P6 80-10287^

 oEPA
United States
Environmental Protection
Agency
             Municipal Environmental Research
             Laboratory
             Cincinnati OH 45268
EPA-600/8-79-011
August 1979
Research and Development
                           ENVIRONMENTAL
                             PROTECTION
                              AGENCY
Assessment of the
Impact of Resource
Recovery on the        LIBRARY
Environment

-------
                RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U S Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology.  Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are

      1.  Environmental  Health Effects Research
      2  Environmental  Protection Technology
      3.  Ecological Research
      4.  Environmental  Monitoring
      5  Socioeconomic Environmental  Studies
      6  Scientific and Technical Assessment Reports (STAR)
      7  Interagency Energy-Environment Research and Development
      8  "Special" Reports
      9  Miscellaneous Reports

This report has been assigned to the "SPECIAL" REPORTS series. This series is
reserved for reports targeted to meet the technical information needs of specific
user groups The series includes problem-oriented reports, research application
reports, and executive summary documents  Examples include state-of-the-art
analyses, technology assessments, design manuals, user manuals, and reports
on the  results of major research and development efforts
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161

-------
                                      EPA-600/8-79-011
                                      August 1979
        ASSESSMENT OF THE IMPACT OF
   RESOURCE RECOVERY ON THE ENVIRONMENT
                    by

             Judith G. Gordon
             MITRE Corporation
              Metrek Division
          McLean, Virginia  22102
          Contract No. 68-03-2596
              Project Officer

              Albert J. Klee
Solid and Hazardous Waste Research Division
Municipal Environmental Research Laboratory
          Cincinnati, Ohio  45268
MUNICIPAL ENVIRONMENTAL RESEARCH LABORATORY
    OFFICE OF RESEARCH AND DEVELOPMENT
   U.S. ENVIRONMENTAL PROTECTION AGENCY
          CINCINNATI, OHIO  45268

-------
                            DISCLAIMER
     This report has been reviewed by the Municipal Environmental
Research Laboratory, U.S. Environmental Protection Agency,  and
approved for publication.  Approval does not signify that the con-
tents necessarily reflect the views and policies of the U.S.  Environ-
mental Protection Agency, nor does mention of trade names or  commer-
cial products constitute endorsement or recommendation for  use.
                                 ii

-------
                              FOREWORD
     The Environmental Protection Agency was created because of
increasing public and government concern about the dangers of pollu-
tion to the health and welfare of the American people.  Noxious air,
foul water, and spoiled land are tragic testimony to the deteriora-
tion of our natural environment.  The complexity of that environment
and the interplay between its components require a concentrated and
integrated attack on the problem.

     Research and development is that necessary first step in problem
solution and it involves defining the problem, measuring its impact,
and searching for solutions.  The Municipal Environmental Research
Laboratory develops new and improved technology and systems for the
prevention, treatment, and management of wastewater and solid and
hazardous waste pollutant discharges from municipal and community
sources, for the preservation and treatment of public drinking water
supplies, and to minimize the adverse economic, social, health, and
aesthetic effects of pollution.  This publication is one of the
products of that research; a most vital communications link between
the researcher and the user community.

     One of the objectives of the Resource Conservation and Recovery
Act of 1976 is to promote the protection of health and the environ-
ment through resource recovery.  It was not known, however, to what
extent such a policy would abate the pollution caused by the disposal
of solid wastes.  This report addresses the issue by first quantify-
ing the present environmental effects of the disposal of municipal
solid wastes, and then comparing these effects to those that would be
expected under an assumed scenario of resource recovery sometime in
the future.  The results are of value not only in placing resource
recovery into a national perspective, but for the planning of
research and development programs as well.
                                     Francis T. Mayo, Director
                                     Municipal Environmental Research
                                       Laboratory
                                 iii

-------
                              ABSTRACT
     This assessment of the environmental impact of resource recovery
examines the environmental effects that will derive from municipal
solid waste disposal in 1990 and the changes in these effects that
will result from implementation of resource recovery from municipal
solid waste.  The environmental effects considered in this study are
the direct effects of municipal solid waste disposal as well as the
secondary effects of substituting materials recovered from municipal
solid waste for virgin materials in the production of steel, aluminum,
glass, and energy.  The energy aspects of resource recovery—that is,
energy conservation resulting from use of recovered scrap in materials
production and energy production by recovery of energy from municipal
solid waste—are also evaluated.  The analysis is based on specific
scenarios for municipal solid waste disposal in 1990 without and with
implementation of resource recovery.

     The net environmental impact of resource recovery from municipal
solid waste will be primarily beneficial.  Emissions of most air pol-
lutants will be reduced.  The discharge of pollutants to surface
waters will increase.  The quantities of all pollutants present in
leachate from landfilled municipal solid waste and resource recovery
residue will decrease.  Less landfill capacity will be required for
disposal of municipal solid waste.  Energy savings will be realized
from energy conservation in materials production and energy recovery
from municipal solid waste.

     This report was submitted in fulfillment of Contract No.
68-03-2596 by The MITRE Corporation, Metrek Division, under the
sponsorship of the United States Environmental Protection Agency.
This report covers the period from September 26, 1977 to September 21,
1978, and work was completed on November 30, 1978.
                                  iv

-------
                           TABLE OF CONTENTS
                                                           Page
Foreword	iii
Abstract	   iv
List of Tables	   vi
Acknowledgments	viii

  1.  SUMMARY	    1

  2.  INTRODUCTION 	    5

  3.  FINDINGS	    7

References	   77
Appendices

  A.  Equations Used in Calculations	   83
  B.  Estimation of Leachate Quality by
      Equilibrium Modeling 	  132

-------
                             LIST OF TABLES
 Number                                                       Page

   I     Generation of Municipal Solid Waste in the           10
         United States

  II     Summary of Scenarios:  Handling of Municipal         12
         Solid Waste

 III     Composition of Municipal Solid Waste                 14

  IV     Major Pollutants from Disposal of Municipal          16
         Solid Waste

   V     Reported Concentrations of Pollutants from           18
         Municipal Solid Waste Disposal

  VI     Estimated Quantities of Pollutants from Disposal     21
         of Municipal Solid Waste in 1975

 VII     Projected Concentrations of Pollutants from          27
         Municipal Solid Waste Disposal in 1990

VIII     Projected Quantities of Pollutants from              31
         Disposal of Municipal Solid Waste in 1990
         without Implementation of Resource Recovery

  IX     Projected Quantities of Pollutants from Disposal of  38
         Municipal Solid Waste in 1990 with Scenario for
         Implementation of Resource Recovery

   X     Estimated Change in Quantities of Pollutants from    43
         Disposal of Municipal Solid Waste Resulting from
         Scenario for Implementation of Resource Recovery
         (1990)

  XI     Estimated Quantities of Materials Recoverable        48
         from Municipal Solid Waste in 1990 under
         Scenario for Resource Recovery
                                vi

-------
                    LIST OF TABLES (Concluded)
Number

  XII

 XIII

  XIV

   XV
  XVI



 XVII

XVIII


  XIX



   XX



  XXI
Pollutants Associated with Steel Production

Pollutants Associated with Aluminum Production

Pollutants Associated with Glass Production

Effect of Implementation of Materials Recovery
from Municipal Solid Waste on Quantities of
Pollutants from Production of Steel, Aluminum,
and Glass (1990)

Estimated Energy Conservation in Materials
Production Resulting from Utilization of
Recovered Materials (1990)

Pollutants Associated with Energy Production

Projected Quantities of Pollutants from Energy
Production (1990)

Estimated Change in Quantities of Pollutants from
Energy Production Resulting from Energy Recovery
from Municipal Solid Waste (1990)

Effect of Implementation of Resource Recovery on
Landfill Capacity Required for Disposal of
Municipal Solid Waste in 1990

Summary of the Effects on the Environment of
Implementation of Resource Recovery in Accordance
with the Scenario for 1990
I.   Air Emissions
II.  Discharges to Surface Water
III. Pollutants in Landfill Leachate
IV.  Miscellaneous Effects
APPENDIX

  B-I

  B-II

  B-III
Hypothetical Composition of the Solid Phase

Hypothetical Composition of the Liquid Phase

Parameters Defining the Landfill Environment
Page

 51

 54

 56

 58
 60



 63

 66


 68



 70
                                                               73
                                                               74
                                                               75
                                                               76
134

135

135
                               vii

-------
                          ACKNOWLEDGEMENTS
     The contribution of Mr. William Lowenbach of The MITRE
Corporation, Metrek Division, in analysis of leachate data and the
equilibrium modeling estimation of leachate quality is gratefully
acknowledged.

     Dr. Robert W. White of Midwest Research Institute in Kansas
City, Missouri, kindly provided recent, as-yet-unpublished data from
the Ames, Iowa, Solid Waste Recovery System.

     The helpful comments of Drs. Harold Yaffee and Paul Clifford, my
colleagues at The MITRE Corporation, and of Dr. Albert Klee of the
Municipal Environmental Research Laboratory of the United States
Environmental Protection Agency in Cincinnati, Ohio, are greatly
appreciated.
                                viii

-------
                              SECTION 1




                               SUMMARY







     This study was prepared for the Processing Branch in the Solid




and Hazardous Waste Research Division of the Municipal Environmental




Research Laboratory of the United States Environmental Protection




Agency (EPA).  The objectives were to determine quantitatively the




effects on the environment of municipal solid waste disposal and of




resource recovery from the municipal solid waste, as well as the




potential benefits of resource recovery in mitigating the environ-




mental effects of municipal solid waste disposal.  The data are




presented in tabular form for use in EPA program planning.




     In this assessment of the environmental impact of resource




recovery from municipal solid waste, two scenarios are presented for




municipal solid waste disposal in 1990—one without and the other




with implementation of resource recovery.  The differences between




the environmental effects that would result from the two scenarios




constitute the environmental impact of resource recovery.  Municipal




solid waste, as considered in this study, is comprised of residential




and commercial wastes.  It is projected that approximately




197,000,000 tons of municipal solid waste will be generated in the




United States in 1990.

-------
    Under the scenario for municipal solid waste disposal in 1990




without resource recovery, five percent (10,000,000 tons) will be




incinerated and the remaining 95 percent (187,000,000 tons) will be




landfilled.  The scenario for municipal solid waste disposal with




implementation of resource recovery stipulates that five percent




(10,000,000 tons) will be incinerated, 80 percent (157,000,000 tons)




will be landfilled, and 15 percent (30,000*,000 tons) will be pro-




cessed for resource recovery.  With resource recovery, ferrous met-




als, aluminum, and glass will be recovered from the 15-percent por-




tion of the municipal solid waste and the recovered materials will




replace virgin materials in the production of steel, aluminum, and




glass.  In addition, energy will be derived from the same portion of




the municipal solid waste by mass burning in waterwall incinerators




and by cofiring of refuse-derived fuel with coal; this energy will




replace a similar amount that would otherwise be generated by coal




combustion.




     The environmental effects of resource recovery from municipal




solid waste are primarily favorable.  (See Table XXI for a summary of




the effects.)  Net emissions of all but three of the air pollutants




considered will be reduced.  Emissions of carbon monoxide will be




reduced in 1990 by about 2,300,000 tons and emissions of carbon diox-




ide, NOX, and methane by about 310,000 tons, 150,000 tons, and




114,000 tons, respectively.  Smaller reductions will occur in emis-




sions of SOX (-23,000 tons) and hydrocarbons (~7200 tons).  There

-------
will be  slight  increases  in the quantities of total particulates




(~1000 tons) and aldehydes (~2500 tons) emitted and a larger increase




(~140,000 tons) in chloride emissions.




     The quantities of pollutants that will be discharged to surface




waters in incinerator wastewater effluent will increase because more




municipal solid waste will undergo mass burning with implementation




of the scenario for resource recovery.  With resource recovery from




municipal solid waste, smaller quantities of pollutants will be pre-




sent in  landfill leachate.  The decrease will range from 3 tons of




cadmium, a minimum of 25  tons of sulfate and about 100 tons of chrom-




ium, copper, lead, and nickel to more than 1,000,000 tons of magnesi-




um.  In the absence of data on leachate contributions to the




pollutant loadings of ground and surface waters, the net effects of




resource recovery on the water resources cannot be determined.




     The requirement for  landfill capacity to dispose of municipal




solid waste and the residues from mass burning and resource recovery




will be decreased by about 44,260 acre-feet under the scenario for




resource recovery.  The landfill capacity needed with resource recov-




ery from municipal solid waste will be about 85 percent of the capa-




city that would be required if there were no resource recovery.




     Energy derived from municipal solid waste in 1990 will amount to




161.4 x 1012 Btu (28.8 x 106 barrels of crude oil equivalent).




Energy conservation that would accrue from substitution of recovered




for virgin materials in the production of steel,  aluminum, and  glass

-------
will be about 75.2 x 1012 Btu (13.4 x 106 BCOE).  The total




energy savings that can be realized from resource recovery from




municipal solid waste will therefore be about 236.6 x 1()12 Btu or




42.3 x 10  barrels of crude oil equivalent.

-------
                              SECTION 2




                            INTRODUCTION







     A study was made of the environmental impact of resource recov-




ery from municipal solid waste.  For the purposes of this study,




municipal solid waste is defined as being comprised of residential




and commercial solid waste, i.e., the urban refuse that is normally




handled by municipalities.




     Resource recovery consists of the recovery of scrap ferrous met-




als, aluminum, and glass from municipal solid waste and their substi-




tution for virgin materials in production of steel, aluminum prod-




ucts, and glass containers.  Resource recovery also includes recovery




of the energy content of the municipal solid waste.




     The year 1990 was selected as the base year for the study




because it is the earliest date by which a reasonable number of




resource recovery facilities would be fully operational and, there-




fore, resource recovery would be having a significant impact on the




environment.  Two scenarios are proposed for municipal solid waste




disposal in 1990 — one without and the other with resource recovery.




Some reference is also made to the present, specifically 1975.




     Pollutants emitted/discharged to the air, surface water, and




landfill leachate as a consequence of municipal solid waste disposal

-------
constitute the direct environmental effects of municipal solid waste.




The differences in quantities of these pollutants that would result




from implementation of the two scenarios comprise the direct effects




of resource recovery.  Similarly, the secondary effects of resource




recovery are the differences in environmental effects that would




result from substitution of recovered materials for virgin materials




as well as the energy conservation/production aspects of resource




recovery.

-------
                              SECTION 3




                              FINDINGS







     The findings of the study are presented in the following 21




tables.  For a listing of the tables, see pp. vi and vii.




     The methods of calculation are presented in Appendix A.  The




sections and equations in this appendix are keyed by number to the




tables in the text.

-------
DISCUSSION: TABLE I














quantity of municipal solid waste that is generated in the United States is un-

4-1
O
CO
X
cu
CU
X!
H





U-l
0
01
4-J
cfl
rJ
cfl
cfl
s — '
d
o
13
0)
CO
CO
rQ
/^\
r-l
cu
r-l
X
cfl
H
•*^f
O
ON
ON
i — i
13
d
cfl
in
r-
ON
. — i
}-i
O
U-l
01
13
W
B
0)
t-l
0
U-l
cu
M
CU
Xi
4-1
O>
l-l
CO
3
CD
d
o
• l-l
4-1
Cfl
B
•H
4-1
CO
W


.
C!
3
0
c
£t
waste generation that is expressed in terms of pounds per person daily and (b)
T3
• H
i — l
O
CO
r— 1
CO
CX
• H
O
•H
C
3
B
90 populations as estimated and projected by the United States Census Bureau.
ON
i— 1

13
d
cfl
in
i —
ON
t— l

Q)
Xi
4-1
4-1
CO
Xi
4-1

-a
Ol
B

co
CO
co

CO
CO
3

4-1
I—I
e of generation of municipal solid waste (residential and commercial refuse) is
4-1
CO
l-l

01
Xi
H


•





cfl
x;
4-1
• i-l
3
**
4-1
d
o>
&
o
r-l
CU
>
01
13
rH
Cfl
• H
O
rJ
d)
O
o
U-l
o
CU
Ol
r4
60
cu
T3
cu
X!
4-J
d
o
•
OJ
•
•1-4
n
cu
N
• l-l
CO
>%
4J
• r-l
e
o
u
d
o
4-1
C
cu
T)
d
cu
cx
cu
13








.
f>.
i— i
• H
Cfl
13
d
0
CO
M
QJ
CX
r4
cu
CX
co
13
d
3
O
CX
m
.
m
U-l
O
4-1
•H
B
•H
r-l
d
0
• H
4-J
Cfl
l-l
3
4-J
Cfl
CO








e of municipal solid waste generation is independent of time, i.e., the rate
the same in 1990 as in 1975.
4-J
CO
r4

0)
H


•





CU
Xl

I—I
1 — 1
• I-l
3








tribution of population is independent of time, i.e., the percentages of pop-
by community size as reported in the 1970 Census of Population (1) will remain
to d
•H O
13 -H
4-1
CU cfl
e-3


•





.
o
0\
ON
i — i
X!
60
3
O
r4
X
4-1
4-1
d
CO
4-1
CO
d
o
o








e of population growth will be in accordance with the Series II projections of
ted States Census Bureau, i.e., 2.1 lifetime births per woman (vs. 1.7 and 2.7
ies I and III, respectively).
thod, it is estimated that about 173 million tons of municipal solid waste were
4J -H r4 CU
to C cu B
M J3 CO
CO
CU O> rJ -r-l
X! X! 0 X!
H 4J U-l 4-1

(X,
• M





r-l
CO
CX
•H
O
• H
d
3
U-4
0
co
01
4-1
Cfl
B
• H
4-1
CO
0)
4-1
CO
X!
4-1
x-s
CN
•^s
13
01
4-J
rJ
0
CX
OJ
l-l
d
Q)
cu
Xl
CO
CO
X!
4-)
M
•
m
i^
ON
• — 1
d
•H
co
cu
4-1
CO
4-1
CO
13
cu
4-1
•H
d
&
cu
X!
4-1

d
• H
13
01
4-1
cfl
M
O>
d
01
60
ntities are accurate within ±25 percent; the range of 173 million tons ±25 per-
CO
3
o-

cu
4-1
CO
CO
3

13
•H
r-l
0
CO
pass the 136 million tons estimated for 1975 that is given in the Fourth Report
B
o
o
d
cu
CO
cu
0
13

4-1
d
0)
o

-------
o
4-1
co
C
0
4-1
C
O
>r^
i— I
,__f
• H
B

O
vD
t — i
(4_l
O

0)
4-J
CO
B
T3
0)
T)
3
i— i
O
C
O
c_>
N^
M

H
J
«
<;
H


• •
55
O
M
C/3
C/J
&
O
W
r-l
Q
4J
CO
0)

0)
43
4-J

CO
0)
CO
e
• r-l
X
0
S-i
a
a
cfl

0
CO
r- 1
CO

01
M
3
60
• H
M-l

co
•H
43
H


•
s~^
l/S
^^

CO
CO
0)
r-l
60
t3
0
0

O
4-1

4-1
p
O
PL,
OJ
Pi








































•
s-*.
VO


OJ
0
t-.
3
0
CO

<
P-i
W

)-i
0)
43
4-J
0
C
CO

>s
43

•O
a)
4-1
•H
0

VD
1 —
o\
1 — 1
0)
43
4-1
c3
•r4
T3
0)
CO
^J
0)
C
0)
60

0)
43
i— I
rH
•H
^

0)
co
CO
S

T3
• H
i — l
O
co

1^
CO
a.
•H
0
•H
C
3
B

M-l
0

CD
C
0
4-1

a
o
• H
i— I
rH
•H
B

r-~
OS
« — i

4-1
CO
43
4J

Q)
4-1
CO
B
• r-l
4-1
CO
0)

(1)
43
H







•
^^v
m
^^

CO
S
0
4-1
C
o
• H
i— I
i— I
• H

LPl
CN
CN

M-l
O

C
O
•rH
4-1
O
QJ
•1—1
O
j-l
o.

<
PH
W

0)
43
4-J

O
4-1

M
CO
i— I
• r-l
g
•r-l
co

CO
• H

O
OS
OS
, — 1

c3
•H

CO
0)
4-1
CO
4J
C/>

TJ
01
4J
•H
C
£>

-------
CO
tn
ta

a
en
B
z
3
C/3
H
C/3
O
ca
U
M
Z






o
2


















in























J2
CO

W
JS

§
M
5
£
13
CO
3
PH










a •- •>
a] IH
S lo
1 2
vO
3 O

X

M ^
EH\O
eJ ~H
5 ^^
PH
O
CM
O x~>
U IH
H X
2 CO
W B
2 O
U 4-)
O
O
3 o
£2
z
o
£n ^
* ao o CN --H m
o i"*- CN >H/- r^ in
CM ~4 CM O --H CO





O -* OO —I O CN
>o -*>*>-* r~ m
m CM CN 01 -H oo







en >o PI o o o
• •••••
r^ m os o m m
i— 1 "— ( »—( CO *H ("^






»— ( ^ m os os P^
OS ^H CO OS ** >*
^t CM CM CM ~H r^.







o o o *o <—* m
CM CM CN
.-H








co o i"H ^^ r^ m
(N ~H -H — ( CO







o o m m m m
CM -* -* m m m


o
o
0 0
o o -
o o o
o o - o
o o o
o o o o
• o m -H o
O -H | 1 O
-H 1 O 0 •
§10000
O O O 0 O
O O O • " O
.0 « o o
_i • o O O -H
V -H -H -H U-V /S



o
OS
^




00
m
CO
^^
CM






CO

CM
r^
^H




MH
in
CO
^H
CN


































,_,
CO



































CO
CU
4J
CO
at
3
at
• H
o
CU
I
o
u
B
CO
r-H
CO
-iH
4J
B
CU
T)

CO
CU
^4
MH
O
00
CO
CQ
§
U
Q)
4J
00
Z

•o
• H
rH
O
CO

rH
CO
a.
• H
U
• H
B

X
CO
Reference
erritory
ed
Reference
 3
• H
•o
 B
 3
 O
                                                                                                            B
                                                                                                            O
                                                                                                            u

                                                                                                            CO
                                                                                                            cu
                                                                                                            M
                                                                                                            co

                                                                                                            •o
                                                                                                            0)
                                                                                                            N


                                                                                                            1
                                                                                                                    CU
                                                                                                                   Ki
ed
ba
 at
 01
 IH
 CO


•O
 01
 N
•,H
 B
 CO
                 IH
                 O

                 0)
                 u
                 CO
                i-H
                 a.
                                                                                                                            u
                                                                                                                            to
                                                                                                                            01
                                                                                                                            60
                                                                                                                            B
                                                                                                                           •H
                                                                                                                           •O
                                                                                                                            3
                                                                                                                            cx
                                                                                                                            o
                                                                                                                            ex
 01
 no
 to
 4J
 B

 S
 h
 cu
ft.
Reference
                                 01      -H
                                 O      rl
                                 B      01
                                 O)      CO


                                 OI      >-i
                                MH      O
                                 O)      MH


                                5      B
                                        O
                                 01      -H
                                •U      4J
                                 CO      O
                                                                                                                                                    O
                                                                                                                                                    IH
                                                                                                                                                    CX
                         01
                         U
                         B
                         01
                                 01
                                 h
                                 3
                                ca
                                 B
                                 01
                                U

                                 CO
                                 01
                                                                                                                                           •§
                                 B
                                a
                         3
                        pa
                         B
                         cu
                        o

                         CO
                         CU
                                        73
                                         0)
                                                                    10

-------



































M
r-l

W
rJ
PQ
•^j
H


• •
£5
0
M
CO
CJO
£3
C.2
CO
r-l
O





































O
o**
Civ
1 — 1

c
• H

4-1
CO
4-J

•O
cu
4-1
o
0>
•>— i
O
)-l
cx

CO
•H

4->
M


•
tH
M

01
i — 1
fi
CO
H

C
• H

"O
01
4-1
<3

CO
cu
^4
cx

CO
0
• r-4
}_i
CO
(3
0)
O
co

01
43
4-1

C
0

13
cu
CO
cfl
43

CO
• H

r*i
T3
-J
4-1
CO

CO
• H
43
H





43

14-1
i— 1
CO
43
1
CU
C
O
1
1

r*^
t-l
0)

0
o
O)


cu
CJ
t-l
3
O
CO
CU
M

j_i
0
14-1

•o
cu
CO
CO
CU
0
O
t-l
cx

cu
43

r-l
•—I
•H
^

0)
4-1
CO
cfl
^

-0
• H
i— 1
O
CO

i— i
cfl
cx
• H
CJ
• r-l
C
3
B

14-1
0

CO
C
o
4-J

C
o
• r-4
r-l
i— 1
•H
6

O
CO
pj
t-l
3
43

co
CO
cfl
e

43

4-1
i— 1
Cfl
43
1
CU
(3
0

-o
C
cfl

prn
P
W

m
0

(3
O
• H
4-1
CO
3
43
e
0
O

T3
C
cfl

C
o
• H
4-1
Cfl
t-i
CO
cx
0)
co

CO
rH
CO
• H
t-l
CU
4-1
CO
G

43
4-1
-r-l
^

too
£3
• H
CO
co
cu
O
0
M
CX

T3
(3
0)
1
4-1
£3
O
^i
M-l










CU
3
T3
• H
CO
0)


CU
43
4-1

B
0
}_i
^4-1

r*^
^1
0)

O
0
0)
t-i

co
r-i
CO
• H
^l
CU
4-1
CO
e

43
4-1
• H
[J

T)
C
cfl

^
t-i
CU

O
o
cu
t-i

r*^
too

0)
C
CU

43
4-1
•r-l
JJ

0)
co
3
14-1
O>
t-l

JJ
Cfl
)-t

14-1
O

bO
C
• H
}-l
CU
^
O
o
01
l-l

cu
o
3
o
CO
0)
M

01
r-l
CO
o
co

cu
toO
^i
CO
r-l

O
m

>4-l
0

^
4J
•H
O
CO
CX
cfl
O

I—I
cfl
3
(3
C
CO

CU
43
4-1

O
4-1

CO
13
C
0
CX
CO
0)
M
r4
O
o

CO
(3
O
4-1

C
0
• H
r-l
rH
•H
B'

r*"*
4-1
t-l
• H
43
H







CO
4J
O
0)
•I— 1
0
M
CX
m
CM

CU
rJ
CU
S

cu
^i
01
43
4->

f\
r~-
j^.
C7*j
i — I

^1
CU
43
B
cu
4-1
cx
cu
CO

U-l
o

co
^


•
^
CO
T3

t-i
cu
cx

co
13
O
4-J

0
O
0
CM

bO
C

CO
CO
CU
CJ
O
t-i
CX

43
O
CO
0)

*l
CO
CU
• H
4-1
•H
r—l
• H
O
CO
4-1


(3
•H

c
o
• H
4-1
cfl
0)
CX
o

)_l
o

ft
c
0
•T-l
4-1
CJ
3
t-i
4-J
CO
C
O
o

•*
c
bO
•H
CO
cu
rrj

T3
CU
•o
(3
3


C
• H

^~>
CO
T3

)-|
0)
cx

co
S
O
4-1

O
0
o
•*
^rj-
CM

14-1
O

^
4-1
• H
O
Cfl
CX
CO
O

r-l
cfl
4J
0
4-1

cfl

43
4-J
• H
&







































































•
y— N
1^
s_x

CO
cu
4-1
Cfl
4-1
CO

T3
0)
4-1
•H
C
Jo

0)
43
4-1
11

-------
H

CO
fj
o
CO
ss














o
ON














£
M
K*
O
u

Pi
W
j— 1
0
CO
M
Pi

SC
H
M


Cd
O
U
w
Pi

H
U
0
CO
H
H
0
EC
H




LO
f-H
to
C
O
4J

VD
0





&•$




to
a
o
4-1

vO
O
f— I



fr-S


to
(3
0
4-1
vO
O

S-S


^
Q
O
PC
H
W
s
CO
J CO
 .20)3 M 3 > C 0) 0)
O COOI* C O OPiS
60 O 60UQ -HCUOiH-H T3
C OJ T3CCO P5 CcOH pi 00 0) C M
pq -H M C O 0) C C to M-U-HCUg
IH 3 OO4JOO CO>a)cflO4JO
to *o o JH f^< 03 >r^ >r^ cd cd cj »2 c3 cd (H
tO G tO hpH,i^4J4-l ISPHW *^ MS4*-*
td cd cu
S ,J oi




1^
ON
^














r^
ON
f-H







00
CN
^











3
H
o
H
                                       12

-------



































M
H
M

W
,J
PP

CO
»
o
W
h-l
0




































14-1
O

d
O
en
<0
O>
co

1
1

CO
^
O
4-1
O
«
"4-1

1-1
Q)
43
4-1
O

M
c
O
6
n)

1


43
4J
•H
£

CO
cu
• H
V-i
cfl
>

0)
4-1
CO
CO
"»

~O
• rH
I— 1
O
CO

1— 1
CO
CX
•H
O
•r-l
C
?
6

<4-l
O

C
O
• H
4-1
•H
CO
O
CX
s
O
O

o)
43
H






(1)
r— I
.0
CO
H
^^

C
O
• H
4-1
CO
N
• H
C
CO
40
J-i
D

IH
0

0)
0)
t-i
60
0)
T3

-o
C
cfl

n
CD
O
• H
4-J
CO
• H
>-l
01
4-1
0
Cfl
J-i
CO
43
u

c
0
• H
4-1
Cfl
i— 1
•3
CX
0
CX

•\
d
o
• H
4-1
CO
0
0
I— 1

o
• H
4=
cx
cfl
\-i
60
o
OJ
60

•4
)-i
CO
01
>,

01
43
4-1
•
ai
4-1
CO
CO
&

T3
• H
i — I
O
CO

i— i
cfl
cx
• H
O
• r-l
C
3
E

<4-l
O

01
>
• H
4J
Cfl
4J
C
0)
co
dJ
ij
a
0)
^

60
c
•H
a>
J3

co
CO

13
01
4-)
O
V
,— 1
CD
CO

CO
cfl
;s

c
o
• H
4-1
• H
CO
0
ex
0
o
o

J£
r-l
Cfl
O
• H
cx
>-,
4-1
£

<


•
X^v
M
H
H
M
t
0)
\^^

CO
4-J
C
0)
e
ex
o
1— 1
0)
>
0)
T)

I— 1
CO
o
• -I
60
O
t— I
O
c
f
o
0)
4J

CO
CO

CO
(-!
O
4J
O
cfl
4-1

jr
O
3
co

>,
Jl

T3
0)
C
• H
g
M
0)
4-1
a>
T3

0)
M
to

C
o
• H
4-J
•r-l
CO
0
a,
6
o
o

c
• H

CO
OJ
60
C
CO
J=
a









U-l
0

CO
4-1
CO
o
o

0)
>
• 1-1
4-1
cfl
1 — 1
0)
(^

0)
,c
4-1

t
•
60
•
0)
^^

CO
C
O
• H
4-J
cfl
J-J
OJ
TJ
• 1-1
co
C
0
u

o
• H
e
0
c
0
o
0)

T3
d
CO

s~~^
ca
r-l
cfl
• H
M
0)
4-J
CO
e

60
d
• 1-1
60
cfl
^
0
cfl
CX

ft
CO
0)
CX
>.
4-1

rH
0)
3
<4-l
cfl

4-1
CO

d
0
•H
4-1
•r-l
CO
0
CX
g
o
o

14-1
o

d
0
• H
4-1
O
•rH
T3
0)
I-J
CX

•\
co
0)
I— 1
JO
CO
• H
t-l
CO
>

CO
3
O
^
0)
E

d

0)
,d
4-1

M-l
o

0)
CO
3
cfl
O
a)
CQ


•
^-\
CO
4-1
O
3
T3
O
M
CX

T3
01
CO
CO
40

£

(1)
! 	 1
0
M
4-1
OJ
CX


I— 1
cfl
O
• H
a
>.
4-1

0)
43
4-1

4-1
CO
43
4J

T3
01
B
3
co
ca
co

0)
t-i
O
M-l
01
M
0)
4=
4J

CO
• H

4-J
h-l


•
OJ
i— 1
40
CO
• H
i — 1
OJ
rl
d
3

T)
d
cfl

4-1
i— 1
3
O
• H
m
U-l
• H
-a

CO
• H

0)
4J
CO
T3

0)
!-i
3
4->
3
M-l

O
• r-l
U-l
•r-l
O
01
CX
co















•
U~l
1 —
C3>
i — I

d
• H

4-1
CO
4=
4-1

CO
CO

0)
E
CO
CO

ai
43
4-1

ai
40

i— i
i— i
• H
5

O
o>
c^
1 — 1

d
• H

0)
4-1
CO
cfl
£

-a
•H
i— 1
O
CO

i — i
CO
CX
• H
a
• H
d
3
B

M-l
0

d
o
•r-l
J-J
•r-l
CO
O
CX
B
0
o
13

-------
                                   .o

                                    o
                           H
                           SB
                           M
                           H
                           S5
                           O
                           u
         u
         H
         CO
         CO
cd
Q
w
H
OC
O
a.
                                                                                                          01
                                                                                                          o
                                                                                                          c
                                                                                                          01

                                                                                                          o>
                                                                                                         14-1
                                                                                                                                         o
                                                                                                                                         I—
                                                                                                                                         ON
                                                                                                                                         I—I
                                                                                                                                          I


                                                                                                                                         ON
                                                                                                                                         CO
                                                                                                                                         cd
w
         g
         z
         o
         10
         o
                                                                         cd
                                                                         0)
                                                                        •O
                                                                         C
                                                                         cd
                                    W
                                    H
                                              CO
                                              01

                                              co

                                              5
                        co
                        60

                       • i-l
                        B
                        01
                                 o

                                T3
                                 O
                                 l-i
                                 a.
                                    co
                                    o
                                   • l-l
                                    B
                                    cd

                                    0)
                                    o
ca
o
CO
oi
                                                                                                                      M

                                                                                                                     T3
o
o
                                                                                                          cd
                                                                                                               •

                                                                                                          c
                                                                                                          cd  cu
                                                                                                              o
                                                                                                          co  C    •
                                                                                                          0)  O)  X-N

                                                                                                          4-1  01  "*>
                                                                                                         •H  M-l
                                                                                                          O  0)    •
                                                                                                              fv|   p,
                                                                                                          ca
                                                                                                          01  B    -
                                                                                                          4-1  O  00
                                                                                                          cd  u
                                                                                                          4-1  <4H   O)
                                                                                                         C/3       CJ
                                                                                                              -o   a
                                                                                                         T3  0)   0)
                                                                                                          O)  4-1   l-l
                                                                                                          4J  a,  o)
                                                                                                         •1-4  cd  4-<
                                                                                                          C  13   0)
                                                                                                         O  co  Pi
                                                                     l-l  M
                                                                O)   O  O
                                                                                                                                         cd
                                                                                                                                         M   cd  cd
                                                                                                                                         a>  4-1  4J
                                                                                                                                         >   cd  cd
                                                                                                                                         
                                                                                 U-l
                                                                                  C
                                                                                  O
                                                                                  B
                                                                         ca

                                                                         O

                                                                         I-i
                                                                         0)
                                                                                                                           ON
                                                                                                                       o>
                                                                                                                       u
                                                                                                                       B   ••
                                                                                                                       oi   ca
                                                                                                                       u  *-<
                                                                                                                       oi   cd
                                                                                                                      ij^^   _j.j
                                                                                                                       OI   OI

                                                                                                                      J3   O
                                                                             14

-------
0)
V-i
cfl

CU
4-1
co
CO
 o
 to
 CO
 CX
 C

 B
 bO
 C
•T-l
 CD
 CO
 (1)
 O
 O
 \-l
 CX
 Cfl
 CO
 O
 CX
 CO
• H
T)

 B
 O
 M
 0)
 -O
 C
 cfl
 4-1
 O
 CX
 CO
 B

 ai
 fi
 H
          CO
         H
          0)
          4J
          CO
                                                              15

-------
J
PO
      Id
      E-i
      en
      Q
      M

      O




      CM
      M
      CJ
      M
      Z
      en
      O
      en
      M
      Q
      oi
      fc,
      03
      H











Oi
u
H

3






Q
O
M

M
ta
o
w
oi




ai
M
^J




























£
a
a
u
u
o
a:
OH











CN
1 CO
-» X)
O B
W 3
O a
a B
m Bo
| O -i-ICN
<»• 0 4J 1

CO CXt i— ' O O O
-H o -H cn
cd - B B ,-<
4-1 i 0> cd cd «
41 i-l X 00 4-1 1
Boo. h oi 1-1
o B o
CQ
73 CO
B 73
3 B
O 3
^ 0, O
co S a
cd cd o o
4-1 -i-l O Cd
01 M O -i-l
S 01 CO 'H U M
^ 4-1 ^H B -H 01
u cd cd B 4-i
CO CQ Cd 4J 60 Cd U
oi B xi cu n 60 cd
4-1 O B O h X)
cd XI "0 O
i-l M 01 01 >«
3 cd co i-l ,-1 01
O o 01 ••-* ••-! i— 1 CQ
•H Q 03 4J 4J *H 01
4-1 H 3 cd Cd 4J CQ
M X X 73 M r-< •— 1 CN^CO C034J
cd O O X'i-1 OOOEEcN I-IV4CO
O.cnZX>>> UO33 O-H3
> > -a










