"C
C/j
1
fcws/or Emissions. Office of Health and Environmental
g
/tew'ew Draft Addendum to the Methodology for Assessing Health Risks Associated with Indirect Exposure to Cc
OlTiceof Research and Development. EPA-600-AP-93-003. November 10.
fi "A
ON ^
ON g
CA
ty;
< s
CL. »
u <
CO
3
this document recommends reducing, by a factor of 10,
or "made predictions [of beef concentrations] come in
«,- 3
npts to model background concentrations of dioxin-like compounds in beef on the basis of known air concentration
:ulated by using the Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992) algorithm The use of this fa
rvations."
B u u
S * _§
OJ 0 •§
C S _e
o 9 •£
u =3 -t^
•« "3 £
(U •>
c« "^ o
« > c
ffl BQ S
Exposures. Review Draft. Office of Research and
^
Estimating Exposure to Dioxin-Like Compounds. Volume II: Properties, Sources, Occurrence, and Backgrow
Washington, DC. EPA/600/6-88/005Cb. June.
• ^^
^ C
" ai
85 £
S-. c-
< 1
Cu «
ca Q
CO
3
MS Wastes. Attachment C, Draft Exposure Assessment
aste. December 14.
•5 ^
Revised Draft Guidance for Performing Screening Level Risk Analyses at Combustion Facilities Burning Hazar
RCRA Hazardous Waste Combustion Facilities. Office of Emergency and Remedial Response. Office of Solid
,
If
ON V
< ^S
0. J3
u O
CO
3
OPCs, based on the work of Bidleman (1988); Fv for all
U
the source documents for Equation B-2-8. This document also presents a range (0.27 to 1) of Fv values for organic
et equal to zero.
14- ™
O efl
g «
C- o
o .:=
.^ §
2 ff
£ g
H .S
Handbook of Chemistry and Physics. 62nd Edition. Cleveland, Ohio. CRC Press.
00
ON
U
oi
CO
(S
U
£
5
1
>»
«
1
(_(
"«
5
I
1
u
U<
cd
Cfi
H
u
3
•«
x
S
Handbook of Chemistry and Physics. 66th Edition. Cleveland, Ohio. CRC Press.
\o
00
ON
U
«
VI
a
u
£
s~\
00
o\
s™^
Cfl
s
"o
u
B
1
§
Cfl
-a
§
VI
U
_3
"e3
>
£>
'so
1
tH
"3
1
8
g
.2
£
a
V!
C
1
CJ
O
•c
«
1
s from the Seveso Area." /n: Chlorinated Dioxins and
_o
berger, N. Neuner, U.B. Ranalder, W. Vetter, and J.P. Vuilleumier. 1982. "TCDD Levels in Soil and Plant Samp
wuds: Impact on the Environment. Eds. Hutzinger, O. and others. Pergamon, NY.
E S.
o 5
Ka
W-^
hi «
= 1
"S,
^
-------
L
D ^
TABLE B-3-3
:ENTRATION DUE TO ROOT
ESTRIAL PLANT EQUATION!
(Page 1 of 3)
W OS
% *
y^ yy
O H
H ~
z
^^
ft,
B
o
£
Description
:t uptake of COPCs from soil through plan
ic following:
may affect the accuracy of Cs1 estimates.
lay not reflect site-specific conditions.
o *•• a *•
3 I ie
g 3 _- O
"" o> r? ">
Jf 3 -3 |
*~* ^ O c3
i i fj
S -a S S
.2 « j= B
^ -3 u o
3 3 "
B .0 35 e
'"* ett - O
B 5 BO
° .c 2-2
la •§ '^ -^
1 1 11
C e« .So
U cc "•" "S
OH tS u ^
O >"» PL, U
s -1 B g
-S t: -a a
05 ° «- T
1 ° ^°
"3 -o So
1 S 1^
o .2 > «
'ca 2 o -S
a1 E H W
0> -.- L M-l
.2 u
S S ^S
-3
K
3
U
E
t
1
•a
B
MM *ao
S S *
2 ill
i if M' !
1 ? I 1 i
t 1 i
j^ .^ r\
^ O
>
t
M
1
E
Cfl
3
Sj
ccd
"3
"3
.2
u
•a
"P.
s
1
0
M u
.E 3
~ c
"o °
i I
- u
c y
o3 B
S "
S §
fa S
a
I
»
1
c
•a
a
•&
u
IS
a
o
2
CB
"«
>
^
:^%;^:-
•^fl;
^f%?'
:lf ,-?*::;
'S|^^|vT
|-^|^|
iCJ^^v^
^•^^^ 'J'°^ '
•5 5^8%
V"'A^^?-
1
H
•
il
i
^^^l^si^
1
B
•a
u
t
1
pa
JO
2
_B
B
O
•B
3
J? 8*
-------
ca
3
eo
<
o
c*
O>
^
2
"fi
P
*
^
«5
O
jj
2
03
•c
a
u
3
"3
^
"8
u
•o
c
3
d>
00
s
u
ca
u
.c
c
o
1
CS
.0
CA
V
0.12
U.S. EPA OSW recommends using the value of 0.12. This default valu
OS
CA
jj
'S
3
.£
00
'p
?
4^
U b
5 °
„ 0
O cd
4-> c:
•S S
00 ^
'S '£
>. 7;
t >
>. C
Q 8
S~*
5\
o
cd
u
N
"S
f2
N»^
2
13
D.
I
"3,
t
o
^
c
g
c
T3
c
ca
CA
i
"a,
CA
1
1
I
8
I
1
a.
I
"Z.
1
ferent fr
(4-1
'•3
o
*
^^
(1) The plant species considered in determining the default value ma;
present at a site.
(N
**4
O
| Varies (see Appendix C)
CA
CA
4>
7
S
o
>s
i-l
<£
en
J3
O
IS
'5
C/5
1
E
c
•o
u
c
u
cc
a
s.
S
i
13
>
u
C
"o
CJ
ex
CA
This variable is COPC-specific. Discussion of this variable and COPC-
1>
a. g
j1!:
&g
S Q
Appendix C.
Z^~
1
oo
.*
Uncertainties associated with this variable include the following:
S
o
u
A
%•
TO
£
0
u
•2 ^
U Tt
n. oo
o t>
"" C-
U t,
e 0
is
«s ^
a g
o
•*> a
f3. o
(1) Estimates of BCFr for some inorganic COPCs, based on plant upl
accurate than those based on BCP values from Baes, Sharp, Sjore
(4~
O
>,
0 "O
*l
Q CO
0 ~
5-8
O D.
O ^
u o
5 S
tn -a
° c
S-2
d transpi
ion equa'
§ "S
W CA
_. U
"5 eb
Cfl U
5-
OO
oo
ON
i— H
CA
P
Jrj
•§ i
«* .2
CO -t-
s!
£ §
l-s
•g s
0. g
0 ?
"o ^
> >-H
S M
(2) U.S. EPA OSW recommends that uptake of organic COPCs from
aboveground portions of the plant be calculated on the basis of a i
the uptake of 29 organic compounds. This regression equation, d
not accurately represent the behavior of all organic COPCs under
S'
03
-------
m
u
DC
S
O H
1
GO
S
IFERENCES AND DISC
2
NN
Transport of Environmentally Released Radionuclides through Agriculture.
$
of Parameters andAssessi
C-)
1
-^
•e
i
•Si
^
£
s
o\
Ul
.g
CO
£
as
•a
§
c
3?
J
«
-S
Co. Redwood City, Califc
00
p?
Publishil
§
e
i
¥
pa
1
"5
}
5
*~4
ON
ON
1-i
U
op
1^
o
BJ
"O
CO
J
.H
CO
H
S
M
2
S
?S
!
i
i
c
2
§
£
1
1
and Vegetation." Environ
M
i
*s~
m
_e
CO
•1
C3
cf
U-.
o
1
•£»
ctf
J3
§
O
'Biocon
00
oo
ON
CO
^
Q
<
•n
1?
CB
U
U
e^
'E
IH
£
egression equation relating soil-to-plant BCF to K^;
c
cd
, this document developed
05
•a
:ompoun
U
1
£P
15
S
«§
2
cd
•o
O
•i
:oncentr
u
1
"a,
•a
c
ra
'o
1
cd
d.
c
o
T3
CJ
CO
cd
CO
J
icj
00
_2
oo
r-
m
d
i
oo
oo
V)
II
£
«
0£
_O
• the Hazardous Waste Identification Project . Volumes I and II. Office of Solid
•S,
Really-Based Exit Criteria
^
1
1
<3
"S
1
•C
1
2*
2S
as
"&•
1
1
S
«
t
Q
s
^
1 *>
OS X
vS e3
ON 5!
ON «
CO
D
calculating the uptake of inorganics into vegetative growth (stems and leaves) and
,
1
g
D.
0
"
s~\
SI
3
"O
§
Cfl
t»"
I
J3
$
1)
O
_>
2
U
Qfi
nonve;
some inorganics were apparently obtained from plant uptake response slope factors.
srences used to calculate the uptake response slope factors are not clearly
.S
, and Shor (1984), values f
c
co1
cf
CO
-C
CO
S"
cd
PQ
I
n>
g
U
e
§
•o
95
'M
^
_c
T3
%
3
CO
U.
u
m
to
O
s:
00
3
o
•S
<
"S
metal methodologies, and
CO
CO
J=
u
3
CO
3
cd
•o
T3
"u
C
1
T3
, .
_«
3
_o
"3
u
1
2
2
a
c/}
C
o
ex
en
O
i^
-------
APPENDIX C
MEDIA-TO-RECEPTOR BIOCONCENTRATION FACTORS (BCFs)
Screening Level Ecological Risk Assessment Protocol
August 1999
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
APPENDIX C
TABLE OF CONTENTS
Section Page
C-1.0 GENERAL GUIDANCE C-l
C-l.l SOIL-TO-SOIL INVERTEBRATE BIOCONCENTRATION FACTORS C-2
C-1.2 SOIL-TO-PLANT AND SEDIMENT-TO-PLANT BIOCONCENTRATION
FACTORS C-2
C-l.3 WATER-TO-AQUATIC INVERTEBRATE BIOCONCENTRATION FACTORS C-3
C-l.4. WATER-TO-ALGAE BIOCONCENTRATION FACTORS C-4
C-1.5 WATER-TO-FISH BIOCONCENTRATION FACTORS C-4
C-l.6 SEDEMENT-TO-BENTfflC INVERTEBRATE BIOCONCENTRATION FACTORS C-5
C-l.7 AIR-TO-PLANT BIOTRANSFER FACTORS C-5
REFERENCES: APPENDIX C TEXT C-9
TABLES OF MEDIA-TO-RECEPTOR BCF VALUES C-13
REFERENCES: MEDIA-TO-RECEPTOR BCF VALUES C-99
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-i
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C: Media-To-Receptor BCF Values August 1999
APPENDIX C
MEDIA-TO-RECEPTOR BCFs
Appendix C provides recommended guidance for determining values for media-to-receptor bioconcentration
factors (BCFs) based on values reported in the scientific literature, or estimated using physical and
chemical properties of the compound. Guidance on use of BCF values in the screening level ecological risk
assessment is provided in Chapter 5.
Section C-1.0 provides the general guidance recommended to select or estimate BCF values.
Sections C-l.l through C-1.7 further discuss determination of BCFs for specific media and receptors.
References cited in Sections C-l.l through C-1.7 are located following Section C-1.7.
For the compounds commonly identified in risk assessments for combustion facilities (identified in Chapter
2), BCF values have been determined following the guidance in Sections C-l.l through C-1.7. BCF values
for these limited number of compounds are included in this appendix in Tables C-l through C-7 to
facilitate the completion of screening ecological risk assessments. However, it is expected that additional
compounds may require evaluation on a site specific basis, and in such cases, BCF values for these
additional compounds could be determined following the same guidance (Sections C-l.l through C-1.7)
used in determination of the BCF values reported in this appendix. For reproducibility and to facilitate
comparison of new data and values as they become available, all data reviewed in the selection of the BCF
values provided at the end of this appendix are also included in Tables C-l through C-7. References cited
in Tables C-l through C-7 (Media-to-Receptor BCF Values) are located following Table C-7.
For additional discussion on some of the references and equations cited in Sections C-l.l through C-1.7,
the reader is recommended to review the Human Health Risk Assessment Protocol (HHRAP) (U.S. EPA
1998) (see Appendix A-3), and the source documents cited in the reference section of this appendix.
C-1.0 GENERAL GUIDANCE
This section summarizes the recommended general guidance for determining compound-specific BCF
values (media-to-receptors) provided in Tables C-l through C-7. As a preference, BCF values were
selected from empirical field and/or laboratory data generated from reviewed studies that are published in
the scientific literature. Information used from these studies included calculated BCF values, as well as,
collocated media and organism concentration data from which BCF values could be calculated. If two or
more BCF values, or two or more sets of collocated data, were available in the published scientific
literature, the geometric mean of the values was used.
Field-derived BCF values were considered more indicative of the level of bioconcentration occurring in the
natural environment than laboratory-derived values. Therefore, when available and appropriate,
field-derived BCF values were given priority over laboratory-derived values. In some cases, confidence in
the methods used to determine or report field-derived BCF values was less than for the laboratory-derived
values. In those cases, the laboratory-derived values were used for the recommended BCF values.
When neither field or laboratory data were available for a specific compound, data from a potential
surrogate compound were evaluated. The appropriateness of the surrogate was determined by comparing
the structures of the two compounds. Where an appropriate surrogate was not identified, a regression
equation based on the compound's log K^ value was used to calculate the recommended BCF value.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-l
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
With the exception of the air-to-plant biotransfer factors (Bv), recommended BCF values provided in the
tables at the end of this appendix are based on wet tissue weight and dry media weight (except for water).
As necessary, reported values were converted to these units using the referenced tissue or media wet weight
percentages. The conversion factors, equations, and references for these conversions are discussed in
Sections C-l.l through C-1.7 where appropriate, and are presented at the end of each table (Tables C-l
through C-7).
C-l.l SOIL-TO-SOIL INVERTEBRATE BIOCONCENTRATION FACTORS
Soil-to-soil invertebrate BCF values (see Table C-l) were developed mainly from data for earthworms.
Measured experimental results were primarily in the form of ratios of compound concentrations in a
earthworm and the compound concentrations in the soil in which the earthworm was exposed. As
necessary, values were converted to wet tissue and dry media weight assuming a moisture content (by
mass) of 83.3 percent for earthworms and 20 percent for soil (Pietz et al. 1984).
Organics For organic compounds with no field or laboratory data available, recommended BCF values
were estimated using the following regression equation:
log BCF= 0.819 log Km -1.146 Equation C-l-1
• Southworth, G.R., J.J. Beauchamp, and P.K. Schmieder. 1978. "Bioaccumulation
Potential of Polycyclic Aromatic Hydrocarbons in Daphnia Pulex." Water Research.
Volume 12. Pages 973-977.
Inorganics For inorganic compounds with no field or laboratory data available, the recommended BCF
value is equal to the arithmetic average of the available BCF values for other inorganics as specified in
Table C-l.
C-1.2 SOIL-TO-PLANT AND SEDIMENT-TO-PLANT BIOCONCENTRATION FACTORS
Soil-to-plant BCF values (see Table C-2) account for plant uptake of compounds from soil. Data for a
variety of plants and food crops were used to determine recommended BCF values.
Organics For all organics (including PCDDs and PCDFs) with no available field or laboratory data, the
following regression equation was used to calculate recommended values:
log BCF = 1.588 - 0.578 log K^ Equation C-l-2
• Travis, C.C. and A.D. Anns. 1988. "Bioconcentration of Organics in Beef, Milk, and
Vegetation." Environmental Science and Technology. 22:271-274.
Inorganics For most metals, BCF values were based on empirical data reported in the following:
• Baes, C.F., R.D. Sharp, A.L. Sjoreen, and R.W. Shor. 1984. "Review and Analysis of
Parameters and Assessing Transport of Environmentally Released Radionuclides Through
Agriculture." Oak Ridge National Laboratory, Oak Ridge, Tennessee.
The scientific literature also was searched to identify studies. Although U.S. EPA (1995a) provides values
for certain metals calculated on the basis of plant uptake response slope factors, it is unclear how the BCF
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-2
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
values were calculated or which sources or references were used. Therefore, values reported in
U.S. EPA (1995a) were not used.
C-1.3 WATER-TO-AQUATIC INVERTEBRATE BIOCONCENTRATION FACTORS
Experimental data for crustaceans, aquatic insects, bivalves, and other aquatic invertebrates were used to
determine recommended BCF values for water-to-aquatic invertebrate (see Table C-3). Both marine and
freshwater exposures were reviewed. As necessary, available results were converted to wet tissue weight
assuming that invertebrate moisture content (by mass) is 83.3 percent (Pietz et al. 1984).
Orsanics Reported field values for organic compounds were assumed to be total compound concentrations
in water and, therefore, were converted to dissolved compound concentrations in water using the following
equation from U.S. EPA (1995b):
BCF (dissolved) = (BCF (total) / fffl) - 1 Equation C-l-3
where
BCF (dissolved) = BCF based on dissolved concentration of compound in
water
BCF (total) = BCF based on the field derived data for total
concentration of compound in water
jja = Fraction of compound that is freely dissolved in the water
and,
ft, = l/[l + ((DOCxKow)/10) + (POCxKow)]
DOC = Dissolved organic carbon, kilograms of organic carbon /
liter of water (2.0 x 10^* Kg/L)
Km = Octanol-water partition coefficient of the compound, as
reported in U.S. EPA (1994a)
POC = Paniculate organic carbon, kilograms of organic carbon /
liter of water (7.5 x lO"09 Kg/L)
Laboratory data were assumed to be based on dissolved compound concentrations.
For organic compounds with no field or laboratory data available, BCF values were determined from
surrogate compounds or calculated using the following regression equation:
log BCF = 0.819 x log KoW - 1.146 Equation C-l-4
• Southworth, G.R., J.J. Beauchamp, and P.K. Schmieder. 1978. "Bioaccumulation
Potential of Polycyclic Aromatic Hydrocarbons in Daphnia Pulex." Water Research.
Volume 12. Pages 973-977.
Inorganics For inorganic compounds with no field or laboratory data available, the recommended BCF
values were estimated as the arithmetic average of the available BCF values for other inorganics, as
specified in Table C-3.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-3
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
C-1.4 WATER-TO-ALGAE BIOCONCENTRATION FACTORS
Experimental data for both marine and freshwater algal species were reviewed. As necessary, available
results were converted to wet tissue weight assuming that algae moisture content (by mass) is 65.7 percent
(Isensee et al. 1973).
Organics For organic compounds with no field or laboratory data available, BCF values were calculated
using the following regression equation:
log BCF = 0.819 x log K™ -1.146 Equation C-l-5
• Southworth, G.R., J.J. Beauchamp, and P.K. Schmieder. 1978. "Bioaccumulation
Potential of Polycyclic Aromatic Hydrocarbons in Daphnia Pulex." Water Research.
Volume 12. Pages 973-977.
Inorganics For inorganics, available field or laboratory data were evaluated for each compound.
C-1.5 WATER-TO-FISH BIOCONCENTRATION FACTORS
Experimental data for a variety of marine and freshwater fish were used to determine recommended BCF
values (see Table C-5). As necessary, values were converted to wet tissue weight assuming that fish
moisture content (by mass) is 80.0 percent (Holcomb et al. 1976).
For both organic and inorganic compounds, reported field values were considered bioaccumulation factors
(BAFs) based on contributions of compounds from food sources as well as media. Therefore, field values
were converted to BCFs based on the trophic level of the test organism using the following equation:
BCF = (BAF^ I FCMjjJ - 1 Equation C-l-6
where
= The reported field bioaccumulation factor for the trophic level "n"
of the study species.
, = The food chain multiplier for the trophic level "n" of the study
species.
Organics Reported field values for organic compounds were assumed to be total compound concentrations
in water and, therefore, were converted to dissolved compound concentrations in water using the following
equation from U.S. EPA (1995b):
BAF(dissolved) = (BAF(total) lffd) -1 Equation C-l-7
where
BAF (dissolved) = BAF based on dissolved concentration of compound in
water
BAF (total) = BAF based on the field derived data for total
concentration of compound in water
ffd = Fraction of compound that is freely dissolved in the water
and,
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-4
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
fju = 1 / [1 + ((DOC x K^) / 10) + (POC x K.J]
DOC = Dissolved organic carbon, Kg of organic carbon / L of
water (2.0 x lO"06 Kg/L)
Kow = Octanol-water partition coefficient of the compound, as
reported in U.S. EPA (1994a)
POC = Paniculate organic carbon, Kg of organic carbon / L of
water (7.5 x lO"09 Kg/L)
Laboratory data were assumed to be based on dissolved compound concentrations.
For organics for which no field or laboratory data were available, the following regression equation was
used to calculate the recommended BCF values:
log BCF = 0.91 x log K^ -1.975 x log (6.8E-07 x K^ + 1.0) - 0.786 Equation C-l-8
• Bintein, S., J. Deviflers, and W. Karcher. 1993. "Nonlinear Dependence of Fish
Bioconcentrations on n-Octanol/Water Partition Coefficients." SAR and QSAR in
Environmental Research. Vol.1. Pages 29-39.
Inorganics For inorganic compounds with no available field or laboratory data, the recommended BCF
values were estimated as the arithmetic average of the available BCF values reported for other inorganics.
C-1.6 SEDEMENT-TO-BENTHIC INVERTEBRATE BIOCONCENTRATION FACTORS
Experimental data for a variety of benthic infauna, worms, insects, and other invertebrates were used to
determine the recommended BCF values for sediment-to-benthic invertebrate (see Table C-6). As
necessary, values were converted to wet tissue weight assuming that benthic invertebrate moisture content
(by mass) is 83.3 percent (Pietz et al. 1984).
Orsanics For organic compound (including PCDDs and PCDFs) with no available field or laboratory
data, the recommended BCF values were determined using the following regression equation:
log BCF = 0.819 x log K^ - 1.146 Equation C-l-9
• Southworth, G.R., J.J. Beauchamp, and P.K. Schmieder. 1978. "Bioaccumulation
Potential of Polycyclic Aromatic Hydrocarbons in Daphnia Pulex." Water Research.
Volume 12. Pages 973-977.
Inorganics For inorganic compound with no available field or laboratory data, the recommended BCF
values were estimated as the arithmetic average of the available BCF values for other inorganics.
C-1.7 AIR-TO-PLANT BIOCONCENTRATION FACTORS
The air-to-plant bioconcentration (Bv) factor (see Table C-7) is defined as the ratio of compound
concentrations in exposed aboveground plant parts to the compound concentration in air. Bv values in
Table C-7 are reported on dry-weight basis since the plant concentration equations (see Chapter 3) already
include a dry-weight to wet-weight conversion factor.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-5
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values
August 1999
Oreanics For organics (excluding PCDDs and PCDFs), the air-to-plant bioconcentration factor was
calculated using regression equations derived for azalea leaves in the following documents:
• Bacci E., D. Calamari, C. Gaggj, and M. Vighi. 1990. "Bioconcentration of Organic
Chemical Vapors in Plant Leaves: Experimental Measurements and Correlation."
Environmental Science and Technology. Volume 24. Number 6. Pages 885-889.
Bacci E., M. Cerejeira, C. Gaggi, G. Chemello, D. Calamari, and M. Vighi. 1992.
"Chlorinated Dioxins: Volatilization from Soils and Bioconcentration in Plant Leaves."
Bulletin of Environmental Contamination and Toxicology. Volume 48. Pages 401-408.
Bacci et al. (1992) developed a regression equation using empirical data collected for the uptake of
1,2,3,4-TCDD in azalea leaves and data obtained from Bacci et al. (1990). The bioconcentration factor
obtained was included in a series of 14 different organic compounds to develop a correlation equation with
Kg* and H (defined below). Bacci et al. (1992) derived the following equations:
log Bvol = 1.065 log Kow - log
;—) - 1.654
RT
(r = 0.957) Equation C-l-10
Bv =
Pair •
\ol
Equation C-l-11
orage
where
Bv
Pair
Pforage
Jwaler
H
R
T
Volumetric air-to-plant biotransfer factor (fresh-weight basis)
Air-to-plant biotransfer factor (dry-weight basis)
1.19g/L(Weastl986)
770 g/L (Macrady and Maggard 1993)
0.85 (fraction of forage that is water—Macrady and Maggard
[1993])
Henry's Law constant (atm-nrVmole)
Universal gas constant (atm-nrVmole °K)
Temperature (25 °C, 298 °K)
Equations C-l-10 and C-l-11 are used to calculate Bv values (see Table C-7) using the recommended
values of H and Kow provided in Appendix A at a temperature (T) of 25 °C or 298.1 K. The following
uncertainty should be noted with use of Bv values calculated using these equations:
U.S. EPA Region 6
Multimedia Planning and Permitting Division
Center for Combustion Science and Engineering
U.S. EPA
Office of Solid Waste
C-6
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
• For organics (except PCDDs and PCDFs), U.S. EPA (1993) recommended that Bv values
be reduced by a factor of 10 before use. This was based on the work conducted by U.S.
EPA (1993) for U.S. EPA (1994b) as an interim correction factor. Welsch-Pausch,
McLachlan, and Umlauf (1995) conducted experiments to determine concentrations of
PCDDs and PCDFs in air and resulting biotransfer to welsh ray grass. This was
documented in the following:
Welsch-Pausch, K.M. McLachlan, and G. Umlauf. 1995. "Determination of the
Principal Pathways of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans to
Lolium Multiflorum (Welsh Ray Grass)". Environmental Science and
Technology. 29: 1090-1098.
A follow-up study based on Welsch-Pausch, McLachlan, and Umlauf (1995) experiments
was conducted by Lorber (1995) (see discussion below for PCDDs and PCDFs). In a
following publication, Lorber (1997) concluded that the Bacci factor reduced by a factor
of 100 was close in line with observations made by him through various studies, including
the Welsch-Pausch, McLachlan, and Umlauf (1995) experiments. Therefore, this
guidance recommends that Bv values be calculated using the Bacci, Cerejeira, Gaggi,
Chemello, Calamari, and Vighi (1992) correlation equations and then reduced by a factor
of 100 for all organics, excluding PCDDs and PCDFs.
PCDDs and PCDFs For PCDDs and PCDFs, Bv values, on a dry weight basis, were obtained from the
following:
• Lorber, M., and P. Pinsky. 1999. "An Evaluation of Three Empirical Air-to-Leaf Models
for Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans." National Center for
Environmental Assessment (NCEA). U. S. EPA, 401 M St. SW, Washington, DC.
Accepted for Publication in Chemosphere.
U.S. EPA (1993) stated that, for dioxin-like compounds, the use of the Bacci, Cerejeira, Gaggi, Chemello,
Calamari, and Vighi (1992) equations may overpredict Bv values by a factor of 40. This was because the
Bacci, Calamari, Gaggi, and Vighi (1990) and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi
(1992) experiments did not take photodegradation effects into account. Therefore, Bv values calculated
using Equations C-10 and C-l 1 were recommended to be reduced by a factor of 40 for dioxin-like
compounds.
However, according to Lorber (1995), the Bacci algorithm divided by 40 may not be appropriate because
(1) the physical and chemical properties of dioxin congeners are generally outside the range of the 14
organic compounds used by Bacci, Calamari, Gaggi, and Vighi (1990), and (2) the factor of 40 derived
from one experiment on 2,3,7,8-TCDD may not apply to all dioxin congeners.
Welsch-Pausch, McLachlan, and Umlauf (1995) conducted experiments to obtain data on uptake of
PCDDs and PCDFs from air to Lolium Multiflorum (Welsh Ray grass). The data includes grass
concentrations and air concentrations for dioxin-congener groups, but not the invidual congeners. Lorber
(1995) used data from Welsch-Pausch, McLachlan, and Umlauf (1995) to develop an air-to-leaf transfer
factor for each dioxin-congener group. Bv values developed by Lorber (1995) were about an order of
magnitude less than values that would have been calculated using the Bacci, Calamari, Gaggi, and Vighi
(1990; 1992) correlation equations. Lorber (1995) speculated that this difference could be attributed to
several factors including experimental design, climate, and lipid content of plant species used.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-7
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
Lorber (1999) conducted an evaluation of three empirical air-to-leaf models for estimating grass
concentraions of PCDDs and PCDFs from air concentrations of these compounds described and tested
against field data. Bv values recommended for PCDDs and PCDFs in this guidance were obtained from the
experimentally derived values of Lorber (1999).
Metals For metals, no literature sources were available for Bv values. U.S. EPA (1995a) quoted from the
following document, that metals were assumed not to experience air to leaf transfer:
• Belcher, G.D., and C.C. Travis. 1989. "Modeling Support for the RURA and Municipal
Waste Combustion Projects: Final Report on Sensitivity and Uncertainty Analysis for the
Terrestrial Food Chain Model." Interagency Agreement No. 1824-A020-A1. Office of
Risk Analysis, Health and Safety Research Division. Oak Ridge National Laboratory.
Oak Ridge, Tennessee. October.
Consistent with the above references, Bv values for metals (excluding elemental mercury) were assumed to
be zero (see Table C-7).
Mercuric Compounds Mercury emissions are assumed to consist of both the elemental and divalent
forms. However, only small amounts of elemental mercury is assumed to be deposited (see Chapter 2).
Elemental mercury either dissipates into the global cycle or is converted to the divalent form. Methyl
mercury is assumed not to exist in the stack emissions or in the air phase. Consistent with various
discussions in Chapter 2 concerning mercury, (1) elemental mercury reaching or depositing onto the plant
surfaces is negligible, and (2) biotransfer of methyl mercury from air is zero. This is based on assumptions
made regarding speciation and fate and transport of mercury from stack emissions. Therefore, the Bv value
for (1) elemental mercury was assumed to be zero, and (2) methyl mercury was assumed not to be
applicable. Bv values for mercuric chloride (dry weight basis) were obtained from U.S. EPA (1997).
It should be noted that uptake of mercury from air into the aboveground plant tissue is primarily in the
divalent form. A part of the divalent form of mercury is assumed to be converted to the methyl mercury
form once in the plant tissue.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-8
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
Bacci E., D. Calamari, C. Gaggi, and M. Vighi. 1990. "Bioconcentration of Organic Chemical Vapors
in Plant Leaves: Experimental Measurements and Correlation." Environmental Science and
Technology. Volume 24. Number 6. Pages 885-889.
Bacci E., M. Cerejeira, C. Gaggi, G. Chemello, D. Calamari, and M. Vighi. 1992. "Chlorinated Dioxins:
Volatilization from Soils and Bioconcentration in Plant Leaves." Bulletin of Environmental
Contamination and Toxicology. Volume 48. Pages 401-408.
Baes, C.F., R.D. Sharp, A.L. Sjoreen, and R.W. Shor. 1984. "Review and Analysis of Parameters and
Assessing Transport of Environmentally Released Radionuclides through Agriculture." Oak Ridge
National Laboratory. Oak Ridge, Tennessee.
Belcher, G.D., and C.C. Travis. 1989. "Modeling Support for the RURA and Municipal Waste
Combustion Projects: Final Report on Sensitivity and Uncertainty Analysis for the Terrestrial
Food Chain Model." Interagency Agreement No. 1824-A020-A1. Office of Risk Analysis, Health
and Safety Research Division. Oak Ridge National Laboratory. Oak Ridge, Tennessee. October.
Bintein, S., J. Devillers, and W. Karcher. 1993. "Nonlinear Dependence of Fish Bioconcentrations on n-
Octanol/Water Partition Coefficients." SAR and QSAR in Environmental Research. Vol. 1.
Pages 29-39.
Holcombe, G.W., D.A. Benoit, E.N. Leonard, and J.M. McKim, 1976. "Long-term Effects of Lead
Exposure on Three Generations of Brook Trout (Salvenius fontinalis)." Journal, Fisheries
Research Board of Canada. Volume 33. Pages 1731-1741.
Isensee, A.R., P.C. Kearney, E.A. Woolson, G.E. Jones, and V.P. Williams. 1973. "Distribution of
Alkyl Arsenicals in Model Ecosystems." Environmental Science and Technology. Volume 7,
Number 9. Pages 841-845.
Lorber, M. 1995. "Development of an Air-to-plant Vapor Phase Transfer for Dioxins and Furans.
Presented at the 15th International Symposium on Chlorinated Dioxins and Related Compounds".
August 21-25, 1995 in Edmonton, Canada. Abstract in Organohalogen Compounds.
24:179-186.
Lorber, M., and P. Pinsky. 1999. "An Evaluation of Three Empirical Air-to-Leaf Models for
Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans." National Center for Environmental
Assessment (NCEA). U. S. EPA, 401 M St. SW, Washington, DC. Accepted for Publication in
Chemosphere.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-9
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
McCrady, J.K., S.P. Maggard. 1993. "Uptake and Photodegradation of
2,3,7,8-Tetrachlorodibenzo-p-dioxin Sorbed to Grass Foliage." Environmental Science and
Technology. 27:343-350.
Pietz, R.I., J.R. Peterson, J.E. Prater, and D.R. Zenz. 1984. "Metal Concentrations in Earthworms From
Sewage Sludge-Amended Soils at a Strip Mine Reclamation Site." J. Environmental Qual.
Vol. 13, No. 4. Pp 651-654.
Southworth, G.R., J.J. Beauchamp, and P.K. Schmieder. 1978. "Bioaccumulation Potential of Polycyclic
Aromatic Hydrocarbons in Daphnia Pulex." Water Research. Volume 12. Pages 973-977.
Travis, C.C., and A.D. Arms. 1988. "Bioconcentration of Organics in Beef, Milk, and Vegetation."
Environmental Science and Technology. 22:271-274.
U.S. EPA. 1993. Review Draft Addendum to the Methodology for Assessing Health Risks Associated
with Indirect Exposure to Combustor Emissions. Office of Health and Environmental
Assessment. Office of Research and Development. EPA-600-AP-93-003. November 10.
U.S. Environmental Protection Agency (U.S. EPA). 1994a. Draft Report Chemical Properties for Soil
Screening Levels. Prepared for the Office of Emergency and Remedial Response. Washington,
D.C. July 26.
U.S. EPA. 1994b. Estimating Exposure to Dioxin-Like Compounds. Draft Report. Office of Research
and Development. Washington, D.C. EPA/600/6-88/005Ca,b,c. June.
U.S. EPA. 1995a. Review Draft Development of Human Health-Based and Ecologically-Based Exit
Criteria for the Hazardous Waste Identification Project. Volumes I and JJ. Office of Solid
Waste. March 3.
U.S. EPA. 1995b. Great Lakes Water Quality Initiative Technical Support Document for the Procedure
to Determine Bioaccumulation Factors. EPA-820-B-95-005. Office of Water, Washington, D.C.
March.
U.S. EPA. 1997. Mercury Study Report to Congress, Volumes I through VIII. Office of Air Quality
Planning and Standards and ORD. EPA/452/R-97-001. December.
U.S. EPA. 1998. Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilitites.
External Peer Review Draft. U.S. EPA Region 6 and U.S. EPA OSW. Volumes 1-3.
EPA530-D-98-001A. July.
Veith, G.D., K.J. Macek, S.R. Petrocelli, and J. Carroll. 1980. "An Evaluation of Using Partition
Coefficients and Water Solubility to Estimate Bioconcentration Factors for Organic Chemicals in
Fish." Pages 116-129. In J. G. Eaton, P. R. Parrish, and A. C. Hendricks (eds.), Aquatic
Toxicology. ASTM STP 707. American Society for Testing and Materials, Philadelphia.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-10
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
Welsch-Pausch, K.M. McLachlan, and G. Umlauf. 1995. "Determination of the Principal Pathways of
Polychlorinated Dibenzo-p-dioxins and Dibenzofurans to Lolium Multiflorum (Welsh Ray Grass)".
Environmental Science and Technology. 29: 1090-1098.
Weast, R.C. 1986. Handbook of Chemistry and Physics. 66th Edition. Cleveland, Ohio. CRC Press.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-l 1
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C: Media-To-Receptor BCF Values August 1999
MEDIA-TO-RECEPTOR BCF VALUES
Screening Level Ecological Risk Assessment Protocol
August 1999
C-l SOIL-TO-SOIL INVERTEBRATE BIOCONCENTRATION FACTORS C-15
C-2 SOIL-TO-PLANT AND SEDIMENT-TO- PLANT BIOCONCENTRATION
FACTORS C-29
C-3 WATER-TO-AQUATIC INVERTEBRATE BIOCONCENTRATION FACTORS ... C-36
C-4 WATER-TO-ALGAE BIOCONCENTRATION FACTORS C-54
C-5 WATER-TO-FISH BIOCONCENTRATION FACTORS C-66
C-6 SEDEMENT-TO-BENTfflC INVERTEBRATE BIOCONCENTRATION
FACTORS C-85
C-7 AIR-TO-PLANT BIOTRANSFER FACTORS C-96
REFERENCES C-99
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-13
-------
s
ca
•<
til
V
"u
1
s
1
u
1
3
§
a
S
i
V
€
tf
*BS
a>
3
Q
o
^
O
Cri
w>
O9
I
ts
I
s
ta
^
H
ON
_;
jj
3
"ca
^j
PQ
13
•S
U
G
1
1
tetrachlorodibenzo-p-dioxi
oo_
en~
04"
•b
Compoun
CQ
53
£
8
§
_
b
_B
'x
Q
?
ex.
g
g
Xi
*3
2
£
o
00
t""^
**l
CS
£
VI
0>
s
"ea
^.^
1
I
j|
m
ing the geometric mean of
CQ
3
"O
oj
JS
3
CJ
cd
o
CQ
cd
a.
U
03
u
u
is
'o
o.
W
O
1
x
u
id"
o
i§
ijj
•§
ca
5"
T3
6
8
•§
Martinucci, Crespi, O
(1983)
in
tj
•S
"3 §
Q ISJ
« -Q
O **
« CJ
1 1
1
X
u
1
0=>
s
ON
Reinecke and Nash (1
•*5t ( —
d d
— ' OO
^ NO
ON d
VO
f^
o
_3
"a
•o
o
•o
g
£
o
&
chlorodibenzo-p-dioxin
S
B
o
Q.
00
»^
en
eN
1—4
•b
Compoun
It
eS
ON
d
x
ON
in
It
&
PQ
co
I
%
Cfl
ca
S
in
2
fe
OO
N*"'
m,
i-i
**
<2
•a
g
"s
ff
c
o
'^
s
1
§
*^
ing the TCDD BCF and a 1
CQ
3
•o
O
J5
3
U
U
CQ
ca
U.
U
03
"8
t3
B
C
O
1
achlorodibenzo-p-dioxin
x
-?
oo
t-r
_»r
en
04"
*
•o
Compoun
^t
,_
en
d
X
ON
"
II
&
03
CO
|
S
CO
cd
2*
i
i
CO
D
N—'
S
PQ
"g"
*J
<2
y
g
T3
>
"3
a1
u
|
ta
1
3
_O
ing the TCDD BCF and a 1
CQ
3
-o
S
3
O
*cd
o
CQ
&
U
03
ON
r— I
d
o
*ca
>
"S
T3
g
O
1
achlorodibenzo-p-dioxin
£
oo
t-T
VD"
c^
fsj
*
•o
Compoun
£
d
u
04
*— <
d
x
ON
in
"I?
&
CQ
CO
1
S
Cfl
ed
1
04
CO
D
a*
B
^
"o
c2
o
g
•a
>
"3
8*
B
O
•a
J2
"3
3
_O
ing the TCDD BCF and a 1
CQ
3
T3
U
s
3
U
U
CO
CO
1 The BCF
04
04
d
u
3
•a
>•
T3
•a
B
U
E
E
achlorodibenzo-p-dioxin
x
-?
ON
oo
f^
en
ci
^j
Compoun
es
fN
d
u
^.
T-H
d
x
ON
in
Ti1
u
PQ
CO
1
2
CQ
ca
ON
CO
'"•-'
&
PQ,
¥
4»>
•
•a
a>
•o
B
U
B
Recom
B
eptachlorodibenzo-p-dioxi
JS
00
f^.
NO'
l"
en_
04
*
•a
Compoun
i
o
II
in
O
d
x
ON
in
*
II
&
CQ
CO
1
S
GQ
ca
in
ON
CO
*^^
£T
BJ
PQ,
"g"
^J
c2
y
g
•a
g
c
1
c3
1
cct
_O
r^
ing the TCDD BCF and a 1
CQ
3
U
5
3
"ca
o
CQ
ca
1 The BCF
ON
O
d
ii
"ca
>•
"2
*Q
g
E
Recom
c
1
•3
D.
8
B
=3
v^
_o
jE
o
ts
o
TJ
Compoun
ON
O
d
II
04
O
d
x
ON
.
B
PQ
CQ
_o
*o
tu
CO
ca
S
-M
$
&
CO
D
S
B
I
g
•a
_>
1
§
•B
CQ
3
B
3
cd
.0
ca
ca
U>
U
03
Q
Q
F was calculated using the
U
03
r"
«N
i-«
U
,2
ca
B.
U
PQ
"8
"2
g
H
O
g
S
g
.0
i
"
oo^
en^
es
•y
B
1
5
04
o
oo
d
x
ON
m
*
II
B.
U
03
CQ
_0
a
CQ
ca
2"
in
CT\
ON
CO
D
^"'
PQ,
^
"^
"3
0>
u
c
_o
ta
"3
3
o
"^
ing the TCDD BCF and a 1
3
•o
U
™
D
Q
*cd
o
tn
cd
^
1 The BCF
04
en
d
°u
J3
"ca
0.
U
PQ
•8
T3
g
E
o
1
8-pentachlorodibenzofurari
en
oJ
r^
•o
c
3
O
D,
1
-------
^
iH
U
s
CQ
H
FACTO]
Z
0
H
1
Z
IOCONCE
PQ
e
•<
PS
g
g
H
^
z
NN
J
0
CM
•
o
H
i
J
S
CO
•^4
S
>>
£
DC
S
D-
8
M)
S
^
1
3
•*•»
o>
^
^
U
eu
O
u
I
^
1-H
'S
p^
1
0*
^^
09
Q)
"S
fS,
%
V
j
§"
s
o
•s
.2
"3
1
ed
d using the TCDD BCF and a bioi
u
"cs
D
cd
0
tV5
>
1 The BCF
3
04
i>
"a
^•
PU
0
03
"S
•o
g
E
E
O
P^
4,7,8-pentachlorodibenzofuran
ON
ON
i
CO
s
s
J
ca
^
y
g
"3
t>j
'3
B
•^
"3
§
d using the TCDD BCF and a bio
U
"«
O
"ed
U
CQ
KJ
1 The BCF
o
en
d
u
"3
^
tt.
U
EQ
"8
T3
g
£
&
3,6,7,8-hexachlorodibenzofuran
o)
*•
T3
Compoun
o
en
O
II
ON
d
X
ON
in
7
pl
u
03
CO
J3
2
CO
ca
ON
ON
W
CO
pf
5-
I
ca
^
y
B
U
•3
s^
*3
ff
B
_O
a
"3
3
U
O
a
d using the TCDD BCF and a bio
u
nj
3
"3
U
CO
>
1 The BCF
B
— '
u
3
"3
^
[L,
U
BQ
"S
B
U
E
E
o
CO
OS
4,6,7,8-hexachlorodibenzofuran
rn
of
•y
Compoun
r^
q
ii
vo
d
X
ON
IT)
7
u-
u
CQ
CO
_O
1
CO
ca
£"
ON
ON
i
w
CO
£•
03
I
S
u
g
•a
^
"3
B
_O
a
1
u
ca
d using the TCDD BCF and a bio
^J
a
"s
CJ
*c3
0
CO
>
1 The BCF
8
— '
o
3
•a
^
a-
U
BQ
T3
1
E
g
to
ct*
3,7,8,9-hexachlorodibenzofuran
O)
"
T3
Compoun
.
f-H
II
en
vo
d
X
ON
2
7
UH
U
CQ
CO
1
£
ca
sf
ON
ON
aj
CO
5
B7
B
"g
1
u
B
U
•a
^
's
O"
u
B
_O
1
3
d using the TCDD BCF and a bio
o
CS
"3
CJ
"a
u
CO
i
u
CQ
u
^
O
d
u
"3
^«
o,
U
03
"S
•a
g
E
o
u
a:
B
,3,4,6,7,8-heptachlorodibenzofura
ol
~
*tj
I Compoun
^
o
d
n
o
d
X
ON
V)
7
PU
u
BQ
CA
_o
1
CO
cd
£-
ON
ON
»— i
CO
ta
n,
s'
1
•a
.£<
*3
8*
B
_O
1
1
ca
d using the TCDD BCF and a bio
-CJ
C3
~3
"3
u
CO
ca
5
u,
U
CQ
CJ
S
d
o
3
"3
^
a.
U
OQ
"8
13
g
E
B
,3,4,7,8,9-heptachlorodibenzofura
0)
^
T3
|| Compoun
O4
VO
d
n
ON
en
d
X
ON
!2
7
u.
u
03
CO*
1
2
CO
C3
£^
>n
ON
ON
i
CO
D
W
S
J
eel
^
u
B
U
•3
.?£
S
CT
U
B
_0
"I
g
CJ
ca
d using the TCDD BCF and a bio
o
a
"3
u
"3
u
CO
a
Z
|| The BCF
VJ
S
d
u
"3
^
c.
U
CQ
"S
1
C
ochlorodibenzofuran
Q
Q
•a
Compoun
d
n
VO
O
d
X
ON
12
7
B,
U
03
CO
|
S
CO
C3
ON
ON
i
co'
D
£
CQ
I
>,
0
g
•3
fg
3
a1
u
B
0
•a
ca
"3
1
u
ca
d using the TCDD BCF and a bio
u
ca
*3
~3
u
CO
ca
&
U
03
S
&
&
c
s
1
•B)
M*
1
s
2
h
2
73
g
^
g
d
u
3
"3
^
CL.
u
cq
T3
CU
T3
U
£
Cet
izo(a)pyrene
*H
d>
03
•0
Compoun
S
ap
'S
OJ
*
§
1
X!
c3
u
0
'Q
S
1
U
U
Jr
•^
oo"
oo
Q\
O
Jj
T1
1
^4
CO
j
S
«
fc
o
§*
CQ
U
"3
u
ti
B
£.
/— S
"g"
N
g
)H
<2
1
5
^
f
_§
C3
d using the geometric mean of 6 1
ing a conversion factor of 5.99°.
U CO
_« 3
"3 ^
u GO
"3 *!Ti
CJ g
CO -^
^ Ft
1 The BCF
over soil (
-------
g
u
51
NH
H fc
U
pa
H J
z S
W £
13
8
PQ
PQ
~ B
NH 6C
t/J ^
tn
Q^
a
i/i
2
1
i
OS
t.
a
a.
^M
|
i
s
i
t*
1
1
03
^
3
1
1
•2
1
ty
S
1
a.
X
u
T3
OO
f^l
0?
OO
o\
^^
8
•a
§
Rhett, Simmers,
^" ^t" ^D
^^ ^2 ^2
d d d
2 o O
odd
en
O
d
u
3
"a
u-
U
oa
•8
•o
c
u
H
1
tthracene
A
'c?
¥
g
oa
•a
c
1
o.
O
U
•8
b
o
*-»
op
'u
&
^J
1
o
"O
^
I
2-
u
f^
OO
ON
^
a
•O
§
2"
b
1
5?
'H
u
3
h*
S
B
1
O
i
Ts
>
u
p-
g
8
a
1
W
¥
1
s
1
^
(*-(
O
g
the geometric me
ar of 5.99'.
eo «
'35 "•<
3 C
•o .2
U tn
a b
"= S
•H §
g «
W
rt OJ)
£ c
§1
s •§*
p s
1
-.
a
73
fS
en
P
OO
ON
I
73
e
a
i_i
I
.§
5!
'S
U
2
m
CN) (N t~- O v~i ^ ^*
O O O O O O O
o o o o o o o
t— oomr--r-ON
oooooooo
oooooooo
_^
o
d
u
3
>
p1
0
PQ
T3
U
1
O
fV]
noranthene
C3
^^
C
•6
1
1
U
Ui
u
o
"M
'5
^
O
o
•a
u
u
b
0?
00
o
J
T3
i
b
.2
1/3
tt
I
"•
C
o
a.
S
S
_3
a
>
^
g
u
e
S
3
CS
s
°
1
Ul
<2
ce
U
3
"a
a.,
1
O
f^
!s
VO
o
g
the geometric me
factor of 5.99".
00 c
s s
'53 '55
3 2
ll
a o
"3 °
o a
"a oo
u c
| 3
B, §
CQ ^
£ &*
P -a
^
•§,
Q
1
ty
a
g
T3
00
(N
OO
OO
ON
Sw'
^
T3
g
Rhett, Simmers,
vo ^f ui
— 0 O
odd
— i VD \O
— 0 0
odd
00
0
d
u
3
>
a.
u
pa
T3
U
U
r;
O
C<
aoranthene
ts
^
^O
N
C
Da
•a
c
o
ex
o
U
u
0
1
>
c
8
iM
>
•^
i?
ON
a"
"c
cd
»
b
E
OT
1
O
1
s
-S
73
g
Q.
a
CA
U
_3
"a
>
u
£
inthene.
2
1
C
/•™s
1
(4-1
J3
"a
^
H
£
a
10 O\
O 2^
e o
a L,
the geometric me
conversion factoi
oo a
C OO
•S3 .£
3 5i
T3 f
3 4^
"o >»
a "^
S b
-C '5
P *
3
I
3
1
S
1
1
cs
en
P
00
I
•o
s
*2
e
}
IO *"• ^" M f^J C^ Tj"
— i — ' tN O O O O
O O O O O O O
en
-------
u
s
I
M M
BO
.2
"S
a
co
•s
i
i
1
i
"S
I
>*(
B
i
OS
S
3
^^
"2
•c
g*
i
3
d
0
>
B<
U
OQ
Recommended
u
1
J>
?^
•B
c
1
o
O
>•*
•8
!_
U
O
X!
.00
'S
1
2
1
?87) were conver
^,
>>
W
T3
C
B?
&
E
^
— "
'S
j
.S
1
8
GO
U
1
"
0>
CO
1
<2
CO
U
3
"S
c
la
S
o
i
g
the geometric
jr of 5.99".
eo -5
c s
•** t2
"S •-
C3 £>
"5 £
o c
—H O
S o
en
ca oo
? .S
B. '1
u s
-fi 'S
P &
1
.s
1
0
^j
1
r^
f>
^^
P^
oo
O\
-^
s
•a
CO
i
.5
'S
u
1
^
m •* r- o ts c4 -H
0 O O 0 O O O
O O O O O O 0
ooo^*'—
1
3
?
a
2
.g
1
1
i
|
1
f^
(anthrcene.
