P6 80-10287^
oEPA
United States
Environmental Protection
Agency
Municipal Environmental Research
Laboratory
Cincinnati OH 45268
EPA-600/8-79-011
August 1979
Research and Development
ENVIRONMENTAL
PROTECTION
AGENCY
Assessment of the
Impact of Resource
Recovery on the LIBRARY
Environment
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U S Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are
1. Environmental Health Effects Research
2 Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5 Socioeconomic Environmental Studies
6 Scientific and Technical Assessment Reports (STAR)
7 Interagency Energy-Environment Research and Development
8 "Special" Reports
9 Miscellaneous Reports
This report has been assigned to the "SPECIAL" REPORTS series. This series is
reserved for reports targeted to meet the technical information needs of specific
user groups The series includes problem-oriented reports, research application
reports, and executive summary documents Examples include state-of-the-art
analyses, technology assessments, design manuals, user manuals, and reports
on the results of major research and development efforts
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161
-------
EPA-600/8-79-011
August 1979
ASSESSMENT OF THE IMPACT OF
RESOURCE RECOVERY ON THE ENVIRONMENT
by
Judith G. Gordon
MITRE Corporation
Metrek Division
McLean, Virginia 22102
Contract No. 68-03-2596
Project Officer
Albert J. Klee
Solid and Hazardous Waste Research Division
Municipal Environmental Research Laboratory
Cincinnati, Ohio 45268
MUNICIPAL ENVIRONMENTAL RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OHIO 45268
-------
DISCLAIMER
This report has been reviewed by the Municipal Environmental
Research Laboratory, U.S. Environmental Protection Agency, and
approved for publication. Approval does not signify that the con-
tents necessarily reflect the views and policies of the U.S. Environ-
mental Protection Agency, nor does mention of trade names or commer-
cial products constitute endorsement or recommendation for use.
ii
-------
FOREWORD
The Environmental Protection Agency was created because of
increasing public and government concern about the dangers of pollu-
tion to the health and welfare of the American people. Noxious air,
foul water, and spoiled land are tragic testimony to the deteriora-
tion of our natural environment. The complexity of that environment
and the interplay between its components require a concentrated and
integrated attack on the problem.
Research and development is that necessary first step in problem
solution and it involves defining the problem, measuring its impact,
and searching for solutions. The Municipal Environmental Research
Laboratory develops new and improved technology and systems for the
prevention, treatment, and management of wastewater and solid and
hazardous waste pollutant discharges from municipal and community
sources, for the preservation and treatment of public drinking water
supplies, and to minimize the adverse economic, social, health, and
aesthetic effects of pollution. This publication is one of the
products of that research; a most vital communications link between
the researcher and the user community.
One of the objectives of the Resource Conservation and Recovery
Act of 1976 is to promote the protection of health and the environ-
ment through resource recovery. It was not known, however, to what
extent such a policy would abate the pollution caused by the disposal
of solid wastes. This report addresses the issue by first quantify-
ing the present environmental effects of the disposal of municipal
solid wastes, and then comparing these effects to those that would be
expected under an assumed scenario of resource recovery sometime in
the future. The results are of value not only in placing resource
recovery into a national perspective, but for the planning of
research and development programs as well.
Francis T. Mayo, Director
Municipal Environmental Research
Laboratory
iii
-------
ABSTRACT
This assessment of the environmental impact of resource recovery
examines the environmental effects that will derive from municipal
solid waste disposal in 1990 and the changes in these effects that
will result from implementation of resource recovery from municipal
solid waste. The environmental effects considered in this study are
the direct effects of municipal solid waste disposal as well as the
secondary effects of substituting materials recovered from municipal
solid waste for virgin materials in the production of steel, aluminum,
glass, and energy. The energy aspects of resource recovery—that is,
energy conservation resulting from use of recovered scrap in materials
production and energy production by recovery of energy from municipal
solid waste—are also evaluated. The analysis is based on specific
scenarios for municipal solid waste disposal in 1990 without and with
implementation of resource recovery.
The net environmental impact of resource recovery from municipal
solid waste will be primarily beneficial. Emissions of most air pol-
lutants will be reduced. The discharge of pollutants to surface
waters will increase. The quantities of all pollutants present in
leachate from landfilled municipal solid waste and resource recovery
residue will decrease. Less landfill capacity will be required for
disposal of municipal solid waste. Energy savings will be realized
from energy conservation in materials production and energy recovery
from municipal solid waste.
This report was submitted in fulfillment of Contract No.
68-03-2596 by The MITRE Corporation, Metrek Division, under the
sponsorship of the United States Environmental Protection Agency.
This report covers the period from September 26, 1977 to September 21,
1978, and work was completed on November 30, 1978.
iv
-------
TABLE OF CONTENTS
Page
Foreword iii
Abstract iv
List of Tables vi
Acknowledgments viii
1. SUMMARY 1
2. INTRODUCTION 5
3. FINDINGS 7
References 77
Appendices
A. Equations Used in Calculations 83
B. Estimation of Leachate Quality by
Equilibrium Modeling 132
-------
LIST OF TABLES
Number Page
I Generation of Municipal Solid Waste in the 10
United States
II Summary of Scenarios: Handling of Municipal 12
Solid Waste
III Composition of Municipal Solid Waste 14
IV Major Pollutants from Disposal of Municipal 16
Solid Waste
V Reported Concentrations of Pollutants from 18
Municipal Solid Waste Disposal
VI Estimated Quantities of Pollutants from Disposal 21
of Municipal Solid Waste in 1975
VII Projected Concentrations of Pollutants from 27
Municipal Solid Waste Disposal in 1990
VIII Projected Quantities of Pollutants from 31
Disposal of Municipal Solid Waste in 1990
without Implementation of Resource Recovery
IX Projected Quantities of Pollutants from Disposal of 38
Municipal Solid Waste in 1990 with Scenario for
Implementation of Resource Recovery
X Estimated Change in Quantities of Pollutants from 43
Disposal of Municipal Solid Waste Resulting from
Scenario for Implementation of Resource Recovery
(1990)
XI Estimated Quantities of Materials Recoverable 48
from Municipal Solid Waste in 1990 under
Scenario for Resource Recovery
vi
-------
LIST OF TABLES (Concluded)
Number
XII
XIII
XIV
XV
XVI
XVII
XVIII
XIX
XX
XXI
Pollutants Associated with Steel Production
Pollutants Associated with Aluminum Production
Pollutants Associated with Glass Production
Effect of Implementation of Materials Recovery
from Municipal Solid Waste on Quantities of
Pollutants from Production of Steel, Aluminum,
and Glass (1990)
Estimated Energy Conservation in Materials
Production Resulting from Utilization of
Recovered Materials (1990)
Pollutants Associated with Energy Production
Projected Quantities of Pollutants from Energy
Production (1990)
Estimated Change in Quantities of Pollutants from
Energy Production Resulting from Energy Recovery
from Municipal Solid Waste (1990)
Effect of Implementation of Resource Recovery on
Landfill Capacity Required for Disposal of
Municipal Solid Waste in 1990
Summary of the Effects on the Environment of
Implementation of Resource Recovery in Accordance
with the Scenario for 1990
I. Air Emissions
II. Discharges to Surface Water
III. Pollutants in Landfill Leachate
IV. Miscellaneous Effects
APPENDIX
B-I
B-II
B-III
Hypothetical Composition of the Solid Phase
Hypothetical Composition of the Liquid Phase
Parameters Defining the Landfill Environment
Page
51
54
56
58
60
63
66
68
70
73
74
75
76
134
135
135
vii
-------
ACKNOWLEDGEMENTS
The contribution of Mr. William Lowenbach of The MITRE
Corporation, Metrek Division, in analysis of leachate data and the
equilibrium modeling estimation of leachate quality is gratefully
acknowledged.
Dr. Robert W. White of Midwest Research Institute in Kansas
City, Missouri, kindly provided recent, as-yet-unpublished data from
the Ames, Iowa, Solid Waste Recovery System.
The helpful comments of Drs. Harold Yaffee and Paul Clifford, my
colleagues at The MITRE Corporation, and of Dr. Albert Klee of the
Municipal Environmental Research Laboratory of the United States
Environmental Protection Agency in Cincinnati, Ohio, are greatly
appreciated.
viii
-------
SECTION 1
SUMMARY
This study was prepared for the Processing Branch in the Solid
and Hazardous Waste Research Division of the Municipal Environmental
Research Laboratory of the United States Environmental Protection
Agency (EPA). The objectives were to determine quantitatively the
effects on the environment of municipal solid waste disposal and of
resource recovery from the municipal solid waste, as well as the
potential benefits of resource recovery in mitigating the environ-
mental effects of municipal solid waste disposal. The data are
presented in tabular form for use in EPA program planning.
In this assessment of the environmental impact of resource
recovery from municipal solid waste, two scenarios are presented for
municipal solid waste disposal in 1990—one without and the other
with implementation of resource recovery. The differences between
the environmental effects that would result from the two scenarios
constitute the environmental impact of resource recovery. Municipal
solid waste, as considered in this study, is comprised of residential
and commercial wastes. It is projected that approximately
197,000,000 tons of municipal solid waste will be generated in the
United States in 1990.
-------
Under the scenario for municipal solid waste disposal in 1990
without resource recovery, five percent (10,000,000 tons) will be
incinerated and the remaining 95 percent (187,000,000 tons) will be
landfilled. The scenario for municipal solid waste disposal with
implementation of resource recovery stipulates that five percent
(10,000,000 tons) will be incinerated, 80 percent (157,000,000 tons)
will be landfilled, and 15 percent (30,000*,000 tons) will be pro-
cessed for resource recovery. With resource recovery, ferrous met-
als, aluminum, and glass will be recovered from the 15-percent por-
tion of the municipal solid waste and the recovered materials will
replace virgin materials in the production of steel, aluminum, and
glass. In addition, energy will be derived from the same portion of
the municipal solid waste by mass burning in waterwall incinerators
and by cofiring of refuse-derived fuel with coal; this energy will
replace a similar amount that would otherwise be generated by coal
combustion.
The environmental effects of resource recovery from municipal
solid waste are primarily favorable. (See Table XXI for a summary of
the effects.) Net emissions of all but three of the air pollutants
considered will be reduced. Emissions of carbon monoxide will be
reduced in 1990 by about 2,300,000 tons and emissions of carbon diox-
ide, NOX, and methane by about 310,000 tons, 150,000 tons, and
114,000 tons, respectively. Smaller reductions will occur in emis-
sions of SOX (-23,000 tons) and hydrocarbons (~7200 tons). There
-------
will be slight increases in the quantities of total particulates
(~1000 tons) and aldehydes (~2500 tons) emitted and a larger increase
(~140,000 tons) in chloride emissions.
The quantities of pollutants that will be discharged to surface
waters in incinerator wastewater effluent will increase because more
municipal solid waste will undergo mass burning with implementation
of the scenario for resource recovery. With resource recovery from
municipal solid waste, smaller quantities of pollutants will be pre-
sent in landfill leachate. The decrease will range from 3 tons of
cadmium, a minimum of 25 tons of sulfate and about 100 tons of chrom-
ium, copper, lead, and nickel to more than 1,000,000 tons of magnesi-
um. In the absence of data on leachate contributions to the
pollutant loadings of ground and surface waters, the net effects of
resource recovery on the water resources cannot be determined.
The requirement for landfill capacity to dispose of municipal
solid waste and the residues from mass burning and resource recovery
will be decreased by about 44,260 acre-feet under the scenario for
resource recovery. The landfill capacity needed with resource recov-
ery from municipal solid waste will be about 85 percent of the capa-
city that would be required if there were no resource recovery.
Energy derived from municipal solid waste in 1990 will amount to
161.4 x 1012 Btu (28.8 x 106 barrels of crude oil equivalent).
Energy conservation that would accrue from substitution of recovered
for virgin materials in the production of steel, aluminum, and glass
-------
will be about 75.2 x 1012 Btu (13.4 x 106 BCOE). The total
energy savings that can be realized from resource recovery from
municipal solid waste will therefore be about 236.6 x 1()12 Btu or
42.3 x 10 barrels of crude oil equivalent.
-------
SECTION 2
INTRODUCTION
A study was made of the environmental impact of resource recov-
ery from municipal solid waste. For the purposes of this study,
municipal solid waste is defined as being comprised of residential
and commercial solid waste, i.e., the urban refuse that is normally
handled by municipalities.
Resource recovery consists of the recovery of scrap ferrous met-
als, aluminum, and glass from municipal solid waste and their substi-
tution for virgin materials in production of steel, aluminum prod-
ucts, and glass containers. Resource recovery also includes recovery
of the energy content of the municipal solid waste.
The year 1990 was selected as the base year for the study
because it is the earliest date by which a reasonable number of
resource recovery facilities would be fully operational and, there-
fore, resource recovery would be having a significant impact on the
environment. Two scenarios are proposed for municipal solid waste
disposal in 1990 — one without and the other with resource recovery.
Some reference is also made to the present, specifically 1975.
Pollutants emitted/discharged to the air, surface water, and
landfill leachate as a consequence of municipal solid waste disposal
-------
constitute the direct environmental effects of municipal solid waste.
The differences in quantities of these pollutants that would result
from implementation of the two scenarios comprise the direct effects
of resource recovery. Similarly, the secondary effects of resource
recovery are the differences in environmental effects that would
result from substitution of recovered materials for virgin materials
as well as the energy conservation/production aspects of resource
recovery.
-------
SECTION 3
FINDINGS
The findings of the study are presented in the following 21
tables. For a listing of the tables, see pp. vi and vii.
The methods of calculation are presented in Appendix A. The
sections and equations in this appendix are keyed by number to the
tables in the text.
-------
DISCUSSION: TABLE I
quantity of municipal solid waste that is generated in the United States is un-
4-1
O
CO
X
cu
CU
X!
H
U-l
0
01
4-J
cfl
rJ
cfl
cfl
s — '
d
o
13
0)
CO
CO
rQ
/^\
r-l
cu
r-l
X
cfl
H
•*^f
O
ON
ON
i — i
13
d
cfl
in
r-
ON
. — i
}-i
O
U-l
01
13
W
B
0)
t-l
0
U-l
cu
M
CU
Xi
4-1
O>
l-l
CO
3
CD
d
o
• l-l
4-1
Cfl
B
•H
4-1
CO
W
.
C!
3
0
c
£t
waste generation that is expressed in terms of pounds per person daily and (b)
T3
• H
i — l
O
CO
r— 1
CO
CX
• H
O
•H
C
3
B
90 populations as estimated and projected by the United States Census Bureau.
ON
i— 1
13
d
cfl
in
i —
ON
t— l
Q)
Xi
4-1
4-1
CO
Xi
4-1
-a
Ol
B
co
CO
co
CO
CO
3
4-1
I—I
e of generation of municipal solid waste (residential and commercial refuse) is
4-1
CO
l-l
01
Xi
H
•
cfl
x;
4-1
• i-l
3
**
4-1
d
o>
&
o
r-l
CU
>
01
13
rH
Cfl
• H
O
rJ
d)
O
o
U-l
o
CU
Ol
r4
60
cu
T3
cu
X!
4-J
d
o
•
OJ
•
•1-4
n
cu
N
• l-l
CO
>%
4J
• r-l
e
o
u
d
o
4-1
C
cu
T)
d
cu
cx
cu
13
.
f>.
i— i
• H
Cfl
13
d
0
CO
M
QJ
CX
r4
cu
CX
co
13
d
3
O
CX
m
.
m
U-l
O
4-1
•H
B
•H
r-l
d
0
• H
4-J
Cfl
l-l
3
4-J
Cfl
CO
e of municipal solid waste generation is independent of time, i.e., the rate
the same in 1990 as in 1975.
4-J
CO
r4
0)
H
•
CU
Xl
I—I
1 — 1
• I-l
3
tribution of population is independent of time, i.e., the percentages of pop-
by community size as reported in the 1970 Census of Population (1) will remain
to d
•H O
13 -H
4-1
CU cfl
e-3
•
.
o
0\
ON
i — i
X!
60
3
O
r4
X
4-1
4-1
d
CO
4-1
CO
d
o
o
e of population growth will be in accordance with the Series II projections of
ted States Census Bureau, i.e., 2.1 lifetime births per woman (vs. 1.7 and 2.7
ies I and III, respectively).
thod, it is estimated that about 173 million tons of municipal solid waste were
4J -H r4 CU
to C cu B
M J3 CO
CO
CU O> rJ -r-l
X! X! 0 X!
H 4J U-l 4-1
(X,
• M
r-l
CO
CX
•H
O
• H
d
3
U-4
0
co
01
4-1
Cfl
B
• H
4-1
CO
0)
4-1
CO
X!
4-1
x-s
CN
•^s
13
01
4-J
rJ
0
CX
OJ
l-l
d
Q)
cu
Xl
CO
CO
X!
4-)
M
•
m
i^
ON
• — 1
d
•H
co
cu
4-1
CO
4-1
CO
13
cu
4-1
•H
d
&
cu
X!
4-1
d
• H
13
01
4-1
cfl
M
O>
d
01
60
ntities are accurate within ±25 percent; the range of 173 million tons ±25 per-
CO
3
o-
cu
4-1
CO
CO
3
13
•H
r-l
0
CO
pass the 136 million tons estimated for 1975 that is given in the Fourth Report
B
o
o
d
cu
CO
cu
0
13
4-1
d
0)
o
-------
o
4-1
co
C
0
4-1
C
O
>r^
i— I
,__f
• H
B
O
vD
t — i
(4_l
O
0)
4-J
CO
B
T3
0)
T)
3
i— i
O
C
O
c_>
N^
M
H
J
«
<;
H
• •
55
O
M
C/3
C/J
&
O
W
r-l
Q
4J
CO
0)
0)
43
4-J
CO
0)
CO
e
• r-l
X
0
S-i
a
a
cfl
0
CO
r- 1
CO
01
M
3
60
• H
M-l
co
•H
43
H
•
s~^
l/S
^^
CO
CO
0)
r-l
60
t3
0
0
O
4-1
4-1
p
O
PL,
OJ
Pi
•
s-*.
VO
OJ
0
t-.
3
0
CO
<
P-i
W
)-i
0)
43
4-J
0
C
CO
>s
43
•O
a)
4-1
•H
0
VD
1 —
o\
1 — 1
0)
43
4-1
c3
•r4
T3
0)
CO
^J
0)
C
0)
60
0)
43
i— I
rH
•H
^
0)
co
CO
S
T3
• H
i — l
O
co
1^
CO
a.
•H
0
•H
C
3
B
M-l
0
CD
C
0
4-1
a
o
• H
i— I
rH
•H
B
r-~
OS
« — i
4-1
CO
43
4J
Q)
4-1
CO
B
• r-l
4-1
CO
0)
(1)
43
H
•
^^v
m
^^
CO
S
0
4-1
C
o
• H
i— I
i— I
• H
LPl
CN
CN
M-l
O
C
O
•rH
4-1
O
QJ
•1—1
O
j-l
o.
<
PH
W
0)
43
4-J
O
4-1
M
CO
i— I
• r-l
g
•r-l
co
CO
• H
O
OS
OS
, — 1
c3
•H
CO
0)
4-1
CO
4J
C/>
TJ
01
4J
•H
C
£>
-------
CO
tn
ta
a
en
B
z
3
C/3
H
C/3
O
ca
U
M
Z
o
2
in
J2
CO
W
JS
§
M
5
£
13
CO
3
PH
a •- •>
a] IH
S lo
1 2
vO
3 O
X
M ^
EH\O
eJ ~H
5 ^^
PH
O
CM
O x~>
U IH
H X
2 CO
W B
2 O
U 4-)
O
O
3 o
£2
z
o
£n ^
* ao o CN --H m
o i"*- CN >H/- r^ in
CM ~4 CM O --H CO
O -* OO —I O CN
>o -*>*>-* r~ m
m CM CN 01 -H oo
en >o PI o o o
• •••••
r^ m os o m m
i— 1 "— ( »—( CO *H ("^
»— ( ^ m os os P^
OS ^H CO OS ** >*
^t CM CM CM ~H r^.
o o o *o <—* m
CM CM CN
.-H
co o i"H ^^ r^ m
(N ~H -H — ( CO
o o m m m m
CM -* -* m m m
o
o
0 0
o o -
o o o
o o - o
o o o
o o o o
• o m -H o
O -H | 1 O
-H 1 O 0 •
§10000
O O O 0 O
O O O • " O
.0 « o o
_i • o O O -H
V -H -H -H U-V /S
o
OS
^
00
m
CO
^^
CM
CO
CM
r^
^H
MH
in
CO
^H
CN
,_,
CO
CO
CU
4J
CO
at
3
at
• H
o
CU
I
o
u
B
CO
r-H
CO
-iH
4J
B
CU
T)
CO
CU
^4
MH
O
00
CO
CQ
§
U
Q)
4J
00
Z
•o
• H
rH
O
CO
rH
CO
a.
• H
U
• H
B
X
CO
Reference
erritory
ed
Reference
3
• H
•o
B
3
O
B
O
u
CO
cu
M
co
•o
0)
N
1
CU
Ki
ed
ba
at
01
IH
CO
•O
01
N
•,H
B
CO
IH
O
0)
u
CO
i-H
a.
u
to
01
60
B
•H
•O
3
cx
o
ex
01
no
to
4J
B
S
h
cu
ft.
Reference
01 -H
O rl
B 01
O) CO
OI >-i
MH O
O) MH
5 B
O
01 -H
•U 4J
CO O
O
IH
CX
01
U
B
01
01
h
3
ca
B
01
U
CO
01
•§
B
a
3
pa
B
cu
o
CO
CU
73
0)
10
-------
M
r-l
W
rJ
PQ
•^j
H
• •
£5
0
M
CO
CJO
£3
C.2
CO
r-l
O
O
o**
Civ
1 — 1
c
• H
4-1
CO
4-J
•O
cu
4-1
o
0>
•>— i
O
)-l
cx
CO
•H
4->
M
•
tH
M
01
i — 1
fi
CO
H
C
• H
"O
01
4-1
<3
CO
cu
^4
cx
CO
0
• r-4
}_i
CO
(3
0)
O
co
01
43
4-1
C
0
13
cu
CO
cfl
43
CO
• H
r*i
T3
-J
4-1
CO
CO
• H
43
H
43
14-1
i— 1
CO
43
1
CU
C
O
1
1
r*^
t-l
0)
0
o
O)
cu
CJ
t-l
3
O
CO
CU
M
j_i
0
14-1
•o
cu
CO
CO
CU
0
O
t-l
cx
cu
43
r-l
•—I
•H
^
0)
4-1
CO
cfl
^
-0
• H
i— 1
O
CO
i— i
cfl
cx
• H
CJ
• r-l
C
3
B
14-1
0
CO
C
o
4-J
C
o
• r-4
r-l
i— 1
•H
6
O
CO
pj
t-l
3
43
co
CO
cfl
e
43
4-1
i— 1
Cfl
43
1
CU
(3
0
-o
C
cfl
prn
P
W
m
0
(3
O
• H
4-1
CO
3
43
e
0
O
T3
C
cfl
C
o
• H
4-1
Cfl
t-i
CO
cx
0)
co
CO
rH
CO
• H
t-l
CU
4-1
CO
G
43
4-1
-r-l
^
too
£3
• H
CO
co
cu
O
0
M
CX
T3
(3
0)
1
4-1
£3
O
^i
M-l
CU
3
T3
• H
CO
0)
CU
43
4-1
B
0
}_i
^4-1
r*^
^1
0)
O
0
0)
t-i
co
r-i
CO
• H
^l
CU
4-1
CO
e
43
4-1
• H
[J
T)
C
cfl
^
t-i
CU
O
o
cu
t-i
r*^
too
0)
C
CU
43
4-1
•r-l
JJ
0)
co
3
14-1
O>
t-l
JJ
Cfl
)-t
14-1
O
bO
C
• H
}-l
CU
^
O
o
01
l-l
cu
o
3
o
CO
0)
M
01
r-l
CO
o
co
cu
toO
^i
CO
r-l
O
m
>4-l
0
^
4J
•H
O
CO
CX
cfl
O
I—I
cfl
3
(3
C
CO
CU
43
4-1
O
4-1
CO
13
C
0
CX
CO
0)
M
r4
O
o
CO
(3
O
4-1
C
0
• H
r-l
rH
•H
B'
r*"*
4-1
t-l
• H
43
H
CO
4J
O
0)
•I— 1
0
M
CX
m
CM
CU
rJ
CU
S
cu
^i
01
43
4->
f\
r~-
j^.
C7*j
i — I
^1
CU
43
B
cu
4-1
cx
cu
CO
U-l
o
co
^
•
^
CO
T3
t-i
cu
cx
co
13
O
4-J
0
O
0
CM
bO
C
CO
CO
CU
CJ
O
t-i
CX
43
O
CO
0)
*l
CO
CU
• H
4-1
•H
r—l
• H
O
CO
4-1
(3
•H
c
o
• H
4-1
cfl
0)
CX
o
)_l
o
ft
c
0
•T-l
4-1
CJ
3
t-i
4-J
CO
C
O
o
•*
c
bO
•H
CO
cu
rrj
T3
CU
•o
(3
3
C
• H
^~>
CO
T3
)-|
0)
cx
co
S
O
4-1
O
0
o
•*
^rj-
CM
14-1
O
^
4-1
• H
O
Cfl
CX
CO
O
r-l
cfl
4J
0
4-1
cfl
43
4-J
• H
&
•
y— N
1^
s_x
CO
cu
4-1
Cfl
4-1
CO
T3
0)
4-1
•H
C
Jo
0)
43
4-1
11
-------
H
CO
fj
o
CO
ss
o
ON
£
M
K*
O
u
Pi
W
j— 1
0
CO
M
Pi
SC
H
M
Cd
O
U
w
Pi
H
U
0
CO
H
H
0
EC
H
LO
f-H
to
C
O
4J
VD
0
&•$
to
a
o
4-1
vO
O
f— I
fr-S
to
(3
0
4-1
vO
O
S-S
^
Q
O
PC
H
W
s
CO
J CO
.20)3 M 3 > C 0) 0)
O COOI* C O OPiS
60 O 60UQ -HCUOiH-H T3
C OJ T3CCO P5 CcOH pi 00 0) C M
pq -H M C O 0) C C to M-U-HCUg
IH 3 OO4JOO CO>a)cflO4JO
to *o o JH f^< 03 >r^ >r^ cd cd cj »2 c3 cd (H
tO G tO hpH,i^4J4-l ISPHW *^ MS4*-*
td cd cu
S ,J oi
1^
ON
^
r^
ON
f-H
00
CN
^
3
H
o
H
12
-------
M
H
M
W
,J
PP
CO
»
o
W
h-l
0
14-1
O
d
O
en
<0
O>
co
1
1
CO
^
O
4-1
O
«
"4-1
1-1
Q)
43
4-1
O
M
c
O
6
n)
1
43
4J
•H
£
CO
cu
• H
V-i
cfl
>
0)
4-1
CO
CO
"»
~O
• rH
I— 1
O
CO
1— 1
CO
CX
•H
O
•r-l
C
?
6
<4-l
O
C
O
• H
4-1
•H
CO
O
CX
s
O
O
o)
43
H
(1)
r— I
.0
CO
H
^^
C
O
• H
4-1
CO
N
• H
C
CO
40
J-i
D
IH
0
0)
0)
t-i
60
0)
T3
-o
C
cfl
n
CD
O
• H
4-J
CO
• H
>-l
01
4-1
0
Cfl
J-i
CO
43
u
c
0
• H
4-1
Cfl
i— 1
•3
CX
0
CX
•\
d
o
• H
4-1
CO
0
0
I— 1
o
• H
4=
cx
cfl
\-i
60
o
OJ
60
•4
)-i
CO
01
>,
01
43
4-1
•
ai
4-1
CO
CO
&
T3
• H
i — I
O
CO
i— i
cfl
cx
• H
O
• r-l
C
3
E
<4-l
O
01
>
• H
4J
Cfl
4J
C
0)
co
dJ
ij
a
0)
^
60
c
•H
a>
J3
co
CO
13
01
4-)
O
V
,— 1
CD
CO
CO
cfl
;s
c
o
• H
4-1
• H
CO
0
ex
0
o
o
J£
r-l
Cfl
O
• H
cx
>-,
4-1
£
<
•
X^v
M
H
H
M
t
0)
\^^
CO
4-J
C
0)
e
ex
o
1— 1
0)
>
0)
T)
I— 1
CO
o
• -I
60
O
t— I
O
c
f
o
0)
4J
CO
CO
CO
(-!
O
4J
O
cfl
4-1
jr
O
3
co
>,
Jl
T3
0)
C
• H
g
M
0)
4-1
a>
T3
0)
M
to
C
o
• H
4-J
•r-l
CO
0
a,
6
o
o
c
• H
CO
OJ
60
C
CO
J=
a
U-l
0
CO
4-1
CO
o
o
0)
>
• 1-1
4-1
cfl
1 — 1
0)
(^
0)
,c
4-1
t
•
60
•
0)
^^
CO
C
O
• H
4-J
cfl
J-J
OJ
TJ
• 1-1
co
C
0
u
o
• H
e
0
c
0
o
0)
T3
d
CO
s~~^
ca
r-l
cfl
• H
M
0)
4-J
CO
e
60
d
• 1-1
60
cfl
^
0
cfl
CX
ft
CO
0)
CX
>.
4-1
rH
0)
3
<4-l
cfl
4-1
CO
d
0
•H
4-1
•r-l
CO
0
CX
g
o
o
14-1
o
d
0
• H
4-1
O
•rH
T3
0)
I-J
CX
•\
co
0)
I— 1
JO
CO
• H
t-l
CO
>
CO
3
O
^
0)
E
d
0)
,d
4-1
M-l
o
0)
CO
3
cfl
O
a)
CQ
•
^-\
CO
4-1
O
3
T3
O
M
CX
T3
01
CO
CO
40
£
(1)
! 1
0
M
4-1
OJ
CX
I— 1
cfl
O
• H
a
>.
4-1
0)
43
4-1
4-1
CO
43
4J
T3
01
B
3
co
ca
co
0)
t-i
O
M-l
01
M
0)
4=
4J
CO
• H
4-J
h-l
•
OJ
i— 1
40
CO
• H
i — 1
OJ
rl
d
3
T)
d
cfl
4-1
i— 1
3
O
• H
m
U-l
• H
-a
CO
• H
0)
4J
CO
T3
0)
!-i
3
4->
3
M-l
O
• r-l
U-l
•r-l
O
01
CX
co
•
U~l
1 —
C3>
i — I
d
• H
4-1
CO
4=
4-1
CO
CO
0)
E
CO
CO
ai
43
4-1
ai
40
i— i
i— i
• H
5
O
o>
c^
1 — 1
d
• H
0)
4-1
CO
cfl
£
-a
•H
i— 1
O
CO
i — i
CO
CX
• H
a
• H
d
3
B
M-l
0
d
o
•r-l
J-J
•r-l
CO
O
CX
B
0
o
13
-------
.o
o
H
SB
M
H
S5
O
u
u
H
CO
CO
cd
Q
w
H
OC
O
a.
01
o
c
01
o>
14-1
o
I—
ON
I—I
I
ON
CO
cd
w
g
z
o
10
o
cd
0)
•O
C
cd
W
H
CO
01
co
5
co
60
• i-l
B
01
o
T3
O
l-i
a.
co
o
• l-l
B
cd
0)
o
ca
o
CO
oi
M
T3
o
o
cd
•
c
cd cu
o
co C •
0) O) X-N
4-1 01 "*>
•H M-l
O 0) •
fv| p,
ca
01 B -
4-1 O 00
cd u
4-1 <4H O)
C/3 CJ
-o a
T3 0) 0)
O) 4-1 l-l
4J a, o)
•1-4 cd 4-<
C 13 0)
O co Pi
l-l M
O) O O
cd
M cd cd
a> 4-1 4J
> cd cd
U-l
C
O
B
ca
O
I-i
0)
ON
o>
u
B ••
oi ca
u *-<
oi cd
ij^^ _j.j
OI OI
J3 O
14
-------
0)
V-i
cfl
CU
4-1
co
CO
o
to
CO
CX
C
B
bO
C
•T-l
CD
CO
(1)
O
O
\-l
CX
Cfl
CO
O
CX
CO
• H
T)
B
O
M
0)
-O
C
cfl
4-1
O
CX
CO
B
ai
fi
H
CO
H
0)
4J
CO
15
-------
J
PO
Id
E-i
en
Q
M
O
CM
M
CJ
M
Z
en
O
en
M
Q
oi
fc,
03
H
Oi
u
H
3
Q
O
M
M
ta
o
w
oi
ai
M
^J
£
a
a
u
u
o
a:
OH
CN
1 CO
-» X)
O B
W 3
O a
a B
m Bo
| O -i-ICN
<»• 0 4J 1
CO CXt i— ' O O O
-H o -H cn
cd - B B ,-<
4-1 i 0> cd cd «
41 i-l X 00 4-1 1
Boo. h oi 1-1
o B o
CQ
73 CO
B 73
3 B
O 3
^ 0, O
co S a
cd cd o o
4-1 -i-l O Cd
01 M O -i-l
S 01 CO 'H U M
^ 4-1 ^H B -H 01
u cd cd B 4-i
CO CQ Cd 4J 60 Cd U
oi B xi cu n 60 cd
4-1 O B O h X)
cd XI "0 O
i-l M 01 01 >«
3 cd co i-l ,-1 01
O o 01 ••-* ••-! i— 1 CQ
•H Q 03 4J 4J *H 01
4-1 H 3 cd Cd 4J CQ
M X X 73 M r-< •— 1 CN^CO C034J
cd O O X'i-1 OOOEEcN I-IV4CO
O.cnZX>>> UO33 O-H3
> > -a
B
O
60 *H
e 4J
•rl Cd
01 Cd
x o) a
M O 01
ai o en
> u
o cv u
60 U ^H
B 0! XI cd
•i-l pd B -H
B W h
m t-i oi i oi
3 i-l U 4J U
« -H M B cd
iw 3 O X
CO T3 O M
CQ B CQ [i*
cd cd oi
£ ,J oi
CN
1
O
en
^
c*"l
1
O CQ
CL,r— 1
O
"B
1 01
•-I.C
u a
CQ
73
B
3
O
a.
1
cd o
M O
01 -H
4J B
u cd
CQ CO Cd 60
01 B XI M
4-1 O O
cd xi *-fl
r-H M 01
3 Cd M ^H
O O 0) 'i-l
•iH O CO 4J
4J h 3 Cd
l-i X XX) M i-l
WO O X-H O
txen z x! > >
[X
S
^4
^
l-l
0)
8-
o
01
cd
^
60
M
01
B
u
01
o
XI
cd
60
B
•I-l
B
3
pa
CQ
CO
cd
01
01
CQ
01
o
XI
60
c
• H
B
3
PO
CO
CO
cd
5^
01
01
CO
01 X
> I-l
o 01
u >
01 O
ai o
01
C1J B3
u
3 60
o u
CO 01
01 B
f. JS
•r-l *H
9 9
60 B
B O
•pH •!-!