B
O
60 *H
e 4J
•rl Cd

01 Cd
x o) a
M O 01
ai o en
> u
o cv u
60 U ^H
B 0! XI cd
•i-l pd B -H
B W h
m t-i oi i oi
3 i-l U 4J U
« -H M B cd
iw 3 O X
CO T3 O M
CQ B CQ [i*
cd cd oi
£ ,J oi




CN
1

O
en

^
c*"l
1

O CQ
CL,r— 1
O
"B
1 01
•-I.C
u a

CQ
73
B
3
O
a.
1
cd o

M O
01 -H
4J B
u cd
CQ CO Cd 60
01 B XI M
4-1 O O
cd xi *-fl
r-H M 01
3 Cd M ^H
O O 0) 'i-l
•iH O CO 4J
4J h 3 Cd
l-i X XX) M i-l
WO O X-H O
txen z x! > >







[X
S



^4


^
l-l
0)
8-
o
01
cd

^
60
M
01
B
u




01
o
XI
cd

60
B
•I-l
B

3
pa

CQ
CO
cd


01
01
CQ





01

o
XI


60
c
• H
B

3
PO

CO
CO
cd
5^

01
01
CO
01 X
> I-l
o 01
u >
01 O
ai o
01
C1J B3
u
3 60
o u
CO 01
01 B


f. JS

•r-l *H
9 9
60 B
B O
•pH •!-!
B 4-1
l-i cd
3 M
PO 01
CJ
CO B
CQ M
cd
J£













































4J
CQ
3
73












^.
M
01

0
u
01
06

CQ
^
eg

^
01
4J
cd
X




                                                               16

-------





































^

w
,_J
M
^3
H


• «
P^
O
M
CO
CO
[ i
u
CO
r-l
P





































CU
^1
tO

r-l
CO
CO
o
Q.
co
• r-l
13

CU
4-1
CO
cfl
^

13
•H
i— I
O
co

i— 1
CO
a.
• r-(
O
•r-l
d
3
B

B
o
i-i
4-J

4-1
r— 1
3
CO
cu
u

4-1
cfl
42
4J

CO
4J
d
cfl
4-J
3
,— i
i — i
O
a,

4-J
0

CO
d
0

4-1
CO

4-1
d
cu
o
d
o
o

13
CU
4-1
J-J
o
CX
cu
od






i
d
o
r-l
•r-l
^
d
cu

cu
f~;
4-1

1-1
CU
4-J
d
cu

60
d
• H
d
vj
3
43

co
CO
cfl
B

B
0
Vj
4-1

CO
4-1
d
Cfl
4-1
3
r— i
i— i
O
a,

1-1
CU
4-1
CO
S

cu
o
cfl
4-1
V_|
3
CO

13
d
tfl

r-t
• H
tfl

CU
42
H


•
^

cu
r— i
43
cfl
H

d
•H

T3
CU
4-1
CO
• r-l
i — 1

en
, — i
r— i
• i-j
4-J
13
d
cfl
i — i

e
o
V^
4-1

CO
4-1
d
tO
4-1
3
r— 1
i— I
O
Pj


•
>*>
r— i
CU
^
• H
4-1
0
CU
a
co
cu
v^

*,
r-l
CU
4-1
Cfl
U
CU
4J
CO
Cfl
5

l-i
O
4-J
Cfl
VJ
CU
d
• H
O
d
• H

T>
d
cfl

CO
d
0
•r-i
CO
CO
• r-l
B
cu

AS
o
CO
4-1
CO

cfl
•r-l
^

4-1
d
CU
B




































•
0
CO
r— I
tfl

^
cu
4-1
to
Vj
cu
d
cu
60

cu
j-t
cfl

co
cu
CO
cfl


cu
B
o
CO

• f\
Vj
a)
4-1
tfl
5
-o
d
3
O
VJ
00

cu
42
4-1

0
4-1
d
•r-l

n
O
Cfl
cu
1— 1
1
1 — 1
O
a.

cu
r?
4-1

>*>
r— 1
d
O

4-1
O
cu
, — 1
4-J
CU
r-l

CO
V_|
O
4-1
O
cfl
4-1

d
o
• r-|
co
CO
• r-l
B
cu

13
d
cfl

co
d
o
• r-l
4-1
CO
Vj
4-1
d
cu
o
d
o
o

13
cu
4-1
VJ
0
a.
CU
1-1

CU
fl
4-J

4-1
Cfl

4-1

13
CU
B

CO
CO
cfl

CO
•rJ

4-1
r-l






! 	 1
cfl
• r-l
Vj
4-1
CO
3
•a
d
• r-l

d
cfl

CO
• 1-J

CU
V-l
cu
42
4-1

4-1
tfl
42
4-1

d
^
o
d


co
•r-l

4-1
|— f


•
CU
4-J
co
tfl
s

13
• H
r— 1
O
co

i— I
cfl
a.
• H
0
•r-l
d
3
B

B
o
VJ
4-1

T3
CU

• r-l
VJ
CU
*T3

CU
VJ
cfl

4-J
cfl
42
4-1

co
4-1
d
Cfl
4-1
3
i— I




13
d
cfl

CO
d
o
•r-t
4-1
CO
VJ
4-1
d
cu
o
d
o
o

,_^
cfl
4-1
O
4J

O
4-1

d
o
•r-l
4J
3
43
• 1-1
VJ
4-1
d
o
o

r— i
cfl
• H
r-l
4-1
CO
3
13
d


CU
42
4-1

4-1
3
43

*
B
cfl
CU
VJ
4-1
CO

CU
4-J
co
cfl


CU
42
4-1

d
• H

4-1
d
cu
d
o
a.
B
o
o





































•
^
•d
3
4-1
CO

CO
•r-l
42
4-1

d
• rJ

*d
CU
VJ
cu
13
•r-l
CO
d
o
o

4-1
O
d

CO
•r-l

CO
4-1
d
Cfl
4-1
3
i — i
,— l
0
a.

4-1
o

CO
0)
• rJ
4-1
•H
4-1
d
CO
3
a"
17

-------
        §01.

        V4



  •*« -^ >







   U3C
      J£
      o <
      dB
g S
 "  S
 a  3
                                                                                                 I   I



                                                                                                CM  CM
                                                                 -oa      
-------
                        a  a  c

                         i-H  O  vO
S   I
a   i
                 as
                                                                                             9 r-
                                                                                             •H ,H
                                                                              §  s
                                                                                            11
                                                                                            81
                                                                                            g-s
                                                                                            2 S
                                                                                 CO  3  OJ  MH
                                                                              «  X  — C  -H    ^O

                                                                              OJ  ^H  -H M  (3  o
                                                                                      O  W
                                                                                      D,  M
                                                                           «  S  B
                                                                           4J   -  O
                                                                                                     C —
                                                                                                     cO  01
                                                                                                     4-1  U

                                                                                                     s  s
                                                        19

-------


1
cu
r-l

CU
43
4-1

CO
Cfl

-J<
in
r*^
ON
< — i

d
•r-l

4-J
d
CU
B

o
^4
•|H
^
d
cu

cu
43
r-l 4-1
^
-d
w cu
I-H1 r-l
M cu


CU
I— 1
43
CO
H

d
• iH

d
cu
^
•r-l
60

CU
r-l
cfl

m
r^
ON
, — t

d
• i-i

i— i
Cfl
co
O
a.
co
• H
T3

CU
4J
CO
cfl
^

T3
• r-l
,— 1
O
CO

r— 1
Cfl
OH
•i-l
O
• H
d
3
B

MH
O

4-1
r-l
3
CO

1
d
0
o

4-1
d
cfl
4J
3
, — i
r-l
O
a.

T2
CU
4-1
r-l
o
a,
cu
r-l

cu
43
4J

*,
^^v
M
r— 1

cu
f—l
f-l
cfl
H
\^s

0
• iH
!H
cfl
d
CU
O
CO

i — l
CO
CD
0
a,
co
•r-l
•d

in
f —
O">
. — i

cu
43
4-J

MH
O

CD
•r-l
CO
cfl
43

CU
43
4-1

d
o

•d
CU
4-1
cfl
1— 1
3
0
1— 1
cfl
0


cu
B
3
i— l
0
^

CU
4-1
cfl
43
O
cfl
CU
! 	 1

1— 1
1— 1
• H
MH
*d
d
cfl
r-H

MH
O

CU
4J
cfl
B
• iH
4-1
CD
CU

^
Oi
w

CU
43
4-J

T3
d
cfl

^
^^i
£>

CU
r-H
43
CO
H


CO
r-l
O
4-J
CJ
CO
MH

d
o
•r-l
CO
CD
•H
B
CU

T)
d
cfl

CO
d
o
•iH
4-1
Cfl
rH
4J
d
CU
O









• •
CO
d
0
•rH
4-1
a.
B
3
co
CO
cfl

60
d
•H
^
0
1— 1
! 	 1
o
MH

CU
43
4-1

d
o

•d
cu
co
cfl
43

CU
r-l
cu


CO
d
0
• iH
4.)
Cfl
r-H
3
O
r-H
CO
0

CU
43
4-J

•K
CU
IH
O
MH
CU
IH
CU
43
H


»
,-^
ON
i— i

CU
o
d
CU
r-l
CU
MH
cu
erf
^^


60
d
• r-l
d
IH
3
43

CO
co
CO
B

^
43

MH
O

T)
CU
CO
O
a
CD
•rH
•a

CU
rH
cu
5

cu
4-J
CO
Cfl
^

•d

i — i
o
CO

r-H •
CO T3
a, cu
•H r-l
O 1— 1
•H -iH
d MH
3 -d
S d
cfl
MH r-H
O
CU
CO rH
d cu
o S
4J
CO
d d
O 0
•H 4-J
! 	 1
r— 1 C3
TH O
B T-l
1— 1
CO i— 1
• *iH
r- B
i— t
LO
*> •
IO L.O
r^- LO
O> ^H
.-H
'TJ
c a
M cd


Q





CU
^
• H
4-1
CO
4J
d
cu
CO
CU
IH
a
CU
^1

cu
rH
cfl

^>

cu
1 — 1
43
Cfl
H

d
• rH

-a
CU
4-J
ca
• rH
i— 1

co
IH
0
4-J
O
CO
MH
•
d a)
O J-»
• iH CO
CO Cfl
ca 5
•rH
3 *"O
CU T-l
1 — 1
•a o
d co
cfl
r— 1
co cfl
d a
0 T-l
•iH O
4J -H
cfl d
IH 3
4-1 B
d
cu B
0 0
d M
O MH
0
CD
4-1 4-1
d d
cfl cfl
4J 4-1
3 3
1— 1 r-H
1— 1 r-H
0 0
a OH

CU r-l
43 0
H MH


£
































•
•a
cu
i— i
i— i
o
IH
4-1
d
0
o

4-1
0
d

CU
IH
0)
U

co
4-1
d
tO
4-1
3
r— 1
r-H
O
a

MH
0

CO
CU
60
i-l
CO
43
O
CO
• iH
•d

*d
d
cfl

co
d
o
•rH
CD
CO
• •H
B
w


o






^
r-H CU
CU O
•u d
Cfl CU
B M
•r-i cu
X MH
o cu
rH Crf

a.
cfl co
d
'd o
CU i-H
CO i— I
•iH cfl
VH 60
OH
B d
0 0
0 T-l
1— 1
Cfl ^H
0) TH
r-l 43
CO
O

r-H
•r-l O
MH 4-1
-d
d T3
CO CU
rJ 4-1
d
3
• O
co B
a, cfl
B
3 CD

r-H
'd *H
d MH
cfl -d
d
CD Cfl
r-H r-l
1 — 1
•rH B
MH O
T) rH
d MH
Cfl
r-l CU
4-1
O CO
0 43
m o
" efl
OO CU
r— 1 r-H

cu -d
r-l d
CU CO
^
1
CU CO
rH CU
CU r-l
43 0
4-1 Cfl

in o
r^ o
ON O
.— 1 « •
o ^
d o ON
M m — i


0





cu
4-1
cfl


MH
O
co
CD cfl
d S
o
4-1 IH
CU
X 4J
•H cfl
co |5
CU
CO 4-1
cfl co
S cfl
S
60
d T3
•H C
>• to
cu

C •^^
O -> IH
r— 1 CU
MH MH
CU
"d crf
C3 v 	 . .
cfl 60
CU d
60 4-1 T-I
d CO r-H
•rH CO O
rC }f ?"1
O CJ
d T) cu
CU T-l rH
3 i-H
cr o J-"
co 3
cu o
3 r-l 43
T3 CO 4-1
•r-l O.-I-I
CO -rH S
CU 0
rH TH rH
d cu
tH 3 4-1
o B «
MH S
T3
4J CU CU
C 4-J O
CU cfl cfl
E rH MH
CU 0) IH
rH d 3
•rH TH CO
3 0
cr d o
CU T-l 4J
rH
MH T3
rH O CU
CU 60
4-1 d rH
cfl o tfl
S 4-1 43
o
CU IH CD
43 CU TH
H O.T3


Q





cu
43
4-1

•d
d
CO

A
cu
CO
3
MH
cu
rH

•d
CU
r-H
1 — 1
•rH
MH
""d
d
to
r-H

B
0
rH
MH

CO
Cfl
60

MH
o
•
d co
0 rH
•H cfl
4-1 CU
to >*,
^_l
cu m
d cs
CU
60 r-l
cu
B >
3 O
E
•rH S
x E
to o
E ^
• rH
u d
O 3
MH
CO
CU -H
1— 1
-a C
cfl o
4-1 -H
•H 4J
3 cfl
ca IH
cu
cu d
rH CU
CU 60
S
CO
co cfl
d 60
o
•r-l MH
4-1 0
•H
T3- CU
d 4-1
O cfl
O V-i


0










^O
r-^
ON
i — 1

d
•H

^

B ON
•rH r-l
4-1
CO d
CU -H

CU 13-
43 CU
4-1 r-H
r-H
CU TH-
rH MH
cfl T3
d
co cfl
CU r-H
co
cfl co
60 cfl
u
i-H
r-l 4J
•H Cfl
14H ,£
-d 4J
d
cfl CU
r-H 4J
CO
d Cfl
•rH S

co "d
4-1 -H
d r-H
cfl o
4-J CO
3
r-H r-H
r-H CO
0 OH
OHTH
CJ

"o 'd
3
co B
cu
•rH CU
4J ^c3
•H 4J
4J
d B
cfl O
3 VH
O-MH
^e
20

-------
W
^J
      fa
      o
      CO
      o ^
      d,  to
      CO  C
      M  O
      Q  JJ


      5  c
      O -i-i
      co r-
      r^ O^
H Z
P M


3^
CM co

fa 3
O
   Q
CO M

h-l O
H CO

H ^
z <;
<3 a.
P M
o- u
   M
Q Z

£g
      H
      CO
      W


hJ
_j
!_j
M
fa
Q
55
^q
hJ






"o
Z
M
Z
OS
P
W

CO
CO

S
Q
W H
S3 S5
^
O H
Z p
h-l ^4
> 1-5
M O
W 04
W
T3 T3
00000 00
O O O O O O O
o o o o o o o
•**%•%•!•» ^ ^ •* »»
O CS **O CO CO Z Z O O>
vO CM CM O •— 1 CS OO
cs co vo m
t— )
•a T)
0 0
0 0
0 0

O ON
CS 00
vo m
A
,_(







o o o o o
o o o o o
o o o o o o
*> •* •> *> *» ^ ^ ^
O CS vO co co Z Z Z
vO CM CS O -H
CS CO

O s~~
f— H
03 O
v»^
to
to s—. /-v to nj
4) CS CS C ^-^
4-> O O O
n) co z JD CD co
I-H t-i a) a)
3 to to (B T3 73
O CB « U >>•!-!
•H x_/ v-x O J3 l-l
jj 1-1 a) o
M tflOOO >, r-» j3 O 3S
                                                         21

-------
>

W
        O
        3
        O x--
        frl  CO
        co  C
        M  O
        Q  -u
T3     co  r~
 01     Ho
 3     SB  -H
 C     
                                                                         C»1   r-H
                                                                              cd    O
                                                                                                                              tfi
 cfl
4=
 CX
                                                                       22

-------









^^
T3
>™i
^
H Z
O M
( "]
nJ W
0 H
Oi CO
fa 3
0
O
CO M
H h-1
M O
H CO
M
H ,J
Z <
< PH
^3 K^
ex u
0 Z
w p
H £
H
CO
u









J
^J
H
0
H










(0
Q
O
P3
H
W
SB
,j
«^
to
0
O-i
CO












QJ
»-J
, "]
l-l
fa
O

d
M 0
w ex,
CJ
W
03
O O O
o o o o
o o o o
~ in - o
in « o m m
O ^D vO O> •— 1
r~ CM oo "  » OJtflQJCO
^ T3 i^ r— t V^ p, O tfl 60 C O 4-J
W ^ "3 r$ J3 O M ^ cd cO *H O
iJOUUUOMHJgSZfc
                                       23

-------
•o
 0)
•a
 3
rH
 O
 B
 O
U
DQ

H
       CO
       O ^
       (X  ca
       co  B
       M  O
       Q  •!->

       2  C
       O -rt
CO f~-
H ON
H Z

>H
rJ W
O H
IX CO

Cn S
O
   a
CO M
W i-J
M O
EH CO
I—I
H ,J
Z <

M
Q
U H
^
Z &
M _]
> pj
M O
W (X
o
W
OtJ
o
0 0
0 0
« o
o
ON U"l
00 rH O
" -* 0
CM "CO
1 00
1 ^Q
o
lA O
r^ r^
r, CO
CN
rH

O
o
z z °^>
oo
vO


o
0 0
0 0
« o o
0 «0
O^ '^^ ^^
00 i— 1
esi "co
^H i — 1
1
1 1
o
in >£> ON
r*> r** *— i
*\ c^)
CM
. — 1























H Oi
Si e w

U -H M-l 0

i
i— i
• H
M-l
*rj
B
cfl
•— i

01
4-1
ca
CO
3

•a
• H
rH
O
co

i— i
cfl
ex
• H
O
• I-l
B
3
S

^»
,0

vO
ON
• — i

B
•H

K*N<
rH
• rH
01 Cfl
r-l B
J2 O
cfl -i-l
•— 1 4-1
•H Cfl
cfl B
^
CO T3
0)
4-1 4-1
O cfl
C rJ
01
Cfl B
4J 0)
Cfl 60
a
ca
01
CO
•< Cfl
Z O
O T)
•O
B
cfl
i— i
O>
B
60
•r^
CO
0)
-0
rH
I— 1
O>
3
• 01
CO rH
B 60
0 B
•H >H
4-1 CO
CO
M CO
4J
B l-i
Ol O
O M-l
B
O cfl
O 4-1
CO
M-l T3
O
M-l
co o •
O) Ol
60 B 60
B O cfl
Cfl -i-l >-!
la 4-1 Ol
W >
T3 •— I CO
tu o
4-> CXrH
l-i co co
OMB
a. 4-1 o
O) X-i-l
I-l 0) 4-1
C B C
0 0
0)
T3 -d-C
0) Ol 4-1
CO CO
cfl co ca
JD XI 0)
4-}
ca CO CO
01 01 3
4-1 4-l-H
cfl cfl X
E B 0
•H *H V-<
4-1 4-1 G,
co co a.
Ol Ol CO

rH rH >-,
CO Cfli— 1
£j £^ ^^
O O cfl
•H •!-! ,JD
4J 4J O
CO CO M
Z Z CX


• • • •
M M
M
0)
                                                                24

-------

































M
rH


W

PQ

H


. .
as
o
M
CO
CO

u
CO
M
Q



































d
•H

4-J
d
0)

d
o
r-l

^
d
Ol

CU
43
4J

O
4-1
d


13
cu
oo

cfl
43
O
CD

T)

13
Ol
4-1
4-1
• H
0
CU

0)


rH
i— 1
• H
5

4-1
cfl
43
4-1

CO
4-1
d
cfl
4-1
3
rH
rH
O
CX

M-l
O

CO
£3
O
• H
4-1
CO

4-1
d
cu
o
d
o
CJ
cu
r-j
EH





O
CD
0)
o
l-i
3
O
CO


i
M
M
£>

CU
rH
43
Cfl
H

d


rrj
0)
4-1
CO
• H
i — 1

0)

Cfl

rH
Cfl
CO
O
CX

• H
•o

f — s
s
CO

•^.S

0)
4-1
CO
cfl
JE

13

i— 1
O
co

rH
Cfl
CX
•r-l
O
•r-l
r-J
3
g

M-l
O

4-1
i— 1
3
co
0)
r-l

0)
4-1

CO


O
ON
ON
i — 1
00
d
• H
rH
rH
•H
M-l
13
d
tfl


•s
,-^
r**»
I-l
CU

o
o
0)


px»
00
rH
0)
d
0)

r-
4-1
•H


13
d
cfl

4-J
3
O
43
4-J
•r-l

^_,

CU
co
3
U-J
CU


r>
cO


M-l
O

00
d
• H
d
r-l
3
43

CO
CO

rrj

0)
jo

i — i
i — i
• H
*j

CO
4-1
d
cfl
4J
3
i— 1
, — 1
O
CX

1
01
rJ

E
o
V-i


0)
3
13
•H
CO
CU
I-l

M-l
0

00
d
•H
rH
rH
•r-l
M-l
TJ
d
cfl
i — i

13
d
CO

*l
y-^
ta
Q
OS


rH
O>
3
M-l

•o
cu

• H
r-l
Ol
13

0)
CD
3
M-l
0)
V-l

E
O
I-l
M-l

rX,
r-l
Ol

O
CJ
0)
r-l

£>^
00
r-l
01
d
01

*\
Ss
CO
2g

M-l
0











































































,
rX,
I-l
cu

o
o
O)
r^

OJ
O
r-l
3
O
CD

. .
CO
d
o
• H
4-1
CX
B

CO
co
cfl

00
d
•H
&
o
rH
rH
0
M-l

CU
43
4-1

d
0

13
CU
CO
cfl
43

CO
to


O
ON
ON
i — 1

I-l
0
M-l

CO
d
0
• H
4-1
CO
rH
4-J
d
01
O
d
0
o

4J
d
cfl
4-1
3
, — 1
1— 1
o
CX

M-l
o

d
o
•r-l
4-1
0
01
1— 1
cu
CO







c
•H

0)
43

rH
, — 1
•rH
£t

O

ON
r—l

I-l
CU
4-J
M-l
Cfl

0)
d
• H
i— 1

d
o

cu
B

o

4-1
tfl

4J

CO
1-1
O
4J
CO
r-l
0)
d
•H
O
d
•r-l

rH
CO
CX
•H
CJ
• H
C
3
e

cu
co
o
43
4-1

jx,
rH
d
0 '
d
- o
0 -r-l
ON 4J
ON Cfl
rH VH
0)
d cx
M O


9








CU
43
4-1

B
o
r-l
M-l

0)
CO
o
43
4-1

CO
cfl

CU

cfl
CD

CU
43
4J

01
43

rH
rH
•H
£p

o
ON
ON
1 — 1

d
• r-l

CO
I-l
O
4-1
Cfl
rH
cu
d
•H
O
d
•H

i — 1
Cfl
cx
• H
CJ
•H
d
3
E

B
o
M
M-l

co
d
o
• H
co
co
•H
W


•







co
cfl

^-\
CO
CO
cU
CJ
o

CX

d
•rH
4-J
I-l
CO
^

*,
CU •
4-J CO
Cfl d
U 0
00-r-l
CO
00 CO
d -.-i
•rH B
rH CU
rH
OJ 4J
> 0
tfl 0)
rH M-l
4J M-l
CO
*
^~l t *
cfl O
13 d

r-l I—I
CU ' — 1
CX -H
£f.
co
d rX|
0 rH
4-1 01
>
0 0
o o
CO CU
N— X J-,

I-l EX,
O 00
4-1 U
CO O)
rj d
01 w
d
•H
O •
d ^
• H r-~
ON
< -I
,
0) rH 43
d o
•H CX 4-1
o cu
d 01 co
•r-l CO
O co
rH 43 Cfl
Cfl 4-1
CX
•H r-l r-l
O O O1
• r-l M-l 4-1
d co
3 4J S
E cx o)
CU 4-J
E o co
O X CO
l-i cu 5
M-l
^ rJ
rJ > O
CU 4-1
4-1 0) tfl
CO rH r-l
Jt 43 Ol
cu co d
4-1 H -H
CO -~s O
cfl d
2s m -H
[-^
d ON r-i
•H rH O
M-l
CD I-l
COW
o M-I d
•H O
4-1 TJ -H
tfl qj 4J
r-l 4-1 Cfl
4-1 CO 4-1
d -H -H
0) rH E
O -H
d OJ rH
O CO
0 O 4-)
-C £
4-1 4-1 O>
d 3
CO CO i— 1
4-1 Cfl M-l
3 <4-i
rH CU CU
rH B
o ca o
PJ CO 4J


•





co
cu .c
| .H
co S
CU cfl
43 CU
4-1 X-N O
3 C
E S «
O -r-l
r-l U~l rH
M-l . CX
r~> B
o) o
CD - O
o in
43 =S= d
4-1 -H •
r-l CD
CO CU O> 4J
Cfl rH 43 d
•H CO
0) O ' — ' ' — *
B 43 rH CXl
CO -H
CO r-l DS P
CU CU
CU ^i 43 2f
43 O O O
4-1 4-J -H O(
CO 43
0) 2t TJ
43 - Ol
13 CO rJ
rH Cfl d -rJ
rH O O [X4
• H i— 1 -i-l |
2S CD rH
4-1 CO Cfl
o d T-I o
ON cU g CJ)
ON o O>
rH r-l rJ
cu cu o
d CX 4J M-l
•H cfl
O rH CO
pL4 QO 3 "^
O 0 M
Pi - -H cfl
O 4J TD
13 CN rJ d
d • " Cfl CO
CO o CX 4J
00 CO
rH I-l
CO 4J O CU
O tfl M-l o
0 d
En 4J cfl
OOQ 0. 6
d a! 01 r-i
•rH | O O
M rH X M-l
•rl CO CU r-l
M-l O 0)
O O 1 — CM
cj ^ r-^
ON Ol
6 4J -H O
O d rH
l-i CO d 3
M-l rH -H O
CX CO
CO 13
d l-i 0) SB
O CU r-l CU
•rH 2S O Z
CO O 4-1
CO CX -H OO
•rH d r"--
B < o ON
W M B — 1


•






co
CD d
d o
O 'r-l
•H CO
4-1 CO
•rH -H
13 E
d o)
o
CJ 01
43
P 4-1
cfl
rH CU
•rH 4J
d 3
•H 4J
CO -rH
4-1
r-l CO
a> d
13 O
d cj
3
fcl
00 Q
d OS
• H
4-1 13
co d
rH Cfl
a>
CX rH
O cfl
o
4-1 CJ
• rH
d u-i
3 0

cu oo •
B d d
CO -H O
CO rH -H
•H 4J
0) M-l CJ
43 O cfl
4-1 CJ I-l
M-l
B oo
0 d Cu
I-l -rH Q
M-l rH OS
3
co 13 01
C 43
O 13 4-1
•rH d
CO cfl o
CO 4-J
•r-l d
B 0 cu
01 -H rH
4-1 43
d co co
•H 3 4-1
_ fl — 3
co B 43
0) O -H
0 0 rH
d 4J
Ol rH 4J
rH CO CfJ
0) O
M-l O 0)
r^j tj
•H 00 cfl
13 d
•rH 4-1
0) rH Cfl
43 3 43
H 13 4-1


0





25

-------
§
4-1
0)
•r-l
l-l
O>
4-1
Cfl
43
4-1
Q
-o
a
ca

l — i
cfl
0
^-x
T3
01
13
3
r— 1
O
a
o
u
N^ /

M
M
£>

W
h-3
M
•^J
H


• •
a
o
M
CO
CO
J 1
o
CO
r-l
Q
O

4-1
0

60
C
•H
rs-|
•r-l
4-1
O
O

B
o
1^1
4-1

l-l
01
4-1
CO
^
0)
4J
CD
cfl
^

C
• i-l

CO
4J
C
cfl
4-)
3
i — i
r— l
0
CX

0)
43
4-)

•s
o
CT»
C7>
r— 1

C
r-l
ator wastewater except
i-i
o>
C3
>r^
O
c
•r-l

r— 1
CO
CX
•l-l
O
•H
C
3
B

C
•r-l

01
CO
O
43
4-1

CO
CO

Ol
B
cfl
co

Ol
43
4-1

Ol
43

i — l
i — l
•r-l
^

C
o
• H
4-1
O
CO

4-1

Pn
Q
eel

Oi
r!
4-1
Pn
Q
<&
4-1
O
C
0
•r-l
4-1
CO
l-l
CO
CX
0)
1^1
cx

60
C
•r-l
l-l
3
13

T)
01
£>
O
B
Ol
V4

CD
r— 1
CO
4-1
0)
B

4-1
O

co
13
C
3
O
CX
E
o
o

4-1
o

01
0
(3
01
CO
43
cfl

01
43
4J

v^
O
4-1
CO
cfl
o
1 — 1
C3
•r-l
0)
cfl
CO
Ol
43
4-1
O>
43

r— 1
r-l
•r-l
^

£g
CO
S

T3
Q)
i— I
i — l
•H
"4-1
""O
C3
cfl
r— l

B
0
i-i
4-1

01
4J
Cfl
43
O
CO
0)
,— i

I-i
O
4-1

CO
Ol
the ranges of concen-

4-1
O
0)
r— 1
4-1
0)
l-l

t**t
1— 1
43
Cfl
43
O
|^
CX

S-)
O)
4-1
4-1
cfl
r— 1

Ol
43
4-1

CO
cO

43
O
3
E
CO
cfl
C
• H

60 m
C
CO
I-i

(3
0
• r-l
4J
Cfl
l-l
4-1
C
0)
o
c
o
0

0)
43
H
f^
CT*
• — l

C


13
01
4-1
M
O
CX
0)


0)
co
O
43
4-1









t
co
,—1
r— i
• H
4-1
T3
C
CO
1 	 1

^
0)
c

CO
CO

i — i
r— (
Ol
5

CO
cfl

13
r— 1
O

B
o
ij
4-1

Ol
4-1
CO
43
O
CO
0)
,— I

c
•r-l

CO
C
0
•r-l
4-1
Cfl
l-l
4-1
C
•r-l
4-1
O
0)
co
o
cx
CO
• H
0)
l-l
cfl

4-1
cfl
43
4-1

j>^
^i
0)
^
0
o
Ol
^_i

0)
o
^
3
0
co
0)
l-l

B
o
M
4-1

CO
0)
3
13
•r-l
CO
Ol
l-l

0)
43
4-1

4-1
O

CO
C
O

4-1
• r-l
CO
0
CX
B
o
o

0)
43
H
illed directly, and
4-1
13
C
cfl
r—l

CO
• H

4-1
CO
43
4-1

rs
CO
S

4-1
O

C
o
•r-l
4-1
• l-l
CO
0
CX
B
o
u

0)
43
4_>

B
0

4-1

^_l
0)
4-1
4-1
•H
"0

, — t
r— 1
•H
Ss

CO
, — i
i— i
• r-l
4-1
13
C
Cfl
r— 1
from these materials
13
0)
^
• H
|^l
0)
13

Ol
l-i
cfl

4-1
Cfl
43
4J

CO
0)
4J
Cfl
43
O
cfl
0)
i — i

(1)
43
4-1

4-1
O

co
O
• i-l
4-1
CO
• H
l-l
0)
4J
O
Cfl
l-l
CO
43
O

O)
43
4J

01
l-l
o
4-1
0)
l-l
01
43
4-1















































.
I-l
0)
4-1
4-1
• H
13

O
CO
r— i
CO

i— l
r— 1
•r-l
3
ery residue provides an
on.
> -H
O CO
U CD
0) 3
)-i U
CO
Ol -r-l
U T)

3 I-i
0 0
CO 4-1
0)
t j PQ

13 X
0) -H
r-l 13
r-l 13
•r-l O)
4-1 CX
13 CX
C <
CO
r— l 0)
01
E co
0

4-1 .
^
O) 4-1
4-1 -r-1
CO r—l
43 cfl
0 3
CO O*
0)
i— 1 Ol
4J
4-1 cfl
O 43
O
60 cfl
C3 01
•H i—4
1 — 1
O) 4-4
T3 0
O
B C
o
B -^
3 4-1
•r-l Cfl
r-l B
43 -H
•H X
r-l O
•r-l l-l
3 CX
cr cx
W cfl
26

-------
WASTE

WATER

(ppm)
*    §  £
  in  w  >.
  W ^
  in  4-1 in
  <5 IH CM
                                                                                                                                        o
                                                                                                                             m   o\   m
                                                                                                                             o
                                                                                                                             O||
                                                                                   •H   8    c
                                                                                     ft   -
                                                                                     ON i-»   •<->
                                                                                                                            OH
                                                                                                                       i-)    m    ON
                                                                                                                        OS
                                                                      O'n^OOOOOOOOOcMtNiH
                                            g     '

                                            O    i-i
RECE
                         s
                     *-«U
                                                                    27

-------
Id l/l
'S







U


















s
u w
H U
i£
u
in oi
.
1
1
tu
S
ENERGY RECOVI



b.
O
d
b.
3





1
i





'


*fe
S'
d
I-T3
W P£
P U
ll
1
W 1
O H
< UD
S W

B
•1.2
3



u"
3



IS'
ls^

gi;
H « J
L15~
i
0 |
RECEIVI
)IOM/POL
?