JS
CO
N
g
^
Q
<§
cfl
3
^3
^
&*
13
o
1
o
g
"Z g
3 O
^^
a t»
3 -^
_o g
en 00
ca 'r^
^ ^
^
r^ >
P O
1
rrt
K
Ci
•i
a
8
1
1
a
-cd)pyrene.
**1
'i
^o"
§
1
1-1
t(-(
CO
U
3
*c3
=.,
o
I
1
-o
'S
I .
the geometric
factor of 5.99"
00 c
C o
1'E
Cj
'ca p
3 °
o ca
!•-
« 3
* *
r, J^
N °°
«i
u >.
P -e
Eisenia foetida
0
b
-day exposi
oo
-------
0
«
s
H on
z o
1H
1
b
~
*3
5»
2
2
i
i
1
1
i
I
i
*
3
13
^
"8
1
&•
CN
c^
"
•a
c
u
3
u
CA
1
1
CA
'S
•o
ca
So
00
2
!
•o
cfi
g
e
o
e
i
t;
1
g
_3
"t3
1
PCB congeners.
factor of 5.99°.
11
h* en
3 =3
x >
'S C
E o
cd
i§ 00
ll
> op
f!
;an of 7 lab
'eight over
E *^
1 2
§•2
0) *5
oo |
oo u
C o
"™ u
"C3
" .—.
"3 S
u ^-
1 J
fc H
^J *2
CO c^
£ "°
P S
•s
1
"c
&3
i3
-day exposure
oo
/•^
2
u
1
0?
IH
I
t/3
I
oo o
o — '
m «n t-
•* r- —
_ 0 ~
&
1
1
.u
§
ironic exposure
U
[-N.
OO
ON
^
CO
s
H
T3
s
Cuendet, i
*o
a
1
CA
"I
N VD
« —
q
u
"3
U
m
1
I
|
U
•
•a cs
E o
cd
O 00
<*- e
11
C3 ^!
> 00
11
:anof71ab
'eight over
P
ometric
ed to we
U •+-*
to >
-C ti
*J Q
oo u
C u
| s
T3
« --N
~5 c£
CJ ,^1
ill
^ I
CL, S
^^ S
CD L^
_g T3
H §
1
-1
"s
_t?
S
-day exposure
00
ts
00
oo
2
¥
_t
•o
§
o5
E
ts
— r-~
00 O
o —
m 10 r-
^- f- r-H
— ' ci —
s-
J
i
.0
§
ironic exposure
s
f^
00
2
CA
a
1
CO
1
Cuendet, i
•a
a
1
1
CS ^D
^ ^
Ov
i
o
-------
CC
O
H
U
^£
TABLE C-1
JRATE BIOCONCENTRATION F
et tissue) / (mg COPC/kg dry soil)
(Page 6 of 14)
NH i
w ^
a ^
w w
i|
^ DJD
C« "^
0
S
cc
on
V
*j3
o.
Experimental Parameters
References
°v
a
^
0
•B
a
C
e
Nitroaromatics
o\
**^
u
_2
>
u*
"8
•3
g
1
£
1
N
o
1
•s
5
rA
*
•o
3
O
d.
1
.2
'cd
1
O
«
£*
80
.S
_o
S
1
op
B
*55
3
irrogate compound. The BCF was calculated
here log K^, = 1.491 (U.S. EPA 1994b).
fcl •
ll
"efl *^
ll
o S
nzene or for a stn
eauchamp, and Si
ti CQ
"O rf
.fi "§
S o
^1
?1
U TT
J-
'3 's
a icf
g on
u o
9 ~~
a £
~a c>
•c "
f&
g EQ
O oo
Z -2
o
m
u
_3
*ed
edBCF
•o
B
U
E
o
o
o
05
1
_3
"S
g
'S
5
4
cs
T3
C
S
0
C-
1
B
_O
3
ty
u
c
_o
o
00
ti
80
_B
|
"o
O
•s
80
3
rrogate compound. The BCF was calculated
here log K,,w = 1.996 (U.S. EPA 1994b).
3 S
« *
|f
"S *" '
fl
3 _a
O 0
uene or for a stru
eauchamp, and Si
2 «
O r^
5 t5
4 •§
0 TT
•8^
1 '*
M i*j°
i>
l-i 80
ca "*
ri i
— °°
~a o
'C "
fB
u CQ
0 80
Z 2.
"1
, _g
S u
or for a structura
eauchamp, and Si
B m
U ^J
C &
11
S o
JO -
edBCF
-o
g
S
1
u
05
o
i
1
•a
|
o
5
c
p (
•o
c
3
O
D.
1
C
.2
ed
CT*
o
CA
S
80
0
tH
80
B
|
2
u
fi°
*60
3
•o
J3
3
lilar surrogate compound. The BCF was calc
here log K,,,, = 4.640 (U.S. EPA 1994b).
C S
«5 ^^
S T^
1-1
cd ^
Wi U
itrobenzene or fo
eauchamp, and Si
§ H
tH yj*
J C
| 1
ll
1H CO
O ^
* vo
^2 Z:
'3 's
18 ^
1^ 80
o c
ca **
ca o
"2. °°
"a d
•c "
§ CQ
o oo
Z ~
Phthalate Esters
g
CO
^^
cJ
^
*e3
>
edBCF
"O
1
E
1
u
S
1
•a
>^\
x
1
ts
fN
23
CQ
•o
c
3
O
O.
1
e
o
C8
3
§•
8
g
w
"co
1
80
B
*>
_o
1
u
80
'S3
^
s
•3
^
imilar surrogate compound. The BCF was ca
'here log K,,w = 5.205 (U.S. EPA 1994b).
53 ?
= oo~
ISj
^ k4
3 o
CO 4>
cd 'a
t-i _g
:xyl)phthalate or i
eauchamp, and S
S w
>, j-"
* 1
o o
il
s|
a> ^-
1 ^
> :
S 80
U o
ca *
n 2
"3 d
O j.
o CQ
O oo
Z 5
00
cs
f— *
c*^
u
3
"3
>
ed BCF
•a
B
U
E
|
Ct5
•3
JM
•g.
ti
^
^
Q
•a
c
3
O
Q
1
s
_o
1
1
Cfl
00
22
.s
_o
2
u
fiO
c
"CQ
•»4
iurrogate compound. The BCF was calculatec
'here log K^ = 9.330 (U.S. EPA 1994b).
c3
^ *"
.§&
ce ;2
fj
thalate or for a st
eauchamp, and S
n,
f"
'•3 0
8 ^
jo ^3-
Jl ^
'a '
> *
a ^
£ 80
U Q
ca *
a 2
"3 d
- 11
£
!i
-------
l-H
U
s
ea
iS
c«
OS
O
H
O
^
o
d
S
"3
>
UH
U
pa
"8
"§
Recomme]
o
c
2
u
u
<
-H
c
3
O
E
d
'l
00
*^
Ov
00
&
CQ
,2
r"
ion equatioi
8
U
00
2
00
£
1
:ompound.The BCF was calculated using the :
arickoff and Long 1995).
o X
o* <»
§ o
£ "
•i *
fl
co 00
ca C-
t-l
<£ ^
°l
° .s
° §
S 0
CB OO
,2 c
t4-1 CB
U .
S &
JB g
1 I
ca 3
CJ C3
" u
4> ro
£ -
ca £
15 g
13 £
ca -5
y 3
"C 0
'Is
O •-;
-
O
U
CB
£>
[L.
U
pa
•o
CJ
•o
Recomme:
u
•fi
1
<
•a
c
1
E
o
U
c
Q
'S
3
rr
regression ei
00
_c
_o
"S
&
o
H>c§
5ate compound. The BCF was calculated usii
where log K^ = 0.250 (Karickoff and Long 1
•"* X^
tj OO
3 ^
-2 S3
E.1
r for a structurally-si
auchamp, and Schm
0 V
u, «
"S o
">>•£
0 3
CB O
n 00
o •—*
JO rT
"S '
ca ^f
1.H 00
£-2
IS ^
!2 °°
"e3 O
CJ u
*C
'H. Bi
gU
u CQ
£.2
00
fN
U
13
^
&
«
•o
CJ
•a
Recomme:
S
cS
o
S
2
U
-o
c
1
E
o
U
c
_o
SB
;ression equ
S
oo
•S
^o
1
£
ite compound. The BCF was calculated using
where log K,,,, = 1.949 (U.S. EPA 1994b).
ob /-^
o oo
W3 ^^
C >*H
for a structurally-sir
auchamp, and Schm
to u
O pQ
-,
/^
5 1
*cc ^
rrogate compound. The BCF was calculated u
where log K^, = 0.55 (Based on equations de
3 X.
X 00
— 2
il
e or for a structurall;
auchamp, and Schm
•o o
_c ®
2€
«J O
S|
S 3
S 0
s^
^ VO
_o ^
_ca ^
> s
CB i^f
If
1 2
2 S
ca o
CJ |.
"C
'^ u
§ CQ
O 00
s
o
u
la
^
[L.
U
pa
1
Recomme
u
c
CB
X
0
5
~
•a
3
o
a.
3
c
_o
3
jgression eq
*-
OO
c
"%.
.2
u
£
&o
;ate compound. The BCF was calculated usin:
where log K^ = -0.268 (U.S. EPA 1995a).
DU ^i
2 °°
CQ i— t
3 QJ
Eu
.— 1
• for a structurally-si
auchamp, and Schm
o ^
o ®
gf
II
^- 3
— O
JU Tj-
1 '*
CS k^P
i_ dc
OJ o
cd *^
"cd ON
"° oo
"e3 O
cj u
"C
§ pa
O 00
s
o
'i
13
^
0-
o
pa
"5
e
Recomme
o
•a
•§
3
cd
c
u.
"O
J2
3
O
S
d
00
x
2
00
d
II
p.
u
m
oo
_o
c
.2
3
CT
ol
; regression <
00
c
i
_0
£
u
.2
ogate compound. The BCF was calculated us
, (U.S. EPA 1995a).
c 2:
§ 2;
S3 ^
r« "
"cfl *
or for a structurally-
ler 1978), where log
«> 0
"O .2s
1 ~°
O TO
* m
^ D«
U J=
"§ 1
'f «
CB J
o o
ca •£
^ o
"3 ^
0 VO
' C ^-
I""'
u '
l«§
fN
VO
C5
U
3
"a
^
&
pa
1
Recomme
u
•o
1
u
•5,
3
•y
c
3
O
a.
1
00
JO
X
Ov
oo
O
&
pa
r?
,2
§
ed
9
?
g regression
c
"S
5
(u
•S
s°
ogate compound. The BCF was calculated u:
i (U.S. EPA 1994b).
c S
cfl ^
s -
-a *f
or for a structurally-
ler 1978), where log
(O g
r2 '^
*6 w
>> c
.£ 3
^ "
hN M*
U JO
II
<« -
<3 o
$ *
i~|
•ta* ^
"° oo
"ra ^^
O ^)
"C •<*•
f"
z^1
fN
6
-------
I
H
U
ta
TABLE C-1
KTEBRATE BIOCONCENTRATION
:/kg wet tissue) / (mg COPC/kg dry soil
(Page 8 of 14)
uJ LJ
p*^ ^r
||
T!» ^^^
6
H
Q
BC
•3
1
S8
Experimental Parametel
.eferences
cc
IB
C
.•
0
p>
^
a
^
S
i
c
D
Other Chlorinated Organics
o
o
3
>
&
n
•o
1
g
8
^
3on Tetrachloride
ra
u
•B
p
o
Q,
1
c
o
•a
CS
3
O*
U
_o
'53
eh
££
00
_n
23
o
u
g
'1
1
similar surrogate compound. The BCF was calcul
978), where log K^ = 2.717 (U.S. EPA 1994b).
structurally
Schmieder
es -a
£8
S §•
o c3
•"g -S
s 1
11
available for carbon tetri
<„„ - 1.146 (Southworth,
tH OO
0 0
s —
=a **
ra ^
- »
"3 d
•c "
o CC
0 00
Z. .2
VD
O\
i5
"3
U
n
•g
T3
g
a
g
o
achlorobenzene
X
K
•y
3
O
C
1
C
o
1
u
c
_o
CO
OO
2
1?
j
i2
U
.S
•3
1
imilar surrogate compound. The BCF was calcul
978), where log K^, = 5.503 (U.S. EPA 1994b).
CO »— <
structurally-
Schmieder
T3
S |
§1
i §
c u
^ CQ
available for hexachloro
K,,,, - 1.146 (Southworth,
^ oo
& -^
"ca ^
— °°
"3 d
•n ii
1 pa
o oo
Z 2
*o
en
u
3
"3
tt,
O
09
•o
§
g
g
0
achlorobutadiene
X
u
EC
•a
c
3
g
O
U
c
_o
!
£
.2
*co
en
O
60
c
1
Ig
u
J3
00
'S
3
1
JS
^
-similar surrogate compound. The BCF was calci
978) where log K^, = 4.731 (U.S. EPA 1994b).
i structural!;
Schmieder
~ -o
a §
g $
u 5
ll
•3 i
3 «
J CQ
available for hexachloro
KDW- 1.1 46 (Southworth,
1- Ol
^ "**
« !x:
*- ON
"° OC
"« o
:^i
§ cc
J*
U
"3
B
CQ
•a
u
1
C
8
:achlorocyclopentadiene
K
(U
p~*
•y
c
3
0
Q.
1
U
g
3
3
cy
u
'«
CA
K
00
00
'1
JD
1
1
00
*co
3
T3
3
•3
o
•3
u
Cfl
turally-similar surrogate compound. The BCF wa
1978), where log K^ = 4.907 (U.S. EPA 1994b).
CJ ^^
or for a strui
Schmieder
X
*S3
«
*2
ni
r *.
0
t-^
Q
tig the geometric mean of 13 laboratory values for
ight using a conversion factor of 5.99a.
.»* u
alculated us
over dry wi
0 V
BCF was
wet weigl
J3 -2
P "8
DDE were not available.
3ish (1980) were conver
^ . "Q
~- C
"^r rt
O flj
.,
« u
-a TJ
5 ca
:s i?
a, t-~
g 2
W C-
1
c2
fc
1
.S
'C
1
Chronic exposure
Davis (1971)
o\ —
d d
oo o\
O C-.
d d
-------
cc
PS
B
U
<
fe
^ s^
ll
H -^
3 ^
^1 >H
TABLE C-1
ATE BIOCONCENTR
tissue) / (mg COPC/kg <
Page 9 of 14)
& ~ -
M V
w s
w *
H Sf
OS <£
(3 U
z" o
HH r *i
iJ ec
^•4 M
8^
6
H
j
0
t»
w
_!
"5
v.
|
a
Experimental P,
eferences
A
"«
u
9
"e3
>•
•o
w
I*
O
p;
s
W
S
Aporrectodea trapezoides
Aparrectodea turgida
Allolobophora chlorotica
Lumbricus terrestris
hronic exposure
U
ON
f— <
'Xrf'
•9
5
1
8
>-.
o
n
f>
00
d
Not specified
hronic exposure
U
/— N
OO
vo
CN
la
•a
§
£
to
0>
£
o o o
(N VO >O
— Tt — '
in O O
oo •*<•
£
Svo
^r
O rfj
o
•*
— ;
u
Recommended BCF Valu
eptachlor
E
-o
c
D
O
o,
o
O
to wet
•o
u
S
^
c
o
o
in Beyer and Gish (1980) was
*o
c
I
1M
u
3
"3
>
u
o
•o
.tory value for heptachlor epo>
ra
|
•O
J2
—
00
C
"oo
S
1
JS
3
BCF was calc
99".
liable. The
factor of 5.'
5 e
£ .2
ll
M
> C3
g g>
l!
ex -^
u oo
-= •«
^ >•
^5 ?
<*" >,
s £
M ^
•o S
S °
13 £
£X M
S w
a &
Aporrectodea trapezoides
Aparrectodea turgida
Allolobophora chlorotica
Lumbricus terrestris
hronic exposure
U
y^S
8
2
tn
5
T3
i
u
n
o
•*
o
t--
<*„
8
u
Recommended BCF Valu
S
1
1
2
u
03
S
ac
-b
c
3
O
tx
1
U
wing regression equation:
0
2
1
00 ^
.g vi
3 2
1 «
•2 R
g J
— -a
3 ^
U CB
ate compound. The BCF was
re log K™ = 7.540 (Karickoff
bo o
s •§
5
H gf
— 0\
1?
i*^
ll
or for a struct
:hamp, and Sc
II
f™
H
J3 O
s I
x -S
U 3
-C 0
£ S£
« yo
jj -q-
X) *~i
_« -^
03 J^
O
1— CD
> .2
« x
P3
*-t {•*.
C3 2
•° x
It
C "
"5, Q-i
g U
u CQ
O OC
2 ^
Inorganics
S
d
T3
« S
minum \v
copper, I
-i E
u. 3
O "c
<•-' E
S S
ta j:
T3 0
"S E
tl
II
fM
oo
S g
o!
§1
:imony wi
copper, I
1 E
>-, 3
o "5
<" C
5 8
a x>
"O o
"3 p"
rj C
1 1
11
,— *
,— i
d
i>
Recommended BCF Valu
_0
"H
u
tn
-5
T3
C
D
a
i
-------
x
o
H
u
^j
ta
51
M !*>
< •«
e »
fig
- H sr
i CJ IT ^
w ol -g
N S ^L o
J qj" »H
flfi u *i cu
< H « UD
fid ^^ ^^*
^2 4>
MH jk.
W ^
If
^^. C^
z o
.. w
M ^
o S
W5 ^"^
6
H
J
S
J
"S
a,
cfl
i
'S
i
1
Experimental 1
Reference:
eft
1
~a
^-
•8
O
D.
«
N
b*
s
£
00
1
Si
?
o
"u
0
1
00
00
ON
J
•o
h«
g
g
53
u
•S
1
elow. The values repoi
i
•-H
e«
o3
O
"5
<§
u
_p3
C3
C*
I
V!
O
g
u
E •
ca
O A
•S Oi
fi ON
« in
8»
| 1
ulated using
conversion !
u &
~a so
u c
s 3
0. •§)
iC b1
P -8
Eisenia foetida
exposure
"V
00
id Lee (1988
§
•>
u.
55
•f
u
s
o r^
d d
2 2 o
d d d
"3
n
Recommended
Barium
•o
c
3
O
O,
1
U
g"
"E
•o
IS
u
(S
'S
u
cn
O
1
'3
empirical data <
C1
TJ
§'"
oo
}M
O
C
U
cn
1
Ui
£
cn
U
f the recommended val
o
Sea
o
'£3
H
1
o
5
cn
B-
U
03
•s
recommends
and zinc).
o 73
E *^
" .y
o 1
is
> o
* 6
|!
|-i
3 ju
^ 1^
i i
•a
*C3 C
U 3
'.5 5
£ !
UJ 13
tN
tN
d
o
°3
a-,
U
CO
Recommended
Beryllium
•y
c
1
o
rj
o
'E
CA
c3
u
3
ca
"3
ca
th empirical dai
*!T
cn
ca
o1
.£
u
cn
O
J3
1
U
>
i of the recommended '
a
u
o
*s
u
1
W
P"\
no ^
.S
'S 4^1
"O g
be recommei
iry, nickel, a
*"* S
d>
4> G
1|
03 03
> op
o §
C •"*
g «"
beryllium w
nn, copper, 1
^ 3
<2 E
ca o
"3 ^
T3 O
g--|
W o
VO
ON
d
u
3
•3
B.
U
Recommended
Cadmium
•6
c
§
&
|
U
u
>
/— V
cn
00
ON
u
J
•g
ca
"S
id Simmers, Rhi
K
OO
00
c
u
J
•a
G
ed
w
E
E
5i
'alues reported in Rhett
i*-
U
•
B
3
'g
T3
ca
u
l-t
cS
S ON
3 ON
•3 uS
> (M
£* bi
Q O
of 22 labora
nversion fac
g 8
u ca
E oo
o .£
•S S
Si
o .op
oo S£
0 *
.sf
3 O
•0 —
4i iM
« .SP
3 ^
^ s
"3 •?;
0 g
cn >
> °
Bl
oa S
£i
H 8
Eisenia foetida
exposure
i?
•a
00
o
a
S
£
tN ON m w^
o o o o
cn »r> c^ o
O O CO O
« *
g '$
S <*>
•^ *u
% ^ &
a, c o s -r s
! l> | j -g | §
1
u
1
U
^^
00
2
u
^
1
4J-
t>
S
E
E
5>
O t^ ^O t*~ v> O O
in r~ OO NO ON »/^ <—
O oc r^ NO m — ' fN
co ON m r- •— ^* ON
<-< (N CM «-< --< o cn
O O — > O O 00 •*
o
d
u
3
"3
B
pa
Recommended
,_^
"3
S
Chromium
•o
c
3
O
n.
o
U
oo
'o
•S
•o
U|
>
0
1
'53
£
I
n
ere converted t<
>
00
00
c
0
1-1
"g
1
cn"
E
E
55
I
•a
u
1
cn
U
J3
"3
1
E
3
'g
1
U
g
<*.
O
3
CO
^
£*
1
?
g
U
E
u
•fi
u
1
00
0 .•
« a
ulated using
[factor of 5.<
0 S3
•3 .2
CC fl>
ca >
j c
& 8
pa M
a .s
H 3
-------
I
H
fa
Z S
TABLE C-l
IRATE BIOCONCENTRATIO
et tissue) / (mg COPC/kg dry so
(Page 11 of 14)
3 *
H M
W U
^^ C^
Z 0
^•* ^^
N-9 OJD
ol
i
o
H
S
en
GQ
«
a,
£
«u
Experimental Parameti
g
1
«
"
tt.
U
«
•o
u
•a
B
U
H
8
(2
fcn
(U
o«
o
U
•a
c
1
1
00
"S
^
"S
o
n
'S
^
0
o
•o
^
u
o
u
i£
oo"
00
^,
"O
m
The values reported in Rhett, Simmers, i
^
g-
u
g
CQ
3
•a
^
O
1
1
"o
c
CO
0>
S
u
1
§
••* t(-H
I I
-£i o
•3-f
•a1.!
O CO
i >
? c
u, S
U Cd
m oo
D _C
1
O O CS O
d d d d
.3
1
*J»
-^
•3
Chronic exposure
^
00
CT\
cd
d
-------
u
s
CO
<
H
M
TH
H
V
o.
ce
I
su
3
s
a
n
I
i
a*
1
^
dJ
tS
O
i
(N
•-'
0
"3
CM
U
CQ
Recommended
1
1
u"
T3
Compoun
E"
E
T3
ia
u
o"
'£
u
CO
5-
U
3
BJ
'3
cd
:h empirical data
.a
S
c
'i
o
•3
1
M
"e3
1
•o
c
tic mean of the recomme
u
«
Jt
•2 T3
&(2
ra
n^-
ai
T) J2
-8 -1
if
l|
ii"
.,- s
were not available
lorganic mercury, i
^ *—
"O "^.
"c *o
rt rt
>» J^
O
g S3"
rt Cli
•a "
Empirical
chromiuin
S
d
u
_3
"3
J>
BU
U
CQ
Recommended
cd
J
•a
Compoun
2
•a
•g
u
e
o
u
S
u
£
^^,
J^
ON
^^
1
e
C3
•§
IS
00
IS
S
0?
00
o\
5
•o
I
g
1
„
te values reported in Rhe
S
"i
"s
5
CQ
>>
1
II
<" IN
2
C O
Sod
ta o
IThe BCF
wet weigh
Eiseniafoetida
28-day exposure
oo
00
o\
•a
§
S3
E
VO
CN O r-
O O O
odd
Not specified
Chronic exposure
Ma (1987)
o\
d
Not specified
oo
o\
IS
CM
d
Alabophera sp.
Lumbricus sp.
Octolasium sp.
Chronic exposure
^
ON
N-"
1
1
en
O
d
s
d
o
3
"3
tt.
Recommended
ric chloride
3
I
•ii
Compoun
1-
S3
i,
'S
*-
(U
?
2
T3
1988) were conv
and Lee (
2"
e
V)
i
g
t>
Q
O.
; chloride. The values re
1
«3
1
JM
CQ
^3
1
o
I
3
V)
•s
u
E
sing the geometric
factor of 5.99*.
3 S
"S -I
"3 g
^— o
CO (J
KJ OJ)
^ C
IThe BCF
weight us:
Eiseniafoetida
8 |
1^1 "s
O £
d « «
\/ o
... uT o
^ > u
111
•g co" "^
0 -2 "§
8 g g .
28-day exposure; tissue
reported for the first thi
concentration of 0.05 w
conservative BCF valui
00
00
o\
u
•g
§
0?
I
1
S3
d d
sss
odd
o
00
u
_3
"3
p-
U
CQ
Recommended
1 mercury
f
1
•y
Compoun
S3
§
t .
00
"S
1
^
—
g
o
f
1
snt (1985) were e
and Momi
o"
!*
•§
„ JS
11
CQ S
•S 1
1J K
1 below. The values repo
'eight to result in the vah
! b
8 *
2 2
8 I
•i °
CO
>> IS
0 £
§!,
•S 'S
fla j^
O cc
II
£
sing the geometric
rcent soil moisture
3 O
0) O
"3 ~S
~5 *
0 ri
eg -g,
^ "S
IThe BCF
soil wet w
Eiseniafoetida
1
2
VO
oo
^T
u
1
•o
§
3
1
CQ
c^ ro ON
OO 00 00
-------
S»M
fifi
"*
pa
?!
Oft
O
•3
U
ft
6
"S
fat
£
1
g
s
•S
i
t3
References
a
|| 27Reported V
S
o
o
>
a.
U
CQ
1
Recommen
o
2
Compound:
g>
3
i>
'5
•S
>
o
00
'§
s
1
converted to
£
u
oo"
oo
2
N_^
1
ea
1
J
'(»
£
^
1%
B
•rt
S
Q
&
tfi
J3
"3
u
=e
^
1
B
<2
1
"3
f
_«
o
B
U
E
the geometric
ilated using
of 5.99".
IThe BCF was calci
a conversion factor
1
Eiseniafoe,
Q
CO
s.
U
I?
•0
OO
ts
oo
2
J
1
S£
u
Rhett, Simm
m ^H •*•
O O o
odd
04
d
u
j3
"3
0
CQ
•O
•8
Recommen
Selenium
Compound:
^
o
u
>5-
u
IS
'§
M
•o
•ith empirical
^
CA
U
'S
ca
£?
O
1
<2
en
U
3
1
"S
I
B
|
y
»H
u
2
o
§
c
o
'•§
•i
u
•5
en
e recommended BCF
try, nickel, and zinc).
H 5i
E
:re not availab
ead, inorganic
selenium we
m, copper, 1
1 Empirical data for
cadmium, chromiu
CN
d
u
"3
OH
U
m
"8
T3
Recommen
1
&5
1 Compound:
g"
3
"i
T3
03
U
'S
JB
2
JS
'3
ca
empirical dat
j2
•|
u
'S
ea
f
o
:S
.2
1
"3
•o
u
•o
B
U
E
4$
O
•8
e
S
s
u
0
J
•5
u
^commended BCF is t
and zinc).
* T3
P e
not available.
mic mercury, i
II
S T3
1 Empirical data for
chromium, copper,
04
d
o
"3
CL,
U
ra
1
Recommen
Thallium
Compound:
E'
_3
E'
T3
03
U
.a
C
sS'
t)
1
'3
ca
ca
n
•o
ith empirical
>
.3
§
BO
Q
U
O
•S
.2
1
"3
"8
e
u
E
cj
£
U
•S
0
B
ca
4)
E
u
'•S
u
"i
•s
09
; recommended BCF
, and zinc).
H-3
~ o
,j-s
re not availabl
inic mercury,
II
S "^
Empirical data for
1 chromium, copper,
55
o
-------
tj
S
DC
ce
V
1
o.
1/1
£
*J
b
£
3
I
1
a,
S
as
0)
u
i
Q>
tiS
«
B8(
a
en
V
S
5
>
^
V
•"
w
o
a
si
ex
fS]
VO
«n
d
o
3
13
b
O
ca
Recommended
o
B
N
•a
c
D
o
a.
J
o
•a
£
I
§
D
U
/•— \
^f
2
Sw^
•g
o
C
Kl
>•
1
y— \
£S
o\
C3
S
0?
oo
2
«L>
,2
•a
rt
S
u
_E
C/3
S
S
^
tn
1
Q
&
CO
a>
3.
"3
>
w
jS
o
.S
N
5
S
!
>~»
i
J«
§s
os in
«"S
•g |
§tj
**2
SI
the geometri
ng a convers
00 w
C 3
*S5 **
s-a
11
*3 -^
.a -o
ca t.
0 0
CO >
cs O
? *•*
tt. ~Sb
0 "5
CQ £
5 «
P -S
Eisenia foetida
1
CO
0
S
it?
*O
00
C4
/— N
OO
oo
2
J
T3
g
"
i
3
o
S
— VO CX3
^ O in
odd
Not specified
1
CO
O
a,
d
u
'S
P
Ma (1987)
&,
r-
d
»— i
Alabophera sp.
Luntbricus sp.
Octolasium sp.
C4
2
u
'2
^
^^
S
r^
o\
Van Hook
oo
fN
CO
*J
O
•»- O
s b
II
00
oo
O
00
IP
i
§
O so rt
« « —
-------
U a
u
s
ffl
P
*S
M
£
""
w
•3
Q>
(S*
W
§**
2
>*^
CQ
C
O
V
1
References
05
8
—
CCJ
>
^
-*^
O
o-
P4
^o
i
d
OJ
3
"cd
e
03
T3
1
U
1
g '
2
s ;
fe !
§
C i
1
S
II
00
J^
1 ••
i f5
C
1
D.
A
lorodibenzc
r^
' f_
oo_
("^
trT
^r
•a
c
3
o
a.
g
U
<
CM
W r
«
H S
vi c
S
'•^ 1
VO -
II ~
1 u
^£ C
oo 0
5 -1
a -^
1 ':
I '.
Cfl
J
^»
"O
CA '
'§ :
S
3 !
90
^
x !
00
d
00
00
„•
II
DH
U
PQ
cP
B
.2 i
CS
r^
ing regression eqi
S c1
o c
1 =
- '.
s "
"S
3
•o
I
1 ^
S , .
O \ '
u
I f
g : =
S t
"*3 r
c r
0
0
u
I-1
t*-,
tt,
U ^
03 JJ
0 S
P 2 c,
g
T
3
3
3
j
3
*
*
Q
=0.0052
; J>
& &
03 PQ
T3 ^ T3
1 § 1
<2 ?; <8
1C
, 8
d
u
.B
03
\K
fe
2,
I
cd |
; 2" '
v^
i ON j
i ^
1 CU
l rrj
co :
D_ '
w
03
|"!
O '
,3,4,7,8-HxCDD)
lation equivalenc;
,3,6,7,8-HxCDD)
.
lation equivalenc
3
g
0
3
cd
1?
cd
TT.
TCDD BCI
u
•S
00
e
'eft
3
"O
S
'a
3
cj
"3
u
eft
CS
IL,
O
03
u
P
00
§
d
n
8
o
II
[b
U
PQ
CO
^
,0
09
cd
•^
.0
1
§
CO
D
&
&
)_i
J
^
lation equivalenc
3
g
3
U
cd
•a
rr.
TCDD BCI
U
00
B
*cn
3
T3
3
U
"Vs
o
CS
u.
o
03
H
^O
o
g
d
ii
J3
"3
>
&
03
1
tt?
g
N— '
s
I
1
J
•C
cS
•£J
o
•y
c
3
o
&
E
0
VO
o
d
u
tN
v—t
O
d
X
8
8
o
II
tu
U
03
cfl
%
s
2"
m
£
T— <
a
CO
3,
§
CO
1
>»
lation equivalenc
3
g
3
O
JO
cd
1
TT
TCDD BCI
1
oo
_B
*cn
3
•O
CS
*3
_o
"3
u
eft
CS
s
a,
U
03
O
rr
H
*o
1
d
u
3
"3
&
CQ
I
S
1
Q
00
*i
**l
a
^
i
tlorodibenzc
I
(-1
oo
r^-
fn^
of
•o
c
3
O
&
S
u
>n
d
II
i
d
X
VO
8
d
u
tu
U
PQ
Cft
fe
_0
CQ
cd
2"
(^
2
§
co"
D
1
&
g
1
lation equivalenc
3
g
3
U
cd
o
'£
a
•§
cd
TT
u
PQ
§
0
00
'eft
3
•o
rt
"3
"3
o
Cft
CB
tu
U
03
u
H
l-H
8
d
0
_3
"3
>•
&
PQ
1
u
§
of
OO
CO*
cs^
»
d'
g
t
Jj
ichlorodibei
i
0>
oo
r-«-
CO
cT
"
•a
c
§
a.
B
o
U
8
d
il
d
X
^
8
d
il
u.
U
03
K
^
1
&
CQ
|
1
f
^"
ro"
»
sj'
•1
S
P;
£
I
I
oo
r~^
•^~
rn
^r
•y
c
3
O
e-
g
u
0
d
u
vq
X
NO
8
d
u
&
PQ
CA
^
1
CA
cd
s-
-------
O ts
cu
n
V
V
M
ca
M
£
*o
•5
c
1
I
IB
t*
1
tf
09
1
13
u
•c
0
ft
cV
02
^
^p
g
d
u
_3
5
U
CQ
•a
1
S
e
1
S
y
00
r*^
CO
»
^
1
a.
8
u
&
'•$.
-Hexachlon
oo^
en
tN
^
T3
II Compoun
T|£
d
u
VO
d
X
VO
8
d
II
tt.
U
PQ
eft
^
O
*2
eg
^^^
.0
i
g
g
OQ
b
o
ca
s-
§
•3
_>
§•
§
J
3
S
IS
ca
1
PQ
the TCDD
.S
3
•u
ca
"3
S"~™
ca
1 The BCF
,_,
T-H
8
d
u
3
"es
U
CQ
"8
T3
g
e
8
§
W
OO
f*«
VO
rn
->
^
c
1
n,
'?.
-Hexachlori
oo
vtf
cs"
^
•a
Compoun
8
d
u
ON
d
X
NO
m
8
d
u
tt.
U
09
CQ
^
0
^j
.2
^^
^
ON
O\
S
n
CO
p
VH''
pt
09
•£•
p
y
CM
1
"c3
>•
1
§
'M
g
E
3
O
IS
ca
1
[T
0
09
the TCDD
.S
3
-a
u
jg
3
"c5
u
W5
ea
1 The BCF
oo
en
S
d
'§•
u
^
3f
j5
S
g
1
cs
73
u
CQ
the TCDD
00
"CQ
3
t3
ja
3
CJ
la
o
CQ
ca
1 The BCF
3
^
&
09
1
e
1
§
y
ON
OO
en"
r*T
^
1
Cli
1
4>
JO
^
-Hexachlon
ON
00
es"
^T
•O
Compoun
1
d
n
en
vo
d
X
VO
8
d
n
pt
(^)
ff\
ca
fe
O
^^
cS
C3
^•v
JD
cf
<
§3
CO
J3
S
CQ
^^ '
fe
S
g
&
§
"33
>
1
§
S
3
|
.3
M
1
U
09
the TCDD
00
c
"cfl
3
"g
eg
"5
o
"5
; o
CO
ca
g:
1 The BCF
S
Q
io
8
d
o
'is
e
09
•o
1
e
1
/_v
0
00
\4
.
CO
*-*
^^
§
OH
O
1
1
,8-Heptachl
vo'
CN"
_4"
•a
II Compoun
d
d
u
0
o
&
if*
't*
1
||
OH
U
CQ
CO*
?£
Q
^j
c2
^^
JD
in
ON
ON
i
C/3
•s.x'
07
HJ
S
k4
Q
cc5
**M
£
jj
"3
>
1
O
1
3
g
3
O
IS
IS
1
fr
U
09
the TCDD
OO
c
"CQ
3
T3
0
J5
"3
o
"ca
u
ca
tt.
U
CQ
o
CN
8
d
4J
"a
tt.
O
09
•o
1
e
1
I
oo
^•i
«
»N
O
ft
Q
1
JO
§
|
ft
!
00
en
CN
_^
•o
Compoun
o
II
ON
CO
d
X
VO
in
S
O
II
C-
CO
C0
;>.
?•
0
s
M
^^
X>
ON
i
CO
D,
tt?
09
Nv'
fc*
Q
g
>>
J
>
1
s
'«
"3
E
3
o
IS
id
1
«
the TCDD
eo
_c
"CQ
3
T3
—
"3
CJ
*ca
CJ
CQ
ca
U.
U
OQ
1
O
o
?s
g
d
«j
"3
tt.
U
09
1
P
04
ST
Q
U
O
¥
n.
1
|
ea
o
•a
1
ft
a
o
o
d
u
o
d
X
VO
in
8
d
n
u.
U
CQ
CQ
^
_0
cS
S
s***.
JO
ON
ON
z
W
CO
D
i
CO,
0
O
M
cS
&
§
"3
>
'§•
O
§
•s
cd
"3
E
e
i
IS
cd
1
U
09
the TCDD
BO
C
3
-a
~
3
"ca
o
ca
1 The BCF
a
<
SN
¥
b
i
o
CB
^
<
09
_w
&*>
2
O
d
u
>
&
09
"8
•o
§
5
1
1
-1
N
e
CQ
-o
Compoun
^
$
2
•^
1
N^'
ON
&
09
•u
u
H
1
ithracene
"t?
c
CQ
•13
Compoun
^
•D
O\
•^
Cu
co
N— •*
1
II
X?
00
^
U
U
JS
s
«
oo
00
ON
CQ
%
<
1
CO
•>
3
^
X
oo
m
d
OO
00
in
09
oo
^
.-»
to
1
"co
1
OO
c
1
1
00
c
CQ
3
•o
O
ca
3
CJ
ca
u
CB
^
tt.
U
CQ
o
^^
O
o
d
-------
J5 U)
U
W
J
1/3
(ft
*n
Q>
£
£
g
CQ
bi
CM
"S
a
c
"C
w
«
£
W
K
1
•B
'S
o
a.
V
OS
vt
ON
ON
BO
J
arickhoff and
fee
0)
NO
II
1
^M
S
2
.S
S
ot?
oo
CA
E
*
•o
§
GO
I
0°
^^
X
oo
t—
V>
d
i
oo
oo
V)
II
U
CQ
C?
^™
§"
••s
3
S1
c
"co
a>
ui
BO
_B
|
i
o
.1
CA
3
T)
O
Ja
3
o
"ca
u
CO
ca
^
[I.
U
CQ
CO
^^
oo
o
d
u
js
"3
6
CQ
•o
i
o
5
§
c*
1
u
•a
c
1
E
o
U
^.B ^
i
i
CO
o\
p
V)
II
1
^M
0°
1
£
/-^
00
00
ON
CO
)M
I"
1
?
0?
oo
ON
CO
<|
T3
§
CO
*s
Kt
^
0°
^^
X
00
V)
d
00
oo
V)
— '
II
u
CQ
0°
™^
jj
o
"S
S"
§
'55
u
h*
BO
_C
|
i
BO
'co
3
T3
.2
3
U
"ca
o
ca
^
P-
U
CQ
u
^
«
6
^— •
c
d>
s
*2
03
C
15
o
•s
^M
0
&H
O
d
_3
"ca
mended BCF
E
8
U
t*
NO
O
S
8
•^
•o
c
1
E
o
U
S
01
NO
N,
'
& *"
W C
BO =
o
-" «
w ^
D "B
1 B
•*" t.
S "
5 il
1 i
•5 £
«g 1
s 0
^
BO I
5
U
1
3
^*^
00
OO
ON
CO
! S
CO U
3 C
•o a
S c
5 •<
3
U •'" ^
"ca 7|
ON
CO ON
cs ;_,
£ <• -c
a, cu E
CJ UJ r
CQ C
o "» E
_c •-) c
PC, (_,
o
0)
NO
3 i(f
J 00
o
3 "™*
3 U
5 u
r J3
5 , •*
1 «n
,:S
i ! S
!• J
1:<§ :
fctf
BO
_O
1
.s i
3
A^
00
00
ON
co :
<|
T3
i :
CO i
I I
J I
1 ^^ £
i * ±
00 =
r~ Z.
. V) ^
i d
; 1
! 00
00
V)
II
& •
CQ
0°
' "^ !
M
u" i
|
CO
fll
"
BO
: _C
_o
1 1
5
.1° i
CO
3
;T3
U
S
"3
^ ^t~
CA O
ca Xi
? <-
U UJ
a> CO
r" i — J
H C-
8
vi
ii
: ^ f"
CQ ^C
Q.
"S «
c w
€ ! . J
§ 5
CA -
II
1
K
i?
Js
•i
^^
oo
| OO
2
CA
E
3
•a
g
.05
: £
• J
I M
\ ^^
x
; OO
1 ^"i
d
; oo
oo
VI
__'
II
&
CQ
oo
^o
i ' C
.2
1 as
3
8*
g
"S
CA
00
|H
BO
C
1
i s
1 : 1
:§ 1
S "s
•— 5
"3
"ca
; o
CA
ca
•o S
§ tt.
1 CQ
S 0
g2
oi
u
_3
"c3
B
CQ
1
g
C
8
G6
o
S
1
S
of
•o
1
cx,
g
<3
f
ON
§
C^
"*~^
?
II
1
t^Ci
e?
1
"1
oo~
00
ON
CO
E
^
T3
i
CO
"SJ
S
^P
o1
*^
00
v>
d
oo
00
"1
II
&
CQ
cP
**"*
'S
3
ff
„
CO
CO
feb
IM
BO
I
1
1
c
CA
3
_B
3
Q
*ca
0
CA
ca
^
U-
U
CQ
V
1C
en
u
_3
"a
EL.
U
CQ
1
U
5
8
otf
I
^
s
"E
5
NO
of
T3
C
3
O
E
0
U
^^
1
ON
CO
*^s
NO
00
00
~-
II
1
^H
o6
1
t
/^
oo
00
2
CO
E
•*
T3
§
CO
">
£
J
o°
^^
X
oo
r~
d
oo
oo
V)
II
&
CQ
2
c
_o
y
a
_o
"co
CA
U
"
BO
_C
|
1
1
00
c
'CA
13
S
"3
"ca
u
CO
ea
^
U.
U
CQ
1
00
m
^
cJ
"3
mended BCF
E
8
C^
itrobenze
Z
"O
c
§
cx
g
u
-------
»
H
CM
M
-------
u
Ed
S-^
t^
i
^^
>»•
s
s
n,
£
5
V
C3
Q
b
£
erlmental
0.
K
w
Eft
i
c£
CU
Pi
£
1
T3
eu
^
O
Q.
eu
Eti
J?
ON
i
to
2-
NO
-H
II
J
§>
U
s
J
^
00
oo
ON
CQ
s and Arm
'>
£
*
X
00
in
d
00
00
~
II
a,
U
CQ
00
Q
^^
g
3
B
_O
'CQ
1
t>
C
00
_B
_O
U
i
CO
T3
-2
^
o
cd
u
CO
£
IX
U
CQ
£
§>
X
00
VJ
d
oo
00
«'
II
o<
u
BQ
o1
MH
g
to
3
&
U
CQ
cd
£
BO
X
00
IT)
d
00
00
— '
II
b
U
PQ
o"
^M
g
•B
CS
3
i
CO
CO
O
f_,
00
_B
|
ted using the
CS
3
5"~
cs
^
tt.
U
CQ
S
*^1"
r-H
S
d
u
"3
B
CQ
"8
•a
B
g
1
0^
o
S5
H3
exachlorobuU
33
•a
c
3
o
a
5
ON
ON
00
, *
\~s
p
•^f
II
J
00
2
J
9
^^
oo
oo
ON
CO
s and Arm
'>
£,
00
X
00
in
d
00
00
«
II
[I.
O
ffl
00
o
^™
1
"ctf
3
sion eq
CO
o
2i
00
_B
1
oo
"co
•o
w
15
D
CJ
"rt
CO
^
p-
u
CQ
i
"O
NO
0
d
i)
1
&
CQ
T3
1
U
s
1
(S
U
rj
S
•3
1
u
exachlorocycl
X
•a
c
3
o
|
I
ON
a
t '
\—s
§.
Ti-
ll
1
0s
e
f
^
oo
00
ON
CQ
1
•o
§
CO
'?
«J
£
s
1"
X
oo
in
d
00
00
in
II
El*
CQ
0*
^^
|
3
3
I
B
£>
w
00
c
"2
1
u
.c
00
*CQ
3
•a
u
CO
3
"3
O
en
CS
5
B-
U
CQ
&
^-
S
d
u
3
1
&
CQ
13
1
U
E
1
Di
B
sntachloroben
a,
•y
E
J
i
ON
!
,_^
*~s
OO
OO
q
1
>
^
oo
^N
i
1
T3
§
CO
•5
e3
e
0*
X
oo
^^
10
d
00
00
>n
^H'
II
0.
u
CQ
o1
^^
g
CS
3
5-
"«
nj
^
00
_B
_0
1
00
B
"en
3
T3
CS
•^
"3
u
en
CS
J
U.
U
fS
ON
s
d !
u
•* Tj-
& 2
« <
1 fe,
B
U CO
E 3
§ ' S ;
C>
1
"1 ;
• i
00 !
^N
CQ
: E
-5
•o
i w
•>
CS
£
i » S
' ^c ^^
i g> 1
X (JJ
OO
1 t"*"
! IT)
i O
! OO
OO
' -•'
II
B. :
U
PQ
9
, »-H
i §
a
i u
: I
CO
£
00
B 1
'S
§ i 1
4)
*! ; s i
1 ! 2
J3 ' 'en
1 1
flj •*— '
*Z3
O
CJ
*o ^
I &
CX CQ
E u
S:e
r^
d
u
3
>
&
n
T3
i
C
1
(S
Q
Q
^r
T3
B
3
O
a
5
0.
U
•
CO
g.
NO
r3
M
*f
1 !
j:
S
oo1
oo
2
CQ
•a
CQ
f
2
b j
%
tijp
U)
X
oo
d
I
K
II
PH
U
CO
oo !
O
.^ i
s ;
S* :
0
•ri
CO
1
£
00
B
<2
u
5
jf
'CQ
3
•o
U
_§ i
1 '•
"3
u
nstituents wei
o
^
CJ
eo
<-;
e2
p-
CQ -°
4i ON
0.
[d
ON rX
00 °?
S B
d in
o S
3 i/^
5 ii
^ t
B- k/
u *
CQ g>
1 1
U -C
S ?
8 fi^
u oo
CO
£
|
CO
2
b
s
»jP
! op
_o
oo
, t~
1 in
d
'
oo
oo
II
U
03
SP
1 —
1
— ,
1 ^
8*
' g
CO
U
§>
Ul
00
_B
1
! B
"co
3
*O
U
"c3
»— N
3
"S
eptachlor
nstituents wei
X g
w
O
CO
<-;
"b «2
I &^
°* ® ^
1 S2
f^.
^-^
S
d
u
"a
U
B
T3
1
E
1
06
'
g
exachlorophei
DH
T3
C
§
o,
1
<*>
d
u
-------
I
'i
3
ca
•*
H
a
ce
§?
1
oo
oo
e^
O
o
"I
"8
•o
u
I
s
fi
1
g
I
§
I
§>
oo
oo
II
h
o
I,
a
«s
o
.1
CO
3
"8
ts
s
I
I
I
8
CO
o
a
-§
_o
I
u
g
"8
J II
f
a
!3
C
-------
05
is
~
°3
p
•8
I
I
1
I
-------
Ml
V
"S
0.
M*
g
IS
§
(4
60
^
*eo
«!
S
1
a
*5
1
§
1
pj
8
1
cd
l^"
^
CJ
fc"
d
en
&
S
to
•a
§
B
1
S
8
in_
*-*
0
"3
^
a.
U
PQ
1
|
§
(S
S
Q
00
£3
1
I
1
b
1
00
r»T
&}
r\f
C
3
O
1
5
^
y
p
H
00
m
Ci
c
g
•3
S
'o'
N
C
U
X)
*5
o
1
0
00
R
O-l
i
o
§•
I
•o
1
•3
0)
*s
g
OS
0
he geometric m
.S
13
3
§
"c3
y
CO
cd
^
U
U.
H
Q.
CQ
1
|
1
H
f
Q
1
fa
T3
S
&
o
1
OJ
m
/— \
oo
2
^
1
9
ctf
41*
8
Yockim, bens
\O 00
r J~ ^
»n
m
^4^
'"'
i>
"c3
^
Cb
u
PQ
•a
1
i
o
erf
i
oo
of
c
'x
.2
orodibenzo(p)d
IS
J
oo
r*^
m
of
•o
c
Q,
U
m
7
ol
o\
d
x
8
in
**
n
&,
O
PQ
w
^
2
cs
J3
^^
ON
i
oo'
s
1
«
1
f.
ation equivalei
|
i
o
XI
DD BCF and a
y
1
00
3
T3
U
3
O
"3
u
fe
U-
u
PQ
1
CO
00
i>
"3
^
B.
U
PQ
T3
i
§
(S
&
1
oo
d-
1
•o
hlorodibenzo(p)
o
o
oo
^^
c^T
of
•O
e
1
6
\c
m
oo
1
m
d
^
8
in
,_T
n
a.
u
PQ
J
_O
1
OO
«
•y
in
O\
o\
1
C/3
g
ST
u
S
1
0
lation equivalel
3
ioaccu
XI
IDD BCF and a
u
H
u
00
e
en
•u
V
a
c_>
"3
u
&:
tt.
U
PQ
S
O)
oo
i)
3
"cs
^
&
PQ
•o
!
s
g
erf
Q
vq
of
(3
'§
•a
hlorodibenzo(p)
o
00
^£^
c*f
of
•g
§
a.
5
01
00
OJ
—
d
X
8
*n
*— r
n
BH
U
PQ
CO
&
^
S
CO
f^
in
C3\
e3\
i
ca
oo'
D
1
PQ,
1
^.
a
lation equivalel
3
1
O
X)
IDD BCF and a
u
H
1
&o
_c
*CQ
3
•o
GJ
a
o
"3
u
en
cd
U-
U
m
u
00
1-H
OJ
0
s
"3
^
B-
o
CQ
"8
•o
g
1
g
(2
Q
Q
t>
00
r«
2
e
g
•o
hlorodibenzo(p)
0
CQ
X
U
r^
en"
of
"
•a
c
1
1
Tfr
00
OJ
II
_t
i-H
C5
X
o
in
,_^
n
t^(
o
CQ
CO
^
_o
1
CO
GO
£"
in
ON
OS
§
C/5
D
S
&
IT
ts
c2
C
u
«
_>
1
c
o
•a
_ea
I
3
O
JO
.'DD BCF and a
1
oo
c
"Z
3
-a
Q)
ca
"5
"3
u
CO
CO
u.
u
CQ
U
o^
f~
b
"3
?*
tL
U
CQ
•o
1
I
0
t2
Q
Q
U
00
V£?
of
B
g
•3
a
tachlorodibenzo
o.
