EPA/540/2-89/027
tNVIRONMENTAI
PROTECTION
AGENCY
DALLAS, TEXAS
LIBRARY
SUPERFUNDTREATABILITY
CLEARINGHOUSE
Document Reference:
Acurex Corp., Environmental Systems Divisions, Combustion Research Facility.
"CRF Test Burn of PCB-Contaminated Wastes from the BROS Superfund Site."
Approximately 300 pp. Prepared for U.S. EPA Office of Research and Development.
March 1987.
EPA LIBRARY NUMBER:
Superfund Treatability Clearinghouse - E
PIFfi^F RH F*T P"-.^.'?" rpCP fPO&IlV
riJLAaC, yy E.^J ^^,,;w;^ Hil^l Liyi\^Hf
-------
SUPERFUND TREATABILITY CLEARINGHOUSE ABSTRACT
Treatment Process:
Media:
Document Reference:
Document Type:
Contact:
Site Name:
Location of Test:
Thermal - Rotary Kiln
Soil/Clayey
Acurex Corp., Environmental Systems Divisions,
Combustion Research Facility. "CRF Test Burn of
PCB-Contaminated Wastes from the BROS Superfund
Site." Approximately 300 pp. Prepared for U.S.
EPA Office of Research and Development. March
1987.
EPA ORD Report
Donald Lynch
U.S. EPA - Region II
26 Federal Plaza
New York, NY 10278
212-264-8216
BROS Superfund Site (NPL)
Jefferson, AR
BACKGROUND; This report provides results of test burns at the EPA Combus-
tion Research Facility on waste from Bridgeport Rental and Oil Service
(BROS) Superfund site, NJ. The purpose of the study was to: (1) determine
if waste could be incinerated safely; (2) comply with the Toxic Substances
Control Act (TSCA) regulations governing PCB-contaminated waste; and (3)
determine if residuals could be classified as non-hazardous.
OPERATIONAL INFORMATION; Rotary kiln was cocurrent propane fired and had a
maximum design capacity of 900°C (1650°F) with a gaseous residence time of
1.7 seconds for 10* excess 0« in flue gas. Containerized solvents were fed
in 1.5 gallon fiber packs using a ram feeder. Liquids and sludge were fed
using a progressive cavity pump through a water-cooled lance. Air pollu-
tion control (APC) equipment included a venturi scrubber/quench with a 30
inch. U.D. pressure drop followed by a packed tower scrubber. A backup dry
air pollution control system was utilized to ensure ultimate emissions
would be within the applicable regulatory limits. Scrubber system
blowdown was directed to a chemical sewer, if non-hazardous, or stored in
tanks for management at a RCRA facility, if hazardous. Waste included:
lagoon surface oil, lagoon sludge, and soil. Average composition: 210-600
ppm PCB, low to 38* water, 23.2-10,000 BUT/lb. The soil was a clay mud
containing rocks, grass, roots, and twigs.
Twelve tests were performed during 7/21/88 through 9/4/88 (test time
was five weeks). Tests involved variation of: waste feed, kiln tempera-
ture, excess 0«, rotation time (solid retention time). The report provides
specific information on unit design (schematic diagram included) and
provides test data. Sampling and analysis and QA information is also
provided.
3/89-48 Document Number: EXPC
NOTE: Quality assurance of data may not be appropriate for all uses.
-------
PERFORMANCE; Table 1 summarizes the PCB emission results. The test failed
to meet the TSCA regulations for 99.9999 percent destruction efficiency
(DE) at the stack gas effluent as measured after the scrubber discharge
flue gas. DE results ranged from 99.992 to 99.9998. On average DEs were
highest for surface oil and lowest for the soil sludge mixtures. Data
indicated no clear correlation between key process parameters and DE.
Analysis indicates that a gas residence time of 2.0 seconds in the after-
burner and a temperature of 1200°C would be required for this unit to
achieve TSCA requirements. This is twice the residence time achieved in
this test.
Scrubber blowdown PCB content was below detection levels (<1 ug/L).
Kiln ash was below detection level for PCBs except for ash from surface oil
which tested at 2.55 ug/g. Particulate and HCL emissions were within
regulatory limits. Metal concentrations in leachate samples from ash were
below the EP toxicity limit.
CONTAMINANTS;
Analytical data is provided in the treatability study report.
breakdown of contaminants by treatability group is:
The
Treatability Group
WOA-Halogenated Aliphatic
Solvents
CAS Number
75-35-4
78-87-5
56-23-5
79-01-6
75-34-3
W07-Heterocyclics and Simple 71-43-2
Aromatics 108-88-3
71-43-2
WlO-Non-Volatile Metals
Wll-Volatile Metals
W13-0ther Organics
7440-39-3
7440-47-3
7439-92-1
7440-38-2
110-54-3
Contaminants
1,1-Dichloroethene
1,2-Dichloropropane
Carbon Tetrachloride
Trichloroethene
1,1-Dichloroethane
Benzene
Toluene
Benzene
Barium
Chromium
Lead
Arsenic
Hexane
Note: This is a partial listing of data.
information.
Refer to the document for more
3/89-48 Document Number: EXPC
NOTE: Quality assurance of data may not be appropriate for all uses.
-------
3
t>H
0^
s
3C
2
E5
l/J
W
o
Q
2
^
S
S§
g
^
CO
10
JC
W
BQ
^^
CU
Cd
-O Q <-N
0) 4J
4-> CU C
J= bO CU
bO CO 0
rH 1_| 1-1
cu cu cu
> > om
t8 -^
^
±J
c
cu
Cd O
Qc,
w
CU
a.
sr ^->
in cu cu co
CM bo <- >«.
«H u «j bo
«f& "1
MM , '
MX; ^
o o
rH CO
JS -H
o T3
0 C
u u o
< CU -rt x-s
^^ " 4-J E
-Q CO O
C 3 l-i CO
O IH 4-> -O
HO C -v
co co cu bo
co o c
H 4-1 C " '
e to o
Cd O
J*^
CU CO
4-J ^x
C4 S
^N ^^
m
CM
c
TJ U O
CU O -H
CU rH 4-1
fc. j; rt ^
U U bO
O 4-> ^
U C ^
<; cu bo
^ OH
C >^
o
o
4-1
W O
CU Z
cu
a.
^%
H
cu
^J
CO
(Tj
!3
.^
-^
ON
ON
ON
ON
O ON 00
CO CM vO
ON ON ON
ON ON ON
ON ON ON
ON ON ON
!> O
ON CM VO
O rH O
0 0 O
r^, CM O
O rH 00
CM CM rH
eo eo m
CO VO 00
rH rH rH
CM M? O
00 ON 00
CM CM CM
rH CM CO
CU
o
ffl
ij
3
CO
c
0
o
bflrH
crj -H
-J O
o
ON
ON
ON
ON
ON
ON U"l CO
00 ON 00
ON ON ON
ON ON ON
ON ON ON
CO
ON rH rH
O rH CM
O O O
O O O
CM ON CM
CO CO in
^f
CO CM O
00 O CM
O CM rH
CO ~»
r^> r>» in
vO vO ON
rH
rH CM CO
rH
fH
O
CM
ON
ON
ON
ON
ON
VO CO
00 CM -3-
&\ ^f^ 00
CT» O\ ON
O^ ON ON
ON ON ON
ON ON ON
ON
CO ON fx.
O rH CO
O O O
O O O
ON CM CM
-* CO
r""- vo r*^
r~- -3- CM
CM CM CM
0 O O
m m m
CM CM CM
rH CM CO
cu
bO
o
rH
CO
ON
r*^
ON
ON
ON
r- co O
r*** r^^ co
ON ON ON
ON ON ON
ON ON ON
ON ON ON
rH rH rH
CM CO *3-
000
000
ON CO ON
*^ r^ ^^
rH
CO
rH ON -*
ON CO O
O rH CM
VO
00 O O
r- CM r-
rH rH
rH CM CO
CO
3
rH
a* cu
bO
rH «
H 3
O rH
co co
O
Dt
X
PJ
u
a)
2
C
ai
E
3
O
O
O
CO
cu
Ui
o
cu
J!
o
rt
00
«*
I
ON
CO
\
CO
-------
March 1987
CRF TEST BURN OF PCB-CONTAMINATED WASTES
FROM THE BROS SUPERFUND SITE
by
Johannes W. Lee, Robert W. Ross, II,
Carlo Castaldini, and Larry R. Waterland
Acurex Corporation
Environmental Systems Division
Combustion Research Facility
Jefferson, Arkansas 72079
EPA Contract No. 68-03-3267
EPA Project Officer
Robert Mournighan
Hazardous Waste Engineering Research Laboratory
Combustion Research Facility
Jefferson, Arkansas 72079
U.S. ENVIRONMENTAL PROTECTION AGENCY
OFFICE OF RESEARCH AND DEVELOPMENT
WASHINGTON D.C. 20460
-------
CONTENTS
Figures iv
Tables v
1. Introduction ..... 1
2. Facility Description and Operation 3
2.1 Facility Description 3
2.2 Waste Characteristics 10
2.3 Facility Operation 17
3. Sampling and Analysis Protocols 24
3.1 Sampling Location and Methods 24
3.2 Analysis Protocols 26
4. Test Results 33
4.1 PCB Destruction 33
4.2 Volatile Organic Emissions 41
4.3 Particulate and HC1 Emissions 41
4.4 Trace Element Emissions 51
5. Quality Assurance and Quality Control 55
5.1 Measurement of Q-jn 55
5.2 Measurement of Qout 56
5.3 Volatile Organic Spike Recoveries 57
References 60
Appendicies
A. Sampling Locations and Methods A-l
B. Sample Recovery and Analysis Methods B-l
C. Waste Feed Data C-l
D. Sampling Data 0-1
E. Analytical Reports E-l
iii
-------
FIGURES
Number Page
1 Rotary kiln Incinerator system 4
2 Rotary kiln and afterburner detail 6
3 Kiln temperature and residue time as a function of heat
input 8
4 Afterburner temperature as a function of total heat Input ... 9
5 Sampling Protocol 25
6 PCS DEs 35
7 PCB DE as a function of excess 02 37
8 PCB DE as a function of gas flowrate 38
9 PCB DE as a function of mean temperature 39
10 PCB DE versus mean temperature/gas flowrate 40
iv
-------
TABLES
Numbei
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
r
Design Characteristics of the CRF Rotary Kiln System
Summary Analysis Data for the BROS Soil
Analysis Performed for Kiln PCB Test Burn of BROS Wastes . . .
Volatile Organic Compounds Routinely Analyzed by GC/EDC at
the CRF
Volatile Organic Constituent Concentrations for the BROS
Volatile Organic Constituent Concentrations for the BROS
Volatile Organic Constituent Concentrations for the BROS
Soil /Sludge Tests
Volatile Organic Constituent Concentrations for the BROS
Page
5
10
11
13
16
18
20
27
28
31
34
42
43
44
45
-------
TABLES (concluded)
Number Page
16 Volatile Organic Feed and Emission Rates 46
17 Volatile Organic Feed and Emission Rates 47
18 Volatile Organic Feed and Emission Rates 48
19 Volatile Organic Feed and Emission Rates 49
20 Particulate Emissions 50
21 HC1 Emissions 52
22 Trace Element Emissions 53
23 EP Leachate Concentrations 54
24 Volatile Organic Constituent Spike Sample Recovery 58
25 Volatile Organic Constituent Spike Recovery in VOST Samples . . 59
vi
-------
SECTION 1
INTRODUCTION
One of the primary functions of the Combustion Research Facility (CRF)
is to support Environmental Protection Agency (EPA) Regional Offices 1n 1
evaluations of the potential for'Incineration as a dfsposat option" for wastes
generated through remedial action taken at Superfund sites'. One priority^
site in Region II 1s the Bridgeport Rental and Oil Services (BROS) Superfund
site in Bridgeport, New Jersey. This site has high priority in the Region's
Remedial Action Program (1). Several hazardous wastes will be generated
through remedial actions at this site. Among these are PCB-contaminated
lagoon surface oil, lagoon sludge and.contaminated soil.. Region II requested
test burns of these wastes plus a mixture of the soil and sludge at the CRF
to support evaluations of thermal treatment options for decontamination of
soil and destruction of incinerable wastes.
This report presents results of a 5-week test bum program conducted at
the CRF during July 21 to September 4, 1986. The rotary kiln Incineration
system was used for these tests. The primary objectives of the program were
as follows:
Detemlne 1f t«cn BROS-generated waste can be safely Incinerated in
compliance with the Toxic Substance Control Act (TSCA) regulations
governing incineration of PCB-contaminated wastes.
-------
Determine If residual streams generated from the incineration
process can be classified as non-toxic, arnLnoncontaminated
facilitating final disposal into £h«,land. .
Measure volatile products of Incomplete combustion and compare with
those observed during a TSCA trial burn also conducted at the CRF
The third objective calls for a comparison of organic emission measured
during this program with those observed during a TSCA trial burn in which
PCB-contaminated sorbent was incinerated in the rotary kiln. The results of
the TSCA trial burn are presented in greater detail in the trial burn report
submitted to the EPA for permit issuance (2).
-------
SECTION 2
FACILITY DESCRIPTION AND OPERATION
The test burn program was performed using the rotary kiln incinerator
system at the CRF Iji ,Jefferson, Arkansas. Figure 1 is a simplified schematic
* ****.
of the system. Design and operating characteristics of the CRF kiln,
afterburner, and air pollution control devices (APCDs) are presented in
Table 1.
2.1 FACILITY DESCRIPTION
Figure 2 illustrates a three-dimensional layout of the primary and
secondary thermal chambers (kiln and afterburner). As noted, the kiln has
1.2m (4 ft) wide diameter and is 2.4m (8 ft) long. The rotational speed can
be set in the 0.1 to 0.5 rpm range. Propane is fired through one or two
530 kW (1.8 x 106 Btu/hr) capacity burners positioned for either cocurrent or
countercurrent operation. However, the current kiln-to-afterburner flue duct
arrangement limits operation to cocurrent firing of propane using the front
burner. The kiln has *«wx1 muni design operating temperature of 900°C
j , ^ - - >
(1,650°F) with a corresponding minimum residence time of 1.7 sec for a
nominal 10 percent exCels*tJ2~1n"the flue gas.
The afterburner has a 0.9m (3 ft) inner diameter and is 3.1m (10 ft)
long. This chamber can also be fired with propane at up to 530 kW (1.8 x
Btu/hr) heat input. Maximum design temperature for the afterburner is
-------
oooo-iev
t> e *> «
e u e
k a S
t.
O
c
f
O
O
Of
O)
e
a.
-------
TABLE 1. DESIGN CHARACTERISTICS OF THE CRF ROTARY KILN SYSTEM
Characteristics of the Kiln Main Chamber
Length 2.44m (8 ft)
Diameter 1.22m [4 ft)
Chamber volume 2.88 m3 (100 ft3)
Rotation Clockwise or counterclockwise 0.1 to 1.5 rpm
Construction 0.63 cm (0.25 in.) thick cold rolled steel
Refractory 12.7 cm (5 in.) thick high alumina castable
refractory, variable depth to produce
a frustroconical effect for moving inerts
Solids retention time 1 hour (at 0.5 rpm)
Burner Iron Fireman, Model C-120-G-SMG rated at 530 kW
(1.8 MMBtu/hr)
Primary fuel Propane
Feed system Liquids: Front face, water-cooled lance
with positive displacement pump
Semi liquids: Front face, water-cooled lance
with Moyno pump
Solids: Metered twin auger screw feeder
Temperature 900°C (1,650°F) maximum operating
Characteristics of the Afterburner Chamber
Length 3.05m (10 ft)
Diameter 0.91m (3 ft)
Chamber volume 2.096 m3 (74 ft3)
Construction 0.63 cm (0.25 in.) thick cold rolled steel
Refractory 15.24 cm (6 in.) thick high alumina castable
refractory
Retention time Depends on temperature and excess air
Burner Iron Fireman, Model C-120-G-SMG rated at 530 kW
(1.8 MMBtu/hr)
Primary fuel Propane
Temperature 1,200°C (2,200°F) maximum operating
Characteristics of the Air Pollution Control Systems
System capacity Inlet gas flow of 106.8 m3/min (3,773 acfm) at
1,200°C (2,200°F). at 101 kPa (14.7 psig)
Pressure drop Venturi 7.5 kPa (30 1n. WC)
Packed tower 1.0 kPa (4 in. WC)
Liquid flow VentuM 77.2L/min (20.4 gpm) at 69 kPa (10 psig),
Packed tower 116L/min (30.6 gpm) at 69 kPa
(10 psig)
pH control Feedback control by NaOH solution addition
-------
Burner No. 2
Burner No. 1
Waste feed
Afterburner
10' x 3' ID
5
Figure 2. Rotary kiln and afterburner detail,
-------
1.200*G (2,200*F>. At a maximum heat input of about 1.1 MW (3.6 x
10^ Btu/hr) to both chambers the resulting bulk gas residence time in the
afterburner is approximately 1.4 sec. Figures 3 and 4 illustrate the
approximate relationships between heat input, gas temperature, and residence
time for the two thermal chambers.
The kiln waste feed can accommodate liquids, slurries and sludges, bulk
solids, and containerized solids. Liquids and sludges can be fed using a
progressive cavity pump through a water-cooled lance. Containerized solids
are fed in 5.8L (1.5 gal) fiber packs using a ram feeder. For
noncontainerized solids, a twin auger screw feeder can also be used. During
these tests, the soil was containerized in fiber packs and fed into the kiln
using the ram feeder. Nominal retention time of solids in the kiln is 1 hour
for a rotational speed of 0.5 rpm. Kiln ash is collected in the ash bin.
The primary particulate and HC1 emission control system reflects what
might be considered typical equipment for a commercial or Industrial
incinerator. The venturi scrubber/quench is designed to operate at 7.5 kPa
(30 in. W.C.) pressure drop. From the venturi, combustion gases flow through
a wetted elbow to a packed tower scrubber. Slowdown from the scrubber system
can be directed to the National Center for Toxicological Research (NCTR)
chemical sewer if the blowdown is determined to be nonhazardous. If residual
streams are determined to be hazardous they can be stored in several tanks at
the site and ultimately disposed of in RCRA-approved hazardous waste sites.
In addltftitto the. wet control system, a backup dry air pollution
control systJTift utilized to ensure that ultimate emissions to the
atmosphere will remain within applicable regulatory limits. This dry control
-------
sooo-^ov
ami} SDuspisaj se6
- . I
u. j. 2
cc c Si1
u 5
iX * > 2 g
.0 H- ftl CJ
2
m
c.
c
8
O
0)
x:
it-
O
c
O
u
c
3
>4-
-------
pas) aui.u aDuapisaj se6 jaujnq
9000 iW
C 4->
a, -^
U X
W 41
2L-
O 01
-
o
PJ
s
i
U!
at
2
*.
-------
system consists of a carbon bed absorption unit for vapor phase orgarvfc*
compound renoval §nd a high efficiency particulate (HEPA) filter-f^c-;final
particulate removal.
2.2 WASTE CHARACTERISTICS
Four waste materials from the BROS site were tested in the rotary kiln
system at the CRF. These waste materials consisted of PCB-contaminated
(1) lagoon surface oil, (2) soils from Area 1 of the BROS site, (3) lagoon
sludge, and (4) a mixture of soil and lagoon sludge. Tables 2 through 4
summarize data on the concentration of several hazardous constituents and
other properties of the Area 1 soil, lagoon surface oil, and lagoon sludge
determined prior to this test program (3).
The soil can be characterized as clumped clay mud containing rocks,
grass, roots, and twigs. The data in Table 2 show that the contaminated
soil contains an average of about 660 ppm PCBs based on an average of
19 analyses. The physical appearance of the lagoon surface oil reveals a
TABLE 2. SUMMARY ANALYSIS DATA FOR THE BROS SOILa
Parameter
Organic sulfur, percent
Sulfide, mg/kg
PCBs, mg/kg
PCB-1254|
PCB- 1248:1
PCB-12604
Range
0.16-1.65
<2-51
<16-1,010 *
<0.8-590 '
-------
TABLE 3. CHARACTERIZATION OF THE BROS LAGOON SURFACE OIL3
Ignitability
Flashpoint (°F)
Oxidizer (mg/kg)
Organic sulfur
(percent)
Sulfide (Mg/kg)
Heating value (MJ/kg,
(Btu/lb))
Ash (percent)
Moisture (percent)
Specific gravity
Total PCBs (mg/kg)
PCB-1254
PCB-1248
PCB-1260
Volatile organic
priority pollutants
(mg/kg)C:
Toluene
Total xylenes
Ethyl benzene
Range
109-150
<25
0.08-0.80
19-82
8.8-35.5
(3,800-15,300)
0.18-2.1
17-48
0.86-0.95
120-310 /
100^150
140-280
<1-13
1.7-20
<1-5.0
Average*5
135
<25
0.33
44
23.2
(10,000)
0.87
38
0.91
240
115
200
7.5
9.7
2.7
Number of
Median analysis
135
<25
0.34
43
23.0
(9,900)
0.84
42
0.92
270
130
190
8.0
11
2.5
56
56
56
11
56
56
11
56
11
11
11
11
11
11
(continued)
Reference 3.
bLess than detection limit assumed to be 0 for averaging
purposes.
cBenzene and t-1,2 dichloroethene were found at quantifiable
amounts 1n one sample each. No other volatile organic priority
pollutants were detected in any sample at a detection limit of
1 mg/kg.
"No other semi volatile organic priority pollutants were detected
in any sample at a detection limit of 10 mg/L.
eThe average for all samples was less than the detection limit of
10 mg/L; therefore, the average was assumed to be the detection
limit.
11
-------
TABLE 3. (concluded)
Range
Averageb Median
Number of
analysis
Semivolatile organic
priority pollutants
(mg/L)d:
Acenaphthene
1,2,4-trichlorobenzene
Fluoranthene
Naphthalene
Bis(2-ehtylhexyl)
phthalate
Butyl benzyl phthalate
Di-n-butyl phthalate
Di-n-octyl phthalate
Benzo(a)anthracene
Benzo(a)pyrene
Benzo(b)fluoranthene
Chrysene
Acenaphthylene
Anthracene
Fluorene
Phenanthrene
Pyrene
<10-21
<10-32
21-110
48-210
120-520
79-420
<10-49
13-96
<10-31
<10-15
<10-31
<10-80
<10-72
<10-32
<10-88
110-460
26- 92
10e
106
54
110
330
240
19
55
10d
10d
14
33
33
13
42
250
50
10
<10
53
97
370
220
24
52
<10
<10
15
42
27
15
39
240
49
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
Reference 3.
bLess than detection limit assumed to be 0 for averaging
purposes.
cBenzene and t-1,2 dichloroethene were found at quantifiable
amounts in one sample each. No other volatile organic priority
pollutants were detected in any sample at a detection limit of
1 mg/kg.
dNo other semi volatile organic priority pollutants were detected
in any sample at a detection limit of 10 mg/L.
eThe average for all samples was less than the detection limit of
10 mg/L; therefore, the average was assumed to be the detection
limit.
12
-------
TABLE 4. CHARACTERIZATION OF THE BROS LAGOON SLUDGE3
Parameter
Value
Heating value, MJ/kg (Btu/lb) 16.7 (7200)
Ash content, percent 2
Moisture content, percent 13
Specific Gravity 1.31
PCB content, mg/kg dryb
PCB-1248 140
PCB-1260 72
Volatile organic priority pollutantsc, mg/kg dry
1,1,1-trichloroethane 0.23
t-l,2-dicloroethy1ene 0.11
Ethylbenzene 0.74
Toluene 1.7
Other volatile organicsd, mg/kg
Acetone 0.75
2-butanone 1.2
4-methyl-2-pentanone 0.11
Total xylenes 2.7
(continuedT
Reference 3.
bPCBs-1242, 1254, 1221, 1232 and 1016 were also analyzed for and
not found at a detection limit of 9 mg/kg dry.
CA11 other volatile organic priority pollutants not detected at a
detection limit of 0.1 mg/kg dry.
dCarbon disulfide, vinyl acetate, 2-hexanone, and styrene were
also analyzed for and not found at a detection limit of 0.1 mg/kg
dry.
eAll other semi volatile organic priority pollutants not detected
at a detection limit of 20 mg/kg dry.
^Benzyl alcohol, 2-methyl phenol, 4-methyl phenol, benzoic acid,
4-chloroaniline, 2,4,5-trichlorophenol, 2-nitroaniline,
3-nitroaniline, 2-dibenzofuran, and 4-nitroaniline were also
analyzed for and not found at a detection limit of 40 mg/kg dry.
13
-------
TABLE 4. (concluded)
Parameter
Value
Semivolatile organic priority pollutants6, mg/kg dry
Fluoranthene
Naphthalene
Bis (2-ethylhexyl)phthalate
Butyl benzyl phthalate
Chrysene
Acenaphthylene
Fluorene
Phenanthrene
Pyrene
Other semivolatile organics^, mg/kg dry
2-Methyl naphthalene
EP toxicity leachate concentration, mg/L
Arsenic
Barium
Calcium
Chromium
Lead
Mercury
Selenium
Silver
Endrin
Lindane
Methoxychlor
Toxaphene
2,4-D
Si 1 vex
33
180
130
130
21
21
37
170
52
240
<0.5
<5.0
<0.1
<0.5
2.86
<0.02
<0.5
<0.5
<0.0001
<0.00005
<0.0005
<0.0025
<0.005
<0.0005
aReference 2.
bPCBs-1242, 1254, 1221, 1232 and 1016 were also analyzed for and
not found at a detection limit of 9 mg/kg dry.
CA11 other volatile organic priority pollutants not detected at a
detection limit of 0.1 mg/kg dry.
dCarbon disulfide, vinyl acetate, 2-hexanone, and styrene were
also analyzed for and not found at a detection limit of 0.1 mg/kg
dry.
eAll other semivolatile organic priority pollutants not detected
at a detection limit of 20 mg/kg dry.
^Benzyl alcohol, 2-methyl phenol, 4-methyl phenol, benzoic acid,
4-chloroaniline, 2,4,5-trichlorophenol, 2-nitroaniline,
3-nitroaniline, 2-dibenzofuran, and 4-nitroaniline were also
analyzed for and not found at a detection limit of 40 mg/kg dry.
14
-------
dark brown syrup substance containing some debris. Data in Table 3 for
flash point, oxidizer, organic sulfur, heating value, ash content, and
specific gravity of lagoon surface oil are based on 56 analyses of
54 composite samples. Data for moisture content and organic priority
pollutant content are based on 11 analyses of 10 oil composites. These data
show that surface oil contains an average of about 550 ppm total PCBs. In
addition, several semivolatile organic compounds are also present at average
concentrations exceeding 100 ppm. These are naphthalene (120 ppm by weight
in the oil), phenanthrene (270 ppm) and two phthalates, bis(2-ethylhexyl)
phthalate (360 ppm) and butyl benzyl phthalate (260 ppm). Proximate analysis
of the oil reveals 38 percent water content, 0.87 percent ash, 0.92 specific
gravity and a gross heating value of 23 MJ/kg (10,000 Btu/lb).
The lagoon sludge appears as a black gel in much water. The sludge
contains several kinds of debris including grass, roots, and twigs. The data
in Table 2-4 show that the BROS lagoon sludge contains an average of 210 ppm
PCBs and other semivolatile organics also found in the lagoon surface oil.
In addition, the metal and pesticides concentrations in an EP toxicity
leachate of the lagoon sludge fall below values which would cause the sludge
to be considered characeristic EP toxic. The heating value of the sludge has
been reported at 16.7 MJ/kg (7200 Btu/lb) with 13 percent moisture, 2 percent
ash, and a specific gravity of 1.3.
Waste analyses were performed on each of the waste materials tested at
the CRF. Table 5 summarizes the result of these analyses. Waste heating
values ranged from zero for the soil to 10.1 MJ/kg (4,350 Btu/lb) for the
lagoon sludge which contained significant quantities of water. The average
total PCBs for the soil and lagoon surface oil were measured at only 110 and
15
-------
TABLE 5. BROS WASTE CHARACTERIZATION COMPOSITION
Ultimate
analysis
(t by weight as fed)
C
H
0
N
S
Cl
Total
High heating Value
MJ/Kg (Btu/lb)
Total PCBs
(mg/kg as Arochlor
1254)
Metals (mg/kg):
Arsenic, As
Barium, Ba
Cadmium, Cd
Chromium, Cr
Lead, Pb
Mercury, Hg
Selenium, Se
Silver, Ag
EP toxlclty leachate
Arsenic, As
Barium, Ba
Cadmium, Cd
Chromium, Cr
Lead. Pb
Mercury, Hg
Selenium, Se
Silver. Ag
Area 1
soil
11.4
4.6
25.0
0.1
0.4
0.44
41.94
0
67.3-167
<1
744
<1
55
756
<1
<1
<5
(mg/L):
<0.1
0.12
<0.1
<0.1
0.46
<0.1
<0.1
<0.1
Lagoon
surface
oil
54.4
10.9
29.9
0.1
0.7
0.1
96.1
8.62
(3,716)
270-300
(286)b
2
1,035
<10
46
2,888
<1
<1
<10
<0.1
<0.1
-------
286 ppm by weight, respectively, compared to concentrations of about 660 and
550 ppm from the preliminary analyses (see Table 2). The PCB concentration
for the sludge was comparable to that from the preliminary analysis. The
mixture of soil and sludge resulted in a total PCB concentration of 123 ppm
from an average of three analyses on one composite sample. Barium, chromium,
and lead were the principal metals detected in these wastes. Highest
concentrations of these elements were measured primarily in the lagoon
surface oil.
2.3 FACILITY OPERATION
Tables 6 and 7 summarize the operation of the rotary kiln incinerator
and air pollution control systems. A total of 12 tests were performed (three
tests for each of the four waste feeds).
For the first series of three tests, the lagoon surface oil was fed into
the kiln using the progressive cavity pump at an average rate of 18 to
24 kg/hr (39 to 53 Ib/hr). Average kiln and afterburner temperatures were
varied from about 680 to 890°C (1,250° to 1,640°F), respectively, to
determine the impact of thermal environments on PCB ORE. Excess Og, measured
at the afterburner exit, was maintained relatively constant between 5.6 and
6.5 percent. Following completion of the surface oil tests, three tests were
conducted with the contaminated soil which was fed into the kiln in 5.7L
(1.5 gal) fiberpacks using the ram feeder. The average feedrate of the soil
during each test was maintained relatively constant for the test series at
about 45 kg/hr (100 Ib/hr). Lowest kiln temperature, about 700°C (1,290°F)
was investigated during the second soil test. Afterburner temperature was
maintained relatively constant at about 1,130°C (2,060°F) for each test.
Average excess 03 at the afterburner exit was varied from 6.7 to 8 percent.
17
-------
CO
o
14
i
o
o
z
£
ee
UJ
o.
o
QC
O
»
UJ
Z
0
z
_J
X-X
ee
^_
o
CK
VO
UJ
s i
i
i
i
i
i
<
i
i
t
i
i
Lii-
* s ?
%.
,«.
SSI*
x x
k* « M
O «
t. «|
.oik. u i*r
ss
ts
.£ « *
fc T
ES S £
lfs'21
i k. c «
5 *" *o
*^
.1-8 1
o
on
« ^ S i
« a. L.
-|-
»- I* ^*
*««
i * ^.S**
si -
ll
U. |
^
ts T
""z
s
11
*
-V
II *
ix"'
1
»-
CM «*>
1
^
a §
«7s7
t-S p
=~I
"
Ij
s -S
m ^ in
m * -P^
~"
SJ
in «
«n i *n i
CM CM *
5~2
(M
^^
jj
RO i
I O
s-s
-3
do
1
s
o
» S
cO o
w'*'oo'''>
1 1
~2
VI X
c 3
*"
«
g S
Sl"
1
80
CM
M «
*
i^
4.
*"
»,
tn S
ss°
1
mm
^
*
*
i
ince
«CM
i
CJ
«
0--
1
;
s s
*4 «
"§ ~
CM fM Q
sjf
glj.
5 I
S
S I
i « i
S~2
--
cao
i
in
d
«r la
i?
1*1
CM
m.£.°.
11
U
in
OK
eie
CBIO
i
«
»
d^
1
«J
; 1
CM 1 S 1
= =~|
S |
CM 1 0* 1
S^fn
£
5 f
Sli
s i
s^i"
5=|
2,
oo
i
2
d
» cs
IB CM *«
1 1
V CO
v eo 9< dh
1 fc
U.
So
M
1
O «
CSJ **.
i
00
CM 9>
r-Co
i
eo
*
O M
I
*
» 1
«7|7
=§~i
s s
s -1
i=S
s_|
«
^ 1 CM 1
*5S|
s 5
CM Of«
2 !
S*"'*
CM C0
22
do
i
2
d
» S
« d
in *-»CM
i i
?co§«
lxst
u.
11
1
in o
*n CM
sii
£
in
i
CO
^e»>
« CO
i
m
in
ec o>
co d
i
13
t* «r
CM U>
s^I^
«« ^e*
en ^»
«r cf»
SCM
»-£
5^S
e» ^o
CM «
Sc7
i m i
-------
o
0)
3
u
c
0
o
UJ
CO
i
1
1
1
L.
G f^
3 W £ £*
C M Xs-'
41 4) 1C
£ 0-H
I
c^S ?
o»-o
-~- X X4-'
kC OJ K
0 *
t £
EL. a
4) **
3 £ *-»^
= ~
o> 3T
CNJ O
p^ r^
^ twO
CD «
O ~
2 ,|7
SO *-
-
^^
s i
5 'I"
5=1
««
do
i
d
« ~
^S
1*1
s~s
^ U 4i
U.
lit
i
sf
OF> *
S
l
00
009*
*v
i
»n
oo rn
i
00
CM in
S ' i
OJ« '^
= 21
S S
OS ^
** CM
9v 1 V t
aS*"* in
5 in
O 00
«n t 10 i
OJ*- JJJ
-
i i
*"* to
I=|
«*
do
i
S
d
91 in
mc5^=
f*l
P^ ^
a""2
!«!
i;!
«» Ml
I
9*
S
i
". °.
2""
i
CO
^
s I
isTs^T
s
" CM
c *"
IO CM
SCM
t M 1
IO
o o"
*sl§
^^
2 I
So"**
t W 1
S=§
to to
dd
i
s
d
« ~
o.§srS
i i
nmS o
s""s
> >t
s*
S3
1
?!
ff» «
1
go
rg pg
*V
1
«i
S 3
~~°
fsl «
<*J 1 l/> 1
- 0
ocg CO
*" ~
S S
"S
s i s7
CO IA
i=|
« I
* m
O i S l
^^
S 2
9> CM
*SHI
vovo
d d
i
S
d
f^ O
S~3
in CM CM
1 1
m oo
="^£
«* X
O V
1
m
9» -
S
i
race
«'«'
t
°I
2 *
CM CM
** »
CM i m i
*s=s
*o to
dd
i
"
d
o e*
^5'-§
1*1
CM CM
fH 00 ^ O
*~i
{!>
si
OC 3
l
9* -*
?