B 4-1
l-i cd
3 M
PO 01
CJ
CO B
CQ M
cd
J£
4J
CQ
3
73
^.
M
01
0
u
01
06
CQ
^
eg
^
01
4J
cd
X
16
-------
^
w
,_J
M
^3
H
• «
P^
O
M
CO
CO
[ i
u
CO
r-l
P
CU
^1
tO
r-l
CO
CO
o
Q.
co
• r-l
13
CU
4-1
CO
cfl
^
13
•H
i— I
O
co
i— 1
CO
a.
• r-(
O
•r-l
d
3
B
B
o
i-i
4-J
4-1
r— 1
3
CO
cu
u
4-1
cfl
42
4J
CO
4J
d
cfl
4-J
3
,— i
i — i
O
a,
4-J
0
CO
d
0
4-1
CO
4-1
d
cu
o
d
o
o
13
CU
4-1
J-J
o
CX
cu
od
i
d
o
r-l
•r-l
^
d
cu
cu
f~;
4-1
1-1
CU
4-J
d
cu
60
d
• H
d
vj
3
43
co
CO
cfl
B
B
0
Vj
4-1
CO
4-1
d
Cfl
4-1
3
r— i
i— i
O
a,
1-1
CU
4-1
CO
S
cu
o
cfl
4-1
V_|
3
CO
13
d
tfl
r-t
• H
tfl
CU
42
H
•
^
cu
r— i
43
cfl
H
d
•H
T3
CU
4-1
CO
• r-l
i — 1
en
, — i
r— i
• i-j
4-J
13
d
cfl
i — i
e
o
V^
4-1
CO
4-1
d
tO
4-1
3
r— 1
i— I
O
Pj
•
>*>
r— i
CU
^
• H
4-1
0
CU
a
co
cu
v^
*,
r-l
CU
4-1
Cfl
U
CU
4J
CO
Cfl
5
l-i
O
4-J
Cfl
VJ
CU
d
• H
O
d
• H
T>
d
cfl
CO
d
0
•r-i
CO
CO
• r-l
B
cu
AS
o
CO
4-1
CO
cfl
•r-l
^
4-1
d
CU
B
•
0
CO
r— I
tfl
^
cu
4-1
to
Vj
cu
d
cu
60
cu
j-t
cfl
co
cu
CO
cfl
cu
B
o
CO
• f\
Vj
a)
4-1
tfl
5
-o
d
3
O
VJ
00
cu
42
4-1
0
4-1
d
•r-l
n
O
Cfl
cu
1— 1
1
1 — 1
O
a.
cu
r?
4-1
>*>
r— 1
d
O
4-1
O
cu
, — 1
4-J
CU
r-l
CO
V_|
O
4-1
O
cfl
4-1
d
o
• r-|
co
CO
• r-l
B
cu
13
d
cfl
co
d
o
• r-l
4-1
CO
Vj
4-1
d
cu
o
d
o
o
13
cu
4-1
VJ
0
a.
CU
1-1
CU
fl
4-J
4-1
Cfl
4-1
13
CU
B
CO
CO
cfl
CO
•rJ
4-1
r-l
! 1
cfl
• r-l
Vj
4-1
CO
3
•a
d
• r-l
d
cfl
CO
• 1-J
CU
V-l
cu
42
4-1
4-1
tfl
42
4-1
d
^
o
d
co
•r-l
4-1
|— f
•
CU
4-J
co
tfl
s
13
• H
r— 1
O
co
i— I
cfl
a.
• H
0
•r-l
d
3
B
B
o
VJ
4-1
T3
CU
• r-l
VJ
CU
*T3
CU
VJ
cfl
4-J
cfl
42
4-1
co
4-1
d
Cfl
4-1
3
i— I
13
d
cfl
CO
d
o
•r-t
4-1
CO
VJ
4-1
d
cu
o
d
o
o
,_^
cfl
4-1
O
4J
O
4-1
d
o
•r-l
4J
3
43
• 1-1
VJ
4-1
d
o
o
r— i
cfl
• H
r-l
4-1
CO
3
13
d
CU
42
4-1
4-1
3
43
*
B
cfl
CU
VJ
4-1
CO
CU
4-J
co
cfl
CU
42
4-1
d
• H
4-1
d
cu
d
o
a.
B
o
o
•
^
•d
3
4-1
CO
CO
•r-l
42
4-1
d
• rJ
*d
CU
VJ
cu
13
•r-l
CO
d
o
o
4-1
O
d
CO
•r-l
CO
4-1
d
Cfl
4-1
3
i — i
,— l
0
a.
4-1
o
CO
0)
• rJ
4-1
•H
4-1
d
CO
3
a"
17
-------
§01.
V4
•*« -^ >
U3C
J£
o <
dB
g S
" S
a 3
I I
CM CM
-oa
-------
a a c
i-H O vO
S I
a i
as
9 r-
•H ,H
§ s
11
81
g-s
2 S
CO 3 OJ MH
« X — C -H ^O
OJ ^H -H M (3 o
O W
D, M
« S B
4J - O
C —
cO 01
4-1 U
s s
19
-------
1
cu
r-l
CU
43
4-1
CO
Cfl
-J<
in
r*^
ON
< — i
d
•r-l
4-J
d
CU
B
o
^4
•|H
^
d
cu
cu
43
r-l 4-1
^
-d
w cu
I-H1 r-l
M cu
CU
I— 1
43
CO
H
d
• iH
d
cu
^
•r-l
60
CU
r-l
cfl
m
r^
ON
, — t
d
• i-i
i— i
Cfl
co
O
a.
co
• H
T3
CU
4J
CO
cfl
^
T3
• r-l
,— 1
O
CO
r— 1
Cfl
OH
•i-l
O
• H
d
3
B
MH
O
4-1
r-l
3
CO
1
d
0
o
4-1
d
cfl
4J
3
, — i
r-l
O
a.
T2
CU
4-1
r-l
o
a,
cu
r-l
cu
43
4J
*,
^^v
M
r— 1
cu
f—l
f-l
cfl
H
\^s
0
• iH
!H
cfl
d
CU
O
CO
i — l
CO
CD
0
a,
co
•r-l
•d
in
f —
O">
. — i
cu
43
4-J
MH
O
CD
•r-l
CO
cfl
43
CU
43
4-1
d
o
•d
CU
4-1
cfl
1— 1
3
0
1— 1
cfl
0
cu
B
3
i— l
0
^
CU
4-1
cfl
43
O
cfl
CU
! 1
1— 1
1— 1
• H
MH
*d
d
cfl
r-H
MH
O
CU
4J
cfl
B
• iH
4-1
CD
CU
^
Oi
w
CU
43
4-J
T3
d
cfl
^
^^i
£>
CU
r-H
43
CO
H
CO
r-l
O
4-J
CJ
CO
MH
d
o
•r-l
CO
CD
•H
B
CU
T)
d
cfl
CO
d
o
•iH
4-1
Cfl
rH
4J
d
CU
O
• •
CO
d
0
•rH
4-1
a.
B
3
co
CO
cfl
60
d
•H
^
0
1— 1
! 1
o
MH
CU
43
4-1
d
o
•d
cu
co
cfl
43
CU
r-l
cu
CO
d
0
• iH
4.)
Cfl
r-H
3
O
r-H
CO
0
CU
43
4-J
•K
CU
IH
O
MH
CU
IH
CU
43
H
»
,-^
ON
i— i
CU
o
d
CU
r-l
CU
MH
cu
erf
^^
60
d
• r-l
d
IH
3
43
CO
co
CO
B
^
43
MH
O
T)
CU
CO
O
a
CD
•rH
•a
CU
rH
cu
5
cu
4-J
CO
Cfl
^
•d
i — i
o
CO
r-H •
CO T3
a, cu
•H r-l
O 1— 1
•H -iH
d MH
3 -d
S d
cfl
MH r-H
O
CU
CO rH
d cu
o S
4J
CO
d d
O 0
•H 4-J
! 1
r— 1 C3
TH O
B T-l
1— 1
CO i— 1
• *iH
r- B
i— t
LO
*> •
IO L.O
r^- LO
O> ^H
.-H
'TJ
c a
M cd
Q
CU
^
• H
4-1
CO
4J
d
cu
CO
CU
IH
a
CU
^1
cu
rH
cfl
^>
cu
1 — 1
43
Cfl
H
d
• rH
-a
CU
4-J
ca
• rH
i— 1
co
IH
0
4-J
O
CO
MH
•
d a)
O J-»
• iH CO
CO Cfl
ca 5
•rH
3 *"O
CU T-l
1 — 1
•a o
d co
cfl
r— 1
co cfl
d a
0 T-l
•iH O
4J -H
cfl d
IH 3
4-1 B
d
cu B
0 0
d M
O MH
0
CD
4-1 4-1
d d
cfl cfl
4J 4-1
3 3
1— 1 r-H
1— 1 r-H
0 0
a OH
CU r-l
43 0
H MH
£
•
•a
cu
i— i
i— i
o
IH
4-1
d
0
o
4-1
0
d
CU
IH
0)
U
co
4-1
d
tO
4-1
3
r— 1
r-H
O
a
MH
0
CO
CU
60
i-l
CO
43
O
CO
• iH
•d
*d
d
cfl
co
d
o
•rH
CD
CO
• •H
B
w
o
^
r-H CU
CU O
•u d
Cfl CU
B M
•r-i cu
X MH
o cu
rH Crf
a.
cfl co
d
'd o
CU i-H
CO i— I
•iH cfl
VH 60
OH
B d
0 0
0 T-l
1— 1
Cfl ^H
0) TH
r-l 43
CO
O
r-H
•r-l O
MH 4-1
-d
d T3
CO CU
rJ 4-1
d
3
• O
co B
a, cfl
B
3 CD
r-H
'd *H
d MH
cfl -d
d
CD Cfl
r-H r-l
1 — 1
•rH B
MH O
T) rH
d MH
Cfl
r-l CU
4-1
O CO
0 43
m o
" efl
OO CU
r— 1 r-H
cu -d
r-l d
CU CO
^
1
CU CO
rH CU
CU r-l
43 0
4-1 Cfl
in o
r^ o
ON O
.— 1 « •
o ^
d o ON
M m — i
0
cu
4-1
cfl
MH
O
co
CD cfl
d S
o
4-1 IH
CU
X 4J
•H cfl
co |5
CU
CO 4-1
cfl co
S cfl
S
60
d T3
•H C
>• to
cu
C •^^
O -> IH
r— 1 CU
MH MH
CU
"d crf
C3 v . .
cfl 60
CU d
60 4-1 T-I
d CO r-H
•rH CO O
rC }f ?"1
O CJ
d T) cu
CU T-l rH
3 i-H
cr o J-"
co 3
cu o
3 r-l 43
T3 CO 4-1
•r-l O.-I-I
CO -rH S
CU 0
rH TH rH
d cu
tH 3 4-1
o B «
MH S
T3
4J CU CU
C 4-J O
CU cfl cfl
E rH MH
CU 0) IH
rH d 3
•rH TH CO
3 0
cr d o
CU T-l 4J
rH
MH T3
rH O CU
CU 60
4-1 d rH
cfl o tfl
S 4-1 43
o
CU IH CD
43 CU TH
H O.T3
Q
cu
43
4-1
•d
d
CO
A
cu
CO
3
MH
cu
rH
•d
CU
r-H
1 — 1
•rH
MH
""d
d
to
r-H
B
0
rH
MH
CO
Cfl
60
MH
o
•
d co
0 rH
•H cfl
4-1 CU
to >*,
^_l
cu m
d cs
CU
60 r-l
cu
B >
3 O
E
•rH S
x E
to o
E ^
• rH
u d
O 3
MH
CO
CU -H
1— 1
-a C
cfl o
4-1 -H
•H 4J
3 cfl
ca IH
cu
cu d
rH CU
CU 60
S
CO
co cfl
d 60
o
•r-l MH
4-1 0
•H
T3- CU
d 4-1
O cfl
O V-i
0
^O
r-^
ON
i — 1
d
•H
^
B ON
•rH r-l
4-1
CO d
CU -H
CU 13-
43 CU
4-1 r-H
r-H
CU TH-
rH MH
cfl T3
d
co cfl
CU r-H
co
cfl co
60 cfl
u
i-H
r-l 4J
•H Cfl
14H ,£
-d 4J
d
cfl CU
r-H 4J
CO
d Cfl
•rH S
co "d
4-1 -H
d r-H
cfl o
4-J CO
3
r-H r-H
r-H CO
0 OH
OHTH
CJ
"o 'd
3
co B
cu
•rH CU
4J ^c3
•H 4J
4J
d B
cfl O
3 VH
O-MH
^e
20
-------
W
^J
fa
o
CO
o ^
d, to
CO C
M O
Q JJ
5 c
O -i-i
co r-
r^ O^
H Z
P M
3^
CM co
fa 3
O
Q
CO M
h-l O
H CO
H ^
z <;
<3 a.
P M
o- u
M
Q Z
£g
H
CO
W
hJ
_j
!_j
M
fa
Q
55
^q
hJ
"o
Z
M
Z
OS
P
W
CO
CO
S
Q
W H
S3 S5
^
O H
Z p
h-l ^4
> 1-5
M O
W 04
W
T3 T3
00000 00
O O O O O O O
o o o o o o o
•**%•%•!•» ^ ^ •* »»
O CS **O CO CO Z Z O O>
vO CM CM O •— 1 CS OO
cs co vo m
t— )
•a T)
0 0
0 0
0 0
O ON
CS 00
vo m
A
,_(
o o o o o
o o o o o
o o o o o o
*> •* •> *> *» ^ ^ ^
O CS vO co co Z Z Z
vO CM CS O -H
CS CO
O s~~
f— H
03 O
v»^
to
to s—. /-v to nj
4) CS CS C ^-^
4-> O O O
n) co z JD CD co
I-H t-i a) a)
3 to to (B T3 73
O CB « U >>•!-!
•H x_/ v-x O J3 l-l
jj 1-1 a) o
M tflOOO >, r-» j3 O 3S
21
-------
>
W
O
3
O x--
frl CO
co C
M O
Q -u
T3 co r~
01 Ho
3 SB -H
C
C»1 r-H
cd O
tfi
cfl
4=
CX
22
-------
^^
T3
>™i
^
H Z
O M
( "]
nJ W
0 H
Oi CO
fa 3
0
O
CO M
H h-1
M O
H CO
M
H ,J
Z <
< PH
^3 K^
ex u
0 Z
w p
H £
H
CO
u
J
^J
H
0
H
(0
Q
O
P3
H
W
SB
,j
«^
to
0
O-i
CO
QJ
»-J
, "]
l-l
fa
O
d
M 0
w ex,
CJ
W
03
O O O
o o o o
o o o o
~ in - o
in « o m m
O ^D vO O> •— 1
r~ CM oo " » OJtflQJCO
^ T3 i^ r— t V^ p, O tfl 60 C O 4-J
W ^ "3 r$ J3 O M ^ cd cO *H O
iJOUUUOMHJgSZfc
23
-------
•o
0)
•a
3
rH
O
B
O
U
DQ
H
CO
O ^
(X ca
co B
M O
Q •!->
2 C
O -rt
CO f~-
H ON
H Z
>H
rJ W
O H
IX CO
Cn S
O
a
CO M
W i-J
M O
EH CO
I—I
H ,J
Z <
M
Q
U H
^
Z &
M _]
> pj
M O
W (X
o
W
OtJ
o
0 0
0 0
« o
o
ON U"l
00 rH O
" -* 0
CM "CO
1 00
1 ^Q
o
lA O
r^ r^
r, CO
CN
rH
O
o
z z °^>
oo
vO
o
0 0
0 0
« o o
0 «0
O^ '^^ ^^
00 i— 1
esi "co
^H i — 1
1
1 1
o
in >£> ON
r*> r** *— i
*\ c^)
CM
. — 1
H Oi
Si e w
U -H M-l 0
i
i— i
• H
M-l
*rj
B
cfl
•— i
01
4-1
ca
CO
3
•a
• H
rH
O
co
i— i
cfl
ex
• H
O
• I-l
B
3
S
^»
,0
vO
ON
• — i
B
•H
K*N<
rH
• rH
01 Cfl
r-l B
J2 O
cfl -i-l
•— 1 4-1
•H Cfl
cfl B
^
CO T3
0)
4-1 4-1
O cfl
C rJ
01
Cfl B
4J 0)
Cfl 60
a
ca
01
CO
•< Cfl
Z O
O T)
•O
B
cfl
i— i
O>
B
60
•r^
CO
0)
-0
rH
I— 1
O>
3
• 01
CO rH
B 60
0 B
•H >H
4-1 CO
CO
M CO
4J
B l-i
Ol O
O M-l
B
O cfl
O 4-1
CO
M-l T3
O
M-l
co o •
O) Ol
60 B 60
B O cfl
Cfl -i-l >-!
la 4-1 Ol
W >
T3 •— I CO
tu o
4-> CXrH
l-i co co
OMB
a. 4-1 o
O) X-i-l
I-l 0) 4-1
C B C
0 0
0)
T3 -d-C
0) Ol 4-1
CO CO
cfl co ca
JD XI 0)
4-}
ca CO CO
01 01 3
4-1 4-l-H
cfl cfl X
E B 0
•H *H V-<
4-1 4-1 G,
co co a.
Ol Ol CO
rH rH >-,
CO Cfli— 1
£j £^ ^^
O O cfl
•H •!-! ,JD
4J 4J O
CO CO M
Z Z CX
• • • •
M M
M
0)
24
-------
M
rH
W
PQ
H
. .
as
o
M
CO
CO
u
CO
M
Q
d
•H
4-J
d
0)
d
o
r-l
^
d
Ol
CU
43
4J
O
4-1
d
13
cu
oo
cfl
43
O
CD
T)
13
Ol
4-1
4-1
• H
0
CU
0)
rH
i— 1
• H
5
4-1
cfl
43
4-1
CO
4-1
d
cfl
4-1
3
rH
rH
O
CX
M-l
O
CO
£3
O
• H
4-1
CO
4-1
d
cu
o
d
o
CJ
cu
r-j
EH
O
CD
0)
o
l-i
3
O
CO
i
M
M
£>
CU
rH
43
Cfl
H
d
rrj
0)
4-1
CO
• H
i — 1
0)
Cfl
rH
Cfl
CO
O
CX
• H
•o
f — s
s
CO
•^.S
0)
4-1
CO
cfl
JE
13
i— 1
O
co
rH
Cfl
CX
•r-l
O
•r-l
r-J
3
g
M-l
O
4-1
i— 1
3
co
0)
r-l
0)
4-1
CO
O
ON
ON
i — 1
00
d
• H
rH
rH
•H
M-l
13
d
tfl
•s
,-^
r**»
I-l
CU
o
o
0)
px»
00
rH
0)
d
0)
r-
4-1
•H
13
d
cfl
4-J
3
O
43
4-J
•r-l
^_,
CU
co
3
U-J
CU
r>
cO
M-l
O
00
d
• H
d
r-l
3
43
CO
CO
rrj
0)
jo
i — i
i — i
• H
*j
CO
4-1
d
cfl
4J
3
i— 1
, — 1
O
CX
1
01
rJ
E
o
V-i
0)
3
13
•H
CO
CU
I-l
M-l
0
00
d
•H
rH
rH
•r-l
M-l
TJ
d
cfl
i — i
13
d
CO
*l
y-^
ta
Q
OS
rH
O>
3
M-l
•o
cu
• H
r-l
Ol
13
0)
CD
3
M-l
0)
V-l
E
O
I-l
M-l
rX,
r-l
Ol
O
CJ
0)
r-l
£>^
00
r-l
01
d
01
*\
Ss
CO
2g
M-l
0
,
rX,
I-l
cu
o
o
O)
r^
OJ
O
r-l
3
O
CD
. .
CO
d
o
• H
4-1
CX
B
CO
co
cfl
00
d
•H
&
o
rH
rH
0
M-l
CU
43
4-1
d
0
13
CU
CO
cfl
43
CO
to
O
ON
ON
i — 1
I-l
0
M-l
CO
d
0
• H
4-1
CO
rH
4-J
d
01
O
d
0
o
4J
d
cfl
4-1
3
, — 1
1— 1
o
CX
M-l
o
d
o
•r-l
4-1
0
01
1— 1
cu
CO
c
•H
0)
43
rH
, — 1
•rH
£t
O
ON
r—l
I-l
CU
4-J
M-l
Cfl
0)
d
• H
i— 1
d
o
cu
B
o
4-1
tfl
4J
CO
1-1
O
4J
CO
r-l
0)
d
•H
O
d
•r-l
rH
CO
CX
•H
CJ
• H
C
3
e
cu
co
o
43
4-1
jx,
rH
d
0 '
d
- o
0 -r-l
ON 4J
ON Cfl
rH VH
0)
d cx
M O
9
CU
43
4-1
B
o
r-l
M-l
0)
CO
o
43
4-1
CO
cfl
CU
cfl
CD
CU
43
4J
01
43
rH
rH
•H
£p
o
ON
ON
1 — 1
d
• r-l
CO
I-l
O
4-1
Cfl
rH
cu
d
•H
O
d
•H
i — 1
Cfl
cx
• H
CJ
•H
d
3
E
B
o
M
M-l
co
d
o
• H
co
co
•H
W
•
co
cfl
^-\
CO
CO
cU
CJ
o
CX
d
•rH
4-J
I-l
CO
^
*,
CU •
4-J CO
Cfl d
U 0
00-r-l
CO
00 CO
d -.-i
•rH B
rH CU
rH
OJ 4J
> 0
tfl 0)
rH M-l
4J M-l
CO
*
^~l t *
cfl O
13 d
r-l I—I
CU ' — 1
CX -H
£f.
co
d rX|
0 rH
4-1 01
>
0 0
o o
CO CU
N— X J-,
I-l EX,
O 00
4-1 U
CO O)
rj d
01 w
d
•H
O •
d ^
• H r-~
ON
< -I
,
0) rH 43
d o
•H CX 4-1
o cu
d 01 co
•r-l CO
O co
rH 43 Cfl
Cfl 4-1
CX
•H r-l r-l
O O O1
• r-l M-l 4-1
d co
3 4J S
E cx o)
CU 4-J
E o co
O X CO
l-i cu 5
M-l
^ rJ
rJ > O
CU 4-1
4-1 0) tfl
CO rH r-l
Jt 43 Ol
cu co d
4-1 H -H
CO -~s O
cfl d
2s m -H
[-^
d ON r-i
•H rH O
M-l
CD I-l
COW
o M-I d
•H O
4-1 TJ -H
tfl qj 4J
r-l 4-1 Cfl
4-1 CO 4-1
d -H -H
0) rH E
O -H
d OJ rH
O CO
0 O 4-)
-C £
4-1 4-1 O>
d 3
CO CO i— 1
4-1 Cfl M-l
3 <4-i
rH CU CU
rH B
o ca o
PJ CO 4J
•
co
cu .c
| .H
co S
CU cfl
43 CU
4-1 X-N O
3 C
E S «
O -r-l
r-l U~l rH
M-l . CX
r~> B
o) o
CD - O
o in
43 =S= d
4-1 -H •
r-l CD
CO CU O> 4J
Cfl rH 43 d
•H CO
0) O ' — ' ' — *
B 43 rH CXl
CO -H
CO r-l DS P
CU CU
CU ^i 43 2f
43 O O O
4-1 4-J -H O(
CO 43
0) 2t TJ
43 - Ol
13 CO rJ
rH Cfl d -rJ
rH O O [X4
• H i— 1 -i-l |
2S CD rH
4-1 CO Cfl
o d T-I o
ON cU g CJ)
ON o O>
rH r-l rJ
cu cu o
d CX 4J M-l
•H cfl
O rH CO
pL4 QO 3 "^
O 0 M
Pi - -H cfl
O 4J TD
13 CN rJ d
d • " Cfl CO
CO o CX 4J
00 CO
rH I-l
CO 4J O CU
O tfl M-l o
0 d
En 4J cfl
OOQ 0. 6
d a! 01 r-i
•rH | O O
M rH X M-l
•rl CO CU r-l
M-l O 0)
O O 1 — CM
cj ^ r-^
ON Ol
6 4J -H O
O d rH
l-i CO d 3
M-l rH -H O
CX CO
CO 13
d l-i 0) SB
O CU r-l CU
•rH 2S O Z
CO O 4-1
CO CX -H OO
•rH d r"--
B < o ON
W M B — 1
•
co
CD d
d o
O 'r-l
•H CO
4-1 CO
•rH -H
13 E
d o)
o
CJ 01
43
P 4-1
cfl
rH CU
•rH 4J
d 3
•H 4J
CO -rH
4-1
r-l CO
a> d
13 O
d cj
3
fcl
00 Q
d OS
• H
4-1 13
co d
rH Cfl
a>
CX rH
O cfl
o
4-1 CJ
• rH
d u-i
3 0
cu oo •
B d d
CO -H O
CO rH -H
•H 4J
0) M-l CJ
43 O cfl
4-1 CJ I-l
M-l
B oo
0 d Cu
I-l -rH Q
M-l rH OS
3
co 13 01
C 43
O 13 4-1
•rH d
CO cfl o
CO 4-J
•r-l d
B 0 cu
01 -H rH
4-1 43
d co co
•H 3 4-1
_ fl — 3
co B 43
0) O -H
0 0 rH
d 4J
Ol rH 4J
rH CO CfJ
0) O
M-l O 0)
r^j tj
•H 00 cfl
13 d
•rH 4-1
0) rH Cfl
43 3 43
H 13 4-1
0
25
-------
§
4-1
0)
•r-l
l-l
O>
4-1
Cfl
43
4-1
Q
-o
a
ca
l — i
cfl
0
^-x
T3
01
13
3
r— 1
O
a
o
u
N^ /
M
M
£>
W
h-3
M
•^J
H
• •
a
o
M
CO
CO
J 1
o
CO
r-l
Q
O
4-1
0
60
C
•H
rs-|
•r-l
4-1
O
O
B
o
1^1
4-1
l-l
01
4-1
CO
^
0)
4J
CD
cfl
^
C
• i-l
CO
4J
C
cfl
4-)
3
i — i
r— l
0
CX
0)
43
4-)
•s
o
CT»
C7>
r— 1
C
r-l
ator wastewater except
i-i
o>
C3
>r^
O
c
•r-l
r— 1
CO
CX
•l-l
O
•H
C
3
B
C
•r-l
01
CO
O
43
4-1
CO
CO
Ol
B
cfl
co
Ol
43
4-1
Ol
43
i — l
i — l
•r-l
^
C
o
• H
4-1
O
CO
4-1
Pn
Q
eel
Oi
r!
4-1
Pn
Q
<&
4-1
O
C
0
•r-l
4-1
CO
l-l
CO
CX
0)
1^1
cx
60
C
•r-l
l-l
3
13
T)
01
£>
O
B
Ol
V4
CD
r— 1
CO
4-1
0)
B
4-1
O
co
13
C
3
O
CX
E
o
o
4-1
o
01
0
(3
01
CO
43
cfl
01
43
4J
v^
O
4-1
CO
cfl
o
1 — 1
C3
•r-l
0)
cfl
CO
Ol
43
4-1
O>
43
r— 1
r-l
•r-l
^
£g
CO
S
T3
Q)
i— I
i — l
•H
"4-1
""O
C3
cfl
r— l
B
0
i-i
4-1
01
4J
Cfl
43
O
CO
0)
,— i
I-i
O
4-1
CO
Ol
the ranges of concen-
4-1
O
0)
r— 1
4-1
0)
l-l
t**t
1— 1
43
Cfl
43
O
|^
CX
S-)
O)
4-1
4-1
cfl
r— 1
Ol
43
4-1
CO
cO
43
O
3
E
CO
cfl
C
• H
60 m
C
CO
I-i
(3
0
• r-l
4J
Cfl
l-l
4-1
C
0)
o
c
o
0
0)
43
H
f^
CT*
• — l
C
13
01
4-1
M
O
CX
0)
0)
co
O
43
4-1
t
co
,—1
r— i
• H
4-1
T3
C
CO
1 1
^
0)
c
CO
CO
i — i
r— (
Ol
5
CO
cfl
13
r— 1
O
B
o
ij
4-1
Ol
4-1
CO
43
O
CO
0)
,— I
c
•r-l
CO
C
0
•r-l
4-1
Cfl
l-l
4-1
C
•r-l
4-1
O
0)
co
o
cx
CO
• H
0)
l-l
cfl
4-1
cfl
43
4-1
j>^
^i
0)
^
0
o
Ol
^_i
0)
o
^
3
0
co
0)
l-l
B
o
M
4-1
CO
0)
3
13
•r-l
CO
Ol
l-l
0)
43
4-1
4-1
O
CO
C
O
4-1
• r-l
CO
0
CX
B
o
o
0)
43
H
illed directly, and
4-1
13
C
cfl
r—l
CO
• H
4-1
CO
43
4-1
rs
CO
S
4-1
O
C
o
•r-l
4-1
• l-l
CO
0
CX
B
o
u
0)
43
4_>
B
0
4-1
^_l
0)
4-1
4-1
•H
"0
, — t
r— 1
•H
Ss
CO
, — i
i— i
• r-l
4-1
13
C
Cfl
r— 1
from these materials
13
0)
^
• H
|^l
0)
13
Ol
l-i
cfl
4-1
Cfl
43
4J
CO
0)
4J
Cfl
43
O
cfl
0)
i — i
(1)
43
4-1
4-1
O
co
O
• i-l
4-1
CO
• H
l-l
0)
4J
O
Cfl
l-l
CO
43
O
O)
43
4J
01
l-l
o
4-1
0)
l-l
01
43
4-1
.
I-l
0)
4-1
4-1
• H
13
O
CO
r— i
CO
i— l
r— 1
•r-l
3
ery residue provides an
on.
> -H
O CO
U CD
0) 3
)-i U
CO
Ol -r-l
U T)
3 I-i
0 0
CO 4-1
0)
t j PQ
13 X
0) -H
r-l 13
r-l 13
•r-l O)
4-1 CX
13 CX
C <
CO
r— l 0)
01
E co
0
4-1 .
^
O) 4-1
4-1 -r-1
CO r—l
43 cfl
0 3
CO O*
0)
i— 1 Ol
4J
4-1 cfl
O 43
O
60 cfl
C3 01
•H i—4
1 — 1
O) 4-4
T3 0
O
B C
o
B -^
3 4-1
•r-l Cfl
r-l B
43 -H
•H X
r-l O
•r-l l-l
3 CX
cr cx
W cfl
26
-------
WASTE
WATER
(ppm)
* § £
in w >.
W ^
in 4-1 in
<5 IH CM
o
m o\ m
o
O||
•H 8 c
ft -
ON i-» •<->
OH
i-) m ON
OS
O'n^OOOOOOOOOcMtNiH
g '
O i-i
RECE
s
*-«U
27
-------
Id l/l
'S
U
s
u w
H U
i£
u
in oi
.
1
1
tu
S
ENERGY RECOVI
b.
O
d
b.
3
1
i
'
*fe
S'
d
I-T3
W P£
P U
ll
1
W 1
O H
< UD
S W
B
•1.2
3
u"
3
IS'
ls^
gi;
H « J
L15~
i
0 |
RECEIVI
)IOM/POL
?
3
f
X
1
a
el
2
3
H
B
>i
=
a
H
1
S
r-- CO M O
in M ;i^i
• aa • .^H -zK^azKio
cr
p. D. O O ""> " O
rs.csi.gi 1 IM r*f>
Oil tMinHIO ||IO
•* v "^ N f*l
•a
as i § -s i s Is 1
re 3 9 -S ^ ^ ud^mgoi
tri i-t -H M fi * » vQaivS'-'
C B " 0 o S.d-oawj<<3-H« u
rf ^ H H C ao a EC a o *j 13 <« B
juuooOMHjSszt^wtntsi
*
o
s,
c
10
c
o
fl
s
8
5
O
c
(U
a
s
S
g
(U
1 •
sS
ij S
0 8
CO M
Sis!
•a
1*
s?
II
5'
»-(
•2S
i:
si
s «
.3
1-s
•J !
O O
Is
J3
r ^
X
Re f erenct
*-'
-H
•H
g
S
4J
1
h
1
a
b
T>
9
S
I
1
X
S M 3
ill
8^ §
»-s,
•ss s
iw iH ~"
8 S-S
u" S
C M 3
S £-
o. w g
n T3 a
V M tl
3 a
1? S
,2-a
3 «3
«'S I
%°t
to tJ
o a* o
TO 01 4-1
U 0 D
•a 3 .a
R" "
28 "
CZ-S
°SS
•a r- »
Oi a.
ea H"
C
In to c
a 3 at
O U to
a. G*v
B « M
3 *-•
« ^-v
« rH q
< ™ 0
01 -a — ,
" § 5
^o"
1 «-!
SSI
§S2
SK ss
-" »
O -H
"^fe
« S
?25
31-
U 01
SH
01 J= >
C 00
^11
•rt^~' f
a o F
D] IN
g g __•
C (0
14 T3 U
•H e a
Q * £
y a >
3
0
M
g
8
_o
PA Incinerator; emiss
: 0.1Z.
S *
3 Q
•s ^
t B •
s s a
* § ,
to U U
fi M S
« 5 «
a 1 S
s
g
5
3
b
4)
!
M
|
ffl
5
|
U
2
* S
S I
a
S
I
I
s
g
U
s
a)
U-l
a
3
01
^
s
•H
a
g
w
a
4J
J
5"
S
£
U-l
flj
(2
|
o
a
4J
£
ard for incinerator (
•a
3
te
,>>
a
O"
3
o
F"
3
rence
0)
I c
i:
o
•
o »*
. 0
w
5i i
ard for incinerator <
I
«
>-,
I
3
o
(L,
the New Source Performance Standard for Coal-Fired Power Plants of 0.1 pour
ppendix A.
5*
B
•H
iS
; s
; *l
r u
"" a
5 S
1 S
S 1
8 S
J 01
! 1
^ X Q
3 3
1 Su
sl
«
Is
S 3
a a
^ 2
££
H£
n
^£
§*>
O
m ^i S u
rH rH iH «
BU
fl
S 8 §1
to to a -H
«S »S "fl tl
j a is.