«r
K
oo
^1^
**1
of
^
•o
c
3
O
E
a
VC
r^
II
in
o
d
x
8
in
^_(
II
Hi
U
CQ
GO
J-
2
cd
•£
m
^H
^
U
00
g.
s
PQ,
1
«
lation equivalei
|
ioaccu
x>
IDD BCF and a
u
H
1
00
c
'en
3
"S
CJ
CO
"3
"3
u
C3
U
CQ
u
oo
*~*
0
"3
^
§
T3
1
§
g
cS
^^
Q
U
o,
e
1
'O
/"N
X
R
orodiben
•fi
ca
"o
o
c
3
O
Oc
U
r-
oo
II
*— H
O
O
X
8
in
1—4
II
tl*
U
PQ
09
S
^
<2
en
ca
x>
OS
CT\
s
60
g
£
w
PQ,
1
u
e
lation equivalei
3
1
i
Xi
IDD BCF and a
u
f
»
p
T3
•2^
C3
"D
CJ
"5
0
&
cd
&
CQ
u
00
ol
^*
0
"3
^
U
CQ
1
g
§
§
&
§
¥
00
CO
of
i
1
1
J5
1
oo
r^
ro
rJ
•b"
c
I
5
0)
n
o
00
d
x
8
in
i— »
II
&
u
CQ
CO
&
_o
1
CO
CO
XI
m
o\
2
§
C/3
g
S
PQ
I
S
>^
0
J3
"3
_>
'3
CT
u
e
o
•O
CO
1
I
'JB
:DD BCF and a
y
H
o
i
CO
3
•u
•S
03
p
O
13
u
B
PQ
u
oj
rn
^^
m
4>
•3
^
B.
U
PQ
"8
1
i
g
(2
|
00
r-;
en"
of
c
lorodibenzofura
S
S
1
00
o^
m
of
^j"
•a
c
§
a
o
U
0«
?
II
o)
0)
d
X
8
in
1—4
II
[L.
U
m
&
^
2
CO
02
J^
in
o\
2
1
O!
g
w
S
1
u
C3
lation equivale:
I
g
S
:DD BCF and a
•1
f
en
3
T3
•S-
CO
"3
o
"3
u
en
03
U-
u
PQ
u
o\
^^
0)
u
"3
^
&
CQ
T3
1
1
g
(S
I
00
r~
of
n
lorodibenzofura
«
1
1
oo
1^,
^,
CO
of
•y
c
§
a.
1
-------
*?
u
u
pa
£
u
•3
V
O2
2
t>
IM
09
0.
1
u
g
•e
S.
bd
8
i
s
1
^
CQ
•a
^>*
I-
o
s
1
II
VO
_^
x
s
in
7
a.
u
CQ
CO
^
o
1
m
o\
^
S
W
CO
D
B?
B
I
£
(4-1
_u
"3
u
c
_o
J2
3
3
y
BCF and a bio;
Q
Q
1
.1°
CO
3
T3
ts
3
"3
u
CQ
ca
b
CQ
o
^
00
ij
3
°3
>
B<
O
CQ
•8
•a
c
o
1
S
U
w
oo
2r
of
t— 4
C
.0
fe
2
g
1
00_
en
*
"S
i
a.
£
u
vq
oo
II
vO
B
d
X
8
in
T\
&
PQ
CO
?
_o
2
V3
ca
in
2
.,
OH
w
CO
g,
£T
«
*~s
Q
cti
5*
S
"3
o
B
_O
3
|
IS
1
B.
U
CQ
Q
Q
U
u
.S
CO
3
•0
U
ca
g
"a
u
CO
ca
B.
O
CQ
p
vd
u
"3
B,
U
CQ
•a
•8
B
U
a
u
E
00
vq
of
»-»
odibenzofuran 1
J5
s
u
1
00
vq
en"
of
*
"S
§
Ck,
S
u
Ov
0)
II
ON
T— 1
d
X
VO
"1
7
u
CQ
«
o
1
CO
ca
in
2
^
S
w
CO
S
a7
CO,
Q
ta
S*
u
"3
3
cr
u
B
_O
'a
1
3
CO
IS
cd
1
BH
U
CQ
Q
Q
1
S
CO
3
1
cd
S
"3
u
CO
ca
&
CQ
u
*
m
s
(«?
u
"3
>•
B,
U
CQ
•o
•o
B
as
S
u
ffi
00
NO
en
ri
odibenzofuran |
g
^
u
ob
vq
en"
of
•a
1
1"
o
U
in
S.
M
VO
d
X
§
>n
7
p.
u
CQ
CO
o
i
CO
CS
in
2
^
a-
CO
D,
B?
B
S
1
CM
JU
3
a*
u
B
_O
la
3
3
U
^
BCF and a bio
Q
Q
u
i
3
•o
m
3
o
*3
u
CO
ca
B,
U
CQ
4i
p
00
oo
Ov
ij
3
"3
>
B.
O
CQ
•o
13
B
U
C*
§
U
DH
t>
Otf
en
of
>-T
odibenzofuran I
b
2
I
o\
00
en
"
•o
c
1
£
U
00
ri
00
II
en
S
d
X
S
7
&
CQ
05
^
o
1
CO
CB
in
2
^
S
w
CO
2,
6T
CQ
**s
l-l
g
5-
§
"ed
"I
g
.s
Is
1
I
BCF and a bio
Q
0
O
H
u
00
3
1
cd
3
"3
u
CO
tt.
u
CQ
u
H
a.
u
CQ
1
B
|
&7
Q
00
r*-
vq
en
N
^,
B
lorodibenzofura
,c
CO
1
00
VD
rf
en
eN*
*
"B
§
O,
g
0
01
II
O
d
X
§
in
7
B,
U
CQ
CO
g:
o
1
CA
ed
1
^_,
OH
E]
CO
D
B7
^— ' '
1
J
C4^
U
"3
B
3
3
U
BCF and a bio
Q
Q
u
.1°
3
ca
3
"3
o
CO
ca
&
CQ
u
H
oo
s
u
"3
>
tt.
U
CQ
•8
•o
B
u
OH
E7
Q
1
oo"
K
en
^,
B
1
1
J3
ed
1
OCJ
en"
*
1
D.
2
u
i
u
en
d
X
S
in
7
B.
U
CQ
CO
&
o
1
CA
ed
1
^
OH
co'
D,
aT
«,
J
CO
X
g
u
•3
1
B
O
•a
i
3
O
BCF and a bio;
Q
Q
1
oo
_B
'co
3
•o
U
3
"3
u
CO
ca
&
B.
U
CQ
H
q
in
es
u
3
"3
|>
B.
U
CQ
1
B
D
S
u
a
B
cd
c5
1
•rt
1
i
M
"o
o
•o
B
p.
£
U
O
a
VO
o
d
1
in
7
o
CQ
co
^
o
1
CA
cd
1
.,
OH
CO
P,
B?
CQ
2
ec?
?
S
"3
3
ty
u
B
3
3
y
BCF and a bio;
Q
Q
1
*CQ
3
T3
U
ca
3
"3
u
CO
ca
&
B.
O
CQ
H
eft
^
§
ja
g
g
•a
S
s
c
|
is
i
•3
I
I
r~
S
u
_3
"3
>
BH
O
CQ
"S
T3
B
U
!
D.
f
r*\
C3
•o
C
§
D-
2
u
CO
Q
<§
CA
cd
CO
I
I
^
S
o
;eometric mean
wu
-C
00
'co
3
1
cd
1
ed
0
en
cd
>
O
3
U
CQ
u
.c;
j?v CS
2 g
1 |
pc
3
OH
U
CA
11
5 CU &
t+4 « O
g« 1
0 T3 -0
egg
S GO 3
.C H> CA
§ '« 1"
•O co" °
O ^^ fc-
Q. •" ^
£1 3
oo
Ov
S-
CA ^~*
1 i
T3 C-
g ^
idie, Landrurn,
;wsted and Gie:
'^r
§•—1
VO
r-
•n of
•n •— '
r-
en
U
-------
u
H
J
S3
$
S tap
&
»-i
•s
f>
1
£
»
"S
a
w
£
V
*
a
£
3
a
cu
s.
£
s
c
3
«
1.
en
u
3
1
•e
u
•«-»
t.
o
a
(§
P5
«
i
'S
V*
•S
Q
S
8
1
1
T3
S
&
•?
t-
M
8
1
CQ
•0
i
Roesijadi, Anderson,
(1978)
3
oo
.1
s
J?
'S
Q
I
If,
1
1
«J
•8 ^
JS b
3 S 2
•a a x
*3
en SH **-<
ed c O
* 5 S3
Iff
I|B
T3 § ®
€ M g
S. -b >
K1 n c
o 1 8
J § ?5
P 8 g
. « a
8-day exposure duration,
by dividing the wet tissu
concentration [(ng/g)/(M!
applied to the value.
„
!
« x
*• p^.
o ^
»a ^^
Lee, Gardner, Ander
and Barwell-Clarke 1
o
K
rn
«
§>
1
•S
s
1
•o
"3
CO
o
£•
1
"2
I
C
U
B
Q,
&
;
en
U
15
Leversee, Landrum,
Fannin (1983)
&
U
CQ
"8
•o
e
o
a
&
g
u
1
c
a
1?
¥
c
o
O
•a
1
E
o
O
en
|
§
CQ
ca
M
u
s
"§
2
S
«
m
g the geometric mean of
_c
en
3
T)
S
JS
"3
CJ
"ra
o
eft
CO
s
u
3
~a
>
&
n
u
s
c
.0
'5
.£?
's
^
s*a
|
1
GA
G3
"8 *
ts &
3 E S
.0 3 X
«J -3 ^H
0 1 c
S E o
P ° S
-G 2
3 ^* cd
"i-^a
> g §
T 2 -a
fi S g
g J3 ?
a c c
288
O S r— i
s!S
8-day exposure duration:
by dividing the wet tissu
concentration [(ng/g)/(m
applied to the value.
I
m ss-
|g
Lee, Gardner, Ander
and Barwell-Clarke |
0
O
oo
c
00
I
o
"c
-c
1
g
24-hour exposure duratic
t~
. oo
OS
i—t
Newsted and Giesy (
>n
(S
CN
d
5
§.
•S
c
!
g
24-hour exposure duratic
"S
5
a
i
Southworth, Beauchi
Schmieder(1978)
o
0
o"
gr
OS
VO
•
&
CQ
•a
u
•o
g
§
&
g
1
3
CH
£"
¥
c
u
CQ
T3
C
a
E
a
1
•ene was used as a surroj
e,
a
§
1
e§
B.
U
CQ
for this constituent. The
o
•S
ro
1
cd
S
C
o
l-l
s
#
5
cd
T3
>>
fe
CQ
fa
O
J3
J3
in
«N
s
CQ
"S
"O
g
S
C4
u
1
1
S
£
c
s-
¥
g
CQ
-6
I
2
u
en
iboratory value as follow
o
n
5
§
•o
u
CO
£s
CO
cd
?
U
3
"c3
>
K.
U
m
u
s
a
c
oo
I
•2
'5
!
g
24-hour exposure duratic
r~
oo
OS
*— 1
Newsted and Giesy (
m
b
CQ
•a
u
•o
g
§
i
o
c
I
a
•o
B
O
D.
g
d
s follows:
CO
en
o
s
1
1
cd
J^
1
t~
g the geometric mean of
_c
en
3
•o
u
_cS
"3
_u
"cd
U
en
Cd
£
J3
"cd
>
tL
U
CQ
O
Q
S>
1
•S
'£
}
Not reported
cf
O\
^H
3
•o
Eastmond, Booth, an
g
V)
in
-------
W2
04
O
H
U
ta
of
•H 8>
H ^
*2 ij
PQ «^^
^ o
§ 6L|
w S
§"8
u 1
TABLE C-3
INVERTEBRATE BIO
g wet tissue) / (mg dissol
(Page 4 of 18)
U ^
fl
H
OS
^N
• g
O\ OO
ON •— '
ll
magna
Q
g*
24-hour exposure duration
P
2
*•— '
>*
M
U
0
•o
§
•o
o
!•
2
oc
oc
S'
inquinata
g
g
1
7-day exposure duration
derson, and Blayloc
5
^«
•3
^o?
as C
VO
o
JC
u
3
>
&
CO
T3
u
g
p
OS
u
§
1
e
C3
s;
ta
¥
c
.c
in
c
g
ex
s
o
U
CO
ca
CO
O
3
5
ean of 2 laboratory
E
_o
u
B
u
•S
M)
C
'co
3
"S
5
"3
"a
o
v:
cd
S
u
cd
U
0
1
1
-S
£•
-i
1
6-hour exposure duration
•a
O
e
Jm
o\
8O
3!
VC t —
r~
0\
\q
u
3
ended BCF Va
C
S
i
&
I
(X
I
of
Ji
o
o
TT
•a
c
3
o
ex
E
6
0
,)pyrene was used as a surroga
CO
t. The BCF for ben
5
3
CO
GO
S
&
u
3
ed
'S
IS
o
c
o
£
cd
cd
"^
O
2
O
3
I
'olychlorinated Biphenyls (P
*M
§
m"
^
0
lended BCF V
S
B
1
&.
S
o
w
o
I
"O
c
o
D.
^
U
follows:
en
IS
fli
one laboratory valui
00
CO
3
•8
as calulal
VO
o
J5
O
1
i2
U
_D
"a
c.
O
m
f§
rea virginica
^
o
|
84 day exposure
Edible portion
g
•a
•3
1
"3
«3
JS £"
co o
C oo
0
f)
^*
00
"i
in
u
lended BCF V
B
E
o
1
S
r4
|
-3
§
CX
E
e
o
laboratory values as follows:
m
the geometric mean
c
"co
s
•8
_«
^3
Ta
u
CO
ed
2
!j
O
1
<2
CJ
3
"cd
U-
U
m
1
m striatum
_s
"c
I
I
•o
S
P
oo
.•§
^
•B
.8
^8^
00 O\ ^3
^ ^O iX"
•^~
U
-------
u
s
o
v>
4)
H gp
£
I
IB
cu
h
C3
0,
1
g
•c
1
UN
s
1
i
1V>
_S
"3
>•
T3
O
OS
-i 5
0 ^ 0
e ^ -a
00 £> O
£ • - r^ «s:
« s ., ^
S S 'E •£
Orconectes nais; Dap)
Gammarus pseudolimi
Palaemontes kadiaken
cornutus; Culex tarsal
punctipennis
Q
3
CO
1
S
2
^
S
O
CO
1
CO
•o
§
ea
1
I
O Q O O
r- in in r^
«" en rf
0 Q Q Q
t— e» CM vo_
ro ^o" cs"
1
CA
U
"S
CO
2
.2-
fc
«
of
5
is"
I
1 i
8
T— 1
Brachionus plicatilis
xposure
u
1
m
r^
J
I
'!3
Scura and Thi
•o §
= .2
.S >>
g 1
O 0
m in
Invertebrates
^
cd A
•o u
2 "3
,2J[ K^
a. •>
i
-M
1
•3
2
cd
i
Nimmo et al.
(1980b)
£
A
Pteronarcys dorsata
\
X
u
1
,— <
«N
g
&
1
^
O
Mayer et al. (
(1980b)
o
TJ-
t~-
Corydalus cornutus
2
3
a
X
u
1
•a
r-
1
c
1
'3
GO
cd
O\
Mayer et al. (
(1980b)
8
Orconectes nais
1
o.
X
u
•a
(S
1
c
1
'o
^
g
•a
U ^5
^t oo
^ ^
O
>n
t-
Nereis diversicolor
%
a.
X
u
^.
cd
•o
IT)
^
c
T3
'o
CO
A
1
Mayer et al. (
(1980b)
m
r-
Penaeus duorarum
i
g
s-
TJ
«N
t
w
c
1
CO
cd
O
"3
Jtf OO
3 ^^
Q C
0
Crassostrea virginica
posure
X
u
1
•o
CM
a.
w
1
CO
eO
2
13
8 00
3 »
Q C-
o
oo"
Arenicola marina
I
X
u
1
•o
«n
.
oo
2
Hi"
CQ ON
Courtney and
cited in EPA
vo
cs
3
*p
I
i
m
3
13
Recommended BCF V
fli
e
g
o
a
'2
Q
ro
^-T
•o
5
a
s
o
U
-------
£
o
s
•B
4)
•u
Li
O
A
K
uene was used as a surrogate.
|
£i
'S
•3
•*
ts"
^
tt.
0
CQ
I
3
.'SJ
te
I
CA
2
5
_o
2
CO
'S
>
CO
C3
c
u
,
w
o
2
J
.3
C*")
""'
o
3
"cS
>
[Li
O
CQ
•o
u
•o
c
u
H
g
&
o
c
u
3
"o
o
ja
'S
5
•^f
rT
•o
c
3
O.
U
tn
i
O
1
g
x
•o
3
ts
u
e
o
1
5
ce
U
_3
"3
>
&
(j
CQ
"S
-o
c
o
recomi
o
Q
S
60
-S
s*
-e
!
4-day exposure duration
,*•— s
CO
OO
o\
i-H
\*s
g
§
03
£
•o
>,
ji?
'S
n
•J3
m
r^i
'"'
U
3
1?
>
a.
U
n
T3
CD
•a
C
c
£
S
1
f
'S
5
vo
ri
1
g
a.
U
uene was used as a surrogate.
§
i3
'S
•B
•4
c^"
£
a.
u
n
I
3
•S
Cfl
M
1H
i
u
1
"3
>
CO
o
c
u
b4
u
Z
a
«
TD
>>
t_
O
1
^
J3
J
c^i
u
_3
"ca
>
pa
13
U
T3
C
O
8
S
1
u
1
z
•a
c
1
E
(3
s
M
§>
en
CO
CQ
«
"8
CO
CO
I
1
i
'5
?
•*
(S
£
&
0
pa
c
u
3
*2
CO
CO
s
•S
u
1
^
is
O
C
tU
w.
u
M
CO
•a
>>
c
CO
b
o
0
3
en
u
3
"es
>•
tt.
O
n
"8
•o
e
u
p
s
(S
M)
1
e
S
'c
%
%
cd
g
£
•o
c
1
E
5
uene was used as a surrogate.
1
^
"S
?
Tf
C4
^
tL.
U
ca
1
3
*s
1
C0
s
£
_u
s
_eO
'«
>
a
0
c
u
o
CO
"cs
•o
>-,
^
2
15
b
o
X)
3
Phthalate Esters
oo
m
tt.
U
m
•a
u
•3
u
H
S
&
S
«j
1
S
n.
/—N
"?>
b<
1
^
V
(N
*^f
m
•y
6
a.
U
1
V*
a
en
U
3
"cB
>
g
2
|
CJ
mean of
u
•c
u
u
£
00
s
3
1
C3
"3
_o
"rt
O
ra
£
CL)
3
ca
>
U.
u
CQ
CO
.ba
cs
1
§
i
14 to 28-day exposure duration
?f
oo
o
G
GA
|
C
CO
C
«
r^-
Ov
•*
IN
s
u
a
g;
3
§ 1
1 |
-ff ^
"C ^
fe s
S s
k. S
1 1
"8 * g
3 £ 8 •§
3 S ° « g
•§ .3 s a s
^ "O t> > O
1 £ « 1 S
* o 6 -3 oo
§ -S -3 " .S
•s ?? S-8 S
30-day exposure duration
14-day exposure duration; The reported \
by dividing the wet tissue concentration 1
concentration [(ug/g)/(ug/L)], and a con-
103 was applied to the value. The reporti
converted from dry weight to wet weight
factor of 5.99".
£?
S ™
- 2 r~
C ^^ OS
D *°~*
to £ ^~>
Co js
5 -3 ^2
S S ^
•* S «
•> » "^^
u ™ .,*
El
^ 0, §*
O O i3
§ «» 2
Q & £
sff •§
& | i
CL. 2 CO
r~^ t~
[t; oo m
JQ ^ JN
IN Ol
6^
1
(3
<
0,
* w
o. g
GO ^
tn S
5 a.
•2 S3
03 2
Q. C
<« S
" C
I-
O in
S 3
g W
8l
27-day exposure duration
/«s
(S
oo
o\
<^t
e
i
u
•g
to
CO V£>
r~ m
•* •*
r-~" •*
'-~i oJ
•* —
"• r-~
CM fS
-<" 0»
U
-------
tt
H
x
»—i
'S
on
§
&u
CA
«
"S
cu
^1
i
2
£
"S
o
c
•1
B.
X
g
|
i
1
1
Cu
§
CJ
«
i
ea virginica; Pern
~
§
«§
c
o
1
i—
3
•a
S»
1
S
1
•o
U
03
3
ta"
IT
5
. 00
•O O\
is
o r-|
= -
S
nded BCF Value:
u
I
1
T3
"a
1
5
Compound:
CO*
ues as folk
1
O
i
«
"S
c
£
o
"S
u
Mi
U
A
00
is calculated usin
jj
u
3
•—*
IL,
U
S-
1
Q,
CA
-2
1
1
1
1
5
1
s
•5
•*
C
to
- ^
-H <^
Eft
•O
Si
g
$
y
5S
S
d
nded BCF Value:
i
|
!
Acetone
Compound:
d,
i
•s
5
«
1
2-
VO
^
j
§>
X
2
00
d
n
CQ
""^
c
.0
1
u
c
_o
CA
eo
C
.S
_o
1
1
ated using
!§•
CA C7\
S —
* 00
65
CQ ^
I i
^
'H "S
o .a
3 Jg
CA ^
§a
3?
N "
-------
u
$
So
»H
'S
oe
V
Zft
f
fe
tu
1
W5
2
S
cu
s
OS
£
Experimental
.eference
K
1
"3
>•
T3
«
•s
o
n.
W
tf
rsl
S
o
u
_3
"ca
B
ca
•8
•o
g
H
P
O
&
inyl chloride
>
Compound
a.
•s
3
CO
1
|
jC
3
6
2.
\o
•*!-
i
a
*£
00
_0
X
OS
oo
d
II
KL.
U
CQ
g>
g
'•&
«
ig regression equ
e
1
i
1
i
S3
S
1
1
"s
CA
A
&t
?»
£<
~ a.
c CQ
u w
3 co
'g D
not available for this coi
i where, log K,,,, = 1.146
Si So
o r~
^ 2
S i-
cd (D
-0 t3
*\
Laboratory
and Schmii
d Organics
.8
«
ther Chlori
O"
cs
o
3
"3
&
ca
•o
o
•a
c
o
E
c
(j
u
05
arbon tetrachloride
U
Compound
ex
C
ra
JC
u
c3
O
CQ
1
^
I
5S
\o
•<3-
i— i
^H
i
SP
o
X
o\
»-H
OO
d
u
tu
U
PQ
f?
o
|
ca
ing regression eq
"?
0
2
u
gp
S
3
^3
1
"5
3
ca
u
en
The BCF wa
S
u
2
CA
£•
8
09
S
1
.a s-
•s *
f,§
« u <
•a x a,
g & u
S oo to
ID r- -)
^ o> ^
« 7! f^
C3 CD '^
-0 T3 ^
o ~;
>, ." M
fe E II
g •§ 1
S to W
31.2
lf>
ON
V)
ts
U
_3
"cd
B
ca
•o
o
T3
C
U
H
c
exachlorobenzene
ffi
Compound
as follows:
en
J
ed
™
>,
S3
'S
g
«
S
•s
B
cd
E
o
o
:alculated using the geon:
^
cd
^
U
3
cd
>
tt,
U
ca
u
•2
C
6*3
3
"1
w
S
g
1
xposure duratior
u
S
i
o
oo
Tj-
adic(1996)
3
1
ca
CQ
S - s
n g S
§
cs
1
Ci
d
V*
M
&5
o
1
duration
2
1
1
s-
•D
cn
Cfl
I
•o
i, Woolson, ar
g
•a
1
8*
-^
g &
43 C^
oog
t'- ^ o
r~- o\ -
o o o
vo — ro
m in \o
CL
>
ca
T3
en
m
S
T3
C
cd
i
00
4
IP
&2
M "
ss «
1 g
0 §
S €
^ r-
00 "*
CM 2-
U
1
•s:
o
o
.y
o
duration
u
VH
3
2
28-day expo
•o
a
«
e*T
C
1
O
Cfl
^
H?
§g
52
ts s"
1!
Z CQ
S S X
_ C50 52
" -
£
c\
1-H
^
5
g
5
^-
r4
•2
r#
§
§>
g
g
>
T3
3
CO
U
t§
efl
U
3
"ca
1
S
S3
1
IM
1
c
o
•o
u
tc
r3
-^~
cc
^
U
3
K3
>
U.
U
CQ
u
U
-------
*?
u
w
J
CQ
g
3P
«
1H
'S
e\
£
cfl
~
"S
a
en
g
I
£
3
S
H
i
i
1
"3
•a
*u
cy
ycambarus clarki
K
^
|
•o
u
1
1
•*>
6
<-
S3 S"
3 r-
O* ON
if
2 Bl
31
n n
t- rt -• VO
3
ft, ^
JOJBJOC
2
?)
u
"ca
^
commended BCF
u
CA
~Q
%
\
1
I
•y
o
E
6
CO
J2
2
CO
"3
>
f
13 labors
•8
c
ing the geometric mea
culated us:
was cal
o
"3
>
S
OQ
1
odonta anatina
5?
"^
; duration
1
X
C
•o
f
o
1
O
1
U
1
>n (N
•* •<*
phnia magna
JQ
^
i
I
X
S
>-,
•?
g
Lu and Metcalf i
in
vg
odonta anatina
K
"^
CO
«-i
ure duratiol
HI
§,
O
—
is-
1
ca
I
S
Makela, Petanei
Oikari (1991)
X «
a
I
§
|
I
25
odonta anatina; P
nplanta
£ 5
•o; o
1
a
xposure dur
o
I
VD
en
O
If
N-^1
'i
Makela and Oik
\O oo
ia
1
N
^
1
§
0,
"3
assostrea Virginia
laemonetes pugio
K Q
u a.
•e duration
i
u
•a
oo
c
2
t^-l
o
o
u
Ofi
s calculated using the
? value wa
U
u
*c
CJ
g
8
O
-------
u
w
J
09
<
H
g
O
i
z
o
H
2
H
Z
18
o-S
u £
o g
^H «
09 •-•
I!
M -3T
a 3
Hen
W3
II
50
II
H
Cd
H
s
rt
%
o
T-H
V
N»^
cn
V
*3
cl
s
cu
•55
i
£
1
B
1
a,
3
8
u
u
«
1
"3
•o
0>
1
c.
cu
Q£
u
^
•B
c
a
s
1
5
O
1
•C
S
I
Cj
c,
1
CO
u
"E.
CO
2
"o
E
s~*
NO
OO
2
I"
•g
co"
1
£
•5
&
— CN ^- r~ J! P co
g P HI ON •* ffi CO
^ ?- s- S S *. g
2 B 55 -o =0 ^ ^-"
1
.
5.
5.
S §
81
*}
|l
t'l
I
T3
U
Ul
3
X
0>
X
a
T3
CO
CO
g>
"S
CO
3
J
f
C
s)
CO
«iJ
1?
|2
<< > —
(N O
*fr ON
CO CO
NO" ON"
CO CO
1
cd
•o
u
s
&
2
s
and Yant
^j-
c
1
|
•S p
!&
K C^
S --5
U~l CO
NO_ u^
oo" co
(N NO
^
z
5
.&•
a.
W *0
a a
i «
°/H
&f
s €.
§>.£
S I.
1^
"o «3
S i
ll
n oo
•o 1
«
s i &;
ft £ ON
22^
fli OS
IP
« 1^
_e C o
S 8^
8 II
"*3 * «
C3 /" N h
111
3 rS
^_» TO
ll^
>< * "S
U »"> 3
>>5 «
^ J-s,
CO 1 |
co ca ?
^
Kapoor(197
T3
§
e«
•a
g
CO
c*-?
1
o
cs ^
^ fSj
"1 o
ON ,_-
( Vi
&
1
1
Ui
-o
i3
s
8-
>>
•?
CO
CO
1
•S
1
W3
3
2 co^
o i~
& °*
.*? -<
M ^
<*-" §
^ i
s £
^^
2 CO
ON
C4
1O
OS
B
oo
CO
i>
_3
"«
u,
U
n
"S
"g
u
I
Heptachlor
•o
1
I
O
0
CO
|
_O
1
CO
03
CO
3
"3
laboratory vi
-
&
«
n o
— ^ •*
r^T ^
CO CO
1
I
§
u
1
§
1
•§
a
3
g
I"
^
^
S
d Forester
§
^
o
I
"o
c S1
2 S;
£~
o
r-
ON
4>
J2
*e3
>
Oi
u
n
"8
TJ
C
(S
O
1
«c
o
Q.
Hexachloro]
•o
c
3
O
D.
I
U
1
2
CO
13
•fr
~
3
CO
u
C
O
•a
a>
CO
cd
Xl
c«
cd
£
U
_3
"cd
>
U-
U
CO
u
J3
P
a,
CO
!
1
ON
£
1
?
O\
**^
C
B
cd
CO
O
r-
OS
S
«
*5
0
I
VO
S
•*
a)
_3
Id
>
&
n
•a
1
u
&
Aluminum
•a
c
1
1
U
«•>
•*
u
-------
o
H
fa
Z 1?
§!
u
3
05
H g
1
W I
2s
S*
B I
a5
g?
H g
oo
0*0
1! |>
03
H
CO
0>
•o
g.
1/3
•*rf
CU
i
&.
1
e
•f
!
^
i
i
"«
T3
w
"£J
Q
Q*
&
j>
3
w
"S
>
e3
1
•o
>>
1
1
OS
x;
^— »
'^
e«
U
S
1
•^>
i— i
cS
u
u
5 .
es •'77*
> g
"S 'R
TS T3
g §
E c
ll
"c3
o 'S
S s"
0 ^
e "«
g s"
C 3
o 'S
•B o
g T3
C «
i 2
S -ij
o -a
•S c
£ I1
B 1
"a
•s -a
If-
tuent. Therecomi
chromium, coppe
'« g
C 3
11
"S A
"S O
& 1
j> a
•s ">>
•= S3
S .c
« g"
o .2
« 1
l|
es S
"ca OT
T3 S
1 Laboratory
(antimony,
r^
i>
_3
73
>
S
GQ
"8
1
5
«
I
1
Compound
CA
a
c2
g
u
3
*ca
?•
>,
S
S
o
s
•
—
U
CQ
1
CA
S
ca
VH
A
o
S3
>
c
CJ
c
'S
T3
§
S
s
?
J3
w
1
•o
S
g
Q.
&
C3
z.
g
1
c
c
5
c
ca
1
&, ^^
Is
H C
o
m
t^
o
_3
"ca
>
&
CQ
"8
t3
§
P
(S
0
'5
4i
CO
<
|| Compound
CA
Oi
s
C4M
CA
ca
CA
U
3
1
1
ic mean of 5 labor
§
1
u
J=
OO
c
'CA
3
1
5
*3
O
*c3
o
c«
P3
^
U
_3
*ra
>
&
03
1
Oo
•2
S
.«
&
,§
•*J
*Q
1
•§
I
^
C
fi;
g
J"*
u
^f
1
&l
X
u
1
00
fS
1
0
1
iandt, Anderson, a
PH
!3 >-^
CO ^5
•C no
^s
o 2
10
CL
S
1
g
cS
1
cd
03
H Compound
^
_o
*o
VH
Cd
>,
T3
one stu
c
o
T3
U
Cfl
cd
XI
en
cd
-^
The BCF v
u
ca
1
i-t
u
>
c
1
5
X3
VI
E
PH
1
£
S
00
•o
ca
C
c
I
I
h«
CQ
O
CA
O, ^
§/•>
•*
t>
3
ca
>
tt.
CJ
CO
"8
1
g
.S
krf
.22
13
ifi
tn
£
!
2
•5
Z
oo
•o
ca
8>
m
1
a. ^^
g N
ll
28
U-
U
09
u
i
fe
§"
^
^
t
1
1
1
O
l.
S
CA
O
D.
S
"S
£
c
1
c^
S
o ^-^
s>
-------
< J
Ik!
•B
«
00
aa
<
H
S M °
5jl a
M ^
W S
O
O
00
g
S
a,
en
g
0>
*J
1
a.
1 Experimental
8
^ c»
Crassostrea virginica;
irradians; Homarus an
3-week exposure duration
s>
1
1
•o
s
•ck
|
N
LN
«{ wT
J2 r~
co ON
S C-
o o _
ON VO S
^ •* f^
— es
<*
1
§
!
28-day exposure duration
r—
2
*~s
£>
%
g
U
eo
1
m
\o
1—1
, ^
%>
R " »
•§ «
•S =-
c fi
o a,
s: o
0 00
i: >,
Ceratopogonidae; Chi
Beetle; Anisotptera; Z
Ephemeroptera
•0 <£
* *!
8 * I
j Q »-* W5
ffl C ^ cs
" .2 * £
g "O — -S-
* e "s s
„ Jr * °i
3^2^
•3 +3 O t-
rt tT e« B
> >* *5 u
•o -° c S
3 §.2 €
U s*-
§"5 5 §•&
52-week exposure duration; the
by dividing the dry tissue concei
concentration [(|ag/g)/(ug/L)] co
applied to the value. A conversi
to convert dry weight to wet wei
Se £
•a> ON
"S C-
W a
- •%
oo-g
e £
11
"c »
« e
S^ is
ss 3
^5
si
5S
o o
Pi — x In oo So
— CM " _} r~ >o
ON ON . CS ,
u^ m >o m oo "o
2- »- S £ s ^
ba
0
S
^
•5
"a.
g
a.
Orconectes propinquoi
>,
X)
•a j,.
u x
cd "™^
1 °
III
O 3 -g
cS "2 *2
• * O
o ^ .s
13 *^ S3
> s^ >
111
B-S -
8-day exposure duration; the rep
dividing the dry tissue concentra
concentration f(ppm)/(ppb)] and
103 was applied to the value.
0
3
03
cd
S
•o
TO
g
'3
1
u
fp
II
o
-d-
oo
^
Corbicula fluminea
28-day exposure duration
^^
en
00
ON
v^
i
"S
u
"O
§
9?
5
U
t
I
o
O M
t- m
t-; r-;
en" f-«
"0
» CS u
1118
1 1 e -a u
as g s-a
40-day exposure duration; the re
by dividing the dry tissue concei
concentration [(mg/g)/(ppm)] co
applied to the value. A conversi
to convert dry weight to wet wei
/-^
o\
t^
o\
»— H
I
£
g
'S
oi
•o
c9
en
OA
_C
'S
c
o
•-^
\o oo oo
oo oo — •
— i O ^
&
Ophryothochadiadema
64-day exposure duration
oT
2
JM
U
5
I
o g
s 3
^ tn
Penaeus duorarum
28 to 30-day exposure duration
t^
r^
ON
*^s
%
•S
(0
•g
s
1
1)
3
o
2
en ^- en
en en n
oc i^ in
•3- if) tr>
S
^j
c
o
1
o
£
R*
Argopecten irradians;
pugio
•a
§
•a-
£ g
HM C
B 'S
"* S
•8s
tJ M
g,'g
8 -
S %
•i I
42-day exposure duration; the vi
Stewart (1980) were converted t
conversion factor of 5.99(a).
§
ON
'***'
I
.22
S5
T3
£3
CO
1
t-; "O t— CN|
i~ r~ S 06 K
— — " CN en
en r^
-------
u
H
«
H
K OG
/-^
?
2
_^
"3
en
|
Cj
1*
f.
Experimental I
g
Refereni
eg
Cfl
"a
T3
1
Q<
.3
K
1
"d
t
CO
1 *
03 *O
"g E -
•3 .2 *
CJ *O »-H
8 g "o
S t> fa
JH U
g - 0
S * "£
e n
ill
S H §
35-day exposure duration; the rep
by dividing the wet tissue conceni
concentration [(ng/g)/(ng/L)] con'
applied to the value.
» t3 o
u _ •
u.
u
c
u
§
u
9"
1,
i"
"s
o
J3
U
•o
c
i,
g
U
9
en
s
**
iS
g
•o
ta
en
CO
£
"cO
U.
U
u
onomidae
-«
S
Field samples.
OS
d<
a and Wilhm
CO
1
o
8
fi
1
Not reported
?"
2
1
1
en
U
SS
£
hwater inverte
en
£
Not reported
S
1
.s
s5
|
n
G
o
IP
Si
|
CN
OO
^H
en
u
Is
>
a*
unmended BC
S
U4
cu
n,
ex
o
U
•y
c
§
ex
1
i
a
en
3
3
1
2
us
ic mean of 9
I*
u
00
3
1
"3
"3
CO
£
u
"«
>
U.
U
03
u
onomidae
.•»
g
en
O
"E
en
"33
E
OS
^-
i
es
00
£
SO
§
a.
g
g
OJ
•C
1
^T
•§
1
|
S
u
"E
•o
0
E
•a
ea
c
1
JJ^
CS
L
J3 ID
O O
T3 CT\
8 C-
U -0
3* I
"S »
CO CO
VD O ^" O^
^D ^f" f1*- ^O
O ON '— ' OO
\o •— • ^ t^-
oo <— *^. en
of wi ^ oo
-------
1-H
'S
iH
I
X
~
"S
5
i
a!
Cu
1
•g
i
1
"a
O
£
•8
V
"
o
A
cu
OS
Mya arenara
ay exposure duration
73
4
f^1
t~
o\
!§
"co
'w
en
f^.
en
1
Corbicula flum
ay exposure duration
•a
00
eN
m
oo
e>
Cairns (1
c
ca
I
1
0 — '
t**- l/^
r**- C"*J
- s
"S
Nereis diversic,
1
1
S
i
•A
eN
So1
t~
o
T3
CA
i
en oo r~- ^~
TJ~ r^- ^^ 10
w~i oo i> en
bO
'ovinciali
Mytilus gallopi
y exposure duration
ca
T3
00
m
and Petronio
'I1
S
0
Q
00
|
1
Phylloduce mat
ay exposure duration
T3
1
1*8
s a
^ <2
"I
ay exposure duration; the
Et weight using a convers
*T3 >•
i ^
^^ O
i— < *j
G"
g
v«^
00
c
i
O eN
r~ en
en -sl-
e
o
1
o
Nereis arenace:
ay exposure duration
•a
00
eN
oe?
S;
md Morgan (1
IM
•g
CA
\c
eN
Mytilus edulis
•O m
O O
*jji r— ^
3 C X
S3**
ca as
•" 9
" § «
ay exposure duration; the
ividing the wet tissue con
entration [(ug/g)/(Mg/L)],
applied to the value.
"? "" M x
>A >> o S
en .0 o ?
1
0^
"! >n
o c\
5
Crassostrea vii
|
3
T3
2
3
S
==?
•o
O
i
8
o
^^
vC
en
1
u
t
£
T3
i
«3
CA
3
X
C/5
8888
oo o oo vj
^ oC p-* c*f
0 Q g §
s g g s
v> O ^ £^i
Afyo arenaria
c
o
1
•o
o
1-1
3
ef
c?
T3
0
(0
1
*3
T3
g
CA
_u" ^
0
VD
VD
8
^r
cj
3
BCF Val
Recommended
,*«*
3
o
o
"S
ca
u"
•6
c
1
£
6
_o
2
ca
•~j
C8
S
•S
?>
s with laborato)
u
1
00
B
2
£
t*^
CO
O
3
Jj
•O T>
C C
o ca
£ "
g c
o .3
55=5
s arithmetic mean of the r
ickel, selenium, silver, thi
u 5
~S
.2 H*
&4 U
09 g
Ti S
recomm<
, copper,
iStituent. The
m, chromium
§3
'I
•2 "5
p3 CO
•s ^>
£|
U •£
1 f
'3 xi
a E
o .2
c b
0 J
y o^
KI S
1 S
£• ^
|i
O --3
_o "ti
31
in
*rT
i)
3
BCF Val
Recommended
T3
ca
^J
•a
c
o
a.
E
o
U
y
JO
1
ca
CA
_3
T)
"o
t»
VO
etric mean of
1
u
.c
00
.E
3
1
Ctf
3
_O
cd
L)
c/:
c^
D
"cd
tu
U
CO
S
u
-------
S
00
V)
>N
V
Stf
cfl
"8
-$<
Experimental Parameters
8
§
,W
I
«
s
£
•o
kl
0
aj
05
•r d S
p| M cG
°° g a.
xj fc O
.S § -a
^j g c
tw ^ •
*r
^ ^J1 W
^J I
S "i 1
•S ^ o
3 5, and an unit conve
of 1 x 103 was applied to the value. A conversioi
5.99(a) was used to convert dry weight to wet wei
6?
o\
o
u
tn
JC
-
o
1
§"
_
'S
1
00 |
IT) ^_.
5
fN
U
3
es
a.
U
n
*Q
1
P
8
u
1
o
W
s
•o
c
1
S
6
%
1
CO
a
u
J3
"3
c3
g
VO
g
O
-a
M
ra
«
ra
^
-5
>
p-
u
m
u
LM
U
I
C
s
M
?
J3
U
*
T3
C
O
C
s
Not reported
oo
z
§
i
c
'3
a
Ul
3
C
E
II
o
8
Q
•«
_c
So
•ii
3
o
to
§
^
<*H
•0 0
1 s
1.1!
"•2.1
74-day exposure duration; the reported value was
by dividing the dry tissue concentration by the m
concentration [(ppm)/(ppb)], and an unit convers
1 x 103 was applied to the value.
^
£
1
O
8
CN
S
C
Q
"C
e
h
g
5
c
.2
-. M
a) i_i
s« ?
* £§
§ = !
30 to 60-day exposure duration; The reported val
calculated by dividing the dry tissue concentratio
medium concentration [(ppm)/(ppb)], and an unil
factor of 1 x 103 was applied to the value.
'o
5
w
2 £
o 2*
.r («,
« s
II
. a
J3 %
O VD
vq ON
S --H
co r-
vq (N
prj ^J-
-------
u
Ed
09
<;
H
00
?
so
V
w
a
GO
S
1
s
1
i
u
•c
V
1
Reference
A
cn
S
1
•B
V
"S
o
D.
cu
_^
o
O
i^j
*o
u
s
13
&
ca
"S
•o
c
g
S
5
1
^
Q
O
£
">**
•S
1
"O
c
§
a.
o
U
follows:
CA
ca
u
J3
"3
>
I
1
"-1
1—1
c
o
"0
u
CO
w
ra
^
u
13
>•
&,
u
CQ
u
o
•5
•S
So
"s
e
S
C
Q
*n
<§
?
1 1?
« 'S e3
ca S 'S
|||
Q\ S 2
If 8
^ I "c
J3 C ^ .
^H O f""' O
• »^ en v™J
74-day exposure durat
by dividing the dry tisi
concentration f(ppm)/(
103 was applied to the
e>
^^,
1
1
1
vT
m
00
01
U
3
~3
&
n
"g
T3
B
O
c
5
OJ
_«
£
O
Z
T3
B
§
&
a
s follows:
CO
S
3
1
b
ta
mean of 4 labor
u
'S
he geome
on
'33
3
•o
u
ta
u
S
en
Kj
^
0
"e3
>•
ft.
u
CQ
u
en
O
ca
U
u*
g
B
'o
B
a
•g
Kj
*M
13
jj
_^
i
Not reported
£
•o
g
Burton, Quinn, i
»
§
o. ^
§tN
£2
H C^
88
— CN
00
•2
£
•s:
1
Si
§
S
•o
B
ca
f
J=
cd
2
o
»-H
i!
3
"is
ft.
U
(9
*o
c
u
S
o
£
6
2
J
"o
t/3
-o
B
g
O.
£
o
U
CA
1
CO
S
3
ca
£3
Is
mean of 5 labor
u
'S
u
00
u
00
'33
3
•o
c>
'ca
u
S
S3
pE
O
3
"c5
z>
ft.
u
m
u
!>
K
•2
c
-c
1
§
•s
96-hour exposure dura
^^
I
^— •"
c
[field, and LaPoi
5
U
i
en
O
n
|
c\~
s
2
—
cs
*o
1
u
'S
o
I
.8
f
en
3
•a
ia
^2
o
to
^
U
3
"S
ft.
U
CQ
1
.2
7S
«r*
S
3
r**
f
(8 ^
3 e 'B
•« o s
•Sis
«2-o
|i!
^ o ''"Tv
y S 3-
C en ^*'
'i3 t^ /00 3
2 1 <£ "3
3 ? oo >
•o o £ o
10 •& ^ •£
540 to 630 day exposu
calculated by dividing
medium concentration
conversion factor of
1 x 103 was applied to
„
op
'S
w
s"
en
"3
Z
^ j^
u .u
U §
8 >o S
—. O ^"
m" — " —"
ON O 8
en tN >O
— " of *O
u
-------
O
u
fa
Z
o
H
fO
S
CQ
<
H
81
O ^
S %
«i
i
PQ "a?
^ I
H S
'S
<
P
g
g
H
1
a,
CO
V
s
£
1
1
1
s
s
1
V
1
"3
T3
V
4j
Crassostrea gigas
14-day exposure duration
•o
ca
n
"§
ca
I
.SJ1
1
1
tn
|l
-
I_H-
Pteronarcys californica
CS
00
c
oo 'S
-S 3
u oo
Z 'S
.S ^
GJ CJ
Jg £
« o
11
11
14-day exposure duration; the re
(1976) was converted from dry '
conversion factor of 5.99W.
NO"
00
c
i
m cs
^ ^
O e^ oo
en cS — »
§
!Q
u
3
Recommended BCF Val
£3
1
•a
c
g
a.
U
CO
1
CO
u
3
I
1
«
(N
C*_l
trie mean o
o
u
00
u
00
_c
CO
3
"O
.w
M
3
o
C/3
C3
S
U
^
>
U.
U
u
^
CO
••-;
CC{
"§
C
Freshwater and marine i
Not reported
oo
Z
•a
g?
_c
a
§
1
CQ
5/5
c cs
ll
88
^2 ^2
»/^ irT
**^ *•""
oo
"1
u
3
Recommended BCF Val
o
c
N
•o
c
§
Q.
g
^
i'
o
<2
ca
1
CQ
"u
tc
o\
(*H
trie mean o
O
1
u
.c
00
'S3
3
T3
S
_s
ra
c«
C3
^
1)
_3
r3
U.
U
m
u
*
Chironomidae sp.
to
u
"3.
2
"§
X— N
g
1— 1
•W
1
iga and Wil
IM
Z
\o
o
o
fj
8-
K
g
a.
i
Chironomidae sp.; ^p/ie
^
•83
JC7N
C3N
IT)
T3 *S
W b
M J5
i «§
8 c
CO -2
£ g
Field samples; the reported valui
weight to wet weight using a cor
1
1
.£
1
JD irT
u ON
73 ON
CO ~H
cd ^^
'S 3
CO CQ
oo in vo Jj
r^ S oo ^
•* « en 2
r^. ON r*l O
— ON OO —
NO -^ CN_ e^
CM es ^— ' en
Marine invertebrates
9-day exposure duration
•o
g
i
s
s
s
S2
^of1
» ^-^
JS lH
^ U
O S
o ^
en"
Afya arenaria
14-day exposure duration
^
^^
—
"To
S
m
•— '
Corbicula fluminea
28-day exposure duration
^
en
oo
o\
t
'S
U
ed
^
1
00 — < —
10 — • en
m >n vo
^O
^
g
Ephemerella grandis; Pt
californica
•a
£d O
" 0
§ I
U CH
? "«
U £
J2 >
03 g
U
d> *^
I-s
14-day exposure duration; the re
from dry weight to wet weight ui
5.99(a).
Co
00
c
I
V"J C*"> l/"l
-------
Tf\
Z2
G6
0
H
y
Cib
z *£
0 £
2; «
H fe
TABLE C-3
WATER-TO-AQUATIC INVERTEBRATE BIOCONCENTRA
(mg COPC / kg wet tissue) / (mg dissolved COPC / L
(Page 18 of 18)
en
V
•3
«
t»
L
Experimental Parameters
Reference
GR
u
5
>•
T3
w
tJ
O
g-
«
1
Cfl
3
t
Np4
2
35-day exposure duration
«-> m
•S
1
S!
e
S,
^
§
50-day exposure duration
ngle, Hissong, Katz, and Mulawka
>68)
'£ s
14 ^
Tl
OO
£ '§
as; o
S« I
„ >. *
§ •£ •£
T3 J3 C
3 w>-^ o
1 * 1 1
.585 1
22 E*
£ « ^ 8
s, is «
fi|£ 8
«3 Ur M ^
g 5 1 •«
— c fe £
B -S S ^
> >.J 3
ai Ja *£ "2
^ -3 •£ «
£ e § ^
^3 *rH ^
«3 °
^ .2 ^S
S § ^8
S S 2
> e c
S 8 S
— e s
S 8 8
kill
presented as the amount of COPC in invertebrate tissue divided by the amount of CO
-eight over amount of COPC in water, they were converted to wet weight by dividing
ss an invertebrate's total weight is 83.3 percent moisture, which is based on the moisl
is calculated as follows:
rnnvmjm fader- 1-° *ram (*> invertebrate total weigh
•5 o
Oc "
'5 -o
g 4>
S
U >
^j O
•fe H a> M
*> f sjj ^
1.0 ^r«m (g) invertebrate total weight - 0.833 g iwver
organic COPCs are assumed to be total COPC concentration in water and, therefore,
Dm U.S.EPA (1995b):
(total) /fw)-l
1) = BCF based on dissolved concentration of COPC in water
JCF based on the field derived data for total concentration of COPC in water
f COPC that is freely dissolved in the water
1 / [1 + ((DOC x K,,w) / 10) + (POC x K™)]
= Dissolved organic carbon, kilograms of organic carbon / liter of water (2.0 x Ifr06
= Octanol-water partition coefficient of the COPC, as reported in U.S. EPA (1994b)
= Paniculate organic carbon, kilograms of organic carbon / liter of water (1.5 x 10 w
Bil ii 1 |I« JS.JSI
51 S | || ? HI
•—S-51^ 55.^^^^^ ni
W JT» X — > CT1 CH s— ' " **
>-S|§ •o^^fcfen S
^ 2 «S -3 "oe^^^ys-f
""'sir! ia-S^cDW1*^?
g-aog z;s|w
Us 1 ll =1 ..
