-------
o
o
c
CD
QJ
CM
00
I
LU
CD
-O
ro
CO
O)
13
O
O
O O -
I- z >,
o QJ 3
r- S- O
--CO
O Q.
1/1 E ro
C Z3 -r-
o m
O r^ oo r^.
CO CM OO r CM
i oo tn vo co
r~x co «d- o
O en co r
CO
CO UD 00 OO CO
r-~ co en in UD
en i
CM OO ^t" LT)
o LO co r-^ co
o i oo en LO
O CO r-
CTl OO LT> OO UD CM OO
S- I cj- r-- CO en OO <3- UD
I ....
O-'IOOOO' < =
CO
" '- .co-
ce: &«r |oocMCMoor~- ?n oo ur>
r~-cnoo^j- i~ LO o r-
r> . jj
O| i i CMCMCM CM
O T3
-(-> (D
_c
T3 CO
-C| i '^ <^J- O CX! Ol
colooooocMr~-» ^: r~- i- CT>
co O
t-5
+j :
CO c£> O -3- O O c
!I_ CU £
cz
ro «d- cTi «3- r-^ -i- <*-
S-lr^cO-eJ-CTiCM SI O
i D-' | O OOCMCO <*- C
O 3
tr, | o:
oo LO co
r^ to i
00 CO
i^ co cri co
OO CM CO 00 CO
.
*3~ en >-~ oo i
CM OO CD
LO en en en co
co i^ oo oo en
o o o o
OO ^1- UD CTi
o o o o
oo ^ co en
ct:
ro
C£.
4-
O
CO
CTi
O
O
CO
V,
OO
co
Q.
ro
oo
T3
ro
CU
o
X
.c
CO
01
o
o
164
-------
o
. r~"
CO ^
ro o
^ -o
, ^
CD -)_)
^^ *
-o -a
re .,-
I ,
o
to
d
o
(_ 5
re
E
0)
i- 00
r- i t i
> re oo
ft \ *~\ «>-
\U tJ «^~
E !-> 0 _l
i- to " SX
o >, ^
z 4J t(_ H_
E O OO
^ «
^y ^
0) O C eS
4- O 3
-E a: H-
Q. re _ 5^ ,
1 1 \ j ^
> O
Oh- 1
UJ O
rv i
Li_ ^.
s: t^
C_) &5
3
^~Q
i
>j
rr Q-
-^
to
oo <^
oo -*->
>- o
_j i
5
'Z. s=-
0 ^
1 ^^
CsL
U. '
3
cJ"S
f -M
i i re
> 0
e£ i
a: Li-
es
o
> i
1 1
0 E
UJ !-
D- OO
OO
CTl O ^i" r CO
CM «3" CT) LO VO
r CM LO CO CT)
CO CO r VO r
>* t^ LO LD CM
CM OO CO CM LO
r ^~
CM O 00 r-
VO O OO «3- CD
CD r^v CD 1 VO
i OO LO IO
o r ^r CM *±
O *d" CM VO *3"
O ^3- r
r OO r- O CD
«* VO 00 CD CM
O O O 0 i
VO 00 CM O CO
< VO CO CD ^J"
r- . i i CM
r^» i LO r*- r
r^** ^^ ^3* o^ vo
ro LO vo vo CD
CD VO CO VO O
Lf) I*» OO LO O
LO CO CD CT) O
l~
r- f-» ^3- 00
~ CM oo <3-
LO i""" VO *~~ "^"
LO 00
O 0 O O
OO ^- VO CD
r-* r r~ r
o o o o
CO ^J- VO CD
r~ r r~ r^
to
0)
^~
1
o
-o
cu
_E
3
S-
o
,
re
o
0
ft 1
UJ
c
1
s:
n_
o
c
3
Q^
s
re
a:
M-
o
o
*
o
o
II
o
X
r"
C/l
J
. .
cu
a.
re
oo
a
re
cu
CO
oo
,-J
^.
LO
CM
CM
CO
CD
165
-------
Appendix F
Organic Sulfur Removal Data
Note: The complete procedure used to treat these
coals is contained in Section 4.5 of the report.
166
-------
s s
o
LU ce
_J Z3 r-
CQ U.
*£
+J QJ !T
(O -t-> -3
QJ C. £
Z =8%
Vt C
i- T3 O
>i X fc.
r- -f- fd
« u_ o
C
<
1 «.
X i-0>
S- ro 4-*
°" *o z:
>i >
t-
D
V)
«C
u
c:
rd
E1
O
5 CO m t£>
Oi i~ ID CO <43 "JO
i^, r\ co r^ co in co
cri ot cr> CT> r-* o > .
+ 1 "" +l
O d
t csj o r-. o
O C\J VO "^3 ^" f ^"
O Ol Ci CT> i CTt .
m oo i-f oo o
^j- o^ m ir> ro in oo
o o cr o , <£> ,
ro ro PO c^ + 1 oj + 1
CM VO
*3- ooco oo^j" coin i in
r- OO 0, ,- + | ,- + |
oj r-x
1C U3r»»r* *Oi **i
o ooo oooo
o ooo o+lo+l
o «*
i OJCQ ojvo i^i *d-in
r ^J-i OJh* OOO VD i
ro nn rooj ro+loo+l
O ro
O^ooo r-x <^)*a-ooo
roi o i i i (Mo
-o
QJ
en a> D- to
«3 -M ro 0)
i CM ro &. ro &. t.
flj OJ a) +-»
> *- > c
< t t^
E
* ro
QJ
^ -^ -i- -r-
O 4-> O
co 10 ^- ro oO
cxi «d- oj i£> in r ro
in in ID in . r ,
oo oj oj oj + 1 0*1 4- 1
CO O
CM o co r^ m. f^
,_: ,j _ ^ +i ^ +*i
r-.
tf- r^ r*^ UD i ^o o
ooo oooo
O O O O + 1 O +" 1
i O
CO i CO ^J- tf) O CM
ID r^ r CO CsJ CO !
ro ro ^J- ro 4- 1 CM + !
r^. CT^
CO O O CO O ^t
r f CO i i Lfl O
-o
CD
Q> O> *O
/o *-> ro a>
** in -J3 s_ *- > c
<: i .