28
-------
h-l
h-l
M
J>
W
^
m
H
• •
^5
o
H
C/j
C/J
D
0
C/J
M
O
er the environment in 1990 as the
4-1
(3
CU
i — i
i — i
• H
3
4-1
Cfl
J3
4J
TO
4-J
C
cfl
4-1
3
i— i
r—l
O
cx
4-4
0
co
0)
•i-4
4-1
•H
4-1
C
cfl
3
cr
•o
0)
4-J
o
01
•I—I
o
^
cx
cu
pH
urce recovery is not implemented, are
o
TO
01
r-l
4-1
•H
A
O
ON
1 — 1
B
• r-i
i— i
cfl
TO
O
CX
CO
• -t
13
0)
4-1
TO
cfl
5
13
• H
•— 1
O
TO
1—4
CO
CX
• H
O
• H
£3
3
B
O
4-J
i— 1
3
TO
01
I-l
1
0>
O
co
r-l
Cfl
CO
O
cx
CD
• H
13
O
ON
ON
i — i
CU
4-1
M-l
0
TO
• r-l
TO
Cfl
43
CU
4J
c
O
13
0)
4-1
to
1— 1
3
0
i— 1
tO
o
cu
i-i
cu
3
TO
CU
TO
TO
CO
B
4-1
C
cfl
4-1
3
r-l
l — 1
O
PH
.
h-l
h-l
h-l
^>
01
i— 1
fi
cfl
H
(3
•rH
C
O)
^
• i-4
60
concentrations and emission factors
4-1
(3
CO
4-1
3
1— 1
r-4
O
cx
cu
43
4-1
•»
^^
h-l
M
Ol
i— 1
43
CO
H
\^S
r>^
V-i
QJ
^
o
o
cu
i-i
0)
o
r^
3
0
TO
CU
V4
4-J
3
O
43
4-1
•H
3
O
• i-4
r4
cfl
C
of landfill leachate in 1990. Calcula-
cu
e
3
i— l
O
13
CU
4J
U
cu
•1 — )
0
I-l
cx
(U
f~;
4O
T3
C
Cfl
f\
s-\
M
M
^»
CU
1 — 1
43
Cfl
H
^^ /
O
ON
ON
i— l
l-i
O
4-1
-a
CU
4-1
U
0)
• i— i
o
^
CX
• •
TO
c
o
• 1-4
4-1
CX
B
3
TO
TO
CO
60
(3
•H
[J
O
I— 1
1—4
O
M-l
CU
43
4-1
(3
o
T3
CU
TO
CO
43
01
r4
CU
3
CD
C
O
• i-4
4-J
60
C
• H
(3
3
43
CO
TO
CO
B
43
M-l
0
13
0)
TO
O
CX
TO
13
0)
43
r-l
l— 1
• H
CU
4-1
CO
cfl
^
-a
• H
i— 1
0
TO
i— 1
cfl
CX
•H
0
• H
C
3
6
4-1
0
TO
C
o
4-1
c
0
• H
r— 1
1 — 1
•H
S
O
r—H
«
O
ON
ON
t— i
C
h-l
9
•
13
0)
r-4
i— 1
•f-4
4-1
T3
C
CO
r— l
cu
43
r— i
r-i
• H
3
CO
C
0
4-1
C
0
1— 1
1 — 1
• r4
B
r^~
oo
! 1
13
C
cfl
listed in Table VII are represen-
in 1990.
TO
I-l CU
0 4-1
4-1 TO
O Cfl
Cfl 3
4-1
T3
C -H
O r-l
•r-l O
TO TO
TO
•H i— 1
B to
cu cx
•H
T) CJ
(3 -H
CO (3
3
TO B
(3
o B
•i-4 O
4-J ^
Cfl <4-l
I-l
4-1 TO
C 4-1
Ol (3
O CO
C 4-1
0 3
O r-l
i—l
4-1 0
C CX
Cfl
4J I-l
3 0
r-l M-l
1— 1
O 01
CX >
• H
CU 4-1
43 CO
H 4-1
0
0)
43
i — l
i— 1
• H
3
in
ON
1 — 1
(3
• i-4
4-1
to
43
4-1
0
4-1
cu
• H
4-1
Cfl
r-4
01
I-l
O
ON
ON
C3
cfl
0)
rJ
cfl
0)
43
4-1
«t
.
0)
• i-4
N^^
cfl
CU
to
1 — 1
1— 1
• H
4-4
13
C3
CO
r-4
C
•r-l
CU
TO
Cfl
CU
!_i
O
C
•i-l
CU
0
required for disposal of municipal
^>
4-J
• r-l •
O ^
cfl X
CXX!
cfl
0 (U
i— l
r-l 43
r-l Cfl
•i-l H
4-4 *^
T3
S3 CU
cfl 3
r-l T3
• H
C CD
•i-l CU
I-l
cu
TO t-J
CO O
01 4-1
IJ to
0 r4
(3 CU
•H C
• H
CU O
43 C
4-1 -r4
0 13
u c
cfl
r-4
Cfl O)
(3 4-1
O TO
•H Cfl
4J 3
I-l
0 13
CX-H
O r-l
*-i O
CX TO
es in 1990. (See Appendix A, Equation
i-i
o
CO
O
o
o
*
o
0
vC
4-1
3
O
43
CO
CU
43
i— 1
i — i
• r4
3 *~^
cfl C3
CU O
M -r-l
CO 4-1
cfl
r-4 •— 1
rH 3
•H O
4-1 r-l
13 CO
C 0
Cfl
r— 1 r4
O
r-4 M-l
Cfl
CX43
•H <]-
0 1
•H h-l
C n
3 l 1
s >
£
CU
cu
CO
^^
.
o
o
ON
»— 1
c
•H
TO
C
0
1 — 1
1 — 1
CB
60
C
O
T-t
i— l
i— i
•H
43
00
0
1 — 1
0
4-1
s-**
4-1 .
C C
3 0
O -H
B 4J
CB CB
r-i
1-1 3
r-l 0
•H i— 1
3 tfl
U
TO
i— 1 M
rH 0
•H 4-1
4-4
13 0
C
CX
•H (3
o o
•H >H
(3 4-1
3 CO
E 3
cr
B w
o
i-i n
4-1 <$
OJ X
4-1 -H
CO T3
43 (3
O CU
tO CX
o) ex
rJ <
9
01
43
4-1
CO
43
4-1
.
coo
CUON
•H ON
J-> C
C-r-l
cfl
3T3
crcu
CU-H
4-114-1
CJT3
01 C
"~)Cfl
Or-l
1-J
CXO1
43
0)
4-1 1— I
• H
0) 4J
co co
(X
CU CU
VJ 4-1
co
(0 CO
cu 3
CD
CflTJ
60 H
1— I
<-< O
i— I CO
• 1-1
<4-lr-4
13 CO
C CX
tO • i-l
i-l O
• H
e c
O 3
M E
U-J
cu
CO 43
4-1 4-1
C
cfl B
4-J O
3 M
1-114-1
i— l
O— i
CXON
ON
CO-i-t
0>
•H13
4-1 CU
•H O
4-1 3
Ci3
cfl O
3 l-i
o-cx
29
-------
0) r-l
O! 3 CU
X5 r-l JJ
U-l co
r^ 3
r-l T3
•r-l d X!
3 tfl 4J
•r-l
0*3
C^ 60
o d o)
r— 1 •!-! 4J
>. co
d cu co
•i-l > 3
d
cu o -d
4J O -i-l
CO r-l
cfl XI O
3 co co
cfl
T) r-l
•I-l rV, Cfl
r-l r-l ft
O 4-1 -i-l
CO O
« -r-l
^•N
T3
01
•a
3
i— i
O
d
o
U
\_x
M
1— 1
M
>
U
r-J
M
<
H
• •
Z
0
M
W
CO
o
u
w
M
Q
r-l 60 d
cfl d 3
a.-1-i e
•^ JS
O O U-l
• H d o
d rj x:
4-J 4-1
CO rJ
3 0> •>
CU 4-1 .
4J CO CU
co 3 •
co -,-1
3 o>
XI 1
U-l 4-1 |
o
O 60
>, -u d
4-1 -r-l
•i-l 4J XI •
4-1 d Xl 60
d o> 3 d
Cfl r-l rJ -H
3 CO 0 r-l
a4 > co o
•H >,
0) 3 CO O
4- cr eo cu
H 0) 60 rJ
r-l
CO
a,
• I-l
o
•H
d
3
E
T)
a) •
i— 1 CO
r-l rJ
•i-l Cfl
U-l CU
"O >i
cfl m
r-l CN
E r4
O 0)
^ F>
U-l O
co E
01 M
CO O
Cfl U-l
60-1-1
d
U-l 3
o
cu
d xi
0
•I-l r-l
4J r-l
CO -r^
rJ 3
0)
d d
0) O
M-r-l
4J
S cfl
3 rJ
E 01
•H d
!*! CU
cfl 60
B
CO
rJ CO
O 60
U-l
U-4
0) O
I—I
rO 0>
Cfl 4J
4J Cfl
•i-l M
CO CU
X!
0) 4J
X)
T3
r-l (J
r-l Cfl
• I-l
3 -
O)
CO 4J
d CO
O Cfl
•i-i 3
4J
•r-l -O
T3 -1-1
d r-l
0 0
U CO
30
-------
W
PQ
H
W
H
CO
3
O
O
co
PH
M
O >H
M 06
Z W
S O
O
fa M
O Oi
>-J U
< CJ
co oi
O ED
PH O
CO CO
M W
Q M
S fa
o o
fV[ ^^
o
^ M
co H
C <
O H
C 33
•r-l W
PH
co 33
H M
Ss
ED O
iJ EC
hJ H
O M
PH 3
fa O
O O^
CO ^H
W
M Z
H
Z
o-
o
H
U
o
PH
h-3
^
H
O
H
CO
O
0
PC
H
w
33
CO
o
PH
CO
M
Q
XI
i_j
I |
fa
«
Z
|_J
O
Z
1 1
Z
Pi
^
PQ
CO
CO
^J
53
"ir
t%
t— i
a H
H Z
3& <
H
Z h4
M tJ
> O
M PH
W
U
U
OA
O O O
m m in
•-HP-) O T3 T3
« •> - O O
O r^ O O r- O O
OO— i— 'OmrOOO
O —t O -
^H »i i o i i m oo
in o — i -J- o
^H O O CN o ov r--
o in m "
t*^ ^cf in •— i
in m »
oo
r— t
O O
o o
0 0
m oo
co ca
i— ' >H CU cu
3 co to n) T3 73
0 CO CB 0 >, -r-l
•H > — v_^ O XI l-i
4-1 1H CU O
M cOOOO >% I-H J3 O EC
31
-------
0>
3
C
C
o
u
w
•J
PQ
W
H
CO
-J
o
CO
0
S O
o
i-J W
•< 0
CO (A
o o
PM O
CO CO
M [jj
O erf
o o
c£
pt^ p^
O
/-v M
CA H
O H
W Z
•r< td
CO S
H M
££
cu 3
frj ^^
O ON
CO -H
W
M Z
H M
H
Z
O1
Q
W
H
U
^
£H
O
H
CO
Q
O
D3
H
DISPOE
_J
M
EIJ
a
z
"
o
z
M
z
erf
M
CO
CO
M
a H
H
^j) £D
Z h4
M |J
> O
W
CJ
H
0 0
o o o
CN CO O ••^ "—< O ON 10 O ON O O
"-H "") vo 1 —i 5 | I ro
v£) -H CSI
— i O O O
O vO vO
ON ON
0 0
o\ o o
f^ p^ LPt
tO CS| ^H
i— I lO vO I i— ( ) 1 1 CO
vO •— I CS
-HO O O
^^ ^o ^o
01
u
H
<; B 01 01
SB 01 B 3 » w
W C S 3 •'-' -H h -O (0 (3 1-1 £ 4.)
O *H 3 -H ^ B ^ '^ QJ CQ O p, CQ
MJSs££coN
CO
32
-------
T3
0)
3
C
•r-l
4-1
C
o
CJ
w
H
CO
o
CO
CM
M
CJ >H
M OA
Z W
D >
S O
u
fa u
o cfi
tJ W
-fl W
U CM
iJ co S
PQ H M
^ SB
& o
nJ PC
J H
O M
fa O
O O°*
CJN
CO -H
w
M Z
H M
o-
Q
W
H
O
w
o
tti
CM
H
0
H
1ETHOD3
DISPOSAL I
LANDFILLb
f
z
£3
DQ
CO
CO
NG MEDIUM/
LUTANT
M »J
> O
M CM
W
CJ
w
00 00
o o o o
o o o o
m o o in o
— i r>. in •— i
*o in oo o •— i m
-H I I in oo o •* i i PO I
LO ^D LO r^^ ^«o
o m • o r-~ o
m in oo vo CM m
O CM CM VO O
«CM <)• r~
CM ^H
0
O
vo<3^mooin' — i<3<3m<3
in so oo ^^ ^o
CM
O O O O O
o o o o o
o o o o o
mo o o m o
O *3" *""* O r^ co co o
r^ co "~H -HO) -H
f_i 3 a >H -i-l |j CD C •— i co
^•H-HV-lBcU " CUcOCDCO
hJ
33
-------
•o
(U
TJ
3
i—i
O
d
o
u
W
H
CO
-H PL)
^ rJ
U CL,
rJ CO S3
QQ H M
< Z
H < H
H S3
S3 O
rJ SS
rH H
O M
PL, 3
fa O
O ON
O>
CO rH
U
M Z
H M
cx
H
U
U
3
cd
a,
H-3
KH
M 0
W O-i
CJ)
s
O O
0 0
0 0
0 0
r^ O
•« o
CO -H O
o
1 1 "
CSI
O — i 00
o m
ro >*
u-i
^H
0
0
< < 0
z z
O LO CN
PO 9)
T3
0)
r-l r-l
XI rH
CO 0)
H 3
v^^
0)
CO r-l
d 60
o d .
•r-l .H 0)
4-1 tO M
Cfl Cfl
rJ Cfl (-1
4J (U
d rJ >
0) O cfl
O U-l
d rH
O Cfl Cfl
0 4-1 C
Cfl O
U-l -O ' i-l
O 4J
14-1 Cfl
co o d
0)
60 C 0)
d o jd
Cfl -r-l 4-1
U 4-1
CO CO
T3 rH 0)
oi o 4J
4-J Q, CO
rJ CO B
O (-1 -H
O. 4-1 X
0) X O
w CJ ^J
a,
d d a,
O O cfl
-a -a >-,
CU 0) rH
CO CO XI
cfl cfl to
Xi XI Xi
O
CO CO rJ
ai QJ ex
4-1 4-1
cfl co •«
BE-—
• H -i-i r-~
4-1 4-J —1
CO tfl
(1) D Q)
O
rH rH d
CO cfl (U
d d i-i
O O 0)
•H -H U-l
4-1 4J CU
CO CO Cd
z z ^
• • • •
M M
1— 1
£1
•
(U
, 1
X)
cfl
rH
• H
Cfl
>
cfl
4J
0
d
cfl
4-1
<0
Q
* •
<;
z
o
•
o
0\
ON
1 — 1
d
•H
•a
0)
rH
rH
• H
U-l
"O
d
Cfl
rH
0)
4J
X
Cfl
3
-o
•H
, — 1
O
CO
rH
Cfl
(X
•H
O
•H
d
3
E
>,
Xi
^H
o
ON
i-H
d
•H
>-,
rH
I — 1
CO
d
o
•H
4-J
CO
d
-o
0)
4-1
CO
lj
CU
d
CU
00
CO
-, 0)
0) 4-1
> co
d 3
o
U CO
OJ
X! B
CO 3
cfl to
to
>> co
rH ^.^
U-l
CU
" 4-1
60 CO
d co
•^ 3
X!
O T5
d -H
CU rH
3 0
a" co
CU rH
3 cfl
-o a.
•r-l -r-l
CO O
0) -H
r-l d
r-l B
0
U-l T3
CU
CU 4-1
ca co
3 r-l
CU
r-l d
CU -H
4-J 0
cfl d
3 •*
CU
34
-------
X
r— 1
W
PP
H
S3
0
IH
CO
CO
£3
0
C/1
I—I
o
tities of pollutants that will enter the environ-
ed
CO
3
cr
T3
0)
4-1
O
0)
•>— 1
o
IH
ex
0)
42
4-1
*o
CD
4-1
co
•rH
i — 1
OJ
IH
cd
X
M
0)
r— 1
43
CO
H
C
r— 1
disposal in 1990 by mass burning, landfill,
*o
• H
r— 1
0
co
r-H
CO
CX
T-l
O
• rH
C
3
B
MH
O
4-1
r-H
•~J
CO
OJ
1-1
0)
42
4-1
CO
cfl
ty
o
ON
ON
r— 1
£2
• H
4J
(2
0)
B
calculated on the basis of the 1990 disposal
0)
j_i
0)
3
co
0)
co
CO
CO
B
4-1
C
Cfl
4J
3
r— 1
r-H
O
P-.
•
^-,
|H
Ol
^
O
o
O)
IH
0)
O
l-i
3
0
CD
CU
^_l
T3
C
cfl
e II), the pollutant concentrations and emission
r— 1
fN
CO
H
\^.S
>•*
V*l
U
IH
3
O
co
at
i^
CO
01
T3
3
r-H
O
C
•rH
4J
CO
42
4J
O
•iH
JH
Cfl
e
Ol
CJ
CO
e projected volume of landfill leachate in 1990.
42
4-1
13
C
cfl
n
s —
r-l
h-l
£>
01
r—l
43
Cfl
H
S f
O
C.T«
C^
1—1
M
0
MH
T3
0)
4-1
O
Ol
O
IH
CO
IH
0
4-J
O
cfl
M-l
ptions :
B
3
CO
CO
cfl
too
C
•H
is
o
r-H
r-H
O
MH
O)
42
4-1
(3
O
'O
O)
CD
CO
43
0)
IH
CD
IS
CD
C
O
•rH
4-1
cfl
r— 1
3
O
r-H
CO
CJ
of 50 large scale resource recovery facilities,
s of municipal solid waste daily with a total
4-1
(-J
0)
r — 1
Cfl
>
•H
3
C
0
1 i
o
o
o
CM
cr MH
0)
0)
42
4J
a)
43
r-l
r-H
•rH
JJ
OJ
IH
0)
43
4-1
«\
O
ON
ON
i — i
(2
0
o
0)
too
CO
JH
01
>
CO
(2
cfl
too
C2
•rH
co
co
CU
0
o
rH
•
co
C
O
4-1
c
o
•r4
i — 1
r-H
• H
E
O
CO
MH
O
r*">
4-1
•r-l
O
CB
ex
CO
CJ
(X r-H
42
CJ
cfl
01
CO
3
c
c
CO
es will treat the municipal solid waste by
f refuse-derived fuel (RDF), ferrous metals,
•H
4-1
•r-l
r— 1
•r-l
0
cfl
<4H
r>^
IH
Ol
r>
0
o
0)
IH
0)
0
IH
3
O
CO
01
IH
O)
42
4-J
MH
O
MH
r-H
CO
32
0
O
C
0
•H
4-1
cfl
!_!
cfl
CX
0)
CD
42
4_J
•H
£j
too
C
•H
CO
co
Ol
o
o
^1
CX
r^J
pj
Ol
1
4-J
C
0
^1
MH
CD
• H
CD
CO
43
Ol
42
4-1
C2
O
O
•r-l
4-1
cfl
IH
O
00
O
CN
cfl
4-1
cfl
r— 1
Cfl
O
O
4-1
•rH
3
T3
01
IH
•H
MH
O
0
0)
43
r— 1
r-H
•H
3
pn
o
0)
42
H
.
co
co
cfl
r — 1
&0
T3
C
cfl
A
B
c
• H
S
3
r— 1
CO
es will handle the municipal solid waste by mass
quent recovery of ferrous metals, aluminum, and
•
^~.
IH
0)
r— 1
•H
0
43
O
4-1
4-1
3
ex
C2
•H
4-J
cfl
O)
42
<4_l
0
• H
4-1
N
IH
0)
*>
O
O
0)
^.1
O)
0
IH
3
0
CO
01
1-1
0>
42
4-J
M-t
0
M-l
r— (
CO
P3
£
01
CO
43
3
co
13
C
CO
*>*i
IH
0)
j>
O
o •
Ol 0)
>H 3
T3
too co
IH 01
0) IH
C
Ol CD
42
42 J-l
4-1
•H a
S 0
IH
toOMH
(2
•H CO
C co
IH CO
3 r-H
43 60
01
43
•r-l
IS
CO
42
co
o>
4-1 C
C -H
CO
3 T3
cr 01
r-H
T3 r-H
CU -H
4-1 MH
o -o
Ol C
•r-l Cfl
O r-H
IH
ex 01
01
4J IS
C
01 4-1
CO CO
0) 42
,-1 4-1
0) 0)
M 4-1
co
co co
•H T3
4J 0)
•H O
4-1 3
C 13
CO O
3 M
O" 0,
*
35
-------
13
Ol
3
d
• iH
4-1
d
o
0
**-S
X
M
u
rJ
M
<
EH
. .
a
o
M
01
C/>
C3
U
CO
h-4
Q
>s
43
4-1
0
13
Ol
CO
o
ex
CO
• H
13
0)
43
i— 1
rH
• i-4
3
0)
4J
CO
cfl
3
13
•H
i — 1
O
CO
rH
cfl
CX
•r4
O
• H
d
3
B
n
0
Os
OS
rH
d
M
^^
CO
d
0
4-1
d
o
•r-l
rH
i— 1
• H
B
o
• — i
x^ /
4J
d
CU
CJ
r-l
0)
ex
U~l
. .
d
o
• H
4J
CO
M
Ol
d
• H
O
d
M
o
^— x
CO
d
o
4-1
d
o
•H
i— 1
! 1
•r-l
B
|-~
m
i — i
x«/
4-1
d
0)
o
r4
Ol
cx
o
CO
..
1—4
i— 1
• r-l
4-1
13
d
CO
rJ
O
S~^
CO
d
0
u
d
o
•H
rH
i— 1
•r4
B
m
-H
4J
d
O)
0
rJ
01
cx
U-l
.
l-~
60
T-l
co
to
CU
o
o
rJ
CX
T)
d
Ol
1
4J
d
0
M
4-1
42
4-1
• H
3
>s
I-l
01
>
O
o
O)
Vj
Ol
0
I-l
3
0
CO
Ol
PH
0
co
d
o
4-1
d
o
•r-l
i— 1
i— 1
•H
e
m
• — i
4-1
d
Ol
CJ
I-l
O)
cx
U~l
.
r—
60
d
• H
d
r4
3
43
CO
co
cfl
B
42
4J
• H
3
>s
rJ
O)
>
0
o
01
I-l
Ol
CJ
M
3
O
CO
Ol
M
o
listed in Table VII are representa-
1990.
co d
r-l -H
O
4J CU
CJ 4J
CO CO
4-1 CO
3
d
O T3
• I-l -1-1
CO r-4
to o
•r-l CO
B
0) rH
CO
13 CX
d -H
cfl o
• i-4
co d
d 3
0 B
• r4
4J B
CO O
U r-l
4J 4-1
d
CU CO
O 4-1
d d
O cfl
O 4J
3
d r-l
0 rH
•r-l O
4J CX
3
rH h
rH 0
O 4-1
CX
01
01 >
42 -r-l
H 4J
(See Appendix A, Equation IX-8b for
relative to that of 1975 will be
O cfl
OS 0)
Os I-i
rH Cfl
d rH
•H •— 1
• iH
en 4H
0) 'O
r4 d
0 Cfl
Cfl i— 1
o d
0 T-l
o
« 0)
r~ co
O tfl
LTl CU
r4
4-1 0
3 d
O T-l
43
cfl Ol
42
Ol 4-1
43
*i
rH •
rH 0)
•1-1 .
3 -H
Cfl r,
Ol ^^
i-i d
to o
• iH
rH 4J
rH CO
•r-l rH
4-1 3
13 O
d rH
Cfl Cfl
I-l 0
required for disposal of municipal
dues from mass burning and resource
11 be needed for disposal of residue
•H -H
>s CO 3
4J 0)
•H I-l CO
0 Ol
Cfl O) I-l
CX 42 0
cfl 4J CO
O
"0 0
rH d O
i— i cfl o
•H >-, 4-4
r4 — 1 O
O rH
d co
•r-l 0 •
•r4 /-x
O> 4-1 X
rd -H X
4-1 O
CU CU
O CX rH
4-1 CO 43
^s CO
rH H
Cfl 0) ^
d 4-1
O CO ^-x.
•r-l CO >s
4-I3I-I
r-l 0)
o -o >
CX-r-l O
O rH O
r-l O CU
CX CO M
•
>s
I-l
O)
>
0
o
4-l
r4 CU
CU M
> CU
0 42
0 4J
O)
l-i 13
d
0) cti
CJ
W /-N
3 X
0 X!
co
0) O>
r-l r-l
43
B W
0 EH
rJ ^
4-1
>,
O> 4J
3 -1-4
13 O
•H cfl
co CX
0) CO
p-4 o
nicipal solid waste in 1990 will be
enching, fly ash conveying, and flue
of municipal solid waste, with water
33d
B cr o
4J
4-1 Ol
O 3 r-l
13 Ol
60-r-i ex
d en
•H Ol r-l
d r-l
r-l 01 r-l
Ol r-l 42
4-1 4-1
Cfl M
3 o) -
Ol 4-1 •
4-1 CO CU
CO 3 •
Cfl -H
3 a)
42 1
4-1 4-1 1
o
O 60
>s 4-1 d
4-1 -1-4
•H 4-1 43 •
4-1 d 43 60
d to cj
•H >-,
0) 3 en o
42 CT cfl o>
H 0) 60 M
not be affected by heat recovery.
rH
rH
•r-l
3
60
d
• r-l
d
M
3
43
CO
co
&
c
o
r-l
4-1
t-l
CU
4-1
CO
3
cu
4-1
CO
Cfl
4-1
O
>,
4-1
• H
4-1
d
CO
3
cr
Ol
42
H
36
-------
rd
4-J
0
4-1
O)
r— 1
ja
CO
4-1
3
J3
• r-l
r-l
4-1
4-1
CO
CO
• r-4
4-1
CO
_d
4J
^^
-0
0)
"d
3
i— 1
0
d
o
u
s-^
X!
M
W
rJ
PQ
u
CO
M
Q
Pn
Q
Crf
T3
d
cfl
1— 1
cfl
O
O
U-l
0
60
d
•r-l
r-l
• 1-1
U-l
o
o
B
0
r-l
U-l
r-l
(D
4-1
cfl
3
0)
4-1
CO
3
^
U-l
O
>.
4-1
•r-l
4-1
d
cfl
3
•
60
d
•H
r-l
O
>>
o
Ol
VJ
J3
4—1
CO
•r-l
d
o
•H
4J
O
CO
r-l
d municip
01
, — i
, — i
• H
U-l
"0
d
cfl
r-l
B
0
r-l
U-l
co
-i
o
U-l
0)
i— i
.n
cfl
4-1
• r-4
3
co
0)
(-N
rJ-J
f—f
r-i
•r- f
3
CO
d
o
• H
4-1
•
co
r-l
Cfl
0)
>,
IA
CS
l-l
0)
o
B
ij
o
U-l
•r-l
d
3
01
-0
1— 1
r-l
• H
3
d
0
• H
4J
Cfl
r-l
01
d
0)
60
CO
cfl
60
U-l
O
0)
4-1
cfl
t-i
Ol
.d
4-1
T)
d
co
*>
O)
4-1
CO
CO
3
CT U-l -H T3
O)
4=
H
Cn
Q
a!
-o
d
o
u
•r-l
r-l
O
CO
37
-------
1
H
gis
fc w 3d
o
o
1 w S
n ta >
o
on a U
s M 2
s Es
if 53
g Ei
O O Q
g u3
S
PH
0
d
E
Q
U
Z
^r
«
tn
H
3
H
O 3
> CD
hH PM
W —
U S
^1
0 0
in o
\r\ o*>
o 0 rH* m
m in ""> CM
rf. I I
CTi o
— i m o m
0 CM
O-i *£>
*. CO
CM
fM
S °
CM O
0 "^
^ vC
8 S 2
S 1 o
^ CO
«
1 O
•a
0 T)
0 0
0 O
o
CO - a
01 to
u nd co
o ^~\ rt
"S a* 86 S
CO U 13 O TJ
O >, In T<
O W 43 r4
M CO CU to O
•O •-' T) S rH
>•> rH -_- J3
a < o
^
z
•a
0 T!
o o
°- 0
CO ~I
in
rH
O
z
CM -a-
8 B
38
-------
•O
C
•H
4J
C
3
O Prt
en ^^
O
P" ,
S°
38 o
§i
gi
en
en M
Hs
H O
H CT>
H &*
P Z
0-M
^
g
H
a
^—i
Q
ej
§
H*^ H . .
1* en X
p u O
2 "*
0
O
SB
Z PS fH
«i|
en 33 o
en H W
< M K
* 3
0 h4
Z <
SB
H |
fc (X,
8§
Pu
O
hJ
J
H
Q
U
z
H
pn
n
en
en
^
H
>0
H PM
8I
Q
S
I S
O "J O rH O> IO
Slniri^srcMOo-iooorooi im
oo o
in --i oo
\D CM -*
CM fO
m o
oo m
00 O CM
oo ""> o *a-
OSCMOO I-HCM •-'f?'
o>^7-H)-iga}>H (Ufljocum
^^^3663^^ * rtJx^'pS
to
39
-------
B
1
Q
H ,*>.
o 2
VI ^-^
$&
&g
28
is
w
FK U
0 PS
S
d o
.j
8^1
g §
M
O
o
o
°. g §
3 S §
^ vD O O
2 ^ ^ 1 in os" S *"
in
So co I
2 g o
CM ~* 3
CM vo
CM
( -1 § a ; ; in
0
o
00 Q
- o 5
in m o
r^ so o o*
" C*J Q \D
i—t vo r^ ^, CN f.
1 | -a- m
-------
•8
•a
3
rH
O
<§
I
en M
«S
H O
rH CT*
H CT\
» is
O-M
§
Cu
^
<
tH
«L
Q
8
Q
K
P-,
J § «
j O 2
H H
to w S
3§
O
SB
§PH J>^
H S
2 W
PQ W fc>
O
en M ej
en P [d
< M S3
XI
O rJ
S5 <
H O
B! u
hH 1
E ci
8§
1
0
,J
rJ
H
S
1
MASS BUKNING
zB
S r4
> rJ
W O
e«i
SB
a
@
s
o o o
o o o
o o o
o « *
m m o m
-4- oo -cr o
vo ts * * « in
»$• co r-i CM ,-H r--
m *
t II CO
1 ^0
CM O O
m o m vo
c^ r** CM
* * «d"
0 CN
H rH
o> o < < o o
,? Z Z m
0 0
o o o
O O o
O " O
m m o -
O* rH CT\ in
-S- 00 rH O
*o CN • •> st- m
in rH «
1 1 | CO
m o o
CN o m \&
ro
0 CN
rH rH
4J
§
U
^ o a
» §
UH 01 -H oj
Ed G rH CO Q 4J
EH a oi a § a
<< op x a TH UH o
2 B 0 4J -0 H B
o a -H o o d -H
< X! SS Pu c/l CO N
a
a
n
01
•o
rH
H
£
4J
B
0)
U
01
a
rH
S3
"8
rH •
•H GO
<4-< fi
T3 *H
g e
iH 3
^
Q)
rd CO
m
rH rt
rH B
»K.
£
i-EJ
SJJ
B
O OJ
H U
01 l-i
a 01
a
Q
co in
Lnerated,
Ing and 7
U CO
B co
•H OJ
o
0) O
XI U
a
H
rH T3
•H g
S OJ
1
4J 4J
SB
0
U U
OJ
0. >x
fl
in *
d waste,
5 perceni
e municipal soli
rce recovery (7.
£§
to
UH OJ
O H
« XI
00
B
•H
h
«H
UH
O
O
g
U
UH
CO
B
0
«H
CO
CO
•H
i
TJ
§
H
8
u_j
o
B
O
•H
4J
3
1
CJ
§
IH
UH
CO
B
O
•H
CO
•H
1
between
.ler).
•n
OJ O
O Xi
S 0
IH 4J
OJ
UH 4J
UH 3
•H O.
•o c
•H
01
XI 4-1
4J «
OJ
•XI
oi B
-H' °
."g
ti CO
q a
2 J3
0 ^
4J O
CO
OJ ..
ions attributabl
F and coal at 20
CO Q
CO K
•H
S <4H
H 0
01
i-H
Data not availab:
i'
d
o\
rH
B
•H
"8
i-H
i— j
•H
TJ
g
!-H
0)
4J
1
T3
•H
rH
O
CO
3
a
•H
U
•H
i
>*
Xi
rH
CT>
cn
rH
B
•H
>,
rH
H
2
generated natioi
CO
01
CO
CO
•o
§
rH
CO
p.
•H
O
•H
B
e
•a
OJ
a
M
01
B
•H
CJ
B
•H
g
-U
"-*,
r-l
OJ
Co
3
CO
B
0
4-1
CO
00
c
•H
Xi
XI
3
h
CO
CO .
a X-N
oo <•
rH
01
3 01
H U
•" §
•O M
B 01
a MH
00 (S
B "*-^
convey!
Lation)
XI 3
3O
IH
•H
>, O
rH OJ
14-1 rl
00 U
quenchin
imes wate
h
01
T3
•H
CO
OJ
IJ
•a
01
rH
rH
•H
U-l
•a
i
H
e
o
M
4H
01
4-t
a
XI
o
a
01
UH
o
CO
B
o
rH
a
00
c^
0
r-t
X
rH
•a
G
a
I
a
M
•8
rH
H
•H
*W
•o
B
a
i-H
U
UH
01
4-1
a
XI
o
a
CD
rH
U-l
0
s
-J U
OJ CO rH
3 » rH
•a co co
•H -_- 00 •
3^
b O\ IH
n a o oj
S r-i >
M O
0 C X CJ
UH O 0)
U O IH
oj a\
§|H U
o to cj
IH 01
0) 4J
4-1 CO
a a
JZ »
I 1*
s 3
2 S
CO CO
CO Q)
< M
-j
41
-------
X
w
rJ
PP
^J
H
• •
JS
0
M
CO
CO
i""l
o
C/J
h-l
P
•a
•H
r— 1
0
CO
1— 1
CO
cx
• H
o
• H
C
3
B
o
ON
ON
i — P
B
O
t-i
4-1
CO
4-1
C
CO
4J
3
r-l
O
CX
4-1
O
co
01
• r-l
4-J
•H
4-J
C
cfl
3
cr
0)
rl
4J
C
O
r^
t-l
01
*>
o
0
CLJ
t-l
0)
O
t-l
3
O
CO
0)
t-i
4-1
O
CO
4-1
O
0)
4-1
4-1
0)
a>
43
H
co
4-J
c
cfl
4-1
3
rH
i— 1
0
cx
4-1
o
CO
01
4-J
• H
4-1
C
cfl
3
cr
C
a)
0)
?
J-J
0)
43
CO
01
o
c:
0)
t-i
0)
4-1
4H
•H
-a
Ol
f!