I-H S ^ u ^ "o ^ — ' &
(U'">^ S'—tLh
-§£§.£ g-urj"
HD-oH DJ'BCQ"?
wi
U
•7 1? £~
-------
u u
u z
3 o
09 U
£ °
H S3
r?
•H
pH
w
£
Cfl
*3
V
a
£
u
1
1
1
1
U
Reference
ca
SR
3
93
(^
TS
a*
•c
e
c.
B
2
***
1
S
1
5
^r.
en
u
3
1
a.
U
pa
•a
u
•o
c
u
8
CJ
Pi
Q
Q
>^
F1^
OO
r*T
ti
_fi
"S
retrachlorodibenzol
oo
^-.
en"
g
1
ca
CA
J>
"3
>
to
S
J
en
•g
g
u
g
• *H
•S
V
43
J
le was calculated u
13
^
U-<
^j
CQ
•o
"O
g
S
8
O
CO
If
Qj ^^
u oo
a ^1
B .S
CB 'x
II
•2 ^
rj §
ob S
IS ;O
g g
* 1
"o tl
1?"
s «
3 r^f
1^
/-*s
oo
and Jones (19'
Yockim, Isensee,
§2^
25
Tf ON
S
u
0
•5
H
s
s
a
1
•«
/$
O
00
•
en
e-i
*4"H
U
s
*
cd
T3
!
§
i
3
•0
3
1 '
|g
S"
OO
r^
and Jones (19'
Yockim, Isensee,
O
£2
• '
00
en
O
en
u
"3
Bui
U
CQ
•o
1
i
u
K
fo"
s*.
Q
U
oo
^""Z.
C*"l
ri
I
J-Pentachlorodiben:
t~"
en
eN"
*
•y
c
c.
Q
3
00
en
O
en
II
eN
d
X
S
en"
II
U
CQ
O5
|
H
ca
2"
§
U
CO
p
p?
s
s
<2
o"
o
"3
.g
1
§
•*-!
ca
*3
g
and a bioaccu:
ng the TCDD BCF
"CA
3
•o
4;
3
15
U
CA
£
CQ
1
W-
g
w1
*— '
3
13
Oi
U
n
•s
•o
B
J^H
II
en
d
X
S
en
en
II
DH
O
PQ
CA
•2
Pi!
Q
Q
U
00
*^
cn
fsj
^
G
1
B
!,9-Hexachlorodibe
ww
CO
rT
*
•y
c
3
O
CM
E
3
en
es
\o
II
d
X
S
en
en"
II
&
PQ
CA
_o
1
CA
ca
2"
1
CM
CO
2.
S
PQ
I
J
s>
J
A
>
1
B
O
•a
_ca
3
g
and a bioaccu
ng the TCDD BCF
3
T3
'S
3
O
13
o
CA
ca
U.
U
CQ
1
^>
oo'
<— i
u
13
tL,
U
CQ
"o
"O
B
O
O
u
K
§
8
i
oo
rf
en^
eN"
^^
B
benzo(p)dioxi
j,7,8-Heptachlorodi
^
en"
es
*
•y
B
1
E
o
U
06
\D
||
'3
cr
0>
B
_O
«
3
g
and a bioaccu
ng the TCDD BCF
3
•u
CJ
m
3
o
CA
ca
UH
U
PQ
CJ
VO
C3N
en
u
3
"3
rt.
0
pa
•o
u
T3
B
U
8
CJ
PC!
I
§
.—
)rodibenzo(p)dioxii
S
ca
•Q
o
•y
1
CM
E
o
ON
en
II
2
o
O
X
I
en"
II
&
CQ
09
§
1
CA
ca
£
ON
CM
m
CO
2-
c£
CO,
2
t>
.^
<*H
&•
B
U
CB
>
1
g
«•>
_ea
"3
g
and a bioaccu
ng the TCDD BCF
3
"u
ca
"3
o
CA
ca
K_
U
CQ
ej
eN
^^.
es
o
13
pr.
u
CQ
•o
t3
E
U
8
06
&H
Q
rj
H
-:
en
rf
£
retrachlorodibenzo
00
f~-
en"
/*O°
•y
e
3
O
0,
E
1 6
eN
S
es"
II
O
oo
d
X
s
en"
II
&
CQ
Cfl
|
1
CA
ca
2"
V)
g
CO"
D
1
!-i
1
§
"c3
>
1
B
O
•J3
—
"3
g
and a bioaccu
ng the TCDD BCF
3
T3
-2^
ca
"3
o
C3
U
CA
ca
&
U,
U
O
^
^j-
VO*
f\l
I**
b'
S
"3
Ei<
u
PQ
T3
U
•o
B
U
8
CJ
Pi
§
*?
1
00
fC
rrT
1
1
K
**i
eN"
-
-y
1
a.
E
3
VO
c>
ll
es
d
x •
S
en
en" i
II
B.
CQ
GO
3
CA
C3
2
»
s
co'
g.
m
pa
1
1
13
>
"i-
u
§
•a
ca
"3
g
and a bioaccu
ng the TCDD BCF
3
i T3
O
ca
3
CJ
CA
CB
?
tt.
o
CQ
u
-------
C» /-N
PS J5
O "S
H |
^"J J
2 ^
*"^ ^^
^-i ^^
O o
H W
•*^J T3
OS v
Ei ~
? W .2 ^
u u •« £
w S ff *
j O S <^
PQ O -~» *
H i? <£
tB '*"'
If
oS
L^ r i
OS o
W rN
M
•4j OB
^^ S
^ y~/
s
"S
1
£
•*•*
P
2
5
1
w
Is
g.
rS
8
a
£
n
es
ii
_3
73
a,
U
03
73
73
e
u
1
8
a;
8
taH
00
^r
en"
es
^J*
'~'
1
S
j
1
00
en"
es
73
C
§
a,
E
d
q
CS
II
VO
t^
0
d
x
S
en
en
II
6
«
o
1
09
ra
S-
£
o\
A ,
S
CO
jj
B7
n
N_/
t>
g
1
cet
|
o
o
g the TCDD BCF and a bi
c
ated usi
~3
"cd
O
en
cd
U
03
cu
CS
VO
U
13
tt,
U
03
73
73
C
U
g
§
K
g
X
X
00
vo"
en
^
^
8-Hexachlorodibenzoftiran
^>
vq
en
es"
73
1
n.
S
6
^
r3
VO
II
OS
i-H
d
x
g
en
II
&
PQ
09
fe
_0
2
09
Cd
2~
i
S3
CO
J3
N"*/
BJ
0
1
1
73
f
•|
"3
g
3
U
O
g the TCDD BCF and a bi
c
3
1
3
o
en
cd
tt,
U
03
fS
CS
CS
cs"
cj
3
73
0
CQ
73
•S
g
|
8
&
1
s
•
OC_
VO*
,jT
en
cs"
^^
8-Hexachlorodibenzofurar
_v^
vq]
en
es"
73
C
§
n.
E
d
cs
cs"
II
vq
x
8
en
II
§
CO
?
O
1
en
a
2"
in
S
CO
g.
£
PQ
J
<§
^
73
cf
1
•3
E
3
O
O
g the TCDD BCF and a bi
c
73
3
73
u
en
cd
tt,
U
03
0)
O
oo
O
cs"
0
73
B
PQ
73
73
C
U
1
8
04
D
53
i
oo
n
^_j"
• — '
9-Hexachlorodibenzofurar
OO
&
CQ
73
73
C
U
8
K
|
OO
K
xq
>.
c^
ri
O
i_<
7,8-HeptachIorodibenzofu.
vo"
en"
es
73
C
O
O,
E
c3
en
vb
en
^
O
d
x
S
m
en
II
&
CQ
CO
^
O
1
ca
cd
>n
ON
o
OH
CO
J3
If
&
I
<2
1
">
t
u
e
.2
3
E
g
Q
O
g the TCDD BCF and a bi
c
3
73
3
O
u
en
cd
U-
U
03
1
OO
oo
cs
'r^
o
3
73
B
PQ
•g
73
B
O
|
8
a
§
f
OO
S
cs
C-
B
cd
g
g
S3
]
a.
oo"
_^
en
73
c
3
O
o.
E
a
00
CS'
in
cj
3
73
B
PQ
"S
73
00 I 00 .
oo 5 r*J
cs g in
- 8 n
JI Q \£
en q
d o
x x
S S
en en
en en
M II
tt, ' CU
0 U
PQ PQ
0j M
f , %
J2 i °
73 . '75
eii ; u:
09 ' 09 'tf
CO cd «j
JD~ £" •<
in in a<
ON < ON ! 73
| 73 ; |
•CO ' ^
i S •?
E §
1 if
co i £
« ' 3
g i cu
0 i J 1
g 3 « -
R, * -S i 3
£. • u .2 ! J
o ' s '3
>§- 73 | •
S . fc s
o r i c
03 mo
Ui
"o %
r; rt VI
o ±J f^
•a It *
i II
CL, £H ra
E o o
u , Si
00
m
cs
in
o
^
cd
tt,
U
PQ
73
U
73
E
i
8
0^
1
,
1
!
i
|
J
j
1
i
1
i
.
anthracene
f
03
73
3
O
&,
£
U
-------
T
U
&
VO
>n
O
-------
^ /**\
o|
Bj
< ^
fa ^>
Z gj
NM ^
^J
*S "S
MN ^
- zl ^
i U .£ <**
U y -o ^
1 1! ?
NN ^0
rh fiS
J ^
< ^
^j ^^
H4 U
* O
II
~
i
in
S
S
S
2
03
ft,
a
B
5
1
I
I
*
2
"3
**
"2
t
o
a
o
rl
u
*a
a*
u
"8
c
u
E
8
i S
< 01
00
! 1 P
Nitroaromatics
ene was used as a surr
3
! • tJ
i : '5
! ; ?
^~
u
B
"O
•a >>
22 t?
o S
O. t.
E .£
O cs
U N-S
t^
0
ts
5
u s
"« P
> K
§ |
"8 s
| |
E §
8 §
& co
1
exposure duration
>^
•o
• 4
« cn
•5 S
e* ^^
•a1 1 §
1 1
o -a
trotoluene
je was based on
Liu, Bailey, an
:§ |
j. ^
S* u
•a
"c o
u "T.
•o e ^
§ I
0 "
o< "
E o
U H
P~
b
ts
u
73
O,
U
pa
•o
u
T3
g
g
g
06
0
"S
eo
0
ene was used as a surr
g
' 2
1
|
•4
cs
: ^
The BCF
1
trobenzene
ailable for this c<
"2 • >
5 ' 3
\o a
(N g
1
rt
w
•o >->
§ 2
O rt
E .g
O la
0 .3
r5
u
"to
B
«
•o
u
u
g
g
c*
U
1
1
g
-a
c
o
§
U
§
*~1
"^
o
1
! U
pa
g . -o
S, > i.
ra «"
"V i S
:' 1
' ^
I) ' t*4
B • §
1 1 : \
2 BO ' ~S
s .5 ! g
•5* 8 ! g
^ fc ; a>
1 1 If
S § o »
° 1 | § • 3
S ' > S ' •§
(O _~ W
^5 . -*• •*->* O "75
i ~ *— * £1 3
te y 00 S ' 0
g frS "S ' •«
0 ' ° " i § ' «
1 i -6 1
>• i s >
tu c tt.
O o U
CD ^ oa
•8 "3
•o -o
S Tt C
O
J3 O si
H ; u ' F
1
S S ' S
•a, -1 -a,
«S -S «2
k. k. k,
.3 ^ ' ^
•ct *c *s;
55 5
u
3 o
'§ ~°
[LI 2 i
v ^
fa C :
O o
bb >5
.s | i
' "S i
^ °^ rt*
o«Sj ^
Sas ^
••*• U-4
1 ^ 5 o
i ^^ aj w
> C O ]
4) J3 y
C B "g 1
•s ! -i ! g
1 '111
1 I1"! 1
U !>..+-> G-
>^ >•» H JS g
*T3 ' T3 O *S O
-i i - O ? Z
£
j -0 05
O >
n rt oo
O ON f> O
"1 ^1 "1 "°i
en •*" r-" •f
t— H
oC
u
"3
>
U
pa
•8
;1
s
8
I .' ;
1
i
I
g
W 1 ' r^.
«j *O
1
1 i
1 i
i
i
i j
i
s
SI
£ 1
0\ £
•-! O.
*™^ ^^
§ $'•
s i
ts
ri
s.^
3
•b"
c
^
c.
; . 0
-------
TABLE C-4
/^N
fSI
1-H
•s
v>
V
I
S2
•^N
s
0.
B?
SS
V
*•»
Experimental Paran
leference
I*
"a.
o>
—
>.
M
OJ
I*
e
c.
01
'
tory values as follows:
2
o
•s
B
«
E
o
00
B
calculated us:
je was
•3
>
n
•a
•o
c
e
8
I ,:
a
1
S
1
exposure duration
g>
2
s
§
•o
§
Ofl
ed
1
s
r, Viswanaths
1)
rfl
0
S
-
g
•c
u
o
6
!
y exposure duration
•§
R
rgren (1982)
1
vd
oo
8
00
CN
i)
_3
"3
a.
U
a
•o
1.
u
1
8
rt
i
;
i
i
|
13
9-
a
|| Compound:
c
S
Q
"S '
1 S ;
s ,
1 :
ll i
•§
o
•
!
y exposure duration
itile Organic Compounds
i •§ "3
CO ^
i
^
III
j- | >— '
,O 3
<4-l ~
s i £
£ g
•o .
! i ^
! i 1
•a ' 1
4J ' ^^
cfl ! XI
5 c
j£ ! IS
., 1 C/3
U
3 ,
"3
>
&
03
•o
1 ' S
g "1 1
| , 00 1
1
U i
o
d
u
3
"3
>
tt.
U
n
•a
1;
o
§
8
C^
1
1
i
' ^^
1^1
! §^
g>
J
T3
C §
ing the following regression equatio:
, where log K,,w = -0.222 (Karickoff
3 00
1 -
•i «3
1"S
Sl
s -I
l jj: t/3
i a, "9
u i
"f
£|
. CJ
1!
o n
•s J
*1
b O
•2 w
3 •<»•
, JS T-.
'3 ""
0 a '
•2 i 'S bf
8 c 00
<; u jj
o ^.
•^
Is
"H OO
T3 o
1' li
1 S«
iM-°
"
d
U
3
"3 •
> '
BH
U
•a
1
V
1
8
c£ '
:
1
|
U
Compound
>/•>
o\
00
^
•a
ca
g the following regression equation:
, where log K™, = 0.250 (Karickoff
•a
"8 a
S-8
3 <°
O 'g
•3 i
o •§
SCO
>•§
&C3
ft
SO &
H
•o u
§«
3r this compo
(Southworth,
3 ~-
"1 '*
* ^
"o &o
c o
2 X
ca 2
"ca °o
*^3 O
Laboratory
log BCF =
oo
ci
i>
3
*3
>
o.
U
ca
•o
•o
c
u
1
8
&
,
1
i
1
1
,
g
1
g
s
II Compound
£•
c 2
ing the following regression equatio
, where log K,,w = 1.949 (U.S. EPA !
3 0?
|§
as calcul
chmiede
£ «
ci< "S
U §
"f
ej
Ji 1
?, s
J2 CQ
were not ava:
(Southworth,
1|
i '*
° ^f
•2 00
•£ o
£ **
B 00
•0 o
1 Laboratory
log BCF =
S
d
U
3
*3
>
OH
U
BQ ,
1
u
1 '
8
L,
J
n
o
D '
5
1 '
3
in
^
ing the following regression equatio
, where log K,,w = -0.268 (U.S. EPA
• =» ^
3 °°
3§
11
Sl
& °"
o- •§
u a
"i
J3 §
51
? S
Ctf pQ
were not ava
(Southworth,
0 IS
c < o
S ,' E \
S £ :*f
_T 5 ^
<£ "**
ca 2
ta oo
•« d
Compound
Laboratory
log BCF =
2
d
u
3
"3
Cl<
U
EQ
i:
U i
i
§ '
0^ '
1
i
i
i
!
M
cd
1
Compound
-------
u
3
CO
<5
H
/^
•e
£
&*
o
a.
V
«
1?
8
.. OS
li
§H
cr .
O tfl
g D
2 *—•
g «
O *!f
IH C^l
ited using the following reg
r 1 978), where log ^ = 0.
S S
3 T3
o .8
s BCF was ca
ip, and Schm
ipound were not available. The
1.146 (Southworth, Beauchan
E '
S «
R I
"^
*°
a *
^ <*
cd — H
S oo
•o o
& H
S p-
2 ^
o n
_D
3^
M
NO
O
u
3
">
B
03
•o
u
•o
c
u
1
o
(2
u
:g
"73
X
O
>>
C
>
T3
g;
3
O
O,
U
'
1
s-
§;
c 2
l£
§.«
« CO
e 2 1
.2 i-*
*W5 ^"^
X NO
&S !
ated using the following re|
r 1978), where log K01V=1.
•= o ;
13 1
e BCF was c<
ip, and Schm
ipound were not available. Th
1.146 (Southworth, Beauchan
e '
0 i
f\ G> '•
" tf '
S g3
<£ *
^ <*
cd . — i
« oo
•o d
E? ii
5 B-
2 ^
O CQ
o
33.
tn
ij
-2
"cd
^
&
03
•o
u
•a
c
u
1
o
a
1
(
i
C i
R !
Other Chlorinated Or;
i
I
tetrachloride
—
&
1 o
S3
l_.
a
u
•o
£^
3
0
a,
0
U
a as follows:
ue was based on laboratory dat
cd
>
P.
U
CQ
"O
u
•a
c
U.
U
ca
T3
O
-o
c
o
g
0
CJ
0>
t,
0)
s
S
U
_«
"3
i 1
js S
"S a
5 . s
•g a
1 . •§
< »j
o o
1
1
1-day exposure duration
31 -day exposure duration
I
&
2
•s_x
c«
91 §
2 i 5
Geyer, Politzki, and Freitag 1
Isensee, Holden, Woolson an
o
i 2
•* ^o
;
>
fs
•VH >v«
ll
. 1>
f> |
M "
8 •
B U «
•*" > c S .2
U ^3 W5 !
U g :
c"0 c j
2 § 8 «
ll-S ; ;l
1^1 ; J
llf 1 : i i
S^| | ! :|
& !»•& B ! : t>
7 §| 1 i : S
•— ij S 2. i (3
, i ^
1 ! ; 11
1 i| ! :i
£ ' -S i i o
O 1 C
• s * i i «
a ; s" i : i
?- 1 1 : 1
U 09 . j U
S"^ : I i . *
O 00 II? ! '60
- ^ 1 •> ' ' c
BO ON « . | '05
S C- ^ N0~ i 3
1 -s i !§!§•!
b .« 35 C- 1 ^ ^
rtT C BO ^ ' ca 3
" * c Si -s i °
^3 :Slj!l
1 -*S ra
o >
s £
.2 U
E CQ
V>
NO t — W
o\ — "a
°. ^ g
— i TJ- e
•g 1
§ 0
1 §
C 4>
6 S
o
NO
-------
•*
y
S
ea
*"*
W5 ^N
0! ^
e!
^
(« ^
zki
2o
HO
•< T3
« £
H
bj .2
U -0
§1
U ->
2^
oa g
Ed 3
•< -
0|
? tf
o ^
H y
A BU
g8
gl
^_^
p*
TH
•s
t^
Q)
1
Ifl
V
*3
A
oo
t
Jj
g
05
1
T3
a
•s
8
1
_3
CC
4»
I
&
1
^j
^
S 1
| |
"5 «c
.0 .§
o o
S '
aboratory values as folio
Not reported
Not reported
""~|
<*«
o
S w ""*
i i : I
S •• li-
on cd fc^.
™ .-a : S
ae was calculated using the
Geyer, Viswanathan, Fre
(1981)
i Lu, Metcalf, Hirwe, and '
"«
>
B.
U
CQ
•o
1 1 5
S *~ " ^
£
CJ
o
D
£
§
u
_3
&
U
CQ
c
u
g
o
1
lorobenzene
•g
^
"2
c^
-6
s
o
Q.
S
1
O
*M
rt
ae was based on one study
"c3
>
b
U
m
-o
g
E
o
§
1
13
4
,0
2
o
S
1-day exposure duration
I
^^
00
(8
Geyer, Politzki, and Freil
|
•*"
_
"iJ
1
OH
O
s
5 ^ ^
"S -a, «,
S 5 ^
1 "H "H
8 -2 -2
& 68
o
60 O
'i ^
^H O
0 0
^H U
; • .S ^ "'
T3 ^^
• fe r^ g-.
: a0^ °
a) O ^
: i 8 " «
2s ^S ,?5
i ; 1 1 S
. - "^3 £
g , .1 .2 § 8
|,1 | | -s
!g -a -o 2 *
' » £ K«
1 ra , 3 ! s c eo
i S S ' o •§ .|
^ fli ' U „ ^_>
| 08 ' *-< ^ O 5
b i
i W ' |
1 pS '
o *- c
1 ' sS i J
S "^ §
. "C ~ :
» « i .s
i S i ^*j ^j
i .S i § ' . ^
' S 5 eo o\
3 , i s c
- ' s | '8 -2
o ; u ° ^ i ^ ^
* ' "3
A >
C BU
«3 u
PH CQ
-^
-§0 ^ ^ -
c "n m m oo
u ts O
-1 B.
^. U
•^ pa
T3
U
•o
C
U
4,- ' s
1 s
3 °
1 g
1 E u
: O -C
U , P
1
^
"5
wm cari
's
00
j's
0
c
33-day exposure duratio
1
o\
>^
Z
T3
Metcalf, Sanborn, Lu, an
tN
^^
|
o
3
1
fT
CJ
ffl i :
1
u
i o
S «3 :
8 T1
OS ;
o, u,
w ^
CQ
•o
u o
! CJ i -
g —
c E
= S
a a
1 u
o
VD
U
-------
CQ
1 ~
o
1
1 1
1
•
1
i
eft
(3
•o
: O ^
'i|
Ji IP*
s
JJ: S 1
1 ! *
1 i^
1 b
E CQ
•O
1 1
c *-T
"° p
1
E 0
O xi
U ' H ;
en
oc
u
"3
&B
cd
B -E.
I1 I
1 : 1
3 ' ***"
81 (S
' So
i
i
! |
i E"
1
:
i ^
C-
i S oo
=3 -a
en
« C
"S '3
3 CX
u c
im
ae was based on or
Thompson, Burtc
W "T
S "3
1 ^
^ ^
T3
U
TT Q
E
1 1
a g
S 0
O XI
U F
>n
*""
u
3
B,
U
CQ
tj
o
"S
u
H
g
04
Antimor
-o
c
3
O
CX
E
a
en
|
1
S
en
U
3
1
1
J>
,2
«N
•s
C
cd
u
o
J
s calculated using
&
o
"3
•u
0)
•o
B
B
0
u
•a
g
n, .
a
1
•o
1 !
i
tN1
B
•^^
eo
T3
i
5
Thompson, Burtc
o o
-M° T-T
en
tN
u
"3
g
1
P
H
g
1
1
|
en
|
t2
' eft
U
J3
' "3
1
'S
XI
cd
en
•B
1 B
cet
i u
1
1
s calculated using
.3 i
1 |
"O
•o
B
ID
E
"i I
3 0
1 a
E o
5 £
O
_c
's
§
1
td
tw
§
3
!
T3
TJ-
e>"
—.
Anderson et al. (
>0
§ 5
«N ^^
U U
"3 "3
£L LL
U U
CQ CQ
o ai
T) -n U -o T3
u £ ca g u
I i ^ i : I
2^ o § S S
Z & m (2 2
:
i . i
i :
1 1
! , |
', 0
'. 1 I
i en
1 ; 1 1 i 1
I* U, 1 ^ ' tH
S « ^ S
Z Z | : Z
' £ I '
1 —
«N r?
P ' «S »
S o.2
— .. ' ; B , ^
00 > ' 2 00
c I i -2 : a
id ; "•" J3 i id
'3 ' "2 i ! u ' "3
CX 3 ' °° CX
°» 1 o
B i O : •S \ E
1 ' §:R ! 2 1
B § 2 1 j ca
§ ' ! 1 u "8 S
J5 cd T3 ' In S
& XI , JJ ^ , £•
1 , i ' 1 : 1 ; 1
P o ' OT c i ° H
1 3 E ! ">
3 ^ i "~^
03 O CQ 1
"O "O
ID ID
8 VD c S "E O g
m" - .. E ^ .. E ^ -"
"S I "g e
11 1 1
O X! O XI
U H U F
VO
U
-------
•«*
u
tn
I
tn
ce
1
£
3
§
l
eference
OS
1
55
J^
1
S
c.
00
o
3
Recommended BCF val
p
•I
•s
u
•y
c
o
ex
E
o
U
s
Q i>
s; 'S 3
a -S • "5 ;
"Q O "S tU '
S -22 -5 § e O .5
• S.-2£fe : § ' g fe
e fe 3 * "S 12 4P ,o
. •§ » •« « =3 "S i -g g =3, - %
§^.So« * ' 1 « -a .SP
S S S 1 ^ S, I = 0s
.1 "i :- i . i Si « ' ^ 2 ' "8
•S; S S *fl ' S O ' y ^; tu £3
&-* Q iq O , h3 Z K ' , U PQ^
"go ' ="
ca .2 *^
C ^ co *^
OS IB C
g > ! > S :
: 1 2 • , § g» 1
'2 s .5 "S
ffi 00 • o to 13
e i *-> 3 , fa
* 1 -S £ -6
: 1 £ "8 •§" ^ ! §
S .2? « |e S
OH S i 0 ^ 0
If § s ! I
"" 2 : i "3 "8 i §
i r^ OJ ' fli OJ 1 ',
„ \ $ £ ; „ a g ^
c2 BO' 't§:2><^ 3
wi ^c3;' » s 5 *S "2
si ™ > • ' cd ™ ''"^ c
„ i :-•>>• -\ , ! 1 *~^
\O ! i '00 1 i
'si i ! "g
C ^"^ ! G
5 P* ' • *
a ! 2 a
O ' ^"^ O ,— ^ 1
•C i ^ i 60 •!- &;«
^•rt ' ^^ C ' W ^S ' ^^ *
1-1 3 Jsl-ll ,<'•§
u* * ^iSiw"^ , °*
> § , >
& 1 & '
pa ^ en
"8 *°
*^3 — C.D — . C5 v^ ^5 «Q ^5 ^_< ^) Q ^?
g <*"" _" m _r ~4* ^r .. g tn — r ^4 oo" °f u-T
1
O J^ CJ
a E. a
D E U
J3 O J3
H U H
u Q
S ^3
•a a
1 s
•6 l:
« § • d .
T3 ' tt< ' 5r
•It II
1 g : 11
*H O E* S?
1 1' ij',8
i
'
i
1 ' :
! i j
; „
S ! 'S -S
: «- sa «
sis
a, U "°
u a u
3 3 u<
f! &• I" I
O «-w D
•5 S* cL
TO w ?">
: « s 3 -S
*Z • •• £> Oli
i Z i 13 >r> ! IN
i V> '
! 'S
J~*^, JM 1
^ «J _^ ^
^ £ P
s"*' ! O ^^
~P "fi ^
4-* g_) M
S 1 1
! -1 J s 1
§ i g> s i §,
1 s S i
i 1 1 3 1
1 " "111
, 1 1 | *
i I- ; 2 •§ s
S i 52 •*•* -^
O rt w "g
^M ^ C3 *_»
I P § « «
& ! &
0 U
U CQ
T3
U
£2 52 "o t^^ ~s
« S . | ^ g S.
^ ^ ' -y i ""
§ i
0. "
1 o ' u
I U • H
-------
'
•O
i
I
1
1
•5
u
I
B
n
T3
•3
§
u
Oi
|
O
u
I
I
a
S
a
$
£
I
I
1
V
a
I
I
O
I
u
T3
I
•O
I
"3
I
u
U
-------
X
•3
A)
S
1
€
1
0>
fi
Sg
g^
X
|
^
s
i
•£*
s
c.
o>
oo
u
3
1
&
Recommended B
"§
"3
•o
1
a,
e
a
U5
Q
!§
g
laboratory values i
CO
"8
e
netric mei
S
&
u
i
le was calculated us:
"«
u<
U
m
13
o>
-O
C
O
E
o
2
1
G
Besser, Canfield, £
1
10
„
Chlorella vulgan
^
Q
ed
T3
25-day exposure
1
09
"53
U
"O
cd
I
1
; 8
i ^"
Not reported
Not reported
^
2
00
T3
C
C
"3
Thompson, Burton
|
*~7
SO
O
S ' 1
•3 1
0. •§ u
u : g .§ •
n s *
! ;li:
C fifl p*
4> ; O "S
§ "^ 3 "
tS ^N Q c
i
; i
f f
CO
Q
o
«J
1
1 1
I 1
KJ ^N
1 1
"S
, c
S
' '£
" ^
G oo
S o^
| a> »-^
S" ^
.£ '^
1 ™ H
je was calculated us
Fisher, Bohe, and '
"a ;
S ^
S3 U
1/5 CO
! g g
o S1 ^
•O g ro —
§ s
0 "
&« ^
E u
6 e
;§
2
.^ u
'S 5
S >
. 1 ! &
S> § : «
i i ; -g
c .S "8 , •§ u
= 0 C ! 1 «
s S o ' g o
S cs &• e &
3 *^t U i C O
si! i!l i
:
•
1
, ;
'
1
•
1 ' . 1
II : :l
I \ I
''• i
r? i ! cT
2 : i 2
1 i | |
•o : ~a
1 1 i 1
? f :?
1 III
en '. to • m
1 ! B
, O O ' O
1 : §^ 1
1 "8 : 1
S s S
• n -°
.3 §
"1 O.
p a
oa
•o
VI SO ' ' ' ' C ,
§ R
O ^
ex S
E , u ,
T3
C
U
g
O
CJ
i*
O
.c
-i
.§,
3
C3
.2
ta
3
5-day exposure d
CO
2
;§
Q-i
•a
Andryushhenko an
00 "*
Tj^
Cladophoea
'S
•o
34-day exposure
Baudin (1974)
0
oo
Tl"*
Codiumfragile
Enteromorpha sp
t//ra lactuca
Fucus serratus
Marine plankton
c
o
1
•o
3
S
£
1
•§
(B
I
CO
O
S
n
fo
3 OO
Sc
o g 8 8 |
*-M" *— T i —
^"
-------
H -
u
a
< -
M
«
•3
U
a,
IK
£
-S
u
5
b
09
£
3
V
?
g
g
0>
1
"«
u
_3
"a
•s
•*^
IN
o
n.
S
Thalassiosira pseudonana ||
"o
'g
g-
S
3
2
S
ON
\_*
•S
to
5.
S
03
U
•§
ra
55"
•G
CO
iS
> t;
J? E
S |
o\
2
1
3
S
* 2
RSI
o
1
u
,«
§
S
1
c
' .2
*•*-*
3
•o
u
I
X
0
&
•§
1
vc
.
"31
^^
00
O\
*-H
\w^
as
w
CO
D
>n
>n
tsl
Not reported
i
i
|
!
i
!
"8
CX
£*
%
z
^
2
****
00
z
•Q
1
c"
A
0*
b
p
pa
1
1
o* ^
C^l
CO
U
*^
o
I*
u
3
•s
§,
00
|y>
1
I
f
ooi
O
00
u
h5>
o
Oo
IP
a
-------
•9
U
i
o
^H
•s
u
ec
O
i
u
K
ts
•*
i)
3
1
O,
u
B
•a
u
•o
c
u
u
02
09
1
I*
1
OB
"g
s
Q
Q
H
OO
t-I
-Tetrachlorinated dibenzo(p)dioxin (2,
oo
'S
of
•a
B
§
a.
g
0
U
CO
§
"3
\
I I
t *
I i
K U
1 ^
,
O ^ O
•5 Q «
1 8 g
1 ^ : &
£H OO*O
t^ >>
loo^l 1
Sg.| 2
l?l I
ill 1
III §
S, a ^ "
a? -a o cy
g> S 2 g
2 §• •§ •?
_. , 00
^3 ' o>
C ^H
cd >_•
^r ' 3
i Adams, DeGraeve, Sabourin, Coonej
Mosher(1986)
Branson, Takahashi, Parker, and Bla
§ o
oo cJ
^ oT
-2
•S
P->
S
«
s
•s
u
1
o
u
a
duration
1
B,
1
_
JS OO
c oo
53 w
CU &>
- ?•
Mehrle, Buckler, Little, Smith, Petty
Stalling, DeGraeve, Coyle, and Adai
|
^%-
en
s J 1
? 5 -S S
« g s • g •
* <, S5 O. c.
•C1 .§ °^ § Jj i
|| i || |
& i
c
^ 1
?
,o
cd O
cJ *g
S «
S § !
11 i
•H S 1 e
2 -° i 2
18 s 1 :
I 1 83 •§ !
1 1 ! | j |
X > O i "°
sit 1 il
TT -0 0 - Z
1
Muir, Marshall, and Webster (1985)
Yockim, Isensee, and Jones (1978)
U.S. EPA (1985)
— O — ^" O\ ON O O Q
*~*OOJ~TOO t^ CN O CO Ov
of vT CN" <^f irT cC r-^
i '
sD CO m o ' ^^ u
•g ; 1! "g ; II -g
S; 1 I 1 I
1 ! s 1 a 1
Tr"" T±
n I
& &
: B B
CO j CA
1 _o ' _o
1 1
', ^ ™
S" 2"
OS O\
ON ON
I < <
w w
1 03 O!
D b
£T ! ST
W CU
59, S,
1 Q 1" Q
U Q U Q
D 5 0 « U
R -s a -3 K
CJ i CT* i CT1 ! i
o) o> oo o oo
^* c r^ i c i>
M Q ^T ' O .X"
ou 2 ^r u ^D
j^* C * -C ••
,8-Pentachlorodibenzo(p)dioxin (1,2,3,
sing the TCDD BCF and a bioaccumul
,7,8-Hexachlorodibenzo(p)dioxin(l,2,
sing the TCDD BCF and a bioaccumul
,7,8-Hexachlorodibenzo(p)dioxin(l,2,
<-„ 3 •* 3 : «
co^ *o co^ -^ co^
cJ .S3 of .8 c^f
"3 "3
_o o
cd ra
0 0
c^ CQ
•O ? T3 ^ T3
S a, S u- g
g u § u . g
&• n*i 04 CD ' di
E u E ' u , E
3; S 6! S I 6
06
u
ol
C3
X
s
— f1
n
u
B
CO
*
1
!
^
in
g!
^
CO
1
s
1
«4-l
-------
"8
a.
cn
so
3
vw
£
4>
S
js
"3
f-
NO
U
-------
js
oo
u
CJ
a.
co
•s
CU
3
O
o.
-------
05
8
v>
U
a
j
PQ
•<
H
S S
B!
I*
go
2
"3
&.
cu
S
A
0,
3
Experlmen
8
S
IN
CM
s
i
1
•o
u
I
O»
8
u
js
"ea
OH
U
CQ
•8
•g
u
8
»*v
Kt
I
1
*ji
ft.
U
CQ
H
"O
G
§
a.
|
Cfl
'ailable for
m
C
s
CO
cs
"O
"3
u
'1
£
QQ
S3
y
ft*
09
•M
lorlnated Blphenj
I
cu
^J ^> .a
ON •* U '' s! "S>
vS & 1 1 ^
es" cT ft. ; ft, a
^ ^j ^j it*
.. « ' <3 5^
3 ' s ft, ; a. i>.
> I 1:1 > J i I 1
&c Q c ^ u. a, a, Q
R? af G1 .-So
CQ *n T "C . -§ ^
•g § g g , 5 "S
"S K c ' S •§ "=
C« Q ' Q i Q is. "
U •§ •§ . -Q ^ U
1 1 I : 1 ; •§ 1
p k. k. iv. ' o S '
u a. a. g. ' oo o , j
tA O O : O ; J t* |
; i . i ' S i
S i
: s .
05 I
i ' ' W :
! \ I K '
' ; 1
i «5 i
: ; j ; , -5 !
1 i ^£ h
• .. i ! ' .. ! I 1 S
1 •= : o ; •= S ; -a
1 "i S i i °: S : $
"a, K l "•* -2? • : 3
> 1 , O > ! ft) W "O
, SO 4) O CL, S:L^W 1
ill S| iBS! 1*1 §
; i wi'do 'S>^
, "§ -3 j*13 -S ^ P ^J>, 2| f -1 -I ^ "? 1
"o T3 I i
••* : ' t~ : i
O ' '' ' O ' ; i
g , < ^ i ^ «: i .
S;S S 3 JS |e !
o:. . . . °_,i
'G : co co co co i 'g : ^"
g i ^ => c> • rf i a s;
1 5 i .S .S .S .S o C- :
& "g "2 "S "8 ! «> 8
O *5 S ' *5 .2 U ft,
•S 'o 'S i 'u "o ; •£ u i P"
QQ ! e« W CO CQ MJ | Q ^«v °0
1 a ; ^ ^, --, ^2, S1"0 So i~-
1 '» ! £ >
8 ft< c ft.
§ U ^ U
"^ m "-N CD o5 «
^ ^ J5
-------
go
u
w
a
o
V)
•3
0>
a.
SB
CU
1*
3
i
•g
_a
^
•B
u
O
tt
Engraulis mordex
exposure
£
ca
•o
T)
•*
Scura and Theilacker (1977)
"^ 3
M -SS
.S >>
O "O
§1
2"§
£" ^ °»
CO "d iS
c g o ,
a xi ' -5 .S
111 1
tf • I i
1A1 1
l.'s.s
J
\
' ! i
j
i I ;
1
,
' w
' V
O O ' O O> I
w cd m i ctt i— 4)
•§ oo J i 0 '§' J
E **:»'(§»
\ i
i
£ S3
Veith et al. (1977)
Mauck et al. (1978) as cited in U.S. E
(1980b)
Snarski and Puglisi (1976) as cited in
(1980b)
§~ Q 8
Q
|§ S -'
1 ' ]
§ I 1
1 I 1
1 1 1
1 1 1
3 ^ ^
\
2 T3 ! £ T3 i
1 -§• I •£•
s.^'S ^,""0' "S"!?
J§ S.-3 ^ D.-O 2 "3
£• £• S
o o P
oo oo r-~
O a. o\
Hansen et al. (1971) as cited in EPA (
Hansen et al. (1973) as cited in EPA (
Duke et al. (1970) and Nimmo et al. (
cited in EPA (1980b)
o
o o o"
*" /— C f —
" S A
CO
£
IS
03
-a
"o
E
-5.
o
oo
o\
I
.c
i
'3
"3
I
'•z
§
-•
m
A
Salmo gairdneri
exposure
^
(3
•o
S
Halter (1974) as cited in EPA (1980b)
OO
if,
Ictalurus punctatu.
\
i
g "§
Ro
•si
f"* S
r* i>
i
r
i
^
^^
O '
t>
c^
_e
i
•3
CO
"a
i
0
c-l '•
S
CF value: 74
cq
•a
•8
§
8
u
o:
_ i
S3 :
1 '
&
o i
%
S
trobenzene
i *j2
s
m
-§
p
a
; 1
o •
B
s '
•a
^
'o .
a.
o
fS
' %
I
u
>.
"O
CO
«
<2 P"1
oo
eg os
™ »-^
ea "-^
zene was based on one laboratory valu
Deener, Sinnige, Seinen, and Hemens
C ;
•§
ij
"c
"3
m
^^ "^
£
ti.
u
n
u
H '
S
u
a
1 '
tt.
U
03 :
*Q
•o '
g
1
o
oi
•
i
i
\
:
trotoluene
•g
Q
•^
-b"
c
3
8,
0
-------
in
6
3
pa
•<
H
a*
0 §
N
C J
•< "*
IK
Is
H -g
^ ©
Z .2
W V
U OjD
Z S
o ^r
u X
o s
CQ JS
EC ^
05 g
E *
T eo
0 •*
H -*
^
go
•a
CU
-*•!
b
c
D.
a
K
ed as a surrogate,
CO
3
£
S
O
c
u
f*>
•£3
"S
«s
&
PQ
jjj
.
IS
CO
1
a
|
2
1
!
§•
£
8
C/3
1C
W
o
c-
c3
ca
T3
*C3
_0
*u<
'a,
£
U
3
,_!
(N
i>
3
*i3
>
&
05
•o
u
•a
g
g
&
litrotoluene
**
Q
*o
(N
•o
C
I
1
U
> a surrogate.
IS
"8
3
U
i
u
1
s
J!
u.
o
ffl
S
p-^
fl^
ipound were not availabl<
c
8
CO
IE
k^
o
<^H
2
«
•o
as
U
D^
U
S
^
&
09
•o
u
•o
g
g
^
inzene
jz
2
-1™
2
-a
c
3
O
&
U
CO
1
"3
«
CO
C3
CO
u
3
"3
>
|
CQ
S
•8
TO
es
***
o
i
.0
Ul
I
V
00
u
J2
lue was calculated using
CQ
>
KL
rj
03
T3
CJ
recommend
1
B
,3
s
.u
f
Q
S
o
1
posure duration
X
0
&
•o
en
S5
ON
C
efl
g
£
1
fj
s
c
'S
C/2
ft£
f
CO
b
CJ
c
u
Q
m
?j
so
,«
s
^
J
e
-C
s-
a:
xposure duration
o
a-
•a
oo
ts
ON
t—
2
•S
^
V)
Veith, DeFoe, and Berg
H i>
1 • 2
1 1 | ' 1 § 8-S
s.: l r ; a l 11
g s *» i -o S 5 £
o -S a ' ' u a. a. S
2 TS -C T3 "* ""-jj
1 - S g 5 s |
5 • S £> £ ^ • 15 5s
o 5" * S * « *;
•§ -G fe : 1 1 : f 1
.|g g : . 1 • I I g
ft. -3 o : at s. a; c
; _o
! • 2 i '
! ' f i
i ; J js ' •
i c ' _.
1 ; § • 2 :
•s [ S '
i ca : "i
i ' »•* 'i 'T-I f
' 5 Ii ^^
: -3 | 1 g
i .8 . •§ ! i
S S8 eft ' •- i '
$ i . B I « I g co
1 i - ! -2 IS- | 5 'i § g i
2' I; I J 1 i!|1 1 ;
JilJ ;l 1 in!:! ;
-'S'o ' -a * "3 : S. «?• 1 is* !
g § 8. s fc * S- a : -S i
§ >r a ^luc^'vA
& .1 £ '» , s ; >;, ^ i JS
1 i i ^ ;« ii-saio1
§ U , S : 8" 1 i £ I ! S j
•O : , ea . j
^ 2 ;
<*N ' i ti_ '
^ i , i ^ ^
ii !1 i 1 i :
.a ; 1 o '
J3 SB 'C
S • i § . »
i ! ' t2 : s? | i
a ' , s '2 ! a ( :
*> a i^ i j^ ;-
3 !? § ! i i 1°' i§
CO 8 CO ! ' S ' ^-^
•S!».|ff a ; 3'J- • 51
a , oo ' w r- ,-a i ^iui i ff
ta « ooov : B T3 •§ i _. ,5
•g ! C 2 C- °* ' -S -S i
-------
af
H ^
U J
18
TABLE C-5
FISH BIOCONCENTRAT
wet tissue) / (mg dissolved
(Page 7 of 19)
3?
DC ^^
Cd ^^
< U
^S
J
a.
1
Experimental Par
V
u
1
pj
a
w
0
T3
V
j
0
till :
s 5 *r e
-sis'"! "§
i
27-day exposure duration
Not reported
Not reported
I
¥
Si
X
iTT" "O °^
cs c oi
00 e3 Os
2 -ON
1 S ^
op ^ i [xj
S ' IH* 1
"8 S 2
c/3 i H i 3
<*>
8 o
^ "^ oo
o\ o - o
3 , 3 3
n S? > > >
1 ! & & &
1 .? pa -S • « «
S 15 -0 ,S ' -0 T3
fe. s • ^ ^, ^ • -s
s § g « g : g i
* "^ i "i • i ' i
.5 & 8 c o o\ u :
a, O ' (A S ! erf 2 ***
^^ r
! ' ! T3
; . s
; ! | 1
• i '% ^
1 i -3 ! SfcS
! I i ; | i : ||
x • b ! O js
•8 : §• ' ! -8 : ° 1 >
8 ! « i ! 1 ! = l ^ S?
§"! § i ' §" I ! «S
s •« i , « i > ; .s _;
Zi "^ ' ry ' . S2 "3
1 r< , f< j ' 3 ^
i „ : [ ; 1 1 -s
3"e
— , w , — . •—
» JS , 1 ; , 73 «
1 o ' ^ ' ° ' — '
S3 • g i , g oo
O 1 « ' ^^ I > t>
ST1 2 ^; £ ! ! Id
2 1 1 j i! ci 1 «s
' — ' us! ; ° —•
1 |l |:1 1 ^
OQi*S I^'^H! ! ® !
•rt ' ^ t3 ' ^ - i &1 P^
§ ^ "° ! if i • ' i «
*. ' tn O ^ i ' l ^ OO
5J S j *o ** 1 • i .52 so i
t° ' " " l * : s I ^^
M O ; i ' O
> ' ^ i1?,0 w i i ' S S ^'
1 ^ ' r^ i ' 1 O ^ *C 1
^ " ' > ' § i § '* ' 5
I h ' s | ^r t
Q ffl < S o1 ' "^
'O (D "~^
13 i Q ! ' !> ,
, r-1- Vl ?5 3= i — i T~l !
S §2 .. | ° ^ ' .. 1 2 '
T3 C ^^ ' *^3 M "O
c S c -g " c
II ' 1 , :s | 1
E ' o g ' g-03 £
,§S, : iOESP1^
; iU:H i !U,W^O
ymis macrochirus
:*
28-day exposure duration
fe t^"*
O Os
"a ^
I1 c§
i •§
(D cd
i i
M ^
'S 3
"O U
o S
T3 U
U Cu
1 s
8 °
* ' a
o oa
3 i *•*•'
••^ !
p-
u
05
•a
]',
8
S
Os
*^
.
«
"O
c
1
&
•o
1
^3^
i
-------
en
•9
u
s
oa
g
o
00
V
BO
5
s
s
J
nce
Refe
_a
"3
•a
QJ
1
a
I
1
a
•§: •§
a> i u
i! i
a.
g
>> >>
2 • •§ i -o
,2 ; N -
x^ I OO
oo ! ON
oo : •-*
OS i v-'
C- ' c
E ! '§
:||^
•o ' 5
U ' 01
£ \ "i
o i u
SC
a
I
.
.«
3
' -
» §
-
cs
?§
-------
U
S
CO
^~^1
ON
?
1
£
"3
cu
a.
CO
2
"S
S
cu
3
e
g
!
Reference
in
QJ
_3
•e
•£
c
o.
&
to
to 5
Pimephales promela
Cyprinodon variegai
^
_o
2
•a
£
i i
1 73
w
§ § CO
'i ! i S
S ; 2 *S
S Si
>* ^ o
es ed 4)
^3 "O OO
O H^"
<
!
i o\~
Oliver and Niimi (1983)
Schrap and Opperhuizen (1990)
Veith, DeFoe, and Bergstedt (197
8 i 1
S £ ~
«c
Oncorhynchus mykii
Not reported
U.S. EPA (1987)
8
oo
c-~
f>
oo
t—
i)
"j3
c, >
Pimephales promela,
Freshwater fish
Recommended BCF
i
|
CA
• 6
' ' *o
CQ i cn
"S | -a I
III 'I
Z tL- 0
; ' en
"8
E
i O
1 i3
U.S. EPA (1980h)
Oliver and Niimi (1988)
llorobutadiene
lue was calculated using the geome
1 >
x t-
4J u
w P3
T3
0 «n "c
oo M Ha i
§ R
o H
§* S
i ; 5 : 0>
u ; P
Carassius auratus
&
-c ."S "S
Hog
s-8 §
.2 co eo
'S "° S
H c S
3 cd 3
1*^1 i
£>« -S i
•O j-" £
~. §1
§ I 2 "'
'i3 jj "O • i
Ills
l^i!
tS||
?1^1
^^^
in
^^
T— H
Leeuwangh, Bult, and Schneiders
c ~ ~~ ~~~
08
Os __,
VO
U
3
*i3
>
Gambusia affinis
Recommended BCF
1
I
i
1 S '
1 6
! i
«
1 ; eo
! , «5
11 i
*i !
i • _«
! vo
0
1 c
SI i
U
t E
! ' u
Laska, Bartell, Laseter (1976)
llorocyclopentadiene
lue was calculated using the geome
ca ™
x: IL.
4J U
S CD
-a
•o
»ri i C
cn ' u
"* -a 1
§ p
o . H
o, a
G ' U !
. O i x! ,
: o i H
-------
go
u
a
PQ
H
DO
"S
s.
CA
W
•8
C
CB
U
(S
i
2 '
J s
.S 5 '
^3 -2»
O 4)
s £
& s?
u ^
s s «
3 — O i
•S *O ^ 1
ta o in :
> t; <*-
o § o
£ | s
•d ^
1 S o
S 1.2
ill
Lu and Metcalf (1975)
00
•cj-
is auratus
les promelas
3 Q
"5 •«
I 1
§ §
1 !
•O ; -0
S £
3 3
Si S
1 2
fV ' f^,
g ; 8
& &•
* S
^D ' iO
r=< 1 m
/— s
i
o
•*->
0
Si
Podowski and Khan (1984)
Spehar, Veith, DeFoe, and Berj
oo
<— 1
• '
/er promelas
1
£
%
isure durat'
!
3^
r-
Veith, DeFoe, and Bergstedt (1
r^
O
S
-H
i)
3
1 ' H
cu 5 IS
u ; 5 s a a
CQ tj £< c a
T3 • § S a a
U , tj &a .O .O i
*o w a 'ct "^
B g -C
0 : C 0 k. >>
B ; .2 5 .« .«
8' O O ej fj
a. a M »>
W S" *• 6 ' O
as , j o a, a,
i
i
| ;
i ' |
i §
1 1
CS -0 i
CA , ft)
§ §
1 1 1
O O
.0 CS Z
ro !
"
Sts i
c
e ^ *
O OO tA
'S 2 c*
S "TT S
Worobenzene
lue was calculated using the geoi
Banerjee, Suggatt, and O'Grad;
Bruggeman, Oppenhuizen, Wijl
Hutzinger (1984)
0 i ra
S u
a, £
-o
i>
•D ' O O O S
E m* ^- r--" ^
c ^
3 O
cx i £!