B - 0
- . 21 3
E C c
W Z3
ex o i/>
E - T- QJ
O O C 3
02:^)^
m r^ CM
CO P*-. OJ V£>
LD in oo VD en
ooo o ro
r r , r- r^-
OJ
10 ui «* mi
LTJ (^ ^J- CM ID
*3- in in LO
^t ^t ^r ^- +
Ch . O 1^
r» n un oj t^
O CJi O O
in
co uo m in co
r^- co o m *3-
d- «s- ^r ^- ,
CM CM CM OJ +
co -
Orient No. 6 Mine,
Herri n No. 6 Seam,
Jefferson County,
Illinois
ro
i£~
^?;
O
Average
Untreated
167
-------
TABLE F-2
ORGANIC SULFUR REMOVAL DATA
BELLE AYR, FOX, COLSTRIP.AND JANE MINES
Mine, Seam, and
Location
Belle Ayr Mine,
Roland-Smith Seam,
Campl '11 County,
Wyom i
Fox Mine,
Lower Kittanning
Seam,
Clarion County,
Pennsylvania
Colstrip Mine,
Rosebud Seam,
Rosebud County,
Montana
Jane Mine
Lower Freeport Seam,
Armstrong County,
Pennsylvania
Run
Number
1
2
3
Average
Treated _
Average
Untreated
1
2
3
Average
Treated
Averaqe
Untreated
1
2
3
Averaqe
Treated
Average
Untreated
1
2
3
Average
Treated
Average
Untreated
Dry Forms of Sulfur, % w/w
Total
0.86
0.80
0.71
0.79
_t075
0.76
+ .029
4.12
4.07
4.19
4.13
+ .060
3.83
+ .038
0.85
0.97
0.88
0.90
t.062
1.01
+ .006
2.00
2.17
2.08
2.08
+.085
1.85
+ .015
Pyri tic
0.37
0.24
0.33
0.31
+ .066
0.22
+ .017
3.83
3.74
3.85
3.79
+ .064
3.09
+ .017
0.31
0.37
0.32
0.33
+..C32
0.34
+ .015
1.73
1.75
1.69
1.72
+.031
1.44
+ .048
Sulfate
0.00
0.00
0.00
0.00
+ .01
0.00
+ .01
0.01
0.00
0.03 ,
0.01
+ .015
0.05
+ .015
0.02
0.02
0.00
0.01
+ .012
0.00
+ .00
0.00
0.00
0.00
0.00
±.01
0.002
+ .004
Organic
0.49
0.56
0.38
0.48
±.100
0.54
+ .035
0.28
0.33
0.31
0.33
+ .089
0.69
+ .044
0.52
0.58
0.56
0.5f
±.071
0.67
±.019
0.27
0.42
0.39
0.36
±.079
0.41
+ .051
Dry Proximate Analysis, % w/w
Ash
7.77
7.76
7.81
7.78
± .026
7.55
± .058
16.45
16.30
16.72
16.49
+ .212
13.55
+ .031
9.99
11 .01
9.86
10.28
± .630
10.38
± .075
25.64
25.54
25.25
25.48
+86.6
21.75
+ .081
Volatile
Matter
47.51
45.40
47.32
46.74
± .167
47.11
±1.55
34.04
35.66
34.98
34.89
+ .813
38.33
+_ .580
41.78
38.72
41.39
40.63
±1.67
43.09
± .733
28.41
27.90
26.84
27.71
± .800
30.07
+ .289
Fixed
Carbon
44.72
46.84
44.87
45.47
+ .191
45.35
±1.50
49.51
48.04
48.30
48.02
+ .784
48.12
+ .560
48.23
50.27
48.75
49.08
±1.06
46.53
± .801
45.95
46.56
47.91
46.81
±1.00
48.18
+ .250
Heat
Content
btu/lb
11797
11993
12074
11955
±142
12034
±74.5
12186
12275
12285
12249
+51.5
12973
+ 17.6
11653
10839
11631
11374
±463
11591
±67
11013
11179
11139
11110
±86.6
11932
+38.2
168
-------
Appendix G
Sieve Analysis Data
169
-------
l/>
^
fc«
4J
2=
S3
4->
*e
+>
3:
*e
4->
3
n i cor-. t-- in CM n ^- iO n in in in ^- r- CM in
o or*- o i o co 10 oo en en r-. co en en oo no en. ro o * m i \o 10 r-.
^o < 00 CM o i ^- n en ^j- cr» evjro in i co <£> co ^- mm POCM o *± co * in ^~
CO m Cn Cn t n CM n in CO IO r-. O CM CM O n COCO CT> ^ en CT\ ^- /"-. OCO *O r-
i CM i CM en co ^- r- in in , ui n ^- ^j- CM o en o en en o o in CM r- en o coco
LO in m in ^-^- ID 10 in in in 10 LO m 10 m LD^J- ^-m ^-^-
r-^o LDCO oco ojcn r^-co io^D cor^. CT^csi cor- ^-co cOi cocn mm con com
cocxj r*-r- uicn co*o i *j- r-^r-- inr- mco POC\J ncvj r^r i co coco ^-tn CSJ^T
CT»O> t ^r r-vco ncxj co^o COCM in cor»» ^TI OJCTI cjco t/70> cor^* OLD mcr»
i m cTii ^-r-. CD t^> cf>^o o~»n i OCM inco r*»-n cnm CMLO coin us coi
UD *n co^j- esj^- c\i^- o<\j n^- co^j- n^d- p i i i coro c^i i < CMOJ ou
^-c\j coo ^-*J- oco iDi£) c^o c\j«3 . o .-co «d"vo h-csj ocft cocn nn coco
r--CO i CM ^-O r*-LT> LfJCTi UD CO CMCT> i i OO LOGO CO^" l-"*^ On CTiCTi , LO
10 us ^D 10 irjt/1 m LO ^or-- LO^O ^OLO ID yD r^-r*. t-^^o ^o^o m^o UD LD ^o UD voio
no crtco ^-co cncn oam oco ^j-c\j «d-co CT»CM r-»« cocr> ^-o^ coc\j cf»cr» ^-r^.
en co oco T^, co to in <* CT» r- 10 ^ csj , co o r- coca con *± r^. in r-. 01 co coo
^j- to CM csj <£> *t <£> r»- toco <*- co coco ro r co^d- co *t- r esj o co f m co «* en CNJ
con nn CMCM coco n^s- nn coco coco c\jco coro nn ^-^ noj co^" ojco
or*- CMIO no cr»o 'd-csj r^r--. **'* i£>r-- «ocn oco cor cno U5«J cn^ o^-
voto CMCSJ CVJCM 10^- CACM ioio cocn i en cocn r-».co cno ^-cn ous rv.io r~*.n
i r- C\J CM CM CM CM CM i n- r r- r- . CM r- r r- CM ^ CM CM r- COCO r CM CM
r^. *o CM CM 'd- co COLO o ** vo CM i r^. CM CM LO
CMCM iocri cn^o ID cor- uDcn c^«a- r-CM rrco UD^D cor- loio o^a- r-.«- r-cM
co co r r o o 10 vo o 10 co co CT» o ^ o !"* CTI co < en o r**~ CM 1^3 r^. nr» CK co *
j *
oo coo in r*» en <^> CM ** in «sf en «? CM h^ o en CM LO coco co CD in o en r-
n co i£)*£» en en coco r-. CM into r-. r- r-. <*o 10 *t con in 10 en r-. ^- in \cn£> r-» in
inr- co«i> cncD . CM r *± LOP-. ^-co . CM OO r CM CMCO ^*^- r^.rx. r-co ior^
toio CM. «)r^ r^co oco coo CMO cnio O^J- ior*- cncn cni2> roro oo eo 5
» ^- nn ^ < m m ^- r- CM n ^r ^j- n co CMCM r . CMCM us *a- CMCM n co n CM
\&m t^. csj co en m > co cno m UD r- *£> i- CM oco coco n en OCM ^r o o in
o o CM r- co r- ^ «* UD o CMCO in in coco CM cv . . CMCM vo ^- * CM ro . r
cnco ocn CMCO CMCO r-.to cvio COCM cnr^ tor- CMO o> r-.^- locn cncM r^co
CMCM r-co or- . o n^j- mr- cno cnco cno men ^j-^j- ^-cXi Loin r- to ^r-
oo i o «a-co coco coo i > CMCO . i 01 oo i to iTi m 10 10 10 mm «* 10 LO in in in r- 10 in «£ m In in in
fO -Q to _O rQ ^ (O -Q (O -Q (tf -Q fO -Q fd -Q T} -Q fO -Q fQ ^J «Q ri ^ _Q fO JD (O -D
10 E CLJ (U
m a> id c c E
I c=H CE^^ Efl (U
*O t tJ T- (O t/) 3E- - > fl at j
a*E roaJOJESQj r- SLO -^
to nj ajcjoocmco en i co cu LO ^
(UO) COC -r-OJCM^ CCM 13 rn c=
cocm -^LOEtn O .,-qi=.Li_ ^j ^ ^ =
r-a> f z: OB^CO t.-^c=S
«3^-CCE tte -VO^D ii C >>Z (U o c (n 5 . LO
oj 4->-r-rt)r yr r en «- ia ajo> +j s: ^
CO) Z >>(/! Q. SIC OW> ZZ lOQJ Z-^ (T31- Q0> ct- OJ-T- >, >.t.
