-------
JH
i
CQ
J
CQ
H
Z
EN
ECONS
TIONS)
•< ^
pjj o*
M H
0 Z
J H
Z g
H §
•< c«
as
j 5
NN -<
N VOLAT
WATER
COLUMI
iURFACE
i
£
1
i
i.
tt9
s
o
a
1
K3 'o • ">
1 1 1 0 | J
" «J ^ *S U S
up o ,±3 o «o >
•"tS .5 }3 3 w i4_, ^
" « ^<2So
P o >*N u * to ™
£53 g •« .E % •§
jB £5 o £ € E
-2 • •§ 2 "S E a
•§ •§ rt. S '§ :| u
2 u» "a «3 ?* e "
i ' 1) C £X fl "• •£!
CS "• *C "S O 3 U ^
i || 1 i "^ s :|
^ '•! "B ^ 1 S> -S o
Varies (calculated - Table B-2-13)
variable is COPC- and site-specific, and is calculated by using the equation
rtainties associated with this variable include the following:
All of the variables in Table B-2-13— except R, the universal gas constant,
Therefore, the use of default values, for any or all these variables, could co
Kv.
The degree of uncertainty associated with the variables H and Twk is expect
well-established, and average water body temperature, Twk, will likely vary
The uncertainty associated with the variables KL and KG is attributable larg
content. Because OC content values can vary widely for different location
values may generate significant uncertainty in specific instances. Finally, 1
unknown; therefore, the degree of associated uncertainty is also unknown.
•- " ^ ^ /->
fS ;§ S S S
t
&
2
t_
1
1
^j
Eh
i- -—
*^ IM
U **-*
o 8
fef
^%
«3 ta -f<
Varies (site-speciflc)
variable is site-specific and should be an average annual value.
following uncertainty is associated with this variable:
Use of default values for depth of water column, d^., may not accurately r<
those water bodies for which depth of water column information is unavail
d^. values may contribute to the under- or overestimation of total water hot
degree of under- or overestimation is not expected to be significant.
'£ ° —
H S C
£
c
|
1
53
ta
o
x
s.
JT
Q
u
"^
15 °Q
-•§« i
•s Z >. >-
?g •g'S
>-" S -D "°
Is II
8-g a I
O ea |B o
"ft ^ 0 *
0 OS 0, o
J3 *S
0.03
variable is site-specific. U.S. EPA OSW recommends a default upper-bentl
1 on the center of this range cited by U.S. EPA (1993b). This is consistent v
?)•
"ollowing uncertainty is associated with this variable:
Use of default values for depth of upper benthic layer, dbs, may not accurat
conditions. However, any uncertainty introduced is expected to be limited,
W U O\ -v
"3 ^ O\ S- >—*
J3 (3 S fC £2
H jo C- H C-
£
0
E
1
GA
U
1
1
53
a.
o.
3
o
"5 !-.
n. u
0 >>
D —
"^
-------
PQ
S
PQ
H
Z
GQ w
W H
||
II
3z
P«
*o '5
8«* P-
05 f
tf5 C 4)
u O *S
3 "J3 w
^1^
te ° o
e .a s
£ it5 5
c y *-"
j |||
Varies (see Appendix A-2)
variable is COPC-specific and should be determined from the COPC tables in Append
bllowing uncertainty is associated with this variable:
The values contained in Appendix A-2 for Kd^, are calculated on the basis of default
soil. Kd^ values based on default values may not accurately reflect site-and water bo
under- or overestimate actual Kdm values. Uncertainty associated with this variable \
medium-specific OC estimates are used to calculate Kdm.
.2 u ^
S
8
1
1-
° S
E "5
'"5 £
EC O
•a R
w
•o c
c o
CL .^
c« "C
3 a
c/2 a,
4
IB
| 0 I
% o
S 2P 45 S 5
3 E ^ o -O
1 o •§ 5 'S
> — < C cs c
T3 'S 3 > 0
u O ^ >-^ o
S " c ^ u
a § !§ 73
H >-< o "O oo
& V *S W F*-
2 to 300
variable is site-specific. U.S. EPA OSW recommends the use of site- and waterbody (
sentative of long-term average annual values for the water body of concern (see Chapl
by NC DEHNR (1997), U.S. EPA (1993a), and U.S. EPA (1993b) in the absense of si
bllowing uncertainty is associated with this variable:
Limitation on measured data used for determining a water body specific total suspend
accurately reflect site- and water body-specific conditions long term. Therefore, the
under-or overestimation of /„..
111 1
1
•o
g
"8
QJ
"2 c
g.2
cin ^
3 *"*
M C
*«3 o
o §
H S
CO
S
{fH
t-viiivS
'-'S^w
-'> ^Yi^*
^ w
-,4i^
-s«a%?
*^»
*lsjfn
n
M
^^^^c^
•
S 11
•
1 * 11
^H
i
!
2
<«
c
'eo
U
C
o
o
•2
"S
"-1
^
5
-------
N
^H
'i£
,
.c
«
0>
_3
CQ
>
^
••t
U
j;
jommendations. Office of Solid Waste
1
Q,
3
O
0
$
3
•s
1
=
a
g
for Assessing Health Risks Associated with Indirect Exposure to Combustor Em,
tit. Washington, D.C. September 24.
ndum: Methodology
arch and Developmel
u u
^J en
-w t>
^£
J-, 0
r^ u
ON o
ON ic
«— • U-.
o
< T3
& c
W M
yer (d,,,). This document is also cited by
_e«
U
1
1
1-1
O>4
3
U
«M
O
1
•Q
>94) and NC DEHNR (1997) as the source of the range and default value for the <
7SS value.
ited by U.S. EPA (IS
) as the source of the
o r~
.2 |
|g
3 fc
U X
^g
W5 '"'
1^
Exposure Assessment Guidance for
t
Q
U"
c
^M
u
g
•W*
"
S
E^
^
^
ning Screening Level Risk Analysis at Combustion Facility Burning Hazardous V
ycility. April 15.
juidancefor Perforn
Waste Combustion Ft
%- s
!•§
*** ^
^ s
ON ,«
ON a;
" S
il
5 midpoint of an acceptable range. This
.22
u
_s
"a
>
3
S
^M
T3
U
S
^
R4
:rence source documents for the default value of the depth of the upper benthic li
source of information.
ited as one of the refi
i.EPA(1993b)asits
o VJ
-^ 3
*J en
C U
u "
E o
If
•o S
•2 3
£ 0
H T3
U
t/5
c/i
w
-------
«
w
J
PQ
&
ripti
s in s
en w
i. S 8
•n .3 £>
S -a c
ill
H E
h
d
rt
e
tan
ted
^ 1 1 o
T3
g
O
.«
(4-1
K*
<£>
w
'ao
X
1
r
60
T3
Ul
.O
_M
"3
u
"3
u
u
s
8
u
o
to
DC
2
2
I
K
O ~
U =
II
6 8
CB
I
-------
LJ ^
NM ^J
V
I
1
S
•3
s
§
1,
1
a
•S
•S
Varies (calculated - Table B-2-14)
Ui
•£"
!
1
y—
**-
8
<§
cfl
a
w
a
o,
12
's
a-
J
is variable is COPC- and site-specific, and is calculated by using the equation in Table B-2-14.
j*
P
certainties associated with this variable include the following:
e
5
u
m*
'o
3
U 14- K
30 0 S
111 1 8 1 .8
Minimal or insignificant uncertainty is assumed to be associated with six variables — Dw u, dff pa pw, i
rtv— either because of narrow recommended ranges for these variables or because information to estim
variable values is generally available.
No original sources were identified for the equations used to derive recommended values or specific
recommended values for variables Cd, k, and At. Therefore, the degree and direction of any uncertain!
associated with these variables are unknown.
Uncertainties associated with the variable W are site-specific.
Varies (calculated - Table B-2-15)
is variable is COPC- and site-specific, and is calculated by using the equation in Table B-2-15.
certainties associated with this variable include the following:
of the variables in Table B-2- 1 5, with the exception of k, are site-specific. Therefore, the use of default
tier than site-specific values, for any or all of these variables, will contribute to the under- or overestimati
. The degree of uncertainty associated with each of these variables is as follows:
Minimal or insignificant uncertainty is assumed to be associated with the variables £)„, //„, and pa, bee
these variables have been extensively studied, and equation procedures are well-established.
No original sources were identified for equations used to derive recommended values or specific
recommended values for variables C^ k, and dv Therefore, the degree and direction of any uncertainti
unknown.
Uncertainties associated with the variable W are site-specific and cannot be readily estimated.
O 52- C- P D < 2 !* C Ci C-
^
-C»
'c
u
'5
S
o
o
u
<§
c
u
&
ca
a.
«
«
O
s*? t<
n
-------
fl
09
3
pa
,
o
1
1
I
•s
w
s
a
o
3
1
eg
>
?-s
h -a
4) c
•o _c
3 "S
>. o
03 ii
E -a
. u
^ ^ 1
< < .1
S x «
t3 -3 SJ
C e u
0 u >
& ft 0
ft n, u<
< < 0
.S e i
^ -^ S
o 2 "2
1 J §
S .ts o
u §•?
« ft "cfl
Varies (see Appendix A-
-specific and should be determined from the C(
inty is associated with this variable:
ariable, estimated by using the parameters and
actual COPC-specific values. As a result, K, n
u 5 > o
fe S -2 S
8 a ~ 1
CO 3 OS
60 * .S
JJ .S g a d
•§ ? S S 2
1 -2 3 £ ff
CO •~-H ^> o *ri
> c2
2 ta
§ E ^
£""* i* *w
"o
.5
«»»
E
g
la
•g
§
en
a
0
u
3
S
C/i
';>%
1
K
aj
8.205 x Iff5
ties associated with this parameter.
.a
c
a
o
G
4)
S
U
S
^
"o
«*l
1
1
S
3
I
8
S
OB
"«
Cfl
I*
U
>
'E
as
&
a
0 £
"5 -o
U C
u cs
ft
CO ^J
B -a
'" C
g S
i s
? ft
u j? S .
s •* H o
-30 >» S
5 c^ "K 5-
> — S So
*~* *M ea co
"3 « *^ "O
3 e s j:
15 SI
.2 S | .1
«2 5 «
298
ecific. U.S. EPA OSW recommends the use of
lable; this is consistent with U.S. EPA (1993a;
inty is associated with this variable:
t the default Water body temperature value doe
nditions, Kv, will be under- or overestimated to
?! 1 1 8
u ca v *_» ej
'S o C o .t2
« c s >< 8
— ce ao So,
£'a S 0 «
•S § S -S >?
i « = £ "s
> S £ H -0
.2 S o
£• ^ •« ^
H .S H C.
^
2
s
2
u
ft
!
CJ
>>
•o
o
X!
Lri
M
^
•*
f>f
u
«3
"o
u
9-
tfi
£
'53
1
? s
o Z~- £
s •* o
! S 1
li s
*2 ** 5
Hi • • R)
•S -o u
co J5 3
S§ 1
1.026
ecific. U.S. EPA OSW recommends the use of
lable; this is consistent with U.S. EPA (1993a;
inty is associated with this variable:
sources of this variable and the recommended
?! 1 1
S 2 8 »
'So e K
» c 3 S
•"CO (90 &
o — c 3
1 § '* 0
1 •« = ^
> i £
.20 u
ea s s
%
_u
"S
s
s
c2
f*
.0
o
(J
o
1--
2
2
-------
PQ
3
Page (4 of 4)
REFERENCES AND DISCUSSION
Working Group Recommendations. Office of Solid Waste
tn
9r Emission,
ssociated with Indirect Exposure to Combusti
mber 24.
•
:§ «
3 °
_ 73
X> G
f^ cd
O\ r.
OS o
" S
-^ u
^ en
OH «J
se values.
£
entified for 1
1 and the value 0 of 1 .026. No source was id
0
O
S
smmends the Tvk value of 298 K (298 K =
CJ
£
c
u
s
3
8
•a
en
J3
E_-
Wastes . Attachment C, Draft Exposure Assessment
d Waste. December 14.
§=3
ng Hazardo
Office of S
Risk Analyses at Combustion Facilities Bumi
ffice of Emergency and Remedial Response.
1°
^s
Draft Guidance for Performing Screening
CRA Hazardous Waste Combustion Facility
I?
••• Q
* "S.
ft\
(V
•s
Tf ^J
I g
2 •§
. T3
•< "5
S r?
ument apparently cites U.S. EPA (1993a) as its source of
u
£
73
CA
1
c-
w
(S
•S
1
a
1
3
N_S
1
1
ited as the reference source for water body 1
u
••"
-------
TT
1
tt
g
£^
ljT
H O
SS
^^ ^T,
UID-PHASE TRANSFER COEFFIC]
CE WATER AND SEDIMENT EQU
(Page 1 of 5)
°*S
2 s
Q
Description
phase for a flowing or quiescent system.
33
.9T
i
1
Cfl
1
C
c3
1
•2
c
o
u
*s
u
s
u
-C
Cfl
U
"5
"3
"3
u
c
o
ta
3
8*
•22
H
eb
c
1
s
u
1
"o
c
o
'«
V3
IS
1
T3
associal
VI
c>
~c.
C
o
^
o
a
o
JB
H
1
'3 G g 2
tJ 'C o "S
SIN
53 '** g* £
'r-' ^ » 'O
| « -S
^ Q 1
CO ^ 2
cj. 3
c? S
§ • ^— - s
| s ^ ^ g.
S "Q m o
w ? i ^ 1
o . . -5;
1
^ i E
n ^ ^ •§
^ a" a* £
^T^ g
o >>
& a
g
«q g
t? 1
^^ "3
=3
k" &
T3
•5s
03
1
G
CO
1
gS
g -S 8
> c "
"C ^ M a3
[3 5" s "a
E S 1 !
S "ii e u
01 e &> *
OC 5 3 Dl
C 0 u "O
'i S S3 '3
1 "1 1 S
k. k- b O
° b S
-------
r?
«
s
aa
<;
H
HASE TRANSFER COEFFICIEIS
ATER AND SEDIMENT EQUAT]
Sw
D U
o*^
2S
3
05
Page 2 of 5
1
det
sh
u
n
1
iated with
nty
owing unc
j 8
Thi
Ap
The
(1)
i!
fic
pec
aint
_o
,0
ed with th
lle
thi
-------
«
w
aa
H
II ?
o
3
00
_o
"o
00
c
>>
T3
—
*3
U
s
U
3
a <"
1 1
«
•§
1
1
o
O i—i
us ^
".S
•a £
ec «
1'!
11
> .so
09 *CO
i I
.00
5
H
§^
o
"cs
I
e
s
o
U
•o
CO
CO
1
I
£
£
S
^
• o\
d~
D OS
11
'21
(3 O*\
IT.
> £>
-s
.
1
i"
Th
3.9
ab
ated with
variable value
CA t^,
| 2
I I
•a
u
•o
_c
3
C
00
s
Q
-------
ca
PQ
H
1
i
S
a
e
1
«§
Q
—
«9
*S
S
? "^
w §
CO W
£ §-
i!
to *o
1 8
8 -o
ll
> *""
™ CO
c ^
1 i
11
1 <" o
SSl
r, « §1
1 "Hi
C 0 J= .C
«-» •*-• *3
C u •«
u o 1>
^ 3* ^a
j2 u CA
13 J= g
> *•• eo
. CA ^
1||
2 'S' i
cd •*-•
co o P
1 ^ "
U.S. EPA OSW recomr
(1994), both of which ci
1 atm). There is no sigr
"s
"oh
2
00
C
•3
e
1 u
8 2
^ 5
t2 &
o E
*~^
CO Jj
co '3
Q £
^
u
•s
ca >^
ST '^
2 S
IA 3
^ §
U S
'5 §|
•S '"
2 §
* CO
O U
— ^
O £
.O t™"*
If
/? g
™ M
- is
ii
co C
"§ §
O "O
11
^ to
ii a
l.§
.2 §"
•S u
3
CA -^ '
•o ta «J
p > S
«> to ta
U.S. EPA OSW recomm
source of this value. Thi
associated with this vari
"S
u
"So
00
•5
c
&4
CA
U
i i
s §
s? &
c5 1
"o —
."M ^
c 5
u —
Q 2
^
o
CA
"a
S
^ %
C\ co
N.^ t J3
§ 1
U
^ 5
.C co
.ts M
^ 05
"e O
4> "•§
S2 '5
1 1
ea 3
_3 >>
"g §
>
•2 u
2 | 1
« .. £
•£ — *
CA ^ C
c '3 c
« P 3
| .2 •-
8*1
O X! c3
*-• S >
^ i _o
CO T3 3
O S 2
-i- 2 S
S 8 >
PQ CA CA
S '"" *S
£> O
«J c u
a eo '& £
-2 a 'g |
^ 1 .81
> is s §
S * «
•3
"2
S
ca
CA
C
o
o
CA
§
£
.J
>
*
s
CA
C
o
ta
M
c2
u
'S
OH
CO
•s
e
u
XI
o
3
"3
"3
'S
•a
CO
•5
•s
u
-t S
o
CA
•o
C
U
s
I
^E i?
CO OV
0 2
«|
co'
. D
This value is site-specifi
available; consistent wit
CO
CO
"
"S
3
fc
JS
3
3
CO
CO
U
eo
H5
CO
c
0 »
"1 «
E o
5 -s
-r
u
- ^
S ••>
»l
d- §
•5 g
Sea
0
0 §>
•£ §
_S M
x u
!a u
> t^
If
C- —
•^ "o
s«
^ 00
» 2 2
5 «»
A .t- CO
8 M
«J !3
to C
*co §
O t3
« "2
5 §
^ CO
IS
^§ u
_co §^
•S «>
3
CO i£^ •
T3 ta S
« c« ta
U.S. EPA OSW recomm
source of this value. Thi
associated with this vari
CO
"(Jo
O
ca
4_> O
CO *-
% 00
8 a
i
t*l
CJ\
n
-------
^»
1H
I
r?
CQ
ffl
source of information regarding pa, pw and //w; and
is cited as one of the s(
(l)Weast(1979)asits
This document
document cites
0
i
•o
C3
_M
"5
emistry and Physics. 60th ed. CRC Press, Inc. Clev
CRC Handbook of Ch,
Ov
U
to
ed
spectively.
2
o
X
®
f-<
•o
§
1-H
2"
X
fS
•s
S
2
.2
•o
§
=1
^
(4_)
0
8
1
u
"o
This document
-------
C/)
CO
gg
ii
z g
H &
p
ii
04
00
e
_o
I
t>
u
I
03
§•
u
J3
X
i
•
I
a
1
O
00
I
s
I
o
u
o
c
o
•o
c
l
g
•«
•o
u
•o
c
u
E
o x"
^ »-l
s °
jo "a
XI >
S T3
II
u I
II
«§
0
1 2 ri ?
-
« "S q " OJ JJ
O ^ e3 -^
llll
ill i
f£M
S 8
-
g -a
. 1 s
— on X '^J ^
"-* ,_., *-• i> n
o I ^ c c
'i c ° f S
g. § I g 5
s *£. ^, a ~J
o
X
«n
en
*
o
0
o
n
I
~~
a
ex
e
o
!>
u
L«
u
u
oa
u
s
o
u
-S
Gas-pha
-------
vj
n
H
ii
gs
ig
o w
^N ^^
z Q
&
£
&3 W
03 H
IS
S w
%
1
US
•6S
1
g
a
"S
> T;
w -t; -5 o y
fll S » »H O
u * > oo S
w S a .S a
ii 3 w >^
Eg $ -s -a
~- § o" g S
2 « S -s a
•g •" 13 o g
la ^3 0 3
S * 5 *u 2
3 * a " •£
11 11
3.9
onsistent with U.S. EPA (1990), U.S. EPA OSW recommends a defa
garding the references and methods used to determine a site-specific
le following uncertainty is associated with this variable:
To the extent that site-specific or local values for this variable ari
represent site-specific conditions. The uncertainty associated wii
range of windspeeds at a single location may be more significant
single windspeed to represent all locations.
U 22 P
i
•o
oL
en
•:-
•a
3
C
C
eg
u
00
ed
<
k
^
o
0-
02
^
J3
^J
1
BQ
C
O
i
0.4
lis value is a constant. U.S. EPA OSW recommends the use of this
ic following uncertainty is associated with this variable:
) The original source of this variable is unknown.
F F C-
CO
1
3
1
CO
C
o
u
CO
*Vj
a
e
sa
c
o
^
0
£
CO
C
_0
M
S
1
u
CJ
"?
•^
"to
C
U
JS
=
ca
£
J
o
CA
4
lis value is site-specific. U.S. EPA OSW recommends the use of thi:
'ailable, consistent with U.S. EPA (1994).
ic following uncertainty is associated with this variable:
) The original source of this variable is unknown.
r^ at e™ ' >^^
CO
CO
'S
3
i?
15
to
3
O
O
CA
">
CA
O
"c
.2 ">
S c
E o
5 S
-x-
-------
pa
Ed
CO
H
ii
OH 5J,
y a
fa H
o a
u g
si
fa C/5
Ed Ed
03 H
?
I
1
,,
jl
s
•a
t
^
Q
«
3
>
1
^— '
p^
Z
r-fl
Q
U
Z
5
*fe
•^
"S
o
CA
C
« ^
.« 52
S E
oo T"
1.81 x 1O4
recommends the use of this value, based on Weast (19
es at standard conditions (20 °C or 298 K and 1 atm, 01
ncertainty is associated with this variable:
iity of air may vary with temperature.
H f I
< 3 o «
« g 2 *
«j -2 u
Ss s s
Cft
E
Uj
cd
*0
>^
.ti
o
u
w
>
i
2
IS
p"
o\
^*
^^
&,
E
W
Q
U
Z
"5
"5
• *- s •-
si I 1
< Q. § 2
p s 15 P
si | ^
D > t* ^>
"s
^>
a
a
o
:£
c
u
Q
*
C
"x "
Q) tV-i
IS "o
1 §•
d^ J
U 13
E ^
t^ *"*
S . ^
cd
"3 ?
.a s
E -S
0 c
•C 3
° »
•a rj
c PL
~ O
g u
'» "o -3
a- t SI
• r i '> C
^2 51
Varies (see Appendix
uld be determined from the CO
with this variable:
not accurately represent the be!
)f uncertainty is expected to be i
o -a >< w
"e "o Ho
•s | » -v
CO
CM
O
.id
cs
_g
£_)
o
U
C^H
O
^
>
'«
to
5
cf
*$$£*•%$-
^.^A^4J^
-:-lf5i
^j-'^\v\V
^ ^ '
';?i^t^
,%|V$JS;^
/*p^' ;2"v*r J
«^4 ^"v^
^'^o^'
^^ ^W-
<%&$,*$.
§.
rv- t
$?t£$y'' t"^
^*%*^1^
^^s
I
ii
jj i ^i
•
II
i ^ i ii
s^ 11
i
^
•&
2
o
<2
c
0
'S
u
c
o
V)
'S
^
K
S
n
-------
m
^H
ri
«
S
«
S
f
*H
GAS-PHASE TRANSFER COEFFICIENT
RFACE WATER AND SEDIMENT EQUATIO
(Page 4 of 4)
S
$£<
REFERENCES AND DISCUSSION
i
c
CO
*-»
£
1
Exposure Risk Assessments for Hazardous Waste Combustion
1 for Performing Indirect 1
NC DEHNR Protoco
DEHNR. 1997.
U
z
(4-1
o
O
a
o
CO
CO
CO
CO
oT
t~
o\
1
£
>w
CO
4>
'o
U
U
O
T>
CO
1
>>
"u
>
'§
U
, ft, 4, and //„ values of 1.2 x Itf3, 0.4, 4, and 1.81 E-04, respi
rce of information for k and Af
sources of the variables pt
.S. EPA (1993a) as its soui
is cited as one of the
: paw&jua, and(2)U
This document
information foi
ns. Working Group Recommendations. Office of Solid Waste,
Ci
isks Associated with Indirect Exposure to Combustion Emissit
September 24.
'gyfor Assessing Health R
ment. Washington, D.C.
ddendum: Methodolo
Research and Develop
^£
ca o
CO 4>
Ox o
2 £
. o
< T3
o, s
w
tyj
D
7rf) value of 0.001 1, (2) the recommended von Karman's constani
hese variable values are not identified.
w —
1997) as the source of (1) the recommended drag coefficient (
us sublayer thickness ( A.^ value of 4. The original sources of
(1994) and NC DEHNR (
ended dimensionless visco
is cited by U.S. EPA
, and (3) the recommi
This document
(A:) value of 0.4
ms. External Review Draft. Office of Solid Waste, and Office
.s
Risks Associated with Indirect Exposure to Combustor Emissi
10.
logy for Assessing Health
hington, D.C. November
ddendum to Methodo
j Development. Was
, EPA. 1993b. A
of Research am
C/3
b
onstant (K), and (3) a value of 4 for the dimensionless viscous
U
coefficient (Cd) variable, (2) a value of 0.4 for von Karman's
riable values are not identified.
lue of 0.0011 for the drag
; original sources of the va
recommends (1) a va
ess (AJ variable. Th<
This document
sublayer thickn
'ous Wastes . Attachment C, Draft Exposure Assessment
Waste. December 14.
^s T:
Level Risk Analyses at Combustion Facilities Burning Hazar
Office of Emergency and Remedial Response. Office of Soli
for Performing Screening
te Combustion Facilities.
vised Draft Guidance
CRA Hazardous Was
EPA. 1994. Re
Guidance for R
CO
3
lively. This document cites (1) Weast (1979) as its source of
U
8.
en
a
S
W
1— 1
00
i-H
•o
5
•*
•*
o
to"
x^
fvj -O
? i
J!
s J
i|
•J§
•tf 0
sources of the variables pa
S. EPA (1993a) as its sour
is cited as one of the
^and//a, and(2)U.
This document
information for
s the source of#, pw, and//,, variables of 1.2 x 103, 1, and 1.69 x
C3
;d. CRC Pres, Inc. Cleveland, Ohio. This document is cited ;
mistry and Physics. 60th e
RC Handbook of Che
ly.
(J U
oj -5
t CJ
<* 8.
•— ' (73
. U
U 1
jS
tft
A
U
-------
/-^.
21
o
^§
z s
^ O1
co W
§s
s SI ~
2 ii °
S "S a
g < g M
H p g ""
pa a
O H
M
w u
pa •<
^5
PM
co,
8
S |
3 "O EX
O C te
5 « 0
2 to" •"£
c^
*J P-H >»
3 <& _g 3
II *
° 3 £
T3 §, ™
S | g
>•» &o
§1 §
rP T3 flj
Sol «
3 S > •§
•g o o .5
" O .S B°
•^ cs W S
"s ~rf 'S S
c • ^ •! f 1
I 1 1 a 1 1
S 7> «> .a 8 o
S 8 § S 2 |
a o -1 JS s J5
P"* •»- CO ^s tn ijj
"S ^ W S W*
c ,±j *c o S
o> 3 S u 2
^ ,c« > ^ ^
CM C
c o <«•« ^ t*_
,0 «i o trt O
S o •§ § w
§ « S o "I
•a .j; r ^ g >
"g o *> ^ E£
to M g "g ,O "fi
§ •— .e -a «> 3
3 | P •§ S, ?
M V . Q jS"
en S tj en S3 £S
O O tp< en 5 *S
1 ^ "8 1- "8 2
1 « ?*ll s
i 1 •
>fc C *j-- O
S '5 T o S §•
•<-i 5 « J5 3 2?
| 1 |||| |
cS C ^_, pi 1 on f-
3 "S ^" S ^ flj i-J
-fcrf -^ Q ^? *Q
D *H "Q
co Q tn
•C S "T^ ^*
H ^ ^~s W
^^
\o
b
i-H
-
S
^
"Q
•
S
<
^
b-
g '
3 ^
I Q
-J
•^
1
•^
CO
•^
•
•^
i
>•
1
§
1
Q
_0>
S3
^J
^
if
s\v/»
^
-'"*;l^>
;'*"4?r
5 l'^w^
s?,'*^' ^^.
';'-'^'?
? '^^
*
^j/^/^
'*X#S
,$»J3j>
t~'
'.<• •»/-
^'^^
^:
^V^j;
S
4^^
Ml
H
8
HWK
«3 S
J= 0
2 I
s .2
3 O ^
13 v
> Is *
— -o 2
"3 e _
i2 "
U a O
•~ "S D,
O
5 "s '"*
• S §
y (U
i i *i\
£ fe "°
•S eo* ^ 5
£ C w *
§01 _ n S^
_ _ _
•o 'S x "C *S
4j 3 *J S 0
C9 S 3 C 2
3~ ° ;; « o .•§
•S — -a 's S
•s 2 ^ i oo
! 1 i JH
« Jg S* C3 ,i\ L*
U S > o 4> S
•C C. » " js °
1 1 ^ ° H
s
i
EH i^
m ^
i *
P
i
i
•
^s
^s
k
c
2
CO
g
8
2
a
^
.5
3
IS
^
m
^
s 3 * ^ •§
•S S e b u
o -a o ° f
1 1 1§,
"" o 5 so
S3 il
o i1 1 .1 1 "s
1 1 III!
I 1 ~
H r-i ^^
u
i
^
CO
-2
*o
t/5
•^
5
x"
n
-------
so
fH
«
CO W
g H
O Z
u a
3 W 2
pi He
pa
H
j
<
|
pa
u
BB
BQ <
i
a.
4>
JS
•5
a
a
1
°
2
•g
«a
>
u
1C
'o
u
&
0>
*O9
S
Varies (site-speciflc)
variable is site-specific (see Chapter 4). Uncertainties associated with this variable ;
CO
p
CJ
£
oo
c
'>
'u
B
1
on
S c
es .O
. . "en
•";; <~j
1 §•
H -o
^
« __
a U c
U ^ K O
b c3 (fl *r^
S 1 « » i |
u "° K (i *" "
3 CO 3 O p^ O
H Jc S 3 ^ S
•s e" 3 ^ § i
C Q es .M u ^
11! |I'
^p ^^ wi «v ^ aj
Jj H 3 g> -y
Varies (calculated - Table B-2-8)
variable is site-specific and is calculated by using the equation in Table B-2-8.
atainties associated with this variable include the following:
The default values for empirical intercept coefficient, a, recommended for use in th
average values based on various studies of sediment yields from various watershed.'
may not accurately represent site-specific watershed conditions. As a result, use of
contribute to under- or overestimation of the benthic burial rate constant, kb.
The default value for empirical slope coefficient, b, recommended for use in in the
on a review of sediment yields from various watersheds. This single default value i
site-specific water shed conditions. As a result, use of this default value may contri
ofkb.
_eo g
S D C- Ci
CO
CO
JO
1
3
1
1"
"u
c:
u
1
00
CO
^H-
•^fp.
'1$:' '&)
8f
'!-£>;':'
'^f%
ii^
if
<>iM
£.'S§
1
i
i
Pi
p
m
IP
*• — *
" 'I S?
> cd
S - >•
^=§•1
_§ i £ u
-^ o
0 U- KJ «
4-1 O (•* It
B ^"^ ^
^ § 3 "Si
s '« i §
ill 1 5
i) u o S
ts > fc-
co o O S
tf >H S 0
Varies (site-speciflc)
variable is site-specific and should be an annual average value.
following uncertainty is associated with this variable:
Use of default average volumetric flow rate, Vfx, values may not accurately represei
conditions. Therefore, the use of such default values may contribute to the under- c
it is expected that the uncertainty associated with this variable will be limited, becai
photographs, and gauging station measurements— from which average volumetric fl
can be estimated— are generally available.
•a "a ^
00
ob
^
1
c
_o
CO
O
>
^
u
en
'E
^
^
L^ LH t*"^.
t^
"s
^
a
£
" >>
1?
J2 w
O ca
o _
2 g"
SJ S
< •£
*
-------
* e
M H
« K
a d
V)
'S
<*>
&
£
o
m
-------
CO
Z
O
CO
Z
O
U
2I
09
s
09
g
CO
p
2 <
2*
0Q Cd
CO
t^-
»^
I
1
o
u
e
_o
2
A
•e
^
S
0
tt>
J=
O
IH
*$
S o\
u d
£<
Sg2
0 .
w
t*-l .
o 3
ffl
•8*
c e
S S
E «
"g 'a
S5
rs
u 00
•? g
i 2
o, 2
IP
F^ r^
It
•s§^
« —•
i OSW recommends
>y U.S. EPA (1993a;
.
00
0 §
S.2
33 ^3
; is site-sp
center of
— a
•§£
| §
H J3
with this variable:
1
a
•3
o
en
g
«J
'|>
ig uncerta:
c
'»
_o
1
a
0 .4? £
,J5 •* ;r
!G „_ P
'3 0 fc
o — 2
o, g e
^ .2 u
3^ ^ "S
» .i 's
•*_> +3 *
C cfl HI
S u 35
s § g
S. o 8
*> IH .O
X ^^
•3 S .S
1 « 1
1 S "i
S _c -°
« * o
o o **
S * -a
>, 5 fl
CO 3 O
E £ g.
a is S*
•*f c °
^. 8 -2
S x «
ti-S
111
1 g .2
or depth of upper be
:, use of this default '
ty associated with th:
§11 1
J= ^R *"
1 SS S3
> 0 o
— > =c e
"3 H s
<2 « 'S
* o s a
l!!|
g •=> > |
C Ui O P
!7 o i S
J8 a o §
P ^ K JJ
S™*'
E
c
u
•5
u
CA
u
s
1
«>
-------
09
W
J
S5
$
1
C«
I
in 9
o g
in gr-
aii <
9 »
|
*
•a
§
c
S
s
i
ts .
ssociatei
mber 24
ring Health Risks A
ington, D.C. Septe
ndum: Methodology for Assest
arch and Development. Wash
93a. Adde,
ce of Rese
2 £
. o
< -a
W §
•S
a.
u
•a
-o
u
1
g
o
o
a
•o
«s
u
00
2
1
^-N
C-
T3
A
U
1
to
«J
"8
•o
§
g
o
g
•o
§
&
1
1
P?
O
3
1
CO
e
1
>^
"S
u
o
g
SO
1
co
S3
•JC DEHNR (1997)
*-<
1
f
ON
^~s
2S .
u g
co 73
u «3
•— x
ument is c
benthic la
U I*
o u
•o o,
CO &
•S 3
S'o
•a
.c
CJ i
S
CO
U
«
<+-
Q
8
£
o
«
ctf
(5
&
_o
">
S
cd
S
£
to
1
£5
^
1
s^
^
I>1
1
o
S
1
&5
ci"
•***
8
1
>5
•s
i
"§
1
1
••^
43
ssessing Health Ris
dum to the Methodology for A.
shington, D.C. November.
St CO
1^
^ c'
-o g
m E
o\ o,
o\ _o
^ 73
&Q
u
_3
73
0 >
«6?