§ ' ° i
§ .S
1 a , a "£. a a
S a ^ S ^ ^
2 ' S » s 5 a a
•a, a. , .a i .a j .a -a
5 ^ : s ! 2 g s s
g p\ ' ^i : %} ^ ^> ^)
*« **• ' O O "^ O v
a, O ft, a, o a, ' a,
! i
i
§
'£}
' ' I
i ' a
I U
! -o
i ! t
so i i _L
e S § ! e i j N
§ -s "i ! 1 ! §
11 1 ! 1 ! 1
1 1 I \\' 1
1 |-o 8. ' § ! -a 1
a, x £ £ o. £ ' o
s 5 | 1 B, ' s §•
03 O SH 1 TJ i ^ ' 2- ^*
2 4 | | 6.0-?
en cs Z 2 -H | Z in
I i : i
^ ; co , i !
Os "^
*^ ^^N w • ! oo
•o ^ § 1 <-i
^ ^ 3 1 ,' S, ~t»
* $ 1 S 2 .S
SS 2 1 1 i ! ^ 5
O\ 3 i 53 r8 ! vn1 « H
«, S jj O § ! S n,
s 5 e 4 2 i s §
W » 1 Ctf Ji , s^ , U. ^
'5 S > " —!«!•«
"S 1 "8 rf i 1 i 1 §
i i i i ^ii
f Nfflllt i
S § § &* , 1 i •§ i
a ^:fad OCiO!t» >
g , S § 8 g 8 g
—j oo 2 ' t-- .n en" ^r
"" cs ^5 — ^ ts ^
! i
macrochirus
|
§
isure durat
o.
u
1
00
0
oo
^
£3
1
Veith, Macek, Petrocelli, and C
g
•-
cn
U
-------
U
03
H
2 «
* -I
0 |
B^
•«! -*
RATION F.
»lved COPC
H |
H ^
KI
o ~
2t
S J
g ;
6 :*
H rr
S"
1-H
CM
o
»-H
p^
V
^
£
r~|y
S
S
a,
en
i
i
e
u
u
Referen
Eft
1
"3
?*
•o
t
S
C>
ided BCF val
&
I
|
j
rt
"ti
U
o,
"O
c
3
a
o
u
follows:
laboratory values as
8
•s
e
CO
J"
5
"S
I
Q
ue was calculated using the j
cS
>
u_
u
m
T3
1
(U
C
a
2
^
•S
&i
i)
co , Q
E ; §
|
|
'
|
i IH
Not reported
1 -day exposure du
i
i
,
i
i
Garten and Trabalka (1983)
Gates and Tjeerdema (1993
i
00 \0 ' ^
-^ 2
3 !
0 § '
t c ^5 ^ ^ '
ill .= 1 ! :i .1:
III II I 1 I :|:
S2 ^ -§ a 6. -S ^ !3i^:
1 1 1 II 1 1 •! i
5 ° a. •|oi)-§ S^ 2'lf1
all ^ill 3 I
, ,
c
.2
; 1 1
2 &
i i i! i I a
I 1 11! 1
•0.20, T3^T3 0 J
g ' ! g i § § 3 § !
slit isss i.se
g-a^S &&& s s-
ox,«ri ouu j-°
O a , 2 TJTJT3 !J3TJ'
J?'?oo joboocs !vo 51 « : b\
f^~ *^ GO "*-•' •* e '"^^
oo e^ H3 w fc ro ±i
2 -| ? § : o - ^
C-nii tL,_rS S1"
0**'^ ^-ag Sgp
1 g ! : § 1 1 c 1
S *g J I s- 5 11
"§ «* 2 H i«og J" o
ed S C^- ' » ' CU i £ Ox -rj 3C . O
I u S i l| «. i 1
t 11 1 1 II t 1 1
K MJO, ,CO COOCO 'CO >
-* ° vooo r~ ooo *° \o ^ ^£> ~* m. £: °
— n (N^-TftNw-ir-
^H 1
c5
u
s
ided BCF val
: S
1
1
S
1
H
i
1
o
"^
^
"g
1
§
; u
-------
U
s
PQ
8
?
w*
g
C9
«
fr,
"i
1
ft
^
&J
i
I
en
Cl
9
"S
CO
•B
•S
o
a.
Q
a
c/j
?r
2
Vw'
&
Metcalf, Sanborn, Lu, and
rn
of
CO
E
1
£
09
£
b
Garten and Trabalka (1983
«•> o)
00 ^-
•—* t"^
Lepomis macrochirus
Oncorhynchus mykiss
dnmhuvin nfftniv
C
1
! =
X
4.
i i
M ! ^
1 1
I
^5 s»
Hamelink and Waybrant (1
Metcalf. Sanuha. and Kane
°. o" vo - ' r
V~l — ' O 00 ^
Gambusia afflnis
Oncorhynchus mykiss
Pimephales promelas
1
C i '
o , !
; 'i § i c
•§ i « ; -a
§ ! 1 ; 1
i : -o • -o
O I U U
& 5:3
S . « i W
' O O
' S1 ! 9- : &
•a 5 i 5
*o ; "? : "7
** j \o ;
-------
•9
u
a
PQ
H
IB
•3
I"
«
1
C
2
£
1
!
w
I
CM
_Qj
K
3
"3
II Reported
f": ' ' , o
r~) •*
•
o I o
S • 3
1 ' 1
U. ' -3 -S .On
CJ "« "a tJ
CD s c CQ
"8 : I : 1 o
"S ^ ^ . n
55 ' ^ ^ u
§ i ~ ~ §
aJ : ; to c§ os
1
I*
' S
Q,
1 ! -o
•o
; oo
! w i B S
2 ! § 1 1
1 i i 3 3 S
5 i i •*" *o "o
B » i 3 §
: § S S
•s Q, a
i i S S S
: i | •§ •?
5 r- vo
S en wi
•—
t- g
*8 .2
i c 33 ~
! g i -2 g i
! i g c
, o tT _
' 'M f
C w ra
o 3 "°
! 00 - 3
a I «
1 ! 5 J=! T-l
! M •= iH
1 c« i S 1 *s
i ' co *T5 t^*
i S * fe
i T3 0 '3
'1! !
I s 1 1
S; T3 VO U
' >• oo >
£ ! .H ON i
i E u U C- U >•
S "3 ; ' S
•g > E
1 § 1
T3
"O
| d-dd"-^
1 1 , I
1, g 1
:<3! Si i 6
^
i— i
0> '
3 '
1
•B
PQ
1 ^ 1
' ; g . !
i ' I§ ' 8 • Is
E as . fi t
i I ' '
1
; j
i . i
i ' i '
i
l
^ 1 a
i " i
! ce 1
•O i 2 T3
W ^ ft>
1 & 1
S I S ^
2 1 * '
; *"^ I
i ' CO
i i O
! ' g-
; rT ; g ; r?
^h K ^^ i
1 oC 1"H • O ^^ '
' 1 ? i ^ ?
|3 TJ § T3
S » S i
, co j cfl 00 **•
; W -T "c >
CU £ tt,
U >a U
CQ < CQ
•o , xi
O ' fl>
T3 TJ
C ' {-, C f> O
I ° .. g R2
§ c i
5 g 8
. S a 2
u E i o
S i S; £
E"
3
_g
"3
3
.2
S 1
m rt
so
i t«
u -o
3 ra
*^ ra
' ttn ' 'rt.
! U g*
pa , g
I ; s
2 S
S CQ
s 8 ' £f
3 : * S
E | « S
i *""*
CQ
, ^
1
• "Si?
8 c
§ "53
E -o
i § §-
' " 1
"o ?
e •£
i|
! li
f If.
[I, 0
O 2
' PQ *;:
"S 3
u P
•o
8 j>
||
!S
^2 £
— < s
u.s. EFA(iyy2b.)
i
ipound were not avai
m, cadmium, chromi
C . C 3
3 R —
'§ <» "5-
CQ IE u
i|
5 1 1
•0 -° S
S "« ><
3 u c
lili
Jill
fM
VO
O
3
B
n
T3 '
1
8
ei
E
*S.
CQ
Compound:
1
i
CA
_3
la
1
TO
"^f
<*-
0
B
S
U
1
M
O
00
rj
CO
lue was calculated u
>•
u
ra
•a
•s
|| The recommen
-------
fe
O
fa U
Is
SI
u
S
z
o
o
O s
3 I
as g
II
09
V
•3
w
Experimental Parameters
i
,u
I
Cfi
"c5
j^.
TJ
u
^
o
D.
; S
OS
U U
' "> H a .2 f,
: ft i s 1 i
rS* ' ^^ ^ f* "S
i Q3 , *"* S id, *O
O t> Oo *•*
1- SaJ3
i 1 Jilt
C/J W C* y ^3O j^> C
£u tutiuo^. O O ft* O
Not reported
Not reported
28-day exposure duration
Id values.
Field samples. The field values reported in Saiki,
Castleberry, May, Martin, and Ballard (1995) were
converted to wet weight using a conversion factor of
5.0°. The field values are also based on mean values
calculated for each of the 4 fish species.
i °
5 i
'. 0 T3
~ i J3
£ 2 «
C- ' a ' •«
<*> i S ! g
Is 1 i '•="
S i oo 83
g 1; 1
1 i S1 1
09 ^
lie if
05 >22 .2 i •§
S" < < 11
| & & .2 u.£>
1 « ^^ ?• is
H i D D E g £ C
' ' .5 "«
•a BH
M U
O CQ
•a
^ 10 ^o
88 os 2 g^gjcNS
-------
at
o I
8
H PQ
u
s
«
S
£ I
15
H
2
Q,
CC
<«
w
Q)
i
m
£
1
1
u
i
vi
s
•a
w
"S
Q
^
•S
E
e
ure duratioi
1
1
VO
S"
S;
l-H
CO
s and Gie
• «•«
£3
£
5.
o
J3
"«
U
S3
•O
•8
g
(2
T?
§
I
£
|
U
•H
c
o
a,
E
o
1 O
1
2
1
5
1
•i
CO
*s
£
—
(U
S
00
1
1?
"S
s
alculated
0
', ^
o
"eB
tt,
U
PQ
T3
*O
1
O
0
£
H
^
Is
r
63
5
•«
o
1
15
g
<5
JC
op
a
c
o
•a
J>
4}
S3
o
P 05
CQ 3
C-1
ure duratioi
of reported
la
x c
"? .2
/— s
1
oa
1
en
T3
§
o
£
r- -^t
Q Q O ^ ' K M
ai u 0 ft, 0 E E :
! i
i
\
I ' !
i
|
**- 1 J> -o -o
i , C & IM
i ! | & &
•31-0 K v-
" ' S « «
1 2 , E \ Z, Z,
S
"S • -a
E i « S
O fW4 *""*
.-^ ^ X—*
« § I?
C ^ ^^
00 c3 CQ
!!f i
(» *^ .
3 ' =£. C ^N
1! f 1 §
; 1 ; 1 « -
• I S ^ 1 ™
? i "S S O r/3
g £c S D
U ™ !
a a.
o O
u co
TD
-------
II
5 j
i*
I8
5?
SU
•n
0
H
J
09
E =3
u u
if
81
•s
£
u
u
S?
tn
£
u
"S
Experimental Param
1
erence
i
cc
CA
g
3j
>
•B
u
u
O
a
£
E"
3
C
|
CO
X—'
0>
3
ca
<^-
03
CO >
co e*
^ 5
ta
•o
U _i
3 03
•3 .H
> .b
[L, D.
^ i
•o -S
•8 '1
§ s
1 1
0 fa
o 2
rt , -S
•^-
i
GA
O
"e3
; >
•8
•a .
1 'y
' is the arithmetic mean of the recomn
kel, selenium, silver, thallium, and zii
UL, TS
i o-g
n .
•o b
1 w 3
~ o
e ^
o u
S
• 1 «"
O q_j
u C
r" 4^
1 o o
1 •§ E
• a o
1".
8 E
S3 3
sE *2
3~ "S "2
o '
•ii' o
» g- E
13 i 3
S 8 15
5 ^»
>> <« C?
° 5^
<§ -a
C8 5
t5 "^
•a ' ^
C "to >»
3 CJ C
1,11
o i E S
u ta §
B
o
u ,
_3 , i
?~ ;
S
[£, g .2
B ' t! § '
•S S i
•8 : | J
g g ij
§ -a a !
1 : | =§
1 ! §, -S -a
o ' 5r ["* «
ft! ^S <§ | 52
1 • g ° • a 1 "8 §
e- « fa — ? 1H W _
§ * § "8 © § -S ^
i EO ^*-v, y j*3 jj* u ** (« i
lil lUlir
i-Il :i|Ua
; 5s§ 5*§!i
j &T3C3 S^CB— "
i £§.J? ^Si0!^
! i 1 1 s i 1 "s e ^
! 1 "3 S JT, t3o£uu
*• "§ -E 3 J3 -T1 * S
; 5 S § ! 3 £ § !
1 i e &o §lsl-a
1 ' « ^ ^ :|S?>2 !
! :^l2 -S-?fill i
! , 1*1 i SLllll . |
-Sf I . -?ll .§-8 &
i ||i& «| it | § : |
! tt*^;o*oj(NffiOin062
1 ; ,
1 VQ 1
: r?
i : ^
' i "O ^H
C ^ s-.
In c CN
- -S ' ?~
J3 S3 Ov
|'w * S
to " >-^
ig i S I oo
1 0 -O Z
IS S | -a
s ! 1 : f S
•s i « c 5
1 s ' J 5
1 2 ! * -J x
u ' ^ *r c
; in ' Q, -a §
! « i 3 § i S
. c i ,2 y-v ,o 13
i 2 s. £ ffl. ' *
S C* ^ ' V \ G
1 w i c « £ a,
; s i 2 g, i 3 IE
I'll ;s iS
^ — —
*o r
B fc
o U
J 03
T3
U
gg 2 E; g
_y I O OO CO
c E
3 S
|, 8
c , a>
o I M
U i F !
!
. O
CO
10
, co i
J '
: U
3 •
•a
1 > % ••»
ft ! 3 • .s
u ^> ss
a ^ , s
1 T> * S
•8 * ' &
'8 ^ J
ii iff
(2 : o ; s:
i
1 ca
i C
! j i o
! ! '. £ .
iboratory values as follows:
60-day exposure duration
287-day exposure duration; values a
high to low range of reported values
] j w
i ; co
1 . <4_| '
; e i
i i § i
i S
1 ! E
[ o '
p
I §> : ^ |
J i S —
! ~ " i a
i = i c ' 2
'35 £ i ~
s I >> e
1 J, 5? i §
' 12 £ ! J
S s2 ! S
! "3 i "O T3
use
o -a ! a a
S ' ° 3-3
lilif 1
• 0 , § ffl <»
! *r* ^H i
1 3 i S
g ' >
S3 ' tt,
£ . u
•* BQ
•a
w
S ! C ' 8 00 S
2 g oo co >o
•0 | - rf W-T
c c
3 0
I' 8
C CD
o J3
Up!
00
\D
—<
O
a
1
u.
u
ca
•o
•3
G
4)
3
(2
mercury
>*
J?
i
•o
3
O
fi,
£
o
O
iboratory values as follows:
IM
CO
<*-.
0
C
s
u
i
00
1
1
35
3
'o
1
"e3
U
CO
g
u
3
S
>•
tt,
u
ffi
•a
(U
mmendi
q
u
a)
h*
^
P
g
I
1
0
K
t
Q
S
c!
60-day exposure duration
S
2
¥
£,
u
1
•o
c
ca
Boudou
|
00
6
-------
U
s
CQ
O
01
1
CC
g
1
2
«
&
1
«
1
w
8
i
i
6ft
U
•M
•O
u
i
n.
«
•S
1
J, '
Salvelini*
i
B
•§
8 :
o
ex
X
U i
•o
1
1
1
vS*
2
^
•g
£
•o
S3
McKim, Olson, Holcome, a
O tN
oo r~
o" -£
00 IN '
U O
3 -3
*3 Ti
Cq G3
> > 6,
prt ' ' [1< ""* ?
U • ' U • : •§ 3
CQ ' n , • c • "5
•o ' i : -o J S
o u "S o
•o , ' -0 -5 , a
c ' c *> 5
u . ,a> ' i i. , S
i ' : ' i • ; : 'i "s
o __ _ p _ o 5
o -^ -^ o -c cy a_
u 2 S3 w 2 S" S"
oi i it cu , ft! B, --3 KJ
1 < 43
1 I : '00
• • , 1 2
: ' . cs
: c
; o
i ' ,' ; 3
, cs
: ! , ! §
; 9
s .
i i i — 8
' ; •• ' ! • * "1
§ | § ! § ' § «
; 5 ; : ' £ -a -a >, -a S
1 \* li! II
, S ; S S 1 I S *S
1 S -a -o ^giSSu
•5S S | g S. S. a, g>
?i5 s xiX xg
CtJ "S . ^ fe ,ji. ' ^ ^i. *~*
r^^ ? X ' O
—" ' tN
m _ :
0 1 ! ° _
i R i ; ; 1
• c SN ,8 1 , §
o ^^ i o ! >-N *o
i! bfi ' i3 ; ON ' ;^
4> >^ u , ON ' 'S >
o EXi cj ^T i
g CO ^ CQ
"O "O
§885: 1 2 I ^ r-
e — ^ .. g -1 si-
"B S "c E
II .11
£ ; « , S > 5J «^
*r •? • a. 'S .
& ? ' e i : J3
% 1 • ig 1 i X
a, O § ^3 ' B,
2
if: !
. X! is
a cS
S u
K CQ i
& §
8 "8
5 CA
>
e § 1 S' : §
•i ! S S S 'i i
2 S -g^ i S
3 13 S •& ' t>
"° ea S T3 u !
I l&a i
I I's^ 1 "s
X O O "73 fl> €
*^ >% SP i> >•> 2
1" •? a I •? s
i — * 'C O •«
S £ J §.{ 2 g
1
/— \
1
60
I 1 1
1 S I
u 1 S
i i i
g S ! fT «
S B» OO -•
5 2 ! 1
1 1 !t |
Q : K .2 H
^j" ""^ c^ 10 w^ ?5 r*^
V"l *— ' f^ ^ OO Vjp ^j ^1
^ r^ cs o) ""d" r- »— '
,
1 ';
r^
OO
cj
3
tt.
u
CQ
•o
u
1 :
I,
j
1
t
|
1
! "f
«
1 1
j ^
1 1-
i 1
1 5
' 2
tN
1 0
' §
' S5
i o
! i
1 i
1 DO
lue was calculated using the
S3 : >
> B,
S g
-a
GJ
•o
u
.. E
"O rj
c £
lil
E i o
! O j «C
i U . H
1
1
O
1
^^
§
^,
00
•a
Thompson, Burton, Quinn,
o
m
rrT
-------
U
S
i
c§ S
O |
H ^
U ^
fe U
P
Si
H g
Z ^
U M
ea
ec
o
00
M
s
"u
a.
ce
g
•s
s
i
£
S
c
S
W
u
u
£
V
1
CIS
S
•a
Reported \
d
u
3
Recommended BCF va
g
1
.c
H
"O
c
i
e"
E
o
U
CO
i
1
i
1
a
CO
•8 1
ca tj
> , 0
>> 1 R-
8 2
S 3
S i Z
•g 1
ra i
?
e _,
« ! ^
«i OJ
s s;
o ^,
1 £"
o ; *o
00 §
1 §
.1° "<§
CO »
3 C
•o S
* 1
3
la ' §
0 S.
S E
^ ' s
O I-H
3
D-,
U
CQ
•a
1 If
E o c
E
o
QJ
P i
OS
o
of
o
3
Recommended BCF va
j
i
i cii
s
i ca
u
3
>
•O
: "3
e
V
E
u
1
M
U
•B
.E
53
9
s
1 ! 1
i cQ
8
S
u
3
ca
S [t,
-= U
rs CQ
T3
•N "U
! 1
5 ^- E
'••I I
E u
, o : P
•C
^
Catostomus occidental
Gasteroteus aculeatus
Ptychocheilus grandis
Oncorhynchus tshawyti
IK
O
"E,
CO
2
u
E
1
n
73
C"
1
S
c?
ti
1
1
u ^
3 S
C3 i-H
on C-
ON ID O ^.
ON vo ON S
Cfl
S""
- £
T3 BO
3 'S
s *
•S 2
E 2
•o .w
fil
CO U
= i
•s s
> s
la
s §
n
S c
p^«
fe CO
8g
•Sp
c <«
§!>
!.l
5 «
IB
•8-S
:s -s
•o is
If
il
I
y
§ «>
o S
g T3
a -5
^=3
a-2"-
™ ^.i so
5 oo ^
c32^
S-5-S
» g S
511
™ c c
o o o
C o S
o " J
&H.tf
•" ^ °
o >< c
JC " O
H •£ CQ
I
-------
K
o
u
•o
u
«
H
u ^
£#
&8
H" o
, 09
Z .£
w "o
U
o
05 £
o
00
80
O
I
00
o
a
£
w
«
3
U
73
o
Si
issolved COPC concentrations is from U.S. EPA (1995a) as follows:
"O
o
CA
U
"S,
icentrations in field san
'ert the total organic COPC cor
^
_o
^
CA
3
C
_0
'ra
3
u
H
^
1
1
II
^
S
"S
^
kT
=55
I
centration of COPC in i
= BAF based on dissolved con
' (dissolved)
n.
i§
u
JS
•£
PC in water
O
U
***
o
c
o
ata for total concentrati
in the water
IF based on the field derived d
COPC that is freely dissolved i
(total) = B/
Fraction of
•£ "
i§
^
II
k.
^j
0
1
factor for the trophic le
reported field bioaccumulation
1
n
k.
§
V-
O
"5
a-
Gfl
I
CO
1
(4-4
1
H
food chain multiplier for the tr<
u
JS
II
)§
[jj
^
s
1
u
•s
"8
CA
:d to dissolved COPC BCFs ba
ere converte
^
u
3
5
^
c^
nean of the laboratory derived BCFs. The higher of the two values was
t_i
_0
i
was compared to the ge
converted field derived BCFs
mean of the
^0
~
£H
O
«t
H C
-------
U
a
ea
H
CA
§
H
U
S
S
«
*
i
B
S
^
U
tference
S
1(!
_s
aj
•B
CD
"
O
D,
01
VO
ON
in
ON
O
"3
>
: u
CQ
: -8
T3
, B
§
IB
C
M
?
1
I
|
*"i
Ci
1
)rodibenzo-p-di
w
*5
2
£i
f-,
00^
en"
of
•a
c
3
o
D.
E
o
i U
"3"
^f
B °^
.2 ""*
g CM
cj1 W
a>
||
t^"
VO
g^
00 j
ll1
tS o
O c3
-C r-
CF was calculated using t
and Schmieder 1978), w!
CQ 0.
J8|
^ o
o* ca
:re not availabl
iouthworth, Be
S ^
Jl VO
e 2
g ^-
O ^^
OH 1
E i
8 ^
cn oo
lc ^
H x
Q _
5 oc
KJ Q
— II
S P.
'S u
"B. f
B oo
CU 5
en
04
q.
oo"
ij
"«
>>
&
CQ
12
B
s
i
1
Q
1
OO
£-
£
§
•o
ilorodibenzo(p'
ca
g
CM
i
oo
p»
en
of
^
•a
3
o
a,
E
c5
vo
ON
00
en"
II
04
ON
d
X
VO
ON
in
ON"
P-
U
CQ
1
t£
ca
£"
1
^«
S
m
^
S
ST
W
00,
|
t|—
1
•|
"3
s
§
er-speccific bioaccumulal
g
S*
8
ca
CDD BCF and
H
0
JZ
00
.B
3
T3
U
_2
3
*ca
o
CA
a
£
a,
U
CQ
£
>n
g
vo"
o
_3
13
^
&
QQ
•8
•g
u
I
(S
1
K
oo
en"
rf
B
'S
I
chlorodibenzo-
X
S
*T*
OO
j-T
Tf
en
of
«
T3
C
1
E
6
en
en
T— »
en
0
X
^D
in
oC
IT
B.
U
CA
Q
a
in
^
er-specific BEF (U.S. EP
u
s
o
ca
CDD BCF and
p
o
00
.B
CA
3
•o
J2
a
"ca
u
CA
£
IX
u
CQ
u
S
in
O4
U
"ca
>
HH
U
PQ
"8
13
g
1
1
Q
§
•
oo
~^
'R
••3
chlorodibenzo-
X
u
=?
oo
t«r
VO*
of
„"
•a
B
§
a.
B
c3
«
en
fl
»-<
d
X
VD
in
ON
li"
P.
u
CQ
CA
0
1
CA
ca
"n
CT\
^
er-specific BEF (U.S. EP
B
U
B°
8
ca
CDD BCF and
H
u
.£
00
3
T3
O
—
3
"ca
o
CA
?
U.
U
03
o
J*
tN
ii
3
"ca
5^
&
PQ
•a
u
•o
g
1
c<
Q
a
1
oo
-^
of
B
'i
j
x
u
K
o\
t~r
of
«
^j
c
§
Cu
g
5
en
Jt
if
^H
d
VO
in
«
7
PH
U
n
..
en
Q
1
CA
a
21
i
^^
er-specific BEF (U.S. EP,
g
2
o
u
C3
CDD BCF and
u
00
_G
"CA
3
•a
"re
3
"c3
O
CA
ca
£
U
CQ
£
•^
ON
ON
i>
^
"c3
>
U
m
•o
B
U
§
1
1
OO
B
g
•3
1
1
HH
00
P*T
vo"
rf
of
^
•a
c
§
a,
S
o
U
TT
§N
in
0
d
x
VO
in
2*
*n
CLc
U
CQ
GO
o
S
CO
1
a\
^H
er-specific BEF (U.S. EP
§
OO
cd
1
s
CQ
Q
Q
u
H
4>
-3
00
_s
"CA
3
•o
^S
3
O
"ca
CA
ca
^
U
CQ
o
S
"0
en
04
u
*c3
>
a.
U
CQ
•8
•o
B
U
I
«
^
8
a
.s
1
I
g
s
*iJ
Q
s
a
o
ea
0
•a
B
in
ol
II
04
s
d
X
VO
in
ON
Ti1
DM
U
CQ
CA
_C3
2
in
ON
ON
^
er-specific BEF (U.S. EP
g
g1
o
u
ca
CDD BCF and
H
o
.c
00
'CA
3
1
—
g
"ca
u
CA
ca
£
U.
U
CQ
o
S
04
VO
O4
U
3
"3
^
&
CQ
T3
1
u
I
&
&7
oo
«
a
>rodibenzofurai
.y
•^
(-1
00
en
of
TJ
B
1
04
S
of
II
O
®9
o
x
s
en"
II
tt.
U
CQ
CA
Q
CA
ca
^^
m
ON
ON
^
er-specific BEF (U.S. EP
B
U
00
B
8
ca
CDD BCF and
H
o
00
B
3
-a
S
"3
S~
CA
ca
J
n
£
en
T
u
3
"ca
^
&
CQ
•o
u
T3
U
1
&
2,3,7,8-PeCDF)
,_T
^
£
ilorodibenzo-p
5
4)
CM
OO
t-T
en"
of
«~
-o
c
§
OH
g
U
_
t-H
en
f
O4
d
X
VD
m
oT
"ii1
p-
U
CQ
CA
_o
1
f
ON
~
er-specific BEF (U.S. EP
g
oo
c
8
ca
CDD BCF and
H
u
•S
00
B
3
1
ca
"3
"ca
u
CA
ca
S
U.
U
CQ
0
£
m
en
en
o
"ca
^
&
PQ
•o
u
•g
o
I
c<
u
(X
00
en"
^
5
ilorodibenzo-p
S
B
O
CM
ob
f{
en
of
•o
B
g
O.
g
6
^
in
rn
TP
vq
«_H
X
VO
in
ON
Ti1
[T |
£J
CQ
CO
j2
1
m
ON
ON
^
er-specific BEF (U.S. EP
§
op
8
ca
CDD BCF and
H
u
•S
oo
B
*CA
3
T3
_CO
3
u
ca
u
CA
ca
&
U-
U
CQ
u
|5
m
oo
s o
-------
ttS
o
H
U
Z
o ^
25 •^
p^ C
NM FgJ
P^ 4>
LEC-6
RATE BIOCONCEN
(mg COPC / kg dry s
2 of 11)
5 Sf 1
E* LJ 3 &
r
O-BENTHIC INVER1
mg COPC / kg wet tiss
0
H ~
H
Z
w
§
Q
W
ws
en
_0j
u
a
ce
S
S
S
Experimental Para
sference
&
*
cfl
V
^s
"c3
T3
t-
0
CU
_SJ
s?
T— 1
U
J3
CU
U
CQ
•a
•8
§
§
8
§
1
°°,
•<*
of
I
&
i
i
s
X
1
oo
^J^
en"
of
—
•a
c
3
O
O,
E
6
ON
oo
3
II
1
d
x
VO
ON"
7
a.
u
QQ
CO
1
cn
CO
ID
2
w
GO
(I,
CQ
u
'o
1
ill
U
c
u
00
I
a
TJ
g
&
CQ
Q
Q
U
H
u
•3
oo
c
"co
3
"O
"3
CJ
"ca
u
CO
CO
£
a,
U
CQ
o
pJ
CO
tt>
3
"3
&
CQ
1
g
I
1
o
ffi
j-
1
ft
i
!
8
JS
S
«
oo
^i
f}
of
— '
-o
1
1*
a
m
£•
^1?
"
2
d
X
ID
i
CO
&
1
ca
ID
•"^
1
tu
(X)
CQ
o
1
CO
1
§
U
CQ
1
cu
U
CQ
§
U
H
1
60
C
*co
3
•o
CO
CO
"3
"ca
o
c«
^
11.
U
PQ
o
o)
>— I
u
3
•a
&
CQ
73
•8
c
u
1
8
1,3,4,6,7,8-HxCDF)
c
ea
1
D,
1
|
X
o
a
oo
t~
VO
^~
r^T
tL
U
CQ
u
ID
JN
i)
"5
B
CQ
1
c
|
1
S
u
oo
of
|
N
1
|
1
X
oo
vq
^^
cn
of
"
•a
c
3
O
0.
i E
i 6
SO
OJ
II
O
d
X
as follows: BCF =19,596 :
ID
i
C/0
p
o
ex
1
so
%
u
c3
1
tt.
O
1 Q
, O
H
u
€
00
' C
"co
9
TJ
U
^
d
"a
o
c/l
CO
?
U.
U
CQ
u
01
s
r^
o
3
1
&
CQ
"8
•a
c
u
§ ',
&
0)
s.
t|T
ON
d
X
VD
ca
g I c
.0 i <8
_S i CQ
H . u
u i H
X o
ON 5
00* i 00
r-" .£
^ 3
cn -^
of 3
"5
CJ
"ca
CO
f3
•o ?
S c-
o U
D-i CQ
E : o
o ' x:
O ! H
ID
m
u
"3
U
CQ
•o
g
1
i
ID
cn
II
O
d
x
ON
ID
O\
7
B.
i U
< CQ
1
: 2
i CQ
CO
.
-------
CO
CM
O
<*)
tt
-------
£
n.
M
V
1
B
04
a
i
"S
a,
Reference
en
1
o
X
K
S
5
s:
1 ;
.§
•«
u
B
.2
B
3
a.
•8
^^
2
|
1
w
12-day exposi
(
.and Bush (1997)
J2
•a
u
b
I
O -H
CO
J
«k
T3 ;
[
I
•+•* >
§
•o
12-day exposi
Nitroaromatic!
, and Bush (1997)
U
O
W
b
!_
C-l ^J"
o —
'-J
'"'
u
3
1
a.
U
n
s:
o
i '
1
U '
06
i
^
1 d2
s
' i §<
: 'S£
§ w
STco
' 'S3 _t
VI _
following regre
5 logK,,,, = 1.49
|l
00 *
i S ^
*GO 00
• -a t>
I O "
3 53
U gj
The BCF was cal
:hamp, and Schmi
M
4> ed
! IB
'H
<8 5
II
i ^
fl> fll -5
C lM O
™ (t\ >~
1,3-Dinitrobenze
this compound w«
log K,,w- 1.146(5
1 2
"O «_ ||
3 g EL.
I !|
! U w -2
oo
S
1
a.
U
PQ
"8
T3
B
i
8
PS
2,4-Dinitrotoluet
Compound:
j follows:
S
>,
•o
3
OQ
BCF value was b;
"8
•u
c
The recommf
i
1
'i
5
"S
s
•3
c
1
4-day exposur
1 Pearson (1983)
s
§
'3
n
3
oo
Tl
1
V>
ci
_3
O
PQ
•8
•o
u
1
8
S oo
II Empirical da
log BCF = 0.
r^
ci
o
3
1
U
PQ
"8
•a
Q
i
8
«
Nitrobenzene
Compound:
21
•^
S
jfg:
"*d
"eg C?
Following regre!
elogK^l.8
« J
a-g
00 -
"S ^
^ r**
"S "*
*j «3
"3 "5
o ••?*
The BCF was cal
champ, and Schm
3
•o S
r this compc
Southworth,
«2
U Tj-
S °
S ^
S oo
.1 g
' S °°
J
in
y
ca
B
PQ
1
§
I
J
Pentachloronitrol
Compound:
i
2~
^^
•• 2
.1 <
|B|
U 00
K 2 S^
following regre
e log K..-4.6.
•hthalate Estei
-II
co oo
5 t^*
*p o\
^3 c3
3 T3
— O
The BCF was ca
champ, and Schm
«B j
l|
tt rr*
this compound w<
log^-i.neo
«§ ^
2 SS
•So
— n
S H.
;c u
1
•^
u
_3
e
1
0>
1
I
o i
0!
j
i
|
-------
00
ON
u
s
0
£
mental Ft
1
a
•e
ON
00
-------
u
3
to
vw
A
09
"i
o.
t/3
09
fcri
5
I
1
1
1
Reference
V
S
"3
•a
oa : cr •
U CO U U CO
§S 1 : §2,
» * £f 'S £
2 S o ' a F:
g> -• -B g>
JrS JC
' 00 ^
' G *
55 OO co OO
s I*- ' 3 r-
-q 2 ' *° 2
+£ *-l ! +S »-<
A O , | "* U
1 !§ 3 !§
** E "^ E
GO O CQ O
a co i i 3 co
1 1
no, CQ &
£ I • £ 1
o , o
0 3 0 3
»~5 „ i • »S ^
cd o i 01 o
11 „.!!
U i -"H • B g
JS I; JS
•al I'-aS
3 . i3 i 3 •
O. , •" ! P. i
E * g E s
s *r ^ s tuf
^ (^ —
(K 00 CQ ^ Ofl
t2 ON (2 ON
S OO ' S OO
.§ C5 ^ -u °
1 ft § "S ft
:s y 8, . :s y
CL, CQ , g a W
E °o i . S 1 E °o
U £ i I U ' W «
VO
CS
ci
U
1
ft
U
CQ
"8
73
g
(2
xachlorobenzEne
o
Compound:
f
B -
.2 ^
0 CO
following regression
; log Kow = 5.503 (U.
u S3
•£ J3
oo ^
c ^
'ai oo
"8 -
U
"03 53
1.1
s §
5 BCF was
np, and Scl
?5 JB
d 1
(•^
11
11
compound wen:
^-1.146(3011
.2 °°
)H X
<2 ON
2 oo
73 °
— II
3 ft
•c u
•&«
C OD
^~
C5
U
1
ft
U
PQ
"2
"O ^
g |
8 .2?
(^ O
.5 S3
•8 ^
i-IS
1 " s !
u ° ^
i .. g 2
i i -i « 1
! g 8 o
3 o U
i §|l
: j 1 1 ^
' i^ O 43
i
CO
S ;
1 0 !
*-• '
i ^ ;
I 5/5 i
ed
' f
3
GO
! 1;
! l|
! tfc
•1 '
! I ! ~
'C P~
i & I ON :
E ' *-*
e \ ¥
o >
« -tj S
B ; | i °
B S
|:|
u > !
X ft
£ O
* ca Ti-
-a "^
u o
c
1 1
o °
a "
; U ^ i i
5
r-
ii
"3
ft
U
CQ
•8
73
1 :
&
^\
: X)
c -
^ ^
"rt CL-
1"
'Z ao
3 r^
"° 2
. * S3
§1
si
to o
g CO
f 73
B!
P9 n.
fi J
o 1
^_t ^
1 11
1 11
x achlorocyclqpci
compound were
K,,w- 1.146 CSaa
tC 2 J1
^ X
£ ON
=* 53
Compound:
Empirical da
log BCF = 0.
t**l
o
3
1
ft
U
n
73
0)
73
§
§
04
ntachlorobenzene
£
Compound;
GO
_0
«
"C
^
g
-8
1
en
1
•a
ft
o
•s
73
1^1
The recomrm
U
ts
B
00
5
.S S3
13 Is;
I'w^
sis
§ t3 g
•3*0
> 2 «S
I'S.I
.- g 2
111
-* -\ N*
79-day exposure di
Oliver (1987) were
dry weight using a
00
ON
^
1
M
0
S
o
— "
o
3
"a
ft
U
n
•8
73
§
I
(2
ntachlorophenol
(X
|| Compound:
£"
C "*
•o e£ i
U CO
following regression
e log KOW = 5.080 (U
o S3
6 •§
OJO *
c ™
"S oo
3 r~ ,
•o 2
13 S3
1 "8
•a 'S
o S
; BCF was
np, and Sc
£ J
" o
' ~** f.
11
11
compound were
K,,w- 1.146 (Son
c'' CJi
& 2
J2 oo
1 ^
ilS
-------
PCi
s
u
"3
V
£
-2
i
2
a
<2
l
1
__
s
B
1
1
1
>•
•a
V
1
a
£
>/•> t^
Oi i \D
o ,H-
o o „ _
| . 'i , i 1
** ' > ' ! O « O
tU ! ' [L ! & ""3 fc -S3
:B' , iS1 ; If II
"2 g i "8 a « S Is
• "S '"1 1 |||~
, 1 -sis 1 ilats
181 I Illl
i!. ;2B5 1 :|||J
! "O I
i C fc* I
M ea g « ;
! • ; i : | i fe § S )
i : = ! £•£ *
i • ,0 m ob<*.
! "-1 : „ -5 ° '
; i i a i .s * is i
! : • s -8 ! Ill
: ! :•*£*"-
0 ! 8 0 S
i • o- i & •" .2
U 1 C T3 S
; i ' b i o S S
! ! i , £ 1 3 ft >
i i ' J3 •« g a
i ! ! | S ^ | o
, ! n. 2 Q ea
! . II »n
• ' 4s ' « ~ ^ a
2 ! | 1 1 S III
^ ! l| 11 icf
8 1 i ea 2 i T3 2 J3 *
£ i ? .a i g .« -2 &
! ^ u, : -g £ o -8
; i -7! H
i ! -8 i •? '
i 3 i 1 2
' °3 ' c
1 1 i 1 -
"e3 ' i — « '
i > i E i
! ' s i | £ !
<4- T) !
i 0 , 0
— I ^^ -M
i S ' vo i J5 i
1 i i § J ^
j e i C- ^8 !
! .2 i tr °
\\S\s S
1 5 S &
i S U cu oo
Si, 13 U ^
! ? S i i « -
! - « i ,§ -S
oo c ; H •-
' .S ^ . 0
2 1 S3 i u •« i
1 1 i DH ' S 5 i
i -o . ' a «
1 ! O _r^ 1 — I .. t
i a 1 "3 ! 3 ' § 1
; 1 ; S ! ! 1 i &
1 .0 i Oi i , * ! ffl j
: "S . 1 i o i !
1 S 1 1 C ! j
1 ' S i ! £ i
i 1 CO ax
•E • . y •
I ' *, . * i
g li His1
I & 532=31 rf
^ BQ SC o 0
•o tl o
-S , £ 2
§ • s
c ca
? I -o -°
§ i i s
o.2|Osfn-*ts(S —
& :
n
"8 i
•o !
s
(2 '
/-^
|TS ,
0<
ON ,
ii
•o
j .. C I
! e « j
1 .2 fc
i ta S
' §-.H
: ° S
i c £
.0 *,
ea r^
CO *r
1 d> ^4
: j5 .
! •• ||
I S3 \
'$ x\
o oo
3 O •
rt ""
& HI
N-« U
l|
» *
C ^
'ea OO
s r~
•a 2
X t
^ O
1 "3 !§ i
' ea P
1 ° £ '
ea u
I « CO
! * -a
. a, 5
i U .
1 BQ a.
2 § 1
s||
o i
1«
'? -S
> c
CB O
•K S 1
° S i
c 5 i
U ' !r\ r A
e g 5S
o •* •
^ , -0 « '
g-i 1 s :
1 : 1* '»
« S ^f
X. u *
Oc
•«
; -o
U
Recommend
!
j
1
'
|
l
»!
| ;
So i
i i
^
i
i
j
t
i
i
i
i
!
j
i
l
1
1
E
, c
' £
3
<
•o
C
§
ex
• i
: u
E
"g
"S
u
ca
3
T3
g .
"2
'5.
•s
lose metals wi
i •
C*p4
Cfl
U
3
1
^
T3
-S
§ 1
5 !
c
£ ;
vo
"8
tic average
u i
•e
a
O I
« i
.2 i
u
•3
w
u.
%
T3
•a '
1 i
1 !
in
» i
S
jj 't i
•S 'a 1
|c
> e5
A i
•X >*
O l-i
c S
§ 1
> E
*-H
i §
If;
8,-
« C3
Ic D
I-H uT
•2 S.
1 &
^ u
»J
"3 E
0 3
:- 'E :
II :
E"
E""
O 13
°i S
o ^-i
ea
c8
U -o
3 _,
"3 , g
> -5
B |
«< c
(ii
•g 1
Recommend
ose metals wil
j=
*
1 TB
1 T3
! S
£3
3
i «
**-i
o
1
II
! "S
I '§
1
GO
1 T>
1 3
1 "3
*
U
' CQ
"8
"§
1 S
! |
i 5
Is .,
1 » ?
! 1-1
; |"§
£ rt
1 TO
o £
S 3 1
< O £*
S3 g
I * E
I.a i
! e c '
1 3 CB
I 1!
s u -o
C «s
< IS £
fr* fcn"
•2 g.
1 °
-3 "
•o ^ -
S "3 E
§ .a .3
fr •- E
P a, S
l-l*.
-------
u
a
ea
ft!
H
U
<
Z
o<^
H S
Si
H 5
E BIOCONCEN
COPC /kg dry s
11)
31 !
JMk ^^ V
gir g>
S J ^
M S
> *
S *
BO
U •»
' 's
CD ™O
d -a
C3
la
0 T3
9 _
1 s
£ :s
u , s-
3 : |
fl CO
1 ! 1
J ! o
i g
^
; CA
1 U
3
"3
S 1
B : S
Experimental f ara
average of 6 recommi
1
•s
flj
•s
09
"i
1 >
CU
r i
Ed
S
i
I
u
!!«
it
i
05
j»
2
«S
03
I
"a
>
•o
S
S
•S
2
"o
f^C ^n "J^
..-• ~L\ <«
S Si M
a •& f Q
11 f|
£ *S §
, 'S3
w 2 t> S3
.£ • tj >
§ § e u
s | 8 «
•o 5 o g>
13 M
•g
^
n
•S
CO
. o ''•
11
!l 1
?
fe
1 S
•y
S
a.
1
§ s !
IS
.2 «=
<2 R
« a.
Empirical dal
II chromium, cc
ii
§
n
•B
c
3
O
d.
e3
1 1
.2 W
||
Empirical da
chromium, c<
s ^
C n bO f- O
I : l| ! 1 ! |
"£> § T3 ' -1 CL,
& ^s d %
fe S3 "S
« a 1
3! ° s
•o ^ e- -a s
1 il I I
i ' U • i i
i U , « o 1 U • H
s :
1 _3
oo m •* o< B
^O *"" f*^ r*J o
r^ i^ cs ^o js
•y
c
'
0
_3 !
-------
W3
tf
g
U
to
T
ABLE C-6
EBRATE BIOCONCENTRATIOl
ic) / (mg COPC / kg dry sediment)
age 9 of 11)
H M a Ck
5 J fo
w **
1 ^
5*?
ffl r "i
g &
gS
of
H
I
1
•3
D,
CO
Experimental Parameters
Reference
Cfi
_s
•8
•*rf
H
§*
tt
&*
o
1
1
"K
1
R>
•8 2>
follows:
25-day exposure duration; The values report
in Jones, Jones, and Radlett (1976) were
converted to wet weight over dry weight usii
conversion factor of 5.99a.
CO
KJ 1
CO
"3 j
2 !
U !
<«-,
5? : S1
ing the geometric me
ies, and Radlett (197i
1 5
s ' ^
"* i -i
(rt i ,
s
CO
CO !
ro d
u oo
T3
ID
T3
C
O
C
o
(D "- cN
o , d d
H
p
3
E
S H
d £•
.. 1
i S . S.-
1 ! u-^ 1
•Z ; J C ; • I
«-•
^i «S
1 ^5 j 2
i ' ^/ -2
o "5
ro c«"i O CN C ' *_i
c d d d 5, g
t-> 5 -
•"' 1
?
cd
•a
*T3
5 "3
3 U
°5 $ s p | : :s
d d d d § g
, 0 M '
oo
' *G O
d d
0 i)
3 3
~a ~a
:& ' 1 ' &
' PQ £ CO
•O <« T3
1 § 1
u § 8
1 a* '6 (2
14-day exposure duration
| i |
j ' I
! ; '
1
i |
i ; {
1
1 i '
,*— \
5 i
O\ i
'i I '
1 I i
t f 3 j
H •§ -g !
a tS «
i git |
1 1 1 :
g a i i u
E xi ^
CJ O9 ' • **"*
3 « ! °
§ > , ! S
oo a> °
N ! 3 ^
a" Is & 53
S J5 y 5
-^ ^-J CQ "^
— , •* o
S ^ d -'
D. | T3
n. c
o u
0 .. E
c "° P ^
i § 8 §
E s. § , a
I 1 • jg §
5 u • H o
u u
> -n '
« S rj
•oo w
ok E |
: 1 ' ^ '
1 1 i
cd >i^ i '
.. , 1 1
5? ' Q S ' EP
* ' § -g ; |
5 ; pa = ; JS
•3 t _- • * "B
« T3 "°
s : § T3 i
5 5 g ; 2
> ii S 2
2 § - 2 !
*q> ' M *O "o
» C3
§§ ^ 'S C
• 5 ox -u 6
O as ' —5
*O i rt 2 ! IS "P
g •' ea C- SC ; , »
«* HJ
* >, •»
CO fcj CO
C3 , 3 ! C3 -
U § <"
_3 i B _3
> •* oo ^o ' S* >
fc q q q •£ fc
(J 0 0 0 « [J
ffl oo ^ CD
•a q -a
D C5 W
*O T3
C C
-------
u
s
CQ
• 1*
J i , --H
1 ^~3 | e;-
I °°° I JJ
$ 2 r u
3 ^ ,o u
*• <*" O.
i3 2 §•
& i •§ °
ea c -3 E
3 S3
^-| D-
1 &
•a ' P-
1 s 1
a :s E
1; l|
U : U 0
c/5
•a
1
D.
1 5
•a y
||
O """
" "S
1 J
g 53
2 g-
ca Q
"a
•3 E
0 3
;s 'E
;n
i'i
5 eo
J' l-i
rf "O ' [
H | J , is
b S3
1 8-
TO D
! U i
• & : -- S i
p i n. o
o ' E § t
U i W o C
! CA
03
1 '
, i QO ^_| ff\ l/~)
& d^S"
3 Q3 ^
i "S <^
T3 i
C '
W
I i
2 cj \o oo c^ os
3< i u -^- t^> — t—
5 ' S • d d d d
j ; H
-------
'&
g
>
6-U
H ft,
z S
W n
S u
61
H ^
L^
fN
Z
S
1
%>
c o« a
3 S -_i
1* S
i* $
8 ^ £
£ S3 =•
o^0
i!s
5 J3 »
2 00 -R
c .Sr o
Sue
s ^ S
1 « g
>» * a
^ 2 n,
u -o en
"O 4>
*^N *^ Cn
.S S °°
^3 ^ 09
l!i
•a i- o
« 2 ^
s & -
w -^^ frt
£ « S
o.c2
h - w
> s a
-S.2>|
.s S|
US
|"S S
8^2
<*.£>£
0 -9 3
c S §
o ."§>•§
r» JJ ».
3 S S
> O
52 «i 'S
a S 2
13 S g
O co >
s -s §
S b 8
S -9 «>
5-ag
H ^ '
a a g;
M e .
o § m
1 1 -^
°- ^
11*
5 ^ u
a. ^ S
ST* W "^
g u o
« "2 S
CO
|
S
05
CO
T3
0
—
1
"ca
u
CA
CS
s
1
c
o
1
>
B
O
O
u
•S
_BO
'53
^
«
|
a
5
It
1
•S
00
q
1!
|
;.
P
-------
^
U
S
o-s
u "
OS O
a o
ga
oc
3
a.
aa
•o
8
U
i
sa
•o
1
d furans
g
c
1
s
«
in
t~
o<
s
U
u
0-
00
r~
en
pi
Vw^
ibenzo-p-furan
•§
•Pentachlol
oo
en
in
in
vd
0
Q
$-t
oo
r-{
pi
c.
'x
_o
c.
s
'etrachlorodiben
r"
oo
pi
S
^
m
r-
o\
oT
Q
U
u
0,
oo
r~
Tf
cn
pi
I
a
n.
S
1
1
-Pentachlol
oo
en[
?
W
o\
en
pi
Q
Q
u
^
00_
t"~^
en
'H
~
enzo(p)dioxir
-Pentachlorodib
oo
m"
pi
-"
in
i
PI
vq
r^
I
^
^j-"
en
pi
_T
c
2
n.
8
g
JD
|
1
1
oo
c-{
en^
m
pi
in
Q
Q
U
><
00
^
•^
en
pi
i-"1
c
'x
o
•3
o.