-00 < 1 -r- -0 -r- Z T- 03 i^ 5* 3 - LO -r-U. C^ ^ r QJ3
E OlD XJI-3CO 04->CZ'-^t- ^3 Z. -^ o 3 t ^
01 -o 4»c -*->xi oz aid c. *- en a>i- -MIO r-c *- ^i_ -r-o j= ut
-O r T- Q>1_ O. ^^ Q OJ11 tt) * -r- Q.4J
CT3 >W ^-r- r-LO f tfl COr- -^ t- E . . O. >» -M . K C ? XX £ ^ P t>
O«J «3O 0)O OO 03: oz 3^ UJCL. zsc o ' u-_j ^(7i ^ccZ
2
c:
(/)
4->
a>
o
CL
c
D
T>
OJ
*o
^
U
5
a:
«
170
-------
Appendix H
Methods Development and
Trace Element Analysis Data
171
-------
The purpose of the methods development phase of the program was to
evaluate and set up the analytical methods to be used for coal trace ele-
mental analysis for the elements Ag, As, B, Be, Cd, Cr.Cu, F, Hg, Li, Mn, Ni,
Pb, Sb, Se, Sn, V, and Zn and to identify obvious and/or possible problem
areas. Methods development involved the assessment of various dissolution
methods for coal and coal ash, and the effect these procedures had on the
subsequent analysis . Based on the results of this study, a scheme was
devised and tested for the analysis of all elements using a combination
of plasma ashing in conjunction with conventional atomic absorption,
micro thermal analysis and colorimetric techniques.
Sample dissolution can conceivably be accomplished by decomposing
and dissolving the coal and ash simultaneously with an oxidizing acid
attack, such as the H2$04 -HN03-HC104 method used by the National Bureau of
Standards for their atomic absorption mercury analysis in coal (6), or by
first oxidizing the coal matrix by ashing either at low or high temperature,
and then dissolving the residue by some appropriate technique. This study
utilized low temperature oxygen plasma ashing since high temperature
ashing (e.g. 500°C in a muffle furnace) has been reported to be unusable
since many of the more volatile elements such as As, Cd, Hg, Pb, Sb, Se,
and Zn, are lost(3,7). The ash remaining after decomposition of the coal
matrix is then dissolved and the analysis performed. Since quantitative
dissolution techniques vary with differing elemental and molecular composi-
tion, a search for a common dissolution procedure for the elements of
interest was made utilizing readily available 1iterature(4-8). Because the
majority of the compounds normally associated with coal ash are oxides,
silicates or sulfides, conventional dissolution methods for these classes
of compounds, such as HF attack in conjunction with either HUSO*, HCIO*
or HN03 for silicates (6,7) and LiBCLfusion for oxides (8), were given first
consideration. The final evaluation was performed using 100 mesh x 0 Lower
Kittanning coal and the five dissolution methods discussed below. One
procedure was a chemical digestion using hLSO^-HNOg-HClO^S) while the
remaining four methods involved the dissolution of the low temperature
ashing residue and included: (1) Na^CO., fusion followed by HNOo
172
-------
dissolution of the melt,(2) direct HN03 attack, (3) LiB02 fusion followed
by HN03 dissolution of the melt, and (4) HN03-HF digestion. All residues from
the above digestions were filtered, washed, and dry ashed. These residues
were then weighed and analyzed qualitatively by either X-ray fluorescence
or electron beam microprobe. The results of these qualitative analyses
showed that of the five methods used only two, HNCL-HF and LiBO~ fusion
followed by HNCL dissolution of the melt, were effective in dissolving all
of the elements of interest. Of these two methods the HNCL-HF method was
chosen as the preferred method.
The elemental analysis of the dissolved coal and coal ash samples
was done by atomic absorption spectrophotometry (AA), using either flame
or fTameless techniques with some auxiliary methods being employed for As,
B, and F. Atomic absorption as a general analytical tool is normally con-
sidered free of interelement interferences and, because of the large dilu-
tions normally employed, is usually unresponsive to matrix changes. Trace
elemental analysis in coal does not follow general rules since the elements
of interest are present in a very dilute form in a relatively concentrated
matrix, consisting of the major inorganic components of the coal ash as
well as the relatively high concentrations of fluxes and acids needed for
the dissolution. In preparation for the analysis a search was made of
readily available literature for known interferents for each element and
the techniques employed for their removal. This data is compiled in Table
H-l along with the expected detection limit for each element based on a 2g
sample dissolved in 100 ml of solution.
Since the predominant type of interference for the majority of the
elements reported in the literature is molecular absorption, the sample
background absorption was monitored for each element using a hydrogen
continuum lamp with a wavelength close to the analytical wavelength
(Table H-2). An evaluation of the analytical and background absorption
data generated by the analysis of the five solutions encompassing different
dissolution procedures showed significant background signals to be present
for the majority of the elements using the L1B02-HNO ,HN03-H2S04-HC104,and the
173
-------
-------
C/5
I
:c
CO
a:
o
§
o
QJ
O
d Interferences Methods of Interference Remova
OJ
4-1
i.
O
a.
o>
a:
s method-H20 vapor, Drier, heated spectropho-
large excess of *°ter cell> excess of
ations. bnu2
in i.
01 O
O) in
u
Ol
i
1
o
Ol
4->
o
Q.
E u J3 oi
ID !-!- i.
r C
It- 10
Ol
c. i~
tt O
o
0
oi
ai --^
I/I Ol
IO i
CC 0.
g^
- N (O
§.^
a. en
> - co
c.
in - -
l/> 4->
Co o
i 3
Ol CT
E -i-
IO r
i~~ to
if.
m a.
CM O
r
0^--
u
3
o
Oi
V.