3
f
X

1
a
el
2
3
H
B
>i
=
a



H



1

S








r-- CO M O
in M ;i^i
• aa • .^H -zK^azKio

cr
p. D. O O ""> " O

rs.csi.gi 1 IM r*f>
Oil tMinHIO ||IO
•* v "^ N f*l





•a
as i § -s i s Is 1
re 3 9 -S ^ ^ ud^mgoi
tri i-t -H M fi * » vQaivS'-'
C B " 0 o S.d-oawj<<3-H« u
rf ^ H H C ao a EC a o *j 13 <« B
juuooOMHjSszt^wtntsi
*
o
s,
c
10
c
o
fl
s
8
5
O
c
(U
a
s
S
g
(U
1 •
sS
ij S
0 8
CO M
Sis!
•a
1*
s?
II
5'
»-(
•2S
i:
si
s «
.3
1-s
•J !
O O
Is
J3
r ^




X

Re f erenct
*-'
-H
•H
g
S
4J
1
h
1
a
b
T>
9

S
I
1
X
S M 3
ill
8^ §
»-s,
•ss s
iw iH ~"
8 S-S
u" S
C M 3
S £-
o. w g
n T3 a
V M tl
3 a
1? S
,2-a
3 «3
«'S I
%°t
to tJ
o a* o
TO 01 4-1
U 0 D
•a 3 .a
R" "
28 "
CZ-S
°SS
•a r- »
Oi a.
ea H"
C
In to c
a 3 at
O U to
a. G*v
B « M
3 *-•
« ^-v
« rH q
< ™ 0
01 -a — ,
" § 5
^o"
1 «-!
SSI

§S2
SK ss
-" »
O -H
"^fe
« S
?25
31-
U 01
SH
01 J= >
C 00
^11
•rt^~' f
a o F
D] IN
g g __•
C (0
14 T3 U
•H e a
Q * £
y a >
3
0
M
g
8
_o
PA Incinerator; emiss
: 0.1Z.
S *
3 Q
•s ^
t B •
s s a
* § ,
to U U
fi M S
« 5 «
a 1 S










s
g
5
3
b
4)
!
M
|
ffl
5
|
U
2
* S
S I









a
S
I
I



s
g
U










s
a)
U-l
a
3
01
^
s
•H
a
g
w
a
4J
J


5"
S
£
U-l
flj
(2
|
o
a
4J
£
ard for incinerator (
•a
3
te
,>>
a
O"
3
o
F"


3
rence
0)
I c

i:
o
•
o »*
. 0
w
5i i
ard for incinerator <
I
«
>-,
I
3
o
(L,
the New Source Performance Standard for Coal-Fired Power Plants of 0.1 pour
ppendix A.
5*
B
•H
iS
; s
; *l
r u
"" a
5 S
1 S
S 1
8 S
J 01
! 1
^ X Q
3 3
1 Su
sl
«
Is
S 3
a a
^ 2
££
H£
n
^£
§*>
O
m ^i S u
rH rH iH «
BU
fl
S 8 §1
to to a -H
«S »S "fl tl
j a is.
                        28

-------
h-l
h-l
M
J>

W
^
m

H


• •
^5
o
H
C/j
C/J
D
0
C/J
M
O


































er the environment in 1990 as the
4-1
(3
CU

i — i
i — i
• H
3

4-1
Cfl
J3
4J

TO
4-J
C
cfl
4-1
3
i— i
r—l
O
cx

4-4
0

co
0)
•i-4
4-1
•H
4-1
C
cfl
3
cr

•o
0)
4-J
o
01
•I—I
o
^
cx
cu

pH





urce recovery is not implemented, are
o
TO
01
r-l

4-1
•H

A
O

ON
1 — 1

B
• r-i

i— i
cfl
TO
O
CX
CO
• -t
13

0)
4-1
TO
cfl
5

13
• H
•— 1
O
TO

1—4
CO
CX
• H
O
• H
£3
3
B

O

4-J
i— 1
3
TO
01
I-l
1
0>
O
co
r-l
Cfl
CO
O
cx
CD
• H
13
O
ON
ON
i — i
CU
4-1
M-l
0
TO
• r-l
TO
Cfl
43
CU
4J
c
O

13
0)
4-1
to
1— 1
3
0
i— 1
tO
o

cu
i-i
cu
3

TO
CU
TO
TO
CO
B

4-1
C
cfl
4-1
3
r-l
l — 1
O
PH


.
h-l
h-l
h-l
^>

01
i— 1
fi
cfl
H
(3
•rH

C
O)
^
• i-4
60
concentrations and emission factors
4-1
(3
CO
4-1
3
1— 1
r-4
O
cx

cu
43
4-1

•»
^^
h-l
M

Ol
i— 1
43
CO
H
\^S

r>^
V-i
QJ
^
o
o
cu
i-i

0)
o
r^
3
0
TO
CU
V4

4-J
3
O
43
4-1
•H
3

O
• i-4
r4
cfl
C
of landfill leachate in 1990. Calcula-

cu
e
3
i— l
O


13
CU
4J
U
cu
•1 — )
0
I-l
cx

(U
f~;
4O

T3
C
Cfl

f\
s-\
M
M
^»

CU
1 — 1
43
Cfl
H
^^ /

O
ON
ON
i— l

l-i
O
4-1
-a
CU
4-1
U
0)
• i— i
o
^
CX












• •
TO
c
o
• 1-4
4-1
CX
B
3
TO
TO
CO

60
(3
•H
[J
O
I— 1
1—4
O
M-l

CU
43
4-1

(3
o

T3
CU
TO
CO
43

01
r4
CU
3

CD
C
O
• i-4
4-J
60
C
• H
(3
3
43
CO
TO
CO
B
43
M-l
0
13
0)
TO
O
CX
TO
13
0)
43
r-l
l— 1
• H
CU
4-1
CO
cfl
^

-a
• H
i— 1
0
TO

i— 1
cfl
CX
•H
0
• H
C
3
6

4-1
0

TO
C
o
4-1

c
0
• H
r— 1
1 — 1
•H
S

O
r—H

«
O
ON
ON
t— i

C
h-l


9















•
13
0)
r-4
i— 1
•f-4
4-1
T3
C
CO
r— l

cu
43

r— i
r-i
• H
3

CO
C
0
4-1

C
0

1— 1
1 — 1
• r4
B

r^~
oo
! 	 1

13
C
cfl








listed in Table VII are represen-
in 1990.
TO
I-l CU
0 4-1
4-1 TO
O Cfl
Cfl 3
4-1
T3
C -H
O r-l
•r-l O
TO TO
TO
•H i— 1
B to
cu cx
•H
T) CJ
(3 -H
CO (3
3
TO B
(3
o B
•i-4 O
4-J ^
Cfl <4-l
I-l
4-1 TO
C 4-1
Ol (3
O CO
C 4-1
0 3
O r-l
i—l
4-1 0
C CX
Cfl
4J I-l
3 0
r-l M-l
1— 1
O 01
CX >
• H
CU 4-1
43 CO
H 4-1


0





0)
43
i — l
i— 1
• H
3
in
ON
1 — 1
(3
• i-4
4-1
to
43
4-1
0
4-1
cu
• H
4-1
Cfl
r-4
01
I-l
O
ON
ON

C3


cfl
0)
rJ
cfl

0)
43
4-1

«t
.
0)

• i-4
N^^

cfl
CU

to

1 — 1
1— 1
• H
4-4
13
C3
CO
r-4

C
•r-l

CU
TO
Cfl
CU
!_i
O
C
•i-l

CU



0





required for disposal of municipal
^>
4-J
• r-l •
O ^
cfl X
CXX!
cfl
0 (U
i— l
r-l 43
r-l Cfl
•i-l H
4-4 *^
T3
S3 CU
cfl 3
r-l T3
• H
C CD
•i-l CU
I-l
cu
TO t-J
CO O
01 4-1
IJ to
0 r4
(3 CU
•H C
• H
CU O
43 C
4-1 -r4

0 13
u c
cfl
r-4
Cfl O)
(3 4-1
O TO
•H Cfl
4J 3
I-l
0 13
CX-H
O r-l
*-i O
CX TO








es in 1990. (See Appendix A, Equation
i-i
o
CO

O
o
o
*
o
0
vC

4-1
3
O
43
CO

CU
43

i— 1
i — i
• r4
3 *~^

cfl C3
CU O
M -r-l
CO 4-1
cfl
r-4 •— 1
rH 3
•H O
4-1 r-l
13 CO
C 0
Cfl
r— 1 r4
O
r-4 M-l
Cfl
CX43
•H <]-
0 1
•H h-l
C n
3 l 1
s >


£





CU
cu
CO
^^
.
o
o
ON
»— 1
c
•H
TO
C
0
1 — 1
1 — 1
CB
60
C
O
T-t
i— l
i— i
•H
43
00
0
1 — 1

0
4-1
s-**
4-1 .
C C
3 0
O -H
B 4J
CB CB
r-i
1-1 3
r-l 0
•H i— 1
3 tfl
U
TO
i— 1 M
rH 0
•H 4-1
4-4
13 0
C 
CX
•H (3
o o
•H >H
(3 4-1
3 CO
E 3
cr
B w
o
i-i n
4-1 <$

OJ X
4-1 -H
CO T3
43 (3
O CU
tO CX
o) ex
rJ <


9





                                                             01
                                                            43
                                                            4-1
                                                            CO
                                                            43
                                                            4-1
                                                                 .
                                                            coo
                                                            CUON
                                                            •H ON
                                                            J->  C
                                                             C-r-l
                                                             cfl
                                                             3T3
                                                             crcu
                                                             CU-H
                                                            4-114-1
                                                             CJT3
                                                             01  C
                                                            "~)Cfl
                                                             Or-l
                                                             1-J
                                                             CXO1
                                                               43
                                                             0)
                                                            4-1 1— I
                                                               • H
                                                             0) 4J
                                                             co co
                                                             (X
                                                             CU  CU
                                                             VJ 4-1
                                                                co
                                                             (0  CO
                                                             cu  3
                                                             CD
                                                             CflTJ
                                                             60 H
                                                               1— I
                                                            <-<  O
                                                            i— I  CO
                                                            • 1-1
                                                            <4-lr-4
                                                            13  CO
                                                             C  CX
                                                             tO • i-l
                                                            i-l  O
                                                               • H
                                                             e  c
                                                             O  3
                                                             M  E
                                                            U-J
                                                                cu
                                                             CO 43
                                                            4-1 4-1
                                                             C
                                                             cfl  B
                                                            4-J  O
                                                             3  M
                                                            1-114-1
                                                            i— l
                                                             O— i
                                                             CXON
                                                               ON
                                                             CO-i-t
                                                             0>
                                                            •H13
                                                            4-1  CU
                                                            •H  O
                                                            4-1  3
                                                             Ci3
                                                             cfl  O
                                                             3  l-i
                                                            o-cx
29

-------
0) r-l
O! 3 CU
X5 r-l JJ
U-l co
r^ 3
r-l T3
•r-l d X!
3 tfl 4J
•r-l
0*3
C^ 60
o d o)
r— 1 •!-! 4J
>. co
d cu co
•i-l > 3
d
cu o -d
4J O -i-l
CO r-l
cfl XI O
3 co co
cfl
T) r-l
•I-l rV, Cfl
r-l r-l ft
O 4-1 -i-l
CO O
« -r-l
^•N
T3
01
•a
3
i— i
O
d
o
U
\_x

M
1— 1
M
>

U
r-J
M
<
H


• •
Z
0
M
W
CO
o
u
w
M
Q
r-l 60 d
cfl d 3
a.-1-i e
•^ JS
O O U-l
• H d o
d  rj x:
4-J 4-1
CO rJ
3 0> •>
CU 4-1 .
4J CO CU
co 3 •
co -,-1
3 o>
XI 1
U-l 4-1 |
o
O 60
>, -u d
4-1 -r-l
•i-l 4J XI •
4-1 d Xl 60
d o> 3 d
Cfl r-l rJ -H
3 CO 0 r-l
a4 > co o
•H >,
0) 3 CO O
4- cr eo cu
H 0) 60 rJ

r-l
CO
a,
• I-l
o
•H
d
3
E

T)
a) •
i— 1 CO
r-l rJ
•i-l Cfl
U-l CU
"O >i

cfl m
r-l CN

E r4
O 0)
^ F>
U-l O

co E
01 M
CO O
Cfl U-l
60-1-1
d
U-l 3
o
cu
d xi
0
•I-l r-l
4J r-l
CO -r^
rJ 3
0)
d d
0) O
M-r-l
4J
S cfl
3 rJ
E 01
•H d
!*! CU
cfl 60
B
CO
rJ CO
O 60
U-l
U-4
0) O
I—I
rO 0>
Cfl 4J
4J Cfl
•i-l M

CO CU
X!
0) 4J
X)
T3
r-l (J
r-l Cfl
• I-l
3 -
O)
CO 4J
d CO
O Cfl
•i-i 3
4J
•r-l -O
T3 -1-1
d r-l
0 0
U CO
30

-------
W

PQ

H
      W
      H
      CO

      3

      O
      O
      co
      PH
      M
      O  >H
      M  06
      Z  W

      S  O
         O
      fa  M
      O  Oi

      >-J  U
      <  CJ
      co  oi
      O  ED
      PH  O
      CO  CO
      M  W
      Q  M

      S  fa
      o  o

      fV[  ^^
         o
     ^  M
      co  H
      C  <
      O  H
 C 33
•r-l W

   PH
co 33
H M


Ss
ED O
iJ EC
hJ H
O M
PH 3

fa O
O O^

CO ^H
W
M Z
     H
     Z
      o-

      o

      H
      U


      o

      PH




h-3
^
H
O
H










CO
O
0
PC
H
w
33
CO
o
PH
CO
M
Q












XI
i_j
I |
fa
«
Z

|_J







O
Z
1 1
Z
Pi
^
PQ

CO
CO
^J
53





"ir
t%
t— i
a H
H Z
3& <
H

Z h4
M tJ
> O
M PH
W
U
U
OA
O O O
m m in
•-HP-) O T3 T3
« •> - O O
O r^ O O r- O O
OO— i— 'OmrOOO
O —t O -
^H »i i o i i m oo
in o — i -J- o
^H O O CN o ov r--
o in m "
t*^ ^cf in •— i
in m »
oo
r— t

O O
o o
0 0
m oo
 co ca
i— ' >H CU cu
3 co to n) T3 73
0 CO CB 0 >, -r-l
•H > — v_^ O XI l-i
4-1 1H CU O

M cOOOO >% I-H J3 O EC
                                                      31

-------
 0>
 3
 C
 C
 o
u
w
•J
PQ
        W
        H
        CO
       -J
       o
       CO
       0
       S  O
           o
       i-J  W
       •<  0
       CO  (A
       o  o
       PM  O
       CO  CO
       M  [jj
       O  erf
o o
c£
pt^ p^
    O
/-v M
 CA H

 O H
W Z


•r< td
CO  S
H  M
       ££
       cu  3

       frj  ^^
       O  ON

       CO  -H
       W
       M  Z
       H  M

       H
       Z
       O1

       Q
       W
       H
       U


^
£H
O
H



CO
Q
O
D3
H
DISPOE







_J
M
EIJ
a
z
"
o
z
M
z
erf
M

CO
CO

M
a H

H
^j) £D
Z h4
M |J
> O
W
CJ
H
0 0
o o o
CN CO O ••^ "—< O ON 10 O ON O O
"-H "") vo 1 —i 5 | I ro
v£) -H CSI
— i O O O
O vO vO
ON ON






0 0
o\ o o
f^ p^ LPt
tO CS| ^H

i— I lO vO I i— ( ) 1 1 CO
vO •— I CS
-HO O O
^^ ^o ^o

01
u
H
<; B 01 01
SB 01 B 3 » w

W C S 3 •'-' -H h -O (0 (3 1-1 £ 4.)
O *H 3 -H ^ B ^ '^ QJ CQ O p, CQ
MJSs££coN
CO

                                                                   32

-------
T3
 0)
 3
 C
•r-l
4-1
 C
 o
CJ
      w
      H
      CO
      o
      CO
      CM
      M
      CJ >H
      M OA
      Z W
      D >
      S O
         u
      fa u
      o cfi

      tJ W
          -fl W

U       CM
iJ    co S
PQ    H M


^    SB
      & o
      nJ PC
      J H
      O M
      fa O
      O O°*
         CJN
      CO -H
      w
      M Z
      H M
      o-

      Q
      W
      H
      O
      w

      o
      tti
      CM


H
0
H


1ETHOD3
DISPOSAL I




LANDFILLb
f

z
£3
DQ
CO
CO
NG MEDIUM/
LUTANT
M »J
> O
M CM
W
CJ
w
00 00
o o o o
o o o o
m o o in o
— i r>. in •— i
*o in oo o •— i m
-H I I in oo o •* i i PO I
LO ^D LO r^^ ^«o
o m • o r-~ o
m in oo vo CM m
O CM CM VO O
«CM <)• r~
CM ^H
0
O
vo<3^mooin' — i<3<3m<3
in so oo ^^ ^o
CM
O O O O O
o o o o o
o o o o o
mo o o m o
O *3" *""* O r^ co co o
r^ co "~H  -HO) -H
f_i 3 a >H -i-l |j CD C •— i co
^•H-HV-lBcU " CUcOCDCO
hJ
                                                        33

-------
•o
 (U
TJ
 3
i—i
 O
 d
 o
u
       W
       H
       CO
           -H PL)
      ^ rJ
U       CL,
rJ    CO S3
QQ    H M
<    Z
H    < H
      H S3
      S3 O
      rJ SS
      rH H
      O M
      PL, 3


      fa O
      O ON
         O>
      CO rH
      U
      M Z
      H M
      cx
      H
      U
      U

      3
      cd
      a,







H-3
 KH
M 0
W O-i
CJ)
s

O O
0 0
0 0
0 0
r^ O
 •« o
CO -H O
o
1 1 "
CSI
O — i 00
o m
ro >*
u-i
^H


0
0
< < 0
z z

O LO CN
PO  9)
T3
0)
r-l r-l
XI rH
CO 0)
H 3
v^^
0)
CO r-l
d 60
o d .
•r-l .H 0)
4-1 tO M
Cfl Cfl
rJ Cfl (-1
4J (U
d rJ >
0) O cfl
O U-l
d rH
O Cfl Cfl
0 4-1 C
Cfl O
U-l -O ' i-l
O 4J
14-1 Cfl
co o d
0)
60 C 0)
d o jd
Cfl -r-l 4-1
U 4-1
CO CO
T3 rH 0)
oi o 4J
4-J Q, CO
rJ CO B
O (-1 -H
O. 4-1 X
0) X O
w CJ ^J
a,
d d a,
O O cfl

-a -a >-,
CU 0) rH
CO CO XI
cfl cfl to
Xi XI Xi
O
CO CO rJ
ai QJ ex
4-1 4-1
cfl co •«
BE-—
• H -i-i r-~
4-1 4-J —1
CO tfl
(1) D Q)
O
rH rH d
CO cfl (U
d d i-i
O O 0)
•H -H U-l
4-1 4J CU
CO CO Cd
z z ^


• • • •
M M
1— 1
£1
































































•
(U
, 	 1
X)
cfl
rH
• H
Cfl
>
cfl

4J
0
d

cfl
4-1
<0
Q


* •
<;
z
o










•
o
0\
ON
1 — 1

d
•H

•a
0)
rH
rH
• H
U-l
"O
d
Cfl
rH

0)
4J
X
Cfl
3

-o
•H
, — 1
O
CO

rH
Cfl
(X
•H
O
•H
d
3
E

>,
Xi

^H
o
ON
i-H

d
•H

>-,
rH
I — 1
CO
d
o
•H
4-J
CO
d

-o
0)
4-1
CO
lj
CU
d
CU
00

CO
-, 0)
0) 4-1
> co
d 3
o
U CO
OJ
X! B
CO 3
cfl to
to
>> co
rH ^.^
U-l
CU
" 4-1
60 CO
d co
•^ 3
X!
O T5
d -H
CU rH
3 0
a" co

CU rH
3 cfl
-o a.
•r-l -r-l
CO O
0) -H
r-l d

r-l B
0
U-l T3
CU
CU 4-1
ca co
3 r-l
CU
r-l d
CU -H
4-J 0
cfl d
3 •*
CU
                                                        34

-------
X
r— 1
W
PP
H
S3
0
IH
CO
CO
£3
0
C/1
I—I
o




































tities of pollutants that will enter the environ-
ed
CO
3
cr

T3
0)
4-1
O
0)
•>— 1
o
IH
ex

0)
42
4-1

*o
CD
4-1
co
•rH
i — 1

OJ
IH
cd

X
M

0)
r— 1
43
CO
H

C
r— 1





disposal in 1990 by mass burning, landfill,
*o
• H
r— 1
0
co

r-H
CO
CX
T-l
O
• rH
C
3
B

MH
O

4-1
r-H
•~J
CO
OJ
1-1

0)
42
4-1

CO
cfl

ty
o
ON
ON
r— 1

£2
• H

4J
(2
0)
B
calculated on the basis of the 1990 disposal

0)
j_i
0)
3

co
0)
co
CO
CO
B

4-1
C
Cfl
4J
3
r— 1
r-H
O
P-.


•
^-,
|H
Ol
^
O
o
O)
IH

0)
O
l-i
3
0
CD
CU
^_l

T3
C
cfl
e II), the pollutant concentrations and emission
r— 1
fN
CO
H
\^.S

>•*
V*l

U
IH
3
O
co
at
i^

CO
01
T3
3
r-H
O
C
•rH

4J
CO
42
4J

O
•iH
JH
Cfl
e
Ol
CJ
CO
e projected volume of landfill leachate in 1990.
42
4-1

13
C
cfl

n
s —
r-l
h-l
£>

01
r—l
43
Cfl
H
S 	 f

O
C.T«
C^
1—1

M
0
MH

T3
0)
4-1
O
Ol

O
IH


CO
IH
0
4-J
O
cfl
M-l
ptions :
B
3
CO
CO
cfl

too
C
•H
is
o
r-H
r-H
O
MH

O)
42
4-1

(3
O

'O
O)
CD
CO
43

0)
IH
CD
IS

CD
C
O
•rH
4-1
cfl
r— 1
3
O
r-H
CO
CJ
of 50 large scale resource recovery facilities,
s of municipal solid waste daily with a total

4-1
(-J
0)
r — 1
Cfl
>
•H
3
C
0
1 i

o
o
o
CM

cr MH
0)

0)
42
4J

a)
43

r-l
r-H
•rH
JJ

OJ
IH
0)
43
4-1

«\
O
ON
ON
i — i

(2



0





o

0)
too
CO
JH
01
>
CO

(2
cfl

too
C2
•rH
co
co
CU
0
o
rH



•
co
C
O
4-1

c
o
•r4
i — 1
r-H
• H
E

O
CO

MH
O

r*">
4-1
•r-l
O
CB
ex
CO
CJ

(X r-H

42
CJ
cfl
01








CO
3
c
c
CO








es will treat the municipal solid waste by
f refuse-derived fuel (RDF), ferrous metals,
•H
4-1
•r-l
r— 1
•r-l
0
cfl
<4H

r>^
IH
Ol
r>
0
o
0)
IH

0)
0
IH
3
O
CO
01
IH

O)
42
4-J

MH
O

MH
r-H
CO
32


0





O

C
0
•H
4-1
cfl
!_!
cfl
CX
0)
CD

42
4_J
•H
£j

too
C
•H
CO
co
Ol
o
o
^1
CX

r^J
pj
Ol
1
4-J
C
0
^1
MH








CD
• H
CD
CO
43
Ol
42
4-1
C2
O
O
•r-l
4-1
cfl
IH
O
00
O
CN
cfl
4-1
cfl
r— 1
Cfl
O
O
4-1
•rH
3
T3
01
IH
•H
MH
O
0

0)
43

r— 1
r-H
•H
3

pn
o


0)
42
H


.
co
co
cfl
r — 1
&0

T3
C
cfl

A
B

c
• H
S
3
r— 1
CO








es will handle the municipal solid waste by mass
quent recovery of ferrous metals, aluminum, and













•
^~.
IH
0)
r— 1
•H
0
43

O
4-1

4-1
3
ex
C2
•H

4-J
cfl
O)
42

<4_l
0








• H
4-1
N
IH
0)
*>
O
O
0)
^.1

O)
0
IH
3
0
CO
01
1-1

0>
42
4-J

M-t
0

M-l
r— (
CO
P3


£





01
CO
43
3
co

13
C
CO

*>*i
IH
0)
j>
O
o •
Ol 0)
>H 3
T3

too co
IH 01
0) IH
C
Ol CD
42
42 J-l
4-1
•H a
S 0
IH
toOMH
(2
•H CO
C co
IH CO
3 r-H
43 60








                                                             01
                                                            43
                                                            •r-l
                                                             IS
                                                             CO
                                                            42
                                                             co
                                                             o>
                                                             4-1  C
                                                             C -H
                                                             CO
                                                             3 T3
                                                             cr  01
                                                                r-H
                                                            T3 r-H
                                                             CU -H
                                                             4-1 MH
                                                             o -o
                                                             Ol  C
                                                            •r-l  Cfl
                                                             O r-H
                                                             IH
                                                             ex  01

                                                             01
                                                            4J  IS
                                                             C
                                                             01  4-1
                                                             CO  CO
                                                             0) 42
                                                             ,-1  4-1
                                                             0)   0)
                                                             M   4-1
                                                                 co
                                                             co   co
                                                             
                                                           •H  T3
                                                            4J   0)
                                                           •H   O
                                                            4-1   3
                                                            C  13
                                                            CO   O
                                                            3   M
                                                           O"  0,
                                                          *
35

-------
13
Ol
3
d
• iH
4-1
d
o
0
**-S

X
M

u
rJ
M
<
EH


. .
a
o
M
01
C/>
C3
U
CO
h-4
Q























>s
43
4-1
0

13
Ol
CO
o
ex
CO
• H
13

0)
43

i— 1
rH
• i-4
3

0)
4J
CO
cfl
3

13
•H
i — 1
O
CO

rH
cfl
CX
•r4
O
• H
d
3
B

n
0
Os
OS
rH

d
M

^^
CO
d
0
4-1

d
o
•r-l
rH
i— 1
• H
B

o
• — i
x^ /

4J
d
CU
CJ
r-l
0)
ex

U~l


. .
d
o
• H
4J
CO
M
Ol
d
• H
O
d
M


o








^— x
CO
d
o
4-1
d
o
•H
i— 1
! 	 1
•r-l
B

|-~
m
i — i
x«/

4-1
d
0)
o
r4
Ol
cx

o
CO


..
1—4
i— 1
• r-l
4-1
13
d
CO
rJ


O





S~^
CO
d
0
u
d
o
•H
rH
i— 1
•r4
B
m
-H
4J
d
O)
0
rJ
01
cx
U-l
.
l-~
60

T-l
co
to
CU
o
o
rJ
CX

T)
d
Ol
1
4J
d
0
M
4-1

42
4-1
• H
3

>s
I-l
01
>
O
o
O)
Vj

Ol
0
I-l
3
0
CO
Ol
PH


0





co
d
o
4-1
d
o
•r-l
i— 1
i— 1
•H
e
m
• — i
4-1
d
Ol
CJ
I-l
O)
cx

U~l
.
r—


60
d
• H
d
r4
3
43

CO
co
cfl
B

42
4J
• H
3

>s
rJ
O)
>
0
o
01
I-l

Ol
CJ
M
3
O
CO
Ol
M


o





listed in Table VII are representa-
1990.

co d
r-l -H
O
4J CU
CJ 4J
CO CO
4-1 CO
3
d
O T3
• I-l -1-1
CO r-4
to o
•r-l CO
B
0) rH
CO
13 CX
d -H
cfl o
• i-4
co d
d 3
0 B
• r4
4J B
CO O
U r-l
4J 4-1
d
CU CO
O 4-1
d d
O cfl
O 4J
3
d r-l
0 rH
•r-l O
4J CX
3
rH h
rH 0
O 4-1
CX
01
01 >
42 -r-l
H 4J
(See Appendix A, Equation IX-8b for
relative to that of 1975 will be

O cfl
OS 0)
Os I-i
rH Cfl

d rH
•H •— 1
• iH
en 4H
0) 'O
r4 d
0 Cfl
Cfl i— 1

o d
0 T-l
o
« 0)
r~ co
O tfl
LTl CU
r4
4-1 0
3 d
O T-l
43
cfl Ol
42
Ol 4-1
43
*i
rH •
rH 0)
•1-1 .
3 -H

Cfl r,
Ol ^^
i-i d
to o
• iH
rH 4J
rH CO
•r-l rH
4-1 3
13 O
d rH
Cfl Cfl
I-l 0
required for disposal of municipal
dues from mass burning and resource
11 be needed for disposal of residue
•H -H
>s CO 3
4J 0)
•H I-l CO
0 Ol
Cfl O) I-l
CX 42 0
cfl 4J CO
O
"0 0
rH d O
i— i cfl o
•H  >-, 4-4
r4 — 1 O
O rH
d co
•r-l 0 •
•r4 /-x
O> 4-1 X
rd -H X
4-1 O
CU CU
O CX rH
4-1 CO 43
^s CO
rH H
Cfl 0) ^
d 4-1
O CO ^-x.
•r-l CO >s
4-I3I-I
r-l 0)
o -o >
CX-r-l O
O rH O
r-l O CU
CX CO M



























•
>s
I-l
O)
>
0
o
4-l
r4 CU
CU M
> CU
0 42
0 4J
O)
l-i 13
d
0) cti
CJ
W /-N
3 X
0 X!
co
0) O>
r-l r-l
43
B W
0 EH
rJ ^
4-1
>,
O> 4J
3 -1-4
13 O
•H cfl
co CX
0) CO
p-4 o
nicipal solid waste in 1990 will be
enching, fly ash conveying, and flue
of municipal solid waste, with water
33d
B cr o
4J
4-1 Ol
O 3 r-l
13 Ol
60-r-i ex
d en
•H Ol r-l
d r-l 
r-l 01 r-l
Ol r-l 42
4-1 4-1
Cfl M
3 o) -
Ol 4-1 •
4-1 CO CU
CO 3 •
Cfl -H
3 a)
42 1
4-1 4-1 1
o
O 60
>s 4-1 d
4-1 -1-4
•H 4-1 43 •
4-1 d 43 60
d  to cj
•H >-,
0) 3 en o
42 CT cfl o>
H 0) 60 M
not be affected by heat recovery.

rH
rH
•r-l
3

60
d
• r-l
d
M
3
43

CO
co

&

c
o
r-l
4-1

t-l
CU
4-1
CO
3
cu
4-1
CO
Cfl


4-1
O

>,
4-1
• H
4-1
d
CO
3
cr

Ol
42
H
36

-------
rd
4-J
0
4-1
O)
r— 1
ja
CO
4-1
3
J3
• r-l
r-l
4-1
4-1
CO

CO
• r-4
4-1
CO
_d
4J

^^
-0
0)
"d
3
i— 1
0
d
o
u
s-^

X!
M

W
rJ
PQ

u
CO
M
Q
Pn
Q
Crf

T3
d
cfl

1— 1
cfl
O
O

U-l
0

60
d
•r-l
r-l
• 1-1
U-l
o
o

B
0
r-l
U-l

r-l
(D
4-1
cfl
3
0)
4-1
CO
3
^
U-l
O
>.
4-1
•r-l
4-1
d
cfl
3


•
60
d
•H
r-l
O
>>
o

Ol
VJ
J3
4—1
CO
•r-l
d
o
•H
4J
O
CO
r-l
d municip
01
, — i
, — i
• H
U-l
"0
d
cfl
r-l

B
0
r-l
U-l

co
-i
o
U-l

0)
i— i
.n
cfl
4-1
• r-4
3
co

0)
(-N
rJ-J
f—f
r-i
•r- f
3

CO
d
o
• H
4-1

•
co
r-l
Cfl
0)
>,

IA
CS

l-l
0)
o

B
ij
o
U-l
•r-l
d
3

01
-0

1— 1
r-l
• H
3

d
0
• H
4J
Cfl
r-l
01
d
0)
60

CO
cfl
60

U-l
O

0)
4-1
cfl
t-i

Ol
.d
4-1
T)
d
co
*>
O)
4-1
CO
CO
3

CT U-l -H T3

O)
4=
H

Cn
Q
a!
-o
d
o
u
•r-l
r-l
O
CO
37

-------


1
H




gis
fc w 3d

o
o

1 w S
n ta >
o
on a U
s M 2
s Es


if 53
g Ei
O O Q
g u3
S
PH
0

d
E
Q

U
Z

^r

«

tn






H
3
H
O 3

> CD
hH PM
W —
U S
^1
0 0
in o
\r\ o*>
o 0 rH* m
m in ""> CM
rf. I I
CTi o
— i m o m
0 CM
O-i *£>
*. CO
CM
fM
S °
CM O
0 "^
^ vC
8 S 2
S 1 o

^ CO
«
1 O

•a
0 T)
0 0
0 O
o
CO - a
01 to
u nd co
o ^~\ rt
"S a* 86 S
CO U 13 O TJ
O >, In T<
O W 43 r4
M CO CU to O
•O •-' T) S rH
>•> rH -_- J3
a < o



^







z
•a
0 T!
o o
°- 0
CO ~I

in
rH



O
z
















CM -a-
8 B
38

-------
•O



C
•H
4J
C

3
    O Prt
    en ^^
    O
    P" ,
S°
    38 o

    §i
    gi
     en
    en M

    Hs
    H O
    H CT>
    H &*
    P Z
    0-M


^
g
H

















a

^—i
Q
ej
§












H*^ H . .
1* en X
p u O
2 "*
0
O
SB
Z PS fH
«i|
en 33 o
en H W
< M K
* 3

0 h4
Z <
SB
H |
fc (X,
8§

Pu
O
hJ
J
H
Q
U
z
H

pn
n
en
en
^
H
>0
H PM
8I
Q
S
I S

O "J O rH O> IO
Slniri^srcMOo-iooorooi im

oo o
in --i oo
\D CM -*
CM fO




m o
oo m
00 O CM
oo ""> o *a-
OSCMOO I-HCM •-'f?' 
o>^7-H)-iga}>H (Ufljocum
^^^3663^^ * rtJx^'pS
to
                                         39

-------











B
1
Q
H ,*>.
o 2
VI ^-^
$&
&g
28
is

w
FK U
0 PS
S
d o
 .j
8^1
g §
M
O
o
o
°. g §
3 S §
^ vD O O
2 ^ ^ 1 in os" S *"
in
So co I
2 g o
CM ~* 3
CM vo

CM
( -1 § a ; ; in





















0
o
00 Q
- o 5
in m o
r^ so o o*
" C*J Q \D
i—t vo r^ ^, CN f.
1 | -a- m 
-------
•8
•a
3
rH
O


<§
      I

     en M

     «S


     H O
     rH CT*

     H CT\
     » is
     O-M
     §
     Cu





^
<


tH

















«L


Q
8
Q
K
P-,










J § «
j O 2
H H
to w S
3§

O
SB
§PH J>^
H S
2 W
PQ W fc>
O
en M ej
en P [d
< M S3

XI
O rJ
S5 <
H O
B! u
hH 1
E ci
8§

1

0
,J
rJ
H
S

1


MASS BUKNING
zB
S r4
> rJ
W O
e«i
SB
a
@
s
o o o
o o o
o o o
o « *
m m o m
-4- oo -cr o
vo ts * * « in
»$• co r-i CM ,-H r--
m *
t II CO
1 ^0
CM O O
m o m vo
c^ r** CM
* * «d"
0 CN
H rH

o> o < < o o
,? Z Z m  st- m
in rH «
1 1 | CO
m o o
CN o m \&
 ro
0 CN
rH rH

4J
§
U
^ o a
» §
UH 01 -H oj
Ed G rH CO Q 4J
EH a oi a § a
<< op x a TH UH o
2 B 0 4J -0 H B
o a -H o o d -H
< X! SS Pu c/l CO N
a
a
n
01
•o

rH
H
£
4J
B
0)
U
01
a

rH

S3
"8
rH •
•H GO
<4-< fi
T3 *H
g e
iH 3
^

Q)
rd CO
m
rH rt
rH B

»K.
£
i-EJ
SJJ
B
O OJ
H U
01 l-i
a 01
a
Q
co in
Lnerated,
Ing and 7
U CO
B co
•H OJ
o
0) O
XI U
a
H
rH T3
•H g
S OJ
1
4J 4J
SB
0
U U

OJ
0. >x
fl
in *
d waste,
5 perceni
e municipal soli
rce recovery (7.
£§
to
UH OJ
O H
« XI
00
B
•H
h
«H
UH
O
O
g
U
UH
CO
B
0
«H
CO
CO
•H
i

TJ
§
H
8
u_j
o
B
O
•H
4J
3

1
CJ

§

IH
UH
CO
B
O
•H
CO
•H
1
between
.ler).
•n
OJ O
O Xi
S 0
IH 4J
OJ
UH 4J
UH 3
•H O.
•o c
•H
01
XI 4-1
4J «
OJ
•XI

oi B
-H' °
."g
ti CO
q a
2 J3
0 ^
4J O
CO
OJ ..
ions attributabl
F and coal at 20
CO Q
CO K
•H
S <4H
H 0












































01
i-H
Data not availab:

i'






















d
o\
rH

B
•H

"8
i-H
i— j
•H
TJ
g
!-H
0)
4J
1
T3
•H
rH
O
CO

3
a
•H
U
•H
i

>*
Xi
rH
CT>
cn
rH
B
•H
>,
rH
H
2
generated natioi
CO
01
CO
CO
•o

§
rH
CO
p.
•H
O
•H
B
e
•a
OJ
a
M
01
B
•H
CJ
B
•H
g
-U
"-*,
r-l
OJ

Co
3
CO
B
0
4-1
CO



00
c
•H
Xi
XI
3
h
CO
CO .
a X-N
oo <•
rH
01
3 01
H U
•" §
•O M
B 01
a MH
00 (S
B "*-^
convey!
Lation)
XI 3
3O
IH
•H
>, O
rH OJ
14-1 rl
00 U
quenchin
imes wate
h

01
T3
•H
CO
OJ
IJ

•a
01
rH
rH
•H
U-l
•a
i
H
e
o
M
4H
01
4-t
a
XI
o
a
01

UH
o
CO
B
o
rH
a
00

c^
0
r-t
X
rH
•a
G
a
I
a
M
•8
rH
H
•H
*W
•o
B
a
i-H
U
UH

01
4-1
a
XI
o
a
CD
rH
U-l
0
s
-J U
OJ CO rH
3 » rH
•a co co
•H -_- 00 •
3^
b O\ IH
n a o oj
S r-i >
M O
0 C X CJ
UH O 0)
U O IH
oj a\
§|H U
o to cj
IH 01
0) 4J
4-1 CO
a a
JZ »
I 1*
s 3
2 S
CO CO
CO Q)
< M
-j
                                                            41

-------



































X

w
rJ
PP
^J
H


• •
JS
0
M
CO
CO
i""l
o
C/J
h-l
P




































•a
•H
r— 1
0
CO

1— 1
CO
cx
• H
o
• H
C
3
B

o
ON
ON
i — P
B
O
t-i
4-1

CO
4-1
C
CO
4J
3
r-l
O
CX

4-1
O

co
01
• r-l
4-J
•H
4-J
C
cfl
3
cr

0)
rl
4J

C
O

r^
t-l
01
*>
o
0
CLJ
t-l

0)
O
t-l
3
O
CO
0)
t-i

4-1
O

CO
4-1
O
0)
4-1
4-1
0)
a>
43
H








co
4-J
c
cfl
4-1
3
rH
i— 1
0
cx

4-1
o

CO
01
4-J
• H
4-1
C
cfl
3
cr

C
a)
0)
?
J-J
0)
43

CO
01
o
c:
0)
t-i
0)
4-1
4H
•H
-a

Ol
f!
EH


•
X

O
, — i
43
CO
H

£
• H

-o
a)
4-J
Cfl
rH
3
43
Cfl
4-J

a>
)•!
cfl

, — 1
CO
co
0
CX
CO
'O

0)
4J
co
CO
u
rH
CO
CO
o
CX
CO
• H
'O

0)
4-1
CD
CO
^

T)
•H
rH
O
CD
rH
CO
CX
•H
O
•H
d
3
B

^
0

co
O
•rH
^1
Cfl
d
0)
o
CO

o
^
4-J

0)
<-;
4-1

B
0
t-i
4-1

4-J
i — 1
3
co
O!
t-l

*°o
rH
3
O
^

4-1
CO
[-]
4-J

•a
0)
M
t-i
cfl
r-|
0
CO
•rH
T3
•u
Q)
4-1
4-1
•H
B
Ol



01
o
J_l
3
o
CO
CD
tH

4H
O

C
o
•rH
4-J
CO
4-1
C
0)
B
Q)
1 — 1
cx
B
•H

r~!
4-1
• H

T3
C
cfl

4-J
3
O
rl
4-J
•r-l
Jj

•\
•
O)
•
•r-l

|
1

rH
M

Ol
rH
O
cfl
H

C
• H

•a
Ol
4-J
c
01
co
01
r-l
CX

0)
}_|
Cfl

4-J
cfl
43
4J
O
&
ON
i — 1

C
• H
t-l
0
4H

cfl
4-1
cfl
^3

4-J
c
CO
4-J
3

rH
O
cx

a>
H


•
^,
&-I
cu
^
0
a
a)
)-i
Ol
0
t-i
3
o
CO

t-l

4-1
o

CO
4-1
o
CD
4H
4-1
0)

1 — 1
cfl
4_t
c
0)
B
c
o
t-l
•H
p>
c
0)

01
4=
4-J

Ol
4J
3
4J
• rH
4-1
co
c
0
o

1
1

t-l
a)
^
o
0
0)
M














































•
X
r— 1

-a
c
cfl

M
M
M
£>

co
0)
rH
,£J
CO
H

6
o
r-l
4-1

01
(-4
cfl

CO
0
• H
^1
CO
c
Ol
o
CO
o
&
4-1

01
43
4-1
42

-------
X!