8"S
1 §
S -B
0 !S
M i3
* c
•d 8
u c
tn o
•3 °
o ce
&T3
en ^2
i> £
% .a
'u *fi
S s
B.JJ
1^
I'S
g s-
° «
c -o
1 a
"3 ^
u eo
II
^ C
u o
a §
^•i
* £
E g
3 t~-
•g «s
£ <»
•3 t3
3 C
&8
•2 1
*O o
o S
^ i-.
I 8
?l
c u
11
* 2
g,H
§ S
U C3
CO -r"<
-------
CQ
S
CQ
I
1
IS
o
I
s
o
u
•s
<**
o
u
•f
u
tO
I
•i
I
u
•o
"8
•s
I 8
r i w
« o
II
u
•o
e
3
f ts
oo <
§ =
•§ S
fe. ?
I
ta
c
e
s s
fcN Cfl
1 *
b 2
I
u
3 S
s
J
-------
CO
Z Z
00
H H
r-
TABLE B-2
^H
01
H
Z
H
U
Z
0
r i
. COLUMN <
S
w
H
Ed
CO
fitf
^
?
»
fe
p
^ u
^, ^^H
O 5s
H p
CO
1
£
5
§
35
f
»
jp^
W
|| Variable
0 to 1 (calculated - Table B-2-10)
Gfl
V3
"E
9
>>
1
U
CS
"S
o
Q
C
o
o
tS
p-
o
M
variable is COPC- and site-specific, and is calculated by using the equation in Table B-
cn
O
a
•^
u
.£
B
_O
^rt
^
C
C
following uncertainty is associated with this variable:
o
. g , "8 8 o o
1RUT3 U t3 tS O C »»
U kri fll -4— » fl\ ^ •-** ^
•yo*2*-* '^cLS^-rtE
%cao
hSiS'So coc«,2o<»
l^is^ g-jsgs
§. sr^^s S< §.- ss68 §
"g-gf^S £-gS'?u|
S§|-S>&>.S >>§^^i3-£
'!-ll>^ iJfffisf
il||ll Sjll^i
Unlit s iSlill
The default variable values recommended for use in Table B-2-10 may not accurately r
body conditions. However, the ranges of several variables — including dbs, and 6bs - is
the uncertainty is expected to be relatively small. Other variables, such as d^. and df, c
the basis of generally available information. The largest degree of uncertainty may be
medium specific OC content values. OC content values are often not readily available
different locations in the same medium. Therefore, default values may not adequately
conditions.
Varies (calculated - Table B-2-9)
variable is COPC- and site-specific, and is calculated by using the equation in Table B-
following uncertainty is associated with this variable:
The default variable values recommended for use in the equation in Table B-2-9 may r
-specific water body conditions. The degree of uncertainty associated with variables I
to be limited either because the probable ranges for variables are narrow or informatioi
is generally available. Uncertainty associated with/w is largely the result of water bod
content values, and may be significant in specific instances. Uncertainties associated >
water body (L,) and overall total water body COPC dissipation rate constant (&„,) may
instances because of the summation of many variable-specific uncertainties.
^ •- u /-.
iJ
E
n
a li
<"> "O -5
8|1
t-s.-g
X) C .0
n .2 -o
U .3 c
IS"
1
"3 o 5
£ g|
H o o
s
-------
f-j *-*
22
h a
Zr-r-l
^^
r>-
TABLE B-2
o s
U M
: COLUMN
RAND SED
a H
g H
H ^
^
^
1
i
o
H
1
45
i
i
la
u
J
^"*
1
CO
.2 "o
•S u
5 ob
8 «
^*
"8 -s
o u
•a >
TO 5}
s i
c E
Q< ~
CO £
i u
'co o
0 S
u 2
o S
IH g
iy not accurate
nder- or overe
f default values for depth of water column, dm, mi
fore, use of default values may contribute to the u
ll
s
CO
U
3
'i
>
Cfl
*r*
bO
.£
1
s
ta
E
fO
c
u
Cfl
1
be limited, be<
tainty associated with this variable is expected to
ally available.
E §
3 Sb
E
B
E
3
1
0
Cd
S
"8
"s,
Q
,
1
o
j=
o
11
£ ^
c Cu
ro W
O .
o ^
CfeH H^
° j-
n, 'g
o ^
73 E
c
CO
s
CO
CO
B
'S
3
S>
j
U
1
U
"o
1
'
.•§
*to
c
u
S
&
Ui
O
ta
§
«j
§
E
i
0
IS
scommended default value for depth of upper benl
c
1
£
i
d1
<*•*
0
g
_o
«
.1
CO
>
0
c3
fe
T3
B
3
U
J3
0
ay contribute t
conditions. Therefore, use of this default value m
t
|
B
U
f
o
CO
g
S
Jj
T3
U
•^
E
i
o
i
a,
variable is ex
ver, the degree of uncertainty associated with this
imended range.
i?
E
u
E
•3
U
u
2
*^
J5
S.
o.
3
*S
D.
Q
U
^
,
-------
f»
1H
N
CQ
S
BQ
•<
H
1
ENTRATI
ER COLUMN CONC]
TOTAL WAT
/— s
rf\
^/2
g
^^
r EQUAT]
PER AND SEDIMEN1
(SURFACE WA'
§
(Page 4 of 4)
2RENCES AND DISCUSS!
b
>>
3
1
jj
'5
i
1
'aste Combust
ssessments for Hazardous W
NC DEHNR Protocol for Performing Indirect Exposure Risk A
f~^
ON
ON
~^
oi
z
E
a
Q
U
2
S
1
CO
M
C3
/— N
R
m
icument cites U.S. EPA (199:
is cited as one of the sources of the range of db, values. This dc
c
..1
^J
•s
w
&
g
1
i
en
g
I
is cited by U.S. EPA (1994) and NC DEHNR (1997) as one of
c
CO
3
g
•3
&:
I
Asians. External Review Draft. Office of Research and
i.
to Combusto
iated with Indirect Exposure
ddendum to the Methodology for Assessing Health Risks Assoc
Washington, D.C. November.
•^
£ 1
ON £
ON Q.
~™ O
. "3
<>
n u
t-U .n.
W "
W3
S
iter column, cannot be precisely specified. However, the
ca
£
librium with i
he portion of the bed in equil
states that the upper benthic sediment depth, dbs, representing t
5 that values from 0.01 to 0.05 meter would be appropriate.
= 1
o w
E «
3 "ti
O ID
•O £
C/3 3
£ °
H -a
•.. Attachment C, Draft Exposure Assessment Guidance for
HJ
1
g Hazardous
Combustor Facilities Burnin
•aft Guidance for Performing Screening Level Risk Analyses at
us Waste Combustion Facility. April 15.
Q|
rH S
o\ e
ON EC
^ i
IS
WJ
a
ended value is the midpoint of an acceptable range. This
and db! is expected to be minimal either because informatil
;iated with the variables /^ and Cwo/ is largely associated
ium, use of default medium-specific values can result in
E jj 5 "g
[•IS
nil
^ a .c e
32 D. a
depth of upper benthic layer
of uncertainty associated wil
for a variable (dj,,) is narrow
iry widely in different locatio
is cited as one of the reference sources for the default value for
U.S. EPA (1993a) as the source of its information. The degree
hese variables is generally available (d^) or the probable range
default OC content values. Because OC content is known to va
:rtainty in some instances.
S S M o g
c -a E u §
n u z! M ^
3 •" « 3 e
8 S g a g
•§ £ 5 -s (H
W P CJ f ' —
•« ti "is c
e 8 o -s £?
H -o
-------
l
00
FH
03
3
PB
<
H
g W
U H
II
U S
|i
i«
£ z
y ?
s •§
15
c u
o s
0 73
E3 >
S |
1 S
•g O
ra Q
>
i"
"3 c
si
I8
Is
en O
sS
.- - 00
D "o « o
o O « -a
"
•a
c
Si
'•8
00
c
S
s
o
03
M
C
E -3
I
c
u
1
•a
I
C
O
u
c
o
o
a.
-a
>
o
I
0
-------
00
oa
H
P^ LJ
Is
|l
O H
o a
u ^
*s ^
o
M
V
Ml
es
s
1
1
e
j^
**rf
»
0
.2
1
A
C
, 0 —
O -^ fli C *j
.•S S3 J3 « C
E F c S
1 O -^ o *J j£»
3 § 2118
r^. .TO "S crt *r^ C CO
Varies (calculated - Table B-2-17)
variable is COPC- and site-specific, and is calculated by using the equation in Table B-2-1'
following uncertainty is associated with this variable:
All of the variables in Table B-2-17 are COPC- and site-specific. Therefore, the use of def
specific values, for any or all of these variables, will contribute to the under- or overestimal
The degree of uncertainty associated with the variables dm and dh, is expected to be minimi
for estimating a variable (d^) is generally available or because the probable range for a vai
uncertainty associated with the variables fm and Cwtol is associated with estimates of OC co
values can vary widely for different locations in the same medium, using default OC value
uncertainty in specific cases.
-2 o
£ P B
oo
c
c
o
•a
S
c
o
8 c
CU
0 -Q
U o
"cd <5
o $s
s
i
0
O5 .-^
S ^
PQ o
"o -S
CO M
-o «
O ^
^•4 *n
1 1
S2 ^^
I
-------
*
/— N
DISSOLVED PHASE WATER CONCENTRATION
(SURFACE WATER AND SEDIMENT EQUATIONS
(Page 3 of 3)
>>
3
>-»
jj
REFERENCES AND DISCUSSION
NC DEHNR Protocol for Performing Indirect Exposure Risk Assessments for Hazardous Waste Combustion Uni
DEHNR 1997. .
U
z
) as its sources of information regarding TSS, and
J3
f"J
$
y
m
o\
o\
is cited as one of the sources for Kd, values and a default TSS value of 10. This document cites (1) U.S. EPA (1
as its source regarding Kd,.
This document
(2) RTI (1992)
ng Group Recommendations. Office of Solid
3
1
§'
.0
ddendum to the Methodology for Assessing Health Risks Associated with Indirect Exposure to Combustor Emiss,
ce of Research and Development. Washington, D.C. September 24.
^ £
s 0
1 "§
Cv a
~" s
<• t«
CO
OH 4
W &
CO
D
lie of 0.075 for surface water. The generic
ecific value; however, OCis medium-specific.
Kd, values by 7.5, because the OC value for
s source of the recommended TSS value.
•a g- o -s
> _i •£ x
&•§ t?~
E -S Rr
"l-a^
E|J-H CX 1— <
o -a C-
is cited by U.S. EPA (1994) and NC DEHNR (1997) as one of the sources of the range ofKd, value and the assu
Iculating partition coefficients (soil, surface water, and bed sediments) is as follows: Kdv = Kxj * OC,. Kx is a
'd, values was based on an assumed OC value of 0.01 for soil. Therefore, the Kdm values were estimated by mull
> 7.5 tunes greater than the OC value for soil. This document is also cited by U.S. EPA (1994) and NC DEHNR
This document
equation for ca
The range of A
surface water if
view Draft. Office of Research and
u
rv!
External 1
ddendum: Methodology for Assessing Health Risks Associated with Indirect Exposure to Combustor Emissions.
November.
EPA. 1993b. A
Development.
yi
b
le of 0.075 for surface water. The generic
Ecific. The range of Kd, values was based on an
ir surface water is 7.5 times greater than the OC
•a S"2
™ A a
8Ji .
•o ^ d
•o o u 3
1 SO 5
is cited by U.S. EPA (1994) and NC DEHNR (1997) as one of the sources of the range ofA^, value and the assui
Iculating partition coefficients is as follows: Kdv = Kxj * OC,. Kx is a chemical-specific value; however, OC is
ilue of 0.01 for soil. Therefore, the Kdm values were estimated by multiplying the Kd, values by 7.5, because the
Fhis document is also cited by U.S. EPA (1994) and NC DEHNR (1997) as the source of the recommended TSS i
This document
equation for cal
assumed OC va
value for soil. '
f C, Draft Exposure Assessment Guidance for
s
.«
1
"5
aft Guidance for Performing Screening Level Risk Analyses at Combustion Facilities Burning Hazardous Waste.
us Waste Combustion Facilities. April 15.
EPA. 1994. Dn
RCRA Hazardo
CO
b
is cited as one of the sources of the range of Kd, values, citing RTI (1992) as its source of information.
This document
-------
II
CQ
H
O vi
^ z
»5«5
V
6C
a
U U
O S
O"' P5
P
Descripti
I
u
§
1
1
K
o
u
g>
I
O"
u
u
c
H U
ari
y
le
"Si
u
"c3
T3
ra
I
«
,
db
ng their
uation
f
Jb
13
3
8
B
_O
1
!§
^ P
o ^
u S
•8
O"
o b op to
i^ ro cj a) „
ra > -a 3 u
CJ i_ -_, "^ O
o S c« 5 c
s°Ii I
2 * £ § c
. o C o •=
s O '5
5 3 —
f a 1 S i
i-S-cn 8
*^ en d\ w
8X3 1 5
CO
I
u
al<
lat
abl
nd
th t
pecific
and
is associated with th
ed
the
the
PQ
PC-
rtai
CO
un
s.
m
t
y
c
le i
ing
ow
'
3
SB
.2 u
0 CL,
C8 O
£ u
-------
as
S
05
S
H4 rT>
05 W
o b
td Z
S H
§
Bj 4
£g
sl
§*
Ug
<:
£
o
o
§
1
1
e
12
§
Q
ja
S
•i
£
. * 1
S S si -3 «
a &•§ 13 I
c g I § 8
e S « c
35 M JG ** •»-
a •". S ^ s,
a-vl ^ ^3 •£?
u ~ oo > -j
f*j ca :> X *ii
C i 2 IS ^ JB
••* n .- 2 IS -2
s> § JS ^ S 1 -n
o\ -r- 7? a c .3 a
Varies (calculated - Table B-2-
variable is COPC- and site-specific, and is calculated by using the equal
following uncertainty is associated with this variable:
The default variable values recommended for use in the equation in Tal
-specific water body conditions. The degree of uncertainty associated i
to be limited either because the probable ranges for these variables are i
estimates is generally available.
Uncertainty associated with fm is largely the result of uncertainty assoc
be significant in specific instances. Uncertainties associated with the v;
because of the summation of many variable-specific uncertainties.
2 £ P ff
H H C- Ci
1
s
B
sil
±. g "
Tg "1^
•S S -0
i- .2 -o
" « i
co v-,
S c S
_ u £
« g _a
o o "o
H o o
a
tf
O >. «
co & a>
T3 .S S
§ s s
"* " -w
. _. J? 05
"SJ W M
c= o .S
1 §£
•a o .«
j< e S*
«S | _c
«s | "S e
< 15 2 g
x > « c
=3 S i 'S
c o S 2P
S. c u 'K
» S -S S
^ O *-• J3
ff O .S Sr>
•S O «> §
« r, c E
5 3 -2 S
x> ta -s a
Varies (see Appendix A-2)
variable is COPC-specific, and should be determined from the COPC ta
following uncertainty is associated with this variable:
The default range (8 to 2,100,000 L/kg) of Kdbs values are based on def;
Because medium-specific OC content may vary widely at different loc<
associated with Kdbl values calculated by using default OC content vah
s a e
I
2
O •*-*
CL C
IT §
II
T3 0
ai o
| c
c .2
O *3
e '€
=§ a
M h
•o "
U B
« s
•*?
3
t- 2
S S-
3 .S
"3 ^ '«
> a jfj
££ S §
•25 | §
%£ I"8
•S Cu c u
g W 3 o
>«<« s g1
«£D -a ^
VO ^ *J U
S c g 5
£ .2 8 .-
o i 2 g
>> 3 0, >
•s? a" P U
S u "-1 ?
§QD >% O
c u K
S" ? S u .
e o s u ft
S S O k4 U
e o o eo 3
E t2 5 o S
0.4 to 0.8
Default: 0.6
variable is site-specific. U.S. EPAOSW recommends a default bed sedi
:m3 and a solids density [/oj value of 2.65 kg/L), calculated by using the
eb, = i -BS /p,
is consistent with other U.S. EPA (1993b and 1994) guidance.
following uncertainty is associated with this variable:
To the extent that the recommended default values of BS and p, do not
body-specific conditions, 6bs will be under- or overestimated to some d
expected to be minimal, based on the narrow range of recommended va
.2 -Si .2 o
•3 ^ -2 Ja CT-
H — H H C-
s
11
J
>>
"55
o
S
c.
1
e
•5
u
V)
T3
U
CO
9?
-------
ea
s
ea
1
,„ r •
2
c
a
8
73
0,
i
1
ia *s
•? M 4)
^•2 "
ctf p « ui
ON O ^
2 c' !5 S
e£ 1 §s
W g o J
eo S S >.
• C O •£>
2 1 I'S
1 1 II
.2 «§ SB
S a
C T3 > U
O O 4>
q " § .g
0.5 to 1.5
Default: 1.0
, U.S. EPA OSW recommends a default value of 1
tie reasonable for most applications. No reference
S. EPA (1993b and 1994) guidance.
associated with this variable:
ault value for BS may not accurately represent site
Csed may be under- or overestimated to a limited
o ~ -; «; « 4J .
til * III
1 3 •! | § S 13
'5 "3 "S c »s "O
.» > 1 § E o §
S ^0 "S 6 *^ S
111 1 ill
.2^0 o
^ 1 -i P £
s
"So
c
.2
1
K
U
I
^
"o
.a
c
u
CQ
§
O
01 "°
H jr jj
> g« ^
^ 1> .--
3 ce cd
ea '^ >
t3 C .>»
W "5 "3
55 jjj C3
| g §
"S 1 «>
D *Q ^
S 0 y
4> " ^
(g « <*H
j- O cc
u J3 *^
^ V," C
«i S '-O
c O K
Varies (site-specific)
associated with this variable:
es may not accurately reflect site-specific conditio:
inder- or overestimation of the variable Csed. How
sources allowing reasonable water body-specific e
o K s ~ K
Ctv* "3 O
>\ ™ & o
'8 S > * 3
D. "3 •« ^ o
1 i 1 1 I
00 *O C C
JB c u- o "g
3 '? ° 1
1 | It*
•- ° ^
e
e
g
*3
o
o
1
^
o
OH
Q
,
T3
c« ^— •- S?
cs r*- -°
JD O\ o
— ^ p^ -Q
y OH "5
i ? 1 s.
* SC 5 X
.. rjl ta O
|Q S"
1 ^ II1
^ 1 "S '^
/-*. *L) O
1 1 =1
t< •§ §
CJ FT! ^ fl^
1 ' fS ^3
"O ^ 05 "S
4J "^ r-
0.03
. U.S. EPA recommends a default upper-benthic si
ted by U.S. EPA (1993b). This is consistent with
associated with this variable:
;s may not accurately reflect site-specific conditioi
- or overestimation of the variable Cscd. However,
TOW recommended range of default values.
.a 3 -2 js s a
So >? "a -g «
o .2 o i2^ *-* o
CB «Js 3 13 .S2 2
•^ o ao *o H _5
S S -2 "8 =§ — "
_ea C g u •g 13
j» J *£
S § S £
£
1
g
•3
0
5
c
JD
O,
3
C
S, &
Q —
^
-------
B
W
J
B
2
X
fe
DISCUSSION
REFERENCES AND
zardous Waste Combustion Units. January.
DEHNR. 1997. NC DEHNR Protocol for Performing Indirect Exposure Risk Assessments for Ha.
U
z
993a; 1993b) as its source of
t value is the midpoint of an
lyer. This document is also cited as
_H *-H fc«
ro 3 ~^
liment porosity ( 6bs). This document cites U.S. EPA 1
t value for depth of the upper benthic layer. The defa
the range of values for the depth of the upper benthic
This document is cited as one of the reference source documents for the default value for bed sed
infonnation. This document is also cited as one of the reference source documents for the defaul
acceptable range. This document cites U.S. EPA (1993a; 1993b) as its source of information for
one of the reference source documents for the default benthic solids concentration ( BS).
•raft. Office of Research and
u
Exposure to Combustor Emissions. External Review
. EPA. 1993a. Addendum to the Methodology for Assessing Health Risks Associated with Indirect
Development. Washington, D.C. November 1993.
cr>
S
ir sediment. The generic equation for
1 is medium-specific. The range of
OC value for sediment is four times
lis equation was identified. This
<£
range of Kd, values and an assumed OC value of 0.04
This document is cited by U.S. EPA (1994) and NC DEHNR (1997) as one of the sources of the
y u
•43
'x * OC,. Kx is a chemical-specific value; however, O
imated by multiplying the Kd, values by 4, because th
alculating bed sediment porosity ( 6bs). No source of
source of this range was identified.
calculating partition coefficients (soil, surface water, and bed sediments) is as follows: Kdu = K
Kd, values was based on an assumed OC value of 0.01 for soil. Therefore, the Kdb, value was est
greater than the OC value for soil. This document is also cited as the source of the equation for c
document was also cited as the source for the range of the benthic solids concentration (BS). No
mendations. Office of Solid Waste
e
>sure to Combustor Emissions. Working Group Recoi
EPA. 1993b. Addendum: Methodology for Assessing Health Risks Associated with Indirect Expc
and Office of Research and Development. Washington, D.C. September 24.
CO
S
U
i
«
!
0
J3
73
>
c
_o
83
1
U
!
en
T)
73
>ed sediment porosity value (6bs), the default benthic s
This document is cited by NC DEHNR (1997) and U.S. EPA (1994) as the source of the default I
range for depth of upper benthic layer (dbt) values.
posure Assessment Guidance for
t3
es Burning Hazardous Wastes. Attachment C, Draft 1
EPA. 1994. Draft Guidance for Performing Screening Level Risk Analyses at Combustor Faciliti
RCRA Hazardous Waste Combustion Facilities. April 15.
CO
S
as its source of information
lent cites U.S. EPA ( 1993a; 1993W
s- c
of 0.04 for sediment. This document cites RTI (1992
fault value for bed sediment porosity ( 6L). This docu
This document is cited as one of the sources of the range of Kd, values and an assumed OC value
regarding Kd, values. This document is cited as one of the reference source documents for the de
lit value is the midpoint of an
yer. This document is also cited as
.« «
t value for depth of upper benthic layer ( dbs). The def
the range of values for the depth of the upper benthic 1
as its source. This document is also cited as one of the reference source documents for the defaul
acceptable range. This document cites U.S. EPA (1993a; 1993b) as its source of information for I
one of the reference source documents for the default benthic solids concentration (BS).
-------
1
H
»M
«5
O
a s?
ft z
H 0
S §»
3 SH S
S 8§ 2
H a J
M w 0- 4>
PP Z "*
H 2 ^ S
i|
r"! £3
u w
Z H
O ~
U
H
BH
1 3
§ ^ O
O- X ^v
C 43 W
SH flj
° <§ •£
| £ ^
.c cs c
~ -a CB
£ °° 0
"*" ° i>
I | ^
8 o •» :5
tS £2 ^" rt
fa « *"* .S
CO {5 4) Q^
§ 0 3 C
CLi P3 eft *^j
O T3 •" 0°
u 1 * "° "S
X3 ^ 0) a> y
1 | i i 1
fc c "g y •"!
o o _ « ff
8 -i | -s I
s 1 1 s S
t ll 11
O _ " s*
§ 1 ll iL
1 1 11 ill
s -i •§ i * * .&
Q g, 00 § g ^(g M
•o '? ,S .S 8 « "o
& -2 o . js .53 oT ±;
| 2 * 1 -f ? 1 1
^j O ' O S5 «D Ct3 X
| I i|| i|5
BO S B.'oa. "Bo^
c ^3 s^^ S^G,
•B § .^ollaj J^"^1
u 2 'c-g'tB oi01
1 1 til IJhf
O, ^ k^ O (5j C> C
1 ^ s s 'E, ^ s 1
! l in ill
1 i |li If!
^* O5 ^t3 e/i ^^ "* S *T5
§ 1 II Is III
u -3 Is ^^ — "v J= J2 «
"S g '6-^'Jc1'1>o'3g
_S § ie§Jc°-2
^ S " "5 *C -H '-5 — 'a
13 B -aJSai^JS^-g
§ | 1 1 g 1 1 * 1
"ra ^ o ai "H. *-• o S 41
g, *g ^-Ccw-^t?^
o .S i-JHOTDHDr"1
.22 o ^^ ^ /^ ^^
S H ^CL $S S
|t
11 -B
| 1
s a1
•i*
i§
d II 2
*- 3> O
^ kTK u
^^** ^3 &*• c3
CO ,-Ck. =00 3
vj« ^ ra t^ T3
O
,
r " " i
g
^
i
ex
i
q
j±,
J^
'S (^
1 i
+
f
^Ju,
kT
O)
I
jc ra >.
<* S 'S
ft •*"* O e
S^ *® ^jj
1 SJ S w
a S J S
g "S E -i
q i £ §"
^ ^S *
^-s *5 2
o»e =3
I»X "*~^ >v
^33 s
* ^ »-i ^
" o 1 t!
1
£
£ ^
I
w
tl^
f
1
1
*«
d
oo
o,
5 §
^^
i
"ws — O
It f
Si 1
= •§ 1
l-^. o S ^J
.CT1 ut ra Q>
-. — W) O
!& |£ E
>> u
60 g U
II 1
ll 4
RJ T3 g
CO O
ll |
S £ g
"8 S I
C8 .2 -
11 f
W &, G
<-> a C
•- • .2 ^ &> E3
"£ s g g B
I! II |
S- a 52 ^
£ ^ 00 (S «
"^ « r~ ts "
^" § do •§
C "Q ^
^ o S ,,2
S Q J8 II " ^
S >> "s x-» o '3
S ^ — ^ ^ "
"^3 Ji o 5C 2 «
— t. ~t r? 0, 0, o
"S ^ o a K
E 2 | | f
% c -g U «
u 13 c u '-j
N< -^ U r/J ~T
V 3 cw s.^ ra
c ^ u M "
f. S & c u
O w) rt £^
fa £ < *H- <
ir>
BQ
-------
I
specific
Varies
i
GH "O
§
U
u
U
o<
O
U
O)
i
n
"
'
3
§
•
O o
U a
•s-E
IS.
.9
odeled
Varie
1
determined by air dispersion model
te-specific.
T3
O* JD
s-g
8 I
&£
1^
to J3
"Hi
"1
8""
PC-
iate
variable is
rtainties a
s-a
4)
-------
TABLE B-3-1
Z
O
M
H
HH
en
O
a, ^
Q Z
Bg
§|
M 9
TRATION DUE TO D
ESTRIAL PLANT EQ
(Page 3 of 10)
Z X
U b3
ZH
O ~
u
H
iz
2
i
>
£
S
p
J
"S,
•c
g
e
|
< ^
A. I-i
S 8
ttf
3 C3
0
S §
— "B,
"? M
£H O
4> J3
.2 eo
0.5
,5 , which is cons
f deposition that
£ S
§ 1
jy tfe
o -2
2 «
EPA OSW recommends the
'4b; 1995) in development of
t/5 §}
D C-
09
3
•S3
"c
—
IS
•3
U
i
c
•a
(J ^
S "B,
2 <«
a. ?
o c
u _o
'e O
£ O<
•8
1 f
1 "S
§S T3
ea u
Sb|
1 1
Wl ^*/
<4-H 15
O ^s
w ' — '
U en
im co
a
cd
n
CO
B
S
<*H
O . C
^ So « -S
i|IS
•rj * »-<
§ ^ » A?
^ c a c-
c " 3 ->;
a p « s>
o. S, g,;>
J B oo" "S
i,.¥s &
3 1 -S" S
nil
•2 -a oo to
&!ES
CJ .3 »Q
U
J
00
c -3 o
J2 <2 S
1^|
S|s
P^_ u 3
^S.i
*S *° e§
ex £? p
~> *. "s
-0 u
f ll
c 2 ±!
!§!
T\ "3 'i '§ 8
.So"" 5
05 o *S
llll 1
|l|| f
i. Sharp, Sjoreen, and Shor (1
'0) for other vegetation classe
xponential regression equatio
nd Yp (Baes, Sharp, Sjoreen,
ertainties associated with this
55 i^ io w o
ffl O § f§" 3
o
c
" -at
a :s "s
i ii
a l> E
O- *S &
° 'o 'u
•0 3 S1
« «§ 4
**" ^ *^
.52 S %
W5 i-H 4)
^ ^ CX
lin (1970) on the
Sjoreen, and Sho
not accurately re
Is • fr ^
EC -C ^^
a £ V) O
JZ "E, en o^
^."S | ^
fjij
The empirical relationship d
accurately represent all fora
The empirical constants dev
relationship developed by C
^ ^^
^ CN,
^
t-
n
-------
n
S
BQ
$
15
M
08
a,
RA
I
*
S3
§
1
*c
u
O
ce
•c
ee
Anions: 0.20
Cations and most Organics: 0.6
Cfl
1
"S
3
1 *
O O
ft °
*o 'C
*j 3
O ce
rj 03
JN "75
S °°
° u
.2 "^
2 i
ti, •£
_
*•
« 1 i , .* 1 * = „ 2
rSfrt.-r- eW?"On rt «J J3 O
Consistent with U.S. EPA (194b; 1995) in evaluating aboveground forage, U.S. EPA OSW recommends using tl
value of 0.2 for anions and 0.6 for cations and most organics. These values are the best available information, bi
on a review of the current scientific literature, with the following exception: U.S. EPA OSW recommends using
Fw value of 0.2 for the three organic COPC that ionize to anionic forms. These include (1) 4-chloroaniline, (2) i
nitrosodiphenylamine, and (3) n-nitrosodi-n-proplyamine (see Appendix A-2).
The values estimated by U.S. EPA (1994b; 1995) are based on information presented in Hoffman, Thiessen, Frai
and Blaylock (1992), which presented values for a parameter (r) termed the "interception fraction." These value
were based on a study in which soluble radionuclides and insoluble particles labeled with radionuclides were
deposited onto pasture grass (specifically a combination of fescues, clover, and old field vegitation) via simulate
rain. The parameter (r) is defined as "the fraction of material in rain intercepted by vegetation and initially retail
or, essentially, the product of Rp and Fw, as defined for use in this guidance:
r = Rp • Fw
The r values developed by Hoffman, Thiessen, Frank, and Blaylock (1992) were divided by an Rp value of 0.5 fi
forage (U.S. EPA 1994b). TheFw values developed by U.S. EPA (1994b) are 0.2 for anions and 0.6 for cations
insoluble particles. U.S. EPA (1994b; 1995) recommended using the Fw value calculated by using the r value fr
insoluble particles to represent organic compounds; however, no rationale for this recommendation is provided.
Uncertainties associated with this variable include the following:
(1) Values of r developed experimentally for pasture grass (specifically a combination of fescues, clover, and i
field vegitation) may not accurately represent all forage varieties specificto a site.
(2) Values of r assumed for most organic compounds, based on the behavior of insoluble polystryene
microspheres tagged with radionuclides, may not accurately represent the behavior of organic compounds
under site-specific conditions.
Varies (modeled)
This variable is COPC- and site-specific, and is determined by air dispersion modeling (see Chapter 3).
Uncertainties associated with this variable are site-specific.
&
CJ
1
« 8
| .S
I"
"-1 "t
Z n.
«J *•*
- 1
u •"
>-, e
•S-2.
N •;;
1 a
J^
1=1 T3
a.
S
Q
-------
09
W
ca
$
0
i— I
•s
in
1
£
1
§
33
a
"C
g
O
0>
3
•i
es
^
CO
•o
0
"3
U
~
^
£
a
18
U.S. EPA OSW recommends thefcp value of 18 recommended by U.S. EPA (1993; 1994b).
"ca
>
E *•"
8 ,2
S rt
'? c
ton
11
3 co
"cj c^
the midpoint of a possible range of values. U.S. EPA (1990) identified several processes— il
water removal, and growth dilution— that reduce the amount of contaminant that has been de
•
.
e
^5
0
CO
U
8
surface. The term kp is a measure of the amount of contaminant lost to these physical proce
EPA (1990) cited Miller and Hoffman (1983) for the following equation used to estimate kp
o
£
a
B
'i
a
1
CM
O
kp = (In 21 tl/2) • 365 days/yr
where:
t1/2 = half-time (days)
Miller and Hoffman (1983) report half-time values ranging from 2.8 to 34 days for a variety
^ t>
M- H
2 ,£>
rf 0
C\ co
ON O
— . CO
>^x CO
^ u
< 8
o- 8
U G.
herbaceous vegetation. These half-time values result in kp values of 7.44 to 90.36 yr '. U.S
recommend a kp value of 18, based on a generic 14-day half-time, corresponding to physica
c
1
g
K
•o
o
.§
14-day half-time is approximately the midpoint of the range (2.8 to 34 days) estimated by M
(1983).
Uncertainties associated with this variable include the following:
'3 R.
cd -3£
£3 CO
1-t ™
00 CO
-O lo
,_— ™
S S
'3 "
c -o
U g
(1) Calculation of kp does not consider chemical degradation processes. The addition of c
processes would decrease half-times and thereby increase kp values; plant concentratil
« =g
"*i t<-«
t °
u o
to -r"
C >.
o _g
• •H ^^
i 1
CO «_>
u C
increases. Therefore, use of a fcp value that does not consider chemical degradation pr
(2) The half-time values reported by Miller and Hoffman (1983) may not accurately repre
COPCs on plants.
•/•>
g
Sl
a
l .
(B
rG
'£
CO
U
(3) Based on this range (7.44 to 90.36), plant concentrations could range from about 1 .8 ti
times lower than the plant concentrations, based on a kp value of 18.
"k
C
"o
s
u
8
C/5
Cfl
U
•§
3
C
CO
£
.&
CQ
-------
«
w
oa
$
O
ve
4>
M
§
1
18
£3
§
1
1
a!
Q
_a>
3
OS
1.
<*-.
o
u
: values in the absenc
0.12
This variable is site-specific. U.S. EPA OSW recommends the use of these defauli
s
£
00
c
1
1997) recommended
essive grazing.
site-specific information. U.S. EPA (1990), U.S. EPA (1994b), and NC DEHNR (
a constant, based on the average periods between successive hay harvests and succ<
T3
0
I
(11
days) and the averagi
follows:
For forage, the average of the average period between successive hay harvests (60
between successive grazing (30 days) is used (that is, 45 days). Tp is calculated as
&
Tp = (60 days + 30 days)/ 2 -f 365 days/yr = 0. 12
|
cS
is
S
H
ulating the COPC co
These average periods are from Belcher and Travis (1989), and are used when calc
in cattle forage.
The following uncertainty is associated with this variable:
1
oo
J*
00
emains unchanged at
(1) Beyond the time frame of about 3 months for harvest cycles, if the kp value r
Tp values will have little effect on predicted COPC concentrations in plants.
£.
o
JD
s H
O <*H
5 f
g to
S, S
X H
U CQ
<-. JS *j
C K S
a u ra
"E a o,
<*- S ^
o .0 o
J3 5 C
*- c« C
00 0 -~
c n. tJ
•3-s a
£
£
«§
o
J3
"es
>
•o
in the average rounde
0.12
U.S. EPA OSW recommends using the value of 0.12. This default value is based c
CO
cn
4J
"S
9
!>
1
1 §
s£
s =
oo o
'« 's
^ 0>
-. ^
>> c
Q 8
y«s
i
nt parts (Taiz at al. 1
1 the range of 80 to 95 percent water content in herbaceous plants and nonwoody pla
The following uncertainty is associated with this variable:
?-.