OJ
C
o
z
QJ
E
IO
r^
lf_
IT)
CM
O
|
LU
ai
01
ion
cn « oi
0 4J
r" f* (O
C3 U 5
£ c ^:
QJ O-
* S-
O 4- QJ
** QJ
>o
10
o
c
o
o
u
c
3
S
cn
-V
o
10
a
01
ia
in
CM
a
01
M
S-
o
a.
ai
c
o
c
o
r-
4->
in 3
l/> 1
Ol O
t >
10 10 in
r- r- ID
"*->*- cn
O O CM
m r o
o
o
in
a
ia
3
u
Ol
IO
o
m
CM
174
-------
t/1
II
oo
o
QJ
0?
CU
CJ
c
(11
i_
o>
t-
!_
CU
+J
c
<4_
o
LO
T3
O
.C
C
o
4->
U
CU
s-
S-
o
o
-o
c
3
o
s_
CO
_}£
O
ID
J2
H)
00
Z3
T3
CU
+->
3
lp_
-a
,_
CU
2
cu
D-
E
(0
en
a.
cu
cu
^
c
o
o
c
0
M
(T3
!_
4->
C
cu
u
c
o
o
-o
u
ITJ
Q.
CU
cu
^
cu
o
M-
3
01
i_
O
14-
o.
ID
S-
+->
CU
+J
ITS
4->
CU
O
ITS
JD
D.
r
ITJ
>
O
E
CU
1_
T3
cu
"
ITS
U
CU
J3
-t->
_C
cn
^
E
c:
o
f
+j
IO
s_
ITJ
CL
CU
00
cu
c
o
O
<:
a:
I
D;
o
LJ_
T3
o
r- ID
I O
re a:
CQ
«=C
Q-
o:
o
CO
=c
o
=t
ction Limit
pm) Based
Sample/1 OOcc Reported InterfprpnrP-;
Ol CL CT
+J CM
CU
o c:
o
15 f Tame Ca, Na, K, Mg, and Fe moleci
absorptions
0 flame Slight 1000 pom Cu
0 flameless
25 flame Th, H2S04, H3P04
1 flame Sr at 50 mg/ml
5 f]ame H?SO., H..PO,., 5000 ppm Na
0 flameless H
1 Colorimetric method - none
reported
06 gas evolution Colorimetric method H9S
0-c aliquot) '
°5 Colorimetric (curcumin) metl
NO,-, F-
* *«. . ,__
O LO i o 0 CM 0 0- 0
175
-------
TABLE H-2
ATOMIC ABSORPTION ANALYTICAL PARAMETERS
(A) Flame Methods
Element An»lyt1cil(Jl} Sl1t(A) Background (A*) Slit (A) Flame Conditions
Mn
Cu
Cr
N1
Sn
Ag
Sb
V
Pb
Cd
Zn
LI
Be
Hg
Sb
2795
3247
3579
2320
2246
3281
2176
4408
2833
2288
2139
6708
2349
2537
2176
4
10
4
2
4
10
4
2
10
4
10
10
10
B)
10
10
2882
3171
3563
2316
2186
3257
2241
-
2850
2297
2197
6698
2312
f Tameless AA methods
2241
4
10
4
2
4
10
4
-
10
4
10
10
10
10
Air-Ace tylenp
Air-Acetylene
NgO-Acetylene
NO- Acetylene
hydrogen-Air
Ai r-Acatylene-lean
Air-Acetylene-lean
lt>0 Acetylene-
emission mode
Air-Acetylene-lean
Air-Acetylene-lean
Air-Acetylene-lean
Air-Acetylene-lean
N-0-Acetylene
Ar flow, 2 SCFH, use
10cm cell heated to
200*C
pry at instrument . .
Se
Sn
1960
2863
*« h 1. I M*f VI -J\J I VI £. Ill
atomize at sattlng of
10
1879
2840
10 Same settings as for Sb,
except for addition of
H? whose flow Is
regulated at 10 psig
4 Same setting as for Sb
176
-------
Na2C03-HN03 dissolution procedures. The HN03-HF procedure was found to
be virtually free of background absorption, with the exception of Cd for
which a small background signal was found.
H.I. Atomic Absorption Analysis Procedures
Analyses of Ag, Be, Cd, Cr, Cu, Li, Mn, Ni, Pb, Sb, Se, Sn, V,
and Zn were all performed by atomic absorption methods on a single sample
of coal ash. A 2g sample of coal in a Petri dish was placed in an Inter-
national Plasma Corporation Model 1001B plasma asher and ashing begun.
Approximately once every 4 hours the console was opened and the coal
stirred to expose fresh surfaces. Ashing was continued 2-3 days until no
black particles remained.
The ash was then transferred into a Parr Instrument Co. Model 4745
24 ml Teflon acid digestion bomb using repeated deionized water washings. After
the volume was adjusted to approximately 10 ml, 2 ml of cone. HN03 (70% w/w
Ultrex high purity) were added, and the solution was heated on a low-heat hot
plate for 2 hours. An additional 2 ml cone. HNO, and 2.5 ml cone. HF
(52% w/w, Ultrex high purity) were then added and the bomb was assembled. The
bomb was then placed in an oven at 130° + 5°C for 4 hours. After cooling,
the solution was filtered (if necessary) into a 100 ml volumetric flask.
After adjusting the volume to 100 ml the solution was transferred to a
polyethylene bottle for storage.
In all cases the glassware used was carefully cleaned with dilute
HN03 followed by repeated rinsings with deionized water and a final rinsing
with acetone. All glassware was then stored in a specially covered area
until needed. Transfer to polyethylene containers was accomplished as
soon as possible to minimize absorption on the walls of the glass containers.
If storage was required at any time the solutions were refrigerated.
The solutions prepared in the above fashion were analyzed directly
for 14 trace elements on a Fisher Scientific Co. Model 810 atomic absorp-
tion spectrophotometer (AA) using the operating conditions listed in
Table H-2. The background wavelengths listed in Table H-2 were used to
'177
-------
monitor for possible interfering molecular absorptions. Since the dual
channel feature of the instrument allows simultaneous readings at the
analytical and background wavelengths for these purposes, appropriate
selection of flame conditions was used to eliminate possible interelement
effects. It was necessary to apply corrections only in the case of Cd and
on occasion for Be and Mn. Analysis for V was somewhat unsatisfactory by
either atomic absorption or flame emission methods. Flame emission was used
throughout the study for V and potential problems with this analysis are
discussed below.
Analyses for Sb, Se, and Sn were performed using a Fisher Scientific
Company Model 2 micro thermal analyzer attachment to the AA since flame
analysis methods were felt to be too insensitive to this study.
The detection limit for Se and Sn was still 2.5 ppm as opposed to
the desired 1 ppm; however, the cost of achieving a lower analysis limit
for these two elements was judged to be unwarranted in view of the
probable additional costs involved. For all of the analyses using the
micro thermal atomizer, background corrections were applied and standard
additions of the element of interest were used for quantitative work.
In most cases these three elements were not found in the samples studied.