U

03

H
        W
        H
        O
        CO
        •<  ON
        CH  ON
        Z  SH
        p  ed
        s  w

        fa  O
        o  a
        co  u
        O  O
        CM  Cd
        CO  P
        h-l  O
        Q  CO
            U
        S  cd
        O
        Cd  fa
        fa  O
 co O
 C M
 O H
 4J •<
    H
 C Z
••-( W

    W

 H CM
        I-H  O
        hJ  fa
        o
        CM  O
            h-l
        fa  Cd
        O  <3
            Z
        CO  U
        w  u
        h-l  CO
        H

        H  O
        z  od
        <  fa

        o-  cj
            Z
        55  f*H
        M  H

        W  t=>
        o  co
       O
       u
       H
       H
       CO
       w


o
w
CJ
Z
w
cd
w
fa
fa
h-l
Q

ft
Cd
w
0
u
as w
H Cd
M
S W
u
cd
[^
0
CO
u
ed
ca
ed
W
^
H O
C3 U
o w
33 pi
H
M W
£5 C_J
ed
O
O
CO
w
cd
-
Q H
W Z
S ^1
H
O 3
Z hJ
M i-3
> O
h-l CM
W
O
u
ed


o
o
^H^
*
O O •*
in m co
00 O
o
-3" O 4-1
«-H 
f.
ON
ON

0
4-J

O
0
OO
•\
r— 1
Vfc^
O
o
m
CO
i — i

I

o
m
CO
*
0
ON


O
m
o
•t
r-.
CO

I

o
in
m
„
00
i-H



i-H
U
as

co
cd


CO
CD

• I-I
I-I
o
1— 1
u




O
O
O

O
i-H
CO
1


O
o
o

in
CO
vO
•V
r-H








O
0
O
ft
m
^>
ON

^H



















CM
O
o




o
o
0

^>
f— 4
i-H
1


0
o
0
ft
•+$"
ON
in










0
o
0

00
o






















af
u
                                                              43

-------
•o
 0)
 3

• H
4J
 c
 o
CJ
X

w
       u
       H
       CO
       o
       CO
       &4  ^5
       o  u
       CO  U
       o  o
       PH  Pi
       CO  D
       M  O
       O  CO
           W
       S  Pi
       o
       Pi  fa
       fa  O
 co  O
 C  M
 O  H

    H
 c  a
•r-l  M
\^^  pTr
    w
CO  J
H  CM
a  s
       S  Pi
       hJ  O

       o
       CM  O
           M
       fa  Pi
       O  <
           z
       co  w
       W  O
       M  CO
       H

       H  O

       ^*  P^LJ

       o-o
           sz
       Z  M
       M  H
       u
           CO
           w
       a
       H
       H
       CO



u
w
u
a
w
Pi

fa
fa
M
O
JD
OS
W
^.
o
sc w
H U
M Pi
^f
H
pi

o
CO
H
pi
w
Pi
w

H O
S O
O U
pr] (v^
H
HH f*^
3 u
pi
o
CO
H
pi
:=>
M
O H

s ^2
og
> 0
M CM
W
O
u
o
.— I
CM
A
in
oo «* o o
«— I ON i— i O >— 1
ON CO CO 4J +
+ + CO
+ m
vD
CO
CM
+


o
o
O
o «* o — i |
+




o
CMOCOoOOcoOI~-«d-
CM CO CN I ON in

1 1
oo o
-H 00
CM >*
CO





0
O 0
p~ m
"-HOO^inOoNOcM^H
«— i ^
' 1 1
0 O
v£> vO






E CD (U
3 co -u
0) -i-l a) CD CO 0)
Vn -O M C •-! X •W
QJ T-I Q) co o a. o)
a-cc-ocMCcoy-i
aco ocs ooc a>o.-i
cjcj^MjssSSco








m
^
+











m
r*^














O
CO












U
N



                                                           44

-------
0)
3
C
O
X
       H
       CO
       O
       CO
       P-i
       2  w

       fa  O
       O  o
       CO W
       O 0

       CO S
       i-i O
       O CO

       a oi
       o
       Pi fa
       fa O
        to o
        C M
        O H
           W
       CO
       H
       Z
       & oi

       3S
       O
       PH O
          M
       fa Oi
       O <
          Z
       CO W
       w u
       M CO
       H
       M Jg
       H O
       Z pi
       < fa
       z M


       w o
       O CO
       Z W
       Q

       H
       H
       CO
       w
























D3
H
h- 1
^













H
O
§
H
M
^






M
Q
W
a
z
>
M
w
u
w
Pi





o
w
u
z
w
pi
fa
fa
H^
n



;|Q
^H
pd
w

0

w
Pi

w
u
ed
,*""!
0
CO
w
Pi

CO
^-i
oi
W
^>
a

3

W
u
pi
f~~)
o
CO
w
oi

H
Z
^-
m

co O
1 4-1
o
o
5
Y

o
o
o

in
o
^.
»,
CM
CO
i-H |

o
m
vO
•*
CM
CM

0
0
0
f,
to
o-
CM
•\
CO
vO
i-H |

O
in
0
*
f^.
CM




e e
w a 2
H -ri -H
5 s ^o
u co cd
2 u o
C£]
S
HH


X— N
O
0
LO
•t
CO
00
1 — 1
CT*
O 00
4J
m
CO
Y



0
o
m
A
vO
CM
ON
vO
1 vO
•^
0
00
00
1 — 1



0
0
0
n
0
i-H
i-H
•V
^^ l/^
in
1 m

m
m
CM
CM





0) B
•0 3
• H -i-l
0 §
1-1 W
•C 43
O U




0
o
o
A
o
r^
t— i
0
O ^H
CM m o
—1 CM O
1 vO 1
1 0
CM
c^
1
O
O
0

o
vO
00
0
o m
vO C^ "— l
r~ CM 1
m ON vo
m o
co m
•
-------
 o
 d
 o
x

Ed
        Ed
        H
        c/>
        O
        CO
           X—s.

        r-J O


        CM O\
        rH -H
        CJ —'
        rH
        Z JH


        2 Ed

        Ctj O

        O O
           Ed
        CO [d
        O U
        Pu Crf
        CO 3
        M o
        Q co
       O
       erf fa
       P*4 O

       ^ z
        co O
        d M
        O H
        d
       •H
    Ed
CO  ,-4
H  CH
25  a
        3 BJ
        -J O

        O
        PK O

        fa Crf
        O «J
           Z
        co w
        Ed CJ
        M CO
        EH

        H O
        S5 c^
        ^ri pLj

        cx o
           z
        Z M
        Ed  3
        O  c/5
        Z  Ed
        Q
        Ed
        H
        H
        CO
        Ed


CJ
Ed
^
Z
Ed
Ed
fa
fa
M
Q



X)
erf
Ed
O
33 Ed
H ai
M
3 Ed
QJ
erf
[~~*
O
erf
co
Pi
Ed
H O
Q CJ
O Ed
3d 0*1
H
M W
IS U
Prf
£3
o
CO
Ed
erf
M
Q H
Ed Z
2 55

Z rJ
M ,-5
> o
M PH
Ed
Ed
0
0
0

in
OO
CN
0
4-1

O
m
i— i
CN
T
o
0
o
m"
^1
f.
1 — 1

1

O
o
o
0
o
0
o
o
r-^
ft
. — 1

1

0
m
o
f.
CO
e
Ed 3
H -H

cfl
i-i
QJ
d
o
d
• 1-1
o>
o

rH
rH
•H
3
^
CO
d
o
4-1

•O
o
""*
X

o
1 — 1
\^s

o>
CO
Cfl
Jj

T3
• M
1 — 1
0
CO

i— 1
CO
O,
•r-l
o
• 1-1
d
3
e

U-I
0
V
4-1
d

o
1-1
01
ex

in


• •
o
• 1-1
I-I
CO
d
CU
o
CO
CO































•
T)
01
rH
• H
U-I
*o
d
cfl
i— 1

O>


1— 1
rH
•H
^

^^
CO
d
o
4J

.0
o


X

r>_
OO
. — 1
\^s

4J
d
CU
CJ
j_(
01


in
CJ>


„
T)
Ol
CO
I-I
0)
d
o
d
• H
0)


rH
1— 1
•H
3
^
co
d
o
4-1

^o
o
i~H
X

o
—i
* — *

QJ
CO
CO
^

T3
• H
rH
O
CO

•— 1
cfl
ft.
•r-l
O
• r-l
d
3
a

U-I
o

4-1
d
QJ
O
^j
0)
ex

m


*.
o
• 1-4
M
CO
d
CU
CJ
CO
XI
1
1— 1
• I-I
3
.^
Xi
co
d
o
jj






COO
d
0

\o
0
""*
X

o
CO
\^/
I i
d
QJ
o
1-1
CU
ex

in
^
•o
d
cfl

^
T3
Ol
,— i
rH
•r-l
U-I
13
d
cfl
rH

0)v
Xi

! 	 1
, — 1
• 1-1
^

^— \
CO
d
o
4-1

vO
o
1 — 1

X

r^
m
.— i
\^s

4-1
d
CU
o
I-I
01
ex

o
oo

o
1 — 1
X

m
1 '
T3
d
cfl

60
d
•r-l
CO
CO
CU
o
o
I-I
ex

d
CU

4-1
d
o
rJ
U-I
>l
Xi

CO
d
o
4J

O
O
1— 1

X

m
f-H
•^^

^
^
0)

o
o
QJ
l-i

0)
O
l-l •
3 >->
O 60
co d
CU 'H
rW d
M
0 3
60 X)
l-i
a) co
T3 co
d ca
3 E













0)
co
cfl
CD
l-i
0
QJ
T3
cfl

•;
CO
3
d
•r-l
_e
"
f.
ca
d
o
• I-I
CO
CO
•rH
e
CU

C
• 1-1

0)
CO
Cfl
0)
I-I
CJ
d
•r-l

d
cfl

co
0)
4-1
cfl
o
• H
-o
d
•H

~
CO
3
I— t
p_,
^
o
                                                             46

-------
1— I
X
w
PQ
H
Z
O
M

C/D
| — i
r^
C/3
h-l
Q





































, aluminum, and glass that would be recoverable
CD
r— 1
CO
4J
0)
B

CO
3
O
M
j_<
0)
4-1

4-<
0

CO
0)
• H
4-1
•r-l
4-1
C
CO
3
cr

13
o>
-i >
CO
B
•H
4-1
CO
01

0)
f!
£-1





enario for resource recovery (Table II) are given
CJ
co

QJ
43
4J

,_(
Q)
T)
(3
3

O
OS
ON
1 — 1

(3
• H

0)
4-1
CO
cfl
J^

13
• r-l
r— 1
O
CO

1 — 1
CO
CX
•H
O
•r-l
(3
3
B

S
o
r-l
4-1
-derived fuel and for raw refuse. The calcula-
0)
CO
3
4-1
01
^l

^l
0
4-1

CO

CO
13

OJ
f-i
CO

13
0)
T>

r— 1
O
c
•r-l

O
CD
r— 1
^


.
M
X

0)
i — 1
43
CO
H

C
• r-l


• •
CD
G
O
• r-l
4-1
&
B
3
CO
CD
CO

W)
c
• H
IS
0
1— 1
1 — 1
O
4-1

o>
43
4-1

(3
O

13
OJ
CD
CO
43

01
J-l
0)
[5

co
(3
O
•H
4-1
id waste will be processed for resource
i— i
0
CO

1 — 1
CO
CX
•H
CJ
•H
C
a
B

4-1
0

co
C
O
4-1

VO
O
i — 1

X

O
C"")

r*
O
ON
ON
i — 1

C
1— 1


•





60
C
•r-l
C
43
ca
CO
CO
43
4-1
r— i
CO
43
13
C
CO

60
(3
•r-l
CO
CO
0)
O
0

ex

13
C
OJ

4-1
c
0

4-1

s^
r\

"4-1
r— 1
CO


n
r*l
^
0)

O
O
0)









1
0
(X
e
0
o
1— 1
CO
CJ
•H
cx
4J
CO
4J
•r-l
CO
CO
01
CO
CO
OJ
4J
0)
43
r— 1
r— 1
•r-l
O
o**
ON
i — i
•H
0)
4J
CO
cO


*X3
•r-l
r-l
O
CO

r-l
Cfl
CX
•H
CJ
• 1-1
C3

i

4-1
O

tf
O
•r-l
4-1
•r-l
CO
O
P.
B
o
o

a)
^2
£—{


0





s, aluminum, and glass will be the same for
mass burning.












.
^-\
M
M
M

OJ
r— 1
43
CO
H


t^
r--
ON
• — 1

C
• H

C
o
•H
J-J
• r-l
CO








r— 1
CO
4-1
O>
e

CD
3
O
r_J
M
01
4-1

r-l
O
4-1

CO
0)
• H
0
C
0)
•r-l
0
•r-l
4-1
4-1
0)

^
r-l
01
^
0
o
O)
Pd


•





r-l
QJ
4-1
4-1
cfl

t*N
^
0)

0
CJ
0)
r-l

13
C
CO

C
O
•r-l
4-1
CO
r-l
CO
CX
0)
CO

*"O
c
01
1
4J
c
o
l-l
4-1








in 1990 as those demonstrated in 1977.

0)
B
CO
CO

0)
^f-;
4J

OJ
43

i— 1
r— 1
•H
^

CO
0)
•l-l
CJ
C
0)
•r-l
0
•r-l
in
4-1
0)

t*~l
r-l
QJ

O
CJ
0)
PS


•





47

-------
o
CT\
I
fa
H
cn
O
CO
fa  PS
>-i  w
U  >
M  O
S3  U

§  PS

s  w
o  o
X

w
J
PQ

H


















O
W CO
,-J W
PQ OS
<^j
05 PS
w o
> fa
o
u o
U M
PS oi
co 55
,-4 W
< 0
M CO
CS
W PS
H W
Si o
S S3
a
fa
o
co
fa
H
S3


I
 H
 CO
 fa*
w
rJ
«
w

o
0 .—
w a
PS o
4-J
£>H ^-x
H
M
H
55
o-
0
S3
W
XI M
Q U
W M
H fa
PS W ^-^
H ^«
CO >H ^
S3 PS
O W
E o
Q U
w
w
pd Q
<5 w
os co
fa CO
> w
0 U
u o id
W OS PS ---
PS Pi OS C
0
Pn ,-J >H 4->
o <: w ^
M
>i PS
H W
M H
H <
Z X
D
o-
S
S3
s-s
H ^
S3
H
S3
O
U


J_J
^
M
e
f-t
.rf
*






o o o o
o o o o
o o o o
•* ft »• v,
in m o o
*•£) CM o in
m CM -H CM
* v. *
CM CM .—1
,—1








0)
O T3 T3 4-1
in m o in
O1* r*~ ("-•» r^









60
o o o o o
o o o o o
0 O O 0 0
*. * r, vi v.
o o o o o
o o o m o
t-^ CO O CO O
CM co -H m
•-H i— 1






O^ *— * C3 CT^
— H r-





CO
id cu
4J Ol 01 CO
Ol H i-l 3
S JD Id M-l
E -H i-l 0)
co 3 4-1 P PS
3 C CO 01
O -rl 10 3 4J fa >
i-i S co rO id Q id
M 3 id 0 5d 2 pS
01 iH ^H O
fa <: o o




•
X— N
PS
PS
^~f

^
I-l
cu
^
o
o
0)
l_l

cu
o
^1
3
o
CO
01
M

M
o
14-1
•o
01
(0
co
01
o
o
M
a.

01
r\

1— 1
•H
•H
3

co
a

M-l
O

co
B
O •
4j r-^
r-
•O CT*
0 — I
•-H
M-l
> id
M
CO 4-1
01 CO
i c
3 o
co e
CO 01
•< Q
. 	 ^
CO
CM

Ol
0
c
01
M
01
M-l
0)
BJ


60
C
•H
CO
CO
0>
O
O
^4
a

T3
c
Ol
1
4-1
c
0
i-i
IM

O
4-1

4J
3
ft
C
•H

4-1
O

4J
C
O

01
a.

in
r^

CO
01
CO
•H
V_i
a,
B
O
O

c
• • • o
in so r^* *H
CM CM CM 4J
u
cu oi cu id
O O O |j
G a c 4-i
01 01 01
|^ V-l l-t 4-t
01 Ol 01 J3
4-1 4-1 "4-1 60
01 0) 01 -H
PS PS PS i-3
0
O
CU
I-l

w
t-H
id
•H
M
Ol
4J
id
B

-d
C
id

j>-,
60
Vj
cu
c
01

^i
o
4-1

c
•H
a
M
3


co
co
id
E3

O
60
M
CU
•a
c
3
,H
,— |
•H
»

4-1
id
r!
4-1

Ol
in
3
4-1
CU
M

15
id
M

IH
o

p»^
4-1
•rH
4J
C
id
3
o-
                                                                                                               60
                                                   48

-------






































r-l
M
X

w
(J
CQ
^J
H



is
O
M
CO
CO
] — 1
u
CO
r-l
O











































B
O
I-l
4-1

ID
01
I-l
0)
>
o
o
O)
I-l
N-^

03
I— 1
to
4-1
Ol
B

03
3
0
I-l
i-l
Ol
4-J

ex
CO
I-l
o
03

B
o
r4
4-1

I— 1
Ol
OJ
4-1
03

60
(3
•H
0
3
*"O
0
l-i
cx

4-1
0

03
4-J
a
01
4-1
4-J
0)

i — 1
cfl
4-1
d
0)
B
d
0
M
• H
^
c
Ol

Ol
r~;
£— (







1
03
• r-l
B
O)

(3
O

tfl
4-1
CO
13

01
43
4-1

13
d
CO

•*
13
01
d
•i-l


Ol
4-J
Ol
13

01
i-l
0)
&

01
1— 1
cfl
• H
I-l
01
4-1
Cfl
B

C
•H
60
In
•H
^



rJ
4-1

d
CO
ri
4-1

rJ
Ol
43
4-J
cfl
V^

/~^
0)
4-J
03
CO
jj

*^3
•H
1 — 1
O
03

I— 1
CO
ex
• H
U
• r-l
C
3
E





CU
j_,
Ol
[5

03
a
o
•H
4-1
CO
i — 1
3
CJ
i— i
CO
U

01
43
H


•
M
M
X

01
l— 1
4^
Cfl
H

C
•H

13

4-1
C
QJ
03
O)
^l
a.

CD

to

03
4-J
C
Cfl
4-1
3
1 — 1
I— 1
O
CX

4-1
O

03
Ol
•H
4-1
•H
4-J
d
Cfl
3
tr

-o
d
cfl

03
I-l
O
4-J
U
CO
4-1

d
o
•H
03






























































• •
03
d
0
•H
4-J
ex
B
3
O3
03
cfl

60
d
• H
^
O
1— 1
1— 1
0
4-J

QJ
43
4-1

d
o

-o
Q)
03
cO
43




4-1
O

CO
d
o


vO
o
1 — 1

X

o
r*-)

01
43
4-1

B
O
I-l
4-J.

13
01
M
Ol
>
O
O
Ol
r4

0)
42

i— 1
i— 1
• i-l
JJ

03
i— 1
cfl
4-1
O)
B

O3
3
0
j_j
rJ
Ol
4-1

4-1
0

03
d
0
4-J

O
O
O

in
*JD
in
r*
CN

«
O
o>
ON
i — l

d
M


£



























•
>,
I-l
0)
>
O
0
OJ
i-i

0)
0
I-l
3
o
03
O)
M

l-i
O
4-1

13
OJ
03
03
Ol
U
O
I-l
O.

01
("1

r-l
l— 1
•H
Jj

4-J
CO
43
4-1

OJ
4-1
03
CO
^

13
• H
i— 1
0
03

i— 1
Cfl
ex
•H
O
• H
C
3
B












i— i
i— i
•H
9

13
C
CO

13
0)
i — i
O
>>
0
0)
M

0)
43

i— 1
i— 1
• H
Z

Ol
4-J
03
Cfl
3

13
•r-l
i— 1
O
03

i— 1
cfl
ex
•1-4
O
• 1-1
d
3
B

B
o
^
4-J

13
01
r^
Ol
^
O
CJ
Ol
^

TO
l — 1
tfl
4-1
0)
B

03
3
O
1^
r^
QJ
4-1

Q)
f]
4-1

i — 1
i — 1
<^


£











































•
i— 1
Ol
Ol
4-1
03

4-1
O

d
0
•rJ
4-1
O
3
13
O

CX

Ol
43
4-1

d
•r-i

, — i
cfl
• H
VJ
O)
4-J
cfl
B

d
• H
60
}_i
•r4
^

O)
o
cd
1— 1
cx
0)
rJ








CO
0)
• I-l
4-1
• i-l
4-1
d
CO
3
cr

0)
>
•r-l
4-1
Cfl
l— 1
0)
I-l

01
B
cfl
03

Oi
43
4-1

d
• r-l

13
d
cfl

CO
Oi
03
03
01
0
0
I-l
CX

Ol
B
CO
CO

01
r~!
4-1

^
43

13
0)
U
3
""O
O ••

cx 3
0) ^
4-1
03 VO
i —
« ON
O r^
CTi
CT* C
i— 1 -i-l

d 03
h-l co


0










4-1
0

d
o
4-1

0)
d
o

13
i — i
0)
• H
r^t

1— 1
I— 1
• H
^

d
o
M
• I-l

60
• H
CX

4-J
0

d
0
4J

O)
d
0

«v
co
r— 1
CO
• H
g-^ gsg |-i
e-s  rJ
Q) O O •!-!
O CO CO >
cfl d d
d H rJ B
rJ 3 3 0
3 14-1 14-1 Vi
4-1 4-1
d o
43 01 l-i d
4-1 60 cO O
I-l >> TJ
CO X 0 4-1
0) O -r-l O
43 l-i 3
O 4J 13
d -H o o
Ol 03 0> rJ
CX Cfl r— 1 fX
O M W
i — l
Ol
o o o 01
4-1
CO

d
M


0







d
O
4-J

01
c
0

E
o
rJ
4-1

13
O)
r-l
3
4J
0
CO
4-1
3
C
CO
B

0)
M
o
u

4-1
O

4-J
d
3
0
e
CO

O)
43
4J

0)
rJ
• H
3
cr
0)
rJ

r-l
i — 1
•r4
^

d
0
•r-l
4J
O
3
13
O
I-l
CX

d
o
r-l
•r-l

60
•H
ex

13
d •
CO r-l
CO
r-l O
0) O
Ol
4-1 4-1
CD O









13
1 — 1
01
• H
>.

1 — 1
1 — 1
• 1-1
&

03
r- 1
CO
4-1
0)
B

CO
3
0
rJ
rJ
OJ
4-1

CX
cfl
VJ
o
03

4-J
o

d
0
4-1

Ol
d
0

r,
03
i— i
cfl
• I-l
rJ
OJ
4-1
cfl
B

13
0)
rJ
0)
^
O
0
OJ
rJ

B
0
Vj
4-1

d
o
• H
4-1
O
3
13
O
rJ
ex

i— i
Ol
01
4-J
CO

d
M


0













































































•
i— 1
Ol
0)
4-1
CO

4-J
O

d
o
4J

Ol
d
o








49

-------
TJ
 0)
•v
 3
i—i
 O
 C
 O
O
X

W
rJ
PQ

$
2
O
tn
w
0
w

o
co
1 1 1
o <; co
PH 01
CO W O
0) C/l C
60 in o)
crt 1 1
^u w
JJ O> 0)
CO JS 4-1
JJ 0)
CO Pi
3 C ^
O •!-!
•H C
M co o
co i-~ -i-i
> ON JJ
•—I •!-(
OJ 1 13
J3 CN 0)
jLJ f""«»
ON T3
B -H C
O CM
M r4
u-4 o r
ll 1 ^
co co
B 13 r4
O OJ O
•H JJ JJ
co co cj
co -i-l co
•l-l rH It,
B
oi o) c
CO O
•a o T-I
01 ,C co
i— 1 JJ CO
t— 1 -H
o CD g
t-i cfl w
JJ
C 0) JJ
0 B C
O co co
CO JJ
T3 3
C 0) r-l
Cfl 43 t-l
JJ O
*d PH
0) 0>
l-l JO rJ
r-< -H
O r-l <<
l-l t-l
JJ T-l 4-1
C S O
o
0 0 C
C ON O
3 ON • l-l
r- 1 JJ
rJ CO
O C t-l
4-1 T-l -1-1
ex
co C B
t-i 0 0
O T-l O
JJ JJ =
0 0
cfl 3 C
4-1 13 O
O T-l
C r4 JJ •
O CX CO ^
•i-l CJ t— 1
CO i-l T-l CO
CO 0) t— 1
•i-l 0) J2 T3
B JJ 3 C
W co ex co
OJ 1
> 4H
•i-l OJ
JJ CKj
O ^
01
4-1 co
4-1 C
0) O
•H
0) CO
rJ CO
CO -1-4
B
JJ OJ
cfl
42 13
JJ O)
,—1
CO t— 1
t-l o
0 M
r4 4J
ti ^
C O
0 u
CJ
^i
C 0
O 4-1
•r4
JJ co
3 t-i
r-l 0
r-l JJ
O 0
CX CO
4-i
4S
•W C
T-l O
S T-l
CO
T3 CO
0) -i-l
cx B
CX 0)
• H
3 O)
cr jn
OJ JJ

0) >,
J3 J3

1 — ' T3
i— 1 OJ
•H JJ
S Cfl
o
O -t-l
ON 13
ON C
•— 1 T-l

C r-l
•r4 O
V-l
CO JJ
o) c •
o o s-*
t-l O i— 1
3 ro
O 4-1
co O T3
B
C t— i co
O OJ
T-l > 0
CO 01 co
CO i— 1
•r4 CO
S 0) 0)

-------
'
,

o
c
a
c
E
u
t
E

t


C
p
f-
c

C.
t
h
&
h
f

C







^x
OJ
[0
c
0
4J
5

1

^
£

O
1

























J


3

H
2
^
n
r
^

^
4
4
3
L,
M
3

O
a


y




S















m
en
























a)
w
U


M
&
Q
W



ss





T
se
sg
Ss
3 s

a
0 U

fa 0
S
g O
fci H


•°

8
S

O
(0




w
H

&
H
O

>

s
1





H
H
O Cf
s d
> o
W ^-
2 M
Ct
s












8





3
>"
a:
M
>
o
o
s


g
w
H

§
1
g

Q
J


I

Q
M
,-J
g
H
O

Q
d





o
Q
W
,-J



1












0
o
§ „ in <-* — i m

^ o ^ l CM co
1 ^.l l
7
0
o

r-mcn -oooo
"* 2





o
o
o
u-, « m m
u-|C»if)o in •— < •— 'oo
Q (si i— i in co co
i^, -3- m CM LH
CM


r-. CM CM
coooooooo
• O o CT> t j | |
° o* d
CM CM in CM -J- 00 CM
m o o oo o o >H
• 0 O CO • • . -" M CM CM CO T3
SjE32388ii£

§0
o
o o


1 1

Q 0
O 0
o o

<• CM





O 0
o o
O 0
O fO
t-H r-















W IW
CO CO













WN "in
f^J «H







n
4-1 4_|
i/l C
CO
4J
1 s
a (4
[d t-<
H 0)
^ «

cf <; to
1 ^
                    •H    U
                    B    HH
                    0)

                    M    S
                    0)    S
                    •a    -H
                    3    M
51

-------
M
M
r-l
X
w
EH
O
M
CO
CO
QJ
CO
M
O




































ng aluminum from scrap aluminum recovered from municipa
•H
O
3
T)
O
^i
CX

4-4
o

CO
4-1
u
OJ
4-1
4-1
OJ

i— 1
CO
4-1
C
01
E
C
o
)-l
•H
£>
c
OJ

OJ

f— 1




ials were determined, and the data on emission factors
i-i
OJ
4-1
CO
E

C
• H
60
r-l
• r-l
^

B
o
i-i
4-1

C
CO
f,
4-1

l-l
QJ
{-!
4-1
CO
r4

OJ
4-1
CO
CO
IS

T3
i— I
0
CO
d in Table XIII. The calculations were based on the
0)
4-1
C
0)
CO
0)
l-l
cx

OJ
l_l
cfl

co
4-1
C
cfl
4-1
3
r— 1
i— 1
O
CX

4-1
0

CO
QJ
• H
4J
•i-l
4-1
d
CO
3
cr
ID
C
co




















• .
CO
C
0
•H
4-1
CX
B
3
CO
CO
cfl

60
C
• H
^
0
1 — 1
o
4-1
will be recovered from the 30 x 10" tons of municipal
B

C
• i-i
B
3
i— i
CO

4-1
O

CO
C
O
4J

O
o
0

L/^i
CM
CN

^
0
ON
ON


C
M


0




d for resource recovery.
OJ
CO
CO
01
o
O
I-i
CX

OJ
.0

I—I
r-l
•H
IS

4J
cfl

4-J

0)
4-1
co
cfl


rQ
• r-l
i — 1
O
co







unicipal solid waste will be recycled and will replace
E

E
0
l-l
4-1

T3

o
u
OJ
l-l

E
3
C
•r-l
E
3
i — i
cfl

OJ
pC
4-J

r-l
T— I
^3


0




of aluminum.
£
0
•r-l
4-1
O
3
•O
O
M
CX

OJ
n
4J

C
•H

i— 1
Cfl
•i-l
l-l
QJ
4-1
Cfl
e

pj
•H
WD
M
•H
^







d by the same processes and in the same relative quanti
0)
o
3 ••

o n
M n
cx
OJ
o; o
rO C
0)
•-I r-l
1 — 1 OJ
• r-l 4-1
IS 0)

E ^^
3
C O
•i-i r-~
E ON
3 —1
I— 1
CO C
• H
f.
O co
ON cfl
ON
r— 1 CO
OJ
C -i-i
r-l 4-1


O




i — 1
vD
CO
r-l
i— 1
OJ
o

T3
OJ
v;
cfl
ja
OJ
i-i
cx

c
•r-4

CO
•H
co
r^l
I— 1
0

4-1
O
QJ
i — 1
w


o












1-stud Soderberg cells: 25.5%
CO
4-1
C
o
N
• i-l
r-l
O
f.

C
•H

CO
•H
CO
^
I— 1
o
l-l
4-1
0
OJ
i— 1
w


o












stud Soderberg cells: 12.6%
i
i — i
CO
u
•r-l
4-1
^|
0)
^

c
•H

CO
•r-l
CO
£>-,
1— 1
O
^_l
4-1
O
01
, — i
w


0












r-
ON
i — 1
C
• I-l
4-1
CO
4-J
CO
CO
OJ
cfl
CO
OJ
4J
OJ
.0
i— 1
i— 1
•r-l
O
ON
ON
i — 1
C
•r-l
CO
r— 1
CO
•H
r4
OJ
4J
CO
B
c
•H
60
l-l
•H
^

E
0
r-l
4-4

E
3
C
• H
E
3
i — i
cfl

4-1
O

B
0
•H
4-1
O
3
TJ
O
U
P-,


%




bauxite will be required to produce the two tons of
f one ton of primary aluminum.
4-4 O
o
c
co o
£2 'r-t
O 4-1
4J 0
3
in "O
• o
0- rJ
cx
•*
• r-l
OJ O
• 4-1
• i-4
-a
^ QJ
s~\ ^4

-------
T3
(1)
T3
3
I— 1
o
B
0
c^
\^s

r-l
M
r-l
X!