S
1
,8-Hexachlorodi
t-~
en
pi
— •
in
o
£
s>
CL*^
8
X
00
VO"
en"
pi
_T
c
1
n.
u
XI
T3
1
8-Hexachli
vq
en"
pi
m
PI
in
Q
Q
U
£
00
(^
vq
en"
pi
-H
C
1
•3
D.
i
u
XI
,8-Hexachlorodi
c^
en
~*
tn
O
1
PJ
vq
fa*"
Q
U
x
00
S'
V
en
pi
e
2
cu
s
1
•3
1
8-Hexachli
*;
en"
pi
m
o
PI
in
Q
Q
0
ffi
ek
oo
[C
en
pi
r~
G
1
•3
o,
i
u
XI
,9-Hexachlorodi
00
t-I
en
e-i
^
?
u
pi
vq
F^*1
1
oo"
(C
en
pi
_T
e
1
o,
S
1
fe
,9-Hexachli
00
en
I
Ov
Q
'a
DM
00
vq
^v
**i
Py
^
c
I
•3
U
XI
?
,7,8-Heptachlon
VC
en
es
— <
5
u
o
en
CO
Q
U
a,
ffi
oo
^.
•
^
^
s
.3
orodibenzo-p-f
1
n
1
°°~
vq
en
pf
VO
en
pi
Q
Q
8
c
'x
rodibenzo-p-dio
c
a
o
O
1
8
00
Q
**
S
d\
00
•^
en
pj_
^,
B
S
D.
g
g
.O
J
CQ
I
ok
00
en"
pi
r~
m
•*'
£
Q
y
k*
00
en^
S
1
ctrachlorodiben
r^
00
en
pi
i
P4
pi
m (OCDF)
a
c.
i
(U
XJ
•3
_c.
1
0
-s-
I
GR
|
•°
j«
'S
i
(ear ar
w
O
1
0-
tu
p»
o\
in
g
u
U
in
m
p«
pi
pyrene
^
¥
§
09
I
00
vq
g
1
1
x?
Dibenzo(
PI
r-;
-1
anthracene
c-
¥
§
n
I
S
pi
S
:,3-cd)pyrei
°1
u
m
vq
en
ifluoranthene
XI
"o"
N
C
U
09
1
•*
-------
^•^
P9
1
05
•e
a
S
1
03
•e
S
o
U
*»<
•
Hexachlorophene
o
[i
u
c
o
•u
c
Hexachlorocyclope
o
\0
u
Pentachlorobenzen
oa
u
fe1
a
o
•a
o
Aluminum
80E+03
>-'
Mercuric chloride
o
Antimony
U
x>
ed
u
O
z
Methyl mercury
o
o
1
o
*u
•a
2
o
Barium
o
Selenium
o
c
5
pa
ON
u
-------
§
03
pa t*
o -a
I
I
&rj
P
c
s
OJD
§1
H tJ
!Z DC
00
1
PS
§^
S.S
.;- o
Q «
J *>
S ^
T? 5j
o S
^rt O
d •<
So
60
S.S
«
c
w g
i- o
*%
S
u O
o
Z
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
Adams, W.C. 1976. The Toxicity and Residue Dynamics of Selenium in Fish and Aquatic Invertebrates.
Ph.D. Thesis. Michigan State University. East Lansing, Michigan.
Adams, W.J., G.M. DeGraeve, T.D. Sabourin, J.D. Cooney, and G.M. Mosher. 1986. "Toxicity and
Bioconcentration of 2,3,7,8-TCDD to Fathead Minnows (Pimephales promelas)." Chemosphere.
Volume 15, Numbers 9-12. Pages 1503-1511.
Anderson, A.C., et al. 1979. "Fate of the Herbicide MSMA in Microcosms." In D.D. Hemphill (ed.).
Trace Substances in Environmental Health XIII. University of Missouri, Columbia.
Anderson, D.R., and E.B. Lusty. 1980. "Acute Toxicity and Bioaccumulation of Chloroform to Four
Species of Freshwater Fish: Salmo gairdneri, Rainbow Trout; Lepomis macrochirus, Bluegill;
Micropterus salmoides, Largemouth Bass; Ictalurus punctatus, Channel Catfish." Prepared for
U.S. Nuclear Regulatory Commission, NUREG/CR-0893, Prepared by Pacific Northwest
Laboratory, PNL-3046.
Andryushchenko, V. V., and G.G. Polikarpov. 1973. "An Experimental Study of Uptake of Zn65 and DDT
by Ulva rigid from Seawater Polluted with Both Agents." Hydrobiological Journal. Volume 4.
Pages 41-46.
Atchison, G.J., B.R. Murphy, W.E. Bishop, A.W. Mclntosh, and R.A. Mayes. 1977. "Trace metal
contamination of bluegill (Lepomis macrochirus) from two Indiana lakes." Transactions,
American Fisheries Society. Volume 106, Number 6. Pages 637-640.
Augenfeld, J.M., J.W. Anderson, R.G. Riley, and B.L. Thomas. 1982. "The Fate of Polyaromatic
Hydrocarbons in an Intertidal Sediment Exposure System: Bioavailability to Macoma inquinata
(Mollusca: Pelecypoda) andAbarenicolapacifica (Annelida: Polychaeta)." Marine
Environmental Research. Volume 7. Pages 31-50.
Baes, C.F., m, R.D. Sharp, A.L. Sjoreen, and R.W. Shor. 1984. "A Review and Analysis of Parameters
for Assessing Transport of Environmentally Released Radionuclides Through Agriculture."
Oakridge National Laboratory, ORNL-5786. Tennessee.
Banerjee, S., R.H. Suggatt, and D.P. O'Grady. 1984. "A Simple Method for Determining
Bioconcentration Parameters of Hydrophobic Compounds." Environmental Science and
Technology. Volume 18. Pages 78-81.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-99
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
Barrows, M.E., S.R. Petrocelli, K.J. Macek, and J. Carroll. 1978. "Bioconcentration and Elimination of
Selected Water Pollutants by Bluegill Sunfish." Preprints of Papers Presented at the 176th
National Meeting, American Chemical Society, Miami Beach, Florida, September 10-15, 1978
Volume 18, Number 2. Pages 345-346.
Bastien, C., and R. Cote. 1989. "Temporal Variations of the Ultrastructure in Scendesmus quadricauda
Exposed to Copper in a Long Term Experiment." Int. Rev. ges. Hydrobiol Volume 74, Number 2.
Pages 207-219.
Baturo, W., and L. Lagadic. 1996. "Benzo[a]pyrene Hydroxylase and Glutathione S-Transferase
Activities as Biomarkers in Lymnaea palustris Mollusca, Gastropoda) Exposed to Atrazine and
Hexachlorobenzene in Freshwater Mesocosms." Environmental Toxicology and Chemistry.
Volume 15, Number 5. Pages 771-781.
Baudin, J. P. 1974. "Premieres Donnees sur 1'Etude Experimentale du Cycle du Zinc dans 1'Etang de
1'Olivier." JieMillieu. Volume 24. Series B. Page 59.
Benoit, D.A., E.N. Leonard, G.M. Christensen, and J.T. Fiandt. 1976. "Toxic Effects of Cadmium on
Three Generations of Brook Trout (Salvelinus fontinalis)." Transactions, American Fisheries
Society. Volume 105, Number 2. Pages 550-358.
Besser, J.M., T.J. Canfield, and T.W. LaPoint. 1993. "Bioaccumulation of Organic and Inorganic
Selenium in a Laboratory Food Chain." Environmental Toxicology and Chemistry. Volume 12.
Pages 57-72.
Beyer, W.N. and C.D. Gish. 1980. "Persistence in Earthworms and Potential Hazards to Birds of Soil
Applied l,r-(4,4-Dichlorodiphenyltrichloroethane (DDT), Dieldrin, and Heptachlor". /. Appl.
Ecol. 17: 295-307. In Beyer 1990.
Beyer, W.N., E. Cromartie, and G.B. Moment. 1985. "Accumulation of Methylmercury in the
Earthworm, Eiseniafoetida, and its Effect on Regeneration." Bulletin of Environmental
Contamination and Toxicology. Volume 35. Pages 157-162.
Bills, T.D., and L.L. Marking. 1977. "Effects of Residues of the Polychlorinated Biphenyl Arpclor 1254
on the Sensitivity of Rainbow Trout to Selected Environmental Contaminants." The Progressive
Fish-Culturist. Volume 39. Page 150.
Borgmann, U., O. Kramar, and C. Loveridge. 1978. "Rates of Mortality, Growth, and Biomass
Production of Lymnnaea palustris During Chronic Exposure to Lead." Journal of Fisheries
Resources Board of Canada. Volume 35. Pages 1109-1115.
Boudou, A., and F. Ribeyre. 1984. "Influence of Exposure Length on the Direct Bioaccumulation of Two
Mercury Compounds by Salmo gairdneri (Fry) and the Relationship Between Organism Weight
and Mercury Concentrations." Water Research. Volume 18, Number 1. Pages 81-86.
Branson, D.R., I.T. Takahashi, W. M. Parker, and G.E. Blau. 1985. "Bioconcentration Kinetics of
2,3,7,8-Tetrachlorodibenzo-p-dioxin in Rainbow Trout." Environmental Toxicology and
Chemistry. Volume 4. Pages 779-788.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-100
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
Brown, D., and R.S. Thompson. 1982. "Phthalates and the Aquatic Environment: Part EL The
Bioconcentration and Depuration of Di-2-ethylhexyl Phthalate (DEHP) and Di-isodecyl Phthalate
(DIDP) in Mussels (Mytilus edulis)" Chemosphere. Volume 11, Number 4. Pages 427-435.
Bruggeman, W.A., A. Oppenhuizen, A. Wijbenga, and O. Hutzinger. 1984. "Bioaccumulation of Super-
Lipophilic Chemicals in Fish." Toxicological and Environmental Chemistry. Volume 7.
Pages 173-189.
Calabrese, A., J.R. Maclnnes, D.A. Nelson, R.A. Greig, and P.P. Yevich. 1984. "Effects of Long-Term
Exposure to Silver and Copper on Growth, Bioaccumulation and Histopathology in the Blue
Mussel Mytilus edulis." Marine Environmental Research. Volume 11. Pages 253-274.
Cappon, C.J. 1981. "Mercury and Selenium Content and Chemical Form in Vegetable Crops Grown in
Sludge-Amended Soil." Archives of Environmental Contamination and Toxicology. Volume 10.
Pages 673-689.
Capuzzo, J.M., and J.J. Sasner. 1977. "The Effect of Chromium on Filtration Rates and Metabolic
Activity of Mytilus edulis L. and Mya arenaria L." In FJ. Vernberg, A. Calabrese, F.P.
Thurberg, and W.B. Vernberg (eds). Physiological Responses of Marine Biota to Pollutants.
Academic Press. New York, New York.
Carlson, A.R., and P.A. Kosian. 1987. "Toxicity of Chlorinated Benzenes to Fathead Minnows
(Pimephales promelas)." Archives, Environmental Contamination and Toxicology. Volume 16.
Pages 129-135.
Cleveland, L., D.R. Buckler, and W.G. Brumbaugh. 1991. "Residue Dynamics and Effects of Aluminum
on Growth and Mortality in Brook Trout." Environmental Toxicology and Chemistry. Volume
10. Pages 243-248.
Cleveland, L., E.E. Little, D.R. Buckler, and R.H. Wiedmeyer. 1993. "Toxicity and Bioaccumulation of
Waterborne and Dietary Selenium in Juvenile Bluegill (Lepomis macrochirus)." Aquatic
Toxicology. Volume 27. Pages 265-280.
Cleveland, L., E.E. Little, SJ. Hamilton, D.R. Buckler, and J.B. Hunn. 1986. "Interactive Toxicity of
Aluminum and Acidity to Early Life Stages of Brook Trout." Transactions, American Fisheries
Society. Volume 115. Pages 610-620.
Courtney, W.A. and W.J. Langston. 1978. "Uptake of Polychlorinated Biphenyl (Aroclor 1254) from
Sediment and from Seawater in Two Intertidal Polychaetes." Environ. Pollut. Volume 15,
Number 303.
Davis, B.N.K. 1971. "Laboratory Studies on the Uptake of Dieldrin and DDT by Earthworms." Soil
Biol. Biochem. 3:221-233. In Beyer 1990.
De Kock, A.C., and D. A. Lord. 1988. "Kinetics of the Uptake and Elimination of Polychlorinated
Biphenyls by an Estuarine Fish Species (Rhabdosargus holubi) After Aqueous Exposure."
Chemosphere. Volume 17, Number 12. Pages 2381-2390.
Deneer, J.W., T.L. Sinnige, W. Seinen, and J.L.M. Hermens. 1987. "Quantitative Structure-Activity
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-101
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
Relationships for the Toxicity and Bioconcentration Factor of Nitrobenzene Derivatives towards
the Guppy (Poecilia reticulatd). Aquatic Toxicology. Volume 10. Pages 115-129.
Deutch, B., B. Borg, L. Kloster, H. Meyer, and M. M. Moller. 1980. "The Accumulation of 65Zn by
Various Marine Organisms." Ophelia (Suppl). Volume 1, Pages 235-240.
Dobbs, M.G., D.S. Cherry, and J. Cairns, Jr. 1996. "Toxicity and Bioaccumulation of Selenium to a
Three-Trophic Level Food Chain." Environmental Toxicology and Chemistry. Volume 15,
Numbers. Pages 340-347.
Driscoll, A.K., and A.E. McElroy. 1996. "Bioaccumulation and Metabolism of Benzo(a)Pyrene in Three
Species of Polychaete Worms." Environmental Toxicology and Chemistry. Volume 15, Number
8. Pages 1401-1410.
Duke, T.W., et al. (1970). "A Polychlorinated Biphenyl (Aroclor 1254) in the Water, Sediment and Biota
of Escambia Bay, Florida." Bull. Environmental Contam. Toxicol. Volume 5, Number 171.
Eadie, B.J., P.F. Landrum, and W. Faust. 1982. "Polycyclic Aromatic Hydrocarbons in Sediment, Pore
Water, and the Amphipod Pontoporeia hoyi from Lake Michigan." Chemosphere. Volume 11,
Number 9. Pages 847-858.
Eastmond, D.A., G.M. Booth, M.L. Lee. 1984. "Toxicity, Accumulation, and Elimination of Polycyclic
Aromatic Sulfur Heterocycles in Daphnia magna." Archives, Environmental Contamination and
Toxicology. Volume 13. Pages 105-111.
Eisler, R. 1977. "Toxicity Evaluation of a Complex Metal Mixture to the Softshell Clam Mya arenaria."
Marine Biology. Volume 43. Pages 265-276.
Eisler, R., G.E. Zaroogian, and R.J. Hennekey. 1972. "Cadmium Uptake by Marine Organisms." Journal
of Fisheries Research Board of Canada. Volume 29. Pages 1367-1369.
Fisher, N.S., M. Bohe, and J.L. Teyssie. 1984. "Accumulation and Toxicity of Cd, Zn, Ag, and Hg in
Four Marine Phytoplankters." Marine Ecology - Progress Series. Volume 18. Pages 210-213.
Frekag, D., H. Geyer, A. Kraus, R. Viswanathan, D. Kotzias, A. Attar, W. Klein, and F. Korte. 1982.
"Ecotoxicologjcal Profile Analysis. Vn. Screening Chemicals for Their Environmental Behavior
by Comparative Evaluation." Ecotoxicology and Environmental Safety. Volume 6. Pages 60-81.
Fromm, P.O., and R.M. Stokes. 1962. "Assimilation and Metabolism of Chromium by Trout." Journal
of Water Pollution Control Federation. Volume 34. Pages 1151-1155.
Garten, C.T., Jr., and J.R. Trabalka. 1983. "Evaluation of Models for Predicting Terrestrial Food Chain
Behavior of Xenobiotics." Environmental Science and Technology. Volume 17, Number 10.
Pages 590-595.
Gates, V.L., and R.S. Tjeerdema. 1993. "Disposition and Biotransformation of Pentachlorophenol in the
Striped Bass (Morone saxatilis)." Pesticide Biochemistry and Physiology. Volume 46.
Pages 161-170.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-102
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C: Media-To-Receptor BCF Values August 1999
George, S.G., and T.L. Coombs. 1977. "The Effects of Chelating Agents on the Uptake and
Accumulation of Cadmium by Mytilus edulis." Marine Biology. Volume 39. Pages 261-268.
Geyer, H., G. Politzki, and D. Freitag. 1984. "Prediction of Ecotoxicological Behaviour of Chemicals:
Relationship Between w-Octanol/Water Partition Coefficient and Bioaccumulation of Organic
Chemicals by Alga Chlorella" Chemosphere. Volume 13, Number 2, Pages 269-284.
Geyer, H., R. Viswanathan, D. Freitag, and F. Korte. 1981. "Relationship Between Water Solubility of
Organic Chemicals and Their Bioaccumulation by the Alga Chlorella." Chemosphere.
Volume 10, Number 11/12. Pages 1307-1313.
Giesy, J.P., Jr., HJ. Kanio, J.W. Boling, R.L. Knight, S. Mashburn, and S. Clarkin. 1977. "Effects of
Naturaly Occurring Aquatic Organic Fractions on CadmiumToxicity to Simocephalus serrulatus
(Daphnidae) and Gambusia affinis (Poecilidae)." Water Research. Volume 11.
Pages 1013-1020.
Gilek, M., M. Bjork, D. Broman, N. Kautsky, and C. Naf. 1996. "Enhanced Accumulation of PCB
Congeners by Baltic Sea Blue Mussels, Mytilus edulis, with Increased Algae Enrichment."
Environmental Toxicology and Chemistry. Volume 15, Number 9. Pages 1597-1605.
Gillespie, R., T. Reisine, and E.J. Massaro. 1977. "Cadmium Uptake by the Crayfish, Orconectes
propinquus." Environmental Research. Volume 13. Pages 364-368.
Gish,C.D. 1970. "Organochlorine Insecticide Residues in Soils and Soil Invertebrates from Agricultural
Lands." Pestic. Monit. J. 3:241-252.
Goodman, L.R., D.J. Hansen, J.A. Couch, and J. Forester. 1978. "Effects of Heptachlor and Toxaphene
on Laboratory-Reared Embryos and Fry of the Sheepshead Minnow." In W.A. Rogers, R.
Dimmick, andR. Summerfelt (eds.) Proceedings, 30th Annual Conference Southeast Association
of Game Fish Commissions. October 24-27, 1976. Jackson, Mississippi.
Graney, R.L., Jr.,D.S. Cherry, and J. Cairns, Jr. 1983. "Heavy Metal Indicator Potential of the Asiatic
Clam (Corbiculafluminea) in Artificial Stream Systems." Hydrobiologia. Volume 102.
Pages 81-88.
Halter, M.T. 1974. "The Acute Toxicity Polychlorinated Biphenyl, Aroclor 1254, to the Early like Stages
of Coho Salmon and Steelhead Trout." PCB Newsletter. U.S. Environmental Protection Agency.
National Water Quality Laboratory. Duluth, Minnesota. August 5.
Hamelink, J.L., and R.C. Waybrant. 1976. "DDE and Lindane in a Large-Scale Model Lentic
Ecosystem." Transactions, American Fisheries Society. Volume 105. Pages 124-134.
Hamelink, J.L., and R.C. Waybrant. 1977. "DDE and Lindane in a Large-Scale Model Lentic
Ecosystem." Transactions of the American Fisheries Society. Volume 105. Pages 124-134.
Hansch, C. and A. Leo. 1979. "The Fragment Method of Calculating Partition Coefficients." Chapter 4.
In Substituent Constants for Correlation Analysis in Chemistry and Biology. Wiley-Interscience.
New York. As cited in NRC (1981).
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-103
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
Hansen, D.J., et al. 1971. "Chronic Toxicity, uptake and Retention of Aroclor 1254 in Two Estuarine
Fishes." Bull. Environ. Contain. Toxicol. 6: 113.
Hansen, D.J., et al. 1973. "Aroclor 1254 in Eggs of Sheepshead Minnows: Effect on Fertilization
Success and Survival of Embryos and Fry." Proceedings 27th Annual Conference South East
Game Fish Comm. Page 420.
Hansen, D.J., et al. 1974. "Aroclor 1016: Toxicity to and Uptake by Estuarine Animals." Environ. Res.
7: 363.
Hansen, D.J., et al. 1975. "Effects of Aroclor 1016 on Embryos, Fry, Juveniles, and Adults of
Sheepshead Minnows (Cyprinodon variegatus)." Trans. Am. Fish. Soc. 104: 584.
Harrahy, E., and W. Clements. 1997. "Toxicity and Bioaccumulation of a Mixture of Heavy Metals in
Chironomus tentans (Diptera: Chironomidae) in Synthetic Sediment." Environmental Toxicology
and Chemistry. Volume 16, Number 2. Pages 317-327.
Harrison, S.E., and J.F. Klaverkamp. 1989. "Uptake, Elimination and Tissue Distribution of Dietary and
Aqueous Cadmium by Rainbow Trout (Salmo gairdneri Richardson) and Lake Whitefish
(Coregonus clupeaformis Mitchill)." Environmental Toxicology and Chemistry. Volume 8.
Pages 87-97.
Hermanutz, R.O., K.N. Allen, T.H. Roush, and S.F. Hedtke. 1992. "Effects of Elevated Selenium
Concentrations on Bluegills (Lepomis macrochirus) in Outdoor Experimental Streams."
Environmental Toxicology and Chemistry. Volume 11. Pages 217-224.
Hildebrand, S.G., R.H. Strand, and J.W. Huckabee. 1980. "Mercury Accumulation in Fish and
Invertebrates of the North Fork Holston River, Virginia and Tennessee." Journal of
Environmental Quality. Volume 9, Number 3. Pages 393-400.
Hodson, P.V., DJ. Spry, and B.R. Blunt. 1980. "Effects on Rainbow Trout (Salmo gairdneri) of a
Chronic Exposure to Waterborne Selenium." Canadian Journal of Fisheries and Aquatic
Sciences. Volume 37. Pages 233-240.
Holcombe, G.W., D.A. Benoit, E.N. Leonard, and J.M. McKim. 1976. "Long-term Effects of Lead
Exposure on Three Generations of Brook Trout (Salvenius fontinalis)." Journal of Fisheries
Research Board of Canada. Volume 33. Pages 1731-1741.
Howard, P. H. 1989-1993. Handbook of Environmental Fate and Exposure Data for Organic
Chemicals. Volume I: Large Production and Priority Pollutants (1989). Volume II: Solvents
(1990). Volume II: Pesticides (1991). Volume IV: Solvents (1993). Lewis Publishers. Chelsea,
Michigan.
Hutchinson, T.C., and H. Czyrska. 1972. "Cadmium and Zinc Toxicity and Synergism to Floating
Aquatic Plants." In Water Pollution Research in Canada. 7th Canadian Symposium Water
Pollution Research. Institute of Environmental Sciences.
Hutchinson, T.C., and P.M. Stokes. 1975. "Heavy Metal Toxicity and Algal Bioassays." In Water
Quality Parameters, ASTM STP 573, American Society for Testing and Materials, Philadelphia.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-104
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
Ecemoto, Y., K. Motoba, T. Suzuki, and M. Uchida. 1992. "Quantitative Structure-Activity Relationships
of Nonspecific and Specific Toxicants in Several Organism Species." Environmental Toxicology
and Chemistry. Volume 11. Pages 931-939.
Isensee, A.R., E.R. Holden, E.A. Woolson, and G.E. Jones. 1976. "Soil Persistence and Aquatic
Bioaccumulation Potential of Hexachlorobenzene (HCB). Journal of Agriculture and Food
Chemistry. Volume 24, Number 6. Pages 1210-1214.
Isensee, A.R., P.C. Kearney, E.A. Woolson, G.E. Jones, and V.P. Williams. 1973. "Distribution of Alkyl
Arsenicals in Model Ecosystems." Environmental Science and Technology. Volume 7, Number
9. Pages 841-845.
Jennings, J.R., and P.S. Rainbow. 1979. "Studies on the Uptake of Cadmium by the Crab Carcinus
maenus in the Laboratory. I. Accumulation from Seawater and a Food Source." Marine Biology.
Volume 50. Pages 131-139.
Jones, L.H., N.V. Jones, and A.J. Radlett. 1976. "Some Effects of Salinity on the Toxicity of Copper to
the Polychaete Nereis diversicolor." Estuarine Coastal Marine Science. Volume 4.
Pages 107-111.
Jouany, J.M., P. Vasseur, and J.F. Ferard. 1982. "Ecotoxicite Directe et Integree du Chrome Hexavalent
sur Deux Niveaux Trophiques Associes: Chlorella vulgaris et Daphnia magna." Environmental
Pollution. Volume 27A. Pages 207-221.
Kanazawa, J. 1981. "Measurement of the Bioconcentration Factors of Pesticides by Freshwater Fish and
Their Correlation with Physicochemical Properties or Acute Toxicities." Pesticide Science.
Volume 12. Pages 417-424.
Karickhoff, S. W., and J. M. Long. 1995. "Internal Report on Summary of Measured, Calculated, and
Recommend Log KQW Values." Environmental Research Laboratory. Athens, GA. April 10.
Karickhoff, S.W., D.S. Brown, and T.A. Scott. 1979. "Sorption of Hydrophobic Pollutants on Natural
Sediments." Water Research. Volume 13. Pages 241-248.
Klockner, K. 1979. "Uptake and Accumulation of Cadmium by Ophryotrocha diadema (Polychaeta)."
Marine Ecology-Progress Series. Volume I. Pages 71 to 76.
Kobayashi, K., and T. Kishino. 1980. "Effect of pH on the Toxicity and Accumulation of
Pentachlorophenol in Goldfish." Bulletin, Japanese Society of Scientific Fisheries. Volume 46,
Number 2. Pages 167-170.
Konemann, H., and K. van Leeuwen. 1980. "Toxicokuietics in Fish: Accumulation and Elimination of Six
Chlorobenzenes by Guppies." Chemosphere. Volume 9, Number 1. Pages 3-19.
Kopfter, F.C. 1974. "The Accumulation of Organic and Inorganic Mercury Compounds by the Eastern
Oyster (Crassosirea virginicd).'1' Bulletin, Environmental Contamination and Toxicology.
Volume 11. Page 275.
Korte, F., D. Freitag, H. Geyer. W. Klein, A.G. Kraus, and E. Lahaniatis. 1978. "Ecotoxicologic Profile
U.S. EPA Region 6 " U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-105
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
Analysis: A Concept for Establishing Ecotoxicologic Priority Lists for Chemicals."
Chemosphere. Volume 7, Number 1. Pages 79-102.
Kosian, P., A. Lemke, K. Studders, and G. Veith. 1981. "The Precision of the ASTM Bioconcentration
Test." U.S. Environmental Protection Agency, EPA 600/3-81-022. Environmental Research
Laboratory-Duluth, Center for Lake Superior Environmental Studies, University of Wisconsin-
Superior, Superior, Wisconsin. February.
Kreis, B., P. Edwards, G. Cuendet, and J. Tarradellas. 1987. "The Dynamics of PCBs Between
Earthworm Populations and Agricultural Soils." Pedobiologia. 30: 379-388. In Beyer 1990.
Kucklick, J.R., H.R. Harvey, P.H. Ostrom, N.E. Ostrom, and I.E. Baker. 1996. "Organochlorine
Dynamics in the Pelagic Food Web of Lake Baikal." Environmental Toxicology and Chemistry.
Volume 15, Number 8. Pages 1388-1400.
Kumada, H., S. Kimura, and M. Yokote. 1980. "Accumulation and Biological Effects of Cadmium in
Rainbow Trout." Bulletin, Japanese Society of Scientific Fisheries. Volume 46, Number 1.
Pages 97-103.
Kumada, H., S. Kimura, M. Yokote, and Y. Matida. 1973. "Acute and Chronic Toxicity, Uptake and
Retention of Cadmium in Freshwater Organisms." Bulletin, Freshwater Fisheries Research
Laboratory (Toyoko). Volume 22, Number 2. Pages 57-165.
Landrum, P.P., BJ. Eadie, and W.R. Faust. 1991. "Toxicokinetics and Toxicity of a Mixture of
Sediment-Associated Polycyclic Aromatic Hydrocarbons to the Amphipod Diporeia sp."
Environmental Toxicology and Chemistry. Volume 10. Pages 35-46.
Laska, A.L., C.K. Bartell, J.L. Laseter. 1976. "Distribution of Hexachlorobenzene
and Hexachlorobutadiene in Water, Soil, and Selected Aquatic Organisms Along the Lower
Mississippi River, Louisiana. Bulletin of Environmental Contamination. Volume 15, Number 5.
Pages 535-542.
Laseter, J.L., C.K. Bartell, A.L. Laska, D.G. Holmquist, D.B. Condie, J.W. Brown, and R.L. Evans.
1976. "An Ecological Study of Hexachlorobutadiene (HCBD)." U.S. Environmental Protection
Agency, EPA 560/6-76-010. Washington, DC.
Lee, R.F., W.S. Gardner, J.W. Anderson, J.W. Blaytock, and J. Barwell-Clarke. 1978. "Fate of
Polycyclic Aromatic Hydrocarbons in Controlled Ecosystem Enclosure." Environmental Science
and Technology. Volume 12, Number 7. Pages 832-838.
Leeuwangh, P., H. Bult, and L. Schneiders. 1975. "Toxicity of Hexachlorobutadiene in Aquatic
Organisms." Pages 167-176. In: Sublethal Effects of Toxic Chemicals on Aquatic Animals.
Proceedings, Swedish-Netherlands Symposium, September 2-5. Elsevier Scientific. New York,
New York.
Lemly, A.D. 1982. "Response of Juvenile Centrarchids to Sublethal Concentrations of Waterborne
Selenium. I. Uptake, Tissue Distribution, and Retention." Aquatic Toxicology. Volume 2.
Pages 235-252.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-106
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
Leversee, G.J., P.P. Landrum, J.P. Giesy, and T. Fannin. 1983. "Humic Acids Reduce Bioaccumulation
of Some Polycyclic Aromatic Hydrocarbons." Canadian Journal of Fisheries and Aquatic
Science. Volume 40 (Supplement 2). Pages 63-69.
Liu, D.H.W., H.C. Bailey, and J.G. Pearson. 1983. "Toxicity of a Complex Munitions Wastewater to
Aquatic Organisms." Pages 135-150. In W.E. Bishop, R. D. Cardwell, and B.B. Heidolph (eds),
Aquatic Toxicology and Hazard Assessment: Sixth Symposium, ASTM STP 802, American
Society for Testing and Materials, Philadelphia.
Lorber, M., and P. Pinsky. 1999. "An Evaluation of Three Empirical Air-to-Leaf Models for
Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans." National Center for Environmental
Assessment (NCEA). U. S. EPA, 401 M St. SW, Washington, DC. Accepted for Publication in
Chemosphere.
Lores, E.M., J.M. Patrick, and J.K. Summers. 1993. "Humic Acid Effects on Uptake of
Hexachlorobenzene and Hexachlorobiphenyl by Sheepshead Minnows in Static Sediment/Water
Systems." Environmental Toxicology and Chemistry. Volume 12. Pages 541-550.
Lu, P.Y. and R.L. Metcalf. 1975. "Environmental Fate and Biodegradability of Benzene Derivatives as
Studied in a Model Aquatic Ecosystem." Environmental Health Perspectives. Volume 10. Pages
269-284.
Lu, P.Y., R.L. Metcalf, A.S. Hirwe, and J.W. Williams. 1975. "Evaluation of Environmental Distribution
and Fate of Hexachlorocyclopentadiene, Chlorodane, Heptachlor, Heptachlor Epoxide in a
Laboratory Model Ecosystem." Journal of Agricultural and Food Chemistry. Volume 23,
Numbers. Pages967-973.
Lu, P.Y., R.L. Metcalf, N. Plummer, and D. Mandel. 1977. "The Environmental Fate of 3 Carcinogens:
Benzo(a)pyrene, Benzidine, and Vinyl Chloride Evaluated in Laboratory Model Ecosystems."
Archives of Environmental Contamination and Toxicology. Volume 6. Pages 129-142.
Ma, W. 1982. "The Influence of Soil Properties and Worm-Related Factors on the Concentration of
Heavy Metals in Earthworms." Pedobiologia. Volume 24. Pages 109-119.
Ma, W.C. 1987. "Heavy Metal Accumulation in the Mole, Talpa europea, and Earthworms as an
Indicator of Bioavailability in Terrestrial Environments." Bull. Environ. Contain. Toxicol.
39:933-938. As cited in Beyer (1990).
Mackay, D. W.Y. Shiu, and K.C. Ma. 1992. Illustrated Handbook of Physical-Chemical Properties and
Environmental Fate for Organic Chemicals. Volume I—Monoaromatic Hydrocarbons,
Chlorobenzenes, and PCBs. Volume II—Polynuclear Aromatic Hydrocarbons, Polychlorinated
Dioxins, and Dibenzofurans. Volume HI—Volatile Organic Chemicals. Lewis Publishers.
Chelsea, Michigan.
Makela, T.P., T. Petanen, J. Kukkonen, and A.OJ. Oikari. 1991. "Accumulation and Depuration of
Chlorinated Phenolics in the Freshwater Mussel (Anodonta anatina)," Ecotoxicology and
Environmental Safety. Vol 22. Pages 153-163.
Makela, T.P., and A.OJ. Oikari. 1990. "Uptake and Body Distribution of Chlorinated Phenolics in the
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-107
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
Freshwater Mussel, Anodonta anatina L." Ecotoxicology and Environmental Safety. Volume 20.
Pages 354-362.
Makela, T.P., and A.O.J. Oikari. 1995. "Pentachlorophenol Accumulation in the Freshwater Mussels
Anodonta anatina and Pseudanodonta complanata, and some Physiological Consequences of
Laboratory Maintenance." Chemosphere. Volume 31, Number 7. Pages 3651-3662.
Majori, L., and F. Petronio. 1973. "Marine Pollution by Metals and Their Accumulation by Biological
Indicators (Accumulation Factor)." Rev. Intern. Oceanogr. Med. Volume 31-32. Pages 55-90.
Marquerie, J.M., J.W. Simmers, and S.H. Kay. 1987. "Preliminary Assessment of Bioaccumulation of
Metals and Organic Contaminants at the Times Beach Confined Disposal Site, Buffalo, N.Y."
Miscellaneous Paper EL-87-6. U.S. Army Corps of Engineers. Waterways Experiment Station,
Vicksburg, Miss. 67 pp. In Beyer 1990.
Martinucci, G.B., P. Crespi, P. Omodeo, G. Osella, and G. Traldi. 1983. "Earthworms and TCDD
(2,3,7,8-Tetrachlorodibenzo-p-dioxin) in Sevesco." Pp 275-283. In Satchell 1983 . As cited in
Beyer (1990).
Mauck, W.L., et al. 1978. "Effects of the Polychlorinated Biphenyl Aroclor 1254 on Growth, Survival,
and Bone Development in Brook Trout (Salvelinus fontinalis)." Journal of Fisheries Research
Board of Canada. Volume 35. Page 1084.
Mayer, F.L., Jr. 1976. "Residue Dynamics of Di-2-ethylhexyl Phthalate in Fathead Minnows
(Pimephales promelas)." Journal of Fisheries Research Board of Canada. Volume 33. Pages
2610-2613.
Mayer, F.L, Jr., P.M. Mehrle, and H.O. Sanders. 1977. "Residue Dynamics and Biological Effects of
Polychlorinated Biphenyls in Aquatic Organisms." Archives, Environmental Contamination and
Toxicology. Volume 5. Pages 501-511.
McKim, J.M., G.F. Olson, G.W. Holcombe, and E.P. Hunt. 1976. "Long-term Effects of Methylrnercuric
Chloride on Three Generations of Brook Trout (Salvelinus fontinalis): Toxicity, Accumulation,
Distribution, and Elimination." Journal of Fisheries Research Board of Canada. Volume 33.
Pages 2726-2739.
McLusky, D.S., and C.N.K. Phillips. 1975. "Some Effects of Copper on the Polychaete Phyllodoce
maculata." Estuarine and Coastal Marine Science. Volume 3. Pages 103-108.
Mehrle, P. M., D. R. Buckler, E.E. Little, L.M. Smith, J.D. Petty, P.H. Peterman, D.L. Stalling, G.M.
DeGraeve, J.T. Coyle, and WJ. Adams. 1988. "Toxicity and Bioconcentrations of 2,3,7,8-
Tetrachlorodibenzodioxin and 2,3,7,8-Tetrachlorodibenzofuran in Rainbow Trout."
Environmental Toxicology and Chemistry. Volume 7. Pages 47-62.
Mehrle, P.M., and F.L. Mayer. 1976. "Di-2-Ethylhexyl Phthalate: Residue Dynamics and Biological
Effects in Rainbow Trout and Fathead Minnows." Trace Substances in Environmental Health-X,
Proceedings, University of Missouri's 10th Annual Conference on Trace Substances in
Environmental Health, June 8-10, 1976. University of Missouri Press, Columbia.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-108
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
Metayer, C., C. Amiard-Triquet, and J.P. Baud. 1990. "Variations Inter-Specificques de la
Bioaccumulation et de la Toxicite de L'Argent A L'Egard de Trois Mollusques Bivalves Marins."
Water Research. Vol 24, Number 8. Pages 995-1001.
Metcalf, R.L., I.P. Kapoor, P.U. Lu, C.K. Schuth, and P. Sherman. 1973. "Model Ecosystem Studies of
the Environmental Fate of Six Organochlorine Pesticides." Environmental Health Perspectives.
Volume 4. Pages 35-44.
Metcalf, R.L., J.R. Sanborn, P.-Y. Lu, and D. Nye. 1975. "Laboratory Model Ecosystem Studies of the
Degradation and fate of Radio-labeled Tri-, Tetra-, and Pentachlorobiphenyl Compared with
DDE." Archives, Environmental Contamination and Toxicology. Volume 3, Number 2.
Pages 151-165.
Metcalf, R.L., O.K. Sangha, and IP. Kapoor. 1971. "Model Ecosystem for the Evaluation of Pesticide
Biodegradability and Ecological Magnification." Environmental Science and Technology.
Volume 5, Number 8. Pages 709-713.
Muir, D.C.G., W.K. Marshall, and G.R.B. Webster. 1985. "Bioconcentration of PCDDs by Fish: Effects
of Molecular Structure and Water Chemistry." Chemosphere. Volume 14. Pages 829-833.
Munda, I.M. 1979. "Temperature Dependence of Zinc Uptake in Fucus virsoides (Don.) J. Ag. and
Enteromorpha prolifera (O.F. Mull.) J. Ag. from the Adriatic Sea." Botanica Marina.
Volume 22. Pages 149-152.
Namminga, H., and J. Wilhm. 1977. "Heavy Metals in Water, Sediments, and Chironomids." Journal of
Water Pollution Control Federation. Volume 49, Number 7. Pages 1725-1731.
National Academy of Sciences. (NAS). 1974. Chromium. Pages 86-89. U.S. Government Printing
Office. Washington, D.C.
National Research Council (NRC). 1979. Polychlorinated Biphenyls. National Academy of Sciences.
Washington, D.C.
National Research Council (NRC). 1981. Formaldehyde an Other Aldehydes. National Academy Press.
Washington, D.C.
Nebeker, A.V., F.A. Puglisi, and D.L. DeFoe. 1974. "Effect of Polychlorinated Biphenyl Compounds on
Survival and Reproduction of the Fathead Minnow and Flagfish." Transactions, American
Fisheries Society. Volume 103. Pages 562-568.
Nebeker, A.V., W.L. Griffis, C.M. Wise, E. Hopkins, and J.A. Barbitta. 1989. "Survival, Reproduction,
and Bioconcentration in Invertebrates and Fish Exposed to Hexachlorobenzene." Environmental
Toxicology and Chemistry. Volume 8, Number 601-611.
Nehring, R.B. 1976. "Aquatic Insects as Biological Monitors of Heavy Metal Pollution." Bulletin,
Environmental Contamination and Toxicology. Volume 15, Number 2. Pages 147-154.
Nehring, R.B., R. Nisson, and G. Minasian. 1979. "Reliability of Aquatic Insects Versus Water Samples
as Measures of Aquatic Lead Pollution." Bulletin, Environmental Contamination and
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-109
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
Toxicology. Volume 22, Number l/2. Pages 103-108.
Newsted, J.L., and J.P. Giesy. 1987. "Predictive Models for Photoinduced Acute Toxicity of Polycyclic
Aromatic Hydrocarbons to Daphnia magna, Strauss (Cladocera, Crustacea)." Environmental
Toxicology and Chemistry. Volume 6. Pages 445-461.
Niimi, A.J., H.B. Lee, and G.P. Kissoon. 1989. "Octanol/Water Partition Coefficients and
Bioconcentration Factors of Chloronitrobenzenes in Rainbow Trout (Salmo gairdneri)."
Environmental Toxicology and Chemistry. Volume 8. Pages 817-823.
Nimmo, D.R., et al. 1975. "Toxicity of Aroclor 1254 and its Physiological Activity in Several Estuarine
Organisms." Arch. Environ. Contain. Toxicol. Volume 3. Page 22.
Nimmo, D.W.R., D.V. Lightner and L.H. Banner. 1977. "Effects of Cadmium on the Shrimps, Penaeus
duorarum, Palaemonetes pugio, and Palaemonetes vulgaris." Pages 131-183. In F.J. Vernberg,
A. Calabrese, P.P. Thurberg, and W.B. Vernberg (eds). Physiological Responses of Marine Biota
to Pollutants. Academic Press, Inc. New York, New York.
Oliver, B.G. 1987. "Biouptake of Chlorinated Hydrocarbons from Laboratory-Spiked and Field
Sediments by Oligochaete Worms." Environmental Science and Technology. Volume 21. Pages
785-790.
Oliver, B.G., and A.J. Niimi. 1983. "Bioconcentration of Chlorobenzenes from Water by Rainbow Trout:
Correlations with Partition Coefficients and Environmental Residues." Environmental Science
and Technology. Volume 17. Pages 287-291.
Oliver, E.G., and A.J. Niimi. 1985. "Bioconcentration Factors of Some Halogenated Organics for
Rainbow Trout: Limitations on Their Use for Prediction of Environmental Residues."
Environmental Science and Technology. Volume 19. Pages 842-849.
Oliver, E.G., and A.J. Niimi. 1988. "Trophodynamic Analysis of Polychlorinated Biphenyl Congeners
and Other Chlorinated Hydrocarbons in the Lake Ontario Ecosystem." Environmental Science
and Technology. Volume 22. Pages 388-397.
Opperhuizen, A., E.W.v.d Velde, F.A.P.C. Gobas, D.A.K. Liem, and J.M.D.v.d. Steen. 1995.
"Relationship Between Bioconcentration in Fish and Steric Factors of Hydro-phobic Chemicals."
Chemosphere. Volume 14. Pages 1871-1896.
Parrish, P.R., et al. 1974. "Effects of Polychlorinated Biphenyl, Aroclor 1016, on Estuarine Animals."
Association South East Biol. Bull. Volume 21. Page 74.
Parrish, P.R., E.E. Dyar, J.M. Enos, and W.G. Wilson. 1978. "Chronic Toxicity of Chlordane,
Trifluralin, and Pentachlorophenol to Sheepshead Minnows (Cyprinodon variegatus)." U.S.
Environmental Protection Agency, EPA 600/3-78-010. Gulf Breeze, Florida. January.
Patrick, R., T. Bott, and R. Larsen. 1975. "The Role of Trace Elements in Management of Nuisance
Growths." U.S. Environmental Protection Agency, EPA 660/2-75-008. Corvallis, Oregon.
Pentreath, J.R. 1973. "The Accumulation and Retention of 65Zn and 54Mn by the Plaice, Pleuronectes
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-l 10
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
platessaL. Journal of Experimental Marine Biology and Ecology. Vol 12. Pages 1-18. As
cited in U.S. EPA (1980g).
Perez, K.T., E.W. Davey, N.F. Lackie, G.E. Morrison, P.O. Murphy, A.E. Soper, and D.L. Winslow.
1983. "Environmental Assessment of a Phthalate Ester, Di(2-Ethylhexyl) Phthalate (DEHP),
Derived from a Marine Microcosm." Pages 180-191. In: Bishop W.E., R. D. Cardwell and B. B.
Heidolph (Eds.) Aquatic Toxicology and Hazard Assessment: Sixth Symposium. ASTM STP 802.
American Society for Testing and Materials, Philadelphia.
Pesch, C.E., and D. Morgan. 1978. "Influence of Sediment in Copper Toxicity Tests with Polychaete
Neanthes arenaceodentata." Water Research. Volume 12. Pages 747-751.
Pesch, G.G., and N.E. Stewart. 1980. "Cadmium Toxicity to Three Species of Estuarine Invertebrates."
Marine Environmental Research. Volume 3. Pages 145-156.
Phillips, D.J.H. 1976. 'The Common Mussel Mytilus edulis as an Indicator of Pollution by Zinc,
Cadmium, Lead, and Copper. I. Effects of Environmental Variables on Uptake of Metals."
Marine Biology. Volume 38. Pages 59-69.
Pietz, R.I., J.R. Peterson, I.E. Prater, and D.R. Zenz. 1984. "Metal Concentrations in Earthworms From
Sewage Sludge-Amended Soils at a Strip Mine Reclamation Site." J. Environmental Qual. Vol.
13, No. 4. Pp 651-654.
Podowski, A.A., and M.A.Q. Khan. 1984. "Fate of Hexachlorocyclopentadiene in Water and Goldfish."
Archives, Environmental Contamination and Toxicology. Volume 13. Pages 471-481.
Pringle, B.H., D.E. Hissong, E.L. Katz, and S.T. Mulawka. 1968. "Trace Metal Accumulation by
Estuarine Mollusks." Journal of Sanitary Engineers Division. Volume 94. Pages 455-475.
Qiao, P., and A. P. Farrell. 1996. "Uptake of Hydrophobic Xenobiotics by Fish in Water Laden with
Sediments from the Fraser River." Environmental Toxicology and Chemistry. Volume 15,
Number 9. Pages 1555-1563.
Reich, A.R., J.L. Peerkins, and G. Cutter. 1986. "DDT Contamination of a North Alabama Aquatic
Ecosystem." Environmental Toxicology and Chemistry. Volume 5. Pages 725-736.
Rice, C.P., and D.S. White. 1987. "PCB Availability Assessment of River Dredging Using Caged Clams
and Fish." Environmental Toxicology and Chemistry. Volume 6. Pages 259-274.
Reinecke, A.J., and G. Nash. 1984. "Toxicity of 2, 3, 7, 8-TCDD and Short Term Bioaccumulation by
Earthworms (Oligochaeta)" Soil Biol. Biochem. 1:39-44. In Beyer 1990.
Rhett, R.G., J.W. Simmers, and C.R. Lee. 1988. "Eisenia Foetida Used as a Biomonitoring Tool to
Predict the Potential Bioaccumulation of Contaminants from Contaminated Dredged Material." in
Edwards and Neuhauser 1988.
Roesijadi, G., J.W. Anderson, and J.W. Blaylock. 1978. "Uptake of Hydrocarbons from Marine
Sediments Contaminated with Prudhoe Bay Crude Oil: Influence of Feeding Type of Test Species
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-l 11
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
and Availability of Polycyclic Aromatic Hydrocarbons." Journal of Fisheries Research Board of
Canada. Volume 35. Pages 608-614.
Saiki, M.K., D.T. Castleberry, T.W. May, B.A. Martin, and F.N. Bullard. 1995. "Copper, Cadmium,
and Zinc Concentrations in Aquatic Food Chains from the Upper Sacramento River (California)
and Selected Tributaries." Archives in Environmental Contamination and Toxicology. Volume
29. pages 484-491.
Sanborn, J.R. 1974. "The Fate of Select Pesticides in the Aquatic Environment." U.S. Environmental
Protection Agency, EPA-660/3-74-025. Corvallis, Oregon.
Sanborn, J.R., R.L. Metcalf, C.C. Yu, and P.Y. Lu. 1975. "Plasticizers in the Environment: The Fate of
Di-AT-Octyl Phthalate (DOP) in Two Model Ecosystems and Uptake and Metabolism of DOP by
Aquatic Organisms." Archives, Environmental Contamination and Toxicology. Volume 3,
Number 2. Pages 244-255.
Sanders, H.O., F.L. Mayer, Jr., and D.F. Walsh. 1973. "Toxicity Residue Dynamics, and Reproductive
Effects of Phthalate Esters in Aquatic Invertebrates." Environmental Research. Volume 6,
Number 1. Pages 84-90.
Saouter, E., L. Hare, P.G.C. Campbell, A. Boudou, and F. Ribeyre. 1993. "Mercury Accumulation in the
Burrowing Mayfly, Hexagenia rigida (Ephemeroptera) Exposed to CH3HgCL or HgCl^ in Water
and Sediment." Water Research. Volume 27, Number 6. Pages 1041-1048.
Schauerte, W., J.P. Lay, W. Klein, and F. Korte. 1982. "Long-Term Fate of Organochlorine Xenobiotics
in Aquatic Ecosystems." Ecotoxicology and Environmental Safety. Volume 6. Pages 560-569.
Schimmel, S.C., J.M. Patrick, Jr. and J. Forester. 1976. "Heptachlor: Toxicity to and Uptake by Several
Estuarine Organisms." Journal of Toxicology and Environmental Health. Volume 1. Pages 955-
965.
Schimmel, S.C., J.M. Patrick, Jr., and L.F. Faas. 1978. "Effects of Sodium Pentachlorophenate on
Several Estuarine Animals: Toxicity Uptake and Depuration." Pages 147-155. In K.R. Rao. (Ed).
Penachlorophenol: Chemistry, Pharmacology, and Environmental Toxicology. Plenum Press.
New York, New York.
Schrap, S.M., and A. Opperhuizen. 1990. "Relationship Between Bioavailability and Hydrophobicity:
Reduction of the Uptake of Organic Chemicals by Fish Due to the Sorption of Particles."
Environmental Toxicology and Chemistry. Volume 9. Pages 715-724.
Schroeder, H.A. 1970. "Barium Air Quality Monograph." American Petroleum Institute, Air Quality
Monograph Number 70-12.
Scura, E.D. and G.H. Theilacker. 1977. "Transfer of the Chlorinated Hydrocarbon PCB in a Laboratory
Marine Food Chain." Marine Biology. Volume 40. Pages 317-325.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-l 12
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
Shuster, C.N., Jr., and B.H. Pringle. 1968. "Effects of Trace Metals on Estuarine Mollusks."
Proceedings, First Mid-Atlantic Industrial Waste Conference, November 13-15, 1967.
Pages 285-304.
Simmers, J.W., R.G. Rhett, and C.R. Lee. 1983. Application of a Terrestrial Animal Bioassay for
Determining Toxic Metal Uptake from Dredged Materila. International Congress Heavy Metals on
the Environment, Heidelberg. 1284 pp. In Rhett 1988. Cited in Edwards and Neuhauser 1988.