EH
•
X
O
, — i
43
CO
H
£
• H
-o
a)
4-J
Cfl
rH
3
43
Cfl
4-J
a>
)•!
cfl
, — 1
CO
co
0
CX
CO
'O
0)
4J
co
CO
u
rH
CO
CO
o
CX
CO
• H
'O
0)
4-1
CD
CO
^
T)
•H
rH
O
CD
rH
CO
CX
•H
O
•H
d
3
B
^
0
co
O
•rH
^1
Cfl
d
0)
o
CO
o
^
4-J
0)
<-;
4-1
B
0
t-i
4-1
4-J
i — 1
3
co
O!
t-l
*°o
rH
3
O
^
4-1
CO
[-]
4-J
•a
0)
M
t-i
cfl
r-|
0
CO
•rH
T3
•u
Q)
4-1
4-1
•H
B
Ol
01
o
J_l
3
o
CO
CD
tH
4H
O
C
o
•rH
4-J
CO
4-1
C
0)
B
Q)
1 — 1
cx
B
•H
r~!
4-1
• H
T3
C
cfl
4-J
3
O
rl
4-J
•r-l
Jj
•\
•
O)
•
•r-l
|
1
rH
M
Ol
rH
O
cfl
H
C
• H
•a
Ol
4-J
c
01
co
01
r-l
CX
0)
}_|
Cfl
4-J
cfl
43
4J
O
&
ON
i — 1
C
• H
t-l
0
4H
cfl
4-1
cfl
^3
4-J
c
CO
4-J
3
rH
O
cx
a>
H
•
^,
&-I
cu
^
0
a
a)
)-i
Ol
0
t-i
3
o
CO
t-l
4-1
o
CO
4-1
o
CD
4H
4-1
0)
1 — 1
cfl
4_t
c
0)
B
c
o
t-l
•H
p>
c
0)
01
4=
4-J
Ol
4J
3
4J
• rH
4-1
co
c
0
o
1
1
t-l
a)
^
o
0
0)
M
•
X
r— 1
-a
c
cfl
M
M
M
£>
co
0)
rH
,£J
CO
H
6
o
r-l
4-1
01
(-4
cfl
CO
0
• H
^1
CO
c
Ol
o
CO
o
&
4-1
01
43
4-1
42
-------
X!
U
03
H
W
H
O
CO
•< ON
CH ON
Z SH
p ed
s w
fa O
o a
co u
O O
CM Cd
CO P
h-l O
Q CO
U
S cd
O
Cd fa
fa O
co O
C M
O H
4J •<
H
C Z
••-( W
W
H CM
I-H O
hJ fa
o
CM O
h-l
fa Cd
O <3
Z
CO U
w u
h-l CO
H
H O
z od
< fa
o- cj
Z
55 f*H
M H
W t=>
o co
O
u
H
H
CO
w
o
w
CJ
Z
w
cd
w
fa
fa
h-l
Q
ft
Cd
w
0
u
as w
H Cd
M
S W
u
cd
[^
0
CO
u
ed
ca
ed
W
^
H O
C3 U
o w
33 pi
H
M W
£5 C_J
ed
O
O
CO
w
cd
-
Q H
W Z
S ^1
H
O 3
Z hJ
M i-3
> O
h-l CM
W
O
u
ed
o
o
^H^
*
O O •*
in m co
00 O
o
-3" O 4-1
«-H
f.
ON
ON
0
4-J
O
0
OO
•\
r— 1
Vfc^
O
o
m
CO
i — i
I
o
m
CO
*
0
ON
O
m
o
•t
r-.
CO
I
o
in
m
„
00
i-H
i-H
U
as
co
cd
CO
CD
• I-I
I-I
o
1— 1
u
O
O
O
O
i-H
CO
1
O
o
o
in
CO
vO
•V
r-H
O
0
O
ft
m
^>
ON
^H
CM
O
o
o
o
0
^>
f— 4
i-H
1
0
o
0
ft
•+$"
ON
in
0
o
0
00
o
af
u
43
-------
•o
0)
3
• H
4J
c
o
CJ
X
w
u
H
CO
o
CO
&4 ^5
o u
CO U
o o
PH Pi
CO D
M O
O CO
W
S Pi
o
Pi fa
fa O
co O
C M
O H
H
c a
•r-l M
\^^ pTr
w
CO J
H CM
a s
S Pi
hJ O
o
CM O
M
fa Pi
O <
z
co w
W O
M CO
H
H O
^* P^LJ
o-o
sz
Z M
M H
u
CO
w
a
H
H
CO
u
w
u
a
w
Pi
fa
fa
M
O
JD
OS
W
^.
o
sc w
H U
M Pi
^f
H
pi
o
CO
H
pi
w
Pi
w
H O
S O
O U
pr] (v^
H
HH f*^
3 u
pi
o
CO
H
pi
:=>
M
O H
s ^2
og
> 0
M CM
W
O
u
o
.— I
CM
A
in
oo «* o o
«— I ON i— i O >— 1
ON CO CO 4J +
+ + CO
+ m
vD
CO
CM
+
o
o
O
o «* o — i |
+
o
CMOCOoOOcoOI~-«d-
CM CO CN I ON in
1 1
oo o
-H 00
CM >*
CO
0
O 0
p~ m
"-HOO^inOoNOcM^H
«— i ^
' 1 1
0 O
v£> vO
E CD (U
3 co -u
0) -i-l a) CD CO 0)
Vn -O M C •-! X •W
QJ T-I Q) co o a. o)
a-cc-ocMCcoy-i
aco ocs ooc a>o.-i
cjcj^MjssSSco
m
^
+
m
r*^
O
CO
U
N
44
-------
0)
3
C
O
X
H
CO
O
CO
P-i
2 w
fa O
O o
CO W
O 0
CO S
i-i O
O CO
a oi
o
Pi fa
fa O
to o
C M
O H
W
CO
H
Z
& oi
3S
O
PH O
M
fa Oi
O <
Z
CO W
w u
M CO
H
M Jg
H O
Z pi
< fa
z M
w o
O CO
Z W
Q
H
H
CO
w
D3
H
h- 1
^
H
O
§
H
M
^
M
Q
W
a
z
>
M
w
u
w
Pi
o
w
u
z
w
pi
fa
fa
H^
n
;|Q
^H
pd
w
0
w
Pi
w
u
ed
,*""!
0
CO
w
Pi
CO
^-i
oi
W
^>
a
3
W
u
pi
f~~)
o
CO
w
oi
H
Z
^-
m
co O
1 4-1
o
o
5
Y
o
o
o
in
o
^.
»,
CM
CO
i-H |
o
m
vO
•*
CM
CM
0
0
0
f,
to
o-
CM
•\
CO
vO
i-H |
O
in
0
*
f^.
CM
e e
w a 2
H -ri -H
5 s ^o
u co cd
2 u o
C£]
S
HH
X— N
O
0
LO
•t
CO
00
1 — 1
CT*
O 00
4J
m
CO
Y
0
o
m
A
vO
CM
ON
vO
1 vO
•^
0
00
00
1 — 1
0
0
0
n
0
i-H
i-H
•V
^^ l/^
in
1 m
m
m
CM
CM
0) B
•0 3
• H -i-l
0 §
1-1 W
•C 43
O U
0
o
o
A
o
r^
t— i
0
O ^H
CM m o
—1 CM O
1 vO 1
1 0
CM
c^
1
O
O
0
o
vO
00
0
o m
vO C^ "— l
r~ CM 1
m ON vo
m o
co m
•
-------
o
d
o
x
Ed
Ed
H
c/>
O
CO
X—s.
r-J O
CM O\
rH -H
CJ —'
rH
Z JH
2 Ed
Ctj O
O O
Ed
CO [d
O U
Pu Crf
CO 3
M o
Q co
O
erf fa
P*4 O
^ z
co O
d M
O H
d
•H
Ed
CO ,-4
H CH
25 a
3 BJ
-J O
O
PK O
fa Crf
O «J
Z
co w
Ed CJ
M CO
EH
H O
S5 c^
^ri pLj
cx o
z
Z M
Ed 3
O c/5
Z Ed
Q
Ed
H
H
CO
Ed
CJ
Ed
^
Z
Ed
Ed
fa
fa
M
Q
X)
erf
Ed
O
33 Ed
H ai
M
3 Ed
QJ
erf
[~~*
O
erf
co
Pi
Ed
H O
Q CJ
O Ed
3d 0*1
H
M W
IS U
Prf
£3
o
CO
Ed
erf
M
Q H
Ed Z
2 55
Z rJ
M ,-5
> o
M PH
Ed
Ed
0
0
0
in
OO
CN
0
4-1
O
m
i— i
CN
T
o
0
o
m"
^1
f.
1 — 1
1
O
o
o
0
o
0
o
o
r-^
ft
. — 1
1
0
m
o
f.
CO
e
Ed 3
H -H
cfl
i-i
QJ
d
o
d
• 1-1
o>
o
rH
rH
•H
3
^
CO
d
o
4-1
•O
o
""*
X
o
1 — 1
\^s
o>
CO
Cfl
Jj
T3
• M
1 — 1
0
CO
i— 1
CO
O,
•r-l
o
• 1-1
d
3
e
U-I
0
V
4-1
d
o
1-1
01
ex
in
• •
o
• 1-1
I-I
CO
d
CU
o
CO
CO
•
T)
01
rH
• H
U-I
*o
d
cfl
i— 1
O>
1— 1
rH
•H
^
^^
CO
d
o
4J
.0
o
X
r>_
OO
. — 1
\^s
4J
d
CU
CJ
j_(
01
in
CJ>
„
T)
Ol
CO
I-I
0)
d
o
d
• H
0)
rH
1— 1
•H
3
^
co
d
o
4-1
^o
o
i~H
X
o
—i
* — *
QJ
CO
CO
^
T3
• H
rH
O
CO
•— 1
cfl
ft.
•r-l
O
• r-l
d
3
a
U-I
o
4-1
d
QJ
O
^j
0)
ex
m
*.
o
• 1-4
M
CO
d
CU
CJ
CO
XI
1
1— 1
• I-I
3
.^
Xi
co
d
o
jj
COO
d
0
\o
0
""*
X
o
CO
\^/
I i
d
QJ
o
1-1
CU
ex
in
^
•o
d
cfl
^
T3
Ol
,— i
rH
•r-l
U-I
13
d
cfl
rH
0)v
Xi
! 1
, — 1
• 1-1
^
^— \
CO
d
o
4-1
vO
o
1 — 1
X
r^
m
.— i
\^s
4-1
d
CU
o
I-I
01
ex
o
oo
o
1 — 1
X
m
1 '
T3
d
cfl
60
d
•r-l
CO
CO
CU
o
o
I-I
ex
d
CU
4-1
d
o
rJ
U-I
>l
Xi
CO
d
o
4J
O
O
1— 1
X
m
f-H
•^^
^
^
0)
o
o
QJ
l-i
0)
O
l-l •
3 >->
O 60
co d
CU 'H
rW d
M
0 3
60 X)
l-i
a) co
T3 co
d ca
3 E
0)
co
cfl
CD
l-i
0
QJ
T3
cfl
•;
CO
3
d
•r-l
_e
"
f.
ca
d
o
• I-I
CO
CO
•rH
e
CU
C
• 1-1
0)
CO
Cfl
0)
I-I
CJ
d
•r-l
d
cfl
co
0)
4-1
cfl
o
• H
-o
d
•H
~
CO
3
I— t
p_,
^
o
46
-------
1— I
X
w
PQ
H
Z
O
M
C/D
| — i
r^
C/3
h-l
Q
, aluminum, and glass that would be recoverable
CD
r— 1
CO
4J
0)
B
CO
3
O
M
j_<
0)
4-1
4-<
0
CO
0)
• H
4-1
•r-l
4-1
C
CO
3
cr
13
o>
-i >
CO
B
•H
4-1
CO
01
0)
f!
£-1
enario for resource recovery (Table II) are given
CJ
co
QJ
43
4J
,_(
Q)
T)
(3
3
O
OS
ON
1 — 1
(3
• H
0)
4-1
CO
cfl
J^
13
• r-l
r— 1
O
CO
1 — 1
CO
CX
•H
O
•r-l
(3
3
B
S
o
r-l
4-1
-derived fuel and for raw refuse. The calcula-
0)
CO
3
4-1
01
^l
^l
0
4-1
CO
CO
13
OJ
f-i
CO
13
0)
T>
r— 1
O
c
•r-l
O
CD
r— 1
^
.
M
X
0)
i — 1
43
CO
H
C
• r-l
• •
CD
G
O
• r-l
4-1
&
B
3
CO
CD
CO
W)
c
• H
IS
0
1— 1
1 — 1
O
4-1
o>
43
4-1
(3
O
13
OJ
CD
CO
43
01
J-l
0)
[5
co
(3
O
•H
4-1
id waste will be processed for resource
i— i
0
CO
1 — 1
CO
CX
•H
CJ
•H
C
a
B
4-1
0
co
C
O
4-1
VO
O
i — 1
X
O
C"")
r*
O
ON
ON
i — 1
C
1— 1
•
60
C
•r-l
C
43
ca
CO
CO
43
4-1
r— i
CO
43
13
C
CO
60
(3
•r-l
CO
CO
0)
O
0
ex
13
C
OJ
4-1
c
0
4-1
s^
r\
"4-1
r— 1
CO
n
r*l
^
0)
O
O
0)
1
0
(X
e
0
o
1— 1
CO
CJ
•H
cx
4J
CO
4J
•r-l
CO
CO
01
CO
CO
OJ
4J
0)
43
r— 1
r— 1
•r-l
O
o**
ON
i — i
•H
0)
4J
CO
cO
*X3
•r-l
r-l
O
CO
r-l
Cfl
CX
•H
CJ
• 1-1
C3
i
4-1
O
tf
O
•r-l
4-1
•r-l
CO
O
P.
B
o
o
a)
^2
£—{
0
s, aluminum, and glass will be the same for
mass burning.
.
^-\
M
M
M
OJ
r— 1
43
CO
H
t^
r--
ON
• — 1
C
• H
C
o
•H
J-J
• r-l
CO
r— 1
CO
4-1
O>
e
CD
3
O
r_J
M
01
4-1
r-l
O
4-1
CO
0)
• H
0
C
0)
•r-l
0
•r-l
4-1
4-1
0)
^
r-l
01
^
0
o
O)
Pd
•
r-l
QJ
4-1
4-1
cfl
t*N
^
0)
0
CJ
0)
r-l
13
C
CO
C
O
•r-l
4-1
CO
r-l
CO
CX
0)
CO
*"O
c
01
1
4J
c
o
l-l
4-1
in 1990 as those demonstrated in 1977.
0)
B
CO
CO
0)
^f-;
4J
OJ
43
i— 1
r— 1
•H
^
CO
0)
•l-l
CJ
C
0)
•r-l
0
•r-l
in
4-1
0)
t*~l
r-l
QJ
O
CJ
0)
PS
•
47
-------
o
CT\
I
fa
H
cn
O
CO
fa PS
>-i w
U >
M O
S3 U
§ PS
s w
o o
X
w
J
PQ
H
O
W CO
,-J W
PQ OS
<^j
05 PS
w o
> fa
o
u o
U M
PS oi
co 55
,-4 W
< 0
M CO
CS
W PS
H W
Si o
S S3
a
fa
o
co
fa
H
S3
I
H
CO
fa*
w
rJ
«
w
o
0 .—
w a
PS o
4-J
£>H ^-x
H
M
H
55
o-
0
S3
W
XI M
Q U
W M
H fa
PS W ^-^
H ^«
CO >H ^
S3 PS
O W
E o
Q U
w
w
pd Q
<5 w
os co
fa CO
> w
0 U
u o id
W OS PS ---
PS Pi OS C
0
Pn ,-J >H 4->
o <: w ^
M
>i PS
H W
M H
H <
Z X
D
o-
S
S3
s-s
H ^
S3
H
S3
O
U
J_J
^
M
e
f-t
.rf
*
o o o o
o o o o
o o o o
•* ft »• v,
in m o o
*•£) CM o in
m CM -H CM
* v. *
CM CM .—1
,—1
0)
O T3 T3 4-1
in m o in
O1* r*~ ("-•» r^
60
o o o o o
o o o o o
0 O O 0 0
*. * r, vi v.
o o o o o
o o o m o
t-^ CO O CO O
CM co -H m
•-H i— 1
O^ *— * C3 CT^
— H r-
CO
id cu
4J Ol 01 CO
Ol H i-l 3
S JD Id M-l
E -H i-l 0)
co 3 4-1 P PS
3 C CO 01
O -rl 10 3 4J fa >
i-i S co rO id Q id
M 3 id 0 5d 2 pS
01 iH ^H O
fa <: o o
•
X— N
PS
PS
^~f
^
I-l
cu
^
o
o
0)
l_l
cu
o
^1
3
o
CO
01
M
M
o
14-1
•o
01
(0
co
01
o
o
M
a.
01
r\
1— 1
•H
•H
3
co
a
M-l
O
co
B
O •
4j r-^
r-
•O CT*
0 — I
•-H
M-l
> id
M
CO 4-1
01 CO
i c
3 o
co e
CO 01
•< Q
. ^
CO
CM
Ol
0
c
01
M
01
M-l
0)
BJ
60
C
•H
CO
CO
0>
O
O
^4
a
T3
c
Ol
1
4-1
c
0
i-i
IM
O
4-1
4J
3
ft
C
•H
4-1
O
4J
C
O
01
a.
in
r^
CO
01
CO
•H
V_i
a,
B
O
O
c
• • • o
in so r^* *H
CM CM CM 4J
u
cu oi cu id
O O O |j
G a c 4-i
01 01 01
|^ V-l l-t 4-t
01 Ol 01 J3
4-1 4-1 "4-1 60
01 0) 01 -H
PS PS PS i-3
0
O
CU
I-l
w
t-H
id
•H
M
Ol
4J
id
B
-d
C
id
j>-,
60
Vj
cu
c
01
^i
o
4-1
c
•H
a
M
3
co
co
id
E3
O
60
M
CU
•a
c
3
,H
,— |
•H
»
4-1
id
r!
4-1
Ol
in
3
4-1
CU
M
15
id
M
IH
o
p»^
4-1
•rH
4J
C
id
3
o-
60
48
-------
r-l
M
X
w
(J
CQ
^J
H
is
O
M
CO
CO
] — 1
u
CO
r-l
O
B
O
I-l
4-1
ID
01
I-l
0)
>
o
o
O)
I-l
N-^
03
I— 1
to
4-1
Ol
B
03
3
0
I-l
i-l
Ol
4-J
ex
CO
I-l
o
03
B
o
r4
4-1
I— 1
Ol
OJ
4-1
03
60
(3
•H
0
3
*"O
0
l-i
cx
4-1
0
03
4-J
a
01
4-1
4-J
0)
i — 1
cfl
4-1
d
0)
B
d
0
M
• H
^
c
Ol
Ol
r~;
£— (
1
03
• r-l
B
O)
(3
O
tfl
4-1
CO
13
01
43
4-1
13
d
CO
•*
13
01
d
•i-l
Ol
4-J
Ol
13
01
i-l
0)
&
01
1— 1
cfl
• H
I-l
01
4-1
Cfl
B
C
•H
60
In
•H
^
rJ
4-1
d
CO
ri
4-1
rJ
Ol
43
4-J
cfl
V^
/~^
0)
4-J
03
CO
jj
*^3
•H
1 — 1
O
03
I— 1
CO
ex
• H
U
• r-l
C
3
E
CU
j_,
Ol
[5
03
a
o
•H
4-1
CO
i — 1
3
CJ
i— i
CO
U
01
43
H
•
M
M
X
01
l— 1
4^
Cfl
H
C
•H
13
4-1
C
QJ
03
O)
^l
a.
CD
to
03
4-J
C
Cfl
4-1
3
1 — 1
I— 1
O
CX
4-1
O
03
Ol
•H
4-1
•H
4-J
d
Cfl
3
tr
-o
d
cfl
03
I-l
O
4-J
U
CO
4-1
d
o
•H
03
• •
03
d
0
•H
4-J
ex
B
3
O3
03
cfl
60
d
• H
^
O
1— 1
1— 1
0
4-J
QJ
43
4-1
d
o
-o
Q)
03
cO
43
4-1
O
CO
d
o
vO
o
1 — 1
X
o
r*-)
01
43
4-1
B
O
I-l
4-J.
13
01
M
Ol
>
O
O
Ol
r4
0)
42
i— 1
i— 1
• i-l
JJ
03
i— 1
cfl
4-1
O)
B
O3
3
0
j_j
rJ
Ol
4-1
4-1
0
03
d
0
4-J
O
O
O
in
*JD
in
r*
CN
«
O
o>
ON
i — l
d
M
£
•
>,
I-l
0)
>
O
0
OJ
i-i
0)
0
I-l
3
o
03
O)
M
l-i
O
4-1
13
OJ
03
03
Ol
U
O
I-l
O.
01
("1
r-l
l— 1
•H
Jj
4-J
CO
43
4-1
OJ
4-1
03
CO
^
13
• H
i— 1
0
03
i— 1
Cfl
ex
•H
O
• H
C
3
B
i— i
i— i
•H
9
13
C
CO
13
0)
i — i
O
>>
0
0)
M
0)
43
i— 1
i— 1
• H
Z
Ol
4-J
03
Cfl
3
13
•r-l
i— 1
O
03
i— 1
cfl
ex
•1-4
O
• 1-1
d
3
B
B
o
^
4-J
13
01
r^
Ol
^
O
CJ
Ol
^
TO
l — 1
tfl
4-1
0)
B
03
3
O
1^
r^
QJ
4-1
Q)
f]
4-1
i — 1
i — 1
<^
£
•
i— 1
Ol
Ol
4-1
03
4-1
O
d
0
•rJ
4-1
O
3
13
O
CX
Ol
43
4-1
d
•r-i
, — i
cfl
• H
VJ
O)
4-J
cfl
B
d
• H
60
}_i
•r4
^
O)
o
cd
1— 1
cx
0)
rJ
CO
0)
• I-l
4-1
• i-l
4-1
d
CO
3
cr
0)
>
•r-l
4-1
Cfl
l— 1
0)
I-l
01
B
cfl
03
Oi
43
4-1
d
• r-l
13
d
cfl
CO
Oi
03
03
01
0
0
I-l
CX
Ol
B
CO
CO
01
r~!
4-1
^
43
13
0)
U
3
""O
O ••
cx 3
0) ^
4-1
03 VO
i —
« ON
O r^
CTi
CT* C
i— 1 -i-l
d 03
h-l co
0
4-1
0
d
o
4-1
0)
d
o
13
i — i
0)
• H
r^t
1— 1
I— 1
• H
^
d
o
M
• I-l
60
• H
CX
4-J
0
d
0
4J
O)
d
0
«v
co
r— 1
CO
• H
g-^ gsg |-i
e-s rJ
Q) O O •!-!
O CO CO >
cfl d d
d H rJ B
rJ 3 3 0
3 14-1 14-1 Vi
4-1 4-1
d o
43 01 l-i d
4-1 60 cO O
I-l >> TJ
CO X 0 4-1
0) O -r-l O
43 l-i 3
O 4J 13
d -H o o
Ol 03 0> rJ
CX Cfl r— 1 fX
O M W
i — l
Ol
o o o 01
4-1
CO
d
M
0
d
O
4-J
01
c
0
E
o
rJ
4-1
13
O)
r-l
3
4J
0
CO
4-1
3
C
CO
B
0)
M
o
u
4-1
O
4-J
d
3
0
e
CO
O)
43
4J
0)
rJ
• H
3
cr
0)
rJ
r-l
i — 1
•r4
^
d
0
•r-l
4J
O
3
13
O
I-l
CX
d
o
r-l
•r-l
60
•H
ex
13
d •
CO r-l
CO
r-l O
0) O
Ol
4-1 4-1
CD O
13
1 — 1
01
• H
>.
1 — 1
1 — 1
• 1-1
&
03
r- 1
CO
4-1
0)
B
CO
3
0
rJ
rJ
OJ
4-1
CX
cfl
VJ
o
03
4-J
o
d
0
4-1
Ol
d
0
r,
03
i— i
cfl
• I-l
rJ
OJ
4-1
cfl
B
13
0)
rJ
0)
^
O
0
OJ
rJ
B
0
Vj
4-1
d
o
• H
4-1
O
3
13
O
rJ
ex
i— i
Ol
01
4-J
CO
d
M
0
•
i— 1
Ol
0)
4-1
CO
4-J
O
d
o
4J
Ol
d
o
49
-------
TJ
0)
•v
3
i—i
O
C
O
O
X
W
rJ
PQ
$
2
O
tn
w
0
w
o
co
1 1 1
o <; co
PH 01
CO W O
0) C/l C
60 in o)
crt 1 1
^u w
JJ O> 0)
CO JS 4-1
JJ 0)
CO Pi
3 C ^
O •!-!
•H C
M co o
co i-~ -i-i
> ON JJ
•—I •!-(
OJ 1 13
J3 CN 0)
jLJ f""«»
ON T3
B -H C
O CM
M r4
u-4 o r
ll 1 ^
co co
B 13 r4
O OJ O
•H JJ JJ
co co cj
co -i-l co
•l-l rH It,
B
oi o) c
CO O
•a o T-I
01 ,C co
i— 1 JJ CO
t— 1 -H
o CD g
t-i cfl w
JJ
C 0) JJ
0 B C
O co co
CO JJ
T3 3
C 0) r-l
Cfl 43 t-l
JJ O
*d PH
0) 0>
l-l JO rJ
r-< -H
O r-l <<
l-l t-l
JJ T-l 4-1
C S O
o
0 0 C
C ON O
3 ON • l-l
r- 1 JJ
rJ CO
O C t-l
4-1 T-l -1-1
ex
co C B
t-i 0 0
O T-l O
JJ JJ =
0 0
cfl 3 C
4-1 13 O
O T-l
C r4 JJ •
O CX CO ^
•i-l CJ t— 1
CO i-l T-l CO
CO 0) t— 1
•i-l 0) J2 T3
B JJ 3 C
W co ex co
OJ 1
> 4H
•i-l OJ
JJ CKj
O ^
01
4-1 co
4-1 C
0) O
•H
0) CO
rJ CO
CO -1-4
B
JJ OJ
cfl
42 13
JJ O)
,—1
CO t— 1
t-l o
0 M
r4 4J
ti ^
C O
0 u
CJ
^i
C 0
O 4-1
•r4
JJ co
3 t-i
r-l 0
r-l JJ
O 0
CX CO
4-i
4S
•W C
T-l O
S T-l
CO
T3 CO
0) -i-l
cx B
CX 0)
• H
3 O)
cr jn
OJ JJ
0) >,
J3 J3
1 — ' T3
i— 1 OJ
•H JJ
S Cfl
o
O -t-l
ON 13
ON C
•— 1 T-l
C r-l
•r4 O
V-l
CO JJ
o) c •
o o s-*
t-l O i— 1
3 ro
O 4-1
co O T3
B
C t— i co
O OJ
T-l > 0
CO 01 co
CO i— 1
•r4 CO
S 0) 0)
-------
'
,
o
c
a
c
E
u
t
E
t
C
p
f-
c
C.
t
h
&
h
f
C
^x
OJ
[0
c
0
4J
5
1
^
£
O
1
J
3
H
2
^
n
r
^
^
4
4
3
L,
M
3
O
a
y
S
m
en
a)
w
U
M
&
Q
W
ss
T
se
sg
Ss
3 s
a
0 U
fa 0
S
g O
fci H
•°
8
S
O
(0
w
H
&
H
O
>
s
1
H
H
O Cf
s d
> o
W ^-
2 M
Ct
s
8
3
>"
a:
M
>
o
o
s
g
w
H
§
1
g
Q
J
I
Q
M
,-J
g
H
O
Q
d
o
Q
W
,-J
1
0
o
§ „ in <-* — i m
^ o ^ l CM co
1 ^.l l
7
0
o
r-mcn -oooo
"* 2
o
o
o
u-, « m m
u-|C»if)o in •— < •— 'oo
Q (si i— i in co co
i^, -3- m CM LH
CM
r-. CM CM
coooooooo
• O o CT> t j | |
° o* d
CM CM in CM -J- 00 CM
m o o oo o o >H
• 0 O CO • • . -" M CM CM CO T3
SjE32388ii£
§0
o
o o
1 1
Q 0
O 0
o o
<• CM
O 0
o o
O 0
O fO
t-H r-
W IW
CO CO
WN "in
f^J «H
n
4-1 4_|
i/l C
CO
4J
1 s
a (4
[d t-<
H 0)
^ «
cf <; to
1 ^
•H U
B HH
0)
M S
0) S
•a -H
3 M
51
-------
M
M
r-l
X
w
EH
O
M
CO
CO
QJ
CO
M
O
ng aluminum from scrap aluminum recovered from municipa
•H
O
3
T)
O
^i
CX
4-4
o
CO
4-1
u
OJ
4-1
4-1
OJ
i— 1
CO
4-1
C
01
E
C
o
)-l
•H
£>
c
OJ
OJ
f— 1
ials were determined, and the data on emission factors
i-i
OJ
4-1
CO
E
C
• H
60
r-l
• r-l
^
B
o
i-i
4-1
C
CO
f,
4-1
l-l
QJ
{-!
4-1
CO
r4
OJ
4-1
CO
CO
IS
T3
i— I
0
CO
d in Table XIII. The calculations were based on the
0)
4-1
C
0)
CO
0)
l-l
cx
OJ
l_l
cfl
co
4-1
C
cfl
4-1
3
r— 1
i— 1
O
CX
4-1
0
CO
QJ
• H
4J
•i-l
4-1
d
CO
3
cr
ID
C
co
• .
CO
C
0
•H
4-1
CX
B
3
CO
CO
cfl
60
C
• H
^
0
1 — 1
o
4-1
will be recovered from the 30 x 10" tons of municipal
B
C
• i-i
B
3
i— i
CO
4-1
O
CO
C
O
4J
O
o
0
L/^i
CM
CN
^
0
ON
ON
C
M
0
d for resource recovery.
OJ
CO
CO
01
o
O
I-i
CX
OJ
.0
I—I
r-l
•H
IS
4J
cfl
4-J
0)
4-1
co
cfl
rQ
• r-l
i — 1
O
co
unicipal solid waste will be recycled and will replace
E
E
0
l-l
4-1
T3
o
u
OJ
l-l
E
3
C
•r-l
E
3
i — i
cfl
OJ
pC
4-J
r-l
T— I
^3
0
of aluminum.
£
0
•r-l
4-1
O
3
•O
O
M
CX
OJ
n
4J
C
•H
i— 1
Cfl
•i-l
l-l
QJ
4-1
Cfl
e
pj
•H
WD
M
•H
^
d by the same processes and in the same relative quanti
0)
o
3 ••
o n
M n
cx
OJ
o; o
rO C
0)
•-I r-l
1 — 1 OJ
• r-l 4-1
IS 0)
E ^^
3
C O
•i-i r-~
E ON
3 —1
I— 1
CO C
• H
f.
O co
ON cfl
ON
r— 1 CO
OJ
C -i-i
r-l 4-1
O
i — 1
vD
CO
r-l
i— 1
OJ
o
T3
OJ
v;
cfl
ja
OJ
i-i
cx
c
•r-4
CO
•H
co
r^l
I— 1
0
4-1
O
QJ
i — 1
w
o
1-stud Soderberg cells: 25.5%
CO
4-1
C
o
N
• i-l
r-l
O
f.
C
•H
CO
•H
CO
^
I— 1
o
l-l
4-1
0
OJ
i— 1
w
o
stud Soderberg cells: 12.6%
i
i — i
CO
u
•r-l
4-1
^|
0)
^
c
•H
CO
•r-l
CO
£>-,
1— 1
O
^_l
4-1
O
01
, — i
w
0
r-
ON
i — 1
C
• I-l
4-1
CO
4-J
CO
CO
OJ
cfl
CO
OJ
4J
OJ
.0
i— 1
i— 1
•r-l
O
ON
ON
i — 1
C
•r-l
CO
r— 1
CO
•H
r4
OJ
4J
CO
B
c
•H
60
l-l
•H
^
E
0
r-l
4-4
E
3
C
• H
E
3
i — i
cfl
4-1
O
B
0
•H
4-1
O
3
TJ
O
U
P-,
%
bauxite will be required to produce the two tons of
f one ton of primary aluminum.
4-4 O
o
c
co o
£2 'r-t
O 4-1
4J 0
3
in "O
• o
0- rJ
cx
•*
• r-l
OJ O
• 4-1
• i-4
-a
^ QJ
s~\ ^4
-------
T3
(1)
T3
3
I— 1
o
B
0
c^
\^s
r-l
M
r-l
X!
W
rJ
PQ
H
&
O
M
CO
CO
, 1
u
CO
r-l
o
will be 80 percent* efficient,
o
ON
ON
1 — 1
13
CO
1—4
CO
• H
r-l
01
4J
cfl
E
-o
CD
1— 1
o
0
0)
£3
O
J_J
4_4
E
3
a
•T-l
E
3
i — i
CO
M-l
O
C
0
4J
O
3
-o
O
PH
secondary aluminum operations from
a
• r-l
•o
0)
O
3
T3
O
r-l
CX
0)
42
i— I
r-l
•r-l
^
B
3
C
•r-l
B
3
, — i
tO
*>^
j-j
to
B
M
CX
U-l
0
CD
C
o
4-1
OO
•
o
f.
•
cu
•
•H
•
0)
4-1
CO
Cfl
IS
•H
r-l
O
co
I—I
tfl
CX
• r-l
O
• r-l
r*
3
B
B
O
rJ
M-l
T3
01
l-l
Ol
O
O
01
(-4
B
C
•H
E
3
•— 1
cfl
CX
cfl
^
O
CO
14-1
O
C
o
4J
43
O
cfl
0)
in sweating furnaces and half in
13
Ol
co
CD
0)
0
0
r_|
cx
0)
CN
i— i
i— i
• H
u
E
3
C
• H
E
3
r-l
cfl
CX
cfl
j_j
O
CO
0)
43
4J
M-t
O
M-l
i— 1
Cfl
43
«
O
ON
ON
t — 1
C
r-l
.
CO
0)
o
CO
B
^i
3
M-l
K*"*
r-l
O
4-1
CO
rJ
01
42
r-l
0)
^
Ol
!"4
ions from the various stages of
co
CO
•r4
B
01
T)
o>
1— 1
r— 1
O
r_|
4-1
B
0
o
T3
C
cfl
T3
0)
i— I
! 1
O
)-4
4-1
(3
O
0
(3
3
r-l
O
CO
r-l
O
4-J
O
cfl
14-1
a
o
•H
CO
CO
• H
B
w
PL,
W
CO
Ol
43
4-1
(3
• H
CO
ON
i — i
1
CN
ON
O
14-1
0)
4-1
CO
• H
i — 1
Ol
CD
0
43
4-1
CO
tfl
43
4-1
^1
42
T3
O>
4J
CO
O
•H
13
B
• H
i— 1
0
r-l
4-1
B
0
O
M-l
O
1— 1
o>
p>
O)
I—I
01
t-;
4-1
0
4-1
•
s~\
U"N
CO
•a
B
cfl
CO
CO
co
0)
o
B
a>
M
a)
M-l
C1J
Od
N-^
cx
CO
O
co
Ol
4-1
cfl
(3
• H
Cfl
4J
C
o
o
C
Ol
o
r-l •
0) s~*
cxo-
CO
o
r~- 0)
O
o c
4-1 0)
r-l
O 01
VO 14-1
Ol
B a!
o ^
j-i
>4-i CX
cfl
CO S-i
Ol O
M co
(3
cfl T3
r-l 01
4-1
CX cfl
CO tO
)-i 01
O r-l
CO M
Ol
B to
o
i-l r-l
<4-l i— I
O)
>N 3
r-l
QJ ^
> 0>
o 'd
o to
O> )-4
60
B
3
C!