V
l
19
-------
TABLE 7. AIR POLLUTION CONTROL SYSTEM OPERATING CONDITIONS
Test
d*te
7-21-86
7-28-86
7-29-86
8-4-86
8-5-86
8-7-86
8-12-86
8-13-86
Test
duration
11:00 -
17:20
10:15 -
16:15
10:00 -
19: IS
12:10 -
17:16
10:30 -
15:20
9:45 -
14:00
9:38 -
14:39
9:40 -
14:41
Test
material
BROS
surface
oil
BROS
surface
oil
BROS
surface
oil
BROS
soil
BROS
soil
BROS
soil
BROS
soil +
sludge
BROS
soil »
sludge
Venturl
scrubber
1 1 quor
rate
L/*1n
(9P«)
68
68-68
(18)
(18-18)
68
68-68
(18)
(18-18)
68
68-68
(18)
(18-18)
64
64-64
(17)
(17-17)
64
64-64
(17)
(17-17)
64
64-64
(17)
(17-17)
64
64-64
(17)
(17-17)
64
64-64
(17)
(17-17)
Venturl
scrubber
gas
AP
kPa
C«e)
6.8
4.5- 10.0
(27.3)
(18.0-40.0)
5.4-
5.5-4.5
(21.6)
(22.0-18.0)
5.8
5.0-8.7
(23.3)
(20.0-35.0)
2.7
2.7-2.7
(11.0)
(11.0-11.0)
2.1
2.0-2.2
(8.4)
(8.0-9.0)
4.7
5.7-3.5
(18.9)
(23.0-14.0)
9.0
7.0-9.7
(36.1)
(28.0-39.0)
8.8
9.7-7.7
(35.2)
(39.0-31.0)
Packed
column
liquor
rate
L/Kin
(9P«>
114
114-114
(30)
(30-30)
114
114-114
(30)
(30-30)
114
114-114
(30)
(30-30)
114
114-114
(30)
(30-30)
114
110-114
(30)
29-30
106
106-106
(28)
(28-28)
110
110-110
(29)
114
114-114
(30)
(30-30)
Scrubber
liquor
PH
8.2
2.5-8.2
8.1
8.0-8.2
8.2
8.2-8.2
8.2
8.2-8.2
8.2
8.2-8.2
7.2
6.0-7.8
7.3
7.0-7.5
7.0
6.2-8.0
Scrubbing
liquor
temperature
c
cn
73
71-75
(164)
(159-167)
73
71-74
(163)
(160-166)
74
72-75
(165)
(161-167)
75
74-77
(167)
(165-170)
76
74-77
(168)
(166-170)
74
71-76
(165)
(159-168)
73
72-74
(163)
(162-165)
73
70-74
(164)
(158-166)
Makeup
ater
rate
L/nln
(gp">
22.6
13.2-28.0
(6.0)
(3.5-7.4)
26.3
19.9-34.9
(6.9)
(5.2-9.2)
21.9
16.0-28.0
(S.8)
(4.2-7.4)
20.6
9.8-29.9
(5.5)
(2.6-7.9)
20.9
12.5-30.7
(5.5)
3.3-8.1
21.5
6.8-30.8
(5.7)
(1.8-8.1)
20.6
7.9-28.6
(5.5)
(2.1-7.5)
20.5
6.5-29.0
(5.4)
(1.7-7.7)
Slowdown
ater
rate
L/«in
(9P«)
9.5
9.1-11.7
(2.5)
(2.4-3.1)
12.1
12.1-12.1
(3.2)
(3.2-3.2)
12.5
11.7-15.1
(3.3)
(3.1-4.0)
13.2
13.2-13.2
(3.5)
(3.5-3.5)
13.6
13.6-13.6
(3.6)
(3.3-3.6)
12.5
12.5-12.5
(3.3)
(3.3-3.3)
12.5
12.5-12.5
(3.3)
(3.3-3.3)
12.5
12.5-12.5
(3.3)
(3.3-3.3)
(continued)
20
-------
c
0 1- 01 C
"§ *j jo "i §.
B J
3 L. 4) C ~
41 4) w E
.X «- tj £ O.
io 10 t. ~«. en
X X -I'
V
c a
i_ *j
.O O 10 -~
.c a i. o u-
a er 41 a e
b- 1 ~
in S
u
X) O
- - 3 cr o.
"S %-
TJ
*~ T3 C t.
U 4> E O 4) C «
C Jtf 3 3 ** «" E
o 27; ^ £ E 1
;-; <« o -«~ ^ ^ cn
U Q. U _l
*""' j
t
u
uj lisas'?
g Ivi*"^-
2
L.
i- 01 1.
a S 3 2 l
i en
10
. «n
2 ~*
v vo in" oo
^. ^v VC VO
O ~ - ~ l
~ 5
CM O
i*! oo
1
0
^
O O en en
1 1
VO
~*
**
o-S"
£2
M
1
O O
m un
<*» *r
^^
cf
S
CO
0 0^"^
22**"^
l r**
0 ^
^ f???
cn en vo o
i i
CM
- C
cn w <-T jT
f^ f*« IO vo
CM ^^ 1
5
cnm
r*T r*!
i
0
r*.
SeSSS
"" T"^oo
IO CM
O «-»
""
^^_^,
in m o
in vo CM vo
1 CM CM
CM 1
« CJ
^
<-.«->
^<"~'lO
to «*
"*
v> en
OP
VI
1
o in
cn »
^^
00
1
m
en
O O f^^
» « en cn
l r
o
CM « en o"
vo » i£en j
l ~*O
»- .
in
on
f> in « r
r«- r» vo vo
CM ** 1
f^ CM
IO
en «
r^ r*«
l
C9
. l^
IO IO 09 00
O O CM CM
i """oo
2 ~
^_^___
o e o o
in m o o
1 CM CM
O 1
in °*
o
CM
VO VO .
J.~"lO
VO .
*~*
^g,
e §"
CK 3
**
1
in e
CM
en *
vo
00
«r
i
en
21
-------
Kiln rotational speed of 0.19 rpm corresponds to about 2.5 hr solid retention
t i me.
The mixture of soil and lagoon sludge was also fed into the kiln with
fiberpacks at an average feedrate of about 42 kg/hr (93 Ib/hr). Two kiln
rotational speeds were investigated, namely 0.19 rpm for the first two tests
and 0.36 rpm for the third test; the latter corresponding to about 1.4 hr
solid retention time. The lowest kiln temperature investigated during these
tests was 718°C (1,320°F). Kiln design temperature of about 895°C (1,650°F)
was utilized during the other two tests. The afterburner temperature was
maintained constant throughout this series of tests at 1,120°C (2,050°F).
Afterburner exit 03 ranged from 6.8 to 8.5 percent on the average for each
test.
Sludge only tests were performed with two temperature settings for each
of the kiln and afterburner chambers. The lowest temperature combination of
656°C (1,210°F) for the kiln and 1,116°C (2,040°F) for the afterburner was
investigated during the first test. Higher kiln and afterburner
temperatures to about 880°C (1,620°F) and 1,210°C (2,210°F) for the kiln and
afterburner, respectively, were alternatively tested during the remaining two
tests. Lowest temperature settings were tested with the highest excess 02
(10 percent) at the afterburner exit. The average excess 02 for the other
tests was held constant at 6.2 percent. The sludge was pumped to the kiln
which rotated at 0.36 rpm.
Table 7 summarizes the operational settings of the major components of
the wet air pollution control system. For the most part the scrubbing liquor
flowrate, pressure drops, and pH levels were held relatively constant
throughout the test program with the exception of the venturi scrubber
22
-------
pressure drop which showed a range of average settings between 2.1 kPa
(8.4 in. W.C.) during tests with contaminated soil and 9.7 kPa (39 in. W.C.)
during tests with lagoon sludge.
23
-------
SECTION 3
SAMPLING AND ANALYSIS PROTOCOLS
In order to achieve the objectives of the test burn, an extensive
sampling and analysis (S&A) program was executed. This section summarizes
the SAA protocols and methods used. More detail on actual equipment and
procedures can be found in Appendices A and B of this report.
3.1 SAMPLING LOCATION AND METHODS
Figure 5 illustrates the sample locations and test methods. Waste,
propane, and combustion air feedrates to the kiln were monitored using
process monitoring equipment available at the facility. Waste feedrate was
monitored by recording the cumulative weight of waste feed to the kiln over
the duration of each test. The rate of feed was then obtained by the slope
of the cumulative weight versus time graphs presented in Appendix C.
Incineration residuals were accounted for in the protocol by taking
samples of the kiln ash from the ash bin following the conclusion of each
test. When solid waste feeds (soil and soil plus lagoon sludge) were
incinerated, multiple kiln ash samples were taken for analysis of organics
and metals. Composite scrubber blowdown samples were also collected
throughout the duration of each test.
Continuously monitored (CM) gaseous emissions were limited to
measurements for 03 and C02 concentrations at four locations in the
incinerator system namely at the exits of the kiln, afterburner, wet APCD
24
-------
1
Cs
c.
UJ
X
1
Carbon
<
Packed
t
Venturl
i
L
01
*
«^
<
i
£
M
li
1)
filter
c
2
I
+*
scrubber
burner
[
1
1
1
1
m
N
U
i!
*
«
a
a.
1
1
1
1
1
1
j
t
!
1"
*J
«
m"3
u
1^
u 0?
' e
01 «i
4J ^
«
x> ** >
m 3 c « M
X o -o o
Z-i: o
tj > e
L. wi ^-
<
L. L.
'U
*|
1
4J
f
e
p- tj
It
CM <» «r
£ I
« 01 «
ZS-Z
I Wt *
a. vt «
P *
« L. V
o
o
o
J->
o
(.
a.
o>
25
-------
system and the stack. Details of the 03 and C0£ traces at each of these
locations are shown in Appendix D. Measurements for participate, PCBs, and
semi volatile organics in the gas stream were made using the modified EPA
Method 5 (MM5) at the packed tower scrubber outlet (downstream of the wet
particulate and acid gas control system). Measurements for volatile products
of incomplete combustion (PICs) were performed at the afterburner and packed
tower scrubber exit locations using the standard EPA Volatile Organic
Sampling Train (VOST). Particulate and HC1 emissions measurements were also
made at the stack to measure compliance with the operating permit at the
CRF.
3.2 ANALYSIS PROTOCOLS
Table 8 summarizes the total number of samples collected and analyses
performed on each sample. The analytical protocols are summarized in
Table 9. The laboratory analyses procedures included:
Analyzing all waste feed samples, the composite kiln ash samples,
all blowdown water samples, and all MM5 train samples for PCBs.
Analyzing one composite waste feed sample, the composite kiln ash
sample, all scrubber blowdown samples taken upstream of the carbon
bed, and all MM5 train samples for the semi volatile organic
priority pollutants.
Analyzing one composite waste feed sample, the composite kiln ash
sample, and all scrubber blowdown samples taken upstream of the
carbon bed for 21 volatile organic compounds visible to the Electron
Capture Detector (ECD) and routinely determined at the CRF (see
Table 10.
26
-------
CO
UJ
t
co
^
CO
o
f^S
LL.
O
^
02
to"
LMB
CD
0
Q.
-£
XX
Q,
0
u-
o
UJ
a;
o
LL.
OC
UJ
a.
co
j
z
"*
CO
UJ
00
2
1
en
at
eni">
3 CN
*" e*
i
00
^fr
o as
3
; «2
| _ ,
C 00
^ M^
! Si
..
i ,
00
Z"?
.
1
CM
p»
0
00
S'V
1-
I/I CM
1
,
>,
i
§
*z
s
Q
I
| | | | |
-.!',!!
iiii
i i i i
"*!!!!
iiii
^- i i i i
iiii
CO 1 1 1 1
IIII
ro i i i i
u c
O
c in
en e <>
z*-sts
*> ) e m
l« U 4-> <-
03 «
u. I
>
h
iiii
*A
^3
-»-
O
l/t
g
; :-- -CM - -
i
1 1 _ r* . CM " '
1 1 >M V « CM * »^
1 1
1 |
1 1 _ _< _ CM -<
IIII
IIII CM -«
IIII
IIII -« CM < 1
U U
C IA C (A
«
en e en e
«- 9) >, U >, «
e 1 .7 e w I
I *
*««. «
*J O) O «J O «
< u * >» «J u
03 <0 03 1
o o u a. eu a. L.
f = e
P 3 O -0 "O
e > <- « 3 i
8 K 0 0- O
1 ))>
e o o o
1! nil
u eft u en u o
u
"c
en
o
i
a
e
L.
u
« =
H-
0
*-**»»
i i
I i
~4 **
1 1
IM'ltaM'
| 1
1 1
1 1
1 1
"*"*
1 1
t 1
| 1
Ota**"
1 1
1 1
| 1
" -
g
O
^
ai
3
O
* V
u
£
1
« *>
«J 3
*"
£
UJ
^~
1 1
1 1
"* ""
1 1
^_--_-
1 1
1 1
1 1
1 1
^*~
1 1
1 1
1 1
1 1
o
e
^
ei
3
U
k.
2 =
u
10
10
_
^^
rt
"
*
"-
eo
u
°-
t
Is
«c
i
27
-------
oc
<£.
^
X
QC
h-
Z
*/)
^""^
_J
2
**
g
^M
UJ
m
»
I/I
2
^5
^ -
c
41
t
u.
g
JE
I
L.
41
i
bo
JQ
0.
4)
C 3
^" ftj)
II
i
4-«
U
e
41
g-
CO
«
tl
4-1
<
e
in
in
mm
eg
1S
ij
O ft)
I*
L. UJ
UJ U
in
CO
O.
41
4J
O *
II
O in
41
C
~
e
»*
g
01
a 2
. .
*
in
O
1
u
-
JS
CO
i
in
in
><~
i« U
e
« v>
41 Z^
JQ ^^
o
=>^
J^
"o
41
U
u
a
in
41
I/I
O
1
U
«*
in
e j=
H
JE in
*r
4*% &
§i
£^
01
o
b.
4J
u
X tfl
o «->
^ c
CL E
UJ Si
eo"*
^
w
e 3
§01 a
O> 3
o e
_j m >
» »
* » *
"i "is
III
u u u
- - -
*
£« J3 U1
m in r*>
J3 O O T> O
C C 4-> ^ JS CM
4J < Jt -0
U < in CX 5
* 01 10 >«JE
t. .»- L. IB JO 4J
4J O «- 4J O «
K 41 - ex
41 fO in V O O
« C CO ^ >»
in o «o *j ja
Se o 41 o «* >
je i» O»JE c. z
3 4J L. 4J 4J -V.
CT 41 >» 3 41 X U
< x ja a. t uj u
J«» 4V
*j 41 e
>, ^
^ O 4J CL4J
o > in 10 e
0 0 «
X O O -^ 4J
o u e > e 3
LU CM O V> O &
C 4>
e 01
11
41
4J
U
-
S
m
^
_g
^Jj
*
>,
§
u
«
L.
X
in
CD
O.
41
.yv
(/I
o
1
U
4J
in
e
»*
JE
in
e
2
g
g
|
*>
*
8
UJ
£
41
i
M
41
in
e
u
in
11
g
JS in
+» V
«*s *ft
ll
S^
S5
41
IO
L.
4J
U
X in
e 4J
*j e
CO 41
~
3
C
1
U
J
U
U
2
o
b
0
t.
a.
1
1
o
e
4J
o>
I
Ol 4J
« e
41 tn
to e
o
Ol
x e
fi ^
s
b. U
u
trt
« in «vo »~ m
V 41
41 41 (J 41 4) -O
O U U u
c c - c e m
41 41 « 41 41 b.
c. b, ec u. L. 41
41 41 41 4) 4J
41 41 vT 41 41 ^
ce CE < cx ce u.
0 J3 u TS 41 «-
e
CO
41
ci
£
,*
41
ec
Ol
28
-------
^-.
OJ
c
c
o
0
^'^
1 ij
UJ
CD
H-
*
w»
.x
J
x
u
c
Ol
3
o-
Ol
L.
u.
§
£
4->
U
Ol
41
i
u
CL
41
C 3
!£
4J O 1- 4J O 41
x oi CX
Ol <~> in ^5 O O
C CD X
3 "O O -a u
O O O Ol 5 «B l/l
Oi £ r- 0>£ t. X
3 «-> 1. 4-1 4-> --V
^ 3i *i 3 4J X O
^
41 4->
L.
4J 41 O
X V
4J » 1. in
u > in e 3
141 8. fo,z
a. <- $1-0
ui w* *rt «/» wi
41 « O) 4) 01
*J -W ** ^» «M
i i i i i
.
5 X u -*
o m £ " C O C
o o o x -o o -o ox
O "O <~> JO COO MO J3
mv CIO -D in 4-> uo
xn o « o oi o x oi
t. 4J k. X
4J O 4J 41 4J
£ ^ ^
X «-
4-.CH- 4J 41 O
o "" ^ t L. in
»- U C O 4J Ck4J
x m IB > m U O «
w c in Q O - *>
cu T3 cj e > e 3
CLE1*1*
V
^
c
£
Ol
i
«t c
4J
41 m
* §
u
Ol
Z 0
41
£ -O
* <
<. u
VI
fc Ol
29
-------
^
o
9)
_
_
^
O
0
c*
LU
CO
*
«/»
A
5
u
01
1
u.
Method
u
Ol
i
IB
IB
a.
01
Ol C.
e 3
« t.
(/) CL
§
2
IB
U
o
01
1
m in in
*» 4J 4->
VI VI VI
ai 01 01
i i i
O 4J
§5«B u
UJ O IB
Ik u O O *>
e IB cs oc x
>i C Ol
c j? -o -5
o jo c 5 01
I/I f IB J= >
*> 4-> 5 *> e> i- v> vi e
4J U
5 c o oi >, x ai
f J= JT C « IB
* 2-
o
, L.
Ol O
Ol
we
3 U IB
*J I/I -^ «
U CO E O>
IB U Ol L. O
O. O. «/> O Ck
^
I*
JC
p *<
2JI
^12
"o tn z
S *" ° "S
C. Ol IB
** JO Ol C l>
vi JB b. e 01
fu a. -^
S*3 C o
Ol U * O
L. » e
Ol «J Ol » IB
3 U CD JC C Ol
IB u ,
»- Q.J3
01
4J
JS
e
> in
g|
UJ IB
Ol
I,
c^ o
Ol 01
0 C Ol
JJ "c C ^
23.fScS
O t. « k. >
» o e
m
in
01
5
&
"§
S
c
8
01
IB
*3
U
L.
£
?
i
e
SI
m ja i.
c 01
J* IB
U U <
IB 0.
** 1^ UJ
tf> 0 X
Ol
VI IV
S.3
U
*> IV
V) Ok
^
e
o
2
S
O
*j
fe
ev
1
"i
I
i,
1
Oi «
01 VI
§
<»
x o
«
£ 1
4JI
IB
«-
O
VI
^ ^ *^ ^ Vi 00
D Ol
0) Ol O 01 41 "D H
O U U U U
e e e e vi e
£Ol « Ol Ol k. Ol
U OR U <- Ol k
Ol 01 Ol Ol *J 01
01 01 vi Ol Ol ~ Ol
at ce < ee ec u. OE
« J3 u "O 01 »- Oi
30
-------
TABLE 10. VOLATILE ORGANIC COMPOUNDS ROUTINELY
ANALYZED BY GC/EDC AT THE CRF
Methylene chloride Trichloroethylene
1,1-dichloroethylene Benzene
1,1-dichloroethane 1,1,2-trichloroethane
t-l,2-dichloroethylene Hexane
Chloroform Bromoform
1,2-dichloroethane Tetrachloroethylene
plus Tetrachloroethane
1,1,1-trichloroethane Isooctane
Carbon tetrachloride Toluene + Heptane
Bromochloromethane Chlorobenzene
1,2-dichloropropane Octane
t-l,3-dichloropropylene
Analyzing one composite sludge sample, the composite kiln ash
sample, and all scrubber blowdown samples taken upstream of the
water treatment carbon bed for the 8 EP toxicity trace metals.
Subjecting one composite sample of each waste feed and a composite
kiln ash sample to EP toxicity extraction (Method 1310,
Reference 4) and trace element analysis
Subjecting one composite waste feed sample to ultimate analysis
Analyzing all VOST samples for the 21 volatile organic
compounds visible to the ECD and routinely determined at the
CRF (see Table 10)
Ultimate analyses (C, H, 0, N, S, and Cl) were in accordance with
approved ASTM methods as documented in Reference 5. Waste feed and kiln ash
were sonicatlon extracted in accordance with Method 3550. Scrubber blowdown
were extracted in accordance with Method 3510. All resultant extracts were
be concentrated and analyzed for PCBs via direct injection GC/ECD by
Method 8080, and for the semi volatile organic priority pollutants by
31
-------
Method 8270 except those for scrubber blowdown taken downstream of the carbon
bed which were only analyzed for PCBs.
One composite waste feed sample, the composite kiln ash sample, and
all scrubber blowdown samples taken upstream of the carbon bed were analyzed
for the volatile chlorinated organics by purge and trap 6C/ECD in accordance
with Method 8010.
Trace element analyses were performed by atomic absorption in
accordance with the 7000 series methods. Appropriate acid digestion of solid
samples were performed as needed by Method 3010. EP toxidty extraction and
extract analyses were performed for one composite surface oil and lagoon
sludge and for individual test samples of soil and soil plus sludge. (See
Table 5). Composite kiln ash samples were also subjected to EP toxicity
analyses.
MM5 train samples (filter catch, sorbent resin, condensate, and
impinger solutions) were Soxhlet extracted in accordance with Method 3540.
Resulting extracts were analyzed for PCBs via direct Injection GC/ECD by
Method 8080 and for the semi volatile organic priority pollutants by
Method 8270. VOST traps were analyzed for halogenated volatile organics by
thermal desorption, purge and trap (Method 5030) GC/ECD in accordance with
Method 8010.
32
-------
^^
^^
0|
5
i
co
Li_l
&AJ
0
0
<
1 . 1
^_
<
cc
z
0
CO 1
00 |
5-
A>
UJ
CO
^J
o.
1
^*
t 1
ij !
CO
X. 1
LIB k
^^ 1
1
1
t
1
1
1
1
|
|
1
I
m 0)
CM en
i ^^
c.5
O 0
i Vt
JC «r-
u -o
O
«c o>
.C
C 3
0 (-
*^ ^J
(/> I/I
- 4J
uj W
^_^
^f
in
£!
»
0
*^I
0
o
^^
^
tt)
0)
u.
UJ -
o e 4J
0) C
*J Ol CO
£ ON 0
Ol TO ^
i- S_ OJ
oi 01 a.
X > ^*
n
£
c
V
UJ U
O (-
a.
^
QJ (/)
IB O)
OC ^
C
o
u c
c ^ ^
o
0
0) (/>
^^^ ^r
ac e
c
o
^J ^^MK
^^ N^^
a> E
c
0
o
+ *
V O
a>
Q.
**
O)
tf
*O
^g
^
^f
&*
^^
^^
O^
O ON 00
CO CM VO
ON ON ON
ON ON ON
ON ON ON
ON ON ON
O> CM VD
0 0
000
f» CM O
O ^ 00
CM CM «-i
00 00 lf>
co vo oo
. 1 1 < 1
CM VO O
OO Ol CO
CM CM CM
«* CM CO
U
IB
l^v
t-
c
o
o
ON^^
IB -^
_l O
O
ON
Oi
ON
ON
ON
ON tn co
00 ON 00
ON ON ON
ON ON ON
ON ON ON
ON ON ON
CO
ON 1 i I
O ** CM
O O O
000
CM ON CM
CO CO Lf»
^j.
CO CM O
00 O CM
O CM r-l
co *
r-. r» in
vo vo ON
*-4
»-l CM CO
^
^
0
co
CM
ON
ON
ON
ON
ON
VO CO
00 CM «
ON ON 00
ON ON ON
ON ON ON
ON ON ON
ON ON ON
ON
CO ON r-..
O «-" CO
O O O
O O O
ON CM CM
a- oo
f~ VO P^
f*» * CM
CM CM CM
O O O
CM CM CM
«-« CM CO.
0)
O>
o
3
oo
o>
r^.
ON
ON
ON
ON
r- 00 O
P^ P^ 00
ON ON ON
ON ON ON
ON ON ON
ON ON ON
i I «- « i
CM CO ^J-
O O O
0 0 O
^^ CO ^*
« r*. O
H
co
1-* ON <*
ON CO O
O <-H CM
VO
co o o
r*. CM p^
f*4 t 1
-H CM CO
C/t
^.
CX Q)
o>
f 3
O
oo to
F
1
1
1
1
I
1
1
1
!
R
i
r
i
*
J
f
*
»
ii
*
i
i
»
!
|
F
!
|
i
i
i
i
i
i
t
34
-------
SECTION 4
TEST RESULTS
This section summarizes emission results and PCB destruction efficiency.
Details on sampling and analytical reports can be found in Appendices D
and E, respectively.
4.1 PCB DESTRUCTION
Table 11 summarizes PCB emissions (as Arochlor 1254) and DE for each of
the 12 tests performed. On the average PCB emissions were highest for the
lagoon surface oil and lowest for the soil and sludge waste streams when
incinerated individually rather than in combination. DE calculations
indicate that a PCB destruction in the 99.992 to 99.9998 was achieved during
these tests as measured in the scrubber system discharge flue gas. Thus
destruction performance measured at this location failed to meet the
requirements under TSCA regulations for 99.9999 percent efficiency. As
reflected by the relative emission rate for each waste feedstock, the lowest
DE values were recorded for the lagoon surface oil (mass weighted average for
the three tests at 99.9944 percent) and highest for the sludge (mass weighted
average for the three tests at 99.9992 percent). Figure 6 Illustrates the
relative levels of DEs achieved. In this figure the ordinate (or y-axis)
represents the number of nines 1n destruction efficiency, thus a value of
four signifies 99.99 percent DE.
33
-------
PCB DE SUMMARY
99.9999
Test 1
LACOON on. 1771
son.
Test 2
17771 SOL+SUJDGE
Figure 6. PCB DEs.
35
-------
Figures 7 through 9 illustrate attempts at correlating key process
parameters (excess Q£ at the afterburner exit, gas flowrate, and mean
temperature) with DE. In general, no definitive trends are evident from
these graphs. Gas flowrate shows the greatest effect on DE with decreasing
PCB destruction as gas flowrate is increased. Gas flowrate was increased
during tests tests primarily by increasing the amount of excess air as
evidenced by increased 63 concentrations at the afterburner exit. Some of
this excess air was the result of air infiltration through the kiln seals
thus directly affecting the gas residence time in the afterburner chamber.
Also note that the highest DE volume was recorded when the average oxygen
concentration at the afterburner exit was 10 percent, the highest setting
during these tests. This data point would suggest that very high excess air
levels are also conducive to high levels of PCB destruction.
When the mean gas temperature; defined as the arithmetic average of the
kiln and after burner temperatures, is normalized by the actual gas flow rate
(essentially inverse residence time) a more visible trend is observed as
shown in Figure 10. If the high DE at high excess 02 data point is
disregarded, extrapolation of these data would suggest that at a mean
temperature of 960°C (1,760°F) a gas flowrate of 1.18 m3/sec would be
required for 99.9999 percent ORE. This gas flowrate corresponds to gas
residence time in the afterburner of about 2.0 sec at a temperature of
1,200°C (2,200°F). This is about twice the actual residence time achieved
during these tests.
Scrubber blowdown and kiln ash were also analyzed for PCB content.
Concentrations in the blowdown were below detection (<1 ug/L) for each test
sample. In the kiln ash the concentration was also below detection
36
-------
"5
P
s
£
1
5.9 -
5.8 -
5.7 -
5.6 -
5.3 -
5.4 -
5.3 -
5.2 -
5.1 -
5 -
4.9 -
4 .fl -
4.7 -
4.6 -
4J -
4.4 -
4.3 -
4.2 -
4.1 -
O
0
D
a
° a
a
a D
a
o a
5791
EXCESS 02 (PERCENT)
Figure 7. PCB DE as a function of excess 03.
37
-------
5.9 -
5.8 -
5.7 -
5.6 -
5.4-
5.3 -
5.1 -
5 -
4.9 -
4.7 -
4.6 -
4.5 -
4.4 -
4J -
43. -
4.1 -
4
a D
1.2 1.4 1.6 1J 2 2J 2.4
GAS FLOWRATE (ACM/SEC)
2.6
Figure 8. PCB DE as a function of gas flowrate.
38
-------
5 J -
5.7 -
5.6 -
5.5 -
5.4 -
5J -
« 5.2-
o
P 5.1 -
3 5-
O
3 4.9 -
' 4.8 -
4.7 -
4.6 -
4JS -
4.4-
4J5 -
4 3. -
a
a
a
D
_
u D
a
D 0
a
a a
1.6 1.64 1.68 1.72 1.78
(ThouMnds)
CT(K]lN)-»-TCAfTER8)]/2, *
1.8
1.84
1.88
Figure 9. PCB DE as a function of mean temperature.
39
-------
99.9999-
99.999-
99.99-
"+J"
^ 9.9 _
o>
Q.
99.
90 -
0.5
PCB DE vs. temp/flowrate (F/ACM/SEC)
Linear regression
Coefficient = 0.82
8.7
0.9 1.1
(Thousands)
(Tkiln * T^/ACM/SEC
1.3
Figure 10. PCB DE versus mean temperature/gas flowrate
40
-------
(<0.4 ng/g) for all samples except for the composite ash from the surface oil
test which revealed a concentration of 2.55 ug/g.
4.2 VOLATILE ORGANIC EMISSIONS
Tables 12 through 15 summarize the measured concentrations of volatile
organics in the kiln feed material and in each of the three discharge
streams, namely the kiln ash, scrubber blowdown, and flue gas. Most of the
volatile organics were detected in the lagoon surface oil in concentration
ranging from about 3 to 68 ppm by weight. The kiln ash and scrubber blowdown
streams were found to be mostly devoid of volatile organics with the
exception of methylene chloride in the scrubber blowdown. Flue gas
concentrations of individual compounds ranged from as low as 0.5 ug/dscm to
1,730 ug/dscm. Highest concentrations were generally reported for methylene
chloride.
Tables 16 through 19 list corresponding mass flowrates in ug/sec for the
volatile organic compounds. Typically, emission rates of benzene, methylene
chloride, bromoform, and tetrachloroethylene were higher than those
accountable by the waste being incinerated. Except for bromoform, these are
common PICs. Highest total emissions were recorded for the surface oil test
due primarily to highest average emissions for benzene and methylene
chloride.
4.3 PARTICIPATE AND HC1 EMISSIONS
Table 20 summarizes particulate matter concentration at each flue gas
location tested. Not surprisingly, the highest emissions were measured
during soil and soil plus sludge tests. However, scrubber discharge
concentrations were well below the hazardous waste Incinerator regulatory
limit of 180 mg/dscm for all tests.
41
-------
I/O
O
ec
to
g
oo
o
Ul
o
(/)
Poo
oo ui
0*~
O _l
oo
<0
VI IB
j i^
a 41?
f U U
k c vi
»85
s, si
* Ol
Ol
VI I
:»
VI I
oe u.
O ee
ui oo
SO
-its
s I
VI I
Ol r»
£ .
VI
e
o
0
u
o
in 01
Oi lf> I
e** ***
CMCSJ
1C
01 m
ggoogoooooooooogo ggggg
C\J
CM
g
Ol
*>l
C 01 Ol
22S
4J k £
4) O *»
'=1
L.£
O U
2oScl S°
Ok"
g*
OIUUV«-U*> U 'O
£
01
cl
* O I
si'
z°
o!e
1)
X
U ^ «- U
- i o
CVJI.-D
1 O 1
»M^CM
!£
-*> «J
M L.
« b.
(J (B
£
|
5g
I £ Ol
U Ml
TS
i oi'i-
MCO
- * §
x O
01 I.
- X CD
Ol Ol
II
>>»>
f S
Sfe
:»- u
U k
k 01
01
22S
41 41 Ol
iii
Sii
01 k k k
»i o e o
;§
1C
t I
V CM
I I
»H>
3 O
Of
recovery
Isooctane
O Ol
!i
o e
01 O
C 4->
e!
*> k
U k
41 O
J-> U
o
gt
o
*^
01
^
Ol
«-> Ol
Ol Ol
I .-:
c we
c o o
I/I «->
^lc^
01 Q. a. o
VI -
Q. Ol *> *
oi * « k u u
<-> o k k 01
W «-> O w 41
Ol U Ol >
4-1 a. 01 -oo
01 o. 01 vi ^
a * k 01 c «
^ o *"* v 3
c c k >.o-
£1/1
41 O
X O
5 «
*J *J ^
o o at "on
o o
e c
Ol 01
at
9>
§
VI
k k
01 VI
> «
>»
%i
42
-------
O
CD
UJ
e/i
O
UJ
o
o
u
in E
4V O O
t. e vt
o -o
> o o^
ot
01 VI 3
oi 3
JO «- -v.
4V Ol
«- = C
41 Oli
jQ O
J2 C
3 O
k u
u
vi co
oi
VI 00
Ol
VI CO
at
VI I
oi eo
4J m
I/I I
Ol CO
Ol 00
O
O
« !
ocie
O
UJ OO
_ILU
oo
I
^§
u
k 4V .
Ol 10 Ol
4V k JK
ir
dw>
O> oj O O « I ir-*QOO
n zz in co z z z
O I O I
Z r- Z Pvl I
4 IO OJ
e 4
... 2iiii
i
4 4
a evi -«
iiiii
iiiii
iiiiiiiiiiiiiiiii iiiii
s ±
« 41 01 X
01 41
e oi oi
)
c
ill
I
10
i
o
in
i
10
o
O< IO
Oi . o i. 4V jc ee aikkk * «
____>..... _ _ .. .. u^ NOOO m x c
L. VI
4V 4V
41 41
if
k O
o c
C in
41 41
u k
41 O
ai
o
c *
>
01
* e
"S «
O 4V Ol
S3 G?
^§ 2.
O C
e 4-» c
<« o o
« o e JD
oi ex cv o
< vi ^
o jo a. oi 4V
U 4V O 4J 41
tl u 41 »
oi e m
2-,
552
l«>
':*
O denotes not <
denotes not
rage over th
pairs,
assume
c Analyz
43
-------
CO
o
cc
CO
ea
o
CO
o
UJ
o
o
UJ
CO
o
ore
to
o t
-i CO
Z UJ
O UJ
o
UJ S
CO
oo
UJ
CO
U O
if?
! **i
4} «» a.
v>«<***
Is
VI CO
.4)
Sot
VI I
41 00
l
0«
g
u
CM
I/I
VI « 01
« k J«
o
o
punodMOO
CM
O O VO >
c a.
£ 1.
uM
41
S-el
k e
£.2
i. >>
I
e
)>
ee
41 »
«uov«-u4J o -o o 41
__ ,- i o i c -o i e
U
£ 4>
we
41 u
5 O
i- -
*O£
C wl
«l 41 »
c e c
41 4> «
41 41 41
« £ £ 4
eeao
41 I. I. b
NOOO
i »
CM I
«e en
CM O
i i
ao te
CM
in
i i
CM «r
to tf)
??
!--
"O
O 1
« tvi
O
-£
i.
O -O l-l £
I 1 .U
5 CM
u
L.
*
i 4i»-uuco -^
** 41
"
£
e o
*> (J -- O OB
4>cMcg«**4ik'Q-o CM « 4J k O
S- 41 k 41 ~ ~ ~
X OS I-
O
t-o
e e
41 e
g"
^1
o.
o v>
u k
41 O
*j u
41
4J 3
g;
41
J-> £
>. w
1e z
e
o
3s
"5
J^ e
Is
u
41
O *J
ai ai
- O
« e
41
Ol
'il
^ £ a.
41 "O «
I «
I *
*J
u
41
k k
4J O
U
41
41 VI
C A
. O
O O
e e
VI VI
41 (i
*> 4J
o e
c e
41 4)
10
k >
41
> >
e 6
II
Is
£
e:
k k
41 >-
vi i >»
VI "»
^ c
u
44
-------
0
v«^
CC
rr>
X
t
CC
O
i .
oo
0
h-
cc
^^
UJ
z-
0
u
W"»
5
^_
^*)
H-
>
0
o
o
s^
cc H-
o to
1 1 1
UJ ^
_J
1-4 UJ
I-CS
«r o
_J 3
0-1
>>
'
UJ
CO
t
c
.a* O
O -
«0 4->
*J «
(/» u
4J 01
vi a
aj ID
01 01
U 01
Ol 3
^C ^
c
jV
o c
O O
O *> "~l»
^ L. *x*
Sell
jC U
.O C
3 O
(- U
U
f^
Ol
I
CM
4V 1
01
h-
^
VI
O*
en
V* 1
OJ 0*
^
INJ
4^ »n
%fl i
41 9t
h
^^
CO
4V CM
VI 1
Ol CO
*~
I
VI ^ Ol
C C Ol
01 t
u ^
** 0
5 o
01 « O>
4->l-^
i e oi
u e
Ol O
14. U
Compound
ro
co o v o
CM Z Z
-iii
1 1 1 1
1 1 1 1
u
ao e o o
n z z z
< o o o
^z z z
mzzz
: : i i
zizi
01
yiene chloride
dtchloroethylene
dichloroethane
2-dlchloroethylen
4C It*
I----2
CM
en o o o
CO
vn o o IA
i i i i
i i i i
o o a o
Z Z Z Z
§_ _.