H.2. Analysis Procedures for As. B. F and Hg
Separate analytical procedures had to be utilized for As, B, F and
Hg due to the facts that AA is too Insensitive for As and B, Hg is
reported to be lost during plasma ashing (6), and AA techniques are not
applicable to F.
The procedure chosen for As is a modified U.S. Bureau of Mines
procedure (1,9,10). A 1 g sample of coal 1s mixed with 1 g of MgO 1n a
porcelain crucible. The crucible is then heated slowly to 650°C and held for
1-1/2 hrs. The residue is transferred to a 125 ml Erlenmeyer flask using
acidified water. To this solution is added 5 ml cone. HC1, 2 ml KI
solution,and 1 ml of SnCl2 solution and the mixture is allowed to stand
for 15 min. This flask is connected to a receiving flask via a tube
containing glass wool to which a few drops of lead acetate solution has
been added. Ten ml of a solution of 5g silver diethyldithiocarbamate in
1000 ml pyridine is added to the receiver and 3g zinc to the reaction
flask. After allowing 30 min for complete arsine gas evolution the
178
-------
absorbing solution is transferred to a 1 cm cell where its absorbance is
measured at 540 my against the neat reagent using a Beckman DKII spectro-
photometer. The arsenic concentration is calculated after referral to a
calibration curve generated using a standard arsenic solution.
A colorimetric procedure is also used for B'(ll). A 1 g sample of coal in
a platinum crucible is ashed in a muffle furnace at 550°C for 1 hr. The
ash is fused with 1 g Na2C03 and then taken into solution with 1 N HC1 and
diluted to 100 ml. Then 2 ml of this solution in a 10 ml Nalgene centri-
fuge tube is extracted with 2 ml of 10% chloroform solution of 2-ethyl-l,
3-hexandiol. The organic phase is then separated and added to a 50 ml
Nalgene volumetric flask with 1 ml of a 0.375% (w/v) solution of curcumin
in glacial acetic acid and 0.3 ml of cone. I^SO*. After allowing 15 min
for color development the sample is diluted to 50 ml with Q5% ethanol and
the absorbance read at 550p against 95% ethanol on a Beckman Model DKII
spectrophotometer. A reagent blank is also run and subtracted from the
sample reading. The B concentration is then determined using a calibra-
tion curve.
The analysis procedure for Hg is one currently in use by the U.S.
Bureau of Mines (4). A 0.5g coal sample in a ceramic crucible
is placed in a Leco Instrument Co. tube furnace at 450°C fitted to
maintain an 0^ flow rate of 0.5 A/min. The combustion gases are swept
through an unheated quartz tube packed with lOg of gold foil for amal-
gamating the Hg vapor. After the initial combustion is complete (about
7 min) the temperature is increased to 650°C for 3 min. The gold foil
trap is then fitted with an Ar purge at 1 £/min and heated to 850°C for
15 sec. The Hg vapor released from the foil is swept into a 10 cm quartz
cell positioned in the atomic absorption spectrophotometer and Hg is
determined using the conditions in Table H-l. Calibration is accomplished
using known volumes of Hg saturated air in the analysis procedure.
Fluorine in coal was determined using an automated complexone
method. In preparation for the analysis an 0.5 g sample of coal is
mixed with 1 g CaO in a nickel crucible and ashed at 600°C for 2 hours.
The sintered cake is then fused with 2 G NaOH, dissolved in water and
diluted to 250 ml. This solution is then ready for analysis by the
179
-------
standard procedure in which fluoride reacts with the red cerous che-
late of alizarin complexion to produce a color which is measured spectro-
photometrically at 624 my.
H.3. Procedure Assessment
In order to determine the adequacy of the analysis procedures,
arrangements were made for TRW to participate in a round-robin concerned
with trace elements in coal. This was conducted by the National Bureau
of Standards under EPA contract. The National Bureau of Standards
prepared a standard coal for mercury and submitted samples of this coal
to a number of laboratories around the country for trace element
determinations. A sample of this coal was sent to TRW and analyzed
for the various trace elements using the procedures described above.
Table H-3 contains the TRW results obtained on the NBS coal.
Included in the table are the analysis values reported by the Illinois
Geological Survey using INAA. In general the TRW analyses are in fair
agreement with those reported by IGS except in the cases of F, Ni, Pb,
and Sn. For Ni, Pb, and Sn there are possible matrix effects
that may have been responsible for the poor agreement. The lack of
agreement in the F determinations could not be resolved.
H.4. Analysis Results
The results of trace element analyses for 18 elements in ten coals
before and after treatment by the Meyers process are presented in
Tables H-4 to H13. All analyses were run in triplicate on both untreated and
treated coals in order to get a good estimate of precision of the results
and a reliable estimate of the trace element removal. These analyses
were run on three separate samples of untreated coal in order that all
sources of error such as sampling, ashing, dissolution, handling, and final
analysis would be included in the final precision estimate. In a similar
manner, three separately extracted coal samples were each analyzed once
for the three values on the treated coal.
A standard deviation was then calculated for each set of results and
this was used to determine which results should be discarded. A value
falling outside 2a of the mean was not used. Discarded values are in
parentheses in the data tables. The differences between the initial
180
-------
average value and the final average value are also presented in the tables
The deviations on the differences were calculated using Equation 1:
Vb
Also reported are the calculated % removals. The standard deviation for the
amount removed was calculated using Equation 2:
2 . 1 2 (2)
r(a-b)/a V 74 ' 0a + ' ab
In cases where o/ ^\, is larger or the same as the value of the % different
N.D. is entered in the % change column to indicate that any apparent differtjrvt
in the initial and final values is not statistically valid. In all cases
where the element was not detected in the starting coal "Ind" appears in the
ppm change and % change column.
181
-------
D.
Cu
IS)
co
UJ
UJ
o
oo
co
00
CO
TJ
fv.ininincoinco
^ CO LO r O r
CM
o> in o> "O s- r«
ovoi oin
o r^ o CM
i V
in
CMOCMOr r- OLO
CO^fCM V .
o ir> Ln CM
V
in
CM CM co 10 co * o cn
O CM in CM
V
en -i- c !- ^2 jo M
182
-------
o
CJ
a. to
CL O
s _ ^ fV
C/) cC
>- LU
a
rs
03
UJ LU O
_j s: a:
CO LU
Q_
II
a:
i
oo
o
i
c
t/>
u
>
LU
C£
Lu
a:
u.
<
5l
O
>
a
»
z
UJ
Z
UJ
UJ
c
3:
o
LJ
u <
1- 3T
O
a
LU
t
u
a:
1
a
UJ
h-
u
a:
j
z:
o
u
u
ad
c
UJ
a;
h-
§
T*
C
-o
T
V
V
v'.
V
v
V
*£
o
c
a
E
i i
,
°.
v
o
V
o
V
o
p_
o
V
o
V
o
«c
CM ro
»' , -0 ^ ^ o 0 5 A'
co E E »o *o . to cn
1 » < " * CD CD -^ z: CD 1
o
to ro ' eg i--.
eg ° , '
* ^f to + 1 co co
+ 1 + +1 """. ^ +! +1
_ Ln +| o
o ~ "O en to i
n cc«j3«ej-roOi co
1 t-l h-H + + | | + |
CO
0
°. °i o - 0
^3- in + eg
O en CM
+ |m --t-l+lm+l
"? ₯| px kO """ 0 +
m v v /^tnejoegto
O
to CD to
in in 10
^- - +| CO
+ 1 *". +1 o +|
m in m + eg +
in cn r-s
POO V VCOCMCD^J-CO
i in in
CM t i eg
CD fO
in m i
o in o '
o o cn
^o v vioegcDror-.