W
rJ
PQ

H



&
O
M
CO
CO
, 	 1
u
CO
r-l
o
will be 80 percent* efficient,
o
ON
ON
1 — 1

13


CO
1—4
CO
• H
r-l
01
4J
cfl
E

-o
CD
1— 1
o

0
0)


£3
O
J_J
4_4

E
3
a
•T-l
E
3
i — i
CO

M-l
O

C
0

4J
O
3
-o
O

PH
secondary aluminum operations from
a
• r-l

•o
0)
O
3
T3
O
r-l
CX

0)
42

i— I
r-l
•r-l
^

B
3
C
•r-l
B
3
, — i
tO

*>^
j-j
to
B

M
CX

U-l
0

CD
C
o
4-1

OO
•
o

f.
•
cu
•
•H
•
0)
4-1
CO
Cfl
IS
•H
r-l
O
co

I—I
tfl
CX
• r-l
O
• r-l
r*
3
B

B
O
rJ
M-l

T3
01
l-l
Ol

O
O
01
(-4

B

C
•H
E
3
•— 1
cfl

CX
cfl
^
O
CO

14-1
O

C
o
4J

43
O
cfl
0)
in sweating furnaces and half in

13
Ol
co
CD
0)
0
0
r_|
cx

0)
CN

i— i
i— i
• H
u

E
3
C
• H
E
3
r-l
cfl

CX
cfl
j_j
O
CO

0)
43
4J

M-t
O

M-l
i— 1
Cfl
43

«
O
ON
ON
t — 1

C
r-l
































.
CO
0)
o
CO
B
^i
3
M-l

K*"*
r-l
O
4-1
CO
rJ
01
42
r-l
0)
^
Ol
!"4
ions from the various stages of
co
CO
•r4
B
01

T)
o>
1— 1
r— 1
O
r_|
4-1
B
0
o

T3
C
cfl

T3
0)
i— I
! 	 1
O
)-4
4-1
(3
O
0
(3
3

r-l
O


CO
r-l
O
4-J
O
cfl
14-1

a
o
•H
CO
CO
• H
B
w
PL,
W
CO
Ol
43
4-1
(3
• H
CO
ON
i — i
1
CN
ON
O
14-1
0)
4-1
CO
• H
i — 1

Ol
CD
0
43
4-1

CO
tfl


43
4-1

^1
42

T3
O>
4J
CO
O
•H
13
B
• H

i— 1
0
r-l
4-1
B
0
O

M-l
O

1— 1
o>
p>
O)
I—I

01
t-;
4-1

0
4-1
































•
s~\
U"N
CO

•a
B
cfl

CO
CO

co
0)
o
B
a>
M
a)
M-l
C1J
Od
N-^
                                                                        cx
                                                                        CO
                                                                        O
                                                                        co
                                                                        Ol
                                                                        4-1
                                                                        cfl
                                                                        (3
                                                                       • H

                                                                        Cfl
                                                                        4J
                                                                        C
                                                                        o
                                                                        o
                                                                        C
                                                                        Ol
                                                                        o
                                                                        r-l    •
                                                                        0) s~*
                                                                        cxo-
                                                                           CO
                                                                       o
                                                                       r~-   0)
                                                                             O
                                                                        o   c
                                                                        4-1   0)
                                                                             r-l
                                                                       O   01
                                                                       VO  14-1
                                                                             Ol
                                                                        B  a!
                                                                        o ^
                                                                        j-i
                                                                       >4-i   CX
                                                                             cfl
                                                                        CO   S-i
                                                                        Ol   O
                                                                        M  co
                                                                        (3
                                                                        cfl  T3
                                                                        r-l   01
                                                                            4-1
                                                                        CX  cfl
                                                                        CO   tO
                                                                        )-i   01
                                                                        O   r-l
                                                                        CO   M
                                                                             Ol
                                                                        B   to
                                                                        o
                                                                        i-l  r-l
                                                                       <4-l  i— I
                                                                             O)
                                                                        >N  3
                                                                        r-l
                                                                        QJ    ^
                                                                        >   0>
                                                                        o  'd
                                                                        o   to
                                                                        O>   )-4
60
                                                                        B
                                                                        3
                                                                        C!
                                                                       •H

                                                                        3
                                                                        O   B
                                                                             Ol
                                                                          >  o
                                                                        O   r-l
                                                                        B   Ol
                                                                        0)   CX
                                                                       • H
                                                                        O  OO
                                                                       • rH  O^
                                                                       <4-l
                                                                       U-l   O
                                                                        W   4-1
                                                                       •X
53

-------
sa
        I
       SI
                      •H   fl
                      X   3
                         -a   rH -H
                         d   Cd 1
                         O   W 3
                        -Q
                             2  a
                           54

-------
M
X
w
rJ
PQ
H
a
o
en
] 1
c_>
C/1
r-4
O
ng glass from cullet recovered from municipal solid
• H
O
3

O
r-l
CX

4-4
O

CO
4-1
O
cu

4-1
CU

1 — 1
CO
4-1
(3
CU
E
C
O
r-l
• r-l
^
13
01

0)
43
ere studied, and the data on emission factors and
U

CO
1— 1
CO
•H
r-l
01
4-1
CO
B

c
•rl
60
r-l
• rl
%>

g
O
^
4-1

C
CO
f,
4-1

P^
CU
43
4J
CO
I-l
d in Table XIV. The calculations were based on the
01
4-1
C
01
co
01
r-l
CX

0)
,_|
CO

CO
4-1
C
CO
4_>
3
, — i
i— i
O
cx

^i
•rl
CO

4-1
O

CO
01
• H
4-1




















• •
CO
C
0
•rl
4J
CX
B
3
CO
CO
CO

60
C
•rl
will be recovered from the 30 x 10^ tons of munici-

co
CO
CO
i— i
60

4-J
O

CO
C
0
4J

0
o
o
rt
O
o
.— i
*\
CSl

r.
0
ON
ON
i — 1

C
M


essed for resource recovery.
o
o
(-1
ex

01
43

i—(
i — l
•rl
J5

4-1
CO
43
4-1

01
4-J
CO
CO
u

T3
• H
r-l
0
CD

r-l
CO
CX


0)
O
CO
1— 1
cx
0)
1— 1
r-4
•H
C
CO
T3
Ol
r-l
0
o
CU
01
I— 1
1— 1
•H
0)
4-1
CO
CO
»
• H
O
co
i— i
cfl
o,
•r-l
0
• rl
C
3
B



i^
4-1

'O
CU
rl
QJ
^
0
o
cu
r^

CO
CO
CO
I— 1
60

O>
43
4-1

r— 1
r— 1
<£


n of soda-lime glass containers.
o
• H
4-1
O
3
T3
0

CX

0)
43
4-1

C
• H

CO
r-l
Cfl
•rl
r-l
01
4-1
CO
B

(3
• H
60
^l
•rl
^


ime glass from virgin material in 1990 will be 85
i— i
i
CO

O
CO

4-1
O

(3
0
• r(
4-1
0
3
-a
0
i-i
ex

(3
•H

T3
rH
0)
• H
^i

01
43
H


mount to 15 percent (Reference 36).
cfl

i — i
r-4
• rl
Jj

co
CO
o
1— 1

C
O
•rl
CO
3
4-4

—
•
01
.
•rl

n
4J
C
01
o
i-i
0)
CX


4-1
C!
0)
o
0)
cx
o
o
1 — 1
cu
43
1— 1
I— 1
• r4
O
ON
ON
i—4
(3
• H
4J
0)
i — 1
r-l
3
O
I-l
4-1
CO
CO
CO
i— l
60
01
•rl
i— 1
1
CO

O
ca

4-1
O

C
o
• I-l
4-1
o
3
-a
0
^i
CX

c
• H

T)
i — 1
CU
•H
£*•>

0)
43
EH





















.
/- — s
vO
on

01
o

01
rl
01
4-1
0)
CcJ
S 	 ^


ure in 1990 will meet the limitations specified in
4-1
O
CO
4-1
3
C
CO
E

CO
CO
CO
r- 1
60

B
o
^i
U-l

CO
C
0
•rl
CD
CO
•rl
B
0)

i— i
i— i
43^


trol Regulations (Reference 37).
c
0
u

(3
0
•r-l
4-J
3
i— I
i—4
0


^J
•rl
^

4-1
3
0
•H
4-1
0
Ol
C
c
o
Q^

O)
43
4-1


le to cullet will be proportional to the amount of
43
CO
4-1
3
43
•rl
I-l
4-1
4-J
CO

co
c
0
•rl
co
CO
• r^
E
01

C
• H

C
0
•rl
4J
U
3
T3
0)
BJ


0)
Ol
4-1
0)
.
•i-l
\^^

4J
43
60
• rl
CU


CO
CO
CU
CJ
o
I-l
CX

CU
43
4-1

(3
•rl

4-J
01
i—l
t — 1
3
0


0)
o
CO
c
r-l
3
4-1
01
43
4-1
C
O
I— 1
I—I
3
CX
01
43
4J
4-1
0
4-1
C
0)
T3
(3
0)
ex

13
c
•rl

CU
43

r-4
r-l
•rl
[J

CO
C
O
•H
CO
CO
•H
B
Ol

4-1
O

O)
4-J
CO



CD
CO
4-1      O
C     r-l
CO     •-!
3      O
cr    4-i
                                     55

-------
Ed

g  |

H  <
   M
   O
   O
            iSgg
            ||j

            H o:
             gs!
             8S
             SB
             ea
             xS
a  ^
                                 •§  5
     II
                                   •H  -H "0
                                           pi  S
                                           tM  00
                                                  <; m

                                                  4J -O
                                                  o v

                                                  •sS
                                                      1
                                                      (0

                                                      g
                                 56

-------




























>
X

w
l-l
M
<
H

..
3
0
M
CO
CO
&
0
CO
h-l
O
































C
•H
60
l-l
•H
>
lj
O
M-l

0)
4J
CO
CO
s

TJ
• p^
I — 1
O
CO
I— 1
CO
CX
• H
CJ
•H
C
3
E



)-i
m

T3
0)
u
01
o
o
0)
^

CO
1— 1
CO
•H
l-l
cu
4-1
CO
E
60
c
• l-l
4-1
3
4-1
•H
fl t
co
J3
3
co
1 1 1
0
CO
4-1
o
01
y-i
W-l
0)

Ol
f:
H





0)
J3
p

•
>
X

01
1 — 1
,0
CO
H

c
• H
Tl
\J
O)
SI
• l-l
^4
CO
e

3
co
o>
l-l
cfl

CO
co
CO
1— 1
60

T3
c
CO
„
E
3
C
• l-l
e
3
i— 1
CO

n
1— 1
o>
o>
CO

4-1
O

C
O
• r^
4-1
0
3
T3
O
l-i
fX
0)
JS
4-1

c
• l-l

CO
i— i
CO
• H
l-l
OJ
4J
CO
e
•
>-,
i — i
Ol
• l-l
4-1
u
Ol
ex
CO
0)
M

r.
>
1— 1
X
•a
c
CO
„
M
h-l
M
X
f.
h-l
1— 1
X

co
0)
1 — 1
,0
CO
H
6
i-i
m

T3
O)
>
•H
l-l
OJ
-o

0)
M
CO
CO
4-J
C
CO
4-1
3
P—J
0
a.

IW
o
CO
fii
VU
• H
4-1
• H
4J
C
CO
3
cr

C
o

CO
4-1
CO
-a
57

-------














<
M S
O O
H H
Si
y O
O OS
£ ^
s«
>i O ,-,
IALS RECOVER
OLLUTANTS FR
GLASS (1990
> K PL, Q
S Cd Z
H fe ?
S g° .
« ws
< fe ta 5
H O H £
h' £
!!*
H 0- *

W £s W
S O bj

iJ W w
§ en In
*|o
O P
M
BS
W CO


ta
















j^
B
H S
E
H
Q
















8
o



















SS
o
cog

o o





a H
S











STEEL
ODUCTION
03
ft.








1
0 B
H nJ
> O
M ft.
W ^"^
§1
w
S


O
0 ^
5oos"^?2s
o ° ' ' >7
1 CS
1









|Q a^z^^Sz
c^l
1





Oi CJ












o
o
o o ^
co . in -i H in
"""oom •"* mroco
^o o m I CM ro
I m i i i/>
I
CNl
i





S
0)
•a
10 i-l
01 K 10
4J g ffl
n 3 -o
rH rH -H
3 4-1 M
0 O CO
•H 01 3 2
4-1 4J rH O
M W <*-! J2
CO i-f M
O. 3 CO CU
O3 CJ
rH -H O O
CO 4J 01 M
4-1 Vl CO CN CS fl TJ
MHCuOOc/3Z§5C
"^

•a
01
M
01
o
u
01
CO
rH *
« c
ti 3 w
(-1 -H g
Q) 4J Q
t! a -H
"t 3 co
^ "S m
O ^H
"S p. §

s m •H
B rH rt)
•H H 01
C cc jj
° 0 o
4J 4J g
o i
3 VI
•0 0 c

a w „
O fll
s^ -
^ 2 4J
60 fl *o
C 2 ^
n) nj -
*^3 co
C 4-» -

1 CO
fH rH M
Cfl CO rH
•H CO
* rl -H
i-H  -H
O r>
•H 01
4J CJ 00
Vi cd B
0 rH -rl
a a S
01 iH

(U T3 3 5
CO rH 3 M
at cfl I-H .j jj
jc tx a at n
H -H 0*3 d
O -H
*H ni nl
. B 4J ™ 2
92 ° - M
§ S c '„ S
*"* § ® 0
C Vj 5 "^ 
-------
X!
O
M
C/l
U
C/l
al requires less energy than
• H
l-l
0)
4-1
Cfl
E

T3
0)
i — l
CJ

O
Ol
J_^



J-J
4H

CO
co
cfl
rH
M

•o
d
CO

r,
C
3
d
• H
E
3
i— i
cfl

r,
rH
01
01
4J
CO

4-1
O

d
o
• H
4-1
O
3

O
>H
PM





uld result from substituting
o
3

4-J
Cfl
43
4-1

d
o
•r-l
4-1
CO

l-l
0)
CD
d
o
o

^
60
fL)
OJ
d
0)

0)

£H


.
CD
rH
Cfl
•rH
^4
01
4-1
CO
E

d
• iH
60
l-i
• H
£>

B
0
IH
4-1

d
o
• iH
4-1
O
3

0
|H
CX
O)
CO
0)
43
4-1
4-1
0
d
o
•H
4-1
O
3
T3
O
l-l
CX
0)
43
4-1
d
• r-l
CO
<— 1
cfl
• H
^l
OJ
4-1
CO
E

d
• H
60
IH
• H
£•

rJ
O
4-1

0)
4-J
CO
cfl


•o
•r-l
rH
0
CO

rH
cfl
CX
•H
o
•iH
d
3
E

g
o
^
4-1

13
0)
^i
0)

0
o
0)
t-i

CO
rH
CO
•H
l-l
OJ
4-1
cfl
E
based on the following as-
o>
|H
01


co
d
0
• H
4-1
CO
r— 1
3
U
rH
CO
O

0)
43
H


.
1— 1
£>
X

0)
, 	 1
43
CO
H

d
• r-l

T3
O)
4J
CO
r— 1
3
r\
CO
4-1

CO
• H

CO
01
O
d
cfl
4-1
CO
43
3
CD

OJ
0)
l-l
43
4-1

























































.
co
d
0
•H
4-1
CX
B
3
co
processed for resource
etals, 225,000 tons of
E
0)
43 CD
3
rH O
1— 1 rJ
•H V-l
3 0)
4-1
0)
4-1 CX
CO CO
CO IH
3 0
CO
T3
•H 4-1
rH O
O
co co
d
rH O
Cfl 4-1
CX
•H O
0 0
•r-l 0

3 LO
E ^>

4-1
O CN

CO T3
d d
O cfl
4-1
n
d ^^
O M
•i-l M
rH
rH OJ
•H rH
B 43
CO
0 H
CO ^

** ^
0 rJ
ON OJ
O» >
r-H O
O
d OJ
M IH


•





recovered (Table XI).
01
43

, — i
, — 1
• H
BE

4-J
0)
rH
i — 1
3
0

CD
co
cfl
rH
60

4H
O

CO
d
o
4-1

o
o
o
r.
O
o
1 — 1
f\
CN

*o
d
cfl

n
B
3
d
• H
E
3

CO

CX
CO

O
CO








be used in materials
rH
rH
•iH
3

co
CO
cfl
i — i
60

-o •
C co
Cfl rH
CO
r, >|H
E ^
3 QJ
C 4-1
•H cfl
E E
3
— 1 d
Cfl -r-l
60
" M
CD -H
1— 1 >
cfl
4-1 l-l
OJ O
E ^

CD 4-1
3 d
O OJ
rJ B
IH 01
OJ O
4-1 CO
i— 1
X) CX
<1J 0)
IH IH
OJ
> CO
O CO
O
o> d
V-i O
• H
O> 4-1
43 0
4J 3
T3
rH O
i— 1 M

M
X

*"O
d
cfl

r\
rH
M
h-l
X

r\
M
rH
X

CO
01
i — i
rQ
cfl
H

QJ
>,
! 	 1
OJ
^
•H
4-1
O
O)
cx
co
0)
l-l

*t
co
d
o
4-1








rce recovery processing
3
0
CO
01
^i

^j
O
4-1

T3
d
CO

d
o
• H
4-J
U
3
T3
O
l-i •
cx un
i — ,
CO O>
I— 1 rH
Cfl
•H d
IH T-I
0)
4-1 CO
CO CO
E
o
IH o*v
O CT>
4H rH

CO d
4-1 -H
d
OJ 0)
E E
0) CO
IH CO
•H
3 01
cr 43
0) 4-1
^J
O)
^i 43
60
l-l rH
OJ rH
d -H
H 3


0





among the recovered
cipal solid waste.
*"O • iH
O) C
4-> 3
cfl E
O
o d
t— 1 -H
rH
CO CO
4-J
CU d
43 QJ
4-1
>-, d
CO O
E o

>-> 0)
rJ >
Ol T-I
> 4-1
O co
CJ rH
Ol Ol
M IH

0) M
O T-I
IH 0>
3 43
O 4J
CO
0) O
IH 4J

l-l d
O O
4H -H
4-1
CO M
4-1 O
d cx
OJ O
E M
0) CX
IH
•H d
3 -H
cr1
OJ CO
M r-H
CO
r*1* *H
60 i-l
U OJ
O) 4-1
d co
W E


9





                                               59

-------
f>    O

fi    M







^J



5
W
>H
W
a
^
0
H


























^

1
$





























W
O


^£>
o








3
PQ












en

d











g

|





,_j
H
S


0
3
S










S
i
X
-H
1
B
Crf
a
!d
































X

5








00
00
m
rH

s







4-1


f)
IN






H
cd
•d
(U

4-J
d o
•9 3
SI
> 0.
e iw
r Production froi
(106 Btu/ton o
S































in

O
rH









00

CN

*>










VO





^
U

0
a

T> "«
(t) O
u
Recove
itu/ton
w
B
r Production froi
Material1* (10&
£





























o
o
o
o

v£>
m
\o
o

X


CO



0
4J
vO
B





o
o
m

•4-

en
in








41

3 0
O CO x-s
J= 01 3
c Ov£)
r 1990 Productio
Impl ement a t i on
Recoverya»c (1
£





























o
o
o
m
m
CN
CN


O

X




"*
o
4-1
CO
o





0
o



5
m"
^H









4)
a
o
m ^-s
J3 01 3
•H pa
y M-I
d o
r 1990 Productio
Impl emen ta t ion
Recovery1** c (1
£






























o
§

o
s










o
o
o

§






o
o
o

0
m








3
4-1
CO
O
rH
C1
4)
r Reso ur ce Re co v
£

00

f»
rH
|

rH

ft
rH




o
O
§o
0

r") (N
ID CN
CN «







O ^
O " H
" --N rH
m r*. c*t
>o m ^ i
O
CO -i-) rH

*o

X
Jf^
00
(N

O rn
r-i 0*1
-H

CN
CN 00
5





O
O
o


K ^ ^
n







^
f-e

G
o
CO
E
4)
§
3
"s S?
Su "3 S
M « S
5s s s
Q~ - g
4J ex
0) 4)
2 prf




































cn
rH
cd


01
Rt
B

C
•H
ff

^
O
g
•H

4J
O
a
cd
i-t
^
o
4-1

•s
cd

cT
•rl
5

n
CO
4J
a
0)
E
0)
3
41
14
00
41
s not include en
4)



«*
rH
nj
•H
rl
4)




4>
tj
g
4)
M
"4-t
O
§




rl
o
ex
CO
£

0

T3

4)
4-1
3
T3
rH
o
CO
r-t
CO
a
•H
U
•H
C
3
e
4-1
O
g
•H
CO
4J
rl
O
ex
cO
i-i
TD

cd

1
4J
CU

rj
8
o
CO

s
B

•3
2
00
Of
s not include en
4)
a
T-t
00
M
>

01
U

rH
(X
01

rH
3
o
a>
cq
I
-0
•H
rH
O
CO

H
C5
a.
-rl
CJ
"&
3
S

rl

-o
CU
CU
>
o
0
£


3
•H

01
4-1
cd
S

u
•H
£
CU
00
fl)

1
q
•rl

^
cQ

^4
a>
4-1
cn
O O
g ti
•-H 3
u o
3 rl
•0 &.
0
4-1
0 0
CT*
r-H rl
o
o
those portions
erial, i.e. , not
o S
j, §


o

g
•H

3

•H

M
3
0)
1
CD
CO
ra
•D
•H
rH
0
10



ex
•H
o
•H
c
g

s
o
M

£•
CU
O
o
4)
M
0)

£
0
CO
01
t-l

U-l
o

c
o
•H
CO
4-1
C
0)
8
D.
s
•H
O

rH 3
^r cn
0)
•a n
S
cd cu
O 4-1
CO
co co
4)
u c
SO
•H .
O> CJ rH
cu -a -H
Prf O rl
=" rl 01
ex 4-t
w co |3

O rl 00
4) rl
§ %•$
Z * M
3 C 0
PQ
ed on 0.2 x 106
rgy conservation
overed materials
01 CU O
CO MM
•0 01
                                                                                                                    S4H


                                                                                                                    4-.
                                                                                                       1
                                                                                                       4J





                                                                                                       CJ
                                                                                                       rH


                                                                                                       3
                                                          60

-------
Xi

w
,-]
M
.
60
S-i
O)
d
o>

01
X!
4-1

U-l
O

>>
S-l
0)
>
0
o
0)
S-i

CO
CU
T3
3
i— i
O
d
• H

CU
4-1
CD
CO
3

T3
•H
i — 1
O
CD

i— 1
cfl
CX
•H
0
• H
d
3
B

B
o
r-l
U-l

>,
S-i
CU
>
O
o
CU
S-l

CU
o
S-l
3
o
CO
CU
oi





recovered
0)
XI

, — 1
1— 1
•H
&

01
4J
CO
CO
3

T3
• H
1— 1
O
co

i — i
CO
CX
•H
O
• H
d
3
B

d
• H

>-,
60
rJ
cu
d
0>

0)
XI
4J

4-1
CO
XI
4-1

T3
0)
B
3
CD
CD
cfl

CO
• H

4-1
1— 1


•
CU
4-1
CO
cfl
3

CU
XI
4-1

d
• H

4-J
d
-,
XI

-a
d
cfl

CO
S-i
O
4-1
cfl
S-i
0)
d
•H
o
d
• H

rH
1— 1
Cfl
3
t-i
0)
4-1
Cfl
3

d
• H

CD
CO
3
U-l
0>
S-i

3
CO
S-i

0)
XI
4-J

U-l
o

60
d
•H
d
S-l
3
Xi

CO
co
CO
S

>-,
XI
O
1-1
U-l
d
0
• H
4-1
O
3
"O
0
S-i
CX

>,
60
S-i
CU
d
0)

0)
S
o
CO

CU
O
CO
i — i
cx
cu
S-i

rH
rH
•H
3

>>
60
S-l
CU
d
cu

-a
cu
rJ
CU
>
0
0
0)
S-i

0)
XI
4-1

4-1
Cfl
XI
4-1

T3
d
cfl

rH
CO
0
O

XI
4-1
•H
3

i— 1
01
3
UH

T>
Ol
>
• H
S-l
CU
-a
§
S-i
U-l
o
60
• H
d
S-i
3
XI

CO
CO
cfl
B

f,
d
o
•H
4-1
CO
3
Xi
B
O
0

rH
Cfl
O
CJ

S-l
O
UH

CO
S-l
O
4-1
O
Cfl
UH

d
o
•H
CD
CD
• H
B
CU

01
XI
4-1

T3
CU
4J
CO
•H
i— 1

0)
S-i
CO

rH
I-H
>
X

0)
t— 1
XI
cfl
H

d
I-H


•
1— 1
cfl
O
O
CU
S-i
CU
3
o
ON
ON
1 — 1

S-i
o
U-l

CO
S-i
0
4J
u
cfl
UH

R
0
•H
CO
CO
• iH
B
cu

0)
XI
H


•
rH
CU
3
U-l

-a
CU
>
•H
S-i
CU
T3
|
CU
CO
3
U-l
cu
M

UH
0

rH
CO
O
o

XI
4-1
•H
3

60
d
• iH
r-l
•H
U-l
O
0

T3
d
cfl

*!
0)
CO
3
U-l
0)
S-i


















































. .
co
d
0
• iH
4-1
CX
e
3
CO
co
cfl

60
d
• H
3
O
rH
1 — 1
O
UH

cu
XI
4-J

d
0

TJ
0)
co
CO
XI
, — 1
i— 1 CU
0 >
S-i O>
4-J rH
d
O 01
0 X!
4-1
U-l
o xi
4-1
CU *H
cu 3
r-l
60 0)
0) O
-a d
cfl
CU -H
XI rH
4-1 CX
B
0 0
4-1 0

4J d
d -1-1
0)
rH CU
cfl Xi
>
•H i— 1
3 rH
tr-H
cu 3

cu co
xi o)
CJ
rH S-l
rH 3
•H 0
3 co

0 3
ON CU
ON d
1 — 1
-a
d d
•H CO

>^ «
o m
d r-^
cu a\
•H —1
O
•H d
UH -H
UH
01 0)
i— 1
rH XI
O cfl
s-i d
4-1 -r-l
d to
0 4J
O 4-1
CO
d
O co
•H CO
4-1 3
3
rH 4-1
rH Cfl
O XI
(Xl 4-1


•





















































•
OO
r-.
ON
i — t

d
•H

T)
0)
•H
U-l
•H
U
cu
CX
CO

1— 1
o
s-i
4-1
d
o
u

U-l
o








cu
XI
4J
B
o
S-i
UH

CU
CO
o
XI
4-1

CD
cfl

Ol
B
Cfl
CD

01
XI
4-J

01
rQ

1— 1
1— 1
• H
3

0
a\
ON
- — i

d
• H

CO
S-l
O
4-1
Cfl
S-l
CU
d
• H
O
d
•H

1 — 1
cfl
cx
•H
O
•H
d
3
B

E
o
S-i
U-l

CO
d
O
• H
CO
CD
• H
B
W


•





CO
CO
CU
0
0
rJ
CX

d
• iH
4-1
S-l
Cfl
S •
CD
-> d
01 O
4-1 -H
CO CD
S-l CD
60 -H
B
60 0)
d
•H 4-J
rH CJ
i — 1 CU
Ol U-l
> U-l
CO cfl
S-i
4-J 4-1
0
' d
>-,
CO rH
-O rH
•H
M 3
0)
CX f*,
S-i
CO CU
c >
0 0
4-J O
CU
O rJ
0
fl >>
^ 60
r-l
S-J cu
o d
4-> W
C8
S-i
01 .
d LO
•r-l I-.
O O^
d rH
•r-l
d
< -H
{X,
T)
- 0)
60 1-1
S-i O
3 4-1
XI -H
co d
•H 0
s-t B
S-i
cfl co
EC cfl








01 -a
XI 0)
4-1 S-l
• H
B - XI Pn
o LO o i
S-l =ftr -H 1— 1
UH XI «
s-i 3 o
a> cu u
CO rH CO
O -r-l d rJ
XI O O O
4-1 XI -H UH
CO
CO S-l CO CO
CO 0) -H T3
r* B rJ
CU O CU cfl
B 4-1 T3
cfl co X d
co O cfl
- C/3 4J
cu "d co
xi to -a
4.) o d o)
i— I Cfl O
cu d
Xi 4J CU cfl
d 4J B
rH CU CO S-l
rH O 1— 1 O
.,H S-l 3 UH
3 cu o S-i
CX -H 01
O 4-1 fXi
ON O r-l
ON 00 Cfl CU
rH CX 0
• S-i
d o s-i 3
•H CN O O
•• UH CO
fe O
Q oo 4J 3
Oj CX CU
4-J 0) 3
T3 cfl 0
d x oo
cfl pn o) r-
Q ON
rH Oi 1 — rH
cfl | r-^
O rH ON XI

-------
OO
I—
T3
0)
T)
3
i— 1
O
d
o
u
^^
i i
M
h^
X

W
J
«

r— 1

d
•H

CO
CU
o
d
CU
• r-l
O
•r-l
U-l
m
CU

d
o
• H
4-1
CO
3
f\
i-LJ
e
o



























4J
d
cu
o
rJ
CU
O,

o
o
1 — 1


• •
1— 1
CO
o
U
0

















4-J
c
0)
U
VJ
0)
a

LO
O


. .
1— 1
CU
3
M-l

-o
CU
>
• rH
r-l
0)
T3

CU
CO
3
M-l
0)
Pi
0




4-1
d
cu
0
(-1
cu
ex

o
v£>

^
cu
CO
D
m
01
r-l

S
CO
lj

CU
4-1
co
CO
S

•a
•H
r— 1
o
CO

r-l
CO
a,
•H
o
• H
d
3
2
0



                              62

-------























ff^
0
o\

1
u

(X
§
M

W


































o
g:
t-H
STT3
S s
is
C/l |J<
eg o
2












o
O &H
S i
rH ,J
PH <5
0 0
0 0


,a
o
H
hJ cn
 O r*
0
rH 0 Cn
0


CM %O
A 0 CD
01 01 vO * Id
01 CM CM C — ' J2 *-*
4J O O O 01
« W "Z. JO 01 -O 10
rH ^4 0) rH 01
3 M O) CO TJ CO 13
U CO CO U >, S -H
V4 ^ ^^ 0 .C C rl
4J M a) o o
M X X -0 -S £ rH
CO O O O r-i rH JZ
&< w z u a: •< cj


























4J
3

4J
3
O

^
00
01
c
w




OP
X)


•d

^
o

~^
3
pa

o
o
o
o



i
o
o

UH
o

01
3
rH
id

00
c
•H
4-1
id
01
01
00

^1
01

.a
•0
01
to
id
.0
o
CO
o
4J
id
rH
id
O
O
1
I
rH
01
•H
01
•a
i
01
to
3
UH
01
IH
00
a
•H
rl
TH
UH
o
O

4J
id
rH
a.

^i
01
g
(X

cd
3
o
H

to
01
1


o
UH

id
4-1
id
•a

i**,
Oi
rH

S
o
UH
T3
01

•H

0
O
eating values were 5757 Btu/pound RDF and 9500 Btu/pound co.
emission controlled by electostatic

01
00
CO

0)

^J


^^
CJ
CM
41
"
S
M
at
w-t


%^

Kt

01
.§



cn
CN

01

8
U.
0)

S


(_l
o
H
•H
a
•H
o
01
n
a.

Coal-Fired Power Plants (Reference 22) .
u
0
UH

•0
1J
CO
•a
pi
4J
C/3

01
CJ

3
o
UH
n
PH

01
U


o

3
0)
SB

CO

o>
rH
4J
pj

14
IH
3
CJ
01 '
01
U
H
01
a

rH

O


01
U
to
id
3

•0
rH
O
to
rH
id
c.
•H
U

§
a

U-l
o
4J

01
4J
g
U

H

UH
rH
3
cn
4H

























cn
>^

•o
S

CM
-a-

CO
01
0
n
01
n
01
UH
S
oo























01
iH
•8
rH
•rl
id
a

4-1
0
0
CO
4J
CO
Q



jji
j^r^
































sf
CM
01
U
15
01
l-l
01

01
cri
•rl .
O
CM
01
O
01
UH
01
Pd
rH
g
H
nl
O
U
00
•H
B
3


4J
C
id
rH
0.

rl
01
g
a

3
o
H

CO
01


-------
Ml
q
0
CJ

01
n
cfl

i
01
4-J
CO
cfl
5

T)
•i-l
i— (
O
CD

1— 1
cfl
CX
•i-l
O
• l-l
q
3
E

o
4-1

13
M 0)
r-l 4-1
1— 1 Cfl
^» i — 1
X a)
l-i
w
r-l CO
M CO

H
O
ON

a —i
o
M 13
CO -H
CO
C3 C
U 0
CO T-l
M 4-1
P 0
3
13
o

a.

Oi
60

01
q
cu

l-l
o
4-1

CO
o
• H
l_J
CO
(3
0)
CJ
CD

0

H





^^
43
S — '

*O
C
cfl

M
,. — s
^3-
.^J-


O
3

O
jj
CX

ON

M
0)
q
01

•o
01
4J
o
O)
•<—)
O
l-l
CX

^^
cfl


0)

cfl

(1)
co
0)
43
H


•
13
O>
^i
Ol

• H
CO
r-
• r-l
O
CO
1— 1
CX
01
l-l

0)
4-1
CO
cfl
^

T3
• H
r-l
O
CO

r-l
CO
CX
•H
0
•r-l
q
3
E

S
o
r4
4-1

ON
l-l
O)

0
0
OJ
l-l

ON
60
l-l
CU

01

r?
4-1
•r-l
^

i— 1
CO
0
o

S
o
i-i


a
o
• i-4
4J
O
3
T)
O
M
CX

ON
60

0)
(3
01

13
O>
4J
O
0)
•i—)
O
l-l
cx




01
43

T3
i— 1
3
O
IS

4-1
cfl
43
4-1

CO
4-1
C
cfl
4-1
3
r- 1
i— i
0
CX

4-1
o

CD
01
•H
4-1
• H
4-1
C
CO
3
cr

a)
43
H


•
q
0
• H
4-1
CO
3
43
E
o
0

r— 1
Cfl
0
o

Oi
J3

TD
Ol
£>
• H
^t
O>
T3

£>^
60
l-i
0)
0
OJ

0)
t*.
4-1

4-1
O

o>
6
0
co








O
^
4-J

01
CO
a>

4J

(-;
4J
• l-l
^

o
ON
ON
i — i

q
• H

q
0
•r-l
4-1
0
3
•a
0

cx

ON
60
l-l
0)
C
O)

r-l
Cfl
4J
0
4-1

4-1
0

q
o
• H
4-1
}_l
O
cx

o
• H
4-1
• r-l
CJ
CD
CX
CD

CD
•r-l
^
4-1

60
q
• H
}-l
3
T3

*"O
01
4-1
4-1
• H
E
01


CD
q
o
•r-l
4-1
Cfl
i — 1
3
O
1— 1
cfl
U

0)
f~l
H


•
h- 1
t-l
r-l
£>
X

0)
r-l
XI
cfl
H

q
• H

T3
O*
4J
C
QJ
CO
0)
}H|
CX

0)
V4
cfl

CO
4J
cfl
T3

0)
n
4-1

13
q
CO

»\
13
0)
4-J
CO
i— I
3
CJ
i — i
cfl
O

q
cu
O)
43

0)
^
Cfl
43

CO
O
•r-l
l-l
CO
q
01
o
CO






















































• •
CD
q
0
•H
4-1
CX
e
3
CD
CD
Cfl

60
q
• i-i
IS
o
1— 1
I— 1
0
4-1

CU
43
4-1

q
o

13
0)
CD
Cfl
43

0)
l-l
01
IS









4-J
3
O
43
4-1
•i-l
^

CO
q
0
4-1

VD
o
1 — 1

X

VD
CO
O
-H

O)
43

i— 1
i— 1
• H
S

o
ON
ON
i — i

q
•r-l

q
0 •
•r4. ON
4-1 l-l
CO 0)
M O
Q) O
q o
0) 0)
60 l-i

rJ 0)
OJ O
S n
O 3
CX O
CD
r4 0)
0 l-i
4-1
4-1
q o
o
•H q
4J 0
CX -H
E 4-1
3 cfl
CD 4-1
q q
o cu
o E
Ol
i— i i— i
cfl CX
o E
u -H


•











CD
•H
43
4-1

l-l 4-1
O 0
4-1 •
4-1 ^
T3 i — 1 M
cu CB cu
CO 43 0
co O
o) E cJ
O O 01
0 H 1-4
l-l 4H
cx ^,
13 60
01 Ol l-i
43 U Ol
3 q
r-l 13 O)
r-l O
•H IH 43
^ CX 4-1
•r-l
^ Ol 3
S 43
CO 60
s i"-i q
^ r-l -r-l
•H q
01 is i-i
4—1 3
CD s~\ 42
cfl fc
5 P CO
OA CD
*O ^^ cfl
••-I e
•— 1 r-l
O 0) O
CO 3 60
4-1 1-4
r-l 01
CO 13 13
cx o) q
•.-i 0 3
O -i-l
•l-l l-l r-4
q cu i— i
3 13 -H
E I S
01
4-1 CO 4-(
0 3 r-l
4-1 cfl
CO 0) 43
q PS
O *^3
4-1 q
• co
^O ON
O l-l «
•-H 0) JS
> CO
x o s
CJ
O Ol 4-1
m i_i o

•^ Ol ON
O O 4-1
ON W -r-l
ON 3 4-1
-i o q
co cfl
q 0) 3
M M cr1


•















ON
60
l-i
0)
q
0)

01
E
0
CD

01
CJ
cfl
1— 1
CX
01
l-i

r— 1
I— 1
•H
>

Ol
4-1
CD
CO
IS

13
•H
i— 1
0
CD

i— 1
CO
CX
•H
O
•H
£3
3
6



M
M-l

K^
r-l
OJ
J> *
0 r-l
O CO
0) O
l-l 0

o, E
60 O
l-l r4
Ol 4-1
q
01 q
o

O 4-J
ON O
ON 3
T-H 13
0
q i-i
M CX


9



























. *
A PA













                        64

-------
BLE XVIII (Concluded)
<
H


• •
S3
O
t—t
CO
CO
;=>
c_>
CO
M
Q
C
O
T3
Ol
CO
CO
43
O
OO
O
CN
4J
CO
i — 1
CO
0
0
•o
CO
fn
Q
Crf
U-l
0
60
C
•H
r-l
•1-1
U-l
O
0
A
f3
O
•H
4-1
CO
3
43
E
o
o

1— 1
CO
o
o

i-i
o
U-l

CO
r-l
O
4-1
O
CO
U-l

C
o
•H
CO
CO
•H
B
O)

Q)
43
H
•r-l
3
r-l
r-l
>
x;
CU
r-l
43
CO
H
0
•r-l
T3
0)
4J
CO
•r-l
i— 1
CO
cfl
s
CO
S
^
01
co
3
U-l
0)
r-l
CO
r-l
U-l
O
60
C
•r-l
C
r-l
3
43

co
co
CO
e

•u

CO

r>
r-l
CU
r— 1
•H
0
43

O
4-1

4-1
3
CX
C
•r-l

4J
CO
CU

teristics.
o
cfl
M
cfl
43
O

01
CO
01
43
4J

43
4J
•r-l
3

CO
1 — 1
o>
3
U-l

r-l
0
U-l

•o
• 1-1
3
4-1
PQ
CN
. — 1
O
r-H
XI
•o-
.
1 — t
vO
~H
0
4J
4-1
c
3
O
CO
r-l
•— 1
•r-l
3
0
OS
OS
1 — 1
C
•r-l
O)
4-1
CO
CO
3
T5
•r-l
i— 1
0
CO

i— I
cfl
CX
•r-l
O
• r-l
C
3
e

E
o
r-l
U-l

>-,
r-l
Ol
>
O
o
0)
r-l

would be generated by coal combustion (see Append

01
CO
• H
3
r-l
01
43
4J
O

4J
CO
43
4-1

r-l
O)
3
o
ex

Ol
43
4-1

U-l
O

B^S
•— 1 >-.OO
cfl
>

01
43
60
rW
Ol
C
w
.
O

r-l
0
.
CO
C
O
• H
4-1
CO
i— i
3
U
! 	 1
CO
O

r-l
0
U-l

01
1
M
1— 1
r-l
>
X

CO
C
O
•r-l
J-l
CO
3
a-
W

n
<
solid waste, energy will be produced by

i— i
cfl
CX
•H
U
• H
C
3
B

B
Q
r-l
U-l

>,
M
01
>
O
o
Ol
r-l

>-,
60
r-l
01
C
0)

43
4J
•r-l
s















• •
co
T3
O
43
4J
0)
E

60
f3
•r-l
3
O
r-H
I — 1
0
U-l

Ol
43
4-1
4-J
C
01
CJ
1-j
01
CX

00
•
vO
OS


* ,
c
o
• H
4-1
CO
3
43
E
0
U

i— 1
cfl
O
CJ


O





20:80 ratio: 2.8 percent
4J
Cfl

i — 1
Cfl
0
o

43
4-1
•r-l
3

&H
Q
Prf

U-l
o

60

•r-l
r-l
•r-l
U-l
o
u


o





4J
c
CU
o
r-l
01
CX

-------

















0
t^
O'
z
LODUCTION 1
£

W
55
5
Prf
ft.