Z Z
zzzz
: i ; i
iSiS
rofora
dichloroethane
1-trlchloroethane
on tetrachlorlde
O 1 '£>
£
CM a o a a
»
m a a a a
z z z z
IIIII
IIIII
iiiii
a a o a a
z z z zz
zz z z £
! ! ! ! !
f^.
"ziii
ene
robenzene
dichlorobenzene
dichlorobenzene
dichlorobenzene
3 O t > 1
"32 '""^
-* CM
VO O
1 1
CM O
a S
CM
VD CM
~ t
^§
VO -«
1 t
1 1
t 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
«
g^
a'
4V Ol
-£§
^ Ol 4V 01
< > u e
c o o *>
L. U O 4J
oi oi in u
4V U O
e
0.
4V
41
L.
§
^
41
C
O
C
~
o
01
o
1
4V
Ol
^
c
*
"C
Ol
"u
VI
Ol
Ol
c
^
£
JT
*
D
41
^
|Q
e
*
VI
^.
tg
01 0.
"si s-
4V U U
4-1 "5. 41
01 Q. 41
o « c.
JC
4V 4V 4V
e o
cc s
VI VI >
41 01 O
4V 4V
gio.
Ol « ID
^ -o i-
01
§ !£
ID 40
VI
4V
u
41
4V
C
O
c
o
4V
o
§
ex
VI
41
L.
L.
O
U
VI
41
ID
01
S
o
41
S
O
a
i
VI
VI
ID
I/I
S
^J ol
e oi
§e
«
e i-
o 4V e
*J O
E
o "" u
a. c jo
1/1 O
01
<- 4V
VI -0 O
41 J3
C *
^ " 01
> Ol 3
S«
O >
_J 4V
o
0 Ol
. 41 *M
VI t _>,
I/I f
ID VI C
Q. «D <
O
45
-------
^~»
J
o
UJ
o
<
U-
Gj£
?
to
"as
0) 4J
<0 0)
L. +J
>
<:
^^
u
A
o ^
0 a
o
^i
_J
^^
CO
UJ
r*<*
^.
CM
CO
4J> CM
(/> 1
0) »^
*"~
i
i
0)
2* JJH
UJ ' JM
^~ k «W
o 5 *
"* J <
o
UJ
u.
o
^^
c
o
O£
O
UJ
^"^
H"~
^C
<=!
i i
t i
4-> CM
U) 1
41 r».
!"
"0
O> ff O
U- f- O>
4J O O»
*o c * *
^ '
VO
fH
UJ
CO
^t
H~
c
o
Cft Ci
«J" Z
f*.
O
CO Z
o
0 Z
^^
O 0
z z
0 r^
Z CM
O)
c
0) CV
T3 f
O *J
»- 0)
£ O
U fc.
*5
C J=
0) U
^S ^3
JC 1
^* *H
&
9C «-H
^*
^^
O 0
z z
(C
O 0
Z Z fH
CO
O 0 f-H
O O 0
z z z
O <-H O
Z «3- LD
4)
c
Ol
0) Ik)
C £
hloroetha
Ichloroet
orm
O T3 ««-
f 1 O
O CM fc.
1 « O
1 £
«-i 4J O
CO
CM
O O
Z CM
0
fH O
CM
fH
if*
CO O
z «i-
^
<£>
CM C*
O
1 Z CM
CM
CM
CM C* O
cri fH cr>
CO
o>
c o
o
o
z
o
z o
^^
fH
, g
O
fH
0 0
z z
O CO
Z CM
as
o o
Ichloropr
roethylen
^3 O
1 f
PO JC
« ^
^ *9»
1 fc.
4J h~
00
o ^
^ o
CM Z
O CM
z o
Z CM
f^.
q^
O «-«
«i- zco
CO
0
co
fH 00
00 Z Z
fH O CM
CM Z CO
fH
o>
c
to
4^k
richloroe
Q) ^J
c i o>
4) CM C
N <«
C f- X
O) 01
CO f-i Z
ir>
fH CO
O fH
O IT)
Z
CM
ID
m co
O fH
1
VO 1
CO fH
O fH
^^
o
Z fH
O 0
^
o>
a>
rm
loroethyl
O JC
«*- u
§fB
L.
j^l
fc. 01
CO t
o
CM
CO
CO
CM
fH
1
r»>
fH
CM
^4
|
o
00
o
o
in
CM
O)
*o
chloroeth
IQ ft)
c c
4J ft)
0) 3
'o
f-
[
1
1
1
V
1
V
I
1
!
s
*
a
(
i
1
46
-------
o
00 |l
~>
^:
Li I 0
o
on »
00 {I
~ I
^
LU I
O I
z »
O li
LU
Ljj K
o
z
e> i
a: r
O i
I
UJ »
J I
r* »
§!
J I
CD »
in
s
a>
0) *J
Ol 00
0)
CO
i
00
0)
CM
IT)
4-> I
00 00
0)
en I
O) 00
0) O
>4- »- a>
j* >
0) *^
*J O Ol
i/> 4J a.
o
^3 ^^ ^5 ^^ ^2 (2
O O Z Z CM -i CO Z Z Z Z O
I
O O ft
o ir> vo
ro o ^r ro ^
O CfilOCMCTi O O O
O O I I O O O O I O I I
ID «-l
CO
O
:
O
CM
IT>
CM
00
uo
CO
OO
O 0 O
CM
- CM
O O «* CM «-*
«3
O f^ «( po OOOCM
^ I O O O I O O O O I O I I «
i-cn CM
i CM 00 m
r>H
O O O O
ooooooooooooooooo
zzzzzzzzzzzzzzzzz
a>
at c
CO) 0) O)
O) 0) C 0) 0) C
C r 1C T3 C O) >> IQ
a) a> a> >> a) .c i- (o c a. £
o c ^ C4Jb.£
"Z J= J= 0) £Or-0)OO.O) O
O !-> 4-> O 4-) t- ^ g t- O t.
t o> 0) L. a> o u o a. t- >> o
J=OOO O 10 L. O O £
oc_Ur i_ .e t_ o «- *J £
OO£EOU4Jf O£0) W
0) i^ '^ O ^ ^"^ * Q) ^ P«» O O *r~
0) 0)
c c
0) H- oo « z eo i
t- ai 3
*o
J5 *^ AM 41* I
47
-------
LU
C9
O
CO
co
o
co
LU
i. I
,« i
CO
co
3 i
o
LU
O
C£.
00
oo
te
0)
to
u
0)
o
a>
I »
I £.
[ (O
i §
t >
* J2
0)
L.
0)
(/> I
O) 00
CM
I/I I
0) 00
CM
> I
0) OO
o) e *-*
Q) *~ O
<4- f Oi
^ I/I
O) ^^
4J O O>
CM
000
Z ** Z O VO
O O
CM
VO
CM 00 VO
in
CM O -* »-«
o
vo
o o
O O i
CM CM
O O i
«-« z z in ;
i o o o r^ o ro i u>
Z Z Z Z i
O O « CM
O
CM
CM
O O O
cr z z z
in
CO
o
Z O r-
i O
O r*. z
CM
O
vo
i
fI «"H O
in oo
00 O*>
O «-H O O
a o vo c i i
z z z CM co m
o r^ co
o o
CM
OOOOOOOOOOOCMOOOOO
r-l VO VO
o
VO
0)
o
- >»
^5 ^^
a>
f O
u t-
o
0>
0)
*>*>>
£S
0) «-
o o
0)
c
w a> a»
c c
x «
re ai o *J Q. t_ c a)
J= O r- 0) O CL 0) O
VOUOQ.L.T, O
0> IQC-OOJE ^-
^ Qj
C C
O) <0
S £
r- u e f i- a> .c u
J=-^-O^t-*JO£-^l-
U "O >*- t> AEI O M
«-<«l^-CM«I L. 5 CM tI -^ Ci-<
i .c i i. a;
o
a> «4-
O
a> t.
o o
0£
o
f 10
O L.
t- 0)
48
-------
TABLE 19. VOLATILE ORGANIC FEED AND EMISSION RATES (SLUDGE)
Average emission rate (yg/sec)
Compound
Waste feed
into kiln
(ug/sec)
Test 1 Test 2
8-28 9-3
Test 3
9-4
Average all
tests
Methylene chloride NO
1,1-dichloroethylene NO
1,1-dichloroethane NO
t-l,2-dichloroethylene NO
Chloroform NO
1,2-dichloroethane 140
1,1,1-trichloroethane NO
Carbon tetrachloride 630
Bromodichloromethane NO
1,2-dichloropropane 250
t-l,3-dichloropropylene NO
Trichloroethylene 120
Benzene 21
1,1,2-trichloroethane NO
Hexane 60
Bromoform NO
Tetrachloroethylene + 160
tetrachloroethane
Toluene 47
4.9
ND
NO
ND
2.6
ND
ND
2.3
ND
0.63
ND
1.6
3.8
ND
4.2
ND
3.9
2.3
13
ND
2.0
ND
4.2
ND
ND
ND
ND
0.32-0.41
ND
0.95
3.0
ND
1.0
ND
ND
1.3
9.0
ND
1.0
ND
3.4
ND
ND
1.2
ND
0.50
ND
1.3
3.4
ND
2.6
ND
2.0
1.8
49
-------
TABLE 20. PARTICIPATE EMISSIONS
Test
Afterburner
exit paniculate
(mg/dscm)
Scrubber discharge
paniculate
(mg/dscm)
Stack
paniculate
(mg/dscm)
Corrected Corrected Corrected
Measured to 71 02 Measured to 71 02a Measured to 71 02
Lagoon surface oil
Test 1 19.7 17.9 0.5 0.5
Test 2 8.9 8.3 <0.3 <0.3
Test 3 13.6 13.1 <0.2 <0.2
Soil
Test 1 259 279 11.9 12.8
Test 2 47.6 48.3 16.7 16.9
Test 3 52.2 51.1 9.9 9.7
15.7
11.5
21.3
18.5
13.7
26.1
Test 1 24.8 31.9 6.2 8.0 12.2 12.7
Test 2 33.0 31.2 7.4 7.0 9.7 12.5
Test 3 19.3 18.3 6.0 4.7 38.1 45.7
Soil plus sludge
Test 1
Test 2
Test 3
14.1
216C
98.4
15.8
224
97.0
8.3
9.3
126
9.3
9.6
124
30.0
134
146
39.6
166C
182C
02 not measured In the scrubber discharge; correction assumes scrubber discharge
02 1s the same as afterburner exit 02.
bNot measured for these tests.
cData suspect due to unusually high proportion of paniculate catch 1n the probe
rinse.
50
-------
HC1 emissions, summarized in Table 21, indicate afterburner exit
concentrations in the range of about 5 to 31 mg/dscm for all tests. The
corresponding mass emission rates at this location of 0.007 to 0.0034 kg/hr
(0.015 to 0.075 Ib/hr) are also well below the hazardous waste incinerator
regulatory limit of 1.8 kg/hr (4.0 Ib/hr). Stack emission rates measured
downstream of the scrubber were all below detection limits.
4.4 TRACE ELEMENT EMISSIONS
Waste feed and discharge streams from the incinerator were analyzed for
arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver.
Metals analyses of leachates were also performed to determine whether these
would be considered EP toxic hazardous wastes. Only barium, chromium, and
lead were consistently found in each of the samples analyzed. Trace amounts
of arsenic and cadmium were detected in selected samples.
Table 22 summarizes the concentrations of most common trace elements.
Lead showed the highest concentrations in the waste feeds with nearly
3,000 ppm detected in the lagoon surface oil. The higher concentration of
lead in the scrubber blowdown solids compared with the kiln ash, during the
soil and soil plus sludge tests, clearly shows that lead partitions to the
flue gas particulate rather than in the kiln ash and 1s eventually caught in
the scrubber. Both chromium and barium showed nearly equal concentrations in
the two discharge streams.
Table 23 summarizes barium, chromium, and lead concentrations in
each of the leachate samples. A11 measured levels were less than 1 mg/L,
well below the respective EP toxlclty limits.
51
-------
TABLE 21. HC1 EMISSIONS
Test
Afterburner exit HC1
Stack HC1
ppm ppm
mg/dscm dry Kg/hra mg/dscm dry kg/hr
Feed Cl
content
Lagoon surface oil
Test 1 9.6 6.3 0.015
Test 2 12.6 8.3 0.024
Test 3 17.3 11.4 0.020
Soil
Test 1 30.9 20.4 0.016
Test 2 16.8 11.1 0.016
Test 3 17.8 11.6 0.024
Sludge
Test 1 <4.9 <3.2 <0.007
Test 2 7.2 4.8 0.011
Test 3 5.7 3.8 0.009
Soil plus sludge
<9.6 <6.4 <0.010
<8.1 <5.3 <0.007
<8.1 <5.3 <0.009
<9.8 <6.5 <0.013
<9.7 <6.4 <0.012
<8.3 <5.4 <0.013
0.10
0.04
0.009
Test
Test
Test
1
2
3
17
23
20
.8
.2
.8
11.7
15.3
13.7
0
0
0
.026
.034
.026
<9.3
<9.5
<10.1
<6.1
<6.3
<6.7
<0
<0
<0
.010
.012
.011
0.06
aFlue gas flowrate not measured at afterburner exit; scrubber discharge
flowrate assumed for mass flow calculation.
bMethod 5 train not run at the stack for this test.
52
-------
TABLE 22. TRACE ELEMENT EMISSIONS
Test/sample
Concentration (ppm)a
Arsenic Barium Chromium Lead
Lagoon surface oil
Composite feed
Composite kiln ash
Soil
Composite feed
Average kiln ash0
Average blowdown solids0
Sludge
Composite feed
Composite kiln ash
Soil plus sludge
Composite feed
Average kiln ash°
Average blowdown solids0
2
<2
<1
<2
<60
<1
<2
11
<2
24
1,040
120
740
550
980
23
680
820
740
820
46
1,090
55
130
100
12
110
65
87
73
2,890
2,160
760
910
2,400
46
800
1,030
450
5,010
aNo mercury, selenium, nor silver was found in any sample; no
cadmium was found in any sample except the composite soil
plus sludge at 4 ppm and the blowdown solids from soil plus
sludge, Test 3, at 49 ppm.
°Average over three tests.
cAverage over Tests 2 and 3; Test 1 blowdown contained no solids,
53
-------
TABLE 23. EP LEACHATE CONCENTRATIONS
Leachate concentration
(mg/l)a
Test/sample Barium Chromium Lead
EP Toxicity Limit 100 5.0 5.0
Lagoon surface oil
Composite feed
Composite kiln ash
Average blowdown liquidb
Ml
Composite feed
Average kiln ashb
Average blowdown liquidb
0.33 <0.1
0.54 0.16
0.12 <0.1
0.45 <0.1
0.33 0.29
0*.23
0.70
0.46
1.3
Sludge
Composite feed <0.1 <0.1 <0.1
Composite kiln ash <0.1 0.17 <0.1
Average blowdown liquidb 0.41 0.17 0.1
Soil plus sludge
Composite feed 0.30 <0.1 0.12
Average kiln ashb 0.32 <0.1 <0.1
Average blowdown liquidb 0.37 0.31 0.12
aNo arsenic, cadmium, mercury, selenium, nor silver was
found in any leachate.
^Average over three tests.
54
-------
SECTION 5
QUALITY ASSURANCE AND QUALITY CONTROL
The quality assurance and quality control efforts performed during these
tests aimed at demonstrating that the rotary kiln incinerator system could
achieve a destruction efficiency of at least 99.9999 percent for
polychlorinated biphenyls (PCBs).
The parameters germane to DE determination were the amounts of PCB
entering (Q-jn) and leaving (Q0ut) tne incinerator system. Hence the QA/QC
effort focused on the measurements of the parameters that affect the incoming
and outgoing POHC. These QC activities will be discussed below.
5.1 MEASUREMENT OF QIN
The feed rate of Arochlor 1254 depended on the feed rate of the waste
material and the concentration of Arochlor 1254 in the individual waste.
The lagoon surface oil and the sludge were contained in a stirred tank
which sat on the platform of a weigh scale. The weigh scale had been
calibrated with known weights. The tank was connected to the pump by
flexible hoses. The readout of the weigh scale was located in the control
room. At nominal !5-tn1nute intervals, the weight registered on the weigh
scale and the corresponding clock time were recorded. The weigh scale was
accurate to 0.5 Ibs. The time was recorded to within 15 seconds. Hence the
feed rate of this waste material was determined by dividing the weight loss
55
-------
by the elapsed time between weight readings and is a highly reliable
measurement.
The PCB-contaminated soil and the mixture of soil plus lagoon sludge was
contained in preweighed 5.7L (1.5 gal) fiberpacks. The rate of feed was
determined by the cummulative weight or number of fiberpacks fed into the
kiln using the ram feed system over the duration of each test.
The concentrations of the PCB in the waste was determined by standard
EPA methods as discussed in Section 3 and Appendix B and were found to be
100 to 250 ppm by weight for the four waste materials used. Again, the
accuracy of these analyses is commensurate with the method capability.
5.2 MEASUREMENT OF QQUT
The amount of PCB leaving the incinerator was dependent on the flue gas
flow rate and the the PCB concentration in the flue gas.
Stack velocity measurement with a calibrated pitot probe during Method 5
sampling activities provided the data to calculate flue gas flow rate.
Strict adherence to the specified procedure ensured that the data quality
would conform to the method specifications.
Concentrations of the POHC in the various sampling locations were
determined by following standard accepted methodologies as described earlier.
For this test series, the analytical system, namely the 6C/ECD, was
calibrated with a blank at the beginning of each test day. After every four
injections, a calibration standard sample was injected to verify that the
system was functioning and responding properly.
An additional procedure was followed in an attempt to detect and prevent
cross-contamination of samples taken from the same location on successive
days. Following the probe sample recovery procedure, the probe was rinsed
56
-------
with a solvent which was then collected and subjected to analysis to verify
absence of contaminants.
5.3 VOLATILE ORGANIC SPIKE RECOVERIES
Spike and recovery studies for volatile organics were performed on feed
materials, kiln ash, and scrubber blowdown. Internal standards of octane and
isooctane were also included in these analyses. Results of these studies are
presented in Table 24. Internal standard recoveries were in the range of 89
to 107 percent for all spiked samples. With the exception of
1,2-dichloroethane, carbon tetrachloride and bromoform, which had recoveries
of approximately 145 percent, all recoveries from the spiked feed material
were between 93 and 108 percent. Kiln ash spike recoveries were in the 89 to
112 percent range, with the exception of carbon tetrachloride, which had a
recovery of 140 percent. Recoveries from spiked scrubber blowdown were all
between 84 and 116 percent with the exception of methylene chloride which had
recoveries of 104 to 213 percent.
Recoveries from VOST trap internal standards were presented in Table 25.
Recoveries were between 50 and 185 percent for octane and between 48 and
602 percent for isooctane with the exception of of the first series of tests
which had relatively poor recoveries between 5 and 1,560 percent. Recent
evaluation of VOST trap Isooctane recoveries from many test series has shown
that relatively poor and irreproducible recoveries for this compound are
common. In future, isooctane will no longer be used as an internal standard
for VOST analyses.
57
-------
TABLE 24. VOLATILE ORGANIC CONSTITUENT SPIKE SAMPLE RECOVERY
Spiked
feed
material
Spiked
kiln
ash
Spiked
scrubber blowdown
concentration
(% recovery)
concentration
Compound (% recovery)
Methylene chloride
1,1-dichloroethylene
1,1-dichloroethane
t-l,2-dichloroethylene
Chloroform
1,2-dichloroethane
1,1,1-trichloroethane
Carbon tetrachloride
Bromodi chl oromethane
1,2-dichloropropane
t-l,3-dichloropropylene
Trichloroethylene
Benzene
1,1,2-trichloroethane
Hexane
Bromoform
Tetrachloroethylene +
tetrachloroethane
Toluene
Chlorobenzene
1,3-dichlorobenzene
1 ,2-di chl orobenzene
1,4-di Chlorobenzene
Internal standard
Isooctane
Octane
94
106
99
96
94
147
93
144
98
95
94
106
97
95
108
145
105
100
97
96
95
99
102
107
concentration
(X recovery) 7-28
90
108
94
84
86
112
88
140
95
89
89
89
93
90
86
108
90
89
89
90
90
90
85
88
125
84
104
89
91
92
91
96
92
91
93
87
93
92
87
86
93
91
92
91
91
91
89
93
8-5
104
96
105
98
96
99
98
96
96
98
98
98
98
97
98
96
98
98
98
98
98
98
99
100
8-13
143
93
102
92
94
91
94
96
95
94
95
94
97
86
90
90
92
94
94
94
95
95
92
94
9-3
213
109
114
111
116
113
114
74
116
114
113
113
113
114
106
115
112
111
112
110
111
110
107
106
58
-------
TABLE 25. VOLATILE ORGANIC CONSTITUENT SPIKE
RECOVERY IN VOST SAMPLES3
Test date
7-21
7-28
7-29
8-4
8-5
8-7
8-12
8-13
8-14
9-3
9-4
Percent
Isooctane
404-1,560
134-684
114-189
66-602
64-138
69-172
52-75
48-62
62-67
64-146
102-161
Recovery
Octane
5-38
72-108
161-185
81-106
106-114
50-116
54-112
76-90
99-112
106-122
100-102
alnternal standards used were
Isooctane and octane.
59
-------
REFERENCES
1. Memo from W.J. Librizzi, Director, Emergency and Remedial response
Division to W.A. Cowley, Acting Director, Hazardous Waste Engineering
Research Laboratory, "Request for Technical Assistance Utilizing the EPA
Combustion Research Facility (CRF) for the Bridgeport Rental and Oil
Services (BROS) Superfund Site," February 11, 1986.
2. Lee, J., R. W. Ross, II, and L. R. Waterland, "PCB Trial Burn Report for
the U.S. EPA Combustion Research Facility Rotary Kiln Incinerator
System," Acurex Draft Report under EPA Contract 68-03-3267, March 1987.
3. Personal Communication, J. Pearson, Ecology and Environment, Inc.,
Buffalo, New York, March 1986.
4. "Test Methods for Evaluating Solid Wastes: Physical Chemical Methods,"
EPA SW-846, 2nd ed., July 1982
5. Harris, J. C., et al., "Sampling and Analyzing Methods for Hazardous
Waste Incineration," EPA-600/8-84-002, February 1984
6. Schlickenreider, L. M., et al., "Modified Method 5 Train and Source
Assessment Sampling System Operators Manual," EPA-600/8-85-003, February
1985.
7. 40 CFR Part 60, Appendix A
8. Hansen, E.M., "Protocol for Collection and Analysis of Volatile POHC
Using VOST," EPA-600/8-84-007, March 1984.
60
-------
APPENDIX A
SAMPLING LOCATIONS AND METHODS
Figure A-l lists the sampling methods and sample locations. Gas samples
were taken at the stack, the afterburner chamber exit, and the carbon bed
inlet. The stack samples were required to satisfy permit requirements; the
afterburner exit and carbon bed inlet samples were taken to provide
information on the PCB destruction efficiency and PIC emissions prior to flue
gas scrubbing.
The CRF staff performed monitoring of the flue gas for COg and Og with
continuous emission analyzers (CEAs) throughout the test period. Og and C02
were monitored simultaneously at the kiln exit, stack, afterburner exit, and
scrubber outlet locations. Volatile organic species were sampled with VOST.
A standard M5 sampling strain extracted samples for HC1 and particulate
concentration determinations. Semi volatile organic compounds were sampled
with the MM5 sampling train.
The following sections describe the various test methods, equipment, and
procedures used. Appendix D provides a summary of the sampling data for
VOST, M5, and MM5, and continuously recorded emissions.
A.I CONTINUOUS EMISSION MONITORING
Table A-l lists the CEAs, their operation principles and their
analytical range sensitivities.
A-l
-------
I -
s
*
Method 5
(Pirtlcu
b. M - <
91
* fc.
L.
II
i
O
o
o
o
t_
Q.
i-
1
ct
4)
4J
<
0) fc.
«
|A
1
w v* »
IH
It
A-2
-------
TABLE A-l. CONTINUOUS GAS ANALYZERS
Instrument
Bendix 304
02 analyzer
Species
measured
02
Principle
of
detection
Zirconium oxide
detector
Instrument
concentration
range
0-25 percent
0-10 percent
Known
interferences
High combustibles
Lead, antimony,
arsenic
Bendix 8903 CO/COg NDIR
CO/C02 analyzer
Infrared Systems CO/COg NDIR
CO/C02 analyzer
Theta Sensors 03 Fuel cell
Og analyzer
C02 0-10 percent None
CO 0-1000 ppm
C02 0-20 percent None
CO 0-2000 ppm
0-5 percent None
0-15 percent
0-25 percent
A-3
-------
Samples of combustion products were drawn continuously from the
afterburner exit and the stack. After passing through the sample
conditioning system which removes the moisture and particulates, the
combustion products were analzyed for 02 and C02« Figures A-2 and A-3 show
the sample conditioning system details for the afterburner chamber and the
stack, respectively.
From the afterburner chamber, gas laden with moisture and particulates
was withdrawn through a 61 cm (24 in.) long, 6.4 mm (1/4 in.) diameter
uncooled SS316 tubing. The gas passed through a Graham glass condenser coil
and was cooled by 7°C (45°F) water. The condensate was trapped and retained
in a 500-ml glass impinger. The cleaner dried gas sample then passed through
a glass fiber particulate filter and was pumped to the gas analyzers.
From the stack, the gas was withdrawn through a 61 cm (24 in.) long,
9.5 mm (3/8 in.) diameter uncooled SS 316 tubing. Since the stack gas was
saturated with water at about 71°C (160°F), it was passed through a water
drop-out glass jar to remove the condensate. Particulates were then removed
by a glass fiber filter. The sample was further dried by a 30.5 cm (12 in.)
Graham glass condenser chilled by 7°C (45°F) water. The condensate was
collected in a 500-ml glass container. The clean dry gas was then pumped to
the 02, CO, and C02 analyzers.
A.2 VOLATILE ORGANIC SAMPLING TRAIN
The VOST was designed to collect trace volatile organic compounds in
combustion product streams (7). The equipment used during these tests is
shown in Figure A-4. Essentially, the train consisted of:
An unheated probe. A 5.1 cm (2 in.) long glasswool plug at the
probe tip acted as a soot trap. The afterburner probe was Hastenoy
A-4
-------
S06O98V
X
0)
Ol
L.
o
I/)
I/I
^
I/I
C
TJ
(O
ISI
o
CM
f.
A-5
-------
9060-99V
82
: O>
« C
»>. O)
u Ol .
<- >>
0*0
in a.
££~
«£!£
» c
PJ O O:
~* U1
L.
01
1
H022Z
O
O
v£
«*. O)
r
* \ r
> ) L
r
\ .
>
gt
* ti
9
I-
5 ai
-xl1
*> cr.
*» *i c
"^S
Si2
VI
c
ai M
^ m
u o>
ai
i/i
in
ai *~
> v<
in
^- 10
ie ^>
> 01
at
.">.
O 9
Q.*>
U
1C
QJ
L.
O
t/i
01
V)
fa
o>
1/1
3
O
4->
c
O
CO
I
<£
CD
A-6
-------
ZOOO-^BV
c
t_
«£
0)
A-7
-------
C-76, 71 cm (28 in.) long and 9.5 mm (3/8 in.) diameter. The stack
probe was 316 SS, 61 cm (24 in.) long and 6.4 mm (1/4 in.)
diameter.
A piece of 6.4 mm (1/4 in.) diameter SS 316 interconnecting tubing.
A primary sample gas moisture condenser consisting of a 38 cm (15
in.) long and 6.4 mm (1/4 in.) diameter teflon-lined aluminum tubing
encased in a water-cooled 22.9 cm (9 in.) long PVC shell.
A 12.7 cm (5 in.) long SS 316 primary resin cartridge containing
1.6g Tenax.
A glass condensate catch reservoir.
A piece of 81 cm (32 in.) long and 6.4 cm (1/4 in.) diameter Teflon
tubing.
A secondary gas moisture condenser similar to the primary
condenser.
A secondary resin cartridge, similar to the primary resin
cartridge.
A 50 ml silica gel desiccator.
The VOST methodology in use at the CRF was designed for sampling
organics with boiling points between 40°C (104°F to 252°F). Three duplicate
VOST samples were collected daily on each test day. They were taken at
approximetely 90-minute intervals' in order to cover the typical 4- to 5- hour
tests. The VOST samples were taken for 20 minutes at a 1 liter/minute.
Nominally, 20 liters of gas passed through the Tenax resin traps.
Approximately 50 ng per sample train is sufficient for quantification of most
volatile compounds.
A-8
-------
A.3 EPA M5 SAMPLING
The EPA M5 train was used to sample participates, stack gas moisture,
and HC1 (4), Figure A-5 shows the sampling train which consisted of the
following:
A heated glass-lined probe
A heated particulate filter
Two impingers containing 0.1 N sodium acetate (for collecting HC1)
One empty impinger
One impinger containing 200g silica gel
M5 sampling in compliance with federal regulations (40 CFR 60, Reference 6)
was performed at the stack and at the afterburner exit.
A.4 EPA MM5 SAMPLING
The MM5 sampling train was used to extract semi volatile organic
compounds from combustion product streams (5). During these tests, samples
were collected over a 4 to 5 hour test period from the afterburner chamber
exit and the stack. The sampling trains for the afterburner chamber and the
stack locations differed slightly to account for the sample gas temperature
and moisture differences. Figure A-6 illustrates the train used for the
scrubber outlet sample location.
The MM5 train consisted of the following components:
A 1.2 m (4 ft) long glass-lined, heated probe/pitot tube assembly
with a 9.5 mm (3/8 in.) OD SS 316 nozzle
A heated filter 1n a 121eC (250°F) oven
A 30 en (12 1n.) long and 9.5 mm (3/8 in.) diameter OD teflon
interconnecting tubing
A water-cooled glass capsule containing 30g XAD-2
A-9
-------
Q.
-------
(.
4->
O»
T3
I/I
3
a>
A-ll
-------
A 4-liter glass condensate catch reservoir
A desiccator.
Prior to assembly, the glassware and all tube fittings upstream of the
condensate catch were sonicated in a 1:1 solutin of methylene chloride in
methanol. Subsequently, they were rinsed with 100 ml of clean solution which
was then extracted and analyzed by GC/FID to ensure that the fittings and
glassware were clean. Following assembly and prior to sample collection, the
trains were leak-tested. All connections upstream of the second condensate
catch were Teflon-to-glass joints or SS 316 tube fittings. After the
sampling was completed, the trains were again leak-tested.
During the sampling period, the sample temperatures downstream of the
probe, at the filter and downstream of the resin capsule were monitored and
controlled at about 121, 121 and 20°C (250, 250 and 68°F), respectively. The
samples were withdrawn at approximately 0.02 m^/min (0.75 ft^/min) for 4 to
5 hours. At this rate, about 5.4 dscm (200 dcsf) was passed through the
train. Upon test completion, the probe, interconnecting tubings, filter, and
resin capsule were disassembled, sealed with aluminum foil, and immediately
transported to the CRF analytical laboratory for sample recovery. All the
train components' internal surfaces exposed to the gas were brushed and
rinsed with a 1:1 solution of methylene chloride in methanol. The individual
rinse solutions, the particulate filters, the condensate, and the XAD-2 resin
were then subjected to a series of analysis procedures which are discussed in
Appendix B.
A-12
-------
APPENDIX B
SAMPLE RECOVERY AND ANALYSIS METHODS
The samples collected by the CRF sampling team were recovered and
analyzed onsite. This appendix describes the sample recovery procedures and
the analysis methods followed by the CRF analytical laboratory.
B.I SAMPLE RECOVERY
B.I.I VOST Samples
No special sample recovery procedure was needed except for capping the
resin traps to prevent contamination and storing them on ice prior to
analysis. The traps were immediately delivered to the onsite analytical
laboratory where desorption and analysis were performed on the same day.
B.I.2 EPA MS Samples
The CRF sampling staff recovered the samples from the EPA M5 sampling
train, following procedures in accordance with those described in
Reference 6. The following discussion is a brief description of the recovery
activities.
After sampling a post-test checks were completed, the probe was
disassembled from the train. The outside of the sampling nozzle and the ball
joint were wiped clean. The partlculate filter holder was removed from the
train and the glass joints were wiped clean. The subsequent recovery
procedure collected the following samples:
B-l
-------
The outside surfaces of the probe, nozzle, and filter holder were
wiped clean to prevent inadvertent collection of dust and
particulate.
The filter and the particulate cake were carefully removed from the
filter holder and placed in a labeled petri dish. The inside
surface of the front half of the filter holder was brushed with
clean, dry nylon bristles. The particulate removed with the
brushing was added to the filter in the petri dish.
The inside surfaces of the probe, nozzle, and filter holder front
half were rinsed with an acetone solution repeatedly until no
visible particulates were washed out. The wash was collected in a
clean, sealed amber glass container.
The silica gel was weighed directly in the impinger before and after
the sampling to note the moisture trapped. The silica gel was then
regenerated.
The condensate catch in the impingers was weighed and the condensate
color was noted.
The samples were then delivered to the onsite analytical laboratory for
chemical analysis. These analyses are discussed in Section 5.2.
B.I.3 EPA MM5 Samples
The CRF analytical laboratory staff recovered the samples from the MM5
sampling train in accordance with procedures outlined in Reference 5. A
brief description of the procedures is given below.
The sample recovery took place immediately following the conclusion of
each test as follows:
B-2
-------
The filter and the participate cake, in their unmodified state, were
carefully removed from the filter holder with forceps and
transferred into a desiccator for drying overnight prior to weighing
and subsequent Soxhlet extraction.
The 1:1 methanol/methylene chloride solution containing the
particulates washed from the inside of the probe and the probe
nozzle and the front-half of the filter holderthe outside
surfaces of these components were wiped free of particulates. The
inside surfaces were brushed with clean nylon bristles and rinsed
with the above solution repeatedly. The wash was volume-reduced in
a Kuderna-Danish apparatus, dried, and combined with the extracts of
other train components.
The XAD-2 resin in its capsule was quantitatively transferred to a
Soxhlet in which extraction began immediately.
The fluid volume and pH of the condensate collected in the
condensate knock-out vessel were measured and recorded. The fluid
was transferred to a separator funnel for liquid-liquid extraction
on the next day.
The 1:1 methanol/methylene chloride solution collected from washing
the train components between the fiber filter and the first wet
impinger was collected by repeatedly brushing and rinsing the
various components, combined with the above probe washes.
The silica gel 1n the fourth impinger was transfered to a clean,
sealed container.
B-3
-------
The unused portion of the 1:1 methanol/methylene chloride wash
solution to be used as blank was transferred into a clean, sealed
glass bottle.
B.2 ANALYSIS METHODS
The samples from the recovery efforts were subjected to analysis to
determine the amounts of Arochlor 1254, and other organic constituents
trapped in the resins and sample extracts. The following describes briefly
the analytical procedures employed at the CRF laboratory.
B.2.1 VOST Samples
Analysis of the VOST samples was performed in accordance with purge and
trap method (7). The Tenax-GC resin traps were thermally desorbed for 15
minutes at 180°C with organic-free nitrogen gas at a flowrate of 40 ml/min,
bubbled through 5 ml of organic-free water, and trapped on an analytical
absorbent trap. After the 15-minute desorption, the analytical absorbent
trap was rapidly heated to 180°C with the carrier gas flow reversed so that
the effluent flow from the analytical trap was directed into the GC. The
volatile volatile were separated by temperature programmed gas chromatograpy
and detected by a electron capture detector.
The list of organic compounds sought with this analytical method is
given in Table B-l. The primary focus of the tests was to determine the DEs
of Arochlor 1254, which is analyzed with MM5 samples as described in
Section B.2.3.
B.2.2 EPA MS Samples
The rinse materials collected in the recovery procedure were combined
and the entire aliquot was measured volumetrically to the nearest 1 ml and
quantitatively transferred to a tare-weighed beaker. The sample was
B-4
-------
evaporated to dryness on a steam table in a 140°C (289°F) oven for 1 hour.