*-~i
CO
3
'1
Tf\
it from plant varietiei
(1) The plant species considered in determining the default value may be differei
present at a site.
-------
H O
TH
f>
pa
H
j
PQ
g
a o
O ^
H fc
w 5
^
RATION
STRIAL ]
gfc
y
H
o1
iH
'S
r-
1
1
1
§
5B
a
g
09
Jf
B
s
1
e
"s
1
Q
00
.X
"o
CO
S
o
rv
8
u
00
B
•3
1
tfl
o
"O
"a3
£
I
"E.
U
Xj
CM
0
B
_O
•Jj
O
Q.
U
3
"O
^s
B
i
B
U
S
a
Cft
^D
^
^
j_.
C
Cfl
Cfl
§
CO
O
3
•a
cl
u
T3
CO
tN
6
o
u
3
"3
>
o
00
c
"53
3
CO
T5
B
S
EPA OSW recorr
CO
^
^-^
—•
.>
o
•o
s
&
B°
'S
T3
in consi
"8
B
C
"5
T3
en
,
"8
B
1
t3
•o
CO
ca
5>
i
OQ
_o
t2
8
Cfl
£
3
cd
1
ith the resulting
T3
i
£^
U
os
"a
E
CO
3
stion by an herbiv
&
B
B
1
1
view of
S:
a
B
o
"8
CO
cS
PQ
s
o\
l-H
js
[ ty]) (Chambei
iomass
^3
Q.
standing cro
.§•
3
1
D.
5
S
8
g
es
g
'il
eo
3
.C
•a
B
CO
u
a>
the most compl
§
"8
Cfi
^2
m
appears to bi
u
3
"0
CO
lable literature, thi
'S
a
a
his vari
*"^
X!
ssociated wi
a
CO
'B
following uncerta
Js
^
o
t>
1
B
cd
"S.
I
4^
<2
K:
1
x
E
O
g>
Is
; default value f
uj
00
B
|H
E
ered in deter
'S
1
CA
The plant specie:
^
^^j
yerestimate Yp.
o
8
•o
B
3
cd
CO
at a site.
actually present ;
IS
oa
-------
TABLE B-3-1
SITION
8.
&
T CONCENTRATION DUE TO DIRECT D
Z
2
tfi
(TERRESTRIAL PLANT EQUATION!
S
1H
•s
00
a
£
REFERENCES AND DISCUSSION
'ronmentally Released Radionuclides through Agriculture .
1
o
. 00
Q£
*.d
^ 2
U o
tfi
CO
ca
n
;s. Class-specific estimates of the empirical constant, y> were
n estimates of Rp and Yp.
z g
CA 3
.3 E
e x
lip developed by Chamberlain (1970) for other vegetation
ough several points, including average and theoretical ma
it proposed using the same empirical relations!
forcing an exponential regression equation thr
c ^
CO >>
o u
o g.
•a 2,
01 O
JS %
H T3
irt on Sensitivity and Uncertainty Analysis for the Terrestrial Food
Oak Ridge National Laboratory. Oak Ridge, Tennessee.
&§
of ;a
; RURA and Municipal Waste Combustion Projects: Final
, Office of Risk Analysis, Health and Safety Research Div
C.C.Travis. 1989. "Modeling Support for tht
" Interagency Agreement No. 1824-A020-A1,
•o -3
§"8
^!l
-i %
J U O
u
~s
03
eb
_e
*N
CS
i period between successive hay harvests and successive g:
t recommends Tp values based on the average
c
documei
c«
g
Tt
tH
S
oveml
Science and Technology. Volume 22. Pages 361-367. N
••«*
g
e
1
1
CO
U
O5
W
0>
U
'S
•a
CO
O
<
od
oo
o\
p-
H
c
ca
u
•o
S
IR (1997) as the source of the equations for calculating Fv.
t is cited by U.S. EPA (1994a) and NC DEHN
c
documei
V3
IS
00
t~
Q
£
•*
:tive Aerosols by Vegetation." Atmospheric Environment.
1970. "Interception and Retention of Radioac
U
<
c
'5
1
SI
J3
U
S~*.
£
V)
"»»>
= Empirical constant; range provided z
= Standing crop biomass (productivity
(£• x. -?•
ft: ^- >i
f Radioactive Contaminants Deposited on Pasture Grass by
o
|
992. "Quantification of the Interception and Initial Reten
:3313to3321.
I. Thiessen, M.L. Frank, and E.G. Blaylock. 1
n." Atmospheric Environment. Vol. 26A. 18
>; •—
<< ca
W «
- T3
Q*
[T — -t
tL, 3
s|
1
^
X
gamma-emitting radionuclides and insoluble particles tagged
d field vegetation, including fescue) via simulated rain. The
5 product of Rp and Fw, as defined by this guidance:
| 05
!•§ *
O rt ^
srmed "interception fraction," based on a study in which si
ture grass (specifically, a combination of fescues, clover, i
tercepted by vegetation and initially retained" or, essential
t developed values for a parameter (r) that it tf
mitting radionuclides were deposited onto pas
s defined as "the fraction of material in rain in
n ^ ""
I §-:
sis
O CS to
T3 bC C
C
IIS
H £ 0.
1
£
n
i.
r values obtained include the following:
*ca
c
u
_c
CJ
D.
X
U
for anions, U.S. EPA (1994a) used the highest geometric mean r
1
1
uble radionuclide iodide-131 [131I]); when calculating Rp '
ge of 0.006 to 0.3 for anions (based on the sol
(0.08) observed in the study.
C 4>
ca %
< 2
•
-------
CQ
H
J
CQ
z
o
b^
H
IECT DEPOSI
ATIONS)
CENTRATION DUE TO DII
ERRESTRIAL PLANT EQU
Sb
o
PLANT C
U.S. EPA (1994a) used the highest geometric mean r
CO
|
Ut
£
I
•a
>
£
eo
c
1
(Page 9 of 10)
luclide beryllium-7 [7Be]; when calcu
o
"S
on the soluble ri
1
cd
rf
c 2
O GO
'5 *
CS JC
U *3
*l
VO U
0 £
2 §
_ X)
~". o
o ^
<4- 00
0
•
micrometers, labeled with cerium- 141 [ l41Ce], [9SN]b,
janiline; n-nitrosodiphenylamine; and n-nitrosodi-n-
ers. However, no rationale for this selection was
JL *^
8-2 S
S-S I
_L cj
™*.e
ing in diameter fron
ze to anionic forms
ith a diameter of 3 i
polystyrene microspheres (IPM) rangi
ics (other than three organics that ioni
the geometric mean r value for IPM w
o g -q
1 §1
:o 0.37 for insoli
Rp values for o
. EPA (1994a) i
— oo co
8-S S3
o S ^
III
* ° x
i §1
3 j- C
1 * |
'StJ5<
0 S u
g£ ?
2 B '-
o i u
'5 -c -S
JJ S £ •»
s S - -a
oo -a o" o
..ccc
< a a, a<
•
le cation 7Be and the IPMs, r depends more on
egetation surface has become saturated, and (2) the
cationic species is consistent with a negative charge
_o > _
^|«
o £ «
M £ o
55 ••"<
•S c §
mount, whereas for
ved with the water t
; behavior of the ani
ction r is an inverse function of rain a
(1) the anionic 131I is essentially remo'
iurface. This discrepancy between the
ca <_, •"
* " c
e -S cs
lion, interceptio
also concluded
tie out on, the pi
S 2 §
i— i O «»
5 -s g
3
3 !*
J3 J3 T3
^ H «>
M . -S
0 53 O
«al
n C CS
<2 '3 ca
g §11
° C ^
W3 ca w w
S •& M g
•S g o "E.
! 1 1 -§
£ 1 "i B
H xi o o
Ith Physics. 45 (3): 731 to 744.
c
£
§'
posited on Vegetati
ental Half-Time for Radionuclides De
I
ion of the Envu-
13
c
X
W
<
m
oo
2
i
1
o
d
PH
•o
c
CO
^
U
i_T
J£
i
to calculate kp:
"8
V3
3
equation
<4H
O
; source
•S
W
C
u
3
O
O
•o
W5
1
a
u
^>
M
>.
c?
•o
m
vo
fn
1
?5
_c
d^
II
£
2
•*
•*
f-'
s
C2
g
r^
CO
>
.§<
o
cd
"3
•3
CJ
_g
•3
CA
U
1-1
CO
O
^3
"a
>
V
••B
"rt
JS
g
a
§
i
o
00
o>
>
CO
3
3
1
ntaminants on h
ays for a variety of co
2.8 to 34 d;
half-time values ranging from :
The study reports
90.36 yr1.
^
1
e
cd
•->
^
c
s
1
Combus
v
S
1
S
1
H
•ssmentsfor Hai
ct Exposure Risk Asse
ting Indirei
" DEHNR Protocol for Perforn
DEHNR. 1997. N(
U
z
in Terrestrial
Si
S
i.
<£,
1
•§
.
co^
„
1
w
«"
^
n
i
ON
i
CO
$
£
•o
s
"3
3
£
u
to calculat
the source of the equation used
This document is
a
o\
>o
in
1
o
t£
S
Redwood City,
mius Publishing Co.
|
1991. Plant Physiology. Benj
w
OD
"C
O
CU
T3
C
cd
J
t*J
cd
f2
ce. Office of
£
o
*^
g
M
ce
U
M
tn
•o
cd
1
5
"a
S
u
O
,=
U
1
i
2
s?
6
2
fi
s
th Indirect Expc
h Risks Associated wi
!&
li
•« ^
m Final Methodology for Asset
'elopment. EPA 600/6-90/003.
II
S^
OS o
"" cd
: CJ
<; co
$*
CO
5
1
CO
•o
g
s
03
P3
1
CO
1^
•8
c
3
•2
C
e
•8
g
>i
->
•s
u
•§
a
o.
CO
/-^
CO
«
O
X>
&
U
oo
_c
T3
e
i
"«
g
2
"3
'?.
estimate of Yp (
so states that the best
•a
.2
source documents for the equal
This is one of the
(1982).
mmental
.is
>
U
•O
§
•S
13
u
rc
"o
O
O
s
0
g
-2
'5j
trs
1
0
S
"i
1
a
1
«^
w
"H
1
1
>5
«
*s
sks Associated \
mber.
r Assessing Health Ri
30/AP-93/003. Novel
odologyfo
nt. EPA/61
•w Draft Addendum to the Meth
ce of Research and Developme
EPA. 1993. Revie
Assessment. Offi
CO
D
-------
ffl
s
CQ
$
-8
"11
••
« ^
•M
aw
-------
^ a
PQ
w
j
M
ss
m
£
t
?
1
1 |
•S 1
§ "
I I
nd uncertainty
o
J-
H
a -2"
O o w
e» a
ed
1
o
c
S
1
.
•
bove
ted
alu
r u
ate
ed
oci
te
describ
ed by
s
u
2
•o
o
c
o
1
a
-
^
u
o
It
*
e
0
fa,
O)
1
fi
0)
00
=2
".
.g
<-=> .n
10 •-
«= •
•§*
13 OO
j< r~
O O id
e
o
-
s
>>
I
u
•Z - o
3 ta *
0 * 4=
illl
HI
S 1 1
<« g -S
'
M a "
a Si S
& b
a s
!». u
||
a, a,
oo cs
t-
-------
«
s
BQ
g
pg
SO
£
V
1
S
1
D
§
«*
a
S
a
V
•S
•c
£
£
3
u
1
1
CO
IS
4S
"£
T3
1
8
CO
CO
ca
co
U
C
'3
Varies (site-speciflc)
ee Chapters 2 and 3). Uncerl
ca
O
*
1
?
1
1
g
8
.2
S d
Is
c3 u
.2 f
Si
•s,
s
tc!
1H
1
«J
CO
1
u
tc
"o
U
o.
U
0,
O
U
ex
H. £
co ' ca
CO l_ ~ .S
e o
£ Jf = c 1 % S
j lilsfli
s s?8fJa5
M- "S. o .2 g g n T
^> § ^^uuoujj
<: | ^"U5*s°
K § g tl -' § ° §
=3 • l§|-a-||-i
I i ijiSini
3" » ^-^SxigU^W
^ s .i>g>>".2n3£'S)
c "S 'SwTi'Ss'seC
•a ft S*-JJ^u°So
to -o ta«^5'=u-ti50
0 e •S*~'«'3SSed
*o 3 U-"oiu2Siu,
•S o «c— SE-CoSs
2 3> r&-«Og^S^gf2g
t; 8 -g ll^^li^l
1 1 1
f I 1 ^iillilil
& 1 Jo iso.Sf.'S^'-o^S
i ?
* -S BM5S'o§«8«e8t3o?OO.H3
I !
! I
PH 2 •CB(U'£3CQ^s
8 i -1^^1*1
.2 § .2SS'22g)J2«|s
CHC-v3Se5HraS
ja s ^"SasS^SSHu-s
1 1 llimilll.
^ g u?1^g<-S8S8C
2 8
"S 3 S S
en
1
• M
5
s
|
ctf
is
1
8
i^
"3
^
&
^3 o
U^^ w
vs
«*-! ^3
C CX
1 a
o 5
ca >
£ .S
h."
m
u
s.
ca
S
8
CA
S^f
.S
"o
•g
E
o
w
Varies (modeled)
nd is determined by air dispei
are site-specific.
ca q)
04=
S -S
PC- and site-speci
iated with this vai
S 8
U CO
.2 S
.2 S
JD -a
2 c
n
CO g
g5
"s
-2?
CO
eo
3.
§
S
is
C
§
o
u
'S «
>* ca
"C 43
S Q-
y >-.
>> 0
T3 O-
nl ca
N >
"5 E
'S S
3 eg
^
^
CQ
5
ca
_u
ca
_u
§
^3
u
ts
•o
8
* 8.-
•M ^- t*5
•o ? g
C 05 S
U u J2
o- 3 a.
^ 1*8
•S « S
CD .SS
_ 05 „ O
Varies (see Appendix C)
be determined from the table
include the following:
he algorithm used to estimate
epresent Bv for all forage spe
•o o £ u
3 3 o j?
2 2 » S
•C *r^ *^ (3
» a § 2
"3 !>• Jo g
! 1 i!
3 S -8 §
S. * IS1
,? "S «S e
a S «"§
O a -5s
U Z
-------
g
09
S
3
^
«M
1
a
S
•a
u
CO
o
CO
U
_3
'eB
>
3
1
2 -8
e .S
cs
o
•s
u
3
i
s
CO
=1
•3
. EPA OSW recommen
GO
CO
CO
•S
'e
3
1
U
U b
II
£ c
oo .2
'5 2
^ o
£? c
Q 8
~
&
13
'u
_N
< —
1
_«
"E.
D
S
•a
ca
t in herbaceous plants
1
1
c
range of 80 to 95 perce
0)
5
3
CO
'I
1
cd
Cfl
S
GO
following uncertainty i
S
S
£,
3
U
s
_u
i
1
"S.
1
1
1
•3
J5
?^
C3
O
3
rmining the default va
2
•8
e
1
'3
The plant species cor
present at a site.
1—4
ft}
U
1
O
c
U
in
•a
<-J
1
1
a
o
T3
U
(ft
a
X>
g
£
value but states that it
same
CO
2
i
"O
. EPA (1990) recomme
CO
»'
1
1
1
CQ
^_»
"^
^
1
to
1
3
"cd
?•
CO
end this
i
DEHNR(1997)recon
^
£"
2
\_^
1
co"
D
"8
T3
'5
CO
>
_,
oo
o\
^
Both documents cite
1
•o
U
O
C5
tandard conditions of 2<
CO
a
ted with this variable.
ssocial
03
t
s
B
re is no significant uno
A
Cl
f
'a
<**
0
^
'£
c
Q
0
-------
r<
PQ
3
CQ
iS
• TRANSFER
S
ONCENTRATION DUE TO AIR-TO-PLA
U
PLANT
v$
(TERRESTRIAL PLANT EQUATION
/— v
V)
"8
^»
0)
60
C8
&
REFERENCES AND DISCUSSION
Experimental Measurements and Correlation. " Environmental
CO
(11
ncentration of Organic Chemical Vapors in Plant Leav<
8
m
s
O
2
•M
>
S
•o
"ob
M
O
^j
*n
03
P
Js
"c3
U
Q
,.
ffl
'o
u
CO
CO
Os
OO
op
V>
OO
oo
CA
'I
<£
vd
t*
.0
2
•<3-
?N
J3
"o
i
o
Q
s;
1
tS
IS
c
c
su
c;
i,
5
Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992) below.
'3
ume/volume basis, to Bv on a mass/mass basis — see Bac
1
^
T3
U
«
5
1
05
ts
^
ca
O
1
ta
3
ST
u
£
thH
0
o
£
D
O
v:
U
,£
a:
Cfi
H
from Soils and Bioconcentration in Plant Leaves. " Bulletin of
§
nd M. Vighi. 1992. "Chlorinated Dioxins: Volatilizat
ca
Calamari
O
o
1
E
g
d
'5b
OO
ca
O
U
j.
i)
'i?
D
o
s
w
'o
o
CO
m
00
o
Tl-
O
Tt
CO
1
(2
00
-«•
Volume
&
cy
-ci
8
1
-13
1
1
s
"s
C
C
LJ
^
si
^
K
C
i;
"=r
1
late the air-to-plant biotransfer factor (Bv):
3
"ca
u
O
•a
u
CA
3
Q
Q
¥
Tt
m
?s"
i—*
00
1
1
)
T3
8
o
w
o
•*
(4-1
o
t
CA
CO
C
0
"8
in
£
1
1
"3
u
£
(4-1
O
§
3
S
£
crt
en
1
o
CT\
ON
00
3"
o
'i
U
Tf
V~i
v
ca
_o
'o
5°
1
I
eo
-
bO
•i f
s 2i
11 lit,
-S
CO
i* -g
2 8 S 2 ^
* e ^ x g
§ J c ^ I
— -^ « oo B
9< tt 'g . S
o S § S &
•5 rs 11
I|5S3
E §">.«».«
5 S a -a -e
o u o o c
> O BC 3 <
formed
JO
§
u
1
a
jo
00°
.S> ^ o
M "I 1 |
? -8 -8.B
00
ca
I
3
s S ^ |.
ce tiv — eo
•a g » g>
^ « 2 1
^ u .
Q > •§ •§
1^ ll
-1 -^ «* s
w- S rS3
11 il
lilla
jiff
tl -0 '—' M M
ll^?i
CL ^S !*«. •*•
1 &4 O\ *^ W
f 4 -• a 1
.a i .. sa a
0
1
!
£
1
Cental Science
1
1
o
u_
E-
32
m
-------
TABLE B-3-2
PS
(3
fe
O3
X
PLANT CONCENTRATION DUE TO AIR-TO-PLANT TRA]
(TERRESTRIAL PLANT EQUATIONS)
nes that the variable c (the Junge constant) is constant for
ncentration for monolayer coverage, and the difference
3 9
(Page 5 of 5)
Ference for the statement that the equation used to calculate the fraction of air concentration in vapor phase (Fv) ass
however, this reference notes that the value of c depends on the chemical (sorbate) molecular weight, the surface <
leat of desorption from the particle surface and the heat of vaporization of the liquid-phase sorbate.
pa
to
r»
Interim Final Methodology for Assessing Health Risks Associated with Indirect Exposure to Combustor Emissioi
nd Development. EPA -600-90-003. January.
^
O J3
85 |
< j
U "S
CO
3
t is a source of air density values.
c
u
3
"
C
"C
C/j
1
fcws/or Emissions. Office of Health and Environmental
g
/tew'ew Draft Addendum to the Methodology for Assessing Health Risks Associated with Indirect Exposure to Cc
OlTiceof Research and Development. EPA-600-AP-93-003. November 10.
fi "A
ON ^
ON g
CA
ty;
< s
CL. »
u <
CO
3
this document recommends reducing, by a factor of 10,
or "made predictions [of beef concentrations] come in
«,- 3
npts to model background concentrations of dioxin-like compounds in beef on the basis of known air concentration
:ulated by using the Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992) algorithm The use of this fa
rvations."
B u u
S * _§
OJ 0 •§
C S _e
o 9 •£
u =3 -t^
•« "3 £
(U •>
c« "^ o
« > c
ffl BQ S
Exposures. Review Draft. Office of Research and
^
Estimating Exposure to Dioxin-Like Compounds. Volume II: Properties, Sources, Occurrence, and Backgrow
Washington, DC. EPA/600/6-88/005Cb. June.
• ^^
^ C
" ai
85 £
S-. c-
< 1
Cu «
ca Q
CO
3
MS Wastes. Attachment C, Draft Exposure Assessment
aste. December 14.
•5 ^
Revised Draft Guidance for Performing Screening Level Risk Analyses at Combustion Facilities Burning Hazar
RCRA Hazardous Waste Combustion Facilities. Office of Emergency and Remedial Response. Office of Solid
,
If
ON V
< ^S
0. J3
u O
CO
3
OPCs, based on the work of Bidleman (1988); Fv for all
U
the source documents for Equation B-2-8. This document also presents a range (0.27 to 1) of Fv values for organic
et equal to zero.
14- ™
O efl
g «
C- o
o .:=
.^ §
2 ff
£ g
H .S
Handbook of Chemistry and Physics. 62nd Edition. Cleveland, Ohio. CRC Press.
00
ON
U
oi
CO
(S
U
£
5
1
>»
«
1
(_(
"«
5
I
1
u
U<
cd
Cfi
H
u
3
•«
x
S
Handbook of Chemistry and Physics. 66th Edition. Cleveland, Ohio. CRC Press.
\o
00
ON
U
«
VI
a
u
£
s~\
00
o\
s™^
Cfl
s
"o
u
B
1
§
Cfl
-a
§
VI
U
_3
"e3
>
£>
'so
1
tH
"3
1
8
g
.2
£
a
V!
C
1
CJ
O
•c
«
1
s from the Seveso Area." /n: Chlorinated Dioxins and
_o
berger, N. Neuner, U.B. Ranalder, W. Vetter, and J.P. Vuilleumier. 1982. "TCDD Levels in Soil and Plant Samp
wuds: Impact on the Environment. Eds. Hutzinger, O. and others. Pergamon, NY.
E S.
o 5
Ka
W-^
hi «
= 1
"S,
^
-------
L
D ^
TABLE B-3-3
:ENTRATION DUE TO ROOT
ESTRIAL PLANT EQUATION!
(Page 1 of 3)
W OS
% *
y^ yy
O H
H ~
z
^^
ft,
B
o
£
Description
:t uptake of COPCs from soil through plan
ic following:
may affect the accuracy of Cs1 estimates.
lay not reflect site-specific conditions.
o *•• a *•
3 I ie
g 3 _- O
"" o> r? ">
Jf 3 -3 |
*~* ^ O c3
i i fj
S -a S S
.2 « j= B
^ -3 u o
3 3 "
B .0 35 e
'"* ett - O
B 5 BO
° .c 2-2
la •§ '^ -^
1 1 11
C e« .So
U cc "•" "S
OH tS u ^
O >"» PL, U
s -1 B g
-S t: -a a
05 ° «- T
1 ° ^°
"3 -o So
1 S 1^
o .2 > «
'ca 2 o -S
a1 E H W
0> -.- L M-l
.2 u
S S ^S
-3
K
3
U
E
t
1
•a
B
MM *ao
S S *
2 ill
i if M' !
1 ? I 1 i
t 1 i
j^ .^ r\
^ O
>
t
M
1
E
Cfl
3
Sj
ccd
"3
"3
.2
u
•a
"P.
s
1
0
M u
.E 3
~ c
"o °
i I
- u
c y
o3 B
S "
S §
fa S
a
I
»
1
c
•a
a
•&
u
IS
a
o
2
CB
"«
>
^
:^%;^:-
•^fl;
^f%?'
:lf ,-?*::;
'S|^^|vT
|-^|^|
iCJ^^v^
^•^^^ 'J'°^ '
•5 5^8%
V"'A^^?-
1
H
•
il
i
^^^l^si^
1
B
•a
u
t
1
pa
JO
2
_B
B
O
•B
3
J? 8*
-------
ca
3
eo
<
o
c*
O>
^
2
"fi
P
*
^
«5
O
jj
2
03
•c
a
u
3
"3
^
"8
u
•o
c
3
d>
00
s
u
ca
u
.c
c
o
1
CS
.0
CA
V
0.12
U.S. EPA OSW recommends using the value of 0.12. This default valu
OS
CA
jj
'S
3
.£
00
'p
?
4^
U b
5 °
„ 0
O cd
4-> c:
•S S
00 ^
'S '£
>. 7;
t >
>. C
Q 8
S~*
5\
o
cd
u
N
"S
f2
N»^
2
13
D.
I
"3,
t
o
^
c
g
c
T3
c
ca
CA
i
"a,
CA
1
1
I
8
I
1
a.
I
"Z.
1
ferent fr
(4-1
'•3
o
*
^^
(1) The plant species considered in determining the default value ma;
present at a site.
(N
**4
O
| Varies (see Appendix C)
CA
CA
4>
7
S
o
>s
i-l
<£
en
J3
O
IS
'5
C/5
1
E
c
•o
u
c
u
cc
a
s.
S
i
13
>
u
C
"o
CJ
ex
CA
This variable is COPC-specific. Discussion of this variable and COPC-
1>
a. g
j1!:
&g
S Q
Appendix C.
Z^~
1
oo
.*
Uncertainties associated with this variable include the following:
S
o
u
A
%•
TO
£
0
u
•2 ^
U Tt
n. oo
o t>
"" C-
U t,
e 0
is
«s ^
a g
o
•*> a
f3. o
(1) Estimates of BCFr for some inorganic COPCs, based on plant upl
accurate than those based on BCP values from Baes, Sharp, Sjore
(4~
O
>,
0 "O
*l
Q CO
0 ~
5-8
O D.
O ^
u o
5 S
tn -a
° c
S-2
d transpi
ion equa'
§ "S
W CA
_. U
"5 eb
Cfl U
5-
OO
oo
ON
i— H
CA
P
Jrj
•§ i
«* .2
CO -t-
s!
£ §
l-s
•g s
0. g
0 ?
"o ^
> >-H
S M
(2) U.S. EPA OSW recommends that uptake of organic COPCs from
aboveground portions of the plant be calculated on the basis of a i
the uptake of 29 organic compounds. This regression equation, d
not accurately represent the behavior of all organic COPCs under
S'
03
-------
m
05
W
J
05
£
r^
•<
B~
P 5?
SI
0 H
tf <
Bl
W W
P H
1*
1^
S5*
£2
S H
W K
u S
SB
/— \
«
15
f>
u
DC
S
O H
1
GO
S
IFERENCES AND DISC
2
NN
Transport of Environmentally Released Radionuclides through Agriculture.
$
of Parameters andAssessi
C-)
1
-^
•e
i
•Si
^
£
s
o\
Ul
.g
CO
£
as
•a
§
c
3?
J
«
-S
Co. Redwood City, Califc
00
p?
Publishil
§
e
i
¥
pa
1
"5
}
5
*~4
ON
ON
1-i
U
op
1^
o
BJ
"O
CO
J
.H
CO
H
S
M
2
S
?S
!
i
i
c
2
§
£
1
1
and Vegetation." Environ
M
i
*s~
m
_e
CO
•1
C3
cf
U-.
o
1
•£»
ctf
J3
§
O
'Biocon
00
oo
ON
CO
^
Q
<
•n
1?
CB
U
U
e^
'E
IH
£
egression equation relating soil-to-plant BCF to K^;
c
cd
, this document developed
05
•a
:ompoun
U
1
£P
15
S
«§
2
cd
•o
O
•i
:oncentr
u
1
"a,
•a
c
ra
'o
1
cd
d.
c
o
T3
CJ
CO
cd
CO
J
icj
00
_2
oo
r-
m
d
i
oo
oo
V)
II
£
«
0£
_O
• the Hazardous Waste Identification Project . Volumes I and II. Office of Solid
•S,
Really-Based Exit Criteria
^
1
1
<3
"S
1
•C
1
2*
2S
as
"&•
1
1
S
«
t
Q
s
^
1 *>
OS X
vS e3
ON 5!
ON «
CO
D
calculating the uptake of inorganics into vegetative growth (stems and leaves) and
,
1
g
D.
0
"
s~\
SI
3
"O
§
Cfl
t»"
I
J3
$
1)
O
_>
2
U
Qfi
nonve;
some inorganics were apparently obtained from plant uptake response slope factors.
srences used to calculate the uptake response slope factors are not clearly
.S
, and Shor (1984), values f
c
co1
cf
CO
-C
CO
S"
cd
PQ
I
n>
g
U
e
§
•o
95
'M
^
_c
T3
%
3
CO
U.
u
m
to
O
s:
00
3
o
•S
<
"S
metal methodologies, and
CO
CO
J=
u
3
CO
3
cd
•o
T3
"u
C
1
T3
, .
_«
3
_o
"3
u
1
2
2
a
c/}
C
o
ex
en
O
i^
-------
APPENDIX C
MEDIA-TO-RECEPTOR BIOCONCENTRATION FACTORS (BCFs)
Screening Level Ecological Risk Assessment Protocol
August 1999
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
APPENDIX C
TABLE OF CONTENTS
Section Page
C-1.0 GENERAL GUIDANCE C-l
C-l.l SOIL-TO-SOIL INVERTEBRATE BIOCONCENTRATION FACTORS C-2
C-1.2 SOIL-TO-PLANT AND SEDIMENT-TO-PLANT BIOCONCENTRATION
FACTORS C-2
C-l.3 WATER-TO-AQUATIC INVERTEBRATE BIOCONCENTRATION FACTORS C-3
C-l.4. WATER-TO-ALGAE BIOCONCENTRATION FACTORS C-4
C-1.5 WATER-TO-FISH BIOCONCENTRATION FACTORS C-4
C-l.6 SEDEMENT-TO-BENTfflC INVERTEBRATE BIOCONCENTRATION FACTORS C-5
C-l.7 AIR-TO-PLANT BIOTRANSFER FACTORS C-5
REFERENCES: APPENDIX C TEXT C-9
TABLES OF MEDIA-TO-RECEPTOR BCF VALUES C-13
REFERENCES: MEDIA-TO-RECEPTOR BCF VALUES C-99
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-i
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C: Media-To-Receptor BCF Values August 1999
APPENDIX C
MEDIA-TO-RECEPTOR BCFs
Appendix C provides recommended guidance for determining values for media-to-receptor bioconcentration
factors (BCFs) based on values reported in the scientific literature, or estimated using physical and
chemical properties of the compound. Guidance on use of BCF values in the screening level ecological risk
assessment is provided in Chapter 5.
Section C-1.0 provides the general guidance recommended to select or estimate BCF values.
Sections C-l.l through C-1.7 further discuss determination of BCFs for specific media and receptors.
References cited in Sections C-l.l through C-1.7 are located following Section C-1.7.
For the compounds commonly identified in risk assessments for combustion facilities (identified in Chapter
2), BCF values have been determined following the guidance in Sections C-l.l through C-1.7. BCF values
for these limited number of compounds are included in this appendix in Tables C-l through C-7 to
facilitate the completion of screening ecological risk assessments. However, it is expected that additional
compounds may require evaluation on a site specific basis, and in such cases, BCF values for these
additional compounds could be determined following the same guidance (Sections C-l.l through C-1.7)
used in determination of the BCF values reported in this appendix. For reproducibility and to facilitate
comparison of new data and values as they become available, all data reviewed in the selection of the BCF
values provided at the end of this appendix are also included in Tables C-l through C-7. References cited
in Tables C-l through C-7 (Media-to-Receptor BCF Values) are located following Table C-7.
For additional discussion on some of the references and equations cited in Sections C-l.l through C-1.7,
the reader is recommended to review the Human Health Risk Assessment Protocol (HHRAP) (U.S. EPA
1998) (see Appendix A-3), and the source documents cited in the reference section of this appendix.
C-1.0 GENERAL GUIDANCE
This section summarizes the recommended general guidance for determining compound-specific BCF
values (media-to-receptors) provided in Tables C-l through C-7. As a preference, BCF values were
selected from empirical field and/or laboratory data generated from reviewed studies that are published in
the scientific literature. Information used from these studies included calculated BCF values, as well as,
collocated media and organism concentration data from which BCF values could be calculated. If two or
more BCF values, or two or more sets of collocated data, were available in the published scientific
literature, the geometric mean of the values was used.
Field-derived BCF values were considered more indicative of the level of bioconcentration occurring in the
natural environment than laboratory-derived values. Therefore, when available and appropriate,
field-derived BCF values were given priority over laboratory-derived values. In some cases, confidence in
the methods used to determine or report field-derived BCF values was less than for the laboratory-derived
values. In those cases, the laboratory-derived values were used for the recommended BCF values.
When neither field or laboratory data were available for a specific compound, data from a potential
surrogate compound were evaluated. The appropriateness of the surrogate was determined by comparing
the structures of the two compounds. Where an appropriate surrogate was not identified, a regression
equation based on the compound's log K^ value was used to calculate the recommended BCF value.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-l
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
With the exception of the air-to-plant biotransfer factors (Bv), recommended BCF values provided in the
tables at the end of this appendix are based on wet tissue weight and dry media weight (except for water).
As necessary, reported values were converted to these units using the referenced tissue or media wet weight
percentages. The conversion factors, equations, and references for these conversions are discussed in
Sections C-l.l through C-1.7 where appropriate, and are presented at the end of each table (Tables C-l
through C-7).
C-l.l SOIL-TO-SOIL INVERTEBRATE BIOCONCENTRATION FACTORS
Soil-to-soil invertebrate BCF values (see Table C-l) were developed mainly from data for earthworms.
Measured experimental results were primarily in the form of ratios of compound concentrations in a
earthworm and the compound concentrations in the soil in which the earthworm was exposed. As
necessary, values were converted to wet tissue and dry media weight assuming a moisture content (by
mass) of 83.3 percent for earthworms and 20 percent for soil (Pietz et al. 1984).
Organics For organic compounds with no field or laboratory data available, recommended BCF values
were estimated using the following regression equation:
log BCF= 0.819 log Km -1.146 Equation C-l-1
• Southworth, G.R., J.J. Beauchamp, and P.K. Schmieder. 1978. "Bioaccumulation
Potential of Polycyclic Aromatic Hydrocarbons in Daphnia Pulex." Water Research.
Volume 12. Pages 973-977.
Inorganics For inorganic compounds with no field or laboratory data available, the recommended BCF
value is equal to the arithmetic average of the available BCF values for other inorganics as specified in
Table C-l.