•H
3
O B
Ol
> o
O r-l
B Ol
0) CX
• H
O OO
• rH O^
<4-l
U-l O
W 4-1
•X
53
-------
sa
I
SI
•H fl
X 3
-a rH -H
d Cd 1
O W 3
-Q
2 a
54
-------
M
X
w
rJ
PQ
H
a
o
en
] 1
c_>
C/1
r-4
O
ng glass from cullet recovered from municipal solid
• H
O
3
O
r-l
CX
4-4
O
CO
4-1
O
cu
4-1
CU
1 — 1
CO
4-1
(3
CU
E
C
O
r-l
• r-l
^
13
01
0)
43
ere studied, and the data on emission factors and
U
CO
1— 1
CO
•H
r-l
01
4-1
CO
B
c
•rl
60
r-l
• rl
%>
g
O
^
4-1
C
CO
f,
4-1
P^
CU
43
4J
CO
I-l
d in Table XIV. The calculations were based on the
01
4-1
C
01
co
01
r-l
CX
0)
,_|
CO
CO
4-1
C
CO
4_>
3
, — i
i— i
O
cx
^i
•rl
CO
4-1
O
CO
01
• H
4-1
• •
CO
C
0
•rl
4J
CX
B
3
CO
CO
CO
60
C
•rl
will be recovered from the 30 x 10^ tons of munici-
co
CO
CO
i— i
60
4-J
O
CO
C
0
4J
0
o
o
rt
O
o
.— i
*\
CSl
r.
0
ON
ON
i — 1
C
M
essed for resource recovery.
o
o
(-1
ex
01
43
i—(
i — l
•rl
J5
4-1
CO
43
4-1
01
4-J
CO
CO
u
T3
• H
r-l
0
CD
r-l
CO
CX
0)
O
CO
1— 1
cx
0)
1— 1
r-4
•H
C
CO
T3
Ol
r-l
0
o
CU
01
I— 1
1— 1
•H
0)
4-1
CO
CO
»
• H
O
co
i— i
cfl
o,
•r-l
0
• rl
C
3
B
i^
4-1
'O
CU
rl
QJ
^
0
o
cu
r^
CO
CO
CO
I— 1
60
O>
43
4-1
r— 1
r— 1
<£
n of soda-lime glass containers.
o
• H
4-1
O
3
T3
0
CX
0)
43
4-1
C
• H
CO
r-l
Cfl
•rl
r-l
01
4-1
CO
B
(3
• H
60
^l
•rl
^
ime glass from virgin material in 1990 will be 85
i— i
i
CO
O
CO
4-1
O
(3
0
• r(
4-1
0
3
-a
0
i-i
ex
(3
•H
T3
rH
0)
• H
^i
01
43
H
mount to 15 percent (Reference 36).
cfl
i — i
r-4
• rl
Jj
co
CO
o
1— 1
C
O
•rl
CO
3
4-4
—
•
01
.
•rl
n
4J
C
01
o
i-i
0)
CX
4-1
C!
0)
o
0)
cx
o
o
1 — 1
cu
43
1— 1
I— 1
• r4
O
ON
ON
i—4
(3
• H
4J
0)
i — 1
r-l
3
O
I-l
4-1
CO
CO
CO
i— l
60
01
•rl
i— 1
1
CO
O
ca
4-1
O
C
o
• I-l
4-1
o
3
-a
0
^i
CX
c
• H
T)
i — 1
CU
•H
£*•>
0)
43
EH
.
/- — s
vO
on
01
o
01
rl
01
4-1
0)
CcJ
S ^
ure in 1990 will meet the limitations specified in
4-1
O
CO
4-1
3
C
CO
E
CO
CO
CO
r- 1
60
B
o
^i
U-l
CO
C
0
•rl
CD
CO
•rl
B
0)
i— i
i— i
43^
trol Regulations (Reference 37).
c
0
u
(3
0
•r-l
4-J
3
i— I
i—4
0
^J
•rl
^
4-1
3
0
•H
4-1
0
Ol
C
c
o
Q^
O)
43
4-1
le to cullet will be proportional to the amount of
43
CO
4-1
3
43
•rl
I-l
4-1
4-J
CO
co
c
0
•rl
co
CO
• r^
E
01
C
• H
C
0
•rl
4J
U
3
T3
0)
BJ
0)
Ol
4-1
0)
.
•i-l
\^^
4J
43
60
• rl
CU
CO
CO
CU
CJ
o
I-l
CX
CU
43
4-1
(3
•rl
4-J
01
i—l
t — 1
3
0
0)
o
CO
c
r-l
3
4-1
01
43
4-1
C
O
I— 1
I—I
3
CX
01
43
4J
4-1
0
4-1
C
0)
T3
(3
0)
ex
13
c
•rl
CU
43
r-4
r-l
•rl
[J
CO
C
O
•H
CO
CO
•H
B
Ol
4-1
O
O)
4-J
CO
CD
CO
4-1 O
C r-l
CO •-!
3 O
cr 4-i
55
-------
Ed
g |
H <
M
O
O
iSgg
||j
H o:
gs!
8S
SB
ea
xS
a ^
•§ 5
II
•H -H "0
pi S
tM 00
<; m
4J -O
o v
•sS
1
(0
g
56
-------
>
X
w
l-l
M
<
H
..
3
0
M
CO
CO
&
0
CO
h-l
O
C
•H
60
l-l
•H
>
lj
O
M-l
0)
4J
CO
CO
s
TJ
• p^
I — 1
O
CO
I— 1
CO
CX
• H
CJ
•H
C
3
E
)-i
m
T3
0)
u
01
o
o
0)
^
CO
1— 1
CO
•H
l-l
cu
4-1
CO
E
60
c
• l-l
4-1
3
4-1
•H
fl t
co
J3
3
co
1 1 1
0
CO
4-1
o
01
y-i
W-l
0)
Ol
f:
H
0)
J3
p
•
>
X
01
1 — 1
,0
CO
H
c
• H
Tl
\J
O)
SI
• l-l
^4
CO
e
3
co
o>
l-l
cfl
CO
co
CO
1— 1
60
T3
c
CO
„
E
3
C
• l-l
e
3
i— 1
CO
n
1— 1
o>
o>
CO
4-1
O
C
O
• r^
4-1
0
3
T3
O
l-i
fX
0)
JS
4-1
c
• l-l
CO
i— i
CO
• H
l-l
OJ
4J
CO
e
•
>-,
i — i
Ol
• l-l
4-1
u
Ol
ex
CO
0)
M
r.
>
1— 1
X
•a
c
CO
„
M
h-l
M
X
f.
h-l
1— 1
X
co
0)
1 — 1
,0
CO
H
6
i-i
m
T3
O)
>
•H
l-l
OJ
-o
0)
M
CO
CO
4-J
C
CO
4-1
3
P—J
0
a.
IW
o
CO
fii
VU
• H
4-1
• H
4J
C
CO
3
cr
C
o
CO
4-1
CO
-a
57
-------
<
M S
O O
H H
Si
y O
O OS
£ ^
s«
>i O ,-,
IALS RECOVER
OLLUTANTS FR
GLASS (1990
> K PL, Q
S Cd Z
H fe ?
S g° .
« ws
< fe ta 5
H O H £
h' £
!!*
H 0- *
W £s W
S O bj
iJ W w
§ en In
*|o
O P
M
BS
W CO
ta
j^
B
H S
E
H
Q
8
o
SS
o
cog
o o
a H
S
STEEL
ODUCTION
03
ft.
1
0 B
H nJ
> O
M ft.
W ^"^
§1
w
S
O
0 ^
5oos"^?2s
o ° ' ' >7
1 CS
1
|Q a^z^^Sz
c^l
1
Oi CJ
o
o
o o ^
co . in -i H in
"""oom •"* mroco
^o o m I CM ro
I m i i i/>
I
CNl
i
S
0)
•a
10 i-l
01 K 10
4J g ffl
n 3 -o
rH rH -H
3 4-1 M
0 O CO
•H 01 3 2
4-1 4J rH O
M W <*-! J2
CO i-f M
O. 3 CO CU
O3 CJ
rH -H O O
CO 4J 01 M
4-1 Vl CO CN CS fl TJ
MHCuOOc/3Z§5C
"^
•a
01
M
01
o
u
01
CO
rH *
« c
ti 3 w
(-1 -H g
Q) 4J Q
t! a -H
"t 3 co
^ "S m
O ^H
"S p. §
s m •H
B rH rt)
•H H 01
C cc jj
° 0 o
4J 4J g
o i
3 VI
•0 0 c
a w „
O fll
s^ -
^ 2 4J
60 fl *o
C 2 ^
n) nj -
*^3 co
C 4-» -
1 CO
fH rH M
Cfl CO rH
•H CO
* rl -H
i-H -H
O r>
•H 01
4J CJ 00
Vi cd B
0 rH -rl
a a S
01 iH
(U T3 3 5
CO rH 3 M
at cfl I-H .j jj
jc tx a at n
H -H 0*3 d
O -H
*H ni nl
. B 4J ™ 2
92 ° - M
§ S c '„ S
*"* § ® 0
C Vj 5 "^
-------
X!
O
M
C/l
U
C/l
al requires less energy than
• H
l-l
0)
4-1
Cfl
E
T3
0)
i — l
CJ
O
Ol
J_^
J-J
4H
CO
co
cfl
rH
M
•o
d
CO
r,
C
3
d
• H
E
3
i— i
cfl
r,
rH
01
01
4J
CO
4-1
O
d
o
• H
4-1
O
3
O
>H
PM
uld result from substituting
o
3
4-J
Cfl
43
4-1
d
o
•r-l
4-1
CO
l-l
0)
CD
d
o
o
^
60
fL)
OJ
d
0)
0)
£H
.
CD
rH
Cfl
•rH
^4
01
4-1
CO
E
d
• iH
60
l-i
• H
£>
B
0
IH
4-1
d
o
• iH
4-1
O
3
0
|H
CX
O)
CO
0)
43
4-1
4-1
0
d
o
•H
4-1
O
3
T3
O
l-l
CX
0)
43
4-1
d
• r-l
CO
<— 1
cfl
• H
^l
OJ
4-1
CO
E
d
• H
60
IH
• H
£•
rJ
O
4-1
0)
4-J
CO
cfl
•o
•r-l
rH
0
CO
rH
cfl
CX
•H
o
•iH
d
3
E
g
o
^
4-1
13
0)
^i
0)
0
o
0)
t-i
CO
rH
CO
•H
l-l
OJ
4-1
cfl
E
based on the following as-
o>
|H
01
co
d
0
• H
4-1
CO
r— 1
3
U
rH
CO
O
0)
43
H
.
1— 1
£>
X
0)
, 1
43
CO
H
d
• r-l
T3
O)
4J
CO
r— 1
3
r\
CO
4-1
CO
• H
CO
01
O
d
cfl
4-1
CO
43
3
CD
OJ
0)
l-l
43
4-1
.
co
d
0
•H
4-1
CX
B
3
co
processed for resource
etals, 225,000 tons of
E
0)
43 CD
3
rH O
1— 1 rJ
•H V-l
3 0)
4-1
0)
4-1 CX
CO CO
CO IH
3 0
CO
T3
•H 4-1
rH O
O
co co
d
rH O
Cfl 4-1
CX
•H O
0 0
•r-l 0
3 LO
E ^>
4-1
O CN
CO T3
d d
O cfl
4-1
n
d ^^
O M
•i-l M
rH
rH OJ
•H rH
B 43
CO
0 H
CO ^
** ^
0 rJ
ON OJ
O» >
r-H O
O
d OJ
M IH
•
recovered (Table XI).
01
43
, — i
, — 1
• H
BE
4-J
0)
rH
i — 1
3
0
CD
co
cfl
rH
60
4H
O
CO
d
o
4-1
o
o
o
r.
O
o
1 — 1
f\
CN
*o
d
cfl
n
B
3
d
• H
E
3
CO
CX
CO
O
CO
be used in materials
rH
rH
•iH
3
co
CO
cfl
i — i
60
-o •
C co
Cfl rH
CO
r, >|H
E ^
3 QJ
C 4-1
•H cfl
E E
3
— 1 d
Cfl -r-l
60
" M
CD -H
1— 1 >
cfl
4-1 l-l
OJ O
E ^
CD 4-1
3 d
O OJ
rJ B
IH 01
OJ O
4-1 CO
i— 1
X) CX
<1J 0)
IH IH
OJ
> CO
O CO
O
o> d
V-i O
• H
O> 4-1
43 0
4J 3
T3
rH O
i— 1 M
M
X
*"O
d
cfl
r\
rH
M
h-l
X
r\
M
rH
X
CO
01
i — i
rQ
cfl
H
QJ
>,
! 1
OJ
^
•H
4-1
O
O)
cx
co
0)
l-l
*t
co
d
o
4-1
rce recovery processing
3
0
CO
01
^i
^j
O
4-1
T3
d
CO
d
o
• H
4-J
U
3
T3
O
l-i •
cx un
i — ,
CO O>
I— 1 rH
Cfl
•H d
IH T-I
0)
4-1 CO
CO CO
E
o
IH o*v
O CT>
4H rH
CO d
4-1 -H
d
OJ 0)
E E
0) CO
IH CO
•H
3 01
cr 43
0) 4-1
^J
O)
^i 43
60
l-l rH
OJ rH
d -H
H 3
0
among the recovered
cipal solid waste.
*"O • iH
O) C
4-> 3
cfl E
O
o d
t— 1 -H
rH
CO CO
4-J
CU d
43 QJ
4-1
>-, d
CO O
E o
>-> 0)
rJ >
Ol T-I
> 4-1
O co
CJ rH
Ol Ol
M IH
0) M
O T-I
IH 0>
3 43
O 4J
CO
0) O
IH 4J
l-l d
O O
4H -H
4-1
CO M
4-1 O
d cx
OJ O
E M
0) CX
IH
•H d
3 -H
cr1
OJ CO
M r-H
CO
r*1* *H
60 i-l
U OJ
O) 4-1
d co
W E
9
59
-------
f> O
fi M
^J
5
W
>H
W
a
^
0
H
^
1
$
W
O
^£>
o
3
PQ
en
d
g
|
,_j
H
S
0
3
S
S
i
X
-H
1
B
Crf
a
!d
X
5
00
00
m
rH
s
4-1
f)
IN
H
cd
•d
(U
4-J
d o
•9 3
SI
> 0.
e iw
r Production froi
(106 Btu/ton o
S
in
O
rH
00
CN
*>
VO
^
U
0
a
T> "«
(t) O
u
Recove
itu/ton
w
B
r Production froi
Material1* (10&
£
o
o
o
o
v£>
m
\o
o
X
CO
0
4J
vO
B
o
o
m
•4-
en
in
41
3 0
O CO x-s
J= 01 3
c Ov£)
r 1990 Productio
Impl ement a t i on
Recoverya»c (1
£
o
o
o
m
m
CN
CN
O
X
"*
o
4-1
CO
o
0
o
5
m"
^H
4)
a
o
m ^-s
J3 01 3
•H pa
y M-I
d o
r 1990 Productio
Impl emen ta t ion
Recovery1** c (1
£
o
§
o
s
o
o
o
§
o
o
o
0
m
3
4-1
CO
O
rH
C1
4)
r Reso ur ce Re co v
£
00
f»
rH
|
rH
ft
rH
o
O
§o
0
r") (N
ID CN
CN «
O ^
O " H
" --N rH
m r*. c*t
>o m ^ i
O
CO -i-) rH
*o
X
Jf^
00
(N
O rn
r-i 0*1
-H
CN
CN 00
5
O
O
o
K ^ ^
n
^
f-e
G
o
CO
E
4)
§
3
"s S?
Su "3 S
M « S
5s s s
Q~ - g
4J ex
0) 4)
2 prf
cn
rH
cd
01
Rt
B
C
•H
ff
^
O
g
•H
4J
O
a
cd
i-t
^
o
4-1
•s
cd
cT
•rl
5
n
CO
4J
a
0)
E
0)
3
41
14
00
41
s not include en
4)
«*
rH
nj
•H
rl
4)
4>
tj
g
4)
M
"4-t
O
§
rl
o
ex
CO
£
0
T3
4)
4-1
3
T3
rH
o
CO
r-t
CO
a
•H
U
•H
C
3
e
4-1
O
g
•H
CO
4J
rl
O
ex
cO
i-i
TD
cd
1
4J
CU
rj
8
o
CO
s
B
•3
2
00
Of
s not include en
4)
a
T-t
00
M
>
01
U
rH
(X
01
rH
3
o
a>
cq
I
-0
•H
rH
O
CO
H
C5
a.
-rl
CJ
"&
3
S
rl
-o
CU
CU
>
o
0
£
3
•H
01
4-1
cd
S
u
•H
£
CU
00
fl)
1
q
•rl
^
cQ
^4
a>
4-1
cn
O O
g ti
•-H 3
u o
3 rl
•0 &.
0
4-1
0 0
CT*
r-H rl
o
o
those portions
erial, i.e. , not
o S
j, §
o
g
•H
3
•H
M
3
0)
1
CD
CO
ra
•D
•H
rH
0
10
ex
•H
o
•H
c
g
s
o
M
£•
CU
O
o
4)
M
0)
£
0
CO
01
t-l
U-l
o
c
o
•H
CO
4-1
C
0)
8
D.
s
•H
O
rH 3
^r cn
0)
•a n
S
cd cu
O 4-1
CO
co co
4)
u c
SO
•H .
O> CJ rH
cu -a -H
Prf O rl
=" rl 01
ex 4-t
w co |3
O rl 00
4) rl
§ %•$
Z * M
3 C 0
PQ
ed on 0.2 x 106
rgy conservation
overed materials
01 CU O
CO MM
•0 01
S4H
4-.
1
4J
CJ
rH
3
60
-------
Xi
w
,-]
M
.
60
S-i
O)
d
o>
01
X!
4-1
U-l
O
>>
S-l
0)
>
0
o
0)
S-i
CO
CU
T3
3
i— i
O
d
• H
CU
4-1
CD
CO
3
T3
•H
i — 1
O
CD
i— 1
cfl
CX
•H
0
• H
d
3
B
B
o
r-l
U-l
>,
S-i
CU
>
O
o
CU
S-l
CU
o
S-l
3
o
CO
CU
oi
recovered
0)
XI
, — 1
1— 1
•H
&
01
4J
CO
CO
3
T3
• H
1— 1
O
co
i — i
CO
CX
•H
O
• H
d
3
B
d
• H
>-,
60
rJ
cu
d
0>
0)
XI
4J
4-1
CO
XI
4-1
T3
0)
B
3
CD
CD
cfl
CO
• H
4-1
1— 1
•
CU
4-1
CO
cfl
3
CU
XI
4-1
d
• H
4-J
d
-,
XI
-a
d
cfl
CO
S-i
O
4-1
cfl
S-i
0)
d
•H
o
d
• H
rH
1— 1
Cfl
3
t-i
0)
4-1
Cfl
3
d
• H
CD
CO
3
U-l
0>
S-i
3
CO
S-i
0)
XI
4-J
U-l
o
60
d
•H
d
S-l
3
Xi
CO
co
CO
S
>-,
XI
O
1-1
U-l
d
0
• H
4-1
O
3
"O
0
S-i
CX
>,
60
S-i
CU
d
0)
0)
S
o
CO
CU
O
CO
i — i
cx
cu
S-i
rH
rH
•H
3
>>
60
S-l
CU
d
cu
-a
cu
rJ
CU
>
0
0
0)
S-i
0)
XI
4-1
4-1
Cfl
XI
4-1
T3
d
cfl
rH
CO
0
O
XI
4-1
•H
3
i— 1
01
3
UH
T>
Ol
>
• H
S-l
CU
-a
§
S-i
U-l
o
60
• H
d
S-i
3
XI
CO
CO
cfl
B
f,
d
o
•H
4-1
CO
3
Xi
B
O
0
rH
Cfl
O
CJ
S-l
O
UH
CO
S-l
O
4-1
O
Cfl
UH
d
o
•H
CD
CD
• H
B
CU
01
XI
4-1
T3
CU
4J
CO
•H
i— 1
0)
S-i
CO
rH
I-H
>
X
0)
t— 1
XI
cfl
H
d
I-H
•
1— 1
cfl
O
O
CU
S-i
CU
3
o
ON
ON
1 — 1
S-i
o
U-l
CO
S-i
0
4J
u
cfl
UH
R
0
•H
CO
CO
• iH
B
cu
0)
XI
H
•
rH
CU
3
U-l
-a
CU
>
•H
S-i
CU
T3
|
CU
CO
3
U-l
cu
M
UH
0
rH
CO
O
o
XI
4-1
•H
3
60
d
• iH
r-l
•H
U-l
O
0
T3
d
cfl
*!
0)
CO
3
U-l
0)
S-i
. .
co
d
0
• iH
4-1
CX
e
3
CO
co
cfl
60
d
• H
3
O
rH
1 — 1
O
UH
cu
XI
4-J
d
0
TJ
0)
co
CO
XI
, — 1
i— 1 CU
0 >
S-i O>
4-J rH
d
O 01
0 X!
4-1
U-l
o xi
4-1
CU *H
cu 3
r-l
60 0)
0) O
-a d
cfl
CU -H
XI rH
4-1 CX
B
0 0
4-1 0
4J d
d -1-1
0)
rH CU
cfl Xi
>
•H i— 1
3 rH
tr-H
cu 3
cu co
xi o)
CJ
rH S-l
rH 3
•H 0
3 co
0 3
ON CU
ON d
1 — 1
-a
d d
•H CO
>^ «
o m
d r-^
cu a\
•H —1
O
•H d
UH -H
UH
01 0)
i— 1
rH XI
O cfl
s-i d
4-1 -r-l
d to
0 4J
O 4-1
CO
d
O co
•H CO
4-1 3
3
rH 4-1
rH Cfl
O XI
(Xl 4-1
•
•
OO
r-.
ON
i — t
d
•H
T)
0)
•H
U-l
•H
U
cu
CX
CO
1— 1
o
s-i
4-1
d
o
u
U-l
o
cu
XI
4J
B
o
S-i
UH
CU
CO
o
XI
4-1
CD
cfl
Ol
B
Cfl
CD
01
XI
4-J
01
rQ
1— 1
1— 1
• H
3
0
a\
ON
- — i
d
• H
CO
S-l
O
4-1
Cfl
S-l
CU
d
• H
O
d
•H
1 — 1
cfl
cx
•H
O
•H
d
3
B
E
o
S-i
U-l
CO
d
O
• H
CO
CD
• H
B
W
•
CO
CO
CU
0
0
rJ
CX
d
• iH
4-1
S-l
Cfl
S •
CD
-> d
01 O
4-1 -H
CO CD
S-l CD
60 -H
B
60 0)
d
•H 4-J
rH CJ
i — 1 CU
Ol U-l
> U-l
CO cfl
S-i
4-J 4-1
0
' d
>-,
CO rH
-O rH
•H
M 3
0)
CX f*,
S-i
CO CU
c >
0 0
4-J O
CU
O rJ
0
fl >>
^ 60
r-l
S-J cu
o d
4-> W
C8
S-i
01 .
d LO
•r-l I-.
O O^
d rH
•r-l
d
< -H
{X,
T)
- 0)
60 1-1
S-i O
3 4-1
XI -H
co d
•H 0
s-t B
S-i
cfl co
EC cfl
01 -a
XI 0)
4-1 S-l
• H
B - XI Pn
o LO o i
S-l =ftr -H 1— 1
UH XI «
s-i 3 o
a> cu u
CO rH CO
O -r-l d rJ
XI O O O
4-1 XI -H UH
CO
CO S-l CO CO
CO 0) -H T3
r* B rJ
CU O CU cfl
B 4-1 T3
cfl co X d
co O cfl
- C/3 4J
cu "d co
xi to -a
4.) o d o)
i— I Cfl O
cu d
Xi 4J CU cfl
d 4J B
rH CU CO S-l
rH O 1— 1 O
.,H S-l 3 UH
3 cu o S-i
CX -H 01
O 4-1 fXi
ON O r-l
ON 00 Cfl CU
rH CX 0
• S-i
d o s-i 3
•H CN O O
•• UH CO
fe O
Q oo 4J 3
Oj CX CU
4-J 0) 3
T3 cfl 0
d x oo
cfl pn o) r-
Q ON
rH Oi 1 — rH
cfl | r-^
O rH ON XI
-------
OO
I—
T3
0)
T)
3
i— 1
O
d
o
u
^^
i i
M
h^
X
W
J
«
r— 1
d
•H
CO
CU
o
d
CU
• r-l
O
•r-l
U-l
m
CU
d
o
• H
4-1
CO
3
f\
i-LJ
e
o
4J
d
cu
o
rJ
CU
O,
o
o
1 — 1
• •
1— 1
CO
o
U
0
4-J
c
0)
U
VJ
0)
a
LO
O
. .
1— 1
CU
3
M-l
-o
CU
>
• rH
r-l
0)
T3
CU
CO
3
M-l
0)
Pi
0
4-1
d
cu
0
(-1
cu
ex
o
v£>
^
cu
CO
D
m
01
r-l
S
CO
lj
CU
4-1
co
CO
S
•a
•H
r— 1
o
CO
r-l
CO
a,
•H
o
• H
d
3
2
0
62
-------
ff^
0
o\
1
u
(X
§
M
W
o
g:
t-H
STT3
S s
is
C/l |J<
eg o
2
o
O &H
S i
rH ,J
PH <5
0 0
0 0
,a
o
H
hJ cn
O r*
0
rH 0 Cn
0
CM %O
A 0 CD
01 01 vO * Id
01 CM CM C — ' J2 *-*
4J O O O 01
« W "Z. JO 01 -O 10
rH ^4 0) rH 01
3 M O) CO TJ CO 13
U CO CO U >, S -H
V4 ^ ^^ 0 .C C rl
4J M a) o o
M X X -0 -S £ rH
CO O O O r-i rH JZ
&< w z u a: •< cj
4J
3
4J
3
O
^
00
01
c
w
OP
X)
•d
^
o
~^
3
pa
o
o
o
o
i
o
o
UH
o
01
3
rH
id
00
c
•H
4-1
id
01
01
00
^1
01
.a
•0
01
to
id
.0
o
CO
o
4J
id
rH
id
O
O
1
I
rH
01
•H
01
•a
i
01
to
3
UH
01
IH
00
a
•H
rl
TH
UH
o
O
4J
id
rH
a.
^i
01
g
(X
cd
3
o
H
to
01
1
o
UH
id
4-1
id
•a
i**,
Oi
rH
S
o
UH
T3
01
•H
0
O
eating values were 5757 Btu/pound RDF and 9500 Btu/pound co.
emission controlled by electostatic
01
00
CO
0)
^J
^^
CJ
CM
41
"
S
M
at
w-t
%^
Kt
01
.§
cn
CN
01
8
U.
0)
S
(_l
o
H
•H
a
•H
o
01
n
a.
Coal-Fired Power Plants (Reference 22) .
u
0
UH
•0
1J
CO
•a
pi
4J
C/3
01
CJ
3
o
UH
n
PH
01
U
o
3
0)
SB
CO
o>
rH
4J
pj
14
IH
3
CJ
01 '
01
U
H
01
a
rH
O
01
U
to
id
3
•0
rH
O
to
rH
id
c.
•H
U
§
a
U-l
o
4J
01
4J
g
U
H
UH
rH
3
cn
4H
cn
>^
•o
S
CM
-a-
CO
01
0
n
01
n
01
UH
S
oo
01
iH
•8
rH
•rl
id
a
4-1
0
0
CO
4J
CO
Q
jji
j^r^
sf
CM
01
U
15
01
l-l
01
01
cri
•rl .
O
CM
01
O
01
UH
01
Pd
rH
g
H
nl
O
U
00
•H
B
3
4J
C
id
rH
0.
rl
01
g
a
3
o
H
CO
01
-------
Ml
q
0
CJ
01
n
cfl
i
01
4-J
CO
cfl
5
T)
•i-l
i— (
O
CD
1— 1
cfl
CX
•i-l
O
• l-l
q
3
E
o
4-1
13
M 0)
r-l 4-1
1— 1 Cfl
^» i — 1
X a)
l-i
w
r-l CO
M CO
H
O
ON
a —i
o
M 13
CO -H
CO
C3 C
U 0
CO T-l
M 4-1
P 0
3
13
o
a.
Oi
60
01
q
cu
l-l
o
4-1
CO
o
• H
l_J
CO
(3
0)
CJ
CD
0
H
^^
43
S — '
*O
C
cfl
M
,. — s
^3-
.^J-
O
3
O
jj
CX
ON
M
0)
q
01
•o
01
4J
o
O)
•<—)
O
l-l
CX
^^
cfl
0)
cfl
(1)
co
0)
43
H
•
13
O>
^i
Ol
• H
CO
r-
• r-l
O
CO
1— 1
CX
01
l-l
0)
4-1
CO
cfl
^
T3
• H
r-l
O
CO
r-l
CO
CX
•H
0
•r-l
q
3
E
S
o
r4
4-1
ON
l-l
O)
0
0
OJ
l-l
ON
60
l-l
CU
01
r?
4-1
•r-l
^
i— 1
CO
0
o
S
o
i-i
a
o
• i-4
4J
O
3
T)
O
M
CX
ON
60
0)
(3
01
13
O>
4J
O
0)
•i—)
O
l-l
cx
01
43
T3
i— 1
3
O
IS
4-1
cfl
43
4-1
CO
4-1
C
cfl
4-1
3
r- 1
i— i
0
CX
4-1
o
CD
01
•H
4-1
• H
4-1
C
CO
3
cr
a)
43
H
•
q
0
• H
4-1
CO
3
43
E
o
0
r— 1
Cfl
0
o
Oi
J3
TD
Ol
£>
• H
^t
O>
T3
£>^
60
l-i
0)
0
OJ
0)
t*.
4-1
4-1
O
o>
6
0
co
O
^
4-J
01
CO
a>
4J
(-;
4J
• l-l
^
o
ON
ON
i — i
q
• H
q
0
•r-l
4-1
0
3
•a
0
cx
ON
60
l-l
0)
C
O)
r-l
Cfl
4J
0
4-1
4-1
0
q
o
• H
4-1
}_l
O
cx
o
• H
4-1
• r-l
CJ
CD
CX
CD
CD
•r-l
^
4-1
60
q
• H
}-l
3
T3
*"O
01
4-1
4-1
• H
E
01
CD
q
o
•r-l
4-1
Cfl
i — 1
3
O
1— 1
cfl
U
0)
f~l
H
•
h- 1
t-l
r-l
£>
X
0)
r-l
XI
cfl
H
q
• H
T3
O*
4J
C
QJ
CO
0)
}H|
CX
0)
V4
cfl
CO
4J
cfl
T3
0)
n
4-1
13
q
CO
»\
13
0)
4-J
CO
i— I
3
CJ
i — i
cfl
O
q
cu
O)
43
0)
^
Cfl
43
CO
O
•r-l
l-l
CO
q
01
o
CO
• •
CD
q
0
•H
4-1
CX
e
3
CD
CD
Cfl
60
q
• i-i
IS
o
1— 1
I— 1
0
4-1
CU
43
4-1
q
o
13
0)
CD
Cfl
43
0)
l-l
01
IS
4-J
3
O
43
4-1
•i-l
^
CO
q
0
4-1
VD
o
1 — 1
X
VD
CO
O
-H
O)
43
i— 1
i— 1
• H
S
o
ON
ON
i — i
q
•r-l
q
0 •
•r4. ON
4-1 l-l
CO 0)
M O
Q) O
q o
0) 0)
60 l-i
rJ 0)
OJ O
S n
O 3
CX O
CD
r4 0)
0 l-i
4-1
4-1
q o
o
•H q
4J 0
CX -H
E 4-1
3 cfl
CD 4-1
q q
o cu
o E
Ol
i— i i— i
cfl CX
o E
u -H
•
CD
•H
43
4-1
l-l 4-1
O 0
4-1 •
4-1 ^
T3 i — 1 M
cu CB cu
CO 43 0
co O
o) E cJ
O O 01
0 H 1-4
l-l 4H
cx ^,
13 60
01 Ol l-i
43 U Ol
3 q
r-l 13 O)
r-l O
•H IH 43
^ CX 4-1
•r-l
^ Ol 3
S 43
CO 60
s i"-i q
^ r-l -r-l
•H q
01 is i-i
4—1 3
CD s~\ 42
cfl fc
5 P CO
OA CD
*O ^^ cfl
••-I e
•— 1 r-l
O 0) O
CO 3 60
4-1 1-4
r-l 01
CO 13 13
cx o) q
•.-i 0 3
O -i-l
•l-l l-l r-4
q cu i— i
3 13 -H
E I S
01
4-1 CO 4-(
0 3 r-l
4-1 cfl
CO 0) 43
q PS
O *^3
4-1 q
• co
^O ON
O l-l «
•-H 0) JS
> CO
x o s
CJ
O Ol 4-1
m i_i o
•^ Ol ON
O O 4-1
ON W -r-l
ON 3 4-1
-i o q
co cfl
q 0) 3
M M cr1
•
ON
60
l-i
0)
q
0)
01
E
0
CD
01
CJ
cfl
1— 1
CX
01
l-i
r— 1
I— 1
•H
>
Ol
4-1
CD
CO
IS
13
•H
i— 1
0
CD
i— 1
CO
CX
•H
O
•H
£3
3
6
M
M-l
K^
r-l
OJ
J> *
0 r-l
O CO
0) O
l-l 0
o, E
60 O
l-l r4
Ol 4-1
q
01 q
o
O 4-J
ON O
ON 3
T-H 13
0
q i-i
M CX
9
. *
A PA
64
-------
BLE XVIII (Concluded)
<
H
• •
S3
O
t—t
CO
CO
;=>
c_>
CO
M
Q
C
O
T3
Ol
CO
CO
43
O
OO
O
CN
4J
CO
i — 1
CO
0
0
•o
CO
fn
Q
Crf
U-l
0
60
C
•H
r-l
•1-1
U-l
O
0
A
f3
O
•H
4-1
CO
3
43
E
o
o
1— 1
CO
o
o
i-i
o
U-l
CO
r-l
O
4-1
O
CO
U-l
C
o
•H
CO
CO
•H
B
O)
Q)
43
H
•r-l
3
r-l
r-l
>
x;
CU
r-l
43
CO
H
0
•r-l
T3
0)
4J
CO
•r-l
i— 1
CO
cfl
s
CO
S
^
01
co
3
U-l
0)
r-l
CO
r-l
U-l
O
60
C
•r-l
C
r-l
3
43
co
co
CO
e
•u
CO
r>
r-l
CU
r— 1
•H
0
43
O
4-1
4-1
3
CX
C
•r-l
4J
CO
CU
teristics.
o
cfl
M
cfl
43
O
01
CO
01
43
4J
43
4J
•r-l
3
CO
1 — 1
o>
3
U-l
r-l
0
U-l
•o
• 1-1
3
4-1
PQ
CN
. — 1
O
r-H
XI
•o-
.