H
i
e^

0
w
U
H
M

§•
a
c
w
i
&•









































<-•»
g
4J
VI
H
|

Pn
O
cn
Ed
M


H
o-











































w
>
o

OS
(J
Pi
1
s
o
fa.
o
ttS
H
I— 1












S
i

-H 0 0 ^
* m en
^" CM
o
0 O CM
1*- CN "
• OO
CM rH
O 1
O O 11
o oo o m o
^H » o o co r* \o
i^ ^ CM •-! V *



o o o o
r- »a- m 13 m <•
I-*- CM o < 9 r-. "^
B5 (? ^.
CM "31 •* in
CO







o o o o o o
^J ?2 "N rH O CM 0
O en CM Q in in
O O O in -H V rH
•• - * v
iH CM r-*






§o o o o o
O O O O O O
O o o o -» en -*
-j? CM IN oo m csj m
o , O -H
•H ^-^ ^ O JS fa M
U M (U O

n] O O O ?•> r-j ,c3
O, « S5 U 33 < C_)





TJ


O
to
«H
•H
U
•H
-o
B 0
° u
B
^ «
o  cd
&"
Si
O *••
U u-i
CO
M TJ
CU
0) U
O 3

° a M
S 4)
h oo 3
X M O


rH *O W
o c a
a o c
•H -H
§4J
1-1 4-J
UH O. Ol
O X
13 IH
ft) D. C
U O
3 0)
-O 4J -O
23 S
°5 5
•^ i ,;
13 0} .. o
H U O 4-1
3 00 tsi n)
O (0 M
U 4.) 4J at
4J 01 -H
OJ U rH U
^j tn cd c
PL, u
C »H
O ^ rH
4J i-t -H »
U « ? M
30 01
o * cd
M OJ M S
& X -H
4J IH C
a. 0 5
S UH U
MO HI
C ^ fe" 3
O * OJ r-
^H CO *— ' tn
+J 01 H £ r
o u o> cd T
*J W 3 rl
IM O. ^ 14H
O t* TJ o
(H 01
§> DO
•r4 rH M -S
w -H 01 c
U S TJ C
d J, 2 S
M QJ JD Q
IM 4) 03
4J 3 05



J" * ^ ^
66

-------
Xi
 c
 cd
 CO
 O)
 cd
H
          cu
         r—I
          cd
          H
 C
 O
• H
 4-1
 O
 3
"O
 O
 i-i
 O.
          B
          0)

          CU
          ,0
                    3
                    O
 CO
 CO
 3
 O
 co
 CO
 a
•r-t
 O
• H
 C

 B


 §
 0)

 o
 o
 CD
 i-i

 0)
 o
 i-l
 3
 O
 CO
 CU
  o
 H-l

  O
 • H
  i-l
  CO
  C
  CD
  O
  CO

  CU
 f
 4-1

  I-l
  cu
 I-l
 cu
 c
           o
          M-l
           C
           o
 CO
,0
 g
 o
  CO
  O
  U

  CU

  O
  CO

  0)
  o
  CO
 I—I
  a
  cu
 •a
  c
  cd

 T3
  (!)
  O
  O
  0)
CO
4J
C
CO
                    O
                    a.
 CO
 cu
 c
 cd
 3
 a*
 C
 O
 c
 CU

 cu
 o
 cd
i—i
 cx
 cu
                     CO
                    • H
          (4-1
           O
 o
 CU
            60
            i-l
            0)
            c
            (1)
                    x:
                   X

                    0)
                   i-H
                   -D
                    CO
                   H
         •O
          cu
          N
 CO


 3
 CO

 CU
 M
 CO
 cd
 O
 O

 §
 C!
 O
•r-l
 4-1
 O
 3
T3
 O
 I-l
 a
 W)
 (-1
 cu
 c
 0)

 M
 C
• H
 i-l
 3
                             O
                             CT\
                             ON
                     C
                    • H
                                             67

-------
S
3

CJ
W
0

M g
S O
U 4J
£ ****
M
Q











r^^
O Oi
fe W
£
M CJ
§ 2 'c'
z o
M M jJ
U O ^
to pi
«§
H W
£r 3
3 P5









cd
^4
3
^
U
§
ll
w ^
PC;

fc-(
^~>
o
D3

M
S










H
H
l
s














0
in
o
t















o
m
o
o
o
rH
















O
O
0
VO
CO
O
rH




















CO
CU
cd
rH
o
•H
4J
^4
cd
PH


o
o
co

•^ o
o f** *^
O rH i-l
CO • O 0
* O rH «H/ |*v
CM 4J rH CO -J
CO CO CM
1 O O 1 +
CO 4J
ON
O
vO rH
in CM
^^ 1
1




o
CM
o o
• o\
m r~
a\ • o
o o r^ \o
O • rH O O
CM r*. in * \o
oT i i S S
CT» rH
co o o v V
« O vO
CM CM CO
rH M *v
r^ \o
r» o
o m
*
r^











O O o o
0 0 o 0
°« °- °. °. °
5} ^J oo in m
5 S S 2 S
CM" r-T v
i-H













^^
K"*
O

co o>
cd "O
^ CO 43
/~x ^^ co cd cu
CM CM fl N-' TJ
O O 0 r-l
cn 5B Xi co cd
CO CO cd 73 C
cd cd o >, o
S- ^ 0 43 Ct-
rl CU
W X *Q TJ
O O O !>* H
w ^ cj EC <;


o
-a-

f.
o

,_(

o

0
oo

•,
,_4
00
1






o

CO
VO
CM
1
O
CO
t-T

^
CO
CM












O
O
sr
in
m
rH

















^-x
rH
CJ
a
cd
CO
cu
•H

o

43
CJ




























••H
cd
o
CJ
a
Q
M
IH

73
CU
O
3
13
O
^
a

01

•a
rH
3
O
4J
1
g
•rt
4-1
U
3
73
O

P.

^
DO

CU
01

rH
cd
4->
O


O
§
1-t
4-1
O
cd
r<
IH


O
(n

















rH
cd
O
a
rl
g
•H
4-1
o
3
73
O
rl
O.
energy
rease.
cu o
43 CU
4J ^

m cd
o
—
cu "K
S 5
e
CU :
O
cd
rH "
O. CO
CU C
rl 0
•H
rH CO
rH CO
•H. -H
3 B
01
S C
CO -H
§ CU
CO
73 Cd
•H 0)
rH H
0  '-i
O =
01
rl

>> «
00 CJ
rl 0)
CU MH
G »H
Ex] U
O O
                        68

-------
X
X
w

PQ
^
H


* .
S5
O
r-l
CO
CO
p
o
CO
H
O





































i— 1
i— <
•r-l
CO
_S
0)
CO
cfl
13
• r-l
r-l
O
CO
CX
•l-l
O
•r-l
C
B
O
M
U-l
01

0
0
CU
l-l

CU
0
l-l
3
o
CO
CU


l-l
o
U-l

o
• l-l
^
cfl
c
01
o
co

01

4J

U-l
o

(2
0
• l-l
4-1
CO
4-1
c
01
B
CU
1— 1
CX
6
r-4





I— 1
r— 1
•r-l
M-4
13
c
Cfl
r— 1
CU
4-J
c
0
0
0)
U-l
0)
CO
•H
42
H
CO
a
01
42
4-1

U-4
O

i— 1
Cfl
CO
o
CX
CD
• H
13

l-l
O
U-4

13
CU
J-l
•r-l
3
cr
CU
i-i

^
4-1
• H
0
CO
CX
cfl
CJ

i— I
r— 1
•H
U-l
13
C
CO
i— 1

CU
42
4-1

4-1
O
0)
U-4
U-l
CO
at will be generated in 1990 is tabulated
42
4J

^
CO
S

0)
42
j_i

U-4
O

CU
co
0
CX
CO
• H
T)

O
4-1

13
CU
13
01
CU
C

CU
42

13
i— 1
3
0
Jj

4-1
CO
42
4-1

^N,
4-1
•i-l
0
cfl
CX
cfl
O
ch as the differences in quantities of
3
CO

^s,
l-l
0)
^
0
o
o>
i-i

01
o
l-l
3
O
CO
01
l-i

U-4
0

co
4-1
O
0)
U-l
U-4
CD

4-1
O
0)
l-l
•H
13
(2
1— 1


•
X
X

O)
i — i
43
CO
H

C
• H
coal combustion, and pollution control
«
CO
0)
• H
4J
• H
^
• r-l
4-1
O
CO

60
C
• H
(2
• H
B

B
0
j-j
U-l

0)
^
• r-l
l-l
0)
13

13
r-l
3
0
IS

4-1
cfl
42
4-1

CO
CU
4->
CO
CO
u

13
•H
I— 1
o
CD





















•
T)
01
lj
01
13
• H
CO
12
o
o

c
01
01
43

4-1
O
C

O)
^
cfl
42

CO
CU
^1
3
co
cfl
0)
B
mptions :
3
co
CO
cfl

60
C
•H
^
O
1— 1
1— 1
o
U-l

CU
42
4-J

C
o

T3
CU
CD
Cfl
42

CU

CU
IS

CO
C
0
• r-l
4-1
CO
r— 1
3
CJ
, — i
cfl
o

CU
42
H





ble II) will be implemented,
will be processed in 1990 for
CO
H
^^

O
OS
OS
. — 1

C
• H

^
r4
0)
£>
O
CJ
CU
l-i

01
O
l-l
3
O
CO
O!
I-l

l-l
O
U-l

0
• l-l
l-l
cfl
(2
O!
O
CD

O)
(-;
fn


0





01
4-J
CD
Cfl


13
• H
i — 1
O
CO

1— 1
cfl
CX
•r4
O
• H
C
3
B

U-4
0

CD
C
O
4-1

C
o
• l-l
1 — 1
I— 1
• H
B

o
CO

ft
9
CU
•
• l-l








60
(2
C
l-i
3
42
CD
CO
§
42
U-l
i— 1
CO
42
13
C
CO
00
C2
• r-l
co
CO
CU
CJ
o
l-l
CX

•a
(2
0)
I
4-1
C
0
l-l
U-l

^
42

U-i
•— 1
CO
42

*>
K*^
l-l
01

o
o
0)
M

01
CJ
J-l
3
O
CO
CU
V4








*
13
•r-l
r—l
CO
01
l-l
cfl

co
1— 1
ca
>r4
M
0)
4-1
Cfl
B

T)
O)
1— 1
1— 1
• H
U-l
•a
C
Cfl
1— 1

U-l
O

co
0)
•H
4-1
•H
CD
C
0)
13

13
CU
4-1
Cfl
B
• H
4-1
CO
W


f





69

-------
j








w

8
W
OS
U
CJ
PS
O


OJ
o
1— 1
[ SCENA1
EC
H
*





PS
g
O
y


w


g
en
H

EC
H
3

i
tf
I-H

H





[4
Q
H
C/3
s
W
en
E
W
OS


a

H


P4



W

O
rH

W
W
en
g




3
W ^


S QJ
W Li
tt. U
M ^-
Q
1-1 >* 4J
•J H MH
H M 1
En U 01
g •< rl
a «3 cd


,_,

H >>
5 3
P

' o
^
H'g
M
[z^5
tO

deH
M M I
pt, CJ 01


Hi U "-'
TJ

H 3



> o

***'
ff^
£ g
U 4J
Hi
§"0
*~"

cO
t)
(J- C
O r-

-4 TJ
en >-,
>H W
H 2 3
M ^- O
en w ^.
55 en ,0
W P rH
Q E ^
££
5
3
H
3S P
§E
i
t.


















\










§
8
Pd
Pn






o
O^TO


•* fM

0
0 1^ 0
m CM n
r-l « CN

CM




CO ""I SO
iH CN n
CO



CM rH n
L/1 O IO
00 rH
O

0 f*

^ 00



m







m r^
• 00
CM rH


" £ °



TJ HJ
§0 o
o o
r- 00 O
cv CM
U
tC ° 00

c
O 00
•H B
4-1 -H
fl rH
Ol -H ^
fi MH >i
•H TJ I-
u B at


CJ
>, >^ at
r-l rH Ot
SCO O
CO M
RO 3
a o
en to en
•H "H 01
Q Q &>

00
o
CM


1

4-1
O Ol
in 01
- l
^o i)
CN U
cd


T)

ij


s

>^
J3




•rl
M
o
P>
O
ij
0.

CO
u
4J
0}
u
-H
TJ
5

(U
00
d
4-1
c
01
o
n
111
p-l













































4)
CO
d
M
U
HI
•o




(D



0



J>!
4-1
H
0
cd
8-
U

rH
rH
^

•o


t-H

t3
0)
H
^H
U
0*
(U
H

fj
-H
0)
CO
cd




M
to
ffi

"
^


TJ
B
cd

v£l


W
01
u
B
0)
l-l
0)

0)
PS

X
*J
•H

ft
o
CO
U-J

>>
M


o


tJ

OJ
o
rl
3
O
01
rl




W
d)
e
<3

rl
o
<0
4J
n)
TJ


0

1

1
'fi
0)
o
Q
O>

01
a
B
0)

01

Pi


0
4-t
nera
•rl
O
C3
M

4-*
CO
01
3
J3
W
S-i



J


0
00
m
a
•H
J2
U







00

M
01
m
?
OS


4J
B
cd
rH
P-

00
B
•H
eo
ea
a)
u
0
LI
O-t


eo
0)
3
43


C
eo

r4
M

0
00
cd
u
.B
a



oo


Li
O


to


0
u
01
Ll

>4~l
o

B
O
•H

3
•H
4-1
CO
&
3
to



Li
IH

4J
T-t
3
tn
0)
Li

TJ
iH
I

4J
<0
j:
4-1

CO
0)
u
CO
ed
^




B
•H
P

B

n
B
O
•H
4-1
U
3
TJ
01
Li

(U
1
t.
C,
•H


0
B
Cfl
01
5
CX

>,
60
Li
01
c
OJ

•a
C
cd

en

n)
•H
k-i
01

nj
E

g
0
Ll


W
0)
4_)

ra
3
TJ

^H
o
eo

c
•H


S
o

4J
o
3
T)

Li

01
J=
4J
Ll

c


00
Li
0)



•a
B
4-l
70

-------




































1— 1
X
X

w
rJ
m
<
H


• •
z
0
M
C/3
M
C3
0
CO
H
O






































>.
l-l
CU
>
O
0
cu
l-l

cu
o
l-l
3
0
CO
cu
l-l

l-l
o
U-l

o
• r-l
l-l
CO
(3
cu
o
CO

cu
43
4-1

U-l
O

C
o
• H
4-1
cfl
4J
(3
CU
g
CU
l-l
cx
g
• r-i

U-l
0

4-1
a

a
cu

cu
,J3
4J

C
0

co
4-J
CJ
cu
U-l
U-l
CU

cu
43
Pi





co
4J
o
01
U-l
U-l
CU

4-1
o
CU
l-l
•r-l
13

cu
43
H


•
M
X
X

CU
r— 1
43
cfl
H

a
• l-l

13
CU
N
•i-l
l-l
cfl
s
£3
3
CO

cu
l-i
cfl

s-^.
M
M

CU
r— 1
43
CO
H
•^s

O
ON
ON
r— 1

C
•l-l

CU
4-1
CO
CO
s

13
• i-l
i— i
O
CO
r— 1
CO
CX
• H
0
• l-l
c
3
g

g
O
rJ
U-l




1
CO
• H
•o

13
CU
4-1
4-1
• r-l
g
CU

CU
43

I— 1
I— 1
• r-l
3

4-1
cfl
43
4-1

CO
4-1
C
CO
4-1
3
r-4
r— 1
O
CX

U-l
o

co
0)
• H
4-1
• H
4-1
C
CO
3
cr

c
• r-l

CO
cu
60
V3
cfl
43
CJ

CU
43
4-1

^*,
cfl
V 	 ^

cu
l-l
cfl

O
•iH
M
cfl
(3
CU
O
en

co
• r-l
43
4-1

U-l
O
cu
43
4-1

/• — *
-0
^^

13
C
CO

ft
co
0)
l-l
3
13
0)
O
0
l-i
CX

•— 1
CO
CD
0
CX
en
• r-l
13

U-l
O

4-1
r— 1
3
co
CU
M

a)
43
4-1

CO
cfl

CO
l-l
CU
4J
cfl
s

TJ
£3
3
O
M
60

13
(3
CO

CU
O
cfl
U-l
l-<
3
en
— ^.
l-i
• r-l
cfl
CD
43
4-1

0
4-1

13
CU
60
|J
cfl
43
CJ
13
e
cfl

CU
4-1
CO
Cfl
»

13
• H
, 	 1
o
CO

, 	 1
Cfl
CX
• H
O
• r-l
(3
3
g

co
_
0
ON
ON
i — 1

U-l
o

CU
CO
O
cx
en
• H
13

0
4-1

T3
CU
13
cu
cu
a

cu
43

1— 1
1— 1
• H
U

4-1
cfl
43
4-1

>->
4-1
• i-l
O
Cfl
a,
co
o

r— 1
r— 1
• H
U-l
T3
£3
cfl
r—l

{3
•r-l

CU
60
C
cfl
43
O






A
X
X

•a
a
efl

X

CO
cu
r-l
42
cfl
H

g
O
l-l
U-l

cu
l-l
CO

CO
4-1
CO
13

0)
CO
cu
43
H


•
CD
CU
l-l
3
13
CU
O
o
l-l
cx

, 	 1
cfl
CO
0
cx
CO
• r-l
13

4-1
C3
CU
l-i
CU
U-l
U-l
• r-l
13

CU
43
4-1
r i i
o

CO
CU
3
T3
• r-l
CO
CU
l-l

cu
43
4-1
















































































.
>,
r-<
CU
>
•l-l
4-1
O
CU
cx
CO
cu
l-l
                       13














































































•
>,
r-l
cu
>
• l-l
4-1
o
CU
cx
CO
cu
l-l


cu
43
4J

g
O
rJ
U-l

CU
>
•r-l
l-l
CU
13

CU
4-1
co
cfl
3

13
•H
1— 1
O
CO

r— 1
CO
CX
•rH
O
•l-l
C
3
g

g
O
l-i
U-l

>*
i-i
0)
>
o
0
cu
r-l

cu
o
l-l
3
o
CO
CU
l-l

U-l
0

CO
4-1
o
cu
U-l
U-l
cu

4->
o
cu
M
• H
13
c
• H

CU
43
H





C
O
•H
4J
O
3
13
0
M
cx

cu
f
4J

C3
•H

en
i— i
cfl
• H
r4
CU
4-1
cfl
g

C
•r-l
60
l-l
•r-l
>

l-l
O
U-l

c
o
•r-l
4-1
3
4-)
•r-l
4-1
CO
43
3
co

l-l
• l-l
CU
43
4J

13
C
cfl

>-,
60
M
CU
c
CU

T3
(3.
CO

CD
i— 1
cfl
•H
l-l
CU
4-1
CO
g

U-l
0

>-,
t-l
cu
>
o
o
cu
l-l


co
4-1
o
CU
U-l
U-l
cu

>>
r-l
cfl
13
c
O
O
cu
co

cu
43
H


•
>>
60
l-l
CU
£3
CU

13
C
cfl

s~^
co
CO
cfl
i— i
60

13
G
cfl

r\
g
3
a
• H
g

l-l
cfl

»
i — i
cu
cu
4-1
CO

>*
1— 1
1— 1
W
o
• H
U-l
• H
O
CU
CX
co
^^

CD
rH
n)
• H
rJ
CU
4-1
CO
g

U-l
o
I
CO
• l-l
•a
— ^
•a
CU
4-1
4-1
• l-l
g
CU

CU
43

•-H
i— 1
• i-l
&

4-1
CO
43
4-1

CO
4J
C
cfl
4J
3
r— 1
i— 1
O
cx

U-l
o

CO
cu
• l-l
4J
• l-l
4-1
C3
Cfl
3
a-

cu
43
4-1

C
• H

CO
CU
60
C
cfl
43
O

0)
43
4-1

^^,
CB


CU
l-l
CO


• H
CO
C
0
O
C
• H
C
o
• l-l
4-1
CO
>
l-i
CU
co
C
0
o

Q)
43
4->

s~^
43


13
G
cfl

r.
C
0
• H
4-1
O
3
13
O
l-i
CX

>N
60
M
CU
C
CU

13
C
cfl

CO
i— *
cfl
•r-l
r4

c
CU

CU
43
4-1

O
4-1

13
CU
60
l-i
CO
43
O
•i-l
i— 1
O
co

1— 1
cfl
CX
• H
O
• H
C
3


g
0
l-i
U-l

>N
60
l-i
CU
(3
CU

U-l
o

>,
l-l
cu
>
o
o
cu
l-l

cu
43
4-1

CO
cfl

1— 1
! 	 1
CU
3

CD
cfl

(3
O
• i-l
4-1
O
3
13
O
l-i
CX

CO
i— 1
cfl
•H
l-l
CU
4-1
CO
g

l-l
0
U-l

13
CU
I-i
• H
3
cr
cu
r4

>,
60
l-l
cu
C
cu

.
CO
1— 1
cfl
• r-l
l-i
CU
4-1
cfl
g

c
• H
60
)-i
•r-l
>

l-i
O
U-l

CO
1— 1
cfl
• i-(
I-i
cu
4-1
cfl
g

13
CU
l-i
CU
>
O
o
cu
i-l

U-l
o

13
O
•r-l
4-1
3
4-1
• H
4J
CO
42
3
co

CO
• l-l
43
4-1

g
0
M
U-l

4-}
I— 1
3
CO
cu
l-i

i— i
i— i
• H
5

4-1
CO
43
4-1

CU
4-1
co
CO
13
71

-------
ction
4J
0
C
3
13
0)
[-y|


•
>•,
1— 1
CU
•H
4J
O
0)
CX
CO
cu
t-i

r>
M
M
M
s^\
13
CU
13
3
i— i
0
a
o
u
^^

M
X
X

w
hJ
«

X

T3
a
CO

M
>
X

co
0)
1 — t
43
cfl
H

s
o
(-1
M-l
13
a
cfl
X
M
X

13
a
cfl

>
X

CO
CU
I— 1
43
CO
H

6
0
i .
M
<4-l

CU
1-1
CO

cfl
4-1
CO
T3

cu
CO
CU
.a
N
<4-l

4-1
|
3
CO
CU
1-1

13
3
O
S

4-1
CO
4=
4-1

a
0
• H
4-1
CO
>
I-l
CU
co
a
o
o

>-,
60
l-i
CU
a
CU

T3
a
cfl

CO
CU
1 1
co
cfl
S
13
• i-l
i— 1
O
CO

•a
a
cfl

CO
4-1
a
CO
4-1
3
i— i
i— i
O
(X
LH
O

co
CU
• rH
4J
•i-l
4-1
a
CO
3
cr

a
•r-l
a
o
•t-i
•4—)
o
3
T)
CU
I-l

*O
a
cfl

A
a
o
• H
4-1
O
3
T)
0
)-i
CX

CO
i— H
cfl
• 1-1
1-1
0>
4-1
CO
B

E
O
I-l
14-1

CO
CU
4-1
CO
CO
?
T3
•H
0
CO

a
•1-1

a
o
• H
4-1
O
3
13
CU
l-l

ft
CO
1— 1
cfl
• rH
1-1
CU
4-1
CO
e

?
CO
)-i

60
a
• H
a
• H
6

























•
>,
"O
3
4J
CO

co
•H
4=
4-1

a
•H

13
CU
13
3
P^l
O
a
•H
4-1
o
a

0)
1-1
0)
5

a
o
•H
4J
CO
3
43
E
O
O

CO
0
CJ

S
0
14
^4-1

CU
3
T)
•H
CO
CU
V4
                         72

-------
(J    O
CO    M




















(J

tn

s
1
ui






tn
^1

tn
tn
W
B
a
o



















dJ
to

w
tn
tn
u








J
1






•a
§
M
SB
OS D
W O
ss
p-
cn O
rl M
< H
H CJ
ftj -3
M a
H O
s &
S P4




p






^
z
H
EJ
a.







Co
"-1
-
S

o "">
•* S R
0 .
+ S S
1 CM


C
^
oo

r-
-o- in ^
o crs o
l f)
0

r-
y
§
CO
£

§o
S4-I
CO
0 0
?CM 00
m a^
t
l

-cr
m m ^
o" in

i

o


-3-
u~i in o
oo o w
*x a a


r-
+




CM CM
0 0
c/l Z

tn w
n) co


X X
0- Wl Z
m
°1
O
ro
CM"

0
4J
O "sj


CO
CM
§

CO
CM"
o m
4J CM
O CO

m
o
6
o
-H"

O
0
*— ' 1
1

o
o
o in
00
m ro
o m
m i
CM

o"
m

m
""* o
0 O
4J m
m +


u-l
+




in
_Q 3

d
u tn


•a
o >.

o
H*
u-i .
S 5
CN *-i
O O — '
4-1 4-» O O CO
tn o i

CM *

+ o
o"

Oi
o
O <-t ~<
•vr o CN
CN 4-» t
+ 0
00
r--.
"
00
CT\
O

~*
o
O 4-i . oj
j= -d
T3 H
cn g £!
dJ o

>. d
X cn o
dJ cO QJ

<3 O S





O 0
O O
O O
0 -J
1 1








Z








*



Z







o o
O 0
o o
o  -H
                                                                                                                      O (X,
                                                                                                                      a r
                                                                                                     ! IH  M  S  M
                                                         73

-------
•o
(tl
3
a
          o
          -i i^
?^coeno2i<-i'*tY1r-,'*^-, °
+ f04Jj^ + O'-ICM0-
a
•H
•o
01
60 •
M 01
CO CO
42 CD
u «
CO M
•H 0
"O 01
•a
01
43 CO

r-t :
H CO
•H 3
» d
•H
1 1 £3
M -
4J -
01
CO CkO
U M
C cd
cO 43
4J U
H "
in -a
o
f\, 4J
C
14-1 CO
O 4J
3
CO i-l

4J (X
a a
Tt -H

01 0)
U CO
Ct CO
0) 01

ai u
E 5
s
4J
3?

to






•8
•o
3
rH
o
•H
4J
o

01
^4
s
o
•H
4-1
CJ
3
•a
o
IJ
o.

f>^
00
iJ
cu
B
at

*o
C
to

CO
cd
•H

01
4J
to
s
^
^,
l[ 1

1-1
a)

CO
to
B
CO •
CO >-.
* -a
3
C 4J
•H CO

m ca
4J -H
C(t U
3 C
i-l
0
PM
43
                                                          74

-------
                                                                                                                               Ill
                                                                                                                               4-1


                                                                                                                              I
                                                                                                                               at
                                                                                                                               ai
T3
 01
 d
w

I



XI
01
H
o
w
Pu
h
Pd
i
g
0
CJ
U
en





T EFFECTS
M
Q



IS
X S
0! H

2 Q
W O
BJ
(X,

z,
VI O
^ H
rH O
SB
H 0




ISPOSAL
OF MSW
Q




gl
3
H
1



s-^
C
"--* S~\ O X— N
o o o o
O Q " O
o in o o o
- * r- o *
O ^* O i~™t *-3" if)
*tf" 00 Q " ^ 00
— u~i i— I ^ CN ifl Q i— ) | <*t cs
i °9 r-| «  1 •*-> -P f 4J
o £ ' p m o

-------
T3
CU
•O

rH
O

O
W

pq

H





^
<
o
H









0
>-i H
O H
Pi CJ
W ;=>
Z Q
co WO

CJ PH
W
fa
fa
fa*
^ CO 0
§ H M
f"^ ^C t""*
CJ rH CJ
w PS n
co W 0
H O
S£
co
H
CJ
W
fa hJ
fa 

rH
X O
0
0 O
O "
O r-H
.0 « CM
O CO
0
H cd >, nj
0 CX tl >
MH Cd --v CU Jj
CJ 4-1 > 3
4J 0) 0 CO
C rH 01 o e
01 rH MH 01 CJ Q
0 -H 1 Pi ^-x /-N o X-N
0) MH Ol 3 W 3
tH-dM >\4J O >>4J
•HC3CJ MpqO C)0cq
3cdcd (-iv-'pq MO
cr J ^^ cu ^-^ 01
01 C (3
Pi W W





























O
0
o
•t
vO
co
rH















CJ
w"
0
CJ
^**
























•
£>^
4J
•rl
CJ
cd
a
id
o
H
rH
•H
MH
•d
rH

M
O
MH
4J
Pi
CU
g

^1
•H
3
a-
0)
^

pj
•H

01
co
cd

^j
o
a)
•d

cd
CO
CU
rt
o
TH
•d
a
•H

^
CO

pj
•H
s

cd"
01
01
C
o
iH
4J
Cfl
3
^3
6
o
o
rH
cd
O
CJ
6
O
)H
MH
T3
C
cd
C
o
•H
CJ
3
•d
o
}H
a

CO
rH
cd
IH
01
4J
cd
e
o
M
MH

CO
rH
cd
•rl
)H
01
4-1
cd
a

a
•rl
fiO
M
•rl
J>

MH •
O >>
•d
00 3
C 4J
•rl CO
ti
•H CO
B -rl
S 4J
0
£5

co -d
01 a)
4-1 id
ca 3
Cd rH
S o
pi
•d -H
•rl
rH 4J
O O
co a













































•
4-1
C
0)

cd
^
•rl
3
cr
0)

rH
•H
O

Ol
•d
3

0
MH
O
CO
rH
CU

M
cd
pq


• •
W
0
CJ
pq
O
                                                  76

-------
                             REFERENCES
1.   United States Department of Commerce.   1970 Census of Popula-
     tion, Volume 1:   Characteristics of the Population,  Part 1:
     United States Summary,  Section 2,  Appendix A,  p.  Appendix-9.
     Social and Economic Statistics Administration, Bureau of the
     Census, Washington, D.C.,  June 1973.

2.   Regan, R.W.  Department of Civil Engineering,  The Pennsylvania
     State University, University Park, PA.   Personal  communication,
     September 1977.

3.   United States Department of Commerce.   1970 Census of Popula-
     tion, Volume 1:   Characteristics of the Population,  Part 1:
     United States Summary,  Section 1,  Table 4, p.  1-43.   Social  and
     Economic Statistics Administration, Bureau of  the Census,
     Washington, D.C., June  1973.

4.   O'Brien, Catherine.  Statistical Information Assistant,  Popula-
     tion Division, United States Census Bureau, Washington,  D.C.
     Personal communications, March 8 and May 2, 1978.

5.   United States Environmental Protection  Agency.  "Fourth  Report
     to Congress:  Resource  Recovery and Waste Reduction," Delivered
     August 1, 1977 to the President and the Congress.  Office  of
     Solid Waste, #SW-600.  Washington, D.C., 1977.

6.   Hitte, Steve.  Staff Engineer, Technology Applications Branch,
     Office of Solid Waste Management Programs, United States Envi-
     ronmental Protection Agency, Washington, D.C.   Personal  com-
     munication, April 19, 1976.

7.   American Public Works Association, Institute for  Solid Wastes.
     Activity Summary:  Review Update September 1977.   Solid  Waste
     Facts (first issue, undated).

8.   Tchobanoglous, G., H. Theisen, and R. Eliassen.  "Solid  Wastes:
     Engineering Principles  and Management Issues."  McGraw-Hill,
     New York, 1977.

9.   Hecht, Norman.  University of Dayton Research  Institute, Dayton,
     OH.  Personal communication, February 15, 1978.

                                   77

-------
10.  United States Environmental Protection Agency.   Compilation of
     Air Pollutant Emission Factors,  2nd edition.   #AP-42,  Section
     2.1:  Refuse Incineration.  Office of Air and Waste Management,
     Office of Air Quality Planning and Standards, Research Triangle
     Park, N.C., April 1973.

11.  Brinkerhoff, R.J., and W.C. Achinger.  The Braintree,  Massa-
     chusetts, Municipal Incinerator.   #SW-108, pp.  37-39.   Office of
     Solid Waste, U.S. Environmental  Protection Agency,  Washington,
     D.C., 1973.

12.  DeMarco, J., D.J. Keller,  J. Leckman, and J.L.  Newton.
     Municipal-Scale Incinerator Design and Operation.   #SW-13ts.
     Public Health Service, Bureau of Solid Waste  Management,
     Washington, D.C., 1969.

13.  Achinger, W.C., and L.E.  Daniels.   Seven Incinerators. #SW-
     51ts.lj.  Office of Solid Waste,  U.S. Environmental Protection
     Agency, Washington, D.C.,  1970.

14.  Weinstein, N.J.  Municipal-Scale Thermal Processing of Solid
     Wastes.  #EPA/530/SW-133c, pp. 203-212.   Office of  Solid  Waste,
     U.S. Environmental Protection Agency, Washington, D.C., 1977.

15.  McElroy, A.D.,  S.Y. Chiu,  J.W. Nebgen, A. Aleti,  and F.W.
     Bennett.  Loading Functions for  Assessment of Water Pollution
     from Nonpoint Sources. #EPA-600/2-76-151, p. 239.   Office of
     Air, Land and Water Use,  Office  of Research and Development,
     U.S. Environmental Protection Agency, Washington, D.C., May
     1976.

16.  Chian, E.S.K.,  and F.B. DeWalle.   Sanitary Landfill Leachates
     and Their Treatment.  Journal of the Environmental  Engineering
     Division, Proceedings of  the American Society of Civil Engi-
     neers, JJKKEE2): 411-431,  April  1976.

17.  Johansen, O.J., and D.A.  Carlson.   Characterization of Sanitary
     Landfill Leachates.  Water Research (London), 10:1129-1134
     (1976).

18.  Stabenow, G.  Discussion  on "The Use of Electrostatic  Precipi-
     tators on Municipal Incinerators in Recent Years"  (by  R.L.
     Bump).  Proceedings of 1976 National Waste Processing  Confer-
     ence, Supplement - Discussions,  pp. 42-43. American Society of
     Mechanical Engineers, New York,  N.Y. , 1976.
                                  78

-------
19.  United States Environmental Protection Agency.  The Report to
     Congress:  Waste Disposal Practices and Their Effects on Ground
     Water.  Appendix E, p. 509.  Office of Water Supply, Office of
     Solid Waste Management Programs, Washington, D.C., January 1977.

20.  Hall, J.L., A.W. Joensen, G.A. Severns, D.B. Van Meter, and H.
     Shanks.  Emissions from Stoker Fired Boilers Using Coal-RDF
     Mixtures. Paper presented at the 8th Biennial Waste Processing
     Conference, Chicago, IL, May 7-10, 1978.

21.  White, Robert.  Midwest Research Institute, Kansas City, Mo.
     Communication of unpublished data, June 8, 1978.

22.  Office of the Federal Register.  Code of Federal Regulations,
     Title 40, Part 60.40, Subpart D:  Standards of Performance for
     Fossil-Fuel Fired Steam Generators.  U. S. Government Printing
     Office, Washington, B.C., July 1, 1975.

23.  Coburn, John.  The MITRE Corporation, Metrek Division, Bedford,
     MA.  Telephone communication of data for Harrisburg, PA incin-
     erator provided by UOP, Inc.  May 1978.

24.  Lahre, Thomas.  Air Management Technology Branch, Office of Air
     Quality Planning and Standards, United States Environmental
     Protection Agency, Research Triangle Park, N.C.  Internal memo
     to Ira Leighton (USEPA, Region I, Boston, MA), May 16, 1977.

25.  Skinner, J.H.  The Impact of Source Separation and Waste
     Reduction on the Economics of Resource Recovery Facilities.
     Resource Recovery and Energy Review, March/April 1977.

26.  Rofe, R., C.G. Ganotis, S.A. Schneider, and H.J. Yaffe.  Energy
     Conservation Waste Utilization Research and Development Plan.
     #MTR-3063, The MITRE Corporation, Bedford, MA, July 1975.

27.  U.S. Environmental Protection Agency.  "First Report to Con-
     gress:  Resource Recovery and Source Reduction."  Delivered
     February 22, 1973 to the President and the Congress.  Office of
     Solid Waste Management Programs, #SW~118.  Washington, D.C.,
     1974.