C-1.2 SOIL-TO-PLANT AND SEDIMENT-TO-PLANT BIOCONCENTRATION FACTORS
Soil-to-plant BCF values (see Table C-2) account for plant uptake of compounds from soil. Data for a
variety of plants and food crops were used to determine recommended BCF values.
Organics For all organics (including PCDDs and PCDFs) with no available field or laboratory data, the
following regression equation was used to calculate recommended values:
log BCF = 1.588 - 0.578 log K^ Equation C-l-2
• Travis, C.C. and A.D. Anns. 1988. "Bioconcentration of Organics in Beef, Milk, and
Vegetation." Environmental Science and Technology. 22:271-274.
Inorganics For most metals, BCF values were based on empirical data reported in the following:
• Baes, C.F., R.D. Sharp, A.L. Sjoreen, and R.W. Shor. 1984. "Review and Analysis of
Parameters and Assessing Transport of Environmentally Released Radionuclides Through
Agriculture." Oak Ridge National Laboratory, Oak Ridge, Tennessee.
The scientific literature also was searched to identify studies. Although U.S. EPA (1995a) provides values
for certain metals calculated on the basis of plant uptake response slope factors, it is unclear how the BCF
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-2
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
values were calculated or which sources or references were used. Therefore, values reported in
U.S. EPA (1995a) were not used.
C-1.3 WATER-TO-AQUATIC INVERTEBRATE BIOCONCENTRATION FACTORS
Experimental data for crustaceans, aquatic insects, bivalves, and other aquatic invertebrates were used to
determine recommended BCF values for water-to-aquatic invertebrate (see Table C-3). Both marine and
freshwater exposures were reviewed. As necessary, available results were converted to wet tissue weight
assuming that invertebrate moisture content (by mass) is 83.3 percent (Pietz et al. 1984).
Orsanics Reported field values for organic compounds were assumed to be total compound concentrations
in water and, therefore, were converted to dissolved compound concentrations in water using the following
equation from U.S. EPA (1995b):
BCF (dissolved) = (BCF (total) / fffl) - 1 Equation C-l-3
where
BCF (dissolved) = BCF based on dissolved concentration of compound in
water
BCF (total) = BCF based on the field derived data for total
concentration of compound in water
jja = Fraction of compound that is freely dissolved in the water
and,
ft, = l/[l + ((DOCxKow)/10) + (POCxKow)]
DOC = Dissolved organic carbon, kilograms of organic carbon /
liter of water (2.0 x 10^* Kg/L)
Km = Octanol-water partition coefficient of the compound, as
reported in U.S. EPA (1994a)
POC = Paniculate organic carbon, kilograms of organic carbon /
liter of water (7.5 x lO"09 Kg/L)
Laboratory data were assumed to be based on dissolved compound concentrations.
For organic compounds with no field or laboratory data available, BCF values were determined from
surrogate compounds or calculated using the following regression equation:
log BCF = 0.819 x log KoW - 1.146 Equation C-l-4
• Southworth, G.R., J.J. Beauchamp, and P.K. Schmieder. 1978. "Bioaccumulation
Potential of Polycyclic Aromatic Hydrocarbons in Daphnia Pulex." Water Research.
Volume 12. Pages 973-977.
Inorganics For inorganic compounds with no field or laboratory data available, the recommended BCF
values were estimated as the arithmetic average of the available BCF values for other inorganics, as
specified in Table C-3.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-3
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
C-1.4 WATER-TO-ALGAE BIOCONCENTRATION FACTORS
Experimental data for both marine and freshwater algal species were reviewed. As necessary, available
results were converted to wet tissue weight assuming that algae moisture content (by mass) is 65.7 percent
(Isensee et al. 1973).
Organics For organic compounds with no field or laboratory data available, BCF values were calculated
using the following regression equation:
log BCF = 0.819 x log K™ -1.146 Equation C-l-5
• Southworth, G.R., J.J. Beauchamp, and P.K. Schmieder. 1978. "Bioaccumulation
Potential of Polycyclic Aromatic Hydrocarbons in Daphnia Pulex." Water Research.
Volume 12. Pages 973-977.
Inorganics For inorganics, available field or laboratory data were evaluated for each compound.
C-1.5 WATER-TO-FISH BIOCONCENTRATION FACTORS
Experimental data for a variety of marine and freshwater fish were used to determine recommended BCF
values (see Table C-5). As necessary, values were converted to wet tissue weight assuming that fish
moisture content (by mass) is 80.0 percent (Holcomb et al. 1976).
For both organic and inorganic compounds, reported field values were considered bioaccumulation factors
(BAFs) based on contributions of compounds from food sources as well as media. Therefore, field values
were converted to BCFs based on the trophic level of the test organism using the following equation:
BCF = (BAF^ I FCMjjJ - 1 Equation C-l-6
where
= The reported field bioaccumulation factor for the trophic level "n"
of the study species.
, = The food chain multiplier for the trophic level "n" of the study
species.
Organics Reported field values for organic compounds were assumed to be total compound concentrations
in water and, therefore, were converted to dissolved compound concentrations in water using the following
equation from U.S. EPA (1995b):
BAF(dissolved) = (BAF(total) lffd) -1 Equation C-l-7
where
BAF (dissolved) = BAF based on dissolved concentration of compound in
water
BAF (total) = BAF based on the field derived data for total
concentration of compound in water
ffd = Fraction of compound that is freely dissolved in the water
and,
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-4
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
fju = 1 / [1 + ((DOC x K^) / 10) + (POC x K.J]
DOC = Dissolved organic carbon, Kg of organic carbon / L of
water (2.0 x lO"06 Kg/L)
Kow = Octanol-water partition coefficient of the compound, as
reported in U.S. EPA (1994a)
POC = Paniculate organic carbon, Kg of organic carbon / L of
water (7.5 x lO"09 Kg/L)
Laboratory data were assumed to be based on dissolved compound concentrations.
For organics for which no field or laboratory data were available, the following regression equation was
used to calculate the recommended BCF values:
log BCF = 0.91 x log K^ -1.975 x log (6.8E-07 x K^ + 1.0) - 0.786 Equation C-l-8
• Bintein, S., J. Deviflers, and W. Karcher. 1993. "Nonlinear Dependence of Fish
Bioconcentrations on n-Octanol/Water Partition Coefficients." SAR and QSAR in
Environmental Research. Vol.1. Pages 29-39.
Inorganics For inorganic compounds with no available field or laboratory data, the recommended BCF
values were estimated as the arithmetic average of the available BCF values reported for other inorganics.
C-1.6 SEDEMENT-TO-BENTHIC INVERTEBRATE BIOCONCENTRATION FACTORS
Experimental data for a variety of benthic infauna, worms, insects, and other invertebrates were used to
determine the recommended BCF values for sediment-to-benthic invertebrate (see Table C-6). As
necessary, values were converted to wet tissue weight assuming that benthic invertebrate moisture content
(by mass) is 83.3 percent (Pietz et al. 1984).
Orsanics For organic compound (including PCDDs and PCDFs) with no available field or laboratory
data, the recommended BCF values were determined using the following regression equation:
log BCF = 0.819 x log K^ - 1.146 Equation C-l-9
• Southworth, G.R., J.J. Beauchamp, and P.K. Schmieder. 1978. "Bioaccumulation
Potential of Polycyclic Aromatic Hydrocarbons in Daphnia Pulex." Water Research.
Volume 12. Pages 973-977.
Inorganics For inorganic compound with no available field or laboratory data, the recommended BCF
values were estimated as the arithmetic average of the available BCF values for other inorganics.
C-1.7 AIR-TO-PLANT BIOCONCENTRATION FACTORS
The air-to-plant bioconcentration (Bv) factor (see Table C-7) is defined as the ratio of compound
concentrations in exposed aboveground plant parts to the compound concentration in air. Bv values in
Table C-7 are reported on dry-weight basis since the plant concentration equations (see Chapter 3) already
include a dry-weight to wet-weight conversion factor.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-5
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values
August 1999
Oreanics For organics (excluding PCDDs and PCDFs), the air-to-plant bioconcentration factor was
calculated using regression equations derived for azalea leaves in the following documents:
• Bacci E., D. Calamari, C. Gaggj, and M. Vighi. 1990. "Bioconcentration of Organic
Chemical Vapors in Plant Leaves: Experimental Measurements and Correlation."
Environmental Science and Technology. Volume 24. Number 6. Pages 885-889.
Bacci E., M. Cerejeira, C. Gaggi, G. Chemello, D. Calamari, and M. Vighi. 1992.
"Chlorinated Dioxins: Volatilization from Soils and Bioconcentration in Plant Leaves."
Bulletin of Environmental Contamination and Toxicology. Volume 48. Pages 401-408.
Bacci et al. (1992) developed a regression equation using empirical data collected for the uptake of
1,2,3,4-TCDD in azalea leaves and data obtained from Bacci et al. (1990). The bioconcentration factor
obtained was included in a series of 14 different organic compounds to develop a correlation equation with
Kg* and H (defined below). Bacci et al. (1992) derived the following equations:
log Bvol = 1.065 log Kow - log
;—) - 1.654
RT
(r = 0.957) Equation C-l-10
Bv =
Pair •
\ol
Equation C-l-11
orage
where
Bv
Pair
Pforage
Jwaler
H
R
T
Volumetric air-to-plant biotransfer factor (fresh-weight basis)
Air-to-plant biotransfer factor (dry-weight basis)
1.19g/L(Weastl986)
770 g/L (Macrady and Maggard 1993)
0.85 (fraction of forage that is water—Macrady and Maggard
[1993])
Henry's Law constant (atm-nrVmole)
Universal gas constant (atm-nrVmole °K)
Temperature (25 °C, 298 °K)
Equations C-l-10 and C-l-11 are used to calculate Bv values (see Table C-7) using the recommended
values of H and Kow provided in Appendix A at a temperature (T) of 25 °C or 298.1 K. The following
uncertainty should be noted with use of Bv values calculated using these equations:
U.S. EPA Region 6
Multimedia Planning and Permitting Division
Center for Combustion Science and Engineering
U.S. EPA
Office of Solid Waste
C-6
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
• For organics (except PCDDs and PCDFs), U.S. EPA (1993) recommended that Bv values
be reduced by a factor of 10 before use. This was based on the work conducted by U.S.
EPA (1993) for U.S. EPA (1994b) as an interim correction factor. Welsch-Pausch,
McLachlan, and Umlauf (1995) conducted experiments to determine concentrations of
PCDDs and PCDFs in air and resulting biotransfer to welsh ray grass. This was
documented in the following:
Welsch-Pausch, K.M. McLachlan, and G. Umlauf. 1995. "Determination of the
Principal Pathways of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans to
Lolium Multiflorum (Welsh Ray Grass)". Environmental Science and
Technology. 29: 1090-1098.
A follow-up study based on Welsch-Pausch, McLachlan, and Umlauf (1995) experiments
was conducted by Lorber (1995) (see discussion below for PCDDs and PCDFs). In a
following publication, Lorber (1997) concluded that the Bacci factor reduced by a factor
of 100 was close in line with observations made by him through various studies, including
the Welsch-Pausch, McLachlan, and Umlauf (1995) experiments. Therefore, this
guidance recommends that Bv values be calculated using the Bacci, Cerejeira, Gaggi,
Chemello, Calamari, and Vighi (1992) correlation equations and then reduced by a factor
of 100 for all organics, excluding PCDDs and PCDFs.
PCDDs and PCDFs For PCDDs and PCDFs, Bv values, on a dry weight basis, were obtained from the
following:
• Lorber, M., and P. Pinsky. 1999. "An Evaluation of Three Empirical Air-to-Leaf Models
for Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans." National Center for
Environmental Assessment (NCEA). U. S. EPA, 401 M St. SW, Washington, DC.
Accepted for Publication in Chemosphere.
U.S. EPA (1993) stated that, for dioxin-like compounds, the use of the Bacci, Cerejeira, Gaggi, Chemello,
Calamari, and Vighi (1992) equations may overpredict Bv values by a factor of 40. This was because the
Bacci, Calamari, Gaggi, and Vighi (1990) and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi
(1992) experiments did not take photodegradation effects into account. Therefore, Bv values calculated
using Equations C-10 and C-l 1 were recommended to be reduced by a factor of 40 for dioxin-like
compounds.
However, according to Lorber (1995), the Bacci algorithm divided by 40 may not be appropriate because
(1) the physical and chemical properties of dioxin congeners are generally outside the range of the 14
organic compounds used by Bacci, Calamari, Gaggi, and Vighi (1990), and (2) the factor of 40 derived
from one experiment on 2,3,7,8-TCDD may not apply to all dioxin congeners.
Welsch-Pausch, McLachlan, and Umlauf (1995) conducted experiments to obtain data on uptake of
PCDDs and PCDFs from air to Lolium Multiflorum (Welsh Ray grass). The data includes grass
concentrations and air concentrations for dioxin-congener groups, but not the invidual congeners. Lorber
(1995) used data from Welsch-Pausch, McLachlan, and Umlauf (1995) to develop an air-to-leaf transfer
factor for each dioxin-congener group. Bv values developed by Lorber (1995) were about an order of
magnitude less than values that would have been calculated using the Bacci, Calamari, Gaggi, and Vighi
(1990; 1992) correlation equations. Lorber (1995) speculated that this difference could be attributed to
several factors including experimental design, climate, and lipid content of plant species used.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-7
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
Lorber (1999) conducted an evaluation of three empirical air-to-leaf models for estimating grass
concentraions of PCDDs and PCDFs from air concentrations of these compounds described and tested
against field data. Bv values recommended for PCDDs and PCDFs in this guidance were obtained from the
experimentally derived values of Lorber (1999).
Metals For metals, no literature sources were available for Bv values. U.S. EPA (1995a) quoted from the
following document, that metals were assumed not to experience air to leaf transfer:
• Belcher, G.D., and C.C. Travis. 1989. "Modeling Support for the RURA and Municipal
Waste Combustion Projects: Final Report on Sensitivity and Uncertainty Analysis for the
Terrestrial Food Chain Model." Interagency Agreement No. 1824-A020-A1. Office of
Risk Analysis, Health and Safety Research Division. Oak Ridge National Laboratory.
Oak Ridge, Tennessee. October.
Consistent with the above references, Bv values for metals (excluding elemental mercury) were assumed to
be zero (see Table C-7).
Mercuric Compounds Mercury emissions are assumed to consist of both the elemental and divalent
forms. However, only small amounts of elemental mercury is assumed to be deposited (see Chapter 2).
Elemental mercury either dissipates into the global cycle or is converted to the divalent form. Methyl
mercury is assumed not to exist in the stack emissions or in the air phase. Consistent with various
discussions in Chapter 2 concerning mercury, (1) elemental mercury reaching or depositing onto the plant
surfaces is negligible, and (2) biotransfer of methyl mercury from air is zero. This is based on assumptions
made regarding speciation and fate and transport of mercury from stack emissions. Therefore, the Bv value
for (1) elemental mercury was assumed to be zero, and (2) methyl mercury was assumed not to be
applicable. Bv values for mercuric chloride (dry weight basis) were obtained from U.S. EPA (1997).
It should be noted that uptake of mercury from air into the aboveground plant tissue is primarily in the
divalent form. A part of the divalent form of mercury is assumed to be converted to the methyl mercury
form once in the plant tissue.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-8
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
Bacci E., D. Calamari, C. Gaggi, and M. Vighi. 1990. "Bioconcentration of Organic Chemical Vapors
in Plant Leaves: Experimental Measurements and Correlation." Environmental Science and
Technology. Volume 24. Number 6. Pages 885-889.
Bacci E., M. Cerejeira, C. Gaggi, G. Chemello, D. Calamari, and M. Vighi. 1992. "Chlorinated Dioxins:
Volatilization from Soils and Bioconcentration in Plant Leaves." Bulletin of Environmental
Contamination and Toxicology. Volume 48. Pages 401-408.
Baes, C.F., R.D. Sharp, A.L. Sjoreen, and R.W. Shor. 1984. "Review and Analysis of Parameters and
Assessing Transport of Environmentally Released Radionuclides through Agriculture." Oak Ridge
National Laboratory. Oak Ridge, Tennessee.
Belcher, G.D., and C.C. Travis. 1989. "Modeling Support for the RURA and Municipal Waste
Combustion Projects: Final Report on Sensitivity and Uncertainty Analysis for the Terrestrial
Food Chain Model." Interagency Agreement No. 1824-A020-A1. Office of Risk Analysis, Health
and Safety Research Division. Oak Ridge National Laboratory. Oak Ridge, Tennessee. October.
Bintein, S., J. Devillers, and W. Karcher. 1993. "Nonlinear Dependence of Fish Bioconcentrations on n-
Octanol/Water Partition Coefficients." SAR and QSAR in Environmental Research. Vol. 1.
Pages 29-39.
Holcombe, G.W., D.A. Benoit, E.N. Leonard, and J.M. McKim, 1976. "Long-term Effects of Lead
Exposure on Three Generations of Brook Trout (Salvenius fontinalis)." Journal, Fisheries
Research Board of Canada. Volume 33. Pages 1731-1741.
Isensee, A.R., P.C. Kearney, E.A. Woolson, G.E. Jones, and V.P. Williams. 1973. "Distribution of
Alkyl Arsenicals in Model Ecosystems." Environmental Science and Technology. Volume 7,
Number 9. Pages 841-845.
Lorber, M. 1995. "Development of an Air-to-plant Vapor Phase Transfer for Dioxins and Furans.
Presented at the 15th International Symposium on Chlorinated Dioxins and Related Compounds".
August 21-25, 1995 in Edmonton, Canada. Abstract in Organohalogen Compounds.
24:179-186.
Lorber, M., and P. Pinsky. 1999. "An Evaluation of Three Empirical Air-to-Leaf Models for
Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans." National Center for Environmental
Assessment (NCEA). U. S. EPA, 401 M St. SW, Washington, DC. Accepted for Publication in
Chemosphere.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-9
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
McCrady, J.K., S.P. Maggard. 1993. "Uptake and Photodegradation of
2,3,7,8-Tetrachlorodibenzo-p-dioxin Sorbed to Grass Foliage." Environmental Science and
Technology. 27:343-350.
Pietz, R.I., J.R. Peterson, J.E. Prater, and D.R. Zenz. 1984. "Metal Concentrations in Earthworms From
Sewage Sludge-Amended Soils at a Strip Mine Reclamation Site." J. Environmental Qual.
Vol. 13, No. 4. Pp 651-654.
Southworth, G.R., J.J. Beauchamp, and P.K. Schmieder. 1978. "Bioaccumulation Potential of Polycyclic
Aromatic Hydrocarbons in Daphnia Pulex." Water Research. Volume 12. Pages 973-977.
Travis, C.C., and A.D. Arms. 1988. "Bioconcentration of Organics in Beef, Milk, and Vegetation."
Environmental Science and Technology. 22:271-274.
U.S. EPA. 1993. Review Draft Addendum to the Methodology for Assessing Health Risks Associated
with Indirect Exposure to Combustor Emissions. Office of Health and Environmental
Assessment. Office of Research and Development. EPA-600-AP-93-003. November 10.
U.S. Environmental Protection Agency (U.S. EPA). 1994a. Draft Report Chemical Properties for Soil
Screening Levels. Prepared for the Office of Emergency and Remedial Response. Washington,
D.C. July 26.
U.S. EPA. 1994b. Estimating Exposure to Dioxin-Like Compounds. Draft Report. Office of Research
and Development. Washington, D.C. EPA/600/6-88/005Ca,b,c. June.
U.S. EPA. 1995a. Review Draft Development of Human Health-Based and Ecologically-Based Exit
Criteria for the Hazardous Waste Identification Project. Volumes I and JJ. Office of Solid
Waste. March 3.
U.S. EPA. 1995b. Great Lakes Water Quality Initiative Technical Support Document for the Procedure
to Determine Bioaccumulation Factors. EPA-820-B-95-005. Office of Water, Washington, D.C.
March.
U.S. EPA. 1997. Mercury Study Report to Congress, Volumes I through VIII. Office of Air Quality
Planning and Standards and ORD. EPA/452/R-97-001. December.
U.S. EPA. 1998. Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilitites.
External Peer Review Draft. U.S. EPA Region 6 and U.S. EPA OSW. Volumes 1-3.
EPA530-D-98-001A. July.
Veith, G.D., K.J. Macek, S.R. Petrocelli, and J. Carroll. 1980. "An Evaluation of Using Partition
Coefficients and Water Solubility to Estimate Bioconcentration Factors for Organic Chemicals in
Fish." Pages 116-129. In J. G. Eaton, P. R. Parrish, and A. C. Hendricks (eds.), Aquatic
Toxicology. ASTM STP 707. American Society for Testing and Materials, Philadelphia.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-10
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C; Media-To-Receptor BCF Values August 1999
Welsch-Pausch, K.M. McLachlan, and G. Umlauf. 1995. "Determination of the Principal Pathways of
Polychlorinated Dibenzo-p-dioxins and Dibenzofurans to Lolium Multiflorum (Welsh Ray Grass)".
Environmental Science and Technology. 29: 1090-1098.
Weast, R.C. 1986. Handbook of Chemistry and Physics. 66th Edition. Cleveland, Ohio. CRC Press.
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-l 1
-------
Screening Level Ecological Risk Assessment Protocol
Appendix C: Media-To-Receptor BCF Values August 1999
MEDIA-TO-RECEPTOR BCF VALUES
Screening Level Ecological Risk Assessment Protocol
August 1999
C-l SOIL-TO-SOIL INVERTEBRATE BIOCONCENTRATION FACTORS C-15
C-2 SOIL-TO-PLANT AND SEDIMENT-TO- PLANT BIOCONCENTRATION
FACTORS C-29
C-3 WATER-TO-AQUATIC INVERTEBRATE BIOCONCENTRATION FACTORS ... C-36
C-4 WATER-TO-ALGAE BIOCONCENTRATION FACTORS C-54
C-5 WATER-TO-FISH BIOCONCENTRATION FACTORS C-66
C-6 SEDEMENT-TO-BENTfflC INVERTEBRATE BIOCONCENTRATION
FACTORS C-85
C-7 AIR-TO-PLANT BIOTRANSFER FACTORS C-96
REFERENCES C-99
U.S. EPA Region 6 U.S. EPA
Multimedia Planning and Permitting Division Office of Solid Waste
Center for Combustion Science and Engineering C-13
-------
s
ca
•<
til
V
"u
1
s
1
u
1
3
§
a
S
i
V
€
tf
*BS
a>
3
Q
o
^
O
Cri
w>
O9
I
ts
I
s
ta
^
H
ON
_;
jj
3
"ca
^j
PQ
13
•S
U
G
1
1
tetrachlorodibenzo-p-dioxi
oo_
en~
04"
•b
Compoun
CQ
53
£
8
§
_
b
_B
'x
Q
?
ex.
g
g
Xi
*3
2
£
o
00
t""^
**l
CS
£
VI
0>
s
"ea
^.^
1
I
j|
m
ing the geometric mean of
CQ
3
"O
oj
JS
3
CJ
cd
o
CQ
cd
a.
U
03
u
u
is
'o
o.
W
O
1
x
u
id"
o
i§
ijj
•§
ca
5"
T3
6
8
•§
Martinucci, Crespi, O
(1983)
in
tj
•S
"3 §
Q ISJ
« -Q
O **
« CJ
1 1
1
X
u
1
0=>
s
ON
Reinecke and Nash (1
•*5t ( —
d d
— ' OO
^ NO
ON d
VO
f^
o
_3
"a
•o
o
•o
g
£
o
&
chlorodibenzo-p-dioxin
S
B
o
Q.
00
»^
en
eN
1—4
•b
Compoun
It
eS
ON
d
x
ON
in
It
&
PQ
co
I
%
Cfl
ca
S
in
2
fe
OO
N*"'
m,
i-i
**
<2
•a
g
"s
ff
c
o
'^
s
1
§
*^
ing the TCDD BCF and a 1
CQ
3
•o
O
J5
3
U
U
CQ
ca
U.
U
03
"8
t3
B
C
O
1
achlorodibenzo-p-dioxin
x
-?
oo
t-r
_»r
en
04"
*
•o
Compoun
^t
,_
en
d
X
ON
"
II
&
03
CO
|
S
CO
cd
2*
i
i
CO
D
N—'
S
PQ
"g"
*J
<2
y
g
T3
>
"3
a1
u
|
ta
1
3
_O
ing the TCDD BCF and a 1
CQ
3
-o
S
3
O
*cd
o
CQ
&
U
03
ON
r— I
d
o
*ca
>
"S
T3
g
O
1
achlorodibenzo-p-dioxin
£
oo
t-T
VD"
c^
fsj
*
•o
Compoun
£
d
u
04
*— <
d
x
ON
in
"I?
&
CQ
CO
1
S
Cfl
ed
1
04
CO
D
a*
B
^
"o
c2
o
g
•a
>
"3
8*
B
O
•a
J2
"3
3
_O
ing the TCDD BCF and a 1
CQ
3
T3
U
s
3
U
U
CO
CO
1 The BCF
04
04
d
u
3
•a
>•
T3
•a
B
U
E
E
achlorodibenzo-p-dioxin
x
-?
ON
oo
f^
en
ci
^j
Compoun
es
fN
d
u
^.
T-H
d
x
ON
in
Ti1
u
PQ
CO
1
2
CQ
ca
ON
CO
'"•-'
&
PQ,
¥
4»>
•
•a
a>
•o
B
U
B
Recom
B
eptachlorodibenzo-p-dioxi
JS
00
f^.
NO'
l"
en_
04
*
•a
Compoun
i
o
II
in
O
d
x
ON
in
*
II
&
CQ
CO
1
S
GQ
ca
in
ON
CO
*^^
£T
BJ
PQ,
"g"
^J
c2
y
g
•a
g
c
1
c3
1
cct
_O
r^
ing the TCDD BCF and a 1
CQ
3
U
5
3
"ca
o
CQ
ca
1 The BCF
ON
O
d
ii
"ca
>•
"2
*Q
g
E
Recom
c
1
•3
D.
8
B
=3
v^
_o
jE
o
ts
o
TJ
Compoun
ON
O
d
II
04
O
d
x
ON
.
B
PQ
CQ
_o
*o
tu
CO
ca
S
-M
$
&
CO
D
S
B
I
g
•a
_>
1
§
•B
CQ
3
B
3
cd
.0
ca
ca
U>
U
03
Q
Q
F was calculated using the
U
03
r"
«N
i-«
U
,2
ca
B.
U
PQ
"8
"2
g
H
O
g
S
g
.0
i
"
oo^
en^
es
•y
B
1
5
04
o
oo
d
x
ON
m
*
II
B.
U
03
CQ
_0
a
CQ
ca
2"
in
CT\
ON
CO
D
^"'
PQ,
^
"^
"3
0>
u
c
_o
ta
"3
3
o
"^
ing the TCDD BCF and a 1
3
•o
U
™
D
Q
*cd
o
tn
cd
^
1 The BCF
04
en
d
°u
J3
"ca
0.
U
PQ
•8
T3
g
E
o
1
8-pentachlorodibenzofurari
en
oJ
r^
•o
c
3
O
D,
1
-------
^
iH
U
s
CQ
H
FACTO]
Z
0
H
1
Z
IOCONCE
PQ
e
•<
PS
g
g
H
^
z
NN
J
0
CM
•
o
H
i
J
S
CO
•^4
S
>>
£
DC
S
D-
8
M)
S
^
1
3
•*•»
o>
^
^
U
eu
O
u
I
^
1-H
'S
p^
1
0*
^^
09
Q)
"S
fS,
%
V
j
§"
s
o
•s
.2
"3
1
ed
d using the TCDD BCF and a bioi
u
"cs
D
cd
0
tV5
>
1 The BCF
3
04
i>
"a
^•
PU
0
03
"S
•o
g
E
E
O
P^
4,7,8-pentachlorodibenzofuran
ON
ON
i
CO
s
s
J
ca
^
y
g
"3
t>j
'3
B
•^
"3
§
d using the TCDD BCF and a bio
U
"«
O
"ed
U
CQ
KJ
1 The BCF
o
en
d
u
"3
^
tt.
U
EQ
"8
T3
g
£
&
3,6,7,8-hexachlorodibenzofuran
o)
*•
T3
Compoun
o
en
O
II
ON
d
X
ON
in
7
pl
u
03
CO
J3
2
CO
ca
ON
ON
W
CO
pf
5-
I
ca
^
y
B
U
•3
s^
*3
ff
B
_O
a
"3
3
U
O
a
d using the TCDD BCF and a bio
u
nj
3
"3
U
CO
>
1 The BCF
B
— '
u
3
"3
^
[L,
U
BQ
"S
B
U
E
E
o
CO
OS
4,6,7,8-hexachlorodibenzofuran
rn
of
•y
Compoun
r^
q
ii
vo
d
X
ON
IT)
7
u-
u
CQ
CO
_O
1
CO
ca
£"
ON
ON
i
w
CO
£•
03
I
S
u
g
•a
^
"3
B
_O
a
1
u
ca
d using the TCDD BCF and a bio
^J
a
"s
CJ
*c3
0
CO
>
1 The BCF
8
— '
o
3
•a
^
a-
U
BQ
T3
1
E
g
to
ct*
3,7,8,9-hexachlorodibenzofuran
O)
"
T3
Compoun
.
f-H
II
en
vo
d
X
ON
2
7
UH
U
CQ
CO
1
£
ca
sf
ON
ON
aj
CO
5
B7
B
"g
1
u
B
U
•a
^
's
O"
u
B
_O
1
3
d using the TCDD BCF and a bio
o
CS
"3
CJ
"a
u
CO
i
u
CQ
u
^
O
d
u
"3
^«
o,
U
03
"S
•a
g
E
o
u
a:
B
,3,4,6,7,8-heptachlorodibenzofura
ol
~
*tj
I Compoun
^
o
d
n
o
d
X
ON
V)
7
PU
u
BQ
CA
_o
1
CO
cd
£-
ON
ON
»— i
CO
ta
n,
s'
1
•a
.£<
*3
8*
B
_O
1
1
ca
d using the TCDD BCF and a bio
-CJ
C3
~3
"3
u
CO
ca
5
u,
U
CQ
CJ
S
d
o
3
"3
^
a.
U
OQ
"8
13
g
E
B
,3,4,7,8,9-heptachlorodibenzofura
0)
^
T3
|| Compoun
O4
VO
d
n
ON
en
d
X
ON
!2
7
u.
u
03
CO*
1
2
CO
C3
£^
>n
ON
ON
i
CO
D
W
S
J
eel
^
u
B
U
•3
.?£
S
CT
U
B
_0
"I
g
CJ
ca
d using the TCDD BCF and a bio
o
a
"3
u
"3
u
CO
a
Z
|| The BCF
VJ
S
d
u
"3
^
c.
U
CQ
"S
1
C
ochlorodibenzofuran
Q
Q
•a
Compoun
d
n
VO
O
d
X
ON
12
7
B,
U
03
CO
|
S
CO
C3
ON
ON
i
co'
D
£
CQ
I
>,
0
g
•3
fg
3
a1
u
B
0
•a
ca
"3
1
u
ca
d using the TCDD BCF and a bio
u
ca
*3
~3
u
CO
ca
&
U
03
S
&
&
c
s
1
•B)
M*
1
s
2
h
2
73
g
^
g
d
u
3
"3
^
CL.
u
cq
T3
CU
T3
U
£
Cet
izo(a)pyrene
*H
d>
03
•0
Compoun
S
ap
'S
OJ
*
§
1
X!
c3
u
0
'Q
S
1
U
U
Jr
•^
oo"
oo
Q\
O
Jj
T1
1
^4
CO
j
S
«
fc
o
§*
CQ
U
"3
u
ti
B
£.
/— S
"g"
N
g
)H
<2
1
5
^
f
_§
C3
d using the geometric mean of 6 1
ing a conversion factor of 5.99°.
U CO
_« 3
"3 ^
u GO
"3 *!Ti
CJ g
CO -^
^ Ft
1 The BCF
over soil (
-------
g
u
51
NH
H fc
U
pa
H J
z S
W £
13
8
PQ
PQ
~ B
NH 6C
t/J ^
tn
Q^
a
i/i
2
1
i
OS
t.
a
a.
^M
|
i
s
i
t*
1
1
03
^
3
1
1
•2
1
ty
S
1
a.
X
u
T3
OO
f^l
0?
OO
o\
^^
8
•a
§
Rhett, Simmers,
^" ^t" ^D
^^ ^2 ^2
d d d
2 o O
odd
en
O
d
u
3
"a
u-
U
oa
•8
•o
c
u
H
1
tthracene
A
'c?
¥
g
oa
•a
c
1
o.
O
U
•8
b
o
*-»
op
'u
&
^J
1
o
"O
^
I
2-
u
f^
OO
ON
^
a
•O
§
2"
b
1
5?
'H
u
3
h*
S
B
1
O
i
Ts
>
u
p-
g
8
a
1
W
¥
1
s
1
^
(*-(
O
g
the geometric me
ar of 5.99'.
eo «
'35 "•<
3 C
•o .2
U tn
a b
"= S
•H §
g «
W
rt OJ)
£ c
§1
s •§*
p s
1
-.
a
73
fS
en
P
OO
ON
I
73
e
a
i_i
I
.§
5!
'S
U
2
m
CN) (N t~- O v~i ^ ^*
O O O O O O O
o o o o o o o
t— oomr--r-ON
oooooooo
oooooooo
_^
o
d
u
3
>
p1
0
PQ
T3
U
1
O
fV]
noranthene
C3
^^
C
•6
1
1
U
Ui
u
o
"M
'5
^
O
o
•a
u
u
b
0?
00
o
J
T3
i
b
.2
1/3
tt
I
"•
C
o
a.
S
S
_3
a
>
^
g
u
e
S
3
CS
s
°
1
Ul
<2
ce
U
3
"a
a.,
1
O
f^
!s
VO
o
g
the geometric me
factor of 5.99".
00 c
s s
'53 '55
3 2
ll
a o
"3 °
o a
"a oo
u c
| 3
B, §
CQ ^
£ &*
P -a
^
•§,
Q
1
ty
a
g
T3
00
(N
OO
OO
ON
Sw'
^
T3
g
Rhett, Simmers,
vo ^f ui
— 0 O
odd
— i VD \O
— 0 0
odd
00
0
d
u
3
>
a.
u
pa
T3
U
U
r;
O
C<
aoranthene
ts
^
^O
N
C
Da
•a
c
o
ex
o
U
u
0
1
>
c
8
iM
>
•^
i?
ON
a"
"c
cd
»
b
E
OT
1
O
1
s
-S
73
g
Q.
a
CA
U
_3
"a
>
u
£
inthene.