1 — t
vO
~H
0
4J
4-1
c
3
O
CO
r-l
•— 1
•r-l
3
0
OS
OS
1 — 1
C
•r-l
O)
4-1
CO
CO
3
T5
•r-l
i— 1
0
CO
i— I
cfl
CX
•r-l
O
• r-l
C
3
e
E
o
r-l
U-l
>-,
r-l
Ol
>
O
o
0)
r-l
would be generated by coal combustion (see Append
01
CO
• H
3
r-l
01
43
4J
O
4J
CO
43
4-1
r-l
O)
3
o
ex
Ol
43
4-1
U-l
O
B^S
•— 1 >-.OO
cfl
>
01
43
60
rW
Ol
C
w
.
O
r-l
0
.
CO
C
O
• H
4-1
CO
i— i
3
U
! 1
CO
O
r-l
0
U-l
01
1
M
1— 1
r-l
>
X
CO
C
O
•r-l
J-l
CO
3
a-
W
n
<
solid waste, energy will be produced by
i— i
cfl
CX
•H
U
• H
C
3
B
B
Q
r-l
U-l
>,
M
01
>
O
o
Ol
r-l
>-,
60
r-l
01
C
0)
43
4J
•r-l
s
• •
co
T3
O
43
4J
0)
E
60
f3
•r-l
3
O
r-H
I — 1
0
U-l
Ol
43
4-1
4-J
C
01
CJ
1-j
01
CX
00
•
vO
OS
* ,
c
o
• H
4-1
CO
3
43
E
0
U
i— 1
cfl
O
CJ
O
20:80 ratio: 2.8 percent
4J
Cfl
i — 1
Cfl
0
o
43
4-1
•r-l
3
&H
Q
Prf
U-l
o
60
•r-l
r-l
•r-l
U-l
o
u
o
4J
c
CU
o
r-l
01
CX
-------
0
t^
O'
z
LODUCTION 1
£
W
55
5
Prf
ft.
H
i
e^
0
w
U
H
M
§•
a
c
w
i
&•
<-•»
g
4J
VI
H
|
Pn
O
cn
Ed
M
H
o-
w
>
o
OS
(J
Pi
1
s
o
fa.
o
ttS
H
I— 1
S
i
-H 0 0 ^
* m en
^" CM
o
0 O CM
1*- CN "
• OO
CM rH
O 1
O O 11
o oo o m o
^H » o o co r* \o
i^ ^ CM •-! V *
o o o o
r- »a- m 13 m <•
I-*- CM o < 9 r-. "^
B5 (? ^.
CM "31 •* in
CO
o o o o o o
^J ?2 "N rH O CM 0
O en CM Q in in
O O O in -H V rH
•• - * v
iH CM r-*
§o o o o o
O O O O O O
O o o o -» en -*
-j? CM IN oo m csj m
o , O -H
•H ^-^ ^ O JS fa M
U M (U O
n] O O O ?•> r-j ,c3
O, « S5 U 33 < C_)
TJ
O
to
«H
•H
U
•H
-o
B 0
° u
B
^ «
o cd
&"
Si
O *••
U u-i
CO
M TJ
CU
0) U
O 3
° a M
S 4)
h oo 3
X M O
rH *O W
o c a
a o c
•H -H
§4J
1-1 4-J
UH O. Ol
O X
13 IH
ft) D. C
U O
3 0)
-O 4J -O
23 S
°5 5
•^ i ,;
13 0} .. o
H U O 4-1
3 00 tsi n)
O (0 M
U 4.) 4J at
4J 01 -H
OJ U rH U
^j tn cd c
PL, u
C »H
O ^ rH
4J i-t -H »
U « ? M
30 01
o * cd
M OJ M S
& X -H
4J IH C
a. 0 5
S UH U
MO HI
C ^ fe" 3
O * OJ r-
^H CO *— ' tn
+J 01 H £ r
o u o> cd T
*J W 3 rl
IM O. ^ 14H
O t* TJ o
(H 01
§> DO
•r4 rH M -S
w -H 01 c
U S TJ C
d J, 2 S
M QJ JD Q
IM 4) 03
4J 3 05
J" * ^ ^
66
-------
Xi
c
cd
CO
O)
cd
H
cu
r—I
cd
H
C
O
• H
4-1
O
3
"O
O
i-i
O.
B
0)
CU
,0
3
O
CO
CO
3
O
co
CO
a
•r-t
O
• H
C
B
§
0)
o
o
CD
i-i
0)
o
i-l
3
O
CO
CU
o
H-l
O
• H
i-l
CO
C
CD
O
CO
CU
f
4-1
I-l
cu
I-l
cu
c
o
M-l
C
o
CO
,0
g
o
CO
O
U
CU
O
CO
0)
o
CO
I—I
a
cu
•a
c
cd
T3
(!)
O
O
0)
CO
4J
C
CO
O
a.
CO
cu
c
cd
3
a*
C
O
c
CU
cu
o
cd
i—i
cx
cu
CO
• H
(4-1
O
o
CU
60
i-l
0)
c
(1)
x:
X
0)
i-H
-D
CO
H
•O
cu
N
CO
3
CO
CU
M
CO
cd
O
O
§
C!
O
•r-l
4-1
O
3
T3
O
I-l
a
W)
(-1
cu
c
0)
M
C
• H
i-l
3
O
CT\
ON
C
• H
67
-------
S
3
CJ
W
0
M g
S O
U 4J
£ ****
M
Q
r^^
O Oi
fe W
£
M CJ
§ 2 'c'
z o
M M jJ
U O ^
to pi
«§
H W
£r 3
3 P5
cd
^4
3
^
U
§
ll
w ^
PC;
fc-(
^~>
o
D3
M
S
H
H
l
s
0
in
o
t
o
m
o
o
o
rH
O
O
0
VO
CO
O
rH
CO
CU
cd
rH
o
•H
4J
^4
cd
PH
o
o
co
•^ o
o f** *^
O rH i-l
CO • O 0
* O rH «H/ |*v
CM 4J rH CO -J
CO CO CM
1 O O 1 +
CO 4J
ON
O
vO rH
in CM
^^ 1
1
o
CM
o o
• o\
m r~
a\ • o
o o r^ \o
O • rH O O
CM r*. in * \o
oT i i S S
CT» rH
co o o v V
« O vO
CM CM CO
rH M *v
r^ \o
r» o
o m
*
r^
O O o o
0 0 o 0
°« °- °. °. °
5} ^J oo in m
5 S S 2 S
CM" r-T v
i-H
^^
K"*
O
co o>
cd "O
^ CO 43
/~x ^^ co cd cu
CM CM fl N-' TJ
O O 0 r-l
cn 5B Xi co cd
CO CO cd 73 C
cd cd o >, o
S- ^ 0 43 Ct-
rl CU
W X *Q TJ
O O O !>* H
w ^ cj EC <;
o
-a-
f.
o
,_(
o
0
oo
•,
,_4
00
1
o
CO
VO
CM
1
O
CO
t-T
^
CO
CM
O
O
sr
in
m
rH
^-x
rH
CJ
a
cd
CO
cu
•H
o
43
CJ
••H
cd
o
CJ
a
Q
M
IH
73
CU
O
3
13
O
^
a
01
•a
rH
3
O
4J
1
g
•rt
4-1
U
3
73
O
P.
^
DO
CU
01
rH
cd
4->
O
O
§
1-t
4-1
O
cd
r<
IH
O
(n
rH
cd
O
a
rl
g
•H
4-1
o
3
73
O
rl
O.
energy
rease.
cu o
43 CU
4J ^
m cd
o
—
cu "K
S 5
e
CU :
O
cd
rH "
O. CO
CU C
rl 0
•H
rH CO
rH CO
•H. -H
3 B
01
S C
CO -H
§ CU
CO
73 Cd
•H 0)
rH H
0 '-i
O =
01
rl
>> «
00 CJ
rl 0)
CU MH
G »H
Ex] U
O O
68
-------
X
X
w
PQ
^
H
* .
S5
O
r-l
CO
CO
p
o
CO
H
O
i— 1
i— <
•r-l
CO
_S
0)
CO
cfl
13
• r-l
r-l
O
CO
CX
•l-l
O
•r-l
C
B
O
M
U-l
01
0
0
CU
l-l
CU
0
l-l
3
o
CO
CU
l-l
o
U-l
o
• l-l
^
cfl
c
01
o
co
01
4J
U-l
o
(2
0
• l-l
4-1
CO
4-1
c
01
B
CU
1— 1
CX
6
r-4
I— 1
r— 1
•r-l
M-4
13
c
Cfl
r— 1
CU
4-J
c
0
0
0)
U-l
0)
CO
•H
42
H
CO
a
01
42
4-1
U-4
O
i— 1
Cfl
CO
o
CX
CD
• H
13
l-l
O
U-4
13
CU
J-l
•r-l
3
cr
CU
i-i
^
4-1
• H
0
CO
CX
cfl
CJ
i— I
r— 1
•H
U-l
13
C
CO
i— 1
CU
42
4-1
4-1
O
0)
U-4
U-l
CO
at will be generated in 1990 is tabulated
42
4J
^
CO
S
0)
42
j_i
U-4
O
CU
co
0
CX
CO
• H
T)
O
4-1
13
CU
13
01
CU
C
CU
42
13
i— 1
3
0
Jj
4-1
CO
42
4-1
^N,
4-1
•i-l
0
cfl
CX
cfl
O
ch as the differences in quantities of
3
CO
^s,
l-l
0)
^
0
o
o>
i-i
01
o
l-l
3
O
CO
01
l-i
U-4
0
co
4-1
O
0)
U-l
U-4
CD
4-1
O
0)
l-l
•H
13
(2
1— 1
•
X
X
O)
i — i
43
CO
H
C
• H
coal combustion, and pollution control
«
CO
0)
• H
4J
• H
^
• r-l
4-1
O
CO
60
C
• H
(2
• H
B
B
0
j-j
U-l
0)
^
• r-l
l-l
0)
13
13
r-l
3
0
IS
4-1
cfl
42
4-1
CO
CU
4->
CO
CO
u
13
•H
I— 1
o
CD
•
T)
01
lj
01
13
• H
CO
12
o
o
c
01
01
43
4-1
O
C
O)
^
cfl
42
CO
CU
^1
3
co
cfl
0)
B
mptions :
3
co
CO
cfl
60
C
•H
^
O
1— 1
1— 1
o
U-l
CU
42
4-J
C
o
T3
CU
CD
Cfl
42
CU
CU
IS
CO
C
0
• r-l
4-1
CO
r— 1
3
CJ
, — i
cfl
o
CU
42
H
ble II) will be implemented,
will be processed in 1990 for
CO
H
^^
O
OS
OS
. — 1
C
• H
^
r4
0)
£>
O
CJ
CU
l-i
01
O
l-l
3
O
CO
O!
I-l
l-l
O
U-l
0
• l-l
l-l
cfl
(2
O!
O
CD
O)
(-;
fn
0
01
4-J
CD
Cfl
13
• H
i — 1
O
CO
1— 1
cfl
CX
•r4
O
• H
C
3
B
U-4
0
CD
C
O
4-1
C
o
• l-l
1 — 1
I— 1
• H
B
o
CO
ft
9
CU
•
• l-l
60
(2
C
l-i
3
42
CD
CO
§
42
U-l
i— 1
CO
42
13
C
CO
00
C2
• r-l
co
CO
CU
CJ
o
l-l
CX
•a
(2
0)
I
4-1
C
0
l-l
U-l
^
42
U-i
•— 1
CO
42
*>
K*^
l-l
01
o
o
0)
M
01
CJ
J-l
3
O
CO
CU
V4
*
13
•r-l
r—l
CO
01
l-l
cfl
co
1— 1
ca
>r4
M
0)
4-1
Cfl
B
T)
O)
1— 1
1— 1
• H
U-l
•a
C
Cfl
1— 1
U-l
O
co
0)
•H
4-1
•H
CD
C
0)
13
13
CU
4-1
Cfl
B
• H
4-1
CO
W
f
69
-------
j
w
8
W
OS
U
CJ
PS
O
OJ
o
1— 1
[ SCENA1
EC
H
*
PS
g
O
y
w
g
en
H
EC
H
3
i
tf
I-H
H
[4
Q
H
C/3
s
W
en
E
W
OS
a
H
P4
W
O
rH
W
W
en
g
3
W ^
S QJ
W Li
tt. U
M ^-
Q
1-1 >* 4J
•J H MH
H M 1
En U 01
g •< rl
a «3 cd
,_,
H >>
5 3
P
' o
^
H'g
M
[z^5
tO
deH
M M I
pt, CJ 01
Hi U "-'
TJ
H 3
> o
***'
ff^
£ g
U 4J
Hi
§"0
*~"
cO
t)
(J- C
O r-
-4 TJ
en >-,
>H W
H 2 3
M ^- O
en w ^.
55 en ,0
W P rH
Q E ^
££
5
3
H
3S P
§E
i
t.
\
§
8
Pd
Pn
o
O^TO
•* fM
0
0 1^ 0
m CM n
r-l « CN
CM
CO ""I SO
iH CN n
CO
CM rH n
L/1 O IO
00 rH
O
0 f*
^ 00
m
m r^
• 00
CM rH
" £ °
TJ HJ
§0 o
o o
r- 00 O
cv CM
U
tC ° 00
c
O 00
•H B
4-1 -H
fl rH
Ol -H ^
fi MH >i
•H TJ I-
u B at
CJ
>, >^ at
r-l rH Ot
SCO O
CO M
RO 3
a o
en to en
•H "H 01
Q Q &>
00
o
CM
1
4-1
O Ol
in 01
- l
^o i)
CN U
cd
T)
ij
o
eo
B
o
«? o
0 S
°1 d
O Li
o\ u
CM Cd
T)
^
3
P O
rH
0 |
7^
o
1-1
<;
o
U)
O
•rl
M
01
§
u
CO
l-l
o
H-l
M
M
41
r-l
J3
ff
01
01
en
01
t-i
3
TJ
01
U
0
l-l
0.
X
u
CO
01
0
4-1
u
CD
,Q
3
CO
CO
•H
4J
cd
,C
4-1
Ol
4J
CO
«t
•H
0
U)
rH
d
O.
•H
U
•H
B
o
4-»
,B
bo
-H
o>
s
>^
J3
•rl
M
o
P>
O
ij
0.
CO
u
4J
0}
u
-H
TJ
5
(U
00
d
4-1
c
01
o
n
111
p-l
4)
CO
d
M
U
HI
•o
(D
0
J>!
4-1
H
0
cd
8-
U
rH
rH
^
•o
t-H
t3
0)
H
^H
U
0*
(U
H
fj
-H
0)
CO
cd
M
to
ffi
"
^
TJ
B
cd
v£l
W
01
u
B
0)
l-l
0)
0)
PS
X
*J
•H
ft
o
CO
U-J
>>
M
o
tJ
OJ
o
rl
3
O
01
rl
W
d)
e
<3
rl
o
<0
4J
n)
TJ
0
1
1
'fi
0)
o
Q
O>
01
a
B
0)
01
Pi
0
4-t
nera
•rl
O
C3
M
4-*
CO
01
3
J3
W
S-i
J
0
00
m
a
•H
J2
U
00
M
01
m
?
OS
4J
B
cd
rH
P-
00
B
•H
eo
ea
a)
u
0
LI
O-t
eo
0)
3
43
C
eo
r4
M
0
00
cd
u
.B
a
oo
Li
O
to
0
u
01
Ll
>4~l
o
B
O
•H
3
•H
4-1
CO
&
3
to
Li
IH
4J
T-t
3
tn
0)
Li
TJ
iH
I
4J
<0
j:
4-1
CO
0)
u
CO
ed
^
B
•H
P
B
n
B
O
•H
4-1
U
3
TJ
01
Li
(U
1
t.
C,
•H
0
B
Cfl
01
5
CX
>,
60
Li
01
c
OJ
•a
C
cd
en
n)
•H
k-i
01
nj
E
g
0
Ll
W
0)
4_)
ra
3
TJ
^H
o
eo
c
•H
S
o
4J
o
3
T)
Li
01
J=
4J
Ll
c
00
Li
0)
•a
B
4-l
70
-------
1— 1
X
X
w
rJ
m
<
H
• •
z
0
M
C/3
M
C3
0
CO
H
O
>.
l-l
CU
>
O
0
cu
l-l
cu
o
l-l
3
0
CO
cu
l-l
l-l
o
U-l
o
• r-l
l-l
CO
(3
cu
o
CO
cu
43
4-1
U-l
O
C
o
• H
4-1
cfl
4J
(3
CU
g
CU
l-l
cx
g
• r-i
U-l
0
4-1
a
a
cu
cu
,J3
4J
C
0
co
4-J
CJ
cu
U-l
U-l
CU
cu
43
Pi
co
4J
o
01
U-l
U-l
CU
4-1
o
CU
l-l
•r-l
13
cu
43
H
•
M
X
X
CU
r— 1
43
cfl
H
a
• l-l
13
CU
N
•i-l
l-l
cfl
s
£3
3
CO
cu
l-i
cfl
s-^.
M
M
CU
r— 1
43
CO
H
•^s
O
ON
ON
r— 1
C
•l-l
CU
4-1
CO
CO
s
13
• i-l
i— i
O
CO
r— 1
CO
CX
• H
0
• l-l
c
3
g
g
O
rJ
U-l
1
CO
• H
•o
13
CU
4-1
4-1
• r-l
g
CU
CU
43
I— 1
I— 1
• r-l
3
4-1
cfl
43
4-1
CO
4-1
C
CO
4-1
3
r-4
r— 1
O
CX
U-l
o
co
0)
• H
4-1
• H
4-1
C
CO
3
cr
c
• r-l
CO
cu
60
V3
cfl
43
CJ
CU
43
4-1
^*,
cfl
V ^
cu
l-l
cfl
O
•iH
M
cfl
(3
CU
O
en
co
• r-l
43
4-1
U-l
O
cu
43
4-1
/• — *
-0
^^
13
C
CO
ft
co
0)
l-l
3
13
0)
O
0
l-i
CX
•— 1
CO
CD
0
CX
en
• r-l
13
U-l
O
4-1
r— 1
3
co
CU
M
a)
43
4-1
CO
cfl
CO
l-l
CU
4J
cfl
s
TJ
£3
3
O
M
60
13
(3
CO
CU
O
cfl
U-l
l-<
3
en
— ^.
l-i
• r-l
cfl
CD
43
4-1
0
4-1
13
CU
60
|J
cfl
43
CJ
13
e
cfl
CU
4-1
CO
Cfl
»
13
• H
, 1
o
CO
, 1
Cfl
CX
• H
O
• r-l
(3
3
g
co
_
0
ON
ON
i — 1
U-l
o
CU
CO
O
cx
en
• H
13
0
4-1
T3
CU
13
cu
cu
a
cu
43
1— 1
1— 1
• H
U
4-1
cfl
43
4-1
>->
4-1
• i-l
O
Cfl
a,
co
o
r— 1
r— 1
• H
U-l
T3
£3
cfl
r—l
{3
•r-l
CU
60
C
cfl
43
O
A
X
X
•a
a
efl
X
CO
cu
r-l
42
cfl
H
g
O
l-l
U-l
cu
l-l
CO
CO
4-1
CO
13
0)
CO
cu
43
H
•
CD
CU
l-l
3
13
CU
O
o
l-l
cx
, 1
cfl
CO
0
cx
CO
• r-l
13
4-1
C3
CU
l-i
CU
U-l
U-l
• r-l
13
CU
43
4-1
r i i
o
CO
CU
3
T3
• r-l
CO
CU
l-l
cu
43
4-1
.
>,
r-<
CU
>
•l-l
4-1
O
CU
cx
CO
cu
l-l
13
•
>,
r-l
cu
>
• l-l
4-1
o
CU
cx
CO
cu
l-l
cu
43
4J
g
O
rJ
U-l
CU
>
•r-l
l-l
CU
13
CU
4-1
co
cfl
3
13
•H
1— 1
O
CO
r— 1
CO
CX
•rH
O
•l-l
C
3
g
g
O
l-i
U-l
>*
i-i
0)
>
o
0
cu
r-l
cu
o
l-l
3
o
CO
CU
l-l
U-l
0
CO
4-1
o
cu
U-l
U-l
cu
4->
o
cu
M
• H
13
c
• H
CU
43
H
C
O
•H
4J
O
3
13
0
M
cx
cu
f
4J
C3
•H
en
i— i
cfl
• H
r4
CU
4-1
cfl
g
C
•r-l
60
l-l
•r-l
>
l-l
O
U-l
c
o
•r-l
4-1
3
4-)
•r-l
4-1
CO
43
3
co
l-l
• l-l
CU
43
4J
13
C
cfl
>-,
60
M
CU
c
CU
T3
(3.
CO
CD
i— 1
cfl
•H
l-l
CU
4-1
CO
g
U-l
0
>-,
t-l
cu
>
o
o
cu
l-l
co
4-1
o
CU
U-l
U-l
cu
>>
r-l
cfl
13
c
O
O
cu
co
cu
43
H
•
>>
60
l-l
CU
£3
CU
13
C
cfl
s~^
co
CO
cfl
i— i
60
13
G
cfl
r\
g
3
a
• H
g
l-l
cfl
»
i — i
cu
cu
4-1
CO
>*
1— 1
1— 1
W
o
• H
U-l
• H
O
CU
CX
co
^^
CD
rH
n)
• H
rJ
CU
4-1
CO
g
U-l
o
I
CO
• l-l
•a
— ^
•a
CU
4-1
4-1
• l-l
g
CU
CU
43
•-H
i— 1
• i-l
&
4-1
CO
43
4-1
CO
4J
C
cfl
4J
3
r— 1
i— 1
O
cx
U-l
o
CO
cu
• l-l
4J
• l-l
4-1
C3
Cfl
3
a-
cu
43
4-1
C
• H
CO
CU
60
C
cfl
43
O
0)
43
4-1
^^,
CB
CU
l-l
CO
• H
CO
C
0
O
C
• H
C
o
• l-l
4-1
CO
>
l-i
CU
co
C
0
o
Q)
43
4->
s~^
43
13
G
cfl
r.
C
0
• H
4-1
O
3
13
O
l-i
CX
>N
60
M
CU
C
CU
13
C
cfl
CO
i— *
cfl
•r-l
r4
c
CU
CU
43
4-1
O
4-1
13
CU
60
l-i
CO
43
O
•i-l
i— 1
O
co
1— 1
cfl
CX
• H
O
• H
C
3
g
0
l-i
U-l
>N
60
l-i
CU
(3
CU
U-l
o
>,
l-l
cu
>
o
o
cu
l-l
cu
43
4-1
CO
cfl
1— 1
! 1
CU
3
CD
cfl
(3
O
• i-l
4-1
O
3
13
O
l-i
CX
CO
i— 1
cfl
•H
l-l
CU
4-1
CO
g
l-l
0
U-l
13
CU
I-i
• H
3
cr
cu
r4
>,
60
l-l
cu
C
cu
.
CO
1— 1
cfl
• r-l
l-i
CU
4-1
cfl
g
c
• H
60
)-i
•r-l
>
l-i
O
U-l
CO
1— 1
cfl
• i-(
I-i
cu
4-1
cfl
g
13
CU
l-i
CU
>
O
o
cu
i-l
U-l
o
13
O
•r-l
4-1
3
4-1
• H
4J
CO
42
3
co
CO
• l-l
43
4-1
g
0
M
U-l
4-}
I— 1
3
CO
cu
l-i
i— i
i— i
• H
5
4-1
CO
43
4-1
CU
4-1
co
CO
13
71
-------
ction
4J
0
C
3
13
0)
[-y|
•
>•,
1— 1
CU
•H
4J
O
0)
CX
CO
cu
t-i
r>
M
M
M
s^\
13
CU
13
3
i— i
0
a
o
u
^^
M
X
X
w
hJ
«
X
T3
a
CO
M
>
X
co
0)
1 — t
43
cfl
H
s
o
(-1
M-l
13
a
cfl
X
M
X
13
a
cfl
>
X
CO
CU
I— 1
43
CO
H
6
0
i .
M
<4-l
CU
1-1
CO
cfl
4-1
CO
T3
cu
CO
CU
.a
N
<4-l
4-1
|
3
CO
CU
1-1
13
3
O
S
4-1
CO
4=
4-1
a
0
• H
4-1
CO
>
I-l
CU
co
a
o
o
>-,
60
l-i
CU
a
CU
T3
a
cfl
CO
CU
1 1
co
cfl
S
13
• i-l
i— 1
O
CO
•a
a
cfl
CO
4-1
a
CO
4-1
3
i— i
i— i
O
(X
LH
O
co
CU
• rH
4J
•i-l
4-1
a
CO
3
cr
a
•r-l
a
o
•t-i
•4—)
o
3
T)
CU
I-l
*O
a
cfl
A
a
o
• H
4-1
O
3
T)
0
)-i
CX
CO
i— H
cfl
• 1-1
1-1
0>
4-1
CO
B
E
O
I-l
14-1
CO
CU
4-1
CO
CO
?
T3
•H
0
CO
a
•1-1
a
o
• H
4-1
O
3
13
CU
l-l
ft
CO
1— 1
cfl
• rH
1-1
CU
4-1
CO
e
?
CO
)-i
60
a
• H
a
• H
6
•
>,
"O
3
4J
CO
co
•H
4=
4-1
a
•H
13
CU
13
3
P^l
O
a
•H
4-1
o
a
0)
1-1
0)
5
a
o
•H
4J
CO
3
43
E
O
O
CO
0
CJ
S
0
14
^4-1
CU
3
T)
•H
CO
CU
V4
72
-------
(J O
CO M
(J
tn
s
1
ui
tn
^1
tn
tn
W
B
a
o
dJ
to
w
tn
tn
u
J
1
•a
§
M
SB
OS D
W O
ss
p-
cn O
rl M
< H
H CJ
ftj -3
M a
H O
s &
S P4
p
^
z
H
EJ
a.
Co
"-1
-
S
o "">
•* S R
0 .
+ S S
1 CM
C
^
oo
r-
-o- in ^
o crs o
l f)
0
r-
y
§
CO
£
§o
S4-I
CO
0 0
?CM 00
m a^
t
l
-cr
m m ^
o" in
i
o
-3-
u~i in o
oo o w
*x a a
r-
+
CM CM
0 0
c/l Z
tn w
n) co
X X
0- Wl Z
m
°1
O
ro
CM"
0
4J
O "sj
CO
CM
§
CO
CM"
o m
4J CM
O CO
m
o
6
o
-H"
O
0
*— ' 1
1
o
o
o in
00
m ro
o m
m i
CM
o"
m
m
""* o
0 O
4J m
m +
u-l
+
in
_Q 3
d
u tn
•a
o >.
o
H*
u-i .
S 5
CN *-i
O O — '
4-1 4-» O O CO
tn o i
CM *
+ o
o"
Oi
o
O <-t ~<
•vr o CN
CN 4-» t
+ 0
00
r--.
"
00
CT\
O
~*
o
O 4-i . oj
j= -d
T3 H
cn g £!
dJ o
>. d
X cn o
dJ cO QJ
<3 O S
O 0
O O
O O
0 -J
1 1
Z
*
Z
o o
O 0
o o
o -H
O (X,
a r
! IH M S M
73
-------
•o
(tl
3
a
o
-i i^
?^coeno2i<-i'*tY1r-,'*^-, °
+ f04Jj^ + O'-ICM0-
a
•H
•o
01
60 •
M 01
CO CO
42 CD
u «
CO M
•H 0
"O 01
•a
01
43 CO
r-t :
H CO
•H 3
» d
•H
1 1 £3
M -
4J -
01
CO CkO
U M
C cd
cO 43
4J U
H "
in -a
o
f\, 4J
C
14-1 CO
O 4J
3
CO i-l
4J (X
a a
Tt -H
01 0)
U CO
Ct CO
0) 01
ai u
E 5
s
4J
3?
to
•8
•o
3
rH
o
•H
4J
o
01
^4
s
o
•H
4-1
CJ
3
•a
o
IJ
o.
f>^
00
iJ
cu
B
at
*o
C
to
CO
cd
•H
01
4J
to
s
^
^,
l[ 1
1-1
a)
CO
to
B
CO •
CO >-.
* -a
3
C 4J
•H CO
m ca
4J -H
C(t U
3 C
i-l
0
PM
43
74
-------
Ill
4-1
I
at
ai
T3
01
d
w
I
XI
01
H
o
w
Pu
h
Pd
i
g
0
CJ
U
en
T EFFECTS
M
Q
IS
X S
0! H
2 Q
W O
BJ
(X,
z,
VI O
^ H
rH O
SB
H 0
ISPOSAL
OF MSW
Q
gl
3
H
1
s-^
C
"--* S~\ O X— N
o o o o
O Q " O
o in o o o
- * r- o *
O ^* O i~™t *-3" if)
*tf" 00 Q " ^ 00
— u~i i— I ^ CN ifl Q i— ) | <*t cs
i °9 r-| « 1 •*-> -P f 4J
o £ ' p m o
-------
T3
CU
•O
rH
O
O
W
pq
H
^
<
o
H
0
>-i H
O H
Pi CJ
W ;=>
Z Q
co WO
CJ PH
W
fa
fa
fa*
^ CO 0
§ H M
f"^ ^C t""*
CJ rH CJ
w PS n
co W 0
H O
S£
co
H
CJ
W
fa hJ
fa
rH
X O
0
0 O
O "
O r-H
.0 « CM
O CO
0
H cd >, nj
0 CX tl >
MH Cd --v CU Jj
CJ 4-1 > 3
4J 0) 0 CO
C rH 01 o e
01 rH MH 01 CJ Q
0 -H 1 Pi ^-x /-N o X-N
0) MH Ol 3 W 3
tH-dM >\4J O >>4J
•HC3CJ MpqO C)0cq
3cdcd (-iv-'pq MO
cr J ^^ cu ^-^ 01
01 C (3
Pi W W
O
0
o
•t
vO
co
rH
CJ
w"
0
CJ
^**
•
£>^
4J
•rl
CJ
cd
a
id
o
H
rH
•H
MH
•d
rH
M
O
MH
4J
Pi
CU
g
^1
•H
3
a-
0)
^
pj
•H
01
co
cd
^j
o
a)
•d
cd
CO
CU
rt
o
TH
•d
a
•H
^
CO
pj
•H
s
cd"
01
01
C
o
iH
4J
Cfl
3
^3
6
o
o
rH
cd
O
CJ
6
O
)H
MH
T3
C
cd
C
o
•H
CJ
3
•d
o
}H
a
CO
rH
cd
IH
01
4J
cd
e
o
M
MH
CO
rH
cd
•rl
)H
01
4-1
cd
a
a
•rl
fiO
M
•rl
J>
MH •
O >>
•d
00 3
C 4J
•rl CO
ti
•H CO
B -rl
S 4J
0
£5
co -d
01 a)
4-1 id
ca 3
Cd rH
S o
pi
•d -H
•rl
rH 4J
O O
co a
•
4-1
C
0)
cd
^
•rl
3
cr
0)
rH
•H
O
Ol
•d
3
0
MH
O
CO
rH
CU
M
cd
pq
• •
W
0
CJ
pq
O
76
-------
REFERENCES
1. United States Department of Commerce. 1970 Census of Popula-
tion, Volume 1: Characteristics of the Population, Part 1:
United States Summary, Section 2, Appendix A, p. Appendix-9.
Social and Economic Statistics Administration, Bureau of the
Census, Washington, D.C., June 1973.
2. Regan, R.W. Department of Civil Engineering, The Pennsylvania
State University, University Park, PA. Personal communication,
September 1977.
3. United States Department of Commerce. 1970 Census of Popula-
tion, Volume 1: Characteristics of the Population, Part 1:
United States Summary, Section 1, Table 4, p. 1-43. Social and
Economic Statistics Administration, Bureau of the Census,
Washington, D.C., June 1973.
4. O'Brien, Catherine. Statistical Information Assistant, Popula-
tion Division, United States Census Bureau, Washington, D.C.
Personal communications, March 8 and May 2, 1978.
5. United States Environmental Protection Agency. "Fourth Report
to Congress: Resource Recovery and Waste Reduction," Delivered
August 1, 1977 to the President and the Congress. Office of
Solid Waste, #SW-600. Washington, D.C., 1977.
6. Hitte, Steve. Staff Engineer, Technology Applications Branch,
Office of Solid Waste Management Programs, United States Envi-
ronmental Protection Agency, Washington, D.C. Personal com-
munication, April 19, 1976.
7. American Public Works Association, Institute for Solid Wastes.
Activity Summary: Review Update September 1977. Solid Waste
Facts (first issue, undated).
8. Tchobanoglous, G., H. Theisen, and R. Eliassen. "Solid Wastes:
Engineering Principles and Management Issues." McGraw-Hill,
New York, 1977.
9. Hecht, Norman. University of Dayton Research Institute, Dayton,
OH. Personal communication, February 15, 1978.
77
-------
10. United States Environmental Protection Agency. Compilation of
Air Pollutant Emission Factors, 2nd edition. #AP-42, Section
2.1: Refuse Incineration. Office of Air and Waste Management,
Office of Air Quality Planning and Standards, Research Triangle
Park, N.C., April 1973.
11. Brinkerhoff, R.J., and W.C. Achinger. The Braintree, Massa-
chusetts, Municipal Incinerator. #SW-108, pp. 37-39. Office of
Solid Waste, U.S. Environmental Protection Agency, Washington,
D.C., 1973.
12. DeMarco, J., D.J. Keller, J. Leckman, and J.L. Newton.
Municipal-Scale Incinerator Design and Operation. #SW-13ts.
Public Health Service, Bureau of Solid Waste Management,
Washington, D.C., 1969.
13. Achinger, W.C., and L.E. Daniels. Seven Incinerators. #SW-
51ts.lj. Office of Solid Waste, U.S. Environmental Protection
Agency, Washington, D.C., 1970.
14. Weinstein, N.J. Municipal-Scale Thermal Processing of Solid
Wastes. #EPA/530/SW-133c, pp. 203-212. Office of Solid Waste,
U.S. Environmental Protection Agency, Washington, D.C., 1977.
15. McElroy, A.D., S.Y. Chiu, J.W. Nebgen, A. Aleti, and F.W.
Bennett. Loading Functions for Assessment of Water Pollution
from Nonpoint Sources. #EPA-600/2-76-151, p. 239. Office of
Air, Land and Water Use, Office of Research and Development,
U.S. Environmental Protection Agency, Washington, D.C., May
1976.