28.  Gordon, Judith.  The MITRE Corporation, Metrek Division,
     McLean, Va.  Data from site visit to Chicago Southwest Proces-
     sing Plant, Chicago, IL, May 10, 1978.

29.  Institute of Scrap Iron and Steel, Inc.  ISIS Issues:   Recycling
     Ferrous Scrap Saves Energy.  Washington, D.C., December 1977.
                                 79

-------
30.  United States Environmental Protection Agency.   Compilation of
     Air Pollutant Emission Factors,  2nd Edition.   #AP-42,  Section
     7.2:  Metallurgical Coke Manufacturing.  Office of Air and Waste
     Management, Office of Air Quality Planning and  Standards,
     Research Triangle Park, N.C., February 1972.

31.  United States Environmental Protection Agency.   Compilation of
     Air Pollutant Emission Factors,  2nd Edition.   #AP-42,  Section
     7.5:  Iron and Steel Mills.  Office of Air and  Waste Management,
     Office of Air Quality Planning and Standards,  Research Triangle
     Park, N.C., April 1973.

32.  United States Environmental Protection Agency.   Compilation of
     Air Pollutant Emission Factors,  2nd Edition.   #AP-42,  Section
     7.13:  Steel Foundries.  Office of Air and Waste Management,
     Office of Air Quality Planning and Standards,  Research Triangle
     Park, N.C., February 1972.

33.  United States Environmental Protection Agency.   Compilation of
     Air Pollutant Emission Factors,  2nd edition,  #AP-42, Section
     7.1:  Primary Aluminum Production.  Office of Air and Waste
     Management, Office of Air Quality Planning and  Standards,
     Research Triangle Park, N.C., April 1973.

34.  United States Bureau of Mines.  Aluminum.   Mineral Facts  and
     Problems, 1975 Edition (preprint), Bulletin #667.  U.S. Depart-
     ment of the Interior, Washington, D.C.

35.  United States Environmental Protection Agency.   Compilation of
     Air Pollutant Emission Factors,  2nd edition,  #AP-42, Section
     7.8:  Secondary Aluminum Operations.  Office of Air and Waste
     Management, Office of Air Quality Planning and  Standards,
     Research Triangle Park, N.C., February 1972.

36.  Schick, Raymond.  Environmental Department, Glass Containers
     Corporation, Indianapolis, IN.  Personal communication,
     August 1978.

37.  Connecticut Department of Environmental Protection.  Connecticut
     Administrative Regulations, Abatement of Air Pollution, Connec-
     ticut Air Pollution Control Regulations, Section 19-508-18(e)
     Control of Particulate Emissions:  Process Industries -
     General.  Environmental Reporter, State Air Laws 331:0518
     (Dec. 24, 1976).
                                 80

-------
38.  United States Environmental Protection Agency.  Compilation of
     Air Pollution Emission Factors, 2nd edition.  #AP-42, Section
     8.13:  Glass Manufacturing.  Office of Air and Waste Management,
     Office of Air Quality Planning and Standards, Research Triangle
     Park, N.C., February 1972.

39.  Kramer, L.  Bottle Maker Cuts Costs, Pollution with Old Glass.
     The Washington Post, July 2, 1978, p. El.

40.  Adams, Keith.  Department of Industrial Engineering, Iowa State
     University, Ames, Iowa.  Data presented at 8th Biennial Waste
     Processing Conference, Chicago, IL, May 7-10, 1978.

41.  Hirst, E.  Energy Implications of Several Environmental Quality
     Strategies.  #ORNL-NSF-EP-53.  Oak Ridge National Laboratory,
     Oak Ridge, TN, July 1973.
42.  United States Environmental Protection Agency.  Compilation of
     Air Pollutant Emission Factors, 2nd edition.  #AP-42, Section
     1.1:  Bituminous Coal Combustion.  Office of Air and Waste
     Management, Office of Air Quality Planning and Standards,
     Research Triangle Park, N.C., April 1973.

43.  United States Environmental Protection Agency.  Compilation of
     Air Pollutant Emission Factors, 2nd edition.  #AP-42, Supplement
     No. 7, Section 1.2:  Anthracite Coal Combustion.  Office of Air
     and Waste Management, Office of Air Quality Planning and Stan-
     dards, Research Triangle Park, N.C., April 1977.

44.  Teknekron, Inc.  Review of New Source Performance Standards for
     Coal-Fired Utility Boilers, Volume 1:  Emissions and Non Air-
     Quality  Environmental Impacts.  Energy and Environmental Engi-
     neering Division, Berkeley, CA, March 1977.

45.  Vesilind, P.A., G.W. Pearsall, J.S. Dajani, D. Warner, and A.E.
     Rimer.  A Curriculum Option in Resource Recovery.  Duke Univer-
     sity, Durham, N.C., 1977.

46.  Van Meter, D. , et^ al_.  Evaluation of the Ames Solid Waste
     Recovery System, Part II:  Performance of the Stoker Fired
     Steam Generators.  Draft Report.  U.S. Environmental Protec-
     tion Agency, Industrial Environmental Research Laboratory,
     Cincinnati, OH, 1977.

47.  Hall, J.L., et_ al_.  Evaluation of the Ames Solid Waste Recovery
     System, Part III:  Environmental Emissions of the Stoker Fired
     Steam Generators, Volume I:  Results and Discussion.  Draft
     Report.  U.S. Environmental Protection Agency, Industrial Envi-
     ronmental Research Laboratory, Cincinnati, OH, 1977.

                                 81

-------
48.  Yaffe, Harold.  The MITRE Corporation, Metrek Division, Bedford,
     MA.  Telephone communication of data for RESCO operations in
     Saugus, MA, May 1978.

49.  Gordon, Judith.  The MITRE Corporation, Metrek Division, McLean,
     Va.  Data from site visit to Chicago Northwest Incinerator,
     Chicago, IL, May 10, 1978.

50.  Morel, F., and J. Morgan.  A Numerical Method for Computing
     Equilibria in Aqueous Chemical Systems.  Environmental Science
     and Technology, 6(1):  58-67 (1972).

51.  McDuff, R.E., and F.M. Morel.  Description and Use of the Chemi-
     cal Equilibrium Program REDEQL2.  Technical Report EQ-73-02.
     Keck Laboratory of Environmental Engineering Science, California
     Insititute of Technology, Pasadena, CA, December 1973 (updated
     July 1975 by J.J. Morgan).

-------
                              APPENDIX A

                    EQUATIONS USED IN CALCULATIONS


I.  GENERATION OF MUNICIPAL SOLID WASTE IN THE UNITED STATES

1.  Calculation of Quantity of Municipal Solid Waste (MSW)
    Generated


                    QMSW = R x P x fx x f2                      (I-D
where  QMSW = quantity of MSW generated during a given year in
              places/urbanized areas of a given population size
              (tons)
          R = rate of MSW generation in places/urbanized areas of
              that size (pounds/person daily)
          P = total population in places/urbanized areas of that size
              in that year
         f^ = conversion factor (from day to year)
            = 365
         f2 = conversion factor (from pounds to tons)
            = 1/2000
Example:  Calculate the quantity of MSW that will be generated in
          1990 in urbanized areas with population of more than
          1,000,000
                  Q      5.5 x 85,200,000 x 365
                                  2000

                       = 85,519,500

                       = -85,500,000 tons MSW
                                 83

-------
VI.  QUANTITIES OF POLLUTANTS DERIVED FROM DISPOSAL OF MUNICIPAL SOLID
     WASTE (MSW) IN 1975

1.  Calculation of Quantities of Air Pollutants Emitted in 1975
    during Incineration of MSW
                       QP = Efp x Mx x f                       (VI-1)
where  Qp = quantity of a pollutant emitted during 1975 (tons)
      Efp = emission factor for that pollutant (pounds/ton MSW
              incinerated)
       Mj = mass of MSW disposed of by incineration in 1975 (tons)
        f = conversion factor (from pounds to tons)
          = 1/2000

Example:  Calculate the quantity of particulates emitted during
          incineration of MSW in 1975
                       OP = 30 x 17.300.000
                        *        2000
                          = 259,500
                          = -260,000 tons particulates
2.  Calculation of Quantities of Gases Generated in Landfills in
    1976 by MSW Landfilled in 1975
               Qp = Gp x fi x ML x Dp x f2                      (VI-2)
where  Qp = quantity of the gas that  is generated  in  the one year
            from  the landfilled MSW (tons)
       Gp = maximum quantity of gas generation over 25 years (cubic
            feet/ton MSW)
       f} = time  factor (one year out of 25 years  during which gas
            is generated)
          = 1/25
       ML = mass  of MSW landfilled in 1975  (tons)
       Dp = density of the gas (pounds/standard cubic foot)
       f-2 ~ conversion factor (from pounds  to tons)
          = 1/2000
                                  84

-------
Example:  Calculate the quantity of methane generated in one year by
          the MSW landfilled in 1975
                 Q  = 4560 x 155.500.000 x 0.0415
                               25 x 2000
                    = 588,536
                    = -589,000 tons methane
3.  Calculation of Quantities of Pollutants Discharged to Surface
    Waters in Incinerator Wastewater in 1975
                      QP = Cp x Qw x Mj                        (VI-3)

where  Qp = quantity of a pollutant discharged in incinerator waste-
          water (tons)
       Cp = concentration of that pollutant in the quench water
       Q^ = water requirement (tons/ton MSW incincerated)
       Mj = quantity of MSW incinerated in 1975 (tons)
Example:  Calculate the quantity of lead discharged to surface waters
          in incinerator wastewater in 1975
                    Q  = 0.3 x 6 x 17,300,000
                              1,000,000
                       = 31 tons lead

4.  Calculation of Quantities of Pollutants Present in Leachate from
    Landfilled MSW in 1975 (based on reported ranges of concentra-
    tions)
                  Qp = Cp x QL x fj x f2                       (VI-4)

where  Qp = quantity of a pollutant in landfill leachate (tons)
       Cp = range of concentration of that pollutant in the
            leachate (ppm)
       QL = quantity of landfill leachate (10^ gallons)
       f} = conversion factor (from ppm to pounds/billion gallons)
          = 8345
       f.2 ~ conversion factor (from pounds to tons)
          = 1/2000
                                 85

-------
Example:  Calculate the quantity of cadmium in landfill leachate in
          1975
                  q  = (0.03 to 17) x 90 x 8345
                                 2000
                     = 11.3 to 6383.9
                     = ~(11 to 6385) tons cadmium
5.  Calculation of Quantities of Pollutants Present in Leachate from
    Landfilled MSW in 1975 (based on data for a single landfill)
               QP = Cp x QL x fx x f2 x f3                     (VI-5)
where  Qp = quantity of a pollutant in landfill leachate (tons)
       Cp = concentration of that pollutant in the leachate
       QL = quantity of leachate from the one landfill
          = 20,000 cubic meters/month
       f^ = conversion factor (from month to year)
          = 12
       ^2 = conversion factor (from grams to tons)
          = 1.102 x 10~6
       f3 = factor for extrapolating from the one landfill to the
            national landfill area
          = 500.000
              300

Example:  Calculate the quantity of cadmium in landfill leachate in
          1975
               = 0.03 x 20,000 x 12 x 1.102 x 500,000
                              300 x 106
               = 13.2
               = 13 tons cadmium
                                  86

-------
VII.  EMISSION FACTORS FOR POLLUTANTS EMITTED FROM REFUSE-DERIVED FUEL
      (RDF) DURING COFIRING WITH COAL

1.  Calculation of Emission Factors for Air Pollutants Emitted during
    Coal Combustion in Boiler #5 of Ames, Iowa Power Plant in 1977
                       Efc = E x HHVC x f                     (VII-1)
where  E£Q = emission factor for that pollutant from coal
             (pounds/ton coal)
         E = emission rate (grams/megajoule) (Reference 20)
      HHVc = heating value of coal
           = 22.4 megajoules/kilogram (Reference 21)
         f = conversion factor (from grams/kilogram to pounds/ton)
           = 2

Example:  Calculate the emission factor for particulates from coal
          combustion in boiler #5 in 1977
                       Efc = 3.2 x 22.4 x 2
                           = 143 pounds particulates/ton coal
2.  Calculation of Emission Factors for Air Pollutants Emitted during
    Cofiring of Coal and RDF (80:20*) in Boiler #5 of Ames, Iowa
    Power Plant in 1977
      EfF = E x  [(HHVC x HIC) + (HHVRDF x HIRDF)] x f         (VII-2)

where  Efp = emission factor for that pollutant from the fuel
             (pounds/ton fuel)
         E = emission rate (grams/megajoule) (Reference 20)
      HHVQ = heating value of coal
           = 22.1 megajoules/kilogram (Reference 21)
       Hl£ = heat input of coal
           = 67.3 percent (Reference 21)
    HHVRDF = heating value of RDF
           = 14.9 megajoules/kilogram (Reference 21)
 Nominal ratio of heat inputs from coal and RDF, respectively.
                                 87

-------
       HIRDF = heat input of RDF
             = 32.7 percent (Reference 21)
           f = conversion factor (from grams/kilogram to pounds/ton)
             = 2

Example:  Calculate the emission factor for particulates from
          cofiring of coal and RDF (80:20*) in boiler #5 in 1977
         EfF = 3.8 x [(22.1 x 0.673) + (14.9 x 0.327)] x 2
             = 150 pounds particulates/ton fuel


3.  Calculation of Emission Factors for Air Pollutants Attributable to
    RDF That Were Emitted during Cofiring of Coal and RDF (80:20'")
    in Boiler #5 of Ames, Iowa Power Plant in 1977
             EfF = (Efc x QC) + (EfRDF x QRDF)               (VII-3a)

or
                              EFF - Efc x QC
                   EfRDF =  	              (VII-3b)
                                 QRDF
where  EfRj)F = emission factor for that pollutant from the RDF
               (pounds/ton RDF)
         EfF = emission factor for that pollutant from the cofired
               coal and RDF (pounds/ton fuel) (See Equation VII-2.)
         Efc = emission factor for that pollutant from coal
               (pounds/ton coal) (See Equation VII-1.)
          QQ = quantity of coal in cofiring (tons coal/ton fuel)
        QRDF = quantity of RDF in cofiring (tons RDF/ton fuel)

Example 1:  Calculate the emission factor for particulates that is
            attributable to the RDF fraction in cofiring with coal
                         = 150 - (143 x 0.581)
                  EtRDF
                                  0.419
                         = 160 pounds particulates/ton RDF in
                           uncontrolled emissions
^Nominal ratio of heat inputs from coal and RDF, respectively.
                                 88

-------
                         = 6.4 pounds particulates/ton RDF in
                           controlled emissions
                         = 0.5 pound particulates/106 Btu**

Note:  An emission of 0.5 pound particulates/10" Btu would be in
excess of the New Source Performance Standard for Coal-Fired Power
Plants (Reference 22).  In order to meet the standard of 0.1 pound
particulates/10^ Btu, the maximum emission factor for particulates
from RDF cofired with coal would be 1.28 pounds particulates/ton
    **
RDF.

Example 2:   Calculate the emission factor for SOX that is attrib-
            utable to the RDF fraction in cofiring with coal

                    EfRnF - 28 - (45 x 0.581)
                      KU*         0.419
                          = 4.43 pounds S0x/ton RDF
                          = 0.35 pound SOX/106 Btu
                                                  **
Example 3:  Calculate the emission factor for NOX that is attrib
            utable to the RDF fraction in cofiring with coal

                  EfRDF = 2-65 - (3.45 x 0.581)
                                  0.419
                        =1.54 pounds N0x/ton RDF
                        = 0.12 pound NO /106 Btu*^
 *Assumes an electrostatic precipitator operating at 96 percent
  efficiency.

* In 1977 tests in Ames, Iowa of boiler #5 operating at 80-percent
  load and RDF cofired with coal at a nominal ratio of 20:80,  the
  RDF had a heating value of 14.9 MJ/kg (12.82 x 106 Btu/ton)
  (Reference 21).
                                89

-------
VIII.  QUANTITIES OF POLLUTANTS DERIVED FROM DISPOSAL OF MUNICIPAL
       SOLID WASTE (MSW) IN 1990

1.  Calculation of Quantities of Air Pollutants That Will Be Emitted
    in 1990 during Mass Burning of MSW
                       QP = Efp x M! x f                     (VIII-1)

where  Qp = quantity of a pollutant that will be emitted in 1990
            (tons)
       MJ = mass of MSW that will be disposed of by incineration in
            1990 (tons)
   See Equation VI-1 for other definitions.

Example:  Calculate the quantity of particulates that will be emitted
          during mass burning of MSW in 1990


                      Q  = 1.02 x 10,000,000
                                  2000
                         = 5100 tons particulates

2.  Calculation of Quantities of Gases That Will Be Generated in Land-
    fills in 1991 by MSW That Will Be Landfilled in 1990
               Qp = Gp x fi x ML x Dp x f2                   (VIII-2)

where  ML = mass of MSW that will be landfilled in 1990 (tons)
   See Equation VI-2 for other definitions.

Example:  Calculate the quantity of methane that will be generated in
          one year by the MSW that will be landfilled in 1990


                 Op = 4560 x 187,000,000 x 0.0415
                               25 x 2000
                    = 707,758
                    = -708,000 tons methane
                                 90

-------
3.  Calculation of Quantities of Pollutants That Will Be Discharged to
    Surface Waters in Incinerator Wastewater in 1990
                      QP = Cp x Qw x Mx                      (VIII-3)

where  Mj = quantity of MSW that will be incinerated in 1990
                (tons)
   See Equation VI-3 for other definitions.

Example:  Calculate the quantity of lead that will be discharged to
          surface waters in incinerator wastewater in 1990
                    Q  = 0.5 x 3 x 10,000,000
                              1,000,000
                       = 15 tons lead

4.  Calculation of Area of Municipal Landfills in 1990 and Volume of
    Leachate from These Landfills

    4A.  Calculation of Growth Factor
                                 LC0
where  f = growth factor
     LCj = landfill capacity required to dispose of MSW in 1990 if
           there is no resource recovery (acre-feet) (see Table XX
           and Equation XX-4 for calculation)
     L,CQ = landfill capacity required to dispose of MSW in 1975
           (acre-feet)
Calculation:
                                290.900
                                243,000
                              = 1.2
    4B.  Calculation of Landfill Area in 1990
                                A0 x f                     (VIII-4b)
where  A^ = landfill area in 1990 (acres)
       AQ = landfill area in 1975 (acres)
        f = growth factor (from Equation VIII-4a)
                                 91

-------
Calculation:
                           = 500,000 x 1.2
                           = 600,000 acres
    4C.  Calculation of Volume of Landfill Leachate in 1990

                        QLl » QLo x f

where  Qj.  = quantity of leachate in 1990 (109 gallons)
       QL  = quantity of leachate in 1975 (109 gallons)
         f = growth factor (from Equation VIII-4a)
Calculation:
                     QLl = 90 x 109 x 1.2
                         = 108 billion gallons
5.  Calculation of Quantities of Pollutants That Will Be Present in
    Leachate from Landfilled MSW in 1990

    5A.  Calculation Based on Reported Ranges of Concentrations
                  Qp = Cp x QL x ^ x f2                   (VIII-5a)

where  QL = quantity of landfill leachate that will be produced
            in 1990 if there is no resource recovery (109 gallons)
   See Equation VI-4 for other definitions.

Example:  Calculate the quantity of cadmium in landfill leachate in
          1990
                  Q  = (0.03 to 17) x 108 x 8345
                                 2000
                     = 14 to 7660 tons cadmium

    5B.  Calculation Based on Data for a Single Landfill


               Qp = Cp x QL x f} x f2 x f3                 (VIII-5b)
                                 92

-------
where £3 = factor for extrapolating from the one landfill to the
           national landfill area
         = 600.000
               300
   See Equation VI-5 for other definitions.

Example:  Calculate the quantity of cadmium in landfill leachate in
          1990

              = 0.03 x 20.000 x 12 x 1.102 x 600.000

            P                300 x 106
               = 16 tons cadmium
                                 93

-------
IX.  QUANTITIES OF POLLUTANTS DERIVED FROM DISPOSAL OF MUNICIPAL SOLID
     WASTE (MSW) IN 1990 WITH IMPLEMENTATION OF RESOURCE RECOVERY

1.  Calculation of Quantities of Air Pollutants That Will Be Emitted
    in 1990 during Mass Burning of MSW without Recovery of Heat and
    Other Resources
                       QP = Efp x Mz x f                      (IX-1)

where  Mj = mass of MSW that will be disposed of in 1990 by mass
            burning without recovery of resources (tons)
   See Equation VI-1 for other definitions.

Example:  Calculate the quantity of particulates that will be emitted
          during mass burning of MSW in 1990
                         = 1.02 x 10,000,000

                       P         2000
                         = 5100 tons particulates

2.  Calculation of Quantities of Air Pollutants Attributable to RDF
    That Will Be Emitted during Cofiring of RDF and Coal at 20:80 in
    1990
                      QP = Efp x MRDF x f                     (IX-2)

where  M^pp = mass of RDF that will be cofired with coal in 1990
              (tons) (Table XI)
   See Equation VI-1 for other definitions.

Example:  Calculate the quantity of chlorides that will be emitted
          from RDF during cofiring with coal in 1990
                         = 7.81 x 11,250.000
                       P         2000
                         = 43,931
                         = ~-43,950 tons chlorides

3.  Calculation of Quantities of Air Pollutants That Will Be Emitted
    in 1990 During Mass Burning of MSW with Resource Recovery
                     QP = Efp x MlRR x f                      (IX-3)


                                 94

-------
where  MIRR = mass of MSW that will undergo mass burning with
              resource recovery in 1990 (tons)
   See Equation VI-1 for other definitions.

Example:  Calculate the quantity of particulates that will be emitted
          during mass burning of MSW with resource recovery in 1990


                         = 1.02 x 15.000,000
                      ^P         2000
                         = 7650 tons particulates

4.  Calculation of Quantities of Gases That Will Be generated in Land-
    fills in 1991 by MSW That Will Be Landfilled in 1990
               Qp = Gp x fi x ML x Dp x f2                    (IX-4)

where  ML = mass of raw refuse that will be landfilled in 1990
            (tons)
   See Equation VT-2 for other definitions.

Example:  Calculate the quantity of methane that will be generated in
          one year by the MSW that will be landfilled in 1990
                    = 4560 x 157,000,000 x 0.0415

                  P            25 x 2000
                    = 594,214
                    = -594,000 tons methane

5.  Calculation of Quantities of Pollutants That Will Be Discharged in
    1990 to Surface Waters in Incinerator Wastewater from Mass
    Burning of MSW without Resource Recovery
                      Qp = Cp x Qw x Mx                       (IX-5)

where  Mj = mass of MSW that will be incinerated in 1990 without
            recovery of resources (tons)
   See Equation VI-3 for other definitions.

Example:  Calculate the quantity of lead that will be discharged in
          1990 to surface waters in incinerator wastewater

                       = 0.5 x 3 x 10,000,000
                    S        1,000,000
                       = 15 tons lead

                                 95

-------
6.  Calculation of Quantities of Pollutants Attributable to the RDF
    Fraction That Will Be Discharged in Wastewater from Cofiring of
    Coal and RDF in 1990
                     Qp = Cp x Qw x MRDF                      (IX-6)

where  MRDp = mass of RDF (tons)
   See Equation VI-3 for other definitions.

Example:  Calculate the quantity of phenols attributable to the RDF
          fraction that will be discharged in the wastewater from
          cofiring of coal and RDF

                      - 0-003 x 3 x 11,250,000
                   QP "       1,000,000
                      = 0.2 ton phenols

7.  Calculation of Quantities of Pollutants That Will Be Discharged to
    Surface Waters in 1990 in Wastewater from Facilities That Utilize
    Mass Burning for Recovery of Resources from MSW


                    QP = Cp x Qw x MlRR                       (IX-7)

where  Mr D = mass of MSW that will undergo mass burning with
              resource recovery in 1990 (tons)
   See Equation VI-3 for other definitions.

Example:  Calculate the quantity of lead that will be discharged in
          wastewater from these facilities in 1990

                       = 0.5 x 3 x 15,000,000
                    QP        1,000,000
                       = 22.5
                       = ~23 tons lead

8.  Calculation of Area of Municipal Landfills in 1990, If Resource
    Recovery Is Implemented, and the Volume of Leachate from These
    Landfills

    8A.  Calculation of Growth Factor


                             f = LCJ
                                 LC0                         (!X-8a)
                                  96

-------
where    f = growth factor
           = landfill capacity requirement in 1990 for disposal of
             raw refuse and residue from resource recovery (acre-
             feet) (See Table XX and Equation XX-3 for calculation.)
       L.CQ = landfill capacity requirement in 1975 for disposal of
             raw refuse and incinerator residue (acre-feet)
Calculation:
                                246,600
                                243,000
                              = 1.0148
    8B.  Calculation of Landfill Area in 1990 with Resource Recovery
                           A! = A0 x f                       (!X-8b)

where  Aj = landfill area in 1990 (acres)
       AQ = landfill area in 1975 (acres)
        f = growth factor (from Equation IX-8a)
Calculation:
                          = 500,000 x 1.0148
                          = 507,400
                          = -507,000 acres
    8C.  Calculation of Volume of Leachate in 1990 with Resource
         Recovery
                        QLi = QL0 x f                        (!X-8c)

where  Qj, = quantity of leachate in 1990 (10^ gallons)
       QL  = quantity of leachate in 1975 (109 gallons)
         t = growth factor (from Equation IX-8a)
Calculation:
                    QL  = 90 x 109 x 1.0148
                        = 91.3
                        = ~91 billion gallons
                                  97

-------
9.  Calculation of Quantities of Pollutants That Will Be Present in
    Leachate from Landfilled MSW in 1990

    9A.  Calculation Based on Reported Ranges of Concentrations
                  Qp = CP x QL x fi x f2                     (!X-9a)

where  QL = quantity of leachate from landfilled raw refuse in
            1990 (109 gallons)
   See Equation VI-4 for other definitions.

Example:  Calculate the quantity of magnesium in this portion of
          landfill leachate in 1990

                 .  _ (17 to 15,600) x 90 x 8345
                 Qp	__	

                    = 6384 to 5,858,190
                    = ~(6385 to 5,860,000) tons magnesium

    9B.  Calculation Based on Data for a Single Landfill

               Qp = CP x QL x ti x f2 x f3                   (!X-9b)

            503,000
where  13 = 	
               300
   See Equation VI-5 for other definitions.

Example:  Calculate the quantity of cadmium in leachate from
          landfilled raw refuse in 1990
            Qp = 0.03 x 20,000 x 12 x 1.102 x 503,000
                              300 x 106
               = 13 tons cadmium

10.  Calculation of Quantities of Pollutants That Will Be Present in
     Leachate from Resource Recovery Residue in 1990
where  QpRR = quantity of a pollutant in the leachate from
              landfilled resource recovery residue in 1990 (tons)
       Cp   = concentration of the pollutant in that leachate
              (ppm) (See Appendix B.)
                                 98

-------
       QT  _ = quantity of leachate from landfilled resource
              recovery residue in 1990 (10^ gallons)
         fj = conversion factor (from ppm to pounds/billion
              gallons)
            = 8345
         f2 = conversion factor (from pounds to tons)
            = 1/2000

Example:  Calculate the quantity of manganese that will be present in
          leachate from the landfilled residue of resource recovery
          in 1990
                            2.08 x 1 x 8345
                     QpRR =      2000
                          = 8.7
                          = ^9 tons manganese
                                 99

-------
X.  CHANGES IN QUANTITIES OF POLLUTANTS THAT WOULD BE EMITTED/DIS-
    CHARGED FROM MUNICIPAL SOLID WASTE (MSW) DISPOSAL IN 1990 IF
    RESOURCE RECOVERY WERE IMPLEMENTED ACCORDING TO THE SCENARIO
    IN TABLE II

1.  Calculation of the Differences in Quantities of Pollutants That
    Would Result from Implementation of Resource Recovery

                     AQP =2Qp   -2QP                          (X-l)
where AQp    = the change in quantity of a pollutant that would be
               effected by implementation of resource recovery
               (tons)
      ZQp    = total quantity of the pollutant that would be
               emitted/discharged in 1990 in MSW disposal with
               implementation of resource recovery (tons) (data
               from Table IX)
      ZQp    = total quantity of the pollutant that would be emit-
               ted/discharged in 1990 in MSW disposal without
               resource recovery (tons) (data from Table VIII)

Example:  Calculate the change in quantities of particulates that
          would be emitted during MSW disposal in 1990 as the result
          of implementation of resource recovery

          AQp = 19,950 - 5100
              = +14,850 tons particulates
                                100

-------
XI.  QUANTITIES OF MATERIALS RECOVERABLE FROM MUNICIPAL SOLID WASTE
     (MSW) IN 1990

1.  Calculation of Quantities of Recoverable Materials That Will Be
    Processed by Resource Recovery in 1990

                           QMP = MRR x CM

where OM  = quantity of a material in MSW that will be processed
            by resource recovery in 1990 (tons)
      ^RR = mass of MSW that will undergo resource recovery in 1990
            (tons)
      CM  = content (population) of the material in MSW in 1990

Example:  Calculate the quantity of ferrous metals in the MSW that
          will be processed for resource recovery in 1990

                      QMp = 30,000,000 x 9%
                          = 2,700,000 tons ferrous metals

2.  Calculation of Quantities of Materials That Will Be Recoverable
    from MSW in 1990 by Resource Recovery
                           QMR = QMP x REM
where QM  = quantity of a material that will be recovered from
            MSW in 1990 by resource recovery (tons)
      QMP = quantity of the material in MSW that will be pro-
            cessed by resource recovery in 1990 (tons)
      REj4 = efficiency of recovering the material from MSW in 1990

Example:  Calculate the quantity of aluminum that will be recoverable
          from MSW in 1990

                       Qj^ = 300,000 x 75%
                           = 225,000 tons aluminum
                               101

-------
XII.  POLLUTANTS ASSOCIATED WITH STEEL PRODUCTION

1.  Calculation of the Emission Factors for Production of Steel from
    Virgin Materials*

                     ZEfp  =  Efp  + Efp   + Efp           (XII-1)
                         V       C      PI      S

where ZEfp  = the aggregate emission factor for that pollutant
              from the production of steel from virgin materials
              (pounds/ton steel)
      Efp   = emission factor for that pollutant from coke
              manufacture (pounds/ton coal)
      Efp   = emission factor for that pollutant from pig iron
              production (pounds/ton pig iron)
      Efp   = emission factor for that pollutant from steel
              production (pounds/ton steel)

and where:

             Efp  =  (Efp     x POHF) + (Efp     x PBOF)  +
                S       SOHF               SBOF

                     + (Efp     x P£AF)                     (XH-la)
                          SEAF

where Efp     = emission factor for that pollutant from steel
                production in an open hearth furnace (pounds/ton
                steel)
              = Proportion of steel produced in open hearth
                furnaces in 1976
              = 18.4% (Reference 29)
      Efp     = emission factor for that pollutant from steel
          BOF   production in a basic oxygen furnace (pounds/ton
                steel)
      PBQP    = proportion of steel produced in basic oxygen
                furnaces in 1976
              = 62.4% (Reference 29)
      Efp     = emission factor for that pollutant from steel
          EAF   production in an electric arc furnace (pounds/ton
                steel)
*Assumes that one ton of steel is produced from one ton of pig iron
 and that the production of one ton of pig iron requires the coke
 manufactured from one ton of coal.
                               102

-------
            = proportion of steel produced in electric arc
              furnaces in 1976
            = 19.2% (Reference 29)

Example:  Calculate the aggregate emission factor for total
          particulates from the production of steel from virgin
          materials

        SEfp  = 3.5 + 187 +   [(17.4 x 0.184) + (51 x 0.624) +
                 + (11 x 0.192)]

             = 228 pounds particulates/ton steel

2.  Calculation of the Emission Factors for Production of Steel from
    Recycled Materials*
                           X POHF) + (EfPs    X PBOF) +
                       OHF                EOF

                   + (EfPQ    X PEAF}
                         SEAF

where Efp_ = emission factor for that pollutant from the
             production of steel from scrap ferrous metals
             (pounds/ton steel)
     See Equations XII-1 and Xll-la for other definitions.

Example:  Calculate the emission factor for total particulates from
          the production of steel from scrap ferrous metals

          EfpR = (17.4 x 0.184) + (51 x 0.624) + (11 x 0.192)

               = 37 pounds particulates/ton steel
*Assumes that one ton of steel is produced from one ton of scrap
 ferrous metals.
                                 103

-------
3.  Calculation of Quantities of Pollutants That Will Be Emitted/
    Discharged in 1990 during Production of 2,565,000 Tons of Steel
    from Virgin Materals
                     QPy = ZEfp x MS x f                      (XII-3)

  where Qp  = quantity of a pollutant from production from virgin
              materials (tons)
       2Efp = the aggregate emission factor for that pollutant from
              the production of steel from virgin materials (pounds/
              ton steel)
        MS  = mass of steel (tons)
        f   = conversion factor (from pounds  to tons)
            = 1/2000

  Example:  Calculate the quantity of total particulates  that would be
            emitted in 1990 during production of 2,565,000 tons of
            steel from virgin materials


                         = 5.5 x 2,565,000
                     ^PV        2000
                         = 7054
                         =  ~7055 tons particulates

4.  Calculation of Quantities of Pollutants That Will Be  Emitted/
    Discharged in 1990 during Production of 2,565,000 Tons of Steel
    from Scrap Ferrous Metals


                      QpR = EfP x Ms x f                      (XII-4)

  where  Qp  = quantity of a pollutant from steel production from
               recycled materials (tons)
         Efp = emission factor for that pollutant from the produc-
               tion of steel from scrap ferrous metals (pounds/ton
               steel)
     See Equation XII-3 for other definitions.

  Example:  Calculate the quantity of total particulates  that would be
            emitted in 1990 during production of 2,565,000 tons of
            steel from scrap ferrous metals


                           0.37 x 2,565,000
                     QP	
                                 2000
                         = 475 tons particulates

                                  104

-------
5.  Calculation of Effect of Substituting Scrap Ferrous Metals for
    Virgin Materials in Production of 2,565,000 Tons of Steel in 1990
                     AQP = Qp  -
  where AQp = difference in quantities of a pollutant that would be
              emitted if scrap ferrous metal from municipal solid
              waste is substituted for virgin materials in steel
              production in 1990 (tons)
        Qp  = quantity of the pollutant that would be emitted
              during steel production from scrap ferrous metals
              (tons)
        Qpv = quantity of the pollutant that would be emitted
              during steel production from virgin materials (tons)

  Example:  Calculate the difference in particulate emissions that
            would result from substituting the scrap ferrous metals
            recovered from municipal solid waste for virgin materials
            in steel production
                         AQP = 475  - 7055
                              =  -6580 tons  particulates
                                105

-------
XIII.  POLLUTANTS ASSOCIATED WITH ALUMINUM PRODUCTION
1.  Calculation of the Emission Factors for Production of Aluminum
    from Virgin Materials*
         SEfp = (4.5 x EfpD) + (2 x Efp.  ) + (Efp.  )
            "            "E           rAi        rAo
                                                             (XIII-1)
 where SEfp
                 the aggregate emission factor for that pollutant
                 from the production of aluminum from virgin
                 materials (pounds /ton aluminum)
                 emission factor for that pollutant from bauxite
                 grinding (pounds/ton aluminum)
                 emission factor for that pollutant from alumina
                 production (pounds/ton alumina)
                 emission factor that pollutant from aluminum
                 production (pounds/ton aluminum)
  and where:
Ef
                    PPBC>
                                                   A
                                                   \SC
           Ef
              MH
                                                            (XHI-la)
 where Efp
          ,
           PBC
       Efp
       Efp
           VSC

       PVSC
       Ef
         p
                  emission factor for that pollutant from
                  aluminum production in prebaked cells
                  (pounds/ton aluminum)
                  proportion of aluminum produced in prebaked
                  cells in 1970
                   61.9% (Reference 33)
                  emission factor for that pollutant from
                  aluminum production in horizontal-stud Soderberg
                  cells (pounds/ton aluminum)
                  proportion of aluminum produced in horizontal-
                  stud Soderberg cells in 1970
                  25.5% (Reference 33)
                  emission factor for that pollutant from
                  aluminum production in vertical-stud Soderberg
                  cells (pounds/ton aluminum)
                  proportion of aluminum produced in vertical-
                  stud Soderberg cells in 1970
                  12.6% (Reference 33)
                  emission factor for that pollutant from
                  materials handling
^Assumes that one ton of primary aluminum is derived from two tons of
 alumina that are produced from 4.5 tons of bauxite.
                                 106

-------
  Example:  Calculate the aggregate emission factor for total
            particulates from the production of aluminum from virgin
            materials
      SEfp = (4.5 x 6) + (2 x 200) + (84.3 x 0.619) +

             + (98.4 x 0.255) + (78.4 x 0.126) + 10
            = 524 pounds particulates/ton primary aluminum

2.   Calculation of the Emission Factors for Production of
    Aluminum from Scrap Recovered from Municipal Solid Waste

       Efp =  [(EfpSF x PSF) + (EfpRF x PRF)]  x f              (XIII-2)

  where Efp   = emission factor for that pollutant from aluminum
                production from scrap metal by secondary aluminum
                operations (pounds/ton aluminum produced)
        Efp   = emission factor for that pollutant from sweating
                furnaces (pounds/ton scrap processed)
        PgF   = proportion of scrap aluminum processed in sweating
                furnaces
              = 50%
        Efp   = emission factor for that pollutant from reverbera-
                tory furnances (pounds/ton scrap processed)
        PRF   = proportion of scrap aluminum processed in reverbera-
                tory furnaces
              = 50%
        f     = conversion factor (from pounds/ton scrap processed
                to pounds/ton aluminum produced)
              = 1.25

  Example:   Calculate the emission factor for particulates from
            secondary aluminum operations

             Efp = [(14.5 x 0.5) + (4.3 x 0.5)]  x 1.25
                 = 11.75
                 =  ~12 pounds particulates/ton secondary aluminum
                                 107

-------
3.  Calculation of the Quantities of Pollutants That Will Be
    Emitted in 1990 during Production of 180,000 Tons of Aluminum
    from Virgin Materials

                     Qpv =   Efp x MA x f                    (XIII-3)

where Qp  = quantity of a pollutant from aluminum production from
        v   virgin materials (tons)
      Efp = the aggregate emission factor for that pollutant from
            aluminum production from virgin materials (pounds/ton
            aluminum)
       MA = mass of aluminum (tons)
        f = conversion factor (from pounds to tons)
          = 1/2000

  Example:  Calculate the quantity of total particulates that would
            be emitted in 1990 during production of 180,000 tons of
            aluminum from virgin materials

                            = 12 x 180,000
                        ^PV       2000
                            = 1080 tons particulates

4.  Calculation of Quantities of Pollutants That Will Be Emitted in
    1990 during Production of 180,000 Tons of Aluminum from the
    225,000 Tons of Scrap Aluminum That Will Be Recovered from
    Municipal Solid Waste

                          = Efp x MA x f                      (XIII-4)

  where Qp  = quantity of a pollutant from aluminum production
              from recycled material (tons)
        Efp = emission factor for that pollutant from aluminum
              production from scrap metal (pounds/ton secondary
              aluminum)
     See Equation XIII-3 for other definitions.