After it had cooled in a desiccator, the sample was weighed to the nearest
0.1 mg. A. 200-ml aliquot of unused acetone was processed in the same manner
to account for blank weight gain.
The filter paper was transferred to a petri dish and dried in a 140°C
(289°F) oven for 2.5 hours and weighed to the nearest 0.4 mg. An unused
filter was processed in the same manner to act as blank.
The solution in the two impingers was measured volumetrically and
transferred to the CRF laboratory for chloride analysis by specific ion
electrode. The silica gel and the impinger were weighed to the
nearest 0.5g.
B.2.3 EPA MM5 Samples
The samples derived from this sampling method were analyzed for PCBs and
other semivolatile chlorinated organic compounds in accordance with
Method 8080 which used gas chromatography/electron capture detection
(GC/ECD). Samples were first extracted via separatory funnel liquid-liquid
extraction (Method 3510), sonication (Method 3550), or Soxhlet extraction
(Method 3540) as appropriate.
B.3 OTHER SAMPLES
In addition to the samples discussed earlier, samples of the waste feed,
kiln ash, and blowdown water were collected and analyzed in the CRF
laboratory. All PCB analyses were performed using direct injection GC/ECD by
Method 8080 following extraction in accordance with Methods 3540, 3550,
or 3510. Analyses for semivolatile priority pollutants were performed by
Method 8270. Trace element analyses were performed by atomic absorption in
accordance with the 7000 series methods. Appropriate add digestion of solid
B-5
-------
samples was accomplished as needed by Method 3010. EP extractions of
Individual waste material and kiln ash were also performed with trace element
analyses by 7000 series methods.
B-6
-------
APPENDIX C
WASTE FEED DATA
C-l
-------
CO
(sai) Q3J *IM -
-------
o
(0
CM
o
CM
CM
O
O
CM
OOOO
OOlO^CM
O
O
OO
OOtO
O
't
O
CM
(SSI) Q3J '
-------
CUM. WT. FED (LBS)
I
O
c
O)
00
-------
CUM. WT. FED (LBS)
H
X.
m
x
O
c
-------
CUM. WT. FED (LBS)
en
o
o
o
en
o
o
o
en
o
o
o
CM
en
O
O
o
en
O
in
o
O
-------
CUM. WT. FED (LBS)
-------
CUM. WT. FED (LBS)
en
o
o
o
en
o
o
o
en
o
o
o
CM
en
o
o
o
en
o
H
2:
PI
/-s
I
o
c
en
o
o
-------
CUM. WT. FED (LBS)
m
I
o
c
-------
CUM. WT. FED (LBS)
en
o
o
o
en
o
ro
o
o
10
in
o
CM
o
o
CM
en
o
o
o
en
o
m
I
O
c
cn
O
O
-------
CUM. WT. FED (IBS)
en
o
o
o
en
o
o
o
10
01
o
04
o
o
04
en
o
o
o
m
I
O
c
-------
CUM. WT. FED (LBS)
H
2
m
/~N
I
O
c
-------
CUM. WT. FED (LBS)
H
2
m
I
O
c
-------
APPENDIX D
SAMPLING DATA
D-l
-------
TabIt. Gas Concentration on July 21, 1986
1
1
TINE
Start Stop
1115 1195
1135 1155
1155 1215
1215 1235
1235 1266
1255 1315
1316 1336
1335 1355
1355 1415
1415 1435
1435 1455
1455 1515
1515 1535
1535 1555
1555 1615
1615 1635
1635 1655
1655 1715
1715 1735
1735 1755
1755 1815
TIME
Start Stop
1115 1136
1136 1166
1155 1216
1216 1236
1236 1265
1255 1315
1315 1335
1335 1355
1355 1415
1415 1435
1435 1455
1455 1515
1515 1535
1635 1555
1555 1615
1615 1635
1635 1655
1655 1715
1715 1735
1735 1755
1755 1815
AFTERBURNER EXIT
Oxygan
Concentration
(« Dry as Mas'd)
Hin Max Mean
NA NA NA
HA NA NA
4.5 6.5 6.5
4.0 6.3 6.1
6.0 6.0 6.5
NA NA NA
NA NA NA
NA NA NA
NA NA NA
6.5 6.0 5.8
5.5 6.0 5.8
NA NA NA
NA NA NA
NA NA NA
5. 5 6.0 5.8
NA NA NA
NA NA NA
Carbon Dioxide
Concentration
(* Dry as Mas'd)
.
Min Max Mean
8.5 9.4 9.0
NA NA NA
3.1 8.7 6.9
7.6 9.2 8.4
8.0 8.7 8.4
NA NA NA
7.8 8.4 8.1
8.0 8.5 8.3
NA NA NA
3.2 5.3 4.3
3.2 8.4 5.8
0.4 8.5 4.5
0.0 0.0 0.0
NA NA NA
Carbon Monoxide
Concentration
(* Dry as Mas'd)
Min Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
KILN EXIT
Oxygen
Concentration
(X Dry Mas'd)
Hin Max Mean
NA NA NA
12.0 13. t 12.1
.8 14.5 11.6
NA NA NA
NA NA NA
NA NA NA
NA NA NA
12.8 13.3 13.0
13.0 13.3 13.1
12.5 13.3 12.*
12.5 13.3 12.9
NA NA NA
NA NA NA
NA NA NA
12.3 12.8 12.5
12.3 13.0 12. »
10.8 13.3 12.0
NA NA NA
NA NA NA
NA NA NA
NA M* NA
Carbon Dioxide
Concentration
(k Dry as Mas'd)
Min Max 'tan
3.6 .9 4.3
1.1 .1 1.0
NA NA NA
4.1 .2 4.2
3. .2 4.1
3. .2 4.1
3. .3 4.1
NA NA NA
3, .1 3.9
3. .1 3.9
3. .1 3.9
3. .1 3.7
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
Carbon Monoxide
Concentration
(* Dry Mas'd)
..
Hin Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
CARBON BED INLET
Oxygen | Carbon Dioxide
Concentration j Concentration
(* Dry as swas'd) | (* Dry as Mas'd)
1
Min Max Mean| Min Max Mean
11.3 13.0 12. 1| 6.1
NA NA NA | 6.7
NA NA NA | 6.8
11.3 13.8 12. S| NA
11.8 12.« 12.3| S.O
12.5 12.8 12. 6| 6.1
12.5 12.8 12.6| 6.7
NA NA NA j 6.1
NA NA NA | 6.1
NA NA NA | NA
NA NA NA | 6.6
12.0 12.8 12. 4| 5.7
12.0 12.8 12. 4| 5.9
12.0 12.8 12.4| 6.9
NA NA NA | NA
NA NA NA j 5.9
NA NA NA I 6.9
12.0 12.5 12.3| 6.1
12.0 12.5 12.3) 2.0
NA NA NA | NA 1
NA NA NA I NA 1
.9
.3
.3
IA
.7
.0
.7
.3
.2
A
.5
.3
.4
.3
*A
.4
.5
.3
.5 i
«A 1
4A 1
.0
.5
.1
IA
.4
.1
.2
.2
.2
IA
.1
.0
.2
.1
A
.2
.2
.7
1.9
W |
M
Carbon Monoxide
Concentration
(* Dry as Mas'd)
Min Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
STACK
Oxygen | Carbon Dioxide Carbon Monoxide
Concentration j Concentration j Concentration
(* Dry Mas'd) |(* Dry as Mas'd) | (* Dry as Mas'd)
1
Min Max Mean
NA NA NA
11.0 U.8 12.4
NA NA NA
NA NA NA
NA NA NA
NA NA NA
6.1 12.8 12.8
6.1 13.0 12.8
6.0 13.0 12.6
NA NA NA
NA NA NA
NA NA NA
12. S 13.0 12.8
12.6 13.0 12.8
11.5 13.0 12.3
NA NA NA
NA NA NA
NA NA NA
NA NA NA
Min
.6
NA
.8
.7
.5
.8
NA
.8
.5
.5
NA
NA
NA
NA
NA
NA
NA
NA
NA
Max Mean
.7
NA
.2
.0
.0
.2
NA
.3
.3
.4
NA
NA
NA
NA
NA
NA
NA
NA
NA
.6
NA
.0
.9
.3
.9
NA
5.9
6.1
5.9
6.0
NA
NA
NA
NA
NA
NA
NA
NA
NA
Min Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA HA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA - Data not taken
-------
Table.
Gas Concentration on July 28. 1986
TIME
Start Stop
1020 1040
1040 1100
1100 1120
1120 1140
1140 1200
1200 1220
1220 1240
1240 1300
1300 1320
1320 1340
1340 1400
1400 1420
1420 1440
1440 1SOO
1500 1620
1S20 1S40
1540 1600
1600 1620
1620 1640
1640 1700
1700 1714
AFTERBURNER EXIT
Oxygen
Concentration
Carbon Dioxide
Concentration
Carbon Honixide
Concentration
(* Dry as Mas'd) |(k Dry as Mas'd) |(* Dry as Mas'd)
-
Min Max Mean) Min Max Mean) Min Max Man
.0 .6 6.4
NA NA NA
.8 .0 4.4| NA NA NA
A A NA
HA NA NA
NA NA NA
NA NA NA
4.2 4.3 4.3| NA NA NA
4.0 4.4 4.2| NA NA NA
.3 .6 .5| NA NA NA
.5 .0 .8| NA NA NA
.8 .0 .»| NA NA NA
.8 .0 .9| NA NA NA
.6 .0 .9) NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
3.7 4.0 .9| NA NA NA
3.7 3.9 .8| NA NA NA
3.7 3.9 .B| NA NA NA
3.7 3.9 .8| NA NA NA
3.7 3.9 .8| NA NA NA
5.8 6.3 .0| NA NA NA
4.5 (.8 .6| NA NA NA
6.0 6.0 .0) NA NA NA
6.0 6.0 .0) NA NA NA
6.0 10.3 .1| NA NA NA
7.3 7.3 7.3
NA NA NA
L l
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA HA
CARBON BED INLET
Oxygen
Concentration
Carbon Dioxide | Carbon Monoxide
Concentration j Concentration
(X Dry as Mas'd) |(t Dry as Mas'd) |(t Dry as Mas'd)
_
I-
Min Max Mean| Min Max Mean| Mm Max Mean
. 10.6 .1
NA NA NA | NA NA NA
10.0 .6| NA NA NA | NA NA NA
NA NA A
NA NA NA
3.7 4.4 4.1| NA NA NA
4.0 4.4 4.2| NA NA NA
.8 .6| NA NA NA | NA NA NA
10.0 .6 1 NA NA NA j NA NA NA
10.0 .9) NA NA NA | NA NA NA
9.8 .6) NA NA NA | NA NA NA
9.8 .8| NA NA NA | NA NA NA
HA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
6.6 .7 .6) NA NA NA
6.5 .7 .6| NA NA NA
6.5 .7 .6| NA NA NA
6.5 .7 .6| NA NA NA
6.5 .4 .0| NA NA NA
.8 6.3 .0| NA NA NA NA NA NA
.5 6.8 .6| NA NA NA NA NA NA
.0 6.3 .1| NA NA NA NA NA NA
.0 6.0 .0| NA NA NA NA NA NA
.0 10.3 . 1| NA NA NA NA NA NA
7.3 7.3 7.3| NA NA NA NA NA NA
NA NA NA
| NA NA NA NA NA NA
1
TIME
Start Stop
1020 1040
1040 1100
1100 1120
1120 1140
1140 1200
1200 1220
1220 1240
1240 1300
1300 1320
1320 1340
1340 1400
1400 1420
1420 14*0
1440 1500
1500 1620
1520 1S40
1540 1600
1600 1620
1620 1640
1640 1700
1700 1714
Oxygen
Concentration
KILN EXIT
Carbon Dioxide
Concentration
Carbon Monixide
Concentration
(\ Dry as Mas'd) |(* Dry as Mas'd} ((* Dry as Mas'd)
.
-
Min Max Mean] Min Max Mean) Min Max Mean
NA NA NA
NA NA NA
.2 9.6 .9
NA NA NA
.6 10.0 .8) NA NA NA
0.0 14.3 7.1| A NA NA
14.0 14. S 14.3| NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
.3 .5 .4| NA NA NA
.2 .5 .4
NA NA NA
.1 .5 .3| NA NA NA
.1 .3 .2) NA NA NA
.1 .3 .21 NA NA NA
0.0 14.6 7.4| NA NA NA
14.5 15.0 14.6| NA NA NA
14.6 15.0 14.9) NA NA NA
14.5 15.0 14.81 NA NA NA
15.0 15.0 15.01 NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
.9 9.3 .1| NA NA NA
.5 10.0 .3| NA NA NA
.0 .1 .1| NA NA NA
.1 .2 .21 NA NA NA
.4 .1 .8
NA NA NA
7.9 .5 .2| NA NA NA
6.3 .6 .4
NA NA HA
STACK
Oxygen
Concentration
Carbon Dioxide | Carbon Monoxide
Concentration j Concentration
(* Dry as Mas'd) |(* Dry as awas'd)|(* Dry as Mas'd)
1
Min Max Mean| Min Max Mean| Min Max Mean
NA NA NA
NA HA NA
6.S 6.5 7.S| NA NA NA
6.6 7.4 7.1) NA NA NA
10.0 10.3 10.1] NA NA NA | NA NA NA
10.3 10.3 10.3| 6.8 7.1 7.0| NA NA NA
NA NA NA
NA HA NA
NA NA NA
NA NA NA
NA NA NA
.0 7.2 7.1| NA NA NA
.9 7.2 7.1| NA NA NA
.8 7.1 7.0) NA NA NA
.8 7.1 7.0| NA NA NA
.8 7.1 6.5| NA NA NA
10.3 10.5 10.4) NA NA NA | NA NA NA
10.5 10.5 10.5) NA NA NA | NA NA NA
10.5 10.5 10.5) NA NA NA | NA NA NA
10.5 10.5 10. SJ NA NA NA j NA NA NA
10.0 10.5 10.3| 6.6 7.2 6.9| NA NA NA
NA NA NA
NA HA NA
NA NA NA
NA NA NA
NA HA NA
NA NA NA
NA HA NA
6.3 8.3 7.3| NA NA NA
6.6 6.9 6.9| NA NA NA
6.8 7.1 7.0| NA NA NA
4.6 7.1 6,9| NA NA NA
4.6 6.3 S.S| NA NA NA
6.2 6.3 6.3| NA NA NA
6.2 6.3 6.3| NA NA NA
'
NA - Data not taken
-------
Table. Gas Concentration on July 29. 1966
TIME
_ _
Start Stop
950 1010
1010 1030
1030 1050
1050 1110
1110 1130
1130 1160
1150 1210
1210 1230
1230 1250
1250 1310
1310 1330
1330 1350
1350 1410
1410 1430
1430 1450
1450 1510
1510 1630
1530 1550
1550 1610
1610 1630
1630 1650
1650 1710
'1710 1730
1730 1750
1750 1810
1810 1830
1830 1850
1850 1900
AFTERBURNER EXIT
CARBON BED INLET |
1 1
Oxygen | Carbon Dioxide | Carbon Monoxide | Oxygen | Carbon Dioxide Carbon Monoxide |
Concentration | Concentration j Concentration j Concentration j Concentration | Concentration |
(* Dry a* was'd)|(% Dry as s*as'd)|(* Dry as Mas'd) |(k Dry as Mas'dlKk Dry as Mas'd) | (X Dry as at«s'd)|
1 1 1 1 1 1
Min Max
3.6 6.0
4.0 6.6
4.8 9.3
6.0 9.5
6.0 19.6
20.0 20.5
6.0 20.5
1.5 4.5
1.5 10.5
7.5 13.5
3.6 7.5
3.0 6.0
4.5 6.8
NA NA
NA NA
NA NA
NA NA
S.S 5.5
5.3 5.5
5.3 .3
.0 .3
.0 .5
.0 .0
.0 .0
.0 .0
6.0 .0
6.0 .0
NA NA
Mean | Min Max Mean)
4.8| 9.3 10.0 9.7|
4.8| 9.1 10.0 9.6|
7.0| 7.1 8.2 7.7|
7.3| 9.3 10.0 9.7|
12. 4| 0.0 9.7 4.9|
20.3| 0.0 2.5 1.3|
12. 8| 6.0 10.0 8.0|
3.0| 10.0 10.0 10.0|
6.0| 4.6 10.0 7.3|
10.5| 7.0 9.2 8.1|
5.6| 6.7 10.0 9.4|
4.8| 9.2 10.0 9.6|
S.1| 9.3 10.0 9.7|
NA | NA NA NA |
NA | NA NA NA |
NA j NA NA NA j
NA | NA NA NA |
5.5| .2 .3 .3|
6.4| .2 .3 .3|
5.3| .4 .5 .5|
5.6| .8 .7 .6|
.31 .2 .7 .3|
.01 .2 .3 .3|
.0| .2 .3 .3)
.0! .2 .3 .3)
.0| .2 .3 .4)
.0| .3 .4 .4|
NA | .3 .4 .4|
1 1
Min
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Max
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Mean| Min Hax Mean| Min Hex Meanj Min Max Mean|
NA | .5 10.0 9.3| 6.8 7.9 7.4| NA NA NA |
NA .3 10.3 9.3| 5.1 7.5 6.3| NA NA NA |
NA | 1 .3 12.3 11.1| 6.1 .7 6.4| NA NA NA |
NA | .3 16.8 12. 0| 3.1 .5 6.3| NA NA NA |
NA | .8 21.5 1S.1J 0.2 .4 3.8| 12.3 5.5 8.3|
NA 1 .3 21.5 19. 9| 0.2 .9 4.1| NA NA NA |
NA .5 18.0 12.3| 7.3 .6 8.4| NA NA NA |
NA 1 .S 16. 6 12.1| ,1 .4 4.6| NA NA NA |
NA ) .5 12.6 10. 1| .5 .S 7.5| NA NA NA |
NA .8 9.0 6.4| .0 8.0 7.5| NA NA NA |
NA .0 9.0 8.6| .5 7.6 7.1 NA NA NA |
NA NA NA NA | NA NA NA NA NA NA |
NA NA NA NA | NA NA NA NA NA NA |
NA NA NA NA | NA NA NA NA NA NA |
NA NA NA NA | NA NA NA NA NA NA |
NA .5 .5 .S| .2 .5 9.4| NA NA NA |
NA .5 .5 .5| .4 .6 9.5| NA NA KM ,
NA .5 .5 .0| .5 .7 y.b| NM n* ,M ,
NA .0 .0 .0| .8 .7 9.3| NA NA NA |
NA .0 .0 .0| .2 .3 9.3| NA NA NA |
NA .0 .0 .U| .-. . . ... ,
NA .0 .0 .U| .< . »..»i n~ «» ,
NA .0 .0 .01 .2 .4 9.3| NA NA NA I
NA .0 .0 .0| .3 .4 9.4J NA NA NA |
NA .0 .0 .01 .3 .4 9.4| NA NA NA |
1 1 1
TIME
Start Stop
950 1010
1010 1030
1030 1050
1050 1110
1110 1130
1130 1150
1150 1210
1210 1230
1230 1250
1250 1310
1310 1330
1330 1350
1350 1410
1410 1430
1430 1450
1450 1510
1510 1530
1630 1550
1650 1610
1610 1630
1630 I860
1660 1710
1710 1730
1730 1750
1760 1610
1810 1630
1830 1650
1850 1900
KILN EXIT
Oxygen
Concentration
(* Dry * Mas'd)
Min Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA MA NA
NA HA NA
NA MA NA
Carbon Dioxide | Carbon Monoxide
Concentration j Concentration
(* Dry ettM'd)|(* Dry as Mas'd)
1
Min Max Mean) Min Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
0.0 IS.) 6.1| 6.5 6.5 6.0| NA NA NA
11.0 IS.) 11.6| S.6 6.4 S.0| NA NA NA
11.3 12.3 11.8| S.6 6.3 6.0| NA NA NA
11.1 12.1 11. 8| S.7 8.1 6.0| NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
HA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
1 1
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
1 1
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
STACK
-
Oxygen
Concentration
(* Dry Bees' d)
Hin Max Mean
NA NA HA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA HA NA
NA NA NA
NA NA NA
Carbon Dioxide
Concentration
(\ Dry as Mas'd)
Min Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA HA
NA NA NA
NA NA HA
NA NA NA
NA NA NA
Carbon Monoxide
Concentration
(t Dry as Bcas'd)
Min Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
9.5 10.0 9.6| 6.5 7.0 6.6| NA NA NA
9.5 9.8 9.6) 6.7 7.0 6.9| NA NA NA
9.5 9.8 9.6) 6.6 7.3 7.0| NA NA NA
9.6 9.6 9.8| 7.1 7.5 7.3| NA NA NA
NA NA NA NA NA NA
HA NA NA NA NA NA
NA HA NA NA HA NA
NA HA NA NA NA NA
NA HA HA NA HA HA
HA HA HA HA HA HA
NA HA HA HA NA NA
HA HA HA HA NA NA
HA NA NA HA HA NA
NA HA NA NA NA NA
NA NA NA
NA HA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA - Data not taken
-------
Gas Concentration on August 4, 1986
TIME
Start Stop
910 »20
920 940
940 1000
1000 1020
1020 1040
1040 1100
1100 1120
1120 1140
1140 1200
1200 1220
1220 1240
1240 1300
1300 1320
1320 1340
1340 1400
1400 1420
1420 1440
1440 1500
1SOO 1520
1520 1540
1540 1600
'1600 1620
1620 1640
1640 1700
1700 1720
1720 1740
AFTERBURNER EXIT
Oxygen | Carbon Dioxide | Carbon Monoxide
Concentration | Concentration | Concentration
(* Dry as Mas'd) |(* Dry Mas'd) |(k Dry as Mas'd)
1 1
Min Max Mean) Kin Max Mean) Min Max Man
NA HA NA | 0.0 0.0 0.0| NA NA NA
B. 3 20.8 14.5| 0.0 .3 3.2| NA NA NA
9.0 21.0 14.5| 0.0 .7 4.9| NA NA NA
12.3 21.0 16.6) 0.0 .1 3.1| NA NA NA
.5 11. S $.0| (.2 1 .0 7.6) NA NA NA
.0 15.8 11.9| 9.4 .6 6.0| NA NA NA
.8 14.0 10.4| 8.1 .9 T.0| NA NA NA
.0 7.S .3| 8.7 10.0 9.4| NA NA NA
.5 6.S .0| 10.0 10.0 10. OJ NA NA NA
.5 6.3 .9) 9.7 10.0 9.9) NA NA NA
.0 7.5 .3| 9.0 10.0 9.5) NA NA NA
.0 7.6 .3| 8.9 10.0 9.5| NA NA NA
NA NA NA | 7.7 10.0 8.9| NA NA NA
NA NA NA j NA NA NA j NA NA NA
HA NA HA | HA NA HA | HA NA NA
3.5 10.0 .8| 7.6 10.0 8.8) NA NA NA
3.8 6.8 .3| .3 10.0 9.7J NA NA NA
4.0 6.5 .3| .6 10.0 9.8| NA NA NA
4.0 7.0 .51 .4 10.0 9.7| NA NA NA
6.0 7.3 .1| .4 10.0 9.7| NA NA NA
6.0 7.3 .1| .5 10.0 9.8) NA HA NA
NA NA NA | NA NA NA | NA NA NA
NA NA NA | NA NA NA | NA NA NA
NA NA NA | NA NA NA | NA NA NA
NA NA HA | NA NA NA | HA NA NA
1 1
CARBON BED INLET
Oxygen Carbon Dioxide
Concentration | Concentration
(* Dry as Mas'd) |(t Dry as Mas'd)
Carbon Monoxide
Concentration
(I Dry as Mas'd)
N1n Max Mean | M1n Max Mean) Min Max Mean
NA NA NA |
6.6 11.0 8.3|
.0 9.8 8.4|
.0 16.0 11.6)
1 .3 13. S 11.9|
.5 11.6 10.0|
.5 .0 7.8)
7.0 .3 8.1|
6.3 .8 7.5|
7.5 .0 6.3|
7.0 .0 6.01
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
.6 9.3 8.1
.2 9.3 7.3
.3 6.1 7.2
.4 7.7 6.1
6.9 6.3
7.3 6.3
8.7 9.0
8.1 7.3
8.9 7.9
8.3 7.4
6.5 7.7
r. 6.3 7.9
*A NA NA
HA HA HA
«A NA NA
NA NA NA
WA NA NA
NA NA NA
KA NA NA
7.3 8.0 7.6| 7.1 8.7 7.9
7.8 8.3 6.0| 7.1 8.3 7.7
1
NA HA NA
NA NA NA
NA NA NA
NA NA NA
12.3 6.5 8.3
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA HA NA
NA NA NA
[ NA NA NA
| NA NA NA
NA NA HA
NA NA NA
NA NA HA .
NA NA HA (
NA NA NA
| HA HA NA
| NA NA NA
| NA NA NA
| NA HA HA
j NA NA NA
TIME
Start Stop
910 920
920 940
940 1000
1000 1020
1020 1040
1040 1100
1100 1120
1120 1140
1140 1200
1200 1220
1220 1240
1240 1300
1300 1320
1320 1340
1340 1400
1400 1420
1420 1440
1440 1600
1600 1620
1820 1640
1540 1600
1600 1620
1620 1640
1640 1700
1700 1720
1720 1740
KILN EXIT
Oxygen
Concentration
(* Dry as Mas'd)
Min Max Mean
NA NA NA
NA NA NA
NA HA NA
NA NA HA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
Carbon Dioxide | Carbon Monoxide
Concentration j Concentration
(* Dry as Mas'd)
(t Dry as Mas'd)
Min Max Mean) Min Max Mean
HA HA HA
NA HA NA
NA NA NA
NA NA NA
NA NA NA
NA MA HA
HA HA NA
NA NA NA
NA NA HA
NA HA HA
NA HA HA
HA HA NA
MA NA NA
NA HA NA
HA HA HA
NA NA NA
NA HA NA
NA NA NA
NA NA NA
HA NA HA
HA HA NA
NA NA NA
NA NA NA
NA HA HA
3.0 9.6 6.4) 7.6 10.0 8.8| NA NA NA
6.3 10.8 8.6) 6.9 10.0 8.5| NA NA NA
6.5 11.3 8.9| 6.4 10.0 6.2| NA HA NA
HA HA HA NA HA HA HA HA HA
NA NA NA HA NA NA NA NA NA
NA NA NA NA NA NA NA HA NA
NANAHANANANANANANA
NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA
NA HA NA NA NA NA NA HA NA
4.5 9.0 6.8| 8.6 10.0 9.3| NA NA NA
7.S 10.6 9.0J 7.5 9.4 6.SJ NA NA NA
8.0 10.6 9.4| 7.4 10.0 8.7| NA NA NA
6.5 10.8 8.6| 7.6 10.0 8.6
1
NA NA NA
T
STACK |
1
Oxygen
Concentration
(t Dry as Mas'd)
_
Min Max Mean
HA HA HA
HA NA HA
NA NA HA
HA HA NA
HA NA NA
NA HA HA
HA HA HA
HA HA NA
NA NA HA
HA NA NA
NA HA NA
NA NA NA
NA NA HA
NA NA NA
NA NA NA
Carbon Dioxide
Concentration
(« Dry as Mas'd)
Min Max Mean
NA NA NA
NA NA NA
NA HA NA
HA HA HA
NA NA NA
NA NA NA
NA HA HA
HA HA NA
NA NA NA
NA NA NA
NA NA NA
NA NA HA
HA HA NA
NA NA HA
Carbon Monoxide I
Concentration |
(k Dry as Mas'd) |
_ - 1
Min Max Mean
NA NA NA L
NA NA NA*J
NA NA HA
NA NA KA
NA NA NA
NA NA NA
NA NA NA
NA NA HA
NA NA HA
NA NA NA
NA NA NA
NA NA NA
NA NA HA
NA NA NA
.3 6.7 7.5| NA NA HA
.5 10.0 9.3| .2 7.6 6.9| NA NA HA
.8 10.0 9.4| .0 7.6 6.6| NA NA HA
.8 9.6 9.3) .4 7.3 6.9| NA NA NA
.8 9.8 9.3) .3 7.5 6.9) NA NA NA
.3 9.3 6.6| .6 7.8 7.2| NA NA NA
NA NA NA NA HA HA NA HA HA
NA NA NA HA HA HA HA NA NA
HA NA NA NA NA NA NA NA NA
NANANANANANANANA NAJ
-1
NA - Data not taken
-------
Gas Concentration on August 5, 1986
TIME
Start Stop
«20 940
40 1000
1000 10ZO
1020 1040
1040 1100
1100 1120
1120 1140
1140 1200
1200 1220
1220 1240
1240 1300
1300 1320
1320 1340
1340 1400
1400 1420
1420 1440
1440 1SOO
1SOO 1S05
1SOS 1530
AFTERBURNER EXIT
Oxygen Carbon Dioxide | Carbon Monoxide
Concentration Concentration | Concentration
(t Dry as «*i«'d) (* Dry as Mas'd) |{* Dry as Mas'd)
1
Mtn Max Mean Min Max Mean; Min Max Mean
4.0 14.5 .3|
7.3 10.0 .6|
.5 13.5 .0|
.S 9.0 .8
.0 8.5 .3|
.5 8. 8 7.6|
A NA NA |
A NA NA 1
.8 15.0 10.9)
.8 7.8 6.8|
.8 8.0 6.9|
.0 S.S 4.8|
.5 6.0 6.3|
.3 6.0 S.1|
.5 6.8 5.6|
.5 8.3 7.4|
KM iv% HM |
NA NA NA |
.6 8.7
.4 9.5
.1 10.0
.9 10.0
.0 10.0
.2 10.0
.1 10.0
-------
Oas Concentration en August T, 1986
TIME
Start Stop
45 1005
1005 1025
1025 1045
1045 1105
1105 1125
1125 1145
1145 1206
1205 1225
1225 1245
1245 1305
1305 1325
1325 1345
1345 1405
1405 1425
AFTERBURNER EXIT
-
Oxygen
Concentration
(* Dry as Mas'd)
M1n Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
7.S 10.0 8.9
1.8 8.8 5.3
5.0 7.0 6.0
Carbon Dioxide
Concentration
(* Dry as Mas'd)
M1n Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
7.4 9.2 8.3
8.2 10.0 9.1
9.3 10.0 9.7
Carbon Monoxide
Concentration
(* Dry as Mas'd)
H
-------
Qts Concentration on August 12, 1986
TIME
Start Stop
920 940
940 1000
1000 1020
1020 1040
1040 1100
1100 1120
1120 1140
1140 1200
1200 1220
1220 1240
1240 1300
1300 1320
1320 1340
1340 1400
1400 1420
1420 1440
AFTERBURNER EXIT
Ox'ygtn | Carbon Dioxide | Carbon Monoxide
Concentration j Concentration j Concentration
(t Dry as Mas'd) |(* Dry as Mas'd)|(* Dry as Mas'd)
1 1
Hin Max Mean! Min Max Meanj Min Max Mean
3.5 9.S 6.5| 6.2 9.2 7.7| NA NA NA
6.5 8.8 7.1| 6.4 9.7 8.1| NA NA NA
6.3 9.S 7.9| 6.9 10.0 8.5| NA NA NA
NA NA NA | 7.0 9.7 8.4| NA NA NA
NA NA NA | NA NA NA | NA NA NA
NA NA NA | NA NA NA | NA NA NA
NA NA NA | NA NA NA j NA NA NA
NA NA NA I NA NA NA j NA NA NA
7.0 11.0 .0| 7.4 9.8 .6| NA NA NA
.5 10.3 .4| 7.1 10.0 .6| NA NA NA
.5 10.8 .6| 6.8 10.0 .4| NA NA NA
.5 10.5 .S| 6.9 10.0 .5| NA NA NA
.0 10.5 .8) 7.0 10.0 .51 NA NA NA
.5 10.3 .4| 7.1 10.0 .6| NA NA NA
.3 10.5 .4| 7.0 10.0 .5| NA NA NA
I I
CARBON BED INLET
Oxygen | Carbon Dioxide Carbon Monoxide
Concentration Concentration Concentration
<* Dry as Mas'd)|(* Dry as Mas'd) (* Dry as Mas'd)
Min Max Mean) Min Max Mean Min Max Mean
10.0 11.8 10.9| 3.8 6.3 5.1 NA NA NA
9.3 11.0 10.1J 5.0 7.1 6.1| NA NA NA
9.5 11.0 10. 3| 6.5 7.3 6.4| NA NA NA
9.3 10. S 9.9| 5.3 6.9 «.1| NA NA NA
NA NA NA 6.5 7.2 6.9| NA NA NA
NA NA NA NA NA NA | NA NA NA
NA NA NA NA NA NA | NA NA NA
NA NA NA NA NA NA j NA NA NA
NA NA NA NA NA NA | NA NA NA
.6 10.8 9.8| 6.3 6.5 .4| NA NA NA
.0 11.0 10.0| 5.5 7.8 .7| NA NA NA
.0 11.0 10. OJ 5.4 7.5 .5) NA NA NA
.0 11.0 10.0| 6.5 7.5 .5| NA NA NA
.3 10.8 9.5| 6.5 6.1 .8| NA NA NA
.8 10.3 9.5| 6.2 8.2 7.2| NA NA NA
I
TIME
Start Stop
920 940
940 1000
1000 1020
1020 1040
1040 1100
1100 1120
1120 1140
1140 1200
1200 1220
1220 1240
1240 1300
1300 1320
1320 1340
1340 1400
1400 1420
1420 1440
KILN EXIT
Oxygen
Concentration
Carbon Dioxide
Concentration
Carbon Monoxide
Concentration
(* Dry as Mas'd) | (« Dry is Mas'd) j (* Dry as Mas'd)
-
Min Max Mean) Hin Max Mean) Min Max Mean
NA NA NA
NA NA NA
NA NA NA | NA NA NA
NA NA NA
NA NA NA
NA NA NA | NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
6.3 14.8 10.5| 3.3 5.6 4.5| NA NA NA
12.3 14.8 13.5| .6 .1 4.9| NA NA NA
12.0 15.0 13. 5| .4 .5 6.0| NA NA NA
13.0 15.3 14. 1| .5 .0 4.8| NA NA NA
13.0 16.3 14. 1| .4 .8 4.6| NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
.7 .2 5.0| NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
STACK
Oxygen
Concentration
Carbon Dioxide
Concentration
(* Dry as Mas'd) |(* Dry as Mas'd)
1
Min Max Mean) Min Max Mean
NA NA NA NA NA NA
NA NA NA NA NA NA
NA NA NA NA NA NA
Carbon Monoxide
Concentration
(% Dry as Mas'd)
Mm Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA .2 7.0 .6| NA NA NA
9.5 11. 10.5| .4 7.2 .3| NA NA NA
9.3 11. 10. 3| .5 7.4 .5| NA NA NA
9.8 11. 10.8| .5 7.0 .3| NA NA NA
9.5 12. 10.9| .3 7.3 .8
NA NA NA
10.0 11. 10. 9| .9 6.9 .9| NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA NA NA NA
NA NA NA NA NA NA
NA NA NA NA NA NA
NA NA NA NA NA NA
NA NA NA NA NA NA
NA NA NA NA NA NA
NA NA NA NA NA NA
1'
NA Data not taken
-------
Gas Concentration on August 13, 1986
TIME
Start Stop
920 940
940 1000
1000 1020
1020 1040
1040 1100
1100 1120
1120 1140
1140 1200
1200 1220
1220 1240
1240 1300
1300 1320
1320 1340
1340 1400
1400 1420
1420 1440
1440 1500
AFTERBURNER EXIT
Oxygtn | Carbon Dioxide | Carbon Monoxide
Concentration j Concentration j Concentration
(* Dry a* swas'd)|(* Dry M Mas'd)|(t Dry as Mas'd)
1 1
Min MX Nean| Kin Max Mean) M1n H«x Mean
.
i.O 7.3
Z.5 7.8
.5 .0
.5 .3
.0 .0
.0 .0
.0 .3
.0 .3
.3 10.0
.0 9.8
.5 19.8 1
.0 9.S
.0 10.0
.5 10.0
.0 9.S
.8 10.0
.5 10.3
.1| 8.5 10.0
.1| 8.2 10.0
.3| 8.6 10.0
.9| 8.7 10.0
.0| 8.3 10.0
.5| 8.5 10.0
.1| 8.3 10.0
.6| 7.7 10.0
.1) 8.0 10.0
.9) 7.9 10.0
.1| 6.3 10.0
.8| 8.1 10.0
.0| 7.6 10.0
.3| 7.6 10.0
.8) 7.6 10.0
r.9| 8.0 10.0
l.4| 7.4 10.0
1
.3| NA NA HA
.2| HA MA NA
.3| NA NA NA
.4) NA NA NA
.2| NA NA NA
.3| NA NA NA
.2| NA NA NA
.9| NA NA NA
,0| NA NA NA
.0| NA NA NA
.2) NA NA NA
.1| NA NA NA
.6) NA NA NA
.8| NA NA NA
.9| NA NA NA
.0| NA NA NA
.7| NA NA NA
1
1
CARBON BED INLET |
Oxygtn | Carbon Dioxide I Carbon Monxide
Concentration j Concentration j Concentration
(* Dry M awas'd) j (k Dry as Mas'd) |(* Dry as Mas'd)
1 1
Mln Max Mean) Hln Max Hean| Hin Max Mean
1
1
1
1
1
1
1.0 9.5
r.8 10.3
1.6 10.5
r.o 10.0
r.6 10.0
.8 9.5
.0 10.8
.5 10.3
.5 10.6
.3 10.3
.3 10.3
.5 10.5 11
.5 10.0
.0 11.5 1
.6| 1
.01 :
.6| 1
.5|
1
.S|
I
«l
51
.91
3|
3.0|
l.3|
).3|
S.9 8.3 7.1| NA NA NA
t.S 6.0 5.3J NA NA NA
!.4 7.4 6.4| NA NA NA
.6 7.1 6.4| NA NA NA
.6 6.3 7.0| NA NA NA
.0 7.8 6.9| NA NA NA
.1 7.6 .3| NA NA NA
.4 7.t .3| NA NA NA
.2 7.3 .3| NA NA NA
.3 7.4 .4| NA NA NA
.6 .4 .5| NA NA NA
.3 .2 .3| NA NA NA
.2 .0 .1| NA NA NA
5.3 .0 .21 NA NA NA
.3 11.3 10.3| 4.7 .7 5.7| NA NA NA
1 1
TIME
Start Stop
920 940
940 1000
1000 1020
1020 1040
1040 1100
1100 1120
1120 1140
1140 1200
1200 1220
1220 1240
1240 1300
1300 1320
1320 1340
1340 1400
1400 1420
1420 1440
1440 1600
KILN EXIT
Oxygen
Concentration
(* Dry as e*as'd)
Mln Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
Carbon Dioxide
Concentration
(* Dry as aeas'd)
Min Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
Carbon Monoxide
Concentration
(* Dry as awas'd)
Min Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
STACK
Oxygen
Concentration
(* Dry as aeas'd)
Min Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
1
Carbon Dioxide
Concentration
(t Dry as Mas'd)
Mm Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
Carbon Monxide
Concentration
(X Dry as Beas'd)
Min Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
.0 6.3 6.7|
.2 7.0 6.6|
.0 7.7 7.0|
.5 7.6 1.11
.0 7.S 6.6
.7 7.9 7.3
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA - Data not taken
-------
Gas Concent ft on on August 14, 1986
TIME
Start Stop
940 1000
1000 1020
1020 1040
1040 1100
1100 1120
1120 1140
1140 1200
1200 1220
1220 1240
1240 1300
1300 1320
1320 1340
1340 1400
1400 1420
1420 1440
AFTERBURNER EXIT
Oxygen | Carbon Dioxide | Carbon Monoxide
Concentration j Concentration | Concentr*tion
(* Dry as eas'd)|(k Dry as Mas'd) j(* Dry as Mas'd)
1 1
Win Max Mean| Min Max Mean| Hin Max Mean
4.5 6.0 .3|
4.0 T.5 .8|
5.0
6.0
4.8
5.0
S S
6.0
6.5
6.0
6.8
5.5
7.0
.0 .5|
.0 .0|
.5 .1|
.0 .5|
.5 .5)
.0 T.5|
.8 7.6|
.5 7.3|
.8 7.3|
.3 6.9|
.0 7.9)
NA NA NA |
.1 10.0
.0 10.0
.0 10.0
.0 10.0
.7 10.0
.4 10.0
.1 10.0
.6 10.0
.8 10.0
.9 10.0
.3 10.0
.2 10.0
.7 10.0
.1 10.0
.6| NA NA NA
.5| NA NA NA
.5| NA NA NA
.S| NA NA NA
.9| NA NA NA
.7| NA NA HA
.6| NA NA NA
.3| NA NA NA
.4| NA NA NA
.5 1 NA NA NA
,7| NA NA NA
.6| NA NA NA
.4| NA NA NA
.6| NA NA NA
NA NA NA j NA NA NA | NA NA NA
1440 1500 JNA NA NA | NA MA NA | NA NA NA
1 1 1
CARBON BED INLET
Oxygen | Carbon Dioxide | Carbon Monoxide
Concentration j Concentration j Concentration
(* Dry as Mas'd)|(* Dry as Mas'd)|(» Dry as neas'd)
1 1
Min Max Meanj Min Max Mean| Min Max Mean
6.0 10.0
7.1
8.:
7.1
7.:
7.1
7.!