16. Chian, E.S.K., and F.B. DeWalle. Sanitary Landfill Leachates
and Their Treatment. Journal of the Environmental Engineering
Division, Proceedings of the American Society of Civil Engi-
neers, JJKKEE2): 411-431, April 1976.
17. Johansen, O.J., and D.A. Carlson. Characterization of Sanitary
Landfill Leachates. Water Research (London), 10:1129-1134
(1976).
18. Stabenow, G. Discussion on "The Use of Electrostatic Precipi-
tators on Municipal Incinerators in Recent Years" (by R.L.
Bump). Proceedings of 1976 National Waste Processing Confer-
ence, Supplement - Discussions, pp. 42-43. American Society of
Mechanical Engineers, New York, N.Y. , 1976.
78
-------
19. United States Environmental Protection Agency. The Report to
Congress: Waste Disposal Practices and Their Effects on Ground
Water. Appendix E, p. 509. Office of Water Supply, Office of
Solid Waste Management Programs, Washington, D.C., January 1977.
20. Hall, J.L., A.W. Joensen, G.A. Severns, D.B. Van Meter, and H.
Shanks. Emissions from Stoker Fired Boilers Using Coal-RDF
Mixtures. Paper presented at the 8th Biennial Waste Processing
Conference, Chicago, IL, May 7-10, 1978.
21. White, Robert. Midwest Research Institute, Kansas City, Mo.
Communication of unpublished data, June 8, 1978.
22. Office of the Federal Register. Code of Federal Regulations,
Title 40, Part 60.40, Subpart D: Standards of Performance for
Fossil-Fuel Fired Steam Generators. U. S. Government Printing
Office, Washington, B.C., July 1, 1975.
23. Coburn, John. The MITRE Corporation, Metrek Division, Bedford,
MA. Telephone communication of data for Harrisburg, PA incin-
erator provided by UOP, Inc. May 1978.
24. Lahre, Thomas. Air Management Technology Branch, Office of Air
Quality Planning and Standards, United States Environmental
Protection Agency, Research Triangle Park, N.C. Internal memo
to Ira Leighton (USEPA, Region I, Boston, MA), May 16, 1977.
25. Skinner, J.H. The Impact of Source Separation and Waste
Reduction on the Economics of Resource Recovery Facilities.
Resource Recovery and Energy Review, March/April 1977.
26. Rofe, R., C.G. Ganotis, S.A. Schneider, and H.J. Yaffe. Energy
Conservation Waste Utilization Research and Development Plan.
#MTR-3063, The MITRE Corporation, Bedford, MA, July 1975.
27. U.S. Environmental Protection Agency. "First Report to Con-
gress: Resource Recovery and Source Reduction." Delivered
February 22, 1973 to the President and the Congress. Office of
Solid Waste Management Programs, #SW~118. Washington, D.C.,
1974.
28. Gordon, Judith. The MITRE Corporation, Metrek Division,
McLean, Va. Data from site visit to Chicago Southwest Proces-
sing Plant, Chicago, IL, May 10, 1978.
29. Institute of Scrap Iron and Steel, Inc. ISIS Issues: Recycling
Ferrous Scrap Saves Energy. Washington, D.C., December 1977.
79
-------
30. United States Environmental Protection Agency. Compilation of
Air Pollutant Emission Factors, 2nd Edition. #AP-42, Section
7.2: Metallurgical Coke Manufacturing. Office of Air and Waste
Management, Office of Air Quality Planning and Standards,
Research Triangle Park, N.C., February 1972.
31. United States Environmental Protection Agency. Compilation of
Air Pollutant Emission Factors, 2nd Edition. #AP-42, Section
7.5: Iron and Steel Mills. Office of Air and Waste Management,
Office of Air Quality Planning and Standards, Research Triangle
Park, N.C., April 1973.
32. United States Environmental Protection Agency. Compilation of
Air Pollutant Emission Factors, 2nd Edition. #AP-42, Section
7.13: Steel Foundries. Office of Air and Waste Management,
Office of Air Quality Planning and Standards, Research Triangle
Park, N.C., February 1972.
33. United States Environmental Protection Agency. Compilation of
Air Pollutant Emission Factors, 2nd edition, #AP-42, Section
7.1: Primary Aluminum Production. Office of Air and Waste
Management, Office of Air Quality Planning and Standards,
Research Triangle Park, N.C., April 1973.
34. United States Bureau of Mines. Aluminum. Mineral Facts and
Problems, 1975 Edition (preprint), Bulletin #667. U.S. Depart-
ment of the Interior, Washington, D.C.
35. United States Environmental Protection Agency. Compilation of
Air Pollutant Emission Factors, 2nd edition, #AP-42, Section
7.8: Secondary Aluminum Operations. Office of Air and Waste
Management, Office of Air Quality Planning and Standards,
Research Triangle Park, N.C., February 1972.
36. Schick, Raymond. Environmental Department, Glass Containers
Corporation, Indianapolis, IN. Personal communication,
August 1978.
37. Connecticut Department of Environmental Protection. Connecticut
Administrative Regulations, Abatement of Air Pollution, Connec-
ticut Air Pollution Control Regulations, Section 19-508-18(e)
Control of Particulate Emissions: Process Industries -
General. Environmental Reporter, State Air Laws 331:0518
(Dec. 24, 1976).
80
-------
38. United States Environmental Protection Agency. Compilation of
Air Pollution Emission Factors, 2nd edition. #AP-42, Section
8.13: Glass Manufacturing. Office of Air and Waste Management,
Office of Air Quality Planning and Standards, Research Triangle
Park, N.C., February 1972.
39. Kramer, L. Bottle Maker Cuts Costs, Pollution with Old Glass.
The Washington Post, July 2, 1978, p. El.
40. Adams, Keith. Department of Industrial Engineering, Iowa State
University, Ames, Iowa. Data presented at 8th Biennial Waste
Processing Conference, Chicago, IL, May 7-10, 1978.
41. Hirst, E. Energy Implications of Several Environmental Quality
Strategies. #ORNL-NSF-EP-53. Oak Ridge National Laboratory,
Oak Ridge, TN, July 1973.
42. United States Environmental Protection Agency. Compilation of
Air Pollutant Emission Factors, 2nd edition. #AP-42, Section
1.1: Bituminous Coal Combustion. Office of Air and Waste
Management, Office of Air Quality Planning and Standards,
Research Triangle Park, N.C., April 1973.
43. United States Environmental Protection Agency. Compilation of
Air Pollutant Emission Factors, 2nd edition. #AP-42, Supplement
No. 7, Section 1.2: Anthracite Coal Combustion. Office of Air
and Waste Management, Office of Air Quality Planning and Stan-
dards, Research Triangle Park, N.C., April 1977.
44. Teknekron, Inc. Review of New Source Performance Standards for
Coal-Fired Utility Boilers, Volume 1: Emissions and Non Air-
Quality Environmental Impacts. Energy and Environmental Engi-
neering Division, Berkeley, CA, March 1977.
45. Vesilind, P.A., G.W. Pearsall, J.S. Dajani, D. Warner, and A.E.
Rimer. A Curriculum Option in Resource Recovery. Duke Univer-
sity, Durham, N.C., 1977.
46. Van Meter, D. , et^ al_. Evaluation of the Ames Solid Waste
Recovery System, Part II: Performance of the Stoker Fired
Steam Generators. Draft Report. U.S. Environmental Protec-
tion Agency, Industrial Environmental Research Laboratory,
Cincinnati, OH, 1977.
47. Hall, J.L., et_ al_. Evaluation of the Ames Solid Waste Recovery
System, Part III: Environmental Emissions of the Stoker Fired
Steam Generators, Volume I: Results and Discussion. Draft
Report. U.S. Environmental Protection Agency, Industrial Envi-
ronmental Research Laboratory, Cincinnati, OH, 1977.
81
-------
48. Yaffe, Harold. The MITRE Corporation, Metrek Division, Bedford,
MA. Telephone communication of data for RESCO operations in
Saugus, MA, May 1978.
49. Gordon, Judith. The MITRE Corporation, Metrek Division, McLean,
Va. Data from site visit to Chicago Northwest Incinerator,
Chicago, IL, May 10, 1978.
50. Morel, F., and J. Morgan. A Numerical Method for Computing
Equilibria in Aqueous Chemical Systems. Environmental Science
and Technology, 6(1): 58-67 (1972).
51. McDuff, R.E., and F.M. Morel. Description and Use of the Chemi-
cal Equilibrium Program REDEQL2. Technical Report EQ-73-02.
Keck Laboratory of Environmental Engineering Science, California
Insititute of Technology, Pasadena, CA, December 1973 (updated
July 1975 by J.J. Morgan).
-------
APPENDIX A
EQUATIONS USED IN CALCULATIONS
I. GENERATION OF MUNICIPAL SOLID WASTE IN THE UNITED STATES
1. Calculation of Quantity of Municipal Solid Waste (MSW)
Generated
QMSW = R x P x fx x f2 (I-D
where QMSW = quantity of MSW generated during a given year in
places/urbanized areas of a given population size
(tons)
R = rate of MSW generation in places/urbanized areas of
that size (pounds/person daily)
P = total population in places/urbanized areas of that size
in that year
f^ = conversion factor (from day to year)
= 365
f2 = conversion factor (from pounds to tons)
= 1/2000
Example: Calculate the quantity of MSW that will be generated in
1990 in urbanized areas with population of more than
1,000,000
Q 5.5 x 85,200,000 x 365
2000
= 85,519,500
= -85,500,000 tons MSW
83
-------
VI. QUANTITIES OF POLLUTANTS DERIVED FROM DISPOSAL OF MUNICIPAL SOLID
WASTE (MSW) IN 1975
1. Calculation of Quantities of Air Pollutants Emitted in 1975
during Incineration of MSW
QP = Efp x Mx x f (VI-1)
where Qp = quantity of a pollutant emitted during 1975 (tons)
Efp = emission factor for that pollutant (pounds/ton MSW
incinerated)
Mj = mass of MSW disposed of by incineration in 1975 (tons)
f = conversion factor (from pounds to tons)
= 1/2000
Example: Calculate the quantity of particulates emitted during
incineration of MSW in 1975
OP = 30 x 17.300.000
* 2000
= 259,500
= -260,000 tons particulates
2. Calculation of Quantities of Gases Generated in Landfills in
1976 by MSW Landfilled in 1975
Qp = Gp x fi x ML x Dp x f2 (VI-2)
where Qp = quantity of the gas that is generated in the one year
from the landfilled MSW (tons)
Gp = maximum quantity of gas generation over 25 years (cubic
feet/ton MSW)
f} = time factor (one year out of 25 years during which gas
is generated)
= 1/25
ML = mass of MSW landfilled in 1975 (tons)
Dp = density of the gas (pounds/standard cubic foot)
f-2 ~ conversion factor (from pounds to tons)
= 1/2000
84
-------
Example: Calculate the quantity of methane generated in one year by
the MSW landfilled in 1975
Q = 4560 x 155.500.000 x 0.0415
25 x 2000
= 588,536
= -589,000 tons methane
3. Calculation of Quantities of Pollutants Discharged to Surface
Waters in Incinerator Wastewater in 1975
QP = Cp x Qw x Mj (VI-3)
where Qp = quantity of a pollutant discharged in incinerator waste-
water (tons)
Cp = concentration of that pollutant in the quench water
Q^ = water requirement (tons/ton MSW incincerated)
Mj = quantity of MSW incinerated in 1975 (tons)
Example: Calculate the quantity of lead discharged to surface waters
in incinerator wastewater in 1975
Q = 0.3 x 6 x 17,300,000
1,000,000
= 31 tons lead
4. Calculation of Quantities of Pollutants Present in Leachate from
Landfilled MSW in 1975 (based on reported ranges of concentra-
tions)
Qp = Cp x QL x fj x f2 (VI-4)
where Qp = quantity of a pollutant in landfill leachate (tons)
Cp = range of concentration of that pollutant in the
leachate (ppm)
QL = quantity of landfill leachate (10^ gallons)
f} = conversion factor (from ppm to pounds/billion gallons)
= 8345
f.2 ~ conversion factor (from pounds to tons)
= 1/2000
85
-------
Example: Calculate the quantity of cadmium in landfill leachate in
1975
q = (0.03 to 17) x 90 x 8345
2000
= 11.3 to 6383.9
= ~(11 to 6385) tons cadmium
5. Calculation of Quantities of Pollutants Present in Leachate from
Landfilled MSW in 1975 (based on data for a single landfill)
QP = Cp x QL x fx x f2 x f3 (VI-5)
where Qp = quantity of a pollutant in landfill leachate (tons)
Cp = concentration of that pollutant in the leachate
QL = quantity of leachate from the one landfill
= 20,000 cubic meters/month
f^ = conversion factor (from month to year)
= 12
^2 = conversion factor (from grams to tons)
= 1.102 x 10~6
f3 = factor for extrapolating from the one landfill to the
national landfill area
= 500.000
300
Example: Calculate the quantity of cadmium in landfill leachate in
1975
= 0.03 x 20,000 x 12 x 1.102 x 500,000
300 x 106
= 13.2
= 13 tons cadmium
86
-------
VII. EMISSION FACTORS FOR POLLUTANTS EMITTED FROM REFUSE-DERIVED FUEL
(RDF) DURING COFIRING WITH COAL
1. Calculation of Emission Factors for Air Pollutants Emitted during
Coal Combustion in Boiler #5 of Ames, Iowa Power Plant in 1977
Efc = E x HHVC x f (VII-1)
where E£Q = emission factor for that pollutant from coal
(pounds/ton coal)
E = emission rate (grams/megajoule) (Reference 20)
HHVc = heating value of coal
= 22.4 megajoules/kilogram (Reference 21)
f = conversion factor (from grams/kilogram to pounds/ton)
= 2
Example: Calculate the emission factor for particulates from coal
combustion in boiler #5 in 1977
Efc = 3.2 x 22.4 x 2
= 143 pounds particulates/ton coal
2. Calculation of Emission Factors for Air Pollutants Emitted during
Cofiring of Coal and RDF (80:20*) in Boiler #5 of Ames, Iowa
Power Plant in 1977
EfF = E x [(HHVC x HIC) + (HHVRDF x HIRDF)] x f (VII-2)
where Efp = emission factor for that pollutant from the fuel
(pounds/ton fuel)
E = emission rate (grams/megajoule) (Reference 20)
HHVQ = heating value of coal
= 22.1 megajoules/kilogram (Reference 21)
Hl£ = heat input of coal
= 67.3 percent (Reference 21)
HHVRDF = heating value of RDF
= 14.9 megajoules/kilogram (Reference 21)
Nominal ratio of heat inputs from coal and RDF, respectively.
87
-------
HIRDF = heat input of RDF
= 32.7 percent (Reference 21)
f = conversion factor (from grams/kilogram to pounds/ton)
= 2
Example: Calculate the emission factor for particulates from
cofiring of coal and RDF (80:20*) in boiler #5 in 1977
EfF = 3.8 x [(22.1 x 0.673) + (14.9 x 0.327)] x 2
= 150 pounds particulates/ton fuel
3. Calculation of Emission Factors for Air Pollutants Attributable to
RDF That Were Emitted during Cofiring of Coal and RDF (80:20'")
in Boiler #5 of Ames, Iowa Power Plant in 1977
EfF = (Efc x QC) + (EfRDF x QRDF) (VII-3a)
or
EFF - Efc x QC
EfRDF = (VII-3b)
QRDF
where EfRj)F = emission factor for that pollutant from the RDF
(pounds/ton RDF)
EfF = emission factor for that pollutant from the cofired
coal and RDF (pounds/ton fuel) (See Equation VII-2.)
Efc = emission factor for that pollutant from coal
(pounds/ton coal) (See Equation VII-1.)
QQ = quantity of coal in cofiring (tons coal/ton fuel)
QRDF = quantity of RDF in cofiring (tons RDF/ton fuel)
Example 1: Calculate the emission factor for particulates that is
attributable to the RDF fraction in cofiring with coal
= 150 - (143 x 0.581)
EtRDF
0.419
= 160 pounds particulates/ton RDF in
uncontrolled emissions
^Nominal ratio of heat inputs from coal and RDF, respectively.
88
-------
= 6.4 pounds particulates/ton RDF in
controlled emissions
= 0.5 pound particulates/106 Btu**
Note: An emission of 0.5 pound particulates/10" Btu would be in
excess of the New Source Performance Standard for Coal-Fired Power
Plants (Reference 22). In order to meet the standard of 0.1 pound
particulates/10^ Btu, the maximum emission factor for particulates
from RDF cofired with coal would be 1.28 pounds particulates/ton
**
RDF.
Example 2: Calculate the emission factor for SOX that is attrib-
utable to the RDF fraction in cofiring with coal
EfRnF - 28 - (45 x 0.581)
KU* 0.419
= 4.43 pounds S0x/ton RDF
= 0.35 pound SOX/106 Btu
**
Example 3: Calculate the emission factor for NOX that is attrib
utable to the RDF fraction in cofiring with coal
EfRDF = 2-65 - (3.45 x 0.581)
0.419
=1.54 pounds N0x/ton RDF
= 0.12 pound NO /106 Btu*^
*Assumes an electrostatic precipitator operating at 96 percent
efficiency.
* In 1977 tests in Ames, Iowa of boiler #5 operating at 80-percent
load and RDF cofired with coal at a nominal ratio of 20:80, the
RDF had a heating value of 14.9 MJ/kg (12.82 x 106 Btu/ton)
(Reference 21).
89
-------
VIII. QUANTITIES OF POLLUTANTS DERIVED FROM DISPOSAL OF MUNICIPAL
SOLID WASTE (MSW) IN 1990
1. Calculation of Quantities of Air Pollutants That Will Be Emitted
in 1990 during Mass Burning of MSW
QP = Efp x M! x f (VIII-1)
where Qp = quantity of a pollutant that will be emitted in 1990
(tons)
MJ = mass of MSW that will be disposed of by incineration in
1990 (tons)
See Equation VI-1 for other definitions.
Example: Calculate the quantity of particulates that will be emitted
during mass burning of MSW in 1990
Q = 1.02 x 10,000,000
2000
= 5100 tons particulates
2. Calculation of Quantities of Gases That Will Be Generated in Land-
fills in 1991 by MSW That Will Be Landfilled in 1990
Qp = Gp x fi x ML x Dp x f2 (VIII-2)
where ML = mass of MSW that will be landfilled in 1990 (tons)
See Equation VI-2 for other definitions.
Example: Calculate the quantity of methane that will be generated in
one year by the MSW that will be landfilled in 1990
Op = 4560 x 187,000,000 x 0.0415
25 x 2000
= 707,758
= -708,000 tons methane
90
-------
3. Calculation of Quantities of Pollutants That Will Be Discharged to
Surface Waters in Incinerator Wastewater in 1990
QP = Cp x Qw x Mx (VIII-3)
where Mj = quantity of MSW that will be incinerated in 1990
(tons)
See Equation VI-3 for other definitions.
Example: Calculate the quantity of lead that will be discharged to
surface waters in incinerator wastewater in 1990
Q = 0.5 x 3 x 10,000,000
1,000,000
= 15 tons lead
4. Calculation of Area of Municipal Landfills in 1990 and Volume of
Leachate from These Landfills
4A. Calculation of Growth Factor
LC0
where f = growth factor
LCj = landfill capacity required to dispose of MSW in 1990 if
there is no resource recovery (acre-feet) (see Table XX
and Equation XX-4 for calculation)
L,CQ = landfill capacity required to dispose of MSW in 1975
(acre-feet)
Calculation:
290.900
243,000
= 1.2
4B. Calculation of Landfill Area in 1990
A0 x f (VIII-4b)
where A^ = landfill area in 1990 (acres)
AQ = landfill area in 1975 (acres)
f = growth factor (from Equation VIII-4a)
91
-------
Calculation:
= 500,000 x 1.2
= 600,000 acres
4C. Calculation of Volume of Landfill Leachate in 1990
QLl » QLo x f
where Qj. = quantity of leachate in 1990 (109 gallons)
QL = quantity of leachate in 1975 (109 gallons)
f = growth factor (from Equation VIII-4a)
Calculation:
QLl = 90 x 109 x 1.2
= 108 billion gallons
5. Calculation of Quantities of Pollutants That Will Be Present in
Leachate from Landfilled MSW in 1990
5A. Calculation Based on Reported Ranges of Concentrations
Qp = Cp x QL x ^ x f2 (VIII-5a)
where QL = quantity of landfill leachate that will be produced
in 1990 if there is no resource recovery (109 gallons)
See Equation VI-4 for other definitions.
Example: Calculate the quantity of cadmium in landfill leachate in
1990
Q = (0.03 to 17) x 108 x 8345
2000
= 14 to 7660 tons cadmium
5B. Calculation Based on Data for a Single Landfill
Qp = Cp x QL x f} x f2 x f3 (VIII-5b)
92
-------
where £3 = factor for extrapolating from the one landfill to the
national landfill area
= 600.000
300
See Equation VI-5 for other definitions.
Example: Calculate the quantity of cadmium in landfill leachate in
1990
= 0.03 x 20.000 x 12 x 1.102 x 600.000
P 300 x 106
= 16 tons cadmium
93
-------
IX. QUANTITIES OF POLLUTANTS DERIVED FROM DISPOSAL OF MUNICIPAL SOLID
WASTE (MSW) IN 1990 WITH IMPLEMENTATION OF RESOURCE RECOVERY
1. Calculation of Quantities of Air Pollutants That Will Be Emitted
in 1990 during Mass Burning of MSW without Recovery of Heat and
Other Resources
QP = Efp x Mz x f (IX-1)
where Mj = mass of MSW that will be disposed of in 1990 by mass
burning without recovery of resources (tons)
See Equation VI-1 for other definitions.
Example: Calculate the quantity of particulates that will be emitted
during mass burning of MSW in 1990
= 1.02 x 10,000,000
P 2000
= 5100 tons particulates
2. Calculation of Quantities of Air Pollutants Attributable to RDF
That Will Be Emitted during Cofiring of RDF and Coal at 20:80 in
1990
QP = Efp x MRDF x f (IX-2)
where M^pp = mass of RDF that will be cofired with coal in 1990
(tons) (Table XI)
See Equation VI-1 for other definitions.
Example: Calculate the quantity of chlorides that will be emitted
from RDF during cofiring with coal in 1990
= 7.81 x 11,250.000
P 2000
= 43,931
= ~-43,950 tons chlorides
3. Calculation of Quantities of Air Pollutants That Will Be Emitted
in 1990 During Mass Burning of MSW with Resource Recovery
QP = Efp x MlRR x f (IX-3)
94
-------
where MIRR = mass of MSW that will undergo mass burning with
resource recovery in 1990 (tons)
See Equation VI-1 for other definitions.
Example: Calculate the quantity of particulates that will be emitted
during mass burning of MSW with resource recovery in 1990
= 1.02 x 15.000,000
^P 2000
= 7650 tons particulates
4. Calculation of Quantities of Gases That Will Be generated in Land-
fills in 1991 by MSW That Will Be Landfilled in 1990
Qp = Gp x fi x ML x Dp x f2 (IX-4)
where ML = mass of raw refuse that will be landfilled in 1990
(tons)
See Equation VT-2 for other definitions.
Example: Calculate the quantity of methane that will be generated in
one year by the MSW that will be landfilled in 1990
= 4560 x 157,000,000 x 0.0415
P 25 x 2000
= 594,214
= -594,000 tons methane
5. Calculation of Quantities of Pollutants That Will Be Discharged in
1990 to Surface Waters in Incinerator Wastewater from Mass
Burning of MSW without Resource Recovery
Qp = Cp x Qw x Mx (IX-5)
where Mj = mass of MSW that will be incinerated in 1990 without
recovery of resources (tons)
See Equation VI-3 for other definitions.
Example: Calculate the quantity of lead that will be discharged in
1990 to surface waters in incinerator wastewater
= 0.5 x 3 x 10,000,000
S 1,000,000
= 15 tons lead
95
-------
6. Calculation of Quantities of Pollutants Attributable to the RDF
Fraction That Will Be Discharged in Wastewater from Cofiring of
Coal and RDF in 1990
Qp = Cp x Qw x MRDF (IX-6)
where MRDp = mass of RDF (tons)
See Equation VI-3 for other definitions.
Example: Calculate the quantity of phenols attributable to the RDF
fraction that will be discharged in the wastewater from
cofiring of coal and RDF
- 0-003 x 3 x 11,250,000
QP " 1,000,000
= 0.2 ton phenols
7. Calculation of Quantities of Pollutants That Will Be Discharged to
Surface Waters in 1990 in Wastewater from Facilities That Utilize
Mass Burning for Recovery of Resources from MSW
QP = Cp x Qw x MlRR (IX-7)
where Mr D = mass of MSW that will undergo mass burning with
resource recovery in 1990 (tons)
See Equation VI-3 for other definitions.
Example: Calculate the quantity of lead that will be discharged in
wastewater from these facilities in 1990
= 0.5 x 3 x 15,000,000
QP 1,000,000
= 22.5
= ~23 tons lead
8. Calculation of Area of Municipal Landfills in 1990, If Resource
Recovery Is Implemented, and the Volume of Leachate from These
Landfills
8A. Calculation of Growth Factor
f = LCJ
LC0 (!X-8a)
96
-------
where f = growth factor
= landfill capacity requirement in 1990 for disposal of
raw refuse and residue from resource recovery (acre-
feet) (See Table XX and Equation XX-3 for calculation.)
L.CQ = landfill capacity requirement in 1975 for disposal of
raw refuse and incinerator residue (acre-feet)
Calculation:
246,600
243,000
= 1.0148
8B. Calculation of Landfill Area in 1990 with Resource Recovery
A! = A0 x f (!X-8b)
where Aj = landfill area in 1990 (acres)
AQ = landfill area in 1975 (acres)
f = growth factor (from Equation IX-8a)
Calculation:
= 500,000 x 1.0148
= 507,400
= -507,000 acres
8C. Calculation of Volume of Leachate in 1990 with Resource
Recovery
QLi = QL0 x f (!X-8c)
where Qj, = quantity of leachate in 1990 (10^ gallons)
QL = quantity of leachate in 1975 (109 gallons)
t = growth factor (from Equation IX-8a)
Calculation:
QL = 90 x 109 x 1.0148
= 91.3
= ~91 billion gallons
97
-------
9. Calculation of Quantities of Pollutants That Will Be Present in
Leachate from Landfilled MSW in 1990
9A. Calculation Based on Reported Ranges of Concentrations
Qp = CP x QL x fi x f2 (!X-9a)
where QL = quantity of leachate from landfilled raw refuse in
1990 (109 gallons)
See Equation VI-4 for other definitions.
Example: Calculate the quantity of magnesium in this portion of
landfill leachate in 1990
. _ (17 to 15,600) x 90 x 8345
Qp __
= 6384 to 5,858,190
= ~(6385 to 5,860,000) tons magnesium
9B. Calculation Based on Data for a Single Landfill
Qp = CP x QL x ti x f2 x f3 (!X-9b)
503,000
where 13 =
300
See Equation VI-5 for other definitions.
Example: Calculate the quantity of cadmium in leachate from
landfilled raw refuse in 1990
Qp = 0.03 x 20,000 x 12 x 1.102 x 503,000
300 x 106
= 13 tons cadmium
10. Calculation of Quantities of Pollutants That Will Be Present in
Leachate from Resource Recovery Residue in 1990
where QpRR = quantity of a pollutant in the leachate from
landfilled resource recovery residue in 1990 (tons)
Cp = concentration of the pollutant in that leachate
(ppm) (See Appendix B.)
98
-------
QT _ = quantity of leachate from landfilled resource
recovery residue in 1990 (10^ gallons)
fj = conversion factor (from ppm to pounds/billion
gallons)
= 8345
f2 = conversion factor (from pounds to tons)
= 1/2000
Example: Calculate the quantity of manganese that will be present in
leachate from the landfilled residue of resource recovery
in 1990
2.08 x 1 x 8345
QpRR = 2000
= 8.7
= ^9 tons manganese
99
-------
X. CHANGES IN QUANTITIES OF POLLUTANTS THAT WOULD BE EMITTED/DIS-
CHARGED FROM MUNICIPAL SOLID WASTE (MSW) DISPOSAL IN 1990 IF
RESOURCE RECOVERY WERE IMPLEMENTED ACCORDING TO THE SCENARIO
IN TABLE II
1. Calculation of the Differences in Quantities of Pollutants That
Would Result from Implementation of Resource Recovery
AQP =2Qp -2QP (X-l)
where AQp = the change in quantity of a pollutant that would be
effected by implementation of resource recovery
(tons)
ZQp = total quantity of the pollutant that would be
emitted/discharged in 1990 in MSW disposal with
implementation of resource recovery (tons) (data
from Table IX)
ZQp = total quantity of the pollutant that would be emit-
ted/discharged in 1990 in MSW disposal without
resource recovery (tons) (data from Table VIII)
Example: Calculate the change in quantities of particulates that
would be emitted during MSW disposal in 1990 as the result
of implementation of resource recovery
AQp = 19,950 - 5100
= +14,850 tons particulates
100
-------
XI. QUANTITIES OF MATERIALS RECOVERABLE FROM MUNICIPAL SOLID WASTE
(MSW) IN 1990
1. Calculation of Quantities of Recoverable Materials That Will Be
Processed by Resource Recovery in 1990
QMP = MRR x CM
where OM = quantity of a material in MSW that will be processed
by resource recovery in 1990 (tons)
^RR = mass of MSW that will undergo resource recovery in 1990
(tons)
CM = content (population) of the material in MSW in 1990
Example: Calculate the quantity of ferrous metals in the MSW that
will be processed for resource recovery in 1990
QMp = 30,000,000 x 9%
= 2,700,000 tons ferrous metals
2. Calculation of Quantities of Materials That Will Be Recoverable
from MSW in 1990 by Resource Recovery
QMR = QMP x REM
where QM = quantity of a material that will be recovered from
MSW in 1990 by resource recovery (tons)
QMP = quantity of the material in MSW that will be pro-
cessed by resource recovery in 1990 (tons)
REj4 = efficiency of recovering the material from MSW in 1990
Example: Calculate the quantity of aluminum that will be recoverable
from MSW in 1990
Qj^ = 300,000 x 75%
= 225,000 tons aluminum
101
-------
XII. POLLUTANTS ASSOCIATED WITH STEEL PRODUCTION
1. Calculation of the Emission Factors for Production of Steel from
Virgin Materials*
ZEfp = Efp + Efp + Efp (XII-1)
V C PI S
where ZEfp = the aggregate emission factor for that pollutant
from the production of steel from virgin materials
(pounds/ton steel)
Efp = emission factor for that pollutant from coke
manufacture (pounds/ton coal)
Efp = emission factor for that pollutant from pig iron
production (pounds/ton pig iron)
Efp = emission factor for that pollutant from steel
production (pounds/ton steel)
and where:
Efp = (Efp x POHF) + (Efp x PBOF) +
S SOHF SBOF
+ (Efp x P£AF) (XH-la)
SEAF
where Efp = emission factor for that pollutant from steel
production in an open hearth furnace (pounds/ton
steel)
= Proportion of steel produced in open hearth
furnaces in 1976
= 18.4% (Reference 29)
Efp = emission factor for that pollutant from steel
BOF production in a basic oxygen furnace (pounds/ton
steel)
PBQP = proportion of steel produced in basic oxygen
furnaces in 1976
= 62.4% (Reference 29)
Efp = emission factor for that pollutant from steel
EAF production in an electric arc furnace (pounds/ton
steel)
*Assumes that one ton of steel is produced from one ton of pig iron
and that the production of one ton of pig iron requires the coke
manufactured from one ton of coal.
102
-------
= proportion of steel produced in electric arc
furnaces in 1976
= 19.2% (Reference 29)
Example: Calculate the aggregate emission factor for total
particulates from the production of steel from virgin
materials
SEfp = 3.5 + 187 + [(17.4 x 0.184) + (51 x 0.624) +
+ (11 x 0.192)]
= 228 pounds particulates/ton steel
2. Calculation of the Emission Factors for Production of Steel from
Recycled Materials*
X POHF) + (EfPs X PBOF) +
OHF EOF
+ (EfPQ X PEAF}
SEAF
where Efp_ = emission factor for that pollutant from the
production of steel from scrap ferrous metals
(pounds/ton steel)
See Equations XII-1 and Xll-la for other definitions.
Example: Calculate the emission factor for total particulates from
the production of steel from scrap ferrous metals
EfpR = (17.4 x 0.184) + (51 x 0.624) + (11 x 0.192)
= 37 pounds particulates/ton steel
*Assumes that one ton of steel is produced from one ton of scrap
ferrous metals.
103
-------
3. Calculation of Quantities of Pollutants That Will Be Emitted/
Discharged in 1990 during Production of 2,565,000 Tons of Steel
from Virgin Materals
QPy = ZEfp x MS x f (XII-3)
where Qp = quantity of a pollutant from production from virgin
materials (tons)
2Efp = the aggregate emission factor for that pollutant from
the production of steel from virgin materials (pounds/
ton steel)
MS = mass of steel (tons)
f = conversion factor (from pounds to tons)
= 1/2000
Example: Calculate the quantity of total particulates that would be
emitted in 1990 during production of 2,565,000 tons of
steel from virgin materials
= 5.5 x 2,565,000
^PV 2000
= 7054
= ~7055 tons particulates
4. Calculation of Quantities of Pollutants That Will Be Emitted/
Discharged in 1990 during Production of 2,565,000 Tons of Steel
from Scrap Ferrous Metals
QpR = EfP x Ms x f (XII-4)
where Qp = quantity of a pollutant from steel production from
recycled materials (tons)
Efp = emission factor for that pollutant from the produc-
tion of steel from scrap ferrous metals (pounds/ton
steel)
See Equation XII-3 for other definitions.