  Example:  Calculate the quantity of particulates that would be
            emitted  in 1990 during production of 180,000 tons of
            secondary aluminum from scrap

                           = 2.9 x 180,000
                       g?R       2000
                           = 261 tons particulates
                                 108

-------
5.  Calculation of Effect of Substituting Scrap Aluminum Recovered
    from Municipal Solid Waste for Virgin Materials in the Production
    of 180,000 Tons of Aluminum in 1990

                     AQp = QPR - QPy                         (XIII-5)

  where AQp = difference in quantity of a pollutant that would be
              emitted if scrap aluminum from municipal solid waste is
              substituted for virgin materials in aluminum production
              in 1990 (tons)
        Qp  = quantity of the pollutant that would be emitted
              during aluminum production from recovered material
              (tons)
        Qp  = quantity of the pollutant that would be emitted
              during aluminum production from virgin materials (tons)

  Example:  Calculate the difference in particulate emissions that
            would result from substituting the scrap aluminum
            recovered from municipal solid waste for virgin materials
            in aluminum production

                         AQp = 261 - 1080
                              = -819 tons particulates
                                 109

-------
XIV.  POLLUTANTS ASSOCIATED WITH GLASS MANUFACTURE
1.  Calculation of the Particulate Emissions Permissible from Glass
    Manufacture (Reference 37)
                            =  3.59 x pO.62
                                             (XIV-1)
where  E  =  maximum permissible particulate
             emissions (pounds/hour)
       P  =  process weight (tons/hour) if less
             than 30 tons/hour (Reference 37)
Example:  Calculate the maximum quantity of particulates that may
          be emitted from Furnace #3 of the Glass Containers Cor-
          poration manufacturing plant in Dayville, Connecticut
In Example:   P  =  10 tons/hour (Reference 36)


                      E  =  3.59 x (10)°-62
                         =  15.0 pounds particulates/hour


2.  Calculation of Particulate Emission Factors for Glass Manufacture
    from Virgin Materials and from Gullet Recovered from Municipal
    Solid Waste*
Qp  =  [(EfV() x PV) +  (Efc
                                        PC)]
                                x P
                                             (XIV-2a)
where  Qp
       Efv
          0
       PV
       Efc
          0
quantity of particulates emitted (pounds/hour)
emission factor for particulates during glass
manufacture from virgin materials (pounds/ton
process weight)
proportion of virgin material in process feed
emission factor for particulates during glass
manufacture from cullet (pounds/ton process
weight)
*Based on data for Glass Containers Corporation plant in Dayville, CN
 (References 36 and 39).
                                 110

-------
       PC   =  proportion of cullet in process feed
       P    =  process weight (tons/hour)
Condition 1 - With 80 percent virgin materials and 20 percent cullet,
              particulate emissions were 152 percent of permissible
              emissions (Equation XIV-2b)

Condition 2 - With 50 percent virgin materials and 50 percent cullet,
              permissible level of emissions was not exceeded (Equa-
              tion XIV-2c)


   QP  =    [(EfV() x 0.8)  +  (EfC() x 0.2)] x 10 = 1.52 x E  (xiV-2b)

   QP  =    [(EfV0 x °'5)  +  (EfC0 x °'5)] x 10 = 1.0 x E   (xiV-2c)
where   E  =  maximum permissible particulate emissions
              (pounds/hour)
           =  15.0 pounds/hour (Equation XIV-1 and Example)
From Equations XIV-2b and XIV-2c:


              Efy  =  2.8 pound particulates/ton virgin materials
                ^
                   =  0.2 pound particulates/ton cullet
For calculation of emission factor in terms of pounds/ton glass:


                         Ef  =  Ef0 * EP                     (XIV-2d)
where  Ef  =  emission factor for particulates
              (pounds/ton glass)
       Ef0 =  emission factor (pounds/ton process weight)
       EP  =  production efficiency
                                 111

-------
For glass manufacture from virgin material:


              Efv  =  2.8 * 0.85
                   =  3.3 pounds particulates/ton glass


For glass manufacture from cullet:
              Efc  =  0.2+1
                   =  0.2 pound particulates/ton glass
3.  Calculation of Quantities of Pollutants That Will Be Emitted in
    1990 during Manufacture of 2.100,000 Tons of Glass from Virgin
    Materials
                      QP   =  Efv x MG x f                    (XIV-3)
where  Qp_.  =  quantity of a pollutant from glass manufacture
               from virgin materials (tons)
       Efy  =  emission factor for the pollutant (pounds/ton glass)
       MQ   =  mass of glass (tons)
       f    =  conversion factor (from pounds to tons)
            =  1/2000
Example:  Calculate the quantity of particulates that will be emitted
          in 1990 during the manufacture of 2,100,000 tons of glass
          from virgin materials
                             3.3 x 2,100,000
                                  2000
                          =  3465 tons particulates
                                 112

-------
4.  Calculation of Quantities of Pollutants That Will Be Emitted in
    1990 during Manufacture of 2,100,000 Tons of Glass from Gullet
    Recovered from Municipal Solid Waste
                    QP   =  Efc x MG x f
                                                              (XIV-4)
where  Qpr =  quantity of a pollutant emitted during glass
              manufacture from cullet (tons)
              emission factor for the pollutant (pounds/ton
              glass)
              mass of glass (tons)
              conversion factor (from pounds to tons)
              1/2000
       MQ  =
       f   =
Example:  Calculate the quantity of particulates that will be emitted
          in 1990 during manufacture of glass from cullet
                   Qp
                           0.2 x 2,100,000
                                2000
                        =  210 tons particulates
5.  Calculation of the Effect of Substituting 2,100,000 Tons of Cul-
    let Recovered from Municipal Solid Waste for Virgin Materials in
    Glass Manufacture in 1990
AQP  =
                                 - QPy
                                                              (XIV-5)
where  AQp  =
                difference in the quantity of a pollutant that
                would be emitted if cullet from municipal solid
                waste is substituted for virgin materials in
                glass manufacture in 1990 (tons)
                                 113

-------
         Qp_  =  quantity of the pollutant that would be emitted
                 during glass manufacture from cullet (tons)
         Qp   =  quantity of the pollutant that would be emitted
                 during glass manufacture from virgin materials
                 (tons)
Example:  Calculate the difference in particulate emissions that
          would result from substitution of 2,100,000 tons  of
          cullet for virgin materials in glass manufacture
                       AQP  =  210 - 3465
                             =  -3255 tons particulates
                                 114

-------
XV.  EFFECT OF IMPLEMENTATION OF MATERIALS RECOVERY FROM MUNICIPAL
     SOLID WASTE ON POLLUTANTS FROM PRODUCTION OF STEEL, ALUMINUM,
     AND GLASS IN 1990
1.  Calculation of the Total Differences in Quantities of Pollutants
    Emitted/Discharged That Will Result from Substitution of Mate-
    rials Recovered from Municipal Solid Waste for Virgin Materials
    in Production of Steel, Aluminum, and Glass in 1990
              :AQP  =   AQpg +  AQpA + AQp
where  Z)AQp  =  total difference in quantity of a pollutant
                 emitted/discharged (tons)
         AQpq =  difference in quantity of the pollutant that
                 would be emitted/discharged if scrap ferrous metals
                 were substituted for virgin materials in steel pro-
                 duction (tons)
         AQp. =  difference in quantity of the pollutant emitted/
                 discharged that would result from use of scrap in
                 aluminum production (tons)
         AQp  =  difference in quantity of the pollutant emitted/
                 discharged that would result from use of cullet
                 to manufacture glass (tons)
Example:  Calculate the total difference in the quantity of particu-
          lates that would be emitted during production of steel,
          aluminum, and glass from recovered materials (from munici-
          pal solid waste) rather than from virgin materials
              ZAQp  =  (-6580) + (-819) + (-3255)
                     =  -10,654 tons particulates
                                 115

-------
XVI.  ESTIMATED ENERGY CONSERVATION IN MATERIALS PRODUCTION RESULTING
      FROM REPLACEMENT OF VIRGIN MATERIALS WITH MATERIALS RECOVERED
      FROM MUNICIPAL SOLID WASTES
1.  Calculation of Energy Requirement for Production from Virgin
    Materials
                         Ev  =  ERV x M                       (XVI-1)


where  Ey  =  energy requirement for a given production from
              virgin materials (million Btu)
       ERy =  energy requirement for unit production from virgin
              materials (million Btu/ton product)
       M   =  mass of product (tons)
Example:  Calculate the energy requirement for producing from virgin
          materials the amount of steel that could be produced from
          scrap ferrous metals recoverable from MSW in 1990
                          =  ERVs x MS
                          =  23.3 x 2,565,000
                          =  59,764,500 million Btu
2.  Calculation of Energy Requirement for Production from Materials
    Recovered from Municipal Solid Waste
                         ER  =  ERR x M                       (XVI-2)
where  ER  =  energy requirement for a given production from
              recovered materials (million Btu)
       ERR =  energy requirement for unit production from
              recovered materials (million Btu/ton product)
       M   =  mass of product (tons)
                                 116

-------
Example:  Calculate the energy requirement for producing aluminum
          from the scrap aluminum recoverable from municipal solid
          waste in 1990
                                  x  MA

                         =  (6 to 25) x 180,000
                         =  1,080,000 to 4,500,000 million Btu
3.  Calculation of Energy Requirements for Glass Production


                EG  =  (ERV x PV) + (ERC x Pc)               (XVI-3)
where  EG  =  energy requirement for production of glass
              (million Btu/ton glass)
           =  16.2 with 15 percent cullet (Reference 27)
       ERy =  energy requirement for production of glass from
              virgin materials (million Btu/ton glass)
       Py  =  proportion of virgin materials in process weight
       ERG =  energy requirement for production of glass from
              cullet (million Btu/ton glass)
       PC  =  proportion of cullet in process weight
From Reference 27:


         EG   =  (ERV x 0.85) + (ERC x 0.15) = 16.2          (XVI-3a)



From Reference 39:


              EG2  =  (ERV x 0.8) + (ERC x 0.2)               (XVI-3b)

 EG3 = (ERV x 0.5) + (ERC x 0.5)  =  EG  x (0.85 to 0.90)     (XVI-3c)
                                 117

-------
For EG3  =  EG2 x 0.90 in Equation XVI-3c, ERV  =  17.0 and

ERC  =  11.7 million Btu/ton glass.  For EQ_  =  EQ  x 0.85

in Equation XVI-3c, ERV  =  17.4 and ERC  =  9.4 million Btu/ton

glass.  Average values of 17.2 million Btu/ton glass for ERy and

10.55 million Btu/ton glass for ER^ are therefore used.
4.  Calculation of Energy Requirement for Recovering Materials from
    Municipal Solid Waste (MSW) in 1990
                      ER  =  ERRR x MRR x P                   (XVI-4)
where  ER   =  energy requirement for recovering the material  from
               MSW (million Btu)
       ERRR =  energy requirement for resource recovery (million
               Btu/ton of MSW)
            =  0.2 million Btu/ton MSW (References 40 and 41)
            =  mass of MSW that will be processed for resource
               recovery in 1990 (tons)
            =  30,000,000 tons (Table II)
            =  proportion of the material  in the MSW (Table  III)
Example:  Calculate the energy requirement for recovering scrap
          aluminum from MSW in 1990
                   ER  =  0.2 x 30,000,000 x 0.01
                       =  60,000 million Btu
5.  Calculation of Net Difference,  That Is,  of Energy Conservation
    Resulting from Materials Production from Recovered Rather  than
    from Virgin Materials
                     AE  =  EV - (ER + ER)                    (XVI-5)

                                 118

-------
where   AE
         EV
         ER
the net difference in
energy requirement for
from virgin materials
energy requirement for
from recoved materials
energy requirement for
municipal solid waste
energy requirement (million Btu)
 production of that material
(million Btu)(Equation XVI-1)
 production of that material
 (million Btu) (Equation XVI-2)
 recovery of that scrap from
(million Btu)  (Equation XVI-4)
Example:  Calculate the energy savings that will be realized in 1990
          if cullet recovered from municipal solid waste replaces
          virgin materials in the manufacture of glass
          AEG  =  36,120,000 - (22,155,000 + 600,000)
                =  13,365,000 million Btu
5.  Calculation of the Total Energy Savings That Would be Realized
    in 1990 If Materials Recovered from Municipal Solid Waste Were
    Substituted for Virgin Materials in the Production of Steel,
    Aluminum, and Glass
                  ZAE  =   AES + AEA +AEG
                                              (XVI-5a)
where SA E  =
       AES =

       AEA =

       AEG =
total energy savings (million Btu)
net difference in energy requirement for steel
production (million Btu)
net difference in energy requirement for aluminum
production (million Btu)
net difference in energy requirement for glass pro-
duction (million Btu)
For ZAE  in  BCOE (barrels of crude oil equivalent),  the conversion

factor is 5.6 million Btu/barrel of crude oil.
                                 119

-------
XVII.  POLLUTANTS ASSOCIATED WITH ENERGY PRODUCTION

1 .  Calculation of Emission Factors for Coal Combustion
Efj  =  Ef2 x HHVC x CEC
                                                            (XVII-1)
where    Efj  =  emission factor for a pollutant (pounds/ton coal)
         Ef2  =  emission factor for that pollutant (pounds/million
                 Btu output)
              =  heating value of coal (million Btu/ton)
              =  20 million Btu/ton coal
              =  combustion efficiency of coal
              =  1.0
Example 1:  Calculate the maximum particulate emission factor
            permissible during coal combustion in power plants

                        Efj  =  0.1 x 20 x 1
                             =  2 pounds particulates/ton coal

Example 2:  Calculate the emission factor for carbon monoxide during
            coal combustion

                         Ef2  =  1 * 20 -!• 1
                              =  0.05 pound particulates/million Btu
                                 output

2.  Calculation of Emission Factors for Cofiring of Coal and Refuse-
    Derived Fuel (RDF)
          =  Ef2 x f
                                                            (XVI 1-2)
where    Efj  =  emission factor for a pollutant
                 (pounds/million Btu)
         Ef2  =  emission factor for that pollutant
                 (grams /mega joule)
         f    =  conversion factor  (from grams/megajoule to
                 pounds/million Btu)
              =  2.32

Example:  Calculate  the emission factor for NOX during 1977
          cofiring of coal-RDF at 80:20 in Ames, Iowa boiler #5
          operating  at 80% load

                        Efx  =  0.067 x 2.32
                             =  0.16 pound N0x/million Btu
                                120

-------
3.  Calculation of Emission Factors for Pollutants from Mass Burning
    of Municipal Solid Waste (MSW) in Harrisburg, PA Incinerator
                         =  Ef2 x HHVMSW x CEMSW
                                                  (XVI1-3)
where
         Ef2

         HHVMSW =

         CEMSW  =
         emission factor for a pollutant (pounds/ton MSW)
         emission factor for that pollutant (pounds/
         million Btu output)
         heating value of raw refuse
         8.6 million Btu/ton MSW
         combustion efficiency of MSW
         0.60
Example:
Calculate the emission factor for particulates from mass
burning of municipal solid waste
                         Ef2  =
                                   1.02
                                  i.6 x 0.6
                                 0.20 pound particulates/
                                 million Btu output
                                 121

-------
XVIII.  PROJECTED QUANTITIES OF POLLUTANTS FROM ENERGY PRODUCTION IN
        1990

1.   Calculation of Amounts of Energy That Will Be Produced from
    Different Substances in 1990

                         EP  =  M x HHV x CE               (XVIII-1)

where    EP  =  energy that will be produced from a substance in
                1990 (Btu)
         M   =  mass of the substance (tons)
         HHV =  average heating value of the substance (Btu/ton)
         CE  =  combustion efficiency of the substance

Subscripts used in examples in Equations XVIII-2 and XVIII-3:

         C   =  coal
         MSW =  municipal solid waste (energy recovered by mass
                burning of raw refuse in waterwall incinerators)
         MB  =  mass burning of MSW
         RDF =  refuse-derived fuel (energy recovered by cofiring
                with coal at 20:80 ratio based on heat input to
                boiler)
         CF  =  cofiring of RDF and coal at 20:80

2.   Calculation of the Amount of Energy That Will Be Produced from
    Coal in 1990 without Energy Recovery from Municipal Solid Waste

                       EPC  =  Mc x HHVC x CEC             (XVIII-2)

   See Equation XVIII-1 for definitions.

In Example:  M^   =  1036 million tons of coal (Reference 44)
             HHVC =  20 million Btu/ton coal
             CEC  =  1.0

                 EPC  =  1036 x 106 x 20 x 106 x 1.0
                      =  20720 x 1012 Btu

3.   Calculation of the Amounts of Energy That Will Be Produced in
    1990 from Coal and from Municipal Solid Waste through Energy
    Recovery

Example 1:  Calculate the amount of energy that will be recovered
            from RDF in 1990

                   EPRDF  =  MRDF x HHVRDF x CERDF        (XVIII-3a)
                                 122

-------
   See Equation XVIII-1 for definitions.

In Example:  MRDF   =  11,250,000 tons (Table XI)
             HHVRDF =  11 million Btu/ton RDF
                    =  0.65
               EPRDF  =  11,250,000 x 11 x 106 x 0.65
                      =  80.4 x 1012 Btu

Example 2:  Calculate the amount of energy that will be produced in
            cofiring of RDF and coal at 20:80 in 1990

                   EPCF  =  EPRDF + EPC                   (XVIII-3b)

                         =  EPRDF + (4)(MRDF x HHVRDF)(CEC)

   See Equation XVIII-1 for definitions.

In Example:  EPRDF  =  80.4 x 1012 Btu (Equation XVIII-3a)
             CEC    =  1.0

        EPCF  =  (80.4 x 1012) + (4)(11,250 000X11 x 106)(1.0)
              =  (80.4 x 1012) + (495 x 1012)
              =  575.4 x 1012 Btu

Example 3:  Calculate the amount of energy that will be recovered in
            1990 from MSW by mass burning in waterwall incinerators

                   EPMB  =  MMSW x HHVMSW x CEMSW         (XVIII-3c)

   See Equation XVIII-1 for definitions.

In Example:  MMg^   =  15 million tons (Table XI)
             HHVMSW =  9 million Btu/ton MSW
             CEMSW  =  0.60

                 EPMB  =  15 x 106 x 9 x 106 x 0.60

                       =  81 x 1012 Btu

Example 4:  Calculate the amount of energy that will be produced by
            coal combustion in 1990 if there is energy recovery from
            municipal solid waste

                      SEP  =  EPC - EPCF - EPMB           (XVIII-3d)

   See Equation XVIII-1 for definitions.
                                 123

-------
In Example: SEP  -  20720 x 1012 Btu (Equation XVIII-2)
            EPCF =  575.4 x 1012 Btu (Equation XVIII-3b)
            EPMB =  81 x 1012 Btu (Equation XVIII-3c)

                       EPC  =  20720 - 575.4 - 81
                            =  20063.6 x 1012 Btu

Example 5:  Calculate the amount of coal that will be  combusted in
            coal-fired power plants in 1990 with implementation of
            resource recovery from MSW
                      Mc  =  EPC * HHVC * CEC

   See Equation XVIII-1 for definitions.

In Example:  EPC  =  20064 x 1012 Btu (Equation XVIII-3d)

                            20063.6 x 1012
(XVIII-3e)
                     M,
                      C     20 x 106 x 1.0

                         =  1003 million tons of coal

Example 6:  Calculate the proportion of energy that will be produced
            from each fuel/by each method in 1990 with resource
            recovery
                     ZEP  =  EPC + EPCF + EPMB

   See Equation XVIII-1 for definitions.
(XVIII-3f)
In Example:  SEP  =  20720 x 1012 fitu (Equation XVIII-2)
             EPC  =  20063.6 x 1012 Btu (Equation XVIII-3d)
             EPCF =  575.4 x 1012 Btu (Equation XVIII-3b)
             EPMB =  81 x 1012 Btu (Equation XVIII-3c)

Example 6a:  Calculate the proportion of energy that will  be produced
             by coal combustion in coal-fired power plants

                          Pc  =  EPC -f SEP
                              =  20063.6  +  20720
                              =  96.8 percent
                                 124

-------
Example 6b :   Calculate the proportion of energy that will be produced
             by cofiring of RDF and coal at 20:80

                         PCF  =  EPCF *  2EP
                              =  575.4 * 20720
                              =  2.8 percent

Example 6c:   Calculate proportion of energy that will be produced
             by mass burning of MSW

                         PMB  =  EPMB *  2EP
                              =  81 ± 20720
                              =  0.4 percent

4.  Calculation of Quantities of Pollutants That Will Be Emitted
    during Energy Production in 1990
where
                         QP  =  Efp x EP x f
                                                           (XVIII-4)
         Qp  =  quantity of a pollutant emitted during energy
                production by a given method (tons)
         Efp =  emission factor for that pollutant during energy
                production by that method (pounds/million Btu
                output) (data from Table XVII)
         EP  =  energy production by that method (Btu)
                (Equations XVIII-2 and XVIII-3)
         f   =  conversion factor (from pounds  to tons)
             =  1/2000
Example:  Calculate the quantity of particulates that will be emitted
          from coal-fired power plants in 1990 without energy
          recovery
                             0.1 x 20720 x 1012
                    Qp  =
                                         c.
                                2000 x 106

                        =  1,036,000 tons particulates
                                125

-------
5.  Calculation of Total Quantities of Pollutants Emitted in 1990
    during Energy Production Which Includes Energy Recovery from
    Municipal Solid Waste
             ZQp =
                                          QP
                                            MB
                                           (XVIII-5)
where   SQp
         Qp
         Qp
 CF
           MB
total quantity of a pollutant (tons)
quantity of the pollutant emitted during
coal combustion (tons)
quantity of the pollutant emitted during
cofiring of RDF and coal at 20:80 (tons)
quantity of the pollutant emitted during
mass burning of municipal solid waste
in waterwall incinerators (tons)
Example:
Calculate the total quantity of particulates that  will be
emitted in 1990 during energy production under the scenario
that includes resource recovery

       ZQP  =  1,003,180 + 28,770 + 8100
            =  1,040,050 tons particulates
                                 126

-------
XIX.  EFFECT OF ENERGY RECOVERY FROM MUNICIPAL SOLID WASTE (MSW) ON
      THE QUANTITIES OF POLLUTANTS THAT WILL BE EMITTED IN 1990
      DURING ENERGY PRODUCTION

1.   Calculation of the Effect of Energy Recovery on Pollutant
    Quantities
                        AQP  =
                                      - QP
(XIX-1)
where   AQp  =
         QP  =
                difference in quantity of a pollutant emitted
                as the result of energy recovery from MSW (tons)
                total quantity of the pollutant emitted during
                energy recovery from MSW (tons) (Table XVIII)
                quantity of the pollutant emitted during energy
                production by coal combustion without resource
                recovery (tons) (Table XVIII)
Example:
          Calculate the effect of energy recovery from MSW on the
          quantity of particulates that will be emitted during
          energy production in 1990

                  AQp  =  1,040,050 - 1,036,000
                        =  +4050 tons particulates
                                127

-------
XX.  LANDFILL CAPACITY REQUIREMENT FOR DISPOSAL OF MUNICIPAL SOLID
     WASTE (MSW)

1.  Calculation of Weight of Refuse/Residue Requiring Landfill
    Disposal

                            ML = M x PW

where    ML  =  weight of refuse/residue that will be
                landfilled (tons)
         M   =  mass of MSW that is subject to given
                procedure (tons)
         Py  =  proportion of original weight remaining
                after procedure
             =  0.25 after incineration
             =  1.0 after landfilling
             =  0.12 after resource recovery

Example:  Calculate the weight of the incinerator residue that will
          be landfilled in 1990

            ML  =  10 x 106 x 0.25
                =  2,500,000 tons of incinerator residue

2.  Calculation of Volume of Refuse/Residue That Will Be Landfilled
    in 1990

                          vL  -  ML  +  D x f                   (xx_2)

where    VL  =  volume of material in landfill (cubic yards)
         ML  =  weight of landfilled material (tons) (Equation
                XX-1)
         D   =  density of the material in the landfill (pounds/
                cubic yard)
             =  2700 pounds/cubic yard for incinerator residue
             =  800 pounds/cubic yard for landfilled MSW
             =  2000 pounds/cubic yard for residue from resource
                recovery
         f   =  conversion factor (from tons to pounds)
             =  2000

Example:  Calculate the landfill volume that will be required for
          disposal of incinerator residue in 1990

                               2,500,000 x 2000
                         L          2700

                           = 1,851,852
                           =  -1.85 x 106 cubic yards
                                 128

-------
3.  Calculation of Required Landfill Capacity

                            LC = VL x f                        (xx_3)

where    LC  =  required landfill capacity (acre-feet)
         VL  =  volume of material in the landfill (cubic
                yards)
         f   =  conversion factor (from cubic yards to acre-
                feet)
             =  0.0006198

Example:  Calculate the landfill capacity that will be required in
          1990 to dispose of the resource recovery residue from
          municipal solid waste generated in 1990

                     LC = 3,600,000 x 0.0006198
                        = 2231
                        = -2230 acre-feet

4.  Calculation of Total Required Landfill Capacity for Disposal of
    Municipal Solid Waste (MSW) Generated in 1990
where
         LCj

         LCL

         LCRR
                    SLC = LCj + LCL +
total required landfill capacity (acre-
feet)
landfill capacity required to dispose of
incinerator residue (acre-feet)
landfill capacity required to dispose of
landfilled raw refuse (acre-feet)
landfill capacity required to dispose of
resource recovery residue (acre-feet)
                                             (XX-4)
Example 1:  Calculate the landfill capacity required for disposal of
            MSW in 1990 under scenario without resource recovery

                     ZLC = 1150 + 289,760 + 0
                          = 290,910 acre-feet

Example 2:  Calculate the landfill capacity required for disposal of
            MSW in 1990 under scenario for implementation of resource
            recovery

                  2LCRR = 1150 + 243,270 + 2230
                         = 246,650 acre-feet
                                129

-------
5.  Calculation of the Effect of Resource Recovery on the Landfill
    Capacity Required for Disposal of Municipal Solid Waste (MSW) in
    1990

                      A2LC  =  2LCRR - SLC                    (XX-5)

where   ASLC    =  difference in landfill capacity requirement if
                    scenario for resource recovery is implemented
                    (acre-feet)
          2LCRR  =  required landfill capacity with resource
                    recovery (acre-feet) (Equation XX-4, Example 2)
          ZLC    =  required landfill capacity if there is no
                    resource recovery (acre-feet) (Equation XX-4,
                    Example 1)

                    A2LC  =  246,650 - 290,910
                           =  -44,260 acre-feet
                                 130

-------
XXI.  SUMMARY OF EFFECTS ON THE ENVIRONMENT OF RESOURCE RECOVERY FROM
      MUNICIPAL SOLID WASTE

In these calculations:

          SAQ  =  total change in quantity of a pollutant
                   emitted/discharged (tons)
                =  change in quantity of the pollutant emitted/
                   discharged through disposal of the MSW (tons)
                   (Table X)
                =  change in quantity of the pollutant emitted/
                   discharged during materials production (tons)
                   (Table XV)
          AQgp  =  change in quantity of the pollutant emitted/
                   discharged during energy production (tons)
                   (Table XIX)
           QCF  =  quantity of the pollutant emitted/discharged
                   during cofiring of coal and RDF that is
                   attributable to the RDF (Table IX)

1.  Calculation of the Net Changes in Quantities of Air Pollutants
    That Would Be Emitted to the Environment as the Result of Imple-
    mentation of Resource Recovery from Municipal Solid Waste (MSW)
    in 1990

              ZAQ = AQD + AQMP + AQEP - QCF
Example:  Calculate the change in the quantity of particulates emit-
          ted from MSW in 1990 with resource recovery from the MSW

        ZAQ  =  (-1-14,850) + (-10,654) + (+4050) - ( + 7200)
              =  +1046 tons particulates
                                 131

-------
                             APPENDIX B


       ESTIMATION OF LEACHATE QUALITY BY EQUILIBRIUM MODELING


     Equilibrium modeling was used to predict the quality of leachate

from the landfilled residue of municipal solid waste that remains

after resource recovery.  The equilibrium approach to modeling was

selected because concentrations of complexes can be expressed as a

function of the free metal and free ligand concentrations using mass

law equations.

     The equilibrium modeling was based on the following assumptions

pertaining to the residue from resource recovery (i.e., the solid

phase):

     •  Elemental analyses of incinerator residue are valid.

     •  Metals are present in the most stable oxidation state for an
        oxygen-saturated aqueous environment.  Therefore, unless
        there is specific compound identification, metals are in the
        form of hydroxides (except for the oxides of aluminum,
        silicon, and titanium) and silicates.

     •  Nonmetals are present in the most stable oxidation state for
        an oxygen-saturated aqueous environment.  Phosphorus and
        sulfur are therefore present as phosphate and sulfate
        respectively.

     •  Trace elements that are identified in leachate are present in
        the landfilled residue in hydroxide form at concentrations of
        less than 0.10 mole percent.

     •  The organic matter in combustion residue is inert.
                                  132

-------
     •  Organic species which act as strong complexing agents are not
        present in significant quantities.

     •  Microbial action within the landfill is minimal because of
        lack of suitable organic substrates.

     •  Biological degradation of inorganic species is negligible.

On the basis of these assumptions and available data, a hypothetical

composition of the solid phase was formulated (Table B-l).

     The equilibrium modeling was based on the following assumptions

pertaining to the leachate (i.e., the liquid phase):

     •  Formulation of a generic leachate based on available data is
        valid.

     •  The principal factors affecting metal solubility are pH, pE,
        and complexing ability.  Of these, pH is the most important.

     •  Leaching in a landfill occurs only when the landfill is
        saturated.

     •  Absorption equilibria are unimportant.

On the basis of these assumptions and available data, a hypotheti-

cal composition of the liquid phase was formulated (Table B-II).

     The assumptions made for the other variables that define the

landfill environment are listed in Table B-III.

     On the basis of these assumptions, the equilibrium concentra-

tions of the various elements in leachate from landfilled resource

recovery residue were calculated by equilibrium modeling according to

Chemical Equilibrium Program #REDEQL2 that was developed by the Keck

Laboratory of Environmental Engineering Science at the California

Institute of Technology in Pasadena, California (References 50 and

51).

                                 133

-------
                              TABLE B-I
           HYPOTHETICAL COMPOSITION OF THE SOLID PHASE3
CONSTITUENT
CaSO
CaSi03
Ca(OH)2
Ca3(P04)2
Mg(OH)2
MgSi03
A1203
Pb(OH)2b
Si02
Cd(OH)2b
Zn(OH)2
Cu(OH)2
Mn(OH)2
MnSi03
Fe(OH)3
Sn(OH)2
Mg(OH)2b
Ni(OH)2b
Ti02
K20-Al203-6Si02
Na20-Al203-2Si02
CONTENT
Mole %
3.27
9.80
8.71
2.18
8.71
16.34
5.45
0.05
18.52
0.10
0.54
2.18
1.10
1.10
3.27
0.08
0.05
0.02
6.54
4.36
7.63
Weight %
3.47
8.90
5.03
5.27
3.97
12.81
4.34
0.10
8.68
0.11
0.43
1.66
0.76
1.11
2.72
0.10
0.10
0.02
4.07
21.57
14.77
aBased on composition data in Reference 47.
"Added constituent.
                                 134

-------
                           TABLE B-II

          HYPOTHETICAL COMPOSITION OF THE LIQUID PHASE
           DESCRIPTION
   CONSTITUENTS
Eluant simulates a natural leachate
pH 5.00
0.15 M acetic acid
0.15 M sodium acetate
distilled water
                           TABLE B-III

          PARAMETERS DEFINING THE LANDFILL ENVIRONMENT
   PARAMETER
   ASSUMPTION
Temperature

Pressure

Liquid-to-solid ratio

Solid density

Bulk density
25°C, ambient

1 atmosphere, ambient

2:1

 2.6 g/cm3

 0.5 g/cm3
                               135

-------
                                   TECHNICAL REPORT DATA
                            (Please read Instructions on the reverse before completing)
                             2.
                                                           3 RECIPIENT'S ACCESSION-NO.
4. TITLE AND SUBTNTLE
                                                           5. REPORT DATE
 Assessment, o.f. ^the Impact of  Resource Recovery
 on the  Environment
               August  1979  (Issuing Date)
              6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)

 Judith  G.  Gordon
                                                           8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
 The  Mitre Corporation
 Metrek  Division
 McLean,  Virginia  22102
               10. PROGRAM ELEMENT NO.

               PE #1NE624,  SOS #5, Task 15
               11. CONTRACT/GRANT NO.
               68-03-2596
12. SPONSORING AGENCY NAME AND ADDRESS
 Municipal  Environmental Research  Laboratory—Cin.,OH
 Office  of  Research and Development
 U.S.  Environmental Protection  Agency
 Cincinnati,  Ohio  45268
               13. TYPE OF REPORT AND PERIOD COVERED
               Final
               14. SPONSORING AGENCY CODE
               EPA/600/14
15. SUPPLEMENTARY NOTES
 Project  Officer:  Albert J.  Klee (513)684-7881
16. ABSTRACT
       This  assessment of  the  environmental impact of  resource recovery examines  the
  environmental  effects that will  derive from municipal  solid waste disposal  in  1990
  and  the changes in these effects that will result  from implementation of resource
  recovery from municipal  solid  waste.   The environmental  effects considered  in  this
  study are  the direct effects of  municipal solid waste  disposal  as well as the  second-
  ary  Affects of substituting  materials recovered from municipal  solid waste  for  raw
  materials  in the production  of steel, aluminum, glass, and energy.  The energy  aspects
  of resource recovery—that is, energy conservation resulting from use of recovered
  scrap in materials production  and energy production  by recovery of energy from
  municipal  solid waste—are also  evaluated.  The analysis is based on specific  sce-
  narios for municipal solid waste disposal in 1990  without and with implementation of
  resource recovery.
17.
                                KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
  Energy
  Waste Disposal
  Assessments
  Materials Recovery
                                              b.IDENTIFIERS/OPEN ENDEDTERMS
  Resource Recovery
  Solid Waste Management
  Municipal Solid Waste
  Resource Recovery
  Environmental  Impact
  Material Substitution
                               COSATI Field/Group
   13  B
13. DISTRIBUTION STATEMENT


  Release to Public
  19. SECURITY CLASS (This Report)
   Unclassified
21. NO. OF PAGES
    144
  20 SECURITY CLASS (This page)

   Unclassified
                             22. PRICE
EPA Form 2220-1 (9-73)
136
                                                                    ft US GOVERNMENT PRINTING OFFICE 1979-657-060/5393

-------