7.
7.
8.
7.
7.
8.
1
1
»
1
I
!
.3
.3
.3
.6
.5
.8
.3
.3
.3
.0
.3
.8
0|
5|
«l
.3|
0|
11
«l
5|
5|
»l
.31
.51
0|
NA NA NA |
.2 .1 6.7| NA NA NA
.6 .4 7.5| NA NA NA
.6 . 7.5J NA NA NA
.7 . 7.3J NA NA NA
.0 . 7.6| NA NA NA
.2 . 7.9J NA NA NA
7.6J NA NA NA
7.3J NA NA NA
7.2| NA NA NA
7. 3 j NA NA NA
7.6| NA NA NA
.0 . 7.7) NA NA NA
.7 7.7 7.2| NA NA NA
.7 7.4 7.1| NA NA NA
NA NA NA | NA NA NA | NA NA NA
NA NA NA | NA NA NA | NA NA NA
" 1
TIME
Start Stop
940 1000
1000 1020
1020 1040
1040 1100
1100 1120
1120 1140
1140 1200
1200 1220
1220 1240
1240 1300
1300 1320
1320 1340
1340 1400
1400 1420
1420 1440
1440 1500
KILN EXIT
Oxygen
Concentration
(\ Dry as Mas'd)
Min Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
Carbon Dioxide
Concentration
(* Dry as Mas'd)
Min Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA MA NA
NA NA NA
NA NA NA
STACK
Carbon Monoxide Oxygen
Concentration Concentration
(* Dry as Mas'd) (* Dry as Mas'd)
Min Max Mean Min Mix Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA NA NA NA
NA NA NA NA NA NA
4.0 12.0 8.0 5.4 7.4 6.4| NA NA NA
9.5 13.0 11.3 6.7 0. 5 7.6
NA NA NA
8.6 11.6 10.1 7.1 9.6 6.3| iw 11* n*
NA NA NA
NA MA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA VA NA
Carbon Dioxide
Concentration
(* Dry as Mas'd)
Hin Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
Carbon Monoxide
Concentration
(t Dry as Mas'd)
Nin Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA NA NA NA
NA NA NA NA NA NA
8.3 tS.O 9.1| 6.7 7.9 7.3| NA NA NA
8.5 9.5 9.0J 6.1 7.4 6.8J NA NA NA
Jm «um m Kl C J T T VI) *** **A u*
0 INT* v * * ' 1 ** f*( < i
i
t!**j VWM f*M
MA - Data not taken
-------
Gas Concentration on August 28, 1986
TIME
Stirt Step
00 920
920 940
940 1000
1000 1020
1020 1040
1040 1100
1100 1120
1120 1140
1140 1200
1200 1220
1220 1240
1240 1300
1300 1320
1320 1340
1340 1400
1400 1420
1420 1440
1440 144S
AFTERBURNER EXIT
Oxygtn Carbon 01 ox Id* | Carbon Monoxide
Concentration Concentration j Concentration
(k Dry as awas'd) (* Dry as a*as'd)|(* Dry as a*as'd)
1
Mln
»
.1
10.1
T1HE
Start Stop
900 920
920 940
940 1000
1000 1020
1020 1040
1040 1100
1100 1120
1120 1140
1140 1200
1200 1220
1220 1240
1240 1300
1300 1320
1320 1340
1340 1400
1400 1420
1420 1440
1440 1445
Max Man H1n Max Mean) M1n Max Man
12.0 10. 9| T.2 10.0 .61
11. 8 10. 5| .3 10.0 .1
11.0 10. 4| .3 10.0 .2
11.3 10. 4| .1 10.0 .1
10.8 10. 3| .8 10.0 .4
10.3 10. 0| .7 9.9 .3
10.8 10.0| .7 10.0 .4
11.3 10.3| .3 10.0 .2
11.0 10.3| .1 10.0 .1
10.8 9.9| .1 10.0 .1
10.3 9.9| .5 10.0 .3
10.8 10.2| .7 10.0 .4
10.0 9.4| .3 10.0 .1|
10.8 9.8| .4 10.0 .2
5 11.0 10. 3| .3 10.0 .2
) 10.8 10. 4| .9 10.0 .5
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
CARBON BED INLET
Oxygen Carbon Dioxide
Concentration | Concentration
(* Dry as Mas'd) |(* Dry as Mas'd)
Min Max Meanf Min Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA HA
NA HA HA
HA HA NA
NA NA NA
NA NA HA
HA HA HA
NA NA NA
NA HA HA
NA NA NA
NA HA HA
HA NA NA
HA HA NA
HA NA HA
10.0 10. S 10.3
10.0 10. 10.4
KILN EXIT
Oxygen
Concentration
(* Dry as Mas'd)
Min
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Max Mean
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
Carbon Dioxide
Concentration
(* Dry as Mas'd)
Min Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA HA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
Carbon Monoxide
Concentration
(I Dry as Mas'd)
Min Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA HA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA HA NA
HA HA NA
HA HA NA
NA MA HA
HA NA HA
NA NA NA
HA HA HA
HA HA NA
HA HA NA
HA HA NA
HA HA NA
HA HA NA
HA HA NA
6.6 6.9 6.9
6.1 7.6 6.9
Carbon Monoxide
Concentration
(* Dry as Mas'd)
Min Max Mean
MA NA NA
NA NA HA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
| NA NA NA
| NA NA NA i
STACK
Oxygen Carbon Dioxide Carbon Monoxide
Concentration j Concentration j Concentration
(* Dry as Mas'd) |(% Dry as Mas'd)|(* Dry as atas'd)
1
Hin Max Mean) Min Max Mean) Min Max Mean
1.3 .8 7.S| S.I .7 S.9
6.8 .3 7.0| 4.9 .9 5.9
7.0 .8 7.9| S.6 .5 6.1
8.8 .5 7.7| 5.9 .7 6.3
6.8 .3 7.5| .9 6.9 6.4
6.6 .3 7.5| .9 7.1 6.S
7.0 .3 8.4| .6 7.1 6.4
7.5 .3 8.4| .1 7.1 6.6
7.6 9.3 8.51 .5 6.9 6.2
8.6 10.0 9.4| .9 7.0 6.5
9.5 10.8 10.1J .5 7.1 6.3
9.5 11.0 10.3J .6 6.4 6.3
HA HA HA NA NA NA
| NA NA NA
| NA NA NA
| NA NA NA
| NA NA NA
| NA NA NA
NA NA NA
j NA NA NA
j NA NA NA
| HA NA NA
| NA NA NA
| NA NA NA |
| NA NA NA '
| NA NA NA
| NA NA NA
| NA NA NA
| NA NA NA
| NA NA NA
NA NA NA
NA - Data not taken
-------
Oas Concentration on September 3, 1986
TIKE
Start Stop
900 920
920 9*0
940 1000
1000 1020
1020 1040
1040 1100
1100 1120
1120 1140
1140 1200
1200 1220
1220 1240
1240 1300
1300 1320
1320 1340
1340 1400
1400 1420
1420 1440
1440 1SOO
1500 1520
AFTERBURNER EXIT
Oxygen | Carbon Dioxide | Carbon Honoxide
Concentration | Concentration j Concentration
(* Dry as Mas'd) j(* Dry as Mas'd) |{* Dry as Mas'd)
1 1
M1n Max Mean | Min Max Mean| Mm Max Mean
.8 7.8
.5
.5
.3
.0
.3
M
.3
,0
.8
.0
.3
.8
.0
.3
.0
.3
.3
.0
.5
.8
.3
.3
.3
.3
.0
.8
.8
.3
.8
«
.3|
«l
3|
4|
9|
31
.3|
.0|
3|
.0|
8|
9|
3|
.0|
.01
.3 7.1|
.3 9.3|
.5 7.3|
.4 10.0
.9 10.0
.1 10.0
.1 10.0
.1 10.0
.9 10.0
.0 10.0
.0 10.0
.9 10.0
.0 10.0
.1 10.0
.9 10.0
.9 10.0
.7 10.0
.7 10.0
.8 10.0
.0 10.0
.1 10.0
.7 1 NA NA NA
,1| NA NA NA
,2| NA NA NA
. 1 1 NA NA NA
.4 1 NA NA NA
.3| NA NA NA
.4| NA NA NA
.2 1 NA NA NA
.1| NA NA NA
.1| NA NA NA
.3| NA NA NA
,4| NA NA NA
.2| NA NA NA
.1| NA NA NA
.2| NA NA NA
.2| NA NA NA
.2| NA NA NA
.5| NA NA NA
.0 7.1 1 NA NA NA | NA NA NA
I I
CARBON BED INLET
Oxygen
Concentration
(* Dry as Mas'd)
-
Min Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA . NA
NA NA NA
NA NA NA
NA NA NA
Carbon Dioxide
Concentration
(* Dry as Mas'd)
M1n Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
Carbon Honoxide
Concentration
(* Dry as Beas'd)
Min Max Mean
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
10.0 .4| .0 6.7 .4| NA NA NA
10.0 .4| .1 7.4 .8| NA NA NA
10.0 .4| .1 7.4 .8| NA NA NA
10.0 .5| .2 7.3 .8| NA NA NA
10.8 .8| .1 6.3 .2| NA NA NA
7. 10.8 .3J NA NA NA
1
NA NA NA
1
TINE
Start Stop
900 920
920 940
940 1000
1000 1020
1020 1040
1040 1100
1100 1120
1120 1140
1140 1200
1200 1220
1220 1240
1240 1300
1300 1320
1320 1340
1340 1400
1400 1420
1420 1440
1440 1500
1500 1620
KILN EXIT
Oxygen
Carbon Dioxide
Concentration | Concentration
(* Dry as Mas'd) |(X Dry as Mas'd)
1
Min Max Mean] Min Max Mean
NA NA NA
NA NA NA
HA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA HA NA
NA NA HA
NA HA NA
NA HA HA
HA HA NA
HA NA NA
HA NA NA
NA NA NA
NA NA NA
NA HA NA
NA NA NA
NA NA HA
NA HA HA
NA NA HA
NA NA HA
NA NA NA
HA NA NA
NA NA NA
NA HA NA
NA HA NA
HA HA NA
NA NA NA
NA NA NA
NA NA HA
Carbon Monoxide
Concentration
(* Dry as Mas'd)
-
Min Max Mean
NA NA NA
NA NA NA
NA NA NA
HA NA NA
NA HA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA HA
HA NA NA
NA NA NA
NA NA NA
NA NA NA
NA HA NA
STACK
Oxygen
Concentration
Carbon
Dioxide
Concentration
Carbon Monoxide
Concentration
(* Dry as Mas'd) |(X Dry as Mas'd) |(t Dry as Mas'd)
Min Max Mein| Min Max Mean
.
.
.
.
.
.
,
.
.
12.3 10.9|
13.5 11.6|
10.3 10.0)
10.5 10.0)
10.5 10.0|
10.5 10.1)
10.5 10|
10.5 9.9|
10.8 10.1J
10.5 9.9|
10.8 10. 0|
10.5 9.9|
10.5 9.4J
10.8 9.9|
NA NA HA
HA HA HA
NA NA NA
NA NA NA
NA NA HA
.7
.3
. 1
.1
.1
.0
.0
.0
.7
.0
.8 5.8
.9
.0
.1
.0
.9
.9
.2
.9
.0
.0 7.0
.1 7.0
.0 7.0
.8 7.7
Min Max Mean
NA NA NA
.6| NA NA NA
.6| NA NA NA
.6) NA NA NA
.6| NA NA NA
.5) NA NA NA
.5| NA NA NA
.6| NA NA NA
.8| NA NA NA
.5| NA NA NA
.5| NA NA NA
.6| NA NA NA
.5| NA NA NA
.9
NA NA NA
NA HA NA
NA NA NA
NA HA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA - Data not takwi
-------
Gas Concentration on September 4, 1986
TIME
St»rt Stop
900 920
920 940
940 1000
1000 1020
1020 1040
1040 1100
1100 1120
1120 1140
1140 1200
1200 1220
1220 1240
1240 1300
1300 1320
1320 1340
1340 1400
1400 1420
1420 1440
AFTERBURNER EXIT
Oxygen | C»rbon Dioxide | Carbon Monoxide
Concentration j Concentration | Concentration
(* Dry as »eas'd)|(* Dry as «««s'd)|(X Dry as Meas'd)
1 1
Hin Max Mean] Min Max Mean| Min Max Mean
4.5 5.3 4.9| 7.4 10.0 9.7| NA HA NA
S.3 .5 S.9| 9.3 10.0 10. 0| NA NA NA
S.3 .3 $.8| 10.0 10.0 10.0| NA NA NA
.5 .3 6.9|
.8 .3
.8 .5
.5 .8
.0 7.3
.3 7.3
.3 7.3
.5 7.3
.3 7.0
.3 7.0
.0 6.8
.0 6.5
S.8 6.5
5.8 6.5
0|
.11
1|
«l
1
1
-------
E-DUCT 02 7-21-86
KILN O2 7-21-86
10
I*
1*
17
I*
P I*
O »
« 12
M
O II
10
III* 123* HI* 1*1* '*
TIMC 1*00 cioex-iiwc
OS COX B
IMS
tut
TIKt 2*00 CLOCK-Tl WC
02 cox
STACK O2 7-21-86
AFTERBURNER O2 7-21-66
10
II
t»
12
It
IO
t
20
U
I
o
17 -
I* -
I* -
14 .
U-
IS
M
10
*
7 .
Ill*
11M
«»«
i««o
OS COMC
I Ml
MIS
1191
111*
ITU
TWC 2*00 CVOCK-TUIC
OS COMC
-------
It I
to
8
M
8
J .
I
E-DUCT CO2 7-21-86
KILN CO2 7-21-86
it
to
I
-
1.
8
1190
HI*
tlUC 2'OO ClOCK-TIMC
a cox cone m
nut J4
-------
E-DUCT O2 7-28-86
KILN 02 7-28-85
JO-
It
It
17
It
14 .
13
12
II
IO
t
10
I*
It
17
13
12
II
IO
ieto
tsoa
1100
TIUC 2*OO CIOCK-TIUC
O OX CONC
1440
2400 ciec*-t)uc
01 COMC
STACK O2 7-28-86
AFTERBURNER 02 7-28-86
2O
It
17
I*
It
14
13-
12
II
10
2O
It
II
17 .
It
It
13
12
II
IO
t
T
t
1020
120
nut 2*00
02 cox m
TIUC 2400 ClOCX-TIMC
ex COMC M
-------
E-DUCT CO2 7-28-86
KILN C02 7-28-86
1*40
2 tee CIOCK-TIUC
cox COMC
II4O
'J«0
j«oo ciDcx-
COX COMC B
It
10
STACK C02 7-28-86
II
to
f -
8
1020
11*0
Tlut HOC CLOCK-TIMC
O COX COMC
IMO
1700
AFTERBURNER C02 7-28-86
U4Q
Tint J4OO O.OCK-TIUC
COX COMC
-------
E-DUCT O2 7-29-86
KILN 02 7-29-86
21
20
1*
17
It
14
14
12
11
10
tso
1050
1190
1230
1390
1*10
1710
1110
1410
143O
149O
IStO
nut 2400 eiocK-nuc
a 02 CONC
TIUC 24OO CLOCK-TIUC
o 02 CONC s
STACK 02 7-29-86
AFTERBURNER 02 7-29-86
2O
It
17
It
I*
14
13
12
II
1O
t
7 -
9 -
4 .
3 -
2
1410
149O
1SIO
90
10*0
119O
1240
13SO
ItIO
1710
TIUC 2400 CLOCK-TIMC
O2 COMC
TIMt 2400 CIOCX-TIUC
o 02 COMC
-------
E-DUCT CO2 7-29-86
KILN CO2 7-29-36
1000
120O
1300
1*00
1700
ieoo
Tint 1400 CkOCK-TlUt
O C02 COMC
1*20
1SOO
TlUC ?«00 ClOCK-Tlut
o coz COMC m
STACK C02 7-29-86
11
«H
»
4.4
1420
1900
I
1S20
AFTERBURNER C02 7-29-86
1OOO 110O
12OO
1300
1«00 It JO 1720 1B20
nut a«oo eiocK-Ttuc
O C02 COMC B
TIWW 2400 CLOCK-Tint
O C02 CONC
-------
E-DUCT O2 8-4-86
KILN O2 8-4-86
120
112O
1220
1320
21
20
1*
17
14
I*
1*
13
12
It
10
I
7
3
2 T-
13OO
1320
13*0
liJO
1140
1700
Tlut 2«OO CtOCK-TlUt
0 O2 COMC *
TIUC 2*00 CIOCK-TIUC
O 02 C3NC m
STACK O2 8-4-86
AFTERBURNER 02 8-4-86
21
20
1*
II
17
1*
IS -
1*
13
12
11
1O -
t
I
7
a -
1*20
tsoo
IS20
114O
I *OO
1020
112O
1220
TIMC 2*00 CtOCK-TIMC
a 02 COMC m
TIUC 3*OO CLOCK-TIUt
a 02 CONC
-------
E-DUCT C02 8-4-86
KILN CO2 8-4-86
10-
t
3-
X
1
7
4
s -
1
1
1OOO
1200
1300
1«20
1720
TlWt 2400 CLOCK-TlUt
o coa CONC
1«OS 1J2O 1440 1»JO 1*40
TlUt 1400 CIOCK-TIUC
O CO1 CONC *
I TOO 1720
STACK CO2 8-4-86
AFTERBURNER C02 8-4-86
11
10
t
8
M
8
I
8
1420 1440 1SOO 1»20
Tint 2400 CIOCK-TIUC
O CO2 COMC
1540
1*00
40 1O40 114O 1X40 1420
TlUt 24OO CLOCK-TlUt
O C02 COMC B
IS20
-------
E-DUCT O2 8-5-86
KILN O2 8-5-86
u
S
IOOO 1O«O IJOO I3*O
TIUC 14OO CIOCK-TIUC
O O2 CONC »
1120
TIUC 2«OO ClOCK-TIMC
e 02 CONC m
STACK 02 8-5-86
AFTERBURNER 02 8-5-86
u
M
O
21
2O
1*
17
14
It
14
13
12
II
1O
1120
I20O
TIWC 2*OO CLOCK-TIMC
O O2 CONC *
1220
12*O
t20
«02O
I10O
130O
TIMC 2«OO CLOCK-TIUC
a ox CONC m
-------
E-DUCT C02 8-5-86
KILN CO2 8-5-86
11
to
7
:i
4 -
i
a
i
ins
T1MC *4OO CLOCK-TIUC
O COJ COMC
taee
nut 1*00 CLOCK -T
e coj COHC
iszo
STACK C02 8-5-86
AFTERBURNER C02 8-5-86
S-
4 .
J-
a
i .
nas
1140
taoe
1120
1J40
1300
tas
10 jo
iiao
11*0
1540
nut a4oo CLOCK-TIWC
o coj COMC
nut J40O ClOCK-TlUt
o eoa CONC m
-------
E-DUCT O2 8-7-86
KILN O2 8-7-86
u
8
21
20 -
It
t* -
17
1* -
14 -
IS
12 -
It
IO
J
2
192*
1*8*
1O1S
TIME 2400 CtOCK-TIMC
e 02 COHC m
MM
TIMt 2*OO ClOCK-Tiyt
a 02 CONC «
1215
130!
STACK O2 8-7-86
AFTERBURNER O2 8-7-86
21
20
It
17
it
14
IJ
12
11
10
1J2»
1JO!
IMS
TMC 2*00 eteac-TiMC
a 02 CONC m
TIMC 24OO ClOCK-TIMC
O 02 CONC
-------
E-DUCT CO2 8-7-86
KILN C02 8-7-86
11
10
7 i
t
4
3-
2
i H
e
U
to
S
U
M
8
7
ft
4
3-
a
i
o
tis
133A
1340
1400
25
1O20
1J2O
TIKE 24OO ClOCK-TIMC
O CO2 CONC
TlUt 24OO CLOCK -Tint
O CO2 COMC m
STACK C02 8-7-86
AFTERBURNER CO2 8-7-86
10 -
-
7 J
4
3
2
1 .
^ ^*- "- i , __
1
10 -
t -
. »
1 -
U
R »-
4 .
3
2
1 -
0
, ^
__
.
4
^
]
1OOO
1040
1120
12OO
1240
TM[ 2400 ClOCK-TIMC
O CO2 CONC
1340
Tint 2400 CIOCK-TIUC
O CO2 COMC
I4OO
-------
E-DUCT O2 8-12-86
KILN 02 8-12-86
11
10
1*
1*
17
1*
IS
1*
14
12
11
1O
t
7 .
t
4
3
tie
1000
1110
1300
I34O
1410
10-
1t -
18-
17 .
It -
It -
14 -
13 -
11 -
11 -
10 -
t -
7 -
9-
4 -
3 -
^*
^^
1O40 11OO 11 JO 1140 I1OO
TIMC 1«OO CIOCK-T1UC
O 01 COX
TIMC 14OO CLOCK-TIUC
O 01 CONC
STACK 02 8-12-86
AFTERBURNER 02 8-12-86
I
g
11
10
1*
It
17
It
It
14
«
'*
11
10
11
10-
1»
It -
17 -
It -
It
14
13
II
11
10
t
7
t
ft
4
3
1
1040
1100
1110
: 14OO ClOCX-ttMC
ei CONC m
1I4O
1100
tio
1110
1300
1340
1410
TMC 1400 CLOCK-TIUC
O Ol COMC
-------
E-DUCT C02 8-12-86
KILN C02 8-12-86
1C -
t
8
N
8
11
10-
8
t
3
2
1 -
1140
T1MI 2400 CtOCK-IMrt
O CO3 COMC B
1340
10SO
1100
11X0
1140
1200
122O
TlUt 24OO CIOCX-T1MC
O COX CONC B
STACK C02 8-12-86
AFTERBURNER C02 8-12-86
II
10
3
2
II
IO
10SO
11OO
1120
I14O
I20O
1220
20
TtMt 2400 CLOCK-T1MC
O C02 COMC B
102O 124O
TIMt 24OO ClOCK-TIItt
O C01 COMC B
-------
E-DUCT O2 8-13-86
X*
20
It
18
17
I*
IS
1*
11
12
II
10
1020
1120
1220
112O
1420
TlUt 2*00 CIOCK-TIUC
O O2 CONC B
AFTERBURNER O2 8-13-86
i * jo
2«oo eiocK-nuc
02 CONC m
-------
E-DUCT C02 8-13-86
8
M
8
11
10
t
7 -
t
4
J
t
1
0
t20
1020
1120
1220
1110
1420
TlUt 2*00 CLOCK-TIME
O COX COMC
AFTERBURNER CO2 8-13-86
10 -
t -i
e
u
120
10ZO
1120
IZ20
1320
TlUt 24OO ClACK-TIMC
0 CO2 CONC
-------
E-DUCT O2 8-14-86
' KILN O2 8-14-86
C
21
10
It
It
17
IS
14
V "
I '*
8 11
g 10
u
8
t*0
1020
MOO
122O
13OO
1340
M
1*
16
IT
)
15
14
13
12
II
ie
* -
1
2
1400
T1UC 24OO CLOCK-TIUC
e 02 COMC m
1420
TIME 2400 CLOCK-TIUC
O 02 COMC
STACK 02 8-14-86
AFTERBURNER O2 8-14-86
w
S
21
20
1*
!
17
It
15
14
13
12
II
10
t
5
4 -
3
2
I4OO
21
20
It
It
17
IS
14
13
12
tl
1O
I41O
TMC MOO CLOO-TIMC
e* CONC
4O
I02O
1IOO
1I4O
1220
1300
1340
TIUC 24OO CLOCX-TIMC
O O2 CONC
-------
E-DUCT C02 8-14-85
KILN C02 8-14-86
it
to
t
11
to-
4O
1020
1100
1210
tsoo
t*4O
I4OS
nuc 2*00 CIOCK-TMC
O CO2 COMC
1420
TM
-------
E-DUCT O2 8-28-86
,
g
o
N
O
1* -
It -
17 -
1*
15
14
13
12
11
IO
t
7 -
1*40
nut 2«oo ciocK-nut
o 02 CONC m
20
it
it
17
«
IS
I "
O 12
7 -
STACK O2 8-28-86
AFTERBURNER 02 8-28-86
10
!
II
17
" 12
3 11
IO
7
MOO
I20O
I WO
nuc 2«e« CIOCK-TIUC
o 02 COMC
1100
Tint 2*OO CLOCK-DUE
O 02 CONC
-------
E-DUCT C02 8-28-86
10 -
7 .
14 JO
Tltlt }«OO CLOCK-TiyC
o cot CONC m
STACK C02 8-28-86
AFTERBURNER CO2 8-28-86
.
MOO
I ZOO
1400
00
T1UC 1*00 CLOCK-TIUC
a co] CONC
MOO I20O I
TIMC HOC ClOCK-tlut
O CO2 CONC B
-------
E-DUCT O2 9-03-86
20
It
17
1C
IS
13
12
11
IO
t
7
I US
1100
TMC 24OO CLOCK-TIUC
o oa COHC
STACK O2 9-03-86
AFTERBURNER O2 9-03-86
JO
1*
la <
17
it.
is
14
14
12
11
IO
t '
2O
II
It
17
IS
14
1J
12
II
to
1000
1200
00
IOOO
nwc t40o eio
os COMC
1200
TIWC 14OO CIOCK-HUC
O2 CONC
-------
E-DUCT CO2 9-03-86
u
8
II
IO <
t
7
4
IMS
IJ40
1420
nut »40o
o coa CONC
STACK CO2 9-03-86
AFTERBURNER CO2 9-03-86
*1
too
IOOO
OOO
IOOO
IIOO
ItOO
1400
I«OO
TlUt J'OO ClOCK-TIMC
O COJ COMC
liut 1400 CLOCK-TIUC
O COJ CONC
-------
E-DUCT 02 9-04-86
10
1*
ia
17
i«
is
11
10
*
1440
Tint J4OO CIOCK-T1UC
0 O2 COHC
1420
STACK 02 9-04-86
AFTERBURNER O2 9-04-86
20
It
IS
14
11
12
11
IO
-
20
It
IS
17
II
IS
14
11
12
II
10
too
IOOO
I1OO
1200
too
TlUt 240O CLOCK-T1MC
a 02 COMC
1200
TIUC J4OO CLOCK-T1UC
O 02 COMC
1400
-------
E-DUCT C02 9-04-86
to
IJ4O
1410
TlUt I«OO CLOCK-TIUC
O COJ CONC B
STACK CO2 9-04-86
AFTERBURNER C02 9-04-86
t
t
i ,
4
IOOO
1IOO
1X00
00
IIOO
IJOO
1300
1400
TIUC J4OO CLOCK-T1UC
O C02 CONC «
TIUC 2400 ClOCK-TlUt
O COJ CONC
-------
a
w
in
(A
tt
O)
C
r- ^
o o
0)
o -o
(0 C
M- <
o
«0
V)
V)
o
10 £
1 S
£ «
t.
o in
V)
Ul (O
H- CD
< Ot
0 «-
r-
o
1
r-
in
^
CM
CM
t-
1
n
o
CM
^
(O O O
co co co
CM *» «O
1 1 1
CO O O
o ^ ^
CM ^ (0
o
CM
V.
t-
in
CM
1
en
»-
""
CM
CM
ID
1
4^
T-
^~
^
CM O O
-------
a
ra
in
£
IT m
"
w
O
03
in
o
o
u
ID
«
V)
0)
ec
in
U
CO
-------
o>
to
»« ^r **
<
t- in
O
to
-o
o
L.
oo
U
a
U
V
VI
I
^ (0
u
V)
cc
UJ
^J
ce
^D
oo in
ce z
UJ
i-
u.
in
r
^r
U
UJ
t-
o
u
< in
»- r
(0
UJ
-------
o>
V)
in
in
ft)
"S £
0)
O)
o
z1
o
o
o
<
in
in
o
ft |
o
V)
o
n
u
a
o
in
Ci
in "
£ *
9 m
M. =
0 1
,2 2
o
V)
rr
IU
z
ce
3 in
CO Xi
tr
IU
»-
u.
in
3C
>-
u
=>
IU
*~
V)
0
>
tt
o
< m
»- X
V)
IU (O
h- CO
< en
o »-
o
CM
»-
^
in
in
en
in
in
«»
^"
i
»-
in
en
in
in
o
*"
i
in
»«
en
CO
CM
V,
CO
o
o
V-
l
T-
in
en
10
*T
*»
*T
O
^
en
o en
o CM ^r
O CM «»
O r- -
Too
o o o
^ CM CO
O» f «-
CM
^
o
r«
1
o
^
en
CO
o
-s.
en
^»
v
0
|
t-
co
en
en
CM
«w
^~
1
o
CO
en
O 0
O v in
m r- co
en ^ »-
i i i
O o o
rt CM CO
en r- co
*~ ^
CM
CO
o
1
0
CO
en
^
0
>s.
en
- a
U -M
0
§°
» O
CM 2
* 0
-------
vt
o
T)
o
CJ
O)
(D
S_
V
a
o
_j c.
** 9)
O
co a
co m
o co
or
ca in
O
.c
4V
a>
oc
u
ID
4f
CO
a>
n
h-
-1-t 1-
u z
LU LU
Z CJ
1-1 CC
*£ LU
O Q.
LU
H- tr
z cr 3 x
< LU t- <
O C3 < LU X
-i Z CC CJ U. > 1
CO 1-1 LU < Z
IO O. O. 1-1
LU X X X
Q HI LU
01
CC
=> X
cr i- <
LU < LU X
t- cr o LU > i
_l LU < Z
1-4 Q. *~ >-t
U. X X
LU
t-
t- LU <
LU LU X
cr _i > i
LU LU t < Z
K CC 30 H-
LU 3 O X
r i-
< LU
O 0.
X -* X
> LU r- LU <
CT K LU LU X
Q _» ~> 1
Z < Z
1-4 O >->
X
z
LU HH X
r- X UL
< "X CJ
CC -1 CO
co a
3C 0 «
o
u.
LU Z X*
_J 1-4 U.
0. X U
5 -1 5
LU c*
^- . CM to
O CM
CO ^-*
~
^»
^^
en ^"^ co
CM CO t O
i «-
LO 5T in 1
to en ui
cn -^ eo
CM
O " **
m o CM
to i CM
in »- i
» r- »- 00
CO * 00
*~
v* co
in
iA
r- O
CO t-
U)
IO
»- 0
^
o
GO
O
co
o
r-
in
^Hlt
en m
lin CM co CD
i i
eo co co CM
CM - co eo
t- _
CM
t- *-.