Snarski, V.M., and G. F. Olson. 1982. "Chronic Toxicity and Bioaccumulation of Mercuric Chloride in
the Fathead Minnow (Pimephales promelas)." Aquatic Toxicology. Volume 2. Pages 143-156.
Snarski, V.M., and F. A. Puglisi. 1976. Effects ofAroclor 1254 on Brook Trout (Salvelinus fontinalis).
U.S. Environmental Protection Agency, EPA-600/3-76-112. Environmental Research Laboratory-
Duluth. Duluth, Minnesota.
Sodergren, A. 1982. "Significance of Interfaces in the Distribution and Metabolism of Di-2-ethylhexyl
Phthalate in an Aquatic Laboratory Model Ecosystem." Environmental Pollution (Series A).
Volume 27. Pages 263-274.
Southworth, G.R., JJ. Beauchamp, and P.K. Schmieder. 1978. "Bioaccumulation Potential of Polycyclic
Aromatic Hydrocarbons in Daphnia Pulex." Water Research. Volume 12. Pages 973-977. As
cited in Lyman, Reehl, and Rosenblatt (1982). As cited in Lyman, Reehl, and Rosenblatt (1982).
Spehar, R.L. 1976. "Cadmium and Zinc Toxicity to Jordanellafloridae." U.S. Environmental Protection
Agency, EPA-600/3-76-096. Environmental Research Laboratory-Duluth. Office of Research
and Development. Duluth, Minnesota. November.
Spehar, R.L., J.T. Fiandt, R.L. Anderson, and D.L. DeFoe. 1980. "Comparative Toxicity of Arsenic
Compounds and Their Accumulation in Invertebrates and Fish." Archives, Environmental
Contamination and Toxicology. Volume 9. Pages 53-63.
Spehar, R.L., H.P. Nelson, M.J. Swanson, and J.W. Renoos. 1985. "Pentachlorophenol Toxicity to
Amphipods and Fathead Minnows at Different Test pH Values." Environmental Toxicology and
Chemistry. Volume 4. Pages 389-397.
Spehar, R.L., G.D. Veith, D.L. DeFoe, and B.V. Bergstedt. 1979. "Toxicity and Bioaccumulation of
Hexachlorocyclopentadiene, Hexachloronorbornadiene and Heptachloronorbornene in Larval and
Early Juvenile Fathead Minnows, (Pimephales promelas)." Bulletin, Environmental
Contamination and Toxicology. Volume 21. Pages 576-583.
Stehly, G.R., and W.L. Hayton. 1990. "Effect of pH of the Accumulation Kinetics of Pentachlorophenol
in Goldfish." Archives of the Environmental Contamination and Toxicology. Volume 19.
Pages 464-470.
Stephan, C.E. 1993. "Derivation of Proposed Human Health and Wildlife Bioaccumulation Factors for
the Great Lakes Initiative." U.S. Environmental Protection Agency, Office of Research and
Development. U.S. Environmental Research Laboratory. NTIS PB93-154672.
Stokes, P.M., T.C. Hutchinson, and K. Krauter. 1973. "Heavy Metal Tolerance in Algae Isolated From
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-l 13
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C: Media-To-Receptor BCF Values August 1999
Polluted Lakes Near the Sudbury, Ontario Smelters." Water Pollution Research Journal of
Canada. Volume 8. Pages 178-201. (Abstract only).
Sundelin, B. 1983. "Effects of Cadmium on Pontoporeia affinis (Crustacea: Amphipoda) in Laboratory
Soft-Bottom Microcosms." Marine Biology. Volume 74. Pages 203-212.
Tarr, B.D., M.G. Barren, and W.L. Hayton. 1990. "Effect of Body Size on the Uptake and
Bioconcentration of Di-2-ethylhexyl Phthalate in Rainbow Trout." Environmental Toxicology and
Chemistry. Volume 9. Pages 989-995.
Theede, H., N. Scholz, and H. Fischer. 1979. "Temperature and Salinity Effects on the Acute Toxicity of
Cadmium to Laomedea loveni (Hydrozoa)." Marine Ecology - Progress Series. Volume 1.
Pages 13-19.
Thompson, S.E., C.A. Burton, D.L. Quinn, and Y.C. Ng. 1972. Concentration Factors of Chemical
Elements in Edible Aquatic Organisms. UCRL-50564 Rev. 1. Lawrence Livermore Laboratory.
University of California.
Thurberg, P.P., A. Calabrese, E. Gould, R.A. Greig, M.A. Dawson, and R.K. Tucker. 1977. "Response
of the Lobster, Homarus americanus, to Sublethal Levels of Cadmium and Mercury." In:
Vernberg, F.J., A. Calabrese, P.P. Thurberg, and W.B. Verberg (eds.). Physiological Responses
of Marine Biota to Pollutants. Academic Press. New York, NY.
Travis, C.C., and A.D. Arms. 1988. "Bioconcentration of Organics in Beef, Milk, and Vegetation."
Environmental Science and Technology. 22(3): 271-274.
U.S. EPA. 1976. "An Ecological Study of Hexachlorobutadiene (HCBD)." Office of Toxic Substances.
Washington, D.C. EPA 560/6-76/010.
U.S. EPA. 1978. "In-depth Studies on Health and Environmental Impacts of Selected Water Pollutants."
Washington, D.C.
U.S. EPA. 1979. "Water Related Environmental Fate of 129 Priority Pollutants." EPA Monitoring and
Data Support Division. Washington, D.C. Volume I and H. EPA 440/4-79-029a.
U.S. EPA. 1980a. "Ambient Water Quality Criteria for Heptachlor." Office of Water Regulations and
Standards. Criteria and Standards Division. Washington, D.C. EPA 440/5-80-052. October.
U.S. EPA. 1980b. "Ambient Water Quality Criteria for Polychlorinated Biphenyls." EPA 400/5-80/068.
Office of Water Regulations and Standards Division. Washington, D.C.
U.S. EPA. I980c. "Ambient Water Quality Criteria for Hexachlorobenzene. EPA 400/5-80/. Office of
Water Regulations and Standards. Washington, D.C.
U.S. EPA. 1985. "Health Assessment Document for Polychlorinated Dibenzo-p-dioxins." Office of
Health and Environmental Assessment. Washington, D.C. EPA 600/8-84/014F.
U.S. EPA. 1987. "Health Advisories for Hexachlorobenzene." Office of Drinking Water, Washington,
D.C.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-114
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
U.S. EPA. 1992a. "National Study of Chemical Residues in Fish." Office of Science and Technology.
EPA 823/R-92/008b. September.
U.S. EPA. 1992b. "Criteria and Related Information for Toxic Pollutants." Water Management Division,
EPA Region VI.
U.S. EPA. 1992c. Technical Support Document for Land Application of Sewage Sludge. Office of
Water. EPA822/R-93/001a. November.
U.S. EPA. 1992d. Estimating Exposure to Dioxin-Like Compounds. Draft Report. Office of Research
and Development. Washington, D.C. EPA/600/6-88/005B. August.
U.S. EPA. 1994a. Estimating Exposure to Dioxin-Like Compounds. Draft Report. Office of Research
and Development. Washington, D.C. EPA/600/6-88/005a,b,c. June.
U.S. EPA. 1994b. Draft Report Chemical Properties for Soil Screening Levels. Prepared for the Office
of Emergency and Remedial Response. Washington, D.C. July 26.
U.S. EPA. 1994c. Review Draft Technical Background Document for Soil Screening Guidance. Office
of Solid Waste Emergency Response. EPA/540/R-94/106. December.
U.S. EPA. 1994d. CHEMS-Compound Properties Estimation and Data. Version 1.00. CHEMDAT8
Air Emissions Program. Prepared for Chemical and Petroleum Branch, OAQPS. Research
Triangle Park, North Carolina. November 18.
U.S. EPA. 1994e. Revised Draft Guidance for Performing Screening Level Risk Analyses at
Combustion Facilities Burning Hazardous Wastes: Attachment C, Draft Exposure Assessment
Guidance for RCRA Hazardous Waste Combustion Facilities. Office of Emergency and
Remedial Response. Office of Solid Waste. December 14.
U.S. EPA. 1995a. Review Draft Development of Human Health Based and Ecologically Based Exit
Criteria for the Hazardous Wastes Identification Project. Volumes I and II. Office of Solid
Waste. March 3.
U.S. EPA. 1995b. "Great Lakes Water Quality Initiative Technical Support Document for the Procedure
to Determine Bioaccumulation Factors." EPA 820/B-95/005. March.
U.S. EPA. 1996. Ecological Data Quality Levels Reference Database, Version 3.0. EPA Region 5,
Wastes, Pesticides, and Toxics Division.
U.S. EPA. 1998. Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilitites.
External Peer Review Draft. U.S. EPA Region 6 and U.S. EPA OSW. Volumes 1-3.
EPA530-D-98-001A. July.
Van Hoogen, G., and A. Opperhuizen. 1988. "Toxicokinetics of Chlorobenzenes in Fish." Environmental
Toxicology and Chemistry. Volume 7. Pages 213-219.
Van Hook, R.I. 1974. "Cadmium, Lead, and Zinc Distributions Between Earthworms and Soils:
Potentials for Biological Accumulation." Bull. Contam. Toxicol. 12:509-512.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-l 15
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C: Media-To-Receptor BCF Values August 1999
Veith, G.D., D.L. DeFoe and B.V. Bergstedt. 1979. "Measuring and Estimating the Bioconcentration
Factor of Chemicals in Fish." Journal of Fisheries Research Board of Canada. Volume 36.
Pages 1040-1048.
Veith, G.D., D.W. Kuehl, F.A. Puglisis, G.E. Glass, and J.G. Eaton. 1977. "Residues of PCBs and DDT
in the Western Lake Superior Ecosystem." Archives of Environmental Contamination and
Toxicology. Volume 5. Pages 487-499.
Veith, G.D., KJ. Macek, S.R. Petrocelli, and J. Carroll. 1980. "An Evaluation of Using Partition
Coefficients and Water Solubility to Estimate Bioconcentration Factors for Organic Chemicals in
Fish." Pages 116-129. In J. G. Eaton, P. R. Parrish, and A. C. Hendricks (eds.), Aquatic
Toxicology. ASTM STP 707. American Society for Testing and Materials, Philadelphia.
Vighi, M. 1981. "Lead Uptake and Release in an Experimental Trophic Chain." Ecotoxicology and
Environmental Safety. Volume 5. Pages 177-193.
Wang, X., S. Harada, M. Watanabe, H. Koshikawa, and H.J. Geyer. 1996. "Modelling the
Bioconcentration of Hydrophobic Organic Chemicals in Aquatic Organisms." Chemosphere. Vol
32, Number 9. Pages 1783-1793.
Watras, C.J., and N.S. Bloom. 1992. "Mercury and Methylmercury in Individual Zooplankton:
Implications for Bioaccumulation." Limnology and Oceanography. Volume 37, Number 6.
Pages 1313-1318.
Watras, C.J., J. MacFarlane, and F.M.M. Morel. 1985. "Nickel Accumulation by Scenedesmus and
Daphnia: Food Chain Transport and Geochemical Implications." Canadian Journal of Fisheries
and Aquatic Science. Volume 42. Pages 724-730.
Williams, D.R., and J.P.Giesy, Jr. 1979. "Relative Importance of Food and Water Sources to Cadmium
Uptake by Gambusia affinis (Poecilidae)." Environmental Research. Volume 16.
Pages 326-332.
Wofford, H.W., C.D. Wilsey, G.S. Neff, C.S. Giam, and J.M. Neff. 1981. "Bioaccumulation and
Metabolism of Phthalate Esters by Oysters, Brown Shrimp, and Sheepshead Minnows."
Ecotoxicology and Environmental Safely. Volume 5. Pages 202-210.
Wood, L.W., P. O'Keefe, and B. Bush. 1997. "Similarity Analysis of PAH and PCB Bioaccumulation
Patterns in Sediment-Exposed Chironomus teutons Larvae." Environmental Toxicology and
Chemistry. Volume 16, Number 2. Pages 283-292.
Yockim, R.S., A.R. Isensee, and G.E. Jones. 1978. "Distribution and Toxicity of TCDD and 2,4,5-T in
an Aquatic Model Ecosystem." Chemosphere. Volume 7, Number 3. Pages 215-220.0
Zaroogian, G.E., and S. Cheer. 1976. "Accumulation of Cadmium by the American Oyster, Crassostrea
virginica." Nature. Volume 261. Pages 408-410.
Zaroogian, G.E., G. Morrison, and J.F. Heltshe. 1979. "Crassostrea virginica as an Indicator of Lead
Pollution." Marine Biology. Volume 52. Pages 189-196.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-l 16
-------
APPENDIX D
BIOCONCENTRATION FACTORS (BCFs)
FOR WILDLIFE MEASUREMENT RECEPTORS
Screening Level Ecological Risk Assessment Protocol
August 1999
-------
Screening Level Ecological Risk Assessment Protocol
Appendix D; Wildlife Measurement Receptor BCF Values August 1999
APPENDIX D
TABLE OF CONTENTS
Section Page
D-1.0 GENERAL GUIDANCE D-l
D-l.l BIOTRANSFER FACTORS FOR MAMMALS (Bamamma^ D-3
D-1.2 BIOTRANSFER FACTORS FORBIRDS (Babird) D-5
REFERENCES: APPENDIX D TEXT D-9
TABLES OF WILDLIFE MEASUREMENT RECEPTOR BCF VALUES D-ll
U.S. EPA Region 6 , U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering D-i
-------
Screening Level Ecological Risk Assessment Protocol
Appendix D; Wildlife Measurement Receptor BCF Values August 1999
APPENDIX D
WILDLIFE MEASUREMENT RECEPTOR BCFs
Appendix D provides recommended guidance for determining values for compound-specific, media to
receptor, bioconcentration factors (BCFs) for wildlife measurement receptors. Wildlife measurement
receptor BCFs should be based on values reported in the scientific literature, or estimated using physical
and chemical properties of the compound. Guidance on use of BCF values in the screening level
ecological risk assessment is provided in Chapter 5.
Section D-1.0 provides the general guidance recommended to select or estimate compound BCF values for
wildlife measurement receptors. Sections D-1.0 through D-1.3 further discuss determination of BCFs for
specific media and receptors. References cited in Sections D-l.l through D-1.3 are located following
Section D-1.3.
For the compounds commonly identified in risk assessments for combustion facilities (identified in Chapter
2) and the mammal and bird example measurement receptors listed in Chapter 4, BCF values have been
determined following the guidance in Sections D-1.0 through D-1.3. BCF values for these limited number
of compounds and pathways are included in this appendix (see Tables D-l through D-3) to facilitate the
completion of screening ecological risk assessments. However, it is expected that BCF values for
additional compounds and receptors may be required for evaluation on a site specific basis. In such cases,
BCF values for these additional compounds could be determined following the same guidance
(Sections D-1.0 through D-1.3) used in determination of the BCF values reported hi this appendix. For the
calculation of BCF values for measurement receptors not represented in Sections D-l.l through Dl-3 (e.g.,
amphibians and reptiles), an approach consistent to that presented in this appendix could be utilized by
applying data applicable to those measurement receptors being evaluated.
For additional discussion on some of the references and equations cited in Sections D-1.0 through D-1.3,
the reader is recommended to review the Human Health Risk Assessment Protocol (HHRAP) (U.S. FJPA
1998) (see Appendix A-3), and the source documents cited in the reference section of this appendix.
D-1.0 GENERAL GUIDANCE
This section describes general procedures for developing compound-specific BCFs from biotransfer
factors (Ba) for assessing exposure of measurement receptors. A biotransfer factor is the ratio of the
compound concentration in fresh (wet) weight animal tissue to the daily intake of compound by the
animal through ingestion of food items and media (soil, sediment, surface water). Therefore, as
discussed in Chapter 5, biotransfer factors and receptor-specific ingestion rates can be used to calculate
food item- and media-to-animal BCFs. This approach provides an estimate of biotransfer of compounds
from applicable food items and media to measurement receptors ingesting these items.
Biotransfer factors could also be used directly in equations to calculate dose to measurement receptors.
However, in order to promote consistency in evaluating exposure across all trophic levels within complex
food webs, BCFs calculated from Ba values are recommended in this guidance for evaluating
measurement receptors. The use of Ba values to determine BCF values, and the use of BCF values in
general, for the estimation of compound concentrations in measurement receptors may introduce
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering D-l
-------
Screening Level Ecological Risk Assessment Protocol
Appendix D; Wildlife Measurement Receptor BCF Values August 1999
uncertainty. Major factors that influence the uptake of a compound by an animal, and therefore
uncertainty, include bioavailability, metabolic rate, type of digestive system, and feeding behavior.
Uncertainties also should be considered regarding the development of biotransfer values in comparison to
how they are being applied for estimating exposure. For example, biotransfer values may be used to
estimate contaminant uptake to species from items ingested that differ from the species and intakes used
to empirically develop the values. Also, biotransfer data reported in literature may be specific to tissue or
organ analysis versus whole body. As a result, BCFs may be under- or over-estimated to an unknown
degree.
BCFs for Measurement Receptors Ingesting Food Items BCF values for measurement receptors
ingesting food items (plants or prey) can be calculated using the compound specific Ba value applicable
to the animal (e.g., mammal, bird, etc.) and the measurement receptor-specific ingestion rate as follows:
BCFF_A = BaA • IRF Equation D-1-1
where
BCFF.A = Bioconcentration factor for food item (plant or prey)-to-animal
(measurement receptor) [(mg COPC/kg FW tissue)/(mg COPC/kg FW
food item)]
BaA = COPC-specific biotransfer factor applicable for the animal
(day/kg FW tissue)
IRF = Measurement receptor food item ingestion rate (kg FW/day)
As an example of applying the above equation, BCF values for plants-to-wildlife measurement receptors
listed in Chapter 4 are provided in Table D-l at the end of this appendix. Measurement-receptor specific
ingestion rates used to calculate BCFs are presented in Table 5-1. Ba values applicable to the mammal
and bird measurement receptors in Table D-l are discussed in Sections D-l.l and D-l.2, respectively.
BCFs for Measurement Receptors Ingesting Media BCF values for measurement receptors in trophic
levels 2, 3, and 4 ingesting media (i.e., soil, surface water, and sediment) can be calculated using the
compound specific Ba value applicable to the animal (e.g., mammal, bird, etc.) and the measurement
receptor-specific ingestion rate as follows:
BCFM A = BaA ' IRu Equation D-l-2
where
BCFM.A = Bioconcentration factor for media-to-animal (measurement receptor)
[(mg COPC/kg FW tissue)/(mg COPC/kg WW or DW media)]
BaA = COPC-specific biotransfer factor applicable for the animal
(day/kg FW tissue)
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering D-2
-------
Screening Level Ecological Risk Assessment Protocol
Appendix D; Wildlife Measurement Receptor BCF Values August 1999
IRU = Measurement receptor media ingestion rate (WW or DW kg/day)
Equation D-l-2 assumes that BaA provides a reasonable estimate of the uptake of a compound from
incidental ingestion of abiotic media during foraging.
As an example of applying the above equation, BCF values for various wildlife measurement receptors
listed in Chapter 4 are provided in Table D-2 (water) and Table D-3 (soil and sediment).
Measurement-receptor specific ingestion rates used to calculate BCFs are presented in Table 5-1. Ba
values applicable to the mammal and bird measurement receptors for which values were calculated are
discussed in Sections D-l.l and D-1.2, respectively.
BCFs for Dioxins and Furans As discussed in Chapter 2, the BCF values for PCDDs and PCDFs are
calculated using bioaccumulation equivalency factors (BEFs). Consistent with U.S. EPA (1995b), BEFs
are expressed relative to the BCF for 2,3,7,8-TCDD as follows:
BCFj = BCF2^TCDD • BEFj Equation D-l-3
where
BCFj = Food item-to-animal or media-to-animal BCF foryth PCDD or
PCDF congener for food item-to-animal pathway [(mg
COPC/kg FW tissue)/(mg COPC/kg FW plant)]or media-to-
animal pathway [(mg COPC/kg FW tissue)/(mg COPC/kg WW
media)]
BCF2,3j,8-TCDD = Food item-to-animal or media-to-animal BCF for 2,3,7,8-TCDD
BEFj = Bioaccumulation equivalency factor for/th PCDD or PCDF
congener (unidess)
The use of BEFs for dioxin and furan congeners is further discussed in Chapter 2.
D-l.l BIOTRANSFER FACTORS FOR MAMMALS (Bamammal)
As discussed in Section D-1.0, calculation of BCF values to be used in pathways for mammals ingesting
food items and media requires the determination of COPC-specific biotransfer factors for mammal
measurement receptors (Bamammc^. This section discusses selection of the fiOn^m^ values used to
calculate the COPC and measurement receptor specific BCF values presented in Tables D-l through D-3.
Organics For organics (except PCDDs and PCDFs), the following correlation equation from Travis and
Arms (1988) was used to derrive Bammmal values on a FW basis:
l°SBamammal =-7.6 + \ogKow Equation D-l-4
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering D-3
-------
Screening Level Ecological Risk Assessment Protocol
Appendix D; Wildlife Measurement Receptor BCF Values August 1999
where
Bamammai = Biotransfer factor for mammals (day/kg FW tissue)
Kow = Octanol-water partition coefficient (unitless)
To calculate the values presented in Tables D-l through D-3, COPC-specific Km values were obtained
from Appendix A-2.
Biotransfer factors obtained from Travis and Arms (1988) were derived from correlation equations
developed from data on experiments conducted with beef cattle ingesting food items and media
containing compound classes such as DDT, pesticides, PCDDs, PCDFs, and PCBs. As further literature
is developed for other species and compounds, the Travis and Arms (1988) correlation equation should
be compared for applicability to species and compound, and best fit correlation for estimation of uptake.
PCDDs and PCDFs Bamammal values for PCDD and PCDFs were derrived from Ba values for cattle as
presented in:
• U.S. EPA 1995a. "Further Studies for Modeling the Indirect Exposure Impacts from
Combustor Emissions." Memorandum from Matthew Lorber, Exposure Assessment
Group, and Glenn Rice, Environmental Criteria and Assessment Office, Washington,
D.C. January 20.
U.S. EPA (1995a) determined Ba values for cattle from McLachlan, Thoma, Reissinger, and Hutzinger
(1990). These empirically determined Ba values were recommended by U.S. EPA (1995a) over the
Travis and Arms (1988) correlation equation for dioxins and furans.
Inorganics For metals (except cadmium, mercury, selenium, and zinc), Ba values on a fresh weight
basis were obtained from Baes, Sharp, Sjoreen, and Shor (1984). For cadmium, selenium, and zinc, U.S.
EPA (1995a) indicated that Ba values were derived by dividing uptake slopes [(g compound/kg DW
tissue)/(g compound/kg DW feed)], obtained from U.S. EPA (1992), by a daily consumption rate of
20 kilograms DW per day by cows.
For use in calculating BCF values presented in Tables D-l through D-3 of this appendix, dry weight Ba
values were converted to fresh weight basis by assuming a tissue moisture content (by mass) of
70 percent for cows. Moisture content information was obtained from the following:
• U.S. EPA. 1997a. Exposure Factors Handbook. "Food Ingestion Factors". Volume H
EPA/600/P-95/002Fb. August.
• Pennington, J.A.T. 1994. Food Value of Portions Commonly Used. Sixteenth Edition.
J.B. Lippincott Company, Philadelphia.
Mercuric Compounds Based on assumptions made regarding speciation and fate and transport of
mercury from stack emissions (as discussed in Chapter 2), elemental mercury is assumed not to deposit
onto soils, water, or plants. Therefore, it is also not available in food items or media for ingestion and
subsequent uptake by measurement receptors. As a result, no BCF values for elemental mercury are
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering DA
-------
Screening Level Ecological Risk Assessment Protocol
Appendix D; Wildlife Measurement Receptor BCF Values August 1999
presented in Tables D-l through D-3 of this appendix. If site-specific field data suggest otherwise, Ba
values for elemental mercury can be derived from uptake slope factors provided in U.S. EPA (1992) and
U.S. EPA (1995a), using the same consumption rates as were discussed earlier for the metals like
cadmium, selenium, and zinc.
Bammmat values for mercuric chloride and methyl mercury were derived from data in U.S. EPA (1997b).
U.S. EPA (1997b) provides Ba values for mercury in cows, but does not specify the form of mercury. To
obtain the Ba values for mercuric chloride and methyl mercury presented in Tables D-l through D-3 of
this guidance, consistent with U.S. EPA (1997b) total mercury was assumed to be composed of
87 percent divalent mercury (as mercuric chloride) and 13 percent methyl mercury in herbivore animal
tissue. Also, assuming that the Ba value provided in U.S. EPA (1997b) is for the total mercury in the
animal tissue, then biotransfer factors in U.S. EPA (1997b) can be determined for mercuric chloride and
methyl mercury, as follows:
• The default Ba value of 0.02 day/kg DW for total mercury obtained from U.S. EPA
(1997b) was converted to a fresh weight basis assuming a 70 percent moisture content in
cow tissue (U.S. EPA 1997a; Pennington 1994). The fresh weight Ba value for total
mercury was multiplied by 0.13 to obtain a Bamammal value for methyl mercury, and
by 0.87 to obtain a Bamammal value for mercuric chloride.
D-1.2 BIOTRANSFER FACTORS FOR BIRDS
As discussed in Section D-1.0, calculation of BCF values to be used in pathways for birds ingesting food
items and media requires the determination of COPC-specific biotransfer factors for bird measurement
receptors (Bahini). This section discusses selection of the Babird values used to calculate the COPC and
measurement receptor specific BCF values presented in Tables D-1 through D-3.
Oreanics Babird values for organic compounds (except PCDDs and PCDFs) were derived from Bamamtal
values by assuming that the lipid content (by mass) of birds and mammals is 15 and 19 percent,
respectively. Therefore, Babird values presented in Tables D-l through D-3 were determined by
multiplying Bamammal values by the bird and mammal fat. content ratio of 0.8 (15/19).
Notable uncertainties associated with this approach include (1) extent to which specific organic
compounds bioconcentrate in fatty tissues, and (2) differences in lipid content, metabolism, and feeding
characteristics between species.
PCDDs and PCDFs Babird values presented in Tables D-l through D-3 for PCDD and PCDF congeners
were derrived from data provided in the following:
• Stephens, R.D., M. Petreas, and G.H. Hayward. 1995. "Biotransfer and
Bioaccumulation of Dioxins and Furans from Soil: Chickens as a Model for Foraging
Animals." The Science of the Total Environment. Volume 175. Pages 253-273.
Stephens, Petreas, and Hayward (1995) conducted experiments to determine the bioavailability and the
rate of PCDDs and PCDFs uptake from soil by foraging chickens. Three groups of White Leghorn
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering D-5
-------
Screening Level Ecological Risk Assessment Protocol
Appendix D: Wildlife Measurement Receptor BCF Values August 1999
chickens were studied—control group, low exposure group, and high exposure group. Eggs, tissues
(liver, adipose, and thigh), feed, and feces were analyzed.
Congener specific BaUrd values were derrived from the Stephens, Petreas, and Hayward (1995) study by
dividing estimated whole body bioconcentration values for the high exposure group by a daily
consumption rate of soil. If congener specific BCF values were not reported for the high exposure group,
then estimated whole body values were determined using reported data for the low exposure group, if
available. A default consumption rate of soil by chicken of 0.02 kg DW/day was determined as follows:
(1) Consumption rate of feed by chicken was obtained from U.S. EPA (1995a), which cites a
value of 0.2 kg (DW) feed/day obtained from various literature sources.
(2) The fraction of feed that is soil (0.1) was obtained from Stephens, Petreas, and
Hayward (1995).
(3) Feed consumption rate of 0.2 kg/day was multiplied by fraction of feed that is soil (0.1),
to obtain the soil consumption rate by chicken of 0.2 x 0.1 = 0.02 kg DW soil/day.
Inorganics For metals (except cadmium, selenium, and zinc), Babird values were not available in the
literature. For cadmium, selenium, and zinc, U.S. EPA (1995a) cites Ba values that were derived by
dividing uptake slopes [(g compound/kg dry DW tissue)/(g compound/kg DW feed)], obtained from U.S.
EPA (1992), by a daily ingestion rate of 0.2 kilograms DW per day by poultry. To determine BCF
values presented in Tables D-l through D-3 in this appendix, reported dry weight Ba values were
converted to fresh weight basis by assuming a tissue moisture content (by mass) of 75 percent for
poultry (U.S. EPA 1997a; Pennington 1994).
Mercuric Compounds Based on assumptions made regarding speciation and fate and transport of
mercury from stack emissions (as discussed in Chapter 2), elemental mercury is assumed not to deposit
onto soils, water, or plants. Therefore, it is also not available in food items or media for ingestion and
subsequent uptake by measurement receptors. As a result, no BCF values for elemental mercury are
presented in Tables D-l through D-3 of this appendix. If site-specific field data suggest otherwise, Ba
values for elemental mercury can be derived from uptake slope factors provided in U.S. EPA (1992) and
U.S. EPA (1995a), using the same consumption rates as were discussed earlier for the metals like
cadmium, selenium, and zinc.
Babird values for mercuric chloride and methyl mercury were derived from data in U.S. EPA (1997b).
U.S. EPA (1997b) provides Ba values for mercury in poultry, but does not specify the form of mercury.
To obtain the Ba values for mercuric chloride and methyl mercury presented in Tables D-l through D-3
of this guidance, consistent with U.S. EPA (1997b) total mercury was assumed to be composed of
87 percent divalent mercury (as mercuric chloride) and 13 percent methyl mercury in herbivore animal
tissue. Also, assuming that the Ba value provided in U.S. EPA (1997b) is for the total mercury in the
animal tissue, then biotransfer factors in U.S. EPA (1997b) can be determined for mercuric chloride and
methyl mercury, as follows:
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering D-6
-------
Screening Level Ecological Risk Assessment Protocol
Appendix D; Wildlife Measurement Receptor BCF Values August 1999
• The default Ba value of 0.02 day/kg DW for total mercury obtained from U.S. EPA
(1997b) was converted to a fresh weight basis assuming a 75 percent moisture content in
poultry tissue (U.S. EPA 1997a; Pennington 1994). The fresh weight Ba value for total
mercury was multiplied by 0.13 to obtain a Babird value for methyl mercury, and by 0.87
to obtain a Babird value for mercuric chloride.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering D-7
-------
Screening Level Ecological Risk Assessment Protocol
Appendix D; Wildlife Measurement Receptor BCF Values August 1999
Baes, C.F., R.D. Sharp, A.L. Sjoreen, and R.W. Shor. 1984. "Review and Analysis of Parameters and
Assessing Transport of Environmentally Released Radionuclides through Agriculture."
Oak Ridge National Laboratory. Oak Ridge, Tennessee.
McLachlan, M.S., H. Thoma, M. Reissinger, and O. Hutzinger. 1990. "PCDD/F in an Agricultural
Food Chain. Parti: PCDD/F Mass Balance of a Lactating Cow." Chemosphere. Volume 20.
Pages 1013-1020.
Pennington, J.A.T. 1994. Food Value of Portions Commonly Used. Sixteenth Edition. J.B. Lippincott
Company, Philadelphia.
Stephens, R.D., M. Petreas, and G.H. Hayward. 1995. "Biotransfer and Bioaccumulation of Dioxins and
Furans from Soil: Chickens as a Model for Foraging Animals." The Science of the Total
Environment. Volume 175. Pages 253-273.
Travis, C.C., and A.D. Arms. 1988. "Bioconcentration of Organics in Beef, Milk, and Vegetation."
Environmental Science and Technology. 22:271-274.
U.S. EPA. 1992. Health Reassessment of Dioxin-Like Compounds, Chapters 1 to 8. Workshop Review
Draft. OHEA. Washington, D.C. EPA/600/AP-92/001a through OOlh. August.
U.S. EPA. 1994. "Draft Guidance for Performing Screening Level Risk Analyses at Combustion
Facilities Burning Hazardous Wastes. Attachment C, Draft Exposure Assessment Guidance for
RCRA Hazardous Waste Combustion Facilities." April 15.
U.S. EPA 1995a. "Further Studies for Modeling the Indirect Exposure Impacts from Combustor
Emissions." Memorandum from Matthew Lorber, Exposure Assessment Group, and Glenn Rice,
Indirect Exposure Team, Environmental Criteria and Assessment Office, Washington, D.C.
January 20.
U.S. EPA. 1995b. Great Lakes Water Quality Initiative Technical Support Document for the Procedure
to Determine Bioaccumulation Factors. EPA-820-B-95-005. Office of Water, Washington, D.C.
March.
U.S. EPA. 1997a. Exposure Factors Handbook. "Food Ingestion Factors". Volume H
EPA/600/P-95/002Fb. August.
U.S. EPA. 1997b. Mercury Study Report to Congress, Volumes I through VIII. Office of Air Quality
Planning and Standards and ORD. EPA/452/R-97-001. December.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering D-9
-------
Screening Level Ecological Risk Assessment Protocol
Appendix D; Wildlife Measurement Receptor BCF Values August 1999
TABLES OF MEASUREMENT RECEPTOR BCF VALUES
Screening Level Ecological Risk Assessment Protocol
August 1999
D-l PLANTS TO WILDLIFE MEASUREMENT RECEPTORS D-13
D-2 WATER TO WILDLIFE MEASUREMENT RECEPTORS D-16
TABLE D-3 SOIL/SEDIMENT TO WILDLIFE MEASUREMENT RECEPTORS D-22
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering D-l 1
-------
a
•<
H
g
§
fe
1
B
i
O
N*
«
a>
cstsfScnenenTj-cSfncSenencscNTj-cS''*
99909999099990999
4)4)4>4)4>4>4)4>1)4>4>4>4)4)4>4>4)
en ("•• en o I"** O O, t*" Tf ^ en ^ en o. (*•• O Tfi
CN en es 4)O 4) U 4> 4)
cs oo en cs ON in so
^ O; en en in, ON oq
g
cs cs cS en en en
999999
999999
cs m cs cs m
99999
S 3 & tS'vg
•-< en
9 9
O V
-HTj-cst-inessocScsen^Hin
cs r- cs cs; oo »n ^^
oq m
en en cs CN
•l cs cs en en en ^- cs c.. ,,.
50090' 990 9' 99999
L>4>dJlU4>4)4)4)4)4)4> _
5: O1 m en en1 in en' cs in1 TJ- so TJ- o en en t*-
3 r*; cs oo, so poo cs, oq Tf p so i";, "V "^ in ^
t m* —' ^f in* cs* ^" en oo", so" en" r- rs*
1 9 9. 9 9: 9
4) 41 4) 4) 4)
4> v' ^' U U, U' V O
n. m o: Tf' mi o ^- NO
m, in t^i o1 ** r^. ^H —i, m1 •-« r^, r*- ^^
cs —i cs; -" «i csi cs
1 o o: o o, PI o, o
+ i +i + +' + + +• +
VI O[ Vj V, V 0> V| V
o1 o oi oi ol o| O1 9
4i 4: t 4i t £ 4i vg
NO' oo r- m oo 2?! o, S
00, »o, —' -H1 00 "^i Tt| °°.
f-l ^t' - ON! TT1 ~' •*! mi «, CS! »
•^•; ' U< &)i V V
'
cs' m
91 9 91 9; 91 9' o
V|U| O\ V O V O V
-* o NO i —' t-, »' oo; in: oo
ON! NO; ^H
mi cs'l t~ in cs NO csi csi m
9; 9 99
£ £' g Ng
O' OM in NO
O, oi 3 O' o! O1 O' O O
, 4! 4i 41 4 41 4i 41 4, 4 4
. CN \o! ^" \o o csi m oo1 \o <^p
*v
S
a
o
U
!
Q
n
y
H
oo
r-
! m
cs
Q
Q
U
cu
00
t^
m
cs
Q
Q
y
00
r~
•*
m
CN
Q
8
X
35
oo
r^
NO.
m
cs
D
Q
.U
OS
00
r-
tr>
cs
n
a
u
Q<
00
r-
NO
•<
oo
t^
NO
m
cs
U.
Q
U
oc
r^
NO
•*
m
H.
Q
O
X
a\
oo
t^
m
cs
n.
Q
£•
DC
r--
«
Tf
cn
CS
11:
Q
U
a.
tr
00
r^
•*
m
cs
U.
Q
U:
O
o
c
CJ
f^
II
U
1
C
N
m
0)
(L>
J2
1
o
C
R
Ul
ffi
U
a)
c
ra
o
G
N
a)1
«•
r
4> i
Er
£'
o
s
SO
O
„
O
J1"1
Tt
"/",
r-l
.
0
7> i
•*•
1
P
.tS
*Q
m
s
aj
5
u
•^~
cs"
-------
o
I
H
H
Z
J
Q
J
g
2
04
OS
g
I
S
2
I
U
o
I— I
09
i "8 o fc, —; p
:«g-^
! & 199
9 9
2' Z
in o vo
co *3" ~*
99=?
O «*
9:
9 9
9 9
3
O; CM CM 00 00
•^ 00 —H ~H -H
t-^ VO CO
ri —«' iri
9 °
g
en co
q <*r
»n ^
O 0) 4)
o ^r r-
m oo —
- - . - es ^h *~^
O O O O O1 O Cp ^
flj 4!) U U 4) u 0> U
NOOTfOJ*-' -HCOO
Nq»np^cDO inNOo\
oj rj-' o — — ^4 oo i oi
? ?
i\
u i u "u ?
^ w ^ O O ^t1 ••*
S CM CM CO CM •«; Tt
" vd —I ON vo' r-' co
•0
ll
e o
U o
"S
n
VO
CM"
c
c
f
1
z
1
c:
_o
a
I
t
JS
Ci-
CA !
CQ
cc
"H.
3
5
^ r-
c § 'o
< <: U
•S
2
ca
o
1
c
cc
X
o
a
v
2
£
0
12
"o,
1:
3nzene
•S
7i
ffi
c
*3
o
jD
cs
g
«
1
o
o
c
J
X
K
c:
•§
o
1
"o1
c
JS
&
_o
5;
^
O "o
j!l
§• .
5i 1, c1
K; 5; 1
u, e ^ i
S, i! 1 1.
^ ' fQ pQ ' ^ '
exavalen
ii
-------
Q
W
J
oa
O
H
en
I
U
i
s
~
H
Z
1
O
'iiszz2
—< — ts
SS ' O
...ii.^'.,
IIISSlsl, z
o
fS
919 9
5r oq rJ oq r-; ^t
: •-« en TJ-' en *-*"•
w u
-H voi
08
D.
Compo
u
*a
'C
JS
-g
•g s
3 >v
t
3
g- -s I ; |. I,
W| 3 >i "31 .§ i n .3,
| |. 8' 1- f1 ll J, J; S
H ^! s; S' z M| K: H: N
o
1 mil
S =« wi to « *Q,
c 3333""
i illII
_| 2 ^ '£ 'c |
1 E K O O H
< 0 S 03 S a,
Z S ffi O O H
> ts
8 ~
Q. T3
O! U
S tc
VI
a
-------
I
H
B
3
a*
§
S
£
i
I
h
cS
£
p
I
v*
'S
-------
£
5
a
{§
1
I
i
I
S
I
I
£
5
I
e
•i
2
!
VO
•S
8P
22222-!2
2 2, 2 2; 2 °> 2
2i 2' 2 2 2 •* 2
oq a\ m
\d i cH i ^
Q1 S 1
>°. = g
CM Z ft.
T± w »Ui M
I, §1 J Hi I I f
•§'.i!l:| f, | I
3i s s i B ^ i
5 < < a a U U
-------
Q
a>
£
5
I
£
!
£
r«
fe
I
O
U
.S
pa
S> 3 .£
-------
9999999999999°9
4)4}tO4>4}4)cj4)uO4)U4>Qj4>
o
£
in —' ^-t ^- m m
O O -* »—'O'—OO, '-'—<
O O O1 O O> O O, O' O O
• 1^:1111111
*— ~H en
m m m m cs
~^n
9 9090099 ,99
4) o> ftj ft) £ o> o> ' 0> O>
~-' ON ^- m O es ^ m • t*-' \o
|1
s,?
"S o,
50 Bi
\O ON, ra Ti- in
en ON! r»' m oo en r»
^_; r^
?enm'Tj-^-mminmin enmenmmmoj
099099000 0090999
O O flJ fli fl!> U'U U 4) (L) 4) ft}'ft),ft) 4) 4) 4)
*o, rsi -H m en O ON oo oo —i \o CN m, eNi ON, r^ en
m -^ -H \o r- cs vo
i—*' OO m ON m m »rj
OO1 — «
°^ ^
<—< OO
, r-
o), c4 ON
^n'i od —'"
^J- m
9, o
4) a>
«n oo
ON r-^
V} en
O O S 8 O O,
a> a> a) a)' a) u
ON —< so ooi oo tn
O1 O
oi ; •* —,'
>o ^H o1
ISIS
,
S en
*•! m
-H' ON •* -H Tf en
9' 9; 9 9, 9; 9! 9' 9- 91 9 9 9 9 9
o, a) u «>, o1 o u u u1 « a) u o, u
oo en rf ts in' I- M; mi o -HI
t- o»
rs en
r-: ci
_, o, 91 ! 9, o, o 91
4) U1 V1 4) 1) 4> 4)
, . _r oo m fN I o! o r- «ni
oo p Oi O m —^ , ^o: «-;. ' '-;: ~
«o »-«! \di 'o! cis *-* en.
Sen oo1 r*-i
,9! 91 9
i o u o:
o\
Q
-------
I
H
'S
I/)
O O O
—< in oo vo oo
(M o P VO m
Z Z Z Z Z <*!. Z
OX! Ox OO
O O O
u oi «i
m eni es -^
5s S?. vq
fS! (Si —
v1 in. i 001 a*\ to
-i es en •* •*' i~ •*
i C
-------
£ -% 999
igi^^cS-c
jlg*-***^.
2 S
S
6
O1 TJ-
a-o-C * < <; < <^' ?' <
||JB 2 ZZ eH S Z
!S g «, , . , i .* .
|
z. z ^.
I
r^t m ^tl en
JIS'^^'01. ^i^'^i^l^t
HI A ^j- QQ! *-H C\i m; ^-: SO, —<
3 «» ^
1!
i.
S3 u
r^^-«_ rt ^.*^"c in^^
lll|||IIIJ
Uf--3SSZKKE-N
E S
&
CQ
on
e
•53
3
S
o
T3
S
2
a
g
=3
&
05
S
=3
s-
•s
£
1
b
03
d
X
=a
<
'o
I
J
1
I-
P a
.;= JD ^3 c c
EES
O O H
I
EC S D3 S O.
a: a o o H
-------
Q
W
vo in in in
0009
in»ot~. mvoo—'
•n -I •* •*. r~ PJ, «
ml Tfi 001 tni —*
Cv rj-j Cft •*!
—'i o>! oo
a
-------
Q
Ed
S3
en
g
Ed
O
Ed
I
0!
a
3
Ed
S
!
o
j
g
Ed
S
NM
O
Ed
en
05
O
H
U
I
Z
8
o
«
sfil
%
CO
CM
-------
Q
W
1
?.'' 9
m, vo l
e S a S
~ X O O on
-------
«?
0
-
wiu-itnvivoisoi/iv)
5 I I 1 ° 9'9 9 °
. , ._ _ :-- ^ --£) ,«•}_;
or ^!
^^ *^ O' O O •— ^H, ^M o —
p o, p, p p p p, p p p
in' ^ "*T: "*i vo ^-; v> ^r ^t; •*
9 9' 9i 9 9 9 91 9 9: 9,
OUUUQJ'VU v O U
wi I —H I VO' |"N' m ON' ON ! •—* ^^ \Q
o\l m « vo i^1 m o\' ON : —< •»
•-r \O Tt-l ON. VO' —, 00 —' VO VO
VO
•s
I
mi mj nl «5 o:
9! 91 9' 9i 9 9! 91 9
u u 01 u v u u! ±1
csi in1 •*> m| ti 921 §j ml
ON, oo, r»' —, -ii -a-, «i
— i t~, «' vol voi
i §, Oi p1 pi o
'ilSil;^,*
; "^' ^H ; ^ .j
-I. •*( •*;
8
O
"5 Si -«; I~:i m' ^.
i! f", »'i' «! ri m'i -41 vi;
eS, Q1 CS ' : £ oo . vo -• Tfi
-------
!
E
o
H
O
t/3
i
8
se
VO
fN
o c 3 3 -5
•5 1 -g I 1 I
c w H 9j « x:
< < n C2 U U
-------
aa s
O
en
OS
en
§
u
§
u
o
"O ' i ("- in vo in vo vo *^
S 'a 99999999
OS P^^^^^c^en^.ooen
' 9 U Z Z od ~ oi -- vd od -H" -;
2 «•,
S
Z 2 Z , Zi ..;
o u w u o1 «-(
o
£
172
|l
1 fj
II
:g
> BO
11
11
-------
APPENDIX E
TOXICITY REFERENCE VALUES
Screening Level Ecological Risk Assessment Protocol
August 1999
-------
Screening Level Ecological Risk Assessment Protocol
Appendix E; Toxicity Reference Values August 1999
APPENDIX E
TABLE OF CONTENTS
Section Page
E-1.0 TRVs FOR COMMUNITY MEASUREMENT RECEPTORS IN SURFACE WATER,
SEDIMENT, AND SOIL E-l
E-2.0 TRVs FOR WILDLIFE MEASUREMENT RECEPTORS E-5
REFERENCES: APPENDIX E TEXT E-7
TABLES OF TOXICITY REFERENCE VALUES E-9
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Penmitting Division Office of Solid Waste
Center for Combustion Science and Engineering E-i
-------
Screening Level Ecological Risk Assessment Protocol
Appendix E: Toxicity Reference Values August 1999
APPENDIX E
TOXICITY REFERENCE VALUES
Appendix E presents implementation of the recommended approach (described in Chapter 5) for identifying
toxicity reference values (TRVs) for measurement receptors. Discussion is provided for determining
compound-specific TRY values for community and wildlife measurement receptors.
Following the guidance in Sections E-1.0 through E-1.2, U.S. EPA OSW has identified default TRY values
for the measurement receptors of the seven example food webs (listed in Chapter 4) and the compounds
commonly identified in ecological risk assessments for combustion facilities (identified in Chapter 2).
Section E-1.0 describes the determination of TRY values for surface water, sediment, and soil community
measurement receptors in the example food webs. Section E-2.0 describes determination of TRY values fen-
wildlife measurement receptors in the example food webs. Tables E-l through E-8 present the default TRY
values selected, the basis for selection of each value, and the references evaluated in determination of each
value.
TRY values for a limited number of compounds are included in this appendix (see Tables E-l through E-3)
to facilitate the completion of screening ecological risk assessments. However, it is expected that TRV
values for additional compounds and receptors may be required for evaluation on a site specific basis. In
such cases, TRV values for these additional compounds could be determined following the same guidance
used in determination of the 77?V values reported in this appendix. For the determination of TRV values for
measurement receptors not specifically represented in Sections E-1.0 through E-2.0 (e.g., amphibians and
reptiles), an approach consistent to that presented in this appendix could be utilized by applying data
applicable to those measurement receptors being evaluated.
The default TRVs provided in Tables E-l through E-8 are based on values reported in available scientific
literature. Toxicity values identified in secondary reference sources were verified, where possible, by
reviewing the primary reference source. As noted in Chapter 5, TRV values may change as additional
toxicity research is conducted and the availability of toxicity data in the scientific literature increases. As a
result, U.S. EPA OSW recommends evaluating the latest toxicity data before completing a risk assessment
to ensure that the toxicity data used in the risk assessment is the most current. If more appropriate TRV
values can be documented, they should be used presented to the respective permitting authority for
approval.
TR Vs were not identified for amphibians and reptiles because of the paucity of lexicological information on
these receptors. Additional guidance on determination and use of TRV values in the screening level
ecological risk assessment is provided in Chapter 5.
E-1.0 TRVs FOR COMMUNITY MEASUREMENT RECEPTORS IN SURFACE WATER,
SEDIMENT, AND SOIL
TRV values provided in this appendix for community measurement receptors in surface water, sediment,
and soil were identified from screening toxicity values developed and/or adopted by federal and/or state
regulator^' agencies. As discussed in Chapter 5, these screening toxicity values are generally provided in
the form of standards, criteria, guidance, or benchmarks. For compounds with no available screening
toxicity value, TRVs were determined using toxicity values from available scientific literature. The
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering E-l
-------
Screening Level Ecological Risk Assessment Protocol
Appendix E; Toxicity Reference Values August 1999
equilibrium partitioning (EqP) approach was used to compute several sediment TR Vs. Uncertainty factors
(UFs) were applied to toxicity values, as necessary, to meet the TRY criteria discussed in Chapter 5. The
following sections discuss determination of 77?V values for community receptors in surface water,
sediment, and soil.
Freshwater TRVs Freshwater TRVs should be used for freshwater and estuarine ecosystems with a
salinity less than 5 parts per thousand. Freshwater 77? Vs, based on the dissolved concentration of the
compound in surface water, are listed in Table E-l. 77?Vs were identified using the following hierarchy:
1. Federal chronic ambient water quality criteria (AWQC) calculated for with no final
residue value (U.S. EPA 1999; 1996b). Federal AWQC for cadmium, copper, lead,
nickel, and zinc were multiplied by a chemical-specific conversion factor to determine a
TWbased on dissolved concentration (U.S. EPA 1999; 1996b).
2. Final chronic values (FCV) for COPCs for which their AWQC included a final residue
value (U.S. EPA 1996b).
3. If inadequate data (insufficient number of families of aquatic life with toxicity data) were
available to compute an AWQC or FCV, U.S. EPA (1999; 1996b) also reported
secondary chronic values (SCV) calculated using the Tier II method in the Great Lakes
Water Quality Initiative (GLWQI) (reported in 40 CFR Part 122). This method is similar
to the procedures for calculating an FCV. It uses statistically-derived "adjustment factors"
to address deficiencies in available data. The adjustment factor decreases as the number of
representative families increases.
4. If an AWQC, FCV, or GLWQI Tier n SCV value were not available, toxicity values cited
by U.S. EPA (1987) were identified. These toxicity values represent the lowest available
values. Further, additional toxicity values available from the AQUIRE database in U.S.
EPA's ECOTOXicology Database System (U.S. EPA 1996a) were identified. If collected
from a secondary source (such as AQUIRE), original studies were obtained and reviewed
for accuracy. The toxicity values reported in Table E-l represent the lowest (most
conservative), ecologically relevant, available value.