HI T3 i- 3 CO -r- E
cacaoo(jLi_3:_i3E:
-
+ 1 +1
m ai c c E
i | i-^ t i i i
ro
ej
eg
ro
+i +l
CO
CO . T3 "O "O
r- eg c c E
ro
r~. o
r~ + 1
+ 1 in in
eg
ro i c\j eg
r O v V v
PO
ro
+ | in in
eg eg
PQ CO r V V
LO in
in
eg w eg eg
in in
eo in r eg eg
r~ V V V
m m
LO
«3- r eg eg
LO m
eg eg eg
CO «3" r V V
in in
IT)
00 i eg eg
eg v v v v
-~-. m
** eg
ro ^- r ^ v
- .a .a cu E
z ex cn to LO
.-
+ 1
cn
ro
cn
+ |
Ol
m
+ |
^
10
in
ro
CD
in
o
CM
in
CD
tTl
o
eg
CO
>
*"!
r"
+ 1
CO
+ 1
CJ
"
to
^
o>
CM
^
ro
"
iO
CO
c
r*g
183
-------
(/I
II
o
o
o
CQ
Q-
a.
>-< - cn
LU OO
LU O
_i z:
LU I-H
_J
LU I
O ii
OJ
C3
UJ
tD
c.
u
si
O- 3C
o
Q
UJ
1
u
CO 0£
UJ |-
UJ
CD Q
C UJ
£ H-
uj <;
> u
<: o:
»-
z
Q
UJ
1
U
t
UJ
ID
<
[NDIVIDI
UJ
UNTREA
i
z
Si
UJ
UJ
^
+1
c
rtj cn
in
: ;
r CO
r-..
^ *~
P 0
0
+ 1
r- CO
O
CO V
a\
in
o
ro
i V
, o
v r^
r CD
v ij
cn ift
-
+ 1 r-*
5 +l
CO
0
in
o
o r-
+ ! ^
r^
O r-
CO
O
o
o
o ^s-
ro
CM
CO
O r
*^ CO
O i
cn
O r
,
O «*
CD ^*-
O
7i 7i 7i e ^
r-» in co - -Q
1 1 1 t3 PO »5
A
ro
co ro
ro co CM
*~ ro + 1
+ 1 +1 *> , .
+ in
UD cn co ' ~v
CD CO CM ro i c
1 1 14.,^
A
CO
CM
* Z m.
+ \ +1 ^ ^ U, LO
O f- CM CM
CM «d- v «a- v v
CM
o ro
"~. +| m, ° CM*
+ 1 + . t m
co + 1 + 1
co ro cn CM
00 CM "~ *fr v
in in
co to
r-» co CM CM
CM in v >>. v v
in co
m
CO f*» t CM CM
CO CO
in m CM CM
r ro o in v v
.
OO CM O i CM
CO i ^- V CO V
C T- J3 JQ Ol C
"SI Z O- CO CO CO
a
z
CD
+ 1
CM
,
O
cn
ro
+ 1
vo
o
I
I
m
o
»
cn
ro
+ |
CO
cn
CO
CO
o
CM
+ 1
ro
CO
in
CM
ro
CM
ro
ro
a>
CM
CO
CM
r-.
o
CM
hsl
184
-------
O
O
a. C3C
a. LU
LlJ
oo
s
CO
IO e(
^ <
Ul I VO
r 'z.
CQ UJ
< 21 O
I UJ Z
UJ -Z.
ii
111 fV
C_> DC.
o
l-
LU
C
3
U
CL <
O. 3:
LJ
Q
LU
t
LO U.
LU D£
^- LO LO
V i CO O V
O LO LO
* O
V CM CO O O
OO
0 0
r- CM r*»
*-> f CO i
v
LO
i O LO
^- **
v » ** co o
CO
r~ o LO
LO 00
v , co co o
«C «C CQ CO <->
+ 1
ro
+ 1
t
CM
ro
+ 1
hs
in
0
+ 1
N.
S
to
10
irj
R!
CM
R
t.
L-)
^_
O
O
CM
Lf)
+ 1
ro
(
-*"!
LO
?
CM
LO
+ !
CO
in
in
v
LO
V
00
CO
CO
3
CJ
CM
+ 1
1
in
i
CO
o
+ 1
LO
o
en
-"
in
o
en
CO
CM
en
r-.
o
CD
0
o
o
o
I
u_
CO
+ 1
Q CO
CO
o
O CO
+ 1 r^
CM + |
0
CO
O i
-f- 1
CM
O
+ l S
^ +1
O LO
CM
O
CM
CM +|
CO
O CM
O LO
' VO
CO
O **
CM
0 CM
en
CD
O CM
LO
*~^ CM
0 CJ
en T-
32 _J
O
+ 1
CO
+ !
LO
LO
+ 1
U3
OO
O
+ |
I
LO
CM
ro
ro
to
*£>
>n
E
z:
c c
to t
CD CD
CO
r-. *fr
+ 1 +
CM ^~
LO r-»
m
:, :
in
O LO
en
co o
+
ro
m o
O CO
o co
CM
LO
O CO
0 i
i^J V
LO
o
CD
LO V
r- _Q
z: a.
c:
CO
o
+ 1
CM
V
in
0
0
V
17
V
LO
o
z.
CO
LO
+ 1
ro
1
CO
+ 1
CM
in
+ 1
LO
O
LO
LO
CM
in
CM
CD
O
LD
CM
V
O
LO
at
CO
"O
c:
c
in
CM
V
LO
CM
V
LO
CM
V
LO
CM
V
LO
CM
V
in
CM
LO
CM
V
LO
CM
V
LO
+ 1
Q CM
CO
~Z. 1
CM
O VD
+ 1
«*
LO i
CM r
4- 1
LO
+ 1 +1
Ch LO
1£J CM
CM
co «a-
CO CO
CO CD
LO ol
en CM
r^ CM
Ch CM
tO CM
o ro
CM
m «a-
ro
oo
LO ro
c
185
-------
o
DQ
a. «
o_
^~* o
CO
1-1 Z
CO O
>- t-1
Z UJ
LU CO
CO
LU
C\J
O
a.
o
n Oi i r~
*l ~ r.
o °o oo
o
co
00-00 in
O
to
m>
IOI
O
o
,
a- i co o
ro CM co o"i
O CM r- O CM
+ 1
+ 1 +1 +1 +1 +1 +1 +1
OOO"^
*-
J. + , , _ If)
' ' , , ,
U> U) 4- 4- +
'
+1
'
CO
CM O
mini o
o o *
o v r r
O Lf)
inm i cum co «LO
O i ^--' i CVJCMCXJ CM
oor^^-CMOr r*., r ror- v. ro
. i in in in
$f**-COOOO C3CM' --O
«oi «ojr*.r- opN.inoi CMCMCM CM
LO tO CM CO r i i CMOi CT^CO
CM LO
C3C1OOIO OOr--O
m CM co -oom
lOCMr r-i i i O< f CO
cu -a i-
c-r-_Qj3cu
186
-------
o
o
CO
I
E .