'^ cn
CM f- CO (O
ro CM
O «- CO 1
CM 1 * *
1- IO CM O
CM
in
cn
cn
-~ CM
v eo co o
co «-
in i in i
co o cn to
CO ' CO
«»
cn
co eo o
cn v CM
1 CM «-
*x eo «- i
^^ ^ ^
CM «^ cn
co '
in <
* ^y
CM
»- 0
to co
co
«- o
in
0
CO
t-
cn
cn
g«»
^*>
r- > O>
«- ro O eo
i i
^" IO 00 t^
CO 00 00
o «
CO
in -*
*» W "o t~
co CM
cn r- t- i
*- I ^ r-
«- in CM CM
O «-» CM
CM -^
. -^eo
CM CM *- o
t- i en i
ro o cn to
co ^- oo
in <
«<*>-
- 1 -CO
t- o *-
en CM i
«»»-»- cn
ro " eo
*~
in *-
in
^
»- o
t- oT
to
to
»- o
o
CO
-------
VI
O
o
o
u
en
UI 10
o u
Q 4>
=> a
Q a*
2 "-
O
(A
O
cr
CD.
V)
in
U
Q
4J
V)
J3
(0
(-
0 2
UI UI
2 CJ
t-i cr
o o.
V)
UI
»- cr
2 CT 3 X
< UJ H- <
o a < ~~ ui z
«- 2 cr o u. > i
yj 1-1 ui < 2
(/) 0- 0- -* *«
UJ Z Z Z
O M UJ
UI
cr
3 X
cr t- <
ui < » ui z
H or cj u. > i
_l ui < 2
t I Q_ »-l
u. z z
UJ
-» X
UI K U. <
§UJ UJ Z
^J * ^ 1
1- t- < 2
< 3 O «-
cr o z
UJ
o_
UI
H-
~» X
UJ t- U. <
_1 UI UI Z
Q. _l > 1
Z 2 < 2
< i-i O -
V) Z
2 -^
UJ M Z
h- Z U.
< *x 0
cr _j (/)
(/) O
u,
UJ 2 Z
_l 1-1 U.
Q. Z U
Z ^ W)
V) ~* *
UJ (O
h- CO
< en
o «-
t-
CM
en
o
CM CO
CM « 1
eo in co
^ C*» IO IO
^ «» *t^
CM
t** ^"^ ^~
GO CM CO IO
i- -CM
CM co in (O
T- . CM CO
CO CM
*~ "
CM
-^
t~ ^» en
co co co en
* i i
co en CM ^T
co en eo
CO "- -
CM
CM
t- en t-
ie> v « r-
t ^T ^
O IO O 1
^ ^* C""-
o co
^B«
CO »»
in
in
t- 0
^^
9 CO
in
IO
»- o
^^
CM
^*
^^
CO
r>
CM
en
O "^
CM -^ CO
t~ 1 ID ID
« CM . 1
eo in co
i t~ (O ID
^ ^^ *>^
CM
t^ «M» ^
IO CM T- ID
. ^- .CM
in i co i
CM en in in
r~ CM in
CO ^ CM
CM »-
in
. .
O) CO
en co o
1 CO «-
co t^ en i
CO ^» O
10 CO
CM
CM
«Mk ^«
r- in
in
r- O
"**
^
^
^^
CO
-------
w
o
o
to
L.
V
a.
o
UJ U
O 9)
O -
10
CO
O
cr
ca
re
to
m
u
re
*j
V)
V
re
H-
U Z
UJ UJ
Z 0
-I cr
i£ UJ
O 0.
CO
1 1
UJ
i- er
z cr = x
« UJ f- <
o o < ~ uj z
z cr o u. > i
10 >-i UJ < Z
to a. a. ~- >-
iu s: s. z
O 1-1 UJ
h-
UJ
cr
3 X
er t- <
UJ < UJ Z
t cr u u. > i
_l UJ < Z
-1C. M
U. Z Z
UJ
-* X
1- U. <
UJ UJ Z
cr _j > i
UJ UJ h- < Z
K CC 30 -
UJ 3 O Z
z »-
< UJ
o a.
Z -~ X
>- UJ t- U. <
cr H- uj uj z
0 _) --> i
z < z
-. 0 ~
z
z >
UJ i-l Z
t- Z U_
< >s 0
cr -i co
» w S
u.
ut z z"
_1 M U.
0. Z 0
H J i
UJ to
I- eo
< en
0 «-
CM
00
en
o »
CM ^-> 00
i n to
CO i- 1
^« ^f T~
^p tO f^
^* «IH^ «MI^
CM
CM CM
eo CM o m
«- -CM
C- 1 ^ 1
»- co ^ m
«- CM en
CM « CM
^ *~
".
rl *-* (Q
en f) in oo
i 'i
»- t- en o
n oo P-
^ ^^ ^^
CM
»
^^N
in »» «o
^- ^ eo o
1 v~
r- en eo i
co en in
n P-
CM
GO 00
P- I to (O
00 1
co in ^
r- P- tO (O
V~ ^"^ ^B»
1
O
n ^ (O
en T- O to
« 1 'CM
CO CM CO 1
CM tO t-
«- P- CM tO
CM CM
*: ^
p- en co en
i i
CM tO O 00
en « en P«
m ~-
CM
o ~-~
in oo CM
en i CM
CO fM 1-
^f ^* t
^ P- - CM
CM 00
*""
o *-
« p-
o
CM 0
(O tO
P-
^»
CM O
O
^^
en
-------
vt
o
o
o
U
re
t-i Q.
O O
UJ (-
U 0)
u. o.
cr E
a n
(0 CO
tn
o
cr
CD
in
u
o
i
UJ
UJ X
cr en en <
3 X X U) Z
CO > 1
10 E C < X.
UJ E «- H«
cr ^^ 3E
ft
UJ
i x
cr K <
UI < UJ Z
i- cr o u. > i
UJ UJ < Z
Z o. -
Z Z
UJ
» X
UJ K- U. <
cr uj ui z
=5 _l > 1
1- 1- < Z
< =0 »-
cr o z
UJ
CL
UI
U? X
UJ t- <
_1 UJ * U» Z
0. _J > 1
Z 2 0 < 2
< M t-l
(O Z
3S.
Ul »* Z
1- Z U.
cr -i (0
V) O
! ° ~
u.
uj z z"
_l CH U.
0. Z 0
z ^ to
^t ^J 4^
CO *~
t-
uj ID ui cr
h- CO Z <
Q «- K W
CO
»- ^,
co n * t-
^ eo »-
»- i « i
o o in in
<«» t- r-
v* ^^ ^^
CO
CO
°1 .en
eo o CM
»- « « r-
i in i
^o eo ^* v^
^7 ^ en
CM ' -
eo
C- CM ^ tO
»- -CM
cr> i t- i
- en ^r o
CO ' CM
en ~-
co co *^ c^
* 9 CM
en
t-
to ~* o
CO CM ID ID
« »- CM
en i t- t
- o ^ o
«- « CM CO
o < CM
r- ^»
^^
in t*
CO
o
«- o
**
^
eo CM
f>* *
*- O
cn
CM
t-
-------
o
to
(A
O
er
CD
O
o
CJ
o
n
0)
a
(A
(A
u
o
I
J3
a
or
t- er
UJ =3 X
z t- K <
UJ < UJ Z
u) _i cr u u. > i
< H- UJ < Z
O =3 0. -
0 Z Z
> UJ
cr i-
o
UJ
cr
=> x
z t- <
to cr o u- > i
UJ UJ < Z
cr Q. «-i
Z X
UJ
UJ
er
3 X
er t- <
UJ < UJ X
t or o u- > i
I UJ < Z
l-l Q. - M
u. x x
UJ
UJ
er
K 3 X
UJ UJ K <
S_j < UJ Z
t- er o u. > i
r 3 uj < z
^r «£
UJ
^"
UJ 1-4 X
t- z u.
< ^ o
cr _j w
w a
i ° ^
u.
UJ Z X*
-J »-i U.
X ^ W
$ J 2.
Ul£
^00 X ^
< en 1-1 h-
a «- »- w
to
^^ ^T
10 00 -
1 t- 1
CM O O <£>
ir v- to
0 ^-~
CO
^f ^*^
» en
t~ en to ^»
i i
CO CM t~ to
^ <»._>
CO
CO » CM
CM CO CO f-
r- .CM
to i r- i
CM 00 IO (O
»- « CM CM
t- »~ CM
0 -*
en »
. «» CM to to
«- «CM
00 1 *- 1
O P- CM O
f CM t-
(O »-
e- »-
*^ c?
t- «- o «o
CM CM
«O - *» 1
O 1 CM O
i- oo CM en
t- *-
00
^ to
CM
e-
o
**
O 00
« CM
00
0
IO
o
^^
00
CO
« *Hk
ao c- en
| v~ ^>
^ CM f- 1
* .i-O
CM en
CO ~-
o
^"*
0 -* O
00 ^ O IO
"1 . 1
t* e- to to
. ^r co
i^ **^ «*^
t-
to > o
tO CM O tO
t- "CM
a* i t- i
r- CM ^ «
»- « CM CO
CM » CM
£ ~~
CM ^»
^^ Q
o CM to r-
CO * CM
r- r- < i
O 1 CM O
« CO CM O
CO «
cn
V 00
^y
CO
t- O
**
CO ^»
' IO
IO
*- o
t-
0
^^
CO
-------
Ul
I
in
o
4J
5
o
a
t_
o ^
5 i
_i eo
i-« V)
10 in
U
O
I
Ul
JO
ID
tr.
in in
Ul K 3
Z Ul t-
_J < U U.
c/> »- or
< 3 Ul
C9 O O.
> UJ
o
UJ
i
z »-
' < U.
-w o: o
UJ Ul «
oro.
UJ
UJ
or H -»
UJ < U.
i- or u
_l Ul
H O.
U. Z
UJ
UJ
i-S
Ul Ul t- »
CD -I < U.
O t- or o
er 3 ui «
0. 0 0.
^c
UJ
*-
UJ
K
or
i
u.
Ul
_J
o.
j£
^(
to
UJ IO
1- CO
< en
0 «-
x
^
Ul Z
> 1
< z
l-l
X
u) Z
> 1
< z
z
X
IU Z
^^ 1
< z
^p
X
uj z
> 1
< z
1 1
j£
z-
z u.
-V o
-J V)
M O
Q <
z z"
»-i U.
z u
^ V)
**
h- Ul
or z
^ ^
en
*7 -^P
^ co en co
m f
en i CM
co en o ^
. *- CO
CO -
CM
O
o *- o
O> r in
1 CO 1
CO t- ^ ^
- .CM
CO 1 ^ 1
CM en in o
t- CM *-
CO «-» CM
en *~
^
^ ^o"
ro CM ^ in
. ^- .CM
v i en i
O CO * O
9- CM O
CO « CM
en «^
CM to
in
^f *
r- O
*"
CO IO
*v m
in -
T- O
CO
^^
CO
*^ -^^
»- «- 0 CM
m »-
to i tn i
<» CO «- CM
. - en
CO »*-
CO
^ *^-^
co en
in en ^
i t- i
eo ro ^ co
«- CO
CO «~
CM
CM » S"
to ro ^» r^
« »- « CM
«O 1 «» 1
CM o in o
«- CM CO
O *- CM
CO
^* f*^ 9~ *f
l- » CM
«- i in i
O CO «- O
»- . CM en
Ij^B ^^ »»
CO i-'
o to
^f
CO
»- o
* '
tO CM
in
*v
r- 0
^B
^^
CO
-------
in
o
a
o
u
en
c
to
L.
ai
a.
o
_l L.
t-H tt>
o -
(o a.
V) m
o (/)
cc
co in
u
3
O
UJ
CJ
J3
re
cc
UJ UJ
UJ 1- 3
Z UJ 1-
-J < U U.
(/) 1 CC
< 3 UJ
O O 0-
z
> UJ
ce »-
Q
UJ
cc
z t-
-« < O U.
(/) CC
UJ UJ
CC 0-
z
UJ
UJ
CC 3
UJ t
H- < O U,
_l CC
1-4 II 1 ^
U. 0.
z
UJ
UJ
cc
1- 3
UJ UJ I -"
S_l < O U-
(- CC
ce 3 uj
a. o &
UJ
UJ
^»
^
ce
|
u.
UJ
-J
CL
z
V)
u 1
< -z.
1 1
z
X
UJ Z
> 1
< z
z
X
UJ Z
> 1
< z
z
X
> z
< z
1 1
z
z
* z
Z U.
*X 0
-1 (/>
(A O
a -~
z z*
« U,
z o
x v>
-1 <
CC UJ
H* ^^
(O H-
00 ^
. . o
t~ t- ^» o
n ^~
CD CM cn ^*
^B^ CO
t- ^«
T«
^^ 4*^
^ 0 CM
CD »" «in
i t- i
to n -v o
^ ^^
»-?
co o ^ >-
r- -CM
O 1 CD 1
o cn ^ ^
- CM P-
co «-
r- «-»
^**
r- ~* O
en CM o in
« t- CM
CD 1 CO 1
O «- «- (O
«- CM cn
cn **C
o P
' m
«o
«- o
^^
CM f
(£)
r-
»- o
**
00
CM
^^
00
cn -»
. ^» o
r- co en CM
CM 1 CO 1
9 CO O CM
. i- CO
CM
^»
^^ ^^
CM - "»
cn «- -in
t co i
oo c- <» cn
. ~ CM
7 "
03
e^ ' o
t- 0 O CO
«- i cn i
CD C^ ID O
r- . CM P-
^B ^^
CO
t** ^"^ O
cn CD 10 oo
. *- .CM
in i ao i
CM »- in o
i- * CM in
»- CM
CM **
t^ U)
* in
in
«- o
_t
*D »
to
t-
- o
*"*
n
o
cn
CM «
. - c-
C- t- CD f
^f T~
o i in i
* CM O i-
. i- CO
CM
o
o e- o
CM t- « in
1
-------
V)
o
O
O
O)
UJ 4*
a re
o t-
3 «»
_i CL
V) O
i fc
«-i a
O V)
OT V)
o o
e >
GO
*»
o
a
i
UJ
UJ X
cr o> o <
U I Z UJ Z
CO > 1
CO E C < 2
UJ E « -
cr z
UJ
o;
3 X
cr »- <
UJ < ID Z
*- cr o u- > i
UJ UJ < Z
z a. -~ -
z z
UJ
t
UJ 1 U. <
(f UJ UJ Z
=3 _l > 1
K t- < 2
< 3 CJ »-
cr o z
UJ
a.
UJ
t-
~> X
UJ I- U- <
_j ui uj z
a. _j > i
z z < z
< »-i CJ -«
CO Z
2L
UJ « Z
t- Z u.
< *v 0
cr -j co
8 8 a
u.
ai z z*
_l 1-1 U.
CL Z 0
Z v. to
< -J <
CO
h-
ui (O uj cr
H- 00 Z <
< cn t-i t
O «- t- CO
00
r- o
oo t- «-* .
«- o P-
t- i i
f- CO P- O
t- P-
p- <~*
"
0
o » UP
co co co QO
1 -1
cn en ^ ^
CM 00 00
c» ~~
CM
t-
*- » CO
co «- ^» in
i i
*- f CM CM
^- in in
^»
00
fr- 00
oo ^ en i-
1 O «-
CM «- »- 1
* « c-
to cn
CO
oo
«e
CO
w
in » eo
to CM co e~
i . i
en
«>
t-
^^ ^^
^- co in
co in CM
i en ^
CO CM t- 1
« . »- en
r- en
CO «
t~
in co
o o
*- 0
t-
in to
0 O
- 0
^"^
CM C?
t- O
v co
00 »-
-------
o
cS
UJ
O
o
a c.
z «
< -
a
-J E
1-1 a
o v>
CO
A/
co m
o o
e >
CO
4J
U
o
IU
UJ X
or o> o> <
=> Z X UJ Z
CO > 1
CO E C < Z
UJ E «-«
or Z
o.
IU
i x
ce i- <
uj < -~tu z
H or cj u. > i
UJ UJ < Z
Z CL *» «-4
Z Z
IU
1-
-* X
IU K U. <
or lu uj Z
H H *""< Z
< 30 -
or o z
IU
UJ
X
IU K U. <
_J IU IU Z
O. _J > > 1
E Z ^t SB
^t ^^ CJ ^*
CO Z
IU 1-4 Z*
K Z U.
< -v O
or -i co
_ cn o
g o ~
u.
IU Z z"
o. z o
< ^J <
CO *-
K
P* 40 «c ^c
< Ok f* »-
O r- t- CO
CM
CM O - *->
CM in co
^ 1 CM 1
CO 00 C-
^" C*» *^
t- '**
t^
r-
cn
^*+
to ~^t
cn CM co CD
i i
e- CM CM r-
CM CO CO
|«> «M* ^^
CM
CO
t- ^r
t- *- » to
1 CM 1
t- . ^- to
(O *-
^1^
r- » CO
co «o e- *»
1 CM *-
CM CM ^ 1
in . ' o
CM cn
n «
in
O CO
o
r-
O
"*~
in
O CO
0
*~ C3
CO *-
r- O
a «-
(O
CM »
to co cn
CM i cn i
co
1 CO 1
CO O^ Oi C"5
CO O>
CO "
CO
{M
CM CM
cn CM t»
1 tO 1
co e- to CM
to ^^
^
cn
CO CO
cn co ^ 01
i ,o i
CO OV iJl CO
CO 0>
« «-»
CO
CO <»
- o
*
- o
""*
^
in v
f O
- C3
CO IO
«- CO
CO t-
CM cn «"» r-
. t- «» »-
«» CM 1
to i o o
CM ^ T- «
in «-«-
CM
CM
t- en
o co to cn
i i
P- t- CO CD
co o> cn
to ^^
CO
". ~
r- O
O CM CO t-
1 1
T~ to cn cn
CM (O tO
O '
CM
cn
CO
CO CO
CM in to t-
1 (M 1
CM CM *- CO
in o
«M i-
^ **
CO
t- CO
o o
r- O
*""*
oT
O CO
*- o
«^ d
^*"
CO O
r- CO
V. CO
co *-
-------
in
o
o
u
ui +>
o n
OL
O
U)
O
t-
4)
t-i (D
O (/)
V)
4J
co in
o o
e >
CO
4J
U
o
I
ui
V
CO
Ul - X
QZ OJ Cft ^
=> Z X UJ X
W > 1
CO E C < Z
IU E - «-
CC X
0.
Ul
cr
=> X
CC 1- <
Ul < Ul X
K CC CJ U. > I
Ul Ul < 2
X Cv « -
X X
Ul
»-
X
Ul H U. <
CC Ul Ul Z
- H^ *""< Z
< =5 CJ «
CC O Z
Ul
O.
Ul
X
Ul t- U. <
-j ui ui z
1 5cJ«£
W Z
Ul HI X
t- X U.
CC -I W
UJ O
20'
a.
ui z x
_J -, u.
O. X U
1^2
Ul (O Ul CC
1- CO X <
< en - t-
o «- »- to
(D
CM .
in co en
«c co *-
e- i i
t- CM CO CO
t- w
55
(0
in * (O
co co co en
i i
CO CO CM CM
to en en
CO * *«*
CO
CO
^^t
co *T
O CM t-
1 CO 1
o co <£> in
CM ^^ ID
CO -_ -
^
e-
^"^ ^^
^- CM in
CM in CM
1 «O i-
- t- O 1
10 en
CO *
^^
in
CO CO
en o
o o
in
O CO
0
o
v in
^ »
\ o
CO »-
o
CO
en o o
in co CM
CM 1 1
o «o en en
m «- «-
CM -
CD
en -~
CM
CO O
en co CM »-
I O I
co en «- CM
CO ^- O
CO -
CO
«
^~
«o en
CO CM tO t-
i i
en ID t- o
**~ ^f\ ^
in <«*«-'
^»
CM
^"^
t- en
CM co en
i en i
t» CM en en
co ** en
e- **
CO
-
t- CO
CO O
0 C3
CM
O CO
en o
d d
^ (D
- O
V.CM
CD f-
03 -^
0 0
co m - CM
O 1 O 1
in co CM o
O ' CM
m *-
o
^f
00
o ^ ^r «-
I O 1
0 O - «
^ . ~~ o
0 «-
" "~"
1
1
CO
CM -~ CO
«- CM O t-
* 1 1
0 O CO
CM t- * CO
CO -
-------
in
o
o
o
u
10
t_
0)
to a
CO (0
o to
cr
co +>
v\
u
o
I
UJ
J3
a
UJ -~ X
(TO) O> <
=3 I I UJ Z
CO > I
CO E C < Z
UJ B *^ " i
cc «~ z
CL
IU
cr
3 X
at- <
UJ < UJ Z
t- ct o u. > i
Ul LU 0 < Z
z a. **
Z Z
UJ
t-
X
UJ t- U_ <
cr uj uj z
3 -1 < > I
K H- < Z
< 3 O -
CC O Z
UJ
a.
UJ
K »
UL X
UJ »- <
_| UJ -"UJ Z
C- _1 > 1
z z u < z
< l-l l-l
CO Z
z »
uj i-i z
1- Z U.
< V. 0
cr -i co
CO O
8 ° ~
u.
UJ Z Z
_1 ft U.
£ ^ 8
< _l <
CO *~
(-
ill 10 uj ec
P
i m i
ui O o irt
CO "-^ O^
in
co
CD *
» ^
co r- OD to
<^* 1
ro i «o en
»- en in n
^Bl» ^1^
CO
o *
« o>
in in ^r
en «o -
1 O 1
r- * * O>
to »- r>
en ^^ *^
in <
^»
t* «
en o
« *
o o
^
t» eo
en o
0 0
^ eo
O (M
V. CO
CO ^-
00
* ^^
in co t-
« «« CN *-
r- 1 .1
«- CM (O
CO -^
CO
en
co vn
co ex oo e-
1 1
en t- to CM
i . JO !O
(0 ~
V
«>
CO »-
-------
VI
O
o
o
OI
4J
a
l_
V
CL
-J O
o
V)
o
cr
CD
V
v>
VI
u
o
UJ
LU X
CE OI OI <
=31 Z UJ £
10 > 1
CO E C < Z
UJ E «- «
cr £
^i
UJ
or
=3 X
CE t- <
UJ < « UJ £
t- CE O U. > 1
UJ LU < Z
£ O. « -
£ £
UJ
^-
X
UJ t- U, <
CE UJ UJ £
=3 _l > 1
K 1- < Z
< =30 -
CE 0 £
UJ
CL
tu
^"* 5^
tu t- u. <
1 UJ UJ £
0. -I > I
£ Z < Z
< 1-1 0 -*
CO £
UJ fi £
K Z U.
< ^ 0
fie -J «o
g 2 E
U.
UJ Z £*
J 1-1 U.
a. £ o
£ »» IO
g -1 5
K
uj -t *-
a »- t- to
CO
1 ^»
m co i-
« » CM «-
»- i i
«- o «o in
*« i- r-
co
CO
t co t
co co ^ 01
^ r- 0
CM » r-
^r
v
t- CO
OI O
O 0
in
CO CO
OI O
o o
in «-
o *
«s. -
CO ^
ID
CO
CO CM -.*-
CM CM OI
CO 1 1
O CM CO CO
CM <'
CO
o
CM
o>
CO CM CM
OI CO O
1 O f
t» O> O 1
CO t- CO
CO O»
CO «
e~
«o > o
CM CM CM CO
1 1
i- cn o ID
CM t* o
0 0
«o
v- CO
0 0
«- o
in eo
O r-
>> CO
CO r-
co
t^
»o c- *->^-
. r- « r-
CM 1 1
to *r
v. ^
CO «-
-------
ut
o
TJ
o
u
O)
n
L.
a>
o v
to -
a.
en E
o n
cr v>
CD
4J
V)
o
u
o
i
UJ
JO
ra
UJ » X
CC CT O) <
=> X X UJ Z
t/5 > 1
W E C < Z
UJ E - «-"
o: ~* z
o.
UJ
CC
=5 x
er i- <
Uj < _ UJ Z
h- CC O U. > 1
UJ UJ < Z
X CL ^ 1-1
z z
UJ
1-
X
UJ t U- <
CC UJ UJ Z
13 _i -~> r
»- 1- < Z
< 3 U -
cr o Z
UJ
CL
UJ
X
UJ t- U. <
_l UJ UJ Z
a. _i <^> i
Z Z < Z
< - 0 «-«
(/) Z
UJ Z -~
t- »-> Z
< Z U.
Z (A O
O O «
UJ *~
_J Z Z
O. U-
z z u
< >x W
(/} -1 <
m « iti cc
F co z <
a - K w
CM
O
P CO *^ CO
co co ^
en i i
en o - o
CM . t- t-
^r «i^ ^^
in
CM
p-
- en
P* CO ^^ 0
i en i
«- t- eo en
co eo
co
o
*^
O 03
co CM eo «o
1 -I
en en to co
(O (O
eo «-~ »
^«
CM »
in
»- CM
to in CM t-
1 CM 1
C en - o
u> CM
CO *-
" *-
o"
^r co
eo O
O O
*""
^_^
f" "
eo en
O
O
0
p- o"
o o
eo «-
00
^ ^»
co co t*"
CO GO f- t-
v* < -
CO
**
CM
p- er>
1 O 1
e- CM en en
p-
^
^"»
to o
CO CM O CO
1 t
n P» T »-
CM P- P-
CM
CM
p--.cn
o co 10 en
i « i
r- *- eo P-
co en en
(D «- «
CO
in
en o
O 0
_
CO «O
o en
O
o
p- in
O CO
v »-
eo f-
CM
r-
en vn eo
« «» CM i-
(O 1 1
co oo P- p-
^ ^ »
^- ^* *~*
CO
^
en
CM
CO - O
en co CM r-
\ 0 1
eo en - CM
CO *^ O
00 »-
CO «"
1
p-
^**
vo o
tO CM CM CO 1
1 1
en eo P- «» 1
<» {0 \£
^ ^W +H^
^B
CO -^
0
p- » O
00 CO O f
1 O 1
p- CO «- 0
CO ^- O
p- *-
CO «
en
CM CM
CO O
0 O
*"*
^^
p. r-
^D ^9
o
o
o
p- o"
o n
*+. n
0 r-
-------
V)
O
U
_J L.
«-i 01
0 &
UJ
u t-
< a
1 i
V) «
to
tn
o *
ee v>
eo o
u
o
IU
XI
a
GC O) D) <£
=> X X UJ Z
(0 > 1
ME C UJ Z
1- CC CJ U. > 1
UJ UJ <. X
Z 0. -~ «-«
z z
UJ
~
UJ t- U. <
ec uj ui z
3 I «» > I
1- »- < Z
< 30 -
(CO* Z
UJ
o.
UJ
t-
X
UJ 1- U. <
_J UJ UJ Z
CL _l «^> 1
z z < z
< 1-1 O <->
V) Z
UI -. 3E
K Z U.
< ^ CJ
jj 2 S
u.
UJ Z Z*
_J «-l U,
CL Z 0
Z *v W)
CO ~* 2.
h-
UJ (D UJ CC
K CO Z <
< en »* H-
Q - K «O
en «*
in r- » f
CM CD »-
CO 1 1
CM CO CD f-
CM *
t»»
e-
J ,
«o e-
en co to en
i i
in ID to ID
co ot en
in « *~
CO
^^ to
*» r-
t
CM CO
t- ID
^m^
o -^^
^ ID O
t- t f
CO «- 1
co « o o
CO t- - O
CO t-
t-
IO CM
e- o
o o
t-
IO CM
(- 0
* f>
0 0
- CO
CM O
*" C.
in
en CM . -~.
1 CO O
CD ID -
*t en i
CM CD » en
CM ~~
CM
O ^r
« ^ O
cn i CM v
CO O 1
00 «- «-
CO CO 'O
CO »-
CO
«» c-
1
CO t-"
to to
^^ ^^
fte
*p*.
tD -*«D
^O CO O O^
1 1
m en 10 co
co en en
CO *~*~
CO
in
en co
cn o
0 0
ID
T- CO
o o
«- o
- o
CM »-
t- -
^
CO (D > ID
O CO «-
»- ^ 1
o i in in
00 CC
CO
*^ ^»
ID t~
*- co o en
i i
10 »- r- c-
co en en
«*->«-
CO
(D «
. » CO
CM in o t»
CM 1
CM 1 CM CO
CM O t- ID
CM » «
IA
^f *^^ ^T
co co o en
i i
CO r- CM CD
co en co
^~ ^^ ^^
CO
o"
^ CO
CO 0
0 O
S
in co
00 O
»
O 0
"**
«- o"
CM -
>v tO
t- r-
-------
cr in
ca o
u
o
I
UJ
tt
a
UJ > X
cr 01 en <
=> I Z UI Z
to > i
ME C < Z
UJ E - «-
er z
0.
UJ
cr
3 5^
cr H* ^
ui < ^-> uj Z
t- cr o u. > i
UI UI < Z
z o. -
z z
UI
UI
cr H- - x
=} UJ U. <
K _J UJ Z
< t- « > 1
cr s < z
UJ O U
0. Z
z
UI -» X
O. UJ UI Z
Z -1 ~-> I
< z < z
CO !- O «*
z «-*
uj 1-1 z
»- z u.
< ^ o
a: -i co
to o
8 ° ~
u.
IU Z Z*
1 1-1 U.
0. Z O
Z ^ CO
< -1 <
CO
ui - CO Z <
< 0> »-i 1-
O *- H- CO
CM
t- »
CM m co
^ ^^ T*
t» 1 CO 1
IO CM «- CO
^ ^^ r*
C** ^ -
in
"
t- -
^^ p^
t- CM O
CM «T f
1 «O 1
«- «o o in
«- *-
in
t- i
»- CM
^^
in *"
. *~. eo
IO T-
* 1 CM 1
(O oo ^f CD
5*~c
^
CM
»- CO
Ol O
O C3
CO
Ok O
o d
CO ^
CM »-
V. t-
co
^f
tA O ^** ^***
CO CO CM
co i i-
CM CM CO 1
CM CO
0 ^*
CM
CO
. ** o
CO CM v-
en <» »-
. 1 O> 1
CM CO O Of
*» t- 0
CM t-
"* *~
t- in co co
CM t-
CM 1 CM 1
CM t- t- -
e-
^" ^M*
CM
_
co ^r
"J (J * 12
CM (O * I
co
CO CO «-
en co i
en i »- o
CM ^ »- *-
in ** -
CM
^^
^* ^"^ ^
CO O
in v- «-
O 1 O ^
» O «- 0
1
CM «
CO « CM
CM - t-
o CM en i
CM 1 (O 00
o «o
CM *~ \
1
^__
O«^
^
CM 1
*tf IO
^ »
^^
t-
^ CO
0 0
^ <3
*"*"
00
t- CO
o o
^ o
^**
co o"
CM CO
*»» in
-------
o
o
o
o>
_J t)
1-1 Q.
o o
Ul L.
U V
u. "a
ee E
3 a
(0 CO
co *
o v>
K O
CD >
O
O
IU
V
a
ui » x
(CO) O> <
13 X X Ul X
CO > 1
CO E C < 2
Ul E »- -*
cc z
0.
IU
§
ee K <
Ul < » Ul X
i- cr o u. > i
Ul Ul < 2
* X X
Ul
X
Ul K U. <
ce ui ui x
3 -I > I
t- 1- < Z
< 3 O «-"
ce o x
Ul
a.
Ul
x
Ul I- U. <
_J Ul Ul X
^L ^J ^^ ^^ 1
£ Z ^t 2£
*? ^H O NN
CO X
Ul 1-4 X
»- X U.
< "V CJ
CC -1 CO
3k cb ^^*
(^
u.
Ul Z X*
_l 1-i U.
CL X U
X \ CO
CO ""*
ui ic ui ee
t- CO X <
< en 1-1 H-
O t- t- CO
CO
^"fc
o »- r-
CO CO T-
^ ^f 1
o i in in
^ff ^ 4* ^
CO «'«-'
O CM
in -» CM
IO 1 ^f ^
tf) ^" 1
in *- CM
^5 *-
t-
CO CM ^» f-
1 1
- *- O O
CM t- t~
V" ^^ ^^
CM
IO «-«?
«0 ^
»- in t-
*» en i
CO 1 O ^
^ 0 »- O
CM
CM n
en o
o o
£-
in co
en o
*
o o
en t-
CM O
V. *
CM
O
CO ID CO
fO 1 "
t CM en i
CM CO
co
o
CM
IO
-. o
r- ^ IO i-
1 O 1
»- ^ »- (O
IO
in « eo
«- CM o t-
* 1 1
o t-
CM t* IO
en ~
fM
~~o>
en CM m
p- in »-
1 CM 1
m 10 co m
in «- o
0 t-
in
O co
O
*"" e>
IO
CO
-------
in
o
u
o
I
LU
LU X
Q£ Ol O) ^t
=3 X X LU Z
to > i
ME C < X
IU E **"* ^^
a * x
a.
LU
cr ? <
LU < « LU Z
H 1
LU LU < Z
Z a. ->
z z
LU
-* X
LU t- LU <
cr LU u z
=> -J «-> 1
t- »- < Z
< 3 O "-
cr o z
LU
0.
LU
<~* X
LU K- LU <
«J LU UJ Z
Q. _l > 1
z z < z
< t-i O "
V) Z
z
LU t-i Z
1- Z LU
< x. o
cr -i w
CO O
g o ~
lu
Ul Z Z*
-J It LU
(L X U
X x, to
i J £
K-
LU 10 LU cr
K CO Z <
< en l-i 1-
O f- H in
CM 1 1
co - co in
CO «-
CM »-
0) »-
CM «
n, ^.^T
IO CO 00 O
«O 1 t- 1
co in en in
CO O>
co
co -^ co
f CM « CO
1 « 1
^» 10 O
CM « t- r-
CM
t~
10 O
CO CM ~-«O
«~ «« CM
t- i «r i
«- CM CM in
^B ^^ CM
r^ CM
o ~~
^
in
CO CO
en o
o d
r-
^r co
O O
^ O
CO S"
O 0
* c
ID
in
*» in
co O ^r
CM 1 t-
tn o 10 i
»- *- in
e- *
CM
O> CO
«- CO »- O
1 *-
O CO IO 1
CO CD CO
0003
CM «^
0)
CD *»
IO CM O CO
1 1
in CM eo CM
CM f- *-
CM ««
CM
. *-* o"
en 10 co 10
CM CM
t- ^ « i
«- 1 <» O
T- O CM CO
f *- CM
^ «
^^
eo
^ ^~
in o
o o
en
CO «-
in o
d d
CO O
O CO
en »-
-------
o
n
L.
OJ
D.
O
_
O O
10 -
g
o:
CD
a
n
V)
o
o
I
.0
n
LU
or cn
(A
V) E
LU E
or
0.
1
LU
or t-
LU <
K e: a
LU LU
z c.
z
LU
t-
LU t-
or LU
3 _l
K h-
< 3
or o
LU
0.
LU
K
LU H-
_J LU
a. _i
z z
<. »-«
V}
z
LU M
H- Z
< \
or -J
10
3 a
u.
LU Z
-j «->
Q. Z
Z \
< -1
tn
LU (0
K CO
< cn
O i-
^ X
cn <
X LU Z
> i
c < z
* »-4
z
X
<
-~ LU Z
U. > 1
« < Z
*« ^-^
Z
""* ^c
LL <
LU Z
-» > 1
< Z
O <-
« Z
-~ X
U. <
LU Z
> 1
< Z
U "-
z
^«
z
u.
o
CO
Q
*"
z
u.
^
CO
<
t^
F"
LU or
z <
I-4 t-
i- tn
^n
t- o
CM -»
t- r- O in
CM 1 1
»- c- in o
CM «
»- in
f»
*«*
to en
(O CM -» C-
1 CO 1
m c t- t~
CM ~ C-
in ~-
CM
en
.