5. If toxicity data were unavailable, a surrogate TRY from a COPC with a similar structure
was identified.
6. If no surrogate was available, a TRV was not listed. The potential toxicity of a COPC
with no 77? V should be addressed as an uncertainty (see Chapter 6)
Standard AQUIRE report summaries on tests were screened for duration, endpoint, effect, and
concentration. Studies were also screened for ecologically relevant effects by focusing on studies that
evaluated effects on survival, reproduction, and growth. Aspects of endpoint, duration, and test organism
in each toxicity study were evaluated to identify the most appropriate study. Several compounds, most
notably metals, had a large number of toxicity values based on various endpoints, organisms, and exposure
durations. In these instances, best scientific judgment was used to identify the most appropriate toxicity
value (see Chapter 5).
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering E-2
-------
Screening Level Ecological Risk Assessment Protocol
Appendix E; Toxicity Reference Values _ August 1999
Chronic NOAEL-based values were not adjusted, but rather were carried through unchanged to become the
TRY. Toxicity values identified as "less than" a particular concentration were divided by 2 to represent an
average value because the true value is unknown, and it occurs between 0 and the noted concentration.
UFs discussed in Chapter 5 were applied to toxicity values not meeting TRY criteria.
Saltwater TRVs Saltwater TRVs are applicable to marine water bodies and estuarine systems with a
salinity greater than 5 ppt. Saltwater TRVs are listed in Table E-2. Saltwater water 77? V development
followed the same procedure as described above for freshwater receptors, except no GLWQI Tier n SCVs
were available. In addition, if no saltwater 37? V for a surrogate compound was available, the
corresponding freshwater TRY was adopted.
Freshwater Sediment TRVs Freshwater sediment TRVs are listed in Table E-3. They are applicable to
water bodies with a salinity less than 5 ppt. Freshwater sediment TRVs were identified from various sets of
screening values and ecotoxicity review documents. The lowest available screening values among the
following sources were identified:
1. No effect level (NEL) and lowest effect level (LEL) values from "Ontario's Approach to
Sediment Assessment and Remediation" (Persaud et al. 1993)
2. Apparent effects threshold (AET) values for the amphipod, Hyallela azteca, reported in
"Creation of Freshwater Sediment Quality Database and Preliminary Analysis of
Freshwater Apparent Effects Thresholds" (Washington State Department of Ecology
1994)
3. Sediment effect concentrations jointly published by the National Biological Service and the
U.S. EPA (Ingersoll et al. 1996).
If a screening value was not available in the sources listed above, toxicity studies and other values compiled
and reported by Jones, Hull, and Suter (1997) were reviewed to identify possible 77?Vs. Relevant studies
were prioritized based on the criteria listed in Chapter 5, and uncertainty factors were applied, as
applicable, based on criteria presented (see Chapter 5).
If a screening or sediment toxicity value was not available for an organic COPC, a freshwater sediment
77? V was computed, using the EqP approach (see Chapter 5), from the compounds corresponding
freshwater 77? V and KK value. The U.S. EPA Office of Water utilizes the EqP approach to develop
sediment quality criteria for nonionic (neutral) organic chemicals (U.S. EPA 1993). The EqP approach
assumes that the toxicity of a compound in sediment is a function of the concentration in pore water and
that to be nontoxic, the pore water must meet the surface water final chronic value. The EqP approach also
assumes that the concentration of a compound in sediment pore water depends on the carbon content of the
sediment and the compound's organic carbon partitioning coefficient (U.S. EPA 1993). A 77? V may be
calculated using the following equation (U.S. EPA 1993):
TRVsed = Koc ' foe • rav«, Equation E-l
where
TRVsed = Sediment TRV (|ag/kg)
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering E-3
-------
Screening Level Ecological Risk Assessment Protocol
Appendix E; Toxicity Reference Values August 1999
Koc = Organic carbon partition coefficient (L/kg)
foc = Fraction of organic carbon in sediment (unitless)—default value = 4%
(0.04)
TRVm = Corresponding surface water TRY (ug/L)
Marine Sediment TRVs Marine sediment TRVs are listed in Table E-4. They are applicable to sediments
of marine water bodies and estuarine systems with a salinity greater than 5 ppt. Marine sediment TRVs
were developed following the procedures used to identify the freshwater sediment TRVs. Screening values
were compiled from the following sources:
1. No observed effect level (NOEL) sediment quality assessment guidelines for State of
Florida coastal waters (MacDonald 1993).
2. Marine and estuarine effects range low (ERL) values from "Incidence of Adverse
Biological Effects Within Ranges of Chemical Concentrations in Marine and Estuarine
Sediments" (Long et al. 1995)
3. ERL values from "The Potential for Biological Effects of Sediment-Sorbed Contaminants
Tested in the National Status and Trends Program" (Long and Morgan 1991)
4. Marine sediment quality criteria from "Sediment Management Standards" (Washington
State Department of Ecology 1991)
Screening values were adopted directly as 77? Vs. If a screening value was not available in the sources
listed above, toxicity values from a search of the scientific literature and those compiled and reported by
Hull and Suter (1994) were reviewed to identify possible TRVs. Original studies were obtained, where
possible, and toxicity values were verified. Relevant studies were prioritized based on the criteria listed in
Chapter 5, and uncertainty factors were applied, as appropriate, based on criteria (see Chapter 5). If a
screening or ecologically relevant sediment toxicity value from the scientific literature were not available
for an organic COPC, a marine sediment 77?V was computed, using the EqP approach, from the COPC's
corresponding saltwater TRVand Koc value (see Equation E-l).
Terrestrial Plant TRVs The terrestrial plant TRVs listed in Table E-5 are based on bulk soil exposures.
Available terrestrial plant toxicity values from the scientific literature were used to develop presented TR V
values. Toxicity values were first identified from the following secondary sources:
1. Studies cited in Toxicological Benchmarks for Screening Potential Contaminants of
Concern for Effects on Terrestrial Plants: 1997 Revision (Efrovmson, Will, Suter, and
Wooten 1997). Available studies were obtained and reviewed for accuracy of toxicity
values. UFs were applied depending on study endpoint and available information.
2. Toxicity values in the Phytotox database in U.S. EPA's ECOTOXicology Database
System. Available studies were obtained and toxicity values were verified. UFs were
applied depending on study endpoint and available information.
3. Toxicity values in U.S. EPA Region 5 Ecological Data Quality Levels (EDQL) Database
(PRC 1995). The database contains media-specific EDQLs for the RCRA Appendix IX
constituents (40 CFR Part 264). The EDQLs represent conservative media concentrations
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering E-4
-------
Screening Level Ecological Risk Assessment Protocol
Appendix E: Toxicity Reference Values August 1999
protective of media receptors and wildlife that might be exposed through food chains based
in these media. Available studies were obtained and toxicity values were verified. UFs
were applied depending on study endpoint and available information.
Original studies were obtained, where possible, and prioritized based on criteria listed in Chapter 5.
Uncertainty factors were applied, as appropriate, based on criteria (discussed in Chapter 5) to develop TRY
values. For COPCs without toxicity data, the TRY for a surrogate COPC was adopted. If an appropriate
surrogate TRY was not available, no TRY value was identified. Generally, review of toxicity data available
in the scientific literature indicates that limited TRVs are available for organic compounds; while TRVs for
metals are available.
Soil Invertebrate TRVs The soil invertebrate TRVs listed in Table E-6 are based on bulk soil exposures.
Available soil invertebrate toxicity values from the scientific literature were used to develop TRVs for these
receptors. Soil invertebrate toxicity values were first identified from the following secondary sources:
1. Studies cited in Toxicological Benchmarks for Potential Contaminants of Concern for
Effects on Soil and Litter Invertebrates and Heterotrophic Process (Will and Suter n
1995a). Available studies were obtained and toxicity values were verified. UFs were
applied depending on study endpoint and available information.
2. Scientific literature was searched for toxicity values for outstanding compounds. Relevant
studies were obtained, toxicity values were verified, and UFs were applied as described
Original studies were obtained, where possible, and prioritized based on criteria listed in Chapter 5.
Uncertainty factors were applied, as appropriate, based on criteria to develop TRVs. If no toxicity value
was available for a COPC, the TRY for a surrogate COPC was adopted.
E-2.0 TRVs FOR WILDLIFE MEASUREMENT RECEPTORS
TRY values for wildlife measurement receptors are listed in Tables E-7 (mammals) and E-8 (birds). TRVs
were not developed for each avian and mammalian measurement receptor in the seven example food webs
because of the paucity of species-specific data. Rather, U.S. EPA OSW focused on identifying a set of
avian TRVs and a set of mammalian TRVs for the classes of compounds listed in Section 2.3. U.S. EPA
OSW assumed that, among the literature reviewed for a particular guild, the lowest available toxicity value
across orders in class Aves and across orders in class Mammalia would provide a conservative estimate of
toxicity. Available mammalian and avian toxicity values from the scientific literature were used to develop
TRVs for these receptors. Also, as previously noted, TRY values were not identified for amphibians and
reptiles because of the paucity of lexicological information on these receptors. Wildlife measurement
receptors TRV values were first identified from the following secondary sources:
1. Toxicity values compiled in Toxicological Benchmarks for Wildlife: 1996 Revision
(Sample, Opresko, and Suter 1996).
2. Toxicity values listed in the Terretox database of U.S. EPA's ECOTOXicology Database
System (U.S. EPA 1996b) were screened to identify studies potentially meeting the criteria
listed in Chapter 5.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering E-5
-------
Screening Level Ecological Risk Assessment Protocol
Appendix E; Toxicity Reference Values August 1999
Original studies were compiled, where possible, and reviewed to verify their accuracy based on criteria
listed in Chapter 5. In many cases, best scientific judgement was used to screen out studies with poor
experimental design (see Chapter 5). Uncertainty factors were applied, as appropriate, to develop TRVs
based on criteria presented in Chapter 5.
Conversions Some avian and mammalian toxicity data are expressed in terms of compound concentration
in the food of the test organism. To convert to daily dose, it is necessary to determine the exposure
duration and organism body weight. If the study does not report this information, the results should not be
used to compute a 77? V. If information on exposure duration and organism body weight is available,
dietary concentration can be computed to dose using the following generic equation:
C ' IR
DTI/ Equation E-2
BW
where
DD = COPCdose(mgCOPC/kgBW/day)
C = Concentration of COPC in diet (mg COPC/kg food)
IR - Food ingestion rate (kg/day)
BW = Test organism body weight (kg)
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering E-6
-------
Screening Level Ecological Risk Assessment Protocol
Appendix E: Toxicity Reference Values
August 1999
Efroymson, R.A., M.E. Will, G.W. Suter H, and A.C. Wooten. 1997. Toxicological Benchmarks for
Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision.
Oak Ridge National Laboratory, Oak Ridge, TN. 128 pp. ES/ER/TM-85/R3. November.
Ingersoll, C.G., P.S. Haverland, E.L. Brunson, TJ. Canfield, F.J. Dwyer, C.E. Henke, N.E. Kemble, D.R.
Mount, and R.G. Fox. 1996. "Calculation and Evaluation of Sediment Effect Concentrations for
the Amphipod Hyallela azteca and the Midge Chironomous riparius." International Association
of Great Lakes Research. Volume 22. Pages 602-623.
Jones, D.S., G.W. Suter n, and R.N. Hull. 7997. Toxicological Benchmarks for Screening Contaminants
of Potential Concern for Effects on Sediment-Associated Biota: 1997 Revision. Oak Ridge
National Laboratory, Oak Ridge TN. 34 pp. ES/ER/TM-95/R4. November.
Long, E.R., and L.G. Morgan. 1991. The Potential for Biological Effects of Sediment-Sorbed
Contaminants Tested in the National Status and Trends Program. National Oceanic and
Atmospheric Administration (NOAA) Technical Memorandum No. 5, OMA52, NOAA National
Ocean Service. August.
Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. "Incidence of Adverse Biological
Effects Within Ranges of Chemical Concentrations in Marine and Estuarine Sediments."
Environmental Management. Volume 19. Pages 81-97.
MacDonald, D.D. 1993. Development of an Approach to the Assessment of Sediment Quality in Florida
Coastal Waters. Florida Department of Environmental Regulation. Tallahassee, Florida.
January.
Persaud, D., R. Jaaguagi, and A. Hayton. 1993. Guidelines for the Protection and Management of
Aquatic Sediment Quality in Ontario. Ontario Ministry of the Environment. Queen's Printer of
Ontario. March.
Sample, B.E., D.M. Opresko, and G.W Suter H. 1996. Toxicological Benchmarks for Wildlife: 1996
Revision. Oak Ridge National Laboratory, Oak Ridge, TN. 227 pp. ES/ER/TM-86YR3. June.
U.S. EPA. 1987. Quality Criteria for Water—Update #2. EPA 440/5-86-001. Office of Water
Regulations and Standards. Washington, D.C. May.
U.S. EPA. 1996a. ECOTOX. ECOTOXicology Database System. A User's Guide. Version 1.0. Office
of Research and Development. National Health and Environmental Effects Research Laboratory.
Mid-Continent Ecology Division. Duluth, MN. March.
U.S. EPA Region 6
Multimedia Planning and Permitting Division
Center for Combustion Science and Engineering
U.S. EPA
Office of Solid Waste
E-7
-------
Screening Level Ecological Risk Assessment Protocol
Appendix E; Toxicity Reference Values August 1999
U.S. EPA. 1996b. "Ecotox Thresholds." ECO Update. EPA 540/F-95/038. Office of Emergency and
Remedial Response. January.
U.S. EPA. 1999. National Recommended Water Quality Criteria-Correction. EPA 822-Z-99-001.
Office of Water. April.
Washington State Department of Ecology. 1991. Sediment Management Standards. Washington
Administrative Code 173-204.
Washington State Department of Ecology. 1994. Creation and Analysis of Freshwater Sediment Quality
Values in Washington State. Publication No. 97-32-a. July.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering E-8
-------
Screening Level Ecological Risk Assessment Protocol
Appendix E; Toxicity Reference Values August 1999
TABLES OF TOXICITY REFERENCE (TRV) VALUES
Screening Level Ecological Risk Assessment Protocol
August 1999
E-l FRESHWATER TOXICITY REFERENCE VALUES E-ll
E-2 MARINE/ESTUARINE SURFACE WATER TOXICITY REFERENCE VALUES .. E-19
E-3 FRESHWATER SEDIMENT TOXICITY REFERENCE VALUES E-27
E-4 MARINE/ESTUARINE SEDIMENT TOXICITY REFERENCE VALUES E-34
E-S TERRESTRIAL PLANT TOXICITY REFERENCE VALUES E-42
E-6 SOIL INVERTEBRATE TOXICITY REFERENCE VALUES E-57
E-7 MAMMAL TOXICITY REFERENCE VALUES E-69
E-8 BIRD TOXICITY REFERENCE VALUES E-84
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering E-9
-------
a
S
oo
0)
no
i
i
i
&
s
u
a
03
t
1
£
&•
e
I*-
11
s
g
s
g
•g
8
§
B .
II
S si
O
T3
§
O
I
1
3
e
1
•3
i.
g
N
rinateddibe
JS
f
2
E
O
-g
Mehrle et al. (1988). 2,3,7,8-TCDD toxicity value for rail
trout (Oncorhynchus mykiss).
oo
8
c5
g
d
d
00
8
8
d
j
u
S
u
1
u
Q
Q
(j
00
ro
cs
i
^
£•
t
tn
ja
i
o
f.
j«
u
ear aromat
"u
1
2
•^
l>
Benzo(a)pyrene toxicity used as surrogate measure of toxi
This TRY should be used if assessing the risk of total HM
PAHs.
^-
o
d
!
1
i
0
^
1
^-^
I
5
h molecular
op
'£.
— ^
C3 ffi
0 ^
H OH
.^
^
U.S. EPA (1996). Calculated using Great Lakes Water Q
Initiative Tier n methodology.
^^
O
d
o
1
1
£
^.
o
d
1
P
_S
'^
1
C-
¥
c
u
CQ
0
Suter and Tsao (1996). Calculated using Great Lakes Wa
Quality Initiative Tier n methodology.
t-
S
d
U
JO
§
I
03
Z
(^
o
d
U
Q
&
P
anthracene
Benzo(a)
Toxicity value not available. Benzo(a)anthracene used as
surrogate.
i—
S
d
!
i
1
fluoranthenc
Benzo(b)
Toxicity value not available. Benzo(a)anthracene used as
surrogate.
£•>*,
S
d
1
'
1
fluoranthenc
Benzo(k)
Toxicity value not available. Benzo(a)anthracene used as
surrogate.
f>.
S
d
1
i
1
Chrysene
Toxicity value not available. Benzo(a)anthracene used as
surrogate.
r-
o
d
!
1
1
u
,h)anthracen
Dibenz(a
Toxicity value not available. Benzo(a)anthracene used as
surrogate.
r-
S
d
!
'
1
u
c
1
f
"o"
B
U
I
s
3
n
S
—
(J
o
JS
a
'S
"S
«
JG
"C
_0
f
2
,
n eo
11
Adopted from U.S. EPA (1996) value for Total PCB. Cal
using Great Lakes Water Quality Initiative Tier n method
o
d
—
2
.§
"E.
8-
z
2
d
;
\o
o
Aroclor 1
-------
00
S
CO
•o
GO
1
Reference and
1
jl
1
-3
1
e
U
Duration and
Endpoint*
J
T3
S
1 *
.2 |»
U J
• 0
a B
IM
3 •-
Si
A (1996) value
ter Quality Initis
OH CO
C/3 50
•— : ^
S2
*H ^3
•s J
f .s
< 3
O
d
JD
3
CO
U
1
s
Z
d
IN
_O
"o
1
s
i<
¥
i
£
1
s
•5
a
J
<%
I
1
.c
1
§>
55
00
S— f
B E
13 s
•c S
van der Sc
capricorni
a
d
S
tN
Subchronic
NOEC
2
c
ll
H .5
ea >•
«J 13
3 3
O
rn
_o
r^
U
I
S
Z
p
en
u
CO
Q
fc
P
a>
cd
1
p.
x;
u
-C
£
eft
5
a
53
•g
*
(S
13
'o
"S
00
o\
1
•a
ea
McCarthy
magna).
en
_„
^
O
1
s
z
I
Chronic NOEL
0
CS
13
1
|
5
i
3.
•3
e
S
o
u
1
0
—
i
1
£
A
£
1
.2
(5
00
c
. Calculated usi
n methodology.
i>.|
o H
O u
if
f— Is
Suter and
Quality In
8
in
o
S
S
1
•g
z
I
P
D
1
00
o\
^^
CO
1
d
ts
Chronic LOEL
^
'c
o
I
Ui
^3
£
CO
O
3
B
1
g>
. Calculated usi
n methodology.
1*
?!
" -I
Suter and
Quality In
oo
„
jS
s
1
S
z
00
(S
Tier n SCV
E
<£
o
S
U
(S
u
-------
a
w
j
ea
•<
H
00
Reference and Notes d
U
11p
£ JL
II
,H ***
1
C
« 1
| 6
.£?
Toxlci
Duration and
i Endpoint'
"tJ
§
5
1
y
'S
1
.c
CA
1
CA
^
. Toxicity value for blue;
O
o\
"3 '5'
* ?
o -=
||
Q i
v>
m
O
d
8
"j.
Acute LC50
Crotonaldehyde
Q
a
o
C3
1
£
c§
1(1982). Toxicity value i
£
:3
13
C
C
ca
c o^
•- !>
n 1
8
rl
vo
0
d
o
o
Acute ECO
1,4-Dioxane
f 1
II
£ ca
Si
**"^ M
u s •-•
(1990). No data availabl
37 percent formaldehyde
rmaldehyde concentratiol
£3 00 <2
o c *«
1 1 §
c 8 *Q
111
o s c
& h W
VO
ON
s
d
1
Acute LC50
Formaldehyde
r^
C
•a
«
c
n
oo
m"
0
o
d
^
00
oo
Subchronic
LC100
Vinyl chloride
i
3
X
"3
a
en
o
"M
Other chlorinate!
^
o\
•^s
i
CO
3
oo
tn
0
2
S
f
•g
z
00
vq
Proposed chronic
criterion
u
Hexachlorobenzen
^
oo
\_^
OH
U
co'
D
S
d
d
CO
Chronic LOEL
D
c
Hexachlorobutadie
/— s
oo
\^s
i
CO
D
(S
d
d
is
n s?
« O >
is o -a
13 — O
tn Q, cd
8 g "B.
g O to
S- n '•$
g > 0
u Di 5
- f-1 u
> S -I
> s
• o o
ill
_, co «5
d " —
< ]j |
co 1 i
D o .2
>n
u
2
C3
1
C3
s
2
m
Chronic criterion
Pentachlorophenol
|| Pesticides 0/g/L)
/_v
oo
ov
>^^
CU
CO
1=5
d
u
S
d
o
m
Acute LOEL
w
Q
Q
/_v
r^
00
2
*^s
CO
3
00
8
d
0
3
ca
o
1
•g
Z
oo
8
d
Chronic criterion
0
1
S.
tu
-------
a
s
oo
•s
Tf
•D
GO
I
•e
e
at
1
1
I
1
jl
3
1
2
£
|
1
s
•e
^c
11
Q
13
C
C
c
c
U
0^
^
o
c
E
•s
u
-C
S
u
_3
'3
ST
oo
o\
— 1
^ s
U a.
oo
00
d
d
oo
oo
u
1
•3 O
•§ o
to Z
c
_2
D.
s
_o
.c
ca
1
IK
2
E
"^^
6ft
gj
§
|
U.S. EPA (1988)
o
d
o
1
1
S
Z
i
d
j-j
tt<
g
c
'S
^
U.S. EPA (1987)
S
d
o
1
1
ts
Z
S
d
o
p
i §
o •§
O .tt
£ o
c
0
£
1
U.S. EPA (1999)
12
d
—
u
1
S
1
d
§
1
'5
o
E
_g
u
c
"3
>
C^
o
'E
CA
1
CO
|j>^
,3
. Calculated using Great
n methodology.
Suter and Tsao (1996)
Quality Initiative Tier
d
—
o
1
s
Z
d
U
CO
y
u
p
E
3
'S
n
is
en
O
•i
3
. Calculated using Great
n methodology.
Suter and Tsao (1996)
Quality Initiative Tier
SO
2
§
d
£
1
I
•g
z
^3
d
U
co
P
u
£
g
.2
s
u
n
S a "S S "8
c S ,> ti g>
!;+ S 2 jl
£ "^ "S *•* e u
t*-N Q\ +•* I* C ^ij
° .§ s> S g -3
lue expressed as a functio
ws: TRY = exp(mc[ln(har
2.715. Criterion was con
e following conversion fa<
A assumed hardness of 1<
to Mg/L were used to calc
U.S. EPA (1999). Val
and calculated as folio
m,. = 0.7852 and bc = -
concentration using thi
hardness)(0.041838].
conversion from mg/L
value.
u
i-si-oi
•C ^-^ .S2 o
s^u^ li
es r^ *-" ce T
* ?"S a o
r^ D *^ ^* ^*
c •§ > . ^
lue expressed as a functic
ws: TRY = exp(mc[ln(hai
1.702. Criterion was con
inversion factor of 0.960
and a conversion from mj
isplayed value.
U.S. EPA (1999). Va
and calculated as folio
m,. = 0.8545 and bc = -
concentration using a c
hardness of 100 mg/L
used to calculate the d
d
JO
u
1
s
2
u
^_ *
Q G4
^5 ^*^
|
'S
_0
"G
o
U
u
n.
a.
o
U
ffl
-------
pa
3
x
*
•n
•O
1
•o
etj
u
u
§
I
1
5-
11
1*
£
f
^^
|
'S
s
§
u
1%
41
5 s
9 U
Q
tJ
3
O
C.
g
o
0
U.S. EPA (1999). This value is expressed as mg free cyanide (as
CN)/L. |
ts
in
8
d
o
23
cd
u
1
03
3
Z
cs
m
8
d
§
1
'S
u
§""
u
u
TJ
'£
CO
Si
U
"cd
£
U.S. EPA (1999). Value expressed as a function of water hardness
and calculated as follows: TRV = exp(mc[ln(hardness)]+bc) where
mc = 1.273 and bc = -4.705. Criterion was converted to dissolved
concentration using the following conversion factor: 1.46203-[(ln
hardness)(0.145712]. A assumed hardness of 100 mg/L and a
conversion from mg/L to /ug/L were used to calculate the displayed
value.
CS
8
d
u
23
S
1
cd
ts
z
t3
>
»i
o M
d S
§
1_4
«J
'S
o
'S
1
u
•o
cd
J2
U.S. EPA (1999). This value was from data for inorganic
mercury (E).
f~
t~~
8
d
u
3
8
1
ed
O
Z
f^
t~
8
d
|
*c
u
u
"2
1
o
u
•o
1
_c
u
u
*C
3
u
M
i
Suter and Tsao (1996). Calculated using Great Lakes Water
Quality Initiative Tier n methodology.
oo
o
^5
s
d
£
3
cd
O
"E.
p.
ed
3
Z
oo
g
8
d
&
CO
a
Lrf
U
H
5*^
t-
3
£>
0
g
*>•>
-C
1
U.S. EPA (1999). Value expressed as a function of water hardness
and calculated as follows: TRV = exp(mc[ln(hardness)]+bc) where
m,. = 0.8460 and bc = 0.0584. Criterion was converted to dissolved
concentration using a conversion factor of 0.997. A assumed
hardness of 100 mg/L and a conversion from mg/L to /^g/L were
used to calculate the displayed value.
ts
S
d
JU
3
S
1
ed
•8
Z
-------
V
g
I
<2
en O T3
S § g
1*8
.3 "S.2
u * TJ
Sis
> en T«5
* « iS
<*-, O B
•g e.
14
B .<
-s|
•s-e
s §
* .s o
1M
Mi 2
O .. 00
o S oo
2, § o
ea -S ii
> S o
•s e
18
2P
J-J _C
*O '»
21
ca M
^T r \
cd
^P
8S
"3 cs
-S "
i S
!.?
|1
ll
"™ 3
ti-i U
0 U
CA O
1..
-C 3
•8
oo
OO
,-H
^-«
O
I
r
tj
i*
2
1
00 "5
N
o
Z
a
ty
fet
animal
uideli
(3) ac
than 2
pol
the
gene
ays,
ted l
AE
fa
i & u ^ '3 <
* a ^" *S ON
i > £ « I w
ie I §*s«s
lh -•••§? >.»
•S^S2
:1II?|!
••M3«B & 5 g
1 § aSl<
j* S o \-> a
• " § « 8 c e
• g « & <» .2? -2
S » E . « a
I|S||1
— 3
llllfl
Mi§5l
til til .
11°It11
>
g O Oi
Z co H
-------
TABLE E-1
CE VALUES
Z
1x3
TER TOXICITY REFER
(Page 7 of 8)
FRESHWA
dized Procedure." Z. Wasser Abwasser Forsch. 15.
1
§
:ed by an Improved Si
CA
O
H
REFERENCES
utants on Daphnia magna Straus
Toxic Action of Water Poll
"8
£
g
j.
-j
c 2
CO
1
00
c
'C
03
Fish." Annals NewYork Academy of Sciences.
_c
in Relation to Disea!
12
C3
3
1
"c3
o
J*
u
r-
t~
o
i
"3
U
d
•§
CO
iT
'3
>
4
CO
E
•^
»— i
U
« vc
o:^
f S
5> *o
^ S3
OQ
** O tA
H. ! '3 U
UH CA GO
^ £ £
•— >
Q
13
u
ihes." Journal of Hazardous Materials. Volume
VJ
iE
S
i to Fresh and Saltwa
13
_CJ
te Toxicity of 47 Industrial Chem
u
£
K
2
S3
•a
'S,
ai
izdowski, and
Q
W?
g'oo
g J?
^s
J^
>
•n
for the Evaluation of Acute Toxi<
iment of Bioassay Methods
h abstract).
!1. "Establist
;, with Englis
2 8
g
2 §•
O i->
3 ^
^S •*'
<" vo
Z ^
. r^
> U1
^ (N
1 "
C fli
« So
" P3
>-' a-
0* ^0
o
•i
CO
Reproduction Test." Water Research. Volume 23.
>>
Q
phnia magna in the 2
Q
^s
^s
nful Effects of Water Pollutants tt
1989. "Results of the Harr
tj
o
c
'^
<
•a
c
CO
i
§
Cu
Q
« 2
- v>
c3 o
i "">
i^ «
a^ u
*l
r
Ci
c"
43
3
U!
ow." Environmental Toxicology and Chemistry.
c
c
§
i
u
TS
g
a
c
00
1
c
id Di-n-octyl Phthalate to Daphni
lie Toxicity of Di-n-butyl ai
U
wi
oo
2
0> ON
s E:
E rL
i£ vo
$ CA
•^ co
*£
Q a
"S ^
!l
2j|
>»
Jj
H
OT
U
u
s
988. "Toxicity and Bioconcentration of
'. Volume 7. Pages 47-62.
- C
il
Coyle, and W.J. Adai
I Toxicology and Che
-.- s
^ s
i, D.L. Stalling, G.M. DeGraeve,
in in Rainbow Trout." Environnu
ll, J.D. Petty, P.H. Petermai
7,8-Tetrachlorodibenzofura
.tS fi
E
u
I
u
CO
2
§
(M
1
^
69
S
2
CS
S
.u
ct
§
o
"C
s
o
SA
1
i.
to
*•>
s*
c
Potential Contaminants of Conce
me.
Benchmarks for Screening
Oak Ridge, Tennessee. Jv
Toxicological
il Laboratory.
s>J
SI
§!>
H2
i -^
H co
U O
•O c
il
^ V)
P
u
H*
bH
4>
3
CO
tS
1
<:
rj
Q
f
1
itions and Standards.
C9
P
00
40/5-86-008. Office of Water Re
r Aluminum— 1988. EPA 4
ity Criteria fo
01
b.
^
1
.5
S
S
•<
00
00
Ov
<
cu
u
00
p
cV
u
Q
idards. Washington,
3
t»
Office of Water Regulations and
>te#2. EPA 440/5-86-001.
•8
^
i
1
^
-S
"C
s
5
s^,
"c
o»
f^.
00
Ov
<
a.
tQ
vi
D
u
-------
8305,
Rep
hn
gan
Ap
o >/->
a
ca
$
00
n
t
8
1
ON
O\
N
z
F
Cor
s
O)
1
§
H £
8 I
nj
ON
ON
ON
&
-------
SQ
H
!
•C
1
I
•
•
»
•
£
a
*£•
?
j
» su
s e "o
• £ 5
§ o
!«§
If
No saltwater data were available, therefore, corresponding
toxicity value was used (rainbow trout, Oncorhynchus myki
Mehrle et al. (1988). 2,3,4,5-TCDD toxicity value used.
00
s
O
X
O
d
d
oo
1
d
\
Q
D
U
H
00
m"
cs"
i
3
1
1
*o
j=
C3
o
a
cc
a>
S
1
O "D
C W
o B g
«2 o
i3 S -°
u § 2
U "Q 3
Rossi and Neff (1978) evaluated toxicity of three HMW (th
aromatic rings) PAHs to the polychaete, Neanthes arenaceo
LC50 of each HMW PAH exceeded 50 vgfL. This TRY she
assessing the risk of total HMW PAHs.
in
d
«
o
d
o
in
A
i
u
1
i
^
_ap
•£
S3
3
"o
.C
00
j=
~-i CO
ca K
O •<
E-| O.
Rossi and Neff (1978). Toxicity value for polychaete (N.
arenaceodentata).
m
d
«
o
d
o
in
A
Acute LC50
u
£,
^Q,
cd
g
P9
u
CO
§>
fc
3
CO
CO
Toxicity value not available. TRY for benzo(a)pyrene used
m
d
t-,
o
d
o
•n
A
Acute LC50
CJ
c
.
U.S. EPA (1987) chronic criterion for ambient water qualit;
m
o
d
U
-1
z »
*H<
D,
cd
O
d
\o
3
Q
1
2
w
-------
V)
S
ee
ference and Notes d
cu
III
J
73
S
«-L
•§ 1
y 6u
|
1
"e
«
u
ration and
ndpoint*
3 H
Q
•e
e
3
o
c
E
^
^
•- •
ca
3
!T
b<
S
ta
u
lo
CO
§
1
'5
u
'E
o
o
U.S. EPA (1987)
S
d
_0
0 "§
2l
S
d
1
(N
O
1
'^>
M
^3.
K
_cj
"S
Nitroaro
•
3z
&
S
V3
eg
TRY for nitrobenzene used
&>
2
_M
'S
>
S
Toxicity data not
00
VO
,
1
1
c
S
c
1
'£
3
en
U.S. EPA (1987)
R
—
o "i
21
0
en
ic criterion
§
w
u
c
u
3
C
'E
5
4
ts
CO
T3
U
en
M
TRY for 2,4-dinitrotoluene
d
1
1
eS
Toxicity data not
surrogate.
m
i
1
i
u
u
3
"S
S,
'E
3
of
U.S. EPA (1987)
oo
vc
VO
O
d
S
VO
criterion
o
3
U
u
S
Nitroben:
00
c
•3
1 E
o o
8 *~*
:e TRY available, therefore,
immon carp, Cyprinus carpi
981) adopted.
3> 8 C-
111
:1I
0 >,.2
No toxicity value
freshwater toxicit
Hashimoto and N:
o
5
d
§
*•""
1
I
i>
c
«
[V.
e
u
o
i5
"2
o
i~
Pentachk
/~v
H^
;<_
^
£
-2
CA
OJ
1 Phthalat
£
c
e
ty value for sheepshead mi:
_'3
£ H"
^A H
S?
Adams et al. (199
(Cyprinodon vari
r~>
3
d
g
A
o
§
jg
0
—
"ra
.C
•5^
X
u
V
CN
w
5
00
c >>
^3 ^S
° U
tn O
g S
8 E
u o
:e TRY available, therefore,
:d (water flea, D. magna) fr
fi
3
§^£
No toxicity value
freshwater toxicit
andWhitmore(l?
m
u
S j
zl
O
OJ
1
u
ta
"«
.^
n.
3
i
3
•S
e
O
U
.H
c
I
o
1 Volatile
^
8-
S
value for brine shrimp (An
r?
CJ
1
j2
"73
u
8
£
l
p<
o
d
O
8
n
3
1
Acetone
D.
E
1
c
o
1
u
3
1
'3
1
^•^
o\
1-
Portmann and Wi
(Crangon crango.
8
o
d
o
o
-------
*?
bJ
^J
J
P5
H
X
O
H
K
e
<
^
H
u
<
/^^\
w
%
r^
(V
^^^
eference and Notes d
X
III
j|
^
1
fl
t3
s ^
1
1
~G
u
duration and
Endpolnt*
M
•0
e
3
o
B.
0
U
S
§
). Toxicity value for Rainbow trout 1
o
00
2
Anderson and Luster (
gairdnari).
o
00
*"H
O
d
8
00*
os en 3i
1
S
Chlorofor
•2
1
I
•o
c
"S
i
u
J3
•s
g
H
Dawsonetal. (1977).
beryllina).
to
o
d
g
(^
en
irH
teLC50
1
u
•s
Crotonalc
£
.5
1
city value for inland silverside (M. hi
"g
H
£
i-H
§
CO
1
Q
t~
\O
O
d
g
p*
*
vd
te LC50
1
c
X
o
3
4
CO
u B
co -2 u
ea « co
G .p- 3
Lte TRY available for this constituent,
ishwater toxicity value used (Striped 1
rdon and Harell (1990). Nodataava
containing 37 percent formaldehyde
on formaldehyde basis.
g»J- 0 .5 T3
B S1 a 1 1
No toxicity value or si
therefore, correspond!:
Morone saxatilis) fror
for formadehyde. For]
surrogate. TRY expre
VO
o\
"*
0
d
0
ON
•*"
O
1
u
J3
•8
"~3
I
tt.
B
1 B
ite TRY available, therefore, correspc
ed (Northern pike, Esox lucius) from
CO CO
g> 3
| §
No toxicity value of si
freshwater toxicity val
etal. (1977).
o
oo
oo
ro
o
O
d
_
oo"
oo
CO
chronic LC100
•§
CO
u
Q
"5
u
c
1
J
"S
ca
o
lorinate
1
O
§
r value for American oyster (Crassost
s
'K
Zaroogian(1981). To
virginica).
o
o
d
S
„-
A
O
1
o>
c
o
-8
II Hexachlo
U.S. EPA (1987)
CO
d
o
O
d
CN
CO
teLOEL
1
o
c
robutadi'
Hexachloi
U.S. EPA (1987)
B
d
0}
o
d
q
^
te LOEL
1
c
•o
cs
C
04
o
"R
y
C
Hexachlo
%
Toxicity value for sheepshead minnoi
^•^, »
S?
Hansen and Cripe (19
(Cyprinodon variegatl
oo
^^
d
oo
1
|
1
03
CJ
c
N
C
U
1
Pentachlo
U.S. EPA (1987)
OS
^
_u
11
D,
D.
CO
O;
""
snic criterion
U
"3
u
f
Pentachlo
i
5
1 Pesticide
[i]
-------
a
X
Tf
&
•0
E*
1
Z
1
w
1
tii
f
3 *s >
K
li
o **•
§
"3
S
1
1
u
§
Duration and
Endpoint'
•8
3
O
D.
1
U.S. EPA (1987)
2
d
u
0
d
^
^^
Acute LOEL
a
Q
Q
U.S. EPA (1987)
S
S
d
jo
j5 .8
z "a,
£•
n
c«
S
O
Chronic criterion 1
Heptachlor
^
Q
-5
1
1
i.
S
Toxicity value for brine shrimp
£
O\
•a
ts
Kt
V
3
i
d
S
d
tn
en
Acute LC50
u
C
Js
II Hexachloroj
i
E
Inorganics
l-s.l
»J^8
*2 00 W Si-
§ -1 o "1
ence of pH and temperature on ;
ortality) of aluminum to smoltif;
. Endpoint concentration based
aluminum for exposure at pH 6
iff'
.1—1 *•* Ct t*r\
Study examined
toxicity (as time
salmon (Salmo si
inorganic and or(
Muniz 1993).
-
1
d
S
d
T
?5
d
Acute LT50
|
c
9
U.S. EPA (1987)
S *
:n the concentration of dissolved
bstantially less toxic and use of
ate.
a 3 -c
U.S. EPA 1999.
elevated, copper
ratio may be app;
g
d
—
o.
C3
en
8
d
Chronic criterion
u
1
U
-------
a
00
'S
m
•
"
JJ
5
"3
i
"s
*
Z
•o
e
at
8
s
w
U
«
*§•
s S »
i £ S
2 *s >•
a«
•**
i 1
8(2
13 ^
1
U
U
Duration and
Endpoint'
•o
a.
E
o
0
oo
<
&
CO
^
»-H
8
d
U
3
i— H
8
d
Chronic criterion
u
."2
'c
5>
U
2
£
a
S
d
d
o
S
d
Subchronic
NOAEL
>,
D
O
o
£
_
U
S
1
^
§3
05
D
CS
00
8
d
_o
sl
ts
00
8
d
Chronic criterion
"o
U
'•z.
oo
2
^
OH
U
05
5
,_H
£
d
_o
s!
^_i
B
d
Chronic criterion
f,
3
1
O
V3
i
^
&
CO
=>
CO
C*)
8
d
_o
If
f*^
d
Chronic giterion/
proposed criterion
U
CO
1
<
&
05
D
S
d
o
d
ts
Acute LOEL
E
•3
"s
^
ST
o\
^
BJ
CO
^
^•4
0
d
q
^^
oo
o
d
| Chronic giterion
o
G
s
-------
t or more of the test animals lifetime expectancy. Acute exposures represent single exposures or multiple
e following general guidelines were used. For invertebrates and other lower trophic level aquatic biota:
rom 3 to 6 days, and (3) acute duration lasted 2 days or less. For fish: (1) chronic duration lasted for more
duration lasted less than 2 weeks.
L TRV. See Chapter 5 (Section 5.4) of the SLERAP for a discussion of the use of uncertainty factors.
:or.
tations are provided at the end of this appendix.
;ction 5.4. 1 .2) for a discussion of the use of best scientific judgement. Factors evaluated include test
:ty of toxicity data.
in
U
1
c
1
O
4_»
1
ts
S
1
1
u u
U P-
High molecular weight
1!
>
1
Lethal concentration for 50 percent of the test organisms.
Lethal concentration for 100 percent of the test organisms.
Lowest Observed Effect Concentration
n n n
s§ki
^3
«j
I
Lowest Observed Effect Level
Lethal threshold concentration for 50 percent of the test organ
n n
W 8
35
No Observed Adverse Effect Level
No Observed Effect Level
n II
_J
W J
< w
ii
Secondary Chronic Value
Toxicity Reference Value
n n
> >
0 g
vi H
cu
-------
TABLE E-2
ENCE VALUES
K
W
&
>
H
^^
U
RINE/ESTUARINE SURFACE WATER TOXI
(Page 7 of 8)
<
S
REFERENCES
uatic Organisms." Environmental
O"
rs to Representative A
5
t Phthalate Esl
ti_.
d J. W. Gorsuch. 1995. "A Summary of the Acute Toxicity oi
. Pages 1569-1574.
§ 2
U
rS *o
•§>
"ft
11
S •«
oo U
11
03 ^
7; §>
Oi -S
d 8
-f i
R
c/r
1
'O
<
Diseases in Fish."
o
ts in Relation
I
13
1
"a
_o
JS
y
f^
s;
l-M
i
f
3
d
•a
bj*
"8
>'
E
M^
^^
i-T
D
«
cu
£
'S
M
J
t-T
"c5
o
£
<£
H
*.
ed
W
c
I
ii
«
the First 50 Multicentre Evaluation of I
78.
C4M ^1
ative Acute Toxicity o
Volume 26. Pages 65
£3
i1!
£ i
i|
ON g
.- s
98. Pages 535-546. Calleja, M.C., G. Persoone, and P. Gelad
: Non- Vertebrates." Archives of Environmental Contaminatio
CN .a
2 M
II
> 0
Y of Sciences. '
ity Chemicals t
s "
1 0
C n
" 1,
t°
o £
« 5
r
^
"S
g
•«;
ma/ of Hazardous Materials. Volume
a
Saltwater Fishes." Jo.
•a
As to Fresh an
3
id E. Rider. 1977. "The Acute Toxicity of 47 Industrial Chen
g
'%
o
•a
fi
Q
vi
.f
C
C 00
0> ^H
*""* f^l
J S
< s
•• «
»^' D
^ oe
- O3
0 a-
c£
o
Crt
S
03
Q
\ates)". Aquatic Toxicology and Risk
so
>ws (Cyprinodon varit
c
eepshead Min
w ^
atory Comparison of the Early Life-Stage Toxicity Test Using
Philadelphia, PA. Pages 354-375. As cited in AQUIRE 1991
s *•
.0 ts
(B T-I
IE
f5 00
a|
2^
i~
G -^
U>
^ W
d §
•o 5
C
!<§
w 5
'5
shiuchi. 1981.
54. (Japanese, \
2^
. t-~
> S
OI
T3 „
g 0
CS OB
- S3
> C1-
2 ^
"o
15
CA
rt
K
Ironmental Toxicology and Chemistry.
^
'athead Minnow." Ew
u-
o
J=
T3
g
«
1
.C
Dnic Toxicity of Di-n-butyl and Di-n-octyl Phthalate to Daphm
i
P
ui
oe
Whitmore. 19!
;s 167-179.
v 2P
A C4
_• cu
Q
•0 Tf
!l
U." —
j>°
H
y
u
s
icity and Bioconcentration of
7. Pages 47-62.
X u
J.Adams. 1988. "To
id Chemistry. Volumi
> 5
1. Coyle, and \
'al Toxicology
-> §
ith, J.D. Petty, P.H. Peterman, D.L. Stalling, G.M. DeGraeve,
3,7,8-Tetrachlorodibenzofuran in Rainbow Trout." Environm
E ..
5* rr.
•icity of 140 Substances to the Brown Shrimp and Other Marh
m-Crouch, Essex, and Fish Exp. Station Conway, North Wales
S T
Ex E
n
— m
r- .
O\ JS
"2
H
i"
Nl
^ .c
•O w
«£
r d
W 'C
c^
c
SB
s
fe
<£
Federation. Volume 46. Pages 63-77.
ater Pollution Control
£
^
1*.
2
•3
03
"e3
. "Brine Shrimp Bioassay and Seawater BOD of Petrochemic
;t
OS
>>
CO
1
<
oi
T3
g
>,
00
oc
c^
;>
f-
H
d
CO
^
8
£
d
*?
>A
xicity of Formalin and Copper Sulfate to Striped Bass Finger]
H
o
d
2
K
*^
-------
ERENCE VALUES
fa
>
URFACE WATER TOXICIT
en
Z
5
<
S
MARINE/ESTl
0?
!
2 s:
s^
^ fe
'O O
§ °
• 'Vi
OS ^
•—)
ci
1
00
c
u
•s
00
2
c
u
1
1
1
U
1
*5
u
!
«<:
1
E^
1
k.
Potential Contaminants of Concern fc
line.
f "
§ U
2 °*
S "«
H a
-4^
u o
13 .--
S J
*• J
0 "
M"
1
00
Standards. Washington, D.C. August.
•o
CO
C
o
'"-!
40/5-86-008. Office of Water Regulat
T
<
&
1
7
tality Criteria for Aluminum-
O)
k.
^)
1
S
-5
^<
^s
CO
CO
os
<('
CH
W
oo'
D
&
U
Q
§
1?
3
!?
:£
CQ
1
•n
Office of Water Regulations and Stan
g
^2
OO
IT)
T*.
yr Water— Update #2. EPA '
<•=,
a
I
5
^^
>.
_O
"c
3
r^
OO
OS
Os
w <
0 S
c w
e3
'i1
I
-------
a
I
1/2
s
CO
SS
£
ence and No
£
£
It-
M
1
£
tf
H
1
^
S
tt,
•o
2
S
o
U
t
3
a
~
a
Q
cu
,g
T3
T3
cu
"3
'C
_o
X
•5
&.
S
1
o
S!
cd
oT
rS*0
.S o
o c*-i
brium partiti
anic content <
S g>
|1
C .^H
was calculated usi
, assuming a fract
> 8
H 2
*— i
d
>n
fi
O
VO
of
00
PI
1
g
d
§
^j
oo
r-"
CO
of
3
<
1
1
I
"It
J5
.;;
W
£
CO
CS
J>
"ej
1
BH
•s
>V **
Co "C
"O t*^
S "5
fi CO
O ^
"° j§
||
§H
• .rH
Ingersoll et a
city tests. Tr
£'§
S u ?!
a il-a
H I §
g
—
1
"I
ca
^
_o
ca
o
1
CS
•g
Z
(X
1
5-
op
"5
03
"3
CJ
"3
r"
00
IE
"«
o
ca1
•o
oo
tN
§
"8
CO
ca
-°
1
T3
o
by Ingersoll
•o
u
la
g
"ca
is an ERL value c
'eca toxicity tests.
£ *
H aj
3
0
1
1
CO
z
tt>
1
o
1
•g
Z
u
c
u
o.
I
u
03
ca
oo
(N
§
"8
1
"ca
ts
by Ingersoll
1
ra
1
"ca
is an ERL value c
'eca toxicity tests.
> g
H a;
2
0
o
1
ca
Z
_o
1
1
S
Z
C
1
g
cS
^
§
03
C3
•a
oo
01
c
o
•o
u
CO
C3
•°
S
"3
ts
by Ingersoll
•o
u
C3
g
"c3
is an ERL value c
'eca toxicity tests.
^ a
H ai
r«
u
o
&
•g
Z
_o
u
1
"8
0
c
CU
Ji
1
3
C
£~
I
03
ca
T3
00
0)
C
o
T3
ca
•°
ON
"ea
0
by Ingersoll
T3
s
ta
1
"ca
is an ERL value c
'eca toxicity tests.
> S
H a;
in
^u
ca
o
1
ca
3
Z
.S
1
•^
&
ca
•g
Z
u
c
.c
c
ca
3
C
¥
g
0
cc?
"7
oo
01
§
"8
CA
ca
•°
(o
Ov
"ca
tj
by Ingersoll
•o
u
t5
g
"cB
is an ERL value c
'eca toxicity tests.
> S
H ai
o
JU
IE
S
1
ca
Z
_o
o
"E,
&
•g
Z
S
H aj
o
o
1
1:
ca
§,
4>
U
t
O
2
o
c
ca
"c
*^i.
ca
5
ca
•D
00
01
§
"8
CO
C3
•°
S
"ca
o
by Ingersoll
1
ca
1
"ea
is an ERL value c
'eca toxicity tests.
£ ^
H ai
o
u
1
&
ca
Z
u
3
ca
o
"E,
&
•g
Z
(U
c
S-
g>
ro
r^
9
u
•a
&
§
-------
a
H
8
U
•8
Z
•u
cs
1
i
l*i
*2 >" -?
50 OS ^
B
T5
>
rf
i
4)
a
z
en
w
b
•O
e
o
|
U
3
§
81
^2
C
43
•O
"S
™
c
43
f
Os
^^
*c3
^j
u
V—*
o
CO
S3
00
j^
43
U
8 .
^3 ^
O w
n* -^
I!
^^
o B
1 ERL valu
28-day H. t
a c
co O
> "2
CtJ S§
O
U
43
s
1
CB
1
r^
cd
"H«
P)^
I
S
^
I
Co
S
^
ca
a>
*— ^
o
tfi
i_i
&
c^
431
T3
O
«
"3
u
"cB "
0 to
CQ *-•
U £?
0. -g
i!
u« Cj
t-
.2
«N
OO
^
2
cs
u
c
Nitrobenz
ca
00
c
E
3
CO
CO
ca
/^^,
Os
Os
1
-C
I's
%.«=•
u ^^
00 °
•s 1
= e
calculated
organic co
a "=3
^ o
as!
t™1 *t3
VO
-------
H
H
J
«
<
H
0
U
1
•a
I
U
S
ffr^
1 ^^
II1
V fc
pa
^
jj
^
t
5
few
i
•S
•o
C!
s
o<
u
3
us
c
H
a
o
u
Volatile orgar
ca
00
c
's
•a
CA
en
ca
^^
CO
*-H
CI^
^-^
1
O
using EqP
ntent of 0.
•o p
dl CJ
a. a
11
2 "3
? 0
M
K
,_H
V)
ON
O
§
Acetone
ca
00
_c
3
en
en
ca
^^
en
ON
ON
'""'
2
&
1
I*.
£°
W
|