o- x:
OO 00
>-
_l
< o
CQ z: ca
+1+1 +1 |+' + | + +1
Sin a fo -Q o i OQI i P*- ~o -a "o
co ^ c m CM UD LO 10 c c c
un
CM O CO CM CM
O +| ^CMr""*£>'~'CO'~~
+ i 2 +' -° -H + +l 3 ' +l +l + l
CM ~_d,5cMO,Sd+l£cM-°-i-gl
' ' 111+ O 1 1 1 14 l 1 11
«s- <~-
""". CM O ^ IO
** O ° CO CM + 1 f-J O CM "*
CM ro n o v m r ^ o CM r CM in v v v
in r*x Q
r 10 r-- CM Q CM
+ | 0 °, CM r-^ *~ +| 0 r^ r- r-
O i + 1 +J
.cM-t-l +1+1 « +1+1+1+1 min
CM «sj- m vo 'O ^- -torN-co i CMCM
(O CO CO O V LO r r CD CM i i-" in V V V
r^ CM in tn
vo m ro
r- i . -f-m i vo o o in CM CM
^" CM O V m CM O CM ^" *J" r V V v
o r*- LO LO
co in r^ CM -
r ^- *o in r^^ * vo CM CM 10 i CM CM
*d-cMtoo vmcMi c>cM««a-^a-i v v v
CT> in in in
*o m 01 ro
ro^- -CMOOLn *^oOi ^-i CMCM
^CMfOO VLOCMi OCM^T^fr V V V
C7)(/l QJ T3 S- 3 C71-t-C-r-.Q.QQJC
«t M
187
-------
O.
O.
c
II
I
_l
>-
t/1
I
Q.
o
o
y fe
2 2
DC
UJ
O
u
z
3;
C_J
**
u.
< CMCMLf>r
CMCOi OCO^OCOO V V V« *
CO
o
CO .... CM
CMO + | O *sl- r-
+ 1 +1 +1 +1 +1+1 in uo +|
mtncM 'C0*ccomi CMCM^-^-
to co. i oco^-rocMV v Vi co
Sin m
co . « in
in o r*- i CM CM co
CO lOCM^OCMOV V Vi CT»
in in LO
CM i "5J- O
O O i ** r CM CM ^- i
CMCOi oroco^-o v v v< CM
«* in in
ro r- co in
O CM r~- If) i CM CM CO CM
cococMOcoco^r v v v vi CM
co in in
o in
covo cnr^cMO' CMCMP-.CM
mco icoco^-cocov v v co
CM LD UT>
lO r LO
Sini «coin^)-cMi CMCM^-Ln
CO^ OCO-r-C-r-.Qjaa)C E
oou-ai_is:zci.tococo>r>i
188
-------
a. »
a. x
o
4(0 O
= z 5 Sc
LU O
I I X
00 Z O "
< uj u. at
UJ UJ
_J >
UJ
CD
UJ Z
oi
UJ
3
LU
CD
5
UJ
z
«t o
LU
S
UJ
o£
f
o
UJ
5
UJ
CO C£.
UJ h-
§
CD
=
O
z a
I 1 UJ
tz
UJ
Qi
(
s
=>
fe
£
UJ
_1
UJ
ar
^
'
r
-;
V
LO
O
LO
O
LO
CM
V
r~~
V
V
in
+ 1
*fr
i
Oi
r
CM
1
CM
_:
< "
in
+ 1
ro
CM
CM
O
00
CO
CM
CM
CM
CM
LO
CM
CJ*l
CK
r^
CO
i
o
CO
1-^
LO
1
CO
ro
"
in
00
r-~
+ \
0
^*^
1
o
1
CM
O
0
to
o
o
CO
o
to
o
o
C>J
o
CVJ
o
-a
c
f^
y
LO
"
LO
V
LO
V
LO
V
LO
V
LO
V
in ^ cVj ^o i~* *""
+ | +1 +| c c +1 +| c -o -o c +|
i- *- 'i- fZ ** C -r-
CO'efCM'O'OfOOOfOt «LO t-H nJ O
LO ^ r CD CD VO CTl CD QO CD C^
til II 1 f
A
CM
O
CM
CMLOCMOtOCO* CM
. LO LO
+ | + | LO CO +| +| C +1 C +1 +|
. o tJD + I HH
LOi r O i r i I-*. i CMCT)
1 1 1 + + 1 1 + 1 +1
A
CM
O
. CM ""I .
**OO+|O.r-O .O
i + J . LO
O«3-CM -LO r-CMi CM CMr-r
r O
CO i
CO^CMCO LO- CM
^J-csJ+l+i^cM r^ r
o +| r-x +| ^ LO
«3- LO LO
O^J- 1 "sT O O CM r CM CM r o
^J-r- O i r r , V V V » r
CO LO. LO
r LT>
mrocM -LO CM f < CM CM CM »
CO^COOi COr r VV V f r-
*fr U"> LO
, LO
^-^CM -LO OCMr OJCMO^-
^ COOi CO» i VV V *
ID LO
o m -CM
CT\CM O^-CM' CMVCM V i
-------
UJ
LU
to
LU
CJ3
|
CJ
s:
a.
o
UJ
t
UJ
a?
to i
LU
t
Q
i < LU
h
LU
ct;
H
t
LU
s:
LU
LU
a
o
z o
7
,
^ +l
CM
CM i
1 1
LO
O
+ | r-
CM V
O
i
4- 1
+ i *
CM
<-_
CM V
CM V
00
r
CM r
LO
CO
LO
CO
cn tn
LO
CM
+ |
CO
I
2
a>
+'
*~
CO
+i
o
CM
'
J2
CD
CM
1
O
CM
O
CM
CO
Q
Z
.
O
+ 1
t
0
1
^1
o
+ 1
o'
o
°
o
d
CM
1
aj
CO
*j-
2 +l °.
t "Z.
t
VD
CO*
^ CO
C. -f- 1
ro
i i
LO
LO +l +l
CO O
v *r c\j
O LD
CO O
+ 1 +1
LO
V CO CM
LO
UO CO
LO
o co
V LO t
LO
CO *
V *3- CM
LO
O CO
V CO CM
CO «tf-
1--. CM
LO
V CO CM
-a s- 3
000
LD
+ 1
CO
CO
1
+ 1
CM
CO
1
^_
s
*~
LO
^
LO
CM
1
UD
^
1
r*.
LO
CM
LO
CM
U.