2
1
C
/•™s
1
(4-1
J3
"a
^
H
£
a
10 O\
O 2^
e o
a L,
the geometric me
conversion factoi
oo a
C OO
•S3 .£
3 5i
T3 f
3 4^
"o >»
a "^
S b
-C '5
P *
3
I
3
1
S
1
1
cs
en
P
00
I
•o
s
*2
e
}
IO *"• ^" M f^J C^ Tj"
— i — ' tN O O O O
O O O O O O O
en
-------
u
s
I
M M
BO
.2
"S
a
co
•s
i
i
1
i
"S
I
>*(
B
i
OS
S
3
^^
"2
•c
g*
i
3
d
0
>
B<
U
OQ
Recommended
u
1
J>
?^
•B
c
1
o
O
>•*
•8
!_
U
O
X!
.00
'S
1
2
1
?87) were conver
^,
>>
W
T3
C
B?
&
E
^
— "
'S
j
.S
1
8
GO
U
1
"
0>
CO
1
<2
CO
U
3
"S
c
la
S
o
i
g
the geometric
jr of 5.99".
eo -5
c s
•** t2
"S •-
C3 £>
"5 £
o c
—H O
S o
en
ca oo
? .S
B. '1
u s
-fi 'S
P &
1
.s
1
0
^j
1
r^
f>
^^
P^
oo
O\
-^
s
•a
CO
i
.5
'S
u
1
^
m •* r- o ts c4 -H
0 O O 0 O O O
O O O O O O 0
ooo^*'—
1
3
?
a
2
.g
1
1
i
|
1
f^
(anthrcene.
JS
CO
N
g
^
Q
<§
cfl
3
^3
^
&*
13
o
1
o
g
"Z g
3 O
^^
a t»
3 -^
_o g
en 00
ca 'r^
^ ^
^
r^ >
P O
1
rrt
K
Ci
•i
a
8
1
1
a
-cd)pyrene.
**1
'i
^o"
§
1
1-1
t(-(
CO
U
3
*c3
=.,
o
I
1
-o
'S
I .
the geometric
factor of 5.99"
00 c
C o
1'E
Cj
'ca p
3 °
o ca
!•-
« 3
* *
r, J^
N °°
«i
u >.
P -e
Eisenia foetida
0
b
-day exposi
oo
-------
0
«
s
H on
z o
1H
1
b
~
*3
5»
2
2
i
i
1
1
i
I
i
*
3
13
^
"8
1
&•
CN
c^
"
•a
c
u
3
u
CA
1
1
CA
'S
•o
ca
So
00
2
!
•o
cfi
g
e
o
e
i
t;
1
g
_3
"t3
1
PCB congeners.
factor of 5.99°.
11
h* en
3 =3
x >
'S C
E o
cd
i§ 00
ll
> op
f!
;an of 7 lab
'eight over
E *^
1 2
§•2
0) *5
oo |
oo u
C o
"™ u
"C3
" .—.
"3 S
u ^-
1 J
fc H
^J *2
CO c^
£ "°
P S
•s
1
"c
&3
i3
-day exposure
oo
/•^
2
u
1
0?
IH
I
t/3
I
oo o
o — '
m «n t-
•* r- —
_ 0 ~
&
1
1
.u
§
ironic exposure
U
[-N.
OO
ON
^
CO
s
H
T3
s
Cuendet, i
*o
a
1
CA
"I
N VD
« —
q
u
"3
U
m
1
I
|
U
•
•a cs
E o
cd
O 00
<*- e
11
C3 ^!
> 00
11
:anof71ab
'eight over
P
ometric
ed to we
U •+-*
to >
-C ti
*J Q
oo u
C u
| s
T3
« --N
~5 c£
CJ ,^1
ill
^ I
CL, S
^^ S
CD L^
_g T3
H §
1
-1
"s
_t?
S
-day exposure
00
ts
00
oo
2
¥
_t
•o
§
o5
E
ts
— r-~
00 O
o —
m 10 r-
^- f- r-H
— ' ci —
s-
J
i
.0
§
ironic exposure
s
f^
00
2
CA
a
1
CO
1
Cuendet, i
•a
a
1
1
CS ^D
^ ^
Ov
i
o
-------
CC
O
H
U
^£
TABLE C-1
JRATE BIOCONCENTRATION F
et tissue) / (mg COPC/kg dry soil)
(Page 6 of 14)
NH i
w ^
a ^
w w
i|
^ DJD
C« "^
0
S
cc
on
V
*j3
o.
Experimental Parameters
References
°v
a
^
0
•B
a
C
e
Nitroaromatics
o\
**^
u
_2
>
u*
"8
•3
g
1
£
1
N
o
1
•s
5
rA
*
•o
3
O
d.
1
.2
'cd
1
O
«
£*
80
.S
_o
S
1
op
B
*55
3
irrogate compound. The BCF was calculated
here log K^, = 1.491 (U.S. EPA 1994b).
fcl •
ll
"efl *^
ll
o S
nzene or for a stn
eauchamp, and Si
ti CQ
"O rf
.fi "§
S o
^1
?1
U TT
J-
'3 's
a icf
g on
u o
9 ~~
a £
~a c>
•c "
f&
g EQ
O oo
Z -2
o
m
u
_3
*ed
edBCF
•o
B
U
E
o
o
o
05
1
_3
"S
g
'S
5
4
cs
T3
C
S
0
C-
1
B
_O
3
ty
u
c
_o
o
00
ti
80
_B
|
"o
O
•s
80
3
rrogate compound. The BCF was calculated
here log K,,w = 1.996 (U.S. EPA 1994b).
3 S
« *
|f
"S *" '
fl
3 _a
O 0
uene or for a stru
eauchamp, and Si
2 «
O r^
5 t5
4 •§
0 TT
•8^
1 '*
M i*j°
i>
l-i 80
ca "*
ri i
— °°
~a o
'C "
fB
u CQ
0 80
Z 2.
"1
, _g
S u
or for a structura
eauchamp, and Si
B m
U ^J
C &
11
S o
JO -
edBCF
-o
g
S
1
u
05
o
i
1
•a
|
o
5
c
p (
•o
c
3
O
D.
1
C
.2
ed
CT*
o
CA
S
80
0
tH
80
B
|
2
u
fi°
*60
3
•o
J3
3
lilar surrogate compound. The BCF was calc
here log K,,,, = 4.640 (U.S. EPA 1994b).
C S
«5 ^^
S T^
1-1
cd ^
Wi U
itrobenzene or fo
eauchamp, and Si
§ H
tH yj*
J C
| 1
ll
1H CO
O ^
* vo
^2 Z:
'3 's
18 ^
1^ 80
o c
ca **
ca o
"2. °°
"a d
•c "
§ CQ
o oo
Z ~
Phthalate Esters
g
CO
^^
cJ
^
*e3
>
edBCF
"O
1
E
1
u
S
1
•a
>^\
x
1
ts
fN
23
CQ
•o
c
3
O
O.
1
e
o
C8
3
§•
8
g
w
"co
1
80
B
*>
_o
1
u
80
'S3
^
s
•3
^
imilar surrogate compound. The BCF was ca
'here log K,,w = 5.205 (U.S. EPA 1994b).
53 ?
= oo~
ISj
^ k4
3 o
CO 4>
cd 'a
t-i _g
:xyl)phthalate or i
eauchamp, and S
S w
>, j-"
* 1
o o
il
s|
a> ^-
1 ^
> :
S 80
U o
ca *
n 2
"3 d
O j.
o CQ
O oo
Z 5
00
cs
f— *
c*^
u
3
"3
>
ed BCF
•a
B
U
E
|
Ct5
•3
JM
•g.
ti
^
^
Q
•a
c
3
O
Q
1
s
_o
1
1
Cfl
00
22
.s
_o
2
u
fiO
c
"CQ
•»4
iurrogate compound. The BCF was calculatec
'here log K^ = 9.330 (U.S. EPA 1994b).
c3
^ *"
.§&
ce ;2
fj
thalate or for a st
eauchamp, and S
n,
f"
'•3 0
8 ^
jo ^3-
Jl ^
'a '
> *
a ^
£ 80
U Q
ca *
a 2
"3 d
- 11
£
!i
-------
l-H
U
s
ea
iS
c«
OS
O
H
O
^
o
d
S
"3
>
UH
U
pa
"8
"§
Recomme]
o
c
2
u
u
<
-H
c
3
O
E
d
'l
00
*^
Ov
00
&
CQ
,2
r"
ion equatioi
8
U
00
2
00
£
1
:ompound.The BCF was calculated using the :
arickoff and Long 1995).
o X
o* <»
§ o
£ "
•i *
fl
co 00
ca C-
t-l
<£ ^
°l
° .s
° §
S 0
CB OO
,2 c
t4-1 CB
U .
S &
JB g
1 I
ca 3
CJ C3
" u
4> ro
£ -
ca £
15 g
13 £
ca -5
y 3
"C 0
'Is
O •-;
-
O
U
CB
£>
[L.
U
pa
•o
CJ
•o
Recomme:
u
•fi
1
<
•a
c
1
E
o
U
c
Q
'S
3
rr
regression ei
00
_c
_o
"S
&
o
H>c§
5ate compound. The BCF was calculated usii
where log K^ = 0.250 (Karickoff and Long 1
•"* X^
tj OO
3 ^
-2 S3
E.1
r for a structurally-si
auchamp, and Schm
0 V
u, «
"S o
">>•£
0 3
CB O
n 00
o •—*
JO rT
"S '
ca ^f
1.H 00
£-2
IS ^
!2 °°
"e3 O
CJ u
*C
'H. Bi
gU
u CQ
£.2
00
fN
U
13
^
&
«
•o
CJ
•a
Recomme:
S
cS
o
S
2
U
-o
c
1
E
o
U
c
_o
SB
;ression equ
S
oo
•S
^o
1
£
ite compound. The BCF was calculated using
where log K,,,, = 1.949 (U.S. EPA 1994b).
ob /-^
o oo
W3 ^^
C >*H
for a structurally-sir
auchamp, and Schm
to u
O pQ
-,
/^
5 1
*cc ^
rrogate compound. The BCF was calculated u
where log K^, = 0.55 (Based on equations de
3 X.
X 00
— 2
il
e or for a structurall;
auchamp, and Schm
•o o
_c ®
2€
«J O
S|
S 3
S 0
s^
^ VO
_o ^
_ca ^
> s
CB i^f
If
1 2
2 S
ca o
CJ |.
"C
'^ u
§ CQ
O 00
s
o
u
la
^
[L.
U
pa
1
Recomme
u
c
CB
X
0
5
~
•a
3
o
a.
3
c
_o
3
jgression eq
*-
OO
c
"%.
.2
u
£
&o
;ate compound. The BCF was calculated usin:
where log K^ = -0.268 (U.S. EPA 1995a).
DU ^i
2 °°
CQ i— t
3 QJ
Eu
.— 1
• for a structurally-si
auchamp, and Schm
o ^
o ®
gf
II
^- 3
— O
JU Tj-
1 '*
CS k^P
i_ dc
OJ o
cd *^
"cd ON
"° oo
"e3 O
cj u
"C
§ pa
O 00
s
o
'i
13
^
0-
o
pa
"5
e
Recomme
o
•a
•§
3
cd
c
u.
"O
J2
3
O
S
d
00
x
2
00
d
II
p.
u
m
oo
_o
c
.2
3
CT
ol
; regression <
00
c
i
_0
£
u
.2
ogate compound. The BCF was calculated us
, (U.S. EPA 1995a).
c 2:
§ 2;
S3 ^
r« "
"cfl *
or for a structurally-
ler 1978), where log
«> 0
"O .2s
1 ~°
O TO
* m
^ D«
U J=
"§ 1
'f «
CB J
o o
ca •£
^ o
"3 ^
0 VO
' C ^-
I""'
u '
l«§
fN
VO
C5
U
3
"a
^
&
pa
1
Recomme
u
•o
1
u
•5,
3
•y
c
3
O
a.
1
00
JO
X
Ov
oo
O
&
pa
r?
,2
§
ed
9
?
g regression
c
"S
5
(u
•S
s°
ogate compound. The BCF was calculated u:
i (U.S. EPA 1994b).
c S
cfl ^
s -
-a *f
or for a structurally-
ler 1978), where log
(O g
r2 '^
*6 w
>> c
.£ 3
^ "
hN M*
U JO
II
<« -
<3 o
$ *
i~|
•ta* ^
"° oo
"ra ^^
O ^)
"C •<*•
f"
z^1
fN
6
-------
I
H
U
ta
TABLE C-1
KTEBRATE BIOCONCENTRATION
:/kg wet tissue) / (mg COPC/kg dry soil
(Page 8 of 14)
uJ LJ
p*^ ^r
||
T!» ^^^
6
H
Q
BC
•3
1
S8
Experimental Parametel
.eferences
cc
IB
C
.•
0
p>
^
a
^
S
i
c
D
Other Chlorinated Organics
o
o
3
>
&
n
•o
1
g
8
^
3on Tetrachloride
ra
u
•B
p
o
Q,
1
c
o
•a
CS
3
O*
U
_o
'53
eh
££
00
_n
23
o
u
g
'1
1
similar surrogate compound. The BCF was calcul
978), where log K^ = 2.717 (U.S. EPA 1994b).
structurally
Schmieder
es -a
£8
S §•
o c3
•"g -S
s 1
11
available for carbon tetri
<„„ - 1.146 (Southworth,
tH OO
0 0
s —
=a **
ra ^
- »
"3 d
•c "
o CC
0 00
Z. .2
VD
O\
i5
"3
U
n
•g
T3
g
a
g
o
achlorobenzene
X
K
•y
3
O
C
1
C
o
1
u
c
_o
CO
OO
2
1?
j
i2
U
.S
•3
1
imilar surrogate compound. The BCF was calcul
978), where log K^, = 5.503 (U.S. EPA 1994b).
CO »— <
structurally-
Schmieder
T3
S |
§1
i §
c u
^ CQ
available for hexachloro
K,,,, - 1.146 (Southworth,
^ oo
& -^
"ca ^
— °°
"3 d
•n ii
1 pa
o oo
Z 2
*o
en
u
3
"3
tt,
O
09
•o
§
g
g
0
achlorobutadiene
X
u
EC
•a
c
3
g
O
U
c
_o
!
£
.2
*co
en
O
60
c
1
Ig
u
J3
00
'S
3
1
JS
^
-similar surrogate compound. The BCF was calci
978) where log K^, = 4.731 (U.S. EPA 1994b).
i structural!;
Schmieder
~ -o
a §
g $
u 5
ll
•3 i
3 «
J CQ
available for hexachloro
KDW- 1.1 46 (Southworth,
1- Ol
^ "**
« !x:
*- ON
"° OC
"« o
:^i
§ cc
J*
U
"3
B
CQ
•a
u
1
C
8
:achlorocyclopentadiene
K
(U
p~*
•y
c
3
0
Q.
1
U
g
3
3
cy
u
'«
CA
K
00
00
'1
JD
1
1
00
*co
3
T3
3
•3
o
•3
u
Cfl
turally-similar surrogate compound. The BCF wa
1978), where log K^ = 4.907 (U.S. EPA 1994b).
CJ ^^
or for a strui
Schmieder
X
*S3
«
*2
ni
r *.
0
t-^
Q
tig the geometric mean of 13 laboratory values for
ight using a conversion factor of 5.99a.
.»* u
alculated us
over dry wi
0 V
BCF was
wet weigl
J3 -2
P "8
DDE were not available.
3ish (1980) were conver
^ . "Q
~- C
"^r rt
O flj
.,
« u
-a TJ
5 ca
:s i?
a, t-~
g 2
W C-
1
c2
fc
1
.S
'C
1
Chronic exposure
Davis (1971)
o\ —
d d
oo o\
O C-.
d d
-------
cc
PS
B
U
<
fe
^ s^
ll
H -^
3 ^
^1 >H
TABLE C-1
ATE BIOCONCENTR
tissue) / (mg COPC/kg <
Page 9 of 14)
& ~ -
M V
w s
w *
H Sf
OS <£
(3 U
z" o
HH r *i
iJ ec
^•4 M
8^
6
H
j
0
t»
w
_!
"5
v.
|
a
Experimental P,
eferences
A
"«
u
9
"e3
>•
•o
w
I*
O
p;
s
W
S
Aporrectodea trapezoides
Aparrectodea turgida
Allolobophora chlorotica
Lumbricus terrestris
hronic exposure
U
ON
f— <
'Xrf'
•9
5
1
8
>-.
o
n
f>
00
d
Not specified
hronic exposure
U
/— N
OO
vo
CN
la
•a
§
£
to
0>
£
o o o
(N VO >O
— Tt — '
in O O
oo •*<•
£
Svo
^r
O rfj
o
•*
— ;
u
Recommended BCF Valu
eptachlor
E
-o
c
D
O
o,
o
O
to wet
•o
u
S
^
c
o
o
in Beyer and Gish (1980) was
*o
c
I
1M
u
3
"3
>
u
o
•o
.tory value for heptachlor epo>
ra
|
•O
J2
—
00
C
"oo
S
1
JS
3
BCF was calc
99".
liable. The
factor of 5.'
5 e
£ .2
ll
M
> C3
g g>
l!
ex -^
u oo
-= •«
^ >•
^5 ?
<*" >,
s £
M ^
•o S
S °
13 £
£X M
S w
a &
Aporrectodea trapezoides
Aparrectodea turgida
Allolobophora chlorotica
Lumbricus terrestris
hronic exposure
U
y^S
8
2
tn
5
T3
i
u
n
o
•*
o
t--
<*„
8
u
Recommended BCF Valu
S
1
1
2
u
03
S
ac
-b
c
3
O
tx
1
U
wing regression equation:
0
2
1
00 ^
.g vi
3 2
1 «
•2 R
g J
— -a
3 ^
U CB
ate compound. The BCF was
re log K™ = 7.540 (Karickoff
bo o
s •§
5
H gf
— 0\
1?
i*^
ll
or for a struct
:hamp, and Sc
II
f™
H
J3 O
s I
x -S
U 3
-C 0
£ S£
« yo
jj -q-
X) *~i
_« -^
03 J^
O
1— CD
> .2
« x
P3
*-t {•*.
C3 2
•° x
It
C "
"5, Q-i
g U
u CQ
O OC
2 ^
Inorganics
S
d
T3
« S
minum \v
copper, I
-i E
u. 3
O "c
<•-' E
S S
ta j:
T3 0
"S E
tl
II
fM
oo
S g
o!
§1
:imony wi
copper, I
1 E
>-, 3
o "5
<" C
5 8
a x>
"O o
"3 p"
rj C
1 1
11
,— *
,— i
d
i>
Recommended BCF Valu
_0
"H
u
tn
-5
T3
C
D
a
i
-------
x
o
H
u
^j
ta
51
M !*>
< •«
e »
fig
- H sr
i CJ IT ^
w ol -g
N S ^L o
J qj" »H
flfi u *i cu
< H « UD
fid ^^ ^^*
^2 4>
MH jk.
W ^
If
^^. C^
z o
.. w
M ^
o S
W5 ^"^
6
H
J
S
J
"S
a,
cfl
i
'S
i
1
Experimental 1
Reference:
eft
1
~a
^-
•8
O
D.
«
N
b*
s
£
00
1
Si
?
o
"u
0
1
00
00
ON
J
•o
h«
g
g
53
u
•S
1
elow. The values repoi
i
•-H
e«
o3
O
"5
<§
u
_p3
C3
C*
I
V!
O
g
u
E •
ca
O A
•S Oi
fi ON
« in
8»
| 1
ulated using
conversion !
u &
~a so
u c
s 3
0. •§)
iC b1
P -8
Eisenia foetida
exposure
"V
00
id Lee (1988
§
•>
u.
55
•f
u
s
o r^
d d
2 2 o
d d d
"3
n
Recommended
Barium
•o
c
3
O
O,
1
U
g"
"E
•o
IS
u
(S
'S
u
cn
O
1
'3
empirical data <
C1
TJ
§'"
oo
}M
O
C
U
cn
1
Ui
£
cn
U
f the recommended val
o
Sea
o
'£3
H
1
o
5
cn
B-
U
03
•s
recommends
and zinc).
o 73
E *^
" .y
o 1
is
> o
* 6
|!
|-i
3 ju
^ 1^
i i
•a
*C3 C
U 3
'.5 5
£ !
UJ 13
tN
tN
d
o
°3
a-,
U
CO
Recommended
Beryllium
•y
c
1
o
rj
o
'E
CA
c3
u
3
ca
"3
ca
th empirical dai
*!T
cn
ca
o1
.£
u
cn
O
J3
1
U
>
i of the recommended '
a
u
o
*s
u
1
W
P"\
no ^
.S
'S 4^1
"O g
be recommei
iry, nickel, a
*"* S
d>
4> G
1|
03 03
> op
o §
C •"*
g «"
beryllium w
nn, copper, 1
^ 3
<2 E
ca o
"3 ^
T3 O
g--|
W o
VO
ON
d
u
3
•3
B.
U
Recommended
Cadmium
•6
c
§
&
|
U
u
>
/— V
cn
00
ON
u
J
•g
ca
"S
id Simmers, Rhi
K
OO
00
c
u
J
•a
G
ed
w
E
E
5i
'alues reported in Rhett
i*-
U
•
B
3
'g
T3
ca
u
l-t
cS
S ON
3 ON
•3 uS
> (M
£* bi
Q O
of 22 labora
nversion fac
g 8
u ca
E oo
o .£
•S S
Si
o .op
oo S£
0 *
.sf
3 O
•0 —
4i iM
« .SP
3 ^
^ s
"3 •?;
0 g
cn >
> °
Bl
oa S
£i
H 8
Eisenia foetida
exposure
i?
•a
00
o
a
S
£
tN ON m w^
o o o o
cn »r> c^ o
O O CO O
« *
g '$
S <*>
•^ *u
% ^ &
a, c o s -r s
! l> | j -g | §
1
u
1
U
^^
00
2
u
^
1
4J-
t>
S
E
E
5>
O t^ ^O t*~ v> O O
in r~ OO NO ON »/^ <—
O oc r^ NO m — ' fN
co ON m r- •— ^* ON
<-< (N CM «-< --< o cn
O O — > O O 00 •*
o
d
u
3
"3
B
pa
Recommended
,_^
"3
S
Chromium
•o
c
3
O
n.
o
U
oo
'o
•S
•o
U|
>
0
1
'53
£
I
n
ere converted t<
>
00
00
c
0
1-1
"g
1
cn"
E
E
55
I
•a
u
1
cn
U
J3
"3
1
E
3
'g
1
U
g
<*.
O
3
CO
^
£*
1
?
g
U
E
u
•fi
u
1
00
0 .•
« a
ulated using
[factor of 5.<
0 S3
•3 .2
CC fl>
ca >
j c
& 8
pa M
a .s
H 3
-------
I
H
fa
Z S
TABLE C-l
IRATE BIOCONCENTRATIO
et tissue) / (mg COPC/kg dry so
(Page 11 of 14)
3 *
H M
W U
^^ C^
Z 0
^•* ^^
N-9 OJD
ol
i
o
H
S
en
GQ
«
a,
£
«u
Experimental Parameti
g
1
«
"
tt.
U
«
•o
u
•a
B
U
H
8
(2
fcn
(U
o«
o
U
•a
c
1
1
00
"S
^
"S
o
n
'S
^
0
o
•o
^
u
o
u
i£
oo"
00
^,
"O
m
The values reported in Rhett, Simmers, i
^
g-
u
g
CQ
3
•a
^
O
1
1
"o
c
CO
0>
S
u
1
§
••* t(-H
I I
-£i o
•3-f
•a1.!
O CO
i >
? c
u, S
U Cd
m oo
D _C
1
O O CS O
d d d d
.3
1
*J»
-^
•3
Chronic exposure
^
00
CT\
cd
d
-------
u
s
CO
<
H
M
TH
H
V
o.
ce
I
su
3
s
a
n
I
i
a*
1
^
dJ
tS
O
i
(N
•-'
0
"3
CM
U
CQ
Recommended
1
1
u"
T3
Compoun
E"
E
T3
ia
u
o"
'£
u
CO
5-
U
3
BJ
'3
cd
:h empirical data
.a
S
c
'i
o
•3
1
M
"e3
1
•o
c
tic mean of the recomme
u
«
Jt
•2 T3
&(2
ra
n^-
ai
T) J2
-8 -1
if
l|
ii"
.,- s
were not available
lorganic mercury, i
^ *—
"O "^.
"c *o
rt rt
>» J^
O
g S3"
rt Cli
•a "
Empirical
chromiuin
S
d
u
_3
"3
J>
BU
U
CQ
Recommended
cd
J
•a
Compoun
2
•a
•g
u
e
o
u
S
u
£
^^,
J^
ON
^^
1
e
C3
•§
IS
00
IS
S
0?
00
o\
5
•o
I
g
1
„
te values reported in Rhe
S
"i
"s
5
CQ
>>
1
II
<" IN
2
C O
Sod
ta o
IThe BCF
wet weigh
Eiseniafoetida
28-day exposure
oo
00
o\
•a
§
S3
E
VO
CN O r-
O O O
odd
Not specified
Chronic exposure
Ma (1987)
o\
d
Not specified
oo
o\
IS
CM
d
Alabophera sp.
Lumbricus sp.
Octolasium sp.
Chronic exposure
^
ON
N-"
1
1
en
O
d
s
d
o
3
"3
tt.
Recommended
ric chloride
3
I
•ii
Compoun
1-
S3
i,
'S
*-
(U
?
2
T3
1988) were conv
and Lee (
2"
e
V)
i
g
t>
Q
O.
; chloride. The values re
1
«3
1
JM
CQ
^3
1
o
I
3
V)
•s
u
E
sing the geometric
factor of 5.99*.
3 S
"S -I
"3 g
^— o
CO (J
KJ OJ)
^ C
IThe BCF
weight us:
Eiseniafoetida
8 |
1^1 "s
O £
d « «
\/ o
... uT o
^ > u
111
•g co" "^
0 -2 "§
8 g g .
28-day exposure; tissue
reported for the first thi
concentration of 0.05 w
conservative BCF valui
00
00
o\
u
•g
§
0?
I
1
S3
d d
sss
odd
o
00
u
_3
"3
p-
U
CQ
Recommended
1 mercury
f
1
•y
Compoun
S3
§
t .
00
"S
1
^
—
g
o
f
1
snt (1985) were e
and Momi
o"
!*
•§
„ JS
11
CQ S
•S 1
1J K
1 below. The values repo
'eight to result in the vah
! b
8 *
2 2
8 I
•i °
CO
>> IS
0 £
§!,
•S 'S
fla j^
O cc
II
£
sing the geometric
rcent soil moisture
3 O
0) O
"3 ~S
~5 *
0 ri
eg -g,
^ "S
IThe BCF
soil wet w
Eiseniafoetida
1
2
VO
oo
^T
u
1
•o
§
3
1
CQ
c^ ro ON
OO 00 00
-------
S»M
fifi
"*
pa
?!
Oft
O
•3
U
ft
6
"S
fat
£
1
g
s
•S
i
t3
References
a
|| 27Reported V
S
o
o
>
a.
U
CQ
1
Recommen
o
2
Compound:
g>
3
i>
'5
•S
>
o
00
'§
s
1
converted to
£
u
oo"
oo
2
N_^
1
ea
1
J
'(»
£
^
1%
B
•rt
S
Q
&
tfi
J3
"3
u
=e
^
1
B
<2
1
"3
f
_«
o
B
U
E
the geometric
ilated using
of 5.99".
IThe BCF was calci
a conversion factor
1
Eiseniafoe,
Q
CO
s.
U
I?
•0
OO
ts
oo
2
J
1
S£
u
Rhett, Simm
m ^H •*•
O O o
odd
04
d
u
j3
"3
0
CQ
•O
•8
Recommen
Selenium
Compound:
^
o
u
>5-
u
IS
'§
M
•o
•ith empirical
^
CA
U
'S
ca
£?
O
1
<2
en
U
3
1
"S
I
B
|
y
»H
u
2
o
§
c
o
'•§
•i
u
•5
en
e recommended BCF
try, nickel, and zinc).
H 5i
E
:re not availab
ead, inorganic
selenium we
m, copper, 1
1 Empirical data for
cadmium, chromiu
CN
d
u
"3
OH
U
m
"8
T3
Recommen
1
&5
1 Compound:
g"
3
"i
T3
03
U
'S
JB
2
JS
'3
ca
empirical dat
j2
•|
u
'S
ea
f
o
:S
.2
1
"3
•o
u
•o
B
U
E
4$
O
•8
e
S
s
u
0
J
•5
u
^commended BCF is t
and zinc).
* T3
P e
not available.
mic mercury, i
II
S T3
1 Empirical data for
chromium, copper,
04
d
o
"3
CL,
U
ra
1
Recommen
Thallium
Compound:
E'
_3
E'
T3
03
U
.a
C
sS'
t)
1
'3
ca
ca
n
•o
ith empirical
>
.3
§
BO
Q
U
O
•S
.2
1
"3
"8
e
u
E
cj
£
U
•S
0
B
ca
4)
E
u
'•S
u
"i
•s
09
; recommended BCF
, and zinc).
H-3
~ o
,j-s
re not availabl
inic mercury,
II
S "^
Empirical data for
1 chromium, copper,
55
o
-------
tj
S
DC
ce
V
1
o.
1/1
£
*J
b
£
3
I
1
a,
S
as
0)
u
i
Q>
tiS
«
B8(
a
en
V
S
5
>
^
V
•"
w
o
a
si
ex
fS]
VO
«n
d
o
3
13
b
O
ca
Recommended
o
B
N
•a
c
D
o
a.
J
o
•a
£
I
§
D
U
/•— \
^f
2
Sw^
•g
o
C
Kl
>•
1
y— \
£S
o\
C3
S
0?
oo
2
«L>
,2
•a
rt
S
u
_E
C/3
S
S
^
tn
1
Q
&
CO
a>
3.
"3
>
w
jS
o
.S
N
5
S
!
>~»
i
J«
§s
os in
«"S
•g |
§tj
**2
SI
the geometri
ng a convers
00 w
C 3
*S5 **
s-a
11
*3 -^
.a -o
ca t.
0 0
CO >
cs O
? *•*
tt. ~Sb
0 "5
CQ £
5 «
P -S
Eisenia foetida
1
CO
0
S
it?
*O
00
C4
/— N
OO
oo
2
J
T3
g
"
i
3
o
S
— VO CX3
^ O in
odd
Not specified
1
CO
O
a,
d
u
'S
P
Ma (1987)
&,
r-
d
»— i
Alabophera sp.
Luntbricus sp.
Octolasium sp.
C4
2
u
'2
^
^^
S
r^
o\
Van Hook
oo
fN
CO
*J
O
•»- O
s b
II
00
oo
O
00
IP
i
§
O so rt
« « —
-------
U a
u
s
ffl
P
*S
M
£
""
w
•3
Q>
(S*
W
§**
2
>*^
CQ
C
O
V
1
References
05
8
—
CCJ
>
^
-*^
O
o-
P4
^o
i
d
OJ
3
"cd
e
03
T3
1
U
1
g '
2
s ;
fe !
§
C i
1
S
II
00
J^
1 ••
i f5
C
1
D.
A
lorodibenzc
r^
' f_
oo_
("^
trT
^r
•a
c
3
o
a.
g
U
<
CM
W r
«
H S
vi c
S
'•^ 1
VO -
II ~
1 u
^£ C
oo 0
5 -1
a -^
1 ':
I '.
Cfl
J
^»
"O
CA '
'§ :
S
3 !
90
^
x !
00
d
00
00
„•
II
DH
U
PQ
cP
B
.2 i
CS
r^
ing regression eqi
S c1
o c
1 =
- '.
s "
"S
3
•o
I
1 ^
S , .
O \ '
u
I f
g : =
S t
"*3 r
c r
0
0
u
I-1
t*-,
tt,
U ^
03 JJ
0 S
P 2 c,
g
T
3
3
3
j
3
*
*
Q
=0.0052
; J>
& &
03 PQ
T3 ^ T3
1 § 1
<2 ?; <8
1C
, 8
d
u
.B
03
\K
fe
2,
I
cd |
; 2" '
v^
i ON j
i ^
1 CU
l rrj
co :
D_ '
w
03
|"!
O '
,3,4,7,8-HxCDD)
lation equivalenc;
,3,6,7,8-HxCDD)
.
lation equivalenc
3
g
0
3
cd
1?
cd
TT.
TCDD BCI
u
•S
00
e
'eft
3
"O
S
'a
3
cj
"3
u
eft
CS
IL,
O
03
u
P
00
§
d
n
8
o
II
[b
U
PQ
CO
^
,0
09
cd
•^
.0
1
§
CO
D
&
&
)_i
J
^
lation equivalenc
3
g
3
U
cd
•a
rr.
TCDD BCI
U
00
B
*cn
3
T3
3
U
"Vs
o
CS
u.
o
03
H
^O
o
g
d
ii
J3
"3
>
&
03
1
tt?
g
N— '
s
I
1
J
•C
cS
•£J
o
•y
c
3
o
&
E
0
VO
o
d
u
tN
v—t
O
d
X
8
8
o
II
tu
U
03
cfl
%
s
2"
m
£
T— <
a
CO
3,
§
CO
1
>»
lation equivalenc
3
g
3
O
JO
cd
1
TT
TCDD BCI
1
oo
_B
*cn
3
•O
CS
*3
_o
"3
u
eft
CS
s
a,
U
03
O
rr
H
*o
1
d
u
3
"3
&
CQ
I
S
1
Q
00
*i
**l
a
^
i
tlorodibenzc
I
(-1
oo
r^-
fn^
of
•o
c
3
O
&
S
u
>n
d
II
i
d
X
VO
8
d
u
tu
U
PQ
Cft
fe
_0
CQ
cd
2"
(^
2
§
co"
D
1
&
g
1
lation equivalenc
3
g
3
U
cd
o
'£
a
•§
cd
TT
u
PQ
§
0
00
'eft
3
•o
rt
"3
"3
o
Cft
CB
tu
U
03
u
H
l-H
8
d
0
_3
"3
>•
&
PQ
1
u
§
of
OO
CO*
cs^
»
d'
g
t
Jj
ichlorodibei
i
0>
oo
r-«-
CO
cT
"
•a
c
§
a.
B
o
U
8
d
il
d
X
^
8
d
il
u.
U
03
K
^
1
&
CQ
|
1
f
^"
ro"
»
sj'
•1
S
P;
£
I
I
oo
r~^
•^~
rn
^r
•y
c
3
O
e-
g
u
0
d
u
vq
X
NO
8
d
u
&
PQ
CA
^
1
CA
cd
s-
-------
O ts
cu
n
V
V
M
ca
M
£
*o
•5
c
1
I
IB
t*
1
tf
09
1
13
u
•c
0
ft
cV
02
^
^p
g
d
u
_3
5
U
CQ
•a
1
S
e
1
S
y
00
r*^
CO
»
^
1
a.
8
u
&
'•$.
-Hexachlon
oo^
en
tN
^
T3
II Compoun
T|£
d
u
VO
d
X
VO
8
d
II
tt.