00 -~- (0
»- t- eo (0
i i
r- ^ CM co
«- «o in
*T + -^
«
0 -»
CO
CM O T
CM ^ CM
CM »- CO 1
- i CM en
«- CO « O
CM
00
cn
^^
in
O CO
o
"~ 0
in
O n
o
*~ o
*» "o
o
o
^-
o
^ o
O CM
"X. T-
cnt^
(O
in
co m <-* ^
CO CM «-
in i i
« CM co co
CO " f
o
co
co
cn ~
« » co
«- co to cn
cn i |
0 1 «- r- \
o co cn cn
. *-,*., \
CM 1
CO 1
1
1
(0 1
1
O » cn i
O CM CM 10 I
1 1 I
cn oo «o ^ I
«- . (O (0 I
i- 1
*"
1
CD
t«^ O
^ m oo
r- t- CM
cn i « i
»- t* CM vn
^~ ^i^ i~
r- CM
O
^
^i^
in
co co
cn o
O 0
*~"
VD 1
- n
0 0
»- o
*"*
1
W O
O CO
\ CO
en ^
-------
Table - . Schedule of Vest, Method 5, And Modified Method 5 Sampling
Feed
Material
Surface
Oil
Soil
Soil
And
Sludge
Mixture
Sludge
Date
7-21-86
7-28
7-29
8-04
8-05
8-07
8-12
8-13
8-14
8-28
9-03
9-04
Stack
MS
NO
NO
NO
1324-1432
1105-1217
1000-1106
1002-1108
1000-1108
1015-1121
945-1055
940-1042
930-1032
E-Duct
VOST MM5
1203-1233
1410-1430
1610-1630
1111-1132
1330-1350
1530-1550
1407-1427
1610-1630
1805-1825
1328-1348
1500-1528
1630-1650
1111-1137
1318-1338
1410-1430
1000-1022
1135-1156
1330-1350
1001-1027
1138-1158
1200-1320
1001-1021
1136-1201
1330-1350
1015-1040
1206-1237
1330-1356
NO
940-1000
1200-1220
1330-1449
930-950
1120-1140
1330-1350
1203-1722
1114-1622
1405-1916
1324-1735
1100-1528
1000-1410
1004-1441
1001-1439
1015-1453
951-1455
940-1446
930-1429
Afterburner
M5
1157-1307
1119-1245
1415-1623
1320-1420
1105-1214
1000-1100
1006-1135
1000-1116
1015-1126
955-1120
951-1108
937-1044
* - 2400 Clock Time
NO - No Data
-------
TluB Sas Flow Rates for Kiln PCB Trial Burr a»d
Tests
Location
Surf act Oil 7-81
7-28
7-2S
Soil B-A
8-5
8-7
Soil * Slucce 6-12
6-13
8-14
Slucce 6-26
5-3
9-4
Flue Flew Ra
Scrubber
26. 4
22.2
16. 9
16.3
15.8
22.6
24.0
24.1
20.9
24.4
24.9
25.5
te (dscn/iin)
Stack
*t
H
«
IS. 4
16.2
20. £
22. S
24.8
20.4
22.5
25.0
28.8 !
Flue Flo* !«aj
StruSaer
532
1137
e&
574
557
TSc
847
850
737
860
661
BS9
ie (ssc*»)
i
Stae< '
1
I
« :
i
t* !
I
** !
t
6ft !
f
rr<
to ' A '
7c5
8:0 '
670
721
7r2
6£2
10:7
-------
APPENDIX E
ANALYTICAL REPORTS
E-l
-------
ACUREX
Corporation
Energy & Environmental Division
page 1 of 15
October 10, 1986 Distribution:
Dr. Larry R. Waterland Johannes Lee
Program Manager Jerry Lewis
US EPA Combustion Research Facility (CRF) Ralph Vocque
c/o NCTR. Building 45
Jefferson, Arkansas 72079
Subject: VOST Analytical Results
Reference: EPA Contract 68-03-3267
Dear Dr. Waterland:
The tables which follow summarize the results of analyses performed on
Volatile Organic Sampling Trains (VOST) taken at the CRF between July 8, 1986
and September 4, 1986. These data are associated with the performance of the
rotary kiln system during incineration of the following: Askarel + Auto Dry;
BROS surface oil; BROS soil: BROS soil - sludge and BROS sludge.
Sampling and analysis were performed in general accordance with
"Protocol For The Collection And Analysis Of Volatile POHC'S Using VOST", EPA-
600/8-84-007. March 1984. Variations from this protocol are documented in
"Proceedings of the Eleventh Annual Research Symposium: Incineration and
Treatment of Hazardous Waste", EPA/600/9-85/028, September 1985, pages 252-
260.
Sincerely
Robert W. Ross, II
Senior Chemist
NCTR. Building 45. Jefferson, AR 72079 (501)541-0004 FAX. (501) 536-6446
555 Clyde Avenue. P.O Box 7555. Mountain View. CA 94039 (415) 964-3200 Telex. 34-6391 TWX. 910-7796593
-------
ABLE 8. COMPOUNDS ROUTINELY DETERMINED IN VOST SAMPLES
Compounds
Mtthyltne Chloride
1 ,1-D1 chloroethjrlene
1,1-01 chl orethane
trans-1, 2-01 chl oroethylene
Chloroform
1 ,2-01 chl oroethane*
2-butanone
1,1,1-Trl chl oroethane
Carbon Tetrachloride
Brooodl chl oronethane
1 ,2-Di chl oropropanc
trans-1 ,3-01 chl oropropene
Trtchloroethylene
Benzene
1 .1 ,2-Tr1 chl oroethane*
Chl orodl bronomethane
Hexane
Browforai
Tetrachloroethylene*
1 ,1 .2 ,2-Tet rachl oroethane
1so-octane
Toluene*
Hepane
Chlorobenzene
Octane
1 ,3-01 chl orobenzen*
1 ,2-01 chl orobenzene
1,4-tH Chlorobenzene
Abbreviation
H/C
1,1-DCEENE
1,1-DCCANE
t-l,2-DCE£NE
Chloroform
1,2-DCCANE
2B
1.1.1-TCEANE
CC14
BOCM
1.2-DCPRAHE
t-1.3-DCPRENE
C13-EENE
BZ
1,1,2-TCEANE
CDBM
HEX
BroBofom
CU-EENE/ANE
1$o-octane
Tol
Hep
Cl-BZ
Octane
1.3-DCBZ
1,2-OCBZ
1.4-DCBZ
Total of 28 co^ounds
* Elute at sa«e retention t1
41
-------
TABLE 3. VOST ANALYSIS (Total ug/Train)
JULY 21, 1986 - BROS SURFACE OIL
COMPOUNDS
M/C
1,1-DCEENE
1,1-DCEANE
T-1,2-DCEENE
CHLOROFORM
1,2-DCEANE+2B
1,1,1-TCEANE
CC14
BOCM
1,2-DCPRANE
T-1.3-DCPREN
CL3-EENE
BENZENE
1,1,2-TCEANE
HEXANE
BROMOFORM
CL4-EENE + ANE
ISO-OCTANE**
TOLUENE
C1-BZ
OCTANE**
1,3-DCBZ
1,2-OCBZ
1,4-DCBZ
QUANTIFICATION
LIMIT
0.063
0.0126
0.0126
0.0126
0.0211
0.0253
0.0126
0.0126
0.0211
0.0126
0.0252
0.0126
0.0127
0.0337
0.0127
0.0211
0.0252
0.0127
0.0254
0.063
0.0127
0.063
0.063
0.063
E0721 1203V
-B-
-B-
-B-
-B-
-B-
-B-
-B-
.102
-B-
-B-
-B-
-B-
*68.3
-B-
-B-
-B-
.048
1560%
-B-
-B-
19«
-B-
-B-
-B-
E07211410V
-B-
-B-
-B-
-B-
-B-
-B-
-B-
.046
-B-
-B-
-B-
-B-
*1.96
-B-
-B-
-B-
.061
404*
-B-
-B-
5*
-B-
-B-
-B-
E07211610V
-B-
-B-
-B-
-B-
-B-
.279
-B-
*.224
-B-
-B-
-B-
-B-
*40.9
-B-
-B-
-B-
.101
1215%
.100
-B-
38«
-B-
-B-
-B-
* Greater than calibration range
-B- Below quantification liait
** These compounds are internal standards.
The number reported is \ Recovery.
-------
TABLE 4. VOST ANALYSIS (Total jig/Train)
JULY 28, 1986 - BROS SURFACE OIL
COMPOUNDS
M/C
1,1-DCEENE
1,1-DCEANE
T-1.2-DCEENE
CHLOROFORM
1.2-OCEANE+2B
1,1,1-TCEANE
CC14
BOCM
1,2-DCPRANE
T-1,3-DCPREN
CL3-EENE
BENZENE
1,1,2-TCEANE
HEXANE
BROMOFORM
CL4-EENE 4- ANE
ISO-OCTANE**
TOLUENE
C1-BZ
OCTANE**
1,3-DCBZ
1,2-OCBZ
1,4-DCBZ
QUANTIFICATION
LIMIT
0.063
0.0126
0.0126
0.0126
0.0211
0.0253
0.0126
0.0126
0.0211
0.0126
0.0252
0.0126
0.0127
0.0337
0.0127
0.0211
0.0252
0.0127
0.0254
0.063
0.0127
0.063
0.063
0.063
E07281111V
*2.29
-B-
-B-
-B-
.072
.104
-B-
*3.39
.096
-B-
-B-
-B-
.017
-B-
.111
.020
.069
134%
.110
-B-
104*
-B-
-B-
-B-
E07281330V
.634
-B-
-B-
-B-
.061
.216
-B-
*.726
-B-
-B-
-B-
-B-
.020
-B-
.129
.017
.044
192%
.058
-B-
108%
-B-
-B-
-B-
E07281530V
*11.9
-B-
-B-
-B-
.060
.050
-B-
*.311
-B-
-B-
-B-
-B-
-B-
-B-
.082
-B-
-B-
694k
-B-
-B-
72%
-B-
-B-
-B-
* Greater than calibration range
-B- Below quantification limit
** These compounds are internal standards. The number reported is % Recovery.
-------
TABLE 5. VOST ANALYSIS (Total ug/Train)
JULY 29, 1986 - BROS SURFACE OIL
COMPOUNDS
M/C
1,1-DCEENE
1,1-DCEANE
T-1,2-DCEENE
CHLOROFORM
1,2-DCEANE+2B
1,1,1-TCEANE
CC14
BOCM
1,2-DCPRANE
T-1,3-DCPREN
CL3-EENE
BENZENE
1,1,2-TCEANE
HEXANE
BROMOFORM
CL4-EENE + ANE
ISO-OCTANE**
TOLUENE
C1-BZ
OCTANE**
1 ,3-DCBZ
1,2-DCBZ
1,4-DCBZ
QUANTIFICATION
LIMIT
0.063
0.0126
0.0126
0.0126
0.0211
0.0253
0.0126
0.0126
0.0211
0.0126
0.0252
0.0126
0.0127
0.0337
0.0127
0.0211
0.0252
0.0127
0.0254
0.063
0.0127
0.063
0.063
0.063
E07291407V
.561
-B-
-B-
-B-
.183
-B- '
-B-
*.642
.146
.067
-B-
.089
.061
-B-
.026
-B-
*.402
568*
*1.84
.115
508*
*1.60
*1.48
-B-
E07291610V
.291
-B-
-B-
-B-
.077
*.608
-B-
*.579
-B-
-B-
-B-
-B-
-B-
-B-
.011
-B-
.105
114*
.097
-B-
161*
-B-
-B-
-B-
E07291805V
*.739
-B-
-B-
-B-
.207
*1.211
-B-
*.823
-B-
-B-
-B-
-B-
-B-
-B-
*.243
-B-
.193
189*
*.296
-B-
185*
-B-
-B-
-B-
* Greater than calibration range
-B- Below quantification liait
** These compounds are internal standards. The number reported is * Recovery.
-------
TABLE 6. VOST ANALYSIS (Total jig/Train)
AUGUST 4, 1986 - BROS SOIL
COMPOUNDS
M/C
1,1-DCEENE
1 , 1 -DCEANE
T-1.2-DCEENE
CHLOROFORM
1.2-DCEANE+2B
1,1,1-TCEANE
ecu
BOCM
1,2-DCPRANE
T-1,3-DCPREN
CL3-EENE
BENZENE
1,1,2-TCEANE
HEXANE
BROMOFORM
CL4-EENE * ANE
ISO-OCTANE**
TOLUENE
Cl-BZ
OCTANE**
1,3-DCBZ
1,2-DCBZ
1,4-DCBZ
QUANTIFICATION
LIMIT
0.063
0.0126
0.0126
0.0126
0.0211
0.0253
0.0126
0.0126
0.0211
0.0126
0.0252
0.0126
0.0127
0.0337
0.0127
0.0211
0.0252
0.0127
0.0254
0.063
0.0127
0.063
0.063
0.063
E08041328V
*1.43
.018
-B-
-B-
.057
-B-
*.269
.189
-B-
-B-
-B-
-B-
-B-
-B-
*.138
-B-
.277
602%
*.278
-B-
81t
-B-
-B-
-B-
E0804 1500V
.380
-B-
-B-
-B-
.033
-B-
-B-
.110
.019
-8-
-B-
.009
.024
-B-
-B-
-B-
.213
66%
.124
-B-
106*
-B-
-B-
-B-
E08041630V
.458
-B-
-B-
-B-
.056
--
~9-
.171
-B-
-B-
-B-
.009
.026
-B-
.027
.116
.179
99%
.135
-B-
104%
-B-
-B-
-B-
* Greater than calibration range
-B- Below quantification limit
** These compounds are internal standards. The number reported is \ Recovery.
-------
TABLE 7. VOST ANALYSIS (Total ug/Train)
AUGUST 5, 1986 - BROS SOIL
COMPOUNDS
M/C
1,1-DCEENE
1 , 1 -OCEANE
T-1,2-OCEENE
CHLOROFORM
1,2-DCEANE+2B
1,1,1-TCEANE
ecu
BOCM
1,2-DCPRANE
T-1,3-OCPREN
CL3-EENE
BENZENE
1,1,2-TCEANE
HEXANE
BROMOFORM
CL4-EENE + ANE
ISO-OCTANE**
TOLUENE
C1-BZ
OCTANE**
1,3-DCBZ
1,2-DCBZ
1,4-DCBZ
QUANTIFICATION
LIMIT
0.063
0.0126
0.0126
0.0126
0.0211
0.0253
0.0126
0.0126
0.0211
0.0126
0.0252
0.0126
0.0127
0.0337
0.0127
0.0211
0.0252
0.0127
0.0254
0.063
0.0127
0.063
0.063
0.063
E08051111V
.196
-B-
-B-
-B-
.055 -
-B-
.003
.064
-B-
.010
-B-
-B-
.020
.020
.029
.088
.068
64*
.096
-B-
114*
-8-
-B-
-B-
E08051318V
.403
-B-
-B-
-B-
.049
-B-
-B-
.112
-B-
-B-
-B-
-B-
.026
-B-
.059
.141
.175
138*
.124
-B-
106*
-B-
-B-
-B-
E0805 1410V
.260
-B-
-B-
-B-
.039
-B-
-B-
.084
.015
-B-
-B-
-B-
.038
-B-
.017
-B-
.197
72*
.194
-B-
110*
-B-
-B-
-B-
* Greater than calibration range
-B- Below quantification limit
** These compounds are internal standards. The number reported is * Recovery.
-------
TABLE 8. VOST ANALYSIS (Total pg/Train)
AUGUST 7. 1986 - BROS SOIL
COMPOUNDS
M/C
1,1-DCEENE
1,1-DCEANE
T-1,2-DCEENE
CHLOROFORM
1.2-DCEANE+2B
1,1,1-TCEANE
CC14
BOCM
1,2-DCPRANE
T-1,3-DCPREN
CL3-EENE
BENZENE
1,1,2-TCEANE
HEXANE
BROMOFORM
CL4-EENE + ANE
ISO-OCTANE**
TOLUENE
Cl-BZ
OCTANE**
1,3-DCBZ
1,2-DCBZ
1,4-DCBZ
QUANTIFICATION
LIMIT
0.063
0.0126
0.0126
0.0126
0.0211
0.0253
0.0126
0.0126
0.0211
0.0126
0.0252
0.0126
0.0127
0.0337
0.0127
0.0211
0.0252
0.0127
0.0254
0.063
0.0127
0.063
0.063
0.063
E0807 1000V
*.8S9
.066
-B-
-B-
.094
-B-
.192
*.367
-B-
-B-
-B-
-B-
-B-
-B-
-B-
-B-
.237
93\
.212
-B-
50%
-B-
-B-
-B-
E08071135V
.455
.042
-B-
-B-
.087
*.861
-B-
*.189
-B-
-B-
-B-
-B-
.029
-B-
.015
.033
.250
172*
.179
-B-
114*
-8-
-B-
-B-
E08071330V
*.721
.021
-B-
-B-
.070
-B-
.048
*.307
-B-
-B-
-B-
-B-
-B-
-B-
.018
-B-
*.412
69*
.245
-fl-
ue*
-B-
-B-
-B-
* Greater than calibration range
-B- Below quantification limit
** These compounds are internal standards.
The number reported is * Recovery.
-------
TABLE 9. VOST ANALYSIS (Total ug/Train)
AUGUST 12, 1986 - BROS SOIL PLUS SLUDGE
COMPOUNDS
M/C
1,1-DCEENE
1,1-DCEANE
T-1,2-DCEENE
CHLOROFORM
1,2-DCEANE+2B
1,1,1-TCEANE
CC14
BOCM
1,2-DCPRANE
T-1,3-DCPREN
CL3-EENE
BENZENE
1,1,2-TCEANE
HEXANE
BROMOFORM
CL4-EENE + ANE
ISO-OCTANE**
TOLUENE
C1-BZ
OCTANE**
1,3-DCBZ
1,2-OCBZ
1,4-DCBZ
QUANTIFICATION
LIMIT
0.063
0.0126
0.0126
0.0126
0.0211
0.0253
0.0126
0.0126
0.0211
0.0126
0.0252
0.0126
0.0127
0.0337
0.0127
0.0211
0.0252
0.0127
0.0254
0.063
0.0127
0.063
0.063
0.063
E08121007V
*1.19
-B-
-B-
-B-
.060 .
-B-
.023
*.521
-B-
-B-
-B-
-B-
.023
-B-
-B-
-B-
-B-
75*
.116
-B-
iia
-B-
-B-
-B-
E08121138V
.586
-B-
-B-
-B-
.046
-B-
-8-
*.218
-8-
-8-
-B-
-B-
.008
-B-
.115
.055
.035
56*
.072
-B-
103*
-B-
-B-
-B-
E08121300V
*.860
-B-
-B-
-B-
.088
-B-
-B-
*.312
-B-
-B-
-B-
-B-
.050-
-B-
.214
.063
.095
52*
.086
-B-
54*
-B-
-B-
-B-
* Greater than calibration range
-B- Below quantification liMit
** These compounds are Internal standards.
The number reported 1s * Recovery.
-------
TABLE 10. VOST ANALYSIS (Total
AUGUST 13, 1986 - BROS SOIL PLUS SLUDGE
COMPOUNDS
M/C
1,1-DCEENE
1,1-OCEANE
T-1,2-DCEENE
CHLOROFORM
1.2-DCEANE+2B
1,1,1-TCEANE
CC14
BOCM
1.2-DCPRANE
T-1,3-DCPREN
CL3-EENE
BENZENE
1,1,2-TCEANE
HEXANE
BROMOFORM
CL4-EENE + ANE
ISO-OCTANE**
TOLUENE
C1-BZ
OCTANE**
1,3-DCBZ
1,2-OCBZ
1,4-DCBZ
QUANTIFICATION
LIMIT
0.063
0.0126
0.0126
0.0126
0.0211
0.0253
0.0126
0.0126
0.0211
0.0126
0.0252
0.0126
0.0127
0.0337
0.0127
0.0211
0.0252
0.0127
0.0254
0.063
0.0127
0.063
0.063
0.063
E08131001V
*3.53
-B-
-B-
-B-
.065 .
-B-
-B-
*.398
-B-
-B-
-B-
-B-
.020
-B-
*.230
.050
.050
62*
.045
-B-
90*
-B-
-B-
-B-
E08131136V
*9.04
-B-
-B-
-B-
.070
-B-
-B-
*.281
-B-
-B-
-B-
-B-
.018
-B-
*.150
-B-
.053
48*
.040
-B-
90*
-B-
-B-
-B-
E08 131 330V
*2.16
-B-
-B-
-B-
.204
-B-
-B-
*.449
-B-
-B-
-B-
-B-
.038
-B-
*.230
.109
.101
50*
.134
-B-
76*
-B-
-B-
-B-
* Greater than calibration range
-6- BelOH quantification liait
** These compounds are internal standards.
The number reported is * Recovery.
-------
TABLE 11. VOST ANALYSIS {Total ug/Train)
AUGUST 14, 1986 - BROS SOIL PLUS SLUDGE
COMPOUNDS
M/C
1,1-OCEENE
1,1-DCEANE
T-1,2-OCEENE
CHLOROFORM
1.2-DCEANE+2B
1,1,1-TCEANE
CC14
BDCM
1,2-DCPRANE
T-1,3-OCPREN
CL3-EENE
BENZENE
1,1,2-TCEANE
HEXANE
BROMOFORM
CL4-EENE + ANE
ISO-OCTANE**
TOLUENE
Cl-BZ
OCTANE**
1.3-DCBZ
1,2-OCBZ
1,4-DCBZ
QUANTIFICATION
LIMIT
0.063
0.0126
0.0126
0.0126
0.0211
0.0253
0.0126
0.0126
0.0211
0.0126
0.0252
0.0126
0.0127
0.0337
0.0127
0.0211
0.0252
0.0127
0.0254
0.063
0.0127
0.063
0.063
0.063
E08U1015V
.507
-B-
-B-
-B-
.070
-B-
-B-
*.255
-B-
-B-
-B-
-B-
.024
-B-
.023
-B-
.110
62*
.116
-B-
112*
-B-
-B-
-B-
E08141206V
.332
-B-
-B-
-B-
.050
-B-
-B-
*.247
-B-
-B-
-8-
-B-
.026
-B-
.016
-B-
.132
62*
.082
-B-
99*
-B-
-B-
-B-
E08141330V
.317
-B-
-B-
-B-
.060
-B-
-B-
*.289
-B-
-B-
-B-
-B-
.061
-B-
.017
.047
.130
67*
.094
-B-
101*
-B-
-B-
-B-
* Greater than calibration range
-B- BeloM quantification liaiit
** These compounds are internal standards.
The number reported is X Recovery.
-------
TABLE 12. VOST ANALYSIS (Total jig/Train)
AUGUST 28, 1986 - BROS SLUDGE
COMPOUNDS
M/C
1,1-DCEENE
1,1-DCEANE
T-1,2-DCEENE
CHLOROFORM
1,2-DCEANE+2B
1,1,1-TCEANE
CC14
BDCM
1,2-DCPRANE
T-1,3-DCPREN
CL3-EENE
BENZENE
1,1,2-TCEANE
HEXANE
BROMOFORM
CL4-EENE + ANE
ISO-OCTANE**
TOLUENE
Cl-BZ
OCTANE**
1,3-DCBZ
1,2-OC8Z
1,4-DCBZ
QUANTIFICATION
LIMIT
0.063
0.0126
0.0126
0.0126
0.0211
0.0253
0.0126
0.0126
0.0211
0.0126
0.02S2
0.0126
0.0127
0.0337
0.0127
0.0211
0.0252
0.0127
0.0254
0.063
0.0127
0.063
0.063
0.063
E08281043V
*5.68
-B-
-B-
. -B-
*11.7
-B-
-B-
-B-
*52.3
-B-
-B-
*19.1
-B-
-B-
*3.92
-B-
-B-
5005%
-B-
-B-
7645%
-B-
-B-
-B-
E08281152V
.304
-B-
-8-
-B-
*.S20
-B-
-B-
.120
*3.19
.129
-B-
*.377
*4.41
-B-
*.212
-B-
-B-
130%
*1.84
.044
136%
-B-
-B-
-B-
* Greater than calibration range
-6- Below quantification liait
** These compounds are internal standards.
The number reported is \ Recovery.
-------
TABLE 13. VOST ANALYSIS (Total jig/Train)
SEPTEMBER 3, 1986 - BROS SLUDGE
COMPOUNDS
M/C
1,1-DCEENE
1,1-OCEANE
T-1,2-DCEENE
CHLOROFORM
1.2-DCEANE+2B
1.1,1 -TCEANE
CC14
BDCM
1,2-DCPRANE
T-1.3-OCPREN
CL3-EENE
BENZENE
1,1, 2 -TCEANE
HEXANE
BROMOFORM
CL4-EENE + ANE
ISO-OCTANE**
TOLUENE
Cl-BZ
OCTANE**
1,3-DCBZ
1,2-OC8Z
1,4-DCBZ
QUANTIFICATION
LIMIT
0.063
0.0126
0.0126
0.0126
0.0211
0.0253
0.0126
0.0126
0.0211
0.0126
0.0252
0.0126
0.0127
0.0337
0.0127
0.0211
0.0252
0.0127
0.0254
0.063
0.0127
0.063
0.063
0.063
E09030940V
.084
-B-
-B-
-B-
.081
-B-
-B-
.127
-B-
.025
-B-
.051
.113
-B-
.075
-B-
.150
64*
.074
-B-
106*
-8-
-B-
-B-
E0903 1200V
.367
-B-
-B-
-B-
.086
-B-
-B-
.091
-B-
.042
-B-
.073
*.333
-B-
.092
-B-
.170
88*
.134
-B-
122*
-B-
-B-
-B-
E0903 1330V
.185
-B-
-B-
-B-
.175
-B-
-B-
.088
-B-
.018
-B-
.082
.053
-B-
*.383
-B-
.204
146*
.097
-B-
114*
-B-
-B-
-B-
* Greater than calibration range
-B- Below quantification H«it
** These compounds are internal standards. The number reported is * Recovery.
-------
TABLE 14. VOST ANALYSIS (Total ug/Train)
SEPTEMBER 4, 1986 - BROS SLUDGE
COMPOUNDS
QUANTIFICATION
LIMIT
E09040930V EO9041120V
E09041330V
M/C
1,1-DCEENE
1,1-OCEANE
T-1,2-DCEENE
CHLOROFORM
1.2-DCEANE+2B
1,1.1-TCEANE
CC14
BOCM
1,2-DCPRANE
T-1,3-OCPREN
CL3-EENE
BENZENE
1,1.2-TCEANE
HEXANE
BROMOFORM
CL4-EENE + ANE
ISO-OCTANE**
TOLUENE
C1-BZ
OCTANE**
1,3-DCBZ
1,2-DCBZ
1,4-DCBZ
0.063
0.0126
0.0126
0.0126
0.0211
0.0253
0.0126
0.0126
0.0211
0.0126
0.0252
0.0126
0.0127
0.0337
0.0127
0.0211
0.0252
0.0127
0.0254
0.063
0.0127
0.063
0.063
0.063
.568
-B-
.140
-B-
*.258.
-B-
-B-
-B-
-B-
.026
-B-
.068
.151
-B-
.066
-B-
-B-
161*
.078
-B-
102%
-B-
-B-
-B-
*1.16
-B-
.037
-B-
.156
-B-
-B-
-B-
-B-
-B-
-B-
.041
.041
-B-
.045
-B-
-B-
102*
.038
-B-
100*
-B-
-B-
-B-
.059
-B-
.083
-B-
.146
-B-
-B-
-B-
-B-
.016
-B-
.039
.196
-B-
.025
-B-
-B-
134*
.062
-B-
100*
-B-
-B-
-B-
* Greater than calibration range
-B- Below quantification limit
** These compounds are internal standards.
The number reported is % Recovery.
-------
CO
O
CD
CM
V)
Ul
a.
tn
o
CO
ui
cr
o
CM
CQ
^
o
COh-
IflOt
03QO
CM 1 >
t-UJ
O
Ul
^
o
COI
^0 CJ f*
*^ r^ co
coco
CM 1 >
t-UI
o
Ul
1
^
^
*" h
^ O ^**
f 2 t/}
coco
CM 1 >
t-UI
o
Ul
cc
UIZ
coo
iP8
z
_
CD Ift ^T 00 +~*
^n f 0*1 oo ^D
COCO CO CM
r- CMCM ^» -Jc *
IT) I 1 | -~ ^ 1 t- I | | 1 I 1 CO 1 1 II III
mmm m <- 1 CO 1 1 1 1 O 1 (OOCMdfCM 1 df 1 1 1
^^Q QQ ^Q ~ _ - QO ^^*C3 00 CO CO >" ^Q ^««^^^^«^ ^^'CO CO CC CO
III 1 1 1 1 1 1 CM 1 00 1 1 1
^j ^ tO iO O O) C ^ O CO C3
to to CM CM CM«-^»-m «-
(O OCM t- O ^-OO O
* «
o oo o o ooo o
*
1
1
;
1
^^ -^ 1
o o
^ *l Ml fc ^ ^^ <^^ III l» *"^
eo m^ CMC- f- oroo t i
mcM >o eo eo<»o* co *
o t-«» r-o ec e-Oirt* r- * i
^» . . p^ . «...
iii cotr) i --in i i i o i tn.-co4?in i df i i i I
" ""CD CD CO ^*"*-' pn~-^*ff\ ff\ rri^*fn .! ^*IT* CQCQCD
III I 1 1 1 1 ^» 1 T 1 1 1
CO CM« COIO C- *-OOCOO O
O t-O OO r- r-CM»O»-r- T-
CM O^ COO O «-OO «~
CM OO COO O OOO O
* *
fotovoto^co to to »- to CM co
VOCMCMCM<-m CM CM - CM IT) CM CM CO CM v~ \ft CM If) tO CM OOOOOO OOOOO *O
OOOOO OOOOOO OOOOO O
+
Ul
Ul +UIUI Z Ul Ul
Z ZZ UIUI Z 2
uiuiuizuio< zcr < UQ » 1 -JUI - UICC-IV)O-IO - > >
Z'-'-KO^ ^OCD^KOCD»- XeDO*^t 00* ^"*"
c
Ul
ec
ui
o
CJ
ui
cr
c.
ui
»
C
c.
Ul
cr
en
cr
ui
cc
ui
(A
O
cr
o
<
UIV5
O
cczt-
ec>->
zuiz
< z
cruio
mcr>-
-I <
OO'-
XO.Z
Ul
KUIZ
-------
«0
CO
en
en
CM
>
"t
o
tn
u.
o
tn
UJ
K
CO
UJ
CD
^
in
ot
COOr
enoo
CM 1 >
t-UJ
o
UJ
^^
o
U»Ur-
cnoo
CM 1 >
C UJ
o
UJ
1
^
e-
Or-
O U5
CM 1 >
t-UJ
0
UJ
cr
UJ2
coo
i?8
2*flO ^^ ^*^^D 03 CD CD
lilt- 1 Illlll 1 «» IT-III
»- t-co en T- m«-c- to
en oo c- T- o»-w »-
CM > » ^* C fr* O
Ol 1 1 * 1 Ifn-^fOl^OI r-l Cgdf r-vOdf COCO 1
IIIOII 1 1 ICO CD 1
*- CO Orf^Or-* O*»- 1O CNJ O CV IT) O <*) «
-
< 2
crujo
cocr«-«
CJQi-i
20.
32 rD ^^
^ Or
XO.2
'"oS
croo-
UJ
r^ UJ 2
-------
(O
eo
en
V)
o
O
(f)
CL
to
CO
o
CO
CO
LU
cc
o
I
IU
3
>
o
COV-
V 2 (/)
TOO
O 1 >
00 LU
o
LU
^^
o
Of
moi
TOO
0 1 >
00 LU
o
LU
1
00
coor-
TOO
O 1 >
00 LU
o
LU
CC
UJ^C
coo
§£§
CJr-
OOLU
LULULU
Q.O.Q.
ZZZ
CO CO CO
o
ro
in
o
CM
^0
co
0
CM
^^
0
1
en
CO
o
in
z
_)
o
AS SAMPLE
o
z
o
CO
o
en
a.
.
o
H
cc
"z
LU
O
Z
0
«*
JE
r-i
^J
CC
O)
3.
K
2~
c
z
LU
O
LU
LU
0
r- *->
< Z
U.ZCC
H- J^.
Z O
< a.
CO
o
z
1
I
CO
>
^^
<^ OD Gft oo "^"^ ^rt cs ^n ^p
co CM CM coio »-inr- t- *
t^ co T 10 co^or** ^ *
CM «CM *
t\i i i i CM i i os i i i o i T-moo fo «-
T O «- OCM O»~«- t-
o o o o ooo o
o
~*
to in mm COCM oo T
O CM *~ CO TOO TO*
f* (O TO T * * *
. . . . O*
oo i i i «- i i mo i i o«- i i i «- »o i *P " i i
*" CD CD CO *"»*CO CO ' ^"^ CO ^***>*^Q CD 00 00^*OD 00 00 CO
_ I 1 1 | | II 1 II 1 1C 1 1 1
CO OCn CnT COtDT O
O CO «-*- OCM T-VDCM i-
eo o »-o oo CM *-
o oo oo o o
o
_ ~. . ^-
^'fc^p .« *. (r)j*^ C\4 U*) C*" 1
»-CM 00 ICO t- t- CM
men co COT »~ CM* co *
000 en (« * *
.. > n t-TT
coo i i CM i »-en i i i i i i i t *f«- i if i i i
t~ ^aCO 00 ^^-LU * LUCC KOOIO
Z'-'-VO'- »-OCO»-K
-------
to
eo
en
in
o
V)
UJ
w
w
u.
o
w
w
UJ
oe
in
*^
o
i-H
"tUt-
moo
0 1 >
COLD
o
UJ
>
00
coot-
inoo
0 1 >
00 LU
o
UJ
>
«-t
»-3W
moo
O 1 >
00 UJ
o
UJ
cr
UJZ
mo
ZM-O
z
< a.
01
w
o
o
o.
§
u
»-
1
ir> o me- .0 e- ^ in
0> ^^ co^f en ^f ^ 'O
en .-t- oo eo oo* «o *
CM ! *#
- i i i ^- i i ^OCD i i »- i oicn en i 111
*^fll CO CO ""^CO an^^»<~- I CDCD^^^D ^^CD^^^^^CO^COCOCO
1 1 1 1 1 III 1 1 1 1 1
o en ^m eo t- e-cM^ o
to co co« co - i cMr-ooaPte i if i i i
III 1 1 1 II 1 CO 1 (O 1 1 1
m en CM 10 en»-inro^ o
ej ^r ^" CM W^^TC**^*CM ^*
^ o »- o o»-'- «-
ooo o ooo c
^m^
0V ^"k _-!_-. «*^ ^..fc ».»» ««k
r~ oo ^^ ^ oooo T mr* t-
O CM men ~- CM CM cncMcn-n co *
oo r-cM in oo vmin* o *
- 1 1 1 CM 1 OCO 1 O 1 1 «-- r-^CO**^T 1 if 1 1 1
« IMZOOO
1 1 »O I 1 «- « Z i -list »O
rzt-
EUJZ
S^z
ELUO
J*s
zu.
4! ^3 K^
CO.Z
«» 3E *4
on
ruo-
u
». ^J ^
«wo
iJUJ_J
CXUJ
3t-CO
1
1 1
*
H * CO
-------
(0
eo
en
o
UJ
I
I
V)
UJ
c
o
»H
£
<
«o
Ul
CD
>
o .
pat-
riot
e-^oo
0 1 >
eouj
o
UJ
^^
in
Pit-
^ O fr"
*" Z? CO
t-oo
0 1 >
03 UJ
0
UJ
1
^
0
Ot-
oo^-
r-OO
0 1 >
COLU
0
UJ
cr
LUZ
mo
i~8
2
^
ID
(O
r
in
0
r-
en
^
^_
in
CD
to
^
_J
V)
0
UJ
.n._>
5
UJ
o.
(A
O
«M*
2
t-i
4^
ec
^^
O)
*
2
O
-t
iv
r^
cr
2
UJ
O
2
O
O
2
i i
«^
cr
K
O
3.
-
2
0
s:
<
o
UJ
o
UJ
t-
UJ
o
2
O
< 2*
^J^» >"4
>^^^ «J
U.XCC
£**£-
< 3.
tn
o
z*
o
o
1
_____ ___
o-*» cj tom c*) CM co
coco in ^-t£> o o eo
c- CM en o * *
co «i^ ^0 00
en * c^ PO c^ ^" ^)
o in * *
o «-«- ^»* CM *
mo i i in i T-CM i i i i i i 11^ »- i iii
^^^^^*CD CD ^^CD ^^^^^«^D CD CD CD CD CD CD OQ^*^d^^*^D ^^CD CD CD
ii i i i i i i i ii i iii
en to *t CM r P* ro CM o
into w enio coo»«- in
coo O «-co CM CM
do d do d d
* *
U5<0(0«-<0 «0 C*> f>
O2»- XO"»O ) 1 K-<«)CM<»
"N. » . i i . -oo - 1 -Juj » uJcr_ju)O-io «
X*-*-HO<- »-OCO«-»-OCO'- XCOO't OO'-'-'-
O
UJ
tc.