Example: Calculate the quantity of total particulates that would be
emitted in 1990 during production of 2,565,000 tons of
steel from scrap ferrous metals
0.37 x 2,565,000
QP
2000
= 475 tons particulates
104
-------
5. Calculation of Effect of Substituting Scrap Ferrous Metals for
Virgin Materials in Production of 2,565,000 Tons of Steel in 1990
AQP = Qp -
where AQp = difference in quantities of a pollutant that would be
emitted if scrap ferrous metal from municipal solid
waste is substituted for virgin materials in steel
production in 1990 (tons)
Qp = quantity of the pollutant that would be emitted
during steel production from scrap ferrous metals
(tons)
Qpv = quantity of the pollutant that would be emitted
during steel production from virgin materials (tons)
Example: Calculate the difference in particulate emissions that
would result from substituting the scrap ferrous metals
recovered from municipal solid waste for virgin materials
in steel production
AQP = 475 - 7055
= -6580 tons particulates
105
-------
XIII. POLLUTANTS ASSOCIATED WITH ALUMINUM PRODUCTION
1. Calculation of the Emission Factors for Production of Aluminum
from Virgin Materials*
SEfp = (4.5 x EfpD) + (2 x Efp. ) + (Efp. )
" "E rAi rAo
(XIII-1)
where SEfp
the aggregate emission factor for that pollutant
from the production of aluminum from virgin
materials (pounds /ton aluminum)
emission factor for that pollutant from bauxite
grinding (pounds/ton aluminum)
emission factor for that pollutant from alumina
production (pounds/ton alumina)
emission factor that pollutant from aluminum
production (pounds/ton aluminum)
and where:
Ef
PPBC>
A
\SC
Ef
MH
(XHI-la)
where Efp
,
PBC
Efp
Efp
VSC
PVSC
Ef
p
emission factor for that pollutant from
aluminum production in prebaked cells
(pounds/ton aluminum)
proportion of aluminum produced in prebaked
cells in 1970
61.9% (Reference 33)
emission factor for that pollutant from
aluminum production in horizontal-stud Soderberg
cells (pounds/ton aluminum)
proportion of aluminum produced in horizontal-
stud Soderberg cells in 1970
25.5% (Reference 33)
emission factor for that pollutant from
aluminum production in vertical-stud Soderberg
cells (pounds/ton aluminum)
proportion of aluminum produced in vertical-
stud Soderberg cells in 1970
12.6% (Reference 33)
emission factor for that pollutant from
materials handling
^Assumes that one ton of primary aluminum is derived from two tons of
alumina that are produced from 4.5 tons of bauxite.
106
-------
Example: Calculate the aggregate emission factor for total
particulates from the production of aluminum from virgin
materials
SEfp = (4.5 x 6) + (2 x 200) + (84.3 x 0.619) +
+ (98.4 x 0.255) + (78.4 x 0.126) + 10
= 524 pounds particulates/ton primary aluminum
2. Calculation of the Emission Factors for Production of
Aluminum from Scrap Recovered from Municipal Solid Waste
Efp = [(EfpSF x PSF) + (EfpRF x PRF)] x f (XIII-2)
where Efp = emission factor for that pollutant from aluminum
production from scrap metal by secondary aluminum
operations (pounds/ton aluminum produced)
Efp = emission factor for that pollutant from sweating
furnaces (pounds/ton scrap processed)
PgF = proportion of scrap aluminum processed in sweating
furnaces
= 50%
Efp = emission factor for that pollutant from reverbera-
tory furnances (pounds/ton scrap processed)
PRF = proportion of scrap aluminum processed in reverbera-
tory furnaces
= 50%
f = conversion factor (from pounds/ton scrap processed
to pounds/ton aluminum produced)
= 1.25
Example: Calculate the emission factor for particulates from
secondary aluminum operations
Efp = [(14.5 x 0.5) + (4.3 x 0.5)] x 1.25
= 11.75
= ~12 pounds particulates/ton secondary aluminum
107
-------
3. Calculation of the Quantities of Pollutants That Will Be
Emitted in 1990 during Production of 180,000 Tons of Aluminum
from Virgin Materials
Qpv = Efp x MA x f (XIII-3)
where Qp = quantity of a pollutant from aluminum production from
v virgin materials (tons)
Efp = the aggregate emission factor for that pollutant from
aluminum production from virgin materials (pounds/ton
aluminum)
MA = mass of aluminum (tons)
f = conversion factor (from pounds to tons)
= 1/2000
Example: Calculate the quantity of total particulates that would
be emitted in 1990 during production of 180,000 tons of
aluminum from virgin materials
= 12 x 180,000
^PV 2000
= 1080 tons particulates
4. Calculation of Quantities of Pollutants That Will Be Emitted in
1990 during Production of 180,000 Tons of Aluminum from the
225,000 Tons of Scrap Aluminum That Will Be Recovered from
Municipal Solid Waste
= Efp x MA x f (XIII-4)
where Qp = quantity of a pollutant from aluminum production
from recycled material (tons)
Efp = emission factor for that pollutant from aluminum
production from scrap metal (pounds/ton secondary
aluminum)
See Equation XIII-3 for other definitions.
Example: Calculate the quantity of particulates that would be
emitted in 1990 during production of 180,000 tons of
secondary aluminum from scrap
= 2.9 x 180,000
g?R 2000
= 261 tons particulates
108
-------
5. Calculation of Effect of Substituting Scrap Aluminum Recovered
from Municipal Solid Waste for Virgin Materials in the Production
of 180,000 Tons of Aluminum in 1990
AQp = QPR - QPy (XIII-5)
where AQp = difference in quantity of a pollutant that would be
emitted if scrap aluminum from municipal solid waste is
substituted for virgin materials in aluminum production
in 1990 (tons)
Qp = quantity of the pollutant that would be emitted
during aluminum production from recovered material
(tons)
Qp = quantity of the pollutant that would be emitted
during aluminum production from virgin materials (tons)
Example: Calculate the difference in particulate emissions that
would result from substituting the scrap aluminum
recovered from municipal solid waste for virgin materials
in aluminum production
AQp = 261 - 1080
= -819 tons particulates
109
-------
XIV. POLLUTANTS ASSOCIATED WITH GLASS MANUFACTURE
1. Calculation of the Particulate Emissions Permissible from Glass
Manufacture (Reference 37)
= 3.59 x pO.62
(XIV-1)
where E = maximum permissible particulate
emissions (pounds/hour)
P = process weight (tons/hour) if less
than 30 tons/hour (Reference 37)
Example: Calculate the maximum quantity of particulates that may
be emitted from Furnace #3 of the Glass Containers Cor-
poration manufacturing plant in Dayville, Connecticut
In Example: P = 10 tons/hour (Reference 36)
E = 3.59 x (10)°-62
= 15.0 pounds particulates/hour
2. Calculation of Particulate Emission Factors for Glass Manufacture
from Virgin Materials and from Gullet Recovered from Municipal
Solid Waste*
Qp = [(EfV() x PV) + (Efc
PC)]
x P
(XIV-2a)
where Qp
Efv
0
PV
Efc
0
quantity of particulates emitted (pounds/hour)
emission factor for particulates during glass
manufacture from virgin materials (pounds/ton
process weight)
proportion of virgin material in process feed
emission factor for particulates during glass
manufacture from cullet (pounds/ton process
weight)
*Based on data for Glass Containers Corporation plant in Dayville, CN
(References 36 and 39).
110
-------
PC = proportion of cullet in process feed
P = process weight (tons/hour)
Condition 1 - With 80 percent virgin materials and 20 percent cullet,
particulate emissions were 152 percent of permissible
emissions (Equation XIV-2b)
Condition 2 - With 50 percent virgin materials and 50 percent cullet,
permissible level of emissions was not exceeded (Equa-
tion XIV-2c)
QP = [(EfV() x 0.8) + (EfC() x 0.2)] x 10 = 1.52 x E (xiV-2b)
QP = [(EfV0 x °'5) + (EfC0 x °'5)] x 10 = 1.0 x E (xiV-2c)
where E = maximum permissible particulate emissions
(pounds/hour)
= 15.0 pounds/hour (Equation XIV-1 and Example)
From Equations XIV-2b and XIV-2c:
Efy = 2.8 pound particulates/ton virgin materials
^
= 0.2 pound particulates/ton cullet
For calculation of emission factor in terms of pounds/ton glass:
Ef = Ef0 * EP (XIV-2d)
where Ef = emission factor for particulates
(pounds/ton glass)
Ef0 = emission factor (pounds/ton process weight)
EP = production efficiency
111
-------
For glass manufacture from virgin material:
Efv = 2.8 * 0.85
= 3.3 pounds particulates/ton glass
For glass manufacture from cullet:
Efc = 0.2+1
= 0.2 pound particulates/ton glass
3. Calculation of Quantities of Pollutants That Will Be Emitted in
1990 during Manufacture of 2.100,000 Tons of Glass from Virgin
Materials
QP = Efv x MG x f (XIV-3)
where Qp_. = quantity of a pollutant from glass manufacture
from virgin materials (tons)
Efy = emission factor for the pollutant (pounds/ton glass)
MQ = mass of glass (tons)
f = conversion factor (from pounds to tons)
= 1/2000
Example: Calculate the quantity of particulates that will be emitted
in 1990 during the manufacture of 2,100,000 tons of glass
from virgin materials
3.3 x 2,100,000
2000
= 3465 tons particulates
112
-------
4. Calculation of Quantities of Pollutants That Will Be Emitted in
1990 during Manufacture of 2,100,000 Tons of Glass from Gullet
Recovered from Municipal Solid Waste
QP = Efc x MG x f
(XIV-4)
where Qpr = quantity of a pollutant emitted during glass
manufacture from cullet (tons)
emission factor for the pollutant (pounds/ton
glass)
mass of glass (tons)
conversion factor (from pounds to tons)
1/2000
MQ =
f =
Example: Calculate the quantity of particulates that will be emitted
in 1990 during manufacture of glass from cullet
Qp
0.2 x 2,100,000
2000
= 210 tons particulates
5. Calculation of the Effect of Substituting 2,100,000 Tons of Cul-
let Recovered from Municipal Solid Waste for Virgin Materials in
Glass Manufacture in 1990
AQP =
- QPy
(XIV-5)
where AQp =
difference in the quantity of a pollutant that
would be emitted if cullet from municipal solid
waste is substituted for virgin materials in
glass manufacture in 1990 (tons)
113
-------
Qp_ = quantity of the pollutant that would be emitted
during glass manufacture from cullet (tons)
Qp = quantity of the pollutant that would be emitted
during glass manufacture from virgin materials
(tons)
Example: Calculate the difference in particulate emissions that
would result from substitution of 2,100,000 tons of
cullet for virgin materials in glass manufacture
AQP = 210 - 3465
= -3255 tons particulates
114
-------
XV. EFFECT OF IMPLEMENTATION OF MATERIALS RECOVERY FROM MUNICIPAL
SOLID WASTE ON POLLUTANTS FROM PRODUCTION OF STEEL, ALUMINUM,
AND GLASS IN 1990
1. Calculation of the Total Differences in Quantities of Pollutants
Emitted/Discharged That Will Result from Substitution of Mate-
rials Recovered from Municipal Solid Waste for Virgin Materials
in Production of Steel, Aluminum, and Glass in 1990
:AQP = AQpg + AQpA + AQp
where Z)AQp = total difference in quantity of a pollutant
emitted/discharged (tons)
AQpq = difference in quantity of the pollutant that
would be emitted/discharged if scrap ferrous metals
were substituted for virgin materials in steel pro-
duction (tons)
AQp. = difference in quantity of the pollutant emitted/
discharged that would result from use of scrap in
aluminum production (tons)
AQp = difference in quantity of the pollutant emitted/
discharged that would result from use of cullet
to manufacture glass (tons)
Example: Calculate the total difference in the quantity of particu-
lates that would be emitted during production of steel,
aluminum, and glass from recovered materials (from munici-
pal solid waste) rather than from virgin materials
ZAQp = (-6580) + (-819) + (-3255)
= -10,654 tons particulates
115
-------
XVI. ESTIMATED ENERGY CONSERVATION IN MATERIALS PRODUCTION RESULTING
FROM REPLACEMENT OF VIRGIN MATERIALS WITH MATERIALS RECOVERED
FROM MUNICIPAL SOLID WASTES
1. Calculation of Energy Requirement for Production from Virgin
Materials
Ev = ERV x M (XVI-1)
where Ey = energy requirement for a given production from
virgin materials (million Btu)
ERy = energy requirement for unit production from virgin
materials (million Btu/ton product)
M = mass of product (tons)
Example: Calculate the energy requirement for producing from virgin
materials the amount of steel that could be produced from
scrap ferrous metals recoverable from MSW in 1990
= ERVs x MS
= 23.3 x 2,565,000
= 59,764,500 million Btu
2. Calculation of Energy Requirement for Production from Materials
Recovered from Municipal Solid Waste
ER = ERR x M (XVI-2)
where ER = energy requirement for a given production from
recovered materials (million Btu)
ERR = energy requirement for unit production from
recovered materials (million Btu/ton product)
M = mass of product (tons)
116
-------
Example: Calculate the energy requirement for producing aluminum
from the scrap aluminum recoverable from municipal solid
waste in 1990
x MA
= (6 to 25) x 180,000
= 1,080,000 to 4,500,000 million Btu
3. Calculation of Energy Requirements for Glass Production
EG = (ERV x PV) + (ERC x Pc) (XVI-3)
where EG = energy requirement for production of glass
(million Btu/ton glass)
= 16.2 with 15 percent cullet (Reference 27)
ERy = energy requirement for production of glass from
virgin materials (million Btu/ton glass)
Py = proportion of virgin materials in process weight
ERG = energy requirement for production of glass from
cullet (million Btu/ton glass)
PC = proportion of cullet in process weight
From Reference 27:
EG = (ERV x 0.85) + (ERC x 0.15) = 16.2 (XVI-3a)
From Reference 39:
EG2 = (ERV x 0.8) + (ERC x 0.2) (XVI-3b)
EG3 = (ERV x 0.5) + (ERC x 0.5) = EG x (0.85 to 0.90) (XVI-3c)
117
-------
For EG3 = EG2 x 0.90 in Equation XVI-3c, ERV = 17.0 and
ERC = 11.7 million Btu/ton glass. For EQ_ = EQ x 0.85
in Equation XVI-3c, ERV = 17.4 and ERC = 9.4 million Btu/ton
glass. Average values of 17.2 million Btu/ton glass for ERy and
10.55 million Btu/ton glass for ER^ are therefore used.
4. Calculation of Energy Requirement for Recovering Materials from
Municipal Solid Waste (MSW) in 1990
ER = ERRR x MRR x P (XVI-4)
where ER = energy requirement for recovering the material from
MSW (million Btu)
ERRR = energy requirement for resource recovery (million
Btu/ton of MSW)
= 0.2 million Btu/ton MSW (References 40 and 41)
= mass of MSW that will be processed for resource
recovery in 1990 (tons)
= 30,000,000 tons (Table II)
= proportion of the material in the MSW (Table III)
Example: Calculate the energy requirement for recovering scrap
aluminum from MSW in 1990
ER = 0.2 x 30,000,000 x 0.01
= 60,000 million Btu
5. Calculation of Net Difference, That Is, of Energy Conservation
Resulting from Materials Production from Recovered Rather than
from Virgin Materials
AE = EV - (ER + ER) (XVI-5)
118
-------
where AE
EV
ER
the net difference in
energy requirement for
from virgin materials
energy requirement for
from recoved materials
energy requirement for
municipal solid waste
energy requirement (million Btu)
production of that material
(million Btu)(Equation XVI-1)
production of that material
(million Btu) (Equation XVI-2)
recovery of that scrap from
(million Btu) (Equation XVI-4)
Example: Calculate the energy savings that will be realized in 1990
if cullet recovered from municipal solid waste replaces
virgin materials in the manufacture of glass
AEG = 36,120,000 - (22,155,000 + 600,000)
= 13,365,000 million Btu
5. Calculation of the Total Energy Savings That Would be Realized
in 1990 If Materials Recovered from Municipal Solid Waste Were
Substituted for Virgin Materials in the Production of Steel,
Aluminum, and Glass
ZAE = AES + AEA +AEG
(XVI-5a)
where SA E =
AES =
AEA =
AEG =
total energy savings (million Btu)
net difference in energy requirement for steel
production (million Btu)
net difference in energy requirement for aluminum
production (million Btu)
net difference in energy requirement for glass pro-
duction (million Btu)
For ZAE in BCOE (barrels of crude oil equivalent), the conversion
factor is 5.6 million Btu/barrel of crude oil.
119
-------
XVII. POLLUTANTS ASSOCIATED WITH ENERGY PRODUCTION
1 . Calculation of Emission Factors for Coal Combustion
Efj = Ef2 x HHVC x CEC
(XVII-1)
where Efj = emission factor for a pollutant (pounds/ton coal)
Ef2 = emission factor for that pollutant (pounds/million
Btu output)
= heating value of coal (million Btu/ton)
= 20 million Btu/ton coal
= combustion efficiency of coal
= 1.0
Example 1: Calculate the maximum particulate emission factor
permissible during coal combustion in power plants
Efj = 0.1 x 20 x 1
= 2 pounds particulates/ton coal
Example 2: Calculate the emission factor for carbon monoxide during
coal combustion
Ef2 = 1 * 20 -!• 1
= 0.05 pound particulates/million Btu
output
2. Calculation of Emission Factors for Cofiring of Coal and Refuse-
Derived Fuel (RDF)
= Ef2 x f
(XVI 1-2)
where Efj = emission factor for a pollutant
(pounds/million Btu)
Ef2 = emission factor for that pollutant
(grams /mega joule)
f = conversion factor (from grams/megajoule to
pounds/million Btu)
= 2.32
Example: Calculate the emission factor for NOX during 1977
cofiring of coal-RDF at 80:20 in Ames, Iowa boiler #5
operating at 80% load
Efx = 0.067 x 2.32
= 0.16 pound N0x/million Btu
120
-------
3. Calculation of Emission Factors for Pollutants from Mass Burning
of Municipal Solid Waste (MSW) in Harrisburg, PA Incinerator
= Ef2 x HHVMSW x CEMSW
(XVI1-3)
where
Ef2
HHVMSW =
CEMSW =
emission factor for a pollutant (pounds/ton MSW)
emission factor for that pollutant (pounds/
million Btu output)
heating value of raw refuse
8.6 million Btu/ton MSW
combustion efficiency of MSW
0.60
Example:
Calculate the emission factor for particulates from mass
burning of municipal solid waste
Ef2 =
1.02
i.6 x 0.6
0.20 pound particulates/
million Btu output
121
-------
XVIII. PROJECTED QUANTITIES OF POLLUTANTS FROM ENERGY PRODUCTION IN
1990
1. Calculation of Amounts of Energy That Will Be Produced from
Different Substances in 1990
EP = M x HHV x CE (XVIII-1)
where EP = energy that will be produced from a substance in
1990 (Btu)
M = mass of the substance (tons)
HHV = average heating value of the substance (Btu/ton)
CE = combustion efficiency of the substance
Subscripts used in examples in Equations XVIII-2 and XVIII-3:
C = coal
MSW = municipal solid waste (energy recovered by mass
burning of raw refuse in waterwall incinerators)
MB = mass burning of MSW
RDF = refuse-derived fuel (energy recovered by cofiring
with coal at 20:80 ratio based on heat input to
boiler)
CF = cofiring of RDF and coal at 20:80
2. Calculation of the Amount of Energy That Will Be Produced from
Coal in 1990 without Energy Recovery from Municipal Solid Waste
EPC = Mc x HHVC x CEC (XVIII-2)
See Equation XVIII-1 for definitions.
In Example: M^ = 1036 million tons of coal (Reference 44)
HHVC = 20 million Btu/ton coal
CEC = 1.0
EPC = 1036 x 106 x 20 x 106 x 1.0
= 20720 x 1012 Btu
3. Calculation of the Amounts of Energy That Will Be Produced in
1990 from Coal and from Municipal Solid Waste through Energy
Recovery
Example 1: Calculate the amount of energy that will be recovered
from RDF in 1990
EPRDF = MRDF x HHVRDF x CERDF (XVIII-3a)
122
-------
See Equation XVIII-1 for definitions.
In Example: MRDF = 11,250,000 tons (Table XI)
HHVRDF = 11 million Btu/ton RDF
= 0.65
EPRDF = 11,250,000 x 11 x 106 x 0.65
= 80.4 x 1012 Btu
Example 2: Calculate the amount of energy that will be produced in
cofiring of RDF and coal at 20:80 in 1990
EPCF = EPRDF + EPC (XVIII-3b)
= EPRDF + (4)(MRDF x HHVRDF)(CEC)
See Equation XVIII-1 for definitions.
In Example: EPRDF = 80.4 x 1012 Btu (Equation XVIII-3a)
CEC = 1.0
EPCF = (80.4 x 1012) + (4)(11,250 000X11 x 106)(1.0)
= (80.4 x 1012) + (495 x 1012)
= 575.4 x 1012 Btu
Example 3: Calculate the amount of energy that will be recovered in
1990 from MSW by mass burning in waterwall incinerators
EPMB = MMSW x HHVMSW x CEMSW (XVIII-3c)
See Equation XVIII-1 for definitions.
In Example: MMg^ = 15 million tons (Table XI)
HHVMSW = 9 million Btu/ton MSW
CEMSW = 0.60
EPMB = 15 x 106 x 9 x 106 x 0.60
= 81 x 1012 Btu
Example 4: Calculate the amount of energy that will be produced by
coal combustion in 1990 if there is energy recovery from
municipal solid waste
SEP = EPC - EPCF - EPMB (XVIII-3d)
See Equation XVIII-1 for definitions.
123
-------
In Example: SEP - 20720 x 1012 Btu (Equation XVIII-2)
EPCF = 575.4 x 1012 Btu (Equation XVIII-3b)
EPMB = 81 x 1012 Btu (Equation XVIII-3c)
EPC = 20720 - 575.4 - 81
= 20063.6 x 1012 Btu
Example 5: Calculate the amount of coal that will be combusted in
coal-fired power plants in 1990 with implementation of
resource recovery from MSW
Mc = EPC * HHVC * CEC
See Equation XVIII-1 for definitions.
In Example: EPC = 20064 x 1012 Btu (Equation XVIII-3d)
20063.6 x 1012
(XVIII-3e)
M,
C 20 x 106 x 1.0
= 1003 million tons of coal
Example 6: Calculate the proportion of energy that will be produced
from each fuel/by each method in 1990 with resource
recovery
ZEP = EPC + EPCF + EPMB
See Equation XVIII-1 for definitions.
(XVIII-3f)
In Example: SEP = 20720 x 1012 fitu (Equation XVIII-2)
EPC = 20063.6 x 1012 Btu (Equation XVIII-3d)
EPCF = 575.4 x 1012 Btu (Equation XVIII-3b)
EPMB = 81 x 1012 Btu (Equation XVIII-3c)
Example 6a: Calculate the proportion of energy that will be produced
by coal combustion in coal-fired power plants
Pc = EPC -f SEP
= 20063.6 + 20720
= 96.8 percent
124
-------
Example 6b : Calculate the proportion of energy that will be produced
by cofiring of RDF and coal at 20:80
PCF = EPCF * 2EP
= 575.4 * 20720
= 2.8 percent
Example 6c: Calculate proportion of energy that will be produced
by mass burning of MSW
PMB = EPMB * 2EP
= 81 ± 20720
= 0.4 percent
4. Calculation of Quantities of Pollutants That Will Be Emitted
during Energy Production in 1990
where
QP = Efp x EP x f
(XVIII-4)
Qp = quantity of a pollutant emitted during energy
production by a given method (tons)
Efp = emission factor for that pollutant during energy
production by that method (pounds/million Btu
output) (data from Table XVII)
EP = energy production by that method (Btu)
(Equations XVIII-2 and XVIII-3)
f = conversion factor (from pounds to tons)
= 1/2000
Example: Calculate the quantity of particulates that will be emitted
from coal-fired power plants in 1990 without energy
recovery
0.1 x 20720 x 1012
Qp =
c.
2000 x 106
= 1,036,000 tons particulates
125
-------
5. Calculation of Total Quantities of Pollutants Emitted in 1990
during Energy Production Which Includes Energy Recovery from
Municipal Solid Waste
ZQp =
QP
MB
(XVIII-5)
where SQp
Qp
Qp
CF
MB
total quantity of a pollutant (tons)
quantity of the pollutant emitted during
coal combustion (tons)
quantity of the pollutant emitted during
cofiring of RDF and coal at 20:80 (tons)
quantity of the pollutant emitted during
mass burning of municipal solid waste
in waterwall incinerators (tons)
Example:
Calculate the total quantity of particulates that will be
emitted in 1990 during energy production under the scenario
that includes resource recovery
ZQP = 1,003,180 + 28,770 + 8100
= 1,040,050 tons particulates
126
-------
XIX. EFFECT OF ENERGY RECOVERY FROM MUNICIPAL SOLID WASTE (MSW) ON
THE QUANTITIES OF POLLUTANTS THAT WILL BE EMITTED IN 1990
DURING ENERGY PRODUCTION
1. Calculation of the Effect of Energy Recovery on Pollutant
Quantities
AQP =
- QP
(XIX-1)
where AQp =
QP =
difference in quantity of a pollutant emitted
as the result of energy recovery from MSW (tons)
total quantity of the pollutant emitted during
energy recovery from MSW (tons) (Table XVIII)
quantity of the pollutant emitted during energy
production by coal combustion without resource
recovery (tons) (Table XVIII)
Example:
Calculate the effect of energy recovery from MSW on the
quantity of particulates that will be emitted during
energy production in 1990
AQp = 1,040,050 - 1,036,000
= +4050 tons particulates
127
-------
XX. LANDFILL CAPACITY REQUIREMENT FOR DISPOSAL OF MUNICIPAL SOLID
WASTE (MSW)
1. Calculation of Weight of Refuse/Residue Requiring Landfill
Disposal
ML = M x PW
where ML = weight of refuse/residue that will be
landfilled (tons)
M = mass of MSW that is subject to given
procedure (tons)
Py = proportion of original weight remaining
after procedure
= 0.25 after incineration
= 1.0 after landfilling
= 0.12 after resource recovery
Example: Calculate the weight of the incinerator residue that will
be landfilled in 1990
ML = 10 x 106 x 0.25
= 2,500,000 tons of incinerator residue
2. Calculation of Volume of Refuse/Residue That Will Be Landfilled
in 1990
vL - ML + D x f (xx_2)
where VL = volume of material in landfill (cubic yards)
ML = weight of landfilled material (tons) (Equation
XX-1)
D = density of the material in the landfill (pounds/
cubic yard)
= 2700 pounds/cubic yard for incinerator residue
= 800 pounds/cubic yard for landfilled MSW
= 2000 pounds/cubic yard for residue from resource
recovery
f = conversion factor (from tons to pounds)
= 2000
Example: Calculate the landfill volume that will be required for
disposal of incinerator residue in 1990
2,500,000 x 2000
L 2700
= 1,851,852
= -1.85 x 106 cubic yards
128
-------
3. Calculation of Required Landfill Capacity
LC = VL x f (xx_3)
where LC = required landfill capacity (acre-feet)
VL = volume of material in the landfill (cubic
yards)
f = conversion factor (from cubic yards to acre-
feet)
= 0.0006198
Example: Calculate the landfill capacity that will be required in
1990 to dispose of the resource recovery residue from
municipal solid waste generated in 1990
LC = 3,600,000 x 0.0006198
= 2231
= -2230 acre-feet
4. Calculation of Total Required Landfill Capacity for Disposal of
Municipal Solid Waste (MSW) Generated in 1990
where
LCj
LCL
LCRR
SLC = LCj + LCL +
total required landfill capacity (acre-
feet)
landfill capacity required to dispose of
incinerator residue (acre-feet)
landfill capacity required to dispose of
landfilled raw refuse (acre-feet)
landfill capacity required to dispose of
resource recovery residue (acre-feet)
(XX-4)
Example 1: Calculate the landfill capacity required for disposal of
MSW in 1990 under scenario without resource recovery
ZLC = 1150 + 289,760 + 0
= 290,910 acre-feet
Example 2: Calculate the landfill capacity required for disposal of
MSW in 1990 under scenario for implementation of resource
recovery
2LCRR = 1150 + 243,270 + 2230
= 246,650 acre-feet
129
-------
5. Calculation of the Effect of Resource Recovery on the Landfill
Capacity Required for Disposal of Municipal Solid Waste (MSW) in
1990
A2LC = 2LCRR - SLC (XX-5)
where ASLC = difference in landfill capacity requirement if
scenario for resource recovery is implemented
(acre-feet)
2LCRR = required landfill capacity with resource
recovery (acre-feet) (Equation XX-4, Example 2)
ZLC = required landfill capacity if there is no
resource recovery (acre-feet) (Equation XX-4,
Example 1)
A2LC = 246,650 - 290,910
= -44,260 acre-feet
130
-------
XXI. SUMMARY OF EFFECTS ON THE ENVIRONMENT OF RESOURCE RECOVERY FROM
MUNICIPAL SOLID WASTE
In these calculations:
SAQ = total change in quantity of a pollutant
emitted/discharged (tons)
= change in quantity of the pollutant emitted/
discharged through disposal of the MSW (tons)
(Table X)
= change in quantity of the pollutant emitted/
discharged during materials production (tons)
(Table XV)
AQgp = change in quantity of the pollutant emitted/
discharged during energy production (tons)
(Table XIX)
QCF = quantity of the pollutant emitted/discharged
during cofiring of coal and RDF that is
attributable to the RDF (Table IX)
1. Calculation of the Net Changes in Quantities of Air Pollutants
That Would Be Emitted to the Environment as the Result of Imple-
mentation of Resource Recovery from Municipal Solid Waste (MSW)
in 1990
ZAQ = AQD + AQMP + AQEP - QCF
Example: Calculate the change in the quantity of particulates emit-
ted from MSW in 1990 with resource recovery from the MSW
ZAQ = (-1-14,850) + (-10,654) + (+4050) - ( + 7200)
= +1046 tons particulates
131
-------
APPENDIX B
ESTIMATION OF LEACHATE QUALITY BY EQUILIBRIUM MODELING
Equilibrium modeling was used to predict the quality of leachate
from the landfilled residue of municipal solid waste that remains
after resource recovery. The equilibrium approach to modeling was
selected because concentrations of complexes can be expressed as a
function of the free metal and free ligand concentrations using mass
law equations.
The equilibrium modeling was based on the following assumptions
pertaining to the residue from resource recovery (i.e., the solid
phase):
• Elemental analyses of incinerator residue are valid.
• Metals are present in the most stable oxidation state for an
oxygen-saturated aqueous environment. Therefore, unless
there is specific compound identification, metals are in the
form of hydroxides (except for the oxides of aluminum,
silicon, and titanium) and silicates.
• Nonmetals are present in the most stable oxidation state for
an oxygen-saturated aqueous environment. Phosphorus and
sulfur are therefore present as phosphate and sulfate
respectively.
• Trace elements that are identified in leachate are present in
the landfilled residue in hydroxide form at concentrations of
less than 0.10 mole percent.
• The organic matter in combustion residue is inert.
132
-------
• Organic species which act as strong complexing agents are not
present in significant quantities.
• Microbial action within the landfill is minimal because of
lack of suitable organic substrates.
• Biological degradation of inorganic species is negligible.
On the basis of these assumptions and available data, a hypothetical
composition of the solid phase was formulated (Table B-l).
The equilibrium modeling was based on the following assumptions
pertaining to the leachate (i.e., the liquid phase):
• Formulation of a generic leachate based on available data is
valid.
• The principal factors affecting metal solubility are pH, pE,
and complexing ability. Of these, pH is the most important.
• Leaching in a landfill occurs only when the landfill is
saturated.
• Absorption equilibria are unimportant.
On the basis of these assumptions and available data, a hypotheti-
cal composition of the liquid phase was formulated (Table B-II).
The assumptions made for the other variables that define the
landfill environment are listed in Table B-III.
On the basis of these assumptions, the equilibrium concentra-
tions of the various elements in leachate from landfilled resource
recovery residue were calculated by equilibrium modeling according to
Chemical Equilibrium Program #REDEQL2 that was developed by the Keck
Laboratory of Environmental Engineering Science at the California
Institute of Technology in Pasadena, California (References 50 and
51).
133
-------
TABLE B-I
HYPOTHETICAL COMPOSITION OF THE SOLID PHASE3
CONSTITUENT
CaSO
CaSi03
Ca(OH)2
Ca3(P04)2
Mg(OH)2
MgSi03
A1203
Pb(OH)2b
Si02
Cd(OH)2b
Zn(OH)2
Cu(OH)2
Mn(OH)2
MnSi03
Fe(OH)3
Sn(OH)2
Mg(OH)2b
Ni(OH)2b
Ti02
K20-Al203-6Si02
Na20-Al203-2Si02
CONTENT
Mole %
3.27
9.80
8.71
2.18
8.71
16.34
5.45
0.05
18.52
0.10
0.54
2.18
1.10
1.10
3.27
0.08
0.05
0.02
6.54
4.36
7.63
Weight %
3.47
8.90
5.03
5.27
3.97
12.81
4.34
0.10
8.68
0.11
0.43
1.66
0.76
1.11
2.72
0.10
0.10
0.02
4.07
21.57
14.77
aBased on composition data in Reference 47.
"Added constituent.
134
-------
TABLE B-II
HYPOTHETICAL COMPOSITION OF THE LIQUID PHASE
DESCRIPTION
CONSTITUENTS
Eluant simulates a natural leachate
pH 5.00
0.15 M acetic acid
0.15 M sodium acetate
distilled water
TABLE B-III
PARAMETERS DEFINING THE LANDFILL ENVIRONMENT
PARAMETER
ASSUMPTION
Temperature
Pressure
Liquid-to-solid ratio
Solid density
Bulk density
25°C, ambient
1 atmosphere, ambient
2:1
2.6 g/cm3
0.5 g/cm3
135
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
2.
3 RECIPIENT'S ACCESSION-NO.
4. TITLE AND SUBTNTLE
5. REPORT DATE
Assessment, o.f. ^the Impact of Resource Recovery
on the Environment
August 1979 (Issuing Date)
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Judith G. Gordon
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
The Mitre Corporation
Metrek Division
McLean, Virginia 22102
10. PROGRAM ELEMENT NO.
PE #1NE624, SOS #5, Task 15
11. CONTRACT/GRANT NO.
68-03-2596
12. SPONSORING AGENCY NAME AND ADDRESS
Municipal Environmental Research Laboratory—Cin.,OH
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
EPA/600/14
15. SUPPLEMENTARY NOTES
Project Officer: Albert J. Klee (513)684-7881
16. ABSTRACT
This assessment of the environmental impact of resource recovery examines the
environmental effects that will derive from municipal solid waste disposal in 1990
and the changes in these effects that will result from implementation of resource
recovery from municipal solid waste. The environmental effects considered in this
study are the direct effects of municipal solid waste disposal as well as the second-
ary Affects of substituting materials recovered from municipal solid waste for raw
materials in the production of steel, aluminum, glass, and energy. The energy aspects
of resource recovery—that is, energy conservation resulting from use of recovered
scrap in materials production and energy production by recovery of energy from
municipal solid waste—are also evaluated. The analysis is based on specific sce-
narios for municipal solid waste disposal in 1990 without and with implementation of
resource recovery.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
Energy
Waste Disposal
Assessments
Materials Recovery
b.IDENTIFIERS/OPEN ENDEDTERMS
Resource Recovery
Solid Waste Management
Municipal Solid Waste
Resource Recovery
Environmental Impact
Material Substitution
COSATI Field/Group
13 B
13. DISTRIBUTION STATEMENT
Release to Public
19. SECURITY CLASS (This Report)
Unclassified
21. NO. OF PAGES
144
20 SECURITY CLASS (This page)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
136
ft US GOVERNMENT PRINTING OFFICE 1979-657-060/5393
------- |