U
PQ
eft
^
O
*2
eg
^^^
.0
i
g
g
OQ
b
o
ca
s-
§
•3
_>
§•
§
J
3
S
IS
ca
1
PQ
the TCDD
.S
3
•u
ca
"3
S"~™
ca
1 The BCF
,_,
T-H
8
d
u
3
"es
U
CQ
"8
T3
g
e
8
§
W
OO
f*«
VO
rn
->
^
c
1
n,
'?.
-Hexachlori
oo
vtf
cs"
^
•a
Compoun
8
d
u
ON
d
X
NO
m
8
d
u
tt.
U
09
CQ
^
0
^j
.2
^^
^
ON
O\
S
n
CO
p
VH''
pt
09
•£•
p
y
CM
1
"c3
>•
1
§
'M
g
E
3
O
IS
ca
1
[T
0
09
the TCDD
.S
3
-a
u
jg
3
"c5
u
W5
ea
1 The BCF
oo
en
S
d
'§•
u
^
3f
j5
S
g
1
cs
73
u
CQ
the TCDD
00
"CQ
3
t3
ja
3
CJ
la
o
CQ
ca
1 The BCF
3
^
&
09
1
e
1
§
y
ON
OO
en"
r*T
^
1
Cli
1
4>
JO
^
-Hexachlon
ON
00
es"
^T
•O
Compoun
1
d
n
en
vo
d
X
VO
8
d
n
pt
(^)
ff\
ca
fe
O
^^
cS
C3
^•v
JD
cf
<
§3
CO
J3
S
CQ
^^ '
fe
S
g
&
§
"33
>
1
§
S
3
|
.3
M
1
U
09
the TCDD
00
c
"cfl
3
"g
eg
"5
o
"5
; o
CO
ca
g:
1 The BCF
S
Q
io
8
d
o
'is
e
09
•o
1
e
1
/_v
0
00
\4
.
CO
*-*
^^
§
OH
O
1
1
,8-Heptachl
vo'
CN"
_4"
•a
II Compoun
d
d
u
0
o
&
if*
't*
1
||
OH
U
CQ
CO*
?£
Q
^j
c2
^^
JD
in
ON
ON
i
C/3
•s.x'
07
HJ
S
k4
Q
cc5
**M
£
jj
"3
>
1
O
1
3
g
3
O
IS
IS
1
fr
U
09
the TCDD
OO
c
"CQ
3
T3
0
J5
"3
o
"ca
u
ca
tt.
U
CQ
o
CN
8
d
4J
"a
tt.
O
09
•o
1
e
1
I
oo
^•i
«
»N
O
ft
Q
1
JO
§
|
ft
!
00
en
CN
_^
•o
Compoun
o
II
ON
CO
d
X
VO
in
S
O
II
C-
CO
C0
;>.
?•
0
s
M
^^
X>
ON
i
CO
D,
tt?
09
Nv'
fc*
Q
g
>>
J
>
1
s
'«
"3
E
3
o
IS
id
1
«
the TCDD
eo
_c
"CQ
3
T3
—
"3
CJ
*ca
CJ
CQ
ca
U.
U
OQ
1
O
o
?s
g
d
«j
"3
tt.
U
09
1
P
04
ST
Q
U
O
¥
n.
1
|
ea
o
•a
1
ft
a
o
o
d
u
o
d
X
VO
in
8
d
n
u.
U
CQ
CQ
^
_0
cS
S
s***.
JO
ON
ON
z
W
CO
D
i
CO,
0
O
M
cS
&
§
"3
>
'§•
O
§
•s
cd
"3
E
e
i
IS
cd
1
U
09
the TCDD
BO
C
3
-a
~
3
"ca
o
ca
1 The BCF
a
<
SN
¥
b
i
o
CB
^
<
09
_w
&*>
2
O
d
u
>
&
09
"8
•o
§
5
1
1
-1
N
e
CQ
-o
Compoun
^
$
2
•^
1
N^'
ON
&
09
•u
u
H
1
ithracene
"t?
c
CQ
•13
Compoun
^
•D
O\
•^
Cu
co
N— •*
1
II
X?
00
^
U
U
JS
s
«
oo
00
ON
CQ
%
<
1
CO
•>
3
^
X
oo
m
d
OO
00
in
09
oo
^
.-»
to
1
"co
1
OO
c
1
1
00
c
CQ
3
•o
O
ca
3
CJ
ca
u
CB
^
tt.
U
CQ
o
^^
O
o
d
-------
J5 U)
U
W
J
1/3
(ft
*n
Q>
£
£
g
CQ
bi
CM
"S
a
c
"C
w
«
£
W
K
1
•B
'S
o
a.
V
OS
vt
ON
ON
BO
J
arickhoff and
fee
0)
NO
II
1
^M
S
2
.S
S
ot?
oo
CA
E
*
•o
§
GO
I
0°
^^
X
oo
t—
V>
d
i
oo
oo
V)
II
U
CQ
C?
^™
§"
••s
3
S1
c
"co
a>
ui
BO
_B
|
i
o
.1
CA
3
T)
O
Ja
3
o
"ca
u
CO
ca
^
[I.
U
CQ
CO
^^
oo
o
d
u
js
"3
6
CQ
•o
i
o
5
§
c*
1
u
•a
c
1
E
o
U
^.B ^
i
i
CO
o\
p
V)
II
1
^M
0°
1
£
/-^
00
00
ON
CO
)M
I"
1
?
0?
oo
ON
CO
<|
T3
§
CO
*s
Kt
^
0°
^^
X
00
V)
d
00
oo
V)
— '
II
u
CQ
0°
™^
jj
o
"S
S"
§
'55
u
h*
BO
_C
|
i
BO
'co
3
T3
.2
3
U
"ca
o
ca
^
P-
U
CQ
u
^
«
6
^— •
c
d>
s
*2
03
C
15
o
•s
^M
0
&H
O
d
_3
"ca
mended BCF
E
8
U
t*
NO
O
S
8
•^
•o
c
1
E
o
U
S
01
NO
N,
'
& *"
W C
BO =
o
-" «
w ^
D "B
1 B
•*" t.
S "
5 il
1 i
•5 £
«g 1
s 0
^
BO I
5
U
1
3
^*^
00
OO
ON
CO
! S
CO U
3 C
•o a
S c
5 •<
3
U •'" ^
"ca 7|
ON
CO ON
cs ;_,
£ <• -c
a, cu E
CJ UJ r
CQ C
o "» E
_c •-) c
PC, (_,
o
0)
NO
3 i(f
J 00
o
3 "™*
3 U
5 u
r J3
5 , •*
1 «n
,:S
i ! S
!• J
1:<§ :
fctf
BO
_O
1
.s i
3
A^
00
00
ON
co :
<|
T3
i :
CO i
I I
J I
1 ^^ £
i * ±
00 =
r~ Z.
. V) ^
i d
; 1
! 00
00
V)
II
& •
CQ
0°
' "^ !
M
u" i
|
CO
fll
"
BO
: _C
_o
1 1
5
.1° i
CO
3
;T3
U
S
"3
^ ^t~
CA O
ca Xi
? <-
U UJ
a> CO
r" i — J
H C-
8
vi
ii
: ^ f"
CQ ^C
Q.
"S «
c w
€ ! . J
§ 5
CA -
II
1
K
i?
Js
•i
^^
oo
| OO
2
CA
E
3
•a
g
.05
: £
• J
I M
\ ^^
x
; OO
1 ^"i
d
; oo
oo
VI
__'
II
&
CQ
oo
^o
i ' C
.2
1 as
3
8*
g
"S
CA
00
|H
BO
C
1
i s
1 : 1
:§ 1
S "s
•— 5
"3
"ca
; o
CA
ca
•o S
§ tt.
1 CQ
S 0
g2
oi
u
_3
"c3
B
CQ
1
g
C
8
G6
o
S
1
S
of
•o
1
cx,
g
<3
f
ON
§
C^
"*~^
?
II
1
t^Ci
e?
1
"1
oo~
00
ON
CO
E
^
T3
i
CO
"SJ
S
^P
o1
*^
00
v>
d
oo
00
"1
II
&
CQ
cP
**"*
'S
3
ff
„
CO
CO
feb
IM
BO
I
1
1
c
CA
3
_B
3
Q
*ca
0
CA
ca
^
U-
U
CQ
V
1C
en
u
_3
"a
EL.
U
CQ
1
U
5
8
otf
I
^
s
"E
5
NO
of
T3
C
3
O
E
0
U
^^
1
ON
CO
*^s
NO
00
00
~-
II
1
^H
o6
1
t
/^
oo
00
2
CO
E
•*
T3
§
CO
">
£
J
o°
^^
X
oo
r~
d
oo
oo
V)
II
&
CQ
2
c
_o
y
a
_o
"co
CA
U
"
BO
_C
|
1
1
00
c
'CA
13
S
"3
"ca
u
CO
ea
^
U.
U
CQ
1
00
m
^
cJ
"3
mended BCF
E
8
C^
itrobenze
Z
"O
c
§
cx
g
u
-------
»
H
CM
M
-------
u
Ed
S-^
t^
i
^^
>»•
s
s
n,
£
5
V
C3
Q
b
£
erlmental
0.
K
w
Eft
i
c£
CU
Pi
£
1
T3
eu
^
O
Q.
eu
Eti
J?
ON
i
to
2-
NO
-H
II
J
§>
U
s
J
^
00
oo
ON
CQ
s and Arm
'>
£
*
X
00
in
d
00
00
~
II
a,
U
CQ
00
Q
^^
g
3
B
_O
'CQ
1
t>
C
00
_B
_O
U
i
CO
T3
-2
^
o
cd
u
CO
£
IX
U
CQ
£
§>
X
00
VJ
d
oo
00
«'
II
o<
u
BQ
o1
MH
g
to
3
&
U
CQ
cd
£
BO
X
00
IT)
d
00
00
— '
II
b
U
PQ
o"
^M
g
•B
CS
3
i
CO
CO
O
f_,
00
_B
|
ted using the
CS
3
5"~
cs
^
tt.
U
CQ
S
*^1"
r-H
S
d
u
"3
B
CQ
"8
•a
B
g
1
0^
o
S5
H3
exachlorobuU
33
•a
c
3
o
a
5
ON
ON
00
, *
\~s
p
•^f
II
J
00
2
J
9
^^
oo
oo
ON
CO
s and Arm
'>
£,
00
X
00
in
d
00
00
«
II
[I.
O
ffl
00
o
^™
1
"ctf
3
sion eq
CO
o
2i
00
_B
1
oo
"co
•o
w
15
D
CJ
"rt
CO
^
p-
u
CQ
i
"O
NO
0
d
i)
1
&
CQ
T3
1
U
s
1
(S
U
rj
S
•3
1
u
exachlorocycl
X
•a
c
3
o
|
I
ON
a
t '
\—s
§.
Ti-
ll
1
0s
e
f
^
oo
00
ON
CQ
1
•o
§
CO
'?
«J
£
s
1"
X
oo
in
d
00
00
in
II
El*
CQ
0*
^^
|
3
3
I
B
£>
w
00
c
"2
1
u
.c
00
*CQ
3
•a
u
CO
3
"3
O
en
CS
5
B-
U
CQ
&
^-
S
d
u
3
1
&
CQ
13
1
U
E
1
Di
B
sntachloroben
a,
•y
E
J
i
ON
!
,_^
*~s
OO
OO
q
1
>
^
oo
^N
i
1
T3
§
CO
•5
e3
e
0*
X
oo
^^
10
d
00
00
>n
^H'
II
0.
u
CQ
o1
^^
g
CS
3
5-
"«
nj
^
00
_B
_0
1
00
B
"en
3
T3
CS
•^
"3
u
en
CS
J
U.
U
fS
ON
s
d !
u
•* Tj-
& 2
« <
1 fe,
B
U CO
E 3
§ ' S ;
C>
1
"1 ;
• i
00 !
^N
CQ
: E
-5
•o
i w
•>
CS
£
i » S
' ^c ^^
i g> 1
X (JJ
OO
1 t"*"
! IT)
i O
! OO
OO
' -•'
II
B. :
U
PQ
9
, »-H
i §
a
i u
: I
CO
£
00
B 1
'S
§ i 1
4)
*! ; s i
1 ! 2
J3 ' 'en
1 1
flj •*— '
*Z3
O
CJ
*o ^
I &
CX CQ
E u
S:e
r^
d
u
3
>
&
n
T3
i
C
1
(S
Q
Q
^r
T3
B
3
O
a
5
0.
U
•
CO
g.
NO
r3
M
*f
1 !
j:
S
oo1
oo
2
CQ
•a
CQ
f
2
b j
%
tijp
U)
X
oo
d
I
K
II
PH
U
CO
oo !
O
.^ i
s ;
S* :
0
•ri
CO
1
£
00
B
<2
u
5
jf
'CQ
3
•o
U
_§ i
1 '•
"3
u
nstituents wei
o
^
CJ
eo
<-;
e2
p-
CQ -°
4i ON
0.
[d
ON rX
00 °?
S B
d in
o S
3 i/^
5 ii
^ t
B- k/
u *
CQ g>
1 1
U -C
S ?
8 fi^
u oo
CO
£
|
CO
2
b
s
»jP
! op
_o
oo
, t~
1 in
d
'
oo
oo
II
U
03
SP
1 —
1
— ,
1 ^
8*
' g
CO
U
§>
Ul
00
_B
1
! B
"co
3
*O
U
"c3
»— N
3
"S
eptachlor
nstituents wei
X g
w
O
CO
<-;
"b «2
I &^
°* ® ^
1 S2
f^.
^-^
S
d
u
"a
U
B
T3
1
E
1
06
'
g
exachlorophei
DH
T3
C
§
o,
1
<*>
d
u
-------
I
'i
3
ca
•*
H
a
ce
§?
1
oo
oo
e^
O
o
"I
"8
•o
u
I
s
fi
1
g
I
§
I
§>
oo
oo
II
h
o
I,
a
«s
o
.1
CO
3
"8
ts
s
I
I
I
8
CO
o
a
-§
_o
I
u
g
"8
J II
f
a
!3
C
-------
05
is
~
°3
p
•8
I
I
1
I
-------
Ml
V
"S
0.
M*
g
IS
§
(4
60
^
*eo
«!
S
1
a
*5
1
§
1
pj
8
1
cd
l^"
^
CJ
fc"
d
en
&
S
to
•a
§
B
1
S
8
in_
*-*
0
"3
^
a.
U
PQ
1
|
§
(S
S
Q
00
£3
1
I
1
b
1
00
r»T
&}
r\f
C
3
O
1
5
^
y
p
H
00
m
Ci
c
g
•3
S
'o'
N
C
U
X)
*5
o
1
0
00
R
O-l
i
o
§•
I
•o
1
•3
0)
*s
g
OS
0
he geometric m
.S
13
3
§
"c3
y
CO
cd
^
U
U.
H
Q.
CQ
1
|
1
H
f
Q
1
fa
T3
S
&
o
1
OJ
m
/— \
oo
2
^
1
9
ctf
41*
8
Yockim, bens
\O 00
r J~ ^
»n
m
^4^
'"'
i>
"c3
^
Cb
u
PQ
•a
1
i
o
erf
i
oo
of
c
'x
.2
orodibenzo(p)d
IS
J
oo
r*^
m
of
•o
c
Q,
U
m
7
ol
o\
d
x
8
in
**
n
&,
O
PQ
w
^
2
cs
J3
^^
ON
i
oo'
s
1
«
1
f.
ation equivalei
|
i
o
XI
DD BCF and a
y
1
00
3
T3
U
3
O
"3
u
fe
U-
u
PQ
1
CO
00
i>
"3
^
B.
U
PQ
T3
i
§
(S
&
1
oo
d-
1
•o
hlorodibenzo(p)
o
o
oo
^^
c^T
of
•O
e
1
6
\c
m
oo
1
m
d
^
8
in
,_T
n
a.
u
PQ
J
_O
1
OO
«
•y
in
O\
o\
1
C/3
g
ST
u
S
1
0
lation equivalel
3
ioaccu
XI
IDD BCF and a
u
H
u
00
e
en
•u
V
a
c_>
"3
u
&:
tt.
U
PQ
S
O)
oo
i)
3
"cs
^
&
PQ
•o
!
s
g
erf
Q
vq
of
(3
'§
•a
hlorodibenzo(p)
o
00
^£^
c*f
of
•g
§
a.
5
01
00
OJ
—
d
X
8
*n
*— r
n
BH
U
PQ
CO
&
^
S
CO
f^
in
C3\
e3\
i
ca
oo'
D
1
PQ,
1
^.
a
lation equivalel
3
1
O
X)
IDD BCF and a
u
H
1
&o
_c
*CQ
3
•o
GJ
a
o
"3
u
en
cd
U-
U
m
u
00
1-H
OJ
0
s
"3
^
B-
o
CQ
"8
•o
g
1
g
(2
Q
Q
t>
00
r«
2
e
g
•o
hlorodibenzo(p)
0
CQ
X
U
r^
en"
of
"
•a
c
1
1
Tfr
00
OJ
II
_t
i-H
C5
X
o
in
,_^
n
t^(
o
CQ
CO
^
_o
1
CO
GO
£"
in
ON
OS
§
C/5
D
S
&
IT
ts
c2
C
u
«
_>
1
c
o
•a
_ea
I
3
O
JO
.'DD BCF and a
1
oo
c
"Z
3
-a
Q)
ca
"5
"3
u
CO
CO
u.
u
CQ
U
o^
f~
b
"3
?*
tL
U
CQ
•o
1
I
0
t2
Q
Q
U
00
V£?
of
B
g
•3
a
tachlorodibenzo
o.
«r
K
oo
^1^
**1
of
^
•o
c
3
O
E
a
VC
r^
II
in
o
d
x
8
in
^_(
II
Hi
U
CQ
GO
J-
2
cd
•£
m
^H
^
U
00
g.
s
PQ,
1
«
lation equivalei
|
ioaccu
x>
IDD BCF and a
u
H
1
00
c
'en
3
"S
CJ
CO
"3
"3
u
C3
U
CQ
u
oo
*~*
0
"3
^
§
T3
1
§
g
cS
^^
Q
U
o,
e
1
'O
/"N
X
R
orodiben
•fi
ca
"o
o
c
3
O
Oc
U
r-
oo
II
*— H
O
O
X
8
in
1—4
II
tl*
U
PQ
09
S
^
<2
en
ca
x>
OS
CT\
s
60
g
£
w
PQ,
1
u
e
lation equivalei
3
1
i
Xi
IDD BCF and a
u
f
»
p
T3
•2^
C3
"D
CJ
"5
0
&
cd
&
CQ
u
00
ol
^*
0
"3
^
U
CQ
1
g
§
§
&
§
¥
00
CO
of
i
1
1
J5
1
oo
r^
ro
rJ
•b"
c
I
5
0)
n
o
00
d
x
8
in
i— »
II
&
u
CQ
CO
&
_o
1
CO
CO
XI
m
o\
2
§
C/3
g
S
PQ
I
S
>^
0
J3
"3
_>
'3
CT
u
e
o
•O
CO
1
I
'JB
:DD BCF and a
y
H
o
i
CO
3
•u
•S
03
p
O
13
u
B
PQ
u
oj
rn
^^
m
4>
•3
^
B.
U
PQ
"8
1
i
g
(2
|
00
r-;
en"
of
c
lorodibenzofura
S
S
1
00
o^
m
of
^j"
•a
c
§
a
o
U
0«
?
II
o)
0)
d
X
8
in
1—4
II
[L.
U
m
&
^
2
CO
02
J^
in
o\
2
1
O!
g
w
S
1
u
C3
lation equivale:
I
g
S
:DD BCF and a
•1
f
en
3
T3
•S-
CO
"3
o
"3
u
en
03
U-
u
PQ
u
o\
^^
0)
u
"3
^
&
CQ
T3
1
1
g
(S
I
00
r~
of
n
lorodibenzofura
«
1
1
oo
1^,
^,
CO
of
•y
c
§
a.
1
-------
*?
u
u
pa
£
u
•3
V
O2
2
t>
IM
09
0.
1
u
g
•e
S.
bd
8
i
s
1
^
CQ
•a
^>*
I-
o
s
1
II
VO
_^
x
s
in
7
a.
u
CQ
CO
^
o
1
m
o\
^
S
W
CO
D
B?
B
I
£
(4-1
_u
"3
u
c
_o
J2
3
3
y
BCF and a bio;
Q
Q
1
.1°
CO
3
T3
ts
3
"3
u
CQ
ca
b
CQ
o
^
00
ij
3
°3
>
B<
O
CQ
•8
•a
c
o
1
S
U
w
oo
2r
of
t— 4
C
.0
fe
2
g
1
00_
en
*
"S
i
a.
£
u
vq
oo
II
vO
B
d
X
8
in
T\
&
PQ
CO
?
_o
2
V3
ca
in
2
.,
OH
w
CO
g,
£T
«
*~s
Q
cti
5*
S
"3
o
B
_O
3
|
IS
1
B.
U
CQ
Q
Q
U
u
.S
CO
3
•0
U
ca
g
"a
u
CO
ca
B.
O
CQ
p
vd
u
"3
B,
U
CQ
•a
•8
B
U
a
u
E
00
vq
of
»-»
odibenzofuran 1
J5
s
u
1
00
vq
en"
of
*
"S
§
Ck,
S
u
Ov
0)
II
ON
T— 1
d
X
VO
"1
7
u
CQ
«
o
1
CO
ca
in
2
^
S
w
CO
S
a7
CO,
Q
ta
S*
u
"3
3
cr
u
B
_O
'a
1
3
CO
IS
cd
1
BH
U
CQ
Q
Q
1
S
CO
3
1
cd
S
"3
u
CO
ca
&
CQ
u
*
m
s
(«?
u
"3
>•
B,
U
CQ
•o
•o
B
as
S
u
ffi
00
NO
en
ri
odibenzofuran |
g
^
u
ob
vq
en"
of
•a
1
1"
o
U
in
S.
M
VO
d
X
§
>n
7
p.
u
CQ
CO
o
i
CO
CS
in
2
^
a-
CO
D,
B?
B
S
1
CM
JU
3
a*
u
B
_O
la
3
3
U
^
BCF and a bio
Q
Q
u
i
3
•o
m
3
o
*3
u
CO
ca
B,
U
CQ
4i
p
00
oo
Ov
ij
3
"3
>
B.
O
CQ
•o
13
B
U
C*
§
U
DH
t>
Otf
en
of
>-T
odibenzofuran I
b
2
I
o\
00
en
"
•o
c
1
£
U
00
ri
00
II
en
S
d
X
S
7
&
CQ
05
^
o
1
CO
CB
in
2
^
S
w
CO
2,
6T
CQ
**s
l-l
g
5-
§
"ed
"I
g
.s
Is
1
I
BCF and a bio
Q
0
O
H
u
00
3
1
cd
3
"3
u
CO
tt.
u
CQ
u
H
a.
u
CQ
1
B
|
&7
Q
00
r*-
vq
en
N
^,
B
lorodibenzofura
,c
CO
1
00
VD
rf
en
eN*
*
"B
§
O,
g
0
01
II
O
d
X
§
in
7
B,
U
CQ
CO
g:
o
1
CA
ed
1
^_,
OH
E]
CO
D
B7
^— ' '
1
J
C4^
U
"3
B
3
3
U
BCF and a bio
Q
Q
u
.1°
3
ca
3
"3
o
CO
ca
&
CQ
u
H
oo
s
u
"3
>
tt.
U
CQ
•8
•o
B
u
OH
E7
Q
1
oo"
K
en
^,
B
1
1
J3
ed
1
OCJ
en"
*
1
D.
2
u
i
u
en
d
X
S
in
7
B.
U
CQ
CO
&
o
1
CA
ed
1
^
OH
co'
D,
aT
«,
J
CO
X
g
u
•3
1
B
O
•a
i
3
O
BCF and a bio;
Q
Q
1
oo
_B
'co
3
•o
U
3
"3
u
CO
ca
&
B.
U
CQ
H
q
in
es
u
3
"3
|>
B.
U
CQ
1
B
D
S
u
a
B
cd
c5
1
•rt
1
i
M
"o
o
•o
B
p.
£
U
O
a
VO
o
d
1
in
7
o
CQ
co
^
o
1
CA
cd
1
.,
OH
CO
P,
B?
CQ
2
ec?
?
S
"3
3
ty
u
B
3
3
y
BCF and a bio;
Q
Q
1
*CQ
3
T3
U
ca
3
"3
u
CO
ca
&
B.
O
CQ
H
eft
^
§
ja
g
g
•a
S
s
c
|
is
i
•3
I
I
r~
S
u
_3
"3
>
BH
O
CQ
"S
T3
B
U
!
D.
f
r*\
C3
•o
C
§
D-
2
u
CO
Q
<§
CA
cd
CO
I
I
^
S
o
;eometric mean
wu
-C
00
'co
3
1
cd
1
ed
0
en
cd
>
O
3
U
CQ
u
.c;
j?v CS
2 g
1 |
pc
3
OH
U
CA
11
5 CU &
t+4 « O
g« 1
0 T3 -0
egg
S GO 3
.C H> CA
§ '« 1"
•O co" °
O ^^ fc-
Q. •" ^
£1 3
oo
Ov
S-
CA ^~*
1 i
T3 C-
g ^
idie, Landrurn,
;wsted and Gie:
'^r
§•—1
VO
r-
•n of
•n •— '
r-
en
U
-------
u
H
J
S3
$
S tap
&
»-i
•s
f>
1
£
»
"S
a
w
£
V
*
a
£
3
a
cu
s.
£
s
c
3
«
1.
en
u
3
1
•e
u
•«-»
t.
o
a
(§
P5
«
i
'S
V*
•S
Q
S
8
1
1
T3
S
&
•?
t-
M
8
1
CQ
•0
i
Roesijadi, Anderson,
(1978)
3
oo
.1
s
J?
'S
Q
I
If,
1
1
«J
•8 ^
JS b
3 S 2
•a a x
*3
en SH **-<
ed c O
* 5 S3
Iff
I|B
T3 § ®
€ M g
S. -b >
K1 n c
o 1 8
J § ?5
P 8 g
. « a
8-day exposure duration,
by dividing the wet tissu
concentration [(ng/g)/(M!
applied to the value.
„
!
« x
*• p^.
o ^
»a ^^
Lee, Gardner, Ander
and Barwell-Clarke 1
o
K
rn
«
§>
1
•S
s
1
•o
"3
CO
o
£•
1
"2
I
C
U
B
Q,
&
;
en
U
15
Leversee, Landrum,
Fannin (1983)
&
U
CQ
"8
•o
e
o
a
&
g
u
1
c
a
1?
¥
c
o
O
•a
1
E
o
O
en
|
§
CQ
ca
M
u
s
"§
2
S
«
m
g the geometric mean of
_c
en
3
T)
S
JS
"3
CJ
"ra
o
eft
CO
s
u
3
~a
>
&
n
u
s
c
.0
'5
.£?
's
^
s*a
|
1
GA
G3
"8 *
ts &
3 E S
.0 3 X
«J -3 ^H
0 1 c
S E o
P ° S
-G 2
3 ^* cd
"i-^a
> g §
T 2 -a
fi S g
g J3 ?
a c c
288
O S r— i
s!S
8-day exposure duration:
by dividing the wet tissu
concentration [(ng/g)/(m
applied to the value.
I
m ss-
|g
Lee, Gardner, Ander
and Barwell-Clarke |
0
O
oo
c
00
I
o
"c
-c
1
g
24-hour exposure duratic
t~
. oo
OS
i—t
Newsted and Giesy (
>n
(S
CN
d
5
§.
•S
c
!
g
24-hour exposure duratic
"S
5
a
i
Southworth, Beauchi
Schmieder(1978)
o
0
o"
gr
OS
VO
•
&
CQ
•a
u
•o
g
§
&
g
1
3
CH
£"
¥
c
u
CQ
T3
C
a
E
a
1
•ene was used as a surroj
e,
a
§
1
e§
B.
U
CQ
for this constituent. The
o
•S
ro
1
cd
S
C
o
l-l
s
#
5
cd
T3
>>
fe
CQ
fa
O
J3
J3
in
«N
s
CQ
"S
"O
g
S
C4
u
1
1
S
£
c
s-
¥
g
CQ
-6
I
2
u
en
iboratory value as follow
o
n
5
§
•o
u
CO
£s
CO
cd
?
U
3
"c3
>
K.
U
m
u
s
a
c
oo
I
•2
'5
!
g
24-hour exposure duratic
r~
oo
OS
*— 1
Newsted and Giesy (
m
b
CQ
•a
u
•o
g
§
i
o
c
I
a
•o
B
O
D.
g
d
s follows:
CO
en
o
s
1
1
cd
J^
1
t~
g the geometric mean of
_c
en
3
•o
u
_cS
"3
_u
"cd
U
en
Cd
£
J3
"cd
>
tL
U
CQ
O
Q
S>
1
•S
'£
}
Not reported
cf
O\
^H
3
•o
Eastmond, Booth, an
g
V)
in
-------
W2
04
O
H
U
ta
of
•H 8>
H ^
*2 ij
PQ «^^
^ o
§ 6L|
w S
§"8
u 1
TABLE C-3
INVERTEBRATE BIO
g wet tissue) / (mg dissol
(Page 4 of 18)
U ^
fl
H
OS
^N
• g
O\ OO
ON •— '
ll
magna
Q
g*
24-hour exposure duration
P
2
*•— '
>*
M
U
0
•o
§
•o
o
!•
2
oc
oc
S'
inquinata
g
g
1
7-day exposure duration
derson, and Blayloc
5
^«
•3
^o?
as C
VO
o
JC
u
3
>
&
CO
T3
u
g
p
OS
u
§
1
e
C3
s;
ta
¥
c
.c
in
c
g
ex
s
o
U
CO
ca
CO
O
3
5
ean of 2 laboratory
E
_o
u
B
u
•S
M)
C
'co
3
"S
5
"3
"a
o
v:
cd
S
u
cd
U
0
1
1
-S
£•
-i
1
6-hour exposure duration
•a
O
e
Jm
o\
8O
3!
VC t —
r~
0\
\q
u
3
ended BCF Va
C
S
i
&
I
(X
I
of
Ji
o
o
TT
•a
c
3
o
ex
E
6
0
,)pyrene was used as a surroga
CO
t. The BCF for ben
5
3
CO
GO
S
&
u
3
ed
'S
IS
o
c
o
£
cd
cd
"^
O
2
O
3
I
'olychlorinated Biphenyls (P
*M
§
m"
^
0
lended BCF V
S
B
1
&.
S
o
w
o
I
"O
c
o
D.
^
U
follows:
en
IS
fli
one laboratory valui
00
CO
3
•8
as calulal
VO
o
J5
O
1
i2
U
_D
"a
c.
O
m
f§
rea virginica
^
o
|
84 day exposure
Edible portion
g
•a
•3
1
"3
«3
JS £"
co o
C oo
0
f)
^*
00
"i
in
u
lended BCF V
B
E
o
1
S
r4
|
-3
§
CX
E
e
o
laboratory values as follows:
m
the geometric mean
c
"co
s
•8
_«
^3
Ta
u
CO
ed
2
!j
O
1
<2
CJ
3
"cd
U-
U
m
1
m striatum
_s
"c
I
I
•o
S
P
oo
.•§
^
•B
.8
^8^
00 O\ ^3
^ ^O iX"
•^~
U
-------
u
s
o
v>
4)
H gp
£
I
IB
cu
h
C3
0,
1
g
•c
1
UN
s
1
i
1V>
_S
"3
>•
T3
O
OS
-i 5
0 ^ 0
e ^ -a
00 £> O
£ • - r^ «s:
« s ., ^
S S 'E •£
Orconectes nais; Dap)
Gammarus pseudolimi
Palaemontes kadiaken
cornutus; Culex tarsal
punctipennis
Q
3
CO
1
S
2
^
S
O
CO
1
CO
•o
§
ea
1
I
O Q O O
r- in in r^
«" en rf
0 Q Q Q
t— e» CM vo_
ro ^o" cs"
1
CA
U
"S
CO
2
.2-
fc
«
of
5
is"
I
1 i
8
T— 1
Brachionus plicatilis
xposure
u
1
m
r^
J
I
'!3
Scura and Thi
•o §
= .2
.S >>
g 1
O 0
m in
Invertebrates
^
cd A
•o u
2 "3
,2J[ K^
a. •>
i
-M
1
•3
2
cd
i
Nimmo et al.
(1980b)
£
A
Pteronarcys dorsata
\
X
u
1
,— <
«N
g
&
1
^
O
Mayer et al. (
(1980b)
o
TJ-
t~-
Corydalus cornutus
2
3
a
X
u
1
•a
r-
1
c
1
'3
GO
cd
O\
Mayer et al. (
(1980b)
8
Orconectes nais
1
o.
X
u
•a
(S
1
c
1
'o
^
g
•a
U ^5
^t oo
^ ^
O
>n
t-
Nereis diversicolor
%
a.
X
u
^.
cd
•o
IT)
^
c
T3
'o
CO
A
1
Mayer et al. (
(1980b)
m
r-
Penaeus duorarum
i
g
s-
TJ
«N
t
w
c
1
CO
cd
O
"3
Jtf OO
3 ^^
Q C
0
Crassostrea virginica
posure
X
u
1
•o
CM
a.
w
1
CO
eO
2
13
8 00
3 »
Q C-
o
oo"
Arenicola marina
I
X
u
1
•o
«n
.
oo
2
Hi"
CQ ON
Courtney and
cited in EPA
vo
cs
3
*p
I
i
m
3
13
Recommended BCF V
fli
e
g
o
a
'2
Q
ro
^-T
•o
5
a
s
o
U
-------
£
o
s
•B
4)
•u
Li
O
A
K
uene was used as a surrogate.
|
£i
'S
•3
•*
ts"
^
tt.
0
CQ
I
3
.'SJ
te
I
CA
2
5
_o
2
CO
'S
>
CO
C3
c
u
,
w
o
2
J
.3
C*")
""'
o
3
"cS
>
[Li
O
CQ
•o
u
•o
c
u
H
g
&
o
c
u
3
"o
o
ja
'S
5
•^f
rT
•o
c
3
O.
U
tn
i
O
1
g
x
•o
3
ts
u
e
o
1
5
ce
U
_3
"3
>
&
(j
CQ
"S
-o
c
o
recomi
o
Q
S
60
-S
s*
-e
!
4-day exposure duration
,*•— s
CO
OO
o\
i-H
\*s
g
§
03
£
•o
>,
ji?
'S
n
•J3
m
r^i
'"'
U
3
1?
>
a.
U
n
T3
CD
•a
C
c
£
S
1
f
'S
5
vo
ri
1
g
a.
U
uene was used as a surrogate.
§
i3
'S
•B
•4
c^"
£
a.
u
n
I
3
•S
Cfl
M
1H
i
u
1
"3
>
CO
o
c
u
b4
u
Z
a
«
TD
>>
t_
O
1
^
J3
J
c^i
u
_3
"ca
>
pa
13
U
T3
C
O
8
S
1
u
1
z
•a
c
1
E
(3
s
M
§>
en
CO
CQ
«
"8
CO
CO
I
1
i
'5
?