CO
CM
+ 1
<"O
1
O
CD
+ 1
lO
.
o
1
s
o'
o
C3
OJ
cp
o
-* 1
^
0
CM
i
o
o
o
o
o
LO
o
CM
0
^
O
:C
co »r
+ 1 +1
CM «d-
^f LO
+ 1 +1
VD «^~
1 1
i
CO t
+ 1 +1
O I"*1--
^ "~
CO O
10 i
+ 1 +1
UD i
r^. co
co uo
r-~ co
O CO
10 r
CO i-
r*- ro
CO CM
IO CO
i O
CO CO
2 i
LO r
+ 1 +1
LO CO
1 1
00
LO
CM
CM ^O
LO
r CM
+ 1 +1
CM O
CM -
LO LO
CO r
+ | +|
O
CM CO
CM O
CM r
CO CM
CM r
CM
CM LO
CO CO
z a.
?
-a
c
V
V
V
*~
V
^_
V
V
V
-Q
CO
o -a
c c
1 1
LO LO
CM CM
V V
LO LO
CM CM
V V
LO LO
CM CM
V V
LO LO
CM CM
V V
LO LO
CM CM
V V
UO LO
CM CM
V V
LO LO
CM CM
V V
LO LO
CM CM*
V V
cu c
CO CO
CM
Q +|
<£>
\£>
UD
+ | +|
«3- r-»
CO
+ i
^ *£>
r-_ O
CM CO
Oi i
CO Lf)
LO t
+ | +1
CO LO
r-. LO
LO
LO CO
LO GO
LO LO
f-» LO
LO rf
LO r-x
CO LO
c
> h«J
190
-------
to *
£5^
o
3gs
£>-=i!
5
LU
on
i
CO
00
hI
Q-
LLJ
C!
«=
l_
e
2
IT
CJ
0-
Q.
Lt
1
U
C£L
CO (
LU
AVERAGE
LU
1
<
LL
ex.
t
z.
o
LLJ
I
ft.
t3 £
IT) |
^
>
O
3
2T Q
i i LiJ
h-
+ | + t +
o
U3 >£> co ro r r-N
CM r-v o r~ ro r
CO
O
CM - LD O f CO r-
VD
CM ^ Si 0 r^ <^ CD
^.
0
r- i i CM o ^i-
CM O i CO r
O
LO LO kD - CO CM CO
CM r- r*^ O i CO r-
1
o
^o co . «^- CM co
CM CO O CO i
cj o U- n: i £ 2:
CM r~
Q -D-D "0 +l+|
c c c:
ro LO
i i
en
CM
O CM <*
"~ -o -o -o +1+1
+ l £ £ 5 o, o
in CM i
+ i i
"^
CM 0 ^
i V V V ^f CO
J--
CO
LO LO + | + |
r CM CM r** CO
r-^ v v v ^ i
LO LO
O> i CM CM LO
r V V V LO CD
LO LO
r- CM CM O
LO LO
« CM CM O rO
^o v v v en CM
LO LO
r CM CVJ LO *3-
to v v v co "
LO LO
r- CM CM LO ^O
CO V V V LO i
Q. to LO t/i > r*j
191
-------
O
>-
O
C_3
CD
*-* a.
2E i
D- O
>
t/> UJ
>- oo
UJ
_J
CQ
LU
ui
UJ
a
<
o
a:
UJ
M|
U
LU
O
LU
LU
co a:
=D
_J
C3 Q
AVERA
UNTREATE:
o
5
LU
1-
t/1
Lu
<
Q
t-t O
LU
LU
a:
§
1
z
£
LU
_J
LU
O Q O
c
<-> z 2S
LO
o ro
+ 1 co'
1 <*! +1
1-1 O CO
o
0 r-.
+ | LO
-l->+|
V 0 fO
LO
O
, »*>
« +1
V 0 J^
-
* 1
o
T r-.
v LO
O V
f
J o
V 0 i
r^* CD
7 °- °
* o i~~
CO
"~; o o
v O LO
- 0 ^
r-.
v
en \n
< *
LO LO r-
V V ^- CM CM O
0 CM
LO CD LO CM
LO r**
vi v CM *d~ o
Px O)
LO LO f
00 * O) LO *
V V CM ^J" O
tO LO LO -CM
* CO r-
V V V CM LO O
ro (j (_j (_) Ll_ 32
+i +i 7i
/S 01 eo 5 "c a oi
1 1 O 2 2 _ CD i
CM io
O CM o CO ^O ^
+ 1 i CM i +1
r~ ' +1+1
+ ' i + T i " +" T
A A
° r C\J ^
0 fO 0
+ '+' +'o i- "* CM' £M +'
cj^-^^rjcM Vi_co
CM r^
CM ^> 10 00 ^O IO
^ co ,1' +l +I +I ^ +l +l
LO LO
CM^-^r- v v y^fv,
LO LO
~^^oo^^~-w
LO LO
CM ^ , JH1"^ v y^fO
!%3a> + *jiu;$
VLOoocwVo, VrJ^.
LO
" « -00
v m S m CM (V. ^J-
v ^" fO CM ^~ V O IO
192
-------
TECHNICAL REPORT DATA
(Please read iHitniclittm on the reverse before completing)
\. REPORT NO.
EPA-650/2-74-025
3. RECIPIENT'S ACCESSION-NO.
4 TITLE AND SUBTITLE Applicabmty of fly, MeyerS PrOCeSS
for Chemical Desulfurization of Coal: Initial Survey
of Fifteen Coals
5. REPORT DATE
April 1974
6. PERFORMING ORGANIZATION CODE
w Hamersma) M.L.Kraft, C.A. Flegal,
A. A. Lee, and R. A. Meyers
8. PERFORMING ORGANIZATION REPORT NO
9 PERFORMING ORGANIZATION NAME AND ADDRESS
Systems Group of TRW, Inc.
One Space Park
Redondo Beach, California 90278
1O. PROGRAM ELEMENT NO.
1AB013; ROAP 21AFJ-32
11. CONTRACT/GRANT NO.
68-02-0647
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
NERC-RTP, Control Systems Laboratory
Research Triangle Park, North Carolina 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
The report gives detailed experimental results of applying chemical
desulfurization technology to a variety of U. S. coals. Run-of-mine coal samples
were collected from 15 U.S. coal mines in 11 states. Each coal was treated
separately by the Meyers Process (ferric sulfate extraction) and float-sink
fractionation (physical coal cleaning). The Meyers Process removed 83-99% of the
pyritic sulfur (40-64% of the total sulfur) from all the coals that contained sufficient
pyritic sulfur for accurate sulfur determination. Four coals were reduced to less
than 1. 0% total sulfur by the Meyers Process , and one coal was reduced to less than
~ total sulfur by physical cleaning. Except for one mine, the Meyers Process
removed significant increments of sulfur over that removed by physical cleaning. The
Meyers Process also removed significant amounts of selected trace elements along
with the pyrite.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COSATI field/Group
Air Pollution
'oal
oal Preparation
Desulfurization
Sulfur
Pyrite
Air Pollution Control
Stationary Sources
Meyers Process
Ferric Sulfate Extraction
Float-Sink Fractionation
13B
8G, 21D
81
7A
7B
Trace Elements
3 DISTRIBUTION STATEMENT
Unlimited
19. SECURITY CLASS (Tills Report)
Unclassified
21. NO OF PAGES
200
20 SECURITY CLASS /Thispage)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
193
-------