UJ
o
o
UJ
cc
-------
00
en
CM
in
o
to
LU
<
(O
V)
o
LL
o
LU
or
o
j>
O
01-
coot-
CMQO
1 >
00 LU
O
LU
^^
CO
COK
* CJH*
-SCO
~ 1 >
00 LU
O
LU
^>
ffc
1 ot-
oo»-
CMOO
1 >
00 LU
O
LU
or
UJ Z
coo
3^0
OOLU
LULUUJ
O.O.CL
xxx
10 CO CO
en
o
°1
0
CM
en
in
to
(D
CM
«?
i^
CM
t»
CM
V)
O
LU
X
3
o
LU
CL
V)
V>
0
z
^
or
>x
O>
3-
«
z
o
hi
^
or
t-
x.
LU
O
0
z
t 1
^
or
H
O»
a.
*
z
o
Q
LU
O
LU
t-
LU
Q
0
0-1
1- *
< Z
1"^*^ 4f
u-Zce
|__JV»
Z O)
< a.
r> ^-«
o«
w)
o
z
=3
O
CL
O
O
(A
O
>
» 0) ^^J «*^ tf^ <""* *»
^o o ^^ *^ co ^*^ fo co
v ^J OJ O^ I^^-CMC^^ i-
«OCMCMCM^-in CM CM r- CM in CM CM CO CM »- « CM U» - CLQZLU»-X ozt-z cococo
OO 1 OO=> 1 O 1 LUZ 1 ODLULL.LUO LUOOO
OQCMCCOCCK- Q(OLULUCMOZOLUO4-NZOOa
II -Oil *^X I 1 IM -O-<
ZUJX
ttUJO
COCC>-i
I
-------
I
«o
00
en
V)
(9
UJ
I
COUJ
o
UJ
^>
COUJ
o
UJ
1
^>
^
01-
oot-
*"* ID t/5
rooo
1 >
00 UJ
o
UJ
ccz
coo
Z ** CO
=>t-0
z(/>(0
(O
to
^f
^
CM
CO
en
in
CM
CM
in
in
o
o
CM
5»
Q
1
_J
f^
>
UJ
o.
(0
(/)
0
2
CC
t-
X,,^
ot
n.
«
2
O
^*.
^[
CC
LU
a
o
u
2
» i
<
cr
t-
x^
en
a.
«
K-
2
rs
0
<
Q
UJ
U
UJ
UJ
o
o
1-4
< X
o ««
£S\
Z-J Ol
< a.
3 «-
..
V)
O
^3
o
0.
o
u
1-
V)
o *-* P ^-
CO r- ** if) , < * * ^««
«- O en o t-ooio CM
o in t- P-C-O *t
»- o t- .ot*-* CM *
en CM o * *
iii^_i | ^, | i | i ^- i i vn^r ID i iii
Cn CD CD CD CD CO CO CO CO CD ^'0 ' ' >it***^frt itPtn ef\ en
ID i i i «» i icniiii i i iii
r- O it 00 OO»»-O*T «O
CM ^r ro cooomco t~
CM O CMr-»- «-
* O O
* o ooo o
^^
^f
CM ~~.
. *-* r) *» »
o oo T t~ oo in o
O en en co ^* t-
T O CM t- «O CO* P- *
IIICOI 1 1 1 1 1 O 1 ID 1 CM <-l III
CM CO CO CD ""CO CO CO CD CD CO ^^CO ^^CQ^^?'* ^0£PCOCOGO
Till 1 1 «- 1 1 1 1 1 1 1 III
O O 00 00 O CO COO O
t- CM »- m m^^r en
en o o r- o o
fc ' o
O * O O O O
*
40
«- m co * *
»-!-*» r- «oroco* ^ *
i i i Tf i icoiiiicni ^rcncn ^r i i i i
^D CD 00 03 ^^ C3 CD * GG CQ CD OD ^^ CD * ^^ ^T £^^^ CD d^ CO CC CO
t-lll-l 1 CTl 1 1 1 1 1 r- 1 III
«- CO «- O »-CMCMCMCM O
* * * «o en
UD ^5 (O ^ CO {O VO ^ ^ CM ^ P" P* P^'C^P"*^ p*
COCMCMCM»-m CM CM « CM Irt CM CM CO CM r- in CM Irt CO CM CO CO CO
«Dr-»-r-CMCM T- »- CM - CM »- »- CO »- CM CM»- CM «D t- «fi i^ t^yfttr~m^P^ ^^CD^fCD^J 1 hMCOCM^tf
^v - 1 I »OQ « 1 IUI - UICC IV5O- JO»-»
1
t
1
1
Q
UJ
CC
UJ
o
u
UJ
CC
c
UJ
i
CL
LU
CC
CC
Ul
CO
en
o
CC
Q
UJl/)
O
ziuz
< z
CCUJO
00
Zu.
XCLZ
ccuo-
UJ
<(AO
UJUJ-J
cexuj
OI-CO
I I
* * CO
-------
to
CD
en
tn
tu
to
I
e
3
UJ
CC
en
UJ
«J
CD
>
o
COOK-
^ 1 >
COLU
O
Ul
^>
to
^ 1 >
00 Ol
o
UJ
>
1 in
I »-»-
oot-
^ C^ CO
fB 1 ^^
COU1
0
Ul
tr.
UI2
coo
z*-*o
= t-0
Z *4 3Z
ooui
«-"_lZ
UJUIUJ
0.0.0.
zzz
(Ototo
00
o
CM
en
«j»
t*.
CM
^£
t-
v*
a.
%
H*
2
O
Z
C
UJ
H-
CJ
UJ
K-
Ul
Q
O ^
t- 2*
^t ^4
C3H* ^C
^N^4 QJ
LL. ^P ^"
f--J O)
1 3
w
o
=>
o
CL.
o
CJ
>
^-* «M^
^ ^^ ^Q * % ** »»> ^*»
O *V ^ CO U^ t^ 00 ^T
in CM o c- co«»to co
ID . w ...*#
<-iiioi i »- i i i i o i OCMIO ^r i ill
i i i i i i i i i i i i i i
^» O Cn ^~ ( f* C5 c^ ^T ^m
^^ to co to ^^ ^^ co ^o en ^^
CO O CM O OO'- O *-
o* o o o doei o*
*
^ ^. ^ ^. ~* ~* ~*
in en f> CM CD ^r in
O
tn in oo CM - CM oo
O to en CM t~ o O *
in CM »- «o* en *
en . CM *
t- i i i r> i i^-iitit-i «- i in in i df i i i
^^^Q CO CO *»"*tQ CD *^CQ ffl CD CO ^*^Q ^*flQ |H**"^CP COCCCD
III I I I i I i I I i CM I I I
CM o in ^ rj OCMIO ^
« t- m CM CM « «o>- »-
m O CM o O «- v
o d o o d o* o
*
«O«o«o<-m «o ir> - 10 csno f- r- t-«-CMr~^ t-
co CM CM CM T tn CM CM «~ CM tn CM CM *o CM^incMtnocMororo
»D^-»-'-CMCM »- - CM t- CM »- i- m T- CM CM «- CM OQ » 1 _JOI » OJCC It/50 IO « »
Z'-'-KO'- »-OCO'-l-OCQ'- ICOO'-'t-OO '-^
O
UJ
ec.
UJ
o
CJ
UJ
K
UJ
cc
Ul
K
cc
o
o.
UJ
cc
tn
cr
UJ
ca
ui
en
o
tr.
<
o
UJtrt
O
cc>-«
2UJZ
01- -
< 2
crujo
cocr-'
cruo*
UJ
OIOI-J
ecxoi
C9KCD
I
I I
* * CO
-------
o
LU
^J
_J
3
C.
LU
cro-i
us
^ j -}
--JCD
_J 3
-«_IZ
LULULU
O.D.CL
zzz
to to to
^^
_J
(A
Qi
LU
Z
Z5
_l
O
SAMPLE
to
o
2~
» i
cr
O)
3-
-
0
1
t-
cr
»-
2
LU
U
O
x.
« 1
^
cr
>^
o
^^
J»
^J
^
0
^
"" LU
h-
U
LU
LU
0
Z
o
CH
< z"
CJ t-i
u-i-icr
2-1 Ol
< a.
a *-
O"
V)
o
z
T COMPOU
V)
o
(O IO CO * C*5 1O ^ v
fON^^C^^1*^) ^4C^^"
tO ^ ^" ^~ C^ C^ v**"*^
oooooo ooo
oooooo ooo
UJ +LULU
z zz
LULULUZLUO<
ZZLUCCZZUJ
LU 1
I 1 «O II -"WZ
K . . | x -OQ
U}N(0t^^* 1^ *~ CN t*" ^ t1*
oitncaCNcn CM »- in CM vn o CM t*> n m
^C^r-^^O t" C*J C4 ^" CJ «- XCOO«-i»-tJO'-«-'-
o
LU
cr
LU
O
U
1^1 1
cr
*f
LU
cr
o
K
cr
0
Q.
It I
UJ
cr
10
cr
LU
CD
y
Z3
2j
LU
X
J
V5
0
cr
<
o
2
>-
2-1
*t *t
CT2I-
K ^^
2LUZ
Z_J
< 2
CTLUO
CDQ:«-«
!3 <
OQi-i
2LL.
-------
«o
CO
en
co
ce.
ui
i
ui
a.
ui
V)
Ul
CL
CO
CO
o
u.
o
to
CO
Ul
Ul
_l
CD
o
cot-
COCJ>-
-=3 CO
COOO
O 1 >
cnuj
o
Ul
>
o
01-
CMOI
*-=3CO
coao
0- 1 >
cnuj
o
Ul
1
^>
o
cnoi-
0=310
cooo
O 1 >
cniu
O
Ul
cr
UJZ
coo
Z>- 1
^»
<
cr
UJ
o
o
o
z
^
cr
*^
o
3.
^
»-
O
Z
c
LU
1-
o
Ul
»-
UJ
0
o
1-4 « .
< *-
-11-1 CC
U.ZK
» _l CD
O*
CO
o
^5
o
a.
o
o
CO
o
eo » co in » eo in in
o en -CM CM » to eo eo
in en in en CMCM »* en *
*t~ en * *
en i i i ao i i « i o i » i - i O *9i iii
*-^CO CD CO *~^Q ff^ ^fft 'o^ i AJ ff\ ^^CO * d^*"*eOdPCQ CO CO
III 1 1 1 1 -~ 1 1 - 1 III
in in oo eo CM co *«r
oo t> oo »~ coco oo *9**cn »
i- o- o o om co o*-o «-
^3 * ^^ *
o o ooo* 0*0
0*0
O CM r~ o oeo ao00
t- 00 CO *« CM to 00 CM CM
co H'd9^H^Dd^COCOCO
1 1 1 1 1 1 1 1 I 1 I i 1
*w c- in » co in o**^ to
eo oo CM CM in* e- invoc~ O
o o »- o o»- o « o »-
.*
o o o o oo ooo
(OtOtO* CO tO OO=3 1 O 1 UJZ 1 CDUUULUIO UJOOO
oocMceoco*- OOUIUICMCZOUIO 4-NZoao
II -Oil >*«Z 1 -IN -0v - - i x - -oo - i -iui - iuce-iv)O-JO - - -
o
UJ
cr
o
o
UJ
cr
c
UJ
h-
cc
o
a.
CO
cr
UJ
CO
co
o
cr
o
UllO
eezi-
CC'-i
ZUJZ
*--!
< z
CCUIO
cocr*-i
-------
(O
CO
o»
^f
ec
LU
i
LU
a.
LU
z
o
W
LU
_)
A
U.
Z
V)
H~
V)
o
U.
O
t/)
»-
^3
CO
111
cr
<
u
i-t
5
^f
z
^
^
CM
LU
m
K
o
cot-
CO f ^ h
^ 13 CO
^ oo
0 1 >
CT1LU
O
LU
^^
0
^~ o ^~
*" T? c/5
^ o o
0 1 >
cnoi
o
LU
^
O
COH-
cnot-
itOO
O 1 >
o
LU
or
LUZ
coo
Z<-iQ
2
o
z
or
V.
O)
«
z
0
t-
or
t-
z
LU
O
U
z
ce
h-
v^
cn
a.
^
^_
Z
Q
LU
O
LU
t-
LU
O
2
0
1-4
< z"
U *~>
** f"~ rf
LL.i-iCC
I-Sv.
2-1 O)
< a.
3 «
6*
..
(A
2j
3
0
i
U
CO
o
>
o t o ^ mm CM in
o CM co - tot- e~ in
o CM ^ co cnoi CM * «- *
** * ^( ^C
CO 1 ^t 1 t 1 1 t I O 1 r*O) 1 r- 1 1 C*) 1 III
^*g) ^-^D"^^CD OQ OQ OQ ^^^n ^ ^i»<[tt ""^ "CD CDd^^^^D d?GQ 03 CQ
i i i i i i i i ii i i i i
en co ^-*fn rr\ ^y^n^flo Aftfi co go
I I I I I I I 1 I II 1 III
10 t~ to ^^* in CMCO o
{O co m ^^ *» oco o
v- O - OO O «-O r-
... . « » .
«- O O OO O O
*
_- ^
^ «p^. 0) J«^ « !' . ^>^ ^^
m en r- co moo m ^
co GO 00 O> cr> co CT> 4c Cft He
« crv CM coin CM * co *
(Q.CM ... .
CMI«OI»-I iii»-icot-i coil i*co i if i i i
^£0 ^^CQ ^^^Q CD CQ CD ^^CQ * 'CD ^^tD CD ^^40 CD CQ CD
1 1 1 III 1 1 1 1 «- 1 CM 1 1 1
CO O CO U7 00* T-r-CMCM t-«-CM»-CM»-«-CO T- CM CM r~ CM ID «- tO tO tO
OOOOOO OOOOOOOO OOOOOOOOOO
oooooo oooooooo oooooocooo
4-
LU
IU -t-LULU Z LU LU
2 ZZ LULU Z 2
LULULUZLUO4 ZQC ^ ^LU
ZZLUCC2ZLU v - « 1 X « - » >
Z'-'-V-O'- ^-CJCO'-KCJCO'- ZCOO'-
-------
ACUREX
Corporation
Energy & Environmental Division
] of 3
October 3. 1986
Dr. Larry R. Waterland
Program Manager
US EPA Combustion Research Facility (CRF)
c/o NCTR. Building 45
Jefferson, Arkansas 72079
Subject: Chloride Analysis Results
Reference: EPA Contract 68-03-3267
Dear Dr. Waterland:
This communication summarizes the results of chloride analyses performed
on EPA Method 5 impinger catches taken at the CRF between July 8 and
September 4. 1986. These data are associated with the performance of the
rotary kiln system during incineration of the following: Askarel * Auto Dry;
BROS surface oil; BROS soil; BROS soil + sludge and BROS sludge.
Measurements of chloride ion concentration were made with a specific ion
electrode, calibrated on each analytical day at three levels which encompassed
those found in the samples. Samples are identified as specified in the CRF
Quality Assurance Project Plan. August 15, 1986. All values are reported as
total mg HC1.
Sample
Identifier «g HCL
S07081606I1 <3.7
S07081606I2 <2.2
S07081606I3 <2.1
S0709160311 <3.4
S07091603I2 <3.7
S07091603I3 <3.4
S07101325I1 <4.0
S07101325I2 <3.7
S07101325I3 <3.5
NCTR. Building 45. Jefferson, AR 72079 (SOD 541-0004 FAX (501) 536-6446
555 Clyde Avenue. PO Box 7555. Mountain View. CA 94039 (415) 964-3200 Telex 34-6391 TWX 910-7796593
-------
page 2 of 3
Sample
Identifier jng HCL
A07211207I1 9.7
A07211207I2 <2.2
A07281116I1 14.2
A0728116I2 <2.2
A07291404I1 24.9
A07291404I2 <1.9
A08041319I1 26.3
A08041319I2 <1.8
A08051100I12 10.8
A08071001I12 12.6
S08041324I1 <4.2
S08041324I2 <5.1
S08051105I12 <6.5
S08071008I12 <7.6
A08121004I12 15.8
A08131001I12 21.8
A08141020I12 17.4
S08121002I123 <9.1
S08131000I123 <9.9
S08141015I123 <9.4
S08191150I <8.8
A08280955I12 <4.8
A09030951I123 7.6
A09040937I123 5.2
S08280945I123 <9.3
S09030950I123 <10.3
S09040930I123 <9.9
-------
page 3 of 3
Each batch of impinger collection meduim (0.1N sodium acetate) used was
analyzed and found to contain <10 mg/L chloride, the detection limit of the
analytical method.
Sincerely,
R.W. Ross, II
Senior Chemist
RWR:Sf 048L
CC: Johannes Lee
Jerry Lewis
Sharon King
-------
IftftV W SAUaHAlTM. - 3
CMAIIIMAM Of TMt 10*110
KCNNCTM S WOODS
GAIL. H MUTCMIN»
CXCUTIVI viet rn««io«MT
VILMA
I»C««T»
RUSSCLL
i, Qnc.
P O. BOX 4187
2323 SYCAMORE OR.
QUANTITATIVE MICROANALYSES
ORGANIC - INORGANIC
KNOXVILJLC. TENNESSEE 37921
PHONE 546-1333
AREA CODE 615
Mr. Ralph Vocque
Acurex Corporation
555 Clyde Avenue
Post Office Box 7555
Mountain View, California
94039
November 14, 1986
Received: Octooer 3rd
Dear Mr. Vocque:
Analysis of your compounds gave the following results:
Your #,
USEPA-CRF
BU8141145
Our #, Total Metals in Filtrates,
Q-6934 mg/liter Arsenic < 0.2
mg/liter Barium 0.37
mg/liter Cadmium < 0.1
mg/liter Chromium 0.37
mg/liter Lead < 0.1
mg/liter Mercury < 0.2
mg/liter Selenium < 0.2
mg/liter Silver < 0.1
Total Metals in Solids,
ppm Arsenic 24
ppm Barium 507
ppm Cadmium 49
ppm Chromium 78
ppm Lead 8237
ppm Mercury < 15
ppm Selenium < 15
ppm Silver < 15
LETTER AND SHIPMENTS BY U.S. MAIU . P O «OX 4187. OTHER CARRIERS - 2323 SYCAMORE OR.. KNOXVILLE. TN. 379S
ESTABLISHED 19SO
-------
Mr. Ralph Vocque
November 14, 1986
Your #,
USEPA-CRF
B07211315 *
Our #, Total Metals in Filtrates,
Q-6926 mg/liter Arsenic < 0.2
mg/liter Barium 0.58
mg/liter Cadmium < 0.1
mg/liter Chromium 0.17
mg/liter Lead 0.28
mg/liter Mercury < 0.2
mg/liter Selenium < 0.2
mg/liter Silver < 0.1
Your #,
USEPA-CRF
B07281335 *
Our#,
Q-6927
Your #,
USEPA-CRF
B07291645 *
Our f,
Q-6928
Your #,
USEPA-CRF
B08041407 '
Our#,
Q-6929
Total Metals in Filtrates,
mg/liter Arsenic
mg/liter Barium
mg/liter Cadmium
mg/liter Chromium
mg/liter Lead
mg/liter Mercury
mg/liter Selenium
mg/liter Silver
Total Metals in Filtrates,
mg/liter Arsenic
mg/liter Barium
mg/liter Cadmium
mg/liter Chromium
mg/liter Lead
mg/liter Mercury
mg/liter Selenium
mg/liter Silver
Total Metals in Filtrates,
mg/liter
mg/liter
mg/liter
mg/liter
mg/liter
mg/liter
mg/liter
mg/liter
Arsenic
Barium
Cadmium
Chromium
Lead
Mercury
Selenium
Silver
< 0.2
0.43
< 0.1
0.20
0.73
< 0.2
< 0.2
< 0.1
< 0.2
0.61
< 0.1
< 0.1
1.10
< 0.2
< 0.2
< 0.1
< 0.2
0.30
< 0.1
0.18
2.58
< 0.2
< 0.2
< 0.1
There were no Solids remaining from filtering the blowdown water.
GALBRAITH LABORATORIES. INC.
-------
Mr. Ralph Vocque
November 14, 1986
Your #,
USEPA-CRF
B08051325
Our #, Total Metals in Filtrates,
Q-6930 mg/liter Arsenic < 0.2
mg/liter Barium Q.39
mg/liter Cadmium < Q.I
mg/liter Chromium Q.39
mg/liter Lead 1.15
mg/liter Mercury < 0.2
mg/liter Selenium < 0.2
mg/liter Silver < o.i
Total Metals in Solids,
ppm Arsenic < 26
ppm Barium 877
ppm Cadmium < 26
ppm Chromium 89
ppm Lead 1008
ppm Mercury < 26
ppm Selenium < 26
ppm Silver < 26
Your #,
USEPA-CRF
B08071100
Our #, Total Metals in Filtrates,
Q-6931 mg/liter Arsenic < 0.2
mg/liter Barium 0.29
mg/liter Cadmium < o.l
mg/liter Chromium 0.29
mg/liter Lead 0.14
mg/liter Mercury < 0.2
mg/liter Selenium < 0.2
mg/liter Silver < 0.1
Total Metals in Solids,
ppm Arsenic < 60
ppm Barium 1085
ppm Cadmium < 60
ppm Chromium 119
ppm Lead 3787
ppm Mercury < 60
ppm Selenium < 60
ppm Silver < 60
GALBRAITH LABORATORIES. INC.
-------
Mr. Ralph Vocque
November 14, 1986
Your f,
USEPA-CRF
B08121030
Our f, Total Metals in Filtrates,
Q-6932 mg/liter Arsenic < 0.2
mgAiter Barium 0.35
mg/liter Cadmium < o.l
mg/liter Chromium o.26
mg/liter Lead o.l4
mg/liter Mercury < 0.2
mgAiter Selenium < 0.2
mg/liter Silver < o.l
Total Metals in Solids,
ppm Arsenic < 23
ppm Barium 737
ppm Cadmium < 23
ppm Chromium 75
ppm Lead 2723
ppm Mercury < 23
ppm Selenium < 23
ppm Silver < 23
Your #,
USEPA-CRF
B08131030
Our #, Total Metals in Filtrates,
Q-6933 mg/liter Arsenic < 0.2
mg/liter Barium 0.39
mg/liter Cadmium < 0.1
mg/liter Chromium 0.31
mg/liter Lead 0.11
mg/liter Mercury < 0.2
mg/liter Selenium < 0.2
mg/liter Silver < 0.1
Total Metals in Solids,
ppm Arsenic
ppm Barium
ppm Cadmium
ppm Chromium
ppm Lead
ppm Mercury
ppm Selenium
ppm Silver
< 35
1206
< 35
66
4065
< 35
< 35
< 35
< 35
GAUBRAITH LABORATORIES. INC. .
-------
Mr. Ralph Vocque
November 14, 1986
Your #,'
USEPA-CRF
B08281005 *
Our #, Total Metals in Filtrates,
Q-6935 mg/liter Arsenic < 0.2
mg/liter Barium 0.29
mg/liter Cadmium < 0.1
mg/liter Chromium 0.13
mg/liter Lead < 0.1
mg/liter Mercury < 0.2
mg/liter Selenium < 0.2
mg/liter Silver < 0.1
Your #,
USEPA-CRF
B09031010 *
Our #,
Q-6936
Your #,
USEPA-CRF
B09041050 *
Our #,
Q-6937
Your #,
USEPA-CRF
B09241100BK *
Our#,
Q-6938
Total Metals in Filtrates,
mg/liter Arsenic
mg/liter Barium
mg/liter Cadmium
mg/liter Chromium
mg/liter Lead
mg/liter Mercury
mg/liter Selenium
mg/liter Silver
Total Metals in Filtrates,
mg/liter Arsenic
mg/liter Barium
mg/liter Cadmium
mg/liter Chromium
mg/liter Lead
mg/liter Mercury
mg/liter Selenium
mg/liter Silver
Total Metals in Filtrates,
mg/liter
mg/liter
mg/liter
mg/liter
mg/liter
mg/liter
mg/liter
mg/liter
Arsenic
Barium
Cadmium
Chromium
Lead
Mercury
Selenium
Silver
< 0.2
0.65
< 0.1
0.18
0.1
0.2
0.2
0.1
< 0.2
0.30
< 0.1
0.20
< 0.1
< 0.2
< 0.2
< 0.1
0.2
0.1
0.1
0.1
0.1
0.2
0.2
0.1
* There were no Solids remaining from filtering the blowdown water.
GALBMAITH LABORATORIES. INC.
-------
Mr. Ralph Vocque
November 14, 1986
Your #,
USEPA-CRF
B07281335SK
Our #, Total Metals in Filtrates,
Q-6939 mg/liter Arsenic < 0.2
mg/liter Barium 1.64
mg/liter Cadmium < 0.1
mg/liter Chromium 4.73
mg/liter Lead 11.39
mg/liter Mercury 12.49
mg/liter Selenium < 0.2
mg/liter Silver < 0.1
Total Metals in Solids,
ppm Arsenic
ppm Barium
ppm Cadmium
ppm Chromium
ppm Lead
ppm Mercury
ppm Selenium
ppm Silver
< 26
4771
< 26
9733
46.41
3.58
< 26
656
Your #,
USEPA-CRF
B08131030SK
Our #, Total Metals in Filtrates,
Q-6940 mg/liter Arsenic
mg/liter Barium
mg/liter Cadmium
mg/liter Chromium
mg/liter Lead
mg/liter Mercury
mg/liter Selenium
mg/liter Silver
Total Metals in Solids,
ppm Arsenic
ppm Barium
ppm Cadmium
% Chromium
% Lead
ppm Mercury
ppm Selenium
ppm Silver
< 0.2
< 0.1
< 0.1
< 0.1
32
3.69
< 0.2
< 0.1
131
108
< 11
3.83
38.67
571
< 11
145
GALBRAITH LABORATORIES. INC.
-------
Mr. Ralph Vocque
November 14, 1986
Your #,
Our #,
USEPA-CRF Q-6941
T0828(09(3,4) 1200
Based on Leachate of Kiln Ash by EP Toxicitv
Test Procedure # 1310.
mg/liter Arsenic
mg/liter Barium
mg/liter Cadmium
mg/liter Chromium, Total
mgAiter Lead
mg/liter Mercury
mg/liter Selenium
mg/liter Silver
Total Metals in Kiln Ash,
ppm Arsenic
ppm Barium
ppm Cadmium
ppm Chromium
ppm Lead
ppm Mercury
ppm Selenium
ppm Silver
< 0.1
< 0.1
< 0.1
< 0.1
0.12
< 0.1
< 0.1
< 0.1
< 2
632
< 2
113
796
< 2
< 2
< 2
Your*,
USEPA-CRF
T08141200
Our #, Based on Leachate of Kiln Ash by EP Toxicity
Test Procedure # 1310,
Q-6942 mg/liter Arsenic < 0.1
mg/liter Barium 0.43
mg/liter Cadmium < 0.1
mg/liter Chromium, Total < 0.1
mg/liter-Lead < 0.1
mg/liter Mercury < 0.1
mg/liter Selenium < 0.1
mgAiter Silver < 0.1
Total Metals in Kiln Ash,
ppm Arsenic < 2
ppm Barium 504
ppm Cadmium < 2
ppm Chromium 66
ppm Lead 228
ppm Mercury < 2
ppm Selenium < 2
ppm Silver < 2
GALBRAITH LABORATORIES. INC.
-------
Mr. Ralph Vocque
November 14, 1986
Your #,
USEPA-CRF
T08131200
Our #,
Q-6943
Based on Leachate of Kiln Ash by EP Toxicity
Test Procedure # 1310,
mg/liter Arsenic
mg/liter Barium
mg/liter Cadmium
mg/liter Chromium, Total
mg/liter Lead
mg/liter Mercury
mg/liter Selenium
mg/liter Silver
Total Metals in Kiln Ash,
ppm Arsenic
ppm Barium
ppm Cadmium
ppm Chromium
ppm Lead
ppm Mercury
ppm Selenium
ppm Silver
< 0.1
0.43
0.1
0.1
0.1
0.1
0.1
0.1
< 2
983
< 2
97
382
< 2
< 2
< 2
Your #,
USEPA-CRF
T08071200
Our#,
Q-6944
Based on Leachate of Kiln Ash by EP Toxicity
Test Procedure # 1310,
mg/liter Arsenic
mg/liter Barium
mg/liter Cadmium
mg/liter Chromium, Total
mg/liter-Lead
mg/liter Mercury
mg/liter Selenium
mg/liter Silver
Total Metals in Kiln Ash,
ppm Arsenic
ppm Barium
ppm Cadmium
ppm Chromium
ppm Lead
ppm Mercury
ppm Selenium
ppm Silver
< 0.1
0.99
0.1
0.1
0.1
0.1
0.1
0.1
< 2
844
< 2
95
489
<2
< 2
<2
GALBMAITH LABORATORIES. INC.
-------
Mr. Ralph Vocque
November 14, 1986
Your #,
USEPA-CRF
T08051200
Our #, Based on Leachate of Kiln Ash by EP Toxicity
Test Procedure # 1310,
Q-6'J45 mg/liter Arsenic < 0.1
mg/liter Barium 0.10
mg/liter Cadmium < 0.1
mg/liter Chromium, Total < 0.1
mg/liter Lead < 0.1
mg/liter Mercury < 0.1
mg/liter Selenium < 0.1
mg/liter Silver > 0.1
Total Metals in Kiln Ash,
ppm Arsenic
ppm Barium
ppm Cadmium
ppm Chromium
ppm Lead
ppm Mercury
ppm Selenium
ppm Silver
< 2
296
< 2
192
1825
< 2
< 2
< 2
Your #,
USEPA-CRF
T08041200
Our #,
Q-6946
Based on Leachate of Kiln Ash by EP Toxicity
Test Procedure # 1310,
mg/liter Arsenic < o.l
mg/liter Barium o.26
mg/liter Cadmium < o.l
mg/liter Chromium, Total < o.l
mg/liter-Lead < 0.1
mg/liter Mercury < 0.1
mg/liter Selenium < 0.1
mg/liter Silver < o.l
Total Metals in Kiln Ash,
ppm Arsenic < 2
ppm Barium 498
ppm Cadmium < 2
ppm Chromium 94
ppm Lead 408
ppm Mercury < 2
ppm Selenium < 2
ppm Silver < 2
QALBNAITH LABORATORIES. INC.
-------
Mr. Ralph Vocque
November 14, 1986
Your #,
Our#,
USEPA-CRF Q-6947
707(21,28,29) 1200
Based on Leachate of Kiln Ash by EP Toxicity
Test Procedure # 1310,
mg/liter Arsenic
mg/liter Barium
mg/liter Cadmium
mg/liter Chromium, Total
mg/liter Lead
mg/liter Mercury
mg/liter Selenium
mg/liter Silver
Total Metals in Kiln Ash,
ppm Arsenic
ppm Barium
ppm Cadmium
ppm Chromium
ppm Lead
ppm Mercury
ppm Selenium
ppm Silver
< 0.1
0.33
< 0.1
< 0.1
0.23
< 0.1
< 2
121
< 2
1088
2161
< 2
< 2
< 2
GALBRAITH LABORATORIES. INC.
-------
Mr. Ralph Vocque
November 14, 1986
Your #,
USEPA-CRF
F0828(09)(3,4) 1200
Our #, Total Metals in Feed,
Q-6949 ppm Arsenic
ppm Barium
ppm Cadmium
ppm Chromium
ppm Lead
ppm Mercury
ppm Selenium
ppm Silver
< 1
23
< 5
12
46
< 1
< 1
< 5
Ultimate Analysis,
% Carbon
% Hydrogen
% Nitrogen
% Sulfur
% Chlorine
% Oxygen
0.96
11.12
0.038
0.99
0.0094
81.78
Based on Leachate of Feed by EP Toxicity
Test Procedure it 1310,
mg/liter Arsenic
mg/liter Barium
mg/liter Cadmium
mg/liter Chromium, Total
mg/liter Lead
mg/liter Mercury
mg/liter Selenium
mg/liter Silver
0.19
0.1
0.1
0.1
0.1
0.1
0.1
0.1
GALBRAITH LABORATORIES. INC.
-------
Mr. Ralph Vocque
November 14, 1986
Your #,
USEPA-CRF
F08(4,5,7) 1200
Our #, Total Metals in Feed,
Q-6950 Ppm Arsenic < 1
ppm Barium 744
ppm Cadmium < 1
ppm Chromium 55
ppm Lead 756
ppm Mercury < i
ppm Selenium < i
ppm Silver < 5
Ultimate Analysis,
% Carbon
% Hydrogen
% Nitrogen
% Sulfur
% Chlorine
% Oxygen
11.35
4.60
0.099
0.38
0.037
25.03
Based on Leachate of Feed by EP Toxicity
Test Procedure # 1310,
mg/liter Arsenic < 0.1
mg/liter Barium 0.12
mg/liter Cadmium < 0.1
mg/liter Chromium, Total < 0.1
mg/liter Lead 0.46
mg/liter Mercury < 0.1
mg/liter Selenium < 0.1
mg/liter Silver < 0.1
GALBftAITH LABORATORIES. INC.
-------
Mr. Ralph Vocque
November 14, 1986
Your #,
USEPA-CRF
T08121200
Our #,
Q-8049
Based on Leachate of Kiln Ash by EP Toxicity
Test Procedure # 1310,
mg/liter Arsenic
mg/liter Barium
mg/liter Cadmium
mg/liter Chromium, Total
mg/liter-Lead '
mg/liter Mercury
mg/liter Selenium
mgAiter Silver
Total Metals in Kiln Ash,
ppm Arsenic
ppm Barium
ppm Cadmium
ppm Chromium
ppm Lead
ppm Mercury
ppm Selenium
ppm Silver
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
< 2
738
< 2
99
767
< 2
< 2
< 2
PROTECTION
AGENCY
DALLAS. TEXAS
GALSRAITH LABORATORIES. INC.
-------
Mr. Ralph Vocque
November 14, 1986
Your #,
USEPA-CRF
F08(12,13,14) 1200
Our #, Total Metals in Feed,
ppm Arsenic 11
ppm Barium 823
ppm Cadmium 4
ppm Chromium 65
ppm Lead 1034
ppm Mercury < 1
ppm Selenium < 1
ppm Silver < 5
Ultimate Analysis,
% Carbon
% Hydrogen
% Nitrogen
% Sulfur
% Chlorine
% Oxygen
13.13
4.67
0.11
0.43
0.058
32.29
Based on Leachate of Feed by EP Toxicity
Test Procedure # 1310,
mg/liter Arsenic < 0.1
mg/liter Barium 0.30
mg/liter Cadmium < 0.1
mg/liter Chromium, Total < 0.1
mg/liter Lead 0.12
mg/liter Mercury < 0.1
mg/liter Selenium < 0.1
mg/liter Silver < 0.1
GALBRAITH LABORATORIES. INC.
-------
Mr. Ralph Vocque
November 14, 1986
Your #,
USEPA-CRF
F07(21,28,29) 1200
Our #, Total Metals in Feed,
Q-8050 ppm Arsenic 2
ppm Barium 1035
ppm Cadmium < IQ
ppm Chromium 45
ppm Lead 2888
ppm Mercury < i
ppm Selenium < i
ppm Silver < 10
Ultimate Analysis,
% Carbon 54.53
% Hydrogen 10.35
% Nitrogen 0.085
% Sulfur o.69
% Chlorine o.lO
% Oxygen 29.87
Based on Leachate of Feed by EP Toxicity
Test Procedure # 1310,
mg/liter Arsenic
mg/liter Barium
mg/liter Cadmium
mg/liter Chromium,
mg/liter Lead
mg/liter Mercury
mg/liter Selenium
mg/liter Silver
< 0.1
< 0.1
< 0.1
Total< o.l
< 0.1
< 0.1
< 0.1
< 0.1
Sincerely yours,
GALBRATTH LABORATORIES, INC.
GaU R. Hutche
Exec. Vice-President
GRH:sc
GAURAITH LABORATORIES. INC.
------- |