•*
(S
£
&
0
pa
c
u
3
*2
CO
CO
s
•S
u
1
^
is
O
C
tU
w.
u
M
CO
•a
>>
c
CO
b
o
0
3
en
u
3
"es
>•
tt.
O
n
"8
•o
e
u
p
s
(S
M)
1
e
S
'c
%
%
cd
g
£
•o
c
1
E
5
uene was used as a surrogate.
1
^
"S
?
Tf
C4
^
tL.
U
ca
1
3
*s
1
C0
s
£
_u
s
_eO
'«
>
a
0
c
u
o
CO
"cs
•o
>-,
^
2
15
b
o
X)
3
Phthalate Esters
oo
m
tt.
U
m
•a
u
•3
u
H
S
&
S
«j
1
S
n.
/—N
"?>
b<
1
^
V
(N
*^f
m
•y
6
a.
U
1
V*
a
en
U
3
"cB
>
g
2
|
CJ
mean of
u
•c
u
u
£
00
s
3
1
C3
"3
_o
"rt
O
ra
£
CL)
3
ca
>
U.
u
CQ
CO
.ba
cs
1
§
i
14 to 28-day exposure duration
?f
oo
o
G
GA
|
C
CO
C
«
r^-
Ov
•*
IN
s
u
a
g;
3
§ 1
1 |
-ff ^
"C ^
fe s
S s
k. S
1 1
"8 * g
3 £ 8 •§
3 S ° « g
•§ .3 s a s
^ "O t> > O
1 £ « 1 S
* o 6 -3 oo
§ -S -3 " .S
•s ?? S-8 S
30-day exposure duration
14-day exposure duration; The reported \
by dividing the wet tissue concentration 1
concentration [(ug/g)/(ug/L)], and a con-
103 was applied to the value. The reporti
converted from dry weight to wet weight
factor of 5.99".
£?
S ™
- 2 r~
C ^^ OS
D *°~*
to £ ^~>
Co js
5 -3 ^2
S S ^
•* S «
•> » "^^
u ™ .,*
El
^ 0, §*
O O i3
§ «» 2
Q & £
sff •§
& | i
CL. 2 CO
r~^ t~
[t; oo m
JQ ^ JN
IN Ol
6^
1
(3
<
0,
* w
o. g
GO ^
tn S
5 a.
•2 S3
03 2
Q. C
<« S
" C
I-
O in
S 3
g W
8l
27-day exposure duration
/«s
(S
oo
o\
<^t
e
i
u
•g
to
CO V£>
r~ m
•* •*
r-~" •*
'-~i oJ
•* —
"• r-~
CM fS
-<" 0»
U
-------
tt
H
x
»—i
'S
on
§
&u
CA
«
"S
cu
^1
i
2
£
"S
o
c
•1
B.
X
g
|
i
1
1
Cu
§
CJ
«
i
ea virginica; Pern
~
§
«§
c
o
1
i—
3
•a
S»
1
S
1
•o
U
03
3
ta"
IT
5
. 00
•O O\
is
o r-|
= -
S
nded BCF Value:
u
I
1
T3
"a
1
5
Compound:
CO*
ues as folk
1
O
i
«
"S
c
£
o
"S
u
Mi
U
A
00
is calculated usin
jj
u
3
•—*
IL,
U
S-
1
Q,
CA
-2
1
1
1
1
5
1
s
•5
•*
C
to
- ^
-H <^
Eft
•O
Si
g
$
y
5S
S
d
nded BCF Value:
i
|
!
Acetone
Compound:
d,
i
•s
5
«
1
2-
VO
^
j
§>
X
2
00
d
n
CQ
""^
c
.0
1
u
c
_o
CA
eo
C
.S
_o
1
1
ated using
!§•
CA C7\
S —
* 00
65
CQ ^
I i
^
'H "S
o .a
3 Jg
CA ^
§a
3?
N "
-------
u
$
So
»H
'S
oe
V
Zft
f
fe
tu
1
W5
2
S
cu
s
OS
£
Experimental
.eference
K
1
"3
>•
T3
«
•s
o
n.
W
tf
rsl
S
o
u
_3
"ca
B
ca
•8
•o
g
H
P
O
&
inyl chloride
>
Compound
a.
•s
3
CO
1
|
jC
3
6
2.
\o
•*!-
i
a
*£
00
_0
X
OS
oo
d
II
KL.
U
CQ
g>
g
'•&
«
ig regression equ
e
1
i
1
i
S3
S
1
1
"s
CA
A
&t
?»
£<
~ a.
c CQ
u w
3 co
'g D
not available for this coi
i where, log K,,,, = 1.146
Si So
o r~
^ 2
S i-
cd (D
-0 t3
*\
Laboratory
and Schmii
d Organics
.8
«
ther Chlori
O"
cs
o
3
"3
&
ca
•o
o
•a
c
o
E
c
(j
u
05
arbon tetrachloride
U
Compound
ex
C
ra
JC
u
c3
O
CQ
1
^
I
5S
\o
•<3-
i— i
^H
i
SP
o
X
o\
»-H
OO
d
u
tu
U
PQ
f?
o
|
ca
ing regression eq
"?
0
2
u
gp
S
3
^3
1
"5
3
ca
u
en
The BCF wa
S
u
2
CA
£•
8
09
S
1
.a s-
•s *
f,§
« u <
•a x a,
g & u
S oo to
ID r- -)
^ o> ^
« 7! f^
C3 CD '^
-0 T3 ^
o ~;
>, ." M
fe E II
g •§ 1
S to W
31.2
lf>
ON
V)
ts
U
_3
"cd
B
ca
•o
o
T3
C
U
H
c
exachlorobenzene
ffi
Compound
as follows:
en
J
ed
™
>,
S3
'S
g
«
S
•s
B
cd
E
o
o
:alculated using the geon:
^
cd
^
U
3
cd
>
tt,
U
ca
u
•2
C
6*3
3
"1
w
S
g
1
xposure duratior
u
S
i
o
oo
Tj-
adic(1996)
3
1
ca
CQ
S - s
n g S
§
cs
1
Ci
d
V*
M
&5
o
1
duration
2
1
1
s-
•D
cn
Cfl
I
•o
i, Woolson, ar
g
•a
1
8*
-^
g &
43 C^
oog
t'- ^ o
r~- o\ -
o o o
vo — ro
m in \o
CL
>
ca
T3
en
m
S
T3
C
cd
i
00
4
IP
&2
M "
ss «
1 g
0 §
S €
^ r-
00 "*
CM 2-
U
1
•s:
o
o
.y
o
duration
u
VH
3
2
28-day expo
•o
a
«
e*T
C
1
O
Cfl
^
H?
§g
52
ts s"
1!
Z CQ
S S X
_ C50 52
" -
£
c\
1-H
^
5
g
5
^-
r4
•2
r#
§
§>
g
g
>
T3
3
CO
U
t§
efl
U
3
"ca
1
S
S3
1
IM
1
c
o
•o
u
tc
r3
-^~
cc
^
U
3
K3
>
U.
U
CQ
u
U
-------
*?
u
w
J
CQ
g
3P
«
1H
'S
e\
£
cfl
~
"S
a
en
g
I
£
3
S
H
i
i
1
"3
•a
*u
cy
ycambarus clarki
K
^
|
•o
u
1
1
•*>
6
<-
S3 S"
3 r-
O* ON
if
2 Bl
31
n n
t- rt -• VO
3
ft, ^
JOJBJOC
2
?)
u
"ca
^
commended BCF
u
CA
~Q
%
\
1
I
•y
o
E
6
CO
J2
2
CO
"3
>
f
13 labors
•8
c
ing the geometric mea
culated us:
was cal
o
"3
>
S
OQ
1
odonta anatina
5?
"^
; duration
1
X
C
•o
f
o
1
O
1
U
1
>n (N
•* •<*
phnia magna
JQ
^
i
I
X
S
>-,
•?
g
Lu and Metcalf i
in
vg
odonta anatina
K
"^
CO
«-i
ure duratiol
HI
§,
O
—
is-
1
ca
I
S
Makela, Petanei
Oikari (1991)
X «
a
I
§
|
I
25
odonta anatina; P
nplanta
£ 5
•o; o
1
a
xposure dur
o
I
VD
en
O
If
N-^1
'i
Makela and Oik
\O oo
ia
1
N
^
1
§
0,
"3
assostrea Virginia
laemonetes pugio
K Q
u a.
•e duration
i
u
•a
oo
c
2
t^-l
o
o
u
Ofi
s calculated using the
? value wa
U
u
*c
CJ
g
8
O
-------
u
w
J
09
<
H
g
O
i
z
o
H
2
H
Z
18
o-S
u £
o g
^H «
09 •-•
I!
M -3T
a 3
Hen
W3
II
50
II
H
Cd
H
s
rt
%
o
T-H
V
N»^
cn
V
*3
cl
s
cu
•55
i
£
1
B
1
a,
3
8
u
u
«
1
"3
•o
0>
1
c.
cu
Q£
u
^
•B
c
a
s
1
5
O
1
•C
S
I
Cj
c,
1
CO
u
"E.
CO
2
"o
E
s~*
NO
OO
2
I"
•g
co"
1
£
•5
&
— CN ^- r~ J! P co
g P HI ON •* ffi CO
^ ?- s- S S *. g
2 B 55 -o =0 ^ ^-"
1
.
5.
5.
S §
81
*}
|l
t'l
I
T3
U
Ul
3
X
0>
X
a
T3
CO
CO
g>
"S
CO
3
J
f
C
s)
CO
«iJ
1?
|2
<< > —
(N O
*fr ON
CO CO
NO" ON"
CO CO
1
cd
•o
u
s
&
2
s
and Yant
^j-
c
1
|
•S p
!&
K C^
S --5
U~l CO
NO_ u^
oo" co
(N NO
^
z
5
.&•
a.
W *0
a a
i «
°/H
&f
s €.
§>.£
S I.
1^
"o «3
S i
ll
n oo
•o 1
«
s i &;
ft £ ON
22^
fli OS
IP
« 1^
_e C o
S 8^
8 II
"*3 * «
C3 /" N h
111
3 rS
^_» TO
ll^
>< * "S
U »"> 3
>>5 «
^ J-s,
CO 1 |
co ca ?
^
Kapoor(197
T3
§
e«
•a
g
CO
c*-?
1
o
cs ^
^ fSj
"1 o
ON ,_-
( Vi
&
1
1
Ui
-o
i3
s
8-
>>
•?
CO
CO
1
•S
1
W3
3
2 co^
o i~
& °*
.*? -<
M ^
<*-" §
^ i
s £
^^
2 CO
ON
C4
1O
OS
B
oo
CO
i>
_3
"«
u,
U
n
"S
"g
u
I
Heptachlor
•o
1
I
O
0
CO
|
_O
1
CO
03
CO
3
"3
laboratory vi
-
&
«
n o
— ^ •*
r^T ^
CO CO
1
I
§
u
1
§
1
•§
a
3
g
I"
^
^
S
d Forester
§
^
o
I
"o
c S1
2 S;
£~
o
r-
ON
4>
J2
*e3
>
Oi
u
n
"8
TJ
C
(S
O
1
«c
o
Q.
Hexachloro]
•o
c
3
O
D.
I
U
1
2
CO
13
•fr
~
3
CO
u
C
O
•a
a>
CO
cd
Xl
c«
cd
£
U
_3
"cd
>
U-
U
CO
u
J3
P
a,
CO
!
1
ON
£
1
?
O\
**^
C
B
cd
CO
O
r-
OS
S
«
*5
0
I
VO
S
•*
a)
_3
Id
>
&
n
•a
1
u
&
Aluminum
•a
c
1
1
U
«•>
•*
u
-------
o
H
fa
Z 1?
§!
u
3
05
H g
1
W I
2s
S*
B I
a5
g?
H g
oo
0*0
1! |>
03
H
CO
0>
•o
g.
1/3
•*rf
CU
i
&.
1
e
•f
!
^
i
i
"«
T3
w
"£J
Q
Q*
&
j>
3
w
"S
>
e3
1
•o
>>
1
1
OS
x;
^— »
'^
e«
U
S
1
•^>
i— i
cS
u
u
5 .
es •'77*
> g
"S 'R
TS T3
g §
E c
ll
"c3
o 'S
S s"
0 ^
e "«
g s"
C 3
o 'S
•B o
g T3
C «
i 2
S -ij
o -a
•S c
£ I1
B 1
"a
•s -a
If-
tuent. Therecomi
chromium, coppe
'« g
C 3
11
"S A
"S O
& 1
j> a
•s ">>
•= S3
S .c
« g"
o .2
« 1
l|
es S
"ca OT
T3 S
1 Laboratory
(antimony,
r^
i>
_3
73
>
S
GQ
"8
1
5
«
I
1
Compound
CA
a
c2
g
u
3
*ca
?•
>,
S
S
o
s
•
—
U
CQ
1
CA
S
ca
VH
A
o
S3
>
c
CJ
c
'S
T3
§
S
s
?
J3
w
1
•o
S
g
Q.
&
C3
z.
g
1
c
c
5
c
ca
1
&, ^^
Is
H C
o
m
t^
o
_3
"ca
>
&
CQ
"8
t3
§
P
(S
0
'5
4i
CO
<
|| Compound
CA
Oi
s
C4M
CA
ca
CA
U
3
1
1
ic mean of 5 labor
§
1
u
J=
OO
c
'CA
3
1
5
*3
O
*c3
o
c«
P3
^
U
_3
*ra
>
&
03
1
Oo
•2
S
.«
&
,§
•*J
*Q
1
•§
I
^
C
fi;
g
J"*
u
^f
1
&l
X
u
1
00
fS
1
0
1
iandt, Anderson, a
PH
!3 >-^
CO ^5
•C no
^s
o 2
10
CL
S
1
g
cS
1
cd
03
H Compound
^
_o
*o
VH
Cd
>,
T3
one stu
c
o
T3
U
Cfl
cd
XI
en
cd
-^
The BCF v
u
ca
1
i-t
u
>
c
1
5
X3
VI
E
PH
1
£
S
00
•o
ca
C
c
I
I
h«
CQ
O
CA
O, ^
§/•>
•*
t>
3
ca
>
tt.
CJ
CO
"8
1
g
.S
krf
.22
13
ifi
tn
£
!
2
•5
Z
oo
•o
ca
8>
m
1
a. ^^
g N
ll
28
U-
U
09
u
i
fe
§"
^
^
t
1
1
1
O
l.
S
CA
O
D.
S
"S
£
c
1
c^
S
o ^-^
s>
-------
< J
Ik!
•B
«
00
aa
<
H
S M °
5jl a
M ^
W S
O
O
00
g
S
a,
en
g
0>
*J
1
a.
1 Experimental
8
^ c»
Crassostrea virginica;
irradians; Homarus an
3-week exposure duration
s>
1
1
•o
s
•ck
|
N
LN
«{ wT
J2 r~
co ON
S C-
o o _
ON VO S
^ •* f^
— es
<*
1
§
!
28-day exposure duration
r—
2
*~s
£>
%
g
U
eo
1
m
\o
1—1
, ^
%>
R " »
•§ «
•S =-
c fi
o a,
s: o
0 00
i: >,
Ceratopogonidae; Chi
Beetle; Anisotptera; Z
Ephemeroptera
•0 <£
* *!
8 * I
j Q »-* W5
ffl C ^ cs
" .2 * £
g "O — -S-
* e "s s
„ Jr * °i
3^2^
•3 +3 O t-
rt tT e« B
> >* *5 u
•o -° c S
3 §.2 €
U s*-
§"5 5 §•&
52-week exposure duration; the
by dividing the dry tissue concei
concentration [(|ag/g)/(ug/L)] co
applied to the value. A conversi
to convert dry weight to wet wei
Se £
•a> ON
"S C-
W a
- •%
oo-g
e £
11
"c »
« e
S^ is
ss 3
^5
si
5S
o o
Pi — x In oo So
— CM " _} r~ >o
ON ON . CS ,
u^ m >o m oo "o
2- »- S £ s ^
ba
0
S
^
•5
"a.
g
a.
Orconectes propinquoi
>,
X)
•a j,.
u x
cd "™^
1 °
III
O 3 -g
cS "2 *2
• * O
o ^ .s
13 *^ S3
> s^ >
111
B-S -
8-day exposure duration; the rep
dividing the dry tissue concentra
concentration f(ppm)/(ppb)] and
103 was applied to the value.
0
3
03
cd
S
•o
TO
g
'3
1
u
fp
II
o
-d-
oo
^
Corbicula fluminea
28-day exposure duration
^^
en
00
ON
v^
i
"S
u
"O
§
9?
5
U
t
I
o
O M
t- m
t-; r-;
en" f-«
"0
» CS u
1118
1 1 e -a u
as g s-a
40-day exposure duration; the re
by dividing the dry tissue concei
concentration [(mg/g)/(ppm)] co
applied to the value. A conversi
to convert dry weight to wet wei
/-^
o\
t^
o\
»— H
I
£
g
'S
oi
•o
c9
en
OA
_C
'S
c
o
•-^
\o oo oo
oo oo — •
— i O ^
&
Ophryothochadiadema
64-day exposure duration
oT
2
JM
U
5
I
o g
s 3
^ tn
Penaeus duorarum
28 to 30-day exposure duration
t^
r^
ON
*^s
%
•S
(0
•g
s
1
1)
3
o
2
en ^- en
en en n
oc i^ in
•3- if) tr>
S
^j
c
o
1
o
£
R*
Argopecten irradians;
pugio
•a
§
•a-
£ g
HM C
B 'S
"* S
•8s
tJ M
g,'g
8 -
S %
•i I
42-day exposure duration; the vi
Stewart (1980) were converted t
conversion factor of 5.99(a).
§
ON
'***'
I
.22
S5
T3
£3
CO
1
t-; "O t— CN|
i~ r~ S 06 K
— — " CN en
en r^
-------
u
H
«
H
K OG
/-^
?
2
_^
"3
en
|
Cj
1*
f.
Experimental I
g
Refereni
eg
Cfl
"a
T3
1
Q<
.3
K
1
"d
t
CO
1 *
03 *O
"g E -
•3 .2 *
CJ *O »-H
8 g "o
S t> fa
JH U
g - 0
S * "£
e n
ill
S H §
35-day exposure duration; the rep
by dividing the wet tissue conceni
concentration [(ng/g)/(ng/L)] con'
applied to the value.
» t3 o
u _ •
u.
u
c
u
§
u
9"
1,
i"
"s
o
J3
U
•o
c
i,
g
U
9
en
s
**
iS
g
•o
ta
en
CO
£
"cO
U.
U
u
onomidae
-«
S
Field samples.
OS
d<
a and Wilhm
CO
1
o
8
fi
1
Not reported
?"
2
1
1
en
U
SS
£
hwater inverte
en
£
Not reported
S
1
.s
s5
|
n
G
o
IP
Si
|
CN
OO
^H
en
u
Is
>
a*
unmended BC
S
U4
cu
n,
ex
o
U
•y
c
§
ex
1
i
a
en
3
3
1
2
us
ic mean of 9
I*
u
00
3
1
"3
"3
CO
£
u
"«
>
U.
U
03
u
onomidae
.•»
g
en
O
"E
en
"33
E
OS
^-
i
es
00
£
SO
§
a.
g
g
OJ
•C
1
^T
•§
1
|
S
u
"E
•o
0
E
•a
ea
c
1
JJ^
CS
L
J3 ID
O O
T3 CT\
8 C-
U -0
3* I
"S »
CO CO
VD O ^" O^
^D ^f" f1*- ^O
O ON '— ' OO
\o •— • ^ t^-
oo <— *^. en
of wi ^ oo
-------
1-H
'S
iH
I
X
~
"S
5
i
a!
Cu
1
•g
i
1
"a
O
£
•8
V
"
o
A
cu
OS
Mya arenara
ay exposure duration
73
4
f^1
t~
o\
!§
"co
'w
en
f^.
en
1
Corbicula flum
ay exposure duration
•a
00
eN
m
oo
e>
Cairns (1
c
ca
I
1
0 — '
t**- l/^
r**- C"*J
- s
"S
Nereis diversic,
1
1
S
i
•A
eN
So1
t~
o
T3
CA
i
en oo r~- ^~
TJ~ r^- ^^ 10
w~i oo i> en
bO
'ovinciali
Mytilus gallopi
y exposure duration
ca
T3
00
m
and Petronio
'I1
S
0
Q
00
|
1
Phylloduce mat
ay exposure duration
T3
1
1*8
s a
^ <2
"I
ay exposure duration; the
Et weight using a convers
*T3 >•
i ^
^^ O
i— < *j
G"
g
v«^
00
c
i
O eN
r~ en
en -sl-
e
o
1
o
Nereis arenace:
ay exposure duration
•a
00
eN
oe?
S;
md Morgan (1
IM
•g
CA
\c
eN
Mytilus edulis
•O m
O O
*jji r— ^
3 C X
S3**
ca as
•" 9
" § «
ay exposure duration; the
ividing the wet tissue con
entration [(ug/g)/(Mg/L)],
applied to the value.
"? "" M x
>A >> o S
en .0 o ?
1
0^
"! >n
o c\
5
Crassostrea vii
|
3
T3
2
3
S
==?
•o
O
i
8
o
^^
vC
en
1
u
t
£
T3
i
«3
CA
3
X
C/5
8888
oo o oo vj
^ oC p-* c*f
0 Q g §
s g g s
v> O ^ £^i
Afyo arenaria
c
o
1
•o
o
1-1
3
ef
c?
T3
0
(0
1
*3
T3
g
CA
_u" ^
0
VD
VD
8
^r
cj
3
BCF Val
Recommended
,*«*
3
o
o
"S
ca
u"
•6
c
1
£
6
_o
2
ca
•~j
C8
S
•S
?>
s with laborato)
u
1
00
B
2
£
t*^
CO
O
3
Jj
•O T>
C C
o ca
£ "
g c
o .3
55=5
s arithmetic mean of the r
ickel, selenium, silver, thi
u 5
~S
.2 H*
&4 U
09 g
Ti S
recomm<
, copper,
iStituent. The
m, chromium
§3
'I
•2 "5
p3 CO
•s ^>
£|
U •£
1 f
'3 xi
a E
o .2
c b
0 J
y o^
KI S
1 S
£• ^
|i
O --3
_o "ti
31
in
*rT
i)
3
BCF Val
Recommended
T3
ca
^J
•a
c
o
a.
E
o
U
y
JO
1
ca
CA
_3
T)
"o
t»
VO
etric mean of
1
u
.c
00
.E
3
1
Ctf
3
_O
cd
L)
c/:
c^
D
"cd
tu
U
CO
S
u
-------
S
00
V)
>N
V
Stf
cfl
"8
-$<
Experimental Parameters
8
§
,W
I
«
s
£
•o
kl
0
aj
05
•r d S
p| M cG
°° g a.
xj fc O
.S § -a
^j g c
tw ^ •
*r
^ ^J1 W
^J I
S "i 1
•S ^ o
3 5, and an unit conve
of 1 x 103 was applied to the value. A conversioi
5.99(a) was used to convert dry weight to wet wei
6?
o\
o
u
tn
JC
-
o
1
§"
_
'S
1
00 |
IT) ^_.
5
fN
U
3
es
a.
U
n
*Q
1
P
8
u
1
o
W
s
•o
c
1
S
6
%
1
CO
a
u
J3
"3
c3
g
VO
g
O
-a
M
ra
«
ra
^
-5
>
p-
u
m
u
LM
U
I
C
s
M
?
J3
U
*
T3
C
O
C
s
Not reported
oo
z
§
i
c
'3
a
Ul
3
C
E
II
o
8
Q
•«
_c
So
•ii
3
o
to
§
^
<*H
•0 0
1 s
1.1!
"•2.1
74-day exposure duration; the reported value was
by dividing the dry tissue concentration by the m
concentration [(ppm)/(ppb)], and an unit convers
1 x 103 was applied to the value.
^
£
1
O
8
CN
S
C
Q
"C
e
h
g
5
c
.2
-. M
a) i_i
s« ?
* £§
§ = !
30 to 60-day exposure duration; The reported val
calculated by dividing the dry tissue concentratio
medium concentration [(ppm)/(ppb)], and an unil
factor of 1 x 103 was applied to the value.
'o
5
w
2 £
o 2*
.r («,
« s
II
. a
J3 %
O VD
vq ON
S --H
co r-
vq (N
prj ^J-
-------
u
Ed
09
<;
H
00
?
so
V
w
a
GO
S
1
s
1
i
u
•c
V
1
Reference
A
cn
S
1
•B
V
"S
o
D.
cu
_^
o
O
i^j
*o
u
s
13
&
ca
"S
•o
c
g
S
5
1
^
Q
O
£
">**
•S
1
"O
c
§
a.
o
U
follows:
CA
ca
u
J3
"3
>
I
1
"-1
1—1
c
o
"0
u
CO
w
ra
^
u
13
>•
&,
u
CQ
u
o
•5
•S
So
"s
e
S
C
Q
*n
<§
?
1 1?
« 'S e3
ca S 'S
|||
Q\ S 2
If 8
^ I "c
J3 C ^ .
^H O f""' O
• »^ en v™J
74-day exposure durat
by dividing the dry tisi
concentration f(ppm)/(
103 was applied to the
e>
^^,
1
1
1
vT
m
00
01
U
3
~3
&
n
"g
T3
B
O
c
5
OJ
_«
£
O
Z
T3
B
§
&
a
s follows:
CO
S
3
1
b
ta
mean of 4 labor
u
'S
he geome
on
'33
3
•o
u
ta
u
S
en
Kj
^
0
"e3
>•
ft.
u
CQ
u
en
O
ca
U
u*
g
B
'o
B
a
•g
Kj
*M
13
jj
_^
i
Not reported
£
•o
g
Burton, Quinn, i
»
§
o. ^
§tN
£2
H C^
88
— CN
00
•2
£
•s:
1
Si
§
S
•o
B
ca
f
J=
cd
2
o
»-H
i!
3
"is
ft.
U
(9
*o
c
u
S
o
£
6
2
J
"o
t/3
-o
B
g
O.
£
o
U
CA
1
CO
S
3
ca
£3
Is
mean of 5 labor
u
'S
u
00
u
00
'33
3
•o
c>
'ca
u
S
S3
pE
O
3
"c5
z>
ft.
u
m
u
!>
K
•2
c
-c
1
§
•s
96-hour exposure dura
^^
I
^— •"
c
[field, and LaPoi
5
U
i
en
O
n
|
c\~
s
2
—
cs
*o
1
u
'S
o
I
.8
f
en
3
•a
ia
^2
o
to
^
U
3
"S
ft.
U
CQ
1
.2
7S
«r*
S
3
r**
f
(8 ^
3 e 'B
•« o s
•Sis
«2-o
|i!
^ o ''"Tv
y S 3-
C en ^*'
'i3 t^ /00 3
2 1 <£ "3
3 ? oo >
•o o £ o
10 •& ^ •£
540 to 630 day exposu
calculated by dividing
medium concentration
conversion factor of
1 x 103 was applied to
„
op
'S
w
s"
en
"3
Z
^ j^
u .u
U §
8 >o S
—. O ^"
m" — " —"
ON O 8
en tN >O
— " of *O
u
-------
O
u
fa
Z
o
H
fO
S
CQ
<
H
81
O ^
S %
«i
i
PQ "a?
^ I
H S
'S
<
P
g
g
H
1
a,
CO
V
s
£
1
1
1
s
s
1
V
1
"3
T3
V
4j
Crassostrea gigas
14-day exposure duration
•o
ca
n
"§
ca
I
.SJ1
1
1
tn
|l
-
I_H-
Pteronarcys californica
CS
00
c
oo 'S
-S 3
u oo
Z 'S
.S ^
GJ CJ
Jg £
« o
11
11
14-day exposure duration; the re
(1976) was converted from dry '
conversion factor of 5.99W.
NO"
00
c
i
m cs
^ ^
O e^ oo
en cS — »
§
!Q
u
3
Recommended BCF Val
£3
1
•a
c
g
a.
U
CO
1
CO
u
3
I
1
«
(N
C*_l
trie mean o
o
u
00
u
00
_c
CO
3
"O
.w
M
3
o
C/3
C3
S
U
^
>
U.
U
u
^
CO
••-;
CC{
"§
C
Freshwater and marine i
Not reported
oo
Z
•a
g?
_c
a
§
1
CQ
5/5
c cs
ll
88
^2 ^2
»/^ irT
**^ *•""
oo
"1
u
3
Recommended BCF Val
o
c
N
•o
c
§
Q.
g
^
i'
o
<2
ca
1
CQ
"u
tc
o\
(*H
trie mean o
O
1
u
.c
00
'S3
3
T3
S
_s
ra
c«
C3
^
1)
_3
r3
U.
U
m
u
*
Chironomidae sp.
to
u
"3.
2
"§
X— N
g
1— 1
•W
1
iga and Wil
IM
Z
\o
o
o
fj
8-
K
g
a.
i
Chironomidae sp.; ^p/ie
^
•83
JC7N
C3N
IT)
T3 *S
W b
M J5
i «§
8 c
CO -2
£ g
Field samples; the reported valui
weight to wet weight using a cor
1
1
.£
1
JD irT
u ON
73 ON
CO ~H
cd ^^
'S 3
CO CQ
oo in vo Jj
r^ S oo ^
•* « en 2
r^. ON r*l O
— ON OO —
NO -^ CN_ e^
CM es ^— ' en
Marine invertebrates
9-day exposure duration
•o
g
i
s
s
s
S2
^of1
» ^-^
JS lH
^ U
O S
o ^
en"
Afya arenaria
14-day exposure duration
^
^^
—
"To
S
m
•— '
Corbicula fluminea
28-day exposure duration
^
en
oo
o\
t
'S
U
ed
^
1
00 — < —
10 — • en
m >n vo
^O
^
g
Ephemerella grandis; Pt
californica
•a
£d O
" 0
§ I
U CH
? "«
U £
J2 >
03 g
U
d> *^
I-s
14-day exposure duration; the re
from dry weight to wet weight ui
5.99(a).
Co
00
c
I
V"J C*"> l/"l
-------
Tf\
Z2
G6
0
H
y
Cib
z *£
0 £
2; «
H fe
TABLE C-3
WATER-TO-AQUATIC INVERTEBRATE BIOCONCENTRA
(mg COPC / kg wet tissue) / (mg dissolved COPC / L
(Page 18 of 18)
en
V
•3
«
t»
L
Experimental Parameters
Reference
GR
u
5
>•
T3
w
tJ
O
g-
«
1
Cfl
3
t
Np4
2
35-day exposure duration
«-> m
•S
1
S!
e
S,
^
§
50-day exposure duration
ngle, Hissong, Katz, and Mulawka
>68)
'£ s
14 ^
Tl
OO
£ '§
as; o
S« I
„ >. *
§ •£ •£
T3 J3 C
3 w>-^ o
1 * 1 1
.585 1
22 E*
£ « ^ 8
s, is «
fi|£ 8
«3 Ur M ^
g 5 1 •«
— c fe £
B -S S ^
> >.J 3
ai Ja *£ "2
^ -3 •£ «
£ e § ^
^3 *rH ^
«3 °
^ .2 ^S
S § ^8
S S 2
> e c
S 8 S
— e s
S 8 8
kill
presented as the amount of COPC in invertebrate tissue divided by the amount of CO
-eight over amount of COPC in water, they were converted to wet weight by dividing
ss an invertebrate's total weight is 83.3 percent moisture, which is based on the moisl
is calculated as follows:
rnnvmjm fader- 1-° *ram (*> invertebrate total weigh
•5 o
Oc "
'5 -o
g 4>
S
U >
^j O
•fe H a> M
*> f sjj ^
1.0 ^r«m (g) invertebrate total weight - 0.833 g iwver
organic COPCs are assumed to be total COPC concentration in water and, therefore,
Dm U.S.EPA (1995b):
(total) /fw)-l
1) = BCF based on dissolved concentration of COPC in water
JCF based on the field derived data for total concentration of COPC in water
f COPC that is freely dissolved in the water
1 / [1 + ((DOC x K,,w) / 10) + (POC x K™)]
= Dissolved organic carbon, kilograms of organic carbon / liter of water (2.0 x Ifr06
= Octanol-water partition coefficient of the COPC, as reported in U.S. EPA (1994b)
= Paniculate organic carbon, kilograms of organic carbon / liter of water (1.5 x 10 w
Bil ii 1 |I« JS.JSI
51 S | || ? HI
•—S-51^ 55.^^^^^ ni
W JT» X — > CT1 CH s— ' " **
>-S|§ •o^^fcfen S
^ 2 «S -3 "oe^^^ys-f
""'sir! ia-S^cDW1*^?
g-aog z;s|w
Us 1 ll =1 ..
I-H S ^ u ^ "o ^ — ' &
(U'">^ S'—tLh
-§£§.£ g-urj"
HD-oH DJ'BCQ"?
wi
U
•7 1? £~
-------
u u
u z
3 o
09 U
£ °
H S3
r?
•H
pH
w
£
Cfl
*3
V
a
£
u
1
1
1
1
U
Reference
ca
SR
3
93
(^
TS
a*
•c
e
c.
B
2
***
1
S
1
5
^r.
en
u
3
1
a.
U
pa
•a
u
•o
c
u
8
CJ
Pi
Q
Q
>^
F1^
OO
r*T
ti
_fi
"S
retrachlorodibenzol
oo
^-.
en"
g
1
ca
CA
J>
"3
>
to
S
J
en
•g
g
u
g
• *H
•S
V
43
J
le was calculated u
13
^
U-<
^j
CQ
•o
"O
g
S
8
O
CO
If
Qj ^^
u oo
a ^1
B .S
CB 'x
II
•2 ^
rj §
ob S
IS ;O
g g
* 1
"o tl
1?"
s «
3 r^f
1^
/-*s
oo
and Jones (19'
Yockim, Isensee,
§2^
25
Tf ON
S
u
0
•5
H
s
s
a
1
•«
/$
O
00
•
en
e-i
*4"H
U
s
*
cd
T3
!
§
i
3
•0
3
1 '
|g
S"
OO
r^
and Jones (19'
Yockim, Isensee,
O
£2
• '
00
en
O
en
u
"3
Bui
U
CQ
•o
1
i
u
K
fo"
s*.
Q
U
oo
^""Z.
C*"l
ri
I
J-Pentachlorodiben:
t~"
en
eN"
*
•y
c
c.
Q
3
00
en
O
en
II
eN
d
X
S
en"
II
U
CQ
O5
|
H
ca
2"
§
U
CO
p
p?
s
s
<2
o"
o
"3
.g
1
§
•*-!
ca
*3
g
and a bioaccu:
ng the TCDD BCF
"CA
3
•o
4;
3
15
U
CA
£
CQ
1
W-
g
w1
*— '
3
13
Oi
U
n
•s
•o
B
J^H
II
en
d
X
S
en
en
II
DH
O
PQ
CA
•2
Pi!
Q
Q
U
00
*^
cn
fsj
^
G
1
B
!,9-Hexachlorodibe
ww
CO
rT
*
•y
c
3
O
CM
E
3
en
es
\o
II
d
X
S
en
en"
II
&
PQ
CA
_o
1
CA
ca
2"
1
CM
CO
2.
S
PQ
I
J
s>
J
A
>
1
B
O
•a
_ca
3
g
and a bioaccu
ng the TCDD BCF
3
T3
'S
3
O
13
o
CA
ca
U.
U
CQ
1
^>
oo'
<— i
u
13
tL,
U
CQ
"o
"O
B
O
O
u
K
§
8
i
oo
rf
en^
eN"
^^
B
benzo(p)dioxi
j,7,8-Heptachlorodi
^
en"
es
*
•y
B
1
E
o
U
06
\D
||
'3
cr
0>
B
_O
«
3
g
and a bioaccu
ng the TCDD BCF
3
•u
CJ
m
3
o
CA
ca
UH
U
PQ
CJ
VO
C3N
en
u
3
"3
rt.
0
pa
•o
u
T3
B
U
8
CJ
PC!
I
§
.—
)rodibenzo(p)dioxii
S
ca
•Q
o
•y
1
CM
E
o
ON
en
II
2
o
O
X
I
en"
II
&
CQ
09
§
1
CA
ca
£
ON
CM
m
CO
2-
c£
CO,
2
t>
.^
<*H
&•
B
U
CB
>
1
g
«•>
_ea
"3
g
and a bioaccu
ng the TCDD BCF
3
"u
ca
"3
o
CA
ca
K_
U
CQ
ej
eN
^^.
es
o
13
pr.
u
CQ
•o
t3
E
U
8
06
&H
Q
rj
H
-:
en
rf
£
retrachlorodibenzo
00
f~-
en"
/*O°
•y
e
3
O
0,
E
1 6
eN
S
es"
II
O
oo
d
X
s
en"
II
&
CQ
Cfl
|
1
CA
ca
2"
V)
g
CO"
D
1
!-i
1
§
"c3
>
1
B
O
•J3
—
"3
g
and a bioaccu
ng the TCDD BCF
3
T3
-2^
ca
"3
o
C3
U
CA
ca
&
U,
U
O
^
^j-
VO*
f\l
I**
b'
S
"3
Ei<
u
PQ
T3
U
•o
B
U
8
CJ
Pi
§
*?
1
00
fC
rrT
1
1
K
**i
eN"
-
-y
1
a.
E
3
VO
c>
ll
es
d
x •
S
en
en" i
II
B.
CQ
GO
3
CA
C3
2
»
s
co'
g.
m
pa
1
1
13
>
"i-
u
§
•a
ca
"3
g
and a bioaccu
ng the TCDD BCF
3
i T3
O
ca
3
CJ
CA
CB
?
tt.
o
CQ
u
-------
C» /-N
PS J5
O "S
H |
^"J J
2 ^
*"^ ^^
^-i ^^
O o
H W
•*^J T3
OS v
Ei ~
? W .2 ^
u u •« £
w S ff *
j O S <^
PQ O -~» *
H i? <£
tB '*"'
If
oS
L^ r i
OS o
W rN
M
•4j OB
^^ S
^ y~/
s
"S
1
£
•*•*
P
2
5
1
w
Is
g.
rS
8
a
£
n
es
ii
_3
73
a,
U
03
73
73
e
u
1
8
a;
8
taH
00
^r
en"
es
^J*
'~'
1
S
j
1
00
en"
es
73
C
§
a,
E
d
q
CS
II
VO
t^
0
d
x
S
en
en
II
6
«
o
1
09
ra
S-
£
o\
A ,
S
CO
jj
B7
n
N_/
t>
g
1
cet
|
o
o
g the TCDD BCF and a bi
c
ated usi
~3
"cd
O
en
cd
U
03
cu
CS
VO
U
13
tt,
U
03
73
73
C
U
g
§
K
g
X
X
00
vo"
en
^
^
8-Hexachlorodibenzoftiran
^>
vq
en
es"
73
1
n.
S
6
^
r3
VO
II
OS
i-H
d
x
g
en
II
&
PQ
09
fe
_0
2
09
Cd
2~
i
S3
CO
J3
N"*/
BJ
0
1
1
73
f
•|
"3
g
3
U
O
g the TCDD BCF and a bi
c
3
1
3
o
en
cd
tt,
U
03
fS
CS
CS
cs"
cj
3
73
0
CQ
73
•S
g
|
8
&
1
s
•
OC_
VO*
,jT
en
cs"
^^
8-Hexachlorodibenzofurar
_v^
vq]
en
es"
73
C
§
n.
E
d
cs
cs"
II
vq
x
8
en
II
§
CO
?
O
1
en
a
2"
in
S
CO
g.
£
PQ
J
<§
^
73
cf
1
•3
E
3
O
O
g the TCDD BCF and a bi
c
73
3
73
u
en
cd
tt,
U
03
0)
O
oo
O
cs"
0
73
B
PQ
73
73
C
U
1
8
04
D
53
i
oo
n
^_j"
• — '
9-Hexachlorodibenzofurar
OO
&
CQ
73
73
C
U
8
K
|
OO
K
xq
>.
c^
ri
O
i_<
7,8-HeptachIorodibenzofu.
vo"
en"
es
73
C
O
O,
E
c3
en
vb
en
^
O
d
x
S
m
en
II
&
CQ
CO
^
O
1
ca
cd
>n
ON
o
OH
CO
J3
If
&
I
<2
1
">
t
u
e
.2
3
E
g
Q
O
g the TCDD BCF and a bi
c
3
73
3
O
u
en
cd
U-
U
03
1
OO
oo
cs
'r^
o
3
73
B
PQ
•g
73
B
O
|
8
a
§
f
OO
S
cs
C-
B
cd
g
g
S3
]
a.
oo"
_^
en
73
c
3
O
o.
E
a
00
CS'
in
cj
3
73
B
PQ
"S
73
00 I 00 .
oo 5 r*J
cs g in
- 8 n
JI Q \£
en q
d o
x x
S S
en en
en en
M II
tt, ' CU
0 U
PQ PQ
0j M
f , %
J2 i °
73 . '75
eii ; u:
09 ' 09 'tf
CO cd «j
JD~ £" •<
in in a<
ON < ON ! 73
| 73 ; |
•CO ' ^
i S •?
E §
1 if
co i £
« ' 3
g i cu
0 i J 1
g 3 « -
R, * -S i 3
£. • u .2 ! J
o ' s '3
>§- 73 | •
S . fc s
o r i c
03 mo
Ui
"o %
r; rt VI
o ±J f^
•a It *
i II
CL, £H ra
E o o
u , Si
00
m
cs
in
o
^
cd
tt,
U
PQ
73
U
73
E
i
8
0^
1
,
1
!
i
|
J
j
1
i
1
i
.
anthracene
f
03
73
3
O
&,
£
U
-------
T
U
&
VO
>n
O
-------
^ /**\
o|
Bj
< ^
fa ^>
Z gj
NM ^
^J
*S "S
MN ^
- zl ^
i U .£ <**
U y -o ^
1 1! ?
NN ^0
rh fiS
J ^
< ^
^j ^^
H4 U
* O
II
~
i
in
S
S
S
2
03
ft,
a
B
5
1
I
I
*
2
"3
**
"2
t
o
a
o
rl
u
*a
a*
u
"8
c
u
E
8
i S
< 01
00
! 1 P
Nitroaromatics
ene was used as a surr
3
! • tJ
i : '5
! ; ?
^~
u
B
"O
•a >>
22 t?
o S
O. t.
E .£
O cs
U N-S
t^
0
ts
5
u s
"« P
> K
§ |
"8 s
| |
E §
8 §
& co
1
exposure duration
>^
•o
• 4
« cn
•5 S
e* ^^
•a1 1 §
1 1
o -a
trotoluene
je was based on
Liu, Bailey, an
:§ |
j. ^
S* u
•a
"c o
u "T.
•o e ^
§ I
0 "
o< "
E o
U H
P~
b
ts
u
73
O,
U
pa
•o
u
T3
g
g
g
06
0
"S
eo
0
ene was used as a surr
g
' 2
1
|
•4
cs
: ^
The BCF
1
trobenzene
ailable for this c<
"2 • >
5 ' 3
\o a
(N g
1
rt
w
•o >->
§ 2
O rt
E .g
O la
0 .3
r5
u
"to
B
«
•o
u
u
g
g
c*
U
1
1
g
-a
c
o
§
U
§
*~1
"^
o
1
! U
pa
g . -o
S, > i.
ra «"
"V i S
:' 1
' ^
I) ' t*4
B • §
1 1 : \
2 BO ' ~S
s .5 ! g
•5* 8 ! g
^ fc ; a>
1 1 If
S § o »
° 1 | § • 3
S ' > S ' •§
(O _~ W
^5 . -*• •*->* O "75
i ~ *— * £1 3
te y 00 S ' 0
g frS "S ' •«
0 ' ° " i § ' «
1 i -6 1
>• i s >
tu c tt.
O o U
CD ^ oa
•8 "3
•o -o
S Tt C
O
J3 O si
H ; u ' F
1
S S ' S
•a, -1 -a,
«S -S «2
k. k. k,
.3 ^ ' ^
•ct *c *s;
55 5
u
3 o
'§ ~°
[LI 2 i
v ^
fa C :
O o
bb >5
.s | i
' "S i
^ °^ rt*
o«Sj ^
Sas ^
••*• U-4
1 ^ 5 o
i ^^ aj w
> C O ]
4) J3 y
C B "g 1
•s ! -i ! g
1 '111
1 I1"! 1
U !>..+-> G-
>^ >•» H JS g
*T3 ' T3 O *S O
-i i - O ? Z
£
j -0 05
O >
n rt oo
O ON f> O
"1 ^1 "1 "°i
en •*" r-" •f
t— H
oC
u
"3
>
U
pa
•8
;1
s
8
I .' ;
1
i
I
g
W 1 ' r^.
«j *O
1
1 i
1 i
i
i
i j
i
s
SI
£ 1
0\ £
•-! O.
*™^ ^^
§ $'•
s i
ts
ri
s.^
3
•b"
c
^
c.
; . 0
-------
TABLE C-4
/^N
fSI
1-H
•s
v>
V
I
S2
•^N
s
0.
B?
SS
V
*•»
Experimental Paran
leference
I*
"a.
o>
—
>.
M
OJ
I*
e
c.
01
'
tory values as follows:
2
o
•s
B
«
E
o
00
B
calculated us:
je was
•3
>
n
•a
•o
c
e
8
I ,:
a
1
S
1
exposure duration
g>
2
s
§
•o
§
Ofl
ed
1
s
r, Viswanaths
1)
rfl
0
S
-
g
•c
u
o
6
!
y exposure duration
•§
R
rgren (1982)
1
vd
oo
8
00
CN
i)
_3
"3
a.
U
a
•o
1.
u
1
8
rt
i
;
i
i
|
13
9-
a
|| Compound:
c
S
Q
"S '
1 S ;
s ,
1 :
ll i
•§
o
•
!
y exposure duration
itile Organic Compounds
i •§ "3
CO ^
i
^
III
j- | >— '
,O 3
<4-l ~
s i £
£ g
•o .
! i ^
! i 1
•a ' 1
4J ' ^^
cfl ! XI
5 c
j£ ! IS
., 1 C/3
U
3 ,
"3
>
&
03
•o
1 ' S
g "1 1
| , 00 1
1
U i
o
d
u
3
"3
>
tt.
U
n
•a
1;
o
§
8
C^
1
1
i
' ^^
1^1
! §^
g>
J
T3
C §
ing the following regression equatio:
, where log K,,w = -0.222 (Karickoff
3 00
1 -
•i «3
1"S
Sl
s -I
l jj: t/3
i a, "9
u i
"f
£|
. CJ
1!
o n
•s J
*1
b O
•2 w
3 •<»•
, JS T-.
'3 ""
0 a '
•2 i 'S bf
8 c 00
<; u jj
o ^.
•^
Is
"H OO
T3 o
1' li
1 S«
iM-°
"
d
U
3
"3 •
> '
BH
U
•a
1
V
1
8
c£ '
:
1
|
U
Compound
>/•>
o\
00
^
•a
ca
g the following regression equation:
, where log K™, = 0.250 (Karickoff
•a
"8 a
S-8
3 <°
O 'g
•3 i
o •§
SCO
>•§
&C3
ft
SO &
H
•o u
§«
3r this compo
(Southworth,
3 ~-
"1 '*
* ^
"o &o
c o
2 X
ca 2
"ca °o
*^3 O
Laboratory
log BCF =
oo
ci
i>
3
*3
>
o.
U
ca
•o
•o
c
u
1
8
&
,
1
i
1
1
,
g
1
g
s
II Compound
£•
c 2
ing the following regression equatio
, where log K,,w = 1.949 (U.S. EPA !
3 0?
|§
as calcul
chmiede
£ «
ci< "S
U §
"f
ej
Ji 1
?, s
J2 CQ
were not ava:
(Southworth,
1|
i '*
° ^f
•2 00
•£ o
£ **
B 00
•0 o
1 Laboratory
log BCF =
S
d
U
3
*3
>
OH
U
BQ ,
1
u
1 '
8
L,
J
n
o
D '
5
1 '
3
in
^
ing the following regression equatio
, where log K,,w = -0.268 (U.S. EPA
• =» ^
3 °°
3§
11
Sl
& °"
o- •§
u a
"i
J3 §
51
? S
Ctf pQ
were not ava
(Southworth,
0 IS
c < o
S ,' E \
S £ :*f
_T 5 ^
<£ "**
ca 2
ta oo
•« d
Compound
Laboratory
log BCF =
2
d
u
3
"3
Cl<
U
EQ
i:
U i
i
§ '
0^ '
1
i
i
i
!
M
cd
1
Compound
-------
u
3
CO
<5
H
/^
•e
£
&*
o
a.
V
«
1?
8
.. OS
li
§H
cr .
O tfl
g D
2 *—•
g «
O *!f
IH C^l
ited using the following reg
r 1 978), where log ^ = 0.
S S
3 T3
o .8
s BCF was ca
ip, and Schm
ipound were not available. The
1.146 (Southworth, Beauchan
E '
S «
R I
"^
*°
a *
^ <*
cd — H
S oo
•o o
& H
S p-
2 ^
o n
_D
3^
M
NO
O
u
3
">
B
03
•o
u
•o
c
u
1
o
(2
u
:g
"73
X
O
>>
C
>
T3
g;
3
O
O,
U
'
1
s-
§;
c 2
l£
§.«
« CO
e 2 1
.2 i-*
*W5 ^"^
X NO
&S !
ated using the following re|
r 1978), where log K01V=1.
•= o ;
13 1
e BCF was c<
ip, and Schm
ipound were not available. Th
1.146 (Southworth, Beauchan
e '
0 i
f\ G> '•
" tf '
S g3
<£ *
^ <*
cd . — i
« oo
•o d
E? ii
5 B-
2 ^
O CQ
o
33.
tn
ij
-2
"cd
^
&
03
•o
u
•a
c
u
1
o
a
1
(
i
C i
R !
Other Chlorinated Or;
i
I
tetrachloride
—
&
1 o
S3
l_.
a
u
•o
£^
3
0
a,
0
U
a as follows:
ue was based on laboratory dat
cd
>
P.
U
CQ
"O
u
•a
c
U.
U
ca
T3
O
-o
c
o
g
0
CJ
0>
t,
0)
s
S
U
_«
"3
i 1
js S
"S a
5 . s
•g a
1 . •§
< »j
o o
1
1
1-day exposure duration
31 -day exposure duration
I
&
2
•s_x
c«
91 §
2 i 5
Geyer, Politzki, and Freitag 1
Isensee, Holden, Woolson an
o
i 2
•* ^o
;
>
fs
•VH >v«
ll
. 1>
f> |
M "
8 •
B U «
•*" > c S .2
U ^3 W5 !
U g :
c"0 c j
2 § 8 «
ll-S ; ;l
1^1 ; J
llf 1 : i i
S^| | ! :|
& !»•& B ! : t>
7 §| 1 i : S
•— ij S 2. i (3
, i ^
1 ! ; 11
1 i| ! :i
£ ' -S i i o
O 1 C
• s * i i «
a ; s" i : i
?- 1 1 : 1
U 09 . j U
S"^ : I i . *
O 00 II? ! '60
- ^ 1 •> ' ' c
BO ON « . | '05
S C- ^ N0~ i 3
1 -s i !§!§•!
b .« 35 C- 1 ^ ^
rtT C BO ^ ' ca 3
" * c Si -s i °
^3 :Slj!l
1 -*S ra
o >
s £
.2 U
E CQ
V>
NO t — W
o\ — "a
°. ^ g
— i TJ- e
•g 1
§ 0
1 §
C 4>
6 S
o
NO
-------
•*
y
S
ea
*"*
W5 ^N
0! ^
e!
^
(« ^
zki
2o
HO
•< T3
« £
H
bj .2
U -0
§1
U ->
2^
oa g
Ed 3
•< -
0|
? tf
o ^
H y
A BU
g8
gl
^_^
p*
TH
•s
t^
Q)
1
Ifl
V
*3
A
oo
t
Jj
g
05
1
T3
a
•s
8
1
_3
CC
4»
I
&
1
^j
^
S 1
| |
"5 «c
.0 .§
o o
S '
aboratory values as folio
Not reported
Not reported
""~|
<*«
o
S w ""*
i i : I
S •• li-
on cd fc^.
™ .-a : S
ae was calculated using the
Geyer, Viswanathan, Fre
(1981)
i Lu, Metcalf, Hirwe, and '
"«
>
B.
U
CQ
•o
1 1 5
S *~ " ^
£
CJ
o
D
£
§
u
_3
&
U
CQ
c
u
g
o
1
lorobenzene
•g
^
"2
c^
-6
s
o
Q.
S
1
O
*M
rt
ae was based on one study
"c3
>
b
U
m
-o
g
E
o
§
1
13
4
,0
2
o
S
1-day exposure duration
I
^^
00
(8
Geyer, Politzki, and Freil
|
•*"
_
"iJ
1
OH
O
s
5 ^ ^
"S -a, «,
S 5 ^
1 "H "H
8 -2 -2
& 68
o
60 O
'i ^
^H O
0 0
^H U
; • .S ^ "'
T3 ^^
• fe r^ g-.
: a0^ °
a) O ^
: i 8 " «
2s ^S ,?5
i ; 1 1 S
. - "^3 £
g , .1 .2 § 8
|,1 | | -s
!g -a -o 2 *
' » £ K«
1 ra , 3 ! s c eo
i S S ' o •§ .|
^ fli ' U „ ^_>
| 08 ' *-< ^ O 5
b i
i W ' |
1 pS '
o *- c
1 ' sS i J
S "^ §
. "C ~ :
» « i .s
i S i ^*j ^j
i .S i § ' . ^
' S 5 eo o\
3 , i s c
- ' s | '8 -2
o ; u ° ^ i ^ ^
* ' "3
A >
C BU
«3 u
PH CQ
-^
-§0 ^ ^ -
c "n m m oo
u ts O
-1 B.
^. U
•^ pa
T3
U
•o
C
U
4,- ' s
1 s
3 °
1 g
1 E u
: O -C
U , P
1
^
"5
wm cari
's
00
j's
0
c
33-day exposure duratio
1
o\
>^
Z
T3
Metcalf, Sanborn, Lu, an
tN
^^
|
o
3
1
fT
CJ
ffl i :
1
u
i o
S «3 :
8 T1
OS ;
o, u,
w ^
CQ
•o
u o
! CJ i -
g —
c E
= S
a a
1 u
o
VD
U
-------
CQ
1 ~
o
1
1 1
1
•
1
i
eft
(3
•o
: O ^
'i|
Ji IP*
s
JJ: S 1
1 ! *
1 i^
1 b
E CQ
•O
1 1
c *-T
"° p
1
E 0
O xi
U ' H ;
en
oc
u
"3
&B
cd
B -E.
I1 I
1 : 1
3 ' ***"
81 (S
' So
i
i
! |
i E"
1
:
i ^
C-
i S oo
=3 -a
en
« C
"S '3
3 CX
u c
im
ae was based on or
Thompson, Burtc
W "T
S "3
1 ^
^ ^
T3
U
TT Q
E
1 1
a g
S 0
O XI
U F
>n
*""
u
3
B,
U
CQ
tj
o
"S
u
H
g
04
Antimor
-o
c
3
O
CX
E
a
en
|
1
S
en
U
3
1
1
J>
,2
«N
•s
C
cd
u
o
J
s calculated using
&
o
"3
•u
0)
•o
B
B
0
u
•a
g
n, .
a
1
•o
1 !
i
tN1
B
•^^
eo
T3
i
5
Thompson, Burtc
o o
-M° T-T
en
tN
u
"3
g
1
P
H
g
1
1
|
en
|
t2
' eft
U
J3
' "3
1
'S
XI
cd
en
•B
1 B
cet
i u
1
1
s calculated using
.3 i
1 |
"O
•o
B
ID
E
"i I
3 0
1 a
E o
5 £
O
_c
's
§
1
td
tw
§
3
!
T3
TJ-
e>"
—.
Anderson et al. (
>0
§ 5
«N ^^
U U
"3 "3
£L LL
U U
CQ CQ
o ai
T) -n U -o T3
u £ ca g u
I i ^ i : I
2^ o § S S
Z & m (2 2
:
i . i
i :
1 1
! , |
', 0
'. 1 I
i en
1 ; 1 1 i 1
I* U, 1 ^ ' tH
S « ^ S
Z Z | : Z
' £ I '
1 —
«N r?
P ' «S »
S o.2
— .. ' ; B , ^
00 > ' 2 00
c I i -2 : a
id ; "•" J3 i id
'3 ' "2 i ! u ' "3
CX 3 ' °° CX
°» 1 o
B i O : •S \ E
1 ' §:R ! 2 1
B § 2 1 j ca
§ ' ! 1 u "8 S
J5 cd T3 ' In S
& XI , JJ ^ , £•
1 , i ' 1 : 1 ; 1
P o ' OT c i ° H
1 3 E ! ">
3 ^ i "~^
03 O CQ 1
"O "O
ID ID
8 VD c S "E O g
m" - .. E ^ .. E ^ -"
"S I "g e
11 1 1
O X! O XI
U H U F
VO
U
-------
•«*
u
tn
I
tn
ce
1
£
3
§
l
eference
OS
1
55
J^
1
S
c.
00
o
3
Recommended BCF val
p
•I
•s
u
•y
c
o
ex
E
o
U
s
Q i>
s; 'S 3
a -S • "5 ;
"Q O "S tU '
S -22 -5 § e O .5
• S.-2£fe : § ' g fe
e fe 3 * "S 12 4P ,o
. •§ » •« « =3 "S i -g g =3, - %
§^.So« * ' 1 « -a .SP
S S S 1 ^ S, I = 0s
.1 "i :- i . i Si « ' ^ 2 ' "8
•S; S S *fl ' S O ' y ^; tu £3
&-* Q iq O , h3 Z K ' , U PQ^
"go ' ="
ca .2 *^
C ^ co *^
OS IB C
g > ! > S :
: 1 2 • , § g» 1
'2 s .5 "S
ffi 00 • o to 13
e i *-> 3 , fa
* 1 -S £ -6
: 1 £ "8 •§" ^ ! §
S .2? « |e S
OH S i 0 ^ 0
If § s ! I
"" 2 : i "3 "8 i §
i r^ OJ ' fli OJ 1 ',
„ \ $ £ ; „ a g ^
c2 BO' 't§:2><^ 3
wi ^c3;' » s 5 *S "2
si ™ > • ' cd ™ ''"^ c
„ i :-•>>• -\ , ! 1 *~^
\O ! i '00 1 i
'si i ! "g
C ^"^ ! G
5 P* ' • *
a ! 2 a
O ' ^"^ O ,— ^ 1
•C i ^ i 60 •!- &;«
^•rt ' ^^ C ' W ^S ' ^^ *
1-1 3 Jsl-ll ,<'•§
u* * ^iSiw"^ , °*
> § , >
& 1 & '
pa ^ en
"8 *°
*^3 — C.D — . C5 v^ ^5 «Q ^5 ^_< ^) Q ^?
g <*"" _" m _r ~4* ^r .. g tn — r ^4 oo" °f u-T
1
O J^ CJ
a E. a
D E U
J3 O J3
H U H
u Q
S ^3
•a a
1 s
•6 l:
« § • d .
T3 ' tt< ' 5r
•It II
1 g : 11
*H O E* S?
1 1' ij',8
i
'
i
1 ' :
! i j
; „
S ! 'S -S
: «- sa «
sis
a, U "°
u a u
3 3 u<
f! &• I" I
O «-w D
•5 S* cL
TO w ?">
: « s 3 -S
*Z • •• £> Oli
i Z i 13 >r> ! IN
i V> '
! 'S
J~*^, JM 1
^ «J _^ ^
^ £ P
s"*' ! O ^^
~P "fi ^
4-* g_) M
S 1 1
! -1 J s 1
§ i g> s i §,
1 s S i
i 1 1 3 1
1 " "111
, 1 1 | *
i I- ; 2 •§ s
S i 52 •*•* -^
O rt w "g
^M ^ C3 *_»
I P § « «
& ! &
0 U
U CQ
T3
U
£2 52 "o t^^ ~s
« S . | ^ g S.
^ ^ ' -y i ""
§ i
0. "
1 o ' u
I U • H
-------
'
•O
i
I
1
1
•5
u
I
B
n
T3
•3
§
u
Oi
|
O
u
I
I
a
S
a
$
£
I
I
1
V
a
I
I
O
I
u
T3
I
•O
I
"3
I
u
U
-------
X
•3
A)
S
1
€
1
0>
fi
Sg
g^
X
|
^
s
i
•£*
s
c.
o>
oo
u
3
1
&
Recommended B
"§
"3
•o
1
a,
e
a
U5
Q
!§
g
laboratory values i
CO
"8
e
netric mei
S
&
u
i
le was calculated us:
"«
u<
U
m
13
o>
-O
C
O
E
o
2
1
G
Besser, Canfield, £
1
10
„
Chlorella vulgan
^
Q
ed
T3
25-day exposure
1
09
"53
U
"O
cd
I
1
; 8
i ^"
Not reported
Not reported
^
2
00
T3
C
C
"3
Thompson, Burton
|
*~7
SO
O
S ' 1
•3 1
0. •§ u
u : g .§ •
n s *
! ;li:
C fifl p*
4> ; O "S
§ "^ 3 "
tS ^N Q c
i
; i
f f
CO
Q
o
«J
1
1 1
I 1
KJ ^N
1 1
"S
, c
S
' '£
" ^
G oo
S o^
| a> »-^
S" ^
.£ '^
1 ™ H
je was calculated us
Fisher, Bohe, and '
"a ;
S ^
S3 U
1/5 CO
! g g
o S1 ^
•O g ro —
§ s
0 "
&« ^
E u
6 e
;§
2
.^ u
'S 5
S >
. 1 ! &
S> § : «
i i ; -g
c .S "8 , •§ u
= 0 C ! 1 «
s S o ' g o
S cs &• e &
3 *^t U i C O
si! i!l i
:
•
1
, ;
'
1
•
1 ' . 1
II : :l
I \ I
''• i
r? i ! cT
2 : i 2
1 i | |
•o : ~a
1 1 i 1
? f :?
1 III
en '. to • m
1 ! B
, O O ' O
1 : §^ 1
1 "8 : 1
S s S
• n -°
.3 §
"1 O.
p a
oa
•o
VI SO ' ' ' ' C ,
§ R
O ^
ex S
E , u ,
T3
C
U
g
O
CJ
i*
O
.c
-i
.§,
3
C3
.2
ta
3
5-day exposure d
CO
2
;§
Q-i
•a
Andryushhenko an
00 "*
Tj^
Cladophoea
'S
•o
34-day exposure
Baudin (1974)
0
oo
Tl"*
Codiumfragile
Enteromorpha sp
t//ra lactuca
Fucus serratus
Marine plankton
c
o
1
•o
3
S
£
1
•§
(B
I
CO
O
S
n
fo
3 OO
Sc
o g 8 8 |
*-M" *— T i —
^"
-------
H -
u
a
< -
M
«
•3
U
a,
IK
£
-S
u
5
b
09
£
3
V
?
g
g
0>
1
"«
u
_3
"a
•s
•*^
IN
o
n.
S
Thalassiosira pseudonana ||
"o
'g
g-
S
3
2
S
ON
\_*
•S
to
5.
S
03
U
•§
ra
55"
•G
CO
iS
> t;
J? E
S |
o\
2
1
3
S
* 2
RSI
o
1
u
,«
§
S
1
c
' .2
*•*-*
3
•o
u
I
X
0
&
•§
1
vc
.
"31
^^
00
O\
*-H
\w^
as
w
CO
D
>n
>n
tsl
Not reported
i
i
|
!
i
!
"8
CX
£*
%
z
^
2
****
00
z
•Q
1
c"
A
0*
b
p
pa
1
1
o* ^
C^l
CO
U
*^
o
I*
u
3
•s
§,
00
|y>
1
I
f
ooi
O
00
u
h5>
o
Oo
IP
a
-------
•9
U
i
o
^H
•s
u
ec
O
i
u
K
ts
•*
i)
3
1
O,
u
B
•a
u
•o
c
u
u
02
09
1
I*
1
OB
"g
s
Q
Q
H
OO
t-I
-Tetrachlorinated dibenzo(p)dioxin (2,
oo
'S
of
•a
B
§
a.
g
0
U
CO
§
"3
\
I I
t *
I i
K U
1 ^
,
O ^ O
•5 Q «
1 8 g
1 ^ : &
£H OO*O
t^ >>
loo^l 1
Sg.| 2
l?l I
ill 1
III §
S, a ^ "
a? -a o cy
g> S 2 g
2 §• •§ •?
_. , 00
^3 ' o>
C ^H
cd >_•
^r ' 3
i Adams, DeGraeve, Sabourin, Coonej
Mosher(1986)
Branson, Takahashi, Parker, and Bla
§ o
oo cJ
^ oT
-2
•S
P->
S
«
s
•s
u
1
o
u
a
duration
1
B,
1
_
JS OO
c oo
53 w
CU &>
- ?•
Mehrle, Buckler, Little, Smith, Petty
Stalling, DeGraeve, Coyle, and Adai
|
^%-
en
s J 1
? 5 -S S
« g s • g •
* <, S5 O. c.
•C1 .§ °^ § Jj i
|| i || |
& i
c
^ 1
?
,o
cd O
cJ *g
S «
S § !
11 i
•H S 1 e
2 -° i 2
18 s 1 :
I 1 83 •§ !
1 1 ! | j |
X > O i "°
sit 1 il
TT -0 0 - Z
1
Muir, Marshall, and Webster (1985)
Yockim, Isensee, and Jones (1978)
U.S. EPA (1985)
— O — ^" O\ ON O O Q
*~*OOJ~TOO t^ CN O CO Ov
of vT CN" <^f irT cC r-^
i '
sD CO m o ' ^^ u
•g ; 1! "g ; II -g
S; 1 I 1 I
1 ! s 1 a 1
Tr"" T±
n I
& &
: B B
CO j CA
1 _o ' _o
1 1
', ^ ™
S" 2"
OS O\
ON ON
I < <
w w
1 03 O!
D b
£T ! ST
W CU
59, S,
1 Q 1" Q
U Q U Q
D 5 0 « U
R -s a -3 K
CJ i CT* i CT1 ! i
o) o> oo o oo
^* c r^ i c i>
M Q ^T ' O .X"
ou 2 ^r u ^D
j^* C * -C ••
,8-Pentachlorodibenzo(p)dioxin (1,2,3,
sing the TCDD BCF and a bioaccumul
,7,8-Hexachlorodibenzo(p)dioxin(l,2,
sing the TCDD BCF and a bioaccumul
,7,8-Hexachlorodibenzo(p)dioxin(l,2,
<-„ 3 •* 3 : «
co^ *o co^ -^ co^
cJ .S3 of .8 c^f
"3 "3
_o o
cd ra
0 0
c^ CQ
•O ? T3 ^ T3
S a, S u- g
g u § u . g
&• n*i 04 CD ' di
E u E ' u , E
3; S 6! S I 6
06
u
ol
C3
X
s
— f1
n
u
B
CO
*
1
!
^
in
g!
^
CO
1
s
1
«4-l
-------
"8
a.
cn
so
3
vw
£
4>
S
js
"3
f-
NO
U
-------
js
oo
u
CJ
a.
co
•s
CU
3
O
o.
-------
05
8
v>
U
a
j
PQ
•<
H
S S
B!
I*
go
2
"3
&.
cu
S
A
0,
3
Experlmen
8
S
IN
CM
s
i
1
•o
u
I
O»
8
u
js
"ea
OH
U
CQ
•8
•g
u
8
»*v
Kt
I
1
*ji
ft.
U
CQ
H
"O
G
§
a.
|
Cfl
'ailable for
m
C
s
CO
cs
"O
"3
u
'1
£
QQ
S3
y
ft*
09
•M
lorlnated Blphenj
I
cu
^J ^> .a
ON •* U '' s! "S>
vS & 1 1 ^
es" cT ft. ; ft, a
^ ^j ^j it*
.. « ' <3 5^
3 ' s ft, ; a. i>.
> I 1:1 > J i I 1
&c Q c ^ u. a, a, Q
R? af G1 .-So
CQ *n T "C . -§ ^
•g § g g , 5 "S
"S K c ' S •§ "=
C« Q ' Q i Q is. "
U •§ •§ . -Q ^ U
1 1 I : 1 ; •§ 1
p k. k. iv. ' o S '
u a. a. g. ' oo o , j
tA O O : O ; J t* |
; i . i ' S i
S i
: s .
05 I
i ' ' W :
! \ I K '
' ; 1
i «5 i
: ; j ; , -5 !
1 i ^£ h
• .. i ! ' .. ! I 1 S
1 •= : o ; •= S ; -a
1 "i S i i °: S : $
"a, K l "•* -2? • : 3
> 1 , O > ! ft) W "O
, SO 4) O CL, S:L^W 1
ill S| iBS! 1*1 §
; i wi'do 'S>^
, "§ -3 j*13 -S ^ P ^J>, 2| f -1 -I ^ "? 1
"o T3 I i
••* : ' t~ : i
O ' '' ' O ' ; i
g , < ^ i ^ «: i .
S;S S 3 JS |e !
o:. . . . °_,i
'G : co co co co i 'g : ^"
g i ^ => c> • rf i a s;
1 5 i .S .S .S .S o C- :
& "g "2 "S "8 ! «> 8
O *5 S ' *5 .2 U ft,
•S 'o 'S i 'u "o ; •£ u i P"
QQ ! e« W CO CQ MJ | Q ^«v °0
1 a ; ^ ^, --, ^2, S1"0 So i~-
1 '» ! ?